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N PREFACE

The subspecialty of population pharmacokinetics was introduced into clinical phar-
macology / pharmacy in the late 1970s as a method for analyzing observational
data collected during patient drug therapy in order to estimate patient-based phar-
macokinetic parameters. It later became the basis for dosage individualization
and rational pharmacotherapy. The population pharmacokinetics method (i.e., the
population approach) was later extended to the characterization of the relation-
ship between pharmacokinetics and pharmacodynamics, and into the discipline of
pharmacometrics. Pharmacometrics is the science of interpreting and describing
pharmacology in a quantitative fashion. Vast amounts of data are generated during
clinical trials and patient care, and it is the responsibility of the pharmacometrician
to extract the knowledge embedded in the data for rational drug development and
pharmacotherapy. He/she is also responsible for providing that knowledge for deci-
sion making in patient care and the drug development process.

With the publication of the Guidance for Industry: Population Pharmacokinetics
by the Food and Drug Administration (the advent of population pharmacokine-
tics/pharmacodynamics-based clinical trial simulation) and recently the FDA Criti-
cal Path Initiative—The Critical Path to New Medical Products, the assimilation of
pharmacometrics as an applied science in drug development and evaluation is
increasing. Although a great deal has been written in the journal literature on
population pharmacokinetics, population pharmacokinetics/pharmacodynamics,
and pharmacometrics in general, there is no major reference textbook that pulls
all these facets of knowledge together in one volume for pharmacometricians in
academia, regulatory agencies, or industry and graduate students/postdoctoral
fellows who work/research in this subject area. It is for this purpose that this book
is written.

Although no book can be complete in itself, what we have endeavored to assem-
ble are contributors and an array of topics that we believe provide the reader with
the knowledge base necessary to perform pharmacometric analysis, to interpret the
results of the analysis, and to be able to communicate the same effectively to impact
mission-critical decision making. The book is divided into seven sections—general
principles, population pharmacokinetic basis of pharmacometrics, pharmacokine-
tics/pharmacodynamics relationship, clinical trial designs, pharmacometric know-
ledge creation, pharmacometric service and communication, and specific appli-
cation examples. In the introductory chapter, the history of the development of
pharmacometrics is traced and its application to drug development, evaluation, and
pharmacotherapy is delineated. This is followed by Part I on general principles that
addresses topics such as the general principles of programming, which is a must for
every pharmacometrician, pharmacometric analysis software validation—a subject
that has become prominent in last few years, linear and nonlinear mixed effects

XV
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modeling to provide the reader with the background knowledge on these topics and
thus setting the pace for the remainder of the book, estimation of the dynamics of
compliance, which is important for having a complete picture of a study outcome,
graphical display of population data—a sine qua non for informative pharmacome-
tric data analysis, the epistemology of pharmacometrics, which provides a pathway
for performing a pharmacometric analysis, and data imputation. Data analysis
without the proper handling of missing data may result in biased parameter esti-
mates. The chapter on data imputation covers the various aspects of “missingness”
and includes an example of how to handle left censored data—a challenge with
most pharmacokinetic data sets.

In Part II of the book various aspects of population pharmacokinetics, pharma-
cometric knowledge discovery, and resampling techniques used in pharmacometric
data analysis are covered. Thus, various aspects of the informative design and analy-
sis of population pharmacokinetic studies are addressed together with population
pharmacokinetics estimation methods. The chapter on pharmacometric knowledge
discovery deals with the integrated approach for discovering knowledge from clini-
cal trial data sets and communicating the same for optimal pharmacotherapy and
knowledge/model-based drug development.

Part III, which is on the pharmacokinetics—pharmacodynamics relationship, deals
with biomarkers and surrogates in drug development, gene expression analysis, inte-
gration of pharmacogenomics into pharmacokinetics/pharmacodynamics, empirical
and mechanistic PK/PD models, outcome models, and disease progression models
that are needed for understanding disease progression as the basis for building
models that can be used in clinical trial simulation.

Part IV builds on the knowledge gained from the previous sections to provide
the basis for designing clinical trials. The section opens with a chapter on the design
of first-time-in-human (FTIH) studies for nononcology indications. The literature
is filled with a discussion of the design of FTIH oncology studies, but very little has
been written on the design of FTTH studies for nononcology indications. A com-
prehensive overview of different FTIH study designs is provided with an evaluation
of the designs that provide the reader with the knowledge needed for choosing an
appropriate study design. A comprehensive coverage of the design of Phase 1 and
phase 2a oncology studies is provided in another chapter; the section closes with a
chapter on the design of dose — response studies.

Part V addresses pharmacometric knowledge creation, which entails the appli-
cation of pharmacometric methodologies to the characterization of an unexplored
region of the response surface. It is the process of building upon current understand-
ing of data that is already acquired by generating more data (information) that can
be translated into knowledge. Thus, the section opens with a chapter on knowledge
creation, followed by the theory of clinical trial simulation and the basics of clinical
trial simulation, and ends with a chapter on the simulation of efficacy trials.

Parts VI and VII discuss what a pharmacometric service is all about, how to com-
municate the results of a pharmacometric analysis, and specific examples ranging
from applications in a regulatory setting, characterization of QT interval prolon-
gation, pharmacometrics in biologics development, pharmacometrics in pedia-
tric pharmacotherapy, application of pharmacometric principles to the analysis of
preclinical data, physiologically based pharmacokinetic modeling, characterizing
metabolic and nonlinear pharmacokinetics, in vitro in vivo correlation, and the
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application of pharmacometric knowledge discovery and creation to the character-
ization of drug safety.

What makes this book unique is not just the presentation of theory in an easy
to comprehend fashion, but the fact that for a majority of the chapters there are
application examples with codes in NONMEM, S-Plus, WinNonlin, or Matlab. The
majority of the codes are for NONMEM and S-Plus. Thus, the reader is able to
reproduce the examples in his/her spare time and gain an understanding of both
the theory and principles of pharmacometrics covered in a particular chapter. A
reader friendly approach was taken in the writing of this book. Although there are
many contributors to the book, we have tried as much as possible to unify the style
of presentation to aid the reader’s understanding of the subject matter covered in
each chapter. Emphasis has been placed on drug development because of the need
to apply pharmacometrics in drug development to increase productivity. Examples
have been provided for the application of pharmacometrics in pharmacotherapy
and drug evaluation to show how pharmacometric principles have been applied in
these areas with great benefit.

In the writing of this text, the reader’s knowledge of pharmacokinetics, phar-
macodynamics, and statistics is assumed. If not, the reader is referred to Applied
Pharmacokinetics by Shargel and Yu, Pharmacokinetics by Gibaldi and Perrier,
Pharmacokinetics and Pharmacodynamics by Gabrielson and Weiner, and statistics
from standard textbooks.

Finally, this book is written for the graduate students or postdoctoral fellows
who want to specialize in pharmacometrics; and for pharmaceutical scientists, clini-
cal pharmacologists/pharmacists, and statisticians in academia, regulatory bodies,
and the pharmaceutical industry who are in pharmacometrics or are interested in
developing their skill set in the subject.

ENE 1. ETTE
PauL J. WILLIAMS
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I CHAPTER 1

Pharmacometrics: Impacting Drug
Development and Pharmacotherapy

PAUL J. WILLIAMS and ENE I. ETTE

1.1 INTRODUCTION

Drug development continues to be expensive, time consuming, and inefficient, while
pharmacotherapy is often practiced at suboptimal levels of performance (1-3).
This trend has not waned despite the fact that massive amounts of drug data are
obtained each year. Within these massive amounts of data, knowledge that would
improve drug development and pharmacotherapy lays hidden and undiscovered.
The application of pharmacometric (PM) principles and models to drug develop-
ment and pharmacotherapy will significantly improve both (4, 5). Furthermore, with
drug utilization review, generic competition, managed care organization bidding,
and therapeutic substitution, there is increasing pressure for the drug development
industry to deliver high-value therapeutic agents.

The Food and Drug Administration (FDA) has expressed its concern about the
rising cost and stagnation of drug development in the white paper Challenge and
Opportunity on the Critical Path to New Products published in March of 2004 (3). In
this document the FDA states: “Not enough applied scientific work has been done
to create new tools to get fundamentally better answers about how the safety and
effectiveness of new products can be demonstrated in faster time frames, with more
certainty, and at lower costs. ... A new product development toolkit—containing
powerful new scientific and technical methods such as animal or computer-based
predictive models, biomarkers for safety and effectiveness, and new clinical evalu-
ation techniques—is urgently needed to improve predictability and efficiency along
the critical path from laboratory concept to commercial product. We need superior
product development science to address these challenges.” In the critical path docu-
ment, the FDA states that the three main areas of the path that need to be addressed
are tools for assessing safety, tools for demonstrating medical utility, and lastly tools
for characterization and manufacturing. Pharmacometrics can be applied to and can
impact the first two areas, thus positively impacting the critical path.

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene 1. Ette and
Paul J. Williams
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For impacting safety, the FDA has noted opportunities to better define the
importance of the QT interval, for improved extrapolation of in vitro and animal
data to humans, and for use of extant clinical data to help construct models to
screen candidates early in drug development (e.g., liver toxicity). Pharmacometrics
can have a role in developing better links for all of these models.

For demonstrating medical utility, the FDA has highlighted the importance of
model-based drug development in which pharmacostatistical models of drug effi-
cacy and safety are developed from preclinical and available clinical data. The FDA
goes on to say that “Systematic application of this concept to drug development has
the potential to significantly improve it. FDA scientists use and are collaborating
with others in the refinement of quantitative clinical trial modeling using simula-
tion software to improve trial design and to predict outcomes.” The pivotal role of
pharmacometrics on the critical path is obvious.

Drug development could be improved by planning to develop and apply PM
models along with novel pathways to approval, improved project management,
and improved program development. Recent advances in computational speed,
novel models, stochastic simulation methods, real-time data collection, and novel
biomarkers all portend improvements in drug development.

Dosing strategy and patient selection continue to be the most easily manipulated
parts of a patient’s therapy. Optimal dosing often depends on patient size, sex, and
renal function or liver function. All too often, the impact of these covariates on a
PM parameter is unstudied and therefore cannot be incorporated into any thera-
peutic strategy. PM model development and application will improve both drug
development and support rational pharmacotherapy.

1.2 PHARMACOMETRICS DEFINED

Pharmacometrics is the science of developing and applying mathematical and
statistical methods to characterize, understand, and predict a drug’s pharmacoki-
netic, pharmacodynamic, and biomarker—outcomes behavior (6). Pharmacometrics
lives at the intersection of pharmacokinetic (PK) models, pharmacodynamic (PD)
models, pharmacodynamic-biomarker—outcomes link models, data visualization
(often by employing informative modern graphical methods), statistics, stochastic
simulation, and computer programming. Through pharmacometrics one can quan-
tify the uncertainty of information about model behavior and rationalize knowl-
edge-driven decision making in the drug development process. Pharmacometrics
is dependent on knowledge discovery, the application of informative graphics,
understanding of biomarkers/surrogate endpoints, and knowledge creation (7-10).
When applied to drug development, pharmacometrics often involves the devel-
opment or estimation of pharmacokinetic, pharmacodynamic, pharmcodynamic—
outcomes linking, and disease progression models. These models can be linked and
applied to competing study designs to aid in understanding the impact of varying
dosing strategies, patient selection criteria, differing statistical methods, and differ-
ent study endpoints. In the realm of pharmacotherapy, pharmacometrics can be
employed to customize patient drug therapy through therapeutic drug monitoring
and improved population dosing strategies. To contextualize the role of pharma-
cometrics in drug development and pharmacotherapy, it is important to examine
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the history of pharmacometrics. The growth of pharmacometrics informs much on
its content and utility.

1.3 HISTORY OF PHARMACOMETRICS

1.3.1 Pharmacokinetics

Pharmacometrics begins with pharmacokinetics. As far back as 1847, Buchanan
understood that the brain content of anesthetics determined the depth of narco-
sis and depended on the arterial concentration, which in turn was related to the
strength of the inhaled mixture (11). Interestingly, Buchanan pointed out that
rate of recovery was related to the distribution of ether in the body. Though there
was pharmacokinetic (PK) work done earlier, the term pharmacokinetics was first
introduced by F. H. Dost in 1953 in his text, Der Blutspeigel-Kinetic der Knozen-
trationsablaufe in der Kreislauffussigkeit (12). The first use in the English language
occurred in 1961 when Nelson published his “Kinetics of Drug Absorption, Dis-
tribution, Metabolism, and Excretion” (13). The exact word pharmacokinetics was
not used in this publication.

In their classic work, the German scientists Michaelis and Menton published their
equation describing enzyme kinetics in 1913 (14). This equation is still used today
to describe the kinetics of drugs such as phenytoin. Widmark and Tandberg (15)
published the equations for the one-compartment model in 1924 and in that same
year Haggard (16) published his work on the uptake, distribution, and elimination
of diethyl ether. In 1934 Dominguez and Pomerene (17) introduced the concept
of volume of distribution, which was defined as “the hypothetical volume of body
fluid dissolving the substance at the same concentration as the plasma. In 1937
Teorrel (18) published a seminal paper that is now considered the foundation of
modern pharmacokinetics. This paper was the first physiologically based PK model,
which included a five-compartment model. Bioavailability was introduced as a term
in 1945 by Oser and colleagues (19), while Lapp (20) in France was working on
excretions kinetics.

Polyexponential curve fitting was introduced by Perl in 1960 (21). The use of
analog computers for curve fitting and simulation was introduced in 1960 by two
groups of researchers (22, 23).

The great growth period for pharmacokinetics was from 1961 to 1972, starting
with the landmark works of Wagner and Nelson (24). In 1962 the first symposium
with the title pharmacokinetics, “Pharmacokinetik und Arzniemitteldosireung,”
was held.

Clinical pharmacokinetics began to be recognized in the 1970s, especially in two
papers by Gibaldi and Levy, “Pharmacokinetics in Clinical Practice,” in the Journal
of the American Medical Association in 1976 (25). Of further importance that same
year was a paper by Koup et al. (26) on a system for the monitoring and dosing of
theophylline based on pharmacokinetic principles.

Rational drug therapy is based on the assumption of a causal relationship between
exposure and response. There pharmacokinetics has great utility when linked to
pharmacodynamics and the examination of pharmacodynamics is of paramount
importance.
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1.3.2 Pharmacodynamics

In 1848 Dungilson (27) stated that pharmacodynamics was “a division of phar-
macology which considers the effects and uses of medicines.” This definition has
been refined and restricted over the centuries to a more useful definition, where
“pharmacokinetics is what the body does to the drug; pharmacodynamics is what
the drug does to the body” (28, 29). More specifically, pharmacodynamics was best
defined by Derendorf et al. (28) as “a broad term that is intended to include all of
the pharmacological actions, pathophysiological effects and therapeutic responses
both beneficial or adverse of active drug ingredient, therapeutic moiety, and/or its
metabolite(s) on various systems of the body from subcellular effects to clinical out-
comes.” Pharmacodynamics most often involves mathematical models, which relate
some concentration (serum, blood, urine) to a physiologic effect (blood pressure,
liver function tests) and clinical outcome (survival, adverse effect). The pharmaco-
dynamic (PD) models have been described as fixed, linear, log-linear, Emay, sigmoid
Enmax, and indirect PD response (29-31).

The indirect PD response model has been a particularly significant contribution
to PD modeling (30, 31). It has great utility because it is more mechanistic than the
other models, does not assume symmetry of the onset and offset, and incorporates
the impact of time in addition to drug concentration, thus accounting for a delay
in onset and offset of the effect. For these models the maximum response occurs
later than the time of occurrence of the maximum plasma concentration because
the drug causes incremental inhibition or stimulation as long as the concentration
is “high enough.” After the response reaches the maximum, the return to base-
line is a function of the dynamic model parameters and drug elimination. Thus,
there is a response that lasts beyond the presence of effective drug levels because
of the time needed for the system to regain equilibrium. Whenever possible, these
mechanistic models should be employed for PD modeling and several dose levels
should be employed for accurate determination of the PD parameters, taking into
consideration the resolution in exposure between doses.

The dependent variables in these PD models are either biomarkers, surrogate
endpoints, or clinical endpoints. It is important to differentiate between these and
to understand their relative importance and utility.

1.3.3 Biomarkers

The importance of biomarkers has been noted in recent years and is evidenced
by the formation of The Biomarkers Definitions Working Group (BDWG) (32).
According to the BDWG, a biomarker is a “characteristic that is objectively mea-
sured and evaluated as an indicator of normal biological processes, pathogenic
process or pharmacologic responses to a therapeutic intervention.” Biomarkers
cannot serve as penultimate clinical endpoints in confirming clinical trials; however,
there is usually considered to be some link between a biomarker based on prior
therapeutic experience, well understood physiology or pathophysiology, along with
knowledge of the drug mechanism. Biomarkers often have the advantage of chang-
ing in drug therapy prior to the clinical endpoint that will ultimately be employed
to determine drug effect, thus providing evidence early in clinical drug development
of potential efficacy or safety.
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A surrogate endpoint is “a biomarker that is intended to substitute for a clinical
endpoint. A surrogate endpoint is expected to predict clinical benefit, harm, lack of
benefit, or lack of harm based on epidemiologic, therapeutic, pathophysiologic or
other scientific evidence” (32). Surrogate endpoints are a subset of biomarkers such
as viral load or blood pressure. All surrogate endpoints are biomarkers. However,
few biomarkers will ever become surrogate endpoints. Biomarkers are reclassified
as surrogate endpoints when a preponderance of evidence indicates that changes in
the biomarker correlate strongly with the desired clinical endpoint.

A clinical endpoint is “a characteristic or variable that reflects how a patient feels,
functions or survives. It is a distinct measurement or analysis of disease character-
istics observed in a study or a clinical trial that reflect the effect of a therapeutic
intervention. Clinical endpoints are the most credible characteristics used in the
assessment of the benefits and risks of a therapeutic intervention in randomized
clinical trials.” There can be problems with using clinical endpoints as the final
measure of patient response because a large patient sample size may be needed to
determine drug effect or the modification in the clinical endpoint for a drug may
not be detectable for several years after the initiation of therapy.

There are several ways in which the discovery and utilization of biomarkers can
provide insight into the drug development process and patient care. Biomarkers can
identify patients at risk for a disease, predict patient response, predict the occurrence
of toxicity, and predict exposure to the drug. Given these uses, biomarkers can also
provide a basis for selecting lead compounds for development and can contribute
knowledge about clinical pharmacology. Therefore, biomarkers have the potential
to be one of the pivotal factors in drug development—from drug target discovery
through preclinical development to clinical development to regulatory approval
and labeling information, by way of pharmacokinetic/pharmacodynamic—outcomes
modeling with clinical trial simulations.

1.3.4 PK/PD Link Modeling

PK/PD modeling provides the seamless integration of PK and PD models to
arrive at an enlightened understanding of the dose—exposure-response relation-
ship. PK/PD modeling can be done either sequentially or simultaneously (33, 34).
Sequential models estimate the pharmacokinetics first and fix the PK parameters,
generating concentrations corresponding to some PD measurement. Thus, the
pharmacodynamics is conditioned on the PK data or on the estimates of the
PK parameters. Simultaneous PK/PD modeling fits all the PK and PD data at
once and the PK and PD parameters are considered to be jointly distributed.
When simultaneous modeling is done, the flow of information is bidirectional.
Both of these approaches appear to provide similar results (33, 35). However, it is
important to note that PD measurements are usually less precise than PK measure-
ments and using sequential PK and PD modeling may be the preferred approach
in most instances.

PK and PD can be linked directly through a measured concentration that is
directly linked to an effect site. The direct link model does not work well when there
is a temporal relationship between a measured concentration and effect, as when
hysteresis is present. When this is the case, an indirect link between the measured
concentration and effect must be accounted for in the model. This has been done in
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general by the construction of an effect compartment, where a hypothetical effect
compartment is linked to a PK compartment. Here the effect compartment is very
small and thus has negligible impact on mass balance with a concentration time
course in the effect compartment. The effect is related to the concentration in the
effect compartment, which has a different time course than the compartment where
drug concentrations are actually measured. In addition to the effect compartment
approach to account for temporal concentration—effect relationships, the indirect
response concept has found great utility.

PK and PD have been linked by many models, sometimes mechanistic and at
other times empirical. These models are especially useful in better understanding
the dose strategy and response, especially when applied by stochastic simulation.
The population approach can be applied to multiple types of data—for example,
both intensely and sparsely sampled data and preclinical to Phase 4 clinical data—
and therefore has found great utility when applied to PK/PD modeling.

1.3.5 Emergence of Pharmacometrics

The term pharmacometrics first appeared in the literature in 1982 in the Journal
of Pharmacokinetics and Biopharmaceutics (36). At that time, the journal made a
commitment to a regular column dealing with the emerging discipline of pharma-
cometrics, which was defined as “the design, modeling, and analysis of experiments
involving complex dynamic systems in the field of pharmacokinetics and biophar-
maceutics . . . concerning primarily data analysis problems with such models.” They
went on to say that problems with study design, determination of model identifi-
ability, estimation, and hypothesis testing would be addressed along with identifying
the importance of graphical methods. Since this time, the importance of pharmaco-
metrics in optimizing pharmacotherapy and drug development has been recognized,
and several graduate programs have been established that emphasize pharmaco-
metrics (37). Pharmacometrics is therefore the science of developing and applying
mathematical and statistical methods to (a) characterize, understand, and predict a
drug’s pharmacokinetic and pharmacodynamic behavior; (b) quantify uncertainty
of information about that behavior; and (c) rationalize data-driven decision making
in the drug development process and pharmacotherapy. In effect, pharmacometrics
is the science of quantitative pharmacology.

1.3.6 Population Modeling

A major development in pharmacometrics was the application of population
methods to the estimation of PM parameters (38). With the advent of population
approaches, one could now obtain estimates of PM parameters from sparse data
from large databases and also obtain improved estimates of the random effects
(variances) in the parameters of interest. These models first found great applicabil-
ity by taking massive amounts of data obtained during therapeutic drug monitoring
(TDM) from which typical values and variability of PK parameters were obtained.
The parameters once estimated were applied to TDM to estimate initial doses and,
using Bayesian algorithms, to estimate a patient’s individual PK parameters to
optimize dosing strategies. Population methods have become widely accepted to the
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extent that a Guidance for Industry has been issued by the United States Food and
Drug Administration (FDA) on population pharmacokinetics. Population methods
are applied to pharmacokinetics, pharmacodynamics, and models linking biomark-
ers to clinical outcomes (39).

1.3.7 Stochastic Simulation

Stochastic simulation was another step forward in the arena of pharmacometrics.
Simulation had been widely used in the aerospace industry, engineering, and econo-
metrics prior to its application in pharmacometrics. Simulation of clinical trials first
appeared in the clinical pharmacology literature in 1971 (40) but has only recently
gained momentum as a useful tool for examining the power, efficiency, robustness,
and informativeness of complex clinical trial structure (41).

A major impetus promoting the use of clinical trial simulation was presented
in a publication by Hale et al. (41), who demonstrated the utility of simulating a
clinical trial on the construction of a pivotal study targeting regulatory approval.
The FDA has shown interest in clinical trial simulation to the extent that it has
said: “Simulation is a useful tool to provide convincing objective evidence of the
merits of a proposed study design and analysis. Simulating a planned study offers a
potentially useful tool for evaluating and understanding the consequences of differ-
ent study designs” (39). While we often think of clinical trial simulation as a way for
the drug sponsor to determine optimal study structure, it is also a way for the FDA
to determine the acceptability of a proposed study protocol. Simulation serves as
a tool not only to evaluate the value of a study structure but also to communicate
the logical implications of a PM model, such as the logical implication of competing
dosing strategies for labeling.

The use and role of a simulated Phase 3 safety and efficacy study is still under
discussion as confirmatory evidence at the FDA; however, a simulation of this type
can serve as supportive evidence for regulatory review (4, 5). It is likely that at some
time in the future knowledge of a disease’s pathophysiology plus knowledge of drug
behavior and action will be applied to a group of virtual patients as the pivotal Phase
3 study for approval by a clinical trial simulation. Stochastic simulation should result
in more powerful, efficient, robust, and informative clinical trials; therefore, more
can be learned, and confirming efficacy will be more certain as stochastic simulation
is applied to the drug development process.

1.3.8 Learn—-Confirm—-Learn Process

Drug development has traditionally been empirical and proceeded sequentially
from preclinical through clinical Phases 1 to 3. Sheiner (42) first proposed a major
paradigm shift in drug development away from an empirical approach to the
learn—confirm approach based on Box’s inductive versus deductive cycles (43).
Williams et al. (6, 44) and Ette et al. (45) have since revised this process to the
learn—confirm-learn approach because of their emphasis on the fact that learning
continues throughout the entire drug development process. The learn—confirm—
learn process contends that drug development ought to consist of alternate cycles
of learning from experience and then confirming what has been learned but that
one never proposes a protocol where learning ceases.
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In the past, Phases 1 and 2a have been considered the learning phases of drug
development because the primary objectives are to determine the tolerated doses
and the doses producing the desired therapeutic effect. Phase 2 has targeted how
to use the drug in the target patient population, determining the dose strategy and
proof of concept. Phase 3 has focused on confirming efficacy and demonstrating a
low incidence of adverse events, where if the ratio of benefit to risk is acceptable
then the drug is approved. An encouraging outcome in these early cycles results
in investment in the costly Phase 2b and 3 studies. However, even in the confirm-
ing stages of drug development, one ought to continue to be interested in learning
even though confirming is the primary objective of a study; that is, all studies should
incorporate an opportunity for learning in the protocol. Therefore, the process has
been renamed “learn—confirm-learn”.

Learning and confirming have quite different goals in the process of drug devel-
opment. When a trial structure optimizes confirming, it most often imposes some
restrictions on learning; for example, patient enrollment criteria are limited, thus
limiting one’s ability to learn about the agent in a variety of populations. For
example, many protocols limit enrollment to patients with creatinine clearances
above a certain number (e.g., 50mL/min). If this is done, one cannot learn how to
use such a drug in patients with compromised renal function. Empirical commercial
drug development has in general focused on confirming because it provides the nec-
essary knowledge for regulatory approval, addressing the primary issue of efficacy.
The downside of the focus on confirming is that it has led to a lack of learning,
which can result in a dysfunctional drug development process and less than optimal
pharmacotherapy postapproval.

PM modeling focuses on learning, where the focus is on building a model that
relates dosing strategy, exposure, patient type, prognostic variables, and more to
outcomes. Here the three-dimensional response surface is built (42) (see Section
1.3.9.2). PM models are built to define the response surface to increase the signal-
to-noise ratio, which will be discussed shortly. The entire drug development process
is an exercise of the learn—confirm-learn paradigm.

1.3.9 Exposure—Response Relationship

The importance of elucidating the exposure-response relationship must be empha-
sized. When the term exposure is used, one is usually referring to dose or variables
related to concentration such as area under the concentration—time curve (AUC),
maximum concentration (Cpax), minimum concentration (Cpin), Or average concen-
tration (C,y.) in some biological specimen such as serum, urine, cerebral spinal fluid,
or sputum. It is worth noting that dose is a very weak surrogate of exposure, espe-
cially where there is no proportionality between dose and AUC or Cpax. Response
is a measure of the effect of a drug either therapeutic or adverse, such as blood
pressure, cardiac index, blood sugar, survival, liver function, or renal function.

1.3.9.1 Regulatory Perspective

The FDA document, Guidance for Industry: Exposure—Response Relationships—
Study Design, Data Analysis, and Regulatory Applications, has commented exten-
sively on the exposure-response relationship (46). It states: “Exposure-response
information is at the heart of any determination of the safety and effectiveness of
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drugs. ... In most cases, however, it is important to develop information on the
population exposure-response relationships for favorable and unfavorable effects
and information on how, and whether, exposure can be adjusted for various subsets
of the population.” The FDA recognizes the value of exposure-response knowl-
edge to support the drug development process and to support the determination of
safety and efficacy. In this document it stated that “dose-response studies can, in
some cases, be particularly convincing and can include elements of consistency that,
depending on the size of the study and outcome, can allow reliance on a single clini-
cal efficacy study as evidence of effectiveness.” The exposure-response relationship
was further refined in the defining of the response surface.

1.3.9.2 Response Surface

A significant development of the exposure-response concept was the proposing
of the response surface. Sheiner (42) first proposed the pharmacological response
surface as a philosophical framework for development of PM models. The response
surface can be thought of as three dimensional: on one axis are the input variables
(dose, concurrent therapies, etc.); on the second axis are the important ways that
patients can differ from one another that affect the benefit to toxicity ratio; and the
final axis represents the benefit to toxicity ratio. Sheiner stated: “the real surface
is neither static, nor is all the information about the patient conveyed by his/her
initial prognostic status, nor are exact predictions possible. A realistically useful
response . .. must include the elements of variability, uncertainty and time...”
Thus, the primary goal of the response model is to define the complex relation-
ship between the input profile and dose magnitude when comparing beneficial and
harmful pharmacological effects and how this relationship varies between patients.
For rational drug use and drug development, the response surface must be mapped.
PM models, once developed and validated, allow extrapolation beyond the immedi-
ate study subjects to allow application to other patients from whom the model was
not derived. These predictive models permit the evaluation of outcomes of compet-
ing dosing strategies in patients who have not received the drug and therefore aid in
constructing future pivotal studies. One important aspect of PM models employed
in mapping the response surface is that they increase the signal-to-noise ratio in
a data set because they translate some of the noise into signal. This is important
because when we are converting information (data) into knowledge, the knowledge
is proportional to the signal-to-noise ratio.

1.3.10 PM Knowledge Discovery

It is our experience that most drug development programs are data rich and knowl-
edge poor. This occurs when data are collected but all of the knowledge hidden in
the data set is not extracted. In reality, huge amounts of data are generated from
modern clinical trials, observational studies, and clinical practice, but at the same
time there is an acute widening gap between data collection, knowledge, and com-
prehension. PM knowledge discovery applies 13 comprehensive and interwoven
steps to PM model development and communication and relies heavily on modern
statistical techniques, modern informative graphical applications, and population
modeling (8, 9) (see Chapter 14). The more that is known about a drug the better
will be its application to direct patient care, and the more powerful and efficient
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will be the development program. To this end, PM knowledge discovery is the best
approach to extracting knowledge from data and has been defined and applied to
PM model development.

1.3.11 PM Knowledge Creation

Most often, knowledge discovery provides the foundation for knowledge creation
and is simply the initial step in the application of PM knowledge (10). The discov-
ered knowledge can be used to synthesize new data or knowledge, or to supplement
existing data. PM knowledge creation has something in common with knowledge
discovery its intent to understand and better define the response surface. Data
supplementation deals with the use of models on available data to generate supple-
mental data that would be used to characterize a targeted unexplored segment of
the response surface (47).

1.3.12 Model Appropriateness

Model appropriateness brought a new epistemology to PM model estimation and
development (48) (see Chapter 8). The pivotal event in establishing model appro-
priateness is stating the intended use of the model. The entire process requires the
stating of the intended use of the model, classifying the model as either descriptive
or predictive, evaluating the model, and validating the model if the model is to be
used for predictive purposes. Descriptive models are not intended to be applied
to any external population—that is, their sole purpose is to gain knowledge about
the drug in the population studied. Predictive models are intended to be applied
to subjects from whom the model was not derived or estimated. Predictive models
require a higher degree of correspondence to the external universe than descriptive
models and therefore require validation.

Under the epistemology of model appropriateness, the purpose for which the
model is developed has a significant impact on the modeling process. In the current
modeling climate, insufficient consideration is given to the purpose or intended use
of the model and little attention is given to whether the model is descriptive or pre-
dictive. Model appropriateness is a paradigm that ought to be applied to the model
development and estimation process and it provides the framework for appropriate
use of PM models.

1.4 PIVOTAL ROLE OF PHARMACOMETRICS IN DRUG DEVELOPMENT

Drug development has become protracted and expensive over the last several
decades, with the average length of clinical development being over 7-12 years,
the number of studies averaging 66, and a cost of $0.802-1.7 billion per approved
agent (1-4). The process has been empirical—driven by identifying all the items
needed for registration of an agent, constructing a checkbox for each item, and
executing the studies so that each box is checked, with a consequent fulfillment of
each requirement. The numbers above indicate that this empirical, “it has always
been done this way” approach does not work well and novel approaches need
to be applied. The learn—confirm-learn paradigm should be applied to all drug
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development programs, and modeling should follow the epistemology of model
appropriateness.

To expedite drug development while maintaining patient safety, new technolo-
gies and approaches to discovery, improved project and development approaches,
portfolio review, application of sound science, novel study structures, and phar-
macometrically guided development programs will need to emerge (49). The use
of pharmacometrics to define the dose exposure-response relationship has been
successful in improving drug development and pharmacotherapy. Of pivotal impor-
tance here is the learn—confirm-learn paradigm, which has been previously men-
tioned as one of the significant proposals in the evolution of pharmacometrics.

While pharmacometrics can be an important tool to expedite drug development,
it will also play a key role in determining the optimal dose at the time of approval
(new drug application approval). Going to market with the optimal dose is not as
straightforward as one may expect. A recent retrospective study noted that of 499
approved drugs between 1980 and 1999, one in five had a dosage change postap-
proval and 80% of these changes were a decrease in dose (50). This study concluded
that current drug development frequently does not capture completely the dose
information needed for safe pharmacotherapy. To address this, Cross et al. (50) sug-
gested that improved PK and PD information be gathered early in Phase 2 of drug
development. Finally, if drug doses are higher than need be during development
and adverse events are related to dose, this may result in an increased frequency of
adverse events resulting in an increased study dropout rate and therefore a decrease
in study power.

Finding the optimal dose is one of the primary goals of clinical development,
because changing a dose based on patient characteristics can easily be done. Sim-
plified dosing strategies are often sought by the drug sponsor because it results in
ease of use by the practitioner and the patient. Often a sponsor wants a “one dose
fits all” approach, which may not result in optimized dosing. Often several levels
of dose stratification result in surprisingly improved dosing strategies (e.g., elderly
versus young).

Novel study structures, such as the enrichment trial, fusion, and adaptive design
studies, will result in more efficient drug development. Enrichment studies attempt
to choose subjects who are likely to respond. Study groups can be “enriched” by
enrolling only subjects with response markers in a specific range or by enrolling
only subject types demonstrating a good response during a short pretest phase. In
enrichment trials the exposure relationship can be studied efficiently, but it is dif-
ficult to know how to extrapolate the quantitative relationship (exposure-response)
from an enrichment study to the general population.

The advantage of the adaptive design study is that it emphasizes study of the
drug in the region of useful doses, thus minimizing the number of subjects in regions
where the drug is not effective. For adaptive designs, an exposure-response model is
used and continuously updated as each subject’s response is observed. The updated
model is used to generate the probability of allocation of each new subject to a
treatment arm, favoring the allocation to those arms with the better accumulated
outcomes to date, with new subjects randomly allocated to arms on the basis of
these frequencies. A treatment arm is dropped from the remainder of the study
when its allocation probability drops below a specified threshold. The efficiency of
this study design is that as few subjects as necessary are studied to determine that
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one dose level is less useful than another. This approach can decrease study dura-
tion and numbers of subject in a clinical study. Adaptive design works best when
patient accrual rates are slow.

1.4.1 Preclinical Development

Drug discovery has focused on identifying the most potent lead compound for a
specified target. However, many drugs have failed due to poor pharmacokinetic
or biopharmaceutical properties such as a short half-life or poor bioavailability.
In today’s economic environment such failures can no longer be afforded. It has
become recognized that the “best drug” is one that balances potency, good phar-
macokinetic-biopharmaceutical properties, good pharmacodynamics, safety, and
low cost of manufacturing. It is important to deal with these issues prior to testing
in humans.

Optimized preclinical development can be a tremendous aid to the design of
early clinical studies. This optimization will include a thorough study of preclinical
safety by combining traditional toxicology studies with novel methods in toxicopro-
teomics, toxicogenomics, and metabolomics. These new “-omics” will lead to novel
biomarkers to predict toxicology and efficacy.

Preclinical development should play an important role in defining the exposure—
response (both efficacy and toxicity) relationships, which is a primary role for pre-
clinical pharmacometrics. It is essential to determine the absorption, distribution,
metabolism, and elimination during toxicokinetic studies in order to understand the
comparison of these across species. It has been demonstrated that by combining
preclinical exposure-response data (the steepness of the curve is important here),
preclinical pharmacokinetics, and novel approaches to scale up to humans (10, 51)
(see also Chapters 29 and 30), Phase 1 can be expedited. This can be done by choos-
ing higher first time in human doses or more rapid escalation (if the dose-response
curve is rather flat), resulting in fewer dosing cycles and thus less time, energy, and
finances expended on Phase 1, without sacrificing safety.

The development of physiologically and pathophysiologically based PM models
(PBPM models) during preclinical development deserves attention. These models
have the potential to provide accurate and nearly complete characterization of
the PK and concentration—effect relationship and quantification of the potency of
a drug (52-56). PBPM testing is best executed when the chemistry, biochemistry,
metabolism, and exposure response of the drug are well known in addition to the
relative physiology of the animals used in preclinical trials versus the parallel human
physiology. To utilize PBPM modeling one must define the physiology, patho-
physiology, biochemistry, and exposure-response relationships. To execute this
type of modeling, some of the physiological variables that often need to be defined
include blood flow to various organs such as liver, kidney, and effect organs. The
biochemical-pharmacological parameters of a model that often need to be defined
are K,, and V. for the various enzymes that catalyze the metabolism of the drug
and/or metabolites; tissue to blood concentration ratios; the distribution of the drug
and/or metabolites of interest, for example, protein binding; and the clearance for
various organs, for example, liver versus kidney. Exposure-response variables that
are associated with a positive response or an adverse event need to be identified
such as area under the concentration-time curve (AUC) or maximum concentra-
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tion (Cmax) Or nadir concentration (Cwin). The exposure response may be related to
the parent compound or to a metabolite and may be a concentration-based vari-
able in plasma or within a specific organ or tumor. Many of these parameters can
be estimated in vitro, such as enzyme kinetic parameters and protein binding, and
physiologic parameters can be obtained from the literature, such as blood flow rates
and organ volumes (56).

PBPM modeling enabled the evaluation of the pharmacometrics of capecitabine
for determination of the optimal dosing strategy in humans (56). Capecitabine is
a prodrug that is converted in three steps to 5-fluorouracil (5-FU). A multicom-
partmental model was developed to describe the pharmacometrics of capecitabine,
two metabolites, and 5-FU. The PBPM model is shown in Figure 1.1. The model
included five compartments, all in some way related to either efficacy or adverse
event. The parameters included in the model were K,, and V. for each of the
enzymes that catalyze capecitabine to 5-FU; tissue to blood ratio of capecitabine
and the metabolites in gastrointestinal (GI), liver, and tumor tissue; protein binding;
blood flow rate to liver, GI, and tumor tissue; and urinary clearance of unbound
capecitabine and its metabolites. Enzyme activities (liver, breast, and colorectal
tumors) and protein binding parameters were derived from in vitro experiments.
Physiologic parameters were obtained from the literature.

From the model, the 5-FU AUC values in breast and colorectal tumors were
simulated at doses from 829 to 1255mg/m* The 5-FU AUC in tumor increased
in a nonlinear manner relative to the increases in capecitabine dose. The model
indicated that, for capecitabine, the 5-FU exposure in the tumors was much greater
than in blood, resulting in a relatively low systemic exposure. The simulated blood

Capecitabine @ Dosc

Carboxylesterase [liver] i
5’-DFCR

Cytidine deaminase [liver, tumors] i
5’-DFUR

dThdPase [liver, tumors] i
5-FU
DPD [liver] L *

FBAL

* Intermediate metabolites: FUH,, FUPA

FIGURE 1.1 Metabolic pathway of capecitabine and its representation by a PK model.
Abbreviations: Tissues with high enzyme activites are shown in square brackets; 5-DFCR =
5’deoxy-5-flurocytidine; 5-DFUR = 5deoxy-5-flurouridine; dThdPase = thymidine phos-
phorylase; DPD = dihydropyrimidine dehydrogenase; FBAL = a-fluoro-f-alanine; FUH, =
dihydro-5-fluorouracil; FUPA = 5-fluoro-ureido-propionic acid. Dose = capecitabine dose
(mg); KA = first-order absorption rate constant (L/h); TLAG = lagtime (h); CL1 = appar-
ent 5-DFUR clearance (L/h); V1 = apparent 5-DFUR volume (L); CL2 = apparent 5-FU
clearance (L/h); V2 = apparent 5-FU volume (V); CL3 = apparent FBAL clearance (L/h); V3
= apparent FBAL volume (L). (From Blesch et al. (56); used with permission.)
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AUC values were consistent with clinical observations, indicating that the model
was able to describe known clinical data.

Once the model was developed, a murine xenograft was done and the PK,
blood, and tissue binding of capecitabine and its metabolites were measured in
vivo and integrated into the PBPM model. Large interspecies differences in tissue
distribution and metabolic activity were observed. The predicted blood and tissue
concentration profiles of 5-FU in the xenograft were compared to those in humans
after simulated oral administration of several levels of capecitabine doses. The 5-FU
AUCs in blood and xenograft tumor tissues were lower than those in humans for
all capecitabine doses administered. At their effective oral doses of capecitabine
(0.0944 mmol/kg, the clinical effective dose for humans; 0.44 mmol/kg, the effec-
tive dose for human cancer xenograft) similar 5-FU AUC values were observed
in humans and human cancer xenograft models. The results of this study strongly
supported the fact that a clinically effective dose can be extrapolated from xenograft
models to a corresponding effect dose in humans when thoughtful approaches to
the development and application of PBPM modeling is executed. Preclinical PM
modeling should be done on a real-time basis so that modeling has been completed
prior to planning and protocol development for Phase 1.

Biomarkers need to be identified and investigated in preclinical studies, especially
those that may predict future safety problems. Sometimes the lowering of blood
pressure or the prolongation of the corrected QT interval may give one a “heads
up” to potential toxicities or dose-related toxicities that may occur during clinical
development. When a thorough job is done during preclinical development, then
transition to clinical development can be done efficiently and with confidence.

1.4.2 Clinical Development

Clinical development continues with the application of the learn—confirm-learn
paradigm applied to drug development. Scale up to the first-time-in-human (FTIH)
study is best done by the application of sound PM methods as described by several
authors (10, 51, 56).

1.4.2.1 Phase 1 Studies

Phase 1 studies are executed to identify well tolerated doses and, in some cases, the
maximum tolerated dose, to study the single and multiple dose pharmacokinetics,
and to gain an initial knowledge of the exposure-response relationship. In addi-
tion to the above, one sometimes does Phase 1 studies to determine food effect
and gender on pharmacokinetics, drug-drug interactions, and pharmacokinetics in
special populations such as those with impaired renal or hepatic function or pedi-
atric or geriatric patients. Here one has learned about the dose—exposure-response
relationship from preclinical studies, has been guided by that preclinical knowledge,
and is confirming or revising what was learned. Both traditional two-stage and
population PK methods have been applied to Phase 1 model development with
good results. The population approach can provide valuable information that is
otherwise not available by the standard two-stage approach. Phase 1 studies are
most often conducted in healthy volunteers unless the anticipated toxicity of the
drug is severe or the drug is being applied to a life-threatening condition for which
no other treatment is available.
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In Phase 1, the approach to the FTTH study is critical in determining how much
time is expended in this part of development. The central issue here is: “What
should the first dose be and how rapidly does escalation occur?” If the very first
dose it too high, then an adverse event will occur; if it is too low, then unnecessary
time will be expended on low-dose testing. The application of preclinical findings
becomes important. A promising approach has been the combining of allometry and
mixed effect modeling with stochastic simulation to extrapolate preclinical models
and knowledge to humans (10, 51). Applying sound PM methods has been and
will be of great value in bringing efficiency to Phase 1 studies and for discovering
knowledge that was previously hidden in most Phase 1 data sets. In situations where
the maximum tolerated dose (MTD) is sought and defined in healthy volunteers,
it should be redefined in patients at some later stage of development if possible
(57, 58).

In addition to the FTIH studies, the effects of food, drug-drug interactions,
and special populations need to be studied. Coadminstration of drugs has been
demonstrated to both increase and decrease bioavailability of some agents with
the subsequent lack of efficacy or appearance of toxicity. Further details on the
design and conduct of food effect studies can be found in Chapter 29. Drug—drug
interaction studies have become increasingly important as the number of agents
prescribed to patients continues to increase. In one instance, a prominent drug was
withdrawn from the market after adverse events were reported, which were due
to interactions with other agents. It is important to obtain information for some
subpopulations, such as pediatric patients, those with renal impairment, and the
elderly, so that group-specific dosing guidelines can be developed. These special
studies can be executed with either traditional PK studies or more efficiently by
applying population techniques (39) (see Chapters 12 and 39). The need to study
subpopulations strongly supports implementing the learn—confirm-learn paradigm.
These issues are addressed in Chapter 14.

As the development process nears the end of Phase 1, it becomes crucial to
extract all knowledge from existing data. PM models should be developed, linking
drug exposure to pharmacodynamics (response). These models are applied, often
by stochastic simulation, to optimize the structure and designs of Phase 2 studies.
Real-time data collection is helpful here so that PM models may be estimated prior
to data set closure and then applied to evaluation of competing Phase 2a study
designs (39, 48, 59, 60). In this way, efficient and powerful Phase 2 programs can
be constructed.

1.4.2.2 Phase 2 Studies

Phase 2 studies should focus on both learning and confirming. Historically, Phase
2a has had as its primary goal to demonstrate “proof of concept” that the drug
is capable of being effective. It has been a common practice to administer the
maximum tolerated dose (MTD) in Phase 2a and this dose may be on the flat part
of the efficacy curve. If this is the case, lower doses may have been equally effec-
tive and less toxic. This dose is then carried forward into Phase 2b and eventually
Phase 3. In Phase 3 the drug will likely be demonstrated to be effective and without
significant adverse effects. The result will be NDA approval at the MTD. There-
fore, doses may be lowered because “a lower dose is quite adequate for treatment
and less expensive” in the opinion of the prescriber or “a lower safer dose may be
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needed.” The former may be enacted by practitioners without a change in labeling
and the latter would come at the directive of the FDA. The former can be quite
costly in terms of gross revenues for the manufacturer because an increase in cost
per unit after marketing is in general not a viable alternative.

Phase 2a should have learning as its primary focus to define the optimal dose,
thus improving the drug development process; while Phase 2b studies should focus
on confirming. Phase 2a is the time during development to learn about efficacy;
to confirm or modify what was learned in Phase 1 about safety, efficacy, and drug
effect on biomarkers; and to refine the dose-PK/PD-biomarkers—surrogate—out-
comes relationships.

The knowledge discovered in Phase 2a provides information for the later larger
trials that will be designed to prove efficacy. The sample sizes are small in Phase 2
and the patients are often the “healthiest” to minimize disease-related variability.
With this in mind, the Phase 2a study should be designed to give a first glimpse to
the following issues (48): (a) Does the drug work? (b) How does the drug work?
(c) What is the dose-response relationship? (d) Is there a difference in any of the
pharmacology in subgroups? A very valuable practice here is to power these studies
by setting zat a more liberal level of 0.10-0.20 when evaluating efficacy. Addressing
these issues will require paying attention to important design points such as number
and level of doses studied, timing of endpoint observations, number of subjects at
each dosing level, and duration of the study. Furthermore, a well designed Phase
2a trial with 150-200 subjects will usually provide more information and is less
costly than several smaller studies, even when these are later combined (48). A well
designed study here will usually depend on stochastic simulation of competing study
designs. In the end, many of the analyses will be population dose—pharmacokinetics/
pharmacodynamics—response models.

In Phase 2 the proof of concept study provides scientifically sound evidence sup-
porting the postulated effect of the new drug, where the effect may be the relevant
pharmacological action or a change in disease biomarkers, established surrogate
endpoints, or clinical outcomes that may be beneficial and/or toxic in nature. The
proof of concept is often used for go/no-go decisions and is therefore one of the
most critical steps in the drug development process.

Biomarkers play an important role in Phase 2 studies. These are covered in
Chapter 20 in detail. Biomarkers are most important in early efficacy and toxicity
studies when clinical endpoints take too long to become observable. After approval,
biomarkers may prove useful in monitoring the course of pharmacotherapy in indi-
vidual patients.

Prior to advancing to Phase 2b, all the knowledge hidden in the Phase 1 and
Phase 2a data ought to be discovered. Then clinical trial simulation (knowledge
creation) should be applied to construct Phase 2b.

In Phase 2b the knowledge discovered in all previous phases is confirmed, and
learning more about the drug in a larger patient population continues. In this phase
of development, strong supportive evidence is generated so that if an accelerated
approval is sought the knowledge and data generated could be enough to obviate
the need for two Phase 3 confirming studies. Attention should be given to informa-
tively designing Phase 2b studies to meet the confirming study objectives and allow
learning that will enhance a further characterization of the response surface. Phar-
macokinetics enables the refinement and further development of PK/PD models
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for dosage optimization (see Chapter 29). In Phase 2b sparse sampling is adequate;
this data may be concatenated with previously collected data. The concatenation
of these data with previously collected data and the estimation of individual PK or
PD parameters via post hoc Bayesian algorithms may be useful for explaining indi-
vidual treatment failures, toxicities, or positive responses to a drug. The PM models
estimated from all previous data and available at the end of Phase 2b are important
for constructing the pivotal Phase 3 program through knowledge creation.

1.4.2.3 Phase 3

Phase 3 is the pivotal phase for registration of a drug, where usually two large ran-
domized, controlled trials for establishing efficacy and safety are required. The PM
models from all previous studies are crucial for the determination of the dose(s),
patient population selection, study duration, number of patients, and so on for
Phase 3. In some cases a single pivotal study may be acceptable to the regulatory
agency provided there is good supportive science (which may be good PM models)
and confirmatory evidence supporting efficacy and safety (6, 7). In Phase 3 it is still
advisable to proceed with sparse collection of PK and PD variables. These data
can further support registration, may provide explanations for clinical trial success
or failure, and are inexpensive to obtain when compared with the cost of enrolling
patients.

1.4.2.4 Phase 4

Phase 4 studies are sometimes required by regulatory agencies. This can happen if
the regulatory agency is interested in further characterizing safety, exploring new
treatment indications, broadening label claims, exploring new drug combinations,
or examining dosing in some special subpopulations (e.g., pediatric patients).

1.5 PHARMACOMETRICS AND REGULATORY AGENCIES

The FDA has promoted the role of pharmacometrics in the drug approval process
through its approach to review of applications and by publishing its “guidances.”
The FDA has gained expertise in pharmacometrics from self-training within and
by recruitment of new highly skilled personnel. The value of pharmacometrics
continues to be evaluated at the FDA.

1.6 SUMMARY

Pharmacometrics is playing a major role in improving drug development and thera-
peutics. Improvements in drug development must come through creating and using
novel pathways to approval and application of sound scientific principles, partly by
applying mechanistic PM models. It is difficult to imagine a more efficient, power-
ful, and informative drug development process without the expansion of the role
of pharmacometrics.

Pharmacotherapy is also in great need of improved dosing strategy selection
for the avoidance of adverse events and the improvement in efficacy. This will
come through the development of pragmatic PM models that provide knowledge
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about drug behavior and how the drug can be optimally used. As more pragmatic
PM models are developed, optimal dosing strategies can be implemented. The
acceptance of pharmacometrics in drug use and development cannot, therefore, be
overemphasized.
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I CHAPTER 2

General Principles of Programming:
Computer and Statistical

SASTRY S. ISUKAPALLI and AMIT ROY

2.1 INTRODUCTION

Although pharmacometricians are often involved in the development, modification,
and use of computer code and programs, formal training in these skills is often
neglected. Computer programming skills are acquired in an ad hoc approach, in
which the minimal necessary knowledge to devise and code an algorithm is gained to
solve the scientific problem at hand. This is not unexpected, as the scientific problem
is of primary interest, and programming is simply a means to an end.

While the ad hoc approach to acquiring the necessary programming skills may
have been adequate in the past, the need for sophistication in computer program-
ming is increasing along with the complexity of computational problems being
addressed by pharmacometricians. The programming approach that may appear
to be expedient is often not the most efficient with respect to overall productivity.
Additional effort in the initial stages of a project can save time and improve accu-
racy and overall quality of code in subsequent stages.

Although there are usually multiple ways in which a scientific programming
problem can be addressed, adhering to standard programming approaches is an
important step in development of high-quality programs. Standardization facilitates
consistency and faster code reviews, and, more importantly, it helps a reviewer
identify commonly occurring mistakes.

The aim of this chapter is to provide an overview of generally applicable good
programming practices that could benefit pharmacometricians with regard to
improving the quality and transparency of code, as well as increasing overall pro-
ductivity. A set of techniques and practices is provided here that will be useful in
writing better computer programs. The involvement of pharmacometricians with
programming ranges from relatively simple code to complex, software develop-
ment projects. Likewise, programming skills of pharmacometricians range from
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novice to proficient, with proficiency usually gained from long experience. Rather
than attempt to cover all aspects of programming in detail, this chapter covers the
basics of writing good code and provides the reader with references to additional
resources that provide more detail on other aspects of programming and software
development.

2.2 PHARMACOMETRIC PROGRAMMING TASKS

Change is a dominant factor in scientific programming; hence, a scientific program
needs to be easily readable and easily modifiable. In this sense, a scientific computer
program is analogous to a scientific document, in that it should provide context,
be readable, and contain appropriate references. Furthermore, a well designed
program will often be useful far beyond what the original programmer intended,
because it will be easily readable, modifiable, and expandable. There is extensive
literature on basic programming techniques for scientists and engineers, but a
majority of the literature focusing on programming practices is over three decades
old (1-4). Many modern books dealing with programming are often focused on
highlighting the features of a language, or advanced techniques involving specific
programming platforms or approaches. Recently, there has been increased atten-
tion on good practices in software design (5, 6).

Pharmacometricians are often involved in programming tasks that span a wide
range of complexity, ranging from writing a few lines of code to writing scripts
and programs. These programming tasks can be classified according to a variety
of attributes as shown in Table 2.1. Moreover, pharmacometricians may also be
the domain experts on a software development team, providing guidance or input
to other programmers. Therefore, much of the programming tasks demanded of a
pharmacometric scientist involve writing not full programs from scratch but cus-
tomizations of existing code or minor modifications to existing modules in order to
create a program.

One example of systems where a model can be developed without much pro-
gramming is ADAPT II (7), which provides templates of Fortran subroutines. In
ADAPT II, the scientist is required to specify the model by adding code to exist-
ing templates of subroutines, in order to create a complete program. These sub-
routines can then be compiled and linked to other compiled code (object files) to
create a stand-alone executable. Another example is the specification of models in
NONMEM (8, 9). In NONMEM, the model is specified by a control file, which is
then processed, to produce Fortran code that is compiled and linked to other object
files to create an executable file. Although sophisticated programming skills are not
necessary to develop models using these programs, some of the concepts described
in this chapter will be useful in scripting even these relatively simple programs.

More extensive programming is often required in writing scripts or programs for
software packages such as S-Plus (10, 11) or Matlab (12, 13). These two modern
software packages are increasingly used by pharmacometricians: Matlab as a pro-
gramming environment for numerical simulations and S-Plus as a programming
environment for statistical data analysis.

It must be noted that there is a considerable overlap between the roles of these
two packages, and both provide strong graphical capabilities. Although the princi-



PHARMACOMETRIC PROGRAMMING TASKS 27

TABLE 2.1 Examples of Different Types of Classifications Found
in the Scientific Programming Space®

Programming experience
Scientific experience
Programming role

Problem/model
complexity
Randomness

Software project
complexity

Complexity of the tools

Programming approach

Program dependencies

Program interfaces

Documentation
complexity

Quality assurance level

Extensibility and
modularity

Novice to professional programmer

Key scientist to programming support staff

Use/apply others’ code, review code, develop new software
modules

Linear models, algebraic equations, ordinary and partial
differential equations

Deterministic models, simple error models, stochastic
systems

Individual, local group, distributed group, production versus
prototype versions

Spreadsheet based, predefined modules (e.g., NONMEM)

Procedural, object-oriented, visual, symbolic, pipeline-based,
event-based

External databases, external web services, other programs;
used as module in other programs

Command line, noninteractive, distributed, web-based,
embedded into other programs (spreadsheets)

Simple commenting/memos, detailed documentation
published as reports

Error checks, automated tests, reproducing results, internal/
external review

Single run models versus multiple run, cluster-based
simulations

“Though the space spans a wide range, the general programming principles are applicable throughout.

ples of good programming practice described in this chapter are generally applicable
for a variety of programming environments, they will be mainly illustrated using
examples of Matlab code. Although it is possible to use much of the functionality
of Matlab through the graphical user interface (GUI) or interactive commands,
the full features of these systems can be utilized only through scripts. Furthermore,
there are many advantages to writing scripts. First, scripts provide a record of the
commands executed and facilitate the reproducibility of the results. Second, scripts
provide a means for automating repetitive tasks and relieve the tedium and errors
that commonly occur in performing repetitive tasks with a GUI interface, especially
for computationally intensive tasks that have long waiting times between user input
steps. Third, once a set of scripts that accomplish common tasks have been devel-
oped for a given project, they can often be modified for subsequent projects with a
much smaller time investment.

Some pharmacometricians may be involved in complex software projects, such
as the development of software for ADMET (absorption, distribution, metabolism,
excretion, and toxicity) predictions or software tools that can be used by other sci-
entists. Examples of such tools include Perl-speaks-NONMEM (14) or Xpose (15).
Such tasks often require a diverse set of programming skills and strong program-
ming practices.
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2.3 OVERVIEW OF SCIENTIFIC PROGRAMMING METHODOLOGY

The programming paradigms applicable to scientific programming have often
followed the developments in the field of software engineering. Some of the
major paradigms applicable for scientific programming are briefly described in
Table 2.2.

2.3.1 Scientific Program Development Steps and General Guidelines

Introductory programming books often provide resources for learning a program-
ming language and programming syntax, for utilizing the development environ-
ment, and for compilation, execution, debugging, and optimizing of programs. All
these techniques are directly applicable to scientific programming. Furthermore,
there are a few additional points that a scientific programmer has to be aware of:
(a) change is the dominant factor in scientific programming; (b) quality assurance
is more important in scientific programming than in regular programming because
it is often difficult to distinguish program errors or bugs from bad science; and
(c) it is often very difficult to notice errors in the results.

A scientific program may start as a script for solving a specific problem and
may find use in related areas. Sometimes, the program finds use in a much broader
context. Some of the uses of the program can be (a) as one step in a sequence of
steps involving multiple programs (i.e., in the form of a “pipeline”), (b) as a script
that is invoked by another script, (c) as a function that is invoked by other functions
or scripts, (d) as a program wrapped around a Monte Carlo type simulation or a
parameter estimation module, (e) as a module wrapped around a graphical user

TABLE 2.2 Overview of Some of the Main Programming Paradigms
and Approaches Applicable to Scientific Programming

Procedural programming Modules or procedures are used as computational
blocks
Flow-driven programming Execution of code follows a well defined order
Event-driven programming Execution of code depends on the events such as user
clicks
Object-oriented programming Objects, interfaces, and methods are used as
computational blocks
Design patterns-based Utilizing standard solutions to software design
programming problems
Symbolic programming Calculations are performed in a symbolic manner (e.g.,
Maple)
Visual programming Assembling of “blocks” visually to form full programs
Pipeline programming Output of one program is used as input of another
(pipeline)
Collaborative programming Deals with advantages (and issues) of
multiprogrammer projects
Parallel/distributed Deals with utilization of multiple machines
programming

Web-based programming Programming focusing on web-based interfaces
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interface, (f) as a web-enabled program, and (g) as a program that is run multiple
times on a distributed machine cluster. Therefore, it is prudent to follow good
programming practices for all levels of programming tasks.

Schneider (16) recommends that a beginning programmer should concentrate
on semantics and program characteristics of a programming language, and not just
on the syntax. The concerns for programming style should be cultivated from the
very beginning, and care must be taken to avoid the common mistake of initially
writing beginning programs quickly with the idea of coming back later and then
refining them. This prevents bad coding habits from ever developing. The program-
mer should also become familiar with and follow formal processes for debugging,
program testing, and verification, as well as for documentation. Seeley (17) argues
that following programming practices is more productive than simply using the
latest tools.

Computer programming tasks in recent times have evolved from writing new
code and modules to correctly linking existing modules. The majority of effort
involved in solving a scientific programming problem is in identifying the appropri-
ate design for the solution, and in identifying relevant existing modules; the linking
of the modules becomes a simple task once the design is completed.

The following set of objectives with respect to the quality of scientific pro-
grams is recommended in this chapter: (a) program correctness, (b) reproducibility
of results, (¢) program readability (critical for code reviews), (d) maintainability
(bug fixing and minor changes to the program), (e) ease of configuration change
(e.g., parameter values and the constants used in the program), (f) portability and
extensibility (ability to run the program on different systems and ability to link
the program with other programs), and (g) performance (speed and disk space
requirements).

The general steps involved in the development of a scientific program are
common to programming tasks across a wide range of scales, from simple programs
developed by an individual to complex software development involving a large
group. However, implementation of individual steps varies depending on the type
of problem solved, the scale of the project, and the level of quality testing.

These main steps are:

1. Mathematical Formulation of the Scientific Problem. In this step the scientific
problem is formulated in mathematical terms and may involve reviewing the
literature, identifying the appropriate mathematical model, and identifying
sources for model parameter values.

2. Algorithm Design. Here, the problem has to be addressed from a compu-
tational framework viewpoint. Issues such as selection of a model solution
scheme (e.g., choice of a differential equation solver, choices of appropriate
modules for random number generation, etc.) are addressed at this stage.

3. Design and Documentation of the Computer Code. Here, the program is
designed in a top—down approach. Interactions between the main program
and individual modules are defined at this stage, along with brief documenta-
tion of the functionality of each module. At this stage, the program does not
have much code—only definitions of the functions and parameters. The body
of the functions is mostly empty at this stage. Changes to the program and the
interactions between the modules can easily be made at this stage.
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4. Design of Test Cases. Representative test cases are identified and documented
so that when the actual code is written, it can readily be tested. A brief review
of the test cases is also done at this stage.

5. Program Implementation. At this stage, a programmer can focus on individual
modules. Typically, a programmer should develop simple, “unit tests” for
individual modules at this stage. For modules with very few lines of code,
these unit tests may be very simple, but in general writing unit tests is a good
practice. As the complexity of the module increases (e.g., for the main module
of a pharmacokinetic model), unit tests could involve calculating steady-state
estimates with zero input doses (where many target tissue concentrations
should reach zero) and very high input doses. Also, simple mass-balance tests
can also be added at this stage. For example, when simulating systems involv-
ing multiple chemicals and reactions among them, an inert test chemical can
also be introduced into the simulation and simple mass balances can be used
for testing. The unit tests should be designed in a manner that facilitates easy
debugging, so by definition they should be simple.

6. Program Verification and Correction. At this stage, the programmer runs the
code, fixes errors, and runs the test cases. If there are subtle errors, an inter-
active debugger can be used for stepping through the program. For complex
simulations (e.g., those that run for several hours), programs can be monitored
through log statements.

7. Program Refinement and Optimization. At this stage, the program is refined
and optimized. Feature enhancements, performance improvements, improve-
ments in usability, and so on are common at this stage.

Adequate documentation and representative test cases are critical for developing
good scientific programs. The documentation can be in the form of references (e.g.,
for assumptions used, mathematical models, and references for parameter values).
Furthermore, when the programs are likely to be used by other scientists in a group,
following a set of guidelines used in the group (or developing a set of guidelines if
none exist) is a good step.

2.3.2 Tools for Numerical and Statistical Programming:
Matlab, S-Plus, and Open Source Alternatives

The principles and practices discussed here are general in nature and are applicable
to a wide range of scientific programming problems. They are also independent
of the programming language and approach used. Specific examples are provided
using Matlab, which is a programming environment for numerical simulations.
These examples can also be readily applied to S-Plus, a widely used programming
environment for statistical data analysis; however, it must be noted that there is a
considerable overlap between the functionality of Matlab and S-Plus.

Matlab is a high-level scientific scripting language and an integrated develop-
ment environment with interactive tools for visualization and several toolboxes
addressing different computing areas such as statistics, database connectivity, and
data mining. A pharmacometrician using Matlab may have to purchase Matlab
toolboxes, such as the Statistics Toolbox, in addition to the basic Matlab license;



OVERVIEW OF SCIENTIFIC PROGRAMMING METHODOLOGY 31

therefore, some individuals may find the cost of Matlab high. Fortunately, free,
open source alternatives to Matlab exist: Octave (www.octave.org) is a high-level
language, primarily intended for numerical computations, and Scilab (www.scilab.
org) is a scientific software package for numerical computations. Both Octave and
Scilab are similar to Matlab, and like Matlab, they both have large sets of toolboxes:
Octave toolboxes are available in the form of the octave-forge package, while
loosely coupled toolboxes are available for Scilab.

S-Plus is a statistical data programming language environment that follows the
approach of programming with data. It is scalable and handles massive data sets and
provides integrated tools for advanced analytics such as data mining. It also provides
some advanced modules relevant to pharmacometricians, for example +SeqTri-
al™ for designing, monitoring, and analyzing clinical trials using group sequential
methods. S-Plus license fees may also be an issue for some individuals. Free, open
source alternatives to S-Plus include R (www.r-project.org) and Omega project
(www . omegahat .org). R is very closely related to S-Plus, as both are based on the
S software from Bell Labs; in fact, a majority of R code can run unchanged in S-
Plus. A large set of modules for R are available at the Comprehensive R Archive
Network (CRAN, which is part of the R Project).

The use of free, open source tools is suggested for pharmacometricians who may
not have licenses for commercial software. However, the expenses associated with
the licenses may not be significant for many organizations. A pharmacometrican can
utilize the similarities between the proprietary and open source tools by developing
the skills using the free tools and, if needed, transition to the proprietary versions
later on.

One of the consequences of rapid advances in computer technology is that
users are not constrained by the programming language or environment they use.
In fact, many interfaces for invoking one language from another exist. For example,
S-Plus can operate with SAS (www.sas.com) data sets. The Omega Project pro-
vides an R-Matlab interface (currently, an early release status) that facilitates a
bidirectional interface between the R and Matlab languages that allows users of
either language to invoke functions in the other language using the syntax of their
choice. Matlab also provides interfaces to directly invoke functions in Fortran, C,
C++, and Java.

2.3.3 Scientific Programming Resources

An overview of computational problem solving techniques for beginners can be
found in Dijkstra (2) and Dromey (4). Several introductory textbooks on algo-
rithm design are available freely (18-21). Textbooks based on specific programming
environments and languages are useful in learning programming techniques—for
example, for Matlab (12, 13, 22) or S-Plus (11, 23). Some of the books for advanced
programming techniques are also freely available, for example, for object-oriented
design (24), parallel computing (25, 26), user interface design (27), and agile-
development (28).

One of the best ways to learn good programming skills is to read code from
experts in the field. Often, reading and understanding code from an experienced
programmer within an organization is also recommended, because it provides the
novice programmer familiarity with the coding styles and approaches used in the
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organization. Some of the approaches for beginning programmers include (a) repro-
ducing the results from a working program, as this involves becoming familiar with
the inputs and outputs used, getting familiar with the operating system and the pro-
gramming environment, executing the program, and optionally postprocessing of
the program outputs; (b) studying the code using “code browsers”; and (¢) running
the program in an interactive debugger and stepping through the code.

Programming productivity can be substantially increased by utilizing avail-
able toolkits, libraries, development environments, and relevant programming
approaches (29). Some of the productivity-improving features are available in inte-
grated systems such as Matlab and S-Plus. For other features, or for programming
in other languages, a programmer can use either specialized integrated development
environments (IDEs) or general purpose toolkits. Though a detailed discussion of
the available toolkits is beyond the scope of this chapter, some of the widely used
general purpose tools include text editors such as XEmacs (www.xemacs .org) and
ViM (www.vim.org); general purpose IDEs such as Eclipse (www.eclipse.org);
debugging tools such as the GNU Debugger, gdb (www.gnu.org/software/gdb);
code profiling tools such as the GNU Profiler, gprof (www.gnu.org/software/
binutils);code browsing and publishing tools such as Glimmer (gl immer . source-
forge.net); version control systems such as Concurrent Versions System (CVS)
(www.nongnu.org/cvs); (30); and defect tracking systems such as bugzilla (www.
bugzilla.org). Likewise, there is an large set of available libraries for general
purpose scientific and statistical programming (31-34). Language-dependent librar-
ies also exist, for example, Matlab libraries (35, 36) and S-Plus/R code (37).

A scientific programmer must be aware of available libraries and toolkits and
must be familiar with the general tools and approaches for effective computer
programming. An awareness of these tools and approaches will help in pursuing
the corresponding features in the programming language of choice. For example,
a Matlab programmer familiar with the notion of code browsing can either use
the general purpose tool Glimmer (glimmer.sourceforge.net) or search for the
feature in the Matlab Repository (35) and arrive at the Matlab code browsing tool,
M2HTML (38). An awareness of features and utilities one can realistically expect
in a programming environment will enable a programmer to seek similar features,
often successfully, even in totally new programming environments. As an example,
the Matlab IDE provides a majority of such features, and in some cases an auxiliary
tool may be needed.

1. Enhanced editing ability, consisting of syntax-based code coloring/highlight-
ing and automatic completion of variable names, facilitates faster coding as
well as early detection of simple syntax errors (e.g., unbalanced parentheses,
quotes). Some editors and IDEs also support an “outline mode” for navigat-
ing large blocks of code.

2. Code “beautifying” tools enhance code readability via automatic indentation
and line wrapping, as well as format code from diverse sources in a consistent
manner.

3. Code browsing tools provide effective navigation of large blocks of code span-
ning multiple files and thus are valuable for reviewing or studying programs
written by others. Often, the code browsing tools allow publishing of the code
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in a hyperlinked format (typically as a set of HTML files), which can be then
viewed through a regular browser. The M2HTML tool (38) provides this
functionality for Matlab.

4. Interactive debugging environments allow for tracing code execution, inspect-
ing variables, and arbitrarily setting breakpoints inside the program. These
allow for rapid location of errors. The Matlab IDE provides both a visual
debugger as well as a command line debugger via the “dbstop” command.

5. Code profiling tools provide a summary report on the code execution,
including time spent in different blocks of code, thus helping in optimizing
the code. The Matlab IDE provides a profiler tool as well as the “profile”
command.

6. Tools for periodic saving of program state provide value by (a) allowing an
interrupted program to restart from a prior valid state and (b) allowing the
user to monitor program progress by using the intermediate outputs. This is
especially useful in the context of computationally demanding simulations that
may run for days to weeks, because errors can be detected early by analyzing
the intermediate outputs, and erroneous model runs can be stopped. Likewise,
computational time is not lost when a correct model run is interrupted due
to unavoidable problems. The Matlab system provides a “save” command to
save the entire workspace or a set of objects.

7. Revision control tools allow easier management of source code changes in
a transparent and efficient manner. Using these tools, a programmer (or a
group of programmers) can easily track code changes, obtain a summary of
changes from one version to another, and revert to any version based on either
a version number or a date. Matlab provides an interface to several version
control systems, for example, via the “cvs” command for CVS (30) and the
“sourcesafe” command for SourceSafe (39).

2.4 GOOD PROGRAMMING PRACTICES: BASIC SYNTAX,
CODING CONVENTIONS, AND CONSTRUCTS

The practices listed here are applicable to all aspects of scientific programming,
including small segments of code or complete scripts, as well as modules that form
a large software project.

2.4.1 Use Meaningful Names for Program Variables

Giving meaningful names to program variables is one of the simplest ways of
enhancing the readability of code. The names of variables in legacy code are often
cryptic, because the length of variable names was constrained in older programming
languages (a maximum of 8 characters is allowed in Fortran 77). These constraints
have been removed for all practical purposes in most of the current programming
languages (such as Fortran 90, C, Java, Matlab, and S-Plus), which allow variable
names that can be as long as 32 or even 256 characters.

Very short names (such as “t” to indicate simulation time) are easy to type, but
(a) they are not informative about the nature and context of the variable, and (b)
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(A) Well Named and Formatted Code
% Initialize compartment concentrations to zero

FOR iCmpt = 1:N_COMPARTMENTS
FOR jChem = 1:N CHEMICALS
% Initialize concentration of chemical j in compartment i
conc_cmpt (iCmpt, jChem) = 0;
END % End of jChem loop
END % End of iCmpt loop

(B) Poorly Named and Formatted Code
FOR i = 1:N

FOR j = 1:M

c(ii, 33)
END

END

0;

FIGURE 2.1 Code Block 1—impact of variable naming and code formatting on program
readability.

they are likely to be misinterpreted or inadvertently redefined in another part of the
program. It is preferable to use a meaningful name such as “sim_time” (note that
in this scenario, the variable name “time” may not be appropriate because it may
conflict with a system command, a reserved word, or an inbuilt function). Likewise,
very long variable names should also be avoided, because (a) they are tedious to
type and can lead to inaccuracies and lengthy statements, and (b) it is difficult to
distinguish between long variable names that differ by only a few characters at the
trailing part.

Short variable names are convenient and appropriate to hold temporary or inter-
mediate values, such as counters in conditional loops. However, it is recommended
that meaningful names be used even for counters. The code in Code Block 1 (Figure
2.1) provides examples of descriptive names for constants, variables, and temporary
counters in conditional loops. Although this is a trivial example, the benefits of
using descriptive counter variable names increase as the number of statements and
nesting levels in the conditional block increase.

2.4.2 Use Consistent Naming Conventions for Program Variables

Many modern programming languages are also case-sensitive, and this feature can
be used to advantage in communicating the type and context of a variable name.
A convention often followed by Matlab programmers is to use all uppercase names
for program constants. The case of a variable name can also be used to distinguish
the context of the variable (local versus global) and variable type (scalar or vector
versus matrix). In statistical programming, case is often used to distinguish between
data set and column/variable names, thereby improving program readability. Some
generally used naming conventions are presented in Refs. 40-42.

Consistent naming of variables is important for understanding the context of
the variable and for writing reusable code. Some commonly used naming conven-
tions are:
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1. Use all uppercase names for constants and global variables.

2. Prefix global variables with an identifier, for example, GL_NUM_
COMPARTMENTS.

3. Use readable variable names either via underscores (num_compartments) or
via mixed case naming (NumCompartments).

A related issue is the definition and initialization of constants. A commonly
followed approach is to place definitions of constants together at the top of a unit
of code (script or a module), so that the constants can readily be located. This
also enables the programmer to identify at a glance the constants that have been
defined.

2.4.3 Follow Organizational Conventions for Code Formatting

Proper formatting of code, such as indentation, wrapping of long lines, and splitting
long formulas into shorter formulas, significantly enhances the readability of code,
similar to a well formatted document. It also makes it easy to comment out or delete
blocks of code. Many programming environments and modern, general purpose
text editors have features for “beautifying the code.” This includes appropriate
automatic indentations and line wrapping (e.g., a two-space indentation for each
nested conditional block). A consistent format not only helps in the readability but
also highlights potential problems (e.g., a spurious “END” statement will alter the
indentation in a visible manner).

2.4.4 Provide and Maintain Informative Comments

Providing comments that explain the purpose and logic of blocks of code is one of
the most simple and effective ways of improving program readability. The main
variables used should be commented along with major processing blocks (e.g., com-
ments of the type “initializing the system” or “calculating derivatives”). Likewise,
the end of loop constructs (“for,” “while,” and “if-then-else” blocks) should have a
short, informative comment that mentions the conditional block that is being ended.
This facilitates readability, especially for code that has several nested conditional
statements. The major exception is for loops that consist of just one or two state-
ments inside.

In general, comments should provide the context of a statement or a block
of statements (i.e., why something is done) instead of just a literal translation of
the statements themselves. For example, while commenting a break statement,
indicating both the innermost loop (e.g., “exiting i_comp compartment loop”)
and the significance of the statement (e.g., “convergence reached” or “completed
all dose inputs”) is more informative than simply stating “exiting compartment
loop.”

It is very important to ensure that the comments and code are always consistent,
as wrong comments can cause more harm than no comments. However, it is often
the case that a good comment turns into a bad one because of changes in the code
without updates to the comment. A good practice is to review and update comments
whenever the code is changed significantly.
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2.4.5 Avoid Segments of Commented Out Code

When extensive changes are to be made to an existing program, some programmers
often tend to comment out working code and add new code, with the idea that
the changes can easily be reversed. However, the commented out code often ends
up staying in the program long after the code changes are finalized. Furthermore,
programmers may add additional comments to describe why the code block was
commented. This can lead to even more lines of difficult to follow programs clut-
tered with noninformative lines of text. The preferred method of revising code is
to employ version control utilities such as CVS (30), which enable programmers
to keep track of changes while maintaining the coherence of the code. The use of
version control is briefly mentioned in Section 2.10.4.

2.4.6 Provide Documentation and References Along with the Code

It is essential to provide references for additional documentation when the code
requires extensive documentation (e.g., statements involving a complex formula).
This could also be in the form of an electronic document provided along with the
code. Relying solely on comments to provide details can lead to comments over-
shadowing the code. Furthermore, text comments are limited in the type of infor-
mation they can convey. For example, the documentation of a pharmacokinetic
model can include the model schematic (a graphic), along with the model equations
(mathematical objects), and additional references; such a document is significantly
more useful than large chunks of text-based comments in the code.

2.5 GOOD PROGRAMMING PRACTICES:
RELEVANT MATHEMATICAL CONCEPTS

Some of the basic mathematical requisites for scientific programming include under-
standing of (a) rules of operator precedence, (b) machine precision, (c) equality
and inequality issues, and (d) potential for overflow/underflow of numbers. Related
concepts such as relative and absolute differences are also important for scientific
programming.

2.5.1 Operator Precedence

Operator precedence deals with the order in which different operations in a math-
ematical expression are evaluated. For example, in most programming languages
multiplication has a higher precedence than addition. Understanding operator pre-
cedence is especially important when writing complex mathematical expressions,
because it is a source for subtle errors. Using parentheses for grouping terms is a
good technique, as it improves readability as well as reduces potential errors that
creep in due to operator precedence issues.

2.5.2 Machine Precision Issues

These issues arise due to limitations in machine representation of numbers and
fractions in terms of a limited number of computer bits (e.g., a decimal fraction
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1. X = 0.00000000000000000001; % x correctly set to 1E-20
2. y =5 - 4. 9999999999999999; % y (1lE-16) set to zero

3. wl = (x ==vy); % evaluates to zero (false); Potential Error
4. w2 = (x < vy); % evaluates to zero (false); Definite Error
5. w3 = (x >vVy); % evaluates to one (true); Definite Error

6. wi& =y * 1E16; % evaluates to zero (actual value 1); Error
7. w5 = x/y; % evaluates to inf (actual value 1E-4); Error

8. w6 = y/y; % evaluates to NaN (actual value 1); Error

9. cl = (abs(x-y) < eps); % true; Equal within precision limit
10. (x < eps & y < eps); % true, so avoid inequality comparisons

FIGURE 2.2 Code Block 2—a Matlab example highlighting common machine precision
issues encountered.

such as 1/10 cannot be represented adequately with a limited number of bits in
binary format'). Therefore, very small errors (“round-off” errors) are introduced,
and these can sometimes accumulate over the course of a long simulation. In some
programming languages, the problem is exacerbated by the choice of the variable
type: for example, in Fortran, a “real” number is less precise than a “double preci-
sion” number. Therefore, depending on the problem and the choice of the variable
type, the numerical errors can vary significantly. In scientific programming, such
errors are sometimes encountered in the solution of systems of differential equa-
tions that are solved by numerical integration over a large number of time steps,
with the accuracy of the solution highly dependent on the integration time step size
and the duration of the simulation.

2.5.3 Egquality and Inequality Issues

These issues arise due to the limitations imposed by machine precision. Very often,
two quantities that should be identical will not pass the equality test because of
the different ways in which they are computed. Sometime inequalities are also
impacted. As an example, the Matlab statements in Code Block 2 (Figure 2.2) will
produce unexpected errors (the statements were tested on Matlab Version 7.01;
interactive; default setting of single precision).

When Statements 1 and 2 are used to calculate the values of two small numbers,

[T [Tt [T L)

x” and “y”, one of them (“y”) is incorrectly rounded off to zero, whereas the

[T L)

smaller of the two (“x”) still retains nonzero value. Thereafter, all subsequent
comparisons of “x” and “y” lead to unexpected and incorrect results. For example,
the results of comparison in Statements 4 and 5 are definitely wrong, whereas the
comparison in Statement 3 may or may not lead to an incorrect conclusion. There
are some techniques to overcome these issues. For example, Matlab provides a vari-
able “eps” that indicates the smallest floating point increment possible in a given
precision. Statements 9 and 10 use “eps” in the context of comparing the difference
of two numbers, as well as in deciding whether inequality comparisons can be made,
and produce more predictable results.

'For example, 0.1 represented in binary becomes 0.00011001100110011 . . . with the 0011 recurring; in
general, only fractional numbers that can be represented in the form p/g, where g is an integer power
of 2, can be expressed exactly, with a finite number of bits.
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2.5.4 Overflow/Underflow Problems

These problems can sometimes arise in numerical calculations due to limitations of
machine representation of very large or very small numbers. Overflow errors occur
when the number to be represented is larger than what the computer can handle;
thus, the number gets assigned a value of “Inf” (infinity). Likewise, underflow
errors occur when the number to be represented is smaller than what the computer
can handle; thus, the number gets rounded to zero. These issues lead to functions
returning the values of “NaN” (Not a Number, or invalid number), for example,
when two large numbers (infinity) are subtracted, or when two very small numbers
(zero) are divided by each other (see Statements 6 to 8). Such issues may appear
pedantic, but in scientific programming, very small numbers often result due to the
small time steps in numerical solution of differential equations and are sensitive to
the choice of units used to represent different quantities in the simulation.

2.5.5 Absolute and Relative Differences

These need to be used appropriately when the convergence of numerical simula-
tions is to be evaluated, for example, to estimate steady-state values or to estimate
the quality of a numerical approximation. This often involves a combination of rela-
tive and absolute difference criteria. Absolute difference refers to the magnitude of
the difference between two values, whereas relative difference deals with the ratio
of the difference to the actual value. When the values to be compared are very
small (but substantially more than the machine precision), absolute differences are
recommended to judge convergence. Likewise, when the values are very large, rela-
tive differences are useful in evaluating convergence. It must be noted that there are
several exceptions to these recommendations, and the choice of the criteria depends
on the problem at hand. A scheme that employs both the absolute and relative error
criteria will provide a more robust means for evaluating convergence.

2.6  GOOD PROGRAMMING PRACTICES:
REDUCING PROGRAMMING ERRORS

2.6.1 Explicitly Check for Errors Such as Division by Zero

Many programming languages handle numerical exceptions such as division by zero
or square root of a negative number by aborting the program execution. However,
some modern languages such as Matlab allow for computation to proceed despite
such errors (see discussion on NaN and Inf in Section 2.5.4). Depending on the
simulation and the programming environment setting, the following scenarios are
possible: (a) the program aborts execution with an error indicating file name and
line number of the offending code; this is common in simple programs written in C
or Java; (b) the program continues execution and some of the variables will have
infinite or nonnumber values; this happens often in Matlab and Fortran; (c) the
program suspends execution at the first instance of an exceptional situation; this
is common in interactive debugging environments when global error checks are
enforced (e.g., in Matlab, one can set the option to interrupt when a NaN or Inf is
encountered using the command “dbstop if naninf”); (d) the module makes a log
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entry for the error condition and skips to the next iteration of the function program;
this is common when multiple simulations need to be performed in one program,
and erroneous simulations can be identified from the log files.

2.6.2 Avoid False Robustness in the Programs

Some programs are designed to be robust despite minor errors in the inputs and
program state. Examples include web browsers, which are designed to do the best
possible job in spite of errors. Such an approach should be avoided in scientific
programming, because the robustness of the program comes at a cost: correctness.
In a scientific program, it is often advisable for the program to fail noticeably when
spurious conditions are encountered. For example, in Code Block 3 (Figure 2.3),
the code in lines 1-3 does not perform any error check, the code in lines 5-8 “com-
pensates” for errors in another module, whereas the code in lines 10-14 alerts the
user when there is an error in the program. Though the right approach for error
handling and alerting is often dependent on the situation, code that alerts when
spurious conditions are encountered is preferable, unless otherwise dictated by the
situation.

One practice for easy error detection is initializing variables to NaNs at the time
of definition (or when error conditions are encountered). At any stage of computa-
tion, one can see if there are any invalid computations that are performed. Another
practice for reducing errors is through explicit checks of function arguments. This is
very essential, for example, in web-based business programs, where fraud is of high
concern. In scientific programs, accuracy is of high concern, especially when subtle
errors can result in seemingly reasonable, but wrong answers.

2.6.3 Check for Unused Variables

In languages such as Java and C, it is not possible to use a variable without declar-
ing a type for it. So, the Matlab example in Figure 2.4 would not run properly
in those languages. In this code, there is an error on line 11 in Code Block 4, a

1. % A code block with no error checking

2. conc = calculate tissue concentration(paraml, param2) ;

3. return conc; % returns conc values without error checks

4.

5. % A falsely robust code block

6. conc = calculate tissue concentration(paraml, param2) ;

7. 1f (conc < 0), conc = 0; end % fix negative concentrations
8. return conc; % compensates for errors in another module

9.
10. % A fragile, but more correct code block
11. conc = calculate tissue concentration(paraml, param2) ;
12. if (conc < 0), error(’'Negative concentration encountered’) ;

end

13. % Above check raises an alert when an error is encountered
14. return conc;

FIGURE 2.3 Code Block 3—the role of appropriate error checks in scientific programs.
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function result = get blood air PC(scenario)

Returns Blood-Air Partition Coefficient based on scenario
Inputs: scenario: 1 => default, 2 => updated

Outputs: blood air PC (Partition Coefficient)

References: J. Doe, J.Pharm 2004, X. Y. Doe, J. Pharm., 2005
Author: An Employee, Organization, Inc.
PC_BLOOD AIR DEFAULT = 0.2; % J. Doe, J. Pharm., 2004
PC_BLOOD_AIR UPDATED = 0.22; % X. Zmith, J. Pharm., 2005

o\°

o\°

o\

o\
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9. PC blood air = PC_BLOOD AIR DEFAULT;
10. if (scenario == 2)

11. PC_blod_air = PC_BLOOD AIR UPDATED;
12. end

13. result = PC blood air; % return PC for blood compartment

°

% Output from mlint

mlint(‘get_blood_air_PC")

L 11 (C 3-13): The value assigned here to variable 'PC_blod_air' is never used
FIGURE 24 Code Block 4—subtle errors in function definitions that can be identified
only via auxiliary tools.

misspelled variable name. Some programming languages such as Java and C will
produce compilation errors with similar code (compilation errors in which the
variable PC_blod_air is not declared). However, this set of statements is valid in
languages such as Matlab, and, therefore, no error will be reported. As a conse-
quence of the error, the program will always use the default value. Furthermore,
if the error is minor (e.g., the values of default and updated partition coefficients
differ very little), the error will become very difficult to track. Fortunately, there
are tools to identify such errors. For example, Matlab has a command for com-
prehensive code checking called “mlint.” It must be noted that mlint is ideal for
analyzing function files and is not as effective with script files in dealing with unused
variables, since the purpose of a script may be just to initialize a set of variables to
be used by another script. Code Block 4 also shows the output of mlint used on the
code in lines 1-13. Matlab also provides “lint” report generation on all the files in
a folder through a GUI. The report for the entire folder can be saved as an html
file and easily reviewed.

2.6.4 Use “Catch-All” Statement Blocks in Conditional Constructs

When using a conditional statement such as “if-then-else” or “switch” statements,
it is prudent to use a “catch-all” statement that addresses the unhandled cases.
This may not seem important in the beginning, but it increases the robustness of
the program when the code is used for different cases, because the program alerts
the user when such errors occur. For example, when the statements in Code Block
5 (Figure 2.5) are executed for the set of chemicals handled by the program, the
partition coefficient is assigned properly. However, if the “otherwise” portion of
the “switch” statement is not used, the program would have produced silent errors
when the code is used for new chemicals, by leaving the partition coefficient set to
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switch (chemical name)
case {’cl2’, ’'chcl3’, ’‘chloroform’, ‘ccld’, ‘tce’}
pc = estimate pc voc (chemical) ;
% partition coefficients of volatile organics

case {'hg’, ’'cd’, ’'as’, 'As’}
pc = estimate pc voc (metal); % partition coefficients of metals
otherwise

error (['Chemical ’ chemical name ’ is not yet supported’]);
end

o\

The corresponding “if” statement will have several lines of
% equality comparisons of the type

if (chemical name == ’cl2’ | chemical name == ‘chcl3’ |
chemical name == ’‘chloroform’)

FIGURE 2.5 Code Block 5—use of the appropriate structured programming construct:
“switch” versus “if.”

an unknown value. By including a “catch-all” statement, a noticeable error will be
triggered upfront whenever the code is used for chemicals it does not handle.

2.7 GOOD PROGRAMMING PRACTICES: BASICS OF
SCRIPT AND PROGRAM DESIGN

2.7.1 Avoid Monolithic Blocks of Code

In many programming languages, it is possible to write large, monolithic blocks of
code. However, it is cumbersome to maintain and debug large blocks of code that
require scrolling through several screens to be viewed in their entirety. One com-
monly used alternative to writing large blocks of code is to split large code blocks
into multiple files, with each file tested individually and linked as a sequence of
command files (also known as “including the files”). Though programs written in
this fashion may appear to be “modular,” they are in fact similar to single files with
one large block of code.

2.7.2 Write Modular Code

The main aspect of modular code is that changes in one module do not alter the
behavior of other modules. However, when multiple script files are included in
the same module, they share the same “name space” (i.e., they all can access the
same set of program variables). Thus, a minor change in one file, such as assigning
a value to a variable, can have unforeseen consequences in other files. However,
when modular code (via subroutines and functions) is used, changes internal to the
function will have no consequences upon other functions. As long as the function
parameters and return values are consistent, significant changes to the internals
of the functions can be made, without affecting other modules. This reduces the
chances of subtle, intractable errors.
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In order to write maintainable code, programmers should break larger pieces of
code into shorter functions (subroutines and procedures in some languages) that
are small enough to be understood easily, have a well defined set of input argu-
ments, and return corresponding outputs. This approach, though obvious, needs
to be emphasized as it makes isolated small pieces of code easier to understand
without having to understand the whole program at once. Likewise, once the small
functions are tested, they can be assumed to work unchanged despite changes in
other, unrelated functions.

Modularization via functions enables code reuse and avoids repetition of code.
This approach is also superior to that of cut-and-paste of existing code into new
code. For example, if there is an existing pharmacokinetic model for Drug A, and a
similar model is needed for Drug B, it is preferable to modularize common functions
and rewrite just the components that need to be changed, such as the initialization
of the parameters. Otherwise, the programmer will inherit an additional task of
keeping the two programs synchronized. When the code is modularized, bug fixes
or improvements to a module are instantly reflected in all the programs that use that
module. Modularization can significantly increase productivity, because modules
that are used frequently are likely to be tested more often and improved in terms
of accuracy and performance.

When modularization is carried to an extreme, it can lead to overengineering and
also unreadable code. Programmers should exercise their judgment in deciding what
level of modularization is appropriate for a specific set of problems.

2.7.3 Utilize Existing Modules and Libraries to the Fullest

A corollary to using modular programming is the use of modules developed by
others. Most modern computer programming languages sport a wide range of
modules in the form of libraries or toolboxes for solving a variety of problems.
The type of problems they solve varies in scope: from sorting, searching, solution
of linear equations or differential equations, random number generation, and plot-
ting, among many others. Thus, a significant amount of computer programming
can benefit from the “component model of programming,” where the problem is
often posed as finding appropriate modules from an existing toolbox and linking
them to solve a specific problem. Despite the availability of well tested standard
modules, some programmers tend to write new code to solve standard problems:
for example, a module to solve an ordinary differential equation or a module to
generate random numbers. It is recommended to perform a simple search to iden-
tify any existing modules before embarking on writing new ones, thus avoiding
the problem of “reinventing the wheel.” The main exception to this practice is the
situation where license restrictions or organization policies necessitate developing
new code to solve a standard problem.

2.7.4 Use Structured Programming

Structured programming is an approach in which a program consists of subsections,
each with a single point of entry. Structured programming facilitates a “top—down”
approach to program design, whereby the large scale structure of a program is
mapped out in terms of smaller operations, which can be independently imple-
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mented and tested. Structural programming is achieved by using hierarchical con-
ditional constructs, such as “if-then-else,” “switch,” “for,” and “while” for creating
conditional branches of execution. This approach shuns the indiscriminate use of
“goto” statements, which allows program control to jump to any line in the code
identified by a line number or label and can make it difficult to follow the logic of
a program.

The “goto” statement is sometimes used to direct program control when a
program exception or error occurs. Alternative constructs that can be used in
structured programming include (a) the “return” statement, which returns control
to the end of the current function; (b) the “break” statement, which terminates the
inner most loop; and (¢) the “continue” statement, which returns to the next itera-
tion of the innermost loop.

2.7.5 Use Appropriate Structured Programming Constructs

The choice of the structured programming construct used should convey the logic
involved in a given operation. This is important because most of the constructs can
be expressed in terms of other constructs: for example, a “for” loop can be written
as either a “while” or “unless” loop. Some of the guidelines for the appropriate
constructs to use are as follows:

Use “for” construct when the number of loop iterations is known beforehand.
Likewise, use “while” construct when the number of loop iterations is not
known beforehand. Cases include reading data from a file or from user input
line by line until the end is encountered. Though this can be achieved by using
a “for” loop with a conditional “break” statement, the “while” statement
conveys the logic clearly. Some special cases require using “do-while” (when
the first statement has to be executed before the conditional).

Use “switch” construct instead of multiple, nested “if-then-else” statements,
especially when all the conditionals are treated at the same level. The resulting
code is usually easier to read and follow. However, when different types of
conditionals are tested, multiple, nested “if-then-else” constructs are prefer-
able. An example for using “switch” versus “if” statements is shown in Code
Block 5 (Figure 2.5).

2.7.6 Use Data Structures Appropriate to the
Problem Under Consideration

A programmer should select the appropriate program types that properly define
the computational problem. For example, if the number of compartments is a user-
defined construct (i.e., the program is designed for solving systems of equations
for a multicompartment PBPK model), the number of compartments becomes a
parameter. However, if a PBPK model is for a specific implementation, a constant
should be used to describe the number of compartments. Likewise, depending on
the situation, a matrix may be more appropriate than a set of one-dimensional
arrays. Similar choices have to be made with respect to selecting complex data
structures versus default types provided by the programming language.
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2.8 GOOD PROGRAMMING PRACTICES:
MODULAR CODE DESIGN FOR FUNCTIONS

2.8.1 Restrict Use of Global Variables

Global variables are variables that are active at all stages of the code, while the
scope of local variables is restricted to the function in which they are defined.
Global variables should be used with care to avoid inadvertently setting a value in
one module of code that could affect computations in another module. Use local
variables as far as possible. Global variables are most appropriately used to define
constants that do not change during the execution of the program (e.g., molecular
weight of a chemical). They are a convenient means of passing values through more
than one level of module hierarchy. An example with Matlab code for a differential
equation model is given in Code Block 6 (Figure 2.6), in which global variables are
used to pass values to the derivative function (which is not called directly from the
code block where the constants are defined). The constants could have been defined
in the derivative code, but defining them earlier is more efficient as the statements
in the derivative code are executed repeatedly.

2.8.2 Pass Information Through Function Parameters and
Not Through Global Variables

One of the advantages of global variables is that they are accessible from all com-
ponents of the program. This also means that keeping track of the global variables
becomes very difficult. A change in the values of a global variable in one function
may trigger a difficult to notice change in another function. Therefore, passing
information via function parameters is much more robust than passing information

)
= solveMyODE(’'f’, x0, x1, y0, dt, epsl, 23);
% Above function call is not informative
(11)
y = solveMyODE (struct (’func’, 'f’, ’‘xinit’, x0, ’xend’, x1,
‘yinit’, y0, ‘tstep’, dt, ...
'relerror’, epsl, ’'ODEMethod’, 23));
(iii)
config.function = "f’;

config.xinit = x0;

config.xend = x1;

config.tstep = dt;

config.relerror = epsl;

% ODE (Ordinary Differential Equation) solver option
config.ODEMethod = 23;

y = s0lveMyODE (config); % passing config object to ODE solver
config.ODEMethod = 13; change just the ODE solver

y = solveMyODE (config); % invocation with modified options

o\°

FIGURE 2.6 Code Block 6—passing large sets of function parameters through custom
data structures.
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through global variables. This approach also allows for easier definition of test cases,
since the only changes in the function state will be caused by changes in function
parameters.

The main exception to this practice is when the same information needs to be
passed through a nested set of functions. In PBPK modeling in Matlab, such a sce-
nario is often encountered when a main program invokes a subprogram that invokes
a differential equation solver.

2.8.3 Avoid Too Few or Too Many Function Parameters

A function with too few parameters is usually less flexible. However, a function
with too many parameters is a good candidate for further modularization into
multiple functions. The extra inertia in having to provide a large set of parameters
to invoke a function will lead to an underused function; often, a programmer will
use a simpler alternative.

2.8.4 Write Functions Using a Variable Number of
Arguments with Reasonable Defaults

Many programming languages support defining functions that operate with a vari-
able number of arguments, with a common example being the “print” function. A
function that accepts a variable number of arguments along with reasonable defaults
can provide great flexibility and functionality. The function will be easy to invoke,
because it does not require a large set of parameters; but at the same time, it will be
flexible enough for advanced users of the function. Matlab provides the feature of
variable number of function arguments and function outputs through the constructs
“varargin” and “varargout.” This feature is often encountered in Matlab in the
solution of differential equations: a novice can use the solver with default options
and still get a reasonable solution, whereas an expert can tune the function perfor-
mance by providing advanced options. Of course, there is an additional overhead
involved in writing functions that handle a variable number of parameters, including
checking whether required parameters are provided, what optional parameters are
provided, and what parameters need to be set to default values. However, the code
for handling such tasks is similar from function to function, and a well designed,
flexible function usually is worth the additional code required.

2.8.5 Use “Try-Catch” Type Exception Handling

One of the most powerful features of modern programming languages is exception
handling. However, it is significantly underused in scientific programming. Blocks
of code that use exception handling consist of two parts—the normal program (also
called as the “try” block) and the errors/exception block (also called as the “catch”
block). The main advantage is that the exceptional conditions can be handled in
one location without “cluttering” the code for main program flow. The exceptions
from the lower level functions (e.g., a square root function) can be propagated
to the higher level invoking function, which can then handle the error condition
appropriately. Thus, the writer of the lower level function need not focus on how
to handle the error condition and can simply focus on alerting the caller function
about the error conditions. This enhances the modularization of the code as well
as allows more code reuse.
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2.8.6 Use Custom Data Structures with a Hierarchical Design

Most modern programming languages support user-defined, complex data structures
and objects, and that feature can be utilized in writing clearer code. For example, in
Matlab, instead of using variables such as PBPK_Human chloroform Vmax, PBPK_
Human_chloroform_Km and PBPK_Human_chloroform_PC_blood_lung, One can
write compact, easily readable code, by defining the variables as constituents of a
custom data structure, as follows: pbpk.human.chloroform.vmax, pbpk.human.
choloroform.Km and pbpk.chloroform.PC.blood_lung. Therefore, the param-
eters can be used in the most appropriate manner depending on the context. For
example, in case of a pharmacokinetic module for chloroform, the parameters can
be passed as param = pbpk.human.choloroform.

Now, the parameters V. and K,,, can be accessed as param. V., and param. Km.
Likewise, all the partition coefficients can be accessed as param.pc. This approach
provides flexibility in parameter assignment and parameter passing and improves
readability.

2.8.7 Use Informative, Custom Data Structures for
Function Parameter Passing

A function that takes a structure that has informative field names is significantly more
readable than a function that takes a large number of parameters. For example, in
Code Block 6 (Figure 2.6), a function call of the form shown in (i) is typically used
and is not informative. However, by using data structures for parameter passing,
as in (ii), the context of the parameters becomes clearer. The parameter passing
approach in (iii) is similar to that used in (ii), with the added advantage that the data
structures for parameter passing can also be reused. Functions designed in such a
manner can also be easily extended to include more parameters without requiring
changes in the intermediate calling functions; that is, changes in a function invoked
via intermediate functions will not impact the intermediate functions.

2.9 GOOD PROGRAMMING PRACTICES: WRITING EXTENSIBLE AND
NONINTERACTIVE PROGRAMS

Often, a numerical model has to be run for different combinations of parameter
values. Examples include performing a large number of Monte Carlo simulations
with a model to estimate the range of uncertainties in model outputs or distribu-
tions of outputs for a study population. Likewise, parameter estimation techniques,
such as the Bayesian Markov chain Monte Carlo (MCMC) (43, 44) technique,
also involve running the full model with varying sets of parameters. Therefore,
a program should be designed upfront in a manner that facilitates noninteractive
(automated) runs. This aspect is critical in software testing (45, 46).

The notion of running programs in a noninteractive mode is common in the area
of server-based computing using operating systems such as UNIX and Linux. In
contrast, PC-based computing has been predominantly interactive. The advantage
of server-based systems is that a user can connect to the server, submit one or more
“jobs” for execution, monitor the progress of the simulations for a period of time,
set the job status to “background,” and disconnect from the server. In such systems,
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several users can use one server simultaneously and do not need to stay connected
for the duration of the simulations. In case the users need to maintain an interac-
tive session, some advanced tools, such as the GNU screen utility (www.gnu.org/
software/screen), provide the feature of a “virtual interactive session” that the
users can disconnect from and reconnect to as needed. These tools can be con-
trasted with the current techniques in PC-based computing, such as remote desktop
(www . rdesktop.org) or virtual network computing (VNC; www.tightvnc.com),
where only one user can effectively be connected to the server at a given time, and
there are no easy means for automating connections to multiple machines.

The advantage of noninteractive programs has become more pronounced with
the advent of powerful but inexpensive computing clusters. Typically, a user has
access to several tens to hundreds of machines in a cluster. Thus, the ability to run
a program in a noninteractive or detached mode without continuous monitoring
is very useful. Furthermore, since the user’s main computer (typically a desktop
computer) is not occupied with multiple connections to the server, one can submit
large running jobs to the server without affecting the desktop machine.

2.9.1 Provide a Usable Interface to the Model

An intuitive user interface, either command-line or graphical, is an important factor
affecting model usability. Some of the relevant aspects include providing appro-
priate user input prompts, warnings, and diagnostics, when erroneous conditions
are encountered, and user input validation and correction (e.g., re-prompting the
user when an input error such as entering a text string when a numerical input is
expected). This is complementary to the ability to run the model in an automated,
noninteractive mode. Ideally, a program should be designed to operate in both
interactive and noninteractive modes. A common approach for designing such pro-
grams involves running the model in an interactive mode when no command-line
parameters are provided, and running it in an automated mode when the required
parameters are passed via command line or through an input file.

2.9.2 Write Programs with Standard Formats for Inputs and Outputs

When the model uses a standard format for model inputs and outputs, it becomes
easily extensible in the form of a link in a long chain of models. It also makes it
easier for writing scripts to generate reports or plots from model outputs, to aggre-
gate multiple model runs and perform additional analysis, and even to run multiple
simulations based on other resources (e.g., using a database of chemistry parameters
as an input to the model). Traditionally, the input and output formats are quite
variable, and often a programmer would decide on the format based on the flow of
the model. Some of the widely used general purpose formats include CSV (comma
separated values, supported by most spreadsheet software) and XML (eXtensible
Markup Language; www.xml . org). An effective approach is to utilize object storage
features of the programming environment. For example, both Matlab and S-Plus
provide an option to directly save a set of variables into an object file. These objects
can be retrieved later by simply loading the object file.

One of the advantages of using the programming environment features to save
objects is that, in addition to model inputs and outputs, extensive “metadata”
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related to the inputs and outputs of a model can also be saved and later retrieved.
The metadata can include (a) time when a simulation is run, (b) configuration
options, (c) machine and folder paths for the simulation, and (d) the script that was
run to produce the outputs. It facilitates easier reproducibility of results.

2.9.3 Write Easily Relocatable Programs

Relocatable programs are programs that can be run in isolation, without affecting
earlier model runs. This requires that locations of input, output, and configuration
files not contain absolute folder paths. This is important when multiple runs of the
model are performed—each model run can be performed in a different folder and
model runs from one simulation will not affect other runs.

2.9.4 Provide Ability to Uniquely Identify Results from
Multiple Model Runs

When a model is used for performing multiple simulations, the “management” of
simulations becomes a major issue. At a minimum, the simulations should be set
up such that the outputs from different model runs can easily be identified. The
simulation setup should allow a subset of model runs to be repeated without needing
to repeat all the model runs. This is often achieved by providing a separate, appro-
priately named folder for storing inputs, outputs, and configuration files for each
model run, and aggregating the model runs at the end of the simulation. Such
an approach allows the model runs to be performed on a distributed cluster of
machines.

2.10 GOOD PRACTICES: RELEVANT SOFTWARE
ENGINEERING CONCEPTS

2.10.1 Follow Appropriate Directory Structures

Standardized directory structures for source code, documentation files, final exe-
cutables, configuration files, and model inputs/outputs allow tracking the software
development process and also help in easily integrating multiple, independently
developed modules. Standardized directory structures allow easy detection of con-
flicts in the names of functions, scripts, or configuration files.

2.10.2 Utilize Available Libraries and System Tools

The advantage of using existing tools and libraries is that the programmer need
not actively maintain or refine them. The modern programming experience
often involves taking advantage of a diverse set of libraries, programs, and tools.
Most languages provide interfaces to link modules from other languages (e.g.,
Fortran/C, Matlab/C, Matlab/Java), which can be utilized to link modules written
in practically any language. The overhead involved in understanding new librar-
ies, tools, and language interfaces pays off very quickly. Sometimes, the simple
approach of using multiple programs in a “pipeline” is also effective. A common
example is where a program’s output is used to automatically generate plots and
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reports using preexisting templates. When a programmer has flexibility and initia-
tive in using multiple tools, there is an increased chance of using the right set of
tools for a given task, within common constraints such as cost, as well as organiza-
tion guidelines. License issues also play a major role, since there may be different
types of restrictions that arise when using commercial (redistribution issues, code
confidentiality, etc.) as well as freely available code (which may contain clauses that
affect the derived code).

2.10.3 Use Appropriate Module from a Library

One problem with the availability of a large set of “standard” libraries is that at
times it is possible to use the wrong module for a given task. A common situation
involves the solution of differential equations. Some systems of differential equa-
tions contain derivatives that vary over wide scales, and these are known as “stiff”
systems of differential equations. Therefore, a stiff differential equation solver
should be used in these cases; otherwise, substantial numerical errors or conver-
gence problems will result.

2.10.4 Use Software Revision Control Tools

Revision control helps in identifying changes to documents or code by incrementing
an associated number or letter code, termed the “revision level” or simply “revi-
sion.” Most modern revision control systems such as CVS (www.nongnu.org/cvs)
(30) provide facilities to track changes based on user, time, or version number. For
a group project, such systems are very critical. Even for a single programmer, such
systems are essential because they provide some means of being able to reproduce
a set of source files that satisfied some set of conditions in the past. These systems
are vastly superior to ad hoc approaches for document control such as manual
backups of directories. A further advantage of a revision control system is that the
programmer has the flexibility to experiment with code changes without having to
worry about manually managing extensive changes.

2.10.5 Embed Simple Testing into the Model:
Simple Mass-Balance Checks

Embedding simple error checks into the model improves its robustness and extensi-
bility. This can be done either at the mathematical model development stage (e.g.,
incorporating mass-balance checks in a pharmacokinetic model) or at the software
implementation level (e.g., incorporating alerts whenever a negative concentration
or a negative flow rate is encountered). The mass-balance type checks are valuable
in the sense that they can highlight errors in both the mathematical model as well
as the software implementation. The overhead associated with incorporating such
error checks is warranted because of the benefits provided.

2.10.6 Utilize Test Cases and Peer Review in Program Design

Proper code testing and peer review of code and test cases are critical for scientific
programming (46-48). One of the recent advances in software design methodologies
includes the approach of “extreme programming” (XP) (6, 49). The XP approach
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advocates the notion of software design by contract, where test cases are designed
first and the code is written later (50). A major emphasis is also placed on designing
the code such that the costs associated with code changes are lowered.

Software testing ranges from testing of an individual module (unit testing) (51)
to the established discipline of formal software testing (45, 46). For an individual
programmer, Humphrey (5) presents an insight into most major aspects of soft-
ware development and relevant practices, including test-driven program design and
reviews of design, code, and test cases.

2.11 SUMMARY

This chapter provides an overview of generally applicable good programming prac-
tices relevant to pharmacometricians. The guidelines provided here can be useful in
developing correct, robust, and easily maintainable and extensible programs. These
guidelines are targeted toward novice and intermediate programmers and may also
provide some relevant tips to experienced programmers. Although sophisticated
programming skills are not necessary to develop many pharmacometric programes,
the concepts described in this chapter can be useful in writing even relatively simple
scripts and programs.

The main focus deals with aspects of basic coding style, design issues, and tools
that can be quickly used in improving the programming process. The style aspects
focus on readability and standardization, which facilitate effective code reviews; the
design aspects focus on structured programming and modular function design; and
the software engineering discussion focuses on test design and program extensibil-
ity. Overall, the development of scientific computer programs is addressed from
the perspective of writing scientific documents: they should provide context, be
readable, and contain appropriate references.

Another aspect addressed in this chapter is that computer programming tasks in
recent times have evolved from writing new code and modules to correctly linking
existing modules. Programming productivity can be increased substantially by uti-
lizing available toolkits, libraries, development environments, and relevant pro-
gramming approaches. Once a good design or approach is employed, and relevant
existing modules are identified, the linking of the modules to solve a pharmaco-
metric programming problem becomes a more straightforward task.
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I CHAPTER 3

Validation of Software for
Pharmacometric Analysis

GARY L. WOLK

3.1 INTRODUCTION

The development, installation, and utilization of software for pharmacometric
studies require the pharmacometrician to interact with at least three different
organizational entities. Management must first be convinced of the need, and the
appropriate expense must be justified, for implementing the tools regarded as neces-
sary by the pharmacometrician to perform a successful analysis. Next, there is the
interaction with the local suppliers of technology, the information technology (IT)
group. This interaction is critical to determining the timeliness and the success of
the implementation process. Finally (and perhaps most important) is the interaction
of the pharmacometrician with the regulatory group responsible for the software
validation process.

The responsibilities of the scientist will vary, depending on the organizational
size. If the pharmacometrician is employed by a small or startup pharmaceutical
or biotechnology firm, it is plausible that the pharmacometrician may be filling all
three of these roles—clinical developer/manager, information technologist, and
regulatory specialist. In this instance, interdepartmental delays become nonexis-
tent, but the burden on the pharmacometrician is immense. For scientists working
in medium size institutions, there is probably a specialist available from each area,
but the burdens on each group tend to be immense since the company is more than
likely in a “growth” mode. Finally, in a large corporate environment, the scientist
is confronted by the possibility of dealing with a less personal, highly specialized
IT or regulatory organization or, possibly, organizations that have been specifically
devoted to business segments such as clinical development. In a sense, this last
condition is the closing of the business organizational loop where one person is
responsible for the entire process to a set of organizations that is entirely focused
on the success of this particular part of the pharmaceutical realization process.

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene 1. Ette and
Paul J. Williams
Copyright © 2007 John Wiley & Sons, Inc.
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This chapter outlines the software implementation and validation process, to
an extent that the pharmacometrician could in fact establish the quality assurance
infrastructure, implement the hardware and software, and validate the implemen-
tation independent of dedicated internal IT or regulatory resources. Though such
an approach is not recommended, the purpose of this chapter is to give the scien-
tist a clear understanding of what is required in order to be successful in such an
endeavor.

First, we review the concepts behind software quality assurance, testing, and
validation. We review the process from the historical perspective of how other
industries have faced these quality assurance issues, the role of independent orga-
nizations, and finally the role that federal regulatory agencies have played and how
each of these has impacted the validation process in the pharmaceutical industry
(1, 2). The rule-making efforts of the US FDA in the last 5 years, in particular, the
21CFR11 guidance (3, 4), is discussed in the context of this historical perspective.
We also note the critical issues that face pharmacometricians in executing their
scientific methodology: obtaining/finding data, creating/defining models in software,
creating/finding results, and reproducing analysis.

We then outline the basic methodology for software validation: quality assurance
practices (corporate policy, standard operating practices, validation processes),
technology practices (assuring the proper infrastructure, influencing and participat-
ing in the IT process), and the process for making “buy or build” decisions. Often
the decision is to buy and then build on to the software base. This is particularly
true of software tools that allow the pharmacometrician to either automate existing
software processes or design variations on existing algorithmic routines offered by
the commercial tool.

The validation process is outlined from writing user requirements specification
to testing and validating specific analysis using estimation methods. This is followed
with brief examples of validation approaches for some commonly encountered
software, such as S-Plus®, SAS®, WinNonlin®, and NONMEM®.

3.2 SOFTWARE DEVELOPMENT AND IMPLEMENTATION: BACKGROUND

In the late 1980s at AT&T Bell Laboratories, it came as quite a shock to be told
that the “quality” of our work needed to be addressed. The scientific staff was
insulted and the nontechnical managers who implemented “quality improvement”
programs based on the Japanese models of the time were without a clue as to why
there would be such resentment. It took several years for all to realize that, indeed,
the quality of business practices that surrounded R&D efforts needed improve-
ment, not necessarily the quality of the technical effort. The processes surrounding
R&D—documentation of work, sharing of information, the need to avoid duplicate
effort—soon were understood to be significant areas of improvement that both
technical staff and nontechnical managers could work together on to improve the
overall nature of the business. The manufacturing division, the former Western
Electric, had indeed been a center of quality improvement and statistical process
control 20 years earlier. Telephony transmission and switching systems, by their
nature of being large, complex, engineered entities, had always been subject to high
levels of review and quality assurance.
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What remained was to take the appropriate pieces of the quality assurance world
and implement them in such a way that scientists were able to work in a “structured”
framework, while at the same time assuring that the creativity of the scientists was
not stifled. In the ensuing years, many industries began to adapt the guiding prin-
ciples of ISO 9000 (5), using the actual certification process as a way both to identify
and improve business processes and to leverage certification as a marketing tool.

In parallel with these industrywide quality improvement efforts, the software
industry had recognized the need to identify processes and standards that assured
the quality of commercial software. ANSI (6) and IEEE (7) have been issuing
practice standards and definitions for many years in an effort to unify quality assur-
ance methodology in the software development industry. Furthermore, the software
industry recognized early on that establishment of quality principles prior to the
initiation of a development effort reduced the cost of repairing faulty software later
in the process (8).

In the early 1990s, the implementation of the Clean Air Act, along with major
changes to other environmental laws and regulations, produced a tremendous effort
in the field of data acquisition and analysis, which clearly needed to be aided by
advances in the information sciences. Hence the Environmental Protection Agency
(EPA) issued guidance in late 1990, the EPA Good Automated Laboratory Prac-
tices (GALPs) (9), that were the first effort by a regulatory agency to assure the
proper use of IT in the acquisition and analysis of regulated data. The Food and
Drug Administration (FDA) had previously taken the position that most good
laboratory practice (GLP) and good clinical practice (GCP) processes involving
information systems were covered by existing regulation (10). Although a guide
to inspection of computerized equipment in drug processing (11) and a technical
reference (12) on software development activities were issued in the 1980s, the
major FDA guidance on the use of electronic records and systems was not issued
until 1999. Once that guidance, 21CFR11, was issued (13), an entire industry arose
to attempt to explain, implement, and modify the guidance (7).

In general, there are certain basic quality assurance principles that can be invoked
that will satisfy the spirit, if not the fine detail, of most regulatory requirements:

1. Document the processes used to generate, accept, analyze, store, and archive
data and analytical results.

2. Document the physical and logical security of hardware and software systems
used on regulated data.

3. Document the installation and testing of hardware and software used on
regulated data.

4. Document that the system design achieves the intended purpose/use.

5. Document performance, both initial and ongoing, of the software system.

6. Document training and education backgrounds of the users and providers of
the systems.

7. Document that the business practices are in place to operate, backup, and
recover (including disaster recovery) regulated software systems.

Each of these issues focuses on documentation. The purpose of the vali-
dation process and the generation of process standards (or standard operating
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procedures—SOPs) are to establish a documentation framework a priori, rather
than de facto with regard to the installation and use of key software. All of the
processes listed above occur within disciplined scientific organizations. The valida-
tion methodology is used to demonstrate the structure of these processes for the
purpose of both internal and external review.

3.3 METHODS

A successful validation strategy is aided by several elements including:

—_

A corporate policy on quality assurance/validation.

N

Existing, corporatewide SOP infrastructure and pharmacometric specific
SOPs.

Definition of the validation process.
Understanding the user requirements generation process.
Identifying the system specification for a particular implementation.

S kW

Understanding the current information technology infrastructure/
organization.

7. Recognizing the constraints of “building” versus “buying.”

We discuss each of these in turn.

3.3.1 Corporate Policy

In the case of industries that decide to pursue ISO 9000 certifications, the role of
management is well defined (5). The standard clearly states that management will
define and document its policy, objective, and commitment to quality. The burden
of implementing, explaining, and maintaining the quality plan is clearly on corporate
management. A similar approach needs to be undertaken in approaching validation
of regulated systems. A clear corporate policy document should exist, which:

1. Establishes a working group to define and maintain policy and objectives
regarding validation of software systems.

2. Ensures that employees are trained and retrained on the policy.

3. Empowers the resources necessary to carry out the policy.

In the absence of support from the highest levels of corporate management,
it is unlikely that the competing priorities of clinical development, information
technology, and regulatory affairs will somehow “align” to enable the success of a
validation project.

3.3.2 Establishment of SOP Infrastructure

The first priority of a regulatory group should be the establishment of “SOP on
SOPs”—that is, how they are to be created, reviewed, implemented, and revised.
If a policy applies across corporate groups including information technology,
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pharmacokinetics, data management, biostatistics, regulatory affairs, quality
assurance, and materials management, then the pharmacometrician will have model
SOPs as well as the collegial support necessary to implement a procedural struc-
ture that may be used to clarify workflow and serve as a training tool for new
scientists.

In particular, the process by which preclinical and clinical pharmacokinetic/
pharmacodynamic (PK/PD) data is received, identified, and analyzed (at least for
initial parameters such as AUC and 1) should be documented in a series of SOPs.
Furthermore, the manner in which such data and analysis should be stored for latter
retrieval is also a key consideration for optimal efficiency in the drug development
process. The process by which PK summaries and reports are approved and released
to other groups must also be documented in order to prevent misunderstandings.
The procedure for use of randomization codes by the PK group must clearly be
documented by an SOP, consistent with the needs and requirements of data man-
agement, biostatistics, and regulatory groups. Table 3.1 shows a plausible sample of
SOPs that could be written to encompass the activities of both clinical and preclini-
cal PK and PD analysis. It should be noted that many of the chapter titles in this
text could also serve as the basis of clinical pharmacology SOPs!

Given the current desire of management to be able to “mine data” and “see
trends across studies” and the availability of PK/PD repository systems (which we
discuss more fully later), the first and foremost operating procedure requirement
in pharmacometrics is the definition of key metadata that describes the process
flow. Metadata, from the information science perspective, is simply information
that describes data: that is, where the data goes, what the data is, and what possible

TABLE 3.1 Standard Operating Procedures for Clinical Pharmacology

SOP # SOP Title

PKPDO001 Training requirements for pharmacologists and toxicologists

PKPDO002 Definition of nomenclature: project, study, indication, NCE ID, etc.

PKPDO003 Review and approval process for PK summaries and related reports

PKPDO004 Standards for PK data analysis: basic parameters to be obtained

PKPDO005 Use of blinded data

PKPDO006 PK analysis standards, data preparation, statistical analysis, expected
output for clinical bioavailability studies

PKPDO007 PK analysis standards, data preparation, statistical analysis, expected
output for clinical bioequivalence studies

PKPDO008 PK analysis standards, data preparation, statistical analysis, expected
output for human dose proportionality studies

PKPDO009 PK analysis standards, data preparation, statistical analysis, expected
output for drug interaction studies

PKPDO010 PK analysis standards, data preparation, statistical analysis, expected
output for clinical renal studies

PKPDO11 PK analysis standards, data preparation, statistical analysis, expected
output for first dose in human studies

PKPDO012 PK analysis standards, data preparation, statistical analysis, expected

output for compartmental study types




58 VALIDATION OF SOFTWARE FOR PHARMACOMETRIC ANALYSIS

value it may have. For example, having consistent definitions and values for the
words “Portfolio,” “Project,” “Protocol,” “Study,” “Study Design,” “Study Type,”
“Indication,” “Method,” “Period,” “Phase,” and “Relative Nominal Time” can
lead to a dramatic increase in the ability to find and leverage information within
clinical development. Unfortunately, there are enough clinical data management,
repository, and laboratory information management systems (LIMSs) available to
completely confuse the end user as to how the corporate metadata matches a soft-
ware vendor’s definition. Nevertheless, a group of scientists who have established
procedural definitions of such metadata a priori have built a common ground that
can serve as a basis for leveraged information management.

3.3.3 Definition of the Validation Process

In general, the validation process should also be defined by several SOPs, originat-
ing in either the regulatory or information technology groups. Table 3.2 shows a
sample list of I'T or Quality Assurance SOPs appropriate to the task. The validation
process generally will consist of the following:

1. Validation Project Plan is a summary document identifying software, hard-
ware, and related systems involved in a specific validation effort. The docu-
ment explains the approach that will be employed, the responsible parties, and
the expectations of those parties for each task involved in the validation.

2. User requirements specification is the responsibility of those end users who
have identified the need for the system. It must adequately define the func-
tional requirements of the system/software so that the end users can satisfy
the stated business requirement.

TABLE 3.2 Standard Operating Procedures for
Information Technology or Quality Assurance

SOP # SOP Title

QA001 Format, functionality, and maintenance of standard operating procedures

QA002 Membership and purpose for the software validation standards committee

QAO003 Validation process: validation planning, user requirements, and system
specifications

QA004 Installation qualification protocol format and requirements for software

QA005 Operational qualification protocol format and requirements for software

QA006 Performance qualification protocol format and requirements for software

QA007 Change control procedures

QAO008 Deviation procedures

QA009 Reporting “out-of-specification” events

1T001 Physical security procedures

1T002 Logical security procedures

1T003 Backup and recovery procedures

1T004 Hardware installation qualification procedures

1T005 Software development life cycle practices and procedures
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3. Systems specifications provide all the information needed for the technical
implementation of the system. This includes hardware, networking connec-
tions, and backup requirements as well as all information needed to install,
operate, and qualify the performance of the system. It generally includes all
of the qualification protocol documents (installation, operation, and perfor-
mance qualifications) created during the validation process.

4. Completion and change control is the closure of the process and a methodol-
ogy for maintenance activities.

3.3.4 Understanding the User Requirements Specification (URS) Process

This process is usually the first exposure of the pharmacometrician to the valida-
tion process. It is a difficult first step, where the scientist must document the use of
a tool (which is of obvious utility from the perspective of the pharmacometrician)
to an audience that may not have a good understanding of the clinical develop-
ment process. The major point is that the process can be quite generic for many
of the software tools utilized in PK/PD analysis. For example, the user require-
ments specification for implementing S-Plus, SAS, or Graphpad Prism® could all be
essentially the same document. Similarly, NONMEM, WinNonlin, WinNonMix®,
Kinetica®, and ADAPT II would contain the same basic set of user requirements.
Specific capabilities that would be used for a particular software tool would need
to be identified, but the basic form of the requirements is the same. Once again,
having a sound basis set of SOPs that actually describes the acquisition, analysis, and
reporting requirements for clinical data will enable the pharmacometrician to cross-
reference the particular software capabilities with the technical (business) process.

For systems such as PK/PD repositories, a broader view is needed. Such systems
by definition are intended to exchange data with other systems and integrate with
analytical tools such as those described earlier. In this case, the pharmacometrician
needs to have a well established process in place and be able to document how
such a repository system will be implemented to either augment or replace current
manual processes.

3.3.5 Identify the System Specification for a Particular Implementation

The selection of platforms (i.e., UNIX versus Microsoft Windows Server) is pri-
marily within the realm of system specification rather than user specification. Never-
theless, it is useful for the end user to consider early on which tools are preferred
and which platform will be used or whether several platforms might be utilized
(depending on business requirements). We discuss this issue further when the
interaction with the IT group is reviewed. The pharmacometrician must be able
to specify key system requirements with regard to recovery of data and archiving.
Furthermore, the end user needs to participate heavily in the definition of the
operational qualification protocol, since it is this protocol that will determine if
the software is meeting the basic user requirements that have been recorded in the
URS. Finally, the performance qualification is the responsibility of the pharmaco-
metrician, since this testing will determine whether the software system is function-
ing within the business/technical needs of the end user.



60 VALIDATION OF SOFTWARE FOR PHARMACOMETRIC ANALYSIS
3.3.6 Information Technology Infrastructure and Organization

The interaction between clinical pharmacology and the IT resources, whether inter-
nal or externally by contract, is of paramount importance when considering the
productivity and analytical capability of the pharmacometrician. Once the phar-
macometrician has clearly stated her/his software needs, based on the URS, the
actual definition of the overall systems that will be used to service the needs of the
pharmacometrician must be decided.

The clinical pharmacology area is one that is subject to the same regulatory
demands of other clinical areas such as biostatistics or clinical data entry and vali-
dation, yet it is a discipline that utilizes scientific methodologies that are closer in
reality to discovery and preclinical drug development. That is, modeling of data,
attempting to establish the validity of a hypothesis based on accumulated data
and prior scientific knowledge, is the process employed. While some variables
and covariates may be well defined and understood, in many cases, especially in
population-dependent studies, it is the “expert system” of the scientist’s experience
and ability that unveils the critical issues surrounding pharmacokinetic, pharmaco-
dynamic, or toxicity effects. To this extent, clinical pharmacology, while considered
a development activity, is more closely akin to a discovery process. In general, drug
discovery areas such as medicinal chemistry, target identification and structure, or
preclinical assay development are not subject to the regulatory information system
requirements that clinical pharmacology must follow. Hence, the IT support struc-
tures normally associated with areas such as clinical development, which more
typically involve electronic document control or clinical database management,
need to be imbued with a technical understanding of the work of the pharmaco-
metrician. Ideally, organizations should strive to identify a pharmacometrician, or
other members of the scientific staff, with an interest in IT. Such individuals would
not be “lost” to PK/PD research but rather would become an invaluable asset in
communicating the specific needs of clinical research. Nevertheless, the usual situa-
tion is one where a computer engineer needs to be educated as to the needs of the
pharmacometrician. If, in fact, that engineer is not devoted entirely to the clinical
area, the probability of a successful interaction will decrease dramatically. It is
improbable that an IT individual can successfully support business software dealing
with human resources, purchasing, and customer relationship management while at
the same time understanding the needs of the pharmacometrician to create a model
(perhaps by generating new code to do so), automate the analysis of a large number
of studies, and then generate a PK report using completely separate tools.

The ultimate goal of the IT staff assigned to the clinical development groups
must be customer service. In order to increase the throughput and accuracy of the
pharmaceutical realization process, the clinical development area must be given
the IT resources and attention necessary to determine the efficacy and safety of the
subject chemical entity. If such resources are available, they must be encouraged
to serve as advocates for the pharmacologists they support to I'T management and
corporate management. Once again, it is up to the pharmacometrician to establish
a relationship with the IT support structure that encourages this attitude on the
part of the IT support personnel. The clinical pharmacology group should at
the least identify an individual within their organization as the liaison with IT.
That individual should be included in meetings held within IT regarding policy,
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infrastructure, and resources so that there is a clear source of information regarding
IT infrastructure. In smaller company situations, where the pharmacometrician may
in fact be the IT support person, clearly the ability to influence and participate in
the IT support process is critical.

3.3.7 The Buy or Build (or Buy and Build) Decision

Most clinical organizations take for granted that their key capabilities lie in PK/PD
rather than in software development. Nevertheless, some of the most utilitarian
tools used in pharmacometrics have been written by pharmacologists. While many
of these have arisen from university endeavors, several commercial packages began
as “skunks works,” projects that have evolved into private companies that provide
valuable tools. The point is that it is probable that, within current organizations,
there are individuals who are certain that a better mousetrap is within reach. Fur-
thermore, most commercially available tools have specifically enabled programming
and automation tools (such as WinNonlin) or interfaces (such as S-Plus) where
custom development is not only possible but more than likely would have a positive
impact on the drug development process. The issue to consider when going down
the “home-brewed” or automation road is that the software development process,
as discussed in Chapter 2, must be well documented before the development process
begins. Just as in the documentation of the clinical drug evaluation processes with
SOPs, the clinical group must become familiar with and document (via SOPs) the
software development life cycle process (SDLC) as it will be implemented within
the group; or possibly, if in a large company, it is plausible that the I'T group already
has established SOPs for SDLC. The starting point for commercial and internal
development is exactly the same—the user requirements document. In addition, a
functional requirements document should be written, outlining the details of how
the specific functionality of the software (i.e., subroutines used, function of a drop-
down menu, a panel of buttons, or what to type in as a command to execute some
specific task) needs to be written. Unit test plans—how the person or persons gen-
erating the code will determine if well defined subunits of code are working—must
also be generated. Finally, installation of the code (or the macros, if a commercial
tool is being automated) and operational and performance qualification should be
performed in the same manner as any commercial application would be. Another
important consideration is that some type of source code control system must be
identified and employed so that the history of the software development process, as
well as any change control process after installation, may be documented.

Alternatively, if the decision is made to buy only commercially available software,
or only commercially developed add-ons or automation scripts, then the pharma-
cometrician needs to participate in the key processes used to evaluate the vendor.
The occurrence of key quality failures in widely used software has been previously
documented (14). Therefore, the pharmacometrician should be intimately involved
in the vendor audit process. If the vendor is not performing the quality assurance
procedures just outlined for internal development, the cost (both in quality and
accuracy of future work) will be in jeopardy. As discussed later in the section on
validation documentation, the ability to state what the vendor’s quality processes
are will mitigate the need to perform functional software testing at the same level
that has already been executed by the vendor’s quality assurance group.
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3.4 VALIDATION PROCESS

The primary issues surrounding the documentation of the validation process and
the role of the pharmacologist are now addressed. The main areas of concern to
the end user are:

What documentation needs to be created?
What is the order or priority of the document generation process?
Who is responsible for various sections of the documentation?

Bl

What are the content, format, and future (i.e., what are the maintenance
requirements.) of the documents?

We also note that the approach of quantity over quality of documentation is
preferred by many organizations. This course of action will lead to a general dis-
illusionment with the validation process and should be avoided at all costs. A
good installation qualification should fit on one or two sides of a page (three with
boilerplate, if that is unavoidable). A user requirements specification (URS) may
be no more than a paragraph. While it is plausible that a URS may turn out to be
several hundred pages for an internally developed repository system, that would
be an exception rather than the rule. If an FDA inspector arrives with a method to
determine the mass of your documentation, rather than with a desire to view the
processes that such paperwork documents, it will be time to find other sources of
advice on validation.

3.4.1 User Requirements Specification (URS)

The key document to be generated solely by the pharmacometrician is the user
requirements specification. The URS simply states the purpose of the software. It
is quite worthwhile to note what the URS is not. For example, the business process
(or scientific process) that is being addressed by the software should have already
been addressed in the SOPs relevant to the department and should not appear in
the URS. That is, describing what you do and the generic manner in which you do
it is the fodder for a good set of SOPs, not the requirements that outline a par-
ticular tool that you wish to use. Furthermore, the system requirements—software/
hardware availability, user access, recovery of data—are not elements of the user
requirements. In many cases these elements should be covered by SOPs of the IT
group or in a separate systems requirements document. The document containing
these requirements (see Section 3.4.2) is a document generated by the IT engineer
in collaboration with the pharmacometrician.

What the URS should contain are the features and functionality of the software
tool that are required by the pharmacometrician to accomplish the business/scien-
tific objectives at hand. As an example, Table 3.3 shows some generic user specifica-
tions that might be included in the URS for a statistical package.

Note that the URS is generic; it could fit SAS as well as S-Plus or GraphPad.
One need not list all the features and functionality of the package being
implemented, but the key features that one will use (and therefore test) must be
included.
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TABLE 3.3 Possible Elements of a User Requirements Specification

Requirement Description

Data input formats Must be able to import .xIs, .txt, SAS transport files, etc.

Data output formats Must be able to export to .xls, .txt, SAS transport files, etc.

Other data I/O ODBC or JDBC connectivity

Data manipulation Ability to subset, merge, transpose, or filter (using multiple

criteria) data

Reporting Ability to integrate output into word processing software

Statistics Descriptive, hypothesis testing, multivariate, nonparametric, etc.

Graphics Charts, plots, and user designed graphs

Automation or Standard or vendor-designed programming, macro or
customization automation language

3.4.2 System Specification

The generation of this document requires the interaction of the pharmacometrician
with the IT group. This document reflects additions to practices already defined in
IT and clinical SOPs. That is, IT should already have (see Section 3.3) SOPs that
set forth:

Data/system backup procedures for validated systems.
User access (Logical Security) for validated systems access.
Physical access (Security) for validated systems.

Disaster recovery plans for validated systems.

I e

Installation requirements for hardware and operating systems used for vali-
dated systems.

The main purpose of this document is to reflect the input of the IT profes-
sional regarding the system requirements, usually as documented by the vendor
of the software. This clearly involves assuring that the information technologist
has become familiar with the vendor’s installation procedure and requirements.
The selection or identification of hardware cannot proceed until the IT profes-
sional has ensured that the appropriate processor, disk space, and communica-
tion interfaces exist as required by the vendor. Furthermore, it is plausible that
the software system will need software interfaces (such as database connectivity),
which require additional resources. This document might reflect the “coupling” of
validated systems (i.e., obtaining clinical data from a clinical database for PK/PD
analysis). The document also might reflect the use of a hardware system (i.e.,
a user workstation) already validated for use as the target system of the new
application.

The primary responsibility for generation of this document lies with the IT
group. Since these are the experts at systems implementation, it behooves the
pharmacometrician to engage these resources early and to try as best as possible
to understand the constraints, both technical and political, under which these col-
leagues may be operating.
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3.4.3 Validation Plan

As discussed earlier, the validation plan is a document that should be well defined
by existing SOPs written within either the Quality Assurance Organization or the
IT group. Unless the project is quite unique, the validation plan should follow the
same general course. The user requirements and system specifications documents
will impact this, of course, but the generation of this document, which also should
be quite brief, should be straightforward. The key elements of the validation plan
are given in Table 3.4.

Once again, sections of the validation plan regarding security, access, and so on
may be better covered in SOPs that are resident with the IT group, rather than
being specified for each validation.

3.4.4 Installation Qualification (IQ), Operational Qualification (0Q), and
Performance Qualification (PQ)

One analogy used to describe the function of these three processes is the instal-
lation, operation, and performance of an overhead projector. The IQ involves
receiving the projector from the vendor, unpacking it according to the vendor’s
instructions, setting it on a cart or table (consistent with the vendor’s requirements
regarding how strong a table or cart), putting together the projector arm and head,
plugging the projector into an electric socket, and turning on the power. Assuming
the projector comes on, following the vendor’s recommended shut-down procedure
(i.e., making sure the cooling fan stays on for some fixed time after the bulb has
been turned off) successfully would imply a successful 1Q.

The OQ would then involve turning on the projector, taking a standard, widely
used transparency, placing it on the glass, adjusting the height, distance, and focus
of the projector and projector head, and so on until a satisfactory image is obtained
on an acceptable image surface (i.e., a screen). Finally, the PQ would require the
same type of process as in the OQ and that could be successfully performed on the
end user’s specific viewgraphs, be they color, black and white, multiple levels, or
partially blocked.

At any stage in these processes, there needs to be an ordered set of steps and
tests that verify the successful execution of the intended actions. This is referred
to as the test script (or test plan). For each document that describes one of these
qualification processes, the test script is the main functional part of the docu-
ment. The “boilerplate,” describing the project, referencing the validation plan, and
documenting who is executing the qualification, could be as small as a single page
(or even paragraph).

TABLE 3.4 Key Elements of a Validation Plan

Overview of the system

Definition of the system: user requirements, system requirements, and software description

Organization and responsibilities of the validation team (usually the end user, and the
information technology and quality assurance members)

Outline of timeframe for implementation

Documentation: URS, SRS, IQ, OQ, PQ, change control, acceptance
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The IQ test script clearly needs to be generated by the individual who is respon-
sible for the installation. Usually this will be an information technologist. Note
that this individual must be familiar with the software (i.e., the individual has read
the installation instructions and warnings provided by the vendor) and will have to
document the steps that will be followed. It is highly recommended that while this
area is not the specific responsibility of the end user, the pharmacometrician would
be wise to become familiar with the installation process. Vendors often provide a
good deal of related information that the information technologist either misses or
does not understand the analytical implications of, and it is best if the end user asks
as many questions as possible before the IQ is generated.

The OQ test script may be written by either the information technologist or the
pharmacometrician. The ideal situation is for this to be a collaborative effort. One
highly positive result of such a collaboration is that the OQ test can turn into the
best “software training” experience that both individuals will have for the particular
software involved. The need to actually read the vendor’s user manual in order to
generate meaningful test scripts can lead to an unanticipated benefit of identifying
software capabilities that were previously unknown.

There is one school of thought that claims that all of the features, functional-
ity, buttons, menus, and so on of a particular software package must be exer-
cised in order to successfully test the operation of the software. In general, this is
extreme. Almost all of the software that is purchased has been quality assured by
the vendor. Assuming that the software vendor has been audited (or that the cus-
tomary use of the software by industry and regulatory agencies is widespread and
it is generally agreed that the software is of high quality) and there is documented
vendor evidence of functional testing, the OQ can generally be executed based
on recommended tests provided by the vendor, in addition to statistical testing
provided by standards organizations (15). In Section 3.5 some specific examples
are outlined.

The OQ also needs to test some of the system specification requirements. These
include security (i.e., authorized users can access the software, unauthorized users
cannot), recovery (the software can be reinstalled and critical data recovered from
original media or backup systems in the event of either accidental or disaster-
related events), and boundary tests (e.g., maximum users allowed, maximum data
set size).

Finally, the PQ will execute some of the same tests performed in the OQ, but
using the particular functionality (noncompartmental and/or compartmental models,
statistical tests, graphics, integrations, fitting) of the software that is particular to the
uses of the pharmacometrician. These tests should be performed on actual data or
at least data that is indicative of that analyzed during the PK/PD analysis. As in any
well designed scientific investigation, this will involve the use of estimation (perhaps
using other tools), boundary testing, and calibration with data standards in order
that the pharmacometrician is confident that the result is “reasonable.” Clearly,
this is the domain of the scientist. The IT and quality assurance resources may be
available to help with execution of a performance qualification, but ultimately the
design responsibility for these tests lies with the pharmacometrician. If a particular
type of analysis is common (i.e., bioavailability—bioequivalence—drug interaction),
often the vendor or provider (i.e., for software originating in academic venues) of
the software has a canonical example for the particular type of analysis. This may
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be used as a model for the PQ testing, with both the vendor’s and the end user’s
data being used to validate the algorithmic approach and result.

In the case of new types of analysis that are developed after the software has
been qualified, it is incumbent upon the scientist to follow a similar process of esti-
mation or validation in order to document the validity of the approach. This can
be documented in a separate SOP (particularly if the approach becomes widely
used within the organization) rather than “requalifying” the software. A change
control document can be issued to indicate to the quality assurance group that
“new” functionality is being employed within the software package. During the next
“requalification” or upgrade of the software package, the new analytical approach
can be integrated into a revised PQ.

3.5 INFORMATIVE EXAMPLES

The outlines of typical test scripts for an 1Q, OQ, and PQ appear in Appendixes
3.1-3.3. Note that the “boilerplate” for these documents will be determined to a
great extent by the quality assurance group. The main points to note are that each
script provides a general outline of what will be tested, a statement as to respon-
sible parties, and then a sequence of test steps that must be followed, verified, and
documented as to anomalies or unexpected results. In some steps figures are called
for. These are location specific and have not been reproduced here. If there are
unexplained events that cannot be corrected and documented during the test, it may
be necessary to regenerate the test script (maintaining the original test data as an
appendix to the validation documents) and retest. We now discuss useful starting
points for operational qualification scripts for various PK/PD analysis tools.

ADAPT Il There are several sample tests provided by D’Argenio and Schumitzky
(16). The Fortran compiler is a key software subsystem for both ADAPT II and
NONMEM. In this regard it is best to have a separate qualification for the instal-
lation of the compiler, followed by careful review of the expected output provided
in Ref. 16. Older Fortran f77 compilers may show discrepancies that can only be
resolved by implementing the most current versions of the f77 compiler.

NONMEM For the operational qualification, a careful review of the parameters
discussed in Section 2.9 of the NONMEM Users Guide—Part 111 (17) should be
performed. These values should be identified and set during the I1Q and tested prop-
erly during the OQ. The specific examples provided for NONMEM’s PREDPP,
NM-TRAN, and associated library subroutines are highly recommended as a start-
ing point for the OQ. The Phenobarbital and Theophylline data files provided with
the software (18) offer even more extensive testing appropriate (with modification)
for a PQ. The output is well documented and individuals may seek to modify or
parameterize the examples for their needs.

S-Plus The validate( ) function (19) is particularly appropriate for use during
the OQ. As with NONMEM, the system settings and systemwide user parameter
files (20) should be identified and implemented during the IQ. As with any statis-
tical package, it is highly recommended that appropriate statistical analyses from
standards organizations (15) be utilized as appropriate to the organization.
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SAS The SAS Institute support organization has recently published resources
for both validation (21) and actual 1Q/OQ guidance (22). This should certainly
be reviewed as a plausible starting point for the OQ. The same advice regarding
analyses from standards organizations (15) applies. Please note that both S-Plus and
SAS provide a wide range of capabilities for model creation, data analysis, presenta-
tion, and interfacing to databases and other software. It is incumbent on the user
community to identify, at least initially, the capabilities that will be utilized in the
user requirements documentation. Such software-specific capability should then be
appropriately tested in the OQ.

WinNonlin WinNonlin comes with a well documented set of exercises (23) that can
be used as the basis of an OQ. These exercises, as well as several additional tests,
can also be obtained as an automated test package (24). This is quite useful if several
installations of the product are being validated on independent workstations, or if
it is anticipated that frequent requalification (due to product updates or releases)
will be needed. There is a significant initial investment of time that must be made
in order to learn and utilize the automated package. There may also be issues sur-
rounding whether automated test software in itself must be qualified. Nevertheless,
for those organizations willing to invest the effort, such testing is without a doubt
more rigorous (and quite rapid) once implemented. As with other tools, WinNonlin
provides the capability to create new model strategies with user-generated code
as well as the ability to highly automate software functionality (25). As with other
tools, the ability to write software for new modeling strategies adds the requirement
that a SDLC process be in place for the pharmacometrician to adhere to.

Other PK/PD Software Kinetica, WinNonMix, and Trial Simulator® are examples
of other software tools that may be utilized within PK/PD organizations. Each of
these products provide example tests (26-28) that may form the basis of the OQ.
In many circumstances, it will be difficult to anticipate the full range of use of some
tools. Nevertheless, the vendor documentation generally provides a wide range of
examples of functionality, which can be incorporated into an OQ.

Repository Systems Several software systems (29-31) (PKS®, EP2%, SAS Drug
Development) have been released in the last several years, which enable the phar-
macometrician to store PK/PD data, analyze such data in several ways, and then
perform various reporting tasks (including data/results mining) across a wide variety
of projects, studies, and so on. While each of these products have virtues and weak-
nesses, the fundamental issue that must be addressed by the clinical pharmacology
community prior to considering the use of a specific system is: How does this soft-
ware fit our current processes? Many times the need to answer this question leads to
a major effort to define just what the current processes are! These systems require a
high degree of organizational discipline and structure around the concept of meta-
data. That is, what data do we use to describe the models, data, analysis results, and
reporting variables that are critical to our organization?

The important point to recognize here is that software systems such as “reposi-
tory” systems are considered “enterprise” software. The implementation is not cus-
tomizable to an individual’s requirements or a department’s needs. The architecture
of the software is the vendor’s “impression” of how a clinical pharmacology effort
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may be organized. This “impression” may have no connection to your current pro-
cesses; it may, especially if one’s organization was the model used when the software
was architected, reflect your processes exactly.

Under any circumstances, the implementation of such a package requires a large
effort to identify processes, especially processes between groups such as data man-
agement, biostatistics, quality assurance, and clinical pharmacology, before con-
sidering individual software systems. Recent analyses of enterprise software have
characterized this effort as the “organizational capital” (32) that must be expended
in addition to the resources for “capital equipment and software expense.” Once a
system is chosen, the implementation team needs to recognize that the fundamental
way they work will be changed. The rewards may be tremendous, but the road to
implementation may be long and arduous.

3.6 SUMMARY

This chapter is a brief attempt to aid the pharmacometrician in understanding
how “quality” standards need to be applied to research and development activities
involving software tools. Specifically, the needs of the ethical pharmaceutical indus-
try are addressed, but one could argue that the ability to document such activities
is critical in any industry. In the chapters that follow, several specific analytical
approaches to numerous problems in clinical pharmacology are discussed. If the
software tools utilized in these creative and important analytical methodologies
are properly installed, validated, and supported, the quality and throughput of the
pharmaceutical realization process will be assured, for both the development teams
and the regulatory agencies involved in the process of ethical drug discovery and
development.
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APPENDIX 3.1 SAMPLE INSTALLATION QUALIFICATION

Document Number: 1Q00-00001 Install Qualification: Test Version: 1.0

Document Location: QA S-Plus 6.0.4 Reference Document(s)

Document Owner: Technolgist, Info #: SV00-00001
Purpose

(This defines the purpose for the current test(s). It may refer to previous tests and/or
documents.) This test is conducted to qualify the installation of software compo-
nents used for S-Plus 6.0.4. These are components of the S-Plus 6.0.4 software and
are used to verify that a client interface may access S-Plus 6.0.4. These tests will
also be used to establish a baseline for future testing.

Scope

(This defines the scope of the test(s). It is a written description of the scope and restric-
tions of the test.) Testing is done to prove the S-Plus 6.0.4 software has been correctly
installed. This test does not prove the Installation Process; instead, it proves that the
end result of the process was successful based on software functionality. Validating
the result of the installation implicitly proves the success of the process.

Test Requirements
Testing is done to prove the following:

1.

Verity the S-Plus 6.0.4 installation
1.1. Verify the my_server_name server is started
1.2. Verity the /home/splus6 directory and permissions
1.3. Verify the S-Plus scripts have been copied to my_server_name:
/usr/local/bin
1.4. Verity the file and directory listing for the /home/splus6 directory
1.5. Verify that /usr/local/bin/Splus and /usr/local/bin/Splus invoke S-Plus 6.0.4
Verity Terminal/HOST Client/Server Interface
2.1. Verify UNIX Server login from Telnet client (terminal)
2.1.1. Verity Security
2.1.1.1. Bad Username
2.1.1.2. Good Username, Bad Password
2.2. Verify Logout from Telnet client (terminal)
2.3. Verify UNIX Server login from X-windows client
2.3.1. Verity Security
2.3.1.1. Bad Username
2.3.1.2. Good Username, Bad Password
2.4. Verify Logout from X-windows client

Test Prerequisites

(A list of requirements necessary to run the test. These can include environment reqs
(e.g., NT, with MS Office loaded), tester reqs (e.g., tester is trained in operating MS
Office), software reqs (e.g., test assumes xyz software to have already been loaded),
or other reqs (e.g., paper documents for scanning).) The following conditions must
be met before testing:
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+ The environment is ready to test.
+ Tester is trained in basic usage of UNIX and S-Plus 6.0.4.
+ Testing files are prepared and put in place.

Test Instructions

(Gives any special instructions to the tester. Tester is assumed to be qualified to
execute test.) For each test condition in the Testing Table, the Tester must initial
each graybar section when completed regardless of success or nonsuccess. If the
test condition has been met and Expected Result is the same as the actual result
(the result of executing the test condition), then the test is successful and must be
marked as OK in the OK column. If the test condition has not been met, or the
Expected Results are not exactly the same as the actual results, then the Tester must
stop, report the deviation in the Comments column, and report the occurrence to
the Test Coordinator. At that time, the Test Coordinator will make a judgment on
whether or not the test can be continued. In the event that the deviation is consid-
ered acceptable and that the test can continue, the Test Coordinator must log the
event, any workarounds necessary, and initial the Tester’s comments (this may be
done on the script if there is room). In the event that the deviation is not accept-
able, then the test must stop.

Test Tables
Test tables show:

Line Number: Allows reference for tracking anomalies and errors.

Test Condition: Defines the test.

Expected Results: Defines what should happen. Any deviation is an error.
OK: Were the expected results met?

Initials: Tester proof of execution.

AR S

Comments: Allows information about the test condition.

Signoffs
(Signoffs for Document Owner and Author with printed name and date spaces.)

Author (By signing this the author of this document agrees that the document is
complete and accurate.)

Printed Name Signed Name Responsible Date: MM/DD/YYYY
Author

Owner (By signing this the owner of this document agrees that the document is complete
and accurate.)

Printed Name Signed Name Responsible Date: MM/DD/YYYY

Owner
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Signoffs
(Signoffs for Document Tester and Test Coordinator with printed name and date
spaces)

Tester (By signing this the tester of this document agrees that the test has been
completed and is accurate.)

Printed Name Signed Name Responsible Date: MM/DD/YYYY

Tester

Test Coordinator (By signing this the tester of this document agrees that the test has
been completed and is accurate.)

Printed Name Signed Name Responsible Date: MM/DD/YYYY

Test Coordinator

APPENDIX 3.2 SAMPLE OPERATION QUALIFICATION

Document Number: OQ00-00001 Operation Qualification: | Test Version: 1.0
Document Location: IS Validation | S-Plus 5.1 Reference
Document(s) #: SV00-
Document Owner: Metrician, Appendix A 00001
Pharmaco
Purpose

(This defines the purpose for the current test(s). It may refer to previous tests and/or
documents.) This test is conducted to qualify the operation of S-Plus 5.1. These
tests verify the proper operation of the S-Plus 5.1 software as well as the security of
the software as far as user access to the data and executable programs. It also tests
the backup and recovery of data and executables. These tests will also be used to
establish a baseline for future operational testing.

Scope

(This defines the scope of the test(s). It is a written description of the scope and
restrictions of the test.) Testing is done to prove the S-Plus 5.1 is operational in
accordance with the manufacturer’s criteria. Testing is also done to prove that
data and executable software access is limited to authorized users and only up to
the number of available licenses. Testing is also done to verify the backup and
restoration of selected data and executable files.



76 VALIDATION OF SOFTWARE FOR PHARMACOMETRIC ANALYSIS

Test Requirements
Testing is done to prove the following:

1. Verify the S-Plus 5.1 Operation (these tests are from the S-Plus 2000 Program-
mer’s Guide, Chapter 25)
1.1. Execute validate(); the complete validation test suite
1.2. Verify the validate function code
1.3. Execute the anova test suite in verbose mode to demonstrate an individual
test
1.4. Execute the regress test suite in verbose mode, return and examine the
Boolean result
2. Verify the S-Plus Data Files May only be accessed by Authorized Users
2.1. Verify /home/splus directory is not accessible to unauthorized users
2.2. Verify the /home/splus and /home/“user” subdirectories are (not) writeable
by (unauthorized) authorized users
2.3. Verify the /home/splus and /home/“user” subdirectories are readable by the
authorized group
3. Verify the S-Plus program may be started only by authorized users
3.1. Verify S-Plus or S-Plus 5 may be started only by authorized users
3.2. Verify that the license limit may not be exceeded by authorized users.

4. Verify that a tape backup of data and executable files may be selectively
restored

Test Prerequisites

(A list of requirements necessary to run the test. These can include environment reqs
(e.g., NT, with MS Office loaded), tester reqs (e.g., tester is trained in operating MS
Office), software reqgs (e.g., test assumes xyz software to have already been loaded),
or other reqs (e.g., paper documents for scanning).) The following conditions must
be met before testing:

e The environment is ready to test.
e Tester is trained in basic usage of UNIX and S-Plus 5.1.
e Testing files are prepared and put in place.

Test Instructions

(Gives any special instructions to the tester. Tester is assumed to be qualified to
execute test.) For each test condition in the Testing Table, the Tester must initial
each graybar section when completed regardless of success or nonsuccess. If the
test condition has been met and Expected Result is the same as the actual result
(the result of executing the test condition), then the test is successful and must be
marked as OK in the OK column. If the test condition has not been met, or the
Expected Results are not exactly the same as the actual results, then the Tester must
stop, report the deviation in the Comments column, and report the occurrence to
the Test Coordinator. At that time, the Test Coordinator will make a judgment on
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whether or not the test can be continued. In the event that the deviation is consid-
ered acceptable and that the test can continue, the Test Coordinator must log the
event, any workarounds necessary, and initial the Tester’s comments (this may be
done on the script if there is room). In the event that the deviation is not accept-
able, then the test must stop.

Test Tables
Test tables show:

Line Number: Allows reference for tracking anomalies and errors.

Test Condition: Defines the test.

Expected Results: Defines what should happen. Any deviation is an error.
OK: Were the expected results met?

Initials: Tester proof of execution.

S o

Comments: Allows information about the test condition.

Signoffs
(Signoffs for Document Owner and Author with printed name and date spaces.)

Author (By signing this the author of this document agrees that the document is
complete and accurate)

Printed Name Signed Name Responsible Date: MM/DD/YYYY

Author

Owner (By signing this the owner of this document agrees that the document is complete
and accurate)

Printed Name Signed Name Responsible Date: MM/DD/YYYY

Owner
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Signoffs
(Signoffs for Document Tester and Test Coordinator with printed name and date
spaces:)

Tester (By signing this the tester of this document agrees that the test has been
completed and is accurate)

Printed Name Signed Name Responsible Date: MM/DD/YYYY

Tester

Tester (By signing this the tester of this document agrees that the test has been
completed and is accurate)

Printed Name Signed Name Responsible Date: MM/DD/YYYY

Tester

Test Coordinator (By signing this the tester of this document agrees that the test has
been completed and is accurate)

Printed Name Signed Name Responsible Date: MM/DD/YYYY

Test Coordinator

APPENDIX 3.3 SAMPLE PERFORMANCE QUALIFICATION

Document Number: PQ00-00001 | Performance Qualification: | Test Version: 1.0
Document Location: Quality S-Plus 5.1 Reference Document(s
Assurance #: SV00-00001
Document Owner: Metrician, Appendix A
Pharmaco
Purpose

(This defines the purpose for the current test(s). It may refer to previous tests and/or
documents.) This test is conducted to qualify the performance of S-Plus 5.1. These
tests verify the proper operation of specific, commonly used features of the S-Plus
system software.

Scope

(This defines the scope of the test(s). It is a written description of the scope and restric-
tions of the test.) Testing is done to prove that specific, commonly used features of
S-Plus 5.1 are operational in accordance with the end users needs. The data sets
are obtained from the National Institute of Standards and Technology (Ref. 6) and
academic reference texts (Ref. 7)
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Test Requirements
Testing is done to prove the following:

1. Verify that S-Plus 5.1 performs the NIST StRD Analysis of Variance calculations
to within 3 signficant digits
1.1. Test ANOVA with dataset SiRstv, that is, low degree of stiffness, low
replicates per cell
1.2. Test ANOVA with dataset AtmWtAg, that is, average degree of stiffness,
low replicates per cell
1.3. Test ANOVA with dataset SmLs06, that is, average degree of stiffness, high
replicates per cell
2. Verify that S-Plus 5.1 performs the NIST StRD Linear Regression calculations
to within 3 signficant digits
2.1. Test Linear Regression with dataset Norris, Low difficulty linear
2.2. Test Linear Regression with dataset Nolntl, Average difficulty linear
2.3. Test Linear Regression with dataset Filip, High difficulty polynomial
3. Verify that S-Plus 5.1 performs the NIST StRD Non-linear Regression calcula-
tions to within 3 signficant digits
3.1. Test Nonlinear Regression with dataset Misrala, Lower difficulty
exponential
3.2. Test Nonlinear Regression with dataset Kirby2, Average difficulty rational
3.3. Test Nonlinear Regression with dataset MGHO09, Higher difficulty rational
4. Verify that S-Plus 5.1 performs a General Additive Model with Gaussian error
Distribution and identity link problem correctly to 3 significant digits

Test Prerequisites

(A list of requirements necessary to run the test. These can include environment reqs
(e.g., NT, with MS Office loaded), tester reqs (e.g., tester is trained in operating MS
Office), software reqgs (e.g., test assumes xyz software to have already been loaded),
or other reqs (e.g., paper documents for scanning).) The following conditions must
be met before testing:

e The environment is ready to test.
e Tester is trained in basic usage of UNIX and S-Plus 5.1.
e Testing files are prepared and put in place.

Test Instructions

(Gives any special instructions to the tester. Tester is assumed to be qualified to
execute test.) For each test condition in the Testing Table, the Tester must initial
each graybar section when completed regardless of success or nonsuccess. If the
test condition has been met and Expected Result is the same as the actual result
(the result of executing the test condition), then the test is successful and must be
marked as OK in the OK column. If the test condition has not been met, or the
Expected Results are not exactly the same as the actual results, then the Tester must



88 VALIDATION OF SOFTWARE FOR PHARMACOMETRIC ANALYSIS

stop, report the deviation in the Comments column, and report the occurrence to
the Test Coordinator. At that time, the Test Coordinator will make a judgment on
whether or not the test can be continued. In the event that the deviation is consid-
ered acceptable and that the test can continue, the Test Coordinator must log the
event, any workarounds necessary, and initial the Tester’s comments (this may be
done on the script if there is room). In the event that the deviation is not accept-
able, then the test must stop.

Test Tables
Test tables show:

Line Number: Allows reference for tracking anomalies and errors.

Test Condition: Defines the test.

Expected Results: Defines what should happen. Any deviation is an error.
OK: Were the expected results met?

Initials: Tester proof of execution.

Comments: Allows information about the test condition.

AR e

Signoffs
(Signoffs for Document Owner and Author with printed name and date spaces.)

Author (By signing this the author of this document agrees that the document is
complete and accurate)

Printed Name Signed Name Responsible Date: MM/DD/YYYY
Author

Owner (By signing this the owner of this document agrees that the document is complete
and accurate)

Printed Name Signed Name Responsible Date: MM/DD/YYYY

Owner
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I CHAPTER 4

Linear, Generalized Linear, and
Nonlinear Mixed Effects Models

FARKAD EZZET and JOSE C. PINHEIRO

4.1 INTRODUCTION

Biopharmaceutical research often involves the collection of repeated measures on
experimental units (such as patients or healthy volunteers) in the form of longitu-
dinal data and/or multilevel hierarchical data. Responses collected on the same
experimental unit are typically correlated and, as a result, classical modeling methods
that assume independent observations do not lead to valid inferences. Mixed effects
models, which allow some or all of the parameters to vary with experimental unit
through the inclusion of random effects, can flexibly account for the within-unit
correlation often observed with repeated measures and provide proper inference.
This chapter discusses the use of mixed effects models to analyze biopharmaceuti-
cal data, more specifically pharmacokinetic (PK) and pharmacodynamic (PD) data.
Different types of PK and PD data are considered to illustrate the use of the three
most important classes of mixed effects models: linear, nonlinear, and generalized
linear.

Linear mixed effects (LME) models express the response variable as a linear
function of both the fixed effects and the random effects, with an additive within-
unit error, see Laird and Wase (1) or Searle et al. (2) for a good review of meth-
odology. The frequentist approach to LME models is generally likelihood-based,
with restricted maximum likelihood (REML) being the preferred method of
estimation (3).

Nonlinear mixed effects (NLME) models extend LME models by allowing the
response to be expressed as a nonlinear function of the parameters plus a within-
unit error term. Much of this work in biopharmaceutical research began in the
1970s, pioneered by Sheiner and Beal (4). Exact likelihood estimation is gener-
ally not feasible, as the marginal distribution of the response cannot be expressed
in closed form. Approximate likelihood methods are used instead, with differ-
ent degrees of accuracy and computational intensity having been proposed in the

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene 1. Ette and
Paul J. Williams
Copyright © 2007 John Wiley & Sons, Inc.
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104 LINEAR, GENERALIZED LINEAR, AND NONLINEAR MIXED EFFECTS MODELS

literature; see Davidian and Giltinan (5) for a good review of some of these method-
ologies. A more detailed account of the theory and application of LME and NLME
models, especially under S-Plus (6) can be found in work by Pinheiro and Bates (7).
Research to produce computationally efficient and accurate approximate likelihood
methods for NLME models is still quite active.

Generalized linear mixed models (GLMMs) provide another type of extension of
LME models aimed at non-Gaussian responses, such as binary and count data. In
these models, conditional on the random effects, the responses are assumed inde-
pendent and with distribution in the exponential family (e.g., binomial and Poisson)
(8). As with NLME models, exact likelihood methods are not available for GLMMs
because they do not allow closed form expressions for the marginal distribution of
the responses. Quasilikelihood (9) and approximate likelihood methods have been
proposed instead for these models.

Mixed effects models under a Bayesian framework have been widely studied
and used with the use of Markov chain Monte Carlo methods (10). These methods
have gained particular popularity as complex problems became easily formulated
using the WinBUGS software (11). See Congdon (12) for an extensive coverage of
topics and examples and implementation in WinBUGS.

In this chapter we investigate and illustrate the use of LME and NLME models,
as well as GLMMs using algorithms implemented in the S-Plus functions Ime, nlme,
and glme, respectively. We attempt to demonstrate that, even under fairly complex
hierarchical, correlated data structures, the existing algorithms are capable of prop-
erly estimating the underlying parameters (fixed effects and variance—covariance
components), thus providing reliable unbiased inference.

We begin by considering a simple PK dose proportionality (DP) study in which
subjects receive an experimental drug to evaluate if the increase in exposure is
proportional to dose. We examine the problem in two ways: (a) using an exposure
metric, for example, area under the concentration-time curve (AUC), which leads
to an LME model; and (b) using the concentration data directly, which requires the
use of an NLME model. Concentration data are simulated using different hierar-
chical random effects structures. We then extend the DP example to include a cli-
nical response and explore a pharmacokinetic/pharmacodynamic (PK/PD) NLME
model. Collapsing the clinical response into a binary measure allows the illustration
of GLMMs.

Common features among the three different classes of models and their imple-
mentation within the S-Plus environment come into light during the analysis of the
examples: in particular, the syntax for defining the fixed and random effects in the
models, as well as methods for extracting estimates from fitted objects. All data
sets discussed in this chapter are fictitious: that is, they are generated by simulation.
The reader is encouraged to experiment with the code provided in Appendix 4.1 to
explore alternative scenarios.

4.2 PHARMACOKINETIC DOSE PROPORTIONALITY PROBLEM

Consider a dose proportionality study in which each subject is to receive a number
of doses, usually two or more, of an experimental drug to evaluate if exposure
increases proportionally with dose. We adopt a crossover design and, to keep things
simple, assume that issues related to carryover, period, and sequence effects, as well
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as subject by dose interactions (13), are of no concern in this example. The S-Plus
function sim.dp.mult, included in Appendix 4.1, generates drug concentrations
(C) at times () following drug administration, C(¢), according to the single dose
oral one-compartment PK model:

F -dose-K,

“O=Vk.-k.)

[e—k(,t _ e—kﬂt] (41)

Typically, two types of error are recognized: (a) measurement level error resulting
from error in concentrations due to assays, time of measurement, and so on and
(b) subject level error represented in the model by random effects, accounting for
deviations in the PK parameters between subjects, that is, in absorption (K,), elimi-
nation (K,), and/or volume (V). V is usually expressed as V/F when the fraction of
dose absorbed (F) is unknown.

Formally, we may express C(t) as Ci(t) = f(6, dose;, t) [1 + g,(t)], where Ci(t) and
f(6,, dose;, t) are the measured and predicted concentrations for the ith subject at
the jth dose at time ¢, respectively, and 6, is the vector of PK parameters for the ith
subject. Here, the intersubject variability in the PK parameters is assumed propor-
tional. For instance, volume for the ith subject is defined as V; = V exp(1,y), where
the random effects 7, are independently distributed as N(0, cv-V). The prefix cv
denotes coefficient of variation for V. The measurement error is assumed multipli-
cative, with the g;(¢) independently distributed as N(0, cv-¢). The functional form
of fis determined by the type of PK model being considered; for the DP example
we assume the one-compartment model described above.

A third possible source of variation, accounting for deviations in the PK param-
eters within subject from period to period, often referred to as interoccasion (10)
variability, may also be incorporated in the PK model. For example, we may define
Vii=Vexp(n;v+ njv), where n;y as before represents the intersubject random effect
while 7}y represents the interoccasion random effect within subject, assumed inde-
pendently distributed as N(0, cv-occ-V).

The S-Plus data frame dp1 is generated by calling the function sim.dp.mult
assuming strict dose proportionality and no 1O variability, as illustrated below. Figure
4.1 shows a trellis display of the corresponding concentration—time profiles.

dose <- c¢(5, 10, 20)

time <- ¢(0.5,1,2,4,6,8,12,24,36,48,72,96)

dpl <- sim.dp.mult(nsub = 12, Pars = c(ka = .1, ke = .03, v = 4),
cv.sub = c(ka = .3, ke = .3, v = .3),
cv.error = 0.1, time = time, dose = dose, seed = 123)

A plot of the observed AUC (calculated using trapezoidal rule implemented in
the function aucTrap) versus dose (not shown here) reveals an almost perfect linear
relationship, a consequence of the strict dose proportionality used to simulate the
data.

4.2.1 DP Using AUC in a Linear Mixed Effects Model

Conventional DP analysis proceeds with the calculation of AUC using the trap-
ezoidal rule, followed by an analysis of variance of the resulting values normalized
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FIGURE 4.1 Concentration-time profiles generated using sim.dp.mult.

by dose. A more appealing approach (14) is to define AUC as a function of dose
using a power model:

AUC; = a(dose)Pv; (4.2)

with v; representing an error term. Applying log to both sides gives a linear model
with a DP parameter S.

log(AUC;) =1log(a) + B log(dose;) + log(vy) = a+B log(dose;)) + & (4.3)

Strict DP is achieved when 8= 1. Accounting for within-subject correlation due to
repeated measures on the same subject is accomplished by introducing a subject
effect S:

log(A UCi]-) =0+ ﬁ log(dose]’) + S/‘ + E=0; + ﬁ log(dosej) + & (44)

where o; = o + S, represents the subject intercept. The error g; combines measure-
ment error in AUC and any other sources of error, including model misspecification.
If ¢ is treated as a fixed effect, standard linear regression analysis for independent
data can be used, but information about intersubject variation cannot be provided.
Instead, we consider a linear mixed effects model in which ¢; is assumed random.
This is done using the 1me function in S-Plus with the following function call using
data set dpaucl:
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f.dpaucl <- lme(log(auc) ~ log(dose), data=dpaucl, ~1|subject)
resulting in the following parameter estimates:

Random effects:
Formula: ~ 1 | subject
(Intercept) Residual
StdDev: 0.3650006 0.04121098
Fixed effects: log(auc) ~ log(dose)
Value Std.Error DF t-value p-value
(Intercept) 1.940150 0.1092254 23 17.76281 <.0001
log(dose) 0.981528 0.0121362 23 80.87623 <.0001

The random intercept has an estimated standard deviation (SD) of 0.37 or, equiva-
lently, a coefficient of variation of 37% in the original AUC scale, reflecting the com-
bined subject variation in all three PK parameters—K,, K., and V. The estimated
SD of measurement error in log(AUC) is small, 0.04. The DP parameter (i.e., the
coefficient of log(AUC)) is estimated at 0.98, with a 95% confidence interval (CI)
of (0.96,1.01), consistent with strict dose proportionality.

4.2.2 DP Using Concentration Data in a Nonlinear Mixed
Effects Model

We may alternatively tackle the DP problem by analyzing the raw concentration
data directly, using a reparameterization of the assumed PK model. Because the PK
model is nonlinear in its parameters, an NLME model is needed. In this example,
since interest is centered on the DP assumption, we redefine the oral dose one-
compartment model to have AUC as one of its parameters, using the relation k, =
dose/(AUC x V). The function compl .oral.auc. log defined below implements the
reparameterized oral dose one-compartment model. To enforce positive estimates
of the PK parameters, we have chosen to estimate the parameters on the log scale,
hence the prefix (I = log) preceding the PK parameter names in the argument list
of the function.

compl.oral.auc.log = function(lka, lauc, 1lv, f, dose, time)

{
ka = exp(lka); auc = exp(lauc); v = exp(lv); ke = dose/(auc * v)
(ka * dose * £)/(v * (ka - ke)) * (exp( - ke * time) - exp( - ka * time))

The nlme call for fitting the corresponding nonlinear mixed effects model is

f.dplb <- nlme(conc ~ compl.oral.auc.log(lKa, 1AUC, 1v, 1, dose,
time),
data=dpl, fixed = list(lKa + 1V ~ 1, 1AUC ~ log(dose)),
random = list(subject = pdBlocked(list(lKa ~ 1, 1AUC +
v ~ 1))),
weights = varPower (), start = coef(f.dpla), verbose = T)
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Starting values for fixed effects in the above function call were extracted from a fit
object (f.dpla) using the gnls function, a nonlinear fitting method using generalized
least squares. This is optional as the user may provide his/her own list of starting
values.

We assume a block-diagonal matrix of subject random effects such that ;4 and
n;v are correlated, but independent of 1;,,. Here are the resulting estimates:

Random effects:
Composite Structure: Blocked
Block 1: 1lKa
Formula: lKa ~ 1 | subject
1Ka
StdDev: 0.3078118
Block 2: 1AUC, 1V
Formula: list(lAUC ~ 1 , 1V ~ 1 )
Level: subject
Structure: General positive-definite
StdDev Corr
1AUC 0.3869677 1AUC
1v 0.2228085 -0.925
Residual 0.1006868

Variance function:
Structure: Power of variance covariate
Formula: ~ fitted(.)
Parameter estimates:
power
0.9985222
Fixed effects: list(lKa + 1V ~ 1, 1AUC ~ log(dose))
Value Std.Error DF t-value p-value
1Ka -2.266270 0.0918522 417 -24.6730 <.0001
1v 1.416695 0.0669196 417 21.1701 <.0001
1AUC. (Intercept) 1.964468 0.1138468 417 17.2554 <.0001
1AUC. log (dose) 0.998404 0.0078681 417 126.8926 <.0001

There is a close similarity between the estimates for the intercept and slope
parameter corresponding to log(AUC) in the 1me and nlme fits. It is not surprising
that good estimates are obtained in this data-rich situation. However, reducing the
number of time points in dp1 to include only measurements at 0.5, 1, 4, 12, and 48
hours results in similar estimates, though with a larger SE, suggesting the ability of
performing a DP study with a sparse sampling scheme.

Value Std.Error DF t-value p-value
1AUC. (Intercept) 2.001881 0.1258471 165 15.90724 <.0001
1AUC.log(dose) 0.987246 0.0241469 165 40.88503 <.0001

Thus, in the case of sparse blood sampling schedules using concentration data in
an NLME model offers a practical alternative to using (inaccurately) calculated
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AUC values in an LME model. With the latter approach, an extensive schedule is
needed for accurate AUC determination, in addition to a reliable method for
capturing the AUC portion between the last quantifiable concentration value and
infinity.

4.2.3 DP Using Concentration Data in a NLME Model with
Multilevel Random Effects (Interoccasion Variability)

The LME model of Section 4.2.1 and the NLME model of Section 4.2.2 both
involved two random components: measurement error and subject random effects.
In this section we explore a two-level random effect hierarchy by introducing 10
variability in the PK parameters (K,, K., and V), so that the subject’s parameters
may vary from period to period. Note that this is not a period effect, but rather
an uncontrollable random variation in the subject’s pharmacokinetics. The data
frame dp2, incorporating IO random effects, is obtained by calling sim.dp.mult
as follows:

dp2 <- sim.dp.mult(nsub=12, Pars =c(ka=.1, ke=.03, v=4),
cv.sub = c(ka=.3, ke=.3, v=.3),
cv.occ = c(ka=0.2, ke=0.2, v=0.2),
cv.error=0.1, time = time, dose = dose)

The magnitude of change in K,, K,, or V due to 10 is set to have a cv equal to
20%. A plot of calculated AUC versus dose (not shown) reveals the influence of 10
variability on AUC, leading to a nonlinear relationship with dose.

Ignoring 10 variability and calling 1me as before gives the following estimates:

Random effects:
Formula: ~ 1 | subject
(Intercept) Residual
StdDev: 0.3779992 0.182379

Fixed effects: log(auc) ~ log(dose)
Value Std.Error DF t-value p-value
(Intercept) 2.080637 0.1677046 23 12.40656 <.0001
log(dose) 0.915968 0.0537086 23 17.05440 <.0001

Because AUC is a function of K, and V, its variance is increased with 1O vari-
ability, impacting the measurement error variability in the 1me fit above—hence
the larger residual standard deviation as compared with that obtained in the 1me
fit of the dp1 data. Alternatively, we resort to using the raw concentration data and
incorporate IO random effects in the NLME model by allowing the parameters K,,,
AUC, and V to vary between dose administrations. This is implemented in the nlme
call using the following random statement:

random = list(subject = pdBlocked(list(lKa ~ 1, 1lAUC + 1V ~ 1)),
dose = pdBlocked(list(lKa ~ 1, 1AUC + 1V ~ 1)))
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The second component of the list represents the IO random effects associated with
different dose administrations. The fixed effects estimates for the above model
are

Value Std.Error DF t-value p-value
1Ka -2.233085 0.1110798 393 -20.10343 <.0001
1v 1.427694 0.0843185 393 16.93215 <.0001
1AUC. (Intercept) 1.985077 0.1572971 393 12.61992 <.0001
1AUC.log (dose) 0.986582 0.0459793 393 21.45710 <.0001

and the variance—covariance parameter estimates are

Block 1: 1Ka
Formula: 1lKa ~ 1 | subject
1Ka
StdDev: 0.3574699

Block 2: 1AUC, 1V
Formula: list(lAUC ~ 1 , 1v ~ 1 )
Level: subject
Structure: General positive-definite
StdDev Corr
1AUC 0.3853345 1AUC
1v 0.2646356 -0.904

Composite Structure: Blocked
Block 1: 1Ka
Formula: 1Ka ~ 1 | dose %in% subject
1Ka
StdDev: 0.1968827

Block 2: 1AUC, 1V
Formula: list(lAUC ~ 1 , 1V ~ 1 )
Level: dose %in% subject
Structure: General positive-definite
StdDev Corr
1AUC 0.1903516 1AUC
1v 0.1785101 -0.631
Residual 0.1014465

Variance function:
Structure: Power of variance covariate
Formula: ~ fitted(.)
Parameter estimates:
power
0.9855959

Notice that appropriately adjusting for 1O variability in the NLME model not
only reduced the bias in the estimate of the dose proportionality parameter but also
led to a valid estimate of the residual error standard deviation, a value much closer
to that used to simulate the data, 0.1.
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4.2.4 Comparing Sample and Model Estimates of Random
Effects Parameters

Although the fixed effects have been well estimated, it is also of interest to examine
how closely the estimated standard deviations of the random effects reflect the
true variability in the simulated data. The dp2 data frame includes values of the
generated subject random effects, interoccasion random effects, and measurement
errors, from which sample variances can be obtained and compared to the model
estimates. The intersubject sample standard deviations of log(K,), log(AUC), and
log(V) are 0.33, 0.41, and 0.23, respectively. The corresponding model estimates are
0.36, 0.39, and 0.26. For the IO random effects, the sample SDs are 0.17, 0.22, and
0.17, while the corresponding values obtained in the model fit are 0.20, 0.19, and
0.18, respectively. The sample and model SD for measurement error are both equal
to 0.1, indicating a good agreement overall between sample and model estimates.

4.3 PHARMACOKINETIC-PHARMACODYNAMIC (PK-PD) MODEL

The function sim.pkpd.mult simulates a clinical response (R) on the basis of a
PK/PD model. It incorporates a combined placebo (P) effect and a drug (D) effect.
The placebo effect at time ¢ is defined as

P(f) = BL {1 — exp(—ayt) + exp(—axt)}, a, > a, > 0

while the drug effect is defined as
D(1) = (Emax C()/(ECso + C(1)) and R(1) = {P(1) + D(n)} (1 + &(1))

The placebo model assumes an endogenous response, influenced by baseline (BL),
and two exponential functions. For a, > a,, P(f) increases over time above BL then
declines back to BL for sufficiently large ¢. The drug model is a stimulus model, a
function of plasma concentration C(f), maximal effect E,,,,, and ECs, the concen-
tration that produces 50% of the maximal effect. In this example, C(¢) is generated
without measurement error but is influenced by subject random effects in K,, K.,
and V, as discussed in the previous section. Additional subject random effects are
considered for BL and E,,,.

The data frame pkpdl is generated according to the PK-PD model above, using
the following call to the function sim.pkpd.mult. Figure 4.2 shows a trellis display
of the corresponding time profiles for the simulated PD response.

time <- c¢(0, 0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 14, 21, 28) # days
time <- time * 24 # convert to hours
pkpdl <- sim.pkpd.mult (nsub=24, doseint=24, ndose=29,
Pars =c(ka=.1, ke=.03, v=4, Dbl=8, ec50=5, emax=8),
pdPars=c(al=0.1, a2=0.05),
cv.sub = c(ka=.3, ke=.3, v=.3, bl=0.35,
ec50=0.0, emax=0.35),
cv.error = 0.05, time = time, dose = c(10),
levIncCV = 0, parsForm = list(ke = ~ke*sqgrt(dose/dose)),
seed = 123)
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FIGURE 4.2 Response-time profiles generated using sim.pkpd.mult.

The nlme function was used to fit the PK/PD model using the following function
call:

f.pdl <- nlme(resp ~ placebo.log(lbl, lal, la2, time)
+ drug.log(lemax, lec50, concm),
data=pkpdl, fixed = list(lbl+lal+la2+lemax+ lec50~1),

random = list(subject = pdDiag(list(lbl~1, lemax ~ 1))),
start = log(c (15, .2, .1, 15, 10)),
weight = varPower (), verbose = T)

The estimation results for the f£.pd1 fit are as follows:

Random effects:
Formula: list(lbl ~ 1 , lemax ~ 1 )
Level: subject
Structure: Diagonal
1bl lemax Residual
StdDev: 0.3244805 0.2962879 0.04937675

Variance function:
Structure: Power of variance covariate
Formula: ~ fitted(.)
Parameter estimates:
power
0.9912175
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Fixed effects: 1list(lbl + lal + la2 + lemax + lec50 ~ 1)
Value Std.Error DF t-value p-value
1bl 2.186591 0.067473 284 32.40690 <.0001

lal -2.722665 1.174003 284 -2.31913 0.0211
la2 -2.749036 1.176724 284 -2.33618 0.0202
lemax 1.970194 0.255620 284 7.70751 <.0001
lec50 1.433258 0.406105 284 3.52928 0.0005

Using exp (fixef (£.pdl)) produces estimates of fixed effects, in agreement
with the values used in the simulation (i.e., bl = 8, al = 0.1, a2 = 0.05, emax = 8§,
ec50 =5).

exp (fixef (£.pdl))
1bl lal la2 lemax lec50
8.904805 0.0656994 0.06398949 7.172067 4.192337

The remaining parameters, representing the variance and covariance compo-
nents, are also fairly accurately estimated in this example. All confidence intervals
for the model parameters contain the corresponding value used to simulate the
data.

4.4 REPEATED BINARY MEASURE: GLMM FIT

To illustrate the use of GLMMs to analyze biopharmaceutical data, we artificially
added binary response variable R,(f) to the pkpd1 data of the previous section by
creating an indicator variable for the event that the PD response was >12.

pkpdlS$Rb <- as.integer (pkpdlS$Sresp > 12)

The glme function implements GLMMs in S-Plus, being available in the experi-
mental library s+Correlatedbata, which can be downloaded from the Insightful
Corporation website at www.insightful.com (it requires Version 6.2 or higher of
S-Plus). Its syntax is almost identical to that of 1me, with an additional argument
—family, representing the desired exponential family distribution to be used. Most
commonly used families are binomial and poisson, for binary and count data,
respectively.

For example, to fit a model with a single mean parameter and a single subject
random effect, one could use

f.binl <- glme(Rb ~ 1, pkpdl, ~1|subject, family = binomial)
producing the following estimation results:

Generalized linear mixed-effects model fit by restricted PQL
Family: Binomial with Logit link
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Random effects:
Formula: ~ 1 | subject
(Intercept) Residual
StdDev: 4.328903 0.6263724

Fixed effects: Rb ~ 1
Value Std.Error DF t-value p-value
(Intercept) -0.955206 0.9430668 288 -1.012872 0.312

The interpretation of the estimates in relation to those of the PK/PD model is
not straightforward. The intercept estimate gives the logit of the probability that the
PD response is >12, with the random effect SD corresponding also to the logit scale.
The default estimation method used in glme is restricted penalized quasilikelihood
(PQL), (9). The question of primary interest is factors influencing the dichotomized
response variable R,. Here, it is a question of whether its probability of taking the
value 1 (i.e., of the PD response being >12) changes with drug concentration. We
can investigate that by fitting a different GLMM,

f.bin2 <- glme(Rb ~ concm, pkpdl, ~ 1 | subject, family =
binomial)

with estimated fixed effects:

Fixed effects: Rb ~ concm
Value Std.Error DF t-value p-value
(Intercept) -6.756281 1.679655 287 -4.02242 0.0001
concm 2.770181 0.263541 287 10.51138 <.0001

The highly significant and positive estimate for the concentration (concm) slope
indicates that the logit of the probability increases with increasing concentration,
or more precisely, that the probability that the PD response exceeds 12 increases
when the concentration increases.

4.5 MODEL UNCERTAINTY: SIMULATION

With satisfactory model diagnostics, we may wish to evaluate model predictions.
Predictions are useful in a number of ways, notably for evaluating model behavior
under alternative settings, for example, a range of dosage regimens, or to establish
the likely individual response to specific study design features. We thus distinguish
two types of predictions: population and individual.

Since population predictions represent mean estimates, these are determined
using model estimates (1) and its variance—covariance matrix (X), characterizing
uncertainty in the model estimates. Thus, a single population profile is obtained
by making a single draw from a multivariate normal (MVN) with mean p and
variance X, and substituting in the model equation. The estimates y and X can
be read using fixef (obj) and obj$varFix, respectively, where obj is the name
of the fitted object. However, we combined these two steps using the function
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simPars (getFixPars (obj), N = 1).Asanillustration, we generate N =12 popu-
lation profiles based on the model fit f.pd1.b at a 20mg dose. Figure 4.3 provides the
concentration—time profile while Figure 4.4 provides the response—time profile.
Individual predictions, however, require in addition to g and X the estimated
standard deviations of the random subject effects (7) and corresponding variance—
covariance matrix (Q). The extraction of 7 and Q is less straightforward; but
the function getRanPars does just that. Notice that this function also extracts
estimates and standard errors of other random effects parameters, for example,
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FIGURE 4.3 Population concentration-time profiles (12 replicates).
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FIGURE 4.4 Population response-time profiles (12 replicates).
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FIGURE 4.5 Individual concentration-time profiles (N = 12) from four replicated
studies.

measurement error, or correlation coefficients if random effects are assumed cor-
related. Therefore, caution should be exercised when extracting the appropriate
elements, by appropriately matching the function output with that of the model
fit. A random draw of an individual subject random effects can be obtained using
simPars (getRanPars (obj), N = 1). Substituting into the model equation of a
population profile provides an individual profile from that population. As an illus-
tration, we generate N = 12 individual profiles based on four different population
realizations (representing four study results) using the model fit f.pd1.b at a 20mg
dose. Figure 4.5 shows the concentration—time profile while Figure 4.6 shows the
response—time profile in trellis plots.

Notice the range of resulting clinical response in the four panels of Figure 4.6,
reflecting uncertainty in the estimates as well as magnitude of intersubject variance.
The process described above may be used to calculate various statistics. This can be
particularly useful at the design stage of future clinical trials. For instance, we may
be interested in computing the 5th and 95th percentiles of R at day 7 of treatment
under two sample size scenarios, say, 24 or 36 subjects. For each design, percentiles
are determined based on a large number (say, 1000) of replicated studies. Figure
4.7 depicts the distributions of 5th and 95th percentiles under the two designs, sug-
gesting some, although no substantial, gain in precision is achieved with the larger
sample size.

4.6 SUMMARY

In this chapter we introduce and illustrate the use of linear, nonlinear, and general-
ized linear mixed effects models within the S-Plus environment. Based on personal
experience, the fitting algorithms implemented in these S-Plus functions appear
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FIGURE 4.6 Individual response—time profiles (N = 12) from four replicated studies.
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to be stable and reliable, producing nearly unbiased estimates for problems with
appropriate sample sizes. The syntax of function calls and extraction methods of
results are similar among the various functions, rendering the environment conve-
nient for a wide range of models including multilevel hierarchical variance models.
One limitation of the nlme function in S-Plus is for applications in which the model
function is not expressed in closed form (e.g., a system of differential equations).
Recently, researchers have extended the NLME software to allow a link between
the nlme function and a linear differential equation solver, which can be used
to fit more complex NLME models. The extended nlme function is currently
only available in the R language, as part of the nlmeODE contributed library
(http://nlmeode.sourceforge.net).

We investigate a simple dose proportionality (DP) problem that can be success-
fully analyzed with software for linear regression analysis with independent data.
The DP problem is expanded to include random effects and is thus dealt with as a
linear mixed effects problem using a summary PK measure (AUC), or as a nonlinear
mixed effects problem (up to two levels of random effects) using raw concentration
data. We tend to favor the latter approach, especially in cases of sparse concentra-
tion data. This may be particularly true in studies involving special populations (e.g.,
pediatrics) or when using patient data from Phase 2 or Phase 3 studies. These studies
offer the opportunity to reevaluate assumptions of dose proportionality, bioequiva-
lence, and drug interactions in a larger, more representative, patient population
under varied clinical settings.

The exposition is restricted to two levels of random effects, which are illustrated
as subject random effects and interoccasion variability. Another similar situation
with two levels of random effects may involve random subject effects nested within
random center or study effects. In preclinical allometric studies, used to predict
human drug exposure from animal studies, animal species can be considered as a
random effect in which each species deviates from an allometry relationship (often
drug clearance and body weight) by a fixed but unknown amount. Although the
methods discussed in this chapter are able to deal with more than two levels of
grouping in the data, the ability to reliably estimate a larger number of variance
components is determined by the availability of data at each level. This has not been
explored herein; thus, no guidance is offered on appropriate sample sizes and the
stability of estimation algorithms under these models.

When using mixed effects models in practice, of particular importance is the
derivation of predictions following the model fit. The fixed effect estimates and their
corresponding standard errors allow calculation of population (or mean) predic-
tions and associated uncertainty intervals. The estimated covariance matrix for the
random effects together with the corresponding standard errors allow calculation
of individual predictions and uncertainty intervals. These methods are particularly
helpful at the design stage of new studies, when combined with modeling and simu-
lation approaches.

We have included in Appendix 4.1 the S-Plus functions and scripts used in the
simulation and analysis of the examples presented here. The reader should be able
to reproduce the results using the same seed (=123) and is encouraged to attempt
variations to explore other possibilities. The S-Plus code was not developed with
computational efficiency in mind, but just to illustrate how the different mixed
effects models can be used to analyze PK and PD data in S-Plus. We hope we have
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provided a brief account of mixed effects models and a framework for exploring
such models under S-Plus.
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APPENDIX 4.1 S-PLUS CODE

## Scripts used to produce data sets and perform analysis
## Modeling and simulation functions included at the end of this
## file should be sourced into S-Plus before the scripts can be run

## Dose proportionality example of Section 4.2
dose <- c¢(5, 10, 20)
time <- c¢(0.5, 1, 2, 4, 6, 8, 12, 24, 36, 48, 72, 96)
dpl <- sim.dp.mult (nsub=12, Pars =c(ka=.1, ke=.03, v=4),
cv.sub = c(ka=.3, ke=.3, v=.3),
cv.error = 0.1, time = time, dose = dose, seed = 123)
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dpl.Gd<- groupedData(conc ~ time | subject/dose, dpl,
labels = list(x = “Time”, y = “Concentration”),
units = list(x = “(hrs)”))

trellis.device()
plot(dpl.Gd, display =1, collapse=1, inner = ~dose, aspect =1, grid=F)

aucl <- aucTrap (dpl)

sub <- unique (dpl$subject)

doses <- unique (dpl$dose)

dpauc <- expand.grid(dose=doses, subject=sub)

dpaucl <- cbind(expand.grid(dose=doses, subject=sub), auc = aucl)
dpaucl <- groupedData(auc ~ dose|subject, dpaucl,
labels = list(x = “Dose”, y = “AUC”))

## 1lme fit of Section 2.1

f.dpaucl <- 1lme(log(auc) ~ log(dose), data=dpaucl, ~l|subject)
summary (f.dpaucl)

intervals (f.dpaucl)

## nlme fit of Section 4.2.2

f.dpla <-gnls(conc ~compl.oral.auc.log(1lKa, 1AUC, 1V, 1, dose, time),
dpl, params = list(lKa + 1V ~ 1, 1lAUC ~ log(dose)),
start = log(c(0.1, 100, 1, 4)), verbose = T)

f.dplb <- nlme (conc ~ compl.oral.auc.log(lKa, 1AUC, 1V, 1, dose, time),
data=dpl, fixed = list(lKa + 1V ~ 1, 1AUC ~ log(dose)),
random = list (subject = pdBlocked (list (1lKa~1, 1AUC+1V~1))),
weights = varPower (), start = coef(f.dpla), verbose = T)

summary (f£.dplb)

intervals (f.dplb)

dplsub <- dpl[is.element (dpl$time, c(0.5, 1, 4, 12, 48)),]
f.dplbSub<-nlme (conc~compl.oral.auc.log(lKa, 1AUC, 1V, 1, dose, time),
data=dplsub, fixed=1list (1lKa + 1V~ 1, 1AUC ~ log (dose) ),
random = list (subject =pdBlocked (list (1lKa~1, 1AUC+1V~1))),
weights = varPower (), start = coef(f.dpla), verbose = T)
summary (f.dplbSub)
intervals (f.dplb)

## IO example of Section 4.2.3
dp2 <- sim.dp.mult(nsub=12, Pars =c(ka=.1, ke=.03, v=4),
cv.sub = c(ka=.3, ke=.3, v=.3),
cv.occ = c(ka=0.2, ke=0.2, v=0.2),
cv.error=0.1, time = time, dose = dose, seed = 123)
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auc2 <- aucTrap (dp2)

sub <- unique (dp2$subject)

doses <- unique (dp2$dose)

dpauc <- expand.grid(dose=doses, subject=sub)

dpauc2 <- cbind(expand.grid(dose=doses, subject=sub), auc = auc2)
dpauc2 <- groupedData(auc ~ dose|subject/dose, dpauc2,
labels = list(x = “Dose”, y = “AUC”"))
## 1lme fit
f.dpauc2 <- 1lme(log(auc) ~ log(dose), data=dpauc2, ~l|subject)

summary (f.dpauc2)
intervals (f.dpauc2)

# nlme fits

f.dp2a <-gnls(conc ~ compl.oral.auc.log(lKa, 1AUC, 1V, 1, dose, time),
dp2, params = list(lKa + 1V ~ 1, 1AUC ~ log(dose)),
start = log(c(0.1, 100, 1, 4)), verbose = T)

f.dp2b <- nlme (conc ~ compl.oral.auc.log(1lKa, 1AUC, 1V, 1, dose, time),
data=dp2, fixed = list(lKa + 1V ~ 1, 1AUC ~ log(dose)),
random=1list (subject =pdBlocked(list(1lKa~1, 1AUC+1V~1))),
weights = varPower (), start = coef(f.dp2a), verbose = T)

f.dp2c<-update (f.dp2b, random=1ist (subject=pdDiag (lKa+1AUC+1V~1),
dose = pdbhiag(lKa + 1AUC + 1V ~ 1)))

f.dp2d <- update(f.dp2c, start = list(random = ranef (f.dp2c)),
random= list (subject =pdBlocked(list(lKa~1, 1AUC+1V~1)),
dose = pdBlocked(list(lKa ~ 1, 1AUC + 1V ~ 1))))

summary (f.dp2d)
intervals (f.dp2d)

## PK-PD model example of Section 4.3
time <- c¢(0,.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 14, 21, 28) # days
time <- time * 24 # convert to hours

pkpdl <-
sim.pkpd.mult (nsub=24, doseint=24, ndose=29,
Pars =c(ka=.1, ke=.03, v=4, Dbl=8, ec50=5, emax=8),
pdPars=c(al=0.1, a2=0.05),
cv.sub = c(ka=.3, ke=.3, v=.3, bl=0.35, ec50=0.0,
emax=0.35),
cv.error = 0.05, time = time, dose = c(10),
levIncCV = 0, parsForm = list(ke = ~ke*sgrt(dose/dose)),
seed = 123)
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pkpdl.Gd<- groupedData(resp ~ time | subject, pkpdl,
labels = list(x = “Time”, y = “R”),
units = list(x = “(hrs)”))

plot (pkpdl.Gd, aspect = 1, grid = F)

f.pdl <-
nlme (resp ~ placebo.log(lbl, 1lal, 1la2, time)+drug.log(lemax,
lec50, concm),
data=pkpdl.Gd, fixed = list(lbl+lal+la2+lemax+ lec50~1),
random = list(subject = pdbhiag(list(lbl~1l, lemax ~ 1))),
start = log(c (15, .2, .1, 15, 10))
weight=varPower (), verbose = T)

summary (f.pdl)
exp (fixef (f.pdl))
intervals (f.pdl)

## GLMM example with binary response, Section 4.4
pkpdlS$SRb <- as.integer (pkpdlS$Sresp > 12)

mean (pkpdlSRDb)

mean (tapply (pkpdlS$SRb, pkpdlsSsubject, mean))

f.binl <- glme(Rb ~ 1, pkpdl, ~1|subject, family = binomial)
summary (f.binl)

exp (fixef (f.binl) )/ (1l+exp (fixef (f.binl)))

f.bin2 <- update(f.binl, Rb ~ concm)

summary (f.bin2)

## Simulation example of Section 4.5

#

# Simulate 12 trials (set pop=T)

#

sim <- sim.IP(dose=20, doseint=24, ndose=14,
time=c(seqg(0,1,by=0.1), seqg(l,14,by=1)), nsubject=12,
replicates=12, pop=T, seed=123)

xyplot (concm ~ time , sim, panel = panel.superpose, groups = study,

type = “1”, pch=16, 1lwd=1l, col=c(1l),layout=c(l,1),aspect=0.75,
strip = function(. . .) strip.default(. .., style = 1),
par.strip.text = c(col=1), xlab = “Time (hr)”, ylab = “Response”)

xyplot (resp ~ time , sim, panel = panel.superpose, groups = study,

type = “1”, pch=16, 1lwd=1, col=c(l),layout=c(1l,1),aspect=0.75,
strip = function(. . .) strip.default(. .., style = 1),
par.strip.text = c(col=1),

xlab = “Time (hr)”, ylab = “Response”)
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#

# Simulate 4 studies with 12 subjects each

#

sim <- sim.IP(dose=20, doseint=24, ndose=14, time=c(0, 0.5, 1, 2,
3, 7, 14),

nsubject=10, replicates=4, pop=F, seed=123)
trellis.device (graphsheet, color=F)

xyplot (concm ~ time|factor (paste(“Study”,study)) , sim,
panel = panel.superpose, groups = sub, type = “b”, pch=16,
cex=0.75,
lwd=1, 1lty=1, col=c(1l),layout=c(2,2),aspect=0.75,
strip = function(. . .) strip.default(. .., style = 1),
par.strip.text=1list(cex=1.5,col=1), scales=list(cex=1.2),
xlab = “Time (hr)”, ylab = “Concentration”)

xyplot (resp ~ time|factor (paste(“Study”,study)) , sim,
panel = panel.superpose, groups = sub, type = “b”, pch=16,
cex=0.75,
lwd=1, 1lty=1, col=c(1l),layout=c(2,2),aspect=0.75,
strip = function(. . .) strip.default(. .., style = 1),
par.strip.text=list(cex=1.5,col=1), scales=list(cex=1.2),
xlab = “Time (hr)”, ylab = “Response”)

HHAH AR R R

#

#

# Modeling and simulation functions

# Should be sourced into S-Plus before scripts are run
#
#
#

HHAHHH SRR R R

compl.oral <-
function(ka, ke, v, f, dose, time)

(ka * dose * f)/(v * (ka - ke)) * (exp( - ke * time) - exp( -
ka * time))

}

complss.oral <-
function(ka, ke, v, f, dose, time, tau)

(ka * dose * f)/(v * (ka - ke)) * (exp( - ke * time) /(1 - exp( - ke *
tau)) - exp( - ka * time)/ (1 - exp( - ka * tau)))
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compl.oral.auc.log <-
function(lka, lauc, 1lv, £, dose, time)

ka <- exp(lka)

auc <- exp(lauc)

v <- exp(lv)

ke <- dose/(auc * v)

(ka * dose * f)/(v * (ka - ke)) * (exp( - ke * time) - exp( -
ka * time))

}
profn <-
function(ka, ke, v, f, dose, time, tau, proftype, ndose)
{
u0 <- (proftype == 0) * compl.oral(ka , ke, v, f, dose, time) +

(proftype != 0) * complss.oral(ka, ke , v, f, dose, time, tau)
if (ndose > 1) {
nn <- ndose - 1
for(i in 1l:nn) {
ul <- compl.oral(ka , ke , v, £, dose, as.double(time > 1 * tau) *
(time - 1 * tau))
u0 <- u0 + ul

u0
}

#

# Placebo model

#

placebo <-
function(bl, al, a2, time)

bl + 0.5 * (1- exp(-al*time) + exp(-a2*time) )
}

placebo.log <-
function(lbl, lal, la2, time)

bl <- exp(lbl); al <- exp(lal); a2 <- exp(la2)
bl * (1- exp(-al*time) + exp(-al2*time) )

}

#

# Drug model
#

drug <-
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function (emax, ec50, conc)

{
(emax * conc)/ (ec50+conc)

}
drug.log <-

function(lemax, lec50, conc)

emax <- exp(lemax); ec50 <- exp(lec50)
(emax * conc)/ (ec50+conc)

125

Calculate AUC using trapezoidal rule

H*+  H H H

aucTrapEl <-
function (data)

N <- nrow(data)
1f(N == 1) return(NA)

0.5 * sum(diff (dataStime) * (dataSconc|[ - N] + dataSconc([-1]))

aucTrap <-

function(data, conc = “conc”, sub = ‘“subject”, time = “time”,

dose = “dose”)

sub <- datal, sub]
dataN <- datal, c(conc, time)]
names (dataN) <- c(“conc”, “time”)
if (is.element (dose, names(data))) {
sub <- paste(sub, datal, dose]l, sep = “:7)
}
sub <- factor(sub, levels = unique(sub))
val <- sapply(split(dataN, sub), aucTrapEl)
val

}
#

# Extracts random effects covariance matrix from Ilme/nlme object

#

reffvar <-
function (obj, level = 1)

val <- pdMatrix(objs$modelStruct$reStruct)
sig2 <- objssigma”?2
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for(i in seg(along = wval))
val[[i]] <- sig2 * wvall[[i]]
if (length(level) == 1) {

val[[levell]]
}
else {
val[level]

### Multilevel models

#H##

### Simulate data for crossover dose proportionality study
### Including possible increase in cv due to dose

sim.dp.mult <-
function (nsub, Pars, cv.sub, cv.occ = NULL, cv.error, time, dose,
incCV.sub = 0, incCV.occ = levIncCVv = 0,

0,
parsForm = NULL, seed = NULL)

if (!is.null (seed)) set.seed(seed)

np <- length(Pars) # number of parameters

nd <- length (dose) # number of doses

nb <- length(cv.sub) # number of subject random effects

no <- length(cv.occ) # number of inter-occasion randomeffects, if any
minD <- min(dose)

diffD <- diff (range(dose))

## random effects at subject level
reffSub <- t(diag(cv.sub) %$*% array (rnorm(nsub * nb), c(nb, nsub)))
## random effects at occasion within-subject level
if (no > 0) {

reffOcc <- t(diag(cv.occ) %$*%$ array(rnorm(nsub * no * nd),

c(no, nsub * nd)))
}
nt <- length(time) # number of time points
## expanding random effects and covariates to match length of data
reffSub <- reffSublrep(l:nsub, each = nd * nt), ]
dimnames (reffSub) [[2]] <- names (cv.sub)
if (no > 0) {
reffOcc <- reffOcclrep(l: (nsub*nd), each = nt), ]

dimnames (reffOcc) [[2]] <- names (cv.occ)

reffOcc <- data.frame(reffOcc)
} else {

reffOcc <- NULL



time <- rep(time, nsub * nd)

dose <- rep(rep(dose, each = nt), nsub)
sub <- rep(l:nsub, each = nd * nt)
incD <- (dose - minD)/diffD

## increasing CV of reffs, if needed

if (is.element(l, levIncCV)) {
if (nb > 1 && (length(incCV.sub) ==
incCV.sub <- rep(incCV.sub, nb)
}

## subject level reffs
for(i in 1:nb) {

1))

(1 + incD *

reffSub[,i] <- reffSub[,i] *
}
}
reffSub <- data.frame(reffSub)
if (is.element (2, levIncCV) & (no > 0))

## occasion within-subject level reffs

if (no > 1 &&
incCV.occ <-

}

for(i in 1:no)
reffOcc[,1i]

(length (incCV.occ)

rep (incCV.occ, no)

{

reffOcc[,1] *

<-—

}

1))

(1 + incD *
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{

incCV.sub[i])

{

{

incCVI[i])

## checking if any parameter is to be allowed to vary with dose

Pars <- as.vector (Pars)
ka <- Pars[l] ; ke <- Pars[2] ; v <- Pars[3]
if (!is.null (parsFormS$Ska)) {
ka <- eval (parsForm$ka[[2]], list(ka = ka, dose = dose))
}
if (!is.null (parsFormS$Ske)) {
ke <- eval (parsForm$Ske[[2]], list(ke = ke, dose = dose))
}
if (!is.null (parsFormS$Sv)) {
v <- eval (parsForm$v([[2]], list(v = v, dose = dose))
}
updReff <-
function(var, namVar, datal, data2)
{
val <- 0
if (!is.na(match(namvVar, names(datal)))) wval <- wval + datall,
namvar ]
if (!is.null (data2) && !is.na(match(namVar, names (data2))))
val <- wval + data2[, namVar]

var * exp(val)
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## combining fixed and random effects to form parameter values
ka <- updReff (ka, “ka”, reffSub, reffOcc)

ke <- updReff (ke, “ke”, reffSub, reffOcc)

v <- updReff (v, “v”, reffSub, reffOcc)

## concentrations

concO <- compl.oral(ka, ke, v, 1, dose, time)
err <- rnorm(length(conc0), 0, cv.error)

conc <- concO * (1 + err)

val <- data.frame(subject = sub,
dose = dose,
time = time,
ka = ka,
ke = ke,
v o= Vv,
x0 = concO,
conc = conc,
reffSub = reffSub,
err = err)

if (no > 0) val$reffOcc <- reffOcc
val

## multiple dose PK-PD study

sim.pkpd.mult <-
function (nsub, doseint, ndose,
Pars, pdPars, cv.sub, cv.occ = NULL, cv.error, time, dose,
incCV.sub = 0, incCV.occ = 0, levIncCV = 0,
parsForm = NULL, seed = NULL)

if (!is.null(seed)) set.seed(seed)
np <- length(Pars) number of parameters

nd <- length(dose) number of doses

nb <- length(cv.sub) number of subject random effects

( #
( #
( #
no <- length(cv.occ) # number of inter-occasion random effects,
if any

minD <- min(dose)

diffD <- diff (range(dose))

## random effects at subject level
reffSub <- t(diag(cv.sub) %$*% array(rnorm(nsub * nb), c(nb, nsub)))
## random effects at occasion within-subject level
if (no > 0) {
reffOcc <- t(diag(cv.occ) %*%$ array(rnorm(nsub * no * nd), c(no,
nsub * nd)))
}

nt <- length(time) # number of time points
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## expanding random effects and covariates to match length of data
nd * nt), 1]

reffSub
dimnames

<- reffSubl[rep(l:nsub,

(reffSub) [[2]] <- names (cv.sub)

if (no > 0) {
reffOcc <- reffOcclrep(l: (nsub*nd),

each =

each =

dimnames (reffOcc) [[2]] <- names (cv.occ)

reffOcc <-

} else {

reffOcc <- NULL

}

data.frame (reffOcc)

time <- rep(time, nsub * nd)
dose <- rep(rep(dose, each = nt), nsub)
sub <- rep(l:nsub, each = nd * nt)
incD <- (dose - minD) /diffD
## increasing CV of reffs, if needed
if (is.element(1l, levIncCV)) {
if (nb > 1 && (length(incCV.sub) == 1)) {

incCV.sub <- rep(incCV.sub,

}

## subject level reffs

for(i in 1:nb) {
reffSub[,1] <- reffSubl[,i]

}
reffSub
if (is.e

if (no

}

<- data.frame (reffsSub)
lement (2, levIncCV) &

for(i in 1:no) {
reffOcc[,1] <- reffOccl[,1i]

nb)

* (1 + incD *

(no > 0)) {
## occasion within-subject level reffs

> 1 && (length(incCV.occ) ==
incCV.occ <- rep(incCV.occ,

no)

1)) |

* (1 + incD *

nt),

]

incCV.sub[i])

incCVvI[i])

## checking if any parameter is to be allowed to vary with dose

Pars <- as.vector (Pars)
ka <- Pars[l] ; ke <- Pars[2] ; v <- Pars[3]
bl <- Pars[4] ; ecb0 <- Pars[b] ; emax <- Pars|[6]
pdPars <- as.vector (pdPars)
al <- pdPars[l]; a2 <- pdPars[2]
if (!is.null (parsFormS$Ska)) {
ka <- eval (parsForm$ka[[2]], list(ka = ka, dose
}
if (!is.null (parsFormS$Ske)) {
ke <- eval (parsFormS$ke[[2]], list(ke = ke, dose

dose) )

dose) )
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}
if (!is.null (parsFormSv)) {
v <- eval (parsFormsv[[2]], list(v = v, dose = dose))
}
if (!is.null (parsFormS$bl)) {

bl <- eval (parsForm$bl[[2]], list(bl = bl, dose = dose))
}
if (!is.null (parsFormSec50)) {
ec50 <- eval (parsForm$ec50[[2]], list(ec50 = ec50, dose = dose))
}
if (!is.null (parsFormSemax)) {
emax <- eval (parsForm$emax[[2]], list(emax = emax, dose = dose))
}
updReff <-
function(var, namVar, datal, data2)
{
val <- 0
if (!is.na(match(namvar, names(datal)))) val <- val + datall,
namvar]
if (!is.null(data2) && !is.na(match(namvVar, names (data2))))
val <- val + data2[, namVar]

var * exp(val)
}
## combining fixed and random effects to form parameter values
ka <- updReff(ka, “ka”, reffSub, reffOcc)
ke <- updReff (ke, “ke”, reffSub, reffOcc)
v <- updReff (v, “v”, reffSub, reffOcc)

## combining fixed and random effects to formparameter values for PDmodel
bl <- updReff(bl, “bl”, reffSub, reffOcc)

ec50 <- updReff(ec50, “ec50”, reffSub, reffOcc)

emax <- updReff (emax, “emax”, reffSub, reffOcc)

## concentrations

concO <- compl.oral(ka, ke, v, 1, dose, time)

err <- rnorm(length(conc0), 0, cv.error)

conc <- concO * (1 + err)

concm <-— profn(ka,ke,v,1,dose, time,doseint,proftype=0,ndose)
placebo <- placebo(bl, al, a2, time)

drug <- drug(emax, ec50, concm)

err <- rnorm(length(concm), 0, cv.error)
resp <- (placebo + drug) * (1 + err)
val <- data.frame(subject = sub,

dose = dose,

time = time,

ka = ka,

ke = ke,
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v = Vv,
bl=bl,
ec50=ec50,
emax=emax,
al=al,
az=a2,

x0 = concO,
conc = conc,

concm=concm,
placebo=placebo,
drug=drug,
resp=resp,
reffSub = reffSub,
err = err)

if (no > 0) valSreffOcc <- reffOcc

val

}

#

# Fixed effects and corresponding covariance matrix

#

getFixPars <-
function (object)

## fixed effects estimates and var-cov matrix
list (coef = fixef(object), var = objectsSvarFix)

}
#

# Variance-covariance components and corresponding covariance
matrix

#

getRanPars <-
function (object)

## variance-covariance components estimates and var-cov matrix
aux <- object$apVar

if (!is.numeric(aux)) stop(aux)
val <- list(coef = attr(aux, “Pars”))
attr (aux, “Pars”) <- attr(aux, “natural”) <- attr(aux, “natUn-

cons”) <- NULL
val$Svar <- aux
val

}

### simulate parameters according to estimated distribution from
NLME
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simPars <-
function(object, N = 1)

## simulate parameters according to mean = coef, var = var
val <- rmvnorm(N, mean = object$coef, cov = objectS$Svar)
dimnames (val) <- 1list(1:N, names (objectS$Scoef))
val

}

convRanPars <-
function (pars)

## converts unconstrained simulated values for var-cov

## components into “natural” parameters, in DP example

N <- length(pars)

sig <- exp(pars[N])

power <- pars[N - 1]

pars <- pars[l:(N-2)]

pars <- exp(pars)

pars[c(4, 8)] <- (pars[c(4,8)] - 1)/(pars[c(4,8)] + 1)

names (pars) <-rep(c(«sd(1lKa)», «sd (1AUC)», «sd (1V)», «cor (1AUC, 1V)»),2)
list (Subject = pars([5:8],

“Dose $%IN% Subject” = pars[l:47,
power = power,
sigma = sig)

#

# Simulate clinical response in a trial.

# nsub represents number of subjects

# replicates represents the number of clinical studies to be simulated.
# The parameter pop if set = T will calculate population estimates.
# In this case subject random effects are set to zero, and

# number of subjects is forced = 1.

#

sim.IP <-
function (dose, doseint, ndose, time, nsubject, replicates, pop, seed=NULL)

nsub = nsubject

if (pop) {nsub <- 1}

dose <- dose # mg

doseint <- doseint # hours

ndose <- ndose

## Invoke fixed and random effects for the PK and PD models



pkobj <- f.dplb

fxPk <- getFixPars (pkobj)

rnPk <- getRanPars (pkobj)

pdobj <- f.pdl

fxPd <- getFixPars (pdobj)

rnPd <- getRanPars (pdobj)

##

if(!is.null (seed)) set.seed(seed)
sub <- 1l:nsub

nstudy <- replicates

study <- 1l:nstudy

time0 <- time # days
time0 <- timeO * 24 # convert
#4#
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to hours

## Generate concentrations at SS using pk estimates of object

f.dpl.d
simfxPk <- simPars (fxPk, N = nstudy)

simrnPk <- simPars (rnPk, N = nstudy)

# samples from pd model,

# i.e. bl al, a2, emax and ec50
# samples from random effects
# (in bl,
# power parameter and sigma

emax and ec50),

# Generate response variable using pkpd estimates of object f.pdl.b

simfxPd <- simPars (fxPd, N = nstudy)

simrnPd <- simPars (rnPd, N = nstudy)

# samples from pd model,

#1.e. bl al, a2, emax and ec50
# samples from random effects
# (in bl,
# power parameter and sigma

emax and ec50),

log (dose)

##

## lauc <- int + beta * log(dose)
#4# ke <- dose/(auc * v)

lauc <- simfxPk[,3] + simfxPk[,4] *
lka <- simfxPk[,1]

ke <- dose/ (exp(lauc) * exp(simfxPk[,2]))
1v <- simfxPk[, 3]

1bl <- simfxPdl[,1]

lal <- simfxPdl[, 2]

la2 <- simfxPdl[, 3]

lemax <- simfxPdl[,4]

lec50 <- simfxPd[,5]

# bl

# al

# a2
# emax
# ec50
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lauc <- t(array(lauc, c(nstudy, nsub)))
lka <- t(array(lka , c(nstudy, nsub)))
lv <- t(array(lv , c(nstudy, nsub)))
1bl <- t(array(lbl , c(nstudy, nsub)))
lal <- t(array(lal , c(nstudy, nsub)))
la2 <- t(array(la2 , c(nstudy, nsub)))
lemax <- t(array(lemax, c(nstudy, nsub)))
lec50 <- t(array(lec50, c(nstudy, nsub)))
if (!'pop) {

cv.ka <- exp(simrnPk[,1])

cv.auc <- exp(simrnPk[,2])

cv.v <- exp(simrnPk[,31])

cv.bl <- exp(simrnPd[,1])

cv.emax <-
cv.ec50 <-

exp (simrnPd[,2])
exp (simrnPd[,3])

if (nstudy==1) {
ran.ka <- t(cv.ka %*% array(rnorm(nsub * nstudy), c(nstudy,
nsub) ) )
ran.auc <- t(cv.auc %*% array(rnorm(nsub * nstudy), c(nstudy,
nsub) ) )
ran.v <- t(cv.v $%$*% array(rnorm(nsub * nstudy), c (nstudy,
nsub) ) )
ran.bl <- t(cv.bl %*% array(rnorm(nsub * nstudy), c(nstudy,
nsub) ) )
ran.emax <- t(cv.emax %*% array(rnorm(nsub *nstudy), c(nstudy,
nsub) ) )
ran.ec50 <- t(cv.ec50 %*% array(rnorm(nsub *nstudy), c(nstudy,
nsub) ) )
}
if (nstudy>1) {
ran.ka <- t(diag(cv.ka) %*%$ array(rnorm(nsub * nstudy) ,
c(nstudy, nsub)))
ran.auc <- t(diag(cv.auc) %*%$ array(rnorm(nsub * nstudy) ,
c(nstudy, nsub)))
ran.v <- t(diag(cv.v) %*% array(rnorm(nsub * nstudy), c(nstudy,
nsub) ) )
ran.bl <- t(diag(cv.bl) %*%$ array(rnorm(nsub * nstudy) ,
c(nstudy, nsub)))
ran.emax<- t(diag(cv.emax) %*% array(rnorm(nsub * nstudy) ,
c(nstudy, nsub)))
ran.ec50 <- t(diag(cv.ec50) %$*% array(rnorm(nsub * nstudy),
c(nstudy, nsub)))
}
lka <- lka+ran.ka
lauc <- lauc+ran.auc
lv <- lv+ran.v
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1bl <- 1lbl+ran.bl

lemax <- lemax+ran.emax

lec50 <- lec50+ran.ec50
}

lke <- log(dose) - (lauc + 1v)

dl <- length(timeO)

d2 <- nsub

d3 <- nstudy

concm <- array (double(dl1*d2*d3),dim=c(dl,d2,d3))
resp <- array (double(dl1*d2*d3),dim=c(dl,d2,d3))

## compute Response profiles
for (n in 1l:nstudy) {
for (m in 1l:nsub) {
for (i in 1l:length(time0)) {
## Conc entration profile
concm[i,m,n] <-
profn(exp(lka[m,n]),exp(lke[m,n]),exp(lv[m,n]),1,dose, time
0[1], doseint,proftype=0,ndose)
## Response profile
respl[i,m,n] <-
placebo.log(lbl[m,n], lal[m,n], la2[m,n], timeO[i]) +
drug.log(lemax[m,n], lec50[m,n], concm[i,m,n])

}

data.frame (time=rep (timel0,nsub*nstudy) ,
study=rep (study, each=1length (time0) *nsub) ,
sub=rep (rep(sub, each=length(timel)), nstudy),
concm =as.vector (concm) ,
resp=as.vector (resp))






I CHAPTER 5

Bayesian Hierarchical Modeling with
Markov Chain Monte Carlo Methods

STEPHEN B. DUFFULL, LENA E. FRIBERG, and CHANTARATSAMON DANSIRIKUL

5.1 INTRODUCTION

5.1.1 Background

There is a large volume of literature that deals with Bayesian ideas and methods of
data analysis, decision analysis, and design. Much of this literature is highly tech-
nical and arises from specialized settings; for example, Gibbs sampling, which is
now recognized as an important Bayesian tool, originally arose based on solving a
problem in engineering in the early 1980s (1). In this chapter we focus on practical
applications of Bayesian methods for analysis of data that arise from either phar-
macokinetic (PK) or pharmacokinetics/pharmacodynamic (PK/PD) studies. Where
examples of model-based notation and code are provided, we have done so based
on the general structure used by WinBUGS. This chapter is divided into four main
sections. The first section provides a brief introduction to Bayesian hierarchical
modeling. In Section 5.2, we provide a how to for defining priors. In Section 5.3,
we introduce methods for model discrimination in a Bayesian setting. Finally, in
Section 5.4, we provide a summary.

Before embarking on our initial aim of describing Bayesian hierarchical model-
ing in a pharmacometric setting, it is worth devoting a few words to the notion of
what constitutes a Bayesian analysis. At a first glance it may seem obvious as to
what constitutes a Bayesian analysis (simply anything called “Bayesian” would
be a good initial point for categorizing methods). Unfortunately, this simplifica-
tion is not always the case; nor is it particularly helpful. Compare, for instance,
empirical Bayes’s estimates of parameters versus Bayesian estimates (e.g., see the
POSTHOC option relating to the “FO” method in NONMEM (2)). In accordance
with Bayes’s expression (Eq. (5.1)), the Bayesian approach involves the incorpora-
tion of prior beliefs about the parameters 6, given by 7(6), with study outcomes (Y).
The study outcomes are expressed as the likelihood of the data given the model and
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parameter values n(Y | 6) (termed the likelihood), to provide updated beliefs about
the parameters 7(6 | Y), termed posterior beliefs.

2(6]Y) = n(Y|0)7(6)

(YY) (5.1)
We have used the greek letter r as it is not used to represent its numerical value in
this chapter—and (in an abuse of notation) in the above expression it can be used
to mean either the probability of (elsewhere we have used Pr) or the probability dis-
tribution of (elsewhere we have used p( )). The denominator, 7(Y), is the marginal
distribution of the data and is in essence unable to be quantified for PK or PK/PD
analyses (it is equal to the multiple integral of the numerator over all parameters).
Hence, Bayes’s expression is often written to the level of proportionality 7(6 | Y)
o (Y | 0)m(6). When interpreting Bayes’s expression, it appears that the funda-
mental principle of the Bayesian approach is to learn about some experiment as the
“weighted average” of some prior beliefs and observations that arise from the actual
experiment itself. However, if the prior were set to be essentially noninformative
(i.e., uniform over the plausible range of parameter values), then the posterior is
proportional to the likelihood, that is, 7(6 | Y) < n(Y | 6), and no influence of the
prior will be discernable. Yet the analysis could still be Bayesian. The corollary of
this consideration is where priors are used but the analysis is termed non-Bayesian
(e.g., see Ref. 3). In this particular case, the investigators used prior information
formally in their analysis but claimed the analysis to be non-Bayesian. So, it can be
concluded that including a prior is not exclusive to Bayesian analyses. One attri-
bute that is nonfrequentist is the consideration that parameter values themselves
are random variables that arise from some unknown distribution, which contrasts
with nonBayesian theory where it is believed that there is only a single true set of
parameter values that solve for the data and model. This then leads to confusion
over whether the maximum a posteriori method of Bayesian forecasting (see Ref.
4) is truly Bayesian since the goal is to locate a point estimate at the mode of the
posterior distribution of the parameters rather than the full distribution. Some may
consider this approach to be empirical Bayes.

It is not our goal, however, to present all sides to this argument but rather to
make the reader aware that many contradictions exist and that application of
various methods is perhaps a sufficient goal. For the purposes of this chapter, we
refer to fully Bayesian methods as those that give rise to knowledge about the full
posterior distribution of the parameters, which is a function of the joint distribu-
tion of the likelihood and the prior. This process allows for the uncertainty in the
parameters to be modeled explicitly.

5.1.2 Bayesian Methods for Population PK/PD Analysis:
Hierarchical Modeling

Similar to the non-Bayesian framework for analysis of repeated measures data, the
Bayesian setting also shares the same format for describing stages 1 and 2 of the
hierarchical model but has the addition of the third stage assigned to specification
of the priors (see Ref. 5 for an in-depth discussion of the hierarchical framework for
analysis, and for a comparison between MCMC and maximum likelihood methods
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readers are referred to Ref. 6). In theory, the Bayesian approach can accommodate
any number of levels in the hierarchy that may represent different levels associated
with the random effects terms. An obvious example is the inclusion of between-
occasion variability (see Lunn and Aarons (7) for a description) to make a four-
stage hierarchical model. For simplicity, a standard three-stage hierarchical model is
shown. The choice of probability density functions for each of the stages is discussed
in more detail in Section 5.2, where specification of the prior is considered.

Stage 1—Model for the Data

yit ~N(f(6:,x;),0%) (5.2)

Here the data y;;, the jth observation for the ith subject, are assumed to be known
and independently normally distributed around the model prediction f(6, x;) with
variance o’. 6, represents a vector of individual parameter values for the ith indi-
vidual and x; is the sampling time.

Stage 2—Model for Heterogeneity Between Subjects
6, ~N,(0,Q) (5.3)

Here 0 is a vector of mean population pharmacokinetic parameters and Q is the
variance—covariance matrix of between-subject random variability. N, represents a
p-dimensional multivariate normal distribution, where p is the number of param-
eters. It is often more useful to consider the values of the parameters for the indi-
vidual to be related to the population parameters via a covariate relationship, in
which case the expression may be written as

0.~ N,(g(6,z;),Q) (54)

In this notation, g(, z;) is used to represent a function (g), perhaps a linear combina-
tion of covariates, that describes the expectation of the ith subjects parameter vector
6; conditional on their demographic characteristics (z;) and population parameter
values (6). The variance-covariance matrix (Q) therefore describes the random vari-
ability between subjects that is not able to be explained by covariates.

Stage 3—Model for the Priors The third stage involves specification of the prior

structure (this is discussed in more detail in Section 5.2). Typically, the prior for a
model for PK and PD parameters would be set up for the residual uncertainty as

o ~U(a,b) (5.5
for the mean parameter values,
6~ N,(1.2) (5.6)
and for the precision of heterogeneity,

Q' ~Wi(pQ,p), and p=pandp<gqg (5.7)
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The prior for the residual standard deviation is given here by a uniform distribution
over the range a to b, where a is typically very small (e.g., 0.0001) and b is suf-
ficiently large as to encompass extreme values of the response variable. The mean
parameter values, of which there are g, are shown to be distributed according to
a multivariate normal distribution with a hyperprior mean fi and variance-cova-
riance matrix X that describes the uncertainty with which we know 6. It should
be remembered that X is not the uncertainty of g. The prior for the inverse of
the variance—covariance matrix Q' describing between-subject heterogeneity is
given by a p-dimensional Wishart distribution with parameters €, and p. €, is the
estimate of the prior expectation of the variance—covariance matrix and p is the
degrees of freedom of the Wishart distribution. The minimum allowable value of
p is p (which is least informative), and higher values can be chosen depending on
the level of informativeness that is desired. This notation allows for there to be
some population parameters that do not have variability between subjects (i.e.,
for g > p).

Specification of the values of a, b, I, Z, Q,, and p is at the discretion of the
pharmacometrician (see Section 5.2 for details). The choice of a different prior
structure, for example, using a multivariate-¢ distribution rather than normal, may
also be appropriate if there is some evidence suggesting the presence of potential
outlying subjects.

It is worth mentioning at this stage that the three-stage hierarchical model
used in Bayesian analyses when undertaken within the framework provided by
WinBUGS requires that normal distributions are parameterized as mean and pre-
cision. Precision is the inverse of variance. For example, when defining the prior
for the population parameter vector 6, the multivariate normal distribution would
be parameterized as the mean vector g and the inverse of the variance—covariance
matrix X' such that,

6N, (43

This parameterization would also hold for Eq. (5.3), (5.4), and (5.6). Hereafter
the notation of WinBUGS is adopted and where possible examples of WinBUGS
code are provided. Readers are referred to Fryback et al. (8) for an introduction to
WinBUGS (see especially the appendixes for reference to how to run WinBUGS),
Duffull et al. (6) for an introductory population PK example, and Lunn et al. (9)
for a more in-depth treatment.

5.1.3 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are a group of methods that
can be used to explore the posterior distribution of the parameters (e.g., of a
PK or PK/PD model) conditional on some observable quantities. They can also
be used in non-Bayesian settings. There are two main MCMC techniques used
(readers are referred to Gilks et al. (10) for an in-depth overview of MCMC
techniques), namely, the Metropolis—Hastings (MH) algorithm, originating from
Metropolis et al. (11) and generalized by Hastings (12) and Gibbs sampling (1).
Indeed, Gibbs sampling and many other MCMC methods are special cases of the
MH algorithm.
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MCMC methods are essentially Monte Carlo numerical integration that is
wrapped around a purpose built Markov chain. Both Markov chains and Monte
Carlo integration may exist without reference to the other. A Markov chain is any
chain where the current state of the chain is conditional on the immediate past state
only—this is a so-called first-order Markov chain; higher order chains are also pos-
sible. The chain refers to a sequence of realizations from a stochastic process. The
nature of the Markov process is illustrated in the description of the MH algorithm
(see Section 5.1.3.1).

Monte Carlo integration is a process characterized by the use of random sampling
often for integration. The premise underpinning the idea is remarkably simple, in
thatifitis possible to generate sufficient numbers of random samples (e.g., L samples)
from a distribution (that may have an unknown form), then the underlying distribu-
tion can be explored by pooling those samples and the mean calculated accordingly.
For example, if X is used to denote a random deviate from f (X), then

E[X]=~L"Y f(X)) (5.8)
=1
which as L — oo,
E[X ;. =LY (X)) = [ f(X) dX (5.9)
=1

The important conceptual point is that the parametric form of f{X) does not need
to be known for either the expectation of X to be calculated or in order that
random deviates may be generated from f(X). The only requirement is that the
value of f(X) must be evaluable at all (legal) values of X; it is not a requirement
that the integral of f(X) (as in Eq. (9)) be able to be computed in closed form. It
is also not required that f(X) be a univariate distribution, but f(X) may represent
a joint distribution of X. The marginal distribution of f(X) may be “extracted”
from the joint distribution using exactly the same random sampling technique but
keeping each marginal set of random deviates separately. A joint distribution is
a combined distribution of many parameters and the parameters may or may not
share the same distributional form. One simple method of generating random
samples from this distribution is that of rejection sampling (see Press et al. (13)
for an overview of random sampling, Smith and Gelfand (14) for an introduction
to rejection sampling for Bayesian analyses, and Wakefield (15) for an applica-
tion). The MH method and Gibbs sampling also provide methods for generating
random deviates from f(X).

5.1.3.1 Metropolis—Hastings Algorithm

The Metropolis—Hastings algorithm is the most general form of the MCMC pro-
cesses. It is also the easiest to conceptualize and code. An example of pseudocode
is given in the five-step process below. The Markov chain process is clearly shown in
the code, where samples that are generated from the prior distribution are accepted
as arising from the posterior distribution at the ratio of the probability of the joint
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distribution evaluated at the current set of parameters over the probability evalu-
ated at the last best (but not “best ever”) set of parameters (shown in step 3). The
joint distribution is provided by the product of the prior probability of the random
set of parameters with the likelihood.

Step 1. Set i=1 # counter
Step 2. While 1 < i < max
do Steps 3-5
Step 3. Sample u~U,1) # acceptance probability
B ~p(B) # sample parameters from prior
Set n=p(ylp) # joint prior-likelihood
d=p(ylB)
a\ = Pr(B)
a, = Pr(f’)
ratio = n/d X a;/a, # acceptance ratio
Step 4. if ratio > u B*=0=p # accept samples
# reset new best value
Else set o' =g # keep previous best samples
Step5. i=i+1 # increment counter
Step 6. OUTPUT(6)
STOP.

5.1.3.2 Gibbs Sampling Algorithm

Gibbs sampling is a specialized and more efficient version of the MH algorithm.
In this procedure there are no rejected samples, the sampling distributions are
set up so that once the chain has settled down (to the so-called stationary dis-
tribution) all samples are considered to arise from the posterior distribution.
The cost of this improvement in the process is that the user needs to define
the conditional sampling distribution, which includes distributions for all remaining
parameters and the data, in closed form (see step 3). This is analytically possible
for linear models and for combinations of the prior and likelihood that are
conjugate, meaning that the posterior distribution will have the same structural
form as the prior but with updated parameter values (see Fryback et al. (8) for a
brief and elementary explanation of this process). For example, for consideration
of a simple univariate distribution if the prior distribution of the parameters is
normal and the likelihood is normal, the posterior distribution will also be normal.
In circumstances where nonconjugate priors are chosen—that is, the prior and
likelihood do not arise from the same and conjugate family of distributions or the
model is nonlinear in its parameters—then an MH step may be required to be
performed within the overall Gibbs sampling process and hence hybrid MCMC
procedures arise. Gibbs sampling is shown below in pseudocode for a three-param-
eter model.



Step 1. Set

Step 2. While i < max

do Step 3
Step 3. Sample

Set

Bi~pBil B2 BLY)
B>~ p(Bi1 Bi, B3, y)
Bs~p(B:i! B, By)

i=i+1
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# set the parameter
values = initial
estimates

# initialize counter

# sample parameter 1
# sample parameter 2
# sample parameter 3
# increment counter

Step 4. OUTPUT (B)
STOP

5.1.3.3 Diagnostics

Model Diagnostics Graphical model assessments such as predictions versus obser-
vations, weighted residuals versus time, and weighted residuals versus predictions
are, as in non-Bayesian analyses, valuable for model development. In WinBUGS the
user needs to provide the code for population predictions and weighted residuals.
Correlation plots can be generated directly in WinBUGS Version 1.4 without the
need to export the data into another program. However, the CODA function can
create a file with all sampled values from each chain of each parameter, which can
be exported to other programs (e.g., S-Plus, R, Matlab) for diagnostic purposes.

Convergence Diagnostics Inferences from the posterior distributions should be
made after convergence has been achieved to assure that the posterior distribu-
tions represent the target distributions. However, there is no diagnostic method
that can be used to provide a guarantee that convergence has occurred. Therefore,
it is recommended that several methods are used. One method is to visualize the
histories of the chains against the iteration number (see Duffull et al. (6) and Lunn
et al. (9) for visual examples). Such plots should look like “fuzzy caterpillars.” If
the appearance of the history is a “wiggly snake,” it (generally) indicates that the
sampler needs to be run longer and/or that the model needs to be reparameterized.
The so-called wiggly snake is associated with serial correlation in the sampling
chain (termed autocorrelation). It has been recommended to run at least two chains
simultaneously, with overdispersed initial estimates (e.g., let the initial estimates of
chain 2 be 50% higher than the initial estimates of chain 1). If the histories of the
chains are overlapping and appear to mix with each other, then this is an indication
of convergence, but does not assure convergence. Although no direct statistics can
be applied to visualization of the chain, it is intuitively appealing in its simplicity
and does from experience identify many chain convergence issues.

A more objective method is to investigate the Gelman—Rubin diagnostics for
chain convergence. This procedure is automated within WinBUGS. This method
compares the between-chains and within-chain variability in a similar spirit to an
analysis of variance. Samples are required from at least two chains that are started
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with overdispersed initial values. The criterion for convergence is achieved when
the ratio between the 80% interval of the pooled chains and the 80% interval within
the chains (averaged over all chains) is close to 1 for all parameters of interest.
Again, no specific criteria are available that show a definite convergence or lack of
convergence. Another diagnostic is Geweke’s method. This can easily be computed
from an output analysis of the chains; for example, the Bayesian Output Analysis
(BOA) program has this diagnostic as an automated feature, but it is not available
automatically from within WinBUGS. This method compares the sample distribu-
tions in the first half of the samples within a chain with the sample distribution from
the samples from the second half of the chain. Logically these sample distributions
should be indistinguishable.

Finally, the Monte Carlo error (MC error) can be used to assess how many itera-
tions need to be run after convergence for accurate inference from the posterior
distribution. The MC error is an estimate of the deviance between the mean of
the sampled values and the posterior mean; this error can be likened to a standard
error. Generally, an MC error of less than 5% of the sample standard deviation of
the parameters of interest is recommended.

Autocorrelation Ideally, all samples from a chain should be independent, that is,
free from serial correlation. However, in reality, this is rarely the case. The pres-
ence of autocorrelation does not indicate either a lack of convergence or neces-
sarily overparameterization (although reparameterization or a reduction in the
dimensionality of the model will often reduce or eliminate autocorrelation). It
will be necessary, however, to run the chains for longer so that ultimately enough
“independent” samples from the chain are kept to ensure that the posterior distri-
bution has been suitably explored by the sampler. The influence of autocorrelated
samples in the posterior distribution may be reduced by thinning, where only a
fraction of the samples from the posterior distribution are kept; for example, it is
common to retain only every tenth sample. As a result ten times more samples are
needed to generate the same number of samples from the posterior distribution.
Thinning does not change the occurrence of autocorrelation, but it does reduce the
apparent influence of autocorrelation since setting thinning to 10 results in 90%
of the samples being discarded. Thinning is used as a method of saving computer
memory by allowing chains to be run longer without the need to save every sample.
This is often needed for analysis of large data sets, as may occur in PK/PD analyses.
It is of course preferable not to thin samples unless absolutely required.

5.2 SPECIFICATION OF PRIORS

5.2.1 Defining Bayesian Priors

As mentioned earlier, incorporating prior information does not in itself constitute
a Bayesian approach. Priors have been used in non-Bayesian settings in popula-
tion PK analysis and other analyses. Applications using the PRIOR subroutine in
NONMEM have been described previously (3, 16). In this setting the prior informa-
tion can be viewed as a penalty on the likelihood function, and its implementation
is similar in spirit to the maximum a posteriori (MAP) procedures used commonly
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in Bayesian forecasting programs. Approaches based on the “frequentist-prior,”
however, are relatively uncommon. In contrast, Bayesian analyses always include
prior information as it is explicitly defined in Bayes’s expression, although the priors
can be set to be in principle noninformative.

Defining the values of the priors and their informativeness is therefore an essen-
tial part of any Bayesian analysis.

In this chapter we consider that specification of priors may be divided into three
broad and useful categories. The first provides a general overview of the setup of
priors for a Bayesian PK (or PK/PD) analysis, while outlining the so-called nonin-
formative (sometimes referred to as vague) priors, which represent the application
of priors that are not intended to influence the analysis and arise from the belief
that we know almost nothing about the manner in which the current data may have
arisen. The second category refers to what we have termed biologically plausible but
low-information priors. These are priors that have fairly vague information but are
limited to span an interval that would seem biologically plausible for most PK/PD
analyses. The third category refers to the development of informative priors.

Note that, whatever the final model parameterization used for the current analy-
sis, it must be constructed in such a manner as to forcibly eliminate models and
model parameterizations that contain inherent identifiability problems. This is rel-
evant to all prior structures. The most common source in pharmacokinetics is the
so-called flip-flop models, where the model predictions are identical for two or more
sets of solutions of the parameters; for example, where K, and CL/V, are exchange-
able within the model, such that any set of values of K, may be exchanged with
the ratio CL/V, to provide the same response values. Model parameterization that
contains flip-flop characteristics can result in poor chain mixing during the MCMC
process, such that the chain flips between one or another solution, potentially
inducing artificial bimodal posterior distributions. PKBUGS performs this reparam-
eterization automatically, thereby forcing K, to be greater than CL/V —although
this may not always be desirable.

5.2.2 Noninformative Priors

Many Bayesian analyses utilize so-called noninformative priors (see examples in
the WinBUGS manual (17)). The principal belief underlying their wide utility is to
retain objectivity in relation to the current analysis. Should prior evidence influence
the analysis of the current experiment, then the objectivity of the current analysis
may be questioned, due to the subjective nature of priors and methods for their
elicitation. In a philosophical sense, it might also be argued that it is equally non-
objective to ignore all previous evidence, no matter how applicable or strong the
evidence might be.

The use of noninformative priors itself is not without its difficulties, by the
simple virtue that truly noninformative proper priors do not really exist. However,
with very low precision terms (e.g., 0.0001) and an assumption of lognormality
appropriate for many PK/PD parameters, the priors can be considered very
vague.

In defining priors there are two main considerations: first, the choice of the
prior distribution and second, the choice of its parameter values (we only consider
parametric priors). The choice of the prior distribution itself is not trivial as it is
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essential that the random deviates generated from this distribution will have
the right characteristics; for example, if you are generating random deviates to
be considered as candidates of a variance parameter, then the deviates must be
positive numbers. In addition to choosing a prior that has the right distributional
properties, it is convenient to also consider priors that will ease the computational
burden during the MCMC process. For instance, choosing conjugate priors (i.e.,
those that have distributional characteristics that can be combined algebraically
with the specified distribution of the likelihood) greatly facilitates the speed of
the MCMC process. Fortunately, for PK and PK/PD analyses, there are a stan-
dard set of conjugate distributions that are commonly used for generating random
candidates of parameter values and it is generally just a matter of choosing the
parameter values for each distribution.

In the following notation we assume that the population mean values of a vector
of parameters (6) are distributed multivariate normally with some uncertainty
depicted as a variance—covariance matrix (X). It is convention in WinBUGS to
express variability as precision (the inverse of variance); hence, the precision of 6
is given by ™. This prior can be cast as a lognormal distribution by exponentiating
the individual values of the parameters at stage 1 of the hierarchical model. Some
authors have chosen to use a ¢-distribution with small degrees of freedom (to allow
for heavy tails) instead of a normal prior. While this may be more flexible if outlying
subjects are suspected, the f-distribution is not conjugate with the normal likelihood,
which greatly adds to the computation time. For a model with three fixed effects
parameters, the following vague prior structure can be used:

o 0.0001 0 0
0~N@Z1), f=|dyn| Z'=| 0 00001 0 (5.10)
fos 0 0  0.0001

Note that the parameter vector g is usually expressed as the natural logarithm of
the parameter values. The prior for the variance—covariance matrix of the between-
subject effects (Q), is usually given by a Wishart distribution (which is conjugate
with the normal distribution). Simulation from the Wishart distribution will produce
inverse candidates of Q, which can be thought of as a precision matrix of between-
subject heterogeneity. The Wishart distribution is parameterized in terms of p
(degrees of freedom) and the estimate of the mean of Q (denoted by €, where
0 is used to signify that this is an initial estimate). The informativeness of the
Wishart—that is, how similar the simulated values of Q are to Q—depends on the
number of degrees of freedom, where the number equal to the size of the matrix is
least informative (i.e., for a 3 x 3 matrix p = 3 is least informative).

Q' ~Wi(pQy,p), p=3 (5.11)

The Wishart distribution is a multivariate gamma distribution, which itself is a
general case of a chi-squared distribution. The Wishart also has the desirable prop-
erty that random samples of any matrix from this distribution will always be positive
definite. This is useful for simulating variance—covariance matrices, which have a
positive determinant, and ensuring correlations that lie between —1 and 1.
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The variance (or standard deviation as shown in Eq. (5.12)) of the residual
uncertainty of the model can be assumed to arise from a uniform distribution (with
upper bound b set at an arbitrarily high value), such as

o ~ U(0.00001, b) (5.12)

Alternatively, the inverse variance of residual uncertainty can be assumed to arise
from a gamma distribution,

62~G(a,b), a=b=0.001 (5.13)

The mean of the gamma distribution is given by a/b and the variance by a/b”. The
latter choice of prior has recently been criticized as not being sufficiently uninfor-

mative and has been shown, for some examples, to adversely influence the analysis
(18).

5.2.3 Biologically Plausible but Low-Information Priors

In PK/PD analyses, there are general boundary conditions on the parameter space
which are either biologically illegal (e.g., negative or zero values of clearance) or
at the least fairly unlikely (e.g., total blood clearance that is considerably greater
than cardiac output). It is not unreasonable, therefore, to consider constructing
priors that have their distribution tails (say, the 95% interval) that are somewhere
near these “natural” boundary conditions, while at the same time not being overly
informative over the remainder of the distribution. These priors could therefore be
considered as biologically plausible but weakly informative.

In the section on noninformative priors, a precision of 0.0001 corresponds to a
variance of 10,000 (SD = 100), and if it were assumed that the underlying param-
eter distribution were lognormal (which is common in PK/PD problems), then the
95% interval of the priors would be essentially ~0 and ~+eo. A possible example
of a biologically plausible but still low-information prior follows. In this example
the values of the parameters are chosen arbtitrarily and any mean values can be
used that suit the likely situation. Any choice of mean values will require slight
adjustment of the precision matrix; however, this is quite straightforward. For a
typical orally administered drug with an assumed fraction absorbed of 1, and mean
population parameters for clearance, volume, and absorption rate constant that
are the natural log of 1 (L/h), 40 (L), and 1 (h™), respectively (just over a 24 hour
half-life), then the prior could be

In(1) 01 0 0
6~N(i,Z"), E=|In(40)|, Z'=[ 0 01 0 (5.14)
In(1) 0 0 05

Note that the precision values depend on the likely range of plausible parameter
values. For CL and V,, the precision is set lower than for K, since the value of
the fraction of drug absorbed (F), which scales both parameters, may inflate the
apparent values significantly. If 7 were known to be close to 1, then higher values
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of the precision could be used. For this parameterization, the 95% interval for CL,
V4 and K, are (0.002, 492), (0.08, 19,700), and (0.06, 16), respectively, which for an
agent that has approximately these mean values is not overly restrictive. A higher
value of precision can be used if there is more than a “vague” expectation about
the value of CL from previous studies; for example, CL might be related to renal
filtration. In other circumstances, if V, is expected to be much higher based on
previous information, then a larger value of the mean can be used.

Similar to the prior of the mean population parameter values, the prior for the
between-subject variance can also be selected to have a more plausible range for
PK/PD systems. If we consider the coefficient of variation of between-subject vari-
ability for most PK/PD parameters as being approximately <100%, then a choice of
p for the Wishart distribution that provided a 97.5th percentile value of around this
level would be biologically plausible. This is not quite as straightforward as for the
precision of the population mean parameter values, since the minimum size of p is
indexed to the minimum dimension of the variance—covariance matrix of between-
subject effects, and p affects all variance parameters equally. The value of p required
to provide a similar level of weak informativeness will vary with the dimension of
the matrix. A series of simulations have been performed from the Wishart distri-
bution, where the mean value of the variance of between-subject effects was set at
0.2. The value of p required to provide a similar level of weak informativeness will
vary with the dimension of the matrix (Table 5.1).

5.2.4 Informative Priors

5.2.4.1 Background of Informative Priors
In many cases the data collected in the current study may be sparse, such as may
occur when data are collected as a matter of routine clinical care rather than for
model building, which may result in a design that does not support the full model
expected based on previous studies. Several options are available to the modeler
in these circumstances. One option is to fix the nonestimable parameters to esti-
mates from previous studies. However, the prior estimates may not themselves be
sufficiently accurate and therefore inclusion of fixed parameters may lead to biased
estimates of the other parameters (19). Another option would be to simplify the
model. This, however, may result in a model that is not able to provide useful pre-
dictions of future data. A more natural option is to use appropriately informative
priors to aid the modeling process.

The setup for informative priors is similar to the concepts provided in Section
5.2.3, regarding biologically plausible but weakly informative priors.

TABLE 5.1 Lowest Value of p that Produces a 97.5th Percentile of at
Least 100% CV When the Diagonal Elements in Q, Equal 0.2 in the Simulations
(Off-Diagonal Components Were 0)

Matrix Dimension p 97.5th Percentile (% CV)
2x2 7 118
3x3 9 106
4x4 11 100

5x5 12 108
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One criticism against the use of informative priors is their subjective nature,
which may be perceived to introduce bias into the upcoming analysis. The choice
of priors and assigning an appropriate level of informativeness is therefore of con-
siderable importance. For population PK/PD studies, there may well be explicit,
quantitative data that describes the parameter values in populations that are similar
to the population in the current study. In this case it is possible to pool the available
information in a meta-analytic technique to provide an appropriate level of prior
information. Some care must be taken to assess for heterogeneity between studies
and for applicability of studies to the current population under consideration. A
brief summary of an approach is shown below. It would be impossible to include an
exhaustive treatment of elicitation processes within the confines of this chapter.

5.2.4.2 Inclusion of Studies

The first step is “simply” to find previous published studies that report the PK/
PD behavior of interest. Since this process does not have the same goals as a
meta-analysis, it is probably not important to include every possible published and
unpublished study; however, failing to select a study will introduce subjectiveness
and hence potential for bias. Recovering all studies is obviously no mean feat in
itself, but general search processes (e.g., MEDLINE) and also the FDA web site
(see www.fda.gov) can provide much of the necessary background information.
Alternatively, studies may be available on-file and arise from previous clinical or
preclinical studies. Information may also be available from other drugs in the same
class.

Recording details of the studies, including the models used and associated
parameter values reported, is an obvious starting place. Additional details include
the chemical analysis method, the pharmacokinetic analysis method, the studied
population (specifically subpopulations), number of healthy volunteers or patients,
number of pharmacokinetic samples per patient, the dose, the formulation, and the
route of administration. If one publication includes several groups of patients (or
the same patient received two different formulations/concomitant medications),
then each cohort may need to be treated as a repeated measure of the same study
or within the same study, which may be indexed according to a study or patient
covariate.

In many cases additional work may be required to reparameterize models into
the form required for the current analysis. This may involve, for example, a repa-
rameterization between rate constants and clearance and volume terms or between
derived parameters, such as volume of distribution by area (V) and volume of
distribution at steady state (V,), or even extraction of parameter values from data
summary variables (such as peak concentration, C,,,; time to peak concentration,
Tmax; and area under the concentration curve, AUC). The latter process is sometimes
not straightforward and ultimately some data summaries may provide little useful
information. See Dansirikul et al. (20) for methods of conversion of data summary
variables into model-based parameters.

5.2.4.3 Study Weighting

The heterogeneity of study design among the studies can be treated as a random
effect and is ignored unless the studied population differs from the population
to be analyzed (e.g., in age and/or renal/hepatic function). For studies where the
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populations potentially differ, then either these studies should not be used or addi-
tional weighting is required.

For studies that appear to be exchangeable, the weighting is provided by the recip-
rocal of the estimation variance (which is the precision or Fisher information).

11
Var(6,,) SE(6,)

(5.15)

Wi

where w,, is the weight applied to the pharmacokinetic parameter values reported in
the mth study (6,,); and Var(6,,) is the estimation variance of 6,,. However, standard
errors (SEs) are often not reported.

In the absence of standard errors, weighting may be applied based on the assump-
tion that the informativeness of the prior study is proportional to the number of
subjects (n) in the study. Although this is a rather simplified approach, it can be
shown that for designs where the sampling schedule is essentially geometrically
spaced and there are more than two times the number of samples as fixed effects
parameter values, the approximation will hold (see Duffull et al. (21) for details).
Briefly, if we denote the Fisher information matrix for the previous study population
as F(0, E), where = represents a given (PK) sampling design for all subjects, then
the estimation variance—covariance matrix (V) is given by the inverse of the Fisher
information matrix. But in accordance with the Cramér—Rao inequality (readers can
refer to Walter and Pronzato (22) for a more in-depth discussion), each diagonal
element of the inverse Fisher information matrix is the lower bound of the true but
unknown estimation variance,

V.2(FY0,E)) , u=1,...,p (5.16)

uu’

and the vector of standard errors (SE) of parameter estimates is

SE = /diag(V) (5.17)

where diag denotes the diagonal elements of the matrix. If all subjects in the study
receive the same design and have a suitably large number of samples (see above),
then

F(0, E) = nF(8, &) (5.18)

where £ is the design for one subject; therefore, if the information matrix is sum-
marized by the normalised determinant, then

det(F(6,E))"" < n (5.19)

That is, a summary measure of the amount of information in the information matrix
(given by the normalized determinant) is proportional to the number of individu-
als in the study, where det denotes the determinant and is a scalar measure of the
informativeness of the information matrix. Therefore, it follows that the standard
error will be proportional to the inverse of the square root of sample size (Eq.
(5.20)), and incorporating Eq. (5.15) provides the approximation
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SE wc\n = %n (5.20)

and the weighting for the mth study by incorporating Eq. (5.20) into Eq. (5.15):

B 1 B 1
- SE@©,) ( 1 )
Ve

If the number of concentration measurements per subject were smaller than twice
the number of fixed effects parameters and the standard errors of the parameter
estimates were not provided, then some downweighting would be necessary. It is
possible to compute the expected standard errors for any given study (e.g., see
Retout et al. (23), but this is beyond the scope of this chapter).

- (5.21)

m

m

5.2.4.4 Prior Mean for Pharmacokinetic Parameters jiand Q,

The priors of the mean population parameters can be computed analogous to how
weighted means are computed in meta-analysis (Eq. (5.20)) (24). We show this for
a single parameter,

zw_mé’" (5.22)

=5

where I is an overall mean population parameter, 0,, is a mean population param-
eter value from the mth study, and w,, is the weighting for the mth study. Similarly,
the overall mean between-subject variance (BSV) can be computed for each of the
diagonal elements in €, to produce a matrix of the expected values of the between-
subject variance.

5.2.4.5 Computation of the Precision Matrix =™

It is often reasonable to assume that the population parameter values are distrib-
uted normally, in which case the pooled estimate of the standard error for a given
parameter simplifies to

M [
ZWmO,?,
m:i‘ _ ﬁZ
Wi
SE=\—m
M-1 (5.23)

where M denotes the number of prior studies.

5.2.4.6 Computation of the Choice of p (the Precision of ;)

An empirical method to estimate p may be gained by simulation, where candidate
matrices of the inverse of Q are simulated from a Wishart distribution and the
empirical distribution of each variance component is compared to the empirical
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distribution attained from the prior data. The value of p that minimizes the dif-
ferences of the observed (from prior data) and simulated summary measures (say,
quartile ranges) of the distribution of Q would provide some empirical evidence
for the value of p.

Overall, there is little literature available that describes formal elicitation pro-
cesses of parameters from prior studies, while there are several suggested methods
for expert elicitation of priors (e.g., see Refs. 25 and 26).

5.2.5 Sensitivity Analysis

Sensitivity analysis is about asking how sensitive your model is to perturbations
of assumptions in the underlying variables and structure. Models developed under
any platform should be subject to some form of sensitivity analysis. Those con-
structed under a Bayesian framework may be subject to further sensitivity analysis
associated with assumptions that may be made in the specification of the prior
information. In general, therefore, a sensitivity analysis will involve some form of
perturbation of the priors. There are generally scenarios where this may be impor-
tant. First, the choice of a noninformative prior could lead to an improper posterior
distribution that may be more informative than desired (see Gelman (18) for some
discussion on this). Second, the use of informative priors for PK/PD analysis raises
the issue of introduction of bias to the posterior parameter estimates for a specified
subject group; that is, the prior information may not have been exchangeable with
the current data.

The framework of a sensitivity analysis is straightforward in that changes in the
posterior distribution are observed under other reasonable prior probability models
(27). Sensitivity of posterior to prior distributions can be evaluated by investigation
of changes of the posterior distribution to (a) a change in the degree of informative-
ness of the prior distribution of either itself or other parameters, and (b) a change in
the structural form of the prior distribution (e.g., considering the prior as a ¢ rather
than a normal distribution). For the former sensitivity analysis, a more weakly
informative prior could be chosen by setting the precision of the prior distribution
to smaller value(s). For instance, a variety of values for the prior precision for each
parameter could be used, for example, where 67> — % o2, consider 072 — % o2or
02— ;07 (28).

From a specific PK/PD perspective, where parameters are often assumed to be
lognormally distributed, relaxation of this assumption to include a distribution with
heavier tails (e.g., a log t-distribution) may be worth considering. This allows for the
influence of outliers to be considered explicitly. To accommodate possible outliers, a
t-distribution could be used where the degrees of freedom of a student ¢-distribution
can be chosen empirically (29) or estimated during MCMC analysis (30) to provide
appropriate weighting to the tails of the distribution.

The differences associated with the sensitivity of the posterior distribution to
specification of the prior can then be summarized quantitatively (e.g., % differences
of mean and 95% interval) or the distributions can be shown graphically. There are,
however, no specific guidelines or criteria available for the assessment of robustness.
Any decisions should therefore be made on the basis of the basic question: How
does the sensitivity of the posterior to specification of the prior affect the important
inferences of the model? This has been addressed in a practical example (31).
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5.3 MODEL SELECTION

5.3.1 Approaches to Model Selection

Objective measures of model evaluation are desirable in model building. Ideally,
model performance techniques should be indexed to the purpose for which the
model is intended to be used and as such should be considered an integral part of
all general analysis plans. This brief overview concentrates on methods to select or
reject models. By far the majority of methods used for model selection fall within
the framework of model discrimination.

Although there are a large number of methods that can be used for model dis-
crimination, we only consider methods that can be implemented easily in WinBUGS
(Version 1.4 or earlier) with minimal extra coding.

Model selection criteria are often based on a measure of the fit of the model to the
data and a penalty for increased model complexity. The most common method to
discriminate between nested models in non-Bayesian population pharmacokinetic
analyses is the likelihood ratio test with some predefined level of significance. In
fully Bayesian methods there is no “gold standard” model discrimination method,
although there are a few methods for dichotomous model discrimination decisions
such as the deviance information criterion (DIC) (32). Another relatively common
method for model discrimination are the Bayes factors (i.e., the posterior to prior
odds ratio). These factors were considered to be the gold standard, although they
have also been perceived as overly conservative (27). In essence, they address the
problem of how well the prior has predicted the observed data rather than how well
the posterior predicts future data and are therefore not defined for models with
improper prior distributions. Another, less attractive, feature is that Bayes factors
provide the relative probabilities of two models conditional on one of them being
true and are therefore most suitable when all candidate models can be specified
ahead of time (27, 32). Bayes factors also require some extra coding in WinBUGS
and are not considered further here.

Other model selection and/or discrimination tools include the posterior predictive
check (PPC) and cross-validation (27, 32, 33). The PPC is useful for examination of
the ability of the model to predict accurately certain features of the observed data
(e.g., maximum concentration). Although PPC is not strictly a model discrimination
technique, as it does not compare the predictive performance between models but
rather evaluates the predictive performance of a single model, it does have useful
characteristics that are discussed in more detail in Section 5.3.3. Cross-validation is
considered accurate but is computer intensive and generally considered not to be
suitable for small data sets (32).

More advanced techniques of model evaluation include the reversible jump
MCMC (RIMCMC) (34) and “birth—death” algorithms (35). The RIMCMC tech-
nique, a form of model averaging, is becoming a popular tool for model selection,
which may well become a feature of WinBUGS in the near future. The basic
premise involves an MCMC chain that “jumps” to a given model at the current
Markov state transition probability. The chain may then jump back, remain, or jump
to another model depending on the probability of model preference. It is therefore
possible for the chain to explore a number of competing models during the same
MCMC run and finally settle on the model of highest posterior probability. The
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birth—-death algorithm, which is related to the RIMCMC, also allows many models
to be compared simultaneously (35).

Further discussion of model selection within the framework of MCMC is divided
into discrete model selection, consideration of predictive distributions, and simul-
taneous modeling of competing models.

5.3.2 Discrete Model Selection

A common form of model selection is to maximize the likelihood that the data
arose under the model. For non-Bayesian analysis this is the basis of the likelihood
ratio test, where the difference of two —2LL (where LL denotes the log-likelihood)
for nested models is assumed to be approximately asymptotically chi-squared dis-
tributed. A Bayesian approach—see also the Schwarz criterion (36)—is based on
computation of the Bayesian information criterion (BIC), which minimizes the
Kullback-Leibler (KL) information (37). The KL information relates to the ratio
of the distribution of the data given the model and parameters to the underlying
true distribution of the data. The similarity of the KL information expression (Eq.
(5.24)) and Bayes’s formula (Eq. (5.1)) is easily seen:

[p(Y|6)p(6) A6
KL=FE|logl —— .
[ og[ 2(Y[) D (5.24)

and the smaller the ratio the closer the distribution of the data under the likeli-
hood approaches the true (but unknown) marginal distribution of the data. This
information is, in most real pharmacokinetic problems, notional. The values of the
parameters that minimize the KL information will have the highest posterior prob-
ability. This result, similar to the non-Bayesian likelihood ratio test, is also based
in asymptotic theory (as n — o), since at the limit it can be shown that the distri-
bution of the data under the likelihood approaches the true underlying marginal
distribution of the data; the information refers to the asymptotic proximity of this
ratio. The KL information can also be used to compare two models, where the full
model replaces the numerator of Eq. (5.24) and the reduced model replaces the
denominator. This method therefore allows the selection of a reduced model that
minimizes the difference in a measure of the distribution of the data conditional
on the model and parameter estimates and is in reality similar to the non-Bayesian
likelihood ratio test.
The Bayesian information criterion (BIC) is defined by

BIC =Inp(Y|6, M,) - gln(n) (5.25)

where p(Y | ] M,) is the maximum of the likelihood under model M, and 6a vector
of maximum likelihood estimators and p and n carry their previous definitions as
the number of parameters (in this case fixed effects parameters only) and number
of observations, respectively. The second term (p/2) In(n) penalizes the BIC func-
tion for increasing numbers of model parameters (p). This expression can also be
written in the form of —2L L (also termed “deviance” in WinBUGS) as
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BIC =—-2LL + pln(n) (5.26)

A point estimate of -2 L (also termed the deviance (denoted D(6))) at its maximum
is suggested to make the model fit appear better than it should in reality, and in a
Bayesian sense averaging over the deviance values (for all values of the posterior
distribution of the parameters) would provide a more appropriate choice and so
the BIC, now BIC’, can be written

BIC’=D(8) + pln(n) (5.27)

The difficulty with using the B/C function (in whatever form) lies in defining the
number of model parameters. While this may seem rudimentary, and indeed it is
for a linear model, it is not the case for nonlinear hierarchical models. Consider a
simple pharmacokinetic example in which a first-order input linear one-compart-
ment model is fitted to the data that arises from 100 patients. The number of model
parameters includes: the population parameter values (CL, V,, K,), their hetero-
geneity given by a 3 x 3 variance—covariance matrix Q that has six elements of the
lower left triangle, a residual variance component (o°), and individual estimates
of the parameters (CL, .. ,", V1. .", K. ,"), which amounts to 310 parameters
(in NONMEM only 10 of these parameters enter the approximate population
likelihood when using the FO method). Not all of these parameters will contribute
equally to the likelihood and indeed some latent parameters may be present. It is
therefore not just a matter of summing the parameters to provide a value for p.
For nonlinear hierarchical models a deviance information criterion (D/C) has been
proposed (32):

DIC = D(6) + pp (5.28)

where pp denotes the number of effective parameters. The number of effective
parameters can be calculated as the difference of the posterior mean of the deviance
and the deviance at the posterior means of the parameters (D(6)),

pp=D(8)-D(6) (5.29)

and the second term D(8) defines the deviance value for the mean parameter values.
This term can be calculated in WinBUGS Version 1.3 by running an additional
single iteration after the burn-in period (of at least 4001 iterations, recall that the
first 4000 are discarded and cannot be monitored irrespective of chain convergence
properties), where the model parameters are fixed at their mean values. Rearrange-
ment of Egs. (5.28) and (5.29) gives

DIC =2D(8) - D(0) (5.30)

Version 1.4 of WinBUGS greatly eases the computational burden by providing
DIC as a standard output in the statistical samples toolbox. For users of Version
1.3, the complexity of the model (parameter wise) can more simply be calculated
as half of the posterior variance of the deviance as
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pp=0.5Var(D(8)) (5.31)

Both of these solutions for the number of expected parameters (Egs. (5.29) and
(5.31)) have been derived from asymptotic theory (27).

Features of using the DIC method are essentially its ease of computation and
its applicability to nonnested models. Application is simply based on the fact that
the model with the lowest DIC value is considered best. As a final cautionary note,
there are some circumstances when the D/C value may provide erroneous results,
particularly in circumstances when chain mixing is slow and convergence may not
have been achieved (32) (with discussion in Refs. 38 and 39).

5.3.3 Predictive Performance—PPC

In contrast to the hypothesis testing style of model selection/discrimination, the
posterior predictive check (PPC) assesses the predictive performance of the model.
This approach allows the user to reformulate the model selection decision to be
based on how well the model performs. This approach has been described in detail
by Gelman et al. (27) and is only briefly discussed here. PPC has been assessed for
PK analysis in a non-Bayesian framework by Yano et al. (40). Yano and colleagues
also provide a detailed assessment of the choice of test statistics. The more com-
monly used test statistic is a local feature of the data that has some importance for
model predictions; for example, the maximum or minimum concentration might be
important for side effects or therapeutic success (see Duffull et al. (6)) and hence
constitutes a feature of the data that the model would do well to describe accu-
rately. The PPC can be defined along the lines that posterior refers to conditioning
of the distribution of the parameters on the observed values of the data, predictive
refers to the distribution of future unobserved quantities, and check refers to how
well the predictions reflect the observations (41). This method is used to answer
the question: Does the observed data look plausible under the posterior distribu-
tion? This method is therefore solely a check of internal consistency of the model
in question.

It is important to note that PPC does not provide a method for discriminating
between models. PPCis included in this section because it does provide evidence for
assessment of a given model and therefore has some useful model selection proper-
ties. It is possible therefore that a model could be rejected as a possible candidate
for describing how the current data arose using a PPC format.

The process is described here. In the following notation we let an observed
feature of the data be defined as a statistic denoted by 7(y) (a worked through
example is provided by Duffull et al. (6)). Simulations of the observed statistic from
the posterior distribution of the model predictions are denoted y*P. We describe the
posterior distribution of the model predictions given the observed data as

p(y*ly) = p(y*"10)p(8ly) d6 (532)

which is computed by the integral of the model with respect to the parameters. The
probability that the predicted statistic is greater in value than the observed statistic
can therefore be written as
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Pr(T(y™",6)=T(y)ly) (5.33)

In this case it is seen that the probability that the predicted statistic T(y"?, ) is
greater than the observed statistic 7(y) is conditional on the data y. If we assume
that the posterior distribution of the parameters in conjunction with the model are
a sufficient statistic' for the data, then we can write

p(y™, 0ly)=p(y*"|0) (5:34)
The Bayesian posterior P-value can then be computed from
P-value = J"[IT(ymp,g)ZT(y)p(O|y)p(y'e" |0) d6 dy™® (5.35)

Where I7(, is an indicator variable that takes the value of 1 if 7(y"P, 6) is more
extreme than or equal to the value of 7(y). Although the integral makes the
calculation daunting, we can use the power of the MCMC process to provide an
approximate numerical solution to the integral. As the number of MCMC itera-
tions (L) approaches infinity, the P-value from Eq. (5.34) approaches that from
Eq. (5.35).

. L
P-value =MLY " Iy g7y (5.36)

An example code for WinBUGS is given in Figure 5.1. The observed test statistic
T(y), which is C,,,,, is provided as a comment on line 1. On line 9 the model predic-
tion for the population parameters (mu(1:p)) is assigned to model.pop (7). Here
the PPC is performed from the population predictions—rather than the individual
predictions. Lines 10 and 11 determine whether the model prediction is greater
than the observed test statistic; if so, then a 1 is assigned to the indicator variable
Cmax.no(j). Lines 15-17 determine whether any of the predictions for any
individual were above the cmax value (this is computed as the sum of Cmax.ind ()
> 0) and assigns a 0 to the indicator variable cmax if any population predictions
were above the cmax, else a 1 is assigned to cmax. This value is then transformed
by subtracting from 1 and assigning to Cmax.ppc. Monitoring the indicator variable
Cmax.ppc during the MCMC update will produce summary statistics for PPC.

P-values from the PPC method that are ~0.5 indicate that the model adequately
describes the data with approximately 50% of the predictions being more extreme
or equal to the observed test statistic. P-values close to 0 or 1 indicate some bias
in the model predictions and in some circumstances may be used as evidence to
reject the candidate model. There is no fixed value of the P-value that indicates
poor model performance, although values more extreme than 0.1 or 0.9 may confer
reasonable evidence against a model.

' A sufficient statistic in this case is where the model and model parameters are sufficient to describe
the distribution of the data and hence it is sufficient to only write the parameters and not show the
conditioning of the parameters on the data.
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1 # Cmax = 1200 IU/L

2 model {

i for (1 im 1l:nwind)

4 for (j in off.data[i]: (off.datafi + 1] - 1)) {

5 data[j] ~ dnorm(model[j], tau)

6 model [j] <- pk.model(l, thetal[i, 1:p]l, time[j], hist[off.hist[i]:(

off.hist[i + 1] - 1), 1l:n.coll, pos[jl)

7

8 # PPC

9 model.pop[j] <- pk.model(l, mu[l:p]l, time[j], hist[off.hist[i]: (of

f.hist[i + 1] - 1), 1l:n.col], posljl)

10 Cmax.int[j]<-max (model.pop[j],1200)
i Cmax.no[j]<-equals (Cmax.int[j],model.pop[j])
12 }
13 theta[i, 1:p] ~ dmnorm(mu[l:p], omega.inv([l:p, 1l:pl)
14 }
15 for' (4 4n 1on:dnd) {
16 Cmax.ind[i]<-sum(Cmax.no[off.data[i]: (off.data[i + 1] - 1)1)
17 }

18 # Cmax

19 Cmax.pop<-sum(Cmax.ind[])
20 Cmax<-equals (Cmax.pop,0)
21 Cmax.ppc<- l-Cmax
22
28 sigma ~ dunif (0, 500)
24 tau <- 1/ (sigma*sigma)
25
26 mu[l:q] ~ dmnorm(mu.prior.mean[l:q], mu.prior.precision[l:q, 1:q])
27 omega.inv[l:p, 1l:p] ~ dwish(omega.inv.matrix[l:p, 1l:p], omega.inv.dof)
28 for (i in 13:p) {
29 for (j in 1l:p) {

30 omega[i, j] <- inverse(omega.inv[l:p, 1l:pl, i, j)
31 }

32 }

88 J

34

FIGURE 5.1 WinBUGS code (Version 1.3) for performing PPC.

5.3.4 Mixture Modeling and Bayesian Model Averaging

Estimation methods that are based on simulation platforms, such as Markov chain
Monte Carlo (MCMC), also allow for model discrimination to be based on predic-
tive or posterior distributions. When using MCMC, competing models can be fitted
simultaneously as a joint model with an added “mixing” parameter to indicate which
model is preferred (42, 43). The posterior distribution of the mixing parameter will
provide both the weight of evidence and the posterior probability in favor of one
model. The expectation of the prediction from m models and o the mixing param-
eter can then be evaluated:

Ely;]= z:zlakyij,Mk (5.37)

where y;, denotes the expectation of the jth observation for the ith subject from
model k (M,) and X},04 = 1. The likelihood is evaluated:

i~ N(Ely;s],07) (5.38)

In this expression a common residual variance term is specified, although the resid-
ual variance can be indexed to the model, in which case the overall residual vari-
ance will be the sum of the contribution of the residual variance for each of the m
candidate models. It has been found that chain mixing occurs faster when compet-
ing models are linked with a common parameter (e.g., the residual error) (42). It
is common in the non-Bayesian model framework to address model selection as a
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closed decision process—that one and only one model is best. It is, however, also
reasonable to consider that no one model under consideration is true and that the
data may arise from a multitude of plausible models. The above framework for
mixture models does not require that a single model is selected as best (although
this assumption will be the case for a worked example). It is also reasonable that all
models may be considered as contributing to the likelihood of the data, at the pos-
terior probability of the mixing parameter. It would seem reasonable that models
with low probability could be discarded, but there is no particular reason to arrive
at a single “best” model.

The mixture model is assessed for a hypothetical example and an example
for WinBUGS code is given in Figure 5.2. Evaluation of the individual model
predictions for one- and two-compartment models is shown on lines 5 and 7,

1 model ({

2 FoE (1 if 1. anhd) 4

3 for j in eff.datalily(effdatali & 1] ~ 1)) 1

4

] modell[j] <- pk.model(l, theta.l[i, 1:pl], time[j], hist[off.hist[
L] (CEERUSE[L + 1] - L), 1LEH.EOL) » BOSIIT 1D

6

7 model2[j] <- pk.model (2, theta.2[i, 1:p2], time[j], hist[off.hist][
iz (off-hist[i € 1] = Ay 1ins«coll» pesiil)

8

9 model[j] <- modell[]]* (1-mix)+model2[j]* (mix)

10 var[j] <- model[j]*model[]j]*var.cv

T tau[j] <-1/var[j]

12 data[j] ~ dnorm(model[j], tau(l]j])

13 }

14 theta.l[i, 1:pl] ~ dmnorm(theta.mean.l[i, 1:pl], omega.inv.1l[l:pl, 1:pl])

15 theta.mean.1[i, 1] <- mu.l1l[1]

16 theta.mean.1[i, 2] <- mu.1l[2]

17 theta.mean.1[i, 3] <- mu.l1l[3]

18

19 theta.2[i, 1l:p2] ~ dmnorm(theta.mean.2[i, 1:p2], omega.inv.2[1l:p2, 1l:p2])

20 theta.mean.2[i, 1] <- mu.2[1]

21 theta.mean.2[i, 2] <- mu.2[2]

22 theta.mean.2[i, 3] <- mu.2[3]

28 theta.mean.2[i, 4] <- mu.2[4]

24 theta.mean.2[i, 5] <- mu.2[5]

25 }

26

27 sigma ~ dunif (0, 0.5)

28 var.cv<-sigma*sigma

29

30 mix ~ dunif (0, 1)

81

32 mu.1l[1l:pl] ~ dmnorm(mu.prior.mean.l[l:pl], mu.prior.precision.l[1l:pl, 1l:pl])

33 for (i im 1:pl){

34 popsd [i] <= expimu=1Ti])

35 }

36 mu.2[1l:p2] ~ dmnorm(mu.prior.mean.2[1l:p2], mu.prior.precision.2[1l:p2, 1:p2])

37 for (1 in 1:p2)

38 pop:2[i] €~ expi{mu=2T1i])

39 }

40 omega.inv.1[1l:pl, 1:pl] ~ dwish(omega.inv.matrix.1[1l:pl, 1l:pl], omega.inv.dof.1l)

41 for (i im 1:pl) {

42 For (@ dn WepiR [

43 omega.l[i, j] <- inverse(omega.inv.l[1l:pl, 1l:pll, i, j)

44 }

45 }

46 omega.inv.2[1:p2, 1:p2] ~ dwish(omega.inv.matrix.2[1l:p2, 1:p2], omega.inv.dof.2)

47 fo¥ (i im 1:p2) {

48 foxr: W Iny Top2l)

49 omega.2[1i, j] <- inverse(omega.inv.2[1l:p2, 1l:p2], i, 3J)

50 }

51 }

52

98

FIGURE 5.2 WinBUGS code (Version 1.3) for performing a mixture model.
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respectively. The contribution of each model to the expectation of the observa-
tion (in accordance with Eq. (5.37)) is given in line 9 with the parameter mix
representing the fractional contribution of each model at each iteration of the
sampler. The likelihood of the data is given in line 12. The second level in the
hierarchical model (heterogeneity between subjects) is shown in lines 14-17 for
the one-compartment model and lines 19-24 for the two-compartment model. The
prior for the residual error (sigma—Ilines 27 and 28) is assumed to be common
between both models (this is not an absolute requirement). Lines 32-51 show
the one-compartment and two-compartment model priors (note the use of p1
and p2 to represent the number of parameters in each model). Monitoring mix
in the sample toolbox will provide statistics that can be used to support model
selection. The expectation of mix provides the weight of evidence for the model
(clinical importance); the proportion of mix >0.5 (or <0.5) provides the statistical
evidence for the model.

Due to the limited information that is available describing the use of mixture
models, we have exemplified the process in a brief series of simulations. The full
analysis is available elsewhere (44). To assess the performance of the mixture model,
a hypothetical data set was constructed. Concentrations y; y, at predetermined time
points were simulated from a two-compartment (2-c) model with bolus input:

E[yij,Mz ] = Al exp(—llll]) + A2 eXp(—)vzl‘,,) (539)

The parameters of the model were chosen so that the sum of A; and A, was 100
(A, =815, A, = 18.5) and the ratio of the AUC of the distributional (A,/4,) phase
to the total AUC was 0.3, when A, was 1 and A, was 0.1. Parameters for the one-
compartment (1-c) model were derived by fitting an exponential equation to data
derived from the two-compartment model (without variability or uncertainty):

Ely;m 1= Asexp(=yt;) (5.40)

Aj; and ywere estimated at 47.6 and 0.12, respectively. The structural model param-
eters were derived from the coefficients and exponents assuming a dose of 1000
units. Between-subject variance in the simulation of the data sets was assumed to
be lognormal with a value of 0.1 for all parameters. The parameters are presented
in Table 5.2. V| was restricted to be less than V), for all individuals. Sixty data sets

TABLE 5.2 Population Mean and Diagonal Elements of
Q Used in the Simulation of Data Sets

Parameter Population Mean Q
CL (1-¢) 2.52 0.1
Vd (1-¢) 21 0.1
CL (2-¢) 2.81 0.1
V1 (2-¢c) 10 0.1
Q (2-¢) 4.63 0.1

V2 (2-c) 13 0.1
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(30 with 1-c profiles and 30 with 2-c profiles) were simulated. Each data set included
20 individuals with 10 observations each (samples drawn after 0.25, 0.5, 1, 2, 4, 6,
12, 24, 36, and 48h).

An additive residual error was used with a standard deviation of 0.3 units/volume,
which was approximately 150-200% of the mean predicted lowest observations. To
avoid negative values, a new residual error value was drawn if concentrations were
below or equal to zero.

Uncertainty/Precision The “hypothetical” data sets were run with noninforma-
tive priors (flat; precision of 0.0001). The prior parameter means were set to the
simulated means. The two competing models were fit simultaneously in WinBUGS
Version 1.4 (17) as a mixture model with a mixing population parameter (mix—in
the following notation mix is used in accordance with its use in the WinBUGS code
shown in Figure 5.2) drawn from a uniform (0, 1) distribution.

The median of the posterior distribution of mix close to 0 indicates that the one-
compartment model is preferred, while a value close to 1 indicates that the two-
compartment model is preferred. Independent residual errors for the two models
were used.

The 97.5th percentile of the posterior distribution of the evidence for the true
model (1 — mix for one-compartment model data and mix for two-compartment
model data) did not include 0.5 for any of the simulated data sets, indicating that
the method selected the right model in all cases. To get reliable estimates on
all parameters (including those for the model of low probability), that is, for
model averaging, the chains would need to be run for longer than the 10,000 itera-
tions used in this simulation study. In model averaging, the expectation of mix and
(1 —mix) would give the posterior weighted mixture of the one-compartment and
two-compartment model, respectively.

5.4 SUMMARY

Bayesian methods offer an attractive framework for the analysis of PK/PD experi-
ments. Previous limitations associated with defining priors, defining models (includ-
ing as ODEs), defining model selection criteria, and including complex dosing
histories (as are common in PK/PD data sets) have essentially become problems
of the past. These methods offer flexibility in allowing for previous information
to impact on the current analysis, which is an essential part of any sequentially
designed drug development program. It is not expected that Bayesian methods,
as offered by WinBUGS (or BUGS on other platforms), will supersede current
analysis tools—but they will offer a realistic alternative in many circumstances. It is
hoped that information provided in the current chapter engages the reader to learn
more about the world of MCMC.
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I CHAPTER 6

Estimating the Dynamics of Drug
Regimen Compliance

ENE I. ETTE and ALAA AHMAD

6.1 INTRODUCTION

A major problem in pharmacotherapy is noncompliance with prescribed medica-
tion regimens (1). Noncompliance has been used to indicate a range of components
of nonadherence with assigned treatment. Urquhart (2, 3) distinguishes noncom-
pliance into three phases. (1) Acclimatization period: This is the period a patient
considers the acceptance of the concept of treatment and his/her agreement to
execute the prescribed regimen. Although the patient has the formal right to reject
the agreement, some do so covertly by not starting to take the prescribed medi-
cine. Some patients may even open a pill container a few times the first week and
may never open it again, making the decision process take a while. This, however,
should not be confused with the delay to start taking the medication. A costly error
can occur if nonacceptance is not recognized, resulting in the interpretation of non-
response as drug-refractory disease. (2) Compliance with the decision: During this
phase patients who accept to start drug therapy implement the prescribed regimen
in a more or less punctual manner. The accepted treatment is experienced as a
continual process, and with it opportunities for errors in timing and dosing as well.
(3) Discontinuation: This is an abrupt end to the previous phase. It occurs when a
patient discontinues treatment of his/her own accord or on medical advice. This is
a common occurrence that should not be confounded with long drug holidays.
Drug holiday refers to interruption in dosing for a period of three or more days
(4). An arbitrary duration is used in the definition of drug holidays. Consequently,
it can have different effects depending on the disposition pharmacokinetics of the
drug and regimen. For a drug with linear/dose proportional pharmacokinetics,
the impact of missed doses on the concentration following a missed dose can be
expressed as n(7/t,), where tis the prescribed dosing interval, t,, is the elimination
half-life, n is the number of doses missed, and 7/f,, is the noncompliance impact

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene 1. Ette and
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factor (5). The impact of an omitted dose on concentration is less pronounced if
the noncompliance impact factor is small. In addition, pharmacodynamics should be
considered in the definition to reflect meaningful clinical effect. Levy (5) introduced
the notion of therapeutic coverage (maintenance of effective plasma concentra-
tion)—the ratio of the time to reach the minimal effective concentration divided
by 7—to deal with this.

Noncompliance is used in the remainder of the chapter interchangeably with
nonadherence (3) to cover the different phases of noncompliance described above.
Thus, medication noncompliance can simply be defined as not adhering to physician
instructions concerning prescription medications. Some examples of noncompliance
include not having a prescription filled or refilled, taking too much or too little of
the medication, erratic dosing due to forgetfulness, and discontinuing the medica-
tion too soon.

The importance and impact of noncompliance has been cited in a govern-
ment report. A US senate subcommittee study on medication noncompliance
documented that not taking medications as directed results in over 300,000 deaths
in the United States annually, and 125,000 deaths in recovering cardiac patients
alone (6).

6.2 MEASUREMENT OF COMPLIANCE

Several methods have been used to measure patient compliance to drug therapy.
Some of these methods lack the sensitivity to detect individuals who truly do not
take the drugs prescribed (7-10). They include direct questioning and the use of
interview instruments, patient diaries, and pill counts. The pill count approach tends
to overestimate adherence (11-14), often due to “medication dumping” (15). Patient
self-report, which has been used extensively to assess compliance, also tends to
overestimate adherence (16, 17). Although drug levels are an objective measure of
drug exposure, they provide only a snapshot of behavior and are affected by factors
other than adherence (18). A more direct way to confirm drug ingestion is the incor-
poration of a chemical marker into the dosage form and qualitatively detecting its
presence in a biological fluid (usually plasma or urine) (19). The incorporation of
a chemical marker may not reveal the extent of drug ingestion such as underdos-
ing or overdosing. The Medication Event Monitoring System (MEMS) (20-22) is a
relatively recent method that provides an objective measure of pill bottle opening
and use of an inhaler spray or other applicator, but not necessarily pill taking or
inhalation from the inhaler (23), and may underestimate compliance. No method
for assessing compliance is completely accurate.

These methods of measuring compliance continue to be used in clinical trials,
although none of them fulfill the criterion of providing an accurate measurement
of drug taken. Since they are not, in and of themselves, acceptable measures of
compliance, they can only serve to confound the analysis and interpretation of the
compliance exposure-response relationships. However, ancillary information from
patient diaries, for example, may be helpful in interpreting data collected by other
means—such as MEMS and others described above (24). A combination of MEMS
and patient diaries may give an unbiased estimate of compliance.
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6.3 COMPLIANCE INDICES

Various aspects of drug-taking behavior are quantified with compliance indices. The
fraction of doses taken in the monitoring period, which is analogous to a pill count,
and the fraction of days during which the patient adhered to the prescribed dosing
frequency are the most commonly reported compliance indices (10, 25-30). Dose
timing has been measured as the fraction of doses taken at the prescribed dosing
intervals (10, 25, 28, 30). More often than not an appropriate grace period (20-25%)
is allowed for the latter. Another index of compliance measurement is “therapeutic
coverage,” which was discussed in the Section 6.1. In addition, Ahmad et al. (31)
introduced “time at risk”—the duration of time when subjects have subtherapeutic
concentrations and may be at risk of developing breakthrough symptoms—as a
compliance index for monitoring compliance to antiepileptic therapy.

6.4 PROBABILITY BASIS OF COMPLIANCE

6.4.1 Markov Chain

A series of probable transitions between states can be described with the Markov
chain. A Markovian stochastic process is memoryless, and this is illustrated subse-
quently. We generate a sequence of random variables, (yo, yi, V2, . . .), so that each
time ¢ > 0, the next state y,,; would be sampled from a distribution P(y,ly;), which
would depend only on the current state of the chain, y,. Thus, given y, the next
state y,,; would not depend additionally on the history of the chain (yo, y1, y2, - - - ,
vi1)- The name Markov chain is used to describe this sequence, and the transition
kernel of the chain is P(.l.). P(.l.) does not depend on ¢ if we assume that the chain
is time homogeneous. A detail description of the Markov model is provided in
Chapter 26.

In considering how the initial state of y, impacts y,, the distribution of y, given y,,
denoted here as P“(y,ly,), needs to be examined. y, depends directly on y, because
the intervening variables (yo, yi, ..., y,.1) are not provided. P?(.ly,) will eventu-
ally converge to a unique invariant (or stationary) distribution that is independent
of y, or ¢ as the chain gradually “forgets” its initial state, subject to regularity
conditions.

6.4.2 Model for Medication Compliance

Compliance comprises taking the drug at the prescribed dose—dosage compliance—
and taking the drug at the scheduled times—dosing time compliance. Although it
has been argued that the indices of dosage compliance are usually less variable
than that of dosing time compliance (32), this aspect of compliance should not be
ignored. Separate modeling may be required for each of these medication errors
(see Wang (33)). Figure 6.1 illustrates the two related processes in compliance.
Girard et al. (34) proposed a hierarchical Markov model for patient compliance
with oral medications that was conditioned on a set of individual-specific nominal
daily dose times. The individual random effects for the model were assumed to be
multivariate normally distributed. Assuming first-order Markov hypothesis (see
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Pattern of Compliance

Dose Units
o

=

Concentration (units / mL)

Dose Number
FIGURE 6.1 A simulated nonadherence concentration profile for a subject over 16 nominal
doses. The dosing pattern for the patient is described in the upper half of the figure. Each
solid bar represents an actual dosing time, and each dotted bar a scheduled dosing time. The
height of the solid bar can be 1 — one dose taken, 2 — two doses taken, and 1 (i.e., M in the
figure)—a dose missed or not taken.

Chapter 26), the probability of a subject taking a dose or doses (one or more) at
any given dosing time is a function of whatever doses were taken at the immediate
past dosing time preceding the one in question. This, of course, is independent of
all other previous dosing events—a Markov property.

If a subject did not take his/her medication given that it was not taken the time
before, or did take the medication given that it was taken the previous dosing time,
a two-state Markov chain model can be fully defined by using two conditional prob-
abilities. By defining Y = (y, ¥», ..., y,) as a random vector indicating whether a
patient/subject has not taken his/her medication (y; = NT) or has taken it (y,=T)
at ith time, then

p(yi=NT|y_1=NT)=Fy (6.1)

p(yi=Tly=T)= P (6.2)

describe the probabilities of these events (34).
From Eq. (6.1) and (6.2),
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p(yi=T|yi=NT)=Fy=1-Fy (6.3)
P()’i=NT|yi71=T)=P10=1—P11 (6‘4)

The above probabilities take on values between 0 and 1 and vary from individual
to individual instead of having a 50/50 probability that would be expected for an
unbiased coin. The Markov chains described above are sometimes called “two-coin”
models, corresponding to a subject having two virtual coins that could be tossed
alternately. The alternate tossing would be dependent on whether a dose was taken
or not taken. Using a mixed effects logistic regression, the interindividual prob-
ability for a subject who may continue in a study, for instance, without taking the
medication can be modeled as follows:

Py =exp(oy+BZ+n)/[1+exp(o+BZ+m)] (6.5)

where ¢ is the intercept, f3; is a vector of covariate parameters, Z is a matrix of
individual covariates, and 1, is a random effect parameter, with mean 0 and variance
Q. A similar model can be written for the probability P;; that a subject may stop
taking the medication. A detailed description of Markov mixed effect regression
modeling for compliance data can be found in Girard et al. (34).

6.4.3 Other Methods for Handling Medication Compliance Data

Other approaches to modeling medication compliance data have been reported in
the literature and are described briefly below.

6.4.3.1 Random Sampling Probabilistic Model Approach

Hughes and Waley (35) described a probabilistic model that was used to character-
ize dose-taking behavior of subjects (patients) in a lipid-lowering agent study. They
used a random sampling of adherence patterns to drive the model that described
the onset and offset of drug effects. Patients could either comply (with a probabil-
ity P) or not comply (with a probability 1-P) when faced with their first dose. The
probability of taking the next dose decreased as a function of time if the dose was
missed as follows:

—k Tyt
P(takinggnextfdose) = Pexp 't (66)

where k is the rate constant determining the time-dependent decrease in the prob-
ability of taking a dose T, days after a previous dose was taken. Ty, therefore, is
time since the last dose was taken. Ty is 0 and Piaking next_dose) 1S P once again when
dosing is resumed.

Drug holidays and premature discontinuation can be modeled with the same
expression because Piking next dose) 1 time dependent. With the model in Eq. (6.6),
a prolonged drug holiday eventually leads to discontinuation because the model
assumes that dose-taking compliance and persistence are related.

6.4.3.2 Likelihood Approach
A likelihood approach for selecting from a set of possible dosing histories for each
individual in a data set when such an individual has more than one dosing history
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available was proposed by Jonsson et al. (36). The population model developed was
based on individuals whose dosing histories were very similar.

6.4.3.3 Bayesian Objective Function Approach

A Bayesian objective function has been used to describe observed data collected
after a given dose based on three different patient behaviors regarding the dose
(37). The patient medication-taking behaviors were categorized as (a) dose was
not taken, (b) dose was taken at the correct time, and (c) dose was taken but at
an undetermined time. Using simulations, the authors showed that the approach
provided a set of pharmacokinetic (PK) observations that performed well for sub-
sequent exploratory analyses or estimating individual parameters. The approach,
however, is limited by the fact that the study drug had to be a drug with a short
elimination half-life.

6.4.3.4 Hierarchical Bayesian Approach

Mu and Ludden (38) described a hierarchical Bayesian model-based approach
to incorporate an estimate of compliance into a population PK analysis. With
the approach, both compliance and population PK parameters were estimated
simultaneously. Rather than emphasize the estimation of compliance, the empha-
sis of the approach is on improving efficiency in the estimation of population PK
parameters.

6.4.3.5 Missing Dosing History Approach

Soy and colleagues (39) used a simulation study to investigate some methods in
which past dosing history (including nonmissing dose information) was “ignored.”
The data were simulated such that the pretest dose for all individuals had a “dose
timing error” as well as a possible “dose amount error.” They compared different
assumptions about the amounts in the compartments at time zero. The assumptions
were categorized into (a) prescribed dose method (PDM), (b) missing dose me-
thod (MDM), (c) missing dose mixture method (MDMM), and (d) extrapola-
tion-subtraction method (ESM).

The PDM was consistent with the intention-to-treat principle (40). An intention-
to-analysis is one in which the analyst essentially discards all information about
compliance to assigned treatment.

Dosing history was not taken into account with the MDM approach. A new
parameter (A,), corresponding to the (unknown) amount of drug in the central
compartment at time 0, was estimated in addition to population PK parameters. It
was modeled as an individual’s value of a generic PK parameter:

P=up exp(np) (6.7)

where the typical value of the parameter in the population (P) is up, and 7, is a
normally distributed random effect (interindividual variability) with mean 0 and
variance Qp. The implicit assumption made with the MDM is that the amount of
drug at time O in the depot compartment is zero.

Individuals are assumed to arise randomly from one of two subpopulations with
MDMM. Subjects with PK data compatible with the nominal dose history comprise
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subpopulation 1, while subjects with PK data inconsistent with nominal dosage
comprise subpopulation 2. The latter are subjects for whom the MDM is suitable.
Estimated simultaneously with the population PK parameters is the probability of
belonging to one subpopulation or another.

The log of the slope (K) of the terminal-elimination phase of an observed time—
concentration curve for an individual (obtained from the last three to four PK
observations) was used to build a “subtraction curve” between time t=0and t=7
equal to C, exp(—Kt) with ESM . The value of this curve was subtracted from the
“true” observation, at the time of each actual observation, and these differences
were analyzed as though they were the observed PK responses to a single dose.
The authors included this method to imitate what is often done in practice when
“baseline” concentrations are clearly nonzero and prior dosing history is deemed
to be unreliable or unavailable.

Thus, all dosage history is completely ignored with MDM when this history is
sufficiently suspect. On the other hand, with MDMM probabilities were assigned
to the events where in one case an individual’s reported history could be used
to describe the subject’s data, or in another case in describing a subject’s data
this history could be ignored. These probabilities were then used to appropriately
downweight past dosing history (39). The results of the simulation study indicated
that there was little basis for preferring MDMM over MDM (39). However, when
all dosing histories are at least somewhat wrong, the two-subpopulation mixture
model (MDMM) cannot add great value, and the authors concluded that the pos-
sible benefit of MDMM was more theoretic than real.

In practice, some dosing histories may be accurate and it would seem counter-
productive to deprive an analysis of all valid dosing histories just because some
are invalid. Although the authors assumed a missing data scenario where no doses
were assumed to be unreliable other than the one immediately preceding the test
dose, neither MDM, MDMM, nor ESM used any prior dosing history whatsoever
and they performed similarly in parameter estimation efficiency. Thus, each of
these approaches offered similar performance advantage over PDM. Therefore,
the choice of the method to use and the ease with which a particular approach can
be implemented is left to the pharmacometrician. It is worth noting, however, that
when previous dosing history is unavailable, MDM, a method that does not rely on
such a history, would be a preferred choice for estimating population PK parameters
rather than PDM, which assumes perfect compliance.

6.4.3.6 Maximum Penalized Marginal Likelihood (MPML) Approach

Kenna and Sheiner (41) used a simulation study to show that the MPML method—
which uses an all compliance data—dosage history questionnaire, Cy, available from
all subjects and combines that with dosing history obtained with MEMS, C, from
a random fraction of subjects, effectively calibrating C, to C—is superior to other
methods that use only one compliance measure, or both, or neither; where neither
was intention-to-treat. The authors showed that the MPML approach yielded effi-
cient dose—-response estimates over a wide range of clinical trial designs, effect sizes,
and varying quality and quantity of compliance information. The method was shown
to maintain good performance even when its key assumptions were violated and
compliance data were sparse.
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6.5 NONCOMPLIANCE AND STEADY-STATE PHARMACOKINETICS

When patients comply well with prescribed drug therapy, the combination of a
steady-state assumption and knowledge of the time of the last dose has proved
sufficient for the extraction of knowledge from plasma concentration measures
taken a few times from each subject in a study population. As discussed in Section
6.1, patients often comply poorly with medication regimens, even when they take
the prescribed number of doses. When subjects are noncompliant, the assumption
of steady-state pharmacokinetics or steady state prior to the last dose taken does
not hold and results in an erroneous evaluation of the history of drug exposure
and consequently biased estimates of PK parameters (42-44). Vrijens et al. (45)
emphasize the importance of combining MEMS data with PK data to estimate PK
parameters without making steady assumptions. Thus, it is of the utmost importance
to integrate appropriately collected compliance data, such as that obtained with
MEMS or MEMS with patient diaries, in analyzing PK data. Biased PK parameter
estimates that are used to drive a pharmacokinetic (PK)/pharmacodynamic (PD)
model would affect the outcome of such an analysis. Implications of integrating
adherence, adherence modeling in therapeutics, and drug development have been
reviewed in the literature (32, 46).

6.6 APPLICATION

In this section we use a simulation study systematically to characterize the effect of
noncompliance on steady-state pharmacokinetics. Specifically, the effect of missed
and replacement doses on the steady-state pharmacokinetics of valproic acid (VPA)
following the ER and DR preparations of the drug were investigated (31).

Divalproex sodium extended-release (Depakote® ER) is a once daily (QD) for-
mulation for VPA that was developed to improve patient compliance and reduce
side effects compared to the standard twice-daily (BID) delayed release (DR) for-
mulation (Depakote® tablets). However, there are concerns of potential subthera-
peutic concentrations following delayed or missed doses or toxic concentrations
with replacement doses for the ER and DR formulations.

6.6.1 Simulation

A one-compartment model with first-order elimination was used to simulate
unbound VPA concentrations. The two formulations differ only in the input func-
tion: the ER formulation was accounted for through a zero-order input over 22
hours with 89% bioavailability. The DR formulation absorption was characterized
by a 2h lag time (#,, = 2h) followed by first-order absorption rate (k,=0.1h™"). The
bioavailability (F) of the DR preparation was assumed to be complete (F = 1).

Equation (6.8) was used to simulate unbound VPA concentrations (C,) follow-
ing administration of the DR preparation and Eq. (6.9) was used to simulate C,
following the ER formulation:

C,=(k,D/V (k,~CL,/V,)(e /" — 7)) (6.8)
C,=FD/CL, .T(ECL“/VMT =) o~CLu/Vit (6.9)
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where D is the dose, V, is the volume of distribution of unbound drug, CL, is the

systemic clearance of unbound drug, F is bioavailability, &, is the first-order absorp-

tion rate constant for DR, and T is the duration of the zero-order input for ER.
The following equation was used to calculate the total VPA concentrations

(C:
C,=C,+(N,K,C,P)/(1+ K,Cy)+(N,K,C,P)/(1+ K,C,) (6.10)

where P is albumin concentration, N; and K; and N, and K, are the number of
binding sites and equilibrium association constants for a low-affinity—high-capacity
binding site and high-affinity—low-capacity binding site, respectively.

Each simulation included 100 hypothetical subjects. The model parameters used
were derived from an adult population and there were no covariate distribution
models for the virtual trial population. Subjects were assumed to be healthy and
on valproate monotherapy (31). The simulations assumed that the extended release
(ER) formulation was administered once daily and the delayed release (DR) prepa-
ration was administered twice daily. Unbound and total valproic acid concentrations
were simulated from the time of dose administration to 280h; and the simulations
were based on the administration of 1000mg ER once daily, 500mg DR twice daily,
2500mg ER once daily, and 1000mg DR twice daily. For once-daily regimens,
simulation scenarios included doses taken 6, 12, 18, and 24h late from schedule
and then two doses taken 24 h late (replacement dose for the missed dose). For the
twice-daily regimens, doses were simulated 3, 6, 9, and 12 h later than the scheduled
times and then two doses were simulated 12 h later than scheduled to mimic replace-
ment dosing for a missed dose. More extreme cases where two doses are delayed
at various times or missed were also simulated.

The following parameters (geometric means = SD) for CL, and V, were assumed:
5.04 £ 1.00L/h and 95.1 £ 19.0L, respectively. These parameters were assumed to
be lognormally distributed. Protein binding parameters, N, =1.54 £ 0.108, K; =11.9
+1.99mM™, N, =0.194 + 0.0783, K, = 164 + 141mM™", and P = 0.528 + 0.0528 mM,
were assumed to be normally distributed. Limits of +2 standard deviations were
placed on all parameters for the simulations.

VPA concentration versus time profiles were generated for each scenario. Drug
concentrations were compared to the therapeutic range of valproic acid. Based on
total VPA, a therapeutic range of 50-150 mg/L was assumed. The lower limit for the
therapeutic range for unbound VPA was 5mg/L. (At total concentrations of 50 mg/
L, almost 90% of the binding sites are occupied; therefore, the free fraction is 10%.)
There is no accepted upper limit for the therapeutic range of unbound VPA.

6.6.2 Data Analysis

In order to assess the effect of missed or delayed doses, the simulation outcomes
were summarized by:

1. Number of subjects with subtherapeutic concentrations after delayed or
missed doses quantified as the percentage of subjects having total drug con-
centrations lower than 50mg/L. or unbound VPA concentrations less than
Smg/L. Subtherapeutic subjects at baseline steady state were excluded from
poor adherence scenarios.
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2. The time range that subjects spent in the subtherapeutic range or “time at
risk,” in hours, which is essentially the duration of time where subjects might
be at risk of breakthrough symptoms.

3. Number of subjects with drug concentrations above the upper limit of the
therapeutic range quantified as the percentage of subjects with total VPA
concentrations exceeding 150mg/L. This percentage reflects the probability
of potential toxicity.

6.6.3 Results

Figures 6.2 and 6.3 are examples of disrupted PK profiles as a result of noncompli-
ance to the ER preparation once-daily regimen. The simulated total valproic acid
concentrations following administration of 2500 mg daily of the ER preparation are
shown in Figure 6.2. ER dose on day 7 was administered 6 h late from schedule (30h
after the last dose on day 6). The effect of the missed dose followed by a doubling
of the dose is shown in Figure 6.3.

The percentage of subjects on ER 1000mg who had subtherapeutic concentra-
tions due to poor compliance varied from 43% to 100% with respect to C, (<Smg/L)
and from 28% to 100% with respect to Cy, (<50mg/L) (see Table 6.1) The mean
“times at risk” varied from 6 to 60h with respect to C, and from 8 to 53h with
respect to Cy, (see Table 6.1).

None of the subjects on ER 2500mg QD had subtherapeutic concentrations
even if one dose was delayed 6h from schedule. Almost 50% of the population
had subtherapeutic concentrations if one dose (ER 2500mg) was missed from
schedule while all subjects would be subtherapeutic if two doses were missed. The
mean “time at risk” varied from 0 to 28h (Table 6.1). Regarding potential toxicity
(Cior > 150mg/L), 52% of the population would experience toxic concentrations
if two doses were taken 66 h after last dose while on ER 2500mg QD.
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FIGURE 6.2 VPA levels following administration of 2500mg daily. Dose on day 7 was
administered 6h late.
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FIGURE 6.3 VPA levels following administration of 2500mg daily. Dose on day 7 was
missed. Dose was doubled on day 8.

For the DR 500mg BID regimen, the percentage of subjects who had subthera-
peutic concentrations due to nonadherence varied from 3% to 88% with respect to
C, and from 3% to 77% with respect to C,,.. The mean time at risk varied from 1
to 14h (Table 6.2). None of the subjects experienced subtherapeutic concentrations
if one dose was delayed or missed from a DR 1000mg BID regimen. However, if
two doses are delayed from schedule, 1-24% of the population would have sub-
therapeutic concentrations. The mean “time at risk” varied from 2 to 6h. Dosing
recommendations following missed doses of ER and DR VPA formulations are
shown in Tables 6.3 and 6.4, respectively.

6.6.4 Summary of the Simulated Study Findings

Higher doses of the ER preparation (2500mg QD) could be used to provide
adequate seizure control with dose delays up to 12h. For unstable seizure patients,
it is recommended that patients maintain a twice-daily regimen since twice-daily
regimens are less susceptible to fluctuations in steady-state concentrations in the
case of noncompliance. For a shorter dosing interval, twice-daily regimens demon-
strate better maintenance of drug concentrations in the case of delayed or missed
doses.

6.7 SUMMARY

Noncompliance with prescribed medication regimens is a major problem in phar-
macotherapy and results in 300,000 deaths in the United States annually. There
are three distinguishing phases to noncompliance: (a) acclimatization period, (b)
compliance with the decision, and (c) discontinuation. Several methods are used to
measure patient compliance to drug therapy. They range from direct questioning
and the use of interview instruments, to patient diaries, pill counts, MEMS, drug



0 LT e S6 8¢ (47t 00T 9SOp 2UO ‘7.
€ Y4 o1 6 9¢ 71 16 SISOP 0M] ‘L
49 0¢ LE—¢€ 88 1C e 1 16 99
43 ST 0¢-¢ 08 4! 6C1 78 09
14! 1T €1 89 T €1 €L vS
9SOp IS I9}Je SINOY X U ) SISOP OM],
8 L LT-T o L LT-T 1S SISOp OM] ‘Y
0 8 Y1 Ly 8 LT-C of 9SOp PassIW ‘g
S 9 (45! 91 S 11-1 0¢ (44
C € = S €1 € 9¢
I 0 0 0 0 0 0 0¢
9SOp 1se[ 19}Je SINOY X U E) 9SOP dU()
ao 5w oSz ¥
0 €S 98-61 001 09 £8-6¢ 00T 9SOp 9UO ‘7L
0 134 656 001 9¥ $$—8¢ 001 S9SOp 0M] ‘7L
0 LE 0s—¢1 001 (0% 8Y—1¢ 00T 99
0 1€ LY=9 00T 143 144! 00T 09
0 S¢ 01 00T 8¢ LEL 00T vS
3SOp IS I91Jk SINOY X UIYE) SISOP OMT,
0 61 (45l €8 0¢ 6C1 96 SOSOp OM] ‘Y
0 9¢ 1 18 8¢ €51 96 9SOp PIssiW ‘gyy
0 91 6CC 8 8T LT 06 [44
0 cl 9¢1 S9 €l ST 8L 9¢
0 8 Y1 8¢ 9 0T (34 0¢
3SOp 1Se[ I91Jk SINOY X UAYE) 9SOP AU
ao 3wooor ¥4
/8BS <) UBOIN oduey UBIIN JSuey OLIBUQIS
0,
L (smoy) (1/8wos>) (smoy) (1/8wg>)

Ysr Je oy,

onnaderoyiqng 9,

sny Je oy,

onnaderoyiqng 9,

ﬁoﬁru

uwWIZY YA A[Ie-92uUQ 10J SOLBUIS uopenuIis jo Arewums  1°9 TI4V.L

176



9 €11 w 9 11T T 9¢
S 11T ST € 6T 61 €¢
4 8T 61 € 91 S 0¢
(4 S ¥ (4 (4 T LT
9SOP 1Se[ J9)JB SINOY X UdYe) SISOP OM ],
0 VIN 0 0 VIN 0 SOSOp 0M] ‘pT
0 V/IN 0 0 VIN 0 9SOp PassI ‘47
0 V/N 0 0 V/N 0 1T
0 VIN 0 0 VIN 0 8T
0 VIN 0 0 VIN 0 ST
9SOPp ]Sk I93Je SINOY X uadye) asop auQ
arg swooor ¥d
4! T¢-1 LL 4 62T 83 9¢
11 91 SL 4! €1 06 €¢
6 ST-1 19 01 11 9L 0¢
8 121 5% L L1-T 9 LT
3SOp JSe[ I9)Je SINOY X U] SISOP OM],
L 91-1 6C 9 €T 6¢ SISOp OM) $T
4! LE-T € 4! €T 6¢ 9SOp PAsSIW ‘47
S €1 1T S 01-T ST 1T
S -1 01 12 LT 1T 81
4 1 € 1 VIN € S1
owOﬁ uwﬁ Houw.m m.HSOﬂ X Qo&mu owOﬁ odo
alg 3uwoos ¥d
UBIIA afuey UBQIN o8uey OLIBUQIS
(smoy) (18w g>) (smoy) (18w g>)
YSTY Je owil], onnoderayiqns 9, YSTY 1 owil], onnoderayiqns 9,
HQD :.U

uauIdY Y[ Ae-39IM ], 10J SOLIBUIIS Uonenuig jo Arewung 79 JI4V.L

177



178 ESTIMATING THE DYNAMICS OF DRUG REGIMEN COMPLIANCE

TABLE 6.3 Dosing Recommendations for ER Based on Free VPA
ER 1000mg QD

One dose taken x hours after last dose

30 Take dose and resume dosing
36 Take dose and resume dosing
42 Take dose and resume dosing
48, missed dose Take make-up dose
48, two doses Take doses and resume dosing
Two doses taken x hours after last dose
54 Take doses and resume dosing
60 Take doses and resume dosing
66 Take doses and resume dosing
72, two doses Take doses and resume dosing
72, one dose Take two doses and resume

ER 2500mg OD

One dose taken x hours after last dose

30 Take dose and resume dosing
36 Take dose and resume dosing
42 Take dose and resume dosing
48, missed dose Take dose and resume dosing
48, two doses Do not double the dose
Two doses taken x hours after last dose

54 Risk of toxicity, take 1.5 dose
60 Risk of toxicity, take 1.5 dose
66 Risk of toxicity, take 1.5 dose
72, two doses Take doses and resume

72, one dose Take two doses and resume

concentrations, and chemical markers. The pill count and patient self-report tend
to overestimate adherence. MEMS may underestimate compliance, but combining
it with patient diary may provide unbiased estimate of compliance. The incorpo-
ration of a chemical marker may not reveal the extent of drug ingestion such as
underdosing or overdosing.

Several indices are used to quantify compliance. These range from fraction of
doses taken in the monitoring period (i.e., a pill count) to the fraction of days during
which the patient adhered to the prescribed dosing. Dose timing has been measured
as the fraction of doses taken at the prescribed dosing intervals. Other indices of
compliance measurement are “therapeutic coverage” and “time at risk.”

Probabilistic models have been developed for characterizing compliance. The
most commonly cited probabilistic approach is the hierarchical Markov model.
Other more recently developed approaches range from a random sampling probabi-
listic model approach, to likelihood approaches, Bayesian approaches, and a missing
dosing history approach. It is up to the pharmacometrician to choose the method
that would best characterize his/her nonadherence data. The application example
reinforces the importance of compliance to prescribed drug therapy, and how
steady-state pharmacokinetics can be disrupted in the presence of noncompliance.



REFERENCES 179

TABLE 6.4 Dosing Recommendations for DR Based on Free VPA

DR 500mg BID
One dose taken x hours after last dose
15 Take dose and resume dosing
18 Take dose and resume dosing
21 Take dose and resume dosing
24, missed dose Take make-up dose
24, two doses Take doses and resume dosing
Two doses taken x hours after last dose
27 Take doses and resume dosing
30 Take doses and resume dosing
33 Take doses and resume dosing
36 Take doses and resume dosing
DR 1000mg BID
One dose taken x hours after last dose
15 Take dose and resume dosing
18 Take dose and resume dosing
21 Take dose and resume dosing
24, missed dose Take dose and resume dosing
24, two doses Take doses and resume dosing
Two doses taken x hours after last dose
27 Take doses and resume dosing
30 Take doses and resume dosing
33 Take doses and resume dosing
36 Take doses and resume dosing
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I CHAPTER 7

Graphical Displays for Modeling
Population Data

E. NICLAS JONSSON, MATS O. KARLSSON, and PETER A. MILLIGAN

7.1 INTRODUCTION

Nonlinear mixed effects modeling of pharmacokinetic (PK) and pharmacodynamic
(PD) data is often not a trivial activity. The hurdle of understanding the statistics
and the general methodology involved in building models is one challenge; and
learning the necessary software tools is another. Fortunately, many of these aspects
are general (although complicated) in the sense that they are applicable to numer-
ous analyses and data types, making these skills important for any pharmacome-
trician to acquire. On the other hand, each new analysis and each new data set is
unique and it is as important to understand the structure of the data to be analyzed
as it is to understand the methodology to be used in the analysis. This is one instance
where graphics can play a crucial role. Often the pharmacometrician is faced with
the situation where the strategy and direction of model building is contingent on the
data available at the time of initiation (i.e., models “are fit” to data). If you have not
seen a picture of the key aspects of your data, then you have not understood what
is required of you as a pharmacometrician! The visualization of the data will guide
and determine the model building strategy and will therefore directly influence the
efficiency with which the final model is derived.

Graphics is also an important diagnostic tool in model development. Plots of
residuals, predictions, and other variables will inform the pharmacometrician
whether the model addresses all relevant aspects of the data or if some part(s) of
the model needs further attention.

Once the final model has been derived and the analysis has achieved a satisfac-
tory conclusion, the pharmacometrician has to face the important task of com-
municating the results of the analysis to nonpharmacometricians. This involves
translating the mathematical relationships of the model into a form that directly
addresses issues that are relevant, for example, responder rates in various
patient subpopulations or a suggestion for the design of the next study in a drug

Pharmacometrics: The Science of Quantitative Pharmacology Edited by Ene 1. Ette and
Paul J. Williams
Copyright © 2007 John Wiley & Sons, Inc.

183



184 GRAPHICAL DISPLAYS FOR MODELING POPULATION DATA

development program. The important thing to remember here is that the intended
audience should not have to be distracted by mathematics and Greek symbols of
the model while assessing the implications of the new findings. Graphics is a very
powerful tool to accomplish this.

Throughout this chapter we use two example data sets. The first is a real data set
from a PK study in 73 individuals with an average of ten observations per individual.
Each individual was studied on one to seven occasions. The second example is a
simulated data set with an ordered categorical response variable and is described
in greater detail in Section 7.4.7.

The graphs and examples are geared toward NONMEM simply because
NONMEM is the most widely used computer program for population PK/PD
analysis. The principles, on the other hand, are quite general and should be easily
adoptable for use with other software employing the same methodological strategy
as NONMEM does.

For the continuous data example, all the graphs are exemplified using PK data.
However, the graphs are also as suitable for PD data. When the term simulation
is used it refers to stochastic simulations. Finally, we have limited the chapter
to regular two-dimensional graphs and omitted three-dimensional or interactive
graphing techniques. The reason is that multidimensional relationships can be
handled quite successfully by multiple two-dimensional graphs, thereby becoming
much easier to understand. Interactive graphics, on the other hand, can potentially
be quite useful in the explorative phases of a data analysis project but do not lend
themselves for presentation or reporting purposes.

Following this introduction is a general section presenting techniques for han-
dling the special aspects of population type data. The remaining sections of the
chapter are organized around three phases in the life span of any analysis: before,
during, and after. The activities in these phases are distinctly different and require
different types of graphical approaches. For each of these phases we discuss graphs
we believe are almost always useful. Section 7.4.7 addresses the specifics of the
graphical display of categorical data. Visualizing this type of data, both from an
exploratory as well as from a diagnostic perspective, requires different techniques
compared to continuous data and is underused in the area of nonlinear mixed effects
modeling. At the end of the chapter are appendixes detailing some NONMEM
code required to generate data subsequently presented in graphs shown in the main
body text.

7.2 CHARACTERISTICS OF INFORMATIVE DISPLAYS
OF POPULATION DATA

The data used in population PK/PD analysis has some important features that need
to be taken into account when plotting. The data is hierarchical, meaning that the
observations are grouped according to the individual from whom they originated.
This is the fundamental reason why a nonlinear mixed effects modeling approach
was selected as the method of analysis in the first place. Our graphical methods
must recognize this fact.

Population PK/PD data is heterogeneous. For example, individuals can vary in
their drug elimination capacity and observed responses compared to other indivi-
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duals as well as within themselves between study occasions. Similarly, observations
vary due to dosing history differences, assay variability, or sample handling differ-
ences. An informative graphical display needs to handle this variability without
masking it.

Population PK/PD data is multidimensional. In an analysis of PK data, the
most obvious predictor we have is time. In an analysis of PD data, we have time
and drug exposure as the fundamental independent variables. What should not be
forgotten, however, is that there may be other potential predictors that can explain
the observed variability (e.g., body weight, sex, age, and other covariates), some of
which also vary with time. Again, we must use graphical methods that can accom-
modate this situation.

One aspect of population data that is often overlooked from the point of view
of graphical displays is that we may have a large amount of data points. Regardless
of how cleverly we devise our graphs, they will be useless if the data points form a
dense, uninformative “shotgun blast” between the axes.

We must also be prepared to handle different types of response variables. For
example, it is becoming increasingly common to model categorical data within the
framework of nonlinear mixed effects models. From a plotting point of view, this
type of data is distinctly different from continuous data and we need to account
for this fact.

Figure 7.1 shows a graph of observed concentrations versus time after dose (see
Section 7.2.1 for further discussion of time scales). Each individual’s data points

80
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Observed concentration (ng/mL)

20 e

Time after dose (h)

FIGURE 7.1 The plot illustrates some important aspects of the graphical display of popula-
tion data. See the text for details.
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are plotted using open circles (or ID numbers, which will be explained later) and
connected with thin solid lines. The underlying trend in the data is visualized by a
smooth nonparametric curve (the thick, black, solid line). The smooth line in this
case is a loess regression line but other smooth curves, for example, running aver-
ages, will accomplish the same thing. (Sometimes it may be necessary to adjust the
amount of smoothness of such trendlines—accomplished by changing the tuning
parameters of the smooth curve, for example, bandwith or span. The rule of thumb
is that the curve should be as smooth as possible without hiding important trends
and an initial trial and error approach is usually sufficient to find an appropriate
degree of smoothness.) Extreme data points are labeled with the corresponding
individual’s ID number. In this case, the extreme data points are defined based
on the residuals from the fit of the smooth curve. Points outside the 2nd and 98th
percentile of the residual distribution were defined as extreme. The thin, dashed
grid lines are a visual reference grid, which is intended as a reference and not to
help reading off values on the axes. This is useful if we have other plots we want to
compare the current one to, but this requires the grid lines to be the same relative
to the axis scales in the two graphs to be compared.

There is a lot of information contained within this graph. Individuals are explic-
itly recognized since their data points are connected. All individual data points are
plotted, which makes it possible to appreciate the variability in the data without
resorting to summary measures such as mean concentration curves £95% confi-
dence bands. We can also track the limits of the variability since the extreme indi-
viduals can be identified through their ID numbers.

Figure 7.1 is not very busy but it can easily be appreciated that graphical displays
of this kind are at risk of becoming so. The use of open circles (or other nonsolid
symbols) helps somewhat. Dashed lines may be perceived as a better choice than
solid lines to reduce the amount of “ink” in the graph. However, dashed lines are
harder to track among many other dashed lines and will therefore destroy the pos-
sibility to identify individuals as the data becomes denser, sooner than is the case
with solid lines. The solution to the graphical display of a massive amount of data
is actually not to plot all of it—so-called data dilution. The question therefore arises
as how to omit data in an objective way. The obvious solution is to select a random
subset of the individuals to display from the full set of individuals. This has been
done in Figure 7.2, which displays a random selection of approximately 50% of the
individuals in the original data set. It is quite clear that Figure 7.2 is giving a differ-
ent picture from Figure 7.1. In particular, the most extreme individual (ID number
16) and the individual with the singly most extreme data point (ID number 42) are
not included in this sample. This shows that displaying a completely random subset
may actually hide the very information we are interested in. One could argue that
omitting 50% of the individuals is too much, but then it must be remembered that
it may be necessary to exclude an even larger fraction if the data set is large. An
alternative approach is to use stratified randomization in which it is made sure that
the random subset retains all extreme individuals and only omits individuals who do
not seem to contain any unique information. The definition of extreme individuals is
similar to the definition of extreme data points. It is based on the residuals from the
fit of the smooth curve. Individuals who have all their residuals inside (in this case)
the 1st and 99th percentile of the residual distribution were regarded as eligible
for exclusion from the graphical display. This is shown in Figure 7.3. The number
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Observed concentration (ng/mL)

Time after dose (h)

FIGURE 7.2 The plot illustrates data dilution based on a completely random subset
selection.

of individuals in Figure 7.3 is approximately the same as the number in Figure 7.2.
However, Figure 7.3 faithfully retains the same impression of variability as Figure
7.1 and the smooth curve, which is the same in all three figures (i.e., based on all
data), provides the central tendency impression. To ensure that any data dilution
does not distort or hide important information, it may be useful to create a handful
of diluted graphs and make certain that an appropriate set of sampling parameters
has been selected. This should, however, only be necessary at the outset of an
analysis or if the data set is amended or changed during an analysis.

That leaves the multidimensionality aspect unaddressed. The basic problem is
that we may have more than one potential predictor. One possibility is to use
three-dimensional (3D) graphs, but they are difficult to interpret and only allow
three dimensions. Another possibility, which turns out to work very nicely in this
setting, is multipanel conditioning plots (as implemented in Trellis Graphics library
in S-Plus (Insightful Corporation, Seattle, WA) and in the lattice library in R (www.
r-project.org)). With this type of graph, one variable is plotted versus another
given intervals of a third (or fourth, or fifth, etc.) variable. An example is shown
in Figure 7.4.

The observed concentration is plotted versus time after dose given three ranges
of creatinine clearance (low, medium, and high as defined by the intervals given by
the 33rd and 67th percentile) as indicated by the strips above each panel. The visual
reference grid makes it easy to compare the data in each of the panels. The plot
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FIGURE 7.3 The plot illustrates data dilution based on a stratified, randomly selected
subset.
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FIGURE 7.4 A multipanel conditioning plot of concentration versus time given ranges of
creatinine clearance.

could easily have been expanded to use two conditioning variables, for example,
creatinine clearance and age, in which case there would have been three panels for
each age range, low, medium, and high creatinine clearance. For further informa-
tion about the methodology of multipanel conditioning, please refer to the excellent
book by Cleveland (1).
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For the PK example used it is known that drug clearance is strongly related to
the renal function and by comparing the slopes of the smooth curves in the three
panels of Figure 7.4 we can certainly expect that this is to be true also in this data
set. (In the High Creatinine clearance panel, the slope of the smooth curve seems
to be steeper, i.e., a shorter half-life, which may indicate that the clearance is higher
in these individuals.)

7.2.1 Time Scales

Time is the fundamental predictor in PK/PD models and therefore deserves some
special attention. In NONMEM it is possible to specify the time points for observa-
tions and dosing events in the form of date and clock time. This is very convenient
as this is the form in which the data is often stored in clinical databases. These
dates and clock times are converted to decimal times in the preprocessing stages of
the execution of a NONMEM run, and it is these decimal times that are used by
NONMEM in the minimization procedure and that are provided in the tabulated
output. From a plotting point of view, dates and clock times are not easy to work
with. Except for cases with diurnal variations and/or annual rhythms (2, 3), the extra
dimension offered by dates and clock times are unnecessary and may actually make
it harder to visualize the data in an informative way.

Another aspect of time scales is that they are relative to something. The default
behavior in NONMEM (after any time and date specifications have been converted
to decimal times) is that the time scale in each individual is relative to that individ-
ual’s first data record. In graphical displays, on the other hand, it may sometimes
be more useful to use time after the last dose as the time scale, that is, to use the
time of a specific dose (previous dose, last in a specific dosing period, etc.) as the
reference point, since this creates a natural order in the time variable relative to
predictions and residuals and hence more informative graphical displays.

7.3 BEFORE ANALYSIS

7.3.1 Tasks at Hand

Before any “real” analysis work can commence, there are at least two, potentially
unrelated, issues that need to be resolved. The first is to make sure that the data
file to be used in the analysis is correct. The second is that the pharmacometrician
needs to explore the data to be analyzed. Both of these before-analysis tasks benefit
from a graphical approach.

7.3.2 Data Checkout

One aspect of data checkout is finding errors in the data. Errors can occur either
in the database(s) from which the data file is constructed or in the transcription
from that database. The latter type of error can be of two types, either in individual
values or in the structure of the data file as such. All three types of errors may pass
unrecognized by NONMEM and additional data checkout is therefore necessary.
The structure of the data set informs NONMEM where and when the doses and
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dependent variables were observed, the values of independent predictor variables,
and so on. Clearly this type of information will have a large impact on the results
of the analysis and we need to make sure it is correctly specified.

Some errors in the structure of the data file, for example, positive drug
concentration observations before the first dose, become apparent through error
messages from the PREDPP library of NONMEM. Other types of mistakes are
usually only found by inspecting the data file and knowing what the data should
be, for example, the wrong covariate value(s) for an individual. Another way of
finding mistakes is through association and plotting, meaning that by looking at a
picture of the data we can see irregularities in some individuals that may indicate
errors. The last approach is especially useful for the distribution of dosing and
observation events.

One useful type of graph for finding errors in the structure data file is to plot
each individual’s ID number versus each column (variable) in the data file. Depend-
ing on the variable, the expected pattern is different. For example, when plotting
the ID versus the AMT column (which is positive at time points when a dose is
administered and zero otherwise), it is expected that each individual will have AMT
values of 0 (observation events) and values for the administered doses, while when
plotting covariates such as WT and AGE there should probably not be any values
at zero. Figure 7.5 shows an example of this graph. Each individual has one data
point for each of its rows in the data set. To avoid having all the identical data points
from a single individual becoming superimposed, the data points have been jittered,
meaning that for display purposes they have had an element of random noise added
to them. The power of this type of graph lies in the association, an individual who
is much different from the other individuals is usually obvious. However, it is dif-
ficult to find small errors, especially those that do not make the individual stand out
compared to the others. One way to make the identification of extreme individuals
even easier is to order the ID number of the y-axis according to their mean value
of the x-variable. If there are more than, say, 100 individuals in the data set, it is
necessary to split the graph over two or more pages.

A critical aspect of PK data is the dosing history and the relative placement of
doses and observations in time, and it is important to check that there are no gross
errors in this part of the data specification. Dosing histories can quite conveniently
be displayed using event history diagrams. An example is shown in Figure 7.6 in
which ID numbers are plotted versus the AMT column. Each individual’s values
are connected with a dashed line (which of course will be horizontal) and each
event is indicated with a symbol—circles for nondosing events and vertical bars for
dosing events.

A problem with Figure 7.6 is that the horizontal dimension is dominated by the
observations at later times, making it hard to see what is going on at earlier time
points. One solution to this may be to use a log scale for the time axis. Another is
to split the graph and look at different time periods separately. The latter has been
done in Figure 7.7, where the data coded as belonging to occasion one is plotted
separately. Here we can see that most individuals had five doses recorded in the
data set prior to the first observation while six individuals had observations recorded
directly after the first dose event. (This may indicate that these six individuals lacked
the dosing history and that the first dose had to be assumed to be a steady-state
dose.) It is also obvious that, for most individuals, occasion one was defined to cover
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FIGURE 7.5 A data set checkout plot. The ID column in the data file is plotted versus the
creatinine clearance column.
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FIGURE 7.6 An event history diagram for all doses and observations in the data set.
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FIGURE 7.7 An event history diagram for the doses and observations coded in the data
set as belonging to the first study occasion. See the text for details.

less than 100 hours while five individuals were different in this respect. Depending
on how the other occasions were defined, this may have an impact on the quantifi-
cation of interoccasion variability (4).

7.3.3 Data Exploration

Data exploration is a scientific exercise where we try to learn things about the data,
for example, how the covariates are distributed and how they relate to each other.
The exploratory data analysis also defines the population—and thereby the bounds
for the validity of the model—and will form the basis for reporting the analysis to
others. The data exploration is also important from an error finding point of view
since some errors only become apparent when closely studying the data.

Exploratory data analysis in the field of population PK/PD analysis has received
considerable attention in the literature over the years and the basic graphical tools
for this exercise (e.g., histograms, scatterplot matrices, and QQ plots) have been
described elsewhere (5-9) and will therefore not be detailed here.

One aspect that is particular to long-term outpatient clinical trials is time-varying
covariates, and recently a framework for handling these has been presented (10). To
visualize time-varying covariates, we need to use the original time scale, not time
after dose. An example is shown in Figure 7.8, where each individual is plotted sepa-
rately with a line that is horizontal until the value of creatinine clearance changes.
(This is also the default way NONMEM handles time-varying covariates. It can be
changed by including appropriate statements in a $BIND record in the NM-TRAN
control stream.) Superimposed are the observed values and a smooth curve to visu-
alize the underlying trend. In this case creatinine clearance appears to systematically
increase with time, something to consider including in the model (10). However,
care must be taken not to mistake this pattern for the case in which individuals with
poor kidney function have a higher drop-out rate than individuals with relatively
normal functioning kidneys. Care must also be taken not to let a skewed distribution
of the covariate mislead the eye to see a pattern where none exists.
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FIGURE 7.8 Creatinine clearance plotted versus time. The creatinine clearance values at
each time point for each individual are plotted and connected with a dotted line. The solid
black line is a smooth, nonparametric, regression line.

7.4 DURING ANALYSIS

Once the “real” analysis work starts, graphics should be an integrated part of the
workflow. Graphics is used to suggest improvements to the model and is used to
evaluate the benefits of the changes. There are other means of evaluating the impor-
tance of a change to the model, for example, statistical significance criteria, but only
graphics can tell whether a model is appropriately describing the data.

During the model building phase, the pharmacometrician is constantly faced
with two questions: (a) How can I improve the model to provide a meaningfully
improved fit to the data? (b) Does the model violate any (statistical) assumptions,
making it inappropriate? The first question is scientific and will depend on the appli-
cation. For example, would the model benefit from a component that introduces
time dependency in response? The second question is more general and applies
to all analyses. One example is to choose an appropriate model for the residual
variability (weighting). Karlsson and co-workers (9) compiled a comprehensive
list of the assumptions involved in a NONMEM analysis together with suggestions
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for how they could be checked. Many of the suggested approaches are based on
graphical methods.

Itis clear that most graphs in this phase of an analysis are only meant for the eyes
of the pharmacometrician(s) and the questions answered by the graphs are quite
technical. This means that the graphs can and perhaps need to be quite complicated
and hard to understand for the uninitiated viewer.

7.4.1 Basic Plotting Variables

In the following we describe a number of graphs, grouped based on the question
they are designed to answer. Before continuing, however, it is necessary to provide
background and definitions for some of the important plotting variables:

P.=g(z) (7.1)
P=q(P.n) (7.2)
¥y = f(P. xy) (7.3)
Vi = (P, xy) (7.4)
p(i i) (15)
= p(9y. &) (7.6)

Typical individual parameters (Eq. (7.1)), P, can be expressed as a function, g( ), of
covariates, z;. Note that there will be as many unique typical individual parameter
estimates as there are unique combinations of z;. If the model does not include any
covariate relation, then g( ) will be a constant value.

Individual estimates of the parameters (Eq. (7.2)), P, can be expressed as a
function ¢( ) based on the typical individual parameter estimate and the zero mean,
symmetrically distributed variable 7;, whose standard deviation is @. The values of n;
are obtained as posterior Bayes estimates conditioned on a set of typical individual
parameter estimates, ,, and the data for the individual. The important property
of the individual parameter estimates is that they will be shrunken toward the
typical individual parameter estimate, the degree of shrinkage determined by the
amount of information in the data from the individual relative to the size of w. In
the extreme case with no data at all, the individual estimate will be exactly the same
as the typical individual estimate. In the other extreme, with an infinite amount of
information, the individual parameter estimate will be independent of the typical
individual estimates and .

The predictions based on the typical individual parameter estimates (denoted
in Eq. (7.3)) are, in NONMEM, called PRED. The size of the prediction depends
on the individual’s value of any independent variable (e.g., time) at observation j, x;;.
The individual predictions (J; in Eq. (7.4)), usually called IPRED, are not directly
available in NONMEM but can easily be derived by the user in the NONMEM
control stream. How this can be performed is described in Appendix 7.1.

The differences between the predictions and the observations are the residuals
and the values of these will depend on the function p( ) and if the population or
individual predictions were used to derive them. In Egs. (7.5) and (7.6) they are
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denoted ¢; and &, respectively. The standard deviation of g; is 0. The weighted
residuals, WRES, obtained from NONMEM are based on the typical individual
estimates of the parameters and are scaled such that they ought to have a mean of
zero and unit standard deviation (NONMEM User’s Guide II (11)). The individu-
ally weighted residuals, IWRES, are not directly available in NONMEM but can,
similar to the IPREDs, easily be derived in the NONMEM control stream (see
Appendix 7.1).

7.4.2 Overall Goodness of Fit Plots

Before progressing into the world of residuals, it is usually a good idea to get an
overall impression of the model performance. A useful display for this purpose is
shown in Figure 7.9. The observed data and the individual and population predic-
tions are plotted versus time after dose. The data was diluted to about 25% using
stratified randomization and the extreme data points in the left panel and the
corresponding predictions in the middle and right panels are labeled with the 1D
number. If the two right panels are satisfactory, meaning that they look similar in
some sense to the left panel, we know that the model is at least improving. For more
detailed structural model diagnostics we have to resort to other plots (see below).
We can also learn about the scope for improvement by adding covariate relations
to the model. The individual predictions usually define the limits for what is achiev-
able by adding covariates. Or phrased differently, we can rarely hope to bring the
population predictions closer to the observations than the individual predictions are
by the addition of covariates to the model, meaning that the difference between
middle and right panels defines the scope for model improvement by covariates.
A final benefit of this graph is that we can show it to nonpharmacometricians and
expect them to understand what is going on, despite the fact that we present it as
a diagnostic plot.

0 5 10 15
1 1 1 1 1 1 1 1 1 1 1 1

.Obseryations. Indiyidual predictipns Popplationpredict.ions

Observations/Predictions (ng/mL)

Time after dose (h)

FIGURE 7.9 The figure shows the observed data and the individual and population predic-
tions plotted versus time after dose. Included is approximately 25% of the total number of
individuals (selected using stratified randomization). The thick solid line is a smooth curve
based on all individuals. Data points that were judged extreme (see above) in the left panel
are labeled with the ID number. The corresponding predictions are also labeled. The zigzag
pattern most obvious in the right panel is due to the fact that some individuals received dif-
ferent doses at different study occasions.
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Figure 7.9 is good for obtaining a general impression of the performance of the
model. If we want to get a more detailed look at how the predictions match the
observations, we can plot them against each other (Figure 7.10). The graph displays
all data (no dilution). The line of identity (the solid bold line) is included as refer-
ence. Since the model does not contain any covariates, the differences in population
predictions are only due to differences in dose amounts (left panel). When the data
is taken into account, the predictions cover the same range as the observations (right
panel). What we expect from this type of graph, if the model is fitting the data well,
is that the data points are scattered evenly around the line of identity; that is, the
average prediction goes through the middle of the observed data and the predictions
and observations are near the line of identity. If this is the case, then the scatter
around the line of identity in the left panel can basically only be reduced by the
addition of covariates. The scatter in the right panel is also influenced by how we
model the interindividual variability. An alternative if the plot is dominated by a
few extreme data points is to use a log-log scale.

Note the placement of the axes: the observations on the y-axis and predictions
on the x-axis. This is in line with Egs. (7.5) and (7.6), where the y-variable is the
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Observations (ng/mL)

Predictions (ng/mL)

FIGURE 7.10 The observations are plotted versus the population and individual predic-
tions, respectively. All data points are included in this graph (no dilution). The thick solid
line is the line of identity. Data points that were judged extreme (see above) in the left panel
are labeled with the ID number in both panels. The thin solid line is the linear regression
curve obtained when the observations were regarded as the y-variable (the correct way). The
dashed line is the linear regression curve obtained when the observations were regarded as
the x-variable and the predictions as the y-variable (the wrong way).
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observations and the unexplained variability is additive to the predictions (in the
y-axis direction). Obviously the axis placement does not influence the data plotted,
except that the picture will be turned around. However, it does matter which vari-
able is regarded as the y-variable if we wish to add regression lines (linear or smooth
curves). Such regression models assume that the unexplained variability is additive
in the vertical direction. The thin solid, diagonal lines in Figure 7.10 are the regres-
sion lines obtained by regarding the observations as the y-variable (the correct
way). The dashed, diagonal lines, on the other hand, were the results of regarding
the observations as the x-variable (the wrong way). Clearly it makes a difference.
Note that a deviation between a regression line and line of identity does not always
indicate model misspecification. It may be a consequence of, for example, adaptive
study designs or exponential parameter or error distributions (see below about
simulations for inspecting diagnostic plot behavior).

To get a more detailed impression of the differences between the predictions
and the observations and how these differences are distributed over the indepen-
dent variable, we can plot the IWRES versus time after dose (Figure 7.11). With
this graph, the choice of the independent variable is important. Had we chosen the
original time scale (relative to the first data record in each individual), it would
have been hard to interpret any trends that the graph shows but would, on the
other hand, have allowed for the detection of time dependencies. An alternative,

Individually weighted residuals

T T T T
0 5 10 15
Time after dose (h)

FIGURE 7.11 The individually weighted residuals versus time after dose. The solid
thick line is a smooth nonparametric regression line. The horizontal thin line is the zero
reference line.
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especially in the case when the data per individual is sparse, is to plot the WRES
instead of the IWRES. However, if any of the conditional estimation methods are
used in NONMEM, WRES may be misleading. This is because they are always
computed under the same assumption as the first-order (FO) estimation method is
using. For a particular problem, if there is a difference in the parameter estimates
between using the FO and a conditional estimation method, WRES should be
used with caution to detect imperfections of models, as even appropriate models
can display patterns indicating misspecification. As this is likely to happen mainly
when individual data is relatively rich, IWRES is probably a better diagnostic. If
we use the FO method, then the WRES are the residuals we should look at; if we
use other methods, then they may not be appropriate to use. (For further details
on the various estimation methods in NONMEM, please refer to NONMEM Users
Guide VII (11)).

If the model is appropriate for the data, then Figure 7.11 should show no trends:
that is, the data points should be evenly scattered around the horizontal zero-line,
and the smooth curve should be approximately horizontal.

7.4.3 Residual Model Diagnostic Plots

In all types of data analysis there are assumptions made. In a parametric approach,
like the one in NONMEM, many assumptions concern the handling of the residual
error (9, 12) and, in a sense, the validity of the whole analysis rests on the degree
to which we have accounted for the residual variability appropriately. The two
most important assumptions in this respect are (a) that the residual variability is
homoscedastic and (b) that the residuals are symmetrically distributed.

The assumption of homoscedasticity means that the residual variability should
be constant over all available data dimensions (predictions, covariates, time, etc). If
we observe heteroscedasticity, then we need to change the residual error model to
account for this. In practice, this means that we should weight the data differently
by using a different model for the residual variability.

Figure 7.12 is a useful graph for detecting problems with the residual variability
model. The graph shows the absolute values of the individually weighted residuals
versus the individual predictions. The use of the absolute values of the residuals
assumes that there is a balance between positive and negative residual: that is, an
appropriate structural model has been used. The smooth curve indicates if the
underlying trend is different from horizontal. If the smooth curve has a pronounced
positive slope, then the model should allow higher predictions to have a larger vari-
ability, for example, going from an additive model to a slope-intercept or a constant
CV residual error model. If the slope is pronounced negative, then the residual error
model should instead be more “additive,” for example, going to a slope-intercept
model from a constant CV residual error model. There is, of course, more to say
about residual error modeling but this is beyond the scope of this chapter. Useful
references in this respect are Refs. 9 and 12-14.

The second assumption concerns the distribution of the residual errors. Ideally,
the weighted residuals should be normally, or at least symmetrically, distributed.
Effective graphical displays to check this include histograms and quantile-quantile
(QQ) plots (5). If a marked skewness is observed, it may indicate that a transforma-
tion, for example, a log transformation, of the data may be necessary (13).
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FIGURE 7.12 The absolute values of the individually weighted residuals versus the indi-
vidual predictions. The solid line is a smooth, nonparametric regression line.

7.4.4 Interindividual Variability Model

Model building diagnostics for interindividual variability rely on investigation of
n; (or P;). As n values can display considerable bias (shrinkage) when informa-
tion about a parameter is lacking in an individual’s data, basing decisions on these
parameters can be misleading. Whenever shrinkage occurs, the individual param-
eter estimates tend to support the models used to generate them. One way of
assessing the degree of shrinkage is to compare the  estimate from the model with
the SD of the n estimates. If the two values are similar, shrinkage is not a problem.
However, if the individual estimates display a considerably lower variability, diag-
nostics based on 1 values should be treated with caution (and so should diagnostics
based on IWRES). However, due to study design, sometimes only a subset of the
studied subjects may contain substantial information about a particular parameter,
and diagnostics may then be limited to that part of the data. The precision (SE) in
individual 7 estimates is not provided as standard output in NONMEM but can be
obtained subsequent to the fit (Appendix 7.2). Values of 1 with a large SE rela-
tive to w are subject to more shrinkage than 7n values with small SEs. Note also
that individual n values can represent a solution at a local minimum, a situation
not easily diagnosed as there is no user influence over the initial estimates that are
used in that estimation.

Provided n values are deemed reliable, they can be used in scatter matrix plots to
investigate correlations between parameters or in QQ plots or histograms to assess
appropriateness of the selected parametric shape of parameter variability. Models
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that include both interindividual and interoccasion variability offer a particular
obstacle when it comes to use 7 values as diagnostic tools. If the number of occa-
sions is large and the information per occasion high, 1 values for interindividual
variability can be diagnosed as described. For situations (or individuals) where
the number of occasions is low and/or information per occasion is scarce, diagno-
sis based on individual-specific and occasion-specific parameter estimates should
proceed with caution.

7.4.5 Covariate Model

Incorporating covariates in a population PK/PD model is often an important part
of the model building process and is often also an overall aim of the analysis.

Graphical displays of parameters versus covariates are appealing since we usually
have an intuitive understanding of the plotted variables. Depending on whether the
covariate is continuous or categorical, we need to use different plot types. Figure
7.13 is a plot of the unexplained variability in CL, expressed as the 1 for CL, versus
creatinine clearance and sex. Creatinine clearance is a continuous variable and can
be displayed using a typical bivariate xy plot, while sex is categorical and is displayed
using a box and whiskers plot. The latter plot type is useful for categorical data.
The solid symbol in the center of the box shows the median value. The box itself
is limited by the interquartile range (25th to 75th percentile). The whiskers, the
dashed lines going up and down from the box, extend 1.5 interquartile ranges from
the box or to the most extreme data point. If there are any data points beyond the
whiskers, these are plotted individually. Since the amount of data in each category
is crucial in the judgment of any differences between the categories, the width of
the boxes in Figure 7.13 are set to be proportional to the corresponding number of
individuals (there are considerably less females than males in the data set).

It is generally hard to let graphs like the ones in Figure 7.13 guide the covari-
ate model building process. The problem lies in the fact that covariates tend to be
correlated. This is to some extent illustrated in Figure 7.13. The parameter values

Creatinine clearance (mL/min) SEX (O=male)

Unexplained variability in CL (ETA)

50 100 150 0 1
Covariates

FIGURE 7.13 The unexplained variability in CL, expressed as 77, when no covariates were
included in the model, plotted versus creatinine clearance and sex. See the text for details.
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come from a model that does not include any covariate relations. There seems to
be a clear correlation between clearance and creatinine clearance but there also
seems to be a difference between males and females. Since it can be expected
that creatinine clearance and sex are correlated (we should have explored this in
the before-analysis phase), the two apparent relations can be caused by the same
mechanism. On the other hand, there may be two separate mechanisms involved.
A way to sort this out is to include one of the covariate relations in the model, run
it, and then construct the same graph again.

Figure 7.14 is based on a model in which creatinine clearance was included. The
axis limits are the same as in Figure 7.13 and it is clear that the unexplained variabil-
ity has decreased. At the same time it appears as if the sex relation is not as impor-
tant anymore. On the other hand, had sex been included in the model instead of
creatinine clearance then the picture would perhaps have looked the same. Again,
this is the problem with using graphs to guide covariate model building. Clearly
some other techniques are necessary (see other chapters in this book).

The best use of graphical displays of the above type is actually not to identify
relations but rather to explore the shape of the relations, for example, linear or
nonlinear, or to disprove them (6).

In Figures 7.13 and 7.14, the unexplained variability in clearance was expressed
as the corresponding 7 value (obtained by posterior Bayes estimation). There are
other alternatives, as shown in Figure 7.15.

Plotted are the individual estimates of clearance, the difference between the
individual estimates of CL and the typical individual estimate of clearance, and
the n for clearance. Without any covariates in the model it does not matter much
which variable is used. With covariates, on the other hand, we should not use the
individual estimates of the parameter. Equation (7.7) explains why.

P = 0p(1 + .oy (x; — median(x))) + 1 (7.7)
Creatinine clearance (mlL/min) SEX (0=male)

Unexplained variability in CL (ETA)

50 100 150 0 1

Covariates

FIGURE 7.14 The unexplained variability in CL, expressed as 7, when creatinine clearance
was included in the model, plotted versus creatinine clearance and sex.



202 GRAPHICAL DISPLAYS FOR MODELING POPULATION DATA

50 100 150

CL CL-TVCL ETA CL

15 20 25 30

10

Unexplained variability in CL

Creatinine clearance (mL/min)

FIGURE 7.15 The variability in clearance without any covariates in the model plotted
versus creatinine clearance. The three panels include different measures of the variability.
See the text for details.
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FIGURE 7.16 The variability in clearance in the model plotted versus creatinine clearance.
The three panels include different measures of the variability. See the text for details.

Op is the typical value of the parameter P (defined as an individual having the
median value of the covariate x), 6., is the coefficient for the covariate relation, and
x; is the ith individual’s value of the covariate x. Clearly, if we plot the individual
parameter estimates (P;), obtained under the model in Eq. (7.7), versus the covari-
ate x, we will see a trend. This is exemplified in Figure 7.16.

The individual parameter estimates in Figure 7.16 were obtained from a model
similar to Eq. (7.7) and we can see that the individual estimates of clearance show
a clear relation to creatinine clearance while the other two measures of unexplained
variability are reduced in comparison. To summarize, once the model includes
covariates, we should not plot the individual estimates versus covariates but rather
something like the 7 values if the reason for creating the graph is to visualize poten-
tial relations between the unexplained variability and covariates.

Another point with respect to graphical display of covariate relations concerns
interactions between covariates, that is, when the relation between the parameter
and covariate depends on the value of another covariate. For example, if males and
females have different relations between clearance and body weight. Given that
the data set contains enough individuals to support the identification of interaction
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effects, these can be visualized quite efficiently by the use of multipanel condition-
ing, as explained above.

7.4.6 Simulations as a Tool to Make Sense of Goodness of Fit Graphs

Diagnostic plots can only tell us about the deficiencies of the model and not about
its adequacy unless we compare it to the same type of plots based on other con-
tending models. In practice, if we cannot see any problems in our battery of diag-
nostic plots, then we assume the model is without substantive error. Therefore, it
is important to use a multitude of graphs to inspect as many aspects as possible of
the model. However, we need to be careful because a diagnostic plot may appear
suboptimal even if the model is adequate. There are basically two reasons for this
phenomenon.

The variable we are plotting, for example, the residuals, is not a good measure
of the model adequacy: the reason usually being that there are approximations
involved in the derivation of the variable, for example, as previously discussed for
IWRES and WRES. Other issues with residuals are presented by Cox et al. (15) in
the application of survival models in a nonlinear mixed effects environment.

In the judgment of diagnostic plots we rely implicitly on a notion of what the
graph should look like if the model is adequate. For example, in a graph of the
observations versus the predictions, we expect the data points to line up nicely
around the line of identity; that is, the line of identity is our reference. The extent
to which this is true depends on the type of observations, study design, and size of
variability we are dealing with and the estimation method we use. If the estimation
method involves approximations that lead to “nonstandard” graphs, then, clearly,
we cannot improve the appearance of the graphs by changing the model (e.g., a
plot of the population predictions versus the observations if there are no covariates
available).

How do we know we are in this type of situation? One indication is that the
aspect of the graph we are looking at does not change regardless of what we do
with the model. The solution is strikingly simple: Use the model under consideration
to simulate a new data set, analyze the simulated data set, and produce the same
diagnostic plot as was done for the observed data (9). This plot will define a refer-
ence for the real data plot since we know that the plot of the simulated data was
derived using the correct model. Examples are given in Figures 7.17 and 7.18. In
Figure 7.17, the observations are plotted versus the predictions obtained from the
model in which creatinine clearance was included as a linear predictor of clearance.
In Figure 7.18, the predictions came from the same model applied to data simulated
from the model in Figure 7.17.

There is a clear resemblance between the two figures although the one based
on real data appears to be more variable. This may indicate that there are more
covariate effects to be included in the model (based on the left panels) or that
interoccasion variability would improve the model (based on the right panels) (4).

Quite often, it is enough to simulate just one realization of the data but some-
times, particularly if the data set is small and the variability is large, one realiza-
tion is not enough to form a firm opinion about the adequacy of the model. One
possibility then is to simulate many data sets (100-1000) and use them to construct
prediction intervals to be superposed on the real data plot.
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FIGURE 7.17 Plotted are the observations versus the predictions obtained with a model
that includes creatinine clearance as a linear predictor of clearance. Since individuals 16 and
42 dominated the graph, they were excluded from this display.

1 2 3 4 5
1 1 1 1 1 1 1 1

1
Population predictions Individual

1
predictions

Observations (ng/mL)

Predictions (ng/mL)

FIGURE 7.18 Plotted are the observations versus the predictions obtained with a model
that includes creatinine clearance as a linear predictor of clearance applied to data simulated
from the model used in Figure 7.17.
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7.4.7 Categorical Data Poses Different Challenges

Categorical data is becoming increasingly common in population PK/PD analysis,
especially ordered categorical data. Examples of such data are adverse events and
efficacy measurements such as pain scales (16) or sedation scores (17). This section
focuses on graphical methods for categorical type data.

When dealing with ordered categorical data, it is important to remember that an
observation is regarded as being a realization of an underlying set of probabilities,
with one probability existing for each level in the response variable. The model
is describing these probabilities, and how they depend on the predictors, and not
the actual observations. This will have consequences for the graphical methods we
need to use. Basically, there is no point in plotting the observed values since the
actual observations are the frequency (or probability) with which they are observed.
In other words, we need to concentrate our plotting efforts on the observed and
predicted probabilities.

In this section we use a different example data set. It consists of 1600 simulated
categorical observations from 580 individuals. The response variable has six pos-
sible values (0-5). The data were simulated using an ordered logistical model as
described by Zingmark et al. (17). The administered dose was the main predictor
and could be 0, 25, 50, or 100mg. The data were simulated with the dose being
related to the outcome according to an E,,, model (on the logit scale). In some of
the graphs, the “wrong” model was used, meaning a linear model in dose rather
than an E,,,, model.

7.4.7.1 Raw Data Visualization
For a quick look at the observations, without taking any predictors into account, we
can use a regular histogram (Figure 7.19). This graph provides some information
about the frequency of the observed data; for example, it is clear that category 5
is quite uncommon.

Since dose is a candidate predictor for these data, it is natural to take it into
account when plotting (similar to time with PK data). One possibility is to use
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FIGURE 7.19 Histogram of the observed data. Each bar represents the frequency of the
observed category.
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FIGURE 7.20 Histogram of the observed data given the dose level. Each panel shows a
histogram of the data in one dose group.

multipanel conditioning, as shown in Figure 7.20. Each panel shows a histogram for
one dose level. There seems to be a tendency of the “mass” of the distributions to
shift to higher scores when the dose increases. If there were other potential predic-
tors, similar graphs could have been produced for them as well, using intervals of any
continuous predictors as the conditioning variable. Another alternative when there
are multiple predictors is to construct multilevel conditioning plots, for e