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PREFACE

xv

The subspecialty of population pharmacokinetics was introduced into clinical phar-
macology / pharmacy in the late 1970s as a method for analyzing observational 
data collected during patient drug therapy in order to estimate patient-based phar-
macokinetic parameters. It later became the basis for dosage individualization 
and rational pharmacotherapy. The population pharmacokinetics method (i.e., the 
population approach) was later extended to the characterization of the relation-
ship between pharmacokinetics and pharmacodynamics, and into the discipline of 
pharmacometrics. Pharmacometrics is the science of interpreting and describing 
pharmacology in a quantitative fashion. Vast amounts of data are generated during 
clinical trials and patient care, and it is the responsibility of the pharmacometrician 
to extract the knowledge embedded in the data for rational drug development and 
pharmacotherapy. He/she is also responsible for providing that knowledge for deci-
sion making in patient care and the drug development process.

With the publication of the Guidance for Industry: Population Pharmacokinetics
by the Food and Drug Administration (the advent of population pharmacokine-
tics/pharmacodynamics-based clinical trial simulation) and recently the FDA Criti-
cal Path Initiative—The Critical Path to New Medical Products, the assimilation of 
pharmacometrics as an applied science in drug development and evaluation is 
increasing. Although a great deal has been written in the journal literature on 
population pharmacokinetics, population pharmacokinetics/pharmacodynamics, 
and pharmacometrics in general, there is no major reference textbook that pulls 
all these facets of knowledge together in one volume for pharmacometricians in 
academia, regulatory agencies, or industry and graduate students/postdoctoral 
fellows who work/research in this subject area. It is for this purpose that this book 
is written.

Although no book can be complete in itself, what we have endeavored to assem-
ble are contributors and an array of topics that we believe provide the reader with 
the knowledge base necessary to perform pharmacometric analysis, to interpret the 
results of the analysis, and to be able to communicate the same effectively to impact 
mission-critical decision making. The book is divided into seven sections—general 
principles, population pharmacokinetic basis of pharmacometrics, pharmacokine-
tics/pharmacodynamics relationship, clinical trial designs, pharmacometric know-
ledge creation, pharmacometric service and communication, and specifi c appli-
cation examples. In the introductory chapter, the history of the development of 
pharmacometrics is traced and its application to drug development, evaluation, and 
pharmacotherapy is delineated. This is followed by Part I on general principles that 
addresses topics such as the general principles of programming, which is a must for 
every pharmacometrician, pharmacometric analysis software validation—a subject 
that has become prominent in last few years, linear and nonlinear mixed effects 
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modeling to provide the reader with the background knowledge on these topics and 
thus setting the pace for the remainder of the book, estimation of the dynamics of 
compliance, which is important for having a complete picture of a study outcome, 
graphical display of population data—a sine qua non for informative pharmacome-
tric data analysis, the epistemology of pharmacometrics, which provides a pathway 
for performing a pharmacometric analysis, and data imputation. Data analysis 
without the proper handling of missing data may result in biased parameter esti-
mates. The chapter on data imputation covers the various aspects of “missingness” 
and includes an example of how to handle left censored data—a challenge with 
most pharmacokinetic data sets.

In Part II of the book various aspects of population pharmacokinetics, pharma-
cometric knowledge discovery, and resampling techniques used in pharmacometric 
data analysis are covered. Thus, various aspects of the informative design and analy-
sis of population pharmacokinetic studies are addressed together with population 
pharmacokinetics estimation methods. The chapter on pharmacometric knowledge 
discovery deals with the integrated approach for discovering knowledge from clini-
cal trial data sets and communicating the same for optimal pharmacotherapy and 
knowledge/model-based drug development.

Part III, which is on the pharmacokinetics–pharmacodynamics relationship, deals 
with biomarkers and surrogates in drug development, gene expression analysis, inte-
gration of pharmacogenomics into pharmacokinetics/pharmacodynamics, empirical 
and mechanistic PK/PD models, outcome models, and disease progression models 
that are needed for understanding disease progression as the basis for building 
models that can be used in clinical trial simulation.

Part IV builds on the knowledge gained from the previous sections to provide 
the basis for designing clinical trials. The section opens with a chapter on the design 
of fi rst-time-in-human (FTIH) studies for nononcology indications. The literature 
is fi lled with a discussion of the design of FTIH oncology studies, but very little has 
been written on the design of FTIH studies for nononcology indications. A com-
prehensive overview of different FTIH study designs is provided with an evaluation 
of the designs that provide the reader with the knowledge needed for choosing an 
appropriate study design. A comprehensive coverage of the design of Phase 1 and 
phase 2a oncology studies is provided in another chapter; the section closes with a 
chapter on the design of dose – response studies.

Part V addresses pharmacometric knowledge creation, which entails the appli-
cation of pharmacometric methodologies to the characterization of an unexplored 
region of the response surface. It is the process of building upon current understand-
ing of data that is already acquired by generating more data (information) that can 
be translated into knowledge. Thus, the section opens with a chapter on knowledge 
creation, followed by the theory of clinical trial simulation and the basics of clinical 
trial simulation, and ends with a chapter on the simulation of effi cacy trials.

Parts VI and VII discuss what a pharmacometric service is all about, how to com-
municate the results of a pharmacometric analysis, and specifi c examples ranging 
from applications in a regulatory setting, characterization of QT interval prolon-
gation, pharmacometrics in biologics development, pharmacometrics in pedia-
tric pharmacotherapy, application of pharmacometric principles to the analysis of 
preclinical data, physiologically based pharmacokinetic modeling, characterizing 
metabolic and nonlinear pharmacokinetics, in vitro in vivo correlation, and the 
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application of pharmacometric knowledge discovery and creation to the character-
ization of drug safety.

What makes this book unique is not just the presentation of theory in an easy 
to comprehend fashion, but the fact that for a majority of the chapters there are 
application examples with codes in NONMEM, S-Plus, WinNonlin, or Matlab. The 
majority of the codes are for NONMEM and S-Plus. Thus, the reader is able to 
reproduce the examples in his/her spare time and gain an understanding of both 
the theory and principles of pharmacometrics covered in a particular chapter. A 
reader friendly approach was taken in the writing of this book. Although there are 
many contributors to the book, we have tried as much as possible to unify the style 
of presentation to aid the reader’s understanding of the subject matter covered in 
each chapter. Emphasis has been placed on drug development because of the need 
to apply pharmacometrics in drug development to increase productivity. Examples 
have been provided for the application of pharmacometrics in pharmacotherapy 
and drug evaluation to show how pharmacometric principles have been applied in 
these areas with great benefi t.

In the writing of this text, the reader’s knowledge of pharmacokinetics, phar-
macodynamics, and statistics is assumed. If not, the reader is referred to Applied
Pharmacokinetics by Shargel and Yu, Pharmacokinetics by Gibaldi and Perrier, 
Pharmacokinetics and Pharmacodynamics by Gabrielson and Weiner, and statistics 
from standard textbooks.

Finally, this book is written for the graduate students or postdoctoral fellows 
who want to specialize in pharmacometrics; and for pharmaceutical scientists, clini-
cal pharmacologists/pharmacists, and statisticians in academia, regulatory bodies, 
and the pharmaceutical industry who are in pharmacometrics or are interested in 
developing their skill set in the subject.

Ene I. Ette
Paul J. Williams
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CHAPTER 1

Pharmacometrics: Impacting Drug 
Development and Pharmacotherapy

PAUL J. WILLIAMS and ENE I. ETTE

1

1.1 INTRODUCTION

Drug development continues to be expensive, time consuming, and ineffi cient, while 
pharmacotherapy is often practiced at suboptimal levels of performance (1–3). 
This trend has not waned despite the fact that massive amounts of drug data are 
obtained each year. Within these massive amounts of data, knowledge that would 
improve drug development and pharmacotherapy lays hidden and undiscovered. 
The application of pharmacometric (PM) principles and models to drug develop-
ment and pharmacotherapy will signifi cantly improve both (4, 5). Furthermore, with 
drug utilization review, generic competition, managed care organization bidding, 
and therapeutic substitution, there is increasing pressure for the drug development 
industry to deliver high-value therapeutic agents.

The Food and Drug Administration (FDA) has expressed its concern about the 
rising cost and stagnation of drug development in the white paper Challenge and 
Opportunity on the Critical Path to New Products published in March of 2004 (3). In 
this document the FDA states: “Not enough applied scientifi c work has been done 
to create new tools to get fundamentally better answers about how the safety and 
effectiveness of new products can be demonstrated in faster time frames, with more 
certainty, and at lower costs.  .  .  .  A new product development toolkit—containing 
powerful new scientifi c and technical methods such as animal or computer-based 
predictive models, biomarkers for safety and effectiveness, and new clinical evalu-
ation techniques—is urgently needed to improve predictability and effi ciency along 
the critical path from laboratory concept to commercial product. We need superior 
product development science to address these challenges.” In the critical path docu-
ment, the FDA states that the three main areas of the path that need to be addressed 
are tools for assessing safety, tools for demonstrating medical utility, and lastly tools 
for characterization and manufacturing. Pharmacometrics can be applied to and can 
impact the fi rst two areas, thus positively impacting the critical path.

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene I. Ette and 
Paul J. Williams
Copyright © 2007 John Wiley & Sons, Inc.
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For impacting safety, the FDA has noted opportunities to better defi ne the 
importance of the QT interval, for improved extrapolation of in vitro and animal 
data to humans, and for use of extant clinical data to help construct models to 
screen candidates early in drug development (e.g., liver toxicity). Pharmacometrics 
can have a role in developing better links for all of these models.

For demonstrating medical utility, the FDA has highlighted the importance of 
model-based drug development in which pharmacostatistical models of drug effi -
cacy and safety are developed from preclinical and available clinical data. The FDA 
goes on to say that “Systematic application of this concept to drug development has 
the potential to signifi cantly improve it. FDA scientists use and are collaborating 
with others in the refi nement of quantitative clinical trial modeling using simula-
tion software to improve trial design and to predict outcomes.” The pivotal role of 
pharmacometrics on the critical path is obvious.

Drug development could be improved by planning to develop and apply PM 
models along with novel pathways to approval, improved project management, 
and improved program development. Recent advances in computational speed, 
novel models, stochastic simulation methods, real-time data collection, and novel 
biomarkers all portend improvements in drug development.

Dosing strategy and patient selection continue to be the most easily manipulated 
parts of a patient’s therapy. Optimal dosing often depends on patient size, sex, and 
renal function or liver function. All too often, the impact of these covariates on a 
PM parameter is unstudied and therefore cannot be incorporated into any thera-
peutic strategy. PM model development and application will improve both drug 
development and support rational pharmacotherapy.

1.2 PHARMACOMETRICS DEFINED

Pharmacometrics is the science of developing and applying mathematical and 
statistical methods to characterize, understand, and predict a drug’s pharmacoki-
netic, pharmacodynamic, and biomarker–outcomes behavior (6). Pharmacometrics 
lives at the intersection of pharmacokinetic (PK) models, pharmacodynamic (PD) 
models, pharmacodynamic-biomarker–outcomes link models, data visualization 
(often by employing informative modern graphical methods), statistics, stochastic 
simulation, and computer programming. Through pharmacometrics one can quan-
tify the uncertainty of information about model behavior and rationalize knowl-
edge-driven decision making in the drug development process. Pharmacometrics 
is dependent on knowledge discovery, the application of informative graphics, 
understanding of biomarkers/surrogate endpoints, and knowledge creation (7–10). 
When applied to drug development, pharmacometrics often involves the devel-
opment or estimation of pharmacokinetic, pharmacodynamic, pharmcodynamic–
outcomes linking, and disease progression models. These models can be linked and 
applied to competing study designs to aid in understanding the impact of varying 
dosing strategies, patient selection criteria, differing statistical methods, and differ-
ent study endpoints. In the realm of pharmacotherapy, pharmacometrics can be 
employed to customize patient drug therapy through therapeutic drug monitoring 
and improved population dosing strategies. To contextualize the role of pharma-
cometrics in drug development and pharmacotherapy, it is important to examine 



the history of pharmacometrics. The growth of pharmacometrics informs much on 
its content and utility.

1.3 HISTORY OF PHARMACOMETRICS

1.3.1 Pharmacokinetics

Pharmacometrics begins with pharmacokinetics. As far back as 1847, Buchanan 
understood that the brain content of anesthetics determined the depth of narco-
sis and depended on the arterial concentration, which in turn was related to the 
strength of the inhaled mixture (11). Interestingly, Buchanan pointed out that 
rate of recovery was related to the distribution of ether in the body. Though there 
was pharmacokinetic (PK) work done earlier, the term pharmacokinetics was fi rst 
introduced by F. H. Dost in 1953 in his text, Der Blutspeigel-Kinetic der Knozen-
trationsablaufe in der Kreislauffussigkeit (12). The fi rst use in the English language 
occurred in 1961 when Nelson published his “Kinetics of Drug Absorption, Dis-
tribution, Metabolism, and Excretion” (13). The exact word pharmacokinetics was 
not used in this publication.

In their classic work, the German scientists Michaelis and Menton published their 
equation describing enzyme kinetics in 1913 (14). This equation is still used today 
to describe the kinetics of drugs such as phenytoin. Widmark and Tandberg (15) 
published the equations for the one-compartment model in 1924 and in that same 
year Haggard (16) published his work on the uptake, distribution, and elimination 
of diethyl ether. In 1934 Dominguez and Pomerene (17) introduced the concept 
of volume of distribution, which was defi ned as “the hypothetical volume of body 
fl uid dissolving the substance at the same concentration as the plasma. In 1937 
Teorrel (18) published a seminal paper that is now considered the foundation of 
modern pharmacokinetics. This paper was the fi rst physiologically based PK model, 
which included a fi ve-compartment model. Bioavailability was introduced as a term 
in 1945 by Oser and colleagues (19), while Lapp (20) in France was working on 
excretions kinetics.

Polyexponential curve fi tting was introduced by Perl in 1960 (21). The use of 
analog computers for curve fi tting and simulation was introduced in 1960 by two 
groups of researchers (22, 23).

The great growth period for pharmacokinetics was from 1961 to 1972, starting 
with the landmark works of Wagner and Nelson (24). In 1962 the fi rst symposium 
with the title pharmacokinetics, “Pharmacokinetik und Arzniemitteldosireung,” 
was held.

Clinical pharmacokinetics began to be recognized in the 1970s, especially in two 
papers by Gibaldi and Levy, “Pharmacokinetics in Clinical Practice,” in the Journal
of the American Medical Association in 1976 (25). Of further importance that same 
year was a paper by Koup et al. (26) on a system for the monitoring and dosing of 
theophylline based on pharmacokinetic principles.

Rational drug therapy is based on the assumption of a causal relationship between 
exposure and response. There pharmacokinetics has great utility when linked to 
pharmacodynamics and the examination of pharmacodynamics is of paramount 
importance.

HISTORY OF PHARMACOMETRICS 3
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1.3.2 Pharmacodynamics

In 1848 Dungilson (27) stated that pharmacodynamics was “a division of phar-
macology which considers the effects and uses of medicines.” This defi nition has 
been refi ned and restricted over the centuries to a more useful defi nition, where 
“pharmacokinetics is what the body does to the drug; pharmacodynamics is what 
the drug does to the body” (28, 29). More specifi cally, pharmacodynamics was best 
defi ned by Derendorf et al. (28) as “a broad term that is intended to include all of 
the pharmacological actions, pathophysiological effects and therapeutic responses 
both benefi cial or adverse of active drug ingredient, therapeutic moiety, and/or its 
metabolite(s) on various systems of the body from subcellular effects to clinical out-
comes.” Pharmacodynamics most often involves mathematical models, which relate 
some concentration (serum, blood, urine) to a physiologic effect (blood pressure, 
liver function tests) and clinical outcome (survival, adverse effect). The pharmaco-
dynamic (PD) models have been described as fi xed, linear, log-linear, Emax, sigmoid 
Emax, and indirect PD response (29–31).

The indirect PD response model has been a particularly signifi cant contribution 
to PD modeling (30, 31). It has great utility because it is more mechanistic than the 
other models, does not assume symmetry of the onset and offset, and incorporates 
the impact of time in addition to drug concentration, thus accounting for a delay 
in onset and offset of the effect. For these models the maximum response occurs 
later than the time of occurrence of the maximum plasma concentration because 
the drug causes incremental inhibition or stimulation as long as the concentration 
is “high enough.” After the response reaches the maximum, the return to base-
line is a function of the dynamic model parameters and drug elimination. Thus, 
there is a response that lasts beyond the presence of effective drug levels because 
of the time needed for the system to regain equilibrium. Whenever possible, these 
mechanistic models should be employed for PD modeling and several dose levels 
should be employed for accurate determination of the PD parameters, taking into 
consideration the resolution in exposure between doses.

The dependent variables in these PD models are either biomarkers, surrogate 
endpoints, or clinical endpoints. It is important to differentiate between these and 
to understand their relative importance and utility.

1.3.3 Biomarkers

The importance of biomarkers has been noted in recent years and is evidenced 
by the formation of The Biomarkers Defi nitions Working Group (BDWG) (32). 
According to the BDWG, a biomarker is a “characteristic that is objectively mea-
sured and evaluated as an indicator of normal biological processes, pathogenic 
process or pharmacologic responses to a therapeutic intervention.” Biomarkers 
cannot serve as penultimate clinical endpoints in confi rming clinical trials; however, 
there is usually considered to be some link between a biomarker based on prior 
therapeutic experience, well understood physiology or pathophysiology, along with 
knowledge of the drug mechanism. Biomarkers often have the advantage of chang-
ing in drug therapy prior to the clinical endpoint that will ultimately be employed 
to determine drug effect, thus providing evidence early in clinical drug development 
of potential effi cacy or safety.



A surrogate endpoint is “a biomarker that is intended to substitute for a clinical 
endpoint. A surrogate endpoint is expected to predict clinical benefi t, harm, lack of 
benefi t, or lack of harm based on epidemiologic, therapeutic, pathophysiologic or 
other scientifi c evidence” (32). Surrogate endpoints are a subset of biomarkers such 
as viral load or blood pressure. All surrogate endpoints are biomarkers. However, 
few biomarkers will ever become surrogate endpoints. Biomarkers are reclassifi ed 
as surrogate endpoints when a preponderance of evidence indicates that changes in 
the biomarker correlate strongly with the desired clinical endpoint.

A clinical endpoint is “a characteristic or variable that refl ects how a patient feels, 
functions or survives. It is a distinct measurement or analysis of disease character-
istics observed in a study or a clinical trial that refl ect the effect of a therapeutic 
intervention. Clinical endpoints are the most credible characteristics used in the 
assessment of the benefi ts and risks of a therapeutic intervention in randomized 
clinical trials.” There can be problems with using clinical endpoints as the fi nal 
measure of patient response because a large patient sample size may be needed to 
determine drug effect or the modifi cation in the clinical endpoint for a drug may 
not be detectable for several years after the initiation of therapy.

There are several ways in which the discovery and utilization of biomarkers can 
provide insight into the drug development process and patient care. Biomarkers can 
identify patients at risk for a disease, predict patient response, predict the occurrence 
of toxicity, and predict exposure to the drug. Given these uses, biomarkers can also 
provide a basis for selecting lead compounds for development and can contribute 
knowledge about clinical pharmacology. Therefore, biomarkers have the potential 
to be one of the pivotal factors in drug development—from drug target discovery 
through preclinical development to clinical development to regulatory approval 
and labeling information, by way of pharmacokinetic/pharmacodynamic–outcomes 
modeling with clinical trial simulations.

1.3.4 PK/PD Link Modeling

PK/PD modeling provides the seamless integration of PK and PD models to 
arrive at an enlightened understanding of the dose–exposure–response relation-
ship. PK/PD modeling can be done either sequentially or simultaneously (33, 34). 
Sequential models estimate the pharmacokinetics fi rst and fi x the PK parameters, 
generating concentrations corresponding to some PD measurement. Thus, the 
pharmacodynamics is conditioned on the PK data or on the estimates of the 
PK parameters. Simultaneous PK/PD modeling fi ts all the PK and PD data at 
once and the PK and PD parameters are considered to be jointly distributed. 
When simultaneous modeling is done, the fl ow of information is bidirectional. 
Both of these approaches appear to provide similar results (33, 35). However, it is 
important to note that PD measurements are usually less precise than PK measure-
ments and using sequential PK and PD modeling may be the preferred approach 
in most instances.

PK and PD can be linked directly through a measured concentration that is 
directly linked to an effect site. The direct link model does not work well when there 
is a temporal relationship between a measured concentration and effect, as when 
hysteresis is present. When this is the case, an indirect link between the measured 
concentration and effect must be accounted for in the model. This has been done in 
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general by the construction of an effect compartment, where a hypothetical effect 
compartment is linked to a PK compartment. Here the effect compartment is very 
small and thus has negligible impact on mass balance with a concentration time 
course in the effect compartment. The effect is related to the concentration in the 
effect compartment, which has a different time course than the compartment where 
drug concentrations are actually measured. In addition to the effect compartment 
approach to account for temporal concentration–effect relationships, the indirect 
response concept has found great utility.

PK and PD have been linked by many models, sometimes mechanistic and at 
other times empirical. These models are especially useful in better understanding 
the dose strategy and response, especially when applied by stochastic simulation. 
The population approach can be applied to multiple types of data—for example, 
both intensely and sparsely sampled data and preclinical to Phase 4 clinical data—
and therefore has found great utility when applied to PK/PD modeling.

1.3.5 Emergence of Pharmacometrics

The term pharmacometrics fi rst appeared in the literature in 1982 in the Journal
of Pharmacokinetics and Biopharmaceutics (36). At that time, the journal made a 
commitment to a regular column dealing with the emerging discipline of pharma-
cometrics, which was defi ned as “the design, modeling, and analysis of experiments 
involving complex dynamic systems in the fi eld of pharmacokinetics and biophar-
maceutics  .  .  .  concerning primarily data analysis problems with such models.” They 
went on to say that problems with study design, determination of model identifi -
ability, estimation, and hypothesis testing would be addressed along with identifying 
the importance of graphical methods. Since this time, the importance of pharmaco-
metrics in optimizing pharmacotherapy and drug development has been recognized, 
and several graduate programs have been established that emphasize pharmaco-
metrics (37). Pharmacometrics is therefore the science of developing and applying 
mathematical and statistical methods to (a) characterize, understand, and predict a 
drug’s pharmacokinetic and pharmacodynamic behavior; (b) quantify uncertainty 
of information about that behavior; and (c) rationalize data-driven decision making 
in the drug development process and pharmacotherapy. In effect, pharmacometrics 
is the science of quantitative pharmacology.

1.3.6 Population Modeling

A major development in pharmacometrics was the application of population 
methods to the estimation of PM parameters (38). With the advent of population 
approaches, one could now obtain estimates of PM parameters from sparse data 
from large databases and also obtain improved estimates of the random effects 
(variances) in the parameters of interest. These models fi rst found great applicabil-
ity by taking massive amounts of data obtained during therapeutic drug monitoring 
(TDM) from which typical values and variability of PK parameters were obtained. 
The parameters once estimated were applied to TDM to estimate initial doses and, 
using Bayesian algorithms, to estimate a patient’s individual PK parameters to 
optimize dosing strategies. Population methods have become widely accepted to the 



extent that a Guidance for Industry has been issued by the United States Food and 
Drug Administration (FDA) on population pharmacokinetics. Population methods 
are applied to pharmacokinetics, pharmacodynamics, and models linking biomark-
ers to clinical outcomes (39).

1.3.7 Stochastic Simulation

Stochastic simulation was another step forward in the arena of pharmacometrics. 
Simulation had been widely used in the aerospace industry, engineering, and econo-
metrics prior to its application in pharmacometrics. Simulation of clinical trials fi rst 
appeared in the clinical pharmacology literature in 1971 (40) but has only recently 
gained momentum as a useful tool for examining the power, effi ciency, robustness, 
and informativeness of complex clinical trial structure (41).

A major impetus promoting the use of clinical trial simulation was presented 
in a publication by Hale et al. (41), who demonstrated the utility of simulating a 
clinical trial on the construction of a pivotal study targeting regulatory approval. 
The FDA has shown interest in clinical trial simulation to the extent that it has 
said: “Simulation is a useful tool to provide convincing objective evidence of the 
merits of a proposed study design and analysis. Simulating a planned study offers a 
potentially useful tool for evaluating and understanding the consequences of differ-
ent study designs” (39). While we often think of clinical trial simulation as a way for 
the drug sponsor to determine optimal study structure, it is also a way for the FDA 
to determine the acceptability of a proposed study protocol. Simulation serves as 
a tool not only to evaluate the value of a study structure but also to communicate 
the logical implications of a PM model, such as the logical implication of competing 
dosing strategies for labeling.

The use and role of a simulated Phase 3 safety and effi cacy study is still under 
discussion as confi rmatory evidence at the FDA; however, a simulation of this type 
can serve as supportive evidence for regulatory review (4, 5). It is likely that at some 
time in the future knowledge of a disease’s pathophysiology plus knowledge of drug 
behavior and action will be applied to a group of virtual patients as the pivotal Phase 
3 study for approval by a clinical trial simulation. Stochastic simulation should result 
in more powerful, effi cient, robust, and informative clinical trials; therefore, more 
can be learned, and confi rming effi cacy will be more certain as stochastic simulation 
is applied to the drug development process.

1.3.8 Learn–Confi rm–Learn Process

Drug development has traditionally been empirical and proceeded sequentially 
from preclinical through clinical Phases 1 to 3. Sheiner (42) fi rst proposed a major 
paradigm shift in drug development away from an empirical approach to the 
learn–confi rm approach based on Box’s inductive versus deductive cycles (43). 
Williams et al. (6, 44) and Ette et al. (45) have since revised this process to the 
learn–confi rm–learn approach because of their emphasis on the fact that learning 
continues throughout the entire drug development process. The learn–confi rm–
learn process contends that drug development ought to consist of alternate cycles 
of learning from experience and then confi rming what has been learned but that 
one never proposes a protocol where learning ceases.

HISTORY OF PHARMACOMETRICS 7
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In the past, Phases 1 and 2a have been considered the learning phases of drug 
development because the primary objectives are to determine the tolerated doses 
and the doses producing the desired therapeutic effect. Phase 2 has targeted how 
to use the drug in the target patient population, determining the dose strategy and 
proof of concept. Phase 3 has focused on confi rming effi cacy and demonstrating a 
low incidence of adverse events, where if the ratio of benefi t to risk is acceptable 
then the drug is approved. An encouraging outcome in these early cycles results 
in investment in the costly Phase 2b and 3 studies. However, even in the confi rm-
ing stages of drug development, one ought to continue to be interested in learning 
even though confi rming is the primary objective of a study; that is, all studies should 
incorporate an opportunity for learning in the protocol. Therefore, the process has 
been renamed “learn–confi rm–learn”.

Learning and confi rming have quite different goals in the process of drug devel-
opment. When a trial structure optimizes confi rming, it most often imposes some 
restrictions on learning; for example, patient enrollment criteria are limited, thus 
limiting one’s ability to learn about the agent in a variety of populations. For 
example, many protocols limit enrollment to patients with creatinine clearances 
above a certain number (e.g., 50 mL/min). If this is done, one cannot learn how to 
use such a drug in patients with compromised renal function. Empirical commercial 
drug development has in general focused on confi rming because it provides the nec-
essary knowledge for regulatory approval, addressing the primary issue of effi cacy. 
The downside of the focus on confi rming is that it has led to a lack of learning, 
which can result in a dysfunctional drug development process and less than optimal 
pharmacotherapy postapproval.

PM modeling focuses on learning, where the focus is on building a model that 
relates dosing strategy, exposure, patient type, prognostic variables, and more to 
outcomes. Here the three-dimensional response surface is built (42) (see Section 
1.3.9.2). PM models are built to defi ne the response surface to increase the signal-
to-noise ratio, which will be discussed shortly. The entire drug development process 
is an exercise of the learn–confi rm–learn paradigm.

1.3.9 Exposure–Response Relationship

The importance of elucidating the exposure–response relationship must be empha-
sized. When the term exposure is used, one is usually referring to dose or variables 
related to concentration such as area under the concentration–time curve (AUC),
maximum concentration (Cmax), minimum concentration (Cmin), or average concen-
tration (Cave) in some biological specimen such as serum, urine, cerebral spinal fl uid, 
or sputum. It is worth noting that dose is a very weak surrogate of exposure, espe-
cially where there is no proportionality between dose and AUC or Cmax. Response 
is a measure of the effect of a drug either therapeutic or adverse, such as blood 
pressure, cardiac index, blood sugar, survival, liver function, or renal function.

1.3.9.1 Regulatory Perspective
The FDA document, Guidance for Industry: Exposure–Response Relationships—
Study Design, Data Analysis, and Regulatory Applications, has commented exten-
sively on the exposure–response relationship (46). It states: “Exposure–response 
information is at the heart of any determination of the safety and effectiveness of 
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drugs.  .  .  .  In most cases, however, it is important to develop information on the 
population exposure–response relationships for favorable and unfavorable effects 
and information on how, and whether, exposure can be adjusted for various subsets 
of the population.” The FDA recognizes the value of exposure–response knowl-
edge to support the drug development process and to support the determination of 
safety and effi cacy. In this document it stated that “dose–response studies can, in 
some cases, be particularly convincing and can include elements of consistency that, 
depending on the size of the study and outcome, can allow reliance on a single clini-
cal effi cacy study as evidence of effectiveness.” The exposure–response relationship 
was further refi ned in the defi ning of the response surface.

1.3.9.2 Response Surface
A signifi cant development of the exposure–response concept was the proposing 
of the response surface. Sheiner (42) fi rst proposed the pharmacological response 
surface as a philosophical framework for development of PM models. The response 
surface can be thought of as three dimensional: on one axis are the input variables 
(dose, concurrent therapies, etc.); on the second axis are the important ways that 
patients can differ from one another that affect the benefi t to toxicity ratio; and the 
fi nal axis represents the benefi t to toxicity ratio. Sheiner stated: “the real surface 
is neither static, nor is all the information about the patient conveyed by his/her 
initial prognostic status, nor are exact predictions possible. A realistically useful 
response  .  .  .  must include the elements of variability, uncertainty and time  .  .  .” 
Thus, the primary goal of the response model is to defi ne the complex relation-
ship between the input profi le and dose magnitude when comparing benefi cial and 
harmful pharmacological effects and how this relationship varies between patients. 
For rational drug use and drug development, the response surface must be mapped. 
PM models, once developed and validated, allow extrapolation beyond the immedi-
ate study subjects to allow application to other patients from whom the model was 
not derived. These predictive models permit the evaluation of outcomes of compet-
ing dosing strategies in patients who have not received the drug and therefore aid in 
constructing future pivotal studies. One important aspect of PM models employed 
in mapping the response surface is that they increase the signal-to-noise ratio in 
a data set because they translate some of the noise into signal. This is important 
because when we are converting information (data) into knowledge, the knowledge 
is proportional to the signal-to-noise ratio.

1.3.10 PM Knowledge Discovery

It is our experience that most drug development programs are data rich and knowl-
edge poor. This occurs when data are collected but all of the knowledge hidden in 
the data set is not extracted. In reality, huge amounts of data are generated from 
modern clinical trials, observational studies, and clinical practice, but at the same 
time there is an acute widening gap between data collection, knowledge, and com-
prehension. PM knowledge discovery applies 13 comprehensive and interwoven 
steps to PM model development and communication and relies heavily on modern 
statistical techniques, modern informative graphical applications, and population 
modeling (8, 9) (see Chapter 14). The more that is known about a drug the better 
will be its application to direct patient care, and the more powerful and effi cient 
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will be the development program. To this end, PM knowledge discovery is the best 
approach to extracting knowledge from data and has been defi ned and applied to 
PM model development.

1.3.11 PM Knowledge Creation

Most often, knowledge discovery provides the foundation for knowledge creation 
and is simply the initial step in the application of PM knowledge (10). The discov-
ered knowledge can be used to synthesize new data or knowledge, or to supplement 
existing data. PM knowledge creation has something in common with knowledge 
discovery its intent to understand and better defi ne the response surface. Data 
supplementation deals with the use of models on available data to generate supple-
mental data that would be used to characterize a targeted unexplored segment of 
the response surface (47).

1.3.12 Model Appropriateness

Model appropriateness brought a new epistemology to PM model estimation and 
development (48) (see Chapter 8). The pivotal event in establishing model appro-
priateness is stating the intended use of the model. The entire process requires the 
stating of the intended use of the model, classifying the model as either descriptive 
or predictive, evaluating the model, and validating the model if the model is to be 
used for predictive purposes. Descriptive models are not intended to be applied 
to any external population—that is, their sole purpose is to gain knowledge about 
the drug in the population studied. Predictive models are intended to be applied 
to subjects from whom the model was not derived or estimated. Predictive models 
require a higher degree of correspondence to the external universe than descriptive 
models and therefore require validation.

Under the epistemology of model appropriateness, the purpose for which the 
model is developed has a signifi cant impact on the modeling process. In the current 
modeling climate, insuffi cient consideration is given to the purpose or intended use 
of the model and little attention is given to whether the model is descriptive or pre-
dictive. Model appropriateness is a paradigm that ought to be applied to the model 
development and estimation process and it provides the framework for appropriate 
use of PM models.

1.4 PIVOTAL ROLE OF PHARMACOMETRICS IN DRUG DEVELOPMENT

Drug development has become protracted and expensive over the last several 
decades, with the average length of clinical development being over 7–12 years, 
the number of studies averaging 66, and a cost of $0.802–1.7 billion per approved 
agent (1–4). The process has been empirical—driven by identifying all the items 
needed for registration of an agent, constructing a checkbox for each item, and 
executing the studies so that each box is checked, with a consequent fulfi llment of 
each requirement. The numbers above indicate that this empirical, “it has always 
been done this way” approach does not work well and novel approaches need 
to be applied. The learn–confi rm–learn paradigm should be applied to all drug 



development programs, and modeling should follow the epistemology of model 
appropriateness.

To expedite drug development while maintaining patient safety, new technolo-
gies and approaches to discovery, improved project and development approaches, 
portfolio review, application of sound science, novel study structures, and phar-
macometrically guided development programs will need to emerge (49). The use 
of pharmacometrics to defi ne the dose exposure–response relationship has been 
successful in improving drug development and pharmacotherapy. Of pivotal impor-
tance here is the learn–confi rm–learn paradigm, which has been previously men-
tioned as one of the signifi cant proposals in the evolution of pharmacometrics.

While pharmacometrics can be an important tool to expedite drug development, 
it will also play a key role in determining the optimal dose at the time of approval 
(new drug application approval). Going to market with the optimal dose is not as 
straightforward as one may expect. A recent retrospective study noted that of 499 
approved drugs between 1980 and 1999, one in fi ve had a dosage change postap-
proval and 80% of these changes were a decrease in dose (50). This study concluded 
that current drug development frequently does not capture completely the dose 
information needed for safe pharmacotherapy. To address this, Cross et al. (50) sug-
gested that improved PK and PD information be gathered early in Phase 2 of drug 
development. Finally, if drug doses are higher than need be during development 
and adverse events are related to dose, this may result in an increased frequency of 
adverse events resulting in an increased study dropout rate and therefore a decrease 
in study power.

Finding the optimal dose is one of the primary goals of clinical development, 
because changing a dose based on patient characteristics can easily be done. Sim-
plifi ed dosing strategies are often sought by the drug sponsor because it results in 
ease of use by the practitioner and the patient. Often a sponsor wants a “one dose 
fi ts all” approach, which may not result in optimized dosing. Often several levels 
of dose stratifi cation result in surprisingly improved dosing strategies (e.g., elderly 
versus young).

Novel study structures, such as the enrichment trial, fusion, and adaptive design 
studies, will result in more effi cient drug development. Enrichment studies attempt 
to choose subjects who are likely to respond. Study groups can be “enriched” by 
enrolling only subjects with response markers in a specifi c range or by enrolling 
only subject types demonstrating a good response during a short pretest phase. In 
enrichment trials the exposure relationship can be studied effi ciently, but it is dif-
fi cult to know how to extrapolate the quantitative relationship (exposure–response) 
from an enrichment study to the general population.

The advantage of the adaptive design study is that it emphasizes study of the 
drug in the region of useful doses, thus minimizing the number of subjects in regions 
where the drug is not effective. For adaptive designs, an exposure–response model is 
used and continuously updated as each subject’s response is observed. The updated 
model is used to generate the probability of allocation of each new subject to a 
treatment arm, favoring the allocation to those arms with the better accumulated 
outcomes to date, with new subjects randomly allocated to arms on the basis of 
these frequencies. A treatment arm is dropped from the remainder of the study 
when its allocation probability drops below a specifi ed threshold. The effi ciency of 
this study design is that as few subjects as necessary are studied to determine that 
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one dose level is less useful than another. This approach can decrease study dura-
tion and numbers of subject in a clinical study. Adaptive design works best when 
patient accrual rates are slow.

1.4.1 Preclinical Development

Drug discovery has focused on identifying the most potent lead compound for a 
specifi ed target. However, many drugs have failed due to poor pharmacokinetic 
or biopharmaceutical properties such as a short half-life or poor bioavailability. 
In today’s economic environment such failures can no longer be afforded. It has 
become recognized that the “best drug” is one that balances potency, good phar-
macokinetic–biopharmaceutical properties, good pharmacodynamics, safety, and 
low cost of manufacturing. It is important to deal with these issues prior to testing 
in humans.

Optimized preclinical development can be a tremendous aid to the design of 
early clinical studies. This optimization will include a thorough study of preclinical 
safety by combining traditional toxicology studies with novel methods in toxicopro-
teomics, toxicogenomics, and metabolomics. These new “-omics” will lead to novel 
biomarkers to predict toxicology and effi cacy.

Preclinical development should play an important role in defi ning the exposure–
response (both effi cacy and toxicity) relationships, which is a primary role for pre-
clinical pharmacometrics. It is essential to determine the absorption, distribution, 
metabolism, and elimination during toxicokinetic studies in order to understand the 
comparison of these across species. It has been demonstrated that by combining 
preclinical exposure–response data (the steepness of the curve is important here), 
preclinical pharmacokinetics, and novel approaches to scale up to humans (10, 51) 
(see also Chapters 29 and 30), Phase 1 can be expedited. This can be done by choos-
ing higher fi rst time in human doses or more rapid escalation (if the dose–response 
curve is rather fl at), resulting in fewer dosing cycles and thus less time, energy, and 
fi nances expended on Phase 1, without sacrifi cing safety.

The development of physiologically and pathophysiologically based PM models 
(PBPM models) during preclinical development deserves attention. These models 
have the potential to provide accurate and nearly complete characterization of 
the PK and concentration–effect relationship and quantifi cation of the potency of 
a drug (52–56). PBPM testing is best executed when the chemistry, biochemistry, 
metabolism, and exposure response of the drug are well known in addition to the 
relative physiology of the animals used in preclinical trials versus the parallel human 
physiology. To utilize PBPM modeling one must defi ne the physiology, patho-
physiology, biochemistry, and exposure–response relationships. To execute this 
type of modeling, some of the physiological variables that often need to be defi ned 
include blood fl ow to various organs such as liver, kidney, and effect organs. The 
biochemical–pharmacological parameters of a model that often need to be defi ned 
are Km and Vmax for the various enzymes that catalyze the metabolism of the drug 
and/or metabolites; tissue to blood concentration ratios; the distribution of the drug 
and/or metabolites of interest, for example, protein binding; and the clearance for 
various organs, for example, liver versus kidney. Exposure–response variables that 
are associated with a positive response or an adverse event need to be identifi ed 
such as area under the concentration–time curve (AUC) or maximum concentra-



tion (Cmax) or nadir concentration (Cmin). The exposure response may be related to 
the parent compound or to a metabolite and may be a concentration-based vari-
able in plasma or within a specifi c organ or tumor. Many of these parameters can 
be estimated in vitro, such as enzyme kinetic parameters and protein binding, and 
physiologic parameters can be obtained from the literature, such as blood fl ow rates 
and organ volumes (56).

PBPM modeling enabled the evaluation of the pharmacometrics of capecitabine 
for determination of the optimal dosing strategy in humans (56). Capecitabine is 
a prodrug that is converted in three steps to 5-fl uorouracil (5-FU). A multicom-
partmental model was developed to describe the pharmacometrics of capecitabine, 
two metabolites, and 5-FU. The PBPM model is shown in Figure 1.1. The model 
included fi ve compartments, all in some way related to either effi cacy or adverse 
event. The parameters included in the model were Km and Vmax for each of the 
enzymes that catalyze capecitabine to 5-FU; tissue to blood ratio of capecitabine 
and the metabolites in gastrointestinal (GI), liver, and tumor tissue; protein binding; 
blood fl ow rate to liver, GI, and tumor tissue; and urinary clearance of unbound 
capecitabine and its metabolites. Enzyme activities (liver, breast, and colorectal 
tumors) and protein binding parameters were derived from in vitro experiments. 
Physiologic parameters were obtained from the literature.

From the model, the 5-FU AUC values in breast and colorectal tumors were 
simulated at doses from 829 to 1255 mg/m2. The 5-FU AUC in tumor increased 
in a nonlinear manner relative to the increases in capecitabine dose. The model 
indicated that, for capecitabine, the 5-FU exposure in the tumors was much greater 
than in blood, resulting in a relatively low systemic exposure. The simulated blood 
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FIGURE 1.1 Metabolic pathway of capecitabine and its representation by a PK model. 
Abbreviations: Tissues with high enzyme activites are shown in square brackets; 5′-DFCR =
5′deoxy-5-fl urocytidine; 5′-DFUR = 5′deoxy-5-fl urouridine; dThdPase = thymidine phos-
phorylase; DPD = dihydropyrimidine dehydrogenase; FBAL = a-fl uoro-b-alanine; FUH2 =
dihydro-5-fl uorouracil; FUPA = 5-fl uoro-ureido-propionic acid. Dose = capecitabine dose 
(mg); KA = fi rst-order absorption rate constant (L/h); TLAG = lagtime (h); CL1 = appar-
ent 5′-DFUR clearance (L/h); V1 = apparent 5′-DFUR volume (L); CL2 = apparent 5-FU 
clearance (L/h); V2 = apparent 5-FU volume (V); CL3 = apparent FBAL clearance (L/h); V3 
= apparent FBAL volume (L). (From Blesch et al. (56); used with permission.)
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AUC values were consistent with clinical observations, indicating that the model 
was able to describe known clinical data.

Once the model was developed, a murine xenograft was done and the PK, 
blood, and tissue binding of capecitabine and its metabolites were measured in 
vivo and integrated into the PBPM model. Large interspecies differences in tissue 
distribution and metabolic activity were observed. The predicted blood and tissue 
concentration profi les of 5-FU in the xenograft were compared to those in humans 
after simulated oral administration of several levels of capecitabine doses. The 5-FU 
AUCs in blood and xenograft tumor tissues were lower than those in humans for 
all capecitabine doses administered. At their effective oral doses of capecitabine 
(0.0944 mmol/kg, the clinical effective dose for humans; 0.44 mmol/kg, the effec-
tive dose for human cancer xenograft) similar 5-FU AUC values were observed 
in humans and human cancer xenograft models. The results of this study strongly 
supported the fact that a clinically effective dose can be extrapolated from xenograft 
models to a corresponding effect dose in humans when thoughtful approaches to 
the development and application of PBPM modeling is executed. Preclinical PM 
modeling should be done on a real-time basis so that modeling has been completed 
prior to planning and protocol development for Phase 1.

Biomarkers need to be identifi ed and investigated in preclinical studies, especially 
those that may predict future safety problems. Sometimes the lowering of blood 
pressure or the prolongation of the corrected QT interval may give one a “heads 
up” to potential toxicities or dose-related toxicities that may occur during clinical 
development. When a thorough job is done during preclinical development, then 
transition to clinical development can be done effi ciently and with confi dence.

1.4.2 Clinical Development

Clinical development continues with the application of the learn–confi rm–learn 
paradigm applied to drug development. Scale up to the fi rst-time-in-human (FTIH) 
study is best done by the application of sound PM methods as described by several 
authors (10, 51, 56).

1.4.2.1 Phase 1 Studies
Phase 1 studies are executed to identify well tolerated doses and, in some cases, the 
maximum tolerated dose, to study the single and multiple dose pharmacokinetics, 
and to gain an initial knowledge of the exposure–response relationship. In addi-
tion to the above, one sometimes does Phase 1 studies to determine food effect 
and gender on pharmacokinetics, drug–drug interactions, and pharmacokinetics in 
special populations such as those with impaired renal or hepatic function or pedi-
atric or geriatric patients. Here one has learned about the dose–exposure–response 
relationship from preclinical studies, has been guided by that preclinical knowledge, 
and is confi rming or revising what was learned. Both traditional two-stage and 
population PK methods have been applied to Phase 1 model development with 
good results. The population approach can provide valuable information that is 
otherwise not available by the standard two-stage approach. Phase 1 studies are 
most often conducted in healthy volunteers unless the anticipated toxicity of the 
drug is severe or the drug is being applied to a life-threatening condition for which 
no other treatment is available.



In Phase 1, the approach to the FTIH study is critical in determining how much 
time is expended in this part of development. The central issue here is: “What 
should the fi rst dose be and how rapidly does escalation occur?” If the very fi rst 
dose it too high, then an adverse event will occur; if it is too low, then unnecessary 
time will be expended on low-dose testing. The application of preclinical fi ndings 
becomes important. A promising approach has been the combining of allometry and 
mixed effect modeling with stochastic simulation to extrapolate preclinical models 
and knowledge to humans (10, 51). Applying sound PM methods has been and 
will be of great value in bringing effi ciency to Phase 1 studies and for discovering 
knowledge that was previously hidden in most Phase 1 data sets. In situations where 
the maximum tolerated dose (MTD) is sought and defi ned in healthy volunteers, 
it should be redefi ned in patients at some later stage of development if possible 
(57, 58).

In addition to the FTIH studies, the effects of food, drug–drug interactions, 
and special populations need to be studied. Coadminstration of drugs has been 
demonstrated to both increase and decrease bioavailability of some agents with 
the subsequent lack of effi cacy or appearance of toxicity. Further details on the 
design and conduct of food effect studies can be found in Chapter 29. Drug–drug 
interaction studies have become increasingly important as the number of agents 
prescribed to patients continues to increase. In one instance, a prominent drug was 
withdrawn from the market after adverse events were reported, which were due 
to interactions with other agents. It is important to obtain information for some 
subpopulations, such as pediatric patients, those with renal impairment, and the 
elderly, so that group-specifi c dosing guidelines can be developed. These special 
studies can be executed with either traditional PK studies or more effi ciently by 
applying population techniques (39) (see Chapters 12 and 39). The need to study 
subpopulations strongly supports implementing the learn–confi rm–learn paradigm. 
These issues are addressed in Chapter 14.

As the development process nears the end of Phase 1, it becomes crucial to 
extract all knowledge from existing data. PM models should be developed, linking 
drug exposure to pharmacodynamics (response). These models are applied, often 
by stochastic simulation, to optimize the structure and designs of Phase 2 studies. 
Real-time data collection is helpful here so that PM models may be estimated prior 
to data set closure and then applied to evaluation of competing Phase 2a study 
designs (39, 48, 59, 60). In this way, effi cient and powerful Phase 2 programs can 
be constructed.

1.4.2.2 Phase 2 Studies
Phase 2 studies should focus on both learning and confi rming. Historically, Phase 
2a has had as its primary goal to demonstrate “proof of concept” that the drug 
is capable of being effective. It has been a common practice to administer the 
maximum tolerated dose (MTD) in Phase 2a and this dose may be on the fl at part 
of the effi cacy curve. If this is the case, lower doses may have been equally effec-
tive and less toxic. This dose is then carried forward into Phase 2b and eventually 
Phase 3. In Phase 3 the drug will likely be demonstrated to be effective and without 
signifi cant adverse effects. The result will be NDA approval at the MTD. There-
fore, doses may be lowered because “a lower dose is quite adequate for treatment 
and less expensive” in the opinion of the prescriber or “a lower safer dose may be 
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needed.” The former may be enacted by practitioners without a change in labeling 
and the latter would come at the directive of the FDA. The former can be quite 
costly in terms of gross revenues for the manufacturer because an increase in cost 
per unit after marketing is in general not a viable alternative.

Phase 2a should have learning as its primary focus to defi ne the optimal dose, 
thus improving the drug development process; while Phase 2b studies should focus 
on confi rming. Phase 2a is the time during development to learn about effi cacy; 
to confi rm or modify what was learned in Phase 1 about safety, effi cacy, and drug 
effect on biomarkers; and to refi ne the dose–PK/PD-biomarkers–surrogate–out-
comes relationships.

The knowledge discovered in Phase 2a provides information for the later larger 
trials that will be designed to prove effi cacy. The sample sizes are small in Phase 2 
and the patients are often the “healthiest” to minimize disease-related variability. 
With this in mind, the Phase 2a study should be designed to give a fi rst glimpse to 
the following issues (48): (a) Does the drug work? (b) How does the drug work? 
(c) What is the dose–response relationship? (d) Is there a difference in any of the 
pharmacology in subgroups? A very valuable practice here is to power these studies 
by setting a at a more liberal level of 0.10–0.20 when evaluating effi cacy. Addressing 
these issues will require paying attention to important design points such as number 
and level of doses studied, timing of endpoint observations, number of subjects at 
each dosing level, and duration of the study. Furthermore, a well designed Phase 
2a trial with 150–200 subjects will usually provide more information and is less 
costly than several smaller studies, even when these are later combined (48). A well 
designed study here will usually depend on stochastic simulation of competing study 
designs. In the end, many of the analyses will be population dose–pharmacokinetics/
pharmacodynamics–response models.

In Phase 2 the proof of concept study provides scientifi cally sound evidence sup-
porting the postulated effect of the new drug, where the effect may be the relevant 
pharmacological action or a change in disease biomarkers, established surrogate 
endpoints, or clinical outcomes that may be benefi cial and/or toxic in nature. The 
proof of concept is often used for go/no-go decisions and is therefore one of the 
most critical steps in the drug development process.

Biomarkers play an important role in Phase 2 studies. These are covered in 
Chapter 20 in detail. Biomarkers are most important in early effi cacy and toxicity 
studies when clinical endpoints take too long to become observable. After approval, 
biomarkers may prove useful in monitoring the course of pharmacotherapy in indi-
vidual patients.

Prior to advancing to Phase 2b, all the knowledge hidden in the Phase 1 and 
Phase 2a data ought to be discovered. Then clinical trial simulation (knowledge 
creation) should be applied to construct Phase 2b.

In Phase 2b the knowledge discovered in all previous phases is confi rmed, and 
learning more about the drug in a larger patient population continues. In this phase 
of development, strong supportive evidence is generated so that if an accelerated 
approval is sought the knowledge and data generated could be enough to obviate 
the need for two Phase 3 confi rming studies. Attention should be given to informa-
tively designing Phase 2b studies to meet the confi rming study objectives and allow 
learning that will enhance a further characterization of the response surface. Phar-
macokinetics enables the refi nement and further development of PK/PD models 



for dosage optimization (see Chapter 29). In Phase 2b sparse sampling is adequate; 
this data may be concatenated with previously collected data. The concatenation 
of these data with previously collected data and the estimation of individual PK or 
PD parameters via post hoc Bayesian algorithms may be useful for explaining indi-
vidual treatment failures, toxicities, or positive responses to a drug. The PM models 
estimated from all previous data and available at the end of Phase 2b are important 
for constructing the pivotal Phase 3 program through knowledge creation.

1.4.2.3 Phase 3
Phase 3 is the pivotal phase for registration of a drug, where usually two large ran-
domized, controlled trials for establishing effi cacy and safety are required. The PM 
models from all previous studies are crucial for the determination of the dose(s), 
patient population selection, study duration, number of patients, and so on for 
Phase 3. In some cases a single pivotal study may be acceptable to the regulatory 
agency provided there is good supportive science (which may be good PM models) 
and confi rmatory evidence supporting effi cacy and safety (6, 7). In Phase 3 it is still 
advisable to proceed with sparse collection of PK and PD variables. These data 
can further support registration, may provide explanations for clinical trial success 
or failure, and are inexpensive to obtain when compared with the cost of enrolling 
patients.

1.4.2.4 Phase 4
Phase 4 studies are sometimes required by regulatory agencies. This can happen if 
the regulatory agency is interested in further characterizing safety, exploring new 
treatment indications, broadening label claims, exploring new drug combinations, 
or examining dosing in some special subpopulations (e.g., pediatric patients).

1.5 PHARMACOMETRICS AND REGULATORY AGENCIES

The FDA has promoted the role of pharmacometrics in the drug approval process 
through its approach to review of applications and by publishing its “guidances.” 
The FDA has gained expertise in pharmacometrics from self-training within and 
by recruitment of new highly skilled personnel. The value of pharmacometrics 
continues to be evaluated at the FDA.

1.6 SUMMARY

Pharmacometrics is playing a major role in improving drug development and thera-
peutics. Improvements in drug development must come through creating and using 
novel pathways to approval and application of sound scientifi c principles, partly by 
applying mechanistic PM models. It is diffi cult to imagine a more effi cient, power-
ful, and informative drug development process without the expansion of the role 
of pharmacometrics.

Pharmacotherapy is also in great need of improved dosing strategy selection 
for the avoidance of adverse events and the improvement in effi cacy. This will 
come through the development of pragmatic PM models that provide knowledge 
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about drug behavior and how the drug can be optimally used. As more pragmatic 
PM models are developed, optimal dosing strategies can be implemented. The 
acceptance of pharmacometrics in drug use and development cannot, therefore, be 
overemphasized.
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2.1 INTRODUCTION

Although pharmacometricians are often involved in the development, modifi cation, 
and use of computer code and programs, formal training in these skills is often 
neglected. Computer programming skills are acquired in an ad hoc approach, in 
which the minimal necessary knowledge to devise and code an algorithm is gained to 
solve the scientifi c problem at hand. This is not unexpected, as the scientifi c problem 
is of primary interest, and programming is simply a means to an end.

While the ad hoc approach to acquiring the necessary programming skills may 
have been adequate in the past, the need for sophistication in computer program-
ming is increasing along with the complexity of computational problems being 
addressed by pharmacometricians. The programming approach that may appear 
to be expedient is often not the most effi cient with respect to overall productivity. 
Additional effort in the initial stages of a project can save time and improve accu-
racy and overall quality of code in subsequent stages.

Although there are usually multiple ways in which a scientifi c programming 
problem can be addressed, adhering to standard programming approaches is an 
important step in development of high-quality programs. Standardization facilitates 
consistency and faster code reviews, and, more importantly, it helps a reviewer 
identify commonly occurring mistakes.

The aim of this chapter is to provide an overview of generally applicable good 
programming practices that could benefi t pharmacometricians with regard to 
improving the quality and transparency of code, as well as increasing overall pro-
ductivity. A set of techniques and practices is provided here that will be useful in 
writing better computer programs. The involvement of pharmacometricians with 
programming ranges from relatively simple code to complex, software develop-
ment projects. Likewise, programming skills of pharmacometricians range from 
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novice to profi cient, with profi ciency usually gained from long experience. Rather 
than attempt to cover all aspects of programming in detail, this chapter covers the 
basics of writing good code and provides the reader with references to additional 
resources that provide more detail on other aspects of programming and software 
development.

2.2 PHARMACOMETRIC PROGRAMMING TASKS

Change is a dominant factor in scientifi c programming; hence, a scientifi c program 
needs to be easily readable and easily modifi able. In this sense, a scientifi c computer 
program is analogous to a scientifi c document, in that it should provide context, 
be readable, and contain appropriate references. Furthermore, a well designed 
program will often be useful far beyond what the original programmer intended, 
because it will be easily readable, modifi able, and expandable. There is extensive 
literature on basic programming techniques for scientists and engineers, but a 
majority of the literature focusing on programming practices is over three decades 
old (1–4). Many modern books dealing with programming are often focused on 
highlighting the features of a language, or advanced techniques involving specifi c 
programming platforms or approaches. Recently, there has been increased atten-
tion on good practices in software design (5, 6).

Pharmacometricians are often involved in programming tasks that span a wide 
range of complexity, ranging from writing a few lines of code to writing scripts 
and programs. These programming tasks can be classifi ed according to a variety 
of attributes as shown in Table 2.1. Moreover, pharmacometricians may also be 
the domain experts on a software development team, providing guidance or input 
to other programmers. Therefore, much of the programming tasks demanded of a 
pharmacometric scientist involve writing not full programs from scratch but cus-
tomizations of existing code or minor modifi cations to existing modules in order to 
create a program.

One example of systems where a model can be developed without much pro-
gramming is ADAPT II (7), which provides templates of Fortran subroutines. In 
ADAPT II, the scientist is required to specify the model by adding code to exist-
ing templates of subroutines, in order to create a complete program. These sub-
routines can then be compiled and linked to other compiled code (object fi les) to 
create a stand-alone executable. Another example is the specifi cation of models in 
NONMEM (8, 9). In NONMEM, the model is specifi ed by a control fi le, which is 
then processed, to produce Fortran code that is compiled and linked to other object 
fi les to create an executable fi le. Although sophisticated programming skills are not 
necessary to develop models using these programs, some of the concepts described 
in this chapter will be useful in scripting even these relatively simple programs.

More extensive programming is often required in writing scripts or programs for 
software packages such as S-Plus (10, 11) or Matlab (12, 13). These two modern 
software packages are increasingly used by pharmacometricians: Matlab as a pro-
gramming environment for numerical simulations and S-Plus as a programming 
environment for statistical data analysis.

It must be noted that there is a considerable overlap between the roles of these 
two packages, and both provide strong graphical capabilities. Although the princi-



ples of good programming practice described in this chapter are generally applicable 
for a variety of programming environments, they will be mainly illustrated using 
examples of Matlab code. Although it is possible to use much of the functionality 
of Matlab through the graphical user interface (GUI) or interactive commands, 
the full features of these systems can be utilized only through scripts. Furthermore, 
there are many advantages to writing scripts. First, scripts provide a record of the 
commands executed and facilitate the reproducibility of the results. Second, scripts 
provide a means for automating repetitive tasks and relieve the tedium and errors 
that commonly occur in performing repetitive tasks with a GUI interface, especially 
for computationally intensive tasks that have long waiting times between user input 
steps. Third, once a set of scripts that accomplish common tasks have been devel-
oped for a given project, they can often be modifi ed for subsequent projects with a 
much smaller time investment.

Some pharmacometricians may be involved in complex software projects, such 
as the development of software for ADMET (absorption, distribution, metabolism, 
excretion, and toxicity) predictions or software tools that can be used by other sci-
entists. Examples of such tools include Perl-speaks-NONMEM (14) or Xpose (15). 
Such tasks often require a diverse set of programming skills and strong program-
ming practices.
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TABLE 2.1 Examples of Different Types of Classifi cations Found 
in the Scientifi c Programming Spacea

Programming experience Novice to professional programmer
Scientifi c experience Key scientist to programming support staff
Programming role Use/apply others’ code, review code, develop new software
  modules
Problem/model Linear models, algebraic equations, ordinary and partial
 complexity  differential equations
Randomness Deterministic models, simple error models, stochastic
  systems
Software project Individual, local group, distributed group, production versus
 complexity  prototype versions
Complexity of the tools Spreadsheet based, predefi ned modules (e.g., NONMEM)
Programming approach Procedural, object-oriented, visual, symbolic, pipeline-based,
  event-based
Program dependencies External databases, external web services, other programs;
  used as module in other programs
Program interfaces Command line, noninteractive, distributed, web-based,
  embedded into other programs (spreadsheets)
Documentation Simple commenting/memos, detailed documentation
 complexity  published as reports
Quality assurance level Error checks, automated tests, reproducing results, internal/
  external review
Extensibility and Single run models versus multiple run, cluster-based
 modularity  simulations

a Though the space spans a wide range, the general programming principles are applicable throughout.
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2.3 OVERVIEW OF SCIENTIFIC PROGRAMMING METHODOLOGY

The programming paradigms applicable to scientifi c programming have often 
followed the developments in the fi eld of software engineering. Some of the 
major paradigms applicable for scientifi c programming are briefl y described in 
Table 2.2.

2.3.1 Scientifi c Program Development Steps and General Guidelines

Introductory programming books often provide resources for learning a program-
ming language and programming syntax, for utilizing the development environ-
ment, and for compilation, execution, debugging, and optimizing of programs. All 
these techniques are directly applicable to scientifi c programming. Furthermore, 
there are a few additional points that a scientifi c programmer has to be aware of: 
(a) change is the dominant factor in scientifi c programming; (b) quality assurance 
is more important in scientifi c programming than in regular programming because 
it is often diffi cult to distinguish program errors or bugs from bad science; and 
(c) it is often very diffi cult to notice errors in the results.

A scientifi c program may start as a script for solving a specifi c problem and 
may fi nd use in related areas. Sometimes, the program fi nds use in a much broader 
context. Some of the uses of the program can be (a) as one step in a sequence of 
steps involving multiple programs (i.e., in the form of a “pipeline”), (b) as a script 
that is invoked by another script, (c) as a function that is invoked by other functions 
or scripts, (d) as a program wrapped around a Monte Carlo type simulation or a 
parameter estimation module, (e) as a module wrapped around a graphical user 

TABLE 2.2 Overview of Some of the Main Programming Paradigms 
and Approaches Applicable to Scientifi c Programming

Procedural programming Modules or procedures are used as computational
  blocks
Flow-driven programming Execution of code follows a well defi ned order
Event-driven programming Execution of code depends on the events such as user
  clicks
Object-oriented programming Objects, interfaces, and methods are used as
  computational blocks
Design patterns-based Utilizing standard solutions to software design
 programming  problems
Symbolic programming Calculations are performed in a symbolic manner (e.g.,
  Maple)
Visual programming Assembling of “blocks” visually to form full programs
Pipeline programming Output of one program is used as input of another
  (pipeline)
Collaborative programming Deals with advantages (and issues) of
  multiprogrammer projects
Parallel/distributed Deals with utilization of multiple machines
 programming
Web-based programming Programming focusing on web-based interfaces



interface, (f) as a web-enabled program, and (g) as a program that is run multiple 
times on a distributed machine cluster. Therefore, it is prudent to follow good 
programming practices for all levels of programming tasks.

Schneider (16) recommends that a beginning programmer should concentrate 
on semantics and program characteristics of a programming language, and not just 
on the syntax. The concerns for programming style should be cultivated from the 
very beginning, and care must be taken to avoid the common mistake of initially 
writing beginning programs quickly with the idea of coming back later and then 
refi ning them. This prevents bad coding habits from ever developing. The program-
mer should also become familiar with and follow formal processes for debugging, 
program testing, and verifi cation, as well as for documentation. Seeley (17) argues 
that following programming practices is more productive than simply using the 
latest tools.

Computer programming tasks in recent times have evolved from writing new 
code and modules to correctly linking existing modules. The majority of effort 
involved in solving a scientifi c programming problem is in identifying the appropri-
ate design for the solution, and in identifying relevant existing modules; the linking 
of the modules becomes a simple task once the design is completed.

The following set of objectives with respect to the quality of scientifi c pro-
grams is recommended in this chapter: (a) program correctness, (b) reproducibility 
of results, (c) program readability (critical for code reviews), (d) maintainability 
(bug fi xing and minor changes to the program), (e) ease of confi guration change 
(e.g., parameter values and the constants used in the program), (f) portability and 
extensibility (ability to run the program on different systems and ability to link 
the program with other programs), and (g) performance (speed and disk space 
requirements).

The general steps involved in the development of a scientifi c program are 
common to programming tasks across a wide range of scales, from simple programs 
developed by an individual to complex software development involving a large 
group. However, implementation of individual steps varies depending on the type 
of problem solved, the scale of the project, and the level of quality testing.

These main steps are:

1. Mathematical Formulation of the Scientifi c Problem. In this step the scientifi c 
problem is formulated in mathematical terms and may involve reviewing the 
literature, identifying the appropriate mathematical model, and identifying 
sources for model parameter values.

2. Algorithm Design. Here, the problem has to be addressed from a compu-
tational framework viewpoint. Issues such as selection of a model solution 
scheme (e.g., choice of a differential equation solver, choices of appropriate 
modules for random number generation, etc.) are addressed at this stage.

3. Design and Documentation of the Computer Code. Here, the program is 
designed in a top–down approach. Interactions between the main program 
and individual modules are defi ned at this stage, along with brief documenta-
tion of the functionality of each module. At this stage, the program does not 
have much code—only defi nitions of the functions and parameters. The body 
of the functions is mostly empty at this stage. Changes to the program and the 
interactions between the modules can easily be made at this stage.
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4. Design of Test Cases. Representative test cases are identifi ed and documented 
so that when the actual code is written, it can readily be tested. A brief review 
of the test cases is also done at this stage.

5. Program Implementation. At this stage, a programmer can focus on individual 
modules. Typically, a programmer should develop simple, “unit tests” for 
individual modules at this stage. For modules with very few lines of code, 
these unit tests may be very simple, but in general writing unit tests is a good 
practice. As the complexity of the module increases (e.g., for the main module 
of a pharmacokinetic model), unit tests could involve calculating steady-state 
estimates with zero input doses (where many target tissue concentrations 
should reach zero) and very high input doses. Also, simple mass-balance tests 
can also be added at this stage. For example, when simulating systems involv-
ing multiple chemicals and reactions among them, an inert test chemical can 
also be introduced into the simulation and simple mass balances can be used 
for testing. The unit tests should be designed in a manner that facilitates easy 
debugging, so by defi nition they should be simple.

6. Program Verifi cation and Correction. At this stage, the programmer runs the 
code, fi xes errors, and runs the test cases. If there are subtle errors, an inter-
active debugger can be used for stepping through the program. For complex 
simulations (e.g., those that run for several hours), programs can be monitored 
through log statements.

7. Program Refi nement and Optimization. At this stage, the program is refi ned 
and optimized. Feature enhancements, performance improvements, improve-
ments in usability, and so on are common at this stage.

Adequate documentation and representative test cases are critical for developing 
good scientifi c programs. The documentation can be in the form of references (e.g., 
for assumptions used, mathematical models, and references for parameter values). 
Furthermore, when the programs are likely to be used by other scientists in a group, 
following a set of guidelines used in the group (or developing a set of guidelines if 
none exist) is a good step.

2.3.2 Tools for Numerical and Statistical Programming: 
Matlab, S-Plus, and Open Source Alternatives

The principles and practices discussed here are general in nature and are applicable 
to a wide range of scientifi c programming problems. They are also independent 
of the programming language and approach used. Specifi c examples are provided 
using Matlab, which is a programming environment for numerical simulations. 
These examples can also be readily applied to S-Plus, a widely used programming 
environment for statistical data analysis; however, it must be noted that there is a 
considerable overlap between the functionality of Matlab and S-Plus.

Matlab is a high-level scientifi c scripting language and an integrated develop-
ment environment with interactive tools for visualization and several toolboxes 
addressing different computing areas such as statistics, database connectivity, and 
data mining. A pharmacometrician using Matlab may have to purchase Matlab 
toolboxes, such as the Statistics Toolbox, in addition to the basic Matlab license; 



therefore, some individuals may fi nd the cost of Matlab high. Fortunately, free, 
open source alternatives to Matlab exist: Octave (www.octave.org) is a high-level 
language, primarily intended for numerical computations, and Scilab (www.scilab.
org) is a scientifi c software package for numerical computations. Both Octave and 
Scilab are similar to Matlab, and like Matlab, they both have large sets of toolboxes: 
Octave toolboxes are available in the form of the octave-forge package, while 
loosely coupled toolboxes are available for Scilab.

S-Plus is a statistical data programming language environment that follows the 
approach of programming with data. It is scalable and handles massive data sets and 
provides integrated tools for advanced analytics such as data mining. It also provides 
some advanced modules relevant to pharmacometricians, for example +SeqTri-
alTM for designing, monitoring, and analyzing clinical trials using group sequential 
methods. S-Plus license fees may also be an issue for some individuals. Free, open 
source alternatives to S-Plus include R (www.r-project.org) and Omega project 
(www.omegahat.org). R is very closely related to S-Plus, as both are based on the 
S software from Bell Labs; in fact, a majority of R code can run unchanged in S-
Plus. A large set of modules for R are available at the Comprehensive R Archive 
Network (CRAN, which is part of the R Project).

The use of free, open source tools is suggested for pharmacometricians who may 
not have licenses for commercial software. However, the expenses associated with 
the licenses may not be signifi cant for many organizations. A pharmacometrican can 
utilize the similarities between the proprietary and open source tools by developing 
the skills using the free tools and, if needed, transition to the proprietary versions 
later on.

One of the consequences of rapid advances in computer technology is that 
users are not constrained by the programming language or environment they use. 
In fact, many interfaces for invoking one language from another exist. For example, 
S-Plus can operate with SAS (www.sas.com) data sets. The Omega Project pro-
vides an R–Matlab interface (currently, an early release status) that facilitates a 
bidirectional interface between the R and Matlab languages that allows users of 
either language to invoke functions in the other language using the syntax of their 
choice. Matlab also provides interfaces to directly invoke functions in Fortran, C, 
C+ +, and Java.

2.3.3 Scientifi c Programming Resources

An overview of computational problem solving techniques for beginners can be 
found in Dijkstra (2) and Dromey (4). Several introductory textbooks on algo-
rithm design are available freely (18–21). Textbooks based on specifi c programming 
environments and languages are useful in learning programming techniques—for 
example, for Matlab (12, 13, 22) or S-Plus (11, 23). Some of the books for advanced 
programming techniques are also freely available, for example, for object-oriented 
design (24), parallel computing (25, 26), user interface design (27), and agile-
development (28).

One of the best ways to learn good programming skills is to read code from 
experts in the fi eld. Often, reading and understanding code from an experienced 
programmer within an organization is also recommended, because it provides the 
novice programmer familiarity with the coding styles and approaches used in the 
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organization. Some of the approaches for beginning programmers include (a) repro-
ducing the results from a working program, as this involves becoming familiar with 
the inputs and outputs used, getting familiar with the operating system and the pro-
gramming environment, executing the program, and optionally postprocessing of 
the program outputs; (b) studying the code using “code browsers”; and (c) running 
the program in an interactive debugger and stepping through the code.

Programming productivity can be substantially increased by utilizing avail-
able toolkits, libraries, development environments, and relevant programming 
approaches (29). Some of the productivity-improving features are available in inte-
grated systems such as Matlab and S-Plus. For other features, or for programming 
in other languages, a programmer can use either specialized integrated development 
environments (IDEs) or general purpose toolkits. Though a detailed discussion of 
the available toolkits is beyond the scope of this chapter, some of the widely used 
general purpose tools include text editors such as XEmacs (www.xemacs.org) and 
ViM (www.vim.org); general purpose IDEs such as Eclipse (www.eclipse.org);
debugging tools such as the GNU Debugger, gdb (www.gnu.org/software/gdb);
code profi ling tools such as the GNU Profi ler, gprof (www.gnu.org/software/
binutils); code browsing and publishing tools such as Glimmer (glimmer.source-
forge.net); version control systems such as Concurrent Versions System (CVS) 
(www.nongnu.org/cvs); (30); and defect tracking systems such as bugzilla (www.
bugzilla.org). Likewise, there is an large set of available libraries for general 
purpose scientifi c and statistical programming (31–34). Language-dependent librar-
ies also exist, for example, Matlab libraries (35, 36) and S-Plus/R code (37).

A scientifi c programmer must be aware of available libraries and toolkits and 
must be familiar with the general tools and approaches for effective computer 
programming. An awareness of these tools and approaches will help in pursuing 
the corresponding features in the programming language of choice. For example, 
a Matlab programmer familiar with the notion of code browsing can either use 
the general purpose tool Glimmer (glimmer.sourceforge.net) or search for the 
feature in the Matlab Repository (35) and arrive at the Matlab code browsing tool, 
M2HTML (38). An awareness of features and utilities one can realistically expect 
in a programming environment will enable a programmer to seek similar features, 
often successfully, even in totally new programming environments. As an example, 
the Matlab IDE provides a majority of such features, and in some cases an auxiliary 
tool may be needed.

1. Enhanced editing ability, consisting of syntax-based code coloring/highlight-
ing and automatic completion of variable names, facilitates faster coding as 
well as early detection of simple syntax errors (e.g., unbalanced parentheses, 
quotes). Some editors and IDEs also support an “outline mode” for navigat-
ing large blocks of code.

2. Code “beautifying” tools enhance code readability via automatic indentation 
and line wrapping, as well as format code from diverse sources in a consistent 
manner.

3. Code browsing tools provide effective navigation of large blocks of code span-
ning multiple fi les and thus are valuable for reviewing or studying programs 
written by others. Often, the code browsing tools allow publishing of the code 



GOOD PROGRAMMING PRACTICES: BASIC SYNTAX, CODING CONVENTIONS, CONSTRUCTS 33

in a hyperlinked format (typically as a set of HTML fi les), which can be then 
viewed through a regular browser. The M2HTML tool (38) provides this 
functionality for Matlab.

4. Interactive debugging environments allow for tracing code execution, inspect-
ing variables, and arbitrarily setting breakpoints inside the program. These 
allow for rapid location of errors. The Matlab IDE provides both a visual 
debugger as well as a command line debugger via the “dbstop” command.

5. Code profi ling tools provide a summary report on the code execution, 
including time spent in different blocks of code, thus helping in optimizing 
the code. The Matlab IDE provides a profi ler tool as well as the “profi le” 
command.

6. Tools for periodic saving of program state provide value by (a) allowing an 
interrupted program to restart from a prior valid state and (b) allowing the 
user to monitor program progress by using the intermediate outputs. This is 
especially useful in the context of computationally demanding simulations that 
may run for days to weeks, because errors can be detected early by analyzing 
the intermediate outputs, and erroneous model runs can be stopped. Likewise, 
computational time is not lost when a correct model run is interrupted due 
to unavoidable problems. The Matlab system provides a “save” command to 
save the entire workspace or a set of objects.

7. Revision control tools allow easier management of source code changes in 
a transparent and effi cient manner. Using these tools, a programmer (or a 
group of programmers) can easily track code changes, obtain a summary of 
changes from one version to another, and revert to any version based on either 
a version number or a date. Matlab provides an interface to several version 
control systems, for example, via the “cvs” command for CVS (30) and the 
“sourcesafe” command for SourceSafe (39).

2.4 GOOD PROGRAMMING PRACTICES: BASIC SYNTAX, 
CODING CONVENTIONS, AND CONSTRUCTS

The practices listed here are applicable to all aspects of scientifi c programming, 
including small segments of code or complete scripts, as well as modules that form 
a large software project.

2.4.1 Use Meaningful Names for Program Variables

Giving meaningful names to program variables is one of the simplest ways of 
enhancing the readability of code. The names of variables in legacy code are often 
cryptic, because the length of variable names was constrained in older programming 
languages (a maximum of 8 characters is allowed in Fortran 77). These constraints 
have been removed for all practical purposes in most of the current programming 
languages (such as Fortran 90, C, Java, Matlab, and S-Plus), which allow variable 
names that can be as long as 32 or even 256 characters.

Very short names (such as “t” to indicate simulation time) are easy to type, but 
(a) they are not informative about the nature and context of the variable, and (b) 
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they are likely to be misinterpreted or inadvertently redefi ned in another part of the 
program. It is preferable to use a meaningful name such as “sim_time” (note that 
in this scenario, the variable name “time” may not be appropriate because it may 
confl ict with a system command, a reserved word, or an inbuilt function). Likewise, 
very long variable names should also be avoided, because (a) they are tedious to 
type and can lead to inaccuracies and lengthy statements, and (b) it is diffi cult to 
distinguish between long variable names that differ by only a few characters at the 
trailing part.

Short variable names are convenient and appropriate to hold temporary or inter-
mediate values, such as counters in conditional loops. However, it is recommended 
that meaningful names be used even for counters. The code in Code Block 1 (Figure 
2.1) provides examples of descriptive names for constants, variables, and temporary 
counters in conditional loops. Although this is a trivial example, the benefi ts of 
using descriptive counter variable names increase as the number of statements and 
nesting levels in the conditional block increase.

2.4.2 Use Consistent Naming Conventions for Program Variables

Many modern programming languages are also case-sensitive, and this feature can 
be used to advantage in communicating the type and context of a variable name. 
A convention often followed by Matlab programmers is to use all uppercase names 
for program constants. The case of a variable name can also be used to distinguish 
the context of the variable (local versus global) and variable type (scalar or vector 
versus matrix). In statistical programming, case is often used to distinguish between 
data set and column/variable names, thereby improving program readability. Some 
generally used naming conventions are presented in Refs. 40–42.

Consistent naming of variables is important for understanding the context of 
the variable and for writing reusable code. Some commonly used naming conven-
tions are:

FIGURE 2.1 Code Block 1—impact of variable naming and code formatting on program 
readability.

(A) Well Named and Formatted Code 
% Initialize compartment concentrations to zero
FOR iCmpt = 1:N_COMPARTMENTS
  FOR jChem = 1:N_CHEMICALS
    % Initialize concentration of chemical j in compartment i
    conc_cmpt(iCmpt, jChem) = 0;
  END % End of jChem loop 
END % End of iCmpt loop

(B) Poorly Named and Formatted Code 
FOR i = 1:N 
FOR j = 1:M 
c(ii, jj) = 0; 
END
END
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1. Use all uppercase names for constants and global variables.
2. Prefi x global variables with an identifi er, for example, GL_NUM_

COMPARTMENTS.
3. Use readable variable names either via underscores (num_compartments) or 

via mixed case naming (NumCompartments).

A related issue is the defi nition and initialization of constants. A commonly 
followed approach is to place defi nitions of constants together at the top of a unit 
of code (script or a module), so that the constants can readily be located. This 
also enables the programmer to identify at a glance the constants that have been 
defi ned.

2.4.3 Follow Organizational Conventions for Code Formatting

Proper formatting of code, such as indentation, wrapping of long lines, and splitting 
long formulas into shorter formulas, signifi cantly enhances the readability of code, 
similar to a well formatted document. It also makes it easy to comment out or delete 
blocks of code. Many programming environments and modern, general purpose 
text editors have features for “beautifying the code.” This includes appropriate 
automatic indentations and line wrapping (e.g., a two-space indentation for each 
nested conditional block). A consistent format not only helps in the readability but 
also highlights potential problems (e.g., a spurious “END” statement will alter the 
indentation in a visible manner).

2.4.4 Provide and Maintain Informative Comments

Providing comments that explain the purpose and logic of blocks of code is one of 
the most simple and effective ways of improving program readability. The main 
variables used should be commented along with major processing blocks (e.g., com-
ments of the type “initializing the system” or “calculating derivatives”). Likewise, 
the end of loop constructs (“for,” “while,” and “if-then-else” blocks) should have a 
short, informative comment that mentions the conditional block that is being ended. 
This facilitates readability, especially for code that has several nested conditional 
statements. The major exception is for loops that consist of just one or two state-
ments inside.

In general, comments should provide the context of a statement or a block 
of statements (i.e., why something is done) instead of just a literal translation of 
the statements themselves. For example, while commenting a break statement, 
indicating both the innermost loop (e.g., “exiting i_comp compartment loop”) 
and the signifi cance of the statement (e.g., “convergence reached” or “completed 
all dose inputs”) is more informative than simply stating “exiting compartment 
loop.”

It is very important to ensure that the comments and code are always consistent, 
as wrong comments can cause more harm than no comments. However, it is often 
the case that a good comment turns into a bad one because of changes in the code 
without updates to the comment. A good practice is to review and update comments 
whenever the code is changed signifi cantly.
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2.4.5 Avoid Segments of Commented Out Code

When extensive changes are to be made to an existing program, some programmers 
often tend to comment out working code and add new code, with the idea that 
the changes can easily be reversed. However, the commented out code often ends 
up staying in the program long after the code changes are fi nalized. Furthermore, 
programmers may add additional comments to describe why the code block was 
commented. This can lead to even more lines of diffi cult to follow programs clut-
tered with noninformative lines of text. The preferred method of revising code is 
to employ version control utilities such as CVS (30), which enable programmers 
to keep track of changes while maintaining the coherence of the code. The use of 
version control is briefl y mentioned in Section 2.10.4.

2.4.6 Provide Documentation and References Along with the Code

It is essential to provide references for additional documentation when the code 
requires extensive documentation (e.g., statements involving a complex formula). 
This could also be in the form of an electronic document provided along with the 
code. Relying solely on comments to provide details can lead to comments over-
shadowing the code. Furthermore, text comments are limited in the type of infor-
mation they can convey. For example, the documentation of a pharmacokinetic 
model can include the model schematic (a graphic), along with the model equations 
(mathematical objects), and additional references; such a document is signifi cantly 
more useful than large chunks of text-based comments in the code.

2.5 GOOD PROGRAMMING PRACTICES: 
RELEVANT MATHEMATICAL CONCEPTS

Some of the basic mathematical requisites for scientifi c programming include under-
standing of (a) rules of operator precedence, (b) machine precision, (c) equality 
and inequality issues, and (d) potential for overfl ow/underfl ow of numbers. Related 
concepts such as relative and absolute differences are also important for scientifi c 
programming.

2.5.1 Operator Precedence

Operator precedence deals with the order in which different operations in a math-
ematical expression are evaluated. For example, in most programming languages 
multiplication has a higher precedence than addition. Understanding operator pre-
cedence is especially important when writing complex mathematical expressions, 
because it is a source for subtle errors. Using parentheses for grouping terms is a 
good technique, as it improves readability as well as reduces potential errors that 
creep in due to operator precedence issues.

2.5.2 Machine Precision Issues

These issues arise due to limitations in machine representation of numbers and 
fractions in terms of a limited number of computer bits (e.g., a decimal fraction 



such as 1/10 cannot be represented adequately with a limited number of bits in 
binary format1). Therefore, very small errors (“round-off” errors) are introduced, 
and these can sometimes accumulate over the course of a long simulation. In some 
programming languages, the problem is exacerbated by the choice of the variable 
type: for example, in Fortran, a “real” number is less precise than a “double preci-
sion” number. Therefore, depending on the problem and the choice of the variable 
type, the numerical errors can vary signifi cantly. In scientifi c programming, such 
errors are sometimes encountered in the solution of systems of differential equa-
tions that are solved by numerical integration over a large number of time steps, 
with the accuracy of the solution highly dependent on the integration time step size 
and the duration of the simulation.

2.5.3 Equality and Inequality Issues

These issues arise due to the limitations imposed by machine precision. Very often, 
two quantities that should be identical will not pass the equality test because of 
the different ways in which they are computed. Sometime inequalities are also 
impacted. As an example, the Matlab statements in Code Block 2 (Figure 2.2) will 
produce unexpected errors (the statements were tested on Matlab Version 7.01; 
interactive; default setting of single precision).

When Statements 1 and 2 are used to calculate the values of two small numbers, 
“x” and “y”, one of them (“y”) is incorrectly rounded off to zero, whereas the 
smaller of the two (“x”) still retains nonzero value. Thereafter, all subsequent 
comparisons of “x” and “y” lead to unexpected and incorrect results. For example, 
the results of comparison in Statements 4 and 5 are defi nitely wrong, whereas the 
comparison in Statement 3 may or may not lead to an incorrect conclusion. There 
are some techniques to overcome these issues. For example, Matlab provides a vari-
able “eps” that indicates the smallest fl oating point increment possible in a given 
precision. Statements 9 and 10 use “eps” in the context of comparing the difference 
of two numbers, as well as in deciding whether inequality comparisons can be made, 
and produce more predictable results.

1 For example, 0.1 represented in binary becomes 0.00011001100110011  .  .  . with the 0011 recurring; in 
general, only fractional numbers that can be represented in the form p/q, where q is an integer power 
of 2, can be expressed exactly, with a fi nite number of bits.
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FIGURE 2.2 Code Block 2—a Matlab example highlighting common machine precision 
issues encountered.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

x =     0.00000000000000000001; % x correctly set to 1E-20
y = 5 - 4. 9999999999999999; % y (1E-16) set to zero
w1 = (x == y);  % evaluates to zero (false); Potential Error
w2 = (x < y);  % evaluates to zero (false); Definite Error
w3 = (x > y);  % evaluates to one (true); Definite Error
w4 = y * 1E16; % evaluates to zero (actual value 1); Error
w5 = x/y; % evaluates to inf (actual value 1E-4); Error
w6 = y/y; % evaluates to NaN (actual value 1); Error
c1 = (abs(x-y) < eps); % true; Equal within precision limit
(x < eps & y < eps); % true, so avoid inequality comparisons
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2.5.4 Overfl ow/Underfl ow Problems

These problems can sometimes arise in numerical calculations due to limitations of 
machine representation of very large or very small numbers. Overfl ow errors occur 
when the number to be represented is larger than what the computer can handle; 
thus, the number gets assigned a value of “Inf” (infi nity). Likewise, underfl ow 
errors occur when the number to be represented is smaller than what the computer 
can handle; thus, the number gets rounded to zero. These issues lead to functions 
returning the values of “NaN” (Not a Number, or invalid number), for example, 
when two large numbers (infi nity) are subtracted, or when two very small numbers 
(zero) are divided by each other (see Statements 6 to 8). Such issues may appear 
pedantic, but in scientifi c programming, very small numbers often result due to the 
small time steps in numerical solution of differential equations and are sensitive to 
the choice of units used to represent different quantities in the simulation.

2.5.5 Absolute and Relative Differences

These need to be used appropriately when the convergence of numerical simula-
tions is to be evaluated, for example, to estimate steady-state values or to estimate 
the quality of a numerical approximation. This often involves a combination of rela-
tive and absolute difference criteria. Absolute difference refers to the magnitude of 
the difference between two values, whereas relative difference deals with the ratio 
of the difference to the actual value. When the values to be compared are very 
small (but substantially more than the machine precision), absolute differences are 
recommended to judge convergence. Likewise, when the values are very large, rela-
tive differences are useful in evaluating convergence. It must be noted that there are 
several exceptions to these recommendations, and the choice of the criteria depends 
on the problem at hand. A scheme that employs both the absolute and relative error 
criteria will provide a more robust means for evaluating convergence.

2.6 GOOD PROGRAMMING PRACTICES: 
REDUCING PROGRAMMING ERRORS

2.6.1 Explicitly Check for Errors Such as Division by Zero

Many programming languages handle numerical exceptions such as division by zero 
or square root of a negative number by aborting the program execution. However, 
some modern languages such as Matlab allow for computation to proceed despite 
such errors (see discussion on NaN and Inf in Section 2.5.4). Depending on the 
simulation and the programming environment setting, the following scenarios are 
possible: (a) the program aborts execution with an error indicating fi le name and 
line number of the offending code; this is common in simple programs written in C 
or Java; (b) the program continues execution and some of the variables will have 
infi nite or nonnumber values; this happens often in Matlab and Fortran; (c) the 
program suspends execution at the fi rst instance of an exceptional situation; this 
is common in interactive debugging environments when global error checks are 
enforced (e.g., in Matlab, one can set the option to interrupt when a NaN or Inf is 
encountered using the command “dbstop if naninf”); (d) the module makes a log 



entry for the error condition and skips to the next iteration of the function program; 
this is common when multiple simulations need to be performed in one program, 
and erroneous simulations can be identifi ed from the log fi les.

2.6.2 Avoid False Robustness in the Programs

Some programs are designed to be robust despite minor errors in the inputs and 
program state. Examples include web browsers, which are designed to do the best 
possible job in spite of errors. Such an approach should be avoided in scientifi c 
programming, because the robustness of the program comes at a cost: correctness. 
In a scientifi c program, it is often advisable for the program to fail noticeably when 
spurious conditions are encountered. For example, in Code Block 3 (Figure 2.3), 
the code in lines 1–3 does not perform any error check, the code in lines 5–8 “com-
pensates” for errors in another module, whereas the code in lines 10–14 alerts the 
user when there is an error in the program. Though the right approach for error 
handling and alerting is often dependent on the situation, code that alerts when 
spurious conditions are encountered is preferable, unless otherwise dictated by the 
situation.

One practice for easy error detection is initializing variables to NaNs at the time 
of defi nition (or when error conditions are encountered). At any stage of computa-
tion, one can see if there are any invalid computations that are performed. Another 
practice for reducing errors is through explicit checks of function arguments. This is 
very essential, for example, in web-based business programs, where fraud is of high 
concern. In scientifi c programs, accuracy is of high concern, especially when subtle 
errors can result in seemingly reasonable, but wrong answers.

2.6.3 Check for Unused Variables

In languages such as Java and C, it is not possible to use a variable without declar-
ing a type for it. So, the Matlab example in Figure 2.4 would not run properly 
in those languages. In this code, there is an error on line 11 in Code Block 4, a 
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FIGURE 2.3 Code Block 3—the role of appropriate error checks in scientifi c programs.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.
14.

% A code block with no error checking
conc = calculate_tissue_concentration(param1, param2);
return conc; % returns conc values without error checks

% A falsely robust code block
conc = calculate_tissue_concentration(param1, param2);
if (conc < 0), conc = 0; end % fix negative concentrations
return conc; % compensates for errors in another module

% A fragile, but more correct code block
conc = calculate_tissue_concentration(param1, param2);
  if (conc < 0), error(’Negative concentration encountered’);
end
% Above check raises an alert when an error is encountered
return conc;
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misspelled variable name. Some programming languages such as Java and C will 
produce compilation errors with similar code (compilation errors in which the 
variable PC_blod_air is not declared). However, this set of statements is valid in 
languages such as Matlab, and, therefore, no error will be reported. As a conse-
quence of the error, the program will always use the default value. Furthermore, 
if the error is minor (e.g., the values of default and updated partition coeffi cients 
differ very little), the error will become very diffi cult to track. Fortunately, there 
are tools to identify such errors. For example, Matlab has a command for com-
prehensive code checking called “mlint.” It must be noted that mlint is ideal for 
analyzing function fi les and is not as effective with script fi les in dealing with unused 
variables, since the purpose of a script may be just to initialize a set of variables to 
be used by another script. Code Block 4 also shows the output of mlint used on the 
code in lines 1–13. Matlab also provides “lint” report generation on all the fi les in 
a folder through a GUI. The report for the entire folder can be saved as an html 
fi le and easily reviewed.

2.6.4 Use “Catch-All” Statement Blocks in Conditional Constructs

When using a conditional statement such as “if-then-else” or “switch” statements, 
it is prudent to use a “catch-all” statement that addresses the unhandled cases. 
This may not seem important in the beginning, but it increases the robustness of 
the program when the code is used for different cases, because the program alerts 
the user when such errors occur. For example, when the statements in Code Block 
5 (Figure 2.5) are executed for the set of chemicals handled by the program, the 
partition coeffi cient is assigned properly. However, if the “otherwise” portion of 
the “switch” statement is not used, the program would have produced silent errors 
when the code is used for new chemicals, by leaving the partition coeffi cient set to 

FIGURE 2.4 Code Block 4—subtle errors in function defi nitions that can be identifi ed 
only via auxiliary tools.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.

function result = get_blood_air_PC(scenario)
% Returns Blood-Air Partition Coefficient based on scenario
% Inputs: scenario: 1 => default, 2 => updated
% Outputs: blood_air_PC (Partition Coefficient)
% References: J. Doe, J.Pharm 2004, X. Y. Doe, J. Pharm.,2005
% Author: An Employee, Organization, Inc.
PC_BLOOD_AIR_DEFAULT = 0.2;  % J. Doe, J. Pharm., 2004
PC_BLOOD_AIR_UPDATED = 0.22; % X. Zmith, J. Pharm., 2005
PC_blood_air = PC_BLOOD_AIR_DEFAULT;
if (scenario == 2) 
   PC_blod_air = PC_BLOOD_AIR_UPDATED;
end
result = PC_blood_air; % return PC for blood compartment

mlint('get_blood_air_PC')
L 11 (C 3-13): The value assigned here to variable 'PC_blod_air' is never used

% Output from mlint 



an unknown value. By including a “catch-all” statement, a noticeable error will be 
triggered upfront whenever the code is used for chemicals it does not handle.

2.7 GOOD PROGRAMMING PRACTICES: BASICS OF 
SCRIPT AND PROGRAM DESIGN

2.7.1 Avoid Monolithic Blocks of Code

In many programming languages, it is possible to write large, monolithic blocks of 
code. However, it is cumbersome to maintain and debug large blocks of code that 
require scrolling through several screens to be viewed in their entirety. One com-
monly used alternative to writing large blocks of code is to split large code blocks 
into multiple fi les, with each fi le tested individually and linked as a sequence of 
command fi les (also known as “including the fi les”). Though programs written in 
this fashion may appear to be “modular,” they are in fact similar to single fi les with 
one large block of code.

2.7.2 Write Modular Code

The main aspect of modular code is that changes in one module do not alter the 
behavior of other modules. However, when multiple script fi les are included in 
the same module, they share the same “name space” (i.e., they all can access the 
same set of program variables). Thus, a minor change in one fi le, such as assigning 
a value to a variable, can have unforeseen consequences in other fi les. However, 
when modular code (via subroutines and functions) is used, changes internal to the 
function will have no consequences upon other functions. As long as the function 
parameters and return values are consistent, signifi cant changes to the internals 
of the functions can be made, without affecting other modules. This reduces the 
chances of subtle, intractable errors.

GOOD PROGRAMMING PRACTICES: BASICS OF SCRIPT AND PROGRAM DESIGN 41

FIGURE 2.5 Code Block 5—use of the appropriate structured programming construct: 
“switch” versus “if.”

switch (chemical_name)
  case {’cl2’, ’chcl3’, ’chloroform’, ’ccl4’, ’tce’}
     pc = estimate_pc_voc (chemical);
     % partition coefficients of volatile organics
 case {’hg’, ’cd’, ’as’, ’As’}
    pc = estimate_pc_voc (metal);  % partition coefficients of metals
otherwise
    error([’Chemical ’ chemical_name ’ is not yet supported’]);
end

% The corresponding “if” statement will have several lines of
% equality comparisons of the type
if (chemical_name == ’cl2’ | chemical_name == ’chcl3’ | ...
    chemical_name == ’chloroform’) 
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In order to write maintainable code, programmers should break larger pieces of 
code into shorter functions (subroutines and procedures in some languages) that 
are small enough to be understood easily, have a well defi ned set of input argu-
ments, and return corresponding outputs. This approach, though obvious, needs 
to be emphasized as it makes isolated small pieces of code easier to understand 
without having to understand the whole program at once. Likewise, once the small 
functions are tested, they can be assumed to work unchanged despite changes in 
other, unrelated functions.

Modularization via functions enables code reuse and avoids repetition of code. 
This approach is also superior to that of cut-and-paste of existing code into new 
code. For example, if there is an existing pharmacokinetic model for Drug A, and a 
similar model is needed for Drug B, it is preferable to modularize common functions 
and rewrite just the components that need to be changed, such as the initialization 
of the parameters. Otherwise, the programmer will inherit an additional task of 
keeping the two programs synchronized. When the code is modularized, bug fi xes 
or improvements to a module are instantly refl ected in all the programs that use that 
module. Modularization can signifi cantly increase productivity, because modules 
that are used frequently are likely to be tested more often and improved in terms 
of accuracy and performance.

When modularization is carried to an extreme, it can lead to overengineering and 
also unreadable code. Programmers should exercise their judgment in deciding what 
level of modularization is appropriate for a specifi c set of problems.

2.7.3 Utilize Existing Modules and Libraries to the Fullest

A corollary to using modular programming is the use of modules developed by 
others. Most modern computer programming languages sport a wide range of 
modules in the form of libraries or toolboxes for solving a variety of problems. 
The type of problems they solve varies in scope: from sorting, searching, solution 
of linear equations or differential equations, random number generation, and plot-
ting, among many others. Thus, a signifi cant amount of computer programming 
can benefi t from the “component model of programming,” where the problem is 
often posed as fi nding appropriate modules from an existing toolbox and linking 
them to solve a specifi c problem. Despite the availability of well tested standard 
modules, some programmers tend to write new code to solve standard problems: 
for example, a module to solve an ordinary differential equation or a module to 
generate random numbers. It is recommended to perform a simple search to iden-
tify any existing modules before embarking on writing new ones, thus avoiding 
the problem of “reinventing the wheel.” The main exception to this practice is the 
situation where license restrictions or organization policies necessitate developing 
new code to solve a standard problem.

2.7.4 Use Structured Programming

Structured programming is an approach in which a program consists of subsections, 
each with a single point of entry. Structured programming facilitates a “top–down” 
approach to program design, whereby the large scale structure of a program is 
mapped out in terms of smaller operations, which can be independently imple-



mented and tested. Structural programming is achieved by using hierarchical con-
ditional constructs, such as “if-then-else,” “switch,” “for,” and “while” for creating 
conditional branches of execution. This approach shuns the indiscriminate use of 
“goto” statements, which allows program control to jump to any line in the code 
identifi ed by a line number or label and can make it diffi cult to follow the logic of 
a program.

The “goto” statement is sometimes used to direct program control when a 
program exception or error occurs. Alternative constructs that can be used in 
structured programming include (a) the “return” statement, which returns control 
to the end of the current function; (b) the “break” statement, which terminates the 
inner most loop; and (c) the “continue” statement, which returns to the next itera-
tion of the innermost loop.

2.7.5 Use Appropriate Structured Programming Constructs

The choice of the structured programming construct used should convey the logic 
involved in a given operation. This is important because most of the constructs can 
be expressed in terms of other constructs: for example, a “for” loop can be written 
as either a “while” or “unless” loop. Some of the guidelines for the appropriate 
constructs to use are as follows:

Use “for” construct when the number of loop iterations is known beforehand. 
Likewise, use “while” construct when the number of loop iterations is not 
known beforehand. Cases include reading data from a fi le or from user input 
line by line until the end is encountered. Though this can be achieved by using 
a “for” loop with a conditional “break” statement, the “while” statement 
conveys the logic clearly. Some special cases require using “do-while” (when 
the fi rst statement has to be executed before the conditional).

Use “switch” construct instead of multiple, nested “if-then-else” statements, 
especially when all the conditionals are treated at the same level. The resulting 
code is usually easier to read and follow. However, when different types of 
conditionals are tested, multiple, nested “if-then-else” constructs are prefer-
able. An example for using “switch” versus “if” statements is shown in Code 
Block 5 (Figure 2.5).

2.7.6 Use Data Structures Appropriate to the 
Problem Under Consideration

A programmer should select the appropriate program types that properly defi ne 
the computational problem. For example, if the number of compartments is a user-
defi ned construct (i.e., the program is designed for solving systems of equations 
for a multicompartment PBPK model), the number of compartments becomes a 
parameter. However, if a PBPK model is for a specifi c implementation, a constant 
should be used to describe the number of compartments. Likewise, depending on 
the situation, a matrix may be more appropriate than a set of one-dimensional 
arrays. Similar choices have to be made with respect to selecting complex data 
structures versus default types provided by the programming language.
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2.8 GOOD PROGRAMMING PRACTICES: 
MODULAR CODE DESIGN FOR FUNCTIONS

2.8.1 Restrict Use of Global Variables

Global variables are variables that are active at all stages of the code, while the 
scope of local variables is restricted to the function in which they are defi ned. 
Global variables should be used with care to avoid inadvertently setting a value in 
one module of code that could affect computations in another module. Use local 
variables as far as possible. Global variables are most appropriately used to defi ne 
constants that do not change during the execution of the program (e.g., molecular 
weight of a chemical). They are a convenient means of passing values through more 
than one level of module hierarchy. An example with Matlab code for a differential 
equation model is given in Code Block 6 (Figure 2.6), in which global variables are 
used to pass values to the derivative function (which is not called directly from the 
code block where the constants are defi ned). The constants could have been defi ned 
in the derivative code, but defi ning them earlier is more effi cient as the statements 
in the derivative code are executed repeatedly.

2.8.2 Pass Information Through Function Parameters and 
Not Through Global Variables

One of the advantages of global variables is that they are accessible from all com-
ponents of the program. This also means that keeping track of the global variables 
becomes very diffi cult. A change in the values of a global variable in one function 
may trigger a diffi cult to notice change in another function. Therefore, passing 
information via function parameters is much more robust than passing information 

(i)
y = solveMyODE(’f’, x0, x1, y0, dt, eps1, 23);
% Above function call is not informative

(ii)
y = solveMyODE(struct(’func’, ’f’, ’xinit’, x0, ’xend’, x1, ...
                     ’yinit’, y0, ’tstep’, dt, ...
                     ’relerror’, eps1, ’ODEMethod’, 23));

(iii)
config.function = ’f’;
config.xinit = x0;
config.xend = x1;
config.tstep = dt;
config.relerror = eps1;
% ODE (Ordinary Differential Equation) solver option
config.ODEMethod = 23;
y = solveMyODE(config); % passing config object to ODE solver
config.ODEMethod = 13;  % change just the ODE solver
y = solveMyODE(config); % invocation with modified options 

FIGURE 2.6 Code Block 6—passing large sets of function parameters through custom 
data structures.



through global variables. This approach also allows for easier defi nition of test cases, 
since the only changes in the function state will be caused by changes in function 
parameters.

The main exception to this practice is when the same information needs to be 
passed through a nested set of functions. In PBPK modeling in Matlab, such a sce-
nario is often encountered when a main program invokes a subprogram that invokes 
a differential equation solver.

2.8.3 Avoid Too Few or Too Many Function Parameters

A function with too few parameters is usually less fl exible. However, a function 
with too many parameters is a good candidate for further modularization into 
multiple functions. The extra inertia in having to provide a large set of parameters 
to invoke a function will lead to an underused function; often, a programmer will 
use a simpler alternative.

2.8.4 Write Functions Using a Variable Number of 
Arguments with Reasonable Defaults

Many programming languages support defi ning functions that operate with a vari-
able number of arguments, with a common example being the “print” function. A 
function that accepts a variable number of arguments along with reasonable defaults 
can provide great fl exibility and functionality. The function will be easy to invoke, 
because it does not require a large set of parameters; but at the same time, it will be 
fl exible enough for advanced users of the function. Matlab provides the feature of 
variable number of function arguments and function outputs through the constructs 
“varargin” and “varargout.” This feature is often encountered in Matlab in the 
solution of differential equations: a novice can use the solver with default options 
and still get a reasonable solution, whereas an expert can tune the function perfor-
mance by providing advanced options. Of course, there is an additional overhead 
involved in writing functions that handle a variable number of parameters, including 
checking whether required parameters are provided, what optional parameters are 
provided, and what parameters need to be set to default values. However, the code 
for handling such tasks is similar from function to function, and a well designed, 
fl exible function usually is worth the additional code required.

2.8.5 Use “Try-Catch” Type Exception Handling

One of the most powerful features of modern programming languages is exception 
handling. However, it is signifi cantly underused in scientifi c programming. Blocks 
of code that use exception handling consist of two parts—the normal program (also 
called as the “try” block) and the errors/exception block (also called as the “catch” 
block). The main advantage is that the exceptional conditions can be handled in 
one location without “cluttering” the code for main program fl ow. The exceptions 
from the lower level functions (e.g., a square root function) can be propagated 
to the higher level invoking function, which can then handle the error condition 
appropriately. Thus, the writer of the lower level function need not focus on how 
to handle the error condition and can simply focus on alerting the caller function 
about the error conditions. This enhances the modularization of the code as well 
as allows more code reuse.
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2.8.6 Use Custom Data Structures with a Hierarchical Design

Most modern programming languages support user-defi ned, complex data structures 
and objects, and that feature can be utilized in writing clearer code. For example, in 
Matlab, instead of using variables such as PBPK_Human_chloroform_Vmax, PBPK_
Human_chloroform_Km and PBPK_Human_chloroform_PC_blood_lung, one can 
write compact, easily readable code, by defi ning the variables as constituents of a 
custom data structure, as follows: pbpk.human.chloroform.vmax, pbpk.human.
choloroform.Km and pbpk.chloroform.PC.blood_lung. Therefore, the param-
eters can be used in the most appropriate manner depending on the context. For 
example, in case of a pharmacokinetic module for chloroform, the parameters can 
be passed as param = pbpk.human.choloroform.

Now, the parameters Vmax and Km, can be accessed as param.Vmax and param.Km.
Likewise, all the partition coeffi cients can be accessed as param.PC. This approach 
provides fl exibility in parameter assignment and parameter passing and improves 
readability.

2.8.7 Use Informative, Custom Data Structures for 
Function Parameter Passing

A function that takes a structure that has informative fi eld names is signifi cantly more 
readable than a function that takes a large number of parameters. For example, in 
Code Block 6 (Figure 2.6), a function call of the form shown in (i) is typically used 
and is not informative. However, by using data structures for parameter passing, 
as in (ii), the context of the parameters becomes clearer. The parameter passing 
approach in (iii) is similar to that used in (ii), with the added advantage that the data 
structures for parameter passing can also be reused. Functions designed in such a 
manner can also be easily extended to include more parameters without requiring 
changes in the intermediate calling functions; that is, changes in a function invoked 
via intermediate functions will not impact the intermediate functions.

2.9 GOOD PROGRAMMING PRACTICES: WRITING EXTENSIBLE AND 
NONINTERACTIVE PROGRAMS

Often, a numerical model has to be run for different combinations of parameter 
values. Examples include performing a large number of Monte Carlo simulations 
with a model to estimate the range of uncertainties in model outputs or distribu-
tions of outputs for a study population. Likewise, parameter estimation techniques, 
such as the Bayesian Markov chain Monte Carlo (MCMC) (43, 44) technique, 
also involve running the full model with varying sets of parameters. Therefore, 
a program should be designed upfront in a manner that facilitates noninteractive 
(automated) runs. This aspect is critical in software testing (45, 46).

The notion of running programs in a noninteractive mode is common in the area 
of server-based computing using operating systems such as UNIX and Linux. In 
contrast, PC-based computing has been predominantly interactive. The advantage 
of server-based systems is that a user can connect to the server, submit one or more 
“jobs” for execution, monitor the progress of the simulations for a period of time, 
set the job status to “background,” and disconnect from the server. In such systems, 



several users can use one server simultaneously and do not need to stay connected 
for the duration of the simulations. In case the users need to maintain an interac-
tive session, some advanced tools, such as the GNU screen utility (www.gnu.org/
software/screen), provide the feature of a “virtual interactive session” that the 
users can disconnect from and reconnect to as needed. These tools can be con-
trasted with the current techniques in PC-based computing, such as remote desktop 
(www.rdesktop.org) or virtual network computing (VNC; www.tightvnc.com),
where only one user can effectively be connected to the server at a given time, and 
there are no easy means for automating connections to multiple machines.

The advantage of noninteractive programs has become more pronounced with 
the advent of powerful but inexpensive computing clusters. Typically, a user has 
access to several tens to hundreds of machines in a cluster. Thus, the ability to run 
a program in a noninteractive or detached mode without continuous monitoring 
is very useful. Furthermore, since the user’s main computer (typically a desktop 
computer) is not occupied with multiple connections to the server, one can submit 
large running jobs to the server without affecting the desktop machine.

2.9.1 Provide a Usable Interface to the Model

An intuitive user interface, either command-line or graphical, is an important factor 
affecting model usability. Some of the relevant aspects include providing appro-
priate user input prompts, warnings, and diagnostics, when erroneous conditions 
are encountered, and user input validation and correction (e.g., re-prompting the 
user when an input error such as entering a text string when a numerical input is 
expected). This is complementary to the ability to run the model in an automated, 
noninteractive mode. Ideally, a program should be designed to operate in both 
interactive and noninteractive modes. A common approach for designing such pro-
grams involves running the model in an interactive mode when no command-line 
parameters are provided, and running it in an automated mode when the required 
parameters are passed via command line or through an input fi le.

2.9.2 Write Programs with Standard Formats for Inputs and Outputs

When the model uses a standard format for model inputs and outputs, it becomes 
easily extensible in the form of a link in a long chain of models. It also makes it 
easier for writing scripts to generate reports or plots from model outputs, to aggre-
gate multiple model runs and perform additional analysis, and even to run multiple 
simulations based on other resources (e.g., using a database of chemistry parameters 
as an input to the model). Traditionally, the input and output formats are quite 
variable, and often a programmer would decide on the format based on the fl ow of 
the model. Some of the widely used general purpose formats include CSV (comma 
separated values, supported by most spreadsheet software) and XML (eXtensible 
Markup Language; www.xml.org). An effective approach is to utilize object storage 
features of the programming environment. For example, both Matlab and S-Plus 
provide an option to directly save a set of variables into an object fi le. These objects 
can be retrieved later by simply loading the object fi le.

One of the advantages of using the programming environment features to save 
objects is that, in addition to model inputs and outputs, extensive “metadata” 

WRITING EXTENSIBLE AND NONINTERACTIVE PROGRAMS 47



48 GENERAL PRINCIPLES OF PROGRAMMING: COMPUTER AND STATISTICAL

related to the inputs and outputs of a model can also be saved and later retrieved. 
The metadata can include (a) time when a simulation is run, (b) confi guration 
options, (c) machine and folder paths for the simulation, and (d) the script that was 
run to produce the outputs. It facilitates easier reproducibility of results.

2.9.3 Write Easily Relocatable Programs

Relocatable programs are programs that can be run in isolation, without affecting 
earlier model runs. This requires that locations of input, output, and confi guration 
fi les not contain absolute folder paths. This is important when multiple runs of the 
model are performed—each model run can be performed in a different folder and 
model runs from one simulation will not affect other runs.

2.9.4 Provide Ability to Uniquely Identify Results from 
Multiple Model Runs

When a model is used for performing multiple simulations, the “management” of 
simulations becomes a major issue. At a minimum, the simulations should be set 
up such that the outputs from different model runs can easily be identifi ed. The 
simulation setup should allow a subset of model runs to be repeated without needing 
to repeat all the model runs. This is often achieved by providing a separate, appro-
priately named folder for storing inputs, outputs, and confi guration fi les for each 
model run, and aggregating the model runs at the end of the simulation. Such 
an approach allows the model runs to be performed on a distributed cluster of 
machines.

2.10 GOOD PRACTICES: RELEVANT SOFTWARE 
ENGINEERING CONCEPTS

2.10.1 Follow Appropriate Directory Structures

Standardized directory structures for source code, documentation fi les, fi nal exe-
cutables, confi guration fi les, and model inputs/outputs allow tracking the software 
development process and also help in easily integrating multiple, independently 
developed modules. Standardized directory structures allow easy detection of con-
fl icts in the names of functions, scripts, or confi guration fi les.

2.10.2 Utilize Available Libraries and System Tools

The advantage of using existing tools and libraries is that the programmer need 
not actively maintain or refi ne them. The modern programming experience 
often involves taking advantage of a diverse set of libraries, programs, and tools. 
Most languages provide interfaces to link modules from other languages (e.g., 
Fortran/C, Matlab/C, Matlab/Java), which can be utilized to link modules written 
in practically any language. The overhead involved in understanding new librar-
ies, tools, and language interfaces pays off very quickly. Sometimes, the simple 
approach of using multiple programs in a “pipeline” is also effective. A common 
example is where a program’s output is used to automatically generate plots and 



reports using preexisting templates. When a programmer has fl exibility and initia-
tive in using multiple tools, there is an increased chance of using the right set of 
tools for a given task, within common constraints such as cost, as well as organiza-
tion guidelines. License issues also play a major role, since there may be different 
types of restrictions that arise when using commercial (redistribution issues, code 
confi dentiality, etc.) as well as freely available code (which may contain clauses that 
affect the derived code).

2.10.3 Use Appropriate Module from a Library

One problem with the availability of a large set of “standard” libraries is that at 
times it is possible to use the wrong module for a given task. A common situation 
involves the solution of differential equations. Some systems of differential equa-
tions contain derivatives that vary over wide scales, and these are known as “stiff” 
systems of differential equations. Therefore, a stiff differential equation solver 
should be used in these cases; otherwise, substantial numerical errors or conver-
gence problems will result.

2.10.4 Use Software Revision Control Tools

Revision control helps in identifying changes to documents or code by incrementing 
an associated number or letter code, termed the “revision level” or simply “revi-
sion.” Most modern revision control systems such as CVS (www.nongnu.org/cvs)
(30) provide facilities to track changes based on user, time, or version number. For 
a group project, such systems are very critical. Even for a single programmer, such 
systems are essential because they provide some means of being able to reproduce 
a set of source fi les that satisfi ed some set of conditions in the past. These systems 
are vastly superior to ad hoc approaches for document control such as manual 
backups of directories. A further advantage of a revision control system is that the 
programmer has the fl exibility to experiment with code changes without having to 
worry about manually managing extensive changes.

2.10.5 Embed Simple Testing into the Model: 
Simple Mass-Balance Checks

Embedding simple error checks into the model improves its robustness and extensi-
bility. This can be done either at the mathematical model development stage (e.g., 
incorporating mass-balance checks in a pharmacokinetic model) or at the software 
implementation level (e.g., incorporating alerts whenever a negative concentration 
or a negative fl ow rate is encountered). The mass-balance type checks are valuable 
in the sense that they can highlight errors in both the mathematical model as well 
as the software implementation. The overhead associated with incorporating such 
error checks is warranted because of the benefi ts provided.

2.10.6 Utilize Test Cases and Peer Review in Program Design

Proper code testing and peer review of code and test cases are critical for scientifi c 
programming (46–48). One of the recent advances in software design methodologies 
includes the approach of “extreme programming” (XP) (6, 49). The XP approach 
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advocates the notion of software design by contract, where test cases are designed 
fi rst and the code is written later (50). A major emphasis is also placed on designing 
the code such that the costs associated with code changes are lowered.

Software testing ranges from testing of an individual module (unit testing) (51) 
to the established discipline of formal software testing (45, 46). For an individual 
programmer, Humphrey (5) presents an insight into most major aspects of soft-
ware development and relevant practices, including test-driven program design and 
reviews of design, code, and test cases.

2.11 SUMMARY

This chapter provides an overview of generally applicable good programming prac-
tices relevant to pharmacometricians. The guidelines provided here can be useful in 
developing correct, robust, and easily maintainable and extensible programs. These 
guidelines are targeted toward novice and intermediate programmers and may also 
provide some relevant tips to experienced programmers. Although sophisticated 
programming skills are not necessary to develop many pharmacometric programs, 
the concepts described in this chapter can be useful in writing even relatively simple 
scripts and programs.

The main focus deals with aspects of basic coding style, design issues, and tools 
that can be quickly used in improving the programming process. The style aspects 
focus on readability and standardization, which facilitate effective code reviews; the 
design aspects focus on structured programming and modular function design; and 
the software engineering discussion focuses on test design and program extensibil-
ity. Overall, the development of scientifi c computer programs is addressed from 
the perspective of writing scientifi c documents: they should provide context, be 
readable, and contain appropriate references.

Another aspect addressed in this chapter is that computer programming tasks in 
recent times have evolved from writing new code and modules to correctly linking 
existing modules. Programming productivity can be increased substantially by uti-
lizing available toolkits, libraries, development environments, and relevant pro-
gramming approaches. Once a good design or approach is employed, and relevant 
existing modules are identifi ed, the linking of the modules to solve a pharmaco-
metric programming problem becomes a more straightforward task.
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3.1 INTRODUCTION

The development, installation, and utilization of software for pharmacometric 
studies require the pharmacometrician to interact with at least three different 
organizational entities. Management must fi rst be convinced of the need, and the 
appropriate expense must be justifi ed, for implementing the tools regarded as neces-
sary by the pharmacometrician to perform a successful analysis. Next, there is the 
interaction with the local suppliers of technology, the information technology (IT) 
group. This interaction is critical to determining the timeliness and the success of 
the implementation process. Finally (and perhaps most important) is the interaction 
of the pharmacometrician with the regulatory group responsible for the software 
validation process.

The responsibilities of the scientist will vary, depending on the organizational 
size. If the pharmacometrician is employed by a small or startup pharmaceutical 
or biotechnology fi rm, it is plausible that the pharmacometrician may be fi lling all 
three of these roles—clinical developer/manager, information technologist, and 
regulatory specialist. In this instance, interdepartmental delays become nonexis-
tent, but the burden on the pharmacometrician is immense. For scientists working 
in medium size institutions, there is probably a specialist available from each area, 
but the burdens on each group tend to be immense since the company is more than 
likely in a “growth” mode. Finally, in a large corporate environment, the scientist 
is confronted by the possibility of dealing with a less personal, highly specialized 
IT or regulatory organization or, possibly, organizations that have been specifi cally 
devoted to business segments such as clinical development. In a sense, this last 
condition is the closing of the business organizational loop where one person is 
responsible for the entire process to a set of organizations that is entirely focused 
on the success of this particular part of the pharmaceutical realization process.

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene I. Ette and 
Paul J. Williams
Copyright © 2007 John Wiley & Sons, Inc.
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This chapter outlines the software implementation and validation process, to 
an extent that the pharmacometrician could in fact establish the quality assurance 
infrastructure, implement the hardware and software, and validate the implemen-
tation independent of dedicated internal IT or regulatory resources. Though such 
an approach is not recommended, the purpose of this chapter is to give the scien-
tist a clear understanding of what is required in order to be successful in such an 
endeavor.

First, we review the concepts behind software quality assurance, testing, and 
validation. We review the process from the historical perspective of how other 
industries have faced these quality assurance issues, the role of independent orga-
nizations, and fi nally the role that federal regulatory agencies have played and how 
each of these has impacted the validation process in the pharmaceutical industry 
(1, 2). The rule-making efforts of the US FDA in the last 5 years, in particular, the 
21CFR11 guidance (3, 4), is discussed in the context of this historical perspective. 
We also note the critical issues that face pharmacometricians in executing their 
scientifi c methodology: obtaining/fi nding data, creating/defi ning models in software, 
creating/fi nding results, and reproducing analysis.

We then outline the basic methodology for software validation: quality assurance 
practices (corporate policy, standard operating practices, validation processes), 
technology practices (assuring the proper infrastructure, infl uencing and participat-
ing in the IT process), and the process for making “buy or build” decisions. Often 
the decision is to buy and then build on to the software base. This is particularly 
true of software tools that allow the pharmacometrician to either automate existing 
software processes or design variations on existing algorithmic routines offered by 
the commercial tool.

The validation process is outlined from writing user requirements specifi cation 
to testing and validating specifi c analysis using estimation methods. This is followed 
with brief examples of validation approaches for some commonly encountered 
software, such as S-Plus®, SAS®, WinNonlin®, and NONMEM®.

3.2 SOFTWARE DEVELOPMENT AND IMPLEMENTATION: BACKGROUND

In the late 1980s at AT&T Bell Laboratories, it came as quite a shock to be told 
that the “quality” of our work needed to be addressed. The scientifi c staff was 
insulted and the nontechnical managers who implemented “quality improvement” 
programs based on the Japanese models of the time were without a clue as to why 
there would be such resentment. It took several years for all to realize that, indeed, 
the quality of business practices that surrounded R&D efforts needed improve-
ment, not necessarily the quality of the technical effort. The processes surrounding 
R&D—documentation of work, sharing of information, the need to avoid duplicate 
effort—soon were understood to be signifi cant areas of improvement that both 
technical staff and nontechnical managers could work together on to improve the 
overall nature of the business. The manufacturing division, the former Western 
Electric, had indeed been a center of quality improvement and statistical process 
control 20 years earlier. Telephony transmission and switching systems, by their 
nature of being large, complex, engineered entities, had always been subject to high 
levels of review and quality assurance.



What remained was to take the appropriate pieces of the quality assurance world 
and implement them in such a way that scientists were able to work in a “structured” 
framework, while at the same time assuring that the creativity of the scientists was 
not stifl ed. In the ensuing years, many industries began to adapt the guiding prin-
ciples of ISO 9000 (5), using the actual certifi cation process as a way both to identify 
and improve business processes and to leverage certifi cation as a marketing tool.

In parallel with these industrywide quality improvement efforts, the software 
industry had recognized the need to identify processes and standards that assured 
the quality of commercial software. ANSI (6) and IEEE (7) have been issuing 
practice standards and defi nitions for many years in an effort to unify quality assur-
ance methodology in the software development industry. Furthermore, the software 
industry recognized early on that establishment of quality principles prior to the 
initiation of a development effort reduced the cost of repairing faulty software later 
in the process (8).

In the early 1990s, the implementation of the Clean Air Act, along with major 
changes to other environmental laws and regulations, produced a tremendous effort 
in the fi eld of data acquisition and analysis, which clearly needed to be aided by 
advances in the information sciences. Hence the Environmental Protection Agency 
(EPA) issued guidance in late 1990, the EPA Good Automated Laboratory Prac-
tices (GALPs) (9), that were the fi rst effort by a regulatory agency to assure the 
proper use of IT in the acquisition and analysis of regulated data. The Food and 
Drug Administration (FDA) had previously taken the position that most good 
laboratory practice (GLP) and good clinical practice (GCP) processes involving 
information systems were covered by existing regulation (10). Although a guide 
to inspection of computerized equipment in drug processing (11) and a technical 
reference (12) on software development activities were issued in the 1980s, the 
major FDA guidance on the use of electronic records and systems was not issued 
until 1999. Once that guidance, 21CFR11, was issued (13), an entire industry arose 
to attempt to explain, implement, and modify the guidance (7).

In general, there are certain basic quality assurance principles that can be invoked 
that will satisfy the spirit, if not the fi ne detail, of most regulatory requirements:

1. Document the processes used to generate, accept, analyze, store, and archive 
data and analytical results.

2. Document the physical and logical security of hardware and software systems 
used on regulated data.

3. Document the installation and testing of hardware and software used on 
regulated data.

4. Document that the system design achieves the intended purpose/use.
5. Document performance, both initial and ongoing, of the software system.
6. Document training and education backgrounds of the users and providers of 

the systems.
7. Document that the business practices are in place to operate, backup, and 

recover (including disaster recovery) regulated software systems.

Each of these issues focuses on documentation. The purpose of the vali-
dation process and the generation of process standards (or standard operating 
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procedures—SOPs) are to establish a documentation framework a priori, rather 
than de facto with regard to the installation and use of key software. All of the 
processes listed above occur within disciplined scientifi c organizations. The valida-
tion methodology is used to demonstrate the structure of these processes for the 
purpose of both internal and external review.

3.3 METHODS

A successful validation strategy is aided by several elements including:

1. A corporate policy on quality assurance/validation.
2. Existing, corporatewide SOP infrastructure and pharmacometric specifi c 

SOPs.
3. Defi nition of the validation process.
4. Understanding the user requirements generation process.
5. Identifying the system specifi cation for a particular implementation.
6. Understanding the current information technology infrastructure/

organization.
7. Recognizing the constraints of “building” versus “buying.”

We discuss each of these in turn.

3.3.1 Corporate Policy

In the case of industries that decide to pursue ISO 9000 certifi cations, the role of 
management is well defi ned (5). The standard clearly states that management will 
defi ne and document its policy, objective, and commitment to quality. The burden 
of implementing, explaining, and maintaining the quality plan is clearly on corporate 
management. A similar approach needs to be undertaken in approaching validation 
of regulated systems. A clear corporate policy document should exist, which:

1. Establishes a working group to defi ne and maintain policy and objectives 
regarding validation of software systems.

2. Ensures that employees are trained and retrained on the policy.
3. Empowers the resources necessary to carry out the policy.

In the absence of support from the highest levels of corporate management, 
it is unlikely that the competing priorities of clinical development, information 
technology, and regulatory affairs will somehow “align” to enable the success of a 
validation project.

3.3.2 Establishment of SOP Infrastructure

The fi rst priority of a regulatory group should be the establishment of “SOP on 
SOPs”—that is, how they are to be created, reviewed, implemented, and revised. 
If a policy applies across corporate groups including information technology, 
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pharmacokinetics, data management, biostatistics, regulatory affairs, quality 
assurance, and materials management, then the pharmacometrician will have model 
SOPs as well as the collegial support necessary to implement a procedural struc-
ture that may be used to clarify workfl ow and serve as a training tool for new 
scientists.

In particular, the process by which preclinical and clinical pharmacokinetic/
pharmacodynamic (PK/PD) data is received, identifi ed, and analyzed (at least for 
initial parameters such as AUC and t½) should be documented in a series of SOPs. 
Furthermore, the manner in which such data and analysis should be stored for latter 
retrieval is also a key consideration for optimal effi ciency in the drug development 
process. The process by which PK summaries and reports are approved and released 
to other groups must also be documented in order to prevent misunderstandings. 
The procedure for use of randomization codes by the PK group must clearly be 
documented by an SOP, consistent with the needs and requirements of data man-
agement, biostatistics, and regulatory groups. Table 3.1 shows a plausible sample of 
SOPs that could be written to encompass the activities of both clinical and preclini-
cal PK and PD analysis. It should be noted that many of the chapter titles in this 
text could also serve as the basis of clinical pharmacology SOPs!

Given the current desire of management to be able to “mine data” and “see 
trends across studies” and the availability of PK/PD repository systems (which we 
discuss more fully later), the fi rst and foremost operating procedure requirement 
in pharmacometrics is the defi nition of key metadata that describes the process 
fl ow. Metadata, from the information science perspective, is simply information 
that describes data: that is, where the data goes, what the data is, and what possible 

TABLE 3.1 Standard Operating Procedures for Clinical Pharmacology

SOP # SOP Title

PKPD001 Training requirements for pharmacologists and toxicologists
PKPD002 Defi nition of nomenclature: project, study, indication, NCE ID, etc.
PKPD003 Review and approval process for PK summaries and related reports
PKPD004 Standards for PK data analysis: basic parameters to be obtained
PKPD005 Use of blinded data
PKPD006 PK analysis standards, data preparation, statistical analysis, expected
  output for clinical bioavailability studies
PKPD007 PK analysis standards, data preparation, statistical analysis, expected
  output for clinical bioequivalence studies
PKPD008 PK analysis standards, data preparation, statistical analysis, expected
  output for human dose proportionality studies
PKPD009 PK analysis standards, data preparation, statistical analysis, expected
  output for drug interaction studies
PKPD010 PK analysis standards, data preparation, statistical analysis, expected
  output for clinical renal studies
PKPD011 PK analysis standards, data preparation, statistical analysis, expected
  output for fi rst dose in human studies
PKPD012 PK analysis standards, data preparation, statistical analysis, expected
  output for compartmental study types
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value it may have. For example, having consistent defi nitions and values for the 
words “Portfolio,” “Project,” “Protocol,” “Study,” “Study Design,” “Study Type,” 
“Indication,” “Method,” “Period,” “Phase,” and “Relative Nominal Time” can 
lead to a dramatic increase in the ability to fi nd and leverage information within 
clinical development. Unfortunately, there are enough clinical data management, 
repository, and laboratory information management systems (LIMSs) available to 
completely confuse the end user as to how the corporate metadata matches a soft-
ware vendor’s defi nition. Nevertheless, a group of scientists who have established 
procedural defi nitions of such metadata a priori have built a common ground that 
can serve as a basis for leveraged information management.

3.3.3 Defi nition of the Validation Process

In general, the validation process should also be defi ned by several SOPs, originat-
ing in either the regulatory or information technology groups. Table 3.2 shows a 
sample list of IT or Quality Assurance SOPs appropriate to the task. The validation 
process generally will consist of the following:

1. Validation Project Plan is a summary document identifying software, hard-
ware, and related systems involved in a specifi c validation effort. The docu-
ment explains the approach that will be employed, the responsible parties, and 
the expectations of those parties for each task involved in the validation.

2. User requirements specifi cation is the responsibility of those end users who 
have identifi ed the need for the system. It must adequately defi ne the func-
tional requirements of the system/software so that the end users can satisfy 
the stated business requirement.

TABLE 3.2 Standard Operating Procedures for 
Information Technology or Quality Assurance

SOP # SOP Title

QA001 Format, functionality, and maintenance of standard operating procedures
QA002 Membership and purpose for the software validation standards committee
QA003 Validation process: validation planning, user requirements, and system
  specifi cations
QA004 Installation qualifi cation protocol format and requirements for software
QA005 Operational qualifi cation protocol format and requirements for software
QA006 Performance qualifi cation protocol format and requirements for software
QA007 Change control procedures
QA008 Deviation procedures
QA009 Reporting “out-of-specifi cation” events
IT001 Physical security procedures
IT002 Logical security procedures
IT003 Backup and recovery procedures
IT004 Hardware installation qualifi cation procedures
IT005 Software development life cycle practices and procedures
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3. Systems specifi cations provide all the information needed for the technical 
implementation of the system. This includes hardware, networking connec-
tions, and backup requirements as well as all information needed to install, 
operate, and qualify the performance of the system. It generally includes all 
of the qualifi cation protocol documents (installation, operation, and perfor-
mance qualifi cations) created during the validation process.

4. Completion and change control is the closure of the process and a methodol-
ogy for maintenance activities.

3.3.4 Understanding the User Requirements Specifi cation (URS) Process

This process is usually the fi rst exposure of the pharmacometrician to the valida-
tion process. It is a diffi cult fi rst step, where the scientist must document the use of 
a tool (which is of obvious utility from the perspective of the pharmacometrician) 
to an audience that may not have a good understanding of the clinical develop-
ment process. The major point is that the process can be quite generic for many 
of the software tools utilized in PK/PD analysis. For example, the user require-
ments specifi cation for implementing S-Plus, SAS, or Graphpad Prism® could all be 
essentially the same document. Similarly, NONMEM, WinNonlin, WinNonMix®,
Kinetica®, and ADAPT II would contain the same basic set of user requirements. 
Specifi c capabilities that would be used for a particular software tool would need 
to be identifi ed, but the basic form of the requirements is the same. Once again, 
having a sound basis set of SOPs that actually describes the acquisition, analysis, and 
reporting requirements for clinical data will enable the pharmacometrician to cross-
reference the particular software capabilities with the technical (business) process.

For systems such as PK/PD repositories, a broader view is needed. Such systems 
by defi nition are intended to exchange data with other systems and integrate with 
analytical tools such as those described earlier. In this case, the pharmacometrician 
needs to have a well established process in place and be able to document how 
such a repository system will be implemented to either augment or replace current 
manual processes.

3.3.5 Identify the System Specifi cation for a Particular Implementation

The selection of platforms (i.e., UNIX versus Microsoft Windows Server) is pri-
marily within the realm of system specifi cation rather than user specifi cation. Never-
theless, it is useful for the end user to consider early on which tools are preferred 
and which platform will be used or whether several platforms might be utilized 
(depending on business requirements). We discuss this issue further when the 
interaction with the IT group is reviewed. The pharmacometrician must be able 
to specify key system requirements with regard to recovery of data and archiving. 
Furthermore, the end user needs to participate heavily in the defi nition of the 
operational qualifi cation protocol, since it is this protocol that will determine if 
the software is meeting the basic user requirements that have been recorded in the 
URS. Finally, the performance qualifi cation is the responsibility of the pharmaco-
metrician, since this testing will determine whether the software system is function-
ing within the business/technical needs of the end user.
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3.3.6 Information Technology Infrastructure and Organization

The interaction between clinical pharmacology and the IT resources, whether inter-
nal or externally by contract, is of paramount importance when considering the 
productivity and analytical capability of the pharmacometrician. Once the phar-
macometrician has clearly stated her/his software needs, based on the URS, the 
actual defi nition of the overall systems that will be used to service the needs of the 
pharmacometrician must be decided.

The clinical pharmacology area is one that is subject to the same regulatory 
demands of other clinical areas such as biostatistics or clinical data entry and vali-
dation, yet it is a discipline that utilizes scientifi c methodologies that are closer in 
reality to discovery and preclinical drug development. That is, modeling of data, 
attempting to establish the validity of a hypothesis based on accumulated data 
and prior scientifi c knowledge, is the process employed. While some variables 
and covariates may be well defi ned and understood, in many cases, especially in 
population-dependent studies, it is the “expert system” of the scientist’s experience 
and ability that unveils the critical issues surrounding pharmacokinetic, pharmaco-
dynamic, or toxicity effects. To this extent, clinical pharmacology, while considered 
a development activity, is more closely akin to a discovery process. In general, drug 
discovery areas such as medicinal chemistry, target identifi cation and structure, or 
preclinical assay development are not subject to the regulatory information system 
requirements that clinical pharmacology must follow. Hence, the IT support struc-
tures normally associated with areas such as clinical development, which more 
typically involve electronic document control or clinical database management, 
need to be imbued with a technical understanding of the work of the pharmaco-
metrician. Ideally, organizations should strive to identify a pharmacometrician, or 
other members of the scientifi c staff, with an interest in IT. Such individuals would 
not be “lost” to PK/PD research but rather would become an invaluable asset in 
communicating the specifi c needs of clinical research. Nevertheless, the usual situa-
tion is one where a computer engineer needs to be educated as to the needs of the 
pharmacometrician. If, in fact, that engineer is not devoted entirely to the clinical 
area, the probability of a successful interaction will decrease dramatically. It is 
improbable that an IT individual can successfully support business software dealing 
with human resources, purchasing, and customer relationship management while at 
the same time understanding the needs of the pharmacometrician to create a model 
(perhaps by generating new code to do so), automate the analysis of a large number 
of studies, and then generate a PK report using completely separate tools.

The ultimate goal of the IT staff assigned to the clinical development groups 
must be customer service. In order to increase the throughput and accuracy of the 
pharmaceutical realization process, the clinical development area must be given 
the IT resources and attention necessary to determine the effi cacy and safety of the 
subject chemical entity. If such resources are available, they must be encouraged 
to serve as advocates for the pharmacologists they support to IT management and 
corporate management. Once again, it is up to the pharmacometrician to establish 
a relationship with the IT support structure that encourages this attitude on the 
part of the IT support personnel. The clinical pharmacology group should at 
the least identify an individual within their organization as the liaison with IT. 
That individual should be included in meetings held within IT regarding policy, 
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infrastructure, and resources so that there is a clear source of information regarding 
IT infrastructure. In smaller company situations, where the pharmacometrician may 
in fact be the IT support person, clearly the ability to infl uence and participate in 
the IT support process is critical.

3.3.7 The Buy or Build (or Buy and Build) Decision

Most clinical organizations take for granted that their key capabilities lie in PK/PD 
rather than in software development. Nevertheless, some of the most utilitarian 
tools used in pharmacometrics have been written by pharmacologists. While many 
of these have arisen from university endeavors, several commercial packages began 
as “skunks works,” projects that have evolved into private companies that provide 
valuable tools. The point is that it is probable that, within current organizations, 
there are individuals who are certain that a better mousetrap is within reach. Fur-
thermore, most commercially available tools have specifi cally enabled programming 
and automation tools (such as WinNonlin) or interfaces (such as S-Plus) where 
custom development is not only possible but more than likely would have a positive 
impact on the drug development process. The issue to consider when going down 
the “home-brewed” or automation road is that the software development process, 
as discussed in Chapter 2, must be well documented before the development process 
begins. Just as in the documentation of the clinical drug evaluation processes with 
SOPs, the clinical group must become familiar with and document (via SOPs) the 
software development life cycle process (SDLC) as it will be implemented within 
the group; or possibly, if in a large company, it is plausible that the IT group already 
has established SOPs for SDLC. The starting point for commercial and internal 
development is exactly the same—the user requirements document. In addition, a 
functional requirements document should be written, outlining the details of how 
the specifi c functionality of the software (i.e., subroutines used, function of a drop-
down menu, a panel of buttons, or what to type in as a command to execute some 
specifi c task) needs to be written. Unit test plans—how the person or persons gen-
erating the code will determine if well defi ned subunits of code are working—must 
also be generated. Finally, installation of the code (or the macros, if a commercial 
tool is being automated) and operational and performance qualifi cation should be 
performed in the same manner as any commercial application would be. Another 
important consideration is that some type of source code control system must be 
identifi ed and employed so that the history of the software development process, as 
well as any change control process after installation, may be documented.

Alternatively, if the decision is made to buy only commercially available software, 
or only commercially developed add-ons or automation scripts, then the pharma-
cometrician needs to participate in the key processes used to evaluate the vendor. 
The occurrence of key quality failures in widely used software has been previously 
documented (14). Therefore, the pharmacometrician should be intimately involved 
in the vendor audit process. If the vendor is not performing the quality assurance 
procedures just outlined for internal development, the cost (both in quality and 
accuracy of future work) will be in jeopardy. As discussed later in the section on 
validation documentation, the ability to state what the vendor’s quality processes 
are will mitigate the need to perform functional software testing at the same level 
that has already been executed by the vendor’s quality assurance group.
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3.4 VALIDATION PROCESS

The primary issues surrounding the documentation of the validation process and 
the role of the pharmacologist are now addressed. The main areas of concern to 
the end user are:

1. What documentation needs to be created?
2. What is the order or priority of the document generation process?
3. Who is responsible for various sections of the documentation?
4. What are the content, format, and future (i.e., what are the maintenance 

requirements.) of the documents?

We also note that the approach of quantity over quality of documentation is 
preferred by many organizations. This course of action will lead to a general dis-
illusionment with the validation process and should be avoided at all costs. A 
good installation qualifi cation should fi t on one or two sides of a page (three with 
boilerplate, if that is unavoidable). A user requirements specifi cation (URS) may 
be no more than a paragraph. While it is plausible that a URS may turn out to be 
several hundred pages for an internally developed repository system, that would 
be an exception rather than the rule. If an FDA inspector arrives with a method to 
determine the mass of your documentation, rather than with a desire to view the 
processes that such paperwork documents, it will be time to fi nd other sources of 
advice on validation.

3.4.1 User Requirements Specifi cation (URS)

The key document to be generated solely by the pharmacometrician is the user 
requirements specifi cation. The URS simply states the purpose of the software. It 
is quite worthwhile to note what the URS is not. For example, the business process 
(or scientifi c process) that is being addressed by the software should have already 
been addressed in the SOPs relevant to the department and should not appear in 
the URS. That is, describing what you do and the generic manner in which you do 
it is the fodder for a good set of SOPs, not the requirements that outline a par-
ticular tool that you wish to use. Furthermore, the system requirements—software/
hardware availability, user access, recovery of data—are not elements of the user 
requirements. In many cases these elements should be covered by SOPs of the IT 
group or in a separate systems requirements document. The document containing 
these requirements (see Section 3.4.2) is a document generated by the IT engineer 
in collaboration with the pharmacometrician.

What the URS should contain are the features and functionality of the software 
tool that are required by the pharmacometrician to accomplish the business/scien-
tifi c objectives at hand. As an example, Table 3.3 shows some generic user specifi ca-
tions that might be included in the URS for a statistical package.

Note that the URS is generic; it could fi t SAS as well as S-Plus or GraphPad. 
One need not list all the features and functionality of the package being 
implemented, but the key features that one will use (and therefore test) must be 
included.



3.4.2 System Specifi cation

The generation of this document requires the interaction of the pharmacometrician 
with the IT group. This document refl ects additions to practices already defi ned in 
IT and clinical SOPs. That is, IT should already have (see Section 3.3) SOPs that 
set forth:

1. Data/system backup procedures for validated systems.
2. User access (Logical Security) for validated systems access.
3. Physical access (Security) for validated systems.
4. Disaster recovery plans for validated systems.
5. Installation requirements for hardware and operating systems used for vali-

dated systems.

The main purpose of this document is to refl ect the input of the IT profes-
sional regarding the system requirements, usually as documented by the vendor 
of the software. This clearly involves assuring that the information technologist 
has become familiar with the vendor’s installation procedure and requirements. 
The selection or identifi cation of hardware cannot proceed until the IT profes-
sional has ensured that the appropriate processor, disk space, and communica-
tion interfaces exist as required by the vendor. Furthermore, it is plausible that 
the software system will need software interfaces (such as database connectivity), 
which require additional resources. This document might refl ect the “coupling” of 
validated systems (i.e., obtaining clinical data from a clinical database for PK/PD 
analysis). The document also might refl ect the use of a hardware system (i.e., 
a user workstation) already validated for use as the target system of the new 
application.

The primary responsibility for generation of this document lies with the IT 
group. Since these are the experts at systems implementation, it behooves the 
pharmacometrician to engage these resources early and to try as best as possible 
to understand the constraints, both technical and political, under which these col-
leagues may be operating.

TABLE 3.3 Possible Elements of a User Requirements Specifi cation

Requirement Description

Data input formats Must be able to import .xls, .txt, SAS transport fi les, etc.
Data output formats Must be able to export to .xls, .txt, SAS transport fi les, etc.
Other data I/O ODBC or JDBC connectivity
Data manipulation Ability to subset, merge, transpose, or fi lter (using multiple
  criteria) data
Reporting Ability to integrate output into word processing software
Statistics Descriptive, hypothesis testing, multivariate, nonparametric, etc.
Graphics Charts, plots, and user designed graphs
Automation or Standard or vendor-designed programming, macro or
 customization  automation language
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3.4.3 Validation Plan

As discussed earlier, the validation plan is a document that should be well defi ned 
by existing SOPs written within either the Quality Assurance Organization or the 
IT group. Unless the project is quite unique, the validation plan should follow the 
same general course. The user requirements and system specifi cations documents 
will impact this, of course, but the generation of this document, which also should 
be quite brief, should be straightforward. The key elements of the validation plan 
are given in Table 3.4.

Once again, sections of the validation plan regarding security, access, and so on 
may be better covered in SOPs that are resident with the IT group, rather than 
being specifi ed for each validation.

3.4.4 Installation Qualifi cation (IQ), Operational Qualifi cation (OQ), and 
Performance Qualifi cation (PQ)

One analogy used to describe the function of these three processes is the instal-
lation, operation, and performance of an overhead projector. The IQ involves 
receiving the projector from the vendor, unpacking it according to the vendor’s 
instructions, setting it on a cart or table (consistent with the vendor’s requirements 
regarding how strong a table or cart), putting together the projector arm and head, 
plugging the projector into an electric socket, and turning on the power. Assuming 
the projector comes on, following the vendor’s recommended shut-down procedure 
(i.e., making sure the cooling fan stays on for some fi xed time after the bulb has 
been turned off) successfully would imply a successful IQ.

The OQ would then involve turning on the projector, taking a standard, widely 
used transparency, placing it on the glass, adjusting the height, distance, and focus 
of the projector and projector head, and so on until a satisfactory image is obtained 
on an acceptable image surface (i.e., a screen). Finally, the PQ would require the 
same type of process as in the OQ and that could be successfully performed on the 
end user’s specifi c viewgraphs, be they color, black and white, multiple levels, or 
partially blocked.

At any stage in these processes, there needs to be an ordered set of steps and 
tests that verify the successful execution of the intended actions. This is referred 
to as the test script (or test plan). For each document that describes one of these 
qualifi cation processes, the test script is the main functional part of the docu-
ment. The “boilerplate,” describing the project, referencing the validation plan, and 
documenting who is executing the qualifi cation, could be as small as a single page 
(or even paragraph).

TABLE 3.4 Key Elements of a Validation Plan

Overview of the system
Defi nition of the system: user requirements, system requirements, and software description
Organization and responsibilities of the validation team (usually the end user, and the 

information technology and quality assurance members)
Outline of timeframe for implementation
Documentation: URS, SRS, IQ, OQ, PQ, change control, acceptance



The IQ test script clearly needs to be generated by the individual who is respon-
sible for the installation. Usually this will be an information technologist. Note 
that this individual must be familiar with the software (i.e., the individual has read 
the installation instructions and warnings provided by the vendor) and will have to 
document the steps that will be followed. It is highly recommended that while this 
area is not the specifi c responsibility of the end user, the pharmacometrician would 
be wise to become familiar with the installation process. Vendors often provide a 
good deal of related information that the information technologist either misses or 
does not understand the analytical implications of, and it is best if the end user asks 
as many questions as possible before the IQ is generated.

The OQ test script may be written by either the information technologist or the 
pharmacometrician. The ideal situation is for this to be a collaborative effort. One 
highly positive result of such a collaboration is that the OQ test can turn into the 
best “software training” experience that both individuals will have for the particular 
software involved. The need to actually read the vendor’s user manual in order to 
generate meaningful test scripts can lead to an unanticipated benefi t of identifying 
software capabilities that were previously unknown.

There is one school of thought that claims that all of the features, functional-
ity, buttons, menus, and so on of a particular software package must be exer-
cised in order to successfully test the operation of the software. In general, this is 
extreme. Almost all of the software that is purchased has been quality assured by 
the vendor. Assuming that the software vendor has been audited (or that the cus-
tomary use of the software by industry and regulatory agencies is widespread and 
it is generally agreed that the software is of high quality) and there is documented 
vendor evidence of functional testing, the OQ can generally be executed based 
on recommended tests provided by the vendor, in addition to statistical testing 
provided by standards organizations (15). In Section 3.5 some specifi c examples 
are outlined.

The OQ also needs to test some of the system specifi cation requirements. These 
include security (i.e., authorized users can access the software, unauthorized users 
cannot), recovery (the software can be reinstalled and critical data recovered from 
original media or backup systems in the event of either accidental or disaster-
related events), and boundary tests (e.g., maximum users allowed, maximum data 
set size).

Finally, the PQ will execute some of the same tests performed in the OQ, but 
using the particular functionality (noncompartmental and/or compartmental models, 
statistical tests, graphics, integrations, fi tting) of the software that is particular to the 
uses of the pharmacometrician. These tests should be performed on actual data or 
at least data that is indicative of that analyzed during the PK/PD analysis. As in any 
well designed scientifi c investigation, this will involve the use of estimation (perhaps 
using other tools), boundary testing, and calibration with data standards in order 
that the pharmacometrician is confi dent that the result is “reasonable.” Clearly, 
this is the domain of the scientist. The IT and quality assurance resources may be 
available to help with execution of a performance qualifi cation, but ultimately the 
design responsibility for these tests lies with the pharmacometrician. If a particular 
type of analysis is common (i.e., bioavailability–bioequivalence–drug interaction), 
often the vendor or provider (i.e., for software originating in academic venues) of 
the software has a canonical example for the particular type of analysis. This may 
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be used as a model for the PQ testing, with both the vendor’s and the end user’s 
data being used to validate the algorithmic approach and result.

In the case of new types of analysis that are developed after the software has 
been qualifi ed, it is incumbent upon the scientist to follow a similar process of esti-
mation or validation in order to document the validity of the approach. This can 
be documented in a separate SOP (particularly if the approach becomes widely 
used within the organization) rather than “requalifying” the software. A change 
control document can be issued to indicate to the quality assurance group that 
“new” functionality is being employed within the software package. During the next 
“requalifi cation” or upgrade of the software package, the new analytical approach 
can be integrated into a revised PQ.

3.5 INFORMATIVE EXAMPLES

The outlines of typical test scripts for an IQ, OQ, and PQ appear in Appendixes 
3.1–3.3. Note that the “boilerplate” for these documents will be determined to a 
great extent by the quality assurance group. The main points to note are that each 
script provides a general outline of what will be tested, a statement as to respon-
sible parties, and then a sequence of test steps that must be followed, verifi ed, and 
documented as to anomalies or unexpected results. In some steps fi gures are called 
for. These are location specifi c and have not been reproduced here. If there are 
unexplained events that cannot be corrected and documented during the test, it may 
be necessary to regenerate the test script (maintaining the original test data as an 
appendix to the validation documents) and retest. We now discuss useful starting 
points for operational qualifi cation scripts for various PK/PD analysis tools.

ADAPT II There are several sample tests provided by D’Argenio and Schumitzky 
(16). The Fortran compiler is a key software subsystem for both ADAPT II and 
NONMEM. In this regard it is best to have a separate qualifi cation for the instal-
lation of the compiler, followed by careful review of the expected output provided 
in Ref. 16. Older Fortran f77 compilers may show discrepancies that can only be 
resolved by implementing the most current versions of the f77 compiler.

NONMEM For the operational qualifi cation, a careful review of the parameters 
discussed in Section 2.9 of the NONMEM Users Guide—Part III (17) should be 
performed. These values should be identifi ed and set during the IQ and tested prop-
erly during the OQ. The specifi c examples provided for NONMEM’s PREDPP, 
NM-TRAN, and associated library subroutines are highly recommended as a start-
ing point for the OQ. The Phenobarbital and Theophylline data fi les provided with 
the software (18) offer even more extensive testing appropriate (with modifi cation) 
for a PQ. The output is well documented and individuals may seek to modify or 
parameterize the examples for their needs.

S-Plus The validate( ) function (19) is particularly appropriate for use during 
the OQ. As with NONMEM, the system settings and systemwide user parameter 
fi les (20) should be identifi ed and implemented during the IQ. As with any statis-
tical package, it is highly recommended that appropriate statistical analyses from 
standards organizations (15) be utilized as appropriate to the organization.



SAS The SAS Institute support organization has recently published resources 
for both validation (21) and actual IQ/OQ guidance (22). This should certainly 
be reviewed as a plausible starting point for the OQ. The same advice regarding 
analyses from standards organizations (15) applies. Please note that both S-Plus and 
SAS provide a wide range of capabilities for model creation, data analysis, presenta-
tion, and interfacing to databases and other software. It is incumbent on the user 
community to identify, at least initially, the capabilities that will be utilized in the 
user requirements documentation. Such software-specifi c capability should then be 
appropriately tested in the OQ.

WinNonlin WinNonlin comes with a well documented set of exercises (23) that can 
be used as the basis of an OQ. These exercises, as well as several additional tests, 
can also be obtained as an automated test package (24). This is quite useful if several 
installations of the product are being validated on independent workstations, or if 
it is anticipated that frequent requalifi cation (due to product updates or releases) 
will be needed. There is a signifi cant initial investment of time that must be made 
in order to learn and utilize the automated package. There may also be issues sur-
rounding whether automated test software in itself must be qualifi ed. Nevertheless, 
for those organizations willing to invest the effort, such testing is without a doubt 
more rigorous (and quite rapid) once implemented. As with other tools, WinNonlin
provides the capability to create new model strategies with user-generated code 
as well as the ability to highly automate software functionality (25). As with other 
tools, the ability to write software for new modeling strategies adds the requirement 
that a SDLC process be in place for the pharmacometrician to adhere to.

Other PK/PD Software Kinetica, WinNonMix, and Trial Simulator® are examples 
of other software tools that may be utilized within PK/PD organizations. Each of 
these products provide example tests (26–28) that may form the basis of the OQ. 
In many circumstances, it will be diffi cult to anticipate the full range of use of some 
tools. Nevertheless, the vendor documentation generally provides a wide range of 
examples of functionality, which can be incorporated into an OQ.

Repository Systems Several software systems (29–31) (PKS®, EP2®, SAS Drug 
Development) have been released in the last several years, which enable the phar-
macometrician to store PK/PD data, analyze such data in several ways, and then 
perform various reporting tasks (including data/results mining) across a wide variety 
of projects, studies, and so on. While each of these products have virtues and weak-
nesses, the fundamental issue that must be addressed by the clinical pharmacology 
community prior to considering the use of a specifi c system is: How does this soft-
ware fi t our current processes? Many times the need to answer this question leads to 
a major effort to defi ne just what the current processes are! These systems require a 
high degree of organizational discipline and structure around the concept of meta-
data. That is, what data do we use to describe the models, data, analysis results, and 
reporting variables that are critical to our organization?

The important point to recognize here is that software systems such as “reposi-
tory” systems are considered “enterprise” software. The implementation is not cus-
tomizable to an individual’s requirements or a department’s needs. The architecture 
of the software is the vendor’s “impression” of how a clinical pharmacology effort 
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may be organized. This “impression” may have no connection to your current pro-
cesses; it may, especially if one’s organization was the model used when the software 
was architected, refl ect your processes exactly.

Under any circumstances, the implementation of such a package requires a large 
effort to identify processes, especially processes between groups such as data man-
agement, biostatistics, quality assurance, and clinical pharmacology, before con-
sidering individual software systems. Recent analyses of enterprise software have 
characterized this effort as the “organizational capital” (32) that must be expended 
in addition to the resources for “capital equipment and software expense.” Once a 
system is chosen, the implementation team needs to recognize that the fundamental 
way they work will be changed. The rewards may be tremendous, but the road to 
implementation may be long and arduous.

3.6 SUMMARY

This chapter is a brief attempt to aid the pharmacometrician in understanding 
how “quality” standards need to be applied to research and development activities 
involving software tools. Specifi cally, the needs of the ethical pharmaceutical indus-
try are addressed, but one could argue that the ability to document such activities 
is critical in any industry. In the chapters that follow, several specifi c analytical 
approaches to numerous problems in clinical pharmacology are discussed. If the 
software tools utilized in these creative and important analytical methodologies 
are properly installed, validated, and supported, the quality and throughput of the 
pharmaceutical realization process will be assured, for both the development teams 
and the regulatory agencies involved in the process of ethical drug discovery and 
development.
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APPENDIX 3.1 SAMPLE INSTALLATION QUALIFICATION

Document Number: IQ00-00001 Install Qualifi cation: Test Version: 1.0
Document Location: QA S-Plus 6.0.4 Reference Document(s)
Document Owner: Technolgist, Info  #: SV00-00001

Purpose
(This defi nes the purpose for the current test(s). It may refer to previous tests and/or 
documents.) This test is conducted to qualify the installation of software compo-
nents used for S-Plus 6.0.4. These are components of the S-Plus 6.0.4 software and 
are used to verify that a client interface may access S-Plus 6.0.4. These tests will 
also be used to establish a baseline for future testing.

Scope
(This defi nes the scope of the test(s). It is a written description of the scope and restric-
tions of the test.) Testing is done to prove the S-Plus 6.0.4 software has been correctly 
installed. This test does not prove the Installation Process; instead, it proves that the 
end result of the process was successful based on software functionality. Validating 
the result of the installation implicitly proves the success of the process.

Test Requirements
Testing is done to prove the following:

1. Verify the S-Plus 6.0.4 installation
1.1. Verify the my_server_name server is started
1.2. Verify the /home/splus6 directory and permissions
1.3.  Verify the S-Plus scripts have been copied to my_server_name: 

/usr/local/bin
1.4. Verify the fi le and directory listing for the /home/splus6 directory
1.5. Verify that /usr/local/bin/Splus and /usr/local/bin/Splus invoke S-Plus 6.0.4

2. Verify Terminal/HOST Client/Server Interface
2.1. Verify UNIX Server login from Telnet client (terminal)

 2.1.1. Verify Security
  2.1.1.1. Bad Username
  2.1.1.2. Good Username, Bad Password

2.2. Verify Logout from Telnet client (terminal)
2.3. Verify UNIX Server login from X-windows client

 2.3.1. Verify Security
  2.3.1.1. Bad Username
  2.3.1.2. Good Username, Bad Password

2.4. Verify Logout from X-windows client

Test Prerequisites
(A list of requirements necessary to run the test. These can include environment reqs 
(e.g., NT, with MS Offi ce loaded), tester reqs (e.g., tester is trained in operating MS 
Offi ce), software reqs (e.g., test assumes xyz software to have already been loaded), 
or other reqs (e.g., paper documents for scanning).) The following conditions must 
be met before testing:



• The environment is ready to test.
• Tester is trained in basic usage of UNIX and S-Plus 6.0.4.
• Testing fi les are prepared and put in place.

Test Instructions
(Gives any special instructions to the tester. Tester is assumed to be qualifi ed to 
execute test.) For each test condition in the Testing Table, the Tester must initial 
each graybar section when completed regardless of success or nonsuccess. If the 
test condition has been met and Expected Result is the same as the actual result 
(the result of executing the test condition), then the test is successful and must be 
marked as OK in the OK column. If the test condition has not been met, or the 
Expected Results are not exactly the same as the actual results, then the Tester must 
stop, report the deviation in the Comments column, and report the occurrence to 
the Test Coordinator. At that time, the Test Coordinator will make a judgment on 
whether or not the test can be continued. In the event that the deviation is consid-
ered acceptable and that the test can continue, the Test Coordinator must log the 
event, any workarounds necessary, and initial the Tester’s comments (this may be 
done on the script if there is room). In the event that the deviation is not accept-
able, then the test must stop.

Test Tables
Test tables show:

1. Line Number: Allows reference for tracking anomalies and errors.
2. Test Condition: Defi nes the test.
3. Expected Results: Defi nes what should happen. Any deviation is an error.
4. OK: Were the expected results met?
5. Initials: Tester proof of execution.
6. Comments: Allows information about the test condition.

Signoffs
(Signoffs for Document Owner and Author with printed name and date spaces.)

Author (By signing this the author of this document agrees that the document is 
complete and accurate.)

Printed Name Signed Name Responsible Date: MM/DD/YYYY

  Author

Owner (By signing this the owner of this document agrees that the document is complete 
and accurate.)

Printed Name Signed Name Responsible Date: MM/DD/YYYY

  Owner

SAMPLE INSTALLATION QUALIFICATION 71



# 
T

es
t 

C
on

di
ti

on
 

E
xp

ec
te

d 
R

es
ul

ts
 

O
K

 
In

it
 

C
om

m
en

ts

1.
 V

er
if

y 
th

e 
S-

P
lu

s 
6.

0.
4 

In
st

al
la

ti
on

1.
1.

 V
er

if
y 

th
e 

m
y_

se
rv

er
_n

am
e 

se
rv

er
 is

 s
ta

rt
ed

 a
nd

 a
cc

es
si

bl
e

 1
. 

A
s 

a 
va

lid
 m

y_
se

rv
er

_n
am

e 
us

er
 a

nd
 

L
og

in
 p

ro
m

pt
 a

nd
 s

he
ll 

pr
om

pt
 

m
em

be
r 

of
 t

he
 c

lin
ic

al
 g

ro
up

, o
pe

n 
a 

ob
se

rv
ed

 f
ol

lo
w

in
g 

su
cc

es
sf

ul
 lo

gi
n 

as
 

T
el

ne
t 

cl
ie

nt
 a

nd
 lo

g 
on

 t
o 

in
 F

ig
ur

e 
1.

 
m

y_
se

rv
er

_n
am

e 
se

rv
er

.

 2
. 

V
er

if
y 

th
e 

ho
m

e 
di

re
ct

or
y 

by
 t

yp
in

g 
Sy

st
em

 r
es

po
nd

s 
w

it
h 

us
er

’s
 h

om
e

pw
d.

 
di

re
ct

or
y,

 /h
om

e/
”u

se
rn

am
e”

1.
2.

 V
er

if
y 

th
e 

/h
om

e/
sp

lu
s6

di
re

ct
or

y 
an

d 
pe

rm
is

si
on

s

 3
. 

T
yp

e 
cd

 /
ho

m
e 

T
he

 o
ut

pu
t 

is
:

 
T

yp
e 

ls
 –

al
 | 

gr
ep

 s
pl

us
dr

w
xr

-x
—

12
 s

pl
us

cl
in

ic
al

 1
02

4 
M

ar
23

 1
1:

06
 s

pl
us

 
 

In
di

ca
ti

ng
 t

he
 s

pl
us

 d
ir

ec
to

ry
 e

xi
st

s 
an

d
 

 
is

 a
cc

es
si

bl
e 

(r
-x

) 
by

 t
he

 g
ro

up
cl

in
ic

al

1.
3.

 V
er

if
y 

th
e 

S-
P

lu
s 

sc
ri

pt
s 

ha
ve

 b
ee

n 
co

pi
ed

 t
o 

m
y_

se
rv

er
_n

am
e:

 /u
sr

/lo
ca

l/b
in

 4
. 

T
yp

e 
cd

 /
us

r/
lo

ca
l/b

in
 

T
he

 o
ut

pu
t 

is
:

 
T

yp
e 

ls
 –

l 
-r

w
xr

-x
—

 
1 

ro
ot

 
cl

in
ic

al
 

46
55

 
 

Se
p 

5 
20

04
 S

pl
us

 
 

-r
w

xr
-x

—
 

1 
ro

ot
 

cl
in

ic
al

 
46

55
 

 
M

ar
 2

2 
14

:3
2 

Sp
lu

s

1.
4.

 V
er

if
y 

th
e 

fi l
e 

an
d 

di
re

ct
or

y 
lis

ti
ng

 f
or

 t
he

 /h
om

e/
sp

lu
s6

di
re

ct
or

y

 5
. 

T
yp

e 
cd

 /
ho

m
e/

sp
lu

s6
 t

o 
re

tu
rn

 t
o 

th
e 

C
om

pa
re

 t
he

 o
ut

pu
t 

of
 t

hi
s

/h
om

e/
sp

lu
s6

di
re

ct
or

y.
 

co
m

m
an

d 
to

 F
ig

ur
e 

2.
 A

L
L

 o
f 

th
e

 
T

yp
e 

ls
 –

lR
 | 

pg
 

fi l
es

 li
st

ed
 in

 F
ig

ur
e 

2 
m

us
t b

e 
in

 
 

th
e 

ou
tp

ut
. T

he
re

 w
ill

 b
e 

fi l
es

 
 

ou
tp

ut
 b

y 
th

e 
co

m
m

an
d 

th
at

 a
re

 n
ot

 
 

di
sp

la
ye

d 
in

 F
ig

ur
e 

2.

72



1.
5.

 V
er

if
y 

th
at

 /u
sr

/lo
ca

l/b
in

/S
pl

us
 a

nd
 /

us
r/

lo
ca

l/b
in

/S
pl

us
 in

vo
ke

 S
-P

lu
s 

6.
0.

4

 6
. 

T
yp

e 
cd

$H
O

M
E

 
T

he
 o

ut
pu

t 
fi l

e 
sh

ou
ld

 b
e 

si
m

ila
r 

to
 

T
yp

e 
/u

sr
/lo

ca
l/b

in
/S

pl
us

 
F

ig
ur

e 
3.

 T
he

re
 s

ho
ul

d 
be

 n
o

 
 

in
di

ca
ti

on
 o

f 
er

ro
rs

. T
he

 li
ne

:
 

 
“W

or
ki

ng
 d

at
a 

w
ill

 b
e 

in
 

 
/h

om
e/

w
ol

k/
M

yS
w

or
k”

 s
ho

ul
d

 
 

in
di

ca
te

 t
he

 c
ur

re
nt

 “
us

er
na

m
e”

 
 

in
st

ea
d 

of
 “

w
ol

k.
”

 7
. 

T
yp

e 
q(

) 
at

 t
he

 >
 p

ro
m

pt
. 

T
he

 o
pe

ra
ti

ng
 s

ys
te

m
 c

om
m

an
d

 
T

yp
e 

/u
sr

/lo
ca

l/b
in

/S
pl

us
 

pr
om

pt
 s

ho
ul

d 
re

tu
rn

 a
ft

er
 t

he
 fi 

rs
t

 
 

co
m

m
an

d.
 T

he
 s

ec
on

d 
co

m
m

an
d

 
 

sh
ou

ld
 p

ro
du

ce
 t

he
 s

am
e 

re
su

lt
 a

s
 

 
St

ep
 6

. T
yp

e 
q(

) 
to

 e
xi

t 
S-

P
lu

s.

2.
 V

er
if

y 
T

er
m

in
al

/H
O

ST
 C

lie
nt

/S
er

ve
r 

In
te

rf
ac

e

2.
1.

 V
er

if
y 

U
N

IX
 S

er
ve

r 
lo

gi
n 

fr
om

 T
el

ne
t 

cl
ie

nt
 (

te
rm

in
al

)

2.
1.

1.
 V

er
if

y 
Se

cu
ri

ty

2.
1.

1.
1.

 B
ad

 u
se

rn
am

e

 8
. 

A
s 

a 
va

lid
 m

y_
se

rv
er

_n
am

e 
us

er
 a

nd
 

L
og

in
 is

 r
ej

ec
te

d 
as

 in
 F

ig
ur

e 
4.

 
m

em
be

r 
of

 t
he

 p
ha

rm
ac

o 
gr

ou
p,

 
op

en
 a

 T
el

ne
t 

cl
ie

nt
 a

nd
 lo

g 
on

 t
o

 
m

y_
se

rv
er

_n
am

e 
se

rv
er

 u
si

ng
 a

 b
ad

 
us

er
 n

am
e,

 g
oo

d 
pa

ss
w

or
d.

2.
1.

1.
2.

 G
oo

d 
us

er
na

m
e,

 b
ad

 p
as

sw
or

d

 9
. 

A
s 

a 
va

lid
 m

y_
se

rv
er

_n
am

e 
us

er
 a

nd
 

L
og

in
 is

 r
ej

ec
te

d 
as

 in
 F

ig
ur

e 
5.

 
m

em
be

r 
of

 t
he

 p
ha

rm
ac

o 
gr

ou
p,

 o
pe

n
 

a 
T

el
ne

t 
cl

ie
nt

 a
nd

 lo
g 

on
 t

o
 

m
y_

se
rv

er
_n

am
e 

se
rv

er
 u

si
ng

 a
 g

oo
d

 
us

er
 n

am
e 

an
d 

an
 in

va
lid

 p
as

sw
or

d.

73



2.
2.

 V
er

if
y 

L
og

ou
t

10
. 

A
s 

a 
va

lid
 m

y_
se

rv
er

_n
am

e 
us

er
 a

nd
 

L
og

in
 is

 s
uc

ce
ss

fu
l a

s 
in

 F
ig

ur
e 

1.
 

m
em

be
r 

of
 t

he
 p

ha
rm

ac
o 

gr
ou

p,
 o

pe
n 

T
el

ne
t 

cl
ie

nt
 s

cr
ee

n 
is

 a
s 

in
 F

ig
ur

e
 

a 
T

el
ne

t 
cl

ie
nt

 a
nd

 lo
g 

on
 t

o 
6 

an
d 

ke
yb

oa
rd

 is
 u

nr
es

po
ns

iv
e

 
m

y_
se

rv
er

_n
am

e 
se

rv
er

 u
si

ng
 a

 g
oo

d 
fo

llo
w

in
g 

ex
it

. L
og

ou
t 

is
 

us
er

 n
am

e 
an

d 
a 

va
lid

 p
as

sw
or

d.
 

su
cc

es
sf

ul
.

 
T

he
n 

ty
pe

 e
xi

t.

2.
3.

 V
er

if
y 

U
N

IX
 S

er
ve

r 
lo

gi
n 

fr
om

 X
-w

in
do

w
s 

cl
ie

nt

2.
3.

1.
 V

er
if

y 
Se

cu
ri

ty

2.
3.

1.
1.

 B
ad

 u
se

rn
am

e

11
. 

C
on

fi g
ur

e 
X

-w
in

do
w

s 
cl

ie
nt

 t
o 

co
nn

ec
t 

L
og

in
 is

 n
ot

 a
llo

w
ed

 a
s 

in
 F

ig
ur

e 
7.

 
to

 m
y_

se
rv

er
_n

am
e 

se
rv

er
 (

us
in

g 
If

 u
si

ng
 t

he
 C

om
m

on
 D

es
kt

op
 

eX
od

us
P

ow
er

P
C

, s
el

ec
t 

“C
on

ne
ct

io
ns

/ 
E

nv
ir

on
m

en
t 

in
st

ea
d 

of
 

C
on

ne
ct

io
n 

M
an

ag
er

/S
am

pl
e 

X
D

M
 

O
pe

nw
in

do
w

s,
 t

he
 w

in
do

w
s 

m
ay

 
Se

ss
io

n/
E

di
t”

 C
ha

ng
e 

“M
od

e”
 t

o 
ap

pe
ar

 d
if

fe
re

nt
ly

 t
ha

n 
in

 t
he

 
 “

Q
ue

ry
” 

se
t 

“H
os

t”
 t

o 
fi g

ur
es

 b
el

ow
, b

ut
 t

he
 f

un
ct

io
na

lit
y

 
“m

y_
se

rv
er

_n
am

e”
 a

nd
 “

T
it

le
” 

as
 

sh
ou

ld
 b

e 
th

e 
sa

m
e.

 
“m

y_
se

rv
er

_n
am

e 
IQ

”;
 C

lic
k 

co
nn

ec
t

 
us

in
g 

an
 in

va
lid

us
er

na
m

e.

2.
3.

1.
2.

 G
oo

d 
us

er
na

m
e,

 b
ad

 p
as

sw
or

d

12
. 

L
og

in
 t

o 
co

nfi
 g

ur
ed

 X
-w

in
do

w
s 

L
og

in
 is

 n
ot

 a
llo

w
ed

 a
s 

in
 F

ig
ur

e 
8.

 
cl

ie
nt

 u
si

ng
 a

 v
al

id
 u

se
rn

am
e 

/ i
nv

al
id

 
pa

ss
w

or
d.

2.
4.

 V
er

if
y 

L
og

ou
t

13
. 

L
og

in
 t

o 
co

nfi
 g

ur
ed

 X
-w

in
do

w
s 

V
al

id
 lo

gi
n 

pr
od

uc
es

 X
-w

in
do

w
s,

 
cl

ie
nt

 a
s 

a 
va

lid
 m

y_
se

rv
er

_n
am

e 
O

pe
nw

in
do

w
s 

en
vi

ro
nm

en
t 

si
m

ila
r 

to
 

us
er

 a
nd

 m
em

be
r 

of
 t

he
 p

ha
rm

ac
o 

F
ig

ur
e 

9.
 

gr
ou

p,
 lo

g 
on

 t
o 

m
y_

se
rv

er
_n

am
e 

Se
le

ct
in

g 
M

ou
se

 b
ut

to
n 

3 
yi

el
ds

 w
in

do
w

 
se

rv
er

 u
si

ng
 a

 g
oo

d 
us

er
 n

am
e 

an
d 

a 
si

m
ila

r 
to

 t
ha

t 
in

 F
ig

ur
e 

10
.

 
va

lid
 p

as
sw

or
d.

 T
he

n 
se

le
ct

 M
ou

se
 

Se
le

ct
in

g 
ex

it
 y

ie
ld

s 
co

nfi
 r

m
at

io
n

 
B

ut
to

n 
3;

 C
lic

k 
on

 E
xi

t. 
sc

re
en

 s
im

ila
r 

to
 F

ig
ur

e 
11

.
 

 
C

lic
ki

ng
 o

n 
E

xi
t 

ca
us

es
 w

in
do

w
s

 
 

en
vi

ro
nm

en
t 

to
 d

is
ap

pe
ar

.

74



Signoffs
(Signoffs for Document Tester and Test Coordinator with printed name and date 
spaces)

Tester (By signing this the tester of this document agrees that the test has been 
completed and is accurate.)

Printed Name Signed Name Responsible Date: MM/DD/YYYY

  Tester

Test Coordinator (By signing this the tester of this document agrees that the test has 
been completed and is accurate.)

Printed Name Signed Name Responsible Date: MM/DD/YYYY

  Test Coordinator

APPENDIX 3.2 SAMPLE OPERATION QUALIFICATION

Document Number: OQ00–00001 Operation Qualifi cation: Test Version: 1.0
Document Location: IS Validation S-Plus 5.1 Reference
  Document(s) #: SV00-
Document Owner: Metrician, Appendix A 00001
 Pharmaco

Purpose
(This defi nes the purpose for the current test(s). It may refer to previous tests and/or 
documents.) This test is conducted to qualify the operation of S-Plus 5.1. These 
tests verify the proper operation of the S-Plus 5.1 software as well as the security of 
the software as far as user access to the data and executable programs. It also tests 
the backup and recovery of data and executables. These tests will also be used to 
establish a baseline for future operational testing.

Scope
(This defi nes the scope of the test(s). It is a written description of the scope and 
restrictions of the test.) Testing is done to prove the S-Plus 5.1 is operational in 
accordance with the manufacturer’s criteria. Testing is also done to prove that 
data and executable software access is limited to authorized users and only up to 
the number of available licenses. Testing is also done to verify the backup and 
restoration of selected data and executable fi les.
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Test Requirements
Testing is done to prove the following:

1.  Verify the S-Plus 5.1 Operation (these tests are from the S-Plus 2000 Program-
mer’s Guide, Chapter 25)
1.1. Execute validate(); the complete validation test suite
1.2. Verify the validate function code
1.3.  Execute the anova test suite in verbose mode to demonstrate an individual 

test
1.4.  Execute the regress test suite in verbose mode, return and examine the 

Boolean result
2. Verify the S-Plus Data Files May only be accessed by Authorized Users

2.1. Verify /home/splus directory is not accessible to unauthorized users
2.2.  Verify the /home/splus and /home/“user” subdirectories are (not) writeable 

by (unauthorized) authorized users
2.3.  Verify the /home/splus and /home/“user” subdirectories are readable by the 

authorized group
3. Verify the S-Plus program may be started only by authorized users

3.1. Verify S-Plus or S-Plus 5 may be started only by authorized users
3.2. Verify that the license limit may not be exceeded by authorized users.

4.  Verify that a tape backup of data and executable fi les may be selectively 
restored

Test Prerequisites
(A list of requirements necessary to run the test. These can include environment reqs 
(e.g., NT, with MS Offi ce loaded), tester reqs (e.g., tester is trained in operating MS 
Offi ce), software reqs (e.g., test assumes xyz software to have already been loaded), 
or other reqs (e.g., paper documents for scanning).) The following conditions must 
be met before testing:

• The environment is ready to test.
• Tester is trained in basic usage of UNIX and S-Plus 5.1.
• Testing fi les are prepared and put in place.

Test Instructions
(Gives any special instructions to the tester. Tester is assumed to be qualifi ed to 
execute test.) For each test condition in the Testing Table, the Tester must initial 
each graybar section when completed regardless of success or nonsuccess. If the 
test condition has been met and Expected Result is the same as the actual result 
(the result of executing the test condition), then the test is successful and must be 
marked as OK in the OK column. If the test condition has not been met, or the 
Expected Results are not exactly the same as the actual results, then the Tester must 
stop, report the deviation in the Comments column, and report the occurrence to 
the Test Coordinator. At that time, the Test Coordinator will make a judgment on 



whether or not the test can be continued. In the event that the deviation is consid-
ered acceptable and that the test can continue, the Test Coordinator must log the 
event, any workarounds necessary, and initial the Tester’s comments (this may be 
done on the script if there is room). In the event that the deviation is not accept-
able, then the test must stop.

Test Tables
Test tables show:

1. Line Number: Allows reference for tracking anomalies and errors.
2. Test Condition: Defi nes the test.
3. Expected Results: Defi nes what should happen. Any deviation is an error.
4. OK: Were the expected results met?
5. Initials: Tester proof of execution.
6. Comments: Allows information about the test condition.

Signoffs
(Signoffs for Document Owner and Author with printed name and date spaces.)

Author (By signing this the author of this document agrees that the document is 
complete and accurate)

Printed Name Signed Name Responsible Date: MM/DD/YYYY

  Author

Owner (By signing this the owner of this document agrees that the document is complete 
and accurate)

Printed Name Signed Name Responsible Date: MM/DD/YYYY

  Owner
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Signoffs
(Signoffs for Document Tester and Test Coordinator with printed name and date 
spaces:)

Tester (By signing this the tester of this document agrees that the test has been 
completed and is accurate)

Printed Name Signed Name Responsible Date: MM/DD/YYYY

  Tester

Tester (By signing this the tester of this document agrees that the test has been 
completed and is accurate)

Printed Name Signed Name Responsible Date: MM/DD/YYYY

  Tester

Test Coordinator (By signing this the tester of this document agrees that the test has 
been completed and is accurate)

Printed Name Signed Name Responsible Date: MM/DD/YYYY

  Test Coordinator

APPENDIX 3.3 SAMPLE PERFORMANCE QUALIFICATION

Document Number: PQ00–00001 Performance Qualifi cation: Test Version: 1.0
Document Location: Quality S-Plus 5.1 Reference Document(s)
 Assurance   #: SV00-00001
Document Owner: Metrician, Appendix A
 Pharmaco

Purpose
(This defi nes the purpose for the current test(s). It may refer to previous tests and/or 
documents.) This test is conducted to qualify the performance of S-Plus 5.1. These 
tests verify the proper operation of specifi c, commonly used features of the S-Plus 
system software.

Scope
(This defi nes the scope of the test(s). It is a written description of the scope and restric-
tions of the test.) Testing is done to prove that specifi c, commonly used features of 
S-Plus 5.1 are operational in accordance with the end users needs. The data sets 
are obtained from the National Institute of Standards and Technology (Ref. 6) and 
academic reference texts (Ref. 7)



Test Requirements
Testing is done to prove the following:

1.  Verify that S-Plus 5.1 performs the NIST StRD Analysis of Variance calculations 
to within 3 signfi cant digits
1.1.  Test ANOVA with dataset SiRstv, that is, low degree of stiffness, low 

replicates per cell
1.2.  Test ANOVA with dataset AtmWtAg, that is, average degree of stiffness, 

low replicates per cell
1.3.  Test ANOVA with dataset SmLs06, that is, average degree of stiffness, high 

replicates per cell
2.  Verify that S-Plus 5.1 performs the NIST StRD Linear Regression calculations 

to within 3 signfi cant digits
2.1. Test Linear Regression with dataset Norris, Low diffi culty linear
2.2. Test Linear Regression with dataset NoInt1, Average diffi culty linear
2.3. Test Linear Regression with dataset Filip, High diffi culty polynomial

3.  Verify that S-Plus 5.1 performs the NIST StRD Non-linear Regression calcula-
tions to within 3 signfi cant digits
3.1.  Test Nonlinear Regression with dataset Misra1a, Lower diffi culty 

exponential
3.2. Test Nonlinear Regression with dataset Kirby2, Average diffi culty rational
3.3. Test Nonlinear Regression with dataset MGH09, Higher diffi culty rational

4.  Verify that S-Plus 5.1 performs a General Additive Model with Gaussian error 
Distribution and identity link problem correctly to 3 signifi cant digits

Test Prerequisites
(A list of requirements necessary to run the test. These can include environment reqs 
(e.g., NT, with MS Offi ce loaded), tester reqs (e.g., tester is trained in operating MS 
Offi ce), software reqs (e.g., test assumes xyz software to have already been loaded), 
or other reqs (e.g., paper documents for scanning).) The following conditions must 
be met before testing:

• The environment is ready to test.
• Tester is trained in basic usage of UNIX and S-Plus 5.1.
• Testing fi les are prepared and put in place.

Test Instructions
(Gives any special instructions to the tester. Tester is assumed to be qualifi ed to 
execute test.) For each test condition in the Testing Table, the Tester must initial 
each graybar section when completed regardless of success or nonsuccess. If the 
test condition has been met and Expected Result is the same as the actual result 
(the result of executing the test condition), then the test is successful and must be 
marked as OK in the OK column. If the test condition has not been met, or the 
Expected Results are not exactly the same as the actual results, then the Tester must 
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stop, report the deviation in the Comments column, and report the occurrence to 
the Test Coordinator. At that time, the Test Coordinator will make a judgment on 
whether or not the test can be continued. In the event that the deviation is consid-
ered acceptable and that the test can continue, the Test Coordinator must log the 
event, any workarounds necessary, and initial the Tester’s comments (this may be 
done on the script if there is room). In the event that the deviation is not accept-
able, then the test must stop.

Test Tables
Test tables show:

1. Line Number: Allows reference for tracking anomalies and errors.
2. Test Condition: Defi nes the test.
3. Expected Results: Defi nes what should happen. Any deviation is an error.
4. OK: Were the expected results met?
5. Initials: Tester proof of execution.
6. Comments: Allows information about the test condition.

Signoffs
(Signoffs for Document Owner and Author with printed name and date spaces.)

Author (By signing this the author of this document agrees that the document is 
complete and accurate)

Printed Name Signed Name Responsible Date: MM/DD/YYYY

  Author

Owner (By signing this the owner of this document agrees that the document is complete 
and accurate)

Printed Name Signed Name Responsible Date: MM/DD/YYYY

  Owner



# 
T

es
t 

C
on

di
ti

on
 

E
xp

ec
te

d 
R

es
ul

ts
 

O
K

 
In

it
 

C
om

m
en

ts

1.
 V

er
if

y 
th

at
 S

-P
lu

s 
5.

1 
pe

rf
or

m
s 

th
e 

N
IS

T
 S

tR
D

 A
na

ly
si

s 
of

 V
ar

ia
nc

e 
ca

lc
ul

at
io

ns
 t

o 
w

it
hi

n 
3 

si
gn

fi c
an

t 
di

gi
ts

1.
1.

 T
es

t 
A

N
O

V
A

 w
it

h 
da

ta
se

t 
Si

R
st

v,
 t

ha
t 

is
, l

ow
 d

eg
re

e 
of

 s
ti

ff
ne

ss
, l

ow
 r

ep
lic

at
es

 p
er

 c
el

l

 1
. 

A
s 

a 
va

lid
 S

-P
lu

s 
us

er
 (

Se
ct

io
n 

7.
2 

of
 

Su
cc

es
sf

ul
 lo

gi
n 

to
 m

y_
se

rv
er

_n
am

e
 

P
er

fo
rm

an
ce

 Q
ua

lifi
 c

at
io

n)
 o

pe
n 

a 
se

rv
er

 p
w

d
co

m
m

an
d 

re
tu

rn
s:

 
T

el
ne

t 
or

 X
-w

in
do

w
s 

cl
ie

nt
 a

nd
 lo

g 
/h

om
e/

“u
se

rn
am

e”
 (

fo
r 

ks
h 

or
 s

h)
 

on
 t

o 
m

y_
se

rv
er

_n
am

e 
se

rv
er

. 
/e

xp
or

t/
ho

m
e/

“u
se

rn
am

e”
 (

fo
r 

cs
h)

 
V

er
if

y 
th

e 
cu

rr
en

t 
di

re
ct

or
y 

is
 

w
he

re
 u

se
rn

am
e 

is
 t

he
 t

es
te

r’
s 

lo
gi

n
 

 /h
om

e/
“u

se
rn

am
e”

 b
y 

ty
pi

ng
 p

w
d.

na
m

e.

 2
. 

C
re

at
e 

a 
su

bd
ir

ec
to

ry
 in

 t
he

 
Sy

st
em

 r
es

po
nd

s 
to

 p
w

d 
co

m
m

an
d 

w
it

h:
 

/h
om

e/
“u

se
rn

am
e”

. T
yp

e 
th

e 
/h

om
e/

“u
se

rn
am

e”
/s

pl
us

_p
q

 
fo

llo
w

in
g:

 m
kd

ir
 s

pl
us

_p
q

cd
 s

pl
us

_p
q

pw
d

 3
. 

T
yp

e 
th

e 
fo

llo
w

in
g:

 
Sy

st
em

 r
es

po
nd

s 
w

it
h:

Sp
lu

s 
C

H
A

P
T

E
R

 
C

re
at

in
g 

da
ta

 d
ir

ec
to

ry
 f

or
 c

ha
pt

er
.

 
 

Sp
lu

s5
 c

ha
pt

er
 s

pl
us

_p
q 

in
it

ia
liz

ed
.

 4
. 

T
yp

e 
th

e 
fo

llo
w

in
g:

 
Sy

st
em

 r
es

po
nd

s 
w

it
h:

m
kd

ir
 d

at
as

es
ts

 
to

ta
l 4

76
cp

∼u
se

rn
am

e/
sp

lu
s_

pq
/ 

-r
w

-r
–r

– 
1 

68
3 

M
ay

 2
6 

15
:0

4 
A

tm
W

tA
g.

cs
v

da
ta

se
ts

/*
 d

at
as

et
s 

-r
w

-r
–r

– 
1 

35
94

 M
ay

 2
6 

15
:0

4 
F

ili
p.

cs
v

cd
 d

at
as

et
s 

-r
w

-r
–r

– 
1 

19
22

 M
ay

 2
6 

15
:0

4 
K

ir
by

2.
cs

v
ls

 -
og

 
-r

w
-r

–r
– 

1 
13

0 
M

ay
 2

6 
15

:0
4 

M
G

H
09

.c
sv

 
 

-r
w

-r
–r

– 
1 

25
5 

M
ay

 2
6 

15
:0

4 
M

is
ra

1a
.c

sv
 

 
-r

w
-r

–r
– 

1 
16

6 
M

ay
 2

6 
15

:0
4 

M
is

ra
1a

1.
cs

v
 

 
-r

w
-r

–r
– 

1 
80

 M
ay

 2
6 

15
:0

4 
N

oI
nt

1.
cs

v
 

 
-r

w
-r

–r
– 

1 
38

8 
M

ay
 2

6 
15

:0
4 

N
or

ri
s.

cs
v

 
 

-r
w

-r
–r

– 
1 

29
2 

M
ay

 2
6 

15
:0

4 
Si

R
st

v.
cs

v
 

 
-r

w
-r

–r
– 

1 
21

61
26

 M
ay

 2
6 

15
:0

4 
Sm

L
s0

6.
cs

v
 

 
-r

w
-r

–r
– 

1 
18

2 
M

ay
 2

6 
15

:0
4 

W
am

pl
er

1.
cs

v

89



 5
. 

T
yp

e 
th

e 
fo

llo
w

in
g:

 
Sy

st
em

 r
es

po
nd

s 
w

it
h:

cd
 ..

 
S-

P
lu

s 
: C

op
yr

ig
ht

 ©
 1

98
8,

 1
99

9
Sp

lu
s 

M
at

hS
of

t, 
In

c.
S 

: C
op

yr
ig

ht
 L

uc
en

t 
T

ec
hn

ol
og

ie
s,

 I
nc

.
 

 
V

er
si

on
 5

.1
 R

el
ea

se
 1

 f
or

 S
un

 S
P

A
R

C
,

 
 

Su
nO

S 
5.

5:
 1

99
9

 
 

W
or

ki
ng

 d
at

a 
w

ill
 b

e 
in

 D
at

a

 6
. 

T
yp

e:
 

Sy
st

em
 r

es
po

nd
s 

w
it

h:
Si

R
st

v
<

- 
im

po
rt

D
at

a(
fi l

e 
=

 
 

 
 

 
D

f 
Su

m
 o

f 
Sq

 
M

ea
n 

Sq
 

  
F

 V
al

ue
 

P
r(

F
)

“d
at

as
et

s/
Si

R
st

v.
cs

v”
) 

in
st

r1
<

in
st

r1
 

 
  

 4
 

 0
.0

51
14

63
 

  0
.0

12
78

65
7 

1.
18

04
62

 
0.

34
94

47
5

-f
ac

to
r(

Si
R

st
v[

,“
In

st
ru

m
en

t”
])

R
es

id
ua

ls
 

20
 

0.
21

66
36

6 
  0

.0
10

83
18

3
re

si
st

1
<

-S
iR

st
v[

,“
R

es
is

ta
nc

e”
]

Si
R

st
v.

an
ov

a.
1

<-
 a

ov
(r

es
is

t1
∼

 
in

st
r1

)s
um

m
ar

y 
(S

iR
st

v.
an

ov
a.

1)

 7
. 

T
yp

e 
th

e 
fo

llo
w

in
g:

 
Sy

st
em

 r
es

po
nd

s 
w

it
h:

Si
R

st
v.

an
ov

a.
1 

C
al

l:
 

 
 

ao
v(

fo
rm

ul
a 

= 
re

si
st

1 
∼ 

in
st

r1
)

 
 

T
er

m
s:

 
 

 
 

 
 

 
 

 
 

in
st

r1
 

 
 

R
es

id
ua

ls
 

 
Su

m
 o

f 
Sq

ua
re

s 
0.

05
11

46
3 

0.
21

66
36

6
 

 
D

eg
. o

f 
F

re
ed

om
 

 
 

4 
 

 
20

 
 

R
es

id
ua

l s
ta

nd
ar

d 
er

ro
r:

 
0.

10
40

76
1

 
 

E
st

im
at

ed
 e

ff
ec

ts
 a

re
 b

al
an

ce
d

 8
. 

R
ev

ie
w

 t
he

 in
fo

rm
at

io
n 

in
 

F
ig

ur
e 

1.
0a

 is
 t

he
 g

en
er

al
 b

ac
kg

ro
un

d 
in

fo
rm

at
io

n
 

F
ig

ur
e 

1.
0a

. 
fo

r 
th

e 
N

IS
T

 S
tR

D
 A

no
va

 t
es

t. 
In

it
ia

l t
he

 I
N

IT
 

 
co

lu
m

n 
if

 r
ea

d 
an

d 
un

de
rs

to
od

. F
ig

ur
e 

1.
0b

 
 

is
 a

 s
um

m
ar

y 
of

 t
he

 d
at

a 
se

ts
 r

ef
er

re
d 

to
 

 
in

 F
ig

ur
e 

1.
0a

.

 9
. 

R
ev

ie
w

 t
he

 in
fo

rm
at

io
n 

in
 

F
ig

ur
e 

1.
1a

 is
 t

he
 s

pe
ci

fi c
 m

od
el

 in
fo

rm
at

io
n 

re
le

va
nt

 
F

ig
ur

e 
1.

1a
. 

to
 t

he
 S

iR
st

v 
da

ta
 s

et
. I

ni
ti

al
 t

he
 I

N
IT

 c
ol

um
n

 
 

if
 r

ea
d 

an
d 

un
de

rs
to

od
. F

ig
ur

e 
1.

1b
 is

 t
he

 d
at

a
 

 
se

t 
in

fo
rm

at
io

n.
 I

t 
is

 p
ro

vi
de

d 
fo

r 
re

fe
re

nc
e.

90



91

10
. 

R
ev

ie
w

 t
he

 r
es

ul
ts

 o
f 

St
ep

 6
 

R
es

ul
ts

 m
at

ch
 w

it
hi

n 
3 

si
gn

ifi 
ca

nt
 fi 

gu
re

s.
 

an
d 

St
ep

 7
 a

ga
in

st
 t

he
 c

er
ti

fi e
d

 
re

su
lt

s 
of

 F
ig

ur
e 

1.
1c

.

11
. 

R
ev

ie
w

 t
he

 d
at

a 
se

t 
in

 t
he

 
T

he
 d

at
a 

im
po

rt
ed

 m
at

ch
es

 t
he

 d
at

a 
in

 F
ig

ur
e 

1.
1d

.
 

of
 F

ig
ur

e 
1.

1d
 a

ga
in

st
 t

he
 d

at
a

 
im

po
rt

ed
 in

 S
te

p 
6.

 (
T

yp
e 

Si
R

st
v

 
at

 t
he

 S
-P

lu
s 

pr
om

pt
 t

o 
se

e 
th

e
 

da
ta

 s
et

.)

1.
2.

 T
es

t 
A

N
O

V
A

 w
it

h 
da

ta
se

t 
A

tm
W

tA
g,

 t
ha

t 
is

, a
ve

ra
ge

 d
eg

re
e 

of
 s

ti
ff

ne
ss

, l
ow

 r
ep

lic
at

es
 p

er
 c

el
l

12
. 

T
yp

e:
 

Sy
st

em
 r

es
po

nd
s 

w
it

h:
A

tm
W

tA
g

<
- 

im
po

rt
D

at
a(

fi l
e

=
 

 
 

 
 

D
f 

Su
m

 o
f 

Sq
 

 
M

ea
n 

Sq
 

 
  

  F
 V

al
ue

 
 P

r(
F

)
“d

at
as

et
s/

A
tm

W
tA

g.
cs

v”
) 

in
st

r2
in

st
r2

 
 

 
  1

 
3.

63
83

40
e-

09
 

3.
63

83
42

e-
09

 
15

.9
46

73
 

0.
00

02
32

68
44

<
-f

ac
to

r(
A

tm
W

tA
g 

[,
“I

ns
tr

um
en

t”
])

R
es

id
ua

ls
 

46
 

1.
04

95
17

e-
08

 
2.

28
15

60
e-

10
A

gW
t

<
- 

A
tm

W
tA

g 
[,

“A
gW

t”
]

 
A

tm
W

tA
g.

an
ov

a.
1 

<
- 

ao
v

 
(A

gW
t∼

in
st

r2
)

su
m

m
ar

y(
A

tm
W

tA
g.

an
ov

a.
1)

13
. 

T
yp

e 
th

e 
fo

llo
w

in
g:

 
Sy

st
em

 r
es

po
nd

s 
w

it
h:

A
tm

W
tA

g.
an

ov
a.

1 
C

al
l:

 
 

 
ao

v(
fo

rm
ul

a 
= 

A
gW

t 
∼ 

in
st

r2
)

 
 

T
er

m
s:

 
 

 
 

 
 

 
 

 
 

in
st

r2
 

 
 

 
R

es
id

ua
ls

 
 

Su
m

 o
f 

Sq
ua

re
s 

3.
63

83
40

e-
09

 
1.

04
95

17
e-

08
 

 
D

eg
. o

f 
F

re
ed

om
 

1 
 

 
 

 
 

46

 
 

R
es

id
ua

l s
ta

nd
ar

d 
er

ro
r:

 1
.5

10
48

3e
-0

5
 

 
E

st
im

at
ed

 e
ff

ec
ts

 a
re

 b
al

an
ce

d

14
. 

R
ev

ie
w

 t
he

 in
fo

rm
at

io
n 

in
 

F
ig

ur
e 

1.
2a

 is
 t

he
 s

pe
ci

fi c
 m

od
el

 in
fo

rm
at

io
n 

re
le

va
nt

 t
o

 
F

ig
ur

e 
1.

2a
. 

th
e 

A
tm

W
tA

g 
da

ta
 s

et
. I

ni
ti

al
 t

he
 I

N
IT

 c
ol

um
n 

if
 r

ea
d

 
 

an
d 

un
de

rs
to

od
. F

ig
ur

e 
1.

2b
 is

 t
he

 d
at

a 
se

t 
in

fo
rm

at
io

n.
 

 
It

 is
 p

ro
vi

de
d 

fo
r 

re
fe

re
nc

e.



15
. 

R
ev

ie
w

 t
he

 r
es

ul
ts

 o
f 

St
ep

 1
2 

R
es

ul
ts

 m
at

ch
 w

it
hi

n 
3 

si
gn

ifi 
ca

nt
 fi 

gu
re

s.
 

an
d 

St
ep

 1
3 

ag
ai

ns
t 

th
e 

ce
rt

ifi 
ed

 
re

su
lt

s 
of

 F
ig

ur
e 

1.
2c

.

16
. 

R
ev

ie
w

 t
he

 d
at

a 
se

t 
in

 t
he

 p
ro

bl
em

 
T

he
 d

at
a 

im
po

rt
ed

 m
at

ch
es

 t
he

 d
at

a
 

su
m

m
ar

y 
of

 F
ig

ur
e 

1.
2d

 a
ga

in
st

 
in

 F
ig

ur
e 

1.
2d

.
 

th
e 

da
ta

 im
po

rt
ed

 in
 S

te
p 

12
 

(T
yp

e 
A

tm
W

tA
g 

at
 t

he
 S

-P
lu

s
 

pr
om

pt
 t

o 
se

e 
th

e 
da

ta
 s

et
, i

f
 

ne
ce

ss
ar

y,
 u

se
 t

he
 o

pt
io

ns
(d

ig
its

=
12

) 
co

m
m

an
d 

to
 v

ie
w

 m
or

e
 

si
gn

ifi 
ca

nt
 d

ig
it

s)

1.
3.

 T
es

t 
A

N
O

V
A

 w
it

h 
da

ta
se

t 
Sm

L
s0

6,
 t

ha
t 

is
, a

ve
ra

ge
 d

eg
re

e 
of

 s
ti

ff
ne

ss
, h

ig
h 

re
pl

ic
at

es
 p

er
 c

el
l

17
. 

T
yp

e:
 

Sy
st

em
 r

es
po

nd
s 

w
it

h:
Sm

L
s0

6
<

- 
im

po
rt

D
at

a 
 

 
 

 
 

 D
f 

 
 S

um
 o

f 
Sq

 
  M

ea
n 

Sq
 

F
 V

al
ue

 
P

r(
F

)
(fi

 le
=

“d
at

as
et

s/
Sm

L
s0

6.
cs

v”
) 

tr
ea

t1
 

 
  

 8
 

 
 

16
0.

08
 

 
 

20
.0

1 
 

  
 2

00
1 

 
 0

tr
ea

t1
<

-f
ac

to
r(

Sm
L

s0
6 

[,
 

R
es

id
ua

ls
 

18
00

0 
18

0.
00

 
 

 
 0

.0
1

“T
re

at
m

en
t”

])
re

sp
1

<
- 

Sm
L

s0
6

 
[,

“R
es

po
ns

e”
]S

m
L

s0
6.

an
ov

a.
1 

<
- 

ao
v(

re
sp

1∼
tr

ea
t1

)s
um

m
ar

y
 

(S
m

L
s0

6.
an

ov
a.

1)

18
. 

T
yp

e 
th

e 
fo

llo
w

in
g:

 
Sy

st
em

 r
es

po
nd

s 
w

it
h:

Sm
L

s0
6.

an
ov

a.
1 

C
al

l:
 

 
 

ao
v(

fo
rm

ul
a 

= 
re

sp
1 

∼ 
tr

ea
t1

)
 

 
T

er
m

s:
 

 
 

 
 

 
 

 
 

 t
re

at
1 

R
es

id
ua

ls
 

 
Su

m
 o

f 
Sq

ua
re

s 
16

0.
08

 
18

0.
00

 
 

D
eg

. o
f 

F
re

ed
om

 
8 

 
 1

80
00

 
 

R
es

id
ua

l s
ta

nd
ar

d 
er

ro
r:

 0
.1

 
 

E
st

im
at

ed
 e

ff
ec

ts
 a

re
 b

al
an

ce
d

92



19
. 

R
ev

ie
w

 t
he

 in
fo

rm
at

io
n 

in
 

F
ig

ur
e 

1.
3a

 is
 t

he
 s

pe
ci

fi c
 m

od
el

 in
fo

rm
at

io
n

 
F

ig
ur

e 
1.

3a
. 

re
le

va
nt

 t
o 

th
e 

Sm
L

s0
6 

da
ta

 s
et

. I
ni

ti
al

 t
he

 
 

IN
IT

 c
ol

um
n 

if
 r

ea
d 

an
d 

un
de

rs
to

od
. F

ig
ur

e
 

 
1.

3b
 is

 t
he

 d
at

a 
se

t 
in

fo
rm

at
io

n.
 I

t 
is

 
 

pr
ov

id
ed

 f
or

 r
ef

er
en

ce
.

20
. 

R
ev

ie
w

 t
he

 r
es

ul
ts

 o
f 

St
ep

 1
7 

an
d 

R
es

ul
ts

 m
at

ch
 w

it
hi

n 
3 

si
gn

ifi 
ca

nt
 fi 

gu
re

s.
 

St
ep

 1
8 

ag
ai

ns
t 

th
e 

ce
rt

ifi 
ed

 
re

su
lt

s 
of

 F
ig

ur
e 

1.
3c

.

21
. 

R
ev

ie
w

 t
he

 d
at

a 
se

t 
in

 t
he

 p
ro

bl
em

 
T

he
 d

at
a 

im
po

rt
ed

 m
at

ch
es

 t
he

 d
at

a 
in

 
su

m
m

ar
y 

of
 F

ig
ur

e 
1.

3d
 a

ga
in

st
 

F
ig

ur
e 

1.
3d

.
 

th
e 

da
ta

 im
po

rt
ed

 in
 s

te
p 

17
 (

T
yp

e
 

Sm
L

s0
6 

at
 t

he
 S

-P
lu

s 
pr

om
pt

 t
o

 
se

e 
th

e 
da

ta
 s

et
)

2.
 V

er
if

y 
th

at
 S

-P
lu

s 
5.

1 
pe

rf
or

m
s 

th
e 

N
IS

T
 S

tR
D

 L
in

ea
r 

R
eg

re
ss

io
n 

ca
lc

ul
at

io
ns

 t
o 

w
it

hi
n 

3 
si

gn
fi c

an
t 

di
gi

ts

2.
1.

 T
es

t 
L

in
ea

r 
R

eg
re

ss
io

n 
w

it
h 

da
ta

se
t 

N
or

ri
s,

 L
ow

 d
if

fi c
ul

ty
 li

ne
ar

22
. 

T
yp

e:
 

Sy
st

em
 r

es
po

nd
s 

w
it

h:
N

or
ri

s
<

- 
im

po
rt

D
at

a(
fi l

e 
C

al
l: 

lm
(f

or
m

ul
a 

= 
y 

∼ 
x,

 d
at

a 
= 

N
or

ri
s)

=
“d

at
as

et
s/

N
or

ri
s.

cs
v”

) 
R

es
id

ua
ls

:
N

or
ri

s.
lm

.1
<

-l
m

(y
∼x

, d
at

a
= 

 
M

in
 

1Q
 

 
 

M
ed

ia
n 

3Q
 

M
ax

N
or

ri
s)

 s
um

m
ar

y(
N

or
ri

s.
lm

.1
)

−2
.3

52
−0

.5
32

7
−0

.0
29

63
 

0.
6 

1.
79

 
 

C
oe

ffi
 c

ie
nt

s:
 

 
 

 
 

 
 

  
V

al
ue

 
 

St
d.

 E
rr

or
 

t 
va

lu
e 

  
 P

r(
> 

|t|
)

 
 

(I
nt

er
ce

pt
) 

−0
.2

62
3 

 
0.

23
28

 
  

−1
.1

26
7 

  
 0

.2
67

7
 

 
 

 
 

 
x 

1.
00

21
 

  
 

0.
00

04
 

  
23

31
.6

05
8 

0.
00

00
 

 
R

es
id

ua
l s

ta
nd

ar
d 

er
ro

r:
 0

.8
84

8 
on

 3
4 

de
gr

ee
s 

of
 

 
fr

ee
do

m
 

 
M

ul
ti

pl
e 

R
-s

qu
ar

ed
: 1

 
 

F
-s

ta
ti

st
ic

: 5
43

60
00

 o
n 

1 
an

d 
34

 d
eg

re
es

 o
f 

fr
ee

do
m

,
 

 
th

e 
p-

va
lu

e 
is

 0

 
 

C
or

re
la

ti
on

 o
f 

C
oe

ffi
 c

ie
nt

s:
 

 
(I

nt
er

ce
pt

)
 

 
x 

−0
.7

73
8

93



23
. 

T
yp

e 
th

e 
fo

llo
w

in
g:

 
Sy

st
em

 r
es

po
nd

s 
w

it
h:

an
ov

a(
N

or
ri

s.
lm

.1
) 

A
na

ly
si

s 
of

 V
ar

ia
nc

e 
T

ab
le

 
 

R
es

po
ns

e:
 y

 
 

T
er

m
s 

ad
de

d 
se

qu
en

ti
al

ly
 (

fi r
st

 t
o 

la
st

)
 

 
 

 
 

 
 

D
f 

Su
m

 o
f 

Sq
 

M
ea

n 
Sq

 
F

 V
al

ue
 

P
r(

F
)

 
 

 
 

 
  

 x
 

1 
42

55
95

4 
 

42
55

95
4 

54
36

38
6 

0
 

 
R

es
id

ua
ls

 
34

 
27

 
 

 
 

 1

24
. 

R
ev

ie
w

 t
he

 in
fo

rm
at

io
n 

in
 

F
ig

ur
e 

2.
0a

 is
 t

he
 g

en
er

al
 b

ac
kg

ro
un

d 
in

fo
rm

at
io

n
 

F
ig

ur
e 

2.
0a

. 
fo

r 
th

e 
N

IS
T

 S
tR

D
 L

in
ea

r 
R

eg
re

ss
io

n 
te

st
.

 
 

In
it

ia
l t

he
 I

N
IT

 c
ol

um
n 

if
 r

ea
d 

an
d 

un
de

rs
to

od
.

 
 

F
ig

ur
e 

2.
0b

 is
 a

 s
um

m
ar

y 
of

 t
he

 d
at

a 
se

ts
 r

ef
er

re
d

 
 

to
 in

 F
ig

ur
e 

2.
0a

.

25
. 

R
ev

ie
w

 t
he

 in
fo

rm
at

io
n 

in
 

F
ig

ur
e 

2.
1a

 is
 t

he
 s

pe
ci

fi c
 m

od
el

 in
fo

rm
at

io
n 

re
le

va
nt

 
F

ig
ur

e 
2.

1a
. 

to
 t

he
 N

or
ri

s 
da

ta
 s

et
. I

ni
ti

al
 t

he
 I

N
IT

 c
ol

um
n

 
 

if
 r

ea
d 

an
d 

un
de

rs
to

od
. F

ig
ur

e 
2.

1b
 is

 t
he

 d
at

a
 

 
se

t 
in

fo
rm

at
io

n.
 I

t 
is

 p
ro

vi
de

d 
fo

r 
re

fe
re

nc
e.

26
. 

R
ev

ie
w

 t
he

 r
es

ul
ts

 o
f 

St
ep

 2
2 

R
es

ul
ts

 m
at

ch
 w

it
hi

n 
3 

si
gn

ifi 
ca

nt
 fi 

gu
re

s.
 

an
d 

St
ep

 2
3 

ag
ai

ns
t 

th
e 

ce
rt

ifi 
ed

 
re

su
lt

s 
of

 F
ig

ur
e 

2.
1c

.

27
. 

R
ev

ie
w

 t
he

 d
at

a 
se

t 
in

 t
he

 p
ro

bl
em

 
T

he
 d

at
a 

im
po

rt
ed

 m
at

ch
es

 t
he

 d
at

a 
in

 F
ig

ur
e 

2.
1d

 
of

 F
ig

ur
e 

2.
1d

 a
ga

in
st

 t
he

 d
at

a
 

im
po

rt
ed

 in
 S

te
p 

22
. (

T
yp

e
 

N
or

ri
s 

at
 t

he
 S

-P
lu

s 
pr

om
pt

 t
o

 
se

e 
th

e 
da

ta
 s

et
.)

2.
2.

 T
es

t 
L

in
ea

r 
R

eg
re

ss
io

n 
w

it
h 

da
ta

se
t 

N
oI

nt
1,

 A
ve

ra
ge

 d
if

fi c
ul

ty
 li

ne
ar

28
. 

T
yp

e:
 

Sy
st

em
 r

es
po

nd
s 

w
it

h:
N

oI
nt

1
<

- 
im

po
rt

D
at

a(
fi l

e 
C

al
l: 

lm
(f

or
m

ul
a 

= 
y 

∼
−1

+ 
x,

 d
at

a 
= 

N
oI

nt
1)

=
“d

at
as

et
s/

N
oI

nt
1.

cs
v”

)
R

es
id

ua
ls

:
N

oI
nt

1.
lm

.1
<

-l
m

(y
∼-

1+
x,

 d
at

a 
 

M
in

 
1Q

 
 

 M
ed

ia
n 

3Q
 

M
ax

=
N

oI
nt

1)
 s

um
m

ar
y(

N
oI

nt
1.

lm
.1

)
−5

.2
07

−2
.5

21
 

0.
16

53
 

2.
85

1 
5.

53
7

 
 

C
oe

ffi
 c

ie
nt

s:
 

 
 

 
 V

al
ue

 
St

d.
 E

rr
or

 
t 

va
lu

e 
  

P
r(

>|
t|)

 
 

 
x 

2.
07

44
 

0.
01

65
 

 
 1

25
.5

00
0 

0.
00

00

94



 
 

R
es

id
ua

l s
ta

nd
ar

d 
er

ro
r:

 3
.5

68
 o

n 
10

 d
eg

re
es

 o
f 

fr
ee

do
m

 
 

M
ul

ti
pl

e 
R

-S
qu

ar
ed

: 0
.9

99
4

 
 

F
-s

ta
ti

st
ic

: 1
57

50
 o

n 
1 

an
d 

10
 d

eg
re

es
 o

f
 

 
fr

ee
do

m
, t

he
 p

-v
al

ue
 is

 0

29
. 

T
yp

e 
th

e 
fo

llo
w

in
g:

 
Sy

st
em

 r
es

po
nd

s 
w

it
h:

an
ov

a(
N

oI
nt

1.
lm

.1
) 

 
A

na
ly

si
s 

of
 V

ar
ia

nc
e 

T
ab

le
 

 
 

R
es

po
ns

e:
 y

 
 

 
T

er
m

s 
ad

de
d 

se
qu

en
ti

al
ly

 (
fi r

st
 t

o 
la

st
)

 
 

 
 

 
 

 
   D

f 
Su

m
 o

f 
Sq

 
M

ea
n 

Sq
 

F
 V

al
ue

 
P

r(
F

)
 

 
 

x 
 

 
  

 1
 

  
  2

00
45

7.
7 

  
 2

00
45

7.
7 

15
75

0.
25

 
0

 
 

R
es

id
ua

ls
 

10
 

   1
27

.3
 

 
 

  1
2.

7

30
. 

R
ev

ie
w

 t
he

 in
fo

rm
at

io
n 

in
 

F
ig

ur
e 

2.
2a

 is
 t

he
 s

pe
ci

fi c
 m

od
el

 in
fo

rm
at

io
n

 
F

ig
ur

e 
2.

2a
. 

re
le

va
nt

 t
o 

th
e 

N
oI

nt
1 

da
ta

 s
et

. I
ni

ti
al

 t
he

 
 

IN
IT

 c
ol

um
n 

if
 r

ea
d 

an
d 

un
de

rs
to

od
. F

ig
ur

e
 

 
2.

2b
 is

 t
he

 d
at

as
et

 in
fo

rm
at

io
n.

 I
t 

is
 p

ro
vi

de
d

 
 

fo
r 

re
fe

re
nc

e.

31
. 

R
ev

ie
w

 t
he

 r
es

ul
ts

 o
f 

St
ep

 2
8 

R
es

ul
ts

 m
at

ch
 w

it
hi

n 
3 

si
gn

ifi 
ca

nt
 fi 

gu
re

s.
 

an
d 

St
ep

 2
9 

ag
ai

ns
t 

th
e 

ce
rt

ifi 
ed

 
re

su
lt

s 
of

 F
ig

ur
e 

2.
2c

.

32
. 

R
ev

ie
w

 t
he

 d
at

a 
se

t 
in

 t
he

 p
ro

bl
em

 
T

he
 d

at
a 

im
po

rt
ed

 m
at

ch
es

 t
he

 d
at

a 
in

 F
ig

ur
e 

2.
2d

 
su

m
m

ar
y 

of
 F

ig
ur

e 
2.

2d
 a

ga
in

st
 

th
e 

da
ta

 im
po

rt
ed

 in
 S

te
p 

28
.

 
(T

yp
e 

N
oI

nt
1 

at
 t

he
 S

-P
lu

s
 

pr
om

pt
 t

o 
se

e 
th

e 
da

ta
 s

et
.)

2.
3.

 T
es

t 
L

in
ea

r 
R

eg
re

ss
io

n 
w

it
h 

da
ta

 s
et

 F
ili

p,
 H

ig
h 

di
ffi

 c
ul

ty
 p

ol
yn

om
ia

l

33
. 

T
yp

e:
 F

ili
p

<
- 

im
po

rt
D

at
a(

fi l
e 

Sy
st

em
 r

es
po

nd
s 

w
it

h:
=

“d
at

a 
se

ts
/F

ili
p.

cs
v”

) 
 

x∧ 0 
 

 x
∧ 1 

 
 

 x
∧ 2 

 
 

 
x∧ 3 

 
 

 
x∧ 4

F
ili

p.
lm

.1
<

-l
m

(y
∼p

ol
y(

x,
10

),
−1

46
7.

49
−2

77
2.

18
−2

31
6.

37
1

−1
12

7.
97

4
−3

54
.4

78
2

da
ta

=
F

ili
p)

 a
tta

ch
(F

ili
p)

 
x∧ 5 

 
 

 x
∧ 6

x∧ 7 
 

 
 

x∧ 8
po

ly
.tr

an
sf

or
m

(p
ol

y(
x,

10
),

−7
5.

12
42

−1
0.

87
53

2
−1

.0
62

21
5

−0
.0

67
01

91
2

co
ef

(F
ili

p.
lm

.1
))

 
x∧ 9 

 
 

 
 

 x
∧ 10

−0
.0

02
46

78
11

−4
.0

29
62

5e
-0

5

95



96

34
. 

T
yp

e:
 s

um
m

ar
y(

F
ili

p.
lm

.1
) 

Sy
st

em
 r

es
po

nd
s 

w
it

h:
C

al
l: 

lm
(f

or
m

ul
a 

= 
y 

∼ 
po

ly
(x

, 1
0)

, d
at

a 
= 

F
ili

p)
 

 
R

es
id

ua
ls

:
 

 
 

M
in

 
  

1Q
 

 
 

 
M

ed
ia

n 
  

3Q
−0

.0
08

80
4

−0
.0

02
17

6 
4.

50
2e

−0
5 

0.
00

20
29

 
 

 
M

ax
 

 
0.

00
70

96

 
 

C
oe

ffi
 c

ie
nt

s:
 

 
 

 
 

 
 

 
 V

al
ue

 
 S

td
. E

rr
or

 
t 

va
lu

e 
 

P
r(

> 
|t|

)
 

 
 

(I
nt

er
ce

pt
) 

0.
84

96
 

 0
.0

00
4 

 
22

97
.8

52
5 

0.
00

00
 

 
po

ly
(x

, 1
0)

1 
0.

46
14

 
 0

.0
03

3 
 

13
7.

81
03

 
0.

00
00

 
 

po
ly

(x
, 1

0)
2 

−0
.0

86
8 

 
0.

00
33

 
 

−2
5.

92
56

 
0.

00
00

 
 

po
ly

(x
, 1

0)
3 

−0
.0

82
7 

 0
.0

03
3 

 
−2

4.
69

80
 

0.
00

00
 

 
po

ly
(x

, 1
0)

4 
0.

09
67

 
 0

.0
03

3 
 

28
.8

95
8 

0.
00

00
 

 
po

ly
(x

, 1
0)

5 
0.

01
75

 
 0

.0
03

3 
 

5.
21

27
 

0.
00

00
 

 
po

ly
(x

, 1
0)

6 
−0

.0
61

7 
 

0.
00

33
 

 
−1

8.
42

51
 

0.
00

00
 

 
po

ly
(x

, 1
0)

7 
0.

00
67

 
 0

.0
03

3 
 

1.
99

12
 

0.
05

03
 

 
po

ly
(x

, 1
0)

8 
0.

03
40

 
 0

.0
03

3 
 

10
.1

62
5 

0.
00

00
 

 
po

ly
(x

, 1
0)

9 
−0

.0
15

5 
 0

.0
03

3 
 

−4
.6

39
7 

0.
00

00
 

 
po

ly
(x

, 1
0)

10
 

−0
.0

15
0 

 0
.0

03
3 

 
−4

.4
94

2 
0.

00
00

 
 

R
es

id
ua

l s
ta

nd
ar

d 
er

ro
r:

 0
.0

03
34

8 
on

 7
1 

de
gr

ee
s 

of
 fr

ee
do

m
 

 
M

ul
ti

pl
e 

R
-S

qu
ar

ed
: 0

.9
96

7
 

 
F

-s
ta

ti
st

ic
: 2

16
2 

on
 1

0 
an

d 
71

 d
eg

re
es

 o
f

 
 

fr
ee

do
m

, t
he

 p
-v

al
ue

 is
 0

 
 

C
or

re
la

ti
on

 o
f 

C
oe

ffi
 c

ie
nt

s

 
 

A
L

L
 V

A
L

U
E

S 
A

R
E

 Z
E

R
O

.

35
. 

T
yp

e 
th

e 
fo

llo
w

in
g:

 
Sy

st
em

 r
es

po
nd

s 
w

it
h:

an
ov

a(
F

ili
p.

lm
.1

) 
A

na
ly

si
s 

of
 V

ar
ia

nc
e 

T
ab

le
 

 
R

es
po

ns
e:

 y
 

 
T

er
m

s 
ad

de
d 

se
qu

en
ti

al
ly

 (
fi r

st
 t

o 
la

st
)

 
 

D
f 

 
 

 
  

Su
m

 o
f 

Sq
 

M
ea

n 
Sq

 
   F

 V
al

ue
 

 
 P

r(
F

)
 

 
po

ly
(x

, 1
0)

 
10

 
 

 
 

  
0.

24
23

91
6 

0.
02

42
39

16
 

21
62

.4
4 

0
 

 
R

es
id

ua
ls

 
 7

1 
 

 
 

  
0.

00
07

95
9 

0.
00

00
11

21



36
. 

T
yp

e 
th

e 
fo

llo
w

in
g:

 
Sy

st
em

 r
es

po
nd

s 
w

it
h:

de
ta

ch
(2

,F
ili

p)
 

N
U

L
L

37
. 

R
ev

ie
w

 t
he

 in
fo

rm
at

io
n 

in
 

F
ig

ur
e 

2.
3a

 is
 t

he
 s

pe
ci

fi c
 m

od
el

 in
fo

rm
at

io
n

 
F

ig
ur

e 
2.

3a
. 

re
le

va
nt

 t
o 

th
e 

F
ili

p 
da

ta
 s

et
. I

ni
ti

al
 t

he
 

 
IN

IT
 c

ol
um

n 
if

 r
ea

d 
an

d 
un

de
rs

to
od

.
 

 
F

ig
ur

e 
2.

3b
 is

 t
he

 d
at

a 
se

t 
in

fo
rm

at
io

n.
 

 
It

 is
 p

ro
vi

de
d 

fo
r 

re
fe

re
nc

e.

38
. 

R
ev

ie
w

 t
he

 r
es

ul
ts

 o
f 

St
ep

 3
3,

 
R

es
ul

ts
 m

at
ch

 w
it

hi
n 

3 
si

gn
ifi 

ca
nt

 fi 
gu

re
s.

 
St

ep
 3

4 
an

d 
St

ep
 3

5 
ag

ai
ns

t 
th

e
 

ce
rt

ifi 
ed

 r
es

ul
ts

 o
f 

F
ig

ur
e 

2.
3c

.

39
. 

R
ev

ie
w

 t
he

 d
at

a 
se

t 
in

 t
he

 p
ro

bl
em

 
T

he
 d

at
a 

im
po

rt
ed

 m
at

ch
es

 t
he

 d
at

a 
in

 
of

 F
ig

ur
e 

2.
3d

 a
ga

in
st

 t
he

 d
at

a 
F

ig
ur

e 
2.

3d
.

 
im

po
rt

ed
 in

 S
te

p 
33

. (
T

yp
e 

F
ili

p
 

at
 t

he
 S

-P
lu

s 
pr

om
pt

 t
o 

se
e 

th
e

 
da

ta
 s

et
.)

3.
 V

er
if

y 
th

at
 S

-P
lu

s 
5.

1 
pe

rf
or

m
s 

th
e 

N
IS

T
 S

tR
D

 N
on

lin
ea

r 
R

eg
re

ss
io

n 
ca

lc
ul

at
io

ns
 t

o 
w

it
hi

n 
3 

si
gn

fi c
an

t 
di

gi
ts

3.
1.

 T
es

t 
N

on
lin

ea
r 

R
eg

re
ss

io
n 

w
it

h 
da

ta
 s

et
 M

is
ra

1a
, L

ow
er

 d
if

fi c
ul

ty
 e

xp
on

en
ti

al

40
. 

T
yp

e:
 M

is
ra

1a
<

- 
im

po
rt

D
at

a(
fi l

e 
Sy

st
em

 r
es

po
nd

s 
w

it
h:

=
“d

at
a 

se
ts

/M
is

ra
1a

1.
cs

v”
) 

F
or

m
ul

a:
 y

 ∼
 b

1 
* 

(1
 −

 e
xp

(-
 b

2 
* 

x)
)

 
T

he
 f

ol
lo

w
in

g 
is

 a
 s

in
gl

e 
co

m
m

an
d:

 
P

ar
am

et
er

s:
M

is
ra

1a
.n

ls
.1

<
-n

ls
(y

∼b
1*

(1
-e

xp
 

 
 

 
V

al
ue

 
 

 
  

St
d.

 E
rr

or
 

  
t 

va
lu

e
(-

b2
*x

))
,d

at
a

= 
M

is
ra

1a
,s

ta
rt

=
lis

t
 

b1
 

2.
38

94
2e

+0
2 

2.
70

70
1e

+0
0 

88
.2

68
0

(b
1

=
25

0,
b2

=
0.

00
05

))
 s

um
m

ar
y 

 
b2

 
5.

50
15

6e
-0

4 
7.

26
68

7e
-0

6 
 7

5.
70

75
(M

is
ra

1a
.n

ls
.1

)  
R

es
id

ua
l s

ta
nd

ar
d 

er
ro

r:
 0

.1
01

87
9 

on
 1

2
 

 
 

de
gr

ee
s 

of
 f

re
ed

om

 
 

C
or

re
la

ti
on

 o
f 

P
ar

am
et

er
 E

st
im

at
es

:
 

 
 

b1
 

 
 

b2
 

−0
.9

99

97



41
. 

R
ev

ie
w

 t
he

 in
fo

rm
at

io
n 

in
 

F
ig

ur
e 

3.
0a

 is
 t

he
 g

en
er

al
 b

ac
kg

ro
un

d
 

F
ig

ur
e 

3.
0a

. 
in

fo
rm

at
io

n 
fo

r 
th

e 
N

IS
T

 S
tR

D
 

 
N

on
lin

ea
r 

R
eg

re
ss

io
n 

te
st

. I
ni

ti
al

 t
he

 
 

IN
IT

 c
ol

um
n 

if
 r

ea
d 

an
d 

un
de

rs
to

od
.

 
 

F
ig

ur
e 

3.
0b

 is
 a

 s
um

m
ar

y 
of

 t
he

 d
at

a
 

 
se

ts
 r

ef
er

re
d 

to
 in

 F
ig

ur
e 

3.
0a

.

42
. 

R
ev

ie
w

 t
he

 in
fo

rm
at

io
n 

in
 

F
ig

ur
e 

3.
1a

 is
 t

he
 s

pe
ci

fi c
 m

od
el

 in
fo

rm
at

io
n

 
F

ig
ur

e 
3.

1a
. 

re
le

va
nt

 t
o 

th
e 

M
is

ra
1a

 d
at

a 
se

t. 
In

it
ia

l t
he

 
 

IN
IT

 c
ol

um
n 

if
 r

ea
d 

an
d 

un
de

rs
to

od
. F

ig
ur

e
 

 
3.

1b
 is

 t
he

 d
at

a 
se

t 
in

fo
rm

at
io

n.
 I

t 
is

 p
ro

vi
de

d
 

 
fo

r 
re

fe
re

nc
e.

43
. 

R
ev

ie
w

 t
he

 r
es

ul
ts

 o
f 

St
ep

 4
0 

R
es

ul
ts

 m
at

ch
 w

it
hi

n 
3 

si
gn

ifi 
ca

nt
 fi 

gu
re

s.
 

ag
ai

ns
t 

th
e 

ce
rt

ifi 
ed

 r
es

ul
ts

 o
f

 
F

ig
ur

e 
3.

1c
.

44
. 

R
ev

ie
w

 t
he

 d
at

a 
se

t 
in

 t
he

 p
ro

bl
em

 
T

he
 d

at
a 

im
po

rt
ed

 m
at

ch
es

 t
he

 d
at

a 
in

 
su

m
m

ar
y 

of
 F

ig
ur

e 
3.

1d
 a

ga
in

st
 

F
ig

ur
e 

3.
1d

.
 

th
e 

da
ta

 im
po

rt
ed

 in
 S

te
p 

40
.

 
(T

yp
e 

M
is

ra
1a

 a
t 

th
e 

S-
P

lu
s

 
pr

om
pt

 t
o 

se
e 

th
e 

da
ta

 s
et

.)

3.
2.

 T
es

t 
N

on
lin

ea
r 

R
eg

re
ss

io
n 

w
it

h 
da

ta
 s

et
 K

ir
by

2,
 A

ve
ra

ge
 d

if
fi c

ul
ty

 r
at

io
na

l

45
. 

T
yp

e:
 K

ir
by

2
<

- 
im

po
rt

D
at

a(
fi l

e 
Sy

st
em

 r
es

po
nd

s 
w

it
h:

=
“d

at
a 

se
ts

/K
ir

by
2.

cs
v”

) 
 

F
or

m
ul

a:
 y

 ∼
 (

b1
 +

 b
2 

* 
x 

+ 
b3

 *
 

 
T

he
 f

ol
lo

w
in

g 
is

 a
 s

in
gl

e 
 

x∧
2)

/(
1

+ 
b4

 *
 x

 +
 b

5 
* 

x∧
2)

 
 

co
m

m
an

d:
 K

ir
by

2.
nl

s.
1

<
- 

 
P

ar
am

et
er

s:
nl

s(
y∼

(b
1+

b2
*x

+b
3*

x∧
2)

/ 
 

 
V

al
ue

 
 

 
  

 S
td

. E
rr

or
 

 
t 

va
lu

e
(1

+b
4*

x+
b5

*x
∧2

),
da

ta
= 

b1
 

1.
67

44
8e

+0
0 

 8
.7

98
94

e−
02

 
 1

9.
03

04
K

ir
by

2,
st

ar
t

=
lis

t(
b1

=
1.

5,
b2

 
b2

 
−1

.3
92

72
e−

01
 

4.
11

81
8e

−0
3

−3
3.

81
89

 
 

 =
−0

.1
5,

b3
=

0.
00

25
, 

b3
 

2.
59

61
0e

−0
3 

  
4.

18
56

2e
−0

5 
  

62
.0

24
2

b4
= 

−0
.0

01
5,

b5
=

0.
00

00
2)

) 
b4

 
−1

.7
24

21
e −

03
 

5.
89

31
4e

−0
5

−2
9.

25
78

su
m

m
ar

y(
K

ir
by

2.
nl

s.
1)

 
b5

 
2.

16
64

7e
−0

5 
  

2.
01

29
7e

−0
7 

10
7.

62
60

 
 

R
es

id
ua

l s
ta

nd
ar

d 
er

ro
r:

 0
.1

63
54

5 
on

 1
46

 
 

 
de

gr
ee

s 
of

 f
re

ed
om

98



 
 

C
or

re
la

ti
on

 o
f 

P
ar

am
et

er
 E

st
im

at
es

:
 

 
 

  
b1

 
 

 
b2

 
 

b3
 

 
b4

 
 

b2
 

−0
.8

96
 

 
b3

 
0.

80
3 

−0
.9

74
 

 
b4

 
0.

56
9 

−0
.7

93
 

0.
90

3
 

 
b5

 
0.

84
7 

−0
.9

84
 

0.
96

2 
0.

75
6

46
. 

R
ev

ie
w

 t
he

 in
fo

rm
at

io
n 

in
 

F
ig

ur
e 

3.
2a

 is
 t

he
 s

pe
ci

fi c
 m

od
el

 in
fo

rm
at

io
n

 
F

ig
ur

e 
3.

2a
. 

re
le

va
nt

 t
o 

th
e 

K
ir

by
2 

da
ta

 s
et

. I
ni

ti
al

 t
he

 
 

IN
IT

 c
ol

um
n 

if
 r

ea
d 

an
d 

un
de

rs
to

od
.

 
 

F
ig

ur
e 

3.
2b

 is
 t

he
 d

at
a 

se
t 

in
fo

rm
at

io
n.

 
 

It
 is

 p
ro

vi
de

d 
fo

r 
re

fe
re

nc
e.

47
. 

R
ev

ie
w

 t
he

 r
es

ul
ts

 o
f 

St
ep

 4
5 

R
es

ul
ts

 m
at

ch
 w

it
hi

n 
3 

si
gn

ifi 
ca

nt
 fi 

gu
re

s.
 

ag
ai

ns
t 

th
e 

ce
rt

ifi 
ed

 r
es

ul
ts

 
of

 F
ig

ur
e 

3.
2c

.

48
. 

R
ev

ie
w

 t
he

 d
at

a 
se

t 
in

 t
he

 
T

he
 d

at
a 

im
po

rt
ed

 m
at

ch
es

 t
he

 d
at

a 
in

 
pr

ob
le

m
 s

um
m

ar
y 

of
 F

ig
ur

e 
F

ig
ur

e 
3.

2d
.

 
3.

2d
 a

ga
in

st
 t

he
 d

at
a 

im
po

rt
ed

 
in

 S
te

p 
45

. (
T

yp
e 

K
ir

by
2 

at
 

th
e 

S-
P

lu
s 

pr
om

pt
 t

o 
se

e 
th

e
 

da
ta

 s
et

.)

3.
3.

 T
es

t 
N

on
lin

ea
r 

R
eg

re
ss

io
n 

w
it

h 
da

ta
 s

et
 M

G
H

09
, H

ig
he

r 
di

ffi
 c

ul
ty

 r
at

io
na

l

49
. 

T
yp

e:
 M

G
H

09
<

- 
im

po
rt

D
at

a 
Sy

st
em

 r
es

po
nd

s 
w

it
h:

(fi
 le

=
“d

at
a 

se
ts

/M
G

H
09

.c
sv

”)
 

 
F

or
m

ul
a:

 y
 ∼

 (
b1

 *
 (

x∧ 2
+

+ 
b2

 *
 x

))
/

 
 

T
he

 f
ol

lo
w

in
g 

is
 a

 s
in

gl
e 

 
(x

∧ 2
+ 

x 
* 

b3
 +

 b
4)

 
 

co
m

m
an

d:
 M

G
H

09
.n

ls
.1

<
- 

P
ar

am
et

er
s:

nl
s(

y∼
(b

1*
(x

∧ 2+
+b

2*
x)

)/
 

 
 

V
al

ue
 

 
 S

td
. E

rr
or

  
t 

va
lu

e
(x

∧ 2+
x*

b3
+b

4)
,d

at
a

= 
M

G
H

09
, 

b1
 

0.
19

28
00

 
0.

01
14

36
1 

16
.8

58
90

0
st

ar
t

=
lis

t(
b1

=
0.

25
,b

2
=

0.
39

,
b2

 
0.

19
13

55
 

0.
19

63
73

0 
0.

97
44

43
b3

=
0.

41
5,

b4
=

0.
39

))
 s

um
m

ar
y 

b3
 

0.
12

30
30

 
0.

08
08

50
3 

1.
52

17
00

(M
G

H
09

.n
ls

.1
) 

b4
 

0.
13

61
01

 
0.

09
00

40
3 

1.
51

15
60

99



 
 

R
es

id
ua

l s
ta

nd
ar

d 
er

ro
r:

 0
.0

06
62

79
2 

on
 7

 
 

 
de

gr
ee

s 
of

 r
ee

do
m

 
 

C
or

re
la

ti
on

 o
f 

P
ar

am
et

er
 E

st
im

at
es

:
 

 
 

 
b1

 
 

 
  

b2
 

 
 

b3
 

 
b2

 
−0

.7
44

0
 

 
b3

 
0.

08
85

 
 

0.
52

50
 

 
b4

 
−0

.7
64

0 
 0

.9
89

0 
 0

.4
40

0

50
. 

R
ev

ie
w

 t
he

 in
fo

rm
at

io
n 

in
 

F
ig

ur
e 

3.
3a

 is
 t

he
 s

pe
ci

fi c
 m

od
el

 in
fo

rm
at

io
n

 
F

ig
ur

e 
3.

3a
. 

re
le

va
nt

 t
o 

th
e 

M
G

H
09

 d
at

a 
se

t. 
In

it
ia

l t
he

 
 

IN
IT

 c
ol

um
n 

if
 r

ea
d 

an
d 

un
de

rs
to

od
.

 
 

F
ig

ur
e 

3.
3b

 is
 t

he
 d

at
a 

se
t 

in
fo

rm
at

io
n.

 
 

It
 is

 p
ro

vi
de

d 
fo

r 
re

fe
re

nc
e.

51
. 

R
ev

ie
w

 t
he

 r
es

ul
ts

 o
f 

St
ep

 
R

es
ul

ts
 m

at
ch

 w
it

hi
n 

3 
si

gn
ifi 

ca
nt

 fi 
gu

re
s.

 
49

 a
ga

in
st

 t
he

 c
er

ti
fi e

d 
re

su
lt

s
 

of
 F

ig
ur

e 
3.

3c
.

52
. 

R
ev

ie
w

 t
he

 d
at

a 
se

t 
in

 t
he

 
T

he
 d

at
a 

im
po

rt
ed

 m
at

ch
es

 t
he

 d
at

a 
in

 
pr

ob
le

m
 s

um
m

ar
y 

of
 F

ig
ur

e 
F

ig
ur

e 
3.

3d
.

 
3.

3d
 a

ga
in

st
 t

he
 d

at
a 

im
po

rt
ed

 
in

 S
te

p 
49

. (
T

yp
e 

M
G

H
09

 a
t

 
th

e 
S-

P
lu

s 
pr

om
pt

 t
o 

se
e 

th
e

 
da

ta
 s

et
.)

4.
  V

er
if

y 
th

at
 S

-P
lu

s 
5.

1 
pe

rf
or

m
s 

a 
G

en
er

al
 A

dd
it

iv
e 

M
od

el
 w

it
h 

G
au

ss
ia

n 
er

ro
r 

D
is

tr
ib

ut
io

n 
an

d 
id

en
ti

ty
 li

nk
 p

ro
bl

em
 c

or
re

ct
ly

 t
o 

3 
si

gn
ifi 

ca
nt

 d
ig

it
s

53
. 

T
yp

e:
 s

ta
ck

<
-d

at
a.

fr
am

e(
cb

in
d 

Sy
st

em
 r

es
po

nd
s 

w
it

h:
(s

ta
ck

.x
,s

ta
ck

.lo
ss

))
 

 
C

al
l:

 
(n

ot
e:

 s
ta

ck
.x

 a
nd

 s
ta

ck
.lo

ss
 

 
ga

m
(f

or
m

ul
a 

= 
L

os
s 

∼ 
s(

A
ir

F
lo

w
) 

+
 

ar
e 

S-
P

lu
s 

bu
ilt

-i
n 

da
ta

 s
et

s)
 

 
s(

w
at

er
T

em
p)

 +
 s

(A
ci

dC
on

c)
,

 
T

he
 f

ol
lo

w
in

g 
is

 a
 s

in
gl

e 
 

da
ta

 =
 s

ta
ck

,
 

co
m

m
an

d:
 n

am
es

(s
ta

ck
)

<
- 

 
 

co
nt

ro
l =

 g
am

.c
on

tr
ol

(b
f.m

ax
it

 =
 5

0)
)

c(
“A

ir
F

lo
w

”,
“w

at
er

T
em

p”
, 

 
D

eg
re

es
 o

f 
F

re
ed

om
: 2

1 
to

ta
l; 

8.
00

09
7 

R
es

id
ua

l
“A

ci
dC

on
c”

,“
L

os
s”

)
R

es
id

ua
l D

ev
ia

nc
e:

 6
7.

79
17

1

100



 
T

he
 f

ol
lo

w
in

g 
is

 a
 s

in
gl

e
 

co
m

m
an

d:
 s

ta
ck

.g
am

.1
<

-g
am

(L
os

s
∼ 

s(
A

ir
F

lo
w

)+
s

(w
at

er
T

em
p)

+s
(A

ci
dC

on
c)

,
 

co
nt

ro
l

=
ga

m
.c

on
tr

ol
(b

f.
m

ax
it

=
50

),
da

ta
=

st
ac

k)
st

ac
k.

ga
m

.1

54
.

su
m

m
ar

y(
st

ac
k.

ga
m

.1
) 

Sy
st

em
 r

es
po

nd
s 

w
it

h:
 

 
C

al
l: 

ga
m

(f
or

m
ul

a 
= 

L
os

s 
∼ 

s(
A

ir
F

lo
w

) 
+

 
 

 
s(

w
at

er
T

em
p)

 +
s(

A
ci

dC
on

c)
, d

at
a 

= 
st

ac
k,

 
 

 
 

co
nt

ro
l =

 g
am

.c
on

tr
ol

(b
f.m

ax
it

 =
 5

0)
)

 
 

 
D

ev
ia

nc
e 

R
es

id
ua

ls
:

 
 

 
 

M
in

 
 1

Q
 

 
 

 
M

ed
ia

n 
 

3Q
 

 
 

  
M

ax
−3

.0
89

75
9

−1
.6

04
99

2 
0.

24
39

51
7 

0.
87

64
97

 
1 

3.
96

76
67

 
 

(D
is

pe
rs

io
n 

P
ar

am
et

er
 f

or
 G

au
ss

ia
n 

fa
m

ily
 

 
 

ta
ke

n 
to

 b
e 

8.
47

29
36

)
 

 
 

N
ul

l D
ev

ia
nc

e:
 2

06
9.

23
8 

on
 2

0 
de

gr
ee

s 
of

 
 

 
fr

ee
do

m
 

 
R

es
id

ua
l D

ev
ia

nc
e:

 6
7.

79
17

1 
on

 8
.0

00
97

 
 

 
de

gr
ee

s 
of

 f
re

ed
om

 
 

N
um

be
r 

of
 L

oc
al

 S
co

ri
ng

 I
te

ra
ti

on
s:

 1
 

 
D

F
 f

or
 T

er
m

s 
an

d 
F

-v
al

ue
s 

fo
r 

N
on

pa
ra

m
et

ri
c

 
 

 
E

ff
ec

ts
 

 
 

 
 

 
 

  
 D

f 
N

pa
r 

D
f 

N
pa

r 
F

 
P

r(
F

)
 

 
(I

nt
er

ce
pt

) 
 

 1
 

 
s(

A
ir

F
lo

w
) 

 
 1

 
3 

 
 

0.
93

44
05

 
 0

.4
67

64
02

 
 

s(
w

at
er

T
em

p)
 

1 
3 

 
 

3.
17

11
67

 
 0

.0
85

18
28

 
 

s(
A

ci
dC

on
c)

 
  

1 
3 

 
 

0.
97

55
55

 
 0

.4
50

76
14

55
. 

R
ev

ie
w

 t
he

 r
es

ul
ts

 o
f 

St
ep

s 
53

 
R

es
ul

ts
 m

at
ch

 w
it

hi
n 

3 
si

gn
ifi 

ca
nt

 fi 
gu

re
s.

 
an

d 
54

 a
ga

in
st

 t
he

 r
es

ul
ts

 o
f

 
F

ig
ur

e 
4 

(f
ro

m
 R

ef
. 7

)

56
. 

T
yp

e:
 q

()
 

Su
cc

es
sf

ul
 e

xi
t 

fr
om

 S
-P

lu
s.

57
. 

T
yp

e 
ex

it.
 

Su
cc

es
sf

ul
 lo

go
ff

 f
ro

m
 m

y_
se

rv
er

_n
am

e.

101



102 VALIDATION OF SOFTWARE FOR PHARMACOMETRIC ANALYSIS

Signoffs
(Signoffs for Document Tester and Test Coordinator with printed name and date 
spaces:)
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CHAPTER 4

Linear, Generalized Linear, and 
Nonlinear Mixed Effects Models

FARKAD EZZET and JOSÉ C. PINHEIRO

103

4.1 INTRODUCTION

Biopharmaceutical research often involves the collection of repeated measures on 
experimental units (such as patients or healthy volunteers) in the form of longitu-
dinal data and/or multilevel hierarchical data. Responses collected on the same 
experimental unit are typically correlated and, as a result, classical modeling methods 
that assume independent observations do not lead to valid inferences. Mixed effects 
models, which allow some or all of the parameters to vary with experimental unit 
through the inclusion of random effects, can fl exibly account for the within-unit 
correlation often observed with repeated measures and provide proper inference. 
This chapter discusses the use of mixed effects models to analyze biopharmaceuti-
cal data, more specifi cally pharmacokinetic (PK) and pharmacodynamic (PD) data. 
Different types of PK and PD data are considered to illustrate the use of the three 
most important classes of mixed effects models: linear, nonlinear, and generalized 
linear.

Linear mixed effects (LME) models express the response variable as a linear 
function of both the fi xed effects and the random effects, with an additive within-
unit error, see Laird and Wase (1) or Searle et al. (2) for a good review of meth-
odology. The frequentist approach to LME models is generally likelihood-based, 
with restricted maximum likelihood (REML) being the preferred method of 
estimation (3).

Nonlinear mixed effects (NLME) models extend LME models by allowing the 
response to be expressed as a nonlinear function of the parameters plus a within-
unit error term. Much of this work in biopharmaceutical research began in the 
1970s, pioneered by Sheiner and Beal (4). Exact likelihood estimation is gener-
ally not feasible, as the marginal distribution of the response cannot be expressed 
in closed form. Approximate likelihood methods are used instead, with differ-
ent degrees of accuracy and computational intensity having been proposed in the 
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literature; see Davidian and Giltinan (5) for a good review of some of these method-
ologies. A more detailed account of the theory and application of LME and NLME 
models, especially under S-Plus (6) can be found in work by Pinheiro and Bates (7). 
Research to produce computationally effi cient and accurate approximate likelihood 
methods for NLME models is still quite active.

Generalized linear mixed models (GLMMs) provide another type of extension of 
LME models aimed at non-Gaussian responses, such as binary and count data. In 
these models, conditional on the random effects, the responses are assumed inde-
pendent and with distribution in the exponential family (e.g., binomial and Poisson) 
(8). As with NLME models, exact likelihood methods are not available for GLMMs 
because they do not allow closed form expressions for the marginal distribution of 
the responses. Quasilikelihood (9) and approximate likelihood methods have been 
proposed instead for these models.

Mixed effects models under a Bayesian framework have been widely studied 
and used with the use of Markov chain Monte Carlo methods (10). These methods 
have gained particular popularity as complex problems became easily formulated 
using the WinBUGS software (11). See Congdon (12) for an extensive coverage of 
topics and examples and implementation in WinBUGS.

In this chapter we investigate and illustrate the use of LME and NLME models, 
as well as GLMMs using algorithms implemented in the S-Plus functions lme, nlme, 
and glme, respectively. We attempt to demonstrate that, even under fairly complex 
hierarchical, correlated data structures, the existing algorithms are capable of prop-
erly estimating the underlying parameters (fi xed effects and variance–covariance 
components), thus providing reliable unbiased inference.

We begin by considering a simple PK dose proportionality (DP) study in which 
subjects receive an experimental drug to evaluate if the increase in exposure is 
proportional to dose. We examine the problem in two ways: (a) using an exposure 
metric, for example, area under the concentration–time curve (AUC), which leads 
to an LME model; and (b) using the concentration data directly, which requires the 
use of an NLME model. Concentration data are simulated using different hierar-
chical random effects structures. We then extend the DP example to include a cli-
nical response and explore a pharmacokinetic/pharmacodynamic (PK/PD) NLME 
model. Collapsing the clinical response into a binary measure allows the illustration 
of GLMMs.

Common features among the three different classes of models and their imple-
mentation within the S-Plus environment come into light during the analysis of the 
examples: in particular, the syntax for defi ning the fi xed and random effects in the 
models, as well as methods for extracting estimates from fi tted objects. All data 
sets discussed in this chapter are fi ctitious: that is, they are generated by simulation. 
The reader is encouraged to experiment with the code provided in Appendix 4.1 to 
explore alternative scenarios.

4.2 PHARMACOKINETIC DOSE PROPORTIONALITY PROBLEM

Consider a dose proportionality study in which each subject is to receive a number 
of doses, usually two or more, of an experimental drug to evaluate if exposure 
increases proportionally with dose. We adopt a crossover design and, to keep things 
simple, assume that issues related to carryover, period, and sequence effects, as well 
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as subject by dose interactions (13), are of no concern in this example. The S-Plus 
function sim.dp.mult, included in Appendix 4.1, generates drug concentrations 
(C) at times (t) following drug administration, C(t), according to the single dose 
oral one-compartment PK model:

C t
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Typically, two types of error are recognized: (a) measurement level error resulting 
from error in concentrations due to assays, time of measurement, and so on and 
(b) subject level error represented in the model by random effects, accounting for 
deviations in the PK parameters between subjects, that is, in absorption (Ka), elimi-
nation (Ke), and/or volume (V). V is usually expressed as V/F when the fraction of 
dose absorbed (F) is unknown.

Formally, we may express C(t) as Cij(t) = f(qi, dosej, t) [1 + eij(t)], where Cij(t) and 
f(qi, dosej, t) are the measured and predicted concentrations for the ith subject at 
the jth dose at time t, respectively, and qi is the vector of PK parameters for the ith
subject. Here, the intersubject variability in the PK parameters is assumed propor-
tional. For instance, volume for the ith subject is defi ned as Vi = V exp(hi,V), where 
the random effects hi,V are independently distributed as N(0, cv·V). The prefi x cv
denotes coeffi cient of variation for V. The measurement error is assumed multipli-
cative, with the eij(t) independently distributed as N(0, cv·e). The functional form 
of f is determined by the type of PK model being considered; for the DP example 
we assume the one-compartment model described above.

A third possible source of variation, accounting for deviations in the PK param-
eters within subject from period to period, often referred to as interoccasion (IO) 
variability, may also be incorporated in the PK model. For example, we may defi ne 
Vij = V exp(hi,V + h′ij,V), where hi,V as before represents the intersubject random effect 
while h′ij,V represents the interoccasion random effect within subject, assumed inde-
pendently distributed as N(0, cv·occ·V).

The S-Plus data frame dp1 is generated by calling the function sim.dp.mult
assuming strict dose proportionality and no IO variability, as illustrated below. Figure 
4.1 shows a trellis display of the corresponding concentration–time profi les.

dose <- c(5, 10, 20)

time <- c(0.5,1,2,4,6,8,12,24,36,48,72,96)

dp1 <- sim.dp.mult(nsub = 12, Pars = c(ka = .1, ke = .03, v = 4),

 cv.sub = c(ka = .3, ke = .3, v = .3),

 cv.error = 0.1, time = time, dose = dose, seed = 123)

A plot of the observed AUC (calculated using trapezoidal rule implemented in 
the function aucTrap)versus dose (not shown here) reveals an almost perfect linear 
relationship, a consequence of the strict dose proportionality used to simulate the 
data.

4.2.1 DP Using AUC in a Linear Mixed Effects Model

Conventional DP analysis proceeds with the calculation of AUC using the trap-
ezoidal rule, followed by an analysis of variance of the resulting values normalized 
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by dose. A more appealing approach (14) is to defi ne AUC as a function of dose 
using a power model:

 AUCij = a(dosej)bnij (4.2)

with nij representing an error term. Applying log to both sides gives a linear model 
with a DP parameter b.

 log(AUCij) = log(a) + b log(dosej) + log(nij) = a +b log(dosej) + eij (4.3)

Strict DP is achieved when b = 1. Accounting for within-subject correlation due to 
repeated measures on the same subject is accomplished by introducing a subject 
effect S:

 log(AUCij) = a + b log(dosej) + Sj + eij = ai + b log(dosej) + eij (4.4)

where ai = a + Sj represents the subject intercept. The error eij combines measure-
ment error in AUC and any other sources of error, including model misspecifi cation. 
If ai is treated as a fi xed effect, standard linear regression analysis for independent 
data can be used, but information about intersubject variation cannot be provided. 
Instead, we consider a linear mixed effects model in which ai is assumed random. 
This is done using the lme function in S-Plus with the following function call using 
data set dpauc1:
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FIGURE 4.1 Concentration–time profi les generated using sim.dp.mult.
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f.dpauc1 <- lme(log(auc) ~ log(dose), data=dpauc1, ~1|subject)

resulting in the following parameter estimates:

Random effects:

Formula: ~ 1 | subject

 (Intercept) Residual 

StdDev: 0.3650006 0.04121098

Fixed effects: log(auc) ~ log(dose) 

 Value Std.Error DF t-value p-value 

(Intercept) 1.940150 0.1092254 23 17.76281 <.0001

 log(dose) 0.981528 0.0121362 23 80.87623 <.0001

The random intercept has an estimated standard deviation (SD) of 0.37 or, equiva-
lently, a coeffi cient of variation of 37% in the original AUC scale, refl ecting the com-
bined subject variation in all three PK parameters—Ka, Ke, and V. The estimated 
SD of measurement error in log(AUC) is small, 0.04. The DP parameter (i.e., the 
coeffi cient of log(AUC)) is estimated at 0.98, with a 95% confi dence interval (CI) 
of (0.96,1.01), consistent with strict dose proportionality.

4.2.2 DP Using Concentration Data in a Nonlinear Mixed 
Effects Model

We may alternatively tackle the DP problem by analyzing the raw concentration 
data directly, using a reparameterization of the assumed PK model. Because the PK 
model is nonlinear in its parameters, an NLME model is needed. In this example, 
since interest is centered on the DP assumption, we redefi ne the oral dose one-
compartment model to have AUC as one of its parameters, using the relation ke =
dose/(AUC × V). The function comp1.oral.auc.log defi ned below implements the 
reparameterized oral dose one-compartment model. To enforce positive estimates 
of the PK parameters, we have chosen to estimate the parameters on the log scale, 
hence the prefi x (l = log) preceding the PK parameter names in the argument list 
of the function.

comp1.oral.auc.log = function(lka, lauc, lv, f, dose, time)

{

 ka = exp(lka); auc = exp(lauc); v = exp(lv); ke = dose/(auc * v)

 (ka * dose * f)/(v * (ka - ke)) * (exp( - ke * time) - exp( - ka * time))

}

The nlme call for fi tting the corresponding nonlinear mixed effects model is

f.dp1b <- nlme(conc ~ comp1.oral.auc.log(lKa, lAUC, lV, 1, dose, 

time),

 data=dp1, fixed = list(lKa + lV ~ 1, lAUC ~ log(dose)),

 random =  list(subject = pdBlocked(list(lKa ~ 1, lAUC + 

lV ~ 1))),

 weights = varPower(), start = coef(f.dp1a), verbose = T)
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Starting values for fi xed effects in the above function call were extracted from a fi t 
object (f.dp1a) using the gnls function, a nonlinear fi tting method using generalized 
least squares. This is optional as the user may provide his/her own list of starting 
values.

We assume a block-diagonal matrix of subject random effects such that hj,lAUC and 
hj,lV are correlated, but independent of hj,lka. Here are the resulting estimates:

Random effects:

 Composite Structure: Blocked

 Block 1: lKa

 Formula: lKa ~ 1 | subject

 lKa

StdDev: 0.3078118

  Block 2: lAUC, lV

 Formula: list(lAUC ~ 1 , lV ~ 1 )

 Level: subject

 Structure: General positive-definite

        StdDev Corr 

  lAUC 0.3869677 lAUC 

   lV 0.2228085 -0.925

Residual 0.1006868

Variance function:

 Structure: Power of variance covariate

 Formula: ~ fitted(.)

 Parameter estimates:

  power

 0.9985222

Fixed effects: list(lKa + lV ~ 1, lAUC ~ log(dose))

                Value   Std.Error DF   t-value   p-value

          lKa -2.266270   0.0918522 417  -24.6730  <.0001

lV 1.416695  0.0669196 417   21.1701 <.0001

lAUC.(Intercept)     1.964468  0.1138468 417   17.2554 <.0001

 lAUC.log(dose)     0.998404   0.0078681 417   126.8926 <.0001

There is a close similarity between the estimates for the intercept and slope 
parameter corresponding to log(AUC) in the lme and nlme fi ts. It is not surprising 
that good estimates are obtained in this data-rich situation. However, reducing the 
number of time points in dp1 to include only measurements at 0.5, 1, 4, 12, and 48 
hours results in similar estimates, though with a larger SE, suggesting the ability of 
performing a DP study with a sparse sampling scheme.

             Value Std.Error DF t-value p-value

lAUC.(Intercept) 2.001881 0.1258471 165 15.90724 <.0001

lAUC.log(dose) 0.987246 0.0241469 165 40.88503 <.0001

Thus, in the case of sparse blood sampling schedules using concentration data in 
an NLME model offers a practical alternative to using (inaccurately) calculated 
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AUC values in an LME model. With the latter approach, an extensive schedule is 
needed for accurate AUC determination, in addition to a reliable method for 
capturing the AUC portion between the last quantifi able concentration value and 
infi nity.

4.2.3 DP Using Concentration Data in a NLME Model with 
Multilevel Random Effects (Interoccasion Variability)

The LME model of Section 4.2.1 and the NLME model of Section 4.2.2 both 
involved two random components: measurement error and subject random effects. 
In this section we explore a two-level random effect hierarchy by introducing IO 
variability in the PK parameters (Ka, Ke, and V), so that the subject’s parameters 
may vary from period to period. Note that this is not a period effect, but rather 
an uncontrollable random variation in the subject’s pharmacokinetics. The data 
frame dp2, incorporating IO random effects, is obtained by calling sim.dp.mult
as follows:

dp2 <- sim.dp.mult(nsub=12, Pars =c(ka=.1, ke=.03, v=4),

 cv.sub = c(ka=.3, ke=.3, v=.3),

 cv.occ = c(ka=0.2, ke=0.2, v=0.2),

 cv.error=0.1, time = time, dose = dose)

The magnitude of change in Ke, Ka, or V due to IO is set to have a cv equal to 
20%. A plot of calculated AUC versus dose (not shown) reveals the infl uence of IO 
variability on AUC, leading to a nonlinear relationship with dose.

Ignoring IO variability and calling lme as before gives the following estimates:

Random effects:

 Formula: ~ 1 | subject

      (Intercept) Residual 

StdDev: 0.3779992 0.182379

Fixed effects: log(auc) ~ log(dose) 

          Value Std.Error DF t-value p-value 

(Intercept) 2.080637 0.1677046 23 12.40656 <.0001

 log(dose) 0.915968 0.0537086 23 17.05440 <.0001

Because AUC is a function of Ke and V, its variance is increased with IO vari-
ability, impacting the measurement error variability in the lme fi t above—hence 
the larger residual standard deviation as compared with that obtained in the lme
fi t of the dp1 data. Alternatively, we resort to using the raw concentration data and 
incorporate IO random effects in the NLME model by allowing the parameters Ka,
AUC, and V to vary between dose administrations. This is implemented in the nlme
call using the following random statement:

random = list(subject = pdBlocked(list(lKa ~ 1, lAUC + lV ~ 1)),

         dose = pdBlocked(list(lKa ~ 1, lAUC + lV ~ 1)))
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The second component of the list represents the IO random effects associated with 
different dose administrations. The fi xed effects estimates for the above model 
are

 Value Std.Error DF  t-value   p-value

 lKa -2.233085 0.1110798 393 -20.10343  <.0001

 lV 1.427694 0.0843185 393  16.93215 <.0001

lAUC.(Intercept) 1.985077 0.1572971 393  12.61992 <.0001

 lAUC.log(dose) 0.986582 0.0459793 393  21.45710 <.0001

and the variance–covariance parameter estimates are

 Block 1: lKa

Formula: lKa ~ 1 | subject

        lKa

StdDev: 0.3574699

 Block 2: lAUC, lV

Formula: list(lAUC ~ 1 , lV ~ 1 )

Level: subject

Structure: General positive-definite

    StdDev Corr 

lAUC 0.3853345 lAUC 

 lV 0.2646356 -0.904

Composite Structure: Blocked

 Block 1: lKa

Formula: lKa ~ 1 | dose %in% subject

        lKa 

StdDev: 0.1968827

 Block 2: lAUC, lV

Formula: list(lAUC ~ 1 , lV ~ 1 )

Level: dose %in% subject

Structure: General positive-definite

       StdDev Corr

  lAUC 0.1903516 lAUC 

   lV 0.1785101 -0.631

Residual 0.1014465 

Variance function:

 Structure: Power of variance covariate

 Formula: ~ fitted(.)

 Parameter estimates:

   power

 0.9855959

Notice that appropriately adjusting for IO variability in the NLME model not 
only reduced the bias in the estimate of the dose proportionality parameter but also 
led to a valid estimate of the residual error standard deviation, a value much closer 
to that used to simulate the data, 0.1.



4.2.4 Comparing Sample and Model Estimates of Random 
Effects Parameters

Although the fi xed effects have been well estimated, it is also of interest to examine 
how closely the estimated standard deviations of the random effects refl ect the 
true variability in the simulated data. The dp2 data frame includes values of the 
generated subject random effects, interoccasion random effects, and measurement 
errors, from which sample variances can be obtained and compared to the model 
estimates. The intersubject sample standard deviations of log(Ka), log(AUC), and 
log(V) are 0.33, 0.41, and 0.23, respectively. The corresponding model estimates are 
0.36, 0.39, and 0.26. For the IO random effects, the sample SDs are 0.17, 0.22, and 
0.17, while the corresponding values obtained in the model fi t are 0.20, 0.19, and 
0.18, respectively. The sample and model SD for measurement error are both equal 
to 0.1, indicating a good agreement overall between sample and model estimates.

4.3 PHARMACOKINETIC–PHARMACODYNAMIC (PK-PD) MODEL

The function sim.pkpd.mult simulates a clinical response (R) on the basis of a 
PK/PD model. It incorporates a combined placebo (P) effect and a drug (D) effect. 
The placebo effect at time t is defi ned as

P(t) = BL {1 − exp(−a1t) + exp(−a2t)}, a1 > a2 > 0

while the drug effect is defi ned as

D(t) = (Emax C(t))/(EC50 + C(t)) and R(t) = {P(t) + D(t)} (1 + e(t))

The placebo model assumes an endogenous response, infl uenced by baseline (BL),
and two exponential functions. For a1 > a2, P(t) increases over time above BL then 
declines back to BL for suffi ciently large t. The drug model is a stimulus model, a 
function of plasma concentration C(t), maximal effect Emax, and EC50, the concen-
tration that produces 50% of the maximal effect. In this example, C(t) is generated 
without measurement error but is infl uenced by subject random effects in Ka, Ke,
and V, as discussed in the previous section. Additional subject random effects are 
considered for BL and Emax.

The data frame pkpd1 is generated according to the PK-PD model above, using 
the following call to the function sim.pkpd.mult. Figure 4.2 shows a trellis display 
of the corresponding time profi les for the simulated PD response.

time <- c(0, 0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 14, 21, 28) # days

time <- time * 24 # convert to hours

pkpd1 <- sim.pkpd.mult(nsub=24, doseint=24, ndose=29,

      Pars =c(ka=.1, ke=.03, v=4, bl=8, ec50=5, emax=8), 

      pdPars=c(a1=0.1, a2=0.05),

      cv.sub = c(ka=.3, ke=.3, v=.3, bl=0.35,

             ec50=0.0, emax=0.35),

      cv.error = 0.05, time = time, dose = c(10),

      levIncCV = 0, parsForm = list(ke = ~ke*sqrt(dose/dose)),

      seed = 123)

PHARMACOKINETIC–PHARMACODYNAMIC (PK-PD) MODEL 111
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The nlme function was used to fi t the PK/PD model using the following function 
call:

f.pd1 <- nlme(resp ~ placebo.log(lbl, la1, la2, time)

         + drug.log(lemax, lec50, concm),

 data=pkpd1, fixed = list(lbl+la1+la2+lemax+ lec50~1),

     random = list(subject = pdDiag(list(lbl~1, lemax ~ 1))),

      start = log(c(15, .2, .1, 15, 10)),

      weight = varPower(), verbose = T)

The estimation results for the f.pd1 fi t are as follows:

Random effects:

 Formula: list(lbl ~ 1 , lemax ~ 1 )

 Level: subject

 Structure: Diagonal

         lbl lemax Residual 

StdDev: 0.3244805 0.2962879 0.04937675

Variance function:

 Structure: Power of variance covariate

 Formula: ~ fitted(.)

 Parameter estimates:

   power

 0.9912175
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FIGURE 4.2 Response–time profi les generated using sim.pkpd.mult.



Fixed effects: list(lbl + la1 + la2 + lemax + lec50 ~ 1)

 Value Std.Error DF t-value p-value

 lbl  2.186591 0.067473 284 32.40690 <.0001

 la1 -2.722665 1.174003 284 -2.31913 0.0211

 la2 -2.749036 1.176724 284 -2.33618 0.0202

lemax 1.970194 0.255620 284  7.70751 <.0001

lec50 1.433258 0.406105 284  3.52928 0.0005

Using exp(fixef(f.pd1)) produces estimates of fi xed effects, in agreement 
with the values used in the simulation (i.e., bl = 8, a1 = 0.1, a2 = 0.05, emax = 8, 
ec50 = 5).

exp(fixef(f.pd1))

   lbl la1     la2      lemax   lec50 

8.904805 0.0656994 0.06398949 7.172067 4.192337

The remaining parameters, representing the variance and covariance compo-
nents, are also fairly accurately estimated in this example. All confi dence intervals 
for the model parameters contain the corresponding value used to simulate the 
data.

4.4 REPEATED BINARY MEASURE: GLMM FIT

To illustrate the use of GLMMs to analyze biopharmaceutical data, we artifi cially 
added binary response variable Rb(t) to the pkpd1 data of the previous section by 
creating an indicator variable for the event that the PD response was >12.

pkpd1$Rb <- as.integer(pkpd1$resp > 12)

The glme function implements GLMMs in S-Plus, being available in the experi-
mental library S+CorrelatedData, which can be downloaded from the Insightful 
Corporation website at www.insightful.com (it requires Version 6.2 or higher of 
S-Plus). Its syntax is almost identical to that of lme, with an additional argument
—family, representing the desired exponential family distribution to be used. Most 
commonly used families are binomial and poisson, for binary and count data, 
respectively.

For example, to fi t a model with a single mean parameter and a single subject 
random effect, one could use

f.bin1 <- glme(Rb ~ 1, pkpd1, ~1|subject, family = binomial)

producing the following estimation results:

Generalized linear mixed-effects model fit by restricted PQL

Family: Binomial with Logit link

. . .

REPEATED BINARY MEASURE: GLMM FIT 113
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Random effects:

 Formula: ~ 1 | subject

     (Intercept) Residual 

StdDev: 4.328903   0.6263724

Fixed effects: Rb ~ 1 

          Value Std.Error DF  t-value  p-value

(Intercept) -0.955206 0.9430668 288 -1.012872 0.312

The interpretation of the estimates in relation to those of the PK/PD model is 
not straightforward. The intercept estimate gives the logit of the probability that the 
PD response is >12, with the random effect SD corresponding also to the logit scale. 
The default estimation method used in glme is restricted penalized quasilikelihood 
(PQL), (9). The question of primary interest is factors infl uencing the dichotomized 
response variable Rb. Here, it is a question of whether its probability of taking the 
value 1 (i.e., of the PD response being >12) changes with drug concentration. We 
can investigate that by fi tting a different GLMM,

f.bin2 <- glme(Rb ~ concm, pkpd1, ~ 1 | subject, family = 

binomial)

with estimated fi xed effects:

Fixed effects: Rb ~ concm 

          Value  Std.Error DF  t-value  p-value

(Intercept) -6.756281 1.679655  287 -4.02242 0.0001

   concm   2.770181 0.263541  287 10.51138 <.0001

The highly signifi cant and positive estimate for the concentration (concm) slope 
indicates that the logit of the probability increases with increasing concentration, 
or more precisely, that the probability that the PD response exceeds 12 increases 
when the concentration increases.

4.5 MODEL UNCERTAINTY: SIMULATION

With satisfactory model diagnostics, we may wish to evaluate model predictions. 
Predictions are useful in a number of ways, notably for evaluating model behavior 
under alternative settings, for example, a range of dosage regimens, or to establish 
the likely individual response to specifi c study design features. We thus distinguish 
two types of predictions: population and individual.

Since population predictions represent mean estimates, these are determined 
using model estimates (m) and its variance–covariance matrix (Σ), characterizing 
uncertainty in the model estimates. Thus, a single population profi le is obtained 
by making a single draw from a multivariate normal (MVN) with mean m and 
variance Σ, and substituting in the model equation. The estimates m and Σ can 
be read using fixef(obj) and obj$varFix, respectively, where obj is the name 
of the fi tted object. However, we combined these two steps using the function 



simPars(getFixPars(obj), N = 1). As an illustration, we generate N = 12 popu-
lation profi les based on the model fi t f.pd1.b at a 20 mg dose. Figure 4.3 provides the 
concentration–time profi le while Figure 4.4 provides the response–time profi le.

Individual predictions, however, require in addition to m and Σ the estimated 
standard deviations of the random subject effects (t) and corresponding variance–
covariance matrix (Ω). The extraction of t and Ω is less straightforward; but 
the function getRanPars does just that. Notice that this function also extracts 
estimates and standard errors of other random effects parameters, for example, 
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measurement error, or correlation coeffi cients if random effects are assumed cor-
related. Therefore, caution should be exercised when extracting the appropriate 
elements, by appropriately matching the function output with that of the model 
fi t. A random draw of an individual subject random effects can be obtained using 
simPars(getRanPars(obj), N = 1). Substituting into the model equation of a 
population profi le provides an individual profi le from that population. As an illus-
tration, we generate N = 12 individual profi les based on four different population 
realizations (representing four study results) using the model fi t f.pd1.b at a 20 mg 
dose. Figure 4.5 shows the concentration–time profi le while Figure 4.6 shows the 
response–time profi le in trellis plots.

Notice the range of resulting clinical response in the four panels of Figure 4.6, 
refl ecting uncertainty in the estimates as well as magnitude of intersubject variance. 
The process described above may be used to calculate various statistics. This can be 
particularly useful at the design stage of future clinical trials. For instance, we may 
be interested in computing the 5th and 95th percentiles of R at day 7 of treatment 
under two sample size scenarios, say, 24 or 36 subjects. For each design, percentiles 
are determined based on a large number (say, 1000) of replicated studies. Figure 
4.7 depicts the distributions of 5th and 95th percentiles under the two designs, sug-
gesting some, although no substantial, gain in precision is achieved with the larger 
sample size.

4.6 SUMMARY

In this chapter we introduce and illustrate the use of linear, nonlinear, and general-
ized linear mixed effects models within the S-Plus environment. Based on personal 
experience, the fi tting algorithms implemented in these S-Plus functions appear 
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to be stable and reliable, producing nearly unbiased estimates for problems with 
appropriate sample sizes. The syntax of function calls and extraction methods of 
results are similar among the various functions, rendering the environment conve-
nient for a wide range of models including multilevel hierarchical variance models. 
One limitation of the nlme function in S-Plus is for applications in which the model 
function is not expressed in closed form (e.g., a system of differential equations). 
Recently, researchers have extended the NLME software to allow a link between 
the nlme function and a linear differential equation solver, which can be used 
to fi t more complex NLME models. The extended nlme function is currently 
only available in the R language, as part of the nlmeODE contributed library 
(http://nlmeode.sourceforge.net).

We investigate a simple dose proportionality (DP) problem that can be success-
fully analyzed with software for linear regression analysis with independent data. 
The DP problem is expanded to include random effects and is thus dealt with as a 
linear mixed effects problem using a summary PK measure (AUC), or as a nonlinear 
mixed effects problem (up to two levels of random effects) using raw concentration 
data. We tend to favor the latter approach, especially in cases of sparse concentra-
tion data. This may be particularly true in studies involving special populations (e.g., 
pediatrics) or when using patient data from Phase 2 or Phase 3 studies. These studies 
offer the opportunity to reevaluate assumptions of dose proportionality, bioequiva-
lence, and drug interactions in a larger, more representative, patient population 
under varied clinical settings.

The exposition is restricted to two levels of random effects, which are illustrated 
as subject random effects and interoccasion variability. Another similar situation 
with two levels of random effects may involve random subject effects nested within 
random center or study effects. In preclinical allometric studies, used to predict 
human drug exposure from animal studies, animal species can be considered as a 
random effect in which each species deviates from an allometry relationship (often 
drug clearance and body weight) by a fi xed but unknown amount. Although the 
methods discussed in this chapter are able to deal with more than two levels of 
grouping in the data, the ability to reliably estimate a larger number of variance 
components is determined by the availability of data at each level. This has not been 
explored herein; thus, no guidance is offered on appropriate sample sizes and the 
stability of estimation algorithms under these models.

When using mixed effects models in practice, of particular importance is the 
derivation of predictions following the model fi t. The fi xed effect estimates and their 
corresponding standard errors allow calculation of population (or mean) predic-
tions and associated uncertainty intervals. The estimated covariance matrix for the 
random effects together with the corresponding standard errors allow calculation 
of individual predictions and uncertainty intervals. These methods are particularly 
helpful at the design stage of new studies, when combined with modeling and simu-
lation approaches.

We have included in Appendix 4.1 the S-Plus functions and scripts used in the 
simulation and analysis of the examples presented here. The reader should be able 
to reproduce the results using the same seed (=123) and is encouraged to attempt 
variations to explore other possibilities. The S-Plus code was not developed with 
computational effi ciency in mind, but just to illustrate how the different mixed 
effects models can be used to analyze PK and PD data in S-Plus. We hope we have 



provided a brief account of mixed effects models and a framework for exploring 
such models under S-Plus.
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APPENDIX 4.1 S-PLUS CODE

## Scripts used to produce data sets and perform analysis

## Modeling and simulation functions included at the end of this

## file should be sourced into S-Plus before the scripts can be run

## Dose proportionality example of Section 4.2

dose <- c(5, 10, 20)

time <- c(0.5, 1, 2, 4, 6, 8, 12, 24, 36, 48, 72, 96)

dp1 <- sim.dp.mult(nsub=12, Pars =c(ka=.1, ke=.03, v=4),

          cv.sub = c(ka=.3, ke=.3, v=.3),

cv.error = 0.1, time = time, dose = dose, seed = 123)
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dp1.Gd<- groupedData(conc ~ time | subject/dose, dp1,

         labels = list(x = “Time”, y = “Concentration”),

         units = list(x = “(hrs)”))

trellis.device()

plot(dp1.Gd, display = 1, collapse = 1, inner = ~dose, aspect = 1, grid=F)

auc1 <- aucTrap(dp1)

sub <- unique(dp1$subject)

doses <- unique(dp1$dose)

dpauc <- expand.grid(dose=doses,subject=sub)

dpauc1 <- cbind(expand.grid(dose=doses,subject=sub), auc = auc1)

dpauc1 <- groupedData(auc ~ dose|subject, dpauc1,

            labels = list(x = “Dose”, y = “AUC”))

## lme fit of Section 2.1

f.dpauc1 <- lme(log(auc) ~ log(dose), data=dpauc1, ~1|subject)

summary(f.dpauc1)

intervals(f.dpauc1)

## nlme fit of Section 4.2.2

f.dp1a <- gnls(conc ~ comp1.oral.auc.log(lKa, lAUC, lV, 1, dose, time),

     dp1, params = list(lKa + lV ~ 1, lAUC ~ log(dose)),

     start = log(c(0.1, 100, 1, 4)), verbose = T)

f.dp1b <- nlme(conc ~ comp1.oral.auc.log(lKa, lAUC, lV, 1, dose, time),

     data=dp1, fixed = list(lKa + lV ~ 1, lAUC ~ log(dose)),

     random = list(subject = pdBlocked(list(lKa ~ 1, lAUC + lV ~ 1))),

     weights = varPower(), start = coef(f.dp1a), verbose = T)

summary(f.dp1b)

intervals(f.dp1b)

dp1sub <- dp1[is.element(dp1$time, c(0.5, 1, 4, 12, 48)),]

f.dp1bSub<-nlme(conc~comp1.oral.auc.log(lKa,lAUC,lV,1,dose,time),

data=dp1sub, fixed = list(lKa + lV ~ 1, lAUC ~ log(dose)),

random = list(subject = pdBlocked(list(lKa ~ 1, lAUC + lV ~ 1))),

     weights = varPower(), start = coef(f.dp1a), verbose = T)

summary(f.dp1bSub)

intervals(f.dp1b)

## IO example of Section 4.2.3

dp2 <- sim.dp.mult(nsub=12, Pars =c(ka=.1, ke=.03, v=4),

        cv.sub = c(ka=.3, ke=.3, v=.3),

        cv.occ = c(ka=0.2, ke=0.2, v=0.2),

        cv.error=0.1, time = time, dose = dose, seed = 123)



auc2 <- aucTrap(dp2)

sub <- unique(dp2$subject)

doses <- unique(dp2$dose)

dpauc <- expand.grid(dose=doses,subject=sub)

dpauc2 <- cbind(expand.grid(dose=doses,subject=sub), auc = auc2)

dpauc2 <- groupedData(auc ~ dose|subject/dose, dpauc2,

         labels = list(x = “Dose”, y = “AUC”))

## lme fit

f.dpauc2 <- lme(log(auc) ~ log(dose), data=dpauc2, ~1|subject)

summary(f.dpauc2)

intervals(f.dpauc2)

# nlme fits

f.dp2a <- gnls(conc ~ comp1.oral.auc.log(lKa, lAUC, lV, 1, dose, time),

     dp2, params = list(lKa + lV ~ 1, lAUC ~ log(dose)),

     start = log(c(0.1, 100, 1, 4)), verbose = T)

f.dp2b <- nlme(conc ~ comp1.oral.auc.log(lKa, lAUC, lV, 1, dose, time),

     data=dp2, fixed = list(lKa + lV ~ 1, lAUC ~ log(dose)),

     random =list(subject =pdBlocked(list(lKa~1,lAUC+lV~1))),

     weights = varPower(), start = coef(f.dp2a), verbose = T)

f.dp2c<-update(f.dp2b,random=list(subject=pdDiag(lKa+lAUC+lV~1),

     dose = pdDiag(lKa + lAUC + lV ~ 1)))

f.dp2d <- update(f.dp2c, start = list(random = ranef(f.dp2c)),

     random = list(subject = pdBlocked(list(lKa ~ 1, lAUC + lV ~ 1)),

     dose = pdBlocked(list(lKa ~ 1, lAUC + lV ~ 1))))

summary(f.dp2d)

intervals(f.dp2d)

## PK-PD model example of Section 4.3

time <- c(0,.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 14, 21, 28) # days

time <- time * 24                  # convert to hours

pkpd1 <-

 sim.pkpd.mult(nsub=24, doseint=24, ndose=29,

     Pars =c(ka=.1, ke=.03, v=4, bl=8, ec50=5, emax=8),

     pdPars=c(a1=0.1, a2=0.05),

     cv.sub = c(ka=.3, ke=.3, v=.3, bl=0.35, ec50=0.0,

      emax=0.35),

     cv.error = 0.05, time = time, dose = c(10),

     levIncCV = 0, parsForm = list(ke = ~ke*sqrt(dose/dose)), 

     seed = 123)
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pkpd1.Gd<- groupedData(resp ~ time | subject, pkpd1,

         labels = list(x = “Time”, y = “R”),

         units = list(x = “(hrs)”))

plot(pkpd1.Gd, aspect = 1, grid = F)

f.pd1 <-

nlme(resp ~ placebo.log(lbl, la1, la2, time)+drug.log(lemax, 

lec50, concm), 

   data=pkpd1.Gd, fixed = list(lbl+la1+la2+lemax+ lec50~1), 

   random = list(subject = pdDiag(list(lbl~1, lemax ~ 1))), 

   start = log(c(15, .2, .1, 15, 10)),

   weight=varPower(), verbose = T)

summary(f.pd1)

exp(fixef(f.pd1))

intervals(f.pd1)

## GLMM example with binary response, Section 4.4

pkpd1$Rb <- as.integer(pkpd1$resp > 12)

mean(pkpd1$Rb)

mean(tapply(pkpd1$Rb, pkpd1$subject, mean))

f.bin1 <- glme(Rb ~ 1, pkpd1, ~1|subject, family = binomial)

summary(f.bin1)

exp(fixef(f.bin1))/(1+exp(fixef(f.bin1)))

f.bin2 <- update(f.bin1, Rb ~ concm)

summary(f.bin2)

## Simulation example of Section 4.5

# ________________________________________________________________

# Simulate 12 trials (set pop=T)

# ________________________________________________________________

sim <- sim.IP(dose=20, doseint=24, ndose=14,

      time=c(seq(0,1,by=0.1), seq(1,14,by=1)), nsubject=12,

      replicates=12, pop=T, seed=123)

xyplot(concm ~ time , sim, panel = panel.superpose, groups = study,

  type = “l”, pch=16, lwd=1, col=c(1),layout=c(1,1),aspect=0.75,

  strip = function(. . .) strip.default(. . ., style = 1),

par.strip.text = c(col=1), xlab = “Time (hr)”, ylab = “Response”)

xyplot(resp ~ time , sim, panel = panel.superpose, groups = study,

  type = “l”, pch=16, lwd=1, col=c(1),layout=c(1,1),aspect=0.75,

  strip = function(. . .) strip.default(. . ., style = 1),

  par.strip.text = c(col=1), 

  xlab = “Time (hr)”, ylab = “Response”)



# ________________________________________________________________

# Simulate 4 studies with 12 subjects each 

# ________________________________________________________________

sim <- sim.IP(dose=20, doseint=24, ndose=14, time=c(0, 0.5, 1, 2, 

3, 7, 14),

     nsubject=10, replicates=4, pop=F, seed=123)

trellis.device(graphsheet, color=F)

xyplot(concm ~ time|factor(paste(“Study”,study)) , sim, 

panel = panel.superpose, groups = sub, type = “b”, pch=16, 

cex=0.75,

    lwd=1, lty=1, col=c(1),layout=c(2,2),aspect=0.75,

    strip = function(. . .) strip.default(. . ., style = 1),

    par.strip.text=list(cex=1.5,col=1), scales=list(cex=1.2),

    xlab = “Time (hr)”, ylab = “Concentration”)

xyplot(resp ~ time|factor(paste(“Study”,study)) , sim, 

panel = panel.superpose, groups = sub, type = “b”, pch=16, 

cex=0.75,

    lwd=1, lty=1, col=c(1),layout=c(2,2),aspect=0.75,

    strip = function(. . .) strip.default(. . ., style = 1),

    par.strip.text=list(cex=1.5,col=1), scales=list(cex=1.2),

    xlab = “Time (hr)”, ylab = “Response”)

##################################################################

#

#

#         Modeling and simulation functions

# Should be sourced into S-Plus before scripts are run

#

#

##################################################################

comp1.oral <-

 function(ka, ke, v, f, dose, time)

{

 (ka * dose * f)/( v * (ka - ke)) * (exp( - ke * time) - exp( - 

ka * time))

}

comp1ss.oral <-

 function(ka, ke, v, f, dose, time, tau)

{

 (ka * dose * f)/( v * (ka - ke)) * (exp( - ke * time)/(1 - exp( - ke * 

tau)) - exp( - ka * time)/(1 - exp( - ka * tau)))

}
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comp1.oral.auc.log <-

 function(lka, lauc, lv, f, dose, time)

{

 ka <- exp(lka)

 auc <- exp(lauc)

 v <- exp(lv)

 ke <- dose/(auc * v)

(ka * dose * f)/( v * (ka - ke)) * (exp( - ke * time) - exp( - 

ka * time))

}

profn <-

 function(ka, ke, v, f, dose, time, tau, proftype, ndose)

{

 u0 <- (proftype == 0) * comp1.oral(ka , ke, v, f, dose, time) + 

  (proftype != 0) * comp1ss.oral(ka, ke , v, f, dose, time, tau)

 if(ndose > 1) {

  nn <- ndose - 1

  for(i in 1:nn) {

   u1 <- comp1.oral(ka , ke , v, f, dose, as.double(time > i * tau) *

            (time - i * tau))

   u0 <- u0 + u1

  }

 }

 u0

}

# ________________________________________________________________

# Placebo model

# ________________________________________________________________

placebo <-

 function(bl, a1, a2, time)

{

 bl + 0.5 * (1- exp(-a1*time) + exp(-a2*time) )

}

placebo.log <-

 function(lbl, la1, la2, time) 

{

 bl <- exp(lbl); a1 <- exp(la1); a2 <- exp(la2)

 bl * (1- exp(-a1*time) + exp(-a2*time) )

}

# ________________________________________________________________

# Drug model

# ________________________________________________________________

drug <-



function(emax, ec50, conc)

{

 (emax * conc)/(ec50+conc)

}

drug.log <-

 function(lemax, lec50, conc) 

{

 emax <- exp(lemax); ec50 <- exp(lec50)

 (emax * conc)/(ec50+conc) 

}

# ________________________________________________________________

# ________________________________________________________________

# Calculate AUC using trapezoidal rule 

# ________________________________________________________________

aucTrapEl <- 

 function(data)

{

 N <- nrow(data)

 if(N == 1) return(NA)

 0.5 * sum(diff(data$time) * (data$conc[ - N] + data$conc[-1]))

}

aucTrap <-

function(data, conc = “conc”, sub = “subject”, time = “time”, 

dose = “dose”)

{

 sub <- data[, sub]

 dataN <- data[, c(conc, time)]

 names(dataN) <- c(“conc”, “time”)

 if(is.element(dose, names(data))) {

  sub <- paste(sub, data[, dose], sep = “:”)

 }

 sub <- factor(sub, levels = unique(sub))

 val <- sapply(split(dataN, sub), aucTrapEl)

 val

}

# ________________________________________________________________

# Extracts random effects covariance matrix from lme/nlme object

# ________________________________________________________________

reffVar <-

 function(obj, level = 1)

{

 val <- pdMatrix(obj$modelStruct$reStruct)

 sig2 <- obj$sigma^2
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 for(i in seq(along = val))

  val[[i]] <- sig2 * val[[i]]

 if(length(level) == 1) {

  val[[level]]

 }

 else {

  val[level]

 }

}

### Multilevel models

###

### Simulate data for crossover dose proportionality study

### Including possible increase in cv due to dose

sim.dp.mult <-

function(nsub, Pars, cv.sub, cv.occ = NULL, cv.error, time, dose,

      incCV.sub = 0, incCV.occ = 0, levIncCV = 0,

      parsForm = NULL, seed = NULL)

{

 if (!is.null(seed)) set.seed(seed)

 np <- length(Pars) # number of parameters

 nd <- length(dose) # number of doses

 nb <- length(cv.sub) # number of subject random effects

no <- length(cv.occ) # number of inter-occasion random effects, if any

 minD <- min(dose)

 diffD <- diff(range(dose))

 ## random effects at subject level

reffSub <- t(diag(cv.sub) %*% array(rnorm(nsub * nb), c(nb, nsub)))

 ## random effects at occasion within-subject level

 if (no > 0) {

  reffOcc <- t(diag(cv.occ) %*% array(rnorm(nsub * no * nd),

                        c(no, nsub * nd)))

 }

 nt <- length(time)            # number of time points

## expanding random effects and covariates to match length of data

 reffSub <- reffSub[rep(1:nsub, each = nd * nt), ]

 dimnames(reffSub)[[2]] <- names(cv.sub)

 if (no > 0) {

   reffOcc <- reffOcc[rep(1:(nsub*nd), each = nt), ]

  dimnames(reffOcc)[[2]] <- names(cv.occ)

  reffOcc <- data.frame(reffOcc)

 } else {

   reffOcc <- NULL

 }



 time <- rep(time, nsub * nd)

 dose <- rep(rep(dose, each = nt), nsub)

 sub <- rep(1:nsub, each = nd * nt)

 incD <- (dose - minD)/diffD

 ## increasing CV of reffs, if needed

 if (is.element(1, levIncCV)) {

  if (nb > 1 && (length(incCV.sub) == 1)) {

   incCV.sub <- rep(incCV.sub, nb)

  }

  ## subject level reffs

  for(i in 1:nb) {

   reffSub[,i] <- reffSub[,i] * (1 + incD * incCV.sub[i])

  }

 }

 reffSub <- data.frame(reffSub)

 if (is.element(2, levIncCV) & (no > 0)) {

  ## occasion within-subject level reffs

  if (no > 1 && (length(incCV.occ) == 1)) {

   incCV.occ <- rep(incCV.occ, no)

  }

  for(i in 1:no) {

   reffOcc[,i] <- reffOcc[,i] * (1 + incD * incCV[i])

  }

 }

## checking if any parameter is to be allowed to vary with dose

 Pars <- as.vector(Pars)

 ka <- Pars[1] ; ke <- Pars[2] ; v <- Pars[3]

 if (!is.null(parsForm$ka)) {

  ka <- eval(parsForm$ka[[2]], list(ka = ka, dose = dose))

 }

 if (!is.null(parsForm$ke)) {

  ke <- eval(parsForm$ke[[2]], list(ke = ke, dose = dose))

 }

 if (!is.null(parsForm$v)) {

  v <- eval(parsForm$v[[2]], list(v = v, dose = dose))

 }

 updReff <- 

  function(var, namVar, data1, data2)

 {

  val <- 0

if (!is.na(match(namVar, names(data1)))) val <- val + data1[, 

namVar]

  if (!is.null(data2) && !is.na(match(namVar, names(data2)))) 

   val <- val + data2[, namVar]

  var * exp(val)

 }
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 ## combining fixed and random effects to form parameter values

 ka <- updReff(ka, “ka”, reffSub, reffOcc)

 ke <- updReff(ke, “ke”, reffSub, reffOcc)

 v <- updReff(v, “v”, reffSub, reffOcc)

 ## concentrations

 conc0 <- comp1.oral(ka, ke, v, 1, dose, time)

 err <- rnorm(length(conc0), 0, cv.error)

 conc <- conc0 * (1 + err)

 val <- data.frame(subject = sub,

            dose = dose,

            time = time,

            ka = ka,

            ke = ke,

            v = v,

          x0 = conc0,

conc = conc,

reffSub = reffSub,

err = err)

 if (no > 0) val$reffOcc <- reffOcc

 val

}

## multiple dose PK-PD study

sim.pkpd.mult <-

 function(nsub, doseint, ndose,

   Pars, pdPars, cv.sub, cv.occ = NULL, cv.error, time, dose,

     incCV.sub = 0, incCV.occ = 0, levIncCV = 0,

     parsForm = NULL, seed = NULL)

{

 if (!is.null(seed)) set.seed(seed)

 np <- length(Pars) # number of parameters

 nd <- length(dose) # number of doses

 nb <- length(cv.sub) # number of subject random effects

 no <- length(cv.occ) #  number of inter-occasion random effects, 

if any

 minD <- min(dose)

 diffD <- diff(range(dose))

## random effects at subject level

reffSub <- t(diag(cv.sub) %*% array(rnorm(nsub * nb), c(nb, nsub)))

## random effects at occasion within-subject level

if (no > 0) {

reffOcc <- t(diag(cv.occ) %*% array(rnorm(nsub * no * nd), c(no, 

nsub * nd)))

}

nt <- length(time) # number of time points



## expanding random effects and covariates to match length of data

 reffSub <- reffSub[rep(1:nsub, each = nd * nt), ]

 dimnames(reffSub)[[2]] <- names(cv.sub)

 if (no > 0) {

   reffOcc <- reffOcc[rep(1:(nsub*nd), each = nt), ]

  dimnames(reffOcc)[[2]] <- names(cv.occ)

  reffOcc <- data.frame(reffOcc)

 } else {

   reffOcc <- NULL

 }

 time <- rep(time, nsub * nd)

 dose <- rep(rep(dose, each = nt), nsub)

 sub <- rep(1:nsub, each = nd * nt)

 incD <- (dose - minD)/diffD

 ## increasing CV of reffs, if needed

 if (is.element(1, levIncCV)) {

  if (nb > 1 && (length(incCV.sub) == 1)) {

   incCV.sub <- rep(incCV.sub, nb)

  }

  ## subject level reffs

  for(i in 1:nb) {

   reffSub[,i] <- reffSub[,i] * (1 + incD * incCV.sub[i])

  }

 }

 reffSub <- data.frame(reffSub)

 if (is.element(2, levIncCV) & (no > 0)) {

  ## occasion within-subject level reffs

  if (no > 1 && (length(incCV.occ) == 1)) {

   incCV.occ <- rep(incCV.occ, no)

  }

  for(i in 1:no) {

   reffOcc[,i] <- reffOcc[,i] * (1 + incD * incCV[i])

  }

 }

 ## checking if any parameter is to be allowed to vary with dose

 Pars <- as.vector(Pars)

 ka <- Pars[1] ; ke <- Pars[2] ; v <- Pars[3]

 bl <- Pars[4] ; ec50 <- Pars[5] ; emax <- Pars[6]

 pdPars <- as.vector(pdPars)

 a1 <- pdPars[1]; a2 <- pdPars[2]

 if (!is.null(parsForm$ka)) {

  ka <- eval(parsForm$ka[[2]], list(ka = ka, dose = dose))

 }

 if (!is.null(parsForm$ke)) {

  ke <- eval(parsForm$ke[[2]], list(ke = ke, dose = dose))
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 }

 if (!is.null(parsForm$v)) {

  v <- eval(parsForm$v[[2]], list(v = v, dose = dose))

 }

 if (!is.null(parsForm$bl)) {

  bl <- eval(parsForm$bl[[2]], list(bl = bl, dose = dose))

 }

 if (!is.null(parsForm$ec50)) {

  ec50 <- eval(parsForm$ec50[[2]], list(ec50 = ec50, dose = dose))

 }

 if (!is.null(parsForm$emax)) {

  emax <- eval(parsForm$emax[[2]], list(emax = emax, dose = dose))

 }

 updReff <- 

   function(var, namVar, data1, data2)

 {

   val <- 0

   if (!is.na(match(namVar, names(data1)))) val <- val + data1[,

    namVar]

   if (!is.null(data2) && !is.na(match(namVar, names(data2)))) 

    val <- val + data2[, namVar]

   var * exp(val)

 }

 ## combining fixed and random effects to form parameter values

 ka <- updReff(ka, “ka”, reffSub, reffOcc)

 ke <- updReff(ke, “ke”, reffSub, reffOcc)

 v <- updReff(v, “v”, reffSub, reffOcc)

## combining fixed and random effects to form parameter values for PD model

 bl <- updReff(bl, “bl”, reffSub, reffOcc)

 ec50 <- updReff(ec50, “ec50”, reffSub, reffOcc)

 emax <- updReff(emax, “emax”, reffSub, reffOcc)

 ## concentrations

 conc0 <- comp1.oral(ka, ke, v, 1, dose, time)

 err <- rnorm(length(conc0), 0, cv.error)

 conc <- conc0 * (1 + err)

 concm <- profn(ka,ke,v,1,dose,time,doseint,proftype=0,ndose)

 placebo <- placebo(bl, a1, a2, time) 

 drug <- drug(emax, ec50, concm)

 err <- rnorm(length(concm), 0, cv.error)

 resp <- (placebo + drug) * (1 + err)

 val <- data.frame(subject = sub,

            dose = dose,

            time = time,

            ka = ka,

            ke = ke,



            v = v,

            bl=bl,

            ec50=ec50,

            emax=emax,

            a1=a1,

            a2=a2,

            x0 = conc0, 

            conc = conc,

            concm=concm, 

            placebo=placebo,

            drug=drug,

            resp=resp,

            reffSub = reffSub,

            err = err)

 if (no > 0) val$reffOcc <- reffOcc

 val

}

# ________________________________________________________________

# Fixed effects and corresponding covariance matrix

# ________________________________________________________________

getFixPars <-

 function(object)

{

 ## fixed effects estimates and var-cov matrix

 list(coef = fixef(object), var = object$varFix)

}

# ________________________________________________________________

# Variance-covariance components and corresponding covariance 

matrix

# ________________________________________________________________

getRanPars <-

 function(object)

{

 ## variance-covariance components estimates and var-cov matrix

 aux <- object$apVar

 if (!is.numeric(aux)) stop(aux)

 val <- list(coef = attr(aux, “Pars”))

attr(aux, “Pars”) <- attr(aux, “natural”) <- attr(aux, “natUn-

cons”) <- NULL

 val$var <- aux

 val

}

### simulate parameters according to estimated distribution from 

NLME
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simPars <-

 function(object, N = 1)

{

 ## simulate parameters according to mean = coef, var = var

 val <- rmvnorm(N, mean = object$coef, cov = object$var)

 dimnames(val) <- list(1:N, names(object$coef))

 val

}

convRanPars <-

 function(pars)

{

 ## converts unconstrained simulated values for var-cov

 ## components into “natural” parameters, in DP example

 N <- length(pars)

 sig <- exp(pars[N])

 power <- pars[N - 1]

 pars <- pars[1:(N-2)]

 pars <- exp(pars)

 pars[c(4, 8)] <- (pars[c(4,8)] - 1)/(pars[c(4,8)] + 1)

names(pars) <- rep(c(«sd(lKa)», «sd(lAUC)», «sd(lV)», «cor(lAUC, lV)»),2)

 list(Subject = pars[5:8],

   “Dose %IN% Subject” = pars[1:4],

   power = power, 

   sigma = sig)

}

# ________________________________________________________________

# Simulate clinical response in a trial.

# nsub represents number of subjects

# replicates represents the number of clinical studies to be simulated.

# The parameter pop if set = T will calculate population estimates.

# In this case subject random effects are set to zero, and

# number of subjects is forced = 1.

# ________________________________________________________________

sim.IP <-

function(dose,doseint,ndose,time,nsubject,replicates,pop,seed=NULL)

{

 nsub = nsubject

 if(pop) {nsub <- 1}

 dose <- dose # mg

 doseint <- doseint # hours

 ndose <- ndose

 ## Invoke fixed and random effects for the PK and PD models



 pkobj <- f.dp1b

 fxPk <- getFixPars(pkobj)

 rnPk <- getRanPars(pkobj)

 pdobj <- f.pd1

 fxPd <- getFixPars(pdobj)

 rnPd <- getRanPars(pdobj)

 ## _____________________________

 if(!is.null(seed)) set.seed(seed)

 sub <- 1:nsub

 nstudy <- replicates

 study <- 1:nstudy

 time0 <- time       # days

 time0 <- time0 * 24 # convert to hours

 ## _____________________________

 ##  Generate concentrations at SS using pk estimates of object 

f.dp1.d

 simfxPk <- simPars(fxPk, N = nstudy) # samples from pd model,

 # i.e. bl a1, a2, emax and ec50

 simrnPk <- simPars(rnPk, N = nstudy) # samples from random effects

 # (in bl, emax and ec50),

 # power parameter and sigma

 # Generate response variable using pkpd estimates of object f.pd1.b

 simfxPd <- simPars(fxPd, N = nstudy) # samples from pd model,

 # i.e. bl a1, a2, emax and ec50

 simrnPd <- simPars(rnPd, N = nstudy) # samples from random effects

 # (in bl, emax and ec50),

 # power parameter and sigma

 ## _____________________________

 ## lauc <- int + beta * log(dose)

 ## ke <- dose/(auc * v)

 lauc <- simfxPk[,3] + simfxPk[,4] * log(dose)

 lka <- simfxPk[,1]

 ke <- dose/(exp(lauc) * exp(simfxPk[,2]))

 lv <- simfxPk[,3]

 lbl <- simfxPd[,1]    # bl

 la1 <- simfxPd[,2]    # a1

 la2 <- simfxPd[,3]    # a2

 lemax <- simfxPd[,4]    # emax

 lec50 <- simfxPd[,5]    # ec50
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 lauc <- t(array(lauc, c(nstudy, nsub)))

 lka <- t(array(lka , c(nstudy, nsub)))

 lv <- t(array(lv , c(nstudy, nsub)))

 lbl <- t(array(lbl , c(nstudy, nsub)))

 la1 <- t(array(la1 , c(nstudy, nsub)))

 la2 <- t(array(la2 , c(nstudy, nsub)))

 lemax <- t(array(lemax, c(nstudy, nsub)))

 lec50 <- t(array(lec50, c(nstudy, nsub)))

 if(!pop){ 

  cv.ka <- exp(simrnPk[,1])

  cv.auc <- exp(simrnPk[,2])

  cv.v <- exp(simrnPk[,3])

  cv.bl <- exp(simrnPd[,1])

  cv.emax <- exp(simrnPd[,2])

  cv.ec50 <- exp(simrnPd[,3])

  if(nstudy==1) { 

   ran.ka <- t(cv.ka %*% array( rnorm(nsub * nstudy), c(nstudy, 

nsub)))

ran.auc <- t(cv.auc %*% array( rnorm(nsub * nstudy), c(nstudy, 

nsub)))

ran.v <- t(cv.v %*% array( rnorm(nsub * nstudy), c(nstudy, 

nsub)))

ran.bl <- t(cv.bl %*% array( rnorm(nsub * nstudy), c(nstudy, 

nsub)))

ran.emax <- t(cv.emax %*% array( rnorm(nsub * nstudy), c(nstudy, 

nsub)))

ran.ec50 <- t(cv.ec50 %*% array( rnorm(nsub * nstudy), c(nstudy, 

nsub)))

 }

  if(nstudy>1) { 

   ran.ka <- t(diag(cv.ka) %*%  array(rnorm(nsub * nstudy), 

c(nstudy, nsub)))

   ran.auc <- t(diag(cv.auc) %*%  array(rnorm(nsub * nstudy), 

c(nstudy, nsub)))

   ran.v <- t(diag(cv.v) %*% array( rnorm(nsub * nstudy), c(nstudy, 

nsub)))

   ran.bl <- t(diag(cv.bl) %*%  array(rnorm(nsub * nstudy), 

c(nstudy, nsub)))

   ran.emax<- t(diag(cv.emax) %*%  array(rnorm(nsub * nstudy), 

c(nstudy, nsub)))

   ran.ec50 <- t(diag(cv.ec50) %*%  array(rnorm(nsub * nstudy), 

c(nstudy, nsub)))

  }

  lka <- lka+ran.ka

  lauc <- lauc+ran.auc

  lv <- lv+ran.v



  lbl <- lbl+ran.bl

  lemax <- lemax+ran.emax

  lec50 <- lec50+ran.ec50

 }

 lke <- log(dose) - (lauc + lv)

 d1 <- length(time0) 

 d2 <- nsub 

 d3 <- nstudy 

 concm <- array(double(d1*d2*d3),dim=c(d1,d2,d3))

 resp <- array(double(d1*d2*d3),dim=c(d1,d2,d3))

 ## compute Response profiles

 for (n in 1:nstudy) {

  for (m in 1:nsub) {

   for (i in 1:length(time0)) {

    ## Conc entration profile

    concm[i,m,n] <-

profn(exp(lka[m,n]),exp(lke[m,n]),exp(lv[m,n]),1,dose,time

0[i], doseint,proftype=0,ndose)

    ## Response profile

    resp[i,m,n] <-

     placebo.log(lbl[m,n], la1[m,n], la2[m,n], time0[i]) +

      drug.log(lemax[m,n], lec50[m,n], concm[i,m,n])

   }

  }

 }

 data.frame(time=rep(time0,nsub*nstudy),

        study=rep(study,each=length(time0)*nsub),

        sub=rep(rep(sub, each=length(time0)),nstudy),

        concm =as.vector(concm),

        resp=as.vector(resp))

}
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5.1 INTRODUCTION

5.1.1 Background

There is a large volume of literature that deals with Bayesian ideas and methods of 
data analysis, decision analysis, and design. Much of this literature is highly tech-
nical and arises from specialized settings; for example, Gibbs sampling, which is 
now recognized as an important Bayesian tool, originally arose based on solving a 
problem in engineering in the early 1980s (1). In this chapter we focus on practical 
applications of Bayesian methods for analysis of data that arise from either phar-
macokinetic (PK) or pharmacokinetics/pharmacodynamic (PK/PD) studies. Where 
examples of model-based notation and code are provided, we have done so based 
on the general structure used by WinBUGS. This chapter is divided into four main 
sections. The fi rst section provides a brief introduction to Bayesian hierarchical 
modeling. In Section 5.2, we provide a how to for defi ning priors. In Section 5.3, 
we introduce methods for model discrimination in a Bayesian setting. Finally, in 
Section 5.4, we provide a summary.

Before embarking on our initial aim of describing Bayesian hierarchical model-
ing in a pharmacometric setting, it is worth devoting a few words to the notion of 
what constitutes a Bayesian analysis. At a fi rst glance it may seem obvious as to 
what constitutes a Bayesian analysis (simply anything called “Bayesian” would 
be a good initial point for categorizing methods). Unfortunately, this simplifi ca-
tion is not always the case; nor is it particularly helpful. Compare, for instance, 
empirical Bayes’s estimates of parameters versus Bayesian estimates (e.g., see the 
POSTHOC option relating to the “FO” method in NONMEM (2)). In accordance 
with Bayes’s expression (Eq. (5.1)), the Bayesian approach involves the incorpora-
tion of prior beliefs about the parameters q, given by p(q), with study outcomes (Y).
The study outcomes are expressed as the likelihood of the data given the model and 
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parameter values p(Y | q) (termed the likelihood), to provide updated beliefs about 
the parameters p(q | Y), termed posterior beliefs.

π θ π θ π θ
π

Y
Y

Y
( ) =

( ) ( )
( ) (5.1)

We have used the greek letter p as it is not used to represent its numerical value in 
this chapter—and (in an abuse of notation) in the above expression it can be used 
to mean either the probability of (elsewhere we have used Pr) or the probability dis-
tribution of (elsewhere we have used p( )). The denominator, p(Y), is the marginal 
distribution of the data and is in essence unable to be quantifi ed for PK or PK/PD 
analyses (it is equal to the multiple integral of the numerator over all parameters). 
Hence, Bayes’s expression is often written to the level of proportionality p(q | Y)
∝ p(Y | q)p(q). When interpreting Bayes’s expression, it appears that the funda-
mental principle of the Bayesian approach is to learn about some experiment as the 
“weighted average” of some prior beliefs and observations that arise from the actual 
experiment itself. However, if the prior were set to be essentially noninformative 
(i.e., uniform over the plausible range of parameter values), then the posterior is 
proportional to the likelihood, that is, p(q | Y) ∝ p(Y | q), and no infl uence of the 
prior will be discernable. Yet the analysis could still be Bayesian. The corollary of 
this consideration is where priors are used but the analysis is termed non-Bayesian 
(e.g., see Ref. 3). In this particular case, the investigators used prior information 
formally in their analysis but claimed the analysis to be non-Bayesian. So, it can be 
concluded that including a prior is not exclusive to Bayesian analyses. One attri-
bute that is nonfrequentist is the consideration that parameter values themselves 
are random variables that arise from some unknown distribution, which contrasts 
with nonBayesian theory where it is believed that there is only a single true set of 
parameter values that solve for the data and model. This then leads to confusion 
over whether the maximum a posteriori method of Bayesian forecasting (see Ref. 
4) is truly Bayesian since the goal is to locate a point estimate at the mode of the 
posterior distribution of the parameters rather than the full distribution. Some may 
consider this approach to be empirical Bayes.

It is not our goal, however, to present all sides to this argument but rather to 
make the reader aware that many contradictions exist and that application of 
various methods is perhaps a suffi cient goal. For the purposes of this chapter, we 
refer to fully Bayesian methods as those that give rise to knowledge about the full 
posterior distribution of the parameters, which is a function of the joint distribu-
tion of the likelihood and the prior. This process allows for the uncertainty in the 
parameters to be modeled explicitly.

5.1.2 Bayesian Methods for Population PK/PD Analysis: 
Hierarchical Modeling

Similar to the non-Bayesian framework for analysis of repeated measures data, the 
Bayesian setting also shares the same format for describing stages 1 and 2 of the 
hierarchical model but has the addition of the third stage assigned to specifi cation 
of the priors (see Ref. 5 for an in-depth discussion of the hierarchical framework for 
analysis, and for a comparison between MCMC and maximum likelihood methods 



readers are referred to Ref. 6). In theory, the Bayesian approach can accommodate 
any number of levels in the hierarchy that may represent different levels associated 
with the random effects terms. An obvious example is the inclusion of between-
occasion variability (see Lunn and Aarons (7) for a description) to make a four-
stage hierarchical model. For simplicity, a standard three-stage hierarchical model is 
shown. The choice of probability density functions for each of the stages is discussed 
in more detail in Section 5.2, where specifi cation of the prior is considered.

Stage 1—Model for the Data

y N f xij
iid

i ij~ ( ( , ), )q σ 2 (5.2)

Here the data yij, the jth observation for the ith subject, are assumed to be known 
and independently normally distributed around the model prediction f(qi, xij) with 
variance s2. qi represents a vector of individual parameter values for the ith indi-
vidual and xij is the sampling time.

Stage 2—Model for Heterogeneity Between Subjects

q qi pN~ ( , )W (5.3)

Here q is a vector of mean population pharmacokinetic parameters and W is the 
variance–covariance matrix of between-subject random variability. Np represents a 
p-dimensional multivariate normal distribution, where p is the number of param-
eters. It is often more useful to consider the values of the parameters for the indi-
vidual to be related to the population parameters via a covariate relationship, in 
which case the expression may be written as

q qi p iN g~ , ,z( )( )W (5.4)

In this notation, g(q, zi) is used to represent a function (g), perhaps a linear combina-
tion of covariates, that describes the expectation of the ith subjects parameter vector 
qi conditional on their demographic characteristics (zi) and population parameter 
values (q). The variance-covariance matrix (W) therefore describes the random vari-
ability between subjects that is not able to be explained by covariates.

Stage 3—Model for the Priors The third stage involves specifi cation of the prior 
structure (this is discussed in more detail in Section 5.2). Typically, the prior for a 
model for PK and PD parameters would be set up for the residual uncertainty as

σ ~U a b,( ) (5.5)

for the mean parameter values,

q m~ Nq , SS( ) (5.6)

and for the precision of heterogeneity,

W W− ( ) ≥ ≤1
0~ Wi p p qp ρ ρ ρ, , and  and (5.7)
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The prior for the residual standard deviation is given here by a uniform distribution 
over the range a to b, where a is typically very small (e.g., 0.0001) and b is suf-
fi ciently large as to encompass extreme values of the response variable. The mean 
parameter values, of which there are q, are shown to be distributed according to 
a multivariate normal distribution with a hyperprior mean m̄ and variance–cova-
riance matrix S that describes the uncertainty with which we know q. It should 
be remembered that S is not the uncertainty of m̄. The prior for the inverse of 
the variance–covariance matrix W−1 describing between-subject heterogeneity is 
given by a p-dimensional Wishart distribution with parameters W0 and r. W0 is the 
estimate of the prior expectation of the variance–covariance matrix and r is the 
degrees of freedom of the Wishart distribution. The minimum allowable value of 
r is p (which is least informative), and higher values can be chosen depending on 
the level of informativeness that is desired. This notation allows for there to be 
some population parameters that do not have variability between subjects (i.e., 
for q > p).

Specifi cation of the values of a, b, m̄, S, W0, and r is at the discretion of the 
pharmacometrician (see Section 5.2 for details). The choice of a different prior 
structure, for example, using a multivariate-t distribution rather than normal, may 
also be appropriate if there is some evidence suggesting the presence of potential 
outlying subjects.

It is worth mentioning at this stage that the three-stage hierarchical model 
used in Bayesian analyses when undertaken within the framework provided by 
WinBUGS requires that normal distributions are parameterized as mean and pre-
cision. Precision is the inverse of variance. For example, when defi ning the prior 
for the population parameter vector q, the multivariate normal distribution would 
be parameterized as the mean vector m̄ and the inverse of the variance–covariance 
matrix S−1 such that,

q ∼ Nq (m̄, S−1)

This parameterization would also hold for Eq. (5.3), (5.4), and (5.6). Hereafter 
the notation of WinBUGS is adopted and where possible examples of WinBUGS 
code are provided. Readers are referred to Fryback et al. (8) for an introduction to 
WinBUGS (see especially the appendixes for reference to how to run WinBUGS), 
Duffull et al. (6) for an introductory population PK example, and Lunn et al. (9) 
for a more in-depth treatment.

5.1.3 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are a group of methods that 
can be used to explore the posterior distribution of the parameters (e.g., of a 
PK or PK/PD model) conditional on some observable quantities. They can also 
be used in non-Bayesian settings. There are two main MCMC techniques used 
(readers are referred to Gilks et al. (10) for an in-depth overview of MCMC 
techniques), namely, the Metropolis–Hastings (MH) algorithm, originating from 
Metropolis et al. (11) and generalized by Hastings (12) and Gibbs sampling (1). 
Indeed, Gibbs sampling and many other MCMC methods are special cases of the 
MH algorithm.



MCMC methods are essentially Monte Carlo numerical integration that is 
wrapped around a purpose built Markov chain. Both Markov chains and Monte 
Carlo integration may exist without reference to the other. A Markov chain is any 
chain where the current state of the chain is conditional on the immediate past state 
only—this is a so-called fi rst-order Markov chain; higher order chains are also pos-
sible. The chain refers to a sequence of realizations from a stochastic process. The 
nature of the Markov process is illustrated in the description of the MH algorithm 
(see Section 5.1.3.1).

Monte Carlo integration is a process characterized by the use of random sampling 
often for integration. The premise underpinning the idea is remarkably simple, in 
that if it is possible to generate suffi cient numbers of random samples (e.g., L samples) 
from a distribution (that may have an unknown form), then the underlying distribu-
tion can be explored by pooling those samples and the mean calculated accordingly. 
For example, if X is used to denote a random deviate from f (X), then

E X L f Xl
l

L

[ ] ≈ ( )−

=
∑1

1
(5.8)

which as L ➝ ∞,

E X L f X f X dXL l
l

L

[ ] = ( ) = ( )→∞
−

=
∫∑lim

1

1

(5.9)

The important conceptual point is that the parametric form of f(X) does not need 
to be known for either the expectation of X to be calculated or in order that 
random deviates may be generated from f(X). The only requirement is that the 
value of f(X) must be evaluable at all (legal) values of X; it is not a requirement 
that the integral of f(X) (as in Eq. (9)) be able to be computed in closed form. It 
is also not required that f(X) be a univariate distribution, but f(X) may represent 
a joint distribution of X. The marginal distribution of f(X) may be “extracted” 
from the joint distribution using exactly the same random sampling technique but 
keeping each marginal set of random deviates separately. A joint distribution is 
a combined distribution of many parameters and the parameters may or may not 
share the same distributional form. One simple method of generating random 
samples from this distribution is that of rejection sampling (see Press et al. (13) 
for an overview of random sampling, Smith and Gelfand (14) for an introduction 
to rejection sampling for Bayesian analyses, and Wakefi eld (15) for an applica-
tion). The MH method and Gibbs sampling also provide methods for generating 
random deviates from f(X).

5.1.3.1 Metropolis–Hastings Algorithm
The Metropolis–Hastings algorithm is the most general form of the MCMC pro-
cesses. It is also the easiest to conceptualize and code. An example of pseudocode 
is given in the fi ve-step process below. The Markov chain process is clearly shown in 
the code, where samples that are generated from the prior distribution are accepted 
as arising from the posterior distribution at the ratio of the probability of the joint 
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distribution evaluated at the current set of parameters over the probability evalu-
ated at the last best (but not “best ever”) set of parameters (shown in step 3). The 
joint distribution is provided by the product of the prior probability of the random 
set of parameters with the likelihood.

Step 1. Set i = 1 # counter
Step 2. While 1 < i < max
 do Steps 3–5
Step 3. Sample u ∼ U(0, 1) # acceptance probability

b i ∼ p(b) # sample parameters from prior
 Set n = p(y|b i) # joint prior-likelihood

d = p(y|b i−1)
a1 = Pr(b i−1)
a2 = Pr(b i)
ratio = n/d × a1/a2 # acceptance ratio

Step 4. if ratio > u b last = q i = b i # accept samples
   # reset new best value
 Else set q i = b last # keep previous best samples
Step 5. i = i + 1  # increment counter
Step 6. OUTPUT(q)
 STOP.

5.1.3.2 Gibbs Sampling Algorithm
Gibbs sampling is a specialized and more effi cient version of the MH algorithm. 
In this procedure there are no rejected samples, the sampling distributions are 
set up so that once the chain has settled down (to the so-called stationary dis-
tribution) all samples are considered to arise from the posterior distribution. 
The cost of this improvement in the process is that the user needs to defi ne 
the conditional sampling distribution, which includes distributions for all remaining 
parameters and the data, in closed form (see step 3). This is analytically possible 
for linear models and for combinations of the prior and likelihood that are 
conjugate, meaning that the posterior distribution will have the same structural 
form as the prior but with updated parameter values (see Fryback et al. (8) for a 
brief and elementary explanation of this process). For example, for consideration 
of a simple univariate distribution if the prior distribution of the parameters is 
normal and the likelihood is normal, the posterior distribution will also be normal. 
In circumstances where nonconjugate priors are chosen—that is, the prior and 
likelihood do not arise from the same and conjugate family of distributions or the 
model is nonlinear in its parameters—then an MH step may be required to be 
performed within the overall Gibbs sampling process and hence hybrid MCMC 
procedures arise. Gibbs sampling is shown below in pseudocode for a three-param-
eter model.



Step 1. Set b1 = b0 # set the parameter 
      values = initial 
      estimates

i = 1 # initialize counter
Step 2. While i < max
 do Step 3
Step 3. Sample b i

1 ∼ p(b i
1 | b i−1

2, bi−1
3, y) # sample parameter 1

b i
2 ∼ p(b i

2 | b i
1, b i−1

3, y) # sample parameter 2
b i

3 ∼ p(b i
3 | b i

1, b i
2, y) # sample parameter 3

 Set i = i + 1 # increment counter
Step 4. OUTPUT (b)
 STOP

5.1.3.3 Diagnostics

Model Diagnostics Graphical model assessments such as predictions versus obser-
vations, weighted residuals versus time, and weighted residuals versus predictions 
are, as in non-Bayesian analyses, valuable for model development. In WinBUGS the 
user needs to provide the code for population predictions and weighted residuals. 
Correlation plots can be generated directly in WinBUGS Version 1.4 without the 
need to export the data into another program. However, the CODA function can 
create a fi le with all sampled values from each chain of each parameter, which can 
be exported to other programs (e.g., S-Plus, R, Matlab) for diagnostic purposes.

Convergence Diagnostics Inferences from the posterior distributions should be 
made after convergence has been achieved to assure that the posterior distribu-
tions represent the target distributions. However, there is no diagnostic method 
that can be used to provide a guarantee that convergence has occurred. Therefore, 
it is recommended that several methods are used. One method is to visualize the 
histories of the chains against the iteration number (see Duffull et al. (6) and Lunn 
et al. (9) for visual examples). Such plots should look like “fuzzy caterpillars.” If 
the appearance of the history is a “wiggly snake,” it (generally) indicates that the 
sampler needs to be run longer and/or that the model needs to be reparameterized. 
The so-called wiggly snake is associated with serial correlation in the sampling 
chain (termed autocorrelation). It has been recommended to run at least two chains 
simultaneously, with overdispersed initial estimates (e.g., let the initial estimates of 
chain 2 be 50% higher than the initial estimates of chain 1). If the histories of the 
chains are overlapping and appear to mix with each other, then this is an indication 
of convergence, but does not assure convergence. Although no direct statistics can 
be applied to visualization of the chain, it is intuitively appealing in its simplicity 
and does from experience identify many chain convergence issues.

A more objective method is to investigate the Gelman–Rubin diagnostics for 
chain convergence. This procedure is automated within WinBUGS. This method 
compares the between-chains and within-chain variability in a similar spirit to an 
analysis of variance. Samples are required from at least two chains that are started 

INTRODUCTION 143



144 BAYESIAN HIERARCHICAL MODELING WITH MARKOV CHAIN MONTE CARLO METHODS

with overdispersed initial values. The criterion for convergence is achieved when 
the ratio between the 80% interval of the pooled chains and the 80% interval within 
the chains (averaged over all chains) is close to 1 for all parameters of interest. 
Again, no specifi c criteria are available that show a defi nite convergence or lack of 
convergence. Another diagnostic is Geweke’s method. This can easily be computed 
from an output analysis of the chains; for example, the Bayesian Output Analysis 
(BOA) program has this diagnostic as an automated feature, but it is not available 
automatically from within WinBUGS. This method compares the sample distribu-
tions in the fi rst half of the samples within a chain with the sample distribution from 
the samples from the second half of the chain. Logically these sample distributions 
should be indistinguishable.

Finally, the Monte Carlo error (MC error) can be used to assess how many itera-
tions need to be run after convergence for accurate inference from the posterior 
distribution. The MC error is an estimate of the deviance between the mean of 
the sampled values and the posterior mean; this error can be likened to a standard 
error. Generally, an MC error of less than 5% of the sample standard deviation of 
the parameters of interest is recommended.

Autocorrelation Ideally, all samples from a chain should be independent, that is, 
free from serial correlation. However, in reality, this is rarely the case. The pres-
ence of autocorrelation does not indicate either a lack of convergence or neces-
sarily overparameterization (although reparameterization or a reduction in the 
dimensionality of the model will often reduce or eliminate autocorrelation). It 
will be necessary, however, to run the chains for longer so that ultimately enough 
“independent” samples from the chain are kept to ensure that the posterior distri-
bution has been suitably explored by the sampler. The infl uence of autocorrelated 
samples in the posterior distribution may be reduced by thinning, where only a 
fraction of the samples from the posterior distribution are kept; for example, it is 
common to retain only every tenth sample. As a result ten times more samples are 
needed to generate the same number of samples from the posterior distribution. 
Thinning does not change the occurrence of autocorrelation, but it does reduce the 
apparent infl uence of autocorrelation since setting thinning to 10 results in 90% 
of the samples being discarded. Thinning is used as a method of saving computer 
memory by allowing chains to be run longer without the need to save every sample. 
This is often needed for analysis of large data sets, as may occur in PK/PD analyses. 
It is of course preferable not to thin samples unless absolutely required.

5.2 SPECIFICATION OF PRIORS

5.2.1 Defi ning Bayesian Priors

As mentioned earlier, incorporating prior information does not in itself constitute 
a Bayesian approach. Priors have been used in non-Bayesian settings in popula-
tion PK analysis and other analyses. Applications using the PRIOR subroutine in 
NONMEM have been described previously (3, 16). In this setting the prior informa-
tion can be viewed as a penalty on the likelihood function, and its implementation 
is similar in spirit to the maximum a posteriori (MAP) procedures used commonly 
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in Bayesian forecasting programs. Approaches based on the “frequentist-prior,” 
however, are relatively uncommon. In contrast, Bayesian analyses always include 
prior information as it is explicitly defi ned in Bayes’s expression, although the priors 
can be set to be in principle noninformative.

Defi ning the values of the priors and their informativeness is therefore an essen-
tial part of any Bayesian analysis.

In this chapter we consider that specifi cation of priors may be divided into three 
broad and useful categories. The fi rst provides a general overview of the setup of 
priors for a Bayesian PK (or PK/PD) analysis, while outlining the so-called nonin-
formative (sometimes referred to as vague) priors, which represent the application 
of priors that are not intended to infl uence the analysis and arise from the belief 
that we know almost nothing about the manner in which the current data may have 
arisen. The second category refers to what we have termed biologically plausible but 
low-information priors. These are priors that have fairly vague information but are 
limited to span an interval that would seem biologically plausible for most PK/PD 
analyses. The third category refers to the development of informative priors.

Note that, whatever the fi nal model parameterization used for the current analy-
sis, it must be constructed in such a manner as to forcibly eliminate models and 
model parameterizations that contain inherent identifi ability problems. This is rel-
evant to all prior structures. The most common source in pharmacokinetics is the 
so-called fl ip-fl op models, where the model predictions are identical for two or more 
sets of solutions of the parameters; for example, where Ka and CL/Vd are exchange-
able within the model, such that any set of values of Ka may be exchanged with 
the ratio CL/Vd to provide the same response values. Model parameterization that 
contains fl ip-fl op characteristics can result in poor chain mixing during the MCMC 
process, such that the chain fl ips between one or another solution, potentially 
inducing artifi cial bimodal posterior distributions. PKBUGS performs this reparam-
eterization automatically, thereby forcing Ka to be greater than CL/Vd—although
this may not always be desirable.

5.2.2 Noninformative Priors

Many Bayesian analyses utilize so-called noninformative priors (see examples in 
the WinBUGS manual (17)). The principal belief underlying their wide utility is to 
retain objectivity in relation to the current analysis. Should prior evidence infl uence 
the analysis of the current experiment, then the objectivity of the current analysis 
may be questioned, due to the subjective nature of priors and methods for their 
elicitation. In a philosophical sense, it might also be argued that it is equally non-
objective to ignore all previous evidence, no matter how applicable or strong the 
evidence might be.

The use of noninformative priors itself is not without its diffi culties, by the 
simple virtue that truly noninformative proper priors do not really exist. However, 
with very low precision terms (e.g., 0.0001) and an assumption of lognormality 
appropriate for many PK/PD parameters, the priors can be considered very 
vague.

In defi ning priors there are two main considerations: fi rst, the choice of the 
prior distribution and second, the choice of its parameter values (we only consider 
parametric priors). The choice of the prior distribution itself is not trivial as it is 
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essential that the random deviates generated from this distribution will have 
the right characteristics; for example, if you are generating random deviates to 
be considered as candidates of a variance parameter, then the deviates must be 
positive numbers. In addition to choosing a prior that has the right distributional 
properties, it is convenient to also consider priors that will ease the computational 
burden during the MCMC process. For instance, choosing conjugate priors (i.e., 
those that have distributional characteristics that can be combined algebraically 
with the specifi ed distribution of the likelihood) greatly facilitates the speed of 
the MCMC process. Fortunately, for PK and PK/PD analyses, there are a stan-
dard set of conjugate distributions that are commonly used for generating random 
candidates of parameter values and it is generally just a matter of choosing the 
parameter values for each distribution.

In the following notation we assume that the population mean values of a vector 
of parameters (q) are distributed multivariate normally with some uncertainty 
depicted as a variance–covariance matrix (S). It is convention in WinBUGS to 
express variability as precision (the inverse of variance); hence, the precision of q
is given by S−1. This prior can be cast as a lognormal distribution by exponentiating 
the individual values of the parameters at stage 1 of the hierarchical model. Some 
authors have chosen to use a t-distribution with small degrees of freedom (to allow 
for heavy tails) instead of a normal prior. While this may be more fl exible if outlying 
subjects are suspected, the t-distribution is not conjugate with the normal likelihood, 
which greatly adds to the computation time. For a model with three fi xed effects 
parameters, the following vague prior structure can be used:
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(5.10)

Note that the parameter vector m̄ is usually expressed as the natural logarithm of 
the parameter values. The prior for the variance–covariance matrix of the between-
subject effects (W), is usually given by a Wishart distribution (which is conjugate 
with the normal distribution). Simulation from the Wishart distribution will produce 
inverse candidates of W, which can be thought of as a precision matrix of between-
subject heterogeneity. The Wishart distribution is parameterized in terms of r
(degrees of freedom) and the estimate of the mean of W (denoted by W0, where 
0 is used to signify that this is an initial estimate). The informativeness of the 
Wishart—that is, how similar the simulated values of W are to W0—depends on the 
number of degrees of freedom, where the number equal to the size of the matrix is 
least informative (i.e., for a 3 × 3 matrix r = 3 is least informative).

W W0
− ( ) =1 3~ Wi ρ ρ ρ, , (5.11)

The Wishart distribution is a multivariate gamma distribution, which itself is a 
general case of a chi-squared distribution. The Wishart also has the desirable prop-
erty that random samples of any matrix from this distribution will always be positive 
defi nite. This is useful for simulating variance–covariance matrices, which have a 
positive determinant, and ensuring correlations that lie between −1 and 1.
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The variance (or standard deviation as shown in Eq. (5.12)) of the residual 
uncertainty of the model can be assumed to arise from a uniform distribution (with 
upper bound b set at an arbitrarily high value), such as

σ ~ .U b0 00001,( ) (5.12)

Alternatively, the inverse variance of residual uncertainty can be assumed to arise 
from a gamma distribution,

σ − ( ) = =2 0 001~ .G a b a b, , (5.13)

The mean of the gamma distribution is given by a/b and the variance by a/b2. The 
latter choice of prior has recently been criticized as not being suffi ciently uninfor-
mative and has been shown, for some examples, to adversely infl uence the analysis 
(18).

5.2.3 Biologically Plausible but Low-Information Priors

In PK/PD analyses, there are general boundary conditions on the parameter space 
which are either biologically illegal (e.g., negative or zero values of clearance) or 
at the least fairly unlikely (e.g., total blood clearance that is considerably greater 
than cardiac output). It is not unreasonable, therefore, to consider constructing 
priors that have their distribution tails (say, the 95% interval) that are somewhere 
near these “natural” boundary conditions, while at the same time not being overly 
informative over the remainder of the distribution. These priors could therefore be 
considered as biologically plausible but weakly informative.

In the section on noninformative priors, a precision of 0.0001 corresponds to a 
variance of 10,000 (SD = 100), and if it were assumed that the underlying param-
eter distribution were lognormal (which is common in PK/PD problems), then the 
95% interval of the priors would be essentially ∼0 and ∼ +∞. A possible example 
of a biologically plausible but still low-information prior follows. In this example 
the values of the parameters are chosen arbtitrarily and any mean values can be 
used that suit the likely situation. Any choice of mean values will require slight 
adjustment of the precision matrix; however, this is quite straightforward. For a 
typical orally administered drug with an assumed fraction absorbed of 1, and mean 
population parameters for clearance, volume, and absorption rate constant that 
are the natural log of 1 (L/h), 40 (L), and 1 (h−1), respectively (just over a 24 hour 
half-life), then the prior could be
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(5.14)

Note that the precision values depend on the likely range of plausible parameter 
values. For CL and Vd, the precision is set lower than for Ka since the value of 
the fraction of drug absorbed (F), which scales both parameters, may infl ate the 
apparent values signifi cantly. If F were known to be close to 1, then higher values 
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of the precision could be used. For this parameterization, the 95% interval for CL,
Vd, and Ka are (0.002, 492), (0.08, 19,700), and (0.06, 16), respectively, which for an 
agent that has approximately these mean values is not overly restrictive. A higher 
value of precision can be used if there is more than a “vague” expectation about 
the value of CL from previous studies; for example, CL might be related to renal 
fi ltration. In other circumstances, if Vd is expected to be much higher based on 
previous information, then a larger value of the mean can be used.

Similar to the prior of the mean population parameter values, the prior for the 
between-subject variance can also be selected to have a more plausible range for 
PK/PD systems. If we consider the coeffi cient of variation of between-subject vari-
ability for most PK/PD parameters as being approximately <100%, then a choice of 
r for the Wishart distribution that provided a 97.5th percentile value of around this 
level would be biologically plausible. This is not quite as straightforward as for the 
precision of the population mean parameter values, since the minimum size of r is
indexed to the minimum dimension of the variance–covariance matrix of between-
subject effects, and r affects all variance parameters equally. The value of r required 
to provide a similar level of weak informativeness will vary with the dimension of 
the matrix. A series of simulations have been performed from the Wishart distri-
bution, where the mean value of the variance of between-subject effects was set at 
0.2. The value of r required to provide a similar level of weak informativeness will 
vary with the dimension of the matrix (Table 5.1).

5.2.4 Informative Priors

5.2.4.1 Background of Informative Priors
In many cases the data collected in the current study may be sparse, such as may 
occur when data are collected as a matter of routine clinical care rather than for 
model building, which may result in a design that does not support the full model 
expected based on previous studies. Several options are available to the modeler 
in these circumstances. One option is to fi x the nonestimable parameters to esti-
mates from previous studies. However, the prior estimates may not themselves be 
suffi ciently accurate and therefore inclusion of fi xed parameters may lead to biased 
estimates of the other parameters (19). Another option would be to simplify the 
model. This, however, may result in a model that is not able to provide useful pre-
dictions of future data. A more natural option is to use appropriately informative 
priors to aid the modeling process.

The setup for informative priors is similar to the concepts provided in Section 
5.2.3, regarding biologically plausible but weakly informative priors.

TABLE 5.1 Lowest Value of r that Produces a 97.5th Percentile of at 
Least 100% CV When the Diagonal Elements in W0 Equal 0.2 in the Simulations 
(Off-Diagonal Components Were 0)

Matrix Dimension r 97.5th Percentile (%CV)

2 × 2  7 118
3 × 3  9 106
4 × 4 11 100
5 × 5 12 108
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One criticism against the use of informative priors is their subjective nature, 
which may be perceived to introduce bias into the upcoming analysis. The choice 
of priors and assigning an appropriate level of informativeness is therefore of con-
siderable importance. For population PK/PD studies, there may well be explicit, 
quantitative data that describes the parameter values in populations that are similar 
to the population in the current study. In this case it is possible to pool the available 
information in a meta-analytic technique to provide an appropriate level of prior 
information. Some care must be taken to assess for heterogeneity between studies 
and for applicability of studies to the current population under consideration. A 
brief summary of an approach is shown below. It would be impossible to include an 
exhaustive treatment of elicitation processes within the confi nes of this chapter.

5.2.4.2 Inclusion of Studies
The fi rst step is “simply” to fi nd previous published studies that report the PK/
PD behavior of interest. Since this process does not have the same goals as a 
meta-analysis, it is probably not important to include every possible published and 
unpublished study; however, failing to select a study will introduce subjectiveness 
and hence potential for bias. Recovering all studies is obviously no mean feat in 
itself, but general search processes (e.g., MEDLINE) and also the FDA web site 
(see www.fda.gov) can provide much of the necessary background information. 
Alternatively, studies may be available on-fi le and arise from previous clinical or 
preclinical studies. Information may also be available from other drugs in the same 
class.

Recording details of the studies, including the models used and associated 
parameter values reported, is an obvious starting place. Additional details include 
the chemical analysis method, the pharmacokinetic analysis method, the studied 
population (specifi cally subpopulations), number of healthy volunteers or patients, 
number of pharmacokinetic samples per patient, the dose, the formulation, and the 
route of administration. If one publication includes several groups of patients (or 
the same patient received two different formulations/concomitant medications), 
then each cohort may need to be treated as a repeated measure of the same study 
or within the same study, which may be indexed according to a study or patient 
covariate.

In many cases additional work may be required to reparameterize models into 
the form required for the current analysis. This may involve, for example, a repa-
rameterization between rate constants and clearance and volume terms or between 
derived parameters, such as volume of distribution by area (Vz) and volume of 
distribution at steady state (Vss), or even extraction of parameter values from data 
summary variables (such as peak concentration, Cmax; time to peak concentration, 
Tmax; and area under the concentration curve, AUC). The latter process is sometimes 
not straightforward and ultimately some data summaries may provide little useful 
information. See Dansirikul et al. (20) for methods of conversion of data summary 
variables into model-based parameters.

5.2.4.3 Study Weighting
The heterogeneity of study design among the studies can be treated as a random 
effect and is ignored unless the studied population differs from the population 
to be analyzed (e.g., in age and/or renal/hepatic function). For studies where the 
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populations potentially differ, then either these studies should not be used or addi-
tional weighting is required.

For studies that appear to be exchangeable, the weighting is provided by the recip-
rocal of the estimation variance (which is the precision or Fisher information).

w
SE

m
m m

=
( )

=
( )

1 1
2Var θ θ

(5.15)

where wm is the weight applied to the pharmacokinetic parameter values reported in 
the mth study (qm); and Var(qm) is the estimation variance of qm. However, standard 
errors (SEs) are often not reported.

In the absence of standard errors, weighting may be applied based on the assump-
tion that the informativeness of the prior study is proportional to the number of 
subjects (n) in the study. Although this is a rather simplifi ed approach, it can be 
shown that for designs where the sampling schedule is essentially geometrically 
spaced and there are more than two times the number of samples as fi xed effects 
parameter values, the approximation will hold (see Duffull et al. (21) for details). 
Briefl y, if we denote the Fisher information matrix for the previous study population 
as F(q, Ξ), where Ξ represents a given (PK) sampling design for all subjects, then 
the estimation variance–covariance matrix (V) is given by the inverse of the Fisher 
information matrix. But in accordance with the Cramér–Rao inequality (readers can 
refer to Walter and Pronzato (22) for a more in-depth discussion), each diagonal 
element of the inverse Fisher information matrix is the lower bound of the true but 
unknown estimation variance,

V Fuu uu
u p≥ ( )( ) =−1 1q , , , . . . ,X (5.16)

and the vector of standard errors (SE) of parameter estimates is

SE V= ( )diag (5.17)

where diag denotes the diagonal elements of the matrix. If all subjects in the study 
receive the same design and have a suitably large number of samples (see above), 
then

F Fq , ,X q( ) = ( )n ξ (5.18)

where x is the design for one subject; therefore, if the information matrix is sum-
marized by the normalised determinant, then

det ,F q X( )( ) ∝1 p n (5.19)

That is, a summary measure of the amount of information in the information matrix 
(given by the normalized determinant) is proportional to the number of individu-
als in the study, where det denotes the determinant and is a scalar measure of the 
informativeness of the information matrix. Therefore, it follows that the standard 
error will be proportional to the inverse of the square root of sample size (Eq. 
(5.20)), and incorporating Eq. (5.15) provides the approximation
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SE n
n

∝ =−1 1
(5.20)

and the weighting for the mth study by incorporating Eq. (5.20) into Eq. (5.15):
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If the number of concentration measurements per subject were smaller than twice 
the number of fi xed effects parameters and the standard errors of the parameter 
estimates were not provided, then some downweighting would be necessary. It is 
possible to compute the expected standard errors for any given study (e.g., see 
Retout et al. (23), but this is beyond the scope of this chapter).

5.2.4.4 Prior Mean for Pharmacokinetic Parameters m̄ and W0

The priors of the mean population parameters can be computed analogous to how 
weighted means are computed in meta-analysis (Eq. (5.20)) (24). We show this for 
a single parameter,
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m

(5.22)

where m̄ is an overall mean population parameter, q̄ m is a mean population param-
eter value from the mth study, and wm is the weighting for the mth study. Similarly, 
the overall mean between-subject variance (BSV) can be computed for each of the 
diagonal elements in W0 to produce a matrix of the expected values of the between-
subject variance.

5.2.4.5 Computation of the Precision Matrix S -1

It is often reasonable to assume that the population parameter values are distrib-
uted normally, in which case the pooled estimate of the standard error for a given 
parameter simplifi es to
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where M denotes the number of prior studies.

5.2.4.6 Computation of the Choice of r (the Precision of W0)
An empirical method to estimate r may be gained by simulation, where candidate 
matrices of the inverse of W are simulated from a Wishart distribution and the 
empirical distribution of each variance component is compared to the empirical 
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distribution attained from the prior data. The value of r that minimizes the dif-
ferences of the observed (from prior data) and simulated summary measures (say, 
quartile ranges) of the distribution of W would provide some empirical evidence 
for the value of r.

Overall, there is little literature available that describes formal elicitation pro-
cesses of parameters from prior studies, while there are several suggested methods 
for expert elicitation of priors (e.g., see Refs. 25 and 26).

5.2.5 Sensitivity Analysis

Sensitivity analysis is about asking how sensitive your model is to perturbations 
of assumptions in the underlying variables and structure. Models developed under 
any platform should be subject to some form of sensitivity analysis. Those con-
structed under a Bayesian framework may be subject to further sensitivity analysis 
associated with assumptions that may be made in the specifi cation of the prior 
information. In general, therefore, a sensitivity analysis will involve some form of 
perturbation of the priors. There are generally scenarios where this may be impor-
tant. First, the choice of a noninformative prior could lead to an improper posterior 
distribution that may be more informative than desired (see Gelman (18) for some 
discussion on this). Second, the use of informative priors for PK/PD analysis raises 
the issue of introduction of bias to the posterior parameter estimates for a specifi ed 
subject group; that is, the prior information may not have been exchangeable with 
the current data.

The framework of a sensitivity analysis is straightforward in that changes in the 
posterior distribution are observed under other reasonable prior probability models 
(27). Sensitivity of posterior to prior distributions can be evaluated by investigation 
of changes of the posterior distribution to (a) a change in the degree of informative-
ness of the prior distribution of either itself or other parameters, and (b) a change in 
the structural form of the prior distribution (e.g., considering the prior as a t rather 
than a normal distribution). For the former sensitivity analysis, a more weakly 
informative prior could be chosen by setting the precision of the prior distribution 
to smaller value(s). For instance, a variety of values for the prior precision for each 
parameter could be used, for example, where s−2 → 1

2
s−2, consider s−2 → 1

3
s −2 or 

s −2 → 1

4
s −2 (28).

From a specifi c PK/PD perspective, where parameters are often assumed to be 
lognormally distributed, relaxation of this assumption to include a distribution with 
heavier tails (e.g., a log t-distribution) may be worth considering. This allows for the 
infl uence of outliers to be considered explicitly. To accommodate possible outliers, a 
t-distribution could be used where the degrees of freedom of a student t-distribution
can be chosen empirically (29) or estimated during MCMC analysis (30) to provide 
appropriate weighting to the tails of the distribution.

The differences associated with the sensitivity of the posterior distribution to 
specifi cation of the prior can then be summarized quantitatively (e.g., % differences 
of mean and 95% interval) or the distributions can be shown graphically. There are, 
however, no specifi c guidelines or criteria available for the assessment of robustness. 
Any decisions should therefore be made on the basis of the basic question: How 
does the sensitivity of the posterior to specifi cation of the prior affect the important 
inferences of the model? This has been addressed in a practical example (31).



5.3 MODEL SELECTION

5.3.1 Approaches to Model Selection

Objective measures of model evaluation are desirable in model building. Ideally, 
model performance techniques should be indexed to the purpose for which the 
model is intended to be used and as such should be considered an integral part of 
all general analysis plans. This brief overview concentrates on methods to select or 
reject models. By far the majority of methods used for model selection fall within 
the framework of model discrimination.

Although there are a large number of methods that can be used for model dis-
crimination, we only consider methods that can be implemented easily in WinBUGS 
(Version 1.4 or earlier) with minimal extra coding.

Model selection criteria are often based on a measure of the fi t of the model to the 
data and a penalty for increased model complexity. The most common method to 
discriminate between nested models in non-Bayesian population pharmacokinetic 
analyses is the likelihood ratio test with some predefi ned level of signifi cance. In 
fully Bayesian methods there is no “gold standard” model discrimination method, 
although there are a few methods for dichotomous model discrimination decisions 
such as the deviance information criterion (DIC) (32). Another relatively common 
method for model discrimination are the Bayes factors (i.e., the posterior to prior 
odds ratio). These factors were considered to be the gold standard, although they 
have also been perceived as overly conservative (27). In essence, they address the 
problem of how well the prior has predicted the observed data rather than how well 
the posterior predicts future data and are therefore not defi ned for models with 
improper prior distributions. Another, less attractive, feature is that Bayes factors 
provide the relative probabilities of two models conditional on one of them being 
true and are therefore most suitable when all candidate models can be specifi ed 
ahead of time (27, 32). Bayes factors also require some extra coding in WinBUGS 
and are not considered further here.

Other model selection and/or discrimination tools include the posterior predictive 
check (PPC) and cross-validation (27, 32, 33). The PPC is useful for examination of 
the ability of the model to predict accurately certain features of the observed data 
(e.g., maximum concentration). Although PPC is not strictly a model discrimination 
technique, as it does not compare the predictive performance between models but 
rather evaluates the predictive performance of a single model, it does have useful 
characteristics that are discussed in more detail in Section 5.3.3. Cross-validation is 
considered accurate but is computer intensive and generally considered not to be 
suitable for small data sets (32).

More advanced techniques of model evaluation include the reversible jump 
MCMC (RJMCMC) (34) and “birth–death” algorithms (35). The RJMCMC tech-
nique, a form of model averaging, is becoming a popular tool for model selection, 
which may well become a feature of WinBUGS in the near future. The basic 
premise involves an MCMC chain that “jumps” to a given model at the current 
Markov state transition probability. The chain may then jump back, remain, or jump 
to another model depending on the probability of model preference. It is therefore 
possible for the chain to explore a number of competing models during the same 
MCMC run and fi nally settle on the model of highest posterior probability. The 
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birth–death algorithm, which is related to the RJMCMC, also allows many models 
to be compared simultaneously (35).

Further discussion of model selection within the framework of MCMC is divided 
into discrete model selection, consideration of predictive distributions, and simul-
taneous modeling of competing models.

5.3.2 Discrete Model Selection

A common form of model selection is to maximize the likelihood that the data 
arose under the model. For non-Bayesian analysis this is the basis of the likelihood 
ratio test, where the difference of two −2LL (where LL denotes the log-likelihood) 
for nested models is assumed to be approximately asymptotically chi-squared dis-
tributed. A Bayesian approach—see also the Schwarz criterion (36)—is based on 
computation of the Bayesian information criterion (BIC), which minimizes the 
Kullback–Leibler (KL) information (37). The KL information relates to the ratio 
of the distribution of the data given the model and parameters to the underlying 
true distribution of the data. The similarity of the KL information expression (Eq. 
(5.24)) and Bayes’s formula (Eq. (5.1)) is easily seen:

KL E
p p d
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(5.24)

and the smaller the ratio the closer the distribution of the data under the likeli-
hood approaches the true (but unknown) marginal distribution of the data. This 
information is, in most real pharmacokinetic problems, notional. The values of the 
parameters that minimize the KL information will have the highest posterior prob-
ability. This result, similar to the non-Bayesian likelihood ratio test, is also based 
in asymptotic theory (as n → ∞), since at the limit it can be shown that the distri-
bution of the data under the likelihood approaches the true underlying marginal 
distribution of the data; the information refers to the asymptotic proximity of this 
ratio. The KL information can also be used to compare two models, where the full 
model replaces the numerator of Eq. (5.24) and the reduced model replaces the 
denominator. This method therefore allows the selection of a reduced model that 
minimizes the difference in a measure of the distribution of the data conditional 
on the model and parameter estimates and is in reality similar to the non-Bayesian 
likelihood ratio test.

The Bayesian information criterion (BIC) is defi ned by

BIC p M
p

nx= ( ) − ( )ln lnY q�,
2

(5.25)

where p(Y | q̂, Mx) is the maximum of the likelihood under model Mx and q̂ a vector 
of maximum likelihood estimators and p and n carry their previous defi nitions as 
the number of parameters (in this case fi xed effects parameters only) and number 
of observations, respectively. The second term (p/2) ln(n) penalizes the BIC func-
tion for increasing numbers of model parameters (p). This expression can also be 
written in the form of −2LL (also termed “deviance” in WinBUGS) as



BIC LL p n= − + ( )2� ln (5.26)

A point estimate of −2 LL (also termed the deviance (denoted D(q))) at its maximum 
is suggested to make the model fi t appear better than it should in reality, and in a 
Bayesian sense averaging over the deviance values (for all values of the posterior 
distribution of the parameters) would provide a more appropriate choice and so 
the BIC, now BIC′, can be written

BIC D p n′= ( ) + ( )q ln (5.27)

The diffi culty with using the BIC function (in whatever form) lies in defi ning the 
number of model parameters. While this may seem rudimentary, and indeed it is 
for a linear model, it is not the case for nonlinear hierarchical models. Consider a 
simple pharmacokinetic example in which a fi rst-order input linear one-compart-
ment model is fi tted to the data that arises from 100 patients. The number of model 
parameters includes: the population parameter values (CL, Vd, Ka), their hetero-
geneity given by a 3 × 3 variance–covariance matrix W that has six elements of the 
lower left triangle, a residual variance component (s2), and individual estimates 
of the parameters (CL1,  .  .  .  ,n

T, V1,  .  .  .  ,n
T, Ka1,  .  .  .  ,n

T), which amounts to 310 parameters 
(in NONMEM only 10 of these parameters enter the approximate population 
likelihood when using the FO method). Not all of these parameters will contribute 
equally to the likelihood and indeed some latent parameters may be present. It is 
therefore not just a matter of summing the parameters to provide a value for p.
For nonlinear hierarchical models a deviance information criterion (DIC) has been 
proposed (32):

DIC D pD= ( ) +q (5.28)

where pD denotes the number of effective parameters. The number of effective 
parameters can be calculated as the difference of the posterior mean of the deviance 
and the deviance at the posterior means of the parameters (D(q̄)),

p D DD = ( ) − ( )q q (5.29)

and the second term D(q̄) defi nes the deviance value for the mean parameter values. 
This term can be calculated in WinBUGS Version 1.3 by running an additional 
single iteration after the burn-in period (of at least 4001 iterations, recall that the 
fi rst 4000 are discarded and cannot be monitored irrespective of chain convergence 
properties), where the model parameters are fi xed at their mean values. Rearrange-
ment of Eqs. (5.28) and (5.29) gives

DIC D D= ( ) − ( )2 q q (5.30)

Version 1.4 of WinBUGS greatly eases the computational burden by providing 
DIC as a standard output in the statistical samples toolbox. For users of Version 
1.3, the complexity of the model (parameter wise) can more simply be calculated 
as half of the posterior variance of the deviance as

MODEL SELECTION 155

ˆ



156 BAYESIAN HIERARCHICAL MODELING WITH MARKOV CHAIN MONTE CARLO METHODS

p DD = ( )( )0 5. Var q (5.31)

Both of these solutions for the number of expected parameters (Eqs. (5.29) and 
(5.31)) have been derived from asymptotic theory (27).

Features of using the DIC method are essentially its ease of computation and 
its applicability to nonnested models. Application is simply based on the fact that 
the model with the lowest DIC value is considered best. As a fi nal cautionary note, 
there are some circumstances when the DIC value may provide erroneous results, 
particularly in circumstances when chain mixing is slow and convergence may not 
have been achieved (32) (with discussion in Refs. 38 and 39).

5.3.3 Predictive Performance—PPC

In contrast to the hypothesis testing style of model selection/discrimination, the 
posterior predictive check (PPC) assesses the predictive performance of the model. 
This approach allows the user to reformulate the model selection decision to be 
based on how well the model performs. This approach has been described in detail 
by Gelman et al. (27) and is only briefl y discussed here. PPC has been assessed for 
PK analysis in a non-Bayesian framework by Yano et al. (40). Yano and colleagues 
also provide a detailed assessment of the choice of test statistics. The more com-
monly used test statistic is a local feature of the data that has some importance for 
model predictions; for example, the maximum or minimum concentration might be 
important for side effects or therapeutic success (see Duffull et al. (6)) and hence 
constitutes a feature of the data that the model would do well to describe accu-
rately. The PPC can be defi ned along the lines that posterior refers to conditioning 
of the distribution of the parameters on the observed values of the data, predictive
refers to the distribution of future unobserved quantities, and check refers to how 
well the predictions refl ect the observations (41). This method is used to answer 
the question: Does the observed data look plausible under the posterior distribu-
tion? This method is therefore solely a check of internal consistency of the model 
in question.

It is important to note that PPC does not provide a method for discriminating 
between models. PPC is included in this section because it does provide evidence for 
assessment of a given model and therefore has some useful model selection proper-
ties. It is possible therefore that a model could be rejected as a possible candidate 
for describing how the current data arose using a PPC format.

The process is described here. In the following notation we let an observed 
feature of the data be defi ned as a statistic denoted by T(y) (a worked through 
example is provided by Duffull et al. (6)). Simulations of the observed statistic from 
the posterior distribution of the model predictions are denoted yrep. We describe the 
posterior distribution of the model predictions given the observed data as

p p p dy y y yrep rep( ) = ( ) ( )∫ q q q (5.32)

which is computed by the integral of the model with respect to the parameters. The 
probability that the predicted statistic is greater in value than the observed statistic 
can therefore be written as



Pr T Ty y yrep , q( ) ≥ ( )( ) (5.33)

In this case it is seen that the probability that the predicted statistic T(yrep, q ) is 
greater than the observed statistic T(y) is conditional on the data y. If we assume 
that the posterior distribution of the parameters in conjunction with the model are 
a suffi cient statistic1 for the data, then we can write

p py y yrep rep, q q( ) = ( ) (5.34)

The Bayesian posterior P-value can then be computed from

P value I p p d dT T- rep ,
rep rep= ( ) ( )( )≥ ( )∫∫ y y y y yq q q q (5.35)

Where IT(.) is an indicator variable that takes the value of 1 if T(yrep, q) is more 
extreme than or equal to the value of T(y). Although the integral makes the 
calculation daunting, we can use the power of the MCMC process to provide an 
approximate numerical solution to the integral. As the number of MCMC itera-
tions (L) approaches infi nity, the P-value from Eq. (5.34) approaches that from 
Eq. (5.35).

P value L I
L T Tl

L

l
- rep ,=

→∞

−
( )≥ ( )=∑lim 1

1 y yq (5.36)

An example code for WinBUGS is given in Figure 5.1. The observed test statistic 
T(y), which is Cmax, is provided as a comment on line 1. On line 9 the model predic-
tion for the population parameters (mu(1:p)) is assigned to model.pop(j). Here 
the PPC is performed from the population predictions—rather than the individual 
predictions. Lines 10 and 11 determine whether the model prediction is greater 
than the observed test statistic; if so, then a 1 is assigned to the indicator variable 
Cmax.no(j). Lines 15–17 determine whether any of the predictions for any 
individual were above the Cmax value (this is computed as the sum of Cmax.ind()
> 0) and assigns a 0 to the indicator variable Cmax if any population predictions 
were above the Cmax, else a 1 is assigned to Cmax. This value is then transformed 
by subtracting from 1 and assigning to Cmax.ppc. Monitoring the indicator variable 
Cmax.ppc during the MCMC update will produce summary statistics for PPC.

P-values from the PPC method that are ∼0.5 indicate that the model adequately 
describes the data with approximately 50% of the predictions being more extreme 
or equal to the observed test statistic. P-values close to 0 or 1 indicate some bias 
in the model predictions and in some circumstances may be used as evidence to 
reject the candidate model. There is no fi xed value of the P-value that indicates 
poor model performance, although values more extreme than 0.1 or 0.9 may confer 
reasonable evidence against a model.
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FIGURE 5.1 WinBUGS code (Version 1.3) for performing PPC.  

5.3.4 Mixture Modeling and Bayesian Model Averaging

Estimation methods that are based on simulation platforms, such as Markov chain 
Monte Carlo (MCMC), also allow for model discrimination to be based on predic-
tive or posterior distributions. When using MCMC, competing models can be fi tted 
simultaneously as a joint model with an added “mixing” parameter to indicate which 
model is preferred (42, 43). The posterior distribution of the mixing parameter will 
provide both the weight of evidence and the posterior probability in favor of one 
model. The expectation of the prediction from m models and a the mixing param-
eter can then be evaluated:

E y yij k ij Mk

m

k[ ] =
=∑ α ,1

(5.37)

where ȳij,Mk
 denotes the expectation of the jth observation for the ith subject from 

model k (Mk) and Σ mk=1ak = 1. The likelihood is evaluated:

y N E yij ij~ [ ]( )−, σ 2 (5.38)

In this expression a common residual variance term is specifi ed, although the resid-
ual variance can be indexed to the model, in which case the overall residual vari-
ance will be the sum of the contribution of the residual variance for each of the m
candidate models. It has been found that chain mixing occurs faster when compet-
ing models are linked with a common parameter (e.g., the residual error) (42). It 
is common in the non-Bayesian model framework to address model selection as a 



closed decision process—that one and only one model is best. It is, however, also 
reasonable to consider that no one model under consideration is true and that the 
data may arise from a multitude of plausible models. The above framework for 
mixture models does not require that a single model is selected as best (although 
this assumption will be the case for a worked example). It is also reasonable that all 
models may be considered as contributing to the likelihood of the data, at the pos-
terior probability of the mixing parameter. It would seem reasonable that models 
with low probability could be discarded, but there is no particular reason to arrive 
at a single “best” model.

The mixture model is assessed for a hypothetical example and an example 
for WinBUGS code is given in Figure 5.2. Evaluation of the individual model 
predictions for one- and two-compartment models is shown on lines 5 and 7, 
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FIGURE 5.2 WinBUGS code (Version 1.3) for performing a mixture model.
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respectively. The contribution of each model to the expectation of the observa-
tion (in accordance with Eq. (5.37)) is given in line 9 with the parameter mix
representing the fractional contribution of each model at each iteration of the 
sampler. The likelihood of the data is given in line 12. The second level in the 
hierarchical model (heterogeneity between subjects) is shown in lines 14–17 for 
the one-compartment model and lines 19–24 for the two-compartment model. The 
prior for the residual error (sigma—lines 27 and 28) is assumed to be common 
between both models (this is not an absolute requirement). Lines 32–51 show 
the one-compartment and two-compartment model priors (note the use of p1
and p2 to represent the number of parameters in each model). Monitoring mix
in the sample toolbox will provide statistics that can be used to support model 
selection. The expectation of mix provides the weight of evidence for the model 
(clinical importance); the proportion of mix >0.5 (or <0.5) provides the statistical 
evidence for the model.

Due to the limited information that is available describing the use of mixture 
models, we have exemplifi ed the process in a brief series of simulations. The full 
analysis is available elsewhere (44). To assess the performance of the mixture model, 
a hypothetical data set was constructed. Concentrations yij,M2 at predetermined time 
points were simulated from a two-compartment (2-c) model with bolus input:

E y A t A tij M ij ij, 2 1 1 2 2[ ] = −( ) + −( )exp expλ λ (5.39)

The parameters of the model were chosen so that the sum of A1 and A2 was 100 
(A1 = 81.5, A2 = 18.5) and the ratio of the AUC of the distributional (A1/l1) phase 
to the total AUC was 0.3, when l1 was 1 and l2 was 0.1. Parameters for the one-
compartment (1-c) model were derived by fi tting an exponential equation to data 
derived from the two-compartment model (without variability or uncertainty):

E y A tij M ij, 1 3[ ] = −( )exp γ (5.40)

A3 and g were estimated at 47.6 and 0.12, respectively. The structural model param-
eters were derived from the coeffi cients and exponents assuming a dose of 1000 
units. Between-subject variance in the simulation of the data sets was assumed to 
be lognormal with a value of 0.1 for all parameters. The parameters are presented 
in Table 5.2. V1 was restricted to be less than V2 for all individuals. Sixty data sets 

TABLE 5.2 Population Mean and Diagonal Elements of 
W Used in the Simulation of Data Sets

Parameter Population Mean W

CL (1-c)  2.52 0.1
Vd (1-c) 21 0.1
CL (2-c)  2.81 0.1
V1 (2-c) 10 0.1
Q (2-c)  4.63 0.1
V2 (2-c) 13 0.1



(30 with 1-c profi les and 30 with 2-c profi les) were simulated. Each data set included 
20 individuals with 10 observations each (samples drawn after 0.25, 0.5, 1, 2, 4, 6, 
12, 24, 36, and 48 h).

An additive residual error was used with a standard deviation of 0.3 units/volume, 
which was approximately 150–200% of the mean predicted lowest observations. To 
avoid negative values, a new residual error value was drawn if concentrations were 
below or equal to zero.

Uncertainty/Precision The “hypothetical” data sets were run with noninforma-
tive priors (fl at; precision of 0.0001). The prior parameter means were set to the 
simulated means. The two competing models were fi t simultaneously in WinBUGS 
Version 1.4 (17) as a mixture model with a mixing population parameter (mix—in
the following notation mix is used in accordance with its use in the WinBUGS code 
shown in Figure 5.2) drawn from a uniform (0, 1) distribution.

E y E y E yij ij M ij M[ ] = [ ] −( ) + [ ], ,1 2
1 mix mix (5.41)

The median of the posterior distribution of mix close to 0 indicates that the one-
compartment model is preferred, while a value close to 1 indicates that the two-
compartment model is preferred. Independent residual errors for the two models 
were used.

The 97.5th percentile of the posterior distribution of the evidence for the true 
model (1 − mix for one-compartment model data and mix for two-compartment 
model data) did not include 0.5 for any of the simulated data sets, indicating that 
the method selected the right model in all cases. To get reliable estimates on 
all parameters (including those for the model of low probability), that is, for 
model averaging, the chains would need to be run for longer than the 10,000 itera-
tions used in this simulation study. In model averaging, the expectation of mix and
(1 − mix) would give the posterior weighted mixture of the one-compartment and 
two-compartment model, respectively.

5.4 SUMMARY

Bayesian methods offer an attractive framework for the analysis of PK/PD experi-
ments. Previous limitations associated with defi ning priors, defi ning models (includ-
ing as ODEs), defi ning model selection criteria, and including complex dosing 
histories (as are common in PK/PD data sets) have essentially become problems 
of the past. These methods offer fl exibility in allowing for previous information 
to impact on the current analysis, which is an essential part of any sequentially 
designed drug development program. It is not expected that Bayesian methods, 
as offered by WinBUGS (or BUGS on other platforms), will supersede current 
analysis tools—but they will offer a realistic alternative in many circumstances. It is 
hoped that information provided in the current chapter engages the reader to learn 
more about the world of MCMC.
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6.1 INTRODUCTION

A major problem in pharmacotherapy is noncompliance with prescribed medica-
tion regimens (1). Noncompliance has been used to indicate a range of components 
of nonadherence with assigned treatment. Urquhart (2, 3) distinguishes noncom-
pliance into three phases. (1) Acclimatization period: This is the period a patient 
considers the acceptance of the concept of treatment and his/her agreement to 
execute the prescribed regimen. Although the patient has the formal right to reject 
the agreement, some do so covertly by not starting to take the prescribed medi-
cine. Some patients may even open a pill container a few times the fi rst week and 
may never open it again, making the decision process take a while. This, however, 
should not be confused with the delay to start taking the medication. A costly error 
can occur if nonacceptance is not recognized, resulting in the interpretation of non-
response as drug-refractory disease. (2) Compliance with the decision: During this 
phase patients who accept to start drug therapy implement the prescribed regimen 
in a more or less punctual manner. The accepted treatment is experienced as a 
continual process, and with it opportunities for errors in timing and dosing as well. 
(3) Discontinuation: This is an abrupt end to the previous phase. It occurs when a 
patient discontinues treatment of his/her own accord or on medical advice. This is 
a common occurrence that should not be confounded with long drug holidays.

Drug holiday refers to interruption in dosing for a period of three or more days 
(4). An arbitrary duration is used in the defi nition of drug holidays. Consequently, 
it can have different effects depending on the disposition pharmacokinetics of the 
drug and regimen. For a drug with linear/dose proportional pharmacokinetics, 
the impact of missed doses on the concentration following a missed dose can be 
expressed as n(t/t1/2), where t is the prescribed dosing interval, t1/2 is the elimination 
half-life, n is the number of doses missed, and t/t1/2 is the noncompliance impact 
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factor (5). The impact of an omitted dose on concentration is less pronounced if 
the noncompliance impact factor is small. In addition, pharmacodynamics should be 
considered in the defi nition to refl ect meaningful clinical effect. Levy (5) introduced 
the notion of therapeutic coverage (maintenance of effective plasma concentra-
tion)—the ratio of the time to reach the minimal effective concentration divided 
by t—to deal with this.

Noncompliance is used in the remainder of the chapter interchangeably with 
nonadherence (3) to cover the different phases of noncompliance described above. 
Thus, medication noncompliance can simply be defi ned as not adhering to physician 
instructions concerning prescription medications. Some examples of noncompliance 
include not having a prescription fi lled or refi lled, taking too much or too little of 
the medication, erratic dosing due to forgetfulness, and discontinuing the medica-
tion too soon.

The importance and impact of noncompliance has been cited in a govern-
ment report. A US senate subcommittee study on medication noncompliance 
documented that not taking medications as directed results in over 300,000 deaths 
in the United States annually, and 125,000 deaths in recovering cardiac patients 
alone (6).

6.2 MEASUREMENT OF COMPLIANCE

Several methods have been used to measure patient compliance to drug therapy. 
Some of these methods lack the sensitivity to detect individuals who truly do not 
take the drugs prescribed (7–10). They include direct questioning and the use of 
interview instruments, patient diaries, and pill counts. The pill count approach tends 
to overestimate adherence (11–14), often due to “medication dumping” (15). Patient 
self-report, which has been used extensively to assess compliance, also tends to 
overestimate adherence (16, 17). Although drug levels are an objective measure of 
drug exposure, they provide only a snapshot of behavior and are affected by factors 
other than adherence (18). A more direct way to confi rm drug ingestion is the incor-
poration of a chemical marker into the dosage form and qualitatively detecting its 
presence in a biological fl uid (usually plasma or urine) (19). The incorporation of 
a chemical marker may not reveal the extent of drug ingestion such as underdos-
ing or overdosing. The Medication Event Monitoring System (MEMS) (20–22) is a 
relatively recent method that provides an objective measure of pill bottle opening 
and use of an inhaler spray or other applicator, but not necessarily pill taking or 
inhalation from the inhaler (23), and may underestimate compliance. No method 
for assessing compliance is completely accurate.

These methods of measuring compliance continue to be used in clinical trials, 
although none of them fulfi ll the criterion of providing an accurate measurement 
of drug taken. Since they are not, in and of themselves, acceptable measures of 
compliance, they can only serve to confound the analysis and interpretation of the 
compliance exposure–response relationships. However, ancillary information from 
patient diaries, for example, may be helpful in interpreting data collected by other 
means—such as MEMS and others described above (24). A combination of MEMS 
and patient diaries may give an unbiased estimate of compliance.
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6.3 COMPLIANCE INDICES

Various aspects of drug-taking behavior are quantifi ed with compliance indices. The 
fraction of doses taken in the monitoring period, which is analogous to a pill count, 
and the fraction of days during which the patient adhered to the prescribed dosing 
frequency are the most commonly reported compliance indices (10, 25–30). Dose 
timing has been measured as the fraction of doses taken at the prescribed dosing 
intervals (10, 25, 28, 30). More often than not an appropriate grace period (20–25%) 
is allowed for the latter. Another index of compliance measurement is “therapeutic 
coverage,” which was discussed in the Section 6.1. In addition, Ahmad et al. (31) 
introduced “time at risk”—the duration of time when subjects have subtherapeutic 
concentrations and may be at risk of developing breakthrough symptoms—as a 
compliance index for monitoring compliance to antiepileptic therapy.

6.4 PROBABILITY BASIS OF COMPLIANCE

6.4.1 Markov Chain

A series of probable transitions between states can be described with the Markov 
chain. A Markovian stochastic process is memoryless, and this is illustrated subse-
quently. We generate a sequence of random variables, (y0, y1, y2,  .  .  .), so that each 
time t ≥ 0, the next state yt+1 would be sampled from a distribution P(yt+1|yt), which 
would depend only on the current state of the chain, yt. Thus, given yt the next 
state yt+1 would not depend additionally on the history of the chain (y0, y1, y2,  .  .  .  , 
yt−1). The name Markov chain is used to describe this sequence, and the transition
kernel of the chain is P(.|.). P(.|.) does not depend on t if we assume that the chain 
is time homogeneous. A detail description of the Markov model is provided in 
Chapter 26.

In considering how the initial state of y0 impacts yt, the distribution of yt given y0,
denoted here as P(t)(yt|y0), needs to be examined. yt depends directly on y0 because 
the intervening variables (y0, y1,  .  .  .  , yt−1) are not provided. P(t)(.|y0) will eventu-
ally converge to a unique invariant (or stationary) distribution that is independent 
of y0 or t as the chain gradually “forgets” its initial state, subject to regularity 
conditions.

6.4.2 Model for Medication Compliance

Compliance comprises taking the drug at the prescribed dose—dosage compliance—
and taking the drug at the scheduled times—dosing time compliance. Although it 
has been argued that the indices of dosage compliance are usually less variable 
than that of dosing time compliance (32), this aspect of compliance should not be 
ignored. Separate modeling may be required for each of these medication errors 
(see Wang (33)). Figure 6.1 illustrates the two related processes in compliance.

Girard et al. (34) proposed a hierarchical Markov model for patient compliance 
with oral medications that was conditioned on a set of individual-specifi c nominal 
daily dose times. The individual random effects for the model were assumed to be 
multivariate normally distributed. Assuming fi rst–order Markov hypothesis (see 
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Chapter 26), the probability of a subject taking a dose or doses (one or more) at 
any given dosing time is a function of whatever doses were taken at the immediate 
past dosing time preceding the one in question. This, of course, is independent of 
all other previous dosing events—a Markov property.

If a subject did not take his/her medication given that it was not taken the time 
before, or did take the medication given that it was taken the previous dosing time, 
a two-state Markov chain model can be fully defi ned by using two conditional prob-
abilities. By defi ning Y = (y1, y2,  .  .  .  , yn) as a random vector indicating whether a 
patient/subject has not taken his/her medication (yi = NT) or has taken it (yi = T )
at ith time, then

p y NT y NT Pi i= =( ) =−1 00 (6.1)

p y T y T Pi i= =( ) =−1 11 (6.2)

describe the probabilities of these events (34).
From Eq. (6.1) and (6.2),
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FIGURE 6.1 A simulated nonadherence concentration profi le for a subject over 16 nominal 
doses. The dosing pattern for the patient is described in the upper half of the fi gure. Each 
solid bar represents an actual dosing time, and each dotted bar a scheduled dosing time. The 
height of the solid bar can be 1 − one dose taken, 2 − two doses taken, and 1 (i.e., M in the 
fi gure)—a dose missed or not taken.
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p y T y NT P Pi i= =( ) = = −−1 01 001 (6.3)

p y NT y T P Pi i= =( ) = = −−1 10 111 (6.4)

The above probabilities take on values between 0 and 1 and vary from individual 
to individual instead of having a 50/50 probability that would be expected for an 
unbiased coin. The Markov chains described above are sometimes called “two-coin” 
models, corresponding to a subject having two virtual coins that could be tossed 
alternately. The alternate tossing would be dependent on whether a dose was taken 
or not taken. Using a mixed effects logistic regression, the interindividual prob-
ability for a subject who may continue in a study, for instance, without taking the 
medication can be modeled as follows:

P Z Z00 1 1 1 1 1 11= + +( ) + + +( )[ ]exp expα β η α β η (6.5)

where a1 is the intercept, b1 is a vector of covariate parameters, Z is a matrix of 
individual covariates, and h1 is a random effect parameter, with mean 0 and variance 
Ω. A similar model can be written for the probability P11 that a subject may stop 
taking the medication. A detailed description of Markov mixed effect regression 
modeling for compliance data can be found in Girard et al. (34).

6.4.3 Other Methods for Handling Medication Compliance Data

Other approaches to modeling medication compliance data have been reported in 
the literature and are described briefl y below.

6.4.3.1 Random Sampling Probabilistic Model Approach
Hughes and Waley (35) described a probabilistic model that was used to character-
ize dose-taking behavior of subjects (patients) in a lipid-lowering agent study. They 
used a random sampling of adherence patterns to drive the model that described 
the onset and offset of drug effects. Patients could either comply (with a probabil-
ity P) or not comply (with a probability 1–P) when faced with their fi rst dose. The 
probability of taking the next dose decreased as a function of time if the dose was 
missed as follows:

P P kT
taking_next_dose

off
( )

−= exp (6.6)

where k is the rate constant determining the time-dependent decrease in the prob-
ability of taking a dose Toff days after a previous dose was taken. Toff, therefore, is 
time since the last dose was taken. Toff is 0 and P(taking_next_dose) is P once again when 
dosing is resumed.

Drug holidays and premature discontinuation can be modeled with the same 
expression because P(taking_next_dose) is time dependent. With the model in Eq. (6.6), 
a prolonged drug holiday eventually leads to discontinuation because the model 
assumes that dose-taking compliance and persistence are related.

6.4.3.2 Likelihood Approach
A likelihood approach for selecting from a set of possible dosing histories for each 
individual in a data set when such an individual has more than one dosing history 
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available was proposed by Jonsson et al. (36). The population model developed was 
based on individuals whose dosing histories were very similar.

6.4.3.3 Bayesian Objective Function Approach
A Bayesian objective function has been used to describe observed data collected 
after a given dose based on three different patient behaviors regarding the dose 
(37). The patient medication-taking behaviors were categorized as (a) dose was 
not taken, (b) dose was taken at the correct time, and (c) dose was taken but at 
an undetermined time. Using simulations, the authors showed that the approach 
provided a set of pharmacokinetic (PK) observations that performed well for sub-
sequent exploratory analyses or estimating individual parameters. The approach, 
however, is limited by the fact that the study drug had to be a drug with a short 
elimination half-life.

6.4.3.4 Hierarchical Bayesian Approach
Mu and Ludden (38) described a hierarchical Bayesian model-based approach 
to incorporate an estimate of compliance into a population PK analysis. With 
the approach, both compliance and population PK parameters were estimated 
simultaneously. Rather than emphasize the estimation of compliance, the empha-
sis of the approach is on improving effi ciency in the estimation of population PK 
parameters.

6.4.3.5 Missing Dosing History Approach
Soy and colleagues (39) used a simulation study to investigate some methods in 
which past dosing history (including nonmissing dose information) was “ignored.” 
The data were simulated such that the pretest dose for all individuals had a “dose 
timing error” as well as a possible “dose amount error.” They compared different 
assumptions about the amounts in the compartments at time zero. The assumptions 
were categorized into (a) prescribed dose method (PDM), (b) missing dose me-
thod (MDM), (c) missing dose mixture method (MDMM), and (d) extrapola-
tion–subtraction method (ESM).

The PDM was consistent with the intention-to-treat principle (40). An intention-
to-analysis is one in which the analyst essentially discards all information about 
compliance to assigned treatment.

Dosing history was not taken into account with the MDM approach. A new 
parameter (A0), corresponding to the (unknown) amount of drug in the central 
compartment at time 0, was estimated in addition to population PK parameters. It 
was modeled as an individual’s value of a generic PK parameter:

P P P= ( )μ η exp (6.7)

where the typical value of the parameter in the population (P) is mP, and hP is a 
normally distributed random effect (interindividual variability) with mean 0 and 
variance ΩP. The implicit assumption made with the MDM is that the amount of 
drug at time 0 in the depot compartment is zero.

Individuals are assumed to arise randomly from one of two subpopulations with 
MDMM. Subjects with PK data compatible with the nominal dose history comprise 
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subpopulation 1, while subjects with PK data inconsistent with nominal dosage 
comprise subpopulation 2. The latter are subjects for whom the MDM is suitable. 
Estimated simultaneously with the population PK parameters is the probability of 
belonging to one subpopulation or another.

The log of the slope (K) of the terminal-elimination phase of an observed time–
concentration curve for an individual (obtained from the last three to four PK 
observations) was used to build a “subtraction curve” between time t = 0 and t = t
equal to C0 exp(−Kt) with ESM . The value of this curve was subtracted from the 
“true” observation, at the time of each actual observation, and these differences 
were analyzed as though they were the observed PK responses to a single dose. 
The authors included this method to imitate what is often done in practice when 
“baseline” concentrations are clearly nonzero and prior dosing history is deemed 
to be unreliable or unavailable.

Thus, all dosage history is completely ignored with MDM when this history is 
suffi ciently suspect. On the other hand, with MDMM probabilities were assigned 
to the events where in one case an individual’s reported history could be used 
to describe the subject’s data, or in another case in describing a subject’s data 
this history could be ignored. These probabilities were then used to appropriately 
downweight past dosing history (39). The results of the simulation study indicated 
that there was little basis for preferring MDMM over MDM (39). However, when 
all dosing histories are at least somewhat wrong, the two-subpopulation mixture 
model (MDMM) cannot add great value, and the authors concluded that the pos-
sible benefi t of MDMM was more theoretic than real.

In practice, some dosing histories may be accurate and it would seem counter-
productive to deprive an analysis of all valid dosing histories just because some 
are invalid. Although the authors assumed a missing data scenario where no doses 
were assumed to be unreliable other than the one immediately preceding the test 
dose, neither MDM, MDMM, nor ESM used any prior dosing history whatsoever 
and they performed similarly in parameter estimation effi ciency. Thus, each of 
these approaches offered similar performance advantage over PDM. Therefore, 
the choice of the method to use and the ease with which a particular approach can 
be implemented is left to the pharmacometrician. It is worth noting, however, that 
when previous dosing history is unavailable, MDM, a method that does not rely on 
such a history, would be a preferred choice for estimating population PK parameters 
rather than PDM, which assumes perfect compliance.

6.4.3.6 Maximum Penalized Marginal Likelihood (MPML) Approach
Kenna and Sheiner (41) used a simulation study to show that the MPML method—
which uses an all compliance data–dosage history questionnaire, CQ, available from 
all subjects and combines that with dosing history obtained with MEMS, C, from 
a random fraction of subjects, effectively calibrating CQ to C—is superior to other 
methods that use only one compliance measure, or both, or neither; where neither 
was intention-to-treat. The authors showed that the MPML approach yielded effi -
cient dose–response estimates over a wide range of clinical trial designs, effect sizes, 
and varying quality and quantity of compliance information. The method was shown 
to maintain good performance even when its key assumptions were violated and 
compliance data were sparse.
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6.5 NONCOMPLIANCE AND STEADY-STATE PHARMACOKINETICS

When patients comply well with prescribed drug therapy, the combination of a 
steady-state assumption and knowledge of the time of the last dose has proved 
suffi cient for the extraction of knowledge from plasma concentration measures 
taken a few times from each subject in a study population. As discussed in Section 
6.1, patients often comply poorly with medication regimens, even when they take 
the prescribed number of doses. When subjects are noncompliant, the assumption 
of steady-state pharmacokinetics or steady state prior to the last dose taken does 
not hold and results in an erroneous evaluation of the history of drug exposure 
and consequently biased estimates of PK parameters (42–44). Vrijens et al. (45) 
emphasize the importance of combining MEMS data with PK data to estimate PK 
parameters without making steady assumptions. Thus, it is of the utmost importance 
to integrate appropriately collected compliance data, such as that obtained with 
MEMS or MEMS with patient diaries, in analyzing PK data. Biased PK parameter 
estimates that are used to drive a pharmacokinetic (PK)/pharmacodynamic (PD) 
model would affect the outcome of such an analysis. Implications of integrating 
adherence, adherence modeling in therapeutics, and drug development have been 
reviewed in the literature (32, 46).

6.6 APPLICATION

In this section we use a simulation study systematically to characterize the effect of 
noncompliance on steady-state pharmacokinetics. Specifi cally, the effect of missed 
and replacement doses on the steady-state pharmacokinetics of valproic acid (VPA) 
following the ER and DR preparations of the drug were investigated (31).

Divalproex sodium extended-release (Depakote® ER) is a once daily (QD) for-
mulation for VPA that was developed to improve patient compliance and reduce 
side effects compared to the standard twice-daily (BID) delayed release (DR) for-
mulation (Depakote® tablets). However, there are concerns of potential subthera-
peutic concentrations following delayed or missed doses or toxic concentrations 
with replacement doses for the ER and DR formulations.

6.6.1 Simulation

A one-compartment model with fi rst-order elimination was used to simulate 
unbound VPA concentrations. The two formulations differ only in the input func-
tion: the ER formulation was accounted for through a zero-order input over 22 
hours with 89% bioavailability. The DR formulation absorption was characterized 
by a 2 h lag time (tlag = 2 h) followed by fi rst-order absorption rate (ka = 0.1 h−1). The 
bioavailability (F) of the DR preparation was assumed to be complete (F = 1).

Equation (6.8) was used to simulate unbound VPA concentrations (Cu) follow-
ing administration of the DR preparation and Eq. (6.9) was used to simulate Cu

following the ER formulation:

C k D V k CL V e eu a a u u
CL V t k tu u a= −( ) −( )( )− −

 (6.8)
C FD CL e eu u

CL V T CL V tu u u u= −( ) −iT 1 (6.9)



where D is the dose, Vu is the volume of distribution of unbound drug, CLu is the 
systemic clearance of unbound drug, F is bioavailability, ka is the fi rst-order absorp-
tion rate constant for DR, and T is the duration of the zero-order input for ER.

The following equation was used to calculate the total VPA concentrations 
(Ct):

C C N K C P K C N K C P K Ct u u u u= + ( ) +( ) + ( ) +( )1 1 1 1 2 2 21 1 (6.10)

where P is albumin concentration, N1 and K1 and N2 and K2 are the number of 
binding sites and equilibrium association constants for a low-affi nity–high-capacity 
binding site and high-affi nity–low-capacity binding site, respectively.

Each simulation included 100 hypothetical subjects. The model parameters used 
were derived from an adult population and there were no covariate distribution 
models for the virtual trial population. Subjects were assumed to be healthy and 
on valproate monotherapy (31). The simulations assumed that the extended release 
(ER) formulation was administered once daily and the delayed release (DR) prepa-
ration was administered twice daily. Unbound and total valproic acid concentrations 
were simulated from the time of dose administration to 280 h; and the simulations 
were based on the administration of 1000 mg ER once daily, 500 mg DR twice daily, 
2500 mg ER once daily, and 1000 mg DR twice daily. For once-daily regimens, 
simulation scenarios included doses taken 6, 12, 18, and 24 h late from schedule 
and then two doses taken 24 h late (replacement dose for the missed dose). For the 
twice-daily regimens, doses were simulated 3, 6, 9, and 12 h later than the scheduled 
times and then two doses were simulated 12 h later than scheduled to mimic replace-
ment dosing for a missed dose. More extreme cases where two doses are delayed 
at various times or missed were also simulated.

The following parameters (geometric means ± SD) for CLu and Vu were assumed: 
5.04 ± 1.00 L/h and 95.1 ± 19.0 L, respectively. These parameters were assumed to 
be lognormally distributed. Protein binding parameters, N1 = 1.54 ± 0.108, K1 = 11.9 
± 1.99 mM−1, N2 = 0.194 ± 0.0783, K2 = 164 ± 141 mM−1, and P = 0.528 ± 0.0528 mM, 
were assumed to be normally distributed. Limits of ±2 standard deviations were 
placed on all parameters for the simulations.

VPA concentration versus time profi les were generated for each scenario. Drug 
concentrations were compared to the therapeutic range of valproic acid. Based on 
total VPA, a therapeutic range of 50–150 mg/L was assumed. The lower limit for the 
therapeutic range for unbound VPA was 5 mg/L. (At total concentrations of 50 mg/
L, almost 90% of the binding sites are occupied; therefore, the free fraction is 10%.) 
There is no accepted upper limit for the therapeutic range of unbound VPA.

6.6.2 Data Analysis

In order to assess the effect of missed or delayed doses, the simulation outcomes 
were summarized by:

1. Number of subjects with subtherapeutic concentrations after delayed or 
missed doses quantifi ed as the percentage of subjects having total drug con-
centrations lower than 50 mg/L or unbound VPA concentrations less than 
5 mg/L. Subtherapeutic subjects at baseline steady state were excluded from 
poor adherence scenarios.
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2. The time range that subjects spent in the subtherapeutic range or “time at 
risk,” in hours, which is essentially the duration of time where subjects might 
be at risk of breakthrough symptoms.

3. Number of subjects with drug concentrations above the upper limit of the 
therapeutic range quantifi ed as the percentage of subjects with total VPA 
concentrations exceeding 150 mg/L. This percentage refl ects the probability 
of potential toxicity.

6.6.3 Results

Figures 6.2 and 6.3 are examples of disrupted PK profi les as a result of noncompli-
ance to the ER preparation once-daily regimen. The simulated total valproic acid 
concentrations following administration of 2500 mg daily of the ER preparation are 
shown in Figure 6.2. ER dose on day 7 was administered 6 h late from schedule (30 h 
after the last dose on day 6). The effect of the missed dose followed by a doubling 
of the dose is shown in Figure 6.3.

The percentage of subjects on ER 1000 mg who had subtherapeutic concentra-
tions due to poor compliance varied from 43% to 100% with respect to Cu (<5 mg/L) 
and from 28% to 100% with respect to Ctot (<50 mg/L) (see Table 6.1) The mean 
“times at risk” varied from 6 to 60 h with respect to Cu and from 8 to 53 h with 
respect to Ctot (see Table 6.1).

None of the subjects on ER 2500 mg QD had subtherapeutic concentrations 
even if one dose was delayed 6 h from schedule. Almost 50% of the population 
had subtherapeutic concentrations if one dose (ER 2500 mg) was missed from 
schedule while all subjects would be subtherapeutic if two doses were missed. The 
mean “time at risk” varied from 0 to 28 h (Table 6.1). Regarding potential toxicity 
(Ctot > 150 mg/L), 52% of the population would experience toxic concentrations 
if two doses were taken 66 h after last dose while on ER 2500 mg QD.
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FIGURE 6.2 VPA levels following administration of 2500 mg daily. Dose on day 7 was 
administered 6 h late.



For the DR 500 mg BID regimen, the percentage of subjects who had subthera-
peutic concentrations due to nonadherence varied from 3% to 88% with respect to 
Cu and from 3% to 77% with respect to Ctot. The mean time at risk varied from 1 
to 14 h (Table 6.2). None of the subjects experienced subtherapeutic concentrations 
if one dose was delayed or missed from a DR 1000 mg BID regimen. However, if 
two doses are delayed from schedule, 1–24% of the population would have sub-
therapeutic concentrations. The mean “time at risk” varied from 2 to 6 h. Dosing 
recommendations following missed doses of ER and DR VPA formulations are 
shown in Tables 6.3 and 6.4, respectively.

6.6.4 Summary of the Simulated Study Findings

Higher doses of the ER preparation (2500 mg QD) could be used to provide 
adequate seizure control with dose delays up to 12 h. For unstable seizure patients, 
it is recommended that patients maintain a twice-daily regimen since twice-daily 
regimens are less susceptible to fl uctuations in steady-state concentrations in the 
case of noncompliance. For a shorter dosing interval, twice-daily regimens demon-
strate better maintenance of drug concentrations in the case of delayed or missed 
doses.

6.7 SUMMARY

Noncompliance with prescribed medication regimens is a major problem in phar-
macotherapy and results in 300,000 deaths in the United States annually. There 
are three distinguishing phases to noncompliance: (a) acclimatization period, (b) 
compliance with the decision, and (c) discontinuation. Several methods are used to 
measure patient compliance to drug therapy. They range from direct questioning 
and the use of interview instruments, to patient diaries, pill counts, MEMS, drug 
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178 ESTIMATING THE DYNAMICS OF DRUG REGIMEN COMPLIANCE

TABLE 6.3 Dosing Recommendations for ER Based on Free VPA

ER 1000 mg QD

One dose taken x hours after last dose
 30 Take dose and resume dosing
 36 Take dose and resume dosing
 42 Take dose and resume dosing
 48, missed dose Take make-up dose
 48, two doses Take doses and resume dosing
Two doses taken x hours after last dose
 54 Take doses and resume dosing
 60 Take doses and resume dosing
 66 Take doses and resume dosing
 72, two doses Take doses and resume dosing
 72, one dose Take two doses and resume

ER 2500 mg QD

One dose taken x hours after last dose
 30 Take dose and resume dosing
 36 Take dose and resume dosing
 42 Take dose and resume dosing
 48, missed dose Take dose and resume dosing
 48, two doses Do not double the dose
Two doses taken x hours after last dose
 54 Risk of toxicity, take 1.5 dose
 60 Risk of toxicity, take 1.5 dose
 66 Risk of toxicity, take 1.5 dose
 72, two doses Take doses and resume
 72, one dose Take two doses and resume

concentrations, and chemical markers. The pill count and patient self-report tend 
to overestimate adherence. MEMS may underestimate compliance, but combining 
it with patient diary may provide unbiased estimate of compliance. The incorpo-
ration of a chemical marker may not reveal the extent of drug ingestion such as 
underdosing or overdosing.

Several indices are used to quantify compliance. These range from fraction of 
doses taken in the monitoring period (i.e., a pill count) to the fraction of days during 
which the patient adhered to the prescribed dosing. Dose timing has been measured 
as the fraction of doses taken at the prescribed dosing intervals. Other indices of 
compliance measurement are “therapeutic coverage” and “time at risk.”

Probabilistic models have been developed for characterizing compliance. The 
most commonly cited probabilistic approach is the hierarchical Markov model. 
Other more recently developed approaches range from a random sampling probabi-
listic model approach, to likelihood approaches, Bayesian approaches, and a missing 
dosing history approach. It is up to the pharmacometrician to choose the method 
that would best characterize his/her nonadherence data. The application example 
reinforces the importance of compliance to prescribed drug therapy, and how 
steady-state pharmacokinetics can be disrupted in the presence of noncompliance.
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7.1 INTRODUCTION

Nonlinear mixed effects modeling of pharmacokinetic (PK) and pharmacodynamic 
(PD) data is often not a trivial activity. The hurdle of understanding the statistics 
and the general methodology involved in building models is one challenge; and 
learning the necessary software tools is another. Fortunately, many of these aspects 
are general (although complicated) in the sense that they are applicable to numer-
ous analyses and data types, making these skills important for any pharmacome-
trician to acquire. On the other hand, each new analysis and each new data set is 
unique and it is as important to understand the structure of the data to be analyzed 
as it is to understand the methodology to be used in the analysis. This is one instance 
where graphics can play a crucial role. Often the pharmacometrician is faced with 
the situation where the strategy and direction of model building is contingent on the 
data available at the time of initiation (i.e., models “are fi t” to data). If you have not 
seen a picture of the key aspects of your data, then you have not understood what 
is required of you as a pharmacometrician! The visualization of the data will guide 
and determine the model building strategy and will therefore directly infl uence the 
effi ciency with which the fi nal model is derived.

Graphics is also an important diagnostic tool in model development. Plots of 
residuals, predictions, and other variables will inform the pharmacometrician 
whether the model addresses all relevant aspects of the data or if some part(s) of 
the model needs further attention.

Once the fi nal model has been derived and the analysis has achieved a satisfac-
tory conclusion, the pharmacometrician has to face the important task of com-
municating the results of the analysis to nonpharmacometricians. This involves 
translating the mathematical relationships of the model into a form that directly 
addresses issues that are relevant, for example, responder rates in various 
patient subpopulations or a suggestion for the design of the next study in a drug 
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184 GRAPHICAL DISPLAYS FOR MODELING POPULATION DATA

development program. The important thing to remember here is that the intended 
audience should not have to be distracted by mathematics and Greek symbols of 
the model while assessing the implications of the new fi ndings. Graphics is a very 
powerful tool to accomplish this.

Throughout this chapter we use two example data sets. The fi rst is a real data set 
from a PK study in 73 individuals with an average of ten observations per individual. 
Each individual was studied on one to seven occasions. The second example is a 
simulated data set with an ordered categorical response variable and is described 
in greater detail in Section 7.4.7.

The graphs and examples are geared toward NONMEM simply because 
NONMEM is the most widely used computer program for population PK/PD 
analysis. The principles, on the other hand, are quite general and should be easily 
adoptable for use with other software employing the same methodological strategy 
as NONMEM does.

For the continuous data example, all the graphs are exemplifi ed using PK data. 
However, the graphs are also as suitable for PD data. When the term simulation 
is used it refers to stochastic simulations. Finally, we have limited the chapter 
to regular two-dimensional graphs and omitted three-dimensional or interactive 
graphing techniques. The reason is that multidimensional relationships can be 
handled quite successfully by multiple two-dimensional graphs, thereby becoming 
much easier to understand. Interactive graphics, on the other hand, can potentially 
be quite useful in the explorative phases of a data analysis project but do not lend 
themselves for presentation or reporting purposes.

Following this introduction is a general section presenting techniques for han-
dling the special aspects of population type data. The remaining sections of the 
chapter are organized around three phases in the life span of any analysis: before,
during, and after. The activities in these phases are distinctly different and require 
different types of graphical approaches. For each of these phases we discuss graphs 
we believe are almost always useful. Section 7.4.7 addresses the specifi cs of the 
graphical display of categorical data. Visualizing this type of data, both from an 
exploratory as well as from a diagnostic perspective, requires different techniques 
compared to continuous data and is underused in the area of nonlinear mixed effects 
modeling. At the end of the chapter are appendixes detailing some NONMEM 
code required to generate data subsequently presented in graphs shown in the main 
body text.

7.2 CHARACTERISTICS OF INFORMATIVE DISPLAYS 
OF POPULATION DATA

The data used in population PK/PD analysis has some important features that need 
to be taken into account when plotting. The data is hierarchical, meaning that the 
observations are grouped according to the individual from whom they originated. 
This is the fundamental reason why a nonlinear mixed effects modeling approach 
was selected as the method of analysis in the fi rst place. Our graphical methods 
must recognize this fact.

Population PK/PD data is heterogeneous. For example, individuals can vary in 
their drug elimination capacity and observed responses compared to other indivi-



duals as well as within themselves between study occasions. Similarly, observations 
vary due to dosing history differences, assay variability, or sample handling differ-
ences. An informative graphical display needs to handle this variability without 
masking it.

Population PK/PD data is multidimensional. In an analysis of PK data, the 
most obvious predictor we have is time. In an analysis of PD data, we have time 
and drug exposure as the fundamental independent variables. What should not be 
forgotten, however, is that there may be other potential predictors that can explain 
the observed variability (e.g., body weight, sex, age, and other covariates), some of 
which also vary with time. Again, we must use graphical methods that can accom-
modate this situation.

One aspect of population data that is often overlooked from the point of view 
of graphical displays is that we may have a large amount of data points. Regardless 
of how cleverly we devise our graphs, they will be useless if the data points form a 
dense, uninformative “shotgun blast” between the axes.

We must also be prepared to handle different types of response variables. For 
example, it is becoming increasingly common to model categorical data within the 
framework of nonlinear mixed effects models. From a plotting point of view, this 
type of data is distinctly different from continuous data and we need to account 
for this fact.

Figure 7.1 shows a graph of observed concentrations versus time after dose (see 
Section 7.2.1 for further discussion of time scales). Each individual’s data points 
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FIGURE 7.1 The plot illustrates some important aspects of the graphical display of popula-
tion data. See the text for details.
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are plotted using open circles (or ID numbers, which will be explained later) and 
connected with thin solid lines. The underlying trend in the data is visualized by a 
smooth nonparametric curve (the thick, black, solid line). The smooth line in this 
case is a loess regression line but other smooth curves, for example, running aver-
ages, will accomplish the same thing. (Sometimes it may be necessary to adjust the 
amount of smoothness of such trendlines—accomplished by changing the tuning 
parameters of the smooth curve, for example, bandwith or span. The rule of thumb 
is that the curve should be as smooth as possible without hiding important trends 
and an initial trial and error approach is usually suffi cient to fi nd an appropriate 
degree of smoothness.) Extreme data points are labeled with the corresponding 
individual’s ID number. In this case, the extreme data points are defi ned based 
on the residuals from the fi t of the smooth curve. Points outside the 2nd and 98th 
percentile of the residual distribution were defi ned as extreme. The thin, dashed 
grid lines are a visual reference grid, which is intended as a reference and not to 
help reading off values on the axes. This is useful if we have other plots we want to 
compare the current one to, but this requires the grid lines to be the same relative 
to the axis scales in the two graphs to be compared.

There is a lot of information contained within this graph. Individuals are explic-
itly recognized since their data points are connected. All individual data points are 
plotted, which makes it possible to appreciate the variability in the data without 
resorting to summary measures such as mean concentration curves ±95% confi -
dence bands. We can also track the limits of the variability since the extreme indi-
viduals can be identifi ed through their ID numbers.

Figure 7.1 is not very busy but it can easily be appreciated that graphical displays 
of this kind are at risk of becoming so. The use of open circles (or other nonsolid 
symbols) helps somewhat. Dashed lines may be perceived as a better choice than 
solid lines to reduce the amount of “ink” in the graph. However, dashed lines are 
harder to track among many other dashed lines and will therefore destroy the pos-
sibility to identify individuals as the data becomes denser, sooner than is the case 
with solid lines. The solution to the graphical display of a massive amount of data 
is actually not to plot all of it—so-called data dilution. The question therefore arises 
as how to omit data in an objective way. The obvious solution is to select a random 
subset of the individuals to display from the full set of individuals. This has been 
done in Figure 7.2, which displays a random selection of approximately 50% of the 
individuals in the original data set. It is quite clear that Figure 7.2 is giving a differ-
ent picture from Figure 7.1. In particular, the most extreme individual (ID number 
16) and the individual with the singly most extreme data point (ID number 42) are 
not included in this sample. This shows that displaying a completely random subset 
may actually hide the very information we are interested in. One could argue that 
omitting 50% of the individuals is too much, but then it must be remembered that 
it may be necessary to exclude an even larger fraction if the data set is large. An 
alternative approach is to use stratifi ed randomization in which it is made sure that 
the random subset retains all extreme individuals and only omits individuals who do 
not seem to contain any unique information. The defi nition of extreme individuals is 
similar to the defi nition of extreme data points. It is based on the residuals from the 
fi t of the smooth curve. Individuals who have all their residuals inside (in this case) 
the 1st and 99th percentile of the residual distribution were regarded as eligible 
for exclusion from the graphical display. This is shown in Figure 7.3. The number 



of individuals in Figure 7.3 is approximately the same as the number in Figure 7.2. 
However, Figure 7.3 faithfully retains the same impression of variability as Figure 
7.1 and the smooth curve, which is the same in all three fi gures (i.e., based on all 
data), provides the central tendency impression. To ensure that any data dilution 
does not distort or hide important information, it may be useful to create a handful 
of diluted graphs and make certain that an appropriate set of sampling parameters 
has been selected. This should, however, only be necessary at the outset of an 
analysis or if the data set is amended or changed during an analysis.

That leaves the multidimensionality aspect unaddressed. The basic problem is 
that we may have more than one potential predictor. One possibility is to use 
three-dimensional (3D) graphs, but they are diffi cult to interpret and only allow 
three dimensions. Another possibility, which turns out to work very nicely in this 
setting, is multipanel conditioning plots (as implemented in Trellis Graphics library 
in S-Plus (Insightful Corporation, Seattle, WA) and in the lattice library in R (www.
r-project.org)). With this type of graph, one variable is plotted versus another 
given intervals of a third (or fourth, or fi fth, etc.) variable. An example is shown 
in Figure 7.4.

The observed concentration is plotted versus time after dose given three ranges 
of creatinine clearance (low, medium, and high as defi ned by the intervals given by 
the 33rd and 67th percentile) as indicated by the strips above each panel. The visual 
reference grid makes it easy to compare the data in each of the panels. The plot 
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FIGURE 7.2 The plot illustrates data dilution based on a completely random subset 
selection.
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FIGURE 7.3 The plot illustrates data dilution based on a stratifi ed, randomly selected 
subset.
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FIGURE 7.4 A multipanel conditioning plot of concentration versus time given ranges of 
creatinine clearance.

could easily have been expanded to use two conditioning variables, for example, 
creatinine clearance and age, in which case there would have been three panels for 
each age range, low, medium, and high creatinine clearance. For further informa-
tion about the methodology of multipanel conditioning, please refer to the excellent 
book by Cleveland (1).



For the PK example used it is known that drug clearance is strongly related to 
the renal function and by comparing the slopes of the smooth curves in the three 
panels of Figure 7.4 we can certainly expect that this is to be true also in this data 
set. (In the High Creatinine clearance panel, the slope of the smooth curve seems 
to be steeper, i.e., a shorter half-life, which may indicate that the clearance is higher 
in these individuals.)

7.2.1 Time Scales

Time is the fundamental predictor in PK/PD models and therefore deserves some 
special attention. In NONMEM it is possible to specify the time points for observa-
tions and dosing events in the form of date and clock time. This is very convenient 
as this is the form in which the data is often stored in clinical databases. These 
dates and clock times are converted to decimal times in the preprocessing stages of 
the execution of a NONMEM run, and it is these decimal times that are used by 
NONMEM in the minimization procedure and that are provided in the tabulated 
output. From a plotting point of view, dates and clock times are not easy to work 
with. Except for cases with diurnal variations and/or annual rhythms (2, 3), the extra 
dimension offered by dates and clock times are unnecessary and may actually make 
it harder to visualize the data in an informative way.

Another aspect of time scales is that they are relative to something. The default 
behavior in NONMEM (after any time and date specifi cations have been converted 
to decimal times) is that the time scale in each individual is relative to that individ-
ual’s fi rst data record. In graphical displays, on the other hand, it may sometimes 
be more useful to use time after the last dose as the time scale, that is, to use the 
time of a specifi c dose (previous dose, last in a specifi c dosing period, etc.) as the 
reference point, since this creates a natural order in the time variable relative to 
predictions and residuals and hence more informative graphical displays.

7.3 BEFORE ANALYSIS

7.3.1 Tasks at Hand

Before any “real” analysis work can commence, there are at least two, potentially 
unrelated, issues that need to be resolved. The fi rst is to make sure that the data 
fi le to be used in the analysis is correct. The second is that the pharmacometrician 
needs to explore the data to be analyzed. Both of these before-analysis tasks benefi t 
from a graphical approach.

7.3.2 Data Checkout

One aspect of data checkout is fi nding errors in the data. Errors can occur either 
in the database(s) from which the data fi le is constructed or in the transcription 
from that database. The latter type of error can be of two types, either in individual 
values or in the structure of the data fi le as such. All three types of errors may pass 
unrecognized by NONMEM and additional data checkout is therefore necessary. 
The structure of the data set informs NONMEM where and when the doses and 
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dependent variables were observed, the values of independent predictor variables, 
and so on. Clearly this type of information will have a large impact on the results 
of the analysis and we need to make sure it is correctly specifi ed.

Some errors in the structure of the data fi le, for example, positive drug 
concentration observations before the fi rst dose, become apparent through error 
messages from the PREDPP library of NONMEM. Other types of mistakes are 
usually only found by inspecting the data fi le and knowing what the data should 
be, for example, the wrong covariate value(s) for an individual. Another way of 
fi nding mistakes is through association and plotting, meaning that by looking at a 
picture of the data we can see irregularities in some individuals that may indicate 
errors. The last approach is especially useful for the distribution of dosing and 
observation events.

One useful type of graph for fi nding errors in the structure data fi le is to plot 
each individual’s ID number versus each column (variable) in the data fi le. Depend-
ing on the variable, the expected pattern is different. For example, when plotting 
the ID versus the AMT column (which is positive at time points when a dose is 
administered and zero otherwise), it is expected that each individual will have AMT 
values of 0 (observation events) and values for the administered doses, while when 
plotting covariates such as WT and AGE there should probably not be any values 
at zero. Figure 7.5 shows an example of this graph. Each individual has one data 
point for each of its rows in the data set. To avoid having all the identical data points 
from a single individual becoming superimposed, the data points have been jittered, 
meaning that for display purposes they have had an element of random noise added 
to them. The power of this type of graph lies in the association, an individual who 
is much different from the other individuals is usually obvious. However, it is dif-
fi cult to fi nd small errors, especially those that do not make the individual stand out 
compared to the others. One way to make the identifi cation of extreme individuals 
even easier is to order the ID number of the y-axis according to their mean value 
of the x-variable. If there are more than, say, 100 individuals in the data set, it is 
necessary to split the graph over two or more pages.

A critical aspect of PK data is the dosing history and the relative placement of 
doses and observations in time, and it is important to check that there are no gross 
errors in this part of the data specifi cation. Dosing histories can quite conveniently 
be displayed using event history diagrams. An example is shown in Figure 7.6 in 
which ID numbers are plotted versus the AMT column. Each individual’s values 
are connected with a dashed line (which of course will be horizontal) and each 
event is indicated with a symbol—circles for nondosing events and vertical bars for 
dosing events.

A problem with Figure 7.6 is that the horizontal dimension is dominated by the 
observations at later times, making it hard to see what is going on at earlier time 
points. One solution to this may be to use a log scale for the time axis. Another is 
to split the graph and look at different time periods separately. The latter has been 
done in Figure 7.7, where the data coded as belonging to occasion one is plotted 
separately. Here we can see that most individuals had fi ve doses recorded in the 
data set prior to the fi rst observation while six individuals had observations recorded 
directly after the fi rst dose event. (This may indicate that these six individuals lacked 
the dosing history and that the fi rst dose had to be assumed to be a steady-state 
dose.) It is also obvious that, for most individuals, occasion one was defi ned to cover 
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FIGURE 7.5 A data set checkout plot. The ID column in the data fi le is plotted versus the 
creatinine clearance column.
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FIGURE 7.6 An event history diagram for all doses and observations in the data set.
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less than 100 hours while fi ve individuals were different in this respect. Depending 
on how the other occasions were defi ned, this may have an impact on the quantifi -
cation of interoccasion variability (4).

7.3.3 Data Exploration

Data exploration is a scientifi c exercise where we try to learn things about the data, 
for example, how the covariates are distributed and how they relate to each other. 
The exploratory data analysis also defi nes the population—and thereby the bounds 
for the validity of the model—and will form the basis for reporting the analysis to 
others. The data exploration is also important from an error fi nding point of view 
since some errors only become apparent when closely studying the data.

Exploratory data analysis in the fi eld of population PK/PD analysis has received 
considerable attention in the literature over the years and the basic graphical tools 
for this exercise (e.g., histograms, scatterplot matrices, and QQ plots) have been 
described elsewhere (5–9) and will therefore not be detailed here.

One aspect that is particular to long-term outpatient clinical trials is time-varying 
covariates, and recently a framework for handling these has been presented (10). To 
visualize time-varying covariates, we need to use the original time scale, not time 
after dose. An example is shown in Figure 7.8, where each individual is plotted sepa-
rately with a line that is horizontal until the value of creatinine clearance changes. 
(This is also the default way NONMEM handles time-varying covariates. It can be 
changed by including appropriate statements in a $BIND record in the NM-TRAN 
control stream.) Superimposed are the observed values and a smooth curve to visu-
alize the underlying trend. In this case creatinine clearance appears to systematically 
increase with time, something to consider including in the model (10). However, 
care must be taken not to mistake this pattern for the case in which individuals with 
poor kidney function have a higher drop-out rate than individuals with relatively 
normal functioning kidneys. Care must also be taken not to let a skewed distribution 
of the covariate mislead the eye to see a pattern where none exists.
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FIGURE 7.7 An event history diagram for the doses and observations coded in the data 
set as belonging to the fi rst study occasion. See the text for details.
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7.4 DURING ANALYSIS

Once the “real” analysis work starts, graphics should be an integrated part of the 
workfl ow. Graphics is used to suggest improvements to the model and is used to 
evaluate the benefi ts of the changes. There are other means of evaluating the impor-
tance of a change to the model, for example, statistical signifi cance criteria, but only 
graphics can tell whether a model is appropriately describing the data.

During the model building phase, the pharmacometrician is constantly faced 
with two questions: (a) How can I improve the model to provide a meaningfully 
improved fi t to the data? (b) Does the model violate any (statistical) assumptions, 
making it inappropriate? The fi rst question is scientifi c and will depend on the appli-
cation. For example, would the model benefi t from a component that introduces 
time dependency in response? The second question is more general and applies 
to all analyses. One example is to choose an appropriate model for the residual 
variability (weighting). Karlsson and co-workers (9) compiled a comprehensive 
list of the assumptions involved in a NONMEM analysis together with suggestions 
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FIGURE 7.8 Creatinine clearance plotted versus time. The creatinine clearance values at 
each time point for each individual are plotted and connected with a dotted line. The solid 
black line is a smooth, nonparametric, regression line.
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for how they could be checked. Many of the suggested approaches are based on 
graphical methods.

It is clear that most graphs in this phase of an analysis are only meant for the eyes 
of the pharmacometrician(s) and the questions answered by the graphs are quite 
technical. This means that the graphs can and perhaps need to be quite complicated 
and hard to understand for the uninitiated viewer.

7.4.1 Basic Plotting Variables

In the following we describe a number of graphs, grouped based on the question 
they are designed to answer. Before continuing, however, it is necessary to provide 
background and defi nitions for some of the important plotting variables:

P g zi i= ( ) (7.1)

P q Pi i i= ( ), η (7.2)

ŷ f P xij i ij= ( ), (7.3)

ŷ f P xij i ij= ( ), (7.4)

y p yij ij ij= ( )ˆ , ε (7.5)

y p yij ij ij
i= ( )ˆ , ε (7.6)

Typical individual parameters (Eq. (7.1)), P̄i, can be expressed as a function, g( ), of 
covariates, zi. Note that there will be as many unique typical individual parameter 
estimates as there are unique combinations of zi. If the model does not include any 
covariate relation, then g( ) will be a constant value.

Individual estimates of the parameters (Eq. (7.2)), Pi, can be expressed as a 
function q( ) based on the typical individual parameter estimate and the zero mean, 
symmetrically distributed variable hi, whose standard deviation is w. The values of hi

are obtained as posterior Bayes estimates conditioned on a set of typical individual 
parameter estimates, ws, and the data for the individual. The important property 
of the individual parameter estimates is that they will be shrunken toward the 
typical individual parameter estimate, the degree of shrinkage determined by the 
amount of information in the data from the individual relative to the size of w. In 
the extreme case with no data at all, the individual estimate will be exactly the same 
as the typical individual estimate. In the other extreme, with an infi nite amount of 
information, the individual parameter estimate will be independent of the typical 
individual estimates and w.

The predictions based on the typical individual parameter estimates (denoted ŷ̄ij

in Eq. (7.3)) are, in NONMEM, called PRED. The size of the prediction depends 
on the individual’s value of any independent variable (e.g., time) at observation j, xij.
The individual predictions (ŷij in Eq. (7.4)), usually called IPRED, are not directly 
available in NONMEM but can easily be derived by the user in the NONMEM 
control stream. How this can be performed is described in Appendix 7.1.

The differences between the predictions and the observations are the residuals 
and the values of these will depend on the function p( ) and if the population or 
individual predictions were used to derive them. In Eqs. (7.5) and (7.6) they are 
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denoted eij and e iij, respectively. The standard deviation of eij is s. The weighted 
residuals, WRES, obtained from NONMEM are based on the typical individual 
estimates of the parameters and are scaled such that they ought to have a mean of 
zero and unit standard deviation (NONMEM User’s Guide II (11)). The individu-
ally weighted residuals, IWRES, are not directly available in NONMEM but can, 
similar to the IPREDs, easily be derived in the NONMEM control stream (see 
Appendix 7.1).

7.4.2 Overall Goodness of Fit Plots

Before progressing into the world of residuals, it is usually a good idea to get an 
overall impression of the model performance. A useful display for this purpose is 
shown in Figure 7.9. The observed data and the individual and population predic-
tions are plotted versus time after dose. The data was diluted to about 25% using 
stratifi ed randomization and the extreme data points in the left panel and the 
corresponding predictions in the middle and right panels are labeled with the ID 
number. If the two right panels are satisfactory, meaning that they look similar in 
some sense to the left panel, we know that the model is at least improving. For more 
detailed structural model diagnostics we have to resort to other plots (see below). 
We can also learn about the scope for improvement by adding covariate relations 
to the model. The individual predictions usually defi ne the limits for what is achiev-
able by adding covariates. Or phrased differently, we can rarely hope to bring the 
population predictions closer to the observations than the individual predictions are 
by the addition of covariates to the model, meaning that the difference between 
middle and right panels defi nes the scope for model improvement by covariates. 
A fi nal benefi t of this graph is that we can show it to nonpharmacometricians and 
expect them to understand what is going on, despite the fact that we present it as 
a diagnostic plot.
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FIGURE 7.9 The fi gure shows the observed data and the individual and population predic-
tions plotted versus time after dose. Included is approximately 25% of the total number of 
individuals (selected using stratifi ed randomization). The thick solid line is a smooth curve 
based on all individuals. Data points that were judged extreme (see above) in the left panel 
are labeled with the ID number. The corresponding predictions are also labeled. The zigzag 
pattern most obvious in the right panel is due to the fact that some individuals received dif-
ferent doses at different study occasions.
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Figure 7.9 is good for obtaining a general impression of the performance of the 
model. If we want to get a more detailed look at how the predictions match the 
observations, we can plot them against each other (Figure 7.10). The graph displays 
all data (no dilution). The line of identity (the solid bold line) is included as refer-
ence. Since the model does not contain any covariates, the differences in population 
predictions are only due to differences in dose amounts (left panel). When the data 
is taken into account, the predictions cover the same range as the observations (right 
panel). What we expect from this type of graph, if the model is fi tting the data well, 
is that the data points are scattered evenly around the line of identity; that is, the 
average prediction goes through the middle of the observed data and the predictions 
and observations are near the line of identity. If this is the case, then the scatter 
around the line of identity in the left panel can basically only be reduced by the 
addition of covariates. The scatter in the right panel is also infl uenced by how we 
model the interindividual variability. An alternative if the plot is dominated by a 
few extreme data points is to use a log–log scale.

Note the placement of the axes: the observations on the y-axis and predictions 
on the x-axis. This is in line with Eqs. (7.5) and (7.6), where the y-variable is the 
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FIGURE 7.10 The observations are plotted versus the population and individual predic-
tions, respectively. All data points are included in this graph (no dilution). The thick solid 
line is the line of identity. Data points that were judged extreme (see above) in the left panel 
are labeled with the ID number in both panels. The thin solid line is the linear regression 
curve obtained when the observations were regarded as the y-variable (the correct way). The 
dashed line is the linear regression curve obtained when the observations were regarded as 
the x-variable and the predictions as the y-variable (the wrong way).
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observations and the unexplained variability is additive to the predictions (in the 
y-axis direction). Obviously the axis placement does not infl uence the data plotted, 
except that the picture will be turned around. However, it does matter which vari-
able is regarded as the y-variable if we wish to add regression lines (linear or smooth 
curves). Such regression models assume that the unexplained variability is additive 
in the vertical direction. The thin solid, diagonal lines in Figure 7.10 are the regres-
sion lines obtained by regarding the observations as the y-variable (the correct 
way). The dashed, diagonal lines, on the other hand, were the results of regarding 
the observations as the x-variable (the wrong way). Clearly it makes a difference. 
Note that a deviation between a regression line and line of identity does not always 
indicate model misspecifi cation. It may be a consequence of, for example, adaptive 
study designs or exponential parameter or error distributions (see below about 
simulations for inspecting diagnostic plot behavior).

To get a more detailed impression of the differences between the predictions 
and the observations and how these differences are distributed over the indepen-
dent variable, we can plot the IWRES versus time after dose (Figure 7.11). With 
this graph, the choice of the independent variable is important. Had we chosen the 
original time scale (relative to the fi rst data record in each individual), it would 
have been hard to interpret any trends that the graph shows but would, on the 
other hand, have allowed for the detection of time dependencies. An alternative, 
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FIGURE 7.11 The individually weighted residuals versus time after dose. The solid 
thick line is a smooth nonparametric regression line. The horizontal thin line is the zero 
reference line.
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especially in the case when the data per individual is sparse, is to plot the WRES 
instead of the IWRES. However, if any of the conditional estimation methods are 
used in NONMEM, WRES may be misleading. This is because they are always 
computed under the same assumption as the fi rst-order (FO) estimation method is 
using. For a particular problem, if there is a difference in the parameter estimates 
between using the FO and a conditional estimation method, WRES should be 
used with caution to detect imperfections of models, as even appropriate models 
can display patterns indicating misspecifi cation. As this is likely to happen mainly 
when individual data is relatively rich, IWRES is probably a better diagnostic. If 
we use the FO method, then the WRES are the residuals we should look at; if we 
use other methods, then they may not be appropriate to use. (For further details 
on the various estimation methods in NONMEM, please refer to NONMEM Users 
Guide VII (11)).

If the model is appropriate for the data, then Figure 7.11 should show no trends: 
that is, the data points should be evenly scattered around the horizontal zero-line, 
and the smooth curve should be approximately horizontal.

7.4.3 Residual Model Diagnostic Plots

In all types of data analysis there are assumptions made. In a parametric approach, 
like the one in NONMEM, many assumptions concern the handling of the residual 
error (9, 12) and, in a sense, the validity of the whole analysis rests on the degree 
to which we have accounted for the residual variability appropriately. The two 
most important assumptions in this respect are (a) that the residual variability is 
homoscedastic and (b) that the residuals are symmetrically distributed.

The assumption of homoscedasticity means that the residual variability should 
be constant over all available data dimensions (predictions, covariates, time, etc). If 
we observe heteroscedasticity, then we need to change the residual error model to 
account for this. In practice, this means that we should weight the data differently 
by using a different model for the residual variability.

Figure 7.12 is a useful graph for detecting problems with the residual variability 
model. The graph shows the absolute values of the individually weighted residuals 
versus the individual predictions. The use of the absolute values of the residuals 
assumes that there is a balance between positive and negative residual: that is, an 
appropriate structural model has been used. The smooth curve indicates if the 
underlying trend is different from horizontal. If the smooth curve has a pronounced 
positive slope, then the model should allow higher predictions to have a larger vari-
ability, for example, going from an additive model to a slope-intercept or a constant 
CV residual error model. If the slope is pronounced negative, then the residual error 
model should instead be more “additive,” for example, going to a slope-intercept 
model from a constant CV residual error model. There is, of course, more to say 
about residual error modeling but this is beyond the scope of this chapter. Useful 
references in this respect are Refs. 9 and 12–14.

The second assumption concerns the distribution of the residual errors. Ideally, 
the weighted residuals should be normally, or at least symmetrically, distributed. 
Effective graphical displays to check this include histograms and quantile–quantile 
(QQ) plots (5). If a marked skewness is observed, it may indicate that a transforma-
tion, for example, a log transformation, of the data may be necessary (13).
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7.4.4 Interindividual Variability Model

Model building diagnostics for interindividual variability rely on investigation of 
hi (or Pi). As h values can display considerable bias (shrinkage) when informa-
tion about a parameter is lacking in an individual’s data, basing decisions on these 
parameters can be misleading. Whenever shrinkage occurs, the individual param-
eter estimates tend to support the models used to generate them. One way of 
assessing the degree of shrinkage is to compare the w estimate from the model with 
the SD of the h estimates. If the two values are similar, shrinkage is not a problem. 
However, if the individual estimates display a considerably lower variability, diag-
nostics based on h values should be treated with caution (and so should diagnostics 
based on IWRES). However, due to study design, sometimes only a subset of the 
studied subjects may contain substantial information about a particular parameter, 
and diagnostics may then be limited to that part of the data. The precision (SE) in 
individual h estimates is not provided as standard output in NONMEM but can be 
obtained subsequent to the fi t (Appendix 7.2). Values of h with a large SE rela-
tive to w are subject to more shrinkage than h values with small SEs. Note also 
that individual h values can represent a solution at a local minimum, a situation 
not easily diagnosed as there is no user infl uence over the initial estimates that are 
used in that estimation.

Provided h values are deemed reliable, they can be used in scatter matrix plots to 
investigate correlations between parameters or in QQ plots or histograms to assess 
appropriateness of the selected parametric shape of parameter variability. Models 
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FIGURE 7.12 The absolute values of the individually weighted residuals versus the indi-
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that include both interindividual and interoccasion variability offer a particular 
obstacle when it comes to use h values as diagnostic tools. If the number of occa-
sions is large and the information per occasion high, h values for interindividual 
variability can be diagnosed as described. For situations (or individuals) where 
the number of occasions is low and/or information per occasion is scarce, diagno-
sis based on individual-specifi c and occasion-specifi c parameter estimates should 
proceed with caution.

7.4.5 Covariate Model

Incorporating covariates in a population PK/PD model is often an important part 
of the model building process and is often also an overall aim of the analysis.

Graphical displays of parameters versus covariates are appealing since we usually 
have an intuitive understanding of the plotted variables. Depending on whether the 
covariate is continuous or categorical, we need to use different plot types. Figure 
7.13 is a plot of the unexplained variability in CL, expressed as the h for CL, versus 
creatinine clearance and sex. Creatinine clearance is a continuous variable and can 
be displayed using a typical bivariate xy plot, while sex is categorical and is displayed 
using a box and whiskers plot. The latter plot type is useful for categorical data. 
The solid symbol in the center of the box shows the median value. The box itself 
is limited by the interquartile range (25th to 75th percentile). The whiskers, the 
dashed lines going up and down from the box, extend 1.5 interquartile ranges from 
the box or to the most extreme data point. If there are any data points beyond the 
whiskers, these are plotted individually. Since the amount of data in each category 
is crucial in the judgment of any differences between the categories, the width of 
the boxes in Figure 7.13 are set to be proportional to the corresponding number of 
individuals (there are considerably less females than males in the data set).

It is generally hard to let graphs like the ones in Figure 7.13 guide the covari-
ate model building process. The problem lies in the fact that covariates tend to be 
correlated. This is to some extent illustrated in Figure 7.13. The parameter values 
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FIGURE 7.13 The unexplained variability in CL, expressed as h, when no covariates were 
included in the model, plotted versus creatinine clearance and sex. See the text for details.
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come from a model that does not include any covariate relations. There seems to 
be a clear correlation between clearance and creatinine clearance but there also 
seems to be a difference between males and females. Since it can be expected 
that creatinine clearance and sex are correlated (we should have explored this in 
the before-analysis phase), the two apparent relations can be caused by the same 
mechanism. On the other hand, there may be two separate mechanisms involved. 
A way to sort this out is to include one of the covariate relations in the model, run 
it, and then construct the same graph again.

Figure 7.14 is based on a model in which creatinine clearance was included. The 
axis limits are the same as in Figure 7.13 and it is clear that the unexplained variabil-
ity has decreased. At the same time it appears as if the sex relation is not as impor-
tant anymore. On the other hand, had sex been included in the model instead of 
creatinine clearance then the picture would perhaps have looked the same. Again, 
this is the problem with using graphs to guide covariate model building. Clearly 
some other techniques are necessary (see other chapters in this book).

The best use of graphical displays of the above type is actually not to identify 
relations but rather to explore the shape of the relations, for example, linear or 
nonlinear, or to disprove them (6).

In Figures 7.13 and 7.14, the unexplained variability in clearance was expressed 
as the corresponding h value (obtained by posterior Bayes estimation). There are 
other alternatives, as shown in Figure 7.15.

Plotted are the individual estimates of clearance, the difference between the 
individual estimates of CL and the typical individual estimate of clearance, and 
the h for clearance. Without any covariates in the model it does not matter much 
which variable is used. With covariates, on the other hand, we should not use the 
individual estimates of the parameter. Equation (7.7) explains why.

P x xi P i i= + − ( )( )( ) +θ θ η1 cov median (7.7)
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FIGURE 7.14 The unexplained variability in CL, expressed as h, when creatinine clearance 
was included in the model, plotted versus creatinine clearance and sex.



202 GRAPHICAL DISPLAYS FOR MODELING POPULATION DATA

qP is the typical value of the parameter P (defi ned as an individual having the 
median value of the covariate x), qcov is the coeffi cient for the covariate relation, and 
xi is the ith individual’s value of the covariate x. Clearly, if we plot the individual 
parameter estimates (Pi), obtained under the model in Eq. (7.7), versus the covari-
ate x, we will see a trend. This is exemplifi ed in Figure 7.16.

The individual parameter estimates in Figure 7.16 were obtained from a model 
similar to Eq. (7.7) and we can see that the individual estimates of clearance show 
a clear relation to creatinine clearance while the other two measures of unexplained 
variability are reduced in comparison. To summarize, once the model includes 
covariates, we should not plot the individual estimates versus covariates but rather 
something like the h values if the reason for creating the graph is to visualize poten-
tial relations between the unexplained variability and covariates.

Another point with respect to graphical display of covariate relations concerns 
interactions between covariates, that is, when the relation between the parameter 
and covariate depends on the value of another covariate. For example, if males and 
females have different relations between clearance and body weight. Given that 
the data set contains enough individuals to support the identifi cation of interaction 
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FIGURE 7.15 The variability in clearance without any covariates in the model plotted 
versus creatinine clearance. The three panels include different measures of the variability. 
See the text for details.
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effects, these can be visualized quite effi ciently by the use of multipanel condition-
ing, as explained above.

7.4.6 Simulations as a Tool to Make Sense of Goodness of Fit Graphs

Diagnostic plots can only tell us about the defi ciencies of the model and not about 
its adequacy unless we compare it to the same type of plots based on other con-
tending models. In practice, if we cannot see any problems in our battery of diag-
nostic plots, then we assume the model is without substantive error. Therefore, it 
is important to use a multitude of graphs to inspect as many aspects as possible of 
the model. However, we need to be careful because a diagnostic plot may appear 
suboptimal even if the model is adequate. There are basically two reasons for this 
phenomenon.

The variable we are plotting, for example, the residuals, is not a good measure 
of the model adequacy: the reason usually being that there are approximations 
involved in the derivation of the variable, for example, as previously discussed for 
IWRES and WRES. Other issues with residuals are presented by Cox et al. (15) in 
the application of survival models in a nonlinear mixed effects environment.

In the judgment of diagnostic plots we rely implicitly on a notion of what the 
graph should look like if the model is adequate. For example, in a graph of the 
observations versus the predictions, we expect the data points to line up nicely 
around the line of identity; that is, the line of identity is our reference. The extent 
to which this is true depends on the type of observations, study design, and size of 
variability we are dealing with and the estimation method we use. If the estimation 
method involves approximations that lead to “nonstandard” graphs, then, clearly, 
we cannot improve the appearance of the graphs by changing the model (e.g., a 
plot of the population predictions versus the observations if there are no covariates 
available).

How do we know we are in this type of situation? One indication is that the 
aspect of the graph we are looking at does not change regardless of what we do 
with the model. The solution is strikingly simple: Use the model under consideration 
to simulate a new data set, analyze the simulated data set, and produce the same 
diagnostic plot as was done for the observed data (9). This plot will defi ne a refer-
ence for the real data plot since we know that the plot of the simulated data was 
derived using the correct model. Examples are given in Figures 7.17 and 7.18. In 
Figure 7.17, the observations are plotted versus the predictions obtained from the 
model in which creatinine clearance was included as a linear predictor of clearance. 
In Figure 7.18, the predictions came from the same model applied to data simulated 
from the model in Figure 7.17.

There is a clear resemblance between the two fi gures although the one based 
on real data appears to be more variable. This may indicate that there are more 
covariate effects to be included in the model (based on the left panels) or that 
interoccasion variability would improve the model (based on the right panels) (4).

Quite often, it is enough to simulate just one realization of the data but some-
times, particularly if the data set is small and the variability is large, one realiza-
tion is not enough to form a fi rm opinion about the adequacy of the model. One 
possibility then is to simulate many data sets (100–1000) and use them to construct 
prediction intervals to be superposed on the real data plot.
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FIGURE 7.17 Plotted are the observations versus the predictions obtained with a model 
that includes creatinine clearance as a linear predictor of clearance. Since individuals 16 and 
42 dominated the graph, they were excluded from this display.

FIGURE 7.18 Plotted are the observations versus the predictions obtained with a model 
that includes creatinine clearance as a linear predictor of clearance applied to data simulated 
from the model used in Figure 7.17.
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7.4.7 Categorical Data Poses Different Challenges

Categorical data is becoming increasingly common in population PK/PD analysis, 
especially ordered categorical data. Examples of such data are adverse events and 
effi cacy measurements such as pain scales (16) or sedation scores (17). This section 
focuses on graphical methods for categorical type data.

When dealing with ordered categorical data, it is important to remember that an 
observation is regarded as being a realization of an underlying set of probabilities, 
with one probability existing for each level in the response variable. The model 
is describing these probabilities, and how they depend on the predictors, and not 
the actual observations. This will have consequences for the graphical methods we 
need to use. Basically, there is no point in plotting the observed values since the 
actual observations are the frequency (or probability) with which they are observed. 
In other words, we need to concentrate our plotting efforts on the observed and 
predicted probabilities.

In this section we use a different example data set. It consists of 1600 simulated 
categorical observations from 580 individuals. The response variable has six pos-
sible values (0–5). The data were simulated using an ordered logistical model as 
described by Zingmark et al. (17). The administered dose was the main predictor 
and could be 0, 25, 50, or 100 mg. The data were simulated with the dose being 
related to the outcome according to an Emax model (on the logit scale). In some of 
the graphs, the “wrong” model was used, meaning a linear model in dose rather 
than an Emax model.

7.4.7.1 Raw Data Visualization
For a quick look at the observations, without taking any predictors into account, we 
can use a regular histogram (Figure 7.19). This graph provides some information 
about the frequency of the observed data; for example, it is clear that category 5 
is quite uncommon.

Since dose is a candidate predictor for these data, it is natural to take it into 
account when plotting (similar to time with PK data). One possibility is to use 
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FIGURE 7.20 Histogram of the observed data given the dose level. Each panel shows a 
histogram of the data in one dose group.

multipanel conditioning, as shown in Figure 7.20. Each panel shows a histogram for 
one dose level. There seems to be a tendency of the “mass” of the distributions to 
shift to higher scores when the dose increases. If there were other potential predic-
tors, similar graphs could have been produced for them as well, using intervals of any 
continuous predictors as the conditioning variable. Another alternative when there 
are multiple predictors is to construct multilevel conditioning plots, for example, 
plotting one histogram for each combination of dose and age interval. This can be 
rather involved and voluminous. Stacked bar charts of the observed probabilities 
of each score provide a more compact alternative to Figure 7.20.

Figures 7.20 and 7.21 display the same information but in different ways. The 
main benefi t of the latter is it compactness. The possibility to see patterns, on the 
other hand, is hampered by the fact the there are no fi xed reference points (except 
for the categories with the lowest number). This can be remedied by adding lines 
that connect the cumulative probabilities of each category (Figure 7.22). Apart 
from making it easier to see trends, this is also informative from the perspective 
of the model. A logistic model for ordered categorical data is usually defi ned in 
terms of the cumulative probabilities (score ≤n), that is, exactly what this graph is 
visualizing.

7.4.7.2 Assessing Goodness of Fit
To obtain predictions of the observed probabilities, we can simply use the proposed 
model to simulate a new data set at least as large as the observed one and compute 
the predicted probabilities in the same manner we computed the observed prob-
abilities. NONMEM provides some functionality in this respect (11), but we fi nd 
this simulation approach more straightforward to use. Figure 7.23 shows an example 
of this approach. Displayed are two stacked bar charts, one for the observed prob-
abilities and one for the predicted probabilities. The predictions were obtained 
using a model in which dose was included as a linear function in the logit, that is, 
the wrong model. That the model is inappropriate is quite obvious.

With real data the pattern may not be as clear as in Figure 7.23, and we may 
wonder if the simulated data (the “predictions”) is a fair description of the model. 
After all, it is only one random realization of the model. This can easily be checked 
by simulating more than one data set and computing the predicted probabilities 
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FIGURE 7.21 A stacked bar chart of the observed probabilities of the data versus the dose 
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FIGURE 7.22 A stacked bar chart of the observed probabilities of the data versus the dose 
group. Each bar is divided into tiers that correspond to the probability of the observation 
category, ordered from top to bottom. The probability of each category is connected with 
a dashed line.
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over all simulated data. In Figure 7.24 this has been done for the correct model, in 
which dose was added according to an Emax model. The predictions are based on 25 
simulated data sets, of which the simulated values are pooled in the computation of 
the probabilities. In this example the extra simulated data sets did not matter much 
(not shown) but it may for smaller and/or more variable data sets.

Another fact to keep in mind is that the observed data is also a single random 
realization of a probability distribution. This means that the model may provide 
a good description of this distribution but that there is an apparent misfi t only 
because of sample variability. Again, the solution is to simulate multiple data sets 
from the model and use the multiply predicted probabilities to construct prediction 
intervals. If the model provides an appropriate description of the observed data, 
we would expect the lines connecting the cumulative probabilities to be included in 
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FIGURE 7.23 Stacked bar charts of the observed and predicted probabilities resulting from 
a fi t of a model in which dose was included linearly in the logit (the “wrong” model).
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FIGURE 7.24 Stacked bar charts of the observed and predicted probabilities resulting 
from a fi t of a model in which dose was included according to an Emax model in the logit (the 
“right” model). The predictions are based on 25 simulated data sets.



the prediction intervals. This is exemplifi ed in Figure 7.25. The graph is the same as 
in Figure 7.24 except that a prediction interval based on the 25 simulated data sets 
has been superposed in both panels (the shaded areas). The prediction intervals 
are computed as the appropriate percentiles from the 25 simulated values for each 
point in the lines based on the observed data. In both panels, the curves are cen-
tered in the shaded areas. This is expected, of course, for the predictions. With the 
wrong model the curves connecting the cumulative probabilities were way outside 
the shaded areas (not shown).

If we accept that the corresponding tiers in each of the panels in, for example, 
Figure 7.25 constitute an observation–prediction pair, it is also possible to investi-
gate goodness of fi t with more familiar plot types, for example, plotting the observed 
versus the predicted probability. (This approach is less useful if the number of 
observation categories is small.) This is shown in Figures 7.26 and 7.27 for the mis-
specifi ed and correct models, respectively, and clearly the correct model provides a 
much closer fi t. However, if we still are in doubt about the model appropriateness 
we can resort to simulations. The approach is identical to the one described above. 
Use the proposed model to simulate data, fi t the model to the data, and produce 
predictions and plots in the same way that was used for the real data. Another 
approach is to use the simulations to construct prediction intervals for the points in 
Figures 7.26 and 7.27 and visualize them as horizontal error bars (not shown).

7.5 AFTER ANALYSIS

After the fi nal model has been defi ned, tested, and checked according to all relevant 
means, the pharmacometrician needs to communicate the results to colleagues, 
peers, authorities, and so on. Although parameter estimates can be interesting, 
graphical displays play a major role in this phase.
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FIGURE 7.25 The same graph as in Figure 7.24 except that a prediction interval, based on 
the 25 simulated data sets, has been superposed in both panels.
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There are basically three distinct challenges to face. The fi rst is to convince 
other pharmacometricians that the model adequately characterizes the data. This 
is usually done by an array of goodness of fi t graphs, which can be quite technical 
if necessary since the intended audience is other modeling experts.

The second task involves defi ning the boundaries within which the model was 
derived and can be expected, without further motivation, to be an adequate descrip-
tion of the data. Within these bounds the model can replace the raw data (after 
all, the model is supposed to capture all salient features of the data), which will 
be useful when presenting the knowledge summarized by the developed model to 
nonpharmacometricians. The defi nition of these bounds can be based on the inclu-
sion/exclusion criteria of the study or the realized covariate distribution. In the latter 
case, some of the exploratory plots from the “before-analysis phase” are useful.

The third task, and the one that is much too often overlooked, is the communica-
tion of the learnings of the modeling to subject matter experts, for example, project 
team members. This involves translating the model into quantities and pictures that 
nonpharmacometricians can relate to and that directly address the aim of the analy-
sis. How this should be done has to be decided on a case by case basis depending 
on what the question of interest is. Despite this, we give three examples that we 
believe are of a more general nature.
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FIGURE 7.26 Shown are the observed probabilities for each category, given dose, plotted 
versus the corresponding predicted probabilities based on the wrong model. The solid diago-
nal line is the line of identity. The data points for each dose level are connected and each 
data point is labeled with the category number.



7.5.1 Visualizing the Relative Contribution of Covariates 
in Explaining Variability

A common issue is to communicate the relative importance of covariates in the 
explanation of unexplained variability in parameters, exposure, or pharmacody-
namic endpoints. Consider the following schematic piece of code:

sexcl = 0

if SEX = 0 then sexcl=q3

TVCL = q1(1+q2(CRCL-90))(1+sexcl)

CL = TVCL*eh

q1 is the typical value of clearance for a male (SEX=0) individual with creatinine 
clearance (CRCL) of 90, q2 is the fractional change in CL for each unit of CRCL dif-
ferent from 90, and q3 is the fractional difference in CL for females. The prediction 
of the individual value of clearance (CL) is given by the last line, where h1 accounts
for the remaining variability after taking the covariates into account. h2 is a sym-
metrically distributed, zero mean variable with a variance of w 2.

The values of the parameters (q1–q3 and w 2) are of course estimated by the model-
ing program. When presenting the results to nonpharmacometricians, for example, 
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FIGURE 7.27 Shown are the observed probabilities for each category, given dose, plotted 
versus the corresponding predicted probabilities based on the correct model. The solid 
diagonal line is the line of identity. The data points for each dose level are connected and 
each data point is labeled with the category number.
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the clinical development team, the relevant question is how much of the overall vari-
ability in clearance (or exposure or pharmacodynamic endpoint) is explained by the 
covariates and is not the actual values of the parameters. The size of the parameter 
estimates will of course have a part in the assessment of the relative contribution of 
the covariates to explain the overall variability, but it is also necessary to take the 
variability of the covariates and the unexplained variability into account. In other 
words, it is not enough to report only the parameter values.

An approximate relative explanatory contribution of the covariates to a par-
ticular parameter can be computed directly from the parameter estimates and 
the distribution of the covariates. Using the code above, a measure of the overall 
variability is given by var(q2(CRCL-90))

2+var(1+sexcl)2+ ω2—in other words, 
the sum of the variances of the individual components in the expression for the 
parameter in question. Note that CRCL and sexcl are here used in a vector sense 
in contrast to the code above, where it is used in a scalar sense. The approximate 
relative contributions of each variability component can now easily be computed as 
the ratio of the individual component to the overall variability. This is exemplifi ed 
in Figure 7.28.

In many instances the variability in clearance refl ects the variability in exposure, 
which makes Figure 7.28 relevant. If the exposure measure is not mirroring clear-
ance, for example, time above a certain concentration, or if the focus is on the vari-
ability in a pharmacodynamic endpoint, the measures of variability can be obtained 
through simulations from the fi nal model(s).

7.5.2 Visualizing the Effect of Individualized Dosing

Once the important covariates have been identifi ed, it is necessary to decide if they 
can be used for individualized dosing and if this will lead to meaningful reduction in 
the variability in the exposure or effect. An informative display of the effect of indi-
vidualized dosing is shown in Figure 7.29. It shows the average concentration as the 
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measure of exposure plotted versus the important covariate creatinine clearance. 
The data points are based on the model, the estimated η variables and the observed 
values of the covariate. If more than one covariate had been judged important, we 
could have used a multipanel conditioning version of the same type of display.

In Figure 7.29 the target concentration was arbitrarily set to the median observed 
concentration (the target needs to be determined on a drug by drug basis of course). 
The left panel shows the average concentration versus creatinine clearance if all 
individuals receive the same dose. The right panel, on the other hand, represents 
the extreme when all individuals receive an individualized dose given creatinine 
clearance. The two middle panels show what happens if each individual receives 
one out of two and three dose levels, respectively. The aim is to make the overall 
response as similar to the right panel as possible. In this case the three dose levels, 
with cutoff creatinine values at 35 and 80 mL/min, respectively, come quite close 
to the right panel while the two dose levels, with a cutoff at the median creatinine 
clearance (67 mL/min) do not. With more than one covariate to take into account, a 
trial and error approach to the question of appropriate cutoffs and dose increments 
may be quite ineffi cient. It is possible, however, to use the model to estimate the 
optimal cutoffs and dose increments, as described by Jönsson and Karlsson (18). 
Another possibility is to use tree-based models, at least if only the cutoffs are of 
interest (19).

7.5.3 Prediction and Confi dence Intervals

A fi nal task is to communicate variability and uncertainty. Given the multilevel 
nature of nonlinear mixed effects models, it is worth emphasizing the difference 
between these two. Variability is caused by true biological variability, making indi-
viduals different in various ways, while uncertainty is a measure of the (un)certainty 
in the estimated model parameters. One illustrative way of displaying this is shown 
in Figure 7.30. The graph shows the 95% prediction and confi dence intervals around 
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the typical individual curve for individuals with a low renal function (30 mL/min) 
and normal renal function (100 mL/min) in the left and right panels, respectively. 
The 95% prediction interval is the interval in which we expect 95% of the obser-
vations from future individuals to fall and the 95% confi dence interval around 
the concentration time profi les indicates the certainty in the predicted typical 
individual curve; that is, there is 95% certainty that the true concentration–time 
profi le is included in this interval. How these intervals are computed is shown in 
Appendix 7.3.

By comparing the prediction and confi dence intervals, we can make a judgment 
about the certainty in the predictions made from the model. For example, accord-
ing to the right panel in Figure 7.30 we are relatively confi dent about the typical 
individual predictions compared to the prediction interval range. In the left panel 
we can see that the uncertainty in the predicted curve is greater, indicating that we 
can potentially gain certainty by collecting more data in this patient group.

7.6 SUMMARY

Graphs are useful in all phases of population PK/PD modeling. Before the analysis, 
the importance lies in data set checkout as well as exploratory analysis. During the 
analysis, graphical analysis is the mainstay in model diagnostics and guides model 
development. After the analysis, when the results need to be communicated, graph-
ics can be used to transparently convey quite involved information.

We demonstrate that the hierarchical, variable, multidimensional, and potentially 
plentiful and categorical nature of population data can be handled in graphically 
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informative fashions. This is not to say that it is always easy, but it illustrates that 
it is a worthwhile exercise to become an expert user in whatever plotting program 
is at one’s disposal and then exploit that expertise methodically.
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APPENDIX 7.1 OBTAINING INDIVIDUAL PREDICTIONS AND RESIDUALS

Individual predictions (IPRED) and residuals (IWRES) are not defi ned by NONMEM 
but may easily be obtained through the following fragment code in the NM-TRAN 
control stream.

$ERROR

 IPRED = F

 IRES = DV-IPRED

 W = THETA(y)*IPRED

 DEL = 0

 IF(W.EQ.0) DEL = 1

 IWRES = IRES/(W+DEL)

 Y = F+EPS(1)*W

$SIGMA 1 FIX

$EST POSTHOC

The above code specifi es a constant CV residual error model and THETA(y) will 
be the standard deviation of the residual error (note the $SIGMA 1 FIX). The DEL
variable protects from division by zero in the line with IWRES. IPRED and IWRES
can be output in a table fi le.

To implement a slope-intercept residual error model is as simple as replacing 
the W= line above with

W=SQRT(THETA(x)**2+THETA(y)**2*IPRED**2)

where THETA(x) will be the standard deviation of the additive residual error com-
ponent and THETA(y) will be the standard deviation of the proportional compo-
nent. An additive residual error model is implemented by changing the W= line to 
W=THETA(x), where THETA(x) is the standard deviation of the residual error.

APPENDIX 7.2 OBTAINING STANDARD ERRORS FOR h

Standard errors (SE) for individual h values are not provided in the standard 
NONMEM output. They can be obtained, however, by using the technique described 
below.

The fi rst step is to create a new data fi le with one more column and a number of 
extra data records per individual. The extra records are the same as any observation 
record except that zeros are inserted in the DV column. The number of extra records 
per individual should be the same as the number of h values in the model. The 
new column signals the type of record and should have one value for the original 



observations and one unique value for each new record. This is exemplifi ed below 
for the fi rst two individuals in the PK data set.

 ID TIME DV AMT SS II CRCL TYPE

 1 0.0 0 500 0 0 67.1 0

 1 12.0 0 500 0 0 67.1 0

 1 24.0 0 500 0 0 67.1 0

 1 36.0 0 500 0 0 67.1 0

 1 47.0 0 500 0 0 58.1 0

 1 49.5 4.96 0 0 0 58.1 1

 1 50.8 3.46 0 0 0 58.1 1

 1 51.3 4.14 0 0 0 58.1 1

 1 52.3 3.89 0 0 0 58.1 1

 1 54.3 3.50 0 0 0 58.1 1

 1 56.6 3.32 0 0 0 58.1 1

 1 58.3 2.86 0 0 0 58.1 1

 1 62.5 3.15 0 0 0 58.1 1

1 63.0 0 0 0 0 58.1 2

 1 63.0 0 0 0 0 58.1 3

 1 63.0 0 0 0 0 58.1 4

 2 0.0 0 500 0 0 82.2 0

 2 2.2 2.62 0 0 0 82.2 1

2 2.2 0 0 0 0 82.2 2

 2 2.2 0 0 0 0 82.2 3

 2 2.2 0 0 0 0 82.2 4

The boldfaced records have been added to the original data set, as has the TYPE
column.

The model fi le also needs to be changed and an example is given below. All 
changes from the original model fi le are boldfaced.

The most obvious change is that one $PROBLEM statement for each individual 
in the data set (in this case two) has to be created. Each $DATA statement in each 
$PROBLEM has to contain an NREC option specifying the number of records for the 
corresponding individual. In $PK, which can only be present in the fi rst $PROBLEM,
the ETA() variables should be replaced by THETA() variables. The estimates of these 
THETAs in the NONMEM output fi le will be the individual h values. In $ERROR,
which can also only be present in the fi rst $PROBLEM, IF statements should be 
added, one for each value in the new column in the data set (TYPE). With TYPE=1
(in this case), Y is set to the model prediction. Note that the EPS() variables have 
been replaced by ETA() variables, whose variances are fi xed to the corresponding 
s2 estimates from the population model. With TYPE=2, 3, or 4, the Y is set to the 
THETA() that replaces the ETA() in $PK, plus ETA() variables whose variances are 
fi xed to the corresponding w2 estimates from the population model. The $COVARI-
ANCE record needs to specify the option MATRIX=R, as is appropriate for the estima-
tion of SEs in single individual fi ts. Finally, one $PROBLEM needs to be added for 
each remaining individual in the data set. Note that $SUBROUTINE, $PK, and $ERROR
are not allowed in $PROBLEMs following the fi rst. For more detailed descriptions 
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of the various aspects in this control stream, please refer to the NONMEM Users 
Guides (11).

$PROB Estimating individual etas to obtain SEs: ID=1

$INPUT ID TIME DV AMT SS II CRCL TYPE

$DATA indpardata.prn NREC=16 IGNORE=@

$SUBROUTINE ADVAN2 TRANS2

$PK

 TVCL = THETA(1)*(1+THETA(4)*(CRCL-90))

 TVV = THETA(2)

 TVKA = THETA(3)

 CL = TVCL*EXP(THETA(5)) ; ETA replaced by THETA

 V = TVV *EXP(THETA(6)) ;      -”-

 KA  = TVKA*EXP(THETA(7)) ;      -”-

 S2=V

$ERROR

 IPRED = F

IF(TYPE.LE.1) THEN ; If regular observation

  Y = IPRED+IPRED*ETA(1)+ETA(2)

ENDIF

; One if-statement for each new record in the data file

IF(TYPE.EQ.2) Y = THETA(5)+ETA(3)

 IF(TYPE.EQ.3) Y = THETA(6)+ETA(4)

 IF(TYPE.EQ.4) Y = THETA(7)+ETA(5)

; Parameter estimates from the population model

$THETA 16.5   FIX ; THETA(1)

$THETA 263    FIX ; THETA(2)

$THETA 0.825   FIX ; THETA(3)

$THETA 0.00945 FIX ; THETA(4)

; Parameters to be estimated=the ETAs

$THETA 0.01      ;5 ETA on CL

$THETA 0.01      ;6 ETA on V

$THETA 0.01      ;7 ETA on KA

; Variance parameter estimates from the population model

$OMEGA 0.027  FIX  ;1 Proportional residual error

$OMEGA 0.132  FIX  ;2 Additive residual error

$OMEGA 0.0471 FIX  ;3 Omega^2 CL

$OMEGA 0.189  FIX  ;4 Omega^2 V

$OMEGA 0.572  FIX  ;5 Omega^2 KA



$EST

; Need to use MATRIX=R for single individual data

$COV MATRIX=R

$PROB Estimating individual etas to obtain SEs: ID=2

$INPUT ID TIME DV AMT SS II CRCL TYPE

$DATA indpardata.prn NREC=5 IGNORE=@

$THETA 16.5   FIX ; THETA(1)

$THETA 263    FIX ; THETA(2)

$THETA 0.825  FIX ; THETA(3)

$THETA 0.00945 FIX ; THETA(4)

$THETA 0.01     ;5 ETA on CL

$THETA 0.01     ;6 ETA on V

$THETA 0.01     ;7 ETA on KA

$OMEGA 0.027  FIX ;1 Proportional residual error

$OMEGA 0.132  FIX ;2 Additive residual error

$OMEGA 0.0471 FIX  ;3 Omega^2 CL

$OMEGA 0.189  FIX ;4 Omega^2 V

$OMEGA 0.572  FIX ;5 Omega^2 KA

$EST

$COV MATRIX=R

APPENDIX 7.3 CONFIDENCE AND PREDICTION INTERVALS

The computation of the prediction and confi dence intervals around a predicted 
concentration time profi le is based on the so-called delta method.1 The method is 
based on a fi rst-order like approximation.

The idea is to compute the variance of the typical individual predictions based 
on variability of the h values:
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(7.8)

where p is the number of h values in the model. The individual- and time-specifi c 
subscripts (i and j, respectively) have been suppressed for notational ease.

To compute 95% prediction intervals, Eq. (7.8) is implemented in NONMEM 
in the following way:

$PROB Code for computing approximate prediction intervals

$INPUT ID TIME DV AMT CRCL

$DATA madeup.dta IGNORE=@

1 C. R. Rao, Linear Statistical Inference and Its Application. Wiley, Hoboken, NJ, 1973.
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$SUBROUTINE ADVAN2 TRANS2

$ABBREV COMRES=2

$PK

 TVCL = THETA(1)*(1+THETA(4)*(CRCL-90))

 TVV = THETA(2)

 TVKA = THETA(3)

 CL = TVCL*EXP(ETA(1))

 V = TVV *EXP(ETA(2))

 KA = TVKA*EXP(ETA(3))

 S2=V

$ERROR

“FIRST

“ COMMON /rocm6/THETAF(40),OMEGAF(30,30),SIGMAF(30,30)

 IPRED = F

 IRES  = DV-IPRED

 Y   = IPRED+IPRED*EPS(1)+EPS(2)

“ LAST

“ IF(COMACT.EQ.1) THEN

“ VARCP = G(1,1)**2*OMEGAF(1,1)

“ VARCP = G(2,1)**2*OMEGAF(2,2)+VARCP

“ VARCP = G(3,1)**2*OMEGAF(3,3)+VARCP

“ VARCP = G(1,1)*G(2,1)*OMEGAF(1,2)+VARCP

“ VARCP = G(1,1)*G(3,1)*OMEGAF(1,3)+VARCP

“ VARCP = G(2,1)*G(3,1)*OMEGAF(2,3)+VARCP

“ VARCP = SIGMAF(1,1) + SIGMAF(2,2)+ VARCP

“ SDCP  = SQRT(VARCP)

“ COM(1)= IPRED+1.96*SDCP

“ COM(2)= IPRED-1.96*SDCP

“ ENDIF

$THETA (0,16.5)   ;CL Set to the final estimate

$THETA (0,263)    ;V         -”-

$THETA (0,0.825)   ;KA         -”-

$THETA (0,0.00945) ;CRCL       -”-

$OMEGA 0.0474     ;CL         -”-

$OMEGA 0.190     ;V         -”-

$OMEGA 0.572     ;KA         -”-

$SIGMA 0.027     ;SIGMA(1)    -”-

$SIGMA 0.132     ;SIGMA(2)    -”-

$EST MAXEVAL=0

$TABLE ID TIME IPRED COM(1)=UPP COM(2)=DOWN

     NOPRINT ONEHEADER FILE=pinttab

The variable G() available in NONMEM verbatim code (lines starting with “) 
holds the partial derivatives of the predictions from $PK with respect to the h values. 



OMEGAF and SIGMAF contain the estimates of OMEGA and SIGMA, which in this case will 
be the same as the values specifi ed on the $OMEGA and $SIGMA rows since MAXEVAL
is set to 0. The limits of the prediction intervals are stored in the variables COM(1)
and COM(2), which are tabulated. The input data fi le has to include all time points 
for which the interval is to be computed (including any doses).

Computing the 95% confi dence intervals is similar to the computation of the 95% 
prediction intervals but not identical.

$PROB Code for creating approximate confidence intervals

$INPUT ID TIME DV AMT CRCL

$DATA madeup.dta IGNORE=@

$SUBROUTINE ADVAN2 TRANS2

$ABBREV COMRES=2

$PK

; The ETAs should be entered additively

 TVCL = THETA(1)*(1+(THETA(4)+ETA(4))*(CRCL-90))

 TVV = THETA(2)

 TVKA = THETA(3)

 CL = TVCL+ETA(1)

 V = TVV +ETA(2)

 KA = TVKA+ETA(3)

 S2 = V

$ERROR

“FIRST

“ COMMON /rocm6/THETAF(40),OMEGAF(30,30),SIGMAF(30,30)

 IPRED = F

 IRES  = DV-IPRED

 Y    = IPRED+IPRED*EPS(1)+EPS(2)

“ LAST

“ IF(COMACT.EQ.1) THEN

“   VARCP = G(1,1)**2*OMEGAF(1,1)

“   VARCP = G(2,1)**2*OMEGAF(2,2)+VARCP

“   VARCP = G(3,1)**2*OMEGAF(3,3)+VARCP

“   VARCP = G(4,1)**2*OMEGAF(4,4)+VARCP

“   VARCP = G(1,1)*G(2,1)*OMEGAF(1,2)+VARCP

“   VARCP = G(1,1)*G(3,1)*OMEGAF(1,3)+VARCP

“   VARCP = G(1,1)*G(4,1)*OMEGAF(1,4)+VARCP

“   VARCP = G(2,1)*G(3,1)*OMEGAF(2,3)+VARCP

“   VARCP = G(2,1)*G(4,1)*OMEGAF(2,4)+VARCP

“   VARCP = G(3,1)*G(4,1)*OMEGAF(3,4)+VARCP

“   SDCP  = SQRT(VARCP)

“   COM(1) = IPRED+1.96*SDCP

“   COM(2) = IPRED-1.96*SDCP

“ ENDIF
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$THETA (0,16.5)   ;CL Set to the final estimate

$THETA (0,263)    ;V         -”-

$THETA (0,0.825)   ;KA        -”-

$THETA (0,0.00945) ;CRCL       -”-

; The values in the OMEGA BLOCK are taken from the variance-

; covariance matrix of the estimate in the NONMEM output file

$OMEGA BLOCK(4) 0.541

           -3.81 940

           -0.0231 0.713 0.0213

           .000504 -.00358 -.000015 .0000008

$SIGMA 0.027 0.132 ; These values are irrelevant

$EST MAXEVAL=0

$TABLE ID TIME IPRED COM(1)=UPP COM(2)=DOWN

 NOPRINT ONEHEADER FILE=citab

The idea here is to use the values for the THETAs in the variance–covariance 
matrix of the estimate in the $OMEGA BLOCK, which are available in the NONMEM 
output fi le after a successful $COVARIANCE step. It is necessary to use additive 
models for the h values as well as adding an h on the parameter for the creatinine 
clearance relation THETA(4). Note that the value in $SIGMA is not used in the 
computations and can be set to anything. For further details of the code, please 
consult the NONMEM manuals and nmhelp (the online help system distributed 
with NONMEM). More precise refl ections of the confi dence and prediction inter-
vals can be obtained by multiple simulations from the fi nal model and suitable 
dosing/observation patterns followed by creation of piecewise prediction/confi -
dence intervals from the simulated observations.
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8.1 INTRODUCTION

Epistemology is the fi eld of study that addresses the theory of knowledge, that we 
engage in to determine belief, truth, and knowledge. Ultimately one engages in the 
pursuit of knowledge and belief to make wise decisions, and making wise decisions 
in the realm of pharmacometrics is of extreme importance because of its applicabil-
ity to optimize pharmacotherapy and drug development. The kinds of wise deci-
sions one wishes to make most often involve dosing strategies or patient selection 
whether ultimately for labeling or for pivotal studies leading to regulatory approval 
of a therapeutic agent. Thus, having the correct beliefs about the pharmacometric 
(PM) properties of a drug is not simply a matter of intellectual importance but of 
practical importance. Knowledge is a properly justifi ed belief. It can be dangerous 
to claim to have knowledge that is not justifi ed and one must recognize that there 
are differing levels of risk for false belief depending on the consequences.

When generating PM knowledge, one is not attempting to state the exact truth 
but one wishes to create knowledge for which there is some degree of correspon-
dence with the truth. The degree of correspondence that one seeks between the PM 
knowledge and the truth is determined by the intended use of the PM knowledge 
and the consequences of false belief. PM models are used to summarize what is 
known about the biology (or state) of the system being investigated. Thus, one must 
ask if the model is appropriate for its intended use. Therefore, the pivotal event for 
establishing model appropriateness is stating clearly how the model will be applied 
and what the consequences of false belief are. Model appropriateness has been 
discussed in detail previously (1).

PM models have been used to answer questions such as: What is an optimal 
dosing strategy? Should dosing strategies be based on size, renal function, liver 
function, genomics, and so on? What should the fi rst-time dose in humans be? How 
should a clinical confi rming study be designed? They have been applied to preclini-
cal data for estimating animal exposure and response (2); for allometric scaling of 
pharmacokinetics from animals to humans (2); for determining fi rst-time-in-human 
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(FTIH) dosing strategies by linking pharmacokinetics and pharmacodynamics (2); 
for understanding covariate level impact on human pharmacokinetics and dosing 
(3, 4); and as an exercise executed for drug approval.

The actual model estimation and development should proceed, using sound 
methods (4). The nature of the manner in which a PM model will be applied to 
solve the problem must be accounted for during the entire modeling process. The 
intended use of a model ought to infl uence the attitude and modeling approaches 
used by the pharmacometrician at the various stages of the modeling process. The 
intended use would determine what covariates are considered important, which 
parameters are of primary concern, and what the extent and method of model 
evaluation and validation should be. Thus, how the model will be used to solve 
the problem drives the modeling process from model development, through model 
evaluation, to model validation that establishes whether a model is appropriate.

8.2 DEFINITIONS

The absence of the terms “model qualifi cation,” “model verifi cation,” “model 
accreditation,” and “credible model” as applied to PM models deserves explana-
tion. The defi nition for qualifi ed is “having complied with specifi c requirements or 
precedent conditions.” Model qualifi cation would imply that some specifi c objective 
standard must be met for a model to be “qualifi ed,” that the standards are the same 
for all models, and that there would be no alternative approaches to “qualifying” the 
model. Within the realm of pharmacometric (PM) models, these specifi c precedent 
conditions have not been stated, and it would be impossible and unreasonable to 
have a set of specifi c objective conditions that would apply to all models.

Accreditation is a term that should not be used for PM models. The same 
criticisms apply to accreditation as to qualifi cation. In addition to the criticisms 
applied to model qualifi cation, documentation is a further necessary step for model 
accreditation. Documentation includes verifi cation, which includes assessing the 
conceptual models and verifying the computer model. The substitution of model 
accreditation for appropriateness across disciplines could lead to cross-discipline 
confusion. Therefore, model accreditation should not serve as a substitute for model 
appropriateness (5).

The term “model verifi cation” has two problems. First, “model verifi cation” 
has been applied in other disciplines to mean that the computer program used to 
execute the model and its implementation are correct. Therefore, if applied to PM 
modeling, model verifi cation would cause some cross-discipline confusion. Also, 
“verifi cation” comes from the Latin veritas, which means “truth”; to verify means to 
establish the truth, accuracy, or reality of something. Models are approximations to 
the truth or to the real systems that they describe and are not the truth, as would be 
implied by the term “verifi cation” (5, 6). Therefore, verifi cation is not synonymous 
with appropriateness.

Credible models are those created in the absence of data and based on expert 
opinion (6). For example, to obtain permission for nuclear waste disposal in the 
waste isolation pilot plant near Carlsbad, New Mexico, a model was developed at 
Sandia National Laboratories in the absence of data on nuclear waste facilities and 
was based on expert opinion. In the end, the Environmental Protection Agency will 



accept the plan only if the model is credible and the model’s output shows accept-
able results. For PM models the only time a credible model is needed is before 
in vivo experiments are conducted. Therefore, we seldom function with credible 
models and the terminology credible will not be used here (6, 7).

Appropriateness means suitability or aptness; that is the concept we are attempt-
ing to convey here. Model appropriateness is presented in such a way as to be 
compatible with terminology used in the statistical and other modeling literature, 
which are foundational for PM modeling. In subsequent sections, we present the 
steps in establishing model appropriateness, approaches to model evaluation and 
validation, metrics used in model validation, and an application example to illustrate 
the principles involved in establishing model appropriateness.

8.3 MODEL APPROPRIATENESS

8.3.1 Steps for Establishment of Model Appropriateness

A fl ow diagram for establishing an appropriate model is presented in Figure 8.1. 
The steps to be executed to establish an appropriate model are noted in the fi gure. 
The method of model estimation, development, evaluation, and validation should 
be prescribed prior to model development. An overview of the necessary elements 
establishing an epistemologically appropriate model are presented here and in more 
detail elsewhere (1).

Epistemology of Model Appropriateness

State the problem to be solved

Describe how the model will be used to solve the problem

Categorize the model as descriptive or predictive

Identify the model using sound approaches (4)

Execute model evaluation or validation in a manner consistent 

with the intended use of the model

Apply the model to solve the problem

Communicate the application

FIGURE 8.1 Overview of model appropriateness.
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8.3.2 Types of Models

PM models are either descriptive or predictive. Descriptive models are those PM 
models applied to the patients’ (data) from which the models have been derived or 
estimated and for which there is no intent to extrapolate or apply the model to a 
population other than the population from which the model was derived. That is, 
descriptive models explain the variability of the pharmacometrics of the drug and, in 
this case, are used as an empirical and numerical summary of information about PM 
variability in the population studied and would include all features of the population 
found to be important covariates. For example, a descriptive model may be used to 
explain a higher incidence of adverse effects of a drug in one subgroup of subjects 
versus another. Perhaps a drug is primarily eliminated by the kidney and that sub-
group of subjects with impaired renal function has a lower clearance and therefore 
greater exposure to the drug than the subgroup without impaired renal function. 
Or, the group of subjects with impaired renal function had a greater incidence of 
adverse effects than the group with normal function. One possible explanation for 
the greater incidence of adverse effects in the impaired renal function group is that 
they had a greater exposure to the drug resulting in greater toxicity. This would be 
adequate as a key source of information that would help to explain subgroup dif-
ferences in response and would be a descriptive model because it was applied only 
to the subjects from whom it was derived.

When a model is used for descriptive purposes, goodness-of-fi t, reliability, and 
stability, the components of model evaluation must be assessed. Model evaluation 
should be done in a manner consistent with the intended application of the PM 
model. The reliability of the analysis results can be checked by carefully examining 
diagnostic plots, key parameter estimates, standard errors, case deletion diagnostics 
(7–9), and/or sensitivity analysis as may seem appropriate. Confi dence intervals 
(standard errors) for parameters may be checked using nonparametric techniques, 
such as the jackknife and bootstrapping, or the profi le likelihood method. Model 
stability to determine whether the covariates in the PM model are those that should 
be tested for inclusion in the model can be checked using the bootstrap (9).

When models are not checked for stability, spurious covariates may be included 
in the model because of leverage or infl uence data that may have their source in only 
a few subjects. Small changes in a data set may result in the selection of different 
covariates for a PM model when a model is not checked for stability.

A second class of PM models are used for predictive purposes. Predictive models 
are intended to have some impact or application to patients or subjects from whom 
data has not been obtained. Although these models contain descriptive compo-
nents, they are used to answer “what if” questions about the effects of changes in 
the covariates of the model. For a predictive model, if one is interested in evaluat-
ing the effect of several dosing strategies on outcomes for a pivotal Phase 3 study 
via simulation, then the distribution of the PK parameters becomes very important. 
Another example would be the effect of subpopulation differences on a dosage 
strategy proposal.

When PM models are developed for predictive purposes, much stronger assump-
tions are made about the relationship between the underlying population, from 
whom the data were collected, and the predicted results. One is asking for cor-
respondence of behavior outside the range over which one has actual empirical 



MODEL IDENTIFICATION 227

evidence. In other words, one is intending to apply the model to patients or subjects 
from whom it was not estimated. In the descriptive PM model, what was observed 
is important; in the predictive PM model, the behavior of the model is important.

For predictive purposes, a PM model should be validated in consistence with the 
intended use of the model. Valid means to be well grounded, convincing, sound, 
or “having such force as to compel acceptance” (this is the sense of the use of this 
term in the statistical and modeling literature) but does not mean to be true (10, 11). 
When validating, it is always important to remember the dictum from Box (12): “All 
models are wrong, some are useful.” Therefore, asking whether one’s model is true 
or false is not appropriate; rather, one should ask whether the model’s defi ciencies 
have a noticeable effect on the substantive inferences. Model validation results in 
confi dence that the model does not have defi ciencies that will result in it not being 
applicable for its intended use.

8.4 MODEL IDENTIFICATION

Systematic (or fi xed) effects in a clinical trial data set are blurred by other varia-
tions of a more haphazard nature. A haphazard variation is usually described in 
pharmacostatistical terms as random effects. PM models contain both fi xed and 
random effects elements. A value of a PM model is that it provides a summary of 
the data in terms of the fi xed effects and the nature and magnitude of the random 
or unexplained variation. Estimating PM models entails examining the data intel-
ligently and this demands formulating models that are thought to be capable of not 
only characterizing the systematic variation in the data analyzed but also describing 
patterns in similar data collected elsewhere if the PM model developed is to be 
transportable (1). Thus, the development of a PM model begins with the identifi ca-
tion of the model with which a population model is to be developed.

To identify the model appropriate for characterizing the data at hand, the phar-
macometrician begins with ideas, experience, literature information (if it exists), 
knowledge of models developed from the drug from prior studies and in the case 
of a fi rst-time-in-human study, knowledge gained from models developed from 
animal(s) to extrapolate to humans (especially when nonlinear mixed effects mod-
eling was used), and of course the data to be analyzed. The process will vary from 
problem to problem, and there are no general rules. This not withstanding, we 
present herein a general approach to model identifi cation. Although the thought 
process presented here will be illustrated with pharmacokinetics, the general prin-
ciples are applicable to pharmacodynamics as well.

8.4.1 Identifi cation of a Base Model

1. Plot of Concentration–Time Profi le for Population Data Set. It is advisable 
to plot the concentration–time profi le of data for the entire population studied to 
reveal patterns and structure in the data (4) (see Chapter 14). Sometimes it might 
be necessary to drill into the plot of the profi les to examine different aspects of 
the profi le. For instance, characterizing absorption may require examining the 
absorption phase of the concentration–time profi le plot closely. This would 
enable the answering of questions such as: Is there a lag time in absorption? Is 
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the absorption rapid, gradual, or slow? Are there different absorption patterns 
for different groups of subjects? Knowledge gained from such an examination by 
answering the above questions would inform the type of absorption model that 
could be used to model the absorption profi le observed (see Chapter 13 for model-
ing absorption).

2. Begin with the Simplest Basic Structural Model. This should be the natural 
starting point after examining the nature of the profi le. A basic structural model is 
a model (e.g., one-compartment PK model) without covariates. A complex initial 
model makes it diffi cult to see where changes should be made. Although one may 
aim to develop a model that refl ects “reality,” simplicity is a paramount require-
ment. Sometimes prior knowledge may inform a more complex structural model 
than a simple one—two-compartment versus a one-compartment PK model, for 
instance—but the data at hand may not support the more complex model. A less 
complex model may be implemented for a population analysis rather than the 
model established in earlier studies. This use of a less complex or “incomplete” 
model has been described in the literature in another context as the “minimal 
model” approach (13). This idea, although not explicitly stated, was present in 
a paper describing the population analysis of the pharmacokinetics of digoxin in 
patients (14). Although the pharmacokinetics of digoxin are known to be described 
by a multicompartment model, the authors chose to use a one-compartment model 
to describe the data. This is because all concentration measurements had been 
obtained in the “postdistribution” phase, as concentrations measured early after 
the doses were considered to be of little clinical relevance.

It is important to note that the simplest base model for preterm or full-term 
infants sometimes may include weight for the model to be stable before further 
modeling can proceed.

3. Optimize the Structural Model. It is important to ensure that the structural 
model describes the underlying patterns in the data. If the data speaks to the exis-
tence of two clearly distinct absorption profi les, then a mixture model should be 
tested to ensure that the absorption phase of the profi le is well characterized. If 
absorption, for example, could be better characterized with sequential fi rst-order 
absorption models instead of a simple fi rst-order model, the appropriate model 
should be used to eliminate bias due to model misspecifi cation.

4. Include Intersubject Variability on Model Parameters and a Residual Error 
Model. Modeling intersubject random effect with the basic structural model is 
essential for a PM model. Some prefer not to include h values (intersubject variabil-
ity) on all parameters, but do so as more confi dence is gained with the base model. 
Some include h values on all parameters and only drop them if the model estimation 
indicates that they are unnecessary. The choice is left to the pharmacometrician to 
go with the approach he/she is most comfortable with. A lognormal model should 
be a starting point for modeling intersubject variability. This is because biological 
variation by nature is lognormal.

In modeling intersubject variability, it is advisable to start with the diagonal ele-
ments of the covariance matrix instead of starting with the full covariance matrix. 
If NONMEM is used for modeling, the posthoc parameter (or h) values should be 
subjected to a pairs plot to determine if there are any relationships (correlations) 
between parameters. A correlation test should be performed for parameters that 
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appear to be correlated with each other. Moderate (0.5 ≤ r ≤ 0.74) to high (r ≥ 0.75) 
correlations should be accounted for using the omega block code. The likelihood 
ratio test should be used to determine if the covariance between parameters is 
necessary.

A residual error model should, by necessity, be part of the basic PM model. It 
is useful to start with a combination of additive and proportional error models. If 
the data does not support either of the error models, the estimate of one of the 
errors would tend toward zero. As a note of caution, if the base model has not been 
optimized, especially the structural model component, an initial estimate of an infi -
nitely small value for the additive component of the residual error model may lead 
to an erroneous elimination of that component of the error model. This should be 
avoided. It is important to let the nature of the data determine the type of error 
model to be used. For instance, radioactive decay may be better characterized with 
a power error model.

5. Optimize the Random Effects Models. The random effects models—models 
for intersubject variability and residual error—should be optimized once the struc-
tural model has been optimized. This might mean including interoccasion variability 
if the data supports it.

6. Simplest Base Model Is Backbone. The simplest base model that characterizes 
the underlying patterns in the data should form the backbone for developing a pop-
ulation model. The principle of simplicity stipulates that models with the minimum 
number of parameters should be used. This is called the parsimony principle. The 
model with the smallest number of parameters that describe the data well is the 
most parsimonious model.

7. Goodness-of-Fit. It is implied in steps 2 to 6 above that diagnostic plots (e.g., 
weighted residual versus time, weighted residual versus predicted observations, 
population observed versus predicted concentrations, individual observed versus 
predicted concentrations) and a test statistic such as the likelihood ratio test would 
be used in arriving at the base model (see Section 8.6.1.1 for goodness of fi t). Once 
the base model (with optimized structural and variance models) has been obtained, 
the next step in the PM model identifi cation process is the development of the 
population model.

8.4.2 Population Model Development

There are several approaches to population model development that have been 
discussed in the literature (7, 9, 15–17). The traditional approach has been to 
make scatterplots of weighted residuals versus covariates and look at trends in 
the plot to infer some sort of relationship. The covariates identifi ed with the scat-
terplots are then tested against each of the parameters in a population model, one 
covariate at a time. Covariates identifi ed are used to create a full model and the 
fi nal irreducible, given the data, is obtained by backward elimination. The drawback 
of this approach is that it is only valid for covariates that act independently on the 
pharmacokinetic (PK) or pharmacokinetic/pharmacodynamic (PK/PD) parameters, 
and the understanding of the dimensionality of the covariate data is not taken into 
account.
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Maitre et al. (15) proposed an improvement on the traditional approach. The 
approach consists of using individual Bayesian posthoc PK or PK/PD parameters 
from a population modeling software such as NONMEM and plotting these param-
eter estimates against covariates to look for any possible model parameter covariate 
relationship. The individual model parameter estimates are obtained using a base 
model—a model without covariates. The covariates are in turn tested to determine 
individual signifi cant covariate predictors, which are in turn used to form a full 
model. The fi nal irreducible model is obtained by backward elimination. The draw-
back for this approach is the same as that for the traditional approach.

A third approach proposed by Mandema et al. (16) was an improvement on 
the Maitre et al. (15) approach. The fi rst step is similar to that proposed by Maitre 
et al. (15), but in the second step individual PK/PD parameters are regressed 
against covariates using generalized additive modeling (GAM). In the fi nal step, 
NONMEM is used to optimize and fi nalize the population model. The approach 
does not discuss how a reduction in the dimensionality of the covariate vector 
should be handled.

Kowalski and Hutmacher (17) have proposed using the Wald approximation to 
the likelihood ratio test in conjunction with Schwarz’s Bayesian criterion (SBC) to 
determine the covariates for inclusion in a population PM model. In this approach 
“all possible models” (with or without each of the covariate parameters in the 
model) are tested. The process proceeds as follows:

Step 1. Fit the basic model without covariates to the data and estimate the indi-
vidual Bayesian PM parameters.

Step 2. Plot the individual Bayesian parameters versus covariates (those estimated 
from the base model in step 1).

Step 3. Assess functional form for the covariates to be entered into the model (e.g., 
linear versus nonlinear).

Step 4. Fit the full model including all covariates (number of covariates = k).
Step 5. Employ the Wald approximation method (WAM) to screen the 2k possible 

submodels to identify the best; the “best” models being the 10–15 models with 
the highest SBC (these are the approximate SBCs from WAM).

Step 6. Fit the models selected in step 5 in NONMEM to verify concordance 
between the actual and the approximate SBCs.

Step 7. Plot the empirical Bayes prediction from the fi nal (irreducible) model 
versus covariates and compare them to the corresponding plots from the base 
model.

The WAM approach has the advantage of being rapidly executable while testing 
many competing models and can incorporate time-varying covariates. It has rarely 
been used, so experience with this approach is limited. WAM generates an approxi-
mate SBC and this type of covariate evaluation has been demonstrated to work well 
when the approximate SBC and the actual SBC are not discordant. However, it is 
unknown how well WAM selects covariates when the approximate and actual SBCs 
are discordant and it may not be sensitive to infl uence data. Also, it is worth noting 
that the c2 test approximation to the likelihood ratio test is generally considered a 
better approximation than the Wald test.
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Ette and Ludden (7) improved on the approaches of Maitre et al. (15) and 
Mandema et al. (16) by proposing a fi ve-step approach to population modeling:

Step 1. Exploratory data analysis to examine distributions and correlations among 
covariates.

Step 2. Determination of a basic PK (or PK/PD) model using NONMEM, for 
example, and obtaining Bayesian individual parameter estimates.

Step 3. Examination of the distributions of parameter estimates.
Step 4. Exploratory modeling with modern regression techniques such as GAM 

and TBM for the initial selection of covariates and revealing structure in the 
data.

Step 5. Final NONMEM modeling to determine the population model with the 
evaluation of the parameter estimates.

The reduction of the dimensionality of the covariate vector by eliminating redun-
dant covariates—taking into account colinearity between covariates—before per-
forming the GAM step is taken into account with this approach.

Ette (9) introduced the concept of model stability that allows the pharmacometri-
cian to ensure that the covariates retained in the fi nal irreducible model are those 
supported by the data. The steps in this process are as follows:

Step 1. Determine a basic PM model without covariates in the model.
Step 2. Generate 100 bootstrap data sets.
Step 3. Apply the basic model to each of the 100 bootstrap data sets and determine 

the individual Bayesian PM parameters.
Step 4. Apply GAM to each of the sets of individual Bayesian PM parameters. 

Here the PM parameter is the dependent variable in the GAM and the covari-
ates are the independent variables. Here set a = 0.05 with a selection criterion 
cutoff value of 50%.

Step 5. Those variables not attaining the cutoff value are removed from further 
consideration for inclusion in the model.

Step 6. With the appropriate pharmacostatistical models, population model build-
ing is performed using covariates retained in step 5 with the covariate selection 
level set at a = 0.005. The backward elimination for covariate selection in applied 
to each of the 100 bootstrap samples. The covariates found to be important in 
explaining the variablilty in the parameter of interest are used to build the fi nal 
population PM model.

Step 7. The covariate-population model is then applied to the original data to 
obtain the parameter estimates for the drug.

The stability testing approach also permits hypothesis generation in that a covari-
ate identifi ed in the stability testing step but not retained in the fi nal irreducible 
model may be further investigated in a future study to establish its signifi cance. 
Model stability assessment should be included in step 4 from the immediately above 
method to implement an approach to model development that results in developing 
a model in which substantive errors are most likely absent.
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Furthermore, Ette et al. (4) refi ned the approaches discussed in the preceding 
two paragraphs and consolidated them into the PM knowledge discovery approach, 
which encompasses and exceeds population modeling. The PM knowledge dis-
covery approach (see Chapter 14) to population modeling and extracting hidden 
knowledge from a clinical trial data set is recommended as the best approach for 
making the most of a clinical trial data set.

The methods reviewed above address primarily hierarchical models but an issue 
often arises concerning competing nonhierarchical models. That is, which model 
is the preferred? These models are most often not independent. However, a test 
statistic can be used to discriminate between models, which is the difference of 
the minimized objective functions (log-likelihood differences, LLDs) for the two 
nonhierarchical models (18). In the next section the approach for obtaining the test 
statistic for comparing the two nonhierarchical models (18) is described.

8.4.3 Comparison of Nonhierarchical Models

Consider a model,

C f x i M j nij ij ij ij i= ( ) = =φ ε, , , . . . , , , . . . ,1 1 (8.1)

where Cij is the jth concentration in the ith subject, f is a nonlinear function of a 
subject-specifi c parameter vector fij and the predictor vector xij, eij is a normally 
distributed noise term with zero mean and variance s 2, M is the total number 
of subjects, and ni is the number of concentrations in the ith cluster. The subject-
specifi c parameter vector is modeled as

φ φ η η ωij i i N= ( )exp , ~ 0 2, (8.2)

where f is a p-dimensional vector of fi xed population parameters, and hi is a 
q-dimensional random effect vector (intersubject variability) associated with the 
ith cluster (not varying with j).

Let M1 be a model containing p1 parameters and let M2 be a model containing p2

parameters, which are supposed to be a subset of the parameters of model M1, thus 
p1 > p2. The likelihood ratio statistic LR(M2,M1) = −2log[l(M2)/l(M1)], where l(M1)
and l(M2) are maximized likelihood functions of models M1 and M2, respectively, 
and would follow a central c2 distribution with p1 > p2 degrees of freedom under the 
null hypothesis that additional parameters contained in the model M1 are all zero.

LR(M2,M1) would follow an asymptotically noncentral c2 distribution with some 
noncentrality parameter δ under the alternative that at least one of the additional 
parameters is nonzero. Thus, the null hypothesis could also be expressed as δ = 0.

Now consider two models X and Y, which have a certain set of p parameters in 
common, but in addition X contains pX parameters that are disjoint to the pY para-
meters additionally contained in Y. Let the model characterized by the p common 
parameters be denoted by XY.

LR(XY,X) will follow asymptotically a noncentral c2 distribution with some 
noncentrality parameter δX and pX degrees of freedom if not all pX parameters 
inserted into model Y are zero. Correspondingly, if not all pY parameters inserted 
into model Y are zero, LR(XY,Y) will follow asymptotically a noncentral c2 with 



some noncentrality parameter δY and pY degrees of freedom. Consider the case that 
the number of additional parameters in either model is the same, that is, pX = pY.
By testing the hypothesis of δX = δY against the alternative δX ≠ δY, the question of 
whether improvements in fi t (over model XY) by models X or Y are quantitatively 
different can be addressed. Interpretation in the form of a difference in the non-
centrality parameters is ambiguous when pX ≠ pY.

Note that the two likelihood ratio statistics LR(XY,X) and LR(XY,Y) are not 
independent. Therefore, testing whether two nonhierarchical models with equal 
degrees of freedom fi t the data equally well is reduced to testing whether the non-
centrality parameters of two independent c2 distributions with equal degrees of 
freedom are identical.

The maximum likelihood estimator for the noncentrality parameter δδ̂ X or δ̂ Y, δX

or δY is a monotone function f of LR(XY,X) or LR(XY,Y). Letting F be the full 
model, it follows that

ˆ [ ] [ ]δ = ( ) = ( ) − ( )f LR XY X f LR XY F LR X F, , , (8.3)

and

ˆ [ ] [ ]δ = ( ) = ( ) − ( )f LR XY Y f LR XY F LR Y F, , , (8.4)

Therefore, δ̂X = δ̂ Y if and only if LR(X,F) = LR(Y,F). Testing this equality can be 
done by testing the equality of LR(X,F) and LR(Y,F). The latter likelihood ratio 
statistics are the objective functions (i.e., −2 log-likehood of the data) of nonlinear 
mixed effects models. As a test statistic, the difference of objective functions (log-
likelihood difference, LLD) of two nonhierarchical models can therefore be used.

An estimate of the sample distribution of this test statistic under the null hypoth-
esis has to be derived to perform a test of the form described above. This can be 
achieved by using the bootstrap to obtain the sample distribution of the differences 
of the objective function given the observation. For this method bootstrap data sets 
are constructed, and for each bootstrap data set the parameters are estimated and the 
objective functions are reported for each of the competing models. The confi dence 
interval for the differences of the objective functions is calculated and if this inter-
val does not include 0 then the null hypothesis that the models are equal would be 
rejected. The percentile method for computing the bootstrap confi dence interval as 
described by Efron (19) is used, and 1000 bootstrap replicates are required for this.

In most cases the choice between two competing nonheirarchical models boils 
down to choosing the model with a more stable formulation. This is because an 
examination of the diagnostic plots may not yield any difference in how the models 
characterize the data, and just choosing a model with a lower objective function may 
not necessarily indicate that it is a better model (e.g., see Ref. 18).

8.5 PARAMETER IDENTIFIABILITY

Identifi cation described above is a parameter estimation problem. The identifi -
ability problem is a more circumscribed problem. It deals with the following ques-
tion: Given a model of the system under investigation and specifi c input–output 
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experiments (models), would the parameters of the model be uniquely determined 
if the data were error free? The identifi ability problem is strictly a mathematical 
and an a prori problem since it is concerned with the theoretical existence of 
unique solutions. Thus, what is encountered sometimes with PM models is the 
issue of model identifi ability. One is not just interested in knowing whether or not 
a model is identifi able given a data set from an experiment; even if it is not, one is 
interested in knowing which parameters are identifi able. This is because one may 
only need to estimate some parameters, as in the case of a minimal model, to test 
a hypothesis. In addition, a set of parameters may be identifi able, but interactions 
between parameters, as measured by correlations, for instance, may be such as to 
make numerical estimation of individual parameter values diffi cult. Thus, a param-
eter can be identifi able but poorly estimable for a given trial data set (e.g., see Ref. 
20 for a detailed review). Thus, it is necessary to design population PK/PD studies 
to optimize pertinent parameter estimability. Informative sampling design should 
therefore be used to minimize the errors of estimation. Identifi ability, estimability, 
and informative sampling design (see Chapter 12) should go in concert as linked 
steps in parameter estimation.

8.6 APPROACHES TO MODEL EVALUATION

8.6.1 Model Evaluation

There are three elements to model evaluation: (a) assessing the model for goodness-
of-fi t, (b) checking the model for reliability, and (c) checking the model for stabil-
ity. The question to be addressed here is not “Is the model true?” but “Are the 
structure and form of the model without signifi cant error?” For example, a ques-
tion here would be: “Are the data best described by a one- or a two-compartment 
deterministic model?” or “Which covariates (creatinine clearance, weight, gender) 
provide an improved fi t of the data?” When addressing the form of the model, we 
are addressing the issue of the confi guration of the relationship between a covariate 
and a parameter. The form could be linear, sigmoidal, or a sine wave relationship 
between the parameter of interest and a covariate.

8.6.1.1 Goodness-of-Fit
Goodness-of-fi t assessments require diagnostic plots, such as the observed depen-
dent variable (ODV) versus the predicted dependent variable (PDV); residuals 
versus PDV; weighted residuals versus PDV; weighted residuals versus time; and 
residuals versus covariates to examine for any type of systematic error. For the 
plot of ODV versus PDV, some prefer to plot PDV on the x-axis and ODV on the 
y-axis. Those who hold this view have argued that the interest is in the variability 
of the ODV about the PDV and the sources of variability (assay error, etc.) are in 
the ODV not the PDV. However, another school of thought prefers to plot ODV 
on the x-axis because that is what is measured and PDV is predicted and changes 
with the model. The line of identity (intercept 0 and slope 1) should run through 
the center of this plotted data. The plot of residuals and weighted residuals should 
be scattered evenly above and below the 0 reference line (intercept 0 and slope 0). 
Figure 8.2 presents a plot of ODV versus PDV with the line of identity noted to be 
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FIGURE 8.2 Plot of observed versus predicted dependent variable (upper panel) and 
weighted residual versus predicted dependent variable (lower panel).
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running through the center of the data and a plot of weighted residuals (WRES) 
versus PDV with the 0 reference line running through the center of the data. PM 
models should be without systematic error. A progressive change in variance with 
such a plot would suggest heteroscedasticity—the band of the residuals would have 
a nonuniform width. A curved plot or runs in the residuals (like a sine wave) would 
tend to suggest that the model is inadequate. Heteroscedasticity can be modeled 
using a multiplicative error model. A combination error model can be used to 
account for both homoscedastic and heteroscedastic residual errors. Examining a 
normal scores plot of weighted residuals is useful as a check on the assumption that 
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the residual errors are normally distributed. It is important to let the data dictate 
the error model of choice. See, for instance, Refs. 21–23 for more information on 
error models for PM analysis.

Of importance here is the recent work of Hooker and Karlsson (24) with respect 
to the plots of the WRES versus PDV when employing NONMEM for model devel-
opment. They noted that the fi rst-order conditional estimation (FOCE) method 
is often used to develop population PK and PD models and that WRES are an 
important diagnostic during population model development. However, even when 
FOCE is employed to estimate the population parameters, the WRES is computed 
using the fi rst-order (FO) approximation in NONMEM. It is not clear what sta-
tistical properties the WRES should have when using the FOCE approximation. 
They propose using a new diagnostic tool, the conditional WRES (CWRES), when 
the FOCE approximation is used. The CWRES is the generalized weighted resid-
ual under the FOCE approximation, given the “right model” and adequate data. 
Statistically the CWRES should be N(0, 1) when FOCE is used. They went on to 
demonstrate the utility of the CWRES in three examples of correctly specifi ed and 
misspecifi ed models. For this limited test the CWRES seemed to perform well as a 
“goodness-of-fi t” tool. CWRES may not be used for FOCE with interaction, as its 
usefulness is yet to be proved.

8.6.1.2 Model Reliability
Reliability of the model requires that the model be assessed for the uncertainty 
of parameters and random effects. We are interested in the standard errors of 
estimated parameters and random effects in the model. The uncertainty should be 
small: for parameters, uncertainty should be less than 25% of the relative standard 
error and for random effects, it should be less than 35% of the relative standard 
error (25).

Furthermore, when alternative approaches are applied in computing parameter 
estimates, the question to be addressed here is: Do these other approaches yield 
similar parameter and random effects estimates and conclusions? An example of 
addressing this second point would be estimating the parameters of a population 
pharmacokinetic (PPK) model by the standard maximum likelihood approach and 
then confi rming the estimates by either constructing the profi le likelihood plot 
(i.e., mapping the objective function), using the bootstrap (4, 9) to estimate 95% 
confi dence intervals, or the jackknife method (7, 26, 27) and bootstrap to estimate 
standard errors of the estimate (4, 9). When the relative standard errors are small 
and alternative approaches produce similar results, then we conclude the model is 
reliable.

8.6.1.3 Model Stability
Model stability addresses the question of how resistant the model is to change. 
The most direct way to answer this question is to assess whether other plausible or 
probable data change the model structure or form. The biometrical method that 
can address stability is the bootstrap. Ette has demonstrated how the bootstrap can 
be employed to check for model stability by generating other plausible data and 
determining if the model structure is unchanged for the majority of these bootstrap 
generated data sets (4, 9). If the model structure or form is not changed as a result 
of this process, then the model is declared to be stable.



8.7 MODEL VALIDATION

When a model is validated it does not mean that it is considered to be true, 
which is consistent with Box’s previously stated dictum. Validation is most often 
defi ned as the evaluation of the predictability of the model developed (i.e., the 
model structure and form together with the model parameter estimates) and 
estimated from a learning or index data set when applied to a validation (test) 
data set not used for model building and parameter estimation. Thus, for vali-
dation, we are concerned with the predictive performance of a PM model (28). 
This addresses the issue of transportability of the PM model. That is, ascertaining 
whether predicted values from a developed PM model are likely to accurately 
predict responses in future subjects not used to develop the model (1). There are 
two broad categories of model validation, external and internal, and these will be 
discussed next.

8.7.1 External Validation

External validation is the most stringent type of validation. This type of validation 
can be executed when both input data (index population) to estimate and develop 
the model and output data (test population) on which the model can be tested 
exist. It is the application of the developed model to a new data set (validation data 
set) from another study (28). When a model is validated externally, it provides the 
strongest evidence for transportability. There are several approaches to internal 
validation, some of which have been proved to have excessive type I error (6) and 
various methods are reviewed below.

8.7.2 Internal Validation

Very often a test population of data is not available or would be prohibitively 
expensive to obtain. When a test population of data is not possible to obtain, inter-
nal validation must be considered. The methods of internal PM model validation 
include data splitting, resampling techniques (cross-validation and bootstrapping) 
(9, 26–30), and the posterior predictive check (PPC) (31–33). Of note, the jackknife 
is not considered a model validation technique. The jackknife technique may only 
be used to correct for bias in parameter estimates, and for the computation of the 
uncertainty associated with parameter estimation. Cross-validation, bootstrapping, 
and the posterior predictive check are addressed in detail in Chapter 15.

Data splitting has often been used as an approach to PM model validation. With 
this approach, the data are randomly divided into an index population and a test 
population. First the model is estimated from the index population. Then the model 
is fi xed and predictions are made into the test population. If the model is validated, 
the data are often recombined and the model is reestimated from the combined 
data. The disadvantage of data splitting is that the predictive accuracy of the model 
is a function of the sample size resulting from the splitting. Of concern for the data 
splitting approach to validation is how the data should be split and what proportion 
should be assigned to the index population and to the test population. Random 
splitting leads to data sets that have the same variation, other than for chance, and 
is therefore a weak procedure (34). To maximize the predictive accuracy of data 
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splitting, alternative approaches have been proposed that employ the entire sample 
for both model development and assessment (6, 9, 28, 30–33).

The resampling approaches of cross-validation (CV) and bootstrapping do not 
have the drawback of data splitting in that all available data are used for model 
development so that the model provides an adequate description of the information 
contained in the gathered data. Cross-validation and bootstrapping are addressed 
in Chapter 15. One problem with CV deserves attention. Repeated CV has been 
demonstrated to be inconsistent: if one validates a model by CV and then randomly 
shuffl es the data, after shuffl ing, the model may not be validated.

A recently proposed method, the posterior predictive check (PPC), may prove 
useful in determining whether important clinical features of present and future data 
sets are faithfully reproduced (31–33). The PPC is addressed in Chapter 15 and will 
not be discussed further here.

8.7.3 Metrics Applied to Model Validation

Several approaches to quantifying dependent variable predictability have been 
proposed. The metric should be chosen because of its usefulness and one should 
be careful not to violate any of the underlying assumptions of the approach. There 
are instances when one of several metrics could be applied. The use of graphical 
displays, prediction error, standardized prediction error, and prediction through 
parameters have been summarized elsewhere and will not be addressed directly 
here (1, 28). A method proposed by Kleijnen (6) will be reviewed herein.

8.7.3.1 Metrics Applied to Model Validation
A common approach to model validation is to predict the dependent variable from 
the model in a test data set. The most commonly applied metric is the prediction 
error of the dependent variable, which is simply

PE ODV PDVij ij ij= − (8.5)

where PEij  is the jth prediction error in the ith individual, ODVij is the jth observed 
dependent variable in the ith individual, and PDVij is the jth predicted dependent 
variable in the ith individual. From the indivual PEij, the mean of the PEij can be 
calculated and this is the mean prediction error (MPE). The 95% confi dence inter-
vals (CIs) are constructed around the MPE from

CI MPE SEMPE= ± 2 (8.6)

where SEMPE is the standard error of the MPE. If this CI contains 0, then the model 
is said to have adequate predictability and is without signifi cant error.

A problem with this approach to validation is that most often the test data set 
has more than one observation per individual. These observations of the dependent 
variable within the same individual are not independent, which is an underlying 
assumption of this statistic approach. That is, this method is appropriate when only 
one sample is available per subject (28). Several approaches have been proposed 
to deal with this problem.



8.7.3.2 Dealing with Replicate Nonindependent Observations 
Within an Individual

Standardized Prediction Error The standardized prediction error (SPE) takes into 
account the variability and correlation of observations within an individual. The 
SPEij is the ith standardized prediction error in the jth individual. The SPEij is the 
PEij /SDij, where SDij is the standard deviation of the PDVij.

The mean of the SPE is now calculated with its SE and the mean SPE (MSPE)
with its CI is constructed. Again this CI should include 0 and the standard devia-
tion of the SPE should include 1. The above methods may be overly conservative 
as uncertainty in parameters is not taken into account, resulting in an appropriate 
model being rejected or declared to have substantive error (28).

Plotting of Weighted Residuals (WRES) The WRES are the residuals (ODVij

− PDVij) that have been normalized by their standard deviations. These WRES 
are nearly independent even within the same individual. Thus, when one views the 
data from many individuals, the correlation that one would expect to see from the 
several measurements within a single individual should not be seen when observing 
the WRES (35). For an appropriate model the mean of the WRES should be scat-
tered evenly about zero when plotted against a variable such as subject ID number. 
Figure 8.3 shows this type of plot. Note that upon observation the prediction from 
method III seems to have the least bias.

Estimating the Mean Prediction Error with Two Random Effects Another approach 
to estimating the mean prediction error that accounts for multiple observations in 
the same individual has recently been proposed. Here the CI is constructed under 
the statistical model

PE MPEij i ij= + +η ε (8.7)

where hi is a random effect representing between-subject variability and is a per-
sistent within-individual shift from the MPE and eij is a random effect representing 
the residual variability (3).

8.7.3.3 Kleijnen Validation Method
Kleijnen (6) has proposed a novel approach to model validation. One computes 
the PEs as

PE ODV PDVij ij ij= − (8.8)

In a further step the ODVs are added to the PDVs, where

SUM ODV PDVij ij ij= + (8.9)

so that now for each PEi there is a SUMi. Next, one fi ts the regression

PE SUMij ij= + •β β0 1 (8.10)
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to these pairs. The hypothesis is H0: b0 = 0 and b1 = 0. This approach assumes normal 
distributions and independence of all the plotted pairs. This method has not been 
investigated for population models.

8.7.4 Summary of Prediction Metrics and Methods

Several approaches to model validation have been discussed. No single approach 
can be applied to all models, and for some models any of several approaches would 
suffi ce. In the next section, we present an example of the appropriateness of a 
predictive model.

8.8 APPLICATION EXAMPLE

8.8.1 The Problem

An oncology agent was being developed and a dosing strategy for a Phase 3 study 
needs to be proposed. This is a predictive model (1) and therefore needs to be 
validated. The concept of descriptive versus predictive models has been presented 
in detail elsewhere (1).

FIGURE 8.3 Plot of weighted residuals versus a random variable, in this case patient ID 
number (used with permission (Ref. 35)).
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8.8.2 Methods

The drug being developed was administered by rapid intravenous infusion every 6 
hours for 48 hours at 3 week intervals. Prior to the next dose the blood work was 
done to determine appropriateness of administering the next dose cycle. It is pro-
posed that this procedure be continued in Phase 3 and probably eventually ending 
up on the label.

Prior to the Phase 2 study, simulations were done to determine if an external 
validation set of data would be an adequate approach to model validation. Of 
importance here was whether this approach to validation would accept an appro-
priate model and reject an inappropriate model. A set of simulated data were 
generated with 150 subjects each with four concentrations. One hundred of these 
were assigned to the index population completely at random and the other 50 
were assigned to the test population completely at random. For the template, the 
patients’ weights (mean of 65 kg; lognormal distribution) and sex were generated in 
ZRandom software (ZRandom, Sydney, Australia). Five simulated data sets were 
generated where the index and test population pharmacokinetic (PPK) parameters 
were the same; fi ve more data sets were generated where the mean clearance was 
20% below the test, and fi ve more where the mean clearance was 20% greater than 
the test. For the simulation, all of these data sets had typical values for clearance 
and volume specifi ed and also random effects for clearance and volume specifi ed 
and fi nally the residual random effect specifi ed. The models estimated from the 
index data were used to make predictions into the test data. For the 50 data sets 
each above and below the test clearance values, the models were invalidated by 
the external validation process in 48 of 50 for the below clearance and 47 of 50 for 
the above clearance cases. For the 50 data sets where the index model and the test 
model were the same, all 50 models were validated. On this basis it was determined 
that prediction into a test data set of 50 subjects would be adequate to validate the 
model if subjects were assigned to the index and test data completely at random.

In Phase 2 PK data were collected on 150 subjects. One hundred subjects were 
assigned to the index data and 50 to the test data completely at random and it was 
determined to collect 400 samples in the index population and 200 samples in the 
test population. The nominal sample collection times were 0.5–2, 4–6, 48–50, and 
52–54 hours after the fi rst dose. Of the 400 scheduled samples in the index popula-
tion, 375 were obtained and of the 200 scheduled samples in the test population 186 
were obtained. The PK knowledge discovery process (see Chapter 14) was used to 
estimate the PPK model. The fi nal irreducible was

 Clearance = 1.02 ∗ Weight0.589

 Volume = 2.16 ∗ Weight

The coeffi cient of variation for clearance was 40.2% and for volume it was 38.8%, 
and residual variability was 14.4%.

This irreducible PPK model was fi xed and predictions were made into the test 
data. The mean prediction error was −0.020 and the standard error of the mean 
prediction error was 0.022. Therefore, the model was considered to be validated.

The validated model from Phase 2 was used to simulate the range of expected 
concentrations for Phase 3 at a dose of 10 mg/kg. A template was created for 
1000 patients with weight being generated from the ZRandom number assuming a 
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FIGURE 8.4 Box and whisker plot of trough concentrations.

lognormal distribution. It had been determined from Phase 2 that optimal responses 
were most evident in patients with end of dose interval concentrations above 1.0 mg/
L. Therefore, of primary interest was what the range of concentrations would be at 
the end of the fi rst interval and at steady state. These predicted concentrations are 
presented in the box and whisker plot (Figure 8.4). Of the 1000 concentrations at 
the end of the fi rst dosing interval, only 11 would be expected to be below 1.0 mg/L 
and at steady state only 5 would be expected to be below 1.0 mg/L. Therefore, the 
10 mg/kg dosing strategy was adopted.

8.9 SUMMARY

The epistemology of model appropriateness is defi ned, explained, and demon-
strated using a predictive model. A clear process for obtaining pharmacometric 
knowledge is outlined. It involves model appropriateness, which includes clearly 
identifying and stating the problem, stating the application or the intended use of 
the model, evaluating the model, and determining the predictive performance of the 
model (e.g., via the bootstrap) if the model is to be used for a predictive purpose. 
A sound epistemological approach should result in a rational approach to model 
development, evaluation, and validation.
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Data Imputation
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9.1 INTRODUCTION

Missing data may bias model parameter estimates, infl ate Type I and Type II error 
rates, and degrade the performance of confi dence intervals. Missing values may dra-
matically reduce statistical power because a loss of data is nearly always accompa-
nied by a loss of information. Pharmacometricians who wish to mitigate these risks 
must pay close attention to the issue of missing data in the analysis of clinical trials 
and choose their strategy carefully. Recent computational and theoretical advances, 
most notably multiple imputation methods, enable the pharmacometrician to use 
the existing data to generate, or impute, values approximating “real” value, while 
preserving the uncertainty of the missing values (1).

This chapter provides an overview of imputation, gives a description of incom-
plete data types, and reviews the standard methods of handling missing data, with 
a focus on multiple imputation.

9.2 DATA IMPUTATION

The idea of data augmentation arises naturally in missing value problems, as exem-
plifi ed in the standard ways of fi lling missing cells in, for instance, balanced two-way 
tables from clinical trials. Data imputation refers to a scheme of fi lling in missing 
data to complete the observed data set to make it easier to analyze. When the data 
is complete, the quality of the analysis is improved. When a data subset, such as 
data on a surrogate endpoint or a biomarker, is missing because of sample handling 
error, data imputation is inevitable if knowledge is to be gained of some aspect of 
the response surface that is contained in or dependent on the missing data. In such 
situations, data imputation is an absolute necessity.

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene I. Ette and 
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9.3 DESCRIPTION OF INCOMPLETE DATA TYPES

Incomplete or missing data is a problem in population pharmacokinetic/pharmaco-
dynamic (PK/PD) analysis in that analytic power can be compromised and biased 
estimates can become the outcome of a time-consuming analysis. When covariates 
are missing from some subjects, deleting those subjects and analyzing data from only 
subjects with complete information can reduce analytic power unless the covari-
ate data are missing completely at random. Discarding subjects can bias a study 
severely. The price of “missingness” becomes even more expensive if the response 
variable data is missing in a region of the response surface where the information 
could be crucial.

Identifying whether data is missing completely at random (MCAR) or missing at 
random (MAR) is key to determining how to handle missing data. Data is said to 
be missing completely at random if the probability of missing data on one variable 
is not related to the value of that variable or to other variables in the data set (2). 
If, for instance, failure of a subject to return for a clinic visit for disease evaluation, 
and therefore measurement of a response variable such as blood pressure (BP), 
was due to neither her disease status nor her sex, it would be concluded that the 
values for the response variable were MCAR. On the other hand, if discovery were 
to be made that males tended to skip clinic appointments, the response variable 
would not be MCAR. Whether data are MCAR can be verifi ed partly by comparing 
data from subjects with incomplete response variable measurements against those 
with complete measurements on all other variables. It would be nearly impossible, 
however, to determine whether the probability of missing data was a result of the 
value of the variable itself.

A less restrictive notion than MCAR is data missing at random (MAR). MAR 
occurs when the probability of the missing value is not dependent on the value 
itself, but may depend on the values (through correlation, not conditionally) of 
other variables in the data set (2). This assumption, called “ignorable missingness,” 
also underlies random effects models for longitudinal data with unbalanced patterns 
and hence missing data (3, 4). If in the above case, for example, the missingness of 
the variable BP was not dependent on BP, it would be concluded that BP values 
are MAR, regardless of whether other variables are associated with the missing 
BP values. By contrast, if high or low body weight individuals tended to miss clinic 
visits for BP measurements, missing BP is very dependent on weight. It would be 
concluded BP data values are not MAR.

9.4 APPROACHES FOR HANDLING DATA INCOMPLETENESS

Traditionally, incomplete (missing) data have been handled by deletion from 
analysis of cases that contain missing values (single imputation) and most recently 
by using multiple imputation techniques. In this section single imputation 
techniques are discussed. Multiple imputation and the paradigm for multiple 
im putation are discussed in separate sections because of the broad scope of these 
topics.



9.4.1 Casewise Deletion

With casewise deletion data records or cases with missing data are simply discarded, 
restricting the analysis to those records or cases with a full complement of values. 
The shortcomings of various case-deletion strategies have been well documented 
(5, 6). If the data are MCAR (i.e., the probabilities of response variable being 
measured do not depend on any data values observed or missing), deletion yields 
unbiased parameter estimates but larger standard errors because of reduced sample 
size. Casewise deletion, however, can lead to misleading results if a large propor-
tion of the data is discarded. This is also problematic if the data are not MCAR. If 
the data are MAR, but not completely at random, casewise deletion may lead to 
biased estimates, that is, regression coeffi cients that are erroneously too large or 
too small (7). Casewise deletion assumes that deleted cases are a random subsample 
of the data set (8), which of course is erroneous. Analytic power will be severely 
compromised if a large proportion of the data is missing.

9.4.2 Maximum Likelihood Value and Bayesian Estimation

Accurate results may be obtained by maximum likelihood (ML) estimation or 
Bayesian estimation if one is using a formal probability model (e.g., a normal 
model) and the missing values are MAR when dealing with missing data. Since 
both ML and Bayesian approaches rely on the complete data likelihood, the func-
tion linking the observed and missing data to the model parameters, the probability 
model is key.

Provided the data missingness mechanism is MAR, the ML and Bayesian 
approaches are useful for the analysis of incomplete data. They estimate parameters 
of interest without requiring one to impute the missing data in the data set. The 
requirement of fairly sophisticated computational methods and model specifi city 
is a disadvantage of these methods. In addition, these methods do not model the 
missingness mechanism, which is equivalent to assuming that the missing values are 
MAR, and may yield erroneous results if the missingness mechanism is missing not 
at random (MNAR).

9.4.3 Single Imputation

Single imputation involves ascribing a value to a missing data cell based on other 
variables or of substituting a reasonable estimate for absent data elements (5). With 
single imputation, one value is ascribed to the missing value. A mean value, for 
example, is sometimes used to represent missing data. Imputing the mean eliminates 
data that may be unique to a particular individual and ascribes the “typical value” 
to that subject. Imputing the mean may sometimes lead to erroneous statistical 
inferences (6). Mean imputation decreases variability between individuals and biases 
correlations with other variables (9). With single imputation techniques variability 
between imputations is not accounted for because only one value is imputed (8). This 
results in increasing the sample size, but decreasing the variance by use of a mean 
value for substitution. There is a problem associated with decreased variances: that 
is, the estimates are too close to the mean (9). When the rate of missing information 
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is small (say, <5%), then single imputation inferences for a scalar estimand may be 
fairly accurate. For joint inferences about multiple parameters, however, even small 
rates of missing information may seriously impair a single imputation procedure.

Hot deck is another type of single imputation. This procedure matches individu-
als with missing data with those having similar values in a set of other variables 
and imputes the known value into the missing data cell. The fl aw with hot deck 
imputation is its treatment of imputed data with certainty, thus perhaps grossly 
underestimating variability (6).

Another type of imputation is (multiple) linear regression. Predictive equations 
generate the imputed values using complete-case information. This method may 
work well when predictors are strong, but here too the absence of suffi cient vari-
ability causes underestimation of standard errors (5). An alternative and better pro-
cedure is stochastic regression in which each missing value in the data set is replaced 
by the predicted value from a regression analysis based on complete cases plus a 
random residual term (10). The stochastic regression imputation method improves 
on regression imputation if the regression model is reasonable. Both of these tech-
niques, however, can result in biased parameter and standard error of estimates.

Last observation carried forward (LOCF) is another example of a single imputa-
tion method. In a clinical trial, once a patient withdraws from the treatment proto-
col, it may be diffi cult or even impossible to continue data collection on the same 
schedule. In such trials, the study database can suffer from substantial truncation 
by nonadherence or dropout. In that case, dropout causes a particular pattern of 
missing data: each patient has a last occasion of measurement, all responses are 
observed up to that occasion, and there are no responses observed after that occa-
sion. This is called a monotone pattern unit-level missing data (11). This missing 
data pattern violates the strict “intention-to-treat” (ITT) principle (12): measure 
all subjects’ outcomes regardless of protocol adherence and analyze by treatment 
assigned no matter what treatment subjects actually received. With LOCF, a missing 
value at a time t is imputed by the most recent observation of the subject at time 
t′ < t. In performing ITT analysis with clinical trial data, LOCF has generally been 
the imputation approach used to handle monotone pattern unit-level missing data. 
The LOCF method works best if it is known that the post dropout values remain 
frozen at the last observed value. This is usually an untenable assumption. When the 
timing and rate of withdrawal differ among treatments, the interpretation of results 
obtained by LOCF is problematic (13). This imputation approach may complete 
data sets for the desired analysis to be performed but the statistical inference derived 
may be erroneous. If, for instance, placebo subjects in a study have a worsening 
course of their disease and the dropouts are concentrated in the treatment group, 
the LOCF method may show an ineffective treatment to be effective by interrupt-
ing the deteriorating course after dropout. On the other hand, if placebo subjects 
have a worsening course and the dropouts are concentrated in this group, then the 
LOCF method may show an effective treatment to be ineffective by interrupting 
the deteriorating course after dropout of subjects in the placebo group. Moreover, if 
the treatment has a carry-over effect after dropout and there are more dropouts in 
the early period of follow-up in the treatment group (possibly due to side effects), 
then the LOCF method underestimates the treatment effect.

Generally, single imputation can easily be implemented and thus allows the 
application of the standard complete-data method of analysis. However, the under-



estimation of uncertainty with single imputation can be a major problem. It treats 
imputed values as if they were true and thus overestimates precision (5). As previ-
ously discussed, variability decreases, affecting the plausibility of parameter esti-
mates and associated uncertainty terms.

9.5 MULTIPLE IMPUTATIONS

9.5.1 Concepts, Assumptions, and Constraints

Multiple imputation (MI), developed by Rubin (2, 6, 14), is a predictive approach 
to handling missing data in multivariate analyses. It blends both classical and 
Bayesian statistical techniques and relies on specifi c iterative algorithms to create 
several imputations. MI rectifi es the major disadvantages of single imputation by 
replacing each missing value with a vector composed of M ≥ 2 possible values 
(usually between 2 to 10 possible values, but commonly 5) to accurately refl ect 
uncertainty and to preserve important data relationships and aspects of the data 
distribution. It requires that the analyst specifi es an imputation model, imputes 
several data sets, analyzes them separately, and then combines the results. MI yields 
a single set of test statistics, parameter estimates, and standard errors.

The validity of the method hinges on how the imputations are generated. It is 
not possible to obtain valid inferences if imputations are created arbitrarily. On 
average, the imputation should give reasonable predictions for the missing data, and 
variability among them should refl ect an appropriate degree of uncertainty. Rubin 
(6) provides technical conditions under which a repeated-imputation method leads 
to frequency-valid answers. An imputation method that satisfi es these conditions is 
said to be “proper” (6). Stated simply, procedures for imputation, whether based 
on explicit (parametric) or implicit (nonparametric) models or based on ignorable 
or nonignorable models, that incorporate appropriate variability among repetitions 
within a model are called “proper.” A variety of proper imputation methods based 
on both explicit and implicit models, including a fully normal model, the Bayesian 
bootstrap, and the approximate Bayesian bootstrap (ABB), have been studied by 
Rubin (15). An imputation model must preserve all important associations among 
variables in the data set, including interactions if they will be part of the fi nal 
analysis. Also, the dependent variable must be included in the model to ensure 
that all relationships between variables are maintained (1). Finally, the algorithm 
used to generate imputed values must be “correct”; that is, it must accommodate 
the necessary variables and their associations. Allison (16) illustrated this fact by 
comparing disparate results of two algorithms for producing multiple imputations. 
The fi rst algorithm considered only the variables associated with the missingness of 
the data, and the second included other variables and their associations. Allison’s 
fi ndings clearly support Rubin’s (6) contention that good imputation methods use 
all information related to missing cases.

9.5.2 Advantages and Disadvantages

MI builds on the advantages of single imputation. It allows the use of complete-data 
analysis methods for data analysis and also includes the data collector’s knowledge. 
In addition, it incorporates random error because it requires random variation in 
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the imputation process. MI produces improved estimates of standard errors when 
compared with single imputation methods because repeated estimations are used. 
It can accommodate any model and any data and does not require specialized 
software. MI also increases effi ciency of parameter estimates because it minimizes 
standard errors and simulates proper inferences from data (6).

The three disadvantages of MI when compared with other imputation methods 
are: (a) more effort to create the multiple imputations, (b) more time to run 
the analyses, and (c) more computer storage space for MI-created data sets (6). 
These are hardly issues with current development in computer technology. The 
MI approach is computationally simpler than the ML and Bayesian approaches 
for most practical situations. Once the imputed data is generated, the data can be 
analyzed with any data analysis software of choice.

9.6 THE MI PARADIGM

9.6.1 Requirements for Model-Based MI

Multiple imputations are generated by assuming a particular imputation model. 
Therefore, the success or failure of MI depends on the propriety of the assumed 
imputation model. Assumptions required in MI are (a) a model for the data values, 
(b) a prior distribution for parameters of the data model, and (c) the nonresponse 
mechanism. However, with nonparametric methods of MI, minimal distributional 
assumptions are required (see Section 9.6.6).

9.6.2 Data Model

Assuming a probability model that relates the complete response (or dependent) 
data Y (the combination of observed values Yobs and the missing values Ymis) to a set 
of parameters is the fi rst and most important step to obtaining multiple imputations. 
With the probability model and the prior distribution on parameters (see Section 
9.6.3), a predictive distribution P(Ymis|Yobs) for the missing values conditional on 
the observed values is found, and the imputations are then generated from the 
predictive distribution.

The assumed model needs to incorporate all the knowledge one has about the 
process that generated the data. The multivariate normal assumption is the most 
convenient model for continuous variables. Then the model is manageable compu-
tationally is a key advantage. The multivariate normal model gives quite accept-
able results even when the variables are binary or categorical, with the imputations 
performed using a normal model and then the imputed values are rounded off to 
the nearest category (1). A variable that is not normally distributed may be trans-
formed to a normal variable and the imputed values are then transformed back to 
the original scale. Others have used a log-linear model for categorical variables, a 
mixture of a log-linear and a multivariate normal model for mixed continuous and 
categorical data sets, and a hierarchical linear model (17).

9.6.3 Prior Distribution

Model-based MI is usually performed using a Bayesian statistical approach. Thus, 
there is a need for specifying a prior distribution on the parameters to carry out 



the analyses. The prior distribution and the complete-data model provide the pre-
dictive distribution P(Ymis|Yobs) for the missing data conditional on the observed 
values from which the imputations can be generated. For convenience, however, 
noninformative prior distributions are used to do MI. The subjectivity involved in 
the choice of prior distributions have, at times, led to a criticism of the Bayesian 
methods. Prior distributions hardly matter for many data analyses because with 
even moderately large sample sizes any reasonable prior distribution gives essen-
tially the same results. With a small sample size, doing the analysis under differ-
ent prior distributions and examining the results for change—a type of sensitivity 
analysis—is a reasonable check before drawing any conclusions.

9.6.4 Missing-Data Mechanism for MI

MI that is model based assumes that the missing data are MAR. This assumption 
allows one to use the relationships among the variables evident from the observed 
data to obtain imputed values for the missing data.

9.6.5 Parametric Bayesian Models

Rubin’s suggested Bayesian approach to MI was popularized by Schafer (1), who 
provided detailed algorithms for creating MIs in different situations. Suppose, in 
general, that Y = (y1, y2,  .  .  .  , yn), where the fi rst a values [Yobs = (y1, y2,  .  .  .  , ya)] are 
actual observed values and the remaining values [Ymis = (ya+1, y2,  .  .  .  , yn)] are missing 
at random. Y = (Yobs, Ymis) follows a parametric model Y ∼ P(Y|q), where q is the 
unknown parameter, or a vector of parameters in the multivariate case, that we are 
ultimately interested in (e.g., mean, variance, or shape that describes the response 
surface). q is assumed to have a prior distribution and Ymis is ignorably missing. MIs 
are Bayesianly proper if they are independent realizations of P(Ymis|Yobs), the pos-
terior predictive distribution of the missing data under some complete-data model 
and prior. P(Ymis|Yobs) may be written

P Y Y P Y Y P Y dmis obs mis obs obs,( ) = ( ) ( )∫ θ θ θ (9.1)

the conditional predictive distribution of Ymis given q, averaged over the observed-
data posterior of q. Thus, Bayesianly proper imputations refl ect uncertainty about 
Ymis given the parameters of the complete-data model, as well as uncertainty about 
the unknown model parameters. The resulting MIs are appropriate under an 
assumption of ignorability because P(Ymis|Yobs) does not rely on the pattern of the 
observed response. Thus, an imputation for Ymis can be described in two steps: fi rst 
by simulating a random draw of the posterior distribution of the unknown param-
eter q* ∼ P(q|Yobs) and followed by a random draw of the missing values from their 
conditional predictive distribution

Y P Y Ymis
* ,mis obs~ ( *)θ (9.2)

For some cases, the posterior distribution of q is not straightforward, due to a 
nonstandard distribution that cannot easily be simulated. Rubin (6) introduced a 

THE MI PARADIGM 251



252 DATA IMPUTATION

few general strategies for approximating draws for the posterior distribution of 
q, including large-sample normal approximations and importance resampling. 
Moreover, a more popular Markov chain Monte Carlo (MCMC), which creates 
a Markov chain with a desired stationary distribution, provides an ideal method 
suited to handle missing-data problems (18). Overview of MCMC algorithms—
including Gibbs sampling, Metropolis–Hastings algorithm, and the data augmen-
tation algorithm—are provided by Gilks et al. (18) and Tanner and Wong (19).

9.6.5.1 MCMC for MI
The data augmentation algorithm developed by Tanner and Wong (19) is an MCMC 
method ideally suited to missing-data problems. It is an iterative two-step process in 
which missing observations are alternatively sampled from their conditional predic-
tive distribution Y(t)

mis ∼ P(Ymis|Yobs, q(t−1)) and then unknown parameters are sampled 
from a simulated complete-data posterior q(t) ∼ P(q |Yobs, Yt

mis). This defi nes a Markov 
chain {(Y(t)

mis, q(t)), t = 1, 2,  .  .  .}, given an initial value q(0), which under quite general 
conditions converges to the stationary distribution P(Ymis|Yobs). When these steps 
are executed a large number of times, it eventually produces a draw of q from its 
observed data posterior q* ∼ P(q |Yobs), and a draw from Ymis from P(Ymis|Yobs), the 
distribution from which MIs are produced. The second step of data augmentation 
q(t) ∼ P(q |Yobs, Y(t)

mis) is straightforward in many cases. This step may be intractable in 
more complicated situations and may be replaced by one or more cycles of another 
MCMC algorithm that converges to P(q |Yobs, Y(t)

mis).
Schafer (1) has described MCMC methods for basic models for continuous, cat-

egorical, and mixed multivariate data; and MCMC methods provide a fl exible set 
of tools for creating MIs from parametric models.

9.6.6 Nonparametric Bayesian Methods

Rubin (15) describes a simple method called the approximate Bayesian bootstrap 
(ABB). This approach makes it possible to generate proper imputation for Ymis

with minimal distributional assumptions. To illustrate the ABB approach for MI, 
consider a collection of n units with the same value of predictor X, where a subjects 
were observed and nmis = n − a subjects with missing values. The ABB creates M
ignorable repeated imputations from m = 1,  .  .  .  , M as follows: (a) create a new pool 
of Y*obs by sampling a values from Yobs = (y1, y2,  .  .  .  , ya) with replacement, and (b) 
select a set of nmis possible values from Y*obs, again with replacement. By drawing 
nmis missing values from a possible sample of Y*obs values rather than from the Yobs

values, the ABB approach generates appropriate between-imputation variability, 
at least assuming large random samples at X, as demonstrated by Rubin and 
Schenker (20).

9.6.7 Combining Estimates

After M imputations have been created for a data set, they are then analyzed 
using standard PK/PD or statistical package. There are now M complete data sets 
containing the observed values and the imputed values instead of one. The PK/PD 
analysis must be done M times, once on each complete data set. Across M data 



sets the results will vary, refl ecting the uncertainty due to missing observations. 
The M complete-data analyses are combined to create one repeated-imputation 
inference.

Let Θ̂m and Um, m = 1,  .  .  .  , M, be M complete-data estimates and their associated 
variances for a parameter Θ, calculated from the M data sets completed by repeated 
imputations under one model for unobserved data. In the linear regression case, 
for instance, Θ = b, Θ̂m is the least squares estimate of b and Um is the standardized 
residual mean square error. The repeated imputation estimate of Θ is the mean of 
the complete-data estimates:

Θ Θ= ( )
=

∑ ˆ
m

m

M

M
1

(9.3)

There are two components of the variability associated with this estimate, the 
average within-imputation variance,

U U Mm
m

M

= ( )
=

∑
1

(9.4)

and the between-imputation component,

B Mm
m

M

= −( ) −( )⎡
⎣
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=
∑ Θ̂ Θ

2

1

1 (9.5)

The total variability associated with Θ̄ is given by

T U M B= + +( )−1 1 (9.6)

Inference can be made using Θ, T, and a distributional assumption. For example, if 
Θ is a scalar quantity, the approximate reference distribution for interval estimates 
and signifi cance tests is a t distribution:

Θ Θ−( ) −T t1 2 ~ ν (9.7)

where the degrees of freedom, n, are given by

ν = −( ) +( )−M r1 1 1 2 (9.8)

with

r M B U= +( )−1 1 (9.9)

Thus, a 100(1 − a)% interval estimate for Θ̄ is

Θ ± t Tν α, 1- 2 (9.10)

The between-subject and within-subject ratio, r, estimates the population quantity 
g /(1 − g), where g is the fraction of information about Θ missing due to sample 
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handling error, unobserved data, and so on. The same approach is used for combin-
ing parameter estimates in the nonlinear mixed effects regression scenario.

9.6.8 Multiple Imputation for Truncated Data

Left-censored data are characteristic of many bioassays due to the inherent limita-
tion of the presence of a lower limit of detection and quantifi cation. An ad hoc 
approach to dealing with the left-censored values is to replace them with the limit 
of quantifi cation (LOQ) or LOQ/2 values. Alternatively, one can borrow informa-
tion from other variables related to the missing values and use MI to estimate the 
left-censored data. In addition, the left-censored mechanism can be incorporated 
directly into a parametric model, and a maximum likelihood (ML) approach can 
be used to estimate the parameters (21).

As previously stated, an important assumption behind MI is the “ignorability 
of missingness,” either MCAR or MAR. When the missingness is not ignorable, 
as in cases where the dropout pattern is such that dropout patients all have dete-
riorating symptoms prior to their dropping out, the “ignorability of missingness” 
assumption is violated. Dropout can also occur as a result of censoring applied 
to individual measurements or because some of the units are withdrawn from 
the study prematurely. Another good example of dropout directly related to the 
measurement process is when ethical considerations may require a patient to be 
withdrawn from a trial on the basis of his/her observed measurement, for example, 
blood pressure (BP) is not adequately controlled in a long-term trial of a drug 
tested for BP reduction. It is important, therefore, to use information on reasons 
why data are missing and incorporate the appropriate dropout mechanism into the 
data augmentation/analysis.

When missingness is nonignorable, the missingness mechanism must be modeled 
and inferences should be based on the joint likelihood of the observed data and 
the missingness mechanism. Wu and Carroll (22) developed a likelihood-based 
method to handle a class of nonignorable mechanisms termed “informative right 
censoring.” The method involves estimating and comparing rates of changes for 
missingness due to dropouts. Wu and Bailey (23) derived a computationally simpler 
version in which the censoring time is used as a covariate in a regression model with 
individual least squares regression estimates of slopes as the dependent variable. 
Little’s (24) approach assumes that the mean response, over time, of an individual 
can be modeled as a function of a set of random coeffi cients, b, and the probability 
of missingness depends on b. He proposed a class of models called “random coef-
fi cient pattern mixture models” to model longitudinal data under the nonignorable 
“random-effect-dependent dropout” missingness mechanism.

9.6.8.1 Propensity-Adjusted Multiple Imputation Approach
A very useful approach to augmenting informative dropout or truncated data con-
sidered here is the propensity–adjusted multiple imputation approach (25). This 
approach utilizes the method of reducing a multivariate stratifi cation to a univari-
ate stratifi cation using the “propensity score” (26, 27). The propensity score is the 
conditional probability of assignment to a particular treatment given a vector of 
observed covariates. That is, at time t a subject’s propensity score is defi ned as the 
probability of the subject to remain in the study through time t given the subject’s 



observed trajectory through time t − 1. Using the partially observed response vector 
at time t, yt = (yt,obs, yt,mis), covariates x, pt as the dichotomy indicator for the response 
yt (pt = 1 if yt is completely observed and 0 otherwise), and a logistic regression 
model, the propensity ei at time t is given by

e x y y

P p x y y
t t

t t

= ( )
= =( )

−

−

, , . . . ,

, , . . . , for
,obs ,obs

,obs ,obs

0 1

0 11 tt T= 0, . . . , (9.11)

As an explanation of the process, assume that data becomes missing at time t—that
is, y0,  .  .  .  , yt−1 are completely observed—and that time t is where imputations start. 
Using the above equation, the propensity scores for time t are calculated and 
stratifi ed into two propensity strata by splitting them at the median. The observed 
responses at time t are assigned to these two strata depending on their respective 
propensity scores. For each propensity stratum, imputations are performed by the 
approximate Bayesian bootstrap procedure. This consists of selecting responses at 
random with replacement from the adherent patients to impute for nonadherent 
patients in the same propensity stratum at time t. The whole process is repeated 
sequentially with imputed values used as observed values and calculating the pro-
pensity of patients based on covariates and their observed trajectories through the 
previous observations until the end of the study. This process also generates M ≥ 2 
(in practice M = 10) possible parallel complete data sets to refl ect random variation 
in the imputation process.

9.6.8.2 Conditional MI
In the validation of a bioanalytical assay for a drug, there is a predefi ned lower limit 
of quantifi cation (LLOQ). When determining drug levels in a biofl uid, it may be 
that in later sampling times the concentration of drug in a sample may be below the 
LLOQ value of the assay. Such a measurement is missing/unknown but it is known 
that its value is less than the LLOQ and is said to be below the limit of quantifi -
cation (BQL). Ad hoc approaches have been used to handle such measurements 
(“left-censored data”) during PK analysis. They range from discarding the BQL 
values to replacing them with either LLOQ/2 or 0. However, a one-value-fi ts-all 
approach might lead to infi nite weights and problems in the optimization routine, 
especially the zero substitution. It has been strongly recommended that substitut-
ing with 0 should be avoided since it leads to inaccurate and biased parameter 
estimates (28, 29). We propose a conditional multiple imputation (CMI) approach 
that takes advantage of the properties and advantages of multiple imputation as 
an alternative for handling BQL data in PK data analysis. With CMI the temporal 
nature of the response Y, especially in the elimination phase of pharmacokinetics, 
is maintained. Briefl y, the CMI approach involves the assumption of a uniform 
distribution for BQL observations (i.e., from 0 to LLOQ). A uniform distribution 
is one for which the probability of occurrence is the same for all values of Y within
a range. In particular, the uniform distribution U(y|a, b) on interval (a, b) has mean 
(a + b)/2 and variance (b − a)2/12. In the elimination phase, the range of (a, b) is 
(0, LLOQ). Assume that data becomes below the lower limit of quantifi cation at 
time t, that is, yt,  .  .  .  , yn, are completely unobserved, and time t is where imputa-
tions start. The LLOQ observations could be any value between 0 and LLOQ. The 
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likelihood contribution for such an observation at time k with the expected mean 
and variance are given below:

E y y y k t n

V y y y
k k k

k k k

− −

− −

( ) = =
( ) =

1 1

1 1
2

2

12

, for , . . . ,

(9.12)

Thus, the imputation is performed with each imputed observation conditioned on its 
immediate predecessor. At least 10 replicates of CMIs should be performed for each 
BQL observation imputed, and the overall PK profi le from the replicates should be 
subjected to analysis and the estimates should be combined as described in Section 
9.6.7 to obtain mean parameters and the associated components of variability.

The CMI method assumes that the length of time between the measurement of 
last quantifi able concentration and the LLOQ value is small relative to the drug 
half-life. If there is a considerable length of time between the measurement of the 
last quantifi able concentration and the LLOQ value, then CMI as proposed here has 
to be modifi ed to account for this. The latter is beyond the scope of this chapter. A 
motivating example is used to illustrate the application of CMI below.

9.7 A SIMULATION STUDY TO EVALUATE SOME BQL 
IMPUTATION TECHNIQUES

For the purpose of this investigation, a simulation representing a typical fi rst-time-
in-human study was executed. However, only a component of this investigation is 
reported here. It is typical in early development for the drug assay not to be fully 
optimized such that the LLOQ is not at the lowest possible value. The consequence 
is that some subjects may have some (or many) observations that are BQL. In such 
a setting, data is usually analyzed using the statistical moments approach. The chal-
lenge, therefore, is how to estimate noncompartmental PK parameters for the drug 
under investigation. Thus, the investigation reported here was performed assuming 
such a setting, and only one dose level is reported here. In addition, only BQL impu-
tation techniques are reported here although several were investigated. The choice 
is made to provide readers with techniques that have not hitherto been reported.

Median PK parameters for a drug that follows a two-compartment model were 
used for the simulation (see Table 9.1). Two levels of interindividual variability 
(30% and 45% coeffi cient of variation) and two levels of residual variability (15% 
and 25% coeffi cient of variation) were evaluated using exponential error models. 

TABLE 9.1 Median Pharmacokinetic Parameters Used in the Simulation

PK Parameter Value

Apparent clearance (CL/F) 29.5 L/h
Apparent volume of distribution of the central compartment (V2/F) 60.1 L
Apparent volume of distribution of the peripheral compartment (V3/F) 56.8 L
Intercompartmental clearance (Q) 11.0 L/h
Absorption rate constant (Ka)  3.46 L/h
Absorption lag time (LAG)  0.31 h



The individual parameter values (Pi) were obtained using a lognormal distribution 
around the population average value (P) according to

P Pi i
P= ( )exp η (9.13)

No covariates were included in the model. All simulations were performed in 
Pharsight Trial Simulator Version V 2.1.2.

Twenty replicates of a typical Phase 1 trial comprising 24 male subjects with 
an average weight of 70 ± 10 kg and age ranging between 18 and 45 years were 
simulated for each scenario. Twenty replicates were used in order to determine the 
number of replicates at which the imputations were stable. The following scenarios 
were evaluated:

• 30% interindividual variability and 15% residual variability
• 45% interindividual variability and 15% residual variability
• 30% interindividual variability and 25% residual variability
• 45% interindividual variability and 25% residual variability

Hypothetical subjects were generated following administration of a 50 mg dose. The 
limit of quantifi cation (LOQ) was assumed to be 50 ng/mL. In order to evaluate the 
performance of the two imputation techniques for imputing BQL concentrations, 
it is assumed that there are iBLOQ values [x1,  .  .  .  , xi]. The two methods tested 
for imputing BLOQ values were CMI and fractional conditional single imputation 
(FCSI).

CMI values arising from a uniform distribution were used to impute the BQL 
values as follows:

•  The fi rst BQL value (x1) is imputed assuming a uniform distribution between 
(0, 50).

•  The next BQL value x2 is then imputed from a uniform distribution between 
(0, x1). That is, the imputation of x2 is conditioned on x1.

• The process is repeated until all BQL values were generated conditionally.

For FFCSI, BQL values were imputed with LLOQ/n values were n = 2, 4, 8, 
16,  .  .  .  LLOQ/n was used instead of LLOQ/2 to ensure that the temporal nature of 
the profi le was maintained.

A true area under the curve (TRUE AUC) was calculated for each subject 
using the full concentration–time profi le generated from the simulation. Sampling 
was performed at 0, 0.25, 0.5, 0.75, 1, 2, 4, 6, 8, 10, 12, 16, and 24 hours. All areas 
under the curve were calculated using the noncompartmental analysis module in 
WinNonlin Version 4.0, using the log/linear trapezoidal rule.

Box plots were generated for each scenario comparing the performance of 
the two imputation methods. Area under the curve extrapolated to infi nity 
(AUC0-inf), % area extrapolated, and terminal half-life (Lambda Z HL) were 
plotted and compared across different methods. Also the bias and precision associ-
ated with the estimation of each of these parameters were compared for the two 
methods.
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To investigate the stability of the imputation methods with increasing number of 
replicates, performances of the methods using 5, 10, 15, and 20 replicates were com-
pared. Figure 9.1 shows the performances of the two imputation methods (CMI and 
FCSI) under the fourth scenario, compared with the full concentration–time profi le 
generated from the simulations. Figure 9.2 shows relative mean prediction errors 
and the associated standard deviation across 20 replicates for the same scenario. 
Results for the other scenarios were consistent with Figures 9.1 and 9.2.

Both approaches provide a very good approximation to the true AUC with 
the bias in the estimation of AUC not exceeding 8% with the CMI method and 
10% with the FCSI method (Figure 9.2A). More biased and imprecise estimation 
of the percent extrapolated AUC was obtained with the CMI method when com-
pared with the FCSI, which yielded a minimally biased and precise estimate of this 
parameter (Figure 9.2B). The CMI method yielded minimally biased estimate of the 
terminal elimination half-life while that obtained with the FCSI method was biased. 
Also, the estimation of terminal elimination half-life was associated with greater 
imprecision when compared with that obtained with the FCSI method. It should 
be noted that the FCSI approach is a deterministic approach that does not account 
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for the uncertainty associated with the computation of the terminal elimination 
half-life (Figure 9.2C). The CMI approach, although more computationally intense, 
provides a better technique to impute the BQL values when compared with the 
FCSI approach. However, the FCSI approach could be useful in situations where 
the uncertainty associated with the estimation of a parameter is not of much primary 
concern, and this is often the case with noncompartmental analysis. The S-Plus code 
used to implement the two approaches is shown in Appendix 9.1.

Both imputation methods performed similarly with increasing number of repli-
cates (5, 10, 15, and 20) (results not shown), indicating that these methods are stable 
with as low as 5 replicates of a particular trial. The similarity in the performance 
of the two approaches is because the FCSI approach in which imputation was per-
formed with LLOQ/n, where n values were multiples of 2, maintained the temporal 
nature of the profi le. By maintaining the temporal nature of the profi le, the FCSI 
approach in that sense is similar to the CMI approach.

Thus, in a fi rst-time-in-human study where sample sizes may be between 12 and 
24, and the objective is to characterize the pharmacokinetics of a new molecular 
entity, using any of the approaches investigated here would suffi ce. However, the 
CMI approach is preferred because it accounts for the uncertainty associated with 
the imputation of the BQL values while the FCSI approach does not.

9.8 SOFTWARE FOR MI

In addition to the multiple imputation software provided in Appendix 9.1, a general 
purpose software for performing MI has been written by Schafer (30–33); see also 
Ref. 8. NORM is a standalone application that performs MI under a multivariate 
normal model and it is designed for PCs running Windows 95, 98, and NT. The 
program may be downloaded free of charge from his web site (http://www.stat.
psu.edu/%7Ejls/misoftwa.html#mi). In addition, four different packages for 
performing MIs in S-Plus (Insightful Corporation, Seattle, WA) are also available 
from the same web site. These are NORM (30, 34), which performs MI under 
a multivariate normal model; CAT (31), for multivariate categorical data under 
log-linear models; MIX (32), for mixed data sets containing both continuous and 
categorical data under the general location model; and PAN (33), for multivariate 
data or clustered data under a multivariate linear mixed effects model.

Harrell (35) developed the transcan function for performing MIs as part of his 
Hmisc library of miscellaneous S-Plus functions. The transcan function is a general 
purpose imputation function that can be used for imputing both continuous and 
categorical variables. The software can be accessed from his web site (http://
biostat.mc.vanderbilt.edu/twiki/bin/view/Main/Hmisc?CGISESSID=9ec4

d1af802e39c536f7ba4105f5f41b).

9.9 SUMMARY

Infl ation of Type I and Type II error rates, bias parameter estimates, and the deg-
radation of the performance of confi dence intervals are possible consequences of 
improperly addressing the issue of missingness in data analysis. Because a loss of 
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data is nearly always accompanied by a loss of information, missing values may 
dramatically reduce statistical power.

In this chapter, different incomplete data types are discussed together with 
the different imputation techniques that have been developed to impute missing 
data. Traditionally, incomplete (missing) data have been handled by deletion from 
analysis of cases that contain missing values (single imputation) and most recently 
by using MI techniques. The advantages and disadvantages of the different imputa-
tion techniques are discussed. MI is the most appropriate approach for imputing 
missing data because it accounts for the uncertainty associated with the imputation 
process. Also, the propensity-adjusted MI and CMI are discussed as approaches for 
handling left-censored data. References for different software available for MI are 
also provided. Pharmacometricians who wish to mitigate the risks associated with 
analysis of incomplete data must pay close attention to the issue of missing data in 
the analysis of clinical trials and choose their strategy carefully.
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APPENDIX 9.1 S-PLUS CODE FOR IMPLEMENTATION OF THE 
CMI AND FCSI EXAMPLES

#Example code to implement methods 1 (CMI) and 2 (FCSI).

# Method 1 (CMI): replace BLOQ values with uniformly distributed 

values conditioned to decline based on a preceding value [AUCu]

ct30var$CONCu<-rep(NA,nrow(ct30var))

for (i in 1:20)

{for (j in 1:24)
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 {ct30var.u<-ct30var[ct30var$REP==i & ct30var$PATNO==j,c(“REP”,”P

ATNO”,”TIME”,”CONC”)]

  ct30var.u$CONCu<-ct30var.u$CONC

  x<-length(ct30var.u$CONC[ct30var.u$CONC<50 & ct30var.u$TIME>2])

  if (x==1) 

    {ct30var.u$CONCu[ct30var.u$CONC<50 & ct30var.u$TIME>2]<-

  runif(n=1,0,50)}

    else 

    {y<-rep(NA,x)

    y[1]<-runif(n=1,0,50)

     for (k in 2:x)

    {

     y[k]<-runif(n=1,0,y[k-1])

    }

ct30var.u$CONCu[ct30var.u$CONC<50 & ct30var.u$TIME>2]<-y}

if (i*j==1)

{ans30<-ct30var.u}

  else

  {ans30<-rbind(ans30,ct30var.u)}

  cat(”\n”,i,”REP, and ”,j,”PATNO\n”)

   }

}

ct30var.u.all<-ans30

##################################################################

#Method 2 (FCSI): replace BLOQ values with

 LOQ/2,LOQ/4,LOQ/8,LOQ/16,LOQ/32,LOQ/64 etc..

ct30var$CONCu<-NULL

ct30var1<-ct30var

ct30var1$CONC1<-ct30var1$CONC

for (i in 1:20)

{for (j in 1:24)

 {

  ct30var.1<-ct30var1[ct30var1$REP==i &

  ct30var1$PATNO==j,c(“REP”,”PATNO”,”TIME”,”CONC”, “CONC1”)]

  ct30var.1$CONC1[ct30var.1$CONC<50 & ct30var.1$TIME>2]<-

  c(25,12.5,6.25,3.125,1.56,0.78)

 if (i*j==1)

  {ans1<-ct30var.1}

  else

  {ans1<-rbind(ans1,ct30var.1)}

cat (”\n”,i,”REP, and ”,j,”PATNO\n”)

 }

}ct30var.u1.all<-ans1
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10.1 INTRODUCTION

Population pharmacokinetics is the study of the sources and correlates of vari-
ability in drug concentrations among individuals who are the target patient popu-
lation receiving clinically relevant doses of a drug of interest (1). Certain patient 
demographical, pathophysiological, and therapeutic features, such as body weight, 
excretory and metabolic functions, and the presence of other therapies, can regu-
larly alter dose–concentration relationships. Population pharmacokinetic (PPK) 
models are vital to the drug development and evaluation processes by providing 
predictions of the individualized dose–exposure relationship, which is pivotal to 
rational and successful drug therapy. There are several advantages to employing 
PPK models when compared to traditional pharmacokinetic (PK) model develop-
ment (2). Unlike the traditional studies in which subjects are sampled intensively, 
the population approach to studying the pharmacokinetics of a drug allows both 
sparsely and intensively sampled data to be used. It enables the execution of PK 
studies in special populations such as neonates (3, 4), elderly (5, 6), AIDS patients 
(7), critical care patients, and cancer patients (3), where the number of samples to 
be obtained per subject are limited because of ethical and medical concerns. During 
drug development relatively few samples can be obtained from subjects/patients 
participating in Phase 2 and 3 studies for the determination of the pharmacokinetics 
of a drug in the relevant population and for the determination of the relationship 
between dose, exposure (concentration), and response/safety.

The sparse sampling approach for characterizing population pharmacokinetics 
yields better estimates of intersubject variability than traditional approaches (dis-
cussed later), which yield positively biased estimates of this measure of dispersion 
(8–10). A combination of accurate and precise estimates of intersubject variability 
and the mean parameter value for a drug is useful for selecting an initial dose 
strategy for drug therapy in a patient and allows Bayesian feedback analysis to be 
performed for dosage individualization.

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene I. Ette and 
Paul J. Williams
Copyright © 2007 John Wiley & Sons, Inc.
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The analyses of sparse samples collected for PPK analysis have been reported 
to be cost effective (11). The analytical cost for samples for Phase 2 and 3 trials is 
reported to be typically comparable to the total cost of a single Phase 1 special topic 
study (11). If an average of 3 samples are taken from 1000 patients and the analytical 
cost is $80 (US) per sample, the $240,000 (US) analytical expenditure will typically 
allow quantitative assessment of multiple factors affecting the drug’s pharmacoki-
netics, including such factors as gender, race, age, renal function, concomitant drug 
use, and disease severity. Database support, overheads, and pharmacokineticist’s 
time probably account for $60,000–100,000 (US), depending on the complexity of 
the analyses. The savings are obvious when this is compared to an approximate 
$450,000 for a 10 day multiple-dose crossover drug–drug interaction study in 18 
healthy volunteers.

PPK analyses provide an opportunity not only to estimate variability but also to 
identify its sources. Variability is usually characterized in terms of fi xed and random 
effects. The fi xed effects are the population average values of PK parameters, which 
may in turn be a function of patient characteristics discussed earlier. The random 
effects quantify the amount of PK variability, which is not explained by the fi xed 
effects, and these random effects subsets are intersubject variability, interoccasion 
variability, and intraindividual and residual variability (12). Karlsson and Sheiner 
(13) have demonstrated that the lack of separation of interoccasion variability from 
residual intrasubject variability produced bias in estimation of PPK parameters.

The PPK approach can allow one to combine heterogeneous types of data from 
varying sources. For example, one could pool data from several different studies, 
study centers, variable biomatrices (plasma plus serum), intensely plus sparsely 
sampled data, or experimental plus observational data. The combining of differ-
ing data sets often increases the power to identify multicompartment or nonlinear 
models, to incorporate additional covariates, or to gain precision in the estimation 
of the model.

A disadvantage of the PPK approach is that it requires skilled pharmacokineti-
cists/pharmacometricians who are able to implement the mathematical and statisti-
cal techniques used in the estimation of PPK parameters.

Over the past 25 years a variety of methods have been proposed for the charac-
terization of the population pharmacokinetics of drugs. In this chapter, the statisti-
cal framework for estimating population pharmacokinetics in terms of individual 
and population models is discussed as a prelude to discussing some of the methods 
used in estimating population pharmacokinetics. In doing so we have adopted a 
user-friendly approach described previously (14). The goals of a PPK analysis and 
the data type (1) will determine the method selected for the analysis.

10.2 STATISTICAL FRAMEWORK FOR ESTIMATING 
POPULATION PHARMACOKINETICS

10.2.1 Individual Model

When engaging in PPK model development, it is important to understand the 
underlying principles of both the individual and the population models. This avoids 
working with the black box mentality, which can lead to the estimation of inap-
propriate models.



The PK model for estimating individual PK parameters can be written

y f xj
m

j j j= ( )φ , (10.1)

where ym
j is the model predicted vector of values of yj (an observed dependent 

variable) when the PK parameters take the value fj, and where ƒj stands for the 
functional relationship (i.e., PK model) between the predictions and the fj. xj is also 
a vector of known quantities (dose D, time tj, subject size, etc.).

Assuming measurement errors to be zero, Eq. (10.1) would be rewritten as 
follows:

y f xj j j j= ( )φ , (10.2)

if the model-predicted values, ym
j, are equal to the measured values yj. In practice, 

however, the observations must be related to individual true parameters fj through 
a somewhat more elaborate model:

y f xj j j j j= ( ) +φ ε, (10.3)

where the vector ej is a sample of the measurement noise Ej.
Maximum likelihood (ML) estimation can be performed if the statistics of the 

measurement noise Ej are known. This estimate is the value of the parameters 
for which the observation of the vector, yj, is the most probable. If we assume the 
probability density function (pdf) of Ej to be normal, with zero mean and uniform 
variance, ML estimation reduces to ordinary least squares estimation. An estimate, 
f*j, of the true jth individual parameters fj can be obtained through minimization 
of some objective function, Oj(qj). The model given by Eq. (10.3) is assumed to be 
a natural choice if each measurement is assumed to be equally precise for all values 
of yj. This is usually the case in concentration–effect modeling.

There are instances where the error changes with differing values of yj. When this 
is the case, one ought to consider the multiplicative lognormal error model, where 
the observed concentration y is given by

y f x ej j j j
j= ( )φ ε, (10.4)

where ej is assumed to follow a lognormal distribution with median 1 and constant 
coeffi cient of variation CV. The variance of the prediction of the deviations is 
proportional to the square of the predicted response. The lognormal error model 
is often appropriate if measurements can only be positive and if they become less 
precise when the measured value increases. This is often true of biological systems 
in general and PK models in particular. However, other error models may be used 
in practice such as a combination of the additive and lognormal error model to 
improve prediction at the lower limit of assay precision, where variance may be 
assumed constant, and the power function model where the variance of the devia-
tions is assumed proportional to some power (which is to be estimated) of the pre-
dicted response.

When the estimation procedure is clearly specifi ed, an approximate covariance 
matrix of the estimate, Sj, can also be calculated. This matrix refl ects the degree 
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of precision of the estimate and depends on the experimental design, parameters, 
and noise statistics. A well designed experiment with small random fl uctuations will 
lead to precise estimations (“small” covariance), while a small number of uninfor-
mative data and/or a high level of noise will produce unreliable estimates (“large” 
covariance).

10.2.2 Population Model

Unlike the individual model discussed above, a more elaborate statistical model is 
required to deal with sparse PK data. In formulating the model, it is recognized that 
overall variability in the measured (response) data in a sample of individuals refl ects 
both measurement error and intersubject variability. The observed response (e.g., 
concentration) in an individual within the framework of population (regression) 
nonlinear random mixed effects models can be described as

y f xij ij ij ij ij= ( ) +φ ε, (10.5)

where yij for i = 1,  .  .  .  , nj are the observed data (e.g., blood or urinary levels at time 
points xij) of the jth subject. The model given by Eq. (10.5) is defi ned for all j = 1,  .  .  .  , 
N, where N is the number of subjects in the sample. ƒij is a specifi ed function for 
predicting the ith response in the jth subject (e.g., one or several exponentials), eij

is the ith measurement error in the jth subject, and fj was previously defi ned (15). 
From the notations, it is clear that the population model is a collection of models 
for individual observations. Various doses and/or dosage regimens and/or admin-
istration routes are generally used in patient drug therapy and clinical trials. Also, 
diverse administration schedules (single dose and multiple dosing) might be used 
and several responses (e.g., plasma and urinary drug levels) might be measured. 
Correspondingly, in drug-related “population” applications, the functions ƒij will 
differ across individuals. In contrast, it is realistic to assume that the set of under-
lying structural parameters, in this case PK parameters, is qualitatively the same 
for all individuals and that the parameters vary quantitatively among individuals. 
Mathematically this can be written

φ θ ηj j jg z= ( ) +, (10.6)

where g is a known function that describes the expected value of fj as a function 
of known individual specifi c covariates zj, such as weight, age, disease state, and 
concomitant medication, and the vector of population parameters q. Covariates are 
assumed constant within an individual, for simplicity. However, time-varying covari-
ates can also be incorporated in the model by permitting individual PK parameters 
to depend on i as well as on j. hj represents the random variation of the individual 
parameter vectors around the population prediction. The hj are usually assumed to 
be independent across individuals (i.e., hj, hl are independent for j ≠ l). The indi-
vidual fj is assumed to arise from some multivariate probability F(q).

In the mixed effects context, the collection of population parameters is composed 
of a “population-typical value,” generally the mean, and of a “population-variability 
value,” generally the variance–covariance matrix. The mean and variance are the 
fi rst two “moments” of a probability distribution. They build a minimal set of hyper-
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parameters or “population characteristics” for it, which is suffi cient in a statistical 
sense when F is taken as normal or lognormal.

Thus, a PK model that describes the time course of the drug in the body in a spe-
cifi c individual, a model describing the relationship between patient characteristics 
and the PK model parameters, a variance model for residual random variability, 
and a population model for intersubject random variability that describes the unex-
plained random variability of the model parameters in the population of subjects 
studied are essential for describing a PPK model.

10.3 METHODS APPLIED TO POPULATION 
PHARMACOKINETIC MODELING

10.3.1 Naive Average Data Approach

It is common practice in preclinical and clinical pharmacokinetics to perform studies 
in which the drug administration as well as the sampling schedules are identical 
for all subjects. For this type of analysis there are as many data points as there are 
individuals at each sampling time. Analysis of such data using the naive averaging 
of data (NAD) approach consists of the following procedure:

1. Compute the average value of the data for each sampling time

y
N

yi ij
j

N

=
=
∑1

1
(10.7)

for i = 1,  .  .  .  , n, where n is the standard number of individual data. The aver-
aging of data across individuals makes sense, because all yij for j = 1,  .  .  .  , N
have been measured under identical conditions.

2. A model ym = ƒ(f) is fi tted to the mean-data n-vector ȳ = (ȳ1,  .  .  .  , ȳn)t while 
estimating the best-fi t parameter values f*. The latter notation (f*) is used to 
distinguish it from individual estimates, denoted f̂.

The NAD approach is attractive because of its simplicity. One unique fi tting is 
suffi cient for obtaining estimates of parameters describing the mean response. f*
components are quite often interpreted as “mean” parameter values. Correspond-
ingly, m̂NAD will be used for f* in the latter. The method is widely applicable in 
experimental data (EP) studies with standardized designs, and examples of these 
include bioavailability, bioequivalence, and dose proportionality studies. Because of 
the smoothing effect of averaging, mean data generally look nicer than individual 
data, and better fi tting often results when compared with individual data.

However, the NAD approach provides an estimate of m̂NAD sample mean. In this 
regard, several drawbacks of this approach must be pointed out. The use of NAD to 
establish a PK model may be misleading. Quite often, data averaging can produce 
a distorted picture of the response. Averaging of monoexponential data from two 
subjects with very different half-lives has been shown to produce a mean curve that 
exhibits an apparent biexponential decay (16). Sometimes the opposite situation is 
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the case. The smoothing effect of the averaging will tend to obscure peculiarities 
that can be seen in individual data. The existence of secondary peaks in the plasma 
level–time course of individuals may be undetectable in the average curve if the 
rebounds occur at different time points.

NAD also performs poorly in terms of parameter estimation. The reference to 
individual data disappears after data averaging. All sources of variability are con-
founded. Because of this, important information on drug disposition is obscured. 
The average concentration curve derived with the NAD approach does not neces-
sarily follow the individual model function. A wrong model may be obtained (17). 
Undefi ned statistical uncertainties and large “unknown” subject variations might 
smooth the average response curve in an unpredictable manner. Thus, the NAD 
estimate m̂NAD should not, as a general rule, be regarded as a valuable estimate 
of the expected value of PK parameters. This rule holds even if the true model, 
that is, the one that adequately describes the individual data, has been used for 
the fi tting. The essential parametric nonlinearity of PK models is responsible for 
this. Exceptions to this rule occur when the signal-to-noise ratio is small. This is 
the case when variability contributes less to the spread in observations than other 
sources of fl uctuation (interoccasion variability, measurement error, and model 
misspecifi cation). This situation might be seen when concentrations are measured 
in standardized laboratory animals. The quality of estimates may be improved by 
using averaging methods other than straightforward arithmetic mean (18). These 
ad hoc solutions do not fundamentally solve the problem. Moreover, no estimate of 
pure interindividual variability can be obtained with the NAD approach because it 
masks variability rather than revealing it. Thus, the NAD approach is not a reliable 
method for PK data analysis.

10.3.2 Naive Pooled Data Analysis

Sheiner and Beal (19) proposed the term naive pooled data (NPD) approach for 
the method in which all data from all individuals are considered as arising from one 
unique individual. This reference subject is characterized by a set of parameters 
f. With least-squares fi tting, f will be the parameter vector minimizing the global 
objective function

O y fij ij
j

nj

j

N

NPD φ φ( ) = − ( )[ ]⎧
⎨
⎩
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⎭==

∑∑ 2

11

(10.8)

where {ƒij, i = 1,  .  .  .  , nj} is the set of components of ƒj, and the summation is over 
all individuals and all measurements for a given individual.

Unlike the NAD approach, the NPD approach is far more general. It can easily 
deal with experimental data, nonstandard data, and routine PK data. After a unique 
fi tting of all data at once, parameter estimates are obtainable. It may perform 
well when variations between subjects are small. This is occasionally the case in a 
group of homogeneous laboratory animals from a given strain, but it is rarely true 
for humans. The drawbacks of NPD are the same as those of NAD, as has been 
repeatedly pointed out (20–22). The NPD approach tends to confound individual 
differences and diverse sources of variability in a manner different from the NAD 
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approach, but with similar negative consequences. The NPD estimate for the ref-
erence individual f should be considered as a rough approximation (m̂NPD) of the 
population expectation m, although the consequences of the omission can be minor 
(23). In addition, estimates of the dispersion of parameters in the population are 
not provided. Extrapolation of mean outcomes on the basis of the set of estimates 
m̂NPD should be done with caution.

These problems notwithstanding, it has been shown by Shafer and co-workers 
(24–26) that for several drugs used in anesthesia a pooled analysis approach provided 
population mean parameters that, when prospectively tested, accurately predicted 
drug concentrations after drug administration by a computer-controlled infusion 
pump. The data, in all circumstances, originated from well controlled experiments 
with extensive sampling. That is, the data were of the experimental data (EP) type. 
Moreover, the NPD analysis provided similar population mean parameter estimates 
when compared with estimates obtained using several other population analysis 
methods (27, 28). These fi ndings are in contrast with an earlier simulation study 
that showed that the NPD approach provided biased estimates of the population 
mean parameters even when a well balanced experimental study design was used 
(20). The discrepancy may be due to the large amount of interindividual variability 
present or inappropriate weighting scheme used in the latter study.

Imbalance and confounding correlations present in a data set pose serious prob-
lems for the NPD approach. These features are prevalent in observational data and 
make the NPD approach inappropriate for this type of data. Data imbalance occurs 
when there are many more observations taken from some individuals than others. 
An example would be a case where six samples are taken from individuals, four 
from some, and one from others.

When the design of the study correlates with the outcome, confounding cor-
relations occur. That is, the presence or absence of an observation is dependent 
on the subject’s pharmacokinetics. Confounding correlations are usually prevented 
with randomization. This, however, is not guaranteed with observational data. A 
case in point would be a PK study in which concentrations fall below the limit of 
quantifi cation during the study. Only individuals with the smallest clearance or 
largest volume of distribution would contribute measurable concentrations toward 
the end of the study. Biased estimate of the terminal half-life will result and may 
be wrongly interpreted as an additional phase of the PK profi le. Clearly, the NPD 
approach should not be used in this setting.

10.3.3 Two-Stage Approach

With this approach, individual parameters are estimated in the fi rst stage by sepa-
rately fi tting each subject’s data, then in the second stage obtaining parameters 
across individuals, thus obtaining population parameter estimates. The data are 
summarized in the set [(f̂j, Mj), j = 1,  .  .  .  , N]. f̂j is the p-vector of the parameter 
estimates and is the p × p symmetric variance–covariance matrix of the correspond-
ing individual estimate. To derive values for population characteristics according 
to a given strategy, the individual parameter estimates are combined. The salient 
features of the methods that constitute the two-stage approach are discussed 
briefl y.
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10.3.3.1 Standard Two-Stage (STS) Approach
The STS approach refers to a well known and widely used procedure. Population 
characteristics of each parameter are estimated as the empirical mean (arithmetic 
or geometric) and variance of the individual estimates f̂j according to the following 
equations:
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The estimate of the standard deviation (ŝ) is easily obtained by taking the square 
root of Ω̂.. N − p can be used instead of N in the denominator of the variance 
estimate.

With the STS approach estimates of individual parameters are combined as if 
the set of estimates were a true N-sample from a multivariate distribution. It has 
been recommended as a very simple and valuable approach for pooling individual 
estimates of PK parameters derived from experimental PK studies (29). The advan-
tage of the STS approach is its simplicity, but the validity of its results should not 
be overemphasized. However, it has been shown from simulation studies that the 
STS approach tends to overestimate parameter dispersion (the variance–covariance 
matrix) (20, 30).

10.3.3.2 Global Two-Stage (GTS) Method
The f̂ can be viewed as observations of the individual parameters. The estimate for 
a subject may be biased and imprecise because of poor experimental design, poor 
study execution, or a high level of measurement error. The GTS approach makes 
extensive use of the matrices |Mj, j = 1,  .  .  .  , N|, which refl ect the deviations (bias), 
together with the estimates |f̂j, j = 1,  .  .  .  , N|. The expectation E(·) and the vari-
ance–covariance Var(·) of each (random) f̂j can be calculated:

E j Njφ̂ μ( ) = =for , . . . ,1 (10.11)

Var for , . . . ,φ̂ j jM j N( ) = + =Ω 1 (10.12)

where m is the true population expectation and Ω is the true population vari-
ance–covariance. An extensive description of the method is provided by Steimer 
et al. (30). The GTS approach provides a maximum likelihood estimate of m and Ω
by an iterative method. It assumes that the estimates of individual parameters are 
normally distributed around the true parameters with variance Varj. The population 
parameters q are the p components of the vector m and the p(p + 1)/2 independent 
components of the symmetric matrix Ω. The objective function to be minimized is 
as follows:
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The fi rst term on the right-hand side of Eq. (10.13) is the summation (over individu-
als) of the weighted squared deviations of individual estimates from the expected 
value m. The weighting matrix is dependent on the quality of the estimate through 
the factor (Mj + Ω)−1. The last term in the equation is the logarithm of the determi-
nant of the (Mj + Ω) matrix. It prevents the variance–covariance matrix from going 
to zero through its determinant.

The GTS approach has been shown, through simulation, to provide unbiased esti-
mates of the population mean parameters and their variance–covariances, whereas 
the estimates of the variances were upwardly biased if the STS approach was used 
(30). These simulations were done under the ideal situation that the residual error 
was normally distributed with a known variance. However, it is a well known fact 
that the asymptotic covariance matrix used in the calculations is approximate and 
under less ideal conditions that the approximation can be poor (31, 32).

10.3.3.3 Iterative Two-Stage (IT2S) Approach
A computationally “heavier” two-stage method that relies on repeated fi ttings of 
individual data (IT2S) has been described (30, 33, 34). The IT2S approach can be 
implemented with rich data, sparse data, or a mixture of both. An approximate a 
priori population model is required to initiate the procedure. Provided that con-
siderable informative data is available, the population values may be obtained 
from the literature, the NPD approach can be performed with the current study 
data with a reasonable choice of parameter variability, or the STS approach (30). 
As the name implies, the IT2S approach is implemented in two stages. In the fi rst 
stage, the population model is used as the set of prior distributions for Bayesian 
estimation of the individual parameters for all patients, irrespective of the number 
of samples supplied by each individual. In the second stage, the population param-
eters are recalculated with these new individual parameters in order to form the 
new set of prior distributions. The estimation process (i.e., parameters from the 
second stage are used for a repeat of the fi rst stage and the results are used for a 
repeat of the second stage) is repeated until the difference between the new and 
old prior distributions are essentially zero. The method may be implemented with 
programs supporting Bayesian estimation and least-squares regression or with the 
IT2S routine (34), which has been implemented with the USC*PACK collection 
of programs (35).

A method close to the IT2S procedure is the expectation-maximization-like 
(EM) method presented by Mentre and Geomeni (36), which can be viewed as an 
extension of the IT2S procedure when both random and fi xed effects are included 
in the model and for heteroscedastic errors known to a proportionality coeffi cient. 
This algorithm is implemented with the software P-PHARM (37).

10.3.3.4 Bayesian Two-Stage Approach
A method that is Bayesian in nature is that proposed by Racine-Poon (38). The 
method uses the estimates of the individual parameters fj and asymptotic variance 
matrix Vj obtained from the individual fi ts, with very weak assumptions about the 
prior distribution of the population parameters to calculate a posterior density 
function from which f and Ω can be obtained. In an iterative method suggested by 
Dempster et al. (39) the EM algorithm is used to calculate the posterior density 
function. Simulation studies in which several varying and realistic conditions were 
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assumed have shown that the Bayesian two-stage approach provides good estimates 
of PPK and pharmacodynamic (PD) parameters (38, 40).

10.3.3.5 Bayesian Analysis Using Gibbs Sampling
BUGS (Bayesian inference using gibbs sampling) is a general program involv-
ing a fully Bayesian approach (41). The program is an implementation of the 
Markov chain Monte Carlo (MCMC) method (42, 43). An increasingly used 
Bayesian software for PPK data analysis is WinBUGS, which includes an add-on 
for PK analysis (PKBUGS). Chapter 5 covers Bayesian methods and the use of 
WinBUGS.

10.3.4 Nonlinear Mixed Effects Model Approach

The fi rst attempt at estimating interindividual PK variability without neglecting the 
diffi culties (data imbalance, sparse data, subject-specifi c dosing history, etc.) associ-
ated with data from patients undergoing drug therapy was made by Sheiner and 
co-workers (44) using the nonlinear mixed-effects model approach. The vector q
of population characteristics is composed of all quantities of the fi rst two moments 
of the distribution of the parameters: the mean values (fi xed effects) and the 
elements of the variance–covariance matrix that characterize random effects 
(19, 20, 45–47).

The number of samples per subject used for this approach is typically small, 
ranging from one to six. The diffi culties associated with this type of data preclude 
the use of the STS approach because there are not enough data to estimate the 
PK parameters for each subject separately. There are too few measurements to 
estimate the parameters accurately or the model may be unidentifi able in a specifi c 
individual. As does the pooled analysis technique, nonlinear mixed effects modeling 
approaches analyze the data of all individuals at once but take the interindividual 
random effects structure into account. This ensures that confounding correlations 
and imbalance that may occur in observational data are properly accounted for.

Most of the nonlinear mixed effects modeling methods estimate the param-
eters by the maximum likelihood approach. The probability of the data under the 
model is written as a function of the model parameters, and parameter estimates 
are chosen to maximize this probability. This amounts to asserting that the best 
parameter estimates are those that render the observed data more probable than 
they would be under any other set of parameters.

It is diffi cult to calculate the likelihood of the data for most PK models because 
of the nonlinear dependence of the observations on the random parameters hi and 
possibly eij. To deal with these problems, several approximate methods have been 
proposed. These methods, apart from the approximation, differ widely in their rep-
resentation of the probability distribution of interindividual random effects.

10.3.4.1 First-Order Method
The fi rst nonlinear mixed effects modeling program introduced for the analysis of 
large amounts of PK data was NONMEM (48). In the NONMEM program linear-
ization of the model in the random effects is effected by using the fi rst-order Taylor 
series expansion with respect to the random effect variables hi and eij. This software 
is the only program in which this type of linearization is used.
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The jth measurement in the ith subject of the population can be obtained from 
a variant of Eq. (10.5) as follows:

y f xij ij i ij= ( ) +φ η ε, , (10.14)

The fi rst-order Taylor series expansion of the above model with respect to the 
random variables hi (intersubject variability) and eij (residual variability) around 
zero is given by

y f x G xij ij ij ij i ij= ( ) + ( ) +φ φ η ε, , (10.15)

where

G x f xij ij ij i ij i
T

i
φ δ θ η ε δη η, , ,( ) = ( ) =0 (10.16)

Gij(f, xij) is a 1 × p matrix of the fi rst derivatives of ƒ(q, xijhi, eij) with respect to hi,
evaluated at hi = 0. In Eq. (10.15) the model is linear in eij; therefore, no approxi-
mation is made with respect to eij. Logarithmic transformation of the data can be 
performed to ensure linearity in eij.

The random effect parameters hi and eij are independent (multivariate) normally 
distributed with zero means and variances Ω and s2, respectively. Ω is the p × p
covariance matrix of the p vector hi. Based on the fact that hi and eij are independent 
identically normally distributed, and the linearization of Eq. (10.15), the expecta-
tion and variance–covariance of all observations for the ith individual (fi rst two 
moments) are given by

E f xi i= ( )θ, (10.17)

and
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where ƒ(q, xi) is the vector of model predictions of yi, Gi(q, xi) represents the ni × p
matrix of fi rst derivatives of ƒ(q, xi, hi, ei) with respect to hi evaluated at hi = 0, and 
Ιni represents the identity matrix of size ni. Maximum estimates of the population 
parameters q, Ω, and s2 can be obtained by minimizing minus twice the logarithm 
of population likelihood as expressed below:
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This approach is called the fi rst-order (FO) method in NONMEM. This is the most 
widely used approach in PPK and PD data analysis and has been evaluated by 
simulation. The use of the fi rst-order Taylor series expansion to approximate the 
nonlinear model in hi and possibly eij by a linear model in these parameters is the 
greatest limitation of the FO approach.

The performance of the FO approach for the analysis of observational 
and experimental data has been evaluated by Sheiner and Beal (19) with the 
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Michaelis–Menten PK model and the one- and two-compartment models (20, 
21). In all instances, a comparison was made with the naive pooled data and 
standard two-stage approaches for the analysis of the two types of data. The FO 
approach outperformed the NPD and the STS approaches on both data types. 
Despite the approximation, the FO approach provides good parameter estimates. 
When the residual error increases, the STS approach quickly deteriorates, especially 
with respect to variance parameters. However, the STS approach still performs 
reasonably well but the bias and imprecision of the estimates tend to increase 
with increasing residual error (21). Estimates of residual random effects have 
been shown to deteriorate with the FO approach when residual error increases 
(49).

Deterioration in parameter estimation has been observed in simulation studies 
in which the value of the intersubject variability was greater than 60% and the 
residual variability was set at 15% (50). A series of studies in which observations 
were randomly deleted from a data-rich set to create a sparse data set, and param-
eter estimation done using the FO showed good performance of the FO approach 
when compared with the results obtained using the full data set (51–55). The cor-
respondence of the results in the two situations suggests that the FO approach can 
be used to estimate parameters using only a few observations per individual. Simula-
tion studies have been performed to show that the FO approach can be used in the 
limiting case where only one sample is obtained per subject (56). In this case, there 
is an upper limit of residual variability (not exceeding 20%) for the production of 
reliable parameter estimates.

The impact of the linearization approximation of the FO approach for a simple 
one-compartment model was evaluated by Beal (46). He compared the perfor-
mance of this approach with the exact solution to the population likelihood. No 
difference was observed, which indicated that the approximation used in the FO 
method is not detrimental to the analyses under the conditions evaluated, which 
included an interindividual variability set at 25% (CV%). Other simulation studies, 
however, have shown that the FO approach has a potential for providing modestly 
biased estimates (20, 33, 45, 51, 57–60).

For a one-compartment multidose scenario, White et al. (32) showed that biased 
estimates are more likely when residual and intersubject variabilities are very high. 
Ette et al. (50) observed that the biased estimates are obtained at high levels of 
intersubject variability with a two-compartment multidose situation although the 
residual variability did not exceed 15%. The bias may be due to the fact that 
the fi rst-order Taylor series expansion is not a particularly good approximation of 
the underlying “real” (lognormal) distribution used to generate the simulated data 
in these studies. Also, it may be that the fi rst-order Taylor series expansion is evalu-
ated at hi = 0 (the population mean estimate of hi). This may not be a good approxi-
mation depending on the magnitude of intersubject variability and the nonlinearity 
of the pharmacokinetic model. During data analysis, this can be compensated for, 
in part, by including explanatory covariates in the model to reduce the variance 
of hi. With a one-compartment model experimental data set, the GTS approach 
was shown to outperform the FO approach with respect to bias and precision of 
both the population mean and variance estimates. Similar results were obtained 
in a study in which the FO approach was compared with the Bayesian two-stage 
approach (57).
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The NONMEM program implements two alternative estimation methods, the 
fi rst-order conditional estimation (FOCE) and the Laplacian methods (48). The 
FOCE method uses a fi rst-order expansion about conditional estimates (empirical 
Bayes estimates) of the interindividual random effects, rather than about zero (61). 
In this respect, it is like the conditional fi rst-order method of Lindstrom and Bates 
(62). Unlike the latter, which is iterative, a single objective function is minimized, 
achieving a similar effect as with iteration. The Laplacian method uses second-order 
expansions about the conditional estimates of the random effects (61).

10.3.4.2 Conditional First-Order (NLME)
The conditional fi rst-order method of Lindstrom and Bates uses a fi rst-order Taylor 
series expansion about conditional estimates of interindividual random effects (62). 
Estimation involves an iterative generalized least-squares type algorithm. This esti-
mation method is available in S-Plus (Insightful, Seattle, WA) as the function 
NLME (63).

10.3.4.3 Alternative First-Order (MIXNLIN)
This method, proposed by Vonesh and Carter (64), also uses a fi rst-order series 
expansion of the interindividual random effects. They proposed the use of estimated 
generalized least squares and established the asymptotic properties of the resulting 
estimates. An alternative method is the use of the iteratively reweighted general-
ized least squares (65). The MIXNLIN program also implements pseudo maximum 
likelihood (ML) and restricted maximum likelihood (REML) estimation by embed-
ding the EM algorithm within an iteratively reweighted generalized least-squares 
routine. Expansion is either about zero or about the empirical best linear unbiased 
predictor (EBLUP) of the interindividual random effects. Only the fi xed effects 
and variance component estimates are updated after each call to the embedded 
EM algorithm (i.e., the method uses the EBLUP estimates inherent within the EM 
algorithm only to update estimates of the variance components) when the expansion 
is about zero. Maximum likelihood estimation expanded about zero should result in 
estimates similar to those obtained using the NONMEM fi rst-order method, while 
expansion about the EBLUP should result in estimates similar to those obtained 
with the fi rst-order conditional estimation in NONMEM and by the fi rst-order 
conditional method (NLME). These estimation methods are available in the SAS 
macro and MIXNLIN 3.0 of Vonesh (65).

10.3.4.4 Alternative First-Order (SAS)
This is a fi rst-order Taylor series expansion method, but the algorithm consists of 
iteratively fi tting a set of generalized estimating equations until they stabilize (66). 
The method uses a Taylor series expansion in the fi xed effects parameters, as well as 
one in the random effects; expansion is about the generalized least-squares estimates 
for the fi xed effects parameters, and about zero for the random effects. It yields 
estimates similar to those obtained using the fi rst-order method of NONMEM. The 
method is implemented in the SAS macro NLINMIX. The NLINMIX program also 
implements expansion about the EBLUPs of the interindividual random effects, as 
an alternative to expansion about zero, yielding estimates similar to those produced 
with the FOCE method in NONMEM.
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10.3.5 Nonparametric Maximum Likelihood (NPML)

The NPML approach provides an estimate of the whole probability distribution of 
the PK parameters on a nonparametric basis (67). The method relies on maximiza-
tion of the likelihood of the set of observations of all individuals to estimate the 
distribution of the parameters. The basic conceptual framework is similar to that 
described for NONMEM above. The difference is that no specifi c model for the 
relationship between PK parameters and patient-specifi c covariates is specifi ed. 
The individual parameters fi are assumed to be independent realizations of a given 
random variable Φ with probability distribution F(f). The likelihood of all data is 
given by
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where li(yi|f) is the likelihood of the observations yi for ith individual, given f. D is 
the domain in which the parameters lie. Maximization of this likelihood provides an 
estimate F̂  of the probability distribution of the parameters. This distribution has 
been proved by Mallet (67) to be discrete, involving Np locations, where Np is less 
than or equal to the number of individuals (N). To estimate the Np locations qk and 
their corresponding frequencies αk, a specifi c algorithm was developed. The level of 
residual error and how well the parameters are known determines the number of 
locations. There will be N locations, each with a frequency of 1/N if the parameters 
are known very precisely for all N subjects. The set of locations qk and frequencies 
αk completely specifi es the estimate of the distribution of the parameters:
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where δ(x) denotes the Dirac probability distribution, which takes the value 1 at 
x and 0 elsewhere. With this method a complete distribution of F with very soft 
assumptions, namely, that F takes only positive values and that its integral over 
domain D is equal to unity (67, 68). The NPML approach has been shown in a simu-
lation study, assuming a one-compartment PK model with bimodal distribution, to 
produce parameter estimates that accurately describe the distribution, even though 
only one measurement was available per individual (69). Several summary statistics 
such as mean or variance–covariance matrix can easily be calculated from the dis-
tribution of F specifi ed by Eq. (10.21). The method also allows for the inclusion of 
patient-specifi c covariates without specifying the a priori relationship between the 
PK parameters and covariates. The covariates are regarded as additional param-
eters and the algorithm provides an estimate of the joint distribution of the PK 
parameters and the covariates (70). The probability distribution of the parameters 
conditional on any value of the covariates can be computed and used for the initial 
dosage selection, given the distribution obtained. Thus, the shape of the relationship 
between parameters and covariates can be explored nonparametrically.

The major limitation of this approach is that the residual error must be known a 
priori. The method, therefore, is nonparametric with respect to the interindividual 
random effects but requires the intraindividual error to be specifi ed a priori. PK 
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analyses performed with the NPML approach and reported in the literature have 
used a residual error model based on drug concentration measurement assay vari-
ance (69–72). This seems to be unrealistic. Intraindividual variability, interocca-
sion variability, and model misspecifi cation often will contribute signifi cantly to 
the residual error (73, 74). Also, the estimator of the distribution produced by the 
NPML approach is a point estimator and no results on the accuracy of the estima-
tion are obtained. Consequently, care should be taken in interpreting the results 
especially when they are obtained from a small sample size. If the NPML approach 
is used primarily for exploratory analysis to improve the effi ciency of subsequent 
parametric analysis, this may not be much of a problem. The NPML approach 
is a computationally expensive approach, which may limit the practicality of the 
approach when the dimension of the parameter space increases. An example of this 
would be the case of a complex PK model with numerous covariates.

The nonparametric expectation-maximization (NPEM) program of Schumitzky 
(75), which is similar to the NPML program of Mentre and Mallet (69) computes 
the nonparametric maximum likelihood using the nonparametric EM algorithm. 
NPEM has been developed as a segment of the USC*PACK collection of programs 
(35). The results obtained using NPEM for PPK data analysis are similar to those 
of the NPML program. NPEM and STS give virtually identical estimates of PPK 
parameters in the same population when the results of NPEM indicate normal 
distribution for parameter estimates (76, 77).

10.3.6 Semi-nonparametric (SNP) Maximum Likelihood

Davidian and Gallant (78) introduced the SNP maximum likelihood from econo-
metrics into pharmacokinetics. Like the NPML approach, the SNP maximum likeli-
hood approach provides an estimate of the entire distribution of the interindividual 
random effects. The SNP maximum likelihood approach maximizes the likelihood 
over a class of distributions restricted to have a smooth density, instead of maximiz-
ing the likelihood over all distribution functions as the NPML method does. This 
assumption of smoothness is fl exible enough to allow heavy-tailed, multimodal, and 
skewed distributions to be characterized but prevents kinks, jumps, and oscillatory 
behavior (79). Also, this method relies on maximizing the likelihood of the set of 
observations of all individuals to estimate the distribution of the random effects. 
The representation of the probability distribution and calculation of the likelihood 
are different from the NONMEM and NPML approaches. It has been shown by 
Gallant and Nychka (80) that the smooth distribution can be presented as an infi -
nite series expansion, and they provide a full mathematical description. The SNP 
maximum likelihood approach uses a fi nite number of leading terms resulting from 
an approximation of the infi nite expansion. A single tuning parameter determines 
the number of terms retained. The density is multivariate normal if the value of this 
tuning parameter equals zero. The distribution becomes more fl exible, the larger 
the value of the tuning parameter. An important step in the modeling procedure is 
the selection of an appropriate value of this tuning parameter (78). The density of 
the random effect parameters is represented by a multivariate normal distribution 
multiplied by a polynomial. The SNP maximum likelihood approach computes the 
integral present in the population likelihood by quadrature. This is another useful 
feature of this approach. This obviates the use of the linearization approximation 
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to the likelihood used in the NONMEM approach. Unlike the NPML approach, 
standard errors can be computed for the model parameters and used for 
inference.

The SNP maximum likelihood approach is implemented in a public domain 
Fortran program called NLMIX. Experience with this approach is still very limited 
and only a few simulations have evaluated the ability of the method to reveal mul-
tiple modes in the random effects density under conditions likely to be encountered 
in practice.

A method similar to the SNP maximum likelihood approach was proposed by 
Fattinger et al. (81) to explore the complete distribution of interindividual effects 
using the FOCE approach in the NONMEM program. The method uses a mono-
tone nondecreasing spline to transform the normally distributed interindividual 
random effects. The model for the interindividual random effect model is given as

φ θ ηi i ig x sp= ( ) + ( ), (10.22)

where sp(·) represents a monotone nondecreasing spline of which the parameters 
are estimated. Because splines are not multivariate, a different spline is used for 
each of the elements of hi. The spline function transformation is very fl exible 
and allows appropriate representations of skewed, heavily tailed, or multimodal 
distributions.

10.4 SUMMARY

The methods discussed represent different schools of thought regarding the estima-
tion of nonlinear mixed effects models. They vary widely in distributional assump-
tions, approximations, and utility in routine analysis of clinical trial/observational 
data. The practical ability to establish PPK models, which are either descriptive or 
predictive, for their intended purpose provides for a better understanding of the 
pharmacokinetics of drugs with a view to optimizing therapy/drug development 
programs. NONMEM is the most widely used software for estimation of population 
pharmacokinetics. It is worth noting that the increase in computational power has 
enabled implementation of Bayesian methodologies.
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11.1 INTRODUCTION

This chapter addresses the time requirements and the effi ciency of population data 
analysis projects in drug development, with focus on the rapid delivery of results 
to the clinical project team and decision makers. Data analysis projects are con-
sidered to involve a number of different tasks, with the main milestone being the 
communication of the results in time for decision making. Signifi cant time savings 
can be achieved by adopting one of two main approaches: (a) changing the timing 
of the tasks and/or (b) performing individual tasks more effi ciently. How such time 
savings apply to each task in a data analysis project is discussed, and a best case 
scenario is presented.

The population pharmacokinetic/pharmacodynamic (PK/PD) modeling approach 
has been advocated as an essential tool to improve the effi ciency and to facilitate 
decision making in drug development and regulatory assessment (1–8). The experi-
ences reported by the pharmaceutical industry have shown that the use of PK/PD 
modeling infl uenced the direction of development programs and was associated 
with time savings (9–13). The latter is of particular interest since one major criticism 
of population modeling within industry is that it is time consuming. This criticism 
is justifi ed: modeling takes time and, unless proper and conscious care is taken to 
smooth the model-based analysis process, the effort expended on modeling might 
only result in a tick on the checklist for a regulatory submission package.

Despite the fact that this chapter focuses on the data analysis of data from a 
single study, it should not be forgotten that the multistudy, multiphase, and multi-
year nature of drug development is a modeling asset. In practice, studies have 
always preceded a current one and it can be assumed that there will always be 
studies following it. This fact has an impact on the strategy adopted when modeling 
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in any one project and thus will affect the time effi ciency. This means that there is 
a certain amount of existing knowledge to learn from and on which assumptions 
for the present analysis can be based. Likewise, the present analysis always has the 
possibility to impact future studies and decision making, so by keeping potential 
research questions in mind during the analysis it is possible to improve the long-term 
value of the present modeling effort.

Another important aspect of the long-term nature of drug development pro-
grams is that the “cost” of time is dependent on what drug development phase one 
is discussing. In early phases of the development, research effort is concentrated 
on learning about the drug and the biological system in which it operates, whereas 
in later phases the emphasis is on obtaining unequivocal confi rmation that the 
drug is both safe and effi cacious (14). Clearly, later phases will be subject to more 
stringent deadlines and therefore will have more arduous timing requirements than 
the earlier phases.

From the point of view of modeling, the early drug development phases are 
ideal for model characterization; that is, this is the period in which to undertake 
the main aspects of modeling that require a considerable amount of time and 
for which it is diffi cult to estimate the time required. Another less exciting—but 
nonetheless important—aspect is that it is in the early phases of the drug develop-
ment program that there is time to set up the documentation and model building 
infrastructure required for all forthcoming data analysis projects for the candidate 
drug. This includes a plan for the data analysis, report templates, model building 
and diagnostic routines, and specifi cations for the creation of data sets (as explained 
in greater detail later).

In the later phases of a drug development program, the focus is likely to be on 
confi rmation of the characteristics of the drug rather than on exploration. From the 
perspective of modeling, there are two scenarios. The fi rst is that modeling was sys-
tematically used in earlier phases of the program and, thus, a likely model has been 
characterized and the documentation and model building infrastructure is already 
in place. In this instance, the pharmacometricians and the model will be ready to 
make the transition to the confi rmatory model. In essence, the requirement is for 
the plans for the data analysis to be specifi ed in greater detail, for the procedures 
to be undertaken to be specifi ed in advance, and for the aims of the data analysis to 
be well defi ned. The second scenario is that essentially no modeling was conducted 
in the earlier phases. In such a situation the modeling project, which may very well 
be on the critical path to regulatory fi ling, will need to start from scratch in almost 
all respects. The model will need to be characterized, model building routines and 
procedures will need to be set up, and the requirements for the extraction of data 
from the clinical database must be agreed on with the database programmers—and 
the list continues. Under this scenario, a tremendous amount of resources and 
dedication will be necessary to make the model-based analysis effi cient enough to 
deliver results in time to add value to the decision-making process.

In this chapter we focus on pinpointing problems related to keeping a project 
on time. The chapter is organized in a manner that corresponds to the individual 
components of a data analysis project, starting with the planning phases, then the 
actual modeling, and ending with the report-writing phase. We discuss how each 
component can be made more effi cient and/or how its place in the project can be 
altered to reduce the time between the delivery of the fi nal data set to the com-



munication of the results. It should also be pointed out that, although much of 
what is discussed applies regardless of what data analysis software is used, our own 
experience of population modeling has been obtained with NONMEM® (15) and 
any examples are based on NONMEM.

11.2 SAVING TIME IN A POPULATION MODELING PROJECT

11.2.1 Planning

Planning is crucial if one is to complete a population modeling project as effi ciently 
as possible (16). A population modeling project can be characterized by its goal 
and the various tasks involved in the project, including their duration. Figure 11.1 
shows the time schedule allocated to a project, starting with the defi nition of the 
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FIGURE 11.1. Assignments in a population modeling project. The solid black line indicates 
the time period referred to as the modeling time.
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question to be answered and ending with the fi nal report and the subsequent deci-
sion making. The major tasks in between are (naively) lined up in serial fashion. 
When it comes to the time requirements, the important aspect, in terms of the 
modeling effi ciency as perceived by colleagues in the project team, is the period 
between the end of the data collection phase and the feedback of the knowledge 
obtained to the project team and/or the decision makers (this is marked with a solid 
line in Figure 11.1). We refer to this period as the modeling time. If the modeling 
time is long, then those awaiting the results will perceive the model-based analysis 
to be less effi cient than if it were shorter. However, what is more important than 
the perception of effi ciency is the fact that when the modeling time is short, decision 
makers can be informed of the outcome of the analysis sooner. In other words, it 
is the modeling time pharmacometricians should aim at reducing. The overall time 
required for the clinical study is, of course, also important, but this is usually outside 
the control of the pharmacometrician.

11.2.2 Approaches

There are basically two approaches to the reduction of the modeling time:

1. Accomplishing tasks at times other than when the modeling is being con-
ducted. In Figure 11.1, the tasks involved in the project are laid out in a 
sequential manner. However, many of these tasks could be performed at an 
earlier stage in the project or in parallel with other tasks. The implementation 
of this change means that the thought that must go into accomplishing these 
tasks can take place outside the modeling time.

2. Performing tasks more effi ciently. When it is not possible to reschedule tasks 
to conduct them at a more convenient time, it is often possible to reduce 
the time taken to perform them. For example, the way a task is done can be 
modifi ed or preparatory work can be conducted in advance, at earlier stages 
in the project.

In the following we go through the different parts of a population modeling 
project where we believe signifi cant time savings can be made by applying either 
of the approaches proposed above.

11.3 THE POPULATION MODELING PROJECT

11.3.1 Aims of the Population Analysis

“If you know where you are going then you know when you get there” is a saying 
that holds very well in a population modeling project. If there is a clear, measurable 
goal for the modeling, we will know when to stop the ongoing procedure and enter 
into the next phase, that is, the communication of the results. The defi nition of the 
goal needs to include not only what we want to know but also what we are willing 
to assume and how certain we need to be. The latter is especially important since 
it is always possible to refi ne a model just a little bit more, even if the resultant 
refi nement is of minor practical importance or none at all.
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Naturally, the defi nition of the goal of the modeling will have a bearing on the 
design of the study and the plan for the analysis as they need to refl ect the goals 
to be met. Writing the plan for the analysis, for example, will be easier and more 
rapidly achieved if the intended scope of the analysis has been limited and/or well 
defi ned. Accordingly, defi ning the goals properly is critical if one is to end up with 
a realistic plan for the analysis and is an iterative process necessitating the coopera-
tion of scientists from various disciplines—clinicians, regulators, pharmacometri-
cians, and statisticians (17).

Furthermore, time can be gained by dividing the goals into (a) primary aims that 
are critical for decision making and should be communicated as quickly as possible 
to the relevant people, and (b) secondary aims related more to exploration and 
learning, the results of which will be of more long-term value.

11.3.2 Designing the Study

The design of the study will clearly depend on the overall aims and the mode (mod-
eling or other) of the main analysis. Clearly, the design should allow the main aims 
to be met with the chosen data analysis methodology.

If it is decided that the data from a clinical trial is to be analyzed using a model-
based approach, regardless of whether this is the main mode of analysis or not, the 
design will need to allow the goal of the modeling to be met. If this is not the case, 
then the best way to save time is to drop the modeling. Furthermore, if the design 
leads to low information content, then the results will provide little information. 
The primary way modeling, and any other mode of analysis, can turn a bad set of 
data into informative results is by adding information, that is, making more assump-
tions and adding knowledge that existed prior to the analysis. Although solving the 
issues related to the informativeness, adding assumptions weakens the results of 
the analysis and decreases the possible number of new insights. In the extreme 
case, the fi nal model will only describe what was known about the drug before the 
study and the actual data will not add anything. Applying all the tools available, for 
example, optimal design theory (18, 19), informative block randomized design (20), 
and clinical trial simulations (21), to obtain a design that is powerful and informative 
from a modeling perspective will not only make the fi nal model adequate but will 
also lead to a more time-effi cient model building process. A more detailed discus-
sion of issues that have an impact on study design is provided in other chapters of 
this book.

11.3.3 Writing the Plan for the Data Analysis

The Guidance for Industry: Population Pharmacokinetics clearly states that any type 
of population pharmacokinetic (PK) analysis should be defi ned in a protocol (7).
The justifi cation for this is that objectivity should be retained through prespecifi ca-
tion of all procedures and methodologies that will be used. In the pharmaceutical 
industry this protocol usually takes the form of a plan for the analysis, either pro-
duced as part of the clinical trial protocol or as a separate document.

Table 11.1 lists some useful headings in a data analysis plan. The specifi c outline 
will vary from company to company and/or from project to project. Clearly, there 
is a great deal of information included in this type of document, so it is necessary 
to realize that writing it will require a considerable amount of time. On the other 
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hand, a well-written and well-considered analysis plan will be a great asset to the 
pharmacometrician once the clock starts to tick. If the actual modeling is to be 
done by an external consultant, the analysis plan takes on the role of a “product 
specifi cation” when stating how the analysis is to be performed.

Another important point to remember is that the analysis plan should be fi nal-
ized before the data from the study becomes accessible. On the other hand, it 
does not need to have been fi nalized before the actual study (the data collection) 
starts, meaning that some sections and many details can be added while the study 
is running. However, since the analysis plan describes how the analysis should be 
performed and as this, in turn, depends on the goals of the analysis, it is necessary 
to start thinking about the intended form of the analysis and start considering the 
plan at the beginning of the project. At the start of the data collection the analysis 
plan need only be suffi ciently detailed to ensure that goals of the analysis can be 
met. The plan can then be fi nalized some time later, but it must be fully specifi ed 
before the start of the data analysis.

Writing the analysis plan forces the pharmacometrician and the project team to 
make decisions about issues related to the modeling that would result in ineffi cient 
use of time during the analysis unless they are resolved. Examples of such issues 
are the identifi cation of appropriate diagnostic plots (see Chapter 7), covariates to 
include in the analysis and the handling of correlated covariates (22–24), how to 
handle missing data, what to do about outliers (6, 7), criteria to be used for model 
discrimination (25–27), and how to communicate the results immediately after 
fi nalization of the analysis. The most important aspect of this is that a large part of 

TABLE 11.1 Examples of Useful Items in a Data Analysis Plan

Item Description

Overall clinical trial Specifi cation of the overall objectives of the clinical trial
 objectives
Study design Provision of the overall design of the study including the
  specifi cation of drug treatments, procedures for the
  collection of pharmacokinetic and pharmacodynamic
  data, and description of the bioanalytical methods
Objectives of population Specifi cation of the specifi c objectives of the population
 analysis  analysis
Data Stating which data are to be included, the data input
  format required by NONMEM, how to deal with missing
  data, and how to handle outliers
Data analysis method Stating the software, model building procedures, model
  diagnostics, structural model, covariate model, stochastic
  model, and sensitivity analysis to be used and how the
  evaluation of the model is to be conducted
Presentation of results Laying out which results are to be presented in a tabular
  format, the fi gures to be presented, the appendixes that
  need to be included, and any electronic fi les that should
  be prepared
Time plan Providing a time frame for the preliminary model building
  and the production of clean fi le, clean data sets, the
  analysis, and the report-writing



THE POPULATION MODELING PROJECT 293

the thinking is done before the modeling commences so that, when an issue arises 
during the modeling, it is just a matter of consulting the analysis plan to determine 
the appropriate course of action.

13.3.4 Data Collection

Clearly, the collected data needs to be of good quality. This is not only important 
from a strict quality point of view, but also from the perspective of modeling: out-
right errors will take time to sort out, partly because it must fi rst be recognized that 
there is an error, and partly because the source data (the clinical database) has to 
be checked and a new data set created. “Non-errors,” such as per-protocol time 
specifi cations of observations and dosing events instead of the actual time points, 
will reduce the quality of parameter estimates and may lead to longer run times (28). 
Thus, when one is considering optimizing the overall time required for a modeling 
project, great effort should be put into the prevention of errors and into initializ-
ing the data processing and the cleanup of data as soon as observations have been 
made; for example, real-time data assembly should be implemented when possible 
(29, 30). To a great extent, occurrence of errors may be prevented by education of 
all personnel involved in data collection.

From the perspective of the time required for modeling, it is apparent that a very 
important aspect of the data collection phase is ensuring that the pharmacometri-
cian takes the time to prepare for the modeling. This preparatory work should 
include fi nalization of the data analysis plan, preparation of model building proce-
dures, and construction of a template or templates for the report. In this way, the 
data collection phase can shorten the time required for modeling.

11.3.5 Data Set Construction

The construction of data sets for population modeling may be considered a trivial 
issue on fi rst consideration, but in-depth refl ection reveals this to be one of the 
main practical challenges to the pharmacometrician. Underestimation of the time 
this requires is a common mistake. Regardless of which software is to be used for 
the analysis, the data must be organized in a way that makes it interpretable by 
the software employed. The complexity of organizing the data set depends on the 
amount of data and whether specifi c information is required by the chosen software 
packages.

Smooth construction of the data set can be accomplished by detailed planning 
and frequent interaction with database personnel/programmers. If possible, the 
personnel working with the database should receive special training in construc-
tion of, for example, NONMEM data sets. For NONMEM, the organization of a 
data set involves keeping each individual record, that is, all data related to one 
patient, in chronological order, including information related to the dosage history, 
which may necessitate additional data items. Furthermore, in NONMEM, the data 
structure defi nes part of the model by inclusion of certain data items specifi c to 
NONMEM, for example, RATE and CMT. The master data fi le, obtained from 
the clinical database, should be as complete as possible with respect to such data 
items to facilitate the model building. This includes data items necessary for alter-
native model building paths, for example, a RATE column (with the appropriate 
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entries), even if the drug is expected to exhibit fi rst-order absorption. To avoid 
misunderstandings, the database staff should be provided with a specifi cation of 
the format of the data sets, that is, a template of the data set, including thor-
ough explanations for each data item. This information is naturally included in the 
analysis plan, meaning that personnel involved in data set construction will be 
involved from the very start.

The probability of successful retrieval of data from the database and construction 
of the analysis data set can be enhanced by training in advance with data similar to 
that to be obtained or with dummy data. Such a procedure is invaluable to identify 
steps where errors could occur and data items that might be problematic, exam-
ples being time-varying covariates or complicated dosing histories. This has been 
reported to be a very cost-effective procedure (29). The training procedure should 
also involve data checkout, which leads to the early development of informative 
data checkout plots and scripts. While data checkout might be perceived to be time 
consuming at the time it is being conducted, it represents a signifi cant time saving 
later on because errors are identifi ed at an early stage before they have infl uenced 
the model development. A few erroneous data records may cause great diffi culties 
in the model development. Hence, by applying such training procedures, several 
routines can be prepared for use on the fi nal data set, for example, programming 
for data assembly, summarizing data and data checkout, and recognition of useful 
plots for data checkout (for some specifi c examples, see Chapter 7). When the data 
from the study is considered to be clean (a clean fi le is defi ned at the time point 
when the database is locked after controlling, completing, and correcting the data, 
and statistical analysis can be started), creation of the real data analysis fi le, that 
is, the fi le with the real observations from the clinical study, should be a simple 
matter of pressing a button because all the preliminary work has been conducted 
beforehand.

During a population analysis certain situations will always require some modifi -
cation of the data set; for example, the inclusion of data items defi ning the model or 
construction of a data set including only a subset of the data. These types of data set 
modifi cations are usually the responsibility of the person doing the modeling, and a 
general piece of good advice is to use one master data set, that is, the one obtained 
from the clinical database, including all types of measurements and data items, and 
to base all other data sets on this fi le. In this way, all data sets have the same origin 
and are produced in parallel (in contrast to being produced in a sequential manner 
with one sub-data set being based on another). Using such a parallel approach 
makes it easy to reproduce data sets and to correct errors found in the data at a late 
stage in the model development. Furthermore, continuously keeping track of the 
different data sets during the model development is a must for all pharmacometri-
cians because it will result in substantial time savings in the report-writing phase, 
not to mention the implications for reproducibility and auditing.

11.3.6 Model Development

When the data has reached a clean fi le status, time pressure increases for the model-
ing of the data. This phase of the project involves the characterization of the model 
as well as its evaluation. There are a number of different approaches, which will be 
described next, that can be employed to save time or to be more effi cient in this 
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phase. Some of these may need to be given considerable attention early on in the 
project if it is to be possible to realize them in practice.

11.3.6.1 Early Access to Data
The time required for model development during the time period in which the 
modeling takes place can be reduced if the model building has already been started 
before a clean fi le has been obtained or even before the complete study (i.e., the 
complete data collection) has been fi nished.

One possibility is to start modeling before the data is unblinded, that is, before 
the actual treatment given to each patient has been disclosed (16). To allow the 
population pharmacometrician access to the data before unblinding demands imple-
mentation of standard operating procedures (SOPs), ensuring that the data are 
blind to other members of the project team. Such SOPs are sometimes implemented 
for the bioanalytical department, and similar routines can be developed to allow the 
pharmacometrician access to the data at an early stage too. The possibilities for this 
may vary greatly from one company to another. Working with the data before it 
has been unblinded may imply that the data is not clean. However, the major com-
ponents in the model, for example, the number of compartments in a PK analysis 
or the major covariate effects, can all be identifi ed even if the data fi le is based on 
unclean data. If this approach is adopted, one should be liberal in the exclusion 
of suspicious outlying data points. This is not as strange as it might sound—it can 
be expected that some of the information in the data set is wrong, and the most 
likely points to be erroneous are the outlying data points; there is no reason why 
a model should be built incorporating data fi le errors. Once the database has been 
cleaned, the important modeling steps should be conducted again with all the data 
included.

11.3.6.2 Increasing Effi ciency
The time required for model development can also be decreased by performing 
parts of the model development in an automated fashion. The total run time will of 
course be the same but the time between runs will be minimal. Apart from saving 
time, automation also decreases the risk of the user introducing errors. Examples 
of modeling tasks that are suitable for automation are those that are repetitive in 
nature, such as stepwise covariate model building (31) and tasks performed for 
validation (e.g., likelihood ratio profi ling and bootstrapping of the data). If the 
computational infrastructure allows for parallelization, automation of runs can be 
even more effi cient. At present, there are some generally available routines for 
automation of such tasks (32, 33).

11.3.6.3 Handling Long Run Times
The run time of a specifi c model depends on the complexity of the model, the con-
verging algorithm, the chosen software, and the amount of data. In many situations, 
it is the run time that is the rate-limiting step of model building. The following are 
some approaches that can be adopted to decrease the duration of or to enable one 
to cope with long run times.

• Choosing the Right Estimation Method. In NONMEM it is the fi rst-order con-
ditional estimation method with or without interaction (FOCE-INTER/FOCE) 
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that should usually be the estimation method of choice (34). This method is 
prone to long run times, especially for complex models implemented with dif-
ferential equations. In many situations, though, the simpler fi rst-order (FO) 
method in NONMEM gives qualitatively the same results and should therefore 
be considered during the model development. It will be necessary occasionally 
to run the latest version of the model using the FOCE-INTER/FOCE method 
to ensure that it does not give very different results (these being suitable for 
overnight batch runs). The FOCE-INTER/FOCE method should also be used 
for specifi c key runs at stages where decisions affecting the path of the model 
development are made.

• Avoid Unnecessary Estimation of Standard Errors. The estimation of the stan-
dard errors is related to the estimation through the inclusion of $COVARI-
ANCE in NONMEM. In many situations, though, the calculation of standard 
errors is as time consuming as the parameter estimation. Hence, under such 
conditions, the $COVARIANCE step can be used selectively during the devel-
opment of the model: for example, by only including $COVARIANCE in key 
runs, that is, the runs to be used in decisions about how to proceed in the model 
development and for which one needs to be certain that a global minimum has 
been attained.

• Use Good Initial Parameter Estimates. The choice of initial estimates will infl u-
ence run times. Initial estimates that are far from the fi nal parameter estimates 
tend to give longer run times than if the initial estimates are close to the fi nal 
values of the parameters. It is general practice to update the initial estimates 
throughout the modeling to the best guess initial estimates to avoid long run 
times and to minimize the risk of obtaining local minima. In most situations 
the best guess estimates are those obtained from the previous model upon 
which the subsequent model is based. It is a good habit to compare the initial 
value of the objective function with the one obtained in the previous model 
to make sure that the new search starts at a point close to the previous global 
minimum.

• Terminate Unsuccessful Runs Early. The gradient vector, which is available 
in the output of a run in NONMEM, is helpful for monitoring runs. During a 
search, the values of the gradients should decrease to low values, but no gradi-
ent should be zero at the successful termination of a run. A zero gradient in 
the initial (0th) iteration is a signal that the model has been coded incorrectly. 
Such runs should be terminated directly and the model revised. A gradient 
that becomes zero during the search indicates that there is a problem with the 
model. Gradients that become zero during a run will rarely take on a nonzero 
value again. Consider terminating such runs and revise the model.

• Reducing the Data. Certain types of data measurements may be problematic 
due to the volume of data, for example, when observations are collected fre-
quently as in the case of ambulatory blood pressure measurements and EEG 
measurements. One approach in such situations is to exclude data during the 
model development. This can be done in a completely random fashion or by 
applying a stratifi ed random selection strategy (see Chapter 7). The rationale 
for such data dilution is that the qualitative characterization of the model does 
not require all of the data in the majority of cases. The fi nal model should, of 



THE POPULATION MODELING PROJECT 297

course, be confi rmed using all of the data available. The fi nal characterization 
of the parameters should also be based on all the data. This is potentially 
a controversial approach, but the consequences for model building and any 
eventual time savings can be assessed on simulated data before the modeling 
commences, and it will not, therefore, add any to the length of time the project 
takes.

11.3.6.4 Use the Time Between Runs Effi ciently
In situations where the run times are short or moderate, the rate-limiting step is 
often the analyst rather than the computer: that is, more time is spent evaluating 
the runs than running them. Although evaluation is a better way of spending the 
modeling time than waiting for the computer, there are ways of making this process 
more effi cient.

Identifying useful diagnostics, fi nding ways to produce them effi ciently, and, 
most important of all, using them consistently throughout the analysis are all ways 
to increase effi ciency. Various types of plots and certain numerical procedures can 
be useful for diagnostics (see Chapter 7). A suggestion of the most useful forms 
of diagnostics can already be made when the plan is written for the data analysis, 
although, of course, in the light of the data, they may have to be refi ned, but with 
some experience the need for such revision is likely to be surprisingly small.

A great deal of time can be spent on producing a particular plot. If the same 
amount of time and effort needs to be expended for each run, it will not only be 
ineffi cient, but there will be a high risk that the plot will not be used consistently 
(see below). A better approach is to automate the construction of the graph using 
graphics software packages allowing plots to be scripted (e.g., S-Plus, Insightful Cor-
poration, Seattle, WA; and R, www.r-project.org). This will initially take some 
time, but once the script has been written it is just a matter of invoking it after each 
run to obtain the same type of plot based on the new model fi t. In other software 
packages it is possible to create templates that can be used to the same effect.

Using the chosen diagnostics methods consistently is also important, partly 
because the diagnostics provide a way of interpreting and evaluating the run, but 
also because the increasing familiarity with a certain set of diagnostics during the 
course of an analysis will make appreciation of changes in a model much easier 
and quicker.

Once the diagnostics have been produced it is necessary to decide on the next 
step in the model development. Sometimes this is quite easy, for example, when 
going from a one-compartment to a two-compartment model, but other decisions 
can be more problematic unless there are well-defi ned criteria or established rules. 
Handling outlying data points is one example: unless the analysis plan clearly states 
what should constitute an outlying data point, a great deal of time can be spent 
pondering this question or making test runs to investigate the effect of different 
choices. The important message here is that the thinking required to resolve such 
issues does not need to be done during the modeling time.

Keeping a record of all runs is mandatory from a documentation point of 
view. What should not be overlooked, though, is that such a record can also be a 
great time saver: with a good record of the runs it will not be necessary to waste 
time trying to identify a particular model fi t and the records will also facilitate 
report-writing. Even the run record construction can be automated, or at least 
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semiautomated, through the use of external software, for example, Xpose (35) or 
Perspective (Cognigen Corporation, Buffalo, NY).

Prespecifi able and housekeeping type runs can be performed effi ciently out of 
working hours using scripts or batch runs. This will save modeling time since the 
pharmacometrician can spend the working hours to perform those runs that need 
supervision.

11.3.7 Communication and Interpretation of Results

When the fi nal model has been settled, the main conclusion should be communi-
cated to the relevant people as soon as possible. There is no need to wait until the 
report has been fi nalized to communicate some results: if the results from a popula-
tion analysis are to have an impact on drug development decisions, they need to be 
communicated (see Chapter 37 also).

11.3.8 Report

The fi nal task once the fi nal population model has been established is to produce 
a written report. Writing the report usually takes a signifi cant amount of time, as 
does also the ultimate fi nalization of the report, especially if the document needs 
to be approved at several management levels. However, the timing of the fi naliza-
tion of the report is not generally as critical as the immediate communication of 
the results within the project team. Nevertheless, it is possible to make this ultimate 
report-writing more effi cient by ensuring that the population analysis was well 
prepared and documented as the model was developed. Much of the standard text 
in the report can be written before the actual modeling starts and, to a great extent, 
the analysis plan can serve as a basis for the section of the report dealing with the 
methods. Furthermore, the structure of the tables in which the demographic infor-
mation, omitted data, and modeling results are to be presented can be determined 
and prepared in advance. Ensuring that documentation is kept continuously during 
the analysis (e.g., comprising run records and data fi le documentation) is a tremen-
dous help during report-writing. Finally, existing reports from other projects can 
also serve as templates regardless of whether or not they consider the same com-
pounds because similar issues are likely to be discussed, providing a ready-made 
framework for the presentation of the data.

11.4 REVISED TIME PLAN

We have identifi ed several possibilities for reducing the modeling time in a popu-
lation modeling project. Figure 11.2 presents a summary of our discussion and 
proposals. Again, as in Figure 11.1, there is a line indicating the modeling time 
but now the principles of moving tasks upstream and parallelizing tasks are illus-
trated. For example, a comparison with Figure 11.1 reveals that during the period 
in which the data collection is taking place, several tasks are being prepared for 
the upcoming data analysis. Figure 11.2 also indicates a possible best case scenario, 
namely, that preliminary model building can start prior to obtaining a clean fi le. The 
time required for the data set construction, checking out the data, and the model 



building for the clean data set have clearly been reduced (although the length of 
the boxes should not be considered to be representative of an exact amount of 
time); this has been accomplished by moving tasks as well as by conducting them 
more effi ciently, as described in this chapter. In addition, Figure 11.2 incorporates 
the idea that goals can be divided into primary and secondary goals, where fulfi lling 
the primary ones is necessary for decision making, and the secondary ones aim at 
exploring and learning from the data.

All the proposed revisions of the project plan contribute to the most impor-
tant point, namely, that the time taken to deliver the results to the project group 
has been considerably shortened, thereby increasing the possibility of having 
an impact on the decision making. The time plans in Figures 11.1 and 11.2 rep-
resent two extremes: completely sequential performance of tasks and maximal 
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lines indicates tasks performed intermittently during this time period. The solid black line 
indicates the time period referred to as the modeling time.
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parallelization of tasks. No project, even with the ultimate single-mindedness, will 
adhere to Figure 11.1 without some deviation because some tasks can obviously 
be prepared in advance or conducted more effi ciently. Similarly, however, from a 
logistical point of view, it is hard to achieve the well-prepared and well-organized 
ideal represented in Figure 11.2. The overall concept, though, is that with good 
planning and foresight it should be possible to more nearly attain the plan revealed 
in Figure 11.2 and thereby reduce modeling time.

11.5 SUMMARY

We do not imply that the proposals given here are the only ways to improve the 
effi ciency in a population modeling project. Indeed, all population modeling proj-
ects are different; so some of the ideas presented in this chapter may not always be 
applicable and, therefore, suitable solutions need to be set up for each project. The 
way to proceed in each specifi c case will be dependent on the resources available 
and the organization of the company. Furthermore, the applicability of our ideas is 
also dependent on whether the data analysis project is in the initial, intermediate, or 
late phases of the drug development program. However, hopefully this chapter has 
given the reader some concrete ideas on how effi ciency can be improved and some 
thoughts on how to make PK/PD modeling an effi cient aid in drug development 
decision making. Planning and interdisciplinary communication within the team 
may not resolve all problems and obstacles during a modeling project, but they are 
defi nitely good foundations for success in keeping within the time constraints of a 
modeling project.
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CHAPTER 12

Designing Population Pharmacokinetic 
Studies for Effi cient 
Parameter Estimation

ENE I. ETTE and AMIT ROY
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12.1 INTRODUCTION

Most population pharmacokinetic (PPK) studies are performed as adjuncts to clinical 
trials. The reason for the population approach is to estimate the typical pharmacoki-
netics in a population—the interindividual variability, intraindividual/interoccasion 
variability, and residual variability—and to characterize subpopulation differences 
(based on subject covariates) of the measured pharmacokinetic (PK) responses. 
Given the adjunct nature of the studies, there is the constant challenge to make the 
most from a PPK study performed within the context of the clinical trial without 
jeopardizing the primary objective of the trial. Pragmatic considerations dictate that 
data be collected under less stringent and restrictive design conditions. The quality 
of the PPK parameter estimates is a function of experimental design, and the major 
goal of most PPK studies is the effi cient (precise and accurate) estimation of PPK 
parameters. Effective use of the population approach demands that consideration 
should be given to how studies can be designed to obtain effi cient estimates of 
population parameters of the pharmacokinetics of a drug.

Issues encountered in the design of PPK studies, the importance of simulation in 
evaluating study designs, reliability and robustness of parameter estimates, infor-
mation theory and sampling design, a simulation study comparison of informative 
block randomized and population information matrix designs, number of samples 
per subject, sample size and study power, and the determination of the power of a 
PPK study for characterizing drug–drug interactions are discussed in the subsequent 
sections.

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene I. Ette and 
Paul J. Williams
Copyright © 2007 John Wiley & Sons, Inc.
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12.2 ISSUES IN THE DESIGN OF PPK STUDIES

Establishing the structural model describing the pharmacokinetics of the drug in 
preliminary studies is useful. This basic information is a prerequisite in designing 
a sparse sampling scheme that will provide adequate information to estimate the 
parameters in the model. A suboptimal sparse sampling scheme may necessitate 
the use of a simpler PK model than the model that best described more inten-
sively sampled PK data. The use of a simpler model is sometimes desirable. For 
instance, if a feature of the more complex model is not clinically relevant, it may be 
ignored without having an impact on the overall objective of the modeling exercise. 
An example is a drug such as gentamicin, with a long terminal half-life that can 
be characterized with three-compartment model pharmacokinetics; but for practi-
cal purposes a one-compartment model is used to describe its pharmacokinetics. 
“When properly performed, population pharmacokinetic studies in patients com-
bined with suitable mathematical/statistical analysis (e.g., using nonlinear mixed-
effects modeling) is a valid approach and, on some occasions, an alternative to 
extensive studies” (1). Thus, the proper performance of PPK studies in terms of 
study design considerations is of considerable signifi cance. Because of the sparse-
ness of samples obtained from subjects in a PPK study, the choice of a design that 
will yield effi cient parameter estimates and address study objectives is of utmost 
importance. Population designs consist of a set of individual designs to be per-
formed in groups of subjects.

Individual designs are composed of one or several sample times supplied by 
each subject. The quality of PPK parameter estimates are a function of experi-
mental design, and a major goal of most PPK studies is the precise and accurate 
estimation of PPK parameters. The design factors that affect the quality of param-
eter estimates are the arrangement of concentrations in time, the number of drug 
concentrations measured per subject, and the number of subjects. To a certain 
extent these factors can be controlled by the investigator in a prospective PPK 
study. In this chapter we limit our discussion to designing prospective PPK studies. 
Addressing the optimization of these design factors has resulted in a number of 
publications by several authors over the last two decades, many of which are 
simulation based (2–16). Thus, the importance of simulation in the design of PPK 
studies is fi rst discussed. This is followed by a discussion of the factors that can 
be optimized for the effi cient design of a PPK study with an example showing the 
application of these concepts.

12.3 IMPORTANCE OF SIMULATION IN EVALUATING STUDY DESIGNS

The importance of simulation in evaluating study designs was succinctly addressed 
in the US Food and Drug Administration’s Guidance for Industry: Population 
Pharmacokinetics (1): “Simulation has been employed as a tool to investigate the 
performance of various sampling designs employed in population pharmacoki-
netic studies. Shortcomings in study design result in the collection of uninforma-
tive data. Simulation of a planned study offers a powerful tool for evaluating 
and understanding the consequences of different study designs. It can reveal the 
effect of input variables and assumptions on the results of a planned population 



pharmacokinetic study. Simulation, therefore, is a useful tool to provide convinc-
ing objective evidence why a proposed study design and analysis is preferred to 
other competing designs.” However, simulating the studies is not suffi cient. It is 
important to evaluate the parameter estimates from a simulation study for reli-
ability and robustness.

12.3.1 Reliability and Robustness of Parameter Estimates

Numerical methods used to fi t experimental data should, ideally, give parameter 
estimates that are unbiased with reliable estimates of precision. Therefore, deter-
mining the reliability of parameter estimates from simulated PPK studies is an 
absolute necessity since it may affect study outcome. Not only should bias and 
precision associated with parameter estimation be determined but also the confi -
dence with which these parameters are estimated should be examined. Confi dence 
interval estimates are a function of bias, standard error of parameter estimates, 
and the distribution of parameter estimates. Use of an informative design can 
have a signifi cant impact on increasing precision. Paying attention to these mea-
sures of parameter estimation effi ciency is critical to a simulation study outcome 
(6, 7).

Simulation is useful for evaluating the merits of competing study designs (1–16). 
Competing study design should be evaluated for power, effi ciency, and robustness. 
In evaluating the power of a study with a particular design, the ability to reject a 
null hypothesis or to estimate a parameter for a subpopulation such as drug clear-
ance should be examined.

It is also important to evaluate the quality of the results of a simulated population 
PK study for robustness. Robustness addresses the question: “If my assumptions 
underlying the study design are wrong, am I still able to meet the objectives of the 
research project?” Evaluation for robustness may be approached with sensitivity 
analysis. Evidence of robustness renders the results reasonable and independent 
of the analyst.

12.4 INFORMATION THEORY AND SAMPLING 
DESIGN/SAMPLE LOCATION

Most population pharmacokinetic studies are performed as adjuncts to clinical 
trials. There is the constant challenge to make the most from a population PK 
study performed within the context of the clinical trial without jeopardizing the 
primary objective of the trial. There is great interest in study designs that can 
reduce the total cost of longitudinal PPK studies, without compromising the effi -
ciency of such designs (2–16). In practice, sampling design used in longitudinal 
PPK studies are often unbalanced. Also, the number of individuals to be studied 
and the individual designs to be performed when there is a maximum cost (i.e., 
maximum number of samples) to contend with have not been clearly defi ned in 
the literature.

Over the years a lot of work has been published on the design of PPK studies. 
These have ranged from the empirical approaches (2–4, 6, 7, 9, 12) to those based 
on information theory (5, 8, 10, 11, 13–16).
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12.4.1 Empirical Approaches

The application of the empirical approaches yielded interesting and informative 
fi ndings. For instance, Al-Banna et al. (3) found that the accuracy and precision of 
random effect parameter estimates from PPK studies improved dramatically when 
the number of sampling time points for each subject was increased by a single obser-
vation beyond the minimum number of 2 required to estimate the individual param-
eters in the open one-compartment intravenous (IV) bolus model they examined. 
They examined several three-sample point designs in which the fi rst and the second 
time points were fi xed, while the third time point was varied. They found that the 
exact location of the third time point was not critical to parameter estimation.

In addition, Hashimoto and Sheiner (2) examined the effect of population phar-
macokinetic/pharmacodynamic (PK/PD) sampling design on the accuracy and pre-
cision of population PD parameter estimates of an Emax model. Although this was 
not a PPK study but a PPK/PD study, the fi ndings of the study provided useful 
information in the design of PPK studies. In the Hashimoto–Sheiner study, the 
PD parameters were estimated by two alternative methods: (a) simultaneous fi t 
of PK and PD data using a population model and (b) sequential fi t of PK and PD 
data, in which the PK data were fi t individually, followed by a population fi t of the 
PD data using individual PK parameter estimates. They also examined the effect 
of PK model misspecifi cation on PD model parameter estimates by using a one-
compartment model to fi t data from two-compartment models. They found that 
even a small number of PK observations, suboptimally sampled, resulted in marked 
improvement in the estimates of population PD parameters. For a given total 
number of samples, more effi cient PK parameter estimates were obtained with 
designs having fewer samples per subject, but greater number of subjects. They also 
found that the simultaneous population PK/PD modeling method was more robust 
to PK model misspecifi cation than the sequential method, and that the robust-
ness of parameter estimates with respect to model misspecifi cation improved when 
sampling times were selected at random.

The importance of sample location in population pharmacokinetics was further 
investigated via simulation by Ette (4) and Ette et al. (6) in the one sample/subject 
situation using the two time point design with a one-compartment IV bolus model. 
With the fi rst time point sampled as early as possible and the second time point 
varied between approximately one and three terminal elimination half-lives, it was 
found that location of the second time point between 1.4 and 3.0 times the half-life 
of the drug produced effi cient estimates of model parameters. It was concluded 
that locating the second sample point at ≥1.4 times the drug’s elimination half-life 
provided information for effi cient estimation of clearance. This work was further 
extended to three and four time point designs using the same model parameters 
used in the two-sample design (6). For the three time point design, the fi rst and 
second time (i.e., last time) points were fi xed while the location of the third (middle) 
time point was varied. In the case of the four time point design, the fi rst (i.e., located 
as early as possible) and the second (last) time points were fi xed. The second time 
point was located at approximately three times the elimination half-life of the drug. 
In addition, the third time point was fi xed at approximately one-third the elimina-
tion half-life of the drug. The fourth time point was varied from 0.7 to 2.5 times 
the half-life of the drug. It was concluded that the exact locations of the third and 



fourth time points for the three and four time point designs, respectively, were not 
critical to the overall effi ciency of parameter estimation. Thus, the work of Ette (4) 
and Ette et al. (6) were the prelude to the application of information theory to the 
design of PPK studies and, in particular, sampling design.

12.4.2 Information Theory-Based Approaches

The most widely accepted theoretical approach of determining optimal sampling 
times for PK studies is based on the Fisher information matrix, the elements of 
which are the negative of the expected values of the second-order partial derivatives 
of the log likelihood (5). The theoretical underpinning of this approach is the Rao–
Cramer inequality, which states that the inverse of the Fisher information matrix 
is the lower bound of the variance–covariance matrix of any unbiased estimator. 
A commonly used criterion for determining optimal sampling times is maximiza-
tion of the determinant of the Fisher information matrix, which is known as 
D-optimality criterion. The determinant is a natural optimality criterion choice as 
it is a scalar valued measure of the magnitude of a matrix, and it is therefore an 
overall measure of the information about the parameters. The designs proposed 
by D-optimization are independent of the selection or transformation of the model 
parameters. It should be noted that D-optimality criterion give equal weight to all 
parameters in the Fisher information matrix.

The benefi ts of using D-optimality to obtain measurements at certain key time 
points that contain the maximum PK information about model parameters have 
been discussed (17–19). Information theory suggests that at least two sampling times 
are needed in a single-dose study for the estimation of individual clearance and 
volume of a one-compartment model following IV dose administration (20). Using 
Monte Carlo simulation, D’Argenio (17) found that a repeating p-point design 
(where p is the number of parameters in a model) led to a reduction in parameter 
estimate uncertainty when data were collected at optimal sampling times. This algo-
rithm was implemented in the SAMPLE component of the ADAPT II software (21) 
and requires good prior estimates of the PK parameters for the individual. It has 
been subsequently extended to account for prior uncertainty in model parameter 
values (22, 23).

The fi rst attempt at employing the population Fisher information matrix 
(PFIM) in designing PPK studies was made by Wang and Endrenyi (5), who used 
NONMEM to obtain operational estimates of the PFIM for alternative designs. They 
took advantage of the theoretical property that both of the alternative variance–
covariance matrices computed as part of the COVARIANCE step in NONMEM 
(the R−1 and S−1 matrices) converge asymptotically to the PFIM as sample size 
increases, given standard maximum likelihood estimation assumptions. They noted 
that, theoretically, the elements of the variance–covariance matrices should be 
inversely proportional to the number of subjects, and they confi rmed this notion 
by evaluating the matrices for different sample sizes. They also noted that the sam-
pling times determined by D-optimality are truly optimal for unbiased estimators, 
and that evaluation of the PFIM provides estimates of the precision but not of the 
accuracy of parameter estimates.

The importance of informative sampling for PPK parameter estimation 
was further investigated by Ette et al. (8) for a two-compartment model drug 
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administered by IV bolus. They proposed a method, the informative block random-
ized design, that combined the effi ciency of D-optimality criterion and the robust-
ness afforded by random sampling. With this design, the concentration profi le is 
divided into contiguous sampling blocks or intervals, and equal numbers of samples 
are chosen at random from each interval. The authors noted that clinical trial 
investigators would be more comfortable to sample within specifi ed windows than 
to sample randomly without regard to any particular region of the plasma concen-
tration–time profi le. The informative block (profi le) randomized (IBR) sampling 
approach also permits the use of mixed designs, in which fewer samples are obtained 
from some of the subjects in the study (11).

The theoretical basis for optimal sampling in population pharmacokinetics was 
advanced by Mentre et al. (24), who provided an analytical solution to the popula-
tion Fisher information matrix (PFIM). This solution assumed that interindividual 
variability in parameters were independent (diagonal variance–covariance matrix), 
with a proportional residual error. Optimal designs were determined, for a given 
set of PPK parameter values. A further theoretical advance to account for uncer-
tainty in the prior parameter values was provided by Tod et al. (13), who proposed 
several alternative cost functions based on the expected value of the determinant of 
the PFIM, to account for uncertainty in the prior values of the PPK parameters in 
determining optimal sampling times. This solution of the PFIM and its determinant 
was subsequently extended to account for heteroscedastic residual error models 
(with respect to mean parameters) by Retout and Mentre (25). The S-Plus and 
Matlab codes that solve the PFIM to determine optimal sampling times are now 
publicly available (26, 27).

One of the challenges in determining designs based on PFIM D-optimal criteria is 
the implementation of methods to identify the global minimum of the PFIM deter-
minant. Several search algorithms for maximizing the determinant of the population 
Fisher information matrix (PFIM) have been proposed as a means of obtaining the 
most optimal PPK design. They include the Fedorov–Wynn algorithm, simulated 
annealing, and the Nelder–Mead simplex algorithm. Duffull et al. (28) noted that 
the response surface of the PFIM determinant with respect to parameter values 
could be highly convoluted, making it diffi cult to fi nd a global minimum. Moreover, 
they noted that the PFIM (unlike the individual Fisher information matrix) is not 
invariant to model parameterization. They studied the ability of several alternative 
search algorithms to consistently identify the minimum and found that simulated 
annealing and a combination of nonadaptive random search and the simplex algo-
rithm provided the best results.

A comparative evaluation of the effi cacy of population designs determined using 
individual and population D-optimality criteria was investigated by Hooker et al. 
(29) for one- and two-compartment fi rst-order absorption PK models, and a viral 
dynamics PD model. As would be expected, the sampling times determined by 
employing population D-optimality criteria were generally distributed around the 
individual D-optimal sampling times. These authors found that the accuracy and 
precision of model parameter population average and variance estimates were 
comparable for all the designs examined, under the assumption that residual error 
was known. They noted that the advantage of designs determined using population 
D-optimality is that they had fewer catastrophic estimates for some parameters, 
and that they permitted fewer samples per individual. These results suggest that 



PPK designs with sampling times selected at random from time windows around 
times determined by individual D-optimality—similar to the informative block 
randomized design (8)—provide robust parameter estimates. A direct comparison 
of the effi ciency of sampling designs determined using individual and population 
D-optimality is presented below.

12.4.2.1 Simulation Study Comparison of IBR and PFIM Designs
The IBR and PFIM D-optimal methods were compared using enoxaparin as an 
example (15). As discussed above, both designs are based on D-optimality. The 
example was based on PPK sampling designs developed for a clinical trial in which 
30 mg of enoxaparin is administered as an intravenous bolus dose to 200 subjects, 
followed by fi ve subcutaneous doses of 85 mg administered q12h (30). Designs 
that were optimal under constraints of maximum number of samples/subject were 
compared.

The population pharmacokinetics of enoxaparin was described by a one-
compartment IV bolus model, the parameters of which are presented in Table 12.1. 
The interindividual variability parameters specify variances in the log-scale of the 
lognormally distributed PK parameters, and the residual error parameter specifi es 
the variance of the proportional error. This model was implemented in ADAPT 
II using the Fortran code, provided in Appendix 12.1, which is identical to the 
1COMPCL.FOR code provided as part of the software distribution, except for the 
residual error model.

The code in Appendix 12.1 was used to generate ADAPT II executable fi les for 
simulation and sample optimization. The interindividual variability parameters in 
Table 12.1 were ignored in determining the optimal sampling times. This is equiva-
lent to determining the optimal sampling times for the typical individual, with PK 
parameters identical to the typical values of the fi xed effect parameters in Table 
12.1. The four optimal sampling times obtained from ADAPT II were at 0.5, 2.82, 
50.35, and 60 hours, post-fi rst dose. Two alternative IBR sampling designs (IBR-
4A, and IBR-4B) were evaluated based on these sampling times. These sampling 
designs are presented in Table 12.2, along with the PFIM design proposed by Retout 
et al. (30).

TABLE 12.1 Enoxaparin Population Pharmacokinetic 
Parameters

Parameter Units Estimate

Fixed effect parameters
 CL.TV L/h 0.708
 V.TV L 5.49
 KA h−1 0.232

Random effect parameters (interindividual variability)
 CL.OM — 0.175
 V.OM — 0.277

Residual error parameters
 ERR.VAR — 0.0682
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Design IBR-4A consists of four sets of discrete sampling time points, centered 
around the optimal sampling time points determined using ADAPT II. The sam-
pling schedule for each subject is specifi ed by selecting one sample at random from 
each of these sets. Likewise, design IBR-4B consists of four sampling time point 
intervals, and the sampling schedule for each subject is specifi ed by a random 
draw from each uniform distribution specifi ed by these intervals. The S-Plus and 
NONMEM code to compare the effi ciency of sampling designs with four samples/
subject are described below.

The S-Plus code in Appendix 12.2 can be used to automate the creation of tem-
plate data sets that serve as input to NONMEM control fi les to simulate clinical 
trials. This code creates three template data sets: data set SimData.PFIM_4.csv is 
for the PFIM design described by Retout et al. (30), while SimData.IBR_4A.csv
and SimData.IBR_4B.csv are for two alternative IBR designs.

The NONMEM control fi le in Appendix 12.3 provides a template for simulating 
PK data according to a given design that is specifi ed by a template data set. In this 
control fi le, SimData.Design.csv is a placeholder for one of the above described 
template data sets. Multiple trials can be simulated by reproducing this fi le and 
changing the random seed (specifi ed by the ZZZZZ place holder in Appendix 12.3) 
and the output table fi le name. A UNIX shell script that accomplishes this is given 
in Appendix 12.4. An alternative method of simulating multiple trials is using the 
“SUBPROBLEMS” option to the NONMEM $SIMULATE command. However, this 
latter option creates a single data fi le, requiring a single NONMEM control fi le to 
estimate the parameters for the multiple simulated clinical trials. The drawback of 
this approach is that the subsequent NONMEM run to estimate parameters may 
not terminate successfully if diffi culty is encountered in estimating PK parameters 
for an intermediate trial.

In the approach adopted here, multiple data fi les are created, each containing the 
data for a single simulated clinical trial. Separate NONMEM estimation runs are 
performed for each data fi le, thus ensuring that the failure of a NONMEM run to 
terminate for a given simulated trial does not affect the ability to obtain estimates 
for the remaining trials.

The NONMEM control fi le for parameter estimation is provided in Appendix 
12.5. The UNIX script provided in Appendix 12.6 creates a set of estimation fi les 
that are identical, except for the name of the input datafi le. One set of NONMEM 

TABLE 12.2 Summary of Four Samples/Subject Designs Evaluated

Design Description Sampling Timesa (h)

ΞPFIM-4 Population Fisher information matrix 0.5, 4, 50.5, and 60
  D-optimal design (4 samples/subject)
ΞIBR-4A Informative block randomized design {0.25, 0.5, 0.75, 1}, {2, 3, 4, 6, 8},
  (4samples/subject); samples selected  {50, 52, 54}, and {56, 58, 60}
  from discrete sets
ΞIBR-4B Informative block randomized design {0.25 – 1}, {2 – 8}, {50 – 54},
  (4samples/subject), samples selected  and {56 – 60}
  from within continuous intervals

a Sampling time is with respect to fi rst dose. Curly braces denote set of times from which one sample is 
selected at random.



estimation control fi les is created for each of the simulated designs being compared, 
so that a given set contains all the NONMEM estimation control fi les that corre-
spond to the data simulated for a given sampling design. The parameter estimates 
resulting from a set of NONMEM estimation control fi les is extracted using a Perl 
script given in Appendix 12.7, which creates an ASCII fi le for each set of NONMEM 
estimation control fi les, with parameter estimates for each NONMEM run on a 
single line. Finally, the S-PLUS script in Appendix 12.8 is used to analyze the 
extracted NONMEM parameter estimates for all the designs being compared, and 
to plot the results of the analysis. Figures 12.1–12.4 present a graphical comparison 
of the accuracy and precision of NONMEM fi xed and random effect parameter 
estimates from the alternative sampling designs. All designs performed similarly in 
the production of effi cient PPK parameter estimates.
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FIGURE 12.1 Comparison of bias in fi xed effect parameter estimates for the PFIM-4, IBR-
4A, and IBR-4B designs (see text for description of the designs).
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FIGURE 12.2 Comparison of bias in random effect parameter estimates for the PFIM-4, 
IBR-4A, and IBR-4B designs (see text for description of the designs).

12.4.2.2 Overall Assessment of the Performance of 
IBR and PFIM Designs
Designs for population studies should be pragmatic and should not overly inter-
fere with the primary objectives of clinical trials (31). As a D-optimality criterion 
does not always provide pragmatic designs, heuristic designs based on D-optimal 
criterion should be evaluated using clinical trial simulation. Clinical trial simulation 
followed by parameter estimation is a better measure of optimality as it allows both 
the bias and precision to be evaluated, and these measures can be compared for 
each parameter. The results of our simulation study indicate that both IBR and 
PFIM D-optimal designs performed similarly in yielding effi cient PPK parameter 
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FIGURE 12.3 Comparison of precision in fi xed effect parameter estimates for the PFIM-4, 
IBR-4A, and IBR-4B designs (see text for description of the designs).

estimates. The ease with which the IBR designs can be generated makes them 
preferable in drug development, where pragmatism and time are of great consider-
ation. The IBR designs have been referred to as pragmatic designs (15). Pragmatic 
designs that achieve high effi ciency in the estimation parameters should be used in 
the design of population PK studies. This takes on greater signifi cance when mixed 
designs are implemented, as is usually the case, in later stage development clinical 
trials (15). The excellent performance of the IBR designs and the PFIM D-optimal 
designs in the estimation of PPK parameters points to the fact that enough samples 
were located in informative regions of the plasma concentration profi le, enabling 
effi cient parameter estimation.
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FIGURE 12.4 Comparison of precision in random effect parameter estimates for the 
PFIM-4, IBR-4A, and IBR-4B designs (see text for description of the designs).

12.5 NUMBER OF SAMPLES PER SUBJECT

Most PPK studies are performed as adjuncts to clinical trials. There is the constant 
challenge to make the most from a PPK study performed within the context of the 
clinical trial without jeopardizing the primary objective of the trial. In practice, 
rarely is a balanced sampling design used in longitudinal PPK studies. Also, the 
number of individuals to be studied and the individual designs to be performed 
when there is a maximum cost (i.e., maximum number samples) to contend with 
may vary. Fadiran et al. (11) investigated the effect of various costs of PPK designs 
using mixed designs on the effi ciency of PPK parameter estimation. A mixed design 
PPK study is one in which the number of samples/subject is not identical for all 



subjects in a study. Parameter estimation effi ciency was shown to deteriorate with 
designs having a lot of subjects contributing only one sample per subject. With 
such designs residual variability was underestimated with a corresponding posi-
tive bias in the estimation of volume terms of the two-compartment model drug. 
The authors cautioned against the artifact in parameter estimation by having an 
adequate number of subjects sampled more than once.

12.5.1 Sampling for Interoccasion Variability Estimation

The variance of an individual’s PK observations about the individual-specifi c PK 
model on a given occasion (i.e., the intraindividual variability) can conceptually be 
factored into two components: variability of PK observations due to variability of 
PK parameters from occasion to occasion (interoccasion variability), and variability 
of PK observations about the individual PK model appropriate for the particu-
lar occasion (noise, PK model misspecifi cation). To be sure, some interoccasion 
variability may be explained by interoccasion variation in individual time-varying 
covariates, but to the extent that it is not, it represents, along with the noise, the 
irreducible uncertainty in predicting, and hence controlling, drug concentrations. 
Drugs with narrow therapeutic indices and large interoccasion and intrasubject vari-
ability, for example, will be very diffi cult to control. If a PPK study consists of PK 
observations solely from individuals studied on only a single occasion, the interoc-
casion variability may appear incorrectly in the interindividual variability term and 
not in the intraindividual variability term. This may lead to inappropriate optimism 
about the ability to control individual therapy within the therapeutic range by using 
feedback (e.g., therapeutic drug monitoring, or simply adjusting dose according to 
observed drug effects), and also to a fruitless search for interindividual covariates 
that might explain the (spuriously infl ated) interindividual variability. It is of the 
utmost importance to avoid this artifact by ensuring that at least a moderate subset 
of subjects contributing data to a PPK study contribute data from more than one 
occasion. Indeed, if this is done, one may hope to separately estimate the compo-
nents of intraindividual variability (32).

12.6 SAMPLE SIZE AND STUDY POWER

Having the appropriate sample size is important for the effi cient estimation of PPK 
parameters from a study. Ette and co-workers (10, 11, 16) have shown from simula-
tion studies that robust estimates of clearance can be obtained with sample sizes 
≥30, depending on the intersubject variability studied. Estimates of volume terms or 
volume-related terms such as intercompartmental clearance in a two-compartment 
model have been shown to require sample sizes ≥50 (10, 11, 16).

When a PPK study is designed to detect a difference between two subpopula-
tions or to determine important covariates necessary to explain variability, attention 
should be paid to the sample size required for such a study. Simulation plays an 
important role in this situation, and Kowalski and Hutmacher (33) demonstrated 
the importance of using clinical trial simulations to assess the power to detect sub-
population differences in apparent drug clearance (CL/F ) and sample size require-
ments for a PPK substudy (1) of a Phase 3 clinical trial. Two subpopulations were 
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investigated. The simulations were based on a PPK model developed from a Phase 
1 healthy volunteer study. The key parameter of interest in the simulated study 
was CL/F, and a 40% reduction was considered to be of clinical signifi cance. That 
is, this degree of reduction in CL/F would result in a need for dosage adjustment. 
It was also desired to detect this difference in as small as 5% of the total patient 
population, thus providing a framework for powering the study. Three hundred 
hypothetical clinical trials were simulated to determine the sample size necessary 
to detect 40% reduction in CL/F in a subpopulation of proportion p = 0.05 or p =
0.10 with at least 90% power. Sample sizes of 150 and 225 were investigated. The 
power of the study was estimated as the percentage of trials out of 300 in which 
statistically signifi cant (a = 0.05) difference in CL/F was observed using the likeli-
hood ratio test.

To obtain the empirical estimates of a, Kowalski and Hutmacher (33) simulated 
300 clinical trials for each combination of sample size and p, where the proportional 
reduction in CL/F (f) was fi xed to zero. Covariate and base models were fi tted to 
each of the trials and the likelihood c2 ratio tests were performed at the 5% level 
of signifi cance. The percentage of trials where a statistically signifi cant difference 
in CL/F was observed provided an empirical estimate of a (i.e, H0: f = 0 is rejected 
when H0 is true). The data were analyzed with the NONMEM population phar-
macokinetics/pharmacodynamics analysis software. The results suggested that an 
approximate nine-point change in the objective function should be used to assess 
statistical signifi cance at the 5% level rather than the commonly used c2 critical 
value of 3.84 for one degree of freedom.

Thus, the importance of determining power in PPK studies for detecting an 
important covariate in a PPK study was highlighted, and attention was drawn to 
the use of the likelihood ratio test in PPK model development.

12.6.1 Usage of Likelihood Ratio Test

Ette et al. (34) in their review of the work of Kowalski and Hutmacher (33) drew 
attention to the risk inherent in the use of the likelihood ratio test (LRT) in the 
analysis of simulated trials, particularly in the context of nonlinear mixed effects 
modeling. The authors stated:

If minus twice the log likelihood associated with the fi t of a full model, A, with q + r
parameters is designated �A, and a reduced version of this model (model B) with p
parameters has minus twice the log likelihood �B, the difference in minus twice the log 
likelihoods, (�A − �B) is asymptotically c2 distributed with q degrees of freedom. This 
formulation is widely used to assess the statistical signifi cance level of the parameters 
associated with the q degrees of freedom.

For the determination of the signifi cance level of fi xed effects, the LRT is known to 
be anti-conservative, i.e., the empirical p value will be greater than the nominal p
value [35]. Generally, as the number of parameters (degrees of freedom) being tested 
increases, the more anti-conservative the test.

Conversely, Stram and Lee [36] noted that the LRT tends to be asymptotically 
conservative for the assessment of random effects signifi cance level. In this context, 
the conservative nature is attributable to the null hypothesis consisting of setting 



the random effect at a boundary condition, i.e., zero. While the inaccuracy in p
value is modest when the number of random effects being tested is small, the 
conservativeness increases with an increase in the number of random effects being 
tested.

Wählby et al. [37] explored via simulation a number of factors infl uencing the disparity 
between nominal and actual signifi cance level of tests for covariate (fi xed) effects in 
nonlinear mixed effects models using the software NONMEM. Approximation method 
(fi rst order [FO] versus fi rst order conditional estimation [FOCE] with h–e interaction), 
sampling frequency, and magnitude and nature of residual error were determined to 
be very infl uential on the bias associated with the p value. An important fi nding was 
that the use of the FOCE method with h–e interaction resulted in reasonably close 
agreement of actual and nominal signifi cance levels, whereas the application of the 
LRT after estimation using the FO approximation generally resulted in marked bias 
in p values.

The implications of the disparity between empirical and nominal signifi cance levels of 
the likelihood ratio test in mixed effects modeling and simulation are clear; however, 
defi nitive solutions or corrections are not. While the signifi cance of random effects 
is not generally the subject of interest in a simulation, the bias in likelihood ratio 
test–determined p value for fi xed effects could be very infl uential on trial simulation 
fi ndings. Thus, simulation exercises should provide for determination of empirical p
values to avoid faulty conclusions about power and sample size.

12.6.2 Determining the Power of PPK Study for Characterizing 
Drug–Drug Interaction

Pharmacokinetic drug–drug interactions (DDIs) occur when the pharmacokinetics 
of a drug is affected by the concomitant administration of another drug. Character-
ization of DDIs for an investigative drug therefore involves assessing the potential 
for coadministered drugs to affect the pharmacokinetics of the investigative drug, 
as well as an assessment of the potential of the investigative drug to affect the 
pharmacokinetics of coadministered drugs.

It is clearly not practical to assess DDIs for all possible coadministered drugs 
by separate studies. The DDI potential for an investigative drug is conventionally 
assessed with well-controlled healthy volunteer studies of the investigative drug 
with drugs that are relatively specifi c prototypic inhibitors, inducers, or substrates 
of a given cytochrome P450 isozyme (38). DDI studies are generally designed to 
characterize the worst case scenario, so that if the potential for a DDI exists, it will 
be detected by the study. Therefore, it is possible that the DDI with a drug that is 
expected to be coadministered with the investigative drug is not as severe as the 
DDI in the well-controlled study with the prototypic drug. Moreover, as most DDI 
studies focus on interactions involving Phase 1 drug–metabolizing enzymes, other 
interactions involving Phase 2 drug–metabolism may remain undetected, as may 
interactions involving drug transporters.

It is therefore desirable to augment the information gained from well-controlled 
DDI studies with DDI information in the actual target patient population. Char-
acterization of DDI in the target patient population using PPK analyses is in fact 
supported by the FDA’s guidance on clinical DDI studies (39). The advantage of 
investigating DDI using population pharmacokinetics is that clinically signifi cant 
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interactions are characterized, rather than the worst case interactions, while the 
main disadvantage is that detailed information on coadministered drugs (dose, 
frequency, and time of administration) is generally not available. Another disad-
vantage noted by the FDA guidance on DDI is that the ability to detect DDI using 
population pharmacokinetics has not been adequately studied. The investigation 
described next attempts to address this last defi ciency.

12.6.2.1 Study Objective and Design
The objective of the analysis was to investigate the effect of PPK design on the 
power to detect a DDI affecting the pharmacokinetics of the investigational drug.

It was assumed that the pharmacokinetics of the investigational drug was 
described by a one-compartment model with fi rst-order absorption, the parameter 
values of which are given in Table 12.3. Study design and drug attributes investi-
gated were sample size (50, 100, 150, and 200 subjects), percentage of subjects on 
concomitant interacting drug (10%, 30%, 50%, 70%, and 90%), and interindividual 
variability (IIV) in PK clearance and apparent volume of distribution (30%, 50%, 
and 70%). It was assumed that concomitant administration of the interacting drug 
would decrease the clearance by 30%.

12.6.2.2 Simulation and Data Analysis
The PPK model was implemented in NONMEM, and data sets simulated with the 
model were then fi tted using both a full (true) PPK model that included the DDI 
effect of the concomitantly administered interacting drug, and a reduced (null) 
model that did not contain the interaction effect. The DDI effect of the interact-
ing drug was incorporated into the PK model as a covariate on clearance. The 
power of a given design to detect the presence of interaction was determined from 
using the likelihood ratio test (LRT) (See Section 12.6.1). As the full and reduced 
models differ by only a single parameter (the covariate effect of interacting drug 
on clearance), the reduced model is nested within the full model and has 1 degree 
of freedom less than the full model. Therefore, the DDI should be considered to 
be statistically signifi cant at the 5% level, provided that the NONMEM objec-
tive function value (OFV) for the full model is at least 3.84 points less than that 
of the reduced model (as the NONMEM objective function value is equivalent to 
−2 log-likelihood).

However, as noted in the discussion on the LRT (Section 12.6.1), the test tends to 
be conservative for fi xed effects, suggesting that the actual critical value for the LRT 
statistic may be larger than 3.84. Moreover, the number of samples per subject and 
the sample size may also affect the theoretical critical value, as the likelihood ratio 
is asymptotically c2 distributed. Previous work also indicated that the likelihood 

TABLE 12.3 Population Pharmacokinetic Parameters of Investigational Drug

 Geometric Interindividual
Parameter Average Variability (%CV)

Clearance (CL), L/h  1.73 30, 50, 70
Volume (V), L 30 30, 50, 70
Absorption rate (Ka), h−1  1 —



ratio was also sensitive to the linearization method used to obtain the NONMEM 
OFV (37, 40).

The Type I error (rejection of the reduced model in favor of the full model) that 
would result from the use of the theoretical critical value was assessed for each of 
the designs considered, and for three alternative NONMEM linearization methods: 
fi rst-order (FO), fi rst-order conditional estimation (FOCE), and fi rst-order condi-
tional estimation with interaction (FOCEI). Type I error rates were assessed by 
empirical determination of the probability of rejection of the reduced model, given 
that the reduced model was the correct model. Data sets were simulated with the 
reduced model (FO, 1000 data sets; FOCE/FOCEI, 200 data sets) and fi tted using 
the full and reduced models. The empirical Type I error was determined as the 
percentage of simulated data sets for which a LRT statistic of 3.84 or greater was 
obtained. The 3.84 critical value for the LRT statistic corresponds to a signifi cance 
level of 5%, for a c2 distribution with 1 degree of freedom (for the one extra param-
eter in the full model). The LRT statistic was calculated as the difference between 
the NONMEM objective function values of the reduced and full models. The results 
of these simulations were also used to determine an empirical critical value that 
would result in the Type I error rate equal to the nominal 5% value.

The power of a design with a given set of attributes (sample size, percentage of 
subjects on interacting drug, and percentage IIV) was assessed by determining the 
probability of rejecting the reduced model, given that the full model was the correct 
model. In this case, data sets were simulated with the full model and fi tted using the 
full and reduced models. The theoretical power was determined as the percentage 
of data sets for which a LRT statistic of 3.84 was obtained. The empirical power 
was determined by using the empirical critical value, instead of the theoretical value 
of 3.84.

12.6.2.3 Study Outcome
The results of the Type I error determination are summarized in Figure 12.5. Type 
I error rates were calculated provided that the LRT could be calculated for at least 
100 of the simulated data sets. This criterion was met for all designs with the FO 
and FOCE methods, but the Type I error is not reported for several designs with 
the FOCEI method. The LRT statistic could not be determined for a larger number 
of runs with the FOCEI method because achieving convergence with this method is 
more diffi cult than with the other methods. In this analysis, no attempt was made to 
improve the convergence rate by manually adjusting the initial parameter estimates. 
Consistent with the previously reported fi ndings (37), the Type I error was greatest 
for the FO method and least for the FOCEI method. The Type I error rate also 
increased with increase in IIV, and differences between the FOCEI method and 
the other two methods were more pronounced at higher IIV. Notably, the empirical 
Type I error for the FOCEI method was close to the nominal value of 5%, for all 
designs in which it was estimated.

In the present study, the power of PPK study designs to detect DDI was esti-
mated using the empirical critical values, given the infl ated Type I error obtained 
using the theoretical critical value. An empirical critical value was determined for 
each combination of study design, drug IIV, and NONMEM estimation method 
(Table 12.4). The empirical critical value for a given combination was set at the 
95th percentile value of the LRT statistic distribution.
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FIGURE 12.5 Type I error for the NONMEM estimation methods (FO, FOCE, and 
FOCEI) for each design. Each panel represents a level of interindividual variability (IIV, 
constant along a row), and percentage of subjects on interacting drug (INT, constant along 
a column). The effect of sample size is shown within each panel.

A comparison of the power to determine DDI with theoretical and empirical 
critical values for the FO method is presented in Figure 12.6. As expected, the theo-
retical power to determine DDI is higher than the empirically determined power, 
given the infl ated Type I error with the theoretical critical value. The empirical 
power is a more accurate representation of the true power.

The effect of study design, IIV in PK parameters, and estimation method on 
power to detect DDI is presented in Figure 12.7. Much of the differences between 
the estimation methods seen with the theoretical critical value appear to have 
been eliminated, particularly differences between the FO and FOCE methods. The 
empirical power could not be determined with the FOCEI method due to failure 
of a suffi cient number of estimation runs to converge. However, for cases in which 
the power with the FOCEI method could be determined, it was consistently greater 
than the power obtained with the other two methods.

The power to detect DDI is most profoundly affected by the IIV in PK param-
eters. A change of 40% in the IIV (30% to 70%) had a greater impact on the power 
than a fourfold change in sample size (50 to 200 subjects), or a ninefold change in 
INT, the percentage of subjects on the interacting drug (10% to 90%). The next 
most important factor was sample size, followed by INT. With respect to INT, the 
power was greatest when 50% of subjects were on the interacting drug.
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12.6.2.4 Summary of Study Findings
The above results suggest that it is reasonable to expect that DDI would be detected 
using the population approach for drugs with low or moderate IIV, but very large 
sample sizes would be needed for high variability drugs. It is recommended that 
simulation study such as the one presented here be performed to support a claim 
of a lack of DDI.

12.7 STUDY EXECUTION AND IMPACT ON 
PARAMETER ESTIMATION EFFICIENCY

Sun et al. (41), using the informative block (profi le) randomized design, investigated 
the effect of sample time recording errors (both systematic and random) on the 
estimation of PPK parameters for a drug exhibiting two-compartment pharmaco-
kinetics, for both single and multiple administrations. The PK profi le was divided 
into three blocks and each subject was sampled across the blocks, providing two 
samples per block. They observed that negative systematic error in the recording 
of sample times resulted in effi cient estimation of volume terms, while positive sys-
tematic error favored the effi cient estimation of the clearance terms. These errors 
resulted in suffi cient samples being located in critical regions for the estimation of 
volume terms (negative systematic error) and clearance terms (positive systematic 
error). Overall, they found that the effi ciency in the estimation of clearance was not 
severely compromised for moderate sampling time recording errors.

12.8 SUMMARY

The quality of the PPK parameter estimates is a function of experimental design, 
and design features and other relevant issues that should be addressed in design-
ing PPK studies for effi cient parameter estimation are discussed. Therefore, effec-
tive use of the population approach to characterize population pharmacokinetics 
demands that consideration should be given to how studies can be designed to 
obtain effi cient estimates of PPK parameters of a drug studied. In addition, we 
show that DDI can be characterized using the population approach for drugs with 
low or moderate IIV, but very large sample sizes are needed for high variability 
drugs.
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APPENDIX 12.1 ADAPT II FORTRAN CODE SPECIFYING A 
1-COMPARTMENT 1ST-ORDER ABSORPTION MODEL

Proportional Error Given by Coeffi cient of Variation

C*****************************************************************

C

C            MODEL: 1COMPCL_PropErr 

C   Modified Version of MODEL: 1COMPCL in ADAPT II (Release 4) 

C   Residual error model changed to Proportional error . . .

C   . . . specified in terms of CV 

C*****************************************************************

C *

C  This file contains the Fortran subroutines listed below in *

C  which the user must enter the relevant equations and constants. *

C  Consult the user’s manual for details concerning the format for *

C  entered equations and definition of symbols. *

C *

C   1. DiffEq - System differential equations. *

C   2. Amat - System state matrix. *

C   3. Output - System output equations. *

C   4. Symbol - Parameter symbols and model constants. *

C   5. Varmod - Error variance model equations. *

C   6. Prior - Parameter mean and covariance values *

C   7. Sparam - Secondary parameters *

C *

C*****************************************************************

 Subroutine DIFFEQ(T,X,XP)

 Implicit None

 Include ‘globals.inc’

 Include ‘model.inc’

 Real*8 T,X(MaxNDE),XP(MaxNDE)

CC

C-----------------------------------------------------------------C

C 1. Enter Differential Equations Below {e.g. XP(1) = -P(1)*X(1) } C

C----c------------------------------------------------------------C

C     XP(1) = -(P(1)/P(2))*X(1) + P(3)*X(2) + R(1)

C     XP(2) = - P(3)*X(2)

C-----------------------------------------------------------------C

C-----------------------------------------------------------------C

C

 Return

 End
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C################################################################C

 Subroutine AMAT(A)

 Implicit None

 Include ‘globals.inc’

 Include ‘model.inc’

 Integer I,J

 Real*8 A(MaxNDE,MaxNDE)

 DO I=1,Ndeqs

       Do J=1,Ndeqs

        A(I,J) = 0.0D0

       End Do

 End Do

CC

C-----------------------------------------------------------------C

C 2. Enter non zero elements of state matrix {e.g. A(1,1) = -P(1) } C

C----c------------------------------------------------------------C

C-----------------------------------------------------------------C

C-----------------------------------------------------------------C

C

 Return

 End

C################################################################C

 Subroutine OUTPUT(Y,T,X)

 Implicit None

 Include ‘globals.inc’

 Include ‘model.inc’

 Real*8 Y(MaxNOE),T,X(MaxNDE)

CC

C-----------------------------------------------------------------C

C 3. Enter Output Equations Below {e.g. Y(1) = X(1)/P(2) } C

C----c------------------------------------------------------------C

C Note: X(1) and X(2) are the amounts in the central and absorption

C  compartments, respectively.

    Y(1)=X(1)/P(2)



C-----------------------------------------------------------------C

C-----------------------------------------------------------------C

C

    Return

    End

C################################################################C

    Subroutine SYMBOL

    Implicit None

    Include ‘globals.inc’

    Include ‘model.inc’

CC

C-----------------------------------------------------------------C

C 4.         Enter as Indicated C

C----c------------------------------------------------------------C

   NDEqs = 2 ! Enter # of Diff. Eqs.

   NSParam = 3 ! Enter # of System Parameters.

   NVparam = 1 ! Enter # of Variance Model Parameters.

   NSecPar = 3 ! Enter # of Secondary Parameters.

   NSecOut = 0 ! Enter # of Secondary Outputs (not used).

   Ieqsol = 94 ! Indicates a built-in compartment model.

   Descr = ‘1CmptAbs_CL - proportional variance’

C-----------------------------------------------------------------C

C-----------------------------------------------------------------C

C

CC

C-----------------------------------------------------------------C

C 4. Enter Symbol for Each System Parameter (eg. Psym(1)=’Kel’) C

C----c------------------------------------------------------------C

    PSym(1) = ‘CLt’

    PSym(2) = ‘Vc’

    PSym(3) = ‘Ka’

C-----------------------------------------------------------------C

C-----------------------------------------------------------------C

CC

C-----------------------------------------------------------------C

C 4. Enter Symbol for Each Variance Parameter {eg: PVsym(1) = ‘Sigma’} C

C----c------------------------------------------------------------C

    PVsym(1) = ‘CV’

C-----------------------------------------------------------------C
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C-----------------------------------------------------------------C

CC

C-----------------------------------------------------------------C

C 4. Enter Symbol for Each Secondary Parameter {eg: PSsym(1) = ‘CLt’} C

C----c------------------------------------------------------------C

    PSsym(1) = ‘Kel’

    PSsym(2) = ‘LAM1’

    PSsym(3) = ‘t1/2-LAM1’

C-----------------------------------------------------------------C

C-----------------------------------------------------------------C

C

    Return

    End

C################################################################C

    Subroutine VARMOD(V,T,X,Y)

    Implicit None

    Include ‘globals.inc’

    Include ‘model.inc’

    Real*8 V(MaxNOE),T,X(MaxNDE),Y(MaxNOE)

CC

C-----------------------------------------------------------------C

C 5. Enter Variance Model Equations Below C

C    {e.g. V(1) = (PV(1) + PV(2)*Y(1))**2 } C

C----c------------------------------------------------------------C

    V(1) = (PV(1)/100*Y(1))**2

C-----------------------------------------------------------------C

C-----------------------------------------------------------------C

C

    Return

    End

C################################################################C

    Subroutine PRIOR(Pmean,Pcov,ICmean,ICcov)

    Implicit None

    Include ‘globals.inc’

    Include ‘model.inc’



    Integer I,J

    Real*8 Pmean(MaxNSP+MaxNDE), ICmean(MaxNDE)

Real*8 Pcov(MaxNSP+MaxNDE,MaxNSP+MaxNDE), 

ICcov(MaxNDE,MaxNDE)

CC

C-----------------------------------------------------------------C

C 6. Enter Nonzero Elements of Prior Mean Vector C

C     { e.g. Pmean(2) = 10.0 } C

C----c------------------------------------------------------------C

C-----------------------------------------------------------------C

C-----------------------------------------------------------------C

CC

C-----------------------------------------------------------------C

C 6. Enter Nonzero Elements of Covariance Matrix (Lower Triang.) C

C     { e.g. Pcov(2,1) = 0.25 } C

C----c------------------------------------------------------------C

C-----------------------------------------------------------------C

C-----------------------------------------------------------------C

C

    Return

    End

C################################################################C

    Subroutine SPARAM(PS,P,IC)

    Implicit None

    Include ‘globals.inc’

    Real*8 PS(MaxNSECP), P(MaxNSP+MaxNDE), IC(MaxNDE) 

CC

C-----------------------------------------------------------------C

C 7. Enter Equations Defining Secondary Paramters C

C     { e.g. PS(1) = P(1)*P(2) } C

C----c------------------------------------------------------------C

    PS(1) = P(1)/P(2) 

    PS(2) = PS(1) 

    If(PS(2).ne.0.0) PS(3) = DLOG(2.0D0)/PS(2)

C-----------------------------------------------------------------C

C-----------------------------------------------------------------C

C

    Return

    End
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APPENDIX 12.2 S-PLUS SCRIPT TO CREATE NONMEM 
DATASET TEMPLATES

##### Create data template for 4-samples/subj designs 

  ###################################

rm(.Random.seed)

set.seed <- 555

nSubj <- 200

############## Assign Nominal Values to reserved NONMEM Variables 

  #######################

##### Specify time vector of dosing and obs events

# Specify dosing times for a subject

Dosetime.v <- c(0, 0, 12, 24, 36, 48)

# Specify obs times for a subject

Obstime.v <- c(0.5, 4, 48+2.5, 48+12)

# Combine dosing and obs times

time.v <- c(Dosetime.v, Obstime.v)

# Specify sampling time point # (value=0 for dosing records)

snum.v <- c(rep(0, length(Dosetime.v)), seq(1,length(Obstime.v)))

##### Specify EVID vector corresponding to time.v

EVID.v <- c(rep(1, length(Dosetime.v)), rep(0, length(Obstime.v)))

##### Specify AMT vector for a subject . . .

# . . . a single 30 mg (IV) loading dose, followed by 84.6 mg (PO) BID

amt.v <- c(30, rep(84.6, length(Dosetime.v)-1))

# Pad with missing values for obs records

amt.v <- c(amt.v , rep(NA, length(Obstime.v)))

##### Specify CMT vector for a subject

# Dose compartments

cmt.v <- c(2, rep(1, length(Dosetime.v)-1))

# Pad with obs compartments

cmt.v <- c(cmt.v, rep(2, length(Obstime.v)))

##### Specify dataset particulars

nrowSubj <- length(time.v) #(6 dose recs + 4 obs recs)

# Specify names of NONMEM input vars

simDataNames <- c(“SUBJ”, “TIME”, “EVID”, “AMT”, “DV”, “CMT”, “SNUM”)

simData <- data.frame(matrix(data=NA, nrow=nSubj*nrowSubj,

  ncol=length(simDataNames), 

             dimnames=list(NULL,simDataNames)))

# Assign Subj Nos.

simData$SUBJ <- rep(1000+seq(1:nSubj), each=nrowSubj)



##### Assign vectors to simData

simData$TIME <- rep(time.v, nSubj)

simData$EVID <- rep(EVID.v, nSubj)

simData$AMT <- rep(amt.v, nSubj)

simData$CMT <- rep(cmt.v, nSubj)

simData$SNUM <- rep(snum.v, nSubj)

# Reorder simData

simData <-simData[order(simData$SUBJ, simData$TIME, -simData$EVID),]

##### Replace Nominal (PFIM-OPT) sample timepoints with randomly 

  assigned timepoints

##### Method: Informative_Randomized_Block_1

simData.IBR1 <- simData

##### Replace nominal time by randomly selecting from a vector of 

  pre-specified timepoints

# Specify the vector of times for each nominal timepoint

IBR1.lst <- list(“samp1”=c(0.25, 0.5, 0.75, 1), 

           “samp2”=c(2, 3, 4, 6, 8),

           “samp3”=48 + c(2, 4, 6),

           “samp4”=48 + c(8, 10, 12))

#

for (iSnum in 1:length(Obstime.v)){

  TF.v <- simData.IBR1$SNUM==iSnum

simData.IBR1$TIME[TF.v] <- sample(IBR1.lst[[iSnum]], size=sum(TF.

v), replace=T)

}

##### Method: Informative_Randomized_Block_2

simData.IBR2 <- simData

##### Replace nominal time by randomly selecting from a uniform 

  distribution 

# Specify the min and max for uniform distributions for each nominal 

  timepoint

IBR2.lst <- list(“samp1”=c(0.25, 1.0), 

           “samp2”=c(3, 5),

           “samp3”=48 + c(1.5, 3.5),

           “samp4”=48 + c(10, 12))

#

for (iSnum in 1:length(Obstime.v)){

  TF.v <- simData.IBR2$SNUM==iSnum

  simData.IBR2$TIME[TF.v] <- 

           round(runif(sum(TF.v), IBR2.lst[[iSnum]][1],

  IBR2.lst[[iSnum]][2]),2)

}

############### Export Simulation Data Templates ################
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NMdataDir <- “./NMdatasets/”

options(digits=5)

TF.export <- F

if(TF.export){

  fileName <- paste(NMdataDir, “SimTmpl_PFIM4.csv”, sep=”)

  z.exportNM(simData, fileName)

  fileName <- paste(NMdataDir, “SimTmpl_IBR4A.csv”, sep=”)

  z.exportNM(simData.IBR1, fileName)

#

  fileName <- paste(NMdataDir, “SimTmpl_IBR4B.csv”, sep=”)

  z.exportNM(simData.IBR2, fileName)

}

APPENDIX 12.3 NONMEM CONTROL FILE

Simulate Clinical Trials for a Design Specifi ed by the NONMEM Datafi le 
Template Given by SimTmpl_Design.csv

$PROB ENOXAPARIN PK

$INPUT ISIM ID=SUBJ TIME EVID AMT DV CMT

$DATA ../ SimTmpl_Design.csv IGNORE=#

;Replace SimTmpl_Design.csvbyappropriate simulation dataset template

$SUBROUTINE ADVAN2, TRANS2

$PK

; Specify Fixed Effect Parameters

  ACL = THETA(1)

  AV2 = THETA(2)

  AKA = THETA(3)

; Specify IIV Random Effect Parameters

  ZACL = ETA(1)

  ZAV2 = ETA(2)

  ZAKA = ETA(3)

; ########################################################

; Specify Individual PK Parameter Models

  CL = ACL*EXP(ZACL)

  V = AV2*EXP(ZAV2)

  KA = AKA*EXP(ZAKA)

  S2=V/100 ; 1 mg Enox is equiv to 100 IU of anti-Factor Xa activity



; Record simulated trial replicate

  ISIM = IREP

$ERROR

  IPRE = F

  IRES = DV - IPRE

  WFAC = F

  IWRE = IRES/WFAC

  Y = IPRE + WFAC*EPS(1)

$THETA

  0.708 ; ACL [L/hr]

  5.49 ; AV2 [L]

  0.232 ; AKA [1/hr]

$OMEGA

0.175 ; ZCL

0.277 ; ZV2

0 FIXED ; ZKA

$SIGMA

0.0682 ; PERR

$SIMULATION (ZZZZZ)

$TABLE ISIM SUBJ TIME EVID AMT DV CMT

      NOPRINT NOHEADER FILE=SimDesign.tab

APPENDIX 12.4 UNIX SHELL SCRIPT TO CREATE 
MULTIPLE SIMULATION FILES

#!/bin/csh

# Script Name: gen_rctl.csh

##### Generate multiple simulation files

# Syntax: gen_rctl nIter ctl_file

# where,

# nIter . . . number of simulation files to be generated

# ctl_file . . . name of simulation control file

set nIter=$1

set ctl_file=$2

set iter=1

while ($iter <= $nIter)

  set iter_ctl_file=${ctl_file:r}.{$iter}.ctl

  echo -n “$iter_ctl_file, Random: ”
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  set rnum=`random.bash`

  echo $rnum

# Replace random seed placeholder in simulation file “ZZZZZ”

# by a random seed generated by the operating system

sed s/ZZZZZ/$rnum/ $ctl_file > tmp.txt

# Replace “SimDesign” in the line below by . . .

# . . .“SimPFIM4” or “SimIBR4A”, or “SimIBR4B” as applicable

sed s/SimDesign/SimDesign.$iter/ tmp.txt > $iter_ctl_file

  @ iter++

end

rm tmp.txt

APPENDIX 12.5 NONMEM CONTROL FILE

Estimate Parameters for Simulated Data Given in SimDesign.tab

$PROB ENOXAPARIN PK

$INPUT ISIM ID=SUBJ TIME EVID AMT DV CMT

$DATA ../SimDesign.csv IGNORE=#

; Replace SimDesign.csv by SimPIFM.csv, SimIBR4A.csv, or SimIBR4B.csv

$SUBROUTINE ADVAN2, TRANS2

$PK

; Specify Fixed Effect Parameters

  ACL = THETA(1)

  AV2 = THETA(2)

  AKA = THETA(3)

; Specify IIV Random Effect Parameters

  ZACL = ETA(1)

  ZAV2 = ETA(2)

  ZAKA = ETA(3)

; ########################################################

; Specify Individual PK Parameter Models

  CL = ACL*EXP(ZACL)

  V = AV2*EXP(ZAV2)

  KA = AKA*EXP(ZAKA)



  S2=V/100 ; 1 mg Enox is equiv to 100 IU of anti-Factor Xa activity

; Record simulated trial replicate

  ISIM = IREP

$ERROR

  IPRE = F

  IRES = DV - IPRE

  WFAC = F

  IWRE = IRES/WFAC

  Y = IPRE + WFAC*EPS(1)

$THETA

  1 ; ACL [L/hr]

  5 ; AV2 [L]

  0.2 ; AKA [1/hr]

$OMEGA

  0.2 ; ZCL

  0.3 ; ZV2

  0 FIXED ; ZKA

$SIGMA

  0.1 ; PERR

$EST SIG=5 PRINT=0 MAXEVAL=9000 NOABORT METHOD=1 INTER

APPENDIX 12.6 UNIX SHELL SCRIPT TO CREATE 
MULTIPLE ESTIMATION FILES

#!/bin/csh

# Script Name: gen_ectl.csh

##### Generate NM control files from a template file by changing the

#   input data filename from SimDesign to SimDesign.####,

#   where #### is iteration number

#

# Syntax: gen_rctl nIter ctl_file

# where,

# nIter . . . number of simulation files to be generated

# ctl_file . . . name of simulation control file

set iter=1

while ($iter <= $nIter)

# Change “SimDesign” in line below to “SimPFIM” or “SimIBR4A”, or 

  “SimIBR4B”
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 sed s/SimDesign/SimDesign.$iter/$ctl_file>${ctl_file:r}.{$iter}.ctl

 echo ${ctl_file:r}.{$iter}.ctl

 @ iter++

end

APPENDIX 12.7 PERL CODE TO EXTRACT PARAMETERS 
ESTIMATES FROM NONMEM OUTPUT FILES

#!/usr/bin/perl -w

#

# Program to extract NONMEM parameter estimates from multiple runs . . .

# . . . one set of estimates per line

# Syntax: extract_results.1line.pl *.lst

#      where “*.lst” is wildcard for selecting multiple NONMEM 

        result files

# Output: The extracted parameter estimates are output to . . .

#      the terminal (standard output)

#      and can be redirected to a summary result file using 

        “> summary.res”

#

foreach $pathname (@ARGV){

  $start = rindex($pathname,‘/’);

  $end = length($pathname);

  if($start < 0){ # then there is no “/” in the $pathname

  $filename = $pathname;

  }

  else{

  $filename = substr($pathname, $start+1, $end-$start-1);

  }

  $end = index($filename,“.lst”);

# $runID = substr($filename,0,$end);

  open(RESULT_FILE,$pathname);

  @input_lines = <RESULT_FILE>;

#@input_lines = <STDIN>;

$n_lines = @input_lines;

for ($jj=0; $jj <= $n_lines-1; $jj++){

  if($input_lines[$jj] =~/PROBLEM NO/){

#   printf(“%s ”,$runID);

    }

  if($input_lines[$jj] =~/MINIMIZATION/){

    @estMsgLine = split /\s+/, $input_lines[$jj];

    $estMsg = $estMsgLine[1];



    printf(“%s ”,$estMsg);

    }

##### Extract the Objective Function Value

   if($input_lines[$jj] =~ /MINIMUM VALUE OF OBJECTIVE FUNCTION/){

  @objFunLine = split /\s+/, $input_lines[$jj+9];

     $objFunValue = $objFunLine[2];

  printf(“%9.4f ”,$objFunValue);

#  printf(“\n FINAL PARAMETER ESTIMATES ”);

##### Extract the THETA variables

  @theta = split /\s+/, $input_lines[$jj+24];

     $len_theta = @theta;

#    printf(“\n %s ”, “THETAS:”);

     for($ii=1; $ii <= $len_theta-1; $ii++){

     printf(“%s ”, $theta[$ii]);

  }

##### Extract the Eta variables (currently does not handle COVARIANCE)

# Find out how many Eta variables are in output

     $etaLine = $input_lines[$jj+31];

#     printf(“\n %s ”, “ETAS: ”);

     $countEta = 0;

  while($etaLine =~ /ETA/g){

     $countEta++;

  }

# Initialize the @eta array

@eta = (0) x $countEta;

# Extract Eta variables from multiple lines

  for($iEta=1; $iEta <= $countEta; $iEta++){

      @etaLine = split /\s+/, $input_lines[$jj+31+3*$iEta];

    $eta[$iEta] = $etaLine[$iEta];

    printf(“%s ”, $eta[$iEta]);

}

##### Extract the Sigma variables

# Locate the line at which the SIGMA variable starts

      $ii = 31;

      while($input_lines[$jj+$ii] !~ /SIGMA/){

     $ii++;

  }

# Find out how many Sigma variables are in output

      $sigmaLine = $input_lines[$jj+$ii+3];

#      printf(“\n %s ”, “SIGMAS:”);

      $countEps = 0;

  while($sigmaLine =~ /EPS/g){
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     $countEps++;

  }

# Initialize the @eps array

@eps = (0) x $countEps;

# Extract Eps variables from multiple lines

  for($iEps=1; $iEps <= $countEps; $iEps++){

      @epsLine = split /\s+/, $input_lines[$jj+$ii+3+3*$iEps];

     $eps[$iEps] = $epsLine[$iEps];

     printf(“%s ”, $eps[$iEps]);

      }

      printf(“ \n”)

     }

  }

# printf(“ \n”)

  }

APPENDIX 12.8 S-PLUS CODE TO ANALYZE AND 
COMPARE NONMEM ESTIMATION RESULTS

###################### Read in orig Data

dataDir <- “./NMresults/”

plotDir <- “./Plots/”

export.plot <- T

fileName <- “Est.PFIM_4.100.res”

Est.PFIM.4sample <- read.table(paste(dataDir, fileName, sep=“”), 

header=F)

#

fileName <- “Est.IBR1_4.100.res”

Est.IBR1.4sample <- read.table(paste(dataDir, fileName, sep=“”), 

header=F)

#

fileName <- “Est.IBR2_4.100.res”

Est.IBR2.4sample <- read.table(paste(dataDir, fileName, sep=“”), 

header=F)

colNames <- c(“M.STATUS”, “OFV”, “CL.TV”, “V.TV”, “KA.TV”,

                “CL.OM”, “V.OM”, “KA.OM”, “ERR.VAR”)

names(Est.PFIM.4sample) <- colNames

names(Est.IBR1.4sample) <- colNames

names(Est.IBR2.4sample) <- colNames

#



Est.PFIM.4sample$DESIGN <- rep(“PFIM-4”, nrow(Est.PFIM.4sample))

Est.IBR1.4sample$DESIGN <- rep(“IBR-4A”, nrow(Est.IBR1.4sample))

Est.IBR2.4sample$DESIGN <- rep(“IBR-4B”, nrow(Est.IBR2.4sample))

#

Est.all <- rbind(Est.PFIM.4sample, Est.IBR1.4sample, Est.

IBR2.4sample)

Est.all$DESIGN <- ordered(Est.all$DESIGN,

                levels=c(“PFIM-4”, “IBR-4A”, “IBR-4B”))

CL.TV.true <- 0.708

V.TV.true <- 5.49

KA.TV.true <- 0.232

#

CL.OM.true <- 0.175

V.OM.true <- 0.277

#

ERR.VAR.true <- 0.0682

#### Get Rel Error for Est.all

Est.all$CL.TV.RelErr <- (Est.all$CL.TV - CL.TV.true)/CL.TV.true * 100

Est.all$V.TV.RelErr <- (Est.all$V.TV - V.TV.true)/V.TV.true * 100

Est.all$KA.TV.RelErr <- (Est.all$KA.TV - KA.TV.true)/KA.TV.true * 100

#

Est.all$CL.OM.RelErr <- (Est.all$CL.OM - CL.OM.true)/CL.OM.true * 100

Est.all$V.OM.RelErr <- (Est.all$V.OM - V.OM.true)/V.OM.true * 100

#

Est.all$ERR.VAR.RelErr <- (Est.all$ERR.VAR - ERR.VAR.true)/ERR.VAR.

true * 100

Est.all$STATUS.FLAG <- Est.all$M.STATUS==“SUCCESSFUL”

Success.v <- tapply(Est.all$STATUS.FLAG, Est.all$DESIGN, sum)

Median.CL.TV.RelErr <- tapply(Est.all$CL.TV.RelErr, Est.all$DESIGN, 

 median)

Median.V.TV.RelErr <- tapply(Est.all$V.TV.RelErr, Est.all$DESIGN, 

 median)

Median.KA.TV.RelErr <- tapply(Est.all$KA.TV.RelErr, Est.all$DESIGN, 

 median)

Median.CL.OM.RelErr <- tapply(Est.all$CL.OM.RelErr, Est.all$DESIGN, 

 median)

Median.V.OM.RelErr <- tapply(Est.all$V.OM.RelErr, Est.all$DESIGN, 

 median)

Median.ERR.VAR.RelErr <- tapply(Est.all$ERR.VAR.RelErr, Est.

 all$DESIGN, median)

Median.CL.TV.RelErr <- tapply(abs(Est.all$CL.TV.RelErr), Est.

 all$DESIGN, median)
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Median.V.TV.RelErr <- tapply(abs(Est.all$V.TV.RelErr), Est.

 all$DESIGN, median)

Median.KA.TV.RelErr <- tapply(abs(Est.all$KA.TV.RelErr), Est.

 all$DESIGN, median)

Median.CL.OM.RelErr <- tapply(abs(Est.all$CL.OM.RelErr), Est.

 all$DESIGN, median)

Median.V.OM.RelErr <- tapply(abs(Est.all$V.OM.RelErr), Est.

 all$DESIGN, median)

Median.ERR.VAR.RelErr <- tapply(abs(Est.all$ERR.VAR.RelErr), Est.

 all$DESIGN, median)

############################ Plots of Analysis Results 

  ################################

###### Box Plots of %Bias

graphsheet(orientation=“p”)

par(mfrow=c(3,1))

par(mar=c(4,4,1,2)+.1)

par(mgp=c(2,0.75,0))

#

boxplot(split(Est.all$CL.TV.RelErr, Est.all$DESIGN),

   confint=T, confnotch=T, confcol=0, medcol=1, ylim=c(-25, 25))

abline(h=0)

mtext(“CL.TV”, line=0.5)

mtext(“Bias [%]”, side=2, outer=F, line=2, cex=1)

#

boxplot(split(Est.all$V.TV.RelErr, Est.all$DESIGN),

   confint=T, confnotch=T, confcol=0, medcol=1, ylim=c(-50, 50))

abline(h=0)

mtext(“V.TV”, line=0.5)

mtext(“Bias [%]”, side=2, outer=F, line=2, cex=1)

#

boxplot(split(Est.all$KA.TV.RelErr, Est.all$DESIGN),

   names=paste(as.character(unique(Est.all$DESIGN)),“\

 n(”,Success.v, “%)”, sep=“”),

   confint=T, confnotch=T, confcol=0, medcol=1, ylim=c(-50, 50))

abline(h=0)

mtext(“KA”, line=0.5)

mtext(“Bias [%]”, side=2, outer=F, line=2, cex=1)

#

boxplot(split(Est.all$CL.OM.RelErr, Est.all$DESIGN),

   confint=T, confnotch=T, confcol=0, medcol=1, ylim=c(-50, 50))

abline(h=0)

mtext(“CL.OM”, line=0.5)

mtext(“Bias [%]”, side=2, outer=F, line=2, cex=1)

#

#

boxplot(split(Est.all$V.OM.RelErr, Est.all$DESIGN),



   confint=T, confnotch=T, confcol=0, medcol=1, ylim=c(-50, 50))

abline(h=0)

mtext(“V.OM”, line=0.5)

mtext(“Bias [%]”, side=2, outer=F, line=2, cex=1)

#

boxplot(split(Est.all$ERR.VAR.RelErr, Est.all$DESIGN),

   names=paste(as.character(unique(Est.all$DESIGN)),“\

 n(”,Success.v, “%)”, sep=“”),

   confint=T, confnotch=T, confcol=0, medcol=1, ylim=c(-50, 50))

abline(h=0)

mtext(“ERR.VAR”, line=0.5)

mtext(“Bias [%]”, side=2, outer=F, line=2, cex=1)

#mtext(“Summary of Estimation Results (METHOD=FOCEI)”, side=3, 

outer=T, line=-2, cex=1)

if(export.plot){

 fileName <- paste(plotDir, “Bias###”,“.wmf”,sep=“”)

 export.graph(fileName,Name=paste(“GSD”,dev.cur(),sep=“”),ExportType

 =“WMF”)

}

##### Box Plots of %Precision

graphsheet(orientation=“p”)

par(mfrow=c(3,1))

par(mar=c(4,4,1,2)+.1)

par(mgp=c(2,0.75,0))

#

boxplot(split(abs(Est.all$CL.TV.RelErr), Est.all$DESIGN),

   confint=T, confnotch=T, confcol=0, medcol=1, ylim=c(0, 25))

abline(h=25, lty=2)

mtext(“CL.TV”, line=0.5)

mtext(“Absolute Error [%]”, side=2, outer=F, line=2, cex=1)

#

#

boxplot(split(abs(Est.all$V.TV.RelErr), Est.all$DESIGN),

   confint=T, confnotch=T, confcol=0, medcol=1, ylim=c(0, 50))

abline(h=25, lty=2)

mtext(“V.TV”, line=0.5)

mtext(“Absolute Error [%]”, side=2, outer=F, line=2, cex=1)

#

boxplot(split(abs(Est.all$KA.TV.RelErr), Est.all$DESIGN),

   names=paste(as.character(unique(Est.all$DESIGN)),“\

 n(”,Success.v, “%)”, sep=“”),

   confint=T, confnotch=T, confcol=0, medcol=1, ylim=c(0, 50))

abline(h=25, lty=2)

mtext(“KA”, line=0.5)

mtext(“Absolute Error [%]”, side=2, outer=F, line=2, cex=1)
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#

boxplot(split(abs(Est.all$CL.OM.RelErr), Est.all$DESIGN),

   confint=T, confnotch=T, confcol=0, medcol=1, ylim=c(0, 50))

abline(h=25, lty=2)

mtext(“CL.OM”, line=0.5)

mtext(“Absolute Error [%]”, side=2, outer=F, line=2, cex=1)

#

boxplot(split(abs(Est.all$V.OM.RelErr), Est.all$DESIGN),

   confint=T, confnotch=T, confcol=0, medcol=1, ylim=c(0, 50))

abline(h=25, lty=2)

mtext(“V.OM”, line=0.5)

mtext(“Absolute Error [%]”, side=2, outer=F, line=2, cex=1)

#

boxplot(split(abs(Est.all$ERR.VAR.RelErr), Est.all$DESIGN),

   names=paste(as.character(unique(Est.all$DESIGN)),“\

 n(”,Success.v, “%)”, sep=“”),

   confint=T, confnotch=T, confcol=0, medcol=1, ylim=c(0, 50))

mtext(“ERR.VAR”, line=0.5)

mtext(“Absolute Error [%]”, side=2, outer=F, line=2, cex=1)

if(export.plot){

 fileName <- paste(plotDir, “Precision###”,“.wmf”,sep=“”)

export.graph(fileName,Name=paste(“GSD”,dev.cur(),sep=“”),ExportType

=“WMF”)

}

#mtext(“Summary of Estimation Results (METHOD=FOCEI)”, side=3, 

 outer=T, line=-2, cex=1)
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13.1 INTRODUCTION

With the emergence of biotechnologies and the biomolecular techniques more 
than 20 years ago, the screening of new chemical entities (NCEs) has been focused 
more on receptor binding properties than administration–distribution–metabolism–
excretion (ADME) discrimination. This has led to the development of compounds 
with poor ADME properties. Among the pharmacokinetic (PK) properties of a 
NCE, a low and highly variable bioavailability results in poorly controlled plasma 
concentrations and drug effects. This is often the main reason for the failure of the 
development of a compound (1–4) and high attrition rates. In that sense, Lipinsky 
(5) recommends that the order of testing (pharmacological activity versus ADME 
properties) may change in order to discriminate early the NCE with poor PK prop-
erties. Nevertheless, signifi cant numbers of drugs currently under development have 
physicochemical and/or PK properties that are less than ideal for the oral route, 
which is often favored.

With the development of new formulation technologies, bioavailability may be 
improved when a compound has poor bioavailability. Metabolism inhibitors, pro-
drugs, membrane permeation enhancers, ion pairing and complexation, and particle 
carriers are examples of strategies to improve bioavailability (6). Formulation could 
also change during development or during the lifetime of a drug, in order to allow 
for new dosing regimens, line product extension, or strong patients’ needs. Matrix 
tablet, osmotic tablet, and particle coating are examples of formulation changes 
that can occur.

Therefore, two different situations can be highlighted for orally administered 
compounds. On one hand, the compound itself is hard to deliver, due to poor 
physicochemical and/or ADME properties; and on the other hand, the absorption 
of the compound is “controlled” by formulation properties. In both situations, the 
absorption profi le is called atypical (or irregular absorption profi le), in comparison 
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with a typical absorption profi le, where the absorption of the compound follows a 
fi rst-order or zero-order kinetic (7, 8).

In this chapter, we examine the analysis of both typical and atypical absorption 
profi les, along with enterohepatic recycling (EHR), which could affect both the 
bioavailability and the absorption profi le of a drug in a population of subjects.

13.2 GENERAL CONSIDERATIONS

13.2.1 Scope and Defi nitions

The oral route is most preferred for drug therapy. Other extravascular routes, such 
as subcutaneous, intramuscular, intranasal, lung delivery, and transdermal, also 
present some advantages in drug therapy. This chapter focuses on oral absorption, 
but models presented apply to other extravascular routes as well.

The terms absorption and bioavailability are often used interchangeably, 
meaning that the same defi nition may apply to both, that is, the degree to which 
or the rate at which a drug is absorbed or becomes available at the site of mea-
surement (or of action) after extravascular administration. For the purpose of 
this chapter, absorption is defi ned as the transfer from the site of administration 
across biologic barriers to a site where it is measured (e.g., the blood). Bioavail-
ability is defi ned as the fraction of a dose administered that reaches the general 
circulation or the site of action (9). It is relatively important to distinguish these 
two parameters in an absorption model, and the omission of the rate of absorption 
may have serious consequences on the interpretation of bioavailability depending 
on the underlying model. For example, in the case of endogenous substances, the 
term “bioavailability” is ambiguous unless one specifi es whether it refers to avail-
ability of the exogenous substance only or the sum total of the exogenous and 
endogenous substances.

Although intravenous (IV) dosing is very important for the determination of 
both clearance and volume of distribution, it is not addressed in this chapter. There-
fore, the analysis of the absolute bioavailability of a substance is not addressed. 
However, relative bioavailability (food effect, drug–drug interaction, time effect, 
dose nonproportionality, etc.) is covered.

Therefore, two different sets of parameters are defi ned:

• Parameters describing the rate of absorption
• Parameters describing the amount absorbed

Noncompartmental analysis (NCA) is the most frequently used method and pro-
vides good information about the absorption rate. For example, the concept of 
partial area under the curve (AUC) has been evaluated in comparative PK studies, 
and these metrics had greater statistical power than the peak plasma drug concen-
trations (Cmax) (10). However, NCA requires more samples than are customarily 
available in Phase 2/3 studies.

In this chapter, we focus on both the rate of absorption (e.g., rate constant ka

for a fi rst-order kinetic profi le) and the bioavailability (usually represented by the 
letter F).



13.2.2 Context: When Does One Need to Describe Absorption?

There is often a need to evaluate clinically signifi cant PK interactions in terms of 
rate and extent of absorption, by estimating Cmax, time to Cmax (tmax), and AUC. 
These are considered important variables for describing exposure. Rate of absorp-
tion can be increased, more often decreased, resulting in changes of tmax and Cmax;
or the extent of absorption can be increased or decreased, affecting both Cmax

and AUC (11). When effi cacy and/or safety can be related to Cmax in plasma or 
in another tissue or compartment, it may be important to describe accurately the 
absorption phase after single or repeat dose administration (12).

In acute disease conditions, such as pain, migraine, or emesis (13, 14), the rapid-
ity of onset of action is of primary importance. Delayed absorption of sumatriptan, 
due to encapsulation of the tablet in comparative studies, may account for the lower 
effi cacy of sumatriptan in comparative studies (15). On the contrary, a delayed 
absorption of furosemide, when it is prescribed in patients with congestive heart 
failure, on a chronic use may result in diuretic resistance (16, 17). The occurrence 
of adverse events may be related to Cmax, as for fl uoroquinolones that present car-
diotoxicity (18); while adverse events for moxifl oxacin used in clinical trials as a 
positive control for Q-T interval studies (19, 20) may be related to concentration 
in plasma rather than to AUC. High plasma concentrations of acyclovir may lead 
to precipitation of the drug in renal tubules due to low solubility, resulting in renal 
tubular damage and acute renal failure (21, 22). The pharmacokinetic/pharmacody-
namic (PKPD) modeling of diltiazem, a calcium channel blocker, shows absorption 
rate dependency of the hysteresis loop (23, 24). The maximum effects of sildenafi l 
on blood pressure and heart rate occur at peak plasma concentrations (25, 26).

On the contrary, the absorption of some drugs used in chronic diseases does 
not appear relevant to predict their effi cacy, as for antiepileptic drugs (27) and 
antiretroviral drugs such as antiproteases (28, 29). For digoxin, most of the models 
linked the time course of positive inotropic effect to digoxin amount in peripheral 
or effect compartment (30, 31), and, therefore, absorption phase does not present 
a real interest and is in fact irrelevant.

Table 13.1 presents some examples of drugs where absorption characteristics 
may or may not be important and suggests whether modeling the absorption is 
necessary for the development of the compound or not.

13.2.3 Sources of Variability in Absorption

The oral absorption of drugs is an extremely complex phenomenon that mani-
fests itself through the interaction between drug and patient-specifi c variables, as 
depicted in Figure 13.1.

Among drug properties that impact absorption, three are noteworthy:

• Physicochemical properties of the compound such as pKa, solubility, and 
lipophilicity

• Formulation characteristics such as the particle size, surface area, crystal form, 
and dosage forms (solution, tablet, capsule, suspension, emulsion, gel, and 
modifi ed released)

• Pharmacological drug properties regrouping the drug affi nity for transporters 
and enzymes of metabolism
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TABLE 13.1 When Should We Model the Absorption? A Review of Some Examples

 Absorption Acute Chronic
Characteristic Modeling Treatment Treatment

Effi cacy + Analgesic: morphine Diuretic: furosemide
   (14)  (16, 17)
  Antimigraine: triptans
    (15)
  Antiemetic:
   ondansetron (13)
  Erectile dysfunction:
   sildenafi l (26)

−  Antiepileptic (27)
   Antiretroviral drug
    (28, 29)

Safety + Erectile dysfunction: Antiviral drug:
   sildenafi l (25, 26)  valaciclovir (21, 22)
  Antimigraine: triptans Antibiotic: moxifl oxacin
   (15)  (19–20)
   Calcium channel blocker:
    diltiazem (23, 24)

−  Digitalis drug: digoxin
    (30, 31)

Patient

Drug

Population

FIGURE 13.1 Variables to take into account in population absorption model.

The impact of the physicochemical properties of a compound on rate and extent 
of drug absorption has been extensively reported (5, 32–35). For example, the sen-
sitivity of absorption to particle size decreases with increasing dose and solubility 
(36) and formulation characteristics affect the dissolution rate and, subsequently, 
rate and extent of absorption (37).



Absorption can be affected by the presence of an effl ux mechanism such as P-
glycoprotein. Drug binding may affect oral absorption: fl uoroquinolones bind to 
cations and form insoluble chelates, resulting in a decrease of bioavailability (11).

Usually, investigation of these properties is performed during drug discovery or 
at preclinical stage for lead compound selection (37, 38). In this chapter, an effort 
is made to describe absorption as an overall process, and not to describe each 
mechanism.

Among the patient-specifi c variables affecting absorption, one can differentiate 
between internal and external factors. Internal factors include gastrointestinal (GI) 
tract function, represented by pH, stomach emptying time, and transit time varying 
with age, gender, and diseases (Crohn’s disease, celiac disease, AIDS enteropathy, 
drug- and irradiation-induced malabsorption) (7). Other sources of within-subject 
variability in absorption include diurnal factors, changes in blood fl ow, body posi-
tion, and volume of fl uid intake. External factors include food, alcohol, or concomi-
tant medications that may affect the dissolution of the drug or GI function.

In early drug development, the description of the absorption profi le is important 
for the selection of the most suitable lead compound. In later clinical phases of 
full development, the description of the variability in drug absorption may become 
more important, for evaluation of safety and effi cacy.

The population pharmacokinetic (PPK) modeling approach should be executed 
while taking into account the physicochemical properties of a drug, the patho-
physiology of a patient, and the variability of all the different mechanisms of 
absorption.

The description and quantifi cation of between-subject variability become very 
important in a population of patients. For example, the double-peak phenomenon 
observed on median PK profi les of sustained-release diclofenac is due to large dif-
ferences in individual tmax values (39).

13.2.4 The Data: Experimental Design for Assessing 
Drug Absorption and Enterohepatic Recycling

Intensive and detailed Phase 1 and 2 studies of small groups of healthy subjects 
or patients provide the most complete picture of a drug’s essential properties. The 
following variables must be collected and accounted for in population modeling of 
the absorption process.

• A full drug dose and concentration data profi le with or without IV data to iden-
tify a structural model with adequate absorption phase samples to estimate the 
parameters must be collected. Absorption is best described by physiologically 
based modeling. However, development of such a model necessitates a large 
amount of data, which is seldom available in humans. Use of animal studies, 
radiolabels (usefulness is limited as not only parent drug but also metabo-
lites are measured if there is presystemic metabolism), Caco-2, Madin–Darby 
canine kidney (MDCK) cell based, parallel artifi cial membrane permeation 
assay (PAMPA), isolated segment of gastrointestinal tract (animal), perfusion 
methods (segment of the gut is perfused and cannulated), and Ussing chamber 
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may provide such data. If the infl uence of the absorption rate needs to be 
evaluated in patients, then one needs to design a sampling protocol to allow 
such estimation.

• All the factors affecting absorption as presented in Figure 13.1 should be 
addressed. Salient data need to be collected and patients monitored. Patients 
may need to be stratifi ed for various factors such as concomitant medications, 
sex, and age.

• Blood sampling strategies may need to be selected in relation to meal times to 
describe enterohepatic recycling.

• One must account for PK/PD data so that if one wants to discriminate between 
the infl uence of Cmax or AUC on clinical effi cacy/safety markers, special atten-
tion should be paid to experimental design (i.e., optimizing for both PK samples 
and PD assessments).

13.2.5 Analysis Strategy for Evaluating a Suitable 
Population Absorption Model

Rich Data: Structural Model

• Plots. A general procedure has been proposed for the analysis of absorption 
profi les following oral administration of a drug (7, 8), where it is strongly 
suggested to plot fi rst concentration–time data on both linear and log-linear 
scales by subject before attempting to model the data. Visual examination of the 
graphs helps to identify whether the absorption profi les are typical or atypical. 
This allows one to choose the most suitable absorption model for the majority 
of the patients. For large populations, “spaghetti” plots are preferred.

• Individual Analysis. However, if the plots are too different between subjects 
and no obvious absorption model is suggested by the graphs, one should start 
with individual modeling on a range of doses and demographic groups repre-
sentative of the population.

• Secondary Peaks. If the plots display secondary peak, the AUC represented by 
the second peak should be estimated in relation to total AUC to decide if the 
model needs to describe this peak. With repeated secondary peaks, intravenous 
(IV) data are critical to assert the presence of enterohepatic recycling.

• Deconvolution. The absorption profi le may be represented by plots of instan-
taneous rate of absorption as a function of time, through deconvolution (8).

Sparse Data, Many Subjects: Population Model

• Sampling Design Issues. Often, in Phase 3 clinical studies, the absorption kinet-
ics are diffi cult to characterize with precision, because too few samples are taken 
during the early phase of absorption. In the case where plasma concentrations 
have already reached their highest values in the fi rst samples, two approaches 
can be used. Either it is assumed that the drug was administered as a bolus 
IV or a constant rate infusion is defi ned up to the fi rst plasma sample (40). It 
should be noted that fi xing absorption parameters using prior knowledge could 
lead to biased estimates of disposition and elimination parameters.



• Effect of Time and Repeated Dosing on Pharmacokinetics. The majority of 
absorption models deal with single-dose administration. However, upon chronic 
administration of multiple doses of a drug, the time to reach the peak plasma 
concentration (40) or the maximum of plasma concentrations may change. 
Both rate and extent of absorption can vary over the duration of a study due to 
between-occasion variability or the time effect on the absorption of the drug.

• Diffi culties in Estimating Absorption Parameters. Very often, little attention is 
given to sampling design in long-term Phase 2/3 studies. Identifi ability of the 
population absorption and enterohepatic models need to be carefully assessed 
before launching into a full scale analysis of data (41). Identifi ability problems 
may arise due to a high correlation between parameters (e.g., central volume of 
distribution and ka) or collinearity (the effect of common covariates on several 
PK para meters). Moreover, a design based on healthy subjects data may prove 
inappropriate in patients who have a different absorption profi le.

13.3 DRUG ABSORPTION MODELS

The typical absorption profi les are represented by the fi rst-order absorption and 
the zero-order absorption. Atypical absorption profi les can be described by parallel 
fi rst-order absorption, mixed fi rst-order and zero order absorption, or Weibull-type 
absorption.

In most papers, a small number of different models are used. Those are described 
in detail here. All models are defi ned using differential equations, although, for the 
simple cases, analytical solutions exist for the description of plasma drug concentra-
tions that obviously render the analyses quicker.

The models are illustrated using simulations of plasma concentrations of a drug 
X, in 50 subjects following single administration of a dose of 10 mg. For simplicity 
and clarity of the results, the drug X is assumed to follow a one-compartment dis-
position model, with population apparent clearance (CL) of 5 L/h, and population 
apparent volume of distribution (V) of 50 L. Between-subjects variability (BSV) 
is modeled using a proportional error model and is expressed as coeffi cient of 
variation (%CV). For both apparent clearance and volume of distribution, BSV 
is defi ned as 20% CV. Population parameters (fi xed and random effects) for the 
different absorption models are presented in Table 13.2. Again, for simplicity and 
clarity of the absorption models presented, residual error is not taken into account 
in the simulations, although noise in the data is often a drawback to successfully 
estimate models of absorption data.

13.3.1 Example 1: First-Order Absorption Model

Oral drug absorption is often described as a fi rst-order mechanism, and through 
compartmental modeling, oral absorption is represented by the fi rst-order absorp-
tion rate constant, ka (per time unit). Although it is not used in the current example, 
inclusion of lag time may be needed to better describe absorption processes. The 
kinetics of drug amount in the plasma following a fi rst-order absorption process is 
described by a system of differential equations, as follows:
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dA
dt

k Aa
1

1
( ) = − ( )

 (13.1)

dA
dt

k A
CL
V

Aa
2

1 2
( ) = ( ) − ( )

 (13.2)

with the initial conditions at time zero

A(1) = DOSE

A(2) = 0

and where ka is the fi rst-order absorption rate constant and CL and V are as defi ned 
above.

The plasma drug profi les in 50 subjects, following oral administration of the drug 
X and assuming a fi rst-order absorption process, are plotted in Figure 13.2. Cor-
responding NONMEM control fi le and data set are in Appendix 13.1.

13.3.2 Example 2: Zero-Order Absorption Model

Although the assumption of fi rst-order absorption is satisfactory for many drugs, 
the absorption of certain drugs is better described by assuming a zero-order (con-
stant rate) absorption. The absorption can be described either by a constant rate 

TABLE 13.2 Absorption Parameters Used for Simulations of One-Compartment Model 
with CL = 5 L/h (20% CV), V = 50 L (20% CV), and Dose = 10 mg

  Values (Between-
Type of Absorption Absorption Parameters Subject Error)

First-order absorption Ka (h−1) 0.5 (60% CV)
Zero-order absorption Duration (h) 2 (60% CV)
Two parallel fi rst-order Ka1 (h−1) 0.8 (60% CV)
 absorptions Ka2 (h−1) 0.6 (60% CV)
 Lag time for second process (h) 5 (20% CV)
 Fraction of the dose absorbed 0.5 (20% CV)
  through the fi rst process
Mixed fi rst-order and Ka (h−1) 0.5 (60% CV)
 zero-order absorption Duration (h) 2 (60% CV)
 Lag time for zero-order process (h) 2 (20% CV)
 Fraction of the dose absorbed 0.5 (20% CV)
  through the fi rst-order process
Weibull absorption Ka (h−1) 0.4 (60% CV)
 (one function) g 4 (20% CV)
Weibull absorption Ka1 (h−1) 2 (60% CV)
 (two functions) g  1 0.5 (20% CV)

Ka2 (h−1) 0.2 (60% CV)
g  2 4 (20% CV)

 Fraction of the dose absorbed 0.5 (20% CV)
  through the fi rst process



(amount/time unit), or a duration of infusion (time unit). For the purpose of our 
example, the zero-order absorption is described by a duration D1, without a lag 
time. The kinetics of the drug amount in plasma is described by the following dif-
ferential equations.

For time ≤ D1,

dA
dt

DOSE
D

CL
V

A
1

1
1

( )
= − ( )  (13.3)

For time > D1,

dA
dt

CL
V

A
1

1
( )

= − ( )  (13.4)

with the initial condition at time zero

A(1) = 0

and where D1 is the duration of the zero-order absorption and CL and V are as 
defi ned above.

The plasma drug profi les in 50 subjects, following oral administration of the drug 
X and assuming a zero-order absorption process, are plotted in Figure 13.3. Cor-
responding NONMEM control fi le and data set are in Appendix 13.2.

13.3.3 Example 3: Two Parallel First-Order Absorption Models

In some cases, after oral administration, the plasma concentrations exhibit a double 
peak or shouldering-type absorption. One of the reasons to explain such kinetic 
behavior is the presence of an enterohepatic recycling. However for enterohepatic 
recycling, the double-peak appearance would be independent of the administration 
route and should be present after IV administration. Enterohepatic recycling is 
addressed in detail in Section 13.4.
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FIGURE 13.2 Plot of simulated plasma concentrations of drug X in 50 subjects, following 
a single oral dose, assuming a fi rst-order absorption type. Normal (left panel) and semilog 
(right panel) scale. Thick line represents population predictions for a typical subject.
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There are several explanations for the double-peak phenomenon after oral 
administration. There may be two distinct sites of absorption (42), gastric empty-
ing limited absorption (43), or a variable gastric emptying rate (44–50), or it may be 
due to formulation characteristics (39). However, the concept of parallel fi rst-order 
absorption is not limited to two absorption processes (51–55).

For example, a two parallel fi rst-order absorption type can be one where the 
fi rst process starts without a lag time and the second process starts with a lag time 
(ALAG2). Without lag time this absorption is called “simultaneous fi rst-order 
absorption.” In population modeling, the presence of more than one lag time often 
makes the model diffi cult to identify and in case the between-subject variability in 
lag time is important, there might be an identifi ability problem for the population 
absorption model. Prior information, from preclinic or previous PK studies, may 
help in defi ning the structure of the model.

The kinetics of drug amount in the plasma following two parallel fi rst-order absorp-
tion processes is described by the following system of differential equations.

For time ≤ ALAG2,

dA
dt
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11
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dA
dt

k A
CL
V

Aa
3

1 31
( )

= ( ) − ( )  (13.6)

For time > ALAG2,
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dt
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FIGURE 13.3 Plot of simulated plasma concentrations of drug X in 50 subjects, following 
a single oral dose, assuming a zero-order absorption type. Normal (left panel) and semilog 
(right panel) scale. Thick line represents population predictions for a typical subject.



with the initial conditions at time zero

 A(1) = f · DOSE

A(2) = (1 − f ) · DOSE

 A(3) = 0

and where ka1 is the rate constant of absorption for the fi rst absorption process, ka2

is the rate constant of absorption for the second absorption process, f is the fraction 
of the dose absorbed through the fi rst absorption process, ALAG2 is the lag time 
for the second absorption process to start, and CL and V are as defi ned above.

The plasma drug profi les in 50 subjects, following oral administration of the drug 
X and assuming two parallel fi rst-order absorption processes, are plotted in Figure 
13.4. Corresponding NONMEM control fi le and data set are in Appendix 13.3.

13.3.4 Example 4: Mixture of First-Order Absorption and 
Zero-Order Absorption Models

Sometimes, two fi rst-order absorption processes do not adequately describe the 
data and the absorption profi les are better described by a combination of fi rst-order 
and zero-order processes (40, 56–59). Lag time may be added for each type of 
absorption, which then will determine whether the two processes are simultaneous 
or sequential. Moreover, if the fi rst-order rate constant is linked to the zero-order 
input parameters, the model can be interpreted as the consequence of dissolution-
limited absorption. The ordering of the processes (fi rst-order absorption fi rst, or 
zero-order absorption fi rst) is usually empirical or data driven. Pathophysiology 
and/or physicochemical characteristics of the compound may help in deciding the 
order.

For the current example, the fi rst-order process starts immediately after dosing 
and is followed, with a lag time (ALAG2), by a zero-order process. The kinetics of 
drug amount in the plasma is described by a system of differential equations.
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FIGURE 13.4 Plot of simulated plasma concentrations of drug X in 50 subjects, following 
a single oral dose, assuming two parallel fi rst-order absorption types. Normal (left panel)
and semilog (right panel) scale. Thick line represents population predictions for a typical 
subject.
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For time ≤ ALAG2,
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For time > D1 + ALAG2,
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with the initial conditions at time zero

A(1) = f · DOSE

 A(2) = 0

and where ka is the rate constant of absorption for the fi rst-order absorption process, 
D2 is the duration of absorption for the zero-order absorption process, f is the 
fraction of the dose absorbed through the fi rst-order absorption process, ALAG2
is the lag time for the zero-order absorption process to start, and CL and V are as 
defi ned above.

The plasma drug profi les in 50 subjects, following oral administration of the drug 
X and assuming a mixture of fi rst-order and zero-order absorption processes, are 
plotted in Figure 13.5. Corresponding NONMEM control fi le and data set are in 
Appendix 13.4.

13.3.5 Example 5: Weibull-Type Absorption Model

It may be the case that none of the above absorption models allows an ade-
quate or appropriate description of the plasma concentration profi les. The use 
of Weibull function(s) may then provide an improved description of the data 
(60–66).

The kinetics of drug amount in the plasma following a Weibull absorption process 
is described by a system of differential equations, as follows:



dA
dt

WB A
1

1
( )

= − ⋅ ( )  (13.16)

dA
dt

WB A
CL
V

A
2

1 2
( )

= ⋅ ( ) − ( )  (13.17)
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with the initial conditions at time zero

A(1) = DOSE

 A(2) = 0

and where ka1 is the fi rst-order absorption constant rate for the fi rst phase, g1 is the 
shape factor for the fi rst phase, ka2 is the fi rst-order absorption constant rate for 
the second phase, g2 is the shape factor for the second phase, f is the fraction of the 
dose in the fi rst phase, and CL and V are as defi ned above.

The plasma drug profi les in 50 subjects, following oral administration of the drug 
X and assuming Weibull-type absorption, are plotted in Figure 13.6 (one Weibull 
function) and in Figure 13.7 (two Weibull functions). Corresponding NONMEM 
control fi les and data sets are in Appendix 13.5.

12.3.6 Other Atypical Absorption Models

The models presented above will allow the adequate description of most drug 
absorption profi les; however, on occasion more complex models are needed. 
These would include the saturable time-constraint absorption model with a storage 
compartment (67), an extended compartmental absorption and transit model for 
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FIGURE 13.5 Plot of simulated plasma concentrations of drug X in 50 subjects, following 
a single oral dose, assuming a mixture of fi rst-order and zero-order absorption types. Normal 
(left panel) and semilog (right panel) scale. Thick line represents population predictions for 
a typical subject.
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FIGURE 13.6 Plot of simulated plasma concentrations of drug X in 50 subjects, following 
a single oral dose, assuming a Weibull-type (one function) absorption. Normal (left panel)
and semilog (right panel) scale. Thick line represents population predictions for a typical 
subject.
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FIGURE 13.7 Plot of simulated plasma concentrations of drug X in 50 subjects, following 
a single oral dose, assuming a Weibull-type (two functions) absorption. Normal (left panel)
and semilog (right panel) scale. Thick line represents population predictions for a typical 
subject.

saturable small intestinal absorption (68), or an Erlang frequency distribution, which 
describes asymmetric S-shape absorption profi les (69), inverse Gaussian input (70, 
71), and gamma distribution (72). Dual site absorption models can be described by 
models involving the description of two processes (two parallel fi rst-order, mixed 
zero-order and fi rst-order, etc.).

13.4 ENTEROHEPATIC RECYCLING MODEL

Enterohepatic recycling occurs when there is biliary excretion followed by intestinal 
reabsorption of a compound, sometimes with hepatic conjugation and intestinal 
deconjugation. Multiple peaks in a plasma concentration–time profi le may be a 
consequence of this recycling. Determining whether the multiple peaks are due 



to irregular absorption or enterohepatic recycling is of crucial importance, since 
the latter may signifi cantly affect the half-life (prolongation), the exposure, and the 
bioavailability of the drug (73–75). Several methods exist for assessing the existence 
and degree of the enterohepatic recycling. Usually, when comparing the plasma 
concentration–time profi les obtained after oral and intravenous administration, if 
enterohepatic recycling is present the multiple peaks should be observed for both 
routes of administration. When intravenous administration is problematic, the use 
of charcoal administration after oral administration of the drug (76–78) or use of 
biliary tube drainage (79–81) may help in determining the relevance and the extent 
of the enterohepatic recycling phenomenon.

A general treatment of enterohepatic recycling based on the fraction of the drug 
in systemic circulation that is excreted in the bile and the fraction of drug reab-
sorbed from the gut that reaches systemic circulation in each enterohepatic cycle has 
been proposed (82). However, the description of enterohepatic recycling is often 
done through compartmental models. The recycling models can be divided between 
models with gallbladder emptying at regular intervals and models with gallbladder 
emptying at irregular intervals (83, 84). Irregular biliary emptying models are math-
ematically complex because the onset of gallbladder emptying needs to be known. 
Hence, these models are often limited to one or two recirculations (48, 85–88). The 
latter models are related to physiology since gallbladder emptying starts when food 
enters the region of the upper gastrointestinal tract (89). Moreover, enterohepatic 
recycling is often assessed following administration of a single dose but less often 
after multiple dosing (84).

Recent population modeling papers described multiple peaks due to entero-
hepatic recycling (85, 89). We present a model that takes into account multiple 
peaks at irregular intervals, after a single oral dose of a drug Y. Data from a Phase 
1 study were analyzed. Meal times were known for the fi rst 24 hours (4, 9, and 23 
hours postdose). Drug Y pharmacokinetics was described by a zero-order absorp-
tion process and a two-compartment disposition model with fi rst-order elimination. 
The drug was assumed to accumulate in the gallbladder following a fi rst-order rate 
constant. Gallbladder emptying was postulated to be at meal times (4, 9, and 23 
hours postdose) directly into the central compartment with zero-order kinetics 
(Figure 13.8).

FIGURE 13.8 Enterohepatic recycling model.
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The system of differential equations describing the amounts of the drug in the 
different compartments is as follows.

For ALAG1 < time ≤ D1, and outside the gallbladder emptying period,
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For time > D1, and outside the gallbladder emptying period,
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For 4 < time ≤ (4 + T31), 9 < time ≤ (9 + T31), 23 < time ≤ (23 + T31),
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with the initial condition at time zero

A(1) = 0

A(2) = 0

A(3) = 0

and where D1 is the duration of the zero-order absorption, ALAG1 is the lag time, 
K13 is the fi rst-order rate constant for drug accumulation in gallbladder, T31 is the 
duration of the zero-order emptying process of the gallbladder into the central com-
partment, and CL, Q2, V1, and V2 are disposition and elimination parameters.



Population parameter estimates with between-subject variability, obtained 
from the analysis of the Phase 1 data, are presented in Table 13.3. Simulated 
plasma drug profi les in 50 subjects, following a single 10 mg oral administration, are 
plotted in Figure 13.9. Corresponding NONMEM control fi le and data set are in 
Appendix 13.6.

13.5 SUMMARY

A wide array of drug absorption models and powerful computational facilities 
are available to population and traditional PK modelers, yet adequate absorption 
models are seldom available, presented in the literature, or estimated during drug 
development. The factor limiting the development of adequate absorption models is 
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FIGURE 13.9 Plot of simulated plasma concentrations of drug Y in 50 subjects, following 
a single oral dose, assuming zero-order absorption, and an enterohepatic recycling phenom-
enon. Normal (left panel) and semilog (right panel) scale. Thick line represents population 
predictions for a typical subject.

TABLE 13.3 Population Parameters of Drug Y, Following a Single Oral 
Dose of 10 mg, Obtained After Analyzing a Data Pool of Phase 1 Study 
(Residual Variability Not Taken into Account)

Parameters Estimates Between-Subject Error

Disposition parameters
CL (L/h)  0.518 55.9% CV
V1 (L) 31.1 32.1% CV
Q2 (L/h)  2.23 76.4% CV
V2 (L) 47.1 —

Absorption parameters
D1 (h)  0.196 70.7% CV
ALAG1 (h)  0.123 —

Enterohepatic recycling parameters
K13 (h−1)  0.0236 —
T13 (h)  1.55 —
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the design and execution of studies that will allow precise characterization of drug 
absorption. Given the importance of characterizing absorption, more effort should 
be expended on developing these models in the future.

The need for developing population models of absorption and/or enterohepatic 
recycling should be carefully assessed, keeping in mind the physiology principles 
behind the absorption process and the objectives of the analysis. Models can be 
developed to describe and summarize the data. When one wishes to use a model in 
order to simulate data not yet observed, the model must be completed by exploring 
and quantifying the variability (90–92).

The population approach for the description of the absorption of drugs has 
several advantages. First, the modeling approach is an objective assessment (statisti-
cal chi-square test) for the quantifi cation of the factors affecting the absorption of 
a compound, especially when data come from different sources (pooled data from 
several studies). Second, with the use of the Bayesian estimation, it is possible to 
get individual PK parameters and then perform PK/PD analyses.

For clinical purposes, the fi rst step is to classify factors infl uencing drug absorp-
tion with respect to the alterations in time course and magnitude of plasma concen-
trations with normal (healthy subjects vs. patients) or controlled conditions (food 
effect, drug–drug interactions). Historically, the characterization of drug absorption 
has been described empirically and lacked physiological rationale. In the future 
more attention should be paid to atypical absorption and improved study designs 
should be executed that better characterize the absorption profi le.
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APPENDIX 13.1 FIRST-ORDER ABSORPTION

NONMEM Input

$PROB First-Order Absorption

$INPUT ID TIME DV AMT CMT EVID MDV

$DATA EX1_DATA.csv

IGNORE=#

$SUBROUTINE ADVAN6 TOL=4

$MODEL NCOMP=2

COMP=(DEPOT,DEFDOSE) COMP=(CENTRAL,DEFOBS)

$PK

CL = THETA(1)*EXP(ETA(1))

V = THETA(2)*EXP(ETA(2))

KA = THETA(3)*EXP(ETA(3))

K12 = KA

K20 = CL/V

S2=V/1000

$DES

DADT(1) = -K12*A(1)

DADT(2) = K12*A(1) - K20*A(2)

$ERROR

;additive error

 Y=F+ERR(1)

 IPRED=F

$THETA

5 ;1 CL

50 ;2 V2

0.5 ;3 KA

$OMEGA

0.04 ; 20% CV for CL

0.04 ; 20% CV for V

0.36 ; 60% CV for KA



$SIGMA 0.02

$SIMULATION (123456789) ONLYSIM

$TABLE NOPRINT ONEHEADER FILE=FIRST.PAR

ID TIME DV AMT EVID MDV KA CL V IPRED

Data Set

#ID TIME DV AMT CMT EVID MDV

1    0 . 10 1 1 1

1 0.5 . . 2 0 0

1    1 . . 2 0 0

1 1.5 . . 2 0 0

1    2 . . 2 0 0

1 2.5 . . 2 0 0

1    3 . . 2 0 0

1 3.5 . . 2 0 0

1    4 . . 2 0 0

1 4.5 . . 2 0 0

1    5 . . 2 0 0

1    6 . . 2 0 0

1    7 . . 2 0 0

1    8 . . 2 0 0

1    9 . . 2 0 0

1   10 . . 2 0 0

1   14 . . 2 0 0

1   16 . . 2 0 0

1   24 . . 2 0 0

2    0 . 10 1 1 1

2 0.5 . . 2 0 0

2    1 . . 2 0 0
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APPENDIX 13.2 ZERO-ORDER ABSORPTION

NONMEM Input

$PROB Zero-Order Absorption

$INPUT ID TIME DV AMT CMT RATE EVID MDV

$DATA EX2_DATA.csv

IGNORE=#

$SUBROUTINE ADVAN6 TOL=4

$MODEL NCOMP=1

COMP=(DEPOT,DEFDOSE,DEFOBS)

$PK

CL = THETA(1)*EXP(ETA(1))

V = THETA(2)*EXP(ETA(2))

;duration (h) of the zero-order process

D1 = THETA(3)*EXP(ETA(3))

K10 = CL/V

S1=V/1000

$DES

DADT(1) = - K10*A(1)

$ERROR

;additive error

Y=F+ERR(1)

IPRED=F

$THETA

5 ;1 CL

50 ;2 V

2 ;3 D1

$OMEGA

 0.04 ; 20% CV for CL

 0.04 ; 20% CV for V

 0.36 ; 60% CV for D1

$SIGMA 0.02

$SIMULATION (123456789) ONLYSIM

$TABLE NOPRINT ONEHEADER FILE=ZERO.PAR

ID TIME DV AMT EVID MDV D1 CL V IPRED



Data Set

#ID TIME DV AMT CMT RATE EVID MDV

1 0 . 10 1 −2 1 1

1 0.5 . . 1  0 0

1 1 . . 1  0 0

1 1.5 . . 1  0 0

1 2 . . 1  0 0

1 2.5 . . 1  0 0

1 3 . . 1  0 0

1 3.5 . . 1  0 0

1 4 . . 1  0 0

1 4.5 . . 1  0 0

1 5 . . 1  0 0

1 6 . . 1  0 0

1 7 . . 1  0 0

1 8 . . 1  0 0

1 9 . . 1  0 0

1 10 . . 1  0 0

1 14 . . 1  0 0

1 16 . . 1  0 0

1 24 . . 1  0 0

2 0 . 10 1 −2 1 1

2 0.5 . . 1  0 0

2 1 . . 1  0 0
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APPENDIX 13.3 TWO PARALLEL FIRST-ORDER ABSORPTIONS

NONMEM Input

$PROB Two Parallel first-order Absorption

$INPUT ID TIME DV AMT CMT EVID MDV

$DATA EX3_DATA.csv

IGNORE=#

$SUBROUTINE ADVAN6 TOL=4

$MODEL NCOMP=3

COMP=(DEPOT1,DEFDOSE) COMP=(DEPOT2) COMP=(CENTRAL,DEFOBS)

$PK

CL = THETA(1)*EXP(ETA(1))

V = THETA(2)*EXP(ETA(2))

KA1 = THETA(3)*EXP(ETA(3))

KA2 = THETA(4)*EXP(ETA(4))

;lag time for second process

ALAG2 = THETA(5)*EXP(ETA(5))

;F1 fraction of the dose absorbed through the first process

F1 = THETA(6)*EXP(ETA(6))

;F2 fraction of the dose absorbed through the second process

F2 = 1-F1

K13 = KA1

K23 = KA2

K30 = CL/V

S3=V/1000

$DES

DADT(1) = -K13*A(1)

DADT(2) = -K23*A(2)

DADT(3) = K13*A(1) + K23*A(2) - K30*A(3)

$ERROR

;additive error

Y=F+ERR(1)

IPRED=F

$THETA

5 ;1 CL

50 ;2 V



0.8 ;3 KA1

0.6 ;4 KA2

5 ;5 ALAG2

0.5 ;6 F1

$OMEGA

 0.04 ; 20% CV for CL

 0.04 ; 20% CV for V

 0.36 ; 60% CV for KA1

 0.36 ; 60% CV for KA2

 0.04 ; 20% CV for ALAG2

 0.04 ; 20% CV for F1

$SIGMA 0.02

$SIMULATION (123456789) ONLYSIM

$TABLE NOPRINT ONEHEADER FILE=PARAL.PAR

ID TIME DV AMT EVID MDV

KA1 KA2 ALAG2 F1 F2 CL V IPRED

Data Set

#ID TIME DV AMT CMT EVID MDV

1 0 . 10 1 1 1
1 0 . 10 2 1 1
1 0.5 . . 3 0 0
1 1 . . 3 0 0
1 1.5 . . 3 0 0
1 2 . . 3 0 0
1 2.5 . . 3 0 0
1 3 . . 3 0 0
1 3.5 . . 3 0 0
1 4 . . 3 0 0
1 4.5 . . 3 0 0
1 5 . . 3 0 0
1 6 . . 3 0 0
1 7 . . 3 0 0
1 8 . . 3 0 0
1 9 . . 3 0 0
1 10 . . 3 0 0
1 14 . . 3 0 0
1 16 . . 3 0 0
1 24 . . 3 0 0
2 0 . 10 1 1 1
2 0 . 10 2 1 1
2 0.5 . . 3 0 0
2 1 . . 3 0 0
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APPENDIX 13.4 MIXTURE OF FIRST-ORDER AND 
ZERO-ORDER ABSORPTION

NONMEM Input

$PROB Mix first-zero order Absorption

$INPUT ID TIME DV AMT CMT RATE EVID MDV

$DATA EX4_DATA.csv

IGNORE=#

$SUBROUTINE ADVAN6 TOL=4

$MODEL NCOMP=2

COMP=(DEPOT,DEFDOSE) COMP=(CENTRAL,DEFOBS)

$PK

CL = THETA(1)*EXP(ETA(1))

V = THETA(2)*EXP(ETA(2))

KA = THETA(3)*EXP(ETA(3))

D2 = THETA(4)*EXP(ETA(4))

;ALAG2 lag time for zero-order process

ALAG2 = THETA(5)*EXP(ETA(5))

;F1 fraction of the dose absorbed through the first-order process

F1 = THETA(6)*EXP(ETA(6))

;F2 fraction of the dose absorbed through the zero-order process

F2 = 1-F1

K12 = KA

K20 = CL/V

S2=V/1000

$DES

DADT(1) = -K12*A(1)

DADT(2) = K12*A(1) - K20*A(2)

$ERROR

;additive error

 Y=F+ERR(1)

 IPRED=F

$THETA

5 ;1 CL

50 ;2 V2

0.5 ;3 KA

2 ;4 D2

2 ;5 ALAG2



0.5 ;6 F1

$OMEGA

 0.04 ; 20% CV for CL

 0.04 ; 20% CV for V

 0.36 ; 60% CV for KA

 0.36 ; 60% CV for D1

 0.04 ; 20% CV for ALAG2

 0.04 ; 20% CV for F1

$SIGMA 0.02

$SIMULATION (123456789) ONLYSIM

$TABLE NOPRINT ONEHEADER FILE=MIX.PAR

 ID TIME DV AMT EVID MDV

 KA D2 ALAG2 F1 F2 CL V IPRED

Data Set

#ID TIME DV AMT CMT RATE EVID MDV

1 0 . 10 1 . 1 1
1 0 . 10 2 −2 1 1
1 0.5 . . 2  0 0
1 1 . . 2  0 0
1 1.5 . . 2  0 0
1 2 . . 2  0 0
1 2.5 . . 2  0 0
1 3 . . 2  0 0
1 3.5 . . 2  0 0
1 4 . . 2  0 0
1 4.5 . . 2  0 0
1 5 . . 2  0 0
1 6 . . 2  0 0
1 7 . . 2  0 0
1 8 . . 2  0 0
1 9 . . 2  0 0
1 10 . . 2  0 0
1 14 . . 2  0 0
1 16 . . 2  0 0
1 24 . . 2  0 0
2 0 . 10 1 . 1 1
2 0 . 10 2 −2 1 1
2 0.5 . . 2  0 0
2 1 . . 2  0 0
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APPENDIX 13.5 WEIBULL-TYPE ABSORPTION

NONMEM Input for One Weibull Function

$PROB Weibull-type Absorption (n=1)

$INPUT ID TIME DV AMT CMT EVID MDV

$DATA EX5_DATA.csv

IGNORE=#

$SUBROUTINE ADVAN6 TOL=4

$MODEL NCOMP=2

COMP=(DEPOT,DEFDOSE) COMP=(CENTRAL,DEFOBS)

$PK

CL = THETA(1)*EXP(ETA(1))

V = THETA(2)*EXP(ETA(2))

;Weibull parameters

KA1 = THETA(3)*EXP(ETA(3))

GAMA1 = THETA(4)*EXP(ETA(4))

;Weibull function

WB = 1-EXP((-(KA1*TIME)**GAMA1))

K20 = CL/V

S2=V/1000

$DES

DADT(1) = -WB*A(1)

DADT(2) = WB*A(1) - K20*A(2)

$ERROR

;additive error

Y=F+ERR(1)

IPRED=F

$THETA

5 ;1 CL

50 ;2 V2

0.4 ;3 KA1

4 ;4 GAMMA1

$OMEGA



 0.04 ; 20% CV for CL

 0.04 ; 20% CV for V

 0.36 ; 60% CV for KA1

 0.04 ; 20% CV for GAMMA1

$SIGMA 0.02

$SIMULATION (123456789) ONLYSIM

$TABLE NOPRINT ONEHEADER FILE=WEIBULL3.PAR

 ID TIME DV AMT EVID MDV

 KA1 GAMA1 WB CL V IPRED

Data Set for One Weibull Function

#ID TIME DV AMT CMT EVID MDV

1 0 . 10 1 1 1

1 0.5 . . 2 0 0

1 1 . . 2 0 0

1 1.5 . . 2 0 0

1 2 . . 2 0 0

1 2.5 . . 2 0 0

1 3 . . 2 0 0

1 3.5 . . 2 0 0

1 4 . . 2 0 0

1 4.5 . . 2 0 0

1 5 . . 2 0 0

1 6 . . 2 0 0

1 7 . . 2 0 0

1 8 . . 2 0 0

1 9 . . 2 0 0

1 10 . . 2 0 0

1 14 . . 2 0 0

1 16 . . 2 0 0

1 24 . . 2 0 0

2 0 . 10 1 1 1

2 0.5 . . 2 0 0

2 1 . . 2 0 0

NONMEM Input for Two Weibull Functions

$PROB Weibull-type Absorption (n=2)

$INPUT ID TIME DV AMT CMT EVID MDV

$DATA EX5_DATA2.csv

IGNORE=#
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$SUBROUTINE ADVAN6 TOL=4

$MODEL NCOMP=2

COMP=(DEPOT,DEFDOSE) COMP=(CENTRAL,DEFOBS)

$PK

CL = THETA(1)*EXP(ETA(1))

V = THETA(2)*EXP(ETA(2))

;Weibull parameters

KA1 = THETA(3)*EXP(ETA(3))

GAMA1 = THETA(4)*EXP(ETA(4))

KA2 = THETA(5)*EXP(ETA(5))

GAMA2 = THETA(6)*EXP(ETA(6))

;FR1 Fraction of the dose absorbed through the first process

FR1 = THETA(7)*EXP(ETA(7))

;FR2 Fraction of the dose absorbed through the second process

FR2 = 1-FR1

;two Weibull functions

WB1 = EXP((-(KA1*TIME)**GAMA1))

WB2 = EXP((-(KA2*TIME)**GAMA2))

WB = 1-FR1*WB1 - FR2*WB2

K20 = CL/V

S2=V/1000

$DES

DADT(1) = -WB*A(1)

DADT(2) = WB*A(1) - K20*A(2)

$ERROR

;additive error

Y=F+ERR(1)

IPRED=F

$THETA

5 ;1 CL

50 ;2 V2

2.0 ;3 KA1

0.5 ;4 GAMMA1

0.2 ;5 KA2

4.0 ;6 GAMMA2

0.5 ;7 FR1

$OMEGA



 0.04 ; 20% CV for CL

 0.04 ; 20% CV for V

 0.36 ; 60% CV for KA1

 0.04 ; 20% CV for GAMMA1

 0.36 ; 60% CV for KA2

 0.04 ; 20% CV for GAMMA2

 0.04 ; 20% CV for F1

$SIGMA 0.02

$SIMULATION (123456789) ONLYSIM

$TABLE NOPRINT ONEHEADER FILE=WEIBULL.PAR

 ID TIME DV AMT EVID MDV

 KA1 GAMA1 KA2 GAMA2 FR1 FR2 WB1 WB2 WB

 CL V IPRED

Data Set for Two Weibull Functions

#ID TIME DV AMT CMT EVID MDV

1 0 . 10 1 1 1

1 0 . 10 2 1 1

1 0.5 . . 3 0 0

1 1 . . 3 0 0

1 1.5 . . 3 0 0

1 2 . . 3 0 0

1 2.5 . . 3 0 0

1 3 . . 3 0 0

1 3.5 . . 3 0 0

1 4 . . 3 0 0

1 4.5 . . 3 0 0

1 5 . . 3 0 0

1 6 . . 3 0 0

1 7 . . 3 0 0

1 8 . . 3 0 0

1 9 . . 3 0 0

1 10 . . 3 0 0

1 14 . . 3 0 0

1 16 . . 3 0 0

1 24 . . 3 0 0

2 0 . 10 1 1 1

2 0 . 10 2 1 1

2 0.5 . . 3 0 0

2 1 . . 3 0 0
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APPENDIX 13.6 ENTEROHEPATIC RECYCLING MODEL

NONMEM Input

$PROB Enterohepatic recycling

$INPUT ID TIME DV AMT CMT RATE EVID MDV

$DATA EHR_DATA.csv

IGNORE=#

$SUBROUTINE ADVAN6 TOL=4

$MODEL NCOMP=3

 COMP=(CENTRAL,DEFOBS,DEFDOSE)

 COMP=(PERIPH)

 COMP=(ACCUM)

$PK

;duration (h) of the zero-order process

D1=THETA(1)*EXP(ETA(1))

;lag time for the zero-order process

ALAG1=THETA(2)

;disposition parameters

CL=THETA(3)*EXP(ETA(2))

V1=THETA(4)*EXP(ETA(3))

Q2=THETA(5)*EXP(ETA(4))

V2=THETA(6)

;Enterohepatic recycling parameters

 K13=THETA(7)

 T31=THETA(8)

 S1=V1/1000

 K10=CL/V1

 K12=Q2/V1

 K21=Q2/V2

;times for release from the accumulation compartment

 MEA1=4+T31

 MEA2=9+T31

 MEA3=23+T31

$DES

; Default situation, only accumulation in the compt 3

 DADT(1) = K21*A(2)-(K10+K12+K13)*A(1)

 DADT(2) = K12*A(1)-K21*A(2)

 DADT(3) = K13*A(1)



; First release

 IF (TIME.GT.4.AND.TIME.LE.MEA1) THEN

 DADT(1) = K21*A(2)-(K10+K12+K13)*A(1)+A(3)/T31

 DADT(3) = K13*A(1)-A(3)/T31

 ENDIF

; Second release

 IF (TIME.GT.9.AND.TIME.LE.MEA2) THEN

  DADT(1) = K21*A(2)-(K10+K12+K13)*A(1)+A(3)/T31

  DADT(3) = K13*A(1)-A(3)/T31

 ENDIF

; Third release

 IF (TIME.GT.23.AND.TIME.LE.MEA3) THEN

  DADT(1) = K21*A(2)-(K10+K12+K13)*A(1)+A(3)/T31

 DADT(3) = K13*A(1)-A(3)/T31

 ENDIF

$ERROR

 A1=A(1)*1000

 A2=A(2)*1000

 A3=A(3)*1000

 IPRED=F

;combined error

Y=F*(1+ERR(1))+ERR(2)

$THETA

 0.196 ;1 D1

 0.123 ;2 Alag1

 0.518 ;3 CL

 31.1 ;4 V1

 2.23 ;5 Q2

 47.1 ;6 V2

 0.024 ;7 K13

 1.55 ;8 T31

$SIGMA

0.0402

0.220

$OMEGA

 0.500

 0.312

 0.103

 0.584
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$SIMULATION (123456789) ONLYSIM

$TABLE NOPRINT ONEHEADER FILE=EHR.PAR

 ID TIME DV AMT EVID MDV A1 A2 A3

 ALAG1 D1 CL V1 V2 Q2 K13 T31 IPRED

Data Set

#ID TIME DV AMT CMT RATE EVID MDV

1 0 . 10 1 −2 1 1

1 0.5 . . 1  0 0

1 1 . . 1  0 0

1 1.5 . . 1  0 0

1 2 . . 1  0 0

1 2.5 . . 1  0 0

1 3 . . 1  0 0

1 3.5 . . 1  0 0

1 4 . . 1  0 0

1 4.5 . . 1  0 0

1 5 . . 1  0 0

1 6 . . 1  0 0

1 7 . . 1  0 0

1 8 . . 1  0 0

1 9 . . 1  0 0

1 10 . . 1  0 0

1 14 . . 1  0 0

1 18 . . 1  0 0

1 23 . . 1  0 0

1 24 . . 1  0 0

1 25 . . 1  0 0

1 26 . . 1  0 0

1 28 . . 1  0 0

2 0 . 10 1 −2 1 1

2 0.5 . . 1  0 0

2 1 . . 1  0 0



CHAPTER 14

Pharmacometric Knowledge Discovery 
from Clinical Trial Data Sets

ENE I. ETTE

383

14.1 INTRODUCTION

Rational drug development is a model-based, knowledge-driven drug development 
where the objective is to characterize the response surface—the interplay of drug 
regimen, exposure, and patient factors to elicit response (effi cacy/safety)—that 
would result in the right dose for the right patient at the time of marketing of the 
drug. This implies using pharmacometric knowledge discovery and creation (1–4), 
incorporating population pharmacokinetic/pharmacodynamic (PK/PD) approaches 
(5–7), clinical trial simulation (8), and appropriate statistical analysis for the char-
acterization of the response surface. Understanding the relationship between drug 
exposure, response, and patient factors is crucial to rational drug development and 
pharmacotherapy. This involves extracting the knowledge hidden in clinical data 
sets to characterize the response surface, thereby defi ning the utility window for 
drug therapy.

Pharmacometric knowledge discovery (PMKD) is the nontrivial process of iden-
tifying valid, novel, potentially useful, and ultimately understandable patterns in 
data by characterizing data structure by means of a model (1, 2). PMKD should be 
implemented in every phase of drug development. This implies that an informa-
tive PK/PD sampling design (9–13) is implemented in every study to permit the 
discovery of knowledge from clinical trial data sets that would give insight into the 
nature of the dose–concentration–response relationship, and how this is modulated 
by subject factors. The ultimate use of the implementation of PMKD during drug 
development is the mapping of the response surface. Defi ning the process, there-
fore, will aid the understanding of drug action.

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene I. Ette and 
Paul J. Williams
Copyright © 2007 John Wiley & Sons, Inc.
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14.2 PHARMACOMETRIC KNOWLEDGE DISCOVERY PROCESS

The purpose of data analysis and interpretation, in general, is to fi nd out, among 
other things, meaningful patterns and relationships between variables under con-
sideration. It is analysis that transforms data (information) into knowledge. The 
purpose of a population pharmacometric (PM) data analysis from a population 
PM data set is to extract knowledge available in the population data set. Suffi cient 
knowledge of the problem under investigation as well as knowledge of the patho-
physiology of the disease, pharmacokinetics, mathematics, and statistics are essen-
tial elements for a successful PMKD from a population data set. The challenge of 
performing PMKD on a population data set is to make effective use of the data set 
to discover the untapped knowledge that lies hidden therein. Specifi cally, it is the 
task of implementing (and developing) methods that can discover interesting, useful 
patterns and relationships that will aid the mapping of the response surface with the 
results used: (a) to support mission-critical decision making in drug development, 
(b) to identify and promote the most benefi cial drug therapy, (c) for predictions and 
clinical trial simulations, (d) for the explanation of variability and making dosage 
recommendations, or (e) to explain drug action in general. These constitute some 
of the objectives of population modeling.

Knowledge discovery is an emerging, interdisciplinary research fi eld that lives at 
the intersection of computer science (database, artifi cial intelligence, graphics, and 
visualization), statistics, and several application domains such as clinical pharmacol-
ogy and pharmacometrics. The details of PMKD have been covered in other works 
by the author and his collaborators (e.g., see Refs. 1 and 2). Therefore, the intent 
of this chapter is to provide a brief summary of previous work on the subject and 
to expand on some key ideas of PMKD. In the sections that follow, the steps taken 
to perform PMKD are summarized, followed by a discussion of the techniques 
used in PMKD, challenges in PMKD, an application example, and a summary of 
the chapter.

14.2.1 Steps in the PMKD Process

The following briefl y summarizes the steps taken to perform PMKD in a large 
clinical trial set:

 1. Defi ning or stating the objective of the PMKD process.
 2. Creating a data set on which PMKD will be performed. Data preparation 

step is a very critical step in the PMKD. Sometimes more effort can be 
expended in preparing data than in analysis.

 3. Data quality analysis (i.e., cleaning and processing the data) (5, 7, 14).
 4. Data structure analysis, exploratory examination of raw data (dose, 

exposure, response, and covariates) for hidden structure, and the reduction 
of the dimensionality of the covariate vector.

 5. Stating assumptions made in the PMKD process.
 6. Determining the basic PK model that best describes the data and generating 

post hoc empiric individual Bayesian parameter estimates.



 7. Searching for patterns and relationships between parameters and covariates 
through graphical displays and visualization.

 8. Exploratory modeling using modern statistical modeling techniques such as 
generalized additive modeling (GAM ) (15), cluster analysis, and tree-based 
modeling (TBM) to reveal structure in the data and initially select explana-
tory covariates.

 9. Consolidating the discovered knowledge into an irreducible form (1), that is, 
developing a population PM model using the nonlinear mixed effects model-
ing approach, for example.

10. Determining model robustness through sensitivity analysis, examination 
of parametric/nonparametric standard errors, and stability testing with or 
without predictive performance depending on the objective of the PMKD.

11. Interpreting the results: the PMKD process prescribes that the model devel-
oped is interpreted in a relational manner. That is, do the fi ndings of the 
PMKD make sense in the domain in which they will be used? Can the 
results be communicated in a manner that they can be used? Only if they 
make sense can the results be considered as “knowledge” (which is viewed 
pragmatically here).

12. Applying (or utilizing) the discovered knowledge: the pragmatic view of 
knowledge implies that the results of the PMKD process must have some 
impact on the way individuals act. Thus, the discovered knowledge must be 
applied to demonstrate how it can be used.

13. Communicating the discovered knowledge.

These steps are summarized in Figure 14.1. It is important to note that PMKD 
is an iterative process and the fi gure therefore is a composite of the steps in the 
process. For example, modeling encompasses steps 3–10 above.

The PMKD process must be focused. Having a clearly defi ned objective for the 
process greatly infl uences the remainder of the steps in the process. For instance, 
the choice of data set(s) to be used in the PMKD process is determined by the 
objective that prompts the process.

In addition, creating a data set on which PMKD is to be performed is not a trivial 
task. When data are combined across clinical trials, attention must be paid to the 
variables in the data sets being combined and data completeness (or incomplete-
ness). Data access tools must be available for the pooling of data stored in different 
data warehouses and platforms.

Generally, not much attention has been given to data quality analysis or structure 
revelation in a population PM data set, which could provide a link between the data 
set and the analytical path chosen for PMKD. A lack of these analyses can result in 
reduced power and the production of biased population PM parameter estimates. In 
order to avoid these outcomes that can be caused by a nonsystematic or improper 
data analysis, the above structured approach was fi rst proposed by Ette et al. (1) 
and reinforced by Williams et al. (2).

Aspects of data quality that need to be analyzed are correctness and complete-
ness. Correctness of concentration–response-time data relative to dosing history 
and covariate information can be checked by comparing the records in the popula-
tion PM data set with information in the case report forms, and this can be done by 
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using a sample of the records. Completeness of population PK and PD data records 
is a property that cannot be satisfi ed due to many reasons, such as omissions when 
recording or inputting data into a clinical database, or the malfunctioning of medical 
equipment (16). Data incompleteness must be addressed before proceeding with 
the PMKD process. In order to prepare data for population PMKD, some imputa-
tion of data may be done, and there are different procedures available for handling 
missing data (5, 17–19) (see Chapter 9).

Data structure analysis is the examination of the raw data for “hidden” structure, 
outliers, or leverage observations. This is repeated during the exploratory model-
ing (and nonlinear mixed effects modeling) steps using case deletion diagnostics 
(20). This type of analysis is important since outliers or leverage observations may 
occur in a population PM data set. It is equally important for the reduction of the 
covariate vector.

The knowledge discovery basis of PM modeling permits the generation of 
hypotheses from the relationship discovered during data structure analysis. These 
relationships can be tested in the nonlinear mixed effects modeling step. It can 

Data storage

PK/PD knowledge discovery data

Data quality analysis

Processed data 

Data structure revelation

Exploratory analysis / nonlinear 

mixed effects modeling

Extracted hidden PK/PD knowledge

FIGURE 14.1 Overview of a compressed PK/PD knowledge discovery process.
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also suggest a testable hypothesis that can be independently tested via traditional 
confi rmatory experiments and analysis (1).

One of the most diffi cult tasks for a pharmacometrician/pharmacokineticist is 
to convey fi ndings from a PMKD process to clinicians and other members of the 
drug development team. The use of high-quality graphics can effectively enhance 
the communication of PM knowledge to a drug development or medical research 
team. Graphics, in particular, are essential for conveying relations and trends in an 
informal and simplifi ed visual form (1, 20, 21). Failure to communicate these fi nd-
ings successfully puts at risk all the data analysis efforts, irrespective of its quality.

14.3 SOME TECHNIQUES EMPLOYED IN PMKD

In this section some of the techniques for PMKD are discussed. The techniques 
covered here are only some of the more common techniques used in PMKD, since 
space would not permit a discussion of all the techniques. Thus, linear and multiple 
linear regression techniques are not discussed. These can be found in general sta-
tistics textbooks. Rather, we focus our attention on visualization, GAM, clustering 
with emphasis on tree-based modeling (TBM), nonlinear mixed effects modeling, 
and computer-intensive approaches for characterizing parameter estimation reli-
ability and stability testing.

14.3.1 Visualization

The eye–brain system is the single most powerful information processor available 
to humans, and effective use is made of this in PMKD. There is no single statisti-
cal tool that is as powerful as a graph. Through graphical displays one can put the 
most effective information processing system to good use to obtain insight into 
the structure of the data. Graphs can convey an enormous amount of quantita-
tive information. The eye–brain system can not only summarize vast amounts of 
information quickly and extract salient features, but it is also capable of focusing 
on detail. There may be many patterns and relationships present even in small data 
sets that are considerably easier to discern in graphical displays than by any data 
analytic method.

Visualization, which is graphing and fi tting, makes effective use of one’s eye–
brain system. With visualization one has a penetrating look at the data structure. 
The knowledge of the subject under study should guide what is learned from the 
data. When data are visualized effectively there can be a sudden interocular trau-
matic impact, a conclusion that hits one between the eyes. Thus, visualization is 
useful for data structure revelation. Visualization has to be combined with statistical 
inference to help calibrate the uncertainty about an outcome. When this is the case, 
visualization is useful for checking assumptions.

A pharmacometrician can gain insight from appropriate data displays that is 
virtually impossible to gain from looking at tables of output or simply summaries 
of statistics. For some tasks, appropriate visualization is the only process needed to 
confi rm a hypothesis or solve a problem.

There is a wide range of visualization techniques that are appropriate for PMKD. 
S-Plus (Insightful, Seattle, WA), SAS (SAS Institute, Carey, NC), and Spotfi re 
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(Spotfi re, Sommerville, MA) are some of the statistical packages that provide useful 
visualization graphics to complement their statitiscal/modeling capabilities. These 
include scatterplot matrices, box plots, conditioning plots, three-dimensional plots, 
and multidimensional “point cloud” and interactive visualizations such as “brush-
ing.” In PMKD the pharmacometrician needs to use visualization, modeling, and 
statistical analysis iteratively.

14.3.2 Generalized Additive Modeling (GAM)

New techniques for data analysis abound in statistical literature. GAM is a pow-
erful tool technique, and a full historical account of GAM with ample references 
can be found in the research monograph of Hastie and Tibshirani (15). GAM is 
closer to a reparameterization of the model than a reexpression of the response. 
Once an additive model is fi tted to the data, one can plot their p coordinate func-
tions separately to examine the roles of predictors in modeling response. With the 
GAM approach the dependence of a parameter (P) on covariates (predictors) 
X1,  .  .  .  , Xp are modeled. Usually, the multiple linear regression (MLR) approach 
is the method of choice for this type of problem. The MLR model is expressed in 
the following form:

P Xj j
j

P

= + +
=
∑α β ε

1

(14.1)

where E(e) = 0 and Var(e) = s 2. This model makes a strong assumption of the linear 
dependence of E(P) (the expectation of P or mean response) on the predictors. 
The MLR model is extremely useful and convenient if this assumption holds, even 
roughly, because it provides a description of the data, summarizes the contribu-
tion of each predictor with a single coeffi cient, and provides a simple method for 
predicting new observations.

The assumption of linear dependence of the response variable on each of the 
predictors may not always hold. For many types of data a change in the mean of the 
response variable is accompanied by a change in its variance. The GAM approach 
presents a general perspective for the handling of covariates in a multiple regression 
setting. The linear form of α β+ ( )=∑ j

P
j jX1 is replaced with the additive form 

α + ( )=∑ j
P

j jf X1 ,

P f Xj j
j

P

= + ( ) +
=
∑α ε

1

(14.2)

where fj(Xj) is an arbitrary univariate function that is either a linear function or 
a smoothing spline. Since each covariate is represented separately in Eq. (14.2), 
GAM retains the important interpretive feature of the linear model: the variation 
of the fi tted response surface holding all but one predictor fi xed does not depend 
on the values of the other predictors. In practice, this means that once the additive 
model is fi tted to the data, one can plot the P coordinate functions separately to 
examine the roles of predictors in modeling the response. The estimated function 
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forms of GAM are analogs of the coeffi cients in MLR. Thus, separate functions are 
introduced to allow for nonlinearity and heterogeneous variances. This is closer to 
a reparameterization of the model than to a reexpression of the response.

With GAM the “data” (covariate and individual Bayesian PM parameter esti-
mates) would be subjected to a stepwise (single-term addition/deletion) modeling 
procedure. Each covariate is allowed to enter the model in any of several functional 
representations. The Akaike information criterion (AIC) is used as the model selec-
tion criterion (22). At each step, the model is changed by addition or deletion of 
a covariate that results in the largest decrease in the AIC. The search is stopped 
when the AIC reached a minimum value.

Similarly, if the response is a binary variable, (0, 1) or (yes, no), and p is the prob-
ability of positive response, then the above equation can be rewritten as follows:

logit p f Xj j
j

p

( ) = + ( ) +
=
∑α ε

1

(14.3)

Model building for the generalized additive logistic model proceeds in the same 
manner as described above for GAM with a continuous response variable.

14.3.2.1 Partial Residuals Plot
Residual analysis is of vital importance in any regression analysis. A residual analy-
sis entails the careful evaluation of the differences between the observed values and 
the predicted values of the dependent variable after fi tting a regression model to 
the data. Residual plots are used interalia with a view to identifying any undetected 
tendencies in the data, as well as outliers and fl uctuation in the variance of the 
dependent variable (21). However, interpretation of such residual plots requires 
great care on account of the possible degree of subjectivity involved therein.

Partial residuals are produced with GAM, and not the usual residual plots. Plots 
of residuals and functions of residuals are useful particularly for identifying patterns 
in the data that may suggest heterogeneity of variance or bias due to deterministic 
model misspecifi cation or misspecifi cations of the regression variables. One particu-
lar form of bias that may exist occurs when a predictor variable is included in the 
model in a linear form when it actually has a curvilinear or nonlinear relationship 
with the response variable. A plot used by Ezekiel (23) and later referred to as a 
partial residual plot by Larsen and McCleary (24) is useful for this purpose. Partial 
residuals are defi ned as

r y y x xi i i j ij i j ij= − −( ) = +ˆ ˆ ˆβ ε β (14.4)

Since

ˆ ˆ ˆ ˆ . . .y x x x i ni i i p ip= + + + + =α β β β1 1 2 2 1� , 2, , (14.5)

(where a is the intercept and b is the regression coeffi cient) it follows that ŷi − b̂jxij

is an estimate of the ith response when all the predictors except the jth on (xj) are 
used, hence the name partial residuals. A plot of r against the predictor xj thus 
allows one to examine the relationship between y and xj after eliminating the infl u-
ence of other predictors. Figure 14.2, for example, shows partial residual plots of 
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the contributions of covariates (creatinine clearance (CLCR) and age) to explain-
ing variability in clearance of a test drug. The inadequacy of the linear model (i.e., 
multiple linear regression) compared with GAM is obvious.

In addition, in least-squares residual plots of ei versus xj, the slope of the regres-
sion line of ei against xj can be expected to be zero. In contrast, the regression of r
against xj should have a slope equal to b̂j, the coeffi cient of xj when the full model 
is fi tted. This property of partial residuals makes these plots useful in assessing the 
extent of possible nonlinearity in a certain predictor (25). If the slope of the plot 
of r against xj approximately equals the coeffi cient b̂j obtained from a fi t of the 
full model, the specifi cation of xj in the regression model can be assumed to be 
correct.

It is often claimed that partial residual plots are useful omnibus plots that allow 
detection of outliers, infl uential or leverage observations, nonlinearity, and other 
informative nonrandom patterns. The detection of nonlinearity, however, is the 
central motivation for partial residual plots.

14.3.3 Clustering

Clustering is a descriptive task used to identify a fi nite set of categories or clusters 
to describe the data. Also called data segmentation, cluster analysis has many goals 
that all relate to segmenting and collecting data into subsets or “clusters.” Each data 
point within a cluster is more closely related to each other than those assigned to 
a different cluster. A response such as blood pressure can be described by a set of 
measurements, or by its relation to subject variables such as age or renal function. 
The goal can sometimes be to arrange the data clusters into natural hierarchy. The 
categories may consist of a richer representation such as overlapping or hierarchi-
cal categories, or they may be mutually exclusive and exhaustive. Discovering a 
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FIGURE 14.2 Scatterplots of partial residuals of clearance [CL (L/h)] of a drug versus (A) 
creatinine clearance [CLCR (mL/min)] and (B) age (yr) from multiple regression analysis; 
CL (L/h) versus (C) CLCR (mL/min); and (D) age (yr) from GAM analysis. The same scale 
is used for the ordinate in each plot so that the relative importance of each covariate can 
be compared.
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homogeneous subpopulation such as poor metabolizers or subjects with impaired 
renal function (20) are good examples of clustering applications in a PMKD context. 
The degree of similarity, or dissimilarity, of data being clustered is central to cluster 
analysis.

There are many approaches to clustering. A popular approach based on hierar-
chical groupings partitions (or classifi es) data into categories according to a measure 
of similarity. Starting with as many “groups” as there are observations (one obser-
vation per group), the process ends up with one group containing all observations. 
Depending on their similarity, at each step of the process observations are added 
to existing groups or become the beginnings of new groups. An example would be 
a classifi cation “tree” created to describe the classifi cation process graphically. The 
tree, called a dendrogram, displays the number and types of groups formed at each 
similarity level. This potentially yields insight into the underlying or hidden data 
structure. There are many approaches to clustering (see Hastie et al. (26) for an 
in-depth discussion), but the emphasis in this chapter is on tree-based modeling, 
which is discussed subsequently.

14.3.4 Tree-Based Modeling (TBM)

TBM is an exploratory modeling technique for uncovering structure in the data 
and assessing the adequacy of linear models (20, 27). It operates only on ranks of 
the data. It is this aspect of TBM for a numeric explanatory variable that renders it 
invariant to monotone transformations of the explanatory variable. It automatically 
incorporates interactions between covariates such as when one parameter–covariate 
relationship depends on another covariate. These are important advantages that 
TBM has over GAM.

14.3.5 Population Modeling

Population PM modeling, herein referred to as population modeling, seeks to 
identify the measurable pathophysiologic factors that cause changes in the dose–
concentration–response relationship and the extent of these changes so that, if such 
changes are associated with clinically signifi cant shifts in the therapeutic index (i.e., 
safety margin), dosage can be appropriately modifi ed. Population modeling is dis-
cussed in detail in Chapters 4, 8, 10, and 28 in this text. Population modeling seeks 
to develop an irreducible model (28), given a data set as a summary of extracted 
knowledge, about an aspect of the response surface contained in the clinical trial 
data. In doing this, it is important to ensure that the appropriate covariates are 
retained in the irreducible model, and this can be done via PM model stability 
testing.

14.3.6 Stability of a PM Model

Without considering the stability of a PM model in an independent sample, it is 
possible to be unaware of the fact that some factors represent spurious associa-
tions with the outcome because of “noise” in the data or multiple comparisons. 
Furthermore, minor changes in the data set may result in the selection of differ-
ent covariates. This might leave one in a quandary as to which covariates actually 
are of predictive importance. When statistical signifi cance is the sole criterion for 
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including a covariate in the model, the number of variables selected is a function 
of the sample size.

Since a PM model may be used not only for the explanation of variability but also 
for predictions (28), being certain about covariates that are retained in the model 
and the predictive accuracy of the model is important. Thus, the stability of the 
PM model (in terms of the covariates) and its predictive performance is essential. 
“Stability” is used in the sense of “replication stability” for inclusion of covariates 
in a model (29). Sample sizes are usually too small (especially in pediatric studies) 
to apply the well known and often recommended method of data splitting (30). 
With better computer facilities, a computer-intensive method such as the related 
bootstrap method has proved to be a practicable alternative (31) (see Chapter 15 
of this text). The method proposed by Ette (31) for stability testing to ensure that 
appropriate covariates are selected to build a PM model is described below.

One hundred bootstrap samples are generated and the appropriate structural 
model that best describes the data from each sample is determined. This is done to 
ensure that the model that best describes the bootstrap data is not different from 
the basic structural model used for developing the population PK model for the 
data before bootstrapping. With the right structural model POSTHOC individual 
Bayesian estimates are generated and the “data” subjected to GAM.

For each bootstrap replication a selection method is used to identify the signifi -
cant variables. Important predictive covariates should be included in the selected 
model in most bootstrap replications, since it is assumed that each replication, being 
a random sample from the patients in the study, should refl ect the underlying struc-
ture of the data. Therefore, the percentage of inclusion in the model is a criterion 
for the predictive importance of a covariate. Where there is only one candidate 
covariate to be included in the model, there is a direct relationship between the 
selection level and the bootstrap inclusion fraction. Applying the bootstrap tech-
nique to the Cox regression model, Sauerbrei and Schumacher (32) showed that 
for a signifi cance level of a = 0.05, the bootstrap inclusion fraction is 0.50 for each 
bootstrap replication. It was proved that the inclusion of a covariate at a selection 
level of a = 0.05 in the original data can be based equivalently on a cutoff value for 
the bootstrap inclusion fraction using a selection level of a = 0.05 in each replica-
tion. This criterion has been proposed for the selection of a covariate among the 
covariates obtained from GAM for the fi nal NONMEM replication stability step 
discussed subsequently.

A really important covariate should be entered into the model in nearly all of 
the bootstrap replications (31). Thus, the strategy is to select covariates that will be 
useful in explaining variability in the PM parameter of choice.

The approach developed by Ette (31) for the determination of model stability is 
summarized in the following steps:

Step 1. Determine the basic PM model for the characterization of population phar-
macometrics using nonlinear mixed effects modeling.

Step 2. Generate 100 bootstrap samples, each having the same sample size as the 
original data set, using nonparametric bootstrap.

Step 3. Apply GAM to each of the 100 bootstrap replicates with a selection level 
of a = 0.05 and a frequency cutoff value of 0.50. Those covariates that do not 
attain the cutoff value should be eliminated.



Step 4. With the appropriate pharmacostatistical models, perform nonlinear mixed 
effects modeling to develop a PM model using covariates retained in step 3 with 
a covariate selection level of p ≤ 0.005. Backward elimination for covariate selec-
tion should be applied to each of the 100 bootstrap samples. The covariates found 
to be important in explaining variability in the parameter of interest should be 
used to build the fi nal (irreducible) population model. The choice of p < 0.005 is 
to indirectly take the multicomparisons that would be made into account.

Step 5. The PM model developed in step 4 should then be applied to the original 
data set to obtain PK parameters for the drug. Confi dence intervals can be 
constructed for the parameters of the model using asymptotic standard errors 
of estimates. A confi dence interval for a regression quotient incorporating zero 
for any particular covariate is suggestive of further studies to investigate the 
importance of that covariate in the characterization of the pharmacometrics of 
the drug, although the covariate could not be part of the population PM model 
developed for the data set analyzed.

The publicly available S-Plus macro, Xpose (33), can be used to automatically 
implement the GAM aspect of stability testing.

14.3.7 Reliability of Estimates

The reliability of the parameter estimates can be checked using a nonparametric 
technique—the jackknife technique (20, 34). The nonlinearity of the statistical 
model and ill-conditioning of a given problem can produce numerical diffi culties 
and force the estimation algorithm into a false minimum.

The preciseness of the primary parameters can be estimated from the fi nal fi t of 
the multiexponential function to the data, but they are of doubtful validity if the 
model is severely nonlinear (35). The preciseness of the secondary parameters (in 
this case variability) are likely to be even less reliable. Consequently, the results of 
statistical tests carried out with preciseness estimated from the fi nal fi t could easily 
be misleading—thus the need to assess the reliability of model estimates. A possible 
way of reducing bias in parameter estimates and of calculating realistic variances 
for them is to subject the data to the jackknife technique (36, 37). The technique 
requires little by way of assumption or analysis. A naive Student t approximation for 
the standardized jackknife estimator (34) or the bootstrap (31, 38, 39) (see Chapter 
15 of this text) can be used.

14.4 SOME CHALLENGES IN PMKD

14.4.1 High Dimensionality

With enhanced computational power it is now possible to work with very large 
data sets. This means dealing with a large number of records in the database and 
a large number of variables, with the consequence being that the dimensionality of 
the problem is high. The problem with high-dimensional data sets is that there is an 
increase in the size of the search space for model induction. In addition, it increases 
the probability of fi nding spurious patterns that are not valid. Reducing the effective 
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dimensionality of the problem through structure revelation to eliminate collinear 
variables and the use of prior knowledge to identify irrelevant variables are ways 
to overcome this problem.

14.4.2 Missing Data

Important attributes may be missing if the database was not designed with PMKD 
in mind. A possible solution is to use multiple imputations or other imputation 
techniques as dictated by the type of “missingness” to create a complete data set 
for PMKD (17–19, 40, 41).

14.4.3 Time-Varying Covariates

Time-varying covariates can provide additional information to that obtained from 
time-constant covariates in characterizing variability, if properly accounted for 
in population modeling. Higgins et al. (42) proposed a two-step approach, while 
Wahlby et al. (43) proposed two alternate approaches—(a) splitting the standard 
covariate model into a baseline covariate effect and a difference from baseline 
covariate effect, and (b) allowing the magnitude of the covariate effect to vary 
between individuals by including interindividual variability in the covariate effect—
for handling time-varying covariates. Readers are referred to the appropriate refer-
ences for details.

14.5 APPLICATION EXAMPLE

14.5.1 PMKD Objective and Data

The objective was to develop a descriptive population PK model for a test drug. A 
drug was administered to 88 full-term infants and children in six studies (31). There 
were 48 boys and 40 girls. Thirteen patients were human immunodefi ciency virus 
(HIV) seropositive. The patients’ mean weight was 22.15 ± 18.27 kg, mean age was 
6.78 ± 4.30 years, and the average serum creatinine value was 0.80 ± 0.31 mg/dL. 
The reciprocal of serum creatinine (RSC) was used for population PK model-
ing. The patients received either a single dose or multiple doses of drug orally or 
intravenously. An average of 11.1 (range, 1–21) concentrations were measured per 
participant.

14.5.2 PMKD for Population Pharmacokinetic Model Development

The structured approach for PMKD from a population PK data set outlined 
in Section 14.2.1 was used for population PK model development. A two-
compartment linear PK model with a step function was used to describe the data. 
The step function was used because of a change in clearance of drug (with a resul-
tant change in concentration (Figure 14.3)) after 1 week as a consequence of the 
maturation process occurring in the elimination organs. The focus of this example 
is on a stable population PK model that was developed for the estimation of clear-
ance (CL) for the test drug. Table 14.1 summarizes the results from steps 2 and 



3 above. GAM yielded sex, RSC, and HIV status as predictors of CL. However, 
the fi nal NONMEM population PK model for the drug incorporated only RSC as 
a linear predictor of CL. The fi nal population PK model for CL and its variability 
was described with the following equations:

If (TIME. LE. 180) then

TVCL = THETA(1)*WT**THETA(2)+THETA(5)RSC

Else

TVCL = THETA(3)*WT**THETA(4)+THETA(6)RSC

CLj = TVCL*EXP(hjCL),

where TVCL was the typical population value for CL, CLj is CL in the jth patient, ηjCL

represents the intersubject variability, and the thetas are intercepts and regression 
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FIGURE 14.3 Concentration–time plot for males (open circles) and females (closed 
circles).

TABLE 14.1 Selection of Covariates

Regression Method Covariate Selection Frequency

Generalized additive modeling Sex 0.30
 RSC 0.73
 HIV status 0.70

NONMEM RSC 0.45
 HIV status 0.23

NONMEM, nonlinear mixed effects modeling; RSC, reciprocal of serum creatinine; HIV, human 
immunodefi ciency virus.
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coeffi cients. HIV status was found to be a signifi cant predictor (p < 0.05) in the initial 
model building step but was not statistically signifi cant in the fi nal model develop-
ment step in which the level of signifi cance was set at p < 0.005 to compensate for 
multiple comparison. Table 14.2 summarizes the results of the model developed 
without the replication stability step.

Given the frequency cutoff value of 0.50 at a = 0.05, RSC and HIV status were 
selected by GAM (Table 14.1). Although gender was selected by GAM in some 
bootstrap samples, it did not meet the criteria for the retention of a covariate in the 
subsequent NONMEM population model building step. Because a more conserva-
tive signifi cance level (p < 0.005) was chosen for the NONMEM replication stability 
step, the criteria applied to the GAM step were not applied here. Consequently, 
RSC and HIV were retained for the fi nal NONMEM model (Table 14.2). These 
covariates were then used in fi tting the model to the original data set (without 
replication). The results are summarized in Table 14.3. The imprecision associated 
with the estimation of the regression coeffi cient on HIV status is worth noting. The 
95% confi dence interval (95% CI) on this coeffi cient was (−0.215, 0.729). Also, 
other parameter estimates obtained from the population model stability step were 
similar to those obtained without replication stability. The incorporation of zero in 
the 95% CI for the regression coeffi cient on HIV status confi rmed the fact that the 
fi nal population PK model obtained before the replication stability evaluation was 
stable. It was noted that although HIV status was not included in the fi nal model, 

TABLE 14.2 Summary of Final Population Pharmacokinetic Model 
Parameter Estimates with Reference to Clearance: No Replication

Parameter Population Value (SE)

THETA(1)—Intercept for CL (L/h) for time ≤180 h 0.293 (0.065)
THETA(2)—WT on CL for time ≤180 h 0.837 (0.174)
THETA(3)—Intercept for CL (L/h) for time >180 h 0.269 (0.112)
THETA(4)—WT on CL >180 h 2.000 (0.030)
THETA(5)—RSC on CL for time ≤180 h 0.010 (0.003)
THETA(6)—RSC on CL >180 h 0.153 (0.051)

CL, clearance; WT, weight; RSC, reciprocal of serum creatinine.

TABLE 14.3 Replication Stability: Summary of Final Population 
Pharmacokinetic Model Parameter Estimates with Reference to Clearance

Parameter Population Value (SE)

THETA(1)—Intercept for CL (L/h) for time ≤180 h 0.297 (0.055)
THETA(2)—WT on CL for time ≤180 h 0.832 (0.137)
THETA(3)—Intercept for CL (L/h) for time >180 h 0.262 (0.086)
THETA(4)—WT on CL >180 h 2.070 (0.223)
THETA(5)—RSC on CL for time ≤180 h 0.010 (0.001)
THETA(6)—RSC on CL >180 h 0.141 (0.045)
THETA(7)—HIV on CL for time ≤180 h 0.257 (0.236)

CL, clearance; WT, weight; RSC, reciprocal of serum creatinine.



the selection of a covariate from a stability step of model building (although not in 
the fi nal model) is a strong indication for further investigation of the covariate in 
explaining variability in the pharmacokinetics of the drug studied. This outcome of 
the PMKD process was appropriately communicated to the team.

14.6 SUMMARY

A structured approach for PMKD from a clinical trial data set is described. The 
process is an iterative one, involving heterogeneous tasks. The approach in this 
chapter lays out systematically how hidden knowledge can be discovered from a 
clinical trial data set with the use of modern graphical, modeling, and statistical 
approaches. These techniques for PMKD have been applied to a PK data set as a 
demonstration of how PMKD can be performed. The techniques described in this 
chapter give the pharmacometrician the liberty to choose a pharmacostatistical 
methodology appropriate to the problem at hand with the maximization of knowl-
edge extraction, rather than on the basis of mathematical/statistical tractability.
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15.1 INTRODUCTION

Pharmacometric (PM) models have many and varied applications for drug devel-
opment, regulation, and applied pharmacotherapy. Resampling techniques can be 
applied to model development, evaluation, and validation—most often resulting in 
an economy of effort once applied to these aspects of modeling (1–3). Models have 
been defi ned as either descriptive or predictive (see Chapter 8). While descriptive 
models require checks for reliability and stability, predictive models have the added 
requirement of validation (which resampling can do).

Traditionally, resampling has been used for PM model (PMM) covariate selec-
tion, bias correction (the difference between the estimator of a parameter, q̂, and 
the parameter, q), the estimation of standard errors, the construction of confi dence 
intervals, and model validation (1–3, 5–8). Most often validation has been thought 
of as the ability of a model to make external predictions (4). Obtaining an external 
data set can be time consuming, costly, and diffi cult. For some populations, such as 
pediatric patients or patients with rare conditions, obtaining a validation data set 
may be nearly impossible. Resampling methods present the opportunity to validate 
a model internally. Thus, the index data may be used to validate the model, saving 
the effort or diffi culty of obtaining an external validation data set. Cross-validation, 
bootstrapping, and the posterior predictive check have all been used as internal 
validation procedures (1, 4–11).

Given that resampling when applied to PMMs can result in greater confi dence 
in estimated models, economy of effort, and improved models, a review of the 
techniques and their application would be profi table.

Jackknife (JKK), cross-validation, and the bootstrap are the methods referred to 
as resampling techniques. Though not strictly classifi ed as a resampling technique, 
the posterior predictive check is also covered in this chapter, as it has several char-
acteristics that are similar to resampling methods.

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene I. Ette and 
Paul J. Williams
Copyright © 2007 John Wiley & Sons, Inc.
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15.2 RESAMPLING AND THE PLUG-IN PRINCIPLE

In general, resampling is based on the plug-in principle. The plug-in principle states 
that an estimate of a parameter, q = t(F), is defi ned to be q̂ = t(F̂ ), where q  is 
the true parameter from F, the true probability distribution, and q̂ is the em-
pirical estimate of q from F̂ , the empirical distribution of F: that is, one estimates 
a property of F such as summary statistics by using F̂. In general, the plug-in 
principle works well unless there is information about F not provided by the 
sample (x).

15.3 DESCRIPTIVE SUMMARIES OF RESAMPLING METHODS

15.3.1 The Jackknife

M. H. Quenouille introduced the jackknife (JKK) in 1949 (12) and it was later 
popularized by Tukey in 1958, who fi rst used the term (13). Quenouille’s motivation 
was to construct an estimator of bias that would have broad applicability. The JKK 
has been applied to bias correction, the estimation of variance, and standard error 
of variables (4, 12–16). Thus, for pharmacometrics it has the potential for improving 
models and has been applied in the assessment of PMM reliability (17). The JKK 
may not be employed as a method for model validation.

The JKK can be used for any estimator that is a sample analog of a parameter. 
For instance, one can use the JKK for the sample mean as an estimator of the 
population mean, the sample variance as an estimator of the population variance, 
the sample minimum as an estimator of the population minimum, and so on. This 
defi nition can be extended to any population characteristic and is therefore of inter-
est in pharmacometrics, especially when applied to population modeling.

The JKK is a direct application of the plug-in principle. To understand the JKK, 
let us denote the estimator of q by q̂, where q̂ is based on a sample of size n. The 
JKK estimator q̂JKK, of u is defi ned as follows. Calculate n estimators q̂(i), where for 
each i = 1 to n, q̂(i) is obtained using the expression defi ning q̂ eliminating the ith
observation so that each q̂(i) is calculated with a sample of size n − 1. Each observa-
tion is removed once from the data and the procedure of interest is carried out on 
the data. For this reason, the JKK is often also known as the leave-one-out method. 
If one now defi nes the mean of the q̂(i), i = 1,  .  .  .  , n, as

ˆ ˆθ θ⋅( ) ( )
=

= ∑1

1n
i

i

n

(15.1)

The JKK estimate of bias is

BiasJKK
ˆ ˆ ˆθ θ θ( ) = −( ) −( )⋅( )n 1 (15.2)

The use of the JKK estimate of bias for bias correction is presented later in this 
chapter.

In 1958, J. Tukey (13) proposed a JKK estimate for the variance of any sample 
analog estimator q̂. This can be written as
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Var
n

n
i

i

n

JKK
ˆ ˆ ˆθ θ θ( ) = −( ) −( )( ) ⋅( )

=
∑1 2

1

(15.3)

and hence the JKK estimate of the standard error of q̂ is simply

SE Var�
JKK JKK

ˆ ˆθ θ( ) = ( ) (15.4)

An important aspect of any inference is the construction of approximate confi dence 
intervals for q̂. A parameter is distributed as a Student’s t distribution with (n − 1) 
degrees of freedom. An approximate 100(1 − a)% confi dence interval for q is given 
by

ˆ ˆ ˆ ˆθ θ θ θα αJKK JKK JKK JKK,− −( ) • ( ) + −( ) • ( )⎡⎣ ⎤− −t n SE t n SE1 2 1 21 1� �
⎦⎦ (15.5)

where t1−a/2(n − 1) denotes the (1 − a/2) quantile of a Student’s t distribution on 
(n − 1) degrees of freedom. Unfortunately, this approach to confi dence interval 
construction has been documented to work poorly.

The alternative to the leave-one-out approach to the JKK is the grouped or 
blocked JKK (18). Here there are g blocks of size s. The grouped JKK can save time 
by executing the PM procedure on the g blocks. Here again, one has an estimator 
of q, q̂b, which is the estimate of q with the block eliminated. Next, a pseudo value 
(Pn,s,−j) is calculated as follows:

P g gn s j b, , - = − −( )ˆ ˆθ θ1 (15.6)

Then the JKK estimate of q (q*JKK) is

θJKK , , -
* =

=
∑1

1g
Pn s j

i

g

(15.7)

and the estimated variance (VJKK) of q*JKK is

*JKK , , - JKKV
g g

Pn s j
i

g

=
−( )

−( )
=
∑1

1
2

1

θ (15.8)

For all approaches to the JKK the advantage of working with q̂JKK is that there 
is no need for Monte Carlo simulation of the index data. The disadvantage is that 
there is usually increased error of estimation (15). Efron (16) has demonstrated that 
estimates of standard errors are better when the bootstrap is applied compared to 
the JKK. Furthermore, the JKK can fail if the statistic or parameter q̂ is not smooth. 
By smooth one means that small changes in the data result in small changes in q̂.
The most typical nonsmooth statistic is the median. Often in PM data analyses and 
model development statistics or parameters are nonsmooth because data sets are 
small, containing leverage observations, and the algorithms for converging onto 
parameters result in nonsmooth q̂ values. Therefore, one must exercise caution 
when applying the JKK for the purpose of checking PMM reliability or for bias 
correction.
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15.3.2 Cross-Validation

The JKK is a process that focuses on statistical accuracy, bias correction, standard 
errors, and confi dence intervals estimation. In contrast, cross-validation (CV) is an 
old idea that follows a similar algorithm to the JKK but focuses on predictability 
via prediction error generation. Prediction error aims at assessing the ability of the 
model to predict some future observation, usually a dependent variable. Although 
this method is often considered to be the same as repeated data splitting, it has 
some advantages over data splitting because when using CV the size of the model 
development database can be much larger so that less data are discarded from the 
estimation process and one does not rely on a single sample split, which increases 
variability (15, 16).

Of interest here is how well a model will predict some future response in some 
external or new data. One may look at the average residual error in the data set from 
which the prediction rule was estimated, called the apparent error rate. However, 
this estimate of the residual error (apparent error here) will be too optimistic and 
will underestimate the true prediction error. The problem here is that the training 
and assessment sample are the same. CV is used to correct this underestimation of 
the apparent error rate.

There are two types of CV: leave-one-out and grouped (K-fold) methods. In both 
processes the data are divided into a training set and an assessment set. In the leave-
one-out approach, one subject (or one data point) is omitted from the training set, 
and the remaining N − 1 subjects or data (this is the training set) are used to esti-
mate the model. Since this chapter is focused on resampling for PM modeling, the 
emphasis is on subjects and not data points. Then the prediction rule of the model 
is fi xed and one predicts into the omitted observation (the assessment data) and the 
prediction error is estimated. The modeling process is repeated N times with each 
subject being omitted from the estimated model. The true error rate of this model 
is estimated to be the average of all the error rates from the N test models.

In the grouped method, one divides the data into K approximately equal-sized 
groups (e.g., into 10 to 20 equal-sized groups), and the data-splitting method is 
repeated K times. These data should be well mixed to avoid distorting the results 
of the CV when the grouped approach is taken. Each time, one of the K subsets 
is used as the assessment set and the other K − 1 subsets are put together to form 
a training set. The prediction rule of the model is fi xed to that estimated from the 
K − 1 subset and one predicts into the assessment group of observations and the 
average prediction error is estimated. Next, using all the data, the fi nal model is 
created. The true error rate of this model is estimated to be the average of all the 
error rates from the K test models (5, 19). A schematic representation of K-fold
CV is presented in Figure 15.1.

Simulation experiments have demonstrated that CV is on average unbiased. 
However, simulation has also shown that when the data from a CV exercise are 
rearranged, the results are highly variable (19–21). To minimize or overcome this 
problem, the data should be well mixed.

15.3.3 Bootstrapping

Bradley Efron (16) fi rst suggested bootstrapping in 1979 as a tool for constructing 
inferential procedures in modern statistical data analysis. Resampling has been 
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defi ned as a method of repeatedly generating pseudosamples distributed according 
to the same distribution as the original sample. The procedure of interest is then 
carried out on each pseudosample and then the results of the application of these 
procedures to the pseudosamples are summarized (14).

This approach allows theorem proving with minimal data collection and carry-
ing out its functions without underlying assumptions about the distribution of the 
data. The bootstrap has had wider application than JKK or CV to pharmacometric 
modeling. It has been used for model building, for estimating statistical moments 
that could not be estimated by applying parametric approaches, for comparing non-
hierarchical models, and for model evaluation and validation (1–3, 7, 8, 17, 22, 25). 
However, it is computationally intense—a drawback that has become unimportant 
with the development of computers of high speed that have large virtual memory. 
Several different versions of the bootstrap have been proposed (23, 24, 26).

15.3.3.1 Standard (Nonparametric) Bootstrap
In this version, no assumptions, such as a normal distribution, are made about the 
index (original) data. It is executed generally as follows (14, 24):

1. The original data are assumed to be an independent and identically distributed 
sample of size m, from an unknown probability distribution, G → (x1, x2,  .  .  .  , 

FIGURE 15.1 Internal validation: cross-validation fl owchart (PDV is the predicted 
dependent variable, ODV is the observed dependent variable).

CV: Overall Data and Population 

Divide population into groups (groups 10-20) 

Re-compute prediction rule in  overall populatio n minus group  

Fix p rediction rule  from above and  predict into  group

Obtain PDV for ODV

For every group calculate  the central tendency 
for the prediction rule 

Estimate central tendency across all groups 
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xn). The empirical distribution function, Ĝ, of this sample is the discrete distri-
bution that sets the probability of each value xi (i = 1, 2,  .  .  .  , m) in the sample 
to the value of 1/m.

2. A bootstrap sample is generated by repeated random sampling, with replace-
ment, of an m-sized “pseudosample” from the original data set. At each 
sampling step, every vector xi has an equal probability of being chosen. Thus, 
for a given iteration, it is possible to choose three of x1, none of x2, fi ve of x3,
and so forth.

3. This sampling is repeated until the bootstrap sample also consists of m vectors, 
Y* = (x*1, x*2,  .  .  .  , x*i,  .  .  .  , x*m} ∼ Ĝ, where the vector x*i represents all the obser-
vations for the ith randomly selected subject.

4. Each set of pseudodata is used and the procedure of interest is applied to 
each pseudodata set.

5. Tabulation and summarization of the results of the application of the proce-
dure to each of the pseudosamples is done.

The nonparametric maximum likelihood (NPML) method is a nonparametric 
bootstrap because F̂  is the nonparametric estimate of F (14). The NPML concept 
states that “given a set of unknown terms and a set of data related to the unknowns, 
the best estimate of the unknowns consists of the values that render the set of 
data most probable.” A schematic representation of the bootstrap is presented in 
Figure 15.2.

Bootstrapping is the resampling with replacement method that has the advantage 
of using the entire data set. It has been demonstrated to be useful in PMM validation 
(1, 3, 22) and has the same advantages as do other internal validation methods in 
that it obviates the need for collecting data from a test population. Bootstrapping 
has been applied to population pharmacokinetic (PPK) model development, stabil-
ity check and evaluation, and bias estimation (1–3, 25).

Overall sample 

Randomly selected
subjects

Copy and paste into 
bootstrap data set 

Data complete  
Recompute model

Replace

Generate bootstrap parameters 
Bias correction 

Nonparametric parameter distributions 
Predictive performance  

FIGURE 15.2 Bootstrap fl ow.
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15.3.3.2 Bootstrapping Residuals
The most common approach to constructing bootstrap pseudosamples is to 
bootstrap the pairs: that is, one randomly selects data for a typical data set on a 
line-by-line or subject-by-subject basis that is inserted into the pseudosample and 
replaced. Bootstrapping residuals is another approach that has particular applica-
tion to regression analyses. In a typical bootstrap data set (Bi), data are chosen of 
the form

Bi = {(xi1, yi1), (xi2, yi2),  .  .  .  , (xin, yin)}

When the residuals are bootstrapped, the Bi are of the form

Bi = {(xi1, xb̂ + ê i1), (xi2, xb̂ + ê i2),  .  .  .  , (xin, xb̂ + ê in)}

where ê in is the ith residual. It can be seen here that the residuals from the regression 
are bootstrapped and added to the predicted values of the dependent variables.

Bootstrapping the residual assumes that the residuals are not a function of the 
dependent variables and that the form of the error model is known. This is a strong 
assumption that is seldom met in regression analyses and pharmacometrics in par-
ticular. Bootstrapping pairs is less sensitive to assumptions than is bootstrapping 
residuals.

15.3.3.3 Smoothed Bootstrap
The smoothed bootstrap has been proposed to deal with the discreteness of the 
empirical distribution function (F̂ ) when there are small sample sizes (N < 15). 
For this approach one must smooth the empirical distribution function and then 
bootstrap samples are drawn from the smoothed empirical distribution function, 
for example, from a kernel density estimate. However, it is evident that the proper 
selection of the smoothing parameter (h) is important so that oversmoothing or 
undersmoothing does not occur. It is diffi cult to know the most appropriate value 
for h and once the value for h is assigned it infl uences the variability and thus makes 
characterizing the variability terms of the model impossible. There are few studies 
where the smoothed bootstrap has been applied (21, 27, 28). In one such study the 
improvement in the correlation coeffi cient when compared to the standard non-
parametric bootstrap was modest (21). Therefore, the value and behavior of the 
smoothed bootstrap are not clear.

15.3.3.4 Parametric Bootstrap
For the smoothed bootstrap the shape of the distribution is not assumed. However, 
if one assumes F to be continuous and smooth, then the next step is to assume that 
it has a parametric form. If one assumes that F has a parametric form such as the 
Gaussian distribution, then the appropriate estimator for F would be a Gaussian 
distribution.

For the parametric bootstrap instead of resampling with replacement from 
the data, one constructs B samples of size n, drawing from the parametric estimate 
of F̂par. Here F̂par is the parametric distribution of F. The procedures of interest 
are then applied to the B samples in the same manner as for the nonparametric 
bootstrap.



408 RESAMPLING TECHNIQUES AND THEIR APPLICATION TO PHARMACOMETRICS

However, in parametric problems the bootstrap adds little or nothing to the 
theory or application and one cannot explain why the typical approach to estimating 
parameters via formulas should be replaced by bootstrap estimates. Consequently, 
it is uncommon to see the parametric bootstrap used in real problems. When applied 
to population pharmacometric (PPM) modeling, a weakness of the parametric 
bootstrap is that it assumes that the model is known with a high degree of certainty. 
This is seldom true.

15.3.3.5 Double Bootstrap
The double bootstrap was a method originally suggested by Efron (15) as a way 
to improve on the bootstrap bias correction of the apparent error rate of a linear 
discrimination rule. It is simply a bootstrap iteration (i.e., taking resamples from 
each bootstrap resample). The double bootstrap has been useful in improving the 
accuracy of confi dence intervals but it substantially increases computation time and 
most likely increases the incidence of unsuccessfully terminated runs. It has been 
applied to linear models but not to PM modeling.

15.3.3.6 Bayesian Bootstrap
The Bayesian bootstrap was introduced by Rubin (26) in 1981 and subsequently 
used by Rubin and Schenker (29) for multiple imputation in missing-data problems. 
The Bayesian bootstrap is not covered because its application is for multiple impu-
tation of missing data and this is addressed in Chapter 9.

15.3.3.7 Bootstrap Standard Error Estimates
The bootstrap is a very useful procedure when one wishes to estimate the stan-
dard error (SE) of a parameter (q) from an unknown probability distribution (F).
The original introduction of the bootstrap was for the purpose of estimating the 
SE of q̂.

To execute the nonparametric bootstrap SE (SÊB) the following process must 
be executed:

1. Select B independent bootstrap samples. This will usually be at least 100 
bootstrap data sets for a PM model (1).

2. Perform the evaluation of interest on each bootstrap sample, estimating the 
parameter of interest from each sample.

3. Estimate the SE of the parameter of interest by the sample standard deviation 
from B bootstrap samples:

*SE b BB

i

n
� = ( ) − ⋅( )⎡⎣ ⎤⎦ −( )⎧

⎨
⎩

⎫
⎬
⎭=

∑ ˆ ˆθ θ
2

1

1 2

1 (15.9)

where SEB is the bootstrap standard error, q̂(b) is the estimate of q from the 
bth pseudosample, and q̂*(·) is the mean q̂ across all B pseudosamples.

4. Once the SE has been calculated, one should always display the histogram of 
the results of the bootstrap replications.

ˆ
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15.3.3.8 Bootstrap Confi dence Intervals
Standard errors are most often used to assign confi dence intervals to parameters of 
interest. Given an estimated parameter (q̂) and an estimated standard error (SE)
the usual 95% confi dence interval is

ˆ .θ ± 1 960SE� (15.10)

where 1.960 comes from the standard normal table. The above is valid only as n →
∞; therefore, the studentized t distribution provides a better approximation:

θ̂ ± −( )t SEn 1
� (15.11)

where t(n−1) is Student’s t distribution on n − 1 degrees of freedom.
The use of the t interval does not account for skewness or kurtosis. An alterna-

tive method, called the bootstrap percentile confi dence intervals, is less dependent 
on assumptions and therefore less affected by these factors. Furthermore, very 
often one makes transforms of a q to normalize the distribution, but an appropriate 
transform is not always apparent. The percentile method can be thought of as an 
algorithm for automatically incorporating these transforms. The only assumption 
that one makes with the percentile method is that an appropriate transform exists, 
which does not need to be known.

15.3.3.9 Bootstrap Bias Estimation
q̂ is an estimate of q from the data at hand, F̂ . q̂ will always be a biased estimate of 
q and we are interested in obtaining the least biased estimate of q. A large bias is 
an undesirable characteristic of a parameter.

Bias is the difference between an estimator q̂ and the true quantity q. In addition 
to the JKK, the estimation of bias can also be done by application of the bootstrap. 
Bias estimation using the bootstrap is discussed here while the use of bias estimates 
for bias correction is addressed later.

The bootstrap estimate of bias is

Biasb
� = ⋅( ) −ˆ ˆθ θb (15.12)

where q̂(·)b is the mean of the parameter from all the bootstrap replications and q̂
is the estimate of the parameter from the original data. It is important to note that 
when the ratio of the estimated bias is small relative to the standard error of the 
parameter (SEB), then the bias is of little concern.

Jones et al. (25) have investigated bias correction via Monte Carlo simulation(s). 
The study design was cross sectional with a profi le (block) randomized sampling 
time design, which appeared to result in an infl ation of the estimate of the interin-
dividual random effect for apparent volume of distribution. The authors attempted 
to correct this positively biased parameter by applying the bootstrap. The authors 
bootstrapped both pairs and weighted residuals (WRES). Bootstrapping the WRES 
is attractive because it assumes that the error in the data set does not depend on 
the concentration: that is, the residuals are interchangeable. Of note, the resam-
pling of pairs on a subject-by-subject basis resulted in less bias correction for the 
interindividual random effect associated with apparent volume than the resampling 

ˆ

ˆ
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of the weighted residuals. When the weighted residuals were resampled, the bias 
correction for this parameter was 15%. Of further importance was the fact that 
regardless of the approach to resampling, estimates were stable at 5000 or more 
bootstrap estimates.

15.3.3.10 Bootstrap Estimates of Prediction Error
It is often of interest to estimate the predictability of the dependent variable when 
the prediction rule is applied to a similar set of external data (data from which the 
model was not estimated). However, obtaining a similar set of data is often costly 
or impossible; therefore, some internal estimate of external predictability would 
be advantageous.

It is intuitive that the predictability of the dependent variables into the training 
data set from which a model was estimated will be optimistic, when compared to 
predicting into an external data set. In such a case, the prediction errors will have a 
downward bias. Therefore, a method that estimates predictability for external data 
is needed and this can be executed via the bootstrap.

The most commonly used parameter to assess predictability for the bootstrap 
has been the squared prediction error (SPE). The SPE refers to the square of the 
difference between a future response and its prediction from the model:

PE E ODV PDV= −( ) (15.13)

and therefore

SPE E ODV PDV= −( )2 (15.14)

where ODV and PDV are the observed and predicted dependent variables, 
respectively, and E (the expectation) refers to repeated sampling from the true 
population.

Bootstrapping provides estimates of predictive precision that are nearly unbiased 
and that are of relatively low variance. When each of the models is applied to its 
own bootstrap data set, there is for each ODV a PDV that is generated. The most 
common prediction error operator is the mean squared prediction error (MSPE). 
For our notation here, MSPE(M1, D1) is an estimate of the MSPE when model 1 is 
applied to bootstrap data set 1. For example, if there were 200 bootstrap data sets, 
this would be done until MSPE(M1, D1) to MSPE(M200, D200) were obtained using 
200 bootstrap data sets (1, 2, 4, 14, 20). Ette (1) showed that 200 bootstrap replicates 
was adequate for the determination of the predictive performance of a model.

The next step in assessing predictive accuracy is to apply the frozen models 
(M1 to M200) to the data set D0, which is the original data set (not from bootstrap 
resampling) with all individuals occurring once. In this process, the coeffi cients and 
random effects are fi xed for M1 to M200, so that at this step one has MSPE(M1 : D0)
to MSPE(M200 : D0).

The next step is to estimate the optimism (OPT) (or bias due to overfi tting in 
the fi nal model fi t) for the prediction operator. This is executed for each model so 
that

OPT MSPE M D MSPE M Di i i i= ( ) − ( ): 0 , (15.15)



DESCRIPTIVE SUMMARIES OF RESAMPLING METHODS 411

where OPTi is the optimism for the ith model. It is expected that MSPE(Mi, Di) will 
be smaller than MSPE(Mi : D0) because MSPE(Mi, Di) is making predictions into 
the data set from which it was estimated and MSPE(Mi : D0) is making predictions 
into the original data set, which serves as an “external” data set because Mi is a 
PMM from a bootstrap sample.

Next, the mean OPT across all the models is estimated and in this case is

OPT
n

OPTi
i

n

=
=
∑1

1  (15.16)

Once the mean optimism is known, it is added to the results of the prediction 
operator that was estimated from the original data set. This results in an improved 
estimate of the prediction operator as the prediction operator estimates generated 
when the process is applied to its own data will be overly optimistic compared to 
applying the prediction operator to the universe of possible external data sets.

MSPE MSPE M D OPTimp = ( ) +0 0:  (15.17)

where MSPEimp is the improved estimate of the MSPE provided by the bootstrap 
and M0D0 is the MSPE when the original model was applied to the original data. 
The MSPEimp is estimated to provide an estimate of the MSPE that would result 
if the model were applied to an external data set. The lower the MSPEimp, the better 
the model.

15.3.3.11 Model Building with the Bootstrap
Ette (1) provides an example of the application of bootstrapping to PMM build-
ing, specifi cally to a population pharmacokinetic (PPK) model. In this study it was 
desired that the deterministic model (one-compartment versus two-compartment) 
and the covariates for inclusion be known with a high degree of certainty (1, 3).

Conceptually, for each bootstrap replication a selection method is used to iden-
tify the signifi cant covariates and the deterministic model. Important predictive 
covariates should be included in most bootstrap replications, as it is assumed that 
each replication should refl ect the underlying data structure. Therefore, an impor-
tant covariate should be included in nearly all of the bootstrap replications.

Application of bootstrapping to this process proceeded as follows:

1. One hundred nonparametric bootstrap data sets were generated.
2. Using NONMEM® (University of California at San Francisco), each data set 

was fi t to a one- and two-compartment model. A two-compartment model fi t 
the data better for all bootstrap data sets.

3. NONMEM was used to estimate the parameters for each bootstrap data set. 
Individual Bayesian parameters were generated. These estimates along with 
covariates formed a new data set.

4. Generalized additive modeling (GAM) was applied to each of the output 
data sets. A selection criteria of a = 0.05 and a frequency cutoff of 0.50 was 
applied for continued investigation of a covariate; that is, GAM had to select 
a covariate for inclusion in 50% or more of the models from the 100 bootstrap 
fi ts for the covariate to be considered for further investigation.
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5. Those covariates that did not attain the cutoff level were eliminated from 
further investigation.

6. A full model was constructed and applied to each of the bootstrap data sets 
with backward selection and a = 0.005 for retention in the fi nal model. Those 
variables found to be important in the model were retained to build the fi nal 
PPK model.

7. The population model with the proper deterministic model and covariates was 
then applied to the original data to obtain parameter estimates.

Using this approach, several covariates were excluded from further study at step 
4 above and two covariates were retained. The fi nal model was determined expedi-
tiously and most importantly with a high degree of certainty.

15.3.3.12 Comparing Nonhierarchical Models Using the Bootstrap
Until recently, no method of comparing nonhierarchical regression models has been 
available. The bootstrap has been proposed because it may estimate the distribu-
tion of a statistic under weaker conditions than do the traditional approaches. In 
general, for nonlinear mixed effects models that are not hierarchical, the preferred 
model has simply been selected as that with the lower objective function (2). A 
more rational approach has been proposed for comparing nonhierarchical models, 
which is an extension of Efron’s method (2, 30). The test statistic is the difference 
between the objective functions (log-likelihood difference—LLD) of the two non-
hierarchical models. The method consists of constructing the confi dence interval 
for the LLDs.

To execute this, an estimate of the sample distribution of the LLD under the null 
hypothesis must be derived to perform a test. The bootstrap method for estimating 
sample distribution of the difference of the objective function given the observa-
tions is used to solve the problem. This allows one to reject the null hypothesis of 
equal noncentrality parameters, that is, of equality of fi t if zero is not contained in 
the confi dence interval so derived. One thousand bootstrap pseudosamples were 
constructed, the nonhierarchical models of interest were applied, and the percentile 
method for computing the bootstrap confi dence intervals was used.

15.3.3.13 Estimating Inestimable Standard Errors
PM parameters are most often estimated by assuming asymptotic normality. Often 
the standard errors or confi dence intervals for PM parameters are not accurately 
estimated because distributions are heavily tailed or skewed or contain infl uence 
data. In addition, when sample sizes are small, it is impossible to obtain accurate 
or precise standard errors of parameters.

Another problem that can occur is when the 95% confi dence intervals cross 
0 and values below 0 make no sense. For example, one may obtain estimates of 
a random effect, say, the coeffi cient of variation for a parameter, and along with 
this the standard error for the coeffi cient of variation. Sometimes when asymptotic 
normality is assumed, the 95% confi dence interval for the coeffi cient of variation 
can be less than 0 at its lower bound. It does not make sense to have a coeffi cient 
of variation for a parameter that is less than 0. The bootstrap can be used to avoid 
this error and estimate confi dence intervals that make sense. An example of apply-
ing bootstrapping to deal with the concerns described here can be found in a paper 
by Ette and Onyiah (8).
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15.3.4 Posterior Predictive Check (PPC)

D. B. Rubin fi rst suggested PPC in 1984 (31) as a tool for constructing inferential 
procedures in modern statistical data analysis. In this approach a model is estimated 
directly from the index data, and then a new set of data is generated through the 
simulation of the resulting model. The simulated data set is compared with the index 
data to see if the model’s defi ciencies have a noticeable effect on the substantive 
inferences (9). The basic approach for PPC within the context of PPK modeling is 
as follows:

Step 1. Derive an irreducible (i.e., with natural uncertainty) model from a probable 
set of data.

Step 2. Estimate the model parameters from the fi nal irreducible model, given the 
data.

Step 3. Simulate the dependent variable from the fi nal irreducible model to obtain 
several replicates of the data.

Step 4. Estimate the posterior model and obtain fi xed and random effects from the 
model. This is a plausible model from the posterior distribution of the dependent 
variables obtained in step 3.

Step 5. From the posterior model simulate data where the dependent variable 
(DV) = yrep. This is a plausible set of dependent variables from a plausible model 
in step 4.

Step 6. Perform statistics on these dependent variables; for example, this involves 
reestimating model parameters to get root mean-squared error (RMSE) and 
mean absolute error (MAE).

Step 7. Compare statistics from the replicated data sets to the original data set. A 
schematic representation of posterior predictive check is shown in Figure 15.3.

Estimate posterior model; thetas and etas etc. 
This is a plausible model form the posterior 

distribution

Simulate data sets (dependent variable) from the final 
irreducible model parameters

Irreducible model
(original data) 

Compare statistics from the replicated 
data sets to the original data; it is > or <. 

Estimate model 
parameters from the 
irreducible model 

Do stats on these DVs; this may mean reestimating
the model to get RMSE and MAE, for example

FIGURE 15.3 Schematic representation of the posterior predictive check fl ow.
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Few papers have been published that apply the PPC to PM modeling (9–11, 32). 
In a limited evaluation of PPC, the authors concluded that the failure of the PPC 
to invalidate a model offers little assurance that the model is correct (32). Further 
evaluation of the utility of the PPC, especially in hierarchical models, is needed.

15.4 BIAS CORRECTION

The estimation of bias and bias correction can be done by application of the boot-
strap and the JKK. Bias correction is discussed here and the reader is referred 
to Sections 15.3.1 and 15.3.3.9. A large bias is an undesirable characteristic of a 
parameter.

The bias corrected parameter (q̄ ) is calculated from

θ θ= −ˆ Bias� (15.18)

There is a wrong tendency to think of q̂(·)b or q̂(·)JKK as the bias-corrected param-
eter. Note, for example, that if q̂(·)b is greater than q̂, then the bias-corrected esti-
mate (q̂) will be less than q̂.

Bias correction can be dangerous in practice because of the high variability in its 
estimate. In spite of this, its estimation is usually worthwhile. If bias is small relative 
to the standard error of the parameter, then it is best to use q̂ rather than q̄. If the 
bias is large compared to the SE of the parameter, then it is an indication that q̂ is 
not an appropriate estimate of the parameter q.

15.5 EXAMPLE OF MODEL EVALUATION AND VALIDATION

The following was taken from a drug development case where data was collected 
in Phase 1 and Phase 2 and a PPK model was developed to aid in proposing a 
dosing strategy for a Phase 3 confi rming study. There were 323 subjects with 2352 
measured concentrations that were used to develop the PPK model. The strategy 
set forth as model appropriateness (see Chapter 8) was employed as the approach 
to model development.

15.5.1 Execution of the Example

From the original data set (D0), 505 bootstrap data sets were constructed by 
re sampling with replacement. The sampling was repeated until each bootstrap 
sample consisted of N subjects, where in this case N = 323. (See Table 15.1 for an 
extensive explanation of the notation that follows.) These 505 bootstrap data sets 
were denoted as D1 to D505. The structure (S0) of the model M0 (M0 = F(S0)) was 
retained. What was meant by retaining the structure for M0 was that the coeffi cients 
that related the PK parameters (i.e., clearance and apparent volume) to covariates 
(i.e., weight) were allowed to be estimated from each of the 505 bootstrap data sets. 
So that for this study, the following was the structural model (S0):

TVCl = q1 * Wt



TVVd = q 2 * Wt

TVKa = q 3

with the between-subject random effects (estimated for clearance (h1) and ap parent 
volume (h2) only) and residual random effects modeled as proportional to the 
parameter of interest. TVCl was the typical value for clearance, TVVd was the 
typical value for apparent volume, and TVKa was the typical value for the fi rst-
order absorption rate constant.

When S0 was fi t (F) to Di, the model that resulted would be noted as Mi so that 
when S0 was applied to D11 the model that resulted was noted as M11 (M11 = F(S0,
D11)). Thus, there were 505 bootstrap models (M1 to M505) that were fi t, one for 
each bootstrap data set. For each of the bootstrap data sets it is necessary to fi t 
the structural model to demonstrate it refl ects the underlying structure of the data, 
which is a basic assumption of the bootstrap. Any bootstrap data set that does not 
support the structural model should be discarded.

For each model fi t to the 505 data sets, there were a set of coeffi cients (qs), that 
related the covariate to the parameter of interest and random effects. These were 
compiled in a table and the mean parameters were estimated and compared to 
those from the original fi t.

From the original model (M0) (q̂1, q̂2, q̂3, ĥ1, ĥ2, and ê) and the bootstrap mean 
parameter estimates (q̂1(·)b, q̂2(·)b, q̂3(·)b, ĥ1(·)b, ĥ1(·)b, and ê(·)b), the bias was cal-
culated in the general format of Bias� = q̂(·)b − q̂. (Note the bias was calculated 
for h parameters as well.) The 95% confi dence intervals were estimated from the 

TABLE 15.1 Mathematical Notation Utilized in Bootstrapping

Notation Representation of Notation

D0 Study data or original data; with each subject’s data appearing once
  and only once.
S0 The structural model or the developed population pharmacokinetic
  model with the study data can be expressed as follows:

  TVC1 = q1 * Wt
  TVVd = q2 * Wt
  TVKa = q3

F The fi t operator: M = F(S, D) means M is the model produced when
  structure S is fi t to data set D.
Di Bootstrapped data or samples (had 323 subjects (i = 1, 2, 3,  .  .  .  , 323)
  subjects’ data) (D0), on which the developed population
  pharmacokinetic model was based) were drawn with replacement
  from the observed data (D0); observed data could either appear in
  the bootstrap samples (Di) once, more than one time, or not at all.
  For each bootstrap data set, the structure was retained but the
  coeffi cients and the intercept were reestimated.
Mi = F (S0, Di) Models generated from fi tting structural model (S0) to the
  (i = 1, 2, 3,  .  .  .  , 505) bootstrapped samples; bootstrapped models.

Note: 505 bootstrap samples were generated for convenience. For standard nonparametric bootstrap, 
200 replicates is adequate.
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standard nonparametric bootstrap as there were insuffi cient replicates to employ 
the percentile method.

The structural model, S0, was fi t to each bootstrap data set. That is, S0 was fi t to 
D1 to D505, resulting in models 1 to 505 (M1 to M505). When each of these models 
for the bootstrap data sets (D1 to D505) were estimated, the squared prediction error 
(SPE) for each concentration was estimated.

SPEijk ijk ijk= −(Measured concentration Predicted concentration ))2 (15.19)

where SPEijk was the ith squared prediction error in the jth patient for the kth run, 
Measured concentrationijk was the ith measured concentration in the jth patient for 
the kth run, and Predicted concentrationijk was the ith predicted concentration in 
the jth patient for the kth run. The mean SPE for each bootstrap run was estimated. 
That is, the model was applied to the data from which it was derived and the indi-
vidual SPEs were estimated and the mean of the individual SPEs was calculated for 
each run. These mean errors that were estimated when the M1 to M505 were applied 
to D1 to D505 were called Aeboot1 to Aeboot505 (apparent error, which is the error 
estimate when a model is applied to the data from which it was estimated).

Next, the models, including the coeffi cients, were fi xed (M1 to M505) and applied 
to the original data set (D0), where each subject appeared once and only once. 
That is, the model was then applied to a data set from which it was not derived for 
predictions into that data set. Again for each measured concentration in D0 there 
was a predicted concentration and the squared error for each predicted measured 
concentration pair was estimated using Eq. (15.19). The mean of these SPEs was 
calculated for each run. These mean errors estimated when M1 to M505 were applied 
to D0 were called PEOrig1 to PEOrig505.

In a further step, the Aeboot1 to Aeboot505 was subtracted from each PEOrig1 to 
PEOrig505, respectively, to estimate a variable called optimism (OPT).

OPT PEOrig Aebooti i i= − (15.20)

This optimism represented the underestimation of the squared prediction error that 
was expected to occur when the model was applied to the data from which it was 
derived. In a fi nal step, the average optimism across all bootstrap iterations was 
estimated and added to the SPE estimated when the M0 was applied to D0. This 
resulted in an improved estimate of the absolute prediction error (SPEimp).

15.5.2 Results

Convergence was successful for 502 of the 505 bootstrap data sets. Three data sets 
persisted in terminating with rounding errors despite the application of several 
sets of starting parameters. The results of the bootstrap parameter estimates are 
presented in Table 15.2 and compared to the results from the PPK model building 
process. There is strong evidence that the model is without substantive defi ciencies 
and should be accepted as the fi nal irreducible model.

Mean SPE for M0 : D0 was 19.52 and optimism for mean SPE was 2.22. 
Therefore, the improved SPE (SPEimp) was SPEimp = 19.51 + 2.22 = 21.73. In 
this case, the optimism of the SPE is small compared to the original SPE, again 



indicating that the model is without substantive error. Thus, the model was 
validated.

15.5.3 Conclusions

A PPK model was developed to be used to construct a dosing strategy for a Phase 
3 study and therefore needed some form of validation. To obtain a test data set 
would have been expensive and time consuming. The bootstrap was used to validate 
the model by estimating the bias/SE and the optimism for the dependent variable. 
The optimism was small when compared to the SPE of the original sample, thus 
validating the model.

15.6 SUMMARY

The role of resampling methods in PMM development and validation are explored. 
If applied, these techniques may bring effi ciency to pharmacometric model devel-
opment and result in models for which one’s confi dence level is very high. Patient 
pharmacotherapy will also be improved. One can expect to see resampling more 
extensively applied to modeling in the future.
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Population Modeling Approach in 
Bioequivalence Assessment
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16.1 INTRODUCTION

Population modeling, called nonlinear mixed effect modeling in statistical terminol-
ogy, is much more complex in structure than linear or nonlinear regression. The 
reason is that allowing random effects into nonlinear models opens up a variety of 
possible models. Typically, it is not a priori clear which model is exactly the best 
to use, and neither would the data allow suffi cient power to distinguish among all 
possible models. Particularly, in usual applications, the model structure, especially 
that of the random effects, is not predetermined. For this reason, population model-
ing is mostly used for the purpose of exploratory data analysis, which is hypothesis 
generating. Common uses include describing the current data or attempting to best 
predict unobserved outcomes or relationships.

However, circumstances arise where one may desire to use modeling for con-
fi rmatory analyses, as will be discussed later. Analyses of this type are hypothesis 
confi rming, which are inferential in nature. If multiple tests are conducted, adjust-
ment usually must be made to prevent infl ation of against Type I error. Therefore, 
for modeling to be used in confi rmatory analyses, special care must be taken to 
protect against Type I error. Our purpose is to draw attention to this issue, through 
discussion of two separate application areas in bioequivalence.

16.2 BIOEQUIVALENCE OVERVIEW

16.2.1 Pharmacokinetic Bioequivalence

The most common purpose of bioequivalence (BE) assessment is to evalu-
ate the comparability of bioavailability of drug formulations. Standard BE 
studies are 2 × 2 crossover, and subjects are densely sampled so that individual 
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pharmacokinetic (PK) exposure parameters, AUC and Cmax, can be determined 
with precision. These individual PK parameters are then log-transformed to be 
used with standard models, adjusting for sequence and period effects, to obtain 
a 90% confi dence interval of log(test/reference ratio). The confi dence interval is 
then back-transformed to the original scale to obtain the confi dence interval for 
the test/reference ratio of average PK parameters. Confi dence intervals falling 
within (0.80, 1.25) indicate bioequivalence. For the statistical theory, see Schuir-
mann (1) for details.

There are also other BE-type assessments. Interaction studies assess the infl u-
ence on bioavailability by other individual factors, such as food, alcohol, or 
other drugs. Such studies are usually single-sequence crossover, but the assess-
ment method remains the same—whether confi dence intervals of AUC and Cmax

ratios fall within (0.80, 1.25). The same can be said of PK similarity assessments 
between subject populations, for example, healthy volunteers versus patients. The 
assessment method is the same as that used for BE, but important differences 
remain. In typical BE studies, subjects are densely sampled so that individual 
PK parameters, AUC and Cmax, can be determined with precision. PK similarity 
assessments are concerned with the differences in different populations, instead 
of formulations. The assessments are usually based on multiple (parallel) studies, 
as crossover studies are not possible, and sequence and period effects are not 
considered. Assessments involve obtaining estimates of average PK parameters 
in the populations and the 90% confi dence intervals for the ratios of the average 
PK parameters.

16.2.2 Pharmacodynamic Bioequivalence

For locally acting drugs, such as pulmonary and topical drugs, the assessment based 
on PK exposures AUC and Cmax is not appropriate. In such situations, plasma 
concentrations may be irrelevant to effi cacy and even unavailable. In the case of 
metered dose inhalers (MDIs), the US Food and Drug Administration has been 
basing BE assessment on the dose-scale approach (2), which assesses the relative 
bioavailability (F) of the test and reference drug based on a pharmacodynamic 
(PD) endpoint, that is, the fraction of the test product dose that causes the same 
response in the pharmacodynamic endpoint as one dose of the reference product 
does. Approval of abbreviated new drug applications (ANDAs) would be based on 
the 90% confi dence interval of F.

Both PK and PD BE assessments concerned here are of the “average BE” 
type, which are based on population averages. Population modeling is potentially 
applicable for such assessments, by producing estimates of population average 
parameters and their confi dence intervals. Although standard software generated 
standard errors could be indicative, they are only approximate for nonlinear models. 
Therefore, more accurate confi dence interval construction methods need to be con-
sidered. More diffi culty lies in the fact that model selections are typically involved 
with population modeling and thus contain certain exploratory aspects. On the 
other hand, BE assessments involve specifi c hypothesis tests and thus are confi rma-
tory tasks.

We fi rst discuss BE assessment in the presence of sparsely sampled subjects and 
then discuss pharmacodynamic endpoint bioequivalence.



16.3 METHODS FOR ASSESSING PK BIOEQUIVALENCE WITH 
PRESENCE OF SPARSELY SAMPLED SUBJECTS

At various stages of drug development, PK similarity assessment may be needed 
in situations where some or all subjects are sparsely sampled so that evaluating 
individual PK parameters is not possible. This may happen in some patient studies 
where sampling is limited for practical reasons or in pediatric studies due to limita-
tion of blood draws. The situation also arises during “bridging” analyses that aim 
to establish PK similarity between different populations so that safety data in one 
group could be indicative of another. In such situations, PK similarity assessments 
must be made from information at hand. When individual PK parameters cannot 
be determined directly, using model-based approaches seems a meaningful alter-
native. The population modeling approach seems particularly suitable because it 
gives a framework allowing the ratios of average AUC and Cmax to be predicted 
from model parameters.

Population modeling has been reported as an alternative tool to examine evi-
dence of BE (3–6). Typically in such investigations, one examines data from some 
2 × 2 crossover BE studies, constructs a population PK model using traditional 
model building practices (and in some instances, removing outliers), computes the 
confi dence intervals generated from standard error of parameter estimates, and 
fi nds the results similar to those given by standard BE assessments. However, there 
are complexities when using population modeling, a traditional tool for exploratory 
analysis, for confi rmatory analyses such as BE.

16.3.1 Primary Complexity

The subject population covariate plays a special role in PK similarity assess-
ment, similar to that of formulation in BE assessment. That is, if the infl uence of 
formulation on the rest of the parameters (Ka, V, CL, etc.) is not adequately 
represented in the model, then the model will underrepresent the formulation 
infl uence on the predictions of PK parameters and may bias the BE assessment 
results. To further illustrate this, the conventional model building procedure might 
fi nd the formulation factor “insignifi cant” in the model, and if the fi nal model 
contains no formulation factor, it will predict the AUC and Cmax ratios to be 1 
with certainty, that is, producing confi dence intervals of length 0. Thus, BE would 
have to be declared by default. This is clearly unacceptable from the standpoint of 
traditional BE assessment, which often fi nds the formulation term insignifi cant in 
ANOVA but always produces confi dence intervals of positive lengths for the AUC
and Cmax ratios.

16.3.2 Additional Complexities

1. Conventional PK model building usually involves much model exploration 
(e.g., the infl uence of many potential covariates), whereas traditional BE 
assessment usually does not pretest any covariates. However, traditional BE 
assessment generally avoids preliminary tests, for the purpose of protecting 
against Type I error, that is, mistakenly concluding BE (7). From a statistical 
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perspective, complex model exploration suffers many defi ciencies, including 
overly optimistic variances of parameter estimates and goodness of fi ts (8).

2. The model built for BE assessment could depend on the modeler, which may 
cast doubts on the objectivity of the analysis.

The same complexities apply to PK similarity assessments, which use a similar 
hypothesis test framework at the outset. Thus, despite previous investigations (3–6) 
having shown that modeling gave similar results in BE analyses, we do not advocate 
replacing traditional (dense sampling) assessments by modeling in all situations. 
The traditional assessment better protects against Type I error by employing fewer 
assumptions and is less prone to controversies. In addition, using individual non-
compartmental AUC and Cmax values has the advantage of being model-free and is 
therefore robust to model misspecifi cation. However, sparse sampling may occur for 
part of the clinical study data. In these situations where the traditional assessment 
is not possible, the modeling approach provides a rational alternative.

Our purpose is to draw attention to how to use modeling in situations where it 
is desirable to control the false-positive (Type I error) rate, for example, for claims 
submitted to regulatory authorities. Most of the above complexities relate to the 
issue of exploratory versus confi rmatory analyses. In an exploratory analysis, the 
modeler typically examines the data fi rst and then evaluates multiple models in 
order to fi nd one that “best fi ts.” Conclusions are typically drawn based on the 
best-fi t model. The exploratory analyses are useful for models and predictions that 
are most likely, that is, for hypothesis generation. In contrast, in a confi rmatory 
analysis such as BE assessment, the model is prespecifi ed, very few (if any) model 
explorations are conducted, and Type I error rate is protected. Thus, in order to 
have confi rmatory effects, the focus of model-based assessments needs to move 
toward confi rmatory analyses.

On a more general level, the topic of what may constitute “confi rmatory evi-
dence” of a Phase 3 clinical study in NDA submissions has been heavily debated (9). 
One related issue is what level of evidence may be drawn from model-based analy-
ses. We discuss this issue from the limited perspective of assessing PK similarity.

16.4 METHODOLOGY

We propose fi rst that a population PK model be built. The average model param-
eters can be used to predict average PK endpoints, namely, AUC and Cmax, in dif-
ferent formulations, and thus also the ratio of average AUC and Cmax values. Then 
90% confi dence intervals for these ratios can be used for BE assessment. However, 
special attention is required for the model building process. Because the formula-
tion effect was the central hypothesis for BE testing, every effort must be made 
to ensure that it is fully maintained during the modeling process. Consequently, 
the formulation effects should not be tested for the signifi cance of their presence 
in the analysis. The rationale for this separate criterion for the formulation effect 
was similar to the situation of BE analyses, which aim to establish bounds on the 
formulation effect, and do not simply eliminate it even though it is often statistically 
not different from zero. The purpose was thus to make every effort to include the 
subject population effect, as long as practically possible.
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In addition, model selection should be limited in order to protect against Type 
I error of BE testing. Therefore, we argue that a proper assessment framework 
should incorporate the following features:

1. The structural, covariate, and random effect models should be selected based 
on prior information and can be as complex as the data can be expected to 
support with high confi dence.

2. Model explorations, if conducted at all, should be justifi ed with suitable a 
priori power and should be consistent with the principle of BE assessment. For 
example, effects of formulation by covariate interaction should not be tested, 
for the same reason that, in standard BE analysis, treatment by subgroup 
interaction is typically not tested. This implies that the number of explorations 
should be kept very small, and preferably avoided in general.

3. Infl uence of the formulation factor, the key covariate of BE assessment, 
should be maintained on all structural model parameters (clearance, volume, 
etc.) and should not be eliminated based on the (in)signifi cance of any sta-
tistical tests.

4. A BE assessment method that constructs 90% confi dence intervals for AUC
and Cmax ratios of test/reference formulations must be prespecifi ed.

Note that confi dence interval construction for the Cmax ratio represents a chal-
lenge because of the diffi culty of formulating Cmax as a model parameter. Bootstrap 
(10) allows this construction, though, because in each bootstrap run, the predicted 
Cmax for the test and reference formulation, and thus their ratio, can be calculated 
from the population model parameters. The percentile bootstrap method then uses 
the 5% and 95% percentiles of the bootstrap runs to form the 90% confi dence 
interval. Specifi cally, in each bootstrap run, a bootstrap data set can be generated 
where the subjects were resampled with replacement. Parameter estimates can be 
obtained for the bootstrap data set, and thus a ratio of AUC and Cmax. Results of 
all bootstrap data sets can be assembled and the 5% and 95% percentiles used to 
construct the 90% bootstrap confi dence intervals.

The computation of population average AUC and Cmax deserves some elabora-
tion. Common population models have interindividual variability of CL as lognor-
mally distributed, in which case the population CL estimate is also the population 
geometric mean. Frequently, this can give rise to the average AUC through the 
relationship Dose/CL. Because AUC is commonly regarded as more important 
than Cmax, it may be tempting to reparameterize the model using AUC instead of 
CL. Again, under the lognormal assumption, this will not change the parameter 
estimates. Thus, when intersubject variability of PK parameters is assumed log-
normally distributed, the AUC for the average individual is the geometric mean of 
AUC values in the population.

The computation of Cmax was more complex and dependent on all other model 
parameters. In most situations, no single model parameter would amount to the 
formulation (subject population) infl uence, unlike CL. Obtaining the average Cmax

is diffi cult, however, because the distribution of Cmax cannot be directly calculated 
from the intersubject variability distribution of model parameters. Therefore, we 
suggest that the Cmax of the typical individual in the population, computed from the 
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estimated population PK model parameters, be used instead. In theory, the Cmax

for the average individual could be somewhat different from the geometric mean 
of Cmax in the population.

This framework addresses the diffi culties mentioned in the previous section. 
Maintaining the formulation infl uence on all structural model parameters allows 
the model to adequately accommodate potential differences in the formulations 
addressed in BE assessment. Limiting the structural, covariate, or random effect 
model explorations allows proper interpretation of hypothesis test results. However, 
these choices can be controversial and are discussed in more detail next.

16.4.1 Structural Model

We fi rst discuss the infl uence of structural model choice and the need of its pre-
specifi cation in BE assessment. On a rough scale, the AUC (and thus the ratio of 
test/reference) estimate should be relatively robust, because a model tends to rep-
resent the average concentration reasonably well. However, for Cmax the opposite 
should hold. For an illustration, assume that the data arose from a two-compartment 
model with fi rst-order absorption. Fitting a one-compartment model to the data 
would underestimate Cmax and thus likely obscure any potential difference of Cmax

in the test and reference formulations. Therefore, using a less sophisticated model 
is likely to bias BE assessment (of Cmax) toward equivalence.

The above argument could be extended to say that, because the reality is highly 
complex, any model will likely underestimate Cmax. This may be true, but the 
extent should be taken in perspective. The traditional use of measured Cmax also 
underestimates Cmax, because it is unlikely that Tmax is among the sampling times. A 
prerequisite of using modeling in any circumstance should be that the infl uence of 
potential model misspecifi cation is limited, compared with alternative choices.

16.4.2 Covariate Model

In traditional BE assessment of standard crossover studies, adjusting for covariates 
can be shown to have no effect if the covariate values do not change over time. 
The use of a covariate model in population pharmacokinetics for BE assessment 
is analogous to adjusting for covariates in BE assessment of parallel studies. In 
standard BE assessment of parallel studies, adjusting for a covariate (e.g., gender) 
adds one term in the linear model, which costs only one degree of freedom but can 
potentially improve the error estimate and thus improve the power of BE assess-
ment. With the use of population modeling, it is less clear where to add the gender 
effect, unless prior information is available. Adding gender infl uence to all model 
parameters not only reduces the degree of freedom, but also increases the complex-
ity of parameter estimation in population modeling. Bootstrap could be particularly 
sensitive to model instability, because one needs a large number of model runs, and 
convergence could become problematic.

Covariate exploration could create potential trouble in interpreting BE assess-
ment results, if any covariates were found to infl uence PK parameters. On the 
other hand, if existing literature evidenced some covariates that would affect the 
pharmacokinetics, it would be more diffi cult to argue for disregarding these covari-
ates. In a certain sense, this represents a compromise between the exploratory and 
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confi rmatory aspects of the analysis, depending on the information available. That 
is, the analysis could only afford to be more confi rmatory when prior information is 
strong enough to justify those model assumptions are prespecifi ed and not explored. 
The proposed approach allowed some explorations, although limiting them to only 
rational choices as suggested from previous experience. Those who might differ 
from this view could choose anywhere from one extreme to the other, perhaps 
depending on the purpose of the analysis. However, when model exploration is 
allowed, it is important that the analysis plan is prespecifi ed and followed with 
rigor, in order to avoid analyst subjectivity. Even so, the statistical properties of the 
analysis results become worse as more exploration is allowed (7, 11). Intuitively, 
more model exploration would adversely affect the power of concluding the similar-
ity of pharmacokinetics, because some degrees of freedom must be sacrifi ced for 
exploration. The issue would be much more apparent had an exploratory analysis 
arrived at some exotic model—for example, one that had ethnic origin infl uence 
absorption rate—that is both pharmacologically weak and unstable.

On the other hand, it is reasonable to argue that, because PK similarity assess-
ment is the purpose of the investigation, the expectations and procedures should 
determine the philosophy and procedure of the analysis. PK modeling is merely a 
tool to achieve the goal. The relevant question is: “Is covariate exploration needed 
for the PK similarity assessment?” and not “Is covariate exploration important for 
building the PK model?” Thus, covariate exploration may cause more trouble than 
it’s worth, viewed from a statistical perspective. One alternative might be to adjust 
for all of them without any pretesting. While this would better control Type I error, 
the power (or Type II error) could seriously suffer. A more interesting alternative 
is to assess the impact of including each covariate on PK similarity assessment. This 
may be suitable in certain situations. However, it also increases the complexity of 
the assessment, should any substantial impacts be found. Implementation may also 
be diffi cult when the computational burden is heavy. Finally, sensitivity analysis can 
be useful by comparing assessments with and without covariate exploration, had 
they resulted in different models.

16.4.3 Random Effect Models

Some random effect model parameters, especially the correlations among random 
effects, post little practical interest. For example, it is of little value to formally test 
whether the intercompartmental clearance varies by individual, or whether clear-
ance and volume correlate. Most likely they do, and an “insignifi cance” usually only 
shows the lack of power to detect the effects. However, the real question is whether 
adjusting for such effects would improve the inference. Including such effects might 
underestimate model uncertainty. However, overfi tting the model will dilute study 
power. We suggest that such terms not be included, especially in situations where 
power is lacking, pending further investigation.

16.4.4 Confi dence Interval Construction

When confi dence intervals are used as a form of hypothesis test, the Type I error 
is also affected by the correctness of the confi dence interval bounds. Efron and 
Tibshirani (10) discussed the notion of correctness and accuracy of confi dence 
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intervals. Common ways of constructing confi dence intervals all involve varying 
degrees of accuracy, thus adversely affecting the Type I error. Obviously, a 
more accurate construction leads to better control of Type I error. We suggest 
bootstrap because it is conventionally believed as more accurate than using 
software-generated standard errors of parameter estimates. However, the preci-
sion of bootstrap depends on whether the numbers of subjects in the studies are 
large enough to be considered as the whole population. More experience on using 
bootstrap may need to be obtained; however, the emphasis here is on attempting 
to compute the confi dence intervals more precisely and in a prespecifi ed fashion 
as opposed to a post hoc analysis. If bootstrap is chosen as the analysis method, 
however, there are a few implementation issues:

1. How to Bootstrap. First, the number of subjects in a multistudy data set for 
the purposes presented needs to be kept constant to maintain the correct statistical 
interpretations of bootstrap, that is, correctly representing the underlying empiri-
cal distribution of the study populations. Second, the nonparametric bootstrap, as 
opposed to some other more parametric alternatives, was considered more suitable 
in order to minimize the dependence on having assumed the correct structural 
model.

2. Number of Bootstrap Runs to Conduct. This may depend on the desired pre-
cision and the type of data and thus is diffi cult to determine in general. Efron and 
Tibshirani (10) suggest that at least 2000 samples may be needed. In the authors’ 
experience, 2000–5000 will generally suffi ce.

3. How to Deal with Failed Bootstrap Runs. Ette (12) provided valuable insights 
on this. It may be argued that failed runs correspond to data that were more likely 
to be in some way not typical of the population, that is, “out on tail.” In estimating 
the 90% confi dence interval, these types of samples are of particular interest, and 
runs need to be restarted until convergence is achieved. A counterargument to this 
could be that the successful runs were not paid similar attention; thus, the bias, if 
any, caused by ignoring failed runs may not be so severe. It could also be argued 
that when the software converges successfully but fails to produce standard error of 
parameter estimates, it presents only an algebraic problem unrelated to the quality 
of convergence; thus, such runs should be included. It may be tempting to conduct 
all these alternatives and examine the sensitivity, especially in a typical modeling 
scenario. However, doing so would violate the prespecifi ed analysis plan and thus 
distracts from the confi rmatory spirit. In hindsight, the problem can be alleviated by 
using multiple starting estimates for each run to increase the convergence rate. The 
increased computational burden may best be addressed using distributed computing 
(e.g., see http://www.page-meeting.org/page/page2003/Sale.pdf). Finally, 
an alternative approach that would avoid this problem is Markov chain Monte 
Carlo (MCMC) methods (13).

4. Potential that a Different Interested Party (e.g., a Regulatory Authority) Could
Obtain a Different Result by Using a Different Number of Samples or Different 
Inclusion Criteria. In the authors’ experience, this usually does not arise as an issue 
if the scientifi c rationale is presented clearly. However, when in doubt, it is always 
prudent to obtain an understanding from the interested party prior to conducting 
the analysis.



Future investigations would be necessary to determine the precision of bootstrap 
and how best to deal with failed runs. The reader is referred to Chapter 15 for more 
on implementation issues with the bootstrap.

16.4.5 Summary

Because of its many assumptions, a population model, especially with all the pre-
specifi cation demanded in this framework, is unlikely to be “true.” However, one can 
argue that this framework exerts the infl uence of model misspecifi cation primarily 
on study power. This is because a misspecifi ed model would generally result in lower 
power although not larger Type I error. In addition, this approach maintains a more 
realistic confi dence interval width instead of an overly optimistic (short) one. By 
“maximizing” the model as much as data can be expected to support, the impact on 
Type I error is minimized. Therefore, the hypothesis test is made as conservative as 
possible, and thus suitable for BE assessment.

This framework demonstrates a more general point: that is, how (or whether) to 
select the model should depend on the intended use of the model. In general, the 
relevant question for most applications of modeling is not whether the fi nal model 
is right or wrong. As has been repeatedly quoted, “all models are wrong, but some 
are useful.” The process of model selection should vary, depending on the goal. Ette 
et al. (14) discussed model appropriateness, and the use of bootstrap to esti-
mate model prediction error, in a circumstance where the goal of modeling is 
prediction.

Due to the complex nature of population modeling, it can be diffi cult to foresee 
all potential outcomes and prespecify the corresponding strategies. If some unex-
pected outcomes that were not prespecifi ed occur, it may be best to decide on a 
solution as close as possible to one that would have been prespecifi ed. An alterna-
tive could be conducting several reasonable analyses and examining the robustness 
of the conclusions. This might be fi ne in some circumstances, however, the number 
of analyses could easily become impractical and arguably infl ate Type I error.

16.5 APPLICATION EXAMPLE

We applied the methodology to a situation involving Phase 1–3 clinical study data. 
The work was conducted as part of a successful NDA submission, to respond to the 
US Food and Drug Administration’s request that PK similarity be established in a 
situation where dense sampling was not available for all subjects.

16.5.1 Data

GW433908 is a phosphate ester prodrug of amprenavir (APV) and was being devel-
oped for treatment of HIV infection in adults and children. In four clinical studies, 
GW433908 was given alone and in conjunction with ritonavir to healthy subjects and 
HIV-infected subjects. PK samples were collected after single daily (QD) or twice 
daily (BID) dosing of at least 14 days, and tests based on serial trough sampling 
confi rmed that steady-state amprenavir concentrations had been reached by day 14. 
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Bioanalytical results were provided by two different sites using the same validated 
analytical techniques. Additional details of study designs are given in Table 16.1.

Several demographic variables were collected; however, weight, ethnic origin, and 
a-1-acid glycoprotein (AAG) were considered the more likely covariates to infl u-
ence pharmacokinetics, based on previous data (15). A summary of demographics 
in actual data obtained for each study is given in Table 16.2.

Evaluation of APV pharmacokinetics following GW433908 administration to 
healthy subjects compared to HIV-infected subjects, both with and without ritona-
vir, was required. In the Phase 3 study (the last one in Table 16.1), only 3 samples 

TABLE 16.1 Details of the Study Designs

Study
Number  Number of Sampling  Number of
(Population) Dose Subjectsa Scheduleb (h) Assay Samplesc

GW433908 Alone

APV10013 GW433908  12 0 (predose), 0.25, Advion  180
 (healthy)  1400 mg   0.5, 0.75, 1, 1.5,
  BID ×   2, 2.5, 3, 4, 5, 6,
  14 days   8, 10, and 12 h
    postdose at
    day 14
APV20001 GW433908  27 0 (predose), 0.25, GSK  378
 (HIV-  1395 mg   0.5, 0.75, 1, 1.5,
 infected)  BID × 14   2, 2.5, 3, 4, 6, 8,
  or 28 days   10, and 12 h
    postdose at
    days 28 and 42

GW433908 + Ritonavir

APV10009 GW433908  27 0 (predose), 0.5, GSK  375
 (healthy)  1395 mg +   0.75, 1, 1.5, 2,
  ritonavir   2.5, 3, 4, 5, 8,
  200 mg QD   10, 12, 16, and

× 14 days   24d h postdose
    at day 14–15
APV30002 GW433908 Day 28: 0 (predose), 2, and Advion  30
 (HIV-  1395 mg +  10  4 h postdose
 infected)  ritonavir Week 4,  at day 28
  200 mg QD  8, and 0 (predose) at

× 48 weeks  12: 35  week 4, 8, 12   81

All combined  101   1044

a Number of potentially evaluable subjects.
b Study listing includes sampling schedule after repeat-dosing only.
c This number represents theoretical number samples that should be available for population PK analy-
sis. Actual number may be lower due to various practical reasons (not recorded, assay interference, 
etc.).
d An additional sample was collected at 24 h for measurement of plasma unbound APV concentration.
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at most were collected per subject. Individual AUC and Cmax could not be reliably 
calculated by traditional means; therefore, assessing PK similarity based on PK 
parameters obtained from noncompartmental analysis of individual PK was not 
feasible.

16.5.2 Population Model Building

For the PK model structure, there was a fair amount of previous information, which 
suggested that oral one-compartment models might be suffi cient to describe the PK 
profi le, and there should be no need to consider models more complex than oral 
two-compartment models. For the potential covariates, ritonavir had been shown to 
strongly increase APV concentrations in previous studies. In addition, AAG might 
appear to infl uence clearance (16), and weight might infl uence volume and clear-
ance, based on physiological considerations. In this analysis, some exploration was 
utilized, but the choices were limited to only those factors suggested from previous 
data. That is, oral one- and two-compartment models were considered, as well as the 
potential infl uences of AAG on clearance and weight on volume and clearance. In 
addition, the subject population (i.e., healthy or HIV-infected) was the key effect, 
similar to that of formulation effect in BE studies.

After the model-predicted ratios of average AUC and Cmax in the populations 
were calculated, assessing PK similarity typically requires obtaining 90% confi dence 
intervals for the ratios. The NONMEM-generated standard errors would be indica-
tive but were known to be only approximate (17). Another estimate less dependent 
on distributional assumptions was obtained by using bootstrap to calculate the 90% 
confi dence intervals.

The number of bootstrap samples generated would depend on the computational 
complexity, although at least 500 samples were to be attempted. When this plan 
was developed, the intention was that confi dence intervals falling inside the 
(0.80, 1.25) range would demonstrate BE. A somewhat broader, although unspeci-
fi ed, range would show PK similarity. However, from a philosophical perspective, 
controversies exist as to the appropriateness of claiming BE among healthy and 
diseased populations. For a formal procedure of assessing PK similarity, a pre-
specifi ed range would be necessary to maintain the proper interpretation of the 
hypothesis test.

16.5.2.1 Analysis Plan

To minimize subjectivity in the model building process, the above was formalized 
in a prespecifi ed analysis plan.

1. Base Model Choice. The choice was a steady-state one-compartment model 
with fi rst-order absorption or a steady-state oral two-compartment model 
with fi rst-order absorption. The disposition parameters were to be expressed 
in volume and clearance. Intersubject variability and residual error were also 
to be assessed. The best-fi t model, using the software NONMEM, was to be 
the fi nal base model. The criteria for accepting the NONMEM base model 
included (a) improved fi tting of the diagnostic scatterplots (observed vs. pre-
dicted concentration, residual/weighted residual vs. predicted concentration 



or time), (b) convergence of the minimization, (c) number of signifi cant digits 
>3, (d) termination of the covariance step without warning messages, (e) abso-
lute value of estimation correlation between model parameters <0.95, and (f) 
signifi cant decrease in the objective function.

2. Covariate Model Development. Treatment (with and without ritonavir) would 
be included as a potential covariate on clearance. Infl uence of AAG on clear-
ance and of weight on volume and clearance were also included as potential 
covariate relationships. Assay site was also included as a potential covariate 
for residual error.

With exception to the primary covariate (i.e., subject population), the covariate 
model development followed a step-forward–step-backward procedure. During the 
step-forward phase, the most promising covariate was added one-by-one, using the 
procedure similar to choosing the base model, where the decrease in the NONMEM 
objective function was required to be at least 3.84 for a single covariate (p ≤ 0.05). 
During the step-backward phase, the least promising covariate was deleted one-by-
one, using the procedure similar to choosing the base model, where the increase 
in the NONMEM objective function was required to be at least 6.63 for a single 
covariate (p ≤ 0.01). This step-forward–step-backward procedure is common in PPK 
model building, the idea being that the choice of p ≤ 0.05 in the step-forward phase 
allows all potential covariates to be considered, and that the choice of p ≤ 0.01 in 
the backward elimination phase allows the inclusion of only suffi ciently infl uential 
covariates.

Because the primary objective of this analysis was PK similarity assessment, 
the infl uence of subject population would fi rst be assessed with a different criterion. 
The subject population effects would be parameterized as percent change, and not 
be tested by NONMEM objective function differences. However, to maintain 
numerical stability, a subject population effect would be dropped if the absolute 
value of the estimated effect were smaller than a nominal value of 0.01 (i.e., change 
of CL, V, Ka, etc. <1%). This was not expected to happen and was designed 
only to prevent the case where NONMEM might estimate these effects at infi ni-
tesimal values and consequently would not produce standard errors of parameter 
estimates.

After a model was built, the average AUC in the populations was to be calculated 
from the clearance parameter estimates (using AUC = Dose/CL), which correspond 
to clearances for the “typical” individuals in the populations, and thus the ratios 
of average AUC in the populations obtained. Under the usual population models, 
this gives the ratio of geometric means in the populations. Similarly, the ratio of 
average Cmax in the populations could be calculated, although with more complex 
computations and a more subtle interpretation.

16.5.2.2 Model Building Result
The software NONMEM (17) with fi rst-order conditional estimation (FOCE +
INTER) was used throughout the analysis. The proportional error model was 
used for intraindividual variability, and interindividual variability was assumed 
lognormally distributed. Interindividual variabilities were assumed independent: 
that is, diagonal matrices for OMEGA were used throughout for model develop-
ment. These details were not explicitly stated in the plan but were maintained as 
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if they were; that is, no explorations on the variability structures were considered 
during model building. The purpose was to avoid overspending degrees of freedom 
and resulting confi dence intervals being too wide. The fi nal structural model was a 
two-compartment model with fi rst-order absorption. Study design did not allow the 
peripheral volume to be identifi ed and it was fi xed at an arbitrarily large value. One 
fi ner detail in the prespecifi ed analysis plan was that study APV10009 (healthy vol-
unteers) did not collect AAG; the covariate ethnic origin was to be used to impute 
AAG for this study based on the literature (15, 16). When the data became avail-
able, it turned out that AAG values were not collected in study APV30002 (HIV-
infected subjects). Subsequently, AAG in two studies (APV10009 and APV30002) 
were imputed based on medians in ethnic origin groups, from APV10013 (healthy 
volunteers) and APV20001 (HIV-infected subjects), respectively. The analysis con-
tinued as planned and the results showed AAG values did not have any infl uence 
on APV population PK parameters. Since 50% of the AAG data were imputed, 
examination of ethnic origin as a potential covariate was conducted given its cor-
relation with AAG (4, 16). Ethnic origin was “substituted” for AAG in the model 
since these data were available for all subjects and was also found to be insignifi cant. 
Therefore, the unexpected missing AAG data and imputation of AAG data and 
the examination of ethnic origin had little impact on the analysis.

Consistent with experience in other clinical studies, assay affected residual error, 
and treatment (with or without ritonavir) affected clearance. As stated above, no 
effect of weight, AAG, and ethnic origin was found. Absolute values of estimates 
for the effect of the primary covariate, subject population, on all model parameters 
were larger than 1% and thus retained in the model.

The fi nal model was parameterized as follows:

Ka = q1*(1 + q7*POP)*exp(h1)

CL = [q2*(1 – TMT) + q6*(1 – TMT)]*(1 + q8* POP)*exp(h2)

V2 = q3*(1 + q9 * POP)*exp(h3)

Q = q4*(1 + q10 * POP)*exp(h4)

The covariates were coded such that TMT = 0 if without RTV, TMT = 1 if with RTV, 
POP = 0 if healthy, POP = 1 if HIV-infected, and h1, h2, h3, and h4 were indepen-
dently normally distributed. The residual error model took the form

Y = F + F*(1 + q5*ASSAY)*ε

where ASSAY = 0 if GSK, ASSAY = 1 if Advion. Parameter estimates are listed 
in Table 16.3.

The model assumes that the interindividual variabilities in the two populations 
are the same, which was implicit in the model building plan because no variability 
differences in the subject populations were to be tested. The plan was written based 
on the assumption that any such differences would have limited infl uence on the 
population average parameter estimates. This assumption is certainly debatable, 
however, in some sense similar to whether such differences should be assumed in 
formulations with standard BE assessments.

The observed concentrations (DV) are plotted versus the population predicted 
for the fi nal model in Figure 16.1.



Note that the fi nal model was not to be further modifi ed based on any diagnos-
tics plots. Thus, it was comforting that Figure 16.1 suggested no specifi c misfi ts of 
the model. However, in general, many more diagnostic plots would be needed to 
assess goodness of fi t of population models, if that were the primary focus. As an 
additional check of model performance, the model predicted AUC and Cmax for 
the intensively sampled individuals were comparable with the noncompartmental 
analysis results.

TABLE 16.3 Final Population PK Model

Model Parameter (Unit) Final Estimate Standard Error

q1 Ka (h−1)   0.589  0.061
q2 CL (L/h)  91.8  7.1
q3 V2 (L) 164 11.1
q4 Q (L/h)  15.8  1.5
q5 ASSAY   0.437  0.107
q6 CL (L/h)  21.5  1.19
q7 POP on Ka   0.134  0.151
q8 POP on CL −0.0372  0.0747
q9 POP on V2 −0.0764  0.0934
q10 POP on Q   0.342  0.245
h1 —   0.199  0.051
h2 —   0.094  0.016
h3 —   0.089  0.031
h4 —   0.207  0.052

Population Predicted

DV
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FIGURE 16.1 Final model population observed concentrations (DV) versus predicted 
concentrations. The predicted concentrations appear to take a series of fi xed values corre-
sponding to the number of observation time points.
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16.5.3 PK Similarity Assessment

Bootstrapping was used to construct 90% confi dence intervals for the estimates 
of the key variables, that is, the ratios of steady-state AUC and Cmax of the typical 
individual for HIV-infected subjects over healthy subjects. The software S-Plus was 
used to generate the bootstrap data sets and to automate the NONMEM estimation. 
A total of 3000 bootstrap runs were conducted. This number was chosen due to 
computational complexity (1000 bootstrap runs required about 4 days using a 900 
MHz personal computer). Among the 3000 runs conducted, 149 did not terminate 
successfully and were removed from further consideration. In retrospect, it would 
have been better to track the reason of convergence failure and attempt different 
starting values. Generally, a large proportion of missing bootstrap samples may 
bias the results, as described in Ette (12). For each of the remaining 2851 boot-
strap runs, the parameter estimates for the typical individual were used to calcu-
late steady-state AUC and Cmax for the average healthy subject and HIV-infected 
subject population, and a ratio of AUC and Cmax was obtained. In particular, AUC
was calculated as Dose/CL. Calculation of Cmax for two-compartment models in 
general would require simulation; however, for large peripheral volumes it can be 
computed as follows. Let the steady-state oral two-compartment model be param-
eterized as (Ka, V2, CL, V3, Q, τ). Standard textbooks give the con centration of 
steady-state oral two-compartment model by

c1*exp(-l1*t) / (1 - exp(-l1*τ)) + c2*exp(-l2*t) / (1 - exp(-l2*t))
+ c3*exp(-Ka*t) / (1 - exp(-Ka*t))

where

k10 = CL/V2, k12 = Q/V2, k21 = Q/V2

det = [(k10 + k12 + k21)2 - 4*k21*k10)] 1/2

l1 = 0.5*( k10 + k12 + k21 + det), l2 = 0.5*( k10 + k12 + k21 - det)
c1 = (Ka/V2)*(k21 - l1)/ ( (l2 - l1)*(Ka - l1))
c2 = (Ka/V2)*(k21 - l2)/( (l1- l2)*(Ka - l2))
c3 = (Ka/V2)*(k21 - Ka)/( (l1- Ka)*( l2 - Ka))

With large V3, one can show that this can be calculated as

d1*exp(-L1*t) / (1 - exp(-L1*t)) + d2 - d1*exp(-Ka*t) / (1 - exp(-Ka*t))

where L1 = (CL + Q)/V2. Taking the derivative of this with respect to t and setting 
it equal to 0 shows that it is maximized at

Tmax = 1/(Ka - L1) *log(R)

with

R = exp((Ka - L1)* Tmax) = Ka / (1 - exp(-Ka*t)) / [L1 / (1 - exp(-L1*t))].

The results of AUC and Cmax in subgroups are given in Table 16.4.



Table 16.4 shows the 5% and 95% percentiles, which were used to form the 
90% confi dence intervals for BE assessment. The 90% confi dence interval for the 
AUC ratio (HIV-infected vs. healthy) was (0.908, 1.175). This holds for both cases 
of with and without ritonavir, because AUC was determined by clearance, and the 
fi nal model contained no interaction term of subject population and ritonavir on 
clearance, in a multiplicative sense. However, because Cmax depends on all model 
parameters, the model predictions for the subject population effect on Cmax are
different for GW433908 only and GW433908 + ritonavir. Thus, the confi dence 
intervals needed to be computed separately. The confi dence interval for GW433908 
alone was (0.951, 1.297), and that for GW433908 + ritonavir was (0.956, 1.244).

The confi dence intervals were constructed from bootstrap runs that included 108 
runs with failed covariance; that is, NONMEM was unable to generate standard 
errors of parameter estimates. Arguments could be made to include or exclude 
these runs in the analysis. Excluding these runs did not result in noticeable change 
of the results (i.e., changes on the confi dence bounds <0.0005). Note also that a suc-
cessful implementation of the NONMEM covariance step has no infl uence on the 
estimation of the geometric mean parameters. In retrospect, the analysis plan should 
prespecify whether such runs would be included, for the sake of rigorousness.

The clinical implication of this analysis is that the AUC and Cmax in healthy and 
HIV-infected subjects were considered similar. This interpretation is less interesting 
from the methodological standpoint and is presented only for completeness.

16.5.4 Discussion

In hindsight, the analysis has room for improvement. The amount of model 
exploration, especially covariate searching, could be better planned. In that regard, 
it is fortunate that the fi nal model in this particular application did not contain any 

TABLE 16.4 Bootstrap Results for AUC and Cmax by Study, 
as Well as the Ratios for Subject Population

 5%  95%
Variable Percentile Median Percentile

AUC: healthy—GW433908 13.462 15.251 17.327
AUC: healthy—GW433908 + ritonavir 59.362 65.187 71.173
AUC: HIV-infected—GW433908 14.049 15.855 17.745
AUC: HIV-infected—GW433908 + ritonavir 60.518 67.460 74.763
Ratio of AUC (HIV-infected/healthy)  0.908  1.041  1.174
Unit of AUC = h * mg/mL

Cmax: healthy—GW433908  2.791  3.181  3.588
Cmax: healthy—GW433908 + ritonavir  5.348  5.865  6.402
Cmax: HIV-infected—GW433908  3.081  3.535  4.025
Cmax: HIV-infected—GW433908 + ritonavir  5.791  6.391  7.063

Ratio of Cmax, GW433908 only (HIV-infected/  0.951  1.108  1.297
 healthy)
Ratio of Cmax, GW433908 + ritonavir (HIV-  0.956  1.088  1.244
 infected/healthy)
Unit of Cmax = mg/mL
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unexpected covariates infl uencing PK parameters. The only unexpected covariate in 
the fi nal model was that the residual error model depended on the assay site. Thus, 
the covariate is unlikely to qualitatively affect the analysis results.

The covariate of with/without ritonavir may deserve more consideration. The 
question related to the central hypothesis test of PK similarity is: “Does the addi-
tion of ritonavir modify the conclusion about PK similarity?” From a statistical 
perspective, the ritonavir covariate may also deserve some special attention during 
model building, similar to the subject population covariate. However, practically, 
model stability (i.e., the replication stability of the fi nal model form) decreases as 
more effects are estimated. In hindsight, it may be more appropriate to prespecify 
that the fi nal model include an interaction term between subject population and 
the ritonavir covariate, and that ritonavir will infl uence the clearance only. This 
is in part because elevation of exposure of GW433908 when given with ritonavir 
prompted the inclusion of ritonavir in this assessment.

16.6 PHARMACODYNAMIC ENDPOINT BIOEQUIVALENCE

The need of pharmacodynamic (PD) BE assessment arose in the mid-1990s, and 
currently there is not yet a universally accepted analysis method with a correspond-
ing study design. Here we discuss properties of some potential study designs and 
analysis methods based on the dose-scale approach, under the framework of two 
separate scenarios: broncodilation and broncoprovocation.

The dose-scale approach for PD BE assessment is based on a structural model 
described as follows. It assumes that the dose–response for the reference product 
follow the Emax model:

Response = E0 + Emax*Npuff /(ED50 + Npuff) (16.1)

The parameters are E0 (baseline response), Emax (maximum response), and ED50
(the dose that achieves 50% of maximum drug effect). Npuff is the number of 
puffs. In addition, it is assumed that the active ingredient in the test drug will be 
proportional to that of the reference drug, with a multiplication factor F. Under 
this assumption, the dose–response relationship for both the test and the reference 
drug can be written jointly as follows:

Response = E0 + Emax*Npuff*FI /(ED50 + Npuff *FI) (16.2)

where I = 0 or 1 indicates the reference or the test product, respectively. Para meters 
in the structural model are (F, E0, Emax, ED50). The parameter F is the relative 
bioavailability, which indicates bio(in)equivalence. (F = 1 would imply bioequiva-
lence.) The rest of the parameters may be viewed as nuisance parameters. This 
model assumes that the test and reference products have the same E0 and Emax and 
differ only in their ED50 values.

Common study designs for assessing bioequivalence of MDIs are multiperiod 
crossover. Responses to the test and reference products of each subject are mea-
sured at baseline, at one or two doses of the test drug, and at two doses of the ref-
erence product. Due to the complexity of conducting MDI bioequivalence studies, 



it is useful to have simple designs (i.e., as few doses as possible) and yet allow 
reasonable estimation of the relative bioavailability F. We consider two potential 
types of crossover designs:

1. Limited Design. Measurements are taken at the test baseline, test 1 puff, refer-
ence baseline, reference 1 puff, and one more reference at 2 puffs. Depending 
on the type of study, the extra reference dose may be at 4 puffs if it is felt that 
2 puffs will not allow a good characterization of Emax.

2. Balanced Design. Add one more dose of the test drug to the Limited Design 
so that the test and reference are measured at the same doses.

We denote the doses as (T0, T1, T2, R0, R1, R2). For the limited design, 
T2 is not available. The Balanced Design has been used in successful ANDAs. 
Intuitively, the Balanced Design would allow estimation of the Emax dose–response 
curve for both test and reference products. The Limited Design would be the 
minimal informative design in the sense that it would allow characterization of the 
Emax dose–response curve for the reference product. With that, the response at T1 
would allow estimation of relative bioavailability F.

In practice, responses at the conducted doses may not plateau, so the Emax model 
may not be identifi ed. In such a case, perhaps the only viable alternative is to 
consider the linear model:

Response = E0 + c*Npuff*FI (16.3)

instead of Eq. (16.2). The relative bioavailabity F would be interpreted as a change 
in the slope. Because it may not be a priori clear as to when the linear model needs 
to be used, the potential impact of model misspecifi cation needs to be considered.

In addition, it is plausible that the analysis above may be inaccurate because 
individual responses vary. One way to adjust for this, to some extent, might be 
to adjust for individual baseline values. Using individual change from baseline as 
response, the structural model in Eq. (16.2) becomes

Response = Emax* Npuff *FI/(ED50 + Npuff *FI (16.4)

Intuitively, adjusting for baseline might be advantageous if the maximum changes 
from baseline are similar for all individuals.

The PD BE is assessed by 90% confi dence interval for F, and the target inter-
vals appeared to be case-specifi c, although larger than (0.80, 1.25). In principle, F
and its confi dence interval could be assessed with population models. Application 
of this approach to MDI bioequivalence studies have been reported (18–21). The 
reports did not show the exact forms of the models used. Thus, the robustness of 
the conclusions to the population model specifi cation is unclear.

16.6.1 Method

Because sampling points are few in common PD BE designs, data allow estimat-
ing interindividual variability for very few parameters, usually no more than one 
or two. It is unclear as to how best to prespecify population models for PD BE 

PHARMACODYNAMIC ENDPOINT BIOEQUIVALENCE 439



440 POPULATION MODELING APPROACH IN BIOEQUIVALENCE ASSESSMENT

assessment, such as which parameters should have interindividual variability esti-
mated. Thus, we consider nonlinear regression models, in which case the model 
specifi cation, parameter estimation, and confi dence interval construction are much 
less controversial.

We consider the above mentioned study designs together with a few correspond-
ing analysis methods and explore their potential. Several analysis methods may 
be appealing, depending on the particular study design. For example, measure-
ments of various individuals could be pooled. Alternatively, one could consider 
mixed effect models, accounting for intersubject variability in certain parameters. 
We discuss the impact of estimation and confi dence interval construction methods 
separately.

16.6.1.1 Analysis Methods
Traditional bioequivalence assessment is based on a specifi c linear model with 
sequence and period effects (see Schuirmann (1)). Because the Emax curve is non-
linear, it is unclear as to how best to accommodate sequence and period effects. 
Given the desire of limiting study complexity, simplifi cation in analysis method(s) 
is necessary to make them suitable in a potential regulatory setting. Thus, we 
will ignore period and sequence effects. We consider three potential methods to 
estimate the relative bioavailability F.

1. Inverse Regression. This method corresponds to the Limited Design. First, 
take geometric means of all measurements at each time of measurement and call 
these M0, MR1, MR2, MT1. Use (M0, MR1, MR2) in Eq. (16.1) to solve for param-
eters (E0, ED50, Emax). Then use the obtained parameters and MT1 in Eq. (16.2) 
to solve for F. With the balanced design, which gives response of the test product 
at 2 puffs, it is natural to generalize the method to the following.

2. Means. First, take geometric means of all measurements at each time of 
measurement. We thus have MR0, MR1, MR2, MT0, MT1, MT2. Then use Eq. (16.2) 
to jointly estimate all parameters under a chosen residual error model.

The geometric means step in the above two methods is appropriate when the 
error in response measurements (including model misspecifi cation error) is lognor-
mal distributed. The geometric means step can be replaced by arithmetic means 
when normally distributed errors are more appropriate. From a regulatory perspec-
tive, this choice should be made before data collection.

Naturally, one could think of using nonlinear regression to jointly estimate the 
parameters and F, without taking the means of the responses. This consideration 
leads to the following method.

3. Naïve Pooled. Use Eq. (16.2) to jointly estimate all parameters under a suit-
able error model assumption (additive, multiplicative, or constant CV). We consid-
ered three error models:

• Additive: y = pred + e
• Lognormal: y = pred*exp(e)
• Constant CV: y = pred + pred*e

Here, y is the observed response, pred is the model predicted response, and ε is 
assumed normally distributed with mean 0 and variance s 2.



Additionally, in a potential regulatory framework, a method of constructing 90% 
confi dence interval for F must also be prespecifi ed in order to control the Type I 
error. Several methods are possible. First, standard nonlinear regression packages 
provide asymptotic standard errors of parameter estimates. This readily leads to the 
construction of asymptotic confi dence intervals, based on the normality assumption. 
Other methods include likelihood profi le and bootstrapping. We considered these 
three methods briefl y.

16.6.1.2 Evaluation of Design/Analysis Method: Theory and Simulations
We start by showing that, in principle, the means and the naïve pooled methods 
behave quite similarly. We shall call a data set balanced with respect to covari-
ates if the numbers of observations are the same for any given combination of the 
covariates.

Lemma With ordinary least-squares regression on balanced data, taking arith-
metic means over the covariates does not affect the results of nonlinear regression 
estimation under additive (normal) error model assumption. Similarly, taking geo-
metric means over the covariates does not affect the results of nonlinear regression 
estimation under multiplicative (lognormal) error model assumption.

The proof is shown by taking the means and showing that it does not change the 
maximizer of the likelihood. The proof is not given here. It follows directly from the 
lemma that the means methods theoretically perform the same as the correspond-
ing naïve pooled methods. However, the means method is numerically more stable 
in our experience. This limited us to three estimation methods, namely, the naive 
pooled with the choice of additive, lognormal, or constant CV error models. We 
studied their relative performance by simulation.

Simulations were conducted under the following population model motivated 
by the broncodilation data from application Example 1 in Section 16.7.1. Equation 
(16.2) was used as the structural model, lognormal interindividual variability terms 
were placed on (E0, Emax, ED50), and the residual variability was assumed log-
normally distributed. Estimation was carried out in NONMEM. Fixed effects were 
estimated as (F, E0, Emax, ED50) = (0.79, 0.92, 60.3, 2.99). The variance–cova-
riance matrix of interindividual variability terms was estimated as

var-cov(log(E0), log(Emax), log(ED50)) = 

1.9 -0.359 -2.23

-0.359 0.757 1.72

-2.23 1.72 6.76

In addition, the standard deviation of intraindividual variability was estimated 
as 0.32. The data did not allow reasonable estimation of potential interindividual 
variability of F. How much this model represents reality may be questionable, as 
no interindividual variability of F was allowed. However, there was reasonable 
agreement between the distributions of observed and model simulated data, and 
we hypothesized that this gives us a viable framework to evaluate the study design 
and analysis methods.
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We used Monte Carlo simulation to gain insight of the performances of the designs 
and the analysis methods. As initial explorations, the simulations focused on the 
accuracy and precision of estimating relative bioavailability. For potential regula-
tory applications, it is important to study the effect of error model (mis)specifi cation 
and the infl uence of structural model misspecifi cation. Of particular interest are the 
following issues:

• How well does the means method perform when the models are correctly 
specifi ed?

• How well does the means method perform when the error model is 
misspecifi ed?

• How well does the inverse regression method perform when the models are 
correctly specifi ed?

• How well does the means method perform when the structural model is 
misspecifi ed?

• How well does the inverse regression method perform when the structural 
model is misspecifi ed?

• Would it be advantageous to adjust for baseline?

To investigate these issues, we considered the following corresponding simula-
tion scenarios for the use of study design/analysis method:

 I. Geometric means
 II. Naïve pooled, with constant CV error model
 III. Inverse regression
 IV. Geometric means, using a (misspecifi ed) linear structural model (Eq. (16.3))
 V. Inverse regression, using a (misspecifi ed) linear structural model (Eq. (16.3))
 VI. Geometric means adjusting for baseline, using structural model (Eq. (16.4))

For scenarios I–III and VI, the study design was chosen as using the original doses 
of 0, 1, and 4 puffs. Scenario IV and V aimed at studying the effect of model mis-
specifi cation, that is, when the data do not allow accurate estimation of the Emax

model. Because ED50 was 2.99 puffs in the data generation model, the study design 
using doses of 0, 1, and 2 puffs as chosen for scenarios IV and V.

In each simulation scenario, 1000 runs were simulated. In each run, a set of 40 
subjects and their responses were generated based on the data generation model. 
This number of subjects was somewhat larger than normal trials conducted, based 
on the consideration that power may be lacking in available PD BE assessment 
situations. This difference was not expected to affect the relative performance of 
the methods. For each simulation run, the bias of estimating F was calculated, and 
the resulting 10%, 50%, and 90% percentiles of the distribution from the 1000 runs 
are given in Table 16.5.

In Table 16.5, the medians indicate the bias (or the lack thereof) of the study 
design/analysis methods, and the 10% and 90% percentiles relate to the precision. 
Results of scenarios I show that, when the correct structural model is assumed and 
the correct type of mean corresponding to the error model was taken, the means 
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method was virtually unbiased. Results of scenario II show that, when the naïve 
pooled method misspecifi ed the error model (constant CV), it did not cause much 
bias, but the precision became much worse. Results of scenarios III show that the 
inverse regression method performed virtually identically to the means method. 
Results of scenario IV and V show that, when the structural model was misspecifi ed, 
the means method and the inverse regression method both appeared to be biased. 
However, the inverse regression was notably worse in both the magnitude and the 
spread of bias. Finally, comparing results of scenarios VI and I suggests that adjust-
ing for baseline did not improve estimation precision.

The simulations therefore suggest that the means (or naïve pooled) method, 
without the intuitive adjusting for baseline, had the best estimation performance.

We also looked at confi dence interval construction based on standard errors of 
parameter estimates. If the asymptotic 90% confi dence intervals are truly accurate, 
then they should cover the true parameter 90% of the time. We examined the con-
fi dence interval coverages in simulation scenario I, shown in Figure 16.2.

The coverage probabilities were exact at 0 and 1, as they must be. However, as 
the probability gets closer to 0.5, the coverage probabilities became much wider 
than the “truth.” Thus, the asymptotic confi dence interval appeared to be unsuit-
able in a regulatory framework.

16.6.1.3 Study Design and Estimation Recommendations
For the two study designs under consideration, the previous section showed that the 
limited design is appropriate if the structural model is correctly specifi ed. However, 
the design is sensitive to even slight model misspecifi cation. The balanced design 
offers better protection. Thus, the choice of the design could be left at the sponsor’s 
discretion, in case they have high confi dence about the structural model and are 
willing to sacrifi ce robustness in order to reduce the number of treatment periods 
in the study.
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FIGURE 16.2 Coverage probabilities of asymptotic confi dence intervals.



For the estimation methods, the naive pooled methods (or computationally more 
effi ciently, the means methods) appeared reasonable when the error model is cor-
rectly specifi ed. From the perspective of protecting against Type I error, the error 
model could be prespecifi ed, based on prior experience of the type of studies (i.e., 
broncoprovocation or broncodilation).

We briefl y explore later the potential of using likelihood profi le and bootstrap 
as confi dence interval construction methods through application examples with 
broncodilaion and broncoprovocation data.

16.7 APPLICATION EXAMPLES

We considered two data sets arising from ANDAs (data modifi ed), which will be 
used to evaluate potential study design and analysis methods.

16.7.1 Example 1: Broncodilation Study

Twenty-four subjects completed an 8-period balanced crossover study. For each 
subject, pharmacodynamic responses are taken at the test baseline, test 1 puff, test 
4 puffs, reference baseline, reference 1 puff, and reference 4 puffs. A population 
model fi t (Section 16.6.1.2) was conducted to describe the data. Responses at base-
line were similar for both formulations, although they appeared to differ somewhat 
at 1 puff and 4 puffs. Overall, the profi les of the two formulations were judged as 
similar.

The data clearly preferred the lognormal distribution to normal. Thus, the 
geometric means method was applied, using Eq. (16.2) as the structural model, 
which gave parameter estimates (F, E0, Emax, ED50) = (1.06, 0.903, 30.5, 
2.33).

For confi dence interval of F, we applied the percentile bootstrap method. With 
2000 runs, the 90% confi dence interval was (0.74, 2.18). This appeared to be a rea-
sonable quantifi cation of the variability with the data.

16.7.2 Example 2: Another Broncodilation Study

Sixty-six subjects completed a 6-period balanced crossover study. For each subject, 
pharmacodynamic responses are taken at the test baseline, test 1 puff, test 2 puffs, 
reference baseline, reference 1 puff, and reference 2 puffs for a total of 66 subjects. 
Population modeling was attempted to describe the data, which has an AUC type 
of endpoint. However, it was diffi cult to estimate interindividual variabilities for 
all three Emax model parameters. Nevertheless, responses for the test and reference 
appeared suffi ciently similar at baseline and both 1 puff and 2 puffs.

The data did not show any preference of the lognormal distribution over the 
normal. Thus, the arithmetic means method was applied, using Eq. (16.2) as 
the structural model, which gave parameter estimates (F, E0, Emax, ED50) = (1.14, 
692, 205, 0.566).

For confi dence interval of F, we applied the percentile bootstrap method. With 
2000 runs, the 90% confi dence interval was (0.94, 1.44). Again, this appeared to be 
quite reasonable quantifi cation of the variability with the data.
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We also attempted the likelihood profi le method to construct the 90% confi dence 
interval. However, the likelihood profi le of F turned out to be extremely fl at in this 
case. As a result, the 90% confi dence interval included (0.1, 10). This was considered 
unreasonable, given the similarity between the two formulations. Thus, the likeli-
hood profi le method did not seem suitable for confi dence interval construction.

Programming codes written in NONMEM and S-Plus for the application exam-
ples are provided in the appendix (see Appendix 16.1).

16.8 SUMMARY

We were searching for study designs and the corresponding estimation and confi -
dence interval construction methods suitable in a potential regulatory framework. 
The investigation is still sketchy and more complete assessment is necessary. In 
addition, the number of clinical trial data is few and more experience is certainly 
necessary. However, the fi ndings seem reasonable and serve to pare down the 
potential choices. Based on the various experience in simulation and application 
examples, we recommend the balanced design, using the appropriate means method 
for estimation. The use of geometric versus arithmetic means should be chosen 
based on prior information on whether the data would be normally or lognormally 
distributed.

For confi dence interval construction, the bootstrap performed the best among 
the possible methods considered. Thus, we recommend bootstrap as the method 
of choice.
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APPENDIX 16.1

Programming codes written in NONMEM and S-Plus for the application examples 
are given below.

Programming Codes for Section 16.5

Data have been modifi ed from the real data, for confi dentiality reasons.

NONMEM Code
$PROB Application Example 1 – Final Population Model

$DATA boot.dat IGNORE=#

$INPUT PROT ID TIME EVID DV MDV AMT II SS TMT POP WT ASSA

$SUB ADVAN4 TRANS4

$PK
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 KA = THETA(1)*(1 + THETA(7)*POP)*EXP(ETA(1))

 CLTYP = (THETA(2)*(1-TMT) + THETA(6)*TMT)*(1 + THETA(8)*POP)

 CL = CLTYP*EXP(ETA(2))

 V2 = THETA(3)*(1 + THETA(9)*POP)*EXP(ETA(3))

 Q = THETA(4)*(1 + THETA(10)*POP)*EXP(ETA(4))

 V3 = 8000

 S2 = V2

$ERROR

 IPRE = F

 W = F

IRES = DV - IPRE

Y = IPRE*(1 + (1 + THETA(5)*ASSA)*EPS(1))

$THETA (0, 0.591) ; KA

 (0, 91.9) ; CL

 (0, 164) ; V2

 (0, 15.8) ; Q

 (-0.5, 0.438) ; ASSA

 (0, 21.5) ; CL for + RTV

 (-1, 0.01) ; POP effect on KA 

 (-1, -0.037) ; POP effect on CL 

 (-1, -0.078) ; POP effect on V2 

 (-1, 0.3) ; POP effect on Q 

$OMEGA 0.2 0.094 0.09 0.21

$SIGMA 0.1

$EST MAX=5000 NOABORT METHOD=1 INTER 

$COV

S-Plus Code
### NONMEM plots

NMtable_read.table(“c:/temp/ NMtable.txt”, header=T, skip=1)

NMtable_NMtable[NMtable$MDV==0,]

plot(NMtable$PRED, NMtable$DV); abline(0,1)

plot(NMtable$IPRE, NMtable$DV); abline(0,1)

plot(NMtable$PRED, NMtable$RES); abline(0,0)

plot(NMtable$PRED, NMtable$WRES); abline(0,0)

 lines(lowess(NMtable$PRED,NMtable$WRES), lty=3)

plot(NMtable$IPRE, NMtable$IRES); abline(0,0)

plot(NMtable$IPRE, NMtable$IWRE); abline(0,0)

 lines(lowess(NMtable$IPRE,NMtable$IWRE), lty=3)

### ETA

ETAcov_ read.table(“c:/temp/ ETAcov.dat”, header=T, skip=1)

ETAcov$TMT_as.factor(as.character(ETAcov$TMT))

bwplot(TMT~ETA1, ETAcov, main=”ETA1 vs TMT”)

bwplot(TMT~ETA2, ETAcov, main=”ETA2 vs TMT”)



bwplot(TMT~ETA3, ETAcov, main=”ETA3 vs TMT”)

bwplot(TMT~ETA4, ETAcov, main=”ETA4 vs TMT”)

### compute NONMEM bootstrap results

lim.SS.oral.cp2_function(param, time) {

 ka_param[1]; CL_param[2]; V1_param[3]; CLd_param[4]; tau_param[5] 

 lambda1_(CL + CLd)/V1

 c1_(ka/V1)/(ka - lambda1)

 const_1/(lambda1*V1*tau) *CLd/CL

 c1*exp(-lambda1*time)/(1 - exp(-lambda1*tau)) + 

 const - 

 c1*exp(-ka*time)/(1 - exp(-ka*tau))  

}

Tmax.lim.SS.oral.cp2_function(param) {

 ka_param[1]; CL_param[2]; V1_param[3]; CLd_param[4]; tau_param[5] 

 lambda1_(CL + CLd )/V1

 right.hand_ka/(1 - exp(-ka*tau)) / (lambda1/(1 - exp(-lambda1*tau)))

 1/(ka - lambda1) *log(right.hand)

}

Cmax.lim.SS.oral.cp2_function(param) {

 tmax_Tmax.lim.SS.oral.cp2(param)

 lim.SS.oral.cp2(param, tmax)

}

## calculate parameters CL, V, etc.

## from bootstraped results NM.est.all 

# AUC

boot.AUC.healthy.BID.CI_quantile(1400/NM.est.all[,2], c(0.05, 0.5, 

0.95), na.rm=T)

boot.AUC.healthy.RTV.BID.CI_quantile(1395/NM.est.all[,6], c(0.05, 

0.5, 0.95), na.rm=T)

boot.AUC.patient.BID.CI_quantile(1400/(NM.est.all[,2]*(1 + NM.est.

all[,8])),

 c(0.05, 0.5, 0.95), na.rm=T)

boot.AUC.patient.RTV.BID.CI_quantile(1395/(NM.est.all[,6]*(1 + NM.

est.all[,8])),

 c(0.05, 0.5, 0.95), na.rm=T)

boot.AUC.CI_quantile(1/(1 + NM.est.all[,8]), c(0.05, 0.5, 0.95), 

na.rm=T)

### Cmax

# healthy

NM.est.healthy.BID_NM.est.all[,1:4]

NM.est.healthy.BID_cbind(NM.est.healthy.BID, rep(12, nrow(NM.est.

healthy.BID)))
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# QD = + RTV

NM.est.healthy.QD_NM.est.all[,c(1,6,3,4)]

NM.est.healthy.QD_cbind(NM.est.healthy.QD, rep(24, nrow(NM.est.

healthy.QD)))

# patients

NM.est.patient.BID_NM.est.all[,1:4]

for (i in 1:4) {

 NM.est.patient.BID[,i]_NM.est.patient.BID[,i]*(1 + NM.est.

all[,i+6])

}

NM.est.patient.BID_cbind(NM.est.patient.BID, rep(12, nrow(NM.est.

patient.BID)))

NM.est.patient.QD_NM.est.all[,c(1,6,3,4)]

for (i in 1:4) {

 NM.est.patient.QD[,i]_NM.est.patient.QD[,i]*(1 + NM.est.all[,i+6])

}

NM.est.patient.QD_cbind(NM.est.patient.QD, rep(24, nrow(NM.est.

patient.QD)))

# Cmax

boot.Cmax.healthy.BID_1400*apply(NM.est.healthy.BID, 1, Cmax.lim.

SS.oral.cp2)

boot.Cmax.patient.BID_1395*apply(NM.est.patient.BID, 1, Cmax.lim.

SS.oral.cp2)

boot.Cmax.healthy.QD_1395*apply(NM.est.healthy.QD, 1, Cmax.lim.

SS.oral.cp2)

boot.Cmax.patient.QD_1395*apply(NM.est.patient.QD, 1, Cmax.lim.

SS.oral.cp2)

# Cmax ratios

boot.Cmax.BID_boot.Cmax.patient.BID/boot.Cmax.healthy.BID

boot.Cmax.QD_boot.Cmax.patient.QD/boot.Cmax.healthy.QD

# C.I.

boot.Cmax.healthy.BID.CI_quantile(boot.Cmax.healthy.BID, c(0.05, 

0.5, 0.95), na.rm=T)

boot.Cmax.patient.BID.CI_quantile(boot.Cmax.patient.BID, c(0.05, 

0.5, 0.95), na.rm=T)

boot.Cmax.healthy.QD.CI_quantile(boot.Cmax.healthy.QD, c(0.05, 

0.5, 0.95), na.rm=T)

boot.Cmax.patient.QD.CI_quantile(boot.Cmax.patient.QD, c(0.05, 

0.5, 0.95), na.rm=T)

boot.Cmax.BID.CI_quantile(boot.Cmax.BID, c(0.05, 0.5, 0.95), 

na.rm=T)



boot.Cmax.QD.CI_quantile(boot.Cmax.QD, c(0.05, 0.5, 0.95), 

na.rm=T)

# show

boot.AUC.healthy.BID.CI

boot.AUC.healthy.RTV.BID.CI

boot.AUC.patient.BID.CI

boot.AUC.patient.RTV.BID.CI

boot.AUC.CI

boot.Cmax.healthy.BID.CI

boot.Cmax.patient.BID.CI

boot.Cmax.healthy.QD.CI

boot.Cmax.patient.QD.CI

boot.Cmax.BID.CI

boot.Cmax.QD.CI

Programming Codes for Section 16.7

For confi dentiality reasons, data have been simulated based on original data. The 
corresponding S-Plus codes are provided below.

Application Example 1 (Section 16.7.1)
# Data Generation

app1.dat <- data.frame(subj=rep(seq(1,24), each=6), 

 puffs=rep(c(0,1,4), 48), trt=rep(c(0,0,0,1,1,1), 24))

rb <- 1.061698; e0 <- 0.9033722; emax <-  30.50206; ed50 <- 2.327858

app1.dat$resp <- 

 (e0 + (emax - e0)*app1.dat$puffs*rb^app1.dat$trt/

  (ed50 + app1.dat$puffs*rb^app1.dat$trt))*

 exp(rnorm(n=144, sd=0.32))

# Dose-scale approach using geometric means

app1.geomeans.fun <- function(data) {

 geomean.dat <- aggregate(data$resp, 

  list(trt=data$trt, puffs=data$puffs),

  function(x) prod(x)^(1/length(x)))

 for (i in 1:2) geomean.dat[,i] <- 

  as.numeric(as.character(geomean.dat[,i]))

 coef(nls(x ~ e0 + (emax - e0)*puffs*rb^trt/(ed50 + puffs*rb^trt),

  start = list(rb=1.1, e0=0.9, emax=31, ed50=2.3),

  data=geomean.dat))

}

app1.geomeans.fun(app1.dat)

# bootstrap 

app1.flat.mat_matrix(app1.dat$resp, ncol=6, byrow=T)
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app1.geomeans2.fun <- function(mat) {

 data <- app1.dat

 data$resp <- as.vector(t(mat))

 geomean.dat <- aggregate(data$resp, 

  list(trt=data$trt, puffs=data$puffs),

  function(x) prod(x)^(1/length(x)))

 for (i in 1:2) geomean.dat[,i] <- 

  as.numeric(as.character(geomean.dat[,i]))

 coef(nls(x ~ e0 + (emax - e0)*puffs*rb^trt/(ed50 + puffs*rb^trt), 

  start = list(rb=1.1, e0=0.9, emax=31, ed50=2.3),

  data=geomean.dat))

}

#app1.geomeans2.fun(app1.flat.mat)

boot.nls <- bootstrap(app1.flat.mat,

 app1.geomeans2.fun, B=2000)

#names(boot.nls)

quantile(boot.nls$replicates[,1], c(0.05, 0.5, 0.95))

Application Example 2 (Section 16.7.2)
# Data Generation

app2.dat <- data.frame(subj=rep(seq(1,66), each=6), 

 puffs=rep(c(0,1,2), 132), trt=rep(c(0,0,0,1,1,1), 66))

rb <- 1.14088; e0 <- 691.9227; emax <- 896.7382; ed50 <- 0.566

app2.dat$resp <- 

 e0 + (emax - e0)*app2.dat$puffs*rb^app2.dat$trt/

  (ed50 + app2.dat$puffs*rb^app2.dat$trt) +

 rnorm(n=396, sd=197)

# Dose-scale approach using arithmetic means

app2.means.fun <- function(data) {

 mean.dat <- aggregate(data$resp, 

  list(trt=data$trt, puffs=data$puffs), mean)

 for (i in 1:2) mean.dat[,i] <- 

  as.numeric(as.character(mean.dat[,i]))

 nls(x ~ e0 + (emax - e0)*puffs*rb^trt/(ed50 + puffs*rb^trt),

  start = list(rb=1.1, e0=691, emax=896, ed50=0.566),

  data=mean.dat)

}

app2.nls_app2.means.fun(app2.dat)

# bootstrap

app2.flat.mat_matrix(app2.dat$resp, ncol=6, byrow=T)

app2.means2.fun <- function(mat) {

 data <- app2.dat

 data$resp <- as.vector(t(mat))

 mean.dat <- aggregate(data$resp, 



  list(trt=data$trt, puffs=data$puffs), mean)

 for (i in 1:2) mean.dat[,i] <- 

  as.numeric(as.character(mean.dat[,i]))

 coef(nls(x ~ e0 + (emax - e0)*puffs*rb^trt/(ed50 + puffs*rb^trt), 

  start = list(rb=1.1, e0=691, emax=896, ed50=0.566),

  data=mean.dat))

}

#app2.means2.fun(app2.flat.mat)

boot.nls <- bootstrap(app2.flat.mat,

 app2.means2.fun, B=2000)

#names(boot.nls)

quantile(boot.nls$replicates[,1], c(0.05, 0.5, 0.95))

## examine likelihood profile

#F=0.1

F01.dat_ app2.dat

param(F01.dat, “e0”)_ 691.9227; 

param(F01.dat, “em0”)_204.8155; param(F01.dat, “ed50”)_0.566

F01.nls_nls(resp ~ e0 + em0*puffs*(0.1*trt + (1 - trt))

/(ed50 + puffs*(0.1*trt + (1 - trt))), data=F01.dat)

length(F01.nls$residuals)*log(sum(F01.nls$residuals^2))

pchisq(

length(F01.nls$residuals)*log(sum(F01.nls$residuals^2)) - 

length(app2.nls$residuals)*log(sum(app2.nls$residuals^2))

,1)

#F=1000

F1000.dat_ app2.dat

param(F1000.dat, “e0”)_ 691.9227; 

param(F1000.dat, «em0»)_10004.8155; param(F1000.dat, «ed50»)_0.566

F1000.nls_nls(resp ~ e0 + em0*puffs*(1000*trt + (1 - trt))

/(ed50 + puffs*(1000*trt + (1 - trt))), data=F1000.dat)

length(F1000.nls$residuals)*log(sum(F1000.nls$residuals^2))

pchisq(

length(F1000.nls$residuals)*log(sum(F1000.nls$residuals^2)) - 

length(app2.nls$residuals)*log(sum(app2.nls$residuals^2))

,1)
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17.1 INTRODUCTION

During the last two decades the direct cost of drug development has continued to 
escalate at two and one-half times the rate of infl ation. The cost of introducing a 
drug to the market was $802 million (US) in 2000 compared to $237 million in 1987 
(1). As an indirect cost it takes 7–12 years for a drug to move through development 
to the fi nal FDA approval (1). Several factors have infl uenced the escalation in the 
cost of drug development including an increased cost of executing clinical trials and 
more rigorous approval standards. Regulatory standards are not likely to become 
less rigorous; therefore, one must look elsewhere to improve the process. Extended 
use and novel applications of biomarkers may improve the drug development 
process by aiding in the construction of powerful and effi cient clinical programs.

The Biomarkers Defi nitions Working Group (BDWG) has stated: “One approach 
to the achievement of more expeditious and informative therapeutic research is 
the use of clinical measurement tools to determine disease progression and the 
effects of interventions (drugs, surgery, and vaccines).  .  .  .  Another approach is the 
use of a wide array of analytical tools to assess biological parameters, which are 
referred to as biomarkers” (2). The discovery and utilization of biomarkers has 
several ways in which they could bring effi ciencies and provide insight into the drug 
development process and patient care. Biomarkers can identify patients at risk for 
a disease, predict patient response, predict the occurrence of toxicity, and predict 
exposure to drug. Given these uses they can also provide a basis for selecting lead 
compounds for development and contribute knowledge about clinical pharmacol-
ogy. Therefore, biomarkers have the potential to be one of the pivotal factors to 
lead drug development from drug target discovery to preclinical development to 
clinical development to regulatory approval and labeling information, by way of 
pharmacokinetic (PK)—pharmacodynamic (PD)—outcomes modeling with clinical 
trial simulations.
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The fl ow of the chapter begins with establishing a common language for address-
ing the biomarker issue starting with natural history markers (Type 0 markers) 
and progressing to surrogate endpoints and clinical endpoints. We describe how 
a natural history marker can mature into a surrogate endpoint and how advances 
in technology are providing more and improved biomarkers. Then we go on to 
a description of how pharmacometric (PM) modeling interacts with biomarker 
technology and fi nish with an example of how the integration of PM modeling can 
result in a decrease in development time, lower development cost, and robust trial 
structures. First, we need a common vocabulary to organize our thinking.

17.2 VOCABULARY

The BDWG has provided a common vocabulary so that a common ground may be 
occupied when the topic of biomarkers is addressed. The following are the defi ni-
tions for the current chapter.

17.2.1 Biological Marker (Biomarker)

A biomarker is a characteristic that is objectively measured and evaluated as an 
indicator of normal biological processes, a pathogenic process, or pharmacologic 
responses to a therapeutic intervention.

17.2.2 Natural History or Type 0 Markers

Natural history or Type 0 markers are those markers that measure disease predis-
position, severity, or outcome, and refl ect underlying pathogenetic mechanisms (3). 
Type 0 markers predict clinical outcome independent of treatment. They are often 
used to defi ne inclusion or exclusion criteria for patients considered for enrollment 
into clinical trials, for stratifying these patient populations (because they indicate 
disease stage), or as milestones of disease progression for monitoring patients. Type 
0 markers have a biological plausibility that is foundational for further development 
as biological activity markers.

17.2.3 Drug Activity Marker, Biological Activity Marker, or Type I Marker

A drug activity marker or Type I marker is a marker that refl ects a response to 
therapy or drug treatment (3). The degree and magnitude of the response of the 
marker to drug therapy should correlate with the potency of the therapeutic agent. 
They are used to demonstrate proof of concept, to establish dose regimens, and for 
optimizing combination therapies. The degree of response can be used to determine 
optimal dosing strategies and to indicate whether combined therapy is more active 
than a single treatment. They are often pharmacodynamic response markers where 
the magnitude of the change defi nes the potency of the drug.

17.2.4 Surrogate Endpoint or Type II Marker

A surrogate endpoint or Type II marker is a biomarker that is intended to substitute 
for a clinical endpoint (2, 3). The US Food and Drug Administration has noted the 
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acceptance of surrogate endpoints to grant accelerated marketing for approving 
therapeutic agents. These are covered in Title 21 code of Federal Regulations Part 
314 Section 510, subpart H which states:

FDA may grant marketing approval for a new drug product on the basis of adequate 
and well-controlled clinical trials establishing that the drug product has an effect on 
surrogate endpoint that is reasonably likely, based on epidemiologic, therapeutic, 
pathophysiologic, or other evidence, to predict clinical benefi t or on the basis of an 
effect on a clinical endpoint other than survival or irreversible morbidity. Approval 
under this section will be subject to the requirement that the applicant study the drug 
further, to verify and describe its clinical benefi t, where there is uncertainty as to the 
relation of the surrogate endpoint to clinical benefi t, or of the observed clinical benefi t 
to ultimate outcome.

The ultimate stage in the development of a biomarker is when in the context 
of an effective therapeutic regimen, the relationship between early change in the 
biomarker and ultimate clinical outcome allows the use of the biomarker as a sub-
stitute for the clinical endpoint. A surrogate endpoint is expected to predict clinical 
benefi t, harm, lack of benefi t, or lack of harm based on epidemiologic, therapeutic, 
pathophysiologic, or other scientifi c evidence. A surrogate endpoint can be either 
a single marker or a composite of several markers, which fully accounts for the 
effi cacy of the agent being tested. Surrogate endpoints are a subset of biomarkers. 
All surrogate endpoints are biomarkers. However, few biomarkers will ever become 
surrogate endpoints. The term surrogate marker should be avoided.

17.2.5 Clinical Endpoint

A clinical endpoint is a characteristic or variable that refl ects how a patients feels, 
functions, or survives. It is a distinct measurement of or analysis of disease charac-
teristics observed in a study or a clinical trial that refl ect the effect of a therapeutic 
intervention. Clinical endpoints are the most credible characteristics used in the 
assessment of the benefi ts and risks of a therapeutic intervention in randomized 
clinical trials.

17.3 BIOMARKER VALIDATION

Validation of a biomarker begins with the description of the pathogenesis of a 
disease and culminates when it is determined that the biomarker is applicable to 
clinical trials. This validation process follows a stepwise process depending on the 
stage of drug development.

17.3.1 Validation of Type 0 Markers or Natural History Markers

Natural history makers are validated when at baseline a strong relationship between 
the level of the marker and the ultimate clinical outcome of the disease has been 
established. These markers are often established in the placebo arms of early drug 
studies. Here the establishment of a sample repository can permit poststudy analysis 
to establish the veracity of a Type 0 marker.
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17.3.2 Validation of Biological Activity Type I Markers

Type I markers are most often validated in Phase 1 or 2 clinical trials, where it is 
often demonstrated that the therapeutic intervention favorably changes the marker. 
Here, often dose-related effects can be established in studies where dose escalation 
is executed. The best place to establish a Type I marker is in Phase 1, especially 
when there is a placebo control group so that the natural history of the marker can 
be followed in the placebo group.

17.3.3 Validation of Surrogate Endpoints or Type II Markers

17.3.3.1 General Criteria for Surrogacy
A marker validated as Type 0 or Type I may next be validated as a Type II marker 
or surrogate endpoint. The validation of surrogate endpoints is best done with data 
from Phase 2 or 3 studies, where dropout rates have been low, the treatment has 
continued unchanged over the duration of the study, the biomarker was measured 
early in treatment, patients have been followed for a suffi ciently long time, and a 
difference between control and treatment (especially for placebo-controlled trials) 
was demonstrated. Note in the case of no difference placebo-controlled trials the 
biomarker then would be a Type 0 marker. It is desirable to have this type of data 
from several studies to establish the validity of the marker across studies, drugs, 
and various patient populations.

When well defi ned clinical endpoints such as survival, end organ damage, or 
recurrence of cancer are employed for the establishment of effi cacy, long periods 
may be required to observe these clinical endpoints. When biomarkers mature 
into surrogate endpoints, these surrogate endpoints can substitute for clinical end-
points in confi rming studies. Surrogate endpoints that are observable prior to the 
ultimate clinical endpoint are of great value because they can shorten the duration 
of confi rming studies, thereby abbreviating the duration of the development and 
approval of a drug, thus bringing treatment to patients before the information on 
clinical outcomes becomes known.

While it is appealing to employ surrogate endpoints to improve clinical trial 
effi ciency, some concerns have been expressed about this approach (4, 5), fueled by 
notable failures. The most notorious of these was the Cardiac Arrhythmia Suppres-
sion Trial (CAST) that demonstrated, though correlated with clinical response, that 
the suppression of runs of ventricular tachycardia and premature ventricular con-
tractions did not improve but actually worsened survival (6). The approach of using 
biomarkers as surrogate endpoints functions best when adequate and appropriate 
safety data are obtained and provisional approval is granted pending follow-up with 
Phase 4 studies. Despite notable failures of biomarkers used as surrogate endpoints, 
some such as blood pressure and lipoprotein profi le are accepted by clinicians and 
regulatory agencies as a basis for use and approval.

In addition to being useful in drug development, biomarkers have utility in direct 
patient care as diagnostic tools, as disease staging tools, as predictors of clinical 
response to treatment, and for monitoring the progress of treatment.

Few biomarkers will become surrogate endpoints. However, characteristics sup-
porting a biomarker maturing into a surrogate endpoint are (a) biologic plausibil-
ity, (b) successful application in prior clinical trials, and (c) presence of signifi cant 
risk–benefi t considerations. Table 17.1 presents a summary of these considerations 
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as stated by Temple (7). It should be noted that the characteristics that are desirable 
in a surrogate marker should also be applied when one is deciding which biomarker 
to employ in a clinical trial or simulation. It will not be possible to have uniform 
criteria that apply to all biomarkers becoming surrogate endpoints.

17.3.3.2 Statistical Criteria for Surrogacy
Statistical criteria and the conceptual framework for surrogacy were initially stated 
by Prentice (8): “a response variable for which a test of the null hypothesis of no 
relationship to the treatment groups under comparison is also a valid test of the 
corresponding null hypothesis based on the true endpoint.” This was later modifi ed 
by Freedman et al. (9) and further refi ned by Buyse and Molenberghs (10). We 
concentrate on the Buyse–Molenberghs approach here. The statistical criteria for 

TABLE 17.1 Support for Surrogates

Factor Favors Surrogate Does Not Favor Surrogate

Biological Epidemiologic evidence Inconsistent epidemiology
 plausibility  extensive and consistent No quantitative epidemiologic
 Quantitative epidemiologic  relationship
  relationship No animal model
 Credible animal model shows Pathogenesis not clear
  drug response Novel actions not previously
 Well understood disease  studied
  pathogenesis Surrogate remote from clinical
 Drug mechanism of action well  outcome
  understood
 Surrogate relatively late in
  biological path

Success in clinical Effect on surrogate has A negative outcome without
 trials  predicted outcome with  clear explanation
  other drugs of same
  pharmacologic class
  (supports surrogate in class)
 Effect on surrogate has Inconsistent results across
  predicted outcome in several  classes
  classes (supports more
  general use)

Risk–benefi t, Serious or life-threatening Nonserious disease and
 public health  illness and no alternative  alternative therapy with
 considerations  therapy  different pharmacologic
 Large safety database  action known to affect
 Short-term use  outcome
 Diffi culty of studying clinical Little safety data
  endpoint (rare, delayed) Long-term use
  Easy to study clinical endpoint
   (short-term study)
  Long-delayed, small effect in
   healthy people

Source: From Ref. 7, used with permission.
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surrogacy are indirect evidence that a biomarker may be suitable as a surrogate; 
therefore, other criteria must also be met, which have been previously stated.

To explain the framework for statistical surrogacy (see Figure 17.1), defi ne Z as 
the treatment, S as the biomarker, and T as the true clinical endpoint. The effect 
of the treatment (Z) on the biomarker (S) is called a; the effect of the treatment 
on the clinical endpoint (T) is called b; and the effect of the biomarker (S) on the 
clinical endpoint (T) is called g (10). Statistically speaking, the biomarker can only 
be used as a surrogate endpoint if an estimated treatment effect on S (a ≠ 0) can 
be used to predict a treatment effect on T (b ≠ 0) and if no treatment effect on S
(a = 0) predicts no treatment effect on T (b = 0) with suffi cient accuracy (10).

From Figure 17.1 consider the situation where S and T have a bivariate normal 
distribution and the data are obtained from a single study. One can model the rela-
tionship between S and T and Z as three distinct linear regressions:

S s Z s= + + ′μ α ε (17.1)

T t Z t= + + ′μ β ε (17.2)

T S= + + ′μ γ ε (17.3)

where a, b, and g are slopes; ms, mt, and m are intercepts; and e′s, e′t, and e′ are the 
residual random effects. A further multiple linear regression relationship can be 
expressed as:

T Z Ss z= ′ + + + ′μ β γ ε (17.4)

where m′ is the intercept, bs is the slope of the relationship between Z and T in the 
presence of the concurrently modeled S to T relationship, and gz is the slope of the 
relationship between S and T in the presence of the concurrently modeled Z to T
relationship.

A framework for the added complexity of multiple trials can also be incorporated 
by including between and within study random effects.

One source of evidence for surrogacy is the association between the biomarker 
and clinical endpoint at the level of the individual. We expect that there will be 
a high degree of association between the biomarker and the clinical endpoint at 
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a

FIGURE 17.1 Representation of the relationship between a biomarker, surrogate end-
point, and clinical endpoint (modifi ed from Reference 10).



the level of the individual if there is some biological pathway from the biomarker 
to the clinical endpoint. However, it has been demonstrated that a high degree of 
association does not a surrogate make (4). The other source of association between 
the biomarker and the clinical endpoint that is needed to establish a biomarker as 
a surrogate is at the level of the population.

At the level of the individual above, the association between the biomarker and 
the clinical endpoint could be estimated by gz from Eq. (17.4). Another possible 
variable at the individual level would be the squared correlation between S and T
after accounting for the treatment effect. For a biomarker to become a clinical end-
point, we would require that the squared correlation be large, that is, close to 1.

In a seminal paper, Prentice (8) proposed the following criteria for surrogacy:

1. The treatment must have a signifi cant effect on the biomarker; a ≠ 0.
2. The treatment must have a signifi cant effect on the clinical endpoint; b ≠ 0.
3. The biomarker must have a signifi cant effect on the clinical endpoint; g ≠ 0.
4. The full effect of the treatment on the clinical endpoint must be captured by 

the biomarker; bs = 0 (see Eq. (17.4)).

Major problems with the Prentice criteria are that they require the biomarker to 
capture the “full effect” of the treatment on the fi nal clinical outcome in order to 
become a surrogate (thus, bs from Eq. (17.4) would have to be 0). Therefore, these 
criteria are stringent and would only be useful for rejecting a poor marker when the 
statistical test on bs, the treatment effect on the true endpoint, resulted in a value 
that did not equal 0.

To deal with this the problem of the Prentice criteria, others (9, 10, 11) proposed 
that one estimate the proportion of the treatment effect (PE) captured by the sur-
rogate. Thus, from Eq. (17.2) and (17.4) one can estimate this as

PE s= −( )β β β (17.5)

where PE is the proportion of the effect that can be explained by the biomarker (9). 
From Eq. (17.2) and (17.4) it can be seen that if the proportion of the effect of the 
treatment that is explained via the biomarker, gz, is large, then bs will be small and 
PE will be large. A large PE would be a desirable property for a biomarker that is 
to be used as a surrogate. A question remains of, “what is large.”

Finally, Buyse and Molenberghs (10) have proposed that one estimate the “rela-
tive effect” (RE). This is done by dividing b from Eq. (17.2) by a from Eq. (17.1). 
Of importance here is the precision of the RE. If the precision is high, then the 
biomarker may be a good surrogate. A major problem with the RE is that it requires 
large amounts of data to obtain a precise estimate. See Buyse and Molenberghs (10) 
for detailed application of statistical validation of surrogate endpoint.

17.4 ANALYTICAL INTEGRITY

Analytical integrity is needed for a biomarker to be useable. The biomarker must 
have a degree of sensitivity, specifi city, precision, and reproducibility to accomplish 
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the job at hand. When evaluating reproducibility one must ask how reproducible 
the biomarker is from hour to hour, week to week, and year to year in the presence 
of both health and disease. Within the context of reproducibility one must further 
answer the question: “Are there circadian rhythms?” Finally, we must consider how 
much of a change in biomarker would take place between health and disease and 
between treated and untreated patients. These factors must be taken into consid-
eration when determining to use a biomarker.

17.5 TECHNOLOGIES FOR BIOMARKERS

Biomarkers can be categorized into two major groups—those that are biomolecular/
chemical and clinical markers. Clinical markers include such things as blood pres-
sure, neurological scoring scales (Glasgow Coma Score), and nuclear imaging. Over 
the last decade the array of biomarkers available to the researcher and practitioner 
has increased to a very large degree. These include electrophysiological, imaging, 
genomic, proteomic, lipomic, metabolomic, fl ow cytometry, and molecular diagnos-
tics. It is expected that novel biomarkers will continue to be discovered and applied 
to drug development. The most common technologies used for biomarkers include 
standard chemistry, radiology and imaging, genomics and genetics, proteomics, and 
metabolomics.

Standard chemistry biomarkers have the longest standing history and continue 
to have the most widespread use in investigational new drugs (INDs) and new drug 
applications (NDAs). These types of biomarkers have long been used for patient 
inclusion or stratifi cation, evaluation of clinical response, evaluation of drug toxic-
ity, and biomarker adjusted dosing strategies. Several of these, such as lipoprotein 
profi le and serum glucose, have made the transition to surrogate endpoints for 
clinical trials when confi rming effi cacy. Some biomarkers used previously for one 
purpose are sometimes applied for novel purposes. One such example is cardiac 
troponin (cTnT), which has been historically used for the diagnosis of myocardial 
infarction but has recently been used for the estimation of cardiotoxicity of drugs 
such as doxorubicin. Cardiotoxicity related to doxorubicin administration is insidi-
ous. Researchers (12) have demonstrated that increases in cTnT concentrations 
and cardiac lesion scores increased with increasing exposure to doxorubicin. It was 
concluded that cTnT released from doxorubicin damaged myocytes, and measure-
ments of serum levels of cTnT appeared to be a sensitive means for assessing the 
early cardiac effects of doxorubicin (12).

Radiology and imaging biomarkers include radiographs, ultrasonography, 
computed tomography (CT), magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), single proton emission tomography, and echocardio-
graphy. The application of this technology has become an area of great interest in 
recent years, as evidenced by the number of publications and conferences on the 
topic. Of importance when these methods are applied as biomarkers is image 
literacy because for some of the methods it is often diffi cult to fi nd radiologists 
with the requisite skills to read the image(s). In multicenter clinical trials, there is 
a multiplicity of sources of data generation and therefore interpretation can be a 
source of variability. Therefore, for consistency, centralizing the interpretation of 
the imaging is used to decrease variability in image reading by having only a few 
specially trained individuals read the images. When there are a series of images 



in the same individual, it would be advisable to have one reader for the series of 
images. The current regulatory guidance in this area states that the reader must be 
independent of the study and blinded (see Draft Guidance for Industry, Medical 
Imaging for Drugs).

It is expected that the application of imaging as a biomarker technique will 
continue to see growth in the future. For example, PET has been used to model 
the progression of Parkinson’s disease. Ki is a rate constant that describes the rate 
of uptake of tracer into neurons. The tracer is preferentially taken up by active 
neurons in the brain; therefore, Ki is used as a marker for the number of function-
ing neurons in the brain. Ki was found to be 0.0054/min in Parkinson’s patients and 
0.0101/min in healthy control subjects (13). MRI has been used to show a greater 
decrease in brain volume in Alzheimer’s disease patients when compared to normal 
controls (14).

Genomics/genetics biomarkers have the potential to be used to identify patients 
at risk of disease, predict treatment response, predict adverse events, and predict 
exposure by identifying biotransformation enzyme activity classifi cation via genetic 
polymorphisms of drug metabolism (see Chapters 18 and 19). However, the wide-
spread application to improve patient care is still several years away. The most 
widespread application of genomics/genetics to date has been the typing relative to 
drug metabolism. Examples of the use of genomic information applied to drug devel-
opment and patient care are trastuzumab antibody and imatinib mesylate (15).

The history of the development of imatinib provides an informative drug devel-
opment example of the application of pharmacogenetics to affect a specifi c genetic 
target. It starts with the discovery of the between chromosomes 9 and 22 transloca-
tion of a bcr-abl fusion gene in the late 1980s. This abnormality is present in 95% of 
chronic myelogenous leukemia (CML) patients and is known to be a signifi cant con-
tributor to the disease. This gene produces a protein with increased tyrosine kinase 
activity. Imatinib was developed as a specifi c tyrosine kinase inhibitor designed to 
block the ability of bcr-abl to phosphorylate its substrate. This is an example of the 
development of a compound for a selected gene target (15).

Currently, the most widespread application of genomics/genetics to drug devel-
opment relates to the polymorphisms of drug metabolism. For example, CYP2D6 
is known to metabolize approximately 25% of marketed drugs and has about 70 
known mutations. Of these mutations, at least six have been demonstrated to have 
no enzyme activity while others demonstrate reduced activity (16). There are four 
phenotypic subcategories of metablizers; poor (PM), intermediate (IM), extensive 
(EM), and ultrarapid (UM). This is of critical importance because if clearance is 
much lower in subpopulations where the mutation is present, then systemic exposure 
to drug would be greater, resulting in increased toxicity in the subgroup. Subgroup-
specifi c dosing strategies would need to be implemented for this subpopulation.

Array profi ling is a novel technique that holds much promise but its role in the 
clinical and drug development setting is yet to be demonstrated (see Chapters 18 
and 19).

17.6 MODELING AND BIOMARKERS

The net worth of biomarkers increases signifi cantly when they are integrated in 
some form with PK, PD, or outcomes models (defi ned below). These models are 
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most often structured as a system of differential equations where biomarkers are 
often the dependent variables in PD models. PK models can be developed and 
estimated that include covariates such as sex, race, size, and renal or hepatic func-
tion. These PK models generate estimates of concentration-related exposure, which 
are improvements when compared to dose alone. Exposure can be expressed in 
many forms but commonly includes area under the plasma or serum concentra-
tion–time profi le, the maximum or minimum concentration during a dosing interval, 
or the time above some threshold concentration. These concentrations are usually 
assumed to be correlated with a concentration at a more remote site of action. 
Exposure variables can then be related through some function to the PD biomarker. 
The functional exposure–biomarker relationships are reviewed in detail in other 
chapters of this book (see Chapters 20–26) but often take the form of a linear or log-
linear relationship, an Emax model, a Hill equation, or an indirect response model. 
When any of these models are estimated, then the relationship between dose and 
the PD biomarker can be predicted by linking dose–PK/PD–biomarker.

Biomarkers are of signifi cant value when they are related to some patient clini-
cal endpoint. This relationship is termed an outcomes model. This clinical endpoint 
can be either a positive clinical response or some adverse advent. An outcomes 
model translates some surrogate endpoint or biomarker (QTc, blood pressure, 
international normalized ratio, etc.) into a clinical endpoint such as cure or no cure, 
improved versus worsened, survival, time to event, disease progression, or wellness 
score. Although outcomes models are important, they are less often available for 
use or application than are PK or PD models and therefore their development is 
one of the greatest areas of need in pharmacometrics. Outcomes models can be time 
to event models such as Kaplan–Meier curves for which hazard functions can be 
estimated. The hazard function is a differential equation that, when integrated, links 
the PD biomarker to the outcome in a time-dependent manner. Discrete outcomes 
can also be modeled as logistic regression or discriminant function models, where 
the biomarker at some exact moment in time is related to an outcome. The disease 
progression model has recently been shown to be useful in relating drug administra-
tion to outcomes (17). Other models that should be considered are disease tolerance 
models that can be applied to such outcomes as tumor or viral load.

Once developed, these integrated models could be used for several purposes. 
When combined with Monte Carlo simulation, biomarker models can aid in design-
ing clinical trials that are effi cient, powerful, informative, and robust. This integra-
tion will continue to improve as mechanism-based models of disease are defi ned, 
mechanism-based therapeutic interventions are developed and described, and the 
relationships between drug exposure and clinical response and toxicity are defi ned. 
Functional genomics, proteomics, and lipomics will provide support for defi ning 
each of these three factors.

When integrating PK, PD, and trial simulations with target biomarkers, one can 
test previously untested study designs, dose levels, and/or competing dosing strate-
gies. These powerful trials result in a greater probability of demonstrating effective-
ness as part of a clinical program within the context of an effi cient development 
program. The linking of the pharmacokinetics, pharmacodynamics, and biomarkers 
via simulation can also aid in making informed go/no-go decisions.

Integrated biomarker models can provide a mechanistic link between the dose 
and effect, thus becoming part of the scientifi c rationale for drug use and approval. 



While biomarkers may be employed in conjunction with pharmacokinetics and 
pharmacodynamics to improve isolated clinical trials, their application to the overall 
drug development process, especially within the context of the US Food and Drug 
Administration Modernization Act of 1997 (FDAMA), should bring added effi cien-
cies. Under this provision a fast track to approval has been described, which com-
prises one appropriate and well controlled clinical investigation plus confi rmatory 
evidence that would comprise scientifi cally sound data from any investigation that 
provides substantiation of the safety and effectiveness of the drug. This confi rma-
tory evidence can consist of earlier trials, PK or PD data, or other appropriate 
studies. This strong supporting evidence can include the impact of treatment on 
a biomarker or surrogate endpoint. This regulation provides strong incentive to 
develop novel biomarkers to be used in conjunction with pharmacokinetics, phar-
macodynamics, and simulation to substantiate the impact of dosing strategies on a 
biomarker and support the application.

Integrated biomarker models may provide models for the Bayesian individualiza-
tion of treatments. Within this context the models provide the Bayesian priors when 
only sparse data are available on a single patient. From the Bayesian priors and 
the sparse data, individualized patient parameters can be estimated. This approach 
leads to individualized dosing while taking into consideration the impact of patient 
characteristics such as demographics or disease classifi cation.

17.7 ESTIMATION OF BIOMARKER MODELS

Biomarker models that integrate pharmacokinetics, pharmacodynamics, and 
biomarkers are complex because they are based on sets of differential equations, 
parts of the models are nonlinear, and there are multiple levels of random effects. 
Therefore, advanced methods from numerical analysis and applied mathematics are 
needed to estimate these complex models. When the model is estimated, one seeks 
a model that is appropriate for its intended use (see Chapter 8).

This ability is available in many software programs. NONMEM (Iconus, Ellicott 
City, MD) has been widely used to estimate population models arising from both 
sparse and intensely sampled data. Other programs include WinNonMix (Pharsight 
Corp., Palo Alto, CA), Kinetica 2000 (Innaphase Corp, Philadelphia, PA), and Pop-
Kinetics (SAAM Institute, Seattle, WA). ADAPT II and WinNonlin have focused 
on PK/PD models and have been combined with Bayesian approaches to estimate 
population models.

17.8 EXAMPLE OF BIOMARKER ESTIMATION AND APPLICATION

Sodium dichloroacetate (DCA) is a small molecule that has multiple effects on 
intermediary metabolism. Of primary interest in the current example is the ability of 
DCA to activate pyruvate dehydrogenase, the rate-limiting enzyme for the conver-
sion of pyruvate to acetyl CoA. The pyruvate concentration is, in turn, replenished 
by oxidation of lactate, thereby replenishing concentrations of the latter. Such a 
reduction may decrease the morbidity in head trauma, where local (CSF) elevated 
lactate is thought to be neurotoxic.
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In the current example, cerebral spinal fl uid (CSF) lactate concentration was 
considered to be the biomarker. A model linking the PK exposure to the biomarker 
and another model linking biomarker to clinical response were estimated and then 
applied by Monte Carlo simulation to evaluate competing clinical trial designs for 
a Phase 3 study.

In the PK/PD part of this study, 52 volunteer patients received from 1 to 3 doses 
of DCA ranging from 45 to 150 mg/kg (18). In total, 1041 DCA concentrations of 
which 284 were of CSF origin and 1052 lactate concentrations of which 312 were 
of CSF origin were measured. The CSF lactate concentrations were related to the 
serum CSF DCA concentrations by an indirect physiologic response model, which 
is schematically presented in Figure 17.2.
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where R was the response (the lactate concentration), Cp was the concentration of 
DCA, Smax was the maximum effect by which Kout could be increased, and SC50 was 
the concentration at which half of the Smax occurred.

For the purpose of the analysis, lactate concentrations were assumed be pseudo-
steady-state at the beginning of the fi rst DCA dose, so that Kin was set to equal the 
lactate concentration at time 0 multiplied by the estimated Kout (Kin = Kout ⋅ lactate). 
A link between the 24 hour post-trauma CSF lactate and 6 month postinjury 
Glasgow Coma Score (GCS) was also estimated by application of logistic regression 
to literature data (20). Thus, a PK-exposure–PD-CSF lactate–outcomes model was 
constructed with the biomarker, CSF lactate, in the center. It must be recognized 
that this modeling and evaluation of power and effi ciency could not be executed 
without a biomarker.

A Monte Carlo simulation was executed to evaluate the power and effi ciency 
of competing study strategies. To do this several steps are necessary. First, a tem-
plate data set was constructed for use in NONMEM. This data set had patient 
demographics (determined from a typical traumatic brain injury population), doses 
(either a placebo or the prescribed dose), and so on. From these data a predicted 
CSF lactate concentration was generated at 24 hours postinitiation of drug. From 
the CSF lactate the probability of a good response in a patient’s GCS post 6 months 
can be generated, so that a patient would have a probability of a “good response” 
between 0.00 and 1.00. Therefore, from the logistic regression a patient may have 
a 0.72 probability of a “good response.” However, this is simply the probability 
of a good response, and in real life, patients who have a 0.72 probability of a 

FIGURE 17.2 Schematic representation of the indirect pharmacodynamic response model 
for dichloroacetate (with permission from Ref. 19).
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good response still have a 0.28 probability of not having a good response. To deal 
with this uncertainty, each patient’s probability of a good response along with the 
patient’s treatment group was exported to a MicroSoft Excel fi le. Here Table 17.2 
was created. The P of a good response is the probability of good response from the 
logistic regression and the logit. Random is a random number with a uniform distri-
bution between 0.00 and 1.00 and was generated from the random number genera-
tor in MicroSoft Excel. In Excel, P of a good response is compared to Random by 
using the conditional if statement. If P of a good response was greater than Random, 
then Final Result was 1 (indicating a good response) and if P of a good response 
was less than Random, then Final Result was 0 (indicating not a good response). 
In the fi nal step, the Drug or Placebo along with the Final Result data were pro-
cessed in SAS with a chi-square test. For each study strategy, 200 replicates of data 
were generated, and in the end it was determined how often a given trial structure 
would be able to detect differences in outcomes between the placebo and treatment 
groups. So that if in 196 of 200 replicates of a trial, a treatment difference could be 
demonstrated, then the power of the study would be stated as 0.98.

It was particularly important to determine the impact of several competing 
dosing strategies and numbers of subjects on power and effi ciency. Table 17.3 
presents some of the results of these simulations. For the original study design it 
was intended to enroll 1500 subjects to establish effi cacy. The simulation indicated 
that 500 subjects (250 assigned to placebo and 250 assigned to treatment) would be 
suffi cient to establish effi cacy. More patients would need to be enrolled to assess 
the incidence and severity of toxicity. The use of a biomarker was very important 
in establishing power and bringing effi ciency to a Phase 3 study.

17.9 SUMMARY

Biomarkers have many intended uses. The intended use of the biomarker drives 
the type and extent of evaluation or validation. If a biomarker is used to select a 
lead compound for further development, the poor selection of a biomarker has little 
consequence as far as public health is concerned. The worst case scenario here is 
the discarding of a good therapeutic candidate. However, when a biomarker is to 

TABLE 17.2 Assignment of Final Results per Patient in MicroSoft Excel

Patient Placebo or P of Good Random Final Result
ID Drug Response

1 Placebo 0.26 0.77 0
2 Drug 0.76 0.11 1
3 Placebo 0.47 0.63 0
4 Drug 0.86 0.78 1
5 Drug 0.83 0.90 0
6 Placebo 0.39 0.26 1
7 Placebo 0.55 0.32 1
8 Drug 0.31 0.00 1
�    �   �   � �

500 Drug 0.78 0.06 1
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be employed as a surrogate endpoint in a confi rming clinical trial or used to manage 
direct patient care, there would need to be substantial evidence that the biomarker 
can predict clinical response.

The development and validation of biomarkers should be part of the overall drug 
development plan. One key here is “feasible early development.” For example, 
despite all the preclinical pharmacology and promising markers, no surrogate end-
point is validated and therefore any stroke trial requires 5000 subjects. This makes 
the search for and development of drugs for stroke impractical. Markers should be 
developed that can be used in both animals and humans. The biomarker should be 
validated throughout the entire development process. This process of continued 
validation and strengthening the mechanistic explanation of how the biomarker is 
involved in the disease–treatment–response may serve to help with a FDAMA (true 
fast track) type of approach to approval or may be used for a second compound in 
the pipeline. The judicious use of biomarkers will aid in decreasing the cost of drug 
development and will improve the quality of direct patient care.
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18.1 INTRODUCTION

Many drugs exert effects through changes in gene expression and this chapter 
focuses on aspects of modeling gene expression as a means to better understand 
the molecular mechanisms underlying drug response. The processes of receptor 
activation, signal transduction, transcriptional activation and transcription, RNA 
processing, transport and degradation, translation to protein, and protein degrada-
tion can all potentially contribute to the dynamics of gene expression. Although 
many of the individual processes are delineated in molecular detail, measurements 
of individual processes are rarely if ever available in the pharmacometric (PM) 
setting. The challenge in gene expression modeling is to develop parameter effi cient 
models that effectively describe the relationships between drug concentration and 
effect despite subsuming multiple underlying variables and processes.

18.1.1 Microarrays for Gene Expression

The availability of arrays for gene expression profi ling now allows simultane-
ous measurements of thousands of RNA species from single samples. Arrays 
for protein measurements are also becoming increasingly available. Gene arrays 
are now widely employed in basic biomedical research for mRNA expression 
profi ling and are increasingly being used to explore patterns of gene expression 
in clinical research. The analysis of array data has been the subject of active mul-
tidisciplinary biostatistical, computational, and bioinformatics research primarily 
because the size and dimensionality of array data sets have substantially altered the 
scope and complexity of the analyses required in experimental settings. This chapter 
focuses on the array-derived gene expression data but many of the approaches are 
broadly applicable to analyzing time courses from other high-throughput methods 
in biological systems. There are several PM challenges in the modeling of gene 
expression profi les and the last section of this chapter delineates these unresolved 
challenges.

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene I. Ette and 
Paul J. Williams
Copyright © 2007 John Wiley & Sons, Inc.
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18.1.2 Technologies

A wide variety of array technologies are available for measuring expression of 
large numbers of mRNAs (1). These include (a) oligonucleotide arrays synthesized 
directly on silicon chips using photochemical technology, (b) oligonucleotide arrays 
synthesized using ink-jet technology, (c) DNA or oligonucleotide arrays immobi-
lized on glass slides, and (d) DNA arrays on nylon membranes. The technologies 
differ in the substrates (e.g., silicon, glass, nylon) used, the synthetic methodol-
ogy employed (e.g., polymerase chain reaction (PCR) with UV crosslinking, syn-
thetic oligonucleotides with chemical crosslinking, photochemical synthesis), the 
length of probe immobilized (PCR products or oligonucleotides), and the readouts 
employed (fl uorescence, chemiluminescence, or radioactivity). Figure 18.1 shows 
a schematic of the underlying principles arrays. The human genome has approxi-
mately 20,000–30,000 genes, which are estimated to produce approximately 45,000 
transcripts due to alternative splicing. Whole-genome expression profi ling (2, 3) 
and large-scale mutant mapping (4, 5) have been possible in yeast for a few years 
and the technology for assessing the transcript levels of all the expressed genes 
in the human genome is emerging. There are several proprietary array platforms 
that are now commercially available (e.g., from Affymetrix, Agilent, Amersham, 
and many others). Nonetheless, despite their widespread availability and use, gene 
expression profi ling with arrays is employed primarily as a research tool because 
several technical/methodological challenges with measuring gene expression accu-
rately in clinical relevant settings remain: the most signifi cant of these challenges is 
the poor concordance between the major platforms (6, 7). The accuracy, precision, 
and methodological issues related to microarray methodology are being defi ned 
in systematic efforts by several groups (8–12). Although microarray results can be 
confi rmed and extended with quantitative PCR techniques, this lack of concordance 
suggests the need for standardization among microarray providers in their methods 
of image collection, background assessment and subtraction, validation, normaliza-
tion, and analysis. However, arrays are a relatively new and emerging technology 
and ongoing research will result in improvements in performance and robustness 
that will ultimately permit the use of arrays in clinical settings.

18.1.3 Quantitative Real-Time PCR

Quantitative real-time PCR (QPCR) technology provides a means to not only 
confi rm microarray results but also to extend and apply the results. Using fl uoro-
genic probes (13–19) or intercalating DNA dyes, the PCR amplifi cation process can 
be monitored in real time, allowing for the estimation of initial mRNA concentra-
tion for a given gene target based on the amplifi cation profi les. Databases are now 
available with the necessary fl uorogenic probe and primer sequences for a variety 
of genes in humans, mice/rats, and other species (20, 21). As with microarrays and 
other single-gene assays, it is necessary to normalize the data for differences in 
mRNA quality, concentrations, reverse transcriptase effi ciencies, and other experi-
mental errors (22–24). In addition, standard curves can be constructed for each gene 
using known amounts of the cloned PCR product (25, 26). Since real-time QPCR 
is relatively simple and inexpensive, it becomes possible to extend microarray 
studies to include more replication, and other important parameters such as differ-



ing dosage regimes and additional time points for specifi c genes of interest. Real-
time QPCR is quickly becoming fundamental to studies ranging from assessments of 
the kinetics of gene expression in response to specifi c drugs including interferon-b
(27), prednisolone (28), dexamethasone (29), and ciprofl oxacin (30) to examining 
the role of gene expression for transporters (31–34) and/or metabolizing enzymes 
(35–38) in drug distribution. Real-time PCR is also becoming an important means 
of genotyping for single nucleotide polymorphisms (SNPs) (39–41).

18.2 MICROARRAY DATA ANALYSIS

18.2.1 Data Normalization

One of the critical fi rst steps in array data processing is normalization. Individual 
spot intensities are typically normalized on each array to reduce errors associated 
with experimental methodologies such as starting RNA quality or quantity, differ-

MICROARRAY DATA ANALYSIS 475

FIGURE 18.1 A schematic of principles underlying gene analysis.
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ences in reverse transcription effi ciencies and labeling, and hybridization kinetics 
(42–44). The basic aim of normalization is to correct for experimental bias within 
each array by normalizing spot intensities to some subset of spots on the array. The 
simpler normalization approaches range from “global normalization,” wherein data 
from all or nearly all spots are used for normalization, to methods that normalize the 
data with a small subset of identifi ed “housekeeping genes” or control spots. Often 
global normalization methods trim the spots to be used in the analysis to eliminate 
outliers of genes that seem to vary among treatments. Quantile normalization is an 
increasingly used approach that equalizes the distribution of intensities across all 
the arrays, ensuring all moments (e.g., including the mean and the standard devia-
tion) are the same after normalization (9, 44, 45). Other recently used techniques 
include locally weighted polynomial regression (LOWESS), piecewise linearization 
methods (46), and adaptive algorithms (23, 47, 48).

Ultimately, normalization procedures identify some set of nondifferentially 
expressed genes across all the arrays of an experiment to serve as a reference 
set for comparing arrays. With successful normalization, the results of different 
experiments can be combined for analysis. However, different normalization tech-
niques can have large effects on the outcome of a given experiment and to date 
there is generally little uniformity among platforms. It is often advisable to evaluate 
different normalization methods to assess how robust a given outcome is to each 
method.

18.2.2 Identifi cation of Predictive, Differentially Expressed Genes

The primary advantage of massively multiplexed measurement systems such as 
arrays is that data on many genes are obtained; however, while some of the genes 
may be altered by the disease or treatment, many others will be unaffected. Thus, 
array data contains both informative and uninformative gene measurements and the 
initial analysis challenge—that of identifying the subset of informative genes—is in 
principle solvable by selecting genes that meet statistical signifi cance criteria in an 
appropriate test. The statistical issues are by no means trivial and are complicated 
by the varied sources of random error and bias and the large number of multiple 
comparisons involved in array experiments.

In many cases, the initial analysis of array data involves the identifi cation of a 
subset of genes from the many thousands assayed in an experiment that exhibit sig-
nifi cantly altered gene expression due to the experimental conditions. The simplest 
assessment of signifi cantly altered genes are simple comparisons of fold change 
using some arbitrarily chosen threshold (generally 1.5–2-fold increase or decrease). 
The major shortcoming with this simple method aside from a lack of statistical 
rigor (49) is that ratios mask information concerning the absolute levels of gene 
expression. More traditional hypothesis-driven analyses include parametric and 
nonparametric univariate statistical tests (t-tests, Wilcoxon) (50–54). Analysis of 
variance models (55–57) have also been proposed that provide greater generality in 
model building and experimental design. ANOVA models may even include some 
preprocessing steps like normalization if the appropriate replication is included 
in the experimental design. Regardless of the statistical test employed, problems 
arise when conducting many multiple tests such that as the number of hypotheses 
tested increases the probability of rejecting a true null hypothesis (Type 1 error) 
increases. There exist computationally simple corrections (Bonferroni, Sidak) to 



deal with the multiple testing problem; however, such corrections are less than 
ideal for microarray analyses since these methods assume that the multiple tests 
are independent of one another, unlikely given the many known gene interac-
tions, and the adjustment in signifi cance levels result in a great loss of statistical 
power. Given that microarray experiments are exploratory in nature, it is gener-
ally more acceptable to tolerate some small number of false positives rather than 
discard some truly signifi cant genes. Permutation-based procedures or bootstrap-
ping techniques have potential application at all levels of microarray analysis and 
have been used extensively in other fi elds of genetics and biometry (evolutionary 
biology, phylogenetics, and population genetics (58)). These techniques allow for 
the estimation of a null distribution for a variety of test statistics (59–64) in order 
to assess the signifi cance of individual genes. Permutation-based procedures have 
been combined with step-down adjustments to control the family-wise error rate for 
multiple testing (65). These techniques yield signifi cance values with the traditional 
interpretation: that is, the probability of committing at least one Type I error in the 
entire data set does not increase with the number of tests. Finally, one permutation-
based statistical procedure is specifi cally available for microarray analysis (statistical 
analysis of microarrays—SAM (61, 66)). Unlike traditional statistical tests, SAM 
does not identify a specifi c list of signifi cant genes; rather, the user can adjust the 
false discovery rate to assess signifi cant gene lists given different tolerance levels for 
false positives. Comparisons among permutation-based methods, parametric tests, 
and traditional nonparametric tests indicate good concordance (64, 67). One of the 
major limitations of permutation-based methodologies is the granularity of p-values
that arises when the number of permutations is small due to limited sample size. 
This is particularly a problem in microarray studies given that the cost of the arrays 
often limits replication in many studies.

Effi cient data storage and retrieval, analysis, statistics, modeling, visualization, 
and informatics algorithms are the critical tools for biomedical discovery with arrays. 
A variety of powerful, established tools for biostatistical data analysis (e.g., SPSS, 
S-Plus, and SAS) and bioinformatics (e.g., GeneSpring, Genomax, and the NCBI web 
sites’ tools) are commercially available. However, the development of visualization, 
analysis, and modeling tools for time course data for arrays is needed.

18.2.3 Clustering Techniques

The use of clustering techniques is now particularly widespread for examining the 
temporal dynamics of gene expression, which are frequently necessary to delineate 
the temporal sequence of transcriptional events that occur in response to a given 
stimulus. The identifi cation of groups of genes with “similar” temporal patterns of 
expression is usually a critical step in the analysis of kinetic data because it pro-
vides insights into the gene–gene interactions and thereby facilitates the testing and 
development of mechanistic models for the regulation of the underlying biological 
processes.

Cluster analysis techniques with a variety of distance measures and decision-
generating algorithms have been extensively explored for the analysis of gene array 
data (68–70). Array experiments in cellular models suggest that certain genes with 
similar function exhibit similar temporal patterns of coregulation (71–73), although 
this distinction is not absolute. Generally, the analysis of clusters yields a subset 
of expected genes with known functions as well as novel or poorly characterized 
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fi ndings that can provide a basis for further investigation. Each cluster tool and 
each data fi ltering/conditioning method within a given technique has the potential 
for revealing different patterns: this is a frequent source of confusion for some 
experimentalists.

Clustering algorithms can be classifi ed as either supervised or unsupervised—
supervised algorithms require and use more input from the user regarding the 
underlying structure of the data than unsupervised techniques—and each approach 
has useful and complementary roles in the analysis of genomic expression profi ling 
data. Supervised approaches (e.g., biostatistical (66), linear or quadratic discrimi-
nant analysis (74, 75), neighborhood analysis, and support vector machines (76–78)) 
are usually more appropriate for analyzing key outcomes and hypothesis testing 
in well designed, experimental settings. Often the goal of supervised approaches 
is to identify a subset of the data (genes) that can be used to make predictions or 
assignments for unknown samples (79). Unsupervised approaches (e.g., hierarchical 
clustering (73), k-means clustering (80), and self-organizing maps (81)) are more 
appropriate for data mining and hypothesis generation. We refer the interested 
reader to the textbook by Webb (82) for an accessible introduction to the mathe-
matical and computation principles underlying these pattern recognition techniques 
and a comparative assessment.

The goal of clustering is to partition the data set into groups such that members 
of each group share similarity with each other and are dissimilar with members of 
other groups. There are two main components to a clustering algorithm: the dis-
tance measure and the rules that partition each data point to a group. The partitions 
produced by a given clustering algorithm are dependent on the distance metric used 
and must be considered in respect to the distance metric used to generate it (see 
Ref. 46 for a discussion of different distance metrics). In addition, not all clustering 
algorithms are deterministic. Membership of any given gene in any particular cluster 
may be dependent on the initialization parameters. For such algorithms (k-means
and self-organizing maps) it is useful to assess the robustness of any given clustering 
by repeating the algorithm. Hierarchical clustering (HC), k-means, self-organizing 
maps (SOM), principal components analysis (PCA), and support vector machines 
(SVM) are some of the commonly used methods for analyzing gene expression 
data.

18.2.3.1 Unsupervised Approaches

Principal Components Analysis Principal components analysis (PCA), a tech-
nique for reducing the dimensionality of data that is usually performed by singular 
value decomposition, has also been applied to array data (83–85). The fi rst com-
ponent from PCA identifi es a linear combination of the variables that explains 
the majority of the variation in the data set and each successive component partly 
explains the remaining variation in the data set. The components are independent 
of each other—that is, they are orthogonal. The software program SVDMAN, 
available for free from Los Alamos National Laboratory (http://public.lanl.
gov/mewall/svdman/) for DOS and Linux operating systems, provides an imple-
mentation of the PCA method for gene expression analysis. In theory, the principal 
components can also yield composite biomarkers for classifi cation of training sets 
and class identifi cation because the principal components are an ordered, uncor-



related set of linearly transformed combinations of the original variables, with the 
fi rst few principal components describing most of the variation in the original data. 
However, the appropriate component for class identifi cation can only be identifi ed 
emprically; the linear discriminant function approach, which also uses a linear com-
bination of the original variables, is a more effective method for classifi cation.

Although PCA reduces the number of genes involved, the results largely depend 
on the data distribution and the variance–covariance of the data. The identifi ed 
principal components do not always have useful sample prediction capabilities; for 
example, they often do not capture phenotype structures (86). The poor predictive 
capabilities of PCA with array data arise because the genes accounting for most 
of the variance in the data are frequently not the most informative of the class 
distinction of interest.

Principal components analysis has also been applied to array time series data (83–
85) and a limited number of principal components usually accounts for the essential 
features of the data set, allowing considerably reduced complexity; for example, the 
sporulation data was modeled using as few as two principal components (83).

By modeling gene expression as Markov processes, Holter et al. (84) extended 
the principal components analysis/singular value decomposition to estimate the 
transition matrix for a subset of the principal components. Because the kinetic data 
is obtained at a limited number of time points, the general problem of computing 
the transition matrix for an array containing G genes containing G2 elements and 
is ill posed. Transition matrices for clustered data and for interpolated time courses 
have also been examined (87).

Hierarchical Clustering Hierarchical clustering (HC) is a widely used unsupervised 
method for microarray data analysis. HC algorithms can be of either agglomerative 
(bottom-up) or divisive type (top-down) depending on whether they decompose the 
data set by merging the two nearest individual data points or by splitting a larger 
group of data points. For gene expression data, agglomerative methods are more 
widely used. HC algorithms are deterministic though the choice of method (agglom-
erative or divisive) may generate different patterns. Agglomerative methods for 
HC produce a series of partitions of the data sets, with the fi rst partition containing 
individual data points and the last partition subsuming the entire data set.

The HC algorithm requires choice of a distance measure and linkage method. 
The distance measure quantifi es the similarity or dissimilarity between two gene 
expression profi les. The Euclidean distance and the Pearson correlation (PC) coeffi -
cient have been widely used as distance measures to quantify the similarity between 
profi les. The centered PC similarity measure, r, between any two series of numbers 
X = {X1, X2,  .  .  .  , Xn} and Y = {Y1, Y2,  .  .  .  , Yn} is the familiar PC coeffi cient used in 
linear regression. The distance measure is obtained by subtracting the correlation 
value from unity. The uncentered PC is obtained from the centered PC by setting 
the means of X and Y to zero. The uncentered PC is defi ned as
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The centered PC measure is insensitive to time shifts or translations of the data 
whereas, the uncentered PC, which is sensitive to time shifts, is usually preferable 
for most applications. The linkage method determines the basis for assigning the 
distance or similarity to clusters and data points to accomplish agglomeration; for 
example, single linkage uses the distance between the two data points in each cluster 
that are closest and complete linkage uses the two farthest points. Average linkage 
uses the sum of all the pairwise distances normalized to the number of data points 
in each cluster. Average group linkage assigns the mean value to each cluster upon 
merger and the distance between two groups is obtained by obtaining the differ-
ence between the mean vectors. Hierarchical clustering generates a hierarchical 
tree, often referred to as a dendrogram, that highlights the relationships between 
data points; however, unlike other clustering methods, its does not specify explicit 
clusters, which the user must be able to obtain by pruning the dendrogram at an 
appropriate level. The Cluster and TreeView suite, developed by Eisen (73), pro-
vides a computational and graphical environment for visualizing clusters in gene 
expression data and is widely used. The Cluster/TreeView program is available 
from http://rana.lbl.gov/EisenSoftware.htm. The TreeView visualization 
presents clustered expression data in a combination view that includes both the 
dendrogram and the heat plot. The dendrogram represents the hierarchy of cluster 
structures and the heat plot provides information on the expression level changes. 
The heat plot complements the dendrogram because it is visually very effective and 
intuitive. Likewise, GeneCluster summarizes results from SOM (73) and J-Express 
offers visualization clustering results of four major clustering algorithms: hierarchi-
cal clustering, SOM, PCA, and k-means (88).

Although HC is widely used for visualizing gene expression data, it has several 
weaknesses: it is sensitive to noise and to outliers and has a tendency to disrupt large 
clusters. The HC algorithms use local decisions to identify relationships between data 
points and dendrogram outputs are obtained even with random inputs. Agglomera-
tive HC produces deterministic results, but “bad” decisions made early on during 
tree construction cannot be subsequently corrected and as the clusters become 
larger, the profi le of the cluster centroid may sometimes lack any resemblance to 
the constituent profi les. In addition, the position of patterns within a cluster does 
not necessarily refl ect similar expression profi les. HC is best suited for describing 
data sets in which the underlying processes exhibit hierarchical relationships and are 
not ideal when the expression patterns are the result of multiple pathways.

k-Means The k-means algorithm requires the user to specify the number of clusters 
to be identifi ed and to estimate/guess the cluster centers. The algorithm randomly 
chooses points as the centers of the clusters to initiate the process. Each data point 
is assigned to the closest cluster center and the cluster center is then revised to the 
center of the points assigned to it. Since each cluster center has moved, member-
ship of each data point within the cluster is then reevaluated. The process is iter-
ated until it converges, that is, no changes in cluster membership and therefore no 
change in the cluster centerpoints. The problem of identifying the number of centers 
is diffi cult and critical since this method is not deterministic. In some circumstances 
the number of clusters is known a priori (number of time points, tumor classes). A 
common approach is to use information criteria such as the Schwarz information 
criterion familiar to those involved in pharmacokinetic/pharmacodynamic (PK/PD) 



modeling. Confi dence in a given pattern can be assessed by repeating the algorithm a 
number of times or using a bootstrapping approach using subsets of the data set.

Self-Organizing Maps (SOM) SOM or Kohonen maps were fi rst proposed in 1995 
(89). The SOM algorithm accomplishes the representation of a high-dimensional 
data set to a low-dimensional (usually one- or two-dimensional) array. Unlike 
hierarchical and k-means clustering, SOM clustering creates plots in which similar 
patterns occur next to one another—there are “neighborhood relationships” among 
patterns. This greatly aids in the visualization of the data. SOM requires the user 
to specify a network of nodes; often this is done by randomly selecting points from 
the data itself. A data point is randomly selected and the distance between the 
data point and each of the nodes is calculated. The node closest to the data point 
is moved in the direction of the data point and the remaining nodes are adjusted 
depending on their distance from the most proximal node. The k-means algorithm 
arises as a special case of the basic SOM. Like k-means, SOM, given the random 
initialization used to fi rst assign nodes, is nondeterministic.

18.2.3.2 Strengths and Weaknesses of Clustering Techniques
Although clustering methods have been widely used in array time series analysis, 
the majority of these techniques treat time as a categorical or ordinal variable 
and not as a continuous variable. This distinction is important because the kinetic 
parameters derived from ordinal variable treatments will not carry meaning except 
in the case where the time points are evenly spaced.

The majority of clustering techniques currently used for array data analysis are 
data driven; the initial clustering proceeds with modest levels of user input but effort 
must then be invested during interpretation. Some of these data-driven methods are 
also susceptible to noise: many hierarchical clustering approaches lack robustness 
and uniqueness and can be sensitive to the order of the input and to small perturba-
tions in the data (81). Partition-based approaches can be sensitive to the presence 
of outliers (90, 91). In addition, the distance measure used can also contribute to 
the robustness of a given clustering technique. For example, the Pearson correla-
tion, which is widely used as a distance measure for analyzing the kinetics of gene 
expression because it is insensitive to the absolute magnitudes of the two vectors 
being compared (68), is capable of identifying visually similar expression patterns 
but is sensitive to even single outliers. The sensitivity of the Pearson correlation 
distance measure to single outliers can be reduced by a jackknife procedure wherein 
each observation is sequentially deleted and the minimum value from the set of 
correlation values is used for cluster analysis (92). Users should carefully examine 
the underlying properties of the distance measure when evaluating results.

Clustering techniques, both supervised and unsupervised, have limitations when 
applied to time series data that are not as problematic or apparent when these 
same techniques are used for sample-dimension clustering. Typical partition-based 
methods (e.g., k-means and SOM) require the user to provide the number of 
clusters as a parameter. For time series data, this parameter is diffi cult to provide 
because the distinct patterns in a data set may be bridged by a number of inter-
mediate patterns. An example of “bridging” from the Iyer fi broblast response data 
set (93) is shown in Figure 18.2. In our experience, such bridging is quite common 
in gene expression profi ling data. The intermediate patterns must be forced into 
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an existing cluster and generally, existing approaches detect either too few, well 
populated, noisy clusters or many small but sparse clusters. Hierarchical clustering 
in the gene dimension eliminates the need to provide the number of clusters as input 
and creates nested clusters that can be represented as a dendrogram; however, the 
process of cutting the dendrogram to provide clusters has to be done subjectively 
by visual inspection. The internal structures of the clusters are diffi cult to elucidate 
from the dendrogram.

The CAGED software program (94) is notable among the various clustering 
approaches because it uses a Bayesian framework for clustering and autoregres-
sive models for representing time series. Generally, because time is treated as an 
indexed, ordinal variable, the time points have to be evenly spaced for the model 
parameters to be meaningful as rate constants; it offers a user-friendly interface and 
excellent biostatistical framework for time series cluster analysis.

18.2.3.3 Evaluating Clusters
Different clustering techniques and distance/similarity measures generally yield 
different partitions of the data: the number of clusters can differ between methods 
and a given gene expression profi le may be assigned to different clusters. Cluster 
evaluation metrics can be used for comparing different clustering algorithms and 
to assess the results from clustering independently of the underlying method. Gen-
erally, for temporal gene expression profi les, two complementary types of cluster 
evaluation metrics are needed. The fi rst type of metric measures the extent to which 
similar profi les are placed in the same cluster and dissimilar profi les are placed in 
different clusters, while imposing a penalty for increasing the number of clusters. 
The second type of metric compares two partitions and measures the similarity 

FIGURE 18.2 Example of bridging from the gene expression data set of Iyer et al. (93) on 
the response of fi broblasts to serum. The qualitatively dissimilar patterns in (A) and (F) can 
be connected by intermediate patterns present in the same data set.

(A) (B) (C)

(F) (E) (D)

(G) (H) (I)



of cluster content or membership, that is, whether the genes assigned to the same 
cluster by one method share a cluster in the other method.

The Davies–Bouldin validity index (DBI) is an example of a cluster evaluation 
measure (95). The DBI is the average similarity between each cluster and its most 
similar one. It is defi ned as
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Sc and dce denote the centroid intracluster and intercluster distances, respectively. 
The intracluster distance for a given cluster is the average of all pairwise distances 
from points in the cluster to the cluster centroid. The intercluster distance between 
two clusters is computed as the distance between their centroids. Nk is the number 
of genes belonging to cluster k, given that a total of Nc clusters are found to exist 
in the data. A low value of DBI indicates good cluster structure.

The membership matrix M for each method forms the underlying basis for com-
paring for similarity of cluster membership obtained by two different methods, say, 
P1 and P2. Each term Mij in the membership matrix is an indicator variable that is 
assigned the value 1 when the gene pair (genei, genej) is assigned to the same cluster 
by both methods and is assigned the value 0 otherwise. The matrix M contains all 
the cluster information and, given this matrix, the clusters and the genes belonging 
to them can be extracted to generate a 2 × 2 contingency table:
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n n

The total n00 + n01 + n10 + n11 = NC2, where N is the total number of genes being 
partitioned.

The adjusted Rand index (86) measures the extent of agreement between two 
different cluster structures obtained for the same set of data points. This is a useful 
measure when comparing two methods producing a different number of clusters. 
The Rand index is simply the proportion of agreement between the two methods 
and is defi ned as

Rand index
n n
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=
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2

N is the total number of genes in the data set. The index ranges from 0 (when the 
two cluster results are completely different) to 1 (when the two methods agree 
completely). The expectation of the Rand index for two random partitions is not 
a constant and it is preferable to use the adjusted Rand index, which corrects the 
Rand index for the case of random partitions of the data. The adjusted Rand index 
is given by

MICROARRAY DATA ANALYSIS 483



484 ANALYSIS OF GENE EXPRESSION DATA

Adjusted Rand index

Rand index Expected value of Rand index
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To obtain values for the expected and maximum values, the hypergeometric distri-
bution is assumed. If nij is the number of genes that are common to clusters i and j
from each method, the adjusted Rand index can be calculated from the following 
formula:
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The upper bound of the adjusted Rand index is unity and it takes on the value of 
zero when the similarity between the two clustering methods matches the expec-
tation of the hypergeometric distribution. A higher value of the adjusted Rand 
index indicates a greater similarity of membership between the clusters of the two 
methods being compared.

18.2.4 Analyzing Gene Function

The Gene Ontology Database provides the underlying framework of assessing 
gene function in the results from microarrays. The Gene Ontology Consortium is a 
collaboration that has developed and maintains structured, controlled vocabularies 
or ontologies that describe gene products. The vocabularies are species indepen-
dent and the gene products are described in terms of their associated biological 
processes, cellular components, and molecular functions. The molecular function 
describes the biochemical catalytic or binding activity of the gene (e.g., transporter 
activity is a broad class whereas toll receptor binding is a narrower class); the 
cellular component describes the anatomical structure that the gene product is 
associated with (e.g., nucleus, cytoplasm is a broad class, ribosome is a narrower 
class); the biological processes contain or require ordered multistep assemblies of 
molecules (e.g., cell growth and maintenance is a broad class, purine metabolism 
is a narrower class). The gene ontology data sets are freely available from the 
Gene Ontology web site (http://www.geneontology.org/) in fl at fi les, XML, 
and MySQL formats.

The functions and functional relationships between genes that are statistically 
signifi cant or comprise clusters can be investigated using the Expression Analysis 
Systematic Explorer (EASE Version 1.21) software program (96). This customiz-
able software application (available from http://david.niaid.nih.gov/david/
ease.htm) allows rapid biological interpretation of gene lists and performs theme 
discovery, annotation, and linking to other online tools such as Database for Anno-
tation, Visualization and Integrated Discovery (DAVID) (97). The one-tailed Fisher 
exact probability and a variant called the EASE score are statistical measures of 



overrepresentation of a class of genes within the total population of the genes in 
EASE.

Onto-Express is an example of another program that takes lists of genes found 
to be differentially regulated in array experiments into functional profi les based 
on gene ontology (98–100). The program provides statistical signifi cance values 
and graphics of the relative representation of each function class and the gene 
ontology hierarchical trees. Onto-Express is freely available from http://vortex.
cs.wayne.edu/.

Although gene ontology mining software tools such as EASE and Onto-Express 
provide a convenient way to assess biological processes, chemical activities, and cel-
lular localization, it is important to supplement these results by direct visualization 
of gene expression results on detailed maps of biological processes and biochemi-
cal pathways. The Kyoto Encyclopedia of Genes and Genomes (KEGG, http://
www.genome.jp/kegg/kegg1.html) is an excellent database resource for such 
analysis (101–104). The KEGG is a suite of databases: the PATHWAY database 
contains information on molecular interaction networks in biological processes, 
GENES/SSDB/KO databases contain information on genes and proteins, and 
COMPOUND/GLYCAN/REACTION databases contain information on chemical 
compounds and biochemical reactions. The pathway diagram in KEGG represents 
the interconnections between molecules or, to use an electrical analogy, the wiring 
network of molecules in biological systems, and can be used in conjunction with 
microarray and gene expression profi ling to assist functional reconstruction. KEGG 
is fully featured for computing and comparing pathways and contains the necessary 
binary representations of molecular interactions. Visualization of gene expression 
data in the context of such diagrams allows users to understand relationships that 
may initially appear disparate. Software tools for mining the KEGG and gene 
ontology databases in the context of gene expression profi ling data are emerging 
and examples of such tools include Gene Microarray Pathway Profi ler (GenMaPP, 
which uses its own pathway maps, http://www.genmapp.org/) (105, 106) and 
PathwayAssist (www.ariadnegenomics.com/).

18.2.5 Case Studies

18.2.5.1 Case Study 1: Gene Expression Patterns in 
Interferon-b Treated Multiple Sclerosis Patients
In this case study, we present a detailed step-by-step description of our study of 
gene expression responses in interferon-b (IFN-b) treated multiple sclerosis (MS) 
patients (27).

Rationale The overall aims of this study were to characterize the molecular mecha-
nisms and changes in gene expression patterns associated with IFN-b therapy in MS 
patients. Recombinant human IFN-b has emerged as the most commonly prescribed 
form of immunomodulatory treatment for relapsing MS on the basis of several 
double-blind, placebo-controlled, multicenter trials (107–109). IFN-b reduces 
relapse rate and slows the progression of disability in relapsing MS. Approximately 
30% of MS patients respond well to treatment with IFN-b, whereas the remaining 
exhibit varying extents of partial responsiveness. Despite this relatively rich under-
standing of IFN-b signaling, the molecular mechanisms instrumental for its in vivo 
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therapeutic effi cacy in MS are complex and poorly understood. The effects of IFN 
treatment are complex and the pharmacodynamics of IFN-b at the genomic level in 
humans is poorly understood. In MS patients, in particular, the benefi t associated 
with IFN-b therapy is diffi cult to monitor (110, 111), and the cellular, molecular, 
and immune mechanisms mediating the clinical effects of IFN-b in MS are poorly 
delineated. Gene expression methodology is particularly appropriate for assess-
ing the treatment effects of IFN-b because it exerts its effects via transcriptional 
changes mediated through the Jak-Stat pathway (112, 113).

Study Design Considerations In our approach, we utilized a pharmacodynamic 
(PD) study design. In studies with multiple genomic endpoints, PD designs are par-
ticularly important because each half-life of each mRNA (and protein) can differ 
considerably: a snapshot at a single time point is unlikely to identify whether the 
gene is being regulated. The PD study design provides insights into gene orchestra-
tion because the order in which genes are turned on and off can easily be visualized. 
We used an open-label PD study design; peripheral blood was obtained from 14 
relapsing–remitting MS patients just prior to and at 1, 2, 4, 8, 24, 48, 120, and 168 
hours after intramuscular injection of 30 mg IFN-b-1a. Additional samples were 
obtained at 3, 6, 12, 18, and 24 months, just prior to the weekly dose of IFN-b-1a.

Sample Processing Considerations The separation of different cell populations 
is an important consideration in genomics experiments because signifi cant changes 
in cell numbers can occur during treatment, and these changes can confound the 
gene expression results. In our case, peripheral blood mononuclear cells (PBMCs) 
were rapidly isolated using gradient separation on cell preparation tubes (Becton 
Dickinson). Monocytes were depleted from the PBMCs (plastic adhesion) and total 
RNA was prepared using the TRI reagent method (Molecular Research Center, 
Inc.) (114).

Choice of Arrays The GeneFilters GF211 DNA arrays (Research Genetics, Inc.) 
containing named human genes were used (5184 total spots each containing 0.5 ng 
of approximately 1000 base long, 3′ end-derived PCR fragment). Each fi lter con-
tained multiple control total genomic DNA positive control spots and housekeep-
ing genes. The manufacturer’s recommended protocols were used (http://www.
resgen.com). This array uses 33P radioactivity for quantifi cation.

The choice of array is a critical decision because each platform differs consider-
ably in the array formats and labels, methodology, and equipment employed. In our 
case, we had limited amounts of RNA from patients and our choice of arrays was 
driven by the high sensitivity and linearity of radioactive readouts and the relatively 
modest equipment requirements for this platform.

Analysis In the fi rst step of the analysis, the images from arrays were imported 
directly into the Pathways 4.0 software program obtained from the manufacturer 
of the array (Research Genetics, Huntsville, AL) and aligned, gridded, and quanti-
fi ed. In this step, the software quantifi es the intensities of the spots on the arrays, 
maps the spot intensities to the genes on the array, and generates a spreadsheet 
containing intensities. Normalization can also be conducted at this stage and we 



opted for global normalization, which uses the intensities across all the spots on 
the arrays as the normalization factor and also corrects for intensity ranges. The 
global normalized data were exported as a text fi le for use in subsequent analyses, 
which were conducted in other software. Subsequently, we also examined quantile 
normalization for certain pattern recognition analysis (9, 44, 45).

Our initial analyses focused on biostatistical analysis of key genes that were 
known from other work to be either modulated by IFN-b or involved in IFN-b
signaling (27). Statistical analysis was done in the SAS statistical programs (SAS 
Inc., Research Triangle Park, NC). Repeated measures analysis with a mixed effect 
model and linear contrasts was employed for statistical analysis of the time course 
data for each gene of interest. The PROC MIXED procedure in the SAS statisti-
cal program was used. In the statistical analysis, we used a = 0.01 rather than a =
0.05 to assess signifi cance. We considered using signifi cance analysis of microarrays 
(SAM) software (66) but because we had a rich time series in a repeated measures 
design with some missing data, we elected to use the SAS procedure instead. 
The time profi les for this subset were examined using graphical visualization to 
assess trends and identify whether heterogeneity of individual responses was appar-
ent. The expression pattern of a subset of these genes was confi rmed using real-
time PCR.

In the next step of the analysis, we used a variety of pattern recognition tools to 
investigate the data set. We used self-organizing maps and hierarchical clustering 
analysis tools using the uncentered Pearson correlation as a distance measure in 
GeneCluster software (81, 115). Eventually, we used the CAGED approach, which 
is more suited to time series data clustering (94), to assess the expression patterns in 
the subset of known IFN-b induced genes. The CAGED analysis indicated that two 
specifi c time points, 2 hours and 8 hours, had notable peaks in gene expression. The 
importance of these time points was also supported by other studies, for example, 
fl ow cytometric cell traffi cking studies that we had conducted (116). In parallel, we 
analyzed our data set using novel clustering and visualization algorithms developed 
in collaboration with our colleagues in computer science (117–119).

We further identifi ed the genes that were signifi cantly changed compared to pre-
treatment values at the 2-hour and 8-hour time points using the SAM software (66). 
The genes that were identifi ed as statistically signifi cant were analyzed for function 
and gene ontology using EASE Version 1.21 (96), a customizable software applica-
tion for rapid biological interpretation of gene lists. It performs three basic func-
tions: theme discovery, annotation and linking to online tools such as DAVID (97) 
and NCBI database. EASE is freely available to nonprofi t researchers for use on 
Windows operating systems at http://david.niaid.nih.gov/david/ease.htm.
EASE measures the overrepresentation of a class of genes within the total popula-
tion of the genes in the microarray using the one-tailed Fisher exact probability. 
We examined the cellular location, biological processes, and molecular activities to 
determine whether there were specifi c patterns of overrepresentation.

Analysis is still ongoing. We obtained additional clinical and brain neuroimag-
ing (magenetic resonance images) data in a subset of patients in the course of the 
study. The current analyses are directed at determining whether there are signifi -
cant associations between gene expression patterns and clinical and quantitative 
neuroimaging measures.
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18.2.5.2 Case Study 2: Identifying Changes in Vascular 
Gene Expression Following Nitrate Exposure
The goal was to identify a list of genes with signifi cantly altered expression to 
understand the molecular mechanisms underlying the multifactorial process of 
nitrate tolerance in a rat model (120). Global gene expression changes in rat aorta 
following exposure to nitric oxide donors was examined using cDNA arrays with 
5147 rat genes and 384 control DNA spots (GF300 GeneFilters, Research Genetics, 
Huntsville, AL). Total RNA was isolated from aortas from rats infused continu-
ously with either nitroglycerin (NO donor) or distilled water (n = 4 each). Labeling 
was done with 33dCTP and hybridizations were detected using phosphorimaging. 
Normalization was done using the simplest method; that is, raw intensity values for 
each array were normalized to average global intensity values.

The microarray data obtained were quite variable with CVs ranging from 1% to 
200% for the 5531 genes. As is often the case, less than 0.5% of the gene signals 
had CV greater than 100%. Because the goal of these experiments was to identify 
those genes that exhibit signifi cant differences in gene expression, we employed 
straightforward t-tests with unequal variance to assess signifi cance and then used 
permutation-based procedures to assess the levels of false positives given various 
levels of stringency. The initial t-test identifi ed 447 genes that were altered in their 
expression by the nitrate treatment at a P level of 0.05. Given this P value, one 
might expect 276 signifi cant outcomes by chance alone (Type I errors) when con-
ducting a statistical test 5531 times. For the permutations we constructed 35 unique 
permutations to build null distributions for each gene. Using the simple criteria of 
accepting as signifi cant any gene (a) whose t-statistic was signifi cant at P < 0.05 and 
(b) whose t-statistic was at the very tail of the constructed null distribution (largest 
t-value among the 35 permutated t-values), we reduced the list of signifi cant genes 
to 290. Thus, for the 447 genes originally identifi ed as signifi cant, 157 (447 − 290 
= 157) yielded higher t-values using randomized data. These genes were removed 
from the list of signifi cant genes as likely false positives. Finally, the methods of 
Westfall and Young (65) involving permutation-based procedures combined with 
Bonferroni-like step-down adjustments were applied to the data set. This technique 
yields signifi cance values with the traditional interpretation: that is, the probability 
of committing at least one Type I error in the entire data set does not increase 
with the number of tests. The Westfall–Young procedure is conservative and when 
applied to our data the list of signifi cant genes was reduced to 80 genes. This strong 
control of the family-wise Type I error rate, however, results in increased Type II 
error. Among the 367 genes (447 − 80 = 367) now removed from the list of signifi -
cant genes, there is a high likelihood of some being signifi cant. Permutation-based 
methods allow the experimenter to adjust the list of “signifi cant” genes, always with 
an estimate of the false discovery rate. The level of tolerance for false positives, or 
conversely the loss of true signifi cant genes, is left to the researcher.

18.2.6 Model-Based Approaches

Model-based or declarative approaches, which start with a group of models and 
use a learning procedure to select one that best describes the data, differ substan-
tively from data-driven or procedural approaches, which extract conclusions from 
observed data using a sequence of steps (121). In the model-based approach, the 



structural constraints imposed suppress the effect of noise and allow the results 
to be easily interpreted because the parameters, which can be viewed as reduced 
dimensionality representation of the data, reduce complexity of the analysis and 
have clearly associated meaning.

Appropriate model-based approaches can potentially provide mechanistic 
insights into the distinct patterns as well as bridging patterns because the response 
of the models can vary continuously between distinct patterns upon change of 
parameters.

One of the goals of modeling is to infer the genetic networks and gene–gene 
interactions from expression data. The major approach has been with Boolean net-
works (122–127). Friedman and co-workers have used Bayesian networks, which are 
graph-based models of joint multivariate probability distributions that assess con-
ditional independence between variables, to obtain simpler submodels to describe 
gene interactions from array data (121, 128). The Bayesian network models have 
been applied to expression profi les in yeast; several regulatory modules identifi ed 
were checked against literature reports and testable hypotheses were confi rmed 
empirically using knockout strains (129).

Periodicity approaches have been used for analyzing genes regulated during 
cell cycles in experiments with synchronized cultures (71, 72). However, these 
approaches are not generally applicable to nonperiodic data.

Chen et al. (130) proposed the theoretical basis for a series of differential equa-
tion-based models for gene expression in the context of array analysis but, sur-
prisingly, did not explore specifi c applications of the differential equation-based 
approach to array data sets.

The S-system (or synergistic and saturable system) formalism (131) is a differ-
ential equation based approach that has also been applied to genetic, biochemical, 
and immune network data (132, 133). These systems are nonlinear and both genetic 
algorithms (134) and linear programming (123) have been used for their analysis. 
The currently available approaches are not easily applied to large systems and even 
upon simplifi cation do not yield unique parameter estimates (123).

Despite the availability of a variety of alternative paradigms, compartmental 
modeling is the dominant approach for understanding the relationships between 
drug concentration and effect in the pharmaceutical and pharmacological sciences. 
This paradigm offers a rich body of behaviors for modeling the effects of drugs 
and models, and model equations can be systematically built from intuitive com-
partmental elements. A good pharmacokinetic/pharmacodynamic (PK/PD) model 
could deliver several advantages, including but not limited to (a) a parsimonious, 
reduced dimensionality representation of the original data, (b) insights into the 
potential mechanisms or means by which input stimuli are transformed into the 
time courses of output, and (c) parameters that convey quantitative information 
that can be used in simulations and what-if analysis or combined with other meth-
odologies already in use for array data analysis (e.g., the parameters of a model 
could provide a basis for clustering). In the following, we present the results for 
several simple compartmental models for gene expression dynamics and describe 
their output characteristics.

The distinction between direct and indirect drug effects is a particularly useful 
one when modeling gene expression profi les with compartmental models. Direct 
effects are mediated directly by the presence of the drug in the effect compartment 
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FIGURE 18.3 The Hargrove–Schmidt model and its differential equations. The gray line 
indicates that information, not mass, is transferred from the mRNA to the protein compart-
ment. The dots in the equations denote time fi rst derivatives.

and because an occupied drug–receptor complex elicits the response, the removal 
of drug from the effect compartment abrogates the effect promptly. Indirect effect 
models explain pharmacological effects that manifest when drug concentration in 
the effect compartment has decayed to negligible levels and with substantial time 
delays (135, 136). A given drug (e.g., IFN-b) may induce certain mRNAs (e.g., the 
rapidly induced antiviral genes) via direct effects and others may be better described 
by indirect effect models.

18.2.6.1 Models for Gene Expression Dynamics
The simplest model for gene dynamics is the Hargrove–Schmidt model (Figure 
18.2). The Hargrove–Schmidt model is a two-compartment model that assumes 
information fl ow from mRNA (M) to protein (P) via a fi rst-order translation rate 
constant, kT, and independent, fi rst-order degradation of mRNA and protein with 
rate constants kM and kP, respectively. The system is described by the differential 
equations and schematic in Figure 18.3.

The tanks-in-series model (Figure 18.4A) assumes a series of N well-stirred 
compartments with identical residence times (137, 138). The equations describing 
the tanks-in-series model are
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where DR is the concentration of the drug–receptor complex, Mi is the concentra-
tion of the signaling species in the ith compartment, and t is the time constant for 
each compartment. Mathematically, the bolus or impulse response of the tanks-
in-series model is an Erlang distribution, a special case of the gamma distribution 
with shape parameters restricted to positive integer values; it is also referred to as 
the stochastic model because the Erlang distribution represents the time required 
to carry out a sequence of N tasks whose durations are identical, exponential prob-
ability distributions. For a unit bolus input dose of receptor occupancy, the level of 
signaling species in the Nth compartment, MN, is described by the Erlang distribu-
tion equation:



FIGURE 18.4 (A) Representations of the tanks-in-series or gamma distribution model. 
There are N = 3 compartments, each with a time constant τ. The plot shows the bolus 
response for various N. In the model, Drug, R, and DR are free drug, free receptor, and 
drug–receptor complex concentrations, respectively; k1 and k−1 are the rate constants for 
binding and DR dissociation, respectively. M1, M2, and M3 are concentrations of signaling 
intermediates and h is the Hill exponent. (B) Comparison of the transit compartment model 
(dashed line) to the tanks-in-series model (solid line). Both models used N = 3 compartments 
and an impulse or bolus input into the M1 compartment; the Hill exponent h = 2. The initial 
condition was M1 = 10 at t = 0; the initial conditions in the remaining compartments were 
zero. Inset is similar in all respects to (B) except that the initial condition was M1 = 2.
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Figure 18.4A shows the output from a tanks-in-series model for a unit impulse or 
bolus input into the M1 compartment. Each compartment was assumed to have 
t = 1. The mean residence time, t̄, in an N-compartment tanks-in-series model is 
simply the sum of the residence times in each compartment and t̄ = Nt. The change 
in the variance of the signal upon passage through the compartments is given by Nt2.
In residence time analysis, it is conventional to normalize the time values through 
a simple division by the mean residence time value. The mean and variance of the 
normalized residence times of a tanks-in-series model are m = 1 and Δs 2 = 1/N,
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respectively. Thus, the variance of the signaling times in the tanks-in-series model 
increases with the number of the compartments, but the coeffi cient of variation 
(CV) of the signaling times decreases.

The transit compartment model (Figure 18.4B) is an extension of the tanks-in-
series model in which one (or more) of the signaling compartments incorporates 
nonlinearity via a Hill exponent h (138). The equations are given by

dM
dt

DR M

dM
dt

M M

dM
dt

M Mh

1 1

2 1 2

3 2 3

= −

= −

= −

τ τ

τ τ

τ τ

where DR is the concentration of the drug–receptor complex, Mi is the concentra-
tion of the signaling species in the ith compartment, t is the time constant for each 
compartment, and h is the Hill exponent. Figure 18.4B compares the transit com-
partment (dashed lines) to the tanks-in-series model (solid line) and highlight the 
effect of the Hill exponent-derived nonlinearity. The simulations in Figure 18.4A 
and Figure 18.4B differ only in the initial conditions used: the initial values of M1 

FIGURE 18.4 Continued
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were 10 units and 2 units, respectively. The nonlinear term with h > 1 has the effect 
of amplifying large values and attenuating low values and provides considerable 
fl exibility in fi tting certain data sets.

We have developed a model called the dispersion model (Figure 18.5) and 
compared it to the tanks-in-series and transit compartment models (139). The para-
meters of the dispersion model estimate the relative roles of diffusion, convection, 
and chemical reaction in signal transduction. We found that the dispersion model 
was capable of simultaneously fi tting mRNA and protein dynamics for tyrosine 
aminotransferase (TAT) after methylprednisolone treatment from a published PD 
study quite well (140).
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FIGURE 18.5 The mechanistic basis of the dispersion element. The three dispersion 
element parameters are DN, a nondimensional dispersion number that measures the rate 
of signal diffusion relative to convection; t, the apparent mean residence time; and a, the 
“signal-to-transcript” conversion parameter. For the mRNA and protein compartments in 
the Hargrove–Schmidt model element, kT, kM, and kP are rate constants for translation, 
mRNA degradation, and protein degradation, respectively. The gray line indicates that 
information rather than mass is transferred from the TAT mRNA to the TAT protein com-
partment (140).
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In the analysis of residence time distributions, it is conventional to normalize 
time using the mean residence time of a noneliminated bolus input. This makes the 
normalized mean residence time (m) of the signal in the dispersion model m = 1.

For a dispersion model with closed boundary conditions, the change in the nor-
malized variance, Δs 2, where s 2

out and s 2
in are the output and input variances of 

the signal, upon passage through the transduction cascade is given by

Δσ σ σ2 2 2 2 12 2 1= − = − −( )−
out in D D eN N

DN/

These expressions demonstrate that the normalized mean residence time and vari-
ance of the normalized residence time distribution increase with increased values of 
the axial dispersion number DN. In the limit of DN = 0, the signal is convected and 
behavior corresponding to the parallel tube model is approximated: the normalized 
residence time m = 1 and Δs 2 = 0. For very large values of DN, the behavior cor-
responds to a single well-mixed compartment.

18.2.6.2 Opportunities and Challenges in Modeling Gene Expression Data
Pharmacometrics and PK/PD modeling can provide important insights into 
gene expression and proteomics data because these approaches can reduce the 
dimensionality of the problem: time courses of expression are expressed in terms of 
a limited number of model parameters that are readily interpreted by the users.

As an example of the insights available from the use of these models, consider the 
observation that the apparent correlation between mRNA levels and protein levels 
is weak (141–145); typically, only about one-third of the mRNAs found signifi cantly 
altered in statistical analyses are signifi cantly positively correlated with the levels 
of cognate protein. A naive analysis of this lack of correlation has been employed 
to criticize the use of gene expression data, but the underlying mechanisms can be 
analyzed profi tably using PK/PD models such as the Hargrove–Schmidt model. 
The primary determinants of mRNA levels in the Hargrove–Schmidt model are the 
transcription rate and the half-life of mRNA, whereas the protein level depends 
on the mRNA levels, the translational rate constant, and the half-life of protein. 
According to the Hargrove–Schmidt model, mRNA level will be proportional to 
the level of the corresponding protein at steady state and a strong correlation could 
be expected if steady-state levels of an mRNA and its cognate protein are exam-
ined (146–148). For a given gene product, the strength of the correlation between 
the mRNA and its cognate protein will depend on the delay between mRNA and 
protein profi les: if there is a lag between the mRNA and protein compartments, 
the correlation across time points will be poor because the mRNA could have 
decayed while protein levels are just increasing. Thus, for a family of closely related, 
constitutively expressed proteins, the combined effects of mRNA and protein half-
lives and translational constant may be suffi ciently close to provide strong correla-
tions for different mRNA–protein pairs. However, because the transcription rates 
and the half-lives of individual mRNAs and proteins vary considerably, this does 
not necessarily imply a strong correlation in expression of a random selection of 
mRNA–protein pairs at steady state. Differences in mRNA and protein half-lives 
are also likely to cause poor correlations if mRNA–protein levels are monitored 
under transient conditions that deviate signifi cantly from steady state. If the rate of 
protein production from translation is relatively small compared to the total size of 



the protein pool, the correlation between protein and mRNA is likely to be poor 
because large changes in mRNA levels may cause only small changes in protein 
levels. Likewise, if only a small fraction of the mRNA pool effectively contributes 
to protein levels, the correlation is likely to be poor as well. Thus, modeling high-
lights the many quantitative arguments for both the existence and the absence of 
correlations between mRNA levels and protein levels. Furthermore, because the 
mRNA and protein compartments are causally linked, the relationship between 
mRNA and protein can be determined only in a PD study design; cross-sectional 
studies at a single time point are insuffi cient.

However, the PK/PD modeling community is still struggling to handle gene 
expression data effectively, largely because compartmental approaches require very 
high levels of supervision and the system identifi cation can be very time intensive 
even for data sets containing only a limited number of PD endpoints. Elegant 
system analysis software tools such as ADAPT, SAAM II, and WinNonlin (to name 
a few) make compartmental modeling accessible for many users but also require 
high levels of user intervention, and the fi tting of thousands of mRNA expression 
profi les to even a limited set of model types, while technically feasible, is incon-
venient enough to be impractical. Typically, the model selection step is the most 
diffi cult to automate.

However, the advantages of (valid) mechanistic models are many: models are 
more meaningful and easier to interpret, more likely to be robust at predicting 
responses beyond those studied, better suited for simulations, design of studies 
(using tools such as optimal sampling theory), and applications such as adaptive 
feedback control strategies (e.g., “clamping” studies, “concentration- and/or effect-
controlled” trials, or algorithms for individually optimizing therapy). For these 
reasons, new strategies and software packages for modeling gene expression profi les 
are urgently needed and present critical challenges for PK/PD modeling research. 
In the following, we present some key challenges and design considerations for the 
development of compartmental modeling techniques for pharmacogenomics.

The overall strategy for gene expression data requires a robust implementation 
of user-specifi ed, generalized models that can be expected to work autonomously
with sparsely sampled data sets. The robust generalized approach used should 
eliminate, if possible, the need to formulate compartments and their connectivity 
models for each gene. Instead, the user should be able to identify functions that, 
preferably, are simple yet general and parameter effi cient, to describe the growth 
and decay processes. In contrast, most specifi c PK/PD and indirect effect models 
(135, 136) require gene-individualized models, parameter specifi cations, and assess-
ments of fi t. Specifi c PK/PD and indirect effect models are potentially very useful 
for limited subsets of interesting genes and for cluster means, and the implementa-
tion should be structured so that users will be able to extract the formatted inputs 
needed and pass the inputs to full-featured programs (e.g., ADAPT (149)) that 
implement specifi c PK/PD models.

As an example of a generalized model, consider the schematic in Figure 18.6 for 
a canonical model that describes drug effects on gene dynamics. The Ksignal(t) and 
Kdecay(t) are referred to as the delay functions for the signal and decay processes, and 
for the gene expression profi les, the convolution integrals describe how the initial 
stimulus S(t) evolves during the transduction process to cause changes in the rate 
of transcription and the rate constant decay of mRNA levels.
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One concern with the generalized approach is that if very complicated func-
tional forms are selected, the models may become overparameterized and it may 
not be possible to discriminate between different model types. The other concern 
with the generalized approach is that it might be insuffi cient for characterizing the 
complex repertoire of gene expression responses. The problem is a challenging 
one and it may not be a simple task to fi nd relevant functions. The alternatives to 
the generalized approach would be to employ SOM clustering with a scale-insensi-
tive distance measure (e.g., Pearson correlation) to identify clusters, the centroid 
of which can then be fi t using a variety of indirect effect or direct effect models. 
Once model identifi cation is completed on each of the centroids, the model-specifi c 
parameters for each gene in the cluster can be obtained using the ADAPT system 
identifi cation software. The alternative approach would attempt to automate the 
model identifi cation process: the data for each gene would be iteratively fi t to 
each member of a large library of PD models (ranging from direct effect models, 
delayed effect, and indirect effect models) using ADAPT or other PK/PD modeling 
software and use scripts that output the model of choice (using, say, the AIC) for 
each gene to a database; selected output from each of the other models will also 
be databased so that the user can manually evalaute them if need. This is a brute 
force approach and is less preferable because it needs higher levels of computing 
and storage infrastructure.

A critical component of comodeling multiple outputs is the appropriate weight-
ing of individual observations. The weights must be appropriate for small and large 
responses within an output and the relative weights must be appropriate between
outputs. Failure of the former standard can lead to regions of systematic error in 
the fi tted function and failure in the latter standard can cause some of the outputs 
to inappropriately dominate the determination of fi tted parameters. However, error 
variance model selection, as for structural model development, should be guided by 
parsimony: stay as simple as possible.

In any PK/PD modeling effort, critical quantitative assessments of model mis-
specifi cation and model goodness of fi t are necessary. PK/PD modeling strategies 
for genomic data sets require an additional layer in the performance evaluation 
process: “global measures” that evaluate misspecifi cation and goodness of fi t across 
all the genes will be needed in addition to the local model misspecifi cation and fi t 
measures that will be used for model selection and parameter estimation for indi-
vidual genes.

FIGURE 18.6 Schematic of the growth and diffusion with distributed time delay approach. 
For a bolus, R(t) = Ksignal(t) and kM = Kdecay(t).



The Akaike information criterion (or other measures such as the Schwarz infor-
mation criterion) can be used to assess models for individual genes and also to 
assess the performance of a given modeling strategy on a given data set. In addi-
tion to the mean coeffi cient of determination (r2) for each fi tted function, and the 
mean percent relative standard error of parameter estimates, the mean value of the 
normalized root mean square error and the mean value of the mean error can be 
used as secondary performance criteria. The root mean square error and the mean 
error between the data and the selected model will be evaluated at the sampling 
points for each gene and normalized using the standard deviation for each gene. 
The CPU time required for fi tting each canonical model to the data set will also be 
estimated and used as a tertiary performance criterion.

Model validation is also necessary in addition to assessments of goodness of fi t. 
The approaches that can be used are similar to those used in population PK/PD 
analysis. Ideally, a series of informative experiments (learning set) are used to 
develop and to parameterize the model, and those results are used to predict the 
responses of subsequent experiments (validation set), which test bias and precision 
of predictions: at similar experimental conditions (of time, inputs, and/or sequence, 
as were studied in the learning set), at conditions not previously studied but that are 
within the range of those in the learning set (interpolation), and responses for con-
ditions that are beyond the range of conditions previously studied (extrapolation). 
This approach to validation is not always feasible. Other variants include randomly 
splitting the experimental data into learning and validation sets (applicable if the 
experimental data set is large enough) or performing “internal validation” (ran-
domly exclude “small” portions of data that are predicted based on a model based 
on the remainder; replace the excluded data and repeat “many” times).

The problem of providing a multitude of initial values and initial parameter 
estimates needed for any compartmental model in an automated or semiautomated 
fashion also needs to be addressed. In principle, one strategy for generating initial 
values is to normalize mRNA levels to pretreatment values, in which case the initial 
values can all be set to unity. However, genes with low pretreatment values are 
problematic and will need to be “tagged” and modeled without normalization to 
avoid fl oating point problems; the user should have the option of setting the initial 
values for these genes either to zero, to the observed pretreatment value, or to a 
specifi ed lower limit of detection. Alternatively, the user will be able to set all the 
initial values to the measured pretreatment levels. Although software packages, 
such as ADAPT, allow estimation of initial conditions, initial parameters will still 
need to be generated. For automated generation of initial parameter estimates, the 
asymptotic properties of the functions can potenitally be exploited to obtain initial 
estimates from the data values at the earliest and most distal time points.

18.2.7 Potential Application Areas

Many of the early applications of gene arrays were in the characterization of 
the heterogeneity of malignancies. For example, Golub (150) compared the gene 
expression profi les of acute lymphoblastic leukemia to acute myeloid leukemia; 
diffuse large B cell leukemias were expression profi led by Alizadeh et al. (151), and 
hereditary breast cancers with BRCA1 and BRCA2 mutations were investigated 
by Hedenfalk (152).
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Subsequently, gene expression with arrays has been used to characterize the 
responses to a variety of immunomodulatory therapies in humans. The primary 
advantages of mRNA measurements is that mRNA changes can precede protein 
changes and potentially allow earlier assessment of responses to drug therapy. For 
example, Bohen et al. (153) measured the pretreatment gene expression profi les 
in follicular lymphomas of patients receiving rituximab, a monoclonal antibody 
directed against the CD20 protein found on B cells. These authors suggested that 
the gene expression patterns of lymphomas that were nonresponsive to rituximab 
therapy were more similar to those of control lymphoid tissues than lymphomas that 
responded to therapy. Chang et al. (154) used gene expression profi ling to biopsy 
samples from breast tumors prior to treatment with docetaxel, a taxane antimi-
crotubule agent; they identifi ed a 92-gene panel capable of predicting response to 
drug treatment with an accuracy of 88% and a sensitivity of 85%. Our group has 
used DNA arrays to characterize the heterogeneity of treatment responses to inter-
feron-b, the most widely prescribed immunomodulatory drug for multiple sclerosis 
(27). However, only about 30–40% of patients respond well to interferon-b, and 
the remaining patients exhibit varying degrees of partial responses. Interferon-b
exerts its biological effects by modulating gene transcription via the Jak-Stat and 
other signaling pathways (113). We characterized the responses to intramuscular 
interferon-b administration in multiple sclerosis patients using a pharmacodynamic 
study design over an entire dosing cycle (rather than single point measurements). 
We found that interferon-b induces gene expression changes rapidly and that wide 
variations in the pharmacodynamics of expression are present (27).

18.3 SUMMARY

There has been rapid development of technologies for large-scale gene expression 
profi ling at the messenger RNA and protein levels from single samples. At this stage 
of data analysis, it is critical that investigators be cognizant of the many assump-
tions that underlie every step of the process from image acquisition through data 
normalization and data analysis. It is also essential that this information be made 
available to all so that studies can be compared and ultimately pooled to build wider 
understanding of the molecular processes.

Although there are currently many analytical and modeling challenges with these 
data sets, further improvements in these technologies will engender applications in 
drug development, clinical research, and patient care.
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19.1 INTRODUCTION

Pharmacogenomics has focused on elucidating the genetic variation between indi-
viduals, its relationship with drug response and disease status, as well as how genes 
and proteins are regulated by exogenous compounds. The availability of sensitive 
measurement methods in pharmacogenomics provides an opportunity to examine 
key mechanisms affecting the diverse actions of drugs at the molecular level.

There are multiple potential sites in the pathway from DNA to protein that are 
available for regulation (Figure 19.1). All hormones have strong and diverse effects 
on gene expression and protein function. Steroid hormones (corticosteroids, estro-
gens, androgens) regulate transcription but not protein secretion. These are hydro-
phobic molecules that can easily diffuse through the cell membrane and bind with 
intracellular receptors that contain DNA-binding sites and can directly regulate 
transcription upon binding. On the other hand, peptide hormones (such as insulin 
and glucagon) regulate both transcription and protein activity. All peptide hor-
mones along with catecholamines bind to receptors on the cell surface and initiate 
intracellular signal transduction events. Specifi c hormone-responsive DNA-binding 
proteins are produced to mediate transcriptional control. Second messengers such 
as cyclic AMP and calcium are generally involved in the transduction process. Fur-
thermore, these hormones may also affect transcription, translation, and protein 
activity via phosphorylation. The endocrine system offers the additional complexity 
where one hormone may affect the secretion and function of other hormones.

Therefore, the pharmacogenomic (PG) study of hormonal drugs such as cor-
ticosteroids (CS) is of great importance to elucidate their mechanisms of action. 
Temporal patterns of dynamic changes in vivo will provide unique insights into the 
comprehensive regulation network.

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene I. Ette and 
Paul J. Williams
Copyright © 2007 John Wiley & Sons, Inc.
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Advances in mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) 
modeling have been steadily growing. There are a variety of mathematical models 
available for handling experimental data depending on the diverse mechanisms and 
rate-limiting processes that control drug effects (see review in Ref. 1). The multi-
faceted regulation of gene expression at multiple steps offers additional challenges 
in PK/PD modeling, which require integration of various “basic” dynamic models 
to describe the complex genomic system.

Understanding of the mechanism of drug action and measurements of the major 
contributing intermediate steps are essential for mechanistic modeling. Assay tech-
niques to quantify message levels have evolved rapidly. Traditional methods such as 
Northern blot and RT-PCR only allow measurement of single genes. The develop-
ment of microarrays enables simultaneous examination of thousands of genes and 
offers the opportunity to study the global picture of gene regulation. Due to the 
enormous amount of data obtained, there is a growing awareness of the need for 
development of mathematical models and other bioinformatic tools that will allow 
estimation of kinetic parameters that govern these biologic processes. PK/PD mod-
eling could be used as a valuable tool to identify typical patterns and quantitatively 
describe the various mechanisms regulating genomic changes.

In this chapter, the complexity of PK/PD modeling in the fi eld of pharmacoge-
nomics is fi rstly demonstrated using selective genes. Results from gene arrays are 
then discussed to show the use of PK/PD modeling for studying thousands of genes 
at the same time. Corticosteroids were studied owing to their wide range of effects 
in pharmacogenomics and their various mechanisms of action in regulating gene 

DNA

RNA
Transcript

mRNA

mRNA

Protein
Inactive
Protein

mRNA
Breakdown

Protein
Breakdown

CYTOSOL

NUCLEUS

transcriptional
control

RNA
processing

control

RNA
transport
control

protein
activity
control

protein
degradation

control

mRNA
degradation

control

translational
control

FIGURE 19.1 Steps in the pathway from DNA to protein that may be subject to 
regulation.



expression. The PD models provide quantitation of CS pharmacogenomics and 
exemplify the use of mathematical modeling to describe the molecular system.

19.2 MODELING OF SELECTIVE GENOMIC MARKERS

The cellular processes for CS pharmacogenomics are depicted in Figure 19.2. 
Unbound CSs in blood are moderately lipophilic and freely diffuse into the cyto-
plasm of liver cells. These steroids quickly bind to the cytosolic glucocorticoid recep-
tor (GR) and cause activation of the receptor. This may lead to some rapid effects, 
such as cell traffi cking, that seem not to depend on genomic mechanisms. The 
activated steroid–receptor complex may further translocate into the nucleus, where 
it can bind as a dimer to glucocorticoid responsive elements (GRE) in the target 
DNA and lead to the control of various genomic processes. The CS are known to 
cause homologous downregulation of their own receptors due to decreased tran-
scription (2). After the transcriptional control of target genes, the steroid–receptor 
complexes in the nucleus may dissociate from the GRE, return to the cytosol, and 
are either degraded or recycled. In addition to the direct transcriptional regula-
tion of target genes, CS may affect DNA transcription of functional biosignals/
transcription factors (represented by BS) and cause changes in mRNA and protein 
concentrations of these regulators. Genes whose expression is controlled by these 
factors at transcriptional and/or post-transcriptional levels will thus be secondarily 
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affected by CSs. The steroid–receptor complex may also directly or indirectly affect 
mRNA stability in cytosol.

19.2.1 Tyrosine Aminotransferase

Our laboratory has been involved extensively in modeling corticosteroid pharma-
codynamics and related physiological systems. Modeling the genomic effects of 
CS has been an evolving process. Since 1986, a series of mechanism-based PK/PD 
models (Figure 19.3) have been proposed to describe the gene-mediated effects of 
steroids in terms of receptor downregulation and enzyme induction in rats (3–10). 
These models evolved over time with the addition of mRNA measurements and 
more extensive studies in terms of dosages used and duration of tissue sampling. 
Several basic PD mechanisms were integrated in these models including receptor 
binding, indirect response models for turnover steps, signal transduction, and toler-
ance development due to receptor downregulation. The tyrosine aminotransferase 
(TAT) enzyme in liver was selected as the PD marker because of the long history 
of use as an indicator of receptor/gene-mediated effects of CS in liver. The most 
recent “fi fth-generation model” (Figure 19.3E) described the pharmacokinetics, 
GR mRNA repression, receptor dynamics, TAT mRNA induction, and its enzyme 
induction in liver upon acute dosing of methylprednisolone (MPL) in adrenalecto-
mized (ADX) rats (7).

As shown in Figure 19.3E (inside the dotted square), the drug kinetics and recep-
tor dynamics were modeled with the differential equations as follows:

C C e C eMPL
t t= ⋅ + ⋅− −

1 2
1 2λ λi i (19.1)

dmRNA
dt

k
DR N

IC DR N
k mRNAR

s Rm
Rm

d Rm R= ⋅ −
( )
+ ( )

⎛
⎝⎜

⎞
⎠⎟

− ⋅_
_

_1
50

(19.2)

dR
dt

k mRNA R k DR N k D R k Rs R R f re on d R= ⋅ + ⋅ ⋅ ( ) − ⋅ ⋅ − ⋅_ _ (19.3)

dDR
dt

k D R k DRon T= ⋅ ⋅ − ⋅ (19.4)

dDR N
dt

k DR k DR NT re
( )

= ⋅ − ⋅ ( ) (19.5)

where CMPL represents the plasma concentration of MPL in ng/mL, D the plasma 
concentration of MPL in nmol/L, mRNAR the receptor mRNA, R the free cyto-
solic GR density, DR the cytosolic drug–receptor complex, and DR(N) the drug–
receptor complex in the nucleus. Ci and li are coeffi cients for the intercepts and 
slopes of the PK profi le. The rate constants in the equations include zero-order 
rate of GR mRNA synthesis (ks_Rm); the fi rst-order rates of GR mRNA degrada-
tion (kd_Rm), receptor synthesis (ks_R), and degradation (kd_R), translocation of the 
drug–receptor complex into the nucleus (kT), and the overall turnover of DR(N) to 
cytosol (kre); as well as the second-order rate constant of drug–receptor association 
(kon). In addition, IC50_Rm is the concentration of DR(N) at which the synthesis rate 
of receptor mRNA drops to 50% of its baseline value, and Rf is the fraction of free 
receptor being recycled.
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The baselines were defi ned as

k
k
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R
_
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0 (19.6)
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mRNA
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R
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⎠⎟ ⋅

0

0 (19.7)

where mRNA0
R and R0 are the baseline values of receptor mRNA and free cytosolic 

GR density.
The TAT mRNA and activity were described by

dmRNA
dt

k S DR N k mRNATAT
s
TAm

M
TAm

d
TAm

TAT= ⋅ + ⋅ ( )( ) − ⋅1 (19.8)

dTAT
dt

k mRNA k TATs
TA

TAT d
TA= ⋅ ( ) − ⋅γ (19.9)

where mRNATAT is the TAT message level in liver. The TAT mRNA is synthesized 
at a zero-order rate ks

TAm and degraded at a fi rst-order rate kd
TAm. The drug–receptor 

binding complex in the nucleus, DR(N), stimulates TAT gene transcription with a 
linear effi ciency factor SM

TAm. The TAT is the hepatic TAT activity. The TAT enzyme 
was translated from its mRNA at the fi rst-order rate ks

TA with amplifi cation factor 
g and degraded at the fi rst-order rate kd

TA. The g indicates that multiple copies of 
protein could be synthesized from a single mRNA transcript.

At time zero, the system baseline yields
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where mRNA0
TAT and TAT0 are the baseline values of TAT mRNA and activity.

Figure 19.4 shows the fi tting results using the most recent “fi fth-generation 
model,” including the pharmacokinetics (A), GR mRNA repression (C), recep-
tor dynamics (D), TAT mRNA induction (E), and its enzyme induction (F) in rat 
liver (6, 7). Also shown in Figure 19.4B is the simulated profi le of drug–receptor 
complexes in the nucleus (DR(N)), which can act as the major driving force for 
genomic effects of CS. This model has been applied to simultaneously capture data 
profi les from other dose levels and infusions of methylprednisolone. Fitted model 
parameters have been published (7, 8).

19.2.2 Phosphoenolpyruvate Carboxykinase

Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the conversion of 
oxaloacetate to phosphoenolpyruvate, the rate-limiting step in hepatic and renal 
gluconeogenesis. Given its central role in gluconeogenesis, it is not surprising 
that PEPCK is tightly regulated by various hormones including CSs and glucagon 
(via cAMP).



The CS are known to enhance PEPCK gene transcription (11). The increased 
degradation rate of this message in liver after CS treatment has also been 
reported via an unknown mechanism (represented by hypothetical biosignal TC in 
Figure 19.5A) (12). The CS can also induce adenylyl cyclase and suppress phospho-
diesterase based on similar transcriptional control (13). Adenylyl cyclase catalyzes 
the conversion of ATP to cAMP, which is degraded by phosphodiesterase (14). 
Alterations of these two enzymes by CS may result in increased cAMP levels in 
target cells. The translation of PEPCK mRNA to protein is known to be upregu-
lated by cAMP (15). In addition, cAMP may reduce the stability of PEPCK enzyme 
(16). These actions result in the multifaceted regulation of PEPCK by multiple 
processes.

The drug kinetics and receptor dynamics were modeled as before (Section 19.2.1). 
As depicted in Figure 19.5A, a mechanistic model was proposed to describe the 
simultaneous actions of CS on PEPCK mRNA synthesis and degradation, induction 
of cAMP by CS, and translational stimulation by cAMP:
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FIGURE 19.4 PK/PD modeling results using the fi fth-generation model. Symbols and dif-
ferential equations for the model are defi ned in Eqs. (19.1)–(19.11). Adrenalectomized rats 
received 50 mg/kg intravenous injection of MPL at 0 h. (A) Plasma MPL concentration; (B) 
simulated drug–receptor complex in hepatocyte nucleus (DR(N)); (C) GR mRNA level in 
liver; (D) free GR density in liver; (E) TAT mRNA level in liver; and (F) TAT activity in 
liver versus time. Solid circles are the observed data and bars are the standard deviations. 
Lines are model predictions. (Adapted from Refs. 6 and 7.)
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where TC is the concentration of the presumed biosignal responsible for the CS 
stimulation of PEPCK mRNA degradation. A linear transduction model (17) was 
used to describe this biosignal, which was generated from DR(N) at the fi rst-order 
rate k1. The mRNAPEPCK is the PEPCK message level in liver expressed as fmol/g 
liver. The stimulation of PEPCK mRNA synthesis rate ks

Pm is dependent on DR(N) 
concentration with a linear effi ciency factor Ss

Pm, and the stimulation of PEPCK 
mRNA degradation rate kd

Pm is dependent on the transient TC with a linear effi -
ciency factor Sd

Pm. The cAMP is the hepatic cAMP concentration in pmol/g liver. 
Endogenous cAMP is produced at a constant rate ks

C. The ICC
50 represents the con-

centration of DR(N) producing 50% inhibition of cAMP degradation. The PEPCK
enzyme was translated from its mRNA at the fi rst-order rate ks

P with amplifi cation 
factor g and degraded at the fi rst-order rate kd

P. The g indicates that multiple copies 
of protein could be synthesized from a single mRNA transcript. SP
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FIGURE 19.5 The proposed model (A) and fi tting results for hepatic PEPCK mRNA (B), 
PEPCK activity (C), and cAMP levels (D) in rats receiving 10 (•) or 50 (�) mg/kg single 
MPL intravenous injection. Symbols and differential equations for the model are defi ned 
in Eqs. (19.12)–(19.18). The dotted lines and rectangles indicate stimulation (open bar) and 
inhibition (solid bar) of the various processes via indirect mechanisms. Lines in the graphs 
are results of the simultaneous fi ttings with Eqs. (19.12)–(19.15). Solid lines represent the 
high-dose group. Broken lines represent the low-dose group.
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represent the maximum possible stimulation of ks
P and the elevated cAMP required 

for half-maximal stimulation. The change of cAMP from its baseline value (cAMP0)
is used to drive this stimulation effect.

The baselines were defi ned as

k k mRNAs
PM

d
Pm

PEPCK= ⋅ 0 (19.16)

k k cAMPs
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d
C= ⋅ 0 (19.17)

k
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P d
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where cAMP0, mRNA0
PEPCK, and PEPCK0 are the baseline values of cAMP, PEPCK 

mRNA, and PEPCK activity.
Figure 19.5 shows the fi tting results for PEPCK mRNA (B), PEPCK activity 

(C), and cAMP (D) in rat liver after a single injection of methylprednisolone. The 
acute tolerance/rebound phenomenon in PEPCK mRNA was nicely described by 
the dual action of CS on both gene transcription and degradation.

19.3 MODELING OF MICROARRAY PROFILES

Traditional assay techniques such as Northern blots and RT-PCR only allow mea-
surement of a single or very small number of mRNA messages. In the past decade, 
the development of microarrays enables simultaneous examination of thousands of 
genes and offers the opportunity to study a more global picture of gene regulation. 
Due to the magnitude of data obtained by gene array studies, there is a growing 
awareness of the need for development of mathematical models and other bio-
informatic tools that will allow estimation of kinetic parameters that govern the 
biologic processes.

Corticosteroid pharmacogenomics were recently studied using gene microarrays 
in rat liver (18, 19). In brief, methylprednisolone was administered intravenously 
at 50 mg/kg to adrenalectomized rats. Animals were sacrifi ced and livers excised 
at 17 time points over 72 hours. Four untreated rats were sacrifi ced at 0 h as con-
trols. RNAs from individual livers were used to query Affymetrix GeneChips®

(Affymetrix, Inc., Santa Clara, CA) which contain sequences for 8000 rat genes. 
Cluster analysis was performed using Affymetrix Microarray Suite 4.0® followed 
by GeneSpring 4.1® (Silicon Genetics, Redwood City, CA). Six temporal patterns 
consisting of 197 CS-responsive probes representing 143 genes were revealed from 
the cluster analysis. The whole data set is available online at http://microarray.
cnmcresearch.org/ (link Programs in Genomic Applications).

Based on our fi fth-generation model of steroid pharmacokinetics/pharmaco-
dynamics, mechanistic models were developed to describe the time pattern for 
each CS-responsive gene (18). The drug kinetics and receptor dynamics were 
modeled as before (Section 19.2.1). Based on the array of possible mechanisms 
(Figure 19.2), the following mathematical models were proposed to describe differ-
ent gene expression patterns after MPL treatment in rat liver. In all of these models, 
target mRNA was assumed to be synthesized at zero-order rate ks_m and degraded 
at fi rst-order rate kd_m without drug administration:
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dmRNA
dt

k k mRAs M d m= − ⋅_ _ (19.19)

The message level was assumed to be at steady-state at time zero (control animals), 
yielding the baseline equation

k k mRNAs m d m_ _= ⋅ 0 (19.20)

where mRNA0 represents the baseline message level at time zero.

19.3.1 Simple-Regulated Genes

19.3.1.1 Induced Transcription
As depicted in Figure 19.6A, mRNA with induced production was described as 
follows:

dmRNA
dt

k S DR N k mRNAs m d m= ⋅ + ⋅ ( )( ) − ⋅_ _1 (19.21)

where the enhancement of transcription rate ks_m is dependent on DR(N) concen-
tration with a linear effi ciency constant (S).

Figure 19.6B shows fi tting of one selected gene using this model. These genes 
have patterns similar to tyrosine aminotransferase and could be well captured by 
our fi fth-generation model. The mRNA degradation rate constant kd_m represents 
the drug-independent property of the physiological system, and the linear stimula-
tion factor S represents the drug-specifi c property of the message. Detailed results, 
descriptions, and discussion for this cluster and the other fi ve clusters can be found 
in the original paper (18).
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19.3.1.2 Repressed Transcription
As depicted in Figure 19.6C, mRNA with repressed production was described as 
follows:

dmRNA
dt
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⎞
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50

(19.22)

where the inhibition of transcription rate ks_m is dependent on DR(N) concentra-
tion, and IC50 represents the concentration of DR(N) at which the mRNA synthesis 
rate drops to 50% of its baseline value. Figure 19.6D shows fi tting of one selected 
gene using this model.

19.3.2 Multifaceted-Regulated Genes

Some genes showed a more complex pattern with an initial decline followed by 
delayed increase, suggesting that two mechanisms might be involved. The primary 
and secondary drug effects in regulating the same biological system could be 
described by the generalized model (Figure 19.7). Drug (Drug) can produce its 
primary effect by altering the production (kin) or disposition (kout) of the biological 
marker (Response) via an indirect mechanism. Drug may also affect the level of 
an endogenous controlling factor (such as other hormones, cytokines, transcription 
factors), which is simply described by linear transduction. The rate constant (k) may 
refl ect the major rate-limiting step producing this additional factor (Biosignal). This 
drug-altered biosignal regulates the same biological system via an indirect mecha-
nism, causing the secondary effects in addition to the primary drug action. Drug 
and the biosignal may affect the system in the same fashion, which could represent 
multiple mechanisms of drug action in therapy. They may also produce counter-
regulatory effects, which would be refl ected as tolerance phenomena. Examples 
using specifi c combinations of drug and biosignal effects are shown in the following 
sections.

19.3.2.1 Repressed Transcription Plus Secondarily Induced 
Transcription by BS
As depicted in Figure 19.8A, mRNA with repressed then secondarily induced pro-
duction was described as follows:

Response koutkin

Drug
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k

k

Response koutkin

Drug

Biosignal

k

k

FIGURE 19.7 Model of primary and secondary drug effects. Symbols are defi ned in the 
text. The dotted lines and symbols indicate stimulation (open symbol) and inhibition (solid 
symbol) of the various processes via indirect mechanisms. The rectangles represent primary 
drug action. The ellipses represent secondary drug effects via biosignal action.
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dBS
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where the intermediate regulator BS is described in a simplifi ed fashion using a 
linear transduction model (17). In this model, BSa represents the absolute change 
of regulator level from the control and this change is produced by DR(N) via fi rst-
order rate (k1). Drug (DR(N)) and the regulator (BSa) both act on mRNA synthesis 
independently, characterized by a sigmoidal inhibition and a linear stimulation, 
respectively. The IC50_s represents the concentration of DR(N) at which mRNA syn-
thesis rate drops to 50% of its baseline value and Ss represents the effi ciency of BS 
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FIGURE 19.8 Proposed model and one representative fi tting of multifaceted-regulated 
genes. Symbols and differential equations for the models are defi ned in Eqs. (19.23)–(19.32). 
Solid circles are the mean gene array data and bars are the standard deviations. Solid lines 
are fi ttings with the proposed model for each individual gene.
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stimulation on transcription. The hypothetical compartment (BSa) is the simplifi ed 
form of the primary-response product (BSr) in the model in Section 19.3.2.3. This 
simplifi cation allowed illustration of the underlying transduction process without 
assuming the behavior of the CS-enhanced biosignal. Figure 19.8B shows fi tting of 
one selected gene using this model.

19.3.2.2 Repressed Transcription Plus Secondarily Repressed 
Degradation by BS
As depicted in Figure 19.8C, mRNA with repressed production and secondarily 
repressed degradation was described as follows:

dBS
dt

k DR N BSa
a= ⋅ ( ) −( )1 (19.25)
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where BSa represents the absolute change of the regulator level from the control and 
is characterized by a fi rst-order rate constant (k1). The inhibition of transcription 
rate ks_m is dependent on DR(N) concentration, and IC50_s represents the concentra-
tion of DR(N) at which mRNA synthesis rate drops to 50% of its baseline value. 
The inhibition of degradation rate kd_m is dependent on absolute changes of BS, 
and IC50_d represents the changes of BSa at which mRNA degradation rate drops to 
50% of its baseline value. The initial condition of Eq. (19.25) (BSa

0) was fi xed as 0. 
Figure 19.8D shows fi tting of one selected gene using this model.

19.3.2.3 Induced mRNA Degradation in Cytosol Plus 
Secondarily Induced Transcription by BS
As depicted in Figure 19.8E, mRNA with DR-induced degradation and secondarily 
BS-induced production was described as follows:

dmRNA

dt
k S DR N k mRNABS

s BSm BSm d BSm BS= ⋅ + ⋅ ( )( ) − ⋅_ _1 (19.27)

dBS
dt

k mRNA k BSr
s BS BS d BS r= ⋅ − ⋅_ _ (19.28)

dmRNA
dt

k S BS k S DR mRNAs m m s r d m m d= ⋅ + ⋅( ) − ⋅ + ⋅( ) ⋅_ _ _ _1 1 (19.29)

where symbols represent the message (mRNABS) and protein (BSr) level of the 
intermediate regulator BS (both normalized as ratio to control). The extra rate con-
stants in the equations include zero-order rate of BS mRNA synthesis (ks_BSm); the 
fi rst-order rates of BS mRNA degradation (kd_BSm), translation to BS protein (ks_BS),
and protein degradation (kd_BS). The stimulation of the BS transcription process 
ks_BSm is dependent on DR(N) concentration with a linear effi ciency constant (SBSm).
The stimulation of mRNA synthesis ks_m is dependent on the relative changes of 
regulator BS with a linear effi ciency constant (Sm_s). This stimulation is present even 
at baseline conditions. The mRNA degradation kd_m in cytosol is regulated by DR 
concentration with a linear stimulation factor (Sm_d).
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At time zero, the above equations yield the following baseline equations:

k k mRNAs BSm d BSm BS_ _= ⋅ 0 (19.30)
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where mRNA0
BS and BSr

0 are the baseline values of normalized BS mRNA and 
protein levels.

Figure 19.8F shows the fi tting of one selected gene using this model. The initial 
decline was short-lived and was explained by a rapid stimulation of mRNA degra-
dation in cytosol by steroid (DR). The predominant induction was assumed to be 
secondary to a CS-enhanced transcription factor (BS). The DR(N) enhanced the 
transcription of a BS gene in the nucleus, which translates to higher BS protein 
levels. The increase of BS leads to the delayed enhanced transcription of target 
genes. There is strong evidence in the literature that for at least two genes, arginase 
and carbamyl phosphate synthetase, the delayed induction was secondary to the 
primary CS-enhanced transcription factor C/EBP (20).

19.3.3 Other Issues

Our microarray data set contains substantial information about the mechanism 
and extent of CS effects on various genes. The small number of distinct temporal 
patterns indicates that a limited number of mechanisms may mediate CS pharma-
cogenomics. Of special note, several genes such as ornithine decarboxylase and 
hydroxysteroid sulfotransferase were represented by multiple different probes on 
the gene arrays. Reasonable concordance in profi les and dynamic parameters from 
multiple probes indicated a good degree of reproducibility in results.

The observed CS-responsive genes relate to a variety of biological processes. 
In this study, we analyzed genes individually. The present models serve to provide 
hypotheses on how mRNA expression is controlled by direct and secondary factors. 
These models sometimes confi rm known mechanisms and sometimes are only pos-
sibilities that will need further exploration with specifi c studies. Text mining studies 
may identify biomedical literature fi ndings that are relevant to the individual genes 
and, more importantly, the regulatory/functional relationship between the genes, 
the drug, and the tissues. Such efforts may lead to further integrated models incor-
porating multiple gene interregulations that will provide additional insights into 
signaling networks at molecular, cellular, and systemic levels.

Gene arrays are being increasingly used as probes for early steps in assessing 
primary and secondary effects of drugs in various tissues. Our studies show that 
such biomarkers obey biological rules of pharmacokinetics/pharmacodynamics and 
that a range of doses, sampling times, and study conditions will be needed to fully 
appreciate the relevance of altered gene expression profi les. Caution is needed in 
having too few time points as biphasic profi les occur frequently and certain time 
points will yield opposite conclusions.



19.4 MODELING METHODOLOGY

Data in these studies were generated from a so-called giant rat study in our labora-
tory. Animals were sacrifi ced to obtain serial blood and tissue samples. Each point 
represents the measurement from one individual rat and data from all these dif-
ferent rats were analyzed together to obtain a time profi le as though it came from 
one “giant rat.” A naive pooled data analysis approach was therefore employed for 
all model fi ttings using ADAPT II software (21). The maximum likelihood method 
was used with the variance model specifi ed as V(s, q, ti) = s 21Y(q, ti)s 2, where 
V(s, q, ti) is the variance for the ith point, Y(q, ti) is the ith predicted value from 
the dynamic model, q represents the estimated structural parameters, and s1 and 
s2 are the variance parameters that were estimated.

The comprehensive PD models were established by sequential fi tting of 
dynamic markers in the biological cascade. Plasma drug concentrations over 
time were fi tted then fi xed to drive the dynamics in the following data analy-
sis. Drug action was examined using different mathematical functions including 
linear and sigmoidal relationships with or without a Hill factor. When there were 
multiple mechanisms available, models were proposed based on each mechanism 
of action and fi tted to the data. These models were compared based on visual 
inspection of curve fi tting, estimator criterion value, sum of squared residuals, 
Akaike information criterion, Schwarz criterion, and confi dence of parameter esti-
mations. Once the optimal model was established and parameter estimates were 
obtained, they were fi xed in the following data analysis. When there were mul-
tiple dosing regimens available, the model was fi tted to data from all regimens 
simultaneously.

19.5 SUMMARY

There are multiple potential sites in the pathway from DNA to protein that are 
available for regulation. Drugs can regulate gene expression at various steps, alone 
or jointly with other transcription factors and/or hormones. The generalized math-
ematical models for receptor/gene/transduction dynamics facilitate the understand-
ing of the global picture of drug actions and provide new insights for microarray 
data analysis. Pharmacogenomics provides an opportunity to examine multiple 
factors and mechanisms affecting the diverse molecular to whole-body actions of 
drugs. The PK/PD/PG models of the future will further integrate pharmacokinetics, 
molecular biology, and systems pharmacology.
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APPENDIX 19.1

The following example shows the modeling of a simply enhanced genomic marker 
after drug administration. The original study was performed by Ramakrishnan 
and colleagues (7). In this study, adrenalectomized rats received 50 mg/kg single 
IV injection of methylprednisolone. Rats were sacrifi ced by exsanguination under 
anesthesia at various time points after dosing. Four untreated rats were sacrifi ced 
at 0 h as controls. Blood and liver were collected at sacrifi ce and processed for 
the following assays. Plasma methylprednisolone concentrations, hepatic cortico-
steroid receptor mRNA, free receptor density, as well as tyrosine aminotrans-
ferase mRNA and activity were measured. The pharmacodynamic model was 
developed in the original article (7) and was described in detail in Section 19.2.1 
(Eqs. (19.1)–(19.11)). The same model can also be used for microarray data in 
Section 19.3.1.1. As mentioned in Section 19.4, such comprehensive models were 
established by fi tting a series of dynamic markers in the biological cascade sequen-
tially. Due to space limitations, shown in this example is the last step of the model 
development, assuming drug kinetics and receptor dynamics have been established 
and fi xed (Eqs. (19.1)–(19.7)). Tyrosine aminotransferase mRNA and activity are 
fi tted as dynamic markers. This model was implemented in NONMEM Version 
1.1 and the accompanying data were simulated using the previous parameter 
estimates (Kd

TAm = 0.38 h−1, SM
TAm = 0.29 L/nmol/mg protein, Kd

TA = 0.69 h−1,
g = 1.8, mRNA0

TAT = 0.21 pmol/g, TAT0 = 0.064 ΔA/mg protein) with ±10% random 
error.
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Time TAT mRNA TAT Activity
(h) (pmol/g) (ΔA/mg protein)

 0  0.223  0.056
 0.25  0.242  0.062
 0.5  0.263  0.070
 0.75  0.364  0.070
 1  0.457  0.088
 2  0.856  0.299
 4  1.335  1.092
 5  1.183  1.178
 5.5  1.263  1.449
 6  1.175  1.493
 7  1.078  1.316
 8  1.065  1.350
12  0.471  0.575
18  0.250  0.115
30  0.190  0.061
48  0.212  0.059
72  0.193  0.060

; Model for Simply Enhanced Genomic Marker

; TAT mRNA Induction by Corticosteroid Administration

; Developed by Ramakrishnan et al. JPP 29:1-24 (2002)

; Written by Jin and Jusko (2005)

$PROBLEM TAT mRNA induction

$INPUT ID, TIME, AMT, DV, EVID, MDV, CMT

$DATA eg.csv IGNORE=#

$SUBROUTINES ADVAN8 TOL=3

$MODEL

 COMP=(RECEPTOR)

 COMP=(DR)

 COMP=(DRN)

 COMP=(RMRNA)

 COMP=(TATMRNA)

 COMP=(TAT)

$PK

; PK MPL mol Concentration

 C1=39130

 C2=12670

 L1=7.54 ;lamda1

 L2=1.2 ;lamda2

 MPL=(C1*EXP(-L1*TIME)+C2*EXP(-L2*TIME))*1000/374.46



; Receptor Dynamics Parameters

 KSRM=2.9 ;Ksyn for RmRNA

 IC50=26.2 ;IC50 for RmRNA

 KON=0.00329

 KT=0.63

 KRE=0.57

 RF=0.49

 KDR=0.0572 ;Kdeg for R

 RM0=25.8 ;initial R mRNA

 REC0=540.7 ;initial R densigy

 KDRM=KSRM/RM0 ;Kdeg for RmRNA

 KSR=(REC0/RM0)*KDR ;Ksyn for R

; TATmRNA/TAT Dynamics Parameters

 KDTM=THETA(1) ;Kdeg for TATmRNA

 STM=THETA(2) ;S for TATmRNA

 KDT=THETA(3) ;Kdeg for TAT

 GA=THETA(4) ;gamma

 TAM0=THETA(5) ;initial TAT mRNA

 TA0=THETA(6) ;initial TAT

 KSTM=KDTM*TAM0 ;Ksyn for TATmRNA

 KST=KDT*TA0/(TAM0**GA) ;Ksyn for TAT

 F1=REC0

 F2=0

 F3=0

 F4=RM0

 F5=TAM0

 F6=TA0

$DES

 DADT(1)= KSR*A(4)-KON*MPL*A(1)+KRE*RF*A(3)-KDR*A(1) ;R density

 DADT(2)= KON*MPL*A(1)-KT*A(2)  ;DR

 DADT(3)= KT*A(2)-KRE*A(3)  ;DR(N)

 DADT(4)= KSRM*(1-A(3)/(IC50+A(3)))-KDRM*A(4)  ;R mRNA

 DADT(5)= KSTM*(1+STM*A(3))-KDTM*A(5)  ;TAT mRNA

 DADT(6)= KST*(A(5)**GA)-KDT*A(6)  ;TAT

$ERROR

 IF (CMT.EQ.1) THEN

  Y=F+F*ERR(1) ;error for TAT mRNA

 ELSE

  Y=F+F*ERR(2) ;error for TAT

 ENDIF

$THETA (0, 0.38) ;KDTM

$THETA (0, 0.29) ;STM

$THETA (0, 0.69) ;KDT
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$THETA (0, 1.8) ;GA

$THETA (0, 0.223) ;TAM0

$THETA (0, 0.056) ;TA0

$OMEGA 0.04 0.04

$EST MAXEVAL=9999 PRINT=5 NOABORT 

$COV

$TABLE ID AMT CMT TIME NOPRINT FILE=eg.tbl

$SCAT PRED VS DV UNIT
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20.1 INTRODUCTION

In 1937, Teorell’s two articles (1, 2), “Kinetics of Distribution of Substances 
Administered to the Body,” are generally credited as the origins of pharmaco-
kinetics. Thus, his work launched an entire area of science that ultimately deals 
with the quantitative aspects of designing rational dosing regimens that have the 
highest probability of achieving the targeted position on the response surface (3, 
4). Frequently, it is said that “pharmacokinetics is what the body does to the drug, 
and pharmacodynamics is what the drug does to the body.” The inextricable link 
between pharmacokinetics and pharmacodynamics has led to the frequently used 
pharmacokinetic/pharmacodynamic (PK/PD) descriptor in the literature. Connect-
ing pharmacokinetics to pharmacodynamics is often accomplished through a hypo-
thetical effect (or biophase) compartment described by “link” models (5–7). The 
combination of a pharmacokinetic, a link, and a PD model will mathematically 
describe the relationship between dose (input) and effect or response (output) (see 
Figure 20.1).

Figure 20.1 shows the PK model translating dose into a plasma concentration 
(Cp); the link model mapping Cp into the drug concentration at the effect site (Ce);
and fi nally, the PD model translates Ce into effect. For most drugs, Cp at steady-
state is in one-to-one correspondence with effect, which leads to fairly simple 
mathematical models that can relate dose to effect. In cases where this one-to-one 
correspondence does not exist or in cases where the link and/or PD kinetics are 
slow relative to changes in dose, the time-varying nature of the system is usually 
modeled as a biophase or a biosensing or a transduction kinetics problem. This 
chapter covers empirical, direct PK/PD models and two models with time- or state-
varying parameters, one from pharmacokinetics (time-varying, clearance) and one 
from pharmacodynamics (state-varying, drug tolerance).

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene I. Ette and 
Paul J. Williams
Copyright © 2007 John Wiley & Sons, Inc.
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For at least the last 30 years several types of PD models (6, 8–17) have been 
coupled to PK models to give a full description from input (i.e., dose) to effect (i.e., 
observed pharmacological response). Several classifi cations have arisen to describe 
the PD aspect: empirical, direct, and indirect. This chapter focuses on empirical and 
direct models, which are sometimes used synonymously in pharmacokinetics/phar-
macodynamics. Although “empirical” models have parameters that tend not to be 
based on mechanistic underpinnings, direct models have some mechanistic reality, 
as well as empirical attributes (18).

In Figure 20.1 the PD model can be broken down further (see Figure 20.2) to 
describe a more mechanistic view. In Figure 20.2 the kinetics of drug action can 
be characterized by a combination of four kinetic processes: input and disposition 
kinetics (20–22), biophase or effect site equilibration kinetics (usually does not 
impact the PK disposition kinetics) (6, 23–26), biosensor/biosignal kinetics (e.g., 
drug–receptor binding kinetics) (27–32), and transduction kinetics (e.g., second 
messenger cascades) (19, 33–35). The fi rst two are described in the PK model; the 
last two are described in the PD model; the biophase or effect site is part of both 
and connects the pharmacokinetics to the pharmacodynamics. Most direct models 
assume the latter two are instantaneous or rapid compared to all other kinetic drug 
action processes; this assumption is a distinguishing characteristic between direct 

Cp Ce EffectDose

Kinetics

Dynamics

Pharmacokinetics Link Pharmacodynamics

FIGURE 20.1 The relationship between pharmacokinetics, link model, and 
pharmacodynamics.

Cp Ce Response

Dose

Pharmacokinetics Pharmacodynamics

Biosignal

kout

kin

keo

biophase
distribution transductionbiosignal

flux
biosensor
process

FIGURE 20.2 The different processes within pharmacodynamics. The biophase kinetics 
account for distributional kinetics between the plasma and effect site. The biosensor kinetics 
describe the dynamic behavior between drug and biosensing machinery. The biosignal is the 
fi rst messenger in the transduction process that converts the signal to secondary messengers 
or the observed response. (Adapted from Ref. 19.)
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and indirect models. While the distinction between the two is somewhat arbitrary, 
in that nearly all mechanisms of drug action can be modeled as indirect, the direct or 
empirical models continue to have practical utility. In the next section, direct models 
ranging from semimechanistic (Emax model) to mostly empirical (cubic splines) 
PK/PD models are covered.

20.2 DIRECT EMPIRICAL MODELS

Direct models are the most prevalent PD models in the literature. In their most 
basic form, direct models associate drug concentration or “intensity” directly to 
the measured effect using stationary (time-invariant) parameters, meaning changes 
in blood/plasma drug concentrations are instantaneously realized in the observed 
effect. While the mathematical formulation of direct models can easily be distin-
guished from indirect models, direct models can also be viewed as a special subset 
of indirect models. Direct PD models have their roots in the work of Levy (36, 37). 
Levy proposed the following two models (Eqs. (20.1) and (20.2)) to describe a direct 
relationship between drug plasma concentration (Cp) and effect (E)

E E S Cp= ± ×0 (20.1)

E E m Cp= ± × ( )0 log (20.2)

where E is effect, Cp is drug plasma concentration, E0 is the baseline effect, S is 
the slope of the linear relationship, and m is the slope of the log-linear relation-
ship. Since most drugs do have a specifi c concentration range in which effect or 
response is directly proportional to drug concentration, these models do capture 
some observed concentration–effect data. When drug concentrations are relatively 
low, Eq. (20.1) works well. As drug concentration is increased, the concentra-
tion–effect relationship is better described by the log-linear Eq. (20.2), which occurs 
at concentrations that produce effects in the 20–80% range of maximal effect. The 
main weakness of these models is their unrealistic extrapolation maximum—infi n-
ity; the maximum effect is not limited and will continue to increase with increasing 
concentration. This defi ciency is removed in the Emax model.

The well known Emax model, Eq. (20.3), has its mechanistic basis in the law of 
mass action (16, 29–31, 38),

E
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50

max
(20.4)

where E is the observed effect, Emax is the maximum effect, EC50 is the drug con-
centration at which 50% Emax effect is observed, and Cp is the drug concentration. 
E0, the baseline effect, is added in Eq. (20.4) to further capture biological reality. 
Just as in Eqs. (20.1) and (20.2), the ± symbol is used to indicate that the drug can 
increase or decrease the observed effect, depending on the effect system being 



532 EMPIRICAL PHARMACOKINETIC/PHARMACODYNAMIC MODELS

studied. Figure 20.3 shows a plot of effect versus concentration for this model. Since 
biological systems have limited resources (e.g., receptor protein), the expectation 
that the effect should plateau is met with the Emax model. Additionally, this model, 
given by Eq. (20.4), encapsulates the behavior modeled in Eqs. (20.1) and (20.2). 
When Cp << EC50, the denominator essentially becomes EC50, shown in Eq. (20.5):

E E
E C

EC
E S Cp

p≈ ±
×

= ± ×0
50

0
max (20.5)

where S = Emax/EC50 and the effect is linear with concentration similar to Eq. (20.1). 
When Cp >>EC50, the denominator becomes Cp, shown in Eq. (20.6):

E E
E C

C
E Ep

p

≈ ±
×

= ±0 0
max

max (20.6)

where the response is independent of Cp. When Cp is between these two limiting 
cases (effect is between 20% and 80% of Emax), the relationship between Cp and 
effect is log-linear, similar to Eq. (20.2). With the addition of an exponent, g (analo-
gous to m in Eq. (20.2)), to the Emax model, the slope of the log-linear region can 
be controlled; this model is known as the sigmoidal Emax model (Eq. (20.7)) shown 
in Figure 20.4.
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×
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50

max
γ

γ γ (20.7)

The g parameter does not need to be placed on the EC50, but doing so simplifi es 
maintaining integrity between the units of EC50 and Cp. Since a majority of drugs 
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work through receptor or receptor-like mediated processes and this direct model 
is based on the law of mass action, the sigmoidal Emax has tremendous utility. At 
low concentrations it predicts a linear concentration–effect relationship, at higher 
concentrations it predicts a log-linear relationship, and at very high concentrations 
it predicts a constant effect independent of concentration. From a fi tting perspec-
tive, unless Emax is known or operationally achieved experimentally, Eqs. (20.4) and 
(20.7) should be fi t carefully to avoid identifi able issues (39). Several researchers 
have developed strategies that increase the reliability of these parameter estimates 
(40–42). The utility and intuitive nature of this model have made it the workhorse 
of pharmacodynamics.

Another class of empirical models, which are nearly void of any mechanistic 
basis, used in complex dose–concentration and concentration–effect PK/PD models 
are splines (43–46). Depending on how splines are used (explicitly mapping Cp

into effect—i.e., effect = f(Cp), where f(Cp) is the spline function), they can also be 
considered direct PD models. Empirical models, as the name implies, emphasize 
phenomenological relationships. Toward one extreme these models fi t data without 
any regard to underlying mechanistic underpinnings. Polynomial fi tting and spline 
fi tting fall into this category (47–49). For example, for n sets of data points (x, y),
a polynomial, P(x), of order n − 1 (Eq. (20.8)) is guaranteed to exist, given no 
parameter constraints, that will pass through all (x, y) data.

ŷ P x x xn
n= ( ) = + + + −

−β β β0 1 1
1� (20.8)

In Eq. (20.8) b’s are parameter constants and x is the independent or predictor 
variable. The advantages of this model are (a) it fi ts all data points (x, y), (b) P(x)
is easy to differentiate and integrate, and (c) interpolation of y along the interval 
between the smallest value and the largest values of x (i.e., Min(x) ≤ x ≤ Max(x))
tends to be quite good. The disadvantages to this model are (a) it assumes no error 
in data; (b) as n gets large, typical objective functions are overly sensitive to con-
tributions by high-order terms—leading to fi tting diffi culties; (c) there is generally 
poor extrapolation of y along the intervals outside Min(x) ≤ x ≤ Max(x); and (d) 
parameters have little to no physical meaning or relationship to the system being 
studied.

Another polynomial related approach utilizes cubic splines. While these splines 
are not plagued by high-order term sensitivity, they too do not provide parameters 
with physical meaning. There are numerous classes and subclasses of splines, each 
with unique properties (47–49); one commonly used spline is the cubic spline.

Simple cubic splines, S1(x) and S2(x), Eqs. (20.9), are piecewise continuous third-
order polynomials governed by various constraints (depending on the type of cubic 
spline—e.g., free or clamped) that link three or more contiguous (x, y) points 
together. Spline segments are sequentially added until all n (x, y) data points along 
the interval, Min(x) ≤ x ≤ Max(x), have been included to form S(x).
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where k = n − 1, b’s are parameters, and S(x) is given by Eq. (20.10):

S x S x S x S xx
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k x
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n( ) = ( ) ( ) ( )1 21

2

2

3; ; . . . ; (20.10)

Although a simpler second-order or quadratic spline of the form S(x) = b1 + b2x
+ b3x2 does guarantee a fi t along the Min(x) ≤ x ≤ Max(x) interval, it does not guar-
antee differentiability at the splines’ exterior points; thus, a smooth, continuous fi t 
cannot be guaranteed. The additional degree of freedom utilized in cubic splines 
allows users to defi ne fi rst and second derivative conditions at interior and exterior 
points (Figure 20.5). For example, for any three sequential ((x1, y1), (x2, y2), (x3, y3))
pairs, eight conditions must be defi ned for the two connecting spline segments (S1

and S2) to ensure that all eight parameters (b’s) can be determined. Conditions 1 
through 4 ensure that each spline passes through its two endpoints (Eq. (20.11)):
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Since conditions 1 to 4 only provide four equations to solve for eight unknowns, 
derivative and boundary conditions are utilized to provide the remaining four neces-
sary equations. Conditions 5 and 6 match fi rst (Eq. (20.12)) and second derivatives 
(Eq. (20.13)) at the nodes where two segments meet to ensure a smooth transition 
from Si to Si+1.
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FIGURE 20.5 An example plot showing four spline segments connecting three interior 
nodes and two exterior nodes.



The last two conditions are for the exterior nodes and determine whether the cubic 
spline is natural/free or clamped. For natural splines conditions 7 and 8 are given 
by Eq. (20.14):

Condition 7a

Condition 8a

′′( ) = + =

′′( ) = +

S x x

S x

1 1 13 14 1

2 3 23

2 6 0

2

β β

β 66 024 3β x =
(20.14)

In clamped cubic splines, conditions 7 and 8 defi ne the fi rst derivatives at the 
exterior nodes, which are constrained to fi xed values, f ′(x1) and f ′(x3) (Eq. (20.15)), 
that are known beforehand. In the absence of precise fi rst derivative informa-
tion at the exterior nodes, one generally chooses Eq. (20.15) or the natural spline 
conditions:
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S x f x

S x f x

1 1 1

2 3 3

(20.15)

Given the eight conditions, all eight b’s can be determined for any two connecting 
segments; this process is continued until Sk has been determined. It must be noted 
that spline parameters do not have physical meaning and should not be used for 
extrapolation; they provide excellent interpolation. Polynomial fi tting and spline 
fi tting are classic examples of nearly pure empirical models.

20.3 PHARMACOKINETIC/PHARMACODYNAMIC LINK MODELS

In the previously mentioned direct and empirical models, it was assumed that the 
biophase kinetics, biosensing/biosignal kinetics, and transduction kinetics were all 
rapid compared to changes in Cp was made. However, there usually exists a time 
delay between giving the dose and the onset of effect (see Figure 20.6). Some drug 
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FIGURE 20.6 This plot shows three time profi les (Cp, Ce, Effect) produced in response to 
repeated IV bolus dosing every 25 time units. The time lag between Cp,max and Ce,max in this 
model is solely governed by the rate constant ke0. Since Ce drives the effect, Effect also lags 
behind Cp.
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classes (e.g., antidepressants) experience considerable delays before reaching full 
therapeutic effect. This section focuses on one strategy, biophase or effect com-
partment modeling, to account for the delay between dosing changes and their 
subsequent effect changes.

Although in 1955 Furchgott (5) did introduce the term biophase and biophase 
kinetics as a means to differentiate the actions of various agonists on vascular 
smooth muscle, in 1968 Segre (7) created a biophase compartmental model with 
fi rst-order kinetics and the idea of a hypothetical effect compartment was born. In 
1978 Dalhstrom et al. (26) modeled the relationship between morphine and anal-
gesia using the sum of two effect compartments in a linear combination to produce 
the overall effect. In 1979 Sheiner et al. (6) linked d-tubocurarine pharmacokinet-
ics (multicompartment) to its pharmacodynamics using a single hypothetical effect 
compartment (Ae or amount of drug in the effect compartment), which utilized a 
fractional, direct sigmoidal Emax model between Ae and effect shown in Eq. (20.16) 
(see Figure 20.7):
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FIGURE 20.7 The PK/PD model developed by Sheiner et al. (6) to couple d-tubocurarine
kinetics and dynamics with a link model. The dotted arrow indicates a massless transfer. 
(From Ref. 6.)



where E is intensity of pharmacologic effect expressed as a fraction of the maximal 
effect, Ae is effect compartment quantity driving the effect, Ae(50) is analogous 
to EC50, and g governs the slope of the log-linear region the described curve. The 
important PD kinetic parameter in this model is ke0 (see Figures 20.6 and 20.7): 
this parameter alone determines the time delay in this PD model. ke0 provides the 
necessary time delay parameter between introduction of drug and the beginning of 
the observed effect.

Others have modeled the biophase using systems (24, 25), semiparametric models 
(50), and nonparametric (15) models to account for the temporal displacement of 
the effect curve relative to Cp. The two other elements, biosensor and transduction 
kinetics, in PD modeling can also be employed to account for effect curve temporal 
displacement. These other two areas are covered in other chapters of this book.

We conclude this chapter with two examples from the literature of highly complex 
behavior between dose and effect that are modeled with direct PD models. The fi rst 
example involves the chronopharmacokinetics of the anticancer drug 5-fl uorouracil 
(5-FU). The second example covers nicotine and morphine drug tolerance.

20.4 EXAMPLES OF COMPLEX DYNAMIC BEHAVIOR USING 
EMPIRICAL/DIRECT MODELS

20.4.1 Circadian Model (Pharmacokinetic Example)

Circadian variation or rhythmicity in humans has been documented for many 
endogenous substances and physiologic processes (51, 52) as well as for human 
pharmacokinetics and pharmacodynamics (51, 53). These observations have led to 
changes in dosing regimens to maximize patient response and to minimize patient 
toxicity (52, 54). Circadian variation has signifi cant implications in the design of 
rational drug dosing regimens and therefore in the PK and PD modeling of these 
circadian-dependent drugs. This section briefl y reviews the link between PK and 
PD models as it relates to time-invariant and time-variant pharmacokinetics/phar-
macodynamics. The basic structure of time-variant PK/PD models is then reviewed. 
Finally, an example of circadian modeling and its circadian–optimized dosing 
regimen is reviewed.

20.4.1.1 Time-Invariant and Time-Variant Systems
Any PK system that obeys the following criterion is considered time-invariant (TI): 
for a given PK system, PK {dose(t), parameters} = Cp(t); that is, time shifted by an 
amount t, the drug plasma concentration Cp(t) must be time shifted exactly by t,
or PK {dose(t + t), parameters} = Cp(t + t). The parameters are typically rate coef-
fi cients, Vd (apparent volume of distribution), amount or activity of a metaboliz-
ing enzyme, and so on and are usually time-invariant (i.e., constant from t = 0 to 
infi nity). In time-variant systems (TV), these parameters change as explicit and/or 
implicit functions of time. Time-variant PK models have the form PK {dose(t),
parameters(t)} = Cp(t). An even more complicated form of TV models, but probably 
more mechanistically accurate, has the form PK {dose(t), parameters[f(t), t]} = Cp(t),
where the parameters can vary explicitly or implicitly as a function of time. The 
following chronopharmacokinetic example has this form, where the clearance varies 

EXAMPLES OF COMPLEX DYNAMIC BEHAVIOR USING EMPIRICAL/DIRECT MODELS 537



538 EMPIRICAL PHARMACOKINETIC/PHARMACODYNAMIC MODELS

with the daily cosine-like changes in enzymatic activity. Although it is sometimes 
diffi cult to experimentally determine, time-variant pharmacokinetics can, in fact, 
be linear or nonlinear with respect to dose. A clearer understanding of these time-
variant systems has led to the design of dosage regimens and drug formulations that 
target high drug concentrations at specifi c times in the pharmacological biorhythm. 
The ability to aim for a target concentration at a specifi c point in time can signifi -
cantly increase the drug’s effectiveness.

20.4.1.2 Time-Variant Pharmacokinetics and Toxicity of 5-Fluorouracil
Several publications have demonstrated circadian variation in the pharmacokinetics 
and pharmacodynamics of 5-fl uorouracil (5-FU) during constant infusions of varying 
rates typically infused over 5–14 days (55–57). The maximum and minimum concen-
trations each day based on cosinor analysis occurred at approximately 0100–0400 
and 1300 hours, respectively. Dehydropyrimidine dehydrogenase (DPD) is primar-
ily responsible for the metabolism of 5-FU and demonstrates circadian variation in 
activity with its maximum and minimum activity based on cosinor analysis occur-
ring at 0100 and 1300 hours, respectively. Some patients demonstrated an inverse 
relationship to the plasma 5-FU concentration (55). This appeared to increase the 
tolerance to 5-FU side effects between 0000 h and 0400 h (58, 59).

Bressolle and co-workers (60) used a two-cycle, two-amplitude, and two-
acrophase model to characterize 5-FU clearance as follows:

CL CL CL t t CL t tA z A zss av= + ⋅ −( ) ⋅[ ] + ⋅ −( ) ⋅[ ]1 1 2 22 24 2 12cos cos (20.17)

where CLav is the average clearance; CLA1 and CLA2 are the amplitudes of the fi rst 
and second periodic components, respectively; and tz1 and tz2 are the acrophase 
(peak) times of the fi rst and the second periodic components, respectively. The 
addition of the circadian component to CL signifi cantly improved the fi t (60). CL
varied with sex (CLav = sex · q1 + q2, where sex = 0 if female and 1 if male).

The acrophases or peak times of the 5-FU CL of the fi rst and second cyclic 
components were at 0414 and 0025 hours, respectively, corresponding to 24 hour 
minimum concentrations. These times are different from those expected based on 
the studies discussed previously and refl ect the interpatient variability in the circa-
dian rhythm of DPD enzyme activity and 5-FU clearance.

Several investigators have recommended chronomodulating the 5-FU infusion 
in accordance with the circadian rhythm in 5-FU pharmacokinetics, tumor cell sus-
ceptibility, and normal cell tolerability to maximize response and minimize toxicity 
(54, 57). These authors used a chronomodulated 5-FU infusion from 2200 to 1000 h 
with a peak infusion rate at 0400 h. 5-FU clinical response was greater and toxicity 
was less during the chronomodulated infusions versus the continuous infusions.

Characterizing a drug’s circadian pharmacokinetics and pharmacodynamics can 
enable investigators to temporally target the administration time and intensity 
to maximize patient response and minimize patient toxicity. In these models, the 
rhythmic displacement in the effect curve is caused by the underlying PK circadian 
changes in clearance, not any PD interaction. Hence, a direct PD model can still 
be used to model the PD interaction.



20.4.2 Drug Tolerance (Pharmacodynamic Example)

Drug tolerance is the source of much discussion in the literature. Although many 
have qualitatively described this phenomenon, until recently, few investigators have 
attempted to kinetically model or quantitate it, and even fewer have developed 
rational dosing schemes to circumvent it. For the purposes of this chapter, we defi ne 
tolerance as “the reversible (relative to the duration of therapy) lessening of drug 
effect with time, when the drug level is maintained constant.” When drug toler-
ance is present, clockwise hysteresis between drug concentration, Ce, and effect is 
observed (see Figure 20.8).

The mathematical distinctions between various models provide insight into 
differentiating between underlying mechanisms of tolerance. For example, some 
models of tolerance predict identical onset and recovery rates (61–64), while other 
models predict asymmetrical onset and recovery rates (65–70). For a more complete 
comparison of tolerance models, the reader is directed to Gardmark et al. (71).

Sheiner and co-workers (61, 62) created a hypothetical kinetic tolerance com-
partment or state variable connected to a modifi ed Emax model (Figure 20.9). The 
tolerance compartment, denoted Tol, is linked to the concentration compartment 

Effect

Ce Ce

Effect

FIGURE 20.8 The left panel shows a typical Ce versus Effect plot for a drug obeying a 
simple Emax relationship. The right panel shows the clockwise hysteresis seen in the Ce vesus 
Effect plot when drug tolerance is present. The arrows represent the progression of time.

FIGURE 20.9 This tolerance model utilizes a hypothetical compartment (Tol) to measure 
the “amount of tolerance” in the system. Tol can act as a competitive or noncompetitive 
antagonist to the effect. The rate of tolerance development and recovery is determined by 
kTol and the effect model is direct. A biophase compartment, Ce, could have also been added 
(see Figure 20.10). (Adapted from Refs. 61 and 62.)
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(usually Cp or C) via a fi rst-order transfer constant. The fi rst-order exit rate constant, 
ktol, for Tol determines the rate of tolerance development and recovery. If Cp is the 
driving compartment, then Tol becomes a state variable defi ned as Tol = ktolCp *e−ktolt

(where * denotes convolution). At any time t′, Tol(t′) represents a moving, inte-
grated exposure history of compartment Cp, which is used to attenuate the system’s 
response at Cp(t′). In the simplest model, both Cp and Tol are linked together in a 
direct effect model. The following equations show two PD models—noncompetitive 
(Eq. (20.18)) and competitive antagonistic inhibition (Eq. (20.19)):
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FIGURE 20.10 The upper panel shows four time profi les (Cp, Ce, Tol, Effect) produced 
in response to repeated IV bolus doses every 25 time units. The Tol curve represents the 
“amount” of tolerance in the system; as it increases, Effect decreases despite increased 
levels of Ce and Cp. The bottom panel shows a plot of Effect versus Ce. Time starts at (0, 0) 
and moves along the curve. The unusual hand-like shape (hysteresis) is caused by the Tol
interaction with Ce in the direct PD model. The effect model used was similar to Eq. (20.18), 
where Ce replaced Cp.



where Emax is the maximal effect, C50 is the concentration of drug leading to 50% of 
Emax in the absence of tolerance, and T50 quantifi es the relationship between Cp at
steady state and Tol. As Tol increases, either Emax is attenuated (noncompetitive) 
or C50 is increased (competitive); both models predict that Effect decreases as Tol
increases. When Tol = 0, both models reduce to the well known Emax model. Since 
ktol solely dictates the kinetics of Tol, this model, irrespective of the PD model, 
predicts that the rate of tolerance development and recovery is symmetrical. This 
model is a direct effect model because, according to its defi nition, changes in Tol
and Cp are instantaneously manifested in E.

Interestingly, unlike simple, classic competitive models, increasing drug con-
centration C will not overcome the inhibitor’s effect Tol because Tol will increase 
proportionately—defeating the gains of increased drug concentration. This model 
has been used to simulate nicotine tolerance (61), multiple intravenous bolus dose 
morphine tolerance (64), and tolerance to caffeine’s pressor effects (63).

20.5 SUMMARY

Two examples are given to demonstrate that direct effect models can still be used 
in complex PD behavior. As technological advances in biochemistry and molecular 
pharmacology techniques continue to provide greater and greater detail of biosen-
sor and transduction systems, these mechanisms need not necessarily be included 
in an appropriate PK/PD model. When the kinetics of those systems are rapid 
compared to pharmacokinetics and biophase kinetics, a direct effect PD model 
may be a better choice—especially when facing the identifi able pitfalls of sparse 
or incomplete data.
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21.1 INTRODUCTION

21.1.1 Why Do Disease Progression Modeling?

The concept of developing models to describe the progression of disease is not 
new. Many scientists and clinicians conducted longitudinal studies of the natural 
time course of disease in the 1970s (1, 2), a trend that has continued although data 
from untreated patients is diffi cult to obtain given the wide variety of drugs avail-
able to treat most progressive diseases. In the early 1980s Holford and Sheiner (3) 
suggested a new meaning for the standard Emax pharmacodynamic (PD) model, in 
that the baseline status of a patient, E0 (or S0), might not be static, as had been 
generally assumed in most study designs and analysis of data obtained from clini-
cal trials, and should be taken into account in analysis of such trials. The concept 
of evaluating drug action on disease trajectory was an important improvement in 
clinical pharmacology. There are early examples of evaluating drug effect on the 
natural history of disease (4, 5), although the application of model-based evalua-
tion to disease progression was slow to take hold. Today, however, model-based 
evaluation of disease progression is an important aspect of drug development and 
pharmacology. The development of models describing the time course of disease 
is a component of the critical path initiative described by the US Food and Drug 
Administration (FDA) in 2004. In short, disease progression modeling has become 
an accepted tool that should be implemented to evaluate the effects of drug on 
disease trajectory. Before delving more into this subject, a few questions regarding 
clinical trials should be addressed.

What is the real purpose of running a clinical trial? In a confi rmatory trial, the 
stated purpose of that trial is usually to test the null hypothesis. Clinical trials are 
often focused on testing the null hypothesis because there is usually an alterna-
tive model, such as that the drug does have clinically relevant activity, that can be 
accepted in place of the null model. Furthermore, testing the null hypothesis is an 
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easy question to answer robustly, and traditionally statistics has been focused on 
questions that are easy to answer but not necessarily on answering the right ques-
tions. However, as Tukey (6) reminded us, “far better an approximate answer to the 
right question, which is often vague, than an exact answer to the wrong question, 
which can always be made precise.” Therefore, the consequences of addressing the 
more interesting general questions are that the answers are generally less robust. 
For some time now, Sheiner (7, 8) and others (9) have argued that greater statisti-
cal power can be achieved by addressing these more interesting questions through 
the use of alternative hypotheses that test accepted scientifi c models of disease and 
response rather than limiting the questions to testing the null hypothesis.

Ideally then, generating a summary of evidence of effi cacy is more useful, although 
that implies developing an understanding about the dose–response curve in the 
target patient population. If the objective of addressing the more general question, 
such as understanding the dose response, is accepted, then a dose–response surface 
must be developed. This response surface is a multivariate response surface that 
provides the expected value of response as a function of multiple covariates and 
dosing levels and is described by Sheiner (10) as a part of the learning and confi rm-
ing process in drug development.

Developing the response surface is a diffi cult question to address and usually 
requires that a variety of assumptions be made when addressing it, which weakens 
the robustness of the answers. However, a summary of the surface function, such 
as an average over that response surface function, often can provide robust answers 
to simpler questions. The margins of a high-dimensional surface are often very well 
estimated and robust, even when using a model to describe the data. Therefore, if a 
model is used to address the right question, the answer will have uncertainty associ-
ated with that answer, but summarizing or integrating over that model in order to 
answer simpler questions can still provide robust answers.

The consequences of providing less robust answers usually will not adversely 
impact labeling or clinical practice. In the context of answering questions such as 
how the drug works in a specifi c subpopulation of patients or how to adjust the start-
ing dose, not providing information forces the clinicians to make decisions based 
on no information at all. Therefore, it can be argued that providing somewhat less 
robust answers also provides a somewhat better solution to the problem of provid-
ing information about how to use the drug in practice.

The reason for addressing these more complex questions is because during 
the development of a new drug candidate, different patients often have different 
responses to the same dose of a test drug. For example, older patients may be more 
or less sensitive to both the positive and negative effects of drugs. This difference 
in sensitivity to a test drug contributes to the variability (e.g., noise) in the outcome 
of the study. Unfortunately, however, it is usually not possible to study all com-
binations of doses or treatments by patient type to determine explicitly what the 
dose response is for each subgroup of patients that may be administered the drug. 
Therefore, it may be necessary to describe the dose–response surface without data 
from every type of patient given every dose level and duration of therapy. Model-
based evaluations, however, can provide a basis for developing a dose–response 
surface by making scientifi cally valid assumptions, without which, model-based 
analysis cannot proceed. These models can then be used for interpolation and, in 
some cases, for extrapolations as well.



Assumptions are included in all of the elements of any pharmacokinetic/pharma-
codynamic (PK/PD) model. Some examples of common assumptions made for these 
models include the structure of the models for pharmacokinetics, pharmacodynam-
ics, and their respective covariate infl uences, the models for the clinical effect of 
the drug, the parameter values of all these models, and the variance structures for 
model components (11). Assumptions reduce inferential certainty because if the 
assumptions are wrong, then the model-based conclusions are wrong. Therefore, it 
is the quality of the attendant assumptions, and not their existence, that is the issue 
with assumptions in modeling (12).

In addition to providing a basis for interpolation and extrapolation, 
models increase the amount of information recovered from a clinical trial. Infor-
mation obtained from any scientifi c study can be detected based on the ratio of 
signal to noise. In any given study, the information is the total variation in the data, 
the signal is the variation due to identifi able causes such as differences in dose, 
and the noise is the residual or unexplained variation. Therefore, models increase 
information by turning noise into signal by providing a basis for explaining the 
variation.

Several models are necessary to generate the response surface. These include 
the pharmacokinetic (PK) model (what the body does to the drug over time), the 
pharmacodynamic (PD) model (what the drug does to the body over time), and a 
disease progression model (how the disease is changing over time). A disease pro-
gression model is actually a special class of PD models in that it is a function that 
describes the change of the clinically relevant endpoint over time. The response 
surface then is a function of all these three models. Therefore, development of a 
disease progression model is a valuable tool to facilitate the visualization of under-
lying disease changes for both the reference treatment and the treatment being 
evaluated. Disease progression models are an important component of the drug 
exposure–response surface.

21.1.2 Background

Making relevant scientifi c assumptions involves understanding the mechanistic 
relationship between drug treatment and observed responses. In the context of 
modeling the response surface, it is useful to think of clinical pharmacology as the 
combination of disease progress and drug action (13).

Clinical pharmacology Disease progress + Drug action= (21.1)

In this framework, disease progress refers to the evolution of a disease over time, 
or the disease trajectory, which can be assessed by observing the time course of a 
biomarker or other clinically relevant endpoint that refl ects the status of a disease 
or is a measure of the clinical status of a patient. The status of the patient is a 
refl ection of the state of the disease at a point in time. Disease status may improve 
or worsen over time, or may be a cyclical phenomenon such as the seasonal affec-
tive disorder component of depression. Therefore, a model of disease progress is a 
mathematical expression that describes the expected changes in patient status over 
time either in the absence of treatment or at least in the absence of the treatment 
being investigated.
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Disease progress models can be extended to include terms that account for the 
changes in disease progress that are impacted by drug treatment or drug action. 
Drug action refers to all the underlying PK and PD processes involved in produc-
ing a drug effect on the disease progression as these are the two major attributes 
determining drug exposure and its effect on the time course of progression of the 
disease.

21.2 DATA

21.2.1 Pooling Data

Because disease progression is usually measured by observational data such as 
scores or summary measures, the data are usually quite variable. Furthermore, the 
progression of many diseases is often quite slow, requiring observational data col-
lected over long periods of time. As a consequence, it is often necessary to pool 
data from several clinical studies of the disease in order to develop a model for 
disease progression.

There are potential problems associated with pooling data from multiple studies: 
different treatments and duration of treatments, assessment of patients using dif-
ferent schedules, and different enrollment criteria for the protocols. Using models 
to analyze data helps to adjust for design problems, however. Explicit modeling of 
covariate effects, such as sex, age, or other important patient characteristics, allows 
the analyst to pool data from different patient groups and different trials because 
the model can estimate how to adjust for the different groups. Using time as a 
covariate in the model system facilitates pooling data from studies with different 
treatments and different designs. Explicit modeling of variation in error structures 
allows pooling data with different precision, such as might arise from different 
assays.

During any clinical trial, several clinical endpoints and measurements of rel-
evant biomarkers are collected for all patients, regardless of treatment assignment. 
Such observations can be either subjective (such as assessments of how a patient 
feels or functions) or objective (such as the evaluation of biomarkers). The selec-
tion of the biomarker or endpoint that is to be modeled depends on how well the 
overall disease progression is represented by these data. The selection may also 
take into account the amount of data available for each observation type and to 
some extent the objectives of the modeling exercise. It is important to also include 
data from the untreated (placebo) patients in order to evaluate the time course 
of disease in the absence of test drug. In many cases, the placebo patients will 
have received treatment that is the standard of care for their disease (also called 
the active control arm). This standard therapy is usually also administered to the 
patients receiving the test medication. If the active control is not also adminis-
tered to the patients receiving the test medication, then combining data from such 
treatments might not be appropriate. Whenever data from multiple studies are 
pooled together, careful consideration needs to be given as to whether or not the 
differences in design and treatment can be described suffi ciently to allow them to 
be combined.
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21.2.2 Database Formatting

In many disease progression models, integrated functions are used to describe both 
the pharmacokinetics and pharmacodynamics of the disease progression. For this 
example database format, it is assumed that the data will be fi t using integrated 
equations. An example of a standard format for a disease progression model is 
provided in Table 21.1. In this example, both the PK observations and the markers 
for disease progression are listed in the DV column. A fl ag (DVID) indicating 
whether the record is a dose record (DVID = 0), a concentration record (DVID =
1), or a disease progression record (DVID = 2) is necessary both for application of 
the appropriate residual error function and for sorting the output and examining 
model performance afterwards. Additional columns for covariates can be added as 
needed.

21.3 MODELS

There are several models that need to be developed to describe the exposure–
response surface. These include both PK and PD models, where the PD model 
includes models of disease progression and drug action. Prior to developing a 
model for disease progression, it is helpful to examine the different components 
of a disease progression model, and to understand the terminology associated with 
these models.

TABLE 21.1 Example Database Format for Disease Progression Model

Patient ID Date Time AMT DV DVID MDV EVID

1 7/31/2000 13:20  3,000 • 0 1 1
1 7/31/2000 13:20 • 124 1 • •
1 8/2/2000 10:15 30,000 • 0 1 1
1 8/2/2000 12:47 • 700 1 • •
1 8/7/2000 10:45 30,000 • 0 1 1
1 8/7/2000 10:45 •  37 2 • •
1 8/7/2000 13:15 • 729 1 • •
2 1/3/1992  8:00 •  6 2 • •
2 2/3/1992 15:00 •  8 2 • •
2 2/3/1992 15:15  7,500 • 0 1 1
2 2/6/1992 16:59 •  7 2 • •
2 2/10/1992  8:50  7,500 • 0 1 1
2 2/10/1992 10:05 •  5 2 • •
2 2/13/1992  0:00 •  6 2 • •
2 2/17/1992  8:36 •  6 2 • •
3 1/9/1992 11:06 • 117 1 • •
3 1/27/1992  8:21 • 176 1 • •
3 1/27/1992 11:30  7,500 • 0 1 1
3 1/27/1992 11:43 • 155 1 • •
3 1/27/1992 14:30 •  81 1 • •
3 1/27/1992 16:30 •  91 1 • •
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21.3.1 Defi nitions

The terminology presented here is consistent with terminology described and used 
previously (13, 14). In order to demonstrate the different types of drug action, 
example plots were generated using a simple linear disease progression model.

1. Symptomatic. A drug action is defi ned as being “symptomatic” when it has 
a benefi cial effect on the disease status but does not alter the trajectory the 
disease. An example of a drug action that has symptomatic benefi t is shown 
in Figure 21.1: during the period of time that drug concentrations are non 
zero, the disease status is lower in the treated arm than in the untreated arm. 
However, the slope of the line describing the treated arm is the same as the 
untreated arm, suggesting that the disease is progressing. As further proof that 
the drug is not altering the progression of disease, when the drug treatment is 
stopped, the status of treated arm rapidly becomes indistinguishable from the 
untreated arm. Therefore, the presence of the drug ameliorates the disease 
but does not alter its time course.

2. Disease Modifying. A drug is said to exhibit disease modifying action (referred 
to as having “protective action”) if the drug alters the progression of disease. 
Consequently, the effects of the drug action persist even after the drug is 
removed. There are two general types of protective actions, the fi rst being 
one that alters the time course of the disease while the second action involves 
altering the maximal status of the disease. An example of a protective agent 
that alters the time course of disease is shown in Figure 21.2.

3. Curative. A curative drug completely halts the progression of a disease and 
reverses the patient status back to the predisease state. Even after cessation 
of therapy, the patient status remains at the predisease state. An example of 
a curative drug is provided in Figure 21.3. As can be seen in this fi gure, the 
baseline disease status reverses rapidly to 0 and remains there after removal 
of drug.
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FIGURE 21.1 Example profi le of symptomatic drug action.



MODELS 553

50

60

70

80

90

100

110

120

130

140

150

Time (days)

D
is

e
a

s
e

 S
y

m
p

to
m

 S
c

o
re

C
o

n
c

e
n

tr
a

ti
o

n

0

20

40

60

80

100

120

140

160

Untreated Status Treated Status Drug Concentrations

0 30 60 90 120 150 180 210 240 270 300 330 360

FIGURE 21.2 Example profi le of disease progression modifying drug action.
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21.3.2 Structural Models of Disease Progression

21.3.2.1 Linear Models of Disease Progression
The linear disease progression model is the simplest model that is used to describe 
disease progression. Although the linear model of disease progression is quite sim-
plistic, it has been used to describe the progression of several different diseases. The 
linear model for disease progression was used by Holford and Peace to describe the 
progression of Alzheimer’s disease (15). This model was developed to allow evalua-
tion of all patients treated with the drug and was used to determine the effectiveness 
of tacrine as a treatment for patients with the disease.
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The linear model assumes a constant rate of change of the disease status over 
time. The linear model can be defi ned in terms of a baseline disease status (S0)
and a slope parameter (a) and t is time after the initial observation of the disease. 
The equation for the linear model is given below and a NONMEM control stream 
implementing the linear disease progression model is provided in Table 21.2.

S t S t( ) = +0 α (21.2)

When building a model for disease progression, it is often best to develop 
the disease progression model fi rst, and then a model for drug effect is added. 
Typically, several disease progression models will be tested and the one that appears 
to best describe the time course for the markers of patient status is taken further 
to evaluate the addition of models for drug effect.

With a linear model, there are two basic drug effect patterns possible. Symptom-
atic drug action will improve patient status but has no impact on the rate of progress, 
or the drug can alter the rate of progress of the disease, resulting in a protective or 
disease modifying action.

A symptomatic benefi t can easily be described by adding an effect based on drug 
concentration. In this case, the drug effect, E(t), modifi es the patient status by shift-
ing it by a constant amount over time as long as drug is present.

S t S E t t( ) = + ( ) +0 α (21.3)

The expected pattern of drug action then would be expected to be similar to the 
example provided in Figure 21.1. For the situation where the drug effect appears 
to modify the progression of the disease, the drug effect, E(t), can act on the slope 
parameter. This effect would be expected to be similar to the example provided in 
Figure 21.2.

S t S E t t( ) = + ( ) +[ ]0 α (21.4)

The symptomatic and disease modifying drug effects can also be combined if 
there is evidence that the drug exhibits both types of activity. Again, good model 
building practices should be employed to test if the combined symptomatic and 
modifying drug effect model is more appropriate than either effect alone.

The drug effect, E(t), can be described using a linear function, an Emax function, 
or other function, as is appropriate.

The onset of drug effect may be delayed by adding a hypothetical effect com-
partment to the drug action part of the model, and using the concentrations at 
the effect site to be the forcing function for the drug effect (17, 18). In general, a 
delay in the onset of drug effect is expected although the appropriateness of this 
assumption should be tested using good model building practices. As an additional 
caution, however, when using models to assist in determining the mechanism of 
action of a drug, it should be noted that a drug that has symptomatic activity but a 
long delay to the onset of effect can provide a response that is indistinguishable from 
disease modifying activity. Figure 21.4 shows a linear disease progression model 
with treated and untreated status. In this simulated scenario, the pharmacokinetics 
of the drug used to drive the response are identical, however, the lag time to onset 
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TABLE 21.2 Example NONMEM Code 1: Linear Model of Disease 
Progression with No Drug Effect

NONMEM Code Explanation

$SUBROUTINE ADVAN2 TRANS2 In this simple example, the drug effect has not yet
$PK  been added but the PK model is included in the
 CALLFL=-2  control stream. The model calls for a linear
IF (NEWIND.LE.1) THEN  one-compartment model with fi rst-order input.
LN2=LOG(2) CALLFL=-2 is a useful call to make particularly
TWOPI=2*3.141592654  if CALLFL controls when PREDPP calls the PK
DOSE=0  and ERROR routines. CALLFL=-2 will call
ENDIF  the PK subroutine with every event record,

  and with additional and lagged doses. NEWIND
  is an indicator variable that can be used to
  calculate values at the fi rst record in the
  database (NEWIND = 0) or at start of a
  subsequent individual (NEWIND=1).

;normalize covariates Note that disease progression model control
NWT=(WT/70)  streams can become quite long. Use comment
IF (WT .LE. 0) NWT=1  lines to remind yourself or assist others in
NAGE=AGE/50  determining what is going on. Normalizing
IF (AGE .LE. 0) NAGE=1  covariates is always a good idea. This benefi ts
  the user in two ways: fi rst by providing some
  numerical stability and second by allowing the
  parameter estimates to refl ect the subject
  demographics that refl ect the “average” patient.
;PK MODEL Again, commenting within the control stream is
TVCL=THETA(1)  a good idea. Note that the parameters associated
CL=TVCL*EXP(ETA(1))  with the PK model have been fi xed. This is
TVV=THETA(2)  consistent with the approach suggested by Zhang
V=TVV*EXP(ETA(2)) et al. (16) for pharmacokinetic and
TVKA=THETA(3) pharmacodynamic evaluation.
KA=TVKA*EXP(ETA(3))

S2=V2

$ERROR Because the disease progression is not part of the
 CP=A(2)/S2  PK model, it must be defi ned in the $ERROR
;BEGIN DISEASE PROGRESS  routine. For simplicity, concentration (CP) is
MODEL defi ned here as the ratio of A(2)/S2; then the

 TVS0=THETA(4)  disease progression parameters are defi ned.
 S0=TVS0*EXP(ETA(4)) TVS0 is the typical value of the baseline status,
 TVSLO=THETA(5) S0 is the individual baseline status, TVSLO is
 SLOPE=TVSLO*EXP(ETA(5))  the typical value of the slope of progression,
  and SLOPE is the individual progression.

;Derived values TDAY is used here instead of TIME, which is usually
 TDAY=TIME/24 ; convert  in hours for the PK model. Using TDAY gives the

hours to days  disease progression model in days (or any unit
 REC=SLOPE*TDAY  of time such as weeks or months) rather than
  hours for several reasons. The fi rst reason is that
  the parameter estimates are usually more
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TABLE 21.2 Continued

NONMEM Code Explanation

  meaningful in days rather than in hours. The
  second reason is that the larger slope estimate for
  days is generally easier to estimate (and more
  numerically stable) than the value of the slope
  in hours (which would be quite small).

IF (DVID .LE. 1) THEN DVID was a data fl ag used to differentiate data
 Y=CP*EXP(CVCP) + SDCP  records for dosing (DVID=0), for concentrations
ELSE (DVID=1), or for disease score (DVID=2). The
;DISEASE SCORE VS TIME  use of the fl ag is important for separating the
(days) observations for residual error and also for

 Y=S0-REC + SD  plotting and other diagnostic purposes.
ENDIF

;PARAMS FOR PK Note again here that the parameters are fi xed for
$THETA 20 FIX; CL  the PK model. For the PD (disease progress)
$THETA 70 FIX; V2  model the initial estimate for the baseline
$THETA 0.1 FIX; KA  status (S0) is the average value at study entry
;PARAMS FOR PD MODEL  in the data. The initial estimate of slope can
$THETA (10,50,100);  be obtained by plotting the raw data and
 POPS0 days  conducting a linear regression to get a slope
$THETA (0,1,100);  estimate.
 popslo u

;VARIANCE FOR PK The variance terms for the PK model were fi xed.
$OMEGA .1 FIX; BSVCL  The variance terms for the PD model are
$OMEGA .1 fix; BSVV2  usually larger than for the PK model.
$OMEGA .1 FIX; BSVKA  Reasonable estimates are usually 0.5 or
;VARIANCE FOR PD  sometimes larger.
$OMEGA 1;PPVS0

$OMEGA 1;PPVslo

;RESIDUAL FOR PK

$SIGMA 0.15 FIX; CVCP

$SIGMA 1 FIX; SDCP

;RESIDUAL FOR PD

$SIGMA 10;SD

$EST MAX=9990 SIG=3 NOABORT The conditional estimation method is used here
PRINT=1 METHOD=COND  because the residual error for the disease
MSFO=base.msf  progression model is additive. The conditional
  method with interaction can also be used as well.
  Because disease progression models can run for
  extended periods of time due to complex models
  and the large databases required, the use of the

MSF fi le option is recommended. This option
  allows the job to be restarted if the minimization
  process is terminated for some reason (e.g.,
  power failures).
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is different. In the drug with a short lag time, the slope of progression is clearly 
following the untreated progression and removal of drug returns the status to the 
untreated state. However, in the case of the long lag time, the slope of progression 
appears different from that of the untreated state and removal of treatment does 
not result in a rapid return to the untreated status. In the second case with a long 
lag time, it seems likely that a drug effect model with disease modifying activity 
would describe these data. Therefore, the ability to distinguish whether or not a 
drug exhibits disease modifying activity is largely dependent on the length of time 
that the disease progression is monitored.

An example fragment of a NONMEM control stream for a linear model of 
disease progression with a symptomatic drug effect is provided in Table 21.3, and 
an example is included in the appendix.

Another example of the use of the linear disease progression model is the work 
of Kimko et al. (19), describing the recovery following an acute psychiatric episode 
of schizophrenia using the Brief Psychiatric Rating Score (BPRS). The BPRS is 
one of the most widely used rating scales in psychiatry. The scale is comprised of 
16 items rated from 0 (not present) to 6 (extremely severe). Interpretation of the 
total scores is: 0–9, not a schizoaffective case; 10–20, possible schizoaffective case; 
21 or more, defi nite schizoaffective case. Consequently, the BPRS score cannot go 
lower than 0. The application of a different function to describe recovery might 
have seemed more appropriate but was justifi ed by the model performance, which 
agreed well with the Phase 3 results from a different study.

In some cases, therefore, the linear model can be a reasonable approximation for 
disease progression when the disease is observed over a relatively short period of 
time or if the number of individuals experiencing complete recovery is limited. For 
example, the trajectory of the United Parkinson’s Disease Rating Score (UPDRS—
a measure of Parkinson’s disease) has been described using Gompertz functions 
(20), which exhibit an asymptotic increase to a maximum score. However, over 
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TABLE 21.3 Example NONMEM Code 2: Linear Model of Disease 
Progression with Symptomatic Drug Effect

Nonmem Code Explanation

$SUBROUTINE ADVAN4 Now the drug effect has been added using the effect
$PK  compartment. The PK model is still a linear
 CALLFL=-2  one-compartment model with fi rst-order input.
 IF (NEWIND.LE.1) THEN  However, a two-compartment model is being used
 D2H=24  to allow the second (peripheral) compartment
 LN2=LOG(2)  to be the hypothetical effect compartment.
 TWOPI=2*3.141592654  Note that in this case, the default TRANS is 1,
ENDIF and that is being used because we require
  an estimate of the inter compartmental transfer
  rate constants as keo.

;normalize covariates

NWT=(WT/70)

IF (WT .LE. 0) NWT=1

NAGE=AGE/50

IF (AGE .LE. 0) NAGE=1

;PK MODEL Note again that this control stream is becoming
TVCL=THETA(1)  longer. Commenting becomes essential.
CL=TVCL*EXP(ETA(1)) Once again the parameters associated with the PK
TVV=THETA(2)  model have been fi xed. Note that a parameter for
V=TVV*EXP(ETA(2))  the equilibrium half-life (TEQ) has been defi ned.
TVKA=THETA(3) The value for keo can also be defi ned.
KA=TVKA*EXP(ETA(3)) Because of the need to use the two-compartment
TVTEQ=THETA(4)  model with TRANS1 for the PK in order to use an
TEQ=TVTEQ*EXP(ETA(4))  effect compartment , microconstants have to be
 K=CL/THETA(2)  determined. In order to keep the loss of drug to
 K23=.001*K ;SET TO LOW  the effect compartment trivial, the transfer rate
VALUE SO THAT LOSS TO  constant is fi xed to a small value. The return value
EFFECT COMT IS TRIVIAL  K32 is set to LN2/TEQ and the scale parameter for
 K32=LN2/TEQ  the effect compartment is defi ned.
 S2=THETA(2)

 S3=S2*K23/K32

$ERROR Concentration (CP) and effect site concentration
 CP=A(2)/S2 (CE)are defi ned here as the ratio of A(2)/S2 and
 CE=A(3)/S3  the ratio of A(3)/S3.
;BEGIN BPRS MODEL Then the disease progression parameters are defi ned
 TVS0=THETA(5)  as before.
 S0=TVS0*EXP(ETA(5))

 TVSLO=THETA(6)

 SLOPE=TVSLO*EXP(ETA(6))

;Derived values Change the time scale again to days and calculate
 TDAY=TIME/24 ; convert  the recovery function.
  hours to days

 REC=SLOPE*TDAY

;DRUG EFFECT Now we defi ne the drug effect parameters. Here the
 TVDMAX=THETA(7)  drug effect will be described using an Emax model.
 DMAX=TVDMAX*EXP(ETA(7)) DOFF is the effect of drug.
 TVDC=THETA(8)

 DC50=TVDC*EXP(ETA(8))

 DOFF=DMAX*CE/(DC50+CE)



MODELS 559

TABLE 21.3 Continued

NONMEM Code Explanation

IF (DVID .LE. 1) THEN The appropriate residual error is determined as
 Y=CP*EXP(CVCP) + SDCP  before with the DVID fl ag. Note that now the
ELSE  drug effect DOFF is being added to the disease
;DISEASE SCORE VS TIME  score model, is a SYMPTOMATIC model for
 (days)  drug activity.
 Y=S0-REC+DOFF + SD

ENDIF

;PARAMS FOR PK Note that the TEQ has been added as have the
$THETA 20 FIX; CL  parameters for drug effect Drug effect DMAX
$THETA 70 FIX ; V2  is allowed to go negative here because for this
$THETA 0.1 FIX ; KA  example, a lower score is better. We assume that
;PARAMS FOR LAG  the drug effect is to lower the score.
$THETA (0,24,) ;TEQ

;PARAMS FOR PD MODEL

$THETA (10,50,100) ;

 POPS0 days

$THETA (0,1,100) ;

 popslo u

;PARAMS FOR DRUG EFFECT

$THETA (-INF,-.1,0)

 ;DMAX

$THETA (0,2,) ;DC50

;VARIANCE FOR PK The variance terms for the PK model were fi xed as
$OMEGA .1 FIX ; BSVCL  before. The variance terms for the PD and drug
$OMEGA .1 fix ; BSVV2  effect models are usually larger than for the PK.
$OMEGA .1 FIX ; BSVKA  Reasonable estimates for all these are usually 0.5
;VARIANCE FOR LAG  or sometimes larger. Usually the PD variance term
$OMEGA ,1 ;BSVTLAG  estimates can be updated based on the initial runs
;VARIANCE FOR PD  of the model without drug effect added in.
$OMEGA 1 ;PPVS0

$OMEGA 1 ;PPVslo

;VARIANCE FOR DRUG

 EFFECT

$OMEGA 1 ;PPVDMAX

$OMEGA 1 ;PPVDC50

;RESIDUAL FOR PK

$SIGMA 0.15 FIX ; CVCP

$SIGMA 1 FIX ; SDCP

;RESIDUAL FOR PD

$SIGMA 10 ;SD

$EST MAX=9990 SIG=3

 NOABORT

PRINT=1 METHOD=COND

MSFO=base.msf
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short intervals of time, the UPDRS can be approximated using simpler functions. 
This approximation has the obvious limitation of not being appropriate for long-
range predictions, however. Whenever a disease progression model is developed, 
the limitations of the model need to be evaluated.

21.3.2.2 Asymptotic Models of Disease Progression
The asymptotic models are so named because the models contain an inherent 
maximal or minimal value that the function slowly approaches as time increases 
(e.g., the asymptote). There have been several such models proposed for various 
disease states where there is a natural limit in the progression of disease.

Exponential Function In some cases of disease progression, such as recovery from 
an injury or some other temporary disease state, the model should be able to 
describe the improvement over time. In such cases, recovery can be approximated 
by an exponential function parameterized for the baseline status S0 and the rate 
constant of recovery kprog. The exponential function has the property of asymp-
totically approaching 0 and so is best used in situations where the severity scores 
have a minimum value of 0 or, in the case of some biomarkers, do not occur in the 
nondiseased state.

S t S e k t( ) = −
0

prog (21.5)

With the exponential asymptotic model, the effect of drug can be described as 
symptomatic or as disease modifying or as a combination of both. In the case of the 
symptomatic benefi t, as was seen with the linear model for progression, the drug 
effect, E(t), is added directly to the function for disease status.

S t S e E tk t( ) = − ( )−
0

prog (21.6)

A drug that exhibited disease modifying behavior would be expected to impact 
the rate constant of recovery by increasing that rate constant, thereby shortening 
recovery time.

S t S e k t E t t( ) = − + ( )( )
0

prog (21.7)

An example profi le for an asymptotic recovery model with and without a symp-
tomatic drug effect model is presented in Figure 21.5, and the same asymptotic 
model with and without disease modifying drug effect is presented in Figure 21.6. It 
is worth noting that the recovery time for the untreated case is much shorter than for 
other diseases. Consequently, a drug with disease modifi cation characteristics may 
offer less of a clinical advantage than one that offers rapid symptomatic benefi t.

A portion of the NONMEM code that will describe an asymptotic exponential 
disease progression model with a symptomatic drug effect model is provided in 
Table 21.4. A portion of the code for the same disease progression model with the 
drug effect described as disease modifying is provided in Table 21.5.

Several different models have been developed for applications in osteoporosis. 
An exponential model with and without linear components was evaluated by Pors 
Neilsen et al. (21) to describe changes in bone mineral density, while Pillai et al. 
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(22) investigated the use of an indirect response type model. However, it should 
be noted that the markers of disease progression in these two examples were quite 
different. In the fi rst, bone mineral density of the lumbar spine was evaluated over 
time and in the second example, the model was developed to describe the urinary 
excretion of the C-telopeptide of the A chain of type I collagen. Consequently, 
the selection of an appropriate model needs to be based on the marker of disease 
progression being described.
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FIGURE 21.5 Example profi le of asymptotic exponential model with symptomatic drug 
action.
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TABLE 21.4 Example NONMEM Code 3: Asymptotic Exponential Model of Disease 
Progression with Symptomatic Drug Effect

NONMEM Code Explanation

$ERROR In this example, we are again testing a delay
 CP=A(2)/S2  to drug effect. The approach is the same
 CE=A(3)/S3  as was shown previously, to use an ADVAN
;BEGIN DISEASE PROGRESSION  that includes an extra compartment for
MODEL  the effect site. Again, because the model
 TVS0=THETA(5)  involves the use of an ADVAN (integrated
 S0=TVS0*EXP(ETA(5))  function), the disease progression model
 TVKPROG=THETA(6)  must be defi ned in the $ERROR routine. In
 KPROG=TVKPROG*EXP(ETA(6))  this case REC, the recovery parameter, is
 REC=EXP(-KPROG*TIME)  defi ned as an exponential function.
;DRUG EFFECT Again, we defi ne the drug effect parameters.
 TVDMAX=THETA(7)  Here the drug effect will be described using
 DMAX=TVDMAX*EXP(ETA(7))  an Emax model where DOFF is the effect of
 TVDC=THETA(8)  the drug.
 DC50=TVDC*EXP(ETA(8))

 DOFF=DMAX*CE/(DC50+CE)

IF (DVID .LE. 1) THEN The appropriate residual error is determined
 Y=CP*EXP(CVCP) + SDCP  as before with the DVID fl ag. Note that now
ELSE  the drug effect DOFF is being added to the
;DISEASE SCORE VS TIME (days)  disease score model. This describes
 Y=S0*REC+DOFF + SD  symptomatic drug activity.
ENDIF

TABLE 21.5 Example NONMEM Code 4: Asymptotic Exponential Model of Disease 
Progression with Disease Modifying Drug Effect

NONMEM Code Explanation

$ERROR

 CP=A(2)/S2

 CE=A(3)/S3

;DRUG EFFECT We defi ne the drug effect parameters. Here the
 TVDMAX=THETA(5)  drug effect will be described using an Emax model
 DMAX=TVDMAX*EXP(ETA(5))  where DOFF is the effect of drug. This describes
 TVDC=THETA(6)  DISEASE MODIFYING drug activity
 DC50=TVDC*EXP(ETA(6))

 DOFF=DMAX*CE/(DC50+CE)

;BEGIN DISEASE PROGRESSION In this case REC, the recovery parameter, is defi ned
MODEL  as an exponential function. However because
 TVS0=THETA(7)  the model that is being tested involves a disease
 S0=TVS0*EXP(ETA(7))  modifying activity, the effect needs to be added
 TVKPROG=THETA(8)*(1+DOFF)  to the TVKPROG.
 KPROG=TVKPROG*EXP(ETA(8))

 REC=EXP(-KPROG*TIME)

IF (DVID .LE. 1) THEN

 Y=CP*EXP(CVCP) + SDCP

ELSE

;DISEASE SCORE VS TIME (days)

 Y=S0*REC + SD

ENDIF
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Emax Functions Another familiar asymptotic function is the “Emax” function, which 
has a natural limit Smax. The Emax model for disease progression has been used to 
describe the progression of several different disease scores that have a natural limit 
associated with the score. Anderson et al. (23) used the Emax model to describe pain 
resolution in pediatric patients and Taylor et al. (24) used this model to describe 
recovery from ischemic stroke using the National Institutes of Health Stroke Score. 
This model adequately described the trajectory of both markers of disease progres-
sion and was able to describe wide interpatient variability in disease progression 
and response.

The Emax model is a simple function to implement in NONMEM and has the 
advantage of parameterization that is reasonably familiar, making the modeling 
results relatively easy to interpret by individuals who are not familiar with modeling. 
The patient status at any time “t” is described as the sum of the baseline status S0

and some recovery function that has a maximum of Smax. The time to half maximal 
recovery is S50.

S t S
S t

S t
( ) = +

+0
50

max (21.8)

For situations where the change in disease status over time is rapid, a Hill coef-
fi cient can be included. In addition to the Emax function, which has an asymptotic 
increase, an “Imax” function can also be used, which describes an asymptotic reduc-
tion in disease score over time. Like the exponential function, the Imax function will 
asymptotically approach a value of 0.

As with all the previous functions, drug effect can be included as symptomatic, 
disease modifying, or a combination of both. Symptomatic drug action is simply 
added to the function. For disease modifying agents, the drug activity can now be 
tested on Smax and S50. In the fi rst case, the drug activity works to improve (increase 
or decrease, as appropriate) the maximum limit of the function for a patient as 
compared to placebo and in the second case, the drug acts to reduce (or increase, 
again as appropriate) the time to reach the maximum status.

S t S
S E t t

S t
( ) = +

+ ( )( )
+0

50

1max (21.9)

S t S
S t

S E t t
( ) = +

+ ( )( )0
50 1

max (21.10)

A plot of a disease progression model using the Emax function is provided in 
Figure 21.7. In this fi gure both the treated and untreated curves are provided. 
Again, the symptomatic improvement is clear because when drug exposure is dis-
continued, the Disease Severity Score returns to the pretreated trajectory.

A plot of the same Emax disease progress model with a disease modifying drug is 
presented in Figure 21.8. In this case, as was seen previously, the drug effect persists 
even after the treatment is discontinued.

An example NONMEM control stream for an asymptotic Emax model is provided 
in Table 21.6. In this code, either patients recover following an asymptotic Emax func-
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tion that maximizes at the predisease score or they decline and do not recover. The 
use of a mixture model for situations where patients can either improve or worsen 
is one way to handle a dichotomous situation. However, if a mixture model is used, 
it is generally preferable to investigate covariates on the probability that patients 
will worsen. The application of covariate functions to mixture models is presented 
in Chapter 28 and will not be addressed in this chapter.

Nonzero Asymptotic Function In addition to the exponential and Emax models, 
there are other functions that can describe an asymptotic change in disease score 
severity over time. Consider a disease severity score such as the Unifi ed Parkinson’s 
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FIGURE 21.7 Example profi le of asymptotic Emax disease progression model with symp-
tomatic drug action.
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TABLE 21.6 Example NONMEM Code 5: Asymptotic Emax Model of 
Disease Progression

NONMEM Code Explanation

$PRED This example is a basic disease progression
;Derived values  model with an Emax component used
 TDAY=TIME/24 ; convert hours  to describe only the change in disease

to days  severity over time. Consequently, the
 IF (MIXNUM.EQ.1) THEN  model can be handled using $PRED
 TV50=THETA(2)  rather than the $PK.
 EC50=TV50*EXP(ETA(4)) The control stream is used to describe
 RATE=(EC50*TDAY)  a situation where patients can either
ELSE  improve or worsen over time, a situation

  that can follow catastrophic disease or
  accident.
 TVREC=THETA(3) Here the mixture model is set to describe
 TV50=THETA(4)  a steady linear decline when patients
 REC=TVREC*EXP(ETA(1))  worsen over time and an Emax model for
 EC50=TV50*EXP(ETA(2))  patients who improve. The selection of
 RATE=(REC*TDAY)/(EC50+TDAY)  the Emax model was based on the fact
  that the disease severity score had a
  natural maximum.
 ENDIF When a mixture model is used for this
 EST=MIXEST  context, it is necessary to defi ne a
  common parameter (RATE) that describes
 S0=THETA(5)*EXP(ETA(3))  the change in severity score over time
  regardless of the function that is assigned
  to the patient.

;DISEASE SEVERITY SCORE VS As per the defi nition, this function will
TIME (days)  either be a linear function or an Emax

 Y=S0+RATE +ERR(1)  function. RATE is calculated earlier.

$MIX ;determines fraction of This is the standard mixture model
patients responding versus  subroutine for two populations.

 declining

 NSPOP=2

 P(1)=THETA(1)

 P(2)=1-P(1)

$THETA (0,.5,1) ; PRDIE Setting the initial estimates for these
$THETA (0,25,100) ;POPSLOPE  models involves evaluating the
$THETA (-INF, -2,) ; POPIMAX days  percentage of subjects in each group
$THETA (0,3,100) ;POPIC50  and investigating the raw data for initial
$THETA (0,10,100) ; POPS0 u  estimates. In some cases, it is necessary
$OMEGA BLOCK(3)  to rerun the model after the fi rst run in
 0.1 ;PPVREC  order to improve the initial estimates.
.01 1.5 ;PPVEC50

.01 .01 0.1 ;PPVINT

$OMEGA .1 ;ppvslop

$SIGMA 1 ;SD

$ESTIM MAXEVAL=9990 PRINT=10 SIG=3

METHOD=CONDITIONAL SLOW

$COV
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Disease Rating Score (UPDRS), which has a natural maximum value. A maximum 
total of 199 points is possible on the UPDRS system. A score of 199 represents the 
worst possible disease status and a score of 0 indicates that the patient has no dis-
ability. In this setting, where the scoring system has an inherent maximum value, 
another exponential model can be considered.

S t S e S ek t
SS

k t( ) = + −( )− −
0 1prog prog (21.11)

In this equation, Sss is the maximum limit of the disease severity score, S0 is the 
baseline value, and kprog is the rate constant of progression. Symptomatic drug action 
can be added directly to the function and, as was seen with the Emax model, functions 
for disease modifying drug action can be implemented on more than one parameter. 
With this function, the drug may act to lower Sss, or it may act to slow kprog. A plot 
of this asymptotic function is provided in Figure 21.9. In this fi gure, the untreated 
progress is shown along with symptomatic and disease modifying drug effects.

Inverse Bateman The inverse Bateman function describes transient recovery 
from a baseline disease severity score, followed by reoccurrence of the disease, 
and is also useful for describing diseases that exhibit cyclical episodes. The function 
can also be implemented to describe a transient placebo response when warranted. 
For example, Holford et al. (25) used the inverse Bateman function to describe the 
time course of depression in placebo-treated patients. This model was selected for 
this work in part because of the transient response seen in placebo-treated patients 
and in part because of the cyclical nature of the disease where patients would be 
expected to improve and worsen over the course of treatment. Therefore, the 
fi rst exponential process describes the recovery phase and the second exponential 
process is used to account for onset of disease in the next episode.
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FIGURE 21.9 Example profi le of asymptotic disease progression model with all forms of 
drug action.
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HAMD t S
D K

K K
K t K t( ) = −

−
−( )0

rec rec

rec on
on recexp (21.12)

In this function, S0 is the baseline severity score, krec is the rate constant of recovery, 
kon is the rate constant of relapse, and Drec is a scale parameter refl ecting the ampli-
tude of improvement during recovery. Drug action can be treated again as being 
symptomatic or disease modifying. In the latter case, the drug can act to decrease 
the onset rate constant, to increase the offset rate constant, or to increase the ampli-
tude of improvement. A plot of the inverse Bateman disease progress model for an 
untreated state and a treated state where the drug exhibits symptomatic benefi t is 
provided in Figure 21.10. An example portion of a NONMEM control stream for 
this model is provided in Table 21.7.

Cosson and Gomeni (26) used a different structural model to describe the time 
course of depression. These authors used an indirect response model, as this func-
tion also provides a means of describing a transient response and ensuing relapse. 
In the case of depression, the drug would be postulated to transiently alter the rate 
constants of onset or offset of disease, thereby providing therapeutic benefi t. The 
selection of an indirect response type model seems appropriate since the mecha-
nism of most antidepressant drugs is presumed to be due to an inhibitory effect on 
serotonin reuptake. The model performed well and has a good physiological basis 
for application. However, for situations where population-based modeling is being 
conducted, the use of integrated functions can offer shorter run times.

Cyclical Modifi cation of Inverse Bateman Function A cosine function can be used 
to describe patterns similar to the exponential and inverse Bateman models and can 
therefore be used as the function for disease progress. However, this same cosine 
function can also be used to impose a cyclical modulation on another function.

S t Disease progress t SADamp Time Phase( ) = ( ) + ⋅ ⋅ −( )⎛
⎝

⎞
⎠cos

2
12
π

(21.13)
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FIGURE 21.10 Example profi le of inverse bateman disease progression model with symp-
tomatic drug action.



TABLE 21.7 Example NONMEM Code 6: Inverse Bateman Model of Disease 
Progression with Symptomatic Drug Effect

NONMEM Code Explanation

$SUBROUTINE ADVAN4 As was done previously, this example control
$PK  stream calls a two-compartment model in
CALLFL=-2  order to use the peripheral compartment as
;PK MODEL  the effect compartment. This provides an
TVCL=THETA(1)  empirical means of describing a delay in the
PPVCL=ETA(1) onset of effect of drug. The fi rst portion of
CL=TVCL*EXP(PPVCL) the control stream then defi nes the PK
TVV2=THETA(2) parameters.
PPVV2=ETA(2)

V2=TVV2*EXP(PPVV2)

TVKA=THETA(3)

PPVKA=ETA(3)

KA=TVKA*EXP(PPVKA)

 TVTEQ=THETA(4) This section defi nes the parameters for the
TEQ=TVTEQ*EXP(ETA(4))  effect compartment and provides the
K=CL/V2 parameters in microconstants as is needed
K23=.001*K;SO THAT LOSS  for the TRANS1.
 TO EFFECT COMT IS TRIVIAL

K32=LN2/TEQ

S2=V2

S3=S2*K23/K32

$ERROR Again, because this control stream uses an
CP=A(2)/S2 ADVAN to evaluate the pharmacokinetics, the
CE=A(3)/S3  functions for disease progression and drug
;BEGIN HAMD MODEL  action must be defi ned in the $ERROR routine.
TVS0=THETA(5) Plasma and effect site concentrations are
S0=TVS0*EXP(ETA(5)) defi ned as well.
TVDREC=THETA(6)

DREC=TVDREC*EXP(ETA(6))

TVKREC=THETA(7)

KREC=TVKREC*EXP(ETA(7))

TVKON=THETA(8)

KONS=TVKONS*EXP(ETA(8))

;Derived values A derived time scale (days) is done to improve
TDAY=TIME/24; convert hours  numerical stability and to put the rate
to days  constants into more understandable units.

EXPKO=EXP(-KONS*TNOW)  The exponential functions for the inverse
EXPKR=EXP(-KREC*TNOW) Bateman function are calculated.
FREC=KREC/(KREC-KONS)

 *(EXPKO-EXPKR)

;Drug effect Drug effect parameters are calculated here.
TVEM=THETA(9)

EMAX=TVEM*EXP(ETA(9))

TVEC=THETA(10)

EC50=TVEC*EXP(ETA(10))

EOFF=EMAX*CE/(EC50+CE)

IPRED=F Again, the DVID serves as a fl ag to distinguish
IF (DVID .EQ. 1) THEN  concentration records from disease score
Y=CP*EXP(ERR(1)) + ERR(2)  records. The disease progression model and
ELSE symptomatic drug effect models are
;HAMD SCORE VS TIME (days)  combined under the appropriate DVID fl ag.
Y=S0-DREC*FREC + EOFF + ERR(3)

ENDIF
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In this equation, the disease progression model is evaluated at any time t and the 
cosine function is added to the overall disease progression model to determine the 
status. Here, SADamp and Phase defi ne the amplitude of the underlying cyclical 
change in disease severity score and the time to the maximum worsening of that 
score. A plot of an inverse Bateman function with a cyclical component is provided 
in Figure 21.11.

21.3.2.3 Models for Growth Kinetics
Growth functions comprise an important class of functions that can be applied to 
various aspects of disease progression. These functions were developed to describe 
bacterial and tumor growth and are still used for these applications (27–29). 
However, other markers of disease progression can also, in some cases, be described 
using a growth function. A simple function that can be used to describe the growth 
of a response R over time is

dR
dt

k R k R= −growth death (21.14)

In this function, kgrowth is the growth constant for the response (R) and kdeath is the 
rate constant of loss of response. Disease modifi cation can be added to inhibit kgrowth

or to stimulate kdeath, resulting in enhanced loss of response. Symptomatic drug 
effect is somewhat less common in these models but can be added as a loss term. 
A plot of the simple growth function with disease modifying activity is provided in 
Figure 21.12.

It should be noted that in cases where the cell population is reduced to zero, the 
model exhibits curative properties as regrowth of the cells cannot occur since the 
growth rate is a fi rst-order rate depending on an existing population.
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FIGURE 21.11 Example profi le of cyclical inverse bateman disease progression model with 
symptomatic drug action.
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Gompertz Functions Another series of functions frequently used to describe 
growth kinetics are the Gompertz functions (30). Gompertz functions describe a 
rapid initial rate of growth, followed by a slower asymptotic phase of growth to a 
fi nite limit. As a consequence of their properties, Gompertz functions have been 
used to describe the pharmacodynamics of antibacterial agents (31), as well as 
other systems in which growth kinetics are important. These functions have also 
been applied to describe the time course of Parkinson’s disease (20). A simple 
Gompertz growth function is shown below, and a plot of this function is provided 
in Figure 21.13.

dR
dt

R R k R= −( ) − [ ]β βmax death (21.15)

In this equation, R is the response, b is the growth rate constant, bmax is the 
maximum limit for the response, and kdeath is the rate constant of loss of R. The 
Gompertz function differs from the simple growth function not only in the chang-
ing growth rate, but also in that it has a maximum value above which growth will 
not occur. In this fashion, the Gompertz function is also an asymptotic function. 
Like the simple growth function, the model can describe curative behavior if the 
cell population is brought to zero.

Because this class of functions has been used extensively to model cell growth 
kinetics, these functions can be modifi ed to describe subpopulations of cells. The 
equations below describe a Gompertz growth model that has been modifi ed to allow 
cells to oscillate between a therapeutically sensitive state (RS) and a resistant state 
(RR). The same modifi cation can also be made to the simple growth model (28).

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35

Time (Days)

D
is

e
a

s
e

 S
e

v
e

ri
ty

 S
c

o
re

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

n
c

e
n

tr
a

ti
o

n

Untreated Status Treated Status Drug Concentrations
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dR
dt

k R R R k
E C

EC C
ks

RS R S S SR
p

p

= + −( ) − + +
+

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣

β βmax
max1
50

death⎢⎢
⎤
⎦⎥

= −

R

dR
dt

k R k R

S

SR
SR S RS R (21.16)

This adaptation of the Gompertz growth function allows for the sensitive cell 
population to reach zero but will then show delayed regrowth in both sensitive and 
resistant cell populations as the resistant cell population continues to grow and then 
transfers to the sensitive cell type.

Transit Models The development of indirect effect models (32) facilitated the 
evaluation of many disease-mediated processes such as changes in biomarker levels 
over time. Control streams and example databases for these models are presented 
elsewhere in Chapters 22 and 23 and will not be covered here. However, as was 
discussed, when applying these indirect response models, it is possible to increase 
the delay in response by the addition of extra compartments. The addition of 
these extra effect compartments also creates additional parameters that need to be 
estimated, which are often not identifi able.

In 1998, Sun and Jusko (33) investigated the use of transit compartments and 
gamma distribution functions to describe delayed effects and found the behavior of 
the transit compartment models acceptable for describing PD observations. In 2000, 
Friberg et al. (34) utilized the transit model to estimate a mean transit time over the 
course of white blood cell maturation and to describe the time course of neutropenia 
following chemotherapy. The model includes a feedback on the synthesis rate for 
new cell formation based on the observed white cell count. It has since been used 
to evaluate the neutropenic activity of many other chemotherapeutic agents (35) 
and can also be used to describe the time course of the effect of administration of 
exogenous hematopoietic factors (36), as is shown in Figure 21.14.
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FIGURE 21.14 Example profi le of cell transit model with disease modifying drug action.
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FIGURE 21.15 Example profi le of modifi ed cell transit model with disease modifying 
drug action.

A modifi cation of the cell transit model used to describe white blood cells is 
required when modeling the time course of red blood cell growth such as for anemia 
(37). In the case of describing the time course of slow growing cells, the cell count 
can be taken to be the sum of all the component transit compartments, which 
approximates the lifespan models proposed by Krzyzanski and Jusko (38) and was 
used to describe the effects of exogenously administered erythropoietin (39). The 
model proposed by Kryzanski and Jusko was based on the theory that cells have a 
fi xed lifespan. Therefore, the rate of elimination of cells at any given time is depen-
dent on the number of cells formed one lifespan ago. The modifi ed cell transit model 
described here approximates the lifespan function but does not require that the cell 
lifespan is fi xed. A plot of this modifi ed function is provided in Figure 21.15. This 
function shows a slow onset and offset of effect of a disease modifying drug action. 
An example portion of the NONMEM control stream required to implement this 
model is provided in Table 21.8.



TABLE 21.8 Example NONMEM Code 7: Modifi ed Cell Transit Model Approximating 
a Cell Lifespan

$SUBR ADVAN6 TRANS 1 TOL 6 Because this model cannot be expressed as an
$MODEL  integrated function, differential equations
COMP XPO1 ;1 EPO CENTRAL CMT  must be used. The selection of the
COMP RBC1 ;2  appropriate ADVAN (e.g., ADVAN 6, 8, or 9)
COMP RBC2 ;3  should be examined carefully. It is not
COMP RBC3 ;4  possible to determine a priori if a set of
COMP RBC4 ;5  equations is stiff. Therefore, all ADVANs
COMP RBC5 ;6  should be tested at least initially. Selection
  should be based on run times and
  minimization status. It should be noted that
  the selection of TOL should be such that it
  is at least as large as NSIG to improve
  chances of successful minimization. The
  compartments are defi ned here as well.

$PK $PK is used because this is an ADVAN based
“FIRST  model. Verbatim code has been added (as
“ COMMON /PRCOMG/ IDUM1, IDUM2,  seen by the double quotes starting the
IMAX lines) to increase the maximum number of

“ INTEGER IDUM1,IDUM2,IMAX  iterations. The NEWIND serves to defi ne
“ IMAX=500000  some values and calculations that are used
IF (NEWIND.LE.1) THEN  repeatedly. For such calculations, it is best
LN2=LOG(2)  to do these as little as possible to minimize
D2H=1/24 run time.
NRBC=5

ENDIF

;RBCTC AND RINNPO The parameters are defi ned next. First defi ned
EMXRRBC=THETA(1)*EXP(ETA(1))*D2H  is the rate of hemoglobin formation as a
C5XPRBC=THETA(2)*EXP(ETA(2))  nonlinear function. Then the rate of
HILL=THETA(3)  endogenous erythropoietin is defi ned.
C5H=C5XPRBC**HILL Because the cell growth is so slow for some
; DISEASE PROGRESS  cell types, it is often numerically more
RINNPO=THETA(4)*EXP(ETA(3))  stable to defi ne the transfer rate constants
KRBC=1/(THETA(5)*EXP(ETA(4)))*D2H  as mean residence times (which are larger
KRBCN=KRBC*NRBC  numbers) and then let the rate constant
;EPO PK  be 1/MRT as is done here. In addition,
PPVCL=ETA(5)  certain diseases such as renal failure can
PPVV1=ETA(6)  result in reduction in loss of synthesis of
PPVTA=ETA(7)  endogenous epoetin. This loss of synthesis
CLXPO=THETA(6)*EXP(PPVCL)*D2H may need to be accounted for in the model.
V1XPO=THETA(7)*EXP(PPVV1) For the red blood cell lifespan, several factors
TABS=THETA(8)/D2H*EXP(PPVTA) must be defi ned. The fi rst is the effect that
D1=TABS ; ZERO ORDER DURATION  both endogenous and exogenous growth
FOR factors might have on the cell lifespan and

EXOGENOUS EPO INPUT  therefore the numbers.

MODELS 573
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TABLE 21.8 Continued

S1=V1XPO The pharmacokinetics of exogenously
;PD  administered hematopoietic factors are
CNPO=RINNPO/CLXPO defi ned and are scaled to days. Again,
IF (CNPO.GT.0) THEN  the use of a longer interval of time (days
CNPH=CNPO**HILL or weeks) is done for numerical stability
ELSE because the PD processes are quite slow in
CNPH=0 some systems. Therefore the PD
ENDIF  parameters would be quite small if time
RRBC0=EMXRRBC*CNPH/(C5H+CNPH)  were left in hours.
RBC0=RRBC0/KRBC ; BASELINE RBC A steady-state concentration of endogenous
DEPENDENT ON ENDOGENOUS EPO  erythropoietin is assumed and the
; INITALIZE RBC CHAIN  pharmacokinetics of endogenous and
F2=RBC0/NRBC exogenous hematopoietic factors are
F3=F2  assumed to be the same. This assumption
F4=F2 is not always correct, however, and should
F5=F2  be verifi ed.
F6=F2 The baseline synthesis of RBCs is assumed to
  be based on the endogenous erythropoietin.
  Again, synthesis is assumed to be nonlinear
  with a maximum synthesis. It should be
  noted that this control stream does not
  have a feedback for increasing the
  production of endogenous hematopoietic
  factors.
 Finally, the compartments for red blood cells
  are initialized. The fi rst compartment is set
  to the ratio of the rate of red blood cells
  being formed over a fi xed normalized value.
  Because the other compartments are
  transit compartments, they are assumed to
  have the same initial conditions at steady
  state.
$DES Then the differential equations are set up.
DC1XPO=A(1)/V1XPO The total concentration is assumed to be the
;TOTAL EPO CONC IS EXOGENOUS  sum of endogenous and exogenous
PLUS erythropoietin. The rate of RBC formation

ENDOGENOUS  is determined based on a nonlinear function
DCXPO=DC1XPO+CNPO  that requires the sum of both.
IF (DCXPO.GT.0) THEN The fi rst equation is for the pharmacokinetics
DCXPH=DCXPO**HILL of exogenous erythropoietin. Then the
ELSE RBC chain is developed. Note that the
DCXPH=0  rate constant KRBCN is the same for all
ENDIF compartments, as it is for the models of
DRRBC=EMXRRBC*DCXPH/(C5H+DCXPH)  white blood cells.
;XPO

DADT(1)=-CLXPO*DC1XPO

;RBC CHAIN

DADT(2)=DRRBC—KRBCN*A(2)

DADT(3)=KRBCN*(A(2) – A(3))

DADT(4)=KRBCN*(A(3) – A(4))

DADT(5)=KRBCN*(A(4) – A(5))

DADT(6)=KRBCN*(A(5) – A(6))



TABLE 21.8 Continued

$ERROR The concentration for exogenous
C1=A(1)/V1XPO  erythropoietin is defi ned again for the
;TOTAL EPO CONC IS EXOGENOUS $ERROR. It must be defi ned using a different
PLUS name than in $DES.

ENDOGENOUS Again the total concentration of
CXPO=C1 + CNPO  erythropoietin is the sum of
;RBC IS SUM OF ALL AMOUNTS  endogenous and exogenous concentrations
IN EACH OF THE  of hematopoietic factors. Here the

RBC CHAIN COMPARTMENTS  evaluation for red blood cells differs
RBC=A(2)+A(3)+A(4)+A(5)+A(6)  from the white blood cell transit model.
  Unlike the white blood cell model,
  hemoglobin is taken as the sum of all
  compartments.

 IF (DVID.EQ.1) THEN ; EPO OR Finally, the functions are evaluated and
ENDOGENOUS EPO CONC  residual error is estimated.
DVXD=2

ADDXPO=THETA(10)

PROXPO=CXPO*THETA(9)

;BSVRUV IS USED TO DESCRIBE

 INDIVIDUAL

RUV

W=SQRT(PROXPO*PROXPO +

ADDXPO*ADDXPO)*EXP(ETA(8))

Y=CXPO + W*ERR(2)

ENDIF

IF (DVID.EQ.2) THEN ; RBC CONC

Y=RBC + ERR(1)

ENDIF

$EST MAX=9990 NSIG=6 PRINT=1 Note here that NSIG is 6, which is why TOL
 NOABORT  had to be set so high. In the initial runs,
METHOD=COND INT NSIG and TOL may be lowered to improve
  the initial estimates.
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21.4 SUMMARY

As was discussed in the introduction to this chapter, one of the main reasons 
for developing models for disease progression and drug activity is to answer the 
interesting questions of how the drug works in patients and how to appropriately 
determine a starting dose. These models provide information that is important for 
the approval process for the drug and can be used as supportive evidence of activity 
(40) when only one pivotal trial of effi cacy is conducted.

Disease progression models are used to provide information about how to use 
the drug in practice and can be used in simulation studies to investigate alternative 
dose regimens. In Figure 21.16, for example, the consequences of alternate dose 
strategies were investigated for a hypothetical disease modifying agent. The same 



576 DEVELOPING MODELS OF DISEASE PROGRESSION

total dose of a hypothetical agent was administered in these nonstochastic simula-
tions to examine increasing dosing intervals. As can be seen, however, the effect 
of drug is diminished by increasing the dose interval even though the drug exhibits 
linear pharmacokinetics in this example. Such a fi nding is consistent with schedule 
dependence, suggesting that the administered dose in the more frequent interval is 
providing nearly maximal benefi t and that the additional drug given for the longer 
dose interval is largely inactive due to saturation of the response. Evaluation of the 
model using simulation is faster and less expensive than running clinical trials.

Other uses for a disease progression model include selection of appropriate 
designs to assess disease progress and drug action. For example, clinical trial simu-
lation based on a disease progression model was used to design a study to evaluate 
the effect of levodopa on the progression of Parkinson’s disease (41). In particular, 
the model was used to help ensure that the washout period for active treatment 
was suffi ciently long to determine if levodopa was disease modifying or provided 
only symptomatic benefi t.

The development of disease progression models requires that appropriate 
assumptions be made and those assumptions should be based on the clinical phar-
macology of the drug as well as the disease. In order to ensure that the model 
assumptions are reasonable, it is important to learn about the disease, the markers 
used to describe its time course, and other aspects of clinical care of these patients. 
In short, a team-based approach to the development of disease progression models 
is generally a good idea. Once developed, these models should be evaluated to 
determine how well the response surface is estimated and to what extent the model 
can be used to interpolate and to extrapolate. It is essential that good model build-
ing practices and careful evaluation of the model performance be conducted during 
this exercise.
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APPENDIX 21.1 EXAMPLE FOR THE SIMPLE LINEAR DISEASE 
PROGRESSION MODEL

$PROB PLACEBO AND ACTIVE PK AND OUTCOME

$INPUT READ NOTE=DROP ID DATE=DROP TIME DV DVID

AMT ADDL II MDV EVID

$DATA ..\CH21EXAMPLE01.csv WIDE IGNORE #

;The data file is the Excel spreadsheet named CH21EXAMPLE01.csv

$SUBROUTINE ADVAN4

$PK

 CALLFL=-2

 IF (NEWIND.LE.1) THEN

  D2H=24

  LN2=LOG(2)

  TWOPI=2*3.141592654

  DOSE=0

 ENDIF

 IF (AMT .NE. 0) DOSE = AMT

;PK MODEL

 TVCL=THETA(1)

 CL=TVCL*EXP(ETA(1))

 TVV2=THETA(2)

 V2=TVV2*EXP(ETA(2))

 TVTEQ=THETA(4)

 TEQ=TVTEQ*EXP(ETA(8))

EXAMPLE FOR THE SIMPLE LINEAR DISEASE PROGRESSION MODEL 579
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 K=CL/V2

 K23=.001*K ;SO THAT LOSS TO EFFECT COMT IS TRIVIAL

 K32=LN2/TEQ

 S2=V2

 S3=S2*K23/K32

 TVKA=THETA(3)

  KA=TVKA*EXP(ETA(3))

$ERROR

 CP=A(2)/S2

 CE=A(3)/S3

;BEGIN HAMD MODEL

 TVS0=THETA(7)

 TVSLOP=THETA(8)

 S0=TVS0*EXP(ETA(4))

 SLOPE=TVSLOP*EXP(ETA(5))

;DERIVED VALUES

 TDAY=TIME/D2H ; CONVERT HOURS TO DAYS

 REC=S0-SLOPE*TDAY

;DRUG EFFECT

 TVEM=THETA(5)

 EMAX=TVEM*EXP(ETA(6))

 TVEC=THETA(6)

 EC50=TVEC*EXP(ETA(7))

 EOFF=EMAX*CE/(EC50+CE)

IPRED=F

IF (DVID .EQ. 1) THEN

   Y=CP*EXP(ERR(1)) + ERR(2)

ELSE

;HAMD SCORE VS TIME (DAYS)

   Y=REC+EOFF + ERR(3)

ENDIF

;PARAMS FOR PK

$THETA (20) FIX; CL

$THETA (100) FIX ; V2

$THETA (.1) FIX ; KA

$THETA (96) ; TEQ

;DRUG EFFECT PARAMS

$THETA (6.79) ;EMAX

$THETA (80,) ;EC50

;PARAMS FOR HAMD MODEL

$THETA (24) ; POPS0 DAYS

$THETA (0.31) ; POPSLO



;VARIANCE FOR PK

$OMEGA .1 FIX; PPVCL

$OMEGA .1 FIX; PPVV2

$OMEGA .1 FIX ; PPVKA

;VARIANCE FOR HAMD

$OMEGA 0.2 ;PPVS0

$OMEGA 0.5 ;PPVSLO

;VARIANCE FOR DRUG EFFECT

$OMEGA 0.6 ;PPVEM

$OMEGA 0.8 ;PPVEC

$OMEGA .5 ;PPVTEQ

;RESIDUAL FOR PK

$SIGMA 0.1 FIX ; CVCP

$SIGMA 1 FIX ; SDCP

;RESIDUAL FOR HAMD

$SIGMA 1 ;SD

$EST MAX=9990 SIG=3 NOABORT PRINT=1

METHOD=COND

MSFO=example_run.msf

$TABLE ID TIME CP CE EMAX EC50 TEQ

EOFF DVID Y

NOPRINT ONEHEADER FILE=example_run.fit

EXAMPLE FOR THE SIMPLE LINEAR DISEASE PROGRESSION MODEL 581
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22.1 INTRODUCTION

Over the last several years, pharmacokinetric/pharmacodynamic (PK/PD) modeling 
has gained increasing importance in its application to drug development. A major 
reason for this is the progress made in the identifi cation of pharmacodynamic 
markers (i.e., “biomarkers”) of drug response that can be measured easily and the 
development of mechanism-based PK/PD models that allow one to quantify and 
predict drug effects under different dosages or physiologic conditions. In some 
cases, mechanism-based modeling has even provided useful insights into the pos-
sible mode of action of drugs (1, 2).

One of the earliest examples of a mechanism-based PK/PD model was the 
model developed for the indirect anticoagulant effect of warfarin (3). The model 
accounted for the delay observed between the plasma concentrations of warfarin 
and the anticoagulant effect and described the linear relationship between warfarin 
concentrations and its direct effect on the synthesis rate of vitamin K-dependent 
clotting factors.

Jusko (4, 5) described pharmacodynamic (PD) models for cell proliferation and 
irreversible effects of chemotherapeutic agents. These models and others using 
similar concepts are reviewed in Chapter 23.

Dayneka et al. (6) characterized the four basic indirect response models—the 
fi rst set of mechanistic PK/PD models to describe a diverse array of drug responses. 
Shortly thereafter, the importance (7) and initial applications (8, 9) of these models 
were described using data obtained from the literature. Since then, numerous appli-
cations and advancements of these models have been published.

The development of mechanistic models for viral dynamics in the last decade 
has played an important role in the understanding of pathogenesis of viral diseases 
such as human immunodefi ciency virus (HIV) (10–12), hepatitis B virus (HBV) 
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(13, 14), and hepatitis C virus (HCV) (1, 15–17). However, PK concepts have been 
incorporated into these models only in last few years (2, 17, 18).

In this chapter, we review the basic concepts and their applications of these 
models. The implementation of these models using WinNonlin® (Pharsight Corpo-
ration, Mountain View, CA) and/or NONMEM® (GloboMax LLC, Ellicott City, 
MD) is provided in the appendix to this chapter.

22.2 INDIRECT RESPONSE MODELS

The term “indirect response” refers to a PD response that is produced by a drug’s 
action on the production or dissipation of endogenous factors that affect the 
response. Thus, the measured response is indirectly related to the direct effect 
produced by the drug at the site of action: for example, the reduction in pain by 
the inhibitory action of nonsteroidal anti-infl ammatory drugs on the production of 
endogenous pain mediators.

22.2.1 Basic Models of Indirect Response

In the simplest scheme, the rate of change of the response when no drug is present 
is described by the following equation (6):

dR
dt

k k R= −in out (22.1)

where kin represents the zero-order rate constant for production of response, R, and 
kout is the fi rst-order rate constant for the loss of response variable. The response 
variable R may be a directly measured entity or an observed response, which is 
immediately proportional to the concentration of R. As the system is assumed to 
be stationary for these models, the response variable (R) begins at a predetermined 
baseline value (R0), changes with time following drug administration, and eventually 
returns back to R0. Thus, kin = koutR0.

In the basic models, four possible permutations of the response have been char-
acterized (6) involving either the inhibition or stimulation of kin or kout to account for 
the most commonly expected types of responses (see Figure 22.1). The inhibitory 
function, I(t), and the stimulatory function, S(t), can be described as

FIGURE 22.1 Schematic of the four basic models of indirect response. The solid bars rep-
resent inhibition and the open bars represent stimulation of the input and output functions. 
(Adapted from Ref. 50.)

Model I III II IV

Response
(R)

kin kout
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I t
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50

(22.2)

S t
E C

C EC
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+
1

50

max (22.3)

where C represents the plasma concentration of the drug as a function of time, 
IC50 (or EC50) is the drug concentration that produces 50% of maximum inhibition 
(or stimulation, in case of EC50) achieved at the site of effect, and Emax represents 
the maximum effect attributed to the drug. A Hill coeffi cient, g, can be added for 
modeling the sigmoidicity, where needed.

In Eq. (22.2), it is assumed that at high doses of the drug, a complete inhibition 
of kin or kout is achieved. For some drugs, kin or kout may not be completely inhib-
ited at high doses. In this case, a modifi cation of models I and II, that includes the 
maximum inhibition (Imax), can be made (19, 20):

I t
I C

C IC
( ) = −

+
1

50

max (22.4)

where 0 < Imax ≤ 1. The four models are described next.

22.2.1.1 Model I: Inhibition of the Production of Response Mediator

dR
dt

k I t k R= ( ) −in out (22.5)

Model I has been applied to a wide variety of drug responses, such as the reduc-
tion of fever (8, 20) or pain (19) by anti-infl ammatory drugs, anticoagulant action 
of warfarin (3, 9), reduction in blood sorbitol levels by inhibitors of aldose reduc-
tase (21), cortisol suppressive effects of corticosteroids (22), luteinizing hormone 
suppression by the synthetic hormone cetrorelix (23), reduction in the levels of 
tumoral phospho-EGFR (epidermal growth factor receptor) by cetuximab (24), 
inhibition of dihydrotestosterone (25), the suppression of T-lymphocyte infl ux into 
the blood by corticosteroids (26), and the acid-inhibitory effects of H2-receptor
antagonists (27).

22.2.1.2 Model II: Inhibition of the Dissipation of Response Mediator

dR
dt

k k I t R= − ( )in out (22.6)

This model has been applied to the inhibition of cholinesterase (9), the inhibition of 
water reabsorption by loop diuretics such as furosemide (9), tryptophan-mediated 
increase in hepatic activity of tryptophan pyrrolase (28), and the accumulation of 
lymphocytes in the peripheral lymphoid tissues by prednisolone (26).

22.2.1.3 Model III: Stimulation of the Production of Response Mediator

dR
dt

k S t k R= ( ) −in out (22.7)
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This model has been applied to the induction of MX protein by interferon 
alfa-2a (29), bronchodilatory effect of b2-adrenergic agonists (9), induction of pro-
lactin secretion by H2-receptor antagonists (9) or by dopamine antagonists (30, 
31), hydrocortisone-mediated stimulation of hepatic tryptophan pyrrolase activity 
(28), stimulation of the secretion of growth hormone by growth hormone releasing 
peptides (32), induction of neutrophil production by drugs such as prednisolone 
(33), and the stimulation of the production rate of CD34+cells by CXCR4 antago-
nist (34).

22.2.1.4 Model IV: Stimulation of the Dissipation of Response Mediator

dR
dt

k k S t R= − ( )in out (22.8)

Model applications include terbutaline’s effect on lowering plasma potassium levels 
(9, 35) and stimulation of the factors controlling heat loss by the antipyretic effect 
of nonsteroidal anti-infl ammatory drugs (36).

Figure 22.2 shows typical response–time profi les obtained from simulation for 
increasing doses of a hypothetical drug. In each of the models, a slow increase or 
decrease of response is seen, until the maximum response (Rmax) is reached. This is 
followed by a gradual return of the response to baseline when the drug is discontin-
ued. The maximum response lags behind the maximum plasma concentration of the 
drug (Cmax) and the drug response lasts beyond the presence of effective concentra-
tions in the plasma. The maximum response and the time of maximal response are 
dependent on the dose, Imax (or Emax) and IC50 (or EC50). The basic properties and 
signature patterns of each of the four models were examined by Sharma and Jusko 
(37, 38) and Krzyzanski and Jusko (39) and may be helpful in experimental designs 
and in assigning appropriate models to the data.

When the hypothetical effect-compartment model (40) is applied to such data, 
the model is usually quite good when fi tted to the drug response at individual doses; 
however, the model parameters are often dose-dependent and the model does a 
poor job when fi tted to data from several doses simultaneously (6, 28). The utility of 
the hypothetical effect-compartment model in predicting responses at other doses, 
therefore, is limited.

22.2.2 Natural Cell Lifespan Models

Indirect response models have been extended to drugs that alter the generation of 
natural cells (41). Unlike cancerous cells and embryonic stem cells, the lifespan of 
primary human cells is fi nite. Thus, cells live for a specifi c duration known as the cell 
lifespan and then undergo apoptosis (programmed cell death). Cell lifespan models 
assume that, for a given cell type, each cell lives for the same period of time TR and 
then disappears (Figure 22.3). Thus, cells are produced at a zero-order rate kin and 
are lost at the same rate, kin, but TR units of time later:

dR
dt

k t k t TR= ( )− −( )in in (22.9)
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FIGURE 22.2 Simulations of the response variables with time after a single oral dose of 
1 mg (solid line), 10 mg (dashed line), 100 mg (shaded line), or 1000 mg (solid-dashed line) 
using the four basic indirect response models. The PK parameter values used were ka = 0.8 
h−1, kel = 0.4 h−1, F = 1, V = 30 L; the PD parameters were IC50 = 10 ng/mL, Emax = 1, kin = 10 
units/h, kout = 0.1 h−1, R0 = 100 units (kin = koutR0). (Adapted from Ref. 6.)
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At baseline,

R k TR0 = in (22.10)

For a drug that stimulates cell production, we apply the stimulatory function S(t):

dR
dt

k S t k S t TR= ( ) − −( )in in (22.11)

where S(t) and S(t − TR) are given by the following equations:

S t
S C t

C t SC
( ) = +

( )
( ) +

1
50

max
γ

γ γ (22.12)

S t T
S C t T

C t T SC
R

R

R

−( ) = +
−( )

−( ) +
1

50

max
γ

γ γ (22.13)

These models have been applied to describe the stimulatory effects of hemato-
poietic growth factors such as granulocyte colony stimulating factor on neutrophils, 
thrombopoietin on platelets, and erythropoietin on reticulocytes in blood (41). 
For the myelosuppressive effects of anticancer drugs, a two-compartment indirect 
model (42) or a multiple-pool cell lifespan model has been described (43).

Several other advancements/modifi cations in the basic models for indirect 
response have been made. Zuideveld et al. (44, 45) described a model for hypo-
thermic effect that incorporated a set-point temperature that is decreased by 5-HT1A

receptor agonists. Lima et al. (35) described the stimulation of glucose production 
and, consequently, the stimulation of insulin production by b2-adrenergic agonists, 
using a positive-feedback system. Fasanmade and Jusko (46) proposed a model 
for formation of methemoglobin by antimalarials that used reactive metabolites as 
the biophase. Zamboni et al. (47) described the time course of topotecan-induced 
neutropenia with a model for inhibition of stem cell production linked to an effect 
compartment. Krzyzanski and Jusko (48) and Li et al. (49) describe a peripheral 
response pool for responses with multicompartmental distribution. Further advance-
ments, including the integration of irreversible effects, transduction processes, and 
tolerance and rebound phenomenon are described in Chapter 23.

22.2.3 Limitations of Indirect Response Models

Although indirect response models can be applied to characterize the pharmacody-
namics of numerous drugs, some practical limitations exist in their applications:

1. An understanding of the pathophysiology of the disease is required for build-
ing the proper model.

2. The models operate best when the response variable immediately refl ects the 
production and loss processes.

3. Indirect response models require differential equations and numerical inte-
gration algorithms to describe the nonlinear inhibition or stimulation. Par-
tially integrated solutions for these models have been developed (50, 51), 
which allow qualitative examination of the relationships between response 



and dose or the various PD model parameters. The use of model I with an 
empirical solution (i.e., without numerical integration) has been suggested 
(52); however, Krzyzanski and Jusko (53) demonstrated that this approach 
may result in errors in the estimated parameters and is of limited value.

4. An understanding of the progression of the response in the absence of drug 
is essential for the proper application of the model. For example, endogenous 
cortisol (24, 54–56) and osteocalcin (57) levels in plasma follow a circadian 
pattern that can be fi tted with a cosine function.

22.3 VIRAL DYNAMIC MODELS

As mentioned earlier, several mechanistic models for viral dynamics during antivi-
ral treatment for blood-borne viruses including hepatitis C virus (HCV), hepatitis 
B virus (HBV), and human immunodefi ciency virus (HIV) have been developed. 
The general framework of these models is analogous to the indirect response 
models with some important differences that will become apparent in the follow-
ing section.

A general schematic of these models is shown in Figure 22.4. Briefl y, there are 
three main compartments in the model: the target cells (T), the infected cells (I),
and the virus (V). Target cells are synthesized by a zero-order rate (s), are infected 
with a de novo infection rate, bVT, or die with a death rate constant Td (see Eq. 
(22.14)). Here b is a second-order rate constant. Target cells are productively 
infected by the virus and these infected cells are eliminated with a fi rst-order rate 
constant, d (see Eq. (22.15)). Productively infected cells release new virus with a 
fi rst-order rate constant, p, and free virus particles are cleared with a rate constant 
c (see Eq. (22.16)).

dT
dt

s T T VTd= − − β (22.14)

FIGURE 22.4 Schematic of the viral dynamic model.
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dI
dt

VT I= −β δ (22.15)

dV
dt

pI cV= − (22.16)

The number of virions (viral load) in the blood is currently the major endpoint 
that is used to evaluate the effi cacy of antiviral drugs. Therefore, mathematical 
modeling of the viral dynamics early in the treatment can provide a good indication 
of the effectiveness of the drug and, in some cases (e.g., in the treatment of hepatitis 
C), the duration of treatment required. In the future, we may see the use of viral 
dynamic models in optimizing drug combinations.

22.3.1 Modeling Hepatitis C Viral Dynamics During Treatment

Although a number of other agents are undergoing clinical trials for the treatment 
for hepatitis C virus (HCV), only ribavirin and interferon alpha are approved. While 
the exact mechanism of action of these agents is unclear, viral dynamic modeling 
suggests that interferon alpha acts by decreasing the production rate of new HCV 
virions from infected cells rather than blocking de novo infection (1). Ribavirin, by 
itself, has negligible effect on HCV viral load (58). However, when combined with 
interferon alpha, it has a synergistic effect and improves treatment outcome (2). 
Modeling of the additional effect of ribavirin in combination with interferon alpha 
(2) suggests that ribavirin decreases HCV infectivity and increases the proportion 
of noninfectious virus. During treatment with a combination of ribavirin and inter-
feron, Eqs. (22.14)–(22.16) can be modifi ed to Eqs. (22.17–22.20):

dT
dt

s T T V Td I= − − β (22.17)

dI
dt

V T II= −β δ (22.18)

dV
dt

pI cVI
I= −( ) −( ) −1 1ρ ε (22.19)

dV
dt

pI cVNI
NI= −( ) −ρ ε1 (22.20)

where e and r represent the effectiveness of interferon alpha and ribavirin, respec-
tively (0 ≤ e, r ≤ 1). For interferon alpha monotherapy, r = 0. The total number of 
virions (V) is the sum of the infectious virions (VI) and noninfectious virions (VNI).

During interferon monotherapy (r = 0), the viral load declines rapidly during 
the fi rst 48 hours and more slowly thereafter (1). In theory, if the effectiveness 
of treatment is 100% (e = 1), the viral load will decline monoexponentially with 
a slope equal to its clearance rate (cV). However, in practice, e is always less than
1 and the rate of viral load decline is biexponential. The analysis of viral decline 
(Eqs. (22.17)–(22.20)) indicates that the fi rst slope is determined by the effective-
ness of interferon (e) and the free virus clearance rate (c) and the second slope is 
determined by the productively infected cell clearance rate constant (d ) and the 
effectiveness of drugs (e) as shown in Figure 22.5.
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FIGURE 22.5 Simulation of HCV viral dynamic profi les during interferon alpha mono-
therapy using Eqs. (22.17)–(22.20). For (A), parameters were r = 0, c = 5 d−1, d = 0.24 d−1, b =
3 × 10−7 (virion per mL)−1 per day, p = 100 virions/mL/cell/day, and varying e = 1, 0.8, and 0.5 
for dashed, dotted, and solid lines, respectively. For (B), parameters were r = 0, c = 5 d−1,
e = 0.9, b = 3 × 10−7 (virion per mL)−1 per day, p = 100 virions/mL/cell/day, and varying 
d = 0.24 and 0.12 d−1 for dashed and solid lines, respectively. For (C), parameters were r = 0, 
e = 0.9, d = 0.24 d−1, b = 3 × 10−7 (virion per mL)−1 per day, p = 100 virions/mL/cell/day, and 
varying c = 5 and 15 for solid and dashed lines, respectively.
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The results of simulations of a combination treatment with interferon alpha and 
ribavirin are shown in Figure 22.6. Using such simulations, Dixit et al. (2) showed 
that ribavirin improves the second phase of viral decline when the effectiveness of 
interferon is low.
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22.3.2 Modeling for HBV During Treatments

The treatment of HBV with lamivudine (LMV) and famciclovir (FCV) therapy also 
exhibits a biphasic decline in viral load with an initial rapid decline during the fi rst 
2 days representing both the clearance of free virus rate (cV) and the effectiveness 
of drugs (e) followed by a slower decline representing the clearance of infected 
cells (d ) (13, 59, 60). Lewin et al. (60) and Nowak et al. (13) proposed that during 
LMV and FCV therapy, the production rate of new virus ( pI) was decreased by a 
factor (1 − e) and de novo infection rate (bVT) was decreased by a factor (1 − h).
Therefore, Eqs. (22.14)–(22.16) can be modifi ed as follows:

dT
dt

s T T VTd= − − −( )1 η β (22.21)

dI
dt

VT I= −( ) −1 η β δ (22.22)

dV
dt

pI cV= −( ) −1 ε (22.23)

These models suggest that HBV viral dynamic profi les are similar to HCV viral 
dynamic profi les.

22.3.3 Modeling for HIV During Treatments

Viral dynamic modeling has been described for the effects of two classes of anti-
HIV drugs, namely, reverse-transcriptase inhibitors (RTIs) that prevent infection of 
new cells and protease inhibitors (PIs) that decrease production of infectious virions 
by blocking the release of virions from infected cells, leading to the production of 

1.00E+04

1.00E+05

1.00E+06

1.00E+07

0 2 4 6 8 10 12 14

Time (days)

)
L

m
r

e
p

s
ei

p
o

C(
A

N
R

V
C

H

A

B

C

D

FIGURE 22.6 Simulation of HCV viral dynamic profi les during combination treatment 
with interferon alpha and ribavirin using Eqs. (22.17)–(22.20), where e = 0.9 and 0.5 for the 
lower two lines (C and D) and upper two lines (A and B), respectively, with r = 1 for B and 
D, respectively, and 0.1 for A and C, respectively. Other parameters are c = 5 d−1, d = 0.24 d−1,
b = 3 × 10−7 (virion per mL)−1 per day, and p = 100 virions/mL/cell/day.



noninfectious virions. In the presence of drug in the system, Eqs. (22.14)–(22.17) 
are modifi ed to Eqs. (22.24)–(22.27):

dT
dt

s T T V Td RT I= − − −( )1 ε β (22.24)

dI
dt

V T IRT I= −( ) −1 ε β δ (22.25)

dV
dt

PI cVI
PI I= −( ) −1 ε (22.26)

dV
dt

pI cVNI
PI NI= −ε (22.27)

eRT and ePI are the effectiveness of RTI and PI, and VI and VNI are infectious 
and noninfectious virions, respectively. HIV viral dynamic curves are the same 
pattern as HCV and HBV viral kinetic curves (61, 62). Perelson (62) theorized 
that HIV-1 was cleared from chronically infected subjects at a rapid rate, with 
a half-life of 6 hours or less, whereas the free virus clearance rate constant (c)
varied between 9.1 per day and 36 per day (59). Using these parameters, simu-
lations were performed using Eqs. (22.24)–(22.27), which indicate that the fi rst 
slope of rapid decline was dependent on the elimination rate of the productively 
infected cells and the effectiveness of drugs (see Figure 22.7). To explain the 
results from long-term combination treatment, Perelson et al. (61) and Ding and 
Wu (63) assumed that there are two major HIV-infected cell compartments—
productively infected cells (II) and long-lived infected cells (IL). Other compart-
ments, such as latently infected cells, may also exist, but these compartments 
cannot be identifi ed from plasma viral load measurements. Without treatment, 
target cells (T ) get infected from infected virions with the rate bVIT. The pro-
portion of productively infected cells and long-lived infected cells are a1 and a2,
respectively. The average rate of virus production per cell, p, is given by Nd,
where d is the productively infected cell clearance rate constant, N is the number 
of new virions produced per infected cell, and h0 represents the proportion of 
noninfectious virus in the total virus before the treatments. Other parameters 
were kept the same as before. The basic viral dynamic model before treatment 
can then be written as follows (61, 63, 64):

dI
dt

V T II
I I= −α β δ1 1 (22.28)

dI
dt

V T IL
I L L= −α β δ2 (22.29)

dV
dt

N I N I cVI
I I I L L L I= −( ) +( ) −1 0η δ δ (22.30)

dV
dt

N I N I cVNI
I I I L L L NI= +( ) −η δ δ0 (22.31)

Reverse transcriptase inhibitors reduce the production of de novo infection 
by factors (1 − g1) and (1 − g2) in the two infected cell compartments, II and IL,
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respectively. Protease inhibitors reduce the production of the infectious virus from 
productively infected cells and long-lived infected cells by factors (1 − h1) and 
(1 − h2), respectively. Therefore, the combination of these antiviral drugs can be 
described by the following equations:

dI
dt

V T II
I I= −( ) −1 1 1 1γ α β δ (22.32)

dI
dt

V T IL
I T L= −( ) −1 2 2γ α β δ (22.33)
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FIGURE 22.7 Simulation of HIV-1 viral dynamic profi les during combination of protease 
inhibitors and reverse transcriptase inhibitors using Eqs. (22.24)–(22.27) (not incorporating the 
long-lived infected cells) where dI = 4 d−1 with twofold difference in e (A), dI (B), and c (C).



dV
dt

N I N I cVI
I I I L L L I= −( ) −( ) + −( )( ) −1 1 10 1 2η η δ η δ (22.34)

dV
dt

N I N I cVNI
L L L I I I I NI= + −( )[ ] + + −( )[ ] −η η η δ η η η δ0 0 2 0 01 1 (22.35)

Differences in the lifespans of infected cells resulting in several phases of HIV 
kinetics may exist after treatment. Simulations using these equations (shown in 
Figure 22.8) indicate that the fi rst slope is determined mainly by elimination of 
productively infected cells and the second slope is determined by the loss of long-
lived infected cells.

22.3.4 Limitation of Viral Dynamic Models

The current models do not describe the development of resistance and/or the 
lack of response. Limitations exist in identifying infectious versus noninfectious 
or uninfected target cells. As mentioned earlier, these models do not account for 
the changes in the pharmacokinetics of the drugs and assume that their effective-
ness is constant during treatment. Recently, however, it has been proposed that 
the effectiveness, e, be linked to the drug concentrations and IC50 as shown by Eq. 
(22.36) (17):

ε t
IC

IC C

n

n n
( ) =

+
50

50

(22.36)
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FIGURE 22.8 Simulations of HIV-1 viral dynamic profi les during combination of protease 
inhibitors and reverse transcriptase inhibitors using Eqs. (22.32)–(22.35) (incorporates long-
lived infected cells), where dI = 4 d−1, dL = 0.4 d−1 for a solid line and dI = 4 d−1, dL = 0.8 d−1 for 
a dashed line.
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22.4 SUMMARY

Mechanism-based models have gained importance in drug development. Two 
general classes of mechanistic models—indirect response models and viral dynamic 
models—are described here. Indirect response models characterize a wide variety of 
pharmacologic response and have been described here along with their applications, 
extension/advancements, and limitations. Viral dynamic models are mechanistic 
models that are evolving to incorporate the pharmacokinetics of the various classes 
of drugs becoming available for treatment for important diseases such as HIV and 
hepatitis B or C. Together, these models along with those presented in Chapter 23 
provide the current “state of the art” in mechanism-based PK/PD modeling.
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APPENDIX 22.1 IMPLEMENTATION OF MODELS IN WinNonlin/NONMEM

Indirect Response Model: Inhibition of Production Rate

WinNonlin Code

COMMANDS

NFUNCTIONS 1

NDERIVATIVES 1

NPARAMETERS 7

NCONSTANTS 1

PNAMES KA, F, dose, KE, V, IC50, KOUT; ‘ka’ ‘F’ ‘dose’ ‘ke’ ‘V’ 

‘IC50’ ‘Kout’

NSECONDARY 0

END

TEMP

RIN = CON(1); Initial values of response

END

#remark - define differential equations starting values

START

Z(1) = RIN

T=0

END

#remark - define differential equations 

DIFFERENTIAL

CP = (KA*F*dose)*(exp(-KA*X)-exp(-KE*X))/((KE-KA)*V) ; PK profile

after 1st order absorption

KIN = KOUT*RIN; at steady state

K0 = KIN*(1-(CP/(IC50+CP))); KIN = zero order production rate

DZ(1) = K0 - KOUT*Z(1)

END

FUNCTION 1

F= Z(1)

END

#remark - define end of model 

EOM

NONMEM Code

$PROB PK/PD INDIRECT RESPONSE MODEL (EXP1:INHIBITION OF KIN)

$DATA PKPD1.csv IGNORE=C



$INPUT TIME AMT DV ID CMT CLIN VIN

$SUBROUTINE ADVAN = 8 TOL =3

$MODEL NCOMP = 2

COMP=(CENTRAL)

COMP=(RESPONSE, DEFOBS)

$PK

CL=CLIN

V=VIN

KEL=CL/V

KIN=THETA(1)*EXP(ETA(1)) ;Zero order production rate

KOUT=THETA(2)*EXP(ETA(2)) ; First order elimination rate constant 

of response

IC50=THETA(3)*EXP(ETA(3))

S1=V

F2=KIN/KOUT ;Initial values of response (F2 = RIN=R0)

$DES

DC1=A(1)/V

DADT(1)= -KEL*DC1

K0=KIN*(1-DC1/(IC50+DC1))

DADT(2)= K0-KOUT*A(2)

$ERROR

IPRE=F

Y = F*(1+ERR(1))+ERR(2)

$THETA

(0.1, 10)

(0.01, 0.1)

(0.001, 0.01)

$OMEGA

0 FIX ;(0.1, 5000)

0 FIX ;(0.1, 5000)

0 FIX ;(0.1, 5000)

$SIGMA

0.1

5000

$EST MAXEVAL = 9999 SIG=6 METHOD =0 NOABORT

$SIM ONLYSIM (600000) SUBPROB=1$TABLE ID TIME DV IPRE

FILE=PKPD1.OUT

Life Span Model: Stimulatory Drug Effect and Zero-Order Input Model

WinNonlin Code

COMMANDS

NFUNCTIONS 1

NDERIVATIVES 1

NPARAMETERS 5

NCONSTANTS 2
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PNAMES dose, KE, V, SC50, SMAX ‘dose’ ‘ke’ ‘V’ ‘SC50’’SMAX’

NSECONDARY 0

END

TEMP

RIN = CON(1); RIN =R0(Initial response)

TR = CON(2); TR = Life span

END

#remark - define differential equations starting values

START

Z(1) = RIN

T=0

END

#remark - define differential equations 

DIFFERENTIAL

If X <= TR THEN

C1 = (dose/V)*exp(-KE*X); PK profile after IV administration

KIN = RIN/TR; KIN = Zero order production rate

ST = (1+((SMAX*C1)/(SC50+C1)))

STR = (1+((SMAX*0)/(SC50+0)))

DZ(1) = KIN*ST - KIN*STR

ENDIF

IF X > TR THEN

C1 = (dose/V)*exp(-KE*X); X = TIME

C2 = (dose/V)*exp(-KE*(X-TR))

KIN = RIN/TR; at steady state

ST = (1+((SMAX*C1)/(SC50+C1)))

STR = (1+((SMAX*C2)/(SC50+C2)))

DZ(1) = KIN*ST - KIN*STR

ENDIF

END

FUNCTION 1 

F=Z(1)

END

#remark - define end of model 

EOM

NONMEM Code

$PROB PK/PD INDIRECT RESPONSE MODEL (EXP1:INHIBITION OF KIN)

$DATA LIFESPAN1.csv IGNORE=C

$INPUT TIME AMT DV ID CMT CLIN VIN

$SUBROUTINE ADVAN = 8 TOL =3

$MODEL NCOMP = 3

COMP=(CENTRAL)

COMP=(RESPONSE, DEFOBS)

COMP=(DCENTRAL)

$PK CALLFL = -2



CL=CLIN

V=VIN

KEL=CLIN/VIN

KIN=THETA(1);*EXP(ETA(1))

SMAX=THETA(2);*EXP(ETA(2)); Maximum effect of drug

SC50=THETA(3);*EXP(ETA(3))

ALAG3=THETA(4);*EXP(ETA(4)); TR=ALAG3

S1=V

F2=KIN*ALAG3; RIN=KIN*TR = Initial values of response

 $DES

DC1=A(1)/V; Concentration at CMT1

DC3=A(3)/V; Concentration at CMT3

DADT(1)= -KEL*A(1)

DADT(3)=-KEL*A(3)

ST1=1+SMAX*DC1/(SC50+DC1)

ST3=1+SMAX*DC3/(SC50+DC3)

DADT(2)= KIN*ST1-KIN*ST3

$ERROR

IPRE=F

Y = F*(1+ERR(1))+ERR(2)

$THETA

(0.1, 10)

(0.1, 2)

(0.001, 0.01) 

(0.1, 10)

$OMEGA

0 FIX ;(0.1, 5000)

0 FIX ;(0.1, 5000)

0 FIX ;(0.1, 5000)

$SIGMA

0.1

5000

$EST MAXEVAL = 9999 SIG=6 METHOD =0 NOABORT

;$SIM ONLYSIM (600000) SUBPROB=1

$TABLE ID TIME DV IPRE FILE=lifespan1.OUT

HCV Viral Dynamic Models

WinNonlin Code

COMMANDS

NFUNCTIONS 1

NDERIVATIVES 2

NPARAMETERS 3

NCONSTANTS 5

PNAMES delta, eps, c; (‘δ' 'ε' 'c')
NSECONDARY 1

SNAMES I0; (Initial number of productively infected cells)
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END

TEMP

beta = CON(1); β
P0 = CON(2) ; P0
V0 = CON(3); V0
Td = CON(4); Td
X0 = CON(5); X0 = Lag time

END

#remark - define differential equations starting values

START

Z(1) = c*V0/P0

Z(2) = V0

END

#remark - define differential equations

DIFFERENTIAL

T=(delta*c)/(beta*P0); Remaining constant during treatments (1)

DZ(1) = beta Z(2)- delta*Z(1)

DZ(2) = (1-eps)*P0*Z(1)-c*Z(2)

END

FUNCTION 1

F= Z(2)

END

#remark - define any secondary parameters

SECONDARY

I0=c*V0/P0

END

#remark – define end of model

EOM

NONMEM Code

$PROB HCV viral kinetic models

$DATA exm.csv IGNORE=C

$INPUT TIME DV ID CMT AMT

$SUBROUTINE ADVAN = 8 TOL =3

$MODEL NCOMP = 2

COMP=(INFECT)

COMP=(HCV, DEFOBS)

$PK

BETA= 0.00000008 ; second order rate constant of de novo infection 

rate (IU per ml)-1 per hrs 

PROD= 10 ;production rate constant of virus (IU per mL per cell 

per hrs)

DEATH= 0.0001 ;death rate constant of target cells (per hrs)

VIN= 5130000 ;viral load (IU per ml)

XIN= 2.5 ;delay time of effectiveness (hrs)

DELTA= THETA(1) + ETA(1) ;infected cell death rate constant (per hrs)

EFC= THETA(2) + ETA(2) ;effectiveness of drug 



C= THETA(3) + ETA(3) ;free virus clearnace rate constant (per hrs)

TIN= (DELTA*C)/(BETA*PROD) ;initial amount of target cells

;define differential equation starting values

F1=C*VIN/PROD

F2=5130000

$DES

DADT(1)= BETA*TIN*A(2)-DELTA*A(1)

DADT(2)= (1-EFC)*PROD*A(1)-C*A(2)

$ERROR

IPRED=F

Y = F*(1+ERR(1))+ERR(2)

$THETA

(0.001, 0.02, 1)

(0.5,0.9, 1)

(0.3, 0.5, 0.9)

$OMEGA

0 FIX ;(0.1, 5000)

0 FIX ;(0.1, 5000)

0 FIX ;(0.1, 5000)

$SIGMA

0.1

5000

$EST MAXEVAL = 9999 SIG=6 METHOD =0 NOABORT

$TABLE ID TIME DELTA EFC C FILE=EXM.OUT

$SCAT PRED VS DV

$SCAT (RES WRES) VS PRED

$SCAT (RES WRES) VS TIME

$SCAT IPRED VS DV
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CHAPTER 23

Mechanistic Pharmacokinetic/
Pharmacodynamic Models II

DONALD E. MAGER and WILLIAM J. JUSKO

607

23.1 INTRODUCTION

The major challenge of contemporary mechanism-based pharmacokinetic/pharma-
codynamic (PK/PD) modeling is to characterize the time course of drug disposition 
and effects while revealing the pharmacological properties of the drug and the 
primary rate-limiting steps in the biology of the system (1, 2). Despite the vast array 
of pharmacological mechanisms of action and physiological processes that produce 
and control responses to drugs, the basic tenets of PD models remain the concepts 
of capacity limitation and the natural turnover of biological substances or functions. 
Capacity limitation often results from the law of mass action and limited densities 
of pharmacological targets, which are refl ected in the traditional Hill function or 
sigmoidal Emax or Imax model (3, 4):

E
E C

EC C
=

+
max

γ

γ γ
50

(23.1a)

E
I C

IC C
=

+
max

γ

γ γ
50

(23.1b)

where capacity (Emax, Imax) and sensitivity (EC50, IC50) parameters defi ne the non-
linear relationship between drug effect (E) and concentration in plasma or at a 
biophase (C). In contrast to this explicit equation, natural and pathophysiological 
turnover processes can be described using a simple differential equation:

dR
dt

k k R R R= − ( ) =in out , 0 0 (23.2)

where the rate of change of a biological factor (R) is determined by a production 
rate (kin) and a fi rst-order removal rate constant (kout), and R0 is the initial value. 
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It should be noted that kin might range from a constant zero-order rate constant to 
complex functions responsible for irregular biorhythmic baseline profi les. Appre-
ciation of these fundamental principles derives from the fact that both drugs and 
diseases alter normal biological cascades responsible for controlling the homeostasis 
of physiological systems.

In this chapter, the integration of capacity limitation and biosignal turnover con-
cepts is revealed in an overview of mechanistic PD models for irreversible effects, 
transduction processes, and tolerance and rebound phenomena. Pertinent equations 
are provided along with most signature profi les and salient model features. This 
information may be useful in the design and analysis of relevant PD studies, and the 
cited references should be consulted for more details on the application of models 
for specifi c drugs or drug classes.

23.2 IRREVERSIBLE PHARMACOLOGICAL EFFECTS

Several classes of drugs, including chemotherapeutic compounds (antimicrobial, 
antiviral, antiparasitic, and anticancer drugs) and enzyme inhibitors, may inter-
act with cells and/or proteins by an irreversible mechanism of action. Typically, 
such antagonists are involved in covalent binding interactions with pharmacologi-
cal targets, which promote cell killing and/or the inactivation of specifi c proteins 
or enzymes. The potency of irreversibly acting agents can be diffi cult to quantify 
and interpret owing to time-dependent inactivation and signifi cant temporal delays 
between drug exposure and effects. Thus, quantitative analyses with appropriate 
mechanistic PD models are critical for characterizing and understanding the phar-
macology of these agents.

23.2.1 Cell Proliferation with Irreversible Inactivation

The following differential equation can be used to represent general cell prolifera-
tion with phase-nonspecifi c cell killing:

dR
dt

g R f C R R R= ( ) − ( ) ( ) =, 0 0 (23.3)

where the response variable (R) is cell number (e.g., malignant cells, bacteria, 
parasites, or viral load). A schematic of a simple PD system is shown in Figure 23.1 

C R+

( )Rg

( )Cf

FIGURE 23.1 Schematic of PD models of cell proliferation with irreversible cell inactiva-
tion. Plasma or biophase drug concentrations (C) interact with cells (R), which are proliferat-
ing according to a growth model (g(R)), in an irreversible bimolecular manner (f(C)).



(5), where the proliferation of cells in the absence of drug, g(R), is governed by a 
fi rst-order rate constant of cell growth (kg):

g R k R k R k Rs g( ) = − =deg (23.4)

which is determined by the difference between fi rst-order rates of natural prolif-
eration (ks) and degradation (kdeg). Cell killing may be depicted as a bimolecular 
interaction between the drug and cell receptor, such that

f C kC( ) = (23.5)

where k is a second-order rate constant, and hence Eq. (23.3) becomes

dR
dt

k R kCRg= − (23.6)

which may be solved explicitly to yield (5)

R R e k t e k AUCg
t= ( ) ⋅ − ⋅( )0
0 (23.7)

where R0 is the initial value, R(0), and AUCt
0 is the area under the concentra-

tion–time curve from zero to time (t). Providing that complete cell loss occurs 
with suffi cient drug exposure, Eq. (23.7) predicts a log-linear relationship between 
survival fraction (R/R0) and the drug dose. The slope of this relationship is a 
function of the affi nity of the target cell for the drug along with the drug dose 
and clearance. Also, Eq. (23.6) may be used to defi ne a so-called minimum inhibi-
tory concentration (MIC), where dR/dt = 0 and thus MIC = kg/k. Experimental 
data showing survival fractions of chimera spleen and osteosarcoma cells follow-
ing single doses of cyclophosphamide to mice were used to validate the original 
derivation and dose–time–response relationships described by Eqs. (23.6) and 
(23.7) (5).

Owing to capacity-limited drug–cell contacts, the bimolecular interaction in Eq. 
(23.5) can be modifi ed, whereby the second-order rate constant k is replaced by a 
maximum value (Kmax) and a sensitivity parameter (KC50) refl ecting the drug con-
centration producing 50% of Kmax (6):

f C
K C

KC C
( ) =

+
max

50
(23.8)

This alteration in the function of drug effect was necessary to characterize the 
effects of various intraperitoneal dose levels of piperacillin on the killing and 
growth dynamics of Pseudomonas aeruginosa in neutropenic mice (6). Simulations 
of expected PD profi les are shown in Figure 23.2. For these and subsequent simu-
lations, simple monoexponential drug disposition is assumed (C = C0e−kel·t) and all 
parameter values are listed in the fi gure legends. Whereas cells would grow expo-
nentially in the absence of drug, these profi les show biphasic survival curves with 
an initial phase of cell killing followed by a regrowth phase as drug concentrations 
decline well below the KC50 value.
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610 MECHANISTIC PHARMACOKINETIC/PHARMACODYNAMIC MODELS II

Alternative models of cell growth dynamics may be substituted for Eq. (23.4) 
and tested using standard model fi tting criteria. For example, in vitro and in vivo 
cell populations rarely continue to grow exponentially as a result of spatial, nutri-
tive, and other factors that may place an upper limit on cell density (Rss). The 
logistic growth model is one function that limits exponential growth and is defi ned 
as (7)

g R k R
R

R
g( ) = −⎛

⎝⎜
⎞
⎠⎟1

ss

(23.9)

Thus, when R << Rss, g(R) ≈ kgR and as R → Rss, g(R) → 0. Careful control experi-
ments in the absence of drug should be conducted which will support the cell growth 
function selected for modeling. Development of resistant bacteria was handled by 
Campion et al. (8) by considering two pools of cells with differing growth rate con-
stants and sensitivities to cytotoxicity. Conversion of sensitive to resistant cells was 
handled as a fi rst-order process. These general systems of equations may be utilized 
as appropriate initial frameworks upon which additional system complexities may 
be integrated as will be further demonstrated.

23.2.2 Cell Proliferation with Cycle-Specifi c Inactivation

Some chemotherapeutic agents, such as vinca alkaloids, taxanes, and camptothecins, 
only exert their effects during specifi c phases of the cell cycle (9). This property can 
be characterized with a PD model where the total cell population is conceptual-
ized as distributing between two groups representing sensitive (RS) and insensitive 
(RI) cells (10). The model is shown in Figure 23.3 and can be described using the 
following general equations:
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FIGURE 23.2 Simulated response profi les (solid lines) for cell proliferation model 
with irreversible inactivation (Figure 23.1), where g(R) and f(C) are given by Eqs. (23.4) 
and (23.8). Plasma drug concentrations are shown (dashed lines) for increasing intravenous 
doses ranging from 10 to 10,000 units. Parameter values are kel = 0.3 h−1, R0 = 10,000 units, 
kg = 0.01 h−1, Kmax = 0.1 h−1, and KC50 = 10 units.



dR
dt

g R f C R k R k Rs
S S SI S IS I= ( ) − ( ) − + (23.10a)

dR
dt

k R k RI
SI S IS I= − (23.10b)

where the functions of cell proliferation and killing are operable only on the RS

population, and the interconversion between groups is controlled by fi rst-order rate 
constants (kSI and kIS). The initial total cell density (R0

T) is defi ned as R0
T = R0

S + R0
I

and thus the initial conditions of Eqs. (23.10a) and (23.10b) are

R RS T
0 0

1
=

+
α

α
(23.11a)

R RI T
0 01

1
=

+ α
(23.11b)

where, assuming a simple exponential growth model (Eq. (23.4)),

α = ( ) ( )⎡
⎣⎢

⎤
⎦⎥

+ − + + − +0 5 2 4. kSI k k k k k k k kIS g SI IS g SI IS SI (23.12)

Simulations of the cycle-specifi c inactivation model, utilizing a capacity-limited cell 
killing function (Eq. (23.8)), are shown in Figure 23.4. Whereas the profi le result-
ing from a relatively low dose resembles those from the phase-nonspecifi c model 
(Figure 23.2), increasing dose levels produce biexponential cell-killing curves fol-
lowed by exponential growth as drug concentrations decline below the KC50 value. 
The general model of cycle-specifi c inactivation (Eqs. (23.10a) and (23.10b)) is 
versatile and can easily be extended to include other proliferation functions such 
as a logistic growth model (7).

All of the previous models and equations have been applied to describe growth 
and killing of populations of individual cells such as bacteria, cancer cells, viruses, 
and parasites. More diffi cult is quantifying tumor size—weight or volume—where 

C RS+

( )SRg

( )Cf

RI

kSIkIS

FIGURE 23.3 Schematic of PD models of cell proliferation with irreversible cycle-specifi c 
inactivation. The model shown in Figure 23.1 is modifi ed to include a quiescent or insensi-
tive pool of cells (RI).
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the mass is heterogeneous in nature. Simeoni and co-workers (11) have applied an 
innovative chemotherapy model that employs cycle specifi city, two growth rates 
(fi rst exponential then linear), bimolecular inactivation by drug (Eq. (23.5)), and a 
series of transit compartments refl ecting the transition of cells toward death. Section 
23.4.2 will describe the type of transduction model that was utilized.

23.2.3 Turnover Model of Enzymatic Inactivation

Mechanistic enzyme inhibition represents a major therapeutic modality. Several 
inhibitors have been introduced clinically and have contributed signifi cantly to the 
treatment of diseases such as gastric ulcers (H+, K+-ATPase inhibitors) and cancer 
(aromatase and thymidilate synthase inhibitors). PD models for such drugs must 
account for endogenous production and degradation of the target enzyme (Figure 
23.5) and often utilize a modifi ed indirect response turnover model (12):

dR
dt

k k R f C R= − − ( )in out (23.13)

where R represents enzyme concentration or function, kin is a constant zero-order 
production rate constant, kout represents a drug-independent fi rst-order removal 
rate constant, and f(C) is as previously defi ned (Eq. (23.3)). In the absence of drug 
(C = 0), Eq. (23.13) collapses to a simple turnover function (Eq. (23.2)), where the 
baseline condition is dR/dt = 0 and thus R0 = kin/kout. For purposes of stationarity and 
to reduce the number of model parameters to be estimated, kin is often expressed 
as the product of R0 and kout. Simulated responses of the turnover model with irre-
versible inactivation (Eqs. (23.5) and (23.13)) are depicted in Figure 23.6. Profi les 
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FIGURE 23.4 Simulated response profi les (solid lines) for cell proliferation model with 
irreversible cycle-specifi c inactivation (Figure 23.3). Functions g(R) and f(C) are defi ned 
by Eqs. (23.4) and (23.8). Parameter values are kel = 0.3 h−1, R0

T = 10,100 units, kg = 0.15 h−1,
kSI = 0.001 h−1, kIS = 0.1 h−1, Kmax = 1.0 h−1, and KC50 = 1.0 unit.



show a decline from an initial value to a nadir, followed by a gradual return to the 
baseline value as the drug is removed from the system. The time to maximal effect 
appears dose dependent with a shift to earlier times with increasing dose levels.

The basic turnover-irreversible effect model has been applied to various systems 
including the antiplatelet effect of aspirin (13) and the inhibition of gastric acid 
secretion by pantoprazole (14), an irreversible H+, K+-ATPase antagonist, based on 
the assumption that these functional measures are directly proportional to enzyme 
concentrations. The format of the model is fl exible as well and has been extended 
to integrate sources of various complexities and data signatures. For example, pre-
cursor compartment pools have been added to model omeprazole dynamics in dogs 
(15) and the kinetics of dihydrotestosterone following exposure to 5a-reductase
inhibitors in rats (16) and humans (17). In the case of omeprazole, differences in 
the rates of recovery from short- and long-term drug exposure were well charac-
terized with the addition of a precursor (P), which was described by the following 
differential equation:

dP
dt

k k k P k R= − +( ) +in out1 2 (23.14)

R

( )Cf

kin kout

FIGURE 23.5 Schematic of PD turnover models with irreversible inactivation. The produc-
tion and loss of the response variable (R) typically are assumed to refl ect zero-order (kin)
and fi rst-order (kout) rate processes.
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FIGURE 23.6 Simulated response profi les (solid lines) for a turnover model with irrevers-
ible inactivation (Figure 23.5), where f(C) is defi ned by Eq. (23.5). Parameter values are 
kel = 0.3 h−1, R0 = 100 units, kout = 0.1 h−1, k = 0.01 unit, and kin is specifi ed as the product of 
kout and R0.
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The rate of change of the response variable was defi ned as

dR
dt

k P k R k kC R= − − +( )1 2 out (23.15)

where transfer between compartments is controlled by fi rst-order rate constants (k1

and k2), and both the precursor and response dissipate at a similar fi rst-order rate 
(kout). The initial conditions of Eqs. (23.14) and (23.15) are expressed as

P
k
k

k k
k k k

0 2

1 2

= ⋅
+( )

+ +( )
in

out

out

out

(23.16a)

R
k
k

k
k k k

0 1

1 2

= ⋅
+ +( )

in

out out

(23.16b)

Whereas short-term drug exposure may result in rapid returns to baseline values, 
long-term drug exposure depletes both the response variable and the precursor 
pool, which requires signifi cantly longer durations of time for the baseline response 
value to be achieved once drug is removed.

23.2.4 Reactive Drug Metabolites

Irreversible bimolecular interaction models may be used to characterize the for-
mation and effects of reactive drug metabolites. Several unrelated classes of drugs 
may undergo metabolism to form reactive intermediates that, when not suffi ciently 
detoxifi ed, may bind with cells and proteins and potentially elicit toxic effects (18). 
As an example, some antimalarial drugs form reactive metabolites that interact 
with hemoglobin (Hb) to form methemoglobin (MetHb), thereby causing cyanosis 
or methemoglobinemia (18). Fasanmade and Jusko (19) developed a PD model for 
the formation and disposition of MetHb following exposure of an antimalarial com-
pound to dogs. The pharmacokinetics of the parent compound (Cp) were modeled 
fi rst and then fi xed as a driving function for fi tting the PD model to the time course 
of MetHb concentrations. The rate of change of the reactive metabolite (Cm) was 
described as

dC
dt

k C k Cm
f p me m= − (23.17)

where kf and kme are fi rst-order rate constants of formation and elimination. Actual 
concentrations of the metabolite were not measured and thus hypothetical values 
were inferred during the model fi tting process. The interaction between Cm and Hb 
to form MetHb is contained within the following differential equation:

dMetHb
dt

k Hb C k MetHbm h= ⋅ ⋅ − ⋅ (23.18)

where k is now a second-order formation rate constant (as opposed to an elimina-
tion term as in Eq. (23.6)) and kh is a fi rst-order rate constant of MetHb elimination. 



This model well characterized the time course of MetHb after a single oral dose of 
an antimalarial compound in dogs, including the substantial temporal lag between 
drug exposure and the peak of MetHb concentrations, which occurred several days 
following drug administration. This type of modeling of the profi le of an unmea-
sured reactive metabolite may be relevant to other toxicological agents.

23.3 NONLINEAR AND TIME-DEPENDENT TRANSDUCTION PROCESSES

Drugs produce their pharmacological effects, both reversible and irreversible, 
through a variety of complex stimulus–response mechanisms (20). The complex 
nature of biological cascades has recast the concept of secondary messengers 
into that of signaling networks (21) and reintroduced the methodology of a systems 
analysis approach (22). In this section, PD models are presented for cases of 
nonlinear transduction or stimulus transfer as well as instances when signaling 
events represent a rate-limiting step in the production or loss of a pharmacological 
response.

23.3.1 Operational Model of Agonism

According to classical receptor occupancy and the law of mass action, the concen-
tration of the drug–receptor complex (RC) for simple receptor binding is given 
by (3)

RC R C K CT D= ⋅ +( ) (23.19)

where RT represents total receptor density and KD is the equilibrium dissociation 
constant. The pharmacological effect is correlated to the bound receptor through a 
transducer function, z, such that

E z RC= ( ) (23.20)

Assuming a linear transducer function, or that the effect is directly proportional to 
the drug–receptor complex (E = a · RC) (3), Eq. (23.20) becomes the empirical Emax

model (Eq. (23.1); g = 1), where Emax and EC50 replace the aRT and KD terms.
The Black–Leff (23) operational model of agonism offers a more mechanistic 

interpretation of concentration–effect curves and assumes a nonlinear transducer 
function:

E
E RC
K RC

m

E

=
⋅
+

(23.21)

where Em represents a system maximum and KE is the RC concentration that elicits 
half-maximal effect. Thus, combining Eqs. (23.19) and (23.21) yields

E
E C

K C
m

D

=
+ +( )

τ
τ 1

(23.22)
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where t is defi ned as a measure of transduction effi ciency (t = RT/KE). This equation 
results from one hyperbolic function (Eq. (23.19)) feeding into another (Eq. (23.21)) 
and is itself hyperbolic (20, 23). In this system, the transducer ratio (t) infl uences 
both the maximum effect achievable by an agonist and the agonist concentration 
that produces 50% of the maximal effect. These two parameters are given by the 
following relationships:

E
Em

max =
+

τ
τ 1

(23.23)

EC
KD

50
1

=
+ τ

(23.24)

A slope term (n), analogous to the Hill coeffi cient (g in Eq. (23.1)), also may be 
added to the transducer function (Eq. (23.21)), which transforms the concentra-
tion–effect relationship (Eq. (23.22)) to

E
E C

K C C
m

n n

D
n n n

=
+( ) +

τ
τ

(23.25)

where in this case, the Emax and EC50 parameters are redefi ned as

E
Em

n

nmax =
+
τ

τ 1
(23.26)

EC
KD

n n50 1
2 1

=
+( ) −τ

(23.27)

Thus, the operational model of agonism resolves hyperbolic and sigmoidal con-
centration–effect curves utilizing drug-specifi c (KD and t) and system-specifi c (Em)
parameters. When available, directly measured receptor binding (Eq. (23.19)) may 
be integrated into the full relationship (Eq. (23.25)). The implementation of the 
model typically requires a comparative method where the pharmacodynamics of a 
series of compounds is examined simultaneously, or at least with prior knowledge 
of the properties of a full agonist. For example, estimates of Em and n may be 
obtained from fi tting the sigmoidal Emax model (Eq. (23.1)) to concentration–effect 
data obtained from full agonists, as Em = Emax and n = g for such compounds. These 
terms are constrained in Eq. (23.25), which can then be used to estimate the drug-
specifi c properties, namely, drug affi nity and intrinsic effi cacy, for partial agonists 
from fi tting the equation to suitable concentration–effect profi les.

The effect of liposomal methylprednisolone on the inhibition of rat splenocyte 
proliferation provides an explicit example of Black–Leff principles in pharmaco-
dynamics (24). Direct measurements of the drug–receptor complex were shown to 
account for the percent inhibition of lymphocyte proliferation for liposomal and 
free drug formulations jointly as specifi ed by Eq. (23.21) (including a slope coef-
fi cient, n). The time course of in vivo lymphocyte proliferation was well captured 
by combining this relationship with suitable PK driving functions.



Van der Graaf and colleagues (25) applied the operational model in an integrated 
PK/PD analysis to characterize the in vivo pharmacodynamics of a series of adenos-
ine A1 receptor agonists in rats. Of importance was the observation that the in vivo 
estimates of KD and t were well correlated with direct experimental values obtained 
from in vitro bioassays. Therefore, assuming the system has been well described, 
the potential exists for predicting the time course of in vivo effects of relevant drug 
candidates from in vitro measurements.

The direct application of Eq. (23.25) to in vivo PD data assumes that drug 
concentrations in plasma and the biophase are in rapid equilibrium and directly 
proportional. Furthermore, maximum or peak effects are assumed to occur at 
peak drug concentrations (i.e., lack of hysteresis in concentration–effect curves). 
However, the operational model may be included also in indirect response models 
that characterize the temporal displacement between concentration and effect in 
mechanistic terms (26).

23.3.2 Transit Compartment Models for Signal Transduction Processes

Signal transduction cascades or networks, which are composed of a large array of 
secondary mediators, may represent a rate-limiting process and produce signifi cant 
delays in pharmacological effects following drug administration. However, many 
of the individual steps involved in specifi c biosignaling cascades may be unknown 
or not readily measurable for many in vivo systems. Whereas empirical time-lag 
functions may be used to delay drug concentrations and thus serve as delayed 
driving functions in PD models, such an approach does not refl ect the nature of the 
drug response and rarely captures the gradual onset of effect often observed for 
such systems. In contrast, the transit-compartment model (Figure 23.7) has been 
suggested as a robust platform for capturing time-dependent transduction delays 
in a mechanistic manner (27). Assuming reversible drug–receptor binding and a 
constant level of total receptors, the rate of change of the drug–receptor complex 
may be described by

dRC
dt

k R RC C k RCT= −( ) ⋅ −on off (23.28)

where kon and koff are binding microconstants representing rates of association 
(second-order) and dissociation (fi rst-order). Subsequent signal transduction is 
characterized by a series of differential equations:

dM
dt

RC M dM
dt

M Mi i i1 1 1=
−( )

=
−( )−

τ τ
. . . (23.29)

+  R         RC         E*
t t t t

C M1 M2 M3

FIGURE 23.7 Schematic of a time-dependent transduction model with three transit com-
partments (Mi) characterized by a mean transit time (t). The production of the drug–receptor 
complex (RC) initiates the PD cascade and a linear transducer function (E* and Eq. (23.20)) 
may be substituted for RC in the absence of specifi c receptor dynamics.

NONLINEAR AND TIME-DEPENDENT TRANSDUCTION PROCESSES 617



618 MECHANISTIC PHARMACOKINETIC/PHARMACODYNAMIC MODELS II

where Mi are the ith secondary messengers and t represents a mean transit time. 
The pharmacological effect typically is expressed as E = E0 ± MN, where N is the 
number of the last compartment in the series. In addition, a power coeffi cient (g)
may be incorporated into the series such that

dM
dt

M MN N N=
−( )−1

γ

τ
(23.30)

where g can serve to amplify or dampen the response.
For most in vivo PD systems, where the receptor dynamics in Eq. (23.28) are 

unknown, a linear transducer function may be assumed (see Eq. (23.20)) and the 
sigmoidal Emax equation (Eq. (23.1)) may be substituted for RC in Eq. (23.29), 
thereby deriving a general PD model for time-dependent transduction processes 
(28). Interestingly, the simplest case, where N = 1, is mathematically equivalent to 
indirect response model I for inhibition (E = E0 − M1) and model III for stimulation 
(E = E0 + M1). Thus, the example in the previous section, where the operational 
model of agonism was included in an indirect response model, implies that a non-
linear transducer function also may be used in Eq. (23.29), but this extension has 
yet to be evaluated with N > 1. Simulations of the general model, with N = 3, g = 1, 
and E0 = 0, are shown in Figure 23.8. Whereas peak drug concentrations are shown 
at t = 0, a delay and gradual onset of effect is observed, with maximal responses 
occurring at much later times in a dose-dependent manner. This signature profi le is 
characteristic of PD delays owing to transduction processes. The parasympathomi-
metic activity of low-dose scopolamine and atropine in rats are examples for which 
this modeling approach has been applied (29).

Implementation of the general signal transduction model requires a search for 
an optimal number of transit compartments (N), which usually is the fewest that 
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provide reasonable parameter estimates and model fi tting. Careful attention to 
model fi tting criteria (30), especially the distribution of residuals, must be made 
during model development. This necessitates a trial-and-error process; however, 
simulations using the gamma distribution function may provide initial guidance for 
further model refi nement. The gamma distribution function is defi ned as

g t
k t
N

eN

N N
kt( ) =

−( )

−
−

1

1 !
(23.31)

where t is time and k = 1/t. The time course of the pharmacological effect may 
be approximated then by the product of the area under the effect curve and Eq. 
(23.31) (27).

An important feature of this modeling approach is its versatility, and many addi-
tional system complexities may be included in the fi nal structure. As mentioned in 
Section 23.2.2, Simeoni and colleagues (11) combined an irreversible effect func-
tion with a transit-compartment model to describe tumor growth kinetics in nude 
mice xenograft models after the administration of several anticancer compounds. 
In contrast to expressing the response variable as a function of the last transit 
compartment, tumor weight was equated as the sum of all transit compartments 
refl ecting a distribution of cells in various stages of cell death (see the appendix for 
example code). Clearly, time-dependent transduction models are easily applied and 
robust and may provide key insights and relevant predictions of drug effects using 
a minimal number of drug-specifi c and system-specifi c parameters.

23.4 TOLERANCE AND REBOUND PHENOMENA

Drug tolerance can be recognized as the diminishment or palliation of an expected 
PD response following repeated or continuous drug exposure. More complicated 
study designs must be employed to ensure repeated or lengthy drug administration 
and a suffi cient washout period to capture the full return of the system to baseline 
conditions. Although processes involved in the development of tolerance often are 
complex and/or incompletely understood, PD models should attempt to character-
ize this property when present, as well as rebound or withdrawal phenomena, in 
mechanistic terms. The primary mechanisms responsible for tolerance and rebound 
include counterregulation, receptor desensitization, up- or downregulation of mes-
senger RNA (mRNA), receptors, or secondary factors, and precursor pool altera-
tion (Figure 23.9). Note that alternative PK sources of apparent drug tolerance, 
such as enzyme induction, antibody formation, and altered drug transport, have 
been excluded.

23.4.1 Counterregulatory Effect

PD models that take into account counterregulatory mechanisms rely on the gen-
eration of an opposing substance or effect. Although the structure of these models 
may take on various forms, the rate of change of an opposing mediator (M) typically 
is described by the following differential equation:
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dM
dt

k R k M= −1 2 (23.32)

where the formation of M is governed by the product of the response variable (R)
and a fi rst-order rate constant (k1), and k2 is a fi rst-order rate constant for the dis-
sipation of the mediator. The values of k1 and k2 commonly are set equal to each 
other owing to diffi culties associated with parameter identifi ability. Regardless, the 
net PD response (Rnet) may refl ect the individual contributions of both R and M,
where Rnet = R − M. Bauer and Fung (31) developed a counterregulatory model 
to describe the hemodynamic effects and subsequent tolerance induced by a con-
tinuous infusion of nitroglycerin in a rat model of congestive heart failure. The 
response variable was considered to be directly proportional to plasma nitroglycerin 
(NTG) concentrations (R = aCNTG), whereas two transit compartments were used 
to generate the opposing biosignal and the net response was defi ned as Rnet =
100% − R + M.

In addition to simple additive effects, an opposing biosignal can be integrated 
into physiological PD models (30). Wakelkamp and colleagues (32) introduced a 
counterregulatory mechanism into an indirect response model of diuresis and later 
tolerance development following multiple intravenous doses of furosemide. The 
rate of change of the mediator was described by Eq. (23.32), with ktol = k1 = k2. An 
indirect response model, where furosemide excretion rate (ER) was used to inhibit 
the fi rst-order loss rate of the response variable, was modifi ed accordingly:

dR
dt

k k
I ER

IC ER
R M= − −

⋅
+

⎛
⎝⎜

⎞
⎠⎟

⋅ ⋅ +( )in out 1 1
50

max (23.33)

Thus, an increase in the response variable due to the drug effect induces the gen-
eration of a mediator, which serves to stimulate the kout term in direct opposition 
to the mechanism of action of the drug. Whereas the mediator in this example was 
hypothetical, it may represent an actual measurable substance. Lima and colleagues 

FIGURE 23.9 The primary mechanistic PD modeling approaches for functional adaptation 
or tolerance development.
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(33) applied a feedback indirect response PK/PD model to characterize the effects 
of terbutaline on glucose–insulin homeostasis in healthy volunteers. Terbutaline 
plasma concentrations stimulate the production of glucose, which in turn stimulates 
the production and/or release of insulin. Insulin thus serves as the physiological 
mediator, where plasma concentrations above baseline conditions stimulate glucose 
effl ux or utilization.

23.4.2 Receptor Desensitization

Another mechanism by which drug effects may lessen upon prolonged drug expo-
sure is receptor desensitization, manifesting as receptor internalization or decreased 
apparent receptor affi nity. The desensitization of G-protein-coupled receptors, 
which is mediated by protein kinases and exposure to select agonists, represents a 
classical example of this phenomenon (34). Although empirical functions may be 
used to alter traditional drug sensitivity parameters (e.g., KD and EC50) in a time- 
and/or exposure-dependent fashion, these models do not refl ect the mechanisms 
involved and often fail to fully characterize this form of functional adaptation. In 
contrast, receptor inactivation theory encompasses both receptor occupancy and 
the rate theories of drug agonism and may embody a more mechanistic approach 
to receptor desensitization (20). The theory is described by the following series of 
equations:

dRC
dt

k R C k k RC= ⋅ ⋅ − +( ) ⋅on off 3 (23.34a)

dRC
dt

k RC k RC
′ = ⋅ − ⋅ ′3 4 (23.34b)

dR
dt

k R C k RC k RC= − ⋅ ⋅ + ⋅ + ⋅ ′on off 4 (23.34c)

where R stands for free receptor density, RC′ is an inactive drug–receptor species, 
and k3 and k4 are fi rst-order rate constants of RC′ formation and loss. Whereas 
the rate of change of RC follows a traditional function (see Eq. (23.28)), its for-
mation also drives the production of an inactive isoform (RC′). The drug effect 
in this system is assumed to be proportional to the rate of receptor inactivation 
(i.e., E = ak3 · RC). Simulations of this model show that, given appropriate rate 
constants, transient peak responses occur followed by a gradual dose-dependent 
fade to steady-state values (20). However, this model has yet to be applied to in 
vivo PD systems.

23.4.3 Receptor or mRNA Up/Down-regulation

A third mechanism of tolerance is receptor/gene up- and down-regulation. The 
indirect response models are well suited for characterizing such effects (12), where 
drug exposure and/or the formation of a drug–receptor complex (RC) may serve to 
autoregulate the production or loss of the pharmacological target. Assuming that 
complete inhibition may be achieved, the rate of change of the target mRNA may 
be described as (35)
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dmRNA
dt

k
RC

IC RC
k mRNA= −

+
⎛
⎝⎜

⎞
⎠⎟

− ⋅in out1
50

(23.35)

The ability of corticosteroids to inhibit the production of glucocorticoid receptor 
mRNA, and subsequently the formation of glucocorticoid receptor, is a classical 
example. This pharmacogenomic paradigm has been well characterized using the 
fi fth-generation model for corticosteroid pharmacodynamics (35), capturing the 
depletion of glucocorticoid receptors and the development of tolerance following 
repetitive and continuous exposure of methylprednisolone to male adrenalecto-
mized rats. The overall structure of this model has several important attributes that 
are discussed in Section 23.5.

23.4.4 Precursor Pool Alteration

A fourth major mechanism of tolerance and rebound is via either buildup or deple-
tion of a precursor pool. Ariens (36) noted that certain drugs may cause a libera-
tion of endogenous compounds that may require a signifi cant amount of time to 
replenish once depleted. Therefore, if the endogenous substance is responsible for 
the desired pharmacological effect, then a form of tolerance may develop upon 
continued drug exposure. Precursor-dependent indirect response models have been 
evaluated for characterizing both tolerance and rebound phenomena (37). The rate 
of change of the precursor pool (P) and the response variable (R) can be described 
generally as

dP
dt

k k H C P k Pp s= − ± ( ){ } −0 1 (23.36a)

dR
dt

k H C P k Rp= ± ( ){ } −1 out (23.36b)

where k0 is a zero-order production rate of the precursor, kp is a fi rst-order rate 
constant of response production, ks and kout are fi rst-order rate constants for the 
loss of the precursor and response, and H(C) represents the Imax or Emax function 
(Eqs. (23.1a) and (23.1b); g = 1). The need for an additional removal process for 
the precursor (ks) may be tested using standard model fi tting criteria. Plasma drug 
concentrations serve to stimulate (+H(C)) or inhibit (−H(C)) the processes involved 
in the production of the pharmacological response (kp). The initial conditions for 
Eqs. (23.36a) and (23.36b) are

P k k ks p
0

0= +( ) (23.37a)

R k P kp
0 0= out (23.37b)

The model depicted at the bottom of Figure 23.9 refl ects the two alteration of kp

options, while simulations of expected response profi les after escalating single-dose 
levels for the stimulation model are shown in Figure 23.10. Peak effects are shown to 
increase with dose, although not directly proportional, along with the time at which 
the peaks are achieved. Whereas the response variable for the lowest dose increases 
and then approaches the baseline value as drug concentrations decrease, increasing 



dose levels produce a rebound phenomenon where the response decreases below 
the baseline during the washout phase and then gradually returns toward the base-
line. The extent of the rebound also is dose dependent. Additional simulations of 
responses under conditions of repeated drug administration or continuous infusion 
more clearly demonstrate the tolerance phenomenon predicted from this simple PD 
system (37). Movin-Osswald and Hammarlund-Udenaes (38) originally developed 
and applied this stimulatory precursor-dependent model (ks = 0) to characterize 
the effect of remoxipride on prolactin release kinetics in healthy male volunteers. 
Although rebound was not pronounced in the response–time profi les, the data 
clearly showed tolerance development with consecutive intravenous administration, 
which was well described by the fi nal model. Zannikos et al. (39) show data for drug 
effects on blockage of free fatty acid concentrations in plasma where both palliation 
of the inhibitory effect and a rebound occur. The data can be captured with the 
inhibitory precursor model, although the authors did not recognize this.

23.5 COMPLEX PHARMACODYNAMIC MODELS

Mechanistic modeling approaches to irreversible effects, transduction processes, and 
the development of tolerance have been presented, where the basic tenets of capac-
ity limitation and physiological turnover processes were shown to be operational. 
As more primary determinants of drug action are determined through advances 
in molecular biology and pharmacology, so too are mechanism-based PD models 
likely to evolve and refl ect integrated systems of basic modeling components. The 
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FIGURE 23.10 Simulated response profi les (solid lines) for a precursor-dependent indirect 
response model (shown at the bottom of Figure 23.9). Drug exposure serves to stimulate 
the fi rst-order rate conversion of a precursor to the response variable. Parameter values are 
kel = 0.3 h−1, R0 = 15 units, P0 = 300 units, kp = 0.1 h−1, ks = 0 h−1, kout = 2.0 h−1, Emax = 1.0, and 
EC50 = 100 units.
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fi fth-generation PK/PD model of corticosteroid pharmacogenomic effects (35) not 
only exemplifi es this emerging paradigm, but its overall structure contains many of 
the major PD models discussed in this chapter. Thus, an overview of this model will 
serve to highlight and summarize fundamental techniques and provide insights into 
contemporary methods for complex PD systems analysis.

The full PK/PD model of acute corticosteroid receptor/gene-mediated effects 
is shown in Figure 23.11. PK functions will not be presented, but the model was 
primarily developed using intravenous and continuous infusion regimens of meth-
ylprednisolone to adrenalectomized rats, where the drug exhibits biexponential 
disposition and has been described using a two-compartment open model with 
linear fi rst-order elimination from the central compartment. The rate of change of 
the drug–receptor complex is described as an irreversible process:

dRC
dt

k C R k RCt= ⋅ ⋅ − ⋅on (23.38)

Once formed, RC translocates into the cell nucleus (RC(N)) and this process is 
modeled using a transit compartment refl ecting signal transduction:

dRC N
dt

k RC k RC Nt re
( )

= ⋅ − ⋅ ( ) (23.39)

where kt and kre are fi rst-order rate constants of the production and loss of the 
RC(N) biosignal. A fraction of the activated receptors will return to the free pool 
of available glucocorticoid receptors (Rf in the model diagram). The activated 
drug–receptor complex (RC(N)) is the driving function controlling the cortico-
steroid pharmacological effects. As discussed previously, the formation of RC(N)
downregulates the synthesis of the mRNA for the glucocorticoid receptor (R) (see 
analogous Eq. (23.35)):

dmRNA
dt

k
RC N

IC RC N
k mRNAR

R= ⋅ −
( )
+ ( )
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FIGURE 23.11 The fi fth-generation model of corticosteroid pharmacogenomic effects 
Symbols are defi ned in the text. (Adapted from Ref. 35.)



where ksyn_Rm and kdeg_Rm are zero- and fi rst-order rate constants of mRNA produc-
tion and degradation. The synthesis of free receptors is linked to the time course 
of its mRNA:

dR
dt

k mRNA R k RC N k C R k RR f re= ⋅ + ⋅ ⋅ ( ) − ⋅ ⋅ − ⋅syn_R on dgr_R (23.41)

where ksyn_R and kdgr_R are fi rst-order rate constants of receptor synthesis and degra-
dation. Drug exposure will decrease the availability of free receptors as well as the 
rate at which the new receptors can be synthesized, thus imposing drug tolerance.

The induction of hepatic tyrosine aminotransferase (TAT) mRNA and activity 
is a classical measure of corticosteroid-mediated pharmacogenomic effects. The 
TAT dynamics are modeled in a manner consistent with precursor-dependent 
models, where the stimulation function acts on the production rate of the precur-
sor species:

dmRNA
dt

k S RC N k mRNATAT
syn_tm dgr_tm TAT= ⋅ + ⋅ ( ){ } − ⋅1 (23.42a)

dTAT
dt

EF mRNA k= ⋅ ( ) − ⋅TAT dgr_t TATγ (23.42b)

where ksyn_tm is a zero-order rate constant of TAT mRNA synthesis, S is a linear 
coeffi cient for the effi ciency of TAT gene induction, kdgr_tm is a fi rst-order rate 
constant for TAT mRNA degradation, EF is the translational effi ciency of TAT 
mRNA to the enzyme (or activity), g is an amplifi cation power coeffi cient, and kdgr_t

is a fi rst-order degradation rate constant for TAT. The original article should be 
consulted for defi nitions of baselines and initial conditions.

The construction of such a complex model was achieved in a piecewise manner. 
For example, drug pharmacokinetics were measured, modeled, and fi xed as the 
primary driving function. A single intravenous bolus dose of methylprednisolone 
produces a rapid drop in glucocorticoid receptor density, which gradually returns 
toward baseline values over 72 hours in a complex biphasic manner refl ecting 
receptor recycling and de novo synthesis. The time course of glucocorticoid recep-
tor mRNA shows a gradual decrease to a nadir at about 10 hours followed by a 
return to baseline within 48 hours. Measurements of receptor density and mRNA 
may be modeled simultaneously to characterize receptor dynamics and generate 
the activated drug–receptor biosignal. As with the PK function, the estimated 
model parameters may be fi xed for subsequent fi tting of the TAT mRNA and 
enzyme activity measurements. The shapes of these PD profi les resemble the simu-
lations shown in Figure 23.8, where a lag-time and gradual onset is observed, 
with peak TAT mRNA density occurring around 5 hours. TAT activity dynamics 
appear similar but shifted slightly to the right, peaking around 7 hours, and both 
mRNA and TAT activity return toward baseline values by 18 hours. Complex 
models such as the one depicted in Figure 23.11 and the iterative manner in which 
it was constructed and experimentally validated may become commonplace as 
the focus of PK/PD modeling continues to shift toward integrative and systems 
pharmacology.
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APPENDIX 23.1

The following example illustrates the integration of irreversible effects and time-
dependent transduction modeling to characterize in vivo tumor growth kinetics 
after exposure to anticancer drugs. This model was developed by Simeoni and 
colleagues1 and was evaluated using several established and candidate chemo-
therapeutic agents. In this example, tumor weight was measured in HCT116 
tumor-bearing mice (female Hsd, athymic nude-nu mice) after receiving a single 
intravenous injection of either the vehicle or irinotecan (CPT-11; doses were 
45 or 60 mg/kg on day 13 following tumor transplantation). CPT-11 pharmaco-
kinetics was determined in a separate analysis and characterized by an open 
two-compartment mamillary model with fi rst-order elimination from the central 
compartment.

The model can be described by the following system of differential equations:

dM
dt
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dt
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where Mi represents the ith transit compartment, g(t) is the equation describing 
tumor growth, k is a second-order rate constant of drug effect, C represents CPT-11 
plasma concentration, and t is a mean transit time. Tumor weight, w(t), is equated 
as the sum of the transit compartments: w t Mii( ) = =∑ 1

4 , and tumor growth, g(t), is 
defi ned by the following equation:

1 Predictive pharmacokinetic–pharmacodynamic modeling of tumor growth kinetics in xenograft models 
after administration of anticancer agents. Cancer Res 64:1094–1101 (2004).
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where kg and kg0 are fi rst- and zero-order growth rate constants. According to the 
original derivation, large values of the Ψ parameter provide a good approximation 
for the system where tumor growth switches from a fi rst-order to a zero-order rate. 
This term is fi xed to 20 and the original article should be consulted for further 
details.

The above model was implemented in WinNonlin (Pharsight, Mountain View, 
CA) and the accompanying data were simulated using the previous parameter 
estimates (k = 3.51 × 10−5 ng−1 mL · h−1, t = 51.2 h, kg = 0.00608 h−1, kg0 = 0.0139 g/h, 
w(0) = 0.085 g) with ±10% random error.

Model 1

remark ******************************************************

remark Model: Irreversible Transduction Pharmacodynamic

remark Model of Tumor Growth

remark

remark Example: CPT-11 effects on tumor growth kinetics

remark in HCT116 tumor-bearing mice

remark

remark Developed by Simeoni et al. Cancer Res 2004 64:1094

remark Coded by Mager and Jusko 2005

remark ******************************************************

remark

remark - define model-specific commands

COMMANDS

NFUNCTIONS 3

NDERIVATIVES 9

NPARAMETERS 5

PNAMES ‘tau’, ‘k’, ‘kg’, ‘kg0’,‘w0’

END

remark - define temporary variables

TEMPORARY

T = X

remark - CPT-11 PK parameters

V = 4.85

k10 = 0.553

k12 = 0.0115

k21 = 0.0616

D1 = 45*1000

D2 = 60*1000

alpha = 0.5*((k12+k21+k10)+SQRT((k12+k21+k10)**2-4*k21*k10))

beta = 0.5*((k12+k21+k10)-SQRT((k12+k21+k10)**2-4*k21*k10))

C11 = D1*(alpha-k21)/(V*(alpha-beta))
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C12 = D1*(k21-beta)/(V*(alpha-beta))

C21 = D2*(alpha-k21)/(V*(alpha-beta))

C22 = D2*(k21-beta)/(V*(alpha-beta))

END

remark - define differential equations starting values

START

Z(1) = w0

Z(2) = 0

Z(3) = 0

Z(4) = 0

Z(5) = w0

Z(6) = 0

Z(7) = 0

Z(8) = 0

Z(9) = w0

END

remark - define differential equations

DIFFERENTIAL

remark - IV bolus doses administered at t=312

IF T<312 THEN

Cp1=0

Cp2=0

ELSE

Cp1=C11*DEXP(-alpha*(t-312))+C12*DEXP(-beta*(t-312))

Cp2=C21*DEXP(-alpha*(t-312))+C22*DEXP(-beta*(t-312))

ENDIF

remark - Tumor growth kinetics

psi=20

wt1=Z(1)+Z(2)+Z(3)+Z(4)

wt2=Z(5)+Z(6)+Z(7)+Z(8)

wt3=Z(9)

gr1=kg*Z(1)/((1+(kg/kg0*wt1)**psi)**(1/psi))

gr2=kg*Z(5)/((1+(kg/kg0*wt2)**psi)**(1/psi))

gr3=kg*Z(9)/((1+(kg/kg0*wt3)**psi)**(1/psi))

remark - PD system equations

DZ(1) = gr1-k*Cp1*Z(1)

DZ(2) = k*Cp1*Z(1)-Z(2)/tau

DZ(3) = (Z(2)-Z(3))/tau

DZ(4) = (Z(3)-Z(4))/tau

DZ(5) = gr2-k*Cp2*Z(5)

DZ(6) = k*Cp2*Z(5)-Z(6)/tau

DZ(7) = (Z(6)-Z(7))/tau

DZ(8) = (Z(7)-Z(8))/tau

DZ(9) = gr3



END

remark - define algebraic functions

FUNCTION 1

F= Z(1)+Z(2)+Z(3)+Z(4)

END

FUNCTION 2

F= Z(5)+Z(6)+Z(7)+Z(8)

END

FUNCTION 3

F= Z(9)

END

remark - end of model

EOM
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24.1 INTRODUCTION AND APPLICATION OF LOGISTIC REGRESSION 
IN NONLINEAR MIXED EFFECTS MODELING

Binary outcome data, or endpoints with exactly two possible outcomes, are com-
monly collected during drug development. Examples of binary (also referred to 
as dichotomous) endpoints include cure versus lack of cure of a disease or condi-
tion with treatment, relief versus lack of relief from symptoms, eradication versus 
persistence of an organism, presence versus absence of a medical outcome, and 
appearance versus lack of appearance of an adverse event. Binary data are a subset 
of what are termed discrete or categorical endpoint data. Sheiner and Beal (1) have 
referred to such endpoints as “odd-type” data, in that they are noncontinuous and 
therefore require the use of nonstandard methodology for proper analysis and 
interpretation.

While binary outcome data may seem relatively straightforward and amena-
ble to interpretation, often the determination of such endpoints depends on the 
utilization and understanding of many different (discrete and continuous) vari-
ables and is a function of a number of different factors. In the analysis of anti-
infective compounds, a common effi cacy endpoint is “clinical cure,” which may be 
a function of microbiological results, patient-reported symptoms, and investigator 
examination. Taken together, these data are utilized (sometimes with an equation 
or mathematical function) to establish a determination of clinical cure or clinical 
failure for a particular patient. Other applications include situations where the 
observed dichotomous response is a mere simplifi cation of an underlying latent or 
observed continuous response. An example of a latent continuous response may be 
craving for a cigarette. Here, the underlying continuous scale, although subjective 
and prone to a considerable amount of between-subject variability, may be simpli-
fi ed by creating levels or categories of response (0 = no craving, 1 = mild craving, 
2 = moderate craving, 3 = intense craving; or more simply, 0 = mild or no craving 
and 1 = moderate to severe craving). Oftentimes, binary endpoints are created by 
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categorizing observed continuous responses based on a clinically signifi cant cut-
point. For example, observed continuous laboratory values that are greater than 
3 times the upper limit of normal may be classifi ed as an endpoint to be studied 
in comparison to the group of all other possible lower values.

Traditional statistical analyses of dichotomous dependent variables (endpoints) 
usually involve logistic regression analysis. Logistic regression models, in particular, 
linear logistic regression models, are a special case of the general linear models 
(GLMs) (2), and they provide a general unifying framework for the analysis of 
binary data as general linear models do for normally distributed continuous data. 
Logistic regression models utilize the logistic transformation or logit (defi ned in 
Section 24.2) to deal with the “problem” inherent in the response classifi cation of 
only 0 or 1. The logit transforms the 0 to 1 probability scale to a −∞ to +∞ scale, 
allowing for the development of linear models describing the relationship between 
the success probability and various predictors; similarly, the fi tted probabilities from 
these models are bounded between 0 and 1.

In pharmacometric analyses, exposure–response models are often developed 
using a population pharmacokinetic/pharmacodynamic (PK/PD) approach, com-
bining multiple continuous PK observations (drug concentrations), and single or 
multiple effi cacy (cure versus fail) and/or safety endpoints (occurrence or lack of 
occurrence of an adverse event) as the dependent variables. There are many exam-
ples of the use of logistic regression techniques to model binary endpoints in popu-
lation PK/PD analyses (3–6). Johnson et al. (3) utilized a population approach to 
estimate the pharmacokinetics of orally administered midazolam and its 1-hydroxy 
metabolite and then a more traditional logistic regression analysis to estimate the 
effects of plasma midazolam and 1-hydroxymidazolam on sedation score in chil-
dren undergoing surgery. Johnston et al. (4) utilized NONMEM® (7) to estimate 
the effects of exposure and other covariates on the probability of effi cacy and risk 
of certain adverse events associated with the use of bupropion SR in smoking 
cessation. Mould et al. (5) and Xie et al. (6) utilized population PK/PD methods 
to estimate the more complicated probability of graded adverse events (ordinal 
responses) associated with treatment and their relationship with drug exposure.

While population PK analyses often involve the utilization of mixed effects 
models due to the repeated nature of the measurements collected from each indi-
vidual and the desire to estimate and discriminate between the various sources of 
variability, PK/PD analyses of binary endpoint data may utilize either fi xed or mixed 
effects models. Oftentimes, a single endpoint measurement is collected from each 
individual being studied and a model estimating only fi xed effects is used. However, 
when multiple observations are collected from each individual (over time), we may 
wish to estimate the change in response probability over time while recognizing 
the correlation between observations from the same individual and also estimate 
the variation between individuals. This is accomplished through the use of a mixed 
effects model.

There are many examples of PK/PD exposure–response analyses conducted sub-
sequent to population PK model development using a traditional statistical package 
such as SAS® (8) either with or without the use of a mixed effects model (9–11). 
As Yano et al. (12) have demonstrated in their simulations, this approach may be 
perfectly adequate in many circumstances and the assumed gain in precision of the 
fi xed effect estimates through the use of a mixed effects model is either marginal 



or nonexistent. Importantly, however, while careful attention to study design and 
data collection makes the simultaneous evaluation and estimation of PK and PD 
endpoints possible, even with sparse data, Yano et al. (12) point out that such 
sophisticated methods are not always warranted or even advantageous. While all 
software packages allowing for the estimation of logistic regression models differ, 
for the pharmacometrician who is experienced with the use of NONMEM for PK 
analysis, the NONMEM software provides an excellent framework for the imple-
mentation of a range of simple to complex models.

The theory and techniques described in this chapter focus on the application 
of logistic regression to binary outcome data and the development of models to 
describe the relationship between binary endpoints and one or more explanatory 
variables (covariates). While many software options are available for fi tting fi xed 
or mixed effects logistic regression models, this chapter endeavors to illustrate the 
use of nonlinear mixed effects modeling to analyze binary endpoint data as imple-
mented in the NONMEM software.

24.2 STATISTICAL BASIS FOR LOGISTIC REGRESSION MODELS

We may consider the response of a particular patient, administered a given treat-
ment, as binary if it can be quantifi ed as either success or failure. We denote this 
response by R, and it is valued 1 (indicating success) or 0 (indicating failure). The 
unknown probability of a successful response is denoted by p = P(R = 1). The cor-
responding probability of failure is denoted by P(R = 0) = 1 − p. The probability 
distribution of R can then be denoted by P(R = r) = pr(1 − p)1−r, r = 0, 1. This dis-
tribution is known as the Bernoulli distribution (13).

Building on this notation for a single patient, the individual binary responses of 
a group of n patients administered the given treatment can be thought of as a series 
of Bernoulli “trials” and described using the binomial distribution, with

P(Y = y) = (nCy)py(1 − p)n−y, y = 0, 1,  .  .  .  , n

Here, y is the total number of patients with successful outcomes and we assume 
that each patient’s response is independent of every other patient’s response. Then, 
the probability of a particular distribution of successes and failures for a group of 
n patients is py(1 − p)n−y and the total number of ways in which a sequence of y
successes and n − y failures can occur is

n yC
n

y n y
( ) =

−( )
!

! !

Since we are most often concerned with developing a model that will describe the 
relationship between some binary endpoint (y) and one or more predictor variables 
(x), we are often interested in the conditional mean of y (the endpoint) given x, or 
E(Y|x). In linear regression, we express this expectation as a linear function: E(Y|x)
= b0 + b1x. However, given the binary nature of our endpoint (y), this expectation is 
only relevant at values between 0 and 1, inclusive. This gives rise to the consider-
ation of a transformation of our data to allow for expected values to be constrained 
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to be between 0 and 1. The logit transformation is such a transformation, which 
maps probabilities, p, measured between 0 and 1, onto a −∞ to +∞ scale. The logit 
transform is expressed then as a function of p:

g(p) = ln [p/(1 − p)]

For a predictor x with probability of success p(x) = E(Y|x),

g(x) = ln [p(x)/(1 − p(x))] = b0 + b1x

The logistic regression model then takes the form

π β β β βx e ex x( ) = +( )+ +0 1 0 11/

When plotted against a range of x values, this model has an S-shaped curve, 
approaching values of 0 and 1 gradually as shown in Figure 24.1 for positive and 
negative values of b1 (2).

The value of b1 determines the rate of change in p(x), with higher values indicat-
ing a faster rate of change. As in linear regression, a value of 0 for b1 indicates that 
the response is independent of x.

Using the logistic regression model, the deviation between the expectation of 
a particular binary observation (the conditional mean, E(Y|x)) and the true value, 
0 or 1, can be denoted by the random variable e, as shown in the following equa-
tion: y = E(Y|x) + e. Since y takes on only the values 0 and 1, e can take on only two 
possible values: 1 − p(x) when y = 1 and −p(x) when y = 0. Thus, the error term, e,
follows a binomial distribution with mean 0 and variance p(x)[1 − p(x)] (14).

24.3 AN EXAMPLE UTILIZING SIMULATED CLINICAL TRIAL DATA

When modeling “real” data, an important fi rst step is to carefully consider and 
specify the intended use of the model to be developed. With this in hand, an appro-
priate strategy and analysis plan can be crafted to ensure the appropriateness of the 
model (15). For the purposes of this chapter, a simulated data set is used to mimic 
a typical Phase 2 trial of a novel compound where an endpoint measurement is 
collected at each study visit. In this case, the endpoint of interest is the presence or 
absence of a particular adverse event. Various demographic variables are available 
for possible correlation with the endpoint in addition to a calculated measure of 
individual exposure to the drug.

In this example, a number of subjects receiving this particular compound in Phase 
1 trials experienced rash. To further evaluate the potential relationship between 
exposure to the new drug and the probability of experiencing rash, a PK/PD logistic 
regression model is developed to explore and estimate this relationship. The simu-
lated data are described in Table 24.1 and further explained in Section 24.3.2.2.

24.3.1 Exploratory Data Analysis

Prior to modeling, exploratory graphs and tables of the data to be analyzed should 
be generated to gain an understanding of the data that are to be modeled, to look for 
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trends in the data, to identify potential outliers or erroneous data values, to check 
for errors in coding that might have occurred during the data set creation process, 
and to verify model assumptions (16).

Contingency tables can easily be created to determine the frequencies of various 
combinations of variable levels. For instance, a contingency table of each discrete 
predictor versus the dependent variable can be created by summing up the numbers 
of 0 and 1 endpoints for each level of each discrete predictor. Such contingency 
tables are then examined to determine if there are any combinations of variable 
levels that result in a frequency of zero or a very small number of observations. If 
zero (or very small) frequencies are detected, one may consider either collapsing 
or combining two or more levels of the predictor variable or eliminating a par-
ticularly small category to avoid numerical problems during the modeling process. 
These tables are also useful as a univariate look for possible trends that may be 
observed in modeling (14). A sample contingency table for the rash data is provided 
in Table 24.2.

FIGURE 24.1 Example logistic regression functions for positive and negative values of 
b1.
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TABLE 24.1 Simulated Data Set Description

Position in   NONMEM
Dataset Set Variable Description Coding Variable Name

1 Subject Identifi er ID Number ID
2 Outcome = Rash 0 = Rash not observed DV
     between this and the
     prior visit
  1 = Rash observed
     during the defi ned
     interval
3 Drug Exposure Calculated area under the AUC
   concentration–time curve
   at steady state in ng·h/mL
4 NONMEM Missing 0 = DV not missing MDV
  Dependent Variable 1 = DV missing
  (MDV) Item
5 Gender 0 = Male SEXF
  1 = Female
6 Study Visit Integer value indicating VIS
   study visit number
7 Patient Race 0 = Caucasian RACE
  1 = Black
  2 = Hispanic
  3 = Other
8 NONMEM Marginal 0 = No marginal MRG_
  Expectation Data    expectation
  Item    requested for this
     record
  1 = Marginal expectation
     requested in PRED for
     this record
9 NONMEM Raw Data 0 = No raw data average RAW_
  Average Data Item    requested for this record
  1 = Raw data average
     requested in DV for
     this record

TABLE 24.2 Contingency Table for Endpoint and Race in the Rash Data Set

Frequency Race Group
Row %
Column % 0 (Caucasian) 1 (Black) 2 (Hispanic) 3 (Other) Total

Rash 0 (No) 1572  97  43  43 1755
    89.6   5.5   2.5   2.5  100.0
    83.4  85.1  78.2  91.5   83.5
 1 (Yes)  314  17  12   4  347
    90.5   4.9   3.5   1.2  100.0
    16.7  14.9  21.8   8.5   16.5
 Total 1886 114  55  47 2102
    89.7   5.4   2.6   2.2  100.0
   100.0 100.0 100.0 100.0  100.0
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Since ordinary logistic regression models assume linearity between the logit and 
the predictor variables, this assumption should also be verifi ed prior to modeling. 
Empirical logits can be calculated for each continuous predictor variable by ranking 
and “binning” the values of the continuous predictor and then calculating the value 
of the logit for that bin based on the number of successes observed in each bin and 
the total number of patients whose predictor falls into that bin. A plot of the empiri-
cal logit versus the mean value of the predictor in each bin should look reasonably 
linear if ordinary linear logistic regression is to be used. If this plot looks markedly 
nonlinear, either a transformation of the predictor variable should be considered 
or a nonlinear model should be utilized (2, 14). A plot of the empirical logit versus 
AUC for the example rash data set is shown in Figure 24.2. Given the reasonably 
linear relationship observed between the logit and AUC in this plot, as evidenced 
by the smooth line, this plot supports the assumption of linear logits for the AUC 
predictor.

In typical exposure–response (population PK/PD) evaluations, a variety of demo-
graphic, pathophysiologic, and laboratory variables are available for consideration 
as potential predictors of outcome. While serious consideration of the likelihood 
for a relationship as it relates to the compound’s mechanism of action should be 
entertained before all possible variables are included for evaluation as predictors, 
the resulting list will usually still consist of a number of demographic variables that 
are likely to be correlated. As with any regression analysis, the correlations between 
potential predictors should be evaluated prior to inclusion in the model. Strong cor-
relations between one or more potential predictors may result in multicollinearity 
in the model, making the assessment of the importance of predictors impossible 
to discern. Correlations between predictors of interest may warrant a decision to 
examine only one of the correlated variables as a possible predictor of outcome. 
Scatterplot matrices or pairwise scatterplots of the continuous predictor variables 
may be generated to examine these correlations.

FIGURE 24.2 Empirical logit plotted versus the mean of the binned AUC values for each 
of 10 groups. A smooth line is drawn through the points to facilitate interpretation.
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24.3.2 Implementation and Coding of Logistic 
Regression Models in NONMEM

24.3.2.1 NM-TRAN Specifi cations
Once exploratory analyses are complete and the data set for analysis has 
been suffi ciently examined for the appropriateness of the assumptions, a base 
structural model may be fi t. Logistic regression models, as implemented in 
NONMEM, require the use of the Laplacian estimation method with the 
LIKELIHOOD option ($EST METH=COND LAPLAC LIKE). In general, when binary 
endpoint data (single or multiple responses collected from each individual) are 
modeled, only one level of random effects is estimated (usually OMEGA, added to 
the logit as a homoscedastic error, ETA(1)), representing the unexplained inter-
subject variability in the predicted response. When only a single endpoint obser-
vation is available from each patient, ETA(1) may still be added to the logit with 
the estimate of OMEGA fi xed to 0 ($OMEGA 0 FIXED). The use of the LIKELIHOOD
option with categorical data specifi es to NONMEM to compute a different objective 
function than is computed for continuous data, one that is based on the conditional 
likelihood of hj.

Since the model is user supplied, the $PRED block is used and only the NONMEM-
required variables ID (subject identifi er), DV (the dependent variable or dichotomous 
endpoint), MDV (the missing dependent variable data item), and the explanatory 
variables of interest (the predictors, or independent variables) are required. An 
example NM-TRAN control stream for the base model (described below) estimat-
ing the probability of experiencing rash, prior to the inclusion of any potential 
covariate (predictor) effects, is shown in Appendix 24.1. In this case, the base model 
to be specifi ed in NONMEM is described in the Eq. (24.1) and (24.2):

Logitj j= +θ η1 (24.1)

P e ej
Logit Logitj j= +( )1 (24.2)

where q1 is the typical value of the logit; hj is the discrepancy between the typical 
value of the logit and the true logit in the jth patient; hj are independent and 
identically distributed random variables with mean 0 and variance w2; and Pj is the 
predicted probability of experiencing rash in the jth patient.

24.3.2.2 Data Set Specifi cations
A listing of the data for the fi rst and last two patients in the data set is provided 
in Table 24.3. The DV data item is used to denote whether (a value of 1) or not (a 
value of 0) rash was observed in the given patient. Most other variables and values 
are self-explanatory with the exception of the MRG_ and RAW_, the marginal expec-
tation and raw data average data items. These data items are indicator variables 
for NONMEM to signal the calculation of various statistics for the given values of 
other variables on the record. The MRG_ data item with a value of 1 indicates to set 
PRED (the NONMEM-generated typical value prediction) to the expected value 
of Y. MRG_ can be used to generate both simulation expectations (in simulation 
problems) and posterior expectations (in estimation problems or following estima-
tion using $MSFI). The RAW_ data item with a value of 1 indicates to set DV to the 
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raw data average for the given value(s) of the other data items. MRG_ and RAW_ can 
be used together (as shown in this example) to generate both expectations 
and averages for the values of the variables on these records (in our data set, 
ID = 998 and 999) (1).

24.3.2.3 Interpretation of the Output
The report fi le from the base model run provided a minimum value of the objective 
function of 1616.814 and an estimate (SE) for q1 of −2.43 (0.173) and w2

1 of 2.88 
(0.538). The marginal posterior expectation is 0.155 over all values of AUC and 
other covariates (none of which are included in the model yet) and the raw data 
average is 0.162 (approximately equivalent to the frequency of occurrences of rash 
in the data set divided by the total number of patients).

To get a sense of the goodness of fi t for a particular model, a plot of the raw 
data average (values in DV for RAW_ = 1) and the posterior expectation (values in 
PRED for MRG_ = 1) versus each other and/or explanatory variables can be gener-
ated (see Section 24.4 for an example of this plot). Another assessment of model 
fi t can be obtained by plotting the individual h values versus potential predictors 
of interest. Trends observed in a plot of h versus a covariate may indicate a pos-
sible relationship between the outcome and that predictor which has not yet been 
accounted for in the model.

TABLE 24.3 Records for the First and Last Two Patients of 
NONMEM-Formatted Data Set for Example

ID DV AUC MDV SEXF VIS RACE MRG_ RAW_

 1 0  21.99 0 0  1 1 0 0
 1 0  41.54 0 0  2 1 0 0
 1 0  81.00 0 0  3 1 0 0
 1 0 158.91 0 0  4 1 0 0
 1 0 316.18 0 0  5 1 0 0
 1 0 472.72 0 0  6 1 0 0
 1 1 629.99 0 0  7 1 0 0
 1 0 629.99 0 0  8 1 0 0
 1 1 940.19 0 0  9 1 0 0
 1 0 940.19 0 0 10 1 0 0
 1 0 940.19 0 0 11 1 0 0
 1 0 940.19 0 0 12 1 0 0
 2 0  25.67 0 0  1 1 0 0
— — — — — — — — —
— — — — — — — — —
— — — — — — — — —
998 1  18.28 1 0  1 0 1 1
— — — — — — — — —
998 1  85.97 1 0  1 0 1 1
999 1  19.64 1 1  1 0 1 1
— — — — — — — — —
999 1 925.06 1 1  1 0 1 1
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24.4 MODEL BUILDING

With the base model fi t in hand, any of a number of different strategies may be 
employed to evaluate the infl uence of the exposure variables and covariates on 
the response. As with other population PK (and PK/PD or PD) analyses, many 
different techniques and processes have been advocated for effi ciently and effec-
tively screening and selecting covariates for inclusion in a model (17–19). For the 
purposes of this chapter, the model including the effect of exposure (AUC) on the 
response is illustrated, as is the fi nal model, including other covariate effects (pre-
sumably derived following the application of some technique to screen all potential 
covariates).

Given the apparent linearity observed in the plot of the empirical logit versus 
AUC (see Figure 24.2), a linear model including (a centered effect of) AUC is 
evaluated. This model may be specifi ed as

Logit AUCj j j= + −( ) +θ θ η1 2 118 (24.3)

P e ej
Logit Logitj j= +( )1 (24.4)

where q1 is the typical value of the logit at the median AUC value of 118 ng·h/mL; 
q2 is the typical value of the slope relating AUC to the logit; AUCj is the calculated 
AUC in the jth patient (centered about the population median value of 118 ng·h/
mL); hj is the discrepancy between the typical value of the logit and the true logit 
in the jth patient; hj are independent and identically distributed random variables 
with mean 0 and variance w2; and Pj is the predicted probability of experiencing 
rash in the jth patient.

To compare this model to the simpler base model, a likelihood ratio test may be 
utilized as is commonly applied in population model building. This test considers 
the log likelihood values (in NONMEM, the minimum values of the objective func-
tion) from two hierarchical models and compares the difference in these values to 
a c2 statistic with the number of degrees of freedom equal to the difference in the 
number of parameters estimated in the two models. When the model including the 
effect of AUC was estimated in the example rash data set, the minimum value of the 
objective function was 1605.344. Thus, the difference in the log-likelihood values for 
the two models is 11.470 with 1 degree of freedom, relating to a p-value of 0.0007, 
and the conclusion that AUC is a statistically signifi cant predictor of response 
at a = 0.05. The estimates (SE) for q1 and q2 were −2.54 (0.176) and 0.000969 
(0.000287), respectively, and w2

1 was estimated at 2.80 (0.525).
A commonly reported statistic for logistic regression models is the odds ratio. 

An odds ratio, or the ratio of the odds for x = 1 to the odds for x = 0, may be cal-
culated (14) as

Ψ =
( ) − ( )( )[ ]
( ) − ( )( )[ ]

π π
π π

1 1 1
0 1 0

(24.5)

For logistic regression models with a single predictor variable, x, this equation 
reduces to eb1. For a dichotomous predictor such as gender, this ratio approximates 
how much more likely (or unlikely) it is for the endpoint of interest to be observed 
for females as compared to males. For a continuous predictor such as exposure, 



this ratio approximates how much more likely (or unlikely) it is for the endpoint of 
interest to be observed for every one-unit increase in exposure. Since a 1 ng·h/mL 
increase in exposure may not be particularly meaningful depending on the scale and 
range of the predictor, odds ratios for continuous predictors can also be calculated 
for larger increments in the predictor (c) to facilitate interpretation by multiplying 
b1 by c before exponentiating (14).

This ratio also provides another means of interpreting the coeffi cient for the pre-
dictor x. We can say that the odds of experiencing the endpoint of interest increase 
by eb1 times for every one-unit increase in x. A 95% confi dence interval around this 
odds ratio can be calculated by fi rst determining the interval around b1 and then 
exponentiating the endpoints (for an arbitrary unit increment of c):

e ec z c SE c z c SE⋅ − ⋅ ⋅ ( )[ ] ⋅ + ⋅ ⋅ ( )[ ]− −β β β βα α1 1 2 1 1 1 2 1, (24.6)

Therefore, given the estimate of q2 (or b1) in the exposure–response model, AUC 
is associated with an odds ratio of eb1 = e0.000969 = 1.001. The 95% confi dence interval 
associated with this odds ratio is

(eb1−1.96 · SE(b1), eb1+1.96 · SE(b1)) = (e0.000969−1.96 · 0.000287, e0.000969+1.96 · 0.000287) = (1.0004, 1.0015)

This odds ratio for exposure means that the odds of experiencing rash increase by 
0.1% with every 1 ng·h/mL increase in AUC over the median value of 118 ng·h/mL. 
Alternatively, if a 100 ng·h/mL increase in AUC was thought to be a meaningful 
difference, the resulting odds ratio would indicate that the odds of experiencing 
rash increase by e100 · 0.000969 = 1.10 times for every 100 ng·h/mL increase in AUC 
over the median value of 118 ng·h/mL. For a patient with the lowest calculated 
AUC (8.38 ng·h/mL), this translates into a predicted probability (marginal poste-
rior expectation) of rash of e−2.54+0.000969 · (8.38−118)/(1 + e−2.54+0.000969 · (8.38−118)) = 0.066 and 
for a patient with the highest calculated AUC (1603.88 ng·h/mL), a probability of 
e−2.54+0.000969 · (1603.88−118)/(1 + e−2.54+0.000969 · (1603.88−118)) = 0.250.

Another statistic that can be calculated for the logistic regression model is 
the median effective level, or EL50; in our example, this is interpreted as the AUC 
at which there is a 50% probability of either experiencing or not experiencing the 
endpoint (rash). The EL50 can be estimated by −b0/b1, the x value associated with 
the steepest slope of the S-shaped logistic regression curve. For this model, the EL50

is the AUC at which the predicted probability is 0.5, which is −b0/b1 = 2.54/0.000969 
= 2621.26 ng·h/mL. While this EL50 value is well outside the range of the observed 
AUCs in this data set (maximum AUC = 1603.9 ng·h/mL), this is not unexpected 
due to the low incidence of rash in these simulated trial data. For a more prevalent 
endpoint, this statistic may be useful in interpreting the parameter estimates.

Following covariate analysis for this simulated data set, gender was the only 
covariate determined to be a statistically signifi cant predictor of response in addi-
tion to exposure at a signifi cance level of a = 0.05 for entrance into the model. 
The only other covariate tested in this example was race, and the model including 
exposure and race did not result in a statistically signifi cant change in the minimum 
value of the objective function. The fi nal model, including the effects of exposure 
and gender, is described in the following equations:

MODEL BUILDING 643
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Logit AUC SEXFj j j j= + ⋅ −( ) + ⋅ +θ θ θ η1 2 3118 (24.7)

P e ej
Logit Logitj j= +( )1 (24.8)

where q1 is the typical value of the logit for a male patient at the median AUC value 
of 118 ng·h/mL; q2 is the typical value of the slope relating AUC to the logit; AUCj is 
the calculated AUC in the jth patient (centered about the population median value 
of 118 ng·h/mL); q3 is the typical value of the increment (or decrement) in the logit 
relating to female gender; SEXFj is an indicator variable for gender in the jth patient 
(with 0 = male and 1 = female); hj is the discrepancy between the typical value of 
the logit and the true logit in the jth patient; hj are independent and identically 
distributed random variables with mean 0 and variance w2; and Pj is the predicted 
probability of experiencing rash in the jth patient.

When the model including the effect of gender was estimated in the example rash 
data set, the minimum value of the objective function was 1597.624. Thus, the dif-
ference in the log-likelihood values between this model and the exposure–response 
model not including the effect of gender is 7.72 with 1 degree of freedom, relating 
to a p-value of 0.005, and the conclusion that gender is a statistically signifi cant 
predictor of response at a = 0.05. The estimates (SE) for q1, q2, and q3 were −3.00
(0.256), 0.000961 (0.000286), and 0.824 (0.299), respectively, and w2

1 was estimated 
at 2.69 (0.510). Given the estimate of q3 (or b2), female gender is associated with 
an odds ratio (95% confi dence interval) of 2.28 (1.27, 4.10). This odds ratio for 
gender means that, after accounting for exposure, the odds of experiencing rash 
are increased by approximately two times for females as compared to males. This 
translates into predicted probabilities (marginal posterior expectations) of rash for 
male patients ranging from 0.043 to 0.119 and for female patients from 0.093 to 
0.321 for the lowest calculated AUC to the highest calculated AUC values for each 
gender (8.38 and 1156.61 and 10.16 and 1603.88 ng·h/mL, respectively). Figure 24.3 
shows a plot of the raw data average and the posterior expectation versus the mean 
of each AUC bin separately for male and female patients.

When exploring the infl uence of race on the probability of experiencing rash, 
the model failed to converge without error. Since the exploratory analysis revealed 
that some of the race groups contained very small numbers of patients experiencing 
rash, after evaluating the model including a separate indicator variable for each race 
group, a model with all race groups other than Caucasian combined into one group 
was also estimated. Although the run including only one race effect resulted in a 
successful minimization, it still failed to reach statistical signifi cance for inclusion of 
the effect in the model. A NM-TRAN control stream for the fi nal model estimating 
the probability of experiencing rash, as a function of both exposure (AUC) and 
gender, is shown in Appendix 24.2. The associated report fi le for this fi nal model 
is provided in Appendix 24.3.

24.5 MODEL EXTENSIONS

If the binary endpoints available from each patient were collected at various times 
or visits and there was interest in estimating the effect of time or visit on response, 
a mixed effects longitudinal logistic regression model could be utilized. Longitudi-
nal logistic regression models can be thought of as similar to the logistic regression 



models we have studied with an additional covariate estimating the fi xed effect 
relating to time. If the values of other patient covariates also change over time, 
these changing values can be incorporated into the NONMEM data set much as 
they would in a typical population PK analysis with time-varying covariates.

Covariate interactions, if biologically plausible, can also be estimated and tested 
for signifi cance as they would with other linear or mixed effects models. To deter-
mine whether an interaction between covariates might be present, the empirical 
logit plots described in Section 24.3.1 can be examined. To assess the possibility for 
continuous–dichotomous predictor interactions, the empirical logit can be plotted 
versus each continuous predictor with separate symbols and lines for each level 

FIGURE 24.3 Data-based probabilities and posterior expectations versus the mean of the 
binned AUC values for male and female patients. In each plot, the data-based probabilities, 
or raw data averages (asterisks and open circles), are joined by a dashed smooth line through 
the points. The posterior expectations (open triangles and fi lled circles) are joined by a solid 
line illustrating the model-based predictions for the mean value of each AUC bin.
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of the dichotomous predictors. For interactions between continuous predictors, 
binning of the values for one predictor can be used to create levels by which the 
logit versus the second predictor plot can be stratifi ed. If these plots reveal inter-
secting trend lines for the levels of one covariate across another, evaluation of the 
interaction may be warranted.

A markedly nonlinear trend in the exploratory plot of the empirical logit versus 
exposure or a covariate of interest would indicate that the assumptions of the 
linear logistic model are not met. In this case, a more complex nonlinear model 
can be evaluated using a slight modifi cation to the models already presented. Let’s 
suppose that the plot of the empirical logit versus AUC had a distinctly concave 
trend, curving upward similarly at each end of the observed AUC distribution. With 
appropriate precautions and care in interpretation, especially outside the range of 
the data, a quadratic model may be implemented:

 π β β β β β βx e ex x x x( ) = +( )+ + + +0 1 2
2

0 1 2
2

1 (24.9)

On occasion, even with a large sample size, a situatin may arise where there are 
relatively few failures (or successes) or where all or none of the successes fall in one 
category of an important covariate (perfect discrimination) (2). In order to avoid 
erroneous conclusions in these situations, it is advisable to have a solid understand-
ing of the data to be modeled through the creation of exploratory graphs and tables, 
as different software packages provide differing results when this condition arises. 
Exact methods can be used to compute parameter estimates and confi dence inter-
vals for very small sample size problems (20). However, specifi c point and interval 
estimates may not always be needed and a graphical and tabular illustration of the 
data may suffi ce in describing the apparent relationship between the endpoint and 
the covariates of interest.

24.6 SUMMARY

This chapter describes the theoretical basis for logistic regression analysis of binary 
endpoint data in PK/PD exposure–response-type assessments. Some important con-
siderations in the implementation and coding of this technique using NONMEM are 
illustrated. A simulated data set is used to describe the recommended premodeling 
exploratory looks at the data, as well as the approach to model development, assess-
ing goodness of fi t, and covariate analysis considerations for dichotomous end-
point data. Several special features of NONMEM designed to facilitate the analysis 
of binary data, including data items to request the calculation of raw data averages 
and marginal posterior expectations and estimation options for the calculation 
of conditional expectations, are described. The use of NONMEM for the imple-
mentation of ordinary fi xed and mixed effects logistic regression models is shown 
to be advantageous in adding extensions to the model to test for and estimate 
nonlinear functions, interactions between covariate effects, or other more compli-
cated functions within the same general framework. In conclusion, binary outcome 
data routinely collected during clinical trials evaluating PK/PD relationships can 
be successfully analyzed using logistic regression techniques. Subsequent chapters 
consider more complex endpoints.
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APPENDIX 24.1 NONMEM CODE FOR BASE MODEL EXAMPLE

$PROB Rash example - base model run

$DATA CH24EXAMPLE.csv IGNORE=C 

; The data can be found in the Excel file, CH24EXAMPLE.csv

$INPUT ID DV AUC MDV SEXF VIS RACE MRG_ RAW_

$PRED

LOGIT = THETA(1) + ETA(1)

A = EXP(LOGIT)

P = A / (1 + A)

IF (DV .EQ. 1) Y=P

IF (DV .EQ. 0) Y=1-P

$THETA (-2)

$OMEGA 5

$ESTIMATION METHOD=COND LAPLACE LIKELIHOOD MAXEVAL=5000 PRINT=2

 MSFO=../base.msf 

$COV MATRIX = R

$TABLE ID SEXF AUC RACE VIS ETA1 NOPRINT NOHEADER FILE=../base.

tbl

$SCAT ETA1 VS (AUC RACE SEXF) FROM 1 TO 900

$SCAT ETA1 VS (AUC RACE SEXF) FROM 901 TO 1800

$SCAT ETA1 VS (AUC RACE SEXF) FROM 1801

APPENDIX 24.2 NONMEM CODE FOR FINAL MODEL EXAMPLE

$PROB Rash example - E-R model run with gender effect

$DATA CH24EXAMPLE.csv IGNORE=C

$INPUT ID DV AUC MDV SEXF VIS RACE MRG_ RAW_

$PRED

LOGIT = THETA(1) + THETA(2)*(AUC-118) + THETA(3)*SEXF + ETA(1)

A = EXP(LOGIT)

P = A / (1 + A)

IF (DV .EQ. 1) Y=P

IF (DV .EQ. 0) Y=1-P

$THETA (-2) (0.0007) (0.4)

$OMEGA 5

$ESTIMATION METHOD=COND LAPLACE LIKELIHOOD MAXEVAL=5000 PRINT=2 



 MSFO=../ersexf.msf

$COV MATRIX=R

$TABLE ID SEXF AUC RACE VIS ETA1 NOPRINT NOHEADER FILE=../ersexf.

tbl

$SCAT RES VS (AUC SEXF) FROM 1 TO 900

$SCAT RES VS (AUC SEXF) FROM 901 TO 1800

$SCAT RES VS (AUC SEXF) FROM 1801

$SCAT PRED VS (AUC SEXF) FROM 1 TO 900

$SCAT PRED VS (AUC SEXF) FROM 901 TO 1800

$SCAT PRED VS (AUC SEXF) FROM 1801

$SCAT ETA1 VS (AUC RACE SEXF) FROM 1 TO 900

$SCAT ETA1 VS (AUC RACE SEXF) FROM 901 TO 1800

$SCAT ETA1 VS (AUC RACE SEXF) FROM 1801

APPENDIX 24.3 NONMEM REPORT FILE FOR FINAL MODEL EXAMPLE

1NONLINEAR MIXED EFFECTS MODEL PROGRAM (NONMEM) DOUBLE PRECISION 

NONMEM VERSION V LEVEL 1.1

 DEVELOPED AND PROGRAMMED BY STUART BEAL AND LEWIS SHEINER

 PROBLEM NO.: 1

 Rash example - E-R model run with gender effect

0DATA CHECKOUT RUN: NO

 DATA SET LOCATED ON UNIT NO.: 2

 THIS UNIT TO BE REWOUND: NO

 NO. OF DATA RECS IN DATA SET: 2122

 NO. OF DATA ITEMS IN DATA SET: 9

 ID DATA ITEM IS DATA ITEM NO.: 1

 DEP VARIABLE IS DATA ITEM NO.: 2

 MDV DATA ITEM IS DATA ITEM NO.: 4

 MRG DATA ITEM IS DATA ITEM NO.: 8

 RAW DATA ITEM IS DATA ITEM NO.: 9

0LABELS FOR DATA ITEMS:

 ID DV AUC MDV SEXF VIS RACE MRG_ RAW_

0FORMAT FOR DATA:

 (9E8.0)

 TOT. NO. OF OBS RECS: 2102

 TOT. NO. OF INDIVIDUALS: 202

0LENGTH OF THETA: 3

0OMEGA HAS SIMPLE DIAGONAL FORM WITH DIMENSION: 1

0INITIAL ESTIMATE OF THETA:

 -0.2000E+01 0.7000E-03 0.4000E+00

0INITIAL ESTIMATE OF OMEGA:

 0.5000E+01

0ESTIMATION STEP OMITTED: NO

 CONDITIONAL ESTIMATES USED: YES

 CENTERED ETA: NO

 EPS-ETA INTERACTION: NO
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 LAPLACIAN OBJ. FUNC.: YES

 NUMERICAL 2ND DERIVATIVES: NO

 PRED F SET TO A LIKELIHOOD: YES

 NO. OF FUNCT. EVALS. ALLOWED: 5000

 NO. OF SIG. FIGURES REQUIRED: 3

 INTERMEDIATE PRINTOUT: YES

 ESTIMATE OUTPUT TO MSF: YES

0COVARIANCE STEP OMITTED: NO

 R MATRIX SUBSTITUTED: YES

 S MATRIX SUBSTITUTED; NO

 EIGENVLS. PRINTED: NO

 COMPRESSED FORMAT: NO

0TABLES STEP OMITTED: NO

 NO. OF TABLES: 1

0– TABLE 1 –

 PRINTED: NO

 HEADERS: NO

 FILE TO BE FORWARDED: NO

0USER-CHOSEN ITEMS

 IN THE ORDER THEY WILL APPEAR IN THE TABLE:

 ID SEXF AUC RACE VIS ETA1

0SCATTERPLOT STEP OMITTED: NO

 FAMILIES OF SCATTERPLOTS: 18

0– SCATTERPLOT 1 –

 UNIT SLOPE LINE: NO

 BEGINNING DATA REC.: 1

 ENDING DATA REC.: 900

0ITEMS TO BE SCATTERED: AUC RES

0– SCATTERPLOT 2 –

 UNIT SLOPE LINE: NO

 BEGINNING DATA REC.: 1

 ENDING DATA REC.: 900

0ITEMS TO BE SCATTERED: SEXF RES

0– SCATTERPLOT 3 –

 UNIT SLOPE LINE: NO

 BEGINNING DATA REC.: 901

 ENDING DATA REC.: 1800

0ITEMS TO BE SCATTERED: AUC RES

0– SCATTERPLOT 4 –

 UNIT SLOPE LINE: NO

 BEGINNING DATA REC.: 901

 ENDING DATA REC.: 1800

0ITEMS TO BE SCATTERED: SEXF RES

0– SCATTERPLOT 5 –

 UNIT SLOPE LINE: NO

 BEGINNING DATA REC.: 1801

0ITEMS TO BE SCATTERED: AUC RES

0– SCATTERPLOT 6 –

 UNIT SLOPE LINE: NO



 BEGINNING DATA REC.: 1801

0ITEMS TO BE SCATTERED: SEXF RES

0– SCATTERPLOT 7 –

 UNIT SLOPE LINE: NO

 BEGINNING DATA REC.: 1

 ENDING DATA REC.: 900

0ITEMS TO BE SCATTERED: AUC PRED

0– SCATTERPLOT 8 –

 UNIT SLOPE LINE: NO

 BEGINNING DATA REC.: 1

 ENDING DATA REC.: 900

0ITEMS TO BE SCATTERED: SEXF PRED

0– SCATTERPLOT 9 –

 UNIT SLOPE LINE: NO

 BEGINNING DATA REC.: 901

 ENDING DATA REC.: 1800

0ITEMS TO BE SCATTERED: AUC PRED

0– SCATTERPLOT 10 –

 UNIT SLOPE LINE: NO

 BEGINNING DATA REC.: 901

 ENDING DATA REC.: 1800

0ITEMS TO BE SCATTERED: SEXF PRED

0– SCATTERPLOT 11 –

 UNIT SLOPE LINE: NO

 BEGINNING DATA REC.: 1801

0ITEMS TO BE SCATTERED: AUC PRED

0– SCATTERPLOT 12 –

 UNIT SLOPE LINE: NO

 BEGINNING DATA REC.: 1801

0ITEMS TO BE SCATTERED: SEXF PRED

0– SCATTERPLOT 13 –

 UNIT SLOPE LINE: NO

 BEGINNING DATA REC.: 1

 ENDING DATA REC.: 900

0ITEMS TO BE SCATTERED: AUC ETA1

0– SCATTERPLOT 14 –

 UNIT SLOPE LINE: NO

 BEGINNING DATA REC.: 1

 ENDING DATA REC.: 900

0ITEMS TO BE SCATTERED: RACE ETA1

0– SCATTERPLOT 15 –

 UNIT SLOPE LINE: NO

 BEGINNING DATA REC.: 1

 ENDING DATA REC.: 900

0ITEMS TO BE SCATTERED: SEXF ETA1

0– SCATTERPLOT 16 –

 UNIT SLOPE LINE: NO

 BEGINNING DATA REC.: 901

 ENDING DATA REC.: 1800
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0ITEMS TO BE SCATTERED: AUC ETA1

0– SCATTERPLOT 17 –

 UNIT SLOPE LINE: NO

 BEGINNING DATA REC.: 901

 ENDING DATA REC.: 1800

0ITEMS TO BE SCATTERED: RACE ETA1

0– SCATTERPLOT 18 –

 UNIT SLOPE LINE: NO

 BEGINNING DATA REC.: 901

 ENDING DATA REC.: 1800

0ITEMS TO BE SCATTERED: SEXF ETA1

1

 MONITORING OF SEARCH:

0ITERATION NO.: 0 OBJECTIVE VALUE: 0.1642E+04 NO. OF FUNC. EVALS.: 5

 CUMULATIVE NO. OF FUNC.  EVALS.: 5

 PARAMETER: -0.1000E+00  0.1000E+00  0.1000E+00 0.1000E+00

 GRADIENT:   0.1184E+04  0.9634E+01  0.1047E+03 0.8311E+03

0ITERATION NO.: 2 OBJECTIVE VALUE: 0.1601E+04 NO. OF FUNC. EVALS.:10

 CUMULATIVE NO. OF FUNC.  EVALS.: 23

 PARAMETER: -0.1302E+00  0.1017E+00 0.9906E-01 0.7231E-01

 GRADIENT:   0.1842E+03 -0.3523E+02 -0.1847E+02 0.7041E+02

0ITERATION NO.: 4 OBJECTIVE VALUE: 0.1598E+04 NO. OF FUNC. EVALS.: 7

 CUMULATIVE NO. OF FUNC.  EVALS.: 37

 PARAMETER: -0.1448E+00  0.1362E+00  0.2061E+00 0.7213E-01

 GRADIENT:   0.1616E+03  0.6380E+01  0.1962E+02 0.3591E+02

0ITERATION NO.: 6 OBJECTIVE VALUE: 0.1598E+04 NO. OF FUNC. EVALS.: 6

 CUMULATIVE NO. OF FUNC.  EVALS.: 49

 PARAMETER: -0.1498E+00  0.1371E+00 0.2060E+00 0.7351E-01

 GRADIENT:   0.1281E+01 -0.2471E+00 -0.1134E+00 0.4347E+01

0ITERATION NO.: 8 OBJECTIVE VALUE: 0.1598E+04 NO. OF FUNC. EVALS.: 7

 CUMULATIVE NO. OF FUNC.  EVALS.: 62

 PARAMETER: -0.1499E+00  0.1373E+00 0.2066E+00 0.7343E-01

 GRADIENT:  -0.2672E+01 -0.7355E-01 -0.7572E-01 0.1853E-01

0ITERATION NO.: 10 OBJECTIVE VALUE: 0.1598E+04 NO. OF FUNC. EVALS.: 0

 CUMULATIVE NO. OF FUNC.  EVALS.: 71

 PARAMETER: -0.1498E+00  0.1373E+00 0.2060E+00 0.7340E-01

 GRADIENT:  -0.6623E+00 -0.1218E-01 -0.1736E-01 0.1033E+00

0MINIMIZATION SUCCESSFUL

 NO. OF FUNCTION EVALUATIONS USED: 71

 NO. OF SIG. DIGITS IN FINAL EST.: 3.0

 ETABAR IS THE ARITHMETIC MEAN OF THE ETA-ESTIMATES,

AND THE P-VALUE IS GIVEN FOR THE NULL HYPOTHESIS THAT THE TRUE 

MEAN IS 0.

ETABAR: 0.20E+00

P VAL.: 0.20E-01

1



******************************************************************

 *********************

*********************

 ********************* MINIMUM VALUE OF OBJECTIVE FUNCTION

*********************

 *********************

*********************

******************************************************************

 ************************************************** 1597.624 

**************************************************

1

******************************************************************

 *********************

*********************

 ********************* FINAL PARAMETER ESTIMATE

*********************

 *********************

*********************

******************************************************************

THETA - VECTOR OF FIXED EFFECTS PARAMETERS *********

 TH 1     TH 2     TH 3

 -3.00E+00 9.61E-04 8.24E-01

OMEGA - COV MATRIX FOR RANDOM EFFECTS - ETAS ********

 ETA1

ETA1

+ 2.69E+00

1

******************************************************************

 *********************

*********************

 ******************* STANDARD ERROR OF ESTIMATE

*********************

 ********************

*********************

******************************************************************

THETA - VECTOR OF FIXED EFFECTS PARAMETERS *********

 TH 1    TH 2     TH 3

 2.56E-01 2.86E-04 2.99E-01

OMEGA - COV MATRIX FOR RANDOM EFFECTS - ETAS ********

 ETA1

ETA1

+ 5.10E-01

1

******************************************************************

 *********************

*********************

******************** COVARIANCE MATRIX OF ESTIMATE

*********************
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 *********************

*********************

******************************************************************

 TH 1      TH 2    TH 3     OM11

TH 1

+ 6.56E-02

TH 2

+ -1.13E-05 8.19E-08

TH 3

+ -5.64E-02 -2.89E-07 8.95E-02

OM11

+ -5.66E-02 2.89E-06 2.12E-02 2.60E-01

1

******************************************************************

 *********************

********************

 ********************* CORRELATION MATRIX OF ESTIMATE

********************

 *********************

********************

******************************************************************

 TH 1       TH 2    TH 3     OM11

TH 1

+ 1.00E+00

TH 2

+ -1.55E-01 1.00E+00

TH 3

+ -7.36E-01 -3.37E-03 1.00E+00

OM11

+ -4.33E-01 1.98E-02 1.39E-01 1.00E+00

1

******************************************************************

 *********************

********************

 ********************* INVERSE COVARIANCE MATRIX OF ESTIMATE

********************

 *********************

********************

******************************************************************

 TH 1     TH 2     TH 3     OM11

TH 1

+ 4.71E+01

TH 2

+ 6.33E+03 1.31E+07

TH 3

+ 2.78E+01 3.81E+03 2.78E+01

OM11

+ 7.90E+00 9.22E+02 3.74E+00 5.25E+00
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25.1 INTRODUCTION

A variable that has a measurement scale consisting of a set of categories is termed a 
categorical variable. Endpoints commonly used in clinical studies or clinical practice 
are usually ranked ordered and are therefore ordered categorical in nature. Terms 
such as mild, moderate, or severe are used to describe adverse events, and differ-
ent ranking scales are usually used for effi cacy measures in clinical trials. The latter 
range from classifying subjects in an effi cacy trial as responders or nonresponders—
a binary outcome—to outcomes measured on an ordered scale. An example of a 
binary outcome would be treatment failure or success. Outcomes measured on an 
ordered categorical scale with several levels could include adverse events, sedation 
(1, 2), and pain scores (3–8), among others.

Two types of scales are primarily used for measuring categorical variables. These 
are the nominal and ordinal scales (9). Variables such as race and gender that have 
category without a natural ordering are nominal variables, and for these variables 
the order of listing of the categories is irrelevant. Analysis of such data does not 
depend on their ordering. On the other hand, many categorical variables have 
ordered categories and such variables are called ordinal variables. Some examples 
of these are pain scores, adverse events (mild, moderate, severe, and life threaten-
ing) discussed in the previous paragraph. Most outcome variables in clinical trials 
are measured as ordinal variables, and they can be analyzed with marginal and/or 
conditional models depending on the objective of the analysis. Marginal models 
are empirical models that characterize population-averaged effects, and general-
ized estimation equations are an example of such models. Conditional models, 
on the other hand, characterize subject-specifi c effects as well as population-
averaged effects. A good example of these types of models is a mixed effects model. 
In longitudinal (repeated measure) clinical trials, categorical pharmacodynamic 
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(PD) (i.e., effi cacy and safety) data are collected over the entire duration of the 
trial from each subject. Analyzing data from such trials to extract all the knowledge 
(subject-specifi c and population-averaged) contained in the data would require the 
use of a conditional model. A generalization of the logistic model to a multiple-
category response model is the most popular model for ordered categorical data 
(10). The logit function is used as a link function to link the observations to the 
cumulative probabilities of the parameters of this model (11). It is possible to use 
the model with another link function other than the logit (e.g., the probit). Provision 
can be made for separate effects and use of the partial proportional odds model 
(12). Sheiner (3) used a conditional model to analyze ordinal data (pain scores). 
Thus, he pioneered the use of the proportional odds model with mixed effects in 
the analysis of analgesic trial data with nonrandom censoring (see below).

25.2 SURVIVAL DATA

An outcome of interest in many clinical trials is the time to an event. The time to 
the occurrence of an event is termed survival time. Examples of such events include 
death, the time it takes for a patient to respond to a therapy, the time to relapse 
after having responded to therapy, the time to tumor progression, and the time to 
rescue therapy in an analgesic trial. One may be interested in characterizing the 
distribution of time to an event for a given population, in comparing the time to an 
event among different treatment groups, or in modeling the relationship between 
the time to an event and subject-specifi c covariates. Thus, survival data include 
survival time, survival, time to analgesic remedication, response to a given treat-
ment, subject characteristics related to response, and time to the development of 
a disease, among others. The implementation of survival analysis in the nonlinear 
mixed effects modeling setting has been shown to be useful in constructing subject-
specifi c dose–response curves from analgesic trials, comparing dosage forms of an 
analgesic, and designing dosage regimens (3–8).

In the sections that follow, terminologies and functions used to characterize sur-
vival data are fi rst explained, followed by the application of nonlinear mixed effects 
modeling to the analysis of nonrandomly censored ordered categorical longitudinal 
data with application to analgesic trials.

25.2.1 Censored Data

The distinguishing characteristic of survival data is that the exact time to event is 
usually not known for all the subjects in the study. The most common reason for this 
is that the event may not have occurred in all subjects by the end of the observation 
period; hence, the survival time is said to be right censored. It is not known when 
(or, indeed, whether) a subject will experience the event, only that the subject has 
not experienced the event by the end of the observation period. There are other 
ways in which right censoring may occur. Subjects in a study may drop out during 
the observation period or may be lost to follow-up during the study. In some cases, 
they may even experience a “competing” event that makes further follow-up impos-
sible. A good example of this is patients being followed for a cardiac event such as 
myocardial infarction may die from another disease or in an accident.
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Unlike right censoring, an observed response is left censored if the correspond-
ing event of interest has already occurred before the subject is enrolled in a study. 
Left censoring is common in pharmacokinetics, and it occurs in the quantifi cation 
of drug concentrations when the measured concentration is below the limit of 
quantifi cation of the assay. Left censoring also occurs in studies where subject recall 
is the measurement method. An example would be, “When did you fi rst smoke a 
cigarette?”

When the event of interest is known to occur only within an interval of nonzero 
length, interval censoring is said to occur. Interval censoring occurs when the pres-
ence of a medical condition or event is evaluated during periodic exams. Interval 
censoring is a generalization of left and right censoring patterns. When the left 
endpoint is 0 and the right endpoint is a censored value, then the response is said 
to be left-censored.

The combination of censoring and differential follow-up creates some unusual 
diffi culties in the analysis of such data that cannot be handled properly by standard 
statistical methods. Thus, a different approach called survival analysis or censored
survival analysis was developed for the analysis of such data.

25.2.1.1 Classifi cation of Right Censored Data
Right censored data can be broadly classifi ed into singly censored and progres-
sively censored data (13). Single censoring is of two types—one in which the study 
is terminated after some fi xed length of time, and another in which the study is 
terminated after some fi xed number of failures has taken place. The censored data 
in either case are termed singly censored data. For progressively censored data, 
censoring time is not identical. Thus, singly censored data are classifi ed into Type I 
and Type II censored data, and progressively censored data are classifi ed as Type 
III censored data (14).

Censoring Type I Type I censoring occurs when observations are made within 
prespecifi ed fi xed time limits, resulting in a random number of censored observa-
tions. An example of such censoring occurs when subjects are enrolled in a study 
of a given duration, and the event of interest has not occurred in some of the sub-
jects by the end of the observation period. The censoring time will be identical for 
all such subjects and will equal the prespecifi ed study duration. It is also possible 
that some subjects will drop out of the study or be lost to follow-up and will have 
censored observations that are less than the study duration.

Censoring Type II Type II censoring occurs when the number of events to be 
observed is prespecifi ed and the duration of study is random. In such cases the study 
is continued until the prespecifi ed number of events occur, and the data from sub-
jects who have not had the event are censored at an identical value, but this value 
is not known a priori. This type of censoring is similar to Type I censoring, as the 
censored time is identical for all subjects who did not drop out of the study.

Type II censoring has the signifi cant advantage that one can specify in advance 
how many subjects are to experience the event, and this helps to ensure that suf-
fi cient time to event observation is available to allow meaningful characterization 
of the time to event distribution. However, an open-ended random study period is 
generally impractical and this type of study is rarely seen.
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Censoring Type III Type III is differentiated from Type I and II censored data, 
by the censored times that are not identical, even for subjects who do not drop out 
of a study. This type of censoring occurs when the study is of fi xed duration, and 
the event of interest is duration of a response that is fi rst observed at a random 
time after the start of the study. As the starting time of the response is random, 
the censoring time for all subjects who remain enrolled at the end of the study will 
also be random.

In some cases, the exact time at which an event occurs is not known, but the 
event is known to have occurred between two recorded times. Such cases are termed 
interval censored. This type of censoring is present in the analgesic trial example 
presented later in this chapter. Survival time analysis is better suited than logistic 
analysis to the analysis of interval or right censored data.

25.2.2 Functions for Survival Time and Relationships 
of the Survival Functions

25.2.2.1 Distribution of Time to an Event
When analyzing survival data, summary statistics may not have the desired statis-
tical properties, such as unbiasedness, because of possible censoring. The sample 
mean, for instance, is no longer an unbiased estimator of the population mean 
(of survival time). Thus, other methods are needed for presenting such data. An 
approach would be estimating the underlying true distribution. With the distribu-
tion estimated, it is then possible to estimate other quantities of interest such as 
median or mean. The distribution of the random variable T can be described by the 
usual cumulative distribution function

F t P T t t( ) = ≤[ ] ≥, 0 (25.1)

which is right continuous; that is, limu→t+F(u) = F(t). When T is a survival time, F(t)
is the probability that a randomly selected subject from the population will have a 
specifi ed event of interest before time t. Assuming T is a continuous random vari-
able, then its density function f (t), which is related to F(t), is given by

f t
dF t

dt
F t f u du( ) =

( ) ( ) = ( )
∞

∫,
0

(25.2)

It is often common to use the survival function given by

S t P T t F t( ) = >[ ] = − ( )1 (25.3)

where F(t) = limu→tF(u). When T is a survival time, S(t) is the probability that a 
randomly selected individual will survive to time t or beyond. From the above 
equations, it can be seen that the relationship between the density function and the 
survival function is given by

f t
dS t

dt
( ) = −

( )
(25.4)

The survival function S(t), which takes on the value 1 at t = 0 (i.e., S(0) = 1), is 
a nonincreasing function over time. For a proper random variable T, S(∞) = 0. 



However, it is also necessary to allow the possibility that S(∞) > 0. This corresponds 
to a situation where there is a positive probability of the event not occurring. If, for 
example, the event of interest is the time from response until disease relapse and 
the disease has a cure for some proportion of individuals in the population, then 
we have S(∞) > 0.

25.2.2.2 Hazard Rate
A useful way of describing the distribution of time to an event is the hazard rate 
because it has a natural interpretation that relates to the aging of a population. 
Before defi ning the hazard rate we fi rst defi ne the mortality rate, which is a discrete 
version of the hazard rate. The mortality rate at time t, where t is generally taken 
to be an integer in terms of some unit of time (e.g., days, months, years), is the 
proportion of the population who die between times t and t + 1 among individuals 
alive at time t:

m t P t T t T t( ) = ≤ < + >[ ]1 (25.5)

The hazard rate, l(t), is the limit of the mortality rate if the interval of time is taken 
to be small (rather than one unit). The instantaneous rate of failure at time t given
that an individual is alive at time t is the hazard rate. l(t), therefore, is defi ned by 
the following equation:

λ t
P t T t h T t

hh
( ) =

≤ < + >[ ]
→

lim
0

(25.6)

This can be expressed as

λ t

P t T t h
h

P T t
f t
S t

S t
S t

d S th( ) =

≤ < +[ ]

≥[ ]
=

( )
( )

= − ′ ( )
( )

= −
( )(→

lim ln0 ))
dt

(25.7)

Integrating both sides, we obtain

Λ t u du S t
t

( ) = ( ) = − ( )( )∫ λ
0

ln (25.8)

where Λ(t) is referred to as the cumulative hazard function, and S(t) is the fraction 
surviving at time t. It is assumed that S(0) = 1. Hence,

S t t u du
t

( ) = − ( )( ) = − ( )( )∫exp expΛ λ
0

(25.9)

There is a one-to-one relationship between the hazard rate l(t), t ≥ 0 and the 
survival function S(t), given by the formulas above. Note that the hazard rate is a 
probability rate, and not a probability. Thus, it is possible that a hazard rate may 
exceed 1 in the same fashion as a density function f (t) may exceed 1.

If the hazard is constant, that is, l(t) = l for all t ≥ 0, then S(t) = e−lt. This distri-
bution is the exponential distribution with hazard equal to l. The Weibull model 
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is another class of distribution widely used in survival analysis, where the survival 
function is given by

S t t aa( ) = −( ) >exp λ λ, , 0 (25.10)

The hazard function for the Weibull model is

λ λt a ta( ) = −1 (25.11)

The model allows for a constant hazard (a = 1), increasing hazard (a > 1), and 
decreasing hazard (0 < a < 1).

25.3 NONLINEAR MIXED EFFECTS MODELING APPROACH TO THE 
ANALYSIS OF NONRANDOMLY CENSORED ORDERED CATEGORICAL 
LONGITUDINAL DATA FROM ANALGESIC TRIALS

Pain relief scores collected over a period of time among groups of subjects are 
usually compared in a clinical trial of an analgesic agent. Different subjects are 
randomly assigned doses of active agent or placebo when they fi rst request it after 
experiencing the same painful procedure such as a third molar extraction. The 
data constitute short individual time series of ordered categorical pain relief scores 
subsequent to dosing. Since patients can elect to remedicate with an active agent 
if their pain relief is insuffi cient, nonrandom right censoring may be present. The 
trial is usually designed to address two questions such as: (a) Does the drug relieve 
pain? If so, (b) What dosage regimen should be recommended for use by a typical 
patient or investigated further?

The analysis of analgesic trial data are complicated by several factors:

• Repeated measurements are obtained per patient.
• The responses measured are not continuous—pain relief is often measured 

as an ordered categorical variable, while time for remedication is a survival 
variable.

• Pain relief scores are nonrandomly censored, meaning that subjects with less 
pain relief are more likely to seek remedication.

The nonrandom censoring creates a biased sample of patients, especially at the later 
time points. This is because patients sensitive to drug treatment and who experience 
pain relief are the ones who will not remedicate. To derive the pharmacodynamic 
relationships and decide on the appropriate dose required to achieve adequate pain 
relief, only the unconditional pain relief measurements are relevant to address the 
question of whether the drug causes pain relief relative to placebo.

Traditional (ANOVA) analysis of analgesic clinical trials (i.e., testing the null 
hypothesis when comparing treatment and placebo groups) have dealt inadequately 
with the complexities of pain relief data collected in these studies (3, 15). When 
patients have required rescue medication before the end of the study, scores of 
unobserved subsequent pain and pain relief (PR) scores have historically been 
imputed according to predetermined rules such as the so-called last observation 



carried forward (LOCF) imputation scheme. Evaluation of pain relief data with this 
imputation scheme, which has no explicit assumption, has been shown to signifi -
cantly underestimate the response to treatment, to overestimate placebo-corrected 
drug response, and to yield a biased dose–response relationship (7). In addition, 
the traditional approach used in the analysis of analgesic clinical trials results in a 
loss of all information on the individual patient and fails to render any insight into 
the intersubject variability associated with the “population average” dose–response 
relationship. It is, therefore, diffi cult to construct dosing strategies.

A subject-specifi c random effects model for the analysis of analgesic clinical 
trials, which accounted for the distribution of pain relief scores, time, drug con-
centration, and other covariates, was developed by Sheiner (3). This approach was 
subsequently used for the development of a model for ketorolac analgesia (5). A 
slight modifi cation of the approach was introduced by Liu and Sambol (4), and it 
involved the use of a model-independent method (empirical convolution) to gener-
ate effect site concentrations. The effect site concentration is the concentration of 
drug at the site of action or biophase. This nonlinear mixed effects methodology is 
not limited to analgesic studies but is applicable wherever the outcome is measured as a 
categorical variable.

In the subsequent sections we present the nonlinear mixed effects model approach for 
analyzing analgesic data and apply it to simulated analgesic study data.

25.3.1 Methodology

The approach involves a semimechanistic or mechanistic model that describes the 
joint probability of the time of remedication and the pain relief score (which is 
related to plasma drug concentrations). This joint probability can be written as the 
product of the conditional probability of the time of remedication, given the level 
of pain relief and the probability of the pain relief score. First, a population phar-
macokinetic (PK) model is developed using the nonlinear mixed effects modeling 
approach (16–19) (see also Chapters 10 and 14 of this book). With this approach 
both population (average) and random (inter- and intraindividual) effects param-
eters are estimated. When the PK model is linked to an effect (pharmacodynamic 
(PD) model), the effect site concentration (Ce) as defi ned by Sheiner et al. (20) can 
be obtained. The effect site concentration is useful in linking dose to pain relief and 
subsequently to the decision to remedicate.

To model the distribution of pain relief scores and remedication times, subject-
specifi c random effect models are developed. Let the vector of pain relief scores 
for an individual be Y = (Y1, Y2,  .  .  .  , YN). At time t the pain relief score is denoted 
by Yt and the time at which an individual remedicates is denoted by the variable T.
The PD model parameter estimates are obtained by maximum likelihood, which 
estimates the most probable model parameter values for the observed data. 
P[T, Y] denotes the likelihood of an individual’s data, and it is expressed by the 
following equation:

P T Y P T Y P Y P d, ,[ ] = [ ] [ ] [ ]∫ η η η ηi i (25.12)

where h is a vector of subject-specifi c random effects, assumed to be (multivari-
ate) normally distributed with a mean of zero and variance Ω. The likelihood can 
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be factored out in two terms: one related to pain relief (P[Y | h]), and the other 
related to the remedication behavior conditional on pain relief (P[T | Y, h]). In the 
subsequent sections, models for subject-specifi c distributions P[Y | h] and P[T | Y, h]
are discussed.

25.3.1.1 Pain Relief Model P[Y | h]
Pain relief is a categorical variable that can take a value of 0 (no pain relief), 1 (a 
little pain relief), 2 (some pain relief), 3 (a lot of pain relief), or 4 (complete pain 
relief). The log-odds that Yt is greater than or equal to the score m (m = 1,  .  .  .  , 4) 
is given by

g P Y m f m t f Ct Y p d e Y≥[ ]( ) = ( ) + ( ) +η η, (25.13)

where g(x) denotes the logit transform of the probability of an event that ensures 
probability values between 0 and 1, ƒp is the function describing the time course of 
the placebo effect, ƒd is the function describing the drug effect, and hY is a random 
individual effect determining individual sensitivity. The hY are assumed to be nor-
mally distributed with standard deviation wY.

The probability distribution of pain relief scores is given by the inverse logit of 
g(x):

P Y m
f m t f C

f m t f C
t Y

p d e Y

p d e Y

≥[ ] =
( ) + ( ) +( )

+ ( ) + ( ) +( )
η

η
η

exp

exp

,

,1
(25.14)

with the placebo effect given by

f m t A e ep k
t t

k

m

,( ) = + −[ ]
=

∑β α γ

0

(25.15)

where a and g are fi rst-order rate constants of the offset and onset of the placebo 
effect. A is a scaling parameter that determines the size of the placebo effect, and 
bk specifi es the baseline set of probabilities of the various degrees of pain relief. 
There is no estimate for b0 in the model because P[Yt ≥ 0] = 1. The probability that 
P[Yt = m] is then equal to the difference in probabilities of two subsequent pain 
relief scores, that is, P[Yt ≥ m] − P[Yt ≥ (m − 1)].

Models of varying complexities can be used to describe the placebo effect. 
Models for drug effect can be semimechanistic (i.e., link model) (20) or mechanistic 
(i.e., indirect response model) (21). A semimechanistic drug effect model can be 
expressed as

f m C t
E C

EC C
d e

e

e e

, ,( ) =
+

max i

50

(25.16)

where Emax is maximum drug effect, and ECe50 is the effect compartment drug con-
centration at 50% of the maximal drug effect. Ce denotes effect site concentration 
and is given by

C t k C u e due e p
k t u

t
e( ) = ( ) − −( )∫ 0

0
0 (25.17)



where ke0 is the fi rst-order rate constant that characterizes the delay between plasma 
and effect site concentrations. The population average PK parameters derived from 
the PK analysis are used to calculate Cp(t), the concentration of the drug in the 
plasma at time t. Assuming that pain relief scores within an individual at distinct 
times are independent, the vector of pain relief scores P[Y | hY] is given by

P Y P YY tη η[ ] = ∏ [ ] (25.18)

25.3.1.2 Model for Remedication P[T | Y,h]
The time to remedication can be viewed as a survival variable (22). By defi nition, 
a survival function, S(t), is the probability that a person remains in the study (does 
not remedicate) up to time t and is given by

P T t Y S t u du
t

>[ ] = ( ) = − ( )( )∫, η λexp
0

(25.19)

where l(t) is the hazard function. The hazard function can be interpreted as an 
instantaneous risk, in that l(t) dt is the probability that a subject remedicates in the 
next small interval of time dt, given that he/she has not remedicated. A constant 
hazard over a fi xed interval of time indicates that a constant proportion of patients 
who are still in the study are expected to remedicate. A constant hazard func-
tion implies an exponential distribution of remedication with mean 1/l and hence 
a Poisson process. Several models can be used to evaluate the hazard function, 
and the model that best describes the data is used to describe remedication 
(3, 5, 7, 8).

A model that allows the baseline hazard to change linearly over time but remain 
constant over a time interval dt is expressed as

λ η λ ηt Y FH tt m T, ,( ) = + −( )[ ] ( )+1 1 exp (25.20)

where lm is the baseline hazard rate, FH is the fractional change in lm with time, 
(t − 1)+ = t − 1 for t > 1 and zero otherwise, and hT is a random individual effect. 
The assumption implicit in this model is that P[T | Y, h] depends only on hT and 
the observable elements of Y. P[T > t | Y, h] is set to 1 for the time points before 
remedication is allowed. This time can be either 1, 2, 3, or 4 h, depending on the 
study design. However, the hazard is allowed to accumulate according to Eq. (25.9) 
independent of the fi rst time remedication is allowed. It follows from Eq. (25.8) that 
the probability that an individual will remedicate at time t, given the individual is 
still in a study at the previous observation time t − 1, is given by

P T t T t
S t

S t
t dt

t

t

= ≥ )[ = −
( )
−( )

= − − ( )⎛
⎝⎜

⎞
⎠⎟−

∫1
1

1
1

exp λ (25.21)

25.3.2 Estimation and Inference

The Laplacian estimation method as implemented in the NONMEM program (a 
program the authors use for nonlinear mixed effects modeling) is used to provide 
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maximum likelihood estimates of model parameters (23). Assuming the individuals 
to be independent, the likelihood L for all the data from N subjects can be specifi ed 
by the product of the probability of each subject’s data:

L P T Y P d

L P T Y P Y P d

i

N

i

N

= ∏ [ ] [ ]

= ∏ [ ] [ ] [ ]

=

=

∫

∫
1

1

,

,

η η η

η η η η
(25.22)

In order to simplify the calculations, it can be assumed that hY and hT are indepen-
dent, that is, Cov(hY, hT) = 0. The implication of this is that pain relief data can be 
fi tted separately from the remedication data by independent maximization of the 
following likelihoods:

L P Y P d
i

N

= ∏ ( ) ( )
= ∫

1
η η ηγ γ γ (25.23)

L P T Y P Y P d
i

N

= ∏ ( ) ( ) ( )
= ∫

1
, η η η ηγ γ γ γ (25.24)

Model selection is based on the likelihood ratio test with p < 0.001 and diagnostic 
plots. The difference in minus twice the log of the likelihood (−2LL) between a full 
and a reduced model is asymptotically c2 distributed with degrees of freedom equal 
to the difference in the number of parameters between two models. At p < 0.001, 
a decrease of more than 6.6 in −2LL is signifi cant. Asymptotic standard errors are 
obtained from the asymptotic covariance matrix. Alternatively, confi dence intervals 
on parameters can be computed for this very nonlinear situation from the likelihood 
profi le plot (24).

25.3.3 Prediction

Once the population model has been developed, interesting population statistics 
(time to onset of effect, percent of patients at peak effect) can be computed by 
means of Monte Carlo integration with respect to h (see Refs. 1, 4, 6, and 8). 
However, this is not addressed in the example in Section 25.4. By simulating h
values from the estimated distribution, response profi les for individual subjects are 
generated. The population mean probability of having a certain pain relief score 
and the population mean expected pain relief score at a specifi c time and dose can 
be computed from these profi les.Virtual patient populations can be simulated for 
all doses. The goodness of fi t of the model to the data can be judged by comparing 
model-generated simulations of the probability that pain relief is greater than or 
equal to m conditional on the remedication times, P[Y ≥ m | T ≥ t], and model-gen-
erated estimates of the probability that a patient will remedicate at time t given the 
patient is still in the study up to that time point, P[T = t | T ≥ t], with data-derived 
estimates of these probabilities (see Refs. 1, 4, 6, and 8). The latter is not covered 
in the simulated example in Section 25.4.

A simulated example is presented next to illustrate these concepts. The param-
eters used for the simulation were modifi ed from the example published by Ette 
et al. (8).



25.4 APPLICATION

In this section we present an example of the aforementioned methodology by simu-
lating and analyzing data for a trial in which the effi cacy of an analgesic drug was 
investigated. A description of the study design is provided, followed by a descrip-
tion of the pharmacokinetic (PK) and pharmacodynamic (PD) characteristics of the 
drug, along with the S-Plus and NONMEM codes used to simulate the trial. Finally, 
the parameter estimation details for the pain and remedication models are provided. 
The focus here is on the PD aspects of the drug, and therefore the estimation of PK 
parameters is not described. A sequential approach is taken in the estimation of the 
PD parameters in the pain and remediation models, by assuming the PK parameters 
for each individual have been previously estimated. In this case, the PK parameter 
estimates were taken to be identical to that used to simulate the data.

25.4.1 Study Design

Data were simulated based on a three-arm parallel group design (200 subjects/arm), 
with one placebo, and two active arms (0.5 and 1 mg). Subjects received a single 
dose of the study drug at the onset of a pain event, following which their pain relief 
scores were recorded at 0.25, 0.5, 0.75, 1, 1.5, and 2 hours. The pain relief was scored 
on a 5-point scale (0, none; 1, a little; 2, medium; 3, a lot; and 4, complete). It was 
assumed that the intensity of pain prior to receiving the drug was identical (or bal-
anced) across the three arms of the study. Subjects were allowed to opt for rescue 
medication at any time and were remedicated with a drug that is the standard of 
care.

25.4.2 Population Pharmacokinetic and Pharmacodynamic Models

The pharmacokinetics of the analgesic drug was described by a two-compartment 
model, with fi rst-order absorption and absorption lag time. The population param-
eters of this model are given in Table 25.1. The value of a given parameter Pk, for 
subject i, is given by

P Pki k ki= ( )exp η (25.25)

where Pk is the population average value, and hki is a normally distributed random 
variable with mean zero and standard deviation given by the interindividual 
variability for the parameter. The parameters were assumed to be identical and 

TABLE 25.1 Population Pharmacokinetic Model Parameters

  Population Interindividual
Parameter Symbol Average Variability

Apparent clearance (L/h) CL/F  2  30%
Apparent volume (central compartment) (L) VC/F 10  30%
Apparent intercompartmental clearance (L/h) Q/F  1   0%
Apparent volume (peripheral compartment) (L) VP/F 20   0%
Absorption rate constant (h−1) KA  2  70%
Absorption lag time (h) TLAG  0.1 100%
Relative bioavailability FBIO  1  70%
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independently distributed. Correlations between apparent clearances and apparent 
volumes due to differences in bioavailability between subjects are accounted for by 
the relative bioavailability parameter, the population average value of which was 
fi xed to 1 by defi nition.

The pain relief model described in Section 25.3.1.1 was implemented with the 
parameter values presented in Table 25.2. In this example, it is assumed that the 
placebo effect decreases monotonically with time, by setting the placebo onset rate 
(a) to zero. The negative values of the baseline placebo effect values (b’s) indicates 
that the probability of a high pain relief response is less than that of a lower pain 
relief score.

The remedication model described in Section 25.3.1.2 was implemented with the 
parameter values presented in Table 25.2. The hazard parameter (l) values indicate 
that the probability of remedication was highest for subjects who had no pain relief 
(m = 0), but decreased sharply for subjects who had even a small degree of relief. 
The hazard of remedication for subjects who had complete pain relief (m = 4) is 
fi xed to zero, indicating that there was no probability that these subjects would 
seek remedication.

25.4.3 Model Implementation

This section describes the S-Plus and NONMEM codes used to simulate pain relief 
scores and remedication events, and the estimation PD parameters from the simu-
lated data.

TABLE 25.2 Population Pain Relief Model Parameters

Parameter Descriptiona Parameter Symbol Value

Pain Relief Model

Baseline placebo effect (m = 1) b1 −2.5
Baseline additional placebo effect (m = 2) b2 −2.0
Baseline additional placebo effect (m = 3) b3 −1.5
Baseline additional placebo effect (m = 4) b4 −1.0
Magnitude of placebo effect A  3
Placebo effect onset rate (h−1) a  0.0
Placebo effect decay rate (h−1) g  1
Effect compartment elimination rate (h−1) ke0  0.5
Maximal effect of drug Emax 10
Concentration to achieve 50% Emax (ng/mL) ECe50 40
Interindividual variability in pain relief wPR  1

Remedication Model

Hazard (m = 0) l0  0.5
Hazard (m = 1) l1  0.005
Hazard (m = 2) l2  0.005
Hazard (m = 3) l3  0.001
Hazard (m = 4) l4  0.0001
Interindividual variability in hazard wHZ  0

a m = pain relief score.



The S-Plus code in Appendix 25.1 was used to generate comma separated vari-
ables (CSV) NONMEM data set in accordance with the study design described 
earlier. This code can readily be modifi ed to produce data sets for alternative 
study designs that differ in sample size, number of study arms, and pain relief score 
observations.

The NONMEM control fi le provided in Appendix 25.2 (Model Sim) was used 
to simulate pain relief scores and remedication events according to the popula-
tion PK/PD models described previously. The NONMEM control fi le provided in 
Appendix 25.5 (Model PR+RM) was used to estimate the parameters in the pain 
relief and remedication models, from the simulated pain relief data and PK param-
eter estimates for each individual. Separate NONMEM control fi les are provided 
for simulation and estimation, because the dependent variables are not identical for 
simulation and estimation. The dependent variables for simulation are pain relief 
scores and remedication events, whereas the dependent variables for estimation 
are the probabilities of observing these scores and events. The pain relief scores 
and remedication events are simulated by utilizing a uniform random variable to 
assign a pain relief score or remedication event, given the respective simulated 
probabilities.

The PK parameters of individual subjects are not estimated in the example 
provided, as the focus is on the estimation of the pain and remedication model 
parameters. As described earlier, it is assumed that the individual PK parameter 
estimates are known by providing the simulated individual PK parameter values 
as part of the data input to Model PR+RM. However, before the parameters were 
estimated, the simulated data needed to be processed to remove all observations 
within a subject that followed a remedication event. This processing generates a 
nonrandomly censored data set, as subjects with lower pain relief scores are more 
likely to drop out of the study. The S-Plus code to perform this processing of the 
simulated data is provided in Appendix 25.3. This script generates a CSV fi le that 
serves as input to the NONMEM control fi le in Appendix 25.5. The potential for 
bias resulting from the nonrandomly censored data was examined by comparing 
the pain relief model parameter estimates obtained with Model PR+RM versus that 
obtained by Model PR, which is identical to Model PR+RM except that it does not 
have a remedication model.

25.4.4 Results

The simulated pain relief scores and remedication events for one trial are shown in 
Figure 25.1, which was created using the S-Plus code provided in Appendix 25.4. 
As expected, the simulated data indicated that the number of subjects remaining 
in the trial decreased with time, and that the decrease was greatest for the placebo 
group. The stacked bars also indicate that the level of pain relief tended to increase 
with dose and time.

The parameter estimates obtained with Models PR+RM and PR are presented 
in Table 25.3, along with the relative standard error (RSE) and the bias in the esti-
mates. In the interest of generality, the estimation model retained several param-
eters (e.g., a and wHZ) that were set to zero in the simulation model. All the nonzero 
parameter values in the simulation model were estimated except l3 and l4, which 
could not be estimated with this data set, and were fi xed to their true values. All 
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the parameters were estimated with relatively small uncertainty, except for ke0 and 
ECe50. The diffi culty in estimating ke0 (and this ECe50) might be due to the short 
observation window of 0.25–2 hours. The RSE was less than the bias for all of the 
parameters, suggesting that uncertainty estimated by NONMEM is realistic.

A graphical assessment of the goodness of fi t of Model PR+RM is presented in 
Figure 25.2. In the fi gure, model-estimated probability of pain relief is compared 
with the proportion of subjects exhibiting pain relief. Good agreement between the 
data and model-predicted probability was achieved by the estimated parameters. 
The plot for Model PR is comparable with that of Model PR+RM. The S-Plus code 
to create the plot in Figure 25.2 from the NONMEM table output is presented in 
Appendix 25.6.

25.5 OTHER METHODS FOR ANALYZING ORDERED 
CATEGORICAL DATA

Jönsson (25) showed from a simulation study that the use of the standard mixed 
effects modeling approach may produce biased parameter estimates when ordered 
categorical data with a skewed distribution are analyzed using the Laplacian method. 
Increasing interindividual variability and skewness in the distribution of the data 
increase the bias associated with the estimation of those parameters. The conse-

FIGURE 25.1 Stacked barplot of pain relief scores versus time by dose. The effect of 
remedication is seen by the decrease in number of subjects remaining in the study as time 
progresses.



TABLE 25.3 Parameter Estimates: Population Pharmacodynamic Model

Parameter
 Model PR + RM Model PR

Symbol Estimate RSEa [%] Biasb [%] Estimate RSEa [%] Biasb [%]

Pain Relief Model

b1 −2.91 11.9  16.4 −2.91 11.9  16.4
b2 −2.02  3.2   1.0 −2.02  3.2   1.0
b3 −1.52  4.7   1.3 −1.52  4.7   1.3
b4 −0.999  6.6  −0.1 −0.999  6.6  −0.1
A  3  9.0   0.0  3  9.0   0.0
a  0    0.0  0    0.0
g  1.64 25.5  64.0  1.64 25.4  64.0
ke0  0.248 76.6 −50.4  0.248 76.6 −50.4
Emax 10.3  8.2   3.0 10.3  8.2   3.0
ECe50 22.8 73.7 −43.0 22.8 73.7 −43.0
wPR  0.83 12.0 −17.0  0.83 12.0 −17.0

Remedication Model

l0  0.147  7.5 −70.6 NA NA NA
l1  0.00213 70.9 −57.4 NA NA NA
l2  0.0036 70.6 −28.0 NA NA NA
l3  0.001 (fi xed) NA NA NA NA NA
l4  0.0001 (fi xed) NA NA NA NA NA
wHZ  0 (fi xed) NA NA NA NA NA

a RSE = | 100*(standard error)/estimate |.
b Bias = 100*(estimate − trueValue)/trueValue.

quence of this is the overestimation of the frequency of rare events when simulation 
is performed with biased parameter values. To deal with this, two methods have 
been proposed to model categorical responses as a two-step process (26, 27). The 
fi rst step involves modeling the incidence of response or the probability of being a 
responder and the second step involves modeling the severity of response. Olsen 
and Schafer (27) proposed modeling the response as a semicontinuous variable. 
They use a logistic model to model the incidence of effect and a continuous model 
for the severity of effect. In both steps, intersubject variability was included. Thus, 
in the fi rst step, the polychotomous data are reduced to binary data by modeling 
the presence or absence of an effect (without considering the severity of the effect), 
thereby decreasing the skewness of response. The result of this is a reduction in the 
bias in parameter estimation.

On the other hand, Kowalski et al. (26) modeled the fi rst step similar to that pro-
posed by Jonssen but only considered one observation per individual without mod-
eling interindividual variability. The severity of response (given being a responder) 
was modeled using the standard mixed effects modeling approach in the second 
step. The noninclusion of intersubject variability in the fi rst step enabled them 
to avoid bias in parameter estimation, similar to the Olsen–Schafer model. Thus, 
skewness of the response distribution was reduced by only including responders 
in the second step. Dose escalation studies and time-varying covariates cannot be 
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handled appropriately using this method since the fi rst step only considers one 
observation per patient. Another drawback of the method is the fact that in the fi rst 
step the parameter estimates will be dependent on the number of observations per 
subject. Thus, there is a tendency of increasing probability of a nonzero event with 
increasing number of observations. The possibility of making extrapolations based 
on the model is limited because of the data dependency of the model parameter 
values. The back-step method (BSM) has been proposed (28) as an alternative to 
changing the model to handle biased estimates—that is, modifying the estimation 
procedure itself. The method is an iterative approach that involves searching for 
the unbiased parameter estimates, which upon simulation generate data that mimic 
the original data.

25.6 SUMMARY

An overview of categorical data and methods used to analyze such data together 
with survival data, censoring, and survival functions is presented. Ordered categori-
cal data can be analyzed with marginal and/or conditional models depending on the 
objective of the analysis. Marginal models are empirical models that characterize 
population-averaged effects, and generalized estimation equations are an example 
of such models. Conditional models, on the other hand, characterize subject-specifi c 
effects as well as population-averaged effects. The use of conditional models, such 
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as a nonlinear mixed effects model, to analyze ordered categorical data is discussed 
with particular application to analgesic trials. The nonlinear mixed effects modeling 
approach involves a model that links pain relief and the decision to remedicate to 
pharmacokinetics and dosage, within a semimechanistic pharmacological frame-
work. The advantages of this methodology over the traditional ANOVA approach 
is also presented. A simulated example is presented with NONMEM and S-Plus 
codes that can be used to simulate and analyze pain relief with or without remedi-
cation. Other modifi cations of the mixed effects modeling approaches, developed 
to deal with bias in parameter estimates when there is skewness in the distribution 
of ordered categorical response data, are discussed. The application of the nonlin-
ear mixed effects methodology described in this chapter is not limited to analgesic 
trial data, but is applicable wherever the outcome is measured as a categorical 
variable.
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APPENDIX 25.1 S-PLUS CODE TO GENERATE NONMEM DATA SET

######################### Generate NONMEM data set ########################

##### Specify parameters for clinical trial

nArm <- 3

nSubjArm <- 200

dose.v <- c(0, 500, 1000) # ug

pdObsTime.v <- c(0, 15, 30, 45, 60, 90, 120)/60 # [hr]



##### Calculate clin trial design parameters

nSubj <- nArm*nSubjArm

subj.v <- 1:nSubj

nDose <- length(dose.v)

nPDObs <- length(pdObsTime.v)

# Vars needed for NONMEM

# ID TIME MDV PRLF=DV QUIT PTIM DOSE

# ID . . . NONMEM ID

# TIME . . . Dose or Observation Time [hr]

# PRLF . . . Pain relief score

# QUIT . . . Remedication indicator 

# (0=subject stays in trial, 1=subject remedicates and quits trial)

# PTIM . . . Time of previous observation

# DOSE . . . Dose [ug]

##### Create PD observation records

pdObs.tmp <- data.frame(ID=subj.v, 

 TIME=rep(NA, nSubj), 

 MDV=rep(NA, nSubj),

 PRLF=rep(NA, nSubj),

 QUIT=rep(NA, nSubj),

 PTIM=rep(NA, nSubj),

 DOSE=rep(dose.v, each=nSubjArm))

##### Create PD observation records

pdObs <- pdObs.tmp 

for (iObs in 2:nPDObs){ 

 pdObs <- rbind(pdObs, pdObs.tmp)

}

#

pdObs$TIME <- rep(pdObsTime.v, each=nSubj)

pdObs$MDV <- rep(0, nrow(pdObs))

pdObs$PRLF <- rep(NA, nrow(pdObs))

pdObs$QUIT <- rep(NA, nrow(pdObs))

TF.v <- pdObs$TIME==0

pdObs$MDV[TF.v] <- rep(1,sum(TF.v))

pdObs <- pdObs[order(pdObs$ID, pdObs$TIME), ]

##### specify “previous time”

pTime <- pdObs$TIME[pdObs$ID==1]

pTime <- c(0, pTime[-length(pTime)])

pdObs$PTIM <- rep(pTime, nSubj)

pdObs <- pdObs[order(pdObs$ID, pdObs$TIME, -pdObs$MDV), ]
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exportDir <- “../”

fileName <- paste(exportDir, “analgesicTemplate.csv”, sep=””)

##### Define function to export NONMEM datasets as CSV file

z.export.csv <- function(data.df, fileName, MissingVal=”.”, AddHash=F){

 if(AddHash){

  names(data.df)[1] <- paste(“#”, names(data.df)[1])

 }

 cat(names(data.df), sep=”, “, file=fileName)

 cat(“\n”,file=fileName, append=T) 

write.table(data.df, file=fileName, sep = “,”, na = MissingVal, dimnames.

write = F, append=T)

}

z.export.csv(pdObs, fileName, MissingVal=”.”, AddHash=T)

APPENDIX 25.2 NONMEM CODE TO SIMULATE 
CLINICAL TRIAL

$PROB Analgesic Pain Model for nonrandomly censored data

$INPUT ID=L1 TIME MDV PRLF=DV QUIT PTIM DOSE

;

; ID   = subject ID number

; TIME = time of dose or observation

; EVID = event ID (0=obs, 1=dose)

; PRLF = Ordinal pain relief score (0=no relief thru 4=full relief)

; TQT = Time to remedication

; QUIT = Indicator of remedication (0=stay in study; 1=quit study)

; PTIM = Time of previous pain observation

; DOSE = nominal dose amount

$DATA ../analgesicTemplate.csv IGNORE=#

$THETA

; PK Model Parameters

2.0 FIX ; CL/F [L/h]

10.0 FIX ; VC/F [L]

1.0 FIX ; Q/F [L/h]

20.0 FIX ; VP/F [L]

2.0 FIX ; KA [1/h]

0.1 FIX ; ALAG [h]

1 FIX ; FBIO [1]

;

; Pain Model Parameters



0.5 ; KE0 [1/h]

-2.5 ; BT1

-2 ; BT2

-1.5 ; BT3

-1 ; BT4

40 ; EC50 [ng/mL]

10 ; EMAX

0 FIX ; ALPH

1 ; GAMM

3 ; AA

;

; Remedication Model Parameters

0.5 ; LAM0

0.005 ; LAM1

0.005 ; LAM2

0.001 ; LAM3

0.0001 ; LAM4

$OMEGA

; PK Model Parameters

0.09 ; CL/F

0.09 ; VC/F 

0 FIX ; Q/F

0 FIX ; VP/F

0.49 ; KA

1.0 ; ALAG

0.49 ; FBIO

;

; Pain and Remedication Model Parameters

1 ; Pain

0.0 FIX ; Remediation

$ABBREVIATED DERIV2=NOCOMMON

$PRED

; Specify PK Model Parameters

CL = THETA(1)*EXP(ETA(1))

VC = THETA(2)*EXP(ETA(2))

Q = THETA(3)*EXP(ETA(3))

VP = THETA(4)*EXP(ETA(4))

KA = THETA(5)*EXP(ETA(5))

ALAG = THETA(6)*EXP(ETA(6))

FBIO = THETA(7)*EXP(ETA(7))

; Specify Pain Model Parameters

KE0 = THETA(8)

BT1 = THETA(9)

BT2 = THETA(10)
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BT3 = THETA(11)

BT4 = THETA(12)

EC50 = THETA(13)

EMAX = THETA(14)

ALPH = THETA(15)

GAMM = THETA(16)

AA = THETA(17)

ZPAN = ETA(8)

;

; Specify Remedication Model Parameters

LAM0 = THETA(18)

LAM1 = THETA(19)

LAM2 = THETA(20)

LAM3 = THETA(21)

LAM4 = THETA(22)

ZRMD = ETA(9)

; Calculate concentration in effect compartment

 K20 = CL/VC

 K23 = Q/VC

 K32 = Q/VP

 BET1 = K23+K32+K20

 BET2 = SQRT(BET1**2 - 4*K32*K20)

 BETA = 0.5*(BET1 - BET2)

 ALFA = K32*K20/BETA

 BSL = KE0*KA*DOSE*FBIO/VC

 M1 = ALFA - KA

 M2 = -M1

 Q1 = BETA - KA

 Q2 = -Q1

 R1 = KE0 - KA

 R2 = -R1

 S1 = BETA - ALFA

 S2 = -S1

 T1 = KE0 - ALFA

 T2 = -T1

 U1 = KE0 - BETA

 U2 = -U1

 Z1 = K32 - KA

 Z2 = K32 - ALFA

 Z3 = K32 - BETA

 Z4 = K32 - KE0

 TIM2 = TIME-ALAG

 E1 = EXP(-KA*TIM2)

 E2 = EXP(-ALFA*TIM2)



 E3 = EXP(-BETA*TIM2)

 E4 = EXP(-KE0*TIM2)

 CE1 = Z1*E1/(M1*Q1*R1)

 CE2 = Z2*E2/(M2*S1*T1)

 CE3 = Z3*E3/(Q2*S2*U1)

 CE4 = Z4*E4/(R2*T2*U2)

IF (TIME .LE. ALAG) THEN

 CE = 0.0

ELSE

 CE = BSL*(CE1 + CE2 + CE3 + CE4)

ENDIF

; Specify placebo effect for each cumulative probability

PEFF = EXP(-ALPH*TIME) - EXP(-GAMM*TIME)

PEFF1 = BT1 + AA*PEFF

PEFF2 = PEFF1 + BT2

PEFF3 = PEFF2 + BT3

PEFF4 = PEFF3 + BT4

; Specify drug effect

DEFF = EMAX * CE/(EC50 + CE)

; Logits for cummulative probabilities 

 LGT1 = PEFF1 + DEFF + ETA(8)

 LGT2 = PEFF2 + DEFF + ETA(8)

 LGT3 = PEFF3 + DEFF + ETA(8)

 LGT4 = PEFF4 + DEFF + ETA(8)

; Exponentiate logit

C1 = EXP(LGT1)

C2 = EXP(LGT2)

C3 = EXP(LGT3)

C4 = EXP(LGT4)

; Calculate cumulative probability of response j

 P1 = C1/(1+C1) ; P(Y<=1|X)

 P2 = C2/(1+C2) ; P(Y<=2|X)

 P3 = C3/(1+C3) ; P(Y<=3|X)

 P4 = C4/(1+C4) ; P(Y==4|X)

; Likelihood (Yj), by pain relief (j = 0 to 4) 

 Y0 = 1 - P1

 Y1 = P1 - P2

 Y2 = P2 - P3

 Y3 = P3 - P4

 Y4 = P4
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; If PREDPP is being called for simulation, then . . .

; . . . generate uniform random number (source #2), and

; . . . call this random number UNIF1

; . . . use UNIF1 to assign the level of pain relief

; . . . NOTE: PRLF is named PRLS for simulation

IF(ICALL .EQ. 4) THEN 

 CALL RANDOM(2, R)

 UNIF1 = R

 PRLF = 0

 IF (P1 .GT. UNIF1) PRLF=1

 IF (P2 .GT. UNIF1) PRLF=2

 IF (P3 .GT. UNIF1) PRLF=3

 IF (P4 .GT. UNIF1) PRLF=4

 PRLS = PRLF

ENDIF

 IND0=0

 IND1=0

 IND2=0

 IND3=0

 IND4=0

IF (PRLF .EQ. 0) IND0=1

IF (PRLF .EQ. 1) IND1=1

IF (PRLF .EQ. 2) IND2=1

IF (PRLF .EQ. 3) IND3=1

IF (PRLF .EQ. 4) IND4=1

; Calculate likelihood of pain score

YP = Y0*IND0+Y1*IND1+Y2*IND2+Y3*IND3+Y4*IND4

; Calculate likelihood of remedication

LAMM = LAM0

IF(PRLF .EQ. 1) LAMM = LAM1 

IF(PRLF .EQ. 2) LAMM = LAM2 

IF(PRLF .EQ. 3) LAMM = LAM3 

IF(PRLF .EQ. 4) LAMM = LAM4 

LAMM = LAMM + ETA(9)

; Probability that subject has not remedicated upto time=TIME

 YR0 = EXP(-LAMM*TIME)

;

; Probability that subject will remedicate at time=TIME, given that

; the subject has not remedicated upto time=PTIM

 ETIM = TIME - PTIM

 YR10 = 1 - EXP(-LAMM*ETIM)

 YR11 = EXP(-LAMM*PTIM)

 YR1 = YR10*YR11



; If PREDPP is being called for simulation, then . . .

; . . . generate uniform random number (source #2), and

; . . . call this random number UNIF2

; . . . use UNIF2 to determine whether subject quit

IF(ICALL .EQ. 4) THEN 

 CALL RANDOM(2, R)

 UNIF2 = R

 QUIT = 0

 IF (YR1 .GT. UNIF2) QUIT=1

ENDIF

; Get simulation iteration number

ISIM = 0

IF (ICALL .EQ. 4) ISIM = IREP

;

; Likelihood for remedication model

YR = YR0*(1-QUIT) + YR1*QUIT

Y = YP*YR

$SIM (55555) (54321 UNIFORM) ONLY SUB=1

$TABLE NOPRINT ONEHEADER NOAPPEND FILE=analgesicSim.tab

 ISIM ID TIME MDV PRLS QUIT PTIM DOSE 

 CL VC Q VP KA ALAG FBIO

APPENDIX 25.3 S-PLUS CODE TO PROCESS SIMULATED 
NONMEM DATA SET

#### Import, process, and export simulated data ##############

# The simulated data need to be processed to remove observations following the . . .

# . . . first simulated remedication time, if any (i.e. all observartions following . . .

# . . . an observation in which QUIT=1 are removed from the data set)

importDir <- “../”

fileName <- paste(importDir, “analgesicSim.tab”, sep=””)

simtab <- read.table(fileName, header=T, skip=1)

#

# Determine number of simulated trials, and sample size

nSim <- sum(!duplicated(simtab$ISIM))

nSubj <- sum(!duplicated(simtab$ID))

# Add var to hold logical vector . . . indicating obs to be removed

simtab$REMOVE <- rep(F, nrow(simtab))
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##### Mark observations to be removed 

for(iSim in 1:nSim){

 for(iSubj in 1:nSubj){

  TF.subj <- simtab$ISIM==iSim & simtab$ID==iSubj

  TF.quit <- simtab$QUIT[TF.subj]==1 

  if(any(TF.quit)){

   Time.v <- simtab$TIME[TF.subj]

   qTime <- min(Time.v[TF.quit])

   simtab$REMOVE[TF.subj] <- simtab$TIME[TF.subj] > qTime

  } # end-if

 } # end-for nSubj

} # end-for iSim

# Remove marked observations

simtab <- simtab[!simtab$REMOVE,]

#Removerecordsforwhichtheobservationismissing(MDV==1forTIME==0)

TF.v <- simtab$MDV==1

simtab$PRLS[TF.v] <- rep(NA,sum(TF.v))

keepCols <- c( “ISIM”, “ID”, “TIME”, “MDV”, “PRLS”, “QUIT”, “PTIM”, “DOSE”, 

“CL”, “VC”, “Q”, “VP”, “KA”, “ALAG”, “FBIO”)

exportDir <- “../”

fileName <- paste(exportDir, “analgesicSim.csv”, sep=””)

z.export.csv(simtab[, keepCols], fileName, MissingVal=”.”,AddHash=T)

APPENDIX 25.4 S-PLUS CODE CREATED BARPLOTS OF 
PAIN RELIEF SCORES VERSUS TIME BY DOSE

##################################################################

##### Plot Number of Subjects by Time and Pain Relief Score (conditioned on Dose)

##### summarize number of subjects with a given level of pain relief (by dose and time)

n0 <- tapply(simtab$PRLS==0, list(simtab$DOSE, simtab$TIME), sum, na.rm=T)

n1 <- tapply(simtab$PRLS==1, list(simtab$DOSE, simtab$TIME), sum, na.rm=T)

n2 <- tapply(simtab$PRLS==2, list(simtab$DOSE, simtab$TIME), sum, na.rm=T)

n3 <- tapply(simtab$PRLS==3, list(simtab$DOSE, simtab$TIME), sum, na.rm=T)

n4 <- tapply(simtab$PRLS==4, list(simtab$DOSE, simtab$TIME), sum, na.rm=T)



##### Combine summaries of pain relief scores into a single dataframe

n.all <- rbind(n0, n1, n2, n3, n4)

#

nPRLS <- as.data.frame(n.all)

names(nPRLS) <- dimnames(n1)[[2]]

#

nPRLS$DOSE <- rep(as.numeric(dimnames(n1)[[1]]), 5)

nPRLS$DOSE <- nPRLS$DOSE/1000 # Convert Dose to mg

#### Create stacked barplot of pain relief scores

graphsheet(color.style=”black and white”)

par(mfrow=c(2,2))

par(cex=1)

#

# Get number of doses, and col that specifies DOSE

Dose.v <- unique(nPRLS$DOSE) 

rmCol <- match(“DOSE”, names(nPRLS))

#

for (iDose in Dose.v){

  TF.v <- nPRLS$DOSE==iDose

 xvals <- barplot(as.matrix(nPRLS[TF.v,-c(1,rmCol)]), ylim=c(0,200),

col=seq(5,1), density=500)

 text(xvals, -10, names(nPRLS)[-c(1,rmCol)])

 mtext(“Number of Subjects”, side=2, line=2.5, cex=1)

 mtext(“Time [hr]”, side=1, line=1)

 mtext(paste(“Dose =”, iDose, “mg”))

}

#

key(10,200,

 rectangles=list(size=5, col=seq(5,1), density=500, angle=20),

 text=c(“0: none”, “1: a little”, “2: medium”, “3: a lot”, “4: complete”),

 title=“Pain Relief”, cex.title=1.1,

 border=F

)

export.graph(“./plots/PRLS.barplot.wmf”, ExportType=“WMF”)

S-PLUS CODE CREATED BARPLOTS OF PAIN RELIEF SCORES VERSUS TIME BY DOSE 681



682 POPULATION PK/PD MODELING OF ORDERED CATEGORICAL LONGITUDINAL DATA

APPENDIX 25.5 NONMEM CONTROL FILE TO ESTIMATE 
PAIN AND REMEDICATION MODEL PARAMETERS

$PROB Analgesic Pain Model for nonrandomly censored data

$INPUT ISIM ID=L1 TIME MDV PRLF=DV QUIT PTIM DOSE CL VC Q VP KA ALAG FBIO

; ISIM ID TIME MDV AMT PRLF QUIT PTIM DOSE

; ID = subject ID number

; TIME = time of dose or observation

; MDV = event ID (0=obs, 1=dose)

; AMT = dose amount (MDV=1) or “.” (MDV=0)

; PRLF = Ordinal pain relief score (0=no relief thru 4=full relief)

; TQT = Time to remedication

; QUIT = Indicator of remedication (0=stay in study; 1=quit study)

; PTIM = Time of previous pain observation

; DOSE = nominal dose amount

$DATA ../analgesicSim.csv IGNORE=#

$THETA

; Pain Model Parameters

0.4 ; KE0 [1/h]

-2 ; BT1

-2 ; BT2

-2 ; BT3

-2 ; BT4

100 ; EC50 [ng/mL]

20 ; EMAX

0 FIX ; ALPH

2 ; GAMM

5 ; AA

;

; Remedication Model Parameters

0.2 ; LAM0

0.002 ; LAM1

0.002 ; LAM2

0.001 FIX ; LAM3

0.0001 FIX ; LAM4

$OMEGA

; Pain and Remedication Model Parameters

1 ; Pain

0.0 FIX ; Remedication



$ABBREVIATED DERIV2=NOCOMMON

$PRED

; Specify Pain Model Parameters

KE0 = THETA(1)

BT1 = THETA(2)

BT2 = THETA(3)

BT3 = THETA(4)

BT4 = THETA(5)

EC50 = THETA(6)

EMAX = THETA(7)

ALPH = THETA(8)

GAMM = THETA(9)

AA = THETA(10)

ZPAN = ETA(1)

;

; Specify Remedication Model Parameters

LAM0 = THETA(11)

LAM1 = THETA(12)

LAM2 = THETA(13)

LAM3 = THETA(14)

LAM4 = THETA(15)

ZRMD = ETA(2)

; Calculate concentration in effect compartment

 K20 = CL/VC

 K23 = Q/VC

 K32 = Q/VP

 BET1 = K23+K32+K20

 BET2 = SQRT(BET1**2 - 4*K32*K20)

 BETA = 0.5*(BET1 - BET2)

 ALFA = K32*K20/BETA

 BSL = KE0*KA*DOSE*FBIO/VC

 M1 = ALFA - KA

 M2 = -M1

 Q1 = BETA - KA

 Q2 = -Q1

 R1 = KE0 - KA

 R2 = -R1

 S1 = BETA - ALFA

 S2 = -S1

 T1 = KE0 - ALFA

 T2 = -T1

 U1 = KE0 - BETA

 U2 = -U1

 Z1 = K32 - KA

 Z2 = K32 - ALFA

NONMEM CONTROL FILE TO ESTIMATE PAIN AND REMEDICATION MODEL PARAMETERS 683



684 POPULATION PK/PD MODELING OF ORDERED CATEGORICAL LONGITUDINAL DATA

 Z3 = K32 - BETA

 Z4 = K32 - KE0

 TIM2 = TIME-ALAG

 E1 = EXP(-KA*TIM2)

 E2 = EXP(-ALFA*TIM2)

 E3 = EXP(-BETA*TIM2)

 E4 = EXP(-KE0*TIM2)

 CE1 = Z1*E1/(M1*Q1*R1)

 CE2 = Z2*E2/(M2*S1*T1)

 CE3 = Z3*E3/(Q2*S2*U1)

 CE4 = Z4*E4/(R2*T2*U2)

IF (TIME .LE. ALAG) THEN

 CE = 0.0

ELSE

 CE = BSL*(CE1 + CE2 + CE3 + CE4)

ENDIF

; Specify placebo effect for each cumulative probability

PEFF = EXP(-ALPH*TIME) - EXP(-GAMM*TIME)

PEFF1 = BT1 + AA*PEFF

PEFF2 = PEFF1 + BT2

PEFF3 = PEFF2 + BT3

PEFF4 = PEFF3 + BT4

; Specify drug effect

DEFF = EMAX * CE/(EC50 + CE)

; Logits for cummulative probabilities 

 LGT1 = PEFF1 + DEFF + ETA(1)

 LGT2 = PEFF2 + DEFF + ETA(1)

 LGT3 = PEFF3 + DEFF + ETA(1)

 LGT4 = PEFF4 + DEFF + ETA(1)

; Exponentiate logit

C1 = EXP(LGT1)

C2 = EXP(LGT2)

C3 = EXP(LGT3)

C4 = EXP(LGT4)

; Calculate cumulative probability of response j

 P1 = C1/(1+C1) ; P(Y<=1|X)

 P2 = C2/(1+C2) ; P(Y<=2|X)

 P3 = C3/(1+C3) ; P(Y<=3|X)

 P4 = C4/(1+C4) ; P(Y==4|X)



; Likelihood (Yj), by pain relief (j = 0 to 4)

 Y0 = 1 - P1

 Y1 = P1 - P2

 Y2 = P2 - P3

 Y3 = P3 - P4

 Y4 = P4

 IND0=0

 IND1=0

 IND2=0

 IND3=0

 IND4=0

IF (PRLF .EQ. 0) IND0=1

IF (PRLF .EQ. 1) IND1=1

IF (PRLF .EQ. 2) IND2=1

IF (PRLF .EQ. 3) IND3=1

IF (PRLF .EQ. 4) IND4=1

; Calculate likelihood of pain score

YP = Y0*IND0 + Y1*IND1 + Y2*IND2 + Y3*IND3 + Y4*IND4

; Calculate likelihood of remedication

LAMM = LAM0

IF(PRLF .EQ. 1) LAMM = LAM1 

IF(PRLF .EQ. 2) LAMM = LAM2 

IF(PRLF .EQ. 3) LAMM = LAM3 

IF(PRLF .EQ. 4) LAMM = LAM4 

LAMM = LAMM + ETA(2)

; Prob that subject has not remedicated upto time=TIME

YR0 = EXP(-LAMM*TIME)

;

; Prob that subject will remedicate at time=TIME, and that subject has

; not remedicated at time=PTIM

ETIM = TIME - PTIM

IF(MDV .EQ. 0) THEN

 YR10 = 1 - EXP(-LAMM*ETIM)

ELSE

 YR10 = 1

ENDIF

 YR11 = EXP(-LAMM*PTIM)

 YR1 = YR10*YR11

;

; Prob for remedication model

YR = YR0*(1-QUIT) + YR1*QUIT
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; Overall likelihood

IF (MDV .EQ. 0) THEN

 Y = YP*YR

ELSE

 Y = 0

ENDIF

$ESTIMATION SIG=3 MAX=9999 PRINT=1 METHOD=COND LAPLACE LIKE NOABORT

$COV PRINT=ER

$TABLE NOPRINT ONEHEADER FILE=analgesicEst3.tab

 ISIM ID TIME PTIM MDV DOSE QUIT 

 P1 P2 P3 P4 Y0 Y1 Y2 Y3 Y4 YR0 YR1 YP YR Y

APPENDIX 25.6 S-PLUS CODE CREATED PLOTS OF 
PROBABILITY/PROPORTION PAIN RELIEF VERSUS 
TIME BY PAIN RELIEF AND DOSE

##################################################################

#### Import PK simulated PK data ##############

importDir <- “../”

fileName <- paste(importDir, “analgesicEst.tab”, sep=””)

esttab <- read.table(fileName, header=T, skip=1)

#

#### Calculate Proportion of subjects with a given level (or

# . . . greater) Pain Relief . . . by Dose and Time

prop1<- tapply(esttab$PRLF>=1, list(esttab$TIME,esttab$DOSE),sum,na.rm=T)/

 tapply(!is.na(esttab$PRLF), list(esttab$TIME,esttab$DOSE),sum,na.rm=T)

prop2<- tapply(esttab$PRLF>=2, list(esttab$TIME,esttab$DOSE),sum,na.rm=T)/

 tapply(!is.na(esttab$PRLF), list(esttab$TIME,esttab$DOSE),sum,na.rm=T)

prop3<- tapply(esttab$PRLF>=3, list(esttab$TIME,esttab$DOSE),sum,na.rm=T)/

 tapply(!is.na(esttab$PRLF), list(esttab$TIME,esttab$DOSE),sum,na.rm=T)

prop4<- tapply(esttab$PRLF>=4, list(esttab$TIME,esttab$DOSE),sum,na.rm=T)/

 tapply(!is.na(esttab$PRLF), list(esttab$TIME,esttab$DOSE),sum,na.rm=T)

#

tmp <- data.frame(rbind(prop1, prop2, prop3, prop4))

dose.c <- sort(unique(esttab$DOSE))

names(tmp) <- as.character(dose.c)

#

prop.c <- c(“prop1”, “prop2”, “prop3”, “prop4”)

#

tmp$PRLF <- rep(prop.c, each=nrow(prop1))

tmp$TIME <- rep(as.numeric(dimnames(prop1)[[1]]), length(prlf.c))



#

est.prop <- data.frame(make.groups(“0”=tmp[,1], “0.5”=tmp[,2], “1”=tmp[,3]))

names(est.prop) <- c(“CPROB”, “DOSE”)

est.prop$DOSE.F <- paste(as.character(est.prop$DOSE), “mg”)

est.prop$TIME <- rep(tmp$TIME, length(dose.c))

est.prop$PRLF <- rep(tmp$PRLF, length(dose.c))

####CalculateProbabilityofagivenlevel(orgreater)PainReliefbyDoseandTime

P1 <- tapply(esttab$P1, list(esttab$TIME, esttab$DOSE), mean, na.rm=T)

P2 <- tapply(esttab$P2, list(esttab$TIME, esttab$DOSE), mean, na.rm=T)

P3 <- tapply(esttab$P3, list(esttab$TIME, esttab$DOSE), mean, na.rm=T)

P4 <- tapply(esttab$P4, list(esttab$TIME, esttab$DOSE), mean, na.rm=T)

tmp <- data.frame(rbind(P1, P2, P3, P4))

dose.c <- sort(unique(esttab$DOSE))

names(tmp) <- as.character(dose.c)

prlf.c <- c(“P1”, “P2”, “P3”, “P4”)

tmp$PRLF <- rep(prlf.c, each=nrow(P1))

tmp$TIME <- rep(as.numeric(dimnames(P1)[[1]]), length(prlf.c))

est.cProb <- data.frame(make.groups(“0”=tmp[,1], “0.5”=tmp[,2], “1”=tmp[,3]))

names(est.cProb) <- c(“CPROB”, “DOSE”)

est.cProb$DOSE.F <- paste(as.character(est.cProb$DOSE), “mg”)

est.cProb$TIME <- rep(tmp$TIME, length(dose.c))

est.cProb$PRLF <- rep(tmp$PRLF, length(dose.c))

est.prop.cProb <- rbind(est.prop, est.cProb)

################ Plot Probability/Proportion PRLF vs Time ###################

trellis.device(color=F)

superpose.line.lst <- trellis.par.get(“superpose.line”)

superpose.line.lst$col <- rep(3:6, 2)

superpose.line.lst$col <- rep(1, 8)

superpose.line.lst$lty <- rep(1:4, 2)

superpose.line.lst$lwd <- rep(3, 8)

trellis.par.set(“superpose.line”, superpose.line.lst)

superpose.symbol.lst <- trellis.par.get(“superpose.symbol”)

superpose.symbol.lst$cex <- rep(1, 8)

superpose.symbol.lst$col <- rep(3:6, 2)

superpose.symbol.lst$col <- rep(1, 8)

superpose.symbol.lst$font <- rep(1, 8)

superpose.symbol.lst$pch <- rep(c(“1”, “2”, “3”, “4”), 2)

trellis.par.set(“superpose.symbol”, superpose.symbol.lst)
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tmp.plt <- xyplot(CPROB ~ TIME|DOSE.F, data=est.prop.cProb, groups=PRLF,

 type=rep(c(“l”,“p”), each=4), as.table=T, layout=c(3,1), 

 scales=list(cex=1),

 ylab=list(“Probability/Proportion Pain Relief >= m”, cex=1.2),

 xlab=list(“Time [hr]”, cex=1.2),

 par.strip.text=list(cex=0.8),

 panel=panel.superpose)

key.lst <- list(text=list(c(“m=1”, “m=2”, “m=3”, “m=4”), cex=1, adj=1),

 lines=list(type=“o”,

  col=superpose.symbol.lst$col[1:4],

  lty=superpose.line.lst$lty[1:4], 

  lwd=superpose.line.lst$lwd[1:4],

  pch=superpose.symbol.lst$pch[1:4],

  cex=superpose.symbol.lst$cex[1:4]),

 # x=0.5, y=0.5, corner=c(0,0.5), 

 space=“top”, columns=4, between.columns=2, 

 border=1, transparent=F, 

 title=“Pain Relief”, cex.title=1,

 border=1,

 between=1)

# update(tmp.plt, key=key.lst)

update(tmp.plt)

export.graph(“./plots/ObsPred.PRLF.TIME.wmf”, ExportType=“WMF”)



CHAPTER 26

Transition Models in Pharmacodynamics

ENE I. ETTE
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26.1 INTRODUCTION

In diverse fi elds such as computer science, engineering, mathematics, genetics, 
agriculture, economics, education, biology, and medical science, random events 
have been characterized using Markov models (1–3). A Markov model is a stoch-
astic model. Human disease processes, such as diabetic retinopathy (4), systemic 
lupus erythematosus (5), renal disease (6), papilloma virus and human immuno-
defi ciency virus (7), analgesia (8), and transplantation (9), have been characterized 
with Markov models. In the above examples Markov models have been used to 
describe disease as a series of probable transitions between health states. In Chapter 
6 of this text the use of a Markov model to characterize patient compliance with 
prescribed drug therapy is described; it has also been used to characterize sleep 
patterns (10, 11). The method has considerable appeal for use in pharmacometrics 
since it offers a method to evaluate patient compliance with prescribed medication 
regimen, multiple health states simultaneously, and transitions between different 
sleep stages.

In the subsequent sections an overview of Markov models is provided, followed 
by a discussion of the Markovian assumption, the discrete time Markov chain, a 
mixed effects Markov model, and a hybrid mixed effects Markov and proportional 
odds model suited for data sets that exhibit the characteristics that can be described 
with such models.

26.2 OVERVIEW OF MARKOV MODELS

A series of probable transitions between states can be described with Markov 
modeling. The natural course of a disease, for example, can be viewed for an indi-
vidual subject as a sequence of certain states of health (12). A Markovian stochastic 
process is memoryless. To predict what the future state will be, knowledge of the 
current state is suffi cient and is independent of where the process has been in the 
past. This is termed the “strong” Markov property (13).

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene I. Ette and 
Paul J. Williams
Copyright © 2007 John Wiley & Sons, Inc.
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The characteristics of the state space being measured can be used to classify the 
Markov process. For most purposes, a discrete or fi nite space is assumed and this 
implies that there are a fi nite number of states that will be reached by the process 
(14). A continuous or infi nite process is also possible. Time intervals of observation 
of a process can be used to classify a Markov process. Processes can be observed at 
discrete or restricted intervals, or continuously (15).

Markov chain is the term used to describe a process observed at discrete intervals. 
However, some investigators prefer to describe Markov chains as a special case of 
a continuous-time Markov process. That is, the process is only observed at discrete 
intervals, but in reality it is a continuous-time Markov process (16). Therefore, the 
Markov process can be used to collectively describe all processes and chains.

Time homogeneity is another important distinction of Markov processes. The 
process is time independent or time homogeneous when the transition probabilities 
are constant regardless of the time of observation (12), and the distribution of the 
number of transitions into a state follows a homogeneous or stationary Poisson 
process. The Poisson distribution is defi ned as P{N(t) = k} = (ltke−lt)/k!, where l is 
the average number of transitions per period t (or the rate of arrivals) over k cycles 
(17). An exponential distribution defi ned by the same parameter l is used to char-
acterize the time between transitions in a homogeneous Poisson process (18).

Short-term medical problems in people are best described with time-
homogeneous Markov chains. Chronic disease in people (tens of years) is better 
described with time-nonhomogeneous models since other factors such as age infl u-
ence the transition probabilities, therefore causing them to be time dependent (12). 
A generalization of Markov models can be applied to observations made at irregu-
lar time intervals, at irregular intervals with the exact time of transition during that 
interval unknown, or at regular time intervals (16, 19).

26.3 DISCRETE TIME MARKOV CHAIN

Consider the time-homogeneous model for a disease as exemplifi ed in Figure 26.1, 
where the transition probabilities are constant over time. Probabilities for the 
transitions are contained in the transition probability matrix P(t). The probability 
matrix could simply be written as 

P
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H p p p

p p p

p p p

HH H H

H

H

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

2 3

2

3

2 3

2 22 23

3 32 33

since the probabilities for the time-homogeneous model are constant. The rows are 
representative of the current health state and the columns are representative of the 
future state. The probabilities are described as pij, where the probability of moving 
from state i to state j for any given cycle is p.

When a random variable (potentially) changes states at discrete time points 
(e.g., every 3 minutes), and the states come from a set of discrete (often, also 
fi nite) possible states, a discrete-time Markov chain is used to describe the process. 
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Discrete-time Markov chains are discrete-time stochastic processes with a discrete 
state space. Let the state of the random variable at time t be represented by yt; then 
the stochastic process can be represented by (y1, y2, y3,  .  .  .).

26.3.1 First-Order Markov Chain

With fi rst-order Markov chains, considering all t, the conditional distribution of yt+1

given (y0, y1, y2,  .  .  .  , yt) is identical to the distribution of yt+1 given only yt. That is, 
we only need to consider the current state in order to predict the state at the next 
time point. The predictability of the next state is not infl uenced by any states prior 
to the current state—the Markov property.

The probability of transition from the ith state at time t − 1 to the jth state at 
time t one step away is given by the conditional probability P(Yt = j | Yt−1 = i) = pj|i(t).
This is called a one-step transition probability. At time t, the process must take on 
one of the possible states, even if it remains at its current state; therefore, the sum 
of these probabilities over j is 1.

The joint distribution for a fi rst-order Markov chain depends only on the one-
step transition probabilities and on the marginal distribution for the initial state of 
the process. This is because of the Markov property. A fi rst-order Markov chain 
can be fi t to a sample of realizations from the chain by fi tting the log-linear (or a 
nonlinear mixed effects) model to [Y0, Y1, Y2,  .  .  .  , YT−1YT] for T realizations because 
association is only present between pairs of adjacent, or consecutive, states. This 
model states that the odds ratios describing the association between Y0 and Y1 are
the same at any combination of states at the time points 2,  .  .  .  , T, for instance.

Consider a disease monitored over a period of 4 months, with evaluations done 
on a monthly basis. At each evaluation each subject is characterized by the presence 
(i.e., 1) or absence (i.e., 0) of a symptom. Let the binary response be denoted by Yt at 
month t, t = 1, 2, 3, 4. As an example, the data on the presence or absence of symp-
toms over the 4 month period of observation could be summarized as follows:

Y Y Y Y n1 2 3 4

0 1 1 1 10

1 1 1 1 15

1 0 1 0 30

FIGURE 26.1 Schematic of an example of health/disease stages. A total of six transitions 
are possible.

Health
Stage 1

Disease 
Stage 2

Disease
Stage 3
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where n represents the number of subjects who had the same type of symptom 
score (i.e., 1 or 0) across the 4 months of observation. This type of data could be 
read into S-Plus® (Insightful, Seattle, WA) and analyzed using the loglm model in 
the MASS library as follows:

n.dat<-data.frame(expand.grid(y4=c(1,0), y3=c(1,0), y2=c(1,0), 

y1=c(1,0), n=c(10,15,30))

A fi rst-order Markov chain (MC) would assume an association between the 
responses at the fi rst and second months. The prediction of the response for the 
third month would be independent of the response in the fi rst month, given the 
response in the second month. Given the response in the third month, the predic-
tion for the fourth month would be independent of the response in the second 
month. Thus, once the response for a previous month is known, other months are 
not needed to predict the response for a current month. Data of the type described 
above could be fi tted in S-Plus as follows using the loglm function in the S-Plus 
library MASS:

(loglm1.fit<-loglm(n~y1*y2 + y3*y4, data = n.dat,param=TRUE,fit=TRUE))

26.3.2 Second-Order Markov Chain

For a second-order Markov model, one would assume that the prediction of response 
for the fourth month is independent of the response obtained in the fi rst month, 
given the responses in the second and third months. Such a model could similarly 
be fi tted in S-Plus as

loglm2.fit<-loglm(n~y1*y2 *y3+ y2*y3*y4, data = n.dat, param=TRUE, 

fit=TRUE))

26.4 THE MARKOVIAN ASSUMPTION

The Markovian assumption is easily met in most cases, although it initially appears 
restrictive. When situations possibly violate the Markovian assumption, adding 
states to the model may be useful (1, 20, 21). Passage to the state of death in cancer, 
for example, may occur at a different rate following fi rst remission of the disease 
than second remission. Using the strategy of adding states, entry into the fi rst of 
these states forces movement into the next state and there is no backward move-
ment. These states are referred to as tunnel states because they can only be visited 
in a fi xed sequence (20). Adding states increases the complexity of the model and 
reduces the density of the data for estimation of transition probabilities, but they 
are helpful in avoiding the violation of the Markovian assumption. There may be 
limited gain from adding states in the face of loss of precision of estimation of the 
transition probabilities at some stage in model building.

A discussion of the continuous-time model, the time-nonhomogenous model, 
and the semi-Markov chain is beyond the scope of this chapter (e.g., see Norris (13), 



Stroock (16), Miller and Homan (22), and Yang and Hursch (23) for a discussion 
on these topics).

26.5 MIXED EFFECTS TRANSITION MODELS

Karlsson et al. (11) used a fi rst-order Markov model to analyze and simulate hyp-
nograms. The purpose of the model was to estimate the probability of moving from 
one sleep stage to another, and to distinguish the pattern of sleep stage transitions 
in primary insomniacs (15 women and 6 men) given temazepam (a benzodiazepine) 
from those of primary insomniacs given a placebo. It was also employed to deter-
mine the covariates (nighttime, sleep stage time, and drug exposure) that infl uence 
these probabilities. Subjects in the study were determined to be either awake, 
in rapid eye movement (REM) sleep, or in sleep stages 1, 2, 3, or 4 at 30 second 
intervals. The Markov model gave the probability of a subject being in a particular 
stage (e.g., REM sleep) given the fact he/she was in a different sleep stage (e.g., 
sleep stage 1) in the preceding 30 second interval: that is, P(REM|stage 1).

Figure. 26.2 shows six distinct sleep stages with a possible total of 30 transitions 
from one stage to another. In practice, certain transitions hardly ever occur and 
not every transition is equally likely; hence, some connections between stages are 
not shown in Figure 26.2. Karlsson et al. (11) analyzed their data by setting up 
separate submodels for each transition—the reason being that there were no shared 

Wake REM

Stage 1

Stage 2

Stage 3

Stage 4

FIGURE 26.2 Schematic structure of whole night sleep (not drawn to scale). Arrows 
indicate the directions of possible transitions. A total of 30 (i.e., 6 × 5) transitions from one 
sleep stage to another are possible. Some transitions are rare and are therefore not shown 
in the fi gure.
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parameters between, for example, P(awake|asleep) and P(asleep|awake). Analyzing 
the data for all subjects simultaneously would introduce correlations that would 
have to be accounted for.

By assuming a fi rst-order Markov model, Karlsson et al. (11) were able to 
estimate the probability of, say, REM sleep given sleep stage 1, independently 
of all other transition probabilities. For simultaneous estimation of transition 
probabilities for all subjects and to determine the variations in P(REM|stage 1)
depending on nighttime, stage time, and drug exposure, a mixed effects model was 
implemented in NONMEM. The parameters of the model were estimated using the 
conditional likelihood option of the Laplacian method (24). The analysis required 
the estimation of two parameters—the typical individual value for P(REM|stage 1)
and the individual distribution of P(REM|stage 1). Assuming that the dependent 
variable (DV) is 1 for REM sleep and 0 otherwise, the critical code of their model 
was

Logit P REM stage P REM stage= ( ) − ( )( )⎡⎣ +log 1 1 1typical typical η

            P REM stage i logit logit1 1( ) = ( ) + ( )( )exp exp

(26.1)

Y P REM stage i DV P REM stage i DV= ( ) ∗ + − ( )[ ]∗ −( )1 1 1 1 (26.2)

By changing the two parameters of the model, the likelihood of Y was maximized. 
The model was set up as shown above to allow the estimation P(REM|stage 1)
instead of its logit transform. The interindividual variability, h, was assumed to be 
symmetrically distributed with zero mean and a variance w2. In modeling the data, 
the authors had to account for high correlation between the h values.

In characterizing hypnograms using the nonlinear mixed effects modeling 
approach, it is important to test for correlations between h values of one transi-
tion model and those from another model using individual estimates of h values. 
Correlations detected should be accounted for in the model. Correlations with cor-
relation coeffi cient (r) ≥ 0.75 are termed high correlations and correlations with r
values between 0.5 and 0.75 are moderate correlations (25). Not accounting for such 
correlations may yield parameter estimates with poor precision.

A detailed description of the nonlinear mixed effects Markov model used to 
characterize hypnograms following the administration of temazepam can be found 
in the work of Karlsson et al. (11).

26.6 HYBRID MARKOV MIXED EFFECTS AND 
PROPORTIONAL ODDS MODEL

Ordered categorical pharmacodynamic data analysis with mixed effects modeling 
has mostly been performed with the proportional odds model. The model can be 
used when the data is a categorization of a continuous scale (26) or of a ranking 
scale (27–33). As discussed in Section 26.1, Markov mixed effects models have been 
used for characterization of compliance to prescribed medication (19) and for char-
acterizing drug effects on transition between different sleep stages—nonordered 



categorical data (11) (see also Section 26.5). In the latter the dependence between 
the different observations could be properly handled. Zingmark et al. (26) charac-
terized a central nervous system (CNS) adverse effect that occurred suddenly for a 
new molecular entity under clinical development. This adverse effect occurred sud-
denly and disappeared and was described as a specifi c CNS feeling or sensation. The 
occurrence and severity (none, mild, moderate, or severe) of this specifi c adverse 
effect was self-reported by the subjects. A study was performed in which the drug 
was infused at different rates to mimic absorption profi les of different formulations 
in an attempt to elucidate the concentration–safety (adverse effect) relationship. 
The study was conducted in sessions—1 (open session) and 2–4 (double blinded). 
What made the data collected in that study different from the general ordered 
categorical side effect data reported in the literature is the continuous monitoring 
of both times and type of severity of the change of stage of the adverse effect. 
The exact time, severity, and type of change in severity of the adverse effect were 
recorded. The adverse event was classifi ed as 0 (no adverse effect), 1 (mild adverse 
effect), and 2 (moderate or severe adverse effect). All subjects started their treat-
ment without the adverse effect: that is, the baseline observation was 0. Two types 
of events had the possibility of occurring at any one time. Thus, the data consisted of 
times and events: six types of events occurred with all possible transitions between 
three stages. The transitions realized were from 0 to >1, from 0 to >2, from 1 to >2,
from 2 to >1, from 2 to >0, and from 1 to >0.

Given the graded nature of the adverse effect score and the occurrence of transi-
tions between scores, Zingnmark et al. (26) represented the data as observations 
of severity stage on an equal-spaced time grid, with observations frequent enough 
to adequately represent the data. A 3 minute interval between observations was 
selected on an ad hoc basis to characterize the transitions. This was felt to be suf-
fi ciently frequent enough so that in no interval did more than one transition between 
severity stages occur. The time interval was considered adequate for the application 
of the model.

A standard proportional odds model for ordered categorical data described in 
Chapter 25 cannot be used to analyze frequently measured categorical type data 
that have a pronounced correlation between neighboring observations. The model 
discussed in Chapter 25 assumes that observations are independent. Transition 
models including Markov elements discussed in the previous sections have been 
used for such situations (11). The data set used by Zingmark et al. (26) was not suf-
fi ciently information rich to allow appropriate estimation of all resulting parameters 
that are characteristic of transition models—one model for each transition. Thus, 
they used a hybrid of a proportional odds model and a transition model. That is, 
they accounted for the ordered nature of the data in the parameterization of the 
model and also accounted for transitions between stages (i.e., estimation of the 
probabilities of having a certain adverse effect score conditioned on a preceding 
observation). The model can also be viewed as a proportional odds model with a 
fi rst-order Markov chain. The model was used to obtain estimates of the cumulative 
probabilities of the adverse effect scores, given a preceding observation. Letting an 
observed adverse effect score be denoted by S, and given a preceding observation 
(pre = 0, 1, or 2), the logits (lx) of the probabilities that S ≥ 1 or S = 2 were described 
by the following:

HYBRID MARKOV MIXED EFFECTS AND PROPORTIONAL ODDS MODEL 695
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l pre b D

l pre b b D

l pre b D

l pre

S

S

S

S

≥ =[ ] = +

= =[ ] = + +

≥ =[ ] = +

=

1 0

2 0

1 1

2

1

1 2

3

==[ ] = + +

≥ =[ ] = +

= =[ ] = + +

1

1 2

2 2

3 4

5

5 6

b b D

l pre b D

l pre b b D

S

S

(26.3)

where baseline fi xed effects parameters of the model are denoted by bx and D is 
the drug effect. Different formulations of drug effect can be used. Equation (26.4) 
provides the probabilities corresponding to the logits in Eq. (26.3):

PC e ex
lx lx= +1 (26.4)

Thus, actual probability, px, of observing a particular score is

p PC p PC PC p PCS S S S S S S= ≥ = ≥ = = == − = − =0 1 1 1 2 2 21 , , (26.5)

The hybrid model proposed by Zingmark et al. (26) is a straightforward way of 
incorporating Markov elements in an analysis of ordered categorical data. An inap-
propriate model—a bad descriptive model or a model with a bad predictive perfor-
mance (see Ette et al. (34); Chapter 8 of this text)—would result if the correlated 
nature of the data is ignored and a proportional odds model is used to characterize the 
concentration–adverse effect relationship. Readers are referred to the article by 
Zingmark et al. (26) for a detailed description of the hybrid model. They also provide 
a NONMEM data set and control fi le for the implementation of the model.

26.7 SUMMARY

Markov models are used to describe disease as a series of probable transitions 
between health states. The methodology has considerable appeal for use in phar-
macometrics since it offers a method to evaluate patient compliance with prescribed 
medication regimen, multiple health states simultaneously, and transitions between 
different sleep stages. An overview of the Markov model is provided together 
with the Markovian assumption. The most commonly used form of the Markov 
model, the discrete-time Markov model, is described as well as its application in the 
mixed effects modeling setting. The chapter concludes with a discussion of a hybrid 
Markov mixed effects and proportional odds model used to characterize an adverse 
effect that lends itself to this combination modeling approach.
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CHAPTER 27

Mixed Effects Modeling 
Analysis of Count Data

CHRISTOPHER J. GODFREY

699

27.1 INTRODUCTION

The use of pharmacokinetic/pharmacodynamic (PK/PD) modeling for the analysis 
of continuous variables in clinical studies is well established and widely accepted. 
This is regardless of whether the effect of drug exposure acts directly or indirectly 
on some measured PD endpoint. Models characterizing direct PD responses are the 
most widely used. However, there is a growing body of literature reports on the use 
of indirect response PD models for continuous endpoints.

Far fewer PK/PD analyses and reports deal with PD measures that are discrete in 
nature. Variables that represent discrete measures have properties that are distinct 
from continuous variables. A variable is discrete if the number of values that it can 
assume is fi nite or countably infi nite. Count data is generally considered a type of 
discrete variable.

Count data describe the number of times some event of interest occurs in some 
specifi ed time frame or over some one- or multidimensional spatial distance. Count 
data arise in drug development programs and clinical studies that seek to character-
ize the effect of a pharmacologic intervention on the occurrence frequency of unde-
sirable events. Examples of endpoints of interest include seizures in epilepsy (1, 2), 
angina episodes in acute coronary syndromes, migraine headaches, apneic episodes 
in the premature neonate (3), asthma attacks, the ipecac model of chemotherapy-
induced vomiting (4), premature ventricular contractions (5), urge incontinence 
episodes (6), and panic attacks. These events are observed on a time scale and are 
frequently expressed as the number of occurrences in a clinically relevant time 
frame, for example, apneic episodes per day or panic attacks per month. Examples 
of spatially expressed count data may include the number of polyps in a specifi ed 
length of the colon (7, 8) or psoriatic plaques in a defi ned area of skin. Count data 
may also arise in examining adverse events documented in a clinical investigation. 
Note that in each case the endpoint is characterized by a specifi c and fi nite event. 
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While the severity of some events may be quantifi ed on a quasicontinuous scale, 
such as a visual analog scale, the focus of the present treatment deals with the 
event rate.

Frequentist-based statistical methodology is available for the analysis of count 
data, including, for example, Poisson regression. However, a PK/PD modeling 
approach to the analysis of count data has distinct advantages. The development of 
parametric PK/PD models permits quantifi cation of exposure–response for count 
data. Such models may readily facilitate investigation of possible explanatory vari-
ables, simultaneous characterization of time and exposure relationships, and simula-
tion of future study and development program outcomes. Additionally, models may 
permit a mechanistic interpretation of drug impact on the endpoint of interest.

An additional advantage is the opportunity to conduct PK/PD/outcome model-
ing. In this case the outcome refers to the occurrence rate of the event of inter-
est, and the PD component is a biomarker that is, presumably, predictive of 
or associated with the event occurrence. An example would be a model for a 
drug that reduces infl ammation, as measured by the infl ammatory biomarker C-
reactive protein, and thus reduces the incidence of angina episodes in acute coro-
nary syndromes. C-reactive protein is the link between drug exposure and angina 
frequency. Such PK/PD/outcome models potentially have signifi cant benefi t for 
drug development. Rigorous and qualifi ed models may contribute to the valida-
tion of the biomarker, aid in the development of a diagnostic, or form the basis of 
model-driven simulation.

The aim of this chapter is to equip the pharmacometrician with suffi cient theory 
and application to confi dently approach the PK/PD-based analysis of count data 
and thus derive the maximum return on investment from clinical study data. Section 
27.2 provides a motivating example and Section 27.3 presents relevant defi nitions 
and theory. Section 27.4 applies the theory to the example and introduces diag-
nostics methods. Throughout the chapter, the focus is on population approaches 
using nonlinear mixed effects models. Code segments of NONMEM control fi les 
are presented in the appendix. Mixed effects analysis methodology is described in 
detail in Chapter 4 of this text.

27.2 MOTIVATING EXAMPLE: NEONATAL APNEA

Apnea of prematurity is a common disorder affl icting neonates less than 37 weeks 
gestation. Apnea is characterized by cessation of respiration for a duration ≥15
seconds with or without accompanying bradycardia (≤80 bpm for 10 s). Pharma-
cologic intervention typically centers on administration of methylxanthines, either 
theophylline or caffeine. While a number of manuscripts have reported the popu-
lation pharmacokinetics of theophylline (9–11), scant information is available on 
models for theophylline activity in neonatal apnea. An investigation was conducted 
to determine the population pharmacokinetics and pharmacokinetics/pharmacody-
namics of orally and intravenously administered theophylline in premature neo-
nates using a routine clinical care study design: that is no constraints were placed 
on the dosing or observation schedule for drug concentration. Blood samples for 
measurement of theophylline were obtained by heel stick or indwelling catheter 
at a frequency determined according to standard hospital protocol. Infants were 



continuously monitored for apnea through a centralized computer tracking respira-
tory rate, heart rate, and oxygenation. Apneic and bradycardic episodes triggered 
an audible alarm at the central station and bedside computer monitor. The episode 
was hand-recorded in a bedside apnea logbook by the caregiver.

The study enrolled 97 infants of gestational ages of 24–33 weeks admitted to the 
neonatal intensive care unit of Connecticut Children’s Medical Center (Hartford, 
CT) (3). Twenty-eight infants were studied prospectively, 69 retrospectively. The 
neonates were studied from birth up to a maximum of 18.286 postnatal weeks. Data 
on daily apneic episodes were obtained on approximately 5000 patient-days for 95 
of the neonates. Figure 27.1 shows a distribution of the number of apneic episodes 
per day across all neonates and postnatal days studied. The mean (SD) number of 
spells per day was 1.93 (2.91). The range was 0–30 episodes per day. Figure 27.2 
depicts the time course of the mean daily episode count with respect to postnatal 
age. The frequency increases up to approximately 1.5 weeks and declines gradually 
as the infants mature.

A population PK and PK/PD analysis was performed to develop a model for 
the time course of theophylline concentrations and for the time course and expo-
sure–response of apneic episodes to treatment with theophylline (3). Results of the 
population pharmacokinetics of theophylline will not be presented.

27.3 THEORY ON THE ANALYSIS OF COUNT DATA

This section covers introductory theory about the distribution and analysis of count-
type data. The focus is on the Poisson and zero-infl ated Poisson distributions. The 
mechanics for implementation in an analysis are also discussed.
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FIGURE 27.1 Distribution of apneic episodes per day. The fraction of all patient days is 
represented by each level of apneic episodes.
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27.3.1 Poisson Data Distribution Model

Since distributions describing a discrete random variable may be less familiar than 
those routinely used for describing a continuous random variable, a presentation 
of basic theory is warranted. Count data, expressed as the number of occurrences 
during a specifi ed time interval, often can be characterized by a discrete prob-
ability distribution known as the Poisson distribution, named after Simeon-Denis 
Poisson who fi rst published it in 1838. For a Poisson-distributed random variable, 
Y, with mean l, the probability of exactly y events, for y = 0, 1, 2,  .  .  .  , is given by 
Eq. (27.1). Representative Poisson distributions are presented for l = 1, 3, and 9 
in Figure 27.3.

P Y y
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> =
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The Poisson distribution tends to symmetry as l increases. For l > 10, the Poisson 
distribution is reasonably well represented by a normal distribution. This has impli-
cations for analysis in cases where the mean number of counts is expected to be 
high, in which case traditional analyses for continuous data may be suffi cient.

A key feature of a Poisson-distributed random variable is that it is completely 
described by one parameter, l. For the Poisson distribution, the variance is equal 
to the mean. However, clinical count data often can exhibit overdispersion, where 
the variance exceeds the mean. In this case, the variance of Y, Var(Y), equals fl,
where f is the overdispersion parameter. A number of alternative distributions 
can be used to describe overdispersed data, such as the negative binomial (12). 
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Mixed effects modeling approaches provide a natural way to account for overdis-
persion. Instead of assuming all units have a common mean (i.e., a homogeneous 
Poisson), a distribution of means is assumed (i.e., a heterogeneous Possion). Thall 
(13) proposed a mixed gamma–Poisson, where the Poisson means follow a gamma 
distribution. Frame et al. (14) employed a lognormal Poisson in their analysis of 
partial seizure frequency, as did Gupta et al. (6) in the analysis of urge incontinence. 
As will be shown, nonlinear mixed effects modeling allows for and accounts for 
overdispersion.

The distribution presented in Eq. (27.1) is an appropriate distributional descrip-
tion if the data from each study subject is characterized by the same mean and 
observations are homogeneous across time. However, it is more typically the case 
that each subject may have observations arising from individual Poisson distribu-
tions. Therefore, let yi,j represent the number of events observed in the ith subject 
during the jth interval. It follows that
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where q is a vector of fi xed effects parameters, xi,j is a vector of subject-specifi c and 
possibly time-specifi c parameters, and h is an interindividual random effects para-
meter characterizing the deviation of the ith subject’s estimate from the population 
mean estimate. h is a normally distributed random variable with mean 0 and vari-
ance w2. The mean may depend on time, usually arising as a result of the underlying 
temporal pattern of disease. The functional relationship, f(.), is unspecifi ed here 

0 1 2 3 4 5

4.
0

3.
0

2.
0

1.
0

0.
0

Mean=1

y
c

n
e

u
q

er
F

0 1 2 3 4 5 6 7 8 9

4.
0

3.
0

2.
0

1.
0

0.
0

Mean=3
2 3 4 5 6 7 8 9101112131415161718

4.
0

3.
0

2.
0

1.
0

0.
0

Mean=9

FIGURE 27.3 Simulated Poisson distribution for means 1, 3, and 9. Histograms depict the 
distribution of a Poisson distributed random variable with means of 1, 3, and 9.
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but may take many forms. Typically, f(.) is an exponential function of an equation 
linear in the predictors. Thus, under a log-linear canonical link,

ξ λ θ ηi j i j i j ix, , ,= ( ) = +log (27.3)

where x is the log of the mean, q is the vector of fi xed effects parameters, x is the 
vector of independent variables, and h is as described previously. This expression 
has an attractive property of constraining the mean to be positive and nonzero, a 
requirement for the Poisson. However, interpretation of the model parameters may 
be less than straightforward under this transformation.

Consideration of the underlying time course is potentially quite important in the 
presence of disease progression, disease resolution, or remitting–relapsing progres-
sion (see Chapter 21 for a discussion of disease progression models). However, 
suffi cient data obtained from control groups (placebo, active, or historical) may be 
needed to adequately elaborate this element of the model.

27.3.2 Zero-Infl ated Poisson Data Distribution Model

Another situation that may be observed with count data in clinical studies is “zero-
infl ation.” This condition is characterized by the occurrence of a higher frequency 
of time intervals with no events than would be expected under a Poisson distribu-
tion. While zero-infl ation may be adequately addressed by allowing overdispersion 
through inclusion of interindividual variability, it may also represent a phenomenon 
distinct from overdispersion. Under such cases, the zero-infl ated Poisson (ZIP) 
may be a useful distribution to use in analysis. The ZIP can best be understood 
from a contrived, if not unrealistic, example. If one was going to test the activity 
of an antiallergy medicine by counting the number of sneezes during 8 hour inter-
vals, one might fi nd that there were more intervals with no sneezes than expected 
from a Poisson-distributed variable. An underlying explanation, albeit possibly 
unobserved, could be that subjects might not have been exposed to the offending 
allergen in all of those intervals. For example, time spent at work might be time 
away from a pet at home or pollen outdoors. In some intervals, subjects will not 
sneeze since they are not being exposed to allergen; therefore, they are considered 
to be in a “perfect” or nonsusceptible state. The fi rst question that one can ask is: 
What is the probability that a subject is in a perfect state or imperfect state? In a 
perfect state, the event of interest is not observed. If a subject is likely to be in the 
imperfect state, one can ask what the probability is of experiencing 1, 2, or any 
number of events.

A ZIP distribution is a mixing distribution of a Bernoulli and a Poisson distri-
bution, and using it in analysis is like combining a logistic regression with Poisson 
regression. The derivation, properties, and application of the ZIP have been pre-
sented in a number of papers (e.g., 15–17). There are two ways to structure the 
ZIP in analysis that should give the same result but may differ in interpretation 
of the parameters. The choice will also infl uence how the likelihood function is 
coded in the model fi le. In the fi rst approach, the logistic component will provide 
the probability of being in the perfect or imperfect state. If the probability is such 
that the subject is considered to be in the imperfect state, the full Poisson is used 
to determine the probability of observing the number of events. To determine 



the probability of observing zero events, one must combine the probability of the 
perfect state, in which only zero events are allowed, and the probability of having 
zero events given the imperfect state. Thus,

P Y e=( ) = + −( ) −0 1; ,φ λ φ φ λ (27.4)
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where f is the probability of the perfect state and contributes the excess zeros. The 
second term in Eq. (27.4) is the probability of zero arising from the Poisson char-
acterizing the imperfect state. Implicit in this formulation is that zero events can 
occur even when the imperfect or susceptible state is the most likely. In the second 
approach, the logistic function is used to characterize the probability of having zero 
events, whether the subject is in the perfect or imperfect state. A truncated Poisson 
is used to characterize the probability of nonzero event rates. This approach is also 
call the Hurdle model (16). In the Hurdle model formulation,

P Y =( ) =0; φ φ (27.6)
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f is simply the probability of observing zero events, regardless of the state. Equa-
tion (27.7) is a truncated Poisson, where the probability of observing zero events 
is in effect removed.

With either formulation, the state probability f and the Poisson mean l can each 
potentially include a random effect for interindividual variability. With zero-infl ated 
Poisson-based analyses, covariates can be evaluated as predictors of the probability 
of state, the mean number of events, or both. Under typically employed canonical 
links,

ξ λ θ ηi j i j i j ix, , ,= ( ) = +log (27.8)

as in the regular Poisson model and

γ φ θ ηi j i j i j ix, , ,it= ( ) = +log (27.9)

where the logit is

log logit ,
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The two components may share elements of xi,j. However, the vectors q and h are 
disjoint.

Formulas are available for the computation of the expected value and variance 
of the ZIP random variable (18). The expected value for a ZIP-distributed random 
variable Y, E(Y), is
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E Y( ) = −( )1 φ λ  (27.11)

The variance of Y, Var(Y), is calculated as follows:

Var Y E Y E Y E Y( ) = ( ) + ( ) − ( )[ ]λ  (27.12)

These formulas are useful when seeking to diagnose the adequacy of model fi t.

27.3.3 Implementation

Utilization of the Poisson and ZIP in population PK/PD modeling requires coding 
the appropriate distribution into the software selected for analysis. Example code 
will be given as appropriate for NONMEM implementation; however, the funda-
mentals are applicable to other software programs.

Typically the $PRED block will be used to code all elements of the model. However, 
use of PREDPP and the associated ADVAN subroutines is possible, particularly 
when a combined PK/PD model is desired (e.g., see Ref. 4). For this discussion, 
a model for exposure–response based on the Poisson distribution is assumed and 
area under the concentration–time curve (AUC) is the exposure metric. The fi rst 
part of the model provides for defi nition of the mean and variance of the Poisson 
distribution.

$PRED

TLLAM=THETA(1)+THETA(2)*AUC ;Typical value of log(lambda)

LLAM = TLLAM +ETA(1) ;Add intersubject variability

LAM = DEXP(LLAM) ;Inverse canonical link

If LAM is expressed as a linear function, instead of using the log link, care must be 
taken to appropriately constrain the parameters such that LAM is always positive and 
nonzero. LLAM can assume more complex forms as needed to adequately character-
ize the data. If a ZIP is to be used, the following code is added:

TLOGIT = THETA(3) ;Typical value of the logit

LOGIT = TLOGIT + ETA(2) ;Add intersubject variability

PHI = DEXP(LOGIT)/(1+DEXP(LOGIT)) ;Inverse canonical link

Again, using a linear function to describe PHI can create diffi culties unless con-
straints are used to bound PHI between 0 and 1 at the subject level.

The second part of coding the model provides the likelihood function for the 
Poisson or ZIP distribution. A number of options need to be considered when creat-
ing this part of the control fi le. One needs to decide whether to write the likelihood 
function or −2 × log likelihood function. Either is acceptable but NONMEM must 
be provided the correct designation (LIKE or –2LL) in the $ESTIMATION block.

Another issue to consider is that the factorial part of the Poisson distribution 
cannot be coded directly as a factorial. Two options exist for addressing this. The 
simplest is to include the value of the factorial of the observation in the data set 
and include the variable in the $INPUT block. Most software that the pharmaco-



metrician might use to create a data set can easily handle calculation of the facto-
rial for inclusion in the data set. Another option is to approximate the factorial 
using Stirling’s formula, which is based on the gamma function. The formula is as 
follows:

y y y y yy! exp . . ./= ( ) −( ) =2 1 2 31 2π for , , , (27.13)

and

y y! = =1 0for (27.14)

NONMEM code for Stirling’s formula would thus appear as

IF(DV.EQ.0) THEN

FACT=1

ELSE

FACT=((6.28312*DV)**(0.5))*(DV**DV)*DEXP(-DV)

ENDIF

The log factorial can easily be derived from the above expressions if the –2LL option 
is used. A word of caution is warranted if Stirling’s formula is employed. When the 
mean number of counts is small and the number of observed counts is small, the 
Possion probability calculated using Stirling’s formula could be off by a few percent-
age points. For example, when the Poisson mean is 1, the probability of observing 
1 event is approximately 0.368. However, under a Poisson calculated with Stirling’s 
formula, the probability is nearly 0.4. While this difference is not large, it may be 
relevant if one is comparing two treatments and one treatment is more effectively 
driving the number of events toward zero than the other. The bias introduced by 
Stirling’s formula may result in an optimistic estimation of drug effect.

NONMEM code for the Poisson likelihood appears as follows:

POIS=LAM**DV*DEXP(-LAM)/FACT

Y=POIS

where FACT is either a data item or Stirling’s formula.
The ZIP likelihood can be combined with the Poisson likelihood as follows:

STATE=0

IF (DV.EQ.0) STATE=1       ;Set indicator variable

P0=PHI + (1-PHI)*DEXP(-LAM) ;Probability of zero count

PN=(1-PHI)*POIS  ;Probability of count 1,2,3,. . .

ZIP=P0**STATE * PN**(1-STATE) 

Y=ZIP

With the basic theory and implementation in NONMEM covered, these methods 
can be employed in the analysis of the data described in Section 27.2.

THEORY ON THE ANALYSIS OF COUNT DATA 707



708 MIXED EFFECTS MODELING ANALYSIS OF COUNT DATA

27.4 APPLICATION OF POISSON-BASED POPULATION 
ANALYSIS TO APNEIC EPISODE DATA

This section demonstrates aspects of the application of a nonlinear mixed effects 
modeling approach to the analysis of count data using the premature neonate apnea 
data described in Section 27.2. The objective is to draw attention to key features 
the pharmacometrician should be aware of and provide methods for model diag-
nostics and general considerations. Selected results presented here are excerpted 
and adapted from the complete analysis (3). A subset of the analysis data set is 
provided in the appendix.

27.4.1 Model for the Distribution of the Data

The fi rst step is to implement a Poisson model characterized by a mean with one 
interindividual variance term (see Model 1 in the appendix). The estimate of the 
population l was approximately 1.42 episodes per day with a 74% interindividual 
coeffi cient of variability (CV). Although not executed in the original analyses, for 
comparison purposes, a zero-infl ated Poisson model was also evaluated (Model 2 
in the appendix). The estimated probability of the nonsusceptible state was 0.342 
(71% interindividual CV). The ZIP population l estimate was 2.33 (55% interindi-
vidual CV) episodes per day. Using the formulas given in Eq. (27.11) and (27.12), 
the population expectation (variance) was 1.53 (2.76) episodes per day. Note 
the overdispersion as indicated by the variance greater than the expected 
value. Figure 27.4 shows the predicted probability from the Poisson and the ZIP 
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FIGURE 27.4 Poisson and zero-infl ated Poisson estimated probability versus observed 
frequency. The solid circles are the estimated probabilities of observing the episode rate from 
the Poisson distribution. The open squares are the estimated probabilities of observing the 
episode rate from the zero-infl ated Poisson distribution. The histogram is the distribution 
of the observed data.
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superimposed on the observed frequency of episode counts. Both models exhibit 
defi ciencies in characterizing the full nature of the observed data; however, the 
ZIP model does perform as intended and accounts for the extra zeros. Since the 
two models use different objective functions, it is inappropriate to compare objec-
tive function values for model selection. Despite the potential advantage of the 
ZIP model, the remainder of this example uses the Poisson model. As will become 
apparent, the Poisson model can accommodate the zero-infl ation and some of the 
overdispersion present once the apnea time course and covariates have been incor-
porated into the model.

27.4.2 Time Course Model

Apnea of prematurity generally resolves as the neonate matures and approaches 
typical term age. Therefore, the PK/PD model must account for this trend with 
respect to time. Figure 27.2 showed the time course of apneic episode frequency. 
The number of daily episodes increased after birth with a peak between 1 and 2 
weeks on average. A gradual decline was observed thereafter. A number of func-
tional forms were considered to describe this profi le, but two of the models evalu-
ated are presented here. The fi rst model, TC1 (Eq. (27.15)), included a zero-order 
progression rate of episode frequency and a fi rst-order resolution rate of episode 
frequency. In the second model, TC2 (Eq. (27.16)), the progression and resolution 
rates were both treated as fi rst-order processes. Note that the use of resolution 
is meant to imply lessening of disease severity with maturity, not resolution of a 
specifi c apneic episode.

Model TC1 ,
,: λ η

i j
K T K PNAk

K
e e ei j i= −( )⎡

⎣⎢
⎤
⎦⎥

× − × ×0 71 1 (27.15)

where li,j is the ith subject-specifi c mean on the jth postnatal day, k0 is the zero-order 
progression rate of apneic episodes, K is the fi rst-order resolution rate of apnea, 
and T represents the time to maximum spell frequency. PNAi,j is the jth postnatal 
age, converted from weeks to days, in the ith subject. The h1i is the ith subject-level 
realization of the intersubject random effects term, h1, a symmetrically distributed 
random variable with mean 0.

Model TC2 ,
in

in out

out , in ,: λi j
K PNA K PNAPRE K

K K
e ei j i=

×
−

−− × × − × ×7 7 jj ie( ) η1 (27.16)

where PRE is a preexponential term, Kin is the fi rst-order progression rate of spells, 
and Kout is the fi rst-order resolution rate.

Both models resulted in a substantial improvement in model fi t. The reduction 
in the −2× log likelihood objective function value from the model without a time 
course component was 1876 for Model TC1 and 2031 for Model TC2. Model TC2 
was selected as the time course model.

27.4.3 Covariate Model

An advantage of the particular functional form selected for the time course is that 
covariates can be tested on the parameters that characterize the time course. More 
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specifi cally, a covariate could be a predictor of how quickly apnea increases in 
severity, the maximum frequency of the apnea, or the resolution of the condition. 
Covariates that were considered as possible explanatory factors included gestational 
age (GA), continuous positive airway pressure (CPAP, 0 = absent, 1 = present), 
gender (GEN, 0 = male, 1 = female), maternal prenatal steroid administration 
(MSTR, 0 = not administered, 1 = administered), race/ethnicity (RACE), hyaline 
membrane disease (HMD, 0 = absent, 1 = present), bronchopulmonary dysplasia 
(BPD, 0 = absent, 1 = present), concurrent infection (INF), and APGAR score 
at 1 and 5 minutes. Covariate selection was accomplished by fi rst triaging covari-
ates through a screening procedure then using a forward selection followed by 
backward elimination process. The elimination process was performed after the 
exposure–response model was added as described below. The order of covariate 
inclusion was governed by the signifi cance level calculated using the likelihood ratio 
test obtained during the screening process. (Chapters 8 and 14 of this text provide 
a more thorough treatment of covariate selection and model building approaches.) 
Retention of a covariate during the forward selection process required statistical 
signifi cance at the 0.05 level. All covariates were entered linearly in the model. The 
complete covariate model was as follows:

PRE GA

K GA

K GA

i i

i i

i i

= + −( )
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(27.17)

where GA − 24 is gestational age centered on 24 weeks, IND1 assumes the value 
1 when RACE is African-American and 0 otherwise, and IND2 assumes the value 
1 when RACE is Hispanic and 0 otherwise. All other variables are as previously 
defi ned.

27.4.4 Exposure–Response Model

With completion of the time course and covariate components of the model, 
focus turned to determining a model to describe the infl uence of theophylline on 
apnea frequency. For this analysis the exposure metric was an approximate average 
steady-state concentration (Css

avg). The general form of the exposure–response model 
was

λi j i j i j i jBASE BASE MXRD INH, , , ,= − × × (27.18)

where BASEi,j represents what was defi ned as li,j in Eq. (27.16), MXRD is the 
maximum achievable reduction with treatment, and INHi,j is the inhibition function 
that describes the fraction of the maximum reduction as a function of theophylline 
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concentration. The combination of MXRD and INH is a typical Emax model. Models 
were considered that either fi xed the estimate of MXRD at 1 or estimated the 
parameter. The inhibition function (Eq. (27.19a)) and a sigmoidal inhibition func-
tion (Eq. (27.19b)) were both evaluated. However, convergence of the estimation 
algorithm could not be achieved when the Hill coeffi cient (g) was included.

INH
C

C IC
i j,

avg
ss

avg
ss

=
+ 50

(27.19a)

INH
C

C IC
i j,

avg
ss

avg
ss

=
+

γ

γ γ
50

(27.19b)

The model with the MXRD parameter estimated led to a larger decrease in the 
objective function value (−77) versus the model with MXRD fi xed at a value of 1 
(−67); therefore, the former model was selected. The model was unable to support 
inclusion of an interindividual variance term on IC50.

The fully parameterized model elucidated thus far was subject to the backward 
elimination procedure to achieve parsimony. When a parameter was removed from 
the model, an objective function value increase of at least 7.88, corresponding to 
a nominal signifi cance level of 0.005, was required for retention of the covariate 
relationship quantifi ed by the parameter. Ultimately, the effect of RACE on Kout

was removed, as was the effect of gestational age on PRE and Kin. The infl uence of 
bronchopulmonary dysplasia was also determined to be insignifi cant. Removal of 
these covariates resulted in the fi nal PD model as follows:
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where PRE, Kin and Kout parameterize the model for the time course of apneic 
episode frequency, GA is gestational age in weeks, HMD assumes the value 
of 1 for a diagnosis of hyaline membrane disease and 0 otherwise, TVBASE is 
the expected value of baseline spell count on each postnatal day, postnatal age 
in weeks (PNA) is converted to days with multiplication by 7, h1 is a random 
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variable parameterizing the unexplained intersubject variability in the baseline 
count frequency (BASE), and IC50 is the concentration of theophylline produc-
ing 50% of the theoretical maximum reduction in daily spell count (MXRD). The 
function for Y, the predicted probability of the observed spell count, is a Poisson 
distribution function with mean l .

The fi nal parameter estimates, relative standard error, and signifi cance level 
based on the likelihood ratio test for the fi nal PD model are contained in Table 
27.1. The fi xed effects parameters for PRE and Kin could not be tested without 
dismantling the time course model. The statistical advantage of this model was 
defi nitively established during model elaboration. IC50 was not tested for statisti-
cal signifi cance, as its removal from the model disassembles the drug effect model. 
The signifi cance of the drug effect model was assessed through testing MXRD. All 
retained parameters were highly statistically signifi cant based on the likelihood 
ratio test. The percent relative standard error (%RSE) was calculated by dividing 
the asymptotic standard errors by the fi nal parameter estimate and converting to 
a percentage. The %RSE is a measure of the precision with which the parameter 
is estimated. The fi nal model suggests that the IC50 was 4.26 mg/mL; however, the 
parameter was imprecisely estimated (77% RSE). The maximum achievable reduc-
tion was estimated at 58%. The complete NONMEM control fi le is contained in 
the appendix (Model 3).

The estimated probability and conditional probability for episode frequency 
are contained in Figures 27.5 and 27.6. The estimated probability incorporates 
all time course and covariate data. The conditional probability also includes the 
subject level realization of h. Each fi gure also shows the average probability for 
each spell count. It is apparent by examining the average probability that the fi nal 
model performs considerably better than the initial Poisson model in capturing the 
frequency of the observed data. Note also that the model accounts for zero-infl ation 
and overdispersion. Figures 27.7 and 27.8 plot the individualized (or conditional) 
prediction of daily spell count versus the observed daily spell count for the base 
and fi nal model, respectively. The improved distribution of points about the line of 
identity suggests better performance of the fi nal model when compared to the base 
model. However, signifi cant defi ciency of the model in predicting the highest spell 
count days is evident. Additionally, the individualized predictions are not “tightly” 

TABLE 27.1 Final PD Model Parameter Estimates, Standard Errors, 
and Level of Statistical Signifi cancea

Parameter PD Parameter Estimate %RSE Statistical Signifi cance

q1 PRE  5.32 18.1 NT
q2 Kin  0.28 18.6 NT
q3 Kout∼intercept  0.0333 17.1 P << 0.001
q4 Kout∼(GA − 24)  0.00402 34.8 P << 0.001
q5 Kout∼HMD −0.236 38.2 P << 0.001
q6 IC50  4.26 76.8 NT
q7 MXRD  0.582 26.5 P << 0.001
w1

2 h1  0.723 13.6 NT

a The estimates are the maximum likelihood estimates determined by NONMEM. %RSE is the percent 
relative error calculated by dividing the asymptotic standard error by the parameter estimate. Statistical 
signifi cance is the signifi cance level as determined by the log likelihood difference. NT = not tested.
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FIGURE 27.5 Final PD model predicted probability of daily episode counts. The individual 
points represent the fi nal PD model predicted probability of observing the respective spell 
counts for every patient day (n = 4446). The probability is based on the population estimate 
of the Poisson mean l, given subject level covariates, postnatal age, and theophylline con-
centration. The line is an average probability across all subjects by postnatal day.
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FIGURE 27.6 Final PD model predicted conditional probability of daily episode counts. 
The individual points represent the fi nal PD model predicted conditional probability of 
observing the respective spell counts for every patient day (n = 4446). The conditional prob-
ability is based on the individualized estimate of the Poisson mean l, given subject level 
covariates, postnatal age, and theophylline concentration, and the subject level realization 
of h, the interindividual random effect. The line is an average probability across all subjects 
and postnatal days.
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FIGURE 27.7 Subject level predicted versus observed daily apneic episode counts, base 
model. Predicted number of apneic episodes per day versus observed apneic episodes per 
day. The line is the line of identity. The predictions are based on individual estimates of l,
the Poisson mean. The predictions are individualized as they arise from the subject level 
realization of h, the interindividual random effect.
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FIGURE 27.8 Subject level predicted versus observed daily apneic episode counts, fi nal 
model. Predicted number of apneic episodes per day versus observed apneic episodes per 
day. The line is the line of identity. The predictions are based on individual estimates of the 
Poisson mean l, given subject level covariates, postnatal age, theophylline concentration, and 
the subject level realization of h, the interindividual random effect.
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scattered about the line of identity. This was attributed to the substantial within-
subject variability. A direct comparison of the performance of the base and fi nal 
models relative to observed data is presented in Figure 27.9. The average number of 
daily episodes observed, and conditionally predicted by the base and fi nal models, 
was calculated across neonates on each postnatal day. The superior performance of 
the fi nal model in describing the time course of apneic episode frequency is readily 
apparent. The initial rise in frequency and peak at 1–1.5 postnatal weeks is well 
characterized. The subsequent resolution is also effectively captured. It should be 
noted that the points after postnatal week 16 arise from one individual.

The use of a biexponential equation with postnatal age as the time scale permits 
some practical interpretation of the time course component of the fi nal PD model. 
Table 27.2 presents the peak spell frequency, the time to achieve peak frequency, 
and the model predicted resolution half-time of apnea in absence of therapy. The 
resolution half-time defi nes the number of days of postnatal maturation that tran-
spire before the daily spell frequency is reduced by one-half. The infl uence of hyaline 
membrane disease on resolution half-time is readily apparent. The most premature 
neonates with HMD have the slowest time to maximum episode counts and have the 
highest frequency of apnea. A 24 week gestational age infant with HMD requires 
an additional 7 days for a maturational reduction in spell count of one-half. The 
half-time of apnea onset is approximately 2.5 days. On average, the greatest severity 
of apnea would occur at approximately 1 postnatal week. Figure 27.10 depicts the 
baseline apneic episode frequency versus postnatal age for each gestational age in 
the present study. The predictions of daily spell count are population predictions, 
calculated using the fi nal parameter estimates for PRE, Kin, and Kout.
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FIGURE 27.9 Predicted and observed average daily apneic episode count versus postnatal 
age. The average daily apneic episode count was calculated as the mean across all neonates 
for each postnatal day. The observed data are represented by the solid circles, the plus 
denotes average conditional predictions from the base PD model, and the open circles rep-
resent the average conditional predictions from the fi nal PD model.
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TABLE 27.2 Maximum Apnea Severity, Time of Maximum Severity, 
and Resolution Half-time Predicted by Final Modela

 No HMD HMD

Maximum Resolution Maximum Resolution
Gestational tmax Spells per Half-time tmax Spells per Half-time
Age (weeks) (days) Day (#) (days) (days)  Day (#) (days)

24 8.6 4.0 20.8 9.4 4.2 27.2
25 8.3 3.9 18.6 9.1 4.1 24.3
26 8.0 3.8 16.8 8.8 4.0 21.9
27 7.8 3.7 15.3 8.5 4.0 20.0
28 7.5 3.7 14.0 8.3 3.9 18.4
29 7.3 3.6 13.0 8.1 3.8 17.0
30 7.1 3.5 12.1 7.9 3.8 15.8
31 6.9 3.5 11.3 7.7 3.7 14.8
32 6.8 3.4 10.6 7.5 3.7 13.9
33 6.6 3.4 10.0 7.3 3.6 13.1
34 6.5 3.3  9.4 7.2 3.6 12.3
35 6.3 3.3  8.9 7.0 3.5 11.7

a The predicted time to maximum severity (tmax), the expected maximum number of spells per day, and 
the resolution half-time were calculated from the fi nal PD model parameter estimates. These fi gures 
represent the anticipated disease severity and time course in the absence of theophylline therapy. 
HMD = hyaline membrane disease.
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FIGURE 27.10 Model predicted baseline apneic episode frequency. The population predic-
tion of the baseline daily apneic episode counts in the absence of drug effect. The population 
estimates are calculated using the fi nal PD model parameter estimates in the biexponential 
function describing the time course of neonatal apnea. Each line represents a gestational 
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infant.



This example provides one approach to the population PK/PD analysis of count 
data. The reader is directed to the research of Gupta et al. (6) regarding the appli-
cation of these methods to the analysis of the effect of oxybutinin on urge urinary 
incontinence and the work of Miller and colleagues (1, 14) on the PK/PD of prega-
balin in refractory partial seizures. Cox and colleagues (4) take an alternative, but 
highly informative, approach by viewing count data as repeated measures time-to-
event data in the evaluation of the antiemetic effect of ondansetron.

27.5 SUMMARY

This chapter endeavors to show that a population PK/PD approach to the analysis 
of count data can be a valuable addition to the pharmacometrician’s toolkit. Non-
linear mixed effects modeling does not need to be relegated to the analysis of con-
tinuously valued variables only. The opportunity to integrate disease progression, 
subject level covariates, and exposure–response models in the analysis of count data 
provides an important foundation for understanding and quantifying drug effect. 
Such parametric models are invaluable as input into clinical trial and development 
path simulation projects.
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APPENDIX 27.1

Example of Apnea Data Set

ID EVID CURRWT PNA PCA GA HMD THEO DV FACT

1 0 1.238 0.143 30.143 30 0 5.0099 3   6

1 0 1.181 0.286 30.286 30 0 6.2369 0   1

1 0 1.16 0.429 30.429 30 0 7.3382 0   1

1 0 1.168 0.571 30.571 30 0 7.63 0   1

1 0 1.209 0.714 30.714 30 0 7.4472 0   1

1 0 1.182 0.857 30.857 30 0 7.6099 5 120

1 0 1.205 1 31 30 0 6.5947 3   6

1 0 1.256 1.143 31.143 30 0 8.3511 3   6

1 0 1.319 1.286 31.286 30 0 7.6242 4  24

1 0 1.364 1.429 31.429 30 0 7.1237 4  24

1 0 1.407 1.571 31.571 30 0 8.0082 5 120

1 0 1.465 1.714 31.714 30 0 7.5126 2   2

1 0 1.493 1.857 31.857 30 0 7.2322 5 120

1 0 1.519 2 32 30 0 6.969 2   2

1 0 1.564 2.143 32.143 30 0 6.9914 1   1

1 0 1.594 2.286 32.286 30 0 7.0676 1   1

1 0 1.673 2.429 32.429 30 0 6.8272 2   2



NONMEM Models

Model 1
$PROB RUN# 001 Poisson Distribution

$INPUT C,ID,DV,FACT,. . .  ;other variables as needed

$DATA data.csv 

$PRED

;Log canonical link used for example

TLLM=THETA(1) ;Typical value of log(lambda)

LLM=TLLM+ETA(1) ;Log(lambda) with interindividual variability

LM=DEXP(LLM) ;Lambda with IIV

TLM=DEXP(TLLM) ;Population Lambda (For table)

;Poisson Distribution

;The DV factorial is supplied via the dataset as FACT 

POIS=(LM**DV)*DEXP(-LM)/FACT

;Typical value of Poisson

;(coded for inclusion in table)

;(gives probability based on population mean)

TPOIS=(TLM**DV)*DEXP(-TLM)/FACT

Y=POIS

$THETA (0,1,5)

$OMEGA 0.01 

$ESTM NOABORT PRINT=5 MAXEVAL=9999 METHOD=1 LAPLACE LIKELIHOOD 

$TABLE ID TLLM LLM LM TLM POIS TPOIS DV Y ONEHEADER NOPRINT 

FILE=001.TAB

Model 2
$PROB RUN# 002 Zero-Inflated Poisson (ZIP)

$INPUT C,ID,DV,FACT,. . .  ;other variables as needed

$DATA data.csv 

$PRED

;Model for the state: susceptible (1) vs non-susceptible (0)

;Logit canonical link 

TLOGIT=THETA(1) ;typical value of logit

TPHI=DEXP(TLOGIT)/(1+DEXP(TLOGIT)) ;typical value of probability

LOGIT=TLOGIT + ETA(1) ;Logit with IIV

PHI=DEXP(LOGIT)/(1+DEXP(LOGIT)) ;Individual Probability

;Given susceptible state, probability of count

; Log canonical link used for example

TLLM=THETA(1) ;Typical value of log(lambda)

LLM=TLLM+ETA(1) ;Log(lambda)

LM=DEXP(LLM) ;Lambda with IIV

TLM=DEXP(TLLM) ;Population Lambda (For table)

;Poisson Distribution
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;The DV factorial is supplied via the dataset as FACT

POIS=(LM**DV)*DEXP(-LM)/FACT

TPOIS=(TLM**DV)*DEXP(-TLM)/FACT

STATE=0

IF (DV.EQ.0) STATE=1

P0=PHI + (1-PHI)*DEXP(-LM) ;Probability of zero count

PN=(1-PHI)*POIS ;Probability of count 1,2,3,. . .

ZIP=P0**STATE * PN**(1-STATE) ;

Y=ZIP

;for table

EYI=(1-PHI)*LM ;Subject-level expectation

VYI=EYI+EYI*(LM-EYI) ;Subject-level variance of count

EYP=(1-PPHI)*TLM ;Population expectation

VYP=EYP+EYP*(TLM-EYP) ;Population variance of count

$THETA (-8,-0.6,8) (0,2.2) 

$OMEGA 0.3 0.4

$ESTM NOABORT PRINT=5 MAXEVAL=9999 METHOD=1 LAPLACE LIKELIHOOD

$TABLE ID DV TLLM LLM TLM LM TPOIS POIS LOGIT PPHI PHI

P0 PN DV EYI VYI EYP VYP DVY ETA1 ETA2 

ONEHEADER NOPRINT FILE=002.TAB

Model 3
$PROB RUN# Final PD model 

$INPUT C,ID,EVID,WT,PNA,PCA,GA,HMD,THEO,DV,FACT

$DATA data.csv 

$PRED

;Time course and covariate model

TPRE=THETA(1) ;

TIN=THETA(2)

OUT=THETA(3)+THETA(4)*(GA-23.9)

TOUT=OUT*(1+THETA(5)*HMD)

TEX1=DEXP(-TIN*(PNA*7))

TEX2=DEXP(-TOUT*(PNA*7))

TBAS=(TPRE*TIN)/(TIN-TOUT)*(TEX2-TEX1)

;-------------

;Interindividual variability model

BASE=TBAS*DEXP(ETA(1))

;-------------

;Exposure Response Model (ERM)

IC50=THETA(6) ;IC50 for theophylline conc

MXRD=THETA(7) ;Maximal Reduction possible

INH=THEO/(THEO+IC50)

ERM=BASE*MXRD*INH

LM=BASE-ERM



;models the likelihood

;f(y)=Poisson=(lambda**y)*exp(-lambda)/y!

T1=LM**DV

T2=DEXP(-LM)

POIS=T1*T2/FACT

Y=POIS

$THETA (0,5.3)(0,0.28)(0,0.033)(-2,0.004,5)(-2,-0.239,2)

(0,4.28)(0,.584,1)

$OMEGA 0.725

$ESTM NOABORT PRINT=5 MAXEVAL=9999 METHOD=1 LAPLACE LIKELIHOOD

$COVARIANCE

$TABLE ID THEO PNA GA HMD TPRE TIN TOUT DV TBAS

BASE IC50 MXRD INH ERM ETA1 LM Y ONEHEADER NOPRINT FILE=final.TAB
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CHAPTER 28

Mixture Modeling with NONMEM V

BILL FRAME

723

28.1 INTRODUCTION/MOTIVATING EXAMPLES

Examples exist in pharmacology where either the pharmacokinetics or the pharma-
codynamics of a drug is polymorphic within a population. Several examples exist 
involving acetylation polymorphism. Slow acetylators of isoniazid have a higher 
incidence of peripheral neuropathy secondary to elevated concentrations, as well 
as an increased likelihood of hepatotoxicity (1). In the isoniazid example, a phar-
macokinetic (PK) analysis of a data set without acetylator status as a covariate 
would likely demonstrate drug clearance to be distributed bimodally. An additional 
dimension of complexity for the isoniazid acetylation example arises as follows. The 
acetylation is under monogenic control, whereby slow acetylators are homozygous 
for a recessive allele pair. The partition between slow and fast acetylators is roughly 
50%/50% in Caucasians and blacks, yet in Orientals and Eskimos the partition is 
closer to 15% with slow, and 85% with fast acetylation (1). In this example, if one 
had the covariate associated with the population polymorphism in the data set, then 
the observations would be more easily explained by including the covariate in the 
model (i.e., include acetylator genotype as a covariate on isoniazid clearance).

Polymorphic expression of alleles, enzymes, or drug transporters has been associ-
ated with variations in response to several classes of drugs (1–15). Unfortunately, 
situations arise where there is some type of polymorphism in the response being 
modeled, and even though there may be a covariate that explains the polymor-
phism, the covariate may not be available to the modeler. This leads to the utility 
of a mixture model. Mixture modeling involves modeling a probability distribution 
with a mixture of probability distributions. Other terms loosely synonymous with 
mixture modeling include unsupervised learning, latent variable analysis, and clus-
tering. A mixture model allows each individual’s data to be described by two or 
more different models—hence the designation “mixture.” With a mixture model 
it is assumed that the population is partitioned into two or more subpopulations 
according to some probability model, and that each subpopulation has its own 
submodel, which differs from the other submodels with respect to fi xed or random 
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effect parameters. The probability model may be relatively simple (i.e., there is one 
fi xed probability partition for the population) or it may depend on several covari-
ates (i.e., the partition may shift dynamically as covariate values change between 
subjects) and is referred to as a dynamic mixture. One might also assume that one 
probability partition describes a polymorphism across several model parameters 
(i.e., the same probability partition holds for volume of distribution and for the 
clearance of a drug), or that each model parameter that is believed to be polymor-
phically distributed has its own probability partition (i.e., there could be a 20–80% 
partition on clearance but a 50–50% partition on volume of distribution). This last 
situation is called a multiple mixture.

The previous isoniazid example suggested using a mixture model in a situation 
where there was a biological explanation for the mixture but where an explanatory 
covariate was missing. These are called biological mixtures. Another possible use 
for mixture models is the situation where a random effect has a skewed distribu-
tion, which cannot be made symmetric through modifi cation of the structural model 
or transformation of the random effect. Here, a mixture of symmetric distribu-
tions for the random effect may better approximate the skewed distribution than 
a single distribution. Mixtures used in this fashion are called statistical mixtures. 
In the remaining sections of this chapter these concepts and others as they relate 
to mixture modeling using NONMEM V are explored. A passing familiarity with 
NONMEM parlance is helpful but not necessary to digest this chapter. Those 
without previous NONMEM experience are referred to NONMEM Users Guides
fi ve, seven, and eight, which serve as a nice introduction to the use of NONMEM 
(16). Numerous NONMEM control stream examples illustrating the concepts pre-
sented in this chapter are provided, so the reader can learn by running and modi-
fying the NONMEM code, which can be found on the book’s ftp site. While the 
examples all involve simulated data, the principles demonstrated can be applied to 
drug development or therapeutic drug monitoring. The author freely acknowledges 
that almost all the concepts presented herein have been previously described in the 
NONMEM documentation.

28.2 HISTORY

In 1894 Karl Pearson (17) proposed a method of decomposing a mixture of two 
univariate distributions with unequal variances. Pearson’s method required solving 
a ninth degree polynomial. During the 1930s and 1940s a graphical approach to 
mixture decomposition was popular (18). Likelihood estimation of mixture param-
eters, which required computing machinery, was fi rst suggested by Rao (19). While 
several textbooks have been written about mixture modeling from a statistical per-
spective, the pharmacostatistical literature is sparse in terms of examples of mixture 
modeling, with most of the work appearing in statistics, genetics, agriculture, or 
psychology journals (20–29).

The published work is divided between papers addressing applications, param-
eter estimation methods, and tests of hypotheses regarding mixture existence. 
Two NONMEM related papers described two subpopulations with respect to the 
clearance of intravenously administered cephalosporins (20, 21). The antianginal 
agent perhexilene, which is known to have polymorphic cytochrome P450-2D6 
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metabolism, was estimated to have two subpopulations with respect to clearance 
and volume of distribution (23). Simulations were used to compare parameter 
estimation from parallel, crossover, and dose escalation designs in the presence of 
a subpopulation of nonresponders (24). Other simulation exercises have explored 
the distribution of the differences in minimum objective function values between 
mixture and nonmixture analysis of both mixed and nonmixed subpopulations to 
assess the probability of fi nding a mixture when one is not present, and the prob-
ability of fi nding a mixture and classifying its subjects correctly when it truly does 
exist (29). In another study, subpopulations were identifi ed with respect to sensi-
tivity to stroke induced sedation while exploring the use of chlormethiazole as a 
neuroprotective agent (25).

Note All •TXT fi les referred to in the subsequent sections can be found in the 
book’s ftp site.

28.3 SUBMODEL PARAMETERIZATIONS

As stated in the introduction, the submodels may differ in fi xed or random effects. 
The task is to learn how to communicate our ideas about the submodels to 
NONMEM. Suppose that during a population pharmacokinetic (PK) analysis of 
an orally administered drug, a model is used where the absorption and elimination 
rates are fi rst order. The model is parameterized in terms of elimination rate (K),
apparent volume of distribution (Vd) and absorption rate (KA), such that both K
and KA are allowed to vary between subjects. Specifi cally, the values of K and KA
for the jth subject (Kj and KAj) are specifi ed as follows:

K THETA ej
j= ( ) ⋅1 1η (28.1)

KA THETA ej
j= ( ) ⋅2 2η (28.2)

Here, the random effects hij, which allow for between-subject variability in the 
PK parameters, are assumed to be normally distributed about zero, with variance 
Ω (i.e., hij ∼ N(0, Ω), and Ω is called a random effects parameter). The apparent 
volume of distribution for the jth subject is modeled as a linear function of weight 
(WTj) without any random effect.

Vd THETA WTj j= ( ) ⋅3 (28.3)

The residual, or intrasubject, error is being modeled with a proportional error 
model as follows:

C Cij mij ij= ⋅ +( )1 ε (28.4)

where Cij (Cmij) is the ith observed (predicted) concentration for the jth individual, 
and eij is a random effect assumed to be normally distributed with zero mean and 
variance Σ. Finally, suppose there are 100 subjects, each with 24 observed concentra-
tions, and the method of estimation being used is the fi rst-order conditional method 
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with e–h interaction. The fi le naming system for this chapter uses CZ.TXT, RZ.TXT,
TZ.TXT, and TZA.TXT, for the control stream, report output fi le, NONMEM output 
table, and FIRSTONLY NONMEM table, respectively (where Z indexes the model 
sequence). A plot of the density of the modal estimates of the random effect on the 
elimination rate constant reveals positive skewness (Figure 28.1).

Ideally, the skewness coeffi cient is zero. The presence of skewness in this random 
effect plot is undesirable and data simulated with the model might not statistically 
refl ect the observed data. The absence of bimodality in the plot does not imply the 
absence of a mixture. Indeed, when a mixture is present, and the means of two 
subpopulations are close together, or their variances are large, or their relative 
proportions are unbalanced (i.e., a 90%/10% partition versus a 50%/50% partition), 
one may not see bimodality in these types of plots. Two possible approaches to this 
skewness problem are mixture modeling and random effect transformation.

First, consider a two subpopulation mixture model. The $PK block of the control 
stream needs to be modifi ed to communicate to NONMEM that there may be two 
subpopulations with respect to the elimination rate constant, K. A variable called 
MIXNUM indexes the subpopulation, and hence the submodel, for which variables 
are computed. MIXNUM may be used as a right-hand quantity in the abbreviated 
code, as long as the control stream contains a special block of abbreviated code 
called $MIX (see Section 28.4). For the example, the code for K is modifi ed in the 
$PK block as follows:

$PK

IF (MIXNUM.EQ.1) THEN

 K=THETA(2)*EXP(ETA(2)) ; K for first subpopulation

ELSE

 K=THETA(4)*EXP(ETA(3)) ; K for second subpopulation

ENDIF

-0.6 -0.4 -0.2 0.0 0.1 0.3 0.5 0.7 0.9 1.0 1.2

ETA2

0.0

0.5

1.0

1.5

2.0

Eta bar:     -0.012

p-value:      0.97

Skewness:     1.23

Kurtosis:     2.77

FIGURE 28.1 A density plot superimposed on a histogram of modal values of random effect 
on elimination rate for one subpopulation: conditional estimation with e–h interaction.
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(Note that the rest of the code is still needed to run NONMEM successfully, 
but the parts of the code relevant to the mixture model are presented in this 
chapter.)

This code instructs NONMEM to allow K to have the value of THETA(2) for 
subpopulation one (MIXNUM=1) and THETA(4) for subpopulation two (MIXNUM=2).
It also appears that the two subpopulations might differ in their random effects 
as observed from the fact that different random effects were introduced for each 
subpopulation (ETA(2) and ETA(3)). For this fi rst example, it is assumed that 
ETA(2) and ETA(3) have the same variance (Ω), so that there is really only one 
random effects parameter for K, and it is shared between the two subpopulations. 
To accomplish this the $OMEGA block is modifi ed:

$OMEGA .25               ; random effects parameter associated with KA

$OMEGA BLOCK(1) .15  ;  random effects parameter associated with K 

for subpopulation one

$OMEGA BLOCK(1) SAME ; random effects parameter associated with K 

for subpopulation two

Before moving onto describing the probability model (the $MIX block), a couple 
of comments are in order. The fi rst involves what might be done differently with 
the coding of the random effects part of the model. Had the following $PK and 
$OMEGA code been used,

$PK

IF (MIXNUM.EQ.1) THEN

 K=THETA(2)*EXP(ETA(2))

ELSE

 K=THETA(4)*EXP(ETA(2))

ENDIF

$OMEGA .25         ; random effects parameter for KA

$OMEGA BLOCK(1) .15 ; random effects parameter for K for subpopulation 

one

the same results as that produced by the fi rst code would have been obtained. It 
might seem odd that the same random effect is used for an individual, regardless 
of which subpopulation that individual is in, especially with conditional estima-
tion, where modal estimates of these random effects are computed as part of the 
minimization procedure. When this type of parameterization is encountered by 
NONMEM, the second subpopulation is given its own separate random effect 
(like the ETA(3) in the fi rst parameterization). The marginal likelihood for the ith
subjects data, Li, is given by

L p l h di ik ik
k

r

= ( ) ⋅ ( ) ⋅ ( )∫∑
=

θ η θ η η, , Ω
1

(28.5)

Equation (28.5) gives the average of the marginal likelihoods over the r subpopula-
tions. Thus, it can be seen how the mixture probability (pik(q)) can vary between 
subpopulations (as k varies) and between individuals (as i varies) due, for example, 
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to covariate variation between subjects. This equation also suggests that for the 
same subject, the variable of integration, h, can assume different modal values for 
the different subpopulations. The term h(h, Ω) is the density function for h and the 
term lik(h, q) is the conditional likelihood. For each subpopulation, the empirical 
posterior probability that a subject’s data is described by the kth submodel is given 
by the following expression:

p l h d Lik ik iθ η θ η η( ) ⋅ ( ) ⋅ ( )∫ , , Ω (28.6)

For each subject the value of k corresponding to the largest of these r values has 
the name MIXEST within NONMEM abbreviated code.

Second, it is not necessary that ETA(2) and ETA(3) should have the same vari-
ances. It could be assumed that these variances were different with the following 
$OMEGA block.

$OMEGA .25         ; random effects parameter associated with KA

$OMEGA BLOCK(1) .15 ; random effects parameter associated with K 

for subpopulation one

$OMEGA BLOCK(1) .25 ; random effects parameter associated with K 

for subpopulation two

Whether one is able to fi t mixture models with distinct random effects param-
eters for each subpopulation is dependent on the nature of the underlying mixture. 
Are the subpopulations close together in mean, how much data is available (per 
subject and total), and which type of estimation is being used (fi rst order, hybrid, 
Laplacian)? Now to complete the attempt at applying a two subpopulation mixture 
model to this data, the probability model and number of subpopulations must be 
communicated to NONMEM via the $MIX block. Within the $MIX abbreviated code 
the number of subpopulations are communicated with the variable NSPOP and the 
probabilities associated with the subpopulations with the variable P(i) (or its alias 
MIXP(i)), where i indexes the subpopulation. Thus, the code would be

$MIX

NSPOP=2      ; there are two subpopulations

P(1)=THETA(5) ; the probability of being in the first subpopulation 

is THETA(5)

P(2)=1-P(1)   ; the probability of being in the second subpopula-

tion is 1-THETA(5)

Since THETA(5) is a probability it must be constrained to the interval [0, 1] in the 
$THETA block. Also note that changing from the nonmixture model to the mixture 
model required the addition of two new THETA parameters. One was used to control 
the probability partition, and the other to specify how the two subpopulations dif-
fered. For now, note that neither can be entered into the model uniquely. They 
must both go into the model together, or be removed from the model together (the 
designated driver system), and this leads to issues regarding the hypothesis testing 
for the presence of a mixture (see Section 28.5). Two control stream/report/output 
table pairs (C2.TXT/R2.TXT/T2A.TXT and C3.TXT/R3.TXT/T3A.TXT) can be 
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found in the book’s ftp site. They differ only in how the ETA random effects are 
coded as discussed previously. Neither one concluded with a successful $COVA-
RIANCE step and they both have similar minimum objective function (MOF) and 
parameter estimate values. It is noteworthy that the fi nal MOF for these runs (−
8232.5) is lower than that obtained with the nonmixture model (−8208.5) and that 
it is estimated that the population is partitioned with 94% of the patients having 
a K of 0.11/h and 6% having a K of 0.26/h. This distribution of the K values could 
help explain the skewed distribution seen with the nonmixture model.

The example above used two ways of specifying the random effects on K, paving 
the way to a discussion about how NONMEM calculates the eta-bar statistic when 
conditional estimation is used. Notice that both control streams (C2.TXT and 
C3.TXT) contain the statement EST=MIXEST in their $PK blocks. At fi nalization of 
the NONMEM run, EST will contain the number (1 or 2) corresponding to each 
subject’s most likely subpopulation. This allows the tabulation of EST and the modal 
ETA values for each patient using the $TABLE record with the FIRSTONLY option. 
Each patient will have an ETA estimate, only for his/her most likely subpopulation. 
His/her ETA estimate for the other subpopulation will be zero. For the fi rst mixture 
model report (R2.TXT), the output for the eta-bar section is as follows:

ETABAR: -0.36E-01 0.49E-03

P VAL.: 0.38E+00 0.98E+00

and for the second mixture model attempt (R3.TXT),

ETABAR: -0.28E-01 -0.39E-02 -0.50E-02

P VAL.: 0.49E+00 0.87E+00 0.95E+00

Disregarding the discrepancy for the KA eta-bar values, it can be seen that one 
value (0.00049) results for our fi rst attempt, where the same ETA was coded for 
each of the two Ks. This is the average of the ETAs across all subjects, regardless of 
subpopulation assignment. For the alternate coding of the ETAs (i.e., 2 ETAs for the 
subpopulations) two values are returned for ETABAR, as expected. The fi rst is the 
average of those patients estimated to be in the fi rst subpopulation, and the second 
is the average for the remaining patients. Ideally, the values obtained for ETABAR
for the second alternative can be obtained from the output from the fi rst alternative 
coding of the ETAs using EST, and then calculating the subpopulation averages. This 
is not the case here as the ETABAR for R2 is positive and both ETABARs for R3 are 
negative. It is left as an exercise for the reader to examine the modal ETA estimates 
and rationalize this apparent contradiction. Neither way is really wrong, as all the 
ETAs by defi nition come from the same distribution. It will be seen later that things 
may not always be this clear-cut.

Now for a fi nal swing at this data with a mixture model, but this time using 
the fi rst-order method (the default or METH=0 on the $ESTIMATION record). 
Recalling that skewness in a modal K ETA plot from the original nonmixture 
model prompted the consideration of a mixture on K, the $ESTIMATION records 
on both C1.TXT (becomes C5.TXT) and C3.TXT (becomes C4.TXT) are modifi ed 
as follows:
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$ESTIMATION MAXEVALS=9000 PRINT=1 POSTHOC;

Inclusion of the POSTHOC option instructs NONMEM to obtain the Bayesian post 
hoc ETA estimates when the fi rst-order method is used. These effects and other rele-
vant parameters can be output into a table using the $TABLE record. Thereafter, the 
distribution of the effects can be characterized, including skewness if present. Both 
the mixture model and the nonmixture models need to be reestimated with the fi rst-
order method, as one cannot compare the MOFs in a meaningful way between models 
differing only in estimation method. The MOF has dropped 676 points between the 
nonmixture model (see R5.TXT) and the mixture model (R4.TXT). Furthermore, 
the mixture model run has now concluded with a successful $COVARIANCE step. A 
choice has to made whether to make two plots (one for each subpopulation) or one 
(after all, the ETAs all share the same distribution). The latter approach is shown in 
Figure 28.2. Similar plots can be generated for each subpopulation.

One fi nal comment is in order regarding the above parameterizations. This code 
does not prevent THETA(2) and THETA(4) from reversing roles in terms of which is 
associated with the larger of the two Ks. Of course, when this happens THETA(5),
which estimates the proportion of the population with THETA(2)=K, would become 
1-THETA(5). Specifying one K as an appropriate fraction of the other will constrain 
it to always be associated with the desired subpopulation.

The ideas expressed above can be extended up to four subpopulations with 
$MIX, and it may be tempting to extend the IF – THEN – ELSE structure to a 
IF – THEN – ELSEIF – ELSE – ENDIF structure as follows:

FIGURE 28.2 Density superimposed on a histogram of post hoc values for random effect 
(ETA2) on elimination rate for two subpopulations. The fi rst-order method was used for 
estimation.
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IF (MIXNUM.EQ.1) THEN

 ;model for first subpopulation 

ELSEIF (MIXNUM.EQ.2) THEN

 ;model for second subpopulation

ELSE

 ;model for third subpopulation

ENDIF

Although this is acceptable Fortran coding, it is not acceptable abbreviated code 
with NONMEM V. Instead, a separate IF – THEN – ELSE – ENDIF block needs to 
be used for each subpopulation, to avoid error messages about nested random 
effects.

An alternative approach to deal with the skewness seen in the density for the 
random effect on K is to transform this random effect (h) to a new random effect, 
z, as follows:

ζ
λ

ηλ

=
−e 1

(28.7)

Here, l is a real transformation parameter to be estimated by NONMEM. This 
transformation has the following useful properties.

1. It is invertible.
2. It maps real values of h to real values of z.
3. It is everywhere differentiable with respect to h.
4. As l approaches zero, it becomes the identity transformation.
5. It is sometimes able to correct positive or negative skewness.

It is up to the reader to verify properties 1–4, but a comment is needed regarding 
property 5. The transformation is most effective when there is much data per subject 
and conditional estimation is being employed. For the example, the implementation 
is as follows:

ET2=(EXP(ETA(2)*THETA(4))-1)/THETA(4)

K=THETA(2)*EXP(ET2)

Recalling that one cannot use zero as a starting estimate for the transformation 
parameter (λ=THETA(4)), the new model (see C6.TXT R6.TXT) has an objective 
function value that is 16 points lower than the original model that we started 
with (C1.TXT R1.TXT), similar fi xed effects parameter estimates, but substantially 
reduced skewness in the density of the random effect on K (see Figure 28.3).

One must be careful not to become a lazy modeler and rely on mixtures when 
covariates, structural model modifi cations, or changes in random effects structure 
can be used in lieu of a mixture. Before one accepts a mixture model, the covari-
ates should be examined closely, across the subpopulations, with the idea of seeing 
a way to include them in a nonmixture model.
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28.4 PROBABILITY PARAMETERIZATIONS

The goal of this section is to introduce different ways to communicate probability 
models to NONMEM. These concepts will be needed in the next two sections. 
Recall from the fi rst example that it was fi nally possible to fi t a two-component 
mixture to the data by changing the estimation method from FOCE + INTERAC-
TION to the fi rst-order method (see C4.TXT – R4.TXT). The parameterization in 
$MIX is as follows:

$MIX

NSPOP=2 ; there are two subpopulations

P(1)=THETA(5) ; the probability of being in the first is THETA(5)

P(2)=1-P(1) ; the probability of being in the second is 1-THETA(5)

The estimate of THETA(5) is 0.92, and its standard error is 0.0271. A 95% Wald 
based confi dence interval can be constructed for the proportion of the popula-
tion with K=THETA(2) as 0.92 ± 1.96 · 0.0271, or [0.87, 0.97]. For this example, the 
confi dence interval contains neither zero nor one, the two boundary points for a 
probability measure. Had the standard error of THETA(5) been larger, say, 0.1, a 
confi dence interval would include not only one, but an interval above one, which 
cannot be interpreted as a probability. The ramifi cations of different probability 
parameterizations will be explored in Section 28.5. Clearly, a parameterization that 
constrains all probabilities between zero and one, inclusive, would be ideal. Below 
is an implementation that almost achieves this, for a three-component mixture.

$MIX

 NSPOP=3

 A=EXP(THETA(1))

-0.7 -0.5 -0.4 -0.2 -0.1 0.1 0.2 0.4 0.5 0.7 0.8

ETA2

0.0

0.5
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Eta bar      =    0.002

p-value      =    0.095

Skewness =    0.079

Kurtosis     =    0.70

FIGURE 28.3 A density plot of modal values of random effect on elimination rate for 
one subpopulation. The fi rst-order conditional estimation with e–h interaction (transformed 
random effect) was used.



 B=EXP(THETA(2))

 C=1+A+B

 P(1) = A/C

 P(2) = B/C

 P(3) = 1/C

The above coding for P(3) is preferable to P(3) = 1 – P(2) – P(3), which 
sometimes generates probabilities that are slightly negative, resulting in NONMEM 
errors and aborted runs.

28.5 HYPOTHESIS TESTING

This section is intended to introduce some of the issues that arise when one attempts 
to determine if a mixture truly exists (i.e., there are two or more subpopulations). 
The discussion is restricted to the case where there are at most two subpopulations. 
Two main points to consider are: the likelihood of concluding that a mixture of two 
subpopulations is present when there truly is only one population (false positive 
signifi cance level); and the ability to identify and quantify a mixture of two sub-
populations when it is truly present (power).

The fi rst point is addressed by continuing with the example, letting P(1) be the 
proportion of the population with K=THETA(2), and reparameterizing our mixing 
probabilities as (see C7.TXT, R7.TXT)

$MIX

 NSPOP=2

 P(1) = 1/(1+EXP(-THETA(5)))

 P(2) = 1/(1+EXP(THETA(5)))

The null hypothesis H0, that there is no mixture (i.e., there is only one subpopula-
tion), can be tested against the alternative hypothesis Ha, that there are two unique 
subpopulations with respect to K. The null hypothesis can be satisfi ed in either of 
two ways. If the data is fi tted with a two subpopulation mixture model and the two 
estimates of K are very close together, this indicates that there is no mixture regard-
less of what P(1) is estimated to be. On the other hand, if the possibility exists that 
P(1) is zero or one, then it follows that there is no mixture as this implies that all 
of the patients are being estimated to be in only one population. From a hypothesis 
testing perspective, the null hypothesis of no mixture existence (H0), the union of 
two sub-null hypotheses (H01 ∪ H02), can be expressed as follows:

H01 :P(1) = 0 or P(1) = 1 H02 : ⏐THETA(2)-THETA(4)⏐< ε

for some small e > 0. To reject H0 requires rejecting both H01 and H02.
The functional form being used for P(1) maps the real axis to the open interval 

(0, 1) and large values for |THETA(5)| are associated with P(1) values near the 
boundary points for a probability measure (zero and one). Implicit in this param-
eterization is that neither P(1) nor any points in its confi dence interval can be zero 
or one. This allows subjectivity about how extreme the confi dence bounds for P(1)
need to be to conclude that there is no mixture. Since the boundary points used in 
H01 can never be included in the confi dence interval for P(1), we construct a 95% 
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confi dence interval for THETA(5) as THETA(5)±1.96 times its standard error (SE) 
and arbitrarily consider P(1) ≠ 0 and P(1) ≠ 1 (i.e., H01 is rejected) equivalent 
to

(THETA(5) -1.96⋅SE(THETA(5)), THETA(5) +1.96⋅SE(THETA(5)))

being entirely contained in [−3, 3]. This condition is equivalent to [0.048 ≤ 95% con-
fi dence bounds for P(1) ≤ 0.95]. The constructed confi dence interval for THETA(5),
[−3.16, −1.72 ], does not fall within [−3, 3]; therefore H01 is not rejected and hence H0

is not rejected. Had the interval [−4, 4] been arbitrarily selected as the containment 
interval then H01 would have been rejected. Picking a wider inclusion interval would 
increase both the power and the false positive signifi cance level of the test.

Turning now to H02, are the two values for K indistinguishable? One approach is 
to construct a 95% confi dence interval (CI) for the difference between the two values 
of K, and if the CI contains zero, do not reject H02. To construct the CI compute 
THETA(2)    –    THETA(4) ± 1.96⋅SE(THETA(2) - THETA(4)) where SE(THETA(2)
- THETA(4)) is taken to be the positive square root of the quantity variance 
(THETA(2)) + variance(THETA(4)) - 2⋅covariance(THETA(2),THETA(4)).
The CI is [−0.144, −0.108] and does not contain zero, supporting the notion that 
the two elimination rate constants do differ. An alternative approach to the above 
would be to replace the Wald based confi dence intervals with those produced using 
the nonparametric bootstrap technique. With this technique the data set is sampled 
with replacement at the subject level many times, and the model is fi t to each of 
these resampled data sets, generating an empirical distribution for each model 
parameter. Confi dence intervals can then be constructed for the model parameters 
based on the percentiles of their empirical distributions.

Next, return to the issue of the difference in the MOF values between the mixture 
analysis and nonmixture analysis of a data set. Recall that when a mixture is intro-
duced, two new parameters are required. One might indeed be tempted to compare 
the difference in MOFs between a mixture and nonmixture model to a value from the 
c2 distribution with two degrees of freedom and upper tail area of 0.05 (i.e., 5.99). 
Unfortunately, there is no theoretical basis for selecting this value, so its choice is 
arbitrary. Regularity assumptions for hypothesis testing with likelihood ratio tests 
require that parameter values used in the null hypothesis be in the interior of the 
parameter space (30). Since both values for P(1) in the test H01 are on the bound-
ary of the parameter space, the interior assumption is violated.

Considerable work has been focused on determining the asymptotic null distribu-
tion of −2 log-likelihood (−2LL) when the alternative hypothesis is the presence of 
two subpopulations. In the case of two univariate densities mixed in an unknown 
proportion, the distribution of −2LL has been shown to be the same as the distribu-
tion of [max(0, Y)]2, where Y is a standard normal random variable (28). Work with 
stochastic simulations resulted in the proposal that −2LL · c is distributed c2 with d
degrees of freedom, where d is equal to two times the difference in the number of 
parameters between the nonmixture and mixture model (not including parameters 
used for the probability models) and c = (n − 1 − p − g/2)/n (31). In the expression 
for c, n is the number of observations, p is the dimensionality of the observation, 
and g is the number of subpopulations. So for the case of univariate observations 
(p = 1), two subpopulations (g = 2), and one parameter distinguishing the mixture 
submodels (not including the mixing parameter), −2LL · (n − 3)/n ∼ c2 with two 



degrees of freedom, or asymptotically −2LL ∼ c2 with two degrees of freedom. This 
result is diffi cult to interpret in the context of mixed effects modeling, where n might 
be chosen to be the number of subjects or the number of observations, and p varies 
from subject to subject (i.e., not all subjects have the same amount of data). Results 
of stochastic simulation work using NONMEM with seizure count data found that 
the 95% percentile of the distribution of differences in MOF between mixture and 
nonmixture analysis of data which was simulated under the null hypothesis of no 
mixture was 5.43, which is close to 5.99, the 95th percentile for a c2 distribution 
with two degrees of freedom (29). The reader is referred to McLachlan and Basford 
(27) for a more thorough discussion of the analytic and simulation work that has 
been done to characterize the distribution of the likelihood ratio test for testing the 
number of components (subpopulations) in a mixture.

The ability to detect a mixture when it is present can be approached at the sub-
population or subject level. One may focus on how well the submodel or probabil-
ity model parameters are estimated, or how accurately subjects are classifi ed into 
subpopulations. For example, mixed populations with submodel parameters that 
are far apart, partitions that are not highly imbalanced (a 5%/95% partition would 
be considered imbalanced), or low interindividual variability in the parameter of 
difference would be easier to characterize than mixed populations not meeting any 
of these criteria. Accuracy of subject classifi cation can be quantifi ed as the overall 
proportion of patients assigned to their correct subpopulation, the probability that 
they are estimated to be in a given subpopulation given that they are truly in that 
subpopulation (senitivity of estimation), or the probability that they are in a given 
subpopulation given that they are estimated to be in that subpopulation (predictive 
value of estimation). These types of power assessments are most easily conducted 
when the true state of reality is known (29).

28.6 DYNAMIC MIXTURES

Thus far all mixtures considered have been static, in the sense that the probability 
model did not change as a function of covariate values. Recall that in the introduc-
tion, isoniazid acetylator polymorphism was used as an example to introduce the 
concept of mixture modeling utility. In that example it was stated that race was 
associated with how patients were partitioned between slow and fast acetylator 
status. So, given an isoniazid PK data set without acetylator genotype, but with race 
as a covariate, one might want to introduce race as a covariate in our $MIX block 
to help model the patients as either fast or slow acetylators.

The example for dynamic mixtures consists of a data set with a total of 900 
subjects (DATA2.TXT). The subjects were enrolled in a placebo controlled, paral-
lel group study of an investigational agent for treating compulsive gambling. The 
subjects were equally distributed between daily dose groups of 0, 1, 2, 3, or 4 mg, 
without any titration. Collected covariates were limited to age, sex, shoe size, and 
baseline body weight at screening. The dependent variable for this exercise is 
body weight in kilograms, which is measured weekly for 12 weeks. Visualization of 
the data reveals that all 900 subjects completed the study, and in general patients 
either maintained their baseline body weight, gained weight (monotonically), or 
lost weight (monotonically).
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Based on inspection of the data the following model is implemented using a 
$PRED block (see C8.TXT R8.TXT):

$PRED

W=THETA(1) ; residual error as a standard deviation

AS=THETA(2)+THETA(3)*DOSE+ETA(1) ; individual asymptote as a function 

of dose

K=THETA(4) ; rate constant

FA=BSLN*EXP(AS*(1-EXP(-K*TIME))) ; prediction as a function of 

baseline, time, and asymptote

Y=FA+W*EPS(1) ; additive residual error model

This functional form was chosen as it allows for weight neutrality, gain, or loss. 
Results from this approach using conditional estimation reveal a poor fi t to the data, 
based on the fi nal gradient (vector of partial derivatives of the objective function 
with respect to the fi xed and random effects parameters) demonstrating several 
large values. If this fi t represents a true global minimum, then it suggests that sub-
jects receiving placebo or 4 mg/day lose about 2% or gain about 8% of their baseline 
weight, respectively. Inspection of the density of the modal estimates for ETA(1)
(Figure 28.4) reveals signifi cant skewness and leptokurtosis. Both of these attributes 
suggest that a mixture model might be tried, assuming that covariate inclusion 
attempts had been futile. The spike with support near zero (or atom in statistical 
parlance) suggests a group with very little deviation from baseline in asymptotic 
weight. Of course, such a spike could also result from patients with very little data 
whose ETA(1) estimates might be driven to zero, but there are no such patients.

Next, a three subpopulation mixture model is tried, whereby subjects could 
remain stable, gain, or lose weight. For this fi rst mixture attempt, drug exposure 
is not included as a covariate. The three submodels and probability models are as 
follows (see C9.TXT R9.TXT).

FIGURE 28.4 A density plot of modal values of random effect on weight change asymptote 
for one subpopulation. The fi rst-order conditional estimation (FOCE) method was used.
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$PRED

IF (MIXNUM.EQ.1) THEN ; sub model for stable weight

 AS=0 ; typical prediction = baseline

 ET=ETA(1) ; random effect only a place holder, var(ETA(1)==0

 W=THETA(1); residual error as a standard deviation

ENDIF

IF (MIXNUM.EQ.2) THEN ; weight loss

 AS=THETA(6)*EXP(ETA(2)) ; controls asymptotic weight loss

 W=THETA(2) ; residual error as a standard deviation

 K=THETA(4) ; controls rate of weight loss

ENDIF

IF (MIXNUM.EQ.3) THEN

 AS=THETA(7)*EXP(ETA(3)) ; ; controls asymptotic weight gain

 W=THETA(3) ; residual error as a standard deviation

 K=THETA(5)*EXP(ETA(4)) ; controls rate of weight gain

ENDIF

 FA=BSLN*EXP(AS*(1-EXP(-K*TIME))) ; individual prediction

 Y=FA+W*EPS(1) ; additive residual error model

$MIX

 NSPOP=3 ; three subpopulations

 A=EXP(THETA(8))

 B=EXP(THETA(9))

 DEN=1+A+B

 P(2)=A/DEN ;PROB OF WEIGHT LOSS

 P(3)=B/DEN ;PROB OF WEIGHT GAIN

 P(1)=1/DEN ;PROB OF STABLE WEIGHT

The bounds on THETA(6) and THETA(7) ensure that the second and third sub-
populations are associated with weight loss and weight gain, respectively. Addi-
tionally, interindividual variability is included on the parameters associated with 
the asymptotic weight gain or loss and the rate of weight gain. Despite dropping 
the only covariate (DOSE), the mixture model has resulted in a 5821 point drop 
in the objective function. The model now suggests that 20% of the patients are 
weight neutral, 32% are losing weight toward an asymptote of 96% of their baseline 
weight, and 48% are gaining weight toward an asymptote of 107% of their baseline 
weight. Now consider covariate inclusion in the submodels and probability model. 
The C9.TXT control stream produces a FIRSTONLY table where the covariates, 
modal random effect estimates, and EST (MIXEST) are summarized. First examine a 
box plot of baseline weight versus MIXEST and notice that those patients estimated 
to be losing weight tend to have higher baseline weights (Figure 28.5).

A similar box plot of DOSE versus estimated subpopulation suggests that those 
patients estimated to be gaining weight have much higher doses than do the other 
patients. Both of these fi ndings suggest that baseline weight and DOSE might be 
included in our probability model. Turning attention to the submodels now, see 
that those patients estimated to be gaining weight have a monotone relationship 
between DOSE and ETA(3) (Figure 28.6). This suggests that DOSE be included as a 
covariate on the asymptote in the weight gain submodel.
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FIGURE 28.5 A box plot of baseline weight by estimated subpopulation.

FIGURE 28.6 A box plot of random effect on weight gain asymptote versus dose.

Before the control stream is modifi ed, the $CONTR record, which allows one to 
pass covariates to the $MIX block, is discussed. Typically, this record is positioned 
after the $INPUT record using the following syntax.

$CONTR DATA=(BSLN,DOSE)



This allows passage of the covariates baseline weight (BSLN) and a surrogate of 
exposure (DOSE) to the $MIX block. A word of caution is in order here. If the 
covariates being passed to $MIX appear after an alias assignment on the $INPUT
record (i.e., DV=DSST or DATE=DROP), error messages may appear or the generated 
Fortran code for $MIX may be incorrect. If the data set has these properties, then a 
new one must be prepared. The following code modifi cation illustrates the inclusion 
of the $CONTR record, modifi cations to the weight gain submodel to allow expo-
sure to infl uence asymptotic weight gain, and modifi cations to the $MIX block to 
allow DOSE to infl uence the probability of being estimated as gaining weight and 
baseline weight to infl uence the probability of being estimated as losing weight 
(see C10.TXT R10.TXT).

$INPUT ID, DOSE, TIME, BSLN, AGE, SEX, SHOE, DV, EVID

$CONTR DATA=(DOSE,BSLN,SHOE) ; allows DOSE, BSLN, and SHOE to be 

passed to $MIX

$PRED

 IF (MIXNUM.EQ.3) THEN

 AS=THETA(7)*EXP(DOSE*THETA(10)+ETA(3)) ; DOSE now influences

 ;asymptote for gainers

 W=THETA(3)

 K=THETA(5)*EXP(ETA(4))

 ENDIF

$MIX

 NSPOP=3

 E=THETA(12)*BSLN ; BSLN now influence probability of losing 

weight

 A=EXP(THETA(8)+E)

 B=EXP(THETA(9)+THETA(11)*DOSE) ; DOSE now influences probability 

of gaining weight

 DEN=1+A+B 

 P(2)=A/DEN

 P(3)=B/DEN

 P(1)=1/DEN

Inclusion of the new covariates results in a 631 point drop in the objective func-
tion value. The new model describes three subpopulations whose partition depends 
on DOSE and baseline weight (BSLN). The second subpopulation consists of patients 
who lose weight approaching an asymptotic weight of 95% of their baseline. The 
third subpopulation consists of patients who gain weight approaching an asymptote 
of 103% or 115% of their baseline weight for placebo or 4 mg/day, respectively. 
The partition between the weight neutral/weight loss/weight gain subpopulations 
shifts from 33%/34%/33% for placebo to 12%/13%/74% at a DOSE of 4 mg/day, 
given a baseline weight of 78 kg. The proportional weight changes from baseline 
versus time for the three subpopulations and the partition between the subpopula-
tions as a function of exposure are shown in Figures 28.7 and 28.8. If one selects 
only those patients estimated to be weight gainers and calculates the average of 
the modal estimates for ETA(3), one arrives at a value of −0.0009, in contrast to 
that output by NONMEM (−1.1). Similar calculations for the other two random 
effects will illuminate discrepancies as well. It is left as an exercise for the reader 
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to continue the model building to fi nd a missing covariate, which will be revealed 
in Section 28.9.

28.7 MULTIPLE MIXTURES

Miller et al. (22) recently published the application of mixture modeling to count 
data. This novel analysis applied one probability partition across several pharma-
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codynamic (PD) parameters while analyzing drug and placebo data in a “delinked” 
fashion. The “delinking” aspect of the model assumed separate models for the effect 
of drug or placebo on seizure count. As a result, the estimated drug effect included 
any placebo effect that might be present. A typical patient had a baseline seizure 
count and then up to three subsequent counts during drug or placebo treatment. 
The fi nal model found one probability partition across the estimated parameters: 
baseline seizure count (B), maximum fractional reduction in seizure count (Emax),
and placebo effect (PCB). The main idea presented in this section is that one prob-
ability partition applied to several parameters may not be the best one can do. For 
example, suppose the baseline is partitioned with 20% of the population having 
relatively high values and 80% having lower values, and 50% of the population has 
a relatively high Emax and the remainder has a lower Emax. Furthermore, suppose 
that one’s Emax classifi cation is independent of one’s baseline classifi cation. The 
idea here is that one probability partition cannot describe such a state of reality. 
What is needed are two separate partitions (hence the topic multiple mixtures) such 
that an individual can have any combination {low Emax, high Emax} × {low baseline, 
high baseline}. The data (DATA3.TXT) to be used consists of 1000 patients receiving 
doses (DOSE) of an imaginary drug, with equal proportions receiving 0, 1, 2, 3, or 
4 mg/day. Each patient has count data collected as in the original study. The initial 
attempt to model this data, of course, will not use a mixture. Because the data are 
counts −2 times the log likelihood of the data (see C11.TXT AND R11.TXT) will be 
modeled as follows:

$PRED

 IF (NEWIND.NE.2) THEN ; if first record of a subject

  BSLN=DV ; get observed baseline for tabling

 ENDIF

 FLG = 0

 IF(TIME.GT.0.5)FLG=1 ; FLG is used to turn on placebo or drug 

after baseline

 BASE=THETA(1)*EXP(ETA(1)) ; individual baseline estimate

 PLAC=THETA(2) ; placebo effect

 EMAX=THETA(3) ; maximum drug effect

 ED50=THETA(4) ; DOSE for effect= EMAX/2

 D=DOSE*EMAX/(DOSE+ED50) ; EMAX model for drug effect

 CNT1=BASE*(1-FLG/(1+EXP(-(D+PLAC)))) ; compute expectation for 

Poisson distribution

 ;Compute -2*ln(likelihood) using

 ;Stirlings formula for log DV factorial

 IF (DV.GT.0) THEN

  LDVFAC=(DV+.5)*LOG(DV)-DV+.5*LOG(6.283185)

 ELSE

  LDVFAC=0

 ENDIF

 B=LOG(CNT1)

 Y=-2*(-CNT1+DV*B-LDVFAC)

The fi rst three lines of code allow one to extract and table the observed baseline 
seizure count for each patient. The indicator variable FLG turns on the drug or 
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placebo part of the model post baseline, and a logistic functional form is used to 
multiply the baseline seizure count to assure the positivity of the mean count and 
to allow the effect of drug to approach that of placebo in a continuous fashion. For 
this fi rst attempt the mean baseline seizure count is 12.8 with placebo or 4 mg/day 
yielding a 10% or 70% reduction in seizure counts, respectively. It is left to the 
reader to examine the distributions of the observed baseline seizure frequency 
and the modal estimates of ETA(1). Hopefully one will observe right skewed or 
possibly bimodal distributions, which leads us to the idea of a mixture on some 
aspect of the model. Next, a mixture is applied to the baseline seizure counts. This 
approach (C12.TXT R12.TXT) results in a 102 point drop in the minimum value of 
the objective function, and the mixture now estimates that 88% of the patients have 
a baseline seizure count of approximately 11 with 12% having a baseline count of 
52. One might indeed be tempted to be content with one probability partition and 
inject Emax into the mixture as follows (see C13.TXT R13.TXT):

IF (MIXNUM.EQ.1) THEN

 BASE=THETA(1)*EXP(ETA(1)) ;  individual baseline count for first

subpopulation

 EMAX=THETA(3) ; EMAX for first subpopulation 

  ELSE

 BASE=THETA(5)*EXP(ETA(2)) ;  individual baseline count for second 

subpopulation

 EMAX=THETA(7) ; EMAX for second subpopulation

ENDIF

Indeed, this seems to have been a savvy move as the minimum objective function 
value is now decreased by 3694 points. Now 29% of the population is estimated to 
have a baseline count of 13.5 and reduction in seizure frequency (including placebo 
effect) of 9% at a dose of 4 mg/day, and the remaining 71% of the population has 
an estimated baseline seizure frequency of 13.7 and a reduction of seizure frequency 
(including placebo effect) of 90% at a dose of 4 mg/day. The fi rst mixture analysis 
(C12.TXT) suggested that there were two subpopulations with respect to baseline 
seizure count, and the second suggested that there were two subpopulations with 
respect to Emax. Hence, one might imagine that a patient could have any combina-
tion of low or high baseline and low or high Emax. This “multiple mixture” is imple-
mented as follows (see C14.TXT R14.TXT):

IF (MIXNUM.EQ.1) THEN ; proportion of population with BASE=THETA(1) 

and

 ;EMAX=THETA(3)

 BASE=THETA(1)*EXP(ETA(1))

 EMAX=THETA(3)

ENDIF

IF (MIXNUM.EQ.2) THEN ; proportion of population with BASE=THETA(5) 

and

 ;EMAX=THETA(7)

 BASE=THETA(5)*EXP(ETA(2))

 EMAX=THETA(7)

ENDIF



IF (MIXNUM.EQ.3) THEN ; proportion of population with BASE=THETA(1) 

and

 ;EMAX=THETA(7)

 BASE=THETA(1)*EXP(ETA(3))

 EMAX=THETA(7)

ENDIF

IF (MIXNUM.EQ.4) THEN ; proportion of population with BASE=THETA(5) 

and

 ;EMAX=THETA(3)

 BASE=THETA(5)*EXP(ETA(4))

 EMAX=THETA(3)

ENDIF

This results in a drop in the minimum value of the objective function of 126 
points. The results now indicate that 24%, 7%, 65%, or 5% of the population has 
estimated baseline seizure counts (percent reductions in seizure frequency) of 12 
(10%), 54 (90%), 12 (90%), or 54 (10%), respectively. Assume that one allele pair 
{HH, hh, Hh, or hH} controls whether a patient has the high Emax {HH, Hh, or hH} 
in a dominant fashion (i.e., inheritance is dominant, monogenic, non-sex-linked). It 
is left as an exercise to calculate the gene frequencies for h and H (answer: frequency 
for H = 0.471 and 0.538 for h).

28.8 GRAPHIC CONSIDERATIONS

This section explores various diagnostic plots that might be used to support a 
mixture model. The issue of skewed random effects distributions as they relate 
to how well one can correctly classify patients into their correct subpopulations, 
assuming a mixed population, is also revisited.

A plot of observations versus predictions is often used as a measure of goodness 
of fi t during model building. Returning to the fi rst example, compare these plots 
for the nonmixture (C5.TXT) and mixture analysis (C4.TXT) in Figures 28.9 and 
28.10, respectively.

In these fi gures the observed response is plotted on the abscissa and the predic-
tion on the ordinate, so that one can easily see the distribution of predictions for a 
given level of response. In Figure 28.9 there is pronounced overprediction (under-
prediction) at lower (higher) observed values. Figure 28.10 leads one to believe that 
the fi t is much improved relative to Figure 28.9. The predicted values output by 
NONMEM V when a mixture model is used are those PREDs for a patient’s most 
likely subpopulation. This can be thought of as a type of “individualized” predic-
tion, but using a marginal posterior estimate of the most likely subpopulation versus 
a modal or post hoc estimate of a random effect. In any case, such plots may be 
overly optimistic. One approach is to construct a plot of the expected predictions 
(or individualized predictions) versus observations. This expectation for a given 
prediction (E(PRED)) is defi ned as follows:

E PRED p Fi i
i

n

( ) = ( ) ⋅ ( )
=
∑ θ θ η,

1

(28.8)
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Here, n is the number of subpopulations, p(q)i is the estimated probability that the 
patient belongs to the ith subpopulation, which may depend on fi xed effects param-
eters, and F(q, h)i is the prediction for the ith subpopulation. For this computation 
one may evaluate F(q, h)i at h = 0 to get the expected prediction or at h equal to a 
post hoc or modal value to get the expected individualized prediction. NONMEM 
supports the calculation of these expectations and to communicate the need for 
these expectations requires one to modify the original control stream to include 
the $ABBREVIATED record ($ABB) and a block of code to compute the expectations. 
Modify C4.TXT to make C15.TXT, and the $ABB record looks like
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FIGURE 28.9 Nonmixture model: a plot of predictions versus observations—all h = 0.
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FIGURE 28.10 Mixture model: a plot of predictions versus observations—all h = 0.



$INPUT ID, AMT, TIME, WT, AGE, DV, EVID, MDV REA

$ABB COMRES=1 COMSAV=1

COMRES=1 instructs NONMEM to reserve the fi rst position in NMPRD4 (a NONMEM 
PRED common) for variable storage and this position will be referenced as COM(1)
in abbreviated code. COMSAV=1 instructs NONMEM to handle COM(1) differently 
depending on whether the reserved variable COMACT is 1 or 2. The block of code to 
compute the expectations is placed within the $ERROR block as follows:

$ERROR

 Y=F*(1+EPS(1))

IF (COMACT.EQ.1) THEN

 IF (MIXNUM.EQ.1) COM(1)=0

 COM(1)=COM(1)+MIXP(MIXNUM)*Y

ENDIF

The test for COMACT.EQ.1 instructs NONMEM to use fi nal THETA estimates and 
set all h random effects to zero. The code then initializes the expectation to zero 
for each new prediction and computes the value defi ned by Eq. (28.8) and stores 
it in COM(1), which will then be tabled for plotting (T15.TXT). Inspection of T15.
TXT reveals very low expectations for the fi rst patient. As it turns out this is a bug 
that involves the use of METHOD=1 or the POSTHOC option with METHOD=0. The work 
around for the METHOD=0 is to remove the POSTHOC option, and for METHOD=1 is to 
change to METHOD=0 and MAXEVALS=0 and use the fi nal estimation results from the 
METHOD=1 analysis. When the POSTHOC option (C16.TXT R16.TXT) is removed, the 
expected predictions for the fi rst patient have changed substantially (T16.TXT) and 
these are shown in Figure 28.11.

FIGURE 28.11 Mixture model: a plot of expected predictions versus observations—
all h = 0.
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The visual goodness of fi t for Figure 28.11 appears closer to that seen in Figure 
28.9 than seen in Figure 28.10. However, when one calculates the mean error 
(observed minus predicted or observed minus expected prediction), one fi nds less 
bias when the expected prediction is used. 

To calculate expected individualized predictions, one needs to test for COMACT.
EQ.2 in the above code. This has the effect of using fi nal thetas and conditional (post 
hoc or modal) etas in the computation. When this code is used with METHOD=0, one 
must include the POSTHOC option on the $ESTIMATION record (see C17.TXT R17.
TXT).

One can use the central limit theorem to compare goodness of fi t between 
a nonmixture model and a mixture model. If there is a covariate that can be used 
to group the observations such that there are a substantial number of observations 
per group, and the expectations of each member of the group are equal, then the 
average of the observations within a group should be approximately normally dis-
tributed about the expected observation for the group. The goal is to plot averaged 
predictions (for the nonmixture model) or averaged expected predictions (for the 
mixture model) versus the averaged observations for each group.

Choose time as the grouping covariate. The original data set DATA1.TXT needs 
some modifi cation to take advantage of NONMEMs RAW_ data item, which is used 
for calculating the group averages. Specifi cally, transform DATA1.TXT to DATA4.TXT
by adding a column for the RAW_ data item, adding a “dummy” individual at the start 
of the data set to serve as a template to tell NONMEM how to calculate the group 
averages, and then reorder the columns so that the grouping will be done based on 
time. The RAW_ data item is placed in the rightmost column of the data set, and it has 
two allowable values. If a zero is present for RAW_, then tabled or plotted values for 
the DV associated with that record will be those present in the original data set. This 
is the case for the records of the original 100 subjects. If a one is present in RAW_,
then MDV for that record must also equal one (although EVID can equal zero), and 
this indicates that this record serves as a template record for our grouping and aver-
aging process. Inspection of our data set shows that RAW_=1 and MDV=1 for all but 
the fi rst record (the dosing record) for our dummy individual (ID=0). The columns 
have been reordered such that the only non-NONMEM data item to the left of DV
on the $INPUT record is TIME. This has the effect of setting the DV items for all but 
the fi rst row of the dummy subject to the average of the DV values for the records 
that match the template row. For example, the tabled or plotted observed value 
for the second row of the dummy subject will be the average value of the observa-
tions with TIME values equal to one (using only those records with MDV=0). For this 
example the grouping is only based on time. Other non-NONMEM defi ned items 
could be moved to the left of the DV column to defi ne different groups, although for 
this example none of them make much sense as all the doses are the same, whereas 
age and weight assume too many values to be useful. NONMEM data items (MDV
and RAW) are not used for matching observation records with the template records, 
and it does not matter which side of the DV column they reside on. Any record that 
matches in the user defi ned data items to the left of the DV column will be used 
for the averaging. If there are multiple records per subject that match a template 
record, then NONMEM calculates a two-stage average, averaging fi rst within the 
subject and then across subjects. PRED defi ned data items that are stored in the SAVE
region are averaged as are the DV items, provided that mixture modeling is not being 



attempted. These data and prediction averaging processes could certainly be done 
outside NONMEM, but the example will show how to handle both cases (mixture 
and nonmixture) using NONMEM.

Proceed to modify the nonmixture model control stream (C5.TXT) resulting in 
C18.TXT. Important aspects of the new control stream are the modifi cations to 
$INPUT to assure that grouping is by TIME.

$INPUT ID, TIME, DV, AMT, WT, AGE, EVID, MDV, REA, RAW_

$ABB COMRES=1 COMSAV=1

$DATA DATA4.TXT (10E12.0) ;NOOPEN REWIND

$DATA IGNORE=#

In the $ERROR block calculate the expected prediction as follows:

$ERROR

 COM(1)=F

 Y=F*(1+EPS(1))

Recalling that the presence of the POSTHOC option on the $ESTIMATION record 
causes incorrect expected predictions for the fi rst subject (in this case the most 
important subject) with METHOD=0 in the presence of a mixture model, one might 
be tempted to remove it. For nonmixture models, where the expected prediction is 
the prediction, the presence of the POSTHOC option does not seem to infl uence the 
output. The changes to the data structure and the code instructing NONMEM to 
produce a scatterplot containing only points for the fi rst individual, and an output 
table from which we can make our own version of the scatterplot, are summarized 
below.

$ESTIMATION MAXEVALS=9000 PRINT=1 ; METHOD=1 INTERACTION

$COV

$SCAT DV VS COM(1) UNIT

$TABLE ID DV PRED TIME MDV COM(1) ONEHEADER NOPRINT FILE=T18.TXT

The scatterplot produced by NONMEM will display 24 points. Each point will 
correspond to one time point and have as its coordinates the average of the obser-
vations and the average of the predictions for that time point. To create a separate 
scatterplot, one would just plot DV versus COM(1) for the fi rst (dummy) patient. In 
this example we have chosen to set COM(1)=F. We also might have set COM(1)=Y.
As it turns out this latter approach produces incorrect output. Here, because we 
are using METHOD=0, F is equal to PRED. If one were using some type of conditional 
estimation, F would be evaluated at modal values of h and would not equal PRED.
One way to trick NONMEM into producing the desired output would be to use the 
fi nal model estimates from conditional estimation as initial values for a METHOD=0
run with MAXEVALS=0.

For the mixture model a bit more work is needed to get the job done. Because 
averaging PRED defi ned data items is problematic when a mixture is employed, one 
might be tempted to use two $PROBLEMs concatenated. The fi rst might generate the 
expected predictions under the mixture model and table them, and the second could 
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read in this table and do the averaging with a nonmixture model. While this seems 
elegant, it is generally desirable to restrict all abbreviated code to the fi rst $PROBLEM.
Rather than explore this, a slightly longer but simpler path is taken. First, calculate 
the expected predictions and write them out into the last column of a table using 
the data structure of DATA4.TXT. This only involves the following new code (see 
C19.TXT which is derived from C4.TXT):

$TABLE ID, TIME, DV, AMT, WT, AGE, EVID, MDV, REA, RAW_

 COM(1) NOAPPEND NOHEADER NOPRINT FILE=T19.TXT

Next, read in T19.TXT with a new nonmixture control stream (C20.TXT) and 
produce a table containing the averaged expected predictions from the mixture 
analysis (C19.TXT). Important features of C20.TXT include modifi cations to accom-
modate the new data fi le, which has an extra column at the end for the expected 
predictions, named CM.

$INPUT ID, TIME, DV, AMT, WT, AGE, EVID, MDV, REA, RAW_ CM

$ABB COMRES=1 COMSAV=1

$DATA T19.TXT (11E12.0) ;NOOPEN REWIND

Then place CM in the SAVE region so it will be averaged like the DV.

$ERROR

 Y=F*(1+EPS(1))

 COM(1)=CM

Finally make a table from which DV versus COM(1) will be plotted for the fi rst 
subject.

$TABLE ID, TIME, DV, AMT, WT, AGE, EVID, MDV, REA, RAW_

 COM(1) ONEHEADER NOPRINT FILE=T20.TXT

Taking the output from these runs (C18.TXT and C20.TXT) and plotting the 
averaged observations versus averaged predictions or averaged expected predic-
tions for the nonzero time points for the dummy individual gives Figures 28.12 and 
28.13, respectively.

Here, bias is seen in the plot from the nonmixture model, supporting the notion 
that the mixture model might be superior.

For the last topic in this section, the situation where we have a skewed modal 
eta distribution is revisited, but this time there is no model misspecifi cation. Using 
techniques from Section 28.9, simulate and then estimate rich PK data as in the fi rst 
example (100 subjects, 2400 observations), such that 80% of the population has a Ka

of 1 and the remaining 20% of the population has a Ka of 4. Both subpopulations 
have interindividual variability in Ka consistent with a CV of 47%. Using a two 
$PROBLEM control stream (C21.TXT) and data skeleton (DATA5.TXT), fi rst simulate 
the data and record as part of the data which subpopulation each patient is assigned 
to with the following code:



FIGURE 28.12 A plot of expected prediction versus observation averaged by time (non-
mixture model).

FIGURE 28.13 A plot of expected prediction versus observation averaged by time (mixture 
model).
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IF (ICALL.EQ.4) THEN

 REA=MIXNUM

ENDIF

Then during estimation record which subpopulation is most likely for each patient 
using

EST=MIXEST

This allows one to keep track of patients and see how they might be misclassifi ed 
during estimation (see T21A.TXT). With this example, even though there is no 
model misspecifi cation, one sees that many patients simulated to have the lower 
value of Ka are estimated to have the higher of the two values. These patients who 
ideally would be estimated to be in the subpopulation associated with ETA(2)
instead tend to have slightly negative values of ETA(3) as they have been incor-
rectly assigned to the second subpopulation. The net effect here is that the density 
of ETA(3) is inappropriately augmented for negative values, giving the impression 
of skewness (see Figure 28.14).

This undesirable result can likely be attributed to the magnitudes of inter- and 
intraindividual variability used during the simulation step.

28.9 SIMULATION WITH MIXTURES

The focus of this section is on some of the code that has been used to generate 
the data that has been used for the previous examples and on exploring how one 
might automate a posterior predictive check with or without a bootstrap step for 
the weight change example.
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FIGURE 28.14 Density of modal values for random effect on Ka (for subpopulation with 
high Ka) when simulation and estimation models are identical.



The control stream/skeleton data set pairs used to simulate the fi rst PK example, 
the weight change example, and the multiple mixture seizure count example can 
be found in the book’s ftp site in the following fi les: C22.TXT/SKEWDATA.TXT,
C23.TXT/MIXDATA1.TXT, and C24.TXT/MIXDATA2.TXT, respectively. For each 
of these control stream/data set skeleton pairs the control stream simulates a new 
data set with identical structure to the skeleton, but with the DV simulated based 
on the fi xed and random effects parameters in the control stream.

For the closing exercise we explore how to automate a type of model evaluation 
tool called posterior predictive check (PPC). This technique has been developed 
and described elsewhere (32–34). The PPC technique has been used as both a 
tool to monitor model development and to validate (i.e., determine the predictive 
performance of) fi nal models. The basic idea is to construct a nonsuffi cient statistic 
that is of clinical or scientifi c interest and that would not automatically fi t the model 
under investigation, and compute this statistic for the observed data set and for 
many data sets that have been simulated using the model (32). Then the distribu-
tion of statistics from the simulated data sets is compared to the statistic computed 
from the observed data. This comparison might be as simple as plotting the statistics 
from the simulated data sets as a histogram and then plotting the observed statistic 
as a vertical line. On the other hand, a more formal approach could be employed 
whereby a p-value is calculated as the probability that the simulated statistic is more 
extreme than the value of the statistic calculated from the original data (34). This 
latter approach will not be attempted here.

Using the weight change example, defi ne the nonsuffi cient statistic to be the 
maximum weight gain (DV-BSLN) observed in a simulated or the original data set. 
The PPC procedure can be undertaken several ways. The simplest way would be to 
compute the statistic for the original data set and then repeatedly simulate data sets 
using the data structure for the original data set and compute the statistic for each 
of these simulated data sets. This simple approach does not take into account the 
uncertainty in the parameter estimates from our model (i.e., information from the 
$COVARIANCE step is not utilized). Our approach takes this uncertainty in parameter 
estimates into account, and it is sometimes referred to as a PPC with bootstrap 
step (33). The solution to this problem will allow the reader to review several 
nice features of the NONMEM program such as the notion of a $SUPER problem, 
model specifi cation input and output records ($MSFI and the MSFO option for the 
$ESTIMATION record), verbatim code, and the PASS utility.

All these aspects of the problem are discussed as they arise, but fi rst an overview 
of what we wish to accomplish is provided.

1. Starting with a dummy $PROBLEM, our test statistic for the original data set is 
calculated and written to a fi le. This problem includes a $SIMULATION record 
so that the subsequent problem can use a special random seed so that each 
of the simulated data sets will be different.

2. The second $PROBLEM simulates a data set based on the structure of the origi-
nal data set and then performs estimation on this simulated data set and saves 
the results of this estimation in a model specifi cation output fi le (MSFO).

3. The third $PROBLEM simulates a fi nal data set based on the parameter esti-
mates in the MSFO from the previous problem.
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4. The fi nal $PROBLEM calculates the statistic for the data set simulated in step 3 
and appends it to the fi le created in step 1.

5. Steps 2, 3, and 4 are repeated 30 times.

The result is a fi le with the fi rst row containing that statistic for the original data 
and the next 30 rows containing the statistics from the simulated data sets. In prac-
tice, one would usually construct more than 30 simulated data sets.

The fi rst $PROBLEM in the “mega control stream” (C25.TXT) contains all of the 
abbreviated and verbatim code. The abbreviated code is just that from the original 
model (C10.TXT). Modifying this control stream by adding some verbatim code 
allows one to output the statistics to a fi le called tj.

“ FIRST

“ INTEGER unitp

“ CHARACTER cisym * 40

“ unitp=42

“ cisym=’tj’

Next, insert a block of code that calculates the statistic for the original data set. 
When multiple $PROBLEMs are present in a control stream, they are indexed with 
the variable IPROB. This block of code is only invoked for the fi rst $PROBLEM at its 
initialization (ICALL=1). The PASS utility is used to read through DATA2.TXT and 
fi nd the largest value for (DV-BSLN), store it in the variable AV, and then write it 
to the fi le. In the current example, all rows of DATA2.TXT contain observations so 
the code is fairly simple. The code could be modifi ed to compute several statistics, 
perhaps grouping by dose.

IF (IPROB.EQ.1.AND.ICALL.EQ.1) THEN

 AV=-1

 MODE=0

 CALL PASS (MODE)

 MODE=2

 CALL PASS (MODE)

 DOWHILE(MODE.NE.0)

  IF ((DV-BSLN).GT.AV) THEN

   AV=DV-BSLN

  ENDIF

  CALL PASS (MODE)

 ENDDO

“ OPEN (42,FILE=cisym, ACCESS=’append’)

“ call files(unitp)

“ write(42,100) AV

“ CLOSE(unitp)

“ call files (unitp)

“ 100 format(F12.4)

ENDIF

A second block of code almost identical to the above code is used to calculate 
the same statistic for the last (IPROB=4) $PROBLEM at its fi nalization (ICALL=3). The 



reader is encouraged to read NONMEM User’s Guide 8 for an in-depth discussion 
of the PASS utility and verbatim code. In the above code a Fortran “write” state-
ment is used within the verbatim code to write the data to the fi le cisym. The only 
other noteworthy aspect of the fi rst $PROBLEM is the following:

$SIM (93) ONLYSIMULATION

Its only purpose is to allow one to have a $SIM record in the subsequent $PROBLEM
with a random seed equal to −1.

The next item of interest is the “super problem” record.

$SUPER SCOPE=3 ITERATIONS=30

This instructs NONMEM to expect three $PROBLEMs to follow and to run all three 
of them in their order of occurrence 30 times. The fi rst of these uses DATA2.TXT as 
the infi le, which must be rewound.

$DATA DATA2.TXT REWIND

In this $PROBLEM, data is fi rst simulated with a random seed continued from the 
previous $PROBLEM and then estimated, with the estimation results saved in a model 
specifi cation output fi le as follows:

$SIM (-1)

$ESTIM MAXEVAL=9000 PRINT=1 NOABORT METHOD=1 MSFO=M25

For the next $PROBLEM, simulate and $TABLE the fi nal data set, which is used to 
calculate the test statistic. Relevant code is as follows:

$SIMULATION (-1) ;ONLYSIMULATION 

$TABLE ID DOSE TIME BSLN AGE SEX SHOE DV EVID

 NOPRINT NOHEADER NOAPPEND FILE=SIMU25.TBL

It is important to note that the data set that we simulate has the same order of 
appearance of variables as the original data set. This is accomplished by copying 
the variable names from the $INPUT record and then using the NOAPPEND option so 
that DV, PRED, RES, and WRES are not appended. When working with a large data 
set with many columns that are not being used, one might try to simulate a more 
“compact” data fi le, containing only the columns needed for the PPC statistic cal-
culation. Caution must be used here. Suppose that a table is simulated as above, 
but that the original data set had the following $INPUT record:

$INPUT ID DOSE DV TIME ALB=DROP BSLN AGE SEX SHOE EVID

The code used to calculate the test statistic on the original data would stay the same 
but the code used to calculate the statistic for the simulated data set would need to 
be changed as follows. BSLN and DV are the fourth and eight variables in the simu-
lated data set. Ignoring DROPed variables TIME and SHOE are the fourth and eight 
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variables in the original data set. Therefore, one would substitute TIME for BSLN
and SHOE for DV in this block of code.

Finally, for the fourth $PROBLEM the new simulated data is read in, after it is 
rewound and the statistic is calculated.

$DATA SIMU25.TBL (9E12.0) NOOPEN REWIND

Taking the output fi le “tj”, a histogram is plotted, using the last 30 rows (which 
refl ect simulation), and the data from the fi rst row is added as a vertical line to 
refl ect the observed statistic (Figure 28.15).

When using the PPC with bootstrap step for model monitoring, it may be dif-
fi cult to decide whether to include the bootstrap step, which involves estimating a 
simulated data set, which may be quite time consuming. Indeed, for models that 
can be written out explicitly (i.e., differential or algebraic equation solvers are not 
needed), one might be better off using standard statistical software to simulate 
the data and compute the statistics. Doing this, information from the $COV step 
could be used, without having to perform the time-consuming data estimation step 
within NONMEM. Some older versions of NONMEM V will generate the following 
Fortran error with this control stream.

Severe (620): Too many bytes read from unformatted record.

If this occurs, one needs to contact the Globomax Icon LLC (http://www.
globomaxservice.com/) and request a replacement DAT1.FOR routine.
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Maximum Weight Gain
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Observed Maximum Weight Gain = 44.9kg

FIGURE 28.15 Posterior predictive check with bootstrap step for weight change mixture 
problem.



28.10 SUMMARY

Several examples of mixture modeling using NONMEM V are explored. The need 
to use mixture models generally arises when there is some missing covariate in 
the data set or the distribution of a random effect is better modeled as a mixture 
of symmetric distributions than with a single distribution. Advances in molecular 
biology and pharmacogenomics may someday yield data sets where mixtures are 
not needed. Mixture modeling should generally be used only after considerable 
work has been done to optimize structural, random effects, and covariate aspects 
of a nonmixture model, although some authors advocate introducing the mixture 
prior to covariate selection.
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Designs for First-Time-in-Human Studies 
in Nononcology Indications
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29.1 INTRODUCTION

The primary objective of fi rst-time-in-human (fi rst-time-in-man or fi rst-in-human) 
studies is the identifi cation of a suitable dose or dose range for further study, based 
on the safety and tolerability of the substance. These are volunteer subject-based 
dose-escalation studies that are traditionally small and time-lagged. These studies 
offer the fi rst opportunity to learn about the drug in humans and serve as a bridge 
from animal to human. They provide opportunity for confi rming the prediction of 
pharmacokinetics from animals and to learn about the safety of the drug, if the 
study is appropriately designed.

The Critical Path Initiative proposed by the Food and Drug Administration (1) 
has emphasized the need for informative knowledge-based drug development, and 
there has been much focus on the optimization of early drug development (2, 3). 
Phase 1 studies are critical in the overall process of drug development, and the need 
for the implementation of informative designs has been advocated in the literature 
(4–8).

It is challenging to get an overview of studies performed since there is little 
written on the design of fi rst-time-in-human studies, and no consensus exists on 
how the studies should be designed. Buoen et al. (9) did a literature survey study 
of 105 studies comprising 3323 healthy volunteers published in the fi ve major clini-
cal pharmacology journals between 1995 and 2004 and found that the average trial 
was a placebo-controlled, double-blind study. Such a trial had fi ve dose levels with 
a sample size of 32 subjects, but there was great variation in cohort size and dose-
escalation method used in the studies. The most common design was the parallel 
single-dose design. The crossover design, on the other hand, was more frequent in 
early publications of the period of survey reported.

The literature is replete with scientifi c study designs for Phase 1 cancer trials in 
patients (e.g., see Ref. 10), but such is not the case for fi rst-time-in-human (FTIH) 
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studies for nononcology indications. To be able to understand how to design Phase 1 
nononcology studies, it is important to understand how they are currently designed. 
Currently, there are as many study designs for FTIH nononcology studies as there 
are pharmaceutical companies, and the design chosen is more a result of habit and 
preference than a well-founded scientifi c and pharmacometric rationale. Not all 
FTIH studies are published (11), and there is very scanty information on how to 
design these studies effi ciently. Thus, it is challenging to obtain an overall picture 
of how these studies are designed and how well various designs perform.

29.2 DOSE-ESCALATION SCHEME

Buoen et al. (9) reported that the dose-escalation schemes used in FTIH studies 
could be categorized as linear, logarithmic, modifi ed Fibonacci, or miscellaneous. 
The latter included dose-escalation regimens in which the three standardized 
methods are combined. The authors reported that in 12 out of the 105 studies they 
reviewed a linear escalation method with fi xed dose increment was used. A loga-
rithmic dose-escalation scheme in which the relative dose increment was the same 
(e.g., 100%) was used in 22 studies. Four of the studies used a modifi ed version of 
the Fibonacci escalation scheme, which is frequently used in cancer Phase 1 trials 
(6, 12–14). For most of the studies reviewed (i.e., 63.8%, or 67 studies) the dose-
escalation schemes used did not seem to follow one particular scheme. In some 
cases two of the escalation schemes described above were combined (e.g., starting 
with a logarithmic escalation to convert later into a modifi ed Fibonacci sequence), 
while for other studies, no escalation scheme was apparent. The doses appeared to 
have been chosen arbitrarily (11).

29.3 FIRST-TIME-IN-HUMAN STUDY DESIGNS

Five major types of study design have been identifi ed as those commonly used in 
the FTIH studies (11). The parallel dose design in which each subject enrolled in a 
study receives only one administered dose of the drug was described as being the 
most common. Escalation to a new dose with new cohort of subjects is accomplished 
after a safety evaluation. Fewer studies reported in the literature use either the 
fi xed sequence escalation design in which several different doses were adminis-
tered to each subject, or the alternating crossover dose-escalation designs (11). The 
crossover designs are more effi cient for estimating dose proportionality, and they 
allow for more information to be obtained from fewer subjects (15, 16). In evaluat-
ing the effi ciency of FTIH design alternatives in estimating dose proportionality 
using mixed effects modeling, it was concluded that an alternate crossover design 
always required fewer subjects to achieve the same precision when compared with 
a sequential design (17).

29.4 COHORT SIZE IN FTIH STUDIES

Habit and preference form the basis for choosing cohort sizes for FTIH healthy 
volunteer studies. In reviewing studies reported in the literature, it was observed 



that the rationale for the choice of cohort sizes is not usually provided (18). Also, 
it has been reported that the probability of observing spontaneous adverse events 
such as elevation of markers of hepatotoxicity aspartate aminotransferase (AST), 
alanine aminotransferase (ALT), alkaline phosphatase (AP), or gamma-glutamyl 
transpeptidase (g GT) to two times the upper limit of the normal range (ULN) is 
6.71% (18). Elevation of these enzymes is indicative of hepatocellular injury (19), 
and their presence in serum is considered to be reliably indicative of a recent hepa-
tocyte injury (20). An increase in one of these enzyme levels to 2 × ULN is defi ned 
by international consensus as an indication of clinically relevant hepatic injury (21). 
It has been shown that for large cohort sizes, the probability of an event occur-
ring in an actively treated subject is so large that the probability of a Type I error 
exceeds the preferred level of signifi cance (0.05) (18). However, in small cohorts 
there is much to gain with the inclusion of one extra subject when the cohort size 
is less than six active subjects. This is because with less than six active subjects in 
a cohort, the active events that are detectable with a given power decrease quickly 
with increasing cohort sizes. The authors inferred that the cohort size in Phase 1 
studies should not be less than six active subjects (18). They noted that the gain is 
smaller for larger cohort sizes. Little is to be gained by increasing the number of 
subjects if the cohort has more than ten active subjects.

29.5 ADVERSE EVENTS IN FTIH STUDIES

Sibille et al. (22) reported on clinical, laboratory, and electrocardiographical adverse 
events detected in healthy volunteers in a Phase 1 center over a 10 year period. The 
data base covered 54 Phase 1 studies that involved 1015 healthy young volunteers 
(993 males) who received 1538 treatments (23 different active drugs or placebo) cor-
responding to 12,143 days of follow-up. They observed that the overall incidence of 
adverse events was 12.8%, and a signifi cant difference between active-drug (13.7%) 
and placebo (7.9%) treatments was obtained. One thousand fi ve hundred and fi fty 
eight adverse events of 110 distinct types were documented. The incidence was 
superior to 10% in only three adverse events (headache, diarrhea, and dyspepsia). 
Subjects on placebo also experienced most of these adverse events. Three percent 
of the adverse events were rated as severe, while 97% were of minor intensity. 
Some of the adverse events were related to a vagal reaction or to study conditions, 
but not the tested drugs. There was no life-threatening event or death. The global 
rate of adverse event occurrence was one per treatment. For two successive 5 year 
periods, no difference in the overall incidence of adverse events with placebo was 
observed. The authors concluded that adverse events in Phase 1 studies are very 
common. However, these were usually of minor intensity and rarely severe; even 
though exceptional, life-threatening adverse events are possible (22).

29.6 DETERMINATION OF THE EFFICIENCY OF 
FTIH DESIGNS IN HEALTHY VOLUNTEERS

FTIH studies present the drug developer/clinical researcher with the fi rst oppor-
tunity to study a new molecular entity (NME) in humans and are pivotal to early 
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clinical development of the NME. If designed appropriately, a lot of knowledge can 
be gained from such studies.

There has been an increased focus on augmenting the productivity of the phar-
maceutical industry through the application of knowledge-based approaches to the 
drug development process without compromising safety. These efforts have resulted 
in “The Critical Path” in the United States, and the “New Safe Medicines Faster” 
in Europe (23). Phase 1 FTIH studies provide an excellent opportunity for learning 
about the NME’s safety and tolerability in humans, confi rming predicted pharmaco-
kinetics from animals and learning more about the pharmacokinetics in humans.

Not much has been written on the design of FTIH studies for nononcology indi-
cations, but there is need for rapid and effi cient dose-escalation schemes based on 
both pharmacodynamics (safety and biomarkers if present) and pharmacokinetics. 
In view of the small numbers of healthy volunteers enrolled in early phase develop-
ment clinical trials, it is important to choose an effi cient experimental design that 
takes in the safety and pharmacokinetic (PK) objectives (e.g., dose proportionality) 
of the trial. In general, crossover designs have been recommended (17). However, 
the analysis of data from a crossover design poses several problems, including 
nonconstant variances for all observations and the possibility of carryover effects 
(16). A major factor to be considered in the design of a FTIH study is safety. Dose 
escalation cannot proceed unless safety at a current lower dose is established. It is 
also important in a FTIH study design to be able to address the question of dose 
proportionality and precision in PK parameter estimates. FTIH studies must be 
conducted within a reasonable time for mission-critical decision making about the 
advancement of the NME in development. Hence, study duration and study size are 
also important. Thus, there can be a plethora of FTIH study designs that can be and 
have been developed to address these issues. It is therefore important in choosing 
between designs to take into account the effi ciency of these designs in addressing 
these issues—safety, dose proportionality, precision in PK parameter estimates, 
study duration, and study size. The latter two would constitute study budget.

In the subsequent sections we describe the rationale for the investigation we 
performed to determine the effi ciency of Phase 1 designs that address the above 
issues.

29.6.1 Rationale

In addition to the fact there is only scanty information on the design of FTIH studies 
in nononcology indications, there is the need for a knowledge base in order to 
choose among competing designs for the conduct of a FTIH study in a non oncology 
indication.

29.6.2 Objective

To develop a process to evaluate the comparative effi ciency of FTIH study designs, 
one must take into account mild adverse events (AEs), dose proportionality, the 
precision in PK parameter estimates, study duration, and study size. A mild adverse 
event was chosen because most AEs experienced in FTIH studies are mild (see 
Section 29.5). A desirable design(s) should be able to appropriately characterize 
the exposure–AE response curve (for the incidence of a mild AE).



29.6.3 Methodology

29.6.3.1 Assumptions

1. A new molecular entity exhibiting one-compartment pharmacokinetics with 
fi rst-order absorption was assumed. The typical (mean) values of the popula-
tion PK parameters for the NME were 1 h−1, 17.5 L/h, and 50 L for absorption 
rate constant (Ka), apparent clearance (CL/F), and apparent volume of distri-
bution (V/F), respectively. An intersubject variability of 45% (coeffi cient of 
variation) was assumed for each of these parameters, and this was assumed to 
be lognormally distributed with a mean of zero. A proportional error model 
was assumed for the residual error of 15%.

2. Drug exposure was assumed to be proportional to dose.
3. Mild adverse event (MAE) was assumed to be exposure related.
4. Starting and ending doses were assumed to be the same for all designs.
5. Dosing occasions were restricted as much as possible to 8, unless the nature 

of the design did not permit the ending dose, which was assumed to be the 
same for all designs (see Assumption 4 above), to be reached.

6. Total sample size was restricted to 12, unless the nature of the design did not 
permit and Assumptions 4 and 5 had to be met.

7. All designs were assumed to be single dose-escalation designs.

29.6.3.2 Study Designs

Base Design To be able to achieve the objective of the investigation, a study 
design had to be chosen as the base design against which other study designs were 
compared. The base design is shown in Figure 29.1. The dose levels are indicted by 
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FIGURE 29.1 Base design (Design 1) with dose levels indicted as X-fold. If, for example, 
the starting dose is 25 mg (denoted as 1X), then the dose level denoted as 32X is 800 mg.
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FIGURE 29.2 Different dose-escalation schemes with fn # being the fold increase from 
the fi rst dose.

X-fold. For example, if the starting dose is 25 mg (denoted as 1X), then the dose 
level of 32X is 800 mg.

Having chosen the base designs, it was then possible to address study design 
attributes that enabled us to generate other study designs.

Study Design Attributes

dose-escalation scheme Alternative designs were constructed based on three 
dose-escalation schemes: dose doubling, modifi ed Fibonacci, and the “mixture”, 
which combined dose doubling and modifi ed Fibonacci to be more aggressive in 
the lower dose range and to be more conservative in the high dose range (e.g., see 
Figure 29.2). The modifi ed Fibonacci scheme was borrowed from oncology, where 
it has been used for more than two decades. The Fibonacci scheme is a number 
sequence, wherein the next number equals the sum of the two previous numbers 
(1, 2, 3, 5, 8, 13, 21, 34,  .  .  .) may be familiar, but the modifi cation (modifi ed Fibo-
nacci) used in Phase 1 oncology trials (modifi ed Fibonacci) to give decreasing 
increases (2n, 3.3n, 5n, 7n, 9n, 12n, 16n) as multiples of the initial dose, or 100%, 
65%, 52%, 40%, 29%, 33%, 33% increase over the previous dose) was introduced 
by Schneiderman (24). In proposing the modifi ed Fibonacci approach to avoid rapid 
dose escalation to toxicity in Phase 1 oncology trials, Schneiderman stated, in part: 
“A decreasing step suggestion also has been made. This is due to Bellman [25, p. 
342] in another context, and I have not seen it in any published account of prelimi-
nary dose fi nding [26]. The Bellman suggestion is a form of Fibonacci search. Three 
decisions have to be made here: the initial dose d, the maximum possible dose d′,
and N, the number of steps allowable in moving upward from dose d to dose d′. By 
taking a Fibonacci series of length N + 1, inverting the order, and spacing the doses 
in proportion to the N intervals in the series, one would take smaller and smaller 
steps in moving from d to d′. This cautious approach has considerable appeal.” We 
have adopted the modifi ed Fibonacci dose-escalation scheme in some of the designs 
investigated in this study.

Doubling Scheme Fibonacci Scheme Modified Fibonacci

Dose
level

fn# Mutliples
of fn-1

Increase
(%)

Dose
level

fn# Mutliples
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(%)
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other design attributes Additional design attributes included panel stag-
gering, study size (number of subjects), dose count, dose frequency per subject, 
inclusion of a “leading dose” in the randomization scheme, inclusion of a placebo 
treatment within each dosing occasion and in some designs a subject served as his/
her own placebo control, fi xing the starting and ending doses, and limitations of the 
total number of dosing occasions (duration).

Overview of Designs Fifteen designs were initially considered. However, only 
nine designs—Designs 1, 3, 5, 6, 7, 9, 10, 14 and 15—were chosen for subsequent 
investigation. The nine designs were selected on the basis of them being representa-
tive of all the design attributes above. The characteristics of the designs are sum-
marized in Figure 29.3, and Figure 29.4 provides examples of a cross section of the 
designs investigated. In implementing the designs a week’s washout period would 
be allowed before a dose escalation. This is to avoid carryover effects.

29.6.4 Mild Adverse Effect (MAE) Model

A logistic regression model was used to characterize a drug-induced MAE to be 
observed in the simulated studies using the above designs. Because the exact shape 
of the exposure–MAE was unknown, assumptions were made about the steepness 
of the slope of the logistic exposure–MAE curve. Thus, three slope (b) values—0.75, 
1.0, and 1.25—were assumed to cover a spectrum of possible slope values ranging 
from gradual, through moderate, to steep (Figure 29.5). The metric of exposure 
used was the area under the plasma concentration curve (AUC). The area under 
the exposure–MAE curve (AUC-AE) was used as the metric for quantifying the 
exposure–MAE relationship. The code for implementing the logistic regression 
model is in Appendix 29.1.

doubling mixture M.Fibonacci occasions subjects

no panel overlay 1, 2 3

2-panels overlay 5

3-panels overlay 8 9

sequential panel 4

alternate panel 6

7 9

dose crossover within panel 14 13 12

other 15 9 18

subject dosed only once 10 7 28

11 9 36

12 10 40

12

8

12

design # 

FIGURE 29.3 Design summary showing the characteristics of the different designs. Dou-
bling = dose doubling; mixture = a combination of dose doubling and modifi ed Fibonacci; 
M. Fibonacci = modifi ed Fibonacci.
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FIGURE 29.4 Selected study designs representative of the types of designs investigated. 
Design 3 is a fi xed sequence, crossover, nonoverlapping panel design. The dose-escalation 
scheme in Design 3 is a mixture of dose doubling and modifi ed Fibonacci. Designs 5 and 
9 are fi xed sequence, crossover, overlapping panel designs. The dose-escalation scheme in 
Design 5 is dose doubling, while that in Design 9 is a mixture of dose doubling and modi-
fi ed Fibonacci. Design 6 is an alternating crossover design with a modifi ed Fibonacci dose-
escalation scheme. Study Design 10 is a sequential parallel dose design with a modifi ed 
Fibonacci dose-escalation scheme.

(A) Study Design 3 (Fixed Sequence Nonoverlapping Panel Design-Mixture) 

1
1
2
3
4
5
6

P
1X
1X
1X
1X
P

2
2X
P

2X
2X
4X
2X

3
4X
4X
P

4X
P

8X

4 5 
8X
8X
8X
4X
8X
11X

7
8
9
10
11
12

11X
11X
11X
15X

P
11X

6

P
15X
15X

P
15X
20X

7

20X
P

20X
27X
27X
27X

8

27X
32
P

32X
32X

P

Panel # Subject # Occasion

1

2

1
1
2
3
4
5
6

P
1X
1X
1X

2
1X
P

2X
2X

3
2X
2X
P

4X
P

4X

4 5 
4X
8X
4X
P

4X
P

2X
2X

8X
4X

7
8
9
10
11
12

P
8X
P

4X
8X
8X

6

16X
P

8X
P

16X
16X

7

8X
8X

16X
16X

P
32X

8

16X
16X

32X
32X
32X

P

Panel # Subject # Occasion

1

2

3

1
1
2
3
4
5
6

1X
1X
P

2
P

2X

2X

2X

2X
4X

3
4X
P

4X
P

8X
4X

4 5 
8X
8X
8X
11X 15X 

P
11X

P
8X
8X

7
8
9
10
11
12

11X
P

11X
P

11X
11X

6

15X
15X

20X
20X

15X
20X

P
20X

7

15X
PX

P
27X
20X
27X

8

32X
32X

P

Panel # Subject # Occasion

1

2

3

4

(B) Study Designs 5 and 9 (Fixed Sequence Overlapping Panel Designs) 
Study Design 5 (Doubling with Two-Panel Overlap)

Study Design 9 (Mixture with Three-Panel Overlap)



(C) Study Design 6 (Alternating Crossover Design with Modified Fibonacci) 
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29.6.5 Simulation and Data Analysis

With the assumed population PK parameters, the PK model, and the exposure–
MAE relationship, a clinical trial simulation was performed in S-Plus (Insightful 
Corporation, Seattle, WA). Two thousand four hundred profi les were simulated for 
each design and analyzed in S-Plus. Dose proportionality was estimated using the 
power model (26) and mixed effects modeling in S-Plus. Population PK parameter 
estimates were obtained using nonlinear mixed effects modeling in S-Plus.

Study designs were compared by assessing the quality of PK parameter esti-
mates, the resulting safety profi le, the duration of the trial, and the assumed budget 
required to perform that design. A design or designs that could best describe 
the adverse exposure–response relationship was preferred, taking into account the 
other factors.

29.6.5.1 Design Effi ciency–Cost Metrics
New metrics were proposed to evaluate design effi ciency. The design effi ciency–cost 
metric had to account for the wide variety of designs incorporating different dose-
escalation schemes and the different dose levels within each dosing occasion. The 
overall effi ciency–cost metric included these and other factors investigated. To 
arrive at the effi ciency–cost metric, it was assumed that each effi ciency measure con-
tains mean (M) and standard deviation (S) with I components of effi ciency measures 
in total. A two-stage linear weighted cost function, which addressed normalization 
and weighting for each component, was developed:

Efficiency cost metric =− +( )
=
∑a b M b Si i i i i
i

I

1 2
1

where

a b bi i i
i
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FIGURE 29.5 Relationship between drug exposure and mild adverse event (MAE) based 
on a logistic regression model with slope ranging from 0.25 to 1.5.



The weighting for the ith component of effi ciency–cost measure is denoted by ai, if 
three components are considered in the effi ciency–cost metric, for example, the set 
of (a1, a2, a3) contains weighting factors for the precision of PK parameter estimate, 
dose proportionality, and safety estimate, respectively. Within the ith component, 
bi1 is the weight assigned to the mean property of the ith component of effi ciency 
measure, and bi2 is the weight assigned to the associated standard deviation. For 
example, if the main objective is to focus on the central location of the ith effi ciency–
cost measure, then more weight would be assigned to bi1 than bi2. The effi ciency–cost 
metric was used in evaluating the performance of the study designs.

29.7 STUDY OUTCOME

29.7.1 Dose Proportionality and Precision in the 
Estimation of PK Parameters

The designs performed similarly in characterizing dose proportionality (Figure 
29.6). This was not unexpected since dose proportionality was assumed in the simu-
lation. The model parameters were estimated to a similar degree of precision by 
each of the designs. This further supported the confi rmation of dose proportionality 
(Table 29.1). The linearity of the pharmacokinetics can be observed from the nature 
of the disposition phase of the concentration–time profi les shown in Figure 29.7. 
The code for simulating the PK profi le is in Appendix 29.2 and 29.3.

29.7.2 MAE Characterization

When the designs were rated in terms of their ability to predict the exposure–MAE 
relationship, three designs performed the best for three categories of steepness of 
the exposure–MAE investigated. Figure 29.8 shows examples of the rank order of 
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FIGURE 29.6 A density plot of slope values from fi tting a mixed effects power model for 
the determination of dose proportionality to area under the plasma concentration–time curve 
(AUC)–dose data for the selected designs that were investigated. The width of 2 times the 
interquartile distance was used for smoothing.
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the performance of the designs. Although the fi gure depicts the performance for the 
cases in which the slope was either gradual or moderate, the pattern was similar for 
the third category of steepness (not shown). In all cases, Designs 3, 6, and 9 were in 
the top tier, Designs 1, 5, 7, 14, and 15 in the second tier, and Design 10 (the design 
with the worst performance) in the third tier.

29.7.3 Effeciency–Cost Metric

Table 29.2 is a summary of the effi ciency–cost metric after applying different 
combinations of different weighting functions to the components of the metric. In 

TABLE 29.1 Summary of Pharmacokinetic Parameters (mean ± SE)a for All Designs

Design Ka (h−1) CL/F (L/h) Vd/F (L)

 1 1.15 ± 0.20 16.98 ± 2.86 56.26 ± 8.57
 3 1.14 ± 0.18 16.96 ± 2.75 56.17 ± 9.19
 5 1.14 ± 0.19 16.91 ± 2.72 56.27 ± 9.24
 6 1.15 ± 0.19 16.98 ± 2.77 56.42 ± 9.36
 7 1.15 ± 0.19 16.96 ± 2.72 56.30 ± 9.06
 9 1.14 ± 0.19 16.99 ± 2.69 56.21 ± 9.18
19 1.17 ± 0.19 17.05 ± 2.65 57.05 ± 8.11
14 1.15 ± 0.19 17.07 ± 2.85 56.38 ± 8.91
15 1.14 ± 0.16 16.89 ± 2.59 56.78 ± 7.72 

a SE, standard error.
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generating the weighting functions, greater weight was given to the exposure–MAE 
response than the precision with which PK parameters were estimated, and dose 
proportionality. This was necessary because the primary objective of almost every 
FTIH study is safety and tolerability. Pharmacokinetics and dose proportionality 
usually constitute the secondary objective.

When adverse effect was the only contributor to the weighting function, 
the performance of the designs was of the order described in Section 29.7.2 (see 
Table 29.2, fi rst panel). When no weight was placed on dose proportionality, but 
weight was placed on precision of PK parameter estimates (weight = 0.1) and safety 
(weight = 0.9), the outcome was the same (see Table 29.2, second panel). Taking dose 
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proportionality into account in computing the effi ciency–cost metric produced a 
slight alteration in the ordering of the designs in the top tier designs. The rank order 
was reversed from being Designs 3, 9, 6 to 6, 3, 9.

29.8 DISCUSSION

The similar effi ciency of the designs in estimating dose proportionality was not 
unexpected given the fact that it was an implicit assumption in the simulation study. 
The power model implicitly assumes that there is a linear relationship between dose 
and exposure (e.g., AUC).

The designs fell into three tiers based on the safety scenarios considered. Designs 
(3, 6, and 9) in the top tier described the exposure–AE response curve equally well. 
Designs 3 and 9 had the mixture dose-escalation scheme with 8 dosing occasions and 
Design 6 had the modifi ed Fibonacci dose-escalation scheme with 12 dosing occa-
sions. Design 10 severely underestimated the AE response in any safety scenarios 
considered. This is because for a parallel dose design with less than six active sub-
jects in a cohort, the active events that are detectable with a given power decrease 
quickly with increasing cohort sizes (18). With Design 10 the cohort size was four. 
The cohort size had to be kept at four to keep the sample size from being too large. 
The sample size required to implement Design 10 is 28 subjects. This is a far cry 
from a sample size of 12 required for the top tier designs (i.e., Designs 3, 6, and 
9). The performance of the top tier designs with cohort sizes ranging from four to 
six can be attributed to the crossover components of these designs. Designs 3 and 
9 are fi xed sequence crossover designs, while Design 6 is an alternating crossover 
design.

The performance of the designs as measured by the effi ciency–cost metric fol-
lowed the pattern observed in their ability to predict the safety outcome. The major 
reason for this is the overwhelming infl uence of the AE component in the metric. 
This is rightly so because safety and tolerability are the primary objectives of a FTIH 
study. In addition, the designs performed similarly in the effi ciency with which PK 
parameters were estimated. The order of the top tier designs was reversed from 
3, 9, and 6 to 6, 3, and 9 when dose proportionality was taken into account in the 
effi ciency–cost metric. However, the value of the effi ciency–cost metric is similar 
across these top tier designs (see Table 29.2, panel 4). The slight edge gained by 
Design 6 is probably due to the effi ciency with which dose proportionality is esti-
mated with this design.

Since study duration was another factor of import in choosing designs, Designs 3 
and 9 would be preferred over Design 6 because the fi rst two designs have 8 dosing 
occasions while Design 6 has 12 dosing occasions. Designs 3 and 9 would permit a 
FTIH study to be completed much quicker for a “go/no go” decision to be made 
about the progression of the NME in development. By including a 2 week follow-up 
period, Designs 3 and 9 would take approximately 10 weeks, and Design 6 would 
take 14 weeks. Thus, Designs 3 and 9 would be preferred over Design 6 because of 
budgetary considerations.

The second and third tier designs involve larger sample sizes ranging from 18 to 
40 (see Figure 29.3) and perform poorly in predicting MAE and their use should 
not be encouraged.
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29.9 SUMMARY

Phase 1 FTIH studies provide an excellent opportunity for learning about an 
NME’s safety, tolerability, and pharmacokinetics (including dose proportionality) 
in humans. It is important to choose a study design that will enable the primary and 
secondary objectives of the FTIH study to be met. This would make it possible for 
the knowledge needed for mission-critical decision making to be extracted from the 
data collected from such a study.

The issues surrounding the design of FTIH studies are discussed and an investi-
gation on the performance of different FTIH study designs in addressing questions 
of MAE (an often observed adverse event type in FTIH studies), effi ciency of PK 
parameter estimation, and dose proportionality is described. All designs estimated 
PK parameters with similar effi ciency (precision) and performed similar in charac-
terizing dose proportionality. Given the importance placed on a design being able 
to predict the exposure–MAE response, the top tier designs (i.e., Designs 3, 9 and 
6) were similarly effi cient in doing this. An effi ciency–cost metric is developed for 
judging the performance of designs and using the metric. Designs 3, 9, and 6 are 
ranked the best designs among the designs investigated. Taking budgetary consid-
erations into account, Designs 3 and 9 are preferred over Design 6. Simulation is 
a useful tool for choosing a design that would address the objectives of a FTIH 
study.
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APPENDIX 29.1 CODE FOR EXPOSURE-AE RELATIONSHIP FIGURE

#####################################

## Figure Exposure-AE Response Curve

## b1 is the location parameter (α)
## b2 is the slope parameter (β)
## xx is the exposure

par(mfrow=c(1,1))

xx_seq(0,13,0.1)

b1_-5

b2_c(.25,.5,.75,1,1.25,1.5)

CODE FOR EXPOSURE-AE RELATIONSHIP FIGURE 777
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for(i in 1:length(b2))

#for(i in 1:1)

{

 y_exp(b1+b2[i]*xx)/(1+exp(b1+b2[i]*xx))

 if(i==1)

    {plot(x=xx,y=y,lty=i,ylim=c(0,1),type=”l”,xlab=”Exposure 

  Parameter”,ylab=”Probability of AE Occurance”)}

  else

    {lines(x=xx,y=y,lty=i,col=1,lwd=2)}

}

#legend(0, 0.9,as.character(rev(b2)),

  lty=rev(1:length(b2)),col=rev(1:length(b2)),bty=”n”)

legend(0, 0.98,as.character(rev(b2)),

  lty=rev(1:length(b2)),col=rep(1,length(b2)),bty=”n”)

text(x=1.2,y=1,”left to right”,cex=1.2)

#title(paste(“logit model with alpha (“,b1,”) across different 

slopes”),cex=.7)

APPENDIX 29.2 FUNCTION CODE FOR PK PROFILE

##################################################################

## one compartmental PK model for 1st order absorption and 1st order

##    elimination rates

## ka is the 1st order absorption rate

## k is the 1st order elimination rate

## V is the volume of distribution

## output data of myPK1.s function is ans

## ans is a matrix, which contains rows of level of doses and columns are

## concentrations at all time points

## i.e. dose,t1,t2,t3,t4,. . . . . . for each row

myPK1.s_function(ka, k,v,dose,t) # one row per subject/column is 

time vector

{

  dose.n_length(dose)

  t.n_length(t)

  ans_matrix(NA,nrow=dose.n,ncol=t.n+1)

  for(i in 1:dose.n)

  {

   ans[i,2:(t.n+1)]_(dose[i]*ka/(v*(ka-k)))*(exp(-k*t)-exp(-ka*t))

  }

  ans[,1]_dose

  ans

}



APPENDIX 29.3 CODE OF PK SIMULATION

##################################################################

## to simulate n subjects with absorption constant rate 1.7 and 

elm. Rate 0.12 

## intersubject variability (cv=50%).

## within subject variability (sd=10%*mean)

## one compartment oral absorption model

# iteration = iter

#** iteration and PK parameter assumptions

iter_10

ka.u_1.7

ka.cv_0.5

ke.u_0.12

ke.cv_0.5

t_c(seq(0.25,1.25,0.25),seq(1.5,3,0.5),seq(4,24,1))

v_30

error.within_0.1 # within subject variability

#** assign the design and the dose multipler

design_design.1 # design data frame

design$dose_design$dose*10 # 1X=10mg

# start

subject_unique(design$subject)

subject_subject[sort.list(subject)]

n.sub_length(subject)

myCol.str_seq(1:length(t))

myCol.str_paste(“t”,myCol.str,sep=””)

myPK.sim_data.frame(matrix(ncol=length(t)+4,nrow=1))

dimnames(myPK.sim)[[2]]_c(“subject”,”dose”,”iter”,”occasion”,myCol

.str)

n.count_0

for (i in 1:n.sub) # simulation loop for each subject

{

  data1_design[design$subject==subject[i],] # data1 is the

  subset for subject i

  pk.sim.par_data.frame(ka=exp(rnorm(iter,mean=log(ka.

  u),sd=abs(log(ka.u)*ka.cv))),

      k=exp(rnorm(iter,mean=log(ke.u),sd=abs(log(ke.u)*ke.

  cv))))

  for (j in 1:iter)

  {
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    junk_myPK1.s(ka=pk.sim.par$ka[j],k=pk.sim.par$k

  [j],dose=data1$dose,v=v,t=t)

    for(k in 1:nrow(junk))

    {

      #to introduce within subject variability

      myError_rnorm(n=length(t),mean=1,sd=error.within)

      junk[k,-1]_exp(log(junk[k,-1])*myError)

      n.count_n.count+1

    myPK.sim[n.count,]_c(subject[i],junk[k,1],j,data1$occasion

    [k],junk[k,-1])

    }

  }

}
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30.1 INTRODUCTION

Drug development can be seen as “the information-gathering process that ends 
when the accumulated information is summarized and presented to a regulatory 
agency for a market-access decision” (1). The usual clinical development, including 
that of a chemotherapeutic agent, can be thought of as two successive learn–confi rm 
cycles that involve Phase 1 and Phase 2a trials on the one hand and Phase 2b and 
Phase 3 trials on the other hand (2). Learning and confi rming are quite distinct 
activities, implying different goals, study designs, and analysis modes (see Chapter 
8). It is clear that the more effi cient the designs of the trials, the more accurate and 
precise will be the resulting information.

For each phase of drug development, the study design specifi es the objectives, the 
enrollment procedure, the treatment plan over the study, data collection including 
the defi nition of primary and secondary endpoints, and data analysis.

The present chapter focuses on the design of Phase 1 studies, as this critical step 
in clinical drug development has benefi ted from recent and signifi cant advances in 
methodology. The design of the trials depends on the drug and on the study. Indeed, 
the approach used for a cytotoxic drug cannot be used, as it stands, for a cytostatic 
drug such as targeted therapy. The former is based on decreasing tumor load leading 
to potential benefi t in terms of improvement of survival or at least of quality of life, 
while the latter may slow or stop tumor growth without a reduction in tumor load. 
Another difference is the shape of the dose–response curve. For cytotoxic drugs, 
the shape is usually monotonically increasing (concept of dose–intensity response), 
while some cytostatic drugs, such as the cytokine interferon-g, may exhibit a bell-
shaped dose–response curve of immunomodularity activity and antitumor effi cacy 
(3, 4). The consequence of these differences is that the endpoints for determining 
the optimal drug dose will be different for cytotoxic and cytostatic agents for which 
biological endpoints or pharmacokinetic (PK) endpoints are to be used (5, 6).

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene I. Ette and 
Paul J. Williams
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The design of studies involving cytostatic agents, which are expected to be 
less toxic because of their target specifi city, is similar to those developed in non-
anticancer therapies. For example, at the Phase 1 level, when safety, pharmacology, 
and toxicology studies performed in animals show low toxicity, healthy volunteers 
can be recruited. Such Phase 1 studies have been performed for marimastat, a matrix 
metalloproteinase inhibitor (7), and for erlotinib, a HER1/EGFR tyrosine kinase 
inhibitor (8). Because such designs are detailed in another chapter of this book, 
only designs of studies of cytotoxic agents, or of cytostatic drugs when presenting 
an unacceptable risk such as carcinogenicity, are developed in this chapter.

30.2 OBJECTIVES FOR PHASE 1 STUDIES

Phase 1 clinical trials, and particularly fi rst-time-in-human (FTIH) trials are small, 
uncontrolled, sequential learning studies designed to:

• Determine the safety and toxicity profi les of a new agent
• Estimate an optimal safe dose for subsequent studies
• Describe the pharmacokinetic (PK) behavior of the drug after its 

administration

In the case of cytotoxic agents for which the mechanism of action is nonspecifi c, 
toxicity is the major endpoint in such studies and dose–response curves can be 
established. First, the dose-limiting toxicity (DLT) must be defi ned. It may be a 
single adverse event (AE) or a combination of toxic events such as “any irreversible 
grade ≥2 AE” or “grade 4 thrombocytopenia >1 week or neutropenia with WBC <
1000 for >2 weeks or neutropenic fever >1 week.”

After defi ning the DLT, the main objective is to determine the maximum toler-
ated dose (MTD), which is defi ned as the dose inducing a given frequency of prob-
ability of severe toxicity, and the dose recommended for Phase 2 studies.

30.3 SUBJECT ENROLLMENT FOR PHASE 1 STUDIES

In oncology, participants in cancer Phase 1 trials of cytotoxic agents, or of cytostatic 
drugs that appear to have a high risk of adverse event(s) such as carcinogenicity, are 
patients with any type of advanced solid tumor or hematological disease, and for 
whom all currently available therapies have failed, or are patients for whom there 
is no effective therapy against the patient’s tumor type (9). These patients consent 
to participate in the trial as a last resort hoping for some effi cacy of the agent under 
investigation. Thus, from an ethical point of view, one should design cancer Phase 
1 trials to minimize the number of patients treated at nontherapeutic doses because 
there is some expectation of effectiveness of the agent.

The inclusion criteria usually require that patients have normal organ function 
and most often require they are between 18 years old to an upper limit of age. For 
a long time, this condition excluded children and the elderly from clinical trials. 
Today, because of the specifi city of these populations, Phase 1 trials are performed 
with some constraints and using the population PK approach.



30.4 TREATMENT PLAN FOR PHASE 1 STUDIES

The treatment plan is defi ned in order to reach the objectives defi ned above. The 
structuring of the design requires one to choose:

• Starting dose
• Way to escalate the doses including the determination of the dose levels
• Number of patients per level
• Patient assignment to a dose level
• Stopping rules

For ethical reasons, the fi rst administered dose in humans must not induce any 
serious toxicity in any patients. The starting dose level is most often one-tenth the 
lethal dose in mice if it is nontoxic in dog; otherwise one-third of the toxic low dose 
in dog is selected. This is not expected to cause any signifi cant toxicity.

The main differences between the diverse designs encountered in drug devel-
opment are related to the dose-escalation scheme, the number of patients per 
level, and the stopping rule defi nition. The oldest and most frequently used dose-
escalation method for the last 20 years is the well known “standard” method based 
on Fibonacci series. Because of the limitations of this method, more sophisticated 
approaches have been developed, namely:

• Accelerated titration design
• Nonparametric up-and-down designs
• Bayesian designs
• PK-guided dose escalation using allometry information

30.4.1 Standard Dose-Escalation Design

A “standard” Phase 1 trial design involves cohorts of three patients. Thereafter, 
the dose-escalation scheme is derived from Fibonacci series (10). The principle of 
these series is that each number is equal to the sum of the two previous numbers. 
In order to obtain decreasing increases for the levels, clinicians use a scheme 
based on the so-called modifi ed Fibonacci series with the second level at twice 
the starting level, and the subsequent levels being 67%, 40%, and 33% greater 
than the preceding. Usually, the escalation is performed between patients and no 
escalation is permitted within the same patient. Because these series are slightly 
different between studies, when reporting the details of the design it would be more 
accurate to detail the series used rather than saying “according to the modifi ed 
Fibonacci scheme.” Escalation continues until the frequency of a given degree of 
dose-limiting toxicity meets some constraint criteria. The constraint depends on 
the type of encountered toxicity—irreversible, life-threatening, or reversible and 
manageable toxicity.

Generally, the escalation design is as shown in Figure 30.1.
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• If no dose-limiting toxicity occurs in the three patients of the cohort, escala-
tion continues.

• If a dose-limiting event occurs in one of the three patients, three additional 
patients are included at the same dose level. If none of the three additional 
patients presents toxicity, escalation continues; otherwise the trial stops.

• If two or three patients present with dose-limiting event, escalation stops.

Once stopping the escalation, three more patients are included at the dose preced-
ing the stopping dose.

The MTD is defi ned as the level preceding the stopping dose and is often the 
recommended dose for further Phase 2 studies.

There is no compelling scientifi c basis for the approach, but experience has 
shown it to be safe. Although this traditional design has been widely implemented 
during Phase 1 studies in oncology, it presents different issues. The fi rst one is that 
too many patients receive subtherapeutic doses when the starting dose is far from 
the MTD. The second problem is that the escalation scheme results in too lengthy 
trials. A third problem of the standard approach is the lack of precision of the MTD 
around the actual MTD. In fact, the MTD provided by such trials represents the 
dose for which the percentage experiencing the DLT ranges from 15% to 70% (11) 
and may be different from the actual MTD.

A more rational and effi cient use of available resources should help to optimize 
the design of Phase 1 trials leading to a better evaluation of the dose–toxicity 
relationship and an improved precision of Phase 2 dose recommendation, while 
minimizing the number of patients included. The improvement should be a more 
appropriate starting dose, fewer patients per level, and a more appropriate dose-
escalation scheme, keeping in mind the safety of the patients.

Include 3 patients 

at level X

N1 out of the 3 patients 

showing DLT

Escalate

(3 patients at level X+1)

Include 3 more

patients at level X

N2 out of the 3 patients 

showing DLT
STOP

N1=0

N1=1

N1=2 or 3

N2=0 N2=1, 2, or 3

Include 3 patients 

at level X

N1 out of the 3 patients 

showing DLT

Escalate

(3 patients at level X+1)

Include 3 more

patients at level X

N2 out of the 3 patients 

showing DLT
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N1=0

N1=1

N1=2 or 3

N2=0 N2=1, 2, or 3

FIGURE 30.1 Flowchart of the standard dose escalation.



30.4.2 Accelerated Titration Design

The accelerated titration design (ATD) is a two-stage design that has been devel-
oped to overcome some limitations of the standard design (12). The principle is 
to accelerate, during a fi rst stage, the dose-escalation scheme. Briefl y, only one 
patient is included per dose level until the fi rst instance of DLT occurs, and 
the dose steps are doubled. When the fi rst instance of DLT or any grade 2 
toxicity is observed, the cohort is expanded to 6 or 3 patients, respectively. Then, 
in a second stage the standard scheme is used with the conventional stopping 
rules. The intrapatient escalation is permitted as follows: escalate in case of grade 
0–1 toxicity at a subject previous course, deescalate in case of grade 3 or greater 
toxicity.

The authors demonstrated that ATD substantially reduced the number of 
undertreated patients, because of the reduced number of patients per cohort at 
the fi rst dose levels, and because intrapatient dose escalation gives a greater chance 
for patients to receive drug doses more likely to provide antitumor response. 
Consequently, patients who would be withdrawn from the study, because of 
tumor progression, may be able to remain longer in the study. This approach 
results in a substantial increase in the information obtained, particularly regarding 
cumulative toxicity. Another advantage is that ATD shortens the length of the 
trial by using a more aggressive escalation scheme until the occurrence of a toxic 
event.

Because ATD is more aggressive than the standard approach, it may be associ-
ated with a higher level of risk for the patients. This means that a careful defi nition 
of the level of toxicity considered as acceptable must be stated.

A successful implementation of ATD in a Phase 1 study of an analog of paclitaxel 
has been reported by Plummer et al. (13). The use of ATD led to the generation 
of a great deal of valuable toxicity information at doses recommended for the sub-
sequent Phase 2 study. Moreover, the majority of the included patients received 
doses within the therapeutic range, which was linked to a high level of observed 
antitumor activity.

30.4.3 Nonparametric Designs

Nonparametric approaches have been developed mainly because of the lack of 
knowledge about the dose–response relationship at the beginning of the Phase 1 
trial and because of the small sample size in these trials. Most of them use the up-
and-down scheme. Several authors proposed a design based on the “random walk 
rules” (RWR) (14, 15), which provides an accurate estimate of MTD as a quantile, 
or the use of isotonic regressions.

30.4.3.1 Random Walk Rules (RWR) Design
Random walk rules design is a generalization of up-and-down designs such as those 
developed by Storer (16), which target the quantile corresponding to a probability 
of tolerable toxicity equal to 0.33. Durham et al. (14, 17) proposed a biased coin 
up-and-down design (BCD) to allocate doses in Phase 1 clinical trials. This method 
has been modifi ed by Stylianou and co-workers (18, 19) who proposed the acceler-
ated biased coin up-and-down design (ABCD), which deals with the long evalua-
tion periods of the patient. Both are used to fi nd the dose at which the probability 
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of toxicity is Γ. The goal of BCD is to center the frequency distribution of design 
doses around a specifi c unknown quantile.

The scheme is identical to the ATD until the fi rst toxicity is observed. At that 
point, the RWR design starts with the following escalation rules:

• If a toxic event is observed in patient j at the dose level di, then assign patient 
j + 1 to level di−1.

• If no toxic event is observed in patient j, fl ip a biased coin with a probability 
of heads in the range [0, 0.5]. If it lands on the head side, then assign patient j
+ 1 to level di+1, else to level di.

Once one determines the escalating scheme for a rapid attainment of the 
MTD, the way to estimate the MTD must be chosen. Different estimators of 
MTD have been proposed, including the empirical mean of the frequency distribu-
tion, maximum likelihood estimation (MLE) under a logistic model, and weighted 
least squares. Because of the small sample sizes that are employed in Phase 
1, none of the estimators present good characteristics. Stylianou and Flournoy 
(19) included an isotonic regression estimator involving linear interpolation and 
compared the effi ciency of this new estimator to the previous ones. The approach 
assumes that toxicity is nondecreasing with dose and fi ts an isotonic regression 
to accumulated data. All the estimators performed similarly, regarding the 
convergence, since they reach their equilibrium point in about 20 subjects. The 
precision was better with the MLE and the isotonic estimator. Moreover, the latter 
ran faster than the other estimators and rarely overestimated the MTD when 
it was included in the lattice of the fi xed doses. This is nicely illustrated by an 
example in bone marrow transplantation, where Durham et al. (14) showed that 
using BCD would have provided more useful information, with the same number 
of patients, than with other up-and-down designs (19, 20), even when starting far 
from the target.

30.4.3.2 Methods Involving Isotonic Regressions
Another family of nonparametric approaches involves the isotonic regression. 
Leung and Wang (21) proposed isotonic regression as a means of designing Phase 
1 clinical trials. At any point, the assigned dose to a given patient is the dose for 
which the estimated toxicity is closest to the MTD. The authors presented different 
stopping rules and recommended a stopping rule that is simple to implement by 
clinicians: for example, stop the trial if the same dose has been assigned in three 
consecutive cohorts.

All the above designs consider toxicity as a binary variable. However, in oncol-
ogy, toxicity is not reported as toxic or nontoxic but according to the World Health 
Organization (WHO) scales, which are ordinal scales ranging from 0 to 4. Paul 
et al. (15) have investigated the possibility to include toxicity as an ordinal variable 
rather than a dichotomous variable. The principle is to defi ne quantiles for each 
grade of toxicity by establishing the dose–response relationship at the different 
grades. An acceptability of toxicity grade must be defi ned taking into account the 
nature of the toxicity. The quantiles are then estimated using the multidimensional 
isotonic regression.



30.4.4 Bayesian Designs

In the standard scheme, MTD is identifi ed from the data. Therefore, because no 
estimation is involved, MTD is a statistic rather than a parameter, which is strongly 
dependent on the design and sample size used. In Bayesian approaches, MTD is 
viewed as a parameter of a dose–response curve, which is most often monotonic. 
MTD is then defi ned as the quantile of doses corresponding to a prespecifi ed 
probability of toxicity. Different methods have been proposed such as the con-
tinual reassessment method (CRM), which has evolved through several modifi ca-
tions, the escalation with overdose control (EWOC), and the decision theoretic 
approach (DTA), which may be combined with a Bayesian optimal design (BOD). 
All these methods have been developed with the objectives of reducing the number 
of patients receiving ineffective or uninformative dose levels and of obtaining an 
accurate estimation of MTD. They follow the same scheme and are derived from 
the CRM. Briefl y, the dose assignments for the fi rst patients are made on the basis 
of prior information obtained from preclinical trials (in vitro and/or animal trials) 
or any other available trial. Once the patients have been evaluated regarding the 
toxicity, the posterior distribution is obtained by combining the gained information 
with the prior information using Bayes’s theorem. The subsequent assignments are 
made on the basis of this posterior distribution and the trial continues until reaching 
a predefi ned stopping criterion.

Bayesian designs start with an ordered space of preselected dose levels based on 
preclinical studies, and believed to cover an acceptable range of DLT probabilities, 
including the target probability:

D = {d1 = dmin < d2 < .  .  . < dk = dmax} = {di, 0 < di < di+1}, i = 1, 2,  .  .  .  , k

30.4.4.1 Continual Reassessment Method
The continual reassessment method (CRM) introduced by O’Quigley et al. (22) is 
the best known Bayesian approach and has been widely presented in the literature, 
either in its original form or with several modifi cations and extensions such as the 
bivariate approach.

Original CRM

1. Before the trial begins, a dose–toxicity curve is established from the informa-
tion gained from previous studies (preclinical, clinical).
• Toxicity is a single binary variable, toxic or no toxic response.
•  The dose–toxicity model, Ψ(di, q), i = 1, 2,  .  .  .  , k, is built assuming that the 

probability of observin g a toxic event q at each dose level di is a monotonic 
function increasing with dose. O’Quigley et al. (22) chose the one-parameter 
power model, pi = Ψ(di,q) = [F(di)]q, where F is any distribution function. 
Other examples of such a function may be the hyperbolic tangent model, 
pi = Ψ(di, q) = [(1 + tanh di)/2]q, or the one-parameter logistic model used 
by many authors (19, 23–26):
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a d

a d
i ki i
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where the intercept a0 is fi xed and q is a model parameter to be estimated, 
assuming a prior distribution. The unit exponential distribution (g(q) =
exp(−q)) has been used extensively, or a gamma distribution. Simulations 
performed by Chevret (24) showed that the form of the prior distribution 
did not signifi cantly affect the results.

2. The second step is the determination of the target probability of DLT, usually 
20% of risk of unacceptable toxicity or in a range of 20–33%. MTD is defi ned 
as the 100 × p percentile of the dose–toxicity relationship.

3. The fi rst patient is assigned to receive a starting dose for which the probability 
of toxicity is closest to the target, 0.20, for example. Once toxicity outcome is 
evaluated from this patient, the dose–toxicity curve is updated by computing 
the posterior distribution of q using Bayes’s theorem as follows:
•  If we denote Ωj = {(d1, y1), (d2, y2),  .  .  .  , (dj, yj)}, where dm (dm ∈ D = {d1 = dmin

< d2 <  ·  ·  ·  < dk = dmax}) and ym are, respectively, the dose and the observed 
response of patient m (m = 1,2,  .  .  .  , j), we can summarize all the informa-
tion available after the evaluation of patient j by the posterior distribution, 
fΩj

(q), with

f d j n
jΩ θ θ( ) = =

∞

∫ 1 1 2
0

, , , ,. . .  (30.2)

•  For the fi rst patient, fΩ1
(q) is g(q), the prior distribution of the parameter of 

the dose–response curve.
•  For the (j + 1)th patient, the posterior distribution is updated using the fol-

lowing Bayesian calculation:
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where Φ(dj, yj, q) = [Ψ(dj, q)]y
j[1 − Ψ(dj, q)](1−y

j
).

4. The posterior probability of toxicity is then used for assigning the dose at 
which the next patient will be treated with a probability of toxicity closest 
to the target DLT. The process continues until the maximum number of 
patients has been reached, usually 20–25 patients. The dose that results in this 
level of toxicity is defi ned as the recommended dose for further Phase 2 
studies.

Modifi ed CRM Because of ethical considerations, several modifi cations have been 
proposed with the objectives of reducing the risk for a patient to receive a toxic 
dose and of shortening the length of the trial. They concern the starting dose, 
the dose-escalation scheme, the stopping rules, and the parameterization of the 
dose–response model using more than one parameter.

Regarding the starting dose, it appears that the original CRM tends to allocate 
higher doses compared with the standard design (27). The suggestion is to give the 
lowest available dose (dmin) as the starting dose; thereafter the escalation is per-



formed without dose skipping until the fi rst toxicity is observed, with one patient 
per level. Some authors, such as Goodman et al. (25), proposed the use of cohorts 
of more than one patient per level. From this point, cohorts of three patients are 
included at each level at the same time.

Different stopping rules have been proposed, one of them being that the CRM 
algorithm ends after a given number of patients have been assigned to the same 
dose (23). O’Quigley and Reiner (28) proposed to stop the process when the dose 
that produced the target probability of a DLT is determined with a 90% confi dence 
interval, or until the maximum number of patients has been reached. This modi-
fi ed design has been implemented for a Phase 1 study of intraperitoneal topotecan, 
a topoisomerase inhibitor (29). The method of dose escalation was effi cient and 
allowed a rapid identifi cation of a dose level of 3 mg/m2, which presented a 20% 
probability of producing DLT, grade 4 granulocytopenia in this case. Other exam-
ples of successful use of this method are reported by Eisenhauer et al. (30).

Because there are situations where the actual MTD is not included in the avail-
able dose range, Thall and Russell (31) suggested stopping the trial if it appears that 
no dose satisfi es both safety and effi cacy requirements. This stopping rule is based 
on the posterior probability of too high toxicity for each dose level. Other criteria 
have been explored by Zohar and co-workers (32, 33) in order to detect early a 
nonadequate choice of dose range or a prefi xed gain in the estimation of probability 
of response associated with the MTD. To this aim, the authors developed a two-
stage design for Phase 1 studies. The fi rst stage is similar to the design implemented 
by Thall and Russell using stopping criteria based on posterior probability of DLT 
and on CRM. In a second stage, they continue the trial by including patients at the 
estimated MTD and stop the trial when there is not any signifi cant gain (measured 
via a gain function) to be obtained from trial continuation. This second stage focuses 
on reliability in estimates using Bayesian predictive gain functions.

Because of the reluctance of some investigators to use the Bayesian approach, 
O’Quigley and Shen (34) have developed a more traditional sequential design 
according to the likelihood-based estimation, which does not require Bayesian prior 
distributions. The principle is that the equation for obtaining fΩj+1(q) is close to the 
likelihood. The fi nal recommended dose levels using this setting differed little from 
those obtained with the original CRM (35).

Bivariate CRM (bCRM) Most of the approaches described previously determine 
the maximum tolerable dose while ignoring effi cacy. Several authors proposed an 
extension of the CRM to a bivariate design in which the MTD is based jointly on 
both toxicity and effi cacy. A way for doing this extension proposed by Thall et al. 
(36) is to combine the binary indicator of toxicity (0 = no toxicity, 1 = toxicity) with 
the ordinal indicator of response (0 = no response, 1 = moderate, 2 = important), 
into a single multinomial variable Y. The issue here is that combining in a unique 
variable toxicity and response makes it impossible to estimate the effect of dose 
upon each outcome separately. Therefore, Braun (37) suggested a model where the 
probability of toxicity and the probability of response are parameterized separately. 
As in CRM, a regression model for dose effect is established considering that for 
each dose di in the lattice D = {d1 = dmin < d2 <  ·  ·  ·  < dk = dmax}, there is a probability 
of toxicity p1i and a corresponding probability of disease progression p2i. The model 
is then a function that increases with regard to toxicity and decreases with regard to 
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progression. Once this function has been defi ned, a bivariate distribution for toxicity 
and progression is selected, keeping in mind the biological plausibility.

The implementation of this design consists in:

• Including the fi rst n patients at the dose level that is most likely close to the 
MTD.

• Computing the posterior probabilities for each dose level pn
1i and pn

2i.
• Assigning the next cohort of patients to receive the dose

dose w p p
i k

j ji
n

j
j

= −( )
= =

∑Min
, , ,1 2

2

1

2

. . .
*  (30.4)

where p*1 and p*2 are, respectively, the desired rates of toxicity and progression; 
and w1 and w2 are values between 0 and 1, with w1 + w2 = 1. This constitutes a 
generalization of the univariate CRM when w1 or w2 is equal to 0.

The bCRM is an attractive approach but presents some problems, one of them 
being that both toxicity and response must occur in a close temporal proximity. A 
modifi cation that could deal with situations where response occurs signifi cantly later 
than toxicities would be of interest in oncology.

Another interesting characteristic of the bCRM is that it enables the CRM to 
be applied to two groups of patients (38), for example, heavily pretreated versus 
not pretreated. It is of particular interest when the accrual of patients is insuffi cient 
in one of the subgroups, which could take advantage of information gained in the 
other group.

Time-to-Event CRM (TITE-CRM) An extension of the CRM has been proposed 
by Cheung and Chappell (39) and adapted by Braun et al. (40). This method takes 
into account the duration of the follow-up of each patient as a proportion of the 
maximum duration of follow-up observed. Data from subjects presenting no toxic 
event are weighted by that proportion, and data from subjects with toxicity are 
given full weight. These weights applied to the likehood used in CRM allow the 
determination of a maximum tolerated cumulative dose (MTCD).

30.4.4.2 Escalation with Overdose Control (EWOC)
The dose escalation with overdose control (EWOC) is a Bayesian approach similar 
to CRM. It is a dose-escalation scheme based on controlling the probability of 
overdosing a patient and not on targetting toxicity between 20% and 30% of the 
MTD, as in the original CRM (41, 42). This method, like CRM, sequentially modi-
fi es the dose–response curve by including the information of all the patients previ-
ously included in the trial, but in this case, the dose–effect relationship deals with 
a two-parameter model, which can be considered as a tolerance function between 
two bounds (dmin and dmax):

F d d d d dβ β0 1+( ) = ={ } ≤ ≤Prob DLT Dose , with| min max  (30.5)

where b0 and b1 are unknown parameters constrained to ensure that probability of 
toxicity is monotonically increasing with dose levels.



At the time of each dose assignment, as for CRM, the posterior cumulative dis-
tribution function of MTD is computed by using all the information available. The 
information includes the doses administered to the previous patients, the covariates, 
and the highest toxicity levels observed in each patient.

The second difference compared to CRM is the addition of a constraint on over-
dosing. Using the EWOC approach, the fi rst patient will receive a dose considered 
as safe, as in standard scheme: d1 = dmin. The subsequent doses will be determined 
from the conditional probability that Γ for a patient k is an overdose given the avail-
able information Ik : Πk(Γ) = Prob{MTD ≤ Γ | Ik}. The dose level is selected for each 
patient with the constraint that the predicted probability that the dose exceeds the 
MTD is less than or equal to a fi xed value of a. That means that the dose level dk

of the kth patient will be selected such as Πk(dk) = a.
Low values of a lead to a cautious dose escalation, when higher values imply 

a more aggressive escalation. At this stage, the uncertainty of MTD is wide and a 
low value of a is recommended in order to ensure safety to the patient. As the trial 
goes on, for the subsequent patients the information increases and the uncertainty 
of MTD decreases, allowing a to increase in the absence of unacceptable toxicity. 
The escalation stops when the convergence criterion is obtained.

EWOC requires only the information currently available at the time of inclu-
sion, whereas in the standard scheme the inclusion of a new patient can only be 
done after evaluation of all the patients from the previous cohort. This results in 
shortening the trial duration.

EWOC has been used successfully to design a Phase 1 clinical trial in patients 
with solid tumors receiving 5-fl uorouracil (5-FU) in combination with fi xed doses 
of leucovorin and topotecan (41). Cheng et al. (43) used this approach during a 
Phase 1 clinical trial performed in patients with advanced non-small-cell lung cancer 
receiving PNU-214936, a superantigen-based immunotherapy. Whereas the activ-
ity of this drug is moderated by the neutralizing capacity of anti-SEA antibodies 
(anti-SEA Ab), the MTD depends on the level of anti-SEA Ab in each patient. 
The EWOC approach allowed the determination of the MTD, taking into account 
baseline plasma anti-SEA Ab levels, and the establishment of a dosing algorithm 
to optimize dose individualization in patients according to their tolerance.

30.4.4.3 Decision Theoretic Approach or Bayesian Optimal Design
A disadvantage of the CRM is that as the sample size increases, the doses selected 
for assignment tend to cluster around the target, most often 20% of risk to develop 
an unacceptable toxicity (TD20). Consequently, it gives accurate estimates of TD20,
but the whole dose–toxicity curve is not described (44). Whitehead and Brunier (45) 
developed a Bayesian decision approach to estimate the whole dose–toxicity curve 
while focusing on a given target dose. The approach is a combination of the CRM 
and EWOC method. EWOC involves a two-parameter logistic regression model, 
but in log dose, with a prior distribution that is updated with ongoing knowledge 
from cohorts of three patients. The assignment of doses to give to next patients is 
fi xed by maximizing a gain function while maintaining acceptable risk to the patient, 
taking into account the safety constraint. This gain function can be compared to the 
dose selection used in CRM or EWOC, where each patient is assigned to a dose at 
which the posterior probability of toxicity is close to the target TD20 or MTD. In 
the decision theoretic approach, the gain function is a variance gain. That means the 
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procedure selects the doses that minimize the asymptotic variance of the maximum 
likelihood estimator of MTD. A continuous range of possible doses is available, and 
the gain from investigation is measured in terms of statistical information gathered 
(45, 46).

Haines et al. (47) suggested including the criterion Bayesian D-optimality, which 
maximizes some concave function of the information matrix, which in essence is the 
minimization of the generalized variance of the maximum likelihood estimators of 
the two parameters of the logistic regression. The authors underline that toxicity 
is recorded as an ordinal variable and not a simple binary variable, and that the 
present design needs to be extended to proportional odds models.

30.4.5 Pharmacokinetic/Pharmacodynamic (PK/PD) Guided Dose 
Escalation Using Allometric Information (PGDE)

It is widely recognized that all the information gained from preclinical studies may 
help in building more informative and effi cient clinical trial designs. However, 
there is a class of information obtained during animal studies which is most often 
not applied to the construction of Phase 1 studies, namely, the PK/PD information. 
This information is of great interest and value in determining the Phase 1 clinical 
design.

The PK/PD guided dose escalation (PGDE) proposed by Collins et al. (48) is 
based on the assumptions that:

• Interindividual variability and, more generally, interspecies variability in toxic-
ity are for the most part due to differences in the behavior of the drug after its 
administration and differences mainly in metabolism, elimination, and binding 
to endogenous components such as proteins.

• Similar plasma concentrations result in the same biological effect in animal 
and human.

Collins et al. (48) reported, from retrospective studies in cancer agents, that the 
area under the concentration–time curve (AUC) at the LD10 in mice was similar to 
the AUC observed at the MTD in human. This AUC value has been suggested to 
be used as a target to guide dose escalation in Phase 1 studies. Thus, the authors 
proposed the following scheme:

• Determine AUC at LD10 in mice: this is now the target AUC in humans.
• Use the same starting dose as in the standard scheme.
• Determine AUC in the fi rst patients entered in the study.
• Defi ne an escalation scheme in three or four steps scaling between this AUC 

value and the target AUC.
• The trial stops when either the target AUC or the MTD is reached.

This approach has been implemented in studies of some anticancer drugs. One 
example is the pharmacokinetically guided administration of melphalan performed 
in patients with advanced ovarian adenocarcinoma (49). The schedule involved 
a fi xed dose on day 1 (7.9 mg) followed by a second dose on day 2, calculated on 



the basis of PK data to achieve a target area under the concentration–time curve 
(AUC). The study showed that the maximum tolerated AUC, based on grade 3 or 
4 hematological toxicities, ranged from 86 to 112 mg·min/L. Another example is 
that of CI-958, a DNA intercalator (50), where the authors estimated that this trial 
using PGDE design required 15–18 fewer patients than with the standard Fibonacci 
design.

However, other examples showed less success (51–53). The reason is that the 
method cannot be used when there are interspecies differences in drug sensitivity, 
in metabolism, and in plasma protein binding. An improvement in the use of the 
preclinical data allowed bypassing some of these limitations, as reported by several 
authors (54–57).

When developing a new therapeutic compound, relevant toxicokinetic studies 
are performed in different species such as mice, rabbits, dogs, and monkeys. The 
results of such studies lead to interspecies scaling in PK parameters based on 
the assumption that there are physiological and biochemical analogies between 
mammals, which can be expressed mathematically by allometric equations (58). 
The allometric approach is based on the power function, where the PK parameters 
Y are plotted against the body weight W of the different species:

Y aW b=  (30.6)

The coeffi cient a and exponent b of the allometric function are parameters to be 
estimated. This relationship has been refi ned by including some correcting factors 
that take into account the specifi city of the drug under study. Boxenbaum (59) 
suggested scaling the data with respect to the maximum life-span potential of each 
species, in order to remove the biologic clock dependency. Other correcting factors 
have been used, such as brain weight for drugs metabolized by the mixed func-
tion oxidation system (54–56), or renal correcting factors (54–56, 60), or protein 
binding factors. Mahmood (61) has shown that, depending on the number of cor-
recting factors included in the equation, three or more species are needed for an 
accurate prediction of PK parameters in human from animal data. These correcting 
factors should lead to a decrease in the number of failures when using the PGDE 
approach.

Besides animal studies, in vitro studies give information about the doses and 
concentrations that show antitumor activity and concentration–response relation-
ships can be established. Knowing the therapeutic range of concentration from the 
concentration–response relationship, and being able to predict the behavior of the 
drug in humans from the allometric equations, an optimal design may be imple-
mented for the FTIH study.

Cosson et al. (54) provided another improvement for allometric scaling by using 
the PK/PD population approach. This approach enables one to use sparse and unbal-
anced data, which is most often the case in animal studies. Using this approach, they 
were able to estimate all allometric parameters and all interindividual variabilities in 
the population and for each species. An example of their code for implementation 
in NONMEM is presented in their publication (54).

A nice example of using an allometric approach combined with a population data 
analysis has been prospectively implemented for vinfl unine, a third generation of 
semisynthetic vinca alkaloids, which is an analog of vinorelbine. The authors took 
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advantage of all preexisting information: preclinical data of vinfl unine and data 
obtained from vinorelbine, which had been widely studied regarding preclinical 
studies, and PK/PD studies (57, 62, 63). The objective of the analysis was to prospec-
tively predict from animal data the vinfl unine (VFL) PK behavior in patients, using 
a population scaling-up strategy. The goal was to evaluate the putative maximum 
tolerated dose (MTD) in patients and therefore to propose a rapid dose escalation 
for the fi rst Phase 1 clinical study aimed at determining the MTD. In a fi rst step 
they established an allometric equation for vinfl unine similar to that previously 
established for vinorelbine. The NONMEM code is presented in the appendix. 
The equation obtained took into account body weight (W) and maximum life-
span potential (MLP) and allowed the prediction of the PK profi le of vinfl unine in 
humans. The PK blood profi le and subsequent analysis on the fi rst recruited patient 
confi rmed the profi le predicted by the scaling-up approach. The observed terminal 
half-life and the observed total body clearance were close to the predicted values. 
Hematological toxicity was the major dose-limiting toxicity (DLT) for vinorelbine 
in patients and was expected to be also the major DLT for vinfl unine. The allo-
metric relationship, the ratio of IC50 between vinfl unine and vinorelbine obtained 
from in vitro studies, with a decrease in white blood cell (WBC) count as response, 
suggested that AUC50 for vinfl unine should be 5 times greater than the AUC50

of vinorelbine. Since the vinorelbine MTD corresponded to an 80% decrease in 
WBC count, the PK and PD modeling on vinfl unine allowed the prediction of the 
AUC value that would cause a decrease of a target value (80%) in white blood 
cell number. Then from this AUC value and from the clearance predicted by the 
model, the dose likely to correspond to the MTD was determined. The PK profi les 
and responses observed in the subsequent patients were integrated in the model, 
using the Bayesian approach. This reassessed strategy allowed a secure and rapid 
determination of the MTD with a dose escalation more rapid than that calculated 
from the modifi ed Fibonacci suite.

30.5 DATA COLLECTION

Data collection is a crucial step to ensure the success of any trial. Phase 1 is 
not disease specifi c. Major endpoints must be precisely defi ned. They are mainly 
maximum tolerated dose of the treatment and/or mechanism-based biomarkers in 
the case of targeted therapy. Data collection is focused on measurement and cat-
egorization of toxicities. Usually, the data collected includes, but is not limited to:

• Demographic values, baseline values of the organ functions, as well as values 
obtained during the follow-up of the patient.

• All the values allowing an accurate evaluation of the endpoints (toxicity and 
clinical response; biomarkers, surrogate endpoints, or clinical endpoints).

• Treatment data, for example, dose and actual times of start and end of 
infusion.

• Pharmacokinetic data, with a cautious establishment of the sampling scheme. 
Most often, since regulatory agencies require model-independent PK para-
meters during Phase 1 studies, extensive sampling is needed at this stage.



In the case of multicenter studies, the methodology used for the determination 
of the drug and metabolite levels must be identical between the different centers 
of investigation, and some crossover validation is highly recommended. The same 
constraints exist for the estimation of the response (toxicity/effi cacy) and for the 
biological parameters. A typical example is the evaluation of the renal function. 
For practical purposes, renal function is often estimated using glomerular fi ltration 
rate (GFR). This parameter is now essential in monitoring patients on treatment 
especially for drugs that have a signifi cant amount of elimination by the kidneys. 
Because GFR is diffi cult to measure in daily practice, most clinicians estimate GFR 
using formulas based on a measure of serum creatinine (Scr), age, size, and sex of 
the patient (64, 65). Other authors developed more accurate equations to estimate 
GFR from serum creatinine (66, 67). The paper by Wright et al. (67) demonstrated 
the infl uence of creatinine assay on the values obtained for serum creatinine and 
the authors found that the enzymatic assay produced larger serum creatinine values 
than the kinetic Jaffe assay. Consequently, all the research team would have to 
decide was which formula and assay technique would be used for determining the 
biological parameters, such as serum creatinine or creatinine kinase. A review from 
Tett et al. (68) outlines the different renal elimination pathways and the possible 
markers that can be used for their measurement.

30.6 PHASE 1 STUDIES FOR A COMBINATION OF TWO DRUGS

In oncology there is the common use of a combination of cytotoxic drugs. Because 
these combinations may result in interactions between drugs such as synergistic 
toxicities, Phase 1 studies must be performed to determine the maximum tolerated 
combination(s) of doses of the administered drugs. In this case, the situation is more 
complex than with a single agent, because there is not a single MTD, but a set of 
several possible MTD combinations.

Most often, for each drug, the lattice of dose schedules to explore is established 
in light of data from previously conducted Phase 1 trials. Several escalation schemes 
are encountered. For a two-drug combination one could escalate the doses of one 
drug while using fi xed doses for the second one, or escalate both drugs either alter-
nately or at the same time.

Korn and Simon (69) proposed a graphical tool for designing Phase 1 studies in 
order to target MTD of combinations. They build a tolerable-dose diagram using 
the information obtained from the single-agent toxicity profi les of each drug. Each 
type of toxic effect involved (leukopenia, neurotoxicity, etc.) is represented as a 
weighted combination of the doses dA and dB of the two drugs A and B: dA + wjdB,
where wj is the relative toxicity of drug B relative to drug A for each kind of toxicity 
(Figure 30.2). Points above the lines represent combinations leading to unaccept-
able toxicity. In the case of Figure 30.2, drug A and drug B could be targeted at 
400 mg and 20 mg, respectively, without any leukopenia protection. Alternatively, 
higher doses (e.g., 600 mg and 120 mg for A and B, respectively) could be targeted 
with adequate leukopenia protection, using G-CSF, for example, and an appropriate 
escalation scheme. The method can be used with a combination of three drugs with 
a three-dimensional diagram. Once they established the dose-tolerability diagram, 
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the authors proposed different escalation schemes, depending on the relative activ-
ity of the two drugs and taking into account eventual synergistic toxicities.

Kramar et al. (70) showed that the maximum likelihood CRM previously 
described in this chapter may be useful in a two-drug combination Phase 1 study. As 
for a single agent, the method requires a priori dose-toxicity profi les. Isobolograms 
can be obtained using these profi les available from the monotherapy Phase 1 studies 
of each drug separately, as well as from previous monotherapy Phase 2/3 studies. 
The method has been used by Morita et al. (71) for designing a Phase 1 clinical trial 
of capecitabine in combination with cyclophosphamide and epirubicin.

More recently, Thall et al. (72) proposed an adaptive two-stage Bayesian design 
for fi nding acceptable dose combinations for a two-agent Phase 1 study. The appli-
cation of adaptive designs in two dimensions requires explicit consideration of the 
toxicity and effi cacy surfaces that are a function of dose of each drug and requires 
that one unmask several critical assumptions, particularly concerning synergy. 
Wright (73) used a relatively simple model allowing the application of a CRM-style 
dose-fi nding scheme in more than one dimension:

P x y
a bx cy dxy

a bx cy dxy
, , θ( ) = + + +( )

+ + + +( )

exp
exp1

 (30.7)

where P is a nonlinear function of combined doses x and y, the quadratic form 
describing interactions between the drug doses. q is a parameter vector (q1, q2, q3),
where the subvectors q1 and q2 parameterize the two single-agent toxicity probabili-
ties, while q3 accounts for interaction between the two agents. This methodology has 
been applied successfully to a trial combining gemcitabine and cyclophosphamide 
(72, 73).
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30.7 SUMMARY

The standard approach to constructing Phase 1 oncology studies does not fully take 
advantage of the toxicity experienced by the patients in deciding how to escalate 
the dose and only focuses on the fi rst one or two cycles without consideration of 
cumulative toxicity (74). It does not employ the PK/PD knowledge gained from 
preclinical studies. The starting dose may be viewed as empirical and conserva-
tive, in that the dose-escalation process based on the modifi ed Fibonacci series has 
little scientifi c rationale, requires too many steps, and exposes too many patients 
to low and presumably ineffective doses of treatment. The design for Phase 1 trials 
should be based on methods that increase the probability for the patient to receive 
therapeutic doses of the agent and also provide a better estimation of, and statistical 
information on, recommended dose for further Phase 2 trials.

There are several methods that offer the opportunity to shorten trial length, 
without increasing risk of toxicity for the patients. All the above schemes based 
on the dose–response curve can deal with exposure variables (peak concentrations, 
AUC, time above a threshold) or any other meaningful PK parameter in place 
of dose. Thus, the ideal scheme should be a combination of the existing 
schemes:

• From in vitro studies determine a target PK exposure.
• From animal studies and studies of analogs of the drug on trial, establish phar-

macokinetics–response relationships.
• Escalate on the basis of an exposure–response relationship and not a simple 

dose–response relationship and using mCRM or likelihood CRM or a non-
parametric approach depending on the statistical tools that are available to the 
team. The response should be based on both toxicity and effi cacy separately 
parameterized according to continuous or at least ordinal variables.

A careful and optimal use of preclinical data is of importance to improve the 
design of subsequent studies. In this context, the effi ciency of clinical trials can be 
substantially improved by implementation of PK/PD modeling during the trials for 
several reasons. They allow:

• Identifi cation of agents with saturable clearance mechanisms for which dose 
escalation will result in unexpected overexposure to the drug.

• Identifi cation of new metabolites not observed in preclinical studies.
• Identifi cation of the impact of different covariates allowing identifi cation of 

subjects that present a high risk of toxicity.
• Transposition of the results to analogs of the drug, by including the informa-

tion in new trials.
• Simulation clinical trials in order to optimize the design of subsequent Phase 

2 studies.

However, the success of the trial can only be expected if the design is logistically 
realistic and understandable by the clinicians; and if there is a strong relationship 
between clinicians, pharmacologists, and statisticians.
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APPENDIX 30.1 NONMEM CODE FOR ALLOMETRIC SCALING

$PROB Final Scale-up model 

; Three-compartmental open PK model with first order elimination

; CL= a1*WT^b1.MLP^c1 

; Vc= a2WT^b2(1+C2Sex)

$INPUT ID NSUB AMT RATE TIME DV EVID CMT WT SEX RACE BW MLP

$DATA allspec.prn IGNORE=C

$ABBREVIATED DERIV2=NO

$SUB ADVAN11 TRANS4

$PK

TVCL=THETA(1)*WT**THETA(7)*MLP**THETA(8)

; WT is actual body weight

; MLP is the Maximum Life span Potential

CL=TVCL*EXP(ETA(1))

TVV1=THETA(2)*WT**THETA(9)*(1+THETA(10)*SEX)

; Sex=0 if female or 1 if male

V1=TVV1*EXP(ETA(2))

V2=THETA(3)*WT**THETA(11)*EXP(ETA(3))

V3 =THETA(4)*WT**THETA(12)*EXP(ETA(4))

K31=THETA(5)*WT**THETA(13)

K21=THETA(6)*WT**THETA(14)

Q3=K31*V3

Q2=K21*V2

S1=V1

$ERROR

 Y=F*EXP(ERR(1))

 IPRED = F

 IRES = DV – F

$THETA

 (0,5.,10.) ; Intercept of Clearance

 (0,2.5,5.) ; Intercept of Vc

 (0,6.,12.) ; V2

 (0,10.,100.) ; V3

 (0,2.5,5.) ; K31

 (0,0.1,1.) ; K21

 (0,.9,2.) (-.9,-.5,0) ; slopes of clearance with weight and MLP

 (0,.9,2.) (0,.2,.9) ; slopes of Vc for weight and Sex

 (0,.9,2.) (0,.9,2.) (0,.9,2.) (0,.9,2.) ;Exponential terms

$OMEGA

 .25 .25 .25 .25

$SIGMA

 .15
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31.1 INTRODUCTION AND MOTIVATION

After completing Phase 1, a typical Phase 2a trial would be undertaken to provide 
confi dence the new drug actually imparts the desired pharmacology or drug effect 
in the target patient population. Subsequently, one or more additional Phase 2 trials 
would be undertaken to provide suffi cient confi dence in the risk/benefi t to warrant 
investment in large, confi rmatory, Phase 3 clinical trials. While some dose-fi nding 
(exposure–response) is possible in Phase 3, it is usually impractical to study more 
than one or two dose strengths as several hundred patients are often recruited into 
each treatment arm to defi nitively demonstrate effect, estimate risk/benefi t, and 
subsequently support regulatory approval. Therefore, it is critical that the Phase 2 
program in combination with relevant information collected from preclinical and 
Phase 1 trials provides adequate information across a wide dose range to ensure 
the right dosing strategy is selected for Phase 3.

Unfortunately, getting the dosing strategy right in a clinical drug develop ment 
program appears to be an underappreciated and often overlooked objective 
of a clinical development strategy. Studying the wrong dose in Phase 3 leads to 
tremendous ineffi ciencies in the clinical development process as failed trials will 
need to be repeated with the right dose. Repeating a Phase 2 or 3 trial most often 
delays the launch of a new drug by several months or more. Losing six months of 
market exclusivity translates into hundreds of millions of dollars in lost revenues. 
Despite the complexity and size of modern clinical development programs, the 
right dose is all-too-often identifi ed late in development or even after regulatory 
approval.

In fact, about one in fi ve medicines approved by the Food and Drug Adminis-
tration (FDA) between 1980 and 1999 had a change in the drug label related to 
dosage regimen. Most often the labeled dose was decreased due to safety concerns 
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(1). Interestingly, the likelihood of dose-related label changes did not appear to 
improve over the 1980s and 1990s, suggesting this problem persists.

The consequences of getting the dose wrong extend beyond ineffi cient drug 
development. Importantly, administering the wrong dose places the patient at risk. 
If the dose is too high the likelihood of adverse events is increased. If the dose 
is too low the treatment will be ineffective. During the 1980s the benzodiazepine 
midazolam (Versed) was developed and approved as a shorter acting version of the 
highly successful diazepam (Valium). Midazolam was approved by the FDA at the 
end of 1985 and initially marketed at a starting dose of 0.1–0.2 mg/kg for conscious 
sedation. By September 1988, 86 cases of serious cardiorespiratory events had 
been reported, 46 resulting in death. Subsequently, the starting dose was decreased 
severalfold to 0.014 mg/kg (2). Only later was a defi nitive pharmacokinetic/phar-
macodynamic (PK/PD) trial conducted using EEG as a high-resolution measure 
of drug response. This study, conducted in three volunteers, clearly demonstrated 
that midazolam was approximately fi ve times more potent than originally thought 
(3). If the early clinical development plan focused on elucidating the potency and 
dosage regimen, perhaps the right dosage recommendation could have been put 
forward in the initial drug label.

In his book, Overdose, the Case Against the Drug Companies Dr. Jay Cohen puts 
forward the opinion that the current clinical drug development process and result-
ing drug label often fail to provide the physician with the necessary information to 
optimally treat patients. He summarizes the results of the present day clinical drug 
development process as follows: “The result is that only belatedly, years or even 
decades later, do we discover that lower doses are not only effective, but avoid 
many side effects. Of course, by this time, tremendous damage has been done to 
people and their families” (4). The problem according to Dr. Cohen is not with the 
drugs themselves but rather with dosing recommendations, available dose–response 
information, and available dose strengths. He also highlights the fundamental dif-
ference between the objectives of clinical practice and clinical trials. The objective 
of a clinical trial is to obtain an estimate of the mean treatment responses in a cohort 
of patients and then compare treatment means via statistical hypothesis testing. This 
focus is fundamentally different from clinical practice, where the physician treats 
individual patients, not the average patient. This “one (dose) size fi ts all” approach 
can be problematic as the starting dose in the drug label may be higher (or lower) 
than the dose needed to successfully treat a given individual. While information on 
effectiveness of lower doses may appear in the clinical trials section of a drug label, 
it is often excluded from the dosage and administration section. Consequently, the 
practicing physician is unaware that lower doses may be effective and can be used 
to successfully treat certain patients. Additionally, it can be problematic for physi-
cians to prescribe doses outside the range deemed effective for the average patient 
due to lack of availability of lower dose strengths.

To summarize, conducting effective dose-fi nding or exposure–response studies 
early in clinical development (e.g., preclinical, Phase 1, and Phase 2) is an essential 
component of an effective clinical development strategy. The creation of an infor-
mative drug label is an ethical imperative.

A well designed Phase 1 program can provide biomarker information useful for 
addressing exposure–response and dosing strategy questions. The design of Phase 
1 trials is reviewed in Chapter 32. The purpose of this chapter is to:



• Review the need to address learning questions as opposed to addressing only 
confi rmatory questions

• Review the regulatory guidelines relating to exposure–response
• Describe trial design characteristics and data analysis strategies for various 

exposure–response trial designs

31.2 EXPOSURE–RESPONSE STRATEGY AND OBJECTIVES

Before considering plausible trial designs, the fi rst critical step of a successful and 
effi cient development program is to clearly identify the specifi c question(s) to be 
addressed by the trial. “What do we want to learn in this Phase 2 trial?” When 
considering a clinical development strategy, it is useful to recognize that clini-
cal trial questions can be classifi ed as learning or confi rming (5). A confi rmatory 
question addresses a simple yes/no question such as: “Does the drug work better 
than placebo?” Such a question is typically formulated as a null hypothesis: “the 
treatment group mean is no different from the placebo group mean” (e.g., H0:
Treatment = Placebo). Given this objective, a logical and effi cient Phase 2a design 
is to compare one active treatment arm (e.g., maximally tolerable dose) against a 
placebo arm with as few patients as necessary to reject the null hypothesis, con-
fi rming that the drug works better than placebo (or failing to confi rm by failing 
to reject the null hypothesis). Such a trial would typically be labeled as a “Proof 
of Concept” or “Phase 2a” trial. Designing a trial that exclusively addresses the 
question, “Does the drug work?” may be logical for truly novel (i.e., untested 
mechanism of action) or unprecedented (fi rst-in-class) compounds. In this setting, 
where the mechanism of drug action is untested and the probability of success is 
low, demonstrating clinical response in a small Phase 2a trial is reasonable prior 
to embarking on a larger, more extensive Phase 2b exposure–response trial. This 
hypothetical example begins to illustrate how the trial objective(s) and study design 
are implicitly linked. Rarely would an actual early clinical trial focus on one simple 
confi rming question; more commonly, trial objectives include both learning and 
confi rming questions.

When considering a Phase 2 strategy for precedented compounds (i.e., mecha-
nism of pharmacologic action proved to be effective), exclusively addressing the 
simple confi rmatory question, “Does the drug work?” in a Phase 2a trial is a waste 
of time and resources as the confi dence in the pharmacologic mechanism is high. 
In such cases, a Phase 2 trial should more logically emphasize learning questions 
(but not to the exclusion of confi rming questions). Where confi rmatory questions 
are typically of the “yes/no” variety, learning questions are typically of the “how 
much” variety. Important learning questions for Phase 2b include:

• What is the lowest dose that gives the desired response?
• What is the response at the highest evaluated dose (e.g., maximum effect)?
• What is the lowest dose that gives the minimum acceptable level of effect (e.g., 

minimum effective dose)?
• What is the highest dose with acceptable tolerability (e.g., maximum tolerated 

dose)?
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• What is the lowest dose that provides a clinically relevant response in at least 
X% of patients (e.g., what is the starting dose?)

• What is the likelihood that a nonresponder will respond to a dose increase?
• How long should the patient remain on treatment before considering a dose 

increase?
• How much effect should be expected after X weeks of treatment?
• How quickly does the benefi cial or adverse drug effect disappear after stopping 

drug treatment?
• What is the difference in benefi cial and adverse response between once and 

twice daily regimens?

Historically, clinical trials emphasized confi rming objectives over learning objec-
tives (5). Careful consideration of both learning and confi rming trial objectives is 
the fi rst important step when considering an exposure–response trial design.

A common but inappropriate learning objective of an exposure–response trial 
is to “determine a no effect dose.” While this objective sounds quite reasonable 
on the surface, careful inspection reveals problems. First, for an effective drug, the 
only true “no effect dose” is zero. Second, the “no effect dose” is not an intrinsic 
property of the drug; rather it is a function of the design characteristics of the study. 
To clarify, the “no effect dose” is often defi ned as the highest dose group that is not
statistically different from placebo. The ability to differentiate one treatment group 
from another is a function of the difference in effect between treatment groups, 
the variability in the effect, and sample size. Lack of statistical differentiation from 
placebo (e.g., p > 0.05, where H0 = treatment is not different from placebo) should 
not be interpreted as meaning the treatment has no effect. An appropriate inter-
pretation would be: “under the conditions of the trial we were unable to detect an 
effect with low-dose treatment.” A subtle but very important distinction in inter-
pretation is declaring no effect for a treatment arm versus an inability to detect an 
effect. By simply increasing the sample size of the low-dose group, a statistically 
signifi cant effect may be probable. Defi ning a “no effect dose” is problematic as the 
answer could differ across clinical studies. For example, 10 mg could be declared 
the no effect dose based on a small Phase 2a trial, where 5 mg is the no effect dose 
based on a larger Phase 2b trial. What is the no effect dose—5 mg or 10 mg? Clearly, 
the concept of defi ning a no effect dose is fl awed in that the answer is dependent 
on the characteristics of the study design rather than any meaningful characteristic of 
the drug itself. Alternatively, a more appropriate learning objective is to “estimate 
the lowest dose that provides a clinically relevant magnitude of drug response.” 
Such a dose is commonly referred to as the MED or minimally effective dose. When 
composing learning questions it is vital to carefully think through the details, defi ni-
tions, and analysis strategy involved with addressing the trial objective.

While a confi rmatory question can be well addressed by a simple two-arm design 
(placebo vs. active), learning questions tend to be addressed by more complex 
designs where many dose groups are studied, repeated measures are collected over 
time, and PK/PD model-based data analysis methods are applied to characterize 
the underlying relationship between dose, drug exposure, and response. Unfortu-
nately, the tendency within the pharmaceutical industry is to focus on confi rmatory, 
hypothesis testing trial objectives as opposed to learning trial objectives. The role 
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of the pharmacometrician is to ensure that the early clinical development strategy 
addresses important learning objectives by highlighting the importance of answer-
ing critical questions about exposure–response.

In summary, the fi rst step in designing an effective clinical development strategy 
is to contemplate specifi c questions that must be addressed in the trial. Appreci-
ating the important differences between learning and confi rming questions and 
the relationship to trial design is fundamental to formulating an effective expo-
sure–response trial design. The following sections of this chapter review various 
regulatory guidances as they pertain to exposure–response, and the strengths and 
weaknesses of various exposure–response trial designs and data analysis strategies 
to address both learning and confi rming questions.

31.3 REGULATORY GUIDANCES ON EXPOSURE–RESPONSE

The 1962 amendment to the Federal Food, Drug and Cosmetics Act of 1938 intro-
duced the terms of “adequate and well controlled investigations” for drug approval 
into the wording of the document. The use of the plural tense led to the wide 
interpretation that at least two well-controlled clinical trials were required for 
any submission to the FDA. This act was further amended by the Food and Drug 
Administration Act of 1997 (FDAMA) to allow determination of substantial evi-
dence of effectiveness as required for approval of a new drug to be based on data 
from one adequate and well-controlled investigation and confi rmatory evidence. 
The use of the term “confi rmatory evidence” in this context does not imply that such 
evidence must come from a trial with confi rmatory objectives. Rather, it has been 
interpreted by many in drug development to indicate that a well-designed exposure–
response study with learning objectives could constitute positive evidence for drug 
approval in addition to a well-controlled, confi rmatory, clinical trial. These recent 
developments underscore the importance of exposure–response trials, not only in 
drug development and labeling, but also in gaining market access. The FDA Guid-
ance for Industry: Exposure–Response Relationships—Study Design, Data Analysis, 
and Regulatory Applications (6) emphasizes this point with the statement: “A dose 
response study is one kind of adequate and well controlled trial that can provide 
primary clinical evidence of effectiveness.” A brief description of various regula-
tory guidances that advocate the use of exposure–response designs and analyses is 
provided in this section.

31.3.1 Exposure–Response Relationships—Study Design, 
Data Analysis, and Regulatory Applications

This document (6) provides recommendations for sponsors of investigational new 
drugs (INDs) and applicants submitting new drug applications (NDAs) or biologics 
license applications (BLAs) on the use of exposure–response information in the 
development of drugs, including therapeutic biologics. This guidance describes:

1. the uses of exposure–response studies in regulatory decision making,
2. the important considerations in exposure–response study designs to ensure 

valid information,
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3. the strategy for prospective planning and data analysis in the exposure–
response modeling process,

4. the integration of assessment of exposure–response relationships into all 
phases of drug development, and

5. the format and content for reports of exposure–response studies.

The guidance emphasizes that a dose–response study is an adequate and well-
controlled trial that can provide primary evidence of effectiveness and that expo-
sure–response information can support the primary evidence of safety and/or 
effi cacy. To achieve these objectives the document supports the use of randomly 
assigned dose or plasma concentration and pharmacodynamic (PD) response to 
establish effi cacy. The appropriate design depends on the purpose of the study. It 
is important to make the distinction that dose–response studies can potentially be 
designed with both learning and confi rming objectives. Jonsson and Sheiner (7) 
discuss the challenges in using exposure–response models to address confi rmatory 
objectives in a well-controlled, confi rmatory trial to provide primary evidence of 
effectiveness and provide recommendations for their use.

Exposure–response studies are typically designed with learning objectives in 
mind, where mechanistic models are assumed to describe exposure–response rela-
tionships, which do not rely on randomization for making treatment (e.g., dose) 
comparisons. In this setting, effi ciency (e.g., reduction in sample size) can be gained 
by assuming an exposure–response relationship where estimates of the model para-
meters provide suffi cient precision to meet the learning objectives regarding a drug’s 
effectiveness without having to power the study for specifi c treatment comparisons. 
The guidance acknowledges that selection of an appropriate model is complex 
and is usually based on the simplest model possible that has reasonable goodness 
of fi t, and that provides a level of predictability appropriate for its use in decision 
making. This is consistent with the learning nature of most exposure–response 
studies where it may be diffi cult to specify a priori a model that will best describe 
the exposure–response relationship and only after exploratory model building may 
we discern the appropriateness of using the model for decision making.

31.3.2 Dose–Response Information to Support Drug Registration

This guidance (8) describes the purpose of dose–response information as helping 
identify:

1. an appropriate starting dose,
2. the best way to adjust dosage to the needs of a particular patient, and
3. the dose beyond which increases would be unlikely to provide added benefi t 

or would produce unacceptable side effects.

The guidance points out that any given dose provides a mixture of desirable 
and undesirable effects, where no single dose is necessarily optimal for all patients, 
and that information regarding the population and individual dose–concentration, 
concentration–response, and/or dose–response relationship is useful for providing 
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dosage and administration instructions in product labeling. The guidance comments 
that these instructions should include information about both starting dosages and 
subsequent titration recommendations, as well as information on how to adjust dose 
in the presence of intrinsic (e.g., age, gender, race, organ dysfunction, weight, body 
surface area, ADME differences) and extrinsic (e.g., diet, concomitant medications) 
factors.

The guidance supports the concept that useful dose–response information is best 
obtained from trials specifi cally designed to compare several doses. The guidance 
further comments on strengths and limitations of various study designs to assess 
exposure–response. The advantages and disadvantages are discussed for the paral-
lel dose–response, crossover dose–response, forced titration, and optional titration 
(e.g., titration to response) study designs; nonetheless, it is pointed out that the list 
is not exhaustive. This is important since it may be incorrectly assumed that the 
regulatory preference is to encourage the parallel dose–response study since the 
guidance contains the statement: “A widely used, successful, and acceptable design, 
but not the only study design for obtaining population average dose–response data, 
is the randomized parallel, dose–response study with three or more dosage levels, 
one of which may be zero (placebo).”

The guidance also notes that integration of knowledge of the exposure–response 
relationship may provide an economical approach to global drug development, by 
enabling multiple regulatory agencies to make approval decisions from a common 
database.

31.3.3 Providing Clinical Evidence of Effectiveness for 
Human Drugs and Biological Products

This guidance (9) focuses on:

1. when effectiveness may be extrapolated entirely from existing effi cacy 
studies,

2. when one single adequate and well-controlled study supported by information 
from other adequate and well-controlled studies may be acceptable, and

3. when information from a single multicenter study may be acceptable.

This guidance follows the regulatory evolution starting with the requirement 
that a drug simply be safe (FDC Act 1938), through the amendment that required 
a drug to be both safe and effective (FDC Act amendment 1962), to the Food and 
Drug Administration Modernization Act of 1997 (FDAMA 1997), which directs 
the FDA to provide guidance on the quality and quantity of evidence required for 
drug and biologics approval. FDAMA (Section 115) includes the amendment to 
the act that makes it clear that the agency may consider “data from one adequate 
and well-controlled clinical investigation and confi rmatory evidence” to constitute 
substantial evidence if the FDA determines that such data and evidence are suf-
fi cient to establish effectiveness. This ruling is another step in allowing the combi-
nation of strictly objective evidence (i.e., a well-controlled, confi rmatory, clinical 
trial) together with model-based analyses to serve as adequate evidence for drug 
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approval. Use of model-based analyses has been encouraged for many years as 
described in these guidances. The ICH E4 guidance (8) stresses the need for high 
standards of quality for both data and modeling methodology. This high standard 
of quality is particularly important if these exposure–response studies are intended 
as supportive evidence to gain market access.

31.3.4 Ethnic Factors in the Acceptability of Foreign Clinical Data

This guidance (10) describes how a sponsor developing a medicine for a new 
region can deal with the possibility that ethnic factors could infl uence the safety 
and effi cacy of medicines and the risk/benefi t assessment in different populations. 
The guidance establishes a classifi cation system of intrinsic (e.g., genetic poly-
morphism, age, gender, height, weight, lean body mass, body composition, and 
organ dysfunction) and extrinsic (e.g., medical practice, diet, use of tobacco, use 
of alcohol, exposure to pollution and sunshine, practices in clinical trial design and 
conduct, socioeconomic status, compliance with medication) ethnic factors that can 
affect safety, effi cacy, dosage, and dosage regimen determinations. Ideally, any 
candidate for global development should be characterized as ethnically sensitive or 
insensitive during the early phases of clinical development. If the data developed 
in one region satisfi es the requirements for evidence in a new region, but there is 
a concern about possible intrinsic or extrinsic ethnic differences between the two 
regions, then it should be possible to extrapolate the data to the new region with a 
single bridging study. The bridging study could be a PD study or a full clinical trial, 
possibly a dose–response study. The guidance describes the bridging data package 
as selected information from the complete clinical data package that is relevant 
to the population of the new region, including PK data and preliminary PD and 
dose–response data. The bridging data package may also include supplemental 
data obtained from a bridging study in the new region that will allow extrapolation 
of the foreign safety and effi cacy data to the population of the new region. The 
guidance advises that dose–response trials carried out early in the drug develop-
ment program may facilitate the determination of the need for, and nature of, any 
required bridging studies.

31.3.5 Statistical Principles for Clinical Trials

This guidance (11) is intended to give direction to sponsors in the design, conduct, 
analysis, and evaluation of clinical trials of an investigational drug in the context 
of its overall clinical development. With respect to trials to show dose–response 
relationships, the guidance emphasizes key objectives, such as the confi rmation of 
effi cacy; the investigation of the shape and location of the dose–response curve; the 
estimation of an appropriate starting dose; the identifi cation of optimal strategies 
for individual dose adjustments; and the determination of a maximal dose beyond 
which additional benefi t would be unlikely to occur. The guidance suggests that a 
number of doses should be used including a placebo whenever appropriate. For 
this purpose, the application of procedures to estimate the relationship between 
dose and response, including the construction of confi dence intervals and the use 
of graphical methods, is as important as the use of statistical tests. Trial designs are 
discussed, however, trial designs more appropriate for dose–response studies are 
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described in ICH E4 (8). This guidance stresses that detail of the planned statistical 
procedures should be given in the protocol.

31.3.6 General Considerations for Clinical Trials

This guidance (12) describes:

1. internationally accepted principles and practices for drug development and 
the conduct of individual clinical trials,

2. approaches to facilitate acceptance of foreign data, and
3. ways to promote a common understanding of general principles, approaches, 

and defi nitions of relevant terms for the drug development and regulatory 
review processes.

The guidance emphasizes the importance of exposure–response information in 
all phases of drug development. This information allows optimal design of sub-
sequent studies, permits an understanding of safety and effi cacy outcomes, helps 
establish dosage and dosing regimens, and permits adjustment of the dosing strategy 
in the presence of intrinsic and extrinsic factors.

31.3.7 Challenge and Opportunity on the Critical Path to 
New Medical Products: Innovation or Stagnation

This FDA document (13) highlights the challenges and opportunities facing 
researchers, drug developers, and regulators to use more innovative approaches 
to drug development to combat the increasing costs of drug development. The fol-
lowing excerpt from this document provides the FDA’s views on the importance of 
exposure–response information in drug development.

The concept of model-based drug development, in which pharmaco-statistical models 
of drug effi cacy and safety are developed from preclinical and available clinical data, 
offers an important approach to improving drug development knowledge management 
and development decision making. Model-based drug development involves building 
mathematical and statistical characterizations of the time course of the disease and 
drug using available clinical data to design and validate the model. The relationship 
between drug dose, plasma concentration, bioPhase concentration (pharmacokinet-
ics), and drug effect or side-effects (pharmacodynamics) is characterized, and relevant 
patient covariates are included in the model. Systematic application of this concept to 
drug development has the potential to signifi cantly improve it. FDA scientists use, and 
are collaborating with others in the refi nement of, quantitative clinical trial modeling 
using simulation software to improve trial design and to predict outcomes. It is likely 
that more powerful approaches can be built by completing, and then building on, 
specifi c predictive modules.

In summary, these guidances collectively underscore the importance of well-
designed and analyzed exposure–response trials in drug development and regula-
tory decision making.
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31.4 EXPOSURE–RESPONSE TRIAL DESIGNS AND 
ANALYSIS STRATEGIES

Recently, the FDA issued a guidance document for exposure–response analyses 
(6). The term “exposure” operatively broadened the document’s scope to include 
patient-specifi c measures of treatment relative to traditional group measures such 
as dose regimen. Patient differences in area-under-the-concentration-curve (AUC) 
or minimum steady-state concentration (for example) might account for a portion 
of the variability observed in the clinical responses. In this sense, these exposure 
measures could increase the information content of the analysis.

The conduct of an exposure–response trial can be broken into four principal 
components—the hypotheses, the design, the analysis, and the conclusion. These 
components are interrelated—each of the fi rst three is critical in producing an 
interpretable and valid trial conclusion. If too many hypotheses are considered 
when planning an exposure–response trial, then (conditional on fi xed resources) 
the available resources might not be optimally allocated for evaluating many of 
the hypotheses. Thus, the exposure–response trial could yield ambiguous or incon-
clusive results. Additionally, the design should be tailored to the hypotheses. For 
example, if a drug exhibits large peak-to-trough fl uctuations in concentration, then 
safety endpoints (such as QT prolongation) should be sampled around times that 
exhibit the maximum concentrations. Failure to sample appropriately could result 
in overestimating the drug’s safety margin. Finally, analyses that depend on incor-
rect assumptions can exhibit infl ated Type I errors and lead to, for example, a false 
conclusion of effi cacy. Subsequent trials and decision making depend on valid con-
clusions of the current exposure–response trial. Inadequate trial results can lead to 
performing subsequent, confi rmatory trials, which increase the expense of develop-
ing the drug and can delay the registration. Thus, consideration of (a) simple, direct 
hypotheses, (b) designs tailored to these hypotheses, and (c) appropriate, robust 
analyses are imperative for planning an informative exposure–response trial.

The following section describes the features of various designs employed in expo-
sure–response trials including parallel group, crossover, pharmacokinetics/pharma-
codynamics driven exposure–response, titration, fl exible (adaptive), and random 
concentration-controlled trials.

31.4.1 Parallel Group Trial Designs

Parallel group trials (Figure 31.1) are the most popular design and are implemented 
in all stages of drug development (Phase 1 to Phase 3). Many parallel group trial 

FIGURE 31.1 Depiction of a four-arm, parallel group trial.



results are published in the literature. Parallel group trials tend to be confi rmatory 
in nature, where the focus is on a comparison of effi cacy and safety endpoints by 
treatment group. In these types of trials, patients are randomized to distinct treat-
ment arms. The treatment arms can consist of single or multiple doses, or fi xed-time 
or event-driven dose titration. When patients are studied, the disease state can be 
acute or chronic, or even progressing as treatment differences can be compared 
over time.

The relative simplicity of parallel group trials (compared to crossovers) comes 
at the price of increased sample size. The treatment comparisons are performed 
between patients. Thus, overcoming large between-patient variability observed in 
heterogeneous patient populations requires large sample sizes to achieve suitable 
statistical power. Using ANCOVA methodologies by adjusting for baseline covari-
ates can help increase the power of treatment comparisons. Yet, since each patient 
only receives one treatment, individual exposure–response assessment and deter-
mination of treatment-by-patient interactions is not possible using parallel group 
designs.

It should be noted that parallel group trials can also be conducted with learning 
objectives regarding the exposure–response relationship. In this setting, effi ciency 
can be gained by assuming a model where precision of the parameter estimates 
provides suffi cient evidence to demonstrate an exposure–response relationship. 
Thus, a reduction in sample size can be made since the objective of such trials 
may focus on learning about the exposure–response relationship rather than on 
specifi c treatment (dose) comparisons. While estimation of the population average 
exposure–response relationship is possible with a parallel group design, simulation 
studies suggest that a crossover or titration design can provide a more precise 
and unbiased estimate of the underlying population exposure–response relation-
ship as well as estimates of individual exposure–response (14). Using simulation 
to quantify the ability of various trial designs to address key trial objectives can 
be a valuable tool when considering the advantages and disadvantages of trial 
designs.

The following highlights how a mixed effects regression analysis impacted the 
understanding of the exposure–response relationship and regulatory decision 
making. During the development of gabapentin, a treatment for neuropathic pain, 
complementary analysis strategies were used to support a regulatory approval 
decision. Two clinical trials were submitted to support an indication for the treat-
ment of neuropathic pain. One trial included placebo and high-dose treatment 
groups. The other study included placebo, a low dose and a middle dose. Each 
study included an initial titration phase, where doses were escalated weekly over 
3–4 weeks. The confi rmatory analysis for these studies was an ANCOVA on the 
average daily pain score over the last week of treatment. Active treatment groups 
were compared to placebo. In addition, data from both trials were combined and 
a complementary nonlinear mixed effects exposure–response regression analysis 
was undertaken to address key learning questions regarding dose-selection and 
infl uence of patient covariates. This analysis utilized all the daily pain score mea-
sures as well as data collected during the titration phase of the trial (e.g., a much 
richer data set relative to that used for the ANCOVA). Patient-specifi c exposures 
were imputed based on a population PK model developed from available PK 
data. Availability of the exposure–response regression analysis allowed regulatory 
scientists to address questions regarding the magnitude of gabapentin effect at 
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tested as well as untested doses. The infl uence of subpopulations on drug response 
was also readily assessed. The integrated information summarized by the expo-
sure–response model contributed directly to the regulatory approval decision and 
was refl ected in the clinical studies section of the drug label: “pharmacokinetic–
pharmacodynamic modeling provided confi rmatory evidence of effi cacy across all 
doses.” The gabapentin exposure–response analysis of pivotal effi cacy data pro-
vided complementary insights to a traditional ANCOVA analysis and contributed 
to a regulatory approval decision.

31.4.2 Crossover Trial Designs

Crossover trial designs (Figure 31.2) are less often used in clinical practice and are 
implemented typically only in Phase 1 or 2 of development. Examples of these trials, 
such as bioequivalence and drug–drug interaction, commonly appear in the litera-
ture. In fact, numerous journal articles and textbooks are devoted to the formula-
tion and analysis of these designs. In these trials, patients are allocated randomly to 
study arms (or sequences). Each patient within the sequence receives a treatment 
followed by one or more treatments; these treatments can be replicated. The treat-
ments can consist of single or multiple doses.

Between each treatment administration period, a “washout” phase is often insti-
tuted to allow the effect of the treatment to dissipate. Dissipation of the drug effect 
is critical. Otherwise, the effect will “carry over” into the next treatment period. An 
example of a drug-mediated effect that will not carry over after the drug clears the 
body is inhibition of prothrombin time in the presence of a reversible fi brinogen 
antagonist. In addition, disease progression should be chronic and stable where the 
drug does not alter the state of the disease. Drugs that connote even a partial cure 
can induce a carry-over effect. Carry-over effects can lead to biased estimates of 
the treatment differences and invalid inference. Judicious choice of the design can 
allow estimation of some carry-over effects and reduce biases. For example, the 
complete set of orthogonal Latin squares design (Figure 31.3) is balanced for carry-
over effects. More effi cient designs than this, such as the Williams designs (Figure 
31.4), are available. This increased effi ciency is at the cost of increased assumptions 
about the degree of the carry-over effects. Ultimately, the scientist must decide 
between the degree of design effi ciency and its robustness to potentially invalid 
assumptions (15).

FIGURE 31.2 Depiction of a two-period, two-treatment crossover design.



The impetus behind implementing crossover designs is that they are typically 
more effi cient than parallel group trials. That is, crossover designs require smaller 
sample sizes to achieve suitable power for treatment comparison. This effi ciency 
results from within-patient comparisons of the treatments; that is, each patient 
serves as his/her own matched control. Mixed effects models or ANCOVA analy-
ses are standard methods of analysis. Parameters, which account for sequence and 
treatment period, are added to the model, since each individual receives more than 
one treatment. Additionally, some carry-over effects can be estimated, depending 
on the design. It should be noted that mechanistic models, which assume a specifi c 
parametric form for carry-over (e.g., the progression of the response or continued 
drug effect), could be fi t to data from crossover studies as well. Such analyses gener-
ally fall under the generalized nonlinear mixed effects model domain.

Crossover designs, however, have their own defi ciencies. Assessment of safety 
endpoints (when they are not known to be directly related to the magnitude of 
drug concentrations) is diffi cult; conventions such as intent-to-treat analyses are not 
available. Moreover, if each treatment period is lengthy, then the time required to 
complete a crossover study could be prohibitive. In addition, lengthy crossover trials 
could lead to increased patient dropout prior to the subsequent treatment period, 
thereby reducing the effi ciency of the trial.

As previously stated, carry-over effects can bias the estimates of the treatment 
differences. Much work has been published, which provides guidance on how to 
proceed when carry-over effects are possible. Senn (16) discusses and critiques 
several of these approaches. Ultimately, when choosing between a crossover and 
parallel group design, the researcher should consider the merits of an effi cient and 
potentially biased analysis versus an ineffi cient yet relatively unbiased one.

Modeling and simulation can make use of prior information when consider-
ing trial design. A notable example assessed parallel group and crossover designs 
for studying the effects of a muscarinic acid agonist on the Alzheimer’s Disease 
Assessment Scale-Cognitive Subscale (ADASCog) (17). The development team 
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FIGURE 31.3 Depiction of four-treatment, four-period, Latin square crossover design, 
where A, B, C, and D represent different treatments.
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FIGURE 31.4 Depiction of six-treatment, six-period, William’s Latin square crossover 
design, where P is placebo, H is high dose, M is medium dose, L is low dose, MH is medium-
high dose, and ML is medium-low dose.
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required information on the effi cacy and appropriate dose selection for subsequent 
studies. Previous information from trials using tacrine was combined with investi-
gational Phase 1 information. Initial power calculations suggested that 60 patients 
(10 per sequence) enrolled in a crossover would provide suffi cient power to detect a 
3-point difference in the ADASCog scale. The crossover design achieved a substan-
tial reduction in trial costs, since the conventional parallel group trial would have 
required 400–500 patients. The simulation study also demonstrated that although 
the carry-over effects downward-biased the treatment effects, the crossover trial 
was the most robust design for the sample size considered.

31.4.3 Pharmacokinetics/Pharmacodynamics Driven 
Exposure–Response Designs

Phase 2 is commonly the stage of clinical drug development where exposure–
response data is generated to inform dose-selection decisions. However, in certain 
situations, a rapidly appearing, readily discernible drug response (e.g., biomarker) 
can be measured following administration of a single dose of study drug. Availability 
of such a measure of drug response can be extremely valuable to a clinical drug 
development program, particularly when information on analogous marketed com-
pounds is available. In such cases it is possible to select therapeutic doses based on 
fi rst establishing the pharmacologic “fi ngerprint” (18) of a new compound in a Phase 
1 exposure–response trial using a biomarker of pharmacologic effect. The second 
step requires developing a quantitative relationship between the biomarker response 
and the clinical outcome. It is often assumed that the concentration–response rela-
tionship for the biomarker will be similar to the concentration–response relationship 
for the clinical response. This need not be the case, so using historic data obtained 
with marketed compounds in the same drug class can provide valuable insight into 
the relationship between biomarker and clinical response.

This two-step approach to dose-fi nding was employed during the development 
of remifentanil, an ultra-short-acting m-opioid agonist (19). This class of compound 
is commonly used as an analgesic and in combination with other agents for surgi-
cal anesthesia. Different levels of analgesia and anesthesia are required during a 
surgical procedure. The desired level of opioid effect differs considerably during 
anesthetic induction, intubation, incision, and organ manipulation. Target opioid 
concentrations are also dramatically infl uenced by the addition of other agents 
such as propofol and inhaled nitrous oxide (N2O). An empiric clinical develop-
ment strategy would require numerous clinical studies designed to determine the 
right remifentanil dose for all possible surgical settings and combinations, a very 
expensive and time-consuming strategy. To avoid this empiric and expensive clinical 
development strategy, a decision was made to “fi ngerprint” remifentanil relative to 
the marketed compound alfentanil, by undertaking a high-resolution PK/PD trial. 
A processed EEG waveform was used as a measure of opioid effect. It was well 
established that administration of a m-opioid agonist caused a marked change in the 
EEG waveform from a high-frequency, low-amplitude wave to a low-frequency, 
high-amplitude wave (delta activity). In this Phase 1 setting, the EEG was used to 
obtain a defi nitive PK/PD fi ngerprint for remifentanil. Figure 31.5 illustrates the 
PK and PD time course following administration of a short intravenous infusion of 
study drug. The mean remifentanil EC50 for EEG response in healthy volunteers 
was estimated at 19.9 ng/mL, approximately 30 times more potent than alfentanil. 



Estimates of target remifentanil clinical concentrations were obtained by scaling the 
alfentanil concentration–response relationship for clinical responses (e.g., analgesia, 
surgery with low-dose propofol) by the relative potency estimate (30-fold) obtained 
in the EEG trial. The concordance between the observed therapeutic remifen-
tanil concentration estimated from Phase 2/3 clinical trials and predicted thera-
peutic concentrations is depicted in Figure 31.6. In every case the predicted range 

Time (min)

FIGURE 31.5 Pharmacokinetics and EEG pharmacodynamics following a short infusion 
of remifentanil.
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FIGURE 31.6 Concordance between observed and predicted therapeutic remifentanil con-
centrations. The solid diagonal line is the line of unity. The vertical solid lines are the range 
of predicted mean concentrations based on relative potency scaling.
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overlapped with the observed therapeutic concentration. Such predictions resulted 
in an effi cient and cost-effective clinical development strategy relative to an empiric 
clinical development approach.

Using a Phase 1 PK/PD trial to accurately predict Phase 2 doses can only be 
successful if the PK/PD trial is well designed. Obtaining estimates of the remi-
fentanil therapeutic concentrations based on knowledge of alfentanil therapeutic 
concentrations required an accurate and precise estimate of the potency of the two 
compounds. Accordingly, the Phase 1 clinical pharmacology trial was designed to 
characterize the potency of remifentanil relative to alfentanil using the EEG as a 
measure of opioid effect (19). Therefore, alfentanil was included in the trial as an 
active comparator. Recall that the goal of the trial was not to simply determine the 
remifentanil PK/PD characteristics on EEG response, but rather to compare the 
potency of the new m-opioid agonist to the marketed product, alfentanil. By doing 
so, the EEG could be put into context relative to other clinically relevant measures 
of drug response, allowing predictions of therapeutic remifentanil drug concentra-
tions. To minimize variability and maximize learning about the relative potency of 
the two compounds, the trial was designed as a crossover. Each healthy volunteer 
received a short infusion of remifentanil and alfentanil in a randomized manner on 
two separate study periods. Importantly, the EEG response changed very rapidly 
(see Figure 31.5). Only 6–7 minutes after discontinuing study drug infusion, the 
EEG returned to baseline levels. Consequently, a high-resolution PK and PD sam-
pling strategy was undertaken (e.g., every 0.5 min for the 5 min at the beginning 
and following study drug administration) to ensure that onset and offset of EEG 
response was captured. Less intense sampling would have limited estimation of the 
remifentanil PK/PD fi ngerprint, thereby limiting the subsequent extrapolation to 
therapeutic drug concentrations. Another important aspect of this study was dose 
selection. An infusion rate was selected that produced drug concentrations leading 
to maximal EEG response. So, with a single infusion of study drug, concentra-
tion–response data was obtained across the entire dynamic range of EEG response, 
obviating the need to study different doses (e.g., infusion rates) of study drug.

Obviously, such data is best analyzed using a PK/PD model-based analysis. In 
this case a standard two-stage PK/PD analysis was undertaken (19). Under this 
analysis plan, each individual’s data was modeled separately and summary statistics 
were calculated from the set of parameters. Basic pharmacology informs us that a 
given concentration of drug should elicit a specifi c level of drug response. Figure 
31.7 depicts hysteresis in the concentration–response relationship following study 
drug administration. At a given concentration, the drug response is not equal and 
depends on whether the corresponding time point is on the ascending or descending 
portion of the concentration–time curve. For example, at a concentration of 10 ng/
mL, there is little or no effect 2–3 minutes after initiating the study drug infusion; 
however 3–4 minutes after the end of the infusion, drug concentrations again reach 
10 ng/mL and the EEG effect is nearly maximal. This phenomenon can be explained 
by assuming drug action takes place in a theoretical effect compartment (e.g., brain) 
that is linked to the central compartment (blood or plasma) by a fi rst-order rate 
constant (ke0) that accounts for the distribution of drug between the central and 
effect compartments. This type of drug model is commonly referred to as an effect 
compartment model (20,21). Correcting for the temporal delay (by estimating ke0)
between changes in drug blood concentrations and changes in effect results in col-



lapsing the hysteresis loop (22). The resulting effect site concentration–response 
data was then described with the pharmacologically based inhibitory sigmoid Emax

model (Figure 31.8):

E E E C C ECe e= − +( ) +0 max
γ γ γ ε50 (31.1)

where E is the EEG response, E0 is the effect in the absence of drug, Emax is the 
maximal drug effect, Ce is the effect site drug concentration, EC50 is the effect site 
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FIGURE 31.7 Concentration–response curve suggesting hysteresis.
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FIGURE 31.8 Effect site drug concentration–response curve. The thin line refl ects the 
observed effect associated with the theoretical effect site concentration. The thick line refl ects 
the sigmoidal Emax model fi t to the observed data.
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concentration that produces half-maximal response (a measure of drug potency), 
and g is a steepness parameter. The potency of remifentanil relative to alfentanil 
was then estimated by calculating the ratio of the respective EC50 values. This 
potency ratio was critical in estimating the likely therapeutic remifentanil target 
concentrations (18) resulting in an effi cient and effective clinical development 
strategy.

In summary, establishing the PK/PD fi ngerprint of a new compound by carefully 
studying the acute time course of drug response on a biomarker (chemical, physical, 
or image) can provide valuable guidance for dose selection as well as discerning PK 
and/or PD differences between patient subgroups.

31.4.4 Flexible Trial Designs

Most clinical study designs are fi xed. That is, the characteristics of the design 
(e.g., sample size, number of dose groups, number of subjects per dose group) 
are established prior to executing the trial and remain fi xed throughout, and the 
resulting data are analyzed only once after completion of the trial. While histori-
cally most trials have utilized fi xed designs, there is growing interest in the use 
of fl exible designs. Fixed designs often fail when the assumptions used to design 
the trial are violated. An overly optimistic estimate of the difference in response 
between treatment groups or a low estimate of variability can result in a failed 
(signifi cant p-value not reached) clinical trial. One advantage of a fl exible design 
is the ability to reset the sample size to avoid conducting an underpowered trial. 
In addition, fl exible designs can provide a faster time to decision, a vital factor in 
any clinical development program. The following section highlights various fl ex-
ible trial designs and provides basic guidance as to when such designs should 
be considered. Flexible designs include (but are not limited to) group sequential 
designs, randomized concentration-controlled designs, and Bayesian adaptive dose 
allocation designs.

31.4.4.1 Group Sequential Designs
One type of fl exible design is the group sequential design (23). Such a design typi-
cally includes one or more preplanned interim analyses. Based on the results of 
the interim analysis, a preplanned action is taken. Most commonly these actions 
include:

• early stopping for futility (e.g., low probability of demonstrating benefi cial 
response),

• early stopping for success (e.g., high probability of demonstrating benefi cial 
response), and/or

• resetting of the sample sizes based on a revised estimate of variance and/or 
effect size.

The advantage of such a design is early feedback allowing for early decision 
making. The ability to make an early go/no go decision is a very attractive feature 
of a group sequential design. By stopping early, resources used to study ineffec-
tive compounds can be minimized. There is also an important ethical advantage 



to implementing early stopping rules in a trial. By all accounts it is unethical to 
prolong the exposure of a patient to a compound that is in all likelihood ineffec-
tive and potentially unsafe. A group sequential design with early stopping rules 
attempts to stop patient exposure to ineffective treatments at the earliest possible 
moment. Conversely, interim analysis can provide confi dence to continue invest-
ing in an effective compound. Also, when there is uncertainty (e.g., fi rst-in-class 
compound, new clinical endpoint) in the estimate of effect size or variance in the 
primary measure of effi cacy, the group sequential design provides a mechanism for 
resetting the sample size based on interim results, thus minimizing the likelihood 
of running an underpowered trial. With a traditional fi xed design, if assumptions 
about effect size or variance are amiss, the trial can end up being underpowered or 
overpowered. So in summary, the potential advantages of a group sequential design 
include early stopping for either futility or success as well as resizing the trial based 
on updated estimates of effect size or variance.

A common concern for a group sequential trial utilizing repeated interim 
ANOVA analysis is an infl ated chance of observing a spurious result leading to an 
infl ated Type I (false positive) error rate. Table 31.1 (24) illustrates the impact on 
the Type I error rate (a) based on the number of interim analyses each controlled 
at a = 0.05.

To combat the problem of infl ated Type I error rates, various “alpha-spending” 
methods have been developed, where “alpha-spending” refers to the statistical 
penalty incurred due to repeated interim analyses. By applying an appropriate 
statistical penalty (e.g., Pocock or O’Brien–Flemming alpha-spending rules, lowers 
the alpha level to <0.05 for each interim analysis) the overall Type I error rate 
for the trial is maintained at the traditionally accepted 0.05 level. A number of 
“alpha-spending” methods have been developed and evaluated over the past few 
decades. Fortunately, software tools such as East® (Cytel Software Corporation) 
(25) provide a user-friendly environment to simulate clinical trials using various 
designs, decision rules, and alpha-spending rules. The graphical and tabular results 
from such simulations provide insight into the performance of various sequential 
cohort trial designs and alpha-spending rules. Other disadvantages of the group 
sequential design are the practical aspects of conducting such a trial. Processes 
must be established to ensure the rapid retrieval, checking, and data entry of key 
endpoint data. If three interim analyses are undertaken, the data must be retrieved, 
cleaned, and entered on four separate occasions. Additional resource is needed to 

TABLE 31.1 Overall Type I Error Rate as a Function of 
the Number of Interim Analyses

Number of Analyses Type I Error Rate

 1 0.05
 2 0.08
 3 0.11
 5 0.14
10 0.19
25 0.25

EXPOSURE–RESPONSE TRIAL DESIGNS AND ANALYSIS STRATEGIES 821



822 DESIGN AND ANALYSIS OF CLINICAL EXPOSURE: RESPONSE TRIALS

repeat the statistical analysis, generate tables, and write interim reports for each 
analysis. In addition, an independent data safety monitoring board is usually con-
vened to discuss interim analysis results and review safety data. So the resources 
needed to conduct a group sequential design (that does not terminate early) can be 
greater than those required to run a traditional design. Nonetheless, the pressure 
to make decisions as early as possible and to eliminate failed trials has increased 
considerably in clinical development. Consequently, interest in group sequential 
designs is growing.

Group sequential designs should be considered when there is suffi cient opportu-
nity (e.g., time) to learn and take action prior to study completion. For example, if 
all subjects are recruited very quickly (e.g., 1 or 2 months) there is little opportunity 
and value in undertaking an interim analysis and making midstudy decisions. Con-
sequently, interim analyses are often planned for large, long-term mortality trials 
where there is ample opportunity to stop early or resize the trial, minimizing the 
likelihood of a failed trial. Another reason to consider a fl exible design is when the 
estimates of the likely effect size or variability in response are poorly understood. 
Obvious cases where such uncertainty exists include the evaluation of an unprec-
edented compound (e.g., fi rst in class) or new clinical endpoint.

31.4.4.2 Bayesian Adaptive Dose Allocation Design
Given the increased pressure to discontinue development of ineffective drug candi-
dates early in development, various sequential cohort designs are now being consid-
ered for critical Phase 2 proof of concept and dose-fi nding designs. An example of a 
fl exible design specifi cally developed to address proof of concept and dose–response 
questions is the Bayesian adaptive dose allocation (BADA) design (26). As the 
name implies this type of design employs a Bayesian algorithm to estimate the 
underlying dose–response relationship. The design includes early stopping rules 
for either futility or defi nitive effi cacy similar to the sequential cohort design. A 
unique feature of the BADA design is adaptive allocation of patients to dose 
groups. Based on interim estimates of the dose–response relationship, a decision 
theoretic approach is used to preferentially allocate new patients to dose groups that 
maximize learning about a particular part of the dose–response curve (e.g., ED95).
Dose groups that are ineffective have few patients allocated while doses near, for 
example, the ED95 have more patients allocated. With this approach, resources (e.g., 
drug supply and patients) are not wasted studying ineffective dose groups. If the 
probability of demonstrating the desired drug response is very low, the trial can be 
stopped early for futility. Conversely, if the probability of demonstrating a superior 
drug response is very high, the trial can be stopped early for effi cacy reasons. The 
BADA design attempts to optimally allocate patients to the dose groups that maxi-
mize learning and allow for early decision making. Obviously, these are attractive 
design characteristics for any clinical development strategy.

A BADA design should be considered when there is adequate time to learn and 
adapt. Moreover, they are particularly well suited for unprecedented compounds 
where there is little prior knowledge regarding exposure–response. In contrast, 
for precedented compounds where there is prior knowledge regarding the class of 
compounds, a fi xed dose design with allocation determined based on clinical trial 
simulations using prior information regarding the exposure–response relationship 
may outweigh the advantages of a BADA design where an empirical dose–response 



model is employed and requires a burn-in period to collect suffi cient information 
to make an informed decision about subsequent dose allocations. If there is an 
unwillingness to study ineffective dose groups due to excessive cost (e.g., costly drug 
supplies or patient assessments) or ethical reasons, then a BADA design should be 
considered. One disadvantage of this design is the need to develop and validate a 
relatively complicated data analysis and treatment allocation software application. 
Another disadvantage of this design is that the underlying statistical methodology 
(Bayesian, decision theoretic approach) is not familiar and readily accepted by 
some. Nonetheless, the BADA design is an excellent example of how effi ciencies 
in Phase 2 drug development can be achieved.

31.4.4.3 Randomized Concentration-Controlled Trial
Another type of fl exible design is the randomized concentration-controlled trial 
(RCCT) (27). As with a fi xed design, a patient is randomly assigned to a prespeci-
fi ed treatment arm at the beginning of the trial. With a fi xed design a treatment 
group is typically defi ned by dose and drug and does not change during the trial. 
However, with a RCCT, treatment groups are defi ned by target drug concentra-
tions. For example, a RCCT may include placebo, low-concentration, and high-
concentration treatment groups. Doses are adjusted during the trial in individual 
patients to achieve the prespecifi ed target drug concentration. Accordingly, the 
RCCT is fl exible with respect to the actual dose administered. Such a design should 
be considered in cases where the variability in observed drug response is primarily 
due to PK variability. Controlling for drug concentration rather than dose can lead 
to increased power in such cases. Consider that patients randomized to a high-dose 
group can have exposures similar to those randomized to a low-dose group, and 
vice versa, thereby increasing the variability in response associated with a particular 
dose and limiting power. The RCCT ensures that patients in the high-concentration 
treatment group actually have high study drug concentrations, increasing the likeli-
hood of observing a drug response by reducing within-treatment (target concentra-
tion group) variability in exposure. In addition, a RCCT should be considered in 
cases where drug response infl uences drug concentration and the objective of the 
trial is to obtain an unbiased estimate of the relationship between drug exposure 
and response. To illustrate, a compound designed to improve cardiac output will 
also affect blood fl ow to clearing organs such as the liver and kidney, leading to cor-
relation between pharmacokinetics and pharmacodynamics. Under these circum-
stances, randomizing based on dose and then undertaking a concentration–response 
relationship can lead to biased estimates, as poor responders will be more likely to 
have higher drug concentrations than good responders.

Importantly, undertaking a RCCT is likely to be more expensive and more 
complicated to implement relative to a typical parallel group trial where treatment 
groups are defi ned by dose and drug. Effi cient processes from sample collection to 
determination of drug concentrations to dose adjustment methods must be carefully 
considered, validated, and implemented. Mechanisms for ensuring blinding while 
allowing midstudy dose adjustments must also be carefully considered. In the end, 
trade-offs between added costs must be weighed against the benefi ts of improved 
power. Clinical trial simulation can provide useful quantitative comparisons of 
the improved effi ciency of a RCCT over alternative designs, thus aiding decision 
making.
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Analysis of RCCT is obviously well suited to regression analysis (e.g., 
nonlinear mixed effects models) as concentration is quantitatively linked to clinical 
response. While treating concentration group as a class variable in an ANCOVA 
is a viable analysis approach, this analysis method ignores a basic tenet of pharma-
cology, namely, the causal link between drug concentration and drug response. In 
other words, response data observed with the low-concentration group carries with 
it information about response at the high-concentration and vice versa. Again, the 
use of clinical trial simulation can be a valuable tool to evaluate the performance 
of a RCCT relative to alternative trial designs and data analysis strategies.

31.4.4.4 Titration Designs
Another form of fl exible trial is the titration design. Under a titration design 
patients are randomly allocated to treatment groups. Then, during the treatment 
phase of the trial, the dose of study drug is titrated up or down. A trial where 
titration is required for all patients in a treatment group would be considered 
a forced titration design. Such a design can be very informative for addressing 
learning questions related to individual dose–response. Such data is amenable 
to mixed effects regression analysis, where the analysis model would include an 
exposure–response component as well as interindividual variability in exposure–
response. This type of analysis strategy is ideal for learning about the infl uence 
of patient covariates (e.g., age, gender, baseline disease severity) on patients’ 
sensitivity to (e.g., EC50—drug concentration that produces half-maximal response) 
or effi cacy of (e.g., Emax—theoretical maximal drug response) the study drug. 
The model can include time-dependent changes in effect (e.g., temporal lag in 
effect) or disease progression, assuming a placebo group is incorporated into the 
design.

Another titration design is the fl exible titration design. Under this design patients 
randomized to active treatment are titrated to a different dose if warranted. If the 
patient does not derive the desired level of effect, the dose of study drug can be 
increased. Alternatively, if the patient experiences adverse events, the dose can be 
decreased. The problem with such a design is that the observed mean responses 
across the dose range are inherently biased. Only unresponsive patients would 
receive high doses of study drug. Consequently, an ANCOVA analysis could lead 
to biased fi ndings and inappropriate conclusions regarding dose–response. The 
strength of such a design is that it refl ects the actual clinical setting, where dose is 
adjusted based on the individual’s response, not the average response. Unbiased 
results can be obtained from a fl exible titration design by using a mixed effects 
regression approach. Sambol and Sheiner (28) undertook a nonlinear mixed effects 
dose–response analysis of data obtained from a fl exible titration study of ateno-
lol and betaxolol, where the dose of study drug was increased if the patient did 
not experience adequate blood pressure control. The model predicted that mean 
response at high doses differed considerably from the observed mean response. 
The observed mean response was biased as only nonresponsive patients received 
higher doses. The model-based analysis provided an estimated effect at high doses 
based on data from all patients, not just those receiving high doses. A fl exible titra-
tion design and appropriate regression analysis are well suited to address learning 
questions such as estimating the probability of unresponsive patients responding 
to a dose increase.



31.5 SUMMARY

The primary focus of exposure–response trials is to identify the optimal dosing strat-
egy, which in the past has been underappreciated and overlooked as part of the clin-
ical development strategy. Conducting effective dose-fi nding or exposure–response 
studies early in clinical development should be an essential component of the clini-
cal development strategy. Appreciating the important differences between learning 
and confi rmatory objectives and their relationship to trial design is fundamental to 
formulating an effective exposure–response trial design. The regulatory guidances 
discussed in this chapter underscore the importance of exposure–response trials. 
Moreover, regulatory agencies are increasingly asking for more information regard-
ing exposure–response relationships and are advocates for using novel designs to 
obtain such information. In this chapter we discuss different designs that can be 
used to obtain useful information regarding exposure–response relationships. To 
be more effi cient in drug development and to improve the quality of the regula-
tory data package and drug label, we must embrace a Phase 2 strategy focusing on 
collecting high-quality exposure–response information. In the past, clinical develop-
ment organization often viewed Phase 2 trials as a “mini-Phase 3” (e.g., asking only 
confi rmatory questions) or even worse a barrier to Phase 3 development. A key to 
effi cient clinical development is to view Phase 2 as a fundamental opportunity to 
learn about the dose–response characteristics of the drug candidate.
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32.1 INTRODUCTION

Pharmacokinetic/pharmacodynamic (PK/PD) knowledge creation is the process of 
building on current understanding of data that is already acquired by generating 
more data (information) that can be translated into knowledge. It entails the use of 
(valid) models to synthesize data, estimate inestimable uncertainty, or supplement 
data for further knowledge acquisition (1, 2).

The intent of knowledge creation is the characterization of unexplored response 
surface to aid our understanding of drug action. The response surface can be 
described as three-dimensional. On one axis are the input variables (controllable 
factors) such as dosage regimen and concurrent therapies. Another axis incorpo-
rates patient characteristics, which summarizes all the important ways patients can 
differ that affect the benefi t to toxic ratio (3). That is, the response surface describes 
the relationship between the therapy and the effects, and how this relationship 
varies with patient characteristics and time to explain tolerance or sensitivity. For 
rational drug development and the optimization of individual therapy, this response 
surface must be mapped for the target population. This shift has occurred because 
of a concern for maximizing the benefi t/risk ratio for individual patients in addi-
tion to answering the question of effi cacy. Regarding knowledge of the response 
surface, PK/PD knowledge discovery (1, 4) and creation (1, 2), as described later, 
greatly improve the precision of this process, which in turn can result in rational 
drug development with optimized dosing strategies. PK/PD knowledge discovery 
is the nontrivial process identifying valid, novel, potentially useful, and ultimately 
understandable patterns in data by characterizing data structure by means of a 
model (4).

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene I. Ette and 
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With the PK/PD knowledge discovery process, information (data) is turned into 
knowledge, while the PK/PD knowledge creation process results in more knowledge 
generation. Knowledge extracted or created from a clinical trial data set can then 
be used for decision making. Thus, after the completion of the PK/PD knowledge
creation process, a better comprehension is gained about the response surface. This 
knowledge and comprehension makes wisdom for rational drug development possible, 
because wisdom (the knowledge and ability to make the right choices at the opportune 
time) is the fi nal step of good mission-critical decision making. That is, the created 
knowledge can then be appropriately applied in the design and conduct of appropriate 
mission-related clinical trials, or the progression of a compound in development.

Knowledge creation is an emerging, interdisciplinary research fi eld that lives at 
the intersection of computer science (database, artifi cial intelligence, graphics, and 
visualization), statistics, and an application domain such as clinical pharmacology in 
general, and pharmacometrics in particular.

In the sections that follow types of PK/PD knowledge creation, general steps in 
the knowledge creation process, data supplementation and the motivation for it, data 
supplementation procedure, nonparametric approximate Bayesian data supplementa-
tion method, structure-based multiple supplementation with a motivating example, 
and implications of the use of multiple data supplementation for the characteriza-
tion of an unexplored region of the response are described. The emphasis in this 
chapter is on the use of data supplementation to characterize unexplored region of the 
response surface. A discussion on data synthesis, the qualitative characterization of 
the response surface, and the estimation of inestimable uncertainty has been elegantly 
presented by Williams et al. (1) and Ette and Onyiah (5). Therefore, these approaches 
are discussed in brief in the sections that follow.

32.2 TYPES OF PK/PD KNOWLEDGE CREATION

32.2.1 Data Synthesis

When there is a considerable amount of information about the drug, synthesizing 
data into a coherent package that indicates the drug developer has understanding 
of the pharmacology and, eventually, good control over the therapeutics of the drug 
provides a means for knowledge creation about the drug being developed. Data 
synthesis is performed when available knowledge about the drug is used to simulate 
a clinical trial to explore study outcome when various controllable and uncontrol-
lable factors are varied. This is a knowledge creation process because the objective 
is to obtain knowledge about the unknown (i.e., unexplored region of the response 
surface) using valid models. A case in point is the use of clinical trial simulation 
to investigate the exposure–response relationship in a fi rst-time-in-human (FTIH) 
study. This involves not only extrapolation of PK/PD from animal to human, but 
also the exploration of the response surface, hitherto unknown, for a new compound 
about to be introduced into humans (1). Data synthesis via clinical trial simulation 
offers the means of generating complex data sets, which may include the infl uence 
of prognostic factors, sample size, and dropouts, for testing new competing analysis 
methods (6, 7). Clinical trial simulation is covered in detail by other chapters (see 
Chapters 33–35) of this book.



32.2.2 Qualitative Prediction

Physiologically based pharmacokinetic (PBPK) modeling is a modeling approach 
that lends itself to knowledge creation (1). The result is a model that predicts the 
qualitative behavior of the experimental time course without being based on it. 
Refi nement of the model to incorporate additional insights gained from comparison 
with experimental data yields a model that can be used for quantitative extrapola-
tion beyond the range of experimental conditions. That is, the model allows predic-
tions to be made of the kinetic behavior of a drug at various dose levels and routes 
of administration.

32.2.3 Estimating Inestimable Uncertainty

Parameter estimation without an appropriate assessment of reliability of the esti-
mates yields no confi dence in such estimates. Estimation of uncertainty enables 
the use of such parameter estimates in data synthesis. Embarking on data synthesis 
(e.g., clinical trial simulation) using model parameter estimates without associated 
uncertainty or poorly defi ned uncertainty will produce unreliable outcomes. Some-
times it is impossible to obtain standard errors for population model parameter 
estimates when small sample sizes are used for population PK/PD modeling. The 
bootstrap with winsorization has been proposed for the estimation of inestimable 
uncertainty—standard errors—for population PK/PD parameters that are usually 
not obtainable using software such as NONMEM because of small sample size 
(4).

32.2.4 Data Supplementation

Data supplementation deals with the use of models on available data to generate 
supplemental data that will be used to characterize a targeted unexplored segment 
of the response surface. The assumptions about models to be used in data supple-
mentation are not as stringent as those required for data synthesis. That is, the use 
of predictive models is not an absolute necessity (2).

32.3 GENERAL STEPS IN THE PK/PD KNOWLEDGE 
CREATION PROCESS

PK/PD knowledge creation from a clinical trial data set is a process that can be 
formalized into a number of steps. In this section we provide a general framework 
for the steps needed to be taken in the PK/PD knowledge creation process. These 
steps could vary depending on the type of knowledge creation approach involved. 
Subsequently, data supplementation—the PK/PD knowledge creation approach of 
focus in this chapter—is discussed.

Briefl y, the steps in the PK/PD knowledge creation process are as follows:

Step 1. Statement of the objective of the PK/PD knowledge creation process.
Step 2. A data set and/or a valid model summarizing the discovered knowledge 

from a prior PK/PD knowledge discovery process.
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Step 3. Performance of knowledge creation (i.e., data synthesis, estimation of ines-
timable uncertainty, or data supplementation).

Step 4. Analysis of the data generated in step 3.
Step 5. Application of the knowledge created.
Step 6. Communication of the created knowledge.

The objective of the PK/PD knowledge creation process must be clearly defi ned. 
With a clear objective in mind, the path chosen for the PK/PD knowledge creation
process can be delineated. For PK/PD knowledge creation via data synthesis, valid 
models are needed. Data synthesis performed using clinical trial simulation requires 
the use of valid input/output models for the PK/PD knowledge creation process.
Data supplementation, on the other hand, requires model assumptions that are not 
as stringent as the assumptions made when analyzing, the data created by a data 
supplementation methodology.

Once data synthesis or supplementation is performed, the data must be analyzed 
for the created knowledge to be extracted. This can be performed using statistical 
or population PK/PD modeling approaches chosen by the pharmacometrician/phar-
macokineticist. There will be variations in steps 3 and 4 of the PK/PD knowledge 
creation process depending on whether data synthesis, estimation of inestimable 
uncertainty, or data supplementation will be performed. The application of the 
created knowledge occurs when the knowledge gained is fed back into the drug 
development process to aid the understanding of the response surface of a drug 
under development. Communication is the key to the usage of the product of the 
knowledge creation process.

The rest of this chapter focuses on the data supplementation approach for PK/PD 
knowledge creation.

32.4  DATA SUPPLEMENTATION

Data supplementation deals with the supplementation of data to enable the 
exploration of an aspect of the response surface that may not have been targeted 
for exploration in a completed trial. It also deals with the supplementation of 
data in preclinical animal studies where the destructive nature of the sampling 
design does not permit the construction of individual profi les for inaccessible 
tissues. A motivating example that deals with a targeted aspect of an unexplored 
region of the response surface is discussed next to provide clarity on the approach. 
Data supplementation in the preclinical animal setting is beyond the scope of this 
chapter.

32.4.1 Motivation for Data Supplementation

The motivation for data supplementation comes from the following:

•  After data from a trial has been analyzed, it may become obvious that the dose 
range explored was limited, and more information (data) would be needed to 
gain an understanding of the effect of a dose or doses not studied.



•  Abrupt cessation of a clinical trial could occur for nonclinical reasons, such 
as a nonclinical toxicology study fi nding. In such a situation, not all subjects 
would have completed the clinical trial—an incompletely observed study. The 
question arises as to what the responses of the subjects who could not complete 
the study would have been if the trial was not stopped abruptly. If a solution 
was found that provided an insight into what the study outcome would have 
been, the need for repeating such a study once the nonclinical problems are 
resolved could be obviated.

•  Sometimes the clinical trial data do not lend themselves to the traditional PK/
PD analyses. Consider a situation in which drugs are administered as combina-
tions in a clinical trial due to their anticipated synergy, but the concentrations 
of the primary drug driving the effect is unavailable while that of the synergistic 
drug is available. In such a situation a PK/PD model cannot be developed to 
characterize the interaction, but there is the need to characterize the effect that 
could be produced with a different dose of the interactor drug while the dose 
of the primary drug remains constant.

•  A drug may be found, after a clinical trial, to appear to exhibit an inverted 
U-shaped response, and it is not clear whether a dose not studied in the trial 
could have produced an effect on the upswing of the dose–response curve that 
is more effective than a dose in the downswing of the dose–response curve.

32.4.2 Methodology for Data Supplementation

Multiple supplementation (MS) and its modifi cation thereof—structure-based mul-
tiple supplementation (SBMS) approach—is proposed as a method for addressing 
the issue of data supplementation for the characterization of a targeted region (e.g., 
effect of a dose or dose range) of an unexplored response surface. The MS approach 
is an adaptation of the multiple imputation methodology used for augmenting data 
in missing data situations to enable data analysis on a complete data set. First the 
procedure for performing data supplementation is described, followed by a review 
of the multiple imputation (MI) methodology, a description of the MS approach, 
and a discussion of SBMS in the context of a motivating example.

32.4.2.1 Data Supplementation Procedure
The procedure for data supplementation is as follows:

Step 1. Statement of the objective of data supplementation for PK/PD knowledge 
creation.

Step 2. Performance of PK knowledge discovery.
Step 3. Covariate data synthesis for virtual subjects in the target dose group(s).
Step 4. PK data synthesis for target dose groups.
Step 5. Discovery of hidden knowledge from real data set to which supplemental 

data will be added.
Step 6. Implementation of a data supplementation methodology (i.e., MS and its 

modifi cation, SBMS).
Step 7. Discovery and communication of the created knowledge.

DATA SUPPLEMENTATION 833
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Nonparametric Approximate Bayesian Data Supplementation Method Rubin (8) 
described a simple method for MI called the approximate Bayesian bootstrap 
(ABB). This approach makes it possible to generate proper imputation for Ymis with 
minimal distributional assumptions: procedures for imputation, whether based on 
explicit (parametric) or implicit (nonparametric) models, ignorable or nonignor-
able models, that incorporate appropriate variability among repetitions within a 
model are called “proper.” “Ignorable missingness” occurs when the probability of 
a missing value is not dependent on the value itself, but may depend on the values 
of other variables in the data set (9, 10). A variety of proper imputation methods 
based on both explicit and implicit models, including a fully normal model, the 
Bayesian bootstrap, and the approximate Bayesian bootstrap (ABB), have been 
studied by Rubin (11). This approach has been adapted for MS, making it possible 
to generate “proper” supplementation for Ysupp with minimal distributional assump-
tions. To illustrate the ABB approach for MS, consider a collection of n units with 
the same value of covariates X, where a subjects were observed and nsupp = n − a
subjects (virtual) with values to be supplemented. The ABB creates M ignorable 
repeated supplementations for m = 1,  .  .  .  , M as follows: (a) create a new pool of 
Y*obs by sampling a values from Yobs = (y1, y2,  .  .  .  , Ya) with replacement, and (b) 
select a set of nsupp possible values from Y*obs, again with replacement. By drawing 
nsupp supplemented values from a possible sample of Y*obs values rather than from 
the Yabs values, the ABB approach generates appropriate between-supplementation 
variability, at least assuming large sample random samples given covariates X. This 
is akin to the generation of imputation variability, assuming large sample random 
samples as demonstrated by Rubin and Schenker (12).

Pooling of Estimates Following the approach used in the MI paradigm, after 
M supplementations have been created for a data set, they are then analyzed 
using a standard PK/PD or statistical package. There are now M completed data 
sets containing the observed values and the supplemented values instead of one. 
The PK/PD or statistical analysis must be done M times, once on each complete 
data set. Across M data sets the results will vary, refl ecting the uncertainty due to 
supplemental observations. The M complete data analyses are combined to create 
one repeated-supplementation inference.

Let Θ̂m and Um, m = 1,  .  .  .  , M, be M complete supplemented data estimates 
and their associated variances for a parameter Θ, calculated from the M data sets 
completed by repeated supplementations under one model. For instance, Θ = b,
Θ̂m is the least squares estimate of b, and Um is the weighted residual mean square 
error. The repeated supplementation estimate of Θ is the mean of the complete 
data estimates:

Θ Θ= ⎛
⎝⎜

⎞
⎠⎟=

∑ ˆ
m

m

M

M
1

There are two components of the variability associated with this estimate: the 
average within-supplementation variance,

U U Mm
m

M

= ⎛
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⎞
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∑
1



and the between-supplementation component,

B Mm
m

M

= −( )⎛
⎝⎜
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−( )
=

∑ Θ̂ Θ
2

1

1

The total variability associated with Θ̄ is given by

T = Ū + (1 + M−1)B

Inference can be made using Θ, T, and a distributional assumption. For example, if 
Θ is a scalar quantity, the approximate reference distribution for interval estimates 
and signifi cance tests is a t distribution:

(Θ − Θ̄)T−1/2 ∼ tv

where the degrees of freedom, n, are given by (12)

ν = (M − 1) (1 + r−1)2 with r = (1 + M−1)B/Ū

Thus, a 100(1 − a)% interval estimate for Θ̄ is

Θ ± −t Tv, /1 2α

The between-subject and within-subject ratio, r, estimates the population quantity 
g /(1 − g), where g is the fraction of information about Θ supplemented.

32.5 STRUCTURE-BASED MULTIPLE SUPPLEMENTATION: 
A MOTIVATING EXAMPLE

This example illustrates how knowledge can be created using a combination of 
data synthesis, structure revelation, and multiple supplementation (MS) tech-
niques. Since data supplementation was performed based on the structure revealed 
from the data, as discussed later, this modifi cation of the MS approach is termed 
structure-based multiple supplementation (SBMS). A parallel dose effi cacy study 
of a drug in development was performed with three dose levels—placebo, 200 mg, 
and 600 mg. Subjects were sampled for population PK and effi cacy analysis. The 
objective of this PK/PD knowledge creation investigation was to determine a likely 
treatment outcome if subjects were randomized to a 100 mg dose group that was not 
studied in an already completed trial. The 100 mg dose group is hereafter referred 
to as the target dose group. Prior to performing PK/PD knowledge creation, PK 
knowledge discovery (6) was performed. Thirty-fi ve subjects were administered the 
test drug on a three times daily basis for 28 days. Eighteen and seventeen subjects 
were randomized to receive 200 and 600 mg of test drug orally. These subjects pro-
vided 974 concentrations, yielding an average of 27.8 concentrations/subject over 
a 28 day period. The mean (SD) age, weight, and height of subjects were 45 (6.3) 
years, 85 (31.3) kg, and 171.6 (12.3) cm, respectively. There were 21 male and 13 
female subjects, 25 Caucasians, 5 Blacks, and 4 Hispanics.
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The population PK model was developed as a consequence of PK knowledge 
discovery performed on the data described above. Briefl y, graphical displays were 
used for structure revelation and hidden patterns in the data. Thereafter, one- and 
two-compartment PK models with fi rst-order input were tested for their ability to 
appropriately characterize the pharmacokinetics of the drug using the NONMEM 
software. The PK data were best described with the two-compartment model incor-
porating a fi rst-order input. The parameters of the model were: absorption rate 
constant, apparent volume of the central compartment, apparent volume of the 
peripheral compartment, intercompartmental clearance, and apparent clearance. 
Empiric individual Bayesian post hoc parameter estimates were obtained and sub-
jected to more exploratory data analysis (i.e., graphical analysis and generalized 
additive modeling—GAM) for initial covariate selection. The GAM analysis was 
coupled with bootstrap replication stability (13) to select covariates with inclu-
sion frequency of ≥50% from 100 nonparametric bootstrap replicates. The covari-
ates—age and dose level—selected by GAM were used to create a full model 
in NONMEM from which an irreducible fi nal model was obtained by backward 
elimination. The irreducible model for the key parameter of interest—apparent 
clearance—included age and dose level as signifi cant predictors. Thus,

CL/F = 30.2 − 3.22 · (Age − Median) * IND + 0.14DL

where IND takes on the value of 0 if Age is greater than the median age and 1 
otherwise, and DL is dose level.

The model was used to simulate concentrations from which area under the 
plasma concentration–time curve (AUC) was computed and compared with AUC 
calculated from model-based parameters as a means of checking the posterior 
predictive performance of the model. Figure 32.1 shows the distribution of AUC 
values for observed (model-based) and simulated data for the two studied doses 
and the 100 mg target dose. The results of 10 replications out of 100 are shown in 
the fi gure for illustrative purposes. The median simulated AUC for the 600 mg 
dose was similar to the model calculated AUC and over 88% of the AUC values 
from the simulated data overlap the model calculated AUC. The median AUC 
values obtained from the simulated data for the 200 mg dose were slightly biased 
(18%) with 68% of the values overlapping the model calculated AUC values. The 
Kolmogorov–Smirnov goodness-of-fi t test, a two-sample comparison test, was used 
to perform the posterior predictive check for each replicate. The null hypothesis 
was that the observed (model based) AUC distribution and the simulated ones were 
equal, with the alternative that they were not. The ranges of p-value obtained across 
replicates for the 200 and 600 mg doses were 0.11 to 0.75 and 0.24 to 1, respectively, 
indicating similarity in the distributions. Although the model performed better in 
predicting AUC with the 600 mg dose than with the 200 mg dose, the population 
PK model developed did provide a reasonably adequate description of the data 
and was later employed to simulate PK profi les for virtual subjects used in data 
supplementation described below.

With PK knowledge discovery performed, the PK/PD knowledge creation was 
then performed in two phases as follows.

Phase I consisted of three steps:



Step 1. Simulation of subjects with demographics similar to those in real study data 
set. Briefl y, data synthesis of covariates for the virtual study was done through a 
resampling with replacement approach to ensure that the covariate distributions 
in each virtual study were similar to the real study. The demographic data from 
the real study was examined for correlation between covariates. There were no 
signifi cant correlations between age and gender, and age and race. Also, gender 
and race were not correlated. However, age and weight were correlated. Given 
the total number of subjects, n, in the data set, a covariate vector such as gender 
was resampled with replacement from the observed data so that the proportion 
of males and females in the simulated data set was similar to that in the real 
data. This procedure was repeated for the other uncorrelated covariates. Where 
the covariates were correlated the resampling was done at the subject level to 
maintain the correlation structure. This resampling with replacement approach 
ensures equal probabilities for each element (covariate) of the population. The 
above algorithm was replicated for each virtual study used in the multiple data 
supplementation step discussed later. Figure 32.2 illustrates the distributions of 
some of the covariates. It is worthwhile to note the similarity between the distri-
butions of the resampled covariates and those from the real study.

Step 2. Simulation of PK profi les for subjects from step 1 using a population PK 
model developed from data obtained from previously completed trial, and com-
putation of exposure metrics and PK parameters for the simulated subjects. The 
distribution of AUC values, for instance, the target dose of 100 mg, is shown in 
Figure 32.1. These AUC values obtained from the fi rst 10 replications were used 
for data supplementation.
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FIGURE 32.1 Distributions of AUC values for 200 and 600 mg dose groups studied with 
parallel comparisons of those obtained via posterior predictive performance check (adapted 
from Ref. 2). AUC values from PK data simulated for the target dose of 100 mg are also 
included for comparison. “Observed” in the fi gure refers to population PK model-based 
AUC. See Appendix 32.1 for the S-Plus code used to generate the plot.
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Step 3. Combination of individual PK (exposure) variables from virtual subjects 
with subject-specifi c covariate data together with the real data set (including the 
pharmacodynamics–biomarker response data) to create a PK/PD knowledge 
creation data set.

Phase II was performed in two major steps:

Step 1. Performance of data structure analysis on real study data (untransformed 
and transformed) to reveal hidden structure, patterns, and relationships in the 
data set. This involves data visualization (graphing and fi tting) and exploratory 
modeling (e.g., tree-based modeling).

Step 2. MS is used to generate (M = 10) baseline biomarker values for simulated 
subjects in the target dose group in which knowledge is to be created. MS is 
performed based on the revealed data structure. Figure 32.3 provides the schema 
of an example of the SBMS approach. In the example under consideration, the 
target dose group was partitioned into two groups: group A—subjects with higher 
biomarker baseline values and younger age (likely responder group)—and group 
B—the remainder of the subjects (the likely nonresponder group). Reduction of 
biomarker levels from baseline value was an indication of subject response to 
therapy. Basically the data supplementation for group A proceeded as follows: 
(a) the slope from day 0 to day 8 was supplemented from the real data that 
contained subjects matching the subpopulation criteria from day 0 to day 8; and 
(b) slopes for other time periods (i.e., day 8 to 15 and day 15 to day 28) were 
supplemented from all available data at the same time periods.
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FIGURE 32.2 Comparison of distributions of demographic variables between the real and 
simulated data sets (adapted from Ref. 2). M1 to M10 represent the number of replications 
used for data supplementation. See Appendix 32.2 for a sample S-Plus code.



For group B subjects, biomarker responses were supplemented from all available 
PD data to refl ect the overall uncertainty. Altogether, 10 replicates of target group 
data sets were created for the target dose group. The S-Plus code for the implemen-
tation of structure-based multiple supplementation is in the appendix.

Figure 32.4 shows the transformed data distributions of percentage changes from 
baseline values (i.e., slope) across replicates for the 100 mg target dose group from 
day 0 to day 8. In Figure 32.4A all subjects are included, but Figure 32.4B contains 
the responder subpopulation only. It can be observed that subjects who met the 
responder criteria (Figure 32.4B) had steeper slope values; the majority were in 
the −0.5 to −1 range.

After the creation of the biomarker data, each of 10 replicate data sets for the 
target 100 mg dose group was subjected to modeling and the results combined 
for PK/PD knowledge creation on the performance of the 100 mg dose level. The 
details of the modeling and results thereof are beyond the scope of this chapter. 
However, Figure 32.5 presents the data created for the target dose group in addi-
tion to the real data that were collected for the other groups that were studied. 
The results were consistent with the pharmacology of the drug. The supplemented 
biomarker response for the 100 mg target dose group appeared better than that 
observed for the 600 mg dose in the responder population as revealed by the slope, 
but comparable with the 200 mg dose (Figure 32.5). The knowledge created about 
the performance of the target 100 mg dose was communicated to the development 
team for the design of a future trial.

Generate covariates and PK data  based on the 
available data and the post-hoc PK parameters

Data Structure Analysis:

TBM and trim analysis

Distinct dose 
response pattern?

New Metric: Percentage 
change (PC) of PD values from 
the previous time point

no Subjects ∈
Group B

yes

Subjects ∈
Group A

Existing DataTarget Dose Group

Generate baseline PD values  by MS algorithm

Match subpop. 
characteristics?

Subpopulation characteristics (e.g. 
high PD baseline value and younger)

yes

Day 8 Day 8 PD value equals baseline value 
multiplied by the imputed Day 8 PC  value 
from Group A only

Day 8 PD value equals 
baseline value multiplied 
by the imputed Day 8 PC  
value from Groups A+B  

no

Day 0 

Day 15 Day 15 PD value equals Day 8 value multiplied by the 
supplemented Day 15 PC  value based on all groups (A+B)

Day 28 Day 28 PD value equals Day 15 value multiplied by the 
supplemented Day 28 PC value based on groups (A+B)

FIGURE 32.3 Schematic of the structure-based multiple supplementation (SBMS) 
approach (adapted from Ref. 2).
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FIGURE 32.4 Day 0 to 8 slope distributions across multiple supplementation replicates 
for the target dose level: (A) all subjects and (B) subjects in the responder subgroup. (This 
fi gure is from Ref. 2.)

32.6 IMPLICATIONS OF THE USE OF MULTIPLE DATA 
SUPPLEMENTATION FOR THE CHARACTERIZATION OF 
AN UNEXPLORED REGION OF THE RESPONSE

The success rate of new chemical entities (NCEs) is anything but stellar (14). In 1987 
the cost of bringing a new drug into the market was $237 million as opposed to $802 
million in 2000 (15). By the end of 1999, 21% of the NCEs with investigational new 
drug applications (INDs) fi led from 1981 to 1992 had been approved for market-



ing in the United States (16). Of those that failed in the period from 1987 to 1992, 
38% of the NCEs failed because of effi cacy (activity too weak or lack of effi cacy), 
34% because of economics (commercial market too limited, or insuffi cient return 
on investment), 20% because of safety (human or animal toxicity), and the rest for 
nonspecifi c reasons (16). What is becoming increasingly clear is that traditional drug 
development approaches are unlikely to succeed in the future given the economics 
of drug development—a low probability of success coupled with increasing product 
development times means decreased sales time after market launch and lower 
return on investment for pharmaceutical companies.

To speed drug development, sophisticated new technologies and approaches 
in the discovery and design of new drugs are replacing the traditional methods of 
discovery. Increasingly, however, a pharmacometrically guided approach is being 
applied to drug development. The need to get the most knowledge from every drug 
development study that is performed cannot be overemphasized in this day and age 
of spiraling drug development cost. This need has led to the development of PK/PD 
knowledge creation in general, and data supplementation in particular. In the appli-
cation example, the nature of the response to a targeted dose was obtained. The drug 
effect that would have been produced if the target dose of 100 mg was studied would 
have been better than that produced by the 600 mg dose, but comparable with that 
produced by the 200 mg in the responder group. Thus, the drug was postulated to 
have an inverted U-shaped dose–response curve with doses above 200 mg producing 
lesser effect than the 200 mg dose. The application of PK/PD knowledge creation 
and implicitly knowledge discovery during drug development will optimize the drug 
development process and promote rational pharmacotherapy. Concerning drug 
development, Minto and Schneider (17) have stated: “Rapidly evolving changes in 
health care economics and consumer expectation make it unlikely that traditional 
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FIGURE 32.5 Slope distributions across days among different dose groups for subjects 
in the responder subgroup (adapted from Ref. 2). Note that 100 mg is the targeted dose 
group.
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drug development approaches will succeed in the future. A shift away from the 
narrow focus of rejecting the null hypothesis toward a broader focus of seeking to 
understand the factors that infl uence the dose–response relationship together with 
the development of the next generation of software based on population models 
should permit a more effi cient and rational drug development programme.” The 
drug development process can be improved by implementing knowledge-driven 
development strategies founded on powerful, informative, and robust clinical trials. 
PK/PD knowledge creation and its companion knowledge discovery processes play 
pivotal roles in the generation and extension of knowledge and therefore can be 
infl uential in bringing effi ciencies to the drug development process.

PK/PD knowledge creation via data supplementation results in the further acqui-
sition of knowledge beyond that embedded in one’s data. When data supplementa-
tion for PK/PD knowledge creation is implemented, the result is a greatly improved 
understanding of the response surface because of the knowledge created. This in 
turn leads to effi cient design studies.

The approach to data supplementation described in this chapter can only be 
implemented if the conditions stipulated in Section 32.4.1 Motivation for Data 
Supplementation are met. The MS approach and its modifi cation, SBMS, are an 
adaptation of the MI paradigm with the focus being data supplementation and not 
“missingness.” From Figure 32.4 it is obvious that at least fi ve replications are suf-
fi cient for obtaining robust data from the data supplementation process. MS should 
not be confused with missingness and the conditions that must be satisfi ed before 
performing MS. With MS, the focus is on characterizing an unexplored region of the 
response surface that was not the subject of focus in an already completed study. 
With the MS approach, data are generated for knowledge creation or acquisition, 
while MI deals with fi lling in missing data to create a complete data set for analysis.

It must be stated that in the current climate insuffi cient attention is given to 
knowledge-based drug development. The process of drug development can be no 
better than the knowledge on which it is based. Without adequate knowledge it is 
impossible to have a thorough understanding of one’s drug, with the consequent 
compromising of the optimal development strategy. PK/PD knowledge creation 
through data supplementation, with knowledge discovery being an implicit com-
ponent of it, results in gaining knowledge about a targeted region of a response 
surface that was not previously studied in a completed study without expending 
resources in conducting a new study. This provides the drug developer with the 
wisdom to make the right decisions about future trials and the strategic path for 
the development of a drug.
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APPENDIX 32.1 CODE FOR AUC SIMULATION BASED ON POPULATION 
PK MODEL

##################################################################

# to simulate the AUC using Pop. PK model ( Clearance adjusted by age)

# tmp is the data object that contains 4 columns (ID, AGE, DLVL, AUC)

# DLVL is the dose level 

# myAUC.ans2 is the observed data object

# myAUC.ans3 is the simulated data object

##################################

tmp_real.bm.sim3[real.bm.sim3$DAY==”Day 1-8hr”,]

myAUC.ans2_tmp[,c(“ID”,”AGE”,”DLVL”,”AUC”)]

myAUC.ans2$Dose_myAUC.ans2$DLVL

mySD_.15 # mySD is CV (15% of CV)

n_200 # 200 virtual studies

for(i in 1:n)
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{

  # x is to resample age for the each virtual study

  # x1 is the indicate variable (1 if age LE 45, otherwise 0 )

  x_sample(myAUC.ans2$AGE,nrow(myAUC.ans2))  

  x1_rep(1,nrow(myAUC.ans2))      

  x1[x>45]_0

  x2_rnorm(n=nrow(myAUC.ans2),mean=0,sd=mySD)     # 15% CV 

y_(15.1-1.61*x1+0.0724*myAUC.ans2$Dose)*exp(x2)  # y is the 

clearance

  y1_myAUC.ans2$Dose/y

xz_data.frame(age=x,dose=myAUC.ans2$Dose,AUC=y1,rep=rep

  (i,length(x)))

  if(i ==1){myAUC.ans3_xz}

    else{myAUC.ans3_rbind(myAUC.ans3,xz)}

}

##########################################################

# Code for Boxplot of AUC values

###########################################################

frame()

x_myAUC.ans[myAUC.ans$DLVL>0,]

x1_boxplot(split(x$AUC,x$DLVL),plot=F)

x1$names_paste(x1$names,”mg observed”)

x2_bxp(x1,width=c(0.2,0.2),boxwex=0.2)

# to add sim.copies of AUC by dose

x.pos_c(0,x2[1]+10,x2[2]+10)

x_myAUC.ans

x1_boxplot(split(x$AUC.sim1,x$Dose),plot=F)

boxes(x=x.pos,width=c(1.2,1.2,1.2),stats=x1$stats)

y_seq(9,25,by=2)

for(i in 1:length(y))

{

  x.pos_x.pos+2

  xz_x[,c(5,y[i])]

  x1_boxplot(split(xz[,2],xz[,1]),plot=F)

  if(i==4)

  {

  boxes(x=x.pos,width=c(1.2,1.2,1.2),stats=x1$stats,labels=paste(

x1$names, “mg”,”\n”,”simulated”))

  }

  else{boxes(x=x.pos,width=c(1.2,1.2,1.2),stats=x1$stats)}

}

mtext(side=2,text=”AUC (ug*hr/mL)”,line=3,cex=1.2)



APPENDIX 32.2 CODE FOR DENSITY PLOT—OBSERVED 
VERSUS SIMULATED

######################################################

## to plot density plot for observed vs. simulations

par(mfrow=c(2,1))

myDose_200

plot(density(myAUC.ans2$AUC[myAUC.ans2$Dose==myDose]),ylim=c(0,.6)

,xlim=c(0,20),lty=1,type=”n”,xlab=””,ylab=”Probability”)

lines(density(myAUC.ans2$AUC[myAUC.ans2$Dose==myDose],n=40,width=”

nrd”),lty=1, lwd=4)

#lines(density(myAUC.ans2$AUC[myAUC.ans2$Dose==myDose],n=10,width=

”nrd”),lty=2, lwd=4)

#lines(density(myAUC.ans2$AUC[myAUC.ans2$Dose==myDose],n=20,width=

”nrd”),lty=3, lwd=4)

#lines(density(myAUC.ans2$AUC[myAUC.ans2$Dose==myDose],n=30,width=

”nrd”),lty=4, lwd=4)

for(i in 1:n)

{

  lines(density(myAUC.ans3$AUC[myAUC.ans3$dose==myDose & myAUC.

ans3$rep==i]),lty=2,lwd=1)

}

key(

 text = list(c(“Observed”,”Simulated”),cex=0.7), 

 line = list(lty = 1:2, lwd = 4) ,corner=c(1,1)

)

mtext(side=3,text=”(a) 200 mg”,cex=1.2,line=1)

myDose_600

plot(density(myAUC.ans2$AUC[myAUC.ans2$Dose==myDose]),ylim=c(0,.6)

,xlim=c(0,20),lty=1,type=”n”,xlab=””,ylab=”Probability”)

lines(density(myAUC.ans2$AUC[myAUC.ans2$Dose==myDose],n=40,width=

”nrd”),lty=1, lwd=4)

#lines(density(myAUC.ans2$AUC[myAUC.ans2$Dose==myDose],n=10,width=

”nrd”),lty=2, lwd=4)

#lines(density(myAUC.ans2$AUC[myAUC.ans2$Dose==myDose],n=20,width=

”nrd”),lty=3, lwd=4)

#lines(density(myAUC.ans2$AUC[myAUC.ans2$Dose==myDose],n=30,width=

”nrd”),lty=4, lwd=4)

for(i in 1:n)

{

  lines(density(myAUC.ans3$AUC[myAUC.ans3$dose==myDose & myAUC.

ans3$rep==i]),lty=2,lwd=1)

}
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key(

 text = list(c(“Observed”,”Simulated”),cex=0.7), 

 line = list(lty = 1:2, lwd = 4) ,corner=c(1,1)

)

mtext(side=3,text=”(b) 600 mg”,cex=1.2,line=1)

######################################################

## to plot density plot for observed vs. simulations

## divided by age

######################################################

par(mfrow=c(2,2))

n_50

myDose_100

plot(density(myAUC.ans2$AUC[myAUC.ans2$Dose==myDose & myAUC.ans2$

AGE<45.5]),ylim=c(0,.6),xlim=c(0,20),lty=1,type=”n”,xlab=””,ylab=”

Probability”)

lines(density(myAUC.ans2$AUC[myAUC.ans2$Dose==myDose & myAUC.ans2$

AGE<45.5],n=40,width=”nrd”),lty=1, lwd=4)

for(i in 1:n)

#for(i in 1:10)

{

  lines(density(myAUC.ans3$AUC[myAUC.ans3$dose==myDose & myAUC.

ans3$rep==i]),lty=2,lwd=1)

}

key(

 text = list(c(“Observed”,”Simulated”),cex=0.7), 

 line = list(lty = 1:2, lwd = 4) ,corner=c(1,1)

)

mtext(side=3,text=”(a) 200 mg of younger group)”,cex=1.2,line=1)

plot(density(myAUC.ans2$AUC[myAUC.ans2$Dose==myDose & myAUC.ans2$

AGE>45]),ylim=c(0,.6),xlim=c(0,20),lty=1,type=”n”,xlab=””,ylab=”

Probability”)

lines(density(myAUC.ans2$AUC[myAUC.ans2$Dose==myDose & myAUC.ans2$

AGE>45],n=40,width=”nrd”),lty=1, lwd=4)

for(i in 1:n)

{

  lines(density(myAUC.ans3$AUC[myAUC.ans3$dose==myDose & myAUC.

ans3$rep==i]),lty=2,lwd=1)

}



key(

 text = list(c(“Observed”,”Simulated”),cex=0.7), 

 line = list(lty = 1:2, lwd = 4) ,corner=c(1,1)

)

mtext(side=3,text=”(a) 200 mg of older group)”,cex=1.2,line=1)

myDose_600

plot(density(myAUC.ans2$AUC[myAUC.ans2$Dose==myDose & myAUC.ans2$

AGE<45.5]),ylim=c(0,.6),xlim=c(0,20),lty=1,type=”n”,xlab=””,ylab=”

Probability”)

lines(density(myAUC.ans2$AUC[myAUC.ans2$Dose==myDose & myAUC.ans2$

AGE<45.5],n=40,width=”nrd”),lty=1, lwd=4)

for(i in 1:n)

{

  lines(density(myAUC.ans3$AUC[myAUC.ans3$dose==myDose & myAUC.

ans3$rep==i]),lty=2,lwd=1)

}

key(

 text = list(c(“Observed”,”Simulated”),cex=0.7), 

 line = list(lty = 1:2, lwd = 4) ,corner=c(1,1)

)

mtext(side=3,text=”(a) 600 mg of younger group)”,cex=1.2,line=1)

plot(density(myAUC.ans2$AUC[myAUC.ans2$Dose==myDose & myAUC.ans2$

AGE>45]),ylim=c(0,.6),xlim=c(0,20),lty=1,type=”n”,xlab=””,ylab=”

Probability”)

lines(density(myAUC.ans2$AUC[myAUC.ans2$Dose==myDose & myAUC.ans2$

AGE>45],n=40,width=”nrd”),lty=1, lwd=4)

for(i in 1:n)

{

 lines(density(myAUC.ans3$AUC[myAUC.ans3$dose==myDose & myAUC.

ans3$rep==i]),lty=2,lwd=1)

}

key(

 text = list(c(“Observed”,”Simulated”),cex=0.7), 

 line = list(lty = 1:2, lwd = 4) ,corner=c(1,1)

)

mtext(side=3,text=”(a) 600 mg of older group)”,cex=1.2,line=1)
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APPENDIX 32.3 SAMPLE CODE FOR PD DATA SUPPLEMENTATION

######################################################

# to simulate PD baseline values

# sim.data is the simulated data (a flat file) contains n(subjects)*

k(sample time points)

# rows with fields (columns, including demographics, exposure, dosing 

regimen, etc)

# xy is the data set contains baseline,slopes and demo info from 

the real data

# m copies of simulation

#sim.data.PD is the simulated PD data set (each column is one 

simulation)

# impute=supplement

sim.data$PD_rep(NA,nrow(sim.data))

ID_unique(sim.data$ID)

m_10

n_length(ID)

sim.data.PD_sim.data[,c(“ID”,”DAY1”)]

myColumnName_c(“ID”,”DAY2”)

for(i in 1 :m)

{

sim.data.PD[,2+i]_rep(NA,nrow(sim.data.PD))

myColumnName_c(myColumnnName,paste(“copy”,i,sep=””))

}

dimnames(sim.data.PD)[[2]]_myColumnName

rm(myColumnName)

sim.data.PD$DAY2[sim.data.PD$DAY1 == 29] <- 28

sim.data.slope_sim.data.PD

t_matrix(rep(NA,n*m),nrow=n,ncol=m)

par(mfrow=c(2,5))

for(i in 1 :m)

{

  t[,i]_as.integer(runif(n,min=1,max=nrow(xy)))

  hist(t[,i],xlab=””,ylab=””)

}

# to impute baseline values based on t matrix

for(i in 1 :length(ID))

{

  for (j in 1 :m)

  {

    sim.data.PD[sim.data.PD$DAY2==0,2+j]_xy$PD[t[,j]]

  }

}



# to impute days 8, 15, 28

mySlope_xy$day8slope[xy$log.PD>=myTrim[3] & xy$AGE<=44.5 & xy$DLVL

<600]

mySlope_mySlope[!is.na(mySlope)]

mySlope2_xy$day8slope[xy$log.PD<myTrim[3] ⏐ xy$AGE>44.5 & xy$DLVL
<600]

mySlope2_mySlope2[!is.na(mySlope2)]

mySlope3_xy$day15slope

mySlope3_my$Slope3[!is.na(mySlope3)]

mySlope4_xy$day28slope

mySlope4_mySlope4[!is.na(mySlope4)]

# to impute based on the present criteria

for(i in 1 :n)

{

  age_sim.data$AGE[sim.data$ID==ID[i] & sim.data$DAY=="Predose"]

    for(j in 1 :m)

  {

    myBaseline_sim.data.PD[sim.data.PD$DAY2==0 & sim.data. PD$ID==

  ID[i],2+j]

  if (age<=44.5 & log10(myBaseline)>= myTrim[3])

  {

      t1_as.integer(runif(1,min=1,max=length(mySlope+.5)))

      myValue_myBaseline*(1+mySlope[t1])

      sim.data.slope[sim.data.slope$DAY2==8 & sim.data.slope$ID

==ID[i],2+j]_mySlope[t1]

    }

  else

    {

      t1_as.integer(runif(1,min=1,max=length(mySlope2+.5)))

      myValue_myBaseline*(1+mySlope2[t1])

      sim.data.slope[sim.data.slope$DAY2==8 & sim.data.slope$ID

==ID[i],2+j]_mySlope2[t1]

    }

  sim.data.PD[sim.data.PD$DAY2==8 & sim.data.PD$ID==ID[i],2+j

  ]_myValue

  t1_as.integer(runif(1,min=1,max=length(mySlope3+.5)))

  myValue_myValue*(1+mySlope3[t1])

  sim.data.PD[sim.data.PD$DAY2==15 & sim.data.PD$ID==ID[i],2+j

]_myValue

  sim.data.slope[sim.data.slope$DAY2==15 & sim.data.slope$ID==

ID[i],2+j]_mySlope3[t1]
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  t1_as.integer(runif(1,min=1,max=length(mySlope4+.5)))

  myValue_myValue*(1+mySlope4[t1])

  sim.data.PD[sim.data.PD$DAY2==28 & sim.data.PD$ID==ID[i],

2+j]_myValue

    sim.data.slope[sim.data.slope$DAY2==28 &

  sim.data.slope$ID==ID[i],2+j]_mySlope4[t1]

  }

}



CHAPTER 33

Clinical Trial Simulation: Theory

PETER L. BONATE

851

33.1 INTRODUCTION

The use of modeling and simulation (M&S) in the pharmaceutical industry can 
have practical and fi scal consequences. The 2004 estimate to bring a new molecular 
entity to market is over $800 million (1). Analysts at International Business Con-
sulting Services (2) suggested that the pharmaceutical industry cannot continue to 
develop drugs as they currently are doing. Drug development must be redesigned 
to remain competitive. Those industries, like aerospace and chemical companies, 
that routinely use M&S save millions of dollars each year by doing so (3). To this 
end, the analysts at International Business Consulting recommended that in silico 
methods might be used to design better trials and, in so doing, possibly reduce the 
number of clinical trials that are performed, thereby reducing costs. Another con-
sulting group, PricewaterhouseCooper, concluded that “virtual [clinical] trials will 
cut the amount of clinical resources required [to bring a drug to market] by 10% 
at best in the short term (although the savings may be much greater later on),” 
which translates into a savings of approximately $80 million initially. Hence, there 
is a strong fi nancial incentive for companies to implement in silico approaches to 
drug development.

Clinical trial simulation (CTS) is the simulation of clinical trials within a com-
puter and can be used to design powerful, robust, informative, and effi cient clinical 
trials. Understanding CTS begins by understanding the theory behind simulation in 
general because CTS is simply a special type of simulation. CTS fi rst gained notice 
through the work of Hale (4) by performing simulation as a prelude to running 
a registration clinical trial for mycophenolate mofetil—a transplant drug. Sub-
sequently, CTS software programs were developed by MGA Software (Concord, 
MA) and Pharsight Corporation (Mountain View, CA) in the late 1990s. ACSL 
Biomed, MGA Software’s product, was later acquired by Pharsight Corp. and its 
features were incorporated into later versions of Pharsight’s Trial Designer product. 
Prior to the introduction of these products, simulation was limited to largely 
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deterministic models and was not implemented to any large degree. Today, large 
pharmaceutical companies, and even progressive smaller companies, have entire 
groups dedicated to the development of M&S of pharmaceutical data.

The purpose of this chapter is to introduce the concepts of simulation and 
use these concepts to illustrate how more complex pharmacokinetic pharmacody-
namic (PK/PD) simulations may be designed. Furthermore, the chapter discusses 
recent uses of M&S by pharmaceutical companies and by regulatory authorities as 
examples.

33.2 MODELING VERSUS SIMULATION

A system is an interacting or interdependent group that forms a whole or a set 
of interrelated components. Ludwig von Bertalanffy (1901–1972), a notable theo-
retical biologist who studied systems biology, once said that “oversimplifi cations, 
progressively corrected in subsequent development, are the most potent or indeed 
only means toward conceptual mastery of nature.” Modeling is one such means to 
simplify a system. Modeling reduces a complex system, one that cannot be easily 
understood on its own, into a simpler representation. For instance, a scale model of 
a building is an architectural model. In pharmacometrics the emphasis is on math-
ematical and statistical models of systems. As models develop, greater and greater 
understanding of the system is achieved.

Two types of mathematical models are encountered: empirical and mechanis-
tic (sometimes called theoretical). Empirical models are data-driven, black-box 
models that simply act to describe the data. An example of an empirical model is a 
time-series analysis or a compartmental fi t to a PK profi le. Increasingly, however, 
models are becoming mechanistic, incorporating what is known about the system 
into the model (see Refs. 5–7 for recent examples). For example, transport to 
tissues, blood fl ow, saturable protein binding, or in vitro enzyme kinetic param-
eters may be built into the model a priori. Currently, a number of companies are 
developing commercial mechanistic models of disease states like asthma, obesity, 
and acquired immune defi ciency complex (Entelos, www.entelos.com), models of 
tissues or organs (Physiome, www.physiome.com), or models of oral drug absorption 
(Gastroplus, www.simulationsplus.com).

There are advantages and disadvantages to both model types. Empirical models 
require fewer assumptions, are easy to develop, and are useful for prediction. 
Mechanistic models require more assumptions, may not be easy to develop, are 
useful for prediction, and, importantly, can be used for extrapolation. Many types of 
empirical models are limited in their ability to extrapolate outside the bounds of the 
data-generating mechanism. Truly complex models may consist of both mechanistic 
and empirical domains with some parts of the model being mechanistic and other, 
unknown parts of the system being empirical.

The type of model that one chooses to use depends on the reason for developing 
the model. If the reason is to characterize a set of data into a few summary param-
eters, such as reducing a concentration–time profi le into an individual’s clearance, 
volume of distribution, and half-life, then an empirical model will likely be chosen. 
On the other hand, if the goal is to understand how a patient’s exposure might 
change if renal function is impaired, then a more mechanistic model will likely be 



chosen. The key here is to choose a model that will answer the question effi ciently 
and accurately.

Empirical and mechanistic models are examples of mathematical models. Given 
a set of observed data from a known input, often the goal is to identify a model and 
estimate its associated parameters—the problem of inverse estimation. In order to 
reach this goal, however, it is not enough to have a mathematical model; a statisti-
cal model is also needed. Statistical models describe the distribution and sources of 
variability in the observed data. For example, it may be assumed the only source 
of error at an individual level is random error from the measurement of the data. 
Alternatively, it may be assumed that error varies not only within an individual on 
a given day, but may vary across days as well, so-called interoccasion variability. On 
a population level where the analysis focuses on data from many individuals, the 
sources of variability may be between-subject variability, interoccasion variability, 
and residual variability. Once the sources of variability are identifi ed, their prob-
ability density function must be defi ned. A common assumption in modeling is to 
assume that random error is normally distributed. In pharmacokinetics, it is often 
assumed that between-subject variability is lognormal, as are residual variability 
in concentration data. Given a mathematical and statistical model, the problem of 
parameter estimation may be solved through either Fisher (least-squares or some 
modifi cation thereof) or Bayesian methods, but usually the former.

Prior to model estimation the question that it will be used to answer and the 
specifi c manner in which it will be used should be explicitly stated. Using a model 
to answer a question is the act of simulation. There are two types of simulation: 
deterministic and stochastic. In a deterministic simulation, the statistical model is 
ignored and no error is introduced into the model—the results are error-free. For 
example, given data from single-dose administration of a drug it may be of interest 
to predict the typical concentration–time profi le at steady-state under a repeated 
dose administration regimen. A deterministic simulation would be useful in this 
case.

Deterministic models are of limited value. In a stochastic simulation, error is 
introduced into the model as a random draw from the statistical probability dis-
tribution, that is, the statistical model. Stochastic simulation is often referred to 
by its more common moniker—Monte Carlo simulation, a term invented by von 
Neumann and Ulam, two scientists working on the Manhattan Project during World 
War II, who coined the term because of its association with gambling casinos in 
Monte Carlo (8). Because of the random nature of the data, many different out-
comes are possible and because many different outcomes are possible, a stochastic 
simulation frequently examines the long-term nature of an outcome or the extremes 
of an outcome. As an example, suppose that there is an 80% chance of a patient 
experiencing severe nausea and vomiting when average steady-state concentra-
tions exceed some value. Assuming that the population distribution for clearance 
is known, for example, lognormal with a mean of 15 L/h and a 30% coeffi cient of 
variability (CV), and given a fi xed dose regimen, then one could use stochastic 
simulation to estimate the percentage of patients who will exceed the cut-off con-
centration value. If a large percentage of patients exceed the adverse event cut-off 
value, then a dose reduction may be indicated.

Bayesians add an additional layer of error to a simulation. Fisherians treat the 
estimated parameters obtained from fi tting a model as fi xed quantities, when clearly 
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they are not. For example, in the previous example, the mean clearance was fi xed 
to 15 L/h and the CV was fi xed to 30%. These estimates can never be known with 
certainty; they were estimated somehow. And because they are estimates there is 
some measure of imprecision in their values. Bayesians take this additional level 
of uncertainty into account when performing a simulation. For example, the mean 
clearance may be estimated as 15 L/h with a standard error (called the standard 
error of the mean) of 1 L/h. Because of the central limit theory, the distribution 
of the mean is assumed to be normally distributed. The distribution of a variance 
cannot be normally distributed because variance components can never be nega-
tive. Hence, it is common to assume that the inverse of variance components have 
a gamma (univariate case) or Wishart (multivariate case) distribution (9). So, for 
instance, instead of fi xing clearance from a lognormal distribution with mean m and 
variance s 2, which is how a Fisherian would simulate from a model, a Bayesian 
includes a hyperparameter step whereby m has its own probability distribution, as 
does s 2. Therefore, before drawing a random variate from X ∼ (m, s 2) two other 
random draws are made fi rst. One being from m ∼ (mm, s 2m) and the other from 1/s 2
∼ Gamma(a, b), which are the hyperparameters for the model parameters. For 
example, in a Bayesian simulation, m may take on values 14.7, 15.2, and 15.8 L/h 
and CV may take on values 28.9%, 35.0%, and 40.0% in the fi rst three iterations of 
the simulation. m may converge to the value of m used in the Fisherian simulations 
over the long run, but not necessarily. Frequently, Bayesian simulations lead to 
wider confi dence intervals than Frequentist simulations because of the extra layer 
of randomness built into the simulation (see Figure 33.1).

Hence, there are subtle but important differences between modeling and simu-
lation. Modeling looks back in time, whereas simulation looks forward. Simula-
tion is used to answer “What if  .  .  .  ,” whereas modeling is used to answer “What 
happened?” Modeling requires data, simulation requires models that may or may 
not be built on data. Both M&S are sensitive to their assumptions and any black-
box aspects in their use, both of which may lead to criticism of a M&S exercise. 
Furthermore, both M&S can be used to identify important variables and can be 
used to summarize and understand complex systems.

33.3 ELEMENTS OF SIMULATION

Complex pharmacokinetic/pharmacodynamic (PK/PD) simulations are usually 
developed in a modular manner. Each component or subsystem of the overall 
simulation is developed one-by-one and then each component is linked to run 
in a continuous manner (see Figure 33.2). Simulation of clinical trials consists of 
a covariate model and input–output model coupled to a trial execution model 
(10). The covariate model defi nes patient-specifi c characteristics (e.g., age, weight, 
clearance, volume of distribution). The input–output model consists of all those 
elements that link the known inputs into the system (e.g., dose, dosing regimen, 
PK model, PK/PD model, covariate-PK/PD relationships, disease progression) to 
the outputs of the system (e.g., exposure, PD response, outcome, or survival). In 
a stochastic simulation, random error is introduced into the appropriate subsys-
tems. For example, between-subject variability may be introduced among the PK 
parameters, like clearance. The outputs of the system are driven by the inputs 
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FIGURE 33.1 Box and whisker plot of average steady-state concentration for 500 simu-
lated subjects as a function of dose using Fisherian (F) and Bayesian simulation (B). Clear-
ance was assumed to be lognormally distributed with a median of 15 L/h and a CV of 30%. 
The parameters in the Fisherian simulation were fi xed. In the Bayesian simulations, median 
clearance was assumed to be normally distributed with mean 15 L/h and a standard error of 
1 L/h. 1/s 2 was assumed to have a gamma distribution with parameters (0.8, 15) leading CV 
to have a range of about 20–54% with a mean of 30%. This data could then be applied to 
a pharmacodynamic model, such as probability of experiencing nausea or vomiting. In this 
case, the solid line denotes the average steady-state concentration leading to a 20% prob-
ability of a patient experiencing severe nausea and vomiting. At doses up to 40 mg once 
daily, no subjects will reach the cut-off value, whereas a signifi cant proportion will with a 
daily dose of 80 mg.
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FIGURE 33.2 Flowchart of a PK/PD simulation at an individual level. Shaded boxes 
denote stochastic elements. Arrows denote the fl ow of information and inputs/outputs from 
a model component. Lines with solid circles denote sampling components.

ELEMENTS OF SIMULATION 855



856 CLINICAL TRIAL SIMULATION: THEORY

into the system and may refl ect something as simple as exposure (area under the 
curve or maximal concentration) or something more complicated, such as survival. 
To be realistic, outputs may be missing at random, censored, or incorrectly coded 
into the database. In a theoretical simulation, missing data are frequently ignored 
but in an actual CTS how missing data occur is very important and can affect the 
simulation’s outcome.

Layered on the input–output model is the trial execution model, which defi nes 
how the clinical trial is conducted. It is at this stage that the dosing regimen is 
defi ned. For example, subjects are randomized to three doses: 10, 20, and 40 mg 
daily for 3 months. At baseline and each month thereafter, PD response is assessed. 
The dosing regimen may be adaptive in the sense that dose reductions are made 
if a patient reaches some exposure threshold that triggers an adverse event. Also 
defi ned at this stage are protocol deviations. Urquhart (11) defi nes three types of 
deviations: study initiation deviations, protocol compliance deviations, and termi-
nation deviations. Examples of study initiation deviations are when patients who 
do not meet the inclusion requirements are accidentally enrolled or patients might 
refuse to enroll in the study. An example of a protocol compliance deviation, which 
is the most common deviation in a study, is when patients do not intake drug with 
equal probability at the same time each day. Instead, dosing could be modeled as 
a process that may change over time and at different times of day. For example, 
dosing could be modeled using the following: at each dosing event a uniformly gen-
erated random number on the interval [0, 1] may be simulated and that subject’s 
dose is not taken if the value is ≤0.01. Hence, there is a 1% chance of a subject 
forgetting to take a dose. Alternatively, dosing compliance could be modeled using 
a more complex Markov chain model (12). Another type of protocol compliance 
deviation is the patient who misses an offi ce visit. Hence, data for that day are 
missing. Or the patient may take a drug that is contraindicated in the protocol. The 
last type of deviation is termination deviations, where individuals drop out from 
the study either randomly or for treatment-related reasons. Trial execution models 
should be as simple or complex as needed.

Once an input–output model is coupled to a trial execution model, the trial may 
be simulated either once or many times. Each time the simulation is executed is 
referred to as an iteration, replicate, or run. For troubleshooting purposes, one 
should always confi rm that the simulation works using a few replicate runs, two to 
fi ve should be suffi cient, before progressing to executing the simulation many times. 
Many stochastic simulations may take days to run and if the simulation does not 
work as performed using a single run, then days may be wasted before fi nding this 
out. In a deterministic simulation, there is no need to replicate the simulation many 
times because the outcome will always be the same. However, with a stochastic sim-
ulation, the outcome could be different every time the simulation is replicated.

Sun et al. (13) differentiate two types of clinical trial simulations: computer-
assisted trial designs (CATDs) and computer-simulated clinical trials (CSCTs). 
CATDs are used to help guide actual, future clinical trials through simulation, 
allowing a user to “test-drive” a clinical study design before actually doing the study. 
CSCTs can be used to determine clinical trial outcomes without ever having to do 
the study and are designed to prevent having to do such a trial. Sun et al. (13) gave 
as an example of CATD the label change for Augmentin® 500 mg three-times-daily 
to 875 mg two-times-daily. Simulations showed similar effi cacy rates between the 



two dosing regimens, which was then confi rmed by one clinical trial. An example of 
a CSCT might be a pharmaceutical company that uses simulation as an argument 
to regulatory authorities that the change in exposure is negligible if a 50% decrease 
in hepatic clearance were to occur, thus little new information would be gained in 
doing a study in patients with hepatic impairment.

A key question in any Monte Carlo simulation is: How many replications are 
needed for suitable accuracy and precision? Often the number of replications is 
based on ad hoc rules. For example, usually 50 or more replicates are suffi cient 
if the goal is to obtain an estimate of an average outcome. However, much larger 
numbers of replicates are needed if the goal is to observe rare events, numbers often 
in the thousands, because rare events rarely occur and large numbers are needed to 
see them. Large replicate numbers are also needed to obtain confi dence intervals 
or estimates of variance components. These ad hoc rules are loosely based on the 
central limit theorem and Chebyshev’s inequality. Assume q̂ i, i = 1, 2,  .  .  .  , n, are 
independent estimates of q, the parameter of interest. Let q̄  be the estimator for 
q and let S be an estimate of the standard deviation of q̂, also called the standard 
error of the estimate. The central limit theorem is based on the law of large numbers 
and roughly states that, for large n, θ θ−( ) ( )S n is approximately distributed as 
a standard normal random variable. So, for example, there is no more than a 5% 
chance that q̄  is more than 1.96 standard errors from q. Chebyshev’s inequality, 
which is more conservative than the central limit theorem, states

p c
n c

θ θ σ
− >⎛

⎝
⎞
⎠ ≤⎛

⎝
⎞
⎠

1
2

(33.1)

In other words, the probability that q̄  is more than c standard errors from q is less 
than or equal to 1/c2. So there is no more than a 26% chance that q̄  is more than 1.96 
standard errors from q. In both cases, as n increases, the standard error decreases, 
and q̄  converges in probability to q.

Ad hoc rules, while useful, may not be rigorous enough to some modelers. For-
tunately, more statistically stringent criteria are also available (14). If the goal is to 
estimate the expected value of some variable, that is, E(q), then fi rst generate 30 
replications of the simulation. Let q̂ i be the ith estimator for q, i = 1, 2,  .  .  .  , n. Let 
S be the standard deviation for all q̂ i and let SE(q) be the standard error of the 
mean estimator, q̄ , which is defi ned by the modeler a priori. Continue replicating 
until S n SE≤ ( )θ , making sure that S and n are updated after each replicate is 
completed. The estimate for q is then given by q̄ = (Σq̂ i)/n. Another similar method 
is based on the 100(1 − a)% confi dence interval for q. First, choose an a-level
(i.e., 0.05) and then replicate the simulation until 2 2Z S n lα < , where l is the 
minimum acceptable length of the confi dence interval defi ned by the modeler a 
priori, updating S and n at each replication. There is very little difference between 
the outcomes of these rules and either may be used.

For a stochastic simulation replicated many times, it would be ineffi cient to 
analyze every single trial one by one. Besides, in a stochastic simulation, the analyst 
is not interested in what happens with a single trial but what happens in the long 
run. Recall that the probability of observing a sample drawn from a continuous 
probability distribution is zero; that is, the probability of observing the number 
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1.65 from a standard normal distribution is zero, but the probability of observing 
a number at least as large as 1.65 is 0.05. The same analogy holds in simulation. 
The probability of observing the results from any particular replicate among many 
replicate simulations is zero. However, the probability of determining an aggregate 
of results from across many different simulations may be determined.

Hence, CTS cannot answer the question “Will this trial succeed?” but rather 
answers the question “What is the probability of this trial succeeding?” One 
outcome frequently reported from a CTS is that of statistical power—the probabil-
ity of declaring the null hypothesis (the hypothesis of no difference) false. Power 
is computed from a stochastic simulation by counting the number of times the null 
hypothesis is rejected divided by the total number of replicates used in the simula-
tion. For example, if 88 runs out of 1000 reject the null hypothesis, the power of 
the trial design is 8.8%. Since this type of analysis is binomial (the trial either fails 
or it succeeds), the (1 − a)% confi dence interval for the power of the trial may be 
calculated using the normal approximation as

ˆ
ˆ ˆ

p Z
p p

n
±

−( )1
(33.2)

where Z is from the standard normal distribution with a/2 critical values and p̂ is 
the estimated proportion of successes, 0.088 in this case. Hence, it may be concluded 
that under the assumptions made in the simulation, there is an 8.8% chance with 
95% confi dence interval of {7.0%, 10.6%} that the clinical trial detects a signifi cant 
difference between treatments.

At this point, a sensitivity analysis may be undertaken to determine which factors 
have undue infl uence on the outcome of the simulation or have little effect. For 
instance, it may be found that in a trial testing doses of 10, 20, and 40 mg that no dif-
ference between the 20 and 40 mg dose is detected in 90% of the simulations. Hence, 
it may be recommended to remove the 20 mg dose from the study as it provides no 
additional information. Alternatively, parameters of the trial may be manipulated 
to increase the power of the simulation. For example, if dosing is changed to twice 
a day from once a day dosing, how does the power of the trial change and how does 
this affect cost to the patient?

33.4 RANDOM NUMBERS1

The backbone of Monte Carlo simulation is the ability to generate random numbers 
because random numbers form the basis of the random draws from a probability dis-
tribution. Computers, because they are based on rules, algorithms, and mathemati-
cal operations, cannot generate truly random numbers. Instead, random numbers 
start from some point in the algorithm, called the seed, and proceed in a linear, 
predictable manner but when examined in the short term appear to be random. It 

1 Parts of this section are reprinted with permission from P. Bonate, Random Number and Random 
Variate Generation. Copyright © 2001, by author.



should be stressed that every random number generator (RNG) has its defi ciencies. 
Early RNGs had poor randomness properties. To make matters worse, after repeat-
edly calling a RNG, eventually the numbers will begin to repeat. The total number 
of random number calls that can be made before the numbers begin recycling is 
called the period. A few years ago, RNGs were limited by periods of ∼231, which 
if the modeler was not careful would result in replications within a simulation that 
were not random, but were instead correlated with previous replications. Modern 
RNGs in use today (which can be found in software like Matlab (Mathworks, 
Boston, MA) or the Pharsight Trial Designer (Pharsight, Mountain View, CA)) 
have periods of more than 2100, which is more than suffi cient for any clinical trial 
simulation. Some software packages, such as SAS (SAS Institute, Cary, NC), while 
still using perfectly valid RNGs, have the old period limitations associated with 
them. But other software packages, particularly Microsoft Excel, not only have 
small periods (∼232) but fail to generate random numbers that are even close to 
being random (15–17).

In order to understand how random numbers are generated, a brief diversion is 
needed in explaining modular arithmetic. Modular arithmetic is sometimes called 
clock arithmetic because it is similar in principle to how we tell time (i.e., it is arith-
metic on a circle instead of a line). For instance, on a clock 7 + 7 is 2. In this case 
the period is 12 h and the operation just described can be written

(7 + 7)mod 12

or

mod(7 + 7, 12)

where mod is called the modulus and is simply the remainder of the division of X/Y.
In this case, 14/12 has remainder 2.

Most random numbers are generated using a multiplicative congruential algo-
rithm (MCA) (18). If Xi is the current random number, then the next random 
number is

X aX Mi i+ = ( )( )1 mod (33.3)

where a is a positive integer called the multiplier and M is the modulus. To obtain 
a number in the interval [0, 1), Xi+1/M is returned instead of Xi+1. Congruential 
algorithms must have a starting point called the seed, which is often an integer. The 
theoretical maximum period is given by M, but in reality, for MCAs the period will 
be much shorter. Probably the best known and widely used MCA is the generator 
by Park and Miller (19). The parameters for their generator are M = 231 − 1 and a =
16,807. Under the algorithm the smallest numbers possible are 0.00000000046566 
and 0.99999999953434. Notice that 0 and 1 are not included in the possible interval. 
This is a common characteristic of MCAs; 0 and 1 are not possible. This algorithm 
repeats itself after 231 − 2 numbers are generated. While this may seem a large 
number, on a Pentium class PC the algorithm can be exhausted in as little as a 
couple of hours.
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A modifi cation of the multiplicative generator is the linear congruential algo-
rithm (LCA) or generator. If Xi is the current random number, then the next 
random number is

X aX c Mi i+ = +( )( )1 mod (33.4)

where c is a positive integer greater than zero called the constant. LCAs have 
better nonrepeating properties than MCAs. As a simple example, if M = 16, a = 2, 
c = 3, with a starting seed of 2, then the sequence of random numbers is shown in 
Table 33.1.

Once the sequence gets to 13, it repeats ad infi nitum. This is clearly not a good 
RNG. M, a, and c must be chosen very carefully and this is where RNGs get into 
trouble. What distinguishes a good RNG from a bad RNG is the choice of a, c,
and M. First, c and M can have no common divisor. Second, a − 1 should be a 
multiple of p, where p is every prime number that divides M. Third, if 4 divides 
M exactly then 4 must divide a − 1 exactly. In the example above, c and M have 
no common prime, which meets the fi rst criterion. And there is only one prime 
number that divides 16 and that is 2. Therefore, a − 1 must be a multiple of 16 or 
2, 4, 6, 8, 10, 12, or 14. Since 16 is divisible by 4, then a − 1 must be divisible by 4 
as well. That leaves 4, 8, and 12. Then a can equal 5, 9, or 13. If a = 9 then the fol-
lowing sequence of numbers is generated: 2, 5, 0, 3, 14, 1, 12, 15, 10, 13, 8, 11, 6, 9, 
4, 7, 2,  .  .  .  . Notice that the entire sequence is used before recycling. This is a trait 
of a good RNG. Two last things need to be pointed out here. First, with a LCA, 
it is possible for zero to be a generated value, although one may still not occur. 
Second, suppose that one sorted the possible values obtained using the generator 
M = 16, a = 9, c = 3, then the following random numbers are obtained: 0.00000, 
0.06250, 0.12500, 0.18750, 0.25000, 0.31250,  .  .  .  , 0.81250, 0.87500, 0.93750. Notice 
that numbers between 0 and 0.0625 do not occur, nor do numbers between 0.0625 
and 0.125, and so on. All random number generators produce discrete values and 
this discreteness is one reason why they are never truly random. Thus, RNGs are 
really pseudo-RNGs.

Some of the more current RNGs use alternative algorithms, like nonlinear recur-
sion or multiple recursion, but these are beyond the scope of this chapter. These 
new algorithms have periods of more than 2100 (the Mercenne Twister has a period 
of 219937 − 1!) and therefore have better randomness properties. They are fi ve- to 
tenfold slower than linear algorithms, however.

TABLE 33.1 The Linear Congruential Algorithm (LCA) 
Generator

Xi aXi + c = 2Xi + 3 Mod 16

 2 (seed)  2 · 2 + 3 = 7  7
 7  2 · 7 + 3 = 17  1
 1  2 · 1 + 3 = 5  5
 5  2 · 5 + 3 = 13 13
13 2 · 13 + 3 = 29 13
13 2 · 13 + 3 = 29 13
Repeats



33.5 SIMULATING CONTINUOUS RANDOM VARIABLES

All random draws from a probability distribution begin with a “random” draw from 
a uniform distribution from the interval (0, 1) (see Figure 33.3). From uniformly 
generated random variates, most any probability distribution function (pdf) can be 
simulated using one of the following approaches:

• Inverse transformation
• Acceptance–rejection
• Convolution
• Decomposition (Composition)

Each of these methods is briefl y discussed. The reader is referred to Ross (14) and 
Law and Kelton (20) for more details.

An example of inverse transformation is the exponential random variable X
with mean 1/l and variance 1/l2, which has cumulative distribution function 
(CDF)

F X X X( ) = − −( ) ≥ >1 0 0exp , ,λ λ (33.5)

Uniform

NormalLog-
Normal

Chi-
Square

Student's-t F-distribution

Gamma

Weibull Exponential

Poisson

Discrete

Mixture
Normal

Mixture
Log-Normal

Erlang

FIGURE 33.3 Interrelationships between uniformly distributed random numbers and 
commonly used probability distributions. All probability distributions arise from the uniform 
distribution.
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If we set U, a random variate on the interval (0, 1), equal to F(X) and solve for X,
then

X F X U= ( ) = − −( )−1 1
1

λ
ln (33.6)

Hence, we can generate an exponential random variable by generating a random 
variable U and then use Eq. (33.6) to draw a sample from an exponential distri-
bution with mean l. This method of simulating continuous variables is called the 
inverse transformation method. Although the method can be applied to any dis-
tribution, either continuous or discrete, the problem with the inverse transforma-
tion approach is that it is often diffi cult to invert the CDF, if it even exists, to an 
analytical solution.

An example of the acceptance–rejection method is simulating from a Poisson 
distribution, which is frequently used to model count data. Poisson random vari-
ables have mean and variance l. Poisson random variates can be simulated by the 
following algorithm:

Step 1. Generate a random number U on the interval (0, 1).
Step 2. Set m = 0, p = exp(−l), F = p.
Step 3. If U < F, set X = m and stop.
Step 4. p = lp/(m + 1), F = F + p, m = m + 1.
Step 5. Go to step 3.

Another example of acceptance–rejection is an early method to simulate 
random draws from a standard normal distribution called the Box–Muller 
transformation (21). If U1 and U2 are random variates on the interval (0, 1), then 
the variates

Z U U1 1 22 2= − ( ) ( )ln cos π (33.7)

Z U U2 1 22 2= − ( ) ( )ln sin π (33.8)

are independent standard normal deviates with mean 0 and variance 1. This method 
has been criticized because it is slow (it has many calls to functions within a math 
library (square root, cosine, and natural log)) and can be particularly unstable 
when U1 is close to zero due to taking the natural log of a very small number. The 
advantage of the method is that there is a one-to-one transformation of uniform 
random variables to normally distributed random variables such that there is no 
loss of effi ciency.

Once a standard normal deviate is generated, it can be transformed to a normal 
distribution with arbitrary mean m and variance s 2 by the transformation

X Z= +μ σ (33.9)

Often it is necessary to generate variates X and Y that are not independent but are 
correlated. In this case, bivariate correlated random variates can be generated as 



follows. If Z1 and Z2 are independent standard normal deviates with mean 0 and 
variance 1, then let X = Z1 and

Y Z Z= + −ρ ρ1
2

21 (33.10)

where r is the desired correlation between X and Y.
A third method to simulate random variables is convolution, where the desired 

random variates are expressed as a sum of other random variables that can easily 
be simulated. For example, the Erlang distribution is a special case of the Gamma 
distribution when the shape parameter is an integer. In this case, an Erlang random 
variate with shape parameter b can be generated as the sum of b exponential 
random variates each with mean a. A last method to simulate random variables 
is decomposition (sometimes called composition), where a distribution that can be 
sampled from is composed or decomposed by adding or subtracting random draws 
into a distribution that cannot be simulated. Few distributions are simulated in this 
manner, however. These last two methods are often used when the fi rst two methods 
cannot be used, such as if the inverse transformation does not exist.

33.6 SIMULATING DISCRETE RANDOM VARIABLES

Discrete random variables are actually quite simple to simulate. Suppose there 
are k discrete categories with probability pi, i = 1, 2,  .  .  .  , k, Σpi = 1. Determine the 
cumulative probabilities for each group. Then simulate a random variable U on 
the interval (0, 1) and determine within which category U is found. For example, 
suppose smoking status was being simulated with three categories shown in 
Table 33.2. Now a random variate U was simulated with value 0.52. Since 0.52 ≤
0.67, the corresponding category is “Not a smoker.”

A similar algorithm can be applied for categorical variables with k × m categories. 
For example, suppose smoking status was then stratifi ed by sex (to form a 3 × 2 
table) such that the probabilities within each cell were as given in Table 33.3. This 
table can be broken down into the cumulative probability table shown as Table 33.4. 

TABLE 33.2 Simulation of Smoking Status

Category pi Cumulative Probability

Not a smoker 0.67 0.67
<1 pack a day 0.20 0.87
≥1 pack a day 0.13 1.00

TABLE 33.3 Smoking Status Stratifi ed by Sex

Category Males Females

Not a smoker 0.32 0.35
≤1 pack a day 0.13 0.07
>1 pack a day 0.10 0.03
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Now a random variate U with value 0.85 is simulated. Since 0.55 ≤ 0.85 < 0.90, the 
simulated value is a female who does not smoke.

33.7 SOFTWARE

Many different software packages exist for simulating clinical trials or PK/PD 
studies. Which one to use usually depends on the user. Some software is specifi cally 
designed to simulate PK/PD outcomes within the context of a clinical trial design, 
such as the Pharsight Trial Simulator. Then there are more general simulation lan-
guages with graphical user interfaces (GUIs), such as Simulink (Mathworks, Natick, 
MA). While GUIs are useful, they are often limited to what the developers include 
in the software, sometimes leaving the user caught between a rock and an upgrade. 
Programs such as NONMEM (Globomax LLC, Hanover, MD), WinNonlin (Phar-
sight Corp., Mountain View, CA), or ADAPT II (University of Southern California 
Biomedical Simulations Resource) were designed for model fi tting and develop-
ment, but can be used to simulate data. However, they must be used in conjunction 
with another program, like SAS (SAS Institute, Cary, NC) or S-Plus (Insightful 
Corp., Seattle, WA) as they cannot simulate data within the context of a clinical 
trial (i.e., they are dependent on the inputs supplied by the user and cannot simulate 
those inputs). Lastly, there are programming languages. While the most diffi cult 
to use, they are also the most fl exible. These include Matlab (Mathworks, Natick, 
MA), Gauss (Aptech Systems, Maple Valley, WA), the IML procedure within SAS, 
and S-Plus. A common combination of software used to simulate clinical trials is 
the use of NONMEM and SAS or NONMEM and S-Plus, allowing the user to take 
advantage of NONMEM’s large library of PK models (see Figure 33.4).

33.8 APPLICATION OF M&S IN DRUG DEVELOPMENT AND 
REGULATORY REVIEW

Much has already been written on the role of M&S in drug development (8, 10, 
22–24). All of these reviews present examples of simulation in drug development. 
However, the examples reported in these reviews are often brief, lacking detail or 
insight. Rather than reprint what has already been reviewed, it was thought a more 
informative approach would be to present two case studies, one from the pharma-

TABLE 33.4 A Cumulative Probability Table from 
Table 33.3

Category Cumulative Probability

Not a smoker, male 0.32
≤1 pack a day, male 0.45
>1 pack a day, male 0.55
Not a smoker, female 0.90
≤1 pack a day, female 0.97
>1 pack a day, female 1.00



APPLICATION OF M&S IN DRUG DEVELOPMENT AND REGULATORY REVIEW 865

ceutical industry and one from the regulatory point of view, in suffi cient detail so 
as to illustrate the methodology.

Darbepoetin alfa (Aranesp®) is in the class of recombinant human erythropoietin 
proteins that has greater in vivo potency than recombinant human erythropoietin 
(r-HuEPO) through the addition of N-linked sialic acid side chains on the amino 
acid backbone of the protein. Darbepoetin alfa stimulates the production of red 
blood cells (RBCs) for the treatment of chemotherapy-induced anemia and in 
patients with chronic renal failure. The recommended dose is different between 
the indications. In patients with chemotherapy-induced anemia, the recommended 
starting dose is 2.25 mg/kg administered as a weekly subcutaneous (SC) injection 
with the weekly dose adjusted to maintain a target hemoglobin (Hgb). The dose 
should be increased to 4.5 mg/kg if the Hgb increase is less than 1.0 g/dL after 6 weeks 
of treatment. The dose should be reduced 25% if either the Hgb exceeds 12 g/dL or 
the increase in Hgb is more than 2.0 g/dL. Dosing should be withheld until the Hgb 
falls to at least 12.0 g/dL if the Hgb exceeds 13.0 g/dL, at which point dosing should 
be reinitiated at ∼25% below the previous dose.

Alternative dosing strategies have been proposed to take advantage of the longer 
half-life of darbepoetin alfa compared to r-HuEPO. One regimen of 3 mg/kg every 
2 weeks was shown to be equally effi cacious as 40,000 U r-HuEPO once weekly. 
Dosing a patient based on their body weight may add an additional layer of com-
plexity to the dosing regimen that might not be necessary. Hence, Jumbe et al. (25) 
used CTS to determine whether a fi xed dose of darbepoetin alfa (200 mg every 2 
weeks) has the same outcome as a weight-based dose of darbepoetin alfa (3 mg/kg
every 2 weeks).

Data was pooled from three clinical trials (547 patients) studying the use of 
darbepoetin alfa in the treatment of chemotherapy-induced anemia. Serial PK and 
PD (Hgb concentrations) measurements were collected throughout the studies and 
merged into a single database along with patient-relative covariates. A popula-
tion PK/PD model was developed that simultaneously modeled darbepoetin alfa 

FIGURE 33.4 Schematic illustrating how NONMEM and a more generalized software 
program, like SAS (SAS Institute, Cary, NC) or S-Plus (Insightful Corp., Seattle, WA), can 
be used to interact and simulate clinical trials.
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concentration–time profi les, as well as Hgb–time profi les (see Figure 33.5). The CTS 
was then developed encompassing the following elements:

• Model parameters and their associated between-subject variance estimates 
from the PK/PD model were fi xed to their fi nal values.

• The patient population demographics (body weight and baseline Hgb concen-
trations) were defi ned based on observed baseline values observed across the 
three studies.

The following study design elements were incorporated in the simulation:

• Dosing was every other week for 12 weeks by SC administration based on 
either weight or fi xed dose.

• A transfusion was simulated if Hgb declined below 8.0 g/dL, whereby data 
from these patients were censored for the next 4 weeks.

• Dosing was withheld if Hgb was ≥14.0 g/dL in women or ≥15.0 g/dL in men.
• Censoring was randomly implemented to coincide with the censoring rates in 

the clinical trials.
• Other protocol elements, such as defi nition of response or sampling for PD 

analysis every 2 weeks, were incorporated.

Five thousand subjects per treatment arm were simulated. Summary statistics 
were used to defi ne the mean Hgb concentration, along with its associated variabil-
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FIGURE 33.5 Schematic of darbepoetin alfa PK/PD model. Darbepoetin alfa concentra-
tions were modeled using a one-compartment model with absorption and lag time. Hgb 
concentrations were modeled using an indirect response model where darbepoetin alfa 
concentrations in the central compartment stimulate an increase in RBC production at the 
precursor stage via an Emax model. RBCs then mature at a constant rate (kt) and manifest 
as a change in Hgb. Sampling compartments are denoted with lines with solid circles as an 
arrowhead.
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ity, at each sampling point, which were then compared across treatment arms and 
to actual clinical data collected from 33 patients who were dosed subcutaneously 
every other week at the dose of 3 mg/kg darbepoetin alfa.

The results are presented in Figure 33.6. No difference was observed in mean 
change from baseline in Hgb concentrations or in their associated variability over 
time between any of the groups. The proportions of subjects who were declared pos-
itive responders in the observed, simulated weight-based, and simulated fi xed-dose 
treatment groups were 60%, 77%, and 76%, respectively. No statistical difference 
was observed between these percentages based on their overlapping confi dence 
intervals. Lastly, the percentages of patients requiring transfusion in the weight-
based and fi xed-dose treatment groups was 21% and 22%, respectively, compared 
to 16% in the actual observed patients. The higher transfusion rates in the simu-
lation treatment groups were suspected to be due to the objectivity of having a 
transfusion in clinical practice compared to the yes/no condition defi ned in the 
simulation. In summary, these results indicated that dosing per body weight would 
be an unnecessary complexity and that dosing could proceed based on a fi xed 
dosing regimen, as long as dosing still proceeded based on individual titration to 
target Hgb values.

Although the results of this analysis have not resulted in a change in the Dosage 
and Administration section in the Aranesp® product label, based on the results 
of the simulation, US Oncology, one of the largest oncology consortium in the 
United States, decided in 2003 to implement a fi xed dosing regimen of 200 mg every 
other week provided Hgb concentrations are maintained at target levels. Thames et al. 
(26) did a retrospective chart review of US Oncology’s practice in 333 patients dosed 
under these guidelines (174 were previously treated with epoetin alfa and 156 were 
darbepoetin alfa naive) and found that a “darbepoetin alfa starting dosage of 200 mg
every 2 weeks is effective in both naive patients and in those switched from epoetin 

FIGURE 33.6 Scatterplot of mean Hgb change from baseline over time in the simulated 
treatment arms and in 33 patients who were dosed once every other week subcutane-
ously with 3 mg/mL darbepoetin alfa. Data are reported as the mean ± standard deviation. 
(Reprinted with permission from Ref. 25.)
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alfa.” They also found that transfusion rates were about 15% in both the switched 
and naive treatment groups, which was very near the 16% observed when dosing 
was done on a weight basis. This simulation illustrates the complexity involved in 
designing and implementing CTS and illustrates the practical benefi t of using CTS 
in this case—a reduction in the complexity of the dosing regimen.

M&S is not limited to use by the pharmaceutical industry. Frequently, regulatory 
authorities are using it, sometimes with far-reaching results. Recently, Genta, Inc. 
(Berkeley Heights, NJ) submitted to the Food and Drug Administration (FDA) 
a New Drug Application (NDA) for their oligonucleotide Genasense for use in 
combination with dacarbazine (DTIC) in the fi rst line treatment of patients with 
advanced melanoma. Genta submitted results from a single, randomized Phase 3 
study of DTIC versus DTIC plus Genasense in 771 patients. The primary endpoint 
was survival, which was not statistically signifi cant (p = 0.18). However, the second-
ary endpoint of progression-free survival (PFS) did show a benefi t from 49 days with 
DTIC to 74 days with DTIC plus Genasense (p = 0.0003) using a last-observation 
carried forward approach to handling censored data. Despite failing to meet their 
primary endpoint, Genta, Inc. was requesting approval of DTIC in combination 
with Genasense based on the secondary endpoint of PFS.

In May 2004, the Oncologic Drug Advisory Committee (ODAC) met to discuss 
Genta’s application. Presented at the meeting were the results of a simulation per-
formed by the FDA. The protocol defi ned disease-free progression as the date on 
which a scan or measurement was made, not the date of offi ce visit. If patients in 
one group are assessed at a later date than patents in the other group, the docu-
mented date of disease-free progression would be longer in the former group, even 
if the two groups were equal. Because of a peculiarity in the study design due to 
drug administration, patients in two treatment groups were not assessed at the 
same time after the start of the trial. Assessment of patients in the combination 
arm were slightly delayed compared to patients in the control arm. Using Monte 
Carlo simulation, the FDA showed that the statistically signifi cant results produced 
by the sponsor could be an artifact of the trial design and not due to any real drug 
effect.

This simulation is important for a number of reasons. First, it represents the 
fi rst real use of simulation by the FDA to question the results from a clinical study. 
Second, it is informative to listen to a comment made by one of the ODAC members 
after the FDA presented the results of their simulation. The member stated: “I am 
sure the 11 or so patients out there still in remission will be disturbed to know that 
modeling suggests that they shouldn’t be there.” Clearly, the simulation carried no 
weight with the physician. This comment highlights a particular problem with simu-
lation in general and that is the credibility gap between modeling and simulation. To 
most, developing models is one thing, using them is another. The use of simulation 
in making decisions requires putting one’s faith in the model and the assumptions of 
the simulation. When the 16 members of ODAC were asked whether they believed 
the observed difference in progression-free survival was real, six members voted 
“yes.” When members were asked whether the difference in response rate and PFS 
for the combination of DTIC and Genasense versus DTIC alone provided substan-
tial evidence of effectiveness that outweighed its potential for increased toxicity in 
chemotherapy naive patients with metastatic melanoma, only three members voted 
“yes.” Although the conclusion that members rejected Genta’s fi ndings because 



of the results of the simulation cannot be defi nitely made (in fact, their responses 
would tend to indicate otherwise), it cannot be denied that the committee did in 
fact reject the sponsor’s conclusions and rejected their NDA.

33.9 SUMMARY

CTS sounds daunting. To think that you can simulate a process as complicated 
as a clinical trial simply sounds crazy. I personally believe that CTS has suffered 
because of the use of this phrase. But, simulation is nothing more than applied 
modeling. The principles involved are the same principles that have guided Monte 
Carlo simulations for the last 50 years. First, a model is needed. Second, the sources 
of variability in the model parameters must be understood, as does how those 
parameters are correlated. Third, once the system is defi ned, an input design must 
be defi ned. The process is simulated and the outputs are examined for averages, as 
well as extrema. There are no black boxes in this process—no smoke and mirrors 
as I have heard some people call it. The processes involved are the same as those 
used in other fi elds, including aerospace, manufacturing, and business. Many soft-
ware packages aim to simplify the process by making the inner workings more 
consistent and credible across users, but it is still nevertheless important for the 
user to understand how these programs work and what to do when they cannot 
do what is needed.

It remains to be seen what impact CTS will have on drug development—whether 
it will become an integral part of the process or will become a specialized tool 
to be utilized on a case-by-case basis. For the former to occur, M&S must gain 
greater exposure, not among pharmacokineticists and pharmacometricians, but 
among others impacted by its use like clinicians, project managers, and clinical 
research associates. While one likes to be recognized by peers, presenting the results 
of an analysis at meetings geared toward other pharmaceutical scientists, like the 
American Association of Pharmaceutical Scientists (AAPS), will not necessar-
ily advance the cause of M&S in drug development. Pharmacokineticists must 
be willing to present their results at more clinically oriented meetings, like the 
American Society of Clinical Oncology, or more general research oriented programs 
like the Drug Information Association. Presenting at AAPS is like preaching to the 
choir; pharmacokineticists are aware of the methodology and want to implement it 
in their job, but in order to do so must convince the senior leadership in an organi-
zation. Only by making them aware of the methodology will M&S be accepted as 
an integral part of the drug development process.
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34.1 INTRODUCTION

In recent years modeling and simulation methods have been increasingly used to 
construct both clinical and preclinical programs and individual studies (1). Simula-
tion has been used to identify optimal study architecture for clinical and preclinical 
pharmacokinetic (PK), pharmacodynamic (PD), and scale-ups for fi rst-time-in-
human (FTIH) studies. Simulation has also been used to create data for com-
munication and graphics, so that the meaning of research can be understood by 
individuals not involved in pharmacometrics (2). It is conceivable that in the not 
too distant future as a greater understanding of drug action is realized, late phase 
clinical development may be minimal or become unnecessary. At that point in time 
several learning trials will be executed and the results of these trials will be applied 
to virtual patients to determine the outcomes of drug administration.

Modeling and simulation are especially useful when several critical issues con-
cerning study structure need to be addressed simultaneously. These issues may 
include dropout rates (especially if related to dose), deviations from protocols 
by the subject, deviations from protocol by the practitioner, and nested levels of 
random effects. Such issues have not been addressed when approaches to study 
structure were based on prior experience, intuition, and empiricism.

Modeling and simulation are a team effort. Several disciplines must be involved 
in the entire exercise to eventually simulate studies, where there is “buy in” from 
all stakeholders involved in the drug development process. Prior to a modeling and 
simulation exercise, appropriate PK, PD, physiology, pathophysiology, and future 
marketing strategies must be identifi ed; all knowledge must be discovered from all 
available data (see Chapter 14).

It has been pointed out that modeling and simulation should be guided by clarity, 
completeness, and parsimony.

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene I. Ette and 
Paul J. Williams
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Clarity. The report of the simulation should be understandable in terms of scope 
and conclusions by intended users such as those responsible for committing 
resources to a clinical trial (see Chapter 37).

Completeness. The assumptions, methods, and critical results should be described 
in suffi cient detail to be reproduced by an independent team.

Parsimony. The complexity of the models and simulation procedures should 
be no more complex than necessary to meet the objectives of the simulation 
project. Program codes suffi cient to generate models, simulate trials, and 
perform replication and simulation project level analyses should be retained 
but there is no need to store simulated trials and analysis results that can be 
reproduced from these codes (3).

When guided by these principles, simulation in drug development will be stream-
lined and effective.

The remainder of this chapter deals with the elements of the overall process for 
an overall project. These include simulation project assessment, project planning, 
project execution, project reporting, and project utilization.

34.2 EXECUTION OF THE SIMULATION EXERCISE

34.2.1 Simulation Project Evaluation

For simulation to be considered in the drug development scheme, someone involved 
in the development of a therapeutic agent must realize that it may contribute 
signifi cantly to the successful development of the agent, by increasing either the 
probability of approval or the profi tability. Simulation can contribute to approval 
by providing the knowledge necessary for the design of studies that can meet regu-
latory requirements and studies that increase the likelihood of success by being 
more powerful. Profi tability can be increased by aiding the proper positioning of the 
agent, shortening timelines to approval, decreasing the number of studies needed 
for approval, or decreasing individual study cost.

Once the potential value of executing a simulation has been recognized, the fea-
sibility of the project must be determined. To evaluate the feasibility of a project 
one must assess the current state of knowledge for the agent, evaluate the timeline, 
and propose a budget. The investigators brochure and all other relevant studies 
(both clinical and preclinical) must be obtained along with the current proposed 
study protocol. These must be reviewed and then discussed with those currently 
involved in the development process. Of note, it is important to involve those who 
will eventually be marketing the drug to ask what properties of the agent would 
improve marketability.

Pivotal issues to be addressed when determining feasibility are:

1. Is the project really needed in light of prior knowledge?
2. Will the simulation project add value to the drug?
3. Can the simulation project be executed without compromising current 

timelines?
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4. If the current timeline is compromised, will the simulation add value to the 
overall drug development process to a such a degree that it is worthwhile?

5. Are the necessary human and monetary resources available for the project?
6. Do existing data and models provide adequate background to make a simula-

tion worthwhile?

34.2.1.1 Project Necessity
The necessity of the project must be evaluated. This can only be done after review 
of all documents, the study plan, and current data, and discussion with the current 
development leaders for the agent. It may be that suffi cient knowledge has already 
been created for the project to proceed. It is important to address the trade-offs 
of doing versus not doing the simulation project. If, for example, a Phase 2 study 
has already documented effi cacy, the dosing strategy, optimal patient selection for 
Phase 3, and Phase 3 would then be executed as a formality and for assessment of 
adverse events. In that case a modeling and simulation may not be necessary.

34.2.1.2 Project Completion Without Compromising the Timeline
Very often models have not been developed for use in the ensuing study, and 
therefore for the simulation project, models must be developed. Developing and 
validating pharmacometric models can be time consuming. If the simulation was 
not originally proposed in the development process, the timeline for approval may 
be compromised. Any delay in development will necessitate that the role of the 
simulation be scrutinized. However, the delay in the timeline may be defensible, 
based on an increased certainty of outcomes of the proposed study, the generation 
of other knowledge that could support registration, or aiding in supporting a go/no-
go decision. A strategy should always be in place to execute the needed models 
as early in the development process as possible. Real-time data collection should 
be done whenever possible. If blinding is a problem, real-time data collection and 
assembly should be done offsite. Furthermore, it is possible to develop pharma-
cometric models for two purposes; one for regulatory approval and the other for 
use in a simulation exercise. Thus, one may obtain representative data prior to 
locking of the data set, especially if there is real-time data collection. These data 
could be used to expeditiously develop and validate a model for the next stage of 
development.

34.2.1.3 Project Resources
Prior to execution of the project, a serious look at resources required for the simu-
lation project execution must be evaluated. Resources mean more than simply the 
fi nancial budget. It includes people with the requisite skill set, experience, and 
knowledge base to execute the project. One must also address whether the neces-
sary computational facilities and softwares are available. If personnel, expertise, or 
computational facilities are inadequate yet funding is available, then outsourcing 
the project to a contract research organization (CRO) would be an option. When 
working with a CRO one must ensure that the contract is very specifi c regarding 
the deliverables and timeline. Templates provided to the CRO are of great value 
when working outside one’s own organization. Finally, these contracts need to be 
executed in a timely manner to ensure projects are completed on time.
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34.2.2 Project Plan

34.2.2.1 The End User
Planning begins with the consumer of the simulation outcome in mind. The pharma-
cometrician has to be conscious of who the end user of the simulation will be and 
be certain to include the individual who will be making critical decisions, such as a 
go/no-go decision on the project. At this point the end user of the simulation drives 
the process; therefore, listening is a crucial quality the pharmacometrician must 
possess. It is important to play back to the end user what they have said to be certain 
that there is an understanding of all aspects of the project. The pharmacometrician 
should not ask questions until the end user has fi nished making his/her point.

34.2.2.2 Project Purpose
When planning a simulation project, the purpose and intended use of the simulation 
must be clearly stated. It is the purpose that drives the modeling and simulation 
process. The clearly stated purpose and intended use of the simulation outcome 
provide bases for all decision and actions related to the project. The purpose and 
intended use must be agreed to by all stakeholders in the simulation project.

34.2.2.3 Project Team
The purpose and intended use of the model will determine who the simulation 
team members are. The team members should cross several disciplines and all 
pivotal stakeholders need to be identifi ed. The decision maker for future projects 
and development should be included in the team because it would be extremely 
frustrating to execute a simulation and, in the end, have it rejected by the end user 
or by the project decision maker. After the end user and decision makers have 
been identifi ed, content experts must be added to the team. This would most often 
include disease experts, statisticians, PM experts (PK and PD experts), computer 
programmers, and pharmacologists. Individuals from regulatory and marketing are 
often available for the purpose of identifying what kinds of knowledge would be 
valuable to gain approval or to optimize the product’s position in the marketplace. 
If there are health-care related cost issues, a member with a background in phar-
macoeconomics would be of value. The team should include a simulation team 
facilitator who should be a simulation expert. The facilitator’s role is to oversee 
the project, conduct expert interviews, gather unbiased assessments, evaluate the 
models, direct the execution of the project, assign each team member a specifi c 
role, and communicate the results. Once the team has been identifi ed, planning of 
the project can begin.

34.2.2.4 The Project Plan
Clinical trials always have detailed plans and protocols that describe the objectives, 
hypotheses, assumptions, data collection methods, data analysis methods, and so 
on. In like manner, the simulation plan describes a simulation process that is agreed 
to by the simulation team. The plan describes the work to be done, records to be 
maintained, and reports to be written. This plan should be written in enough detail 
so that another researcher could pick it up and execute the simulation with corre-
sponding results. The plan must be critiqued and modifi ed if needed. The prepara-
tion of the plan also provides an opportunity to evaluate objectives, assumptions, 
methods, and goals of the project.
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The overall objectives of the simulation and how the simulation will be used must 
be clearly stated in the plan. These will drive model selection and the approach to 
the execution of the simulation.

If a model must be developed, the model building process must be described, 
data retrieved, and the model report generated. This process is described in detail 
in Chapters 8, 14, and 15.

The assumptions of the simulation must be clearly stated. These include the 
structure of the PK, PD, outcomes, and covariate infl uence models with the stated 
values of each parameter. For the execution model, assumptions are made concern-
ing deviations from the protocol, missing data, and patient compliance with the pre-
scribed treatment regimen. The information foundation of the assumptions should 
be stated; the assumptions are either data and model based, theoretically justifi ed, 
opinions of domain experts, or conjecture. Premises of greater certainty will often 
remain unchanged during the simulation process but those of less certainty may be 
varied to evaluate the fi nal trial for robustness.

The fi nal data analysis approaches for the simulated data must be specifi ed. 
Software that will be employed should be stated. Standard operating procedures 
should be referenced.

The design of the simulation study must be stated. For each study the number 
of replications that will be performed, the factors (e.g., number of subjects, dose 
enrollment strategies, dropout rates, compliance) and to what degree these factors 
can be varied, how the robustness of the design will be assessed, and the required 
informativeness of the study design must be stated. The impact of varying joint 
factors must also be considered. The number of replications will vary depending 
on whether only typical outcomes or also atypical outcomes are of interest. Those 
studies and simulations where atypical or fringe outcomes are of interest will require 
more replications. An example of a fringe outcome would be the 5th and/or 95th 
percentiles of a biomarker. 

There are three distinct features for each simulation model that must be addressed 
in the simulation plan. The fi rst are the input–output (IO) models that describe the 
PK/PD–outcomes models. The inputs here are the rates of drug administration and 
the outputs are things such as drug concentrations or biomarkers. These IO models 
should have stochastic elements as part of the model such as between-subject vari-
ability and residual variability. It is of primary importance here that the complete 
probability distribution of the outputs be described in the planning. IO models may 
be mechanistic or empirical. Mechanistic models attempt to portray the model at 
the physiological or biochemical level while empirical models simply describe the 
IO model. Mechanistic models are preferred for simulation as they are more likely 
to be extrapolated to other studies or drugs in the future.

It is important to incorporate this I/O model parameter uncertainty in the simula-
tion of clinical trials. In order to implement parameter or model uncertainty in the 
simulation model, the typical values (mean values) of model parameters are usually 
defi ned as random variables (usually normally distributed), where the variance of 
the distribution is defi ned as standard error squared. The limits of the distribution 
can be defi ned at the discretion of the pharmacometrician. For a normal distribu-
tion, for example, this would be q ± 2 SE, where q is the parameter. This would 
include 95% of the simulated distribution. When the simulation is performed, each 
replicate will have different typical starting values for the system parameters. The 
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output can then be combined for all replicates and the outcomes of interest studied 
over a more representative range of variability.

The covariate distribution models, which describe the characteristics of the 
population (weight, height, sex, race, etc.), must be determined and used for the 
creation of the study population. The virtual subjects are drawn from a probability 
distribution that can be one of many types (normal, lognormal, binomial, uniform) 
but that needs to be described in the study plan. For assignments to sex one must 
account for what proportion of patients will be female versus male. Furthermore, 
when creating this population the joint distribution of variables such as height and 
weight or sex and size must be accounted for. This then leads to the execution 
model.

The importance of the execution model cannot be overemphasized. The execu-
tion model describes how the study is carried out and deviations from the protocol. 
There are deviations from the protocol that are done by the patient such as refusal 
to enter the study, dropouts, and patient noncompliance. Other deviations are due 
to practitioner behavior such as missing data, wrong recording of data, or improper 
preparation of doses. It must be decided whether the deviations are completely at 
random or if there is some infl uencing factor that may result in protocol deviations. 
For example, would patients experiencing adverse events have a greater tendency 
to drop out of the study?

As a part of planning, each member of the simulation team must be aware of 
his/her individual assignments, the deliverables, and timelines. The team members’ 
responsibilities must be stated explicitly and the simulation team facilitator must 
assure that all members fulfi ll their responsibilities in a timely manner.

One often overlooked but important part of the plan is for an evaluation of the 
simulation results when compared to the fi nal study. This must be planned for. 
Simulation performance criteria must be stated prior to the completion of the fi nal 
study.

Report templates are often included in the plan. These can be useful as they 
ensure that important outputs from the simulation project are generated and 
reported. These templates can include due dates to ensure timely delivery of 
required inputs and outputs for the simulation project. It is also import to note 
who will generate and receive the information from these report forms. Often, 
these templates can be used in future studies either without modifi cation or with 
only slight modifi cation.

34.2.3 Execution of the Project Plan

A simulation project is an iterative process. Therefore, the team must meet 
periodically once the simulation is being executed. The simulation is initiated per 
the simulation protocol. However, some things may change during the execution 
of the simulation, such as underlying assumptions, or the simulation may show 
problems that need to be addressed by the team. There may need to be changes in 
the simulation protocol or the simulation may show fl aws in the end study design 
that should be addressed expeditiously. All affected members of the team should 
be informed of any proposed changes, especially the end user and decision makers. 
If there are any changes in the simulation assumptions, then all stakeholders should 
be notifi ed.



A report of the results of the simulation must be generated. The written report 
will have the data, assumptions, deviations from the simulation plan with justifi ca-
tions, results, conclusions, recommendations, program scripts, simulation outputs, 
and supporting literature. The initial draft should be reviewed by the simulation 
team prior to release to the clinical development team. The fi nal document should 
be archived.

34.2.4 Applying the Results of the Simulation

The results of the simulation are reported most importantly to the end users and 
decision makers. The written report is circulated and a team meeting scheduled. 
The recommendations and reasoning behind any recommendations and options to 
the recommendations are made concerning the structure of the simulated study. It 
is important to keep the report and reporting as simple as possible; any presenta-
tion with an excessive amount of verbiage or slides is likely to be ignored. The end 
users and decisions makers will for the most part be interested only in the bottom 
line of the simulation results. Very often at this point, additional simulations are 
requested by the clinical development team.

34.3 MISCELLANEOUS POINTS TO CONSIDER

34.3.1 Written Standard Operating Procedures (SOPs)

For organizations that frequently engage in modeling and simulation projects, 
SOPs are of great value. These should be coupled with templates, practice 
guidelines, policies, and other similar documents. These documents will help in 
providing structure to the modeling and simulation process and will expedite the 
process when repeated. These documents should be reviewed and updated on 
occasion.

34.3.2 The Problem of Blinded Studies and Data Access

For studies where blinding is a necessity, access to the data is seldom available 
prior to locking of the database. This causes a problem because the time between 
locking the database and the writing of the next protocol is not usually suffi cient to 
complete a modeling and simulation project. A solution to this problem is off-site 
real-time data collection combined with off-site modeling and possibly simulation. 
An example would be the execution of a Phase 2a study, the results of which will 
eventually be used to design a Phase 2b study. One may need only a portion of 
the Phase 2a results (say, only 80% of the Phase 2a data, which would be added to 
Phase 1 PK/PD data) to develop a PK/PD–outcomes model. Thus, the modeling 
could begin prior to the data lock. A model would be available at the time of the 
data lock at the end of Phase 2a. The simulation team could also be selected prior 
to the data lock. Thus, the simulation could begin in a very timely manner after the 
data lock and be ready as the protocol is written for the Phase 2b. This type of a 
workaround must be documented and transparent.
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880 MODELING AND SIMULATION: PLANNING AND EXECUTION

34.4 SUMMARY

A well planned simulation project increases the likelihood of providing meaningful 
and timely simulation results that will enhance the design and improve the effi -
ciency, robustness, power, and informativeness of preclinical and clinical studies. 
An increase in the effi ciency and power of clinical trials should reduce the number 
of studies and time needed to complete the drug development process with the 
resultant reduction in cost of pharmacotherapy to the consumer.
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35.1 INTRODUCTION

Expanding on the model-based drug development concept proposed by Sheiner (1), 
the US FDA in its March 2004 document Challenge and Opportunity on the Critical 
Path to New Medical Products advocates “using simulation software to improve trial 
design and to predict outcomes.” Simulation of a Phase 2b/3 effi cacy trial generally 
occurs during Phase 2 development following proof of concept and dose ranging. 
However, to say that simulation begins at this point in development is an injustice, 
or if it is true, a shortcoming of the clinical and scientifi c development team. Simu-
lation of an effi cacy trial should occur as part of a continuum, where accumulated 
preclinical and clinical information is used to make informative decisions for each 
next step in development. In this case, simulation will inform the effi cacy trial 
design, conduct, analysis, and interpretation.

In its April 2003 Guidance, Exposure–Response Relationships—Study Design, 
Data Analysis, and Regulatory Applications (http://www.fda.gov/cder/
guidance/5341fnl.pdf), the FDA advocates a critical role for exposure–response 
evaluation in decreasing the uncertainty of drug development. To further emphasize 
the importance of exposure–response modeling and simulation prior to embarking 
on large-scale effi cacy trials, the FDA Clinical Pharmacology Subcommittee for 
Pharmacentical Science has suggested early sponsor–FDA meetings (at the end of 
Phase 2a development) to discuss exposure–response issues (Advisory Meeting Nov. 
17/18 2003, http://www.fda.gov/cder/audiences/acspage/acslist1.htm).

From this stimulus to learn more about drug effects earlier, a wealth of informa-
tion should be available for consideration at the point of designing an effi cacy trial. 
Included are preclinical and clinical investigations pertaining to conceptual effi cacy 
and safety endpoints, pharmaceutical and manufacturing considerations for drug 
product formulation, in vitro and in vivo metabolism characterization, and, in many 
instances, clinical pharmacology studies exploring potential metabolic interactions 
and special populations. Effi cacy and safety information may include biomarker 
responses that ideally have been quantifi ed through exposure–response modeling. 

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene I. Ette and 
Paul J. Williams
Copyright © 2007 John Wiley & Sons, Inc.
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The degree of translational relevance of the biomarker(s) to the actual clinical 
endpoint will be based on prior experience. Information pertaining to adverse 
event profi les will be emerging from Phase 2 and contextualized through Phase 1 
special population and drug–drug interaction (DDI) studies. Additionally, rigorous 
understanding of “external” information such as disease progression models and 
comparator profi les will further shape the focus of effi cacy trials.

Altogether, the clinical profi les, in conjunction with the nonclinical consider-
ations, should provide a therapeutic range in which to characterize the expected 
clinical effi cacy. Modeling and simulation can offer considerable insight into the 
design of studies to target this range and ultimately confi rm the clinical outcomes. 
Considerations for performing these simulations are the focus of this chapter. A 
simulation of a hypothetical effi cacy trial for a zidovudine analog in HIV patients 
is provided as an application and example of many, although not all, of these 
considerations.

35.2 SIMULATION PLANNING

To begin, all information pertaining to the clinical effi cacy trial should be assembled 
and categorized as possible inputs (known information) or outputs (information 
that needs to be known) for the trial simulation. This information gathering should 
involve subject matter experts and key stakeholders of the drug’s development (e.g., 
clinical pharmacology, clinical, statistics, regulatory, operations, and commercial 
leads). Additional invitees may include other research members (e.g., biology, phar-
macology, biopharmaceutics, outcomes research) as determined by the complexity 
of the input factors (e.g., a thoroughly mechanistic pharmacokinetic/pharmacody-
namic (PK/PD) model may benefi t from biologist and pharmacologist insight) and 
output responses (e.g., outcomes research to help defi ne inclusion of clinical utility 
functions).

As part of this start-up meeting, the identifi ed input factors and output responses 
should also be assigned a level of precision, either how well it is known (input) or 
how well it needs to be known (output). Defi ning this level of uncertainty may be 
done qualitatively at fi rst, whereas a quantifi ed level of precision will need to be 
developed for those factors entering into the simulation.

The sections that follow provide examples of both model-based and trial-based 
input factors and output responses that should be considered for effi cacy trial 
simulations.

35.2.1 Model-Based Input Factors

35.2.1.1 Pharmacokinetic (PK) Model
PK models describe the continuous drug concentration–time course resulting from 
an administered dose. By doing so for each individual either through (a) intensive 
collections and standard two-stage PK analyses, or (b) sparse sample collections and 
population analyses, these continuous descriptions provide a less discrete and so 
often more informative measure of drug exposure than does dose alone. In concert, 
mechanistic PK/PD models are being developed more frequently and more congru-
ently during drug development to describe exposure–response relationships (2, 3). 
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These models often incorporate intermediate biomarker responses. Consequently, 
trial simulations driven by PK models, rather than more traditional dose–response 
relationships, will enable more detailed simulations. For example, exposure differ-
ences due to interactions, inclusion of special populations, or from dosing regimen 
or formulation changes may be explored with the PK models driving PD responses. 
This will place additional emphasis on the modeler to develop reliable PK models 
using Phase 1 and 2 data that translate into the patient population. Appropriate 
consideration of covariates, as discussed later, will be an important part of this 
development.

An additional component of the PK model that may warrant consideration in 
the simulation is the relative bioavailability of the drug formulation to be used in 
the effi cacy trial. Formulation changes may occur at this point in development, 
where a suboptimal formulation for commercial-scale manufacture may have been 
used in previous studies. If such changes have occurred between the dose-ranging 
study and current design, the relative bioavailability between formulations (and 
associated 90% CIs) may also be considered for simulation evaluation. A sensitiv-
ity analysis (see Section 35.3.1) may be conducted to evaluate whether this effect 
will be infl uential on the simulation and/or if additional data may be required to 
provide acceptable precision.

35.2.1.2 Exposure–Response (ER or PK/PD) Model
PK/PD models are becoming less empirical and more mechanistic in nature due to 
the increasing reliance on biomarkers and the collection of this information earlier 
and earlier in drug development. The questions being probed by these models 
through simulation are becoming more focused, including evaluation of exposure 
differences (4) or even for multiple drugs (2, 5). The former case allows for in silico 
exploration of formulation (e.g., IR vs. CR) and regimen (e.g., QD vs. BID), or 
to evaluate effects of exposure differences in special populations or due to DDI. 
The latter case affords us the opportunity to compare among competing candidates 
within a development program, or to compare to other available agents.

Implicit to the promising roles of mechanistic PK/PD models is a link to clinical 
outcomes. A few such examples have been presented, including a model linking 
blood glucose concentrations and glycosylated hemoglobin (HbA1c) (6), where 
HbA1c has been linked with progression of nephropathy (7) and retinopathy (8). 
For atherosclerosis, high serum concentrations of LDL-C have been demonstrated 
to be a major risk factor for coronary heart disease (CHD) and therapeutic LDL-C 
lowering (e.g., with HMG CoA reductase inhibitors) has been linked to reduced 
risk of major coronary events (9).

In addition to exposure–response models for clinical effi cacy, the simulation 
also may include models for safety markers. These may include more immediate 
or direct effects, such as a drug affecting the QT/QTc interval (10). Although less 
frequent, longer term effects such as changes in liver function likely are not well 
defi ned at this point in development. As known, or potentially expected, such effects 
may be considered with longitudinal mixture models (11).

Taken together, the ER models for effi cacy and safety will defi ne the therapeutic 
window, where at the point of simulating an effi cacy trial, an acceptable separa-
tion should exist. However, if multiple markers are being used to determine this 
separation, there may be a desire to “weigh” some markers more than others. For 
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example, one marker may be more of a tolerance issue (e.g., moderate incidence of 
transient nausea upon initiation of therapy) and another a more serious but with a 
much lower incidence (e.g., edema). Both may warrant inclusion in the simulation 
but may be assigned different levels of infl uence through the use of weights. The use 
of utility functions has been reported to provide this relative balancing (12), which 
in addition to safety and effi cacy parameters, can include any other pertinent input 
factors as well (e.g., study cost and/or duration).

35.2.1.3 Baseline Distribution Model
Appropriate defi nition of baseline values for biomarkers or endpoints is critical in 
setting initial simulation conditions. Both the mean and range of baseline values 
can have important effects of the projected outcome. This is particularly important 
for mechanistic models, since the degree of effect is often defi ned as a function of 
baseline values. For example, in a typical “indirect” model describing the rate of 
change in the measured endpoint, R, the assumption may be made that the input 
rate (kin) is equal to the output rate using a fi rst-order rate constant (kout) and the 
baseline endpoint measure (Rbase): kin = koutRbase (13). Therefore, baseline models 
should be evaluated to ensure an appropriate distribution of baseline values is 
being generated for the patient population of interest. These values also need to 
be checked against specifi c inclusion or exclusion criteria for the effi cacy study and 
adjusted as needed.

35.2.1.4 Longitudinal Effect (Disease Progression) Model
The longitudinal course of the targeted disease is of particular interest in many 
chronic ailments where conditions worsen over time, including Alzheimer’s disease, 
Parkinson’s disease, osteoporosis, diabetic nephropathy, and respiratory disease 
(14). Alternative models have been developed for other disease states where 
cyclical effects may be observed, such as depression (15) or myelosuppression (5). 
Included in longitudinal models are descriptions for the natural progression of 
disease as well as nonpharmacological intervention (e.g., placebo treatment).

For simulation of an effi cacy trial, the mechanism by which the drug affects pro-
gression must be considered (e.g., symptomatic or protective). This mechanism may 
or may not be the same as a comparator agent, which itself may be useful during the 
simulation. Altogether, the progression model may be used within the simulation 
to evaluate when clinical endpoints will be measured and the optimal duration of 
the trial. For example, it may take more or less time (trial duration) than originally 
anticipated to show separation between treatments depending on the rate of change 
in the disease progression relative to that affected by standard of care therapy. 
Detailed discussion of structural considerations for disease progression models is 
provided in Chapter 21 and elsewhere (14).

35.2.1.5 Covariate Models
Both a drug’s PK response and pharmacological response may be infl uenced by 
various patient characteristics. Additionally, the progression or extent of disease 
may be affected by comorbidities. Covariate models attempt to account for and 
quantify the infl uence of these factors. For example, a covariate model would 
be used in simulating PK differences between males and females. Likewise, for 
a disease progression model of atherosclerosis, or for the overall evaluation of 
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anti hyperlipidemic effi cacy, the presence of diabetes raises an individual’s cardio-
vascular risk and results in varying treatment goals for therapy (9). Thus, diabetes 
may be included as a variable for a lipid effi cacy trial simulation where diabetics 
are part of the study population.

A potential limit at this point in development is that many covariates are 
still being identifi ed and explored, so the “true” effect is not yet known. Con-
sequently, the precision of the estimated covariate effect may be relatively low. 
Although it would be advisable to limit the number of covariates included at this 
stage to those of direct clinical relevance, it is recommended that a “full” model 
approach (16) be employed. The “full” model would include all covariates of inter-
est with associated mean estimates and precision (e.g., confi dence interval (CI) 
calculated using asymptotic standard errors or bootstrap replication procedures). 
Collinear covariates should be used with caution as they may affect the precision 
of the estimates (17).

Using PK differences between males and females as an example, suppose the sex 
difference was considered “not statistically signifi cant” from Phase 1 and 2 data. 
However, it may be that the evaluated effect was not “powered” appropriately to 
rule out a clinically signifi cant difference from the available data. For example, if 
the resulting 90% CI for the covariate parameter estimate was not well defi ned (e.g., 
outside [0.8, 1.25]), then a “no effect” conclusion may not be the most appropriate 
assumption at this juncture. Therefore, if differences between males and females are 
of interest to the trial or program outcome, retention of this covariate parameter in 
the model would be advised. A sensitivity analysis (see Section 35.3.1) assessing the 
infl uence of a PK sex effect may be conducted. This would determine whether the 
point estimate of the effect infl uences the simulation outcome and how its precision 
may lend to overall uncertainty in the results.

Covariates are incorporated into the simulation as distributions that are either 
simulated stochastically or resampled from an existing database (18). Correlation 
between covariates is handled during stochastic simulations using multivariate dis-
tributions with appropriate variance–covariance structure. Alternatively, covariates 
resampled from a suffi ciently large existing database carry all relevant covariates 
from an individual into a simulated individual and so capture inherent correlation. 
Regardless of the method, the simulated outputs for covariates need to be checked 
to ensure that they refl ect the expected trial population and are consistent with trial 
inclusion and exclusion criteria.

35.2.1.6 Compliance Model
Failure to account for nonadherence to study drug administration schedules will 
lead to biased and imprecise trial simulation outcome measures (19). Models to 
assimilate compliance often involve a hierarchical Markov model, where the prob-
ability for an individual to take a scheduled dose is conditional on whether this 
individual had taken the previous dose (20, 21). The model may also contain covari-
ates as predictors of compliance. For example, compliance has been shown to be 
affected by dosing frequency, where an increased frequency (e.g., three times daily 
vs. once daily) has been associated with worse compliance (22, 23). Alternatively, 
the consequence of missing a once-a-day dose may have more signifi cant impact 
on effi cacy. PK/PD-based simulations play an important role in understanding the 
balance of these situations.
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In addition to the Markov model, compliance may be modeled using a more 
simplifi ed model as a mixture (fraction) of patients who are either compliant or 
noncompliant (all-or-none) (24). Or, similar to drawing covariate distributions from 
databases of representative populations, a nonmodel-based option for compliance 
would be to draw from prior compliance data collected from a representative 
patient population.

35.2.1.7 Study Retention (Dropout) Models
Subjects will drop out of trials for either random (ignorable) reasons or perhaps for 
a reason attributable to their disease, trial conditions, or other nonignorable factor. 
Both conditions are important to consider for effi cacy trial simulation. In the former 
case, subjects who drop out (are missing) at random will result in a decrease in total 
sample size and may affect the study power. In the latter case, nonrandom dropout 
is considered to be nonignorable in that the reason for dropout is informative to 
the trial outcome and may bias the results. In the seminal paper by Sheiner (25), 
an example of nonrandom dropout is presented for an analgesic trial, where those 
subjects not achieving adequate pain relief were more likely to drop out (i.e., to 
take rescue medication).

Numerous methods exist for handling dropout, including a recent example by 
Hu and Sale (26). The reader is referred to a published tutorial (27) for guidance 
on evaluating the most appropriate method for a particular situation.

35.2.2 Trial-Based Input Factors

Although some of the trial-based input factors will be fi xed (e.g., if a design must
be set a certain way due to unwavering logistics), many of the trial-based factors 
will be variables for which the simulation will attempt to fi nd an appropriate com-
bination to achieve the trials objectives. These variables are the “what ifs” of the 
effi cacy trial simulation. An attempt to provide a thorough, albeit not all inclusive, 
list and brief description of trial-based factors to consider for effi cacy trial simula-
tion is provided below.

Elemental considerations may be broad comparisons, such as parallel group 
versus randomized crossover designs. Simulation also may assist in assigning the 
trial’s primary endpoint, where the simulated probabilities of a successful trial for 
several clinically meaningful outcomes could be used to determine the most appro-
priate primary endpoint.

Simulation evaluation often considers many numerical factors of a trial design. 
These include the total number of subjects, the proportion of subjects allocated to 
the treatment groups, and the number of treatments included (where the range of 
treatment that is most informative already has been defi ned by the dose-ranging 
study). Included in these components may be evaluations to explore effects within 
specifi c subpopulations, the inclusion of, and effect in, specifi c strata within treat-
ment groups, or the impact of other inclusion or exclusion criteria. As discussed 
earlier, study duration and the number and timing of endpoint measures may also 
be considered through the trial simulation.

Many of these trial-dependent factors are ultimately evaluated relative to their 
infl uence on the statistical power of the study. Additionally, the study data analy-
sis method(s) to be employed may also be a consideration for the simulation. 
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For example, in the analgesic example cited above (25), a comparison was made 
between an analysis using the last observation carried forward (LOCF) method 
and the proposed mixed effects maximum likelihood method. Although this was a 
retrospective analysis, similar contrasts could be included in the trial’s simulation 
to ascertain the most appropriate analytical methodology to include in the study 
design (protocol). Other analysis factors for consideration include appropriate cor-
rection of variability, where such sources may include differences between sites or 
regional differences.

35.2.3 Output Responses

The output responses can be categorized as either measurements directly from 
the trial (e.g., endpoints) or measures of how well the trial is expected to perform 
(power or probability of success). Either these responses may be evaluated for 
how well they can be defi ned for a given study design, or vice versa, they can be 
defi ned as needing to be known to a given level of precision, and the study design 
consequently optimized for this goal. The focal clinical endpoints (need to know) 
are likely to fall into the latter, while more peripheral endpoints (nice to know) are 
likely to be assessed as the former.

The simulated output responses provide the measures for which to optimize 
the design and analysis of the study. In the case of the model-based input factors, 
their effects are often used to determine how useful (informative) the model(s) and 
associated parameters are for the output responses and, importantly, which model 
assumptions may be most critical to the validity of the simulation.

Evaluation of the trial-based input factors is often an iterative process, where 
various scenarios (e.g., ranges of subject numbers, cohorts, strata, duration) are 
simulated and the most favorable is carried forward for study planning. The defi -
nition of “most favorable” often involves several response factors in addition to 
the probability of trial success (or failure). Trial costs or other “utility costs” from 
utility functions may be included in this decision. For example, a larger paral-
lel group study may cost more but fi nish more quickly than a crossover design. 
Depending on several other factors, such as within-subject versus between-subject 
PK and response (effi cacy and safety) variances, relative drug effect on disease 
progression rate, and dropout rates, the designs may have a different probability 
of success. Therefore, criteria for the cost to benefi t ratio for each design would 
need to be developed and applied to the simulation results. Ideally, such decision 
trees are formed prospectively, at least in concept, to enable decisive application 
of the simulation results.

35.2.4 Simulation Team Review of Model and Assumptions

As important as the initial simulation start-up meeting, regular contact with team 
members must be maintained throughout the trial simulation to ensure continued 
clarity of the goals, to develop understanding and agreement of the underlying 
assumptions, and to foster interest, involvement, and ultimately informed applica-
tion of the simulation results. A second simulation team meeting should ensue once 
the initial input factors and output responses are identifi ed and initial estimates 
with accompanying uncertainties are defi ned. This review should occur prior to 
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extensive coding, and certainly before beginning the simulation execution. During 
this review session, all assumptions considered for the simulation should be detailed 
and agreed upon. A general schematic of the inputs and outputs may be benefi cial, 
with indicators of key inputs, outputs, and assumptions. Once all goals, strengths, 
benefi ts, and limitations are agreed upon, the simulations may begin; during which 
the team is to be provided with regular status updates.

35.3 SIMULATION EXECUTION AND INTERPRETATION

35.3.1 Sensitivity Analysis (SA)

Once the simulation conditions have been properly defi ned, the simulations are now 
ready to execute. One important consideration in interpreting simulation results 
is the sensitivity of these results to underlying assumptions or uncertainty about 
the simulation model and parameters. Trial simulation outputs should be viewed 
relative to their sensitivity to model parameter uncertainty. There are two general 
methods, local and global, for performing SA.

Local SA involves repeated groups of simulations, where in each group a fi xed-
point perturbation of one parameter is used for the simulations. Trial simulation 
output metrics are then calculated for each group and the impact on outcome is 
considered relative to this range of parameter estimates. For example, the degree 
of sensitivity may be considered by the rate of change in response relative to the 
unit change in the parameter. This process is then repeated for each parameter 
of interest. Limitations of the local sensitivity approach are that it only refl ects 
sensitivity to uncertainty in one parameter or assumption at a time. It is therefore 
ineffi cient and conclusions about sensitivity are conditional on assumptions of all 
other parameters.

Global SA is based on simulations where results are conditioned on uncertainty 
distributions across all parameters. Uncertainty is quantitatively defi ned for all 
parameters (models) through the use of appropriate distribution models (28) or 
using distributions from prior reports or models. The latter method, which does not 
require an assumed model parameter probability distribution function, may include 
use of fuzzy set theory (29) or the use of bootstrapped estimates from previous 
estimations. Monte Carlo methods are required to simulate from the uncertainty 
distributions at the intertrial level. This usually requires one set of simulations with 
a large number of replicates. The number of trial replicates is discussed in Chapter 
33, where this number may need to be further increased for the global SA.

One benefi t of global versus local SA is that by running only one set of simula-
tions, the sensitivity of simulation outcome(s) to simulation parameter uncertainty 
(assumptions) can be viewed over a continuous range of parameter uncertainty 
because the sensitivity to uncertainty is incorporated in all model parameters simul-
taneously. Examples of simulation with uncertainty are available for physiologically 
based PK models (29, 30) and clinical trial simulations (31, 32).

In practice, a blend of local and global SA approaches may be employed. Quan-
titative uncertainty in the form of standard errors may be available only for some 
model inputs. Multiple executions of the simulation to characterize the global SA 
of the quantifi ed parameters may be undertaken conditional on a series of fi xed-



point perturbations of another parameter. This “semiglobal” SA would determine 
whether the fi ndings about global sensitivity change given the uncertainty in the 
locally perturbed parameter.

35.3.2 Simulation Team Review of Sensitivity Analysis and 
Impact on Assumptions

The SA will identify which parameters are most infl uential on the simulation outcome 
and consequently which assumptions are either reasonable or in doubt. This pro-
vides another decision point for the overall trial simulation, and so a meeting with 
the simulation team should be convened. This meeting should cover the impact of 
the SA on the trial (and/or program) planning and design. As an example discussion 
point, if the SA reveals previously unexpected, and possibly undesirable, response 
ranges in a certain patient subpopulation, then the team would discuss whether (a) 
to proceed with the current design, given the risk of unexpected or undesirable 
outcomes, which has now been quantifi ed; (b) the model assumptions for that sub-
population are appropriate; (c) more data be collected to reduce the uncertainty 
surrounding this patient population before executing the trial; (d) the current trial 
design requires modifi cation to make it more robust to potential differences in this 
subpopulation; or (e) this subpopulation be excluded altogether if they are not of 
interest in the current trial.

The SA may also provide rationale for simplifying a model. This may occur if the 
outcome is shown to be robustly tolerant to wide ranges of parameter uncertainty, 
which may allow for the removal of some parameters and thus lead to a more 
parsimonious simulation model. Conversely, the SA may reveal that insuffi cient 
information currently exists to defi ne a precise or reliable range of trial outcomes. 
In this latter case, either more time may be required to obtain additional informa-
tive experimental data and thus reduce the uncertainty to an acceptable range, or 
separate sets of plausible assumptions may need to be considered and subsequently 
tested for their own sensitivity. Such decisions need buy-in from the subject matter 
experts and should be considered in the full context of the development program.

35.3.3 Simulation Recommendations

Following discussion and acceptance of the SA results, including both model-based 
and trial-based input factor adjustments, the effi cacy trial simulations may proceed 
as planned. For each possible trial design, the appropriate input factors and output 
responses are simulated and results are compared to determine the most appropri-
ate design. As discussed previously, this fi nal decision likely will not only be based 
on a specifi c p-value or trial power, but will also include valuations based on trial 
duration, monetary cost, or information gained or lost toward continuing develop-
ment goals (e.g., an overall measure of clinical utility).

35.4 EFFICACY TRIAL SIMULATION EXAMPLE

A simulation of a hypothetical effi cacy trial for a zidovudine analog (ZDVA) in 
HIV patients was completed to evaluate the probability of a successful Phase 3 
trial if Phase 2b was skipped, given the Phase 2a results and prior knowledge from 

EFFICACY TRIAL SIMULATION EXAMPLE 889



890 CLINICAL TRIAL SIMULATION: EFFICACY TRIALS

a marketed competitor. The goal of this simulation was to evaluate the probability 
of trial success under a predefi ned trial design while examining the sensitivity of 
this probability estimate to underlying assumptions. Included in this example is an 
assessment of the effect of uncertainty (from none through varying degrees) on the 
trial outcome.

35.4.1 Model-Based Inputs

Input factors, as defi ned in Table 35.1 and presented schematically in Figure 35.1, 
included an adherence model, PK and PK/PD models, placebo response and disease 
progression models, and both random and nonignorable dropout. The PK/PD 
model was used to simulate patient survival times (or censored events) for each 
individual as a function of drug exposure, which was defi ned as the average steady-
state drug plasma concentration (Cavg). Cavg was modeled as a function of clearance 
(CL), which depended on hepatic disease (HEP), weight (WT), and methadone use 
(METH). Dosing compliance/adherence was modeled with a bimodal distribution 
(high and low compliance groups). A hazard function for dropout due to ineffi cacy 
included terms for placebo dropout, effect of CD4+ count, and effect of ZDV. 
Random dropout was also simulated. The full model is provided in the chapter 
appendix.

“Uncertainty” distributions were defi ned for all parameters including typical PK, 
PD parameters, covariate effects, and interindividual and residual variance param-
eters. These distributions were derived from the variance–covariance matrix of the 
estimates obtained from a prior analysis, and from a review of prior knowledge and 
published results.

Separate simulations were performed with no, low, moderate, or high degrees of 
uncertainty to explore the effect of uncertainty on the probability of trial success 
using a global SA. Uncertainty, expressed as %CV for each parameter, was set for 
the fi xed model effects at 0% (none), 10% (low), 35% (moderate), or 50% (high). 

TABLE 35.1 Description of Simulation Model Parameters Used for the 
Zidovudine Analog Effi cacy Trial Simulation

Name Description Name Description

CD4 Mean CD4+ count METHCL Methadone effect on CL
CD4PT CD4+ breakpoint for PrFEM Probability of female
  benefi cial effect
CD4SLP Effect of CD4 count on PrHEP Probability of hepatic disease
  hazard
CLBASE Typical clearance PrHICOMP Probability of high compliance
HAZP Placebo risk for dropout PrLOWCOM Probability of low compliance
  (hazard)
HAZR Random dropout hazard PrMETH Probability of methadone use
HEPCL Effect of hepatic disease SEXCL Sex effect on CL
  on CL
HICOMP Mean high compliance WTFEM Mean weight for females
IC50 Drug potency WTMALE Mean weight for males
LOWCOMP Mean low compliance ZDVSL Maximum drug effect on
    hazard



Uncertainty for random effects was defi ned as high for all evaluations. The high 
level of uncertainty for random effects represented a “worst case” scenario, but 
also was representative of the greater uncertainty in these parameters at this stage 
in development relative to the fi xed effects parameters. In an actual trial simula-
tion, prior estimates of these uncertainties could be used, and possibly infl ated to 
accommodate the additional parameter uncertainty associated with extrapolation to 
a new trial scenario or population. To illustrate a local SA, the parameter describing 
the maximum drug effect on the hazard parameter (ZDVSL) was fi xed at values 
ranging from 0.25 to 1.0.

35.4.2 Trial-Based Inputs

Two thousand patients were to be randomly assigned to placebo, ZDVA 500 mg 
or ZDVA 1500 mg, daily. Follow-up visits were planned every 28 days for 2 years. 
The number of “survivors” was defi ned as the number of patients remaining in the 
study at each observation time.

35.4.3 Simulation Execution and Analysis

Simulations with and without varying degrees of uncertainty were performed, as 
described above. Simulation with uncertainty can be implemented in a variety of 
programs with Monte Carlo simulation capabilities. In this example, simulations 
were carried out using S-Plus® (Insightful, Seattle, WA) and NONMEM® (Globo-
Max LLC, Ellicott City, MD). PROC PHREG in SAS® (SAS Institute Inc., Cary, 
NC) was used for survival analyses. Local regression plots were created with S-Plus 
and the LOCFIT library.

35.4.4 Simulation Results and Recommendation

The effect of the degree of uncertainty on trial success (power) is provided in Table 
35.2. A total of 500 replicate simulations were performed for each extreme of uncer-
tainty (none and high). Fewer (n = 100) replicates were performed for the interme-
diate levels (low and medium), based both on practical computational limitations 
and an observation of relative stability in the results after 100 replications. More 
(n = 5000) replicates were performed for graphical clarity in the local regression 
plots. The results show that failure to account for uncertainty in the model would 
result in an overestimate of the trial power and thus a falsely optimistic design.

Dosing /Adherence 
Model

PK Model (covariates)

PD Model (covariates)

Disease Progression 
Model (covariates)

Survival Analysis

Success = significant 
difference from placebo

+

Disease Progression 
Model

Placebo Response 
Model

+

FIGURE 35.1 Schematic of zidovudine analog effi cacy trial simulation components.
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A global SA for the simulated outcome, probability of a successful differentia-
tion from placebo, was not sensitive to uncertainties in CL and IC50 parameters 
(Figure 35.2).

Simulation conclusions were sensitive to assumptions about ZDVSL and HAZP 
parameter values (Figures 35.2), and a wide range of possible outcomes was evident. 

TABLE 35.2 Effect of Uncertainty Level on the Estimate 
of Trial Power Using a Global Sensitivity Analysis for the 
Zidovudine Analog Effi cacy Trial Simulation

Uncertainty Successful Trialsa (%)

None 94.4% (n = 500)
Low (10%)b 93% (n = 100)
Medium (35%)b 86% (n = 100)
High (50%)b 82.8% (n = 500)

a Results refl ect n simulated trials of 2000 patients.
b Uncertainty in fi xed effect parameters is approximate %CV. Uncer-
tainty in random effect parameters was high for all simulations.

FIGURE 35.2 Results of global SAs from the zidovudine analog effi cacy trial simulation. 
Parameters displayed are for drug clearance (CLBASE), drug potency (IC50), placebo risk 
on the dropout hazard (HAZP), and maximum drug effect (ZDVSL) on the dropout hazard. 
The trial power (probability of success) is plotted relative to the parameter value for each 
of the 5000 replicate simulations. The solid lines indicate the local logistic regression (locfi t) 
and the dotted lines provide the 95% confi dence interval for the locfi t.



In other words, at the hypothetical doses explored (500 and 1500 mg), uncertainties 
about exposure (CL) and potency (IC50) were not important contributors to the 
uncertainty of response, whereas uncertainties about the maximal effect (ZDVSL) 
and placebo dropout did contribute notably to the trial power.

An additional benefi t of the global SA is that it provided the interdependence of 
the ZDVSL and HAZP parameters on the trial outcome (Figure 35.3), illustrating 
a benefi t of global versus local SA.

The results of a local SA using the ZDVSL parameter are provided in Table 
35.3. These results are similar to the global SA, but are conditioned on the fi xed 
estimates of the other parameters.

As shown with both global and local SA, the probability of a successful trial 
was less than 80% across a large range of uncertainty in the parameters (Figures 
35.2 and 35.3 and Table 35.3). Given prespecifi ed criteria of ≥80% power, the 
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FIGURE 35.3 Results of the global SA from the zidovudine analog effi cacy trial simulation 
displaying the multidimensional effect of parameter uncertainty on trial power (probability 
of success). Parameters displayed are placebo risk on the dropout hazard (HAZP) and 
maximum drug effect (ZDVSL) on the dropout hazard.

TABLE 35.3 Effect of Single Parameter (ZDVSLa)
Uncertainty on the Estimate of Trial Power Using a Local 
SA for the Zidovudine Analog Effi cacy Trial Simulation

Fixed Value of ZDVSL Successful Trialsb (%)

0.25 30.6%
0.5 70.4%
0.735 93.0%
1.0 99.0%

a ZDVSL represents the maximum drug effect on the dropout 
hazard.
b Results refl ect 500 simulated trials of 2000 patients.
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simulation results represented an unacceptable risk of proceeding with the current 
design, given the current state of knowledge. More robust trial designs might have 
proved to be impractical. Therefore, before proceeding with the current design, it 
would be recommended to refi ne estimates of these infl uential model components. 
The overall recommendation from this hypothetical example would be to run the 
Phase 2b trial, rather than skipping directly into Phase 3.

35.5 SUMMARY

Returning to the FDA March 2004 document Challenge and Opportunity on the 
Critical Path to New Medical Products, “the current medical product development 
path is becoming increasingly challenging, ineffi cient, and costly. A new product 
development toolkit—containing powerful new scientifi c and technical methods 
such as  .  .  .  computer-based predictive models  .  .  .  is urgently needed to improve 
predictability and effi ciency along the critical path from laboratory concept to 
commercial product.” Effi cacy trial simulation satisfi es this initiative by offering 
a tangible benefi t to drug development through an a priori in silico evaluation of 
trial design performance. Consistent development and application of this approach 
to program planning will lead to more informed study designs and more focused 
outcomes, while minimizing costs and time. To appropriately apply this approach, 
development and management teams must champion its benefi t and provide dedi-
cated resources, as well as commit project team time to correctly interweave simula-
tion into the development process.
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APPENDIX 35.1 NONMEM CODE FOR EFFICACY TRIAL SIMULATION

The code does not include parameters for uncertainty. Parameter ZDVSL noted in 
chapter text is termed BZDV in the NONMEM code.

$PRED

 ;FIRST RANDOM SOURCE IS FOR ETAS

 IF (ICALL.LE.1) RETURN ;IF BEGINNING OF RUN OR PROBLEM

  Y=0

 ;2ND RANDOM SOURCE (UNIFORM)

 IF (ICALL.EQ.4) THEN ; FOR SIMULATION OF SURVIVAL TIMES GIVEN 

HAZARD FUNCTION

 CALL RANDOM (2,R) ;RANDOM SEED FROM UNIFORM (0,1)

 X=R

ENDIF

;2ND RANDOM SOURCE (UNIFORM)

IF (ICALL.EQ.4) THEN ; FOR SIMULATION OF SURVIVAL TIMES GIVEN 

HAZARD FUNCTION

 CALL RANDOM (2,R) ;RANDOM SEED FROM UNIFORM (0,1) 

 X2=R

ENDIF



;NOW TAKE CARE OF PATIENT DEMOGRAPHICS

;FOR PROBABILITIES, USE TRANSFORMATION PR=EXP(THETA)/(1+EXP(THETA)) 

TO CONSTRAIN 0-1

 IF (ICALL.EQ.4.AND.NEWIND.NE.2) THEN ;FOR $SIM AND 1ST RECORD OF 

EACH IND

 ;EACH RECORD IN THIS DATA SET IS THE 

 ;FIRST RECORD FOR THAT INDIVIDUAL -

 ;ONLY 1 RECORD PER INDIVIDUAL

 ;2ND RANDOM SOURCE (UNIFORM) - FOR HEPATIC DISEASE (3% OF 

PATIENTS)

 CALL RANDOM (2,R) 

 RH=R

 HEP=0

 PRHD=EXP(THETA(10))/(1+EXP(THETA(10))) ;PROBABILITY OF HEPATIC 

DISEASE - THIS WILL HAVE UNCERTAINTY

 IF (RH.GT.(1-PRHD)) HEP=1 ;HEPATIC DISEASE

 ;2ND RANDOM SOURCE (UNIFORM) - FOR SEX (79% MALE, 21% FEMALE)

 CALL RANDOM (2,R)

 RS=R

 SEX=0 ;MALES 

 PRFE=EXP(THETA(11))/(1+EXP(THETA(11)))

  IF (RS.GT.(1-PRFE)) SEX=1 ;FEMALES

 ;2ND RANDOM SOURCE (UNIFORM) - FOR METHADONE USE (4.4% OF 

PATIENTS)

 CALL RANDOM (2,R)

 RM=R

 METH=0

 PRME=EXP(THETA(12))/(1+EXP(THETA(12))) ;PROBABILITY OF METHADONE 

USE IS 0.044

  IF (RM.GT.(1-PRME)) METH=1 ;ON METHADONE

 ;3RD RANDOM SOURCE (NORMAL) - FOR WEIGHT (NORMAL WITH MEAN OF 

73 FOR MALES, 

 ; 60 FOR FEMALES CV=20%, RANGE=40-100) 

 WT=1

 DO WHILE (WT.LT.40.OR.WT.GT.100)

  CALL SIMETA (ETA) 

 LBWT=40

 UBWT=100 

 RGWT=UBWT-LBWT

 WT1=LBWT+RGWT*EXP(THETA(13))/(1+EXP(THETA(13)))

 WT2=LBWT+RGWT*EXP(THETA(14))/(1+EXP(THETA(14)))

 TVWT=(WT1*(1-SEX) + WT2*SEX)

 WT=TVWT*(1 + ETA(7))

ENDDO
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 ;1ST RANDOM SOURCE (NORMAL) - FOR CD4+ COUNT (NORMAL WITH MEAN 

OF 348, SD=90, MAX=500)

 CD4=0

 CD=501

 DO WHILE (CD.LE.0.OR.CD.GT.500)

  CALL SIMETA (ETA)

  LBCD=0

  UBCD=500

  RGCD=UBCD-LBCD 

  TVCD=LBCD+RGCD*EXP(THETA(15))/(1+EXP(THETA(15)))

  CD=TVCD+ETA(6)

  CDPT=EXP(THETA(16)) ; BREAKPOINT FOR SIGNIFICANT CD4 EFFECT ON 

EFFICACY

  IF (CD.GE.CDPT) CD4=1 

  ENDDO

 ;2ND RANDOM SOURCE (UNIFORM) - FOR DOSE ASSIGNMENT

 CALL RANDOM (2,R)

 RD=R

 DOSE=0

 IF (RD.GE.0.33.AND.RD.LT.0.67) DOSE=500*28

 IF (RD.GE.0.67) DOSE=1500*28 ; DOSE FOR 4 WEEKS

 ;USE 2ND RANDOM SOURCE FOR COMPLIANCE MODEL - COMPLIANCE IS 

RANDOM

 ;COMPLIANCE IS MODELED AS A BINOMIAL DISTRIBUTION WITH 90% HI 

COMPLIANCE MEAN=80%, SD=10

 ;AND 10% LOW COMPLIANCE COMPL=40%, SD=5 (MIN=0, MAX=100%) 

 ;CALL 2ND RANDOM SOURCE (UNIFORM) - FOR TYPE OF COMP (90% HIGH, 

10% LOW)

 CALL RANDOM (2,R)

 RC=R

 CTYP=0 ;HIGH COMPLIANCE

 PRHI=EXP(THETA(17))/(1+EXP(THETA(17))) 

  IF (RC.GT.PRHI) CTYP=1 ;LOW COMPLIANCE

 COMP=1.1 

 DO WHILE (COMP.LT.0.OR.COMP.GT.1)

  CALL SIMETA (ETA) 

  CMP1=EXP(THETA(18))/(1+EXP(THETA(18)))

  CMP2=EXP(THETA(19))/(1+EXP(THETA(19)))

  COMP=(CMP1+ETA(8))*(1-CTYP) + (CMP2+ETA(9))*CTYP

 ENDDO

 ADOS=DOSE*COMP ;ACTUAL DOSE=ASSIGNED DOSE*COMPLIANCE

 ENDIF

; CL=1.3+/-0.3 L/KG/HR CL IN L/4 WEEKS = CL L/KG/HR*24HRS/DAY

*28DAYS*WT



; USE EXP MODEL AND 23% INTERINDIVIDUAL CV INSTEAD

 TVCL=EXP(THETA(1))

 CL1 = TVCL *EXP(ETA(1))

 CL2=(EXP(THETA(2)))**HEP

 CL3=(EXP(THETA(3)))**SEX

 CL4=(EXP(THETA(4)))**METH

 CL = CL1*WT*24*28*CL2*CL3*CL4

 CAVG = ADOS/CL ;(AVERAGE CSS)

 TVIC=EXP(THETA(5))

 IC50 = TVIC*EXP(ETA(2))

 TVHP=EXP(THETA(6))

 HP = TVHP*EXP(ETA(3))

 TVBC=EXP(THETA(7))

 BCD4 = TVBC*EXP(ETA(4))

 TVZD=EXP(THETA(8))

 BZDV = TVZD*EXP(ETA(5))

;HAZARD MODEL FOR BASELINE CD4 EFFECT ON EFFICACY

 HAZ = HP*EXP(-BCD4*CD4 + (-BZDV*CAVG/(CAVG+IC50)))

;IN THIS CASE, THE HAZARD FUNCTION IS CONSTANT OVER TIME FOR EACH 

INDIVIDUAL

;THE OBSERVATION IS THE EVENT TIME

;X IS RANDOM NUMBER DRAWN FROM A UNIFORM (0,1) DISTRIBUTION

 CTIME=24 ;24 MONTHS

 OBS1=LOG(1/(1-X))/(HAZ)

 CEN1=1 ;FLAG INDICATING THAT THE EVENT DID HAPPEN BEFORE 

CENSORING TIME

 IF (OBS1.GT.CTIME) THEN

  CEN1=0 ;EVENT HAPPENS AFTER CENSORING TIME

  OBS1=CTIME

 ENDIF

 ;RANDOM DROPOUT EVENT: Pr(T<=t) BY RANDOM CHANCE = 0.167%

 HR = EXP(THETA(9))/(1+EXP(THETA(9)))

 OBS2=LOG(1/(1-X2))/HR

 CEN2=1

 IF (OBS2.GT.CTIME) THEN

  OBS2=CTIME

  CEN2=0

 ENDIF

 OBS=OBS1

 IF (OBS2.LT.OBS1) OBS=OBS2

 CENS=0

 IF (CEN1+CEN2.GT.0) CENS = 1

 RNDP=0

 IF (OBS2.LT.OBS1) RNDP=1 

TRL=IREP ;TRIAL NUMBER
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$THETA ;INITIAL ESTIMATES FOR THETAS

 ;SOME PARAMETERS WERE LOG OR LOGIT TRANSFORMED TO CONSTRAIN 

PARAMETERS

 ;THIS IS NECESSARY BECAUSE DRAWS FROM PRIOR DISTRIBUTION ARE NOT 

TRUNCATED AT REALISTIC VALUES

 (0.26) ;1. LN(CL =1.3 L/KG/HR )

 (-1.39) ;2. LN(FRACTIONAL EFFECT OF HEP ON CL=0.25)

 (-0.22) ;3. LN(FRACTIONAL EFFECT OF SEX ON CL=0.8)

 (-0.51) ;4. LN(FRACTIONAL EFFECT OF METH ON CL=0.6)

 (-4.34) ;5. LN(ZDV IC50 FROM LITERATURE=0.013)

 (-4.83) ;6. LN(HP - HAZARD FOR PLACEBO AND CD4<300 OVER 28 

DAYS=0.008)

 (-0.53) ;7. LN(BCD4 - BASELINE CD4 EFFECT ON HAZARD WHEN CD4>=300 

= 0.59)

 (-0.693) ;8. LN(BZDV - ZDV EFFECT ON HAZARD=0.735) 

 (-6.39) ;9. LN(HR HAZARD FOR RANDOM DROPOUT, ASSUMING 0.167% 

CHANCE OF DROPOUT/28 DAYS)

 (-3.476) ;10. PROBABILITY OF HEPATIC DISEASE=0.03

 (-1.325) ;11. PROBABILITY OF PATIENT BEING FEMALE=0.21

 (-3.076) ;12. PROBABILITY OF METHADONE USE=0.044

 (0.2) ;13 (73) MEAN MALE WT 

 (-0.69) ;14 (60) MEAN FEMALE WT

 (0.83) ;15 (348) MEAN CD4 COUNT

 (5.7) ;16 LN(300) BREAKPOINT FOR CD4 EFFECT

 (2.20) ;17 PROBABILITY OF HIGH COMPLIANCE=0.9

 (1.39) ;18 (0.8) 80% COMPLIANCE=HIGH

 (-0.41) ;19 (0.4) 40% COMPLIANCE=LOW

$OMEGA ;INITIAL ESTIMATES FOR OMEGA

 0.053 ;1. CL

 0.09 ;2. IC50

 0.09 ;3. HP

 0.09 ;4. BCD4

 0.09 ;5. BZDV

 8100 ;6. CD4

 0.04 ;7. WT

 100 ;8. HI COMPL

 25 ;9. LOW COMPL

$SIMULATION (78925 NORMAL NEW) (8795 UNIFORM)(15445 NORMAL) 

 ONLYSIM SUBPROBLEMS=500
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36.1 INTRODUCTION

36.1.1 Transition to Model-Based Development

Pharmacometrics is no longer a hobby for scientists who want to learn the arcane 
language of mixed effects modeling. The evidence for this transition from pastime 
to critical path can be found in the change in emphasis from straightforward 
population pharmacokinetic modeling to complex population pharmacokinetic 
and pharmacodynamic modeling and simulation activities that yield multifaceted 
exposure–response-based characterizations of safety and effi cacy. This transition is 
further evidenced in the myriad ways that exposure–response analyses are being 
used to select and justify doses for Phase 3 programs, support product labeling and 
differentiation, and infl uence drug development and regulatory decision making.

This transition is also marked by the challenges faced by pharmacometri-
cians conscientiously working within the existing paradigm to support the current 
empirically driven development process. War stories abound that describe the 
diffi culties pharmacometricians face in delivering timely and actionable results 
from their analyses. The data required for pharmacometric analysis are often 
not available until the primary safety and effi cacy analyses have been completed. 
Data assembly and scrubbing are remarkably time consuming and can result in 
high discard rates and delays in completing modeling and simulations. One can 
still encounter signifi cant resistance to the use of modeling and simulation results 
in development program decision making, and opportunities for collaboration, 
creative thinking, and synthesis of knowledge may be sacrifi ced because of urgent 
timelines (1).

These challenges are not just annoyances that committed pharmacometricians 
must be expected to overcome. They are symptoms of a deeper problem—an imma-
ture process capability for performing modeling and simulation—resulting from 
the current, ad hoc implementation wherein modeling and simulation activities are 

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene I. Ette and 
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piggybacked onto traditional development programs. These symptoms notwith-
standing, the growing reliance on modeling and simulation in decision making is 
forcing important and urgent changes to occur in the nature of the work of a phar-
macometrics service. Moreover, the role of pharmacometrics in the larger drug 
development enterprise is changing very rapidly because of the need to make the 
parent drug development process more effi cient and effective. This larger need is 
driving a shift from a totally empirical paradigm to a more formal, model-driven 
one. Accordingly, what it takes to establish a pharmacometrics service (or sustain 
and strengthen an existing one) is also changing signifi cantly from what it has 
required in the past.

Effectively meeting the challenges one confronts in establishing a service in the 
face of this shift in the developmental center of gravity mandates the use of system-
atic and rigorous methods to consciously and deliberately “engineer” the service, 
or “reengineer” it, as the case may be. That is, successfully deploying a complex 
technical service such as pharmacometric analysis in today’s complex and fl uid 
environment mandates prior development of robust enterprise designs and effective 
implementation programs. Doing this right, in turn, requires use of a process that is 
designed explicitly to do this sort of job—the systems engineering process (2).

Systems engineering can be defi ned as an interdisciplinary approach encompass-
ing the entire effort to evolve and verify an integrated set of system, people, product, 
and process solutions that satisfy stakeholder needs. In the context of a pharmaco-
metrics service, systems engineering encompasses (a) the technical efforts related 
to the development, verifi cation, deployment, operations, and support of the service 
along with user training in pharmacometrics; (b) the defi nition and management 
of the system confi guration for delivering analysis results; (c) the translation of the 
system defi nition into data management and analysis work breakdown structures; 
and (d) development of information about productivity for management decision 
making (2–4).

The application of systems engineering to complex knowledge-generating indus-
tries, such as the aerospace and defense industries, has transformed their strate-
gic, tactical, and logistical milieu. The special areas of emphasis embedded in a 
systems engineering approach have enabled this transformation. These include, 
fi rst, a top–down approach to design that views the system as a whole, providing 
a necessary overview and understanding of how individual components and sub-
processes effectively fi t together; second, a life-cycle orientation that addresses all 
phases of system engineering, including system design and development, deploy-
ment, operation, maintenance, and support; third, a comprehensive effort regarding 
the defi nition of system requirements and the traceability of these requirements 
from the system level downward to specifi c subprocesses needs; and lastly, an 
interdisciplinary approach that is used throughout the system design and develop-
ment process to ensure that all design objectives are addressed in an effective and 
effi cient manner.

36.1.2 Mission of Pharmacometrics

Pharmacometric analysis enables synthesis of disjoint data into knowledge that can 
inform important clinical development program decisions. Via its modeling and 
simulation techniques, it is not only a major producer of new knowledge concerning 



drug safety and effi cacy; it can and should play an integrating role in the entire drug 
realization process. Thus, the primary mission of every pharmacometrics service 
organization is to effi ciently develop, effectively disseminate, and reliably maintain 
verifi ably accurate and complete explications of determinants of drug effects that 
cognizant stakeholders can use to enhance the effectiveness of their decisions and 
improve the effi ciency and reliability of their decision-making processes.

A process that will enable the fulfi llment of this mission will require the devel-
opment and deployment of three critical elements. The fi rst is the infrastructure—
the data defi nitions and assembly processes that will allow effi cient pooling of 
data across trials and development programs. The second is the process itself—
developing guidelines for deciding when and where modeling and simulation should 
be applied and criteria for assessing performance and impact. The third element 
concerns the organization and culture—the establishment of truly integrated, multi-
disciplinary and multiorganizational development teams trained in the use of mod-
eling and simulation in decision making. Creating these capabilities, infrastructure, 
and incentives is critical to realizing the full value of modeling and simulation in 
drug development.

36.1.3 Why Systems Engineering?

In March 2004, the US Food and Drug Administration issued a white paper on 
the need to improve the system for developing and regulating drugs and medical 
products (5). This document refl ected concern by regulators and the research com-
munity about the slow progress in recent years in turning biomedical discoveries 
into benefi cial medical products. The FDA acknowledged that many processes on 
the “critical path” of product development are ineffi cient, redundant, and costly. 
This white paper aimed to stimulate new thinking about how to change and improve 
current approaches to biomedical product development.

There are many reasons given for failed clinical trials, including fl awed clinical 
trial design, failure to use more powerful study designs, lack of understanding of 
dose–response, failure to study a broad range of doses, failure to test correct doses, 
and failure to evaluate Phase 2 results exhaustively (6). These failures will not be 
corrected by merely recognizing the factors that contribute to the current state of 
affairs, nor will they be corrected by simply mandating more, faster, and better 
application of the science of pharmacometrics (7) to support the implementation of 
the “learn–confi rm” paradigm (8). A different kind of science is now required—the 
science of systems engineering.

Current pharmacometrics practices and available techniques for model-based 
development are heavily constrained by a vision of model-based development as a 
subsidiary development process in an empirical development paradigm. Many of 
the symptoms of the less than optimal functioning of pharmacometrics in this setting 
are the result of a failure to appreciate the true needs and requirements of the phar-
macometrics group. In this chapter, we use the term “pharmacometrics enterprise” 
to denote the need to transform the current pharmacometrics analysis process to 
an interdependent enterprise capable of managing the growing complexity of the 
critical upstream and downstream implications of a fully functional and accountable 
service. The design of a pharmacometrics enterprise that embodies the required 
elements is a novel and complex endeavor that can overtax the experience and 
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intuitive skills of even the most gifted of practitioners. The essential role of systems 
engineering techniques is to provide practitioners with tools to augment their intui-
tive experience-based skills and to inform the necessary design decisions.

36.1.4 Chapter Overview

The major theme of this chapter is that any pharmacometrics enterprise capable of 
executing the mission statement described above must be needs driven not prefer-
ence, process, product, or service driven. This is not only a major shift in how phar-
macometrics services need to be delivered but also a major change in culture in the 
entire industry. This chapter is designed to fi ll the void that exists in trying to envi-
sion and establish such a pharmacometrics enterprise while meeting quality, cost, 
and schedule requirements. The chapter is focused on needs and process defi nitions 
and not on the technical details of performing modeling and simulations (covered 
in earlier chapters). The chapter begins with an overview of the general enterprise 
processes in which a pharmacometrics enterprise must function. Once these higher-
level organizational elements are described, we describe the various subprocesses 
required for a fully functional pharmacometrics enterprise itself. The fi nal section 
details the prerequisite architectural traits required for effectively deploying a fully 
integrated pharmacometrics enterprise in an existing drug development enterprise, 
including structural changes in the parent or client enterprise processes along with 
additional informatics support.

36.2 ENTERPRISE OF PHARMACOMETRIC ANALYSIS

Like any other enterprise, a pharmacometrics enterprise exists to accomplish the 
purposes of its stakeholders. It is important to recognize that “stakeholder” in the 
context of a pharmacometrics service refers not only to the parent organization in 
the case of an internal pharmacometrics group or client in the case of an external 
consulting service, but also to the myriad “customers” of the information products 
provided by a pharmacometrics service. These external customers certainly include 
regulatory agencies, but also health care delivery providers, such as managed care 
organizations, physicians, pharmacists, nurses, pharmacy and therapeutics commit-
tees, the scientifi c community, and patients.

The effectiveness of a pharmacometrics service—and its fundamental value to 
stakeholders—ultimately consists in the degrees to which the outcomes of its actions 
correspond to their purposes. The ability of an enterprise to achieve and reliably 
maintain this purpose rests, in turn, on the effectiveness of its actions—that is, how 
capable the enterprise is and how effectively it deploys its capabilities. Pharmaco-
metrics service capability consists in the degrees and extents to which the quanti-
tative characterizations of the determinants of drug effects it delivers satisfy the 
informatic needs of its customers. Deployment effectiveness for a pharmacometrics 
service consists in its ability to consistently deliver analytic services within cost, 
schedule, and quality specifi cations.

The preceding is meant to emphasize that the capability of a pharmacometrics 
enterprise is directly determined by the scope, effectiveness, and effi ciencies of the 
processes that the enterprise executes and the infrastructure that supports those 



processes. That is, establishing a capable pharmacometrics enterprise—or, for that 
matter, reengineering an existing one—consists in designing (or redesigning) and 
implementing (or reimplementing) these processes and infrastructure, so that the 
enterprise can (a) accurately ascertain, be principally driven by, and consistently 
sustain its focus on the actual needs of its stakeholders; (b) reliably deliver solutions 
to those needs, and (c) be effi cient at both of the previous points.

Having arrived at this conclusion, the obvious questions we need to answer in 
order to establish this enterprise are the following:

1. What are the processes of a pharmacometrics enterprise?
2. What specifi c infrastructure is required to support those processes?
3. What criteria should be used to assess designs and implementations of those 

processes?

We address general elements of the answer to the fi rst question in the remain-
der of this section. Its pharmacometrics service-specifi c elements are presented in 
Section 36.3. Answers to the second and third questions are provided in Section 
36.4.

36.2.1 Generic Enterprise Processes

All enterprises share many architectural features and characteristics. For our pur-
poses here, we describe the three essential classes of generic enterprise processes 
and, by doing so, get the fi rst part of a general answer to the process question 
posed above. As depicted in Figure 36.1, the three most important of these are the 
realization processes comprising the complete life cycles of three classes of entities: 
strategy, agency, and solution.

1. Strategy. Strategy realization is the enterprise’s process for determining what 
the actual needs implicit in and antecedent to the purposes of its stakeholders 
are. This process translates information and intelligence, including that about 
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stakeholder purposes, into concrete objectives, programs, and directives for 
governing the enterprise.

2. Agency. In order to execute a strategy, an enterprise must have some process 
or means (agencies) for addressing the systemic infrastructure needs required 
for the pursuit of its mission. This is referred to as the agency realization 
process. Three familiar examples of pervasive agencies are information, 
human assets, and matériel.

3. Solution. The output of an enterprise is generically referred to as a solution 
and it can be a product, a service, or, in the case of a pharmacometrics enter-
prise, information about the determinants of drug safety and effi cacy. Solution 
realization is a general term for processes that defi ne and deliver solutions 
to the needs and requirements that stem from stakeholder purposes. The 
pharmacometric analysis process would be an example of a pharmacometric 
solution realization and it is described in detail in Section 36.3.

All processes share certain structural characteristics, and the second part of our 
general answer to the process question before us can be obtained by exploiting that 
fact. All “end-to-end” or “total life-cycle” realization processes are subdivided into 
three distinct classes of realization subprocesses we call defi nition, development, and 
execution.

1. Defi nitional Realization Subprocesses. Defi nitional subprocesses are initial-
ization processes. These processes transform preliminary realization process 
inputs, such as stakeholder purposes, systemic requirements, and technical 
needs, into prescriptive characterizations of objectives, capabilities and infra-
structures, and both internal and external products and services.

2. Developmental Realization Subprocesses. Developmental subprocesses are 
provisioning processes. These processes translate formal defi nitions of objec-
tives, enterprise infrastructures, and products (services) output by defi nitional 
subprocesses into operational programs, infrastructures, and informational 
systems.

3. Execution Realization Subprocesses. Execution subprocesses are operational-
ization processes. These processes invoke the programs and systems produced 
by developmental subprocesses. These processes include (a) governance, the 
subprocess that initiates action programs and guides enterprise operations; 
(b) operation, the enterprise realization subprocess that invokes enterprise 
action programs, yielding the operations that carry out enterprise missions; and 
(c) application, the solution realization subprocess that invokes technical 
systems in actionable contexts, thereby yielding instrumental solutions to 
stakeholder needs and requirements.

Having now obtained both “parts” of the general answer to the process question, 
we can “assemble” them to get the “whole” generic answer. We do this by combin-
ing the fi rst threefold entity/process factorization described initially with the second 
threefold phase/process factorization just sketched. To visualize this we assign the 
realization subprocess classes to the “X” axis and the processes associated with 
the three entity types to the “Y” axis, giving us the matrix structure depicted in 



Figure 36.1. The elements of this matrix depict the nine main generic processes of 
any needs-driven solution-oriented enterprise.

36.2.2 Specifi c Pharmacometrics Service Enterprise Processes

A pharmacometrics enterprise is, intrinsically and by defi nition, a needs-driven 
solution-oriented enterprise. Therefore, establishing a pharmacometrics service 
consists of designing and implementing specifi c variants of the nine processes enu-
merated above and the infrastructure required to execute and sustain them. The 
core process of a pharmacometrics service enterprise is pharmacometric analy-
sis, conceived of and visualized in Figure 36.2 as a specifi c variant of solution
realization.

Developing a pharmacometrics service enterprise fundamentally consists in 
iteratively accomplishing three major tasks. The fi rst task is to design and opera-
tionalize the core process. We describe it in Section 36.3 and provide guidelines for 
designing and implementing it in Section 36.4. The second task is interface design 
and implementation. The process of pharmacometric analysis is invoked for various 
reasons and in various phases of the drug realization process, including drug discov-
ery, development, and commercialization, to fi ll gaps in knowledge of relationships 
between determinants of drug effects and those effects. Installing and integrating 
a pharmacometrics enterprise into a drug development enterprise entails designing 
and implementing the interaction protocols that defi ne the interfaces between the 
pharmacometrics enterprise and the entire drug realization process. One of the 
challenges in building and maintaining an effective pharmacometrics enterprise is 

FIGURE 36.2  Pharmacometric analysis as a solution realization variant.
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the fact that these interfaces have not been well defi ned from the perspective of 
the pharmacometrician nor the drug realization process itself. The third task is the 
design and implementation of the supervening processes of pharmacometric analy-
sis depicted in Figure 36.2. It should be emphasized that a pharmacometrics enter-
prise encompasses a great deal more than just the scientifi c and technical processes 
for performing analyses and for communicating the results typically considered 
the core activities of a pharmacometrics service. Establishing a pharmacometrics 
enterprise also requires attention to less visible but nonetheless crucial supervening 
elements of a total pharmacometrics solution.

As drug development organizations (and their regulatory stakeholders) seek 
to improve effectiveness and performance of their core discovery, development, 
and evaluation processes, the role of pharmacometrics in drug development is 
rapidly shifting from a sideline discipline to a mainstream function. This shift, in 
turn, is generating expectations that pharmacometrics service organizations should 
assume larger and more critical roles in these processes. A systematic, requirements-
driven approach is essential for meeting these new architectural—as opposed to 
technical—challenges, and since stakeholder needs constitute the ultimate sources 
of all valid enterprise requirements, some process for systematically identifying 
needs and requirements and for deriving the architectural structures and features 
is required.

Three of the supervening enterprise processes highlighted in Figure 36.2 are par-
ticularly important in the context of engineering or reengineering a pharmacomet-
rics enterprise in an industry undergoing a profound transformation. These three 
key processes include Intent Formalization, Enterprise Defi nition, and Enterprise 
Programming.

36.2.2.1 Intent Formalization
Intent formalization is the defi nitional subprocess for translating stakeholder intents 
and measures of acceptability (MOA) into actionable mission defi nitions, goals, and 
strategic objectives (9). This process is a critical one for pharmacometrics services 
for two specifi c reasons. First, some process must exist for defi ning actionable objec-
tives and for ensuring that those objectives constitute the best possible balance of 
stakeholder intents. Second, and more importantly from a mid- to long-term stra-
tegic perspective, both the pharmacometrics enterprise and the drug realization 
process are undergoing a remarkable structural transformation, and intent formal-
ization is a critical element of the larger process for managing this architectural 
change. This will be addressed in more detail in Section 36.4.

36.2.2.2 Enterprise Defi nition
The enterprise defi nition subprocess translates the agential (process, organization, 
information, and infrastructure) needs and requirements deriving from mission defi -
nitions into enterprise architectures—that is, into designs for enterprise operating 
systems capable of executing those missions (2). The design of a pharmacometrics 
service capable of fulfi lling its mission is inextricably linked to the enterprise archi-
tecture of the drug realization process deployed by the parent organization. This 
link will become more apparent—and urgent—as the transformation to model-based 
development becomes further advanced. The relationships between the pharmaco-
metrics process and the drug realization process are more closely intertwined than 



is evident in the current empiric-based development paradigm and the emerging 
diffi culties with meeting expectations within cost, quality, and schedule constraints 
will become ever more obvious as we move toward model-based development.

36.2.2.3 Enterprise Programming
Enterprise programming is the developmental subprocess for translating mission 
defi nitions and objectives into executable action programs for carrying them out 
(4). Designing and implementing this process is also critical for a pharmacomet-
rics service for two specifi c reasons. First, some process must exist for defi ning an 
actionable and executable program and for ensuring that the program is properly 
designed from a business perspective; for example, that it is fi nancially sustainable. 
Second, and more importantly from a mid- to long-term operational perspective, the 
pharmacometrics enterprise design must continually evolve to effectively address 
the implications of structural changes that are occurring at all levels of the phar-
maceutical industry.

36.3 PROCESS OF PHARMACOMETRIC ANALYSIS

Pharmacometric analysis is the enterprise-specifi c solution realization process 
for a pharmacometrics enterprise and is, therefore, a core enterprise process. 
Designing an implementation of this process, setting up an organization to execute 
and manage it, and building an infrastructure to sustain it are, accordingly, the core 
tasks involved in establishing a pharmacometrics enterprise, or in undertaking to 
improve an existing one.

Integrating both pharmacokinetic and pharmacodynamic analyses, a life-cycle 
complete pharmacometric analysis process comprises seven major subprocesses, 
as depicted in Figure 36.3. That is, any comprehensive pharmacometrics enterprise 
will be capable of executing and governing the complete process—all seven major 
subprocesses—from invocation to termination. Of course, not every performance 
of the service will necessarily require the comprehensive and complete pharmaco-
metrics enterprise.

Pharmacometric analysis is invoked by the formulation of queries to address 
gaps in knowledge of relationships between determinants of drug effects and those 
effects. Its principal inputs are target product profi les defi ning pharmacological 
and pharmacoeconomic baselines, designs and protocols for clinical trials aimed 
at demonstrating safety and effi cacy in subject populations, and prior knowledge 
in the form of information bases and technical literature. The principal outputs of 
pharmacometric analysis are responses to queries constituting quantitative explica-
tions of determinants of drug effects. These typically can include characterizations 
(D → C → E) of drug kinetics, drug dynamics (and under these, characterizations 
of various pharmacological magnitudes determining safety and effi cacy attributes), 
and predictions or extrapolations concerning any of the preceding.

Illustrated by the schematic pictured in Figure 36.4, the subprocess elements we 
are concerned with in the descriptions that follow are focused on the architecture 
of the process, not its operation in a specifi c development program. The focus here 
is to provide a basis for engineering or reengineering a service, not to describe the 
performance of the service once it is deployed.
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36.3.1 Analysis Planning

The fi rst step required to address a knowledge gap is to identify and characterize 
it. After all, even the most cogent answer to the wrong question is useless, and an 
incomplete answer—even to the right question—is frequently only marginally less 

FIGURE 36.3 Pharmacometric analysis process elements.

FIGURE 36.4 Pharmacometric analysis subprocess element scheme.
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so. Hence, the quality of the fi nal product of an analytic effort is directly and heavily 
dependent on the effectiveness of the plan that was executed to produce it; and in 
the case of a pharmacometric analysis, how precisely identifi ed and how completely 
characterized the knowledge gap was to begin with.

The second step required to address a knowledge gap is to develop an approach 
to resolve it. Here one will inevitably confront the additional complexity of alter-
natives. Presented with options, devising an analysis approach entails ascertaining 
which among them offers the best balance between analytic effectiveness on one 
hand, and executability in terms of capability, cost, and schedule requirements on 
the other. After all, no matter how scientifi cally potent and technically effective, an 
approach that cannot be executed is worthless, and one that is unnecessarily diffi cult 
and needlessly ineffi cient will likely be only marginally better.

The third step required to address a knowledge gap is to devise contingencies for 
potential outcomes of the pharmacometric analysis. These include (a) the potential 
that the data collected are noninformative, (b) the generation of unanticipated 
results that are contrary to the expected outcome, and (c) the generation of results 
that should have a signifi cant impact on the subsequent design of the development 
program. Each of these potential outcomes has important and iterative effects on 
the analysis plan itself and the subsequent modeling and simulation activities.

36.3.2 Data Assembly

The assembly of data sets for a pharmacometric analysis is complicated by the com-
plexity of the content, the origin of specifi c data elements, and the structure of the 
required database. These analyses typically require pooling disparate data, includ-
ing drug concentrations, drug dosing histories, patient demography, laboratory data, 
use of concomitant medicines, and measures of effi cacy and safety to create a time-
ordered sequence of events for each patient from the time of enrollment in a trial 
until its conclusion. This information must be assembled from numerous databases 
often managed by different departments, either internal or external to the company. 
As a result, data assembly can be a cumbersome and time-consuming process. There 
has been considerable effort to create data defi nition standards to facilitate data 
assembly; however, these efforts are focused on empirically based development 
programs (10,11). It is not our intent to review well known points about data man-
agement practice and related quality management issues, but instead to emphasize 
that there are important semantic issues that are not typically addressed by these 
efforts but that nevertheless have important impacts on data assembly for pharma-
cometrics services. The strategy for addressing semantic issues in the standard data 
management paradigm is wholly inadequate for the time-dependent and sequential 
individual histories required for a typical pharmacometric analysis.

The challenges of data assembly go beyond these semantic issues, however, and 
include process-related problems involving data scrubbing and quality assurance. A 
number of essential data queries, particularly the determination of whether the drug 
concentration values and the date and time of sampling make sense in the context 
of the dosing history, cannot be performed until the drug concentrations have been 
merged with the drug dosing history for each patient. Yet it is common for these 
individual data elements to be queried separately, so the important questions as 
to whether data issues will impact on the quality of the results or preclude any 
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meaningful analysis may not be recognized in a timely manner (12). Moreover, 
recording errors in sampling and dosing time, incomplete data collection, and 
administrative errors noted after merging the drug concentration and dosing histo-
ries can result in the loss of a substantial amount of valuable and expensive data, 
underscoring the need for pharmacometric-oriented monitoring in clinical trials 
incorporating pharmacometric sampling. Ideally, pharmacokinetic data should be 
queried during trial execution to identify problems early so that they can be recti-
fi ed by appropriate interventions at the problem sites (13).

36.3.3 Exploratory Analysis

While the pharmacometric analysis plan combines one part wishful thinking 
and two parts prior or emerging knowledge of a drug’s pharmacokinetics and 
pharmacodynamics, the exploratory data analysis process serves as a rapid pro-
totyping exercise to determine what can be reasonably asked of the data set. The 
effectiveness of the exploratory analysis process centers on assessing the confi r-
matory power of the data set to provide accurate, reliable, and relevant results 
from model development. The effi cacy of the exploratory analysis process concerns 
the degree to which it highlights issues, shortfalls, strengths, and weaknesses of the 
analysis plan.

The exploratory data analysis process must address issues that arise from a 
number of perspectives. Typically, the modeler will develop a series of graphic 
and tabular displays to explore the data and determine the quality and quantity 
of the data. Most pharmacometrics services have developed a standard list that 
is supplemented as needed to address the special characteristics of a particular 
development program. These graphs represent an inexpensive approach to iden-
tifying gaps in the data that may have arisen because of performance problems in 
the clinic where the data were originally collected, such as an inability to follow 
the proscribed sampling strategy because of clinical realities or miscommunica-
tions, and errors in data collection or reporting. These problems are exacerbated if 
the study monitors do not incorporate checks for pharmacometric data into their 
monitoring activities during site visits. Consequently, errors may not be identifi ed 
until the analysis-ready data sets are created and examined. Importantly, knowledge 
about the pharmacology of the drug rapidly evolves during the early stages of drug 
development, particularly as the studies move from healthy volunteers to patients 
with various degrees of severity of illness. Consequently, modeling objectives and 
feasibility may change from the time the study protocol was developed to the time 
data are available for analysis.

36.3.4 Model Development

Obviously, one of the key tasks of a pharmacometrics service is the development 
of pharmacokinetic and pharmacodynamic models that serve as a mathematical 
representation of physiologic or pharmacologic phenomena. This is also one of 
the main activities that create a mockery of cost and schedule estimates. The com-
plexity and scope of a pharmacometric model are limited only by the imagination, 
literature access, and computer resources of the pharmacometrician. Consequently, 
an effective model development process is one in which the extent of achievable 



correspondence between the model and reality is balanced by time constraints and 
limitations of the available data. Effi ciency in this case is the interpretability and 
applicability of the model in the context of the objectives of the analysis. This latter 
point is critical to adhering to cost and schedule restrictions. Model development is 
by defi nition a learning and confi rming activity. The results of exploratory analyses 
may shed light on the properties of the phenomena that must be incorporated into 
the model, but model development activities themselves may allow other heretofore 
unappreciated complexities to emerge.

It is critical to achieve a balance between respect for timelines—timelines that are 
becoming increasingly compressed as pharmacometricians are required to meet the 
same schedules for modeling and simulation as statisticians for traditional statisti-
cal analyses—and respect for the learning process that unfolds as new knowledge 
is gleaned from the model-building exercise. Without this balance, we model until 
the time runs out and then whatever is available is good enough. It is far better 
to focus on the critical path of model development, leaving ancillary issues to be 
further developed later as time permits, than it is to allow the modeling project to 
be sidetracked by those ancillary issues with the subsequent loss of time and ability 
to attend to critical path issues. It is essential for the pharmacometrics service to 
develop measures of acceptability that can guide the model-building process and 
serve as indicators for monitoring modeling progress and distinguishing between 
critical path and ancillary issues.

In a fully realized model-based development paradigm, models will be both the 
instruments and aims of drug development programs (14). There is a much more 
intimate relationship between the premises, hypotheses, and theorems that a model 
realizes or conveys, on the one hand, and those that a clinical trial is meant to 
test. In other words, the model-based paradigm will focus on the development and 
support of models as the primary outcome of a development program. This entails 
a much more iterative process than is currently employed and requires a more 
rigorous and effi cient “enterprise engineered” process to support timely decision 
making.

36.3.5 Simulation

Simulation has emerged as an important tool for extrapolating from scenarios that 
generated the data for model development activities into scenarios of potential 
interest for the drug development program (15). Similar to the model development 
process, effectiveness in the case of simulations is the correspondence between the 
model and reality. Effi ciency hinges on the applicability of the results as the target 
scenarios step outside the boundaries of the initial model. Here we need to ask 
about the extensibility of the simulation results and how broadly applicable the 
results are.

Simulations have been promoted as a powerful method for predicting the out-
comes of various drug development scenarios and hence for designing more cost-
effective development programs. There is a dependency between the available 
knowledge and data for model development and the subsequent extension of the 
model via simulation that infl uences both directly and indirectly the extensibility of 
the process. Pharmacometricians lack the tools for assessing the gaps in knowledge 
that impact on this extensibility, and in fact there are little data in the public domain 
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with respect to previous experiences with the congruence between study outcomes 
predicted by simulations and the actual clinical trial results. Thus, the true impact 
of the widening gap as we move from data to model to simulation predictions is 
unknown. Importantly, without these data, we lack an essential feedback loop for 
determining strategies for improving the reliability and robustness of clinical trial 
simulations.

36.3.6 Validation

Model validation can be defi ned as the process of substantiating that the model 
within its domain of application provides the required functionality, including input 
and output variables, and that the values it computes are suffi ciently accurate 
for the intended use (16). This requires investigations of both functionality and 
accuracy requiring criteria for judging acceptability that can be used to determine 
if the model is useful and appropriate. Investigation of the structure of a model 
requires, for example, studying whether the relationships and assumptions are 
based on general accepted theory and whether all variables considered relevant 
have been taken into account. Structure-oriented behavior tests assess the validity 
of the model structure indirectly by running the model. One method is to study 
the behavior of the model by entering extreme input values. Another approach 
involves a sensitivity analysis entailing an analysis of the model assumptions and 
of the infl uence of plausible variations in parameters, structure, and possible exog-
enous variables. The sensitivity of the outputs in response to changes in parameters 
and structure can be studied to see whether these are realistic. Data splitting and 
external validation entails a comparison of the model to the system that has been 
modeled using data that have not been used for model construction. Finally, the 
usability of the model should also be investigated. The model should be geared to 
problems and questions that are thought to be important by relevant stakeholders. 
Model validation is technically defi ned to take place after model development, but 
this process should take place in every stage of the analysis process. Although model 
validation is sometimes conducted as a separate exercise from model development, 
validation is key to building confi dence in the model.

36.3.7 Presentation

The principal stakeholders in the drug development process, particularly the devel-
opment team, the regulatory review team, and the marketing group, have come to 
expect and make decisions on a binary outcome of a clinical trial as provided by 
the “p-value” driven concept of effi cacy and safety (1). The outcome of a pharma-
cometric analysis is considerably more complex because it describes a continuum of 
outcomes, and decisions are based on setting threshold values that have important 
downstream implications. This complexity can be compounded if the teams are 
subjected to a debate among the members of the pharmacometrics group as to 
the relative value of a two- versus a three-compartment model in improving the 
goodness-of-fi t plots. Pharmacometricians must recognize that the main challenge 
of the development team is to integrate emerging information on safety and effi -
cacy into decisions on whether and how to continue the development program. The 
strategic importance of pharmacometric analyses in this decision-making process 
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must be emphasized in presentations to the development team. The pharmacome-
trician’s scientifi c assessment as to the underlying appropriateness of the model is 
best challenged and defended in presentations to peers in the pharmacometrics 
group, where the emphasis is on the quality of the fi t and the appropriateness of 
decisions made during the model-fi tting process.

Considerable effort is required for the preparation of technical reports, special-
ized presentation to development teams, regulatory interactions, and publications 
and presentations (see also Chapter 37). The efforts required to produce these 
materials are frequently duplicative and may at best involve repurposing content, 
requiring considerable rework and editing to achieve the desired content, only to 
realize that specifi c information is not readily available or was not previously gener-
ated during an appropriate opportunity in the pharmacometrics process. This issue 
speaks to important defi ciencies in the representational infrastructure of pharma-
cometrics and is addressed further in Section 36.4.2.

36.4 PHARMACOMETRICS ENTERPRISE DESIGN

Now that the components of the pharmacometrics service process have been 
defi ned, we can return to enterprise design issues and further develop the implica-
tions of the interfaces to drug realization processes and informatic infrastructure. 
The enterprise architecture described in Section 36.2 is of critical relevance to the 
successful design or reengineering of a pharmacometrics service, whether it is an 
internal group embedded in a larger drug realization enterprise or a stand-alone 
enterprise providing services on an outsourcing basis. There are two important 
reasons why the entire enterprise, and not just the process of performing analyses, 
must be kept in mind. First, the broad-based impact that pharmacometrics services 
are having on development and regulatory decision making highlights the need to 
interface with a number of departments and processes across the drug realization 
process. Second, the queries that invoke a pharmacometric analysis originate for 
varying reasons during various stages of drug discovery, development, and com-
mercialization. Figure 36.5 depicts the capability matrix for the drug realization 
process and shows the myriad potential interrelationships to the pharmacometrics 
enterprise.

The effectiveness of a pharmacometrics service ultimately consists in the degree 
to which the results of modeling and simulation activities correspond to the expecta-
tions of the stakeholders, including those requesting services and those who will be 
the recipients of work products. The ability to reliably meet expectations rests on 
how capable the pharmacometrics service is and how effectively it deploys its capa-
bilities. Reliably determining the requisite degrees of correspondences between 
capabilities and expectations is a diffi cult yet nevertheless crucial process for sus-
tainable success that must draw on strategic management and systems engineering 
techniques.

From a strategic management perspective, there are three enduring strategic 
challenges that must be successfully addressed:

1. Organizational alignment—ensuring that the pharmacometric analysis enter-
prise will be focused on the right things.
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2. Organizational effectiveness—ensuring that the pharmacometric analysis 
enterprise will be capable of delivering the right things.

3. Organizational performance—ensuring that the enterprise will be effi cient at 
addressing both these challenges.

From a systems engineering perspective, there are three enduring technical chal-
lenges that any pharmacometrics service enterprise must successfully address:

1. Service applicability—ensuring that pharmacometric analysis fi ndings and 
communications are suited to the purposes of its stakeholders.

2. Service effectiveness—ensuring that these offerings will reliably facilitate 
capable accomplishment of those purposes.

3. Service performance—ensuring that their use engenders effi ciency in both 
these dimensions.

Rigorous techniques for technical effectiveness and performance measurement 
exist and have been used for years and must be mined for applicable lessons and 
directions for the pharmacometrics enterprise. The development of an integrated 
solution to these strategic and technical challenges is a particularly diffi cult, but 
nonetheless crucial, effort that will defi ne the level of performance achievable by a 
pharmacometrics service in model-based development.

FIGURE 36.5 Capability matrix of the drug realization enterprise.
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36.4.1 Essential Pharmacometrics Service-Specifi c Traits

There are four key requirements that, programmatically speaking, constitute criti-
cal success factors for the desired level of effectiveness of the pharmacometrics 
enterprise. These requirements stem from the shift in roles of the pharmacometrics 
enterprise that mandates a clear formalization of intents from the larger drug real-
ization enterprise and provide answers to several key questions: What are the actual 
requirements for the hosting organization? What are the implications of deploy-
ing a solution to those requirements? What resources are available and would be 
required to pursue such an initiative?

1. Defi nitive Characterizations of Stakeholder Aims. The purposes of a phar-
macometrics enterprise must be explicitly defi ned to enable action programs, with 
their upstream and downstream implications for the drug realization process, to 
be devised and executed. Purposes typically exemplify tremendous variations in 
several dimensions. They range from the abstract to concrete; from the unattainable 
to the trivial; from the short-term to the long-term. Some purposes are identical, 
some are congruent, and some are diametrically opposed. Some purposes depend 
on the successful attainment of others in order for them to be accomplished.

The capabilities and resources of even the most well funded pharmacometrics 
enterprise are fi nite, and it is almost always impossible to achieve all of the aims of 
its stakeholders to the degrees they desire. An achievable and acceptable balance 
must be struck. Requirements antecedent to the purposes of the pharmacometrics 
enterprise must be identifi ed to enable the synthesis, development, and use of spe-
cifi c solutions for implementing the analysis process. Qualifi cation criteria must be 
explicitly defi ned to enable governance of the actions of pharmacometricians and 
to enable determination of the value of the solution.

2. Demonstrable Traceability. Proposed pharmacometric enterprise capabilities 
and assets must constitute demonstrable solutions to the strategic, technical, and 
infrastructure requirements entailed by stakeholder aims. This in turn mandates 
an enterprise design, or architecture, that is provably traceable to the mission 
requirements. This enterprise architecture requires the identifi cation of the needs 
and requirements stemming from mission defi nitions, synthesis of system element 
designs entailed by the needs and requirements, and an evaluation process based 
on measures of acceptability.

3. Executable Operations. Accomplishing stakeholder intents requires effective 
action on the part of the pharmacometrics enterprise. Effective action presupposes 
prior defi nition and implementation of specifi c action programs. Action program 
defi nition must be governed by additional constraints over and above the functional, 
performance, and effectiveness requirements represented by enterprise objectives 
and measures of acceptability. One of the most crucial of these is executability. The 
mission defi nition for the pharmacometrics enterprise, the capability assessments of 
the agencies to be deployed, coupled with action defi nitions, operating plans, and 
resource allocations must all be defi ned and aligned to ensure that the enterprise is 
actually capable of executing its mission.

4. Actionable Assurance Process. The results of analyses performed by the phar-
macometrics enterprise will not always align with stakeholder expectations. In fact, 
expectations may themselves be invalidated by changes in the environment, includ-
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ing emerging knowledge from the development program and shifts in regulatory 
policy. A process for continuously determining the degrees to which the outcomes 
of pharmacometric enterprise actions correlate to stakeholder aims is essential for 
success, as is a process for effecting changes when they do not.

36.4.2 Pharmacometrics Service-Specifi c Design Criteria

The challenges of designing a pharmacometrics enterprise that can achieve requisite 
levels of effi ciency, effectiveness, and capability stem from the unmet, and in some 
cases poorly recognized, needs of the pharmacometrics analysis process. Many of 
these needs can be addressed by using the following criteria to guide enterprise 
engineering efforts.

36.4.2.1 Maximize Visibility
Because the predominant drug development paradigm is based on empirical 
methods, there is a need to more clearly and convincingly convey the pharmaco-
metrics value proposition. The model-based development paradigm enabled by 
pharmacometric analysis is very different from the empiric-based paradigm. As a 
result, the value of these services to development programs and their stakehold-
ers is frequently diffi cult to identify and readily communicate. This inability to 
defi nitely demonstrate strategic and economic value of model-centric development 
services in empirical development contexts constitutes a clear challenge. As noted 
earlier, there can be a lack of familiarity with complex characterizations of safety 
and effi cacy among members of the development teams. Well crafted presentations 
of results focused on the decision-making implications of modeling and simulation 
results are key to promoting the visibility of the service and the importance of 
the fi ndings (see Chapter 37). These communications, at critical junctures of the 
pharmacometric process, provide (a) an opportunity to evaluate the value of the 
emerging knowledge; a reliable and dependable method for (b) identifying and 
explaining modeling issues and managing expectations with respect to challenges 
stemming from fl aws in study design, data collection, or modeling limitations; and 
(c) teaching opportunities with respect to the needs and requirements for future 
modeling and simulation applications.

36.4.2.2 Maximize Multilateral Action Potential
There are two fundamental ways an enterprise can execute a process. The fi rst is 
unilaterally—the enterprise acts alone or at least is the dominant execution and gov-
ernance agency in the process. The second is multilaterally—the enterprise acts in 
concert with others. Unilateral action is effi cient but requires total command of all 
the resources and capabilities to execute and govern a process. Multilateral action 
is less effi cient because it requires consensus building and coordination. However, 
multilateral action does not require total command of all the resources and capabili-
ties to execute a process; it is a strategy to accomplish stakeholder purposes with 
less. The intensely competitive and global pharmaceutical business environment 
places severe constraints on the resources available to a pharmacometrics enterprise 
to achieve and sustain success. The capability to act in multilateral partnerships with 
various stakeholders is a very effective means to achieve this success. Thus, the 
design of an effective pharmacometrics service should be assessed in terms of how 
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it will augment the capability of the enterprise to act multilaterally or to participate 
in a multilateral process.

36.4.2.3 Skill Augmentation
The analytical process employed by a pharmacometrics service is growing increas-
ingly sophisticated, and customers both upstream and downstream of the service are 
placing an increased emphasis on the results as a basis for drug development and 
regulatory decision making. The ability to perform these analyses with the requi-
site level of timeliness, quality, and sophistication creates the need for providing 
teams with personnel with appropriate levels of scientifi c, technical, and business 
skills. Much has been said about the need for skilled pharmacometricians, but the 
challenge is larger than that. A career path that provides competent scientists with 
the ability to acquire the increasingly sophisticated skills to move from practitio-
ner to strategist is essential. The need for this latter individual, with the ability to 
recognize when and how modeling and simulations will be truly cost effective, is 
emerging now. The training for these scientists/architects must encompass not only 
the technical and scientifi c aspects of pharmacometric analysis but also the skills 
required for assessing and balancing risk, performance, schedule, and cost consid-
erations. These scientists/architects will be key to the successful implementation of 
multilateral processes increasingly being fi elded by Pharma, such as the outsourcing 
of pharmacometric analyses.

36.4.2.4 Eliminate Unnecessary Variability
In the process of embarking on a pharmacometric analysis, a scientist is confronted 
with a number of different sources of diversity. There is the diversity that stems 
from differences in expected drug effects across a therapeutic class, differences in 
strategies for analysis and presentation of modeling and simulation results, and 
differences in process execution including variability due to contingent events and 
pharmacometrician capabilities and preferences. These sources of variability are 
commonly run together with the unfortunate effect of making each pharmacomet-
ric analysis appear to be a “one-off” or a unique creation. By allowing the sources 
of diversity to remain unbridled, pharmacometricians will continue to experience 
effi ciency shortfalls with attendant effects on the cost, schedule, and quality attri-
butes of analyses. Of course, an uninformed alternative is to implement a process 
that mandates conformity with subsequent loss of fl exibility and responsiveness.

One must not confuse the challenges of performing a pharmacometric analysis in 
an inherently variable environment with the problems of elucidating the nature of 
novel drug effects. Pharmacometricians are very familiar with a number of dimen-
sions of variability acting as sources of requirements for pharmacometric analyses. 
These include its ADME properties, its phase of development, whether it is a new 
entity or a new member of an existing class, whether it employs a new or existing 
biomarker, and whether it is a small molecule or a protein. While these sources of 
variability are inherent in the process, other sources of variation are amenable to 
systemization.

Pharmacometric analyses performed in support of drug development decision 
making require a diverse variety of models and strategies for using the results of 
simulations based on those models to inform decision making during all phases of 
drug development. Understanding what these models need to look like entails a 
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clear understanding of the requirements of the drug development processes these 
modeling and simulation activities are attempting to satisfy (17). Pharmacometric 
models are superfi cially, and to some extent morphologically, similar from project 
to project. Moreover, if one looks carefully at the elements of a pharmacometrics 
report, one will fi nd a very large number of highly similar elements and a signifi cant 
number of practically identical ones. Pharmacometricians must seek to minimize the 
effects of variability in the modeling process and eliminate to the greatest extent 
possible unnecessary variability in work processes and products in order to realize 
effi ciency gains with attendant effects on the cost, schedule, and quality attributes 
of analyses.

36.4.2.5 Strengthen Representational Infrastructure
Data management problems and report production and confi guration management 
problems are converse sides of the same coin. They are symptomatic of two distinct 
sets of representational capability gaps. The fi rst consists in defi nition data manage-
ment shortfalls—so called schematic gaps. The second set consists in implementa-
tion defi ciencies—shortcomings in our existing software systems.

The knowledge content encompassed by fi nal technical reports and associated 
presentations should be understood ontogenetically, and there should be specifi c 
emphasis on the milestones to delimit key transitions in the knowledge generation. 
Performing an analysis of fi nal technical report elements and driving all systemiza-
tion activities of the representational infrastructure backward from this analysis can 
best address the nontechnical, informatic needs of a pharmacometrics enterprise. 
This schematization would enable the ability to go from analysis plan to fi nal tech-
nical report by adding in elements derived from the pharmacometrics process, as 
they are available, and reduce the considerable time and effort typically involved 
in producing and maintaining technical reports.

In addition, some of the challenges in meeting cost, quality, and schedule require-
ments stem from archaic work processes. For example, capturing the requirements 
for a project in a new therapeutic area can be diffi cult because of time constraints and 
unfamiliarity with the knowledge content. The therapeutic area may be unfamiliar 
to scientists and support staff, in which case literature searches, article analysis, and 
communication of relevant elements of those to support staff are necessary precur-
sors to formulating a cogent analysis plan. Systematizing the knowledge needed for 
a new project via comprehensive taxonomic analysis of the pharmacometric rela-
tions used to explicate these relationships will be critical to either circumventing or 
dramatically reducing the literature search/analysis/communication cycle.

36.5 SUMMARY

The pharmaceutical industry is undergoing major structural change in several 
dimensions simultaneously, and these changes will completely transform the indus-
try’s fundamental business models, core processes, and socio-techno-logistical 
infrastructures. The accelerating shift from empirical to formal (i.e., model-based) 
methods and the growing reliance on modeling and simulation in decision making 
are forcing important and urgent changes to occur in the nature of the work of 
a pharmacometrics enterprise. Accordingly, what it takes to establish a pharma-



cometrics enterprise (or sustain and strengthen an existing one) is also changing 
signifi cantly from what it has required in the past.

Effectively meeting the challenges one confronts in establishing a pharmacomet-
rics enterprise in the face of this shift in the developmental center of gravity man-
dates the use of systematic and rigorous methods to consciously and deliberately 
“engineer” the service, or “reengineer” it, as the case may be. That is, successfully 
deploying a complex technical service such as pharmacometric analysis in today’s 
complex and fl uid environment mandates prior development of robust enterprise 
designs and effective implementation programs. Doing this right, in turn, requires 
use of a process that is designed explicitly to do this sort of job—the systems 
engineering process. The essential role of systems engineering techniques is to 
provision practitioners with tools to augment their intuitive experience-based skills 
and to inform the decisions they must make in the design of a pharmacometrics 
enterprise.

Pharmacometrics, in its current state within the drug realization process, is faced 
with a signifi cant, but ephemeral, opportunity. The tools of pharmacometric analy-
sis are suffi ciently understood at the same time that the limitations of empiric-
based development are becoming more widely appreciated. However, tools do not 
an enterprise make and ad hoc solutions incur a high risk of failure in the face 
of cost, quality, and schedule constraints. Only by envisioning and engineering 
a complete pharmacometrics enterprise can the full promise of model-based 
development be realized. The unsatisfactory—and short-lived—alternative is an 
underperforming pharmacometrics service with a reputation for failing to meet 
expectations. This can only result in an erosion of support and a surrendering of 
a singular opportunity to realize the industry and societal implications of model-
based development.
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37.1 INTRODUCTION

Communication, in general, can be defi ned as information that enters a process and 
eventually leaves its inverse process (1). For instance, information is transmitted 
by speaking and received after processing by its inverse, hearing. Communication
occurs if, and only if, information moves from the input to one process to the 
output from a second process, the latter process being the inverse of the former 
process. The information at the output of this inverse, receiving, process is known 
as a communication (1). Thus, communication involves the encoding and decoding 
of information.

Technical communication, in particular, is the process of gathering technical 
information and presenting it to a target audience in a clear, useful, accurate, 
comprehensive, grammatically correct, and easily understandable form (2). The 
term “technical” includes scientifi c, mechanical, chemical, legal, economic, medical, 
procedural, or other specialized information (2). Technical communicators study 
their audience and determine the best way to present the information. Should it 
be a table or a graph? The technical communicator reshapes this information so 
that the correct audience can access, understand, and use it. It stands to reason, 
therefore, that pharmacometric communication falls into the category of technical 
communication. Pharmacometric communication, therefore, is the encoding and 
decoding of pharmacometric knowledge.

It is important to effectively communicate the knowledge gained from the phar-
macometric analysis of a clinical trial data outcome to the intended audience. 
Communication in this case would be most effective when answers to questions 
in the three categories: who, what, and why are addressed. The “who” category 
addresses the target audience to whom the communication is addressed. The “what” 
category deals with the subject of the communication, the content, and the style 
with which the message is conveyed or presented so that the target audience can 
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understand it. The “why” category deals with the reason for the communication, 
intended objective, and what is to be accomplished with the communication. Thus, 
it is important in communicating the knowledge extracted or created from a drug 
development data set to ensure that the message is appropriately addressed to the 
target audience, and the content and style of communication is appropriate for the 
audience, so that the intended objective of the communication is achieved. Effec-
tive pharmacometric communication can be achieved through words, tables, or 
graphics, which has been described respectively as infantry, artillery, and cavalry 
of the pharmacokinetic/pharmacodynamic defense force (3). These methods should 
be used to supplement one another, although the effectiveness of each depends on 
the contents of the message.

The subsequent sections deal with graphics in communication—incorporating 
graphical information processing, graphical perception, the effectiveness of graphi-
cal displays and numerical tables, the framework for graphical display, and graphi-
cal excellence and integrity. The emphasis of this chapter is the communication of 
pharmacometric knowledge and not different types of graphical displays (3) (see 
also Chapter 7 of this book).

37.2 GRAPHICS IN PHARMACOMETRICS COMMUNICATION

Graphs are analogous to written language: they communicate quantitative and 
categorical information, among others. Written language communicates thoughts, 
ideas, observations, emotions, theories, hypotheses, numbers, and so on. Graphical 
language is used extensively to convey information because it does so effectively. 
Quantitative patterns and relationships in data are readily revealed by graphs 
because of the enormous power of the eye–brain system to perceive geometrical 
patterns (4).

The power of a graph is its ability to enable one to take in the quantitative 
information, organize it, and see patterns and structure not readily revealed by 
other means of studying and presenting data (3, 5). The use of graphics in pharma-
cometrics communication should take into account how information in graphs is 
decoded, and special consideration should be given to the process of decoding the 
information in the graphs by the intended audience.

37.2.1 Graphical Information Processing

Process models for graphical perceptual processing have been proposed by cogni-
tive psychologists (6–8), but statisticians and most pharmacometricians, on the other 
hand, like to think of the meaning of a graph as predefi ned. That is, if a graph is 
constructed properly its meaning will be self-evident. A simple summary of the 
distribution of an outcome variable displayed in a box plot may not be interpreted 
correctly by the intended audience. Viewers may read meaning into the width of 
the box even when it is constant in every box they see.

All stages in the graphical communication event are covered by a process 
model of graphical information processing, from the pharmacometrician who has 
knowledge/information to communicate, to the viewer who makes a judgment 
about that knowledge/information. The stages as described by Wilkinson (9) are:



• Quantitative/qualitative information
• Retinal image
• Decomposition in the visual cortex
• Integration and transformation via temporary storage in short-term memory 

and schemas accessed in long-term memory

37.2.1.1 Quantitative/Qualitative Information
Quantitative and categorical information may be part, but not all, of what the 
pharmacometrician wants to communicate to the viewer. The actual information 
in the data region may be a more complex arrangement of texture, form, edge, 
and other features. This distinction between the information the pharmacometri-
cian desires to communicate and the actual organization of the graph is important 
because most of the formal arguments about graphs involve this stage. The phar-
macometrician must select data features to highlight before constructing the graph. 
A single graph may not always reveal everything about the data. A well designed 
graph from a formal point of view may nonetheless be misperceived due to cogni-
tive processes in the later stages. A review of how these come into play is discussed 
subsequently.

37.2.1.2 Retinal Image
The retina registers the initial image of the perceived graph. Because of lighting, 
viewing position, and other factors that can create different retinal images of the 
same graph, this image may differ in important ways from the physical image. Since 
black and white graphs with high contrast produce more constant retinal images 
under different lighting and viewing conditions, they are often preferable to ornate 
colored ones.

37.2.1.3 Decomposition in the Visual Cortex
By decomposing retinal images into features such as orientation and texture, these 
images are transformed in the visual pathway. The operations at this level are highly 
parallel and organized to extract spatial frequency, orientation, and other features 
needed to construct complex visual scenes.

Thus, it is important in graphical displays that high visual contrasts should be 
distinct entities on graphs. It has been surmised that maintaining the identity of 
separate graphic elements is often one of the truly challenging problems in making 
graphs, and it is an area of frequent failure. Exact overlap of plotting symbols 
prevents visually distinguishing distinct graphic elements. This is an extreme form 
of a more general problem. Even when all plotting points are distinct, symbols can 
partially overlap, and if too many points are crowded in a region of a plot, they can 
lose their identity. Whenever this becomes a problem, the use of unfi lled circles or 
octagons as plotting symbols is recommended. These symbols can overlap and still 
maintain their identity. Squares and triangles do not share this property (3, 10).

37.2.1.4 Integration and Transformation Through Schemas
“Making a judgment about a graph involves integrating the features detected in 
the visual cortex by making use of a short term memory store—sometimes verbal, 
sometimes iconic—and schemas residing in long term memory. While the visual 
cortical operations are highly parallel, the operations at this stage are both parallel 
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and serial” (9). Temporary (less than half a minute) storage of information in order 
to perform serial operations is enabled by short-term memory. The viewer tempo-
rarily stores perceived information in order to construct higher-order comparisons 
such as scale references. Only a few (fi ve to ten) distinct pieces of information can 
be stored simultaneously because of limitations in this store (9). Thus, higher-order 
interaction plots are diffi cult, if not impossible, to interpret because the number of 
comparisons required for understanding interactions increases exponentially. Thus, 
three-dimensional (3D) plots are diffi cult to interpret. Every effort should be made 
to reduce higher-order plots to two-dimensional (2D) plots. Contour, bubble, or 
coplots can be used in place of 3D or other complex plots. Appropriate 2D plots 
would enable the pharmacometrician to communicate effectively.

37.2.2 Graphical Perception

Numerical data can be displayed in different formats, but only some are well 
suited to the information processing capacity of human vision. The phrase graphical 
perception was coined by Cleveland and McGill (11) to refer to the role of visual 
perception in analyzing graphs. These authors studied several elementary visual 
tasks (such as discrimination of slopes, lengths of lines, or judging volume) rel-
evant to graphical perception. They attribute the great advantage of graphical dis-
plays (e.g., scatterplots) over numerical tables to the capacity of the human vision 
to process pattern information globally at a glance. When there is compatibility 
between the task and the display type, perception of the judged characteristic is 
direct, requiring simpler or fewer mental operations. The merits of a graph, there-
fore, are task dependent and this should be borne in mind when choosing graphs 
for the communication of the outcome of a pharmacometric analysis.

37.2.2.1 Effectiveness of Graphical Displays and Numerical Tables
Tufte (12) makes the point that a graph can be more precise and revealing than a 
numerical display, and a graph can capture a large amount of information in a very 
small space. In comparing the effectiveness of data display using graphs and numeri-
cal tables, Legge et al. (13) found perceptual effi ciencies to be very high for scat-
terplots, ≥60%. Effi ciencies were much lower for numerical tables, 10%. Effi ciency 
in the study referred to the performance of a real observer relative to that of an 
ideal observer. The ideal observer makes an optimal use of all available information 
(13). Performance with scatterplots was reported to have the hallmarks of a parallel 
process: weak dependence on viewing time. Processing of tables of numbers were 
found to be performed in a much more serial fashion. Their effi ciencies dropped 
roughly with increasing information content in the tables and increased in rough 
proportion to viewing time. They concluded that entries in tables are processed 
sequentially at a fi xed rate. Given enough viewing time, effi ciency of information 
processing from tables could approach that of graphics (13). Thus, information 
content of tables should be kept to a minimum to allow effi cient extraction of such 
information by the reader, or the audience in the case of oral presentation of the 
outcome of a pharmacometric analysis.

37.2.2.2 Framework for Graphical Display
As discussed in Section 37.2.2, the merits of a graphical display depend on the 
information chosen for display and the amount of effort that will be expended by 



the reader in deciphering what is encoded in the graph (11, 14). In summarizing how 
sample size affects the power of a study, an integrated display such as a line graph 
would be a superior method of display. This is because in decoding the graph the 
reader would have to compare the power of the study for the different sample sizes 
and integrate that information to form his/her opinion. Judging change requires 
comparing quantities and integrating that information (11, 14). A line graph is more 
effective in conveying change than other types of display (11, 14). This is because 
the eye is focused on the physical slope of the line. Bar plots are also effective in 
conveying change (trends) in that the eye, in decoding change (or a trend) with bar 
plots, is tracing a perceived slope (11, 14). The effectiveness of a graph, therefore, 
depends on the amount of work that is to be performed by the reader in decoding 
the information contained in the graphical display.

In summarizing the results of a population pharmacokinetic study in which the 
effect of sample size on the bias and precision with which population pharmaco-
kinetic parameters were estimated, Ette et al. (15) used line plots. A similar line plot 
display (Figure 37.1) of the effect of sample size and intersubject variability on the 
estimation of population pharmacokinetic parameters was created from an aspect 
of data generated in a simulation study performed to determine the performance of 
mixed designs in population pharmacokinetic studies (16). The plot shows the infl u-
ence of intersubject variability on parameter estimation as sample size was varied. 
In the study, the effect of three different levels of intersubject variability, ranging 
from 30% to 60% coeffi cient of variation, and different sampling designs on the 
sample size required for effi cient population pharmacokinetic parameter estimation 
were investigated. However, in Figure 37.1, data for only one of the designs are 
plotted to illustrate the effectiveness of a line plot.
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FIGURE 37.1 A line plot of the effect of sample size and intersubject variability on the 
precision (expressed as percent mean absolute error—%MAE) with which central volume 
of distribution (V1) was estimated in a simulated population pharmacokinetic study in which 
a balanced sampling design was used.
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The coplot (3, 17) is a powerful tool for studying how a response depends on two 
or more factors. It presents conditional dependence in a visually powerful manner. 
Two variables are plotted against each other in a series of overlapping ranges. This 
enables one to see how a relationship between two variables (y and x) change as a 
third variable (z) changes, that is, y ∼ x | z. Thus, y is plotted against x for a series 
of conditioning intervals determined by z. Coplots may have two simultaneous 
conditioning variables, that is, y ∼ x | z1 · z2. Fadiran et al. (16) present a good 
example of the use of coplot in communicating the result of a population pharma-
cokinetics clinical simulation study. The presentation of the results from that study 
using coplots is a good example of using multipanel display to summarize the results 
of a simulated study. The use of the coplot allowed information from four variables 
to be communicated effectively using a 2D graphical display (see also Ref. 4).

In presenting data in a graphical display that requires attention to be focused on 
one variable, performance is better served by the use of more separated displays. 
The histogram and the box plot are examples of separated displays. The histogram 
(Figure 37.2) as used by Hale (18) in presenting the results of simulated random-
ized concentration-controlled trial with mycophenolate mofetil is a good example of 
the use of separated displays to convey information on a simulated study outcome. 
This plot compares simulation predicted trial outcomes and the actual trial result. 
The bars represent complete simulated trials using a developed simulation model. 
Outcomes to the right of the cutoff line are statistically signifi cant, and the actual 
study outcome is shown. The actual trial value fell between the 80th and 90th 
percentile of the simulated results, which means that the actual trial outcome is 
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FIGURE 37.2 Frequency distribution of the test statistic for the primary analysis resulting 
from 500 completed simulated randomized concentration-controlled trials (RCCTs) with 
mycophenolate mofetil under “worst case” trial conditions, completed before real study ini-
tiation. The actual study outcome is shown, falling in the central portion of the distribution 
in the interval centered at 18.3 (From Ref. 18.)



not unusual based on the simulation model, which refl ects that the simulation model 
was a reasonable description of the trial process.

The box plot has proved to be a popular graphical method for displaying and 
summarizing univariate data, to compare parallel batches of data, and to supple-
ment more complex displays with univariate information. Its appeal is due to the 
simplicity of the graphical construction (based on quartiles) and the many features 
that it displays (location, spread, skewness, and potential outliers). Box plots are 
useful for summarizing distributions of treatment outcomes. A good example would 
be the comparison of the distribution of response to treatment at different dose 
levels or exposure (as measured by area under the plasma concentration–time 
curve) as in Figure 37.3.

37.2.3 Graphical Excellence

According to Tufte (12), graphical excellence is that which gives to the viewer the 
greatest number of ideas in the shortest time with the least ink in the smallest space. 
Five principles produce substantial changes in graphical design: above all else show 
the data. Maximize the data/ink ratio (i.e., the percentage of ink that shows data). 
Erase nondata ink. Erase redundant data ink. Thus, an excellent statistical graph 
consists of complex ideas communicated with clarity, precision, and effi ciency. 
Graphical displays, therefore, should do the following (12):

• The graph should show the data above all else.
• The graph should persuade the viewer to think about the substance rather than 

about methodology, design, or something else.
• The graph must be a truthful representation of the data.
• The graph should encourage the eye to compare different pieces of data.
• The presentation of a large amount of data (information) should be made 

coherent to the reader or viewer.

A
U

C
 (

μg
·h

/m
L

)

Failure Success

5
0

1
0
0

1
5
0

2
0
0

FIGURE 37.3 A box plot of the distribution of area under the plasma concentration–time 
curve (AUC) for subjects who either failed or responded to antibiotic therapy in a clinical 
trial.
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• The revelation of levels of details of the data should be from a broad overview 
to the fi ne structure.

37.2.4 Graphical Integrity

It is important to ensure that the graphics used in the presentation of the results of 
the pharmacometric analysis of clinical trial data do not lie or mislead. The way to 
do this is to avoid visual distortion. That is, the pharmacometrician has to ensure 
that the visual representation of the data is consistent with the numerical represen-
tation. This is in terms of volume, area, and so on.

Human perception as well as actual changes must be taken into account. For 
example, the area of a circle is perceived by people to be decreasing less rapidly 
than the actual area: that is, the perceived area = (actual area)x with x = 0.8 ± 0.3. 
Perceptions differ among people. Perception changes with experience, and percep-
tion is context sensitive. According to Tufte (12), two important principles should 
be borne in mind:

• The representation of the data should be proportional to the magnitude of 
the data.

• Clear and detailed labeling (annotation) should be used. The data should be 
explained on the graph and important data points should be labeled.

Tufte (12) defi nes a “lie factor” for graphics as

“lie factor” = size of the effect in the data/size of the effect shown on the graph

Any value for the lie factor other than one (practically within [0.95, 1.05]) indicates 
a distortion. This is a particular problem in using visual area, or even volume, to 
represent one-dimensional data. To ensure graphical integrity, the number of vari-
able dimensions depicted should equal the number of dimensions in the data. 
Another means through which distortion can occur is through design and data 
variation. Observers assume that a scale will be regular, so variations can be used 
to distort the data. Changes in the design can cause observers to confuse this change 
with actual data change. Thus, data variation should be presented rather than varia-
tion in design. Context is important. Data should not be presented out of context. 
Leaving out information can create graphical distortion (12).

37.3 INFORMATION/KNOWLEDGE INTEGRATION

Since communication is defi ned as information that enters a process and eventually 
leaves its inverse process (1) and pharmacometrics communication is the encod-
ing and decoding of pharmacometric knowledge, it stands to reason that attention 
should be paid to the encoding and decoding of a pharmacometric message. The 
message should be conveyed in an unambiguous manner so that information that 
enters the process leaves as its inverse. The audience should receive the exact 
message intended by the pharmacometrician. The pharmacometrician should not 
leave his/her audience to guess or come up with myriad interpretations that are 



different from what was intended. This is why the previous sections emphasized the 
use of the right type of media to convey a pharmacometric message. It is impor-
tant for the pharmacometrician to not leave the interpretation of his/her intended 
message at the mercy of the audience. Most often, the pharmacometrician is com-
municating the fi ndings of his/her analysis to a drug development team that con-
sists mostly of nonpharmacometricians. Succinctly encoding the pharmacometric 
communication for accurate decoding by the receiver cannot be overemphasized. 
Thus, pharmacometric communication should be done in clear, useful, accurate, 
comprehensive, grammatically correct, and easily understandable fashion.

37.4 SUMMARY

The importance of effectively communicating the pharmacometric knowledge 
extracted or created from a drug development data set to ensure that the message 
is appropriately addressed to the target audience is discussed. Pharmacometric 
communication is the encoding and decoding of pharmacometric knowledge, and 
effective pharmacometric communication can be effected through words, tables, or 
graphics. These methods should be used to supplement one another, although the 
effectiveness of each depends on the contents of the message. Excellent graphical 
display is recommended as the preferred method for communicating knowledge or 
information on a large amount of data. A graph can be more precise and revealing 
than a numerical display, and a graph can capture a large amount of information in 
a very small space. In communicating with graphics, it is important to bear in mind 
how the viewer or reader decodes the information. Thus, graphical perception, the 
role of visual perception in analyzing graphs, is an important component in com-
municating with graphics, and also in pharmacometrics communication. Graphical 
displays have a great advantage over numerical tables because of the capacity of 
human vision to process pattern information globally at a glance. It is recommended 
that tables should only be used when necessary, and information content of tables 
should be kept to a minimum to allow effi cient extraction of such information by the 
reader. Pharmacometric communication should be done in clear, useful, accurate, 
comprehensive, grammatically correct, and easily understandable fashion. Failure 
to effectively communicate the outcome of a pharmacometric analysis puts at risk 
all of the data analysis efforts.
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CHAPTER 38

Pharmacometrics Applications in 
Population Exposure–Response Data for 
New Drug Development and Evaluation*

HE SUN and EMMANUEL O. FADIRAN

937

38.1 INTRODUCTION

The drug development and approval process has presented increasing challenges 
to the pharmaceutical industry as well as to regulatory authorities in recent years. 
The United States Food and Drug Administration (FDA) recently issued a major 
report identifying both the problems and potential solutions to the daunting task 
of ensuring that the unprecedented breakthroughs in medical science are demon-
strated to be safe and effective for patients as quickly and inexpensively as possible. 
Entitled Innovation or Stagnation: Challenge and Opportunity on the Critical Path to 
New Medical Products, the report carefully examines the “critical path” of medical 
product development—the crucial steps that determine whether and how quickly a 
medical discovery becomes a reliable medical treatment for patients (1).

The report notes that despite notable advances in innovative fi elds of biomedical 
research as genomics, proteomics, and nanotechnology, there has been a downward 
trend in recent years in the number of innovative medical product applications to 
the FDA and its counterpart agencies throughout the world. While the number 
of new product applications and approvals was modestly higher in 2003, the fact 
remains that most of these new scientifi c fi elds are not yet having a fundamental 
impact on patient care. Although these and other problems are attributable to a 
variety of factors, the FDA’s report focuses on one important cause—that new 
science is not being adequately harnessed to guide the drug development process 
in the same way that it is accelerating the discovery process. Not enough applied 
scientifi c work has been done to create new tools to get fundamentally better 
answers about how the safety and effectiveness of new products can be demon-
strated, in a faster time frame, with more certainty, and at lower costs. In many 
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cases, drug developers have been using the tools and concepts of the last century 
to assess this century’s candidates, which results in the failure of the vast majority 
of investigational products that enter clinical trials. Often, product development 
programs are abandoned after extensive investment of time and resources and the 
path to market for successful candidates is long, costly, and ineffi cient, due in large 
part to the current reliance on cumbersome assessment methods.

It appears that pharmaceutical fi rms recognize the benefi ts of early attrition 
of potentially unsuccessful compounds but they also face a constant challenge of 
economic factors that infl uence the effi ciency of drug development. Regulatory 
authorities, on the other hand, have been confronted with continued acceleration of 
the review process with the public expectation of uncompromised quality of safety 
and effi cacy assessments. The Prescription Drug User Fee Act (PDUFA) (2) of 
1992 and the Food and Drug Administration Modernization Act (FDAMA) (3) 
have provided the impetus and the much needed resources to implement substantial 
changes in the review process. As a result, review times have decreased signifi cantly 
over the past 10 years (4).

In addition, there is an increased awareness within the FDA of the issues related 
to individualized drug therapy and the utility of possible confi rmatory data from clini-
cal trial sources other than the primary clinical safety and effi cacy trials (FDAMA 
Section 115) (3). Amidst the “beat placebo” framework that has historically led to 
approval of doses that could be too high for individual patients, and the resultant 
safety issues, optimization of drug dosing has evolved into a primary goal of the 
drug development and review processes (5–8). This is because pharmaceutical spon-
sors have typically used the maximum safe dose (MSD) strategy rather than the 
minimum dose for satisfactory effect (MDSE) concept to identify doses for their 
Phase 3 program (5). This scenario has resulted in the present situation whereby 
lower effective doses have been used in clinical practice for several approved 
medications (9). Moreover, postapproval changes have been recommended for 
several approved medications in the United States (10) and Europe (11). In order to 
address this development, the FDA and the International Conference on Harmoni-
sation (ICH) have published guidances for industry that provide an understanding 
of exposure response (E-R) and promote its application during drug development 
and regulatory review (12).

38.1.1 Understanding E-R Relationships

The drug approval process relies on evidence from the average drug performance 
in terms of safety and effi cacy obtained from adequate and well controlled clinical 
trials in a select patient population. The approved doses or apparent exposures 
to drugs may be well beyond that needed for optimal benefi t/risk and, in some 
susceptible individuals, these doses may even cause undesirable and sometimes 
serious side effects. The signifi cance of careful characterization of the E-R relation-
ship in drug development has long been realized by the FDA (13). An increased 
effort to better understand the relationship between drug exposure (as measured by 
dose, drug concentrations, or any other appropriate pharmacokinetic (PK) param-
eter) and the corresponding pharmacological response (either benefi cial or adverse) 
has been made by the clinical pharmacology and clinical groups within the FDA 
(12).



E-R information can support the primary evidence of safety and/or effi cacy. In 
some cases, E-R information can provide important insights that can allow a better 
understanding of the clinical trial data such as in explaining a marginal result on the 
basis of knowledge of systemic concentration–response relationships and achieved 
concentrations. Ideally, in such cases the explanation would be further tested, but in 
some cases this information could support approval. Even when the clinical effi cacy 
data are convincing, there may be a safety concern that E-R data can resolve (12).

38.1.2 Applications of E-R Relationships

E-R information can sometimes be used to support use, without further clinical 
data, of a drug in a new target population by showing similar (or altered in a defi ned 
way) concentration–response relationships for a well understood (i.e., the shape of 
the exposure–response curve is known), short-term clinical or pharmacodynamic 
(PD) endpoint. Similarly, this information can sometimes support the safety and 
effectiveness of alterations in dose or dosing interval or changes in dosage form or 
formulation with defi ned PK effects by allowing assessment of the consequences 
of the changes in concentration caused by these alterations. In some cases, if there 
is a change in the mix of parent and active metabolites from one population to 
another (e.g., pediatric vs. adult), dosage form (e.g., because of changes in drug 
input rate), or route of administration, additional exposure–response data with 
short-term endpoints can support use in the new population, the new product, or 
new route without further clinical trials.

As noted in the ICH E4 guidance for industry entitled Dose–Response Informa-
tion to Support Drug Registration (12), dose–response information can help identify 
an appropriate starting dose and determine the best way (how often and by how 
much) to adjust dosage for a particular patient. If the time course of response and 
the exposure–response relationship over time is also assessed, time-related effects 
on drug action (e.g., induction, tolerance, and chronopharmacologic effects) can 
be detected. In addition, testing for concentration–response relationships within 
a single dosing interval for favorable and adverse events can guide the choice of 
dosing interval and dose and suggest benefi ts of controlled-release dosage forms. 
The information on the effects of dose, concentration, and response can be used to 
optimize trial design and product labeling.

The various E-R study designs and their strengths and limitations have been 
extensively discussed in the ICH and FDA guidances (12) (see also Chapter 31 of 
this book).

The following examples are intended to illustrate the role that E-R plays in 
determining optimal dosing in various circumstances. The drug names have been 
masked to protect proprietary information; however, the principles of applying E-R 
information are clearly outlined.

38.2 DRUG ENHIBITOR

38.2.1 Objective

The objective of this analysis was to use the E-R relationship to fi nd the optimal 
dose for Drug Enhibitor.
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38.2.2 Background

Drug Enhibitor is an enzyme inhibitor being developed as an oral treatment for a 
functional disorder. Both 30 and 60 mg dosage strengths are available. The initial 
proposed dosing regimen was 60 mg once a day.

38.2.3 E-R Approach for Dose Selection

Several adequate and well controlled clinical effi cacy and safety studies were con-
ducted. There were three Phase 3 clinical studies, where 30 and 60 mg doses were 
compared with placebo. These studies were designed as randomized, double-blind, 
placebo-controlled, and parallel dose studies. The effi cacy of the drug was measured 
as change from the baseline and all three effi cacy parameters (E1, E2, and E3) were 
considered as primary evidence of effi cacy.

The effi cacy and safety data from Phase 3 studies and Phase 2 dose-ranging studies 
were analyzed to explore the E-R (effi cacy and adverse events) relationship. Based 
on the E-R data, a dose with optimal effi cacy and safety was recommended.

38.2.4 Population PK/PD Analysis

Population analyses using nonlinear mixed effects modeling were carried out with 
the data collected from three Phase 2 studies; the range of doses was 7.5 to 300 mg. 
Patient responses to a validated questionnaire developed for the functional disor-
der under investigation were used as endpoints in the PK/PD analyses. Response 
versus dose was modeled with the Emax model, which fi t the data best. The param-
eter estimates from this model were used to calculate the probabilities of getting a 
certain clinical score. Based on the data illustrated in Figure 38.1, the probability of 
achieving an acceptable effi cacy measure (defi ned as >15% improvement in score) 
increased with dose. The results demonstrated that the probability of reaching 
the highest score for the PD endpoint was not signifi cantly higher at 60 mg when 
compared with the 30 mg dose.

Overall, it appeared that the population response reached a plateau at approxi-
mately 30 mg; therefore, administration of doses greater than 30 mg did not provide 
additional benefi t. This conclusion was consistent with the fi ndings resulting from 
the effi cacy data reported in the Phase 3 trials.

Based on the pooled data from the three Phase 3 studies, there was a trend 
toward dose-dependent increases in the frequency of drug-related adverse events, 
particularly dyspepsia, myalgia, and back pain, although the overall absolute inci-
dence was between 0.5% and 10%. This was dependent on the event and drug 
dose.

Given the results of the pharmacometric analysis, a starting dose of 30 mg was 
recommended for patients with the functional disorder who are otherwise 
healthy.

With regard to special populations, systemic Enhibitor exposure was approxi-
mately twofold higher for the parent drug and three- to fourfold higher for the 
major metabolite in subjects with mild and moderate renal impairment following 
administration of the 30 mg dose. The increased systemic Enhibitor exposure in this 
population was associated with signifi cant increase in the incidence of drug-related 



adverse events. Due to the increased incidence of adverse events in moderate renal 
impairment subjects, the exposure of Enhibitor was not investigated in patients with 
severe renal impairment. It should be noted that all the pivotal Phase 3 trials for 
Enhibitor excluded patients with clinically signifi cant renal failure.

38.2.5 Results

Based on the E-R data analysis, there were no signifi cant differences (p > 0.05) in 
response between 30 and 60 mg doses. Both 30 and 60 mg doses were statistically 
signifi cantly better than placebo. There did not seem to be any additional benefi t 
with the 60 mg dose compared to the 30 mg dose.

Based on the increased Enhibitor exposure of parent drug and the metabolite in 
patients with moderate renal impairment, and the associated increase in incidence 
of adverse events, a dose of 15 mg was recommended in this patient population.
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FIGURE 38.1 Estimated probability of achieving a given score of effi cacy measure for 
Enhibitor. In this plot, the effi cacy measure is the probability of achieving a desired clinical 
effi cacy score (or percentage of patients who achieve the desired effi cacy score). Two rep-
resentative curves are displayed—one for when the desired effi cacy score is 5 (solid line), 
and the other when the desired effi cacy score is 3 (dashed line). When the desired clinical 
effi cacy score is 3 (i.e., clinically satisfactory), the probability of clinically achieving this score 
plateaued at 20 mg of dose (the probability is 93%). Increasing dose will not further increase 
this probability. If the desired effi cacy score is 5 (clinically very satisfactory), the probability 
of achieving this score plateaued somewhere beyond the 75 mg dose, but the added benefi t 
from 30 mg to 60 mg is relatively small (increased from 60% to 66%). Therefore, doses greater 
than 30 mg would not likely add signifi cant clinical benefi t.
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38.2.6 Conclusions

The sponsor had requested approval for only a 60 mg dose. Based on the E-R analy-
sis of the data from Phase 2 and Phase 3 studies, a lower starting dose of 30 mg in 
patients with the functional disorder who are otherwise healthy was recommended. 
Based on the evidence of increased Enhibitor exposure and adverse events in renal 
impairment patients, it was concluded that dosing in patients with moderate renal 
impairment should not exceed 15 mg and the drug should be contraindicated in 
patients with severe renal impairment.

38.3 DRUG BOTANI

38.3.1 Objective

The objective of this analysis was to determine the lowest effective dose of a 
botanical drug product, Botani, indicated for a chronic disorder. The drug was to 
be given chronically over many years. The sponsor requested approval of a dose 
that is similar or better than a marketed comparator, Compara.

38.3.2 Data Resource

Botani and Compara were both administered once daily for 8 weeks. There was a 
run-in period and follow-up phase. Data from Phase 2 dose–response studies were 
available. The E-R relationship was characterized in two Phase 2 clinical trials with 
the daily doses of 0, 3, 7.5, 15, 30, 60, 120, and 240 mg. Percent change of plasma R
from baseline (ΔR%) was used as a PD clinical endpoint.

38.3.3 Data Transfer

Data was transferred from SAS transport fi le to ASCII format using StatTransfer. 
Final data sets for the consequent analysis were saved in S-Plus data structure.

38.3.4 Data Analysis and Results

Data analyses included data visualization, nonparametric statistical analysis on 
observations (data from study 1 only), and parametric analysis with nonlinear mixed 
effects modeling.

38.3.4.1 Data Visualization
Various plots were generated to check ΔR% versus treatment time relationship, 
ΔR% versus dose relationship, variability, relative potency between Botani and 
Compara, and the effect of covariates on the response variable. Botani exposu re–
response plots indicated that plasma R gradually drops and essentially reaches 
plateau over the 6 week treatment time. The profi les of ΔR% over time showed 
similar pattern for both Botani and Compara (Figure 38.2). After approximately 
4 weeks of treatment time, percent change of endpoint (ΔR%) reaches 86–90% of 
the maximum effect for a given dose. This was observed for all dose levels studied 
(3–240 mg). It did not appear that any covariates (age, sex, baseline R, etc.) had any 



effect on ΔR%. Botani produced up to approximately 4× R lowering effect when 
compared with Compara, in both studies (Figure 38.3). As shown in Figure 38.3, 
the maximum effect for Botani was approximated at the 30 mg dose.

38.3.4.2 Data Analyses
Botani’s dose–response and concentration–response analyses were conducted. In 
the analyses, no effort was made on checking per protocol (PPT) data, but the focus 
was on the intention-to-treat (ITT) data. Analyses focused on the dose–response 
data in study 2 and study 1 data were used for external model validation (see 
Chapter 8 for a detailed discussion on model validation). Data from other studies 
were not modeled. Since concentration–effect data from study 2 did not appear to 
offer any advantage when compared with the dose–response data, it was examined 
without detailed modeling analyses. Statistical comparisons between R% reductions 
at a given Botani dose versus 4× Compara dose resulted in the 90% CI of the mean 
ratios of the two treatments falling within 80–125%, indicating that the mean obser-
vations or parameters for the two drugs at doses 4× different were equivalent.

Some statistical analysis results of Botani’s E-R data are presented in Tables 
38.1. The ΔR% reduction at week 6 was not signifi cantly different from that at 
week 4. Results of mean (and SD) of R% reduction of study 1 and study 2 were 
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FIGURE 38.2 Plots of ΔR% over time by dose and treatment for study 1 (a comparative 
study of Botani and Compara). Data show treatment effect over time and visual comparisons 
on relative potency of Botani and Compara. At all doses, the ΔR% gradually increases and 
reaches steady states. When the drug is withdrawn, R slowly returns to the baseline level. 
The new drug, Botani, produced more R% reduction than Compara as shown at the 30 mg 
dose. In addition, there is a clear dose–response relationship for Botani.
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FIGURE 38.3 Plot of ΔR% versus dose by treatment. Data show visual comparisons on 
relative potency of Botani and Compara at all dose levels. In all doses, the new drug Botani 
produces a greater ΔR% than Compara. The dose–response relationship is clearly demon-
strated. The data points are observed ΔR%; the lines are links of the mean values at various 
doses.

TABLE 38.1 Mean ΔR% at Various Dose Levels for Botani at Week 6

Botani Mean Mean Study 1 Study 2 Approximate
Dose ΔR% at ΔR% at Observed Observed Minimum ΔR% at
(mg/day) Week 4 Week 6 ΔR% at Week 6 ΔR% at Week 6 Week 6 in About
   (Meanand SD) (Meanand SD) 85% of Patients

 0  −1.38 −1.99 −0.598 (7.18) −1.318 (6.58) —
 3 −36.67 −38.32 −35.23 (8.81) — −26
 7.5 −39.16 −40.93 −41.57 (9.27) — −28
15 −42.55 −44.47 −44.63 (7.16) −41.6 (9.94) −32
30 −47.39 −49.53 −49.43 (17.0) −49.95 (10.67) −39
60 −53.09 −55.9 −54.26 (11.9) −52.21 (9.86) −43

very consistent. Also, at the 15 mg dose, R% reduction is more than 30% in 85% 
of subjects, yielding a clinically signifi cant therapeutic outcome.

38.3.4.3 Nonlinear Mixed Effects Modeling Analyses
The objective of this analysis was to integrate all of the above information for making 
a fi nal recommendation on optimal therapeutic dose of Botani. Nonlinear mixed 
effects modeling analyses were conducted only on dose–response data from study 
2 because of its completeness at multiple dose levels and larger number of subjects. 
A total of 374 subjects with 1816 observations were included in the data analyses. 
An inhibitory effect Emax model describes the response–time relationship (at a given 



dose) and response–dose relationship (at a given time point) very well. However, 
concentration–response data did not offer any advantage over dose–response data 
in these modeling analyses. The nonlinear mixed effects analyses were conducted 
using Pharsight WinNonMix software. Model-building criteria for adding covariate 
effects were based on objective function change by more than 30 units (p < 0.001) 
and the examination of diagnostic plots. An Inhibitory Maximum Effect function 
available in WinNonMix was used for both time effect and dose effect on ΔR%.
The FOCE BLOCK method was applied. Intersubject variability was modeled as 
lognormal distribution and residual error was modeled unweighted.

The fi nal nonlinear mixed effects model was (applicable to the dose range 
3–240 mg only)

Max observed ΔR% = Baseline (day 0) + Treatment time effect 
+ Dose effect + Drug effect

Baseline at day 0

over time = Baseline Timmax

= −
− ⋅ − − ⋅

1 99

1

. %

% expΔR E K ee( )( ) (38.1)

where Emax is a regression parameter to describe the maximum effect at time infi nity 
and is drug and dose dependent:

K

E

= − ⋅ ( )
= − − ⋅ +( )

0 1657 0 00789

39 94 38 40 16 43

. .

. . .max

trt-1

Dose Dose ++ ⋅ ( )
=

10 03

1

. trt-1

trt if drug is Botani; trt=2 if drug is Compara

 (38.2)

The model excellently predicted individual ΔR% over time as indicated in a set of 
goodness-of-fi t diagnostic plots (not shown) for study 1. The predicted mean values 
have less than ±4% error. Post hoc individual prediction for all 374 subjects was 
excellent (see the appendix for details and individual predictions). The c2 statistics 
confi rmed that there were signifi cant treatment effects, dose effects, and time effects 
on ΔR% profi les for Botani and Compara. Based on the model, it was concluded 
that: (a) Botani offered superior potency to Compara; for example, 30 mg Botani 
produced approximately equal degree of R% lowering effect as 120 mg Compara; 
(b) at the same dose level (e.g., 30 mg), Botani would produce an additional 20% 
R lowering effect than Compara (e.g., 49.95% drop in R for Botani versus 37.87% 
drop in R for Compara); and (c) at least 4 weeks of treatment time are needed to 
approximate the corresponding maximum effect for all doses.

38.3.4.4 Results
E-R analyses indicated the following. Signifi cant reductions in plasma R were seen 
within 1 week of therapy and most of the total effect was achieved by 4 weeks. The 
extent of R% lowering was dose-related and was in the range of −35% to −60%
for 30–60 mg doses. Although the sponsor had proposed to market 30, 60, 120, and 
240 mg doses, the E-R data showed that doses lower than the 30 mg also reduced 
plasma R levels signifi cantly.

A 7.5 mg dose reduced the plasma R concentrations by a mean of 40% and 
a 3 mg dose, the lowest dose studied, reduced plasma R by approximately a 
mean of 35%. In addition, prediction based on nonlinear mixed effects modeling 

DRUG BOTANI 945



946 PHARMACOMETRICS APPLICATIONS IN POPULATION EXPOSURE–RESPONSE DATA

indicated that the approximate minimum ΔR% at 6 weeks in about 85% of patients 
who took the 3 mg, 7.5 mg, 15 mg, and 30 mg doses were −25%, −30%, −35%, and 
−40%, respectively. The effi cacy measure appeared to plateau at the 120 mg dose 
with little additional benefi t achieved when titrated from 3 to 30 mg (Figure 38.4). 
This absence of additional benefi t was coincident with greater risk for myopathy 
and rhabdomyolysis observed at higher doses.

38.3.5 Conclusions

Although the sponsor had proposed to market 30, 60, 120, and 240 mg doses, the 
E-R data indicated that doses lower than the 30 mg were effi cacious. Considering 
the potential toxicity at higher doses and the increased risk of greater exposure in 
the patient subgroup (e.g., renally impaired), it was recommended that the optimal 
starting dose be lower than 30 mg (5 and 15 mg doses). The safe use of drug Botani 
would require the availability of low-dosage strengths (e.g., for patients treated with 
other interacting drugs, patients with renal impairment, or the elderly).

38.4 DRUG AMICID

This Investigational New Drug (IND) application for this drug was initially submit-
ted in July 2001. Drug Amicid is a water-soluble hormone antagonist. The product 
is formulated as a lyophilized powder, reconstituted with sterile water and mannitol 
for subcutaneous and intramuscular injection, or with sterile 5% glucose solution 
for intravenous infusion. Drug Amicid is relatively safe. The single dose tested was 
up to 360 mg without adverse effects. There was a very low ADR rate.

The sponsor conducted several Phase 2 trials with various subcutaneous injection 
volumes, dose, dosing interval, and length of durations. With these data, the sponsor 
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FIGURE 38.4 Simulated population distribution plots of ΔR% for doses 3, 15, and 30 mg. 
Data are from the NONMEM model prediction. If ΔR% = 20% is assumed to be a clinical 
effective benefi t marker, the increase in the number of patients who will benefi t from the 
treatment is small when the dose was increased from 3 to 30 mg.



conducted comprehensive modeling and simulation work to design the optimal dose 
and dose regimen for their planned Phase 3 trials, including monthly and trimonthly 
dose regimens. Sponsor requested an end of Phase 2a (EOP2A) meeting to receive 
the FDA’s input on the modeling & stimulation (M&S) performed, and the Phase 
3 clinical program for the drug.

Given the amount of trough concentration data available, the data were sub-
divided into 1 ng/mL bins. The corresponding percentage of subjects within each 
concentration bin who met a clinical effi cacy measure criterion was calculated. 
The clinical group desired the effi cacy rate to be greater than 90%. Figure 38.5 
is a composite plot of such data. It indicates that if subjects maintained Amicid 
trough concentrations within 5–6 ng/mL, the clinical success rate would be about 
92%. Since controlling mean trough drug concentrations in a population was more 
practical, it was necessary to incorporate variability, factoring in the concentrations 
and, with the above criterion, the percentage of subjects who had Amicid trough 
concentrations lower than 5 ng/mL at various mean Amicid trough concentrations 
were generated and plotted (see Figure 38.6). From the fi gure it can be observed 
that when the mean concentration was 10 ng/mL, the percentage of subjects with 
trough concentrations less than 5 ng/mL was less than 1%, and the 10 ng/mL average 
concentration appears to be the infl ection point on the curve. When the mean 
plasma drug concentration was less than 10 ng/mL, the percentage of subjects who 

FIGURE 38.5 Percent success rate versus drug concentration. Data were generated by 
binning the concentrations (see text for explanation). Different symbols show data from 
different treatment times. Tolerance was not observed. If all subjects have trough Amicid 
concentration of 5 ng/mL, the success rate would be about 92%. Due to concentration 
variability in a population, a mean concentration in a population of 7.5 ng/mL corresponds 
to a success rate ranging from 70% to 97% (mean 94%, as shown in the darker square), 
and a success rate of 92–97% (mean 96.4%, the lighter square) for a corresponding mean 
concentration of 9.5 ng/mL.
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would not be able to maintain Amicid trough concentrations greater than 5 ng/mL 
increased in an almost linear manner. Furthermore, an increase in mean concentra-
tion beyond 10 ng/mL would not offer any substantial improvement in decreasing 
the fraction of subjects with plasma Amicid concentration lower than 5 ng/mL.

Based on the above information, trial design was simulated using the sponsor’s 
PK model with the criterion that the mean drug concentration remains on or 
slightly above 9.5 ng/mL. Furthermore, various dose–dosage regimen combinations 
were simulated to recommend the optimal dose–dosage regimen combination. 
The sponsor accepted the Agency’s recommendation for the dose–dosage regime 
combination to study in their Phase 3 clinical trials.

38.5 DISCUSSION

According to the ICH-E4 guideline (12) and certain FDA guidances (12), a knowl-
edge of the relationships among dose, drug concentration, and clinical response 
(desirable and undesirable effects) can (a) guide the selection of an appropriate 
starting dose, (b) guide the selection of an adjusted dose for patient subgroups, 
and (c) identify a dose beyond which increases would be unlikely to provide added 
benefi t or would produce unacceptable side effects.

FIGURE 38.6 The percentage of subjects who have trough Amicid concentrations lower 
than 5 ng/mL at various mean Amicid concentrations. When mean Amicid concentration is 
greater than 10 ng/mL, the percentage of subjects whose Amicid concentration is less than 
5 ng/mL is about 2–4%. However, a further increase in the mean concentration will not offer 
much added benefi t to reduce the percentage of subjects with trough Amicid concentrations 
less than 5 ng/mL.
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For a pharmaceutical product that is prescribed to a patient, the ideal goal is 
for the patient to attain maximum effi cacy (i.e., maximum benefi t) with minimal 
adverse events (i.e., limited risk). These examples illustrate how E-R relationships 
can guide the selection of not only an effi cacious dose but an optimal dose as well. 
Using traditional approaches for assessing E-R relationships and population PK/PD 
methodologies, optimal doses for Drug Enhibitor and Drug Botani were chosen 
from several available effi cacious doses. Without such information, higher than 
necessary doses may have been approved with associated greater risks of adverse 
events. In the case of drug Amicid, an understanding of the E-R relationship led to 
the recommendation of the right dose to be studied in the Phase 3 clinical program. 
Dose fi nding in Phase 3 is also important for dosage optimization (14).

38.6 SUMMARY

In conclusion, these examples taken from two recently submitted NDAs to the 
FDA and an EOP2A meeting between FDA and a sponsor demonstrate that E-R 
information can signifi cantly contribute to a better understanding of optimal doses 
and dosage regimens. It is also important that dose fi nding not only occur in Phase 
2 but that it continues into Phase 3 in order to optimize dosing.
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APPENDIX 38.1

WINNONMIX NONLINEAR MIXED-EFFECTS ESTIMATION PROGRAM (V2.0.1)

 Core Version 28NOV2000

Listing of Input Commands:

MODEL

DNAMES ID~1 OBDAY~2 PD~3 WEEK~4 TRT~5 DOSE~6 TRT2~7 DAY~8

METHOD 1 /R

MINIMIZATION 0 /STEP=1

DINCREMENT 0.001

NPOINTS 100

ITERATIONS 100

CONVERGENCE FUNC /TOL=0.0001

SUBJECT ID

XNAME DAY

YNAME RP

STDERR 0

MIXEFFECTS

 BASE=BASE1_0 ;Baseline term in equ 38.1

 K=(K0_1+K0_2*(TRT2-1))*EXP(K0_ETA0) ;K term in equ 38.1

 E=(E0_0+E0_1*DOSE/(E0_2+DOSE)+E0_3*(TRT2-1))*EXP(E0_ETA0);Emax 

term in equ 38.2

END

INITIAL

 1: (-2) (0.19) (0.002) (-42) (-35) (15) (8)

END

NOBOUND

VFUNCTION IDENTITY

OMEGA K0_ETA0 E0_ETA0

END

Command Parsing Completed.

Data Input Finished.



 Ordinary Least Square Estimates of Fixed Effects

 EMAX_0 EC50_0 EC50_1 E0_0 E0_1 E0_2

 -2.2878E+00 3.9733E+00 -4.1081E-01 -5.2616E+01 -2.2337E-01 9.3982E+00

 Initial Estimates of Random Effects

 (For All ID)

 EC50_ETA0 E0_ETA0

 0.0000E+00 0.0000E+00

 Initial Estimates of Covariance Parameters

SIGMA^2: 5.6588E+01

Covariance Matrix of Random Effects:

 EC50_ETA0 E0_ETA0

EC50_ETA0 1.3998E+00

E0_ETA0  7.6006E-02

Computation of Initial Estimates Completed.

 REML Estimation Iteration History

Iteration Objective Criterion

1 21711.9269 1.0000

 EMAX_0 EC50_0 EC50_1 E0_0 E0_1 E0_2

 -1.9804E+00 4.2012E+00 1.3577E-01 -5.1956E+01 -2.7583E-01 8.8429E+00

Iteration Objective Criterion

2 21711.9269 0.0000

 EMAX_0 EC50_0 EC50_1 E0_0 E0_1 E0_2

 -1.9804E+00 4.2012E+00 1.3577E-01 -5.1956E+01 -2.7583E-01 8.8429E+00

Convergence Achieved.

Model Estimation Completed.

 Class Level Information

Class Levels Values

ID 374 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

 ……373 374
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 Model Fitting Information

Description Value

Number of Subjects 374

Total Observations 1816

Minimum Objective Function Value 21711.9269

REML Log Likelihood -6635.7629

Akaike’s Information Criterion (AIC) 13287.5257

Schwarz’s Bayesian Criterion (SBC) 13331.5344

-2 * REML Log Likelihood 13271.5257

 Solution For Fixed Effects

Parameter EMAX_0 EC50_0 EC50_1 E0_0 E0_1

Estimate -1.9804E+00 4.2012E+00 1.3577E-01 -5.1956E+01 -2.7583E-01

StdError 4.3267E-01 2.8473E-01 4.6437E-01 1.1187E+00 2.1160E-02

Parameter E0_2

Estimate 8.8429E+00

StdError 1.3235E+00

 Covariance Parameter Estimates

Parameter Estimate StdError

SIGMA^2 6.1175E+01 6.3153E+00

Variance/Covariance Of Fixed Effects:

 EMAX_0 EC50_0 EC50_1 E0_0 E0_1

EMAX_0 1.8720E-01

EC50_0 -5.4909E-03 8.1072E-02

EC50_1 -3.4663E-02 -7.3546E-02 2.1564E-01

E0_0 1.1176E-02 -1.3797E-01 1.3743E-01 1.2515E+00

E0_1 1.2942E-04 -2.4125E-04 -2.1655E-04 -1.3464E-02 4.4774E-04

E0_2 2.6031E-02 1.3654E-01 -3.3834E-01 -6.9148E-01 -3.4679E-03

 E0_2

E0_2 1.7517E+00

Correlation Of Fixed Effects:

 EMAX_0 EC50_0 EC50_1 E0_0 E0_1

EMAX_0 1.0000E+00

EC50_0 -4.4571E-02 1.0000E+00

EC50_1 -1.7252E-01 -5.5624E-01 1.0000E+00

E0_0 2.3091E-02 -4.3316E-01 2.6456E-01 1.0000E+00

E0_1 1.4137E-02 -4.0042E-02 -2.2039E-02 -5.6878E-01 1.0000E+00

E0_2 4.5458E-02 3.6231E-01 -5.5050E-01 -4.6703E-01 -1.2383E-01

 E0_2

E0_2 1.0000E+00



Variance/Covariance Of Random Effects:

 EC50_ETA0 E0_ETA0

EC50_ETA0 2.6183E-01

E0_ETA0  2.0195E-02

Standard Error of Variance/Covariance Of Random Effects:

 EC50_ETA0 E0_ETA0

EC50_ETA0 6.0387E-02

E0_ETA0  2.9767E-03

Correlation Of Random Effects:

 EC50_ETA0 E0_ETA0

EC50_ETA0 1.0000E+00

E0_ETA0  1.0000E+00

Variance/Covariance Of Individual Estimates:

 EMAX EC50 E0

EMAX 0.0000E+00

EC50 0.0000E+00 7.7233E+01

E0 0.0000E+00 6.6950E+00 7.6264E+01

 Solution For Random Effects

ID EC50_ETA0 E0_ETA0

1 -4.3592E-01 1.4015E-01

2 -1.0799E+00 2.9815E-01

37 -2.2513E-01 -2.8100E-02

38 -5.8753E-01 8.0395E-02

 Individual Parameter Estimates

ID EMAX EC50 E0

1 -1.9804E+00 2.8046E+00 -4.9600E+01

2 -1.9804E+00 1.4730E+00 -5.8090E+01

373 -1.9804E+00 3.7591E+00 -4.0335E+01

374 -1.9804E+00 5.1892E+00 -3.3586E+01

 Estimates Of Secondary Parameters

ID EMAX-E0

1 4.7620E+01

2 5.6110E+01

373 1.2392E+00

374 1.0547E+00

Program Completed (total time used: 00:02:48.45).

Normal Ending.
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39.1 INTRODUCTION

The use of medication by children is widespread, with 20% of school-age children 
receiving one or more prescription drugs each year. Given the extensive use and 
altered pharmacokinetics resulting in a wide range of drug exposures, it is not sur-
prising that recent history is replete with tragic consequences of drug administration 
to pediatric patients when pediatric clinical pharmacology information is lacking. 
To promote healthy children, it is of paramount importance that optimal dosing 
strategies be determined. The development of dosing strategies in this population 
is, in general, more complex than adults because of the diversity in the pediatric 
population, which is much greater than adults. For example, this patient popula-
tion can range from several hundred grams to over a hundred kilograms and there 
is diversity of maturation where organs of elimination have varying degrees of 
functionality at different ages. Many biomarkers also have age-dependent ranges 
and therefore can exhibit signifi cant within-subject maturational changes even over 
the course of a study. Size, age, ongoing growth, altered disease progression, and 
maturation are only several of the factors that impact dosing strategy in pediatric 
patients. Comprehensive and well defi ned development of pharmacokinetic (PK), 
pharmacodynamic (PD), and outcomes models are a necessity for the generation 
of optimal pediatric therapy.

By the mid-1960s the problem of administering inappropriate drug doses 
to pediatric patients had been clearly documented. In 1959 reports of the gray 
baby syndrome in neonates were published documenting the toxicity of chloram-
phenicol when adult doses were “miniaturized” to infants without consideration 
of maturation differences. The resulting deaths occurred because neonates have 
immature glucuronyl transferase activity necessary for the biotransformation of 
chloramphenicol and therefore accumulation occurred. When chloramphenicol 
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accumulated in the neonate’s bloodstream, it caused hypotension, cyanosis, and 
often death.

Many of the laws defi ning the US Food and Drug Administration (FDA) activi-
ties have been developed as a result of therapeutic misadventures in infants and 
children. The 1938 Amendment to the Federal Food and Drug Act was enacted as 
a direct result of the distribution of a drug, sulfanilamide elixir, that killed 107 chil-
dren due to the use of diethylene glycol as a solvent. Passage of the Kefauver–Harris 
FDA Amendment in 1962 was prompted by the tragic malformations seen in babies 
who were exposed to thalidomide in utero. Even with these additional safety regula-
tions in place, infant deaths occurred from gasping syndrome due to benzyl alcohol 
use as a preservative and the limited ability of infants to metabolize and eliminate 
this “nontoxic” preservative (1). Beyond PK changes, the growth and develop-
ment that occur during childhood can be adversely affected. Recently, it has been 
recognized that use of systemic steroids in infants with respiratory distress results 
in stunted head growth and cerebral palsy (2). The clinical pharmacology of drugs 
administered to children cannot be extrapolated from adult data on absorption, 
metabolism, and excretion alone. Although this concept is now generally accepted, 
the special characteristics of the pharmacology of drugs in children continues to be 
underappreciated.

Although the mantra for the National Institute for Childhood Diseases 
(NICHD) rightly proposes that children are not miniature adults, they are not 
Martians either. As the knowledge of pediatric pharmacology has increased, 
some extrapolations can be made with a reasonable level of certainty. With this in 
mind, the FDA has recently published the draft of Guidance for Industry: General 
Considerations for Pediatric Pharmacokinetic Studies for Drugs and Biological 
Products (3). For ethical and logistic reasons, pharmacometric studies in children 
almost always occur after the characterization of a drug in adults and thus pediatric 
trials can utilize existing knowledge, including the use of preclinical data, in their 
design.

Distribution characteristics and elimination pathways show commonality across 
ages but their relative importance may differ. Therefore, a drug that is a substrate 
for a particular drug metabolizing enzyme isoform in adults will remain a substrate 
for that isoform in children. However, in extreme cases, pathway switches may 
occur such that the primary route of elimination in adults may be undeveloped in 
infants to such an extent that an alternative pathway predominates. Caffeine is an 
example of this, where it is primarily renally eliminated in infants due to the almost 
completely undeveloped CYP 1A2 biotransformation pathway. However, use of 
the growing knowledge of the developmental pattern of the physiologic processes 
that are important for a drug’s disposition can be used to predict PK behavior in 
pediatric populations.

While there is a high degree of similarity across age groups relative to enzyme 
presence and activity, one important exception exists—the CYP 3A system. In 
adults, the CYP 3A4 isoform is responsible for metabolism of more drugs than 
any other enzyme but this isoform is essentially absent in infants with the primary 
isoform in this family being CYP 3A7, which is not found in adults. While there is 
overall homology in substrates for these two enzymes, there are differences that 
may lead to unexpected developmental changes in the pharmacokinetics for drugs 
that are CYP 3A substrates.



In pediatrics, the maturation changes in pharmacodynamics can be of a greater 
magnitude than PK differences, yet pediatric-specifi c PD models remain infre-
quently and poorly defi ned. Potential maturational PD differences can be pro-
nounced depending on the physiologic or pathophysiologic system involved. This 
is especially true for systems that undergo extensive maturation after birth and for 
the least developed infants, those born premature. The immune and central nervous 
systems are particularly prone to altered pharmacodynamics due to their extensive 
postnatal development. GABA pathways, which produce inhibitory responses in 
adults, do not fully develop until 10 years of age and may be involved in excit-
atory pathways in preterm infants, which has been clinically manifested by clonic 
responses to lorazepam. In older infants paradoxical excitatory responses to non-
sedating antihistamines may also be a manifestation of a similar phenomena. The 
immune system response to potential pathogens is grossly underdeveloped in infants 
and acceptable anti-infective PD targets in adults may not be adequate for infants. It 
also puts infants at greater risk for therapies whose primary adverse effects include 
immunosuppression. A further example of signifi cant postnatal development is the 
autonomic nervous system that in the fi rst year of life impacts the pharmacodynam-
ics of drugs that affect the cardiovascular and gastrointestinal systems.

The exposure–response surface (see Chapters 8 and 32) is rarely mapped in chil-
dren, thus limiting extrapolation of therapy from adults to children. Models linking 
biomarkers to patient outcomes—outcomes link models—are virtually absent in 
pediatric pharmacometrics. There is no reason to believe that PK/PD-biomarker-
surrogate-outcomes linkage in children should uniformly parallel adults; therefore, 
this is an area where there is a great need for further model development. Popula-
tion methods can play an important role for fi lling in these critical pieces to deter-
mine optimal pediatric therapy.

Developmental differences, disease presentation, disease progression, and 
comorbidities also need to be considered when determining pediatric pharmaco-
therapy. Even when the mechanism of action and PD response surface may be 
similar between pediatric and adult populations, differences in therapy may be 
indicated based on disease progression. For example, hypertension rarely presents 
as primary fi nding in children but most frequently as secondary to renal disease or 
other processes, which frequently impact the pharmacologic goals of therapy. HIV 
infection and AIDS will result in a 50% 2-year mortality in untreated infants yet 
typically takes 10 years in adults to wear down the immune system to the point at 
which opportunistic infections and AIDS take hold. Thus, therapeutic targets must 
account for these differences especially if these therapies will be used for chronic 
conditions.

The application of pharmacometrics is the only feasible manner to get optimal 
drug use for pediatric patients. This is accomplished primarily through the estima-
tion of differing levels of covariate infl uence on pharmacokinetics and pharmaco-
dynamics, and thus dosing strategies. The impact of covariates on pharmacokinetics 
and pharmacodynamics is more important in children than in adults because of the 
large range of infl uential covariates such as weight and age in children (4, 5). In pedi-
atrics, dosing is most often based on patient size such as body weight, body surface 
area (BSA), weight bands, or age. The goal of these dosing strategies is to generate 
near identical exposures (peak concentrations, area under the concentration–time 
curve, time above a threshold, or trough concentrations) across age–weight groups 
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adjusted for known PD differences. This goal is complicated by limitations in for-
mulations, where dose may be dictated by solid oral dosage form strengths. There is 
a need to balance appropriate exposure for the population against overly complex 
pediatric regimens that are likely to result in abandonment or dosing errors.

39.2 REGULATORY CLIMATE

In 1962, the Kefauver–Harris Drug Amendment was passed to ensure drug effi -
cacy and greater drug safety. For the fi rst time, drug manufacturers were required 
to prove to the FDA the effectiveness of their products in the treated population 
before marketing them. In addition, the FDA was given closer control over inves-
tigational drug studies, FDA inspectors were granted access to additional company 
records, and manufacturers had to demonstrate the effi cacy of already approved 
products. There was a conservative climate following the Kefauver–Harris Drug 
Amendment that led to the avoidance of the study of drugs in pediatric populations. 
This avoidance led to a lack of pediatric labeling for greater than 90% of drugs in 
certain pediatric populations.

The lack of labeling studies for pediatric patients was seen as posing signifi cant 
health risks to children. Initially, the FDA implemented largely voluntary measures 
through the Pediatric Rule to encourage the study of drugs in children and to 
enhance pediatric labeling in the early 1990s. These measures failed. Therefore, in 
1997 the Food and Drug Administration Modernization Act (FDAMA) included 
incentives to study drugs in children through FDAMA and the subsequent Best 
Pharmaceuticals for Children’s Act (BPCA) by adding six months of attached exclu-
sivity to any existing exclusivity. This legislation had a potent effect on increasing 
drug studies done in children and in a report to Congress it was stated that “the 
pediatric exclusivity provision has done more to generate clinical studies and useful 
prescribing information for the pediatric population than any other regulatory or 
legislative provision to date.”

In 2003 Congress enacted the Pediatric Research Equity Act (PREA) to further 
promote drug study in the pediatric population. Here the FDA was given the 
authority to require studies for the registration of a new drug when deemed neces-
sary. Therefore, now the FDA has both a “carrot” (BPCA) and a “stick” (PREA) 
to encourage the study of drugs in pediatrics.

39.3 OBSTACLES OF PM RESEARCH IN PEDIATRICS

39.3.1 Gaining Permission for Participation

The fi rst hurdle in executing a pediatric pharmacometric (PM) study is ethically 
obtaining informed consent from the patient. This requires informed consent from 
at least one and sometimes both parents or a legal guardian. For older pediatric 
patients, assents are usually required from the study participants themselves. In 
addition to the complicated logistical issues of getting this consent, if the legitimate 
goals of the research are not presented well to the parents, it may result in concern 
that their child or infant is being used as a guinea pig. This compounds the overall 
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reluctance to allow participation of their child in a study, even if the parents would 
likely participate in similar studies themselves. Many PM studies require close 
collaboration between the study site and pediatric subspecialists to develop the 
trust needed to gain subject enrollment. Even when the parents are agreeable, the 
potential pediatric participant may decline to participate. In dealing with a vulner-
able population, pediatric PM studies must justify design based on some degree of 
direct benefi t. So, as with adult cancer chemotherapy PM studies, where healthy 
volunteers are not utilized, almost all pediatric PM studies are performed in children 
with disease or who are at risk for the disease that the drug is being used to treat. 
Furthermore, the child or parent cannot be coerced or bribed with reimbursement 
to participate in studies and some pediatric centers’ investigational review boards 
(IRBs) do not allow any monetary or other inducements at all. In situations where 
direct reimbursement is a barrier to participation, other fi nancial barriers such as 
parking fees, taxi rides, delivery of supplies, or overnight accommodations can and 
should be removed.

39.3.2 Study Design Issues

Some study designs are very diffi cult to utilize or implement in pediatric patients. 
The need for direct clinical benefi t precludes use of “healthy” pediatric volunteers. 
Crossover designed studies, which are ideal for assessing drug interactions, are 
extremely diffi cult to perform and are seldom executed in pediatric PM studies. 
Even single-dose PM studies, for drugs with very long half-lives, are challenging 
because is it diffi cult to get children to participate for a duration long enough to 
complete the sampling. It is very diffi cult and disruptive for parents to coordinate 
their family’s schedules to accommodate bringing infants and children back to a PM 
study center on successive days. Thus, there is a large drop-off in participation when 
the sampling duration increases from 8 to 12 or 24 hours and beyond. Population 
approaches to estimation and development of PM models are advantageous in this 
setting because several samples may be obtained during the fi rst dosing interval 
and several more may be obtained at steady state. Here the patient can participate 
for the fi rst several hours after the fi rst dose and return at a convenient time within 
a fl exible time window after steady state is achieved for additional sampling, thus 
increasing patient retention. It should be further noted that the population approach 
can often be applied to evaluate drug–drug interactions, thus obviating the need for 
crossover studies, although randomization is needed to establish causality.

39.3.3 Pediatric PM Studies Are Time Consuming

Almost every aspect of pediatric PM study execution and analysis requires greater 
resources to perform and the overall study duration is longer than a similar study 
in adults. Tasks that require greater time include locating study centers, identifying 
suitable subjects for participation, obtaining informed consent, and coordinating 
data quality assurance schedules. Rarely can sites coordinate multiple study par-
ticipants to synchronize their visits together into a weekend or two. Pediatric PM 
studies collect more variable data than studies in adults; thus, the data clean-up 
can be time consuming as well. With more than 200-fold range in possible weight 
(0.5 kg to >100 kg), standard data fi lters can become problematic. Transciption and 
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recording errors of weight in pounds rather than kilograms may not be grossly 
apparent. Rarely is the same single milligram dose used across all subjects. The 
multiple doses used provide the opportunity for errors in recording and transcrib-
ing dose information. In addition, the normal range for many laboratory values is 
age dependent, so any fi lter for toxicity grades must account for different values at 
different ages.

39.3.4 Collinearity

Collinearity refers to a situation where, in the same data set, some of the covariates 
are highly correlated with others. A high degree of collinearity between covariates 
important for PM studies has been demonstrated for at least weight, age, body 
surface area, height, and creatinine clearance (6). This is demonstrated in Figure 
39.1. Many standard laboratory test values are age dependent, so that wide covariate 
PM univariate screens that include serum creatinine, uric acid, alkaline phosphatase, 
lactate dehydrogenase, bilirubin, or albumin may identify associations that refl ect 
age or size misspecifi cation. There is also collinearity for many PD biomarkers and 
surrogate endpoints with age; CD4+ cells, blood pressure, and absolute neutrophil 
count are just a few examples. Formulation differences may also confound age 
effects. Conditions where disease progression is a prominent feature, especially 
if it affects drug elimination, will complicate assessment of age and size effects 
with other covariates. The implications of collinearity in covariates on the model-
building process for nonlinear mixed effects modeling have been investigated by 
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height (HTCM), and age.
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Bonate (7). He states that covariates showing a high degree of correlation (r > 0.50) 
when included in a model at the same time may indicate that one or both do not 
improve the model, even when in fact both should be included. Thus, collinearity is 
a potential source for spurious covariate exclusion in a pediatric PM model. It has 
to be pointed out that although the Bonate term r = 0.5 represents high correlation, 
r ≥ 0.75 is generally regarded as high correlation and an r value between 0.5 and 
less than 0.75 as moderate correlation.

39.3.5 Cost of PM Studies in Pediatrics

In contrast to adult studies, where the cost–benefi t ratio is seldom an issue that 
impacts study design, it can play a signifi cant role in pediatric study design. Single-
dose intensive PM studies may cost less than multiple-dose studies and have the 
additional benefi t of rapidly generating data. For drugs where additional exclusiv-
ity is being sought from performing a pediatric PM study per the BPCA, there is a 
race to complete the study and analysis prior to patent expiration. Thus, in some 
settings the pediatric PM study completion time may be the most important design 
consideration. However, single-dose studies are not as powerful for determining 
covariate effects in PM models because of the increased subject homogeneity and 
smaller number of subjects. Thus, traditional single-dose studies are more likely 
to oversimplify dosing across age groups. There is the further issue of whether a 
single-dose study can predict steady-state pharmacometrics, particularly for phar-
macokinetics. For drugs where single-dose pharmacokinetics can predict steady-
state pharmacokinetics and can be characterized within an 8–12 hour interval, 
the cost of collecting and analyzing the additional samples needed for standard 
noncompartmental analysis (NCA) may be less than enrolling additional subjects 
for a population analysis. However, the knowledge generated is uniformly less with 
a NCA. Most BPCA-inspired pediatric drug programs also require a larger safety 
and drug effect study. This may provide the opportunity to rapidly collect data for 
pediatric population PK/PD evaluations.

39.3.6 Sampling How Much and What

The quantity of sample for adults is rarely an issue, in contrast to pediatric patients 
where it is almost always an issue. This is especially true when it comes to obtain-
ing blood, plasma, or serum because of the limited quantity that most pediatric 
patients possess and can safely be collected for purposes of the study. Even in PM 
studies of larger children, where blood volume is not a safety issue, it is important 
to minimize unnecessary blood collection volume for both ethical and recruitment 
considerations. Not only does the total blood volume need to be minimized but also 
the number of venipunctures. There is much greater subject and parent acceptance 
of six PK samples drawn over an 8 hour dose interval through placement of an 
indwelling catheter than three PK samples, each collected by direct venipuncture, 
drawn at PK optimized collection times over 24 hours. Liquid chromatography 
tandem mass spectometry (LC MS-MS) is a good method because one can use 
a small sample size due to the sensitivity and specifi city of the assay method. A 
specifi c assay may minimize the need for baseline samples, further reducing the 
quantity of samples needed.



962 PHARMACOMETRICS IN PHARMACOTHERAPY AND DRUG DEVELOPMENT

It is a good idea to use an analytical laboratory that specializes in or has extensive 
experience with pediatric samples. Many adult contract laboratories have default 
sample volume requirements for standard hematology and chemistry evaluations 
that are greater than may be needed for the PK sampling of the study. Also, since 
many clinical chemistry values are age dependent, using a pediatrics-specifi c labo-
ratory will prevent artifi cial labeling of many values as outside the normal range, 
when they are simply outside the normal range for adults but normal for infants 
or children.

A further recommendation in pediatric PM studies is the use of a local anesthetic, 
such as Emla cream, whenever possible. Not only will this reduce patient discomfort 
but it will also ameliorate anxiety from both potential subjects and parents, thus 
reducing reluctance to study participation. Use of local anesthetics requires plan-
ning as application is require well in advance of the venipuncture.

Pediatric PM studies should be done in a pediatrics friendly environment with 
age-appropriate supplies (toys, games, etc.) and age-specifi c activities available. The 
phlebotomy team should be experienced and dedicated to pediatric venipuncture 
so that prior to obtaining a specimen the patient is properly assessed. One common 
practice that is helpful in pediatric sample collection is the use of two individuals, 
one to obtain the sample and one to distract, during the phlebotomy procedure.

A population analysis approach allows for the use of opportunistic blood sam-
pling for pediatric PM studies. Opportunistic samples can be obtained when there 
is blood, plasma, or serum “left over” from other procedures or processes. This 
requires use of a very sensitive assay and can be helpful in hospitalized pediat-
ric patients. This is particularly pertinent for infants where sampling is especially 
limited and for drugs with long half-lives where potentially reduced accuracy in 
collection times will not adversely affect PM model development.

Another source for PK information to consider is urine, which may be useful 
for renally eliminated drugs. In newborns, use of pulp derived diapers can provide 
reasonably accurate collection of urine for determination of renal clearance. Urine 
collection can provide valuable mass balance information, which may provide addi-
tional stability to a PM model. However, use of adhesive bags for urine collection 
can lead to maceration of the skin and therefore should be employed with caution. 
Finally, a sampling and study strategy that recognizes that some collection will be 
incomplete or sample will be lost is best. The quantifi cation of metabolites can 
also be useful in pediatric PM studies. The metabolite models can actually provide 
improved information concerning the parent compound as well as providing mecha-
nistic information concerning age effects on drug disposition. When metabolites are 
active, then improved PD and outcomes models can be developed, increasing model 
applicability for proposed dosing strategies.

For population pediatric PK studies, Jones et al. (8) have addressed many of the 
sampling issues by executing Monte Carlo simulations. In these simulation analyses, 
the authors assumed that a single sample was obtained from each subject in a cross-
sectional design. The ability to estimate both a one- and two-compartment model 
was investigated to evaluate timing and number of samples needed for accurate and 
precise estimation of parameters including random effects parameters. The timing 
of these samples was determined using the informative (profi le) block randomized 
design (see Chapter 12). Specifi cally, the informative times obtained with ADAPT 
II and the concentration–time profi le were divided into three sampling blocks and 
subjects were randomly sampled within each block. Several sampling schemes were 
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investigated for both the one- and two-compartment models. Both single-dose 
and multiple-dose study impacts were also evaluated. For the one-compartment 
model, the sampling window blocks were 0.06–0.10, 0.1–2.9, and 2.9–5.4 hours. 
For instance, with sampling scheme A, samples were collected in a proportion of 
3 : 4 : 3 for the three blocks, while sampling scheme B maintained 20 samples for 
the simulations with 50 or 100 subjects and 10 samples for the simulations with 
20 and 30 subjects at the middle region sampling interval (be reminded that only 
one sample per subject was observed in the simulation). The detail of the sampling 
scheme is presented in Tables 39.1 and 39.2. The true parameters were those used 
in the simulation and therefore the accuracy and precision of the estimates of the 
parameters could be quantifi ed. Both the degree of bias and precision of estimates 
relative to “true” values were of interest and were computed. One hundred replicate 
simulations were done for each scenario and the percent prediction error (%PE) 
and the percent root mean squared precision error (%RMSE) were estimated for 
the parameters for bias and precision, respectively. This investigation showed that 
the sampling strategy impacted the ability to accurately estimate PK parameters. 
For a one-compartmen t model, an N of 50 estimated the typical values of CL, V, 
and between-subject random effect for CL (wCL) with little bias and good precision. 

TABLE 39.1 Sampling Scheme A*

Number of Number of Number of Number of
Experimental Samples in Samples in Samples in
Units Sampling Block 1 Sampling Block 2 Sampling Block 3

 20  6  8  6
 30  9 12  9
 50 15 20 15
 60 18 24 18
 70 21 28 21
 80 24 32 24
 90 27 36 27
100 30 40 30

*Source: From Jones et al. (8), used with permission from Taylor and Francis Group LLC,
www.taylorandfracis.com.

TABLE 39.2 Sampling Scheme B*

Number of Number of Number of Number of
Experimental Samples in Samples in Samples in
Units Sampling Block 1 Sampling Block 2 Sampling Block 3

 20  5 10  5
 30 10 10 10
 50 15 20 15
 60 20 20 20
 70 25 20 25
 80 30 20 30
 90 35 20 35
100 40 20 40

*Source: From Jones et al. (8), used with permission from Taylor and Francis Group LLC., 
www.taylorandfracis.com.
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The estimate of the between-subject random effect for V (wV) lacked precision. 
Neither sampling scheme (scheme A versus scheme B) appeared to perform better 
than the other. When the residual variability was increased, bias in the estimation 
of V increased and the precision of wCL and wV worsened. For the two-compartment 
model, an N of 80 resulted in accurate estimates of CL, V1, V2, and wCL, and precise 
estimates of CL, V2, and wCL. All estimates of intercompartmental clearance (Q) 
were inaccurate and imprecise regardless of sample size and the precision of V1 
and wV were poor regardless of sample size.

This study demonstrated that for typical drugs, when an informative profi le block 
randomized design is used, single sample cross-sectional designs can be constructed 
to adequately estimate CL and V and their respective variability for populations 
of 50 subjects for one-compartment drugs and 80 subjects for two-compartment 
drugs. For drugs with high residual variability, there was worsened accuracy and 
precision of parameter estimates. For each drug with its own set of PK parameters, 
the exact informative sample times will be different. If within-subject longitudinal 
samples are added to a study, the accuracy and precision of all parameters would 
be expected to improve over the purely cross-sectional studies. Given the ability of 
these cross-sectional studies to estimate pivotal parameters (CL and V) with accu-
racy, dosing strategies can be proposed based on their PK parameter estimates. This 
type of cross-sectional study could be very useful when there are severe restrictions 
in obtaining samples as is often the case in pediatric studies.

39.4 DIFFERENCES BETWEEN ADULT AND PEDIATRIC PATIENTS

39.4.1 Differences in Pharmacokinetics

39.4.1.1 Absorption
Absorption patterns in pediatric patients are very different from adults and one 
must be aware of these differences when conducting PM research. For example, 
absorption can be age dependent because infants have less gastric acid production, 
which infl uences agents where acid is needed for absorption such as azole antifun-
gals and atazanvir. Infants also produce less lipase than adults and older children; 
this enzyme may be necessary for the absorption of some drugs. More recently, 
it has been noted that active transporters in the gut limit absorption of some 
compounds. The degree of transporter expression may exhibit age dependency. 
Although overall GI transit time may be shortened, gastric emptying is delayed, 
and one may see slow absorption in very young infants (9). Absorption may also be 
altered due to age-specifi c formulations with liquid formulations often administered 
to younger children and infants. For drugs with absorption sensitive to food intake, 
the ability to fast prior to dosing or take with prescribed food is more diffi cult to 
accomplish in infants and younger children.

39.4.1.2 Distribution
Changes in body composition seen throughout infancy and childhood have an 
impact on the apparent volume of distribution (V). Newborn infants have higher 
total body water on a L/kg basis than older populations; therefore, drugs distrib-
uted to water have higher V values in newborns when compared to older children 



or adults. For example, aminoglycoside antibiotics are highly polar and thus are 
distributed primarily to extracellular fl uid and have double the V value in new-
borns when compared to adults. Body fat content may also be altered especially in 
preterm infants who have very little fat, reducing V for lipophilic agents.

In neonates, albumin and alpha-1-acid glycoprotein concentrations are low and 
albumin has a specifi c “fetal” structure with different binding characteristics com-
pared to “adult” albumin. Infants also have higher concentrations of endogenous 
compounds that compete for drug binding sites on protein and in tissue. Overall 
in neonates, highly bound drugs will have a higher free-fraction of drug in plasma, 
leading to proportionally greater distribution into tissues. Thus, the V will on 
average be greater. These differences in binding are important to consider in inter-
preting pediatric PM results. Doses that achieve similar total concentration–time 
area under the curve (AUC) profi les for adults and infants may be associated with 
higher free-drug AUCs in infants, possibly resulting in increased toxicity.

39.4.1.3 Metabolism
Metabolism in pediatric patients can be quite different from adults. In the very 
young infant, drug uptake by the liver is decreased due to reduced transport pro-
teins. The biliary excretion of antibiotics with dual routes of elimination suggests 
that hepatic transport maturation is even slower than glomerular fi ltration or renal 
transport maturation. Overall, mixed function oxidases are present at 30–50% of 
adult activity, while individual enzymes may be less than 5% of adult activity. In 
particular, isoenzymes of CYP 2C9 and 1A2 have greatly reduced activity in neo-
nates; however, there is a rapid increase in 2C9 activity in the fi rst weeks of life. 
After birth, Phase I and II enzymes have a programmed order of expression, which 
is different for each isoenzyme. Some isoenzymes increase in days, others over 
weeks, and still others over months.

Infant hepatic mass is two to three times adult mass on a weight basis. Thus, 
overall enzyme capacity is higher on a weight basis. A study from St. Jude’s Chil-
dren’s Hospital correlated clearance with liver size by scan (10). Both hepatic 
enzyme activity and hepatic blood fl ow impact liver metabolic clearance. The infl u-
ence of each component depends on the substrate in question. While liver size may 
be a surrogate for total liver enzymatic activity, much less is known about devel-
opment changes in hepatic blood fl ow. However, given changes in developmental 
cardiac output, it is likely that hepatic blood fl ow and clearance of highly extracted 
drugs correlate more closely with body surface area than body weight.

39.4.1.4 Renal Excretion
At birth, renal blood fl ow is 12 mL/min and the kidneys receive only 5–6% of cardiac 
output compared to 15–25% in adults (normalized to body surface area). Glo-
merular fi ltration rate (GFR) is directly proportional to gestational age beyond 34 
weeks. GFR increases rapidly over the fi rst few weeks of life, with smaller increases 
throughout the fi rst year of life. Preterm infants have reduced GFR but exhibit 
more rapid development in the postnatal period than would have occurred in utero 
if delivered at term. The peripartum use of steroids to promote lung development 
during preterm labor may expedite maturation of renal function as well.

Tubular secretion is less mature when compared to GFR and increases twofold 
over the fi rst week of life and tenfold over the fi rst year of life. Renal function 
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parallels increases in body weight and this collinearity can be problematic when 
one is attempting to include both covariates in population PK models concur-
rently. Clinical serum creatinine measurements, which are used to evaluate renal 
function in adults, have limited precision in estimating renal function in infants and 
young children due to low granularity in reported results, typically given only with 
one-tenth of mg/dL precision. Normal serum creatinine values are 0.2 mg/dL, and 
because of the reporting units this encompasses true concentrations from 0.1501 
to 0.2499 mg/dL or a 66% range difference. Additional analysis diffi culties can be 
encountered with renal function development in longitudinal PM studies. While 
serial assessments at various stages of development can provide information-rich 
data, the continued growth and maturation result in large within-subject variability 
in “base” models. This must be recognized and can cause computational diffi cul-
ties using standard model-building approaches. The fi rst few weeks of life are also 
characterized by large inter-subject variability resulting from maturation differences 
among infants.

39.4.2 Differences in Pharmacodynamics

Ongoing growth and development affects PD analyses. When attempting to employ 
a biomarker or surrogate endpoint, one must be aware that tests or procedures that 
are easily applied to adults often cannot be used in infants or children. For example, 
only limited pulmonary function evaluations can be performed in infants because 
they cannot execute the standard test. Even though newborns feel pain, it is dif-
fi cult to get assessments of pain in children and pain scales are diffi cult to compare 
across age categories. As a substitute for pain scales, physiologic changes such as 
blood pressure, catecholamine release, and heart rate variability can be employed, 
but even these are age dependent and may be affected by concomitant therapies 
used in infants and young children.

Although CD4+ cell count is accepted as a valid surrogate endpoint for HIV 
disease, its appropriate use as a PD marker in pediatric studies in HIV-infected 
children is not clear. The CD4+ count is higher in infants compared to older children 
and does not stabilize until around 5 years of age. Therefore, while “successful” HIV 
therapy in adults will typically be associated with increases in CD4+ cells, immu-
nologic “success” in infants may be manifested by a smaller drop in CD4+ cells or 
change in the CD4+/CD8+ cell ratio.

39.5 COVARIATE IMPACT IN PEDIATRIC PHARMACOMETRICS

39.5.1 Size as a Covariate

Size is a critical element for understanding, analyzing, and applying PM principles 
to pediatrics. Weight can range more than 200-fold between premature infants 
and adolescents, and it correlates with age and other factors that may impact drug 
disposition. However, many physiologic covariates that affect drug clearance such 
as renal function do not scale directly to weight. Body surface area (BSA) has 
been found empirically to correlate more closely with the clearance of many drugs 
rather than weight. This most likely occurs because physiologic processes are slower 



in larger individuals than in smaller ones. BSA can be calculated on the basis of 
several equations (11–13). One problem with BSA is that it is must be estimated 
from height and weight and is prone to calculation errors.

Allometric scaling of PM parameters is the preferred approach during child-
hood. A major advantage of allometric size adjustment is that it is a mechanistic 
approach that is based on dispersion theory (14, 15). This theory suggests that 
clearance parameters should be scaled by WT0.75 and volume parameters WT1.0.
Use of standardized allometric exponents, besides being mechanistically appropri-
ate, facilitates comparison among models. This approach does not take maturation 
or age effects into consideration, which must be evaluated separately from the size 
effects. It also structurally suggests half-life will increase with size and age, which 
is commonly seen after maturation of CL processes during infancy. Recently, it has 
been suggested that, based on an evaluation of a large number of xenobiotics across 
species, the allometric exponent value differs based on route of elimination: 0.67 
for clearance is for drugs eliminated mainly by biotransformation and 0.75 is more 
appropriate for drugs eliminated by the kidney (16). However, the added complex-
ity of a different exponent remains to be justifi ed for assessing size across the age 
continuum within a species.

It is important to recognize that dosing strategies based on allometry can match 
AUCs across age groups; however, the peak–trough differences would still exist 
(with identical dose intervals) and would be greater in smaller (younger) patient 
populations. This may have importance for drugs whose PD response is linked 
through a threshold or a peak concentration effect. It is best to include variables 
of size into PM covariate models prior to incorporating other covariates for useful 
models.

39.5.2 Age as a Covariate

Age comes in multiple structures for pediatric populations. Infant age may be 
defi ned in terms of postnatal and gestational ages, while for adolescents biologi-
cal age (Tanner scores) may be more appropriate than chronological age. When 
attempting to evaluate age as an infl uential covariate, for infants, if data is dense, 
one should evaluate the impact of postnatal age and gestational age at birth as two 
separate covariates, thus recognizing that maturation occurs at different rates in in 
utero versus postnatal environments. Metabolic and excretory functions increase 
more rapidly following birth than in utero and thus composite measures of infant 
age such as postconception age are less accurate in this setting. The impact of age 
can have a nonlinear relationship to PM model parameters and therefore graphics, 
particularly nonparametric smooths, and generalized additive models should be 
used to determine the relationship between age and the PM parameter of interest. 
During an analysis, it must be remembered that age is a dynamic covariate and 
subjects can have large increases in drug clearance in sequential PK evaluations. 
While much of the power from population PM analyses in infants can be derived 
from this mixture of longitudinal with cross-sectional patient evaluations, models 
without interoccasion variability components will output average parameters within 
a subject in the posthoc estimates from the base model. Graphics from these outputs 
will have the true maturation processes blunted and this must be taken into account 
during the modeling process.
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39.5.3 Creatinine Clearance as a Covariate

The impact of creatinine clearance (CLCr) as a predictor variable for pediatric 
PM parameters is often low even for renally eliminated drugs due to the inclusion 
of size (height) in the calculation of renal function and its normalization to adult 
size. Although the original pediatric renal studies by Schwartz (6) show excellent 
correlation between measured and estimated CLCr from serum creatinine, others 
have noted these equations as not predictive in some pediatric subpopulations. The 
poor precision for the clinical assay of serum creatinine partially accounts for this 
lack of predictability. However, many pediatric PM analyses have demonstrated the 
reciprocal of serum creatinine is a powerful covariate for predicting the clearance 
of renally eliminated drugs, even in infants.

39.5.4 Drug Interactions

Drug interaction screens do not determine cause; therefore, caution is needed in 
interpreting the meaning of a drug interaction covariate effect on pediatric PM 
parameters. For example, inotropes have been included in models as signifi cant 
predictors of clearance in infants; however, they likely identify a characteristic 
of the severity of underlying illness of the subpopulation rather than a true drug 
interaction. While pediatric patients may receive a different scope of potentially 
interacting drugs, the expected qualitative effects are typically similar to adults. 
Enzyme inducers and inhibitors have been identifi ed as covariates for predicting 
clearance in pediatrics. Some drug interactions only suspected in adults have been 
documented in pediatric populations such as dapsone and rifabutin. Development 
may impact the capacity of an enzyme to be induced so there may be important 
quantitative differences between adults and children. It is also common for standard 
pediatric dosing to result in a different exposure to the interacting drug than is 
seen in adults. If the drug interaction is concentration dependent, the altered drug 
exposure of the inducer or inhibitor may affect the magnitude of the drug interac-
tion in pediatric patients.

39.5.5 Other Covariates

Other covariates that have been identifi ed as important in pediatric PM studies 
include the level of metabolism in the gastrointestinal tract, ECMO that may be 
a marker of hypoperfusion, nutrition, and genetics–genomics. Ethnic differences 
may also exist in pediatric populations while known gender differences in adults 
are likely absent or greatly reduced.

39.6 POPULATION MODELING IN PEDIATRICS

Population modeling has great utility in pediatric patient populations because less 
intense and opportunistic sampling can be executed to estimate population param-
eters such as typical values for clearance. The population approach in pharmaco-
metrics allows for variable dosing regimens, variable sample collections, the use 
of unbalanced data, the study of a broad spectrum of patients, and a screen for 
drug–drug interactions, provides estimates of individual drug exposure for explor-



atory analysis of effi cacy and toxicity, and allows pooling of data across studies. It is 
especially useful for incorporating signifi cant covariates into PM models, assessing 
complex PM models, modeling at steady state, and comparing formulations, and 
pharmacokinetics–pharmacodynamics–outcomes links models can be generated. 
The stochastic elements of population models are more accurately estimated than 
for traditional standard two-stage models (17).

39.6.1 Sampling Strategies in Population Modeling

Of particular interest is the utility of population modeling when sampling is limited, 
as is often the case in pediatric studies. For example, etoposide toxicity and effi cacy 
have been related to exposure. It was not reasonable to execute an intense sam-
pling PK study in the pediatric population, therefore a limited sampling strategy 
was proposed and done. In each subject only two samples were collected—one at 
about 3 hours postdose and another 5.5 hours postdose. The approach was shown 
to be able to estimate PK parameters that had little bias (18).

Optimal sampling strategies for pediatric population studies can be determined 
by using Monte Carlo simulation. Here one constructs plausible data sets that would 
be obtained under several competing study structures by varying study characteris-
tics such as number of subjects, number of samples per subject, missing data, mis-
timed sampling, and mislabeled sampling. From the basic model, several hundred 
plausible data sets are generated by the simulation software and then models are 
estimated for each data set. These competing study structures are then compared 
for power, effi ciency, robustness, and informativeness.

Once the PM models are estimated, then dosing strategies can be proposed based 
on important covariates. These dosing strategies can be assessed by Monte Carlo 
strategies prior to a future pediatric patient ever receiving a dose. A drawback to 
population modeling is that it can be logistically diffi cult to perform, often a great 
deal of education is needed at the sites where the data are collected, and quality 
assurance of the data can be diffi cult.

39.6.2 When to Incorporate Size in a Population PM Model

A frequently addressed question is whether size should be incorporated into the 
population model fi rst before other covariates are tested for inclusion, because it is 
well known that size impacts pharmacokinetics especially in pediatric patients. A 
further and related question is: Should one fi x the allometric exponent or should 
one estimate the exponent? The advantage of estimating the allometric exponent is 
that a statistically superior model may be found. However, this is at the expense of 
two degrees of freedom from studies where the total information may be limited. 
Fixing the allometric exponents requires making additional assumptions about the 
relationship of size to the parameter but it increases the utility of the resulting model 
when comparing to other models. In addition, situations where the allometric expo-
nent deviates signifi cantly from the expected are often a refl ection of developmental 
differences among the study population, with changing exponent values depending 
on the age group included in the analysis.

One problem with allometric scaling is that it is diffi cult for those not familiar 
with the concept to grasp the meaning of clearance as L/h·kg0.75 and how it may 
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affect dosing. Some advocate presenting the parameters at the median or mean 
weight of the study population. While this is preferable to the raw exponents, the 
concept of normalizing clearance to size is so ingrained that many pediatric clini-
cians will then divide the value by the typical weight clearance in L/h·kg. To prevent 
this mistake, one should also present the model predicted clearance for the smallest 
and largest subjects (this can be done graphically) to provide a clearer representa-
tion of clearance across the population.

39.7 CLINICAL TRIAL SIMULATION

One of the most potent applications of pharmacometrics is the informative 
construction of clinical trials by using clinical trial simulation (CTS). Population 
PM models are of great value when used in CTS because estimates of typical 
parameters along with parameter variability can be incorporated. There are three 
basic types of models needed to execute a CTS: an input–output model, a covariate 
model, and an execution model. These are described in detail in Chapter 34 of this 
book. Clinical trial simulation can improve pediatric study structure by examining 
the impact of many important factors such as dropouts, choosing varying endpoints, 
and deviations from protocol. Pediatric PM models fi nd great utility when applied 
to CTS.

39.8 AN INFORMATIVE EXAMPLE

We present a pediatric population PK (PPK) model development example to illus-
trate the impact that the model development approach to scaling parameters by 
size can have on pediatric PPK analyses; a typical pediatric study is included. It 
is intuitive that patient size will affect PK parameters such as clearance, apparent 
volume, and intercompartmental clearance; and that the range of patient size in 
most pediatric PPK data sets is large. Thus, it is expected that in most pediatric PPK 
studies subject size will affect multiple PK parameters. However, because there are 
complex interactions between covariates and parameters in pediatric populations, 
there are also intrinsic pitfalls of stepwise forward covariate inclusion. Selection 
of signifi cant covariates via backward elimination has appeal in nonlinear model 
building; however, it requires knowledge of the relationship between the covariate 
and model parameters (linear vs. nonlinear impact) and can encounter numerical 
diffi culties with complex models and limited volume of data often available from 
pediatric studies. Thus, there is a need for PK analysis of pediatric data to treat size 
as a “special” covariate. Specifi cally, it is important to incorporate it into the model, 
in a mechanistically appropriate manner, prior to evaluations of other covariates.

The current example is drawn from results of a PK study that was designed to 
evaluate the pharmacokinetics of cyclosporine in stable pediatric transplant patients 
receiving chronic oral dosing. Since many of the subjects had evaluations from 
two separate formulations, a secondary objective of the study was to evaluate the 
relative absorption characteristics of the two formulations. The study included 32 
children and adolescents, a typical size for a pediatric Phase 1–2 study. This modest 
number of subjects in a pediatric PK study is common but reduces the power to 



include extensive covariates in a fi nal PK model. Therefore, it is essential to limit 
the scope of covariates that will be evaluated to those related to study objectives 
and those that are expected to impact dosing.

In this study, there was relatively intensive cyclosporine PK samplings: eight 
samples per subject were collected over a dose interval of the primary formulation. 
Many subjects had an additional, limited, three-sample PK evaluation performed a 
few months after the primary PK evaluation. In addition, a subset of subjects had 
previously participated in another separate cyclosporine PK study utilizing a differ-
ent formulation. Their PK data from this prior study were included in the analysis. 
The average subject age in this study was 13.7 years with a range of 3–21 years. Like 
most pediatric trials, there was a large range in overall subject size that refl ected 
true differences in absolute liver and kidney organ mass and function. The weight 
range encompassed nearly a tenfold range (from 12.2 to 121 kg) and BSA averaged 
1.32 m2 (range 0.53–2.39 m2). This study did not represent the entire pediatric con-
tinuum, as no infants below 3 years of age were included. The PK analysis issues 
related to size would have been magnifi ed further if infants had been included, 
because not only the range of size would have been expanded but also the diversity 
of hepatic and renal elimination maturation issues would have been encountered. 
For the development of this model, the a priori level of decrease in the minimized 
objective function (MOF) for retaining covariates in the model was set at 6.6 (p <
0.01) for a single degree of freedom in hierarchical models. A two-compartment 
model greatly improved the fi t of the data as indicated by a greater than 100 point 
decrease in the MOF. The fi rst-order conditional estimates algorithm was utilized 
after a log transformation of concentration data.

The most commonly used approach to population PK model building, developed 
in adults, starts with a base model that contains no covariates for PK parameters and 
adds covariates one at a time, assessing the impact on the model by changes in the 
MOF. Weight or other metrics of subject size are added with size covariates to each 
PK parameter separately. This approach is not optimal for pediatric PK modeling, 
and utilizing it in this cyclosporine example resulted in no inclusion of size covari-
ates for any PK parameter in the fi nal model. To illustrate this point, models were 
developed starting with a base model devoid of size covariates and adding individual 
covariates of BSA or weight to CL, V2, or V3 one at a time. From this approach, 
no covariates resulted in a reduction in the MOF by 6.6 and only one decreased 
the MOF by more than 4, weight added to V3 (decreased the MOF by 4.5). These 
results occurred despite the clear post hoc graphical suggestion of size effects on CL 
(see Figure 39.2). However, when size covariates were applied to CL, V2, V3, and 
intercompartmental clearance (Q) simultaneously, the objective function was sig-
nifi cantly reduced by over 25 (p < 0.001 on 4 df). The univariate screening approach 
would have become even more confusing if many covariates were evaluated in this 
step due to multiple collinearities between size, age, and serum creatinine. Age as 
a covariate had a similar impact to WT and BSA on PK parameters and in some 
instances was the most powerful covariate.

Although simultaneous inclusion of size on all parameters improved the model, 
some of the size covariates did not remain statistically signifi cant for all parameters 
if evaluated by stepwise backward elimination. While mechanistically this is not a 
plausible refl ection of the true nature of cyclosporine’s pediatric PK disposition, 
it is not totally unexpected that all of these covariates do not all reach “statistical 
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signifi cance” based on the modest study size and the limited information on some 
PK parameters from the sampling design. Removing individual size effects would 
result in a model with peculiar characteristics. It makes mechanistic sense that all 
of the PK parameters of CL, V2, V3, and Q would be expected to increase with 
increasing size; that is, the smallest patient in this study (12.2 kg) would not be 
expected to have the same value for any of these four parameters as the largest 
patient (121.0 kg). While a model developed through pruning size effects from some 
PK parameters would be statistically correct, the usefulness would be severely 
limited. The complexity of a two-compartment model for this data, although clearly 
justifi ed by the goodness-of-fi t plots and MOF (MOF for one-compartment model 
was 100 points more than for a two-compartment model), may have limited the 
ability of the univariate screening to detect size covariates. However, the one-by-
one addition of size covariates to PK parameters to a one-compartment model also 
failed to decrease the objective function by 4 in any permutation.

A preferable approach that was used in this analysis was to start with allometri-
cally scaled parameters, clearance and volume terms scaled by WT0.75 and WT1.0,
respectively, before assessment of other covariates. The underlying assumption that 
these size relationships exist is plausible and results in a base model that has the 
same degrees of freedom as a base model without the size assumption. In the cyclo-
sporine analysis, allometric scaling accounted for much of the apparent pediatric PK 
“age” effects. However, even after scaling CL by WT0.75 in the fi nal model, children 
less than 12 years of age were associated with a 26% higher clearance. Formulation 
had a similar magnitude impact on F (24%). Different formulation F was associated 
with a drop in the objective function of 12. The fi nal model included the covariance 
estimation between CL and V2 as well as interoccasion variability on F. The fi nal 
model is presented in Table 39.3.
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FIGURE 39.2 Relationship between BSA and total clearance demonstrated by graphical 
presentation from post hoc estimates of a base model without size. Note that BSA was not 
a signifi cant covariate in the univariate screen when included in isolation size effects on 
parameters despite the obvious relationship between BSA and clearance.



The one-by-one addition of all covariates to PK parameters in the model, treating 
size just like any other covariate, would have resulted in a model that would not 
make physiologic–pharmacologic sense. It is often diffi cult to tease out independent 
effects of the covariates from pediatric data. Incorporation of prior knowledge of 
the pediatric physiology, development, disease presentation, and disease progres-
sion is often needed to provide important guidance in model development. As one 
would expect, age and size are moderately correlated in this data set, the R2 was 
0.57 between age and weight and 0.68 between age and BSA. If one were also to 
include time since transplant, serum creatinine, or other age-dependent laboratory 
measures that vary with size or age, a typical univariate screen could select any of 
these potential associations over weight, allometric scaling, or BSA. Thus, a model 
suggesting that clearance and absolute dose (in mg) be solely a function of time since 
organ received could be the best statistical model yet a harmful model in application 
outside the study population. It would grossly underdose a 17 year old with new 
transplant and possibly overdose a very young transplant recipient. In the standard 
one-by-one covariate addition model-building paradigm, most of these covariates 
will drop out at the multivariate step, but “cluttering” this stage with many con-
founded variables can greatly affect the approach taken in testing the covariate in a 
multivariate step (categorical, linear, or nonlinear) and one may miss the covariate 
that has a true causal infl uence. The inclusion of many covariates due to collin-
earities with size can also change the order of evaluation in the forward selection 
process or result in computation diffi culties due to the large number of factors if 
one assesses independence using a backward elimination selection approach. Size, 
weight, or BSA is intuitively related to CL and V and therefore should be included 
as prior knowledge in all pediatric population PK modeling exercises.

39.9 SUMMARY

Population PM methodologies represent a powerful approach to generating 
clinical pharmacology data in infants and children. In the last 15 years there has 

TABLE 39.3 Complete Description of the Final Irreducible Model

Parameter Valuea SEE

CL 1.86 · WT0.75 · AGE12 0.22 (AGE12: 0.09)
V2 1.58 · WT 0.35
KA 0.65 0.07
F1 1 + 0.24 · FORM1 0.13
Q 1.48 · WT0.75 0.21
V3 7.75 · WT 2.41

Intersubject Variability
 CL 23% 13%
 V2 65% 36%
IOV—F1 31% 18%
Residual Error 33% 14%

a Where AGE12 = 1.27 if ≤12 or 1 if >12 and where FORM1 = 1 if formulation 1 and 0 for formulation 2.
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been a great increase in the use of this method to analyze PK data. Its potential 
role in pediatric PD model and disease model development remains to be culti-
vated. In pediatric PM trials, it is important that they are designed to ask the right 
questions. Pediatric PM data are often limited and assumptions may be required 
for the analysis. Thus, it is essential that pediatric expertise be sought to assist in 
study design and analysis. Useful models should be mechanistically relevant and, at 
a minimum, should account for size and assess developmental changes to be useful. 
With the increased performance of pediatric population PM studies, opportunities 
exist to learn more about pharmacologic ontogeny and build better developmental 
models. These models may ultimately enhance the safety and effective use of drugs 
in this important population.
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CHAPTER 40

Pharmacometric Methods for Assessing 
Drug-Induced QT and QTc Prolongations 
for Non-antiarrhythmic Drugs
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40.1 INTRODUCTION

The electrocardiogram has been intensely studied. Figure 40.1 demonstrates the 
waves of a heartbeat as recorded on the electrocardiogram (ECG) rhythm strip. 
They are labeled, according to well accepted practice, with the letters P, Q, R, S, 
and T. This chapter primarily addresses the QT segment, as recorded on the ECG 
rhythm strip, which includes the time interval (measured in milliseconds, ms) from 
the beginning of ventricular depolarization, the Q wave, to the end of the T wave, 
at which point cardiac repolarization is complete. QT prolongation refers to length-
ening of a normal QT interval.

While the extent of QT prolongation is acknowledged as an imperfect biomarker 
for proarrhythmic risk, there is a quantitative relationship between QT prolongation 
and the risk of torsades de pointes (TdP), especially for drugs that cause substan-
tial prolongation of the QT interval (1). Because of the QT’s inverse relationship 
to heart rate (HR), the measured QT interval is routinely corrected by various 
formulas that relate the QT to the HR, known as the QTc interval. Although it is 
not clear whether arrhythmia development is more closely related to an increase in 
the absolute QT interval or QTc, most drugs that have caused TdP clearly increase 
both the absolute QT and the QTc. In pharmacometric analysis, QTc is used as the 
biomarker of choice for drug-induced QT change assessment.

Several new developments on QT/QTc prolongation assessment have occurred 
recently. The most important includes the publication of the new International Con-
ference of Harmonisation (ICH), Step 4 guidance, issued on May 12, 2005 entitled 
The Clinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Poten-
tial for Non-Antiarrhythmic Drugs. It contains relevant information obtained from 
the ICH Steering Committee, as well as information discussed at the October 2003 
Food and Drug Administration (FDA) and Drug Information Association (DIA) 

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene I. Ette and 
Paul J. Williams
Copyright © 2007 John Wiley & Sons, Inc.
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Meeting, “ECGs in Clinical Trials: The New Regulatory Realities,” and provides 
recommendations to sponsors concerning the design, conduct, analysis, and inter-
pretation of clinical studies to assess the potential of a drug to delay cardiac repo-
larization. It includes testing the effects of new agents on the QT/QTc interval and 
the collection of cardiovascular adverse events (AEs). Readers are encouraged to 
access this document for detailed information.

One key point in the E14 guidance for a pharmacometrician who is conducting 
QTc data analysis is that “a negative thorough QT/QTc study is one in which the 
upper bound of the 95% one-sided confi dence interval for the largest time-matched 
mean effect of the drug on the QTc interval excludes 10 ms. This defi nition is chosen 
to provide reasonable assurance that the mean effect of the study drug on the QT/
QTc interval is not greater than around 5 ms. When the largest time-matched differ-
ence exceeds the threshold, the study is termed ‘positive QT trial.’ A positive study 
infl uences the evaluations carried out during later stages of drug development, but 
does not imply that the drug is pro-arrhythmic.” Additional statistical guidance can 
also be obtained from the PhRMA Working Group paper released in 2003 (2).

The FDA will consider substantial QT/QTc interval prolongation, with or without 
documented arrhythmias, as grounds for nonapproval or discontinuation of clinical 
development, or require the sponsor to include relevant information in the product 
label. If it is a feature shared by other drugs of the therapeutic class, it may require 
a study to compare the extent and incidence of any QT/QTc interval prolongation 
effects to other drugs in the same class with concurrent positive control groups in 
the trials (see later discussions on the use of positive control). Documented experi-
ences from the literature where CYP450 metabolism resulted in QTc prolongation 
and torsades de pointes have prompted regulatory actions such as label warnings 
or market withdrawal.

ICH, FDA, and industry will benefi t by working together in order to clarify 
outstanding issues on QT/QTc interval prolongation. Additional QT/QTc inter-
val prolongation guidances or methodologies will be issued as ICH, FDA, and 
industry collaborate on this topic. As the FDA continues to provide more guidance 
and additional data from thorough QT/QTc clinical studies are submitted to the 
FDA, additional modifi cations of new product labels can be expected.

R
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S TQ

Q-T

FIGURE 40.1 ECG rhythm strip. The extension of the QT interval is termed QT prolonga-
tion. The ending point of the T wave sometimes is diffi cult to determine, which contributes 
to the variability of QT measurements.



40.2 CORRECTION OF THE QT INTERVAL FOR HEART RATE

Heart rate or RR interval (defi ned as 60 divided by the heart rate) correction plays 
a very important role in the analysis of QT/QTc data. Baseline corrections depend 
heavily on the clinical assumptions that the baseline data represent the subjects’ 
physiological condition in drug-free conditions, and that the QT/HR relationship 
stays the same before and after drug administration, whether or not the heart rate 
changes. With this assumption, QT values are corrected for HR in order to sum-
marize and compare QTc values across different subjects, trials, or conditions.

The objective of correcting the QT interval for HR or RR is to obtain a corrected 
QT interval that is statistically independent of the HR or RR interval. Figure 40.2 
shows the dependence of QT on HR. In order to eliminate the dependence of QT 
on heart rate, numerous HR or RR correction formulas have been proposed in 
the ECG literature, refl ecting the variety of statistical models that have been fi t to 
the data. The reader should be aware that there is no best QT interval correction 
method for heart rate, but there are some practical methods. The most popular 
corrections are the Bazett (3) and Fridericia (4) formulas. Both are based on the 
simple power model QTc = QT/RRb; that is, calculation of the QTc is equal to the 
observed QT in milliseconds divided by the term of a root of the RR interval in 
milliseconds.

Bazett’s method uses b = 0.5, and Fridericia’s correction uses b = 0.333. Both can 
produce similar or different QTc intervals for the same QT, depending on the HR 
value. For RR values less than 1 second (i.e., HR greater than 60 bpm), the square 
root function is smaller than the cube root function and the Bazett-corrected QT 
interval (QTcB) will be larger than the Fridericia-corrected QT interval (QTcF). 
Thus, at high heart rates, QTcB is much larger than QTcF and the Bazett formula 
may “overcorrect” QT interval. Thus, when a drug increases the heart rate substan-
tially but does not truly prolong the QT interval, the use of Bazett’s formula can 
infl ate the probability of concluding a positive QT/QTc signal when such a signal 
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FIGURE 40.2 Plot of baseline QT versus heart rate. Two methods of QT interval measure-
ment are presented—the manual read and machine read. QT interval is clearly depended on 
the heart rate. Also, machine read QT interval is longer than manual read QT interval.
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does not exist. Similarly, Fridericia’s formula is said to “somewhat undercorrect” at 
low heart rates. In most QTc data submitted in a New Drug Application (NDA), 
with the same data set, the QTc prolongation assessment endpoint of maximum 
mean QTc change is always larger for QTcB than for QTcF. This mainly is due to 
the fact that the mean HR is normally greater than 60 bpm.

In fact, Bazett’s and Fridericia’s formulas are just specifi c cases for the data 
available. In a new study, linear or log-linear models can also be used to derive an 
empirical population- or subject-specifi c correction based on the observed QT/RR 
baseline (predrug) data, including ECGs from all subjects in the study. For example, 
a pharmacometrician can fi t log(QT) versus b log(RR) to drug-free data from all 
patients in all periods to obtain an estimate of b, then calculate QTc by applying 
QTc = QT/RRb to all treatment arm/period data. This will generate population-cor-
rected QTc data (QTcP). Similarly, if log(QT) versus b log(RR) is fi t to baseline 
data from individual subjects for individual estimates of b, then calculating QTc 
by applying QTc = QT/RRb to the individual subject at treatment will generate 
the subject-specifi c corrected or individual corrected QTc (QTcI). In most cases, 
population b values are in the range of 0.22–0.6, and individual b values range from 
0.1 to 0.8.

Subject-specifi c corrections may be preferable to population-based correction 
formulas in studies with multiple ECG recordings per subject at baseline (5), but 
their effective use depends on an adequate range of heart rates in the baseline data 
for each subject. If subjects are in resting condition during the experiment, their 
heart rates do not usually vary much. Therefore, an individually derived correction 
based on a narrow range of heart rate pretreatment may not be the most accurate 
correction available to correct for QT measurements and can lead to false conclu-
sions. Also, considering the large interbeat variability for QT interval (see later for 
variability), the amount of baseline data needed to generate QTcI is substantially 
large. These problems clearly have prevented the broad use of the individual cor-
rection method and are why QTcI data in NDA submissions were rarely seen.

An important reminder is that the effectiveness of any correction formula for a 
particular set of QT/RR data from a population or an individual should be examined 
graphically. If the correction is adequate, QTc will be statistically independent of 
HR/RR. See the example plots in Figure 40.3 for examining correction effect on 
QT intervals. In the four panels of plots for different correction methods applied 
to this data, QTcF provides the best HR correction since the slope of QTcF versus 
HR is most close to zero (i.e., QTcF is independent of HR). However, a slope of 
zero in a population may not be enough for an adequate correction.

No single correction formula will work for every data set, and therefore under-
standing the limitations of each correction is critical (6). For most populations, Frid-
ericia’s formula is generally simple to apply and provides an acceptable correction 
and is the one the FDA normally uses in new drug evaluations. See ICH 14 guidance 
(7) for further discussion. Although the Fridericia correction is often designated 
as the primary correction, it is prudent to present the results using several correc-
tions. The FDA encourages sponsors to include population and individual empiri-
cal corrections derived from baseline data, in addition to the Fridericia method. 
When statistical results differ because various corrections were applied to the same 
data set, which is often seen, discrepancies should be explained and can usually be 
traced to the range of heart rates prior to and after drug administration, a change 
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FIGURE 40.3 Heart rate corrected QT versus heart rate. Four methods are applied to the 

in heart rate, a change in the QT/RR relationship, or differences between subjects 
in individual QT/RR relationships. It is recommended that pre- and postdose RR 
intervals (or heart rates) as well as uncorrected QT intervals also be examined and 
analyzed in order to understand the relationships between the variables.

40.3 DATA ANALYSIS CONSIDERATIONS IN STUDY DESIGN

40.3.1 Study Type and Number of Subjects

The ICH 14 guidance has clearly indicated that time-matched baseline and placebo 
correction should be used in QT prolongation assessment. Although the choice 
of a crossover or parallel group, single or multiple dose, study design is usually 
determined by the primary objectives of the study, the pharmacokinetic (PK) and 
pharmacodynamic (PD) properties of the compound (e.g., half-life of the drug, 
expected margin, delay, or accumulation of QTc prolongation), and the current 
knowledge of the drug’s safety and tolerance profi le, a single-dose crossover design 
is easier for time-matched correction for each individual subject. Also, as normal 
healthy volunteers are generally to be employed in the design of thorough QTc 

FIGURE 40.3 Heart rate corrected QT versus heart rate. Four methods are applied to the 
same data set. From the resulting slopes, QTcI (individual correction method) provided the 
best correction. The Bazett method yields the worst correction.
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trials (TQT), the application of crossover designs is of better utility in improving 
the accuracy and precision of the relevant prolongation measurements.

Whenever possible and appropriate, the four basic components—the baseline, 
placebo, positive control, and multiple dose levels of the drug—will assist in evaluat-
ing QT/QTc prolongation. Here, baseline data is used for HR correction; placebo 
control should be employed as QTc is known to show diurnal variation and in order 
to provide a reference basis for an assessment and potential claim of no-effect; a 
concurrent positive control group or arm is strongly encouraged and most of time 
is required; and fi nally, one or more dose levels that represent the worst scenarios 
of clinical drug exposure should be included. The most common procedure of a 
TQT trial has this order: baseline day for all subjects, positive control treatment 
for all subjects, then crossover design for placebo and treatment drug, or crossover 
design for placebo, and two or more dose levels of the tested drug. There are 
other designs that have a separate parallel group for placebo control, or sequential 
pa rallel designs, or dose escalation design. Table 40.1 presents a list of various 
designs seen for recent non-antiarrhythmic drugs.

Due to the large inter- and intrasubject variability in QT/QTc (see later for vari-
ability discussion), the sample size for crossover study design would typically be 
about 60–80 subjects (typically 65 subjects) exposed per treatment. This is to ensure 

TABLE 40.1 List of Various Study Designs of Nine Recently Approved 
Non-antiarrhythmic Drugs

     Number of
      Replicate QT
   Number Baseline Collection Period Measures
 Doses Trial of (Data Were Used for Per Time
Drug Useda Designb Subjects Heart Rate Corrections) Point

Drug 1 SD XO 68 On day 1: multiple points  1
     until 8 h postdosing
Drug 2 SD XO 44 On day 1: only 1 h before  3
     dosing
Drug 3 SD XO 58 On day 1: at 30, 15, and  6
     0 min before dosing
Drug 4 MD PL 40 On day 1: multiple points  3
     until 8 h postdosing
Drug 5 MD ESC 85 On day 1: multiple points  3
     until 24 h postdosing
Drug 6 MD ESC 25 On day 1: multiple points  3
     until 24 h postdosing
Drug 7.1 SD XO 48 On day 1: multiple points  1
     until 24 h postdosing
Drug 7.2 SD XO 61 Right before dosing  1
Drug 8 SD XO 90 On day 1: multiple points 10
     until 12 h postdosing
Drug 9 MD PL 76 On day 1: multiple points  3
     until 4 h postdosing

a SD, single dose; MD, multiple dose.
b XO, crossover design; ESC, dose escalation design; PL, parallel design.
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adequate study power Thus, for parallel study with four treatment arms, 260 sub-
jects would be required, whereas for crossover design, only 65 volunteers (allow for 
a few dropouts) would need to be exposed to each treatment and washout period. 
Again, variability is the key determinant of study sample size.

40.3.2 Number and Timing of ECG Recordings

One of the most signifi cant clarifi cations that evolved from ICH E14 was the move 
from time-averaged to time-matched analysis (7). A problem with the time-averaged 
analysis is that the maximum effect of drug on QT interval is diluted, and therefore 
in the absence of a separate analysis of maximum mean QT change, a false-negative 
conclusion may be obtained. The advantage of the time-matched analysis is that 
each time point on treatment (active drug, placebo, or positive control) is compared 
with the baseline values for the corresponding time point (i.e., to calculate the time-
matched ΔQTc). The ΔQTc value at each time point is calculated using the average 
of the replicated QTc values taken at that time point for each individual. This is 
the change of QTc from baseline at that time. The parameter of interest is the dif-
ference between the ΔQTc on the active treatment (or positive control) and the 
placebo at the same time (i.e., the ΔΔQTc). When the same baseline data is used, 
this is equivalent to subtracting the QTc value of placebo from the active treatment 
or positive control. This approach requires the measurement at baseline and during 
treatment (placebo, active control) to be the same. The potential problem with this 
requirement is that if there is a missing value at baseline, or placebo, the data at 
treatment arm will be useless. No imputation methods to adjust such a missing value 
have been used or published so far.

The optimal number and timing of ECG recordings in a TQT clinical trial is an 
area of active research and depends mainly on the endpoint being evaluated, the 
PK properties of the drug, and the stage of development. The optimal timing to 
cover a range of concentrations for PK/PD analyses is important. In general, it is 
recommended to use the time schedule that was normally used for the PK study, 
or to seek statistical guidance to select the optimal number and timing of ECGs 
for the objectives of a study, taking into consideration the subject population, end-
point, statistical model, sample size, and cost effectiveness. Normally, 12 time points 
over the concentration–time profi le, in which several points are near the time of 
maximum drug concentration, are recommended.

Replicated ECGs are needed to avoid the bias in outcome parameters. Malik 
and Camm (8) recommend that it would be “worthwhile to consider recording 
3 to 5 replicate ECGs at each time point within a 2 to 5 minute period.” This is 
because QT interval is not an absolute constant and it is measured with error. 
The clinical assumption is that even under stable conditions, an individual’s true 
QT/QTc interval can vary largely within a minute. How much of the variability 
is under stable conditions depends on the natural biological variability and the 
measurement error. The number of replicates and the number of subjects per trial 
jointly infl uence the outcome of a TQT trial. Sun et al. (9) evaluated QT interval 
variabilities in its chaotic (beat-to-beat), circadian (across a few minutes/hours), 
and occasion (across days/weeks) domains and provided a reference for clinical 
trial designs for TQT prolongation assessment. In the study, QTcB, QTcF, and 
QTcI data from 57 normal young healthy male subjects, with 6 replicated QTs 
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at each of 3 protocol time points within 10 minute intervals, for 6 cycle days one 
week apart were used. Standard deviations (SDs) were indices for variability. The 
impact of inter- and intrasubject variabilities on sample size was estimated statisti-
cally and/or via simulations. The overall mean QTcB, QTcF, and QTcI were 391 ±
15.35, 386 ± 14.62, and 381 ± 14.72, respectively, showing that the intersubject vari-
ability is independent of correction methods. With QTcF, the average chaotic SD is 
14.71 ms (range 9–41). The lowest circadian SD in 20 min, based on the means of 6 
replicates per time, was 6.69 ms (range 2.78–11.8). The lowest between-period SD, 
using the means of all 18 measures for each day, is 7.1 ms (range 1.52–25). These 
components of variability increased nonlinearly as the number of replicated QTs 
decreased. Data are presented in Table 40.2. Sun et al. (10) conducted a bootstrap 
resampling simulation trial. From 80 subjects, 10, 20, 30, 40, or 60 subjects were 
randomly drawn from drug-free baseline data. Each subject provided two sets of 
1, 2, 3, 4, 5, or 6 replicated QT values 10 min apart. The ΔΔQTc values were calcu-
lated. Since the true ΔΔQTc was best believed to be zero, any trials with ΔΔQTc
greater than zero were considered false-positive results. Figure 40.4 shows the large 
intersubject variability within a few minutes, and in 30 minute periods. Figure 40.5 
shows the distribution of the SD and the high–low limits of 1000 bootstrap resa-
mpling analysis results.

When the primary objective of a study is to estimate change in QTc at a specifi c 
point in time, say, Tmax, the use of replicate ECGs can reduce uncertainty. Agin 
et al. (11) report that for time-matched or within-day changes from baseline, the 
use of triplicate ECGs instead of single ECGs reduced the within-subject stan-
dard deviation as estimated by two different methods: the standard deviation of 
the observed changes from baseline was 14.7 to 9.2 ms and from 13.5 to 8.1 ms for 
model-based estimates. Using replicates in this case can substantially decrease the 
sample size necessary to estimate a response with a desirable precision or test a 
hypothesis with a prespecifi ed power. With the known large intrasubject chaotic, 
circadian, and day-to-day variability in QT intervals, Sun et al. (10) independently 
investigated the frequency of QT replications and the corresponding limit of QT 
prolongation assessment. Baseline only QT data were obtained from several pro-
spectively designed TQT trials in normal young healthy male or female subjects (N
≥ 40 in all trials), with up to 6 replicated QT values at multiple time points of a day 
(intervals ranged from a few minutes to a few hours) for 2–6 treatment periods. 
One to six jackknife randomly resampled QT values were drawn from each of the 

TABLE 40.2 Intersubject Variability as a Function of the 
Number of Replicate QT Measurements

 Mean of Within- SD of the Within-
Number of Subject SDs for All Subject SDs for All Ranges of SD for
Replicates 57 Subjects 57 Subjects All 57 Subjects

1 6.82 4.31 1.52–12.5
2 5.04 2.96  0.5–11.16
3 4.06 2.3 0.19–10.9
4 3.91 2.1  1.0–12.25
5 3.79 1.98  0.8–9.8
6 3.08 1.85 0.44–8.35
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time points and the means, SDs, and changes of means from time to time were 
determined. The inter- and/or intrasubject QT variabilities and the lowest limit of 
reliable QT replicates were estimated from 1000 jackknife data sets. Results show 
that with 1–6 replicates per time point, the intrasubject SD nonlinearly decreased 
from 16 to 7.82 ms, the time to time QT changes were never zero, and the natural 
existing QT change ranged from 9.51 to 4.35 ms and maximized from 12 to 49 ms. 
The intersubject variability is less affected by the frequency of sample replicates. 
It was discovered that increasing the number of replicates to more than 3 is not 
needed, as shown in Figure 40.4.

40.3.3 Baseline Days

Since time-matched analysis will be used, the baseline ECGs should be recorded at 
the same time of day as ECGs collected during active treatment. This will provide 
insight into diurnal and food effect on the QT/QTc interval. It is important to note 
that due to the high intrasubject variability, the replicated baseline alone may show 
false-positive or false-negative QTc changes. Figure 40.6 is an analysis result by Lee 
et al. (12) with data from the same group of subjects who provided drug–free QT 
values on consecutive days.

40.3.4 Choice of Endpoint

Many endpoints can be considered for analysis of QT/QTc intervals. The choice 
should be dictated by the primary objective of the study as well as by the different 
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FIGURE 40.6 Example to show the diurnal and food effect on the QT/QTc interval over 
an 18 h period.
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analyses performed to achieve that objective. It is advisable to mention that other 
approaches have been used to derive these endpoints. Among the various end-
points, the FDA/ICH concept paper gives greater weight to time-matched QT/QTc 
interval changes and the maximum mean change (and 90% CI) in the QT/QTc 
interval for the analysis of central tendency.

It is important to point out that the commonly used upper threshold of CI <10 ms 
as the minimal difference of clinical signifi cance is applicable to the majority of 
drugs. There are two different summary statistics.

40.3.4.1 Maximum Mean Change
To determine maximum mean change, the means of replicated QTc are fi rst calcu-
lated. Then the change from the corresponding baseline is determined (i.e., ΔQTc)
for each subject at each matched time point for each treatment. The change from 
placebo treatment is calculated for each subject at each matched time point (i.e., 
ΔΔQTc). Finally, the QTc values across all subjects are summarized for means 
at each time point. The maximum value of the means and the 90% CI for this 
maximum mean value are determined as the statistic endpoint.

40.3.4.2 Mean Maximum Change
To determine mean maximum change, the means of replicated QTc are fi rst calcu-
lated. Then the change from the corresponding baseline is determined (i.e., ΔQTc)
for each subject at each matched time point for each treatment. The change from 
placebo treatment is calculated for each subject at each matched time point (i.e., 
ΔΔQTc). Then the maximum value of ΔΔQTc for each subject (which can occur 
at different time points postdose for different subjects) is selected, and fi nally, the 
mean and 90% CI of these maximum values for each subject are calculated. The 
mean maximum change of QT normally lacks statistical property and is greater than 
the maximum mean change.

40.3.5 Interpretations of Mean Findings with Positive and 
Placebo Controls

The specifi c strategy for analysis of QT/QTc data is dependent on the objectives and 
design of the study. As is common practice in the FDA, QT/QTc data are analyzed 
and interpreted concurrently by pharmacometricians, clinicians, and statisticians. 
In general, sponsors conducting such studies will wish to confi rm, beyond that 
observed for placebo after correcting for baseline, (a) the positive control prolongs 
QTc to a mean effect consistent with its labeling, and (b) the low (therapeutic) 
and high (supertherapeutic) doses of study drug do not prolong mean QTc per the 
ICH criteria.

The positive control should have moderate QTc prolongation effect and be less 
drug concentration dependent. Moxifl oxacin, a drug with mild QTc-prolonging 
properties, is commonly utilized as a positive control in the design of defi nitive QTc 
trials and maximum mean changes will be of primary regulatory interest. Therefore, 
positive control should have average effect sizes of approximately 5–10 ms. The wish 
is that the positive control will always yield a measured mean effect equivalent to 
its labeling. However, this wish is not appropriate when one considers measurement 
and sampling errors. Kenna et al. (13) reported that a recent review of nine QT 
trials with Moxifl oxacin as positive control demonstrated a large variation even for 
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this known drug; the ΔΔQTc ranged from −0.71 to 14.85 ms. Two studies conducted 
by the same sponsor on Moxifl oxacin were not consistent. This does not seem to be 
due to sample size. Positive control in studies even involving more than 60 subjects 
should still not be expected to yield point estimates uniformly consistent with QTc 
labeling for the positive control agents. Mean effect sizes should be expected to vary 
largely due to random variation and precision of measurement. Hence, large devia-
tion from positive control label could be expected. This complicates interpretation, 
but also reemphasizes the need of a positive control.

Another design consideration when including a positive control is to try to 
reduce the frequency when the positive control fails to demonstrate a QTc effect 
of the expected magnitude with the expected precision. A failure to demonstrate 
the anticipated effect of the positive control can cast doubt on the fi ndings related 
to the investigational drug, especially if the study suggests no QT/QTc prolongation 
for the latter. On the other hand, if the study shows a signifi cantly larger increase 
in QT/QTc interval among subjects receiving the investigational drug than those 
receiving the placebo, this fi nding is likely to stand and be requested to be labeled 
along with the positive control data.

One argument in support of the positive control requirement is that since it is 
not reasonable to assume that all factors will remain constant from study to study, 
a positive control is the best guard against all known and unknown factors. On the 
other hand, if a sponsor has employed the same process and used the same facilities 
to collect ECG recordings for the TQT study across many development programs, 
the sponsor might conceivably be able to conduct some validation studies periodi-
cally to reaffi rm the process, thus avoiding the need to include a positive control 
in every defi nitive QTc study. While this line of thinking has merits, there has not 
been much experience with its implementation.

For ΔΔQTc, presumably one wishes to rule out that an increase of 5 will result 
when the study drug is administered; hence, attention is on the upper bound of the 
confi dence interval. However, as discussed earlier, mean effect sizes for study drug 
baseline-corrected comparisons to placebo should also be expected to vary between 
−5 and 10 ms due to random variation and precision of measurement. Hence, a false-
positive result could also be observed simply due to random chance.

In summary, interpretation of mean effect data arising from such studies is not 
trivial, and the potential for a variety of false-negative and false-positive fi ndings 
is a reality. Given signifi cant current uncertainty, further regulatory, clinical, and 
pharmacometric research should be conducted to deal with these issues. The FDA 
is actively working with sponsors, the pharmaceutical industry, and academia to 
best handle these issues.

40.3.6 Analysis of Outliers

It is commonly stated that the analysis of extreme values often plays a more impor-
tant role than that of the average values in clinical trials because it provides more 
information on the extent of safety concern at the individual level (14). Extreme 
values can be examined by creating frequency distributions for maximum absolute 
values as well as maximum increases from baseline (correcting for placebo), using 
reference limits of 450 and 500 ms on QT or 30 and 60 ms on ΔΔQTc. It is impor-
tant to account for covariates known to affect the distribution of QT/QTc values 
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in the population (e.g., age and gender). Outlier analysis is signifi cantly affected 
by the HR correction method, number of replications at each time point, and total 
number of time points in the collection profi le. When there are replicated ECGs 
at each time point for both baseline and treatment arm, the calculation of outliers 
is complicated by the three methods of calculation: determining the outlier from 
the difference of means of both treatment and baseline, subtraction of the mean 
of baseline measurements from the individual observation of treatment arm, and 
from all pairs of data subtractions. Certainly, the last situation will yield the highest 
rate of outliers. There is no common agreed on method for this calculation yet. The 
common practice is to calculate the means at both treatment and baseline fi rst, then 
determine the outlier from the difference between the means.

One possible disadvantage of the categorical analysis above is that it can mask 
repeated occurrences of pathological QT/QTc measurements or changes within a 
subject, so that similar supplemental tables can be constructed for frequency dis-
tributions of the number of ECGs rather than number of subjects. It is important 
that as the number of ECG recordings per subject increases, one is more likely to 
observe large values of the QT/QTc interval or large changes from baseline. There-
fore, a control group with the same number of ECGs per subject is required to 
properly interpret the results of these categorical analyses. Example presentations 
of outliers are given in Tables 40.3 and 40.4.

TABLE 40.3 Presenting Outliers: The Change of QTcF > 450 ms

 N Outliers N Outliers
Regimen N(A) N(B) TRT A (%) TRT B

M 3537 1751  19 (0.54) 31 (1.77)
M3 —  782 — 24 (3.07)
M5 —  750 — 21 (2.80)
P 3423 1667   5 (0.15)  1 (0.06)
P3 — 1563 — 10 (0.64)
P5 —  751 —  3 (0.40)
S10 4957 —  68 (1.37) —
S30 3060 — 181 (5.92) —

TABLE 40.4 Presenting Outliners: The Change of QTcF from 
Baseline >30 ms and > 60 ms

   >30 and <60 ms >60 ms

Regimen N(A) N(B) TRT A TRT B TRT A TRT B

M  638 289  23 (3.6) 18 (5.9) 0 (0.0) 0 (0.0)
M3 — 232 — 53 (18.5) — 1 (0.3)
M5 — 232 — 43 (15.6) — 0 (0.0)
P  625 304   2 (0.3)  0 (0.0) 0 (0.0) 0 (0.0)
P3 — 262 — 24 (8.4) — 0 (0.0)
P5 — 267 — 43 (15.6) — 0 (0.0)
S10 1060 — 128 (10.8) — 0 (0.0) —
S30  880 — 239 (21.3) — 3 (0.3) —
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40.3.7 Automation of Data Analysis

As many new drugs are subjected to a TQT study, the FDA will receive more and 
more information from sponsors. In order to capture all the data in submissions in 
a single location for future reference, and for future data analysis, a database with 
an analytical tool—the Qtech—was developed in the Offi ce of Clinical Pharmacol-
ogy and Biopharmaceuticals within the FDA (15). The QTech is a Visual Basic 

FIGURE 40.7 The QTech platform for QT data analysis automation.



Application that works in combination with S-Plus, MS Access, MS Excel, and MS 
Word to provide the users with many functionalities such as generating powerful 
graphs and reports in addition to storing, loading, querying, and analyzing data in 
the database. (Minimum Software requirements are S-Plus 6.0, Access 2002 with 
Service Pack 3 (SP), Excel 2002 with SP3, and Word 2002 with SP3). The platform 
is presented in Figure 40.7.

There are two important features in QTech: (a) loading data into the database 
and (b) data querying and analysis. By selecting one of the tasks, the user can 
go directly to the task at hand. New improvement of the software is to include a 
drop-down menu for more functions and a link to S-Plus for fast loading of data 
and analysis. Industry and academia are encouraged to use this FDA in-house 
software as a template to develop other types of automation for the QT assessment 
world.

40.4 SUMMARY

This chapter focuses on pharmacometric methods used in QT data analysis. Phar-
macometric issues in the design and analysis of thorough QT clinical trials (TQT), 
and the methods used to assess QT prolongation potential are described. Analysis 
methods discussed are patterned after the new International Conference on Har-
monisation (ICH) guidance for clinical QTc assessment and are illustrated with data 
from real clinical trials. Issues in the interpretation of data are also discussed.
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CHAPTER 41

Using Pharmacometrics in the 
Development of Therapeutic 
Biological Agents

DIANE R. MOULD

993

41.1 PHARMACOKINETICS OF THERAPEUTIC PROTEINS

41.1.1 Background

Overall, there are some profound differences between the pharmacokinetic (PK) 
behavior of biologics and small molecules. Table 41.1 summarizes the major dif-
ferences between these two broad classes of molecules. When evaluating the PK 
behavior of any protein, it is important to understand the biology and the pharma-
cology of the system that the therapeutic biologic is acting on in order to anticipate 
the expected covariates and behavior of the drug.

Initially, the structure of the protein that is being developed can provide some 
information as to the likely clearance and also can suggest feasible routes of admin-
istration. Table 41.2 presents the relationships between the molecular weight (MW), 
bioavailability, and clearance of biologics.

In the development of any therapeutic biological agent, the ability to anticipate 
the PK and pharmacodynamic (PD) behavior of the agent is helpful. However, the 
PK behavior of proteins is quite distinct from the behavior of small molecules and 
the drug development path for biologics is not as standardized as it is for small 
molecules. Table 41.3 gives a general overview of some characteristics of proteins 
that can help the analyst anticipate the likely PK behavior of a novel biological 
agent before it goes into clinical testing.

41.1.2 Protein Structure

The architect Louis Sullivan fi rst coined the phrase “form follows function.” In the 
biological setting, however, the reverse is true: function follows form. During any 
PK or PD assessment of therapeutic proteins, the size and structure of the molecule 

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene I. Ette and 
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needs to be taken into account in order to develop appropriate models for both the 
pharmacokinetics and pharmacodynamics of a biological agent.

Proteins are characterized by their primary, secondary, tertiary, and quaternary 
structures. The primary structure is the sequence of the amino acids in the polypep-
tide chain that makes up the protein. Secondary structure refers to the fi rst folding 
of the amino acid chain and refl ects, for example, disulfi de bonds. Tertiary structure 
(a monomer) is the fi nal folded confi guration of the protein that is controlled by the 
primary and secondary structures and is thermodynamically driven by the relative 
hydrophobicity of the component amino acids in the structure. Quaternary struc-
ture refers to the functional association of several polypeptides (monomers). For 
example, the fi nal structure of hemoglobin consists of four associated monomers. 
Any change in the primary structure of a protein often results in changes to all 
the higher level structure. Protein structures must be characterized and controlled 
during the production process.

To give some specifi c examples of how physical structure plays a role in the 
pharmacokinetics of a therapeutic protein, fi rst consider a monoclonal antibody 
binding fragment (Fab), which is the active binding region of an antibody, and 
Fab fragments, which have been extensively investigated as potential therapeutic 
agents but because they are rapidly cleared, their potential as therapeutic agents is 
limited. Reengineering the structure by replacing a single disulfi de bridge between 
Fab arms with a thioether bridge increased the mean residence time of the fragment 

TABLE 41.1 Overview of Pharmacokinetic Differences Between 
Chemical Entities and Proteins

Chemical Entities Therapeutic Biologics

Pharmacokinetics usually independent Pharmacokinetics often dependent on
 of pharmacodynamics  pharmacodynamics
Usually linear pharmacokinetics Often nonlinear pharmacokinetics
Metabolic breakdown Proteolytic breakdown
Renal clearance often important Renal clearance uncommon if MW higher
  than 50 kD
Free concentrations useful (“coverage”) Free concentrations may cause problems
  (immunogenicity)
Binding implies distribution Binding implies clearance
Tissue penetration often good Usually poor tissue penetration
PK drug interactions possible PK drug interactions rare
PD drug interactions rare PD drug interactions possible

TABLE 41.2 Relationships Between Molecular Weight, Bioavailabilitys, and Clearance

MW < 20 kD 20 kD < MW < 50 kD MW > 50 kD

Good bioavailability when Adequate bioavailability Poor bioavailability when
 given SC  when given SC  given SC
Can be given via inhalation Inhalation possible Not suitable for inhalation
Usually very fast clearance Usually moderate Moderate to slow clearance
 (minutes to hours)  clearance (hours)  (hours to days)
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in normal mice by threefold (1). A second example of a structural change resulting 
in altered pharmacokinetics is Tenecteplase, a fi brinolytic protein developed from 
human tissue plasminogen activator (alteplase) for the treatment of acute myocar-
dial infarction. Specifi c mutations at three sites in the original alteplase molecule 
resulted in 15-fold higher fi brin specifi city, 80-fold reduced binding affi nity to the 
physiological plasminogen activator inhibitor PAI-1, and sixfold increase in the 
half-life (2). Clearly, the structure of the protein is important to both the pharma-
cokinetics and pharmacodynamics of any biological therapeutic agent, emphasizing 
the need to characterize the protein structure at all levels and control it adequately 
during manufacturing. Some of the basic aspects of protein production and engi-
neered structural changes are presented in the following sections.

41.1.2.1 Production of Therapeutic Proteins
Bacteria and Chinese hamster ovary (CHO) cell lines are commonly employed for 
the production of recombinant therapeutic proteins. The process given below is 
used in the development and production of therapeutic antibodies, which constitute 
a majority of the proteins being used clinically today.

In 1975, Kohler and Milstein (3) presented a method for preparing murine cell 
cultures that would produce antibodies targeted against a specifi c antigen. Produc-
ing mouse antibodies to selected antigens is very easy to do, and murine antibodies 
have been shown to have clinical utility, although all murine antibodies have been 
associated with the formation of human anti-murine antibodies (HAMA).

This method ultimately led to the development of Orthoclone muromonab-CD3 
(OKT3®), the fi rst monocloncal antibody approved for use in humans. OKT3 was 
a murine IgG2 antibody that binds and modulates the CD3 receptor site on cyto-
toxic T-lymphocytes, interfering with antigen recognition and preventing cellular 
pro liferation. OKT3 is used for the treatment of acute rejection in renal transplanta-
tion. However, it has since been determined that antibodies that have murine struc-
ture are more immunogenic than ones that have been engineered to have human 
structure. This is because foreign proteins are recognized as such and consequently 
elicit an antibody response against them (e.g., HAMA) or more broadly human 
anti-globulin antibody (HAGA). In general, HAMA response is polyclonal, with 
increased levels of IgM and IgG that are directed against the mouse-specifi c deter-
minant, the isotype (the heavy chain or FC portion), the binding region (F(ab′)2),
and the “idiotype” of mouse immunoglobins (4). The development of neutralizing 
antibodies directed against the foreign protein restricts their usefulness for several 
reasons: the development of HAMA can result in anaphylaxis or other related 
adverse events (e.g., fever, chills, serum sickness, anemia, leukopenia, arthralgia, 
rash), and HAMA forms a new, and fast, route of elimination that removes the ther-
apeutic antibody from circulation, which reduces the circulating therapeutic protein 
concentrations and consequently its benefi cial effect (5). Because of the HAMA 
response, murine antibodies are not suitable for treatment durations exceeding 10 
days and cannot be administered at some later time to a patient who was previously 
exposed because of the potential for anaphylaxis.

41.1.2.2 Humanization
Structural changes in proteins can result in substantially different PK behavior. 
Protein engineering using recombinant DNA technology has provided a partial 
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solution to the problems associated with HAGA by developing methods to con-
struct chimeric genes that fuse rodent exons for the monoclonal antibody variable 
regions with human exons encoding the heavy and light chain constant (Fc) regions 
of the antibodies (6, 7). These constructs produce antibodies with human effector 
functions due to the human Fc portion and, at the same time, theoretically reduce 
the likelihood of HAGA response to a major part of the protein. The transfer of 
murine binding regions into human frameworks transfers the ability to recognize 
the antigen but provides a slightly less immunogenic framework. In addition to 
reducing immunogenicity, the use of the human constant (Fc) region is theoreti-
cally associated with improved effector function of the therapeutic antibody (e.g., 
complement protein and antibody-dependent cell cytotoxicity (ADCC)) as well as 
decreased clearance due to the improved ability of the antibody to take advantage 
of the body’s tendency to conserve antibodies through protective mechanisms such 
as Brambell receptors. In summary, the more “human” the antibody structure, the 
less immunogenic the agent is, the longer the half-life, and the greater the likeli-
hood of utilizing ADCC.

The benefi ts of humanization are not completely straightforward. Many features 
of immunoglobulin sequences are conserved between species and thus there is no 
concept of an immunoglobulin sequence appearing to be completely murine. There-
fore, the humanization of antibodies does not automatically preclude the develop-
ment of HAGA (8) because the variable regions of the antibody are still murine and 
therefore chimeric and humanized proteins may still develop HAGA. In addition, 
there is considerable homology between many murine and human variable region 
sequences, making the development of HAGA diffi cult to predict.

41.1.2.3 PEGylation
One of the drawbacks of biological agents is the need for parenteral routes of 
administration. In some cases, these agents are administered as subcutaneous injec-
tions, which reduces the number of clinic visits required for treatment. However, 
many of these agents require frequent dosing because of their short half-life. The 
discomfort associated with frequent injections can negatively impact patient com-
pliance and there are other issues associated with the disposal of used syringes.

The concept of modifying therapeutic molecules through the covalent attach-
ment of poly(ethylene glycol) (PEG) moieties (PEGylation) was fi rst introduced 
by Abuchowski et al. (9) in 1977. This approach has been shown to be effective 
in decreasing the clearance of therapeutic protein agents, as well as reducing the 
incidence of neutralizing antibody formation, the mechanism of which is described 
below.

PEGylation reduces renal and hepatic clearance and, for some products, effec-
tively increasing the circulating half-life of the agent. PEGylation also results in a 
more sustained absorption after subcutaneous administration as well as restricted 
distribution. These PK changes usually result in more constant plasma concentra-
tions, which can be maintained near the desired target levels with less frequent 
dosing.

Additionally, PEG modifi cation may decrease adverse effects caused by the large 
variations in peak-to-trough plasma drug concentrations associated with intermit-
tent administration and by “covering” the foreign protein (resulting in PEG-induced 
steric hindrance) can prevent immune recognition and reduce the immunogenicity 
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as compared to the unmodifi ed protein (10, 11). However, it should be noted that 
for all covalently PEGylated and successfully marketed PEGylated agents, the 
weight of the added PEG was at least as great as the weight of the protein being 
modifi ed.

Modifi cation of a protein by PEGylation also causes changes to the observed PD 
properties due to altered protein structure and hydrophilicity, which in turn results 
in different binding properties of the native protein. In general, the binding capac-
ity of PEGylated proteins is reduced as compared to the native protein. Because 
the size, geometry, and attachment site of the PEG moiety play pivotal roles in 
observed changes of these properties, therapeutically optimized PEGylated agents 
must be individually designed.

41.1.2.4 Hyperglycosylation
Perhaps the best known example of modifi cation of a protein resulting in altered 
pharmacokinetics is darbepoetin alfa (Aranesp®) (12). Darbepoetin alfa is a hyper-
glycosylated analog of recombinant human erythropoietin. The addition of sialic 
acid residues to erythropoietin resulted in a substantial prolongation of circulating 
half-life. The terminal half-life of darbepoetin alfa was two to three times longer and 
the clearance was approximately four times slower than epoetin (13). Similar results 
have been reported when “glycoengineering” was applied to thrombopoietin and 
leptin (14). In addition, when l-asparaginase was conjugated with colominic acid 
(polysialic acid), the immunogenicity was reduced (15). Antibody titers appeared 
highest for the native enzyme and were generally reduced as the degree of poly-
sialylation increased. In addition, the half-lives of these preparations were three- to 
fourfold greater than that of the native enzyme.

41.1.3 Clearance

For proteins, structure has an impact on the clearance. For example, the half-life 
of an intact IgG molecule is 23 days, while for an intact Fc fragment the half-life is 
10–20 days (16). Similarly, the binding regions of antibodies (F(ab′)2 fragments) are 
cleared very rapidly (17). As mentioned previously, the PK behavior can be altered 
not only by changes in the amino acid sequence but also by changes in the pattern 
of glycosylation on the protein (18). Consequently, structural changes can alter the 
PK and the PD behavior of the drug.

Therapeutic proteins can undergo several routes of elimination: renal, hepatic, 
receptor mediated, and HAGA directed. Not all proteins undergo clearance through 
all possible routes. Again, the type of elimination is partly dependent on the struc-
ture of the protein, its molecular weight, and immunogenicity. In addition, the role 
that receptor-mediated clearance plays in the overall clearance of a protein depends 
on the functionality of that protein. An excellent example of characterization of 
different routes of clearance of a biologic agent is a report of the pharmacokinetics 
of SB-251353, a low molecular weight protein that is a truncated form of the human 
CXC chemokine growth-related gene product beta (19). The pharmacology of this 
agent was studied in the mouse. Primarily, the clearance appears to be mediated 
by its pharmacologic receptor, CXCR2, through endocytosis with subsequent lyso-
somal degradation. SB-251353 is eliminated via renal and hepatic routes as well. 
Microscopic autoradiography showed uptake into renal proximal tubule epithelial 
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cells with limited excretion of SB-251353 in the urine (<2%). Binding to hepatic 
sinusoids and connective tissue in the dermis was also observed, which is charac-
teristic of the mechanism of hepatic elimination for proteins.

41.1.3.1 Renal Elimination
The kidney plays an important role in the metabolism of low molecular weight 
(MW < 20 kD) proteins, which are extensively fi ltered by the kidney. Proteins that 
are fi ltered by the kidney are typically reabsorbed from the luminal side by renal 
tubular cells and released back to the circulation as intact molecules or as amino 
acids and peptide fragments. The renal fi ltration, absorption, and fi nal disposition of 
three low molecular weight proteins (lysozyme (MW 14 kD), insulin (MW 5.83 kD), 
and recombinant human growth hormone (MW 20 kD)) were studied in order to 
gain an understanding of the fundamental variables involved in the renal handling 
of these agents (20). Maack (20) reported that the glomerular barrier offers little 
hindrance to the fi ltration of these low molecular weight proteins. The intrarenal 
route by which low molecular weight therapeutic proteins accumulate in the kidney 
is primarily via fi ltration and uptake by renal tubular cells. Uptake or adsorption 
of these exogenous proteins from the peritubular side was found to be minor com-
pared to luminal uptake. Current evidence (21) indicates that only the proximal 
tubule possesses the mechanism for degradation and transport of these proteins and 
reabsorption of the resulting metabolic products. Proteins that are fi ltered at the 
glomerulus are absorbed into apical vacuoles, which fuse with primary lysosomes. 
The proteins are then hydrolyzed in the vacuoles and the proteolytic products 
diffuse out of the cell and back into the blood. This process, which conserves amino 
acids, inactivates toxic substances and regulates circulating levels of protein and 
peptide hormones. This mechanism plays an important role in the clearance of low 
molecular weight proteins.

41.1.3.2 Hepatic Clearance
Proteins that are larger than 20 kD undergo relatively little renal elimination as an 
intact molecule (22) although the mechanisms for renal fi ltration and breakdown 
described in Section 41.1.3.1 on renal clearance does play a role for proteins up to 
50 kD (23). For proteins that have a molecular weight that is higher than 50 kD, 
organ-based clearance is primarily limited to clearance by other cellular mecha-
nisms such as through the Kupffer cells and endothelial sinus cells in the liver, which 
act to remove dead cells and other large proteins from the blood (24–26). Other 
general routes of clearance of large proteins are via uptake by splenic macrophages 
and some limited proteolytic clearance in the lung and intestines (27). As with renal 
clearance, therapeutic proteins are internalized by these cells, are broken down to 
their component amino acids, and then are salvaged by the cells.

41.1.3.3 Receptor-Mediated Clearance
Many therapeutic proteins, particularly protein hormones and monoclonal anti-
bodies, exhibit saturable clearance mechanisms that appear to be receptor mediated 
(28, 29). This form of clearance is usually directly linked to the pharmacological 
activity of the drug and plays an intricate role in removal of the protein from 
circulation. The mechanism usually involves binding of the therapeutic agent 
followed either by internalization (pinocytosis) and breakdown of the protein or 
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alternatively shedding of the receptor–drug complex followed by uptake of the 
complex by Kupffer cells.

A good example of this is the observation that the clearance of granulocyte 
colony-stimulating factor (G-CSF) changes over time (30, 31). This study looked 
at the correlation between G-CSF clearance and absolute neutrophil count 
(ANC) in patients treated with high-dose chemotherapy followed by autologous 
bone marrow transplantation after intravenous administration of G-CSF (5 or 
16mg/kg/day) on three separate days. G-CSF plasma clearance increased with time 
post-transplant. Regression analysis of G-CSF clearance with neutrophil count 
revealed a strong and statistically signifi cant linear relationship. The role of neu-
trophils in G-CSF clearance was also evaluated in vitro using polymorphonuclear 
neutrophils (PMNs) incubated with G-CSF. At low G-CSF concentrations in vitro, 
there was an increase in G-CSF clearance with increasing PMNs, but at higher 
G-CSF concentrations this relationship did not hold. The correlation between 
G-CSF clearance and ANCs both in vivo and in vitro is consistent with the hypoth-
esis that receptor-mediated clearance by neutrophils is one of the major pathways 
of G-CSF clearance.

Another example of receptor-mediated clearance is the glycoprotein IIb/IIIa 
antagonist abciximab, which is administered to patients undergoing perc utaneous 
transluminal coronary angioplasty (32). Concentration–time profi les of this 
drug showed rapidly decreasing plasma abciximab concentrations at early times 
postdose, but the terminal disposition phase was prolonged, suggesting satura-
ble behavior. The PK model included both receptor binding and linear clearance 
mechanisms.

41.1.3.4 Clearance by Neutralizing and Nonneutralizing Antibodies
During treatment with a therapeutic protein, antibodies can be formed against the 
therapeutic agent. In fact, this is the case with nearly all biopharmaceuticals, even 
small molecules. The frequency and consequence of the formation of antibodies 
directed against the therapeutic protein varies widely. Antibody formation against a 
therapeutic protein has profound consequences on the pharmacokinetics and poten-
tially the pharmacodynamics of the biological agent. It is important to understand 
not only that these antibodies form, but also the factors relating to their forma-
tion. There are two forms of antibodies that can appear during administration of a 
therapeutic biologic agent: nonneutralizing antibodies (N-NAbs) and neutralizing 
antibodies (NAbs). The defi nitions for neutralizing and nonneutralizing antibodies 
are usually set up for each new biologic under development and these two antibody 
types are often distinguished on the basis of in vitro assays. Typically, neutralizing 
antibodies are defi ned as antibodies that block the activity of the therapeutic protein 
in an in vitro biological assay of activity. However, it should be noted that a lack of 
neutralizing activity in vitro does not always correspond perfectly with neutralizing 
activity in vivo.

Both nonneutralizing and neutralizing antibodies can form complexes with the 
therapeutic protein, which are subsequently taken up by leukocytes in the periph-
eral blood, resulting in loss of active drug and its associated clinical activity. There 
are numerous mechanisms by which these antibodies work. For example, neutral-
ization can occur by inhibiting the attachment of the therapeutic agent to its target 
receptor when the neutralizing antibody binds directly at, or near, the target site. 
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The binding of the neutralizing antibody can either physically block the site or 
cause a conformational change so that the therapeutic agent and the receptor can 
no longer interact. Most often, however, the neutralization is thought to be medi-
ated by the direct binding of the neutralizing antibody to the therapeutic agent. 
Neutralization can also occur by causing aggregation of the therapeutic agents. 
This activity can be seen with any kind of antibody directed against the therapeutic 
agent, whether it is neutralizing or not. Another site of neutralization can occur 
when the neutralizing antibody binds the therapeutic agent following attachment 
of that agent. This can occur due to the formation of a new epitope, which is either 
exposed or formed following the binding between the therapeutic agent and the 
target receptor. There are numerous other proposed mechanisms of interaction 
between antibodies and therapeutic protein.

The development of neutralizing antibodies appears to be dependent on both the 
structure of the protein (e.g., how “foreign” the protein appears to the body) and 
the route of administration (33), with intravenous and local routes usually having a 
lower incidence of antibodies than subcutaneous or intramuscular routes of admin-
istration. Inhalation appears to be the most immunogenic route of administration. 
In addition, the dose regimen used is also important with infrequent or intermittent 
dosing generally being more immunogenic than more frequent dosing although the 
pattern is less clear. Much of the information on development of neutralizing and 
nonneutralizing antibodies comes from research on vaccines, but appears to be 
broadly applicable to other therapeutic proteins as well.

Essentially, there are two mechanisms behind the formation of antibodies 
directed against an exogenously administered protein. The fi rst mechanism is the 
standard reaction of a human body to foreign protein, such as those arising from 
animal, bacterial, or plant origins (e.g., OKT3). This reaction is comparable with 
the administration of a vaccine. Neutralizing antibodies against the foreign protein 
appear rapidly in the majority of cases, sometimes even after a single injection, and 
can persist for a long time.

The other mechanism by which antibodies are induced is based on breaking 
the immune tolerance that normally exists to self-antigens. This is the mechanism 
leading to the antibodies directed against recombinant human homologues such as 
interferons or thrombopoietin. These antibodies are usually nonneutralizing and 
generally, albeit rarely, appear after prolonged treatment.

The structure of the protein, including the glycosylation pattern, as well as the 
presence of foreign (e.g., murine) epitopes can cause an immunogenic response. In 
the case of glycosylation changes, the protein may be less soluble than the endog-
enous form, or epitopes that are normally hidden by glycosylation become exposed, 
rendering the product immunogenic (34).

Patient characteristics can also be an important factor in determining whether 
antibodies will be produced. For example, cancer patients, whose immune response 
may be impaired due to their disease and treatment with myelosuppressive che-
motherapy, would presumably have a lower incidence of antibodies, as might any 
patient whose disease or treatment lowers immune response. It should be noted, 
however, that even cancer patients are capable of expressing antibodies to foreign 
proteins (35).

The effect of patient gender can also be important for immunogenicity. A report 
of the emergence of alpha-Gal A antibodies in patients with Fabry disease (36) 
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found that during the fi rst 6–12 months of intravenous administration of recom-
binant enzymes (rh-alpha-Gal A), the female patients did not develop detectable 
amounts of antibodies. Conversely, after 6 months, 11/16 male patients showed 
high titers of immunoglobulin G antibodies that cross-reacted with both recom-
binant enzymes. These antibodies were able to almost completely neutralize in 
vitro activity. All antibody-negative patients showed a signifi cant improvement as 
compared to antibody-positive patients whose condition either remained stable or 
worsened.

In addition to increased clearance, the formation of neutralizing antibodies has 
been shown to result in severe and prolonged adverse events (37, 38). This has 
been found for both Eprex® (a formulation of erythropoietin used to improve red 
cell count in the anemia of renal failure) and for recombinant human thrombo-
poietin (a cytokine involved in the development and maturation of platelets). In 
one report (39), serum samples from 13 patients who had developed pure red-cell 
aplasia while treated with Eprex were tested for neutralizing antibodies that could 
inhibit erythroid-colony formation in vitro. The presence of anti-erythropoietin 
anti bodies was detected in all patients evaluated. In all of the patients, the antibody 
titer slowly decreased after the discontinuation of treatment with erythropoietin 
and the anemia resolved. Similarly, subjects who had been administered recombi-
nant thrombopoietin developed neutralizing antibodies against endogenous throm-
bopoietin, which resulted in thrombocytopenia. The development of neutralizing 
antibodies against endogenous proteins is of concern during the development of 
any biological agent.

41.1.3.5 Brambell Receptors and Antibody Recycling
For the most part, Fc receptors are associated with activating host cell defense 
mechanisms, initiating cell signaling when an antibody binds to a target cell-
surface antigen. However, there is a second class of Fc receptor that is involved 
in antibody catabolism. The receptor, called FcRn for the neonatal Fc receptor, 
is also sometimes referred to as the Brambell receptor. The existence of this 
receptor was fi rst proposed by Brambell (40) in 1966 to describe the mechanism 
by which maternal IgG was transferred across the neonatal gut. These recep-
tors are also involved in maintaining homeostasis of circulating IgG in the body 
(41–42). FcRn is expressed in endothelial cells and removes circulating IgG from 
the blood by pinocytosis. The IgG that is removed by this process can bind to 
the FcRn receptors present in the vesicle. The IgG–FcRn complex is protected 
from degradation by lysosomal enzymes and recycled back to the surface where 
the IgG is released back into the blood. A schematic of this process is presented 
in Figure 41.1.

Human IgG1, IgG2, and IgG4 all have high affi nities for human FcRn, which is 
why these molecules have a long half-life. IgG3 has a lower affi nity for FcRn and 
consequently exhibits a shorter half-life. The alteration of specifi c amino acids or 
glycosylation patterns in the constant (Fc) domain can therefore result in altered 
half-lives for immunoglobins by altering their binding affi nity for FcRn (43). In 
addition, FcRn can become saturated at high concentrations of antibody, resulting 
in a loss of the protective mechanism and a subsequent increase in the clearance or 
shortening of the half-life. The impact of this on the overall clearance of a mono-
clonal antibody is shown in Figure 41.2.
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41.1.4 Absorption

41.1.4.1 Overview of Absorption
At present, most therapeutic biologics are administered parenterally, either via IV 
infusion or as a subcutaneous (SC) injection. Other routes such as intramuscular 
injection and inhalation are used but are much less commonly seen in practice. 
Not much is known about the mechanism of absorption of proteins administered 
via SC or intramuscular injection, although the majority of uptake is presumably 
primarily via the lymphatic system (44, 45). Supersaxo et al. (44) investigated the 
lymphatic absorption of four compounds with different molecular weights admin-
istered sub cutaneously in sheep. Lymphatic uptake was determined by measuring 
drug recovery in lymph. The cumulative recovered percentage of administered dose 
showed that in the investigated MW range, there was a positive linear relationship 
between the molecular weight and the proportion of the dose absorbed via the 
lymphatic system. Molecules with MW > 16 kD were primarily absorbed via the 
lymphatic system.

An interesting aspect of this mechanism of absorption is the link between the 
pharmacokinetics and PD activity of some drugs. A study of the pharmaco kinetics 
and pharmacodynamics of G-CSF (46) found no correlation between Cmax and 
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FIGURE 41.1 Schematic diagram of the role of brambell receptors in the salvage of anti-
bodies. A—Cells with FcRn and two antibodies, the light colored antibody has a functional Fc 
receptor and the dark one does not. B—The antibodies bind to the FcRn receptors. C—The
bound antibodies are internalized by pinocytosis. D—The environment of the internalized 
antibodies changes, causing the dark antibody (with a nonfunctional Fc receptor) to disas-
sociate from the FcRn receptor, whereas the antibody with the functional receptor remains 
bound. E—The bound antibody is protected from proteolytic degradation, whereas the dis-
associated antibody is broken down. F—The FcRn receptors cycle back to the cell surface. 
G—The cell is freed by releasing the intact functional antibody back to circulation.
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increases in neutrophil count, but there was a negative correlation between AUC 
and neutrophils. The measured G-CSF concentrations refl ect the fraction of drug 
that escapes clearance in the lymphatic system prior to entering the circulation 
(somewhat analogous to fi rst pass metabolism), and with continued dosing the rela-
tive bioavailability of G-CSF would be expected to decrease.

41.1.4.2 Relationship Between Molecular Weight and 
Bioavailable Fraction
When administered via SC, intramuscular, or inhalation routes, the bioavailability 
of therapeutic proteins is variable and the fraction absorbed is dependent on the 
molecular weight of the protein (47). Interferon alpha, which is a relatively low 
molecular weight protein (19 kD), has good bioavailability following SC administra-
tion (80%), whereas most therapeutic monoclonal antibodies have bioavailability 
of approximately 20–60% following SC administration.

The reason that proteins generally exhibit low and variable bioavailability is not 
presently understood, although several mechanisms such as degradation, aggrega-
tion, or metabolism at the site of injection have all been proposed (48, 49); however, 
there is little evidence supporting these theories.

41.1.5 Volume of Distribution

For large proteins, transfer across cell membranes is limited due to size and hydro-
philicity of the molecule. There is some evidence that Brambell receptors may play a 
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FIGURE 41.2 Clearance of antibodies is dependent on concentration. At low concentra-
tions, therapeutic proteins may exhibit concentration-dependent clearance, with the clear-
ance decreasing as concentrations increase. For most biological agents that display this 
behavior, the clearance will decrease to a particular level (the nadir in the curve) and then 
remain constant. However, for antibodies, a second form of saturation can occur, where 
the Brambell receptors become saturated, resulting in an apparent increase in clearance as 
concentrations increase.



TABLE 41.4 Pharmacokinetic Parameters for Several Marketed Therapeutic 
Monoclonal Antibodies and Derivatives

 Brand  Target Vss

Generic Name Name Type Antigen (L)

Abciximab Repro Fab fragment GP IIb/IIIa  8
Basiliximab Simulect Chimeric IgG1 CD25  9
Bevacizumab Avastin Humanized IgG1 VEGF —
Cetuximab Erbitux Humanized IgG1 EGF receptor  4.4
Daclizumab Zenapax Humanized IgG1 CD25  6
Etanercept Enberel Fusion protein linked TNF —
   to the Fc portion
   of human IgG1
Gemtuzumab Myelotarg Humanized IgG4 CD33 20
Infl iximab Remicade Chimeric IgG1 TNF  3
Trastuzumab Herceptin Humanized IgG1 Her2-neu  4

role in facilitating crossing cell membranes for macromolecules that have functional 
Fcg binding (40), but the extent of this activity appears to be limited. Karanikas 
et al. (50) demonstrated that there is little cellular penetration of monoclonal 
antibodies, even in cells carrying target receptors. Lin et al. (51) evaluated the dis-
tribution of a recombinant humanized IgG1 monoclonal antibody (MAb) directed 
against vascular endothelia growth factor (VEGF) in rabbits (51). These fi ndings 
showed that, as expected, serum concentrations of the MAb were 10 times higher 
than the highest tissue concentration. Furthermore, after 24 hours, evaluable auto-
radiography was limited due to the recycling of the labeled amino acids by the body, 
making assessments of tissue distribution diffi cult.

Consequently, most high molecular weight therapeutic proteins (MW > 50 kD) 
appear to have a distributional volume on the order of 0.1 L/kg, which is approxi-
mately equal to the extracellular fl uid volume. The volumes of distribution of 
several marketed therapeutic monoclonal antibodies are provided in Table 41.4. 
The values for these parameters were taken from the Physician’s Desk Reference
(52), which includes labeling information for each agent. Lower molecular weight 
proteins (MW > 50 kD) generally have a slightly higher volume of distribution, with 
the volumes ranging from 0.2 to 0.8 L/kg.

41.2 EVALUATING PHARMACOKINETICS USING 
MODEL-BASED ANALYSIS

41.2.1 Pharmacokinetic Models

In general, the pharmacokinetics of most therapeutic proteins can be described 
using either a one- or a two-compartment model. This behavior is dependent in 
part on the route of administration and the molecular weight of the protein. In 
general, most proteins display nonlinear clearance or there are parallel linear and 
nonlinear routes of clearance. Absorption following SC administration is often not 
straightforward to describe, with many analysts using parallel routes of uptake or 
modeling the absorption as a slow fi rst-order process.

EVALUATING PHARMACOKINETICS USING MODEL-BASED ANALYSIS 1005
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41.2.1.1 Absorption Models
Following SC administration, absorption is generally variable and is often described 
using parallel routes of uptake (53, 54), although simple fi rst-order models have been 
used successfully (55). However, the absorption of a biological agent usually follows 
a complex process. Several simple alternative functions are provided below that 
have been used to describe the absorption kinetics of various biologics. There are 
many other functions that can be tested during the model development process.

Inverse Gaussian Input Function The inverse Gaussian input function is described 
as follows:

Input T Dose F
MAT
NV T

T MAT
NV MAT T

( ) = ⋅ ⋅
⋅ ⋅

−
−( )

⋅ ⋅ ⋅
⎛
⎝⎜

⎞
⎠⎟2 22 3

2

2π
exp (41.1)

In this equation, Dose is the administered dose, F is fraction absorbed, MAT is the 
mean input time or mean absorption time, NV2 is the normalized variance of the 
Gaussian density function, and T is the modulus time following administration of 
a dose.

Spline Input Function A cubic spline function can be used to reproduce the input 
function described by the inverse Gaussian function. This function is somewhat 
simpler to code than the inverse Gaussian but is also an empirical function. The 
spline function is

Input A T B T C T= ⋅ − ⋅ + ⋅⎢⎣ ⎥⎦3 2 (41.2)

In this equation, T is the relative time postdose, and A, B, and C are the coeffi cients 
of the cubic spline. Unlike the inverse Gaussian function, the spline input function 
does not rely explicitly on dose and can be evaluated both as an explicit input func-
tion and as an infusion rate.

Biexponential Input Function A biexponential (Bateman) function is sometimes 
useful because it is also capable of producing an input profi le similar to the inverse 
Gaussian function and can describe nonlinear absorption processes. The represen-
tation for this input function is given as

Input K A T Alag B T Alaga= ⋅ − ⋅ −( )[ ] − − ⋅ −( )[ ]{ }0 exp exp (41.3)

In this equation, Ka0 is the basic absorption rate, T is the modulus time postdose, 
A and B are coeffi cients of the exponential input curves, and Alag is the lag time 
before absorption begins. The input is 0 at all modulus times less than Alag.

Surface Input Function One additional function can be considered when inves-
tigating absorption models that might describe a nonstandard absorption process. 
This is a simple surface function. This input function is represented as follows:

Input K Alpha T Alaga= ⋅ − ⋅ −( )[ ]0 1 (41.4)



In this equation, Ka0 is the basic absorption rate, T is again the modulus time post-
dose, Alag is the lag time prior to the onset of absorption, and Alpha is a coeffi cient 
defi ning the input function curvature.

41.2.1.2 Clearance Models
As might be expected, many biological agents exhibit nonlinear behavior. In some 
cases, the clearance can be described using parallel linear and nonlinear mecha-
nisms of clearance (19, 53, 56). In order to be able to develop this model, data must 
be available from a wide range of doses. However, depending on the mechanism of 
action, the mechanism of clearance, and other aspects such as patient covariates, 
clearance for some proteins has been described using wholly linear or nonlinear 
mechanisms. In addition, time- or receptor-dependent clearance mechanisms have 
also been utilized to explain time-dependent changes in clearance due to the effect 
of repeated administration of therapeutic proteins. The most common form of 
clearance is represented as

Clearance
V Concentration
K Concentration

CL
m

Total =
⋅

+
⎛
⎝⎜

⎞
⎠⎟

+max
LLinear (41.5)

In this equation, ClearanceTotal is the sum of nonlinear and linear clearance. Vmax is 
the maximum nonlinear clearance, Km is the concentration required to achieve half-
maximal nonlinear clearance, and Concentration is the drug concentration. CLLinear

is the linear component of clearance.

41.2.2 Potential Covariates

During the development of many therapeutic proteins, many of the standard Phase 
1 pharmacology studies such as those conducted in special populations (e.g., elderly 
subjects, renally impaired subjects) and drug interaction studies can be omitted. 
This is done for numerous reasons, including the fact that administration of protein-
based agents can cause the formation of antibodies, which could potentially affect 
that subject’s treatment should they later develop a disease requiring therapy using 
a similar biologic. Furthermore, in many cases, normal volunteers do not have high 
levels of receptors for these agents because they do not have the disease, so the basic 
PK behavior of a biologic agent cannot always be translated between a normal vol-
unteer and a patient. Finally, patients are a more heterogeneous group than normal 
volunteers, making accrual of appropriate patients for such studies diffi cult, and if 
the drug has shown effi cacy it may be inappropriate to conduct single-dose studies in 
these patients. These factors limit the number of studies that are conducted during 
the development of a biological agent and place a greater importance on the use 
of population PK modeling to assess the effects of covariates on the PK behavior 
of these agents. A discussion of the potential covariates that should be considered 
during a population-based evaluation is given in the following sections.

41.2.2.1 Number of Receptors
For therapeutic proteins that are cleared by receptor-mediated binding, the number 
of receptors is usually one of the major covariates. Receptor density or receptor-
positive cell count has been identifi ed numerous times as a covariate for cytokines 
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and peptide hormones as well as antibodies (49). In some cases, information on 
receptor density or number of receptor-positive cells is not available. In these 
cases, treatment duration can sometimes be used to account for changing (usually 
decreasing) receptor density over time with the consequent decrease in clearance as 
treatment with the biologic progresses. An example of this is a population PK evalu-
ation of alemtuzumab (Campath®) (57), which found that the concentration–time 
profi le was best described by a two-compartment model with nonlinear elimination. 
Campath is cleared by binding to CD52+ cells, which was a strong covariate on the 
maximum velocity for clearance (Vmax). During treatment, the number of CD52+

cells is markedly decreased, resulting in decreased clearance of this agent.

41.2.2.2 Patient Characteristics
Patient characteristics can have a profound effect on the pharmacokinetics of thera-
peutic proteins. For patients undergoing immunosuppressive therapy or those who 
have a disease that compromises their immune response, antibody formation against 
the biologic agent is often blunted, delayed, or of lower frequency. However, such 
patients can and do form antibodies against biologics. As mentioned previously, 
cancer patients who are treated with asparaginase can develop antibodies against 
this protein, although PEGylated asparaginase appears to ameliorate the immune 
response, prolonging the duration of effective treatment with this agent (35).

For proteins that undergo receptor-mediated clearance, the stage of the disease 
can be a predictive covariate when receptor number is missing. Presumably, patients 
with more advanced disease would have a tendency to have a greater number of 
receptor-positive cells. In a categorical sense, patient disease state or disease status 
may be useful as an explanatory covariate when receptor number is not available. 
The impact of disease type has been reported for infl iximab when used to treat 
Crohn’s disease (58).

Other disease-related covariates would include ascites and pleural effusion. 
These comorbid conditions would be expected to increase the volume of distribu-
tion of proteins, thus lowering the measured concentrations in the serum. In one 
case (59), ascites was found to be a weak covariate of clearance as well.

41.2.2.3 Body Weight
As might be expected based on their mechanism of clearance, many monoclo-
nal antibodies have demonstrated a strong relationship between weight and PK 
behavior (56). This relationship is often true for volume of distribution, since the 
distribution of most biologics is limited to extracellular fl uid volume and one might 
expect that a patient with a high body weight would have a correspondingly larger 
extracellular fl uid volume. Patient body weight can also be correlated to clearance 
in situations where receptor-mediated clearance is not predominant. The use of 
interspecies scaling has been shown to have some utility for scaling from animal to 
human exposure (60), although care should be taken to account for binding specifi c-
ity and immunogenicity when attempting to scale the pharmacokinetics of human 
proteins evaluated in animal models.

41.2.2.4 Drug Interactions
The mixed function oxidases and cytochrome P450 enzyme systems do not play 
a role in the clearance of macromolecules. Nor do large proteins interact with 
transporter proteins such as P-gp, despite the fact that one site of clearance is the 



intestines. Consequently, formal drug interaction studies are not often conducted 
for biologics. For example, there are several marketed therapeutic monoclonal 
antibodies (e.g., daclizumab, Zenapax®) that did not conduct formal drug inter-
action studies, although there are some marketed biologics that have reported 
drug interaction studies (61–63) with the expected negative outcomes. In general, 
reported drug interactions with biological agents and chemical agents are largely 
PD in nature (64, 65).

Although proteins are not cleared by cytochrome enzymes or mixed function oxi-
dases, and would therefore not be expected to alter the pharmacokinetics of other 
medications, there are potential mechanisms of interaction between proteins and 
concomitant medications, which could affect patient exposure to the protein. For 
example, steroids, which alter macrophage cell traffi cking (66, 67), could potentially 
alter the clearance of large therapeutic proteins.

An aspect of concomitant medications that should be considered during a popu-
lation PK evaluation is previous treatment with other related biologic agents or 
others that have been derived from similar processes. For example, if a patient 
has developed antibodies to an agent that was derived from a prokaryotic cell line 
(e.g., E. coli), the patient may also be cross-reactive with a second protein that was 
derived from E. coli .

41.2.2.5 Liver Function
Proteins are not cleared by hepatic enzyme systems. However, liver size and func-
tion, spleen function, and macrophage function would be expected to account for 
variability in observed clearance of large therapeutic proteins. For instance, Sewell 
et al. (68) demonstrated that Kupffer cell function is decreased in aged rats, which 
is a function of age as much as it is of liver function. Standard measures of liver 
function such as alanine transferase may not provide relevant information and are 
rarely identifi ed as a covariate even with small molecules. However, patients with 
advanced liver disease such as cirrhosis may have reduced clearance due to poor 
liver function and reduced liver blood fl ow.

41.2.2.6 Renal Function
Creatinine clearance is not usually a covariate for protein clearance. However, 
the kidney does form one site of clearance of proteins. Glomerular functionality 
and renal blood fl ow might be expected to have some impact on the clearance of 
low molecular weight proteins. For example, dose reductions are recommended 
in end stage renal disease patients receiving PEGylated interferon (52). However, 
accounts of reduced clearance in anuric patients are rare, suggesting that alternate 
routes of clearance are used in situations where renal function is nonexistent.

41.2.2.7 Age
As mentioned previously in Section 41.2.2.5, age can be a covariate for biologics. 
The effects of age on the PK properties of a protein appear to be due to changes 
in endothelial and macrophage function and to a lesser extent to changes in organ 
blood fl ow. Alterations of the immune response in elderly patients have been 
associated with increased amounts of memory and alloreactive T-cells, as well as 
altered cytokine responses (69), which can impact both on the pharmacokinetics 
and pharmacodynamics of a protein therapeutic agent.
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41.2.2.8 Sex
After accounting for weight, patient sex is not usually identifi ed as a covariate. 
However, as mentioned previously, there have been reports of differential expres-
sion of neutralizing antibodies between the two sexes (36). In addition, gender is 
occasionally identifi ed. In one example, a population PK evaluation of cetuximab 
was performed (70). The covariates evaluated included demographic data (age, 
weight, height, body surface area, sex, and race), hepatic and renal function, cancer 
type, concurrent therapy, EGFr status, clinical response, and presence of a skin 
rash. A two-compartment model with saturable elimination was used to describe 
the concentration–time data. The volume of the central compartment was found to 
have a 27% reduction in the typical value of the central volume in females as com-
pared to males and the typical value of Vmax showed a 26% reduction in females, 
giving a maximal clearance from the saturable pathway of 0.059 L/h in males and 
0.043 L/h in females. No other covariates were found to have a signifi cant impact 
on the pharmacokinetics of cetuximab. In addition, enfuvirtide was found to have 
a 20% lower clearance in females than males, even after adjusting for body weight 
(52).

41.2.2.9 Race
Given the complexities of the pharmacology and pharmacokinetics of therapeutic 
proteins, the effect of race would not be expected to be important. There is no 
known difference between racial characteristics that would cause additional PK 
variability. Attempts have been made to examine the effect of race as a covariate, 
but it has only rarely been identifi ed once patient weight or sex and other covari-
ates (particularly those related to disease) were taken into account. Such was the 
case for cetuximab (70).

41.3 PHARMACODYNAMICS OF THERAPEUTIC PROTEINS: 
BACKGROUND

The PD response–time profi les for most of the biological agents on the market 
follow some variant of the basic indirect effect PD models described by Dayneka 
et al. (71). There are four basic indirect response models. The applicability of 
these models can be readily identifi ed from the characteristic lag between plasma 
concentrations and measured response. In all four models described (71), there is a 
zero-order input rate constant of formation for the marker (Ksyn) and a fi rst-order 
degradation rate constant (Kdeg). Prior to administration of a drug, the ratio of Ksyn

to Kdeg determines the baseline level of the biomarker. An administered drug can 
act on either the rate of synthesis or rate of degradation and can be either inhibi-
tory or stimulatory. The resulting change in biomarker levels depends on the site 
and type of action of the drug. For instance, an agent that acts to stimulate the 
synthesis rate constant would result in an increase in biomarker level. If that agent 
acted to inhibit the rate of synthesis, then the biomarker level would be expected 
to fall transiently. Once the effect of the drug wears off, the biomarker would be 
expected to return to the baseline level. The differential equation for an indirect 
system at the baseline state is given as
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In this equation, Biomarker is the PD biomarker being described, ksyn is the syn-
thesis rate constant of that biomarker, kdeg is the degradation rate constant for the 
biomarker, and A(1) is the amount of biomarker. However, when drug is adminis-
tered, the effect of that drug (Eff written below as a nonlinear stimulatory effect) 
can be added to the system (here it is added to the synthesis rate constant):
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In this equation, Eff is the drug effect, Emax is the maximum effect of the drug, 
EC50 is the concentration of drug required to attain half-maximal effect, Cp is the 
concentration of the drug, Biomarker is the PD biomarker being described, ksyn is 
the synthesis rate constant of that biomarker, kdeg is the degradation rate constant 
for the biomarker, and A(1) is the amount of biomarker.

If the delay between measured drug levels and response is very long, additional 
effect compartments can be added to allow the model to describe a longer lag 
period. A schematic diagram of an indirect effect model with the additional effect 
compartment for a precursor added is provided in Figure 41.3.

When the delay between concentration and response is protracted, additional 
effect compartments can be added to help describe the delay. These additional 
compartments also provide new places at which the drug effect can be evaluated.

The equations for this new schematic are given below. Note that Ksyn, the rate of 
synthesis of the biomarker, has now become a fi rst-order process and that the effect 
of drug has to be included for both the biomarker and the precursor pool.
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FIGURE 41.3 Multiple compartment indirect effect model.
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In this equation, Eff is the drug effect, Emax is the maximum effect of drug, EC50 is 
the concentration of drug required to attain half-maximal effect, Cp is the concentra-
tion of drug, Precursor is the predecessor for the biomarker, K0 is the rate constant 
of formation of the precursor, Biomarker is the PD biomarker being described, Ksyn

is the synthesis rate constant of that biomarker, Kdeg is the degradation rate constant 
for the biomarker, and A(1) is the amount of biomarker.

This schematic provides new sites for adding a drug effect, such as on the rate of 
formation of the precursor pool (K0). An additional aspect of this model is that it 
provides a basic mechanistic model for tolerance. If one assumes an agent works to 
stimulate Ksyn, then the drug cannot have an effect when the amount in the precur-
sor pool is depleted. Therefore, the duration of action of a drug can be dependent 
on the amount of precursor components that are available. There are many vari-
ants of this basic model, including the variation published by Movin-Osswald and 
Hammarlund-Udenaes (72) in 1995 and then by Sharma et al. (73) in 1998 in a 
slightly modifi ed form.

Developing a PD model for a biological agent must be done on a case-by-case 
basis. The analyst must develop an understanding of the complex pharmacology 
that underlies the mechanisms of these agents. However, it should be noted that 
the basic PD behavior of many pharmacologically related proteins can often be 
described using similar models. For that reason, the PD behavior of several broad 
classes of therapeutic proteins may be broken down by the type of protein.

41.4 SPECIFIC PROTEINS

41.4.1 Cytokines

Cytokines form a family of proteins including interleukins and lymphokines that are 
released by cells in the immune system and act as intercellular mediators in immune 
response. Cytokines are produced by various cell populations, although they are 
predominantly produced by helper T cells and macrophages. Cytokines that are 
secreted from lymphocytes are referred to as lymphokines, whereas those secreted 
by monocytes or macrophages are referred to as monokines. Many lymphokines 
are also referred to as interleukins (ILs), because they are also capable of affecting 
leukocyte cellular responses.

Several different broad classes of cytokines are produced by the body, the largest 
of which stimulates immune cell proliferation and differentiation. The largest class 
includes IL-1, which activates T cells; IL-2, which stimulates proliferation of antigen-
activated T and B cells; IL-4, IL-5, and IL-6, which all stimulate proliferation and dif-
ferentiation of B cells; interferon gamma (IFN-γ), which activates macrophages; and 
IL-3, IL-7, granulocyte-macrophage colony-stimulating factor (GM-CSF), and gran-
ulocyte colony-stimulating factor (G-CSF), all of which stimulate hematopoiesis.

There are not many examples of cytokines that have been approved as thera-
peutic agents. In part, this lack is due to the pleiotropic effects of these agents (74), 
which makes the overall effect diffi cult to predict, and because administration of 
these agents will often mediate increased immunological response. In general, the 
administration of interleukins results in elevated blood cell counts, particularly 
white cells. However, because they help to increase blood cells and also induce 



immune response, interleukins have been found to be useful in the treatment of 
advanced cancers. Interleukin-2 (Proleukin®, aldesleukin, IL-2) was approved for 
treatment of metastatic renal cell carcinoma in 1992, and then later for the treat-
ment of metastatic melanoma in 1998.

The pharmacokinetics and pharmacodynamics of recombinant interleukin-2 (IL-
2) in patients with human immunodefi ciency virus (HIV) infection have been evalu-
ated (75). Patients were administered IL-2 either by continuous infusion or by SC 
injection for 5 days over multiple cycles. Following repeated injection, soluble IL-2 
receptors were substantially but transiently increased. A dose-dependent decrease 
in area under the concentration–time curve (AUC) between days 1 and 5 was attrib-
uted to a receptor-mediated change in clearance. Concentrations were described 
using an unusual model that employed an indirect stimulatory PD model to link the 
time-dependent changes of the pharmacokinetics with the change in IL-2 receptor 
density following repeated administration.

41.4.2 Interferons

Interferons, which were discovered in the 1950s as a result of their antiviral activity 
(76), are pleiotropic agents exhibiting a wide variety of effects including antiviral, 
antiproliferative, hematopoietic, and immunomodulatory activities (77, 78). Inter-
ferons are sometimes considered to be cytokines because of their role in cellular 
and humoral immune responses.

Interferons are generally stimulatory proteins that exert their activity through 
interactions with cell surface receptors, inducing cellular processes and enhancing 
specifi c gene translation (79). Interferons also regulate the expression of unique 
antiviral proteins such as MX protein, which alters microtubule formation and 
mitosis, and 2′-5′-oligoadenylate synthetase (2,5-OAS), which induces the destruc-
tion of viral RNA.

A general schematic diagram of the mechanism of action of interferons on cel-
lular protein production is presented in Figure 41.4. The pharmacodynamics of 
interferon alpha using MX protein as the biomarker have been described using a 
simple indirect effect stimulatory model (55).

Although they predominantly exhibit stimulatory activity, interferons can inhibit 
general cellular protein synthesis, including the synthesis of cytochrome P450 
enzymes, making interferon one of the few biological agents that have the potential 
for causing “classic” drug interactions.

The mechanism by which IFN-α exerts antitumor activity is unclear, particularly 
in hematological cancers. In melanoma and renal cell carcinoma, antitumor effects 
may be mediated by augmented immune responses including activation of natural 
killer lymphocytes and enhanced expression of cell surface antigens (e.g., MHC I 
and II). However, these mechanisms have not been decisively proved.

41.4.3 Growth Factors

Growth factors are proteins that bind to receptors on the cell surface, with the 
primary result of activating cellular proliferation and/or differentiation. Many 
growth factors are quite versatile, stimulating cellular division, maturation, and 
margination in numerous different cell types; while other factors are specifi c to 
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a particular cell type. Growth factors are not the only agents that exhibit 
hematopoietic activity; cytokines are also capable of modulating cell growth and 
maturation.

At present, there are several hematopoietic factors that have been approved for 
clinical use. These approved agents include granulocyte growth and stimulation 
factor (G-CSF, Filgrastim, Neupogen®) and its PEG-modifi ed variant (Neulasta®),
granulocyte-macrophage colony-stimulating factor (GM-CSF), stem cell factor 
(SCF), and erythropoietin (EPO) and its hyper-glycosylated variant (Aranesp®).
A simplifi ed diagram of the hematopoiesis is provided in Figure 41.5. The growth 
factors and cytokines that infl uence each pathway are provided in the fi gure.

One aspect that must always be considered in the development of any PD model 
for a biological agent is the presence of endogenous factors that will also infl uence 
the measured biomarker activity. This is particularly true for growth factors. For 
example, patients with neutropenia following chemotherapy will have elevated 
endogenous levels of G-CSF. The same is true of an anemic patient, whose endog-
enous EPO levels will be elevated. The pharmacodynamics of growth factors are 
complex, but they do have some common characteristics between classes.

41.4.4 G-CSF

G-CSF is a protein that regulates the production of neutrophils by stimulating 
neutrophil progenitor proliferation (80, 81), differentiation (82), and selected end-
cell functional activation (83). G-CSF has little effect on the production of other 
hematopoietic cells. Endogenously, G-CSF is produced by monocytes, fi broblasts, 
and endothelial cells. As a low molecular weight protein (MW < 20 kD), G-CSF 
is subject to clearance by glomerular fi ltration and there is good evidence that 

IFN

FIGURE 41.4 Mechanism of action of interferon on cellular processes. Interferon (IFN) 
binds to a cell surface receptor, which, through a series of cellular processes, enhances the 
formation of RNA and subsequently increases protein formation when the RNA binds to 
ribosomes (hexagons). The proteins (cylinder) can either remain in the cell or be excreted.



endogenous concentrations are also cleared by binding to a receptor on the surface 
pluripotent stem cells as well as neutrophils (84). The fi rst binding effects the dif-
ferentiation of the stem cells toward eventual maturation to neutrophils. The latter 
receptor interaction appears to play a critical role in hemostasis, increasing clear-
ance of G-CSF from both endogenous and exogenous sources when cell counts are 
high as a means of controlling neutrophil count by a feedback mechanism (31). 
Because G-CSF works to increase circulating neutrophils, the clearance of G-CSF 
varies over the course of treatment and is dependent on individual PD response 
(85). There is a strong PK–PD interaction with this agent and, therefore, a physi-
ological limitation to the PD activity of G-CSF. Wahlby et al. (86) have demon-
strated the importance of using time-dependent covariates and this is particularly 
relevant with biological agents.

Another aspect of the pharmacological response to G-CSF administration is the 
unusual pattern of induced changes in neutrophil count over time. Immediately 
following the fi rst administration, G-CSF dose-independently induces neutropenia 
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FIGURE 41.5 Schematic diagram of hematopoiesis. The cytokines and other factors that 
control cell formation and maturation are provided for reference.
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and causes substantial downregulation of its own receptor (CD114) on neutrophils 
(87). This G-CSF–CD114 interaction dose-independently induces degranulation 
of neutrophils, which results in increased levels of gelatinase B, an enzyme that 
precipitates neutropenia and subsequent neutrophilia. The gelatinase B release 
into plasma may also contribute to mobilization of neutrophils or stem cells into 
peripheral circulation.

The PK–PD relationship for G-CSF following IV and SC administration was well 
characterized in healthy volunteers (53). The PK model was a two-compartment 
PK model with bisegmental absorption from the site of SC administration, parallel 
fi rst-order and saturable elimination pathways, and an indirect effect PD model 
describing the time course of neutrophils. A sigmoidal Emax model was applied for 
the stimulation of the neutrophil input rate. In addition, a time-variant scaling factor 
for absolute neutrophil count (ANC) observations was introduced to account for 
the early transient depression of ANC.

A simple indirect effect stimulatory model adequately describes the time course 
of neutrophils following G-CSF administration. However, G-CSF is commonly 
administered following chemotherapy to treat the associated neutropenia. There is 
a substantial lag time between the administration of chemotherapeutic agents and 
the nadir ANC value that can be described more accurately using the “cell transit” 
PD model (88) than a simple indirect effect model. The cell transit PD model utilizes 
a gamma distribution to provide a semiphysiological description of cell maturation. 
The schematic diagram for this model is provided in Figure 41.6.

Despite its apparent complexity, this model is relatively easy to use. There is 
only one transit rate constant “Kt” that is used to describe the transfer of cells from 
one compartment to the next. Ksyn and Kdeg are the synthesis and degradation 
rate constants, respectively. Chemotherapy is assumed to act on the synthesis rate 
constant in an inhibitory fashion. The effect of G-CSF can also be added to this 
model, making it a better model for comparing the effi cacy of G-CSF and other 
variants in a clinically relevant system.

41.4.5 EPO

Unlike G-CSF, erythropoietin (EPO) is a pleiotropic agent with multiple actions 
and different sites of activity. The various sites that EPO can affect in the hema-
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FIGURE 41.6 Schematic diagram of “cell transit” model. In this model, pluripotent stem 
cells are assumed to be produced on a fi rst-order process, and differentiation (i.e., passing 
though each stage or compartment of cell growth) occurs over a fi xed transit time (Kt). 
Mature cells are lost via a fi rst-order process (Kdeg). The model can also allow for a negative 
feedback by which mature white cells diminish the formation of new stem cells.



topoietic chain are shown in Figure 41.5. Primarily, EPO functions to maintain 
appropriate oxygenation of cells and its production is regulated via feedback from 
oxygen pressure detecting cells in the kidneys. A schematic diagram of the process 
of red blood cell (RBC) production and maturation is provided in Figure 41.7. In 
the circulatory system, EPO also effects the development of new blood vessels.

EPO may also act to facilitate the survival and proliferation of nonerythroid cells 
as well. In addition to production in the kidneys, EPO is produced in the brain, 
although this form has a lower molecular weight than the peripherally produced 
variant (89). In the central nervous system (CNS), EPO plays a critical role in brain 
function and development. EPO receptors have also been isolated in ovary, oviduct, 
uterine, and testes cells (90), as well as some tumor cell lines such as breast cancer 
(91). The function of EPO binding in these alternate cell types has not yet been 
determined, although the appearance of EPO receptors on cancer cells has been 
indicated as a poor prognosis factor (92). The use of EPO to treat anemia arising 
from chemotherapy or from cancer has therefore been called into question (93).

Recombinant human EPO has a relatively low molecular weight (MW = 30.4 kD). 
Because of its low molecular weight, EPO would be expected to undergo both 
renal and hepatic elimination, although these routes of elimination appear to be 
relatively minor (94). The pharmacokinetics of EPO have been extensively studied, 
and in many cases, nonlinear elimination was reported (95) and the clearance was 
determined to change following phlebotomy or bone marrow ablation in a fashion 
that is consistent with receptor-mediated clearance. Following SC administration to 
healthy volunteers, the pharmacokinetics of EPO were best described with a dual-
absorption rate model (fast zero-order and slow fi rst-order inputs) with nonlinear 
disposition (96).

Unlike white cells, which are generally assumed to follow fi rst-order kinetics, 
red cells are attributed as having a lifespan of 120 days in a normal adult (97). 
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FIGURE 41.7 Mechanism for control of endogenous erythropoietin and red cell produc-
tion. The regulation of EPO production depends on the oxygenation of the blood as it passes 
through the kidney. If the oxygen levels are low, the kidney synthesizes additional EPO, 
which acts to prolong the survival of the blast forming units (BFU-E) and colony forming 
units (CFU-E), allowing enhanced red blood cell (RBC) production.
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This theory was originally established in the 1960s and still remains in place today. 
Therefore, a specialized set of indirect PD models for agents that alter the genera-
tion of natural cells based on a lifespan concept were developed (98) based on the 
concept of a fi xed lifespan.

In this “lifespan model,” mature cells are assumed to be produced at a constant 
rate and to survive for a fi xed interval of time, after which they are lost. Therefore, 
rate of cell loss must equal the cell production rate at the time those cells were 
produced (e.g., one “lifespan” ago). This aspect of lifespan-mediated loss requires 
that the model also track the number of cells produced at a prior interval of time. 
A stimulatory or inhibitory effect of a therapeutic agent such as EPO then results 
in a delayed increase in cell count (depending on the number of intervening com-
partments) but the return to baseline cell count is dependent on the lifespan of the 
cells.

It is interesting to note that the “transit model” and the “lifespan model” both 
produce a very similar time course of effect if the transit model has suffi cient (e.g., 
at least fi ve) compartments.

41.4.6 Antibodies

When engineered monoclonal antibodies were initially undergoing development as 
therapeutic agents, it was assumed that the mechanism of activity of these antibod-
ies was directly related to the effector activity of antibodies in vivo. That is, the MAb 
would bind to its target receptor, which would precipitate antibody-dependent cell 
cytotoxicity (ADCC) by attracting natural killer (NK) cells. Because many of these 
early MAbs were targeted against cancer cells, ADCC was considered a desirable 
mechanism of action, although these early theories have not been borne out.

NK cells provide two types of effector function: cell cytotoxicity and lymphokine 
secretion. In conjunction with antibodies, NK cells can cause cytotoxicity through 
recognition and lysis of MAb-coated target cells. A proposed schematic for the 
mechanism of such “lytic” antibodies is presented in Figure 41.8. NK cells also 
possess a wide range of regulatory receptors that can prevent cytotoxic responses 
(99) based on the cell surface expression of killer-cell inhibitory receptors (KIRs). 
Regulation of NK cell effector activity has called into question the extent to which 
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FIGURE 41.8 Mechanism of action of “lytic” monoclonal antibodies. MAb binds to recep-
tor on antigen presenting cell. The receptor binding attracts phagocytes, resulting in cell 
destruction.



therapeutic MAbs utilize cytotoxic effector mechanisms to provide clinical benefi t. 
It is also unclear whether the concentrations of MAbs following therapeutic dosing 
are suffi ciently high to saturate the substantial numbers of targeted receptors 
present in many therapeutic indications. Conversely, there is evidence from Fc 
receptor knockout mice suggesting that, in certain systems, Fc binding is required 
for clinical activity of therapeutic MAbs (100). Furthermore, anticancer MAbs do 
not appear to have functional activity when administered as a Fab fragment, which 
would support the theory that clinical activity of MAbs is linked to effector function. 
Fc receptors do more than recruit effectors; therefore, part of the requirement for 
Fc function may be attributable to crosslinking on the target cells, which interferes 
with cellular function.

However, many therapeutic MAbs are currently being investigated for autoim-
munity and immunosuppression in therapeutic areas such as rheumatoid arthritis, 
where the role of ADCC is less appropriate (101). An alternative mechanism of 
blocking or modulating responses is more desirable than ADCC. A key aspect of 
this mechanism is that a relatively short exposure to MAb may break the infl am-
matory cycle and allow the repair process to begin. A schematic diagram of this 
mechanism is presented in Figure 41.9. MAbs therefore can provide a long-term 
effect following short-term treatment through a mechanism referred to as “infec-
tious tolerance” (102).

The PD behavior of therapeutic MAbs is complex. Fortunately, the activity 
of these agents can be evaluated by the use of fl uorescence activated cell sorting 
(FACS). Like most therapeutic biologics, the mechanism of action is commonly 
described using the standard indirect effect models. However, because FACS data 
can determine the fraction of cell surface receptor bound by the MAb, and because 
the change in receptor density can be followed using this same method, more mech-
anistic models have been proposed (29). In these models, the relationship between 
concentration of antibody and bound receptors can be explicitly described and the 
bound antibody is then used to drive the indirect effect model. A schematic of this 
model is provided in Figure 41.10.
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FIGURE 41.9 Mechanism of action of coating monoclonal antibodies. MAb binds to recep-
tor on antigen presenting cell. The receptor binding is “nonproductive”, resulting in a stimu-
lation of receptor loss. Alternatively, when the MAb binds to the receptor, it results in a 
steric blockage of receptor.
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It should be noted that, unlike small molecules, the action of MAbs is often 
directly related to the bound concentration of drug rather than the free concentra-
tions, in contrast to the PD behavior of small molecules.

41.5 COVARIATES FOR PHARMACODYNAMIC RESPONSE

When modeling the pharmacodynamics of a biological agent, some consideration 
needs to be given to the identifi cation of covariates. Because the physiological 
system that is targeted by the agent is often well characterized, the selection of 
covariates for investigation can often be limited to those that have a strong likeli-
hood of being identifi ed. For instance, when characterizing the pharmacodynamics 
of a hematopoietic factor, the time to last treatment with chemotherapy or even the 
type or number of cycles of treatment might be projected to be covariates. Chemo-
therapy results in loss of bone marrow function, which in turn should reduce the 
PD response in a patient. Similarly, concomitant administration of drugs that alter 
receptor density could also affect the PD response of the investigational agent. PD 
models often take a long time to converge, so the number of covariates that can 
be investigated is often limited. Careful selection of the covariates for evaluation 
is therefore necessary.

41.6 EVALUATING PHARMACODYNAMICS USING 
MODEL-BASED ANALYSIS

Three examples of a NONMEM (Version 5, Globomax LLC, Hanover, MD) control 
stream and the necessary data format for a commonly employed PK/PD model are 
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FIGURE 41.10 Example schematic for PK/PD model for therapeutic monoclonal antibod-
ies. The antibody binds (potentially reversibly) to the receptor on the cell surface. The bound 
antibody–receptor complexes are then what drives the stimulation of loss of receptor-positive 
(R+) cells.



provided in the following section. The generic code and associated example data 
fi le format must be suitably altered for more complex models.

41.6.1 Control Stream

One of the more common PD models used to describe the time course of a bio-
marker is the simple indirect effect model. In this example, drug concentrations 
increase the rate of degradation of the biomarker and act to reduce the biomarker 
concentration. Such a model has been used to characterize the pharmacokinetics/
pharmacodynamics of PEGylated interferon (55) and other proteins. A fragment of 
an example control stream for this basic PK/PD model is presented and explained 
in Table 41.5. Explanations for the different commands used are provided as well.

TABLE 41.5 Example NONMEM Code 1: Commonly Used 
Indirect Effect PK/PD Model

NONMEM Code Explanation

$SUBROUTINES ADVAN6 Typically evaluating a PK/PD model requires the use
TRANS1 TOL 3  of ADVAN6 (or one of the other ADVANs used to

  evaluate differential equations). Initially, TOL is set
  to a low value such as 3 to facilitate convergence.

$MODEL These lines of code defi ne the PK and PD model
COMP=(CENTRAL,DEFOBS)  compartments. Here, the fi rst two compartments
COMP=(PERIPH)  are defi ned for the pharmacokinetics and the
COMP=(EFFECT) third compartment is for the biomarker.

$PK This portion of the code defi nes the parameters for
;Define the PK Parameters  the PK model. The semicolon is a “comment”
CALLFL=-22  statement and is not read by NONMEM.
TVMX = THETA(1)  Whenever developing a model, adding good
VMAX = TVMX*EXP(ETA(1))  commenting is always recommended. This is
TVKM = THETA(2)  particularly true when the model is complex and
KM=TVKM*EXP(ETA(2))  the control stream is long.
K23 = THETA(4)*EXP(ETA(4)) The present PK model is a two-compartment model
K32 = THETA(5)*EXP(ETA(5))  with Michaelis–Menton elimination. VMAX and KM

TVV1 = THETA(3)  defi ne the parameters for elimination, K23 and K32

V1 = TVV1*EXP(ETA(3))  defi ne the intercompartmental transfer rate
  constants, and V1 is the central volume of
  distribution. As with many biologics, this
  theoretical agent is being administered
  intravenously.

;DEFINE PD PARAMS This portion of code defi nes the parameters for the
TVKDEG=THETA(6)  PD model. This is a simple indirect effect
KDEG=TVKDEG  stimulatory model. KDEG is the degradation rate
TVKSYN=THETA(7)  constant for the biomarker, KSYN is the formation
KSYN=TVKSYN*EXP(ETA(8)) rate constant of the biomarker, EMAX is the
TVEMAX=THETA(8) maximal effect of the drug, and EC50 is the
EMAX=TVEMAX*EXP(ETA(6)) concentration at which half-maximal effect
TVEC50=THETA(9) occurs.
EC50=TVEC50*EXP(ETA(7))
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TABLE 41.5 Continued

NONMEM Code Explanation

;SCALE COMPARTMENTS This section of code scales the PK compartments.
S1=V1  An important aspect to note here is the use of F3,
F3=KSYN/KDEG  which is the bioavailability term for the effect
  compartment. Here, F3 is used to initialize the
  effect compartment to the baseline value of the
  biomarker being modeled, which is why it is set
  to the ratio of KSYN/KDEG. Prior to therapy, the
  biomarker is presumed to be at some steady-state
  value, which should be equivalent to the ratio of
  formation to degradation. F3 is used in conjunction
  with a special dose item for this compartment to
  initialize the effect compartment.

$DES This section contains the differential equations that
;PK Model  defi ne the pharmacokinetics and the
CP=A(1)/V1  pharmacodynamics of the drug. Here, the effect is
;PLASMA CONCS IN UG/L  stimulatory on KDEG, which will result in a transient
CLMM=(CP*VMAX)/(KM+CP) reduction of the biomarker.
DADT(1)=-CLMM-K23

  *A(1)+K32*A(2)

DADT(2)=K23*A(1)-K32*A(2)

;PD Model

EFF=EMAX*CP/(EC50+CP)

DADT(3)=KIN-KOUT*A(3)

  *(1+EFF)

$ERROR This section defi nes the residual error models for the
QK=0  pharmacokinetics and pharmacodynamics. Note
OD=0  that the PD observations have a simple additive
IF (CMT .EQ. 1) QK=1  error function, which is different from the PK
IF (CMT .EQ. 3) QD=1  residual error function. Residual error models
PKY = F * EXP(ERR(1))  must be selected separately for the PK and PD

  + ERR(2)  models.
PDY = F+ERR(3)

Y=QK*PKY+QD*PDY

It is important to realize that the parameter estimates obtained for one agent 
do not usually translate readily to other agents for the PD models. Furthermore, 
the evaluation of complex sets of differential equations using NONMEM generally 
requires that the initial estimates for parameters be reasonable since the models can 
fi nd local minima or may not converge at all if the initial estimates for the param-
eters are not reasonable. Therefore, when developing a model for a new agent, 
care should be taken to ensure that the initial estimates are good, and running the 
model without the estimation step to evaluate the performance of these estimates 
is critical.

A more complex binding type model is defi ned in Table 41.6. The model defi ned 
here is similar to the model shown in Figure 41.10, although it uses scaled binding 
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TABLE 41.6 Example NONMEM Code 2: “Cell Transit” Gamma Distribution Model

$SUBS ADVAN6 TOL=3

$MODEL

COMP=(CENTRAL)

COMP=(PERIPH)

COMP=(STEM)

COMP=(WBC)

COMP=(TRANSIT1)

COMP=(TRANSIT2)

COMP=(TRANSIT3)

“FIRST

“COMMON/PRCOMG/IDUM1,IDUM2,IMAX,IDUM4,IDUM5

“INTEGER IDUM1,IDUM2,IMAX,IDUM4,IDUM5

“IMAX=50000000

$PK

V1 = THETA(4)*EXP(ETA(2))

K10 = THETA(1)*EXP(ETA(1))

K12 = THETA(2)

K21 = THETA(3)

BASE = THETA(5)*EXP(ETA(3))

IF (BASE .LE. 0) EXIT 1 101

MTT = THETA(6)*EXP(ETA(4))

K = 4/MTT

F3 = BASE

F4 = BASE

F5 = BASE

F6 = BASE

F7 = BASE

POWER = THETA(7)

SLOP = THETA(8)*EXP(ETA(5))

$DES

;Pharmacokinetics

CP = A(1)/VOF

DRUG = SLOP*CP

;****************KINETICS****************************

DADT(1)=A(2)*K21-A(1)*K10-A(1)*K12

DADT(2)=A(1)*K12-A(2)*K21

;****************DYNAMICS***************************

DADT(3) = K*A(3)*(1-DRUG)*(BASE/A(4))**POWER - K*A(3) ;Pharmacodynamics

DADT(4) = K*A(7) - K*A(4) ;WBC

DADT(5) = K*A(3) - K*A(5) ;TRANSIT 1

DADT(6) = K*A(5) - K*A(6) ;TRANSIT 2

DADT(7) = K*A(6) - K*A(7) ;TRANSIT 3

$ERROR

IF (CMT .EQ. 1) QK=1

IF (CMT .EQ. 4) QD=1

PKY = F * EXP(ERR(1)) + ERR(2)

PDY = F * EXP(ERR(3)) + ERR(4)

Y=QK*PKY+QD*PDY
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TABLE 41.7 Example Database Format for Indirect Effect Model

CID DATE TIME AMT RATE DV CMT MDV EVID

1 7/16/2000 8:00    1 . . 3 1 1
1 7/31/2000 13:20  3,000  1,500 . 1 1 1
1 7/31/2000 13:20 . . 124 3 . .
1 8/2/2000 10:15 30,000 15,000 . 1 1 1
1 8/2/2000 12:47 . . 700 1 . .
1 8/7/2000 10:45 30,000 15,000 . 1 1 1
1 8/7/2000 10:45 . .  37 3 . .
1 8/7/2000 13:15 . . 729 1 . .
2 12/19/1991 2:00    1 . . 3 1 1
2 1/3/1992 8:00 . .  6 3 . .
2 2/3/1992 15:00 . .  8 3 . .
2 2/3/1992 15:15  7,500  3,600 . 1 1 1
2 2/6/1992 16:59 . .  7 3 . .
2 2/10/1992 8:50  7,500  3,600 . 1 1 1
2 2/10/1992 10:05 . .  5 3 . .
2 2/13/1992 0:00 . .  6 3 . .
2 2/17/1992 8:36 . .  6 3 . .
3 12/25/1991 8:00    1 . . 3 1 1
3 1/9/1992 11:06 . . 117 3 . .
3 1/27/1992 8:21 . . 176 3 . .
3 1/27/1992 11:30  7,500  3,600 . 1 1 1
3 1/27/1992 11:43 . . 155 3 . .
3 1/27/1992 14:30 . .  81 3 . .
3 1/27/1992 16:30 . .  91 3 . .
3 1/27/1992 18:30 . . 114 3 . .
3 2/2/1992 9:15 . . 169 3 . .

kinetics to defi ne the binding. This control stream has several similarities to the 
previous example in that a stimulatory indirect effect model is used to describe the 
change in time course of the biomarker, although in this present example, it is bound 
drug causing the change in biomarker, not the total drug concentration as was seen 
previously. This control stream uses a separate compartment for the binding of 
drug, with limitations set to scale the amount of drug that can bind. Information 
to develop these models must usually combine information from in vitro studies as 
well as nonclinical pharmacology studies.

Table 41.6 shows the control stream used to implement the model shown 
in Figure 41.6. This is the “cell transit” model, which is defi ned by a simple 
queuing or gamma function. The model is particularly useful for describing the 
pharmacodynamics of agents that impact cell growth or turnover or have very long 
lag times.

41.6.2 Database Requirements

An example database for a two-compartment PK model driving a simple indirect 
effect model is presented in Table 41.7. NONMEM nominally assigns a value of 0 



for the initial conditions for each compartment. While the assumption that the initial 
condition is 0 is acceptable for a PK model, it is not an appropriate initial condition 
for many PD models. This is particularly true for indirect effect models because the 
biomarker is usually present at some steady-state level prior to the administration 
of drug. Once drug is administered, the biomarker will either increase or decrease 
depending on the activity of the drug. Therefore, it is necessary to use a bioavail-
ability term to initialize the effect compartment and to provide a unit dose into that 
compartment in the data set. The unit dose record should be read in prior to the 
other records so that the effect compartment can be initialized. It need be entered 
only once per individual.

The other specialty item for an indirect PK/PD database is the use of the CMT 
item. This item is set to 1 for the PK observations and to 3 for the PD observations 
in the example data provided so that the observations are properly associated with 
their assigned compartments. In this example database, the PK model was assumed 
to be a two-compartment model. For more information on the use of special data 
items, see the NONMEM User Guides (103).

41.7 SUMMARY

Developing models that describe the pharmacokinetics and pharmacodynamics of 
therapeutic proteins is a challenging process. Before getting started, it is always best 
to develop an understanding of the system that the therapeutic protein will impact. 
It is also helpful to review available information on the PK behavior of other related 
proteins. Understanding the design and manufacture of the biological agent is also 
critical. For instance, in many cases, proteins that have been modifi ed by the addi-
tion of such agents as polyethylene glycol will have lower binding affi nities to target 
receptors, but these agents also have a much lower systemic clearance, yielding a 
net therapeutic benefi t.

During evaluation of these agents, the usual covariates that are evaluated for 
chemically based drugs such as creatinine clearance may not be relevant given the 
size and modifi cation of the biologic. Careful consideration of the protein and its 
pharmacology is helpful to determine what covariates are likely to be relevant. 
Similarly, it is not uncommon for the PD activity of a therapeutic protein to have 
an impact on the pharmacokinetics. This is particularly true for agents that are 
cleared by binding to a receptor and, through that binding, alter the receptor 
expression.

In most cases, the PD activity of a therapeutic protein does not follow 
direct effect type behavior. Rather, these agents act at a cellular level and the 
resulting activity is governed by slower moving processes such as cell or protein 
turnover. Again, understanding the pharmacology of the therapeutic agent will 
be helpful in designing a PD model that adequately describes the activity of the 
drug.

The information provided in this chapter is meant to serve only as a basic over-
view to therapeutic proteins. There are many agents that have been developed that 
cannot be described using the basic concepts described here. Evaluation of these 
agents is always a learning process!
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ABBREVIATIONS

ADCC Antibody-dependent cell cytotoxicity 
ANC Absolute neutrophil count
CFU Colony forming units
CHO Chinese hamster ovary
EPO Erythropoietin 
Fab Fragment antigen binding (binding region of a monoclonal antibody)
FACS Fluorescence activated cell sorting
FC Fragment constant (heavy chain region of monoclonal antibody)
G-CSF Granulocyte colony-stimulating factor
HAGA Human anti-globulin antibody
HAMA Human anti-murine antibodies
IFN Interferon
IG Immunoglobin
IL Interleukin
K Rate constant
kD Kilodaltons (a molecular weight for proteins)
KIR Killer-cell inhibitory receptor
MAb Monoclonal antibody
MW Molecular weight
NAb Neutralizing antibody
NK Natural killer
N-NAb Nonneutralizing antibody
PD Pharmacodynamic
PEG Polyethylene glycol
PK Pharmacokinetic
PMNs Polymorphonuclear neutrophils
R+ Receptor positive
RBC Red blood cell
rHu Recombinant human
SC Subcutaneous
WBC White blood cell
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42.1 INTRODUCTION

Preclinical pharmacokinetic (PK) studies provide information useful for support-
ing effi cacy and safety evaluation studies in animals, preclinical and clinical study 
designs, dosing regimen development, and interpretation of toxicity data. These 
studies provide PK data that may be useful in dose escalation in healthy volunteers 
and patients. Toxicokinetics is a major component of toxicology studies. It enables 
the investigation of the relationship between drug dose and measured concentra-
tion, primarily the establishment of the dose proportionality and linearity or non-
linearity in pharmacokinetics.

Toxicokinetic and PK research studies are characterized by some uncertainty 
regarding the process studied and signifi cant variation in the concentration mea-
surements obtained. Variability in PK parameters among homogeneous strains of 
small laboratory animals has been reported to be between 30% and 50% in some 
cases (1, 2). In addition to the inherent variability of the biological system, there is 
the uncertainty associated with the assay and process noise.

The number of samples that can be obtained per subject is limited to one sample 
per subject (especially when destructive sampling is implemented) in most rodent 
toxicokinetic studies. The fact is that, for small laboratory animals, the periods 
between successive sampling times are simply not long enough to allow suffi cient 
recovery. A major disadvantage of this sampling scheme is that intraindividual 
concentration–time profi les are unavailable. This poses a data analysis challenge 
because the one sample per subject data constitutes the extreme case of sparsely 
sampled PK data, hence extremely sparse data, with independent observations over 
time. The situation is complicated when tissue sampling (e.g., in tissue distribution 
studies) is involved, and the ratio of tissue to plasma concentrations is the object of 
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the investigation. Equally, only one tissue sample/subject is obtained in such studies 
because the animal is usually sacrifi ced.

A solution for analyzing extremely sparse data is to use the nonlinear mixed 
effects modeling approach. This has been elegantly addressed in the literature (3–6). 
However, it is common practice that to compute a PK parameter such as area under 
the concentration–time curve (AUC) some form of data pooling is used. Thus, to 
compute noncompartmental AUC, actually “composite” AUC, data are averaged 
at each time point and the parameter is estimated using the trapezoidal rule. This 
composite approach to the estimation of AUC has problems associated with it. The 
AUCs and other mean PK parameters are estimated with no measures of uncer-
tainty associated with them. Other measures characterizing the distribution of the 
parameters are, in general, diffi cult to obtain. Some ad hoc solutions have been 
proposed for the estimation of the average (or “typical”) AUC in a population of 
extremely sparsely sampled subjects (7–11). Pai et al. (12) proposed the use of the 
bootstrap resampling technique for the estimation of AUC from sparsely sampled 
populations in toxicology studies.

42.2 ESTIMATION OF TISSUE-TO-PLASMA RATIO

The challenge in the analysis of quantic (one sample/subject) data is further compli-
cated when tissue sampling (e.g., in tissue distribution studies) is involved, and the 
ratio of tissue to plasma concentrations is the object of the investigation. Equally, 
only one tissue sample/subject is obtained in such studies because the animal is 
usually killed.

Tissue-to-plasma ratio is commonly determined from the ratio of average con-
centrations at specifi ed time points. It is not uncommon, in practice, for the ratios to 
be calculated at selected time points corresponding to peak and trough concentra-
tions, and the variations in the ratios are usually very large. This fi nding could be 
attributed in part to the variations in the concentrations and a lack of accounting 
for the correlation in observations from the biological matrices sampled from each 
subject.

Occasionally, tissue-to-plasma ratio is calculated using area under the concen-
tration curves (AUCs) calculated from mean profi les using the noncompartmental 
approach. These “composite” AUCs are usually computed from data that are aver-
aged at each time point (naive data averaging approach) using the trapezoidal rule. 
The tissue-to-plasma ratios computed using either average concentrations at speci-
fi ed time points or composite AUC values are usually reported without regard to 
the correlation structure in the data, and no measures of dispersion and uncertainty 
associated with them.

In the sections that follow a data set from a quantic PK study is assumed and 
various approaches used to estimate tissue-to-plasma ratio are discussed as they 
are applied to the data. Thus, the approaches used in the estimation of tissue-to-
plasma ratio are presented with their advantages and disadvantages; the importance 
of examining convergence with resampling algorithms is discussed, as well as the 
impact of outliers on the performances of the ratio estimation approaches. This is 
followed with an overall thought on the estimation of tissue-to-plasma ratio with 
a recommendation on a preferred approach (a nonparametric random sampling 



approach) for the robust estimation of robust tissue-to-plasma ratio in a drug 
development setting.

42.2.1 Data Set

Since the objective of this chapter is the development of a methodology for esti-
mating robust tissue-to-plasma ratio in a drug development setting, such details 
as are necessary for understanding the proposed methodology are presented. It is 
important to note that in drug development, pragmatism, effi ciency, and effective-
ness are major considerations.

A toxicokinetic study was performed to determine the tissue-to-plasma ratio of 
a drug in development. An oral dose of a drug in development was administered 
to 18 rats, and each animal was killed at one of six specifi ed time points: 0.5, 1, 2, 
4, 6, and 8 hours. Therefore, each animal had only 1 pair of concentrations, 1 each 
from plasma and tissue, respectively. Table 42.1 shows the data set from the study 
used in our investigation. The effect of correlation structure in the data set is also 
of interest. Thus, we investigated the effect of maintaining or breaking the relation-
ship between tissue and plasma concentrations within the same animal, using both 
paired and unpaired tissue and plasma data to evaluate the effect on the robustness 
of estimation of tissue-to-plasma ratio.

42.2.2 Approaches for Estimating Tissue-to-Plasma Ratio

We have taken a very practical approach in addressing the computation of tissue-
to-plasma ratio in a drug development setting. Thus, approaches that are commonly 
used in practice (i.e., the naive data averaging and ratios of concentrations by 
time point approaches) for computing tissue-to-plasma ratio were employed in this 
investigation and compared with our proposed methodology—the random sampling 
approach. Since our approach is a sampling-based approach, we have included 
a comparison of the performance of our approach with another sampling-based 
approach reported in the literature, the PpbB (14), in the estimation of tissue-
to-plasma ratio. First, the naive data averaging approach is discussed, followed 
by a discussion of the random sampling approach, and then the PpbB approach. 
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TABLE 42.1 A Sample Data Set from an Oral Toxicokinetic Study a

 Time Point (hour)

Biological Matrix 0.5 1 2 4 6 8

Plasma 0.18 0.13 0.12 0.04 0.00 0.01
Tissue 9.05 1.76 1.26 0.18 0.02 0.42

Plasma 0.18 0.14 0.11 0.03 0.05 0.00
Tissue 5.24 1.65 1.67 0.64 0.28 0.07

Plasma 0.17 0.18 0.05 0.02 0.02 0.00
Tissue 2.92 4.18 0.74 0.19 0.00 0.10

a Each cell represents a pair of values from one animal; there are 18 animals in total.
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All methods were implemented in the statistical software, S-Plus Version 6.02 
(Insightful, Seattle, WA).

42.2.3 Naive Data Averaging Approach

The approach involves computing the average value of the data for each sampling 
time k:

C
I

Ck ik
i

I

=
=
∑1

1

for i = 1,  .  .  . , I, where I is the standard number of individual subject data at time 
point k. The averaging of data across subjects is a common practice owing to the 
assumption that all concentrations at each time point have been measured under 
identical conditions.

Thus, tissue-to-plasma ratio is estimated independently for each time point using 
the averaged concentration at each time point. Alternatively, the noncompart-
mental AUC, actually the composite AUC, can be estimated using the trapezoidal 
rule. From this point, the use of the term “naive data averaging approach” will 
be reserved for estimation of AUC. The term “unpaired independent time points 
approach” will be reserved for use in cases where tissue-to-plasma ratio is calculated 
at each time point using a measure of central tendency (mean or median) of the 
measured concentrations without regard to the correlation structure in the obser-
vations. The term “paired independent time points” approach will be used when 
the pairing of observations is taken into account in the calculation of the tissue-to-
plasma concentration ratio at each time point.

42.2.4 Traditional Naive Data Averaging Approach Incorporating 
Independent Time Points Approaches

The results of tissue-to-plasma ratio values obtained with three approaches: (a) 
unpaired independent time points approach, (b) paired independent time points 
approach, and (c) naive data averaging approach are presented herewith. Table 42.2 
illustrates ratios obtained across time points by calculating the mean and median 
for each time point independently for tissue and plasma. There is no measure 
of variability around each time point, as expected. When zero was returned for 
plasma concentration (e.g., 6 and 8 hour time points in Table 42.2) because the 
levels were not quantifi able or below the limit of quantifi cation, the zero divisor of 
the ratio yielded the result #DIV/0. Such an outcome cannot be interpreted and is 
usually discarded in the presentation of results with the independent time points 
approach. Table 42.3 contains summary statistics of paired tissue-to-plasma ratios 
obtained with the paired independent time points approach. The tissue-to-plasma 
ratios by time point can vary from 0 to 50.3 across different time points, as shown 
in the last row of Table 42.3. Table 42.4 contains the tissue-to-plasma AUC ratio 
(TPAR) derived by calculating the mean AUC values using the naive data averag-
ing approach across time points for both tissue and plasma without regard to the 
correlation structure in the data. As expected, there is also no measure of variability 
around TPAR obtained with the naive data averaging method. The code for imple-
menting the naive data averaging approach is in Appendix 42.1.



TABLE 42.2 Tissue-to-Plasma Ratios Calculated Using the 
Unpaired Independent Time Points Approacha

Tissue/Plasma
 Time Point (hour)

Ratio 0.5 1 2 4 6 8

Median 30 14 14 10 #DIV/0 #DIV/0

Mean 32 16 13 12 #DIV/0 #DIV/0

a#DIV/0 indicates the denominator (plasma concentration) of the ratio is 0 (or below the quantifi able 
limit—BQL).

TABLE 42.3 Tissue-to-Plasma Ratios Calculated Using the 
Paired Independent Time Points Approach

 Ratiosa

Time (hours) Minimum Q1 Mean Q3 Maximum

0.5 17 23.4 32.3 40 50.3
1 12.2 13.2 16.4 18.5 23
2 10.3 12 13.4 14.9 16
4  5.2  7.4 11.8 15.2 20.7
6  0  1.5  2.9  4.4  5.9
8 32.6 32.6 32.6 32.6 32.6

All time points  0 10 17.4 21.8 50.3

a Q1 indicates fi rst quartile and Q3 the third quartile.

TABLE 42.4 Tissue-to-Plasma Ratios Calculated from AUC 
Values Obtained Via the Naive Data Averaging Approach

   Tissue-to-Plasma
Central Tendency Plasma AUCa Tissue AUC AUC Ratio

Mean 0.45 7.62 17.05

a AUC indicates area under the curve.

42.2.5 Random Sampling Approach

The random sampling (RS) approach was recently proposed by Chu and Ette (13). 
To implement the approach, the population sampling pool is fi rst generated, and 
it comprises a large set of individual pharmacokinetic (PK) profi les based on the 
empirical data by resampling with replacement. This potential population pool 
contains M1 copies of PK profi les for each subject to ensure equal opportunity for 
each subject to be resampled for the next step. Next, M2 copies of the virtual study 
are drawn from the population pool, and then any function of interest is computed 
from the virtual study level. Figure 42.1 is a schematic chart illustrating the RS 
approach. The RS algorithm, therefore, is defi ned in two phases.
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Phase 1: Setting Up the Population Sampling Pool by Generating Individual 
Subject Sampling Pools

Phase 1 is done by constructing the individual level sampling pool (i.e., the concen-
tration values for the ith subject at rth replicate resampling (C*ir)). The steps to do 
this are as follows:

Step 1. For the ith subject with datum observed at time point w, randomly resample 
M1 times with replacement from the available values independently at each time 
point that the subject had no observation. For a subject that has wth time point 
observation, for example, the concentration values are to be resampled (i.e., 
plasma and tissue concentrations) at other k time points C*ikr, (where, k = 1,  .  .  ., 
K, but k ≠ w, and r = 1,  .  .  ., M1) to create a “complete profi le” encompassing all 
sample points, including the observed Ciwr and the resampled vector C*ikr. More 
specifi cally, C*i.., M1 replicates of “complete profi les” for the ith subject, can be 
expressed as the following matrix:

C

c c c

c c

i

i iw iK

i M iwM

..*

* . . . . . . *

. . . . . . . . . . . . . . .

* . . . . . .

=
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1 1 1
cciKM1
*

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Each row represents one profi le encompassing all sample/time points. Each 
column is M1 copy of the same time point.

Step 2. Repeat Step 1 of Phase 1 to construct the individual profi le pool for each 
subject.

Step 3. Calculate functions of interest from each profi le (e.g., AUC, Cmax).

Individual Sampling Pool 
for ith Subject
(1) Randomly resample M1 times with 
replacement from the available values 
independently at each unsampled time 
point.

(2) Calculate functions of interest from 
each profile, for example, AUC.

Population Sampling Pool
This pool contains M1 copies of PK profiles 
and associated calculated function of 
interest for each subject and replicate to 
ensure equal opportunity for each subject to 
be resampled for the virtual study step. 

Study Level Sampling
(1) Draw M2 copies of size N (where N is 
the sample size, total number of animals, in 
the real study) of functions of interest from 
the population sampling pool.

(2) Calculate summary statistics of the 
function of interest in each virtual study, i.e., 
quantiles, mean, and median. 

Combine All 

The Sampling Distributions 
of Functions of Interest
From M2 Virtual Studies
(1) Calculate mean, median, and quantiles of 
parameters such as AUC. 

Combine All

FIGURE 42.1 Schematic chart for random sampling approach.



The population sampling pool of complete profi les is now ready to be sampled for 
the next phase of virtual study resampling.

Phase 2: Generation of Samples at the Study Level

Step 1. Draw M2 copies of size N (where N is the sample size, total number of 
animals, in the real study) of functions of interest from the population sampling 
pool obtained from Phase 1.

Step 2. Calculate the summary statistics (i.e., quantiles, mean, and median) of 
the function of interest from each virtual study obtained from Step 1 of 
Phase 2.

Step 3. Derive the summary statistics of required parameters across virtual studies 
with their associated standard deviations.

The S-Plus code used in implementing the RS approach is in Appendix 42.2.

42.2.6 Pseudoprofi le-Based Bootstrap

The PpbB approach (14) generates estimates of both the distributions of the raw 
data and the corresponding measures of variability. The term “pseudoprofi le” was 
applied to the information obtained when one sample is obtained per animal but 
several animals are sampled at each of several times postdose.

Bootstrap resampling is performed twice within the PpbB approach to generate 
PK pseudoprofi les from which the function of interest is estimated. More specifi -
cally, the following scheme is adopted for the b1th replicate at each time point:

Step 1. Resample with replacement at one concentration, denoted as C*b1(tk), at 
time tk for k = 1 to K from the respective concentration vectors and keep K
concentrations. c*b1(tk), k = 1,  .  .  .  , K.

Step 2. Construct a pseudoprofi le, that is, c*b1 = {c*b1(t1),c*b1(t2),  .  .  .  , 
c*b1(tk−1),c*b1(tk)}.

Step 3. Repeat Steps 1 and 2 B1 times to generate a PK pseudoprofi le pool F̂ *, an 
estimate of the distribution F.

Step 4. Calculate a function of interest from each pseudoprofi le (i.e., AUC, Cmax).
Step 5. Perform B2 times bootstrap resampling with replacement from this empiri-

cal distribution F̂* with sample size n̄ each, where n̄ is the average number of 
concentration replicates, and the corresponding parameter for each b2 = 1,  .  .  .  ,B2

is estimated.
Step 6. Calculate the bootstrap estimates of the mean parameter and its standard 

deviation.

The S-Plus code used in implementing the PpbB approach is in Appendix 42.3.
Given the limitations associated with the naive data averaging approaches in 

estimating the tissue-to-plasma ratio, the RS approach is compared with the PpbB 
approach in subsequent sections. However, occasional references are made to the 
naive data averaging and independent time points approaches because of their use 
in common practice.
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42.3 COMPARISON OF PpbB AND RS APPROACHES

42.3.1 Paired Versus Unpaired Data

Figure 42.2 illustrates the results obtained with the RS approach using paired and 
unpaired data at different replication levels (i.e., M1 equals 10, 100, and 500 to build 
up the population pool). This was then followed by a calculation of TPAR over M2

(i.e., 50) virtual studies (with N = 18 for each study). Across all three population 
pool levels (i.e., M1 = 10, 100, and 500), paired observations consistently yielded 
tighter distributions than unpaired ones. Similar results were obtained with the 
PpbB approach.

If a drug is designed to target a particular tissue, the interest might be in having a 
minimal target TPAR. In that case, having knowledge of mean TPAR would not be 
enough. Having knowledge of the distribution of TPAR across virtual studies (i.e., 
replicates) in terms of the summary statistics (fi rst quartile Q1, mean, median, third 
quartile Q3) becomes valuable. Thus, knowing that the TPAR is not below a certain 
cutoff, such as the fi rst quartile of the TPAR distribution, would be important. To 
provide such an insight, we examined the distribution of TPAR within and between 
replicates and have provided a summary of the distribution of TPAR across virtual 
studies. Consequently, Figure 42.3 provides an amplifi cation of the outcomes with 
the two approaches when the fi rst and third quartiles (Q1 and Q3, respectively) for 
paired and unpaired data are compared. The quartiles for the unpaired data have a 
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FIGURE 42.2 Computation of tissue-to-plasma AUC ratios from paired and unpaired data 
using the random sampling approach. The line inside the box represents the median, and the 
box represents the limits of the middle half of the data. The range of the box, from the fi rst 
quartile (Q1) to the third quartile (Q3), is called the interQuartile range (IQR). The standard 
span of the data is defi ned within the range from Q1 − 1.5IQR to Q3 + 1.5IQR. Whiskers, 
the dotted line, are drawn to the nearest value not beyond the range of the standard span; 
points beyond (outside values) are drawn individually.



wider spread, with the lower adjacent value of the distribution of Q1 values in the 
box plot extending beyond that for paired data in both RS and PpbB approaches. 
Disrupting the correlation structure in the data by unpairing the data yielded more 
variable results than when the correlation structure in the data was maintained by 
pairing. Thus, breaking the correlation structure between tissue and plasma obser-
vations resulted in a loss of information. Therefore, the rest of the study is focused 
on the paired scenario only.

A tabular comparison of the results obtained with the RS and PpbB approaches 
is shown in Table 42.5. In addition to the typical fashion of only describing distribu-
tion of mean of TPAR, Table 42.5 also includes distributions of quartiles of TPAR 
in terms of Q1 and Q3 with associated standard errors. The resampling approaches 
yielded comparable results when the number of replications was at least 600 with 
mean TPAR around 17, but the RS approach converged faster than the PpbB 
approach. (See Section 42.3.2 for more details.)

42.3.2 Convergence

Convergence was determined for both RS and PpbB approaches. That is, the 
number of replications (i.e., the number of times the sampling/resampling has to 
be repeated) needed for stable estimates of tissue-to-plasma AUC ratio (TPAR) 
to be obtained was determined for both methods. An empirical approach was used 
to determine convergence (13).
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FIGURE 42.3 Comparison of the performance of the RS and PpbB approaches when 
tissue-to-plasma AUC ratios (TPAR) are computed from paired and unpaired data. The 
comparison is focused on distribution of the fi rst and third quartiles (Q1 and Q3, respec-
tively) of TPARs.
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To examine the effect of the number of replications (i.e., M1 in RS and B1 in 
PpbB), a graphical presentation of percentage change (PC) of mean TPAR is shown 
in the middle panel of Figure 42.4 and Figure 42.5 for the RS and PpbB approaches, 
respectively. In addition, the PC values of Q1 and Q3 are also plotted in the left 
and right panels of each fi gure. The acceptable range for the percentage change is 
calculated from summary statistics/confi dence intervals of PC across all replication 
levels considered (i.e., from M1 with as little as 5 replications to as high as 1000 
replications), and for statistics Q1, mean, and Q3. This range was determined by 
visual inspection of the convergence graphs with the assumption that, over the 
range of the replications, the PC trend should be stabilized with limited amount 
of fl uctuations. Therefore, the percentile cutoff range was chosen using a trimming 
approach, and the range of percentiles 12.5 and 87.5 was found to be appropriate 
for both sampling approaches and across the three summary statistics. Figure 42.4 
shows the convergence trend for the RS approach. For all three statistics (Q1, mean, 
and Q3) of interest, 100 replications are suffi cient. On the other hand, the number 
of replications needed for the distributions of summary statistics of TPAR with the 
PpbB is at least 600 replications (see Figure 42.5), owing to the instability in Q1. The 
range for the RS approach is considerably tighter than that for the PpbB approach. 
In fact, the range of PC is −1.28% to 1.56% for the RS approach, and −2.26% to 
5.10% for the PpbB approach. This fi nding indicates that there was a larger vari-
ability in TPAR estimates obtained with the PpbB approach when compared with 
that obtained using the RS approach. The uniqueness of the RS approach lies in 
the population sampling pool, which is populated by generating M1 replications 
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FIGURE 42.4 Convergence trend monitoring using percentage change in summary statis-
tics (Q1, mean, and Q3) of tissue-to-plasma AUC ratio (TPAR) estimates obtained by the 
random sampling approach.
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through resampling concentration–time profi les for each subject (i.e., in this study 
with N = 18 animals, 100 replications for each animal is equivalent to total of 1800 
[= 18 · 100] distinct PK profi les in the population sampling pool). Also, M2 copies of 
virtual studies are sampled from the population sampling pool to derive a distribu-
tion for any function of interest. The code for monitoring convergence is shown in 
Appendix 42.4.

42.3.3 Outlier Effect on Robustness

To investigate the effect of outliers on the robustness with which TPAR was esti-
mated with naive averaging, RS, and PpbB approaches, new data sets were simu-
lated by introducing outlier(s) into the data set. The scenarios we chose can be 
mapped as a grid (2 × 4 table) (i.e., one or two outliers produced by infl ating the 
higher tissue concentration time points by 10%, 20%, 30%, or 40%). The higher 
tissue concentration time points were defi ned as concentrations obtained within 4 
hours postdose. These concentrations were randomly chosen in each replication. 
The outliers were introduced in the region of the concentration–time profi le (i.e., 
around the higher concentrations), where they were likely to produce maximum 
effect (see S-Plus code in the Appendix 42.5).

Figure 42.6 shows the distribution of mean TPAR obtained from simulating 50 
replicates (i.e., M2 = 50) of the base data set with the value of one tissue concentra-
tion value infl ated to create an outlier in each replicate. The effect of one outlier 
can be measured by how big the distance is from the original mean TPAR value of 
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FIGURE 42.5 Convergence trend monitoring using percentage change in summary statis-
tics (Q1, mean, and Q3) of distribution of tissue-to-plasma AUC ratio (TPAR) estimates 
obtained by the PpbB approach.



∼17 (see Table 42.5). The naive averaging approach performed the worst of all three 
approaches, and PpbB had a wider spread than the RS approach. In Figure 42.6, it 
appears that the distribution of TPAR estimates obtained with the naive averag-
ing approach was the tightest. It has to considered that by the very nature of the 
naive averaging approach variability has been eliminated, hence the results. When 
the scenario for two outliers was considered, Figure 42.7 illustrates the effect when 
two tissue concentration values were randomly selected to create outliers in each 
replicate by calculating the PC from mean TPAR of 17 across the three methods, 
given the four levels of outlier perturbation (i.e., 10%, 20%, 30%, or 40% increase 
in concentration values). Clearly, the RS approach provides results that are more 
robust than the other two. The bias in the estimation of TPAR is more promi-
nent with the PpbB and naive averaging approaches than with the RS approach 
(Figure 42.7).

42.4 OVERALL ASSESSMENT OF TISSUE-TO-PLASMA 
RATIO ESTIMATION

A nonparametric random sampling approach proposed by Chu and Ette (13) for 
the estimation of robust TPAR was compared with the PpbB and naive averag-
ing approaches. Also, the estimation of tissue-to-plasma ratio using the indepen-
dent time points approach was examined. It is obvious from Tables 42.2 and 42.3 
that estimating tissue-to-plasma ratio independently at various times is a very 
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FIGURE 42.6 The effect of outlier on distribution of tissue-to-plasma AUC ratios (TPAR) 
when infl ating one concentration by (A) 10%, (B) 20%, (C) 30%, or (D) 40% using the naive 
averaging (naive), PpbB, and RS approaches.
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unreliable method, since various ratios are obtained at various time points and it is 
unclear which of the ratios to choose. Also, it is impossible to compute ratios when 
samples from a particular biological matrix are below the limit of quantifi cation or 
are unquantifi able. The independent time points approach for calculating tissue-
to-plasma ratio should, therefore, be avoided. Although the naive data averaging 
approach for computing AUC provides a single AUC value for drug exposure in 
each of the two matrices and consequently a single value of TPAR, the correlation 
in the data structure is unaccounted for and there is no measure of variability or 
uncertainty around the estimates. With this method, when concentrations are below 
the limit of quantifi cation, they are usually ignored in the calculation of the mean 
concentration at the particular time point. The mean concentration is calculated 
only with available data. Thus, the mean profi le obtained in such a situation does 
not represent the actual mean profi le since mean concentrations at each time point 
are not calculated from an equal number of time points. These drawbacks not 
withstanding, the approach is better than the independent time points approach. 
However, both approaches are inferior to the resampling approaches—PpbB and 
RS. Breaking the correlation structure between tissue and plasma observations 
results in a loss of information when using any of the resampling approaches. There-
fore, it is important to maintain the correlation structure in paired data sets used in 
estimating TPAR. By doing this, variability in the calculated TPAR is minimized.

Although there are similarities in the TPAR estimates produced by the PpbB 
and RS approaches, the latter converges faster than the former. Convergence is 
achieved with only 100 replications (i.e., M1 = 100) per subject with the RS approach, 
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FIGURE 42.7 The effect of outlier based on the percent increase distribution of tissue-
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approaches.



while at least 600 bootstrap (i.e., B1 = 600) replications are required for the PpbB 
approach. In general, 100 replications are adequate in the fi rst phase of the RS 
approach for robust estimation of TPAR. Also, the acceptable range for TPAR 
estimates is narrower for the RS approach (Figure 42.4) when compared with 
the PpbB approach (Figure 42.5). Thus, the PpbB approach requires a larger 
number of replications to yield robust estimates. The difference lies in the two-
phase—population and study level—sampling of the RS approach. The tightness 
of the distribution of estimates obtained with the RS approach can be attributed to 
the creation of the representative population sample pool for subsequent study level 
sampling of parameters of interest. This is a unique feature of the RS approach. 
Also, the estimation of TPAR by the RS approach is not affected by missing data 
or imbalance in the number of concentrations at each time point over the sampling 
duration. Individual PK profi les are generated by sampling from available data at 
each time point across time points. Similarly, the PpbB approach is not affected by 
missing data or data imbalance.

When the effect of outliers on robustness was investigated, the naive data aver-
aging approach performed the worst, while the RS approach performed the best. 
The edge that the RS approach has over the PpbB approach is, again, owing to the 
two-phase nature of implementation of the methodology. The robustness of the RS 
approach lies in the creation of the population sample pool before the study level 
sampling for the estimation of TPAR. Also, the greater bias obtained with the PpbB 
approach when compared with the RS approach is probably due to the fact that 
mean parameter estimates obtained from bootstrap replicates may be infl uenced 
by data in the tails of the distribution (15).

42.5 SUMMARY

Traditional approaches used in the estimation of TPAR have been compared 
with the PpbB approach and the recently proposed RS approach. The traditional 
approaches—independent time points and naive data averaging approaches—are 
inferior to the sampling/resampling approaches. The RS approach performed better 
than the PpbB approach because of its unique algorithm. Also, fewer replications 
are required for robust estimation of TPAR. The computer intensive methods 
provide estimates of TPAR with measures of dispersion and uncertainty. The RS 
approach is the method of choice for obtaining robust estimates of TPAR, when 
analyzing extremely sparsely sampled data.
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APPENDIX 42.1 CODE FOR NAIVE DATA AVERAGING APPROACH

##################################

# calculate AUC ratio by average data at each time point

# to construct the AUC curve by average conc. by time point

# source data set is named “data”

##################################

## calculate AUC ratio by average data by time point

## to construct the AUC curve by average conc. by time point

t_c(0,0.5,1,2,4,6,8)

a_apply(data.tissue,2,mean)

a_as.vector(a[-1])

b_apply(data.plasma,2,mean)

b_as.vector(b[-1])



# Trapezoidal.hmc is a subroutine (see 42.6.6)

c1_as.vector(Trapezoidal.hmc(time=t,DV=a))

c2_as.vector(Trapezoidal.hmc(time=t,DV=b))

## calculate ratio by time point

t_c(0.5,1,2,4,6,8)

a_rep(NA,length(t)+1)

tmp_data.frame(time=a,min=a,Q1=a,median=a,mean=a,Q3=a,max=a,NA=a,s

d=a,n=a)

for(i in 1:length(t))

{

  tmp[i,1]_as.character(t[i])

  print(t[i])

  print(summary(data$ratio[data$Time==t[i]]))

  b_summary(data$ratio[data$Time==t[i]])

  tmp[i,2:(length(b)+1)]_as.vector(b)

  tmp[i,9]_stdev(data$ratio[data$Time==t[i]])

  tmp[i,10]_length(data$ratio[data$Time==t[i]])

}

tmp[length(t)+1,1]_”overall”

b_summary(data$ratio)

tmp[length(t)+1,2:(length(b)+1)]_as.vector(b)

tmp[length(t)+1,9]_stdev(data$ratio)

tmp[length(t)+1,10]_length(data$ratio)

APPENDIX 42.2 CODE FOR RANDOM SAMPLING APPROACH

##################################################################

######

#### to impute AUC from scarified animals, each rat has one plasma and one

#### tissue data point

## to construct the plasma and tissue data sets and associated 

column names (time points)

## // start

tmp_data.frame(rep=seq(1,irep),AUC.p=rep(NA,irep),AUC.

l=rep(NA,irep))

t_sort(unique(data$Time))

size.n_length(t)

data.plasma_data.frame(iter=c(1,2,3))

data.tissue_data.frame(iter=c(1,2,3))

for(i in 1:size.n)

{

 aa_data$plasma[data$Time==t[i]]
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  data.plasma_cbind( data.plasma,aa)

  aa_data$tissue[data$Time==t[i]]

  data.tissue_cbind( data.tissue,aa)

}

dimnames(data.plasma)[[2]]_c(“iter”,paste(“h”,t,sep=””))

dimnames(data.tissue)[[2]]_c(“iter”,paste(“h”,t,sep=””))

## // end

## -------------------------------------------------------------

### to generate “irep” (M copies of) replication of Psuodoprofile and

### associated AUC for each subject in the data set

## // start

irep_1000

tmp.tissue_matrix(rep(NA,irep*size.n),ncol=size.n)

tmp.plasma_matrix(rep(NA,irep*size.n),ncol=size.n)

#data.plasma_data.plasma[,-c(1,2)]

#data.tissue_data.tissue[,-c(1,2)]

## irow*icol (18) is the loop for each subject

## icol is the loop for each time point within each subject

## j is the M-copy loop of calculating AUC for each subject

## the outcome stored in ans and renamed as ans.rep.**

ID.n_0

for(irow in 1:nrow(data.tissue))

{

  for(icol in 3:ncol(data.tissue))

  {

    # for each subject

    ID.n_ID.n+1

    tmp_data.frame(ID=rep(ID.n,irep),rep=seq(1,irep),AUC.

  p=rep(NA,irep),AUC.l=rep(NA,irep))

    tmp.tissue_matrix(rep(NA,irep*(size.n-1)),ncol=(size.n-1))

    tmp.plasma_matrix(rep(NA,irep*(size.n-1)),ncol=(size.n-1))

    for(i in 1:(size.n-1))

    {

     a_sample(x=c(1:3),size=irep,T)

     #cat(“\n(“,irow,icol,”) -- with hour index”,i,”\n”)

     #print(a)

     #print(data.tissue[a,i+2])

     tmp.tissue [,i]_data.tissue[a,i+2]

     #print(tmp.tissue[,i] )



     tmp.plasma[,i]_data.plasma[a,i+2]

     #print(tmp.plasma[,i] )

  }

  for (j in 1:irep)

  {

    tmp$AUC.l[j]_Trapezoidal.hmc(time=t,DV=c(0,tmp.tissue[j,]))

    tmp$AUC.p[j]_Trapezoidal.hmc(time=t,DV=c(0,tmp.plasma[j,]))

    #cat(“\n iter”, irep,”AUC of tissue = “,tmp$AUC.l[j],”\n”)

  }

  if ( icol*irow==3) {ans_tmp}

   else {ans_rbind(ans,tmp)}

 }

}

ans$ratio_ans$AUC.l/ans$AUC.p

summary(ans$ratio)

summary(ans$AUC.p)

boxplot(ans$ratio,ylab=”ratio”)

title(“Distribution of Tissue to Plasma Ratio”,cex=.9)

#ans.rep5_ans

#ans.rep10_ans

#ans.rep100_ans

#ans.rep500_ans

## // end

## -------------------------------------------------------------

boxplot(ans.rep5$ratio,ans.rep10$ratio,ans.rep100$ratio,ans.

rep500$ratio,

     names=c(“5”,”10”,”100”,”500”),

 xlab=”Replications for Each Subject”,ylab=”Tissue to Plasma Ratio”)

#########################################################

#### part 2

#### to generate M copies of N=18 virual studies

data_ans.rep10

irep_50

n_18

#ans_matrix(rep(NA,n*irep),nrow=n) # row is the animal index and 

 column is the replicates

ans_matrix(rep(NA,6*irep),nrow=irep) # columns are summary stats 

 and row is the replicates
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for (i in 1:irep)

{

 a_sample(x=seq(1:nrow(data)),size=n,T)

 #ans[,i]_data$ratio[a]

 ans[i,]_as.vector(summary(data$ratio[a]))

}

dimnames(ans)[[2]]_c(“Min”,”Q1”,”Q2”,”Mean”,”Q3”,”Max”)

#ans.rep5.summary_ans

#ans.rep10.summary_ans

#ans.rep100.summary_ans

#ans.rep500.summary_ans

par(mfrow=c(2,2))

boxplot(ans.rep5.summary[,3],ans.rep10.summary[,3],ans.rep100.

 summary[,3],ans.rep500.summary[,3],

   names=c(“5”,”10”,”100”,”500”),

 xlab=”replications”,ylab=”Tissue to Plasma Ratio”,ylim=c(10,25))

title(“Distribution of Median \n over 50 rep. of Virtual 

Study”,cex=.8)

boxplot(ans.rep5.summary[,4],ans.rep10.summary[,4],ans.rep100.

 summary[,4],ans.rep500.summary[,4],

   names=c(“5”,”10”,”100”,”500”),

 xlab=”replications”,ylab=”Tissue to Plasma Ratio”,ylim=c(10,25))

title(“Distribution of Mean \n over 50 rep. of Virtual 

Study”,cex=.8)

boxplot(ans.rep5.summary[,2],ans.rep10.summary[,2],ans.rep100.

 summary[,2],ans.rep500.summary[,2],

   names=c(“5”,”10”,”100”,”500”),

 xlab=”replications”,ylab=”Tissue to Plasma Ratio”,ylim=c(10,25))

title(“Distribution of Q1 \n over 50 rep. of Virtual 

Study”,cex=.8)

boxplot(ans.rep5.summary[,5],ans.rep10.summary[,5],ans.rep100.

 summary[,5],ans.rep500.summary[,5],

   names=c(“5”,”10”,”100”,”500”),

 xlab=”replications”,ylab=”Tissue to Plasma Ratio”,ylim=c(10,25))

title(“Distribution of Q3 \n over 50 rep. of Virtual 

Study”,cex=.8)

#################################

#### part 3

#### par.old_par()

frame()

par(oma=c(0,0,2,0),mar=c(5,5,4,3)+0.1)



par(mfrow=c(1,1))

par(fig=c(x1=0,x2=0.55,y1=0.45,y2=1))

boxplot(ans.rep5.summary[,3],ans.rep10.summary[,3],ans.rep100.

 summary[,3],ans.rep500.summary[,3],

   ans.rep1000.summary[,3],names=c(“”,””,””,””,””),xlab=””,ylab=

””,ylim=c(10,25))

mtext(side=3,”Median”,line=1)

par(fig=c(x1=0.45,x2=1,y1=0.45,y2=1),yaxs=”d”)

boxplot(ans.rep5.summary[,4],ans.rep10.summary[,4],ans.rep100.

 summary[,4],ans.rep500.summary[,4],

   ans.rep1000.summary[,4],names=c(“”,””,””,””,””),xlab=””,ylab=

””,ylim=c(10,25),axes=F)

 box()

#title(“Mean”,cex=.7)

mtext(side=3,”Mean”,line=1)

par(fig=c(x1=0,x2=0.55,y1=0,y2=0.55),xaxs=”d”,yaxs=”d”)

boxplot(ans.rep5.summary[,2],ans.rep10.summary[,2],ans.rep100.

 summary[,2],ans.rep500.summary[,2],

   ans.rep1000.summary[,2],names=c(“5”,”10”,”100”,”500”,”1000”),

xlab=””,ylab=””,axes=T)

 box()

mtext(side=3,”1st Quartile”,line=1)

par(fig=c(x1=0.45,x2=1,y1=0,y2=0.55),xaxs=”d”,yaxs=”d”)

boxplot(ans.rep5.summary[,5],ans.rep10.summary[,5],ans.rep100.

 summary[,5],ans.rep500.summary[,5],

   ans.rep500.summary[,5],names=c(“5”,”10”,”100”,”500”,”1000”),x

   lab=””,ylab=””,axes=F)

box()

mtext(side=3,”3rd Quartile”,line=1)

mtext(“Distribution of Summary Stat. Over 50 Replications of Virtual 

Study”,outer=T)

mtext(side=1,”# of Replications for Each Subject”,outer=T,line=-2)

APPENDIX 42.3 CODE FOR PSEUDOPROFILE-BASED BOOTSTRAP

############################################################

### to generate “irep” (M copies of) replication of Psuodoprofile and

### associated AUC for each subject in the data set

###

### n is the number of animals in the study

### irep == (B1 time loop in step 1 and 2 of the paper)

############################################################
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b_c(10,50,seq(100,1000,100))

t_sort(unique(data$Time))

size.n_length(t)

for (k in 1:length(b))

{

 irep_b[k]

 n_18

 tmp.tissue_matrix(rep(NA,irep*size.n),ncol=size.n)

 tmp.plasma_matrix(rep(NA,irep*size.n),ncol=size.n)

 ## irow*icol (18) is the loop for each subject

 ## icol is the loop for each time point within irow-th subject

 ## j is the M-copy loop of calculating AUC for each subject

 ## the outcome stored in ans and rename as ans.rep.**

 # to sample by time point

 myStart_proc.time()

 for(i in 1:size.n)

 {

  a_sample(x=c(1:3),size=irep,T) 

  tmp.tissue [,i]_data.tissue[a,i+1]

  tmp.plasma[,i]_data.plasma[a,i+1]

 }

 ## to calcualte AUC

 ans_data.frame(rep=rep(b[k],irep),AUC.l=rep(NA,irep),AUC.

p=rep(NA,irep))

 for ( i in 1:irep)

 {

  a_as.vector(unlist(tmp.tissue[i,]))

  ans$AUC.l[i]_Trapezoidal.hmc(time=t,DV=a)

  a1_as.vector(unlist(tmp.plasma[i,]))

  ans$AUC.p[i]_Trapezoidal.hmc(time=t,DV=a1)

 }

}

# to calculate the paired ratio

ans.PpbB.total$ratio.p_ans.PpbB.total$AUC.l/ans.PpbB.total$AUC.p

# to calculate the unpaired ratios

ans.PpbB.total$ratio.u_rep(NA,nrow(ans.PpbB.total))

for (i in 1:length(b))

#for (i in 1:1)



{

 b1_ans.PpbB.total$AUC.p[ans.PpbB.total$rep==b[i]]

 b2_ans.PpbB.total$AUC.l[ans.PpbB.total$rep==b[i]]

 b3_sample(x=c(1:length(b1)),size=length(b1),F)

 #print(b1)

 #print(b2)

 #print(b3)

 ans.PpbB.total$ratio.u[ans.PpbB.total$rep==b[i]]_b2/b1[b3]

}

APPENDIX 42.4 CODE FOR CONVERGENCE

#### compare the convergence among different M copies of paired ratios

############################################################

############### random sampling approach

set.seed(565)

y_c(5,10,50,seq(100,1000,100)) # y is the # of replication for 

each subject

# columns are summary stats and row is the replicates

ans1_matrix(rep(NA,3*length(y)),nrow=length(y))

ans2_matrix(rep(NA,3*length(y)),nrow=length(y))

ans3_matrix(rep(NA,3*length(y)),nrow=length(y))

for(k in 1:length(y))

{

 if(k==1){data_ans.rep5}

 if(k==2){data_ans.rep10}

 if(k>2 ){ data_ans.rep1000[ans.rep1000$rep<=y[k],]}

 irep_100

 n_18

 # columns are summary stats and row is the replicates

 ans_matrix(rep(NA,3*irep),nrow=irep)

 for (i in 1:irep)

 {

   a_sample(x=seq(1:nrow(data)),size=n,T)

   ans[i,1]_quantile(data$ratio[a],0.25)

   ans[i,2]_mean(data$ratio[a])

   ans[i,3]_quantile(data$ratio[a],0.75)

 }

 cat(“\n”,y[k],”\n”)
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   #print(ans)

   # calculate the 95% CI for the Q1

   ans1[k,1]_quantile(ans[,1],0.05)

   ans1[k,2]_mean(ans[,1])

   ans1[k,3]_quantile(ans[,1],0.95)

   # calculate the 95% CI for the mean

   ans2[k,1]_quantile(ans[,2],0.05)

   ans2[k,2]_mean(ans[,2])

   ans2[k,3]_quantile(ans[,2],0.95)

   # calculate the 95% CI for the Q3

   ans3[k,1]_quantile(ans[,3],0.05)

   ans3[k,2]_mean(ans[,3])

   ans3[k,3]_quantile(ans[,3],0.95)

}

## to save output for later computation purpose .rs = .random sam-

pling approach

   ans1.rs_ans1

   ans2.rs_ans2

   ans3.rs_ans3

#### to plot 95% CI for Q1,mean, and Q3 across different replica-

tions per subject

frame()

par(oma=c(0,0,2,0),mar=c(5,5,4,3)+0.1)

par(mfrow=c(1,3))

y_c(5,10,50,seq(100,1000,100)) # y is the # of replication for 

each subject

x_seq(1:length(y))

par(fig=c(x1=0,x2=0.4,y1=0,y2=1))

plot(x=0,y=0,type=”n”,ylim=c(10,25),xlim=range(x),xlab=””,

 ylab=””,axes=F)

lines(x=x,y=ans1.rs[,2],lty=1)

lines(x=x,y=ans1.rs[,1],lty=2)

lines(x=x,y=ans1.rs[,3],lty=2)

axis(1, at=x,labels=as.character(y))

axis(2)

box()

mtext(side=3,”1st Quartile”,line=1,cex=1.2)

par(fig=c(x1=0.3,x2=0.7,y1=0,y2=1))

plot(x=0,y=0,type=”n”,ylim=c(10,25),xlim=range(x),xlab=””,

 ylab=””,axes=F)

lines(x=x,y=ans2.rs[,2],lty=1)

lines(x=x,y=ans2.rs[,1],lty=2)



lines(x=x,y=ans2.rs[,3],lty=2)

axis(1, at=x,labels=as.character(y))

#axis(2)

box()

mtext(side=3,”Mean”,line=1,cex=1.2)

par(fig=c(x1=0.6,x2=1,y1=0,y2=1))

plot(x=0,y=0,type=”n”,ylim=c(10,25),xlim=range(x),xlab=””,

 ylab=””,axes=F)

lines(x=x,y=ans3.rs[,2],lty=1)

lines(x=x,y=ans3.rs[,1],lty=2)

lines(x=x,y=ans3.rs[,3],lty=2)

axis(1, at=x,labels=as.character(y))

#axis(2)

box()

mtext(side=3,”3rd Quartile”,line=1,cex=1.2)

mtext(side=1,”# of Replications for Each Subject”,outer=T,line=-2, 

cex=1.2)

mtext(side=2,”Tissue to Plasma AUC Ratio”,outer=T,line=-2,cex=1.2)

############################################################

################ PpbB approach

set.seed(555)

y_c(10,50,seq(100,1000,100)) # y is the # of replication for each 

subject

# columns are summary stats and row is the replicates

ans1_matrix(rep(NA,3*length(y)),nrow=length(y))

ans2_matrix(rep(NA,3*length(y)),nrow=length(y))

ans3_matrix(rep(NA,3*length(y)),nrow=length(y))

for(k in 1:length(y))

{

   data_ans.PpbB.rep1000[ans.PpbB.rep1000$rep<=y[k],]

   irep_100

   n_18

   ans_matrix(rep(NA,3*irep),nrow=irep)

#print(“check pt 1”)

#print(nrow(data))

   for (i in 1:irep)

   {

      a_sample(x=seq(1:nrow(data)),size=n,T)

#cat(“\n”,i,”rep”,a,”\n”)

#cat(“\n”,data$ratio.p[a],”\n”)

   ans[i,1]_quantile(data$ratio.p[a],0.25)
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#cat(“\n”,”ans[i,1]”,ans[i,1],”\n”)

   ans[i,2]_mean(data$ratio.p[a])

   ans[i,3]_quantile(data$ratio.p[a],0.75)

   }

   cat(“\n”,y[k],”\n”)

   #print(ans)

   # calculate the 95% CI for the Q1

   ans1[k,1]_quantile(ans[,1],0.05)

   ans1[k,2]_mean(ans[,1])

   ans1[k,3]_quantile(ans[,1],0.95)

   # calculate the 95% CI for the mean

   ans2[k,1]_quantile(ans[,2],0.05)

   ans2[k,2]_mean(ans[,2])

   ans2[k,3]_quantile(ans[,2],0.95)

   # calculate the 95% CI for the Q3

   ans3[k,1]_quantile(ans[,3],0.05)

   ans3[k,2]_mean(ans[,3])

   ans3[k,3]_quantile(ans[,3],0.95)

}

## to save output for later computation purpose .PpbB

   ans1.PpbB_ans1

   ans2.PpbB_ans2

   ans3.PpbB_ans3

#### to plot 95% CI for Q1,mean, and Q3 across different replica-

tions for each subject

frame()

par(oma=c(0,0,2,0),mar=c(5,5,4,3)+0.1)

par(mfrow=c(1,3))

y_c(10,50,seq(100,1000,100)) # y is the # of replication for each 

subject

x_seq(1:length(y))

par(fig=c(x1=0,x2=0.4,y1=0,y2=1))

plot(x=0,y=0,type=”n”,ylim=c(10,25),xlim=range(x),xlab=””,

 ylab=””,axes=F)

lines(x=x,y=ans1.PpbB[,2],lty=1)

lines(x=x,y=ans1.PpbB[,1],lty=2)

lines(x=x,y=ans1.PpbB[,3],lty=2)

axis(1, at=x,labels=as.character(y))

axis(2)

box()

mtext(side=3,”1st Quartile”,line=1,cex=1.2)

par(fig=c(x1=0.3,x2=0.7,y1=0,y2=1))



plot(x=0,y=0,type=”n”,ylim=c(10,25),xlim=range(x),xlab=””,

 ylab=””,axes=F)

lines(x=x,y=ans2.PpbB[,2],lty=1)

lines(x=x,y=ans2.PpbB[,1],lty=2)

lines(x=x,y=ans2.PpbB[,3],lty=2)

axis(1, at=x,labels=as.character(y))

#axis(2)

box()

mtext(side=3,”Mean”,line=1,cex=1.2)

par(fig=c(x1=0.6,x2=1,y1=0,y2=1))

plot(x=0,y=0,type=”n”,ylim=c(10,25),xlim=range(x),xlab=””,

 ylab=””,axes=F)

lines(x=x,y=ans3.PpbB[,2],lty=1)

lines(x=x,y=ans3.PpbB[,1],lty=2)

lines(x=x,y=ans3.PpbB[,3],lty=2)

axis(1, at=x,labels=as.character(y))

#axis(2)

box()

mtext(side=3,”3rd Quartile”,line=1,cex=1.2)

mtext(side=1,”Number of Bootstraps”,outer=T,line=-2, cex=1.2)

mtext(side=2,”Tissue to Plasma AUC Ratio”,outer=T,line=-2,cex=1.2)

APPENDIX 42.5 CODE FOR OUTLIER EFFECT

###################

#var.vec_c(0.1,0.2,0.3,0.4) # variation percentage vector

var.vec_c(0.1)

missing.vec_c(1) # vector of outlier occurrence

myRep_50 # replication of one scenario, e.g. 1 

missing with 10% outlier

a.n_length(var.vec)*length(missing.vec)*myRep

a_rep(NA,a.n)

myAns_data.frame(n.outlier=a,cv.outlier=a,pooling=a,PpbB=a,RS=a)

B1_100

irep_100

a.n_0

for(i in 1:length(var.vec))

{

 for (j in 1:length(missing.vec))

 {

   cat(“\n”,”CV =”,var.vec[i]*100,”% n.of.outliers =”,j,”\n”)

   for (k in 1:myRep)
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   {

     a.n_a.n+1

     myVar_var.vec[i] # variation percentage

          myCount_missing.vec[j] # number of outliers

          myAns$n.outlier[a.n]_myCount

          myAns$cv.outlier[a.n]_myVar

     cat(“\n”,k,” pool average”)

   #-- to construct data set with outlier/s and calculated the 

pooled average

   myData0_outlier.sub(liverOrNot=1,data=study2385,myVar=myVar,

myCount=myCount)

   myAns$pooling[a.n]_myData0$r.pooling

   cat(“ PpbB”)

   #-- use pseudoprofile approach 

   myData_PpbB.sub1(B1=B1,data=myData0$data,tissue=myData0$

tissue,plasma=myData0$plasma,n=18)

   myData2_PpbB.sub2(B1=B1,data=myData,irep=irep,n=18)

   myAns$PpbB[a.n]_mean(myData2$Q2)

   cat(“ Random Sampling”)

 #-- use random sample approach

   myData3_rs.sub1(tissue=myData0$tissue,plasma=myData0$plasma,

irep=B1)

   myData4_rs.sub2(data=myData3,irep=irep,n=18)

 myAns$RS[a.n]_mean(myData4$Q2)

       }

   }

}

##################################

# graph with one outlier across 4 levels of increase

frame()

par(oma=c(0,0,2,0),mar=c(5,5,4,3)+0.1)

par(mfrow=c(2,2))

par(fig=c(x1=0,x2=0.55,y1=0.45,y2=1))



tmp_myAns.all[myAns.all$n.outlier==1 & myAns.all$cv.outlier==0.1,]

boxplot(tmp$pooling,tmp$PpbB,tmp$RS,names=c(“”,””,””),ylim=c(14,20

))

title(“(a) 10%”,cex=0.6)

par(fig=c(x1=.45,x2=1,y1=0.45,y2=1))

tmp_myAns.all[myAns.all$n.outlier==1 & myAns.all$cv.outlier==0.2,]

boxplot(tmp$pooling,tmp$PpbB,tmp$RS,names=c(“”,””,””),ylim=c(14,20

),axes=F)

title(“(b) 20%”,cex=0.6)

box()

par(fig=c(x1=0,x2=0.55,y1=0,y2=.55))

tmp_myAns.all[myAns.all$n.outlier==1 & myAns.all$cv.outlier==0.3,]

boxplot(tmp$pooling,tmp$PpbB,tmp$RS,names=c(“Naive”,”PpbB”,”RS”),y

lim=c(14,20))

title(“(c) 30%”,cex=0.6)

par(fig=c(x1=.45,x2=1,y1=0,y2=.55))

tmp_myAns.all[myAns.all$n.outlier==1 & myAns.all$cv.outlier==0.4,]

boxplot(tmp$pooling,tmp$PpbB,tmp$RS,names=c(“Naive”,”PpbB”,”RS”),

ylim=c(14,20),axes=F)

title(“(d) 40%”,cex=0.6)

box()

mtext(side=2,”Tissue to Plasma AUC Ratio”,out=T,cex=.9,line=-1.5)

mtext(side=1,”Method”,out=T,cex=.9,line=-1.5)

APPENDIX 42.6 CODE FOR OTHER SUBROUTINES

##################################################################

#########

#### file name : outlier Effect subroutine

#------------------------------------------------------------------

outlier.sub_function(tissueOrNot=1,data,myVar,myCount=)

{

 #tissueOrNot_1 # outlier/s location: 1 is tissue, 2 is plasma

 #myVar_.2 # variation percentage

 #myCount_2 # number of outliers

 #data_study2385[,1:3]

 n_nrow(data)

 data$row_seq(1:n) # row position

 x_data$row[data$Time>0 & data$Time<4] # x is targeted row vector
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 # ramdomly select # of “myCount” from 18 “x” subjects, who will 

be replaced

 #with outlier/s

   a_sample(x=x,size=myCount,F)

   data$row[a]_1000 # to indicate outlier replacement positions

   b_1

   c_1+b*myVar

   if(tissueOrNot==1)

      {data$tissue[a]_data$tissue[a]*c}

   else

      {data$plasma[a]_data$plasma[a]*c}

## to construct the plasma and tissue data sets and associated 

column names (time points)

   t_sort(unique(data$Time))

   size.n_length(t)

   data.plasma_data.frame(iter=c(1,2,3))

   data.tissue_data.frame(iter=c(1,2,3))

   for(i in 1:size.n)

   {

      aa_data$plasma[data$Time==t[i]]

      data.plasma_cbind( data.plasma,aa)

      aa_data$tissue[data$Time==t[i]]

      data.tissue_cbind( data.tissue,aa)

   }

   dimnames(data.plasma)[[2]]_c(“iter”,paste(“h”,t,sep=””))

   dimnames(data.tissue)[[2]]_c(“iter”,paste(“h”,t,sep=””))

 #### to calculate the AUC ratio by mean pooling

 # the ratio is saved as r.pooling

 a_apply(data.plasma,2,mean)

 a_as.vector(unlist(a))

 a_a[-1]

 b_as.vector(Trapezoidal.hmc(time=t,DV=a) )

 a_apply(data.tissue,2,mean)

 a_as.vector(unlist(a))

 a_a[-1]

 b1_as.vector(Trapezoidal.hmc(time=t,DV=a) )

 r.pooling_b1/b

 ans_list(data=data,r.pooling=r.pooling,tissue=data.

tissue,plasma=data.plasma)

 invisible(ans)

}



#------------------------------------------------------------------

### to generate “B1” (M copies of) replication of Psuodoprofile and

### associated AUC for each subject in the data set

PpbB.sub1_function(B1,data,tissue,plasma,n)

{

   ## // start

   # n is the number of animals in the study

   ## irep == (B1 time loop in step 1 and 2 of the paper)

   t_sort(unique(data$Time))

   size.n_length(t)

   for (k in 1:length(B1))

   {

      irep_B1[k]

      #n_18

      junk.tissue_matrix(rep(NA,irep*size.n),ncol=size.n)

      junk.plasma_matrix(rep(NA,irep*size.n),ncol=size.n)

      ## irow*icol (18) is the loop for each subject

      ##  icol is the loop for each time point within irow-th 

subject

      ##  j is the M-copy loop of calculating AUC for each 

subject

      ## the outcome stored in ans and rename as ans.rep.**

      # to sample by time point

      for(i in 1:size.n)

      {

         a_sample(x=c(1:3),size=irep,T) 

         junk.tissue [,i]_tissue[a,i+1]

         junk.plasma[,i]_plasma[a,i+1]

      }

 ## to calcualte AUC

 ans_data.frame(rep=rep(B1[k],irep),AUC.l=rep(NA,irep),AUC.

p=rep(NA,irep))

 for ( i in 1:irep)

 {
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   a_as.vector(unlist(junk.tissue[i,]))

   ans$AUC.l[i]_Trapezoidal.hmc(time=t,DV=a)

   a1_as.vector(unlist(junk.plasma[i,]))

   ans$AUC.p[i]_Trapezoidal.hmc(time=t,DV=a1)

 }

 if(k==1){ans.PpbB.total_ans}

 else {ans.PpbB.total_rbind(ans.PpbB.total,ans)}

 }

 # to calculate the paired ratio

 ans.PpbB.total$ratio.p_ans.PpbB.total$AUC.l/ans.PpbB.total$AUC.p

 # to calculate the unpaired ratios

 ans.PpbB.total$ratio.u_rep(NA,nrow(ans.PpbB.total))

 for (i in 1:length(B1))

 #for (i in 1:1)

 {

  b1_ans.PpbB.total$AUC.p[ans.PpbB.total$rep==B1[i]]

  b2_ans.PpbB.total$AUC.l[ans.PpbB.total$rep==B1[i]]

  b3_sample(x=c(1:length(b1)),size=length(b1),F) 

  ans.PpbB.total$ratio.u[ans.PpbB.total$rep==B1[i]]_b2/b1[b3]

 }

 invisible(ans.PpbB.total)

}

#------------------------------------------------------------------

PpbB.sub2_function(B1=300,data=ans.PpbB.total,irep=100,n=18)

{

 ans_matrix(rep(NA,6*irep),nrow=irep) # columns are summary stats 

and row is the replicates

 for (i in 1:irep)

    {

      a_sample(x=seq(1:nrow(data)),size=n,T)

      a_sample(x=seq(1:nrow(data)),size=n,T)

      #ans[,i]_data$ratio.p[a]

      ans[i,]_as.vector(summary(data$ratio.p[a]))

    }

 ans_as.data.frame(ans)

 dimnames(ans)[[2]]_c(“Min”,”Q1”,”Q2”,”Mean”,”Q3”,”Max”)

 invisible(ans)

}



#------------------------------------------------------------------

##############################################

### random sampling approach

rs.sub1_function(tissue,plasma,irep=300)

{

  junk.tissue_matrix(rep(NA,irep*size.n),ncol=size.n)

  junk.plasma_matrix(rep(NA,irep*size.n),ncol=size.n)

  ## irow*icol (18) is the loop for each subject

  ## icol is the loop for each time point within each subject

  ## j is the M-copy loop of calculating AUC for each subject

  ## the outcome stored in ans and rename as ans.rep.**

  ID.n_0

  for(irow in 1:nrow(tissue))

  {

    for(icol in 3:ncol(tissue))

    {

    # for each subject

    ID.n_ID.n+1

  junk_data.frame(ID=rep(ID.n,irep),rep=seq(1,irep),AUC.

p=rep(NA,irep),AUC.l=rep(NA,irep))

    junk.tissue_matrix(rep(NA,irep*(size.n-1)),ncol=(size.n-1))

    junk.plasma_matrix(rep(NA,irep*(size.n-1)),ncol=(size.n-1))

    for(i in 1:(size.n-1))

    {

      a_sample(x=c(1:3),size=irep,T)

      junk.tissue [,i]_tissue[a,i+2] 

      junk.plasma[,i]_plasma[a,i+2] 

    }

    for (j in 1:irep)

    {

  junk$AUC.l[j]_Trapezoidal.hmc(time=t,DV=c(0,junk.tissue[j,]))

  junk$AUC.p[j]_Trapezoidal.hmc(time=t,DV=c(0,junk.plasma[j,]))

  #cat(“\n iter”, irep,”AUC of tissue = “,junk$AUC.l[j],”\n”)

    }

    if ( icol*irow==3) {ans_junk}

    else {ans_rbind(ans,junk)}

  }

 }
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 ans$ratio_ans$AUC.l/ans$AUC.p

 invisible(ans)

}

#------------------------------------------------------------------

#########################################################

#### random sampling approach

## to generate M copies of N=18 virual studies

rs.sub2_function(data,irep=100,n=18)

{

  ans_matrix(rep(NA,6*irep),nrow=irep) # columns are summary stats 

and row is the replicates

  for (i in 1:irep)

  {

    a_sample(x=seq(1:nrow(data)),size=n,T)

    #ans[,i]_data$ratio[a]

    ans[i,]_as.vector(summary(data$ratio[a]))

  }

  ans_as.data.frame(ans)

  dimnames(ans)[[2]]_c(“Min”,”Q1”,”Q2”,”Mean”,”Q3”,”Max”)

  invisible(ans)

}

#------------------------------------------------------------------

Trapezoidal.hmc_function(time,DV)

{

  if(length(time)!=length(DV))

   {stop(“The counts of DV and Time are different!”)}

  else

  {

    n_length(time)

    x_time[2:n]-time[1:(n-1)]

    y_(DV[2:n]+DV[1:(n-1)])/2

    a_t(x)%*%y

    a

    invisible(a)

  }

}
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43.1 INTRODUCTION

In recent years, physiologically based pharmacokinetic (PBPK) modeling has been 
increasingly adopted in the pharmaceutical industry due to the feasibility of devel-
oping these models without data from in vivo experiments. A signifi cant part of 
the PBPK modeling literature to date deals with toxicological risk assessment, and 
the models have often been developed using data from high-dose experiments on 
animals. In the pharmaceutical industry, empirical “compartmental” pharmacoki-
netic models (hereafter referred to simply as PK models) have been used far more 
widely than their PBPK counterparts.

Both the PBPK and PK models can be classifi ed as transport–transformation 
models, as they describe the transport and metabolism (transformation) of chem-
icals within physiological systems; these are key processes affecting concentra-
tions of chemicals in tissues, and hence the responses of physiological systems to 
exposure.

A key difference between PK and PBPK models is that the PBPK models can 
be used to predict concentration–time profi les in several tissues of interest, whereas 
the predictions of a PK model are constrained to tissues accessible to measurement. 
This is because the PK models are “phenomenological,” whereas PBPK models are 
“mechanistic.” More specifi cally, though both PK and PBPK models describe the 
body in terms of compartments, in the case of PK models, the compartments need 
not represent any physiological entities, whereas in PBPK models, the compart-
ments represent organs or tissues or groups of organs and tissues (1). The structure 
of a PBPK model is derived from basic anatomical and physiological structure of 
the organism studied, whereas the structure of a PK model is typically based on 
the available drug disposition data. This can be considered as a major distinctive 
feature and advantage of PBPK models.

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene I. Ette and 
Paul J. Williams
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Another advantage of PBPK models over PK models is that PBPK models are 
more amenable to different types of rational, mechanistically based extrapola-
tion, including cross-species, cross-tissue, cross-chemical, and high-dose to low-
dose extrapolations. Since PK models are empirical, they should strictly be used 
for interpolation only within the range of the experimental data. The cross-species 
extrapolation of PBPK models is based on the rationale that the whole body struc-
ture is similar in different mammals, such as mice, rats, dogs, and humans. In fact, 
a majority of PBPK models in toxicology and risk assessment have been developed 
by utilizing animal experiments and have been scaled for risk assessment studies 
in humans. Because PK models are empirical, the model parameters are often esti-
mated using in vivo response data, and the number of parameters in these models is 
limited by the identifi ability of these parameters with respect to available response 
data. In contrast, PBPK models are mechanistically based and have physically 
meaningful parameters, most of which can be obtained from independent experi-
ments or from the literature. A majority of remaining PBPK model parameters 
can be estimated from in vitro data without the need for data from expensive in 
vivo studies. Furthermore, PBPK models are also amenable to iterative refi nement 
based on new data, often collected from independent experiments (1, 2).

The main limitation of PBPK models is that the number of model parameters 
is usually much higher than the corresponding PK models. Therefore, parameter 
estimation in case of PBPK models is a more complex task. Though PBPK models 
are amenable to iterative refi nement via utilization of parameter estimates from 
multiple sources, signifi cantly more computational and mathematical expertise is 
required in developing a PBPK model than the corresponding PK model (1). More-
over, because of the large number of model parameters in PBPK models, suffi cient 
effort must be invested in performing comprehensive sensitivity and uncertainty 
analyses of these models.

Overall, PBPK models can provide insight into the several aspects associated 
with the kinetics of a drug within the human body, collectively termed as ADMET, 
for absorption, distribution, metabolism, elimination, and toxicity. An application 
of the PBPK models at the early stage of drug development can be useful to rapidly 
screen candidate drugs based on their PK properties via in silico approaches (3, 4). 
Due to the rapid increases in the computational power, and the parallel advances 
in the PBPK area, the role of PBPK models in pharmacometrics is likely to sub-
stantially increase.

This chapter serves three purposes: (a) to provide a brief overview of PBPK 
modeling, (b) to present a tutorial on the issues and steps involved in the develop-
ment of a PBPK model, and (c) to present an application and discuss relevant issues 
associated with model refi nement, evaluation, parameter estimation, and sensitiv-
ity/uncertainty analysis. First, some basic background information is provided, and 
references to important resources are presented. Then the process of developing 
a PBPK model is discussed, and a step-by-step description of a PBPK modeling 
example is provided, along with a brief discussion on relevant complementary 
issues such as model parameter estimation and sensitivity/uncertainty analysis. The 
example is presented in a manner that a novice PBPK modeler can follow the 
model structure, mathematical equations, and the code. Relevant cross-references 
between the equations, parameter tables, and the actual code is presented. Though 
the example is implemented in Matlab (5), it does not require substantial Matlab 



experience to run the code and make minor changes to the code. The example is 
aimed to facilitate even beginner programmers to easily follow the code.

43.2 OVERVIEW OF PBPK MODELING

Though the conceptual formulation of PBPK models can be attributed to Teorell 
(6, 7), computational PBPK models were fi rst implemented by Bischoff and Brown 
(8) and have been extensively applied to describe the pharmacokinetics of toxic 
chemicals. An extensive overview of the PBPK modeling studies for a wide range of 
chemicals is presented by Reddy et al. (2), with a compilation of past PBPK studies 
including volatile organics, aromatics, pesticides, dioxins, metals, and chemical mix-
tures. The classifi cation is based primarily on the class of chemicals, so a researcher 
can easily obtain a list of different models and approaches used for a given chemical. 
One reason that PBPK models are the tool of choice for estimating the concentra-
tion–time profi les of toxic chemicals in the body is that it is generally unethical to 
conduct experiments on humans with these chemicals. The PBPK modeling para-
digm offers the advantage of a rational means of predicting the pharmacokinetics 
of a chemical in humans, based on the pharmacokinetics in animals. It also offers 
the possibility of refi ning the characterization of human pharmacokinetics based 
on in vitro data obtained from human-derived experimental systems. Furthermore, 
PBPK models also provide a rational means of estimating the exposure of one or 
more target organs to the toxic chemical.

A useful overview of PBPK modeling from the perspective of the pharmaceutical 
industry has been published by Nestorov (1), focusing on the applicability of PBPK 
modeling for medicinal compounds. Another overview of the recent progress in 
PBPK modeling pertinent to drug development and regulatory science is provided 
by Rowland et al. (9). PBPK modeling issues relevant to drugs are also discussed 
by Reddy (10), with a chapter devoted to an overview of PBPK modeling for anti-
neoplastic agents.

43.3 STEPS IN FORMULATING A PBPK MODEL

The main steps in the formulation of a PBPK model include specifying the 
mathematical structure, specifying model parameter values, and computa-
tional (software) implementation of the model. In cases where in vivo data 
are available, some of the model parameters may be estimated from the in 
vivo data using statistical parameter estimation techniques. Several resources 
are available to aid scientists interested in using existing PBPK models or im-
plementing new PBPK models. These resources include knowledge bases of 
PBPK modeling literature, and databases of relevant physiological parameters 
and biochemical properties. Additionally, computational toolkits for rapid 
development and implementation of PBPK models and supplementary toolkits 
for PBPK parameter estimation and uncertainty analysis are also available. A 
knowledge base of relevant resources for PBPK modeling is presented at the 
Physiomics section of the Environmental Bioinformatics Knowledge Base (ebKB; 
www.environmentalbioinformatics.org).
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43.3.1 Specifying Structure of the PBPK Model

The mathematical formulation of the PBPK model is dependent on several 
factors: routes of intake of a chemical or sites of drug administration, target 
tissues of interest, physiological components to be explicitly modeled (kinetically 
important tissues and organs and the linkages between them), transport processes of 
the chemical (fl ow, diffusion, disposition, clearance, etc.), and metabolic processes 
involved.

• The main routes of intake of a chemical are ingestion (dietary or nondi-
etary), inhalation, dermal absorption, and parenteral (intravenous, intramus-
cular, intrathecal, intraperitoneal, and subcutaneous). The structure of a PBPK 
model is dependent on the intake routes, as the corresponding organs or tissues 
usually need to be explicitly modeled in order to describe the uptake of the 
chemical. It is therefore advisable to identify routes of uptake prior to develop-
ing the PBPK model.

• The choice of organs and tissues to be explicitly modeled in the PBPK model 
depends on several factors: sites of dose administration and exposure scenarios; 
sites of metabolic activity within the body; target tissues or potential sites of 
action; and physicochemical (thermodynamic) attributes of the chemical, such 
as lipophilicity. Organs that are usually explicitly described in a PBPK model 
include liver (primary site of biotransformation), lung (for volatile chemi-
cals that are absorbed by inhalation and eliminated by exhalation), skin (for 
exposure scenarios that include dermal absorption), gastrointestinal tract (for 
absorption of ingested chemicals), and kidney (for renal excretion). Both arte-
rial and venous bloodstreams are usually modeled separately (either explicitly 
as compartments or implicitly) and are linked to other compartments in a 
manner representative of body blood circulation. The remaining tissues and 
organs are usually lumped into three compartments according to their kinetic 
characteristics: “rapidly perfused,” “slowly perfused,” and “fat.” The kinetic 
characteristics of a compound and thus the choice of lumping scheme are 
dependent on the chemical properties of the compound (lipophilic/hydrophilic) 
and the rate of blood fl ow to the tissue, relative to its volume. Ideally, a sensitiv-
ity analysis should be performed by considering competing model structures, 
and an appropriate model should be selected based on the sensitivity analysis. 
An organ should be explicitly modeled and not lumped with kinetically similar 
tissue provided that a sensitivity analysis indicated that doing so results in a 
meaningful change in the target organ exposure. Figure 43.1 shows the PBPK 
model structure used in this example application.

• The main processes governing the pharmacokinetics of a chemical are absorp-
tion, distribution, metabolism, and excretion. In PBPK models, distribution of 
a chemical is characterized by blood fl ow rates to each organ and tissue, and 
partitioning of the chemical between tissue and blood. These processes are 
commonly modeled using two alternative types of assumptions: fl ow-limited 
and diffusion-limited transport. The fl ow-limited assumption implies that equil-
ibration between free and bound fractions in blood and tissue is rapid, and 
that concentrations of the chemical in the venous blood exiting a tissue and 
in the tissue are at equilibrium. The tissue is assumed to be a homogeneous 



well-mixed space with respect to concentration of the chemical. On the other 
hand, a diffusion-limited assumption implies that there are signifi cant barriers 
to transport of the chemical between blood and tissue. In the diffusion-limited 
case, permeability rates are used to describe transport of chemical between 
blood and the tissue. It is also possible to have diffusion-limited transport 
within a tissue (e.g., between intracellular and interstitial spaces). In such 
a case, the tissue is divided into multiple compartments, each of which is 
well mixed, and diffusion-limited permeability rates are used for transport 
across these compartments. Usually, in the diffusion-limited case, the tissue 
is modeled as two subcompartments with diffusion-limited transport between 
them (11). Complex tissue models taking into account multiple components 
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FIGURE 43.1 Schematic of the structure of the PBPK model structure used in the example. 
(Adapted from Roy et al. (46).)
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within a tissue have also been proposed (12). The main limitation of tissue 
models with multiple compartments is the large number of parameters that 
are required. In some cases diffusional barriers may exist to transport across 
the entire tissue, not just between subspaces within a tissue. In this case the 
well-mixed tissue assumption is not appropriate, and the concentration gradi-
ent of the chemical within the tissue is described by a partial differential equa-
tion. The concentration gradient is characterized by a single parameter, the 
diffusion constant. An example is shown in the PBPK application described 
in Section 43.5.

• The mathematical structure of a PBPK model typically involves a set of ordi-
nary differential equations. Partial differential equations can be solved by 
discretizing the compartment containing a concentration gradient into multiple 
identical compartments, each of which can be represented by an ordinary dif-
ferential equation. An example is the discretization of the stratum corneum 
subcompartment of the skin, shown in Section 43.5.

43.3.2 Specifying PBPK Model Parameters

Once the structure of the PBPK model is formulated, the next step is specify-
ing the model parameters. These can be classifi ed into a chemical-independent 
set of parameters (such as physiological characteristics, tissue volumes, and 
blood fl ow rates) and a chemical-specifi c set (such as blood/tissue partition coef-
fi cients, and metabolic biotransformation parameters). Values for the chemical-
independent parameters are usually obtained from the scientifi c literature and 
databases of physiological parameters. Specifi cation of chemical-specifi c parameter 
values is generally more challenging. Values for one or more chemical-specifi c 
parameters may also be available in the literature and databases of biochemical 
and metabolic data. Values for parameters that are not expected to have substantial 
interspecies differences (e.g., tissue/blood partition coeffi cients) can be imputed 
based on parameter values in animals. Parameter values can also be estimated 
by conducting in vitro experiments with human tissue. Partitioning of a chemical 
between tissues can be obtained by vial equilibration or equilibrium dialysis studies, 
and metabolic parameters can be estimated from in vitro metabolic systems such 
as microsomal and isolated hepatocyte sytems. Parameters not available from the 
aforementioned sources can be estimated directly from in vivo data, as discussed 
in Section 43.4.5.

43.3.2.1 Physiological Parameters
Typical values for the physiological parameters such as tissue volumes, blood fl ow 
rates, inhalation rates, and body surface area (for dermal absorption) can be obtained 
from the literature (13–15). For a specifi c target group of individuals, allometric 
scaling can be used based on the available physiological data for the individuals to 
be studied (such as age, gender, and body weight) (16). For population PK models 
that characterize the interindividual variability in pharmacokinetics among subjects 
in a population, distributions of the parameters in the population are needed. It 
should be noted that it is generally not appropriate to assume that the parameters 
distributions are independent. A database of physiological parameter distributions 
that accounts for correlations is provided as part of the Physiological Parameters for 



PBPK Modeling (P3M) program (17). The joint probability distribution of relevant 
physiological parameters can be constructed empirically from the P3M database, 
conditioned on age, sex, and ethnicity.

43.3.2.2 Partition Coeffi cients
Biochemical parameters such as tissue/blood partition coeffi cients can be obtained 
from in vitro experiments with vial equilibration (18) or equilibrium dialysis tech-
niques (19). A less expensive process involves exploiting the similarities in physical 
characteristics of similar tissues in animals and humans and using in vitro animal 
data (20). Other, even more cost-effective techniques include extrapolation from 
experimentally determined octanol/water partition coeffi cients (21), or in silico 
parameter estimation via techniques based on structure–property relationships 
(22, 23).

For common toxic chemicals, the Agency for Toxic Substances and Disease Reg-
istry (ATSDR) (www.atsdr.cdc.gov/toxpro2.html) maintains “toxicological 
profi les” with detailed information about toxicokinetic parameters for the chemi-
cal, with available reports for over 250 chemicals. Several commercial ADMET 
programs include databases of partition coeffi cients and modules for estimating 
them for a large set of chemicals. Examples include the KnowItAll informatics 
system from BioRad (www.knowitall.com) and chemical property predictor soft-
ware from ChemSilico (www.chemsilico.com).

43.3.2.3 Biotransformation Parameters
Similar to the techniques used for calculation of chemical disposition parameters, 
in vivo biotransformation kinetic parameters of a substrate can be estimated from 
in vitro systems such as microsomes, freshly isolated hepatocytes, liver slices, and 
isolated perfused livers (24). Intrinsic clearance or Michaelis–Menten parameters 
for the whole liver can also be obtained by “scaling” in vitro parameters based on 
the cytochrome P450 enzyme content (25–27). These parameters can also be esti-
mated from in vitro data obtained from recombinant human CYP systems, and also 
through allometric scaling of clearance estimates from animal PBPK models.

43.4 STEPS IN MODEL IMPLEMENTATION, EVALUATION, AND 
REFINEMENT OF PBPK MODELS

43.4.1 Resources for Implementation of the PBPK Model

The computational implementation of a PBPK model can be accomplished using 
a variety of software tools. Available tools for PBPK modeling range from general 
purpose computational modeling systems to interfaces specifi cally designed for 
PBPK modeling. Since the PBPK models are typically described by sets of ordinary 
differential equations, it is possible to implement a PBPK model in any modern 
programming language or modeling system with relative ease by using the available 
numerical libraries. Some of the commonly used tools for PK and PBPK modeling 
are shown in Table 43.1. Comparative evaluation studies using some of these tools 
for PBPK simulation have been presented in the literature (28, 29). A comprehen-
sive list of resources for the implementation of the PBPK models is available in the 
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TABLE 43.1 List of Software Systems Useful for the Development and 
Analysis of PBPK Models

Software Systems Reference Notes

Environments for Rapid Generation of PBPK Models

ERDEM (exposure www.epa.gov/heasdweb/ Allows graphical PBPK model
 related dose   design and provides parameters
 estimating model)   for a set of toxic chemicals.
   Requires the free advanced
   continuous simulation language
   (ACSL) viewer from
   www.acslsim.com

PKQuest www.pkquest.com Contains a set of PBPK modeling
   routines in Maple and requires
   Maple (commercial;
   www.maplesoft.com)

WinSAAM www.winsaam.com Based on modeling and linking
   compartments; graphical design
   of PBPK

acslXtreme PK/PD www.aegisxcellon.com/ Built in PK, PBPK, and PD blocks,
 Toolkit  Pharmacokinetic and features such as Monte Carlo
 (commercial)  _Toolkit.html  and sensitivity analysis

ModKine www.biosoft.com/ General kinetics modeling program
 (commercial)  w/modkine.htm with PK/PD support

PK-Sim www.pk-sim.com PBPK simulation via proprietary
 (commercial)   modules for the calculation of
   model parameters from easily
   obtainable chemical properties

Simcyp www.simcyp.com Graphical, interactive environment
 (commercial)   for PK modeling, including
   enzyme kinetics, and drug–drug
   interactions

Gastro-Plus http://www.simulations Graphical program simulating
-plus.com/products/ absorption and pharmacokinetics
gastro_plus/  of orally dosed drugs

General Purpose Scientifi c Modeling Tools

Matlab www.mathworks.com Powerful scripting language with
 (commercial)   general purpose toolboxes, and
   graphical model design using
   SIMULINK; also provides user-
   contributed PBPK toolboxes

GNU Octave www.octave.org A free alternative to Matlab

acslXtreme www.aegisxcellon.com Scientifi c modeling system with
 (commercial)   graphical model design, and a
   PK/PD toolkit. Supports the
   ACSL language



TABLE 43.1 Continued

Software Systems Reference Notes

WinNolnlin www.pharsight.com/ General purpose simulation system
 (commercial)  products/winnonlin  with a set of PK, PD, and PK/PD
   link models

STELLA www.hps-inc.com Provides an icon-based interface
 (commercial)   for model building and
   simulation, and also for
   sensitivity analysis

Berkeley Madonna www.berkeleymadonna.com General purpose differential
 (commercial)   equation solver

ADAPT II bmsr.usc.edu/Software/ Simulation system for models
   described by fi rst-order ODEs
   (includes some PK/PD examples)

General Data Analysis and Parameter Estimation Tools

WinNonMix www.pharsight.com/ Interactive system for nonlinear
 (commercial)  products/winnonmix mixed-effects modeling

NONMEM www.globomax.com General purpose toolkit for
 (commercial)   parameter estimation for
   nonlinear mixed effects models
   (NONMEM).

MCSim toxi.ineris.fr/en/ Provides interfaces for designing
   ODE models and utilize
   Bayesian inference through the
   Markov chain Monte Carlo
   (MCMC) approach

BUGS (Bayesian mathstat.helsinki.fi/ Bayesian analysis of complex
 inference using  openbugs/ statistical models using MCMC
 Gibbs sampling)

Physiomics section of the Environmental Bioinformatics KnowledgeBase (ebKB; 
www.environmentalbioinformatics.org).

43.4.2 Testing, Evaluation, and Refi nement of the PBPK Model

Once a PBPK model is developed and implemented, it should be tested for mass 
balance consistency, as well as through simulated test cases that can highlight 
potential errors. These test cases often include “software boundary conditions,” 
such as zero dose and high initial tissue concentrations. Some parameters in the 
PBPK model may have to be estimated through available in vivo data via standard 
techniques such as nonlinear regression or maximum likelihood estimation (30). 
Furthermore, in vivo data can be used to update existing (or prior) PBPK model 
parameter estimates in a Bayesian framework, and thus help in the refi nement of 
the PBPK model. The Markov chain Monte Carlo (MCMC) (31–34) is one of the 
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most widely used Bayesian techniques for parameter estimation. Once the model 
parameters are estimated from available data, techniques such as the posterior 
predictive checking (35, 36) can be utilized to assess the model performance.

43.4.3 Sensitivity and Uncertainty Analysis

Comprehensive sensitivity analyses of PBPK models, focusing on the sensitivity of 
model outcomes to both the model structure and model parameters, can provide 
guidelines toward selecting appropriate model structures and can direct data gath-
ering needs. Conventionally, the sensitivity of model outputs to model inputs is 
described by the sensitivity coeffi cients, typically the partial derivatives of the model 
output with respect to each input (37), either through multiple simulations, or using 
the inbuilt features of the software packages. For example, the Advanced Continu-
ous Simulation Language (ACSL) system (www.acslsim.com) provides functions 
for automatically calculating the sensitivity coeffi cients of model outputs. Some of 
the advanced techniques for performing sensitivity analysis are based on computer 
processing of the PBPK model source code. One example is the automatic differ-
entiation technique, which has been applied for sensitivity and uncertainty analysis 
of PBPK models (38).

Characterizing the overall uncertainties associated with the PBPK model esti-
mates is also an important component of the PBPK model evaluation and appli-
cation. This includes characterizing the uncertainties in model outputs resulting 
from the uncertainty in the PBPK model parameters. Traditionally, Monte Carlo 
has been employed for performing uncertainty analysis of PBPK models (39, 40). 
Some of the recent techniques that have been applied for the uncertainty analysis 
of PBPK models include the stochastic response surface method (SRSM) (38, 41) 
and the high-dimensional model reduction (HDMR) technique (42).

43.4.4 Extending the Model for Population Studies (Variability Analysis)

PBPK models for individuals can be extended to estimate the variability of response 
in a population by addressing the interindividual variability in model parameters. 
Ideally, the variability in PBPK model parameters is specifi ed by a joint probability 
distribution that accounts for correlations between each pair of model parameters. 
However, the substantial amount of data that would be needed to develop the joint 
distribution is often not available. A fi rst approximation of correlations between 
physiological parameters in the model can be obtained by ensuring that joint distri-
butions of body weight, age, and gender are maintained. The model parameters that 
are functions of these individual covariates will then refl ect these correlations. A 
convenient source of individual covariates is provided by the P3M program (17). A 
practical method for estimating the joint distribution of all model parameters from 
in vivo data is provided by empirical Bayesian methods using Markov chain Monte 
Carlo (MCMC) simulation, discussed in the following section.

43.4.5 Model Parameter Estimation

Estimation or refi nement of model parameters, sometimes described as the 
“inverse problem,” is complex because such problems usually do not have a unique 
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solution, and the solution methods are often concerned with fi nding the “best pos-
sible solution” with respect to some objective criteria. One of the commonly used 
techniques for parameter estimation is maximum likelihood estimation (MLE). 
Given the model parameter set and data, the MLE technique is based on maximiz-
ing the likelihood (conditional probability, given a set of parameter values) that 
differences between data and model results are due to random error. The MLE 
approach has been used to estimate metabolic parameter values (Vmax, and Km) from 
in vivo data (43), but the approach cannot be used to simultaneously estimate all 
the parameters in the model, as all the parameters are not simultaneously identifi -
able (44). Bayesian techniques, such as the Markov chain Monte Carlo (MCMC) 
(31, 32) simulation, provide probabilistic estimates of an arbitrarily large number 
of parameters based on prior parameter information in the form of probability 
distributions and experimental data and are being applied increasingly in PBPK 
modeling (33, 34, 45).

43.5 APPLICATION EXAMPLE: A PBPK MODEL FOR CHLOROFORM

An example of a PBPK model that illustrates some of the concepts described in the 
preceding sections is presented below. This example is based on a PBPK model of 
chloroform in humans from Roy et al. (46) as presented in Figure 43.1. Chloroform 
is a water disinfection (chlorination) by-product present in municipal tap water and 
in swimming pools, and relatively short-term dermal and ingestion exposures to 
chloroform occur during showering, bathing, and swimming. The general approach 
described here is directly applicable to the modeling of several gaseous and volatile 
organics. Furthermore, the structure of the PBPK model shown here can be adapted 
in a relatively straightforward manner to nonvolatile chemicals as well.

The following section presents a step-by-step tutorial example of the implementa-
tion of a PBPK model for chloroform. The model has been coded in Matlab Version 
7.0, and effort is made to design it in the form of a reference implementation that is 
easily extensible for PBPK models for other chemicals. A summary of the Matlab 
code is provided in Table 43.4, and code listings are presented in the appendix.

43.5.1 Model Structure

The chloroform PBPK model describes intake from inhalation, dermal absorption 
from either water or air, and oral ingestion from drinking water. The intravenous 
injection route is also added in this model so that it can be used for other chemicals. 
The corresponding media concentrations of chloroform, in the air, drinking water, 
and shower water, are dependent on the exposure scenario and hence are to be 
provided as model inputs.

Liver, kidney, skin, gut, and fat are explicitly modeled as individual compart-
ments, with the remaining tissues and organs lumped into either “slowly perfused” 
or “rapidly perfused” tissue. The lung is also modeled as a separate compartment 
but is used primarily to describe the exchange of chloroform between the air and 
blood, with the assumption that the venous blood and air exiting the lung compart-
ment are in equilibrium with respect to concentration of chemical. It is assumed that 
a negligible amount of the chemical accumulates in the lung, which can be justifi ed 
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FIGURE 43.2 The three different models for the skin compartment used in the PBPK 
model. (Adapted from Roy et al. (46).)

on the grounds that the mass of the lung is a small fraction of total body mass, and 
therefore any accumulation is likely to be negligible.

The main assumption used with respect to the biological transport of the chemi-
cal is that of “fl ow-limited” transport. Inhalation is modeled by assuming that the 
inhaled air mixes instantaneously and reaches equilibrium with the venous blood 
in the lung. Dermal absorption is modeled using three approaches: one compart-
ment representing the skin (one-skin), two compartments representing the skin 
(two-skin), and a distributed compartment representing the skin (distributed-skin), 
as shown in Figure 43.2. Oral ingestion via drinking water is modeled by assuming 
that the all the chloroform in drinking water is rapidly absorbed in GI lumen.

The tissue volume fractions are assumed to be fi xed, but the actual total tissue 
volume is based on sex-dependent allometric scaling factors and body weight. The 
cardiac fl ow rates to different tissues are also based on allometric scaling factors. 
However, customizations based on other assumptions (e.g., sex-dependent tissue 
volume fractions) or on physiological parameter databases can easily be performed 
by modifi cation of the code presented in Code Listing 3 (e.g., Appendix 43.3, Lines 
45, 46, 99, etc.).
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Chloroform is assumed to be metabolized in either the liver or the kidney, and 
the rates of biotransformation in these tissue are described by Michaelis–Menten 
kinetics. Metabolism is implemented in a general manner, with biotransformation 
possible in any compartment. Biotransformation is limited to the liver and kidney 
by setting the Vmax coeffi cients for compartments other than the liver and kidney to 
zero (see Lines 100 and 101 in Code Listing 3, Appendix 43.3).

43.5.2 Specifying Model Inputs and Outputs

Model inputs consist of exposure scenario and physiological characteristics of the 
exposed individual. An exposure scenario is specifi ed by chloroform concentrations 
in media (air and water) and the duration of contact with water. Media concentra-
tions can change with time, depending on the location and activity of the individual. 
Physiological characteristics of an individual, such as body weight, surface area, 
age, and sex, are used as inputs into the model. The main model outputs of interest 
are exhaled air concentration–time profi le, area under concentration–time profi le 
in liver (AUCL), and cumulative amount metabolized in liver (CML). Exhaled 
air concentrations serve as a surrogate for arterial blood concentrations, as these 
concentrations are assumed to be in equilibrium. AUCL and CML are calculated 
as measures of exposure, because the liver is the main target organ of chloro-
form toxicity, and the toxicity is believed to be mediated by a reactive metabolite 
(47, 48).

43.5.3 Mathematical Formulation

The mathematical formulation of the PBPK model is derived by applying mass 
balance rules across multiple compartments. The general form of mass balance 
equations is the same for the fat, slowly perfused, rapidly perfused, and kidney 
compartments, whereas the mass balance equations for the liver, gut, and lung 
compartments are unique.

Table 43.2 shows the general model parameters (excluding dermal) used in this 
modeling example, and Table 43.3 shows the dermal model parameters. For all the 
equations, cross-references are provided to the relevant lines of the Matlab code 

TABLE 43.2 PBPK Model Parameters Used in the Example Application, 
Excluding the Dermal Model Parameters

Parameter/   Code Variable/Line Number
Variable Description Value (Cxx:Lyy)

BW Body weight (kg)   70 indiv.BW; (C1:L7)

D Average density of body    1.0 c.Density; (C3:L37)

Km Michaelis-Menten  448 c.MMK.KM_C; (C3:L89)

constant (μg/L) in liver
Qcardiac Total cardiac output    6.40 c.Q_cardiac; (C3:L99)

  (L/min) derived from
  BW and sex based
  allometric factor
Qalveolar Inhalation rate (L/min)    5.80 events.rate_inhale;

(scenario based)   (C1:L20)
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TABLE 43.2 Continued

Parameter/   Code Variable/Line Number
Variable Description Value (Cxx:Lyy)

Vmax Maximum rate of 5120.62 c.VMAX (C3:101); Scaled

  metabolism (μg/min)   from c.MMK.VMAX_C

derivedfrom allometric   (C3:L88)

  scaling factor and BW

Partition Coeffi cients (PC)

Pblood:air Blood:air PC    7.43 c.PC.blood_air; (C3:L78)

Pfat:blood Fat:blood PC   37.7 c.PC.tissue(ID.Fat); (C3:L79)

Psp:blood Slowly perfused tissue:    1.62 c.PC.tissue(ID.SP); (C3:L1.80)

blood PC
Pgut:blood Gut:blood PC    2.3 c.PC.tissue(ID.Gut); (C3:L1.82)

Prp:blood Rapidly perfused tissue:    2.3 c.PC.tissue(ID.RP); (C3:L81)

blood PC
Pliv:blood Liver:blood PC    2.3 c.PC.tissue(ID.Liv); (C3:L83)

Pkid:blood Kidney:blood PC    1.5 c.PC.tissue(ID.Kid); (C3:L84)

Fractional Blood Flow Rates (QF) to Compartments (L/min)

QFfat QF to fat    0.05 c.QCR(ID.Fat); (C3:L49)

QFliv QF to liver    0.07 c.QCR(ID.Liv); (C3:L52)

QFgut QF to gut    0.18 c.QCR(ID.Gut); (C3:L53)

QFrp QF to rapidly perfused    0.26 c.QCR(ID.RP); (C3:L51)

tissue
QFkid QF to kidney    0.25 c.QCR(ID.Kid);(C3:L54)

QFskin QF to skin    0.04 c.QCR(ID.Skin);(C3:L55)

QFsp QF to slowly perfused    0.15 c.QCR(ID.SP); (C3:L50)

  tissue; autoadjusted  Auto adjust: (C3:L56)

so that sum of all
fractions equals 1

Fractional Tissue Volumes (VF) 
(scaled to obtain actual volumes based on body weight and density)

VFfat VF of fat 0.231 c.VR(ID.Fat); (C3:L60)

VFvenous VF of venous blood 0.01 c.venous_blood_volume_fraction;

   (arbitrarilyselected)  (C3:L58)

VFliv VF of liver 0.0314 c.VR(ID.Liv); (C3:L63)

VFrp VF of rapidly perfused 0.0327 c.VR(ID.RP); (C3:L62)

tissue
VFkid VF of kidney 0.0044 c.VR(ID.Kid); (C3:L65)

VFgut VF of gut 0.017 c.VR(ID.Gut); (C3:L64)

VFskin VF of skin 0.1 c.VR(ID.Skin); (C3:L66)

VFsp VF of slowly perfused 0.5735 c.VR(ID.SP); (C3:L61)

tissue; auto adjusted  Auto adjust: (C3:L69)

   so that sum of all
  fractions equals 1
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TABLE 43.3 Continued

Parameter/   Code Variable/Line
Variable Description Value (Cxx:Lyy)

A Body surface area 1800 indiv.BSA; (C1:L8)

(cm2)   
Kmedia:skin (w) Overall skin   1.84 × 10−4 c.K.skin_water;

permeability in   (C4:L54)

  water (cm/min)
Kmedia:skin (a) Overall skin   9.085 × 10−4 c.K.skin_air;

  permeability in   (C4:L58)

  air (cm/min)
  (computed via

Kmedia:skin (w))
Pskin:blood Skin:blood PC   1.6 c.PC.tissue(ID.Skin);

    (C4:L53)

Pskin:air skin:air PC (from  11.888 c.PCMC.skin_air;

skin:blood and   (C4:L56)

  blood:air PCs)
Pskin:water Skin:water PC   1.9377 c.PCMC.skin_water;

(from skin:air and   (C4:L57)

  air:water PCs)
Psc:water Sc:water PC (from  24.4069 c.PCMC.sc_water;

octanol:water PC)   (C4:L83)

Psc:air sc:air PC (from sc:  149.7354 c.PCMC.sc_air;

water and air:   (C4:L84)

  water PCs)
Pvs:sc vs:sc PC (from vs:   0.077 c.PCMC.vs_sc;

water, sc:water,   (C4:L85-L89)

  skin:water, etc.)
Pvs:blood vs:blood PC (from   1.5522 c.PCMC.vs_blood;

 skin:water and   (C4:L88)

  sc:water PCs, etc.)
Kmedia:sc (w) sc permeability in   1.4809 × 10−4 c.K.sc_water;

water (cm/min)   (C4:L93)

Kmedia:sc (a) sc permeability in air   9.085 × 10−4 c.K.sc_air;

(cm/min) (from water   (C4:L94)

Kmedia:sc)
Ksc:vs sc:vs permeability   0.0098 c.K.vs_sc;

   (from sc:water PC   (C4:L95)

  and Cleek and
  Bunge’s B parameter
  calculation [46])
Dsc effective sc diffusivity   6.0676 × 10−9 c.DM.D_sc;

(cm2/min) (from   (C4:L107)

  sc:water and L_sc)
Lsc sc thickness (cm)   0.001 c.D.L_sc; (C4:L60)

Miscellaneous Parameters Used in the Model

 Octanol:water coeffi cient  90 c.PC.chem.octanol_

    water; (C4:L80)
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TABLE 43.4 Overview of the Matlab Code for the Chloroform PBPK Model Example

File Name; Code Listing and Lines Description

PBPK_chloroform_case_study.m Presents the main case study showing how the
 Code Listing 1 (53 Lines)  model confi guration and exposure events can
  be set up for different model structures (e.g.,
  one-skin vs. distributed-parameter skin
  models) and for different exposure scenarios
  (e.g., inhalation and dermal, inhalation only,
  and dermal only)
PBPK_voc_driver.m The “main” simulation function that solves the
 Code Listing 2 (107 Lines)  ordinary differential equations that describe
  the PBPK model. The function returns
  outputs at  different time steps and the
  confi guration information in a structure.
  It also provides the mass balances at the
  corresponding time steps
PBPK_chloroform_config.m Describes the basic structure of the PBPK
 Code Listing 3 (138 Lines)  model used, including the compartments
  and state variables (based on model options),
  allometric scaling factors, partition coeffi cients,
  and metabolic constants
PBPK_add_demal_model.m Updates the PBPK model confi guration by
 Code Listing 4 (110 Lines)  adding the dermal component, based on the
  model options provided. This module provides
  an example of making further customizations
  to the PBPK model confi guration. This model
  is invoked by the main confi guration function.
PBPK_voc_deriv.m Describes the derivatives of the state variables in
 Code Listing 5 (66 Lines)  the model as a function of time. This is invoked
  indirectly through Matlab’s ordinary differential
  equation solver. This model, along with the
  confi guration module, describes the core
  aspects of the PBPK model
PBPK_add_dermal_derivative.m Updates the derivatives with the dermal
 Code Listing 6 (72 Lines)  component. This module also provides an
  example of making further customizations to
  the PBPK model structure and equations. This
  function is invoked by the main derivative
  function.

included, in order to facilitate better understanding of the formulation and imple-
mentation of the PBPK model; the cross-references are in the form “Cxx : Lyy”, 
where “xx” indicates the Code Listing number, and “yy” indicates the Line Number 
within that Code Listing.

The mass balance equation for the fat, slowly perfused, rapidly perfused, and 
kidney compartments is shown in Eq. (43.1).
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(43.1)

where cj is the concentration of the chemical in the jth compartment (with carterial

denoting the concentration in the arterial blood), Qj is the blood fl ow to the jth
compartment, Vj is the volume of the jth compartment, cv,j is the concentration in 
the blood exiting the jth compartment, and Vmax,j and Km,j are the Michaelis–Menten 
constants for the jth compartment. The rest of the symbols used in Eq. (43.1) are 
described in Table 43.2, for different compartments.

For the gut compartment, the amount ingested is assumed to be absorbed into 
the GI lumen based on the bioavailability fraction, which is assumed to be equal to 
1 (C3 : L105). Thus, for a constant rate of ingestion, the equations for gut and lumen 
can be described by Eqs. (43.1) and (43.2).

V
dc

dt
Q c c R Tvgut

gut
gut arterial ,gut gut gut lumen C5 L40, L= −( ) − + : : 554

               lumen
ingest bioavail gut lumen

( )

= −
da

dt
S f Ti :        C5 L52, L53

gut lumen gut lum

:

: :

( )

=T K een lumen              C5 L51ia :( )

(43.2)

Here, fbioavail is the fraction of chemical absorbed into the body and is assumed to 
be 1.0 (C3 : L105), Kgut:lumen is the transfer rate of the chemical from the lumen to 
gut (C3 : L91), alumen is the amount of chemical in the lumen, and Singest is the rate of 
ingestion of the chemical.

Bolus injection events are handled by updating the corresponding state variables, 
such as the amount of chemical in venous blood for intravenous bolus injection, 
and amount of chemical in GI lumen for bolus ingestion, as shown in Code Listing 
2 (Appendix 43.2), Lines 45–51.

The concentration of chloroform in the liver compartment is described by Eq. 
(43.1) and (43.3).

V
dc

dt
Q c c Q c cv v vliver

liver
liver arterial ,liver gut ,gut ,l= −( ) + − iiver liver( ) + R

                       C5 L40, L42, L43:( )
(43.3)

The arterial blood concentration is governed by Eq. (43.4), which is based on the 
equilibrium mass balance for the lung compartment.
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where n is the total number of compartments, and the summation is performed for 
all compartments, excluding the lung and gut. Vvenous_blood is the amount of blood in 
a hypothetical “venous blood compartment,” where the infusion is assumed to take 
place, which is assumed to be 1% of the body volume (C3 : L58). Sinfusion is the rate of 
infusion of the chemical into the venous bloodstream, and cvenous is the concentration 
leaving the venous blood compartment after mixing and infusion, which is the same 
as the concentration of the chemical in the blood entering the lung compartment.

The mass balance equation for the concentration in the skin compartment is 
dependent on the choice of the skin model.

For the one-compartment skin model, the concentration in the skin compartment 
is given by Eq. (43.5).
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(43.5)

For the two-compartment skin model, the concentration in the stratum corneum 
(csc) and in viable skin (cvs) can be calculated using Eq. (43.6).
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(43.6)

For the distributed-parameter skin compartment model, the concentration csc

is calculated by discretizing the stratum corneum compartment into a set of N +
2 equidistant nodes and using the central difference formula. This results in the 
representation of the one-dimensional Fickian diffusion equation to calculate mass 
fl ux at any depth within the stratum corneum (46):
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where csc,i is the concentration in the ith node. The boundary conditions for this 
system are

c c P c c PNsc, media sc media sc, vs vs scand C6 L52 L550 1= = −( )+i : : : (43.8)

The concentration in the viable skin compartment is given by
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43.5.4 Computational Model Implementation

The model has been implemented in Matlab 7.0 and utilizes features for defi ning 
fl exible structures (objects) in Matlab in order to improve both the model read-
ability and extensibility. All the parameters that are needed to specify the model 
are included in a model confi guration object, which is specifi ed as part of the model 
confi guration section.

Minor modifi cations to the structure of the model (such as changing the number of 
tissue compartments) can be made by modifying code in the confi guration module, 
without having to change the code that specifi es the differential equations. The 
confi guration module specifi es model parameters, based on the characteristics of 
the individual (age, sex, and body weight).

43.5.5 Model Application and Scenario Simulation

In this example, two chloroform exposure scenarios were simulated: (a) dermal-
only and (b) simultaneous inhalation and dermal exposures. The inhalation expo-
sures were assumed to occur from breathing air containing chloroform at 0.1 mg/L,
whereas the dermal exposures were assumed to occur due to skin contact with 
water containing chloroform at 150 mg/L. In both scenarios, the exposure duration 
was assumed to be 30 minutes. The exposure event details are presented in Lines 
13–22 of Code Listing 1 (Appendix 43.1). Depending on the type of exposures, the 
corresponding changes were made prior to solving the model (e.g., on Line 33 of 
Code Listing 1, the air concentrations were set to zero, in order to simulate the 
“dermal-only” exposure scenario). Two types of model formulations were studied 
here: the one-compartment skin model and the distributed-parameter skin model. 
The initial concentrations of chloroform in all tissues were assumed to be zero.

Figure 43.3 shows the exhaled breath concentration profi les estimated by the 
one-compartment and distributed-parameter skin models for a dermal-only expo-
sure, whereas Figure 43.4 shows the estimates for a combined inhalation and dermal 
exposure. In both cases, the one-compartment skin model estimates higher peak 
values, and both models predict similar values at steady-state conditions. In the 
dermal-only exposure scenario, only the distributed-parameter skin model cap-
tures the lag between the dermal exposure and exhaled breath concentrations. For 
the combined inhalation and dermal exposure scenario, the distributed-parameter 
skin model shows a rise in the exhaled breath concentrations after the end of the 
exposure; this can be attributed to chloroform in the skin slowly diffusing into the 



1088 PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELING

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

8
x 10

−3

Time from start of exposure (min)

(
n

oitart
nec

n
oc

dela
hx

E
μ

)
L/

g

Distributed−parameter skin model
One−compartment skin model

FIGURE 43.3 Simulated exhaled breath concentrations resulting from a 30 min dermal-
only exposure to chloroform (150 mg/L water concentration), as estimated by two different 
model formulations for the skin compartment.

FIGURE 43.4 Simulated exhaled breath concentrations resulting from a 30 min inhalation 
and dermal exposure to chloroform (150 mg/L water concentration, and 0.1 mg/L air concen-
tration), as estimated by two different model formulations for the skin compartment.
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FIGURE 43.5 Estimates of the cumulative amount of chloroform metabolized in the liver 
(CML) resulting from a 30 min dermal-only exposure to chloroform (150 mg/L water concen-
tration), as estimated by two different model formulations for the skin compartment.
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FIGURE 43.6 Estimates of the area under concentration–time profi le in liver (AUCL) 
resulting from a 30 min dermal-only exposure to chloroform (150 mg/L water concentration), 
as estimated by two different model formulations for the skin compartment.
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FIGURE 43.7 Estimates of the cumulative amount of chloroform metabolized in the liver 
(CML) resulting from a 30 min inhalation and dermal exposure to chloroform (150 mg/L
water concentration, and 0.1 mg/L air concentration), as estimated by two different model 
formulations for the skin compartment.

bloodstream. The one-compartment skin model does not show this rise because 
the entire skin compartment is assumed to be in instantaneous equilibrium with 
the blood.

Figures 43.5 and 43.6 show the cumulative amount metabolized in the 
liver (CML) and area under concentration–time profi le in liver (AUCL) for a 
dermal-only exposure. In this case, the one-compartment skin model estimates 
higher CML and AUCL relative to the distributed-parameter skin model and does 
not account for the lag between the start of the dermal exposure and choloroform 
appearing in the bloodstream. However, after the end of the exposure, estimates 
from both models gradually converge. Similary, Figures 43.7 and 43.8 show the 
CML and the AUCL for a combined inhalation and dermal exposure. In this expo-
sure scenario, AUCL and CML curves diverge following the end of the inhalation 
exposure, with the one-compartment skin model predicting higher values for both 
the CML and the AUCL. In both exposure scenarios, a “time lag” can be observed 
between the two models, and the one-compartment skin model estimates higher 
CML and AUCL relative to the distributed-parameter skin model, with the CML 
and AUCL curves gradually converging after the end of the exposure.

43.6 SUMMARY

An overview of PBPK modeling is presented here focusing on the step-by-step 
development of a PBPK model, followed by a reference implementation of a PBPK 
model for chloroform. The model formulation is general in nature and can be 
extended to nonvolatile chemicals. The example presented here aims to facilitate 



an easy transition of a traditional PK modeler into PBPK modeling, addressing both 
from the mathematical and computational aspects. The mathematical formulation 
and the Matlab code in the example present a tutorial introduction to the compu-
tational implementation of a PBPK model, without requiring signifi cant Matlab 
programming experience. A scientist who is a beginner in programming as well as 
in PK modeling should be able to easily follow the equations and the code provided 
in this chapter, and should be able to gain an understanding of multiple aspects of 
PBPK model development and implementation.
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APPENDIX 43.1 CODE LISTING 1

This Matlab code is for the main chloroform PBPK case study, which simulates the 
PBPK model for different exposure scenarios.

1. function res = PBPK_chloroform_case_study

2. % A case study using a PBPK model for chloroform exposures

3.

4. % Defining the individual

5. indiv.age = 30; 

6. indiv.sex = ‘M’;

7. indiv.BW = 70; % Body Weight (kg)

8. indiv.BSA = 18000; % Body Surface Area (cm^2)

9.

10. modelopts = []; % all defaults => one compartment skin model

11.

12. % start, end exposure, end simulation 

13. events.timestages = [0 30 360]; % minutes

14. events.airconcs = [0.1 0]; % micro.g/L

15. events.contact_media = [1 0]; % dermal contact with water, and then air

16. events.waterconcs = [150 150]; % micro.g/L

17. events.timeincrements = [1 1]; % output increments 

18. events.bolus_ingestion = [0 0]; % amount in micro.g 

19. events.bolus_injection = [0 0]; % amount in micro.g 

20. events.rate_inhale = [5.8 5.8]; % L/min



21. events.drinking_water_rate = [0 0]; % L/min 

22. events.infusion = [0 0]; % micro.g/min 

23. orig_events = events; % saving the events for subsequent reuse

24.

25. config = PBPK_chloroform_config(indiv, modelopts); 

26. % Additional changes to the PBPK configuration can be made here

27.

28. % Case study results

29. events = orig_events; % inhalation and dermal exposures

30. res.oneskin.inh_dermal = PBPK_voc_driver(indiv, config, events);

31.

32. events = orig_events;

33. events.airconcs = [0 0]; % no inhalation exposure; dermal only

34. res.oneskin.dermal_only = PBPK_voc_driver(indiv, config, events);

35.

36. % Distributed parameter skin model

37. modelopts.DM.nskins = 100; % nodes for distributed skin model

38. config = PBPK_chloroform_config(indiv, modelopts); % New configuration

39.

40. events = orig_events; % inhalation and dermal exposures

41. res.dpskin.inh_dermal = PBPK_voc_driver(indiv, config, events);

42.

43. events = orig_events;

44. events.airconcs = [0 0]; % no inhalation exposure; dermal only

45. res.dpskin.dermal_only = PBPK_voc_driver(indiv, config, events);

46.

47. events = orig_events;

48. events.waterconcs = [0 0]; % no dermal exposure; inhalation only

49. res.dpskin.inh_only = PBPK_voc_driver(indiv, config, events);

APPENDIX 43.2 CODE LISTING 2

This Matlab code is for driving the PBPK model simulation based on the model 
and event confi guration. The function is not chemical specifi c.

1. function simout=PBPK_voc_driver(indiv,config,events,opt_amount_initial)

2. % Main driver for the PBPK voc simulation 

3. % Global configuration variables are used to share information between this

4. % function and derivative code, which is invoked indirectly via the

5. % Ordinary Differential Equation (ODE) solver

6. %

7. % Model inputs: 

8. % indiv -- structure containing physiological parameters of individual

9. % events -- structure containing information on the exposure events

10. % config -- structure containing information on PBPK model configuration

11. % opt_amount_initial -- (optional) initial amounts of chemical in tissues
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12. % Model outputs:

13. % simout -- structure containing time profiles of amounts and concentrations,

14. % model and event configurations, as well as mass balance terms

15.

16. global c E; % c is for Configuration and E is for Event Specification

17. c = config;

18.

19. if (nargin >= 4)

20.  amount = opt_amount_initial;

21. else

22.  amount = zeros(c.SV.TotNum, 1); % All state variables set to zero

23. end

24.

25. nstages = length(events.timestages) - 1;

26.

27. saved_amounts = [];

28. saved_times = [];

29. saved_mass_balances = [];

30. saved_sv = [];

31.

32. saved_amounts(end+1,:) = amount; % initial values

33. saved_times(end+1,:) = events.timestages(1); % initial time

34. saved_mass_balances(end+1,:) = 0; % initial values -- zeros

35.

36. SVID = c.SV.ID; % state variable IDs

37.

38. odeset(‘RelTol’, 1e-8, ‘AbsTol’, 1e-12, ‘MaxOrder’, 5, ‘BDF’, ‘on’);

39.

40. for istage=1:nstages

41.  stage_beg = events.timestages(istage);

42.  stage_end = events.timestages(istage+1);

43. E = local_get_event(events, istage);

44. tspan = [stage_beg:events.timeincrements(istage):stage_end];

45. amount(SVID.GILumen) = amount(SVID.GILumen) + . . .

46.  events.bolus_ingestion(istage) * c.F_bioavail_water;

47. amount(SVID.Ingested) = amount(SVID.Ingested) + . . .

48.  events.bolus_ingestion(istage);

49. amount(SVID.Feces) = amount(SVID.Feces) + . . .

50.  events.bolus_ingestion(istage) * (1 - c.F_bioavail_water);

51. amount(SVID.Blood) =amount(SVID.Blood)+events.bolus_injection(istage);

52.

53. [cur_time_new, amount_new] = ode15s(‘PBPK_voc_deriv’,tspan, amount);

54. saved_amounts = [saved_amounts(1:end-1,:); amount_new]; 

55. mass_balances = local_check_mass_balance(c, amount_new);

56. saved_mass_balances = [saved_mass_balances(1:end-1), . . .

57.  mass_balances]; % save mass balances

58. saved_times = [saved_times(1:end-1); cur_time_new];

59.



60. % Save the intermediate state variables such as concentrations and rates

61. saved_sv = saved_sv(1:end-1); 

62. for i=1:length(tspan)

63.  [dummy, optSV] = PBPK_voc_deriv(tspan(i), amount_new(i,:)’);

64.  saved_sv = [saved_sv; optSV];

65. end

66.

67. amount = amount_new(end,:); % Set the state for the next stage

68.

69. end

70.

71. simout.amounts = saved_amounts; % amounts in tissues, etc

72. simout.mass_balances = saved_mass_balances; % mass balance term vs time

73. simout.times = saved_times; % times at which model outputs are saved

74. simout.sv = saved_sv; % state variables of the model

75. simout.PBPK_config = c;

76. simout.event_config = events;

77. simout.concs = [saved_sv.concs]; % main tissues, exhaled, and venous blood

78.

79. function thisevent = local_get_event(events, istage)

80. thisevent.Q.inh = events.rate_inhale(istage);

81. thisevent.Q.DW = events.drinking_water_rate(istage);

82. thisevent.C.inh = events.airconcs(istage);

83. thisevent.C.water = events.waterconcs(istage);

84. thisevent.dermal_contact_media = events.contact_media(istage); 

85. thisevent.Q.infusion = events.infusion(istage);

86.

87. function res = local_check_mass_balance(c, orig_amount)

88. SVID = c.SV.ID; % state variable IDs

89. amount = orig_amount’;

90. % Body burden for all compartments (including stratum corneum)

91. Body_burden = sum(amount(1:length(c.CompName),:)); 

92. Body_burden =Body_burden+amount(SVID.GILumen,:)+amount(SVID.Blood,:);

93. mass_difference = amount(SVID.Inhaled,:) - amount(SVID.Exhaled,:) . . .

94.  + amount(SVID.Ingested,:) - amount(SVID.Feces,:). . .

95.  + amount(SVID.Dermal,:) - amount(SVID.Metabolized,:) - Body_burden;

96.

97. input_dose = amount(SVID.Inhaled,:) + . . .

98.  amount(SVID.Ingested,:) + amount(SVID.Dermal,:);

99. if (abs(input_dose) > eps)

100.  mass_balance_term = mass_difference ./ input_dose;

101. if ( max(abs(mass_difference/input_dose)) > 0.0001 )

102.   error(‘*** mass balance error exceeds 0.01 % ***’);

103. end

104. else

105.  mass_balance_term = zeros(1,size(amount,2));

106. end

107. res = mass_balance_term;
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APPENDIX 43.3 CODE LISTING 3

This Matlab code is for the PBPK model confi guration for chloroform. This pro-
duces a PBPK confi guration object based on the individual’s physiological param-
eters and other model confi guration options.

1. function c = PBPK_chloroform_config(indiv, modelconf)

2. % Provides default configuration values for the PBPK_inhalation model

3. % Structure c holds the complete PBPK Model Configuration

4. % General parameters obtained from Roy et al., Risk Analysis 16(2)

5. % Exception: Q_cardiac from Fisher et al., 1999

6. %

7. % Usage: x = PBPK_inhalation_default_chloroform_config(indiv, modelconf)

8. % Function Inputs:

9. % indiv: a structure with the following fields

10. % age -- age of the individual

11. % sex -- sex of the individual (‘M’ or ‘F’)

12. % BW  -- body weight of the individual

13. % BSA -- body surface area

14. % modelconf: a structure that defines model configuration with fields

15. % DM.nskins -- specifies type of dermal model to use

16. % 1  => one skin model

17. % 2  => two skin model (Stratum Corneum (SC) + Viable Skin)

18. % >2 => distributed skin model with nskins nodes in SC

19. % if this structure is not provided, the default is a one-skin model

20. %

21. % Outputs

22. % c – configuration object for the PBPK model parameters

23. %

24.

25. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

26. % PBPK Model Structure Parameters (e.g. modeled compartments)

27. c.IDNum.Fat = 1; c.CompName{1} = ‘Fat’; % Fat

28. c.IDNum.SP = 2; c.CompName{2} = ‘SP’; % Slowly Perfused Tissue

29. c.IDNum.RP = 3; c.CompName{3} = ‘RP’; % Rapidly Perfused Tissue

30. c.IDNum.Liv = 4; c.CompName{4} = ‘Liv’; % Liver

31. c.IDNum.Gut = 5; c.CompName{5} = ‘Gut’; % Gut

32. c.IDNum.Kid = 6; c.CompName{6} = ‘Kid’; % Kidney

33. c.IDNum.Skin = 7; c.CompName{7} = ‘Skin’; % Skin

34.

35. ID=c.IDNum; % A temporary variable for compartment IDs

36. c.N_Compartments = length(c.CompName); 

37. c.Density = 1.0; % Body and tissue density

38.

39. % Set important variables to NaN. Helps in identify initialization errors

40. nanArray=NaN(1,c.N_Compartments);%NaNscorrespondingtoeachcompartment

41. c.PC.tissue = nanArray; % Blood partition coefficients for all compartments

42.



43. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

44. % Chemical-independent physiological parameters (volume ratios, etc)

45. c.AF.QC.M = 15.87; % Allometric factor (AF) for cardiac output (Males)

46. c.AF.QC.F = 17.7; % AF (Females). Units: L/hour/kg.

47.

48. % Percentage of Cardiac Flow Ratios

49. c.QCR(ID.Fat) = 0.05;

50. c.QCR(ID.SP) = 0.156;

51. c.QCR(ID.RP) = 0.26;

52. c.QCR(ID.Liv) = 0.07;

53. c.QCR(ID.Gut) = 0.18;

54. c.QCR(ID.Kid) = 0.25; 

55. c.QCR(ID.Skin) = 0.04; 

56. c.QCR(ID.SP) = c.QCR(ID.SP) +1-sum(c.QCR);%AdjustQCRforSPtosumto1

57.

58. c.venous_blood_volume_fraction = 0.01;

59.

60. c.VR(ID.Fat) = 0.231;

61. c.VR(ID.SP) = 0.5105;

62. c.VR(ID.RP) = 0.0327;

63. c.VR(ID.Liv) = 0.0314;

64. c.VR(ID.Gut) = 0.017;

65. c.VR(ID.Kid) = 0.0044; 

66. c.VR(ID.Skin) = 0.1; 

67.

68. % Adjust VR for SP to sum to 1

69. c.VR(ID.SP) = c.VR(ID.SP) + 1 - sum(c.VR) - c.venous_blood_volume_fraction;

70.

71. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

72. % Chemical Specific Information

73. c.Notes = ‘Chloroform PBPK Model for Inhalation Route’;

74. c.Compound = ‘Chloroform’;

75. c.MolecularWeight = 119.4; 

76.

77. % Chemical Specific Partition Coefficients for Chloroform

78. c.PC.blood_air = 7.43; % blood_air PC

79. c.PC.tissue(ID.Fat) = 37.7; % fat/blood PC

80. c.PC.tissue(ID.SP) =  1.62; % SP/blood PC

81. c.PC.tissue(ID.RP) =  2.3;

82. c.PC.tissue(ID.Gut) =  2.3;

83. c.PC.tissue(ID.Liv) =  2.3;

84. c.PC.tissue(ID.Kid) =  1.5;

85.

86. c.PC.chem.air_water = 0.163; % Henry’s Law Coefficient from USEPA

87.

88. c.MMK.VMAX_C = 0.26167; % Allometric constant for Vmax

89. c.MMK.KM_C = 0.448 * 1000; % Michaelis-Menten constant in liver (ug/L)

90.
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91. c.Absorption.Gut = 1.0; % Gut-Lumen absorption rate constant (1/hr)

92. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

93. % Updating the parameters based on the individual

94. c.indiv = indiv;

95. BW = c.indiv.BW; % simpler variable for some formulae

96.

97. c.V_TISSUE = BW * c.Density * c.VR; % Tissue volumes from volume fractions

98. c.venous_blood_volume = c.venous_blood_volume_fraction * BW * c.Density;

99. c.Q_cardiac = c.AF.QC.(c.indiv.sex)/60 *(BW)^0.75; % Units: L/min -- Fisher

100. c.VMAX=zeros(1,c.N_Compartments);%VMAXinitialization(MichelisMenten)

101. c.VMAX(ID.Liv) = c.MMK.VMAX_C * 1000 * BW^0.7; % Units: ug/min

102. c.KM = ones(1,c.N_Compartments) * (-Inf); 

103. c.KM(ID.Liv) = c.MMK.KM_C;

104.

105. c.F_bioavail_water = 1; % Oral bioavailability from water

106. c.QC = c.QCR * c.Q_cardiac; % Blood flow rates to each compartment

107.

108. if (nargin < 2)

109. modelconf = []; % default option

110. end

111.

112. c = PBPK_add_dermal_model(c, modelconf); % Add the dermal model

113.

114. % State Variables in the Model

115. c.SV.ID = c.IDNum; % State Variables ID

116.

117. c.SV.Names = c.CompName;

118. c.SV.Names{end+1} = ‘Blood’; % Amount in Blood

119. c.SV.Names{end+1} = ‘GILumen’;

120. c.SV.Names{end+1} = ‘Metabolized’;

121. c.SV.Names{end+1} = ‘Inhaled’;

122. c.SV.Names{end+1} = ‘Exhaled’;

123. c.SV.Names{end+1} = ‘Feces’;

124. c.SV.Names{end+1} = ‘Dermal’;

125. c.SV.Names{end+1} = ‘Ingested’;

126. c.SV.Names{end+1} = ‘Dermal_VS’;

127. c.SV.Names{end+1} = ‘AUCL’;

128.

129. n_comp = c.N_Compartments + c.DM.nskin_comps;

130. for i=length(c.CompName)+1:length(c.SV.Names)

131. thisSVName = c.SV.Names{i};

132. c.SV.ID.(thisSVName) = n_comp + 1; 

133. n_comp = n_comp + 1;

134. end

135.

136. c.SV.TotNum = n_comp; % Total Number of State Variables in this PBPK Model

137.

138. return;
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This Matlab code is for updating the dermal portion of the PBPK model confi gura-
tion for chloroform, based on the model confi guration options.

1. function c = PBPK_add_dermal_model(c_orig, modelconf)

2. % Updates the PBPK model configuration with dermal parameters

3. %

4. % Function Inputs:

5. % c_orig: the configuration of the PBPK model prior to model update

6. % modelconf: a structure that defines model configuration with fields

7. % DM.nskins – specifies type of dermal model to use

8. %  1  => one skin model

9. %  2  => two skin model (Stratum Corneum (SC) + Viable Skin)

10. %  >2 => distributed skin model with nskins nodes in SC

11. % if the DM structure is not provided, or if there is no DM.nskins

12. % field, the default is a one-skin model

13. %

14. % Function Outputs:

15. %  c: the updated PBPK model configuration

16. %

17. % Function side effects:

18. %  Depending on the model configuration, the skin compartment in the

19. %  default PBPK model may be replaced by SC, VS, and other compartments

20.

21. nskins = 1; % default number of skin compartments

22. if (isfield(modelconf, ‘DM’) & isfield(modelconf.DM, ‘nskins’))

23.  nskins = modelconf.DM.nskins;

24. if (nskins <= 0)

25.   error([‘Invalid number of skins in Dermal Model: ‘ num2str(nskins)]);

26. end

27. end

28.

29. c_derm.distributed = 0; % default is non-distributed model

30.

31. switch(nskins)

32. case (1)

33.  c_derm.n_sc = 0; % zero for default one skin case

34.  c_derm.nn_sc = 0; % number of Stratum Corneum nodes 

35.  c_derm.nskins = 1;

36. case (2)

37.  c_derm.n_sc = 1; % zero for default one skin case

38.  c_derm.nn_sc = 0; % number of Stratum Corneum nodes

39.  c_derm.nskins = 2;

40. otherwise

41.  c_derm.n_sc = 1; % zero for default one skin case

42.  c_derm.nn_sc = nskins; % number of Stratum Corneum nodes 

43.  c_derm.nskins = nskins;
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44.  c_derm.distributed = 1;

45. end

46.

47. c_derm.nskin_comps = c_derm.n_sc + c_derm.nn_sc;

48.

49. c = c_orig;

50. c.DM = c_derm; % c.DM stands for the dermal model configuration

51. ID = c.IDNum;

52.

53. c.PC.tissue(ID.Skin) = 1.6; % Skin-blood partition coefficient

54. c.K.skin_water = 1.48E-4; % Skin permeability [cm/min]

55.

56. c.PCMC.skin_air = c.PC.tissue(ID.Skin) * c.PC.blood_air;

57. c.PCMC.skin_water = c.PCMC.skin_air * c.PC.chem.air_water;

58. c.K.skin_air = c.K.skin_water * c.PCMC.skin_air/c.PCMC.skin_water; 

59.

60. c.DM.L_sc = 0.001; % thickness of stratum corneum [cm]

61.

62. if (nskins > 1) 

63.  c = local_update_dermal_parameters(c, nskins);

64.  c.K.skin_air = c.K.sc_air; % SC replaces skin

65.  c.K.skin_water = c.K.sc_water; 

66. end

67.

68. return;

69.

70.

71. function c = local_update_dermal_parameters(c_orig, nskins)

72. c = c_orig;

73. ID = c.IDNum;

74.

75. % Two-skin compartment

76. c.DM.V_sc = c.DM.L_sc * c.indiv.BSA; 

77. c.DM.Vskin = c.V_TISSUE(ID.Skin) * 1000; % in cm^3 

78.

79. % Partition coefficients between multiple chemicals (non-blood)

80. c.PC.chem.octanol_water = 90;

81.

82. % Partition coefficients between multiple compartments (non-blood)

83. c.PCMC.sc_water = (c.PC.chem.octanol_water)^0.71; 

84. c.PCMC.sc_air = c.PCMC.sc_water/c.PC.chem.air_water;

85. c.PCMC.vs_water = (c.PCMC.skin_water * c.DM.Vskin - . . .

86.       c.PCMC.sc_water * c.DM.V_sc)/(c.DM.Vskin - c.DM.V_sc);

87. c.PCMC.vs_air = c.PCMC.vs_water/c.PC.chem.air_water;

88. c.PCMC.vs_blood = c.PCMC.vs_air/c.PC.blood_air;

89. c.PCMC.vs_sc = c.PCMC.vs_air/c.PCMC.sc_air;

90.

91. %%% Calculate Cleek and Bunge’s B parameter %%%



92. c.DM.BB = c.K.skin_water * sqrt(c.MolecularWeight)/2.6;

93. c.K.sc_water = c.K.skin_water * (c.DM.BB + 1);

94. c.K.sc_air = c.K.sc_water * c.PCMC.sc_air/c.PCMC.sc_water;

95. c.K.vs_sc = c.K.sc_water/(c.PCMC.sc_water * c.DM.BB);

96.

97. % Assign compartment IDs

98. c.IDNum.VS = ID.Skin;

99. c.IDNum = rmfield(c.IDNum, ‘Skin’);

100. c.CompName{c.IDNum.VS} = ‘VS’;

101. c.IDNum.SC = c.IDNum.VS + 1;

102. c.CompName{c.IDNum.SC} = ‘SC’;

103.

104. c.PC.tissue(c.IDNum.VS) = c.PCMC.vs_blood;

105.

106. if (c.DM.distributed == 1)

107.  c.DM.D_sc = c.K.sc_water/(c.PCMC.sc_water) * c.DM.L_sc;

108.  c.IDNum.SC1 = c.IDNum.SC + 1;

109.  c.CompName{c.IDNum.SC1} = ‘InnerMost SC Node’;

110. end

APPENDIX 43.5 CODE LISTING 5

This Matlab code is for calculating the derivatives used in the PBPK model.

1. function [d_amount, optSV] = PBPK_voc_deriv(t, amount)

2. % Derivative function defined in a manner the ODE solver in Matlab expects.

3. % Inputs: 

4. % t -- current time of the simulation (time variable in the ODE system)

5. % amount -- amount of chemical in each tissue (state variables)

6. % Outputs: d_amount -- derivatives

7. % optSV -- optional state variables such as intermediate concentrations

8. % Global: Configuration variable of the PBPK model

9.

10. global c; % Global PBPK model configuration structure

11. global E; % Global activity event details

12.

13. mc.air = E.C.inh; % media concentration: air; inhalation concentration

14. rate.inh = E.Q.inh; % inhalation rate

15. mc.water = E.C.water; % media concentration: water; ingestion concentration

16. rate.dw = E.Q.DW; % ingestion rate -- drinking water

17. rate.infusion = E.Q.infusion;

18.

19. ID = c.IDNum; % Compartment IDs by name

20. SVID = c.SV.ID; % State Variables ID

21.

22. % Tissue Concentrations

23. C_TISSUE = amount(1:length(c.V_TISSUE))’ ./ c.V_TISSUE;

24.
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25. % Venous Blood Concentration

26. CV_BLOOD = amount(1:length(c.V_TISSUE))’ ./ (c.V_TISSUE .* c.PC.tissue);

27.

28. CV_mixed = (CV_BLOOD*c.QC’)/c.Q_cardiac;

29. % Reroute the venous flow rate from Gut through Liver

30. CV_mixed = CV_mixed + (CV_BLOOD(ID.Liv) - CV_BLOOD(ID.Gut)) * . . .

31.  c.QC(ID.Gut)/c.Q_cardiac;

32. venous_blood_concentration = amount(SVID.Blood)/c.venous_blood_volume;

33.

34. C_arterial=(venous_blood_concentration*c.Q_cardiac+mc.air*rate.inh) . . .

35.  / (c.Q_cardiac + rate.inh/c.PC.blood_air);

36. mc.exh = C_arterial/c.PC.blood_air; % Exhaled concentration

37.

38. % Rate of metabolism of chemical in each compartment

39. rate_metabolism = c.VMAX .* CV_BLOOD ./ (c.KM + CV_BLOOD);

40. d_amount = (c.QC .* (C_arterial - CV_BLOOD) - rate_metabolism);

41. % Add the flow of venous blood from Gut to Liver to Venous Blood

42. d_amount(ID.Liv) = d_amount(ID.Liv) + c.QC(ID.Gut)*. . .

43.  (CV_BLOOD(ID.Gut) - CV_BLOOD(ID.Liv));

44.

45. d_amount(SVID.Blood)=c.Q_cardiac*(CV_mixed-venous_blood_concentration)+...

46.  rate.infusion;

47. d_amount(SVID.Metabolized) = sum(rate_metabolism);

48. d_amount(SVID.AUCL) = C_TISSUE(ID.Liv);

49. d_amount(SVID.Inhaled) = rate.inh * mc.air;

50. d_amount(SVID.Exhaled) = rate.inh * mc.exh;

51. d_amount(SVID.Ingested) = rate.dw*mc.water;

52. rate_gut_absorption = c.Absorption.Gut * amount(SVID.GILumen);

53. d_amount(SVID.GILumen)=d_amount(SVID.Ingested)*c.F_bioavail_water- . . .

54.  rate_gut_absorption;

55. d_amount(ID.Gut) = d_amount(ID.Gut) + rate_gut_absorption;

56. d_amount(SVID.Feces) = d_amount(SVID.Ingested)*(1 - c.F_bioavail_water);

57.

58. % Update the derivative for additional processes

59. d_amount = PBPK_add_dermal_derivative(amount, d_amount, c, E);

60.

61. d_amount = d_amount’;

62.

63. optSV.concs.tissue = C_TISSUE; % All tissues

64. optSV.concs.exh = mc.exh; % exhaled breath concentrations

65. optSV.concs.venous_blood = venous_blood_concentration;

66. optSV.rate.metabolism = rate_metabolism;

APPENDIX 43.6 CODE LISTING 6

This Matlab code is for updating the PBPK model derivatives based on the dermal 
model options.



1. functiond_amount=PBPK_add_dermal_derivative(amount,d_amount_orig,c,E)

2. % Updates to the basic PBPK model derivative structure with dermal derivative

3. % Inputs are same as the generic PBPK_update_derivative function

4. %Output:d_amount--derivativevectorupdatedwiththedermalmodelequations

5.

6. d_amount = d_amount_orig;

7.

8. if (E.dermal_contact_media == 0) 

9.  mc.dermal = E.C.inh; % dermal/air contact

10.  k_skin_media = c.K.skin_air; % Permeability: skin/air

11.  pc_skin_media = c.PCMC.skin_air; % Partition coefficient: skin/air

12. if (c.DM.nskins > 1)

13.   pc_skin_media = c.PCMC.sc_air; % Partition coefficient: sc/air

14. end

15. else

16.  mc.dermal = E.C.water; % dermal/water contact

17.  k_skin_media = c.K.skin_water; % Permeability: skin/water

18.  pc_skin_media = c.PCMC.skin_water; % Partition coefficient: skin/water

19. if (c.DM.nskins > 1)

20.   pc_skin_media = c.PCMC.sc_water; % Partition coefficient: sc/water

21. end

22. end

23.

24. SVID = c.SV.ID; % State variable IDs by name

25. % Tissue Concentrations

26. C_TISSUE = amount(1:length(c.V_TISSUE))’ ./ c.V_TISSUE;

27.

28. switch(c.DM.nskins)

29. case (1) % One compartment Skin = VS

30.  C_skin = amount(SVID.Skin)/c.V_TISSUE(SVID.Skin); % Concentration in skin

31.  rate_dermal_abs = (k_skin_media * c.indiv.BSA)/1000 * . . .

32.   (mc.dermal - C_skin/pc_skin_media);

33.  d_amount(SVID.Skin) = d_amount(SVID.Skin) + rate_dermal_abs;

34.  d_amount(SVID.Dermal) = rate_dermal_abs;

35.  d_amount(SVID.Dermal_VS) = rate_dermal_abs;;

36. case (2) % Two comparments: SC and VS

37.  C_sc = amount(SVID.SC)/c.DM.V_sc; % Concentration in SC

38.  C_vs =amount(SVID.VS)/c.V_TISSUE(SVID.VS);%Concentrationinviableskin

39.  rate_dermal_abs = (k_skin_media * c.indiv.BSA)/1000 * . . .

40.   (mc.dermal - C_sc/pc_skin_media);

41.  rate_vs_abs = (c.K.vs_sc * c.indiv.BSA)/1000 * (C_sc - C_vs/c.PCMC.vs_sc);

42.  d_amount(SVID.SC) = rate_dermal_abs - rate_vs_abs;

43.  d_amount(SVID.VS) = d_amount(SVID.VS) + rate_vs_abs;

44.  d_amount(SVID.Dermal) = rate_dermal_abs;

45.  d_amount(SVID.Dermal_VS) = rate_vs_abs;

46. otherwise % Distributed PDE model

47. % Formualte the 1-D PDE in terms of finite differences

48.  nn = c.DM.nn_sc; % number of nodes
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49.  dl = c.DM.L_sc/(nn-1); % length of each node

50.

51. % Boundary Conditions

52.  C_sc_in = C_TISSUE(SVID.VS)/c.PCMC.vs_sc; % Innermost SC: SC1

53.  C_sc_out = mc.dermal * pc_skin_media; % Outermost SC layer

54.  ID_sc_out = SVID.SC1 + nn - 1; % ID for outermost SC

55.  C_sc = [C_sc_in; amount(SVID.SC1+1:ID_sc_out-1); C_sc_out];

56.

57. % Central Differnce Forumation across nodes of SC

58.  lnodes = C_sc(1:nn-2); % array containing left side nodes

59.  mnodes = C_sc(2:nn-1); % middle nodes

60.  rnodes = C_sc(3:nn); % right side nodes

61.   d_C_sc_nodes = c.DM.D_sc/dl^2 * (lnodes - 2*mnodes + rnodes);

62.

63. % Dermal absorption rates on both sides of SC

64.  bsa = c.indiv.BSA; % cm^2

65.   rate_dermal_abs = c.DM.D_sc/dl * bsa * (C_sc(nn)-C_sc(nn-1))/1000;

66.  rate_vs_abs = c.DM.D_sc/dl * bsa * (C_sc(2) - C_sc(1))/1000; % innermost

67.  d_amount(SVID.VS) = d_amount(SVID.VS) + rate_vs_abs;

68.  d_amount(SVID.SC) =rate_dermal_abs-rate_vs_abs;%entireSCconcentration

69.  d_amount(SVID.SC1:SVID.SC1+nn-1) = [0 d_C_sc_nodes’ 0]; % middle nodes

70.  d_amount(SVID.Dermal) = rate_dermal_abs;

71.  d_amount(SVID.Dermal_VS) = rate_vs_abs;

72. end
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44.1 INTRODUCTION

When a drug or a prodrug is metabolized to one or more active metabolites, not 
only the exposure to the parent drug but also the exposure to the active metabolites 
contribute to the safety and effi cacy of that drug/prodrug (1–7). Prodrugs represent 
an aspect of the biotransformation of parent drug, where only the metabolite is 
active. Often, the prodrug is not subjected to intense pharmacokinetic (PK) model-
ing since its concentration declines rapidly; the absorption parameters of the active 
moiety encompass the transformation of the parent drug to its active form and 
absorption of the parent.

The blood or plasma concentrations of the parent drug and/or its active metab-
olites (systemic exposure) may provide an important link between drug dose 
(exposure) and desirable and/or undesirable drug effects (8). For this reason, the 
modeling of parent drug and metabolite pharmacokinetics, coupled with pharma-
codynamic (PD) measurements, offers an essential development tool for prediction 
and simulation.

The simultaneous modeling of parent drug and metabolite allows the evalua-
tion of the impact of organ impairment or of the effects of drug–drug interactions 
(9–13). The high incidence of adverse events seen in patients with end stage renal 
disease may, for some drugs, be explained in part by the accumulation of active 
drug metabolites (1). Any interaction at the site of drug metabolizing enzymes can 
modify the overall activity of the compound. It is often informative to have the 
prediction of metabolite concentrations when performing PK/PD modeling (2–7). 
Delay between the concentration of the parent compound and drug response curve 
(hysteresis) can be the result of metabolism when the metabolite is more effective 
than the parent drug.

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene I. Ette and 
Paul J. Williams
Copyright © 2007 John Wiley & Sons, Inc.
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Unless the metabolite has been administered alone (in order to estimate its 
volume of distribution (14)) or the fraction of parent drug converted to metabolite 
is known, the modeling of the parent drug and its metabolite requires simplifi cation 
so that metabolite parameters can be estimated. This is because the rate of conver-
sion of the parent to the metabolite and the distribution volume of the metabolite 
are structurally not simultaneously identifi able. The ratio of the rate of conversion 
to the metabolite volume, which is globally identifi able, and apparent elimination 
rate constant for the metabolite can be estimated and do not constitute an identifi -
ability problem (15–21). The number of metabolites for which parameters can be 
estimated is not limited. For example, the parent compound, active metabolites, and 
its conjugate have been modeled together for irinotecan (15). More complicated 
models can be employed to investigate autoinducible transformations (9, 16, 22).

44.2 THE NELFINAVIR EXAMPLE

Intra- and interindividual variations in protease inhibitor drug exposure can infl u-
ence the safety and effectiveness of anti-HIV therapy. In the example presented 
here, in addition to the description of the pharmacokinetics of nelfi navir and 
its metabolite, it was possible to evaluate the impact of the coadministration of 
ritonavir.

Nelfi navir is the only marketed HIV protease inhibitor that is converted into an 
active metabolite at plasma levels, which are signifi cant enough to contribute to the 
overall antiviral activity (23).

Nelfi navir distributes largely into tissues and is highly bound to plasma proteins 
(>98%). The apparent volume of distribution is 2–7 L/kg. Nelfi navir is metabolized 
in the liver by at least four different cytochrome P450 (CYP) isoenzymes including 
CYP 3A4, CYP 2C9, CYP 2C19, and CYP 2D6, with CYP 2C19 catalyzing roughly 
50% of nelfi navir clearance in normal metabolizers (23–25). CYP 2C19 mediates the 
formation of the primary metabolite M8 (nelfi navir hydroxy-t-butylamide), which 
has activity comparable to the parent drug. M8 is subsequently metabolized by CYP 
3A4. The majority of nelfi navir and its metabolites (87%) are eliminated in the 
feces. Urinary excretion accounts for only 1–2%, most of which is unchanged nel-
fi navir (26). Nelfi navir induces its own metabolism; plasma concentrations decline 
approximately 40–50% and are stable after 6 days (26, 27).

Ritonavir (RTV) is also an inhibitor of HIV proteases, approved for use in 
combination with nucleoside analog, for the treatment of HIV-1 infected adults, 
adolescents, and children. It is a potent CYP 3A4 inhibitor and is used at low 
doses to elevate plasma concentrations of other protease inhibitors being primarily 
metabolized by CYP 3A4. In combination with saquinavir, this type of interaction 
has proved favourable (28). The combination with nelfi navir showed much smaller 
effects on nelfi navir levels, but it appears to change in normal metabolizers the 
M8/nelfi navir concentration ratio from 0.3 to 0.6. In poor CYP 2C19 metaboliz-
ers (∼3–5% of Caucasians and African-Americans, ∼12–20% of Asians), ritonavir 
addition is not expected to have such an effect on the nelfi navir/M8 ratio (29). In 
addition, ritonavir induces CYP isoenzymes, so that the full effect of the nelfi na-
vir–ritonavir drug–drug interaction is considered stable after a treatment duration 
of 10–14 days (30).



44.2.1 Methods

44.2.1.1 Study Design and Data
The study was a randomized, stratifi ed, open label, two-arm parallel Phase 4 trial 
designed to explore the utility of pharmacological parameters as predictors of anti-
viral response to nelfi navir-containing regimens in patients pretreated with protease 
inhibitors-sparing regimens.

The study population included male or female patients aged 18 years or older 
with HIV-1 infection who have previously failed only one antiretroviral regimen 
consisting of nucleoside reverse transcriptase inhibitors (NRTIs), nonnucleoside 
reverse transcriptase inhibitors (NNRTIs), or at most one protease inhibitor (PI) 
and had no evidence of PI resistance (genotypic) at screening or had plasma HIV-
1 RNA greater or equal to 1000 copies/mL at least once in the three months 
before screening and HIV-1 RNA greater or equal to 1000 copies/mL at screening. 
Participants in the study were randomized to receive nelfi navir at 1250 mg BID or 
nelfi navir at 1250 mg BID in combination with ritonavir at 200 mg BID in a 1 : 1 ratio. 
Both treatments were administered for 48 weeks. In the treatment arm initially 
receiving nelfi navir as the only PI, ritonavir was added at week 12 if the HIV-1 
RNA had not been reduced to <400 copies/mL or reduced by 2 logs compared to 
baseline. All patients received concomitant therapy with two NRTIs selected based 
on clinical judgment and the results of the genotypic and phenotypic resistance test 
performed at screening. Randomization was stratifi ed according to the patient’s 
individual sensitivity to the NRTIs prescribed to ensure that the treatment groups 
were balanced.

Eighty-three patients provided concentration–time data. Exclusion criteria 
included elevated transaminases, bilirubin, or serum creatinine; decreased neu-
trophils, hemoglobin, or platelet counts; malabsorption syndrome; opportunistic 
infections; alcohol, narcotics, barbiturates, cocaine, or other CNS-active sub-
stance abuse; hypersensitivity to any of the protocol mandated drugs; patients of 
childbearing potential who were unwilling to use an effective method of contra-
ception; and concomitant medications interfering with human cytochrome P450 
system.

Thirty-six patients received nelfi navir alone, 39 received nelfi navir plus ritonavir, 
and 8 patients received nelfi navir alone for 12 weeks and nelfi navir plus ritonavir 
thereafter. In the data set, there were 611 nelfi navir concentrations, among those 
18 BLQ concentrations were replaced with half of lower quantifi cation limit, and 
611 M8 concentrations, among those 16 BLQ concentrations were replaced with 
half of quantifi cation limit.

Summary of demographic and baseline characteristics are reported in Table 
44.1. There were 18 female patients and 65 male patients. Forty-three patients were 
Caucasian, two patients were Black, 36 patients were Hispanic, and two patients 
belonged to another ethnic group. The median age was 37 years. The median of 
body weight was 68.5 kg and the median of height was 170 cm.

Twenty-three patients had abnormal liver function. The median alkaline phos-
phatase was 97 U/L, alanine aminotransferase was 33 U/L, aspartate aminotrans-
ferase was 28 U/L, total bilirubin was 11 mmol/L, gamma glutamyltransferase was 
35 U/L, and total protein was 79 g/L. Within the patient population, the treatment 
groups (i.e., nelfi navir alone or nelfi navir plus ritonavir) were homogeneous.
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Disease progression markers were measured in patients. The median CD4 count 
was 368 and viral load (i.e., HIV-1 RNA) was 18,200 copies/mL. The nelfi navir 
plus ritonavir group had a larger CD4 count and a lower viral load at baseline 
than the nelfi navir alone group, although the clinical signifi cance of this fi nding 
was unclear.

44.2.1.2 Sampling Procedure and Analytical Methods
Patients had blood samples drawn for analysis of nelfi navir and M8 at weeks 2, 8, 
12, and 48 (or early termination). Each individual provided two blood samples per 
visit; a predose through sample and a postdose sample. The patients presented to 
the clinic having fasted for at least 3 hours and having taken the previous dose of 
nelfi navir (and ritonavir) according to the regular schedule. The patients were pro-
vided a meal or snack of at least 300 kcal, which was to be eaten within 30 minutes 
before dosing. After completion of the meal and immediately before dosing, the 
predose blood sample was drawn. The patients took the dose of study medication 
and provided the second blood sample collected between 2 and 6 hours after the 
last dosing. All the concentrations were considered to be at steady state.

Nelfi navir and M8 were determined in plasma using a validated LC/MS/MS; the 
lower limits of quantifi cation were 4.0 ng/mL and 1.0 ng/mL, respectively.

44.2.1.3 Population Pharmacokinetic Model Development
Based on prior information collected in a patients’ study (31) and on the data col-
lected, a one-compartment model with a fi rst-order absorption with or without a lag 
time was tested for the choice of the structural model for nelfi navir. As an extension 
of the parent drug model, a one-compartment model with fi rst-order absorption 
and elimination was tested for the metabolite. The structure of the PK model used 
is presented in Figure 44.1.

In this model, the clearance of nelfi navir is partitioned between the formation 
route of M8 via CYP 2C19 and all other routes of elimination of nelfi navir via CYP 
2D6, 2C9, and 3A4. The metabolic clearance of nelfi navir to M8 and the distribu-
tion volume of M8 are not identifi able separately. The actual parameter estimated 
is the microrate constant K23, equal to the ratio of metabolic clearance of nelfi navir 
to M8 to the distribution volume of M8.

CL of NFV via 
CYP 2C19

CL of M8 via
CYP 3A4 

Ka,
lag time

1 Depot

Dose of 
NFV

3   M8

V3=V
M8

CL of NFV via
CYP 2D6, 2C9,
3A4

2   NFV

V2=V
NFV

FIGURE 44.1 Schematic representation of the structural pharmacokinetic model.
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1112 MODELING OF METABOLITE PHARMACOKINETICS IN A LARGE PHARMACOKINETIC DATA SET

Data were analyzed using the nonlinear mixed effects model software program 
NONMEM (Version 5 level 1.1 double precision (32)). Nelfi navir and M8 were 
fi tted simultaneously. The molecular weight of nelfi navir and M8 is comparable 
with a ratio of M8 to nelfi navir of 1.028. Therefore, the concentrations were not 
corrected and are expressed in nanogram per milliliter.

Various writing of the control fi le could be used. With the coding 1, subroutine 
ADVAN 5, which implements a user-defi ned general linear model, was used. The 
model was parameterized in terms of clearance and volume with the following 
parameters to estimate:

CL, the clearance of NFV
V2, the volume of distribution of NFV
KA, the absorption rate constant for NFV
ALAG1, the lag time of NFV absorption
K23, the rate constant of formation of M8
CLM, the clearance of M8

The links between the clearances and volume and the microconstants were coded 
as follows:

K12 = KA

K20 = (CL/V2) − K23
K30 = CLM/V3

The distribution volume of M8 (V3) was fi xed to 1 L and the estimated parameter 
was an apparent metabolic clearance of nelfi navir to M8.

The same writing was used but with the distribution volume of M8 fi xed to be 
equal to the distribution volume of nelfi navir with the coding 2.

With the coding 3, the fraction of nelfi navir clearance for the formation of M8 
(i.e., FMET) was modeled instead of K23. Since the distribution volume of M8 was 
fi xed to 1 L, the fraction is interpreted as the ratio of the fraction nelfi navir con-
verted to M8 and the distribution volume of M8. The links between the clearances 
and volume and the microconstants were set as follows:

K12 = KA

K20 = (1-FMET)*CL/V2

K23 = FMET*CL/V2

K30 = CLM/V3

With the coding 4, subroutine ADVAN 6, which implements a general nonlinear 
model user-defi ned with differential equations describing the process, was used. The 
model was parameterized in clearance and volume. The distribution volume of M8 
was fi xed to 1 L. The differential equations used are presented below:

dA
dt

KA A
1

1
( )

= − × ( )  (44.1)



dA
dt

KA A
CL
V

A
2

1
2

2
( )

= × ( ) − × ( )  (44.2)

dA
dt

K A
CLM

V
A

3
23 2

3
3

( )
= × ( ) − × ( )  (44.3)

The complete NONMEM control fi les are provided in Appendixes 44.1–44.4. Model 
development was performed with the coding 1 only. Once the fi nal model was 
obtained with the defi nitive covariate effect model on parameters and error models, 
the alternative writings (coding 2–4, Appendixes 44.2–44.4) were evaluated with the 
same covariate effect and error models as the fi nal model with the coding 1 (see 
Appendix 44.1).

The infl uence of ritonavir on the pharmacokinetics of nelfi navir was investigated 
under the assumption that steady-state conditions for ritonavir have been reached. 
Thus, ritonavir-induced inhibition of nelfi navir and M8 metabolism via CYP 3A4 
was assumed.

A proportional error, a constant additive error, and a combination of both 
error models were evaluated for the residual error model. Between-subject random 
effects were explored on the clearance of parent drug and metabolite, the volume 
of distribution of the parent drug, and the absorption rate constant. An exponential 
model was preferred. Interoccasion random effects were explored on the clearance 
of the parent drug and of the metabolite, the volume of distribution of the parent 
drug, and the absorption rate constant. An exponential model was preferred. The 
joint distribution of the between-subject random effect, the interoccasion random 
effects, and the residual error were assumed normal with mean 0 and variance–
covariance matrices Ω for the between-subject and interoccasion random effects, 
and Σ for the residual error to be estimated. The FO method was used for the 
estimation of the parameters.

The effect of the following covariates was investigated on the disposition 
parameter of nelfi navir, M8, and ritonavir, for which a between-subject variance 
was estimated:

• Demographic data (body size, age, sex, ethnicity)
• HIV-1 infection markers (HIV-1 RNA and CD4 count, either as continuous 

or categorical variable)
• Blood biochemistry (alkaline phosphatase, aspartate aminotransferase, alanine 

aminotransferase, total bilirubin, gamma glutamyltransferase, total protein)

The selection of the structural PK model and residual error models was based 
on the goodness-of-fi t plots and on the difference in NONMEM objective function 
(approximately −2 × log likelihood) between hierarchical models (i.e., the likeli-
hood ratio test). This difference is asymptomatically c2 distributed with a degree 
of freedom equal to the number of additional parameters of the full compared to 
the reduced model. A p-value of 0.05 was chosen for one additional parameter, 
corresponding to a difference in the objective function of 3.84. Potential covari-
ates were selected by univariate analysis, testing the addition of each covariate on 
each of the relevant PK parameters. When a set of covariates, identifi ed by the 
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1114 MODELING OF METABOLITE PHARMACOKINETICS IN A LARGE PHARMACOKINETIC DATA SET

univariate selection, was found to be signifi cant predictors of a parameter based 
on the likelihood ratio test, all were included in a full model. Backward deletion 
of these covariates, one at a time, was performed with a signifi cance level of 0.005, 
that is, a drop in the objective function of at least 7.8. Thus, the fi nal irreducible 
model was identifi ed.

Acceptable population models resulted in successful minimization, with at least 
three signifi cant digits for any parameter, a successful estimation of the covariance, 
and the absolute value of last iteration gradients greater than 0.001 but smaller than 
100. Confi dence intervals of structural parameters should not include value zero; 
correlation between any two structural parameters should never be greater than 
0.95. Acceptable models should not lead to trends in the distribution of weighted 
residuals versus model predictions and versus independent variable. They should 
not be oversensitive to initial estimates nor lead to differences between the popula-
tion parameters and the corresponding medians of individual POSTHOC param-
eters. The predictions versus observations data should be evenly distributed around 
the unit line. If constraints were applied on parameters, no fi nal estimate should be 
equal to one of the boundaries.

The fi nal model (coding 1) was compliant with the above model-acceptance cri-
teria since the run fi nished successfully with more than three signifi cant digits and 
the covariance, the 95% confi dence intervals of all the parameters did not include 
zero, none of the correlation between the structural parameters was above 0.95, and 
the weighted residuals versus model predictions and versus independent variable 
data were evenly distributed around the zero line. However, slight trends toward 
overprediction were seen in the plot of predictions versus observations; possible 
explanations are given in Section 44.2.3.

44.2.2 Results

44.2.2.1 Distribution Concentrations of Nelfi navir and Its Metabolites
Concentration–time data of nelfi navir by treatment group are displayed as 
scatterplots in Figure 44.2. Concentration–time data of M8 by treatment group 
are displayed as scatterplots in Figure 44.3. The disposition also suggests a mono-
exponential decay. The shapes of the profi le for nelfi navir and M8 are quite 
similar.

44.2.2.2 Nelfi navir Alone
The nelfi navir data were fi tted alone fi rst. The between-subject variances were 
estimated on the clearance and the volume of distribution, and the interoccasion 
variance was estimated on the clearance. The residual error was modeled with a 
proportional error model. There was no statistically signifi cant effect of ritonavir 
on clearance of nelfi navir. The population parameters of base model for nelfi navir 
alone are presented in Table 44.2. The apparent half-life of 7.0 h was driven by the 
absorption rate constant characterizing a fl ip-fl op phenomenon. The goodness-of-fi t 
plots are presented in Figure 44.4. The PRED vs. DV plot shows a tendency toward 
overprediction at the lower end of the concentration scale. It is even more obvious 
on the IPRED vs. DV plot. Overall, the trough levels are slightly overpredicted 
for the nelfi navir treatment group. However, no obvious trend is observed in the 
distribution of WRES vs. PRED and/or time.



FIGURE 44.2 Nelfi navir concentration–time data by treatment group.
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NFV + RTV 200 mg (all weeks)
287 observations in 39 patients 
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TABLE 44.2 Population Pharmacokinetics of Nelfi navir Fitted Alone

  Relative Standard
Parameter Population Estimate Error (%)

Clearance, CL (L/h) 31.9  5.36
Volume of distribution, V (L) 72.4 18.2
Absorption rate constant, KA (h−1)  0.0994 16.4
Lag time, ALAG1 (h)  0.921 1.17
Between-subject variance of CL (%) 40.9 23.2
Between-subject variance of V (%) 66.9 36.9
Between-occasion variance of CL (%) 38.6 21.2
Proportional residual error (%) 25.6 13.7
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FIGURE 44.4 Goodness-of-fi t plots of population PK model for nelfi navir alone.
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FIGURE 44.4 Continued

44.2.2.3 Nelfi navir and M8
Both between-subject and interoccasion variances were estimated on clearance of 
nelfi navir, absorption rate constant, and clearance of M8. The residual error with a 
proportional error model was modeled for nelfi navir and M8 separately. The effect 
of ritonavir was found to have a statistically signifi cant impact on the clearance 
of M8 but not on that of nelfi navir. The apparent clearance of M8 was 3.23 L/h; 
it decreased to 1.87 L/h when nelfi navir was coadministered with ritonavir. After 
univariate selection, a large number of covariates were included in the full model. 
According to the acceptance criteria, none of the effect on clearance of nelfi navir on 



clearance of M8 remained in the fi nal model after backward deletion. The popula-
tion parameters of nelfi navir and M8 (coding 1) are presented in Table 44.3.

After fi tting the nelfi navir and M8 data simultaneously, the half-life was no 
longer driven by the absorption rate constant. The terminal half-fi le was equal 
to 7.6 h. Simultaneous modeling of nelfi navir and M8 provided a population PK 
profi le for nelfi navir similar to the one obtained when the nelfi navir data were 
fi tted alone.

The goodness-of-fi t plots for nelfi navir and M8, separately, are presented in Figure 
44.5. The tendency toward overprediction at the lower end of the concentration 

TABLE 44.3 Population Pharmacokinetics of Nelfi navir and M8 (Coding 1)

 Population Relative Standard
Parameter Estimate Error (%)

Clearance of nelfi navir, CL (L/h)  31.5  5.27
Volume of distribution of nelfi navir, V (L) 345 16.5
Absorption rate constant of nelfi navir, KA (h−1)   0.481 14.4
Lag time of nelfi navir, ALAG1 (h)   0.921  0.492
Rate constant of formation of M8, K23 (h−1)   0.00287 29.5
Clearance of M8, CLM (L/h)   3.23 26.3
Ritonavir coadministration effect on CLM (L/h)  −1.36 34.4
Between-subject variance of CL (%)  37.5 23.8
Between-subject variance of KA (%)  72.0 36.5
Between-subject variance of CLM (%)  60.2 30.3
Between-occasion variance of CL (%)  36.6 16.5
Between-occasion variance of KA (%)  81.3 31.6
Between-occasion variance of CLM (%)  44.5 28.4
Proportional residual error for NFV (%)  16.8 20.9
Proportional residual error for M8 (%)  29.4 22.2

THE NELFINAVIR EXAMPLE 1119

PRED vs. DV for NFV

Observed nelfinavir concentration (ng/mL)

0               2000            4000           6000            8000         10000          12000

P
op

ul
at

io
n 

pr
ed

ic
te

d 
ne

lfi
na

vi
r 

co
nc

en
tr

at
io

n 
(n

g/
m

L)

0

2000

4000

6000

8000

10000

12000

FIGURE 44.5 Goodness-of-fi t plots of population PK model for nelfi navir and M8 
nelfi navir data.



0               2000            4000           6000            8000         10000          12000

IPRED vs. DV for NFV

Observed nelfinavir concentration (ng/mL)

In
di

vi
du

al
 p

re
di

ct
ed

 n
el

fin
av

ir 
co

nc
en

tr
at

io
n 

(n
g/

m
L)

0

2000

4000

6000

8000

10000

12000

WRES vs. PRED for NFV

Population predicted nelfinavir concentration (ng/mL)
0                2000             4000             6000             8000            10000           12000

W
ei

gh
te

d 
re

si
du

al

-6

-4

-2

0

2

4

6

0                     2000                 4000                 6000                 8000                10000

WRES vs. PRED for NFV

Elapsed time since first dose (h)

W
ei

gh
te

d 
re

si
du

al

-3

-2

-1

0

1

2

3

4

5

FIGURE 44.5 Continued



FIGURE 44.5 Continued

PRED vs. DV for M8
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FIGURE 44.5 Continued
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scale, seen on IPRED vs. DV plots for nelfi navir alone, is less marked when nel-
fi navir and M8 are modeled together.

The geometric mean of the derived exposure parameters are presented in Table 
44.4 for nelfi navir and in Table 44.5 for M8. Exposure parameters of nelfi navir were 

TABLE 44.4 Geometric Mean of Exposure Parameters of Nelfi navir for the 
Nelfi navir and the Nelfi navir Plus Ritonavir Treatment Groups

AUCt of NFV C12 of NFV Cmax of NFV
 (h·ng/mL) (ng/mL) (ng/mL)

Treatment Weeks NFV NFV+RTV NFV NFV+RTV NFV NFV+RTV

 2 35,868 35,917 1,948 2,049 3,920 3,808
 8 33,635 35,791 1,809 2,056 3,676 3,724
12 37,865 33,952 2,177 1,849 3,984 3,699
48 41,917 38,606 2,280 2,200 4,569 4,140

TABLE 44.5 Geometric Mean of Exposure Parameters of M8 for the 
Nelfi navir and the Nelfi navir Plus Ritonavir Treatment Groups

AUCt of M8 C12 of M8 Cmax of M8
 (h·ng/mL) (ng/mL) (ng/mL)

Treatment Weeks NFV NFV+RTV NFV NFV+RTV NFV NFV+RTV

 2  9,541 22,250 551 1,416 1,066 2,369
 8  8,788 20,214 503 1,289   982 2,125
12  9,887 20,440 605 1,247 1,065 2,226
48 12,483 24,289 725 1,548 1,389 2,599
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not different between the nelfi navir alone and the nelfi navir plus ritonavir treatment 
groups. Exposure parameters of M8 were more than doubled in the nelfi navir plus 
ritonavir treatment group compared to the nelfi navir treatment group.

44.2.2.4 Comparison Between Models
The population parameters obtained with the different coding 1–4 are presented in 
Table 44.6. Regardless of the coding used, the results were consistent with similar 
values of clearance, volume, and absorption parameters for nelfi navir.

When fi xing the distribution volume of M8 to 1 L, the different coding 1, 3, and 4 
gave similar values for the clearance of M8. The microrate constant K23 is related to 
FMET by Eq (44.3). The FMET calculated with the coding 1 is equal to 0.0314, which 
is in concordance with value estimated with the coding 3.

When fi xing the distribution volume of M8 equal to the volume of nelfi navir, the 
microrate constant K23 was 17% lower than the one with coding 1. This decrease 
was compensated by a 15% decrease of the clearance of M8, which resulted in the 
same AUC of M8 for the two coding approaches. The percentage of decrease of the 
clearance of M8 with ritonavir was identical for the two coding approaches, being 
42%. The relative standard errors of the estimates were larger with the coding 2, 
above 50% for the M8 parameters.

44.2.3 Discussion

A one-compartment model with fi rst-order absorption and elimination with a lag 
time adequately described the nelfi navir PK profi le. Although the nelfi navir elimi-
nation is mainly metabolic, a model with a Michaelis–Menten elimination was not 
considered because (a) only one dose of nelfi navir was tested leading to a concentra-
tion range between peak and trough not large enough to estimate Michaelis–Menten 
parameters; and (b) there were no signs of saturation of the elimination on the plots. 
No saturable mechanism has been reported in the literature for nelfi navir.

Two samples were collected at different weeks of treatment: the predose samples 
were collected between 7 and 16 hours after the evening dose and the second 
samples, planned to be collected between 2 and 6 hours after the morning dose, 
were all collected 2 hours post morning dose. Since the Cmax of nelfi navir at steady 
state is achieved 4–5 hours after administration, the information necessary to accu-
rately estimate the volume and the absorption rate constant was missing in patients. 
Therefore, volume and absorption rate constant could not be easily identifi ed sepa-
rately and different sets of parameter values lead to the same values of clearance, 
apparent half-life, and prediction. The absorption of nelfi navir was slow compared 
to the elimination, with comparable half-lives (33). Consequently, in the absence 
of intravenous data, fl ip-fl op phenomena may have been present during modeling.

Nelfi navir is known to have different trough levels after morning or evening 
administration. Those variations have been observed either in healthy subjects 
or patients. An increase of 46% in clearance of nelfi navir between morning and 
evening administration was estimated for healthy subjects. This diurnal effect seems 
to disappear when ritonavir is coadministered (data on fi le). The sampling scheme 
in that study prevents the evaluation of that effect in patients. The impossibility 
to evaluate the diurnal effect on clearance in patients, when nelfi navir was admin-
istered alone, could lead to an underestimation of the clearance and therefore an 
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overprediction of the concentrations. The plots of the population prediction and/or 
the individual predictions versus the observations showed a tendency toward over-
prediction at the lower end of the concentration scale, which was more obvious in 
the nelfi navir alone treatment group. This tendency was also accentuated by con-
centrations in patients below 360 ng/mL, that is, the lowest concentrations recorded 
in healthy subjects, which were not compatible with the pharmacokinetics of 
nelfi navir under steady-state conditions unless the compliance had been poor or the 
time and dosing history wrong. Those concentrations, 36 in total, represent 5.9% 
of the patient data; among those, 18 BLQ concentrations were replaced with half 
of quantifi cation limit.

The population clearance of nelfi navir estimated with nelfi navir and M8 data 
modeled together was identical to that with nelfi navir data alone, 31.5 versus 
31.9 L/h. The distribution volume of nelfi navir was different, 345 versus 72.4 L, com-
pensated by a different value of absorption rate constant, 0.481 versus 0.0994 h−1.
The fl ip-fl op phenomenon already mentioned when modeling nelfi navir data alone 
was no longer present when M8 data were added. In fact, the elimination half-life 
calculated for the nelfi navir and M8 data modeled together was comparable to the 
apparent half-life, that is, absorption half-life, for nelfi navir data alone, 7.6 and 7.0 h, 
respectively. The two sets of parameters for nelfi navir resulted in similar nelfi navir 
concentration–time profi les. The absence of fl ip-fl op phenomenon with the full 
model for nelfi navir and M8 shows that metabolite data can help the modeling of 
the parent compound by at least increasing the number of degrees of freedom. For 
the same reason, the residual variance for nelfi navir decreased from 25.6% to 16.8% 
when adding M8 data. The advantage of the full model over separated modeling 
of parent drug and metabolite is advocated even under various assumptions (34). 
The comparison between the different coding shows that the estimated parameters 
were similar.

Overall, the pharmacokinetics of nelfi navir was less variable than the pharmaco-
kinetics of M8 with a between-subject variance for clearance of 37.5% for nelfi navir 
compared to 60.2% for M8 and a proportional residual error of 16.8% for nelfi navir 
compared to 29.4% for M8.

Ritonavir is a potent CYP 3A4 inhibitor and is used at low doses to elevate 
plasma concentrations of other protease inhibitors being primarily metabolized by 
CYP 3A4. This type of interaction has proved advantageous for saquinavir since 
saquinavir exposure and thus its effi cacy was increased (4). The combination with 
nelfi navir showed much smaller effects on nelfi navir levels; it appears to change the 
M8/nelfi navir concentration ratio from 0.3 to 0.6 in normal metabolizers (5). While 
CYP 3A4 is responsible for more than 90% of the hepatic metabolism of saquina-
vir, it is not the only one involved in the elimination of nelfi navir. The decrease 
of CYP 2C19 activity in chronic liver disease is accompanied with low nelfi navir 
clearance and decreased M8 formation, since CYP 2C19 catalyzes roughly 50% 
of nelfi navir clearance (35). The analysis of patient data shows that the ritonavir 
coadministration does not modify the nelfi navir clearance, likely through a com-
pensation mechanism with the other cytochrome P450 enzymes, but decreases the 
M8 clearance by 42%.

Exposure parameters (i.e., AUCt, Cmax, C12h) calculated for nelfi navir and M8 
refl ected the effect of ritonavir coadministration on the metabolism of nelfi na-
vir. The M8 exposure parameters were increased by 87–157% when nelfi navir 
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was coadministered with ritonavir, while nelfi navir exposure parameters remained 
unchanged. The M8/nelfi navir AUCt ratio (without molecular weight correction) 
changed from 0.26–0.30 when nelfi navir was administered alone to 0.56–0.63 when 
nelfi navir was administered with ritonavir. The agreement of those results with lit-
erature information (29) confi rms the ability of the model to estimate the clearance 
of nelfi navir and M8 and thus the ability to derive individual AUCt.

44.3 SUMMARY

The nelfi navir example presents the simultaneous modeling of parent drug and 
metabolite in a large data set. Since the metabolite has not been administered alone, 
the modeling of the parent drug and its metabolite requires simplifi cation so that 
metabolite parameters could be estimated. This consists of using the ratio of the 
rate of conversion to the metabolite volume and apparent elimination rate constant 
for the metabolite. Simultaneous modeling of nelfi navir and M8 allows for a better 
description of the data through a more stable model. In addition, it was possible to 
evaluate the impact of the coadministration of ritonavir.
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APPENDIX 44.1 CODING 1

$PROB POP PK NFV & M8 PATIENTS 

$INPUT STN ID TRT WEEK DAT1=DROP TIME AMPM AMT DV EVID MDV SS II 

CM.T TYP 

$DATA PK_NFVandM8_PAT.CSV IGNORE S

$SUBROUTINE ADVAN5



$MODEL

COMP=(DEPOT, DEFDOSE)

COMP=(CENTRAL, DEFOBS)

COMP=(METABOL)

$PK

RTV=1

IF (TRT.EQ.2) RTV=0 

IF (TRT.EQ.3.AND.WEEK.LE.12) RTV=0

OC1=0

IF (WEEK.LE.2) OC1=1

OC2=0

IF (WEEK.EQ.8) OC2=1

OC3=0

IF (WEEK.EQ.12) OC3=1

OC4=0

IF (WEEK.EQ.48) OC4=1

;NELFINAVIR PARAMETERS

TVCL=THETA(1)

CL=TVCL*EXP(ETA(1)+OC1*ETA(4)+OC2*ETA(5)+OC3*ETA(6)+OC4*ETA(7))

V2=THETA(2)

KA=THETA(3)*EXP(ETA(2)+OC1*ETA(8)+OC2*ETA(9)+OC3*ETA(10)+OC4*ETA

(11))

ALAG1=THETA(4)

;M8 PARAMETERS

V3=1

K23=THETA(5)

CLM1=THETA(6)+RTV*THETA(7)

CLM=CLM1*EXP(ETA(3)+OC1*ETA(12)+OC2*ETA(13)+OC3*ETA(14)+OC4*ETA

(15))

K12=KA

K20=(CL/V2)-K23

K30=CLM/V3

S2=V2/1000

S3=V3/1000

$ERROR

DEL=0

IF (F.EQ.0) DEL=0.0001

;PROPORTIONAL ERROR

CODING 1 1129
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Y1=(F+DEL)*(1+ERR(1)) ;NFV 

Y2=(F+DEL)*(1+ERR(2)) ;M8

Y=TYP*Y1+(1-TYP)*Y2

IPRED=F

$THETA

 (0,30) ;1 APP CLEARANCE OF NFV

 (0,100) ;2 APP CENTRAL VOL

 (0,0.3) ;3 1ST ORD ABS

 (0,1) ;4 LAGTIME

 (0,0.05) ;5 K23

 (0,3) ;6 APP CLEARANCE OF M8

 (-5,-1,5) ;7 RTV ON CLM

$SIGMA

0.05 0.05 ;PROPORTIONAL ERROR

$OMEGA

0.01 0.01 0.01

$OMEGA BLOCK(1) 0.05

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) 0.05

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) 0.05

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$ESTIMATION MAX=9999 METHOD=0 PRINT=5 NOABORT POSTHOC

$COVARIANCE

APPENDIX 44.2 CODING 2

$PROB POP PK NFV & M8 PATIENTS - ALTERNATIVE WRITING

$INPUT STN ID TRT WEEK DAT1=DROP TIME AMPM AMT DV EVID MDV SS II 

CMT TYP 

$DATA PK_NFVandM8_PAT.CSV IGNORE S

$SUBROUTINE ADVAN5



$MODEL

COMP=(DEPOT, DEFDOSE)

COMP=(CENTRAL, DEFOBS)

COMP=(METABOL)

$PK

RTV=1

IF (TRT.EQ.2) RTV=0 

IF (TRT.EQ.3.AND.WEEK.LE.12) RTV=0

OC1=0

IF (WEEK.LE.2) OC1=1

OC2=0

IF (WEEK.EQ.8) OC2=1

OC3=0

IF (WEEK.EQ.12) OC3=1

OC4=0

IF (WEEK.EQ.48) OC4=1

;NELFINAVIR PARAMETERS

TVCL=THETA(1)

CL=TVCL*EXP(ETA(1)+OC1*ETA(4)+OC2*ETA(5)+OC3*ETA(6)+OC4*ETA(7))

V2=THETA(2)

KA=THETA(3)*EXP(ETA(2)+OC1*ETA(8)+OC2*ETA(9)+OC3*ETA(10)+OC4*ETA

(11))

ALAG1=THETA(4)

;M8 PARAMETERS

V3=V2

K23=THETA(5)

CLM1=THETA(6)+RTV*THETA(7)

CLM=CLM1*EXP(ETA(3)+OC1*ETA(12)+OC2*ETA(13)+OC3*ETA(14)+OC4*ETA

(15))

K12=KA

K20=(CL/V2)-K23

K30=CLM/V3

S2=V2/1000

S3=V3/1000

$ERROR

DEL=0

IF (F.EQ.0) DEL=0.0001

;PROPORTIONAL ERROR

CODING 2 1131



1132 MODELING OF METABOLITE PHARMACOKINETICS IN A LARGE PHARMACOKINETIC DATA SET

Y1=(F+DEL)*(1+ERR(1)) ;NFV 

Y2=(F+DEL)*(1+ERR(2)) ;M8

Y=TYP*Y1+(1-TYP)*Y2

IPRED=F

$THETA

 (0,30) ;1 APP CLEARANCE OF NFV

 (0,200) ;2 APP CENTRAL VOL

 (0,0.3) ;3 1ST ORD ABS

 (0,1) ;4 LAGTIME

 (0,0.5) ;5 K23

 (0,100) ;6 APP CLEARANCE OF M8

 (-500,-50,500) ;7 RTV ON CLM

$SIGMA

0.05 0.05 ;PROPORTIONAL ERROR

$OMEGA

0.01 0.01 0.01

$OMEGA BLOCK(1) 0.05

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) 0.05

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) 0.05

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$ESTIMATION MAX=9999 METHOD=0 PRINT=5 NOABORT POSTHOC

$COVARIANCE

APPENDIX 44.3 CODING 3

$PROB POP PK NFV & M8 PATIENTS - ALTERNATIVE WRITING

$INPUT STN ID TRT WEEK DAT1=DROP TIME AMPM AMT DV EVID MDV SS II 

CMT TYP 

$DATA PK_NFVandM8_PAT.CSV IGNORE S

$SUBROUTINE ADVAN5



$MODEL

COMP=(DEPOT, DEFDOSE)

COMP=(CENTRAL, DEFOBS)

COMP=(METABOL)

$PK

RTV=1

IF (TRT.EQ.2) RTV=0

IF (TRT.EQ.3.AND.WEEK.LE.12) RTV=0

OC1=0

IF (WEEK.LE.2) OC1=1

OC2=0

IF (WEEK.EQ.8) OC2=1

OC3=0

IF (WEEK.EQ.12) OC3=1

OC4=0

IF (WEEK.EQ.48) OC4=1

;NELFINAVIR PARAMETERS

FMET=THETA(5)

TVCL=THETA(1)

CL=TVCL*EXP(ETA(1)+OC1*ETA(4)+OC2*ETA(5)+OC3*ETA(6)+OC4*ETA(7))

V2=THETA(2)

KA=THETA(3)*EXP(ETA(2)+OC1*ETA(8)+OC2*ETA(9)+OC3*ETA(10)+OC4*ETA

(11))

ALAG1=THETA(4)

;M8 PARAMETERS

V3=1

CLM1=THETA(6)+RTV*THETA(7)

CLM=CLM1*EXP(ETA(3)+OC1*ETA(12)+OC2*ETA(13)+OC3*ETA(14)+OC4*ETA(15))

K12=KA

K20=(1-FMET)*CL/V2

K23=FMET*CL/V2

K30=CLM/V3

S2=V2/1000

S3=V3/1000

$ERROR

DEL=0

IF (F.EQ.0) DEL=0.0001

CODING 3 1133
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;PROPORTIONAL ERROR

Y1=(F+DEL)*(1+ERR(1)) ;NFV 

Y2=(F+DEL)*(1+ERR(2)) ;M8

Y=TYP*Y1+(1-TYP)*Y2

IPRED=F

$THETA

 (0,30) ;1 APP CLEARANCE OF NFV

 (0,100) ;2 APP CENTRAL VOL

 (0,0.3) ;3 1ST ORD ABS

 (0,1) ;4 LAGTIME

 (0,0.05,1) ;5 FMET

 (0,3) ;6 APP CLEARANCE OF M8

 (-5,-1,5) ;7 RTV ON CLM

$SIGMA

0.05 0.05 ;PROPORTIONAL ERROR

$OMEGA

0.01 0.01 0.01

$OMEGA BLOCK(1) 0.05

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) 0.05

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) 0.05

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$ESTIMATION MAX=9999 METHOD=0 PRINT=5 NOABORT POSTHOC

$COVARIANCE

APPENDIX 44.4 CODING 4

$PROB POP PK NFV & M8 PATIENTS - ALTERNATIVE WRITING

$INPUT STN ID TRT WEEK DAT1=DROP TIME AMPM AMT DV EVID MDV SS II 

CMT TYP 

$DATA PK_NFVandM8_PAT.CSV IGNORE S

$SUBROUTINE ADVAN6 TRANS=1 TOL=4 



$MODEL

COMP=(DEPOT, DEFDOSE)

COMP=(CENTRAL, DEFOBS)

COMP=(METABOL)

$PK

RTV=1

IF (TRT.EQ.2) RTV=0 

IF (TRT.EQ.3.AND.WEEK.LE.12) RTV=0

OC1=0

IF (WEEK.LE.2) OC1=1

OC2=0

IF (WEEK.EQ.8) OC2=1

OC3=0

IF (WEEK.EQ.12) OC3=1

OC4=0

IF (WEEK.EQ.48) OC4=1

;NELFINAVIR PARAMETERS

CL=THETA(1)*EXP(ETA(1)+OC1*ETA(4)+OC2*ETA(5)+OC3*ETA(6)+OC4*ETA

(7))

V2=THETA(2)

KA=THETA(3)*EXP(ETA(2)+OC1*ETA(8)+OC2*ETA(9)+OC3*ETA(10)+OC4*ETA

(11))

ALAG1=THETA(4)

;M8 PARAMETERS

V3=1

K23=THETA(5)

CLM1=THETA(6)+RTV*THETA(7)

CLM=CLM1*EXP(ETA(3)+OC1*ETA(12)+OC2*ETA(13)+OC3*ETA(14)+OC4*ETA(15))

K12=KA

K20=(CL/V2)-K23

K30=CLM/V3

S2=V2/1000

S3=V3/1000

;CALCULATION OF TIME AFTER DOSE

;IF (EVID.EQ.1) THEN

;TDOS=TIME

;TAD=0

;ENDIF

;IF (EVID.NE.1) TAD=TIME-TDOS

CODING 4 1135
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$DES

DADT(1)=-KA*A(1)

DADT(2)=KA*A(1)-K20*A(2)-K23*A(2)

DADT(3)=K23*A(2)-K30*A(3)

$ERROR

DEL=0

IF (F.EQ.0) DEL=0.0001

;PROPORTIONAL ERROR

Y1=(F+DEL)*(1+ERR(1)) ;NFV 

Y2=(F+DEL)*(1+ERR(2)) ;M8

Y=TYP*Y1+(1-TYP)*Y2

;IPRED=F

$THETA

 (0,30) ;1 APP CLEARANCE OF NFV

 (0,100) ;2 APP CENTRAL VOL

 (0,0.3) ;3 1ST ORD ABS

 (0,1) ;4 LAGTIME

 (0,0.05) ;5 K23

 (0,3) ;6 APP CLEARANCE OF M8

 (-5,-1,5) ;7 RTV ON CLM

$SIGMA

0.05 0.05 ;PROPORTIONAL ERROR

$OMEGA

0.01 0.01 0.01

$OMEGA BLOCK(1) 0.05

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) 0.05

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) 0.05

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1) SAME

$ESTIMATION MAX=9999 METHOD=0 PRINT=5 NOABORT

$COVARIANCE
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45.1 INTRODUCTION

The pharmacokinetics of a therapeutic agent may be considered nonlinear based 
on several characteristics that may be observed in exposure data. In the simplest 
case, the relationship between the observed exposure, whether it be maximum con-
centration (Cmax), area under the concentration–time curve (AUC), or some other 
exposure metric, does not change linearly with respect to the administered dose. 
In other cases, the observed exposure changes over time during repeat administra-
tion of the therapeutic agent. Saturation of processes that govern the absorption, 
metabolism, distribution, or elimination of a therapeutic agent is a common cause 
of observing nonlinear pharmacokinetics. It is also possible for a therapeutic agent 
or coadministered agents to induce or suppress processes that subsequently change 
the observed pharmacokinetics.

When nonlinear pharmacokinetics are observed, it is important to characterize 
the nonlinearity to determine if it could adversely affect safety or effi cacy and to 
choose appropriate dosing regimens for future studies and labeling. Unexpected 
future observations that delay or terminate development of the therapeutic agent 
may result if nonlinearity is inadequately characterized or incorrectly deemed to 
be caused by a certain factor. Sources (1, 2) and some modeling approaches (3–6) 
for nonlinearity observed with small molecules have been covered elsewhere. For 
protein therapeutics there are two common sources of nonlinearity: (a) the devel-
opment of antibodies against the protein (7) and (b) binding of the protein to the 
target receptor (8–11). In addition to these two sources, monoclonal antibodies 
(mAbs) may also occasionally show nonlinearity with respect to dose if a very 
broad dose range is studied that includes doses high enough to saturate Fc recepto r-
dependent processes that are responsible for distribution and elimination (12). In 

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene I. Ette and 
Paul J. Williams
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the example discussed below, a mAb is observed to have dose-dependent pharma-
cokinetics, but also produces an antibody response in some patients and exhibits 
nonlinear pharmacokinetics in antibody-positive patients. A population analysis of 
the data is performed using two types of models and these models are compared 
in terms of their ability to describe the data, as well as the advantages and disad-
vantages of each model.

45.2 AN EXAMPLE

45.2.1 Study Design

The data used in this example are not actual observed data, but rather were simu-
lated using a hierarchical model and a set of parameters that generated data that was 
representative for a typical mAb. The simulation model was structurally different 
from both of the models that were used to analyze the data to minimize any bias 
when comparing the ability of each model to fi t the data. The mAb was assumed 
to generate a nonneutralizing anti-mAb response in some subjects and was also 
assumed to bind to target receptors expressed on circulating cells (i.e., antigen 
presenting cells or effector cells).

Data were analyzed from two simulated studies, representing typical Phase 1 
and Phase 2 studies. In the Phase 1 study, 40 subjects were randomized to receive 
a single subcutaneous dose of 0.03, 0.1, 0.3, 1, or 3 mg/kg of mAb (8 subjects per 
group). Concentrations of mAb were obtained at 0, 1, 2, 4, 8, 12, and 24 hours 
and 2, 3, 5, 7, 14, 21, 28, 35, and 42 days postdose. Anti-mAb antibody titers were 
obtained 1, 2, 4, 6, and 8 weeks postdose. The Phase 2 study included 200 patients 
randomized to receive 0.05, 0.2, 0.75, or 2 mg/kg of mAb subcutaneously (50 patients 
per group). Each patient received one dose every 4 weeks for a total of 24 weeks (6 
doses). Concentrations of mAb were obtained 3, 14, and 28 days after each dose. 
Anti-mAb antibody titers were obtained 4 weeks after each dose. The lower quan-
titation limit for mAb concentrations and anti-mAb titers was 0.1 ng/mL and 1.4 
(log titer), respectively, for both studies. The assay for mAb was performed using 
plasma; therefore, this assay only quantifi ed mAb that was unbound to the target 
receptor present on circulating cells.

45.2.2 Model Development

To guide model development, the observed data were fi rst examined graphically to 
determine general characteristics and to look for trends with respect to dose, time, 
and the impact of anti-mAb antibodies. Models were developed using NONMEM 
(Version 5). Two different model types were developed: the fi rst model (MODEL 1, 
see Appendix 45.1) used an analytical solution (closed-form) where the nonlinear-
ity was accounted for by allowing the model parameters to be a function of mAb 
dose and the titer of anti-mAb antibody, while the second model (MODEL 2, see 
Appendix 45.2) used differential equations to allow a more mechanistic approach 
to characterize the nonlinearity. For each model, three estimation methods were 
evaluated: fi rst-order (FO), fi rst-order conditional estimation (FOCE), and FOCE 
with interaction. Various forms of between-subject variability models were evalu-



ated in each of the tested models, including additive versus proportional and uni-
variate versus multivariate variability models. Body weight, dose, and anti-mAb 
titer were the only covariates that were examined in the models. Selection of the 
most appropriate model was based on agreement between predicted and observed 
plasma concentrations, randomness in the weighted residuals versus the predicted 
values, convergence of the estimation and covariance routines, reasonable para-
meter and error estimates, good precision of the parameter and error estimates, and 
decreases in the objective function (−2 · log likelihood of the data; −2LL) of ≥6.635
points (p < 0.01) when comparing nested models within MODEL 1 or MODEL 2.

45.2.3 Anti-mAb and Target Receptor Binding Effects

The incidence of anti-mAb-positive patients and the titer of the response are shown 
in Table 45.1. The incidence and titer did not appear to vary with dose. Anti-mAb 
was fi rst detected at week 2 in the Phase 1 study. There was a wide variation in the 
time course of the anti-mAb response in the Phase 2 study, where the titers in most 
patients peaked and then declined slowly over the study, while in other subjects the 
titers either continued to increase or peaked and remained constant.

Patients who had detectable anti-mAb titers had a rate of mAb elimination that 
appeared to increase as mAb concentrations decreased and was also dependent on 
the anti-mAb titer (Figure 45.1).

The wide variation in the kinetics of the anti-mAb response and lack of suffi cient 
anti-mAb data prevented the development of a model that could be used to predict 
the anti-mAb response in anti-mAb-positive patients. It was also possible that the 
presence of mAb caused interference in the anti-mAb assay. For these reasons, the 
mAb model used a simplifi ed metric of anti-mAb levels to account for the impact 
of anti-mAb on mAb elimination. In both studies, the anti-mAb titer measured 
4 weeks after dosing was found to be a reasonable covariate that predicted both the 

TABLE 45.1 Incidence and Titer of Anti-mAb-Positive Patients in Phase 1 and 2 Studies

 Phase 1 Study Phase 2 Study

  Log10 Titer at   Log10 Titer at Week 4
  Week 4   (mean (range))
Dose Incidence (individual Dose Incidence
(mg/kg) (n (%)) values) (mg/kg) (n (%)) Dose 1 Dose 6a

0.03 0 (0)  0.05 10 (20) 1.78 0.00
     (1.40–2.71) (0.00–0.00)
0.1 2 (25) 1.51, 1.75 0.2 13 (26) 2.01 0.00
     (1.40–2.78) (0.00–0.00)
0.3 4 (50) 2.06, 1.88, 0.75 16 (32) 1.90 1.35
  1.61, 1.95   (1.40–2.39) (0.00–2.16)
1.0 2 (25) 1.85, 2.54 2.0 11 (22) 1.92 1.16
     (1.40–2.49) (0.00–2.07)
3.0 1 (12.5) 1.69

a Summary statistics include those subjects who had anti-mAb titers that fell below detection by 
Dose 6.
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durability and strength of the anti-mAb response, and also reduced the possibility 
of mAb interference in the anti-mAb assay. In the Phase 2 study, the anti-mAb titer 
covariate for each dosing interval was set equal to the anti-mAb titer observed at the 
end of the dosing interval, thus accounting for changes in the anti-mAb titer during 
multiple dosing. Although the anti-mAb titers were reported as the log of the titer, 
the models used the actual titer as the covariate value. To account for the delay in 
anti-mAb response, the mAb models also assumed a constant lag time of 1 week 
after the fi rst dose before anti-mAb had any impact on mAb elimination.

Independent of the effect of anti-mAb on mAb elimination, the maximum con-
centration and elimination rate were also found to have a nonlinear relationship 
with dose. This was observed in both the Phase 1 and Phase 2 studies for both anti-

Time (week)

C
on

ce
nt

ra
tio

n 
of

 m
A

b 
(μ

g/
m

L)

0             1             2             3            4             5             6

0 5 10                15                 20               25

10–4

10–2

10

102

10–4

10–2

10

102

Time (week)

C
on

ce
nt

ra
tio

n 
of

 m
A

b 
(μ

g/
m

L)

FIGURE 45.1 Concentration of mAb versus time for subjects in Phase 1 study who 
received 3 mg/kg dose (upper panel) and for patients in Phase 2 study who received 2 mg/kg 
dose (lower panel). Subjects with negative or positive anti-mAb response shown with solid 
or dashed lines, respectively.



mAb-positive and anti-mAb-negative subjects and appeared to be independent of 
time and number of doses (Figure 45.2).

45.2.4 Final Developed Models

Based on the criteria specifi ed under Model Development (Section 45.2.2), the best 
basic model structure found for both MODEL 1 and MODEL 2 was one compart-
ment with fi rst-order absorption. Observed data were modeled as follows:

C f D tij i i ij ij= ( ) ⋅θ ε, ,  (45.1)
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FIGURE 45.2 Mean concentration of mAb versus time for subjects in Phase 1 (upper 
panel) and Phase 2 (lower panel). Dose levels were 0.03(�), 0.1(Δ), 0.3(+), 1(×), and 3 mg/kg 
(◊) in the Phase 1 study and 0.05(�), 0.2(Δ), 0.75(+), and 2 mg/kg (×) in the Phase 2 study. 
These plots do not include anti-mAb-positive subjects, indicating nonlinear pharmacokinet-
ics were present even in anti-mAb-negative subjects.
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where f is the structural model, Cij is the jth observed concentration in the ith indi-
vidual, qi is the set of model parameters for the ith individual, Di is the dose received 
by the ith individual, tij is the time from dose for the jth observation, and eij is the 
residual error between the observed and model predicted concentration, assumed 
to be normally distributed with a mean of zero and variance of s 2.

MODEL 1 was implemented in NONMEM using ADVAN 2 (TRANS2) and 
the following model parameter equations:

V BWT Dose e= ⋅ ⋅ ⋅θ θ η
1

5 1  (45.2)

CL Dose e LATR= ⋅ ⋅ =θ θ η
2

6 2 0for  (45.3)

CL Dose e e LATRLATR= ⋅ ⋅ + ⋅ ⋅ >θ θθ η η
2 4

6 2 410 0for  (45.4)

K ea = ⋅θ η
3

3  (45.5)

where V is effective volume of distribution (mL), CL is clearance (mL/h), Ka is 
the oral absorption rate constant (h−1), BWT is body weight (kg), and LATR is the 
log10 of the anti-mAb titer. As shown, power functions for V and CL incorporating 
dose were found to best represent the nonlinear pharmacokinetics in MODEL 1, 
while the impact of anti-mAb was incorporated as an additive linear increase in CL
relative to anti-mAb titers. Proportional intersubject variability was included on 
V, CL, and Ka. V was found to increase in proportion to body weight. The scalar 
used to translate model predicted amounts to concentration was set equal to V. A 
proportional residual error model was found to best represent the data. MODEL 
1 was fi t to a data set that contained the data from both the Phase 1 and Phase 2 
studies. No study impact was found on any model parameters.

The basic structure of MODEL 2 is shown in Figure 45.3. MODEL 2 was 
implemented using ADVAN6 (TRANS1) and the following model differential 
equations:

∂
∂

= − ⋅
A
t

K Aa
1

1  (45.6)

Subcutaneous
Dose Depot

(A1)

Central Compartment
(A2)

Dose

Ka*A1

Elimination 
of free 
mAb

Elimination of 
mAb via 

binding to 
target receptor

Elimination of 
mAb via anti-

mAb antibodies

Ke*A2 Ebound Eanti-mAb

FIGURE 45.3 MODEL 2 diagram. MODEL 2 was mechanistic in nature and included 
three elimination routes for mAb, where both Ebound and Eanti-mAb had a nonlinear relationship 
with concentration of mAb.
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= ⋅ ⋅ − ⋅ − −−
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K A f K A E Ea u e
2

1 2 anti mAb bound  (45.7)

where
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C Km
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− =
⋅

+
2

2
 (45.8)

E K C Vebound bound= ⋅ ⋅1  (45.9)

f
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A C V
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+ ⋅
2

2 bound
 (45.10)

C
C C

K C
t

D
bound

target,=
⋅

+
=2 0

2
 (45.11)

C
A
V

2
2=  (45.12)

In the above equations A1 was the amount of mAb in the subcutaneous dose 
compartment (mmol), A2 was the amount of mAb not bound to target receptor 
or free mAb in the central compartment (mmol), C2 was the concentration of free 
mAb in the central compartment (mmol/mL), Ka was the subcutaneous absorp-
tion rate constant (h−1), Ke was the elimination rate constant for free mAb (h−1),
fu was the free fraction of mAb (not bound to the target receptor), and KD was the 
equilibrium dissociation constant for binding between mAb and target receptors 
(mmol/mL). Included in the model are also terms that represent the elimination 
due to anti-mAb (Eanti-mAb) and elimination due to binding to the target receptor 
(Ebound). Elimination via anti-mAb was found to be best represented using the 
Michaelis–Menten equation (Eq. (45.8)) to capture the dependence of elimination 
on the concentration of mAb. The elimination via binding to target receptors (Eq. 
(45.9)) was modeled using a fi rst-order rate constant Ke1 (h−1), where elimination 
was proportional to the concentration of mAb bound to target receptors (Cbound).
Preliminary structures for MODEL 2 (see Appendix 45.2) included differential 
equations to calculate the concentration of bound and unbound mAb using forward 
and reverse binding rate constants for the mAb; however, these model equation 
systems were found to be stiff and computationally resource intensive. In the fi nal 
model above, an assumption was made to allow a simpler set of model equations. 
For most mAb, the forward and reverse binding rates to the target receptor are 
much greater than the rates of absorption or elimination of the mAb, and this was 
also true for the mAb in this case. So the assumption applied in MODEL 2 was 
that unbound mAb was in equilibrium with bound mAb at all times. This assump-
tion eliminated the need to include separate equations for bound and free target 
receptors, and bound mAb in the differential mass balance equations. However, 
since the elimination of mAb via binding to target receptors was proportional 
to Cbound, the model required Cbound expressed in terms of C2. This is provided 
by Eq. (45.11), which is derived by combining the equilibrium binding equation 
(Eq. (45.13)) with an equation relating the total concentration of target sites to 
unbound target sites (Eq. (45.14)), where Ctarget,t=0 is the concentration of unbound 
target sites at time zero.
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K
C C

C
D =

⋅2 target free

bound
 (45.13)

C C Cttarget ,bound target , bound= −=0  (45.14)

Equations (45.13) and (45.14) assume that the mAb binds stoichiometrically with 
the target receptor in a 1 : 1 ratio, and Eq. (45.14) assumes that the total number 
of target receptors remains constant. Since the binding to target receptors was 
assumed to be in equilibrium at all times, binding was also taken into account when 
mAb is transferred from the dose compartment to the central compartment, with 
the central compartment only accounting for free mAb that is in equilibrium with 
bound mAb. Although not immediately apparent, these model structures preserve 
the overall mass balance in the model.

MODEL 2 also used the following parameter equations:

F1 1 150= ,000  (45.15)

K ea = ⋅θ η
1

1  (45.16)

V LATRmax for 0= =0  (45.17)

V LATRLATR
max = ⋅ >

θ2

150 000
10 0

,
for  (45.18)

Km =
θ3

150 000,
 (45.19)

K ee = ⋅θ η
4

2  (45.20)

Ke1 5= θ  (45.21)

V BWT e= ⋅ ⋅θ η
6

3  (45.22)

where F1 was fi xed but used to convert the dose amount from mg to mmol, using 
the mAb molecular weight of 150,000 daltons. The maximum rate (Vmax, mmol/h)
and Michaelis–Menten constant (Km, mmol/mL) for elimination via anti-mAb were 
divided by 150,000 so that the model q values were expressed in terms of more 
relevant mass units rather than molar units. Similar to MODEL 1, V was found 
to increase in proportion to body weight. The scalar used to translate model pre-
dicted amounts in mmol to concentrations in mg/mL was set equal to V/150,000.
Proportional intersubject variability was included on V, Ke, and Ka. A proportional 
residual error model was found to best represent the data. MODEL 2 was fi t fi rst 
to the Phase 1 data alone and then to both the Phase 1 and Phase 2 data combined. 
The population value and intersubject variance for Ka determined from fi tting the 
Phase 1 data were fi xed during fi tting of the combined Phase 1 and 2 data. KD and 
Ctarget,t=0 could not be estimated and were fi xed to 1 × 10−5 (mmol/mL) and 2 × 10−6

(mmol/mL), respectively, which were expected to represent typical values for a mAb 
and cell surface target receptor.

45.2.5 Model Comparison and Parameter Values

Tables 45.2 and 45.3 list the parameter values for each model, while Figures 45.4 
and 45.5 show some diagnostic plots for each model. Overall, both models were 



TABLE 45.2 Final Model Parameters for MODEL 1

  Estimate
Parameter Parameter Description (Value ± SE)

q1 Volume of distribution per kg of body weight   50.0 ± 1.58
  (mL/kg)
q2 Coeffi cient for dose-dependent clearance term   29.6 ± 1.05
  (mL/h)
q3 Subcutaneous absorption rate (h−1)  0.0132 ± 0.000161
q4 Coeffi cient for anti-mAb-dependent clearance  0.0244 ± 0.00512
  (mL/h)
q5 Volume of distribution linearity with respect to   0.156 ± 0.0395
  dose (power model)
q6 Clearance linearity with respect to dose (power  −0.457 ± 0.0243
  model)
w1 Intersubject variance of volume of distribution  0.0688 ± 0.0159
w2 Intersubject variance of dose-dependent clearance  0.0977 ± 0.0145
  term
w3 Intersubject variance of subcutaneous absorption 0.00568 ± 0.00230
e Residual error variance  0.0853 ± 0.0103
 Objective function value −12413

TABLE 45.3 Final Model Parameters for MODEL 2

  Estimate
Parameter Parameter Description (Value ± SE)

q1 Subcutaneous absorption rate (h−1) 0.0387*
q2 Maximum elimination rate coeffi cient for anti-  0.418 ± 0.0382
  mAb-dependent elimination (mg/h)
q3 Michaelis–Menten constant for anti-mAb-   4.87 ± 0.363
  dependent elimination (mg/mL)
q4 Elimination rate constant for free mAb (h−1) 0.00132 ± 0.000155
q5 Elimination rate constant for mAb bound to target  0.0600 ± 0.000831
  receptors (h−1)
q6 Volume of distribution per kg of body weight   88.9 ± 6.53
  (mL/kg)
w1 Intersubject variance of subcutaneous absorption 0.0468a

w2 Intersubject variance of elimination rate constant  0.172 ± 0.0855
  for free mAb
w3 Intersubject variance of volume of distribution  0.0256 ± 0.00415
e Residual error variance  0.0595 ± 0.00827
 Objective function value −13624

a Subcutaneous absorption parameters were estimated using the Phase 1 data and subsequently fi xed 
when fi tting the combined Phase 1 and Phase 2 data.

able to fi t the data reasonably well, with MODEL 2 having slightly lower residual 
error values compared to MODEL 1. When the data were fi t using MODEL 1 and 
MODEL 2 without accounting for anti-mAb effects (q4 set to zero in MODEL 1, 
q2 set to zero in MODEL 2), the objective function values increased by approxi-
mately 1949 and 233 points, respectively, indicating that accounting for anti-mAb-
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mediated elimination signifi cantly improved the fi t to the data. Figure 45.5 includes 
only those subjects who were anti-mAb positive, and these diagnostic plots suggest 
that MODEL 2 was able to provide a slightly better fi t to anti-mAb-positive sub-
jects; however, both models tended to overpredict the lower concentrations at the 
end of a dosing interval produced during an anti-mAb response. This is also shown 
in Figure 45.6, where the lower panels compare the fi t of MODEL 1 and MODEL 2 
for two subjects in the Phase 1 study who had moderate anti-mAb responses. Both 
models tended to overpredict the concentrations at later time points during an anti-
mAb response, but MODEL 2 provided a better fi t to these low concentrations. 
Also shown in Figure 45.6 in the upper panels are comparisons of the fi t of MODEL 
1 and MODEL 2 to the nonlinear profi le generated in two sample anti-mAb-nega-
tive subjects as a result of binding and elimination through the target receptor. The 
nonlinear profi le in these subjects was more accurately fi t using MODEL 2 since CL
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all subjects from Phase 1 and Phase 2 studies.
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FIGURE 45.5 Goodness-of-fi t plots for MODEL 1 and MODEL 2. Plotted data includes 
only anti-mAb-positive subjects from Phase 1 and Phase 2 studies.

in MODEL 1 was not dependent on concentration of mAb. Over the 0.05–2.0 mg/kg 
dose range used in the Phase 2 study, MODEL 1 predicted that V would increase 
from 31.3 to 55.7 mL/kg and CL would decrease from 116 to 21.6 mL/h. MODEL 
1 estimated that the anti-mAb-mediated clearance of mAb would be 7.72 mL/h at 
an anti-mAb log10 titer of 2.5. The estimated value for Ka was approximately three 
times higher in MODEL 2 compared to MODEL 1. MODEL 2 estimated the 
maximum rate nonlinear elimination (Vmax) via anti-mAb to be 0.418 mg/h, with a 
corresponding Km of 4.87 mg/mL. The estimated Ke and Ke1 in MODEL 2 translate 
to half-lives of approximately 21.9 days and 11.6 h for elimination of free mAb 
and mAb bound to target receptors, respectively. The estimated value for V was 
approximately 1.5–2.8 times higher in MODEL 2 compared to MODEL 1. Propor-
tional residual error expressed as a coeffi cient of variation was 24.4% for MODEL 
2 and 29.2% for MODEL 1.
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45.3 DISCUSSION

Similar to small molecules, the clinical relevance of PK variability and nonlinearity 
depend on how strong exposure is correlated to effi cacy and safety and the width of 
the therapeutic index. For therapeutics that have a very wide margin of safety and 
have an effi cacy outcome that can be predicted as accurately with an individual’s 
dose as with an individual’s concentration-related exposure, there may be little 
value in accurately accounting for PK variability and nonlinearity. However, there 
are many therapeutics where these two conditions are not true. In these cases, it 
is important to accurately characterize variability and nonlinearity so that one can 
better understand how changes in dose, patient characteristics, and disease state 
may affect safety and effi cacy through exposure.

The development of antibodies to therapeutic proteins can have direct safety 
consequences in addition to the impact on pharmacokinetics as addressed in this 
chapter. Provided the antibody response itself does not have direct safety issues, in 
some cases it is possible to continue dosing the therapeutic protein in the presence 
of antibody, provided effi cacious levels of the therapeutic protein can be main-
tained. In this case, it is important to fully understand how the antibody response 
impacts active concentrations of the therapeutic protein so that it is possible to 
design dosing regimens that minimize the impact of the antibody response. In the 
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example discussed in this chapter, the antibody response (anti-mAb) reduced mAb 
exposure, but this occurred in a nonlinear manner with less negative impact at 
higher exposures relative to lower exposures. In addition to the infl uence of anti-
mAb, there was an additional nonlinearity observed that was postulated to be the 
result of mAb binding to the target receptor.

The complexity of the modeling that can be done to understand nonlinearity 
is highly dependent on the amount and quality of data available. In this example, 
there were anti-mAb data available that were used to model the infl uence that the 
anti-mAb response had on mAb clearance. If anti-mAb data were not available, 
one could use a mixture model in NONMEM, where the population is assumed to 
be either anti-mAb positive or anti-mAb negative. This method would improve the 
fi t compared to not accounting for anti-mAb elimination at all; however, the fi xed 
effect of anti-mAb titer has a signifi cant impact on elimination and this method 
would not be able to account for this fi xed effect. In this example, there were 
also no study data regarding the concentration of the target receptor; however, 
in many cases this is a biomarker that is available as a measure of target receptor 
occupancy.

45.3.1 MODEL 1 Advantages, Disadvantages, and Limitations

The main advantage of MODEL 1 is that it is a relatively simple model that uses 
one of the standard NONMEM models in conjunction with parameter equations 
that incorporate nonlinearity with respect to dose and anti-mAb titer. This model 
requires fewer parameters and could be used with sparser data sets. The disadvan-
tage of MODEL 1 is that it is more empirical in nature and does not try to account 
for the observed nonlinearity on a mechanistic basis. The parameter values obtained 
from MODEL 1 are questionable from a biological standpoint. The estimated 
half-life based on apparent CL and V is much lower than would be expected for a 
mAb, and this is because the clearance in MODEL 1 does not distinguish between 
the normal linear elimination pathway and elimination via binding to the target 
receptor. What this means is that MODEL 1 would be unable to accurately predict 
the clearance of the mAb at doses above or below those used in the modeling. The 
apparent V estimated with MODEL 1 is at or below the plasma volume; therefore, 
this volume is not an accurate refl ection of the true distribution volume. The appar-
ent V was found to increase with increasing dose. It would be more likely that the 
apparent V would increase with decreasing dose, since more of the mAb would be 
bound to the target receptor at lower doses and this would cause less of the mAb 
to be measured, resulting in an increase in the apparent V.

45.3.2 MODEL 2 Advantages, Disadvantages, and Limitations

The main advantage of MODEL 2 is that it attempts to account for the mecha-
nisms that cause the observed nonlinearity. This should allow MODEL 2 to more 
accurately predict exposures for doses outside the range currently evaluated or for 
different dosing schedules, and also to directly account for factors that may impact 
the number of target receptors or their rate of turnover. The parameter values 
estimated by MODEL 2 are more realistic from a biological standpoint, with an 
estimated apparent V of 88.9 mL/kg and half-life of 22 days. The apparent V would 
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not include binding to target receptors since this is accounted for separately using 
the equilibrium binding equations. The elimination rate constant (Ke1) for target 
receptor bound mAb could be considered related to the turnover or recycling rate 
of the target receptor and was found to have a half-life of 12 h. The main disadvan-
tage of MODEL 2 is that its increased complexity and greater number of parameters 
required a richer data set and also required assumptions about the initial concentra-
tion of target binding sites. The binding affi nity (KD) required by MODEL 2 could 
be reasonably obtained from in vitro binding studies. A limitation of MODEL 2 is 
that it assumed the number of target binding sites remains constant with treatment 
and time, whereas in reality it is possible that treatment with the mAb may cause 
changes in the expression of the target receptor.

45.4 SUMMARY

The example provided in this chapter considers the case of nonlinear pharmaco-
kinetics observed for a protein therapeutic in Phase 1 and Phase 2 studies. The 
nonlinearity is postulated to be the result of two factors: elimination via anti-mAb 
antibodies and elimination via binding to target receptors. A comparison is made 
between fi tting the concentration data using an empirical modeling approach versus 
a mechanistic modeling approach. Both models are able to fi t the data reasonably, 
and the advantages, disadvantages, and limitations of each model are discussed. 
The best modeling approach to characterize nonlinear pharmacokinetics depends 
on how much data are available and the intended purpose of the modeling. If the 
modeling is intended to be used in a predictive manner for future studies that use 
different dosing regimens and patients with different characteristics, then a more 
mechanistic approach may lead to more accurate predictions.
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APPENDIX 45.1 MODEL 1 NONMEM CONTROL CODE

$PROB FIT OF SINGLE AND MULTIPLE DOSE DATA RUN=001

$INPUT ID TIME APOS DOSE WGT DV MDV AMT EVID LATR

$DATA sdmd.data.final.3.csv IGNORE=C ; Data is in the Excel file.

$SUBROUTINE ADVAN2 TRANS2

;Kineticist: Stuart Friedrich

$PK

 PV=THETA(1)*WGT*DOSE**THETA(5)

 V=PV*EXP(ETA(1))

 IF (LATR .EQ. 0) THEN

  PCL=THETA(2)*DOSE**THETA(6)

 ELSE

  PCL=THETA(2)*DOSE**THETA(6)+THETA(4)*10**LATR

 ENDIF

 CL=PCL*EXP(ETA(2))

 PKA=THETA(3)

 KA=PKA*EXP(ETA(3))

 S2=V
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$ERROR

 IPRED=F

 W=0.001

 IF(F.GT.0) W=F

 IRES=DV-IPRED

 IWRES=IRES/W

 Y=F+W*ERR(1)

$THETA (20,90,150);1 - Volume

$THETA (10,40,100);2 - Linear clearance parameter

$THETA (0.001,0.03,0.1);3 - KA

$THETA (0,0.01);4 - Clearance parameter due to antibody response

$THETA (-0.1);5 - Power exponent for change in V with dose

$THETA (-0.1);6 - Power exponent for change in CL with dose

$OMEGA 0.5;1 - Var of V

$OMEGA 0.5;2 - Var of CL

$OMEGA 0.5;3 - Var of KA

$SIGMA 0.5;PROPORTIONAL ERROR

$EST MAXEVAL=5000 PRINT=5 METH=0 POSTHOC

$COV

$TABLE ID TIME IPRED IWRES APOS LATR DOSE

 FILE=model_sdmd_1_t1.tb NOPRINT ONEHEADER

$TABLE DOSE ID KA V CL ETA1 ETA2 ETA3

 FILE=model_sdmd_1_t2.tb NOPRINT ONEHEADER FIRSTONLY

APPENDIX 45.2 MODEL 2 NONMEM CONTROL CODE

Preliminary Evaluated Model

$PROB FIT OF SD AND MD DATA RUN=001

$INPUT ID ARM TIME APOS DOSE WGT DV MDV AMT EVID LATR CMT

$DATA data.csv IGNORE=C

$SUBROUTINE ADVAN8 TRANS1 TOL=3

$MODEL

COMP=(COMP1) COMP=(COMP2,DEFOBS) COMP=(COMP3) COMP=(COMP4) 

COMP=(COMP5)

$PK

 PV=THETA(11)*WGT

 V=PV*EXP(ETA(11))

 PF1=THETA(1)/150000

 F1=PF1*EXP(ETA(1))



 PF3=THETA(2)*V

 F3=PF3*EXP(ETA(2))

 PKA=THETA(3)

 KA=PKA*EXP(ETA(3))

 PKF=THETA(4)*1E6

 KF=PKF*EXP(ETA(4))

 PKR=THETA(5)

 KR=PKR*EXP(ETA(5))

 IF (LATR .EQ. 0) THEN

  VMX=0

 ELSE

  VMX=(THETA(6)/150000*10**LATR)*EXP(ETA(6))

 ENDIF

 PKM=THETA(7)/150000

 KM=PKM*EXP(ETA(7))

 PABLG=THETA(8)

 ABLG=PABLG*EXP(ETA(8))

 PKE=THETA(9)

 KE=PKE*EXP(ETA(9))

 PKE1=THETA(10)

 KE1=PKE1*EXP(ETA(10))

 S2=V/150000

$ERROR

 IPRED=F

 W=0.001

 IF(F.GT.0) W=F

 IRES=DV-IPRED

 IWRES=IRES/W

 Y=F+W*ERR(1)

$DES

C2=A(2)/V

A3=A(3)

A5=A(5)

IF (T .LE. ABLG) THEN

 VMAX=0

ELSE

 VMAX=VMX

ENDIF
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DADT(1)=-KA*A(1);MAB ABSORPTION COMPARTMENT

DADT(2)=KA*A(1)-KF*A(3)*A(2)/V+KR*A(4)-KE*A(2)-VMAX*C2/(C2+KM);MAB 

FREE COMPARTMENT (CENTRAL)

DADT(3)=-KF*A(3)*A(2)/V+KR*A(5);TARGET SITES FREE COMPARTMENT

DADT(4)=KF*A(3)*A(2)/V-KR*A(4)-KE1*A(4);MAB BOUND TO TARGET 

COMPARTMENT

DADT(5)=KF*A(3)*A(2)/V-KR*A(5);TARGET SITES BOUND COMPARTMENT

$THETA (1 FIX);1 - F1

$THETA (1 FIX);2 - F3

$THETA (0,0.03,0.5);3 - KA

$THETA (1 FIX);4 - KF

$THETA (10 FIX);5 - KR

$THETA (0,0.5);6 - VMAX

$THETA (0,1);7 - KM

$THETA (168 FIX);8 - ALAG

$THETA (0,0.002,0.05);9 - KE (LINEAR ELIM)

$THETA (0.01 FIX);10 - KE1 (BINDING ELIM)

$THETA (0,85,150);11 - V/BWT

$OMEGA (0 FIX);1 - F1

$OMEGA (0.5);2 - F3

$OMEGA (0.5 FIX);3 - KA

$OMEGA (0 FIX);4 - KF

$OMEGA (0 FIX);5 - KR

$OMEGA (0.5);6 - VMAX

$OMEGA (0 FIX);7 - KM

$OMEGA (0 FIX);8 - ALAG

$OMEGA (0.5);9 - KE (LINEAR ELIM)

$OMEGA (0.5);10 - KE1 (BINDING ELIM)

$OMEGA (0.5);11 - V/BWT

$SIGMA 0.5;PROPORTIONAL ERROR

$EST MAXEVAL=5000 PRINT=5 METH=0 POSTHOC NOABORT

$COV

Final Model

(Note that theta and omega numbering is not the same as in chapter text.)

$PROB FIT OF SINGLE AND MULTIPLE DOSE DATA RUN=001

$INPUT ID TIME APOS DOSE WGT DV MDV AMT EVID LATR

$DATA sdmd.data.final.3.csv IGNORE=C ;Data is in the Excel file



$SUBROUTINE ADVAN6 TRANS1 TOL=3

$MODEL

COMP=(COMP1,DEFDOSE) COMP=(COMP2,DEFOBS)

;Kineticist: Stuart Friedrich

;Notes: Absorption parameters fixed based on fit of single dose 

data

$PK

 SIT0=0.000002*EXP(ETA(1))

 F1=THETA(1)/150000

 PKA=THETA(2)

 KA=PKA*EXP(ETA(2))

 PABLG=THETA(3)

 ABLG=PABLG*EXP(ETA(3))

 IF (LATR .EQ. 0) THEN

  VMAX=0

 ELSE

  VMAX=(THETA(4)/150000)*(10**LATR)*EXP(ETA(4))

 ENDIF

 PKM=THETA(5)/150000

 KM=PKM*EXP(ETA(5))

 PKE=THETA(6)

 KE=PKE*EXP(ETA(6))

 PKE1=THETA(7)

 KE1=PKE1*EXP(ETA(7))

 PV=THETA(8)*WGT

 V=PV*EXP(ETA(8))

 S2=V/150000

$ERROR

 IPRED=F

 W=0.001

 IF(F.GT.0) W=F

 IRES=DV-IPRED

 IWRES=IRES/W

 Y=F+W*ERR(1)
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$DES

IF (T .LT. ABLG) THEN

 VMX=0

ELSE

 VMX=VMAX

ENDIF

CBND=A(2)/V*SIT0/(1E-5+A(2)/V)

IF (A(2) .EQ. 0) THEN

 FFRE=1

ELSE

 FFRE=A(2)/(A(2)+CBND*V)

ENDIF

DADT(1)=-KA*A(1)

DADT(2)=KA*A(1)*FFRE-KE*A(2)-VMX*A(2)/V/(A(2)/V+KM)-KE1*CBND*V

$THETA (1 FIX);1 - F FIXED FOR MAB

$THETA (0.0387 FIX);2 - KA

$THETA (168 FIX);3 - ANTIBODY RESPONSE LAG TIME FROM T=0 ONLY

$THETA (0,0.4);4 - VMAX OF ANTIBODY RELATED ELIMINATION

$THETA (0,5);5 - KM OF ANTIBODY RELATED ELIMINATION

$THETA (0.0005,0.0013,0.005);6 - KE (LINEAR ELIM)

$THETA (0.002,0.06,0.2);7 - KE1 (ELIM DUE TO BINDING TO TARGET)

$THETA (70,90,150);8 - V/BWT/F

$OMEGA 0 FIX;1 - VAR OF INTIAL TARGET BINDING SITES AT T=0

$OMEGA 0.0468 FIX;2 - VAR OF KA

$OMEGA 0 FIX;3 - VAR OF ANTIBODY LAG TIME FROM T=0 ONLY

$OMEGA 0 FIX;4 - VAR OF VMAX OF ANTIBODY RELATED ELIMINATION

$OMEGA 0 FIX;5 - VAR OF KM OF ANTIBODY RELATED ELIMINATION

$OMEGA 0.5;6 - VAR OF KE

$OMEGA 0 FIX;7 - VAR OF KE1

$OMEGA 0.5;8 - VAR OF V/BWT/F

$SIGMA 0.5;PROPORTIONAL ERROR

$EST MAXEVAL=5000 PRINT=5 METH=0 POSTHOC

$COV

$TABLE ID TIME IPRED IWRES APOS LATR CBND VMX FFRE DOSE

 FILE=model_sdmd_2_t1.tb NOPRINT ONEHEADER

$TABLE ID KA KM KE KE1 V DOSE

 FILE=model_sdmd_2_t2.tb NOPRINT ONEHEADER FIRSTONLY
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46.1 INTRODUCTION

With the technological advances in the analytical tools and modeling software 
available to the pharmaceutical scientist, dissolution testing has been used more 
and more—both by the industry as well as regulatory agencies as a predictor of 
differences in bioavailability. When drug release from the formulation and its solu-
bilization are the rate-limiting steps, it is possible to predict the resulting plasma 
concentration–time profi le from its in vitro dissolution. In order to achieve this, 
there should be a well established relationship between the in vitro dissolution of 
the drug from the formulation and its in vivo bioavailability.

In this chapter, the various requirements necessary for establishing an in vitro/in 
vivo correlation (IVIVC) both in terms of in vitro testing and in vivo modeling are 
presented. The regulatory requirements in terms of validation are discussed. Since 
the chapter is focused on the regulatory perspective on IVIVC, emphasis is on prac-
tical approaches used in drug development and evaluation and less so theoretical 
aspects of IVIVC. Finally, applications of IVIVC from both an industrial as well 
as a regulatory perspective are given in terms of obtaining in vivo bioavalability/
bioequivalence waivers and the setting of clinically meaningful dissolution specifi ca-
tions. In this regard, an example is presented in detail to illustrate the various steps 
in developing and validating an IVIVC.

46.2 LEVELS OF CORRELATION

46.2.1 Level A Correlation

A level A correlation is a point-to-point relationship between in vitro dissolution 
and the in vivo input rate, as can be seen in Figure 46.1. Such relationships are 
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usually linear, where the in vitro dissolution and the in vivo input curves can be 
superimposable. Even though nonlinear relationships are uncommon, they can 
be appropriate since they are useful in predicting the plasma concentration–time 
profi le from in vitro dissolution data (1).

46.2.2 Level B Correlation

In a level B correlation, the mean in vitro dissolution time is compared to either 
the mean residence time or the mean in vivo dissolution time (Figure 46.2). A level 
B IVIVC uses the principles of statistical moment analysis. Even though a level 
B correlation uses all the in vitro and in vivo data, it is not considered a point-to-
point correlation. It does not uniquely refl ect the actual plasma concentration–time 
profi le because a number of different in vivo profi les will produce similar mean 
residence times. For this reason, a level B correlation is of little value from a regu-
latory point of view.

46.2.3 Level C Correlation

A level C correlation establishes a relationship between a dissolution parameter 
such as the amount of drug dissolved at a certain time and a pharmacokinetic (PK) 
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FIGURE 46.1 Level A correlation showing the point-to-point relationship between the 
fraction of drug absorbed and the fraction of drug dissolved.
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parameter of interest such as AUC or Cmax (e.g., see Figure 46.3). Unfortunately, 
a level C IVIVC does not refl ect the complete shape of the plasma concentration–
time profi le, which is a critical factor in defi ning the performance of the product. On 
the other hand, a multiple level C correlation relates one or several PK parameters 
to the amount of drug dissolved at several time points of the dissolution profi le. 
In general, if one is able to establish a multiple level C correlation, then a level A 
correlation could be established also and is the preferred correlation to establish.

46.3 DEVELOPMENT OF LEVEL A CORRELATION

46.3.1 In Vivo Considerations

Since a level A correlation is the most useful IVIVC both from a regulatory and 
formulation development point of view, only the development of a level A IVIVC 
is discussed in this chapter.

The following points should be taken into consideration when developing an 
IVIVC:

1. Sine the PK properties of a drug tend to be somewhat different in animals 
when compared with humans, only human data is considered from a regula-
tory point of view. This does not preclude the use of animal data in assessing 
the performance of pilot formulations.

2. The in vivo PK studies should be large enough to characterize adequately the 
product under study. In general, the larger the variability in the performance 
of the formulation, the bigger the study should be (2).

3. The preferred study design is the crossover design since it reduces interstudy 
variability. Parallel studies as well as data obtained across several studies can 
be utilized to develop the IVIVC.

4. Inclusion of an immediate release reference in the studies facilitates data 
analysis since it allows one to better estimate the terminal rate constant for 
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FIGURE 46.3 Level C Correlation showing the relationship between the amount of drug dis-
solution at a certain time (for example 6 and 9 hours) and the peak plasma concentration.
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each subject and also enables one to normalize the data to a common refer-
ence. The reference product could be an intravenous solution, an aqueous oral 
solution, or an immediate release product.

5. The studies are usually conducted under fasting conditions. However, if 
there are any tolerability concerns, the studies could be conducted under fed 
conditions.

46.3.2 Method

The IVIVC should usually be developed with two or more formulations (preferably 
three formulations) with different release rates. The process involves the following 
steps:

• Generate in vitro dissolution profi les using an appropriate dissolution method-
ology that can discriminate among the various formulations.

• Determine the plasma concentration–time profi les for the tested 
formulations.

• Obtain the absorption–time profi le for these formulations (fraction of drug 
absorbed versus time). This can be achieved by the use of appropriate decon-
volution techniques.

• Plot the in vivo absorption profi le or the in vivo dissolution profi le against the 
in vitro dissolution profi le to determine whether a relationship exists (e.g., see 
Figure 46.4).

The method described above is called a two-stage procedure (3). An alternative 
approach is based on a convolution procedure that attempts to model the relation-
ship between in vitro dissolution and plasma concentrations in a single step. The 
model predicted plasma concentrations are directly compared to the actual plasma 
concentrations obtained in the studies (4).

46.3.3 Deconvolution Methods

The most commonly used model-dependent deconvolution methods for estimat-
ing the apparent in vivo drug absorption following oral administration are the 
Wagner–Nelson (5) method and the Loo–Riegelman method (6). These methods 
depend on mass balance and the fraction of drug absorbed for a one-compartment 
model is expressed as

F t
X

X

C k Ct dt

k Ct dt
a

a t

t
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=
+

∞
∞

∫
∫

0

0

 (46.1)

where Fa(t) is the fraction of absorbable drug at time t, C is the concentration of 
drug in the central compartment at time t, and k is the fi rst-order elimination rate 
constant.

For a two- or three-compartment model, the following equation describes the 
amount of drug absorbed at time t where Vc is the volume of the central compart-



ment, Ct is the plasma concentration at time t, and k12, k21, k13, k31 are the inter-
compartmental rate constants, and K10 is the elimination rate constant from the 
central compartment (7, 8).
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(46.2)

46.3.4 Convolution-Based IVIVC

In order to be able to develop an IVIVC using a convolution-based approach, the 
following assumptions should hold true:
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FIGURE 46.4 Development of a level A correlation, where the fraction of drug dissolved 
at each time is plotted against the corresponding fraction of drug absorbed at the same time. 
The top left panel represents the dissolution profi les for three different formulations and the 
top right panel shows the corresponding percent absorbed plots calculated from the respec-
tive in vivo absorption profi les. The bottom panel is a synthesis of the information from the 
two top panels relating the percent absorbed in vivo to the percent dissolved in vitro.
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• The in vitro release rate approximates the in vivo absorption rate.
• The PK properties of the drug are linear and time invariant.
• The pharmacokinetics of the drug administered as IV or immediate release 

(IR) or drug released from the extended release (ER) formulation are indis-
tinguishable. In others words, once a drug molecule released from the IR or 
ER formulations is absorbed into the systemic circulation, it behaves just like 
an intravenously administered one.

In addition, plasma concentrations from an IV dose or from administration of 
IR formulation such as an oral solution or rapidly dissolving oral formulation are 
needed to estimate the unit impulse function.

If the above conditions are met, then the plasma concentrations are expressed 
according to the following equation:

C t C t u x u du
t

( ) = −( ) ′ ( )∫ δ rel,vitro
0

 (46.3)

where C(t) is the plasma concentration at time t, xrel,vitro is the cumulative amount of 
drug released in vitro, and x′ is the in vitro release rate obtained by taking the fi rst 
derivative of x. xrel,vitro can be expressed as any mathematical function that best fi ts 
the dissolution profi le. Alternatively, x can be estimated by linear interpolation of 
the mean in vitro dissolution profi le. Cd is the unit impulse response, which is the 
plasma concentration–time course resulting from the instantaneous in vivo release 
of a unit amount of a drug (9). Cd can be obtained by fi tting the IR or the IV plasma 
concentration–time profi le to a polyexponential function.

46.4 EVALUATION OF THE PREDICTABILITY OF THE IVIVC

Once an IVIVC has been established, a crucial determination of its applicability 
is its ability to predict the plasma concentration–time profi le accurately and con-
sistently. A relationship between the vitro dissolution and the in vivo absorption 
rate that is dependent on the release rate of the formulation, as can be seen in 
Figure 46.5, is usually an indication that a consistent relationship predictive of the 
in vivo performance does not exist. This is due to the fact that depending on the 
formulation used one can have a different amount of drug absorbed for the same 
amount of drug dissolved. On the other hand, a good and consistent relationship 
would always give you approximately the same slope irrespective of the formulation 
(whether the slow, fast, or medium formulation is used and whether or not all the 
data is pooled together). A good illustration of a valid linear level A correlation is 
presented in Figure 46.6, where the slope of the relationship is the same for each 
of the individual formulations or for the case where all the formulations are pooled 
together and treated as one.

Since the IVIVC model is going to be used to predict the plasma concentratio n–
time profi le, it is imperative to assess the predictive performance of the model via 
the assessement of the prediction error of the model. Depending on the intended 
application of the IVIVC and the therapeutic index of the drug, evaluation of the 
internal or external predictability may be warranted. Evaluation of internal pre-
dictability is based on the data that was used to develop the IVIVC. Evaluation of 



FIGURE 46.5 Poor IVIVC, where the slope of the relationship is dependent on the for-
mulation. Each curve is for a different formulation.

FIGURE 46.6 Predictive IVIVC independent of the release rate, where the slope of 
the relationship is independent of the formulation used. Each plot represents a different 
formulation.

external predictability involves additional data sets (see the next paragraph) that 
were not used in the initial development of the IVIVC.

If the IVIVC for a non-narrow therapeutic index drug was developed with formu-
lations with three or more release rates, the evaluation of the internal predictability 
would be suffi cient to determine its appropriateness.
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External predictability is warranted in the following situations:

• The drug is considered to be a narrow therapeutic index drug.
• The internal predictability criteria are not met.
• The IVIVC was developed with two formulations with different release 

rates.

The data set that is used in the external predictability should ideally be obtained 
from a formulation with a different release rate. However, it is acceptable to use for-
mulations with similar release rates as those used in the development of the IVIVC. 
The following represent in decreasing order of preference the types of formulations 
that can be used to estimate the external prediction errors:

• Formulations with different release rates
• A formulation that was made involving a specifi c manufacturing change (equip-

ment, process, site, etc.)
• Similar formulations but different lots than the ones used in the IVIVC and 

the data from a different study than the one used in the development of the 
IVIVC

46.5 APPROACHES TO THE EVALUATION OF PREDICTABILITY

The most common approach to evaluating the predictability of an IVIVC is depicted 
in Figure 46.7. The procedure involves the conversion of the in vitro dissolution rate 
into in vivo absorption rate and then, by the use of convolution methods, a predic-
tion of the plasma concentration–time profi le. This is represented as

Dissolution ➝  Absorption  ➝  Plasma profi le
  IVIC model  PK parameters

The area under the concentration–time curve (AUC) and the peak plasma concen-
tration (Cmax) from the predicted profi les are compared to those obtained from the 
observed profi les to calculate the percent prediction errors.

The absolute prediction errors are calculated as follows:

|(Observed − Predicted)/Observed| × 100

These calculations should be done for each of the formulations used to develop 
the IVIVC.

For internal predictability, an average absolute prediction error of less than 10% 
for both AUC and Cmax establishes the predictive ability of the IVIVC. In addition, 
the percent error for each formulation should not exceed 15%. If the above criteria 
are not met, the IVIVC is declared inconclusive and in this case the evaluation of 
the external predictability of the IVIVC is required.

For external predictability, the percent prediction error should be less than 10% 
to declare the IVIVC acceptable. A percent prediction error between 10% and 20% 
is deemed inconclusive, requiring the further evaluation with additional data sets. 



A percent prediction error greater than 20% indicates that the IVIVC has a poor 
predictive ability and thus is considered not useful for any application.

Note that the prediction should be made using mean data (mean dissolution pro-
fi les as well as population means for the PK parameters) for the following reason: 
individual dissolution data on the dosage unit that the individual subject was admin-
istered is not available. Thus, using average in vitro parameters and individual PK 
parameters is not appropriate.

Since the purpose of the IVIVC is to predict the performance of yet untested for-
mulations, no individual data will be available for such formulations and therefore 
a decision as to the appropriateness of the in vivo performance of the formulations 
is best determined on the average performance of these formulations.

46.6 APPLICATIONS OF IVIVC

46.6.1 In Vivo Bioavailability Waivers

With a predictive IVIVC, in vitro dissolution would not only be a tool to assure 
the consistent performance of the formulation from lot to lot but would become a 
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conversion of in vitro dissolution rate into in vivo absorption rate and the prediction of 
plasma concentration–time profi le by the use of deconvolution methods (see Section 46.5).
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surrogate for the in vivo performance of the drug product. The ability to predict 
the plasma concentration–time profi le from in vitro data will reduce the number 
of studies required to approve and maintain a drug product on the market, and 
therefore reduce the regulatory burden on the pharmaceutical industry.

Once an IVIVC has been established, it is possible to waive the requirements 
for bioavailability/bioequivalence studies. For example, a biowaiver can be granted 
for a level 3 process change as defi ned in SUPAC MR, complete removal or 
replacement of non release controlling excipient, and level 3 changes in the release 
controlling excipients (10). If the IVIVC is developed with the highest strength, 
waivers for changes made with the lowest strengths are possible if these strengths 
are compositionally proportional or qualitatively the same, the in vitro dissolution 
profi les are similar, and all the strengths have the same release mechanism (11).

However, an IVIVC cannot be used to gain the approval of (a) a new formula-
tion with a different release mechanism, (b) a formulation with a dosage strength 
higher or lower than the doses that have been shown to be safe and effective in the 
clinical trials, (c) another sponsor’s oral controlled-release product even with the 
same release mechanism, and (d) a formulation change involving an excipient that 
will signifi cantly affect drug absorption.

The regultory criteria for granting biowaivers is outlined in the FDA guidance 
on this topic. Basically, the mean predicted Cmax and AUC from the respective in 
vitro dissolution profi les should differ from each other by no more than 20% (see 
Figure 46.8) (12).

46.6.2 Dissolution Specifi cations

The IVIVC allows one to shift the dissolution criteria from the in vitro side to 
the in vivo side. The plasma concentration–time profi les that correspond to the 
lots that are on the upper and lower limits of the dissolution specifi cations are 
predicted. Acceptable dissolution specifi cation limits are limits that do not result 
in more than 20% difference in AUC and Cmax (usually ±10% of the target/bio 
formulation) (13).

FINAL DISSOLUTION SPECIFICATIONS:
Set such that the predicted Cmax and AUC range NMT 20%
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FIGURE 46.8 Regulatory criteria for granting a biowaiver using an IVIVC. The upper of 
the two profi les is for the test formulation, and the lower of the two profi les is for the refer-
ence formulation. NMT = no more than.



Using the IVIVC to choose clinically meaningful specifi cations provides several 
advantages in that (a) it will minimize the release of lots that are different in their 
in vivo performance, thus optimizing the performance of the product; and (b) in 
certain cases it will allow wider dissolution specifi cations.

46.7 CASE STUDY

The following example is presented to illustrate the type of study and data analysis 
that was undertaken to develop a level A correlation for a once-a-day modifi ed 
release formulation for metopolol.

The in vivo performance of three modifi ed release (MR) formulations with dif-
ferent release rates (fast, medium, and slow formulations) were tested in a four-
way crossover single-dose study in healthy volunteers. A fourth other arm of the 
study included an IR solution of the drug. The individual plasma concentrations 
are presented in Table 46.1. The mean plasma concentration–time profi le for each 
treatment is shown in Figure 46.9.

TABLE 46.1 Individual Concentrations for the Four-Way Crossover Study

 Plasma Concentrations (ng/mL)

Time (hours) Pt1 Pt2 Pt3 Pt5 Pt6 Pt7 Pt9

Solution

 0 ND ND ND ND ND ND ND
 0.25   2.51  <1.00   5.67 ND  10.8  3   1.62
 0.5  18.4   8.35  13.6   5.51  40.2 35.8  24.3
 1  54.3  20.3  54.6  17.7  66.7 46.7  46.4
 1.5  76.1  36.9  56.6  37.6  69.5 52.3  52.8
 2  84  41.9  56.7  35.9  63.7 48.3  53.2
 2.5  78.4  45.9  51.7  42.6  53 41.6  48.4
 3  76  51.9  46  39  46.8 36.5  46.4
 4  61.3  46.1  34  34.4  33.2 27.9  36.3
 6  33.7  33.3  20  21.1  18.3 15.5  23.6
 8  22.7  24.1  12.1  15.2  10.8 9.89  14.9
12   7.66  11   2.96   6.54   3.02  3.06   6.16
18   1.86   4.62  <1.00   2.39   1.12  1.25   1.97
24 <1.00   1.74  <1.00 <1.00 <1.00 <1.00 <1.00

Fast Formulation

 0 ND ND ND ND ND ND ND
 0.5   7.97  12.3   8.31   1.05  10.8  2.31   7.79
 1  64.1  47.5  40.5   6.42  41 31.5  46.9
 1.5 124  51.9  83.2  30  74.1 46.6  75.2
 2 155  75.5 100  71.7  96 63.5  88.3
 3 178  82.1 130 114 120 84 120
 4 158  77.4 108 105 107 88.1 107
 6  93.9  53.9  67.4  75.5  73.3 48.6 —
 8  60.4  36.9  47  51.8  43.3 32.8  49.2
10  38.9  20.9  28.6  32.6  30.9 16.9  27.9
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TABLE 46.1 Continued

 Plasma Concentrations (ng/mL)

Time (hours) Pt1 Pt2 Pt3 Pt5 Pt6 Pt7 Pt9

12  23.9  12.8  18.3  23.8  20.7  9.75  18.7
14  14.5   9.4  12.6  16.7  12.4  6.5  13.3
16  10.9   6.56   8.05  12.7   5.56  4.79   8.77
20   5.93   3.58   4.47   7.11   2.72  2.49   4.83
24   2.77   1.53   2.35   4.62   2.42 <1.00   2.53
30   1.48  <1.00 <1.00   1.84  <1.00 <1.00   1.19
36 <1.00 <1.00 <1.00   1.09  <1.00 <1.00 <1.00
48 <1.00 <1.00 ND  <1.00 ND ND  <1.00

Moderate Formulation

 0 ND ND ND ND ND ND ND
 0.5   1.98   3.14   3.76  <1.00   8.36  6.4   7.45
 1  35.6  26.5  16.8  12.8  33.8 28.3  30.3
 1.5  55.1  52.3  24.5  29.7  59 52.8  42.8
 2  95  76.4  33.7  43  71.7 57.6  58.1
 3 148 100  54.5  78.7  93.7 60  76.9
 4 150 106  49.7  87.4 103 54.7  73.5
 6 112  99.5  38.1  86.1  77 51.1  71.1
 8  86.3  82.8  26  65.9  43.3 34.3  60.4
10  54.2  52.7  16.8  46.9  25.1 25.4  40.5
12  33.6  35.2   9.49  32.1  18.4 14.5  27.3
14  18.9  24.4   5.8  22  11.1  8.35  17.7
16  12.3  17.2   3.65  18   6.78  5.74  10.6
20   6.9  10.5   1.89   9.75   3.34  2.85   5.69
24   3.44   5.81   1.09   4.97   1.86  1.09 —
30   1.51   2.06  <1.00   2.13 — <1.00   1.28
36 <1.00   1.51  <1.00   1.02  <1.00 ND  <1.00
48 <1.00 <1.00 ND  <1.00 ND <1.00 <1.00

Slow Formulation

 0 ND ND ND ND ND ND ND
 0.5   2.53   2.61  13.8  <1.00  6.02  8.58  12.4
 1   9.92  12.2  25   3.06  19.6 33.8  28.4
 1.5  24.3  34.7  47.8   9.2  33.3 34.5 —
 2  32  38  62.4  18  42.8 38.8  43
 3  45.3  56.8  77.7  47.1  57.7 40.3  72
 4  55.8  60.2  85.6  59.9  57.7 42  75
 6  53.5  58.1  83.1  80  62.4 37.8  77.1
 8  44.7  44.1  69.3  71.5  54.3 28.1  70.5
10  35.6  32.9  46.5  50.4  36.6 16  48.5
12  26.7  25.3  30.2  38.2  26.5  9.49  40.1
14  20.4  18  17.7  29.1  16.3  5.13  28.8
16  14.3  11.8  10.8  21.5  10.2  3.57  20.8
20   9.25   6.43   5.18  13   2.98  1.79  10
24   4.5   3.48   2.8   6.82   1.32 <1.00   5.18
30   1.77  <1.00   1.16   3.6  <1.00 <1.00   1.99
36 <1.00 <1.00 <1.00   2.02 ND ND  <1.00
48 <1.00 ND  <1.00  ND ND ND
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The in vitro dissolution profi les were generated under different conditions 
ranging from pH 1.2 to pH 6.8 at speeds ranging from 50 rpm to 150 rpm using 
USP apparatus II (rotating paddle) . The terminal rate constant for each subject was 
determined by linear regression of the linear portion of the log-concentration versus 
time profi le. The peak plasma concentration was the highest observed concentra-
tion. The area under the plasma concentration–time curve was determined using the 
trapezoidal rule. The percent of fraction of drug absorbed from each formulation 
versus time was determined using numerical deconvolution, where the oral solution 
derived PK rate constants for each subject were used as the unit impulse function 
(see Figure 46.10). The numerical deconvolution program PC Decon was used to 
perform the analysis. Table 46.2 shows the mean fraction of drug dissolved and 
absorbed used for the fast, medium, and slow formulations.
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TABLE 46.2 Mean Fraction of Drug Dissolved and Absorbed Used for the Fast, 
Medium, and Slow Formulations

 Mean Data

Time (hours) Fraction Dissolved Fraction Absorbed

Formulation: Fast Metoprolol Extended Release

 0 0 0
 0.5 0.199 0.254143
 1 0.312 0.572286
 1.5 0.402 0.658857
 2 0.475 0.919286
 3 0.611 1.010429
 4 0.744 1.005229
 5 0.894 0.991857
 6 0.971 0.982886
 8 0.979 0.992286
10 0.98 0.974286
12 0.979 0.982

Formulation: Moderate Metoprolol Extended Release

 0 0 0
 0.5 0.163 0.145857
 1 0.253 0.3694
 1.5 0.323 0.479143
 2 0.386 0.617286
 3 0.488 0.801657
 4 0.574 0.845
 5 0.648 0.914286
 6 0.712 0.964414
 8 0.816 0.986571
10 0.899 0.981571
12 0.959 0.983

Formulation: Slow Metoprolol Extended Release

 0 0 0
 0.5 0.124 0.132586
 1 0.19 0.282143
 1.5 0.246 0.376571
 2 0.293 0.444143
 3 0.372 0.620571
 4 0.44 0.709286
 5 0.502 0.797429
 6 0.555 0.873
 8 0.646 0.942857
10 0.722 0.948143
12 0.787 0.975571
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A linear regression analysis was used to examine the relationship between the 
fraction of drug absorbed and the fraction dissolved. Figure 46.11 shows the relation-
ship between the fraction of drug absorbed versus the fraction of drug dissolved.

The IVIVC model predicted metoprolol plasma concentrations were determined 
by the following procedure:

• The in vitro dissolution profi le corresponding to each formulation was fi tted to 
the corresponding Hill equation to determine the corresponding parameters 
that describe the shape of the dissolution profi le:

% Dissolved
D T

D T
=

+
max

γ

γ γ
50

 (46.4)

where Dmax is the maximum amount of drug dissolved, D50 is the time required 
for 50% of the drug to dissolve, g is the sigmoidicity factor, and T is time.

• The corresponding dissolution rate was obtained by taking the fi rst derivative 
of the corresponding Hill equation for the respective formulation.

• Using the IVIVC relationship, the in vivo dissolution rate for each formulation 
was determined.

• The predicted plasma concentration–time profi le for each formulation was 
obtained by convolution of the in vivo dissolution rate and the PK model 
describing the oral solution data. A one-compartment model with a mean 
elimination rate constant of 0.29 h−1 and a volume of distribution of 5.9 L/kg 
was adequate to describe the mean oral solution profi le. The convolution was 
accomplished on a spreadsheet in Lotus 1-2-3.

• Table 46.3 show the percent prediction error for each of the formulations used 
to develop the correlation for both Cmax and AUC (14).

It can be seen from the results that this IVIVC is considered to be predictive 
because it met the internal validation criteria in that the mean prediction errors for 
both Cmax and AUC were below 10% with none of the individual ones exceeding 
15%.
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46.8 SUMMARY

The establishment of a predictive relationship between in vitro dissolution and the 
in vivo bioavailability of a modifi ed release formulation is discussed. Establishing 
an IVIVC would decrease the number of studies required to approve and maintain 
a product on the drug market. A predictive level A correlation would enable the 
in vitro dissolution to become a surrogate for the in vivo performance of the drug 
product. This is one of the instances where regulatory decisions are made based 
on modeling and simulation data. The ability to describe both the in vitro and in 
vivo performance with well established mathematical models and the availability 
of different software that are able not only to fi t the data but predict the resulting 
plasma concentration–time profi les should make the development, evaluation, and 
applications of IVIVC a routine endeavor in the development of modifi ed release 
formulations.
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CHAPTER 47

The Confl uence of Pharmacometric 
Knowledge Discovery and Creation 
in the Characterization of Drug Safety

HUI-MAY CHU and ENE I. ETTE

1175

47.1 INTRODUCTION

The success rate of new chemical entities (NCEs) is anything but stellar (1). In 
1987 the cost of bringing a new drug into the market was $237 million as opposed 
to $802 million in 2000 (2). By the end of 1999, 21% of the NCEs with investiga-
tional new drug (IND) applications fi led from 1981 to 1992 had been approved for 
marketing in the United States (3). Of those that failed in the period from 1987 
to 1992, 38% of the NCEs failed because of effi cacy (activity too weak or lack of 
effi cacy), 34% on economics (commercial market too limited, or insuffi cient return 
on investment), 20% because of safety (human or animal toxicity), and the rest for 
nonspecifi c reasons (3). What is becoming increasingly clear is that traditional drug 
development approaches are unlikely to succeed in the future given the economics 
of drug development—a low probability of success coupled with increasing product 
development times means decreased sales time after market launch and lower 
return on investment for pharmaceutical companies.

To speed drug development, sophisticated new technologies and approaches 
in the discovery and design of new drugs are replacing the traditional methods of 
discovery. Increasingly, however, a pharmacometrically guided approach is being 
applied to drug development. The need to get the most knowledge from every 
drug development study that is performed cannot be overemphasized in this day 
and age of spiraling drug development cost. This need has led to the development 
of pharmacokinetic/pharmacodynamic (PK/PD) knowledge discovery (4) (see also 
Chapter 14 of this text) and creation (5, 6) (see also Chapter 32 of this text). Under-
standing the pharmacodynamics of the drug in addition to its pharmacokinetics 
can lead to a minimization of drug adverse effects. Pharmacodynamics is a broad 
term, intended to include all of pharmacological actions, pathophysiological effects, 
and therapeutic responses, both benefi cial and adverse, of an active ingredient, 
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therapeutic moiety, and/or its metabolite(s) on various systems of the body from 
cellular effects to clinical outcomes (7). Using pharmacometric knowledge discovery 
and creation approaches could enable the characterization of an unexplored region 
of the response surface (6), in terms of not only effi cacy but also safety.

PK/PD knowledge discovery is the nontrivial process identifying valid, novel, 
potentially useful, and ultimately understandable patterns in data by character-
izing data structure by means of a model (4). PK/PD knowledge creation, on the 
other hand, is the process of building upon current understanding of data that is 
already acquired by generating more data (information) that can be translated 
into knowledge. It entails the use of (valid) models to synthesize data, estimate 
inestimable uncertainty, or supplement data for further knowledge acquisition (6). 
Data synthesis is performed when available knowledge about the drug is used to 
simulate a clinical trial to explore study outcome when various controllable and 
uncontrollable factors are varied. This is a knowledge creation process because the 
objective is to obtain knowledge about the unknown (i.e., unexplored region of 
the response surface) using valid models. A detailed discussion of data synthesis, 
estimating inestimable uncertainty, and data supplementation as PK/PD knowl-
edge creation approaches is given by Ette and Chu in Chapter 32 of this book and 
by Williams et al. (5) and by Ette et al. (4, 6). Data supplementation deals with 
the use of models on available data to generate supplemental data that will be 
used to characterize a targeted unexplored segment of the response surface. The 
assumptions about models to be used in data supplementation are not as stringent 
as those required for data synthesis. That is, the use of predictive models is not an 
absolute necessity.

The challenge of clinical drug development is to do the utmost to extract hidden 
knowledge from clinical trial data and to be able to use that knowledge to plan 
the next set of trials. Thus, using the understanding of the past/present to gain 
an understanding of the future, and using present knowledge to learn about what 
“could have been” are critical to knowledge-driven drug development. This is the 
setting for the confl uence of PK/PD knowledge discovery and creation. Specifi cally, 
how do we address the issue of drug safety in a just concluded study at doses not 
studied? In this chapter an approach to fi nding a solution to the above question is 
presented.

In the sections that follow pharmacometric knowledge discovery techniques, the 
confl uence of pharmacometrics knowledge discovery and creation, and an applica-
tion example to demonstrate how the above question can be addressed in a system-
atic manner are discussed.

47.2 PHARMACOMETRIC KNOWLEDGE DISCOVERY TECHNIQUES

Techniques such as visualization, generalized additive modeling (GAM), tree-based 
modeling (TBM), and clustering used in pharmacometric (PM) knowledge dis-
covery are discussed in Chapter 14 of this book and by others (8–11). The reader 
is referred to that chapter to familiarize himself/herself with these techniques. In 
addition, a new data structure revelation technique not discussed in Chapter 19 
is introduced in this chapter together with a proposed new metric for character-
izing adverse events (AEs). This is the percentile division technique for revealing 



structure in a data set. In addition, the bootstrap, which is discussed in detail in 
Chapters 8 and 15 of this book, is discussed briefl y in this section.

47.2.1 Percentile Division

Percentile division is a systematic approach to fi nding a specifi c value of a covariate 
that can split data into subgroups to maximize the probability structure in reveal-
ing explanatory variables that can be used as predictors of the response variable 
in a data set. The response variable could be binary, categorical, or continuous. In 
a data set with a binary outcome variable, for instance, the procedure would be as 
follows:

Step 1. This involves labeling subjects into two groups based on the distribution 
of the baseline values of an important covariate, based on some prior informa-
tion, from all subjects using a given percentile as the division point. Group 1, for 
instance, would consist of subjects that have baseline values less than the 10th 
percentile of the baseline values and the rest of the subjects will be denoted as 
group 2.

Step 2. This involves fi tting a statistical model to incorporate the grouping/indicator 
variable—0 for group 1, and 1 for group 2. The statistical model could be a linear 
model (LM), generalized linear model (GLM), or generalized additive model 
(GAM). This is done to select covariates useful for explaining the variability in 
response. Steps 1 and 2 are repeated for different division cutoff points, that is, 
in 10 percentile increments up to the 90th percentile. Subsequently, all model 
fi ttings are performed and comparisons of modeling results made to provide 
insight as to where the cutoff point should be that maximally reveals the hidden 
structure in the data set (see Appendix 47.1).

47.2.2 Percentage of Duration Above a Certain Predefi ned Grade of an 
Adverse Event: A New Metric for Characterizing a Safety Outcome

Generally, there are predefi ned absolute thresholds (e.g., grade 3 or 4 adverse 
event) before a safety concern can be raised during a clinical study. The typical 
practice is to track the safety response profi le during the course of the study to 
see if there is a rise above a threshold value at any particular time. Thus, the cri-
terion used for analysis is any occurrence of a particular adverse event during the 
study. However, few consider this to be inadequate for tracking the time course 
of an adverse event such as the elevation of a safety biomarker. Figure 47.1 shows 
two scenarios for two subjects that could be said to have the same grade of AE. 
However, there is profound impact in terms of duration and severity of the AE for 
the subject in the lower panel of Figure 47.1 than the subject in the upper panel. By 
the “any occurrence” defi nition, both are AE “responders.” Which of the subjects 
would likely suffer more because of the AE? In order to answer this question a 
robust new metric is proposed that takes into account the time course of a safety 
biomarker and the duration of the biomarker above a predefi ned threshold. The 
metric is the area under the curve above the threshold (AUAT) for an AE grade. 
The use of this metric would facilitate the evaluation of severity and duration of the 
safety biomarker above the selected threshold. Thus, from Figure 47.1 it is obvious 
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that the subject in the upper panel who spent less than 2 days above the grade 1 
AE threshold is affected less by the AE than the subject that spent more than 10 
weeks. [See Appendix 47.2 for a sample S-Plus code that can be used to generate 
this metric.]

47.2.3 The Bootstrap Technology

The principle of the bootstrap is to repeatedly generate pseudosamples distributed 
according to the same distribution as the original sample (12). The original data set 
consists of an independent and identically distributed (i.i.d.) sample of size N from 
an unknown probability distribution. Original distribution, though unknown, may 
be replaced by the empirical distribution of the sample. Readers are referred to 
Chapter 15 of this text for an in-depth discussion of the bootstrap. For the purposes 
of this chapter, as discussed in the application example, the bootstrap was used to 
create 500 replicate pharmacokinetic data sets to enable regression modeling and 
prediction of exposures for doses that were not studied in previous trials, herein 
referred to as target doses.

47.3 THE CONFLUENCE OF PHARMACOMETRIC KNOWLEDGE 
DISCOVERY AND CREATION

A confl uence is the merger or meeting of two or more objects (or subject matters) 
that seem to inseparably bind their respective forces or attributes into a point 
of junction. The point of junction of pharmacometric knowledge discovery and 
creation is in attempting to gain knowledge and understanding of the response 
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FIGURE 47.1 Example of the evaluation of severity and duration of the safety biomarker 
above a threshold value for two subjects. Subject X1 had less than 2 days above grade 1 AE, 
while subject X2 had more than 10 weeks above the grade.
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surface, especially an unexplored region. To be able to determine what the effect 
of unstudied doses in a just completed trial would have been, a combination of 
knowledge discovery and creation methodologies were implemented on a pooled 
data set from a few studies.

47.4 APPLICATION

47.4.1 Objective

The purpose of the analysis was to discover knowledge of the underlying relation-
ship between drug administration and safety (i.e., safety biomarker elevation), and 
to create knowledge about safety outcome with different dosing regimens (i.e., tar-
geted dosages and dosing regimens) that were not studied in a recently completed 
study.

47.4.2 Data

Data from three studies were pooled and analyzed. Study 1 was a 7 day healthy 
volunteer study with two dosing regimens (placebo, 150 mg TID, 450 mg BID); 
study 2 was a 14 day healthy volunteer study with four dosing regimens (placebo, 
75 mg BID, 150 mg BID, and 300 mg BID); and study 3 was a 12 week patient study 
with three dosing regimens (placebo, 150 mg BID, and 300 mg BID).

47.4.3 Methodology

By pooling data from the three studies, a larger data set was available for knowl-
edge discovery and to create knowledge about the targeted doses. However, due to 
heterogeneity in the populations studied (i.e., healthy subjects vs. diseased subjects) 
and the nature of the studies—different dosing regimens and different treatment 
periods—knowledge discovery challenges had to be overcome and assumption vali-
dation tested before any inference or extrapolation to an unexplored region of the 
response surface involving the higher doses could be made.

In performing pharmacometric knowledge discovery, the following questions 
had to be addressed before proceeding to perform pharmacometric knowledge 
creation that would address the objective of the investigation.

1. Are the pharmacokinetics of the drug similar across studies and in the differ-
ent study populations?

2. Are there any covariates that infl uence the pharmacodynamics (i.e., the safety) 
outcome?

3. Do treatment durations have any infl uence on safety biomarker profi les?

47.4.3.1 Pharmacometric Knowledge Discovery and Creation
To be able to answer the above questions and thereby address the objective of 
the investigation, the pharmacometric (PM) knowledge discovery and creation 
proceeded in three stages. In stage 1, PM knowledge discovery of the relation-
ship between biomarker and exposure was performed with data from the studies 
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performed in healthy subjects. In stage 2, the procedure was repeated with data 
from a study conducted in a diseased subject population, and in stage 3 data from 
studies used in stages 1 and 2 were combined for PM knowledge discovery and 
creation. All graphical and statistical analyses were performed using S-Plus Version 
6.02 (Insightful, Seattle, WA).

Stage 1 Pharmacokinetic (PK) data from the healthy subject studies (studies 1 
and 2) were analyzed using the statistical moments analysis approach. From the 
results of the analysis, peak concentration (Cmax) and area under the plasma concen-
tration curve (AUC) were selected for exploring the relationship between exposure 
and safety data (biomarker elevation).

Exploratory data analysis (EDA), involving the use of data visualization, and 
tree-based modeling (TBM) were performed to reveal any relationship between 
response (biomarker level) and the individual PK parameters, biomarker baseline 
values, and subject demographics. Initial data visualization was performed using 
“trajectory” and pairs plots. Figure 47.2 is a trajectory plot showing the direction 
of change in biomarker levels in subjects. This would tend to suggest that drug 
treatment might have caused a change in biomarker levels. However, the picture is 
not so clear when the biomarker levels are related to exposure parameters (Figure 
47.3). Further structure revelation analysis was performed using TBM. Figure 47.4 
illustrates the result obtained with the TBM approach.

Cmax and safety biomarker baseline values were two informative predictors that 
could be used to explain the response (safety biomarker elevation) based on the fi rst 
two nodes of the tree derived from the TBM approach. However, the usefulness 
of further divisions was limited. The TBM approach is useful as an initial explor-
atory procedure, but its usefulness is enhanced if the derived model is validated. 
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FIGURE 47.2 A trajectory plot showing the direction of change of a safety biomarker 
for individual subjects. Open circles represent the baseline safety biomarker values, fi lled 
triangles are the safety biomarker values at end of treatment, and the dotted lines show the 
trends from baseline values of the safety biomarker.
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TBM was not validated since the intent was to use it as an initial exploratory data 
analysis screen.

Figure 47.5 is a two-dimensional (2D) bubble plot that illustrates another per-
spective of examining the relationship between the predictor variables and bio-
marker response. In essence, the fi gure is a 2D representation of three-dimensional 
data. The baseline biomarker values are on the y-axis, Cmax is on the x-axis, and 
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FIGURE 47.3 A pairs plot showing the relationship between covariates (Cmax, AUC, base-
line safety biomarker values (SF_baseline), and safety biomarker level on study day 14 
(SF_Day14)).
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FIGURE 47.4 A classifi cation tree showing the relationship between the occurrence of 
an AE (yes or no) and signifi cant predictor covariates (Cmax, safety biomarker baseline 
values).
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coming off plane is the bubble (with varying sizes) representing the degree of 
biomarker elevation in grades (i.e., 1, 2, or 3). Placebo treatment is denoted “p” 
and active treatments are denoted by “1” and “2” from studies 1 and 2, respec-
tively. The dotted lines roughly partition the response surface into three different 
zones—A, B, and C. A indicates that when baseline values were low, there is no 
biomarker elevation. B shows that when the Cmax is low, the treatment subjects 
have a rate of AE occurrence similar to the “natural occurrence” rate represented 
by the placebo group. C suggests that when both Cmax and biomarker baseline 
values are above certain cutoff values, there appears to be some exposure–response 
relationship.

Stage 2 The PK data was analyzed using the noncompartmental approach as was 
done in stage 1. Thereafter, the percentile division approach was used to discern 
structure in the safety biomarker data. It was observed that diseased subjects could 
be categorized into two subgroups (i.e., high and low baselines) based on biomarker 
baseline values. The 50th percentile of the safety biomarker baseline values was 
found to be the cutoff point for group separation. The safety data from the two 
subgroups were related to exposure in an additive generalized logistic regression 
model. Figure 47.6 shows the exposure–response relationship for grade 1 adverse 
event after the baseline grouping criterion was incorporated into the logistic model. 
AUC was found to be the best predictor of the safety biomarker elevation. Although 
the biomarker was measured as a continuous variable, the modeling was done using 
the categorical grading system used in the clinic. Although converting a continuous 
variable into an ordered categorical variable results in a loss of information, this was 

FIGURE 47.5 A two-dimensional (2D) bubble plot used to examine the relationship 
between the exposure metric (Cmax) and safety biomarker response. Active treatment sub-
jects from studies 1 and 2 are denoted by 1s and 2s, respectively, and p’s are placebo subjects 
from both studies. The bubbles (open circles) indicate the safety biomarker responses; and 
the severity of the response is depicted by the size of the circles.
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done for the sole purpose of facilitating communication with clinicians who always 
use AE score (an ordered categorical variable) as a measure for monitoring changes 
in the safety biomarker in practice. Appendix 47.3 contains a sample code that can 
be used for transforming a continuous variable into a categorial variable.

Figure 47.7 is an example of the characterization of the relationship between 
AUC and AE using a logistic regression model for subjects with a high biomarker 
baseline value. The fi gure shows the probability of a range of occurrences of dura-
tion (i.e., from any occurrence to 50% duration) above the threshold for grade 1 
AE. Increasing exposure is associated with increasing probability of having the AE, 
with AUCs of 5 units being associated with 65% probability of having at least 50% 
duration above the grade 1 AE threshold.

Stage 3

pharmacokinetics The area under the plasma concentration–time curve (AUC) 
was identifi ed, in a preliminary analysis, as the important exposure covariate that 
was predictive of the safety biomarker outcome. Consequently, it became necessary 
to compare the distributions of AUC values across studies and dosage regimens. 
Figure 47.8 illustrates distributions of the exposure parameter AUC across studies. 
It is evident that AUC values are higher in diseased subjects than in healthy vol-
unteer subjects at the same dose level. To adjust for the difference between the 
two subpopulations, an indicator function was introduced in a fi rst-order regression 
model to better characterize the dose–exposure data. Let y be the response vari-
able (i.e., AUC), x is a predictor variable, b is the regression coeffi cient on x, and 
e is the error term, which is normally distributed with a mean of zero and variance 
s2. Thus,

y x Ii i i i= + + +β β β ε0 1 2 (47.1)

FIGURE 47.6 The exposure–response relationship showing the probability of having grade 
1 AE after incorporating the baseline grouping criterion (see text).

P
ro

b

0                      1                       2                      3                      4                       5

0.
0 

   
   

   
  0

.2
   

   
   

  0
.4

   
   

   
  0

.6
   

   
   

  0
.8

   
   

   
  1

.0

baseline

high

low

H observed

L observed

AUC (unit)



1184 CREATION IN THE CHARACTERIZATION OF DRUG SAFETY

for i = 1,  .  .  .  , n, where yi and xi are AUC and dose for ith subject, respectively, and 
Ii is the indicator function such that

Ii = {0
1

  healthy volunteer
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FIGURE 47.7 The exposure–response relationship for the high baseline group showing 
probability of having grade 1 AE given different percentages of study duration (study 3 
only—diseased subjects).
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Figure 47.9 shows regression diagnostic plots indicating that the model ade-
quately characterized the data. The fi rst row panels show a random scatter in the 
residuals, indicating model adequacy. This is corroborated with the linear relation-
ship between log-transformed AUC and dose (Figure 47.9, bottom left). In the 
bottom right panel of the fi gure is a Q-Q plot showing the relationship between the 
quantiles of residuals and the quantiles of a standard normal distribution indicat-
ing the adequacy of the linear model fi t. It further strengthens the appropriateness 
of the assumption of a homoscedastic error structure. Therefore, the regression 
model with the indicator function was found to be an adequate and appropriate 
model (13).

The distributions of observed and predicted AUC values are shown in Figure 
47.10. The fi gure shows data from all studies with the inclusion of targeted doses 
for which knowledge about exposure has been generated.

pooling of safety data across studies and overall exposure–response 
relationship The healthy volunteer and diseased subject studies were of dif-
ferent durations. It was necessary to determine if the safety data from individual 
studies could be pooled for the purpose of integrating the fi ndings. Figure 47.11 
shows the clustering together of the results from the different studies, indicating 
that the pooling of the studies for an overall PM knowledge discovery and creation 
is valid. The length of treatment duration did not increase the probability of AE 
occurrence.
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When the data were pooled, the probabilities for the different durations a subject 
with a given exposure might spend in grade 1 AE is signifi cantly reduced. For 
instance, the probability of any occurrence dropped from 100% to 90% when 
Figures 47.7 and 47.12 are compared—an impact of sample size giving robustness 
to the outcome. Because of the curvilinear relationship between the explanatory 
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variable x and the probability p(x), the following population logistic regression 
model was developed from the pooled data. For a binary response (e.g., reaching 
grade 1 safety biomarker denoted by yes = 1 or no = 0), the probability p (x) is 
defi ned as (14)

π α β
α β

x
x

x
( ) =

+( )
+ +( )
exp

exp1
(47.2)

For this model the odds of having a grade 1 AE is

π
π

α βx
x

x
( )

− ( )
= +( )

1
exp (47.3)

This formula provides a basic interpretation for b. The odds increase multiplica-
tively by eb for every unit increase in x, where x and b can be vectors that represent 
multidimensional covariates and associated coeffi cients, respectively. In applying 
the model to the data, the predictor, x, is AUC and p(x) is the probability of having 
a predefi ned event (e.g., grade 1 AE occurring with at least 10% of treatment 
duration).

47.4.3.2 Pharmacometric Knowledge Creation
Having characterized the relationship between the target doses and AUC on one 
hand, and discovered knowledge about the relationship between AE and AUC 
from the pooled data across studies on the other hand, the stage was set for creat-
ing knowledge about AE that could have been observed with the target doses for 
a study that had the same duration as study 3. It was assumed that subjects similar 
to those studied in study 3 would have been exposed to the target doses. This is an 

FIGURE 47.12 Exposure–response relationship for the high baseline group showing the 
probability of having grade 1 AE given different duration percentages. Data were pooled 
from all three studies comprising healthy and diseased subjects.
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important and strong data supplementation assumption. The assumption enabled 
the application of the population logistic model developed in the previous section 
and the generation of exposures for the target doses in Section 47.4.3.1 to obtain the 
probability of having an AE given the target doses. Table 47.1 provides a summary 
of the probabilities associated with the occurrence of different grades of AE as 
characterized by the duration a subject spends in a particular AE grade. As would 
be expected from the relationship between exposure and AE, a greater severity of 
AE was predicted for target doses.

47.4.4 The Confl uence of Pharmacometric Knowledge Discovery 
and Creation

A combination of PM knowledge discovery and creation approaches was used to 
create knowledge about target doses that were not investigated in a previously con-
cluded study. In doing this, an aspect of the response surface in terms of drug safety 
was characterized. This knowledge was subsequently communicated to provide the 
mission critical decision making. This application demonstrates a confl uence of PM 

TABLE 47.1 Summary of the Predicted Probabilities Associated with the 
Occurrence of Different Grades of AE Characterized by the Duration a 
Subject Spends in a Particular AE Gradea

 Mean (SD)

 450 mg 525 mg 600 mg 300 mg

Probability of Having Grade 1: High Baseline

Any occurrence 74 (5.03) 76 (4.94) 79 (4.80) 62 (5.76)
10% of Duration 72 (5.74) 75 (5.59) 79 (5.37) 55 (5.37)
20% of Duration 58 (7.35) 62 (7.41) 66 (7.36) 42 (5.3)
30% of Duration 56 (6.25) 60 (6.47) 63 (6.61) 39 (5.11)
40% of Duration 56 (6.98) 60 (7.20) 65 (7.30) 39 (5.22)
50% of Duration 48 (7.83) 52 (8.30) 56 (8.65) 31 (4.57)

Probability of Having Grade 2: High Baseline

Any occurrence 58 (7.58) 63 (7.71) 67 (7.71) 40 (4.65)
10% of Duration 50 (6.37) 55 (6.77) 59 (7.07) 35 (4.81)
20% of Duration 35 (6.42) 39 (7.04) 42 (7.65) 24 (3.8)
30% of Duration 35 (5.67) 38 (6.28) 41 (6.90) 23 (4.12)
40% of Duration 36 (5.96) 40 (6.56) 44 (7.11)
50% of Duration 35 (6.47) 38 (7.24) 42 (8.01)

Probability of Having Grade 3: High Baseline

Any occurrence 26 (6.87) 29 (7.98) 33 (9.06) 17 (3.53)
10% of Duration 14 (4.08) 15 (4.6) 17 (5.17)  9 (2.69)
20% of Duration 11 (4.43) 12 (5.03) 13 (5.73)  7 (2.62)
30% of Duration

a The 300 mg column observed study data is included as a comparison.



knowledge discovery and creation approaches in characterizing an aspect of an 
unexplored region of the response surface.

47.5 SUMMARY

A confl uence is the merger or meeting of two or more objects (or subject matters) 
that seem to inseparably bind their respective forces or attributes into a point of 
junction. The point of junction of pharmacometric knowledge discovery and cre-
ation is in attempting to gain knowledge and understanding of the response surface, 
especially an unexplored region. Thus, the importance of using a combination of 
PM knowledge discovery and creation approaches in characterizing an aspect of the 
response surface in terms of drug safety is discussed.

An overview of some techniques for pharmacometric knowledge discovery is 
presented together with the introduction of a new metric, the percentile division 
approach, for data structure revelation; and a new metric (the percentage duration 
of an AE) for analyzing drug-induced AE is proposed. The application example 
demonstrates the confl uence of PM knowledge discovery and creation in drug 
development.
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APPENDIX 47.1 CODE FOR PERCENTILE DIVISION APPROACH

#####################################################

### Percentile Division

#####################################################

myQuantile_quantile(data$baseline,prob=seq(0.1,0.7,0.1))

for(i in 1:length(myQuantile))

{

 tmp$baseI_rep(0,nrow(tmp))

 tmp$baseI[tmp$baseline>myQuantile[i]]_1

 cat(“\n”,”****** The baseline Cutoff is”,myQuantile[i],”(“,i*10,”%)”,”\n”)

 fit.glm4_glm(y ~ x+baseI, family = binomial, data = tmp)

 #print(summary(fit.glm4))

 print(anova(fit.glm1,fit.glm4,test=”Chisq”))

}

APPENDIX 47.2 CODE FOR THE NEW METRIC CALCULATION

##################################################################

### compile new metric.ssc

### to calculat time (days) above any grades (Grade 1 is illustrated here)

### note: AboveTime2.hmc is a customized Splus function

### data set is a.SF.HV

###################################################################

AboveTime2.hmc_function(time, DV, grade)

{

 xy <- data.frame(t = time, y = DV)

 xy <- rbind(xy, xy)

 xy <- xy[sort.list(xy$t), ]

 xy$greater <- rep(0, nrow(xy))

 xy$greater[xy$y >= grade] <- 1

 xy$change <- xy$greater

 xy$newT <- xy$t

 for(j in 2:nrow(xy)) {
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  qq <- xy$greater[j] - xy$greater[j - 1]

  if(qq != 0) {

   c <- (xy$y[j] - xy$y[j - 1])/(xy$t[j] - xy$t[j - 1])

   #slope

   # cat(“\n”,” slope”,j,”..”,c,”\n”)

   if(qq == 1) {

    xy$newT[j - 1] <- xy$t[j - 1] + (grade - xy$

     y[j - 1])/c

    xy$change[j - 1] <- 1

   }

   if(qq == -1) {

    xy$newT[j] <- xy$t[j - 1] + (grade - xy$y[

     j - 1])/c

    # cat(“\n”,” (grade[i]-xy$y[j-1])/c”,round((grade[i]-xy$y[j-1])/c,2),

”\n”)

    # cat(“\n”,”xy$t[j-1]”,xy$t[j-1],”

“,”xy$newT[j]”,round(xy$newT[j],2),”\n”)

    xy$change[j] <- 1

   }

  }

 }

 xy <- xy[xy$change == 1, ]

 d <- seq(1, nrow(xy), 2)

 #print(d)

 xy$diff <- rep(NA, nrow(xy))

 d1 <- xy$newT[d + 1]

 d2 <- xy$newT[d]

 d3 <- d1 - d2

 #print(d3)

 xy$diff[d] <- d3

 xy

}

################################

myGrade_c(25,31.6,52.6,105.1)

### for time above grade 1

ID_unique(SF.combined$ID[SF.combined$SF>myGrade[1]])

print(ID)

ID_ID[!is.na(ID)]

print(ID)

a.SF.HV$t.g1_rep(NA,nrow(a.SF.HV))

for(i in 1:length(ID))

#for(i in 1:1)

{

 if (ID[i]<3000){myDay_7}

   else {myDay_14}
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 b_SF.combined[SF.combined$ID==ID[i] & SF.combined$day>=0 &

 SF.combined$day<=myDay,]

 b_b[sort.list(b$day),]

 if(is.na(b$SF[b$day==0]))

  { b$SF[b$day==0]_a.SF.HV$baseline[a.SF.HV$ID==ID[i]]}

 b_b[!is.na(b$day) & !is.na(b$SF),]

 if( any( b$SF[b$SF>myGrade[1] ] )==T )

 {

  xy_AboveTime2.hmc(time=b$day,DV=b$SF,grade=myGrade[1])

  a.SF.HV$t.g1[a.SF.HV$ID==ID[i]]_sum(xy$diff,na.rm=T)

 }

}

APPENDIX 47.3 DATA PROCESSING CODE

##################################

# data set compiling and preprocessing

# source data set is named data

##################################

data$study_round(data$ID/1000,0)

data$regimen_rep(NA,nrow(data))

data$r_rep(NA,nrow(data))

data$regimen[data$study==2 & data$Dose==150]_”150 TID”

data$regimen[data$study==2 & data$Dose==450]_”450 BID”

data$regimen[data$study==3 & data$Dose==75]_”75 BID”

data$regimen[data$study==3 & data$Dose==150]_”150 BID”

data$regimen[data$study==3 & data$Dose==300]_”300 BID”

data$regimen[data$Dose==0]_”Placebo”

# to create “r” factor column to indicate the dose regimens across studies

data$r[data$study==2 & data$Dose==150]_3

data$r[data$study==2 & data$Dose==450]_5

data$r[data$study==3 & data$Dose==75]_1

data$r[data$study==3 & data$Dose==150]_2

data$r[data$study==3 & data$Dose==300]_4

data$r[data$Dose==0]_0

data_data[sort.list(data$r),]

## data1 is the transformed data object

## SF is the safety biomarker column

data1_data[data$DAY==7,]

data2_data[data$DAY==1,]

data1$baseline[match(data2$ID,data1$ID)]_data2$SF

data1$day7_data1$SF

data2_data[data$DAY==14,]

data1$day14[match(data2$ID,data1$ID)]_data2$SF
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## to translate baseline safety biomarker values into baseline grades (0-4)

data1$baseline.grade_rep(NA,nrow(data1))

data1$baseline.grade[data1$baseline>=0 & data1$baseline<25 ]_0

data1$baseline.grade[data1$baseline>=25 & data1$baseline<31.5 ]_1

data1$baseline.grade[data1$baseline>=31.5 & data1$baseline<52.5 ]_2

data1$baseline.grade[data1$baseline>=52.5 & data1$baseline<105 ]_3

data1$baseline.grade[data1$baseline>=105 ]_4

## to translate Day 7 safety biomarker values into grades (0-4)

data1$day7.grade_rep(NA,nrow(data1))

data1$day7.grade[data1$day7>=0 & data1$day7<25 ]_0

data1$day7.grade[data1$day7>=25 & data1$day7<31.5 ]_1

data1$day7.grade[data1$day7>=31.5 & data1$day7<52.5 ]_2

data1$day7.grade[data1$day7>=52.5 & data1$day7<105 ]_3

data1$day7.grade[data1$day7>=105 ]_4

## to calculate if day 7 grades change from baseline grades

data1$diff_data1$day7.grade-data1$baseline.grade

data1$response_rep(NA,nrow(data1))

data1$response[data1$diff==0]_”no”

data1$response[data1$diff>0]_”yes”

data1 <- convert.col.type(target = data1, column.spec = list(“regimen”), 

column.type = “factor”)

APPENDIX 47.4 PAIRS PLOT

############################################################

# Figure 3 (pairs plot)

############################################################

aa_data[data$dose>0, c(“Cmax”,”AUC”,”SF_baseline”,”SF_Day14”)]

pairs(aa)

APPENDIX 47.5 TREE BASED MODEL

############################################################

# Figure 4 (Tree based model)

############################################################

a_data[data$dose>0,c(2:10,13)]

a_na.omit(a)

a$grade_rep(NA,nrow(a))

a$grade[a$Day14>=25]_1

a$grade[a$Day14<25]_0
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b <- tree(grade ~ ., data = a[,-10])

plot(b)

text(b)

print(b)

APPENDIX 47.6 2-D BUBBLE PLOT

############################################################

# Figure 5 (SF grade vs Cmax)

############################################################

data2_data1[ !is.na(data1$diff),] # data2 contains subjects which have both

 day 1 & 7 SF scores

par(mfrow=c(1,1))

plot(x=data2$Cmax,y=data2$baseline,type=”n”,xlab=”Exposure Parameter”,

   ylab=”Safety Biomarker Baseline”,xlim=c(-20,1750),ylim=c(0,23))

# to plot Cmax based on studies

data3_data2[data2$study==2,]

points(x=data3$Cmax,y=data3$baseline,pch=”1”,col=3)

data3_data2[data2$study==3,]

points(x=data3$Cmax,y=data3$baseline,pch=”2”,col=6)

data3_data2[data2$response==”yes” & data2$study==2,]

for(i in 1:nrow(data3))

{

 if (!is.na(data3$Cmax[i]))

 {

  points(x=data3$Cmax[i],y=data3$baseline[i],pch=1,cex=1.5+data3$diff[i])

 }

}

data3_data2[data2$response==”yes” & data2$study==3,]

for(i in 1:nrow(data3))

{

 if (!is.na(data3$Cmax[i]))

 {

  points(x=data3$Cmax[i],y=data3$baseline[i],pch=1,cex=1.5+data3$diff[i])

 }

}

## to plot placebo

data3_data1[!is.na(data1$baseline) & data1$Dose==0,]
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points(x=rep(-20,nrow(data3)),y=data3$baseline,pch=”p”)

data3_data1[data1$response==”yes” & data1$Dose==0,]

if (nrow(data3)>0)

{

 for(i in 1:nrow(data3))

 {

  points(x=-20,y=data3$baseline[i],pch=1,cex=1.5+data3$diff[i])

 }

}

#title(“SF grade changes at day 7”)

# to plot division lines

lines(y=c(7.4,25),x=rep(579.5,2),lty=2,lwd=4)

#lines(y=c(0,25),x=rep(1500,2),lty=2,lwd=4)

lines(x=c(-20,1500),y=rep(7.4,2),lty=2,lwd=4)

lines(y=c(0,10),x=rep(1500,2),lty=2,lwd=4)

key(text=list(c(“G1”,”G2”,”G3”),font=4),points=list(pch=c(1,1,1),cex=c(1:3)

+1.5),between=4,

 corner=c(1,1),title=”Grade”,cex.title=1.2,border=1)

APPENDIX 47.7 AN EXAMPLE CODE FOR LOGISTIC REGRESSION

#####################################################

## Logistic regression using a binary response vector.

##

## subjects that have grade 1 safety biomarker value

## t.g1 column is the time above grade 1 during treatment

## x column is the chosen exposure parameter

#####################################################

tmp_data

tmp$x_tmp$AUC

tmp$y_rep(0,nrow(tmp))

tmp$y[tmp$t.g1>0]_1

tmp_tmp[!is.na(tmp$x),]

fit.glm1_glm(y ~ x, family = binomial, data = tmp)

fit.glm2_glm(y ~ x+baseline, family = binomial, data = tmp)

fit.glm3_glm(y ~ x+baseline+sex, family = binomial, data = tmp)

cat(“\n”,”*******************************”,”\n”)

anova(fit.glm1,fit.glm2,fit.glm3)

summary.aov(fit.glm3)
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APPENDIX 47.8 AUC PLOT

############################################################

### Figure 8 (AUC across studies)

### data set is ExposureAll that contains AUC and dose2 (dosage

### regimens) columns

############################################################

par(mfrow=c(1,1))

#boxplot(split(ExposureAll$AUC, ExposureAll$dose2))

unique(ExposureAll$dose2)

tmp10_ExposureAll

tmp10$x_rep(NA,nrow(tmp10))

x1_c(“75(s2)”,”150(s1)”,”150(s2)”,”150(s3)”,”300(s2)”,”300(s3)”,”450(s1)”)

for(i in 1:length(x))

{

 tmp10$x[tmp10$dose2==x[i]]_i

}

boxplot(split(log10(tmp10$AUC),tmp10$x),names=x1,axes=F)

y_c(300,500,750,1250,2000,3000,5000)

axis(2,at=log10(y), labels=as.character(y),ticks=T,srt=90)

box()

#mtext(side=2,”AUC in log10 scale”,line=3,cex=1.2)

mtext(side=2,”AUC (unit)”,line=3,cex=1.2)

mtext(side=1,”Dose mg (Study)”,line=3,cex=1.2)
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Absorption, see Chapter 13
atypical, 357–358
fi rst-order, 351, 368
mixed fi rst and zero order, 352, 355, 374
parallel, 352, 353, 372
variability, 347
Weibull-type, 352, 356, 376
zero-order, 352, 370

Absorption models, see Chapter 13
Adverse events or effects, 11–15, 205, 347, 

633–636, 699, 763–765, 770, 773, 782, 
939–942, 978, 1176–1177, 1182

Analysis plan, see Chapter 11; pages 427, 428, 
432, 434, 636, 818, 909–914, 922

Antibodies, see Chapter 41
Appropriateness

model, 10, 11, 209, 223–225, 414, 429

Bayesian analyses, see Chapter 5; pages 6, 17, 
104, 170, 247, 252, 273, 276, 408, 830, 834, 
836, 1078

informative priors, see Chapter 5
noninformative priors, see Chapter 5
study designs, see Chapters 30 and 31

Binary outcomes modeling, see Chapter 24; 
pages 169, 255, 466–469, 704, 767, 
770, 773, 791–792, 892, 1182–1183, 
1187

Bioavailability, see Chapters 13, 16, 41; pages 3, 
12, 15, 57, 65, 269, 665, 666, 883, 1085, 1101, 
1165, 1166

Bioequivalence, see Chapter 16
Biological agents, see Chapter 41; pages 807, 809, 

956
antibodies, 1018–1020
covariates

age, 1009
drug interactions, 1008–1009
liver function, 1009
patient characteristics, 1008
race, 1010
receptor number, 1007
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renal function, 1009
sex, 1010
weight, 1008

cytokines, 1012
erythropoeitin, 1016–1018
G-CSF, 1014–1016
growth factors, 1013–1014
interferons, 1013
model based pharmacodynamics, 1020–1025

programs for, 1021–1024
model based pharmacokinetics of

absorption, 1006–1007
clearance, 1007

pharmacodynamics of proteins, 1010–1011
covariates, 1020

proteins, see Chapter 45; pages 993–1005
absorption, 1003–1004
apparent volume of distribution of, 

1004–1005
Brambell receptors, 1002
clearance, 998–1002
cytokines, 1002
humanization, 996–997
hyperglucosylation, 998
PEGylation, 997–998
production of, 996

Biomarker, see Chapters 17 and 47; pages 1, 2, 
4, 5, 7, 12, 16, 478, 549–550, 560, 571, 700, 
794, 804, 816, 838–839, 877, 881–884, 921, 
955, 957, 966, 977, 1011, 1012, 1021, 1024, 
1025

biological activity marker, 458
clinical endpoint, 459
drug activity marker, 458
natural history markers, 458

validation of, 459
surrogate endpoint, 2, 4, 5, 16, 245, 458, 794, 

960, 966
validation of, 459–463

Type 0 marker, 458
Type I marker, 458
Type II marker, 458
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Biophase, 529–539, 588, 607–608, 617, 661, 811
Biosignal, 511–521, 530, 535, 608, 620, 624–625
Bootstrap, see Chapters 14, 15, 16; pages 226, 

231, 233, 236, 237, 249, 252, 255, 295, 476, 
480, 734, 750, 751, 754, 831, 834, 836, 885, 
888, 984, 1036, 1041, 1043, 1044, 1046, 1049 
1061, 1079, 1080

Bayesian, 408
bias estimates from, 409–410
comparing nonhierarchical models from, 412
confi dence intervals from, 409
double, 408
estimating inestimable standard errors from, 

412–413
model building from, 411–412
nonparametric, 405
optimism, 410–411
parametric, 407
prediction error estimates from, 410–411
residuals, 407
smoothed, 407
standard, 405
standard estimates from, 408

Categorical data
nonordered, 693–695

Markov model and, 693–695
ordered, see Chapter 25
survival, 656–660
two step, 668–669

skewness and, 668–670
Cell traffi cking, 510
Clinical trial simulation, see Chapters 33, 34, 35; 

pages 5, 7, 16, 291, 312, 315, 384, 457, 576, 
770, 822, 830–832, 916, 970

elements of, 854–858
Clustering, 390–391, 723, 1176, 1186

genomic microarrays, see Chapter 18
Communication of model results, see

Chapter 37; pages 210, 287, 289–290, 
298–300, 387, 832–833, 873, 918, 922, 
1183

graphical display
effectiveness, 928
excellence, 931–932
framework, 928–931
integrity, 932

graphics
decomposition, 927
graphics for, 926–932
information integration, 932 -933
information processing, 926–927
knowledge integration, 932 -933
perception, 928
qualitative, 927
quantitative, 927
retinal image, 927

Compliance, see Chapter 6
modeling, see Chapter 6

Bayesian objective function, 170
hierarchical Bayesian, 170
likelihood, 169–170
Markov, see Chapter 6
maximum penalized marginal likelihood 

(MPML), 171
missing design history, 170
probabalistic model, 169

Computer codes
ADAPT, see Appendix 12.1
buy or build, 61
Matlab, 37, 40
NONMEM, see Chapters 21 and 28; 

Appendices 7.1–7.3, 13.1–13.6, 16.1, 22.1, 
24.1–24.3, 25.1, 25.2, 25.5, 27.1, 30.1, 35.1, 
44.1, 45.1; pages 395, 555–559, 562, 565, 707, 
727–32, 736, 1021–1023, 1112

PERL, 338–339
S-Plus, see Chapters 3 and 4; Appendices 4.1, 

9.1, 12.2, 12.8, 16.1, 25.1, 25.3–25.6, 32.1–
32.3, 42.1–42.6; pages 436, 692

UNIX, see Appendices 12.4, 12.6
validation, 61
WinBUGS, 158–159
WinNonLin, see Appendix 22.1; pages 257, 

495, 629–631, 1077
Computer programs

ADAPT, 26, 59, 307, 309–310, 327–331, 495, 
523, 1077

buy or build, 61
Matlab, 26–49, 143, 308, 859, 864, 1070, 1076, 

1079, 1081, 1084, 1087, 1091
NONMEM, see Chapter 28; Appendices 

13.1–13.6, 16.1, 22.1, 24.1–24.3, 25.1, 25.2, 
25.5, 27.1, 30.1, 35.1, 45.1; pages 26, 54, 59, 
66, 184, 189–199, 218–219, 228, 236, 274–275, 
277–280, 293, 295–296, 307, 310–311, 318, 
320, 332–342, 392, 395, 417, 433, 437, 
554–568, 573, 638, 640–641, 663, 864, 
1021–1024, 1077, 1112

PERL, 338–339
R, 31
S, 31
S-Plus, see Chapter 4; Appendices 3.1, 4.1, 9.1, 

12.2, 12.8, 16.1, 25.1, 25.3–25.6, 32.1–32.3, 
42.1–42.6; pages 26, 30–33, 48, 59, 66, 70, 
72–73, 75–76, 78, 80–87, 89–95, 97, 187, 277, 
297, 308, 393, 837, 864–865, 991

UNIX, 335, 337
validation, 61
WINBUGS, see Chapter 5; pages 104, 274
WinNonLin, 54, 67, 257, 584, 600–603, 629, 

864, 1077
WinNonMix, 59, 67, 945, 950, 1077
Xpose, 5, 298, 393
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Computer programming
debuggers, 32
extreme programming, see XP approach
good practices

coding, 33–36
constructs, 33–36
syntax, 33–36

mathematical concepts, 36–38
absolute differences, 38
equality and inequality issues, 37–38
machine precision, 36–37
operator precedence, 36
overfl ow, 38
relative differences, 38
underfl ow, 38

modular code design, 44–46
reducing errors, 38–41
script and program design, 41–43
software development life cycle, 61, 67
software and engineering, 48–50
steps in, 28
tasks, 26–27
writing extensible and noniterative programs, 

46–48
XP approach (extreme programming), 50

Computer software
repository systems

Matlab, 32, 67
Octave, 31, 1076

user required specifi cation, 59–64
validation, 53–103

ANSI, 55
IEEE, 55
installation qualifi cation, 70–74
operation qualifi cation, 75–86
performance qualifi cation, 86–102
PKBugs, 145
process, 62
qualifi cation, 64
system specifi cation, 63
WinBugs, 140

Confi dence intervals, 214, 219–222
Covariates

approaches for inclusion in models, see
Chapters 8 and 14

percentile division, 1177
selection of, see Chapters 8 and 14
time varying covariates, 394

Cross-validation, see Chapters 8 and 15
k-fold or grouped, 404
leave-one-out, 404

Cytokines, 1012

D-optimality, 307–312, 792
Data

censored, see Chapter 25; pages 254–255, 
868

collection, see Chapter 11; pages 9, 15, 293, 
440, 794, 914, 920

real-time, 2, 14, 15, 293, 295, 875, 879
count, see Chapter 25
description of types of incomplete, 246
imputation, see Chapter 9
ordered categorical, see Chapter 25
reducing data, 296
set construction of, 293–294
survival, 656–660

Deconvolution, 350, 1160–1161, 1169
Disease progression, see Chapter 21

models
asymptotic, 560–569
data pooling and, 550–551
Gompertz, 570
inverse Bateman, 566–569
linear, 553–560, 579
transit, 571–574

Distributions
Bernoulli, 635, 704
Poisson, 701–710, 719–720
uniform, see Chapter 9
Wishart, 140, 146, 151, 854
zero infl ated Poisson (ZIP), 704–710, 

719–720
Dose escalation, 460, 669–670, 725, 762, 783–784, 

792–794, 982, 1035
Dose proportionality, 57, 104–110, 118, 269, 

762–777, 1035
Drug-drug interaction, 14, 266, 303, 317–319, 346, 

362, 959, 994, 1076
Drug safety, see Chapter 47

Effects, therapeutic, benefi cial, 536. See also
Adverse events or effects

Enterohepatic recycling, see Chapter 13; page 
380

Epistemology, see Chapter 8
Erythropoeitin, 1016–1018
Exploratory data analysis, 636–639
Exposure response regulatory considerations, 

807–812
Exposure-response relationship, see Chapters 

31 and 38; pages 8, 634, 639, 643–644, 
700–701, 710–717, 770, 797, 830, 882–883, 
1182–1187

applications of, 939–948
area under the curve, 8, 12, 422, 639, 643, 706, 

767, 773, 775, 792, 812, 931, 1004, 1122, 1137, 
1180–1187

for dose selection, 940
maximum concentration, 8, 13, 149, 157, 350, 

586, 1003, 1180–1182
minimum concentration, 8, 13
programs for, 950–953
understanding the E-R relationship, 938–939
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Exposure response studies, see Chapters 31 
and 38

Bayesian adaptive dose allocation, 822–823
concentration controlled trials, 823–824
crossover designs, 104, 126, 266, 421–426, 

438–439, 445, 725, 761–764, 767–769, 
775–777, 795, 814–816, 886–887, 959, 
981–983, 1159, 1167

fl exible designs, 820
group sequential designs, 820–822
parallel group designs, 665, 735, 812–814, 887, 

981, 982
titration designs, 783, 824–825

First time in humans (FTIH) studies, see
Chapters 29 and 30; pages 14, 830, 873

adverse events in, 763, 767, 771–774, 777–778
cohort size, 762–763
dose escalation scheme, 762, 766–769

Fibonacci, 762, 766–769, 783, 793–794
oncology in, see Chapter 30

accelerated titration in, 785
Bayesian designs in, 787
combination of two drugs, 795–796
continual reassessment in, 787–790
data collection in, 794–795
decision theoritic approach in, 791–792
dose escalation in, 783–784, 792–794
escalation with overdose control, 790–791
isotonic regressions in, 786
random walk rules, 785–786

study designs, 762, 765–769
effi ciency of, 763, 770, 772

Fisher information matrix, 150, 307, 308, 310
Food and Drug Administration

Guidance for Industry
critical path, 1–2, 288, 547, 761, 811, 881, 

905, 937
exposure response, 7, 807
pediatric pharmacokinetcs, 956
population pharmacokinetics, 7, 291, 304

G-CSF, 1014–1016
Gene expression, see Chapters 18 and 19

microarrays, see Chapter 18
polymerase chain reaction, 474–475, 510, 517

Generalized additive modeling (GAM), see
Chapter 14; pages 230, 411, 836, 1176, 1177

Genomics, see Chapters 18 and 19
Genomic marker, modeling, 511–512
Gibb’s sampling, 141–142
Good clinical practice, 55
Good laboratory practice, 55
Goodness-of-fi t, see Graphics, goodness-of-fi t
Graphics, see Chapter 7

after model development, 209–214

box and whisker plots, 200, 257, 342, 343, 388, 
737, 738, 773, 930, 931, 1042

box plots, see box and whisker plots
data checkout plots, 189–192, 294, 299
data exploration plots, 192–193
excellence in, 931–932
goodness-of-fi t, 195–198, 203, 206, 229, 234
during model development, 193–209
multipanel, 187, 188, 206, 213, 930
QQ plots, 192, 196, 199
partial residual plots, 389–390
plots of residuals, 198, 199, 389, 390
population modeling and, see Chapter 7
smooths, 967

cubic splines, see Chapter 20; page 280
locally weighted (LOESS), 186
splines, see Chapter 20; page 280

tree plots or models, 479, 480, 484, 838, 1176, 
1180, 1181

trellis, 105, 111, 116, 687, 688
visualizing effect of individulized dosing, 212
visualizing relative effect of covariates to 

explain variability, 211
whisker plots, see box and whisker plots

Growth factors, 1013–1014

Hazard function (rate), see Chapter 25; pages 
466, 890

Weibull, see Chapter 25; pages 861

Information technology
infrastructure, 56, 61
organization, see Chapter 3

Interoccasion variability, 109, 118, 192, 200, 
203, 229, 266, 270, 279, 281, 303, 315, 853, 
967

Imputation of data, see Chapter 9; pages 386, 
394, 434, 661, 833, 983

multiple imputation, see Chapter 9
conditional, 255
for truncated data, 254
Markov chain Monte Carlo, 252
nonparametric Bayesian, 252
parametric Bayesian, 251
propensity adjusted, 254
software for, 259

single imputation, 247–249
hot deck, 248

Interferons, 1013
Information theory

for interoccasion variability, 315
sample size and power, 315
samples for drug-drug interaction, 317
samples per subject, 314
and sampling, 305–313

empirical, 306
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D-optimality, 307–312, 792
Fisher information matrix, 150, 307–314, 

334–341
informative block randomized, 308–341

In vitro in vivo correlations, see Chapter 46; 
pages 610, 793–794, 852, 881, 1000, 1002, 
1024, 1070, 1074–1075, 1150

convolution based, 1161–1162
correlation levels

level a, 1059–1162
level b, 1158
level c, 1158–1159

deconvolution in, 1160–1161
predictability from, 1162–1165

Jack-knife, see Chapter 15; pages 226, 236, 237, 
393, 481, 984

Knowledge creation, see Chapters 32 and 47; 
pages 2, 10, 16–17

data synthesis, 830, 1176
clinical trial simulation, 830–832
physiologically based pharmacometric 

model, 831
data supplementation, 10, 830–838, 840–842, 

1176, 1188
procedure, 833–835
methods, 833

estimating inestimable standard errors from, 
831

missing data and, 394. See also Imputation of 
data

process, 831
structure based muliple supplementation, 

835–840
Knowledge discovery, see Chapters 14 and 47, 

pages 2, 9–10, 232, 241, 829–836, 
841–843

high dimensionality and, 393–394
missing data and, 394. See also Imputation of 

data
steps of, 384–385
techniques of

clustering, 389
generalized additive modeling, 388
partial residual plot, 390
tree based model, 391

time varying covariates, 394

Learn-confi rm-learn process, 7–10, 14–15, 548, 
781, 805, 905

Likelihood profi le, 226, 295, 445, 446, 453
Logistic regression, see Chapter 24; pages 169, 

255, 466–469, 704, 767, 770, 773, 791–792, 
892, 1184–1185, 1189

Log-odds, 662

Markov chain, 167–169, 252, 274, 689–693, 856. 
See also Markov chain Monte Carlo

assumptions of, 692–693
discrete time, 690–692

fi rst-order, 691–692
second-order, 692

hybrid mixed effects and proportional odds, 
694–696

Markov chain Monte Carlo, 46, 104, 140, 158, 
252, 274, 428, 1077

Medication event monitoring system (MEMS), 
see Chapter 6

Metabolism, see Appendix 43.5; pages 317, 
345, 465, 614, 725, 881, 956, 965, 978, 
1081–1082, 1107–1109

Metabolites, see Chapter 44
Metropolis-Hastings algorithm, 141, 142, 252
Microarray, see Chapters 18 and 19

application of, 497–498
data analysis, 475–497

clustering, 477
gene function, 483–484
model based approaches, 488–489
unsupervised, 478

modeling of profi les, 517–522
simple regulated genes, 518–522

Mixture model, see Chapter 28; pages 158–161, 
171, 228, 564–565, 883, 1151

dynamic mixtures, 735–739
kurtosis and, 726, 732, 736, 750
skewness and, 726, 729–732, 736, 750

hypothesis testing, 733–735
multiple mixtures, 740–743
parameterization and

probability, 731–732
submodel, 725–731

Mixture modeling, see Chapter 28; pages 
158–161

Model(s)
appropriateness, 10, 11, 209, 223–225, 414, 

429
biomarker-outcomes link, 2, 1183
credible, 224–225
circadian, 537–538, 589, 983–984
covariate, 200–201, 292, 295, 394, 426–427, 433, 

709–710, 720, 854, 884, 967–970
descriptive, 1, 9, 10, 226, 240, 401, 831, 894, 

1176
development, see Chapters 8, 11, 14; pages 2, 

9, 10, 14, 143, 183, 294 403–406, 414, 433, 
496, 751, 912, 914, 915, 962, 1111, 1113, 
1138

disease progression, see Chapter 21
asymptotic, 560–569
data pooling and, 550–551
Gompertz, 570
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Model(s) (Continued)
inverse Bateman, 566–569
linear, 553–560, 579
transit, 571–574

evaluation, see Chapter 8; pages 153, 405, 751, 
1078, 1087

identifi cation, 227–233
goodness of fi t, 195–198, 203, 206, 229, 234
reliability, see Chapter 8
stability, see Chapter 8; pages 391, 396, 438

log-odds, 662
mixture, see Chapter 28; pages 158–161, 171, 

228, 564–565, 883, 1151
dynamic, 735
graphics and, 743–749
multiple, 740
simulations and, 750–754

nonhierarchical, 232–233, 405, 412
pain relief, 662–663, 886
pharmacodynamic, 713–714

empirical, see Chapter 20
genomics and, see Chapter 19
mechanistic, see Chapters 22 and 23
ordered categorical longitudinal, see

Chapter 25
pharmacokinetic, see Chapter 43; pages 394, 

415, 665, 866, 1005, 1111
pharmacokinetic-pharmacodynamic, see

Chapters 11, 19, 20, 22, 23, 24, 25; 
pages 5, 16, 111–112, 114, 466, 468, 792, 
794, 804, 855

empirical, see Chapter 20
indirect response, see Chapters 22 and 23; 

pages 6, 466, 512, 561, 567, 571, 662, 866, 
1010

mechanistic, see Chapters 22 and 23; pages, 
4, 477, 495, 510, 515, 808, 815, 852, 853, 
877, 882, 883, 1012, 1019, 1142

pharmaco-statistical, 811
population, 240, 266, 425, 435, 439, 467, 842, 

969, 1114
predictive, 10, 226, 401, 696
proportional odds, 656, 689, 691, 694–696, 792, 

1187
qualifi cation, 224–225
remedication, 663, 886
semiparametric, 537
survival, see Chapter 25
time to event, see Chapter 25; pages 466, 790
tolerance, see Chapters 20 and 23; pages 

790–791
transition, see Chapter 26

mixed effects, 693–694
types of

base, 316, 432, 433, 640–642, 698, 712, 714, 
966, 967, 971, 972, 1114

descriptive, 10, 226, 401, 696

full, 46, 148, 229–233, 316–319, 390, 412, 836, 
885, 890, 1114, 1118, 1125

predictive, 1, 9, 10, 226, 240, 401, 831, 894, 
1176

validation, see Chapter 8; pages 401, 402, 497, 
916, 943
internal, 237, 401, 405, 406, 497, 1171
external, 237, 241, 401, 916
metrics of, see Chapter 8
predictive performance in, 153, 156, 237, 

240, 385, 410, 751, 1162
verifi cation, 224–225

Model comparison, 412, 1144–1151
hierarchical, see Chapter 5; 229–233, 414, 971, 

1113, 1138
objective function and, 642, 971, 1113

nonhierarchical, 232–233, 405, 412, 642
Model selection

Bayesian, see Chapter 5; pages 153–156, 170
nonhierarchical, 232, 233, 405

Modeling
biomarkers and, 465–466
communication of results, see Chapter 37; 

pages 210, 287, 289–290, 298–300, 387, 
832–833, 873, 918, 922, 1183

effi ciency, see Chapter 11; pages 295, 324
initial parameter estimates, 296, 497
long run times, 295
metabolites, see Chapter 44
microarrays, 475–497
physiologically based, see Chapter 43; page 

349
using time between runs, 297–298

Modeling and simulation, see Chapters 33, 34, 35; 
pages 118–119, 123, 317, 815, 903–906, 913, 
917, 920–922, 947, 1172

applying the results of, 879
clinical trials, 7, 226, 241, 258, 303–305, 309, 

312, 315–319, 351–352, 383–384, 442–443, 
457, 467, 489, 575–576, 586–587, 591–595, 
700, 770, 797, 815, 822–824, 929–931, 947, 
970, 984, 1075, 1138
example of, 889–894

elements of, 854–858
execution of plan, 878, 888–889
program code for, 896–900
project evaluation, 874
project plan and planning, 876–878, 882

model based input factors, 882 -886
output responses, 887
simulation team review, 887–888
trials based input factors, 886–887

project resources, 875
timelines and, 875, 879

Monte Carlo simulation, see Chapters 33, 34, 35; 
pages 28, 46, 158, 307, 403, 409, 442, 466, 
468, 469, 962, 969, 1078
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Nelfi navir, see Chapter 44
Noncompartmental analysis, 257, 259, 346, 432, 

435, 961
Nonhierarchical models, see Models
Nonlinear models and modeling, see Chapter 45; 

pages 266, 639, 994
Northern blot, 510, 517

Parallelization, 28, 31, 290, 294, 295, 298, 486, 
927, 928

Parameter estimation, see Chapters 8, 10, 12; 
pages 46, 171, 387, 426, 523, 669, 724, 776, 
853, 929, 1070

identifi ability, 233–234
reliability of, 305
robustness of, 305

Pediatrics
clinical trial simulation in, 970
contrasted to adults, 964–966
covariate issues in, 966–968
obstacles to pharmacometric research in, 

958–964
pharmacometrics in, see Chapter 39; pages 14, 

15, 17, 118, 392, 401, 423, 563, 939
sampling strategies in, 969

Percentile division technique, 1177
Pharmacodynamics

defi nition, 4
empirical models, see Chapter 20

Emax, 205, 208, 306, 438, 442, 466, 531–532, 
558, 562, 565, 615, 711, 741, 819, 866, 
940

Hill equation, 466, 1171
linear, 531
sigmoid Emax, 532, 533, 607, 616, 618, 819, 

1016
history of, 4
indirect response models, see Chapters 22 and 

23; pages 6, 466, 512, 561, 567, 571, 662, 
866, 1010

limitations of, 588–589
irrevisible effects, see Chapter 23; pages 588, 

782
agonism, 615–617
cell proliferation, 583, 608–612, 1012
enzymatic inactivation, 612–614
reactive metabolites, 588, 614–616
transduction, time dependent, 615–619
transit compartment model, 617- 619
turnover model, 612–614

ordered categorical longitudinal, see Chapter 
25

rebound, 270, 517, 619–623
counter regulatory effect, 619–621
mRNA up or down regulation, 621–622, 625
precursor pool alteration, 622–623, 

1011–1012

receptor desensitization, 621
receptor up or down regulation, 621–622

tolerance, 487, 512, 517, 519, 540, 619–623, 790, 
939, 947, 1012

counter regulatory effect, 619–621
mRNA up or down regulation, 621–622, 625
precursor pool alteration, 622–623, 

1011–1012
receptor desensitization, 621
receptor up or down regulation, 621–622

transition, see Chapter 26
viral dynamic models, 308, 589–596

limitations of, 595–596
Pharmacogenomics, see Chapter 19; page 495

modeling methods, 523
program for, 526–527

Pharmacokinetics
history, see Chapter 1
population estimation methods, see Chapter 10

Pharmacokinetic/Pharmacodynamic, link models, 
5, 535–537

Pharmacometric Enterprise, see Chapter 36
Enterprise design, 917–922
Enterprise process, 911–917

generic, 907–909
specifi c, 909–911

systems engineering, 905–906
Pharmacometrics

defi nition, 2
role in drug development, see Chapter 1

Phase 1, see Chapters 29, 30, 31, 45; pages 12, 
14–16, 266, 316, 349, 359, 361, 429, 460, 636, 
1007, 1140

Phase 2, see Chapters 31 and 45; pages 8, 
15–17, 118, 241, 351, 636, 782, 784, 875, 879, 
881–882, 889, 940, 947

Phase 3, see Chapters 1, 31, 38; pages 118, 315, 
350, 424, 468, 875, 889

Phase 4, 6, 17, 460, 1109
Physiologically based models, see Chapter 43; 

page 349
implementation and evaluation, 1075–1079
inhalation, 1072
model formulation, 1071–1075

model parameters, 1074–1075
model structure, 1072–1074

Polymerase chain reaction, 474–475, 510, 517
Population modeling

designing, 291
effi ciency and, see Chapter 11; page 324
estimation methods, see Chapter 9

Bayesian two-stage, 273–274
Bayesian with Gibb’s sampling, 274
global two stage, 272–273
iterative two-stage (IT2S), 273
naïve average data approach, 269–270
naïve pooled data analysis, 270, 523
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Population modeling (Continued)
nonlinear mixed effects, 274–277
nonparametric maximum likelihood, 

278–279, 406
semiparametric maximum likelihood, 

279–280
standard two stage, 272
two stage, 14, 271, 818, 969

planning, see Chapters 35 and 36; pages 2, 14, 
289, 293

plan writing for, 291
Posterior predictive check, see Chapter 15; pages 

156–158, 237–238, 401, 413- 414, 750–753, 
836, 1078

Prediction intervals, 219–222
Predictive performance, 153, 156–158, 237, 240, 

385, 410, 751, 1162
Profi le likelihood, 226, 295, 445, 446, 453
Proteins, see Biologicals

QT interval, see Chapter 40; pages 2, 14, 466, 
812, 883

consideration in study design, 981–991
automated data analysis, 990–991
baseline ECG, 986
dealing with outliers, 988–989
endpoint for, 986–987
maximum mean change, 987
mean maximum change, 987
number and timing of ECG recordings, 

983–986
number of subjects, 981–983
placebo controls, 987–988
positive controls, 987–988

correction for heart rate, 979–981
Quantic pharmaockinetics, see Chapter 42

Random number generation, 29, 42, 241, 469, 
657, 678–679, 858–860, 862, 899

Receptor, binding, 481, 512, 514, 530, 615–617, 
1141

Regulatory process, agencies, 809, 906, 908, 937
Reports

computer programming, 27, 40, 47, 63
pharmacometric, see Chapter 11; pages 644, 

874, 876–879, 912, 917, 922
Resampling methods and techniques, see Chapter 

15; 237–238, 837, 984, 1036, 1039–1043, 1046, 
1048

Response surface, see Chapters 32 and 47; pages 
8–10, 245, 251, 383–384, 391, 529, 548–551, 
957, 1078

Restricted maximum likelihood, 104, 277

Scale up to humans, see Chapters 29 and 30; 
pages 14, 830, 873. See also First time in 
humans (FTIH)

Sensitivity analysis, 152, 226, 385, 427, 858, 883, 
1072, 1076

Simulation, see Chapters 33, 34, 35; pages 27, 
30, 33, 37–39, 47–48, 113, 115, 118, 146, 148, 
151, 156, 160, 170–177, 185, 203, 206, 209, 
212, 222, 256, 258, 271, 303–309, 404, 413, 
441, 461, 489, 575, 586, 587, 591–595, 611, 
621–625, 664, 667, 669, 725, 735, 750, 770, 
830–832, 903–905, 909, 913, 920–922, 931, 
1078–1079, 1084, 1087

clinical trials, 5, 7, 226, 241, 258, 291, 
303–305, 309, 312, 315–319, 351–352, 
383–384, 442–443, 457, 467, 489, 575–576, 
586–587, 591–595, 700, 770, 788, 797, 815, 
822–824, 929–931, 947, 963, 970, 984, 1075, 
1138

continuous variables, 861–863
discrete variables, 863–864
program codes, 113, 119, 122–123, 333–337, 

369–382, 678–679, 752–753
software, 2, 5, 30, 257, 811, 843–848, 1076, 

1077
effi cacy trials, see Chapter 35
planning and execution, see Chapter 34
theory, see Chapter 33

stochastic, Monte Carlo, see Chapters 33, 34, 
35; pages 7, 28, 48, 158, 307, 403, 409, 442, 
466, 468, 469, 962, 969, 1078

Software
acslXtreme PK/PD toolkit, 1076
ADAPTII, 1077
Berkeley Madonna, 1077
BUGS, 1077
buy or build, 61
ERDEM, 1076
Gastro-Plus, 1076
GNUOctave, 1076
Matlab, 26–49, 143, 308, 859, 864, 1070, 1076, 

1079, 1081, 1084, 1087, 1091
MCSim, 1077
ModKine, 1076
NONMEM, 1077
Pharmacokinetic/Pharmcodynamic modeling, 

59–67, 104, 112, 114
PKQuest, 1076
PK-Sim, 1076
R, 31
S, 31
S-Plus, 30–31
Simcyp, 1076
STELLA, 1077
validation, 61
WinSAAM, 1076

Smooths, 967
cubic splines, see Chapter 20; page 280
locally weighted (LOESS), 186
splines, see Chapter 20; page 280
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Stirling’s formula, 707
Studies, fi rst time in man, see Chapters 29 and 

30; pages 14, 830, 873. See also First time in 
humans (FTIH)

phase 1, see Chapters 29, 30, 31, and 45; pages 
12, 14–16, 266, 316, 349, 359, 361, 429, 460, 
636, 1007, 1138

phase 2, see Chapters 31 and 45; 
pages 8, 15–17, 118, 241, 351, 636, 
782, 784, 875, 879, 881–882, 889, 940, 
947

phase 3, see Chapters 1, 31, 38; pages 118, 315, 
350, 424, 468, 875, 889

phase 4, 6, 17, 460, 1109
preclinical, 14, 149, 787

Surrogate endpoint, see Chapter 17; pages 2, 4–5, 
16, 794, 960, 966

Therapeutic effect, see Chapters 31 and 35; pages 
8, 536

Time to event data or model, see Chapter 25; 
pages 466, 790

Tissue to plasma ratio, see Chapter 42
comparison of estimation method, 1042–1047
estimation of, 1036–1042

naïve averaging, 1038
naïve averaging program, 1050–1051
pseudoprofi le-based bootstrap, 1041
pseudoprofi le-based bootstrap program, 

1055–1057
random sampling, 1039–1041
random sampling program, 1051–1055

Toxicokinetics, 1035
Tree based modeling (TBM), 213, 231, 385, 387, 

391, 838, 839, 1176, 1180, 1181

Validation
model, see Model
computer program, see Computer program
metrics, see Model validation

Wishart distribution, 146, 148, 151

ZIP distribution, 704, 706




