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Preface 

Since its discovery almost 200 years ago, least squares has been the most 
popular method of regression analysis. A statistics book with the word 
"regression" in its title, without any qualifying adjective such as "robust" or 
"nonparametric" or "alternative", can be assumed to be about least-squares 
regression. Over the last two or three decades, however, there has been 
increasing interest in other methods. This is due partly to discoveries of 
deficiencies in the least-squares method and partly to advances in computer 
technology, which have made the computational complexity of other methods 
a relatively unimportant consideration. Numerous research articles have now 
been published on alternative approaches to regression analysis. 

Development of these approaches continues and it is likely that further 
research and experience will lead to modifications and improvements. But 
enough knowledge and experience have already been accumulated to be able 
to say that currently proposed alternative methods give reasonable results, 
have worthwhile advantages over least-squares methods, and can be recom-
mended for practical use. 

This book provides an introduction to a variety of regression methods. 
Chapters 1 and 2 deal with the general idea of linear regression without 
specifying any particular method. Chapter 3 is a review of least-squares 
regression and serves as a reference for comparison with other methods. 
Chapters 4 through 8 present five alternative methods: least-absolute-devia-
tions, robust M-, nonparametric rank-based, Bayesian, and ridge regression. 
We do not intend to imply that these five methods are the best ones available 
(which in any case depends on one's definition of "best"). We have chosen 
them because they represent a range of approaches to regression analysis and 
they have received a fair amount of attention in the statistical literature. A 
number of other methods are mentioned briefly in Chapter 10. 

Chapters 4 through 8 can be read in any order after reviewing the first 
three chapters. The formats of these chapters are similar. Each chapter 
(except Chapter 8, which does not discuss testing) has sections on estimating 
the regression line for simple regression data, testing the slope of the 
regression line, estimating the regression coefficients for multiple regression 

ix 
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data, and testing the regression coefficients. In each section a formula is 
displayed or an algorithm is described for calculating the estimate or test, 
and justification is given for why the procedure makes sense. Each chapter is 
intended to be a relatively quick introduction to the method, and so mathe-
matical derivations, bibliographical citations, and other details are deferred 
to notes at the end of the chapter. If the reader is unclear about some point 
in the text, clarification can sometimes be found in the notes. (The notes are 
numbered according to the section they pertain to.) Chapter 9 contains more 
information about the six methods and compares them according to their 
theoretical properties and their performances on some real data sets. 

The descriptions of the procedures are sufficient to enable a reader with 
computer programming ability to write programs to implement them. Worked 
examples are included. (Most numbers are displayed to four significant digits, 
but calculations were carried out using greater accuracy.) The section on 
computation near the end of each chapter mentions existing programs and 
packages that perform these procedures. 

The ideal prerequisites for this book are a course in least-squares regres-
sion, a course in mathematical statistics, and familiarity with matrix notation. 
In order to make the book as readable as possible for someone whose 
knowledge in these prerequisite areas is rusty, a review of least-squares 
regression and some basic statistical concepts and definitions are presented 
in Chapter 3. 

It is hoped that readers of this book will learn enough about how and why 
alternative methods work that they will be motivated to apply them. 

We would like to thank the following people for reading parts of the 
manuscript and providing helpful comments: Gilbert Bassett, Thomas 
Hettmansperger, Peter Huber, Jana Jurecková, Roger Koenker, Peter 
Rousseeuw, Adrian Smith, Stephen Stigler, and especially Dennis Cook. We 
would also like to thank Séverine Pfaff for her expert typing. One author 
(DB) is grateful to the University of Neuchatel and Oregon State University 
for support while on leave during the academic year 1990-91. 

DAVID BIRKES YADOLAH DODGE 

Corvallis, Oregon Neuchatel, Switzerland 
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C H A P T E R 1 

Linear Regression Analysis 

Ho, saki, haste, the beaker bring, 
Fill up, and pass it round the ring; 
Love seemed at first an easy thing— 
But ah! the hard awakening. 

HAFEZ SHIRAZI: Persian Poet (1348-1398) 

1.1 INTRODUCTION 

Statistics is the science of making sense out of data. For various types of data, 
various statistical techniques have been developed for extracting relevant 
information from the data—for determining what the data "mean". One 
common type of data occurs when the values of several variables are 
measured for each of several units. For example, in a medical study, the age, 
weight, height, and blood pressure of a group of 100 subjects might be 
recorded. Here the values of four variables are measured for each of 100 
units. Or, in an industrial experiment, the reaction time, reaction tempera-
ture, and product yield of 20 batches of a chemical might be recorded. Here 
the values of three variables are measured for each of 20 units. Often such 
data are collected for the purpose of seeing how one of the variables depends 
on the others. In the medical study one would be interested in how a 
subject's blood pressure depends on his or her age, weight, and height. In the 
industrial experiment one would be interested in how the product yield of a 
batch of chemical depends on the reaction time and reaction temperature of 
the batch. Linear regression analysis is a commonly used statistical technique 
for dealing with such data. The first two chapters introduce the general 
concept of linear regression analysis and Chapters 3 through 10 present a 
variety of particular methods for implementing it. 

1 



2 LINEAR REGRESSION ANALYSIS 

Table 1.1 Turnip Green Data 

Identification 
Number of 

Plant 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

Vitamin 
B2 

(Y) 

110.4 
102.8 
101.0 
108.4 
100.7 
100.3 
102.0 
93.7 
98.9 
96.6 
99.4 
96.2 
99.0 
88.4 
75.3 
92.0 
82.4 
77.1 
74.0 
65.7 
56.8 
62.1 
61.0 
53.2 
59.4 
58.7 
58.0 

Sunlight 
U.) 
176 
155 
273 
273 
256 
280 
280 
184 
216 
198 
59 
80 
80 

105 
180 
180 
177 
230 
203 
191 
191 
191 
76 

213 
213 
151 
205 

Soil 
Moisture 

U2) 
7.0 
7.0 
7.0 
7.0 
7.0 
7.0 
7.0 
7.0 
7.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 

47.4 
47.4 
47.4 
47.4 
47.4 
47.4 
47.4 
47.4 
47.4 

Air 
Temperature 

(* , ) 

78 
89 
89 
72 
84 
87 
74 
87 
88 
76 
65 
67 
62 
70 
73 
65 
76 
82 
76 
83 
82 
69 
74 
76 
69 
75 
76 

Source: Draper and Smith (1981, p. 406). 

1.2 EXAMPLE 

The data in Table 1.1 were collected for a study of vitamin B2 in turnip 
greens. Three factors thought to influence the amount of vitamin B2 in a 
plant are sunlight, soil moisture, and air temperature. On 27 different 
occasions the investigators picked the leaves of a turnip plant and measured 
the concentration of vitamin B2 (in milligrams per gram of turnip greens), the 
amount of radiation during the preceding half-day of sunlight (in relative 
gram calories per square centimeter per minute), the average soil moisture 
tension, and the air temperature (in degrees Fahrenheit). From these data we 
want to determine how the amount of vitamin B2 in the leaves of a turnip 
plant depends on the factors of sunlight, soil moisture, and air temperature. 
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1.3 THE LINEAR REGRESSION MODEL 

Notation and Terminology. It is convenient to use the following notation: 

y, = concentration of vitamin B2 for the ith plant 

xn = sunlight measurement for the ith plant 

xi2 = soil moisture measurement for the ith plant 

xi3 = air temperature for the z'th plant 

When referring to a particular plant for which data have been collected, we 
use the notation y,, *, · , , xi2, xj3. When talking in general about an unspeci-
fied plant, we use the notation Y, A",, X2, Xy 

The variable Y, which is thought to depend on the other variables, is 
called the dependent variable or response variable. The other variables, Xx, 
X2, and X3, are called independent variables or explanatory variables. 

Formulation of a Model for the Example. To analyze the data in the 
example, we begin with the plausible postulate that the concentration of 
vitamin B2 in the leaves of a turnip plant (Y) is, approximately, a function of 
sunlight (X{\ soil moisture (X2), and air temperature (Λ"3). We do not 
expect to be able to express Y as an exact mathematical function of Xt, X2, 
and X3 because, as is generally true of real-life processes, the production of 
vitamin B2 is more complicated than that. But it seems reasonable to 
suppose that part of the concentration of vitamin B2 in a leaf can be 
explained by these three explanatory variables. Let us write f(Xt, X2, X3) to 
express the part of Y explained by the A"s. A useful model is obtained by 
supposing that Y differs from f(Xt, X2, X3) by a random quantity e. (We 
cannot expect this model, or any model, to completely describe reality, but it 
is more realistic than assuming Y = f(Xt, X2, X3) exactly.) The equation 
Y = f(Xt, X2, X3) + e is a regression model in which / is the regression 
function and e is a random error. 

A linear regression model is a regression model in which the regression 
function is linear. A linear regression model for the example is 

Κ = /3() + /3,Α-, + β2Χ2 + β3Χ3 + e. 

The form of the function is specified to be linear but the coefficients ßn, ßt, 
ß2, and ß3 are not specified; they are unknown parameters. They are called 
regression coefficients or regression parameters. The error e is assumed to be a 
random variable with mean 0. 

The reason for the word "linear" in "linear regression" is of course the 
linear form of the regression function. The reason for the word "regression" 
is explained in Section 1.7. 
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Table 1.2 Array of Data Consisting of n Observations of a Response Variable 
and p Explanatory Variables 

Observation 
Number 

1 
2 

n 

Y 

y2 

yn 

Χχ 

xu 

X2\ 

Xn\ 

x2 

x ] 2 

x 2 2 

Xn2 

xp 

*2P 

Xnp 

Linearity. The essential feature of a linear regression function is that it is 
a sum of terms ßjXj, where /3; is an unknown parameter and X¡ is a known 
value obtained from the data. The manner in which X¡ is obtained from the 
data is not important. For example, suppose we have data on the ages (Y) 
and diameters (A") of pine trees. One linear regression model for these data 
is Y = ß0 + ßxX + e. Another linear regression model we could try is Y = 
ßQ + ßxX + ß2X

2 + e. The latter model might look like a quadratic model 
rather than a linear model because it involves X2. But if we simply change 
notation by setting Xt = X and X2 = X2, then we can write the model as 
Y = ß0 + ßtX{ + ß2X2 + e, which falls under the definition of a linear 
regression model. 

The General Model. In general, suppose we have data consisting of n 
observations of a response variable Y and p explanatory variables 
Xv X2,..., Xp. It is convenient to arrange the data in an array as in 
Table 1.2. Such data are sometimes called "regression data" because it is 
natural to think of using a regression model to analyze them. The linear 
regression model is the equation 

Y = ß0 + ßiX]+ß2X2+ ■■■ +ßpXp + e (1.1) 

In terms of the observed data, the model is 

y, = ß0 + ß,xn + ß2xl2 + ■■■ +ßpx,p + e¡ (1.2) 

for ι: = 1 ,2 , . . . ,« . Also included in the model is the assumption that the 
random errors e,, e2,..., en can be regarded as a random sample of indepen-
dent draws from a single population having a mean of 0. 

When Is the Model Appropriate? If we have a set of data which we want 
to analyze by linear regression, how can we tell if the linear regression model 
is appropriate for these data? In the first place, it must be realized that a 
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theoretical model can never exactly describe a real-world process such as the 
production of vitamin B2 in turnip leaves, because the real world is too 
complex. But for the model to be useful, the data should appear to approxi-
mately follow the model. The linear regression model makes several assump-
tions about the data, including linearity of the function of the explanatory 
variables, independence of the random errors, and equality of the variances 
of the random errors. Procedures have been developed for checking the 
approximate validity of these assumptions. Some of these procedures are 
discussed in Chapter 2. 

1.4 ESTIMATING THE REGRESSION COEFFICIENTS 

Returning to the turnip green data in Table 1.1, let us suppose (at least 
tentatively, subject to reconsideration) that the linear regression model in 
Section 1.3 is appropriate for these data. That is, we suppose Y = ß() + 
ß\Xy + ß2X2 + βτ,Χ?, + e. The regression coefficients ß(), ßt, ß2, and /33 are 
unknown parameters which need to be estimated. The basic idea of the 
model is that the linear function ßl} + ß{Xx + ß2X2 + ßs^i ' s "close" to 
the value of Y. So, in using the observed data to estimate the regression 
coefficients, the basic idea is to estimate them by values ß0, /?,, ß2, and ß3 

such that the fitted y-value, 

9, = ßo + ßi*n + fon + /M/3 

is "close" to the observed y-value, y,, for / = 1,2,. . . , 27. How exactly do we 
measure the collective closeness of the fitted y-values to the observed 
y-values? The various regression methods presented in the following chapters 
correspond to different ways of measuring closeness. 

Suppose we have chosen a regression method and have obtained estimates 
j8„, j§„ ß2, and /§_,. The equation Ϋ = βα + β,Λ", + β2Χ2 + β3Χ3 is called 
the estimated regression equation or the fitted regression equation. This 
equation has several uses. First, it serves as a concise description of a major 
pattern in the observed data. It describes an approximate relationship be-
tween vitamin B2 and the other three variables. The values y, tend to be 
close to βη + /§,*,·, + ß2xi2 + ß3Xjy Second, it could be used to predict the 
concentration of vitamin B2 in future harvests of turnip greens with possibly 
different degrees of sunlight, soil moisture, and air temperature. If in the 
future we measure the values Xt, X2, and X3, we could predict that the 
value of Y will be near Y. Third, the fitted regression equation provides a 
basis for testing the significance of the relationship between the response 
variable and the explanatory variables. 
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1.5 TESTING THE SIGNIFICANCE OF THE RELATIONSHIP 

A good model balances two competing requirements. On the one hand, the 
model should be complex enough to approximate the real-world phe-
nomenon it describes. On the other hand, the model should be as simple as 
possible, because the simpler it is, the more comprehensible it is. Therefore, 
if we have two models that give approximately the same degree of agreement 
with reality, we should prefer the simpler model. 

In the context of linear regression analysis, this principle of simplicity is 
applied in the following way. From the full linear regression model Y = ß0 + 
ßtXt + ■ ■ ■ +ßpXp + e we drop out one or more of the explanatory 
variables, say X+i,...,X, to obtain a reduced model Y = ß() + 
ßxXx + · · · +ßqXq + e. We then perform a test to see if there is a signifi-
cant difference between the full model and the reduced model. If there is no 
significant difference, then the two models are approximately equivalent and 
so we prefer the simpler one, the reduced model. 

For example, to analyze the turnip green data in Table 1.1, we could 
compare the full model Y - ß0 + ßtX{ + ß2X2 + β^Χ3 + e with the model 
Y = β() + e to see whether vitamin B2 has a significant dependence on any of 
the three explanatory variables. Of course we expect such a dependence but 
we should check whether the data confirm our expectations. We could also 
compare the full model with the model Y = /30 + ß\X\ + ß2X2 + e. This 
would test whether the dependence of vitamin B2 on air temperature is still 
significant after its dependence on sunlight and soil moisture is taken into 
account. And several other similar tests could be performed. 

The different regression methods presented in the following chapters 
entail different procedures for performing such tests. 

1.6 THE NEED FOR ALTERNATIVE METHODS 

When one wants to apply the linear regression model to a set of data, there 
are various methods one could use to estimate the regression coefficients. 
The most popular one is called the method of least squares, which is 
presented in Chapter 3. This method, however, has weaknesses and conse-
quently sometimes statisticians prefer to use alternative regression methods. 

A major weakness of the method of least squares is illustrated by the 
following example. In Table 1.3 are listed the 14 countries in North and 
Central America with populations over one million people in 1985. For each 
country the table shows its birth rate (the number of births per year per 1000 
people) for 1980-1985 and its urban percentage (the percentage of the 
population living in cities of over 100,000) in 1980. 
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Table 1.3 Birth Rate Data 

Country 

Canada 
Costa Rica 
Cuba 
Dominican Republic 
El Salvador 
Guatemala 
Haiti 
Honduras 
Jamaica 
Mexico 
Nicaragua 
Panama 
Trinidad/Tobago 
United States 

Birth Rate 
(Y) 

16.2 
30.5 
16.9 
33.1 
40.2 
38.4 
41.3 
43.9 
28.3 
33.9 
44.2 
28.0 
24.6 
16.0 

Urban Percentage 
U ) 
55.0 
27.3 
33.3 
37.1 
11.5 
14.2 
13.9 
19.0 
33.1 
43.2 
28.5 
37.7 
6.8 

56.5 

Source: World Resources Institute (1986). 

LS 
LS ignoring T / T 
LAD 

Urban percentage 

Figure 1.1 Plot of the birth rate data with three estimated regression lines, one by least squares 
(LS) using all the data, one by LS ignoring Trinidad/Tobago (T/T) , and one by least absolute 
deviations (LAD). 
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To investigate the relationship between these two variables we can plot 
the data as in Figure 1.1. The points in the plot show, at least roughly, a 
pattern sloping downward from left to right. That is, there seems to be a 
tendency for countries with higher percentages of urban dwellers to have 
lower birth rates. To describe this tendency quantitatively, we can fit a linear 
regression equation to the data. If we use the method of least squares, the 
equation is Y = 43 - OAOX. 

Note how the point representing Trinidad/Tobago stands apart from the 
rest of the points. A weakness of the least-squares method is that it allows 
such "outlying" data points to have too much influence. If we eliminate 
Trinidad/Tobago from the analysis and fit a least-squares linear regression 
equation to the remaining 13 points, we obtain Y = 49 - 0.55 A", which is 
noticeably different from the first equation. It seems unwise to allow a single 
country to have such a large influence on our analysis. 

Alternative regression methods are available which restrain the influence 
of outlying data points. For example, we can use the method of least absolute 
deviations, which is presented in Chapter 4. If we fit a linear regression 
equation to the same data by the method of least absolute deviations, the 
equation is Y = 46 - 0.54A". See Figure 1.1. Without Trinidad/Tobago, 
the equation is exactly the same. 

M-regression, presented in Chapter 5, and nonparametric regression, 
presented in Chapter 6, are also resistant to the influence of outliers. The 
least-squares method of regression performs best if the population of errors 
has a normal distribution. If it is thought that the distribution of errors may 
not be normal (which is sometimes indicated by the occurrence of outliers), 
then least-squares estimates and tests may be much less efficient than those 
provided by the methods of least absolute deviations, M-regression, or 
nonparametric regression. 

Even if the distribution of errors is normal, the accuracy of least-squares 
estimates can sometimes be improved by using the ridge estimates described 
in Chapter 8. When one has previous knowledge about the type of data one 
is analyzing, it is possible to incorporate this knowledge into the analysis by 
using the Bayesian methods presented in Chapter 7. Further discussion of 
the advantages and disadvantages of least-squares regression and the various 
alternative methods is given in Chapter 9. 

1.7 THE ORIGIN OF THE WORD "REGRESSION" 

Francis Galton introduced the concept of regression in a paper on "Typical 
Laws of Heredity" presented in England in 1877. In a study of inheritance in 
sweet peas, he discovered an interesting relationship between the diameters 
of parent sweet peas and the diameters of their offspring. Table 1.4 and 
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Table 1.4 Galton's Sweet Pea Data 
Diameter of 

Parent Peas 

(in γπό of an 

21 
20 
19 
18 
17 
16 
15 

inch) 

Mean Diameter 
of Offspring 

Peas 

17.5 
17.3 
16.0 
16.3 
15.6 
16.0 
15.3 

Source: Galton (1886). 

Figure 1.2 display part of his data. For each of seven diameters, he found 
sweet peas having approximately that diameter and planted them. These 
were the "parent" sweet peas. After the plants grew and produced peas, 
these "offspring" sweet peas were harvested and their diameters were 
measured. 

Galton noticed two things about these data. First, the averages of the 
offspring diameters had an approximately linear relationship with the parent 
diameters. Just by eye we can see in Figure 1.2 that a straight line could be 
drawn that fits the data fairly well. 

Second, he noticed that the average diameters of the offspring peas 
appear to "regress" toward a common average. (In 1877 he used the word 
"revert" but in an 1885 paper he changed to the word "regress".) The overall 

18-

17· 

O
ff

sp
ri

ng
 

5Ñ
 

15-

14 

• 

1 

• 

1 

• 

1 

• 

1 

• 

1 

• 

1 1 

14 15 16 17 18 

Parent peas 

Figure 1.2 Plot of the sweet pea data 

19 20 21 



10 LINEAR REGRESSION ANALYSIS 

average diameter of the offspring peas is about 16.3. For each of the seven 
parental diameters, the average diameter of the offspring differs from the 
parental diameter in the direction of the overall average. For example, the 
offspring of parents with diameter 21 have an average diameter of 17.5, which 
is in the direction of 16.3. And the offspring of parents with diameter 15 have 
an average diameter of 15.3, which is in the direction of 16.3. Galton later 
referred to this phenomenon as "regression toward mediocrity". 

One might think that regression would imply that, after many generations, 
all sweet peas would end up having the same diameter. But the regression 
only pertains to the average diameters of the offspring peas. The individual 
peas have diameters that vary around the average. The variability of the 
individual diameters compensates for the regression of the average diame-
ters, so that the distribution of diameters in the population of offspring peas 
is actually the same as the distribution of diameters in the population of 
parent peas. 

NOTES 

1.3a. In regression terminology we say that the variable Y "depends" on 
the variables A",,.. . , Xp or that the value of Y is a "response" to the values 
of Xu...,Xp. Although the words suggest so, this should not be taken to 
mean that the relationship between the A"s and Y is necessarily one of cause 
and effect. A regression model can be used to describe associative relation-
ships as well as causative relationships. 

1.3b. There are a number of reasons why we cannot expect Y to be an 
exact mathematical function of Xv X2, and X3. The measurements of the 
three explanatory variables are incomplete in the sense that, for example, 
the air temperature measurement was taken at one particular time but the 
temperature probably varied somewhat throughout the production process. 
The measurements are subject to error due to imprecision in the measuring 
instruments and human errors. There are certainly other factors, besides 
sunlight, soil moisture, and air temperature, that influence the production of 
vitamin B2. The production of vitamin B2 is so complicated that it seems 
impossible to express it exactly in any mathematical formula. 

1.7a. For more about Francis Galton's contributions to statistics see 
Stigler (1986, Chapter 8). 

1.7b. To see how variability compensates for the regression of the aver-
ages, look at Figure 1.3. The ellipse represents a cloud of data points in a 
large sweet pea experiment. The x-coordinate of a data point is the diameter 
of a parent pea and the y-coordinate is the diameter of one of its offspring 
peas. Let us focus on peas having diameter 21 or more; for convenience we 
call these "large" peas. The large parent peas are those associated with the 
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Diameter of parent pea 

Figure 1.3 Ellipse representing a cloud of data points in a large sweet pea experiment. 

points in areas A and B. Among the offspring of these large parent peas, only 
a fraction, due to the regression effect, are large; these are the offspring 
associated with the points in area B. But due to variability, some of the 
offspring of not-so-large parent peas are large; these are the offspring 
associated with the points in area C. So the proportion of large peas in the 
offspring population (associated with areas B and C) is the same as the 
proportion of large peas in the parent population (associated with areas A 
and B). 
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C H A P T E R 2 

Constructing and Checking 
the Model 

2.1 INTRODUCTION 

The main subjects of this book are estimation and testing of regression 
coefficients, two basic components of regression analysis. In this chapter, 
before focusing on the various methods of estimation and testing presented 
in the remaining chapters, we first consider the overall plan of statistical 
analysis in which these methods are intended to be used. 

Data analysis can be viewed as model construction. A model is proposed 
and then checked to see how well it fits the data. If the fit is inadequate, the 
model is modified. The process of checking and modifying the model is 
iterated until a suitable model is found. 

Estimation and testing of regression coefficients are important tools in 
model construction. Note that we can choose to use any "brand" of tool, that 
is, any of the specific methods presented in Chapters 3 through 10. 

Proposing a Model. It is sometimes the case that a model for the data 
has been suggested beforehand, either based on previous experience with 
similar data or based on theory about the process that generated the data. In 
the absence of such experience or theory, if we are given a set of regression 
data such as displayed in Table 1.2, it would be natural, as a first proposal, to 
try the model 

Υ=β0 + βιΧχ + β2Χ2+ ··· +ßpXp + e (2.1) 

Another strategy would be to look initially at a simple model such as 
Y = ß0 + ßtXi + e and then sequentially add other explanatory variables to 
the model. 

13 
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The Assumptions. Whether the proposed model is valid or not depends 
on whether the data satisfy, at least approximately, the necessary assump-
tions. Recall the assumptions about the data that are implied by the linear 
regression model (2.1). In terms of the observed data the model is 

Vi = ßo + / Μ . Ί + 02*Í2 + · · · + ßP*iP + e¡ ( 2 · 2 ) 

for i = 1 ,2 , . . . ,« . The model assumes: 

(i) Regarding y, as a random variable, its expectation is a function of the 
corresponding explanatory variables, xn, xi2, ■ ■ ■, xip, and the function 
is the same for all /. 

(ii) The function in (i) is linear; that is, the expectation of y, is )3() + 
βχχη + β2

χη + " ' +ßpxiP f° r some coefficients ßj. 
(iii) The "errors" e¡ = y, - (ß„ + ßtxn + ß2xi2 + ' ' ' +ßP

xip) a r e π ^ ε 

independent random draws from a single population. 

This chapter describes some elementary procedures for checking the 
assumptions and for adjusting the model to achieve closer agreement and 
illustrates these procedures using both the least-squares method and an 
alternative regression method. 

2.2 CHECKING THE MODEL 

Plotting the Data. Suppose model (2.2) is proposed. A good first step in 
checking the model is to plot the response variable against each of the 
proposed explanatory variables; that is, for each j (1 <;' < p) plot the n 
points (xtj, y,), (x2j, y2X'· · · >(-*„>> yn)· Such a plot may reveal violations of 
the model assumptions. If the cloud of points in the plot has a curved shape, 
this may indicate nonlinearity of the regression function, a violation of 
assumption (ii). If the cloud has a fan-like shape, this indicates unequal 
variances of the errors, a violation of assumption (iii). If one or more of the 
points stand apart from the main body of the cloud, these observations are 
possible outliers, which may not belong in the same model with the rest of the 
data. 

Plotting the Residuals. If the p plots of Y against the explanatory 
variables do not reveal any obvious inadequacies in the model, the next step 
is to calculate estimates /3y for the regression coefficients. Any of the 
estimation methods described in Chapters 3 through 10 could be used. Then 
estimate the errors e¡ by calculating the residuals e¡ = y¡ - (ßt) + ßtxn + 
ßixn + ' ' +ßP

xip)- Violations of the assumptions usually show up more 
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clearly in plots of the residuals than in the data plots described in the 
preceding paragraph. 

A residual plot is a plot of the n points (z, , é,),(z2 , e2),.. . ,(z„,e„), 
where z, is taken to be one of the explanatory variables JC,; or the fitted 
y-value y, or any quantity that might possibly be related to the sign or size of 
the errors e¡. Sometimes the subscript i itself is related to e¿ when the order 
of the subscripts is the same as the time sequence in which the data were 
collected. If the model is suitable, the residuals should behave approximately 
like the errors, which according to assumption (iii) should behave like 
independent random draws from a single population. The cloud of points in 
the residual plot should then be an amorphous cloud showing no pattern. 
Inspect the plot in the same way that the data plots were inspected, looking 
for nonlinearity, unequal variances, and outliers. 

To make outliers easier to spot, it helps to divide the residuals by an 
estimate of their standard deviation and to plot these standardized residuals. 
A standardized residual is suspicious if it is larger than about 2.0 or 2.5 in 
absolute value. 

Testing the Explanatory Variables. If the model seems adequate, we 
could then try to simplify it by eliminating explanatory variables that are only 
very weakly related to the response variable. If a certain variable or set of 
variables are suspected of being dispensible, we could test the hypothesis that 
their coefficients are zero. 

2.3 MODIFYING THE MODEL 

When we apply the procedures of the preceding section to check the model, 
we may find that the model fits the data well. If not, we can try to modify the 
model to achieve a better fit. 

Nonlinearity. Suppose the data plots or the residual plots reveal that the 
relationship between the response variable and the explanatory variables is 
nonlinear. We can try changing the variables in some way so that the 
relationship becomes approximately linear. The plots may suggest a particu-
lar transformation of a variable. For example, if the plot of Y versus A", 
looks like the right half of a parabola, then we could try replacing Y by \/Ϋ 
or replacing Xt by X}. Sometimes the nature of a variable suggests a 
transformation. If V is the efficiency of a car, measured in miles per gallon, 
the transformed variable 1/V, in gallons per mile, makes equally good sense 
as a measure of inefficiency. Or if V is the length of a fish, the transformed 
variable y 3 could be interpreted as a proxy for the weight of the fish. 
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Another way to achieve approximate linearity is to add explanatory variables 
to the model. These could be entirely new variables or variables such as A",2 

or X\X2, which are constructed from other variables. 

Unequal Variances. If the plots indicate unequal variances of the errors, 
a transformation of Y may help. If Y is always positive and its range spans 
several orders of magnitude, such as from 0.01 to 10, a frequently used 
transformation is the logarithm function. If y is a percentage, a commonly 
used transformation for stabilizing its variance is the arcsine square-root 
function. 

Outliers. If a data point stands apart from the main body of points in a 
plot, it should be investigated to see what may have caused this. Perhaps a 
number has been incorrectly recorded. Or the experimenter who collected 
the data may remember some special circumstance for that data point. If 
special factors have influenced an outlier, one could remove it from the data 
set and use a linear regression model only for the remaining data. (The 
information that certain factors may produce outliers should be retained and 
could even be the most interesting result of the analysis.) However, an outlier 
may legitimately belong in the same model with the other data; it may be that 
the process that generated the data is one that occasionally produces extreme 
values. When an outlier is kept in the data set, its effect on the analysis can 
be checked by running two analyses, one with and one without the outlier. 
The outlier's effect can be constrained by using least-absolute-deviations, 
M-, or nonparametric regression. 

2.4 EXAMPLES 

Since there is always a lot of subjectivity involved in planning and interpret-
ing a statistical analysis, each of the following examples should be viewed as 
only one of many possible analyses. 

Example 1. Consider the turnip green data described in Section 1.2 and 
displayed in Table 1.1. Plots of the response variable, Y = vitamin B2, versus 
each of the three explanatory variables, Ä", = sunlight, X2 = soil moisture, 
and X3 = air temperature, are shown in Figure 2.1. 

The plot of Y versus X2 looks nonlinear. A corrective measure for this is 
to add X2 to the model as a fourth explanatory variable. That is, let us 
modify the model to be 

Y = ßa + ßxXx + ß2X2 + ß3X3 + ß4X4 + e (2.3) 

where ΧΛ = X2. 
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Now we want to estimate the coefficients in this model. Suppose we decide 
to use the method of least squares. Following the procedure described in 
Chapter 3, we obtain Y = 119.6 - 0.03367*, + 5.425*2 - 0.5026*-, -
0.1209*2

2 a s a n estimate of the regression equation. The least-squares 
estimate of the standard deviation of the errors is σ = 6.104. 

Next we calculate the residuals et = y¡ - y¡ and plot their standardized 
values é¡/& versus the fitted values y¡ and the three explanatory variables 
xn, xi2, and xi3. These four plots are shown in Figure 2.2. 

No curvature is apparent in these plots. The plot versus * 2 , soil moisture, 
emphasizes that this variable takes on only three different values—2.0, 7.0, 
and 47.4. We would have to be cautious about the validity of the estimated 
regression equation for data with soil-moisture measurements of 20 or 30. 
This plot also suggests that the variance of the errors for * 2 = 7.0 may be 
smaller than for the other two values of X2. But the observed difference in 
variance could simply be due to chance since the difference is caused by only 
two or three points with large residuals. 

A standardized least-squares residual can be regarded as a possible 
outlier, to be investigated, if its absolute value is greater than 2.0. (Some 
statisticians would not worry unless the absolute value was greater than 2.5.) 
The plots show one possible outlier, plant number 19, which has a standard-
ized residual of 2.286. In the absence of a specific reason for omitting it, we 
retain it in the model. Moreover, its residual is not too extreme, and among 
more than 20 observations we expect to see at least one observation whose 
standardized residual is larger than 2 in absolute value. 

Thus we see that linear regression model (2.3) seems to adequately fit 
these data. Now we check whether the model can be simplified by dropping 
one or more explanatory variables. Using the procedure presented in Chap-
ter 3, we can test the four hypotheses that j8, = 0 , β2 = 0, /33 = 0, and 
/34 = 0. The test of /3, = 0 indicates that perhaps jß, = 0, and hence that 
explanatory variable * , , the amount of sunlight, does not contain much 
information about the response variable beyond the information already 
contained in the other explanatory variables. 

Let us simplify the model to 

Υ=β0 + β2Χ2 + β3Χ3 + ß4Xi + e (2.4) 

The least-squares estimate of the regression equation is Y = 120.6 + 
4.904*2 - 0.5716*3 - 0.1108*2

2 and the estimate of the standard deviation 
of the errors is σ = 6.223. Testing the three hypotheses β2 = 0, β3 = 0, and 
β4 = 0 in this model, we find that all three explanatory variables are neces-
sary. The residual plots for this model look similar to the corresponding plots 
in Figure 2.2 for model (2.3), with the slight difference that, in the simplified 
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model, plant number 15, in addition to plant number 19, now qualifies as an 
outlier with a standardized residual of -2.084. Model (2.4) seems to be a 
satisfactory model for the turnip data. 

Example 2. Consider the fire data described in Section 4.5 and displayed 
in Table 4.3. The response variable, Y = the incidence of fires, is plotted 
versus each of three explanatory variables, X{ = the proportion of older 
housing units, X2 = the incidence of theft, and X3 = the median family 
income, in Figure 2.3. 

In the plot of Y versus X2 we see one point that is far to the right of the 
other points. The incidence of theft in area number 24 is 147, whereas the 
incidence of theft in each of the other areas is no more than 75. A data point 
that has an extreme value for one of the explanatory variables is called a 
leverage point. (The term outlier is usually reserved for data points that have 
extreme values for the response variable.) Leverage points have a dispropor-
tionate influence on the estimates of the regression coefficients, which is 
especially undesirable because it often happens that leverage points do not 
follow the same model as the rest of the data. Therefore we delete area 24 
from the model, and confine our conclusions to areas with incidence of theft 
no more than 75. The plot of Y versus X3 shows that area number 7 is also a 
leverage point. Its median family income is 21,480 whereas the next largest 
value is only 16,250 and the remaining values are all less than 14,000. We will 
also delete area 7 from the model. 

In the plot of Y versus Xt the cloud of points has a fan-like shape, 
indicating unequal variances. The plot of Y versus X3 also as a fan-like 
shape, with the fan opening in the opposite direction. Let us try to correct 
this problem by transforming Y by the logarithm function. (Logarithms to the 
base e are used here but the base is not important.) Plots of log Y versus 
each of the explanatory variables are shown in Figure 2.4. 

Since these plots do not show any obvious violations of the assumptions, 
let us try the linear regression model 

log Y = 00 + /S ,* , + ß2X2 + ß3X, + e (2.5) 

Let us use the method of least absolute deviations (LAD) to estimate the 
regression coefficients. Following the procedure of Chapter 4, we obtain 
Ϋ = 4.362 - 0.09098 A", + 0.01299X, - 0.2425X3. The LAD estimate of the 
standard deviation of the errors is σ = 0.5100. 

The standardized residuals <?,/σ are plotted versus the fitted values y¡ and 
each of the three explanatory variables in Figure 2.5. 

These plots look acceptable with respect to the assumptions of linearity 
and equal variance. The standardized residuals of the areas numbered 13 and 
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34 are greater than 2 but less than 2.5. LAD regression generally produces 
larger standardized residuals than least-squares regression, so a value be-
tween 2 and 2.5 is not as suspect. Area 13 has the second largest median 
family income, and so one could justifiably label it as a leverage point and 
delete it from the model, but we have kept it. 

At this point, model (2.5) seems like a reasonably good model for the fire 
data with areas 7 and 24 omitted. Let us see if it can be simplified. Using the 
procedure presented in Chapter 4, we can test the three hypotheses that 



22 CONSTRUCTING AND CHECKING THE MODEL 

i s 
ao 

3 

4 

3 

2 

It 

0 
0.2 

·-· : ·.· . 
• · 

0.4 0.6 
Age 

0.8 

£- 2 
3P 

«3 

Ϊ 
1 

• . . . · 

• i 

10 20 30 40 
Theft 

50 60 70 

4 

3 

2 -

1 

0 

· · · · · 

6 8 10 12 14 16 18 
Income 

Figure 2.4 Data plots for the fire data after deleting areas 7 and 24 and transforming Y to 
log Y. 

/3, = 0, ß2 = 0, and /33 = 0. The test of the first hypothesis leads us to drop 
explanatory variable Xt, the proportion of older housing units, from the 
model. 

Consider the model 

\ogY = ß0 + ß2X2 + ß3X3 + e 
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areas 7 and 24 and transforming V to log Y. 
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The LAD estimate of the regression equation is Ϋ = 4.252 + 0.01156^2 -
0.2330^3 and σ = 0.5232. Testing the two hypotheses β2 = 0 and β3 = 0 in 
this model, we find that we could try removing X2 from the model. 

Now consider the model 

log Y = β0 + β,Χ3 + e (2.6) 

The LAD estimate of the regression equation is Y — 4.988 - 0 .2718^ and 
σ = 0.5325. The standardized residual plots look similar to those versus Y 
and X3 in Figure 2.5. There is no evidence of nonlinearity or nonconstant 
variance or outliers. Model (2.6) appears to be a satisfactory model for the 
fire data. 

NOTES 

2.1a. The process of model construction is fundamental to the scientific 
method. See Box, Hunter, and Hunter (1978, Chapter 1). 

2.1b. In this chapter we have described the process of model construction 
as a sequential process in which a sequence of models are considered, one at 
a time, but other approaches are possible. In the examples in Section 2.4 we 
have followed a particular sequential procedure called backward elimination. 
One begins with model (2.1), containing all available explanatory variables, 
and then sequentially eliminates those variables that are unnecessary. Hy-
pothesis testing is used to determine which variables are unnecessary. 

Other sequential strategies for model construction are forward selection, 
mentioned in the last sentence of the subsection on proposing a model, and 
the stepwise method, in which explanatory variables are added at some steps 
and deleted at other steps. 

The all-possible-regressions procedure is a nonsequential approach. To 
use this procedure one must choose a measure of the goodness of a model, 
such as Mallow's Cp criterion (see Weisberg, 1985, p. 216, or Myers, 1990, 
p. 182). The criterion is calculated for all the linear regression models 
obtained by using all possible subsets of the p available explanatory variables. 
Among these 2" models, one could choose the model with the best value of 
the criterion. Or one might choose several models with good values of the 
criterion and investigate them in more detail. Of course, the feasibility of 
looking at all possible regressions depends on the size of p. 

See the topic of variable selection in the books suggested for additional 
reading at the end of the Notes in Chapter 3. 

2.2a. Methods for checking the assumptions of a model are often called 
diagnostics. Most of these methods involve analysis of residuals. 
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2.2b. See Note 2.4a for more about standardization of residuals. 

2.3a. A transformation of the data can be used to improve their agree-
ment with the linear regression model. A suitable transformation of Y can 
sometimes be estimated from the data. The Box-Cox family of power 
transformations can be used for this purpose. One supposes that Υλ follows 
a linear regression model for some power A, and then uses the data to 
estimate the value of A. This family of transformations includes l/Y, JY, Y, 
Y2, Y?, and log Y. (For A = 0 we let Υλ = log Y, which is sensible because 
log Y is the limit of (Υλ - D/A as A approaches 0.) See Draper and Smith 
(1981, Section 5.3), Weisberg (1985, Sections 6.4 and 6.5), or Myers (1990, 
Section 7.3). 

2.3b. A linear transformation of the data has no effect on the data's 
agreement with the linear regression model. Suppose we transform Y to 
Z = cY + d. The model Z = y() + ytX¡ + · · ■ + γρΧ + e is equivalent to 
the model Y = j30 + β,ΛΊ + · · · +βρΧρ + e, where β() = (γ() - d)/c, 0, = 
yx/c,...,ßp = γ,,/c. Or suppose we transform Xt to W = cXt + d. The 
model Y = y0 + y{W + y2X2 + ■ ■ ■ + ypXp + e is equivalent to the model 
Υ = β„ + /3,A-, + β2Χ2 + ■■■ +βρΧρ + e, where β0 = γ„ + dyt, /?, = cy„ 
ß2 = y2,...,ßp = yp. 

Therefore a linear change in units, such as from miles to kilometers or 
from degrees Fahrenheit to degrees Celsius, has no essential effect on a 
linear regression model. Results from a regression analysis using the changed 
model can easily be translated back in terms of the original model. A 
nonlinear change in units, however, such as from miles per gallon to gallons 
per mile or from centimeters to cubic centimeters, produces an essentially 
different linear regression model. Results from a regression analysis using the 
changed model do not necessarily imply anything about the original model. 

2.3c. A discussion of the frequency of occurrence of outliers (or gross 
errors) in real data is given in Section 1.2c of Hampel et al. (1986). 

2.4a. A residual is standardized by dividing by an estimate of its standard 
deviation. In Examples 1 and 2 we have standardized é¡ by dividing it by σ. 
This is sensible because the residuals are estimates of the random errors, and 
so SD(é,) = SD(e,) = (7. But a more accurate estimate of SD(<?,) can be 
obtained. 

For least-squares residuals, SD(é,) = σ-y/l - h¡¡, where h¡¡ is the /th 
diagonal entry in the matrix ^(Λ'Ά')" 'λ" and X is the n X (p + 1) matrix of 
explanatory variables JC(-- augmented by a column of l's. Hence a more 
refined definition of a standardized least-squares residual would be 
C'jWryJl ~hi,), rather than é¡/&. This is sometimes called a studentized 
residual. In Example 1, there are three turnip plants having studentized 
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residuals with absolute value greater than 2. The plants numbered 10, 15, and 
19 have studentized residuals 2.077, - 2.093, and 2.435, respectively. 

It can be shown that A,, is always between 0 and 1; hence γ/ΐ - A,, is less 
than 1, and the studentized least-squares residual is always larger than the 
standardized least-squares residual. In simple least-squares regression, A,·,· = 
( I / « ) + (Xj - x)2/L(x¡ - x)2, and so the difference between the studen-
tized residual and the standardized residual is substantial only when n is 
small and x¡ is far from x. 

For studentization of residuals in M-regression, see Belsley, Kuh, and 
Welsch (1980, p. 234). For studentization of residuals in nonparametric 
regression, see McKean, Sheather, and Hettmansperger (1990, Section 4). 

2.4b. The problem of leverage points is covered in Belsley, Kuh, and 
Welsch (1980, Chapter 2), Cook and Weisberg (1982), and Rousseeuw and 
Leroy (1987, Chapter 6). Briefer treatments of the problem can be found in 
introductory regression books such as Draper and Smith (1981, Section 3.12), 
Weisberg (1985, Section 5.3), and Myers (1990, Chapter 6). 

Discussion of leverage points may often be found under the topic of 
"influential observations". A data point is an influential observation if it has a 
large influence on an estimate or test. In particular, consider the least-squares 
estimate y, = β() + βλχη + · · · +ßpxip of the regression equation at the 
¿-values of the /th data point. It can be expressed as y, = (1 — hu)y* + A,,y, 
where y* is the estimate obtained without using the /th data point and A„ is 
as in Note 2.4a. The quantity h¡¡ is called the potential of the ¿th data point. 
The data point is influential if either A,, is large (which happens for leverage 
points) and y, is moderately different from y* or if y, is much different from 
y* (which happens for outliers) and A,, is not too small. A typical value of 
the potential A„ is about (p + \)/n; a potential is usually regarded as 
"large" if it is larger than 2(p 4- \)/n. 

In the fire data of Example 2, the potential values of areas 7 and 24 are 
0.5200 and 0.6173, which are much larger than 2(p + \)/n = 2(3 + l ) /47 = 
0.1702. 

2.4c. When transforming Y by the logarithm function, it is not important 
whether you use logarithms to the base e or base 10 or some other base. We 
have used logf Y but it would be essentially equivalent to use log|(lY 
because log|0 Y = c log,, Y, where c is the constant log,,, e. As seen in Note 
2.3b, multiplication of a variable by a constant has no essential effect in linear 
regression. 

2.4d. Figure 2.5 includes a plot of LAD residuals versus fitted y-values. 
Such plots cannot necessarily be interpreted in the same way as plots of 
least-squares residuals versus fitted y-values, because in LAD regression the 
residuals can be negatively correlated with the fitted y-values; see Sheather 
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and McKean (1992). Therefore a pattern in the plot could be due simply to 
this correlation rather than any inadequacy in the model. The correlation 
should be no worse than about - y/(p + 1) /« . For p = 3 and n = 45, as in 
the fire data of Example 2, the correlation should no worse than about 
-0.05. 

Additional Reading. More on checking and constructing models can be 
found in the books that are suggested as additional reading for Chapter 3. 
For a more comprehensive coverage of regression diagnostics see the books 
by Belsley, Kuh, and Welsch (1980), Cook and Weisberg (1982), or Atkinson 
(1985). These books focus on the method of least squares. Diagnostic 
procedures have been developed for nonparametric rank-based regression by 
McKean, Sheather, and Hettmansperger (1990). Robust diagnostics are given 
in Rousseeuw and Leroy (1987, Section 6.6). The problem of outliers is 
treated in books by Barnett and Lewis (1984) and Hawkins (1980). Also see 
Rousseeuw and Leroy (1987, Chapter 6) and Beckman and Cook (1983, 
Section 4). The use of transformations is treated in books by Atkinson (1985) 
and Carroll and Ruppert (1988). 
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Least-Squares Regression 

3.1 INTRODUCTION 

The most commonly used regression method is the method of least squares. 
It was discovered independently by Carl Friedrich Gauss in Germany around 
1795 and by Adrien Marie Legendre in France around 1805. Early applica-
tions of the method were to astronomic and geodetic data. Its first published 
appearance was in 1805 in an appendix to a book by Legendre on determin-
ing the orbits of comets. 

3.2 AN EXAMPLE OF SIMPLE REGRESSION 

An experiment was conducted to find the relationship between two proce-
dures for assessing the acid content of a chemical. The two procedures 
measure somewhat different but related quantities. The organic acid content 
of a sample of chemical can be determined by a method of extraction and 
weighing, which is expensive, but a relatively cheap titration method is 
available for determining the acid number. It was hoped that, by using 
regression, the cheap method could be used instead of the expensive method 
to measure organic acid content. 

Both procedures were used on 20 samples of chemical. The data are 
displayed in Table 3.1. Using these data we would like to obtain an equation 
that expresses the organic acid content measurement as an approximate 
function of the acid number measurement. For notation, let 

y, = expensive organic acid content measurement of the ith chemical sample 

x¡ = cheap acid number measurement of the ith chemical sample 

The data points (*,, y , ) , . . . ,(*2o> v2<>) are plotted in Figure 3.1. The rela-
tionship between X and Y appears to be approximately linear. 

29 
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Table 3.1 Acid Content Data 

Identification 
Number of 

Chemical Sample 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Expensive 
Measurement 

(V) 

76 
70 
55 
71 
55 
48 
50 
66 
41 
43 
82 
68 
88 
58 
64 
88 
89 
88 
84 
88 

Cheap 
Measurement 

(X) 

123 
109 
62 

104 
57 
37 
44 

100 
16 
28 

138 
105 
159 
75 
88 

164 
169 
167 
149 
167 

Source: Daniel and Wood (1980, p. 46). 
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Figure 3.1 Plot of the acid content data. 
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Figure 3.2 The residual <?, ¡s the vertical distance from the estimated regression line to the data 
point (xr y,). 

Let us try the linear regression model given in equation (1.1). For this 
example, the value of p is 1. That is, we have only one explanatory variable, 
in which case the model is called a simple linear regression model. Strictly 
following equation (1.1), one would write Y = /3„ + ßt Xt + e, but to avoid 
unnecessary subscripts, let us write the model as 

y = a+ ßX + e (3.1) 

Next we should estimate a and ß. Then, if we use the cheap procedure to 
measure the acid number X oi a chemical sample, we can estimate its 
organic acid content to be Y = ά + ßX. 

3.3 ESTIMATING THE REGRESSION LINE 

There are various methods one can use to estimate a and ß in 
equation (3.1). This chapter presents the least-squares method. 

The basic idea in estimating the regression line is to find the straight line 
that "best" fits the data points in the plot. To judge how well the estimated 
regression line Y = ά + ßX fits the data, we can look at the size of the 
residuals ei = y, — {ά + βχ,). Note in Figure 3.2 that the residual é¡ is the 
vertical distance from the estimated regression line to the data point (x¡, y,). 
We want to choose ά and ß so that the residuals are "small". 
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In the least-squares method of regression, the overall size of the residuals 
is measured by YLé}. The least-squares estimates of a and ß are defined to be 

A _ 

the values ä and ß which give the smallest value of Ee, , that is, which give 
the least sum of squares of the residuals. Formulas for the least-squares 
estimates are: 

- = Σ ( * , - * ) ( ν , ~ y ) 

Σ Κ - * ) 2 (3.2) 

ά = y - βχ 

Here x and y denote the averages of the JC,'S and the y,'s, respectively. 

Reasonableness of the Formulas. Before giving a formal justification of 
these formulas, let us reexpress them in a way that makes them appear 
"reasonable". The formula for ä can be rewritten as 

y = ä + ßx 

This says that the estimated regression line passes through the point (x, y), 
which can be regarded as the center of the cloud of data points. This is a 
good property for a line that is intended to "fit" the data. 

The formula for ß can be rewritten as 

\ * J * / Σ(χ,-χ) 

Note that (y, - y)/(x¡ - x) is the slope of the line between the central point 
(x, y) and the data point (*,, y,). Thus the slope β of the estimated 
regression line is a kind of average of these slopes. More precisely, it is a 
weighted average. Note that the weights w, are nonnegative and their sum is 
1. (An ordinary average is the special case of a weighted average in which all 
the weights are equal to \/n.) Each data point is weighted proportionally to 
the square of its ^-distance from the center. This implies that data points far 
from the center of the data have a large influence on the estimate of the 
slope of the regression line. 

Formal Justification of the Formulas. Suppose a and b are candidates 
for the regression estimates a and ß. Using the line Y = a + bX, the sum of 
squares of the residuals is E(y, — a — fox,·)2. Considering this as a function of 
a and fo, its minimum can be found by using calculus. Take the partial 
derivatives with respect to a and fo, and solve for the values of a and fo that 
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Figure 3.3 Plot and least-squares regression line for the acid content data. 

make these partial derivatives equal to 0. The solutions are a = a and b = ¡3, 
where á and ß are given by (3.2). 

The Acid Content Data. For the data in Table 3.1 the formulas in (3.2) 
yield the estimates á = 35.46 and ß = 0.3216. So the fitted regression line is 
Ϋ = 35.46 + 0.3216A\ This is the line in Figure 3.3. 

3.4 TESTING β = 0 

In Figure 3.3 it seems clear that the explanatory variable X has a close 
relationship with the response variable Y. More formally, the significance of 
the relationship can be tested as follows. We can compare the full model 
Y = a + βΧ + e using X and the reduced model Y = a + e without X. If 
the full model fits the data significantly better than the reduced model, this 
implies that the relationship between X and Y is significant. Another way of 
describing the comparison of the two models is to call it a test of the 
hypothesis that ß = 0. 

Based on the evidence of the data, we must decide whether ß = 0 or 
ß Φ 0. The hypothesis ß = 0 (the null hypothesis) and the hypothesis β Φ 0 
(the alternative hypothesis) are not treated equally. Because of our preference 
for simplicity, even before we look at the evidence we begin with a prefer-
ence for ß = 0, because the model Y = a + e is simpler than the model 
Y = a + ßX + e. So our attitude is that we will decide ß = 0 unless there is 
strong evidence against it. 
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Description of the Test. First we describe how the least-squares test of 
ß = 0 is performed. Justification of the procedure is given afterward. 

To test ß = 0, first use (3.2) to calculate ß, and then calculate 

Lef 
' = 1 / 7 - 7 (3·3) 

Then calculate an estimate of the standard deviation of ß by substituting & 
for σ in the formula 

SD(/§) = (3.4) 
\L(Xi -x) 

where σ denotes the standard deviation of the population of errors. The test 
statistic is 

' ■ * ( 3 , , 
est.SD()3) 

(We use absolute value notation for \t\ because later we talk about / = 
/3/est.SD(j8).) 

The /?-value of the test is obtained from the / distribution with n — 2 
degrees of freedom. The p-value is calculated as the probability that the 
absolute value of a random variable with this distribution is greater than or 
equal to the value of |/| calculated from (3.5). 

Justification of the Test. The most relevant information we have about β 
is the estimate β. The value of β should indicate whether β = 0 or not. 
There is strong evidence that β Φ 0 when β is "far" from 0. 

For the acid content data we calculated β = 0.3216. Is this far from 0? It 
depends on how variable β is. When we speak of the variability of /§, we are 
thinking of β as a random variable. Imagine repeating the acid content 
experiment an infinite number of times. The infinite number of values of β 
obtained in these experiments would be centered around β but they would 
vary. The size of a typical deviation of β from β is measured by the standard 
deviation of β. We can estimate SD(/3) by substituting (3.3) into (3.4) to 
obtain est.SD(0). For the acid content data, est.SD()3) = 0.0056. So the 
distance between β = 0.3216 and 0 is about 57 ( = 0.3216/0.0056) times the 
size of SD(/3). This makes it very unlikely that β = 0. 

Thus we see that a reasonable test of β = 0 can be based on the test 
statistic |/ | in (3.5). A very large value of |/| means that β is much farther 
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from 0 than would be expected if ß = 0. This constitutes strong evidence 
against ß = 0. 

Reasonableness of the Formula for SD(/3). Consider formula (3.4). It 
implies that SD(/§) is smaller when σ is smaller, that is, when the variability 
of the random errors is smaller. This makes sense since we should be able to 
estimate β more accurately in the presence of smaller errors. Also, SD(/3) is 
smaller when Σ(*, - x)2 is larger, that is, when the x-values are more spread 
out. This also makes sense if we think about the following analogy. 
Suppose we want to use a pencil and ruler to draw a horizontal line 10 centi-
meters above the bottom of a sheet of paper. We could draw two points 
10 centimeters above the bottom and then align the ruler on these two points 
and draw a line. Because of human error, the line would not be exactly 
horizontal. To get the line to be as horizontal as possible, we would choose 
the two points to be on opposite edges of the sheet of paper, that is, as 
spread out as possible. 

Estimating σ. A natural estimate of the standard deviation of the 
population of errors is the standard deviation of the sample of estimated 
errors, that is, of the residuals é¡ = y¡ — a — ßxt. This estimate is 
y Y.e}/(n — 1) , but instead of using this, we modify it slightly and use 
formula (3.3). The modification has the nice feature that σ2 is an unbiased 
estimate of σ2. 

The divisor n - 2 in formula (3.3) is sometimes called the degrees of 
freedom of the estimate σ2. The subtraction of 2 from n corresponds to the 
fact that we must estimate two parameters a and ß in order to form the 
residuals e¡. 

The /»-Value. We argued earlier in this section that a very large value of 
|i I is strong evidence against β - 0 because such a value of |r| would be very 
unlikely if β = 0. In other words, we can measure the strength of the 
observed data's evidence against β = 0 by how unlikely the observed |/ | 
would be if β = 0. This is the idea behind p-values. 

To define the p-value of the test, we must distinguish between two 
different views of |r| in (3.5). The first view is to view |r| as the observed 
value of |/ | , that is, the value obtained by substituting the observed values of 
the y/s into the formula. The second view is to view the y,'s and hence |f I as 
random variables. The p-value of the test is the probability, assuming β = 0, 
that the random variable |r| is as large or larger than the observed |r|. To 
interpret this, suppose model (3.1) is true with β = 0 and imagine the acid 
content experiment is repeated an infinite number of times. For each 
experiment, the test statistic |r| would be calculated. The p-value is the 
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proportion of this imagined infinite collection of |/ | 's that would be as large 
or larger than the value of \t\ calculated from the actual experiment. 

If the /»-value is very small, then it is very unlikely that ß = 0 and so we 
conclude β Φ 0. Otherwise, we conclude ß = 0. It can be left to the judge-
ment of the individual to say when a p-value is "very small". Most statisti-
cians would consider 0.01 to be very small and not many would consider 0.10 
to be very small. For p-values between 0.01 and 0.10 judgements vary. 

Note the difference in our confidence about the two conclusions β Φ 0 
and ß = 0. When the p-value is very small and we conclude β Φ 0, we are 
quite sure about our conclusion because the evidence is strong. But when we 
conclude ß = 0, we are not convinced that ß = 0 exactly but are only 
concluding that ß = 0 is plausible and provides an adequate model for the 
data. 

The Distribution of t. In order to calculate the p-value we must know 
the probability distribution of the random variable | i | , or of t, when ß = 0. 
The test statistic t is obtained from the data, that is, from the JC/S and y,'s. 
The JC/S are assumed to be nonrandom constants, so the randomness of t 
derives from the randomness of the y,'s. Note that the probability distribu-
tion of y¡ is not completely known, even if we suppose ß = 0, because then 
y,■ = a + e¡ and a is an unknown parameter and the distribution of e, is not 
completely known; in particular, the standard deviation σ of e, cannot be 
assumed to be known. However, by inspecting the formula for / it can be 
seen that / depends on the y,'s only through the difference y, - y, and the 
parameter a cancels in these differences. Moreover, the parameter σ cancels 
in the ratio of β to est.SD(/3). Therefore, if we specify the shape of the 
distribution of the random errors, leaving only the standard deviation un-
known, then the distribution of t is completely known. 

If we specify the shape to be normal (bell-shaped), that is, if we assume 
the normal linear regression model, then the resulting distribution of i, when 
β = 0, is called the t distribution with n —.2 degrees of freedom. (The 
degrees of freedom are associated with the estimate σ of σ.) Even if the 
distribution of the random errors is not normal, the distribution of the test 
statistic t, when β = 0, is still close to the / distribution with n — 2 degrees 
of freedom, provided that the sample size n is large. It should be safe to rely 
on the t distribution with a sample size as large as 20, provided the normality 
of the distribution of the random errors has been checked (see the next 
section) and the data, if necessary, have been transformed. 

The Acid Content Data. For the acid content data, the degrees of 
freedom are 18 ( = 20 — 2). Above we calculated | i | to be about 57. We can 
use the t table in the Appendix to pin down the p-value. Looking in the table 
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in the row labeled 18, we see the numbers 1.33 1.73 2.10 2.88 3.92. 
Locate 57 relative to these numbers; it is greater than the last entry 3.92. This 
entry is in the column labeled 0.001. This means that the probability, when 
ß = 0, that the random variable |r| is as large or larger than 3.92 is 0.001, or 
in compact notation, 

Prob[|r| > 3.92] = 0.001 

Of course the probability that |/| is as large or larger than 57 is even less. So 
we can say that the p-value of the test of ß = 0 for the acid content data is 
less than 0.001. This is a formal confirmation of our previous informal 
conclusion that β Φ 0. In other words, as we would expect, the cheap 
measurement of the acid number of a chemical sample contains significant 
information about the organic acid content of the sample. 

3.5 CHECKING NORMALITY 

Least-squares tests and estimates are optimal if the population of errors can 
be assumed to have a normal distribution. If the normality assumption is not 
satisfied, then least-squares procedures are still valid but they may be far 
from optimal. Consider the least-squares test of ß = 0 described in the 
preceding section and suppose the error population is nonnormal. The 
least-squares test is still approximately valid (provided the sample size is not 
too small and the nonnormality is not too extreme) in the sense that the 
calculated p-value is approximately equal to the true p-value, but there are 
other tests that are more powerful in the sense that they are better at 
detecting when β Φ 0. 

There are two approaches to dealing with the question of normality. One 
way is to check the data for normality and, if nonnormality is detected, try to 
correct it. Or, one can use regression methods other than least-squares, such 
as those presented in Chapters 4, 5, and 6, which do not depend on the 
assumption of normality. 

A number of plots and tests, based on the residuals, have been developed 
for checking the normality of the errors, but here we mention only the 
normal probability plot. The standardized residuals are put in increasing 
order and are plotted against what their expected values would be if they 
came from a sample of n independent standard normal random variables. 
The plot should look nearly linear if the assumption of normality is valid. A 
normal probability plot of the residuals from the acid content data, shown in 
Figure 3.4, looks sufficiently linear to be consistent with the assumption of 
normality. 
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Figure 3.4 Normal probability plot of the residuals for the acid content data. 

When a normal probability plot is very nonlinear, the data can sometimes 
be transformed so that normality is more closely approximated. 

3.6 AN EXAMPLE OF MULTIPLE REGRESSION 

Simple regression is when there is only one explanatory variable and multiple 
regression is when there are more than one. The turnip green data set in 
Section 1.2 has three explanatory variables. Let us do a regression analysis of 
these data. The linear regression model for these data is 

Y = ß0 + ßlX, + ß2X2 + ß3X3 + e 

In terms of the observed data the model is 

v, = ßo + βι*η + ßiXn + ß3xi3 + ei (3-6) ' 

for / = 1,2, . . . , 2 7 . 

3.7 ESTIMATING THE REGRESSION COEFFICIENTS 

The discussion in Section 3.3 extends to multiple regression. The least-squares 
estimates of /30, /3,, ß2, and ß3 are defined to be the values of /3„, ßt, ß2, and 
/§3 which give the least sum of squares of the residuals, that is, which give the 
least value of Σε?, where <?, = y, - (ßn + ßtxn + β2

χη + ßixiJ-
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Algebraic formulas for these four least-squares estimates are very messy if 
they are written out for each individual parameter. But if we introduce 
matrix notation the formula for the vector of estimates is quite compact. 

Matrix Notation. Boldface letters are used to denote matrices and vec-
tors, capital letters for matrices and lowercase letters for vectors. Vectors in 
formulas are taken to be column vectors. (Elsewhere, it is sometimes more 
convenient to write a vector as a row vector.) Let 

, β = 

'ßo 
ßs 

ßl 

03 

» e = 

«1 

*2 

/ " . 

3Ί 

y2 

y„_ 

x = 

where n = 27. Model (3.6) can be reexpressed in matrix notation as 

y = Xß + e (3.7) 

The formula for the vector of least-squares regression estimates is 

ß = (X'X)~]X'y (3.8) 

The General Model. Consider a data set with n observations and p 
explanatory variables, as shown in Table 1.2. Let y denote the column 
labeled Y and let X denote the p columns labeled X¡,..., X with a column 
of l's put in front. Let 

"ft." 
ßl 

Λ. 
e = 

*i~ 

e2 

en 

The linear regression model for the data in Table 1.2 is shown in 
equation (1.2). The matrix notation for the model and for the vector of 
least-squares regression estimates are exactly equations (3.7) and (3.8) above. 

The Case of Simple Regression. Simple regression corresponds to p = 1. 
So if we let p = 1 in formula (3.8) we should get the same estimates as in 
formulas (3.2). This is not obvious just by looking at the formulas. As a check, 
let us apply (3.8) to the acid content data in Table 3.1 to see whether the 
estimates coincide with those obtained in Section 3.3. 
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To use formula (3.8) we form 

y = 

76 
70 
55 
71 
55 
48 
50 
66 
41 
43 
82 
68 
88 
58 
64 
88 
89 
88 
84 

88 

X = 

„ 

1 123 
1 109 
1 62 
1 104 
1 57 
1 37 
1 44 
1 100 
1 16 
1 28 
1 138 
1 105 
1 159 
1 75 
1 88 
1 164 
1 169 
1 167 
1 149 
1 167 

and we calculate 

/§ = 

x'y = 
1372' 

157154]' 

{x'xyx = 

0.2665 
-0.0021 

75 
0165 

X'X = 20 2061" 
2061 261419. 

0.266575 -0.00210165 
-0.00210165 0.0000203944 

— 0.00210165 
0.0000203944 

[ 137 
J L15715 

I 
= 

35.46 
0.3216 

Therefore the estimated regression line is Ϋ = 35.46 + 0.3216^, the same as 
in Section 3.3. 

Geometric Interpretation of Formula (3.8). It is not yet clear what 
formula (3.8) has to do with minimizing the sum of squares of the residuals. 
To make the connection, let us take a geometric view. First note that the 
vector of residuals is e = y - y, where the vector y of fitted y-values comes 
from the estimated regression equation y = Xß. It is a vector in «-dimen-
sional space but in order to be able to visualize the geometry, think of the 
case n = 3, so that e is a vector in ordinary three-dimensional space. The 
length of é is y Y.éj , so minimizing the sum of squares of the residuals is the 
same as minimizing the length of é, which is the distance between y and y. 
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Xß 

Figure 3.5 Geometric view of least-squares estimation. 

Among all candidates b, the distance between y and Xb is minimized by 
the choice b = ß. Think of the set of all Xb as a plane cutting through 
three-dimensional space. See Figure 3.5. We want to find the point in this 
plane that is closest to the point y. Intuition tells us that the shortest distance 
from the point to the plane is achieved along a line perpendicular to the 
plane. Therefore ß is characterized by the fact that the line from y to Xß, 
that is, the vector Xß - y, is perpendicular to the plane of all Xb. This can 
be expressed as X'iXß - y) = 0, or X'Xß = X'y, which is equivalent to 
formula (3.8). 

Algebraic Justification of Formula (3.8). Some readers may be more 
convinced by an algebraic argument than by a geometric argument. For a 
candidate b for the vector of least-squares estimates, the sum of squares of 
the residuals is (y - Xb)'(y - Xb), which can be written as y'y - ly'Xb + 
b'X'Xb. Considering this as a function of the components ft,,, ft,,..., bp of b, 
its minimum can be found by taking partial derivatives with respect to the ft,'s 
and setting them equal to 0. It is convenient to take partial derivatives using 
matrix notation. First consider the special case p = 0. Then the function 
would be y2 — 2yxb + x2b2 and the derivative with respect to ft would be 
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— 2yx + 2x2b. For general p the vector of partial derivatives is analogous: 
-2X'y + IX'Xb. Setting this equal to 0, we get X'Xb =X'y, which coin-
cides with (3.8). 

The Turnip Green Data. For the data in Table 1.1 formula (3.8) yields 
the vector of estimates 

~ßo~ 

ßi 

ßl 

A 

82.07 

0.02276 

-0.7783 

0.1640 

So the estimated regression equation is Y = 82.07 + 0.02276ΑΊ - 0.7783X2 

+ 0.1640^3. (If you want to verify this, use a computer. Calculation of 
formula (3.8) using an ordinary hand calculator is feasible for p = 1 but is 
difficult for p = 3.) 

A more complete analysis of these data is outlined in Example 1 in 
Section 2.4. At the beginning of the analysis, model (3.6) is used, but it is 
found that the following model is better: 

Υ = β() + βχΧ, + β2Χ2 + β,Χ3 + β4Χ4 + e (3.9) 

where X4 = Χ2
2. The estimated regression equation is Y = 119.6 — 

0.03367*, + 5.425X, - 0.5026X, - 0.1209Ar
2
2. 

3.8 TESTING THE REGRESSION COEFFICIENTS 

The first test performed in a regression analysis is often a test of whether the 
explanatory variables actually contain any significant explanatory informa-
tion. Let us perform such a test for the turnip green data. We want to 
compare the full model (3.9), containing all four explanatory variables, with 
the reduced model Y = β0 + e, containing no explanatory variables, to see 
whether there is a significant difference between these two models. In other 
words, we want to test /3, = β2 = β3 = β4 = 0. 

In developing a test of β = 0 in Section 3.4 we started by noting that the 
value of β should tell us whether or not β = 0. Similarly, it makes sense that 
the values of /§,, β2, β3, and β4 should tell us whether or not βχ= β2 = 
03 = β4 = 0. But rather than develop a test from the viewpoint of testing 
whether certain parameters are zero, we take the alternative viewpoint of 
comparing two models. 
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A Test Statistic. The suitability of a model can be judged by the size of 
the residuals. The smaller the residuals, the better the model fits the data. In 
the least-squares method, an overall measure of the size of the residuals is 
given by the sum of squares of the residuals. Let SSR denote the sum of 
squares of the residuals of a model. We can compare the full model with the 
reduced model by comparing SSRfuM with SSRrcduccd. Specifically, the test 
statistic we use for testing j8, = ß2 = ß 3 = ß4 = 0 is 

SSRrcduci;t| - SSRfU|| 
F = —2 (3.10) 

where σ2 is an estimate of the variance σ2 of the distribution of the random 
errors. 

Estimating σ2. A natural estimate of the variance of the population of 
errors is the variance of the sample of estimated errors, that is, the residuals 
é, = y, - (/30 + ßxxn + ß2xa + ßsx,T, + £4*14)· ' n order to make σ2 an 
unbiased estimate of σ2 we define 

(3.11) 

where the divisor n - 5 = 22 is used rather than // - 1 = 26. The subtrac-
tion of 5 from n corresponds to the fact that we must estimate five 
parameters ßt), ß{, ß2, /33, and ß4 in order to form the residuals <?,. Note 
that Σ<?,2 is the same as SSR,un. 

Justification of Formula (3.10). The reduced model cannot possibly fit 
the data as well as the full model because it has fewer parameters and hence 
is less flexible. So it is always true that SSRrcduced is larger than SSR rull and 
the difference SSRrcduccd - SSRfun is positive. But when the reduced model 
is true, we expect this difference to be smaller than when the reduced model 
is false. It can be shown that when the reduced model is true, then the 
expected value of SSRrcduccd - SSR,·,,,, is 4σ2. (The multiplier 4 in 4σ2 is the 
same as the number of parameters set equal to 0 in the hypothesis β, = 
β2 = ßi = ß4 = 0.) So when ß, = ß2 = ¿3, = ß4 = 0, we expect F to be 
close to 1. Having a preference for simpler models, we will decide ßx = ß2 = 
ßi = ß4 = 0 unless there is strong evidence against it as shown by a value of 
F that is much larger than 1. 

The /»-Value. The strength of the evidence against the null hypothesis 
jö 1 = ß2 — jß3 = /34 = 0 is measured by the largeness of F. which in turn is 
measured by the smallness of the /;-value. The /;-value of the test is the 
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probability, assuming the null hypothesis, that the random variable F is as 
large or larger than the observed value of F. To interpret the meaning of the 
p-value, we should imagine repeating the turnip green experiment, that is, 
picking leaves from another random sample of 27 turnip plants and measur-
ing the vitamin B2 concentration, sunlight, soil moisture, and air temperature 
for each plant. Imagine repeating this experiment an infinite number of 
times. For each experiment, calculate the value of the test statistic F. If the 
null hypothesis is true, then the p-value is the proportion of these values of F 
which would be as large or larger than the value of F in the original 
experiment. 

Suppose the p-value of a test is very small, say 0.01. This says that the 
observed value of F is so large that it would be very improbable if the null 
hypothesis were true. Rather than believe that such an unlikely event has 
occurred, it is more sensible to conclude that the null hypothesis is false. 

To calculate the p-value we need to know the distribution of the random 
variable F when the null hypothesis is true. 

The Distribution of F. The distribution of F depends on the shape of 
the distribution of the random errors. For testing hypotheses by the method 
of least-squares, we assume that the errors are normally distributed. The 
resulting distribution of F, when the null hypothesis is true, is the F 
distribution with 4 and n — 5 degrees of freedom. 

The Turnip Green Data. From the data in Table 1.1 we can calculate 
SSRfu„ = 819.7, σ2 = 819.7/22 = 37.26, and SSRreduced = 9150.5. So F = 
(9150.5 - 819.7)/4(37.26) = 55.90. The degrees of freedom are 4 and 22. 

The calculation of SSRfun is very difficult to do with an ordinary hand 
calculator, and so one would want to have the calculation of the test statistic 
done by a regression computer package or else write a computer program 
oneself (see Section 3.12). Most regression computer packages would print 
out the p-value of the test. Some computer languages include a function that 
would yield the p-value given the input 55.90, 4, and 22. The p-value is less 
than 0.0001. 

Without a computer, one can pin down the p-value by using tables called 
F tables. The F table in the Appendix tells us that for 4 and 22 degrees of 
freedom, Prob[F > 4.31] = 0.01 when the null hypothesis is true. Since 
55.90 > 4.31, we see that the p-value of our test is less than 0.01. So we can 
conclude that vitamin B2 concentration in turnip greens has a significant 
linear relationship with at least some of the four variables sunlight, soil 
moisture, air temperature, and squared soil moisture. 
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3.9 TESTING ßq + 1 = · · = ßp = O 

Consider the general form of the linear regression model, Y = ßn + 
β,Λ", + · · · +βρΧρ + e. The testing procedure described in the preceding 
section can be extended to allow comparison of this model with the reduced 
model formed from any subset of the explanatory variables. By changing 
indices, we can write the reduced model as Y = ßn + ßxXx + ■ ■ ■ +ßqXq, 
where q < p. Note that comparing these two models is the same as testing 

We continue to use the notation SSRfuM and SSRreduced for the sums of 
squares of the residuals for the two models. Let σ2 denote the following 
unbiased estimate of σ2: 

5.2 = tM_ ( 3 1 2 ) 

n — p — I 

The test statistic for testing the null hypothesis ßq + l = · · · = ßp = 0 is 

SSRreduced SSRfun 

(p-q)*1 
reduced IUII . - - . 

f = 7Ί TV l̂ i 3 · ^ ) 

Assuming normality of the distribution of random errors, F has an F 
distribution with p - q and n — p — \ degrees of freedom when the null 
hypothesis is true. 

3.10 TESTING ß3 = 0 

The test in Section 3.8 indicates that the variables of sunlight, soil moisture, 
and air temperature contain significant explanatory information about vita-
min B2 concentration in turnip greens. But maybe most of this information is 
contained in just one or two of the three variables. A test of j33 = 0 is a test 
of whether most of the information is in sunlight and soil moisture (and its 
square) so that, given this information, only an insignificant amount of 
additional information is in the air temperature. 

A Test Based on a Comparison of Models. Testing /33 = 0 is, if we 
interchange the indices 3 and 4, a special case of testing ßq+x = ··■ = 
ß = 0 in which p = 4 and q = 3. Therefore, according to Section 3.9, a 
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reasonable test statistic is 

c SSRreduced - SSRfu„ 
F = & 

where σ2 = SSR fuU/(« - 5). In terms of the original indices, the full model 
is Y = ßQ + β{Χλ + β2Χ2 + β3Χ3 + β4Χ2

2 + e and the reduced model is 
y = ß0 + βλXy + ß2X2 + ß^i + £· Assuming normality of the distribution 
of random errors, F has an F distribution with 1 and n — 5 degrees of 
freedom when β3 = 0. 

The value of F for testing β3 = 0 in the turnip green data is 5.68 and the 
p-value is 0.03. Since the p-value is less than 0.05, most statisticians would 
reject the null hypothesis and conclude that the air temperature variable 
makes a significant contribution to the model. 

A Test Based on β3. The value of β3 should indicate whether β3 = 0 or 
not. Similar to the test statistic (3.5) for testing β = 0 in the case of simple 
regression, 

est.SD(j83) 

is a reasonable test statistic for testing β3 = 0. Now we need to know how to 
obtain est.SD(/33). 

In simple least-squares regression, Var(/3) = a2/T.(x¡ - x)2. For the acid 
content data, this formula yields VaK/3) = 0.0000203944σ2. Note that 
0.0000203944 appears in the lower right corner of the matrix (X'X)~ ' in the 
subsection on simple regression in Section 3.7. In fact, in simple regression, 
Var(/3) can always be obtained by multiplying σ2 by the second diagonal 
entry in (X'X)~l. Similarly, in multiple regression with four explanatory 
variables, Var(/33) can be obtained by multiplying σ2 by the fourth diagonal 
entry in (X'X)~l. In the general linear regression model, Var(/3,) is equal to 
<r2 times the (/ + l)th diagonal entry in (X'X)~l for any j = 0,1,..., p. 
Estimating σ2 by σ2 = SSRfuH/(/i - 5), we obtain est.Var(/§3), and taking 
the square root, we obtain est.SD(/§3). 

When β3 = 0, / has a t distribution with n - 5 degrees of freedom, which 
are the degrees of freedom associated with σ2. 

For the turnip green data, β3 = -0.5026 and est.SD(/§3) = 0.2109, so 
|/| = 0.5026/0.2109 = 2.38. The p-value is 0.03. 

Note that the p-values are the same for the F test based on a comparison 
of models and for the t test based on ß3. In fact, the two tests are equivalent 
and their test statistics are related by the equation F = t2. For the turnip 
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green data, F = 5.68 and t2 = (2.38)2 = 5.66. (The difference between 5.68 
and 5.66 is due to round-off error.) 

3.11 THE COEFFICIENT OF DETERMINATION 

The coefficient of determination is a measure of how well the explanatory 
variables explain the response variable. It is defined to be 

E ( y , - - y ) 2 

An observed value y, of the response variable differs from the average by 
the deviation y, - y. The deviation can be split into two parts: y¡ — y = 
(y, — y¡) + (9i ~ y)· The second part is the part of the deviation that is 

A A Λ Λ 

explained by the relationship y, = ß„ + βχχή + · · ■ +βρχιρ of the response 
variable with the explanatory variables. The sum E(y, - y)2 can be regarded 
as the total variability observed in the response variable, and the sum 
E(y, - y)2 can be regarded as the amount of this variability that is explained. 
Thus R2 is the proportion of the total variability in the response variable that 
is explained by the explanatory variables. 

The coefficient of determination is closely related to the test statistic F for 
testing ß, = ß2 = · · ■ = ßp = 0. In fact, R2 can be expressed as a function 
o f f . 

In the case of simple regression, R2 is equal to the square of the sample 
correlation between X and Y. 

3.12 COMPUTATION 

Use of a Hand Calculator for Simple Regression. Some hand calculators 
have special keys for doing simple linear regression. Then you only need to 
enter the numbers y,, xt, y2, x2, ■ ■■, y„, x„ and push a few special keys to 
obtain the least-squares regression estimates ά and β. On a hand calculator 
without such capability, you could organize the calculations as follows. First 
calculate Sx = Σχ,, Sy = ^yh Sxx = Σχ2, Syy = Ey2 , and Sxy = Ex,y,. Then 
β = (nSxy - SxSy)/(nSxx — S2) and ä = {Sy - ßSx)/n. You should retain a 
large number of digits in these calculations even if you only desire accuracy 
in a and ß to a few significant digits. This is because the subtractions in this 
formula for ß often involve numbers that are nearly equal. Of course 
formulas (3.2) could be used to calculate a and ß, but it is inconvenient to 
deal with the deviations x¡ - x and y, - y on a hand calculator. 
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You can also use a hand calculator to obtain the test statistic |/| for 
testing ß = 0. Calculate σ as the square root of [(nSyy - S2) - ß2(nSxx -
S2)]/n(n - 2). This is more convenient than dealing with the residuals 
é¡ = y¡ - (ά + ßXj) in formula (3.3). Divide σ by the square root of (nSxx -
S2)/n to obtain est.SD(/3). Then divide \β\ by est.SD(0) to obtain |/|. The 
p-value can be determined approximately from the t table in the Appendix. 
For example, suppose n = 11 and you calculate \t\ = 2.03. Look in the table 
in the row labeled 9 (= 11 - 2). Note that 2.03 falls between the numbers 
1.83 and 2.26 in the columns labeled 0.10 and 0.05. Therefore the /7-value of 
the test falls between 0.05 and 0.10. 

Use of a Computer. Many computer packages are available for perform-
ing least-squares regression, such as BMDP, Minitab, SAS, and SPSS. Or, in 
a computer language such as APL, GAUSS, or SAS/IML, in which matrix 
manipulation is straightforward, it is not hard to write your own program for 
least-squares regression, using formulas (3.8) and (3.13). For calculating 
SSRfu,|, note that i = y - Χβ and SSRfuM = é'é. This also works for calculat-
ing SSRreduced if X is reduced to Xreduccd by omitting the columns corre-
sponding to the coefficients set equal to 0 in the null hypothesis. New vectors 
β and e are calculated based on ^reduced and then SSRreduced = é'é. In the 
case q = 0, SSRreduced is simply E(y, - y)2. 

Test Case. To try out a computational procedure for least-squares re-
gression on your calculator or computer, the data set in Table 3.2 can serve 
as a quick test case. 

For simple regression, let X = Xv The estimated regression line is Y = 
33.16 + 1.480X The estimate of σ is σ — 3.552 and the test statistic for 
testing β = 0 is |f| = 2.946. 

For multiple regression, using both Xx and X2 as explanatory variables, 
the estimated regression equation is Ϋ = 51.30 + 0.6025*, - 0.6180X,. The 
estimate of σ is σ = 3.328 and the test statistic for testing jS, = β2 = 0 is 
F = 5.722. 

Table 3.2 Test Case for Linear Regression 

y ~ A-, x2 

37 4 22 
40 6 24 
48 6 18 
44 9 20 
50 11 15 
51 12 9 
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NOTES 

3.1. Legendre (1752-1833) and Gauss (1777-1855) both made many im-
portant contributions to pure and applied mathematics. Gauss is generally 
regarded as one of the greatest mathematicians of all time. Gauss did not 
publish anything on least squares until 1809, but he claimed to have been 
using the method since 1795, which led to a dispute over who deserved credit 
for its discovery. Stigler (1986) finds Gauss's claim of prior discovery likely to 
be true but he credits Legendre with independent discovery and with prior 
recognition of the importance of least squares as a general method for 
combining inexact measurements. 

3.3a. The details of the derivation of (3.2) are as follows. The partial 
derivative of E(y, - a - fat,)2 with respect to a is equal to 0 when E(y, -
a - bx¡) = 0, or y - a - bx = 0, or a = y - bx, which coincides with the 
second formula in (3.2). The partial derivative with respect to b is equal to 0 
when E*,(y, - a - bx¡) = 0. Substitute a = y - bx into this equation to 
obtain Ex,[(y, - y) - b(x¡ - x)] = 0, or b = Ex,(y, - y) /E*,(x, - x). 
This coincides with the first formula in (3.2) because E * , ( y , - y ) = 
Σ(χ, - xXy, - y) and Ex,(x¡ - x) = L(x¡ - x)2, because E(y, - y) = 0 and 
EU,. - x) = 0. 

3.3b. In the expression w, = (xi -x)2/L(x¡ - x)2, the subscript /' plays 
two different roles. The subscript / in w¡ matches only with the i in the 
numerator of the ratio. The / in the denominator matches with a suppressed 
i in the summation notation. More precisely (but also more cumbersomely) 
we can write wi = (x¡ — χ)2/Σ"=ι(.χ, ~ x)2, or even less ambiguously, w, = 
(x, -x)2/T."k = {(xk -JE)2. 

3.3c. Another good feature of the least-squares estimates a and ß is that 
they are unbiased estimates. That is, when viewed as random variables, their 
expectations are a and ß, respectively. 

3.3d. For completeness, we include here a review of expectation. The 
expectation of the random variable ß, denoted E(ß), can be informally 
defined as follows. 

First, a helpful way to think of ß as a random variable is to imagine 
repetitions of the experiment. Imagine repeating the acid content experiment 
by taking 20 more samples of the chemical and using both the cheap and 
expensive measurement procedures on each sample. From these new data we 
would calculate ß. Imagine repeating the experiment an infinite number of 
times. From the data of each experiment we would calculate ß. It can be 
helpful to interpret the properties of the random variable ß in terms of this 
imagined infinite collection of /S's. 
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The expectation of the random variable ß is the average of this infinite 
collection of ß's. It can be regarded as being at the "center" of the imagined 
collection of ß's. (But other definitions of "center" are also possible.) It can 
be shown that if model (3.1) is true, then E(ß) = ß. 

3.4a. To derive (3.4), note that ß = Lc¡y¡, where c, = (*, - x)/L(x¡ -
x)2. This uses the fact that L(x¡ - xXy, - y) = ΣΧ-Ϊ, - x)y¡, which is true 
because L(x¡ — x) = 0. The JC/S are considered to be nonrandom constants. 
(Even if the x¡'s were obtained randomly, it is still possible to regard them as 
constants through the concept of conditional distributions.) Given that the 
x¡'s are nonrandom, the only random part of y¡ = a + ßxi + e, is e¡. Hence 
Variy,) = Varíe,-) = σ2 and the y,'s are independent of one another. Then 

Var(/§) = V a r ( £ C ; y , ) = £ c , 2 Var(y,) = ( Σ > ? ) σ 2 

= [ Ι / Σ ( * , - * ) 2 ] - 2 = < Γ 2 / Σ ( * , - * ) 2 · 

3.4b. For completeness, we include here a review of variance and stan-
dard deviation. The standard deviation of the random variable /3, denoted 
SDÍ/3), can be informally defined as follows. 

As in Note 3.3d, imagine an infinite number of repetitions of the experi-
ment and imagine calculating an estimate β from each such experiment. The 
expectation of the random variable β is the value around which the imagined 
collection of /3's would be centered. Since β is an unbiased estimate, this 
"central" value is ß. But of course the /3's would vary. One way to measure 
the typical size of the deviations of the ß's from the center is by the standard 
deviation, SDÍ/3). Perhaps it would seem most straightforward to define 
SDÍ/3) to be the average of the infinite collection of absolute deviations 
1/3 - ß\, but for reasons of mathematical convenience, SDÍ/3) is defined to 
be the square root of the average of the infinite collection of squared 
deviations Í/3 - ß)2 . The average of the squared deviations, without taking a 
square root, is the variance, Var(/3). 

3.4c. To say that σ2 is an unbiased estimate of σ 2 means that the 
expectation of σ2, viewed as a random variable, is σ2. 

3.4d. For a discussion, of p-values, see Gibbons and Pratt (1975). 

3.5a. Some optimal properties of least-squares estimates and tests under 
the assumption of normally distributed errors are listed in Chapter 9. 

3.5b. By saying that a test of ß = 0 is approximately "valid" we mean that 
the calculated p-value is approximately equal to what it is supposed to be, 
namely, the probability, assuming ß = 0, that in a repetition of the experi-
ment, the test statistic would be as large or larger than the test statistic 
observed in the actual experiment. By saying that one test is "more powerful" 
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than another test we mean that, when β Φ 0, the p-value of the first test 
tends to be smaller, thus giving a stronger indication that β Φ 0. 

3.5c. For more information on normal probability plots, see Section 3.8 
and Appendix 3A in Daniel and Wood (1980), Section 3.1 and Appendix 3A 
in Draper and Smith (1981), and Section 6.6 in Weisberg (1985). Daniel and 
Wood show how difficult it is to judge nonnormality from a normal probabil-
ity plot of the residuals in small samples. For information on tests of 
normality, see Section 6.6 in Weisberg (1985) and Section 9.6 in D'Agostino 
and Stephens (1986). 

3.7. Matrix notation allows convenient calculation of expectations and 
variances. Let 

be a random vector, that is, a vector whose components are random vari-
ables. The expectation vector of y is defined to be 

E(y) = 

£ ( y . ) 

E(y2) 

E(y„) 

The variance-covariance matrix of y is defined to be 

Cov(y) 

Var(y,) Cov(y, ,y 2) 

Cov( y 2 , y , ) Var(y2) 

Cov(y„,y,) Cov(y„,y2) 

Cov(y,,y„) 

Cov(y2 ,y„) 

Var(y„) 

Suppose A is an m X n matrix whose entries are constant numbers. Two 
convenient rules for calculating expectations and variances are 

(a) E{Ay)=AE{y) 

(b) Co\{ Ay) = ACo\{y)Ä 

These are generalizations of the familiar facts that if y is a random variable 
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and a is a constant number, then 

E(ay) = aE(y) 

Var(ay) = a2 Var(y) 

These latter equations are the special cases of (a) and (b) when m = 1 and 
n = l. 

To prove these rules in general would involve a lot of subscripts, but we 
can convince ourselves further by looking at another special case. Let m = \ 
and n = 2. Then 

A = [a, a2], 

and 

So 

Ay = [a, a2] 

y2 

a,y, + a2y 2^2 

E{Ay) = £ ( α , ν , + a2y2) = a^E(y¡) + a2E(y2) 

£ ( y , ) 

E(y2) 
[a, a2] = AE(y) 

Also, 

Co\(Ay) = Var(aiyl + a2y2) 

= a2 Var(y,) + 2a¡a2 Cov(y,, y2) + a\ Var(y2) 

= [a, a2] 
Var(y,) Cov(y , ,y 2 ) 

Cov( y 2 , y , ) Var(y2) 

ACo\(y)A' 

Let us apply (a) and (b) to the vector of least-squares estimates. Recall 
that β = Ay, where A = (X'X)~*X'. Using (a) we calculate 

E(ß)=E(Ay) =AE(y) 

= (X'X)~lX'(Xß) = {X'X)\x'X)ß 

= /3 

This shows that the least-squares estimates are unbiased; that is, ¿X/3,) = /3; 

for all j . 
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Using (b) we calculate 

Cov(/5) = Cox(Ay) = A Cov(y)Ä 

= (Χ'Χ)~1Χ'(σ2Ι)Χ(Χ'Χ)~' 

= σ2(Χ'Χ)~\Χ'Χ)(Χ'Χ)~1 

= σ\Χ'Χ)~ι 

3.8a. We are using SSR to denote the sum of squares of the residuals. In 
other books you may find SSR used to denote the sum of squares due to 
regression, which is E(y, - y)2. You may find the sum of squares of the 
residuals denoted by SSE, standing for the sum of squares due to error. 

3.8b. The expected value of the difference between the residual sums of 
squares is obtained as follows. Note that SSRfuM = Lef. Since σ2 in (3.11) is 
an unbiased estimate of σ2, it follows that SSRfun is an unbiased estimate of 
(n - 5)σ2. Similarly, if the reduced model is true, then SSRreduced is an 
unbiased estimate of {n - \)σ2. The 1 in n - 1 corresponds to the fact that 
the reduced model has 1 regression coefficient. The expected value of 
SSRreduced ~ SSRfuM is (n - Do·2 - (/i - 5)σ2 = 4σ 2 when the null hypoth-
esis is true. 

3.9. There are two approaches one can take to testing the hypothesis 
ßq+1 = ■ · · = ßp = 0. The approach we have taken in Sections 3.8 and 3.9 
is to compare the sums of squares of the residuals in the full and reduced 
models. Another approach is to estimate ßt/ + ],...,ßp and see how close to 0 
the estimates are. 

To describe the second approach, let δ = (ßil + i,...,ßp). We want to test 
whether or not 5 = 0. The least-squares estimate δ^ can be obtained as the 
last p - q entries in ßls. The variance-covariance matrix of 5L S is the 
(p - q) X (p - q) matrix in the lower right corner of the variance-covari-
ance matrix of ßLS. We know from Note 3.7 that Cov(ßLS) = σ2(Χ'Χ)~[. 
Let Va denote Cov(áLS); substituting σ2 from (3.12), we obtain an estimate 
Vs. A reasonable measure of how close S is to 0 is given by S'LSFÄ ' 5 L S . The 
two approaches lead to exactly the same test statistic, because it turns out 
that test statistic (3.13) can be calculated as F = S'^Vg^S^/ip - q). 

3.10. To determine Var(/3y), use the fact (shown in Note 3.7) that 
Cov(/3) = σ2(Χ'Χ)~\ Note that Var(/?y) is the (; + l)th diagonal entry in 
Cov(^). 

3.11a. To show that R2 can be expressed as a function of F, let S, = 
£Xy, - y,)2, the sum of squared residuals in the full model, and let Sr = ¿(y, 
— y)2, the sum of squared residuals in the reduced model Y = ßt) + e with 
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ß\ = ß2 = - ' " = ßP *= °· U s i n 8 (3.12) and (3.13) with q = 0, we have F = 
(Sr - Sf)/(pSf/(n - p - 1)) = ((n - p - l)/pX(Sr/Sf) - 1). In the next 
paragraph we will see that E(y, - y)2 = Sr - Sf. Hence R2 = (Sr - Sf)/Sr 

= 1 — (Sf/Sr). The expression for F can be rearranged to obtain Sf/Sr as a 
function of F, which can be substituted into the expression for R2 to obtain 

Ä2 = l - 1/(1+pF/(n-p- 1)). 

It remains to show E(y, - y)2 = Sr - Sf. Writing y¡ — y = (y, — y,) + 
(y, - 9), we see (y, - y)2 = (y,· - y,)2 + (y, - y)2 + 2(y, - y,Xy, - y) and 
hence E(y, - y)2 = £(y, - y,)2 + E(y, - y)2 + 2E(y, - 9M - y). That is, 
Sr = Sf+ E(y, - y)2 + 2E(y, - y,Xy, - y). It suffices to show E(y, - y,Xy, 
- y) = 0. Since E(y, - y,Xy, - y) = Σ(y, - y,-)y,· - yL(y¡ - y,), it suffices 
to show Σγ^γι — y¡) — 0 and E(y, - y,) = 0. In matrix notation, we want 
to show y"(y - y) = 0 and V(y — y) = 0 where 1 is a column of l's. Recall 
that y = Χβ and that 1 is a column of X. Therefore it suffices to show 
X'(y - Χβ) = 0, which follows from (3.8). 

3.11b. In simple regression, the coefficient of determination, R2, can be 
shown to coincide with the square of the sample correlation between X and 
Y, r2. By definition, r = sxy/(sxsy), where s2 = Σ(*, -x)2/(n - 1) is the 
sample variance of X, s2 is the sample variance of Y, and sxy = E(x¡ - x) 
(y, ~ y)/(n - 1) is the sample covariance between X and Y. Recall R2 = 
E(y, - y)2/L(y¡ - y)2. In simple regression, y¡, - y = a + ßxi■. - y = y -
ßx + βχι - y = ß(Xi - x). Therefore R2 = fi2L(x¡ - x)2/L(y¡ - y)2 = 
ß2s2

x/s
2
y. From (3.2) we see ß = sxy/s

2. Hence R2 = s2
y/(s

2s¡) = r2. 
3.12. The formula for ß comes from the algebraic identity Σ(χ, - ^Xy, -

y) = ^x,y, - (Y.x¡XY.y¡)/n. This identity can be obtained by noting 
EU, - x)y = yE(jc, - x) = 0; hence Σ(χ, - ¿Xy, - y) = Σ(χ, - x)y¡ = 
EXjy¡ - xLy¡ = Lx¡y¡ - (ΣΛ Ι ·ΧΣ>,·)/«. By considering the case x¡ = y,, we 
also obtain the identity Σ(*, - x)2 = Σχ2 - (Lx¡)2/n. 

Additional Reading. To learn more about least-squares regression, see 
Draper and Smith (1981), Gunst and Mason (1980), Myers (1990), Neter, 
Wasserman, and Kutner (1989) or Weisberg (1985). 
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C H A P T E R 4 

Least-Absolute-Deviations 
Regression 

4.1 INTRODUCTION 

The method of least absolute deviations was introduced almost 50 years 
before the method of least squares, in 1757 by Roger Joseph Boscovich. He 
devised the method as a way to reconcile inconsistent measurements for the 
purpose of estimating the shape of the earth. After Pierre Simon Laplace 
adopted the method 30 years later, it saw occasional use, but it was soon 
overshadowed by the method of least squares. 

The popularity of least squares was at least partly due to the relative 
simplicity of its computations and to the supporting theory that was devel-
oped for it by Gauss and Laplace. Today, computation is not such a 
limitation and theoretical foundations have been laid for a variety of alterna-
tive methods, including the method of least absolute deviations (LAD). 

4.2 ESTIMATING THE REGRESSION LINE 

Consider the data in Table 1.3 consisting of birth rates and urban percent-
ages for 14 North and Central American countries. It was stated in Section 
1.6 that the estimate of the regression line obtained by the LAD method is 
Y = 46 - 0.54Λ". Now let us see how this method works. 

We begin by proposing the linear regression model Y = a + ßX + e. 
Then we make a scatter plot as in Figure 1.1. The data point corresponding 
to Trinidad/Tobago stands apart as a possible outlier, but the main pattern 
of the data seems to show a trend sloping downward from left to right. So, 
from this initial appraisal, the linear regression model seems reasonable. Let 

57 
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us estimate the regression coefficients a and ß by the method of least 
absolute deviations. 

In the method of least squares, the estimates a and ß are chosen so that 
the sum of the squares of the residuals, Σ,β}, is as small as possible. In the 
method of least absolute deviations, the estimates a and β are chosen so that 
the sum of the absolute values of the residuals, E|e, | , is as small as possible. 
That is, the least-absolute-deviations estimates a and β are the values of a 
and b that minimize 

£ | y , . - ( « + f o r , . ) | (4.1) 

The difference y, - (a + bx¡) is called the deviation of the point (x¡, y,) from 
the line Ϋ = a + bX. 

The concept of LAD estimation is no more difficult than the concept of 
least-squares estimation; in fact it is simpler in so far as \e\ is a more 
straightforward measure of the size of a residual than is e2. But in the actual 
calculation of the estimates, the LAD method is more complicated. There 
are no formulas for the LAD estimates; instead we present an algorithm for 
calculating them. For clarity, the algorithm assumes that the data set is not 
subject to nonuniqueness or degeneracy. These are two phenomena that can 
cause technical problems, but they occur only infrequently. They are dis-
cussed in the next section. 

An Algorithm. Our object is to find the line that best fits the data in the 
sense of having the least sum of absolute deviations. The main part of the 
algorithm is a procedure that, for any given point (JC0, y0), finds the best line 
among all the lines passing through it. This procedure is used together with 
the fact that the LAD regression line passes through two of the data points. 
So the algorithm starts with one of the data points, say (*,, y,), and finds the 
best line passing through it. This line also passes through another data point; 
by reindexing we can denote this other data point by (x2, y2)· Next we find 
the best line passing through (x2, y2)· This line also passes through another 
data point; by reindexing we can denote this other data point by (x3, y3). 
Next we find the best line passing through (x3, y3), and so on. As the 
algorithm continues, the lines that are obtained are increasingly better. 
Eventually, the most recent line obtained will be the same as the previous 
line. This is the best line among all lines, without regard to what points they 
pass through. That is, this is the LAD regression line. 

Now we need to describe the procedure for finding the best line among all 
lines passing through a given point (xn, y„). For each data point (jt,-, y,) 
calculate the slope (y, - y0)/(x¡ - xa) of the line passing through the two 
points (x0, y0) and (JC,, y,). If x¡ = xn for some i, the slope is not defined but 
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such points can be ignored. Reindex the data points so that (y, - y 0) / (*i -
j i ( ) ) < ( y 2 - y 0 ) / ( ^ 2 - j : „ ) < · · · < (y„ - y„) /U„ - *„)· Let T = L\x¡ -
xn\. Find the index k that satisfies the conditions 

l*i - * o l + ·■· + l**_i - * o l < \T 

(4.2) 
|JC, - xa\ + ■■■ + \xk-\ - XQ\ + \*k - xv\ > 2T 

The best line passing through (*„, y„) is the line Y = a* + ß*X, where 

xk - *a (4.3) 

«* = y0 - ß*x» 

Justification That the Line Passes Through Two Data Points. A key fact 
used in devising the algorithm is that the LAD regression line passes through 
two of the data points. To see why this is so, imagine a line y = a + bx 
drawn through a plot of the data points. The absolute deviation of a data 
point from the line is the length of the vertical line segment from the point to 
the line. The value of (4.1) is the sum of these absolute deviations. Suppose 
the line does not pass through any data points. If the line is moved upward a 
small amount, say ε, then each absolute deviation either decreases by ε or 
increases by ε, depending on whether the data point is above or below the 
line. The value of (4.1) can be decreased (or at least not increased) by moving 
the line either upward or downward, depending on whether there are more 
data points above or below the line. Move the line until it meets a data point. 

If the line passes through exactly one data point, the line can be pivoted 
on its data point, either clockwise or counterclockwise, until it meets a 
second data point. Of course the absolute deviation for the one data point 
remains zero, and each of the other absolute deviations either decreases or 
increases (by varying amounts). With respect to decreasing or increasing the 
sum of absolute deviations, pivoting clockwise and pivoting counterclockwise 
have opposite effects. So by pivoting one way or the other, we can decrease 
(or at least not increase) the sum of absolute deviations. This shows that, in 
order to minimize the sum of absolute deviations, we need only look at lines 
that pass through at least two of the data points. 

Justification of the Algorithm. The procedure for finding the best line 
passing through (*<,, y()) can be justified as follows. Among all lines passing 
through (jt„, y(l) we want to find a line that minimizes (4.1). For a line 
Y = a + bX to pass through (*„, y()) means that y0 = a + bxn, hence a = 
y„ - bx(). This justifies the second part of (4.3). 
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The deviation y, - (a + bx¡) can now be written as (y, - y„) - b(x¡ - x{)). 
So we want to find the value of b that minimizes 

ElU-yo)-&(*,-*») I (4.4) 

Consider (4.4) as a function of b. A common technique for finding the 
minimum of a function is to differentiate the function. Although the absolute 
value function \t\ is not differentiable at / = 0, it is differentiable at all t Φ 0. 
This allows us to differentiate (4.4) at all b except for b satisfying (y, - y0) -
b(x¡ - x0) = 0, that is, except for the « values b¡ = (y, - y0)/(x, - xQ). The 
inequalities (4.2) express the condition that the derivative of (4.4) is negative 
for b < ß* and is positive for b > ß*. Together with the fact that (4.4) is a 
continuous function, even at the points where it is not differentiable, this 
implies that (4.4) is decreasing for b < ß* and is increasing for b > ß*, 
which implies that ß* is the minimizing value of b. This justifies the first part 
of (4.3). 

Note that the best line passing through (*0, y0) passes through one of the 
data points, namely, (xk, yk). To check this, one can use the definitions of a* 
and ß* in (4.3) to show that yk = a* + ß*xk- This confirms the statement 
that the best line passing through one of the data points also passes through 
another data point, which was justified in the preceding subsection. 

Recall that the slope (y, - y0)/(x¡ - x0) is not defined when JC, = x(). It is 
permissible to ignore such data points because, if the line is required to pass 
through the given point (x0, y0), then a data point with the same Jt-value as 
this point can have no influence in determining the best line. This is because 
its contribution |(y, - y0) - b(x¡ — x0)\ to the sum (4.4) has the same value 
|y, - y0| for all b. 

The Birth Rate Data. Let us apply the LAD simple regression algorithm 
to the birth rate data in Table 1.3. As a first step we find the best line passing 
through the Canada data point (55.0,16.2). To do this, we form the slopes 
(y, — 16.2)/(JC, — 55.0). For example, the slope for Costa Rica is (30.5 — 
16.2)/(27.3 - 55.0) = -0.5162. The slopes for the 13 countries other than 
Canada are shown in Table 4.1. They are listed in increasing order. 

To apply (4.2), calculate Σ|ΛΤ, - 55.0| = 355.9, divide it by 2 to obtain 
355.9/2 = 177.95, and look for the country for which the cumulative sum in 
column 4 of Table 4.1 first exceeds 177.95. We see that this is El Salvador, 
because 172.5 < 177.95 and 216.0 > 177.95. Therefore β* = -0.5517 and 
a* = 16.2 - (-0.5517X55.0) = 46.54. Actually, we do not need to calculate 
a* and ß* at this step; we only need to know that the best line through the 
Canada data point also passes through the El Salvador data point. 
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Table 4.1 Calculations Used in Finding the Best Line Through the Canada 
Data Point 

Country 

Mexico 
Nicaragua 
Dominican Republic 
Honduras 
Panama 
Haiti 
Jamaica 
El Salvador 
Guatemala 
Costa Rica 
Trinidad/Tobago 
United States 
Cuba 

y, - 16.2 

x¡ - 55.0 

-1.5000 
-1.0566 
-0.9441 
-0.7694 
-0.6821 
-0.6107 
-0.5525 
-0.5517 
-0.5447 
-0.5162 
-0.1743 
-0.1333 
-0.0323 

\x¡ - 55.01 

11.8 
26.5 
17.9 
36.0 
17.3 
41.1 
21.9 
43.5 
40.8 
27.7 
48.2 

1.5 
21.7 

Cumulative Sum 
of \x¡ - 55.01 

11.8 
38.3 
56.2 
92.2 
109.5 
150.6 

172.5 
216.0 
256.8 
284.5 
332.7 
334.2 
355.9 

The next step is to find the best line passing through the El Salvador data 
point. We form the slopes (y, - 40.2)/(*, - 11.5), put them in increasing 
order, and construct a table similar to Table 4.1 with a column for \x¡ - 11.5| 
and a column for the cumulative sums. If you construct this table, you will 
find that the total cumulative sum is 265.5 and that the country whose 
cumulative sum first exceeds 265.5/2 = 132.75 is the United States. There-
fore the best line passing through the El Salvador data point also passes 
through the United States data point. 

The next step is to find the best line passing through the United States 
data point. Constructing a table similar to Table 4.1 and looking at the 
cumulative sums, we find that the best line passing through the United States 
data point also passes through the El Salvador data point. But this is the 
same line we obtained at the previous step, and so the algorithm stops. The 
LAD regression line is the line passing through the data points of 
El Salvador and the United States. Its slope is ß = (40.2 - 16.0)/(11.5 -
56.5)= -0.5378 and its intercept is a = 40.2 - (-0.5378X11.5) = 46.38. 
That is, the LAD regression line is Ϋ = 46.38 - 0.5378*. See Figure 1.1. 

4.3 NONUNIQUENESS AND DEGENERACY 

The algorithm described in the preceding section will find the LAD regres-
sion line for most data sets, but occasionally problems arise with nonunique-
ness or degeneracy. Nonuniqueness means that there is more than one best 
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line passing through a data point. Degeneracy means that the best line 
through a data point also passes through two or more other data points. 
Recall that the algorithm proceeds in steps. At each step we find the best line 
passing through a given data point. The best line always passes through 
another data point, and this data point is used in the next step. But when 
there is nonuniqueness, there is more than one best line. And when there is 
degeneracy, the best line passes through more than one other data point. In 
either case, there is more than one choice for the data point to be used in the 
next step. By making unlucky choices, the algorithm may go around in circles, 
or it may stop with a line that is not the LAD regression line. 

The possibility of such problems is indicated either when equality occurs 
in condition (4.2) or when the slope ß* = (yk - y0)/(xk - x0) in (4.3) is 
equal to (y*_, - y 0 ) / ( * * - i - xn) or (yk + i -yn)/(xk + l - *())· In such in-
stances we can resort to the algorithm in the following paragraph. Also see 
the subsection on nonuniqueness and degeneracy at the end of Section 4.6. 

A Simpler Algorithm. Another possible approach is to replace the algo-
rithm in Section 4.2 by the following algorithm, which has the advantage of 
being conceptually simple and the disadvantage of requiring more computa-
tion. It is known that the LAD regression line (or at least one of them, in 
case of nonuniqueness) passes through at least two data points. So an LAD 
regression line can be found among the lines defined by all possible pairs of 
data points. (Some of these lines may coincide.) We can simply compute the 
sum of absolute deviations (4.1) for each of these lines and choose the one 
(or ones) with the smallest sum. The feasibility of this algorithm depends on 
the sample size n. 

This algorithm is not disturbed by degeneracy. In case of nonuniqueness, 
when there are several LAD regression lines, we could arbitrarily choose 
one, or we could take their average. This average line is also an LAD 
regression line. 

4.4 TESTING β = 0 

The method of least absolute deviations estimates the slope of the regression 
line for the birth rate data to be β = -0.5378, but we do not expect the 
estimate to be exactly equal to the true value. Even though β is negative, it is 
possible that the true value of β may actually be 0. That is, what appears to 
be a negative relationship between birth rate and urban percentage may be 
due merely to the randomness of the data. Let us test whether or not β could 
beO. 
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Table 4.2 The Nonzero Residuals from the LAD 
Regression Analysis of the Birth Rate Data, 
Arranged in Increasing Order 

MÍ) 

1 -18.128 
2 -11.576 
3 -1.203 
4 -0.607 
5 -0.348 
6 -0.284 
7 1.890 
8 2.391 
9 6.667 
10 7.733 
11 10.748 
12 13.142 

Description of the Test. First calculate the LAD regression estimates ά 
and β and the residuals e, = y, - (α + /3JC,). Let m = n - 2, the number of 
nonzero residuals. Arrange the nonzero residuals in increasing order. Let é(]) 

denote the smallest residual, e(2) the next smallest,... , and e(m) the largest. 
Table 4.2 displays them for the birth rate data. 

Let k¡ be the closest integer to (m + l ) / 2 - Jm and let k2 be the 
closest integer to (m + l ) / 2 + /in . Calculate 

. = ^ f c * , , - ' < » , » ] (4 5) 

Then calculate 

est.SD(p) = , (4.6) 

The test statistic is 

1/31 
(4.7) est.SD()3) 

The p-value of the test is calculated as the probability Prob[|7| > |r|] where 
T denotes a random variable having a t distribution with n - 2 degrees of 
freedom. 
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Comparison with the Least-Squares Test. The LAD test described above 
is similar to the least-squares test. In fact, formula (4.7) is exactly the same as 
formula (3.5). But ß and est.SD(/3) are calculated differently. No exact 
formula for SD(/3) is available in LAD regression. The only difference in the 
two formulas for est.SD(ß) is that σ appears in the least-squares formula 
and f appears in the LAD formula. 

Justification of (4.6) and (4.7). Test statistic (4.7) is sensible to use for 
testing whether β = 0. The estimate β can be expected to be fairly close to 
ß; the distance between ß and ß should not be more than one or two 
standard deviations SD(/3). If |r| is large, this means that the distance 
between ß and 0 is much larger than est.SD(/3), and so we conclude β Φ 0. 

Formula (4.6) makes sense in so far as it implies that SD(/3) is estimated 
to be smaller when the ^-values are more spread out. A wider range of 
;c-values gives better information about the slope of the regression line. Also, 
estimation is more precise when τ is small. It remains to discuss τ. 

The Parameter τ. The quantity f in (4.5) is an estimate of a parameter τ 

which plays a role in LAD regression analogous to the role of σ in 

least-squares regression. The standard deviation of /3LS is σ / y E(JC, - i ) , 

whereas the standard deviation of / 3 ^ 0 is approximately τ / γ Σ ( * , - x) 
(the approximation is better for large sample sizes). Thus the ratio τ/σ 
determines which of the two regression methods is better for estimating the 
slope of the regression line. 

Both T and σ are measures of the size of the random errors, τ is equal to 
1/(20), where Θ is the probability density of the error distribution at its 
median. (When doing LAD regression, the assumption is sometimes made 
that the median, rather than the mean, of the error distribution is 0. If the 
error distribution is symmetric, its mean and median coincide.) If σ is large, 
then the errors are widely spread out, so the probability density near the 
median is low, hence Θ is small, which implies τ is large. 

So, roughly speaking, τ is large when σ is large and τ is small when σ is 
small. But the exact ratio τ/σ depends on the shape of the distribution of 
the population of errors. If the errors have a normal distribution, then 
τ/cr = 1.253 > 1, and so, at least for large sample sizes, the LAD regression 
estimates are less accurate then the least-squares regression estimates. If the 
errors have a Laplace distribution, then τ/σ = 0.707 < 1. 

Justification of (4.5). Our justification assumes a large sample size n. 
Then m is approximately equal to n and the residuals é¡ behave much the 
same as the true errors e¡. We will argue that τ can be approximated by 
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V^[£(¿2) - £ (A|)]/4 where k¡ and k2 are the closest integers to (n + 1)/ 
2 ± yfñ. Our argument consists of deriving two approximate 95%-confidence 
intervals for the median of the error distribution, both based on normal 
approximations, and equating their lengths. 

Recall from the preceding subsection that τ in LAD regression is analo-
gous to σ in least-squares regression. The standard deviation of an LS 
regression estimate has the form ac, whereas the standard deviation of the 
corresponding LAD regression estimate is approximately re for the same 
quantity c. In particular, consider the special case of "regression" when 
p = 0, that is, when there are no explanatory variables and we simply have a 
random sample of n independent observations from the same population, 
such as e„ e2,..., en. The LS "regression" estimate is the sample mean e, 
because a = e is the value of a that gives the least sum of squared deviations 
E(e, - a)2. Its standard deviation is σ/ 4n . The LAD "regression" estimate 
is the sample median é, because a = e is the value of a that gives the least 
sum of absolute deviations Ek , - a\. Its standard deviation is approximately 
τ/yfñ. 

The central limit theorem says that, for large sample sizes n, the distribu-
tion of the sample mean is approximately normal. It turns out that for large n 
the distribution of the sample median is also approximately normal. Also, the 
expectation of the sample median is approximately equal to the population 
median. Letting v denote the median of the population of errors, we can 
state that, for large n, i has approximately a normal distribution with mean v 
and standard deviation τ/4η. Hence, if f is an estimate of τ, we can 
construct an approximate 95%-confidence interval for v to be é ± 2r/Jñ. 
We are not actually interested in v and are not interested in the confidence 
interval itself but only in its length, 4 τ / { ñ . 

Next, it can be shown that the interval from eik ) to e(k ) is also an 
approximate 95%-confidence interval for v. It turns out that the two intervals 
are similar, at least for large sample sizes. In particular, their lengths are 
similar: 4f/ 4n ~ e(k ) - e(k y Choosing f to make this an exact equality, 
replacing e by é, and replacing n by m = n - 2, we obtain formula (4.5). It 
has been found that using only the m nonzero residuals improves the 
performance of the test for small samples. 

The Distribution of t. The LAD test procedure assumes that, when 
β = 0, the random variable t has a t distribution with n - 2 degrees of 
freedom. This is not exactly true but theorems have been proved which imply 
that when n is large and β = 0, then / has approximately a standard normal 
distribution. This justifies the LAD test procedure when n is large, because a 
t distribution with many degrees of freedom is very similar to the standard 
normal distribution. When n is small, to be on the safe side so that we do not 
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reject the null hypothesis too hastily, we use the t distribution rather than the 
standard normal distribution. 

The Birth Rate Data. With a sample size as small as n = 14, we should 
be cautious about the validity of the LAD test described in this section, but 
as an illustration, let us apply the test to the birth rate data. 

In Table 4.2 the ordered nonzero residuals are listed. Since m - n — 2 -
Yl and (m + l ) / 2 - 4m = 13/2 - 4\2 = 3.04, we have A:, = 3. Similarly, 
k2 = 10. So f = 4l2[ém - é(3)]/4. In Table 4.2 we see <?(3) = -1.203 and 
e(10) = 7.733. Hence f = 7.739. Next we calculate Tix¡ - x)2 = 3151. So 
est.SD(/3) = 7.739/ V3151 = 0.1379, and |(| = | -0.53781/0.1379 = 3.900. 
To calculate the p-value we use the / distribution with n - 2 = 12 degrees 
of freedom. From the t table in the Appendix, we find that the p-value is 
between 0.001 and 0.01. We conclude that the slope of the regression line is 
truly negative. 

As a check on the LAD test, let us perform the LS test. In Figure 1.1 note 
the position of the Trinidad/Tobago data point. We saw in Section 1.6 that 
this point has a disproportionate influence on the slope of the LS regression 
line. Note that its influence is in the direction of pulling the slope toward 0. 
So in the presence of such influence, if the LS test concludes β Φ 0, we can 
believe it. When the LS test is applied to these data, it yields a p-value of 
0.018. This still indicates ß ¥= 0, but not as strongly as the LAD test does. 

4.5 AN EXAMPLE OF MULTIPLE REGRESSION 

Let us apply the method of least absolute deviations to analyze the data in 
Table 4.3 concerning the incidence of fires in a residential area. We want to 
see how the incidence of fires is related to three characteristics of the area: 
the age of its houses, its incidence of theft, and the income of its families. 
The data are for 47 predominantly residential areas in Chicago for the year 
1975. The column labeled FIRE lists the number of fires per 1000 housing 
units in the area; the column labeled AGE lists the proportion of housing 
units built before 1940; the column labeled THEFT lists the number of thefts 
per 1000 residents; and the column labeled INCOME lists the median family 
income as a multiple of $1000. 

These data are analyzed in Example 2 in Section 2.4. In the first part of 
this analysis, it is found that areas 7 and 24 are leverage points and should be 
deleted from the model. Next, a problem with unequal variances is corrected 
by transforming FIRE to log(FIRE). At this point in the analysis the model 



Table 4.3 Fire Data 

Area 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

FIRE 

6.2 
9.5 

10.5 
7.7 
8.6 

34.1 
11.0 
6.9 
7.3 

15.1 
29.1 

2.2 
5.7 
2.0 
2.5 
3.0 
5.4 
2.2 
7.2 

15.1 
16.5 
18.4 
36.2 
39.7 
18.5 
23.3 
12.2 
5.6 

21.8 
21.6 

9.0 
3.6 
5.0 

28.6 
17.4 
11.3 
3.4 

11.9 
10.5 
10.7 
10.8 
4.8 

10.4 
15.6 
7.0 
7.1 
4.9 

log(FIRE) 

1.825 
2.251 
2.351 
2.041 
2.152 
3.529 
2.398 
1.932 
1.988 
2.715 
3.371 
0.788 
1.740 
0.693 
0.916 
1.099 
1.686 
0.788 
1.974 
2.715 
2.803 
2.912 
3.589 
3.681 
2.918 
3.148 
2.501 
1.723 
3.082 
3.073 
2.197 
1.281 
1.609 
3.353 
2.856 
2.425 
1.224 
2.477 
2.351 
2.370 
2.380 
1.569 
2.342 
2.747 
1.946 
1.960 
1.589 

AGE 

0.604 
0.765 
0.735 
0.669 
0.814 
0.526 
0.426 
0.785 
0.901 
0.898 
0.827 
0.402 
0.279 
0.077 
0.638 
0.512 
0.851 
0.444 
0.842 
0.898 
0.727 
0.729 
0.631 
0.830 
0.783 
0.790 
0.480 
0.715 
0.731 
0.650 
0.754 
0.208 
0.618 
0.781 
0.686 
0.734 
0.020 
0.570 
0.559 
0.675 
0.580 
0.152 
0.408 
0.578 
0.114 
0.492 
0.466 

THEFT 

29 
44 
36 
37 
53 
68 
75 
18 
31 
25 
34 
14 
11 
11 
22 
17 
27 
9 

29 
30 
40 
32 
41 

147 
22 
29 
46 
23 
4 

31 
39 
15 
32 
27 
32 
34 
17 
46 
42 
43 
34 
19 
25 
28 
3 

23 
27 

INCOME 

11.744 
9.323 
9.948 

10.656 
9.730 
8.231 

21.480 
11.104 
10.694 
9.631 
7.995 

13.722 
16.250 
13.686 
12.405 
12.198 
11.600 
12.765 
11.084 
10.510 
9.784 
7.342 
6.565 
7.459 
8.014 
8.177 
8.212 

11.230 
8.330 
5.583 
8.564 

12.102 
11.876 
9.742 
7.520 
7.388 

13.842 
11.040 
10.332 
10.908 
11.156 
13.323 
12.960 
11.260 
10.080 
11.428 
13.731 

Source: Andrews and Herzberg (1985, p. 409). 

67 
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being considered is 

Y = ß0 + ßlXl+ß2X2 + ß3X3 + e 

where Y = log(FIRE), A", = AGE, X2 = THEFT, and X3 = INCOME. Let 
us use the method of least absolute deviations to estimate and test the 
coefficients in this model. 

4.6 ESTIMATING THE REGRESSION COEFFICIENTS 

The LAD estimates /3(), /8,, y32, yS3 are chosen so that the sum of the absolute 
values of the residuals, Σ|β,·|, is as small as possible. That is, ß(),ß,, ß2, ßj 
are the values of b(), bx, bz, b3 that minimize 

E l · , - (b0 + M/i + b2*i2 + M «) l (4.8) 

There are no formulas for the minimizing values, but we will describe an 
algorithm that can be used to obtain them. The algorithm assumes that the 
data set does not involve any problem with nonuniqueness or degeneracy. 
These problems are discussed at the end of the section. 

Outline of the Algorithm. The presentation of the algorithm is facilitated 
by using vector notation. Let 

b0 

b\ 

b2 

by 

and X: = 

1 

Then the sum of absolute deviations in (4.8) can be written as 

Σ \y, - b%\ (4.9) 

We want to find the vector b that minimizes (4.9). 
Recall that the algorithm for simple LAD regression is iterative. That is, 

we start with one line, then we find a better line, then an even better line, 
and so on until we obtain the best line. Similarly, the algorithm for multiple 
LAD regression is iterative. We start with a vector b, then we find a better 
vector (in the sense of giving a smaller value for (4.9)), and so on until we 
obtain the best vector ß. At each step, having a vector of estimates b, we find 
a better vector b* by first finding a suitable "direction" vector d and then 
finding the value of t for which b* = b + td is best. 
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Finding the Best Vector of Estimates in Direction d. We need a proce-
dure for finding the value of / that minimizes 

Σ Ι * - ( * + "*)'*/1 (4-i°) 

If we write z, = y, - b'x¡ and w¡ = d'x¡, then the procedure must find the 
value of t that minimizes 

Ek-'νν,.Ι (4.Π) 

This is the same as the problem of finding b that minimizes (4.4), for which 
we know the solution. We take the ratios z¡/w¡, put them in increasing order, 
reindex the z's and »v's according to this order, and find the index k that 
satisfies 

Ki + \w2\ + ■■■ + κ_,ι < \τ 
k, | + \w2\ + ■■■ + K _ , | + \wk\ > \T 

where T — Σ|νν,|. The minimizing value of / is zk/wk. 

Finding a Suitable Direction. At each step the algorithm considers four 
direction vectors d],d2,d?i,d4. (In the general case with p explanatory 
variables, it considers p + 1 vectors.) These represent eight different direc-
tions since for each vector d¡ we look in the negative direction — d¡ as well as 
the positive direction d¡. Among these eight directions, the most promising 
direction is the one for which the value of (4.10) decreases most steeply near 
f = 0. To determine how steeply (4.10) decreases, we calculate its right-hand 
derivative at t = 0. In terms of the notation in (4.11), the right-hand deriva-
tive at t = 0 is W_+ W{) — W+, where W_ is the sum of |w,| for indices i for 
which Zj/Wj is negative, Wn is the sum of |vv(| for which z¡ = 0, and W+ is 
the sum of |H>,| for which z¡/w¡ is positive. We calculate this derivative for 
each of the eight directions and choose the most suitable direction to be the 
one whose derivative is most negative. If all the derivatives are positive, then 
the current vector b is the best vector β, and the algorithm stops. 

Starting the Algorithm. Recall that in simple regression, the LAD re-
gression line passes through two of the data points. Similarly, in multiple 
regression with p explanatory variables, the LAD regression equation is 
satisfied for p + 1 of the data points. In our example, p = 3, so p + 1 = 4. 
So a reasonable way to begin the algorithm is to choose four data points, for 
example the points indexed by / = 1,2,3,4, and let the vector of estimates b 
at the initial step be determined by y, =b'xi for z = 1,2,3,4. In matrix 
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notation these four equations can be written as Ab = c, where 

A = and c y2 

y> 
y4 

Therefore, b = A 'c. Let the initial set of direction vectors du d2, rf3, d4 be 
the four columns of A'1. 

Iteration of the Algorithm. At each step we have a current vector of 
estimates b such that the estimated regression equation is satisfied by four 
data points, say, the points indexed by ι,, i2, i3, i4. Let 

A = 

The current set of direction vectors are the four columns of A ~'. 
As described above, we calculate eight derivatives in the directions repre-

sented by the four direction vectors and their negatives, and we choose the 
direction with the most negative derivative. Suppose this is direction </3. A 
vector of estimates that is better than b is obtained as b* = b + /*rf3, where 
r* is the value of t that minimizes (4.10). In the description of how the 
minimizing value of t is obtained, note that t* = (yk - b'xk)/d'3xk for some 
k. Replace the third row (because the third direction vector is being used) of 
A by x'k. Call this new matrix A*. The new set of direction vectors are the 
four columns of A*~\ 

Iteration is continued until a step is reached at which all the derivatives in 
the eight directions are positive. 

Justification That the LAD Equation is Satisfied by p + 1 Data Points. 
A key fact underlying the algorithm is that the LAD equation is satisfied by 
p + 1 data points. The equation Y = a + bX is often identified with the line 
consisting of all points (X, Y) that satisfy it. Similarly, the equation Y = b0 + 
blXl + ■ ■ ■ +bpXp can be identified with the set of all (p + l)-dimensional 
points (Xu..., Χρ, Υ,) (not just data points) that satisfy it. Such a set is 
called a "hyperplane". When p = 1, the hyperplane is a line in 2-dimen-
sional space, and when p = 2, the hyperplane is an plane in 3-dimensional 
space. In the same way that a line is completely determined by specifying two 
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of its points and a plane is completely determined by specifying three of its 
points, a hyperplane is completely determined by specifying p + 1 of its 
points. (This geometric fact corresponds to the algebraic fact that the p + 1 
coefficients bt), bu...,bp are determined by p + 1 equations.) 

If a hyperplane contains fewer than p + 1 data points, it can be "pivoted" 
about these points until it meets another data point. By pivoting in an 
appropriate direction, the sum of absolute deviations of the data points from 
the hyperpiane can be decreased (or at least not increased). (This is easiest to 
picture in the case p = 1, which is discussed in Section 4.2) Therefore, in 
order to minimize the sum of absolute deviations, we need only look at 
hyperplanes that pass through at least p + 1 of the data points. 

Justification of the Algorithm. In light of the preceding subsection, a 
reasonable algorithm would be to look at a sequence of hyperplanes, each 
hyperplane being determined by a set of p + 1 data points. Given the 
current hyperpiane and its set of determining data points, we could select 
one data point to remove from the set and select another data point to 
replace it. The selection should be done so that the hyperplane determined 
by the new set of data points has a smaller sum of absolute deviations. 
Actually, the algorithm we presented can be described in this way. Finding a 
suitable direction amounts to selecting a data point to remove, and finding 
the best value of / in (4.10) amounts to selecting a replacement. 

To see this, consider the case p = 3 and suppose the current set of data 
points is jc,, x2, x3, x4. Let 

A = and c 
y3 

y4 

so that the current coefficient vector is b = A xc. If data point x3 is removed 
and replaced by xk, the new coefficient vector is b* = A*~lc* where 

and c = 
y2 

yk 

This amounts to using direction vector d3 and finding t* = (yk - b'xk)/d'?lxk, 
because b + t*d3 = A* c*', which can be verified by using the fact that d3 is 
the third column of A '. 
direction vectors. 

This justifies the use of the columns of A as 
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Of course it is sensible to choose the direction vector that gives the most 
negative derivative for (4.10) since this promises the most decrease in the 
sum of absolute deviations. The procedure for finding t* is justified in 
Section 4.2. 

The Fire Data. To apply the LAD multiple regression algorithm to the 
fire data in Table 4.3, we start by choosing four of the areas, say, areas 1, 2, 3, 
and 4. Using the data for these four areas, form 

A = 

1 0.604 29 11.744 
1 0.765 44 9.323 
1 0.735 36 9.948 
1 0.669 37 10.656 

and c 

1.825 
2.251 
2.351 
2.041 

The initial vector of estimates is 

[c = 

47.93 
-23.26 

-0.1161 
-2.443 

and the initial matrix of direction vectors is 

-284.9 
164.5 

0.5233 
14.59 

-308.3 
176.6 

0.6744 
15.51 

157.8 
-79.71 
-0.4656 
-8.185 

436.4 
-261.3 

-0.7321 
-21.91 

Now we want to find a vector of estimates that is better than b. To do this 
we calculate the right-hand derivative of (4.10) for the eight directions 
represented by the four columns of A~x and their negatives. Denote the first 
column of A~x by dx. Calculations for obtaining the derivative in the 
direction d, are shown in Table 4.4. Recall that areas 7 and 24 have been 
omitted from 
example, 

the model. Note that z, = y, - b'xi and d\x, For 

z5 = 2.152 - [47.93 -23.26 -0.1161 -2.443] 

1 
0.814 

53 
9.730 

3.08 
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Table 4.4 Calculations for Obtaining the Right-Hand Derivative of (4.10) at / = 0 

/' 

1 
2 
3 
4 
5 
6 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

zi 

0 
0 
0 
0 
3.08 

-4.16 
1.48 
4.74 
2.10 

-1.84 
-2.65 

1.27 
-10.74 

0.68 
-3.15 

5.02 
-4.59 

4.07 
4.83 
0.33 

-6.41 
-8.87 
-4.67 
-3 .06 
-8.86 

0.53 
-7.03 

-12.50 
-2.74 

-10.51 
0.78 
0.52 

-7.03 
-6.44 

- 10.46 
0.12 

-2.46 
1.78 

- 0.86 
-8.08 
-1.54 
-0 .98 

-18.36 
- 3.94 

1.18 

w¡ 

1 
0 
0 
0 

18.71 
-42.68 

15.67 
35.57 
16.43 

-14.42 
-11.21 

3.88 
-66.75 

12.57 
- 13.78 

38.48 
-20.88 

30.51 
31.87 

-1.62 
-41.11 
-63.85 
- 27.65 
-20.46 
- 62.04 

8.62 
-41.01 
-80.29 
-15.50 
-66.23 

6.80 
-0.15 

-45.58 
-38.57 
-70.71 
-5.97 

- 20.20 
7.80 

-8.91 
-55.53 
-15.58 
- 10.86 

-117.48 
-25.17 

6.25 

sign(2,/w,) 

0 
* 
* 
* 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
-
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
-
+ 
+ 
+ 
-
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

l " V l 

1 
0 
0 
0 

18.71 
42.68 
15.67 
35.57 
16.43 
14.42 
11.21 
3.88 

66.75 
12.57 
13.78 
38.48 
20.88 
30.51 
31.87 

1.62 
41.11 
63.85 
27.65 
20.46 
62.04 
8.62 

41.01 
80.29 
15.50 
66.23 
6.80 
0.15 

45.58 
38.57 
70.71 
5.97 

20.20 
7.80 
8.91 

55.53 
15.58 
10.86 

117.48 
25.17 
6.25 
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and 

w5 = [-284.9 164.5 0.5233 14.59] 

18.70 

1 
0.814 

53 
9.730 

(The difference between 18.70 and 18.71 is due to round-off error.) We have 
chosen the initial vector of estimates to satisfy y¡ = b'x¡ for i = 1,2,3,4. This 
is why 2, = 22 = 23 = 24 = 0. The z'th row of A is x\ and the first column of 
A~x is a,, so the (i, 1) entry of the product AA~X is x\dx, which is w¡. Note 
that AA~l is the identity matrix. This is why w, = 1 and w2 = w3 - w4 = 0. 

After calculating z¡ and w¡, we determine the sign of z¡/w¡. If w¡ = 0, this 
ratio is not defined, but this does not matter because such a data point does 
not contribute to the derivative since |w,| = 0. Now we add up |tv,-| for all 
indices i where the sign of z¡/w¡ is either negative or zero and subtract | w¡ \ 
where the sign is positive. This yields -1221 as the derivative in the direc-
tion </,. 

Having done the calculations for </,, there is a shortcut for calculating the 
derivative in the direction — rf,. The table changes only slightly. The values of 
2, and \w¡\ remain the same, but the signs of w¡ change and hence the signs 
of z¡/w¡ change except where z, = 0. There are four data points with 2, = 0, 
one with w¡ = 1 and the other three with w¡ = 0. This implies that the 
derivative in the direction -</, is - ( - 1 2 2 1 - 1) + 1 = 1223. In general, the 
derivatives in the directions d and —d must add up to 2. 

The derivatives for the four columns of A'1 and their negatives are 
-1221, 1223, -1323, 1325, 654, -652, 1903, and -1901. The most negative 
of these is - 1901 in the direction -d4. So we look for a better vector of the 
form b + tdA (where t is negative—but it is not necessary to specify the sign 
of t because the algorithm automatically finds the best t regardless of sign). 

Let z, = y, - b'x¡ and w, = ά\χ^ The value of t that gives the best vector 
is the slope of the best line passing through (0,0) that fits the data (w¡, z¡), 
i = 1,2, . . . , 4 7 , i Φ 7,24. An algorithm for this is presented in Section 4.2. 
Applying this algorithm, we find that the best line passing through (0,0) also 
passes through (»v14, z,4). Therefore the fourth rows of A and c are replaced 
by the data for area 14. That is, at the next step we have 

1 
1 
1 
1 

0.604 
0.765 
0.735 
0.077 

29 
44 
36 
11 

11.744 
9.323 
9.948 
13.686 

and c = 

1.825 
2.251 
2.351 
0.693 
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At each step, four data points determine the current regression equation. 
They are sometimes called the basis. At each step, one of the data points in 
the basis is replaced by a data point from outside the basis. We started with 
data points 1,2,3,4 as the initial basis. At the first step, point 4 was replaced 
by point 14. As the algorithm proceeds, point 3 is replaced by point 29, 2 by 
26, 1 by 23, 26 by 10, 29 by 39, 10 by 19, 14 by 45, and 23 by 37. After this last 
step, the basis consists of points 37, 19, 39, and 45. When the derivatives for 
the eight directions are calculated at this step, we find that they are all 
positive. So the algorithm stops. The LAD regression equation is determined 
by the data points 37,19,39,45: 

ß = 

0.020 
0.842 
0.559 
0.114 

17 
29 
42 

3 

13.842" 
11.084 
10.332 
10.080 

- 1 
"1.224" 
1.974 
2.351 
1.946 

4.362 
-0.09098 
0.01299 
-0.2425 

Y = 4.362 - 0.09098X. + 0.01299X2 - 0.2425*3 

Nonuniqueness and Degeneracy. LAD multiple regression uses the LAD 
simple regression procedure to find the best vector of estimates in a given 
direction. Section 4.3 describes how nonuniqueness and degeneracy can 
affect this procedure. Moreover, similar problems can arise when more than 
one direction vector has the most negative derivative or when the least 
derivative is 0. 

Regardless of any nonuniqueness or degeneracy that may occur during the 
algorithm, if the algorithm arrives at a step where the derivatives are positive 
in all 2(p + 1) directions, then the current vector of estimates is the unique 
LAD vector of estimates. If the algorithm arrives at a step where the 
derivatives are either positive or zero in all directions, then the current vector 
of estimates is an LAD vector and other LAD vectors can be found in the 
directions with derivative 0. 

Sometimes the algorithm will iterate in circles without ever arriving at a 
step where the derivatives are all nonnegative. This is called cycling. There 
are several possible remedies. Theoretically, since the LAD vector of esti-
mates (or at least one of them, in case of nonuniqueness) is known to pass 
through at least p + 1 of the data points, one could form all possible subsets 
of p + 1 data points, determine the corresponding vector of estimates 
(b = A]c, as described previously), evaluate the sum of absolute deviations 
(4.9) for each vector, and then choose the one (or ones) with the smallest 
sum. However, this would require an impossible amount of computing for 
very large data sets. For the fire data, with n = 45 and p = 3, there would be 
148,995 subsets of data points to consider. 
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A more feasible strategy when cycling occurs is to rerun the algorithm with 
a different vector for the initial vector of estimates. Another strategy is to 
perturb the data, that is, generate some very small random numbers and add 
them to the explanatory variables. This should eliminate the cycling, and the 
p + 1 data points that determine the LAD vector for the perturbed data are 
likely also to determine the LAD vector for the original data. This can be 
checked by seeing whether the derivatives in all 2(p + 1) directions are 
nonnegative. 

Degeneracy sometimes leads to a situation in which the minimizing value 
of t in (4.10) is t* = 0. If so, one can try a different direction vector d, 
provided the derivative in the new direction is also negative. 

4.7 TESTING ßq + I = · · · = jS, = 0 

Consider the general linear regression model Y = ß0 + ßlX] + ■■■ + 
ßpXp + e. The least-squares test statistic for testing ßq+, = · · · = ßp = 0 is 

F 
SSRreduced SSRfun 

" " (P-«)¿2 

where SSR stands for the sum of squares of the residuals, SSR = Σ£,2. A 
similar test statistic is used in least-absolute-deviations regression: 

SARreduced — SARfuM 
F - - („-«)072) <4-12> 

where SAR stands for the sum of absolute values of the residuals, SAR = 
E\é¡\. The estimate f is given by (4.5) with m = n - (p + I). 

When the random errors are assumed to have a normal distribution and 
when the null hypothesis is true, the test statistic FLS is known to have an F 
distribution, regardless of the size n of the sample. When the distribution of 
the random errors is not specified, then F^ has approximately an F 
distribution when the null hypothesis is true, provided the sample size n is 
large. This also holds for the test statistic Ργ^Ό. Thus, for large n, we can 
calculate the approximate p-value of the test to be Prob[F > FLAD], where F 
denotes a random variable having an F distribution with p - q and n — p — \ 
degrees of freedom. 

The approximation of the p-value is improved by the following modifica-
tion. Calculate the p-value to be Prob[G > (p - q)(l - (p - q)/n)FLAD], 
where G denotes a random variable having a chi-squared distribution with 
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Table 4.5 Residuals from the LAD Regression Analysis of the Fire Data, 
in Increasing Order 

- 0.6652 -0.1361 0.2488 
-0.5547 -0.1012 0.2850 
-0.5261 -0.0356 0.3277 
-0.5202 -0.0188 0.3347 
-0.4857 -0.0106 0.3439 
-0.4790 0.0000 0.3604 
-0.4647 0.0000 0.4457 
-0.4233 0.0000 0.4642 
-0.3914 0.0000 0.5815 
-0.3520 0.0008 0.5939 
-0.3219 0.1006 0.7547 
-0.2786 0.1155 0.8047 
-0.2323 0.1563 0.8355 
-0.1565 0.2052 1.0740 
-0.1492 0.2468 1.2015 

p - q degrees of freedom. For very large n, this is almost the same as 
Prob[F > FLAD] because 1 - (p - q)/n ~ 1 and (p - q)F with n = °° has 
the same distribution as G. For moderately large n, the p-value based on G 
has been found to be more accurate. 

The Fire Data. We can apply the test above, with p = 3 and q = 0, to 
the fire data to test ßx = ß2 = ß3 = 0, that is, to test whether any of the 
variables AGE, THEFT, and INCOME have a significant relationship with 
FIRE. 

We want to calculate FLAD in (4.12). For this we need the residuals 
e, = y, - (4.362 - 0.09098*,, + 0.01299*,2 - 0.2425JC /3) listed in Table 4.5. 
The sum of their absolute values is SARfull = 15.78. The m = 41 nonzero 
residuals are used to calculate τ. Since (41 + l ) / 2 - JÄ\ = 14.60, we have 
k, = 15. Similarly, k2 = 27. From Table 4.5 we see e(l5) = -0.1492 and 
eai) = 0.2488. Hence f = /ΪΪ(0.2488 + 0.1492)/4 = 0.6371. The reduced 
model is Y = ß() + e. The LAD estimate of /3„ in this model is simply 
the sample median y, which for the fire data is 2.251. So SARreduced = 
Ely, - 2.2511 = 27.29. Now FLAD = (27.29 - 15.78)/3(0.6371/2) = 12.04. 

To get the p-value, we first calculate (p - q)(\ - (p - q)/n)FLAD = 
3(1 - 3/45X12.04) = 33.71. The p-value is approximately Prob[G > 33.71], 
where G has a chi-squared distribution with 3 degrees of freedom. The 
chi-squared table in the Appendix tells us that ProbfG > 16.29] = 0.001. So 
the p-value is less than 0.001. We conclude that at least some of the 
explanatory variables have a significant relationship with FIRE. 
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4.8 COMPUTATION 

Calculation of LAD estimates for a simple linear regression model by the 
method described in Section 4.2 involves the construction of a series of tables 
like Table 4.1. Using only a hand calculator and paper and pencil, this is 
somewhat tedious even for small data sets. If you correctly guess one of the 
points on the LAD regression line, only two tables are required. 

LAD regression estimates are obtainable from the function llfit in the 
computer language S-PLUS and from the robust regression package 
ROBSYS. A short FORTRAN program could be written to calculate LAD 
estimates using the IMSL subroutine RLLAV. If the IMSL library is not 
available to you, you could copy the FORTRAN program for simple LAD 
regression published by Sadovski (1974), the PASCAL program for simple 
LAD regression by Farebrother (1988), or the FORTRAN program for 
multiple LAD regression by Barrodale and Roberts (1974). 

Minimization of (4.9) can be formulated as a linear programming (LP) 
problem, as in Arthanari and Dodge (1981, Section 2.7) or Bloomfield and 
Steiger (1983, Section 6.2). Therefore one could use a linear programming 
computer package to obtain LAD estimates. For large sample sizes, it is 
easier to solve the dual LP problem. 

If you are able to calculate the LAD regression estimates, then you can 
also calculate the test statistic FLAD in (4.12). Using the regression estimates, 
form the residuals, from which you can obtain f and SARfu,|. Similarly, you 
can obtain SARreduced. Now FLAD can be calculated. If q = 0, then 
SARreduced = Ely, - y I, where y is the sample median of the y ¡'s. 

Test Case. To try out a computational procedure for least-absolute-devi-
ations regression, the data set in Table 3.2 can serve as a test case. For 
simple regression, let X = Xv The estimated regression line is Y = 30.00 + 
1.750*. The test statistic for testing ß = 0 is \t\ = 2.676. For multiple 
regression, using both Xx and X2, the estimated regression equation is 
Y = 32.71 + 1.595*, - 0.09524*2. The test statistic for testing /3, = ß2 = 0 
is F = 4.900. 

NOTES 

4.1. Boscovich (1711-1787) was born in Ragusa (now called Dubrovnik), 
became a Jesuit priest, and spent most of his life in Rome. He was a 
prominent figure in eighteenth century European science. In 1757 he formu-
lated the principle of least absolute deviations, and three years later he 
published a detailed procedure for implementing the principle. Laplace 
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(1749-1827) is regarded as the greatest French mathematician of his time. 
He played a central role in the early development of probability and statis-
tics. 

4.2a. LAD regression is sometimes called L,-regression because (4.1) is 
the L,-norm of the vector of deviations. The L,-norm of a vector v is ΣI£-',·!. 
Similarly, least-squares regression can be called L2-regression because it 
minimizes the L2-norm of the vector of deviations. The L2-norm of a vector 
v is y Σί-',2. 

4.2b. Conditions (4.2) can be derived by differentiating function (4.4). 
This function is differentiate at all values of b except the n ratios b¡ = 
(y,· _ yi))/(*/ - *())· The derivative of (4.4) in the interval b¡_t < b < b¡ is 
I*, - x()\ + ■ ■ ■ + U,._, - x0\ - \x, -x„\ - ■■■ - \x„ - x„\. This can be 
seen as follows. Let d¡ denote the deviation (y, - y0) - b(x¡ - x()). Then 
(4.4) is L\dj\. We can write \d¡\ = |(y, - y„) - b(x¡ - x„)\ = \x¡ - xn\ \(y¡ 
- y0)/(x¡ - x„) - b\ = \x¡ - x0\ \b¡ - b\. If b < b, < ■■■ <bn, then \d¡\ 
= \x,-x{)\(b,-b),...Adn\ = \xn-xa\(b„-b). If ¿>, < · · · <b,_,<b, 
then |rf, | = \xx - xn\(b - b,),..., |d,_,| = U,_, - x()\(b - &;_,). There-
fore, if fo,_, < b < b¡, then (4.4) is equal to 

b(\xt - x()\ + ■ ■ ■ + |*,._, - JC0| - Uj - x„| - · · ■ - \x„ - * ( ) | ) + c 

where c is a constant not involving b. The derivative of this linear function of 
b is simply the coefficient of b. 

Thus the derivative is R¡ - 5,, where Ri = |JC, — JC0| + · · · + |JC,-_, - x0\ 
and S¡ = \x; — xn\ + ■ · · + \xn — x0\. Since R¡ + S¡ = T, the derivative can 
be written as R¡ — (T — R¡) = 2R¡ — T. Therefore the derivative is negative 
if and only if /?, < \T. So the first condition in (4.2) says that the derivative 
of (4.4) is negative for b < bk, and the second condition says that the 
derivative is positive for b > bk. 

4.2c. After estimating the regression coefficients, we should calculate 
residuals and use them to check the validity of the model as described in 
Chapter 2. To detect outliers it helps to standardize the residuals by dividing 
them by an estimate of cr, the standard deviation of the population of errors. 
In a least-squares analysis we divide the residuals by σ in (3.3). But the 
estimate σ is itself sensitive to outliers. A less sensitive estimate is σ = 
1.483MAD, where MAD is the median of the absolute values of the nonzero 
residuals. 

Sometimes MAD is computed using all the residuals (including the zeros). 
This option is available in the robust regression computer package ROBSYS 
(Marazzi, 1987, p. 148). Hill and Holland (1977) and McKean and Schrader 
(1987) have found that estimates based on all the residuals tend to be too 
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small. To obtain a larger estimate, they suggest using only the nonzero 
residuals. 

The multiplier 1.483 ensures that, if the population of errors is assumed to 
have a normal distribution, then σ is a "consistent" estimate of σ. Consis-
tency means that, regarding σ as a random variable, for very large samples 
there is a very high probability that & will be very close to σ. 

4.3. The LAD regression line is not necessarily unique. For an illustration 
of nonuniqueness, consider the data set consisting of the following three data 
points: (1,1), (2,1), (2,2). Make a scatter plot of these data. From the plot 
you can see that if we want a line that minimizes the sum of absolute 
deviations, the line should pass through (1,1) and pass between the two 
points (2,1) and (2,2). In other words, the minimum of the sum 

|1 - (a + b)\ + |1 - (a + 2b)\ + | 2 - (a + 2b)\ 

is achieved by setting ά + β = 1 and a + 2β = t, where t can be any 
number in the interval 1 < / < 2. Thus 0 < β < 1 and a = 1 - β. The 
nonuniqueness occurs because | l - / | + | 2 - r | i s minimized not just at a 
single value of t but at any value in the interval 1 < / < 2. 

In contrast, the LS regression line is unique. The minimum of the sum 

[1 - (a + b)]2 + [1 - (a + 2b)]2 + [2 - (a + 2b)}2 

is achieved by setting a + β = 1 and ά + 2/3 = 1.5. Thus a = 0.5 and 
β = 0.5. Note that (1 - t)2 + (2 - t)2 is minimized uniquely at / = 1.5. 

4.4a. Formula (4.5) for estimating τ is recommended by McKean and 
Schrader (1987, p. 301). 

4.4b. Suppose ex, e2,...,en are a random sample of n independent obser-
vations from a population with median v. Let us show that the interval from 
e(k ) to e(Jt ) is an approximate 95%-confidence interval for v, where kt and 
k2 are the closest integers to (n + l ) / 2 ± {ñ. Let p = Prob[e(/t ) < v < 
e(k )]. Regarding the e,'s as random variables, we must show that p ~ 0.95. 
Note that the event e(k) < v is equivalent to the event that at least k of the 
errors e¡ are less than v. Therefore, letting x be the number of errors that 
are less than v, we can write p = Yrob[kx < x < k2]. To adjust for the 
discreteness of x, we write this probability as Prob[/c, — \ < x < k2 — }]· 

Now we use the fact that x has a binomial distribution and that, for large 
n, a binomial distribution is approximately normal. The distribution of x is 
binomial because x is the number of successes in n independent trials, where 
the (th trial consists of observing whether e, is less than v. The probability of 
success on a single trial is \ since, by the definition of the median, 
each observation has a {■ chance of being less than v. So the mean and 
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Standard deviation of x are n({) = n/2 and y / j ( | ) ( l - {) = \íñ/2. Hence 

0.95 * Prob[«/2 - 2(ι//Γ/2) < x < n/2 + 2(v^/2)] = Prob[£, - ± < x < 
k2 - i\= P-

Note that the two confidence intervals that we have compared in order to 
justify formula (4.5) are both based on normal approximations. To construct 
the interval from é - 2τ/ 4ñ to é + 2T/{ñ, we approximated the distribu-
tion of e by a normal distribution. To construct the interval from e(k¡) to 
e(kj), we approximated the distribution of x by a normal distribution. 

4.4c. Theory tells us that, for infinitely large sample sizes, the p-value of 
the LAD test in Section 4.4 can be obtained from the standard normal 
distribution (see Koenker and Basse« (1982) and Note 4.4d). If the standard 
normal distribution is used for sample sizes as small as n = 20, Dielman and 
Pfaffenberger (1990) have found that the p-values tend to be smaller than 
they should be. To compensate for this, we have used the f-distribution 
instead. 

4.4d. Koenker and Bassett (1982) presented three types of LAD tests: 
Wald, likelihood ratio, and Lagrange multiplier tests. The test statistic in 
Section 4.4 is the square root of a Wald test statistic. The likelihood ratio test 
is the one described in Section 4.7. The Lagrange multiplier test statistic for 
testing ß = 0 in simple regression is equal to n times the squared correlation 
coefficient between the */s and the M/S, where u¡ is the sign of y, - y and y 
is the median of the y/s. The p-value is calculated by assuming the test 
statistic has a chi-squared distribution with 1 degree of freedom. See 
Note 4.7a. 

4.6a. The algorithm in Section 4.6 is a version of an algorithm by Barrodale 
and Roberts (1974). It is based on the simplex algorithm for solving linear 
programming problems. See Bloomfield and Steiger (1983, Section 7.2.1) and 
Gentle, Narula, and Sposito (1987). For the sake of simplicity, our algorithm 
arbitrarily picks the first p + 1 data points to form an initial vector of 
estimates, whereas the Barrodale-Roberts algorithm includes a special start-
up phase. 

4.6b. Let us calculate the right-hand derivative of (4.11) at t = 0. Reindex 
the data points so that the ratios ζ,/νν, are in nondecreasing order. As in 
Note 4.2b, the derivative of (4.11) is | ΗΊ | + · · ■ + |w,_,| - \w¡\ - · · · - \wn\ 
for z¡_y/w¡_l < t < z¡/w¡. So the right-hand derivative at í = 0 is 
|w,| + · ■ · + ΙΗ^, , , Ι — \wk\ — · · · — \wn\, where k is the smallest integer 
such that zk/wk > 0. This can be expressed as W_+ W{) - W+. 

4.6c. The p + 1 data points that are chosen at the start of the algorithm 
to form the matrix A = (je,, x2,..., xp+iY must be chosen so that A is 
invertible. For observational data, such as the fire data, this is rarely a 
problem. But in a designed experiment, where the values of the explanatory 
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variables are chosen according to some pattern, care must be taken to choose 
data points such that none of the p + 1 vectors x¡ is a linear combination of 
the others. 

4.6d. Let us verify that b + t*d3 = A*~lc*, as stated in the subsection on 
justification of the algorithm. We want to show that A*b + t*A*d3 = c*. The 
components of this vector equation are x\b + t*x'¡d3 = y, U = 1,2,4) and 
x'kb + t*x'kd3 = yk. The last equation follows from the definition of /*. From 
the fact that AA~' is the identity matrix, we see that x\d3 = 0 for /' = 1,2,4. 
Now note that x\b = y, because Ab = c. 

4.6e. The vector /3 L A D of least-absolute-deviations estimates has a vari-
ance-covariance matrix approximately equal to τ2(Χ'Χ)~\ where τ is de-
scribed in Section 4.4 and X is the matrix of explanatory variables with a 
vector of l's as the first column. Similarly, as seen in Note 3.7, the vector ßLS 

of least-squares estimates has variance-covariance matrix σ2(Χ'Χ)~χ. 
Therefore the standard deviation of ßJLAD is approximately τ/σ times the 
standard deviation of /§,·, ^. 

4.7a. Three different types of LAD tests.were proposed by Koenker and 
Bassett (1982). The test in Section 4.7 is their likelihood ratio test. To 
describe the other two tests, partition the parameter vector into two parts 
ßx = (ß0, ßx,...,ßq) and ß2 = (ßq+ „ . . . , ßp\ and let X, and X2 be the 
matrices of corresponding explanatory variables. We want to test whether ß2 

is the zero vector. Let ß2 be its LAD estimate in the full model. The Wald 
A . A A ~ 

test statistic is ß'2V2 ß2, where V2 is an estimate of Cov(ß2), namely τ W, 
where W = {X'2X2 - X^X^XJ-^X'^Y1. When p = 1 and q = 0, this is 
the square of the test statistic in Section 4.4. Let u be the vector of signs of 
the LAD residuals in the reduced model with ß2 = 0. The Lagrange multi-
plier test statistic is u'X2WX'2u. This test avoids the problem of estimating τ. 

Koenker and Bassett (1982) showed that the three tests are asymptotically 
equivalent. For infinitely large samples, they have the same power and their 
/j-values can be calculated by assuming the test statistic has a chi-squared 
distribution with p - q degrees of freedom. Dielman and Pfaffenberger 
(1990) applied the three tests to simulated data following a simple linear 
regression model for sample sizes n = 20, 40 and 100. For n = 20, the 
Lagrange multiplier test was more powerful than the other two tests when 
the error distribution was heavy-tailed, but the likelihood ratio test had 
somewhat greater power when the error distribution was normal. For n = 40 
and n = 100, the likelihood ratio test tended to have greater power. 

4.7b. The modified calculation of the p-value based on G is recom-
mended by Schrader and McKean (1987). 

4.8. In S-PLUS, the function that performs LAD regression is 11 fit. It uses 
the Barrodale-Roberts (1974) algorithm, as does ROBSYS and the IMSL 
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subroutine RLLAV. This is basically the same algorithm as the one described 
in Section 4.6, but Barrodale and Roberts have devised refinements to speed 
up the algorithm. 

Additional Reading. For more on theory and computation for LAD re-
gression, see the book by Bloomfield and Steiger (1983) and the conference 
proceedings edited by Dodge (1987a, 1987b, 1992). For a review article, see 
Dielman and Pfaffenberger (1982). 
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C H A P T E R 5 

M-Regression 

. . . And so the talk goes on 
Between the believers and those who are not. 

MOULAVI RUMI: Persian Soufi Poet (1207-1273) 

5.1 INTRODUCTION 

M-regression and LAD regression are part of what is called robust statistics. 
A statistical procedure is regarded as "robust" if it performs reasonably well 
even when the assumptions of the statistical model are not true. If we assume 
that our data follow a normal linear regression model, then least-squares 
estimates and test perform quite well, but they are not robust when the 
assumption of normality for the population of random errors is invalid. 
M-regression was specifically developed to be robust with respect to this 
assumption. Peter Huber introduced the idea of M-estimation in 1964. 

5.2 AN EXAMPLE OF SIMPLE REGRESSION 

Data from a study on the shelf life of packaged foods are shown in Table 5.1. 
Moisture content is the primary factor that determines shelf life, that is, the 
length of time during which the cereal is acceptable for eating. The higher 
the moisture content, the soggier the cereal, and hence the lower its accept-
ability. A particular brand of dry cereal was stored on a shelf at 73°F and 
50% relative humidity. At various times during storage, the moisture content 
of the cereal was measured. We can use these data to see how moisture 
content depends on the time on the shelf. Time is measured in days. 

First we make a plot of the data with x = days on the shelf and y = 
moisture content. This is shown in Figure 5.1. We see that a straight line 
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Table 5.1 Shelf Life Data 

Identification 
Number of the 
Measurement 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Moisture 
Content 

(V) 

2.8 
3.0 
3.1 
3.2 
3.4 
3.4 
3.5 
3.1 
3.8 
4.0 
4.1 
4.3 
4.4 
4.9 

Days on 
the Shelf 

<*) 

0 
3 
6 
8 

10 
13 
16 
20 
24 
27 
30 
34 
37 
41 

Source: Devore and Peck (1986, pp. 471-472). 
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Figure S.l Plot of the shelf life data. 
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might describe the overall pattern of the data reasonably well, and so the 
simple linear regression model Y = a + ßX + e seems like a good model to 
try. 

5.3 ESTIMATING THE REGRESSION LINE 

In least-squares estimation, a and ß are chosen so that Σβ2 is as small as 
possible. In least-absolute-deviations estimation, they are chosen so that 
Ele,I is as small as possible. In M-estimation, this idea is generalized and ά 
and β are chosen so that Ep(e,) is as small as possible, where pie) is some 
function of e. Least-squares and least-absolute-deviations estimation can be 
regarded as the particular cases of M-estimation in which pie) = e2 and 
pie)= | e | . 

Definition of Huber M-Estimates. The M-estimates introduced in this 
chapter, called Huber M-estimates, use a function pie) that is a compromise 
between e2 and |e | . The main advantage of LAD estimates over LS estimates 
is that they are not so sensitive to outliers. When there are no outliers, 
however, LS estimates may be more accurate. We can try to combine the 
advantages of both methods by defining pie) to be equal to e2 when e is 
near 0 and equal to \e\ (or at least similar to |e|) when e is far from 0. 
Specifically, we define 

( \ = \el if -k <e < k (ί. η 
PK6) \2k\e\-k2 \fe<-koxk<e ( ' 

Following a suggestion of Huber we take k - 1.5<?, where σ is an estimate of 
the standard deviation σ of the population of random errors. In order to 
make pie) a smooth function, 2k\e\ - k2 is used instead of |e|. A graph of 
this function is shown in Figure 5.2. 

To estimate σ we use σ = 1.483 MAD, where MAD is the median of the 
absolute deviations |e,|. The multiplier 1.483 is chosen to ensure that σ 
would be a good estimate of σ if it were the case that the distribution of the 
random errors were normal. 

The Huber M-estimates a and β are the values of a and b that minimize 

Σ Ρ ( * - ( « + * * , ■ ) ) (5.2) 

Note that a and b, besides appearing explicitly in (5.2) in the argument of the 
function p, also appear implicitly in the definition of p; the function p 
involves k = 1.5<r and σ is calculated from the deviations y, - ia + bxt). 
Next we need an algorithm for minimizing (5.2). 

file:///2k/e/-k2
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Figure 5.2 Graph of the function p(e) used in the definition of Huber M-estimates, k = 1.5. 

An Algorithm. To begin the algorithm, for initial estimates of a and ß 
let us take the least-squares estimates. These are used to calculate deviations 
and an estimate of σ. These in turn are used, as described in the next 
paragraph, to obtain improved estimates of a and β. These improved 
estimates are used to calculate new deviations and an improved estimate of 
σ. Then the new deviations and new & are used to obtain improved estimates 
of a and β. The algorithm is iterated in this way until a step is reached at 
which the improved estimates are the same (or at least approximately the 
same) as the previous estimates. 

To be more specific, at any step in the algorithm, let a" and ¿>° be the 
current estimates of a and β. Calculate the deviations y, - (a" + b{)x¡) and 
from them calculate σ° = 1.483MAD. Now make the following adjustment 
of the y-values to get rid of large deviations. The deviation of y, from the 
current estimated regression line is ef = y, - (a() + b°x¡). Thus y, = a" + 
b°Xj + ef. Now define y* = a" + bnx¡ + ef, where ef is the adjusted devia-
tion obtained by truncating ef so that none of the deviations is larger than 
1.5σ° in absolute value. That is, ef = ef (and hence y* = y,) if ef is between 
-1.5<?° and 1.5<r°, ef = - 1.5<r° if ef is less than - 1.5σ", and ef = 1.5(7° 
if ef is greater than 1.5σ°. Let the improved estimates of a and β be the 
least-squares estimates obtained from the adjusted data y*,..., y*. 

Justification of the Algorithm. Even though the algorithm seems reason-
able, it may not be clear how in minimizes (5.2). With σ kept fixed, we can 
minimize (5.2) by taking derivatives with respect to a and b and setting them 
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equal to 0. This yields two equations in the two unknowns a and b: 

Lp'(yi-(a + bx,)) = o 
(5.3) 

£>,.p'(y,-(a + to,)) = 0 

Note that the derivative p'(e) has the same value — 3σ for all e less than or 
equal to - 1.5<r, and p'(e) has the same value 3σ for all e greater than or 
equal to 1.5<r. Therefore the solutions to (5.3) remain the same if the 
deviations e¡ = y, — (a + bx¡) are replaced by the truncated deviations ef, 
where ef - e¡ if e¡ is between - 1.5σ and 1.5σ, ef = - \.5& if e¡ is less than 
-1.5<?, and ef = 1.5σ if e¡ is greater than 1.5σ. That is, the y, can be 
replaced by the adjusted values y* = a, + fee, + ef without changing the 
solutions to (5.3), hence without changing the values of a and b that 
minimize (5.2). As a result of the adjustment, p(y* - (a, + fee,)) = [y* -
(a + bx¿)]2. Minimizing E[y,* - (a, + fee,)]2 yields, by definition, the least-
squares estimates obtained from the adjusted data. In the algorithm, y* is 
adjusted relative to the current estimate of the regression line rather than the 
final M-estimate, but this discrepancy disappears when the algorithm con-
verges. 

The Shelf Life Data. To begin the algorithm for finding M-estimates of a 
and β, we take for initial estimates the least-squares estimates, which are 
a" = 2.786 and b° = 0.04662. Calculate the fitted y-values y,° = a" + b°x¡ 
and then the deviations ef = y¡ - y,°, as in Table 5.2. The median of the 
absolute deviations \ef\ is MAD = 0.04161. So &{) = (1.483X0.04161) = 
0.06171 and 1.5<f° = 0.09257. Now truncate the deviations ef to obtain ef. 
Two of the deviations are greater than 1.5σ°, namely, e" = 0.16829 and 
e(l4 = 0.28506. These are truncated to e% = ef4 = 0.09257. One deviation is 
less than — 1.5<r°, namely, c" = -0.57792. This is truncated to e* = 
— 0.09257. Now the adjusted y-values are obtained as y* = yf + ef. Note 
that y* = y¡ for all i except i = 5, 8, and 14. 

The initial estimates 2.786 and 0.04662 were obtained by applying the 
least-squares method to the data in Table 5.1. If we replace the y-values in 
that table by the adjusted y-values for the last column of Table 5.2 and we 
then apply the least-squares method of estimation, we obtain new estimates 
a" = 2.827 and b" = 0.04325. This completes the first iteration of the algo-
rithm. 

For the second iteration we construct a new table similar to Table 5.2. The 
first column remains the same. The new estimates a" and b" are used to 
calculate new fitted y-values y" for column 2. After the last column of the 
new table is calculated, the least-squares method is applied to the new 
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Table 5.2 Calculations in the First Iteration of the Algorithm for Obtaining 
M-Estimates for the Shelf Life Data 

Observed 
y-Value 

y¡ 

2.8 
3.0 
3.1 
3.2 
3.4 
3.4 
3.5 
3.1 
3.8 
4.0 
4.1 
4.3 
4.4 
4.9 

Fitted 
y-Value 

y? 
2.78551 
2.91937 
3.05323 
3.14247 
3.23171 
3.36557 
3.49944 
3.67792 
3.85640 
3.99026 
4.12412 
4.30260 
4.43646 
4.61494 

Deviation 

e? 
0.01449 
0.08063 
0.04677 
0.05753 
0.16829 
0.03443 
0.00056 

-0.57792 
-0.05640 

0.00974 
-0.02412 
-0.00260 
-0.03646 

0.28506 

Truncated 
Deviation 

ef 
0.01449 
0.08063 
0.04677 
0.05753 
0.09257 
0.03443 
0.00056 

-0.09257 
-0.05640 

0.00974 
-0.02412 
-0.00260 
-0.03646 

0.09257 

Adjusted 
y-Value 

y? 
2.80000 
3.00000 
3.10000 
3.20000 
3.32428 
3.40000 
3.50000 
3.58535 
3.80000 
4.00000 
4.10000 
4.30000 
4.40000 
4.70751 

adjusted y-values to obtain updated estimates a° = 2.835 and b° = 0.04285. 
Iteration is continued until the estimates converge. After seven iterations, the 
relative difference between the updated estimate and the previous estimate is 
less than 10~4 for both a and ß. Thus, to an accuracy of about four 
significant digits, we obtain a = 2.838 and ß = 0.04264. 

5.4 TESTING ß = 0 

Section 5.7 describes how to test ßq+x = · · · = ßp = 0 in a multiple linear 
regression model. Testing ß = 0 is the special case in which p = 1 and 
q = 0. The test statistic is FM in formula (5.6). An approximate p-value can 
be calculated as Prob[F ä; FM], where F denotes a random variable having 
an F distribution with 1 and n — 2 degrees of freedom, or as Prob[|i| > | / M | ] , 
where | i M | = y/FM and t denotes a random variable having a / distribution 
with n - 2 degrees of freedom. 

The Shelf Life Data. To calculate FM we first calculate the residuals 
é¡ = y, - (ά + βχ,) using the M-estimates a = 2.838 and β = 0.04264 ob-
tained in Section 5.3. The median of the absolute residuals \é¡\ is MAD = 
0.02056, so σ = (1.483X0.2056) = 0.03049 and 1.5σ = (1.5X0.03049) = 
0.04574. For the 10 residuals between -0.04574 and 0.04574, p(é¡) = éf, and 
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for the other four residuals, p(é¡) = 0.09148\e,\ - 0.002092. Adding all 14 
values of p(é¡), we obtain STRfun = 0.09676. By truncating the two residuals 
that are below -0.04574 and the two residuals that are above 0.04574, we 
obtain the truncated residuals e*. The sum of their squares is 0.01272. Now 
we can calculate A = (14/10X0.01272)/12 = 0.001485. 

The reduced model with ß = 0 is Y = a + e. In applying the Huber 
M-estimation procedure to this model, we modify the procedure in the 
following way. The estimate & is not iterated. Throughout the iterations 
required to obtain the M-estimate & in the reduced model, we keep the same 
estimate σ = 0.03049, the estimate calculated from the full model. The 
procedure finds a value of a that minimizes the function Σρ(ν, - a), where p 
is defined as in (5.1) with k = 1.5σ = (1.5X0.03049) = 0.04574. We start by 
using the least-squares estimate as an initial estimate of a. For the model 
Y = a + e, the least-squares estimate of a is simply the sample mean y, so 
A" = y = 3.643. Now we calculate the deviations ef = y, —' 3.643 and trun-
cate the deviations with absolute values greater than 1.5σ = 0.04574. Eight of 
the deviations ef are less than -0.04574 and are truncated to e* = -0.04574; 
the other six deviations e" are greater than 0.04574 and are truncated to 
0.04574. So eight of the adjusted y-values are y* = a0 + e* = 3.643 + 
(-0.04574) = 3.597 and the other six are yf = a" + e* = 3.643 + 0.04574 = 
3.689. The updated estimate of a is the sample mean of the adjusted 
y-values, which is 3.636. For the next iteration, we calculate the deviations 
e," = y, - 3.636 and truncate the deviations with absolute values greater than 
0.04574. After many iterations, the estimates converge to ά = 3.454. 

Now calculate the residuals e¡ = y, - 3.454. All the residuals have abso-
lute value greater than or equal to 0.04574, so p(é¡) = 0.09148 \e¡\ - 0.002092 
for all i. Adding the 14 values of p(e,), we obtain STRreduced = 0.6111. So 
FM = (0.6111 - 0.09676)/0.001485 = 346.5. 

The approximate p-value is Prob[F > 346.5], where F is a random vari-
able having an F distribution with 1 and 12 degrees of freedom. From the F 
table in the Appendix, we see that the p-value is less than 0.001. This verifies 
that the moisture content of the cereal increased significantly during storage. 

5.5 AN EXAMPLE OF MULTIPLE REGRESSION 

One measure of aerobic fitness is a person's rate of oxygen consumption. The 
faster the rate, the fitter the person. Table 5.3 lists the rate of oxygen 
consumption (in milliliters per kilogram of body weight per minute) for 31 
individuals, together with measurements of five other variables: age (in 
years), weight (in kilograms), the time (in minutes) required to run 1^ miles, 
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Table 5.3 Aerobic Fitness Data 

Identification 
Number of the 

Individual 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

Oxygen 
Consumption 

(Y) 

44.609 
45.313 
54.297 
59.571 
49.874 
44.811 
45.681 
49.091 
39.442 
60.055 
50.541 
37.388 
44.754 
47.273 
51.855 
49.156 
40.836 
46.672 
46.774 
50.388 
39.407 
46.080 
45.441 
54.625 
45.118 
39.203 
45.790 
50.545 
48.673 
47.920 
47.467 

Age 
(A1,) 

44 
40 
44 
42 
38 
47 
40 
43 
44 
38 
44 
45 
45 
47 
54 
49 
51 
51 
48 
49 
57 
54 
52 
50 
51 
54 
51 
57 
49 
48 
52 

Weight 
(X2) 

89.47 
75.07 
85.84 
68.15 
89.02 
77.45 
75.98 
81.19 
81.42 
81.87 
73.03 
87.66 
66.45 
79.15 
83.12 
81.42 
69.63 
77.91 
91.63 
73.37 
73.37 
79.38 
76.32 
70.87 
67.25 
91.63 
73.71 
59.08 
76.32 
61.24 
82.78 

Running 
Time 

U,) 
11.37 
10.07 
8.65 
8.17 
9.22 

11.63 
11.95 
10.85 
13.08 
8.63 

10.13 
14.03 
11.12 
10.60 
10.33 
8.95 

10.95 
10.00 
10.25 
10.08 
12.63 
11.17 
9.63 
8.92 

11.08 
12.88 
10.47 
9.93 
9.40 

11.50 
10.50 

Pulse 
at Rest 

(X4) 

62 
62 
45 
40 
55 
58 
70 
64 
63 
48 
45 
56 
51 
47 
50 
44 
57 
48 
48 
76 
58 
62 
48 
48 
48 
44 
59 
49 
56 
52 
53 

Pulse 
After Run 

(A-5) 

178 
185 
156 
166 
178 
176 
176 
162 
174 
170 
168 
186 
176 
162 
166 
180 
168 
162 
162 
168 
174 
156 
164 
146 
172 
168 
186 
148 
186 
170 
170 

Source: SAS Institute Inc. (1990, p. 1443). 

pulse rate (in beats per minute) while resting, and pulse rate at the end of the 
run. We can use these data to express rate of oxygen consumption as a 
function of the other variables. The linear regression model is Y = ß{) + 
β,Χ, + β2Χ2 + β3Χ, + β4Χ4 + β5Χ5 + e. 

First we make five plots of V versus each of the explanatory variables X¿. 
None of these plots shows any definite indication that the regression function 
is nonlinear or that the errors have nonconstant variance. 
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5.6 ESTIMATING THE REGRESSION COEFFICIENTS 

The procedure for finding M-estimates in multiple regression is a direct 
generalization of the procedure described in Section 5.3 for simple regres-
sion. The Huber M-estimates /?<„ ßu...,ßp are the values of ¿>,„ b\,...,bp 

that minimize 

Lp{y¡- (&0 + M / i + · · · +bPxiP)) (5.4) 

where p{e) is the function defined in (5.1). It is convenient to use vector 
notation. Let 

* = and 

1 

The vector ß of Huber M-estimates is defined to be the vector b that 
minimizes Ep(y, - b'x¡). 

An Algorithm. The vector of regression coefficients, denoted by ß, is first 
estimated by the vector of least-squares estimates. This initial estimate of ß 
is used to calculate deviations and an estimate of σ. These in turn are used, 
as described in the next paragraph, to obtain an improved estimate of β. The 
algorithm is iterated in this way until a step is reached at which the improved 
estimate of β is the same (or at least approximately the same) as the previous 
estimate. 

To be specific, at any step in the algorithm, let b° be the current estimate 
of β. Calculate the deviations y, - (b{))'x¡ and from them calculate & = 
1.483MAD. Now make the following adjustment of the y-values to get rid of 
large deviations. The deviation of y, from the current estimated regression 
line is e° = y, - (¿°)'JC,. Thus y¡ = (ft'O'x,· + ef. Now define y* = (.b°)'x¡ + 
ef, where e* is the adjusted deviation obtained by truncating ef so that none 
of the deviations is larger than 1.5σ in absolute value. Let the improved 
estimate of β be the least-squares estimate obtained from the adjusted data 
y f , . . . , y * . 

The Aerobic Fitness Data. For an initial estimate of the vector of 
regression coefficients we take the least-squares estimate, which is b{) = 
(116.0, -0.2802, -0.05063, -2.743, -0.01224, -0.1279). Now we calculate 
the fitted y-values y" = (¿>")'.r, and the deviations e" = y, - y", as in 
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Table 5.4 Calculations in the First Iteration of the Algorithm for Obtaining 
M-Estimates for the Aerobic Fitness Data 

Observed 
y-Value 

y¡ 

44.609 
45.313 
54.297 
59.571 
49.874 
44.811 
45.681 
49.091 
39.442 
60.055 
50.541 
37.388 
44.754 
47.273 
51.855 
49.156 
40.836 
46.672 
46.774 
50.388 
39.407 
46.080 
45.441 
54.625 
45.118 
39.203 
45.790 
50.545 
48.673 
47.920 
47.467 

Fitted 
y-Value 

9? 
44.478 
48.998 
55.143 
56.698 
52.164 
43.838 
44.849 
48.625 
40.695 
55.253 
50.198 
36.044 
46.439 
48.502 
46.531 
50.086 
46.013 
49.077 
48.537 
48.537 
38.755 
45.549 
49.636 
54.722 
45.376 
38.925 
44.796 
50.319 
48.196 
45.576 
46.094 

Deviation 

e? 
0.131 

-3.685 
-0.846 

2.873 
-2.290 

0.973 
0.832 
0.466 

-1.253 
4.802 
0.343 
1.344 

-1.685 
-1.229 

5.324 
-0.930 
-5.177 
-2.405 
-1.763 

1.851 
0.652 
0.531 

-4.195 
-0.097 
-0.258 

0.278 
0.994 
0.226 
0.477 
2.344 
1.373 

Truncated 
Deviation 

e* 

0.131 
-2.733 
-0.846 

2.733 
-2.290 

0.973 
0.832 
0.466 

-1.253 
2.733 
0.343 
1.344 

-1.685 
-1.229 

2.733 
-0.930 
-2.733 
-2.405 
-1.763 

1.851 
0.652 
0.531 

-2.733 
-0.097 
-0.258 

0.278 
0.994 
0.226 
0.477 
2.344 
1.373 

Adjusted 
y-Value 

y* 

44.609 
46.265 
54.297 
59.431 
49.874 
44.811 
45.681 
49.091 
39.442 
57.986 
50.541 
37.388 
44.754 
47.273 
49.264 
49.156 
43.280 
46.672 
46.774 
50.388 
39.407 
46.080 
46.903 
54.625 
45.118 
39.203 
45.790 
50.545 
48.673 
47.920 
47.467 

Table 5.4. The median of the absolute deviations |e,°| is MAD = 1.229. So 
σ = (1.483X1.229) - 1.822 and 1.5σ = 2.733. Now truncate the deviations ef 
to obtain ef. Three of the deviations are greater than 1.5(7, namely, e" = 
2.873, e°w = 4.802, and e% = 5.324. These are truncated to e* = e*() = e*5 = 
2.733. Three deviations are less than — 1.5σ, namely, e\ = -3.685, e"7 = 
-5.177, and e%3 = -4.195. These are truncated to e\ = e*7 = e£, = -2.733. 
Now the adjusted y-values are obtained as y* = y," + ef. Note that y* = y, 
for all ¡' except / = 2, 4, 10, 15, 17, and 23. 
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The vector of initial estimates was obtained by applying the least-squares 
method to the data in Table 5.3. If we replace the y-values in that table by 
the adjusted y-values from the last column of Table 5.4 and then apply the 
least-squares method of estimation, we obtain a new vector of estimates 
b() = (115.7, -0.2721, -0.07352, -2.694, -0.00059, -0.1245). This com-
pletes the first iteration of the algorithm. 

For the second iteration we use the new vector of estimates b° to calculate 
new fitted y-values y¡\ This constitutes column 2 in a new table similar to 
Table 5.4. After the last column of the new table is calculated, the least-
squares method is applied to the new adjusted y-values to obtain an updated 
vector of estimates b° = (114.8, -0.2646, -0.07890, -2.678, 0.00601, 
-0.1228). Iteration is continued until the estimates converge. After 18 
iterations, the relative difference between the updated estimate and the 
previous estimate is less than 10 ~4 for all six regression coefficients. Thus, to 
an accuracy of about four significant digits, we obtain β = (113.1, -0.2489, 
-0.07718, —2.654,0.01475, -0.1216). So the estimated regression equation 
is 

Y = 113.1 - 0.2489*, - 0.07718*;, - 2.654*3 

+ 0.01475*4 - 0.1216*5 (5.5) 

5.7 TESTING ßq+l = · · · = ß„ = 0 

In the general linear regression model Y = ß0 + ß , * , + · · ■ +ßpXp + e, 
recall that the least-squares test statistic for testing /3 + 1 = ■ ■ · = ßp = 0 is 

_ SSRreduced — SSRfun 

(p - q)a¿s 

where SSR stands for the sum of squared residuals, SSR = Y.ej, and &ls = 
Eef/(n - p - 1). The residuals in SSRreduced and SSRful, are calculated by 
applying the least-squares method to, respectively, the reduced model Y = 
ß0 + βλΧλ + ■■■■ +ßqXq + e and the full model Y = ßQ + ß{Xt + · · · + 
ßpXp + e. In calculating σ^, the residuals from the full model are used. 

A similar test statistic is used in M-regression: 

STRreduced STRfu|| 
^M = : r^ (5.6) 

(P - <7)A 
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where STR stands for the sum of transformed residuals, STR = Lpii¡), and 
λ = in/m)Lif2/in - p - 1). The function pie) was introduced in formula 
(5.1) and if is obtained by truncating i¡ as described in Section 5.3. That is, 
if = i¡ if \ij\ < Í.5&, if = -Í.5& if i¡ < -\.5σ, and if = 1.5σ if i¡ > 
\.5&. The estimate σ is 1.483MAD, as in the preceding section. The integer 
m is the number of residuals i¡ that do not require truncation, that is, for 
which \i¡\ < 1.5σ. The residuals in STRreduced and STRfuM are calculated by 
applying the M-regression procedure to, respectively, the reduced model and 
the full model. The estimation procedure for the reduced model differs 
slightly from the procedure described in the preceding section; the estimate 
of σ is not iterated. Throughout the iterations required to obtain the vector 
of M-estimates of the regression coefficients in the reduced model, we keep 
the same estimate σ calculated from the full model. In calculating A, the 
residuals from the full model are used. 

An approximate p-value of the test is calculated in the same way as for the 
least-squares test, namely, as Prob[f > FM], where F denotes a random 
variable having an F distribution with p - q and n — p — I degrees of 
freedom. 

Similarity to the Least-Squares Test. The formula for FM is very similar 
to the formula for F^. In fact, if in the definition of if and pie), 1.5 is 
replaced by oo, then FM becomes exactly F^. Note that if 1.5 is replaced by 
oo, then if = i¡ for all / and m = n, so that λ coincides with a¿ s . Moreover, 
if 1.5 is replaced by oo, then pie) = e1, so STR = SSR, and so FM coincides 
with FLS. 

The Aerobic Fitness Data. Let us test whether the two measurements of 
pulse rate make a significant contribution in equation (5.5); that is, let us test 
the hypothesis that β4 = β5 = 0. We have p = 5 and q = 3. 

To calculate FM we first obtain the residuals e¡ = y, - /§'*,, where β is 
the vector of M-estimates calculated in Section 5.6. The median of the 
absolute residuals \e¡\ is MAD = 0.9046, so & = (1.483X0.9046) = 1.341 and 
1.5σ = (1.5X1.341) = 2.012. For the 24 residuals between -2.012 and 2.012, 
pie,) = if, and for the other seven residuals, pii¡) = 4.024|<?,| - 4.049. 
Adding all 31 values of pii¡), we obtain STRfuM = 114.7. By truncating the 
four residuals that are below —2.012 and the three residuals that are above 
2.012, we obtain the truncated residuals if. The sum of their squares is 
50.44. Now A = (31/24X50.44)/25 = 2.606. 

The reduced model with βΛ = β5 = 0 is Y = j3„ + β]Χ] + β2Χ2 + 
β}Χ3 + e. The Huber M-estimates are the values b0, bub2,b3 that minimize 
the function Σρ(ν, — ib0 + btxn + b2xi2 + b3x^)). The estimation proce-
dure followed for the reduced model differs slightly from the procedure 
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followed for the full model, because the estimate & is not iterated. The same 
value & = 1.341, calculated from the full model, is used throughout the 
iterations required to obtain the M-estimates of the regression coefficients in 
the reduced model. So the value of k in the definition of p in (5.1) stays 
constant at A: = 1.5σ = (1.5X1.341) = 2.012. 

The vector of M-estimates in the reduced model is (β, , ,β, , β2, /33) = 
(95.07, -0.1844, -0.08861, -3.015), so the residuals in the reduced model 
are é¡ = y, - (95.07 - 0.1844*,·, - 0.08861 x¡2 - 3.015*,·,). For the 21 residu-
als between -2.012 and 2.012, pié¡) = éf, and for the other 10 residuals, 
p(é¡) = 4.024\é¡:\ - 4.049. Adding all 31 values of p(é¡), we obtain 
STRrcduced = 145.8. Now FM = (145.8 - 114.7)/[(5 - 3X2.606)] = 5.964. 

The approximate p-value of the test is ProbfF > 5.964], where F is a 
random variable having an F distribution with 2 and 25 degrees of freedom. 
From the F table in the Appendix, we see that the p-value is between 0.001 
and 0.01. We conclude that one or both of the pulse rate measurements have 
a significant relationship to oxygen consumption. 

5.8 COMPUTATION 

Huber M-estimates are obtainable from the function rreg in the statistical 
package S-PLUS (Becker, Chambers, and Wilks, 1988, p. 571) and from 
the robust regression packages ROBSYS (Marazzi, 1987) and ROSEPACK 
(Holland and Welsch, 1977). 

If you have a computer package that performs least-squares regression, 
you can apply it iteratively to obtain Huber M-estimates. Let y denote the 
vector of observed response variables and X the matrix of explanatory 
variables. To begin, let y ( l ) = y. Apply the package to y ( , ) and X to obtain 
the vector b0) of least-squares regression estimates and the vector y(i) of 
predicted y-values. Let é0) = y - y0) be the vector of residuals. Calculate 
σ ( | ) = 1.483mediandej"!) and truncate the residuals by defining /, ( , ) = 
max(-1.5<?(,), mini^j0,1.5σ( , ))). Let / 2 ) = y0) + f0) and repeat the calcula-
tions with y2> in place of y0). That is, apply the package to y(2) and X to 
obtain b{2) and ya\ Let é<2) = y - y{2} and then calculate σ(2) and fa\ Let 
y3> = y(2> + y<2> a n ( j repeat the calculations with y<3). Continue until consec-
utive estimates b°"~[) and blm) are sufficiently close to one another; for 
example, continue until \ty'"-l) - b)m)\/ \b)m-l)\ < 0.00001 for all /. If the 
estimates b°\ b<2\ . . . do not converge, try a different starting vector *( l ). 

The test statistic FM in (5.6) can be calculated as follows. Let β be the 
vector of M-estimates, y = Χβ, é = y — y, σ= 1.483 median(|é,|), f¡ = 
max(- 1.5(r,min(<?,, 1.5<x)), and g¡ = max(0, \é¡\ - 1.5σ). Let 5, = Σ/,2 and 
52 = Lg,. Then STRfuM = 5, + 3aS2. Similar calculations using the reduced 
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model produce STRreduced. And λ = nS^imin — p — 1)), where m is the 
number of g,'s equal to 0. Now apply formula (5.6). 

Iteratively Reweighted Least Squares. The computational procedure used 
in ROBSYS, ROSEPACK, and S-PLUS is an iteratively reweighted least-
squares procedure. This is a more general method than the one described in 
Section 5.6 and can be used to compute all types of M-estimates. For the 
case of Huber M-estimation, the procedure is described below. 

To find the minimum of (5.4), for a fixed value of σ, take its derivatives 
with respect to bQ,bu...,bp and set them equal to 0. This gives us p + 1 
equations in p + 1 unknowns: 

X>,7p'(y ; - (b0 + bxxn + ■·■ +bpxip)) = 0 (5.7) 

for y = 0 , 1 , . , . , ρ , where we let xm= 1 for all /'. These are nonlinear 
equations in the unknowns &„,&,,... ,bp, but they can be approximated by 
linear equations as follows. 

Consider an iterative procedure in which £>,", ¿>",..., bp are current esti-
mates and 60, 6 , , . . . , 6 represent improved estimates. Let ef = y¡ - (fe'j + 
b\xn + ■ ■ ■ +bpxjp) and e¡ = y¡ - (b0 + bxxn + ·■· +bpxip). To solve for 
the improved estimates, write p'(e¡) = (p'(e¡)/e¡)e¡ = (p'(ef)/ef)e¡. Let w¡ = 
p'(ef)/ef; that is, 

2 if |e,°|< 1.5σ 

3a/\ef\ if |e,°|> 1.5σ 

Then p'(e¡) ~ wiei and we can approximate (5.7) by the linear equations 

LxijW¡[yi - (b0 + btxn + ■■■ +bpxip)] = 0 

Let W be the diagonal matrix with diagonal entries w¿. In terms of matrices 
we have X'Wiy - Xb) = 0. Solving for b, we obtain 

b = (X'WXy^X'Wy (5.8) 

To start, let b° be the vector of least-squares estimates. At each iterative 
step, use the vector b° of current estimates to calculate the vector e° = y — 
Xb° of residuals. Then use the residuals to obtain σ and the weights w¡. The 
vector b of improved estimates can now be computed as in (5.8). Iterate until 
convergence. 

The vector b in (5.8) is called a weighted least-squares estimate. Some 
least-squares regression packages also perform weighted regression. For 

W: 
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example, the REG procedure in the SAS package has a WEIGHT statement. 
You could write a program in SAS to use the REG procedure iteratively to 
compute M-estimates. Or you could use the NLIN procedure in SAS, which 
has iteration built into it, with its _WEIGHT_ variable; see Example 5 for 
the NLIN procedure in the SAS/STAT User's Guide (1990). 

Test Case. As a test case for M-regression computations, we can use the 
data in Table 3.2. For simple regression, let X = Xt. The estimated regres-
sion line is Y = 30.35 + 1.715Λ\ The estimate σ is 1.057. The test statistic 
for testing β = 0 is|rM | = 7.680. For multiple regression, using both X] and 
X2, the estimated regression equation is Ϋ = 47.22 + 0.8285^, - 0.5080 Λ^. 
The estimate σ is 2.133. The test statistic for testing βχ = β2 = 0 is FM = 
7.923. 

NOTES 

5.1a. The term "robust" is not precise, but a "robust" regression proce-
dure generally refers to one that not only performs well if the population of 
errors is normally distributed but also is insensitive to small departures from 
the normality assumption. Huber (1964) constructed his M-estimate to be 
optimal if the error distribution is assumed to be a normal distribution 
contaminated by a small proportion of errors from some arbitrary distribu-
tion. His criterion for optimality was minimization of the maximum possible 
variance for infinitely large samples. 

5.1b. The "M" in M-regression was chosen because of the relationship 
between M-estimation and maximum likelihood estimation. Maximum likeli-
hood estimation is discussed in Chapter 10. Some (but not all) M-estimates 
would be maximum likelihood estimates if the population of errors were 
assumed to have a particular distribution. However, we do not make this 
assumption. In fact, the main point of M-estimation is to obtain estimates 
that perform well for a range of possible distributions for the population of 
errors. 

5.3a. In (5.1), other values of k could be chosen. For a large value of k, 
p(e) = e2 for most observed residuals e, and so the corresponding M-esti-
mates are close to the LS estimates. For a small value of k, p(e) = 2k\e\ - k2 

for most observed residuals e. Since minimizing T.(2k\é¡\ - k2) is equivalent 
to minimizing Σ|<?,|, the corresponding M-estimates are close to the LAD 
estimates. The value of k that gives the best estimates of the regression 
coefficients depends on the distribution of the population of random errors. 
If the distribution produces a large proportion of outliers, then a small value 
of k is best, whereas if the distribution produces a small proportion of 
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outliers, such as the normal distribution does, then a large value of k is best. 
To guard against both possibilities, the value k = 1.5«? is a good choice. 

Huber suggested k = 1.5<? in his 1981 book (p. 18). Holland and Welsch 
(1977, p. 818) suggested k = 1.345σ. The latter value of k is chosen so that 
the M-estimates have an asymptotic efficiency (explained below) of 95% if 
the distribution of the errors is normal. 

If it were known that the error distribution was normal, one would be 
well-advised to estimate a and β by least squares, because the LS estimates 
would be optimal in several senses (see Section 9.2). In particular, they would 
be asymptotically efficient, which means that, for very large samples, the LS 
estimates would be the most accurate. (In Section 9.2 it is mentioned that the 
LS estimates are maximum likelihood estimates when the error distribution is 
normal. Maximum likelihood estimation is asymptotically efficient for a wide 
variety of distributions.) But we do not know the true error distribution and 
so it may be prudent to use robust estimates, such as M-estimates, that can 
perform efficiently when the error distribution is not normal. Still, if we 
believe that the error distribution is close to normal, we do not want to 
sacrifice too much efficiency in case the error distribution is actually normal. 

To say that a Huber M-estimate with k = 1.345σ has an asymptotic 
efficiency of 95% means that for an infinitely large sample, the reciprocal of 
the ratio of the variance of the Huber M-estimate to the smallest possible 
variance, which is the variance of the least-squares estimate when the error 
distribution is normal, is 0.95. As mentioned in Section 9.2, the asymptotic 
efficiency of the Huber M-estimate with k = 1.5σ is about 96%. In compen-
sation for giving slightly higher efficiency in the case of a normal error 
distribution, k = 1.5σ gives slightly lower efficiency that k = 1.345<r in the 
case of an error distribution that is prone to outliers. 

5.3b. In the definition of pie), 2k\e\ - k2 is used instead of \e\ in order 
to make pie) a "smooth" function. It is smooth in the sense that it is a 
continuous function and has a continuous first derivative. The definition of 
pie) is in three parts: for e less than —k, for e between —k and k, and for e 
greater than k. Let us check that pie) is continuous at the boundary points 
e = —k and e = k. For e slightly less than — k, pie) is close to 2k\ — k\ — 
k2 = k2; and for e slightly greater than — k, pie) is close to i — k)2 = k2; 
hence pie) is continuous at e = —k. Similarly, pie) can be shown to be 
continuous at e = k. 

The derivative of pie) is, in the three parts of its definition, respectively, 
p'ie) = -2k, p'ie) — 2e, and p'ie) = 2k. Let us check that p'ie) is continu-
ous at the boundary points e = — k and e = k. For e slightly less than —k, 
p'ie) is equal to — 2k; and for e slightly greater than —k, p'ie) is close to 
2i-k) = —2k; hence p'ie) is continuous at e = —k. Similarly, p'ie) can be 
shown to be continuous at e = k. 
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5.3c. Other M-estimates can be obtained by using different functions p. 
The function p should qualify as a measure of "size". The general approach 
to estimation in linear regression analysis to choose estimates so that the 
residuals are "small" in some sense. The particular approach taken in 
M-estimation is to minimize Σρ(έ,), where p(é¡) is a measure of the "size" of 
the ¿th residual. A measure of size should satisfy the following properties: 
the residual 0 should have size 0; all sizes should be nonnegative; if one 
residual is farther from 0 than another residual, its size should be larger, or 
at least as large. That is, the function p should satisfy: p(0) = 0, pie) > 0 for 
all e, p(e,) > p(e2) whenever e, < e2 < 0, and pie¡) < p(e2) whenever 0 < 
<r, < e2. 

One could, for example, define p(e) = log(l + e2). The M-estimate for 
this choice of p would be a maximum likelihood estimate if the error 
population had a Cauchy distribution. (See Note 5.1b.) Another example is 
Tukey's biweight M-estimate using p(e) = (3k4e2 - 3k2e4 + e6)/6 for —k 
¿ e < k and = k^/6 for e < -k and e > k. (It is usually presented in 
terms of the derivative ψ(β) = p'ie) = e(k2 - e2)2 for -k < e < k and = 0 
for e < -k and e > k. See Note 5.3e.) This M-estimate is not the maximum 
likelihood estimate for any distribution of the error population; see Note 
5.3d. 

5.3d. An M-estimate obtained using a function p would be the maximum 
likelihood estimate if the distribution of the error population had the 
probability density function fit) = ce - p <°, where e denotes the base of the 
natural logarithms, e = 2.178 (so we have changed the variable e in p(e) to 
/). The sum T.pie¡) is minimized if and only if the likelihood function 
Y\fie¡) = cne~zp(e''> is maximized. In order for fit) to be a valid p.d.f., c 
must equal the reciprocal of the integral ¡txe~p{') dt, so that the area under 
the curve / ( / ) is 1, and the integral must be finite. The integral is finite for 
the Huber p function and for the function pit) = log(l + t2) in Note 5.3c. 
The integral is infinite for Tukey's biweight p function, which is a constant A 
(= * 6 / 6 ) for e > k, because JZ^e'^dt > J^e~A dt = oo. 

5.3e. M-estimates can be presented in terms of the derivative ψ(β) = p'ie) 
rather than pie). The function ψ is often preferred, because it determines 
the shape of the influence function of the estimate; see Notes 5.6e and 5.6f. 
Instead of minimizing (5.2) involving p, one can solve equations (5.3) involv-
ing φ. The φ function for the Huber M-estimate, after division by 2, is 
ijfie) = —k if e < —k, = e if —k < e < k, and = k if e > k. Note that an 
M-estimate remains the same if ψ is divided by a constant, because the 
solution of (5.3) remains the same. 

5.3f. We use σ = 1.483MAD to estimate the standard deviation σ of the 
distribution of the random errors. If the distribution is normal, then this 
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estimate has the following property. When the formula σ = 1.483MAD is 
applied to very large samples, & tends to be very close to σ; that is, & is a 
consistent estimator of σ. However, for a sample of size n = 14, which is not 
large, we cannot necessarily expect σ to be very close to σ, even if the 
distribution of errors were normal. 

5.3g. Another common method for estimating σ in the context of M-
estimation is Huber's Proposal 2. See Huber (1981, Section 7.7) and Rocke 
and Shanno (1986). To describe this method let us first express the Huber 
M-estimates of the regression coefficients in terms of standardized devia-
tions. It is convenient also to express the M-estimates in terms of the 
function φ = p' rather than the function p (see Note 5.3e). The Huber 
M-estimates of a and ß are the values of a and b that solve the equations 
E</Ke,) = 0 and Σ-Κ,ι/Κβ,) = 0 (see (5.3)), where e¡ denotes the deviation 
y¡ — (a + bXj) and φ(ε) = -1.5<ί if e < —\.5σ, = e if -1.5<r < e < \.5σ, 
and = 1.5er if e > 1.5er. These equations can be put in terms of standard-
ized deviations: (1) Σψ0(ζί) = 0 and (2) Σχ,Ψοίζ/) = 0, where z, denotes 
the standardized deviation e¡/& and ψ()(ζ) = - 1 .5 if z < - 1 .5 , = z if 
-1 .5 < z < 1.5, and = 1.5 if z > 1.5. 

In Section 5.3 we solve (1) and (2) for a and b with σ fixed. In Huber's 
Proposal 2, we replace σ by the variable s in equations (1) and (2), letting 
z, = e¡/s, add a third equation (3) Σ(ψ0(ζ,·))2 = 0.7785η, and solve equations 
(1), (2) and (3) simultaneously for a, b and s. The solutions are the 
M-estimates ά, β and &. 

To make some sense out of equation (3), consider what happens if 1.5 is 
replaced by ». Then ψ0(ζ) = z and the solutions of equations (1) and (2) are 
the least-squares estimates of a and β (see Note 3.3a). Equation (3) becomes 
s2 = E((y¿ - (a + bx¡))2/(0.7785n); putting a = aLS and b = β^, we get 
s2 = <r¿;((n - 2)/n)/0.7785 « σ^/0.7785. Apart from the number 0.7785, 
this shows how equation (3) is related to estimation of σ. Now it remains to 
explain why 0.7785 appears in equation (3) for the Huber i/r0 function with 
1.5. Consider the standardized residuals z, = (y, - (a + /3jt,))/<r using the 
true parameter values a, β and σ. For large sample sizes, (1/η)Σ(φα(ζ^)2 

should be close to the expectation Ε[(ψ0(ζ))2], where z — e/σ and e is 
randomly chosen from the error population. (This is a consequence of the 
Law of Large Numbers, which says that if a large sample is randomly selected 
from a population, then the sample average should be close to the population 
average.) In the case of a normally distributed error population, z has the 
standard normal distribution and one can calculate that Ε[(ψ0(ζ))2] = 0.7785. 
Another way of saying this is that 0.7785 makes the M-estimate σ a 
consistent estimate of σ when the error distribution is normal. (A "con-
sistent" estimate is one that, for very large samples, tends to be very close to 
the parameter being estimated.) 
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5.3h. As the initial estimates of a and ß in the algorithm it is natural to 
use the least-squares estimates, because at each iteration the algorithm uses 
the method of least squares to calculate the improved estimates. However, 
convergence of the algorithm may be facilitated by using initial estimates that 
are more robust, such as LAD estimates or least-median-of-squares estimates 
(see Rousseeuw and Leroy, 1987). 

5.3i. In the algorithm presented here, the estimate σ is updated at every 
iteration. This is the procedure followed in the computer packages ROBSYS 
(Marazzi, 1987) and S-PLUS (Becker, Chambers, and Wilks, 1988). But 
ROSEPACK (Holland and Welsch, 1977) uses the LAD estimates as initial 
estimates of the regression coefficients, calculates & = 1.483MAD, and then 
keeps this same value of σ throughout the iterations that are required to 
converge to the M-estimates of the regression coefficients. By not updating 
the estimate of σ, the amount of calculation is reduced. This is a definite 
advantage in simulation studies in which the estimation procedure must be 
repeated thousands of times. But if the initial estimates of the regression 
coefficients is poor, then an estimate of σ based on them may well be poor, 
and this may adversely affect the robustness of the procedure (Shanno and 
Rocke, 1986, p. 88). 

5.3j. A convenient criterion to determine when to stop iterating is the 
following. Stop when two successive pairs of estimates, say, (a0, b°) and 
(a',fc'), satisfy the condition that both relative differences \ax - a°\/ |a"| 
and |6' - b°\/ \b°\ are less than 10~4. This guarantees that the two succes-
sive estimates "almost" agree to four significant digits (or to k significant 
digits if 10~4 is replaced by 10"*). To explain what is meant by "almost", 
round a" to four significant digits and regard these four digits as an integer 
m". The integer m" is between 1000 and 10,000. Similarly, round a1 to the 
same number of decimal places as a° (which implies that a1 is also rounded 
to four significant digits if a1 is close to a") and regard its digits as an integer 
w'. when we say that a° and a1 agree to four significant digits, we mean that 
m" = m\ When we say that a° and a1 "almost" agree to four significant 
digits, we mean that either m" and m1 are equal or they differ by 1. 

However, even if two successive estimates agree to k significant digits, this 
does not guarantee that the M-estimate is accurate to k significant digits. See 
Note 5.3k. 

5.3k. Even though two successive estimates agree to four significant digits, 
this may not yield an M-estimate that is accurate to four significant digits. 
This problem can occur when the function (5.2), which we are trying to 
minimize, is rather "flat". To increase our confidence that our M-estimates 
are accurate to four significant digits, there are two precautions that can be 
taken. (1) We can iterate until both relative differences \ax — an\/ \a°\ and 
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\bl - b°\/ |ί>°| are less than 10"* with k = 5 or more. For the shelf life 
data, we tried k = 8 and, after 16 iterations, obtained the same results, when 
rounded to four significant digits, as with k = 4. (2) We can try several 
different initial estimates and see if the algorithm converges to the same four 
significant digits. 

5.4. The convergence of the M-estimation procedure for the shelf life data 
using the model Y = a + e is very slow when we use the least-squares 
estimate a0 = y as the initial estimate. To remedy slow convergence, a 
different initial estimate can be tried. We tried the LAD estimate. For this 
model, the LAD estimate of a is simply the sample median, 3.45. The 
M-estimation procedure converges immediately when 3.45 is the initial esti-
mate because all values of a between 3.4 + 0.04574 = 3.446 and 3.5 -
0.04574 = 3.454 minimize the function Y.p(y¡ - a), where p is defined as in 
(5.1) with k = 0.04574. 

5.6a. An M-estimate can be defined in terms of the function p as in (5.4) 
or in terms of the derivative ψ = ρ'. The function ψ is often preferred, 
because it determines the shape of the influence function of the estimate; see 
Notes 5.6e and 5.6f. One can take β to be the value of b that minimizes 
Σρ(ν, — b'x¡) or, equivalently, the value of b for which the partial derivatives 
(d/dbj\p(y¡ - b'Xj)] are zero for all j = Q,l,...,p. The vector of partial 
derivatives is - Σ ψ ί ν , - b'x¡)x¡, and so β can be defined by the equation 

E<Ky, - β'χ,-)*/ = o. 
Consider the case when p(e) = e2, that is, when β = β ^ . Then ψ(β) = 

2e, and so, after dividing by 2, the equation becomes E(y, - β'^*,)*, = 0. 
It can be rewritten as Ejr,(y, - χ'βι^) = 0 a n d t n e n a s x'y ~ * '*ßi . s = °> 
which agrees with (3.8). 

5.6b. As the initial estimates of the regression coefficients in the algorithm 
we have used the least-squares estimates, but a better choice might be the 
LAD estimates. See Note 5.3h. 

5.6c. Other methods of estimating σ have also been suggested. Huber's 
Proposal 2, described in Note 5.3g for simple regression, can also be applied 
in multiple regression; simply replace a + bx¡ by b'x¡. See also Notes 5.3i 
and 5.7e. 

5.6d. We iterated the estimation procedure until two successive vectors of 
estimates, say, (¿>¡¡, b{¡, b'¡, b°3, b%, &£) and (bl

0, b\, b\, b\, b¡, b¡), satisfied the 
condition that the relative differences \bj - bf\/ \bf\ were less than 10"4 for 
all six regression coefficients. This guarantees that the two successive esti-
mates "almost" agree to four significant digits. See Note 5.3j. However, such 
agreement does not guarantee that the M-estimates have this degree of 
accuracy. See Note 5.3k. To increase our confidence in the accuracy of our 
M-estimate for the aerobic fitness data, we continued the iterations until the 



NOTES 105 

relative differences between successive estimates were less than 10~8 for all 
six regression coefficients. After 36 iterations, we obtained the same results, 
when rounded to four significant digits, as with 10 ~4. 

5.6e. The concept of the influence function of an estimate is central in 
robust statistics. To define this concept, we first consider the simplest kind of 
data, with no explanatory variables. Suppose y , , . . . , y„ are a sample of 
numbers that have been randomly selected from a population whose distribu-
tion depends on an unknown parameter Θ. Let Π ν , , . . . , y„) be an estimate 
of Θ calculated from the sample. How much would the estimate change if we 
randomly selected one more number from the population? The difference 
r ( y , , . . . , y„, z) — 7Xy, , . . . , y„) provides a measure of the influence that the 
additional number would have on the estimate if the value of the number 
were z. But to pursue a mathematical analysis of influence, it is convenient to 
modify this measure as follows. 

First we express the estimate T(yt,..., y„) as a function T(Pn) of the 
empirical probability distribution Pn that assigns probability \/n to each y, 
in the sample. For example, consider the sample mean y = U/rc)Ey,. Note 
that y is the mean of the distribution Pn, and so y = T(P„) where, for any 
probability distribution P on the real line, T(P) is defined to be its mean 
(provided it exists). 

Let Pz
+1 denote the empirical probability distribution for the sample with 

z appended; that is, P„z
+](y¡) = l / ( « + 1) and P„z

+l(z) = l / ( n + 1). Let 8Z 

denote the "degenerate" probability function that assigns all its probability to 
z; that is, δζ(ζ) = 1. Note that P„z

+I = (n/(n + \))Pn + ( l / ( n + l))Sz. The 
influence of z on T(P„) could be expressed as 7X(1 - e„)P„ + e„8z) - T(Pn), 
where e„ = \/{n + 1). Modifying this somewhat, we define the influence 
function of the estimate 7Xy, , . . . , y„) to be IF(z) = Iime_,0{7X(l - e)Pn + 
e8z) - T(Pn))/e, which is the derivative of T((l - e)Pn + e8z) with respect 
to e at e = 0. Thus the influence function is the rate of change of the 
estimate when a small proportion of additional data with value z is included 
in the sample. 

For the sample mean, 7X(1 - e)P„ + e8z) = (1 - e)T(P„) + eT(8z) = 
(1 - e)y + ez = y + e(z — y), and so IF(z) = z — y. This indicates that the 
sample mean is not robust. For an estimate to be regarded as robust against 
outliers, its influence function must be bounded; a small proportion of 
additional data should not be allowed to cause arbitrarily large changes in 
the estimate. 

Now consider a sample of regression data (x,, y , ) , . . . ,(*„, y„). We as-
sume the linear regression model y, = β'χ, + e¡. (It is convenient to include 1 
as the first component of x, so that x, = (1, x,-,,.. . , x¡ ) and β'χ, = β,, + 
/3|X(I + ··■ +ßpxip.) Let Γίχ,, y , , . . . , x„, y„) be an estimate of β calculated 
from the sample. To define the influence function of the estimate, we regard 
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the explanatory variables, as well as the response variables, as being random. 
Let Pn denote the empirical probability distribution that assigns probability 
\/n to each data point (x¡, y¡), and express Γ(χ,, y , , . . . , xn, y„) as a function 
of P„. For example, the least-squares estimate of β can be written as 
£LS = T(pJ where T(P) = [EP(xx')]-lEp(xy), in which (x, y) is a random 
vector with distribution P. 

The influence function IF(i«>, z) of the estimate T(xl,yi,...,x„,yn) is 
defined to be the vector of derivatives of Γ((1 - e)Pn + eS{w,z)) with respect 
to e at e = 0. Thus lF(w, z) gives the rate of change of the estimate when a 
small proportion of additional data with values (M>, Z) is included in the 
sample. For the least-squares estimate, \F(w, z) = n(X'X)~xw(z - ß'^w) 
(see Staudte and Sheather, 1990, Section 7.4.3). 

5.6f. The influence function of an M-estimate of ß is IF(w, z) = 
Μ~χ\νψ(ζ - ßV), where M = (l//t)EiA'(y, - ß'x,)*,*; and φ = ρ'. The in-
fluence function for each component of the M-estimate, as a function of z 
for fixed w, has the form IF(z) = αψ(ζ — c) for constants a and c. Thus the 
shape of the influence function of an M-estimate is determined by its ψ 
function. 

The influence function is derived as follows. As seen in Note 5.6a, the 
M-estimate β is defined implicitly by the equation EtMy, _ ß'*,)*, = 0. In 
order to apply the definition of influence function presented in Note 5.6e, we 
express the estimate as ß = T(Pn), where T(P) is defined implicitly by the 
equation ΕΡ[ψ(γ — Τ(Ρϊχ)χ] = 0, in which (JC, y) is a random vector with 
distribution P. For an arbitrary vector (w, z), let Pe = (1 - e)Pn + εδ(κ,·Γ). 
The influence function IF(H>, Z ) is defined to be the vector of derivatives of 
T(Pe) with respect to e at e = 0. 

First note that for any function h, EP[h(x, y)] = (1 - e)EP [h(x, y)] + 
eEs[h(x, y)] = (1 - e\\/n)Zh{x¡, y,) + éh(w, z). Hence 0 = ΕΡ[ψ(γ -
T(Pjx)x] = (1 - eXl/n)E«My, - T(Pf)'xi)xi + €ψ(ζ - TiPJwjw. Dif-
ferentiate with respect to e, set e = 0, and note that P€ = P„ and T(Pe) = 
β when e = 0. This leads to 0 = -(l/n)Ltl>'(yi - px¡)(.lF(w, ZYXJXJ + 
φ(ζ - ß ' f V , which can be solved for IF(*>, z). For the Huber p function 
in (5.1), iA'(c) = 2 for \e\ < k and = 0 for \e\ > k. 

5.7a. Test statistic (5.6) was introduced by Schrader and Hettmansperger 
(1980). 

5.7b. Test statistic (5.6) should be close to 1 if the null hypothesis is true. 
To see why, let us approximate the expectation of the numerator, STR reduced 

- STRfuJ|, assuming that the null hypothesis is true. Consider STRful, = 
Y.p(y¡ — β'χ,), where ß is the M-estimate determined by p. (In this note, p 
could be any function described in Note 5.3c—not necessarily Huber's p 
function.) As a function of ß, p(y - ß'x) can be approximated by a quadratic 
Taylor polynomial, p(y - ß'x) ~ p(y - β'0χ) - i/r(y - ß'0jc)x'(ß - ßn) 
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+ i«A'(y - ß'o*Xß - ßo),JCC'(ß - ßoX where φ = ρ' as in Note 5.6a. Apply 
this to p(y, - ß'jc,) and sum over /. Let ß be the true parameter vector, let 
ß 0 = ß, and use the fact that Σφ()>ί - ß'*,)x, = 0 (see Note 5.6a). This 
yields the approximation STRfull ~Lp(e¡) - j (ß - ßy[EiA'(e,)jc,x;](ß - ß), 
where e¡ = y, - ß'jc, and e, = y, - β'χ,. 

If we suppose that the residuals é¡ are approximately independent of the 
estimate β (see Sheather and McKean, 1992, Table 1 and Figure 1), then 
£(STRfu„) « nE[p(e)] - \E^'{e)]tTace[X'XCoviß)], where e is randomly 
drawn from the population of errors. According to Note 5.7d, Cov(ß)] ~ 
THX'X)-\ where τ 2 = Ε[φ2(β)]/(Ε[φ'(ε)])2. (The parameter τ 2 plays a 
role in M-regression similar to the role of σ2 in least-squares regression. 
Check that τ 2 = σ2 when p(e) = e2.) Therefore £(STR ful l) = nE[p(e)] -
λ(ρ + 1), where A = ±Ε[φ2(ε)\ΐΕ[φ'(β)]. If the null hypothesis is true, 
then E(STR reduced) « nE[p(e)] - k{q + 1), and so £(STR reduced - STRfull) 
a (p - q)\. The denominator of (5.6) is an estimate of (p - q)h (see Note 
5.7c). Therefore, if the null hypothesis is true, the ratio of numerator to 
denominator should be close to 1. 

5.7c. The quantity λ = (n/m)Léf2/(n - p - 1) in (5.6) is an estimate of 
the parameter A = |£[i^2(e)]/£[i/r'(c)] that occurs in Note 5.7b. A simple 
estimate of Ε[φ2(ε)] is (1/η)Σι/'2(^,) and a simple estimate of Ε[φ'(β)] is 
(1/η)Σ(/<'(<?,). For the Huber φ function, «M<?,) = 2e* and i/r'(e,) = 2 if 
\é¡\ < 1.5σ, = 0 if \é¡\ > \.5σ. Therefore a reasonable estimate of A is 
He*2/m, where m is the number of residuals e, such that |e,| < 1.5σ. It has 
been found that the accuracy of the p-value of the test is improved by 
multiplying the estimate by n/(n - p — 1). 

5.7d. The distribution of the M-estimate β cannot be specified exactly, but 
for large sample sizes, under certain assumptions, the distribution is approxi-
mately normal with mean vector β and variance-covariance matrix τ2(Χ'Χ)~' 
where τ 2 = Ε[φ2(ε)]/(Ε[φ'(ε)])2. 

More generally, a wide variety of esimates have distributions that are 
approximately normal with mean vector β and a variance-covariance matrix 
that can be described in terms of the influence function. In Note 5.6e the 
influence function of an estimate β = T(P„) is defined to be the vector of 
derivatives of 7"((1 - e)Pn + eS{x-y)) with respect to e at e = 0. Denote it by 
IF(JC, y; T, Pn). In the same way, define IF(x, y; T, P) by replacing Pn by the 
true (unknown) probability distribution P of (x, y). If certain assumptions 
are met, then Cov(ß) * (l/n)£[IF(jc, y; 7\ P) ■ IF(x, y; T, P)']. (See 
Huber, 1981, p. 14 and Sections 7.4 and 7.6; Maronna and Yohai, 1981; 
Hampel et al., 1986, Section 6.3a.) 

In Note 5.6f it is shown that the influence function of an M-estimate is 
IFU, y; T, Pn) = Μ~ιχφ(γ - T(Pn)'x), where Mn = (l/n)E</''(y, -
β'χ,.)*,.*·;. Similarly, IF(x, y; T, P) = Af-'xt/f(y - T(P)'x) = Μ'^χφΜ, 
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where M = Ε[ψ'(ε)χχ'] = Ε[φ'(β)]Ε[χχ']. Therefore Cov(ß) ~ 
(\/n)M-lE[i¡i\e)xx']M-x = (τ2/ηΧΕ[χχ'])~ι. A natural estimate of E[xx'] 
is (í/n)Lx¡x'¡ = (l/n)X'X. Hence Cov(ß) » τ 2 ( * ' * ) _ ι . 

5.7e. To estimate σ for the purpose of testing a hypothesis about the 
regression coefficients, as distinct from the purpose of estimating the regres-
sion coefficients, other methods have also been used. When estimating, the 
main concern is that the estimate be close to the parameter being estimated. 
When testing, the main concerns are that the p-values are accurate and that 
the test has good power (that is, the p-values tend to be large when the 
null hypothesis if false). For estimation purposes, the two most common esti-
mates of σ are 1.483MAD, which is the estimate used in this chapter, and 
Huber's Proposal 2 (see Note 5.6c). For testing purposes, Schrader and 
Hettmansperger (1980, Section 3.2) found that Huber's Proposal 2 works well 
but that σ = 1.483MAD yields tests with inaccurate p-values. They proposed 
a* = 2.1 MAD*, where MAD* is the median of the n — p largest deviations 
based on the LAD estimates of the regression coefficients. 

We should explain why, in spite of the findings of Schrader and 
Hettmansperger, we have used & = 1.483MAD. In their paper they used 
Huber M-estimates with k = Ι.Οσ* = 2.1MAD* and k = \.2σ* = 
(1.2X2.1MAD*) = 2.52MAD*. We have used k = 1.5σ = (1.5X1.483MAD) 
= 2.225MAD. So our procedure is roughly the same as theirs, and ours is 
more "natural" in that the same estimator is used in estimation and testing 
and that M-estimates rather than LAD estimates are used to obtain MAD. 

5.7f. Another type of test is the Wald test, which is based directly on the 
vector of estimates ß 2 = (ßq+l,..., βρ) from the full model. If the hypothe-
sis is true, then β2 should be near 0. The Wald test statistic is W = 
p2Aß2/(p - q)r2, where A = X'2X2 - X'2X1(X',X,)-'X'1X2 and ΛΓ, and X2 

are, respectively, columns 1 through q + 1 and columns q + 2 through p + 1 
of the matrix X and f2 is an estimate of the parameter τ 2 in Note 5.7d. The 
hypothesis is rejected if W is too large. See Schrader and Hettmansperger 
(1980, Section 3.3). The matrix A is chosen so that τ 2 Α~χ is approximately 
equal to the variance-covariance matrix of β2 . 

5.8a. Let us show that STR = 5, + 3<rS2. By definition, STR = 
Σρ(£,) and 5, + 3&S2 = Σ/ ,2 + 3&Lgi = Π / , 2 + 3<rg,), where f, = 
max(- 1.5tf, minié,·, 1.5<r)) and gi■ = max(0, |e,| - 1.5tr). It suffices to 
show p(é,) =f¡2 + 3ág¡. If \S¡\ < 1.5<f, then p(é,) = éf and f2 + 3ág¡ = 
éf + 0 = éf. If \e¡\ > 1.5(7, then p(e,) = 3á\é¡\ - 1.25&2 and f? + 3&gi = 
(1.5¿)2 + 3<?(|£,.| - 1.5σ) =» 3<r|¿,-| - 1.25&2. 

5.8b. The numbers w¡ are called weights. After the iterative procedure 
converges, the residuals é¡ = y¡ — (β0 + J3¡xn + ■■■ +ßpxip) satisfy the 
equations YLxijw¡é¡ = 0, where w¡ = 2 if \é¡\ < \.5σ and w¿ = 3á/\é¡\ if 



REFERENCES 109 

\éj\ > 1.5σ. So the large residuals for which \é¡\ > 1.5σ are downweighted 
by weights w, < 2. Thus the influence of outliers is reduced. 

Additional Reading. To read more about M-regression, see the books by 
Huber (1981, Chapter 7), Hampel, Ronchetti, Rousseeuw, and Stahel (1986, 
Chapters 6 and 7), and Staudte and Sheather (1990, Chapter 7). The last 
book is more introductory than the other two. 
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C H A P T E R 6 

Nonparametric Regression 

Ectasy is not reached by just anyone who starts to dance. 
Dancing results from the soul's inner state; the inner 
state of the soul does not result from dancing. 

SOHRAVARDI: Persian Philosopher (1155-1191) 

6.1 INTRODUCTION 

A "parametric" statistical procedure is one whose justification depends on 
the assumption that the random errors in the data have a particular type of 
distribution. In particular, least-squares regression procedures are parametric 
in so far as they are optimal under the assumption that the errors have a 
normal distribution. A "robust" procedure, such as M-estimation in Chapter 
5, is intended to perform reasonably well if the errors have a distribution that 
is not necessarily normal but "close" to normal. A "nonparametric" proce-
dure is intended to perform reasonably well for almost any possible distribu-
tion of the errors. Many nonparametric procedures, including those de-
scribed in this chapter, are based on the idea of using the ranks of numbers 
instead of the numbers themselves. 

Perhaps the earliest occurrence of a statistical analysis based on ranks was 
one by Galton in 1876 to compare the heights of two types of plants. The 
development of nonparametric rank methods for regression data began in the 
1960s and 1970s. 

6.2 AN EXAMPLE OF SIMPLE REGRESSION 

Physical measurements were taken on applicants to a police department in a 
city in the United States. Part of the data are shown in Table 6.1, which lists 

111 
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Table 6.1 Forearm Length Data 

Identification 
Number of the 

Applicant 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

Height 
(Y) 

165.8 
169.8 
170.7 
170.9 
157.5 
165.9 
158.7 
166.0 
158.7 
161.5 
167.3 
167.4 
159.2 
170.0 
166.3 
169.0 
156.2 
159.6 
155.0 
161.1 
170.3 
167.8 
163.1 
165.8 
175.4 
159.8 
166.0 
161.2 
160.4 
164.3 
165.5 
167.2 
167.2 

Forearm 
Length 

(X) 

28.1 
29.1 
29.5 
28.2 
27.3 
29.0 
27.8 
26.9 
27.1 
27.8 
27.3 
30.1 
27.3 
30.9 
28.8 
28.8 
25.6 
25.4 
26.6 
26.6 
29.3 
28.6 
26.9 
26.3 
30.1 
27.1 
28.1 
29.2 
27.8 
27.8 
28.6 
27.1 
29.7 

Source: Gunst and Mason (1980, p. 367). 

the heights (in centimeters) and forearm lengths (also in centimeters) of 33 
black female applicants. 

First we make a plot consisting of 33 points, one point for each applicant, 
the coordinates of the point being x = length of forearm and y = height. 
This plot is shown in Figure 6.1. The points slope upward in a roughly linear 
manner, and so it is reasonable to try the simple linear regression model 
Y= a + ßX + e. 
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Figure 6.1 Plot of the forearm length data. 

6.3 ESTIMATING THE REGRESSION LINE 

An intuitively appealing approach to calculating the slope of a line that "fits" 
the data points is to calculate the slopes of all pairs of data points and then 
calculate some kind of average or median of these slopes. The slope of the 
line joining data points (x¡, y¡) and (x¡, y¡) is bu = (y¡ - y¡)/(x¡ - ■*,)· (We 
ignore the pairs for which x¡ = x- since then the pairwise slope is undefined.) 
The usual formula for the least-squares estimate of ß is formula (3.2), but it 
can also be expressed as a weighted average of the pairwise slopes b¡¡. 
Specifically, β^ = E>v0¿>,7, where w¡¡ = (x¡ - Xj)2/L(x¡ - x¿)2. (The two 
summations Σ in the preceding sentence are taken over the n(n - l)/2 pairs 
of integers i and j with 1 < ι < / < n.) Another reasonable estimate is the 
median of the pairwise slopes. The estimate presented in this section is a 
weighted median of the pairwise slopes. 

Weighted Medians. Recall that the (unweighted) median of a list of 
numbers is obtained by putting the numbers in increasing order and selecting 
the number in the middle of the ordered list. For example, the median of the 
five numbers 203, 235, 47, 219, and 156 is obtained by putting them in the 
order 47, 156, 203, 219, 235, and selecting the middle number 203. 

The weighted median of a list of numbers x¡ with weights w¡ is obtained 
as follows. First put the numbers x¡ in increasing order. By changing the 
indices, we can arrange so that x¡ < x2 < · · · < xn. The weights wi should 
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be nonnegative and should add to 1. Find the index k such that 

w, + w2 + ■ ■ ■ +wk_x < 0.5 
(6.1) 

wx + w2+ ■■■ +wk^i + wk > 0.5 

Then xk is the weighted median. (Sometimes it happens that there is an index 
k such that w, + w2 + · · · + wk_i = 0.5. Then (xk^x + xk)/2 is the 
weighted median.) As an example, suppose the numbers 203, 235, 47, 219, 
and 156 are given the weights 0.1, 0.1, 0.4, 0.1, and 0.3 respectively. In 
increasing order the numbers are 47,156,203,219,235. The weighted median 
is x2 = 156 because wt = 0.4 < 0.5 and w, + w2 = 0.4 + 0.3 = 0.7 > 0.5. 

When all the weights are equal, that is, w¡ = l/n, then the weighted 
median is simply the ordinary median. 

The slope ß* in (4.3), which is the slope of the line passing through the 
point (JC0, y0) that minimizes the sum of absolute deviations from the data 
points, can be described as the weighted median of the slopes b¡ = (y, -
y 0) / (x , - x0) of the lines between the data points (x¡, y¡) and the given point 
(x0, y0), with each weight proportional to the ^-distance \x¡ - x0\ between 
the two points. 

Nonparametric Estimates of ß and a. Let ß be the weighted median of 
the pairwise slopes bt¡ = (y, - y¡)/(x¡ - x¡) with each weight proportional to 
the ^-distance between the pair of points, that is, wu = \x¡ - J ; ; | / E | J C , - X¡\. 

Let á be the ordinary median of the differences y, - ßxt. This estimate of a 
makes sense if we note that in the model y, = a + ßxt + e¡, the differences 
y, - ßXj are centered around a. 

The Forearm Length Data. For the 33 data points in Table 6.1 there are 
528 ( = 33(32)/2) distinct pairs of data points. For 18 of these pairs, the two 
data points have the same *-value, which means that the line between them 
does not have a well-defined slope. So we have 510 pairwise slopes. Each 
such slope bVj = (y, - y])/{x¡ - x¡) is assigned the weight wtJ = \x¡ -
Xj 1/802.2, where 802.2 is obtained as the sum ΣΙ*,· — JC -1. For example, the 
slope between the data points for applicants 1 and 2 is (165.8 - 169.8)/(28.1 
- 29.1) = 4.000 and its weight is |28.1 - 29.11/802.2 = 0.001247. 

We put the 510 slopes in increasing order and calculate the cumulative 
sums of the weights, as in Table 6.2. Now we find the first cumulative sum 
that exceeds 0.5. In the table we see that this is 0.504612. We estimate ß by 
the corresponding slope, that is, ß — 2.683. 

Next we calculate the 33 differences y, - $x¡. For example, the difference 
for applicant 1 is 165.8 - (2.683X28.1) = 90.41. We estimate a by the me-
dian of these differences, which is 89.71. The estimated regression line is 
7 = 89.71 + 2.683Λ-. 
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Table 6.2 Pairwise Slopes for the Forearm Length Data, in Increasing Order, 
and Their Weights 

Slope 

b„ 
- 86.000 
-48.500 
-40.000 
- 36.500 
-36.000 
-31.000 

2.604 
2.667 
2.667 
2.683 
2.684 
2.684 

37.500 
39.000 
43.000 
49.000 
51.000 
91.000 

Weight 
WH 

0.000125 
0.000249 
0.000249 
0.000249 
0.000374 
0.000249 

0.006607 
0.001496 
0.000374 
0.005111 
0.002368 
0.004737 

θ!θ00249 
0.000125 
0.000249 
0.000125 
0.000125 
0.000125 

Cumulative 
Sum of Weights 

0.000125 
0.000374 
0.000623 
0.000873 
0.001247 
0.001496 

0.497632 
0.499127 
0.499501 
0.504612 
0.506981 
0.511718 

0.999252 
0.999377 
0.999626 
0.999751 
0.999875 
1.000000 

A Description of ß in Terms of Ranks. The estimates of a and ß should 
be chosen so that the residuals é¡ = y, - (ά + /§*,·) are "small". A sensible 
way to measure their smallness is by means of a weighted sum of the absolute 
values of the residuals, E»v,|e,|. The weights w, should be nonnegative. In 
least-squares estimation, we choose ä and ß to minimize the weighted sum 
with weights w¡ = \e¡\. In least-absolute-deviations estimation, we minimize 
the weighted sum with weights w¡= 1. An intermediate procedure, interme-
diate between weighting the residuals equally and weighting them according 
to their absolute values, would be to weight them according to the ranks of 
their absolute values, w, = rank(|é,|). (The ranking is done from smallest to 
largest, the smallest value of |e,| being given the smallest rank, 1.) This would 
limit the influence of large residuals to a greater extent than least-squares 
estimation, since rank(|e,|) can be no larger than n whereas \é¡\ could be 
arbitrarily large, and to a lesser extent than least-absolute-deviations estima-
tion. We will not use this procedure exactly but will use a similar procedure. 

Rather than choose estimates that minimize Σ rank(|é,|)|é,|, we choose 
them to minimize 

rank(e ;) 
n 4- 1 

(6.2) 
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Both sums yield approximately the same estimates, at least when the popula-
tion of errors has a symmetric distribution and when the sample size n is 
large. Sum (6.2) is expected to give better results when the distribution of the 
population of errors is not symmetric. 

Below we will see that the nonparametric estimate ß, presented above as a 
weighted median, can also be characterized as the value of b that minimizes 
(6.2), where e, = y, - (a + bx¡). But first we verify the close relationship 
between the two sums. 

Relationship Between the Rank-Weighted Sum of Absolute Residuals and 
Sum (6.2). If the distribution of the population of errors is approximately 
symmetric, then we can expect rank(|e,|) to be approximately equal to 
2|rank(e,) - j(n + 1)|. This is because \{n + 1) is the rank of the median 
residual, which can be expected to be near 0, and because the absolute values 
of the negative residuals should be approximately uniformly interspersed 
with the positive residuals. For example, suppose the residuals are 
- 2 3 , - 1 8 , - 1 1 , 2 , 1 6 , 1 9 , 2 9 . The values of rank(|é,|) are, respectively, 
6,4,2,1,3,5,7. The values of 2|rank(e·,) - \{n + 1)| are, respectively, 
6,4,2,0,2,4,6. Note that dividing all the weights w¡ by the same constant 2 
will not affect the minimization of the weighted sum Ew¡\é¡\. So using the 
weights w¡ = rank(|#,|) is approximately equivalent to using the weights 
w¡ = |rank(<?,.)- \(n + 1)1. 

If the median of the residuals is 0, then the negative residuals have rank 
less than | ( n + 1) and the positive residuals have rank greater than \{n + 1). 
This implies that rank(e() - J(/J + 1) has the same sign as e¡, so |rank(e,) 
- \(n + 1)| \é¡\ = [rank(e,) - \{n + l)]é¡. For example, suppose the residu-
als are - 2 3 , - 1 8 , -11,0,16,19,29. The values of rank(e,) - ¿(/i + 1) for 
these residuals are - 3 , - 2 , - 1 , 0 , 1 , 2 , 3 . Note that | - 3 | I — 231 = 
( - 3 X - 2 3 ) , . . . , |0 | |0 | = (0X0),.. . , | 3 | |29| = (3X29). Therefore, if the dis-
tribution of errors is approximately symmetric, in which case the median of 
the residuals can be expected to be near 0, then the weighted sum E*v,|é,| 
with weights w¡ = |rank(e,) - \(n + 1)| should be approximately equal to 
sum (6.2). 

Equivalence of the Two Descriptions of ß. Let a and b denote candi-
dates for ä and ß, and put é¡ = y, - (a + bx¡) in (6.2). First note that the 
value of (6.2) is unaffected by the value of a, and hence E[rank(y, - a -
ft*,)) - \{n + l)Ky, - a - hx,) = E[rank(y,. - hx¡) - \(n + l)](y, - hx¡). 
This is because shifting all the residuals by the same amount a does not 
change their ranks, so that rank(y, - a - bx¡) = rank(y, - bx¡), and because 
the sum of the n ranks must be n{n + l ) / 2 , so that E[rank(y¿ - bx¡) -
\{n + l)]a = 0. Therefore the nonparametric estimate ß is the value of b 
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that minimizes the sum 

rank(y, - bx¡) -
n + 1 

(ν,-hx,) (6.3) 

In particular, this shows that minimization of (6.2) can only determine an 
estimate of ß and not of a. The estimate of a is calculated afterward by a 
different procedure. 

Regard (6.3) as a function of 6. We want to know why this function is 
minimized by choosing b to be the weighted median of the pairwise slopes 6/; 

with weights proportional to \x¡ - x¡\. 
For the forearm length data, the function is 

[rank(165.8 - 28.16) - 17](165.8 - 28.16) 

+ [rank(169.8 - 29.16) - 17](169.8 - 29.16) (6.4) 

+ · · · + [rank( 167.2 - 29.76) - 17](167.2 - 29.76) 

The pairwise slopes 6,7 and their weights are shown in Table 6.2. The graph 
of function (6.4) is shown in Figure 6.2. It consists of a series of line 
segments. 

1080.8 T 

1080.6 -■ 

1080.4 

1080.2 

1080.0 · 

1079.8 

2.50 2.55 2.60 2.65 

Figure 6.2 Graph of function (6.4). 

2.70 2.75 
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More generally, the graph of function (6.3) consists of a series of line 
segments joined together at the points b = bu. In discussing this graph it is 
important to note that we are dealing with two different sorts of slopes: 
(1) the slope of function (6.3), which will tell us where the function has its 
minimum, and (2) the pairwise slopes bu, which are the points b at which 
slope (1) changes value. 

The slope of (6.3) is the coefficient of b, which is - E [ r , - {(n + \)]x¡, 
where r, = rank(y, - bx¡). If b is close to b¡¡, then y, - bx¡ and y. - bx¿ are 
close to each other (because bu = (y¡ - yj)/(x¡ — Xj)) and hence their ranks 
differ only by 1. As b increases from slightly less than bu to slightly greater 
than by, their ranks are interchanged, and hence /·,· increases by 1 and r¡ 
decreases by 1 (or vice versa, depending on whether xi < x¡ or x¿ > x¡). The 
resulting change in the slope of (6.3) is \x¡ — x¡\. 

As b varies from - » t o + » , the slope of (6.3) goes from - {T to \T, 
where T = L\x¡ — x¡\, increasing by \x¡ - Xj\ at each point btj. At some 
point the slope must change from a negative value to a positive value, that is, 
the function stops decreasing and starts increasing. This of course is the 
minimizing value of b. 

Put the pairwise slopes in increasing order and, for each ¿>,· ·, let T¡¡ be the 
cumulative sum of all \xf — xg\ for which bfg < btj. The slope of (6.3) for b 
slightly less than b¡j is — \T + Tl} and the slope for b slightly greater than 
b¡j is - \T + T¡j + \x¡ — je -1. The minimizing value of b is bkm, where 
- \ T + Tkm < 0 a n d - \T + Tkm + \xk-xm\ > 0. Dividing these condi-
tions by T, we see that they are equivalent to (6.1), and hence bkm is the 
weighted median of the pairwise slopes f>(·· with weights w¡- = \x¡ - x¡\/T. 

For the forearm length data, the slope of (6.4) in the interval from 
b2l6 = 2.667 to ¿>17i33 = 2.683 is - \T + Γ,7ι33 = -401.1 + 400.7 = -0 .4 
< 0 (401.1 = 802.2/2,802.2 is the sum of all the \x¡ - x¡\, and 400.7 is the 
sum of the \x¡ — Xj\ for which bl} < 2.683). And the slope in the interval 
from ¿1733 = 2.683 to 64 24 = 2.684 is - \T + Γ | 7 33 + |JC17 - x33\ = -0 .4 
+ 4.1 = 3.7 > 0. So the function stops decreasing and starts increasing at 
β = 2.683. 

6.4 TESTING β = 0 

To test β = 0, we can use the test statistic 

SD(t /) 
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where 

υ-Σ rank(y,) -
η + 1 

x¡ 

and 

n(n + 1) „ , 
sD(t/) = v 12 Σ(*,-*) 2 

The approximate p-value of the test is calculated to be Prob[|Z| > \t\], 
where Z is a random variable having a standard normal distribution. 

Justification. The test statistics used in least-squares and least-absolute-
deviations regression have the form |f| = |/3|/est.SD(/3) and are based on 
the fact that if β = 0, then β is likely to be near 0. This fact is true for any 
reasonable estimate of β, including the nonparametric estimate described in 
this chapter, but for the nonparametric β it is difficult to obtain a good 
estimate of SD(/3). Test statistic (6.5) is based on the fact that if β = 0, then 
U is likely to be near 0. Therefore, if |i | is large, that is, if U is far from 0 
relative to the magnitude of SD(t/), then we conclude that β Φ 0. 

The reason we expect U to be near 0 if β = 0 is that then its expectation 
is 0. When β = 0, then y,, = a + e¡ and the observations y,, y2,..., y„ can 
be regarded as having been independently selected from the same popula-
tion. This implies that the expectation of rank(y,) is the same for all /. Since 
the ranks must add to n(n + 0 /2 , the expectation of each rank(y,) must be 
\(n + 1). Hence [rank(y() - \(n + 1)] has expectation 0 for all /, and so U 
has expectation 0. 

Another reason for expecting U to be near 0 when β = 0 is the following. 
If β = 0, then the nonparametric estimate β should be near 0, which means 
that the minimum of function (6.3) should be near 0. Near the minimum of 
the function its slope is near 0. Therefore, if β = 0, the slope of (6.3) should 
be near 0 at b = 0. Note that - U is the slope of function (6.3) in the interval 
containing b = 0. 

The p-Value. When the sample size n is large, it is known that / = 
U/SD(U) has approximately a standard normal distribution if the null 
hypothesis β = 0 is true. So we have more confidence in the accuracy of the 
p-value for larger sample sizes. To be on the conservative side, one might 
calculate the p-value using the t distribution with n — 2 degrees of freedom 
instead of the standard normal distribution. This would be conservative in 
that, when the null hypothesis is true, that is, when the y-values have no 
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relationship with the ac-values, we would be less likely to falsely conclude that 
there is a significant relationship. 

Similarity to the Least-Squares Test. We can write (6.5) in a form that is 
similar to the least-squares test statistic. Recall that the least-squares test 
uses ¿LS = ß^/est.SDißug), where /3LS = Σ(χ, - 3tXy, - y)/L(x¡ - x)2 and 

est.SD(/3Ls) = σ/ \ / Σ ( Λ ; , - χ)2 . Altogether, 

_ £ ( * , · - ■ * ) ( y , · - y ) 
'LS ~ i —^ 

Or\L(x¡ - x) 

The nonparametric test uses íNP = Í/ /SD(Í/) . Let r¡ denote rank(y,). The 
average rank is f = \{n + 1), and so U = E(r, — r)x¡. Using the fact that 
E(r, - f) = 0, we can write U = Σ(*, - xXr¡ - r), and hence 

= Z(*i - *)(.'! - ?) 

' N P ln(n + 1) i r 

This is like tiS with r, in place of y¡ and \/n(n + 1)/12 in place of σ. The 
similarity goes further because σ is an estimate of the SD of the y,'s and 
^n(n + 1) /12 can be shown to be equal to the sample SD of the r,'s. (Note 
that this analogy between the least-squares and nonparametric rank-based 
procedures for testing β does not extend to estimation of ß. In particular, 
we are not suggesting that Σ(χ, - xXr¡ - r)/L(x¡ - x)2 is a good estimate 
of jS). 

This gives another way to obtain fNP, as yjn - 1 times the correlation 
coefficient between the x¡'s and the r,'s. 

Ties. If ties occur among the observations y¡, it is not clear how to obtain 
their ranks, which are needed to calculate the test statistic | i | . We can use 
midranks. For example, in the forearm length data, applicants 1 and 24 have 
the same y-value 165.8. If their heights had been, say, 165.79 and 165.81, 
then their ranks would have been 16 and 17. But they both have the same 
height 165.8, so we assign both applicants the midrank 16.5. 

The theory underlying test statistic (6.5) assumes that the population of 
errors has a continuous distribution, which guarantees that no ties occur. The 
theory does not strictly pertain to data with ties, but if there are only a few 
ties, the test should produce a p-value that is adequately accurate. 

The Forearm Length Data. Let us apply a nonparametric test to the data 
in Table 6.1 to see whether forearm length has a significant relationship with 
height. We first find the ranks of the 33 heights. This can be done by putting 
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the heights in increasing order. The shortest height is 155.0, so its rank is 1; 
the second shortest height is 156.2, so its rank is 2; and so on. Midranks are 
used for ties that occur for four pairs of applicants. An additional column for 
rank(y,) could be appended to Table 6.1: 16.5,28,... ,22.5. Then U = 
(16.5 - 17X28.1) + (28 - 17X29.1) + · · · +(22.5 - 17X29.7) = 286.4. Next 
calculate n(n + D/12 = 93.5, EU, - x)2 = 55.56, and SD(LO 
= V(93.5)(55.56) = 72.08. The test statistic is |i | = 1286.41/72.08 = 3.973. 
Looking in the r table in the Appendix at the row for 31 (= 33 - 2) degrees 
of freedom, we see that the p-value is less than 0.001. This indicates that 
forearm length has a significant relationship with height. 

6.5 AN EXAMPLE OF MULTIPLE REGRESSION 

A regression model can be applied to the data in Table 6.3 to see how the 
amount of money that a state spends on education is related to other 
characteristics of the state. For each of the 50 states in the United States the 
table lists the money spent on public education relative to the population of 

Table 6.3 Education Expenditure Data 

State 

ME 
NH 
VT 
MA 
Rl 
CT 
NY 
NJ 
PA 
OH 
IN 
IL 
MI 
WI 
MN 
IA 
MO 
ND 
SD 
NB 
KS 
DE 

Expenditure 
on Education 

m 
235 
231 
270 
261 
300 
317 
387 
285 
300 
221 
264 
308 
379 
342 
378 
232 
231 
246 
230 
268 
337 
344 

Personal 
Income 

(* , ) 

3944 
4578 
4011 
5233 
4780 
5889 
5663 
5759 
4894 
5012 
4908 
5753 
5439 
4634 
4921 
4869 
4672 
4782 
4296 
4827 
5057 
5540 

Youth 
Percentage 

(X2) 

32.5 
32.3 
32.8 
30.5 
30.3 
30.7 
30.1 
31.0 
30.0 
32.4 
32.9 
32.0 
33.7 
32.8 
33.0 
31.8 
30.9 
33.3 
33.0 
31.8 
30.4 
32.8 

Urban 
Percentage 

(X,) 

50.8 
56.4 
32.2 
84.6 
87.1 
77.4 
85.6 
88.9 
71.5 
75.3 
64.9 
83.0 
73.8 
65.9 
66.4 
57.2 
70.1 
44.3 
44.6 
61.5 
66.1 
72.2 
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Table 6.3 (Continued) 

State 

MD 
VA 
WV 
NC 
SC 
GA 
FL 
KY 
TN 
AL 
MS 
AR 
LA 
OK 
TX 
MT 
ID 
WY 
CO 
NM 
AZ 
UT 
NV 
WA 
OR 
CA 
AK 
HI 

Expenditure 
on Education 

( y ) 

330 
261 
214 
245 
233 
250 
243 
216 
212 
208 
215 
221 
244 
234 
269 
302 
268 
323 
304 
317 
332 
315 
291 
312 
316 
332 
311 
546 

Personal 
Income 

(X,) 

5331 
4715 
3828 
4120 
3817 
4243 
4647 
3967 
3946 
3724 
3448 
3680 
3825 
4189 
4336 
4418 
4323 
4813 
5046 
3764 
4504 
4005 
5560 
4989 
4697 
5438 
5309 
5613 

Youth 
Percentage 

u2> 
32.3 
31.7 
31.0 
32.1 
34.2 
33.9 
28.7 
32.5 
31.5 
33.2 
35.8 
32.0 
35.5 
30.6 
33.5 
33.5 
34.4 
33.1 
32.4 
36.6 
34.0 
37.8 
33.0 
31.3 
30.5 
30.7 
33.3 
38.6 

Urban 
Percentage 

u3) 
76.6 
63.1 
39.0 
45.0 
47.6 
60.3 
80.5 
52.3 
58.8 
58.4 
44.5 
50.0 
66.1 
68.0 
79.7 
53.4 
54.1 
60.5 
78.5 
69.8 
79.6 
80.4 
80.9 
72.6 
67.1 
90.9 
83.1 
48.8 

Source: Chatterjee and Price (1977, p. 99). 

the state (in dollars per resident) in the year 1975, personal income (in 
dollars per resident) in 1973, the percentage of residents under the age of 18 
in 1974, and the percentage of residents living in urban areas in 1970. The 
linear regression model is y = ß0 + ß\Xx + ß2X2 + ß-hX-s + e. 

Looking at the three plots of Y versus the explanatory variables X{, X2, 
and X3, we see no clear departure form the model's assumptions that the 
regression function is linear and the errors have a common variance. 

6.6 ESTIMATING THE REGRESSION COEFFICIENTS 

Earlier in this chapter, the nonparametric estimate of the slope of a regres-
sion line in simple regression is described in two ways: as a weighted median 
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of pairwise slopes and as the minimizing value for the sum (6.3). The second 
description is easily generalized to multiple regression. The nonparametric 
estimates ß,,..., ßp are the values of b,,..., bp that minimize 

rank(y, - (btxn + · ■ ■ +bpxip)) — 

x ( y , - - ( M / i + · · +bp*ip)) (6·6) 

Then the nonparametric estimate ß0 is obtained as the median of the 
differences y, - ißxxn + · · · +ßpxip). 

The justifications of the estimates ßx,...,ßp and ß0 are the same as in 
Section 6.3. Note that (6.6) is the same as (6.2) with é¡ = y, - ibtxn 

+ · · · +bpxjp). The argument preceding (6.2) shows that minimizing (6.6) is 
approximately equivalent to minimizing a certain weighted sum of the abso-
lute residuals. The estimate ßQ is based on the fact that the differences 
y, - ißiXn + · · · +ßpxip) are equal to ßQ + e¡ and hence are centered 
around /3(). 

An Algorithm for Minimizing (6.6). It is convenient to give function (6.6) 
a name, say, g, and to express it in vector notation: 

*(*) = Σ 
n + 1 

rank(y,- b'x¡) — (y,. -*'*,.) (6.7) 

where b = (¿>,, ...,bp) and x¡ = ix¡¡,..., xip). We want to find a vector b 
that minimizes gib). This can be done by an iterative procedure which, 
starting with the vector of least-squares estimates, finds vectors that give 
smaller and smaller values of the function g. 

Given the current vector b°, a better vector is obtained by forming 
b* = b° + t*d, where t* and d are calculated as follows. Let z, = y, -
(¿"y*,, u" = rank(z,) - {in + 1), ii° = the n X 1 vector with entries «?, 
and Xc = the n X p matrix with entries xu - x¡. Then </ = (X'cXc)~

lX'cu°. 
Let w, = d'x¡ and let r* be the weighted median of the ratios (z, - zy)/(>v, 
- Wj) with weights Iw, - Wyl/EIn», - w}\. This completes one iteration. 

Now b* becomes the current vector and the iteration is repeated. 

Justification of the Algorithm. Given the current vector b°, an improved 
vector b* with gib*) < gib0) is found in two steps. First we find a direction 
in which the value of g decreases; that is, we find a vector d such that 
gib" + td) decreases as t increases from 0. Then we find the value of t, say, 
/*, that minimizes gib0 + td). The vector b* = b° + t*d has a smaller value 
of g than b° does. 
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First we want to find a vector d such that gib0 + td) decreases as t 
increases from 0. Such a decrease occurs if and only if the derivative of 
g(b° + td) at t = 0 is negative. This derivatives is iVgib°))'d, where Vgib) 
denotes the vector of partial derivatives of gib) with respect to b¡ for 
j = 1, . . . , p. (For the moment, let us ignore the fact that these partial 
derivatives are not well-defined at some points b.) If we are lucky enough 
that the current vector of estimates b° satisfies Vgib0) = 0, that is, if all the 
partial derivatives of gib) are 0 at ft = b°, then this implies that the 
minimum of gib) occurs at b = b°, and so the algorithm has found the vector 
of nonparametric estimates. Otherwise, we can make the derivative of 
g(b° + td) negative at t = 0 by choosing the direction vector to be d = 
-Vgib0). But for reasons based on the variances and covariances of the 
regression estimates, the choice d = -iX'cXc)~

x Vgib0) has been suggested. 

The partial derivative of gib) with respect to 6y is -E[rank(y, - b'x¡) 
- \in + l)}x¡j. Using the fact that E[rank(y, - *'x,) - {in + 1)] = 0, the 
partial derivative can also be written as -E[rank(y, - b'x¡) - {in + 1 )](*,, 
- Xj). Hence Vgib0) = -X'cu°, and so the suggested direction vector can be 
expressed as d = iX'cXc)-

[X'cu°. 
For a given direction vector d, we search along this direction for the value 

t = t* that minimizes gib0 + td). From (6.7) we have gib0 + td) = 
E[rank(/,) - {in + l)]/„ where /, = y, - ib° + tdlx^ Note that /, = z, -
tw¡. Therefore finding the value of t that minimizes gib0 + td) is the same as 
finding the value of t that minimizes (6.3) with b replaced by t, y, by z¡, and 
x¡ by w¡. In other words, t* is the nonparametric estimate of the slope of the 
regression line for the model Z = a + ßW + e. As seen in Section 6.3, /* is 
the weighted median of the ratios (z, - zj)/iwi - w¡) with weights propor-
tional tO \\V¡ — Wj\. 

When the Derivatives Are Not Well-Defined. When the partial derivative 
of gib) with respect to b¡ is well-defined, it is equal to -E[rank(y, - b'x¡) 
- \in + l)]xu. The derivative is not well-defined at those points b at which 
some of the residuals y, — b'x¡ are equal because then their ranks are not 
well-defined. At such points we can use midranks to calculate an approxi-
mate derivative. (See the subsection on ties in Section 6.4.) 

When p = 1, the points of nondifferentiability are the points bu = (y, -
y>j)/ix¡ - Xj). Note that at b = btj the residuals y, - bx¡ and y¡ - bx¡ are 
equal. Recall that the graph of function (6.3) is a series of line segments. The 
points b¡¡ are the "corners" where the line segments meet. 

The Education Expenditure Data. Let us use the algorithm described 
above to obtain nonparametric estimates of the regression coefficients for the 
education expenditure data. The procedure to estimate /3,, /32, and ß3 is 
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iterative, starting with the vector of least-squares estimates ¿° = 
(0.07239,15.52, -0.04269). 

To improve *° we first find a good direction vector. Calculate the 50 
differences y, - (*")'*,·. For example, the difference for Maine is 235 -
[(0.07239X3944) + (15.52X32.5) + ( - 0.04269X50.8)] = -552.7. Ranking the 
50 differences, we obtain the entries u" = rank(y, - (¿"Xor,) - 25.5 of the 
vector «°, which is used to calculate a good direction vector d = 
(X'cXcy

 lX'cu
(). The 50 X 3 matrix Xc is obtained from the last three columns 

of Table 6.3 by subtracting JE, = 4675, x2 = 32.57, and jc3 = 65.78, respec-
tively, from the three columns. We obtain d = (-0.002505, -0.5157, 
0.08182). 

Next we minimize g(b" + td). For this we need the quantities z, = y, -
(b{)yxj and w, = d'x¡. The z, have already been calculated in the process of 
obtaining d. We now calculate w, = d'x{ = (-0.002505X3944) + 
(-0.5157X32.5)+ (0.08182X50.8)= -22.48, and so on. The minimizing 
value of / is the weighted median of the ratios (z, - z¡)/{wi - w¡) with 
weights \w¡ - νν,Ι/ΣΙκΊ - w¡\. The weighted median can be found by con-
structing a table similar to Table 6.2. Put the ratios in increasing order and 
list them in the first column of the table. List the corresponding weights in 
the second column and calculate the cumulative sum of the weights in the 
third column. Find the cumulative sum that first exceeds 0.5. The corre-
sponding ratio is t* = 5.346. Therefore the improved vector of estimates is 
b* = b° + t*d = (0.07239 + (5.346X-0.002505), 15.52 + (5.346X-0.5157), 
-0.04269 + (5.346X0.08182)) = (0.05900,12.76,0.3947). This completes the 
first iteration. 

Relabeling b* as b°, we repeat the same procedure to further improve the 
vector of estimates. We calculate the differences z, = y, - (b°yx¡, rank them 
to obtain the entries of u°, and then calculate d = ( A ^ C ) _ 1 ^ H 0 = 
(-0.00002842, -0.09464, -0.02485). Next we calculate w, = rf'jc, and find 
the weighted median of the ratios (z, - zj)/(w¡ - w¿) with weights \w¡ -
Wj\/E\w¡ - Wj\. The weighted median is f* = 2.533 and the improved 
vector is b° + t*d = (0.05900 + (2.533X- 0.00002842), 12.76 + 
(2.533X-0.09464), 0.3947 + (2.533X - 0.02485) = (0.05892, 12.52,0.3317). 
This completes the second iteration. At the 15th iteration, the relative 
changes in all three estimates, ft?, b", and b", are less than 10~8, so we can 
feel confident that, to at least four significant digits, these are the values of 
the nonparametric regression estimates: j8, = 0.05868, β2 = 12.54, and β3 = 
0.3372. 

We obtain the nonparametric estimate /3„ as the median of the 50 
differences y¡ - (0.05868*,, + 12.54*,2 + 0.3372*,3), which is -422.9. So 
the estimated regression equation is Ϋ = -422.9 + 0.05868 Xt + 12.54^ + 
0.3372 Jf a. 
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Estimation of ß0 When the Error Distribution Is Symmetric. We have 
estimated ß0 by the median of the differences d¡ = y, - (/§,*,, 
+ ■ · · +ßpxip). If the distribution of the population of errors can be as-
sumed to be symmetric, then a better estimate is the median of the pairwise 
averages {d¡ + d¡)/2, 1 < i < j <, n. For the education expenditure data, the 
two estimates of /30 are almost the same, both being equal to - 422.9 to four 
significant digits. 

6.7 TESTING ßq + 1 = ··· = ßp = 0 

The nonparametric test of ßq+l = · · · = ßp = 0 is analogous to the least-
squares test. Recall that the least-squares test statistic is 

_ SSRreduced — SSRful| 

where SSR stands for the sum of squared residuals, SSR = Ee,2. 

Description of the Test. Let us introduce the notation SRWR for the 
sum of rank-weighted residuals, SRWR = E[rank(e,) - \{n + \)]e¡. The 
nonparametric test statistic is 

SRWRreduced - SRWRfull 
F™ = {i^)7r ( 6 8 ) 

where c = (n + 1 ) / V ^ and f is given by formula (6.9) below. The residuals 
in SRWRreduced and SRWRfu,| are calculated by applying the nonparametric 
regression method to the reduced model Y = ß0 + ßxXx + ■ · · +ßqXq + e 
and the full model Y = ß0 + /3,ΛΤ, + · · · +βρΧρ + e, respectively. Note that 
SRWR is the minimum value of (6.7); that is, SRWR = g(ß). 

To calculate f, take the residuals from the full model and form the 
pairwise averages, Au = (é¡ + é¡)/2 for 1 < i < j < n. Put these N = n(n + 
l ) / 2 numbers in increasing order: A(i) < Α(τ) < · · · < A(Ny Let a = n(n + 
\)/A, b = ,Jn(n + 1)(2« + l ) / 2 4 , kx = the closest integer to [ + a -
(1.645)fc, k2 = the closest integer to { + a + (1.645)6, and / 
= yjn/[n - (p + 1)] . Define 

¿¡[Alkti-Alkty] 
1 2(1.645) V ' 

Just as in the least-squares test, an approximate p-value of the nonpara-
metric test is calculated to be Prob[F > FNP], where F denotes a random 
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variable having an F distribution with p — q and n — p — 1 degrees of 
freedom. 

Justification of (6.8). The sum SRWR plays the same role in nonpara-
metric estimation that the sum SSR plays in least-squares estimation. The 
sum SSR measures how well the least-squares estimated regression equation 
fits the data. Similarly, the sum SRWR measures how well the nonparametric 
estimated regression equation fits the data. If the null hypothesis is false, 
then the reduced model is not the true model, and so the regression equation 
estimated using the reduced model tends to fit the data poorly. Thus 
SRWR reduced tends to be larger when the null hypothesis is false than when 
the null hypothesis is true. 

The nonparametric test statistic is formed from SRWRreduced by subtract-
ing SRWRfu,| and dividing by (p - q)cr. This serves to standardize the test 
statistic so that FN P tends to be near 1 when the null hypothesis is true and 
to be significantly larger than 1 when the null hypothesis is false. 

The Parameter τ. The denominator of test statistic (6.8) is ((p - q\n + 1) 
/ ν ^ ) τ . The estimate f estimates a parameter τ which plays a role in 
nonparametric regression similar to the role of σ in least-squares regression. 

The vector of least-squares estimates, ßLS, has its variance-covariance 
matrix equal to σ2(Χ'Χ)~\ where X is the matrix of explanatory variables 
with a vector of l's added as the first column. In nonparametric regression 
the primary part of the estimation procedure concerns ßu...,ßp\ estimation 
of )3n is a separate part. Let δ - {β,,..., βρ). The variance-covariance 
matrix of δ ^ is a2W, where W is obtained from (X'X)~l by omitting the 
first row and first column. 

The vector of nonparametric estimates, δΝ Ρ , has its variance-covariance 
matrix approximately equal to T2W. (The approximation is best for large 
sample sizes.) In particular, the standard deviation of ßjNP is approximately 
equal to τ/σ times the standard deviation of /3y>LS. Hence, whether the 
nonparametric estimates are more accurate than the least-squares estimates 
depends on whether τ < σ. 

Suppose the distribution of the population of errors can be assumed to be 
symmetric. Then a good choice for /§() NP is the median of the pairwise 
averages (d¡ + dj)/2, where di = y, - (/§,*,, + · · ■ +ßpxip). In this case, 
the variance-covariance matrix of ßNP is approximately τ2(Χ'ΧΥχ. 

Both σ and τ can be regarded as measures of variability in the distribu-
tion of errors. The parameter σ is the standard deviation. The parameter τ 
can be described in terms of the distribution of differences between pairs of 
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errors: τ = 1/(·/Ϊ2γ), where y is the probability density of the error differ-
ences at 0. If the distribution of errors is highly variable, then any two 
independently selected errors will tend to be far from one another, so their 
difference will tend to be far from 0, which implies that the probability 
density of error differences near 0 is low; that is, y is small, and hence τ is 
large. 

Roughly speaking, the more "spread out" the distribution of errors is, the 
larger both σ and τ are. But the exact ratio τ/σ depends on the shape of the 
distribution of the errors. If the errors have a normal distribution, then 
τ/σ = 1.023 > 1, and so, at least for large sample sizes, the nonparametric 
regression estimates are slightly less accurate than the least-squares regres-
sion estimates. If the errors have a uniform distribution, then τ/σ = 1. If the 
errors have a Laplace distribution, then τ/σ = 0.816 < 1. 

Justification of (6.9). The estimate of τ in formula (6.9) has been found 
to perform well when the errors have a symmetric distribution. Of course it 
would be preferable to have an estimate that also performed well for 
asymmetric error distributions, but the candidates that have been proposed 
so far are either unsatisfactory or not yet sufficiently investigated. 

The residuals c, behave roughly the same as the true errors e¡, especially 
for large sample sizes. It is convenient to present the following justification as 
if é¡ = e¡. 

The argument is based on a comparison of two confidence intervals for the 
mean of the population of errors. Of course the regression model assumes 
that this mean is 0, and so we are not actually interested in the confidence 
intervals themselves but only in their lengths. To make it easier to think in 
terms of confidence intervals, pretend we do not know the mean μ of the 
population from which the e¡ are drawn. We will calculate two 90%-confi-
dence intervals for μ. The two intervals tend to have about the same lengths. 
Equating the two lengths yields formula (6.9). 

In constructing the first confidence interval, we assume that the distribu-
tion of the population of errors is symmetric. Then, as indicated above in the 
subsection on the parameter τ (with p = 0 and β0 = μ), a good nonparamet-
ric estimate of μ is the median of the n(n + l ) / 2 pairwise averages (ei + 
e¿)/2. Denote this estimate by μ. The mean of μ is approximately μ and its 
standard deviation is approximately τ/ifñ (when p = 0, then A" is a column 
of l's and so τζ(Χ'Χ)~ι = τ2/η). For large sample sizes n, the distribution 
of μ is approximately normal. Therefore, if f is an estimate of τ, an 
approximate 90%-confidence interval for μ is μ ± (1.645)T/\/AT. 

Next, it can be shown that the interval from A(k > to A(k ) is also a 
90%-confidence interval for μ. The lengths of the two intervals, at least for 
large sample sizes n, are approximately the same, that is, 2(1.645)·?/^ = 
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A(k , - Λ(Α ,. Choosing f to make this an equality yields (6.9) without / . The 
factor / is introduced to improve the accuracy of the p-value of the test when 
the sample size n is small. The factor has little effect for large sample sizes 
since then / ~ 1. 

The Education Expenditure Data. From the data in Table 6.3 we have 
estimated a regression equation that expresses the education expenditure of 
a state as a function of three explanatory variables. Now let us test whether 
the only significant explanatory information contained in these three vari-
ables is actually contained in the single variable of personal income. In other 
words, let us test whether β2 — β3 = 0. 

We want to calculate the test statistic FNP. In Section 6.6 we estimated the 
regression coefficients for the full model. These are used to calculate the 
residuals e¡ = y¡ - (-422.9 + 0.05868*π + 12.54JC/2 + 0.3372*ί3). We then 
rank the residuals and calculate SRWRfuH = E[rank(e,) - 25.5]e, = 27120. 
For the reduced model without X2 and X3, the estimated regression coeffi-
cients are β() = 36.88 and ßt = 0.05151. These are used to calculate the 
residuals é¡ = y, - (36.88 + 0.05151 JC,,). After ranking the residuals, we cal-
culate SRWRreduced = E[rank(e,) - 25.5]e, = 31000. 

Next we use the residuals from the full model to obtain f. From the 50 
residuals we compute the 1275 (= 50(51)/2) pairwise averages. This includes 
the residuals themselves, since A¡¡ = (é¡ + é¡)/2 = é¡, as well as the averages 
A¡j — (é¡ + éj)/2 of distinct residuals for i Φ j . Put these pairwise averages 
in increasing order: -81.803 < -67.586 < · · · < 107.648 < 139.279. Cal-
culate a = 50Í5D/4 = 637.5, b = V'50(51)(101)/24 = 103.6, 0.5 + 637.5 -
(1.645X103.6) = 467.6, and 0.5 + 637.5 + (1.645X103.6) = 808.4. So it, = 
468 and k2 = 808. The 468th smallest pairwise average is - 8.957 and the 
808th smallest pairwise average is 9.343. The factor / is ^50/46 = 1.043. 
Now we obtain f = (1.043)v/50[9.343 - (-8.957)1/12(1.645)] = 41.01. 

The denominator of FNP in formula (6.8) is (p - q)cr = (3 - 1) X 
(51/ \/48 X41.01) = 603.7 and so we have Fw = (31000 - 27120)/603.7 = 
6.421. The degrees of freedom are p - q = 2 and n - p — 1 = 46. Looking 
in the F table in the Appendix, we see that the p-value is between 0.001 and 
0.01. So one or both of the two explanatory variables X2, percentage of 
young residents, and X3, percentage of urban residents, contain significant 
information about the education expenditure of a state beyond the informa-
tion contained in the variable Xx, personal income. 

Simple Regression. Testing ß = 0 in simple regression is the special case 
of testing ßq+i = · · · = ßp = 0 in which p = 1 and q = 0. So we have two 
test statistics we could use, |fNP| in (6.5) or FNP in (6.8). The p-value for 
|fNP| is calculated to be Prob[|7l > UNP|], where T is a random variable 
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having a t distribution with n - 2 degrees of freedom, or equivalently, 
Prob[F > | i N P | 2 ] , where F is a random variable having an F distribution 
with 1 and n - 2 degrees of freedom. The p-value for F N P is calculated to be 
Prob[F > FN P] , where F is a random variable having an F distribution with 1 
and n - 2 degrees of freedom. This leads us to ask if perhaps |rNP |2 = FN P , 
but the answer is no. 

For the forearm length data, |rNP| = 3.973, so | /N P |2 = 15.78, whereas 
F N P = 20.01. For either 15.78 or 20.01, the F table in the Appendix shows 
that the p-value is less than 0.001, which indicates that β Φ 0. However, 
sometimes the two test statistics can yield contradictory conclusions. If we 
test ß = 0 for the birth rate data in Table 1.3, the value of kN P |2 is 4.346, 
which gives a /»-value greater than 0.05, whereas the value of FN P is 8.616, 
which gives a p-value close to 0.01. It is common practice to accept the 
possibility that ß = 0 when the p-value is greater than 0.05 and to conclude 
that ß Φ 0 when the p-value is smaller than 0.05. 

6.8 COMPUTATION 

The nonparametric estimates minimizing (6.6) and the nonparametric test 
statistic (6.8) can be obtained from the statistical package Minitab by using its 
RANK REGRESSION command. 

You could write your own computer program by following the descriptions 
of the algorithms presented in Sections 6.6 and 6.7. To check such a program, 
it could be applied to the test case data in Table 3.2. For simple regression 
using X = Xu the estimated regression line is Y = 30.00 + 1.750A" and the 
test statistic for testing ß = 0 is \t\ = 1.965. For multiple regression using 
both Χλ and X2, the estimated regression equation is Y = 38.64 + 
1.286ΛΊ - 0.2857X2 and the test statistic for testing ß, = ß2 = 0 is F N P = 
3.436. The estimate τ is 4.362. 

NOTES 

6.1a. The terms "parametric" and "nonparametric" are not precise. When 
Legendre originally proposed the least-squares method, the justification he 
gave was simply that it minimized the sum of squares of the deviations, with 
no reference to the distribution of the data. From this viewpoint, least-squares 
estimation is nonparametric. But least-squares estimates cannot be guaran-
teed to perform well unless the distribution of the error population is normal. 

6.1b. We are using the term "nonparametric regression" to refer to 
regression procedures based on ranks. The term is also used to refer to 



NOTES 131 

procedures for constructing smooth estimates of nonlinear regression func-
tions, such as in Härdle (1990). 

6.1c. The plant heights that Galton analyzed were collected by Charles 
Darwin in an experiment to compare self-fertilization and cross-fertilization 
in plants. To see which mode of fertilization tends to produce taller plants, 
he measured the heights of 15 self-fertilized plants and 15 cross-fertilized 
plants of the same variety grown under the same conditions. Galton first 
arranged the heights of the selfed plants in increasing order and did the same 
for the crossed plants. He then compared the ith tallest selfed plant with the 
ith tallest crossed plant. In 13 out of the 15 comparisons, the crossed plant 
was taller. 

6.3a. A weighted average of a list of numbers J C , , . . . , Jtn is a linear 
combination wlx] + · · · +wnxn in which the coefficients w¡ are nonnegative 
and add to 1. The coefficient w¡, called the weight of x¡, is the proportion of 
influence that x¡ has on the value of the weighted average. The ordinary 
average x is the special case in which the weights are all equal, that is, 
w¡ = 1/rt. 

If C | , . . . , c„ are nonnegative numbers, not all 0, then a weighted average 
of the JC,'S with weights proportional to the c,'s is obtained by setting 
»v, = CJ/LCJ. The least-squares estimate /§LS 'S a weighted average of the 
pairwise slopes b¡¡ with each weight proportional to the squared ^-distance 
(x¡ - Xj)2 between the two data points determining the slope. Note that the 
undefined pairwise slopes with x¡ = x¡ are automatically ignored since they 
are given weight 0. As mentioned in Chapter 3, ßls can also be expressed as 
a weighted average of the slopes b¡ = (y, - y)/(x¡ — x) of the lines between 
the data points (x¡, y¡) and the average point (x, y), with each weight 
proportional to the squared jc-distance (x¡ — x)2. 

6.3b. Estimation of the slope of the regression line by the ordinary median 
of the pairwise slopes was proposed by Thiel (1950). The weighted median of 
the pairwise slopes presented in Section 6.3 was proposed by Jaeckel (1972). 
The weighted median is a more efficient estimate than the ordinary median, 
at least for large sample sizes. 

6.3c. The description of the ordinary median is not quite correct if the 
length of the list of numbers is an even integer. In this case, when the 
numbers are put in increasing order, there are two numbers, rather than just 
one, that are in the middle of the ordered list. The average of the two middle 
numbers is the median. 

6.3d. Consider the weighted median of xi,...,xn with weights w¡ = l/n 
for all i. First we put the numbers x¡ in increasing order. By changing the 
indices, we can arrange so that x{ <x2 < · · · < xn- We want to find an 
index k satisfying conditions (6.1), w, + w2 + ■ ■ ■ +wk_t < 0.5 and w, + 
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w2 + · · · +w¿_, + wk > 0.5, that is, satisfying (k - l ) ( l / n ) < 0.5 and 
k(\/n) > 0.5, that is, \n < k < \n + 1. If n is an odd integer, then {n + \ 
is an integer and so we can set k = \n + \ = \{n + 1). The weighted 
median is defined to be xk, which is simply the ordinary median. If n is an 
even integer, then the index k = \n satisfies w, + w2 + ■ ■ ■ + wk = k{\/n) 
= 0.5. This situation is discussed in parentheses following (6.1). The weighted 
median is defined to be (xk + xk + x)/2, which again is simply the ordinary 
median. 

6.3e. The differences y, - ßxi are centered around a in the sense that 
they can be regarded as a random sample drawn from a population having a 
mean of a. In simple linear regression, the model is y¡ = a + ßxt + e¡, 
where the quantities e¡ are a random sample drawn from a population having 
a mean of 0. Hence y,· - ßxt = a + e¡, and the quantities a + e¡ can be 
regarded as a random sample drawn from a population having a mean of a. 

It would be natural to estimate the mean a of this population by the mean 
of the estimated differences y, - ßxit but the mean is thought to be too 
sensitive to outliers, so the median of the estimated differences is used 
instead. If the population of errors has a symmetric distribution, then a is 
not only the mean but also the median of the population from which the 
differences y, - ßxt are drawn, and so it is natural to estimate a by the 
median of the estimated differences. If we are not comfortable in assuming 
that the population of errors has a symmetric distribution, then we might 
prefer to modify the model by assuming that the population of errors has a 
median of 0 rather than a mean of 0. 

6.3f. A weighted sum of a list of numbers x¡,...,x„ is a linear combina-
tion W^JC, + · ■ · +wnxn in which the coefficients w, are nonnegative. 

6.3g. The estimation of regression coefficients by minimizing (6.2) was 
proposed by Jaeckel (1972). In simple regression, the same estimate of ß was 
proposed earlier, in a different form, by Adichie (1967). He derived the 
estimate by using the statistic U in (6.5). Define U(b) to be U with y¡ 
replaced by y, - bx¡. The nonparametric estimate ß can be obtained as a 
value of b for which U(b) is closest to 0. To see that Adichie's estimate 
coincides with Jaeckel's estimate, note that the derivative of (6.3) with 
respect to b is - U(b). 

6.3h. Another justification for why it is sensible to minimize (6.2) is 
provided by the fact that (6.2) can be expressed as \ times the sum of the 
absolute values of the differences between all pairs of residuals (see 
Hettmansperger and Aubuchon, 1988). (This is proved in Note 6.31; substi-
tute é¡ for x¡.) Therefore, choosing a value of b to minimize (6.2) causes the 
residuals y, — foe, to have values that are relatively close to one another. By 
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then choosing an appropriate value of a, the residuals y, - (a + bx¡) should 
be relatively close to 0. 

6.3i. In Note 6.3h it is remarked that minimizing (6.2) is equivalent to 
minimizing the dispersion of the residuals as measured by Y.\é¡ - é¡\, where 
the sum is over all pairs of residuals. More generally, a reasonable measure 
of dispersion is given by (*) Lc(ri,rJ)\éÍ - e¡\ for nonnegative coefficients 
c(r, s) depending on the ranks r¡ of the residuals. Besides nonnegativity, let 
us require the coefficients to satisfy c(s, r) = c(r,s) (because \ej■ - e¡\ = 
\é¡ - e¡\), c(r, r) = 0 (because \é¡ - é¡\ = 0), and c(r, s) < c(r, t) for r < s 
< t (to give larger differences between residuals at least as much weight as 
smaller differences). It can be shown that minimizing (*) is equivalent to 
minimizing T.a(ri)ei with coefficients a(r) that are nondecreasing for r = 
l , . . . , / i and sum to 0. The a(r) are called scores. Different scores can be 
chosen to obtain different estimates of Ö. The two most common choices of 
scores are the Wilcoxon scores, a(r) = r - \{n + 1), which are used in (6.2), 
and the normal scores, a(r) = Φ ""'(/■/(« + 1)), where Φ denotes the cumu-
lative distribution function of the standard normal distribution. 

6.3j. Estimates obtained by minimizing the sum Erank(|£,|)|£,| are called 
signed-rank estimates to distinguish them from the rank estimates obtained 
by minimizing sum (6.2). When the error distribution is symmetric and 
the sample size is large, the two kinds of estimates behave approximately 
the same (see Hettmansperger and McKean, 1983, Section 1). An alge-
braic relationship between the two sums is given by Hettmansperger and 
Aubuchon (1988). 

6.3k. To see that the graph of function (6.3) consists of a series of line 
segments joined together at the points b = bu, consider the value of 
rank(y, - bx¡). It is equal to the number of data points (xj, y¡) for which y; 

—bXj < y¡ - bx¡. By rearranging this inequality, we see that rank(y, - fee,) 
equals the number of data points for which x¡ <x¡ and b >. (y, -y¡)/ 
(x¡ - Xj) = bu plus the number of data points for which x¿ > x¡ and b > 
(y, _ y,)/(*, ~ ■*;) = b¡j plus the number of data points for which x¡ = x¡ 
and y¡ < y,. The important thing to notice about this description of rank(y, 
- bXj) is that it depends on b only through the position of b relative to the 
points bjj. This implies that all the ranks involved in (6.3) are constant as b 
varies within any one of the intervals between the bu. Therefore, in each such 
interval, (6.3) can be written as the linear function c„ + c,b, where c0 = Y\r¡ 
- \(n + \)]y¡, c, = -Σ[/",- - {(n + 1)]JC,-, and r¡ is the constant rank of 
y, - bx¡ in that interval. 

6.31. Let us verify that, as b varies from — °° to +°o, the slope of func-
tion (6.3) goes from - \T to {T, where T = T.\x¡ — x¡\. (The summation 
in the definition of T is taken over the n(n - l ) / 2 sets of two distinct 
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integers i and j between 1 and n.) We have seen that the slope of (6.3) is 
-E[rank(y, - fee,) - ¿(n + 1)]*,. For very large negative values of b, 
rank(y, - bx¡) = rank(*,), so the slope is -E[rank(jc,) - {{n + l)]x¡. For 
very large positive values of b, rank(y, - bx¡) = rank(-;c,) = (n + 1) -
rank(*,), so the slope is -Σ[(η + 1) - rank(jc() - \(n + l)]x¡ = E[rank(jc,) 
- j(n + \)]x¡. So we want to verify the equation (*) E[rank(;c,) - {{n + 
l)]x¡ = \L\x,-Xj\. 

Since \x¡ — x¡\ = x¡ — x¡ if x¡ > x¡ and \x¿ — jc-| = x- - x¡ if x¡ < x¡, it 
follows that ΣΙ-c, - x¡\ = E(L, - G¡)x¡, where L, = the number of Jt/s less 
than x¡ and G, = the number of x/s greater than x¡. It is convenient to 
assume that the x¡ are distinct, so that rank(jt,) = L, + 1 and L, + G, = 
n — 1. (If some of the JC,'S are equal and midranks are used, equation 
(*) is still true.) Hence L, - G, = L,■ - (n - 1 - L,) = 2L¡ - n + I = 
2[rank(^,) - 1] - n + 1 = 2[rank(jc,) - \(n + 1)]. Therefore L\x¡ - x¡\ = 
2arank(jc,) - ±(n + l)]x,. 

6.4a. For more about test statistic (6.5), see Hettmansperger (1984, pp. 
224-226). Perhaps the earliest rank-based nonparametric test of the slope in 
simple linear regression was given by Terry (1952). His test is what is 
sometimes called a linear rank test with normal scores. The test in Section 
6.4 is a linear rank test with Wilcoxon scores. See Hájek and Sidák (1967, 
Section III.3.1). 

6.4b. Why does the standard deviation of β^ have to be estimated 
whereas the standard deviation of U is known? The randomness of the 
random variable ßls comes from the randomness of the y,'s. As seen in 
Note 3.4a, the SD of β^ depends on the SD of the y,'s, which is equal to the 
SD of the errors e¡, which is σ. The parameter σ is unknown and must be 
estimated. The randomness of the random variable U also comes from the 
randomness of the y,'s but the dependence of U on y, is only through 
rank(y,). When the null hypothesis β = 0 is true, the y,'s can be regarded as 
a random sample from a single population, and so their ranks are simply a 
random permutation of the integers 1 through n. Therefore the distribution 
of the ranks of the y,'s does not involve any unknown parameters, and hence 
neither does the distribution of U. 

SOW) is the correct standard deviation of U only if the null hypothesis is 
assumed to be true. But est.SD(/3LS) is a valid estimate of the standard 
deviation of β^ regardless of whether the null hypothesis is true. 

6.4c. To be conservative, the t distribution could be used to calculate the 
p-value for test statistic (6.5) instead of the standard normal distribution. For 
example, the test statistic for the forearm length data is |/ | = 3.973. By using 
the t distribution with 31 degrees of freedom, the p-value is 0.00038; whereas 
by using the standard normal distribution, the p-value is 0.00007. In either 
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case, the p-value is very small and we conclude that there is a significant 
relationship between forearm length and height, but note that the p-value 
using the t distribution is larger, which is in the conservative direction. 

6.4d. The ranks r¡ = rank(y,) are simply a permutation of the integers 1 
through n. So the average rank is the average of the integers 1 through n; 
that is, r = (1 + 2 + ■ · · +n)/n = {(n + 1). If we regard the integers 1 
through n as a sample, the sample variance is 

= ^ { Σ ' 2 - (n + i)E¿ + *(?)(« + i)2} 

= ——r{in(n + l)(2n + 1) - (n + l)\n(n + 1) + \n{n + I)2} 

= T2n{n + 1). 

6.6a. The estimation of regression coefficients by "minimizing (6.6) was 
proposed by Jaeckel (1972). Jaeckel's estimates are essentially the same as 
those of Jurecková (1971); they coincide for infinitely large samples. One 
approach to minimizing function (6.6) would be to take its partial derivatives 
with respect to the b/s, equate these derivatives to 0, and try to solve for the 
b/s. In general there may not be a solution that makes all the derivatives 
exactly 0, and so Jurecková chose the b/s to minimize the sum of the 
absolute values of the derivatives. 

Jaeckel and Jurecková considered arbitrary scores (see Note 6.30, not just 
the Wilcoxon scores that we use in this chapter. An estimate of β can be 
obtained by minimizing the function gib) = Y.a(r¡)é¡, where é¡ = y¡ - b'x¡, 
r¡ is the rank of e¡, and a(r¡) is the score. Function (6.6) (or, in vector 
notation, (6.7)) is the special case in which air) = r — \in + 1). 

6.6b. The function gib) is known to be well behaved with respect to 
minimization. It is a convex function (see Hettmansperger, 1984, p. 234), 
which implies that the condition Vg(é°) = 0 is sufficient to ensure that b° 
minimizes the function. However, there does not necessarily exist a point b° 
satisfying Vg(b") = 0, that is, at which all the partial derivatives exist and are 
0. A necessary and sufficient criterion for b° to minimize gib) is that at b°, 
for each ; = Ι,.,.,ρ, the left-hand partial derivative with respect to b¿ is 
nonpositive and the right-hand partial derivative is nonnegative. 

6.6c. The derivative of g(b° + td) with respect to t, according to the 
chain rule, is (d/dt)g(b° + td) = (Vg(¿° + td)Jd. At / = 0 it is (Vg(*°))'</. 
To simplify notation, let h = Vg(bl)). We want to choose d so that h'd < 0. 
Since h'h = T,hj > 0 (assuming h Φ 0), we can choose d = —ft. Also, 
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V(X'eXe)-
lk > 0 (because h'(X'cXcy

lh =f'f, where / = Xc(X'cXXlh), and 
so we can choose d = -{X'cXc)~

{h = -(X'cXc)-
sVg(b"). 

6.6d. The direction vector d = -{X'CXC)~X Vg(b°) was suggested by 
McKean and Hettmansperger (1978, p. 574). The matrix (X'CXC)~X is approxi-
mately proportional to the variance-covariance matrix of the nonparametric 
regression estimates of ßt,..., β . See the subsection on the parameter τ in 
Section 6.7 and Note 6.7e. 

6.6e. The accuracy of estimates obtained from an iterative algorithm is 
discussed in Notes 5.3g, 5.3h, and 5.6c. For the education expenditure data, 
we iterated the nonparametric estimation algorithm until two successive 
vectors of estimates satisfied the condition that the relative differences were 
less than 10~8. However, the function (6.7), which we are trying to minimize, 
appears to be rather "flat" and so we are only confident in the accuracy of 
the estimates to about three significant digits. Using the least-squares esti-
mates (0.07239,15.52, - 0.04269) as initial estimates, the algorithm converged 
to (0.05868,12.54,0.3372). Using the slightly different initial estimates 
(0.07,16.0, -0.04), the algorithm converged to (0.05857,12.56,0.3380). 

6.6f. Rather than require convergence of the estimation algorithm, it is 
sometimes sufficient to do only one or two iterations of the algorithm. 
McKean and Hettmansperger (1978) found that, provided the sample size is 
large and the error distribution does not have extremely heavy tails, the 
estimates obtained from only one iteration are generally quite close to the 
estimates that would be obtained by iterating until convergence. This can 
save considerable computation time for large data sets. 

6.6g. When ties occur among the differences y, - b'x¿, we need to specify 
how to assign their ranks. We used midranks in our calculations for the 
education expenditure data. But if there are not many ties, it should not 
make much difference how ties are handled. To avoid calculation of midranks, 
one could break ties in some arbitrary manner such as according to the order 
of their indices. 

6.7a. Test statistic FNP in (6.8) was introduced by McKean and 
Hettmansperger (1976). Also see Hettmansperger (1984, Subsection 5.3.1). 
To see that our formula for FNP agrees with Hettmansperger's book, note 
that his sum of rank-weighted residuals in (5.2.5) using a(i) from (5.2.11) is 
equal to our SRWR multiplied by / Ü / í « + 1). If we had used his definition 
of SRWR, we would have defined c = | in (6.8). 

In Chapter 6 we estimate β by minimizing g(A) = La(r,)e, with a(r) = r 
— j(n + 1); whereas Hettmansperger (1984) and others use a(r) = [vT2/(n 
+ !)]['' - ΐ ( ι + 1)]. Of course the constant factor \[\2/{n + 1) does not 
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affect the minimization. The factor serves simply to standardize the scores 
a(r) so that the average of the squared scores is approximately 1. (The 
average of the squared scores is exactly equal to (n - l ) / ( « + 1); see Note 
6.4d.) 

6.7b. Two other tests are available for testing the coefficients in a multiple 
linear regression model: the aligned rank test, proposed by Koul (1970) and 
developed by Sen and Puri (1977) and Adichie (1978), and the Wald test, 
proposed by Hettmansperger and McKean (1983). 

The aligned rank test can be described in terms of the function g(b) in 
(6.7). Recall that the estimation procedure in Section 6.6 is based on the fact 
that the minimum of g(b) should occur for a vector that is near the 
parameter vector ß. This implies that the partial derivatives of gib) should 
be close to 0 at b = ß; that is, (dg/dbj)(ß) « 0. To test the hypothesis 
ßq+i = · · · = ßp = 0, we first estimate ß under the assumption that the 
hypothesis is true, by applying the procedure in Section 6.6 to the reduced 
model to obtain / § , , . . . , / § , and setting ßq+, = · · · = ßp = 0. Let ß() de-
note this vector of estimates. If the hypothesis is true, then the vector S2 with 
entries (dg/dbj)(ß{)), j = q + \,...,p, should be near 0. The aligned rank 
test statistic is A = S'2V-XS2, where V = X'c2Xc2 - X'c2XcX(X'^Xc])-

sX'clXc2 

and Xcl and Xc2 are, respectively, columns 1 through q and columns q + 1 
through p of the matrix Xc of centered explanatory variables. The hypothe-
sis is rejected if A is too large. The p-value is calculated from the chi-squared 
distribution with p — q degrees of freedom. See Hettmansperger (1984, 
Section 5.3.2). The phrase "aligned rank" comes from the fact that the test 
involves the ranks of the residuals y, - fi'0x¡, which can be regarded as 
alignments of the observations y,. An aligned rank test uses ranks of 
residuals, whereas a "pure" rank test uses the ranks of the observations. 

The Wald test of the hypothesis ßq+t = · · · = ßp = 0 is based directly 
on the vector of estimates ß2 = (ßq+i,..., βρ) from the full model. If the 
hypothesis is true, then β2 should be near 0. The Wald test statistic is 
W = ß'2Vß2/(p - q)i2, where V is from the preceding paragraph and f is 
obtained from (6.9). The hypothesis is rejected if W is too large. The p-value 
is calculated from the F distribution with p - q and n — p — \ degrees of 
freedom. See Hettmansperger (1984, Section 5.3.3). 

All three tests are equivalent for infinitely large samples. In simulation 
studies with finite samples, Hettmansperger and McKean (1983) found the 
test in Section 6.7 to be more stable in its validity and power (see Note 3.5b). 
The aligned rank test avoids the problem of estimating τ. 

6.7c. Formula (6.9) for estimating τ is recommended by Hettmansperger 
and McKean (1983, Section 4). The factor / is ad hoc and has no theoretical 
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justification. In simulated examples, / was found to improve the accuracy of 
the p-value. See Draper (1988, Section 4) for a review of results on the 
estimation of τ. 

6.7d. Test statistic FNP, regarded as a random variable, has approximately 
the same distribution as G/(p - q), where G has a χ2 distribution with 
p - q degrees of freedom, provided the null hypothesis ßq+t = · · · = ßp = 
0 is true and the sample size n is large. (See Hettmansperger, 1984, Theorem 
5.3.1.) To be more mathematically precise, for any fixed number c, the limit 
of Prob[^NP ^ c i approaches Prob[G/(p — q) > c] as n becomes very large. 

There is no theoretically justified connection between FNP and the F 
distribution, but nevertheless in a number of examples having smaller sample 
sizes, statistical researchers have found that a more accurate approximation 
of the p-value is obtained if the F distribution with p - q and n - p - 1 
degrees of freedom, rather than G/(p - q), is used to approximate the 
distribution of F N P (see Hettmansperger, 1984, p. 266). 

6.7e. The matrix W is defined to be the p X p matrix obtained from 
(X'X)~l by omitting the first row and first column. Another way to obtain W 
is as W = {X'CXC)~X, where Xc is the matrix of centered explanatory vari-
ables. The value xu of the ;th explanatory variable for the ith unit is 
centered by subtracting the average x¡ of the y'th explanatory variable for all 
n units. 

Express X in partitioned form as X = (1, Z), where 1 is a column of l's 
and Z is the matrix of explanatory variables. Then 

n I'Z 
Z' l Z'Z 

In the case of simple regression, Z is a vector and X'X is a 2 X 2 matrix, 
which is easy to invert. The entry that is left after omitting the first row and 
column of (A"*)" 1 is n/[n(Z'Z) - (Z'D(l'Z)] = [Z'Z - {\/n)Z'\VZY\ It 
can be shown that this formula also holds for multiple regression, that is, 
W = [ Z ' Z - ( l / n ) Z ' l l ' Z ] - ' . 

The matrix Xc of centered variables is obtained by subtracting from each 
entry of Z the average of the entries in that column. In matrix terms, 
Xc = Z - ( l / n ) l l 'Z . (The row vector VZ contains the p sums of the columns 
of Z, the row vector (1/«)1'Z contains the p averages of the columns of Z, 
and ( l / n ) l l ' Z repeats the row of averages n times.) A little matrix algebra 
shows that X'CXC = Z'Z - (l/n)Z'U'Z. 

6.7f. We have defined two estimates of β0. Let d¡ = y¡ - (/3,JC(1 

+ · · · +ßpxip) and define /3(
n

d) to be the median of the i/,'s and ß{fd) to be 

XX = 11 
Z'l 

I'Z 
Z'Z 
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the median of the pairwise averages (d¡ + d¡)/2. The second estimate is 
appropriate only if the error distribution is approximately symmetric. If 
symmetry holds, then, at least when the sample size is large, ß\fd) has a 
smaller SD than ß[f) if and only if the parameter τ satisfies τ < 1/(20), 
where Θ is the probability density of the error distribution at 0. (See 
Hettmansperger, 1984, pp. 250-251.) The quantity 1/(20) appears in LAD 
regression in a role similar to that of τ in nonparametric regression. (In 
Chapter 4 the symbol τ is used to denote the quantity 1/(20).) 

6.7g. Let us show that τ/σ = 1.023 when the error population has a 
normal distribution. If the distribution of a randomly selected error is normal 
with standard deviation σ, then the distribution of the difference of two 
randomly selected errors is normal with standard deviation 4ΐσ. Hence the 
probability density function for the error differences is 

Now y = / ( 0 ) = I/JÄTTO1 and τ = 1/(νΎ2~γ) = σ{τφ, so τ/σ = 
VTT/J = 1.023. 

6.7h. Let p = Prob[/l( j t i ) < μ <A(ki)]. We can show that p = 0.90. Note 
that the event A(k) < μ is equivalent to the event that at least k of the 
pairwise averages A¡ are less than μ. Therefore, letting x be the number 
of pairwise averages that are less than μ, we can write p = Prob[fe, < x < 
k2]. To adjust for the discreteness of x, we write this probability as 
Prob[fc, - \<x < k2 - j]. 

Now we use the fact (see Hettmansperger, 1984, p. 39) that x has a 
distribution that, at least for large n, is approximately normal with mean a 
and standard deviation b. Hence 0.90 = Prob[a - (1.645)fe < x < a + 
Ü.645)¿>] = ProbU, - \ < x < k2 - ¡] = p. 

Note that the two confidence intervals that we have compared in order to 
justify formula (6.9) are both based on normal approximations. To construct 
the interval from μ - (1.645)f/ Jñ to μ + (1.645)f/\/«\ we approximated 
the distribution of μ by a normal distribution. To construct the interval from 
A{k ) to A{k }, we approximated the distribution of x by a normal distribu-
tion. 

Additional Reading. To read more about nonparametric regression, see 
the books by Hettmansperger (1984, Chapter 5) and Puri and Sen (1985, Part 
2). The first book is a little more oriented toward application. For a review of 
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nonparametr ic regression methods, see the articles by Aubuchon and 

Het tmansperger (1984) and Draper (1988). 
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C H A P T E R 7 

Bayesian Regression 

7.1 INTRODUCTION 

The Bayesian approach to statistical analysis is different from the usual 
"classical" approach. In the classical approach, the data are the only source 
of information explicitly taken into account in constructing an estimate or 
test. In the Bayesian approach, an estimate or test is produced by combining 
the current data with information from past experience. 

The basic formula that is used to incorporate past knowledge into statisti-
cal analysis was discovered by Thomas Bayes around 1760. Perhaps the first 
application to regression problems was made by Harold Jeffreys in 1939. 

7.2 THE BAYESIAN APPROACH 

The Bayesian approach is a general scheme that can be applied to a wide 
variety of statistical problems. Before applying it to regression problems, let 
us outline its general features. In order to analyze a set of data, we usually 
postulate a statistical model for it. For notation, let y denote the vector 
containing the data and let Θ denote the vector of unknown parameters of 
the model. (In a simple regression problem, y = (y,, y2,..., y„) and Θ = 
(a, β, σ).) We want to use the data y to estimate, or test hypotheses about, 
some of the parameters in Θ. 

The statistical model states that the data vector y, regarded as a random 
variable, has a certain probability distribution for each fixed value of the 
parameter vector Θ. (The simple normal linear regression model states that, 
for fixed values of a, β, and σ, the distribution of y, is normal with mean 
a + jßjc, and variance σ2 and the y ¡'s are independent of one another.) The 
distribution of y for a fixed value of Θ is called the conditional distribution of 
y given Θ. In the Bayesian approach, we must also specify a distribution for Θ. 
Before looking at the data, we must assess what we know or believe about 
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likely values for the parameters and translate this knowledge or belief into 
the form of a probability distribution for 0. This is called the prior distribu-
tion of Θ. The next step is to combine the prior distribution of Θ and the 
conditional distribution of y given Θ to obtain the conditional distribution of 
Θ given y. For the particular data vector y that is observed, this is called the 
posterior distribution of Θ. In this way, prior information about the parame-
ters is updated by current data to yield posterior information. 

Bayes's formula provides a means of combining the distributions of Θ and 
of y given Θ to obtain the distribution of Θ given v. Often these distributions 
are presented in terms of their probability density functions /(0), f(y\e), and 
f(e\y). Bayes's formula says that 

f(e\y) = Cf(e)f(y\e) (7.1) 

where C is a quantity that does not involve Θ. 
Bayesian estimates of, or tests of hypotheses about, the parameters in Θ 

are obtained from the posterior distribution of Θ. For example, we can 
estimate Θ by the mean of its posterior distribution. 

7.3 AN EXAMPLE OF SIMPLE REGRESSION 

Due to weather patterns in the northwest corner of the United States, 
rainfall in Seattle is related to rainfall in Portland. To investigate this 
relationship in more detail, let us consider the data in Table 7.1. It lists the 
annual amounts of rainfall (in inches) in both cities for the years 1980 
through 1990. 

Table 7.1 Rainfall Data 

Year 

1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

Rainfall 
in Seattle 

(Y) 

35.60 
35.40 
39.32 
40.93 
36.99 
25.13 
38.34 
29.93 
32.98 
34.69 
44.75 

Rainfall 
in Portland 

(X) 

42.41 
34.29 
43.04 
47.19 
37.50 
22.48 
35.04 
29.91 
31.72 
30.05 
32.86 

Source: NOAA (1990). 
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Figure 7.1 Plot of the rainfall data. 

A plot of the 11 data points, with the coordinates x = rainfall in Portland 
and y = rainfall in Seattle, is shown in Figure 7.1. The overall pattern of the 
plot is roughly linear. By applying the simple linear regression model Y = 
a + ßX + e to these data, we will be able to see how well the annual rainfall 
in Seattle can be expressed as a linear function of the annual rainfall in 
Portland. 

7.4 ESTIMATING THE REGRESSION LINE 

First we must specify a probability distribution for the data vector. The most 
widely used distribution is the normal distribution. Let us assume the normal 
linear regression model. Then, given the parameters a, ß, and σ, the data 
vector y = (y , , . . . , y„) has a multivariate normal distribution. 

The Bayesian method also requires that we specify a joint prior distribu-
tion for the parameters a, β, and σ. Theoretically speaking, any distribution 
can be chosen as the prior distribution. But practically speaking, calculation 
is much easier if we choose a prior distribution that conveniently combines 
with the distribution of the data vector when we calculate the posterior 
distribution. Two types of prior distributions are presented below. 

Bayesian estimation is not much simpler to justify for simple regression 
than for multiple regression, and so parts of the justification are deferred to 
Section 7.7. 

Using a Noninformative Prior Distribution. The prior information or 
belief that a person has about the parameters depends on the person. 
Suppose we have no prior information or belief. That is, before looking at the 
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data in Table 7.1, suppose we have no idea what the values of a, ß, and σ 
might be, other than that σ must be positive. Here we need a "noninforma-
tive" prior distribution that expresses our ignorance. For this purpose it is 
common to use the density function 

/ ( α , / 3 , σ ) = 1/σ (7.2) 

This is essentially saying that, as far as we know before looking at the data, 
all values of a are equally likely, all values of β are equally likely, and all 
values of log σ are equally likely. 

It can be argued that no prior distribution is completely noninformative. 
For instance, having no prior information about σ would seem to be the 
same as having no prior information about log σ. Yet when we try to 
formulate these two seemingly equivalent statements of prior ignorance, we 
use the density function f(a) = 1 to formulate the idea that all values of σ 
are equally likely, and we use the density function / ( σ ) = l / σ to formulate 
the idea that all values of log σ are equally likely. These two prior distribu-
tions are not the same. Rather than call (7.2) a "noninformative" distribu-
tion, we could think of it as a "standard" or "default" prior distribution. 

Strictly speaking, (7.2) is not a probability density function, since its 
integral, for a and ß ranging over all real numbers and σ ranging over all 
positive numbers, is not 1 but oo. Therefore (7.2) does not specify a valid 
probability distribution for the parameters. Nevertheless, if we go ahead and 
follow the procedure outlined in Section 7.2, we find that the product 
f(a, ß,a)f(y\a, β,σ) is proportional to a valid probability density function 
/ ( α , β, σ\γ), thus yielding a valid posterior distribution. 

Bayes Estimates. The Bayes estimates of a and β are taken to be the 
expectations of a and β under the posterior distribution. These turn out to 
be exactly the same as the least-squares estimates in (3.2). A verification of 
this fact is outlined in Section 7.7. Although the Bayes and least-squares 
estimates are the same, the reasons behind them are very different. 

The Rainfall Data. If we admit prior ignorance about the regression line 
and use (7.2), then the Bayes estimates of a and β are simply the least-squares 
estimates. Applying formulas (3.2), we estimate the regression line to be 
Y = 18.03 + 0.5063 X. 

Using a Conjugate Prior Distribution. Now suppose we have prior infor-
mation about the parameters. It is convenient for the purpose of calculation 
to express this information in terms of a "conjugate" prior distribution. A 
conjugate prior distribution is one that combines with the distribution of the 
data vector to yield a posterior distribution that has the same form as the 
prior distribution. When the data vector has a multivariate normal distribu-
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tion, it turns out that if we let the conditional distribution of (a, ß) for each 
given value of σ be a bivariate normal distribution and let the distribution of 
l /σ 2 be a gamma distribution, then this constitutes a conjugate prior 
distribution for the parameter vector {a, β,σ). By using a conjugate prior 
distribution we will be able to obtain explicit formulas for the expectations of 
a and β under the posterior distribution. 

Quantifying Prior Information. The decision to use a prior distribution 
from the family of conjugate distributions is not based on prior information 
but simply on convenience. Our prior information about the parameters 
enters the procedure when we select a particular conjugate distribution. For 
instance, we might quantify our prior information by specifying the expecta-
tions, standard deviations and correlation of a and β given σ and the 
expectation and standard deviation of 1/er2. If we are only interested in 
calculating estimates of a and β, as in this section, it is not necessary to 
specify the expectation and standard deviation of I/o·2. 

Rather than translate our prior information into a distribution for a and 
β, it may be easier, and is equivalent, to translate it into a prior distribution 
for μ and β, where μ = a + ßxm and xm is a "middle" Jt-value. Note that μ 
is the height of the regression line near the middle of the data. It would often 
be reasonable to regard our prior information about μ to be independent of 
our prior information about β, the slope of the regression line. One case in 
which this assumption of independence is especially suitable is when our 
prior information comes from a previous least-squares analysis of similar 
data. In a normal simple linear regression model, if xm is the average 
Jt-value, then β^ and /3LS are independent. 

Bayes Estimates. Let μ = a + βχ; that is, take xm to be the average 
Λτ-value in the current data set. Suppose that, based on previous information, 
we specify a conjugate prior distribution in which, conditional on a given 
value of σ, the expectations of μ and β are εμ and eß and their standard 
deviations are εμσ and cßa. Let the prior distributions of μ and β be 
independent. The Bayes estimates of a and β are given by the expectations 
of a and β under the posterior distribution: 

a = μ — βχ 

ß = (-ΓΓ7Τ7 W " + -2LlVX) -^ W (73) 

\cß
2 + Σ(χ,-x) j \cß

2+ L(xi-x) j 
where 

and ßus is the least-squares estimate calculated from the current data. 
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Reasonableness of Formulas (7.3). These formulas show how past knowl-
edge and current data are combined. The Bayes estimate of ß is a weighted 
average of eß, the prior expected value of ß based on past knowledge, and 
JSLS, the least-squares estimate of ß based on the current data. The weights 
are sensible in so far as more weight is put on the current data when there 
are more data, so that Σ(χ, - x)2 is larger, or when the prior knowledge is 
more imprecise, that is, cp is larger. The Bayes estimate of μ is a similar 
weighted average of the prior expected value based on past knowledge and 
the least-squares estimate based on the current data. (Note that y = μ^.) 

The Rainfall Data. Results are available from a previous regression 
analysis of annual rainfall in Seattle and Portland for the years 1950 through 
1979. Let the subscript "0" identify these previous results. The numbers we 
need for our prior distribution are ά0 = 5.513, β0 = 0.8961, SD(á0) = 
1.140σ, SD(/30) = 0.02986<r, and the correlation CorK«0, j80) = -0.9871. 
(These numbers do not completely specify the prior distribution, but they are 
all we need for the purpose of estimating a and ß.) In order to use formulas 
(7.3), we let μ = a + 35.14)8, where 35.14 is the average rainfall in Portland 
for the current data. Then μ0 = 5.513 + (35.14X0.8961) = 37.00 and 
SD(/L0) = 0.1977σ. The number 0.1977 is the square root of (1.140)2 + 
(35.14)2(0.02986)2 +2(35.14X1.140X0.02986X-0.9871). To specify a prior 
distribution for the parameters it makes sense to let μ have expectation 37.00 
and standard deviation 0.1977σ (conditional ο η σ ) and let β have expecta-
tion 0.8961 and standard deviation 0.02986σ. In order to illustrate the use of 
(7.3) we suppose that the prior distributions of μ and β are independent. 
Note, however, that the estimates μ0 and ¡30 are not exactly independent 
because the average ¿-value in the previous data is not exactly 35.14. 

Next, from the current data, we calculate y = 35.82, /?LS = 0.5063, and 
£(*, - x)2 = 497.2. Now we can use formulas (7.3) to obtain the Bayes 
estimates of a and β. We calculate 

(0.02986) _ 2 / [(0.02986)~2 + 497.2] = 0.6929 

β = (0.6929)(0.8961) + (1 - 0.6929)(0.5063) = 0.7764 

(0.1977) ~2/[(0.1977) ~2 + l l ] = 0.6993 

μ = (0.6993)(37.00) + (1 - 0.6993)(35.82) = 36.65 

a = 36.65 - (0.7764)(35.14) = 9.363 

Thus the Bayes estimate of the regression line is Ϋ = 9.363 + 0.7764λ\ 
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7.5 TESTING ß = O 

In the Bayesian approach to testing a hypothesis, rather than calculate a test 
statistic and its p-value, we calculate the probability, according to the 
posterior distribution, that the hypothesis is true. 

Posterior Probabilities and p-Values. In the classical approach to testing 
a hypothesis, we calculate a p-value. It is easy to slip into the error of 
thinking that the p-value is the probability that the null hypothesis is true. 
Although a p-value can be interpreted as a probability, recall that it is the 
probability of a different event. Imagine that the experiment is repeated and 
let D* denote the event that the data from the repeated experiment yields a 
test statistic as large or larger than the test statistic obtained from the actual 
experiment. Let H denote the null hypothesis. The p-value is Prob(D*|//), 
the probability that the test statistic in the repeated experiment would be as 
extreme as the actual observed test statistic, figured under the assumption 
that H is true. The posterior probability of the null hypothesis, on the other 
hand, is Prob(// |D), where D denotes the event that the data in the repeated 
experiment are the same as the actual observed data. So the p-value and the 
posterior probability both can be regarded as conditional probabilities involv-
ing the hypothesis H and the data D but with the conditioning done in 
opposite directions. 

In the classical approach it is not meaningful to ask about the probability 
of H, and so the reasoning of the test is somewhat indirect. In the Bayesian 
framework, however, it is possible to directly calculate Prob(//|D). To do this 
calculation we need to know the distribution of the data vector conditional 
on the parameter values, which we continue to assume is a multivariate 
normal distribution, and the prior distribution of the parameters, which we 
must now specify. 

The Prior Distribution. Neither of the two prior distributions that were 
used in the preceding section to obtain Bayes estimates of the regression line 
is suitable to use for testing the hypothesis ß = 0. These distributions spread 
their probability continuously over the parameter set and hence must assign a 
probability of 0 to any subset of lower dimension. Note that the set {(α, β, σ): 
a any number, β = 0, σ > 0} of parameters described by the null hypothesis 
is planar and has dimension 2, whereas the whole parameter set {(α, β, σ): a 
and β any numbers, σ > 0} has dimension 3. Therefore a continuous prior 
distribution on the parameter set must assign a prior probability of 0 to the 
null hypothesis, which implies that the posterior probability of the null 
hypothesis must also be 0. With such a prior distribution we would always 
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conclude β Φ 0, regardless of the data. So we need a prior distribution that 
assigns positive probability to the null hypothesis. 

In this section We consider only the situation in which no prior knowledge 
about the parameters is available. We will formulate a prior distribution that 
seems reasonable in such a situation. Reparameterize the model as 

yi = ß+ß(xi-x)+ei (7.4) 

where μ — a + βχ. The reason for using model (7.4) rather than y,¡ = a + 
ßXj + e¡ is that it is more justifiable to suppose that μ and β are indepen-
dent than that a and β are (see the subsection on quantifying prior 
information in Section 7.4). This independence simplifies the presentation of 
the prior distribution. 

The null and alternative hypotheses correspond, respectively, to the sets 
H0 = {(μ, β, σ): μ any number, β — 0, σ > 0) and Ha = {(μ, β, σΥ μ any 
number, β Φ 0, σ > 0). We can use the following prior distribution: 

Prob(H0) = i , Prob(7/e) = \ (7.5a) 

ί(μ,σ\Η0) = I/o- (7.5b) 

β(μ,σ\Ηα) = 1/σ (7.5c) 

/(β\μ,σ,Ηα) = αε - * 2 ^ > (7.5d) 

where c = l/(V2irr) and υ = ησ2/Σ(χ, — i ) 2 . 

Justification of the Prior Distribution. In the absence of prior informa-
tion it seems reasonable to assign equal prior probabilities to the null and 
alternative hypotheses, as in (7.5a). The density function (7.5b) spreads out 
the probability \ over the set H0 in the same noninformative manner as (7.2). 

It makes sense to choose a noninformative prior distribution over the set 
Ha too. But the fact that Ha involves ß in addition to μ and σ complicates 
the matter. Recall that (7.2) is an improper density function because its 
integral is not 1 but °°. So it would be equivalent to let the density function be 
c/σ for any positive constant c, not necessarily 1. If we chose noninformative 
distributions similar to (7.2) over both sets H0 and Ha, their density func-
tions would be / (μ, σ\Η0) = cQ/a and / (μ, β, σ\Ηα) = ca/a, respectively, 
but since they are distributions over different sets (even having different 
dimensions), there is no reason to choose c0 to be equal to ca. Unfortunately, 
the posterior probability of the null hypothesis would very much depend on 
the relative sizes of c0 and ca, and there seems to be no noninformative way 
to choose them. 

So we must come up with a different kind of noninformative distribution 
for Ha. Ignoring ß for the moment, it is reasonable to choose the same 
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noninformative prior distribution for μ and σ when assuming the alternative 
hypothesis as when assuming the null hypothesis. This is done in (7.5c). It 
remains to discuss (7.5d). 

Justification of (7.5d). The density function in (7.5d) is that of a normal 
distribution with mean 0 and variance v. The choice of a normal distribution 
is for convenience. Also, in similar but simpler testing situations it has been 
found that the shape of the distribution is not crucial. As for the mean of the 
distribution, since 0 is the hypothesized value of β, it is sensible to have the 
alternative values distributed around a central value of 0. 

Now consider the choice of v. One way we might attempt to obtain a 
"noninformative" distribution is to let the variance υ be very large, so that 
the probability is spread out over a wide range and the density is almost 
constant. However, if we let υ tend to °o, the posterior probability of the null 
hypothesis becomes 1, regardless of the data. Again we run into difficulty in 
trying to formulate a noninformative prior distribution. 

The reason for this difficulty is in the difference between an estimation 
situation and a testing situation. When we are estimating the value of ß, we 
may sometimes be in a position of complete prior ignorance about its value, 
but when we are testing the hypothesis ß = 0, then the fact that we have 
hypothesized the particular value 0 seems to imply at least some prior 
knowledge or belief. To express a very small amount of prior knowledge, we 
might suppose that our knowledge is equivalent to the amount of information 
in a single observation. Being given a single observation still leaves us in 
ignorance with respect to testing, because it does not provide any basis for 
deciding between ß = 0 and β Φ 0. The distance of the observation from 0 
could be attributed equally well to either random error or a nonzero value of 
ß, because a single observation gives no information at all about how big the 
random error might be. Now, what value should be chosen for the variance of 
the prior distribution of ß in order to reflect prior knowledge equivalent to 
one observation? 

We can use the concept of Fisher information. If we assume that the 
sample y , , . . . , y„ comes from a normal distribution and that the value of σ 
is given, then the amount of Fisher information about ß in the sample is 
equal to the precision (that is, the reciprocal of the variance) of the least-
squares estimate of β, which is Σ(χ, - χΫ/σ1. This is a reasonable concept 
of information, since the more precisely we can estimate β, the more 
information we must have about it. We might say that the amount of Fisher 
information about β contained in a single observation is one nth part of 
the information in the whole sample, namely, £(*, — χ)2/(ησ2). Equating 
information with precision, we take this to be the precision of the prior 
distribution of β, conditional on a, when assuming the alternative hypothe-
sis. Its reciprocal is the variance v in (7.5d). 
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Description of the Test. A Bayesian test of ß = 0 can be performed by 
calculating the posterior probability of the null hypothesis, based on the prior 
distribution described in (7.5). The posterior probability can be expressed in 
terms of the sample correlation between x and y. 

1 
Prob(//0 |y) = j - (7.6) 

where 

»-«"^['-(¡ΓΤΪΗ"" 
and r is the correlation coefficient 

L ( ^ - i ) ( y , - y ) / v / E ( x , - J e ) 2 E ( y / - y ) 2 . 

The posterior probability can also be expressed in terms of the least-squares 
test statistic t^ in (3.5), because 

1 
n - 2 

1 + — T -

Justification of Formula (7.6). The formula for the posterior probability 
can be seen to be reasonable by considering its dependence on the sample 
correlation coefficient r. We see that Prob(//0 |y) is a decreasing function of 
\r\. This makes sense, because the larger \r\ is, the more highly correlated x 
and y are, hence the stronger the relationship between them, hence the 
stronger the evidence against β = 0, hence the smaller the posterior proba-
bility of H0 should be. 

Consider the extreme case when r = 0. This indicates that there is no 
relationship between x and y, which corresponds to β = 0, and so the 
posterior probability of HQ should be close to 1. Indeed, when r = 0, 
Prob(//0 |y) = 1 - 1/(1 + fn + 1). For n > 5 this is larger than 0.70. At the 
other extreme, if r = ± 1 , this indicates a strong relationship between x and 
y, which corresponds to β =É 0, and so the posterior probability of H0 should 
be close to 0. When r = ± 1 , Prob(//0 | j ) = 1/(1 + (\/n - 1 )"~2). For n > 5 
this is smaller than 0.07. 

The actual derivation of (7.6) involves some messy integration. A brief 
outline of the derivation for multiple regression is given in Section 7.8. 
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The Rainfall Data. Let us test whether there is a significant relationship 
between the yearly rainfall in Portland and in Seattle. The correlation 
coefficient is r = 0.6695, so g = 12[1 - Jj(0.6695)2]10 = 0.06044 and the 
posterior probability of the null hypothesis is 1/(1 + 1/ νΌ.06044) = 0.1973. 
Thus, starting with the noninformative prior distribution (7.5), which assumes 
that the null hypothesis has a 50% chance of being true, and revising this 
probability in the light of the data, we conclude that the null hypothesis has 
only a 20% chance of being true. 

7.6 AN EXAMPLE OF MULTIPLE REGRESSION 

A study was conducted to assess the effect of several factors on the rate at 
which a machine can rut asphalt pavement. The factors were: the viscosity of 
the asphalt, transformed by the logarithm function, (Xt), the percentage of 
asphalt in the surface (X2), the percentage of asphalt in the base (X3), the 
percentage of fines in the surface (A",,), and the percentage of voids in the 
surface (X5). The response variable (Y) was the logarithm of the number of 
inches of change in the rut depth per million wheel passes. The regression 
model is Y = ßn + β,Λ", + β2Χ2 + β3Χ3 + β4Χ4 + β5Χ5 + e. Logarithms 
were taken of the viscosity and the rutting rate based on experience with past 
data and on plots of the current data. The data are shown in Table 7.2. 

Table 7.2 Pavement Data 
Identi-
fication 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Log of 
Rutting 

R a t e ( y ) 

-0.119 
0.130 
0.158 
0.204 
0.041 

-0.071 
0.079 

-0.252 
-0.143 
-0.328 
-0.481 
-0.585 
-0.119 
-0.097 

0.301 

Log of 
Viscosity 

(* , ) 

1.944 
1.792 
1.699 
1.763 
1.954 
1.820 
2.146 
2.380 
2.623 
2.699 
2.255 
2.431 
2.230 
1.991 
1.544 

Asphalt (%) 
in Surface 

(X2) 

4.97 
5.01 
4.96 
5.20 
4.80 
4.98 
5.35 
5.04 
4.80 
4.83 
4.66 
4.67 
4.72 
5.00 
4.70 

Asphalt (%) 
in Base 

(*3> 

4.66 
4.72 
4.90 
4.70 
4.60 
4.69 
4.76 
4.80 
4.80 
4.60 
4.72 
4.50 
4.70 
5.07 
4.80 

Fines (%) 
(X4) 

6.5 
8.0 
6.8 
8.2 
6.6 
6.4 
7.3 
7.8 
7.4 
6.7 
7.2 
6.3 
6.8 
7.2 
7.7 

Voids (<; 

(*5> 

4.625 
4.977 
4.322 
5.087 
5.971 
4.647 
5.115 
5.939 
5.916 
5.471 
4.602 
5.043 
5.075 
4.334 
5.705 

Source: Daniel and Wood (1980, p. 110). 
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7.7 ESTIMATING THE REGRESSION COEFFICIENTS 

Let us apply the Bayesian approach to estimating the coefficients in the 
linear regression model proposed above for the pavement data. Using vector 
and matrix notation, we let y denote the vector of response variables, X the 
matrix of explanatory variables, and ß the vector of regression coefficients. 
For fixed values of the parameters ß and σ, assume y has a multivariate 
normal distribution. As we did in Section 7.4, we try two different prior 
distributions for the parameters, a noninformative distribution and a conju-
gate distribution. 

Using a Noninfbrmative Prior Distribution. Suppose we have no previ-
ous information about pavement rutting rates. As argued in Section 7.4, a 
prior distribution that can be used to express our ignorance is given by the 
density function 

β(β,σ) = 1/σ (7.7) 

The Bayes Estimate. The Bayes estimate of the parameter vector β is the 
expectation of β under the posterior distribution. This expectation turns out 
to be exactly the same as the least-squares estimate in (3.8). 

To see why this is so, we use Bayes's formula. Usually Bayes's formula 
would be used to obtain the posterior distribution of all the parameters, β 
and σ. But in this section we are interested in β and not in σ, and it is 
simpler to look at the posterior distribution of β conditional on σ. We can 
denote the probability density function of this distribution by f(ß\y,a). 
Bayes's formula (7.1), with ß in place of 0 and with all distributions 
conditional on σ, says that 

f(ß\y,<r) = Cf(ß\a)f(,\ß,a) (7.8) 

where C is a quantity that does not involve ß. Since f(ß, σ) does not involve 
β, neither does f(ß\a). Hence f(ß\y,σ) = Cf(y\ß,σ), where C again 
denotes a (different) quantity that is constant with respect to β. (Throughout 
this section, C is used to denote such quantities.) We can determine the 
distribution of β by inspecting f(y\ß, σ). 

We are assuming that f(y\ß,a), regarded as a function of y, is the p.d.f. 
of a multivariate normal distribution with mean vector Xß and variance-
covariance matrix σ2Ι (where / denotes the identity matrix): 

Í - i 
f(y\ß,<r) = Cexp —-JIIJF - Xß\\2 

2σ 
(7.9) 
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(For a vector v, the notation ||r|| denotes the length of the vector, that is, 
IIHI = yLv? = vV'f.) In a least-squares analysis, the residual vector y — 
Xßis is perpendicular to all the columns of the regression matrix X, which 
implies that \\y - Xß\\2 = \\y - Xß^W2 + WXßis ~ Xßf- (This is the 
Pythagorean theorem.) Therefore 

f(ß\y,a) = Cexp| ^ 1 1 * 0 ^ - Xß\\ 
- 1 . 

= Cexp 

2σ 

- 1 

2σ' 
(β - ßls)'rx(ß - β^) (7.10) 

We now see that the p.d.f. of the posterior distribution of ß conditional on <r 
is the p.d.f. of a multivariate normal distribution with expectation vector ßls 

and variance-covariance matrix σ2(Χ'Χ)~χ· 
In particular, the posterior expectation of β conditional on σ is the 

least-squares estimate β^. Since it does not depend on σ, it is the posterior 
expectation of β (without conditioning on <r), and hence is the Bayes 
estimate. 

The Pavement Data. If we have no prior knowledge or belief about the 
regression coefficients in our model, we can use the noninformative prior 
distribution (7.7). Then the Bayes estimate of ß is simply the least-squares 
estimate. Applying formula (3.8) we estimate the regression equation to be 
Ϋ = -3.362 - 0.5817*, + 0.3529*2 + 0.3831 X3 - 0.009064*4 + 0.1964*5. 

Using a Conjugate Prior Distribution. Data are available from a previous 
study of pavement rutting. This additional information is especially welcome 
since the size of our sample is somewhat small, only 15. With a small sample, 
regression estimates are apt to be imprecise. The Bayesian approach allows 
us to incorporate previous information, which essentially has the effect of 
increasing the size of the sample and hence increasing the precision of the 
regression estimates. 

The previous data were collected under different conditions and so it may 
not be appropriate to simply combine both data sets, but the previous study 
does give us some idea of what might be expected from the current study. We 
must express the information provided by the previous study in the form of a 
prior distribution for the parameters. 

For the purpose of estimating ß, it is not necessary to specify the entire 
prior distribution of ß and <r; it is enough to give the prior distribution of ß 
conditional on σ. After we specify a prior p.d.f. /(/3|<r), we will combine it 
with the p.d.f. (7.9) of the data vector, by means of formula (7.8), to obtain 
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the posterior p.d.f. of Ö conditional on σ. With this in mind, it is convenient 
to choose the prior p.d.f. to have a form that combines nicely with (7.9). 

Let us take the form of the prior distribution of β conditional on σ to be 
multivariate normal; that is, 

/ ( f i k ) = Cexp 
1 

2σ 
(β - b)'V~\ß - b) (7.11) 

with some mean vector b and a variance-covariance matrix a2V propor-
tional to σ2. We will choose b and V to reflect our prior knowledge. 

Specifying the Prior Information. Based on previous information we 
want to specify a mean vector and variance-covariance matrix for the prior 
distribution of β. For the mean vector b we can choose the estimate of β 
obtained from the previous study, which is 

* = ( - 3 . 5 5 , -0.44,0.64,0.13,0.041,0.14) (7.12) 

For the variance-covariance matrix a2V, we can base our choice of V on the 
estimated variance-covariance matrix of the estimate of ß from the previous 
study. Let W denote this latter matrix. We might, for instance, take V — 
aW/s2, where s2 is the estimated variance of the random errors in the 
previous study, and A is a factor greater than 1, which reflects our uncertainty 
about how directly relevant the previous study is. Suppose we take a = 4. 
Then 

K = 

1690 
- 3 8 

- 1 7 4 
-110 

- 1 0 
- 4 7 

- 3 8 
4.07 
3.46 
3.23 
0.47 
0.23 

-174 
3.46 

19.81 
8.88 
1.15 
5.31 

- 1 1 0 
3.23 
8.88 

12.47 
-0 .17 

1.56 

- 1 0 
0.47 
1.15 

-0 .17 
0.60 
0.15 

- 4 7 
0.23 
5.31 
1.56 
0.15 
2.69 

(7.13) 

The Bayes Estimate. The Bayes estimate of the parameter vector ß is the 
expectation of ß under the posterior distribution. This expectation is 

ßBVc = y*y~'i' + y*x'xßi (7.14) 

where 

V* = (K"1 +X'X) 
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Justification of (7.14). The posterior distribution of ß conditional on σ 
can be obtained as follows. Since our prior distribution is different, (7.10) is 
no longer valid for f(ß\y,a), but it is still a valid expression for f(y\ß, σ). 
We multiply this by (7.11) in accordance with formula (7.8). The product can 
be manipulated, using the technique of "completing the square", to obtain 

f(ß\y,a) =Cexp 7 i ( / » - * * ) V ( P - * . ) 

where b* is the vector displayed in (7.14). This shows that the posterior 
distribution of ß conditional on σ is multivariate normal with mean vector 
b* and variance-covariance matrix σ2ν*. 

Therefore the posterior expectation of β conditional on σ is b#. Since it 
does not depend on σ, it is also the posterior expectation of β uncondition-
ally, and hence is the Bayes estimate. 

Formula (7.14) can be interpreted as a weighted average of the mean of 
the prior distribution for β and the least-squares estimate of β, where the 
"weights" are matrices. The weight matrices are Κ„.Κ_Ι and V^X'X, respec-
tively. Whereas ordinary weights are nonnegative numbers whose sum is 1, 
these weight matrices are matrices with nonnegative eigenvalues and their 
sum is the identity matrix. The Bayes estimate is weighted more heavily 
toward the least-squares estimate if X'X is "large" or if V~x is "small". This 
makes sense, because X'X is large when the variance-covariance matrix 
σ2(Χ'Χ)~' of 0 L S is small, that is, when the least-squares estimate is precise; 
and V~x is small when a2V is large, that is, when our prior information 
about β is imprecise. 

One way to express prior ignorance about the regression coefficients 
would be to let the prior variance-covariance matrix be infinitely large or, in 
other words, to let V~' be 0. Then /3Bayes = ßLS, which is the same estimate 
obtained using the noninformative prior distribution (7.7). 

The Pavement Data. For the prior distribution we take the distribution 
specified by (7.11), (7.12), and (7.13). Using formula (7.14) we calculate the 
Bayes estimate of the regression equation to be Y = -2.713 - 0.5748A", + 
0.4410Α·2 + 0.1706X, + 0.002078λ"4 + 0.1636*,. 

7.8 TESTING ßq + , = · · · = ßp = 0 

Consider the general linear regression model with p explanatory variables. 
We will perform a Bayesian test of the hypothesis that ß +, = · · ■ = ßp = 0. 
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The Prior Distribution. Suppose we have no prior knowledge about the 
parameters. This calls for a noninformative prior distribution. However, the 
noninformative prior distribution that is used in the preceding section for 
estimating ß is not suitable to use for testing it. The reasons for this are 
discussed in Section 7.5. 

An appropriate prior distribution is easier to describe if we first reparame-
terize so as to achieve orthogonality between the explanatory variables that 
are included in the hypothesized submodel and those that are excluded. Let 
W be the n X (q + 1) matrix of explanatory variables xn,..., xiq included in 
the hypothesized submodel, together with a first column consisting of l's, and 
let Z be the n X (p — q) matrix of explanatory variables x¡^q+i,.--, xip 

excluded from the hypothesized submodel. Thus X = (W, Z). Let y = 
(ß0,...,ßq) and δ = (ßq+t,...,ßp). Then the model y = Xß + e can be 
written as 

y = Wy + Z8 + e (7.15) 

The hypothesis is that 5 = 0. The columns of W are not necessarily orthogo-
nal to those of Z, but if we define U = Z - WiW'WV'WZ, then W and U 
are orthogonal. Model (7.15) is equivalent to the model y = Wp + US + e, 
where p = y + (W'W)lW'Z». 

The following prior distribution is a generalization of distribution (7.5): 

Prob(//„) = i , P r o b ( / / J = i (7.16a) 

f(p,a\H0) = I/o- (7.16b) 

/ ( p , «■!//„) = Ι/σ (7.16c) 

- 1 
f(S\p,a,Ha) = Cexp zS'V'S 

2σ 

where C is a quantity not involving S, and V = n(U'U) 

(7.16d) 

Justification of the Prior Distribution. Distribution (7.16) is intended to 
reflect prior ignorance about the parameters. In (7.16a) equal prior probabili-
ties are assigned to the null and alternative hypotheses. Within each hypothe-
sis, in (7.16b) and (7.16c), the prior distribution of p and σ has the same 
noninformative form as (7.2). In particular, p has a "uniform" distribution 
(but its density function is improper since its integral is infinite). As discussed 
in Section 7.5, it is not possible to also give δ a "uniform" distribution. 
Instead, we take the viewpoint that some amount of prior knowledge about δ 
is implicit in the fact that we have chosen to test the hypothesis 8 = 0. To 
express this, we suppose that we have prior knowledge that is equivalent to 
the amount of information in a single observation. 
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In (7.16d) the distribution of 8 under the alternative hypothesis, condi-
tional on given values of p and σ, is specified to be the multivariate normal 
distribution with mean vector 0 and variance-covariance matrix a2V. It is 
sensible to let the mean vector be 0 so that the alternative values of 8 are 
centered around the hypothesized value. The choice of V to be n(U'U)~l 

can be justified by considering the concept of Fisher information. 
If we assume that the data vector y comes from a multivariate normal 

distribution and that the value of σ is given, then the Fisher information 
about 8 in the data is equal to the precision matrix (that is, the inverse of the 
variance-covariance matrix) of the least-squares estimate of 8, which is 
U'U/σ2. Since this represents the information in the whole sample, to 
represent the information in a single observation we divide by n to get 
U'U/(na2). This can be taken to be the precision matrix for our prior 
distribution for 8, conditional on σ, when assuming the alternative hypothe-
sis. Its inverse is the variance-covariance matrix a2V in (7.16d). 

Description of the Test. A Bayesian test of /3 f l + 1 = · · · = βρ = 0 is 
performed by calculating the posterior probability of the null hypothesis. 
Using the prior distribution (7.16) for the parameters, we obtain the posterior 
probability 

1 
Prob(H0\y) = — (7.17) 

where 

* - ( » + ! ) ' - ' - (=TT)« 
n-q-

2[ 

R2 = 
SSR reduced SSRfull 

S S K reduced 

SSR 
fu» ' s ' n e s u m °f squared least-squares residuals for the full model 

Y = /3„ + /3, A", + · · · +βρΧρ + e and SSRreduced is the sum of squared 
least-squares residuals for the reduced model Y = ß{) + ßtX, + ··· + 
ßqXq + e. 

The posterior probability can also be expressed in terms of the least-squares 
test statistic F^ in (3.13), because 

R = ; ΓΤ—Γ— (7-18) 
/ n - p - 1 \ 1 v ' 

1 + P - Q F, 
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Justification of Formula (7.17). The sum of squared residuals SSRreduced 

measures the amount of variation in the response variable Y that is left 
unexplained by the explanatory variables A",,.. . , Xq. So R2 is the proportion 
of this unexplained variation that becomes explainable by adding the vari-
ables Xq+,,..., Xp to the model. Thus R2 measures the amount of extra 
information that X +,,..., Xp provide about the variability of Y beyond the 
information already provided by Xx,...,Xq. Note that Prob(//0|.y) is a 
decreasing function of R2. This makes sense, because the larger R2 is, the 
more extra information Xq+l,...,Xp provide about the variability of Y, 
hence the stronger the evidence that ß +,,..., ßp are not all zero, hence the 
smaller the posterior probability of H0 should be. 

To formally derive (7.17), we can use Bayes's formula (7.1) with Θ = 
(p, 8, tr), / ( p , 8, σ) from (7.16), and f(y\p, 8, <r) similar to (7.9) to obtain the 
posterior p.d.f. / ( p , 8, a\y), then integrate the posterior distribution over the 
set H0 = {(p, 8, σ): ρ any (q + l)-vector, 8 = 0, σ > 0}. 

The Pavement Data. Let us test whether the variation in the rutting rates 
in the pavement data can be explained adequately by the variation in the 
viscosity of the asphalt. In terms of the parameters, we want to test the 
hypothesis that β2 = β3 = β4 = β5 = 0. We have n = 15, p = 5, and q = 1. 
The least-squares test statistic is F^ = 3.351. From (7.16) we obtain R2 = 
1/[1 + (9/4X1/3.351)] = 0.5983. Next g = (164Xl - (15/16X0.5983)]'3 = 
1.477. Now ?tob(H0\y) = 1/(1 + 1 / v/1.477) = 0.5486. We have used the 
noninformative prior distribution (7.16), which assigns probability 0.50 to the 
null hypothesis. After incorporating the data, we see that the probability of 
the null hypothesis increases slightly to 0.55. These data are inconclusive 
about the question of whether the other four explanatory variables have 
significant explanatory power beyond that of viscosity alone. 

7.9 COMPUTATION 

One can obtain the least-squares estimate /3L S and the statistic FLS for 
testing ßq+i = ■ ■ ■ = ßp - 0 from a wide variety of statistical computer 
packages. If you want to calculate a Bayesian estimate of ß using the 
noninformative prior distribution (7.7), it is simply ßLS. To perform a 
Bayesian test of ßq+i = · · · = ßp = 0 using the noninformative prior distri-
bution (7.16), the posterior probability of the null hypothesis can be calcu-
lated on a hand calculator by putting F^ into formula (7.18) and putting R2 

into (7.17). To incorporate prior information into an estimate of ß, one could 
use a conjugate prior of the form (7.11). In a matrix-based computer 
language such as APL or GAUSS or SAS/IML, it would be easy to write a 
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program to calculate the Bayes estimate (7.14). A list of computer programs 
that are available for doing Bayesian regression is given in Press (1989, 
Section 3.5). 

As a test case for checking the output of a Bayesian regression program, 
you can use the data in Table 3.2. Doing simple Bayesian regression with 
X = A", using the conjugate prior distribution described in Section 7.4 with 
βμ = 40, εμ = 0.5, eß = 1.2, and cß = 0.1, one obtains Ϋ = 32.65 + 1.293* 
as the estimated regression line. For the noninformative prior distribution 
(7.5), the posterior probability of the hypothesis ß = 0 is 0.2251. Doing 
multiple Bayesian regression with both explanatory variables using the conju-
gate prior distribution described in Section 7.7 with b = (40,0, -0.5) and 

V = 
100 - 4 - 2 
- 4 0.3 0.1 
- 2 0.1 0.1 

one obtains /3Bayes = (50.91,0.5687, -0.5846). For the noninformative prior 
distribution (7.16), the posterior probability of the hypothesis ß, = ß2 = 0 is 
0.2899. 

NOTES 

7.1. Thomas Bayes was a clergyman who lived in England from about 1701 
to 1761. He was elected a Fellow of the Royal Society in recognition of his 
mathematical learning. After his death, a paper containing the result now 
called Bayes's theorem was found among his belongings and was published in 
1764. There is some evidence, however, (see Stigler, 1983) that the theorem 
may have been discovered earlier by someone else. 

7.2a. The prior distribution of Θ can be regarded as a quantification of the 
data analyst's information and beliefs about the parameters prior to observ-
ing the data. The prior distribution could be a summary of previous data or it 
could be based largely on subjective belief. The usual "frequency" definition 
of probability, in which the probability of an outcome is taken to be the 
long-run frequency of the outcome in a long series of repetitions of the same 
situation, does not apply to a probability distribution that is based on beliefs. 
Instead, probability is taken to be one's degree of personal belief about 
whether the outcome will occur. See Barnett (1982, Chapter 3). 

Another possible view of the prior distribution is that the parameter 
vector Θ is truly a random variable and is generated by some random 
mechanism. In this case one could take the frequency view of probability. 
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7.2b. Formula (7.1) is an extension of Bayes's original theorem. The basic 
result is that, for two events A and B, the conditional probability of B given 
A can be obtained as Prob(ß|/l) = Prob(Ä)Prob(.4|ß)/Prob(y4). This can 
be derived by noting that Prob(/4)Prob(ß|/4) = Prob(/l and B) = Prob(ß 
and A) = Prob(Z?)Prob(y4|ß) and solving for Prob(B\A). An extension of 
the basic result says that, for two jointly continuously distributed random 
vectors y and 0, the probability density function of the conditional distribu-
tion of Θ given y can be obtained as f(0\y) = f(0)f(y\e)/f(y). We can 
unambiguously write f(0\y) = Cf(d)f(y\e), saying only that C does not 
involve Θ, because f(e\y) must integrate to 1 and so, if needed, C can be 
obtained as C = l/ff(e)f(y\e)de. 

7.2c. Rather than use the mean of the posterior distribution to estimate Θ, 
it would be equally sensible to use the mode, that is, the value of Θ that 
maximizes f(8\y). Any other measure of the "center" of the posterior 
distribution would also be sensible. Berger (1985, p. 134) states that, at least 
for estimating a one-dimensional parameter, the mean is frequently a better 
estimate than the mode. For a unimodal symmetric distribution like the 
normal distribution, the mean and mode coincide. 

7.4a. For what to do with data whose distribution cannot be assumed to 
be normal, see Note 7.7a. 

7.4b. The prior distribution (7.2) was proposed by Jeffreys (1961, Section 
3.1). It is equivalent to saying that the distributions of a, ß, and σ are 
independent with densities f(a) = 1, f(ß) = 1, and f(a) = ί/σ. (The letter 
/ is used generically here to denote any density function. To be more precise 
we could write the three density functions as /„(a) , fß(ß), and /σ(σ).) The 
density / ( a ) = 1 represents a "uniform" distribution for a. If the range of a 
were restricted to a finite interval (a,b) then a uniform distribution for a 
would be represented by the constant density f(a) = 1/(6 - a). There is no 
proper definition of a uniform distribution on an infinite interval, but 
nevertheless, for our purposes, letting / ( a ) be constant over the range of a is 
sufficient for representing the idea of a uniform distribution for a. So let us 
choose a positive constant k and define / ( a ) = k for all a. This is not really 
a proper probability density function, because the integral of / ( « ) = k as a 
ranges over the whole real line is °o. For / ( a ) to be proper, the integral would 
have to be 1. The particular constant k does not matter, as long as it is 
positive, so we may as well choose the constant 1. ' ' ■ . 

We can show that the constant does not matter with respect to our. 
primary objective, which is to calculate the posterior distribution. Suppose 
f(a, β, σ) = k/σ. To obtain the posterior probability density function we can 
use Bayes's formula (7.1) with θ ¡= (α, β, σ). From Note 7.2b we see that the 
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quantity C in (7.1) is C = \/ffff(a,ß,a)f(y\a,ß,a)dadßda. Thus the 
constant k appears twice in (7.1) and cancels itself out. 

The density /(o·) = l / σ is not constant and so does not represent a 
"uniform" distribution for σ; but consider the parameter A = loga. Its 
density is / , (λ) = /σ(σ)\άσ/άλ | = f„(ex)ex = e~kek = 1, and so log σ has a 
"uniform" distribution. 

7.4c. A noninformative prior distribution is called a "reference" prior by 
Lee (1989, p. 46). It could be thought to represent the view of someone 
without strong prior beliefs, and results based on it could serve as a reference 
against which to compare results based on priors expressing diverse personal 
beliefs. A noninformative prior is also called an "objective" prior by Berger 
(1985, p. 110). Berger argues that "use of noninformative priors should be 
recognized as being at least as objective as any other statistical technique." 

7.4d. The conjugate prior distribution described in this section is the 
normal-gamma distribution. See Note 7.7h. 

7.4e. The replacement of the parameter a by the parameter μ = a + βχ 
is a special case of the replacement of the parameter vector γ by the 
parameter vector p = γ + (WW)~lW'Zh in the subsection on the prior 
distribution in Section 7.8. In the case of simple regression, γ = a, δ = 
ß,W=l, and Z = x. Note that (I'D 'l'jt = x. 

7.4f. In a least-squares analysis of data following a normal simple linear 
regression model, the estimates μ^ and ^ l s are independent, if μ is defined 
to be a + βχ. To see this, first recall from (3.2) that ά ^ = y - ßi^x. 
Therefore (ί^ = y. In Note 3.4a it is seen that β^ = Yx¡y¡, where Ec, = 0. 
Now Cov(y, β^) = Cov((l//i)E,y,, Σ,ο,^) = ( l /n)EyE /c, Cov(y,, y,) = 
( Ι / Ό Σ , ^ σ 2 = 0, because Cov(yy, y¡) = 0 if j Φ i and CovCy,, y¡) = 
VaKy/) = σ2. Since we are assuming that the y,'s are normally distributed, 
two linear combinations of the y,'s are independent if and only if their 
covariance is 0. 

7.5a. A different Bayesian method of testing β = 0 can be based on the 
concept of a highest posterior density (HPD) region. See Box and Tiao (1973, 
pp. 121-123) and Note 7.8a. 

If we choose the noninformative prior distribution (7.2), then the Bayesian 
test based on an HPD region is exactly the same as the least-squares test 
based on test statistic t^ in (3.5). That is, the Bayesian test rejects the 
hypothesis β = 0 if and only if the p-value of the least-squares test is less 
than p0 for some chosen value of pn. 

7.5b. The prior distributions used in Section 7.4 for estimating β are 
suitable for testing one-sided hypotheses such as β < 0 versus β > 0. As 
explained in Section 7.5, these priors are not suitable for testing the precise 
hypothesis β = 0 versus β Φ 0 because the two parameter sets defined by 
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the conditions ß = 0 and β Φ 0 have different dimensions. Note that the two 
parameter sets defined by the conditions ß < 0 and ß > 0 both have the 
same dimension 3. See Note 7.5c. 

7.5c. A continuous distribution over a set must assign probability 0 to any 
subset of lower dimension than the set. For example, recall that a continuous 
distribution on the real line assigns probability 0 to any point. The real line 
has dimension 1 and a point has dimension 0. Any line segment is one-
dimensional, any rectangle (including its interior) is two-dimensional, and any 
cube (including its interior) is three-dimensional. 

7.5d. If the prior probability of the null hypothesis is 0, then so is the 
posterior probability. To see why this is so, let H denote the null hypothesis 
and let D denote the data. Bayes's theorem, expressed in terms of probabili-
ties rather than probability density functions, says that Prob(// |D) = 
Prob(£>|//)Prob(//)/Prob(£>). Therefore, if Prob(//) = 0, then it follows 
that Prob(H\D) = 0. 

7.5e. We have chosen the prior probability Prob(//„) to be {, but it is easy 
to adjust (7.6) to obtain the posterior probability for any choice of Prob(//0). 
First calculate the value of (7.6); call it p%. This is the posterior probability 
of H0 only if Prob(//0) = \. If instead we want to put Prob(H0) = π 0 , then 
the posterior probability of H0 is π0ρ*/[π0ρ* + (1 - π,,Χΐ - />*)]. 

7.5f. Concerning the arbitrariness of the constant 1 in the density func-
tions (7.5b) and (7.5c), see Note 7.4b. 

7.5g. The prior distribution of β, conditional on μ and σ under the 
alternative hypothesis, is assumed in (7.5d) to be normal with mean 0 and 
variance v. In the simpler situation of testing the hypothesis ξ = ξ0 for a 
normal population with unknown mean ξ and known variance, it has been 
found that the result of the test is not much affected by the shape of the prior 
distribution for ξ under the alternative hypothesis. See Berger (1985, p. 151) 
and Lee (1989, p. 138). So presumably the shape of the p.d.f. (7.5d) could be 
chosen to be Cauchy or uniform, instead of normal, without greatly changing 
the posterior probability of β = 0. 

The choice of v, however, is crucial. The υ in (7.5d) is based on arguments 
of Jeffreys (1961, Section 5.2). These arguments, when extended to regression 
(see Zellner and Siow, 1980), say that a good choice for the prior p.d.f. 
/(β\μ, σ, Ha) is Cauchy with scale parameter \fv . 

7.5h. For the definition of Fisher information, see Lehmann (1983, pp. 
117-118). 

7.5i. Formula (7.6) is a special case of (7.17). 

7.7a. The assumption that the distribution of the data vector, given the 
parameters, is multivariate normal is not always appropriate. In order to 
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obtain closed-form formulas for Bayesian estimates and tests, such as those 
presented in this chapter, one needs to carefully choose the form of the data 
distribution and the form of the prior distribution. A much wider choice of 
distributions is available, however, if we forego closed-form formulas and 
instead rely on numerical methods. 

Suppose we choose probability density functions /(v|0) and /(0) for the 
data and parameters, respectively. If we want an estimate of Θ, we can use 
the mean vector of the posterior distribution of Θ, which can be computed as 
fef(e)f(y\e)de/ff(e)f(y\e)άθ. Numerical methods have been developed 
for computing such integrals; see Berger (1985, Section 4.9) and Press (1989, 
Chapter III). 

Box and Tiao (1973, Chapter 3) present a class of distributions, which 
includes the normal, double-exponential, and uniform distributions, for mod-
eling data and show how the posterior distribution can be calculated. 

7.7b. Formula (7.8) is a conditional version of Bayes's theorem. It is an 
extension of the more basic fact that, for three events A, B, and D, it is true 
that ?roHB\A, D) = Prob(fi|D)Prob(/l|ß, D)/Prob(A \D). This can be de-
rived by noting that Prob(D)Prob(A\D)Prob(B\A, D) = Prob(D and A and 
B) = Prob(D and B and A) = Prob(D)Prob(ß|Z»ProbU|ß, D) and solv-
ing for Prob{B\A, D). The extension to probability density functions says that 
/(/3|ν,σ) = f(ß\a)f(y\ß,a)/f(y\a). Note that C = \/f{y\a) does not in-
volve ß. 

7.7c. To derive the identity \\y - Xß\\\ = || j - Χβ^\\2 + \\Χβ^ - *0| |2 , 
let a = y - Χβ, b = y - XßLS, and c = Xßus - Xß, and note that a = b + c. 
Also note that b is perpendicular to c, because b is the least-squares residual 
vector and c is a linear combination of the columns of X. In the subsection 
on the geometric interpretation of formula (3.8) in Section 3.7, it is seen that 
the least-squares residual vector is perpendicular to all the columns of the 
regression matrix X. The Pythagorean theorem says that if b and c are 
perpendicular, then \\b + c\\2 = ||*||2 + ||c||2. 

7.7d. The p.d.f. (7.10) has the same form as (7.11) with b = β^ and 
V = (X'X)~l. Therefore it is the p.d.f. of a multivariate normal distribution. 

7.7e. In the subsection on the Bayes estimate using a noninformative prior 
distribution, we show that Ε(β\σ, y) = β^ for all σ. Let us show that 
E(ß\y) = ßus- F° r two jointly distributed random variables T and S, recall 
that the expectation of T can be computed in two stages using conditional 
expectation. First calculate the conditional expectation of T given S = s, that 
is, E(T\s). Then E(T\S), being a function of the random variable 5, is itself a 
random variable, and its expectation is E[E(T\S)] = E(T). For three jointly 
distributed random variables T, S, and Y, a similar equation holds: 
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E[E(T\S, y)\y] = E(T\y). The result extends to jointly distributed random 
vectors. Therefore E(ß\y) = Ε[Ε(β\σ, y)\y] = E(ßLS\y) = ßLS. 

7.7f. An important part of Bayesian data analysis is the choice of the prior 
distribution. After performing a Bayesian analysis, one might wonder how 
crucially the results depend on the particular prior distribution that was 
chosen. A way to deal with this question is to perform analyses using several 
different priors and see how the results differ. See Berger (1985, Section 4.7). 

7.7g. It can be difficult to express one's prior knowledge and beliefs in the 
form of a prior distribution on the parameters. One could have a lot of past 
experience with data sets similar to the current data set and yet have trouble 
expressing this experience directly in terms of the parameters in a regression 
model. It might be more natural to express one's knowledge about the 
relationship between the response variable Y and the explanatory variables 
Xj in the form of predictions for the value of Y for various values of the X¡. 
Procedures have been developed for translating such predictions into the 
form of a prior distribution for the parameters. See Kadane et al. (1980). 

7.7h. A conjugate prior distribution for ß and σ is one such that, after it is 
combined with the distribution of the data vector to obtain the posterior 
distribution, the posterior distribution turns out to have the same form as the 
prior distribution. When the data vector has the multivariate normal distribu-
tion (7.9), a conjugate prior distribution is obtained by using the normal-
gamma distribution. We let the prior distribution of β conditional on σ be 
multivariate normal as in (7.11) and let the prior distribution of l / σ 2 be 
gamma. We can show that the posterior distribution of β and σ has the same 
form. 

Define φ = l/σ2. The prior p.d.f. of φ is taken to be /(</*) = ϋφ"-^-*'* 
for positive constants a and d. This is the gamma p.d.f. with parameters a 
and d. To avoid confusion, we call a and d "hyperparameters". In this note 
we use the symbol C generically to denote any quantity that involves neither 
β nor ψ. In (7.11) we have regarded σ as a fixed constant, but since we are 
now concerned with σ as well as β, we should note that the quantity C in 
(7.11) involves a factor cr~ (p+ l ). The prior p.d.f. of β conditional on ψ is 
/(β\φ) = Cy + 1) /2exp[(-tA/2X/3 -byv~l(ß - b)] for a vector b and a 
positive definite matrix V. The joint p.d.f. of the parameters is the normal-
gamma p.d.f. f(ß, φ) = /(β\φ)/(φ) with hyperparameters b, V, a, and d. 

In (7.9) we have also regarded σ as a fixed constant, and so now we must 
rewrite the p.d.f. of the data, conditional on the parameters, as f(y\ß, φ) = 
Cφn/2e\p[(-φ/2Xy - Xß)'(y - Xß)l According to Bayes's formula (7.1), 
the posterior p.d.f. of the parameters is /(β,ψ^) = Cf(ß^)f(y\ß^). 
By algebraic manipulation, we can show that this is also a normal-gamma 
p.d.f. but with different hyperparameters, b*, V*, a*, and d*, where 
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/>* = V*(V~lb +X'y), V* is as in (7.14), α* = a + (n/2), and d* = 
\/((\/d) + {{y'y + b'Vlb - A *'Κ;~'*„«)). Part of the algebraic manipula-
tion is demonstrated in Note 7.7j. 

7.7L The construction of V using an uncertainty factor a is somewhat 
ad hoc. One could try several choices of a and hope that the estimates are 
not very different. 

7.7j. The technique of "completing the square" is used to reexpress 
f(ß\y, σ) = Cexp[ ( - l /2a 2 ) ( /3 - b)'V~\ß - A)]exp[(- \/2σ2)(β -
ß^yX'Xiß - ßus)]. (In this note the letter C is used to denote any quantity 
that does not involve ß.) Let A = (ß - byv~\ß - b) = ß'Vlß - 2b'V'lß 
+ Α'Κ~Ά and B = (ß - ß^X'Xiß - β^) = β'Χ'Χβ - 2ß'LSX'Xß + 
ß'LSX'XßLS. Now 

Cexp 
- 1 

WA. 
= Cexp 

= Cexp 

= Cexp 

= Cexp 

exp 

- 1 

2σ 2 

- 1 

2σ2 

- 1 

2σ2 

- 1 
i 2 

- 1 

~2σ~2 Β 

2σ 

l(A +B) 

\ß'V{ß - 2b'Vlß + ß'X'Xß - 2ß'vsX'Xß) 

■{ß'(V~l+X'X)ß - 2(*'Κ-' + ß'LSX'X)ß) 

{ß'Wß - 2h'ß) 

where W = V~x + XX and A = K_1A + X'Xß^. (In the preceding string of 
equalities, the C in the second expression is different from the C in the third 
expression, but neither of them involves ß.) Now we "complete the square" 
by writing ß'Wß - 2h'ß = (ß - W'hywiß - W~xh) - h'W]h. (This gen-
eralizes the equality b2 - 2hb = (b - h)2 - h2.) Note that W = V^ and 
W'xh = A*, where V* and A* = /§Bayes are as in (7.14). Absorbing the term 
exp[(l/2o-2)A'W-'A] into C, we obtain f(ß\y, σ) = Cexp[(-1/2σ2Χ/3 -
bjv-\ß-b*y\. 

7.7k. The weight matrices in (7.14) are V*V~l and V*X'X. From the 
definition of V* we see that the sum of these two matrices is V¿V + 
X'X) = I, the identity matrix. 

The usual definition of a weighted average of two vectors b and c is a 
vector a = wb + (1 - w)c, where 0 < w < 1. Let us call this a scalar-weighted 
average. This can be generalized to the notion of a matrix-weighted average, 
which is defined to be a vector a = Wb + (I — W)c, where W is a matrix 
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having all its eigenvalues between 0 and 1. An eigenvalue of W is a number λ 
such that Wx = λχ for some nonzero vector x. Note that a scalar-weighted 
average occurs as the special case in which W = wl and 0 < w < 1. 

When W is a diagonal matrix, each component of the matrix-weighted 
average a is a weighted average of the corresponding components of b and c. 
Specifically, a¡ = w¡b¡ + (1 - w¡)c¡, where w¡ is the ith diagonal entry of W. 
The eigenvalues of a diagonal matrix are its diagonal entries. 

In general, a matrix-weighted average of two vectors can be expressed as a 
sum of scalar-weighted averages: a = Σα,, where a, = w¡b¡ + (1 - w¡)c¡, 
b = Lb¡, c = Hc¡, and the w,'s are the eigenvalues of W. A scalar-weighted 
average is an "average" of b and c in the sense that it lies "between" them; 
it lies on the line segment joining b and c. A matrix-weighted average can be 
said to lie "between" b and c to the extent that it is contained in a 
multidimensional parallelogram with b and c at opposite corners. 

7.8a. A different Bayesian method of testing ßq+i = ■ ■ ■ = ßp = 0 can 
be based on the concept of a highest posterior density (HPD) region. See Box 
and Tiao (1973, Sections 2.8 and 2.9) and Broemeling (1985, pp. 11-14). Let 
δ = (ßq+1,...,ßp). Suppose we want to test δ = 0 at the 5% level of 
significance. After obtaining the posterior p.d.f. f(ß\y), one then finds the 
posterior p.d.f. for δ, f(S\y) = ff(y,S\y)dy, where y = (ß0,...,ßq). Note 
that f(y,S\y) = f(ß\y). An HPD region for δ is a set formed by including, 
for some fixed positive number c, all parameter vectors 8 such that f(S\y) > c. 
Let R be an HPD region for δ. We say it is a 95% HPD region if 
Prob(5 e R\y) = 0.95. A test of δ = 0 can be performed by rejecting the 
hypothesis if R does not include 0. 

If we choose the noninformative prior distribution (7.7), then the Bayesian 
test based on an HPD region is exactly the same as the least-squares test 
based on test statistic F^ in (3.13). That is, the Bayesian test rejects the 
hypothesis ßq + , = · · · = ßp = 0 if and only if the p-value of the least-
squares test is less than 0.05. 

7.8b. To incorporate previous knowledge into the test through an informa-
tive prior distribution, see Zellner (1971, Section 10.4). 

7.8c. Instead of working with the parameter vectors y and δ, it is 
convenient to reparameterize to achieve orthogonality. Since we are testing 
the value of δ, we leave it as it is and we consider transformations of y to 
p = γ + Αδ for some matrix A. The model y = Wy + Ζδ + e becomes 
y = W{p - Αδ) + Ζδ + e = Wp + (Z - WA)8 + e. We want to choose A so 
that the columns of W are orthogonal to the columns of Z - WA, that is, 
W(Z - WA) = 0. Solving for A, we obtain A = (W'WVlW'Z. 

7.8d. For the definitions of Fisher information and information matrix, 
see Lehmann (183, pp. 117-118, 125-126). If a data vector y has a distribu-
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tion that depends on parameter vector Θ, the information matrix for Θ is 
approximately equal to the precision matrix of the maximum likelihood 
estimate of Θ (see Lehmann, 1983, Theorem 6.4.1(ii) and Corollary 2.6.1). We 
are concerned with the situation in which y has a multivariate normal 
distribution with mean vector Xß and variance-covariance matrix σ21. 
Suppose σ is known. The maximum likelihood estimate of β is the same as 
the least-squares estimate ßLS,

 a n c ' t n e information matrix for β is exactly 
equal to the precision matrix of the maximum likelihood estimate of β, 
namely, Cov(j8LS)"' = Χ'Χ/σ2. If we are interested only in the 8 part of β, 
it is natural to take the information matrix for 8 to be CovCá^)"' = U'U/σ2. 

7.8e. We have chosen the prior probability Prob(//„) to be {, but it is easy 
to adjust (7.17) to obtain the posterior probability for any choice of Prob(//0). 
Use the formula in Note 7.5e. 

7.8f. The quantity R2 is sometimes called the coefficient of partial determi-
nation. When q = 0, then SSRreduced = Σ(yi - y)2, the total sum of squares 
(corrected for the mean), and so R2 is the coefficient of multiple determina-
tion. Another description of the coefficient of partial determination is as 
follows. First, using Xt,...,X as explanatory variables, take each of the 
variables Y, Xq +,,..., X as the response variable in a linear regression 
equation, and calculate least-squares estimates. Denote the residuals by 
W, Z i / + 1 , . . . , Zp. Then R2 is the maximum squared correlation between W 
and a linear combination of Z + , , . . . , Z . See Neter, Wasserman, and 
Kutner (1989, Section 8.3). 

7.8g. Formula (7.17) can be obtained through a derivation similar to that 
in Zcllner and Siow (1980). They used a multivariate Cauchy, rather than 
normal, prior distribution. To sketch the derivation of (7.17), we begin by 
expressing the posterior probability of Hn as 

P r o b ( / / 0 | j ) = ( f(0\y)de 

where Θ denotes the parameter vector (p, 8,σ). By Bayes's formula (see 
Note 7.2b), f(e\y) = f(y\9)f(.e)/f(y), and so Prob(//0 |>) = J0/f(y) where 
J„ = f„J(y\e)f(0) de. Similarly, Prob(Ha\y) = Ja/f(y) where Ja = 
/// f(y\e)f(e) d$. (Just as //„ denotes the set of parameter vectors under the 
null hypothesis, Hu denotes the set {0: p any (q + l)-vector, 8 Φ 0, σ > 0} of 
parameter vectors under the alternative hypothesis.) Since Prob(H0\y) + 
PwUHjy) = 1, then J„ + Ja = f(y), and so Prob(H0\y) = J0/(Ja + ·/„)· It 
remains to evaluate the integrals defining Jf) and Ja. 
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We are assuming a normal distribution for the data vector: 

"/2. f(y\e) = (27r)- /V-"exp 
- 1 

(y -Wp - U8)'{y - Wp - U8) 

Under the null hypothesis, /(0) = /(ρ,Ο,ο·) = Prob(//n)/(p, σ\Η0) = \σ'\ 
Hence J0 = j7^(2ΐΓ)-"/2σ-"-' exp[(-l/2o-2X.y - »»'(.y - W»] dp ¿σ. 
Although the details are messy, the basic idea that allows us to evaluate this 
integral is simple. If an integrand can be rearranged into the form of a p.d.f. 
multiplied by a constant factor, then, since a p.d.f. must integrate to 1, the 
integral is equal to the constant factor. In particular, letting σ be fixed, we 
find that the integrand of J0 as a function of p is the p.d.f. of a multivariate 
normal distribution multiplied by a factor that is constant as far as p is 
concerned. This takes care of integration with respect to p. Now J0 is in the 
form of an integral with respect to σ. By changing the variable of integration 
from σ to / = \σ~2, the integrand can be written as the p.d.f. of a gamma 
distribution multiplied by a constant factor. The same approach works for 
evaluating Ja. 

Additional Reading. For an introduction to Bayesian statistics, see 
Zellner (1971, Chapter II), Box and Tiao (1973, Chapter 1), Berger (1985, 
Chapter 4), Lee (1989), or Press (1989, Chapters 1 and 2). For more on 
Bayesian regression, see Zellner (1971, Chapter III), Box and Tiao (1973, 
Section 2.7), Broemeling (1985, Chapter 1 and pp. 84-104), Lee (1989, 
Sections 6.3, 6.4, and 6.7), and Press (1989, Chapter V). 
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C H A P T E R 8 

Ridge Regression 

8.1 INTRODUCTION 

Ridge regression was introduced in 1962 by Arthur Hoerl in an article in a 
chemical engineering journal. In his experience in regression analysis he had 
found that when there were correlations among the explanatory variables, the 
least-squares estimates often did not make sense when put into the context of 
the process that generated the data. He proposed a method to obtain better 
estimates. 

In simple regression with only one explanatory variable, of course, there 
can be no problem with correlations among the explanatory variables, but it 
is nevertheless instructive to look at the case of simple regression to explain 
how ridge regression attempts to produce more accurate estimates. 

Ridge regression is concerned only with estimation, and so testing is not 
considered in this chapter. 

8.2 AN EXAMPLE OF SIMPLE REGRESSION 

In Table 8.1 are the heights, in centimeters, of 32 girls at ages 9 and 18. The 
plot in Figure 8.1 shows that there is an approximately linear relationship 
between the heights at the two ages. Let us use ridge regression to estimate 
height at age 18 as a linear function of height at age 9. 

8.3 ESTIMATING THE REGRESSION LINE 

Standardization. The first step in ridge regression is usually to standard-
ize the explanatory variables. The reasons for standardization are given in 
Section 8.5. To standardize the variable X, let z¡ = (x¡ - x)/sx, where x is 
the average of the J:,'S and sx is the standard deviation of the *,'s. For the 

173 
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Table 8.1 Height Data 

itification 
mber of 
Girl 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

Height at 
Age 18 

(Y) 

169.6 
166.8 
157.1 
181.1 
158.4 
165.6 
166.7 
156.5 
168.1 
165.3 
163.7 
173.7 
169.2 
170.1 
164.2 
176.0 
170.9 
169.2 
172.0 
163.0 
154.5 
172.5 
175.6 
167.2 
164.0 
161.6 
153.6 
173.5 
166.2 
162.8 
168.6 
169.2 

Height at 
Age 9 
(X) 

136.5 
137.0 
129.0 
139.4 
125.6 
137.1 
133.6 
121.4 
133.6 
134.1 
139.4 
138.1 
138.4 
139.5 
129.8 
144.8 
138.9 
140.3 
143.8 
133.6 
123.5 
139.9 
136.1 
135.8 
131.9 
130.9 
126.3 
135.5 
134.0 
138.2 
142.0 
140.8 

Standardized 
Height at Age 9 

(Z) 

0.2154 
0.3033 

-1.1034 
0.7254 

-1.7013 
0.3209 

-0.2945 
-2.4398 
-0.2945 
-0.2066 

0.7254 
0.4968 
0.5495 
0.7429 

-0.9627 
1.6749 
0.6374 
0.8836 
1.4991 

-0.2945 
- 2.0706 

0.8133 
0.1451 
0.0923 

-0.5935 
-0.7693 
-1.5782 

0.0396 
-0.2242 

0.5143 
1.1825 
0.9715 

Source: Weisberg (1985, p. 57). 

height data, x = 135.275 and sx = 5.687, keeping extra significant digits in x 
to avoid too much round-off error. Hence, for example, z, = (136.5 -
135.275)/5.687 = 0.2154. 

In terms of the unstandardized variable X, the simple linear regression 
model is Y = a + ßX + e. After standardizing, let us write Y = μ + γΖ -I- e. 

The Ridge Estimates. The least-squares estimates of μ and y can be 
obtained from formulas (3.2). Since the z,'s are standardized, we have z = 0 
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Figure 8.1 Plot of the height data. 
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and so the formulas simplify to 

TLS = 
Σζ,-y,-

MLS = y 

For the ridge estimates, we keep ß = y and let 

Ύ = Lzf + k 
(8.1) 

where k = O^S/TLS and érLS is the least-squares estimate of σ in 
formula (3.3). 

Mean Squared Error. Before explaining how formula (8.1) might pro-
duce a more accurate estimate than yLS, we need to specify what we mean by 
"accurate". Roughly speaking, y is accurate if, viewed as a random variable, 
it tends to be close to y, that is, if the distance between y and y tends to be 
small. The most common way to quantify this idea is to measure the accuracy 
of an estimate y by its mean squared error, MSE(y) = E[(y — γ)2], the 
expectation of the squared distance between y and y. The smaller MSE(y) 
is, the more accurate y is. 

A useful expression is 

MSE(y) = Var(y) + [E(y) - y\' (8.2) 
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That is, the mean squared error of y is equal to its variance plus the square 
of its bias. So, for an estimate to have small mean squared error, it must 
simultaneously have small variance and small bias. 

The least-squares estimate fLS is unbiased; that is, £(f L S ) = y. The ridge 
estimate is biased but it is intended to have smaller variance. The hope is 
that the increase in squared bias is less than the decrease in variance, so that 
the ridge estimate will have smaller mean squared error. 

Justification of (8.1). One way to think about ridge estimation is that it 
tries to improve the accuracy of yLS by "shrinking" it. To shrink yLS, 
multiply it by a number c between 0 and 1 to obtain y = cy^. We call this 
"shrinking" because Ic-y^l < I f ^ l . 

The mean squared error of yLS is equal to its variance, υ = σ2/Σζ2 (from 
formula (3.4)), since its bias is 0. The mean squared error of cy^ is 

M S E ( c y L S ) = c 2 t ; + ( c - l ) V (8.3) 

By taking the derivative with respect to c, setting it equal to 0, and solving for 
c, one finds that the smallest mean squared error is obtained for c = y2/ 
(γ2 + υ). In this expression for c, replace the unknown parameters y and σ 
by the estimates yLS and &LS to obtain c. By doing a little algebra, we find 
that c = Σζ2/(Σζ2 + σ^/γ2^) and that cyLS coincides with the ridge 
estimate (8.1). 

Formula (8.3) is valid only if c is a nonrandom number. Since we have 
chosen a c that is random, involving the random quantities γ^ and <rLS, the 
mean squared error of y = cy^ is difficult to determine and, in fact, 
depends on the shape of the distribution of the random errors. Nevertheless, 
the argument given in the preceding paragraph at least suggests that y might 
be more accurate than -y^. However, it has been found that y is more 
accurate than γ^ only if y is near 0. For simple regression, ridge estimation 
is not recommended. But to complete this section, we calculate the ridge 
estimates for the height data. 

The Height Data. In a least-squares analysis of the data we find fiLS = 
y = 166.8, fLS = 5.093, and <xLS = 3.891. Also, Σζ2 = 31.00. The ridge esti-
mates of μ and y are μ = 166.8 and γ = [Σζ2/(Σζ2 + trls/ytsNyus = 

[31.00/(31.00 + 3.8912/5.0932)]5.093 = 4.999. The estimated regression line 
is Ϋ = 166.8 + 4.999Z. We could put this in terms of the original variable X 
by substituting Z = (X - 135.275)/5.687 to obtain Y = 47.89 + 0.8790*. 

8.4 AN EXAMPLE OF MULTIPLE REGRESSION 

The data in Table 8.2 describe 13 batches of cement. Each batch was made 
with four main ingredients: tricalcium alumínate (Λ",), tricalcium silicate 
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Table 8.2 Cement Data 

Identification 
Number of Heat Ingredient 1 Ingredient 2 Ingredient 3 Ingredient 4 

atch 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

(Y) 

78.5 
74.3 
104.3 
87.6 
95.9 
109.2 
102.7 
72.5 
93.1 
115.9 
83.8 
113.3 
109.4 

(*,) 

7 
1 
11 
11 
7 
11 
3 
1 
2 
21 
1 
11 
10 

(X2) 

26 
29 
56 
31 
52. 
55 
71 
31 
54 
47 
40 
66 
68 

<*,) 

6 
15 
8 
8 
6 
9 
17 
22 
18 
4 
23 
9 
8 

(*,) 

60 
52 
20 
47 
33 
22 
6 
44 
22 
26 
34 
12 
12 

Source: Hald (1952, p. 647). 

(X2), tetracalcium alumino ferrite (X3), and dicalcium silicate (XA). The 
table shows the percentages of these ingredients used in each batch. The 
purpose of the experiment was to see how the relative amounts of these 
ingredients affect the heat (V) evolved during the hardening of the cement. 
The heat is recorded in calories per gram of cement. 

8.5 STANDARDIZATION 

The explanatory variables are usually standardized before doing ridge estima-
tion. In calculating the ridge estimate, all the explanatory variables are 
treated the same. (To be specific, in the notation of the next section, the 
same number k is added to each diagonal entry of Z'Z.) Therefore it is 
sensible to standardize the variables so that their units of measurement are 
comparable. 

Some statisticians also recommend standardization before doing least-
squares regression. This can be beneficial in three ways. First, it reduces 
round-off error in the inversion of the matrix X'X. Second, it can increase 
the interpretability of the variables and their regression coefficients. For 
example, consider the variable weight for a group of 9-year-old girls. To say 
that the weight of one of the girls is 24 kilograms may not be as meaningful 
to you as to say that she is 1.47 standard deviations below the average weight 
of the group. 

Third, standardization makes it possible to directly compare the regression 
coefficients of different variables. Suppose Ϋ = - 171 + 1.92 Λ", + 0.286Λ"2 is 
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Table 8.3 Standardized Cement Data 

Identification 
Number of 

Batch 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Heat 

m 
78.5 
74.3 

104.3 
87.6 
95.9 

109.2 
102.7 
72.5 
93.1 

115.9 
83.8 

113.3 
109.4 

Ingredient 1 
(Standardized) 

(Z,) 

-0.0785 
-1.0985 

0.6015 
0.6015 

-0.0785 
0.6015 

-0.7585 
-1.0985 
-0.9285 

2.3015 
-1.0985 

0.6015 
0.4315 

Ingredient 2 
(Standardized) 

(Z2) 

-1.4237 
-1.2309 

0.5042 
-1.1024 

0.2472 
0.4400 
1.4682 

-1.1024 
0.3757 

-0.0742 
-0.5240 

1.1469 
1.2754 

Ingredient 3 
(Standardized) 

(z3) 
-0.9007 

0.5044 
-0.5885 
-0.5885 
-0.9007 
-0.4323 

0.8167 
1.5973 
0.9728 

-1.2130 
1.7534 

-0.4323 
-0.5885 

Ingredient 4 
(Standardized) 

(Z4) 

1.7923 
1.3144 

-0.5974 
1.0156 
0.1792 

-0.4779 
-1.4338 

0.8364 
-0.4779 
-0.2390 

0.2390 
-1.0754 
-1.0754 

an estimated regression equation with Y = lung capacity in centiliters, X{ = 
height in centimeters, and X2 = weight in kilograms. It does not make sense 
to compare the coefficients 1.92 and 0.286. Now standardize the explanatory 
variables. Call the standardized variables Z, and Z2 and suppose the 
estimated regression equation becomes Y = 193 + 12.9Z, + 3.28Z2. Now we 
can compare 12.9 and 3.28 to conclude that differences in lung capacity are 
due more to differences in height than to differences in weight. 

The standardized cement data are shown in Table 8.3. 

8.6 ESTIMATING THE REGRESSION COEFFICIENTS 

First we must write down the model. In terms of the original unstandardized 
variables, the model is 

Vi = ßo + ß\*i\ + ßlX<2 + ß3*i3 + 04*/4 + ei 

In terms of the standardized variables, let us use the notation 

y¡ = ß. + ΎιΖη + Ύιζα + ?3ζ/3 + ?4^4 + e¡ 

In matrix notation, 

y = Ιμ + Ζγ + e 
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where 

y2 i = z = 

■12 ¿13 

c22 ¿23 '24 

-nl ¿«3 x / i4 

y = 

and n = 13. 

r2 

r.3 
74 

The Ridge Estimates. The least-squares estimates of μ and y are 

MLS =>' 

yLs = (Z'Z)'lZ'y 

For the ridge estimates, we keep μ = y and let 

y = (Z'Z -I-A;/) 'z 'y (8.4) 

where A: = 4<r¿s/||yLS|| , <r¿s is the least-squares estimate of σ in formula 
(3.12) with n = 13 and /? = 4, and / is the identity matrix, 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

(For a vector υ, the notation ||p|| denotes the length of the vector; that is, 

In general, Z is an n x p matrix, / is the p X / j identity matrix, and 
* = Ä / | | y L S | | 2 . 

A Partial Justification of (8.4). The justification given in Section 8.3 for 
simple ridge regression can be extended to multiple ridge regression. The 
argument is not completely precise, as is pointed out below. Further justifi-
cation is given in the next section. 

Note that when p = 1, formula (8.4) is the same as (8.1). Thus (8.4) can be 
viewed as a generalization of (8.1). As was said in the justification of the 
latter formula, we can again say that ridge estimation tries to improve the 
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accuracy of the least-squares estimate by shrinking it. To see this, write 
y = Cyuj, where C = (Z'Z + kl)~xZ'Z and check that HCy^H < ||f J l . The 
accuracy of the vector of estimates y can be measured by its total mean 
squared error, that is, the sum of the mean squared errors of its components, 
EMSE(-yy). If one expresses the total mean squared error as a function of k, 
takes its derivative, and sets this equal to 0, one finds that the smallest total 
mean squared error is obtained for k satisfying k = σ2 trace(B)/y'ßy, 
where B is a matrix which, unfortunately, involves k. (The notation trace(Ä) 
is used for the sum of the diagonal entries of B.) So there is no explicit 
expression for the best value of k. We attempt to get an explicit value of k 
that is good, though not necessarily best, by replacing B by the identity 
matrix /. (There is a gap in this line of argument because we can provide no 
convincing reason for choosing /.) Now k = ρσ2/γ'γ. Substituting least-
squares estimates for σ2 and y, we obtain (8.4). 

The Cement Data. From the standardized data in Table 8.3 we first 
calculate the least-squares estimates: 

ALS = 9 5 · 4 2 - TLS = 

9.124 
7.937 
0.653 

-2.412 

and <7LS = 2.466 

Next calculate ||f LS||2 = (9.124)2 + (7.937)2 + (0.653)2 + (-2.412)2 = 152.5 
and A: = 4(2.446)2/152.5 = 0.1569. Now calculate formula (8.4): 

7.644 
4.667 

-0.910 
-5.835 

The estimated regression equation is Ϋ = 95.42 + 7.644Z, + 4.667Z2 

0.910Z, - 5.835Z,. 

8.7 COLLINEARITY 

Ridge estimation can be justified in terms of the problem of collinearity, 
which is what originally motivated Hoerl to invent the ridge method. A set of 
variables are exactly collinear if one of them is a linear function of the others. 
They are approximately collinear if one of them is approximately a linear 
function of the others. We use "collinear" to mean "approximately collinear". 
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Table 8.4 Sample Correlations Between the Explanatory Variables 
in the Cement Data 

Pair of Variables Sample Correlation 

X„X2 0.229 
X{,X3 -0.824 
X„X4 -0.245 
X2,X3 -0.139 
X2,X4 -0.973 
X3, X4 0.030 

Two variables are collinear if they are highly correlated. The sample 
correlations between the explanatory variables in the cement data are shown 
in Table 8.4. There is a very high negative correlation of - 0.973 between X2 

and A",,. Looking at the data we can see the reason for this. Except for 
batches 1 and 5, the total percentage of silicon compounds, X2 + X4, has 
been kept close to 77, so that X4 is approximately equal to 77 - X2. This 
makes it difficult to distinguish between the effects of X2 and XA. For 
instance, the four highest values of X4, which are 60, 52, 47, and 44, occur 
for values of heat that are below the average heat of 95.4. So it looks like 
high amounts of ingredient 4 cause less heat to be evolved. But, correspond-
ing to the high negative correlation between X2 and X4, we see that the four 
highest values of X4 occur with the four lowest values of X2. So maybe 
ingredient 4 does not have much effect on heat and it is really the low 
amounts of ingredient 2 that cause less heat to be evolved. Thus we see how 
collinearity of two explanatory variables makes it difficult to pin down the 
effect of either variable, which implies poor accuracy for the estimates of 
their coefficients. 

There is also a high negative correlation of -0.824 between Xx and X3, 
which arises because the total percentage of aluminum compounds, Xt + X3, 
has been kept close to 20. 

Variance Inflation Factors. A collinear relationship involving three or 
more variables will not necessarily be revealed by the pairwise correlations. A 
better indication of whether there is a problem of collinearity is given by the 
variance inflation factors (VIFs). The variance inflation factor of an explana-
tory variable X¡ is a measure of how closely X¡ is related to the other 
explanatory variables (but only considering linear relationships). Specifically, 

1 
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where Rj is the coefficient of determination when Xj is regressed on the 
other explanatory variables. If Xj is exactly collinear with the other variables, 
that is, if Xj is an exact linear function of them, then Rj = 1 and VIF, = ». 
If Xj is completely uncorrelated with the other variables, then Rj - 0 and 
VIF, = 1. 

For the cement data, the VIFs for X{, X2, X3, and X4 are 38.5, 254.4, 
46.9, and 282.5. There is a collinearity problem for a variable Xj if Rj is 
close to 1, that is, if VIFy is large. The computer package Minitab prints a 
warning when VIF, is larger than 100. 

There is a direct connection between the variance inflation factor of Xj 
and the standard deviation of the least-squares estimate of its regression 
coefficient: 

SD(^) = V / V I F : ( ^ ) / V ^ T 

where j§. = β ^ and s· is the standard deviation of the observed values of 
Xj. Hence the size of SD(jßy) is determined by three factors: a factor v/viF ; 

due to the relationship of Xj with the other explanatory variables, a factor 
σ/Sj depending on the variation of the random errors relative to the variation 
of the measurements of X¡, and a factor 1 / )/n - 1 depending on the sample 
size. Inaccuracy of ßj can be due to collinearity of Xj with other explanatory 
variables or to large random errors or to a small sample size. The phrase 
"variance inflation factor" comes from the fact that Var(/3;) is VIF, times 
larger than what it would be if X¡ were uncorrelated with the other 
explanatory variables. 

Matrix Formulation of the Problem of Collinearity. In terms of the 
matrix Z of explanatory variables, collinearity means that some column of Z 
is approximately a linear combination of the other columns. This implies that 
the matrix Z'Z, which must be inverted to calculate the least-squares esti-
mate of γ, is nearly singular. Inverting a singular matrix is like taking the 
reciprocal of the number 0; it is not a valid operation. Inverting a nearly 
singular matrix is similar to taking the reciprocal of a very small number; 
some of the entries in the inverse matrix are likely to be very large. 

The variance of the least-squares estimate yLSy is equal to σ 2 times the 
/th diagonal entry in (Z'Z)~K Therefore near-singularity of Z'Z is likely to be 
associated with large variances for some of the least-squares estimates. This 
indicates how collinearity leads to inaccuracy of regression estimates. 

Besides the statistical problem of large variances for the estimates, 
collinearity also poses a computational problem. It is difficult to achieve 
numerical accuracy in computing the inverse of a nearly singular matrix. 
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Further Justification of Ridge Estimation. By viewing the problem of 
collinearity as the problem of the near-singularity of Z'Z, we are led to the 
method of ridge regression, which modifies Z'Z so that it is farther from 
singularity. The matrix Z'Z is modified so that it is closer to what it would be 
for data in which there is no collinearity, that is, data in which all the 
explanatory variables are uncorrelated with one another. We now need to 
know what Z'Z looks like for such data. 

The matrix Z'Z is n - 1 times the sample correlation matrix of the 
explanatory variables. To verify this, note that the (j,k) entry of Z'Z is 
Y.¡z¡¡z¡k. Since z¡¡ = (x¡¡ — Xj)/s¡, where x¡ and s¡ are the sample mean and 
standard deviation of the observed values of variable X¡, the (;', k) entry of 
Z'Z is LjiXjj - XjXx/k - xk)/UjSk). Recall that sJk = Σ,(*,7 - x¡Xxik -
xk)/(n - 1) is the sample covariance of X¡ and Xk. So the (j,k) entry is 
(n - \)sjk/(SjSk). By definition, sjk/(sjSk) is the sample correlation between 
Xj and Xk. 

In the most favorable case, in which all the explanatory variables are 
uncorrelated, the sample correlation matrix is simply the identity matrix / , 
and so Z'Z = (n — 1)/. When there is collinearity, we can move Z'Z closer to 
the most favorable case by adding a multiple of / to Z'Z, that is, by replacing 
Z'Z by Z'Z + kl. This leads to (8.4). 

NOTES 

8.3a. The formula for γ^ is obtained from (3.2). Direct application of 
(3.2) gives us -/LS = Σ(ζ, - zXy,- y ) /E(z , - z)2. Since z = 0, this becomes 
TLS = Σζ,(ν, - y)/Lzf. Moreover, E2,(y, - y) = Σζ,-y, because Lz¡y = 
yLz¡ = y(nz) = 0. 

8.3b. To verify (8.2), let ξ = Ε(γ) and note that VaKy) = £[(f - &2l 
Now MSE(f) = E[(y - y)2] = £[((-? - £ ) + ( £ - y))2] = E[(y - ξ)2 + 
(ξ - y)2 + 2(γ - ξΧξ - y)] = Ε[(γ - ξ)2] + (ξ - y)2 + 2(ξ - γ )£ (γ - ξ) = 
Varíf) + [Ε(γ) - γ]2 because E(y - ξ) = Ε(γ) - ξ = 0. 

8.3c. Formula (8.3) follows from (8.2). By (8.2), MSE(cyLS) = 
VaKcfLs) + [E(cylJS) - y]2, which equals c2VariyLS) + [cEiy^) - y]2 = 
c2v + [cy — y]2 = c2v + (c — \)2y2. The derivative with respect to c is 
lev + 2(c - \)y2 = 2[c(v + y2) - y2], which is 0 when civ + y2) = y2. 

8.3d. It is difficult to figure out the exact mean squared error of the ridge 
estimate y but we can estimate it by computer simulations. For example, let 
us simulate a model similar to the process that generated the height data. 
Consider the model y, = 170 + 5z¡ + e¡ for / = 1, 2 , . . . ,32, where the ¿,'s 
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are the standardized heights in Table 8.1. Suppose the random errors e¡ are 
normally distributed with mean 0 and standard deviation 4. 

Using a pseudo-random number generator, we can generate 32 pseudo-
independent random numbers e¡ from a normal distribution with mean 0 and 
standard deviation 4. Add each e¡ to 170 + 5z, to obtain y, and then apply 
(8.1) to obtain the ridge estimate y. We know the true value of the parameter 
y is 5, and so the accuracy of y can be seen from the difference y - 5. 
Repeat this a large number of times, say, 500. Each time, a sample of 32y,'s 
is generated and y is calculated. Thus we obtain 500 values of γ. The average 
of the 500 values of (y - 5)2 is a good estimate of MSE(-p). 

In such a simulation, MSE(y) was estimated to be 0.541. The value of 
MSEifLs) is known to be Var iy^) = a2/Lzf = 42 /31 = 0.516. So the 
ridge estimate has larger mean squared error than the least-squares estimate 
by about 5% ( = (0.541 - 0.516)/0.516). 

By running simulations for other values of y, it was found that MSE(f) < 
MSEiyLs) only when - 1 < y < 1. 

8.6a. The formulas for μ^ and γ^ can be verified as follows. In the 
model y = Χβ + e the formula for the vector of least-squares regression 
estimates is /S,^ = (X'X)~]X'y. To apply this to the standardized model 

y = Ιμ + Ζγ + e, replace 

placed by 

X by [1 Z] and β by Then X'X is re-

[1 Z]'[ l Z] = [1 Z] = 11 
Z'l 

I'Z 
Z'Z 

0 
Z'Z 

Note that I'Z = 0 because, being standardized, each column of Z sums to 0. 
And X'y is replaced by 

Hence 

[1 Z]'y = r 
y = 

I'J 
z'y = z'y 

ALS 

TLS 

n 
0 

0 
Z'Z 

- 1 Σν,. 
z'y. (Z'Z) 'Z'y 

8.6b. The formula k ~ ρσ·^5 / | |γ^ | | ζ was suggested by Hoerl, Kennard, 
and Baldwin (1975). Many other formulas for k have been proposed; see 
Draper and Van Nostrand (1979) and Van Nostrand (1980). 

8.6c. Let TMSE(y) be the total mean squared error of y. Formula (8.2) 
generalizes to 

TMSE(f) = trace[Cov(y)] + \\E(y) - y\\ 
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The ridge estimate y has the form y = Ay, where A = (Z'Z + kI)"lZ'. 
Regard k as a nonrandom constant. Then the entries of A are nonrandom 
constants, so we can use rules (a) and (b) in Note 3.7 to calculate E(y) and 
Cov(y), which can be put into the formula above to obtain TMSE(y). Taking 
its derivative with respect to k is somewhat involved and will not be 
presented here. Rules for differentiating matrices can be found in Searle 
(1982). The derivative turns out to be -2σ2 trace(Ä) + Iky'By, where 
B = Z'Z(Z'Z + kl)~3. The derivative is 0 when k = σ2 trace(Β)/γ'Βγ. 

8.6d. There always exists a value of k for which the TMSE of the ridge 
estimate is smaller than the TMSE of the least-squares estimate. To see this 
we use the expression given in Note 8.6c for the derivative of ΤΜ8Ε(γ) with 
respect to k. The derivative at k = 0 is -2a2trace(B()), where B0 = (Z'Z)"2. 
Since the trace of (Z'Z)"2 is positive, the derivative at k = 0 is negative, so 
T M S E ( Y ) is decreasing. Note that at k = 0, γ = γ ^ . Therefore, for small 
positive values of k, TMSEi-y) < TMSE(7LS). 

8.6e. Another justification of (8.4) can be given by taking a Bayesian 
viewpoint in which y is regarded as a random vector. Conditional on a fixed 
value of y, we suppose y has a multivariate normal distribution with mean 
vector ίμ + Zy and covariance matrix σ2Ι. And we suppose y is a random 
vector having a multivariate normal distribution with mean vector 0 and 
covariance matrix τ 2 / . In the Bayesian approach to statistical analysis (see 
Chapter 7) the prior distribution of y is combined with the data to produce 
the posterior distribution of y, that is, its conditional distribution given y. It 
can be shown (see the lemma on p. 4 of Lindley and Smith, 1972) that the 
posterior mean vector of y is (Z'Z + Kl)"lZ'y, where κ = σ2/τ2. We can 
show that k = P<S"¿s/llyLsll2 is a reasonable estimate of κ by showing that 
||yLS | |2//j is a reasonable estimate of τ2 . To see this, recall that, based on the 
distribution of y conditional on y, a reasonable estimate of σ 2 is <r2

s = 
\\y - ( ly + Zy^W2/^ — (p + 1)). Similarly, based on the distribution of 
y, a reasonable estimate of τ 2 is ||y - 0\\2/(p - 0). 

8.6f. To estimate the total mean squared error (TMSE) of the ridge 
estimate y, we can use computer simulations. For example, let us simulate a 
model similar to the process that generated the cement data. Consider the 
model y, = 95 + 7.6z,, + 4.7z,2 - 0.9z/3 - 5.8z,4 + e¡ for / = 1,2,..., 13, 
where the z,;'s are the standardized variables in Table 8.3. Suppose the 
random errors e¡ are normally distributed with mean 0 and standard devia-
tion 2.4. 

Using a pseudo-random number generator, we can generate 13 pseudo-
independent random numbers e¡ from a normal distribution with mean 0 and 
standard deviation 2.4. Add each e¡ to 95 + 7.6z,, + 4.7z,2 - 0.9z,, - 5.8z,4 

to obtain y, and then apply (8.4) to obtain the vector of ridge estimates 
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Ύ — (ΎΐιΎ2'Ύ3>Ύ4)· We know the true value of the parameter vector y is 
(7.6,4.7, -0.9, -5.8), and so the accuracy of y can be seen from the vector 
of differences (yl - 7.6, y2 - 4.7, γ3 + 0.9, γ4 + 5.8). Repeat this a large 
number of times, say, 500. Each time, a sample of 13 y,'s is generated and y 
is calculated. Thus we obtain 500 vectors y. The average of the 500 values of 
Oy, - 7.6)2 + (y2 - 4.7)2 + (y3 + 0.9)2 + (y4 + 5.8)2 is a good estimate of 
TMSE(y). 

In such a simulation, TMSE(y) was estimated to be 77. Using Note 8.6c, 
the value of TMSEiyLs) can be calculated to be tracefCoviyLj)] = 
σ-2 trace[(Z'Z)~~'] = (2.4)2 trace[(Z'Z)_I] = 299. So the ridge estimates have 
smaller total mean squared error than the least-squares estimates by about 
74% (= (299 - 77)/299). 

8.7a. For an example in which collinearity is not revealed by the pairwise 
correlations, consider the following data. 

* 1 

1 
1 
2 
2 
3 
3 

X2 

2 
3 
1 
3 
1 
2 

* 3 

3 
2 
3 
1 
2 
1 

The three pairwise correlations are all -0.50, which is not high. But the 
three variables are exactly collinear because Xx = 6 — X2 — X3. 

8.7b. Let us show SD(/3y) = JVIFy (a/s,·)/ v« - 1, or equivalent^, 
Varißj) = (y\FjXa2/sf)/(n - 1). By reindexing we can suppose / = p. Re-
call from Section 3.10 that Var(j8p) is σ2 times the last diagonal entry in 
(X'X)~l. Let x denote the last column of X, containing the observed values 
of variable Xp, and let W denote the matrix consisting of the other columns. 
Thus X = [W x]. Then 

v,v ¡W'W W'x 

The last diagonal entry in (X'X)~l is l/(x'x - x'W(,W'W)~xW'x). This is not 
hard to verify for the case p = 1 because then W is simply a vector w (in fact, 
a vector of l's) and X'X is a 2 X 2 matrix, which is easy to invert. 

Note that x'x - x'WiW'WyxW'x = SSRp, the sum of squared residuals 
for a least-squares regression analysis of X as a linear function of 
Xl,...,Xp_i. We must show o^/SSR,, = o-2VIFp/((/i - l)s2). Since 
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VIFp = 1/(1 - R2
p) and (n - l)s$ = L(xip - xp)

2, we must show SSRp = 
(1 - R2

p)L(xip - xp)
2, or R2

p = 1 - SSRp/TJixip - x„)2- This is shown in 
Note 3.11a. 

8.7c. The variance inflation factor VIF, can be calculated as n - 1 times 
the j'th diagonal entry of (Z'Z)"1. As for why this works, note that the 
columns of Z are standardized and so the standard deviation of the observed 
values of Z· is 1. Hence, by the second formula in Section 8.7, Varíy^·) = 
VlFja2/(n - 1). As in Note 3.10, it is also true that Var(?Lsy) ' s equal to σ2 

times the j'th diagonal entry of (Z'Z)~l. 
8.7d. The following informal argument shows how collinearity of the 

columns of Z implies near-singularity of Z'Z. We use the fact that exact 
singularity (that is, noninvertibility) of a square matrix is equivalent to exact 
collinearity of its columns. Let the columns of Z be z,, z 2 , . . . , zp. Collinear-
ity means that alzi + a2z2 + · · · +cpzp ~ 0 for numbers a¡ not all 0. This 
can also be expressed as Za = 0, where a = (α,, a2, ■ ■ ■, ap). Then Z'Za ~ 0, 
so the columns of Z'Z are collinear. 

Additional Reading. To read more about ridge regression, see 
Section 6.7 in Draper and Smith (1981), Section 5.5 in Freund and Minton 
(1979), or Section 10.3 in Gunst and Mason (1980). Ridge regression was 
introduced into the statistical literature in two journal articles by Hoerl and 
Kennard (1970a, b). Marquardt and Snee (1975) have written an expository 
article. 
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C H A P T E R 9 

Comparisons 

Then to the rolling Heav'n itself I cried 
Asking, "What Lamp had Destiny to guide 
Her little Children stumbling in the Dark?" 
And—"A blind Understanding!" Heav'n replied. 

KHAYYAM NAISHAPURI: Persian astronomer and poet (1048-1131) 

9.1 INTRODUCTION 

The preceding six chapters present six different methods for obtaining 
estimates and test statistics for the regression coefficients in a linear regres-
sion model. In this chapter we compare these methods with one another by 
considering what statistical theory says about their properties and by looking 
at their performances on some real data sets. 

9.2 COMPARISON OF PROPERTIES 

Let us consider the properties of the six methods. These properties are 
described briefly, without getting into all the mathematical details that would 
be required to fully explain some of them. References to more details are 
given in the Notes. 

Some Terminology. A property is called an optimal property if it states 
that a procedure is best, where "best" is judged according to a particular 
criterion and attention may be restricted to a particular class of procedures. 

A property is called asymptotic if it concerns the limiting behavior of a 
procedure as the size of the sample becomes infinitely large. Asymptotic 
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properties are also called large-sample properties. Since real data occur in 
samples of finite size, asymptotic properties are not as directly relevant as 
finite-sample properties, but asymptotic results are often more readily obtain-
able. 

Most estimates, if they are at all reasonable, have the asymptotic property 
of consistency. Let Θ be an estimate of a parameter Θ. We say Θ is consistent 
if, when the sample size is very large, Θ is very close to Θ with high 
probability. Many estimates are also asymptotically normal. We say Θ is 
consistent and asymptotically normal (CAN) if, when the sample size is very 
large, the probability distribution of Θ is approximately normal with mean Θ 
and variance of the form τ2/η, where τ 2 does not depend on n. We call τ 2 

the asymptotic variance of Θ. The large-sample performances of two CAN 
estimates of the same parameter can be compared by comparing their 
asymptotic variances. Let 0, and 02 be two CAN estimates of Θ with 
asymptotic variances τ 2 and τ | , respectively. The ratio τ\/τ\ is called the 
asymptotic relative efficiency (ARE) of 0, with respect to 02. 

Least Squares. One advantage of least-squares regression is that the 
calculations are relatively simple and straightforward. Also, the least-squares 
estimates of the regression coefficients have several optimal properties. In 
the first place, by definition, they are the estimates that give the smallest sum 
of squared residuals. 

Another optimal property is that the least-squares estimate of ßj is the 
best linear unbiased estimate (BLUE). That is, suppose we want to estimate 
ßj by a linear combination α,ν, + · · · +anyn of the observed response 
variables and suppose we want the estimate to be unbiased. Among all linear 
unbiased estimates of ßj, the one with the smallest variance is the least-
squares estimate. 

Now assume that the population of errors has a normal distribution. Then 
among all unbiased (not necessarily linear) estimates of ßJy the one with the 
smallest variance is the least-squares estimate. That is, the least-squares 
estimate of ßj is the uniformly minimum variance unbiased estimate 
(UMVUE). This property, however, depends strongly on the assumption of 
normality. When the distribution of the population of errors is not normal, 
the variance of the least-squares estimate can be much larger than the 
minimum possible variance. 

In this and the next two paragraphs, we continue to assume that the 
population of errors has a normal distribution. An estimate ßjiy) is called 
equivariant if ßjiay + Xb) = aßjiy) + b¡ for all a and b. Among all equivari-
ant estimates of /3y, the one with the smallest mean squared error, £(/§, — 
ßj)2, is the least-squares estimate. 
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The probability density function of y is f(y\ß,a) = (2πσ2)'"/2 Χ 
exp[ - | | j - Χβ\\2/(2σ2)]. Regarded as a function of the parameters β and σ 
for a fixed data vector y, this is the likelihood function. The values of β and 
σ that maximize the likelihood are ß = ßLS and σ = (\/Jñ)\\y - Χβ^\\. 
That is, the least-squares estimate of /3; is the maximum likelihood estimate 
(MLE). 

The F test of Section 3.8 is the uniformly most powerful invariant (UMPI) 
test. That is, among all tests of a fixed level that are invariant under a certain 
group of transformations of the data, the F test has the maximum power. 
When q = p - 1, it is also the uniformly most powerful unbiased (UMPU) 
test. 

Suppose that the population of errors is not normally distributed. If we 
only assume that this population has a mean of 0, then the least-squares 
estimates may not be optimal but they at least have the property of being 
unbiased. If we further assume that the population of errors has finite 
variance, then the least-squares estimates have the property of being consis-
tent and asymptotically normal, provided that the entries of the matrix 
X(X'X)-lX' are all small. 

A disadvantage of least-squares regression is that its optimally depends 
on willingness either to restrict attention to linear estimates or to assume that 
the random errors are normally distributed. When the distribution of the 
errors is nonnormal, least-squares estimates and tests may lose much of their 
efficiency. A few distant outliers can cause least-squares procedures to 
perform quite poorly. 

Least Absolute Deviations. One optimal property of the LAD estimates 
of the regression coefficients is, by their definition, that they are the estimates 
that give the smallest sum of absolute residuals. Also, if we assume that the 
population of errors has a Laplace (or double exponential) distribution, then 
the LAD estimate of ßj is the maximum likelihood estimate. 

If we assume only that there is a positive probability of the random errors 
being near 0, then the LAD estimates are consistent and asymptotically 
normal, provided that the entries of the matrix (X'X)~' are all small. An 
indication of the stability of LAD estimation is given by the fact that their 
consistency does not require that the population of errors have finite vari-
ance. 

The strength of LAD estimation is its robustness with respect to the 
distribution of the response variable (although not with respect to the 
explanatory variables). For this reason, LAD estimates are sometimes recom-
mended as starting values for iterative estimation algorithms such as those in 
Chapters 5 and 6. The LAD method is especially suitable when it is thought 
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that the distribution of the errors has very heavy tails or is asymmetric or 
when the sample is very large. (A distribution is said to have heavy tails if the 
graph of its probability density function appears to have thicker tails than the 
p.d.f. of a normal distribution. In other words, a heavy-tailed distribution 
produces a larger proportion of outliers than a normal distribution.) In the 
case of a heavy-tailed error distribution, LAD estimates have relatively low 
variance; in the case of an asymmetric error distribution, bias may be a more 
serious issue than variance and LAD estimates have low bias; in the case of a 
very large sample, any reasonable estimate has low variance and so it 
becomes more important to control bias. 

For large samples, the efficiency of LAD estimates and tests relative to 
their LS counterparts is about the same as the efficiency of the sample 
median relative to the sample mean. If the errors have a normal distribution, 
the asymptotic relative efficiency (ARE) is only 0.64, but if the errors have a 
Laplace distribution, the ARE is 2. For the Cauchy distribution, the ARE is 
oo. As long as the distribution of the error population is unimodal and 
symmetric about 0, the asymptotic relative efficiency of LAD with respect to 
least squares is at least 0.33. An ARE of 0.33 occurs for the uniform 
distribution, which is very short-tailed. 

Μ-Regression. Consistency and asymptotic normality of Huber M-esti-
mates have been proved under conditions requiring that all the entries in 
X(X'X)~lX' are small, that n is very much larger than p, and that the error 
population is such that the Huber M-estimate is unbiased (which is true of 
any symmetric error population having a mean of 0). 

The Huber M-estimate has minimax asymptotic variance among all M-
estimates. To describe this property, recall that for any function pie), the 
corresponding M-estimate of ß is defined to be the estimate that minimizes 
Σρ(ν,: — χ'β). We only consider smooth, that is, differentiable, functions 
pie). Note that the least-squares estimate is the M-estimate corresponding to 
pie) = e2. The asymptotic variance of an estimate can be thought of as its 
variance for very large samples, multiplied by the sample size n. We would 
like our estimate to be robust in the sense that its asymptotic variance is 
relatively small not only if the population of errors has a normal distribution 
but also if it has a distribution that is close to normal. A large class of 
distributions that are "close" to normal is the class of ε-contaminated normal 
distributions, that is, distributions obtained by sampling a proportion 1 - ε 
of observations from a normal distribution and a proportion ε of observa-
tions from a contaminating distribution. We require the contaminating distri-
bution to satisfy the condition that it does not induce any bias in the 
M-estimate. Suppose that for each M-estimate, we calculate its asymptotic 



COMPARISON OF PROPERTIES 193 

variance for all ε-contaminated distributions and calculate the maximum of 
all these variances. The M-estimate with the smallest maximum asymptotic 
variance is the one corresponding to the Huber function p(e) in (5.1). The 
value of ε determines the constant k. (k = 1.5 corresponds to ε = 0.038.) 

For large samples, the efficiency of Huber M-estimates and tests relative 
to their LS counterparts is about the same as the efficiency of the Huber 
M-estimate relative to the sample mean in the case of a simple random 
sample (that is, with no explanatory variables). Efficiencies have been calcu-
lated for when σ is estimated using Huber's Proposal 2 (see Note 5.3g). If 
the errors have a normal distribution, the asymptotic relative efficiency 
(ARE) is 0.96. The ARE is high for error distributions that have heavy tails; 
for the Laplace distribution it is 1.31 and for the Cauchy distribution it is °o. 
As long as the distribution of the error population is unimodal and symmetric 
about 0, the asymptotic relative efficiency of Huber M-regression with respect 
to least squares is at least 0.81. 

Nonparametric Regression. The nonparametric rank-based estimates in 
Chapter 6 are consistent and asymptotically normal provided that all the 
entries of the matrix (X'X)~l are small and that the error population has a 
median of 0 and has finite Fisher information about location. (The normal, 
Laplace, and Cauchy distributions all have finite Fisher information about 
location.) 

The asymptotic relative efficiency (ARE) of the rank-based estimates and 
tests in Chapter 6 with respect to their LS counterparts is the same as the 
ARE of the Wilcoxon signed-rank test with respect to the usual t test in the 
case of a simple random sample. If the errors have a normal distribution 
the ARE is 0.95, if the errors have a Laplace distribution it is 1.50, and if the 
errors have a Cauchy distribution it is ». As long as the distribution of the 
error population is symmetric about 0, the asymptotic relative efficiency with 
respect to least squares is at least 0.86. 

Bayesian Regression. Those who advocate the use of Bayesian estimates 
and tests argue that the Bayesian approach to statistical analysis makes more 
sense than other approaches. When prior information is available, it seems 
wasteful not to use it, and a natural way to explicitly incorporate prior 
information into a statistical analysis is the Bayesian way. The Bayesian 
approach can also be regarded as being more satisfactory than the classical 
approach in that it produces a direct probability statement abut a parameter 
or hypothesis, as opposed to the somewhat awkward notions of confidence 
level or p-value, which are frequently misinterpreted by nonprofessional 
statistical users. It could also be viewed as an advantage that Bayesian 
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analysis allows one to interpret a probability as a measure of degree of belief 
concerning the actual observed data rather than as a long-run frequency 
involving hypothetical observations that might have been obtained but were 
not. Moreover, the Bayesian approach has the appealing feature that it 
provides a unified, fairly straightforward (conceptually if not computationally) 
way to analyze any statistical problem. 

Critics of the Bayesian method say that it is too subjective, especially with 
regard to the choice of a prior distribution for the parameters. In response to 
this criticism, it can be said that statistical analysis cannot avoid being 
subjective, for example, in the choice of the model, and that the data analyst 
should admit his or her subjectivity and explicitly include it in the analysis. In 
doing this, however, one runs into the difficulty of quantifying one's prior 
knowledge and beliefs in the form of a prior distribution. Another difficulty 
arises if the prior distribution is not restricted to have a mathematically 
convenient form, because then the computation of the posterior distribution 
can be unwieldy. 

As mentioned in Section 7.7, Bayesian regression estimates are the same 
as the least-squares estimates if a certain noninformative prior is used. For 
large sample sizes, most Bayesian procedures are approximately the same as 
the classical large-sample procedures. 

Ridge Regression. When there are approximate linear relationships 
among the explanatory variables, ridge regression estimates are generally 
better than least-squares estimates, which may have large variances, be much 
too large, or have the wrong sign. In ridge regression the model is usually 
expressed as y = Ιμ + Ζγ + e, where Z is the matrix of standardized 
explanatory variables. In the following paragraphs we consider ridge esti-
mates of y of the form (8.4). Unless stated otherwise, k is taken to be an 
arbitrary positive nonrandom number. In practice, A: is a random quantity 
calculated from the data, but it is very difficult to derive properties of the 
ridge estimate when k is random. 

First we look at the problem of least-squares estimates that are too large. 
Suppose we know that the length of y should be no larger than an upper 
bound B. Recall that the least-squares estimate minimizes the length of the 
residual vector; that is, γ^ minimizes \\y - ( ly + Zy)\\. If the length of yLS 

is larger than B, then the ridge estimate, with k chosen so that its length ||y|| 
is equal to B, has the optimal property that it minimizes the length of the 
residual vector among all estimates 7 with length less than or equal to B. 

Now consider the related problem of least-squares estimates that have 
large variance. The accuracy with which an estimate y estimates y can be 
measured by its total mean squared error E(\\y — y|| ). For an unbiased 
estimate like γ^, its total mean squared error is the sum of the variances of 
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its components. It can be shown that there always exists an interval of small 
positive values of k for which the ridge estimate has smaller total mean 
squared error than the least squares estimate. (But unfortunately the interval 
depends on the values of the unknown parameters.) Under certain conditions 
on the eigenvalues of the matrix Z'Z, it has been found that the ridge 
estimate using the random value k = páfs/Wy^W2, recommended in Section 
8.6, has smaller total mean squared error than the least-squares estimate. 

A ridge estimate can be viewed as a Bayesian estimate if we suppose y is a 
random vector with mean vector 0 and covariance matrix (a2/k)I. If the 
conditional distribution of y given y and the distribution of y are both 
assumed to be multivariate normal, then the posterior mean of y is the ridge 
estimate. In an empirical Bayes approach, we can use the data to estimate 
the variances σ2 and a2/k by σ ^ and IITLSK2//7» respectively. Substituting 
these estimates into k = a2/(a2/k), we obtain the ridge estimate of Section 
8.6. 

A ridge estimate can be viewed as the best linear unbiased estimate of the 
vector y of random effects in the random linear model y = Ιμ + Ζγ + e in 
which y has mean vector 0 and covariance matrix (a2/k)I. 

Caution. It must be kept in mind that the properties listed above depend 
on certain assumptions. In particular, the properties assume that the linear 
regression model is true and many of them assume that the error population 
has a particular kind of distribution. But our ultimate goal is to extract 
information from real data, and we cannot expect real data to exactly satisfy 
our assumptions. Also, many of the properties are asymptotic results; that is, 
they assume an infinitely large sample size, but of course all real samples are 
finite. 

Summary. The principal features of these six types of regression can be 
summarized briefly as follows. Least-squares regression is optimal if the 
distribution of the error population is exactly normal but it can perform 
poorly if the distribution is not normal. Least-absolute-deviations regression 
is efficient when the error distribution has heavy tails and is effective at 
controlling bias. Huber M-regression and nonparametric rank-based regres-
sion are both efficient when the error distribution has heavy tails and do 
almost as well as least-squares when the error distribution is normal. Hence 
LAD, M-, and nonparametric regression are especially appropriate when the 
data contain outliers, since outliers are an indication of a heavy-tailed error 
distribution. Bayesian regression can be used to incorporate prior informa-
tion into a statistical analysis. It produces direct probability statements about 
the parameters. Ridge regression may give more accurate estimates than 
least squares when there are collinearities among the explanatory variables. 
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9.3 COMPARISONS ON THREE DATA SETS 

To get a more concrete idea of how the regression methods perform on real 
data, let us look at a few examples. 

Example 1. Consider the acid content data in Table 3.1. In Figure 3.2 we 
see that all the data points fall closely around a straight line. For such a 
well-behaved data set, all the regression methods give very similar results. 
Estimates of a, ß, and σ and the p-value for testing β = 0 were calculated 
using the methods presented in the preceding chapters. Compared to the 
least-squares estimates of a and β, the LAD estimates were within 2%, the 
M-estimates were exactly the same, the nonparametric estimates were within 
1%, and the ridge estimates differed only in the fourth significant digit. 
Recall that, regardless of the data set, Bayesian estimates using the noninfor-
mative prior (7.2) are exactly the same as the least-squares estimates. The 
estimates of σ were not as close; they were 1.230, 1.433, 1.595, and 1.364 for 
least-squares, LAD, M-, and nonparametric regression, respectively. The 
p-values for testing β = 0 were all 0 to at least four decimal places and the 
Bayesian posterior probability of the null hypothesis was also approxi-
mately 0. 

Example 2. Let us apply all six regression methods to the turnip green 
data in Section 1.2 using the linear regression model (3.9). Table 9.1 lists the 
estimates β0,βχ,β2,β3,β4 of the regression coefficients, the estimate & of 
the standard deviation of the error population, the number N0 of standard-
ized residuals with absolute value larger than 2.5, the p-value Pl234 for 
testing 0, = ß2 = ß3 = ß4 = 0, the /rvalue P¡ for testing ß{ = 0, and the 

Table 9.1 Results of Applying Various Regression Methods 
to the Turnip Green Data 

Least squares 
LAD 
M-regression 
Nonparametric 
Ridge 

Least squares 
LAD 
M-regression 
Nonparametric 

¿o 
119.6 
133.8 
122.7 
123.7 
115.9 

σ 

6.104 
4.140 
4.177 
4.509 

ßl 

-0.03367 
-0.05301 
-0.03967 
-0.04478 
-0.02805 

κ 
0 
4 
4 
3 

ßi 

5.425 
6.635 
5.763 
6.043 
4.807 

^1234 

0.0000 
0.0000 
0.0000 
0.0000 

ßl 

-0.5026 
-0.6974 
-0.5443 
-0.5583 
-0.4363 

Ρχ 

0.1811 
0.0149 
0.0426 
0.0341 

04 

-0.1209 
-0.1460 
-0.1282 
-0.1339 
-0.1089 

P) 

0.0263 
0.0012 
0.0030 
0.0027 
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p-value P3 for testing ß3 = 0. For the ridge regression method, only the 
estimates of the regression coefficients are given because this method is 
intended to be used only for estimation. The Bayesian method is not 
included in the table because, using the noninformative prior distribution 
(7.7), the Bayesian estimates are the same as the least-squares estimates, and 
the Bayesian method does not define p-values. Using the noninformative 
prior distribution (7.14), the Bayesian posterior probabilities of the three 
hypotheses are 0.0000, 0.6781, and 0.2956. 

The five estimation methods in the table produce estimated coefficients 
that are noticeably different although "in the same ballpark". 

According to the discussion in the preceding section, LAD, M-, and 
nonparametric regression are especially suitable when there are outliers in 
the data. In all three procedures the data points numbered 10, 19, and 20 had 
standardized residuals more than 2.5 in absolute value and hence may be 
regarded as outliers. Point number 15 was also detected as an outlier by LAD 
and M-regression and was almost detected by the nonparametric procedure. 
These points should not necessarily be omitted from the data set, but to see 
their effect on the analysis we applied least-squares, LAD, M-, and nonpara-
metric regression with the four outliers omitted. Without the outliers, the 
estimates from the four procedures were closer to one another. The stability 
of the LAD procedure was seen in the fact that the LAD estimates were 
almost unchanged when the outliers were omitted. 

Ridge regression is especially suitable when there is collinearity among the 
explanatory variables. Because of the high correlation of 0.997 between X2 

and X4 (= X2), we expect ridge regression to give more accurate estimates 
of ß2 and ß4 than least squares. Note that the ridge estimates ß{, ß2, /33, 
and jS4 are all closer to 0 than the corresponding least-squares estimates. 
This agrees with the description in Chapter 8 of ridge regression as a 
procedure that shrinks the least-squares estimates. 

When the evidence against a hypothesis is very strong, as it is for the 
hypothesis that βκ = β2 = β3 = β4 = 0, then all four non-Bayesian testing 
procedures yield a p-value near 0 and the Bayesian procedure yields a 
posterior probability near 0. For the other two hypotheses the p-value for 
least-squares is much larger than the p-values for the other three procedures. 
Outliers can have a strong effect on least-squares tests. When the four 
outliers were omitted, the p-value for least-squares became closer to the 
p-values for the other procedures. 

Example 3. Next we consider a data set that has appeared as an example 
in many books and articles. The data, displayed in Table 9.2, consist of 
measurements from a factory for the oxidation of ammonia to nitric acid. On 
21 different days, measurements were taken of the air flow (Λ",), the 
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Table 9.2 Stack Loss Data 

Stack Loss 
(V) 

42 
37 
37 
28 
18 
18 
19 
20 
15 
14 
14 
13 
11 
12 
8 
7 
8 
8 
9 
15 
15 

Rate 

(Xt) 
80 
80 
75 
62 
62 
62 
62 
62 
58 
58 
58 
58 
58 
58 
50 
50 
50 
50 
50 
56 
70 

Temperature 
(X2) 

27 
27 
25 
24 
22 
23 
24 
24 
23 
18 
18 
17 
18 
19 
18 
18 
19 
19 
20 
20 
20 

Acid Concer 

<*3) 

89 
88 
90 
87 
87 
87 
93 
93 
87 
80 
89 
88 
82 
93 
89 
86 
72 
79 
80 
82 
91 

Source: Brownlee (1965, p. 454). 

temperature of cooling water (X2), the concentration of acid (X3), and the 
amount of ammonia that escaped before being oxidized, called stack loss (Y). 

All six regression methods were applied using the model Y = ß0 + ßtX{ 

+ ß2X2 + ß3X3 + e. Table 9.3 shows the estimates ß0, ßu ß2, ß3, and σ, 
the number N0 of standardized residuals with absolute value larger than 2.5, 
and the p-values Pu P2, P3, and Pi23 for testing the hypotheses β, = 0, 
β2 = 0, β3 = 0, and βχ = β2 = β3 = 0. The Bayesian posterior probabilities 
of the four hypotheses, using the noninformative prior distribution (7.14), are 
0.0014, 0.0436, 0.7465, and 0.0000. 

There are substantial differences in the estimates of ßu ß2, and ß3 for the 
five methods. This is at least partly due to outliers. As in Example 2, the M-
and nonparametric estimates are similar to one another. 

In an extensive least-squares analysis of this data set, Daniel and Wood 
(1980, Chapter 5) found four outliers, the observations numbered 1, 3, 4, and 
21. In LAD regression, three of these outliers had standardized residuals 
larger than 2.5 in absolute value and the other outlier had a standardized 
residual of 2.331. M- and nonparametric regression, however, detect only one 
outlier and almost detect another one. When we applied the five estimation 
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Table 9.3 Results of Applying Various Regression Methods to the Stack Loss Data 

k ßi ßz & f_ 
39.92 0.7156 1.295 -0.1521 3.243 
39.69 0.8319 0.574 -0.0609 2.171 
41.17 0.8133 1.000 -0.1324 2.661 
40.16 0.8155 0.888 -0.1202 2.920 
40.62 0.6861 1.312 -0.1273 

Least squares 
LAD 
M-regression 
Nonparametric 

N„ 

0 
3 
1 
1 

pt 

0.0001 
0.0001 
0.0000 
0.0001 

p2 

0.0026 
0.0211 
0.0114 
0.0130 

p> 

0.3440 
0.2921 
0.3183 
0.4000 

Pm 

0.0000 
0.0000 
0.0000 
0.0000 

methods to the data with the four outliers omitted, the five estimates of each 
coefficient were more similar to one another than they are in Table 9.3, all 
being roughly similar to the LAD estimate from the entire data set. 

The p-values for the four testing methods in Table 9.3 lead to the same 
conclusions, except possibly for P2. The methods still differed in their 
conclusions about the hypothesis ß2 = 0 when the outliers were omitted. 

Recommendations. In each example above we have applied six different 
methods of regression to the same set of data for the purpose of comparing 
the methods. If our only purpose had been to analyze the data, it would still 
be good practice to apply more than one (but maybe not as many as six) 
regression methods. If you use several methods to analyze a data set and they 
all lead to similar results, you can feel confident about your conclusions. If 
there are serious disagreements between the results of the different methods, 
you should examine the data to see why. 

We would recommend using least squares and one other method. The 
personal preferences of the authors are the nonparametric rank-based and 
LAD methods, but any of the methods presented in this book are justifiable. 
Each method has its advantages and disadvantages. More important than 
choosing the method is applying it responsibly, that is, not automatically but 
interactively, with attention to the particular features of the data at hand. 

NOTES 

9.2a. Asymptotic properties are expressed in terms of the limiting behav-
ior of a sequence of estimates calculated from samples of increasing size, 
rather than the behavior of a single estimate calculated from a sample of a 

Least squares 
LAD 
M-regression 
Nonparametric 
Ridge 
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given size. In practice, we are interested in a single estimate. Asymptotic 
properties are relevant for this estimate to the extent that the given sample 
size is "large" and the sequence of estimates is a "natural" extension of the 
estimate of interest. 

9.2b. More precise definitions of consistency and asymptotic normality 
may be found, for example, in Lehmann (1983, pp. 332, 340). 

9.2c. The asymptotic relative efficiency of one estimate with respect to 
another estimate can be defined in terms of sample sizes. Let 0, and 02 be 
two estimates of a parameter Θ. To designate the size of the sample from 
which the estimates are calculated, we can use the notation 0, „ and 02 „. 
For each n, let ri be the sample size such that the variance of 02,„< is equal 
(or as close as possible) to the variance of 0, „. The asymptotic relative 
efficiency of 0, with respect to 02 is the limit of ri/n as n becomes infinitely 
large. It can also be expressed as the reciprocal of the ratio of their 
asymptotic variances. See Lehmann (1983, Section 5.2). 

9.2d. The asymptotic relative efficiency of one test with respect to another 
test is defined similarly to Note 9.2c. Let Γ, and T2 be two tests of a 
hypothesis H. For each n, for a given significance level, let ri be the sample 
size such that the power of T2 „■ is equal (or as close as possible) to the 
power of Γ, „ against an alternative close to H. The asymptotic relative 
efficiency of Γ, with respect to T2 is the limit of ri/n as n becomes infinitely 
large. Under certain conditions, the limit does not depend on the particular 
level or power that is considered. See Lehmann (1975, Appendix, Section 6). 

9.2e. Properties of the least-squares estimates, namely, that they are BLU 
and, under the assumption of normality, are UMVU, best equivariant (some-
times called best invariant), and ML, are derived in Arnold (1981, 
Chapter 6). See Note 3.7 for a verification of unbiasedness. Consistency and 
asymptotic normality are shown in Huber (1981, Section 7.2). The fact that 
the F test is UMPI under normality is derived in Arnold (1981, Section 7.6) 
and Lehmann (1986, Section 7.1). For the UMPU property when q = p - 1, 
see Lehmann (1986, Section 7.1 and Problem 5 in Chapter 5). 

9.2f. The loss of efficiency of least-squares estimates for mildly nonnormal 
error distributions is discussed in Hampel et al. (1986, Section 1.2d). 

9.2g. Properties of LAD estimates are discussed in Bloomfield and Steiger 
(1983, Preface and Section 2.2) and Huber (1987). Bloomfield and Steiger 
show the consistency and asymptotic normality of LAD estimates when the 
explanatory variables are regarded as random (see their Theorems 1 and 2 in 
Section 2.2). In this book, however, we regard the explanatory variables as 
nonrandom. Consistency and asymptotic normality in this case are proved by 
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Bassett and Koenker (1978) (note that if ß is asymptotically normal with 
asymptotic mean ß, then this implies that ß is consistent with ß). 

9.2h. LAD estimates seem to have lower bias than other estimates of the 
regression function when the population of errors is asymmetrically dis-
tributed. Since we assume that the population of errors has a mean of 0, the 
regression function is a population mean. When a population is symmetri-
cally distributed around some point, then the mean and median, as well as 
other candidates for the "central" point of the distribution, coincide with the 
point of symmetry. But when a population is asymmetrically distributed, then 
these various "central" points differ and it is not clear which one we should 
estimate. 

9.2i. Asymptotic relative efficiencies of the median with respect to the 
mean for various distributions of the error population may be found in 
Lehmann (1983, Section 5.3). 

9.2j. A distribution is unimodal at 0 if it has a probability density function 
fix) that is nondecreasing for x less than 0 and is nonincreasing for x greater 
than 0. 

9.2k. Asymptotic properties of M-regression estimates are derived in 
Huber (1981, Section 7.4). The minimax property of the Huber M-estimate is 
derived in Chapter 4 of the same book for a simple random sample with no 
explanatory variables, and according to Huber (1981, p. 74) the result carries 
over to regression. See Hampel et al. (1986, Section 8.2a) for a discussion of 
Huber's minimax approach to estimation. The asymptotic behavior of M-
regression tests is considered in Schrader and Hettmansperger (1980). 

9.21. Asymptotic relative efficiencies of the Huber M-estimate with respect 
to the mean for various distributions of the error population may be found in 
Bickel (1965). 

9.2m. A Huber M-estimate would be a maximum likelihood estimate if 
the error distribution had a probability density function of the form fiu) = 
Ce-pU'\ 

9.2n. Asymptotic properties of nonparametric rank-based estimates and 
tests are derived in Hettmansperger (1984, Chapter 5). 

9.2o. Asymptotic relative efficiencies of the Wilcoxon signed-rank test with 
respect to the least-squares t test for various distributions of the error 
population may be found in Hettmansperger (1984, Section 2.6) and Lehmann 
(1983, Section 5.6). 

9.2p. Arguments for and against the Bayesian approach are given in 
Berger (1985, Sections 3.7 and 4.1), Press (1989, Section 2.12), and Barnett 
(1982, Section 6.8.3). 



202 COMPARISONS 

9.2q. The property mentioned in the second paragraph of the subsection 
on ridge regression is given in Hoerl and Kennard (1970, Sections 3b and 6). 
The property for nonrandom k in the third paragraph and the Bayesian view 
of ridge estimation are given in Theorem 4.3 and in Section 6 of the same 
article. The property for random k mentioned in the third paragraph may be 
found in Alam and Hawkes (1978). For best linear unbiased estimation (or 
prediction) of random effects, see Henderson (1975, Section 2). 

9.2r. Most of the research on LAD, M-, and nonparametric regression has 
dealt with performance for large samples and for symmetric error distribu-
tions. Fewer results are available about their performance for small samples 
or for asymmetric error distributions, but see Schrader and McKean (1987), 
Field and Ronchetti (1991), and McKean and Sheather (1991). 

9.3a. The acid content data are "well behaved" in the sense that they are 
quite compatible with the assumptions of the simple linear regression model. 
However, among regression data sets with more than one explanatory vari-
able, such good behavior is much rarer. See Daniel and Wood (1980, p. 60). 

9.3b. In Table 9.1, the p-values for the LAD procedure were obtained 
using the F distribution rather than the chi-squared distribution. The /rval-
ues using the chi-squared distribution were smaller. 

9.3c. Estimation methods have been developed for dealing with regression 
data that contain both collinearity and outliers. See Pfaffenberger and 
Dielman (1990). 

9.3d. Three of the four outliers detected by LAD and M-regression in the 
turnip green data can also be detected using least-squares diagnostic proce-
dures. This requires a more sophisticated procedure than simply looking at 
the LS residuals divided by σ^. We have mentioned studentized residuals in 
Note 2.4a. Also, in order to judge whether a data point is an outlier, it is a 
good precaution to eliminate its influence on the estimates ft, and σ that are 
used in forming its studentized residual. This is the idea behind the externally 
studentized residual (see Weisberg, 1985, Section 5.2). The externally studen-
tized residual of a data point can be used to test the null hypothesis that the 
point is not an outlier. The p-values for data points 10, 15, 19, and 20 are 
0.0343, 0.0329, 0.0111, and 0.1157. 

9.3e. The collinearity problem in the turnip green data can be reduced by 
standardizing X2 before forming its square. We can replace X2 and X4 by 
Z2 = (X2 - 18.8)/20.71 and Z4 = Z\, where 18.8 and 20.71 are the mean 
and standard deviation of the 27 observed values of X2. Since Z2 and Z4 are 
linear functions of X2 and X4, the linear regression model with explanatory 
variables Χλ, Ζ2 , X3, and Z4 is essentially equivalent to model (3.9). In the 
modified model the correlation between Z2 and Z4 is 0.954, which is less 
than 0.997. 
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9Jf. Table 9.3 is similar to Table 3.1 in Dodge (1984). The LS and LAD 

residuals are displayed in the earlier table. The Huber estimates in the two 

tables are different because the earlier table used k = 1.345 rather than 

k = 1.5. 

9.3g. Analysis of a data set by more than one method is recommended by 

Hogg (1979) and Tukey (1991). 
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Other Methods 

Alas, that Spring should vanish with the Rose 
That Youth's sweet-scented Manuscript should close 
The Nightingale that in the Branches sang, 
Ah, whence, and whither flown again, who knows. 

KHAYYAM NAISHAPURI 

10.1 INTRODUCTION 

There are many other linear regression methods besides the six presented in 
this book. Many variations of these six methods exist and some totally 
different methods have been invented. In this final chapter we mention a few 
of these. In the last section we briefly consider some generalizations of the 
linear regression model. 

10.2 OTHER METHODS OF LINEAR REGRESSION 

Compromises Between LS and LAD Estimation. In least-squares and 
least-absolute-deviations regression the estimates of the regression coeffi-
cients are chosen to minimize Σ<?,2 and Σ|<?,|, respectively. More generally, 
the estimates can be chosen to minimize Σ|£,-|ρ, the sum of the pth powers of 
the absolute residuals. This is called Lp-norm estimation. A suitable value of 
p can be determined from the data. See Gonin and Money (1989). As p 
approaches infinity, this leads to L„-norm estimation, which minimizes the 
maximum absolute residual. 

For a value of p between 1 and 2, L;)-norm estimation can be regarded as 
a compromise between least-squares and LAD estimation. It is a kind of 
M-estimation, minimizing Σρ(£,), where the function p(e) is a compromise 
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between e2 and \e\. Huber M-estimation, described in Chapter 5, uses a 
function pie) that is equal to e2 for values of e close to 0 and is a linear 
function of \e\ for values of e far from 0. Another such compromise is 
M-estimation using a function pie) that is a weighted average of the func-
tions e2 and |e | ; see Dodge (1984). 

Other M-Estimates. An M-estimate is often presented in terms of the 
function ijf(e) = p'ie) rather than the function pie). This is sufficient because 
the M-estimate can be found by solving E(/»(y, _ b'x¡)x¡ = 0 rather than 
minimizing Epiy¡ - b'x¡). (Recall that, in the case of simple regression, we 
can solve (5.3) rather than minimize (5.2). As in Chapter 5, the notation x¡ 
denotes the vector (l,xn,...,xip).) For Huber M-estimation, the function 
ψ(ε) is constant with value -2k for e < -k, is a linear function 2e for 
— k < e < k, and is constant with value 2k for k < e. The (/»-function is 
especially interesting because, when multiplied by the appropriate constant, 
it coincides with the residual influence function of the estimate. 

The influence function of an estimate measures the amount of bias in the 
estimate that would be caused by a small amount of contamination in the 
data. The influence function can be written as a product of the influence of 
the residual, which indicates the effect of contamination in the response 
variable (or in the errors), and the influence of position, which indicates the 
effect of contamination in the explanatory variables. See Hampel et al. (1986, 
Sections 4.2a and 6.2). 

In order to be robust, an M-estimate should have a bounded (/»-function, 
so as to bound the influence of outlying values of the response variable. Note 
that the Huber (/»-function is bounded between -2k and 2k. The (/»-function 
for the least-squares estimate is (/»(e) = 2e for all e, which is unbounded. 
The influence of outlying values of the response variable can be eliminated 
completely by choosing a ¡/»-function such that (/»(e) = 0 when e is far from 0. 
An estimate obtained in this way is called a redescending M-estimate. See 
Hampel et al. (1986, Section 2.6). 

A bounded (¿»-function, however, cannot prevent undue influence from 
leverage points, that is, outlying values of the explanatory variables. To solve 
this problem, generalized M-estimates were introduced. A Mallows general-
ized M-estimate is obtained by solving Ew(x,)(/»(y, - b'xi)xi = 0, where wix) 
is a nonnegative function. By choosing a suitable weight function w(x\ one 
can bound the influence of the vector x of explanatory variables. Such an 
estimate is also called a bounded-influence estimate. See Hampel et al. (1986, 
Sections 6.3a and 6.3b). 

L-Estimates. The three basic types of robust estimation that Huber 
included in his 1981 book are M-, L-, and R-estimation. In the case of a 
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simple random sample without explanatory variables, an L-estimate is a 
linear combination of order statistics, such as a trimmed mean. Note that 
a trimmed mean can be viewed as another compromise between LS and LAD 
estimation. The LS estimate in a simple random sample is the mean, which is 
a "trimmed" mean with 0% trimming, and the LAD estimate is the median, 
which is a trimmed mean with 100% trimming. L-estimation has been 
extended to regression data by extending the notion of an order statistic to 
the notion of a regression quantile; see Koenker and Basset (1978) and 
Koenker and Portnoy (1987). 

R-Estimates. The "R" in R-estimation stands for "rank-based". The 
nonparametric estimates presented in Chapter 6 are R-estimates. They are 
chosen to minimize (6.6), E[rank(e,) - \(n + í)]é¡. More generally, R-esti-
mates can be chosen to minimize La(r¡)é¡, where r¡ denotes rank(e,) and 
a(r) is a function called a score function. In Chapter 6 we have used the 
Wilcoxon score function, a(r) = r - j(n + 1). Other score functions that are 
sometimes used are the normal score function, a(r) = Φ"'(/·/(/! + 1)), where 
Φ(/) is the cumulative distribution function of the standard normal distribu-
tion, and the sign score function, a(r) = sgn(r - \{n + 1)), where sgn(f) is 
the sign of t ( - 1 if / is negative, 0 if / = 0, and 1 if t is positive). See 
Hettmansperger (1984, Section 5.2) and McKean and Sievers (1989). 

High-Breakdown-Point Estimates. The robustness of an estimate against 
a single outlier is measured by its influence function. The robustness of an 
estimate against heavier contamination is measured by its breakdown point, 
which is the largest proportion of outliers that can occur in a sample without 
entailing the possibility of arbitrarily large bias. See Rousseeuw and Leroy 
(1987, Section 1.2). The LS, LAD, and Huber M-estimates are not robust in 
this regard; they have breakdown points of 0% because of their sensitivity to 
leverage points. The rank-based estimate in Chapter 6 has a breakdown point 
less than 30%. 

The maximum possible breakdown point is 50%. This is achieved by the 
least-median-of-squares (LMS) estimate, which is the estimate that minimizes 
the median of the squared residuals éf (or, equivalently, minimizes the 
median of the absolute residuals |e,|). See Rousseeuw and Leroy (1987). In 
the plot of a simple regression data set, the LMS line is the middle of the 
narrowest strip containing half of the data points. The LMS estimate is 
simple to describe and is very robust against outliers. For certain types of 
data sets, however, the estimate is not robust against small changes in 
centrally located data points. LMS estimation involves considerable computa-
tion and has low efficiency, but it can be useful in the detection of outliers or 
as a robust initial estimate for iterative procedures. More complicated 
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regression estimates have been devised that have breakdown points of 50% 
and also have efficiencies as high as 0.95 for normally distributed errors, but 
computation is still a problem. See Jurecková and Portnoy (1987) and Yohai 
and Zamar (1988). 

Shrinkage Estimates. The ridge estimate of y, the vector of regression 
coefficients of the standardized explanatory variables, is "shrunk" in the 
sense that its length is less than the least-squares estimate. Now suppose that 
the explanatory variables Xv...,Xq are thought to be more important than 
Xq+X, ■.., Xp- Rather than shrink all the regression coefficient estimates, one 
may prefer to shrink the estimates for only the unimportant variables. This is 
the idea of subspace-ridge estimation; see Oman (1982) and Lee and Birkes 
(1993). 

Another type of shrinkage estimate is the Stein estimate. As with ridge 
estimation, it is common to standardize the explanatory variables before 
applying Stein estimation. The Stein estimate of y is cyLS, where c = [1 -
( e / F ) ] + , F = Uy^f/pals, a = (1 - 2//>Xl - 2/(n - p + 1)), and 
[w]+ = max(«,0). See Rolph (1976). It is applicable only when p > 3. To see 
why this is a sensible estimate, note that F is the least-squares test statistic 
for testing the hypothesis y = 0. If the hypothesis is true, then F will 
probably be close to 1, which implies c will be close to 0 and hence the Stein 
estimates of y will be close to 0. If the hypothesis is false, then F will 
probably be large, which implies c will be close to 1 and the Stein estimate 
will be close to the least-squares estimate. 

If some of the explanatory variables are thought to be more important 
than others, one can use a subspace-Stein estimate, which shrinks the coeffi-
cient estimates of only the unimportant variables; see Jennrich and Oman 
(1986). Subspace-Stein estimation can be viewed as a "smooth" version of 
preliminary-test estimation, in which estimation is preceded by a test of 
ßq+l = ■ · · = ßp = 0. If the hypothesis is rejected, then the ordinary least-
squares estimates of the regression coefficients are used. If the hypothesis is 
accepted, then ß +l,...,ßp are estimated to be 0 and ßl,...,ßq are 
estimated by least squares in the reduced model. Rather than choose 
between least squares in the full model and least squares in the reduced 
model on the basis of a test statistic F, subspace-Stein estimation takes a 
weighted average of the two, with the weights depending on the value of F. 

Principal Components Regression. To deal with regression data having 
collinearities among the explanatory variables, another technique one can 
use, besides ridge regression, is principal components regression. The first 
principal component is the standardized linear combination of the explana-
tory variables that shows the most variability. (A linear combination is 
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standardized if the sum of the squares of its coefficients is equal to 1.) Among 
all standardized linear combinations of the explanatory variables that are 
orthogonal to the first principal component, the second principal component 
is the one showing the most variability. Continuing in this way, p principal 
components can be constructed. Sometimes, by looking at the sizes and signs 
of the coefficients in the linear combination, a meaningful interpretation can 
be given to a principal component. Explanatory variables that are collinear 
with one another will typically occur together with large coefficients in a 
single principal component. In principal components regression, the first 
several principal components are taken as a new set of explanatory variables 
and least-squares estimates are calculated. See Gunst and Mason (1980, 
Section 10.1) and Myers (1990, Section 8.4). 

Maximum Likelihood Estimation. If one is willing to assume that the 
error population has a particular kind of distribution, maximum likelihood 
(ML) estimation can be applied. The error distribution is usually assumed to 
be continuous, which means that it can be described in terms of a probability 
density function (p.d.f.). The exact error distribution is almost always un-
known to us, but suppose we are willing to assume that the distribution is 
contained in a known family of distributions with p.d.f.'s fie; σ) indexed by 
the parameter σ. (More generally, the family could be indexed by a vector of 
parameters.) Then the p.d.f. of the sample of observed response variables is 
the product / ( y , - JS'JC,; σ) ■ · ■ f(y„ - β'χ„; σ). Regarded as a function of 
β and σ, this is the likelihood function. The maximum likelihood estimates of 
β and σ are chosen to maximize the likelihood function. 

If the family of possible error distributions is the family of normal 
distributions with mean 0, then the ML estimates of the regression coeffi-
cients coincide with the least-squares estimates; the ML estimate of σ is 
W(n - P ~ 1 ) / " ) < ? L S - F ° r t n e family of Laplace (double exponential) distri-
butions with mean 0, the ML estimates of the regression coefficients coincide 
with the LAD estimates. 

10.3 MORE GENERAL METHODS OF REGRESSION 

For some sets of regression data a linear regression model may not be 
appropriate. The techniques mentioned in Chapter 2 may fail to produce a 
satisfactory model. Or theory about the process that generated the data may 
suggest a different type of model. Such data require more general models. 

A very general model is y, = μ( + e¡, where μ, is the expectation of the 
random variable y, and where e¡ is defined to be the difference (or "error") 
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y¡ - μ,,. Different kinds of models are obtained by making different assump-
tions about the structure of the expectations μ, and about the distribution of 
the errors e¡. The linear regression model assumes that μ, is a linear function 
j8'x, of the explanatory variables and that the random variables e, are 
independent of one another and have the same distribution. 

Weighted Least Squares. For some regression data sets it may be valid to 
assume that μ, = ß'Xj but invalid to assume that the errors all come from the 
same population. Suppose that the errors are independent but have unequal 
standard deviations that are proportional to one of the explanatory variables, 
say, X\, so that Vari^) = <r2xf{. Or more generally, suppose Var(e,) = σ2υ, 
for known positive quantities v¡. The weighted least-squares estimate 0 W L S is 
the value of ß that minimizes Σ(ν, - px¡)2/v¡. This becomes the ordinary 
least-squares procedure in the special case when all the v¡'s are equal. See 
Weisberg (1985, Chapter 4) and Myers (1990, Section 7.1). 

Generalized Least Squares. Continue to assume that the expectation of 
y, is a linear function of the explanatory variables. In vector notation, 
y = Xß + e. In ordinary least-squares regression the vector of errors is 
assumed to have the variance-covariance matrix Cov(c) = σ2Ι. In weighted 
least squares it is assumed that Cov(e) = a2V, where V is a diagonal matrix 
with positive diagonal entries. More generally, suppose Cov(c) = a2V, where 
V is any invertible variance-covariance matrix. This allows the errors to be 
correlated as well as to have unequal variances. The generalized least-squares 
estimate of the vector of regression coefficients is /3G U S = (X'V~ lX)~ lX'V~ ]y. 
When V = / , this reduces to formula (3.8). See Myers (1990, Section 7.1) and 
Seber (1977, Section 3.6). 

Nonlinear Regression. A linear regression function is not always suitable. 
Consider a regression function of the general form μ, = g(x¡, Θ), where g is 
a known function that is not necessarily linear and Θ is a vector of unknown 
parameters. (In nonlinear regression no convenience is gained by including 1 
as the first component of x, and so we use the more natural notation 
x¡ = (xn,...,xip).) The least-squares estimate θ^ is the value of Θ that 
minimizes Σ[ν, - g(x¡,Θ)]2. When g is a nonlinear function, there is gener-
ally no explicit formula for 0LS; it must be computed iteratively. One possible 
iterative algorithm is the following. First pick an initial estimate. Using a 
Taylor series expansion about the initial estimate (let us consider only 
functions g that are differentiable with respect to 0), we can approximate 
g(x¡,e) by a linear function of Θ. Thus we obtain an approximating linear 
regression model in which an ordinary linear least-squares estimate of Θ can 
be computed. This process of computing an updated estimate based on a 



MORE GENERAL METHODS OF REGRESSION 211 

previous estimate can be repeated until, hopefully, the sequence of estimates 
converges. See Weisberg (1985, Section 12.1), Myers (1990, Chapter 9), Bates 
and Watts (1988), and Seber and Wild (1989). 

The least-squares procedure in the preceding paragraph is most justifiable 
if the errors are assumed to be independent and all to have the same 
variance. However, the data may more closely follow a model in which the 
errors have unequal variances. In the model y, = g(x¡,e) + e¡, let us allow 
the variance of e, to depend on the explanatory variables, on the parameters 
in 0, and on other parameters as well. A common model of this type is the 
one that assumes Varíe,) = a2g{x¡, 0 ) \ where σ and λ are unknown param-
eters. One can estimate the parameters by an iterative procedure similar to 
the one above except that weighted, rather than ordinary, linear least squares 
is used at each iteration. See Carroll and Ruppert (1988, Chapter 2) and 
Seber and Wild (1989, Section 2.8). 

Generalized Linear Models. In a generalized linear model the regression 
function has the form μ,, = Λ(/3'ΛΓ,), where h is a known function. The 
function h can be any strictly monotone (that is, either strictly increasing or 
strictly decreasing) differentiable function. Unless h is a linear function, this 
is a nonlinear regression function, but note that the explanatory variables and 
the parameters are interrelated in a linear way. The generalized linear model 
further assumes that the random variable y, has a distribution with a 
probability density function (or probability mass function if y, is discrete) of 
the form /(y, ;0, , φ) = c(y¡, </>)exp{fl(<¿>Xy,0, - ¿(0,·)]}. This includes normal, 
gamma, binomial, and Poisson distributions. The parameter vector β is 
linked to the distribution of y, by the fact that μ,, = ¿>'(0(·). To estimate the 
parameters, the maximum likelihood method is used. The linear form of the 
interrelationship between x¡ and β and the exponential form of /(y,;0,, φ) 
allow some useful aspects of linear regression analysis to be carried over to 
the analysis of these more general models. See McCullagh and Neider (1989) 
and Myers (1990, Section 7.6). 

Nonparametric Smoothing. In nonlinear regression it is assumed that the 
form of the regression function is known. That is, the function g in μ, = 
g(x¡, 0) is assumed known. A more general regression model is obtained by 
letting the form of the regression function be unknown. Such a model is 
especially appropriate for exploratory data analysis. Let us suppose μ, = 
gix¡), where g is an unknown function. Estimating the function g can be 
viewed as "smoothing" a plot of the data. One tries to find a "smooth" 
function g(x) such that, in the (p + l)-dimensional plot of the data, the 
points (x¡, g(x¡)) are close to the data points (x¡, y¡). For example, one might 
take g{x) to be some sort of "local average", such as the average of all values 
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y¡ such that x¡ is within a certain neighborhood of x. See Eubank (1988) and 
Härdle (1990). Such regression procedures are called nonparametric because 
no parametric model is assumed for the regression function, but note that 
they are unrelated to the nonparametric regression procedure described in 
Chapter 6. 

Estimation by local averaging does not perform as well in multiple regres-
sion as it does in simple regression. This problem led to the development of 
projection pursuit regression, which estimates a multiple regression function 
through an iterative sequence of simple regression smoothings; see Friedman 
and Stuetzle (1981). The same idea has been used to generalize generalized 
linear models to generalized additive models. A generalized linear model 
assumes that μ, = Λ(/3'χ,) = η(βλχη + · · · +ßpxip), whereas a generalized 
additive model assumes only that μ,, = h(gx(x¡¡) + ··· +gp(xip)), where 
g\,...,gp are unknown smooth functions; see Hastie and Tibshirani (1990). 

Measurement Error in the Explanatory Variables. Another situation in 
which the linear regression model (1.1) may be inadequate is when the 
explanatory variables are subject to measurement error. Suppose that (1.1) is 
valid but that we are not able to observe the exact values of the explanatory 
variables X¿. Instead, due to measurement error, we observe (*) Z; = X¡ + 
dj, where dj is a random error. Unless the measurement errors are very 
small, it is not safe to proceed as if Zy = X¡. If we do, the estimates of the 
regression coefficients will be biased. In simple regression, the estimate of the 
slope will be biased toward 0. See Draper and Smith (1981, Section 2.14) and 
Myers (1990, Section 7.8). Better estimates can be derived from the model 
defined by (1.1) and (*) together; see Fuller (1987, Section 2.2). 
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APPENDIX 

STUDENT'S /-DISTRIBUTION 

The table contains two-tailed values tlab such that Prob[|f | > tlah] = a where 
t is a random variable having a t distribution with v degrees of freedom. 

V 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
40 
60 

120 
00 

0.2 

3.078 
1.886 
1.638 
1.533 

1.476 
1.440 
1.415 
1.397 
1.383 

1.372 
1.363 
1.356 
1.350 
1.345 

1.341 
1.337 
1.333 
1.330 
1.328 

1.325 
1.323 
1.321 
1.319 
1.318 

1.316 
1.315 
1.314 
1.313 
1.311 

1.310 
1.303 
1.296 
1.289 
1.282 

0.1 

6.314 
2.920 
2.353 

. 2.132 

2.015 
1.943 
1.895 
1.860 
1.833 

1.812 
1.796 
1.782 
1.771 
1.761 

1.753 
1.746 
1.740 
1.734 
1.729 

1.725 
1.721 
1.717 
1.714 
1.711 

1.708 
1.706 
1.703 
1.701 
1.699 

1.697 
1.684 
1.671 
1.658 
1.645 

0.05 

12.706 
4.303 
3.182 
2.776 

2.571 
2.447 
2.365 
2.306 
2.262 

2.228 
2.201 
2.179 
2.160 
2.145 

2.131 
2.120 
2.110 
2.101 
2.093 

2.086 
2.080 
2.074 
2.069 
2.064 

2.060 
2.056 
2.052 
2.048 
2.045 

2.042 
2.021 
2.000 
1.980 
1.960 

0.01 

63.657 
9.925 
5.841 
4.604 

4.032 
3.707 
3.499 
3.355 
3.250 

3.169 
3.106 
3.055 
3.012 
2.977 

2.947 
2.921 
2.898 
2.878 
2.861 

2.845 
2.831 
2.819 
2.807 
2.797 

2.787 
2.779 
2.771 
2.763 
2.756 

2.750 
2.704 
2.660 
2.617 
2.576 

0.001 

636.62 
31.598 
12.924 
8.610 

6.869 
5.959 
5.408 
5.041 
4.781 

4.587 
4.437 
4.318 
4.221 
4.140 

4.073 
4.016 
3.965 
3.922 
3.883 

3.850 
3.819 
3.792 
3.767 
3.745 

3.725 
3.707 
3.690 
3.674 
3.659 

3.646 
3.551 
3.460 
3.373 
3.291 

Reproduced with permission from E. S. Pearson and H. O. Hartley (1966), 
Biometrika Tables for Statisticians, Vol. 1, 3rd ed., London: Cambridge 
University. 
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F-DISTRIBUTION 

The table contains values F,ah such that Prob[F > Flah] = a where F is a 
random variable having an F distribution with i>, and v2 degrees of freedom. 

a = 0.05 
Degrees of freedom for numerator 

o 

C 
E 
o 
c 
<υ 
Q 

ε 
o 

"O 
υ <υ 

α, « .̂ 
o 
ω 
ω 
00 

Q 

\ Γ ' 1 2 3 4 5 6 7 8 9 

1 161.4 199~5 215.7 224.6 230.2 234.0 236Ü 238.9 240.5 
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 
» 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 

Reproduced with permission from E. S. Pearson and H. O. Hartley (1966), Biometrika 
Tables for Statisticians, Vol. 1, 3rd ed., London: Cambridge University. 
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10 

241.9 
19.40 
8.79 
5.96 

4.74 
4.06 
3.64 
3.35 
3.14 

2.98 
2.85 
2.75 
2.67 
2.60 

2.54 
2.49 
2.45 
2.41 
2.38 

2.35 
2.32 
2.30 
2.27 
2.25 

2.24 
2.22 
2.20 
2.19 
2.18 

2.16 
2.Ü8 
1.99 
1.91 
1.83 

12 

243.9 
19.41 
8.74 
5.91 

4.68 
4.00 
3.57 
3.28 
3.07 

2.91 
2.79 
2.69 
2.60 
2.53 

2.48 
2.42 
2.38 
2.34 
2.31 

2.28 
2.25 
2.23 
2.20 
2.18 

2.16 
2.15 
2.13 
2.12 
2.10 

2.09 
2.00 
1.92 
1.83 
1.75 

15 

245.9 
19.43 
8.70 
5.86 

4.62 
3.94 
3.51 
3.22 
3.01 

2.85 
2.72 
2.62 
2.53 
2.46 

2.40 
2.35 
2.31 
2.27 
2.23 

2.20 
2.18 
2.15 
2.13 
2.11 

2.09 
2.07 
2.06 
2.04 
2.03 

2.01 
1.92 
1.84 
1.75 
1.67 

20 

248.0 
19.45 
8.66 
5.80 

4.56 
3.87 
3.44 
3.15 
2.94 

2.77 
2.65 
2.54 
2.46 
2.39 

2.33 
2.28 
2.23 
2.19 
2.16 

2.12 
2.10 
2.07 
2.05 
2.03 

2.01 
1.99 
1.97 
1.96 
1.94 

1.93 
1.84 
1.75 
1.66 
1.57 

24 

249.1 
19.45 
8.64 
5.77 

4.53 
3.84 
3.41 
3.12 
2.90 

2.74 
2.61 
2.51 
2.42 
2.35 

2.29 
2.24 
2.19 
2.15 
2.11 

2.08 
2.05 
2.03 
2.01 
1.98 

1.96 
1.95 
1.93 
1.91 
1.90 

1.89 
1.79 
1.70 
1.61 
1.52 

30 

250.1 
19.46 
8.62 
5.75 

4.50 
3.81 
3.38 
3.08 
2.86 

2.70 
2.57 
2.47 
2.38 
2.31 

2.25 
2.19 
2.15 
2.11 
2.07 

2.04 
2.01 
1.98 
1.96 
1.94 

1.92 
1.90 
1.88 
1.87 
1.85 

1.84 
1.74 
1.65 
1.55 
1.46 

40 

251.1 
19.47 
8.59 
5.72 

4.46 
3.77 
3.34 
3.04 
2.83 

2.66 
2.53 
2.43 
2.34 
2.27 

2.20 
2.15 
2.10 
2.06 
2.03 

1.99 
1.96 
1.94 
1.91 
1.89 

1.87 
1.85 
1.84 
1.82 
1.81 

1.79 
1.69 
1.59 
1.50 
1.39 

60 

252.2 
19.48 
8.57 
5.69 

4.43 
3.74 
3.30 
3.01 
2.79 

2.62 
2.49 
2.38 
2.30 
2.22 

2.16 
2.11 
2.06 
2.02 
1.98 

1.95 
1.92 
1.89 
1.86 
1.84 

1.82 
1.80 
1.79 
1.77 
1.75 

1.74 
1.64 
1.53 
1.43 
1.32 

120 

253.3 
19.49 
8.55 
5.66 

4.40 
3.70 
3.27 
2.97 
2.75 

2.58 
2.45 
2.34 
2.25 
2.18 

2.11 
2.06 
2.01 
1.97 
1.93 

1.90 
1.87 
1.84 
1.81 
1.79 

1.77 
1.75 
1.73 
1.71 
1.70 

1.68 
1.58 
1.47 
1.35 
1.22 

00 

254.3 
19.50 
8.53 
5.63 

4.36 
3.67 
3.23 
2.93 
2.71 

2.54 
2.40 
2.30 
2.21 
2.13 

2.07 
2.01 
1.96 
1.92 
1.88 

1.84 
1.81 
1.78 
1.76 
1.73 

1.71 
1.69 
1.67 
1.65 
1.64 

1.62 
1.51 
1.39 
1.25 
1.00 
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The table contains values Ftah such that Prob[F > Flah] = a where F is a 
random variable having an F distribution with vx and v2 degrees of freedom. 

a = 0.01 
Degrees of freedom for numerator 

O 
re 
c 

ε 
o 
c 
υ 
Q 
3 
B o 

υ 
UH 

<*-
o 
u 
M 
ϋ 

a 

V 1 2 3 4 5 6 7 8 9 
" 2 \ 

1 4052 4999.5 5403 5625 5764 5859 5928 5982 6022 
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 
ao 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 

Reproduced with permission from E. S. Pearson and H. O. Hartley (1966), Biometrika Tables for 
Statisticians, Vol. 1. 3rd ed., London: Cambridge University. 
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10 

6056 
99.40 
27.23 
14.55 

10.05 
8.87 
6.62 
5.81 
5.26 

4.85 
4.54 
4.30 
4.10 

3.94 

3.80 
3.69 
3.59 
3.51 
3.43 

3.37 
3.31 
3.26 
3.21 
3.17 

3.13 
3.09 
3.06 
3.03 
3.00 

2.98 
2.80 
2.63 
2.47 
2.32 

12 

6106 
99.42 
27.05 
14.37 

9.89 
7.72 
6.47 
5.67 
5.11 

4.71 
4.40 
4.16 
3.96 
3.80 

3.67 
3.55 
3.46 
3.37 
3.30 

3.23 
3.17 
3.12 
3.07 
3.03 

2.99 
2.96 
2.93 
2.90 
2.87 

2.84 
2.66 
2.50 
2.34 
2.18 

15 

6157 
99.43 
26.87 
14.20 

9.72 
7.56 
6.31 
5.52 
4.96 

4.56 
4.25 
4.01 
3.82 
3.66 

3.52 
3.41 
3.31 
3.23 
3.15 

3.09 
3.03 
2.98 
2.93 
2.89 

2.85 
2.81 
2.78 
2.75 
2.73 

2.70 
2.52 
2.35 
2.19 
2.04 

20 

6209 
99.45 
26.69 
14.02 

9.55 
7.40 
6.16 
5.36 
4.81 

4.41 
4.10 
3.86 
3.66 

3.51 

3.37 
3.26 
3.16 
3.08 
3.00 

2.94 
2.88 
2.83 
2.78 
2.74 

2.70 
2.66 
2.63 
2.60 
2.57 

2.55 
2.37 
2.20 
2.03 
1.88 

24 

6235 
99.46 
26.60 
13.93 

9.47 
7.31 
6.07 
5.28 
4.73 

4.33 
4.02 
3.78 
3.59 

3.43 

3.29 
3.18 
3.08 
3.00 
2.92 

2.86 
2.80 
2.75 
2.70 
2.66 

2.62 
2.58 
2.55 
2.52 
2.49 

2.47 
2.29 
2.12 
1.95 
1.79 

30 

6261 
99.47 
26.50 
13.84 

9.38 
7.23 
5.99 
5.20 
4.65 

4.25 
3.94 
3.70 
3.51 
3.35 

3.21 
3.10 
3.00 
2.92 
2.84 

2.78 
2.72 
2.67 
2.62 
2.58 

2.54 
2.50 
2.47 
2.44 
2.41 

2.39 
2.20 
2.03 
1.86 
1.70 

40 

6287 
99.47 
26.41 
13.75 

9.29 
7.14 
5.91 
5.12 
4.57 

4.17 
3.86 
3.62 
3.43 

3.27 

3.13 
3.02 
2.92 
2.84 
2.76 

2.69 
2.64 
2.58 
2.54 
2.49 

2.45 
2.42 
2.38 
2.35 
2.33 

2.30 
2.11 
1.94 
1.76 
1.59 

60 

6313 
99.48 
26.32 
13.65 

9.20 
7.06 
5.82 
5.03 
4.48 

4.08 
2.78 
3.54 
3.34 

3.18 

3.05 
2.93 
2.83 
2.75 
2.67 

2.61 
2.55 
2.50 
2.45 
2.40 

2.36 
2.33 
2.29 
2.26 
2.23 

2.21 
2.02 
1.84 
1.66 
1.47 

120 

6339 
99.49 
26.22 
13.56 

9.11 
6.97 
5.74 
4.95 
4.40 

4.00 
3.69 
3.45 
3.25 
3.09 

2.96 
2.84 
2.75 
2.66 
2.58 

2.52 
2.46 
2.40 
2.35 
2.31 

2.27 
2.23 
2.20 
2.17 
2.14 

2.11 
1.92 
1.73 
1.53 
1.32 

00 

6366 
99.50 
26.13 
13.46 

9.02 
6.88 
5.65 
4.86 
4.31 

3.91 
3.60 
3.36 
3.17 

3.00 

2.87 
2.75 
2.65 
2.57 
2.49 

2.42 
2.36 
2.31 
2.26 
2.21 

2.17 
2.13 
2.10 
2.06 
2.03 

2.01 
1.80 
1.60 
1.38 
1.00 
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The table contains values Ftab such that ?rob[F > Flah] = a where F is a 
random variable having an F distribution with vx and v2 degrees of freedom. 

a = 0.001 
Degrees of freedom for numerator 

O 

3 
c 

ε 
o c 

Q 

ε 
o -o <υ υ 
t -u. 

*♦* 

O 
ΙΛ 
o 
^ 
υ 
Q 

V 1 2 3 4 5 6 7 8 9 

1 4053* 5000* 5404* 5625* 5764* 5859* 5929* 5981* 6023* 
2 998.5 999.0 999.2 999.2 999.3 999.3 999.4 999.4 999.4 
3 167.0 148.5 141.1 137.1 134.6 132.8 131.6 130.6 129.9 
4 74.14 61.25 56.18 53.44 51.71 50.53 49.66 49.00 48.47 

5 47.18 37.12 33.20 31.09 29.75 28.84 28.16 27.64 27.24 
6 35.51 27.00 23.70 21.92 20.81 20.03 19.46 19.03 18.69 
7 29.25 21.69 18.77 17.19 16.21 15.52 15.02 14.63 14.33 
8 25.42 18.49 15.83 14.39 13.49 12.86 12.40 12.04 11.77 
9 22.86 16.39 13.90 12.56 11.71 11.13 10.70 10.37 10.11 

10 21.04 14.91 12.55 11.28 10.48 9.92 9.52 9.20 8.96 
11 19.69 13.81 11.56 10.35 9.58 9.05 8.66 8.35 8.12 
12 18.64 12.97 10.80 9.63 8.89 8.38 8.00 7.71 7.48 
13 17.81 12.31 10.21 9.07 8.35 7.86 7.49 7.21 6.98 
14 17.14 11.78 9.73 8.62 7.92 7.43 7.08 6.80 6.58 

15 16.59 11.34 9.34 8.25 7.57 7.09 6.74 6.47 6.26 
16 16.12 10.97 9.00 7.94 7.27 6.81 6.46 6.19 5.98 
17 15.72 10.66 8.73 7.68 7.02 6.56 6.22 5.96 5.75 
18 15.38 10.39 8.49 7.46 6.81 6.35 6.02 5.76 5.56 
19 15.08 10.16 8.28 7.26 6.62 6.18 5.85 5.59 5.39 

20 14.82 9.95 8.10 7.10 6.46 6.02 5.69 5.44 5.24 
21 14.59 9.77 7.94 6.95 6.32 5.88 5.56 5.31 5.11 
22 14.38 9.61 7.80 6.81 6.19 5.76 5.44 5.19 4.99 
23 14.19 9.47 7.67 6.69 6.08 5.65 5.33 5.09 4.89 
24 14.03 9.34 7.55 6.59 5.98 5.55 5.23 4.99 4.80 

25 13.88 9.22 7.45 6.49 5.88 5.46 5.15 4.91 4.71 
26 13.74 9.12 7.36 6.41 5.80 5.38 5.07 4.83 4.64 
27 13.61 9.02 7.27 6.33 5.73 5.31 5.00 4.76 4.57 
28 13.50 8.93 7.19 6.25 5.66 5.24 4.93 4.69 4.50 
29 13.39 8.85 7.12 6.19 5.59 5.18 4.87 4.64 4.45 

30 13.29 8.77 7.05 6.12 5.53 5.12 4.82 4.58 4.39 
40 12.61 8.25 6.60 5.70 5.13 4.73 4.44 4.21 4.02 
60 11.97 7.76 6.17 5.31 4.76 4.37 4.09 3.87 3.69 

120 11.38 7.32 5.79 4.95 4.42 4.04 3.77 3.55 3.38 
oo 10.83 6.91 5.42 4.62 4.10 3.74 3.47 3.27 3.10 

Reproduced with permission from E. S. Pearson and H. O. Hartley (1966), Biometrika 
Tables for Statisticians, Vol. 1, 3rd ed., London: Cambridge University. 
* Multiply these numbers by 100. 
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10 

6056* 
999.4 
129.2 

48.05 

26.92 
18.41 
14.08 
11.54 
9.89 

8.75 
7.92 
7.29 
6.80 
6.40 

6.08 
5.81 
5.58 
5.39 
5.22 

5.08 
4.95 
4.83 
4.73 
4.64 

4.56 
4.48 
4.41 
4.35 
4.29 

4.24 
3.87 
3.54 
3.24 
2.96 

12 

6107* 
999.4 
128.3 
47.41 

26.42 
17.99 
13.71 
11.19 
9.57 

8.45 
7.63 
7.00 
6.52 
6.13 

5.81 
5.55 
5.32 
5.13 
4.97 

4.82 
4.70 
4.58 
4.48 
4.39 

4.31 
4.24 
4.17 
4.11 
4.05 

4.00 
3.64 
3.31 
3.02 
2.74 

15 

6158* 
999.4 
127.4 
46.76 

25.91 
17.56 
13.32 
10.84 
9.24 

8.13 
7.32 
6.71 
6.23 
5.85 

5.54 
5.27 
5.05 
4.87 
4.70 

4.56 
4.44 
4.33 
4.23 
4.14 

4.06 
3.99 
3.92 
3.86 
3.80 

3.75 
3.40 
3.08 
2.78 
2.51 

20 

6209* 
999.4 
126.4 
46.10 

25.39 
17.12 
12.93 
10.48 
8.90 

7.80 
7.01 
6.40 
5.93 
5.56 

5.25 
4.99 
4.78 
4.59 
4.43 

4.29 
4.17 
4.06 
3 .% 
3.87 

3.79 
3.72 
3.66 
3.60 
3.54 

3.49 
3.15 
2.83 
2.53 
2.27 

24 

6235* 
999.5 
125.9 
45.77 

25.14 
16.89 
12.73 
10.30 
8.72 

7.64 
6.85 
6.25 
5.78 
5.41 

5.10 
4.85 
4.63 
4.45 
4.29 

4.15 
4.03 
3.92 
3.82 
3.74 

3.66 
3.59 
3.52 
3.46 
3.41 

3.36 
3.01 
2.69 
2.40 
2.13 

30 

6261* 
999.5 
125.4 
45.43 

24.87 
16.67 
12.53 
10.11 
8.55 

7.47 
6.68 
6.09 
5.63 
5.25 

4.95 
4.70 
4.48 
4.30 
4.14 

4.00 
3.88 
3.78 
3.68 
3.59 

3.52 
3.44 
3.38 
3.32 
3.27 

3.22 
2.87 
2.55 
2.26 
1.99 

40 

6287* 
999.5 
125.0 
45.09 

24.60 
16.44 
12.33 
9.92 
8.37 

7.30 
6.52 
5.93 
5.47 
5.10 

4.80 
4.54 
4.33 
4.15 
3.99 

3.86 
3.74 
3.63 
3.53 
3.45 

3.37 
3.30 
3.23 
3.18 
3.12 

3.07 
2.73 
2.41 
2.11 
1.84 

60 

6313* 
999.5 
124.5 
44.75 

24.33 
16.21 
12.12 
9.73 
8.19 

7.12 
6.35 
5.76 
5.30 
4.94 

4.64 
4.39 
4.18 
4.00 
3.84 

3.70 
3.58 
3.48 
3.38 
3.29 

3.22 
3.15 
3.08 
3.02 
2.97 

2.92 
2.57 
2.25 
1.95 
1.66 

120 

6340* 
999.5 
124.0 
44.40 

24.06 
15.99 
11.91 
9.53 
8.00 

6.94 
6.17 
5.59 
5.14 
4.77 

4.47 
4.23 
4.02 
3.84 
3.68 

3.54 
3.42 
3.32 
3.22 
3.14 

3.06 
2.99 
2.92 
2.86 
2.81 

2.76 
2.41 
2.08 
1.76 
1.45 

oo 

6366* 
999.5 
123.5 
44.05 

23.79 
15.75 
11.70 
9.33 
7.81 

6.76 
6.00 
5.42 
4.97 
4.60 

4.31 
4.06 
3.85 
3.67 
3.51 

3.38 
3.26 
3.15 
3.05 
2.97 

2.89 
2.82 
2.75 
2.69 
2.64 

2.59 
2.23 
1.89 
1.54 
1.00 
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CHI-SQUARED DISTRIBUTION 

The table shows percentage points of the chi-squared distribution; tabled 
values are χ2(α; η) such that 

prob{*2(«) varíate > χ2(α; η)) = a. 

The table entries were computed using subroutine MDCHI from the IMSL 
(1977) library at the University of Minnesota. 

a 

d.i. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
50 
60 
70 
80 
90 
100 

0.20 

1.64 
3.22 
4.64 
5.99 
7.29 
8.56 
9.80 

11.03 
12.24 
13.44 
14.63 
15.81 
16.99 
18.15 
19.31 
20.47 
21.62 
22.76 
23.90 
25.04 
26.17 
27.30 
28.43 
29.56 
30.68 
31.80 
32.91 
34.03 
35.14 
36.25 
47.26 
58.16 
68.97 
79.71 
90.40 

101.05 
111.66 

0.10 

2.71 
4.60 
6.25 
7.78 
9.24 

10.65 
12.02 
13.36 
14.69 
15.99 
17.28 
18.55 
19.81 
21.07 
22.31 
23.55 
24.77 
25.99 
27.21 
28.42 
29.62 
30.82 
32.01 
33.20 
34.38 
35.57 
36.74 
37.92 
39.09 
40.26 
51.80 
63.16 
74.39 
85.52 
96.57 

107.56 
118.49 

0.05 

3.84 
5.99 
7.82 
9.49 

11.07 
12.60 
14.07 
15.51 
16.93 
18.31 
19.68 
21.03 
22.37 
23.69 
25.00 
26.30 
27.59 
28.88 
30.15 
31.42 
32.68 
33.93 
35.18 
36.42 
37.66 
38.89 
40.12 
41.34 
42.56 
43.78 
55.75 
67.50 
79.08 
90.53 

101.88 
113.14 
124.34 

0.01 

6.64 
9.22 

11.32 
13.28 
15.09 
16.81 
18.47 
20.08 
21.65 
23.19 
24.75 
26.25 
27.72 
29.17 
30.61 
32.03 
33.44 
34.83 
36.22 
37.59 
38.96 
40.31 
41.66 
43.00 
44.34 
45.66 
46.99 
48.30 
49.61 
50.91 
63.71 
76.17 
88.40 

100.44 
112.34 
124.13 
135.82 

0.001 

10.81 
13.69 
16.29 
18.43 
20.75 
22.68 
24.53 
26.32 
28.06 
29.76 
31.43 
33.07 
34.68 
36.27 
37.84 
39.39 
40.93 
42.44 
43.95 
45.44 
46.92 
48.39 
49.85 
51.29 
52.73 
54.16 
55.58 
57.00 
58.41 
59.81 
73.49 
86.74 
99.68 

112.38 
124.90 
137.27 
149.50 
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ARE, see Asymptotic relative 
efficiency. 

Asymptotic: 
efficiency, 100. See also 

Asymptotic, relative 
efficiency. 

normality, 190, 191, 192, 193, 200, 
201 

property, 189, 199 
relative efficiency, 190, 200 

comparisons, 192, 193, 201 
variance, 190 

Bayes estimates, see Bayesian 
regression, estimates. 

Bayes, T., 143, 161, 171 
Bayesian approach, 143, 149, 155, 

193, 201 
Bayesian regression, 8, 143-171, 

193-194, 195, 196-199 
estimates, 144, 146, 147, 154, 156 
tests, 144, 152, 159, 163, 168 

Bayesian view of ridge regression, 
see Ridge, regression. 

Bayes's formula, 144, 154, 162, 164, 
165 

Bayes's theorem, see Bayes's 
formula. 

Bias, 192, 195, 201, 206, 207, 212 
BMDP, 48 

Boscovich, R. J., 57, 78 
Breakdown point, 207 

Cause and effect, 10 
Chi-squared: 

distribution, see Distributions, 
chi-squared. 

table, 222 
Coefficient: 

of correlation, 81, 120, 152, 169, 
183 

of (multiple) determination, 47, 
53-54, 169 

of partial determination, 
159-160, 169 

Coilinearity, 180-183,186, 187, 195, 
197, 202, 208, 209 

Conditional: 
distribution, 50, 143, 163, 165 
expectation, 165 
probability, 163, 165 

Convergence, 103-104, 136 
Correlation, 173, 181, 186, 197, 202 

Darwin, C , 131, 140 
Data sets: 

acid content, 29-31, 33, 36, 196, 
202 

aerobic fitnesses, 91-93, 96 
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Data sets (Continued) 
birth rate, 6-8, 57, 60, 66, 130 
cement, 176-177, 180, 185 
education expenditure, 121-122, 

124, 126, 129, 136 
fire, 20-24, 26, 27, 66-68, 72, 77 
forearm length, 111-114, 120, 130 
Galton's sweet pea, 8-10 
height, 173-174, 176, 183 
pavement, 153, 155, 157, 160 
rainfall, 144-146, 148, 153 
shelf life, 85-87, 89, 90, 104 
stackloss, 197-199 
test case, 48, 78, 99, 130, 161 
turnip green, 2, 3, 16-20, 25, 38, 

42, 44, 46, 196-197, 202 
Degeneracy, 61-62, 75-76 
Dependent variable, 3 
Diagnostics, 14-15, 24, 27, 202 
Dimension of a set, 164 
Distributions: 

Cauchy, 101, 164, 192, 193 

multivariate, 169 
chi-squared, 76, 81, 82, 137, 222 
contaminated normal, 99, 192 
double-exponential, see 

Distributions, Laplace. 
F, 44, 45, 46, 76, 90, 96, 127, 130, 

137, 138 
gamma, 147, 166, 170,211 
Laplace, 64, 128, 165, 191, 192, 

193, 209 
normal, 8, 36, 37, 44-46, 51, 64, 

80, 82, 85, 87, 99, 100-102, 
111, 119, 128, 130, 139, 143, 
145, 147, 151, 162-165, 184, 
185, 191-193, 195, 200, 208, 
209, 211 

approximate, 65, 81, 107, 128, 
139, 190-193, 200 

multivariate, 146, 147, 149, 
154-157,159, 164-166, 
169, 170, 185, 195 

normal-gamma, 163, 166 
i, 34, 36, 46, 63, 65, 90, 119, 130, 

134 

Efficiency, 8, 191, 195, 200, 207. See 
also Asymptotic, efficiency. 

Estimates: 
Bayesian, see Bayesian 

regression, estimates. 
best equivariant, 190, 200 
best linear unbiased, 190, 195, 

200, 202 
bounded-influence, 206 
consistent, 80, 102, 190-192, 193, 

200 
generalized least-squares, 210 
generalized M-, 206 
high-breakdown-point, 207 
Huber M-, see Huber M-

regression estimates. 
L-, 206 
least-median-of-squares, 103, 207 
Lp-norm, 205 
L„-norm, 205 
least-absolute-deviations, see 

Least-absolute-deviations 
regression, estimates. 

least-squares, see Least-squares 
regression, estimates. 

M-, 206 
maximum likelihood, 99, 100, 101, 

169, 191,201,209,211 
nonparametric, see 

Nonparametric regression, 
estimates. 

preliminary-test, 208 
R-, 207 
redescending M-, 206 
ridge, see Ridge regression, 

estimates 
shrinkage, 208 
signed-rank, 133 
Stein, 208 
subspace-ridge, 208 
subspace-Stein, 208 
trimmed mean, 207 
uniformly minimum variance 

unbiased, 190, 200 
weighted least-squares, 98, 210 
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Expectation of a random vector, 51 
Explanatory variable, 3 

F: 
distribution, see Distributions, F. 
table, 216 
test, see Tests, F. 

Fisher information, 151, 159, 164, 
168, 193 

Fitted value, 5 
FORTRAN, 78 
Full model, 6 

Galton, F., 8-10, 11, 111, 131 
Gauss, C. F., 29, 49, 57 
Generalized additive model, 212 
Generalized linear model, 211 

Highest posterior density region, 
163, 168 

Hoerl, A., 173, 184, 187, 202, 203 
Huber A/-regression, 8, 16, 26, 

85-109, 111, 192-193, 195, 
196-199, 201, 202, 206, 207 

estimates, 87-88, 93 
tests, 90, 95-96 

Huber, P. J., 85, 87, 99, 100, 102, 
109, 200, 201, 203, 204, 206, 
213 

Huber's proposal 2, 102, 104, 108, 
193 

IMSL, 78, 82 
Independent variable, 3 
Influence function, 101, 104, 

105-106, 107, 206, 207 
Influential observation, 26 
Information, see Fisher 

information. 
Iteratively reweighted least squares, 

98-99 

Jeffreys, H., 143, 162, 164, 170 

LAD, see Least-absolute-
deviations. 

Least-absolute-deviations 
regression, 7, 8, 16, 20-24, 26, 
57-84, 85, 87, 99, 103,104, 108, 
114,115, 119,139,191-192, 
195, 196-199, 200, 201, 202, 
205, 207, 209 

estimates, 58-59, 68-70 
tests, 63, 76 

Least-squares regression, 6-8, 
18-21, 25, 26, 29-55, 57, 58, 
64-66, 79, 82, 87, 88, 89, 93, 
95-98, 100, 102-104, 106, 111, 
113,115, 119,120, 123, 
126-128, 130, 131, 146-148, 
151, 152, 154, 155, 157, 159, 
160, 163, 165, 168, 169, 173, 
175-177, 179, 180, 182-186, 
190-202, 205-209, 210 

estimates, 32, 38-39 
tests, 34, 43, 45-46 

Legendre, A. M., 29, 49, 130 
Leverage point, 20, 21, 26, 206, 207 
Likelihood function, 191 
Linear programming, 78, 81 
Linear regression, 3 
LS, see Least-squares. 

M-regression, see Huber M-
regression; Estimates, M-. 

MAD, see Median absolute 
deviation. 

Mean squared error, 175, 176, 183, 
184, 190 

total, 180, 184-186, 194 
Measurement error, 212 
Median absolute deviation, 79, 87, 

108 
Midrank, 120, 136 
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Minimax asymptotic variance, 99, 
192, 201 

Minitab, 48, 130 

Nonlinearity, 14-16, 24, 131, 210, 
211 

Nonnormality, 8, 37-38, 51, 82, 85, 
99, 100, 111, 128, 162, 165, 
190-193, 195, 200 

Nonparametnc procedure, 111, 130 
Nonparametric regression, 8, 16, 26, 

27, 111-141, 193, 195, 196-199, 
201, 202, 207 

estimates, 114, 123 
tests, 118-119, 126 

Nonparametric smoothing, 131, 211 
Nonuniqueness of LAD estimate, 

61-62, 75-76, 80 
Normal probability plot, 37-38, 51 

Optimality properties, 37, 50, 99, 
100, 189, 190, 191, 194, 195 

Outliers, 8, 14, 15, 16, 18, 20, 24, 25, 
26, 27, 57, 79, 87, 99, 100, 105, 
109, 132, 191, 192, 195, 197, 
198, 199, 202, 207 

P-value, 35-36, 43-44, 50, 108, 149, 
193 

PASCAL, 78 
Posterior: 

distribution, 144, 154, 155, 157, 
165, 166, 194 

expectation, see mean 
mean, 144, 146, 154-156, 162, 

165, 185, 195 
mode, 162 
probability, 149, 152, 159, 164, 

169 
Power of a test, 37, 50, 82, 108, 137, 

191, 200 

Prior distribution, 144, 145, 161, 
166, 194 

conjugate, 166 
for estimation, 146-147, 

155-156, 163 
for testing, 163, 168 

informative, see Prior 
distribution, conjugate. 

noninformative, 163 
for estimation, 145-146, 154, 

162 
for testing, 149-150, 158, 163, 

164, 168, 169 
objective, 163. See also Prior 

distribution, noninformative. 

Random error, 3 
Rank-based regression, see 

Nonparametric regression. 
Reduced model, 6 
Regression: 

Bayesian, see Bayesian, 
regression. 

coefficient, 3 
data, 4 
function, 3 
Huber M-, see Huber M-

regression. 
¿ „ 7 9 
L2 , 79 
least-absolute-deviations, see 

Least-absolute-deviations, 
regression. 

least-squares, see Least-squares, 
regression. 

M-, see A/-regression. 
model, 3 
multiple, 38 
nonlinear, 210 
nonparametric, see 

Nonparametric regression. 
parameter, 3 
principal components, 208 
projection pursuit, 212 
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ridge, see Ridge, regression. 
simple, 31 
toward mediocrity, 10 

Reparametrization, 147, 158, 163, 
168, 174, 178 

Residuals, 14, 24, 31 
in least-absolute-deviations 

regression, 58, 191 
in least-squares regression, 32,41, 

165, 190 
in M-regression, 87, 101, 107 
in nonparametric regression, 115, 

116, 132, 133 
plots: 

in least-absolute-deviations 
regression, 23, 26 

in least-squares regression, 19 
in ridge regression, 194 
standardized, 15, 25,196,197,198 

in least-absolute-deviations 
regression, 21, 79 

in least-squares regression, 18, 
37 

studentized: 
in least-squares regression, 

25-26, 202 
in M-regression, 26 
in nonparametric regression, 26 

Response variable, 3 
Ridge regression, 173-188, 

194-195, 196-199 
Bayesian view of, 185, 195, 202 
estimates, 174, 176 

ROBSYS, 78, 79, 82, 97, 98, 103 
Robust: 

estimates, 100, 103, 105, 191, 192, 
206, 207 

procedure, 85, 99, 111 
ROSEPACK, 97, 98, 103 

S-PLUS, 78, 82, 97, 98, 103 
SAS, 48, 99, 160 
Scores, 133, 134, 135, 136, 207 
Simplex algorithm, 81 

Simplicity principle, 6 
SPSS, 48 
Standard deviations of regression 

estimates, 34, 35, 46, 50, 53, 
63-65, 82, 107, 108, 127, 136, 
182, 186 

Standard errors, see Standard 
deviations of regression 
estimates. 

Standardization, 173, 177-178, 202, 
208. See also Residuals, 
standardized. 

Sum of residuals: 
absolute (SAR), 76 
rank-weighted (SRWR), 126 
squared (SSR), 43 
transformed (STR), 96 

Symmetry assumption, 64, 116, 126, 
127, 132, 133, 139, 192, 193, 
201, 202 

distribution, see Distributions, t. 
table, 215 
test, see Tests, t. 

Tests: 

aligned rank, 137 
Bayesian, see Bayesian 

regression, tests. 
F, 42-46, 47, 53, 191, 200 
Huber M-regression, see Huber 

M-regression, tests. 
Lagrange multiplier, 81, 82 
least-absolute-deviations, see 

Least-absolute-deviations 
regression, tests. 

least-squares, see Least-squares 
regression, tests. 

likelihood ratio, 81, 82 
nonparametric, see 

Nonparametric regression, 
tests. 
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Tests (Continued) 
t, 33-37, 46 
uniformly most powerful: 

invariant, 191, 200 
unbiased, 191, 200 

Wald, 81, 82, 108, 137 
Wilcoxon signed-rank, 193, 

201 
Transformations: 

Box-Cox, 25 
of data, 15, 16, 20, 25, 27, 153, 

191 
of parameters, see 

Reparameterization. 

Unbiasedness, 50 
of Huber Af-estimates, 192 
of least-squares estimates, 35, 43, 

49, 190, 191 
of ridge estimates in a random 

effects model, 195, 202 

Unequal variances, 14, 15, 16, 20, 
210, 211 

Unimodal, 162, 192, 193, 201 

Variable selection, 13, 15, 24 
Variance-covariance matrix, 51 

of regression estimates, see 
Standard deviations of 
regression estimates. 

Variance inflation factor, 181-182, 
186, 187 

Weighted: 
average, 32, 113, 131, 148, 157, 

167, 206, 208 
least-squares estimates, see 

Estimates, weighted least-
squares. 

median, 113-114, 123, 124, 131 
sum, 115, 123, 132 
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