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Preface

This fourth British edition has been directed specifically to the design of steel structures in
accordance with Eurocode 3 Design of Steel Structures. The principal part of this is Part
1-1:General Rules and Rules for Buildings and this is referred to generally in the text as
EC3. Also referred to in the text are Part 1-5: Plated Structural Elements, and Part 1-8:
Design Of Joints, which are referred to as EC3-1-5 and EC3-1-8. EC3 will be accompanied
by NationalAnnexes which will contain any National Determined Parameters for the United
Kingdom which differ from the recommendations given in EC3.

Designers who have previously used BS5950 (which is discussed in the third British
edition of this book) will see a number of significant differences in EC3. One of the more
obvious is the notation. The notation in this book has been changed generally so that it is
consistent with EC3.

Another significant difference is the general absence of tables of values computed from
the basic design equations which might be used to facilitate manual design. Some design-
ers will want to prepare their own tables, but in some cases, the complexities of the basic
equations are such that computer programs are required for efficient design. This is espe-
cially the case for members under combined compression and bending, which are discussed
in Chapter 7. However, the examples in this book are worked in full and do not rely on such
design aids.

EC3 does not provide approximations for calculating the lateral buckling resistances
of beams, but instead expects the designer to be able to determine the elastic buckling
moment to be used in the design equations. Additional information to assist designers in
this determination has been given in Chapter 6 of this book. EC3 also expects the designer
to be able to determine the elastic buckling loads of compression members. The additional
information given in Chapter 3 has been retained to assist designers in the calculation of
the elastic buckling loads.

EC3 provides elementary rules for the design of members in torsion. These are gener-
alised and extended in Chapter 10, which contains a general treatment of torsion together
with a number of design aids.

The preparation of this fourth British edition has provided an opportunity to revise the
text generally to incorporate the results of recent findings and research. This is in accordance
with the principal objective of the book, to provide students and practising engineers with
an understanding of the relationships between structural behaviour and the design criteria
implied by the rules of design codes such as EC3.

N.S. Trahair, M.A. Bradford, D.A. Nethercot, and L. Gardner
April 2007



 

Units and conversion factors

Units

While most expressions and equations used in this book are arranged so that they
are non-dimensional, there are a number of exceptions. In all of these, SI units are
used which are derived from the basic units of kilogram (kg) for mass, metre (m)
for length, and second (s) for time.

The SI unit of force is the newton (N), which is the force which causes a mass of
1 kg to have an acceleration of 1 m/s2. The acceleration due to gravity is 9.807 m/s2

approximately, and so the weight of a mass of 1 kg is 9.807 N.
The SI unit of stress is the pascal (Pa), which is the average stress exerted by a

force of 1 N on an area of 1 m2. The pascal is too small to be convenient in structural
engineering, and it is common practice to use either the megapascal (1 MPa =
106 Pa) or the identical newton per square millimetre (1 N/mm2 = 106 Pa). The
newton per square millimetre (N/mm2) is used generally in this book.

Table of conversion factors

To Imperial (British) units To SI units

1 kg = 0.068 53 slug 1 slug = 14.59 kg
1 m = 3.281 ft 1 ft = 0.304 8 m

= 39.37 in. 1 in. = 0.025 4 m
1 mm = 0.003 281 ft 1 ft = 304.8 mm

= 0.039 37 in. 1 in. = 25.4 mm
1 N = 0.224 8 lb 1 lb = 4.448 N
1 kN = 0.224 8 kip 1 kip = 4.448 kN

= 0.100 36 ton 1 ton = 9.964 kN
1 N/mm2∗† = 0.145 0 kip/in.2 (ksi) 1 kip/in.2 = 6.895 N/mm2

= 0.064 75 ton/in.2 1 ton/in.2 = 15.44 N/mm2

1 kNm = 0.737 6 kip ft 1 kip ft = 1.356 kNm
= 0.329 3 ton ft 1 ton ft = 3.037 kNm

Notes
∗ 1 N/mm2 = 1 MPa.
† There are some dimensionally inconsistent equations used in this book which arise

because a numerical value (in N/mm2) is substituted for the Young’s modulus of elasticity
E while the yield stress fy remains algebraic. The value of the yield stress fy used in these
equations should therefore be expressed in N/mm2. Care should be used in converting
these equations from SI to Imperial units.



 

xii Glossary of terms

Distortion A mode of deformation in which the cross-section of a member
changes shape.

Effective length The length of an equivalent simply supported member which
has the same elastic buckling load as the actual member. Referred to in EC3 as
the buckling length.

Effective width That portion of the width of a flat plate which has a non-uniform
stress distribution (caused by local buckling or shear lag) which may be con-
sidered as fully effective when the non-uniformity of the stress distribution is
ignored.

Elastic buckling analysis An analysis of the elastic buckling of the member or
frame out of the plane of loading.

Elastic buckling load The load at elastic buckling. Referred to in EC3 as the
elastic critical buckling load.

Elastic buckling stress The maximum stress at elastic buckling. Referred to in
EC3 as the elastic critical buckling stress.

Factor of safety The factor by which the strength is divided to obtain the working
load capacity and the maximum permissible stress.

Fastener A bolt, pin, rivet, or weld used in a connection.
Fatigue A mode of failure in which a member fractures after many applications

of load.
First-order analysis An analysis in which equilibrium is formulated for the

undeformed position of the structure, so that the moments caused by products
of the loads and deflections are ignored.

Flexural buckling A mode of buckling in which a member deflects.
Flexural–torsional buckling A mode of buckling in which a member deflects

and twists. Referred to in EC3 as torsional–flexural buckling or lateral–torsional
buckling.

Friction-grip joint A joint in which forces are transferred by friction forces gen-
erated between plates by clamping them together with preloaded high-strength
bolts.

Geometrical imperfection Initial crookedness or twist of a member.
Girt A horizontal member between columns which supports wall sheeting.
Gusset A short-plate element used in a connection.
Imposed load The load assumed to act as a result of the use of the structure, but

excluding wind load.
Inelastic behaviour Deformations accompanied by yielding.
In-plane behaviour The behaviour of a member which deforms only in the plane

of the applied loads.
Joint The means by which members are connected together and through which

forces and moments are transmitted.
Lateral buckling Flexural–torsional buckling of a beam. Referred to in EC3 as

lateral–torsional buckling.
Limit states design Amethod of design in which the performance of the structure

is assessed by comparison with a number of limiting conditions of usefulness.



 

Glossary of terms xiii

The most common conditions are the strength limit state and the serviceability
limit state.

Load effects Internal forces and moments induced by the loads.
Load factor A factor used to multiply a nominal load to obtain part of the design

load.
Loads Forces acting on a structure.
Local buckling A mode of buckling which occurs locally (rather than generally)

in a thin-plate element of a member.
Mechanism A structural system with a sufficient number of frictionless and

plastic hinges to allow it to deform indefinitely under constant load.
Member A one-dimensional structural element which supports transverse or

longitudinal loads or moments.
Nominal load The load magnitude determined from a loading code or

specification.
Non-uniform torsion The general state of torsion in which the twist of the

member varies non-uniformly.
Plastic analysis Amethod of analysis in which the ultimate strength of a structure

is computed by considering the conditions for which there are sufficient plastic
hinges to transform the structure into a mechanism.

Plastic hinge A fully yielded cross-section of a member which allows the
member portions on either side to rotate under constant moment (the plastic
moment).

Plastic section A section capable of reaching and maintaining the full plastic
moment until a plastic collapse mechanism is formed. Referred to in EC3 as a
Class 1 section.

Post-buckling strength A reserve of strength after buckling which is possessed
by some thin-plate elements.

Preloaded bolts High-strength bolts used in friction-grip joints.
Purlin A horizontal member between main beams which supports roof sheeting.
Reduced modulus The modulus of elasticity used to predict the buckling of

inelastic members under the so called constant applied load, because it is
reduced below the elastic modulus.

Residual stresses The stresses in an unloaded member caused by non-uniform
plastic deformation or by uneven cooling after rolling, flame cutting, or welding.

Rigid frame A frame with rigid connections between members. Referred to in
EC3 as a continuous frame.

Second-order analysis An analysis in which equilibrium is formulated for the
deformed position of the structure, so that the moments caused by the products
of the loads and deflections are included.

Semi-compact section A section which can reach the yield stress, but which
does not have sufficient resistance to inelastic local buckling to allow it to reach
or to maintain the full plastic moment while a plastic mechanism is forming.
Referred to in EC3 as a Class 3 section.

Semi-rigid frame A frame with semi-rigid connections between members.
Referred to in EC3 as a semi-continuous frame.



 

xiv Glossary of terms

Service loads The design loads appropriate for the serviceability limit state.
Shear centre The point in the cross-section of a beam through which the resultant

transverse force must act if the beam is not to twist.
Shear lag A phenomenon which occurs in thin wide flanges of beams in which

shear straining causes the distribution of bending normal stresses to become
sensibly non-uniform.

Simple frame A frame for which the joints may be assumed not to transmit
moments.

Slender section Asection which does not have sufficient resistance to local buck-
ling to allow it to reach the yield stress. Referred to in EC3 as a Class 4 section.

Splice A connection between two similar collinear members.
Squash load The value of the compressive axial load which will cause yielding

throughout a short member.
Stiffener A plate or section attached to a web to strengthen a member.
Strain-hardening Astress–strain state which occurs at stresses which are greater

than the yield stress.
Strength limit state The state of collapse or loss of structural integrity.
System length Length between adjacent lateral brace points, or between brace

point and an adjacent end of the member.
Tangent modulus The slope of the inelastic stress–strain curve which is used to

predict buckling of inelastic members under increasing load.
Tensile strength The maximum nominal stress which can be reached in tension.
Tension field A mode of shear transfer in the thin web of a stiffened plate girder

which occurs after elastic local buckling takes place. In this mode, the tension
diagonal of each stiffened panel behaves in the same way as does the diagonal
tension member of a parallel chord truss.

Tension member A member which supports axial tension loads.
Torsional buckling A mode of buckling in which a member twists.
Ultimate load design A method of design in which the ultimate load capacity

of the structure is compared with factored loads.
Uniform torque That part of the total torque which is associated with the rate

of change of the angle of twist of the member. Referred to in EC3 as St Venant
torque.

Uniform torsion The special state of torsion in which the angle of twist of the
member varies linearly. Referred to in EC3 as St Venant torsion.

Warping A mode of deformation in which plane cross-sections do not remain
in plane.

Warping torque The other part of the total torque (than the uniform torque).
This only occurs during non-uniform torsion, and is associated with changes in
the warping of the cross-sections.

Working load design A method of design in which the stresses caused by the
service loads are compared with maximum permissible stresses.

Yield strength The average stress during yielding when significant straining
takes place. Usually, the minimum yield strength in tension specified for the
particular steel.



 

Glossary of terms

Actions The loads to which a structure is subjected.
Advanced analysis An analysis which takes account of second-order effects,

inelastic behaviour, residual stresses, and geometrical imperfections.
Beam A member which supports transverse loads or moments only.
Beam-column A member which supports transverse loads or moments which

cause bending and axial loads which cause compression.
Biaxial bending The general state of a member which is subjected to bending

actions in both principal planes together with axial compression and torsion
actions.

Brittle fracture Amode of failure under a tension action in which fracture occurs
without yielding.

Buckling A mode of failure in which there is a sudden deformation in a direction
or plane normal to that of the loads or moments acting.

Buckling length The length of an equivalent simply supported member which
has the same elastic buckling load as the actual member.

Cleat A short-length component (often of angle cross-section) used in a
connection.

Column A member which supports axial compression loads.
Compact section Asection capable of reaching the full plastic moment. Referred

to in EC3 as a Class 2 section.
Component method of design A method of joint design in which the behaviour

of the joint is synthesised from the characteristics of its components.
Connection A joint.
Dead load The weight of all permanent construction. Referred to in EC3 as

permanent load.
Deformation capacity A measure of the ability of a structure to deform as a

plastic collapse mechanism develops without otherwise failing.
Design load A combination of factored nominal loads which the structure is

required to resist.
Design resistance The capacity of the structure or element to resist the design

load.



 

Notations

The following notation is used in this book. Usually, only one meaning is assigned
to each symbol, but in those cases where more meanings than one are possible,
then the correct one will be evident from the context in which it is used.

Main symbols

A Area
B Bimoment
b Width
C Coefficient
c Width of part of section
d Depth, or Diameter
E Young’s modulus of elasticity
e Eccentricity, or Extension
F Force, or Force per unit length
f Stress property of steel
G Dead load, or Shear modulus of elasticity
H Horizontal force
h Height, or Overall depth of section
I Second moment of area
i Integer, or Radius of gyration
k Buckling coefficient, or Factor, or Relative stiffness ratio
L Length
M Moment
m Integer
N Axial force, or Number of load cycles
n Integer
p Distance between holes or rows of holes
Q Load
q Intensity of distributed load
R Radius, or Reaction, or Resistance
r Radius



 

xvi Notations

s Spacing
T Torque
t Thickness
U Strain energy
u Deflection in x direction
V Shear, or Vertical load
v Deflection in y direction
W Section modulus, or Work done
w Deflection in z direction
x Longitudinal axis
y Principal axis of cross-section
z Principal axis of cross-section
α Angle, or Factor, or Load factor at failure, or Stiffness
χ Reduction factor
∆ Deflection
∆σ Stress range
δ Amplification factor, or Deflection
ε Normal strain, or Yield stress coefficient = √

(235/fy)
φ Angle of twist rotation, or Global sway imperfection
γ Partial factor, or Shear strain
κ Curvature
λ Plate slenderness = (c/t)/ε
λ Generalised slenderness
µ Slip factor
ν Poisson’s ratio
θ Angle
σ Normal stress
τ Shear stress

Subscripts

as Antisymmetric
B Bottom
b Beam, or Bearing, or Bending, or Bolt, or Braced
c Centroid, or Column, or Compression
cr Elastic (critical) buckling
d Design
Ed Design load effect
eff Effective
el Elastic
F Force
f Flange
G Dead load
I Imposed load



 

Notations xvii

i Initial, or Integer
j Joint
k Characteristic value
L Left
LT Lateral (or lateral–torsional) buckling
M Material
m Moment
max Maximum
min Minimum
N Axial force
n Integer, or Nominal value
net Net
op Out-of-plane
p Bearing, or Plate
p, pl Plastic
Q Variable load
R Resistance, or Right
r Rafter, or Reduced
Rd Design resistance
Rk Characteristic resistance
s Slip, or Storey, or Sway, or Symmetric
ser Service
st Stiffener, or Strain hardening
T Top, or Torsional buckling
t St Venant or uniform torsion, or Tension
TF Flexural–torsional (or torsional–flexural) buckling
tf Tension field
ult Ultimate
V ,v Shear
W Wind load
w Warping, or Web, or Weld
x x axis
y y axis, or Yield
z z axis
σ Normal stress
τ Shear stress
0 Initial value
1–4 Cross-section class

Additional notations
Ae Area enclosed by hollow section
Af ,max Flange area at maximum section
Af ,min Flange area at minimum section



 

xviii Notations

Ah Area of hole reduced for stagger
Ant , Anv Net areas subjected to tension or shear
As Tensile stress area of a bolt
Av Shear area of section
C Index for portal frame buckling
Cm Equivalent uniform moment factor
D Plate rigidity Et3/12(1 − v2)

{D} Vector of nodal deformations
Er Reduced modulus
Et Tangent modulus
F Buckling factor for beam-columns with unequal end moments
Fp,C Bolt preload
FL, FT Weld longitudinal and transverse forces per unit length
FT ,Rd Design resistance of a T-stub flange
[G] Stability matrix
Icz Second moment of area of compression flange
Im Second moment of area of member
In = b3

ntn/12
Ir Second moment of area of restraining member or rafter
It Uniform torsion section constant
Iyz Product second moment of area
Iw Warping torsion section constant
Izm Value of Iz for critical segment
Izr Value of Iz for restraining segment
K Beam or torsion constant = √

(π2EIw/GJL2), or Fatigue life
constant

[K] Elastic stiffness matrix
Km = √

(π2EIyd2
f /4GItL2)

Lc Distance between restraints, or Length of column which fails
under N alone

Lj Length between end bolts in a long joint
Lm Length of critical segment, or Member length
Lr Length of restraining segment or rafter
Lstable Stable length for member with plastic hinges
LF Load factor
MA, MB End moments
Mb0,y,Rd Design member moment resistance when N = 0 and Mz = 0
Mc0,z,Rd Design member moment resistance when N = 0 and My = 0
Mcr,MN Elastic buckling moment reduced for axial compression
MN ,y,Rd , MN ,z,Rd Major and minor axis beam section moment resistances
ME = (π/L)

√
(EIyGIt)

Mf First-order end moment of frame member
Mfb Braced component of Mf



 

Notations xix

Mfp Major axis moment resisted by plastic flanges
Mfs Sway component of Mf

MI Inelastic beam buckling moment
MIu Value of MI for uniform bending
ML Limiting end moment on a crooked and twisted beam at first

yield
Mmax,0 Value of Mmax when N = 0
MN Plastic moment reduced for axial force
Mb Out-of-plane member moment resistance for bending alone
Mbt Out-of-plane member moment resistance for bending and

tension
Mry, Mrz Section moment capacities reduced for axial load
MS Simple beam moment
Mty Lesser of Mry and Mbt

Mzx Value of Mcr for simply supported beam in uniform bending
Mzxr Value of Mzx reduced for incomplete torsional end restraint
{Ni} Vector of initial axial forces
Nb,Rd Design member axial force resistance when My = 0 and Mz = 0
Ncr,MN Elastic buckling load reduced for bending moment
Ncr,L = π2EI/L2

Ncr,r Reduced modulus buckling load
Nim Constant amplitude fatigue life for ith stress range
Ncr,t Tangent modulus buckling load
QD Concentrated dead load
QI Concentrated imposed load
Qm Upper-bound mechanism estimate of Qult

Qms Value of Qs for the critical segment
Qrs Value of Qs for an adjacent restraining segment
Qs Buckling load for an unrestrained segment, or Lower bound

static estimate of Qult

R Radius of circular cross-section, or Ratio of column and rafter
stiffnesses, or Ratio of minimum to maximum stress

RH Ratio of rafter rise to column height
R, R1−4 Restraint parameters
SF Factor of safety
Sj Joint stiffness
TM Torque exerted by bending moment
TP Torque exerted by axial load
VR Resultant shear force
VTy, VTz Transverse shear forces in a fillet weld
Vvi Shear force in ith fastener
a = √

(EIw/GJ ), or Distance along member, or Distance from
web to shear centre, or Effective throat size of a weld, or Ratio
of web to total section area, or Spacing of transverse stiffeners



 

xx Notations

a0 Distance from shear centre
b cf or cw

c Factor for flange contribution to shear resistance
cm Bending coefficient for beam-columns with unequal end

moments
de Depth of elastic core
df Distance between flange centroids
d0 Hole diameter
e1 End distance in a plate
e2 Edge distance in a plate
eNy Shift of effective compression force from centroid
f Factor used to modify χLT

hw Clear distance between flanges
if ,z Radius of gyration of equivalent compression flange
ip Polar radius of gyration

i0 =
√
(i2

p + y2
0 + z2

0)

k Deflection coefficient, or Modulus of foundation reaction
kc Slenderness correction factor, or Correction factor for moment

distribution
kij Interaction factors for bending and compression
ks Factor for hole shape and size
kt Axial stiffness of connector
kv Shear stiffness of connector
kσ Plate buckling coefficient
k1 Factor for plate tension fracture
k1, k2 Stiffness factors
�eff Effective length of a fillet weld, or Effective length of an

unstiffened column flange
�y Effective loaded length
m Fatigue life index, or Torque per unit length
n Axial compression ratio, or Number of shear planes
pF Probability of failure
p(x) Particular integral
p1 Pitch of bolt holes
p2 Spacing of bolt hole lines
s Distance around thin-walled section
ss Stiff bearing length
s Staggered pitch of holes
sm Minimum staggered pitch for no reduction in effective area
s1, s2 Side widths of a fillet weld
w = Wpl/Wel

wAB Settlement of B relative to A
wc Mid-span deflection
z Distance to centroid



 

Notations xxi

yp, zp Distances to plastic neutral axes
yr , zr Coordinates of centre of rotation
y0, z0 Coordinates of shear centre
zc Distance to buckling centre of rotation, or Distance to centroid
zn Distance below centroid to neutral axis
zQ Distance below centroid to load
zt Distance below centroid to translational restraint
α Coefficient used to determine effective width, or Unit warping

(see equation 10.35)
αbc Buckling coefficient for beam columns with unequal end

moments
αbcI Inelastic moment modification factor for bending and com-

pression
αbcu Value of αbc for ultimate strength
αd Factor for plate tear out
αi In-plane load factor
αL Limiting value of α for second mode buckling
αLT Imperfection factor for lateral buckling
αL,α0 Indices in interaction equations for biaxial bending
αm Moment modification factor for beam lateral buckling

αn = (1/A)
∫ E

0 αtds
αr ,αt Rotational and translational stiffnesses
αx,αy Stiffnesses of rotational restraints acting about the x, y axes
αst Buckling moment factor for stepped and tapered beams
α, β Indices in section interaction equations for biaxial bending
β Correction factor for the lateral buckling of rolled sections, or

Safety index
βe Stiffness factor for far end restraint conditions
βLf Reduction factor for bolts in long joints
βm End moment factor, or Ratio of end moments
βw Fillet weld correlation factor
βy Monosymmetry section constant for I-beam
β2,3 Effective net area factors for eccentrically connected tension

members
�σC Reference value for fatigue site
�σL Fatigue endurance limit
ε Load height parameter = (K/π)2zQ/df

Φ Cumulative frequency distribution of a standard normal
variate, or Value used to determine χ

φCd Design rotation capacity of a joint
φj Joint rotation
γF , γG, γQ Load partial factors
γm, γn, γs Factors used in moment amplification
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γ1,2 Relative stiffnesses
η Crookedness or imperfection parameter, or Web shear resis-

tance factor (= 1.2 for steels up to S460)
λc,0 Slenderness limit of equivalent compression flange
λp Generalised plate slenderness = √

(fy/σcr)

λ1 = π
√
(E/fy)

µ = √
(N/EI)

θ Central twist, or Slope change at plastic hinge, or Torsion stress
function

ρ Perpendicular distance from centroid, or Reduction factor
ρm Monosymmetric section parameter = Izc/Iz

ρc, ρr Column and rafter factors for portal frame buckling
ρ0 Perpendicular distance from shear centre
σac, σat Stresses due to axial compression and tension
σbcy Compression stress due to bending about y axis
σbty, σbtz Tension stresses due to bending about y, z axes
σcr,l Bending stress at local buckling
σcr,p Bearing stress at local buckling
σL Limiting major axis stress in a crooked and twisted beam at

first yield
τh, τv Shear stresses due to Vy, Vz

τhc, τvc Shear stresses due to a circulating shear flow
τho, τvo Shear stresses in an open section
ψ End moment ratio, or Stress ratio
ψ0 Load combination factor



 

Chapter 1

Introduction

1.1 Steel structures

Engineering structures are required to support loads and resist forces, and to
transfer these loads and forces to the foundations of the structures. The loads and
forces may arise from the masses of the structure, or from man’s use of the struc-
tures, or from the forces of nature. The uses of structures include the enclosure of
space (buildings), the provision of access (bridges), the storage of materials (tanks
and silos), transportation (vehicles), or the processing of materials (machines).
Structures may be made from a number of different materials, including steel,
concrete, wood, aluminium, stone, plastic, etc., or from combinations of these.

Structures are usually three-dimensional in their extent, but sometimes they are
essentially two-dimensional (plates and shells), or even one-dimensional (lines
and cables). Solid steel structures invariably include comparatively high volumes
of high-cost structural steel which are understressed and uneconomic, except in
very small-scale components. Because of this, steel structures are usually formed
from one-dimensional members (as in rectangular and triangulated frames), or
from two-dimensional members (as in box girders), or from both (as in stressed
skin industrial buildings). Three-dimensional steel structures are often arranged so
that they act as if composed of a number of independent two-dimensional frames
or one-dimensional members (Figure 1.1).

Structural steel members may be one-dimensional as for beams and columns
(whose lengths are much greater than their transverse dimensions), or two-
dimensional as for plates (whose lengths and widths are much greater than their
thicknesses), as shown in Figure 1.2c. While one-dimensional steel members may
be solid, they are usually thin-walled, in that their thicknesses are much less than
their other transverse dimensions. Thin-walled steel members are rolled in a num-
ber of cross-sectional shapes [1] or are built up by connecting together a number
of rolled sections or plates, as shown in Figure 1.2b. Structural members can
be classified as tension or compression members, beams, beam-columns, torsion
members, or plates (Figure 1.3), according to the method by which they transmit
the forces in the structure. The behaviour and design of these structural members
are discussed in this book.
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[2-D]rigid frames
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[1-D]beams
(purlins and girts)
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[2-D] bracing
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Figure 1.1 Reduction of a [3-D] structure to simpler forms.

(a) Solid [1-D] member (b) Thin-walled [1-D] members

(c) [2-D] member

t d << L~~ t << d << L

t << d L~~

Figure 1.2 Types of structural steel members.

Structural steel members may be connected together at joints in a number of
ways, and by using a variety of connectors. These include pins, rivets, bolts, and
welds of various types. Steel plate gussets, or angle cleats, or other elements may
also be used in the connections. The behaviour and design of these connectors and
joints are also discussed in this book.
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(a) Tension member
(b) Compression

member (c) Beam

(d) Beam-column (e) Torsion member (f) Plate

Figure 1.3 Load transmission by structural members.

This book deals chiefly with steel frame structures composed of one-dimensional
members, but much of the information given is also relevant to plate structures.
The members are generally assumed to be hot-rolled or fabricated from hot-rolled
elements, while the frames considered are those used in buildings. However, much
of the material presented is also relevant to bridge structures [2, 3], and to structural
members cold-formed from light-gauge steel plates [4–7].

The purposes of this chapter are first, to consider the complete design process and
the relationships between the behaviour and analysis of steel structures and their
structural design, and second, to present information of a general nature (including
information on material properties and structural loads) which is required for use
in the later chapters. The nature of the design process is discussed first, and then
brief summaries are made of the relevant material properties of structural steel
and of the structural behaviour of members and frames. The loads acting on the
structures are considered, and the choice of appropriate methods of analysing the
steel structures is discussed. Finally, the considerations governing the synthesis of
an understanding of the structural behaviour with the results of analysis to form
the design processes of EC3 [8] are treated.

1.2 Design

1.2.1 Design requirements

The principal design requirement of a structure is that it should be effective; that
is, it should fulfil the objectives and satisfy the needs for which it was created. The
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structure may provide shelter and protection against the environment by enclosing
space, as in buildings; or it may provide access for people and materials, as in
bridges; or it may store materials, as in tanks and silos; or it may form part of a
machine for transporting people or materials, as in vehicles, or for operating on
materials. The design requirement of effectiveness is paramount, as there is little
point in considering a structure which will not fulfil its purpose.

The satisfaction of the effectiveness requirement depends on whether the struc-
ture satisfies the structural and other requirements. The structural requirements
relate to the way in which the structure resists and transfers the forces and loads
acting on it. The primary structural requirement is that of safety, and the first con-
sideration of the structural engineer is to produce a structure which will not fail in
its design lifetime, or which has an acceptably low risk of failure. The other impor-
tant structural requirement is usually concerned with the stiffness of the structure,
which must be sufficient to ensure that the serviceability of the structure is not
impaired by excessive deflections, vibrations, and the like.

The other design requirements include those of economy and of harmony. The
cost of the structure, which includes both the initial cost and the cost of mainte-
nance, is usually of great importance to the owner, and the requirement of economy
usually has a significant influence on the design of the structure. The cost of the
structure is affected not only by the type and quantity of the materials used, but
also by the methods of fabricating and erecting it. The designer must therefore
give careful consideration to the methods of construction as well as to the sizes of
the members of the structure.

The requirements of harmony within the structure are affected by the relation-
ships between the different systems of the structure, including the load resistance
and transfer system (the structural system), the architectural system, the mechan-
ical and electrical systems, and the functional systems required by the use of the
structure. The serviceability of the structure is usually directly affected by the har-
mony, or lack of it, between the systems. The structure should also be in harmony
with its environment, and should not react unfavourably with either the community
or its physical surroundings.

1.2.2 The design process

The overall purpose of design is to invent a structure which will satisfy the design
requirements outlined in Section 1.2.1. Thus the structural engineer seeks to invent
a structural system which will resist and transfer the forces and loads acting on
it with adequate safety, while making due allowance for the requirements of ser-
viceability, economy, and harmony. The process by which this may be achieved is
summarised in Figure 1.4.

The first step is to define the overall problem by determining the effectiveness
requirements and the constraints imposed by the social and physical environments
and by the owner’s time and money. The structural engineer will need to consult the
owner; the architect, the site, construction, mechanical, and electrical engineers;
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Definition of the problem
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Preliminary design

Preliminary evaluation
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Final design
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Other design
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Figure 1.4 The overall design process.

and any authorities from whom permissions and approvals must be obtained.
A set of objectives can then be specified, which if met, will ensure the successful
solution of the overall design problem.

The second step is to invent a number of alternative overall systems and their
associated structural systems which appear to meet the objectives. In doing so,
the designer may use personal knowledge and experience or that which can be
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Figure 1.5 The structural design process.

gathered from others [9–12]; or the designer may use his or her own imagination,
intuition, and creativity [13], or a combination of all of these.

Following these first two steps of definition and invention come a series of steps
which include the structural design, evaluation, selection, and modification of the
structural system. These may be repeated a number of times before the structural
requirements are met and the structural design is finalised. A typical structural
design process is summarised in Figure 1.5.

After the structural system has been invented, it must be analysed to obtain the
information required for determining the member sizes. First, the loads supported
by and the forces acting on the structure must be determined. For this purpose, load-
ing codes [14, 15] are usually consulted, but sometimes the designer determines
the loading conditions or commissions experts to do this. Anumber of approximate
assumptions are made about the behaviour of the structure, which is then analysed
and the forces and moments acting on the members and joints of the structure
are determined. These are used to proportion the structure so that it satisfies the
structural requirements, usually by referring to a design code, such as EC3 [8].

At this stage a preliminary design of the structure will have been completed, how-
ever, because of the approximate assumptions made about the structural behaviour,
it is necessary to check the design. The first steps are to recalculate the loads and to
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reanalyse the structure designed, and these are carried out with more precision than
was either possible or appropriate for the preliminary analysis. The performance
of the structure is then evaluated in relation to the structural requirements, and any
changes in the member and joint sizes are decided on. These changes may require
a further reanalysis and re-proportioning of the structure, and this cycle may be
repeated until no further change is required. Alternatively, it may be necessary to
modify the original structural system and repeat the structural design process until
a satisfactory structure is achieved.

The alternative overall systems are then evaluated in terms of their service-
ability, economy, and harmony, and a final system is selected, as indicated
in Figure 1.4. This final overall system may be modified before the design is
finalised. The detailed drawings and specifications can then be prepared, and
tenders for the construction can be called for and let, and the structure can
be constructed. Further modifications may have to be made as a consequence
of the tenders submitted or due to unforeseen circumstances discovered during
construction.

This book is concerned with the structural behaviour of steel structures, and
the relationships between their behaviour and the methods of proportioning them,
particularly in relation to the structural requirements of the European steel struc-
tures code EC3 and the modifications of these are given in the National Annexes.
This code consists of six parts, with basic design using the conventional members
being treated in Part 1. This part is divided into 12 sub-parts, with those likely to
be required most frequently being:

Part 1.1 General Rules and Rules for Buildings [8],
Part 1.5 Plated Structural Elements [16],
Part 1.8 Design of Joints [17], and
Part 1.10 Selection of Steel for Fracture Toughness and Through-Thickness

Properties [18].

Other parts that may be required from time to time include: Part 1.2 that covers
resistance to fire, Part 1.3 dealing with cold-formed steel, Part 1.9 dealing with
fatigue and Part 2 [19] that covers bridges. Composite construction is covered by
EC4 [20]. Since Part 1.1 of EC3 is the document most relevant to much of the
content of this text (with the exception of Chapter 9 on joints), all references to
EC3 made herein should be taken to mean Part 1.1 [8], including any modifications
given in the National Annex, unless otherwise indicated.

Detailed discussions of the overall design process are beyond the scope of this
book, but further information is given in [13] on the definition of the design
problem, the invention of solutions and their evaluation, and in [21–24] on the
execution of design. Further, the conventional methods of structural analysis are
adequately treated in many textbooks [25–27] and are discussed in only a few
isolated cases in this book.
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1.3 Material behaviour

1.3.1 Mechanical properties under static load

The important mechanical properties of most structural steels under static load
are indicated in the idealised tensile stress–strain diagram shown in Figure 1.6.
Initially the steel has a linear stress–strain curve whose slope is the Young’s mod-
ulus of elasticity E. The values of E vary in the range 200 000–210 000 N/mm2,
and the approximate value of 205 000 N/mm2 is often assumed (EC3 uses
210 000 N/mm2). The steel remains elastic while in this linear range, and recovers
perfectly on unloading. The limit of the linear elastic behaviour is often closely
approximated by the yield stress fy and the corresponding yield strain εy = fy/E.
Beyond this limit the steel flows plastically without any increase in stress until
the strain-hardening strain εst is reached. This plastic range is usually consider-
able, and accounts for the ductility of the steel. The stress increases above the
yield stress fy when the strain-hardening strain εst is exceeded, and this contin-
ues until the ultimate tensile stress fu is reached. After this, large local reductions
in the cross-section occur, and the load capacity decreases until tensile fracture
takes place.

The yield stress fy is perhaps the most important strength characteristic of a struc-
tural steel. This varies significantly with the chemical constituents of the steel, the
most important of which are carbon and manganese, both of which increase the
yield stress. The yield stress also varies with the heat treatment used and
with the amount of working which occurs during the rolling process. Thus thinner
plates which are more worked have higher yield stresses than thicker plates of the
same constituency. The yield stress is also increased by cold working. The rate
of straining affects the yield stress, and high rates of strain increase the upper or
first yield stress (see the broken line in Figure 1.6), as well as the lower yield
stress fy. The strain rates used in tests to determine the yield stress of a particular

Upper yield stress
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Tensile rupture Plastic

Elastic E
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Figure 1.6 Idealised stress–strain relationship for structural steel.
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steel type are significantly higher than the nearly static rates often encountered in
actual structures.

For design purposes, a ‘minimum’ yield stress is identified for each differ-
ent steel classification. For EC3, these classifications are made on the basis of the
chemical composition and the heat treatment, and so the yield stresses in each clas-
sification decrease as the greatest thickness of the rolled section or plate increases.
The minimum yield stress of a particular steel is determined from the results of
a number of standard tension tests. There is a significant scatter in these results
because of small variations in the local composition, heat treatment, amount of
working, thickness, and the rate of testing, and this scatter closely follows a nor-
mal distribution curve. Because of this, the minimum yield stress fy quoted for
a particular steel and used in design is usually a characteristic value which has
a particular chance (often 95%) of being exceeded in any standard tension test.
Consequently, it is likely that an isolated test result will be significantly higher
than the quoted yield stress. This difference will, of course, be accentuated if the
test is made for any but the thickest portion of the cross-section. In EC3 [8], the
yield stress to be used in design is listed in Table 3.1 for hot-rolled structural steel
and for structural hollow sections for each of the structural grades.

The yield stress fy determined for uniaxial tension is usually accepted as being
valid for uniaxial compression. However, the general state of stress at a point in
a thin-walled member is one of biaxial tension and/or compression, and yielding
under these conditions is not so simply determined. Perhaps the most generally
accepted theory of two-dimensional yielding under biaxial stresses acting in the
1′2′ plane is the maximum distortion-energy theory (often associated with names
of Huber, von Mises, or Hencky), and the stresses at yield according to this theory
satisfy the condition

σ 2
1′ − σ1′σ2′ + σ 2

2′ + 3σ 2
1′2′ = f 2

y , (1.1)

in which σ1′ , σ2′ are the normal stresses and σ1′2′ is the shear stress at the point.
For the case where 1′ and 2′ are the principal stress directions 1 and 2, equation 1.1
takes the form of the ellipse shown in Figure 1.7, while for the case of pure shear
(σ1′ = σ2′ = 0, so that σ1 = −σ2 = σ1′2′), equation 1.1 reduces to

σ1′2′ = fy/
√

3 = τy, (1.2)

which defines the shear yield stress τy.

1.3.2 Fatigue failure under repeated loads

Structural steel may fracture at low average tensile stresses after a large number
of cycles of fluctuating load. This high-cycle fatigue failure is initiated by local
damage caused by the repeated loads, which leads to the formation of a small local
crack. The extent of the fatigue crack is gradually increased by the subsequent load
repetitions, until finally the effective cross-section is so reduced that catastrophic
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Figure 1.7 Yielding under biaxial stresses.

failure may occur. High-cycle fatigue is only a design consideration when a large
number of loading cycles involving tensile stresses is likely to occur during the
design life of the structure (compressive stresses do not cause fatigue). This is
often the case for bridges, cranes, and structures which support machinery; wind
and wave loading may also lead to fatigue problems.

Factors which significantly influence the resistance to fatigue failure include
the number of load cycles N, the range of stress

�σ = σmax − σmin (1.3)

during a load cycle, and the magnitudes of local stress concentrations. An indi-
cation of the effect of the number of load cycles is given in Figure 1.8, which
shows that the maximum tensile stress decreases from its ultimate static value fu
in an approximately linear fashion as the logarithm of the number of cycles, N,
increases. As the number of cycles increases further the curve may flatten out and
the maximum tensile stress may approach the endurance limit �σL.

The effects of the stress magnitude and stress ratio on the fatigue life are demon-
strated in Figure 1.9. It can be seen that the fatigue life N decreases with increasing
stress magnitude σmax and with decreasing stress ratio R = σmin/σmax.

The effect of stress concentration is to increase the stress locally, leading to local
damage and crack initiation. Stress concentrations arise from sudden changes in
the general geometry and loading of a member, and from local changes due to
bolt and rivet holes and welds. Stress concentrations also occur at defects in the
member, or its connectors and welds. These may be due to the original rolling of the
steel, or due to subsequent fabrication processes, including punching, shearing,
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and welding, or due to damage such as that caused by stray arc fusions during
welding.

It is generally accepted for design purposes that the fatigue life N varies with
the stress range �σ according to equations of the type

(
�σ

�σC

)m (
N

2 × 106

)
= K (1.4)

in which the reference value �σC depends on the details of the fatigue site, and
the constants m and K may change with the number of cycles N. This assumed
dependence of the fatigue life on the stress range produces the approximating
straight lines shown in Figure 1.9.
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EC3-1-1 [8] does not provide a treatment of fatigue, since it is usually the case
that either the stress range �σ or the number of high amplitude stress cycles N
is comparatively small. However, for structures supporting vibrating machinery
and plant, reference should be made to EC3-1-9 [28]. The general relationships
between the fatigue life N and the service stress range�σ for constant amplitude
stress cycles are shown in Figure 1.10 for reference values�σC which correspond
to different detail categories. For N ≤ 5 × 106, m = 3 and K = 1, so that
the reference value �σC corresponds to the value of �σ at N = 2 × 106. For
5 × 106 ≤ N ≤ 108, m = 5 and K = 0.42/3 ≈ 0.543.

Fatigue failure under variable amplitude stress cycles is normally assessed using
Miner’s rule [29]∑

Ni/Nim ≤ 1 (1.5)

in which Ni is the number of cycles of a particular stress range �σi and Nim the
constant amplitude fatigue life for that stress range. If any of the stress ranges
exceeds the constant amplitude fatigue limit (at N = 5 × 106), then the effects of
stress ranges below this limit are included in equation 1.5.

Designing against fatigue involves a consideration of joint arrangement as well
as of permissible stress. Joints should generally be so arranged as to minimise
stress concentrations and produce as smooth a ‘stress flow’ through the joint as is
practicable. This may be done by giving proper consideration to the layout of a
joint, by making gradual changes in section, and by increasing the amount of mate-
rial used at points of concentrated load. Weld details should also be determined
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with this in mind, and unnecessary ‘stress-raisers’ should be avoided. It will
also be advantageous to restrict, where practicable, the locations of joints to low
stress regions such as at points of contraflexure or near the neutral axis. Further
information and guidance on fatigue design are given in [30–33].

1.3.3 Brittle fracture under impact load

Structural steel does not always exhibit a ductile behaviour, and under some cir-
cumstances a sudden and catastrophic fracture may occur, even though the nominal
tensile stresses are low. Brittle fracture is initiated by the existence or formation of
a small crack in a region of high local stress. Once initiated, the crack may prop-
agate in a ductile (or stable) fashion for which the external forces must supply the
energy required to tear the steel. More serious are cracks which propagate at high
speed in a brittle (or unstable) fashion, for which some of the internal elastic strain
energy stored in steel is released and used to fracture the steel. Such a crack is
self-propagating while there is sufficient internal strain energy, and will continue
until arrested by ductile elements in its path which have sufficient deformation
capacity to absorb the internal energy released.

The resistance of a structure to brittle fracture depends on the magnitude of local
stress concentrations, on the ductility of the steel, and on the three-dimensional
geometrical constraints. High local stresses facilitate crack initiation, and so stress
concentrations due to poor geometry and loading arrangements (including impact
loading) are dangerous. Also of great importance are flaws and defects in the
material, which not only increase the local stresses, but also provide potential sites
for crack initiation.

The ductility of a structural steel depends on its composition, heat treatment,
and thickness, and varies with temperature and strain rate. Figure 1.11 shows the
increase with temperature of the capacity of the steel to absorb energy during
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Figure 1.11 Effect of temperature on resistance to brittle fracture.
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impact. At low temperatures the energy absorption is low and initiation and
propagation of brittle fractures are comparatively easy, while at high temperatures
the energy absorption is high because of ductile yielding, and the propagation of
cracks can be arrested. Between these two extremes is a transitional range in which
crack initiation becomes increasingly difficult. The likelihood of brittle fracture is
also increased by high strain rates due to dynamic loading, since the consequent
increase in the yield stress reduces the possibility of energy absorption by ductile
yielding. The chemical composition of steel has a marked influence on its ductility:
brittleness is increased by the presence of excessive amounts of most non-metallic
elements, while ductility is increased by the presence of some metallic elements.
Steel with large grain size tends to be more brittle, and this is significantly influ-
enced by heat treatment of the steel, and by its thickness (the grain size tends
to be larger in thicker sections). EC3-1-10 [18] provides values of the maximum
thickness t1 for different steel grades and minimum service temperatures, as well
as advice on using a more advanced fracture mechanics [34] based approach and
guidance on safeguarding against lamellar tearing.

Three-dimensional geometrical constraints, such as those occurring in thicker
or more massive elements, also encourage brittleness, because of the higher local
stresses, and because of the greater release of energy during cracking and the
consequent increase in the ease of propagation of the crack.

The risk of brittle fracture can be reduced by selecting steel types which have
ductilities appropriate to the service temperatures, and by designing joints with a
view to minimising stress concentrations and geometrical constraints. Fabrication
techniques should be such that they will avoid introducing potentially dangerous
flaws or defects. Critical details in important structures may be subjected to inspec-
tion procedures aimed at detecting significant flaws. Of course the designer must
give proper consideration to the extra cost of special steels, fabrication techniques,
and inspection and correction procedures. Further information on brittle fracture
is given in [31, 32, 34].

1.4 Member and structure behaviour

1.4.1 Member behaviour

Structural steel members are required to transmit axial and transverse forces and
moments and torques as shown in Figure 1.3. The response of a member to
these actions can be described by the load-deformation characteristics shown in
Figure 1.12.

A member may have the linear response shown by curve 1 in Figure 1.12,
at least until the material reaches the yield stress. The magnitudes of the defor-
mations depend on the elastic moduli E and G. Theoretically, a member can only
behave linearly while the maximum stress does not exceed the yield stress fy,
and so the presence of residual stresses or stress concentrations will cause early
non-linearity. However, the high ductility of steel causes a local redistribution
after this premature yielding, and it can often be assumed without serious error
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Figure 1.12 Member behaviour.

that the member response remains linear until more general yielding occurs. The
member behaviour then becomes non-linear (curve 2) and approaches the condi-
tion associated with full plasticity (curve 6). This condition depends on the yield
stress fy.

The member may also exhibit geometric non-linearity, in that the bending
moments and torques acting at any section may be influenced by the deformations
as well as by the applied forces. This non-linearity, which depends on the elastic
moduli E and G, may cause the deformations to become very large (curve 3) as the
condition of elastic buckling is approached (curve 4). This behaviour is modified
when the material becomes non-linear after first yield, and the load may approach
a maximum value and then decrease (curve 5).

The member may also behave in a brittle fashion because of local buckling
in a thin plate element of the member (curve 7), or because of material fracture
(curve 8).

The actual behaviour of an individual member will depend on the forces acting
on it. Thus tension members, laterally supported beams, and torsion members
remain linear until their material non-linearity becomes important, and then they
approach the fully plastic condition. However, compression members and laterally
unsupported beams show geometric non-linearity as they approach their buckling
loads. Beam-columns are members which transmit both transverse and axial loads,
and so they display both material and geometric non-linearities.

1.4.2 Structure behaviour

The behaviour of a structure depends on the load-transferring action of its mem-
bers and joints. This may be almost entirely by axial tension or compression,
as in the triangulated structures with joint loading as shown in Figure 1.13a.
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Figure 1.13 Structural load-transfer actions.

Alternatively, the members may support transverse loads which are transferred by
bending and shear actions. Usually the bending action dominates in structures com-
posed of one-dimensional members, such as beams and many single-storey rigid
frames (Figure 1.13b), while shear becomes more important in two-dimensional
plate structures (Figure 1.13c). The members of many structures are subjected
to both axial forces and transverse loads, such as those in multistorey buildings
(Figure 1.13d). The load-transferring action of the members of a structure depends
on the arrangement of the structure, including the geometrical layout and the joint
details, and on the loading arrangement.

In some structures, the loading and joints are such that the members are effec-
tively independent. For example, in triangulated structures with joint loads, any
flexural effects are secondary, and the members can be assumed to act as if
pin-jointed, while in rectangular frames with simple flexible joints the moment
transfers between beams and columns may be ignored. In such cases, the response
of the structure is obtained directly from the individual member responses.

More generally, however, there will be interactions between the members, and
the structure behaviour is not unlike the general behaviour of a member, as can
be seen by comparing Figures 1.14 and 1.12. Thus, it has been traditional to
assume that a steel structure behaves elastically under the service loads. This
assumption ignores local premature yielding due to residual stresses and stress
concentrations, but these are not usually serious. Purely flexural structures, and
purely axial structures with lightly loaded compression members, behave as if
linear (curve 1 in Figure 1.14). However, structures with both flexural and axial
actions behave non-linearly, even near the service loads (curve 3 in Figure 1.14).
This is a result of the geometrically non-linear behaviour of its members (see
Figure 1.12).

Most steel structures behave non-linearly near their ultimate loads, unless they
fail prematurely due to brittle fracture, fatigue, or local buckling. This non-linear
behaviour is due either to material yielding (curve 2 in Figure 1.14), or member
or frame buckling (curve 4), or both (curve 5). In axial structures, failure may
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Figure 1.14 Structure behaviour.

involve yielding of some tension members, or buckling either of some compression
members or of the frame, or both. In flexural structures, failure is associated with
full plasticity occurring at a sufficient number of locations that the structure can
form a collapse mechanism. In structures with both axial and flexural actions, there
is an interaction between yielding and buckling (curve 5 in Figure 1.14), and the
failure load is often difficult to determine. The transitions shown in Figure 1.14
between the elastic and ultimate behaviour often take place in a series of non-linear
steps as individual elements become fully plastic or buckle.

1.5 Loads

1.5.1 General

The loads acting on steel structures may be classified as dead loads, as imposed
loads, including both gradually applied and dynamic loads, as wind loads, as earth
or ground-water loads, or as indirect forces, including those due to temperature
changes, foundation settlement, and the like. The more general collective term
Actions is used throughout the Eurocodes. The structural engineer must evaluate
the magnitudes of any of these loads which will act, and must determine those
which are the most severe combinations of loads for which the structure must be
designed. These loads are discussed in the following subsections, both individually
and in combinations.

1.5.2 Dead loads

The dead loads acting on a structure arise from the weight of the structure including
the finishes, and from any other permanent construction or equipment. The dead



 

18 Introduction

loads will vary during construction, but thereafter will remain constant, unless
significant modifications are made to the structure or its permanent equipment.

The dead load may be assessed from the knowledge of the dimensions and spe-
cific weights or from the total weights of all the permanent items which contribute
to the total dead load. Guidance on specific weights is given in [14], the values
in which are average values representative of the particular materials. The dimen-
sions used to estimate dead loads should also be average and representative, in
order that consistent estimates of the dead loads can be made. By making these
assumptions, the statistical distribution of dead loads is often taken as being of a
Weibull type [35]. The practice sometimes used of consistently overestimating
dimensions and specific weights is often wasteful, and may also be danger-
ous in cases where the dead load component acts in the opposite sense to the
resultant load.

1.5.3 Imposed loads

The imposed loads acting on a structure are gravity loads other than the dead loads,
and arise from the weights of materials added to the structure as a result of its use,
such as materials stored, people, and snow. Imposed loads usually vary both in
space and time. Imposed loads may be sub-divided into two groups, depending
on whether they are gradually applied, in which case static load equivalents can
be used, or whether they are dynamic, including repeated loads and impact or
impulsive loads.

Gradually applied imposed loads may be sustained over long periods of time,
or may vary slowly with time [36]. The past practice, however, was to consider
only the total imposed load, and so only extreme values (which occur rarely and
may be regarded as lifetime maximum loads) were specified. The present imposed
loads specified in loading codes [14] often represent peak loads which have 95%
probability of not being exceeded over a 50-year period based on a Weibull type
distribution [35].

It is usual to consider the most severe spatial distribution of the imposed loads,
and this can only be determined by using both the maximum and minimum values
of the imposed loads. In the absence of definite knowledge, it is often assumed that
the minimum values are zero. When the distribution of imposed load over large
areas is being considered, the maximum imposed loads specified, which represent
rare events, are often reduced in order to make some allowance for the decreased
probability that the maximum imposed loads will act on all areas at the same time.

Dynamic loads which act on structures include both repeated loads and impact
and blast loads. Repeated loads are of significance in fatigue problems (see Section
1.3.2), in which case the designer is concerned with both the magnitudes, ranges,
and the number of repetitions of loads which are very frequently applied. At the
other extreme, impact loads (which are particularly important in the brittle fracture
problems discussed in Section 1.3.3) are usually specified by values of extreme
magnitude which represent rare events. In structures for which the static loads
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dominate, it is common to replace the dynamic loads by static force equivalents
[14]. However, such a procedure is likely to be inappropriate when the dynamic
loads form a significant proportion of the total load, in which case a proper dynamic
analysis [37, 38] of the structure and its response should be made.

1.5.4 Wind loads

The wind loads which act on structures have traditionally been allowed for by
using static force equivalents. The first step is usually to determine a basic wind
speed for the general region in which the structure is to be built by using infor-
mation derived from meteorological studies. This basic wind speed may represent
an extreme velocity measured at a height of 10 m and averaged over a period of
3 seconds which has a return period of 50 years (i.e. a velocity which will, on
average, be reached or exceeded once in 50 years, or have a probability of being
exceeded of 1/50). The basic wind speed may be adjusted to account for the topog-
raphy of the site, for the ground roughness, structure size, and height above ground,
and for the degree of safety required and the period of exposure. The resulting
design wind speed may then be converted into the static pressure which will be
exerted by the wind on a plane surface area (this is often referred to as the dynamic
wind pressure because it is produced by decelerating the approaching wind veloc-
ity to zero at the surface area). The wind force acting on the structure may then
be calculated by using pressure coefficients appropriate to each individual surface
of the structure, or by using force coefficients appropriate to the total structure.
Many values of these coefficients are tabulated in [15], but in special cases where
these are inappropriate, the results of wind tunnel tests on model structures may
be used.

In some cases it is not sufficient to treat wind loads as static forces. For example,
when fatigue is a problem, both the magnitudes and the number of wind fluctuations
must be estimated. In other cases, the dynamic response of a structure to wind loads
may have to be evaluated (this is often the case with very flexible structures whose
long natural periods of vibration are close to those of some of the wind gusts), and
this may be done analytically [37, 38], or by specialists using wind tunnel tests.
In these cases, special care must be taken to model correctly those properties of
the structure which affect its response, including its mass, stiffness, and damping,
as well as the wind characteristics and any interactions between wind and structure.

1.5.5 Earth or ground-water loads

Earth or ground-water loads act as pressure loads normal to the contact surface of
the structure. Such loads are usually considered to be essentially static.

However, earthquake loads are dynamic in nature, and their effects on the struc-
ture must be allowed for. Very flexible structures with long natural periods of
vibration respond in an equivalent static manner to the high frequencies of earth-
quake movements, and so can be designed as if loaded by static force equivalents.
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On the other hand, stiff structures with short natural periods of vibration respond
significantly, and so in such a case a proper dynamic analysis [37, 38] should
be made. The intensities of earthquake loads vary with the region in which the
structure is to be built, but they are not considered to be significant in the UK.

1.5.6 Indirect forces

Indirect forces may be described as those forces which result from the straining
of a structure or its components, and may be distinguished from the direct forces
caused by the dead and applied loads and pressures. The straining may arise from
temperature changes, from foundation settlement, from shrinkage, creep, or crack-
ing of structural or other materials, and from the manufacturing process as in the
case of residual stresses. The values of indirect forces are not usually specified,
and so it is common for the designer to determine which of these forces should be
allowed for, and what force magnitudes should be adopted.

1.5.7 Combinations of loads

The different loads discussed in the preceding subsections do not occur alone, but in
combinations, and so the designer must determine which combination is the most
critical for the structure. However, if the individual loads, which have different
probabilities of occurrence and degrees of variability, were combined directly,
the resulting load combination would have a greatly reduced probability. Thus,
it is logical to reduce the magnitudes of the various components of a combination
according to their probabilities of occurrence. This is similar to the procedure used
in reducing the imposed load intensities used over large areas.

The past design practice was to use the worst combination of dead load with
imposed load and/or wind load, and to allow increased stresses whenever the
wind load was included (which is equivalent to reducing the load magnitudes).
These increases seem to be logical when imposed, and wind loads act together
because the probability that both of these loads will attain their maximum values
simultaneously is greatly reduced. However, they are unjustified when applied in
the case of dead and wind load, for which the probability of occurrence is virtually
unchanged from that of the wind load.

A different and more logical method of combining loads is used in the EC3 limit
states design method [8], which is based on statistical analyses of the loads and
the structure capacities (see Section 1.7.3.4). Strength design is usually carried
out for the most severe combination of actions for normal (termed persistent) or
temporary (termed transient) conditions using∑

j≥1

γG, jGk , j + γQ,1Qk ,1 +
∑
i>1

γQ,iψ0,iQk ,i (1.6)

where � implies ‘the combined effect of’, γG and γQ are partial factors for the
persistent G and variable Q actions, andψ0 is a combination factor. The concept is
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Table 1.1 Partial load factors for common situations

Ultimate limit state Permanent actions γG Variable actions γQ

Unfavourable Favourable Unfavourable Favourable

EQU 1.1 0.9 1.5 0
STR/GEO 1.35 1.0 1.5 0

thus to use all the persistent actions Gk ,j such as self-weight and fixed equipment
with a leading variable action Qk ,1 such as imposed, snow, or wind load, and
reduced values of the other variable actions Qk ,i. More information on the Eurocode
approach to loading for steel structures is given in [39–41].

This approach is applied to the following forms of ultimate limit state:

EQU = loss of static equilibrium of the structure on any part of it
STR = failure by excessive deformation, transformation of the structure or

any part of it into a mechanism, rupture or loss of stability of the
structure or of any part of it

GEO = failure or excessive deformation of the ground
FAT = fatigue failure

For the most common set of design situations, use of the appropriate values from
[41] gives the load factors of Table 1.1.

Using the combination factors of ψ0 = 0.7 and 0.5 of [41] for most variable
actions and wind actions, respectively leads to the following common STR load
combinations for buildings:

1.35 G + 1.5 QI + 0.75 QW

1.35 G + 1.05 QI + 1.5 QW

− 1.0 G + 1.5 QI , and

− 1.0 G + 1.5 QW .

in which the minus signs indicate that the permanent action is favourable.

1.6 Analysis of steel structures

1.6.1 General

In the design process, the assessment of whether the structural design require-
ments will be met or not requires the knowledge of the stiffness and strength of
the structure under load, and of its local stresses and deformations. The term struc-
tural analysis is used to denote the analytical process by which this knowledge



 

22 Introduction

of the response of the structure can be obtained. The basis for this process is the
knowledge of the material behaviour, and this is used first to analyse the behaviour
of the individual members and joints of the structure. The behaviour of the complete
structure is then synthesised from these individual behaviours.

The methods of structural analysis are fully treated in many textbooks
[e.g. 25–27], and so details of these are not within the scope of this book. However,
some discussion of the concepts and assumptions of structural analysis is neces-
sary so that the designer can make appropriate assumptions about the structure and
make a suitable choice of the method of analysis.

In most methods of structural analysis, the distribution of forces and moments
throughout the structure is determined by using the conditions of static equilib-
rium and of geometric compatibility between the members at the joints. The way
in which this is done depends on whether a structure is statically determinate
(in which case the complete distribution of forces and moments can be determined
by statics alone), or is statically indeterminate (in which case the compatibility
conditions for the deformed structure must also be used before the analysis can be
completed).

An important feature of the methods of structural analysis is the constitutive
relationships between the forces and moments acting on a member or connection
and its deformations. These play the same role for the structural element as do the
stress–strain relationships for an infinitesimal element of a structural material. The
constitutive relationship may be linear (force proportional to deflection) and elastic
(perfect recovery on unloading), or they may be non-linear because of material non-
linearities such as yielding (inelastic), or because of geometrical non-linearities
(elastic) such as when the deformations themselves induce additional moments,
as in stability problems.

It is common for the designer to idealise the structure and its behaviour so as
to simplify the analysis. A three-dimensional frame structure may be analysed as
the group of a number of independent two-dimensional frames, while individual
members are usually considered as one-dimensional and the joints as points. The
joints may be assumed to be frictionless hinges, or to be semi-rigid or rigid. In
some cases, the analysis may be replaced or supplemented by tests made on an
idealised model which approximates part or all of the structure.

1.6.2 Analysis of statically determinate members
and structures

For an isolated statically determinate member, the forces and moments acting on
the member are already known, and the structural analysis is only used to determine
the stiffness and strength of the member. A linear elastic (or first-order elastic)
analysis is usually made of the stiffness of the member when the material non-
linearities are generally unimportant and the geometrical non-linearities are often
small. The strength of the member, however, is not so easily determined, as one
or both of the material and geometric non-linearities are most important. Instead,
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the designer usually relies on a design code or specification for this information.
The strength of the isolated statically determinate members is fully discussed in
Chapters 2–7 and 10.

For a statically determinate structure, the principles of static equilibrium are
used in the structural analysis to determine the member forces and moments, and
the stiffness and strength of each member are then determined in the same way as
for statically determinate members.

1.6.3 Analysis of statically indeterminate structures

A statically indeterminate structure can be approximately analysed if a sufficient
number of assumptions are made about its behaviour to allow it to be treated as
if determinate. One method of doing this is to guess the locations of points of
zero bending moment and to assume there are frictionless hinges at a sufficient
number of these locations that the member forces and moments can be determined
by statics alone. Such a procedure is commonly used in the preliminary analysis
of a structure, and followed at a later stage by a more precise analysis. However,
a structure designed only on the basis of an approximate analysis can still be safe,
provided the structure has sufficient ductility to redistribute any excess forces and
moments. Indeed, the method is often conservative, and its economy increases
with the accuracy of the estimated locations of the points of zero bending moment.
More commonly, a preliminary analysis is made of the structure based on the
linear elastic computer methods of analysis [42, 43], using approximate member
stiffnesses.

The accurate analysis of statically indeterminate structures is complicated by the
interaction between members: the equilibrium and compatibility conditions and
the constitutive relationships must all be used in determining the member forces
and moments. There are a number of different types of analysis which might be
made, and some indication of the relevance of these is given in Figure 1.15 and
in the following discussion. Many of these can only be used for two-dimensional
frames.

For many structures, it is common to use a first-order elastic analysis which is
based on linear elastic constitutive relationships and which ignores any geometrical
non-linearities and associated instability problems. The deformations determined
by such an analysis are proportional to the applied loads, and so the principle of
superposition can be used to simplify the analysis. It is often assumed that axial
and shear deformations can be ignored in structures whose action is predominantly
flexural, and that flexural and shear deformations can be ignored in structures
whose member forces are predominantly axial. These assumptions further simplify
the analysis, which can then be carried out by any of the well-known methods
[25–27], for which many computer programs are available [44, 45]. Some of these
programs can be used for three-dimensional frames.

However, a first-order elastic analysis will underestimate the forces and
moments in and the deformations of a structure when instability effects are present.
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Figure 1.15 Predictions of structural analyses.

Some estimate of the importance of these in the absence of flexural effects can be
obtained by making an elastic stability analysis. A second-order elastic analysis
accounts for both flexure and instability, but this is difficult to carry out, although
computer programs are now generally available [44, 45]. EC3 permits the use
of the results of an elastic stability analysis in the amplification of the first-order
moments as an alternative to second-order analysis.

The analysis of statically indeterminate structures near the ultimate load is
further complicated by the decisive influence of the material and geometrical
non-linearities. In structures without material non-linearities, an elastic stability
analysis is appropriate when there are no flexural effects, but this is a rare occur-
rence. On the other hand, many flexural structures have very small axial forces
and instability effects, in which case it is comparatively easy to use a first-order
plastic analysis, according to which a sufficient number of plastic hinges must
form to transform the structure into a collapse mechanism.

More generally, the effects of instability must be allowed for, and as a first
approximation the nominal first yield load determined from a second-order elastic
analysis may be used as a conservative estimate of the ultimate load. A much more
accurate estimate may be obtained for structures where local and lateral buckling
is prevented by using an advanced analysis [46] in which the actual behaviour is
closely analysed by allowing for instability, yielding, residual stresses, and initial
crookedness. However, this method is not yet in general use.

1.7 Design of steel structures

1.7.1 Structural requirements and design criteria

The designer’s task of assessing whether or not a structure will satisfy the structural
requirements of serviceability and strength is complicated by the existence of errors
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and uncertainties in his or her analysis of the structural behaviour and estimation of
the loads acting, and even in the structural requirements themselves. The designer
usually simplifies this task by using a number of design criteria which allow him or
her to relate the structural behaviour predicted by his or her analysis to the structural
requirements. Thus the designer equates the satisfaction of these criteria by the
predicted structural behaviour with satisfaction of the structural requirements by
the actual structure.

In general, the various structural design requirements relate to corresponding
limit states, and so the design of a structure to satisfy all the appropriate require-
ments is often referred to as a limit states design. The requirements are commonly
presented in a deterministic fashion, by requiring that the structure shall not fail,
or that its deflections shall not exceed prescribed limits. However, it is not possible
to be completely certain about the structure and its loading, and so the structural
requirements may also be presented in probabilistic forms, or in deterministic
forms derived from probabilistic considerations. This may be done by defining an
acceptably low risk of failure within the design life of the structure, after reaching
some sort of balance between the initial cost of the structure and the economic and
human losses resulting from failure. In many cases there will be a number of struc-
tural requirements which operate at different load levels, and it is not unusual to
require a structure to suffer no damage at one load level, but to permit some minor
damage to occur at a higher load level, provided there is no catastrophic failure.

The structural design criteria may be determined by the designer, or he or she
may use those stated or implied in design codes. The stiffness design criteria
adopted are usually related to the serviceability limit state of the structure under
the service loads, and are concerned with ensuring that the structure has sufficient
stiffness to prevent, excessive deflections such as sagging, distortion, and settle-
ment, and excessive motions under dynamic load, including sway, bounce, and
vibration.

The strength limit state design criteria are related to the possible methods of
failure of the structure under overload and understrength conditions, and so these
design criteria are concerned with yielding, buckling, brittle fracture, and fatigue.
Also of importance is the ductility of the structure at and near failure: ductile
structures give a warning of the impending failure and often redistribute the load
effects away from the critical regions, while ductility provides a method of energy
dissipation which will reduce the damage due to earthquake and blast loading. On
the other hand, a brittle failure is more serious, as it occurs with no warning of
failure, and in a catastrophic fashion with a consequent release of stored energy
and increase in damage. Other design criteria may also be adopted, such as those
related to corrosion and fire.

1.7.2 Errors and uncertainties

In determining the limitations prescribed by design criteria, account must be taken
of the deliberate and accidental errors made by the designer, and of the uncertainties
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in his or her knowledge of the structure and its loads. Deliberate errors include
those resulting from the assumptions made to simplify the analysis of the loading
and of the structural behaviour. These assumptions are often made so that any
errors involved are on the safe side, but in many cases the nature of the errors
involved is not precisely known, and some possibility of danger exists.

Accidental errors include those due to a general lack of precision, either in
the estimation of the loads and the analysis of the structural behaviour, or in the
manufacture and erection of the structure. The designer usually attempts to control
the magnitudes of these, by limiting them to what he or she judges to be suitably
small values. Other accidental errors include what are usually termed blunders.
These may be of a gross magnitude leading to failure or to uneconomic structures,
or they may be less important. Attempts are usually made to eliminate blunders by
using checking procedures, but often these are unreliable, and the logic of such a
process is open to debate.

As well as the errors described above, there exist a number of uncertainties
about the structure itself and its loads. The material properties of steel fluctuate,
especially the yield stress and the residual stresses. The practice of using a min-
imum or characteristic yield stress for design purposes usually leads to oversafe
designs, especially for redundant structures of reasonable size, for which an aver-
age yield stress would be more appropriate because of the redistribution of load
which takes place after early yielding. Variations in the residual stress levels are
not often accounted for in design codes, but there is a growing tendency to adjust
design criteria in accordance with the method of manufacture so as to make some
allowance for gross variations in the residual stresses. This is undertaken to some
extent in EC3.

The cross-sectional dimensions of rolled-steel sections vary, and the values
given in section handbooks are only nominal, especially for the thicknesses of
universal sections. The fabricated lengths of a structural member will vary slightly
from the nominal length, but this is usually of little importance, except where
the variation induces additional stresses because of lack-of-fit problems, or where
there is a cumulative geometrical effect. Of some significance to members subject
to instability problems are the variations in their straightness which arise during
manufacture, fabrication, and erection. Some allowances for these are usually
made in design codes, while fabrication and erection tolerances are specified in
EN1090 [47] to prevent excessive crookedness.

The loads acting on a structure vary significantly. Uncertainty exists in the
designer’s estimate of the magnitude of the dead load because of the variations in
the densities of materials, and because of the minor modifications to the structure
during or subsequent to its erection. Usually these variations are not very signif-
icant and a common practice is to err on the safe side by making conservative
assumptions. Imposed loadings fluctuate significantly during the design usage of
the structure, and may change dramatically with changes in usage. These fluctua-
tions are usually accounted for by specifying what appear to be extreme values in
loading codes, but there is often a finite chance that these values will be exceeded.
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Wind loads vary greatly and the magnitudes specified in loading codes are usually
obtained by probabilistic methods.

1.7.3 Strength design

1.7.3.1 Load and capacity factors, and factors of safety

The errors and uncertainties involved in the estimation of the loads on and the
behaviour of a structure may be allowed for in strength design by using load fac-
tors to increase the nominal loads and capacity factors to decrease the structural
strength. In the previous codes that employed the traditional working stress design,
this was achieved by using factors of safety to reduce the failure stresses to permis-
sible working stress values. The purpose of using various factors is to ensure that
the probability of failure under the most adverse conditions of structural overload
and understrength remains very small. The use of these factors is discussed in the
following subsections.

1.7.3.2 Working stress design

The working stress methods of design given in previous codes and specifications
required that the stresses calculated from the most adverse combination of loads
must not exceed the specified permissible stresses. These specified stresses were
obtained after making some allowances for the non-linear stability and material
effects on the strength of isolated members, and in effect, were expressions of their
ultimate strengths divided by the factors of safety SF. Thus

Working stress ≤ Permissible stress ≈ Ultimate stress

SF
(1.6)

It was traditional to use factors of safety of 1.7 approximately.
The working stress method of a previous steel design code [48] has been replaced

by the limit states design method of EC3. Detailed discussions of the working stress
method are available in the first edition of this book [49].

1.7.3.3 Ultimate load design

The ultimate load methods of designing steel structures required that the calculated
ultimate load-carrying capacity of the complete structure must not exceed the most
adverse combination of the loads obtained by multiplying the working loads by
the appropriate load factors LF. Thus∑

(Working load × LF) ≤ Ultimate load (1.7)

These load factors allowed some margins for any deliberate and accidental
errors, and for the uncertainties in the structure and its loads, and also provided the
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structure with a reserve of strength. The values of the factors should depend on the
load type and combination, and also on the risk of failure that could be expected
and the consequences of failure. A simplified approach often employed (perhaps
illogically) was to use a single load factor on the most adverse combination of the
working loads.

A previous code [48] allowed the use of the plastic method of ultimate load
design when stability effects were unimportant. These have used load factors of
1.70 approximately. However, this ultimate load method has also been replaced
by the limit states design method in EC3, and will not be discussed further.

1.7.3.4 Limit states design

It was pointed out in Section 1.5.6 that different types of load have different proba-
bilities of occurrence and different degrees of variability, and that the probabilities
associated with these loads change in different ways as the degree of overload
considered increases. Because of this, different load factors should be used for the
different load types.

Thus for limit states design, the structure is deemed to be satisfactory if its
design load effect does not exceed its design resistance. The design load effect
is an appropriate bending moment, torque, axial force, or shear force, and is
calculated from the sum of the effects of the specified (or characteristic) loads
Fk multiplied by partial factors γG,Q which allow for the variabilities of the loads
and the structural behaviour. The design resistance Rk/γM is calculated from the
specified (or characteristic) resistance Rk divided by the partial factor γM which
allows for the variability of the resistance. Thus

Design load effect ≤ Design resistance (1.8a)

or ∑
γg,Q × (effect of specified loads) ≤ (specified resistance/γM ) (1.8b)

Although the limit states design method is presented in deterministic form
in equations 1.8, the partial factors involved are usually obtained by using
probabilistic models based on statistical distributions of the loads and the
capacities. Typical statistical distributions of the total load and the structural
capacity are shown in Figure 1.16. The probability of failure pF is indicated
by the region for which the load distribution exceeds that for the structural
capacity.

In the development of limit state codes, the probability of failure pF is usually
related to a parameter β, called the safety index, by the transformation

Φ(−β) = pF , (1.9)

where the functionΦ is the cumulative frequency distribution of a standard normal
variate [35]. The relationship between β and pF shown in Figure 1.17 indicates
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Figure 1.17 Relationship between safety index and probability of failure.

that an increase in β of 0.5 implies a decrease in the probability of failure by
approximately an order of magnitude.

The concept of the safety index was used to derive the partial factors for EC3.
This was done with reference to previous national codes such as BS 5950 [50]
to obtain comparable values of the probability of failure pF , although much of
the detailed calibration treated the load and resistance sides of equations 1.8
separately.
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1.7.4 Stiffness design

In the stiffness design of steel structures, the designer seeks to make the structure
sufficiently stiff so that its deflections under the most adverse working load con-
ditions will not impair its strength or serviceability. These deflections are usually
calculated by a first-order linear elastic analysis, although the effects of geometri-
cal non-linearities should be included when these are significant, as in structures
which are susceptible to instability problems. The design criteria used in the stiff-
ness design relate principally to the serviceability of the structure, in that the
flexibility of the structure should not lead to damage of any non-structural compo-
nents, while the deflections should not be unsightly, and the structure should not
vibrate excessively. It is usually left to the designer to choose limiting values for
use in these criteria which are appropriate to the structure, although a few values
are suggested in some design codes. The stiffness design criteria which relate to
the strength of the structure itself are automatically satisfied when the appropriate
strength design criteria are satisfied.
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Chapter 2

Tension members

2.1 Introduction

Concentrically loaded uniform tension members are perhaps the simplest structural
elements, as they are nominally in a state of uniform axial stress. Because of this,
their load-deformation behaviour very closely parallels the stress–strain behaviour
of structural steel obtained from the results of tensile tests (see Section 1.3.1).
Thus a member remains essentially linear and elastic until the general yield load
is approached, even if it has residual stresses and initial crookedness.

However, in many cases a tension member is not loaded or connected concen-
trically or it has transverse loads acting, resulting in bending actions as well as
an axial tension action. Simple design procedures are available which enable the
bending actions in some members with eccentric connections to be ignored, but
more generally special account must be taken of the bending action in design.

Tension members often have comparatively high average stresses, and in some
cases the effects of local stress concentrations may be significant, especially when
there is a possibility that the steel material may not act in a ductile fashion. In such
cases, the causes of stress concentrations should be minimised, and the maximum
local stresses should be estimated and accounted for.

In this chapter, the behaviour and design of steel tension members are discussed.
The case of concentrically loaded members is dealt with first, and then a procedure
which allows the simple design of some eccentrically connected tension members
is presented. The design of tension members with eccentric or transverse loads is
then considered, the effects of stress concentrations are discussed, and finally the
design of tension members according to EC3 is dealt with.

2.2 Concentrically loaded tension members

2.2.1 Members without holes

The straight concentrically loaded steel tension member of length L and constant
cross-sectional area A which is shown in Figure 2.1a has no holes and is free from
residual stress. The axial extension e of the member varies with the load N in the



 

34 Tension members

Load N

Npl

Nu

Elastic

Plastic

Strain-hardening
Fracture

Not to scale

Axial extension e

(b) Axial extension e

ey est

E, A
N N

L e

(a) Tension member 

Figure 2.1 Load-extension behaviour of a perfect tension member.

same way as does the average strain ε= e/L with the average stress σ = N/A, and
so the load-extension relationship for the member shown in Figure 2.1b is similar
to the material stress–strain relationship shown in Figure 1.6. Thus the extension
at first increases linearly with the load and is equal to

e = NL

EA
, (2.1)

where E is the Young’s modulus of elasticity. This linear increase continues until
the yield stress fy of the steel is reached at the general yield load

Npl = Afy (2.2)

when the extension increases with little or no increase in load until strain-hardening
commences. After this, the load increases slowly until the maximum value

Nu = Afu (2.3)

is reached, in which fu is the ultimate tensile strength of the steel. Beyond this,
a local cross-section of the member necks down and the load N decreases until
fracture occurs.

The behaviour of the tension member is described as ductile, in that it can reach
and sustain the general yield load while significant extensions occur, before it
fractures. The general yield load Npl is often taken as the load capacity of the
member.

If the tension member is not initially stress free, but has a set of residual stresses
induced during its manufacture such as that shown in Figure 2.2b, then local
yielding commences before the general yield load Npl is reached (Figure 2.2c), and
the range over which the load-extension behaviour is linear decreases. However,
the general yield load Npl at which the whole cross-section is yielded can still
be reached because the early yielding causes a redistribution of the stresses. The
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Figure 2.3 Tension member with initial crookedness.

residual stresses also cause local early strain-hardening, and while the plastic range
is shortened (Figure 2.2c), the member behaviour is still regarded as ductile.

If, however, the tension member has an initial crookedness w0 (Figure 2.3a),
the axial load causes it to bend and deflect laterally w (Figure 2.3b). These lateral
deflections partially straighten the member so that the bending action in the central
region is reduced. The bending induces additional axial stresses (see Section 5.3),
which cause local early yielding and strain-hardening, in much the same way as
do residual stresses (see Figure 2.2c). The resulting reductions in the linear and
plastic ranges are comparatively small when the initial crookedness is small, as is
normally the case, and the member behaviour is ductile.

2.2.2 Members with small holes

The presence of small local holes in a tension member (such as small bolt holes
used for the connections of the member) causes early yielding around the holes,
so that the load-deflection behaviour becomes non-linear. When the holes are
small, the member may reach the gross yield load (see equation 2.2) calculated
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Figure 2.4 Effect of holes on load-extension behaviour.

on the gross area A, as shown in Figure 2.4, because of strain-hardening effects
around the holes. In this case, the member behaviour is ductile, and the non-linear
behaviour can be ignored because the axial extension of the member under load is
not significantly increased, except when there are so many holes along the length
of the member that the average cross-sectional area is significantly reduced. Thus
the extension e can normally be calculated by using the gross cross-sectional area
A in equation 2.1.

2.2.3 Members with significant holes

When the holes are large, the member may fail before the gross yield load Npl is
reached by fracturing at a hole, as shown in Figure 2.4. The local fracture load

Nu = Anet fu (2.4)

is calculated on the net area of the cross-section Anet measured perpendicular to
the line of action of the load, and is given by

Anet = A −
∑

d0t, (2.5)

where d0 is the diameter of a hole, t the thickness of the member at the hole, and
the summation is carried out for all holes in the cross-section under consideration.
The fracture load Nu is determined by the weakest cross-section, and therefore by
the minimum net area Anet . A member which fails by fracture before the gross
yield load can be reached is not ductile, and there is little warning of failure.

In many practical tension members with more than one row of holes, the reduc-
tion in the cross-sectional area may be reduced by staggering the rows of holes
(Figure 2.5). In this case, the possibility must be considered of failure along a zig–
zag path such as ABCDE in Figure 2.5, instead of across the section perpendicular
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Figure 2.5 Possible failure path with staggered holes.

to the load. The minimum amount of stagger sm for which a hole no longer reduces
the area of the member depends on the diameter d0 of the hole and the inclination
p/s of the failure path, where p is the gauge distance between the rows of holes.
An approximate expression for this minimum stagger is

sm ≈ (4pd0)
1/2. (2.6)

When the actual stagger s is less than sm, some reduced part of the hole area
Ah must be deducted from the gross area A, and this can be approximated by
Ah = d0t(1 − s2/s2

m), whence

Ah = d0t(1 − s2/4pd0), (2.7)

Anet = A −
∑

d0t +
∑

s2t/4p, (2.8)

where the summations are made for all the holes on the zig–zag path considered,
and for all the staggers in the path. The use of equation 2.8 is allowed for in
Clause 6.2.2.2 of EC3, and is illustrated in Section 2.7.1.

Holes in tension members also cause local stress increases at the hole boundaries,
as well as the increased average stresses N/Anet discussed above. These local
stress concentrations and their influence on member strength are discussed later
in Section 2.5.

2.3 Eccentrically and locally connected
tension members

In many cases the fabrication of tension members is simplified by making their
end connections eccentric (i.e. the centroid of the connection does not coincide
with the centroidal axis of the member) and by connecting to some but not all of
the elements in the cross-section. It is common, for example, to make connections



 

38 Tension members

(a) (b) (c) (d)

Figure 2.6 Eccentrically and locally connected tension members.

to an angle section through one leg only, to a tee-section through the flange (or
table), or to a channel section through the web (Figure 2.6). The effect of eccentric
connections is to induce bending moments in the member, whilst the effect of
connecting to some but not all elements in the cross-section is to cause those
regions most remote from the connection point(s) to carry less load. The latter is
essentially a shear lag effect (see Section 5.4.5). Both of these effects are local
to the connections, decreasing along the member length, and are reduced further
by ductile stress redistribution after the onset of yielding. Members connected by
some but not all of the elements in the cross-section (including those connected
symmetrically as in Figure 2.6d) are also discussed in Section 2.5.

While tension members in bending can be designed rationally by using the pro-
cedure described in Section 2.4, simpler methods [1–3] also produce satisfactory
results. In these simpler methods, the effects described above are approximated
by reducing the cross-sectional area of the member (to an effective net area),
and by designing it as if concentrically loaded. For a single angle in tension con-
nected by a single row of bolts in one leg, the effective net section Anet,eff to be
used in place of the net area Anet in equation 2.4 is defined in EC3-1-8 [4]. It is
dependent on the number of bolts and the pitch p1, and for one bolt, is given by

Anet,eff = 2.0(e2 − 0.5 d0)t, (2.9)

for two bolts by

Anet,eff = β2Anet , (2.10)

and for three or more bolts by

Anet,eff = β3Anet . (2.11)

The symbols in equations 2.9–2.11 are defined below and in Figure 2.7, and Anet

is the net area of the angle. For an unequal angle connected by its smaller leg, Anet
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Figure 2.7 Definition of symbols for tension connections in single angles.

should be taken as the net section of an equivalent equal angle of leg length equal
to the smaller leg of the unequal angle. In the case of welded end connections, for
an equal angle, or an unequal angle connected by its larger leg, the eccentricity
may be neglected, and the effective area Anet may be taken as equal to the gross
area A (Clause 4.13(2) of EC3-1-8 [4]).

For a pair of bolts in a single row in an angle leg, β2 in equation 2.10 is taken
as 0.4 for closely spaced bolts (p1 ≤ 2.5 d0), as 0.7 if they are widely spaced
(p1 ≥ 5 d0), or as a linear interpolation for intermediate spacings. For three or
more bolts in a single row in an angle leg, β3 in equation 2.11 is taken as 0.5 for
closely spaced bolts (p1 ≤ 2.5 d0), as 0.7 if they are widely spaced (p1 ≥ 5 d0),
or again as a linear interpolation for intermediate spacings.

2.4 Bending of tension members

Tension members often have bending actions caused by eccentric connections,
eccentric loads, or transverse loads, including self-weight, as shown in Figure 2.8.
These bending actions, which interact with the tensile loads, reduce the ultimate
strengths of tension members, and must therefore be accounted for in design.

The axial tension N and transverse deflections w of a tension member caused
by any bending action induce restoring moments Nw, which oppose the bend-
ing action. It is a common (and conservative) practice to ignore these restoring
moments which are small when either the bending deflections w or the tensile load
N are small. In this case the maximum stress σmax in the member can be safely
approximated by

σmax = σat + σbty + σbtz, (2.12)

where σat = N/A is the average tensile stress and σbty and σbtz are the maximum
tensile bending stresses caused by the major and minor axis bending actions My

and Mz alone (see Section 5.3). The nominal first yield of the member therefore
occurs when σmax = fy, whence

σat + σbty + σbtz = fy. (2.13)

When either the tensile load N or the moments My and Mz are not small, the first
yield prediction of equation 2.13 is inaccurate. A suggested interaction equation
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Figure 2.8 Bending of a tension member.

for failure is the linear inequality

My,Ed

Mty,Rd
+ Mz,Ed

Mrz,Rd
≤ 1, (2.14)

where Mrz,Rd is the cross-section resistance for tension and bending about the
minor principal (z) axis given by

Mrz,Rd = Mcz,Rd(1 − Nt,Ed/Nt,Rd) (2.15)

and Mty,Rd is the lesser of the cross-section resistance Mry,Rd for tension and
bending about the major principal (y) axis given by

Mry,Rd = Mcy,Rd(1 − Nt,Ed/Nt,Rd) (2.16)

and the out-of-plane member buckling resistance Mbt,Rd for tension and bending
about the major principal axis given by

Mbt,Rd = Mb,Rd(1 + Nt,Ed/Nt,Rd) ≤ Mcy,Rd (2.17)

in which Mb,Rd is the lateral buckling resistance when N = 0 (see Chapter 6).
In these equations, Nt,Rd is the tensile resistance in the absence of bending

(taken as the lesser of Npl and Nu), while Mcy,Rd and Mcz,Rd are the cross-section
resistances for bending alone about the y and z axes (see Sections 4.7.2 and 5.6.1.3).
Equation 2.14 is similar to the first yield condition of equation 2.13, but includes
a simple approximation for the possibility of lateral buckling under large values
of My,Ed through the use of equation 2.17.

2.5 Stress concentrations

High local stress concentrations are not usually important in ductile materials
under static loading situations, because the local yielding resulting from these
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concentrations causes a favourable redistribution of stress. However, in situations
for which it is doubtful whether the steel will behave in a ductile manner, as
when there is a possibility of brittle fracture of a tension member under dynamic
loads (see Section 1.3.3), or when repeated load applications may lead to fatigue
failure (see Section 1.3.2), stress concentrations become very significant. It is
usual to try to avoid or minimise stress concentrations by providing suitable joint
and member details, but this is not always possible, in which case some estimate
of the magnitudes of the local stresses must be made.

Stress concentrations in tension members occur at holes in the member, and
where there are changes or very local reductions in the cross-section, and at points
where concentrated forces act. The effects of a hole in a tension member (of
net width bnet and thickness t) are shown by the uppermost curve in Figure 2.9,
which is a plot of the variation of the stress concentration factor (the ratio of
the maximum tensile stress to the nominal stress averaged over the reduced cross-
section bnet t)with the ratio of the hole radius r to the net width bnet . The maximum
stress approaches three times the nominal stress when the plate width is very large
(r/bnet → 0).

This curve may also be used for plates with a series of holes spaced equally
across the plate width, provided bnet is taken as the minimum width between
adjacent holes. The effects of changes in the cross-section of a plate in tension are
shown by the lower curves in Figure 2.9, while the effects of some notches or very
local reductions in the cross-section are given in [5]. Methods of analysing these
and other stress concentrations are discussed in [6].

Large concentrated forces are usually transmitted to structural members by local
bearing, and while this produces high local compressive stresses, any subsequent
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plastic yielding is not usually serious. Of more importance are the increased tensile
stresses which result when only some of the plate elements of a tension member
are loaded (see Figure 2.6), as discussed in Section 2.3. In this case, conservative
estimates can be made of these stresses by assuming that the resulting bending and
axial actions are resisted solely by the loaded elements.

2.6 Design of tension members

2.6.1 General

In order to design or to check a tension member, the design tensile force Nt,Ed at
each cross-section in the member is obtained by a frame analysis (see Chapter 8)
or by statics if the member is statically determinate, using the appropriate loads
and partial load factors γG, γQ (see Section 1.7). If there is substantial bending
present, the design moments My,Ed and Mz,Ed about the major and minor principal
axes, respectively are also obtained.

The process of checking a specified tension member or of designing an unknown
member is summarised in Figure 2.10 for the case where bending actions can be
ignored. If a specified member is to be checked, then both the strength limit states
of gross yielding and the net fracture are considered, so that both the yield strength
fy and the ultimate strength fu are required. When the member size is not known,
an approximate target area A can be established. The trial member selected may
be checked for the fracture limit state once its holes, connection eccentricities, and
net area Anet have been established, and modified if necessary.

The following sub-sections describe each of the EC3 check and design processes
for a statically loaded tension member. Worked examples of their application are
given in Sections 2.7.1–2.7.5.

2.6.2 Concentrically loaded tension members

The EC3 method of strength design of tension members which are loaded concen-
trically follows the philosophy of Section 2.2, with the two separate limit states
of yield of the gross section and fracture of the net section represented by a single
equation

Nt,Ed ≤ Nt,Rd (2.18)

where Nt,Rd is the design tension resistance which is taken as the lesser of the
yield (or plastic) resistance of the cross-section Npl,Rd and the ultimate (or fracture)
resistance of the cross-section containing holes Nu,Rd .

The yield limit state of equation 2.2 is given in EC3 as

Npl,Rd = Afy/γM0 (2.19)

where A is the gross area of the cross-section and γM0 is the partial factor for
cross-section resistance, with a value of 1.0.
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Figure 2.10 Flow chart for the design of tension members.

The fracture limit state of equation 2.4 is given in EC3 as

Nu,Rd = 0.9Anet fu/γM2, (2.20)

where Anet is the net area of the cross-section and γM2 is the partial factor for
resistance in tension to fracture, with a value of 1.1 given in the National Annex
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to EC3. The factor 0.9 in equation 2.20 ensures that the effective partial factor
γM2/0.9(≈1.22) for the limit state of material fracture (Nu,Rd) is suitably higher
than the value of γM0(=1.0) for the limit state of yielding (Npl,Rd), reflecting the
influence of greater variability in fu and the reduced ductility of members which
fail by fracture at bolt holes.

2.6.3 Eccentrically connected tension members

The EC3 method of strength design of simple angle tension members which are
connected eccentrically as shown in Figure 2.6 is similar to the method discussed
in Section 2.6.2 for concentrically loaded members, with the ‘0.9Anet’ used in
equation 2.20 being replaced by an effective net area Anet,eff , as described in
Section 2.3.

2.6.4 Tension members with bending

2.6.4.1 Cross-section resistance

EC3 provides the conservative inequality

Nt,Ed

Nt,Rd
+ My,Ed

My,Rd
+ Mz,Ed

Mz,Rd
≤ 1 (2.21)

for the cross-section resistance of tension members with design bending moments
My,Ed and Mz,Ed , where My,Rd and Mz,Rd are the cross-section moment resistances
(Sections 4.7.2 and 5.6.1.3).

Equation 2.21 is rather conservative, and so EC3 allows I-section tension
members with Class 1 or Class 2 cross-sections (see Section 4.7.2) with bending
about the major (y) axis to satisfy

My,Ed ≤ MN , y,Rd = Mpl,y,Rd

(
1 − Nt,Ed/Npl,Rd

1 − 0.5a

)
≤ Mpl,y,Rd (2.22)

in which MN ,y,Rd is the reduced plastic design moment resistance about the
major (y) axis (reduced from the full plastic design moment resistance Mpl,y,Rd to
account for the axial force (see Section 7.2.4.1) and

a = (A − 2btf )/A ≤ 0.5, (2.23)

in which b and tf are the flange width and thickness respectively. For I-section
tension members with Class 1 or Class 2 cross-sections with bending about the
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minor (z) axis, EC3 allows

Mz,Ed ≤ MN ,z,Rd = Mpl,z,Rd

{
1 −

(
Nt,Ed/Npl,Rd − a

1 − a

)2
}

≤ Mpl,z,Rd , (2.24)

where MN ,z,Rd is the reduced plastic design moment resistance about the minor (z)
axis.

EC3 also provides an alternative to equation 2.21 for the section resistance to
axial tension and bending about both principal axes of Class 1 or Class 2 cross-
sections. This is the more accurate interaction equation (see Section 7.4.2)(

My,Ed

MN ,y,Rd

)α
+

(
Mz,Ed

MN , z, Rd

)β
≤ 1, (2.25)

where the values of α and β depend on the cross-section type (e.g. α= 2.0 and
β = 5Nt,Ed/Npl,Rd for I-sections and α=β = 2 for circular hollow sections).

A worked example of a tension member with bending actions is given in
Section 2.7.5.

2.6.4.2 Member resistance

EC3 does not provide any specific rules for determining the influence of lateral
buckling on the member resistance of tension members with bending. This may
be accounted for conservatively by using

My,Ed ≤ Mb,Rd (2.26)

in equation 2.21, in which Mb,Rd is the design buckling moment resistance of the
member (see Section 6.5). This equation conservatively omits the strengthening
effect of tension on lateral buckling. A less conservative method is provided by
equations 2.14–2.17.

2.7 Worked examples

2.7.1 Example 1 – net area of a bolted universal column
section member

Problem. Both flanges of a universal column section member have 22 mm diam-
eter holes arranged as shown in Figure 2.11a. If the gross area of the section is
201 × 102 mm2 and the flange thickness is 25 mm, determine the net area Anet of
the member which is effective in tension.
Solution. Using equation 2.6, the minimum stagger is sm = √

(4 × 60 × 22)=
72.7 mm> 30 mm = s. The failure path through each flange is therefore stag-
gered, and by inspection, it includes four holes and two staggers. The net area can
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Figure 2.11 Examples 1–6.

therefore be calculated from equation 2.8 (or Clause 6.2.2.2(4) of EC3) as

Anet = [201 × 102] − [2 × 4 × (22 × 25)] + [2 × 2 × (302 × 25)/(4 × 60)]
= 161 × 102 mm2.

2.7.2 Example 2 – checking a bolted universal column
section member

Problem. Determine the tension resistance of the tension member of example 1
assuming it is of S355 steel.

Solution.

tf = 25 mm, fy = 345 N/mm2, fu = 490 N/mm2 EN 10025-2

Npl,Rd = Afy/γM0 = 201 × 102 × 345/1.0 = 6935 kN. 6.2.3(2)a

From Section 2.7.1,

Anet = 161 × 102 mm2

Nu,Rd = 0.9Anet fu/γM2 = 0.9 × 161 × 102 × 490/1.1 = 6445 kN.
6.2.3(2)b

Nt,Rd = 6445 kN (the lesser of Npl,Rd and Nu,Rd) 6.2.3(2)
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2.7.3 Example 3 – checking a bolted universal beam
section member

Problem. A 610×229 UB 125 tension member of S355 steel is connected through
both flanges by 20 mm bolts (in 22 mm diameter bolt holes) in four lines, two
in each flange as shown in Figure 2.11b. Check the member for a design tension
force of Nt,Ed = 4000 kN.

Solution.

tf = 19.6 mm, fy = 345 N/mm2, fu = 490 N/mm2 EN 10025-2

A = 15 900 mm2

Npl,Rd = Afy/γM0 = 15900 × 345/1.0 = 5486 kN 6.2.3(2)a

Anet = 15 900 − (4 × 22 × 19.6) = 14175 mm2 6.2.2.2(3)

Nu,Rd = 0.9Anet fu/γM2 = 0.9 × 14175 × 490/1.1 = 5683 kN 6.2.3(2)b

Nt,Rd = 5486 kN (the lesser of Npl,Rd and Nu,Rd) > 4000 kN = Nt,Ed

6.2.3(2)

and so the member is satisfactory.

2.7.4 Example 4 – checking an eccentrically connected
single (unequal) angle

Problem. A tension member consists of a 150 × 75 × 10 single unequal angle
whose ends are connected to gusset plates through the larger leg by a single
row of four 22 mm bolts in 24 mm holes at 60 mm centres. Use the method of
Section 2.3 to check the member for a design tension force of Nt,Ed = 340 kN, if the
angle is of S355 steel and has a gross area of 21.7 cm2.

Solution.

t = 10 mm, fy = 355 N/mm2, fu = 490 N/mm2 EN 10025-2

Gross area of cross-section, A = 2170 mm2

Npl,Rd = Afy/γM0 = 2170 × 355/1.0 = 770.4 kN 6.2.3(2)a

Anet = 2170 − (24 × 10) = 1930 mm2 6.2.2.2(3)

β3 = 0.5 (since the pitch p1 = 60 mm = 2.5d0) EC3-1-8 3.10.3(2)

Nu,Rd = β3Anet fu/γM2 = 0.5 × 1930 × 490/1.1 = 429.9 kN 6.2.3(2)b

Nt,Rd = 429.9 kN (the lesser of Npl,Rd and Nu,Rd) > 340 kN = Nt,Ed

6.2.3(2)

and so the member is satisfactory.
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2.7.5 Example 5 – checking a member under combined
tension and bending

Problem. A tension member consists of two equal angles of S355 steel whose ends
are connected to gusset plates as shown in Figure 2.11c. If the load eccentricity
for the tension member is 39.1 mm and the tension and bending resistances are
1438 kN and 37.7 kNm, determine the resistance of the member by treating it as
a member under combined tension and bending.

Solution.
Substituting into equation 2.21 leads to

Nt,Ed/1438 + Nt,Ed × (39.1/1000)/37.7 ≤ 1 6.2.1(7)

so that Nt,Ed ≤ 577.2 kN.
Because the load eccentricity causes the member to bend about its minor axis,

there is no need to check for lateral buckling, which only occurs when there is
major axis bending.

2.7.6 Example 6 – estimating the stress concentration factor

Problem. Estimate the maximum stress concentration factor for the tension
member of Section 2.7.1.

Solution. For the inner line of holes, the net width is

bnet = 60 + 30 − 22 = 68 mm, and so

r/bnet = (22/2)/68 = 0.16,

and so using Figure 2.9, the stress concentration factor is approximately 2.5.
However, the actual maximum stress is likely to be greater than 2.5 times the

nominal average stress calculated from the effective area Anet = 161 × 102 mm2

determined in Section 2.7.1, because the unconnected web is not completely
effective. A safe estimate of the maximum stress can be determined on the basis
of the flange areas only of

Anet = [2 × 310.6 × 25] − [2 × 4 × 22 × 25] + [2 × 2 × (302 × 25)/(4 × 60)]
= 115.1 × 102 mm2.

2.8 Unworked examples

2.8.1 Example 7 – bolting arrangement

A channel section tension member has an overall depth of 381 mm, width of
101.6 mm, flange and web thicknesses of 16.3 and 10.4 mm, respectively, and an
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yield strength of 345 N/mm2. Determine an arrangement for bolting the web of the
channel to a gusset plate so as to minimise the gusset plate length and maximise
the tension member resistance.

2.8.2 Example 8 – checking a channel section member
connected by bolts

Determine the design tensile resistance Nt,Rd of the tension member of Section
2.8.1.

2.8.3 Example 9 – checking a channel section member
connected by welds

If the tension member of Section 2.8.1 is fillet welded to the gusset plate instead
of bolted, determine its design tensile resistance Nt,Rd .

2.8.4 Example 10 – checking a member under combined
tension and bending

The beam of example 1 in Section 6.15.1 has a concentric axial tensile load 5Q in
addition to the central transverse load Q. Determine the maximum value of Q.
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Chapter 3

Compression members

3.1 Introduction

The compression member is the second type of axially loaded structural element,
the first type being the tension member discussed in Chapter 2. Very stocky com-
pression members behave in the same way as do tension members until after the
material begins to flow plastically at the squash load Ny = Afy. However, the resis-
tance of a compression member decreases as its length increases, in contrast to
the axially loaded tension member whose resistance is independent of its length.
Thus, the compressive resistance of a very slender member may be much less than
its tensile resistance, as shown in Figure 3.1.

This decrease in resistance is caused by the action of the applied compressive
load N which causes bending in a member with initial curvature (see Figure 3.2a).
In a tension member, the corresponding action decreases the initial curvature, and
so this effect is usually ignored. However, the curvature and the lateral deflection
of a compression member increase with the load, as shown in Figure 3.2b. The
compressive stresses on the concave side of the member also increase until the
member fails due to excessive yielding. This bending action is accentuated by
the slenderness of the member, and so the resistance of a compression member
decreases as its length increases.

For the hypothetical limiting case of a perfectly straight elastic member, there
is no bending until the applied load reaches the elastic buckling value Ncr (EC3
refers to Ncr as the elastic critical force). At this load, the compression member
begins to deflect laterally, as shown in Figure 3.2b, and these deflections grow until
failure occurs at the beginning of compressive yielding. This action of suddenly
deflecting laterally is called flexural buckling.

The elastic buckling load Ncr provides a measure of the slenderness of a
compression member, while the squash load Ny gives an indication of its
resistance to yielding. In this chapter, the influences of the elastic buckling
load and the squash load on the behaviour of concentrically loaded compres-
sion members are discussed and related to their design according to EC3.
Local buckling of thin-plate elements in compression members is treated in
Chapter 4, while the behaviour and design of eccentrically loaded compression
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Figure 3.2 Elastic behaviour of a compression member.

members are discussed in Chapter 7, and compression members in frames in
Chapter 8.

3.2 Elastic compression members

3.2.1 Buckling of straight members

Aperfectly straight member of a linear elastic material is shown in Figure 3.3a. The
member has a frictionless hinge at each end, its lower end being fixed in position
while its upper end is free to move vertically but is prevented from deflecting
horizontally. It is assumed that the deflections of the member remain small.
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Figure 3.3 Straight compression member.

The unloaded position of the member is shown in Figure 3.3a. A concentric
axial load N is applied to the upper end of the member, which remains straight
(Figure 3.3b). The member is then deflected laterally by a small amount v as
shown in Figure 3.3c, and is held in this position. If the original straight position
of Figure 3.3b is one of stable equilibrium, the member will return to it when
released from the deflected position, while if the original position is one of unstable
equilibrium, the member will collapse away from it when released. When the
equilibrium of the original position is neither stable nor unstable, the member is
in a condition described as one of neutral equilibrium. For this case, the deflected
position is one of equilibrium, and the member will remain in this position when
released. Thus, when the load N reaches the elastic buckling value Ncr at which the
original straight position of the member is one of neutral equilibrium, the member
may deflect laterally without any change in the load, as shown in Figure 3.2b.

The load Ncr at which a straight compression member buckles laterally can be
determined by finding a deflected position which is one of equilibrium. It is shown
in Section 3.8.1 that this position is given by

v = δ sin πx/L (3.1)

in which δ is the undetermined magnitude of the central deflection, and that the
elastic buckling load is

Ncr = π2EI/L2 (3.2)

in which EI is the flexural rigidity of the compression member.
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The elastic buckling load Ncr and the elastic buckling stress

σcr = Ncr/A (3.3)

can be expressed in terms of the geometrical slenderness ratio L/i by

Ncr = σcrA = π2EA

(L/i)2
(3.4)

in which i = √
(I/A) is the radius of gyration (which can be determined for a

number of sections by using Figure 5.6). The buckling load varies inversely as
the square of the slenderness ratio L/i, as shown in Figure 3.4, in which the
dimensionless buckling load Ncr/Ny is plotted against the generalised slenderness
ratio

λ =
√

Ny

Ncr
=

√
fy
σcr

= L

i

√
fy
π2E

(3.5)

in which

Ny = Afy (3.6)

is the squash load. If the material ceases to be linear elastic at the yield stress fy,
then the above analysis is only valid for λ = √

(Ny/Ncr) = √
(fy/σcr) ≥ 1. This

limit is equivalent to a slenderness ratio L/i of approximately 85 for a material
with a yield stress fy of 275 N/mm2.
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Figure 3.4 Buckling and yielding of compression members.
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3.2.2 Bending of members with initial curvature

Real structural members are not perfectly straight, but have small initial curva-
tures, as shown in Figure 3.2a. The buckling behaviour of the hypothetical straight
members discussed in Section 3.2.1 must therefore be interpreted as the limit-
ing behaviour of real members with infinitesimally small initial curvatures. The
initial curvature of the real member causes it to bend from the commencement
of application of the axial load, and this increases the maximum stress in the
member.

If the initial curvature is such that

v0 = δ0 sin πx/L, (3.7)

then the deflection of member is given by

v = δ sin πx/L, (3.8)

where

δ

δ0
= N/Ncr

1 − N/Ncr
, (3.9)

as shown in Section 3.8.2. The variation of the dimensionless central deflection
δ/δ0 is shown in Figure 3.2b, and it can be seen that deflection begins at the
commencement of loading and increases rapidly as the elastic buckling load Ncr

is approached.
The simple load-deflection relationship of equation 3.9 is the basis of the

Southwell plot technique for extrapolating the elastic buckling load from experi-
mental measurements. If equation 3.9 is rearranged as

δ

N
= 1

Ncr
δ + δ0

Ncr
, (3.10)

then the linear relation between δ/N and δ shown in Figure 3.5 is obtained. Thus,
if a straight line is drawn which best fits the points determined from experimen-
tal measurements of N and δ, the reciprocal of the slope of this line gives an
experimental estimate of the buckling load Ncr . An estimate of the magnitude
δ0 of the initial crookedness can also be determined from the intercept on the
horizontal axis.

As the deflections v increase with the load N , so also do the bending moments
and the stresses. It is shown in Section 3.8.2 that the limiting axial load NL at which
the compression member first yields (due to a combination of axial plus bending
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stresses) is given by

NL

Ny
= 1

Φ +
√
Φ2 − λ

2
, (3.11)

in which

Φ = 1 + η + λ
2

2
, (3.12)

η = δ0b

2i2
, (3.13)

and b is the width of the member. The variation of the dimensionless limiting axial
load NL/Ny with the generalised slenderness ratio λ is shown in Figure 3.4 for the
case when

η = 1

4

Ny

Ncr
. (3.14)

For stocky members, the limiting load NL approaches the squash load Ny, while
for slender members the limiting load approaches the elastic buckling load Ncr .
Equations 3.11 and 3.12 are the basis for the member buckling resistance in EC3.

3.3 Inelastic compression members

3.3.1 Tangent modulus theory of buckling

The analysis of a perfectly straight elastic compression member given in
Section 3.2.1 applies only to a material whose stress–strain relationship remains
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Figure 3.6 Tangent modulus theory of buckling.

linear. However, the buckling of an elastic member of a non-linear material, such
as that whose stress–strain relationship is shown in Figure 3.6a, can be analysed
by a simple modification of the linear elastic treatment. It is only necessary to
note that the small bending stresses and strains, which occur during buckling, are
related by the tangent modulus of elasticity Et corresponding to the average com-
pressive stress N/A (Figure 3.6a and b), instead of the initial modulus E. Thus the
flexural rigidity is reduced from EI to EtI , and the tangent modulus buckling load
Ncr,t is obtained from equation 3.4 by substituting Et for E, whence

Ncr,t = π2EtA

(L/i)2
. (3.15)

The deviation of this tangent modulus buckling load Ncr,t from the elastic buckling
load Ncr is shown in Figure 3.6c. It can be seen that the deviation of Ncr,t from
Ncr increases as the slenderness ratio L/i decreases.

3.3.2 Reduced modulus theory of buckling

The tangent modulus theory of buckling is only valid for elastic materials. For
inelastic nonlinear materials, the changes in the stresses and strains are related by
the initial modulus E when the total strain is decreasing, and the tangent modulus
Et only applies when the total strain is increasing, as shown in Figure 3.7. The
flexural rigidity ErI of an inelastic member during buckling therefore depends on
both E and Et . As a direct consequence of this, the effective (or reduced) modulus
of the section Er depends on the geometry of the cross-section as well. It is shown
in Section 3.9.1 that the reduced modulus of a rectangular section is given by

Er = 4EEt(√
E + √

Et

)2 . (3.16)
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Figure 3.8 Shanley’s theory of inelastic buckling.

The reduced modulus buckling load Ncr,r can be obtained by substituting Er for E
in equation 3.4, whence

Ncr,r = π2ErA

(L/i)2
. (3.17)

Since the tangent modulus Et is less than the initial modulus E, it follows that
Et < Er < E, and so the reduced modulus buckling load Ncr,r lies between the
tangent modulus buckling load Ncr,t and the elastic buckling load Ncr , as indicated
in Figure 3.8.
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3.3.3 Shanley’s theory of inelastic buckling

Although the tangent modulus theory appears to be invalid for inelastic materials,
careful experiments have shown that it leads to more accurate predictions than
the apparently rigorous reduced modulus theory. This paradox was resolved by
Shanley [1], who reasoned that the tangent modulus theory is valid when buckling
is accompanied by a simultaneous increase in the applied load (see Figure 3.8) of
sufficient magnitude to prevent strain reversal in the member. When this happens,
all the bending stresses and strains are related by the tangent modulus of elasticity
Et , the initial modulus E does not feature, and so the buckling load is equal to the
tangent modulus value Ncr,t .

As the lateral deflection of the member increases as shown in Figure 3.8, the
tangent modulus Et decreases (see Figure 3.6b) because of the increased axial and
bending strains, and the post-buckling curve approaches a maximum load Nmax

which defines the ultimate resistance of the member. Also shown in Figure 3.8
is a post-buckling curve which commences at the reduced modulus load Ncr,r

(at which buckling can take place without any increase in the load). The tangent
modulus load Ncr,t is the lowest load at which buckling can begin, and the reduced
modulus load Ncr,r is the highest load for which the member can remain straight.
It is theoretically possible for buckling to begin at any load between Ncr,t and Ncr,r .

It can be seen that not only is the tangent modulus load more easily calculated,
but it also provides a conservative estimate of the member resistance, and is in
closer agreement with experimental results than the reduced modulus load. For
these reasons, the tangent modulus theory of inelastic buckling has gained wide
acceptance.

3.3.4 Buckling of members with residual stresses

The presence of residual stresses in an intermediate length steel compression
member may cause a significant reduction in its buckling resistance. Resid-
ual stresses are established during the cooling of a hot-rolled or welded steel
member (and during plastic deformation such as cold-rolling). The shrinking of
the late-cooling regions of the member induces residual compressive stresses in
the early-cooling regions, and these are balanced by equilibrating tensile stresses
in the late-cooling regions. In hot-rolled I-section members, the flange – web
junctions are the least exposed to cooling influences, and so these are the regions
of residual tensile stress, as shown in Figure 3.9, while the more exposed flange
tips are regions of residual compressive stress. In a straight intermediate length
compression member, the residual compressive stresses cause premature yield-
ing under reduced axial loads, as shown in Figure 3.10, and the member buckles
inelastically at a load which is less than the elastic buckling load Ncr .

In applying the tangent modulus concept of inelastic buckling to a steel which
has the stress–strain relationships shown in Figure 1.6 (see Chapter 1), the strain-
hardening modulus Est is sometimes used in the yielded regions as well as in
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the strain-hardened regions. This use is based on the slip theory of dislocation,
in which yielding is represented by a series of dynamic jumps instead of by a
smooth quasi-static flow. Thus the material in the yielded region is either elastic
or strain-hardened, and its subsequent behaviour may be estimated conservatively
by using the strain-hardening modulus. However, the even more conservative
assumption that the tangent modulus Et is zero in both the yielded and strain-
hardened regions is frequently used because of its simplicity. According to this
assumption, these regions of the member are ineffective during buckling, and the
moment of resistance is entirely due to the elastic core of the section.
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Thus, for a rectangular section member which has the simplified residual stress
distribution shown in Figure 3.10, the effective flexural rigidity (EI)t about the z
axis is (see Section 3.9.2)

(EI)t = EI [2(1 − N/Ny)]1/2, (3.18)

when the axial load N is greater than 0.5Ny at which first yield occurs, and the
axial load at buckling Ncr,t is given by

Ncr,t

Ny
=

(
Ncr

Ny

)2

{[1 + 2(Ny/Ncr)
2]1/2 − 1}. (3.19)

The variation of this dimensionless tangent modulus buckling load Ncr,t /Ny with
the generalised slenderness ratio λ = √

(Ny/Ncr) is shown in Figure 3.11.
For stocky members, the buckling load Ncr,t approaches the squash load Ny,
while for intermediate length members it approaches the elastic buckling load
Ncr as λ = √

(Ny/Ncr) approaches
√

2. For more slender members, prema-
ture yielding does not occur, and these members buckle at the elastic buckling
load Ncr .

Also shown in Figure 3.11 is the dimensionless tangent modulus buckling load
Ncr,t/Ny given by

Ncr,t

Ny
= 1 − 1

4

Ny

Ncr
, (3.20)
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Figure 3.11 Inelastic buckling of compression members with residual stresses.
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which was developed as a compromise between major and minor axis buckling
of hot-rolled I-section members. It can be seen that this simple compromise is
very similar to the relationship given by equation 3.19 for the rectangular section
member.

3.4 Real compression members

The conditions under which real members act differ in many ways from the
idealised conditions assumed in Section 3.2.1 for the analysis of the elastic buck-
ling of a perfect member. Real members are not perfectly straight, and their
loads are applied eccentrically, while accidental transverse loads may act. The
effects of small imperfections of these types are qualitatively the same as those
of initial curvature, which were described in Section 3.2.2. These imperfections
can therefore be represented by an increased equivalent initial curvature which
has a similar effect on the behaviour of the member as the combined effect
of all of these imperfections. The resulting behaviour is shown by curve A in
Figure 3.12.

A real member also has residual stresses, and its elastic modulus E and yield
stress fy may vary throughout the member. The effects of these material vari-
ations are qualitatively the same as those of the residual stresses, which were
described in Section 3.3.4, and so they can be represented by an equivalent set of
the residual stresses. The resulting behaviour of the member is shown by curve B in
Figure 3.12.

Since real members have both kinds of imperfections, their behaviour is as
shown by curve C in Figure 3.12, which is a combination of curves A and B. Thus
the real member behaves as a member with equivalent initial curvature (curve A)
until the elastic limit is reached. It then follows a path which is similar to and
approaches that of a member with equivalent residual stresses (curve B).

Elastic bending

Curve A – equivalent
initial curvature

Curve B – equivalent 
residual stresses

Curve C – real members

Elastic limit

Nmax

Elastic buckling

Ncr

NL

Ncr,t

Lateral deflection

Load

Figure 3.12 Behaviour of real compression members.
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3.5 Design of compression members

3.5.1 EC3 design buckling resistance

Real compression members may be analysed using a model in which the initial
crookedness and load eccentricity are specified. Residual stresses may be included,
and the realistic stress–strain behaviour may be incorporated in the prediction of the
load versus deflection relationship. Thus curve C in Figure 3.12 may be generated,
and the maximum load Nmax ascertained.

Rational computer analyses based on the above modelling are rarely used except
in research, and are inappropriate for the routine design of real compression mem-
bers because of the uncertainties and variations that exist in the initial crookedness
and residual stresses. Instead, simplified design predictions for the maximum
load (or resistance) are used in EC3 that have been developed from the results of
computer analyses and correlations with available test data.

A close prediction of numerical solutions and test results may be obtained by
using equations 3.11 and 3.12 which are based on the first yield of a geometrically
imperfect member. This is achieved by writing the imperfection parameter η of
equation 3.12 as

η = α(λ− 0.2) ≥ 0 (3.21)

in which α is a constant (imperfection factor) which shifts the resistance curve as
shown in Figure 3.13 for different cross-section types, proportions, thicknesses,
buckling axes, and material strengths (Table 6.2 of EC3). The advantage of this
approach is that the resistances (referred to as buckling resistances in EC3) of a
particular group of sections can be determined by assigning an appropriate value
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of α to them. The design buckling resistance Nb,Rd is then given by

Nb,Rd = χNy/γM1 (3.22)

in which γM1 is the partial factor for member instability, which has a recommended
value of 1.0 in EC3.

The dimensionless compressive design buckling resistances Nb,Rd/Ny for α =
0.13, 0.21, 0.34, 0.49, and 0.76, which represent the EC3 compression member
curves (a0), (a), (b), (c), and (d), respectively, are shown in Figure 3.13. Members
with higher initial crookedness have lower strengths due to premature yielding,
and these are associated with higher values of α. On the other hand, members with
lower initial crookedness are not as greatly affected by premature yielding, and
have lower values of α assigned to them.

3.5.2 Elastic buckling load

Although the design buckling resistance Nb,Rd given by equation 3.22 was derived
by using the expression for the elastic buckling load Ncr given by equation 3.2 for a
pin-ended compression member, equation 3.22 is also used for other compression
members by generalising equation 3.2 to

Ncr = π2EI/L2
cr (3.23)

in which Lcr is the effective length (referred to as the buckling length in EC3).
The elastic buckling load Ncr varies with the member geometry, loading, and

restraints, but there is no guidance given in EC3 for determining either Ncr or Lcr .
Section 3.6 following summarises methods of determining the effects of restraints
on the effective length Lcr , while Section 3.7 discusses the design of compression
members with variable sections or loading.

3.5.3 Effects of local buckling

Compression members containing thin-plate elements are likely to be affected by
local buckling of the cross-section (see Chapter 4). Local buckling reduces the
resistances of short compression members below their squash loads Ny and the
resistances of longer members which fail by flexural buckling.

Local buckling of a short compression member is accounted for by using a
reduced effective area Aeff instead of the gross area A, as discussed in Section 4.7.1.
Local buckling of a longer compression member is accounted for by using Aeff

instead of A and by reducing the generalised slenderness to

λ =
√

Aeff fy/Ncr (3.24)

but using the gross cross-sectional properties to determine Ncr .
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3.5.4 Design procedures

For the design of a compression member, the design axial force NEd is determined
by a rational frame analysis, as in Chapter 8, or by statics for a statically determinate
structure. The design loads (factored loads) FEd are for the ultimate limit state, and
are determined by summing up the specified loads multiplied by the appropriate
partial load factors γF (see Section 1.5.6).

To check the compression resistance of a member, both the cross-section
resistance Nc,Rd and the member buckling resistance Nb,Rd should generally be
considered, though it is usually the case for practical members that the buckling
resistance will govern. The cross-section resistance of a compression member
Nc,Rd must satisfy

NEd ≤ Nc,Rd (3.25)

in which

Nc,Rd = Afy/γM0 (3.26)

for a fully effective section, in which γM0 is the partial factor for cross-section
resistance (with a recommended value of 1.0 in EC3), or

Nc,Rd = Aeff fy/γM0 (3.27)

for the cross-sections that are susceptible to local buckling prior to yielding.
The member buckling resistance Nb,Rd must satisfy

NEd ≤ Nb,Rd (3.28)

where the member buckling resistance Nb,Rd is given by equation 3.22.
The procedure for checking a specified compression member is summarised

in Figure 3.14. The cross-section is checked to determine if it is fully effective
(Aeff = A, where A is the gross area) or slender (in which case the reduced
effective area Aeff is used), and the design buckling resistance Nb,Rd is then found
and compared with the design compression force NEd .

An iterative series of calculations is required when designing a compression
member, as indicated in Figure 3.14. An initial trial section is first selected, either
by using tabulations, formulations or graphs of design buckling resistance Nb,Rd

versus effective length Lcr , or by making initial guesses for fy, Aeff /A, and χ (say
0.5) and calculating a target area A. A trial section is then selected and checked.
If the section is not satisfactory, then a new section is selected using the latest
values of fy, Aeff /A, and χ , and the checking process is repeated. The iterations
usually converge within a few cycles, but convergence can be hastened by using the
mean of the previous and current values of χ in the calculation of the target area A.

A worked example of checking the resistance of a compression member is given
in Section 3.12.1, while worked examples of the design of compression members
are given in Sections 3.12.2 and 3.12.3.
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Figure 3.14 Flow chart for the design of compression members.

3.6 Restrained compression members

3.6.1 Simple supports and rigid restraints

In the previous sections it was assumed that the compression member was sup-
ported only at its ends, as shown in Figure 3.15a. If the member has an additional
lateral support which prevents it from deflecting at its centre so that (v)L/2 = 0,
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as shown in Figure 3.15b, then its buckled shape v is given by

v = δ sin 2πx/L, (3.29)

and its elastic buckling load Ncr is given by

Ncr = 4π2EI

L2
. (3.30)

The end supports of a compression member may also differ from the simple sup-
ports shown in Figure 3.15a which allow the member ends to rotate but prevent
them from deflecting laterally. For example, one or both ends may be rigidly built-
in so as to prevent end rotation (Figure 3.15c and d), or one end may be completely
free (Figure 3.15e). In each case the elastic buckling load of the member may be
obtained by finding the solution of the differential equilibrium equation which
satisfies the boundary conditions.

All of these buckling loads can be expressed by the generalisation of
equation 3.23 which replaces the member length L of equation 3.2 by the effective
length Lcr . Expressions for Lcr are shown in Figure 3.15, and in each case it can
be seen that the effective length of the member is equal to the distance between
the inflexion points of its buckled shape.

The effects of the variations in the support and restraint conditions on the com-
pression member buckling resistance Nb,Rd may be accounted for by replacing
the actual length L used in equation 3.2 by the effective length Lcr in the calcula-
tion of the elastic buckling load Ncr and hence the generalised slenderness λ, and
using this modified generalised slenderness throughout the resistance equations.
It should be noted that it is often necessary to consider the member behaviour in
each principal plane, since the effective lengths Lcr,y and Lcr,z may also differ, as
well as the radii of gyration iy and iz.
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Figure 3.16 Compression member with an elastic intermediate restraint.

3.6.2 Intermediate restraints

In Section 3.6.1 it was shown that the elastic buckling load of a simply supported
member is increased by a factor of 4 to Ncr = 4π2EI/L2 when an additional
lateral restraint is provided which prevents it from deflecting at its centre, as
shown in Figure 3.15b. This restraint need not be completely rigid, but may be
elastic (Figure 3.16), provided its stiffness exceeds a certain minimum value. If the
stiffness α of the restraint is defined by the force αδ acting on the restraint which
causes its length to change by δ, then the minimum stiffness αL is determined in
Section 3.10.1 as

αL = 16π2EI/L3. (3.31)

The limiting stiffness αL can be expressed in terms of the buckling load Ncr =
4π2EI/L2 as

αL = 4Ncr/L. (3.32)

Compression member restraints are generally required to be able to transmit 1%
(Clause 5.3.3(3)) of EC3) of the force in the member restrained. This is a little
less than the value of 1.5% suggested [2] as leading to the braces which are
sufficiently stiff.

3.6.3 Elastic end restraints

When the ends of a compression member are rigidly connected to its adjacent
elastic members, as shown in Figure 3.17a, then at buckling the adjacent members
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Figure 3.17 Buckling of a member of a rigid frame.

exert total elastic restraining moments M1, M2 which oppose buckling and which
are proportional to the end rotations θ1, θ2 of the compression member. Thus

M1 = −α1θ1

M2 = −α2θ2

}
(3.33)

in which

α1 =
∑

1

α, (3.34)

where α is the stiffness of any adjacent member connected to the end 1 of the
compression member, and α2 is similarly defined. The stiffness α of an adjacent
member depends not only on its length L and flexural rigidity EI but also on its
support conditions and on the magnitude of any axial load transmitted by it.

The particular case of a braced restraining member, which acts as if simply
supported at both ends as shown in Figure 3.18a, and which provides equal and
opposite end moments M and has an axial force N , is analysed in Section 3.10.2,
where it is shown that when the axial load N is compressive, the stiffness α is
given by

α = 2EI

L

(π/2)
√

N/Ncr,L

tan(π/2)
√

N/Ncr,L
(3.35)

where

Ncr,L = π2EI/L2, (3.36)
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Figure 3.18 Stiffness of a braced member.

and by

α = 2EI

L

(π/2)
√

N/Ncr,L

tanh(π/2)
√

N/Ncr,L
(3.37)

when the axial load N is tensile. These relationships are shown in Figure 3.18b,
and it can be seen that the stiffness decreases almost linearly from 2EI /L to zero
as the compressive axial load increases from zero to Ncr,L, and that the stiffness is
negative when the axial load exceeds Ncr,L. In this case the adjacent member no
longer restrains the buckling member, but disturbs it. When the axial load causes
tension, the stiffness is increased above the value 2EI /L.

Also shown in Figure 3.18b is the simple approximation

α = 2EI

L

(
1 − N

Ncr,L

)
. (3.38)

The term (1 − N/Ncr,L) in this equation is the reciprocal of the amplification fac-
tor, which expresses the fact that the first-order rotations ML/2EI associated with
the end moments M are amplified by the compressive axial load N to (ML/2EI )/
(1 − N/Ncr,L). The approximation provided by equation 3.38 is close and con-
servative in the range 0 < N/Ncr,L < 1, but errs on the unsafe side and with
increasing error as the axial load N increases away from this range.
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Figure 3.19 Approximate stiffnesses of restraining members.

Similar analyses may be made of braced restraining members under other end
conditions, and some approximate solutions for the stiffnesses of these are sum-
marised in Figure 3.19. These approximations have accuracies comparable with
that of equation 3.38.

When a restraining member is unbraced, its ends sway ∆ as shown in
Figure 3.20a, and restoring end moments M are required to maintain equilibrium.
Such a member which receives equal end moments is analysed in Section 3.10.3,
where it is shown that its stiffness is given by

α = −
(

2EI

L

)
π

2

√
N

Ncr,L
tan

π

2

√
N

Ncr,L
(3.39)

when the axial load N is compressive, and by

α =
(

2EI

L

)
π

2

√
N

Ncr,L
tanh

π

2

√
N

Ncr,L
(3.40)

when the axial load N is tensile. These relationships are shown in Figure 3.20b,
and it can be seen that the stiffness α decreases as the tensile load N decreases, and
becomes negative as the load changes to compressive. Also shown in Figure 3.20b
is the approximation

α = −2EI

L

(π2/4)(N/Ncr,L)

(1 − N/Ncr,L)
, (3.41)
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Figure 3.20 Stiffness of an unbraced member.

which is close and conservative when the axial load N is compressive, and which
errs on the safe side when the axial load N is tensile. It can be seen from Figure 3.20b
that the stiffness of the member is negative when it is subjected to compression,
so that it disturbs the buckling member, rather than restraining it.

Similar analyses may be made of unbraced restraining members with other end
conditions, and another approximate solution is given in Figure 3.19. This has an
accuracy comparable with that of equation 3.41.

3.6.4 Buckling of braced members with end restraints

The buckling of an end-restrained compression member 1–2 is analysed in
Section 3.10.4, where it is shown that if the member is braced so that it cannot
sway (∆ = 0), then its elastic buckling load Ncr can be expressed in the gen-
eral form of equation 3.23 when the effective length ratio kcr = Lcr/L is the
solution of

γ1γ2

4

(
π

kcr

)2

+
(
γ1 + γ2

2

)(
1 − π

kcr
cot

π

kcr

)
+ tan(π/2kcr)

π/2kcr
= 1, (3.42)

where the relative stiffness of the braced member at its end 1 is

γ1 = (2EI/L)12∑
1
α

, (3.43)
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in which the summation
∑

1 α is for all the other members at end 1, γ2 is similarly
defined, and 0 ≤ γ ≤ ∞. The relative stiffnesses may also be expressed as

k1 = (2EI/L)12

0.5
∑
1
α + (2EI/L)12

= 2γ1

1 + 2γ1
(3.44)

and a similar definition of k2 (0 ≤ k ≤ 1). Values of the effective length
ratio Lcr/L which satisfy equations 3.42–3.44 are presented in chart form in
Figure 3.21a.

In using the chart of Figure 3.21a, the stiffness factors k may be calculated
from equation 3.44 by using the stiffness approximations of Figure 3.19. Thus for
braced restraining members of the type shown in Figure 3.18a, the factor k1 can
be approximated by

k1 = (I/L)12

0.5
∑
1
(I/L)(1 − N/Ncr,L)+ (I/L)12

(3.45)

in which N is the compression force in the restraining member and Ncr,L its elastic
buckling load.

3.6.5 Buckling of unbraced members with end restraints

The buckling of an end-restrained compression member 1–2 is analysed in
Section 3.10.5, where it is shown that if the member is unbraced against sidesway,
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then its elastic buckling load Ncr can be expressed in the general form of
equation 3.23 when the effective length ratio kcr = Lcr/L is the solution of

γ1γ2(π/kcr)
2 − 36

6(γ1 + γ2)
= π

kcr
cot

π

kcr
, (3.46)

where the relative stiffness of the unbraced member at its end 1 is

γ1 = (6EI/L)12∑
1
α

(3.47)

in which the summation
∑

1 α is for all the other members at end 1, and γ2 is
similarly defined. The relative stiffnesses may also be expressed as

k1 = (6EI/L)12

1.5
∑
1
α + (6EI/L)12

= γ1

1.5 + γ1
(3.48)

and a similar definition of k2. Values of the effective length ratio Lcr /L which
satisfy equation 3.46 are presented in chart form in Figure 3.21b.

In using the chart of Figure 3.21b, the stiffness factors k may be calculated
from equation 3.48 by using the stiffness approximations of Figure 3.19. Thus for
braced restraining members of the third type shown in Figure 3.19a,

k1 = (I/L)12

1.5
∑
1
(I/L)(1 − N/4Ncr,L)+ (I/L)12

. (3.49)

3.6.6 Bracing stiffness required for a braced member

The elastic buckling load of an unbraced compression member may be increased
substantially by providing a translational bracing system which effectively pre-
vents sway. The bracing system need not be completely rigid, but may be elastic
as shown in Figure 3.22, provided its stiffness α exceeds a certain minimum
value αL. It is shown in Section 3.10.6 that the minimum value for a pin-ended
compression member is

αL = π2EI/L3. (3.50)

This conclusion can be extended to compression members with rotational end
restraints, and it can be shown that if the sway bracing stiffness α is greater than

αL = Ncr/L, (3.51)

where Ncr is the elastic buckling load for the braced mode, then the member is
effectively braced against sway.
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Figure 3.22 Compression member with an elastic sway brace.

3.7 Other compression members

3.7.1 General

The design method outlined in Section 3.5, together with the effective length con-
cept developed in Section 3.6, are examples of a general approach to the analysis
and design of the compression members whose ultimate resistances are governed
by the interaction between yielding and buckling. This approach, often termed
design by buckling analysis, originates from the dependence of the design com-
pression resistance Nb,Rd of a simply supported uniform compression member on
its squash load Ny and its elastic buckling load Ncr , as shown in Figure 3.23,
which is adapted from Figure 3.13. The generalisation of this relationship to other
compression members allows the design buckling resistance Nb,Rd of any member
to be determined from its yield load Ny and its elastic buckling load Ncr by using
Figure 3.23.

In the following subsections, this design by buckling analysis method is
extended to the in-plane behaviour of rigid-jointed frames with joint loading,
and also to the design of compression members which either are non-uniform,
or have intermediate loads, or twist during buckling. This method has also
been used for compression members with oblique restraints [3]. Similar and
related methods may be used for the flexural–torsional buckling of beams
(Sections 6.6–6.9).

3.7.2 Rigid-jointed frames with joint loads only

The application of the method of design by buckling analysis to rigid-jointed
frames which only have joint loads is a simple extrapolation of the design
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Figure 3.23 Compression resistance of structures designed by buckling analysis.

method for simply supported compression members. For this extrapolation, it
is assumed that the resistance Nb,Rd of a compression member in a frame is
related to its squash load Ny and to the axial force Ncr carried by it when
the frame buckles elastically, and that this relationship (Figure 3.23) is the
same as that used for simply supported compression members of the same type
(Figure 3.13).

This method of design by buckling analysis is virtually the same as the effective
length method which uses the design charts of Figure 3.21, because these charts
were obtained from the elastic buckling analyses of restrained members. The only
difference is that the elastic buckling load Ncr may be calculated directly for the
method of design by buckling analysis, as well as by determining the approximate
effective length from the design charts.

The elastic buckling load of the member may often be determined approximately
by the effective length method discussed in Section 3.6. In cases where this is not
satisfactory, a more accurate method must be used. Many such methods have been
developed, and some of these are discussed in Sections 8.3.5.3 and 8.3.5.4 and in
[4–13], while other methods are referred to in the literature [14–16]. The buckling
loads of many frames have already been determined, and extensive tabulations of
approximations for some of these are available [14, 16–20].

While the method of design by buckling analysis might also be applied to
rigid frames whose loads act between joints, the bending actions present in those
frames make this less rational. Because of this, consideration of the effects of
buckling on the design of frames with bending actions will be deferred until
Chapter 8.
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3.7.3 Non-uniform members

It was assumed in the preceding discussions that the members are uniform, but
some practical compression members are of variable cross-section. Non-uniform
members may be stepped or tapered, but in either case the elastic buckling load
Ncr can be determined by solving a differential equilibrium equation similar to that
governing the buckling of uniform members (see equation 3.58), but which has
variable values of EI. In general, this can best be done using numerical techniques
[4–6], and the tedium of these can be relieved by making use of a suitable computer
program. Many particular cases have been solved, and tabulations and graphs of
solutions are available [5, 6, 16, 21–23].

Once the elastic buckling load Ncr of the member has been determined, the
method of design by buckling analysis can be used. For this, the squash load Ny

is calculated for the most highly stressed cross-section, which is the section of
minimum area. The design buckling resistance Nb,Rd = χNy/γM1 can then be
obtained from Figure 3.23.

3.7.4 Members with intermediate axial loads

The elastic buckling of members with intermediate as well as end loads is also
best analysed by numerical methods [4–6], while solutions of many particular
cases are available [5, 16, 21]. Once again, the method of design by buckling
analysis can be used, and for this the squash load will be determined by the
most heavily stressed section. If the elastic buckling load Ncr is calculated for the
same member, then the design buckling resistance Nb,Rd can be determined from
Figure 3.23.

3.7.5 Flexural–torsional buckling

In the previous sections, attention was confined to compression members which
buckle by deflecting laterally, either perpendicular to the section minor axis at an
elastic buckling load

Ncr,z = π2EIz/L
2
cr,z, (3.52)

or perpendicular to the major axis at

Ncr,y = π2EIy/L
2
cr,y. (3.53)

However, thin-walled open section compression members may also buckle by
twisting about a longitudinal axis, as shown in Figure 3.24 for a cruciform section,
or by combined bending and twisting.
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Figure 3.24 Torsional buckling of a cruciform section.

A compression member of doubly symmetric cross-section may buckle elasti-
cally by twisting at a torsional buckling load (see Section 3.11) given by

Ncr,T = 1

i2
0

(
GIt + π2EIw

L2
cr,T

)
(3.54)

in which GIt and EIw are the torsional and warping rigidities (see Chapter 10),
Lcr,T is the distance between inflexion points of the twisted shape, and

i2
0 = i2

p + y2
0 + z2

0 (3.55)

in which y0, z0 are the shear centre coordinates (which are zero for doubly
symmetric sections, see Section 5.4.3), and

ip = √{(Iy + Iz)/A} (3.56)

is the polar radius of gyration. For most rolled steel sections, the minor axis
buckling load Ncr,z is less than Ncr,T , and the possibility of torsional buckling
can be ignored. However, short members which have low torsional and warping
rigidities (such as thin-walled cruciforms) should be checked. Such members can
be designed by using Figure 3.23 with the value of Ncr,T substituted for the elastic
buckling load Ncr .

Monosymmetric and asymmetric section members (such as thin-walled tees
and angles) may buckle in a combined mode by twisting and deflecting. This
action takes place because the axis of twist through the shear centre does not
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Figure 3.25 Elastic buckling of a simply supported angle section column.

coincide with the loading axis through the centroid, and any twisting which occurs
causes the centroidal axis to deflect. For simply supported members, it is shown in
[5, 24, 25] that the (lowest) elastic buckling load Ncr is the lowest root of the cubic
equation

N 3
cr

{
i2
0 − y2

0 − z2
0

} − N 2
cr

{
(Ncr,y + Ncr,z + Ncr,T )i

2
0 − Ncr,zy2

0 − Ncr,yz2
0

}
+ Ncri2

0{Ncr,yNcr,z + Ncr,zNcr,T + Ncr,T Ncr,y} − Ncr,yNcr,zNcr,T i2
0 = 0.

(3.57)

For example, the elastic buckling load Ncr for a pin-ended unequal angle is shown
in Figure 3.25, where it can be seen that Ncr is less than any of Ncr,y, Ncr,z, or
Ncr,T .

These and other cases of flexural–torsional buckling (referred to as torsional–
flexural buckling in EC3) are treated in a number of textbooks and papers [4–6,
24–26], and tabulations of solutions are also available [16, 27]. Once the buckling
load Ncr has been determined, the compression resistance Nb,Rd can be found from
Figure 3.23.

3.8 Appendix – elastic compression members

3.8.1 Buckling of straight members

The elastic buckling load Ncr of the compression member shown in Figure 3.3 can
be determined by finding a deflected position which is one of equilibrium. The
differential equilibrium equation of bending of the member is

EI
d2v

dx2
= −Ncrv. (3.58)
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This equation states that for equilibrium, the internal moment of resistance
EI (d2v/dx2) must exactly balance the external disturbing moment −Ncrv at any
point along the length of the member. When this equation is satisfied at all points,
the displaced position is one of equilibrium.

The solution of equation 3.58 which satisfies the boundary condition at the lower
end that (v)0 = 0 is

v = δ sin
πx

kcrL
,

where

1

k2
cr

= Ncr

π2EI/L2
,

and δ is an undetermined constant. The boundary condition at the upper end that
(v)L = 0 is satisfied when either

δ = 0
v = 0

}
(3.59)

or kcr = 1/n in which n is an integer, so that

Ncr = n2π2EI/L2, (3.60)

v = δ sin nπx/L. (3.61)

The first solution (equations 3.59) defines the straight stable equilibrium position
which is valid for all loads N less than the lowest value of Ncr , as shown in
Figure 3.2b. The second solution (equations 3.60 and 3.61) defines the buckling
loads Ncr at which displaced equilibrium positions can exist. This solution does not
determine the magnitude δ of the central deflection, as indicated in Figure 3.2b.
The lowest buckling load is the most important, and this occurs when n = 1,
so that

Ncr = π2EI/L2, (3.2)

v = δ sin πx/L. (3.1)

3.8.2 Bending of members with initial curvature

The bending of the compression member with initial curvature shown in
Figure 3.2a can be analysed by considering the differential equilibrium equation

EI
d2v

dx2
= −N (v + v0), (3.62)

which is obtained from equation 3.58 for a straight member by adding the additional
bending moment −Nv0 induced by the initial curvature.
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If the initial curvature of the member is such that

v0 = δ0 sin πx/L, (3.7)

then the solution of equation 3.62 which satisfies the boundary conditions
(v)0,L = 0 is the deflected shape

v = δ sin πx/L, (3.8)

where

δ

δ0
= N/Ncr

1 − N/Ncr
. (3.9)

The maximum moment in the compression member is N (δ+ δ0), and so the max-
imum bending stress is N (δ + δ0)/Wel , where Wel is the elastic section modulus.
Thus the maximum total stress is

σmax = N

A
+ N (δ + δ0)

Wel
.

If the elastic limit is taken as the yield stress fy, then the limiting axial load NL for
which the above elastic analysis is valid is given by

NL = Ny − NL(δ + δ0)A

Wel
, (3.63)

where Ny = Afy is the squash load. By writing Wel = 2I/b, in which b is the
member width, equation 3.63 becomes

NL = Ny − δ0b

2i2

NL

(1 − NL/Ncr)
,

which can be solved for the dimensionless limiting load NL/Ny as

NL

Ny
=

[
1 + (1 + η)Ncr/Ny

2

]
−

{[
1 + (1 + η)Ncr /Ny

2

]2

− Ncr

Ny

}1/2

, (3.64)

where

η = δ0b

2i2
. (3.13)

Alternatively, equation 3.64 can be rearranged to give the dimensionless limiting
load NL/Ny as

NL

Ny
= 1

Φ +
√
Φ2 − λ

2
(3.11)
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in which

Φ = 1 + η + λ
2

2
(3.12)

and

λ = √
Ny/Ncr . (3.5)

3.9 Appendix – inelastic compression members

3.9.1 Reduced modulus theory of buckling

The reduced modulus buckling load Ncr,r of a rectangular section compression
member which buckles in the y direction (see Figure 3.26a) can be determined
from the bending strain and stress distributions, which are related to the curvature
κ(= −d2v/dx2) and the moduli E and Et as shown in Figure 3.26b and c. The
position of the line of zero bending stress can be found by using the condition that
the axial force remains constant during buckling, from which it follows that the
force resultant of the bending stresses must be zero, so that

1

2
dbcEtbcκ = 1

2
dbtEbtκ ,

or

bc

b
=

√
E√

E + √
Et

.

Axial strain b �c 

b �t

bt

bc

(b) Strain
distribution

bt

bc
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�

Figure 3.26 Reduced modulus buckling of a rectangular section member.
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The moment of resistance of the section ErI(d2v/dx2) is equal to the moment
resultant of the bending stresses, so that

ErI
d2v

dx2
= −dbc

2
Etbcκ

2bc

3
− dbt

2
Ebtκ

2bt

3

or

ErI
d2v

dx2
= −4b2

cEt

b2

db3

12
κ .

The reduced modulus of elasticity Er is therefore given by

Er = 4EEt

(
√

E + √
Et)

2
. (3.16)

3.9.2 Buckling of members with residual stresses

Arectangular section member with a simplified residual stress distribution is shown
in Figure 3.10. The section first yields at the edges z = ±d/2 at a load N = 0.5Ny,
and yielding then spreads through the section as the load approaches the squash
load Ny. If the depth of the elastic core is de, then the flexural rigidity for bending
about the z axis is

(EI)t = EI

(
de

d

)
,

where I = b3d/12, and the axial force is

N = Ny

(
1 − 1

2

d2
e

d2

)
.

By combining these two relationships, the effective flexural rigidity of the partially
yielded section can be written as

(EI)t = EI [2(1 − N/Ny)]1/2. (3.18)

Thus the axial load at buckling Nt is given by

Ncr,t

Ncr
= [2(1 − Ncr,t/Ny)]1/2,

which can be rearranged as

Ncr,t

Ny
=

(
Ncr

Ny

)2

{[1 + 2(Ny/Ncr)
2]1/2 − 1}. (3.19)
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3.10 Appendix – effective lengths of compression
members

3.10.1 Intermediate restraints

A straight pin-ended compression member with a central elastic restraint is shown
in Figure 3.16a. It is assumed that when the buckling load Ncr is applied to the
member, it buckles symmetrically as shown in Figure 3.16a with a central deflec-
tion δ, and the restraint exerts a restoring force αδ. The equilibrium equation for
this buckled position is

EI
d2v

dx2
= −Ncrv + αδ

2
x

for 0 ≤ x ≤ L/2.

The solution of this equation which satisfies the boundary conditions (v)0 =
(dv/dx)L/2 = 0 is given by

v = αδL

2Ncr

(
x

L
− sin πx/kcrL

2(π/2kcr) cosπ/2kcr

)
,

where kcr = Lcr/L and Lcr is given by equation 3.23. Since δ = (v)L/2, it
follows that(

π

2kcr

)3

cot
π

2kcr(
π

2kcr
cot

π

2kcr
− 1

) = αL3

16EI
. (3.65)

The variation with the dimensionless restraint stiffness αL3/16EI of the dimen-
sionless buckling load

Ncr

π2EI/L2
= 4

π2

(
π

2kcr

)2

(3.66)

which satisfies equation 3.65 is shown in Figure 3.16c. It can be seen that the
buckling load for this symmetrical mode varies from π2EI/L2 when the restraint
is of zero stiffness to approximately 8π2EI/L2 when the restraint is rigid. When
the restraint stiffness exceeds

αL = 16π2EI/L3, (3.31)

the buckling load obtained from equations 3.65 and 3.66 exceeds the value of
4π2EI/L2 for which the member buckles in the antisymmetrical second mode
shown in Figure 3.16b. Since buckling always takes place at the lowest possible
load, it follows that the member buckles at 4π2EI/L2 in the second mode shown
in Figure 3.16b for all restraint stiffnesses α which exceed αL.
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3.10.2 Stiffness of a braced member

When a structural member is braced so that its ends act as if simply supported
as shown in Figure 3.18a, then its response to equal and opposite disturbing end
moments M can be obtained by considering the differential equilibrium equation

EI
d2v

dx2
= −Nv − M . (3.67)

The solution of this which satisfies the boundary conditions (v)0 = (v)L = 0 when
N is compressive is

v = M

N

{
1 − cosπ

√
N/Ncr,L

sin π
√

N/Ncr,L
sin

[
π

√
N

Ncr,L

x

L

]
+ cos

[
π

√
N

Ncr,L

x

L

]
− 1

}
,

where

Ncr,L = π2EI/L2. (3.36)

The end rotation θ = (dv/dx)0 is

θ = 2M

NL

π

2

√
N

Ncr,L
tan

π

2

√
N

Ncr,L
,

whence

α = M

θ
= 2EI

L

(π/2)
√

N/Ncr,L

tan(π/2)
√

N/Ncr,L
. (3.35)

When the axial load N is tensile, the solution of equation 3.67 is

v = M

N

{
1 − cosh π

√
N/Ncr,L

sinh π
√

N/Ncr,L
sinh

[
π

√
N

Ncr,L

x

L

]

+ cosh

[
π

√
N

Ncr,L

x

L

]
− 1

}
,

whence

α = 2EI

L

(π/2)
√

N/Ncr,L

tanh(π/2)
√

N/Ncr,L
. (3.37)
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3.10.3 Stiffness of an unbraced member

When a structural member is unbraced so that its ends sway ∆ as shown in
Figure 3.20a, restoring end moments M are required to maintain equilibrium.
The differential equation for equilibrium of a member with equal end moments
M = N∆/2 is

EI
d2v

dx2
= −Nv + M , (3.68)

and its solution which satisfies the boundary conditions (v)0 = 0, (v)L = ∆ is

v = M

N

{
1 + cosπ

√
N/Ncr,L

sin π
√

N/Ncr,L
sin

[
π

√
N

Ncr,L

x

L

]
− cos

[
π

√
N

Ncr,L

x

L

]
+ 1

}
.

The end rotation θ = (dv/dx)0 is

θ = 2M

NL

π

2

√
N

Ncr,L
cot

π

2

√
N

Ncr,L
,

whence

α = −
(

2EI

L

)
π

2

√
N

Ncr,L
tan

π

2

√
N

Ncr,L
, (3.39)

where the negative sign occurs because the end moments M are restoring instead
of disturbing moments.

When the axial load N is tensile, the end moments M are disturbing moments,
and the solution of equation 3.68 is

v = M

N

{
1 + cosh π

√
N/Ncr,L

sinh π
√

N/Ncr,L
sinh

[
π

√
N

Ncr,L

x

L

]

− cosh

[
π

√
N

Ncr,L

x

L

]
+ 1

}
,

whence

α =
(

2EI

L

)
π

2

√
N

Ncr,L
tanh

π

2

√
N

Ncr,L
. (3.40)

3.10.4 Buckling of a braced member

A typical compression member 1–2 in a rigid-jointed frame is shown in
Figure 3.17b. When the frame buckles, the member sways∆, and its ends rotate by
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θ1, θ2 as shown. Because of these actions, there are end shears (M1 +M2 +N∆)/L
and end moments M1, M2. The equilibrium equation for the member is

EI
d2v

dx2
= −Nv − M1 + (M1 + M2)

x

L
+ N∆

x

L
,

and the solution of this is

v = −
(

M1 cosπ/kcr + M2

Ncr sin π/kcr

)
sin

πx

kcrL
+ M1

Ncr

(
cos

πx

kcrL
− 1

)

+
(

M1 + M2

Ncr

)
x

L
+�

x

L
,

where Ncr is the elastic buckling load transmitted by the member (see
equation 3.23) and kcr = Lcr/L. By using this to obtain expressions for the end
rotations θ1, θ2, and by substituting equation 3.33, the following equations can be
obtained:

M1

(
NcrL

α1
+ 1 − π

kcr
cot

π

kcr

)
+ M2

(
1 − π

kcr
cosec

π

kcr

)
+ Ncr∆ = 0

M1

(
1 − π

kcr
cosec

π

kcr

)
+ M2

(
NcrL

α2
+ 1 − π

kcr
cot

π

kcr

)
+ Ncr∆ = 0


 .

(3.69)

If the compression member is braced so that joint translation is effectively pre-
vented, the sway terms Ncr∆ disappear from equations 3.69. The moments M1,
M2 can then be eliminated, whence

(EI/L)2

α1α2

(
π

kcr

)2

+ EI

L

(
1

α1
+ 1

α2

)(
1 − π

kcr
cot

π

kcr

)
+ tan π/2kcr

π/2kcr
= 1.

(3.70)

By writing the relative stiffness of the braced member at the end 1 as

γ1 = 2EI/L

α1
= (2EI/L)12∑

1
α

, (3.43)

with a similar definition for γ2, equation 3.70 becomes

γ1γ2

4

(
π

kcr

)2

+
(
γ1 + γ2

2

)(
1 − π

kcr
cot

π

kcr

)
+ tan(π/2kcr)

π/2kcr
= 1. (3.42)

3.10.5 Buckling of an unbraced member

If there are no reaction points or braces to supply the member end shears (M1 +
M2 + N∆)/L, the member will sway as shown in Figure 3.17b, and the sway
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moment N∆ will be completely resisted by the end moments M1 and M2, so that

N∆ = −(M1 + M2).

If this is substituted into equation 3.69 and if the moments M1 and M2 are
eliminated, then

(EI/L)2

α1α2

(
π

kcr

)2

− 1 = EI

L

(
1

α1
+ 1

α2

)
π

kcr
cot

π

kcr
(3.71)

where kcr = Lcr/L. By writing the relative stiffnesses of the unbraced member at
end 1 as

γ1 = 6EI/L

α1
= (6EI/L)12∑

1
α

(3.47)

with a similar definition of γ 2, equation 3.71 becomes

γ1γ2(π/kcr)
2 − 36

6(γ1 + γ2)
= π

kcr
cot

π

kcr
. (3.46)

3.10.6 Stiffness of bracing for a rigid frame

If the simply supported member shown in Figure 3.22 has a sufficiently stiff sway
brace acting at one end, then it will buckle as if rigidly braced, as shown in
Figure 3.22a, at a load π2EI/L2. If the stiffness α of the brace is reduced below a
minimum value αL, the member will buckle in the rigid body sway mode shown
in Figure 3.22b. The elastic buckling load Ncr for this mode can be obtained from
the equilibrium condition that

Ncr∆ = α∆L,

where α∆ is the restraining force in the brace, so that

Ncr = αL.

The variation of Ncr with α is compared in Figure 3.22c with the braced mode
buckling load of π2EI/L2. It can be seen that when the brace stiffness α is
less than

αL = π2EI/L3, (3.50)

the member buckles in the sway mode, and that when α is greater than αL, it
buckles in the braced mode.
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3.11 Appendix – torsional buckling

Thin-walled open-section compression members may buckle by twisting, as shown
in Figure 3.24 for a cruciform section, or by combined bending and twisting. When
this type of buckling takes place, the twisting of the member causes the axial
compressive stresses N/A to exert a disturbing torque which is opposed by the
torsional resistance of the section. For the typical longitudinal element of cross-
sectional area δA shown in Figure 3.27, which rotates a0(dφ/dx) (where a0 is the
distance to the axis of twist) when the section rotates φ, the axial force (N/A)δA
has a component (N/A)δAa0(dφ/dx) which exerts a torque (N/A)δAa0(dφ/dx)a0

about the axis of twist (which passes through the shear centre y0, z0 as shown in
Chapter 5). The total disturbing torque TP exerted is therefore

TP = N

A

dφ

dx

∫
A

a2
0dA,

where

a2
0 = (y − y0)

2 + (z − z0)
2.

This torque can also be written as

TP = Ni2
0

dφ

dx
,

where

i2
0 = i2

p + y2
0 + z2

0, (3.55)

ip = √ {
(Iy + Iz)/A

}
. (3.56)

For members of doubly symmetric cross-section (y0 = z0 = 0), a twisted
equilibrium position is possible when the disturbing torque TP exactly balances
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Figure 3.27 Torque exerted by axial load during twisting.
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the internal resisting torque

Mx = GIt
dφ

dx
− EIw

d3φ

dx3

in which GIt and EIw are the torsional and warping rigidities (see Chapter 10).
Thus, at torsional buckling

N

A
i2
0

dφ

dx
= GIt

dφ

dx
− EIw

d3φ

dx3
. (3.72)

The solution of this which satisfies the boundary conditions of end twisting
prevented ((φ)0,L = 0) and ends free to warp ((d2φ/dx2)0,L = 0) (see Chapter 10)
is φ = (φ)L/2 sin πx/L in which (φ)L/2 is the undetermined magnitude of the
angle of twist rotation at the centre of the member, and the buckling load Ncr,T is

Ncr,T = 1

i2
0

(
GIt + π2EIw

L2

)
.

This solution may be generalised for compression members with other end
conditions by writing it in the form

Ncr,T = 1

i2
0

(
GIt + π2EIw

L2
cr,T

)
(3.54)

in which the torsional buckling effective length Lcr,T is the distance between
inflexion points in the twisted shape.

3.12 Worked examples

3.12.1 Example 1 – checking a UB compression member

Problem. The 457 × 191 UB 82 compression member of S275 steel of Figure 3.28a
is simply supported about both principal axes at each end (Lcr,y = 12.0 m), and
has a central brace which prevents lateral deflections in the minor principal plane
(Lcr,z = 6.0 m). Check the adequacy of the member for a factored axial compres-
sive load corresponding to a nominal dead load of 160 kN and a nominal imposed
load of 230 kN.

Factored axial load. NEd = (1.35 × 160)+ (1.5 × 230) = 561 kN

Classifying the section.
For S275 steel with tf = 16 mm, fy = 275 N/mm2 EN 10025-2

ε = (235/275)0.5 = 0.924

cf /(tf ε) = [(191.3 − 9.9 − 2 × 10.2)/2]/(16.0 × 0.924) = 5.44 < 14
T5.2
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460.0 

9.9 

16.0 

RHS 

(a) Example 1 

457 × 191 UB 82 
Iz = 1871 cm4

A = 104 cm2

iy = 18.8 cm 
iz = 4.23 cm 
r = 10.2 mm 

(b) Example 3 

2 – 125 × 75 × 10 UA 
Iy = 1495 cm4

Iz = 164.2 cm4

(c) Example 4 

Figure 3.28 Examples 1, 3, and 4.

cw = (460.0 − 2 × 16.0 − 2 × 10.2) = 407.6 mm T5.2

cw/(twε) = 407.6/(9.9 × 0.924) = 44.5 > 42 T5.2

and so the web is Class 4 (slender). T5.2

Effective area.

λp =
√

fy
σcr

= b/t

28.4ε
√

kσ
= 407.6/9.9

28.4 × 0.924 × √
4.0

= 0.784 EC3-1-5 4.4(2)

ρ= λp − 0.055(3 +ψ)
λ

2
p

= 0.784 − 0.055(3 + 1)

0.7842
= 0.918 EC3-1-5 4.4(2)

d − deff = (1 − 0.918)× 407.6 = 33.6 mm

Aeff = 104 × 102 − 33.6 × 9.9 = 10 067 mm2

Cross-section compression resistance.

Nc,Rd = Aeff fy
γM0

= 10 067 × 275

1.0
= 2768 kN > 561 kN = NEd 6.2.4(2)
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Member buckling resistance.

λy =
√

Aeff fy
Ncr,y

= Lcr,y

iy

√
Aeff /A

λ1
= 12 000

(18.8 × 10)

√
10 067/10 400

93.9 × 0.924
= 0.724

6.3.1.3(1)

λz =
√

Aeff fy
Ncr,z

= Lcr,z

iz

√
Aeff /A

λ1
= 6000

(4.23 × 10)

√
10 067/10 400

93.9 × 0.924

= 1.608 > 0.724 6.3.1.3(1)

Buckling will occur about the minor (z) axis. For a rolled UB section (with h/b >
1.2 and tf ≤ 40 mm), buckling about the z-axis, use buckling curve (b) with
α = 0.34 T6.2, T6.1

Φz = 0.5[1 + 0.34(1.608 − 0.2)+ 1.6082] = 2.032 6.3.1.2(1)

χz = 1

2.032 + √
2.0322 − 1.6082

= 0.305 6.3.1.2(1)

Nb,z,Rd = χAeff fy
γM1

= 0.305 × 10 067 × 275

1.0
= 844 kN > 561 kN = NEd

6.3.1.1(3)

and so the member is satisfactory.

3.12.2 Example 2 – designing a UC compression member

Problem. Design a suitable UC of S355 steel to resist the loading of example 1 in
Section 3.12.1.

Design axial load. NEd = 561 kN, as in Section 3.12.1.

Target area and first section choice.
Assume fy = 355 N/mm2 and χ = 0.5

A ≥ 561 × 103/(0.5 × 355) = 3161 mm2

Try a 152 × 152 UC 30 with A = 38.3 cm2, iy = 6.76 cm, iz = 3.83 cm,
tf = 9.4 mm.

ε = (235/355)0.5 = 0.814 T5.2

λy =
√

Afy
Ncr,y

= Lcr,y

iy

1

λ1
= 12 000

(6.76 × 10)

1

93.9 × 0.814
= 2.322 6.3.1.3(1)

λz =
√

Afy
Ncr,z

= Lcr,z

iz

1

λ1
= 6000

(3.83 × 10)

1

93.9 × 0.814
= 2.050 < 2.322

6.3.1.3(1)
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Buckling will occur about the major (y) axis. For a rolled UC section (with h/b ≤
1.2 and tf ≤ 100 mm), buckling about the y-axis, use buckling curve (b) with
α = 0.34 T6.2, T6.1

Φy = 0.5[1 + 0.34(2.322 − 0.2)+ 2.3222] = 3.558 6.3.1.2(1)

χy = 1

3.558 + √
3.5582 − 2.3222

= 0.160 6.3.1.2(1)

which is much less than the guessed value of 0.5.

Second section choice.

Guess χ = (0.5 + 0.160)/2 = 0.33

A ≥ 561 × 103/(0.33 × 355) = 4789 mm2

Try a 203 × 203 UC 52, with A = 66.3 cm2, iy = 8.91 cm, tf = 12.5 mm.
For S355 steel with tf = 12.5 mm, fy = 355 N/mm2 EN 10025-2

ε = (235/355)0.5 = 0.814 T5.2

cf /(tf ε) = [(204.3 − 7.9 − 2 × 10.2)/2](12.5 × 0.814) = 8.65 < 14 T5.2

cw/(twε) = (206.2 − 2 × 12.5 − 2 × 10.2)/(7.9 × 0.814) = 25.0 < 42
T5.2

and so the cross-section is fully effective.

λy =
√

Afy
Ncr,y

= Lcr,y

iy

1

λ1
= 12 000

(8.91 × 10)

1

93.9 × 0.814
= 1.763 6.3.1.3(1)

For a rolled UC section (with h/b ≤ 1.2 and tf ≤ 100 mm), buckling about the
y-axis, use buckling curve (b) with α = 0.34 T6.2, T6.1

Φy = 0.5[1 + 0.34(1.763 − 0.2)+ 1.7632] = 2.320 6.3.1.2(1)

χy = 1

2.320 + √
2.3202 − 1.7632

= 0.261 6.3.1.2(1)

Nb,y,Rd = χAfy
γM1

= 0.261 × 66.3 × 102 × 355

1.0
= 615 kN > 561 kN = NEd

6.3.1.1(3)

and so the 203 × 203 UC 52 is satisfactory.

3.12.3 Example 3 – designing an RHS compression member

Problem. Design a suitable hot-finished RHS of S355 steel to resist the loading of
example 1 in Section 3.12.1.
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Design axial load. NEd = 561 kN, as in Section 3.12.1.
Solution.
Guess χ = 0.3

A ≥ 561 × 103/(0.3 × 355) = 5268 mm2

Try a 250 × 150 × 8 RHS, with A = 60.8 cm2, iy = 9.17 cm, iz = 6.15 cm,
t = 8.0 mm.
For S355 steel with t = 8 mm, fy = 355 N/mm2 EN 10025-2

ε = (235/355)0.5 = 0.814

cw/(tε) = (250.0 − 2 × 8.0 − 2 × 4.0)/(8.0 × 0.814) = 34.7 < 42 T5.2

and so the cross-section is fully effective.

λy =
√

Afy
Ncr,y

= Lcr,y

iy

1

λ1
= 12 000

(9.18 × 10)

1

93.9 × 0.814
= 1.710 6.3.1.3(1)

λz =
√

Afy
Ncr,z

= Lcr,z

iz

1

λ1
= 6000

(6.15 × 10)

1

93.9 × 0.814
= 1.276 < 1.710

6.3.1.3(1)

Buckling will occur about the major (y) axis. For a hot-finished RHS, use buckling
curve (a) with α = 0.21 T6.2, T6.1

Φy = 0.5[1 + 0.21(1.710 − 0.2)+ 1.7102] = 2.121 6.3.1.2(1)

χy = 1

2.121 + √
2.1212 − 1.7102

= 0.296 6.3.1.2(1)

Nb,y,Rd = χAfy
γM1

= 0.296 × 60.8 × 102 × 355

1.0
= 640 kN > 561 kN = NEd

6.3.1.1(3)

and so the 250 × 150 × 8 RHS is satisfactory.

3.12.4 Example 4 – buckling of double angles

Problem. Two steel 125 × 75 × 10 UA are connected together at 1.5 m intervals
to form the long compression member whose properties are given in Figure 3.28c.
The minimum second moment of area of each angle is 49.9 cm4. The member is
simply supported about its major axis at 4.5 m intervals and about its minor axis
at 1.5 m intervals. Determine the elastic buckling load of the member.



 

94 Compression members

Member buckling about the major axis.

Ncr,y = π2 × 210 000 × 1495 × 104/45002 N = 1530 kN.

Member buckling about the minor axis.

Ncr,z = π2 × 210 000 × 164.2 × 104/15002 N = 1513 kN.

Single angle buckling.

Ncr,min = π2 × 210 000 × 49.9 × 104/15002 N = 459.7 kN

and so for both angles 2Ncr,min = 2 × 459.7 = 919 kN < 1520 kN.
It can be seen that the lowest buckling load of 919 kN corresponds to the case

where each unequal angle buckles about its own minimum axis.

3.12.5 Example 5 – effective length factor in
an unbraced frame

Problem. Determine the effective length factor of member 1–2 of the unbraced
frame shown in Figure 3.29a.

Solution. Using equation 3.48,

k1 = 6EI/L

1.5 × 0 + 6EI/L
= 1.0

k2 = 6EI/L

1.5 × 6(2EI)/(2L)+ 6EI/L
= 0.4

Using Figure 3.21b, Lcr /L = 2.3

205.8

209.6

14.2

9.4
y

z

EI

2EI

2L

L

5N

1

2 3

(a) Example 5

5N

EI

203 × 203 UC 60
Iy = 6125 cm4

Iz = 2065 cm4

A = 76.4 cm2 

iz = 5.20 cm
r = 10.2 mm

(b) Example 7 

Figure 3.29 Examples 5 and 7.
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3.12.6 Example 6 – effective length factor in a braced frame

Problem. Determine the effective length factor of member 1–2 of the frame shown
in Figure 3.29a if bracing is provided which prevents sway buckling.

Solution.
Using equation 3.44,

k1 = 2EI/L

0.5 × 0 + 2EI/L
= 1.0

k2 = 2EI/L

0.5 × 2(2EI)/(2L)+ 2EI/L
= 0.667

Using Figure 3.21a, Lcr /L = 0.87.

3.12.7 Example 7 – checking a non-uniform member

Problem. The 5.0 m long simply supported 203 × 203 UC 60 member shown in
Figure 3.29b has two steel plates 250 mm × 12 mm × 2 m long welded to it,
one to the central length of each flange. This increases the elastic buckling load
about the minor axis by 70%. If the yield strengths of the plates and the UC are
355 N/mm2, determine the compression resistance.

Solution.

ε = (235/355)0.5 = 0.814 T5.2

cf /(tf ε) = [(205.8 − 9.3 − 2 × 10.2)/2]/(14.2 × 0.814) = 7.62 < 14
T5.2

cw/(twε) = (209.6 − 2 × 14.2 − 2 × 10.2)/(9.3 × 0.814) = 21.24 < 42
T5.2

and so the cross-section is fully effective.

Ncr,z = 1.7 × π2 × 210 000 × 2065 × 104/50002 = 2910 kN.

λz =
√

Afy
Ncr,z

=
√

76.4 × 102 × 355

2910 × 103
= 0.965

For a rolled UC section with welded flanges (tf ≤ 40 mm), buckling about the
z-axis, use buckling curve (c) with α = 0.49 T6.2, T6.1

Φz = 0.5[1 + 0.49(0.965 − 0.2)+ 0.9652] = 1.153 6.3.1.2(1)

χz = 1

1.153 + √
1.1532 − 0.9652

= 0.560 6.3.1.2(1)

Nb,z,Rd = χAfy
γM1

= 0.560 × 76.4 × 102 × 355

1.0
= 1520 kN 6.3.1.1(3)



 

96 Compression members

3.12.8 Example 8 – checking a member with intermediate
axial loads

Problem. A 5 m long simply supported 457 × 191 UB 82 compression member of
S355 steel whose properties are given in Figure 3.28a has concentric axial loads of
NEd and 2NEd at its ends, and a concentric axial load NEd at its midpoint. At elastic
buckling the maximum compression force in the member is 2000 kN. Determine
the compression resistance.

Solution.
From Section 3.12.1, the cross-section is Class 4 slender and Aeff =
10 067 mm2.

Ncr,z = 2000 kN.

λz =
√

Aeff fy
Ncr,z

=
√

10 067 × 355

2000 × 103
= 1.337

For a rolled UB section (with h/b > 1.2 and tf ≤ 40 mm), buckling about the
z-axis, use buckling curve (b) with α = 0.34 T6.2, T6.1

Φz = 0.5[1 + 0.34(1.337 − 0.2)+ 1.3372] = 1.587 6.3.1.2(1)

χz = 1

1.587 + √
1.5872 − 1.3372

= 0.410 6.3.1.2(1)

Nb,z,Rd = χAeff fy
γM1

= 0.410 × 10 067 × 355

1.0
= 1465 kN 6.3.1.1(3)

3.13 Unworked examples

3.13.1 Example 9 – checking a welded column section

The 14.0 m long welded column section compression member of S355 steel shown
in Figure 3.30(a) is simply supported about both principal axes at each end (Lcr,y =
14.0 m), and has a central brace that prevents lateral deflections in the minor
principal plane (Lcr,z = 7.0 m). Check the adequacy of the member for a factored
axial compressive force corresponding to a nominal dead load of 420 kN and a
nominal imposed load of 640 kN.

3.13.2 Example 10 – designing a UC section

Design a suitable UC of S275 steel to resist the loading of example 9 in
Section 3.13.1.
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Welded column section 

Iy = 747 × 10 6 mm4

Iz = 286 × 106 mm4

iy = 145 mm 
iz = 89.6 mm 
A = 35 700 mm2 

(a) Example 9

2 – 380 × 100 channels 

For each channel 

Iy = 150.34 × 106 mm4

Iz = 6.43 × 106 mm4

A = 6870 mm2 

(b) Example 11 

90 × 90 × 8 EA 

Iu = 1.66 × 106 mm4

Iv = 0.431 × 106 mm4

iu = 34.5 mm 
iv = 17.6 mm 
A = 1390 mm2

It = 32.8 × 103 mm4

y0 = 25.0 mm 

(c) Example 14 

Figure 3.30 Examples 9, 11, and 14.

L/2

N

EA EA

E I, L

L/2

Figure 3.31 Example 12.

3.13.3 Example 11 – checking a compound section

Determine the minimum elastic buckling load of the two laced 380 × 100 channels
shown in Figure 3.30(b) if the effective length about each axis is Lcr = 3.0 m.

3.13.4 Example 12 – elastic buckling

Determine the elastic buckling load of the guyed column shown in Figure 3.31. It
should be assumed that the guys have negligible flexural stiffness, that (EA)guy =
2(EI )column/L2, and that the column is built-in at its base.
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3.13.5 Example 13 – checking a non-uniform compression
member

Determine the maximum design load NEd of a lightly welded box section can-
tilever compression member 1–2 made from plates of S355 steel which taper from
300 mm × 300 mm × 12 mm at end 1 (at the cantilever tip) to 500 mm × 500 mm
× 12 mm at end 2 (at the cantilever support). The cantilever has a length of 10.0 m.

3.13.6 Example 14 – flexural–torsional buckling

A simply supported 90 × 90 × 8 EA compression member is shown in
Figure 3.30(c). Determine the variation of the elastic buckling load with member
length.
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Chapter 4

Local buckling of
thin-plate elements

4.1 Introduction

The behaviour of compression members was discussed in Chapter 3, where it
was assumed that no local distortion of the cross-section took place, so that
failure was only due to overall buckling and yielding. This treatment is appro-
priate for solid section members, and for members whose cross-sections are
composed of comparatively thick-plate elements, including many hot-rolled steel
sections.

However, in some cases the member cross-section is composed of more slender-
plate elements, as for example in some built-up members and in most light-gauge,
cold-formed members. These slender-plate elements may buckle locally as shown
in Figure 4.1, and the member may fail prematurely, as indicated by the reduc-
tion from the full line to the dashed line in Figure 4.2. A slender-plate element
does not fail by elastic buckling, but exhibits significant post-buckling behaviour,
as indicated in Figure 4.3. Because of this, the plate’s resistance to local fail-
ure depends not only on its slenderness, but also on its yield strength and
residual stresses, as shown in Figure 4.4. The resistance of a plate element
of intermediate slenderness is also influenced significantly by its geometrical
imperfections, while the resistance of a stocky-plate element depends primar-
ily on its yield stress and strain-hardening moduli of elasticity, as indicated in
Figure 4.4.

In this chapter, the behaviour of thin rectangular plates subjected to in-plane
compression, shear, bending, or bearing is discussed. The behaviour under com-
pression is applied to the design of plate elements in compression members and
compression flanges in beams. The design of beam webs is also discussed, and
the influence of the behaviour of thin plates on the design of plate girders to EC3
is treated in detail.



 

Figure 4.1 Local buckling of an I-section column.
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Figure 4.2 Effects of local buckling on the resistances of compression members.



 

102 Local buckling of thin-plate elements

0 0.5 1.0 1.5 2.0 2.5
Dimensionless transverse deflection �/t

0

0.5

1.0

1.5

2.0
First yield

Failure

Elastic
post-buckling
behaviour

Buckling

Flat plate

Plate with initial
curvatureD

im
en

si
on

le
ss

 lo
ad

 N
/N

cr

 

Figure 4.3 Post-buckling behaviour of thin plates.
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Figure 4.4 Ultimate strengths of plates in compression.

4.2 Plate elements in compression

4.2.1 Elastic buckling

4.2.1.1 Simply supported plates

The thin flat plate element of length L, width b, and thickness t shown in Figure 4.5b
is simply supported along all four edges. The applied compressive loads N are
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Figure 4.5 Comparison of column and plate buckling.

uniformly distributed over each end of the plate. When the applied loads are equal
to the elastic buckling loads, the plate can buckle by deflecting v laterally out of
its original plane into an adjacent position [1–4].

It is shown in Section 4.8.1 that this equilibrium position is given by

v = δ sin
mπx

L
sin

nπz

b
(4.1)

with n = 1, where δ is the undetermined magnitude of the central deflection. The
elastic buckling load Ncr at which the plate buckles corresponds to the buckling
stress

σcr = Ncr/bt, (4.2)

which is given by

σcr = π2E

12(1 − ν2)

kσ
(b/t)2

. (4.3)

The lowest value of the buckling coefficient kσ (see Figure 4.6) is

kσ = 4, (4.4)

which is appropriate for the high aspect ratios L/b of most structural steel members
(see Figure 4.7).



 

104 Local buckling of thin-plate elements

0 1 2 3 4 5 6
Plate aspect ratio L/b

0

2

4

6

8

10

L

b2 3 4 5

2

3
4

m = 1

n = 1

B
uc

kl
in

g 
co

ef
fi

ci
en

t k
�

Figure 4.6 Buckling coefficients of simply supported plates in compression.

b

b b b

L = bm

�cr �cr

Figure 4.7 Buckled pattern of a long simply supported plate in compression.

The buckling stress σcr varies inversely as the square of the plate slenderness
or width–thickness ratio b/t, as shown in Figure 4.4, in which the dimensionless
buckling stress σcr/fy is plotted against a modified plate slenderness ratio

√
fy
σcr

= b

t

√
fy
E

12(1 − ν2)

π2kσ
. (4.5)

If the material ceases to be linear elastic at the yield stress fy, the above analysis
is only valid for

√
(fy/σcr) ≥ 1. This limit is equivalent to a width–thickness ratio

b/t given by

b

t

√
fy

235
= 56.8 (4.6)
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for a steel with E = 210 000 N/mm2 and ν = 0.3. (The yield stress fy in
equation 4.6 and in all of the similar equations which appear later in this chapter
must be expressed in N/mm2.)

The values of the buckling coefficient kσ shown in Figure 4.6 indicate that the
use of intermediate transverse stiffeners to increase the elastic buckling stress of
a plate in compression is not effective, except when their spacing is significantly
less than the plate width. Because of this, it is more economical to use interme-
diate longitudinal stiffeners which cause the plate to buckle in a number of half
waves across its width. When such stiffeners are used, equation 4.3 still holds, pro-
vided b is taken as the stiffener spacing. Longitudinal stiffeners have an additional
advantage when they are able to transfer compressive stresses, in which case their
cross-sectional areas may be added to that of the plate.

An intermediate longitudinal stiffener must be sufficiently stiff flexurally to
prevent the plate from deflecting at the stiffener. An approximate value for the
minimum second moment of area Ist of a longitudinal stiffener at the centre line
of a simply supported plate is given by

Ist = 4.5bt3
[

1 + 2.3
Ast

bt

(
1 + 0.5

Ast

bt

)]
(4.7)

in which b is now the half width of the plate and Ast is the area of the stiffener.
This minimum increases with the stiffener area because the load transmitted by
the stiffener also increases with its area, and the additional second moment of area
is required to resist the buckling action of the stiffener load.

Stiffeners should also be proportioned to resist local buckling. A stiffener is
usually fixed to one side of the plate rather than placed symmetrically about the
mid-plane, and in this case its effective second moment of area is greater than the
value calculated for its centroid. It is often suggested [2, 3] that the value of Ist

can be approximated by the value calculated for the mid-plane of the plate, but
this may provide an overestimate in some cases [4–6].

The behaviour of an edge stiffener is different from that of an intermediate
stiffener, in that theoretically it must be of infinite stiffness before it can provide
an effective simple support to the plate. However, if a minimum value of the
second moment of area of an edge stiffener of

Ist = 2.25bt3
[

1 + 4.6
Ast

bt

(
1 + Ast

bt

)]
(4.8)

is provided, the resulting reduction in the plate buckling stress is only a few percent
[5]. Equation 4.8 is derived from equation 4.7 on the basis that an edge stiffener
only has to support a plate on one side of the stiffener, while an intermediate
stiffener has to support plates on both sides.

The effectiveness of longitudinal stiffeners decreases as their number increases,
and the minimum stiffness required for them to provide effective lateral support
increases. Some guidance on this is given in [3, 5].
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Figure 4.8 Buckled pattern of a plate free along one edge.

4.2.1.2 Plates free along one longitudinal edge

The thin flat plate shown in Figure 4.8 is simply supported along both transverse
edges and one longitudinal edge, and is free along the other. The differen-
tial equation of equilibrium of the plate in a buckled position is the same
as equation 4.105 (see Section 4.8.1). The buckled shape which satisfies this
equation differs, however, from the approximately square buckles of the simply
supported plate shown in Figure 4.7. The different boundary conditions along the
free edge cause the plate to buckle with a single half wave along its length, as
shown in Figure 4.8. Despite this, the solution for the elastic buckling stress σcr

can still be expressed in the general form of equation 4.3 in which the buckling
coefficient kσ is now approximated by

kσ = 0.425 +
(

b

L

)2

, (4.9)

as shown in Figure 4.9.
For the long-plate elements which are used as flange outstands in many structural

steel members, the buckling coefficient kσ is close to the minimum value of 0.425.
In this case the elastic buckling stress (for a steel for which E = 210 000 N/mm2

and ν = 0.3) is equal to the yield stress fy when

b

t

√
fy

235
= 18.5. (4.10)

Once again it is more economical to use longitudinal stiffeners to increase the
elastic buckling stress than transverse stiffeners. The stiffness requirements of
intermediate and edge longitudinal stiffeners are discussed in Section 4.2.1.1.

4.2.1.3 Plates with other support conditions

The edges of flat-plate elements may be fixed or elastically restrained, instead
of being simply supported or free. The elastic buckling loads of flat plates with
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Figure 4.9 Buckling coefficients of plate free along one edge.

various support conditions have been determined, and many values of the buckling
coefficient kσ to be used in equation 4.3 are given in [2–6].

4.2.1.4 Plate assemblies

Many structural steel compression members are assemblies of flat-plate elements
which are rigidly connected together along their common boundaries. The local
buckling of such an assembly can be analysed approximately by assuming that the
plate elements are hinged along their common boundaries, so that each plate acts
as if simply supported along its connected boundary or boundaries and free along
any unconnected boundary. The buckling stress of each plate element can then be
determined from equation 4.3 with kσ = 4 or 0.425 as appropriate, and the lowest
of these can be used as an approximation for determining the buckling load of the
member.

This approximation is conservative because the rigidity of the joints between the
plate elements causes all plates to buckle simultaneously at a stress intermediate
between the lowest and the highest of the buckling stresses of the individual plate
elements. Anumber of analyses have been made of the stress at which simultaneous
buckling takes place [4–6].

For example, values of the elastic buckling coefficient kσ for an I-section in
uniform compression are shown in Figure 4.10, and for a box section in uniform
compression in Figure 4.11. The buckling stress can be obtained from these figures
by using equation 4.3 with the plate thickness t replaced by the flange thickness
tf . The use of these stresses and other results [4–6] leads to economic thin-walled
compression members.
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Figure 4.10 Local buckling coefficients for I-section compression members.
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Figure 4.11 Local buckling coefficients for box section compression members.

4.2.2 Ultimate strength

4.2.2.1 Inelastic buckling of thick plates

The discussion given in Section 4.2.1 on the elastic buckling of rectangular plates
applies only to materials whose stress–strain relationships remain linear. Thus,
for stocky steel plates for which the calculated elastic buckling stress exceeds the
yield stress fy, the elastic analysis must be modified accordingly.

One particularly simple modification which can be applied to strain-hardened
steel plates is to use the strain-hardening modulus Est and

√
(EEst) instead of E
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in the terms of equation 4.105 (Section 4.8.1) which represent the longitudinal
bending and the twisting resistances to buckling, while still using E in the term
for the lateral bending resistance. With these modifications, the strain-hardening
buckling stress of a long simply supported plate is equal to the yield stress fy when

b

t

√
fy

235
= 23.7. (4.11)

More accurate investigations [7] of the strain-hardening buckling of steel plates
have shown that this simple approach is too conservative, and that the strain-
hardening buckling stress is equal to the yield stress when

b

t

√
fy

235
= 32.1 (4.12)

for simply supported plates, and when

b

t

√
fy

235
= 8.2 (4.13)

for plates which are free along one longitudinal edge. If these are compared with
equations 4.6 and 4.10, then it can be seen that these limits can be expressed in
terms of the elastic buckling stress σcr by√

fy
σcr

= 0.57 (4.14)

for simply supported plates, and by√
fy
σcr

= 0.46 (4.15)

for plates which are free along one longitudinal edge. These limits are shown in
Figure 4.4.

4.2.2.2 Post-buckling strength of thin plates

A thin elastic plate does not fail soon after it buckles, but can support loads signifi-
cantly greater than its elastic buckling load without deflecting excessively. This is
in contrast to the behaviour of an elastic compression member which can only carry
very slightly increased loads before its deflections become excessive, as indicated
in Figure 4.12. This post-buckling behaviour of a thin plate is due to a number of
causes, but the main reason is that the deflected shape of the buckled plate cannot
be developed from the pre-buckled configuration without some redistribution of
the in-plane stresses within the plate. This redistribution, which is ignored in the
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Figure 4.12 Post-buckling behaviour of thin elastic plates.

small deflection theory of elastic buckling, usually favours the less stiff portions
of the plate, and causes an increase in the efficiency of the plate.

One of the most common causes of this redistribution is associated with the
in-plane boundary conditions at the loaded edges of the plate. In long structural
members, the continuity conditions along the transverse lines dividing consecu-
tive buckled panels require that each of these boundary lines deflects a constant
amount longitudinally. However, the longitudinal shortening of the panel due to
its transverse deflections varies across the panel from a maximum at the centre
to a minimum at the supported edges. This variation must, therefore, be compen-
sated for by a corresponding variation in the longitudinal shortening due to axial
strain, from a minimum at the centre to a maximum at the edges. The longitudinal
stress distribution must be similar to the shortening due to strain, and so the stress
at the centre of the panel is reduced below the average stress while the stress at
the supported edges is increased above the average. This redistribution, which
is equivalent to a transfer of stress from the more flexible central region of the
panel to the regions near the supported edges, leads to a reduction in the transverse
deflection, as indicated in Figure 4.12.

A further redistribution of the in-plane stresses takes places when the longitu-
dinal edges of the panel are supported by very stiff elements which ensure that
these edges deflect a constant amount laterally, in the plane of the panel. In this
case the variation along the panel of the lateral shortening due to the transverse
deflections induces a self-equilibrating set of lateral in-plane stresses which are
tensile at the centre of the panel and compressive at the loaded edges. The tensile
stresses help support the less stiff central region of the panel, and lead to further
reductions in the transverse deflections, as indicated in Figure 4.12. However, this
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action is not usually fully developed, because the elements supporting the panels
of most structural members are not very stiff.

The post-buckling effect is greater in plates supported along both longitudinal
edges than it is in plates which are free along one longitudinal edge. This is because
the deflected shapes of the latter have much less curvature than the former and the
redistributions of the in-plane stresses are not as pronounced. In addition, it is not
possible to develop any lateral in-plane stresses along free edges, and so it is not
uncommon to ignore any post-buckling reserves of slender flange outstands.

The redistribution of the in-plane stresses after buckling continues with increas-
ing load until the yield stress fy is reached at the supported edges. Yielding then
spreads rapidly and the plate fails soon after, as indicated in Figure 4.3. The occur-
rence of the first yield in an initially flat plate depends on its slenderness, and a
thick plate yields before its elastic buckling stress σcr is reached. As the slender-
ness increases and the elastic buckling stress decreases below the yield stress, the
ratio of the ultimate stress fult to the elastic buckling stress increases, as shown in
Figure 4.4.

Although the analytical determination of the ultimate strength of a thin flat plate
is difficult, it has been found that the use of an effective width concept can lead to
satisfactory approximations. According to this concept, the actual ultimate stress
distribution in a simply supported plate (see Figure 4.13) is replaced by a simplified
distribution for which the central portion of the plate is ignored and the remaining
effective width beff carries the yield stress fy. It was proposed that this effective
width should be approximated by

beff

b
=

√
σcr

fy
, (4.16)

Actual ultimate
stress distribution

Average
ultimate
stress �ult

Central
excess width
ignored

(a) Ultimate stress distribution (b) Effective width concept
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Figure 4.13 Effective width concept for simply supported plates.
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which is equivalent to supposing that the ultimate load carrying capacity of the plate
fybeff t is equal to the elastic buckling load of a plate of width beff . Alternatively,
this proposal can be regarded as determining an effective average ultimate stress
fult which acts on the full width b of the plate. This average ultimate stress, which
is given by

fult

fy
=

√
σcr

fy
(4.17)

is shown in Figure 4.4.
Experiments on real plates with initial curvatures and residual stresses have

confirmed the qualitative validity of this effective width approach, but suggest
that the quantitative values of the effective width for hot-rolled and welded plates
should be obtained from equations of the type

beff

b
= α

√
σcr

fy
, (4.18)

where α reflects the influence of the initial curvatures and residual stresses. For
example, test results for the ultimate stresses fult(= fybeff /b) of hot-rolled sim-
ply supported plates with residual stresses and initial curvatures are shown in
Figure 4.14, and suggest a value of α equal to 0.65. Other values of α are given in
[8]. Tests on cold-formed members also support the effective width concept, with
quantitative values of the effective width being obtained from

beff

b
=

√
σcr

fy

(
1 − 0.22

√
σcr

fy

)
. (4.19)

4.2.2.3 Effects of initial curvature and residual stresses

Real plates are not perfectly flat, but have small initial curvatures similar to those
in real columns (see Section 3.2.2) and real beams (see Section 6.2.2). The initial
curvature of a plate causes it to deflect transversely as soon as it is loaded, as shown
in Figure 4.3. These deflections increase rapidly as the elastic buckling stress is
approached, but slow down beyond the buckling stress and approach those of an
initially flat plate.

In a thin plate with initial curvature, the first yield and failure occur only slightly
before they do in a flat plate, as indicated in Figure 4.3, while the initial curvature
has little effect on the resistance of a thick plate (see Figure 4.4). It is only in a plate
of intermediate slenderness that the initial curvature causes a significant reduction
in the resistance, as indicated in Figure 4.4.

Real plates usually have residual stresses induced by uneven cooling after rolling
or welding. These stresses are generally tensile at the junctions between plate
elements, and compressive in the regions away from the junctions. Residual com-
pressive stresses in the central region of a simply supported thin plate cause it
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Figure 4.14 Effective widths of simply supported plates.

to buckle prematurely and reduce its ultimate strength, as shown in Figure 4.4.
Residual stresses also cause premature yielding in plates of intermediate slender-
ness, as indicated in Figure 4.4, but have a negligible effect on the strain-hardening
buckling of stocky plates.

Some typical test results for thin supported plates with initial curvatures and
residual stresses are shown in Figure 4.14.

4.3 Plate elements in shear

4.3.1 Elastic buckling

The thin flat plate of length L, depth d, and thickness t shown in Figure 4.15
is simply supported along all four edges. The plate is loaded by shear stresses
distributed uniformly along its edges. When these stresses are equal to the elastic
buckling value τcr , then the plate can buckle by deflecting v laterally out of its
original plane into an adjacent position. For this adjacent position to be one of
equilibrium, the differential equilibrium equation [1–4](

∂4v

∂x4
+ 2

∂4v

∂x2∂z2
+ ∂4v

∂z4

)
= −2τcrt

D

∂2v

∂x∂z
(4.20)

must be satisfied (this may be compared with the corresponding equation 4.105 of
Section 4.8.1, for a plate in compression).

Closed form solutions of this equation are not available, but numerical solutions
have been obtained. These indicate that the plate tends to buckle along compression
diagonals, as shown in Figure 4.15. The shape of the buckle is influenced by
the tensile forces acting along the other diagonal, while the number of buckles
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Figure 4.15 Buckling pattern of a simply supported plate in shear.

increases with the aspect ratio L/d. The numerical solutions for the elastic buckling
stress τcr can be expressed in the form

τcr = π2E

12(1 − ν2)

kτ
(d/t)2

(4.21)

in which the buckling coefficient kτ is approximated by

kτ = 5.34 + 4

(
d

L

)2

(4.22)

when L ≥ d, and by

kτ = 5.34

(
d

L

)2

+ 4 (4.23)

when L ≤ d, as shown in Figure 4.16.
The shear stresses in many structural members are transmitted by unstiffened

webs, for which the aspect ratio L/d is large. In this case the buckling coefficient
kτ approaches 5.34, and the buckling stress can be closely approximated by

τcr = 5.34π2E/12(1 − ν2)

(d/t)2
. (4.24)

This elastic buckling stress is equal to the yield stress in shear τy = fy/
√

3 (see
Section 1.3.1) of a steel for which E = 210 000 N/mm2 and ν = 0.3 when

d

t

√
fy

235
= 86.4. (4.25)
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Figure 4.16 Buckling coefficients of plates in shear.

The values of the buckling coefficient kτ shown in Figure 4.16 and the form of
equation 4.21 indicate that the elastic buckling stress may be significantly increased
either by using intermediate transverse stiffeners to decrease the aspect ratio L/d
and to increase the buckling coefficient kτ , or by using longitudinal stiffeners to
decrease the depth–thickness ratio d/t. It is apparent from Figure 4.16 that such
stiffeners are likely to be most efficient when the stiffener spacing a is such that
the aspect ratio of each panel lies between 0.5 and 2 so that only one buckle can
form in each panel.

Any intermediate stiffeners used must be sufficiently stiff to ensure that the
elastic buckling stress τcr is increased to the value calculated for the stiffened
panel. Some values of the required stiffener second moment of area Ist are given
in [3, 5] for various panel aspect ratios a/d. These can be conservatively approx-
imated by using

Ist

at3/12(1 − ν2)
= 6

a/d
(4.26)

when a/d ≥ 1, and by using

Ist

at3/12(1 − ν2)
= 6

(a/d)4
(4.27)

when a/d ≤ 1.
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4.3.2 Ultimate strength

4.3.2.1 Unstiffened plates

A stocky unstiffened web in an I-section beam in pure shear is shown in
Figure 4.17a. The elastic shear stress distribution in such a section is analysed
in Section 5.10.2. The web behaves elastically in shear until first yield occurs at
τy = fy/

√
3, and then undergoes increasing plastification until the web is fully

yielded in shear (Figure 4.17b). Because the shear stress distribution at first yield
is nearly uniform, the nominal first yield and fully plastic loads are nearly equal,
and the shear shape factor is usually very close to 1.0. Stocky unstiffened webs in
steel beams reach first yield before they buckle elastically, so that their resistances
are determined by the shear stress τy, as indicated in Figure 4.18.

(a) I-section (b) Shear stress distributions

 y y

d

Elastic First yield Fully plastic

� �

Figure 4.17 Plastification of an I-section web in shear.
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Figure 4.18 Ultimate strengths of plates in shear.
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Thus the resistance of a stocky web in a flanged section for which the shear
shape factor is close to unity is closely approximated by the web plastic shear
resistance

Vpl = dtτy. (4.28)

When the depth–thickness ratio d/t of a long unstiffened steel web exceeds
86.4/

√
(fy/235), its elastic buckling shear stress τcr is less than the shear yield

stress (see equation 4.25). The post-buckling reserve of shear strength of such an
unstiffened web is not great, and its ultimate stress τult can be approximated with
reasonable accuracy by the elastic buckling stress τcr given by equation 4.24 and
shown by the dashed line in Figure 4.18.

4.3.2.2 Stiffened plates

Stocky stiffened webs in steel beams yield in shear before they buckle, and so the
stiffeners do not contribute to the ultimate strength. Because of this, stocky webs
are usually unstiffened.

In a slender web with transverse stiffeners which buckles elastically before it
yields, there is a significant reserve of strength after buckling. This is caused
by a redistribution of stress, in which the diagonal tension stresses in the web
panel continue to increase with the applied shear, while the diagonal compressive
stresses remain substantially unchanged. The increased diagonal tension stresses
form a tension field, which combines with the transverse stiffeners and the flanges
to transfer the additional shear in a truss-type action [7, 9], as shown in Figure 4.19.
The ultimate shear stresses τult of the web is reached soon after yield occurs in the
tension field, and this can be approximated by

τult = τcr + τtf (4.29)

in which τcr is the elastic buckling stress given by equations 4.21–4.23 with L
equal to the stiffener spacing a, and τtf is the tension field contribution at yield
which can be approximated by

τtf = fy
2

(1 − √
3τcr/fy)√

1 + (a/d)2
. (4.30)

Thus the approximate ultimate strength can be obtained from

√
3τult

fy
=

√
3τcr

fy
+

√
3

2

(1 − √
3τcr/fy)√

1 + (a/d)2
, (4.31)

which is shown in Figure 4.18. This equation is conservative, as it ignores any
contributions made by the bending resistance of the flanges to the ultimate strength
of the web [9, 10].



 

118 Local buckling of thin-plate elements

Chord Web strut Tension member

(a) Equivalent truss

(b)Tension fields

Tension fieldWeb stiffenerFlange

a a a

d

Figure 4.19 Tension fields in a stiffened web.

Not only must the intermediate transverse stiffeners be sufficiently stiff to ensure
that the elastic buckling stress τcr is reached, as explained in Section 4.3.1, but
they must also be strong enough to transmit the stiffener force

Nst = fydt

2

(
1 −

√
3τcr

fy

)[
a

d
− (a/d)2√

1 + (a/d)2

]
(4.32)

required by the tension field action. Intermediate transverse stiffeners are often so
stocky that their ultimate strengths can be approximated by their squash loads, in
which case the required area Ast of a symmetrical pair of stiffeners is given by

Ast = Nst/fy. (4.33)

However, the stability of very slender stiffeners should be checked, in which
case the second moment of area Ist required to resist the stiffener force can be
conservatively estimated from

Ist = Nstd2

π2E
(4.34)

which is based on the elastic buckling of a pin-ended column of length d.

4.4 Plate elements in bending

4.4.1 Elastic buckling

The thin flat plate of length L, width d, and thickness t shown in Figure 4.20
is simply supported along all four edges. The plate is loaded by bending stress
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Figure 4.20 Buckled pattern of a plate in bending.

distributions which vary linearly across its width. When the maximum stress
reaches the elastic buckling value σcrl , the plate can buckle out of its original
plane as shown in Figure 4.20. The elastic buckling stress can be expressed in
the form

σcrl = π2E

12(1 − ν2)

kσ
(d/t)2

(4.35)

where the buckling coefficient kσ depends on the aspect ratio L/d of the plate and
the number of buckles along the plate. For long plates, the value of kσ is close to
its minimum value of

kσ = 23.9 (4.36)

for which the length of each buckle is approximately 2d/3. By using this
value of kσ , it can be shown that the elastic buckling stress for a steel for which
E = 210 000 N/mm2 and ν = 0.3 is equal to the yield stress fy when

d

t

√
fy

235
= 138.9. (4.37)

The buckling coefficient kσ is not significantly greater than 23.9 except when the
buckle length is reduced below 2d/3. For this reason, transverse stiffeners are
ineffective unless more closely spaced than 2d/3. On the other hand, longitudinal
stiffeners may be quite effective in changing the buckled shape, and therefore the
value of kσ . Such a stiffener is most efficient when it is placed in the compression
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region at about d/5 from the compression edge. This is close to the position of
the crests in the buckles of an unstiffened plate. Such a stiffener may increase the
buckling coefficient kσ significantly, the maximum value of 129.4 being achieved
when the stiffener acts as if rigid. The values given in [5, 6] indicate that a hypo-
thetical stiffener of zero area Ast will produce this effect if its second moment of
area Ist is equal to 4dt3. This value should be increased to allow for the compres-
sive load in the real stiffener, and it is suggested that a suitable value might be
given by

Ist = 4dt3
[

1 + 4
Ast

dt

(
1 + Ast

dt

)]
, (4.38)

which is of a similar form to that given by equation 4.7 for the longitudinal stiffeners
of plates in uniform compression.

4.4.2 Plate assemblies

The local buckling of a plate assembly in bending, such as an I-beam bent about its
major axis, can be analysed approximately by assuming that the plate elements are
hinged along their common boundaries in much the same fashion as that described
in Section 4.2.1.4 for compression members. The elastic buckling moment can
then be approximated by using kσ = 0.425 or 4 for the flanges, as appropriate,
and kσ = 23.9 for the web, and determining the element which is closest to
buckling. The results of more accurate analyses of the simultaneous buckling of
the flange and web elements in I-beams and box section beams in bending are
given in Figures 4.21 and 4.22, respectively.
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Figure 4.22 Local buckling coefficients for box section beams.

4.4.3 Ultimate strength

The ultimate strength of a thick plate in bending is governed by its yield stress fy
and by its plastic shape factor which is equal to 1.5 for a constant thickness plate,
as discussed in Section 5.5.2.

When the width to thickness ratio d/t exceeds 138.9/
√
(fy/235), the elastic

buckling stress σcrl of a simply supported plate is less than the yield stress fy
(see equation 4.37). A long slender plate such as this has a significant reserve of
strength after buckling, because it is able to redistribute the compressive stresses
from the buckled region to the area close to the supported compression edge, in the
same way as a plate in uniform compression (see Section 4.2.2.2). Solutions for
the post-buckling reserve of strength of a plate in bending given in [6, 11–13] show
that an effective width treatment can be used, with the effective width being taken
over part of the compressive portion of the plate. In the more general case of the
slender plate shown in Figure 4.20 being loaded by combined bending and axial
force, the post-buckling strength reserve of the plate can be substantial. For such
plates, the effective width is taken over a part of the compressive portion of the plate.
Effective widths can be obtained in this way from the local buckling stressσcr under
combined bending and axial force using the modified plate slenderness

√
(f y/σcr)

in a similar fashion to that depicted in Figure 4.14, although the procedure is more
complex.

4.5 Plate elements in bending and shear

4.5.1 Elastic buckling

The elastic buckling of the simply supported thin flat plate shown in Figure 4.23
which is subjected to combined shear and bending can be predicted by using the
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Figure 4.23 Simply supported plate under shear and bending.

approximate interaction equation [2, 4, 5, 13]

(
τcr

τcro

)2

+
(
σcrl

σcrlo

)2

= 1 (4.39)

in which τcro is the elastic buckling stress when the plate is in pure shear
(see equations 4.21–4.24) and σcrlo is the elastic buckling stress for pure bending
(see equations 4.35 and 4.36). If the elastic buckling stresses τcr , σcrl are used in
the Hencky–Von Mises yield criterion (see Section 1.3.1)

3τ 2
cr + σ 2

crl = f 2
y , (4.40)

it can shown from equations 4.39 and 4.40 that the most severe loading condition
for which elastic buckling and yielding occur simultaneously is that of pure shear.
Thus, in an unstiffened web of a steel for which E = 210 000 N/mm2 and ν = 0.3,
yielding will occur before buckling while (see equation 4.25)

d

t

√
fy

235
≤ 86.4. (4.41)

4.5.2 Ultimate strength

4.5.2.1 Unstiffened plates

Stocky unstiffened webs in steel beams yield before they buckle, and their design
resistances can be estimated approximately by using the Hencky–Von Mises yield
criterion (see Section 1.3.1), so that the shear force Vw and moment Mw in the
web satisfy

3

(
Vw

dt

)2

+
(

6Mw

d2t

)2

= f 2
y . (4.42)
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This approximation is conservative, as it assumes that the plastic shape factor for
web bending is 1.0 instead of 1.5.

While the elastic buckling of slender unstiffened webs under combined shear
and bending has been studied, the ultimate strengths of such webs have not been
fully investigated. However, it seems possible that there is only a small reserve
of strength after elastic buckling, so that the ultimate strength can be approxi-
mated conservatively by the elastic buckling stress combinations which satisfy
equation 4.39.

4.5.2.2 Stiffened plates

The ultimate strength of a stiffened web under combined shear and bending can be
discussed in terms of the interaction diagram shown in Figure 4.24 for the ultimate
shear force V and bending moment M acting on a plate girder. When there is
no shear, the ultimate moment capacity is equal to the full plastic moment Mp,
providing the flanges are Class 1 or Class 2 (see Section 4.7.2), while the ultimate
shear capacity in the absence of bending moment is

Vult = dtτult , (4.43)

where the ultimate stress τult is given approximately by equation 4.31 (which
ignores any contributions made by the bending resistance of the flanges). This
shear capacity remains unchanged as the bending moment increases to the value
Mfp which is sufficient to fully yield the flanges if they alone resist the moment.
This fact forms the basis for the widely used proportioning procedure for which it
is assumed that the web resists only the shear and that the flanges are required to
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Figure 4.24 Ultimate strengths of stiffened webs in shear and bending.
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resist the full moment. As the bending moment increases beyond Mfp, the ultimate
shear capacity falls off rapidly as shown. A simple approximation for the reduced
shear capacity is given by

V

Vult
= 0.5

(
1 +

√
1 − M/Mp

1 − Mfp/Mp

)
(4.44)

while Mfp/Mp ≤ M/Mp ≤ 1. This approximation ignores the influence of the
bending stresses on the tension field and the bending resistance of the flanges. A
more accurate method of analysis is discussed in [14].

4.6 Plate elements in bearing

4.6.1 Elastic buckling

Plate elements are subjected to bearing stresses by concentrated or locally dis-
tributed edge loads. For example, a concentrated load applied to the top flange
of a plate girder induces local bearing stresses in the web immediately beneath
the load. In a slender girder with transverse web stiffeners, the load is resisted by
vertical shear stresses acting at the stiffeners, as shown in Figure 4.25a. Bearing
commonly occurs in conjunction with shear (as at an end support, see Figure 4.25b),
bending (as at mid-span, see Figure 4.25c), and with combined shear and bending
(as at an interior support, see Figure 4.25d).

In the case of a panel of a stiffened web, the edges of the panel may be regarded
as simply supported. When the bearing load is distributed along the full length a of
the panel and there is no shear or bending, the elastic bearing buckling stress σcrp
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M M

M M

(a) Bearing (c) Bearing and bending

(b) Bearing and shear (d) Bearing, shear, and bending
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Figure 4.25 Plate girder webs in bearing.
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Figure 4.26 Buckling coefficients of plates in bearing.

can be expressed as

σcrp = π2E

12(1 − ν2)

kσ
(d/t)2

(4.45)

in which the buckling coefficient kσ varies with the panel aspect ratio a/d as shown
in Figure 4.26.

When a patch-bearing load acts along a reduced length αa of the top edge of
the panel, the value of αkσ is decreased. This effect has been investigated [15],
and some values of αkσ are shown in Figure 4.26. These values suggest a limiting
value of αkσ = 0.8 approximately for the case of unstiffened webs (a/d → ∞)

with concentrated loads (α → 0).
For the case of a panel in combined bearing, shear, and bending, it has been

suggested [6, 15] that the elastic buckling stresses can be determined from the
interaction equation

σcrp

σcrpo
+

(
τcr

τcro

)2

+
(
σcrl

σcrlo

)2

= 1 (4.46)

in which the final subscripts o indicate the appropriate elastic buckling stress when
only that type of loading is applied. Some specific interaction diagrams are given
in [15].

4.6.2 Ultimate strength

The ultimate strength of a thick web in bearing depends chiefly on its yield stress
fy. Although yielding first occurs under the centre of the bearing plate, general
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yielding does not take place until the applied load is large enough to yield a web
area defined by a dispersion of the applied stress through the flange. Even at this
load the web does not collapse catastrophically, and some further yielding and
redistribution is possible. When the web is also subjected to shear and bending,
general yielding in bearing can be approximated by using the Hencky–Von Mises
yield criterion (see Section 1.3.1)

σ 2
p + σ 2

b − σpσb + 3τ 2 = f 2
y (4.47)

in which σp is the bearing stress, σb the bending stress and τ the shear stress.
Thin stiffened web panels in bearing have a reserve of strength after elastic buck-

ling which is due to a redistribution of stress from the more flexible central region
to the stiffeners. Studies of this effect suggest that the reserve of strength decreases
as the bearing loads become more concentrated [15]. The collapse behaviour of
stiffened panels is described in [16, 17].

4.7 Design against local buckling

4.7.1 Compression members

The cross-sections of compression members must be designed so that the design
compression force NEd does not exceed the design compressive resistance Nc,Rd ,
whence

NEd ≤ Nc,Rd . (4.48)

This ignores overall member buckling, as discussed in Chapter 3, for which
the non-dimensional slenderness λ ≤ 0.2. The EC3 design expression for
cross-section resistance under uniform compression is

Nc,Rd = Aeff fy
γM0

(4.49)

in which Aeff is the effective area of the cross-section, fy is the nominal
yield strength for the section and γM0(=1) is the partial section resistance
factor.

The cross-section of a compression member may buckle locally before it reaches
its yield stress fy, in which case it is defined in EC3 as a Class 4 cross-section.
Cross-sections of compression members which yield prior to local buckling are
‘effective’, and are defined in EC3 as being either of Class 1, Class 2, or Class 3.
For these cross-sections which are unaffected by local bucking, the effective area
Aeff in equation 4.49 is taken as the gross area A. A cross-section composed of
flat-plate elements has no local buckling effects when the width–thickness ratio
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b/t of every element of the cross-section satisfies

b

t
≤ λ3ε (4.50)

where λ3ε is the appropriate Class 3 slenderness limit of Table 5.2 of EC3 and
ε is a constant given by

ε =
√

235/fy (4.51)

in which fy is in N/mm2 units. Some values of λ3ε are given in Figures 4.27
and 4.28.

Class 4 cross-sections are those containing at least one slender element for which
equation 4.50 is not satisfied. For these, the effective area is reduced to

Aeff =
∑

Ac,eff (4.52)

in which Ac,eff is the effective area of a flat compression element comprising the
cross-section, which is obtained from its gross area Ac by

Ac,eff = ρAc (4.53)

where ρ is a reduction factor given by

ρ = (λp − 0.22)/λ
2
p ≤ 1.0 (4.54)
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for element supported on both edges, and

ρ = (λp − 0.188)/λ
2
p ≤ 1.0 (4.55)

for outstands, and where

λp =
√

fy
σcr

= b

t

1

28.4ε
√

kσ
(4.56)

is the modified plate slenderness (see equation 4.5). Values of the local buck-
ling coefficient kσ are given in Table 4.2 of EC3-1-5 and are similar to those in
Figures 4.10 and 4.11.

A circular hollow section member has no local buckling effects when its
diameter–thickness ratio d/t satisfies

d

t
≤ 90ε2. (4.57)

If the diameter–thickness ratio does not satisfy equation 4.57, then it has a Class
4 cross-section whose effective area is reduced to

Aeff =
√

90

d/(tε2)
A. (4.58)

Worked examples for checking the section capacities of compression members are
given in Sections 4.9.1 and 3.12.1–3.12.3.

4.7.2 Beam flanges and webs in compression

Compression elements in a beam cross-section are classified in EC3 as Class 1,
Class 2, Class 3, or Class 4, depending on their local buckling resistance.

Class 1 elements are unaffected by local buckling, and are able to develop
and maintain their fully plastic capacities (Section 5.5) while inelastic moment
redistribution takes place in the beam. Class 1 elements satisfy

b/t ≤ λ1ε (4.59)

in which λ1ε is the appropriate plasticity slenderness limit given in Table 5.2 of
EC3 (some values of λ1ε are shown in Figures 4.28 and 5.33). These limits are
closely related to equations 4.12 and 4.13 for the strain-hardening buckling stresses
of inelastic plates.

Class 2 elements are unaffected by local buckling in the development of their
fully plastic capacities (Section 5.5), but may be unable to maintain these capacities
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while inelastic moment redistribution takes place in the beam. Class 2 sections
satisfy

λ1ε ≤ b/t ≤ λ2ε (4.60)

in which λ2ε is the appropriate Class 2 slenderness limit given in Table 5.2 of EC3
(some values of λ2ε are shown in Figures 4.28 and 5.33). These limits are slightly
greater than those implied in equations 4.12 and 4.13 for the strain-hardening
buckling of inelastic plates.

Class 3 elements are able to reach first yield, but buckle locally before they
become fully plastic. Class 3 elements satisfy

λ2ε ≤ b/t ≤ λ3ε (4.61)

in which λ3ε is the appropriate yield slenderness limit given in Table 5.2 of EC3
(some values of λ3ε are shown in Figures 4.28 and 5.33). These limits are closely
related to equations 4.18 used to define the effective widths of flange plates in
uniform compression or modified from equation 4.37 for web plates in bending.
Class 4 elements buckle locally before they reach first yield, and satisfy

λ3ε < b/t. (4.62)

Beam cross-sections are classified as being Class 1, Class 2, Class 3, or Class 4,
depending on the classification of their elements. A Class 1 cross-section has all
of its elements being Class 1. A Class 2 cross-section has no Class 3 or Class 4
elements and has at least one Class 2 element, while a Class 3 cross-section has
no Class 4 elements and at least one Class 3 element. A Class 4 cross-section has
at least one Class 4 element.
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A beam cross-section must be designed so that its factored design moment MEd

does not exceed the design section moment resistance, so that

MEd ≤ Mc,Rd . (4.63)

Beams must also be designed for shear (Section 4.7.3) and against lateral buckling
(Section 6.9). The section resistance Mc,Rd is given by

Mc,Rd = Wfy
γM0

(4.64)

in which W is the appropriate section modulus, fy the yield strength and γM0(=1)
the partial section resistance factor. For Class 1 and 2 beam cross-sections

W = Wpl , (4.65)

where Wpl is the plastic section modulus and which allows many beams to be
designed for the full plastic moment

Mp = Wplfy (4.66)

as indicated in Figure 4.28.
For Class 3 beam cross-sections, the effective section modulus is taken as the

minimum elastic section modulus Wel,min which is that based on the extreme
fibre that reaches yield first. Some I-sections have Class 1 or 2 flanges, but con-
tain a Class 3 web and so based on the EC3 classification they would be Class
3 cross-sections and unsuitable for plastic design. However, the EC3 permits
these sections to be classified as effective Class 2 cross-sections by neglecting
part of the compression portion of the web. This simple procedure for hot-
rolled or welded sections conveniently replaces the compressed portion of the
web by a part of width 20εtw adjacent to the compression flange, and with
another part of width 20εtw adjacent to the plastic neutral axis of the effective
cross-section.

For a beam with a slender compression flange supported along both edges,
the effective section modulus Wel may be determined by calculating the elastic
section modulus of an effective cross-section obtained by using a compres-
sion flange effective width beff obtained using equation 4.53. The calculation
of Wel must incorporate the possibility that the effective section is not sym-
metric, and that the centroids of the gross and effective sections do not
coincide.

Worked examples of classifying the section and checking the section moment
capacity are given in Sections 4.9.2–4.9.4, 5.12.15 and 5.12.17.
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4.7.3 Members in compression and bending

For cross-sections subjected to a design compressive force NEd and a design major
axis bending moment My,Ed , EC3 requires the interaction equation

NEd

NRd
+ My,Ed

My,Rd
≤ 1 (4.67)

to be satisfied, where NRd is the compression resistance of the cross-section deter-
mined from equation 4.49 and My,Rd is the bending resistance of the cross-section
determined according to equation 4.63. Generally, the provision of equation 4.67
is overly conservative and is of use only for preliminary member sizing, and so
EC3 provides less conservative and more detailed member checks depending on
the section classification.

If the cross-section is Class 1 or 2, EC3 reduces the design bending resistance
My,Rd to a value My,N ,Rd , dependent on the coincident axial force NEd . Provided
that

NEd ≤ 0.25Npl,Rd and (4.68)

NEd ≤ 0.5hwtwfy
γM0

(4.69)

where Npl,Rd is the resistance based on yielding given by equation 4.49 and
γM0(= 1) is the partial section resistance factor, no reduction in the plastic moment
capacity My,Rd = Mpl,y,Rd is needed since for small axial loads the theoretical
reduction in the plastic moment is offset by strain hardening. If either of equations
4.68 or 4.69 is not satisfied, EC3 requires that

MN ,y,Rd = Mpl,y,Rd

(
1 − n

1 − 0.5a

)
(4.70)

where

n = NEd/Npl,Rd (4.71)

is the ratio of the applied compression load to the plastic compression resistance
of the cross-section, and

a = (A − 2bf tf )/A ≤ 0.5 (4.72)

is the ratio of the area of the web to the total area of the cross-section.
For Class 3 cross-sections, EC3 allows only a linear interaction of the stresses

arising from the combined bending moment and axial force, so that the maximum
longitudinal stress is limited to the yield stress, that is

σx,Ed ≤ fy/γM0. (4.73)

As for Class 3 cross-sections, the longitudinal stress in Class 4 sections sub-
jected to combined compression and bending is calculated based on the effective
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properties of the cross-section so that equation 4.73 is satisfied. The resulting
expression that satisfies equation 4.73 is

NEd

Aeff fy/γM0
+ My,Ed + NEdeNy

Weff ,y,min fy/γM0
≤ 1. (4.74)

Equation 4.74 accounts for the additional bending moment caused by a shift eNy

in the compression force NEd from the geometric centroid of the net cross-section
to the centroid of the effective cross-section.

4.7.4 Longitudinal stiffeners

A logical basis for the design of a web in pure bending is to limit its proportions so
that its maximum elastic bending strength can be used, so that the web is a Class 3
element. When this is done, the section resistance My,Rd of the beam is governed
by the slenderness of the flanges. Thus EC3 requires a fully effective unstiffened
web to satisfy

hw/tw ≤ 124ε. (4.75)

This limit is close to the value of 126.9 at which the elastic buckling stress is equal
to the yield stress (see equation 4.37).

Unstiffened webs whose slenderness exceeds this limit are Class 4 elements,
but the use of one or more longitudinal stiffeners can delay local buckling so that
they become Class 3 elements, and the cross-section can be designed as a Class 2
section as discussed in Section 4.7.2. EC3 does not specify the minimum stiffness
of longitudinal stiffeners to prevent the web plate from deflecting at the stiffener
location during local buckling, such as in equation 4.38. Rather, it allows the
plate slenderness λp in equation 4.56 to be determined from the local buckling
coefficient kσ ,p which incorporates both the area and second moment of the area
of the stiffener. If the stiffened web plate is proportioned such that λp ≤ 0.874, the
reduction factor in equation 4.53 is unity and the longitudinal stress in the stiffened
web can reach its yield strength prior to local buckling.

The Australian standard AS4100 [18] gives a simpler method of design in
which a first longitudinal stiffener whose second moment of area is at least that
of equation 4.28 is placed one-fifth of the web depth from the compression when
the overall depth–thickness ratio of the web exceeds the limit of

hw/tw = 194ε (4.76)

which is greater than that of equation 4.75 because it considers the effect of the
flanges on the local buckling stress of the web. An additional stiffener whose
second moment of area exceeds

Ist = hwt3
w (4.77)

is required at the neutral axis when hw/tw exceeds 242ε.
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4.7.5 Beam webs in shear

4.7.5.1 Stocky webs

The factored design shear force VEd on a cross-section must satisfy

VEd ≤ Vc,Rd (4.78)

in which Vc,Rd is the design uniform shear resistance which may be calculated
based on a plastic (Vpl,Rd) or elastic distribution of shear stress.

I-sections have distributions of shear stress through their webs that are approx-
imately uniform (Section 5.4.2) and for stocky webs with hw/tw < 72ε, the yield
stress in shear τy = fy/

√
3 is reached before local buckling. Hence EC3 requires

that

Vc,Rd = Vpl,Rd = Av(fy/
√

3)

γM0
(4.79)

where γM0 = 1 and Av is the shear area of the web which is defined in Clause
6.2.6 of EC3. This resistance is close to, but more conservative than, the resistance
given in equation 4.28, since the shear area Av is reduced for hot-rolled sections
by including the root radius in its calculation, and because equation 4.79 ignores
the effects of strain hardening. Some sections, such as a monosymmetric I-section,
have non-uniform distributions of the shear stress τEd in their webs. Based on an
elastic stress distribution, the maximum value of τEd may be determined as in
Section 5.4.2, and EC3 then requires that

τEd ≤ fy/
√

3

γM0
. (4.80)

Cross-sections for which hw/tw ≤ 72ε are stocky, and the webs of all UB’s and
UC’s in Grade 275 steel satisfy hw/tw ≤ 72ε.

4.7.5.2 Slender webs

The shear resistance of slender unstiffened webs for which hw/tw > 72ε decreases
rapidly from the value in equation 4.79 as the slenderness hw/tw increases. For
these

Vc,Rd = Vbw,Rd ≤ η
fyw/

√
3

γM1
hwtw (4.81)

where Vbw,Rd is the design resistance governed by buckling of the web in shear,
fyw is the yield strength of the web, η is a factor for the shear area that can be
taken as 1.2 for steels up to S460 and 1.0 otherwise, and γM1(= 1) is a partial
resistance factor based on buckling. The buckling resistance of the web is given



 

134 Local buckling of thin-plate elements

in EC3 as

Vbw,Rd = χw
fyw/

√
3

γM1
hwtw (4.82)

in which the web reduction factor on the yield strength hwtwfyw/
√

3 due to
buckling is

χw =
{

1 λw < 0.83
0.83/λw λw ≥ 0.83

(4.83)

where the modified web plate slenderness is

λw =
√

fyw/
√

3

τcr
≈ 0.76

√
fyw

τcr
(4.84)

and τcr is the elastic local buckling stress in shear given in equation 4.21.
equation 4.84 is of the same form as equation 4.5. For an unstiffened web,
λw = (hw/tw)/86.4ε, and so it can be seen from equation 4.82 that the resis-
tance of an unstiffened web decreases with an increase in its depth–thickness ratio
hw/tw.

The shear resistance of a slender web may be increased by providing transverse
stiffeners which increase the resistance to elastic buckling (Section 4.3.1) and
also permit the development of tension field action (Section 4.3.2.2). Thus

Vc,Rd = Vbw,Rd + Vbf ,Rd ≤ η
fyw/

√
3

γM1
hwtw (4.85)

in which Vbw,Rd is the web resistance given in equation 4.81 and Vbf ,Rd is
the flange shear contribution provided by the understressed flanges during the
development of the tension field in the web, which further enhances the shear
resistance. In determining the web resistance reduction factor due to buckling χw

in equation 4.82, the modified plate slenderness is given by

λw = hw

tw

1

37.4ε
√

kτ
(4.86)

where kτ is the local buckling coefficient given in equations 4.22 or 4.23, with L
equal to the stiffener spacing a and d equal to the web depth hw. The additional
post-buckling reserve of capacity due to tension field action for web plates with
λw > 1.08 is achieved by the use of an enhanced reduction factor of χw = 1.37/
(0.7+λw) instead of the more conservativeχw = 0.83/λw. The presence of tension
field action is also accounted for implicitly in the additional flange resistance

Vbf ,Rd = bf t2
f

c

fyf

γM1

[
1 −

(
MEd

Mf ,Rd

)2
]

(4.87)

where MEd is the design bending moment, Mf ,Rd is the moment of resistance of
the cross-section consisting of the area of the effective flanges only, fyf is the
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yield strength of the flanges, and where

c = a

(
0.25 + 1.6

bf t2
f

twh2
w

fyf

fyw

)
. (4.88)

Worked examples of checking the shear capacity of a slender web are given in
Sections 4.9.5 and 4.9.6.

4.7.5.3 Transverse stiffeners

Provisions are made in EC3 for a minimum value for the second moment of area
Ist of intermediate transverse stiffeners. These must be stiff enough to ensure that
the elastic buckling stress τcr of a panel can be reached, and strong enough to
transmit the tension field stiffener force. The stiffness requirement of EC3 is that
the second moment of area of a transverse stiffener must satisfy

Ist ≥ 0.75hwt3
w, (4.89)

when a/hw >
√

2, in which hw is the depth of the web, and

Ist ≥ 1.5h3
wt3

w/a
2 (4.90)

when a/hw ≤ √
2. These limits are shown in Figure 4.29, and are close to those of

equations 4.27 and 4.26.
The strength requirement of EC3 for transverse stiffeners is that they should

be designed as compression members of length hw with an initial imperfection

Value of a/d

0
0 1 2 3
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2

equation 4.27

equation 4.89

equation 4.90

equation 4.26
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Figure 4.29 Stiffness requirements for web stiffeners.
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w0 = hw/300, using second-order elastic analysis, for which the maximum stress
is limited by

σz,Rd = fy/γM1. (4.91)

The effective stiffener cross-section for this design check consists of the cross-
section of the stiffener itself plus a width of the web 15εtw each side of the stiffener,
and the force to be resisted by the effective stiffener cross-section is

Nz,Ed = VEd − hwtw

λ
2
w

fyw/
√

3

γM1
(4.92)

where λw is given by equation 4.85. Using equation 3.8 for the bending of an
initially crooked compression member, this procedure implies that the maximum
stress in the effective stiffener cross-section is

σz,Rd = Nz,Ed

Ast

[
1 + hwAst

300Wx,st,min

(
Nz,Ed/Ncr

1 − Nz,Ed/Ncr

)]
(4.93)

where

Ncr = π2EIst/h
2
w (4.94)

is the elastic flexural buckling load of the effective stiffener area and Ast and Ist

are the area and second moment of area of the effective stiffener area, and Wx,st,min

is its minimum elastic section modulus.
A worked example of checking a pair of transverse stiffeners is given in

Section 4.9.8.

4.7.5.4 End panels

At the end of a plate girder, there is no adjacent panel to absorb the horizontal
component of the tension field in the last panel, and so this load may have to be
resisted by the end stiffener. A rigid end post is required if tension field action is to
be utilised in design. Special treatment of this end stiffener may be avoided if the
length of the last (anchor) panel is reduced so that the tension field contribution
τtf to the ultimate stress τult is not required (see equation 4.29). This is achieved
by designing the anchor panel so that its shear buckling resistance Vbw,Rd given
by equation 4.82 is not less than the design shear force VEd . A worked example of
checking an end panel is given in Section 4.9.7.

Alternatively, a rigid end post consisting of two double-sided load-bearing
transverse stiffeners (see Section 4.7.6.2) may be used to anchor the tension field
at the end of a plate girder. The end post region consisting of the web and twin
pairs of stiffeners can be thought of as a short beam of length hw, and EC3 requires
this beam to be designed to resist the in-plane stresses in the web resulting from
the shear VEd .
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4.7.6 Beam webs in shear and bending

Where the design moment MEd and shear VEd are both high, the beam must be
designed against combined shear and bending. For stocky webs, when the shear
force is less than half the plastic resistance Vpl,Rd , EC3 allows the effect of the
shear on the moment resistance to be neglected. When VEd > 0.5Vpl,Rd , EC3
requires the bending resistance to be determined using a reduced yield strength

fyr = (1 − ρ)fyw (4.95)

for the shear area, where

ρ =
(

2VEd

Vpl,Rd
− 1

)2

. (4.96)

The interaction curve between the design shear force VEd and design moment MEd

is shown in Figure 4.30. These equations are less conservative than the von-Mises
yield condition (see Section 1.3.1)

f 2
yr + 3τ 2

Ed = f 2
y . (4.97)

Equations 4.95 and 4.96 may be used conservatively for the well-known propor-
tioning method of design, for which only the flanges are used to resist the moment
and the web to resist the shear force, and which is equivalent to using a reduced
yield strength fyr = 0 in equation 4.95 for the web.

1.0 

0.8 

0.6 

0.4 

0.2 

0
0 0.2 0.4 0.6 0.8 1.0

Mv,Ed/ Mpl,Rd

V
E

d/
V

pl
,R

d

0.7

0.5

Figure 4.30 Section resistances of beams under bending and shear.
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EC3 also uses a simpler reduced design plastic resistance My,V ,Rd for I-sections
with a stocky web in lieu of the more tedious use of equations 4.95 and 4.96. Hence

My,V ,Rd = (Wpl,y − ρA2
w/4tw)fy

γM0
, (4.98)

where ρ is given in equation 4.96, Aw = hwtw is the area of the web and Wpl,y is
the major axis plastic section modulus. If the web is slender so that its resistance
is governed by shear buckling, EC3 allows the effect of shear on the bending
resistance to be neglected when VEd < 0.5Vbw,Rd . When this is not the case, the
reduced bending resistance is

MV ,Rd = Mpl,Rd(1 − ρ2)+ Mf ,Rdρ
2, (4.99)

where ρ is given in equation 4.96 using the shear buckling resistance Vbw,Rd

instead of the plastic resistance Vpl,Rd , Mf ,Rd is the plastic moment of resistance
consisting of the effective area of the flanges and Mpl,Rd is the plastic resistance
of the cross-section consisting of the effective area of the flanges and the fully
effective web, irrespective of the section class. The reduced bending strength in
equation 4.99 is similar to that implied in equation 4.44. If the contribution of
the web is conservatively neglected in determining Mpl,Rd for the cross-section,
equation 4.99 leads to MV ,Rd = Mf ,Rd which is the basis of the proportioning
method of design.

4.7.7 Beam webs in bearing

4.7.7.1 Unstiffened webs

For the design of webs in bearing according to EC3, the bearing resistance FRd

based on yielding and local buckling is taken as

FRd = χF
fywtw�y

γM1
(4.100)

in which �y is the effective loaded length of the web and

χF = 0.5

λF
(4.101)

is a reduction factor for the yield strength Fy = fywtw�y due to local buckling in
bearing, in which

λF =
√

Fy

Fcr
(4.102)
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is a modified plate slenderness for bearing buckling (which is of the same form as
equation 4.5) and

Fcr = kFπ
2E

12(1 − ν2)

(
tw
hw

)2

hwtw (4.103)

is the elastic buckling load for a web of area hwtw in bearing. The buck-
ling coefficients for plates in bearing are similar to those in Figure 4.26, with
kF = 6 + 2/(a/hw)

2 being used for a web of the type shown in Figure 4.25a. The
effective loaded length used in determining the yield resistance Fy in bearing is

�y = ss + 2ntf (4.104)

in which ss is the stiff bearing length and ntf is the additional length assuming a
dispersion of the bearing at 1: n through the flange thickness. More conveniently,
the dispersion can be thought of as being at a slope 1:1 through a depth of (n−1)tf
into the web. For a thick web (for which λF < 0.5), n = 1 + √

(bf /tw), while for
a slender web (for which λF > 0.5), n = 1 + √[bf /tw + 0.02(hw/tf )2].

4.7.7.2 Stiffened webs

When a web alone has insufficient bearing capacity, it may be strengthened by
adding one or more pairs of load-bearing stiffeners. These stiffeners increase the
yield and buckling resistances by increasing the effective section to that of the
stiffeners together with the web lengths 15twε on either side of the stiffeners, if
available. The effective length of the compression member is taken as the stiffener
length hw, or as 0.75hw if flange restraints act to reduce the stiffener end rotations
during buckling, and curve c of Figure 3.13 for compression members should be
used.

A worked example of checking load-bearing stiffeners is given in Section 4.9.9.

4.8 Appendix – elastic buckling of plate
elements in compression

4.8.1 Simply supported plates

A simply supported rectangular plate element of length L, width b, and thickness
t is shown in Figure 4.5b. Applied compressive loads N are uniformly distributed
over both edges b of the plate. The elastic buckling load Ncr can be determined
by finding a deflected position such as that shown in Figure 4.5b which is one of
equilibrium. The differential equation for this equilibrium position is [1–4]

bD

(
∂4v

∂x4
+ 2

∂4v

∂x2∂z2
+ ∂4v

∂z4

)
= −Ncr

∂2v

∂x∂z
(4.105)
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where

bD = Ebt3

12(1 − ν2)
(4.106)

is the flexural rigidity of the plate.
Equation 4.105 is compared in Figure 4.5 with the corresponding differential

equilibrium equation for a simply supported rectangular section column (obtained
by differentiating equation 3.56 twice). It can be seen that bD for the plate corre-
sponds to the flexural rigidity EI of the column, except for the (1−ν2) term which
is due to the Poisson’s ratio effect in wide plates. Thus the term bD∂4v/∂x4 repre-
sents the resistance generated by longitudinal flexure of the plate to the disturbing
effect −N∂2v/∂x2 of the applied load. The additional terms 2bD∂4v/∂x2∂z2 and
bD∂4v/∂z4 in the plate equation represent the additional resistances generated by
twisting and lateral bending of the plate.

A solution of equation 4.105 which satisfies the boundary conditions along the
simply supported edges [1–4] is

v = δ sin
mπx

L
sin

nπz

b
, (4.1)

where δ is the undetermined magnitude of the deflected shape. When this is sub-
stituted into equation 4.105, an expression for the elastic buckling load Ncr is
obtained as

Ncr = n2π2bD

L2

[
1 + 2

(
nL

mb

)2

+
(

nL

mb

)4
]

,

which has its lowest values when n = 1 and the buckled shape has one half wave
across the width of the plate b. Thus the elastic buckling stress

σcr = Ncr

bt
(4.2)

can be expressed as

σcr = π2E

12(1 − ν2)

kσ
(b/t)2

(4.3)

in which the buckling coefficient kσ is given by

kσ =
[(

mb

L

)2

+ 2 +
(

L

mb

)2
]

. (4.107)

The variation of the buckling coefficient kσ with the aspect ratio L/b of the plate
and the number of half waves m along the plate is shown in Figure 4.6. It can be
seen that the minimum value of kσ is 4, and that this occurs whenever the buckles
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are square (mb/L = 1), as shown in Figure 4.7. In most structural steel members,
the aspect ratio L/b of the plate elements is large so that the value of the buckling
coefficient kσ is always close to the minimum value of 4. The elastic buckling
stress can therefore be closely approximated by

σcr = π2E/3(1 − ν2)

(b/t)2
. (4.108)

4.9 Worked examples

4.9.1 Example 1 – compression resistance of
a Class 4 compression member

Problem. Determine the compression resistance of the cross-section of the member
shown in Figure 4.31a. The weld size is 8 mm.

Classifying the section plate elements.

tf = 10 mm, tw = 10 mm, fy = 355 N/mm2 EN10025-2

ε = √
(235/355) = 0.814. T5.2

cf /(tf ε) = (400/2 − 10/2 − 8)/(10 × 0.814) T5.2

= 23.0 > 14 and so the flange is Class 4. T5.2

cw/(twε) = (420 − 2 × 10 − 2 × 8)/(10 × 0.814) T5.2

= 47.2 > 42 and so the web is Class 4. T5.2
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     (a) Section of                 (b) Section of              (c) Section of            (d) Section of 
356 × 171 UB 45 beam
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Wpl = 775 cm3

compression member box beam plate girder 

Figure 4.31 Worked examples.
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Effective flange area.

kσ , f = 0.43 EC3-1-5 T4.2

λp, f = (400/2 − 10/2 − 8)/10

28.4 × 0.814 × √
0.43

= 1.23 > 0.748 EC3-1-5 4.4(2)

ρf = (1.23 − 0.188)/1.232 = 0.687 EC3-1-5 4.4(2)

Aeff ,f = 0.687 × 4 × (400/2 − 10/2 − 8)× 10

+ (10 + 2 × 8)× 10 × 2 EC3-1-5 4.4(1)

= 5658 mm2

Effective web area.

kσ ,w = 4.0 EC3-1-5 T4.1

λp,w = (420 − 2 × 10 − 2 × 8)/10

28.4 × 0.814 × √
4.0

= 0.831 > 0.673 EC3-1-5 4.4(2)

ρw = {0.831 − 0.055 × (3 + 1)}/0.8312 = 0.885 EC3-1-5 4.4(2)

Aeff ,w = 0.885× (420−2×10−2 × 8)× (10+8×10×2)

= 3558 mm2 EC3-1-5 4.4(1)

Compression resistance.

Aeff = 5658 + 3558 = 9216 mm2

Nc,Rd = 9216 × 355/1.0 N = 3272 kN.

4.9.2 Example 2 – section moment resistance of a
Class 3 I-beam

Problem. Determine the section moment resistance and examine the suitability for
plastic design of the 356 × 171 UB 45 of S355 steel shown in Figure 4.31b.

Classifying the section-plate elements.

tf = 9.7 mm, tw = 7.0 mm, fy = 355 N/mm2 EN10025-2

ε = √
(235/355) = 0.814 T5.2

cf /(tf ε) = (171.1/2 − 7.0/2 − 10.2)/(9.7 × 0.814) T5.2

= 9.1 > 9 but < 10, and so the flange is Class 2. T5.2

cw/(twε) = (351.4 − 2 × 9.7 − 2 × 10.2)/(7.0 × 0.814) T5.2

= 54.7 < 72 and so the web is Class 1. T5.2
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Section moment resistance.
The cross-section is Class 2 and therefore unsuitable for plastic design.

Mc,Rd = 775 × 103 × 355/1.0 N mm = 275.1 kNm. 6.2.5(2)

4.9.3 Example 3 – section moment resistance of
a Class 4 box beam

Problem. Determine the section moment resistance of the welded-box section
beam of S355 steel shown in Figure 4.31c. The weld size is 6 mm.

Classifying the section-plate elements.

tf = 10 mm, tw = 8 mm, fy = 355 N/mm2 EN10025-2

ε = √
(235/355) = 0.814 T5.2

cf /(tf ε) = 410/(10 × 0.814) T5.2

= 50.4 > 42 and so the flange is Class 4. T5.2

cw/(twε) = (430 − 2 × 10 − 2 × 6)/(8 × 0.814) T5.2

= 61.1 < 72 and so the web is Class 1. T5.2

The cross-section is therefore Class 4 since the flange is Class 4.

Effective cross-section.

kσ = 4.0 EC3-1-5 T4.2

λp = 410

10 × 28.4 × 0.814 × √
4.0

= 0.887 > 0.673

EC3-1-5 4.4(2)

ψ = 1 EC3-1-5 T4.1

ρ = (0.887 − 0.055 × (3 + 1))/0.8872 = 0.848 EC3-1-5 4.4(2)

bc,eff = 0.848 × 410 = 347.5 mm

Aeff = (450 − 410 + 347.5)× 10 + (450 × 10)

+ 2 × (430 − 2 × 10)× 8

= 14 935 mm2

14 935 × zc = (450 − 410 + 347.5)× 10 × (430 − 10/2)

+ 450 × 10 × 10/2 + 2 × (430 − 2 × 10)× 8 × 430/2

zc = 206.2 mm

Ieff = (450 − 410 + 347.5)× 10 × (430 − 10/2 − 206.2)2

+ 450 × 10 × (206.2 − 10/2)2 + 2 × (430 − 2 × 10)3 × 8/12

+ 2 × (430 − 2 × 10)× 8 × (430/2 − 206.2)2 mm4

= 460.1 × 106 mm4
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Section moment resistance.

Weff ,min = 460.1 × 106/(430 − 206.2) = 2.056 × 106 mm3

Mc,Rd = 2.056 × 106 × 355/1.0 Nmm = 729.9 kNm. 6.2.5(2)

4.9.4 Example 4 – section moment resistance of a
slender plate girder

Problem. Determine the section moment resistance of the welded plate girder of
S355 steel shown in Figure 4.31d. The weld size is 6 mm.

Solution.

tf = 20 mm, tw = 10 mm, fyf = 345 N/mm2 EN10025-2

ε = √
(235/345) = 0.825 T5.2

cf /(tf ε) = (400/2 − 10/2 − 6)/(20 × 0.825) T5.2

= 11.5 > 10 but < 14, and so the flange is Class 3. T5.2

cw/(twε) = (1540 − 2 × 20 − 2 × 6)/(10 × 0.825) T5.2

= 180.3 > 124 and so the web is Class 4. T5.2

A conservative approximation for the cross-section moment resistance may be
obtained by ignoring the web completely, so that

Mc,Rd = Mf = (400 × 20)× (1540 − 20)× 345/1.0 Nmm = 4195 kNm.

A higher resistance may be calculated by determining the effective width of the
web.

ψ = −1 EC3-1-5 T4.1

kσ = 23.9 EC3-1-5 T4.1

λp = (1540 − 2 × 20 − 2 × 6)/10

28.4 × 0.825 × √
23.9

= 1.299 EC3-1-5 4.4(2)

ρ = (1.299 − 0.055 × (3 − 1))/1.2992 = 0.705 EC3-1-5 4.4(2)

bc = (1540 − 2 × 20 − 2 × 6)/{1 − (−1)} = 744.0 mm. EC3-1-5 T4.1

beff = 0.705 × 744.0 = 524.4 mm. EC3-1-5 T4.1

be1 = 0.4 × 524.4 = 209.8 mm. EC3-1-5 T4.1

be2 = 0.6 × 524.4 = 314.6 mm. EC3-1-5 T4.1
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and the ineffective width of the web is

bc − be1 − be2 = 744.0 − 209.8 − 314.6 = 219.6 mm. EC3-1-5 T4.1

Aeff = (1540 − 2 × 20 − 219.6)× 10 + 2 × 400 × 20

= 28 804 mm2

28 804 × zc = (2 × 400 × 20 + (1540 − 2 × 20)× 10)× (1540/2)

− 219.6 × 10 × (1540 − 20 − 6 − 209.8 − 219.6/2)

zc = 737.6 mm

Ieff = (400 × 20)× (1540 − 10 − 737.6)2

+ (400 × 20)× (737.6 − 10)2

+ (1540 − 2 × 20)3 × 10/12 + (1540 − 2 × 20)

× 10 × (1540/2 − 737.6)2

− 219.63 × 10/12 − 219.6

× 10 × (1540 − 20 − 6 − 209.8 − 219.6/2 − 737.6)2 mm4

= 11.62 × 109 mm4

Weff = 11.62 × 109/(1540 − 737.6) = 14.48 × 106 mm3

Mc,Rd = 14.48 × 106 × 345/1.0 Nmm = 4996 kNm.

4.9.5 Example 5 – shear buckling resistance of an
unstiffened plate girder web

Problem. Determine the shear buckling resistance of the unstiffened plate girder
web of S355 steel shown in Figure 4.31d.

Solution.

tw = 10 mm, fyw = 355 N/mm2 EN10025-2

ε = √
(235/355) = 0.814 T5.2

η = 1.2 EC3-1-5 5.1(2)

hw = 1540 − 2 × 20 = 1500 mm. EC3-1-5 F5.1

ηhw/(twε) = 1.2 × 1500/(10 × 0.814)

= 221.2 > 72 and so the web is slender. EC3-1-5 5.1(2)

a/hw = ∞/hw = ∞, kτ st = 0 EC3-1-5 A.3(1)

kτ = 5.34 EC3-1-5 A.3(1)
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τcr = 5.34 × 190 000 × (10/1500)2 = 45.1 N/mm2

EC3-1-5 A.1(2)

λw = 0.76 × √
(355/45.1) = 2.132 > 1.08 EC3-1-5 5.3(3)

Assuming that there is a non-rigid end post, then

χw = 0.83/2.132 = 0.389 EC3-1-5 T5.1

Neglecting any contribution from the flanges,

Vb,Rd = Vbw,Rd = 0.389 × 355 × 1500 × 10√
3 × 1.0

N = 1196 kN. EC3-1-5 2(1)

4.9.6 Example 6 – shear buckling resistance of a
stiffened plate girder web

Problem. Determine the shear buckling resistance of the plate girder web of S355
steel shown in Figure 4.31d if intermediate transverse stiffeners are placed at
1800 mm spacing.

Solution.

tw = 10 mm, fyw = 355 N/mm2 EN10025-2

ε = √
(235/355) = 0.814 T5.2

hw = 1540 − 2 × 20 = 1500 mm.

a/hw = 1800/1500 = 1.20, kτ st = 0 EC3-1-5 A.3(1)

kτ = 5.34 + 4.00/1.202 = 8.12 EC3-1-5 A.3(1)

τcr = 8.12 × 190 000 × (10/1500)2 = 68.6 N/mm2 EC3-1-5 A.1(2)

Assuming that there is a rigid end post, then

λw = 0.76 × √
(355/68.6) = 1.73 > 1.08 EC3-1-5 5.3(3)

χw = 1.37/(0.7 + 1.73) = 0.564 EC3-1-5 T5.1

Neglecting any contribution from the flanges,

Vb,Rd = Vbw,Rd = 0.564 × 355 × 1500 × 10√
3 × 1.0

N = 1734 kN.

EC3-1-5 5.2(1)
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If the flange contribution is considered and MEd = 0,

2 × (15εtf )+ tw = 2 × (15 × 0.814 × 20)+ 10 EC3-1-5 5.4(1)

= 498 mm > 400 mm and so bf = 400 mm. EC3-1-5 5.4(1)

c = 1800 ×
(

0.25 + 1.6 × 400 × 202 × 345

10 × 15002 × 355

)
= 469.9 mm

EC3-1-5 5.4(1)

Vbf ,Rd = (400 × 202 × 345 × 1.0)/(469.9 × 1.0) N = 117 kN
EC3-1-5 5.4(1)

Vb,Rd = 1734 + 117 = 1851 kN. EC3-1-5 5.2(1)

4.9.7 Anchor panel in a stiffened plate girder web

Problem. Determine the shear elastic buckling resistance of the end anchor panel
of the welded stiffened plate girder of Section 4.9.6 if the width of the panel is
1800 mm.

Solution.

tw = 10 mm, fyw = 355 N/mm2 EN10025-2

Using λw = 1.73 (Section 4.9.6), the shear elastic buckling resistance of the end
panel is

Vp,Rd = (1/1.732)× 355 × 1500 × 10/(103 × √
3 × 1.0) N = 1027 kN.

EC3-1-5 9.3.3(3)

4.9.8 Example 8 – intermediate transverse stiffener

Problem. Check the adequacy of a pair of intermediate transverse web stiffeners
100 × 16 of S460 steel for the plate girder of Section 4.9.6.

Solution.
Using VEd = 1734 kN (Section 4.9.6) and Vp,Rd = 1027 kN (Section 4.9.7),

the stiffener section must resist an axial force of

NEd,s = 1734 − 1027 = 706.4 kN. EC3-1-5 9.3.3(3)

The stiffener section consists of the two stiffener plates and a length of the web
defined in Figure 9.1 of EC3-1-5. For the stiffener plates,

tp = 16 mm, fyp = 460 N/mm2 EN10025-2

ε = √
(235/460) = 0.715 T5.2

cp/(tpε) = 100/(16 × 0.715) = 8.74 < 9 T5.1

and so the plates are fully effective and the stiffener section is Class 1.
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Using the lower of the web and plate yield stresses of fyw = 355 N/mm2 and
ε = 0.814,

Aeff ,s = 2 × (16 × 100)+ (2 × 15 × 0.814 × 10 + 16)× 10

= 5801 mm2 EC3-1-5 F9.1

Ieff ,s = (2 × 100 + 10)3 × 16/12 = 12.35 × 106 mm4 EC3-1-5 F9.1

ieff ,s = √ (
12.35 × 106/5801

) = 46.1 mm.

λ1 = 93.9 × 0.814 = 76.4 6.3.1.3(1)

Lcr = 1.0 × 1500 = 1500 mm EC3-1-5 9.4(2)

λ = 1500/(46.1 × 76.4) = 0.426 6.3.1.3(1)

For buckling curve c, α = 0.49 EC3-1-5 9.4(2), T6.1

Φ = 0.5 × [1 + 0.49 × (0.426 − 0.2)+ 0.4262] = 0.646
6.3.1.2(1)

χ = 1/[0.646 + √
(0.6462 − 0.4262)] = 0.884 6.3.1.2(1)

Nb,Rd = 0.884 × 5801 × 355/1.0 N 6.3.1.1(3)

= 1820 kN > 706.4 kN = NEd,s OK.

a/hw = 1800/1500 = 1.20 <
√

2 EC3-1-5 9.3.3(3)

1.5h3
wt3

w/a
2 = 1.5 × 15003 × 103/18002 EC3-1-5 9.3.3(3)

= 1.563 × 106 mm4 < 12.35 × 106 mm4 = Is OK.

4.9.9 Example 9 – load-bearing stiffener

Problem. Check the adequacy of a pair of load-bearing stiffeners 100 × 16 of S460
steel which are above the support of the plate girder of Section 4.9.6. The flanges
of the girder are not restrained by other structural elements against rotation. The
girder is supported on a stiff bearing ss = 300 mm long, the end panel width is
1000 mm, and the design reaction is 1400 kN.

Stiffener yield resistance.

ts = 16 mm, fy = 460 N/mm2 EN10025-2

ε = √
(235/460) = 0.715 T5.2

cs/(tsε) = 100/(16 × 0.715) T5.1

= 8.74 < 9 and so the stiffeners are fully effective. T5.1

Fs,Rd = 2 × (100 × 16)× 460/1.0 N = 1472 kN.
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Unstiffened web resistance.

kF = 2 + 6 × (300 + 0)/1500 = 3.2 EC3-1-5 F6.1

Fcr = 0.9 × 3.2 × 210 000 × 103/1500 N = 403.2 kN EC3-1-5 6.4(1)

�e = 3.2 × 210 000 × 102

2 × 355 × 1500
= 63.1 mm < 300 mm

= ss + c. EC3-1-5 6.5(3)

m1 = (355 × 400)/(355 × 10) = 40 EC3-1-5 6.5(1)

m2 = 0.02 × (1500/20)2 = 112.5 EC3-1-5 6.5(1)

ly6.11 = 63.1 + 20 ×
√

40/2 + (63.1/20)2 + 112.5

= 301.8 mm EC3-1-5 6.5(3)

ly6.12 = 63.1 + 20 × √
40 + 112.5

= 310.1 mm > 301.8 mm = ly6.11 EC3-1-5 6.5(3)

ly = 301 8 mm EC3-1-5 6.5(3)

λF =
√

301.8 × 10 × 355

403.2 × 103
= 1.630(>0.5) EC3-1-5 6.4(1)

χF = 0.5/1.630 = 0.307 EC3-1-5 6.4(1)

Leff = 0.307 × 301.8 = 92.6 mm EC3-1-5 6.4(1)

FRd = 355 × 92.6 × 10/1.0 N EC3-1-5 6.2(1)

= 328.6 kN < 1400 kN, and so load bearing stiffeners are required.

Stiffener buckling resistance.

Aeff ,s = 2 × (16 × 100)+ (2 × 15 × 0.814 × 10 + 16)× 10

= 5801 mm2 EC3-1-5 F9.1

Ieff ,s = (2 × 100 + 10)3 × 16/12 = 12.35 × 106 mm4 EC3-1-5 F9.1

ieff ,s = √ (
12.35 × 106/5801

) = 46.1 mm

λ1 = 93.9 × 0.814 = 76.4 6.3.1.3(1)

Lcr = 1.0 × 1500 mm = 1500 mm EC3-1-5 9.4(2)

λ = 1500/(46.1 × 76.4) = 0.426 6.3.1.3(1)

For buckling curve c, α = 0.49 EC3-1-5 9.4(2), T6.1

Φ = 0.5 × [1 + 0.49 × (0.426 − 0.2)+ 0.4262] = 0.646 6.3.1.2(1)

χ = 1/[0.646 + √
(0.6462 − 0.4262)] = 0.884 6.3.1.2(1)

Nb,Rd = 0.884 × 5801 × 355/1.0 N = 1820 kN > 1400 kN OK.
6.3.1.1(3)
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4.9.10 Example 10 – shear and bending of a Class 2 beam

Problem. Determine the design resistance of the 356 × 171 UB 45 of S355
steel shown in Figure 4.31b at a point where the design moment is MEd =
230 kNm.

Solution.
As in Section 4.9.2, fy = 355 N/mm2, ε = 0.814, η = 1.2, the flange is Class 2

and the web is Class 1, the section is Class 2, and Wpl = 775 cm3.

Av = 57.3 × 102 − 2 × 171.1 × 9.7 + (7.0 + 2 × 10.2)× 9.7

= 2676 mm2 6.2.6(3)

η = 1.2 EC3-1-5 5.1(2)

ηhwtw = 1.2 × (351.4 − 2 × 9.7)× 7.0 = 2789 mm2 > 2676 mm2

6.2.6(3)

Vpl,Rd = 2789 × (355/
√

3)/1.0 N = 571.6 kN 6.2.6(2)

ηhw/(twε) = 1.2 × (351.4 − 2 × 9.7)/(7.0 × 0.814) = 70.0 < 72
EC3-1-5 5.1(2)

so that shear buckling need not be considered.
Using a reduced bending resistance corresponding to MV ,Rd = MEd = 230

kNm, then

(1 − ρ)× 355 × 775 × 103 = 230 × 106, so that 6.2.8(3)

ρ = 0.164

Now ρ = (2VEd/Vpl,Rd − 1)2, which leads to 6.2.8(3)

Vc,M ,Rd/Vpl,Rd = [√(0.164)+ 1]/2 = 0.702, so that

Vc,M ,Rd = 0.702 × 571.6 = 401.5 kN.

4.9.11 Example 11 – shear and bending of a stiffened
plate girder

Problem. Determine the shear resistance of the stiffened plate web girder of Section
4.9.6 shown and shown in Figure 4.31d at the point where the design moment is
MEd = 4000 kNm.

Solution.
As previously, fyf = 345 N/mm2, εf = 0.825, and the flanges are Class 3

(Section 4.9.4), fyw = 345 N/mm2 and εw = 0.814 (Section 4.9.5), and Vbw,Rd =
1733 kNm (Section 4.9.6).
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The resistance of the flanges to bending is

Mf ,Rd = (400 × 20)× (1540 − 20)× 345/1.0 Nmm

= 4195 kNm > 4000 kNm = MEd EC3-1-5 5.4(1)

and so the flange resistance is not completely utilised in resisting the bending
moment.

2 × (15εtf )+ tw = 2 × (15 × 0.814 × 20)+ 10 = 498 mm > 400 mm

EC3-1-5 5.4(1)

bf = 400 mm < 498 mm EC3-1-5 5.4(1)

c = 1800 ×
(

0.25 + 1.6 × 400 × 202 × 345

10 × 15002 × 355

)
= 469.9 mm

EC3-1-5 5.4(1)

Vbf ,Rd = 400 × 202 × 355

469.9 × 1.0
×

[
1 −

(
4000

4195

)2
]

N = 11 kN

EC3-1-5 5.4(1)

Vbw,Rd + Vbf ,Rd = 1733 + 11 = 1744 kN. EC3-1-5 5.2(1)

4.10 Unworked examples

4.10.1 Example 12 – elastic local buckling of a beam

Determine the elastic local buckling moment for the beam shown in Figure 4.32a.

4.10.2 Example 13 – elastic local buckling of a beam-column

Determine the elastic local buckling load for the beam-column shown in
Figure 4.32b when M/N = 20 mm.

4.10.3 Example 14 – section capacity of a welded box beam

Determine the section moment resistance for the welded box beam of S275 steel
shown in Figure 4.32c.

4.10.4 Example 15 – designing a plate web girder

The overall depth of the laterally supported plate girder of S275 steel shown in
Figure 4.32d must not exceed 1800 mm. Design a constant section girder for the
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Figure 4.32 Unworked examples.

factored loads shown, and determine:

(a) The flange proportions;
(b) The web thickness;
(c) The distribution of any intermediate stiffeners;
(d) The stiffener proportions; and
(e) The proportions and arrangements of any load-bearing stiffeners.
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Chapter 5

In-plane bending of beams

5.1 Introduction

Beams are structural members which transfer the transverse loads they carry to the
supports by bending and shear actions. Beams generally develop higher stresses
than axially loaded members with similar loads, while the bending deflections are
much higher. These bending deflections of a beam are often, therefore, a primary
design consideration. On the other hand, most beams have small shear deflections,
and these are usually neglected.

Beam cross-sections may take many different forms, as shown in Figure 5.1, and
these represent various methods of obtaining an efficient and economical mem-
ber. Thus most steel beams are not of solid cross-section, but have their material
distributed more efficiently in thin walls. Thin-walled sections may be open, and
while these tend to be weak in torsion, they are often cheaper to manufacture than
the stiffer closed sections. Perhaps the most economic method of manufacturing
steel beams is by hot-rolling, but only a limited number of open cross-sections is
available. When a suitable hot-rolled beam cannot be found, a substitute may be
fabricated by connecting together a series of rolled plates, and this has become
increasingly common. Fabricating techniques also allow the production of beams
compounded from hot-rolled members and plates, and of hybrid members in which
the flange material is of a higher yield stress than the web. Tapered and castellated
beams can also be fabricated from hot-rolled beams. In many cases, a steel beam
is required to support a reinforced concrete slab, and in this case its strength may
be increased by connecting the steel and concrete together so that they act com-
positely. The fire resistance of a steel beam may also be increased by encasing it
in concrete. The final member cross-section chosen will depend on its suitability
for the use intended, and on the overall economy.

The strength of a steel beam in the plane of loading depends on its section
properties and on its yield stress fy. When bending predominates in a determinate
beam, the effective ultimate strength is reached when the most highly stressed
cross-section becomes fully yielded so that it forms a plastic hinge. The moment
Mp at which this occurs is somewhat higher than the first yield moment My at which
elastic behaviour nominally ceases, as shown in Figure 5.2, and for hot-rolled
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I-beams this margin varies between 10 and 20% approximately. The attainment
of the first plastic hinge forms the basis for the traditional method of design of
beams in which the bending moment distribution is calculated from an elastic
analysis.
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However, in an indeterminate beam, a substantial redistribution of bending
moment may occur after the first hinge forms, and failure does not occur until
sufficient plastic hinges have formed to cause the beam to become a mechanism.
The load which causes this mechanism to form provides the basis for the more
rational method of plastic design.

When shear predominates, as in some heavily loaded deep beams of short span,
the ultimate strength is controlled by the shear force which causes complete plas-
tification of the web. In the more common sections, this is close to the shear force
which causes the nominal first yield in shear, and so the shear design is carried
out for the shear forces determined from an elastic analysis. In this chapter, the
in-plane behaviour and design of beams are discussed. It is assumed that neither
local buckling (which is treated in Chapter 4) nor lateral buckling (which is treated
in Chapter 6) occurs. Beams with axial loads are discussed in Chapter 7, while the
torsion of beams is treated in Chapter 10.

5.2 Elastic analysis of beams

The design of a steel beam is often preceded by an elastic analysis of the bending
of the beam. One purpose of such an analysis is to determine the bending moment
and shear force distributions throughout the beam, so that the maximum bend-
ing moments and shear forces can be found and compared with the moment and
shear capacities of the beam. An elastic analysis is also required to determine the
deflections of the beam so that these can be compared with the desirable limiting
values.

The data required for an elastic analysis include both the distribution and the
magnitudes of the applied loads and the geometry of the beam. In particular, the
variation along the beam of the effective second moment of area I of the cross-
section is needed to determine the deflections of the beam, and to determine the
moments and shears when the beam is statically indeterminate. For this purpose,
local variations in the cross-section such as those due to bolt holes may be ignored,
but more general variations, including any general reductions arising from the
use of the effective width concept for excessively thin compression flanges (see
Section 4.2.2.2), should be allowed for.

The bending moments and shear forces in statically determinate beams can be
determined by making use of the principles of static equilibrium. These are fully
discussed in standard textbooks on structural analysis [1, 2], as are various methods
of analysing the deflections of such beams. On the other hand, the conditions of
statics are not sufficient to determine the bending moments and shear forces in
statically indeterminate beams, and the conditions of compatibility between the
various elements of the beam or between the beam and its supports must also
be used. This is done by analysing the deflections of the statically indeterminate
beam. Many methods are available for this analysis, both manual and computer,
and these are fully described in standard textbooks [3–8]. These methods can also
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Figure 5.3 Mid-span deflections of steel beams.

be used to analyse the behaviour of structural frames in which the member axial
forces are small.

While the deflections of beams can be determined accurately by using the
methods referred to above, it is often sufficient to use approximate estimates
for comparison with the desirable maximum values. Thus in simply supported or
continuous beams, it is usually accurate enough to use the mid-span deflection
(see Figure 5.3). The mid-span deflection wc (measured relative to the level of the
left-hand support) depends on the distribution of the applied load, the end moments
MA and MB (taken as clockwise positive), and the sinking wAB of the right-hand
support below the left-hand support, and can be expressed as

wc = {kMS + 29.8(MA − MB)}L2

I
+ wAB

2
. (5.1)

In this equation, the deflections wc and wAB are expressed in mm, the moments
MS , MA, MB are in kNm, the span L is in m and the second moment of area I is in
cm4. Expressions for the simple beam moments MS and values of the coefficients
k are given in Figure 5.3 for a number of loading distributions. These can be
combined together to find the central deflections caused by many other loading
distributions.

5.3 Bending stresses in elastic beams

5.3.1 Bending in a principal plane

The distribution of the longitudinal bending stresses σ in an elastic beam bent in a
principal plane xz can be deduced from the experimentally confirmed assumption
that plane sections remain substantially plane during bending, provided any shear
lag effects which may occur in beams with very wide flanges (see Section 5.4.5)
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are negligible. Thus the longitudinal strains ε vary linearly through the depth of
the beam, as shown in Figure 5.4, as do the longitudinal stresses σ . It is shown in
Section 5.8.1 that the moment resultant My of these stresses is

My = −EIy
d2w

dx2
(5.2)

where the sign conventions for the moment My and the deflection w are as shown
in Figure 5.5, and that the stress at any point in the section is

σ = Myz

Iy
(5.3)

in which tensile stresses are positive. In particular, the maximum stresses occur at
the extreme fibres of the cross-section, and are given by

in compression, and

σmax = MyzT

Iy
= − My

Wel,yT
,

σmax = MyzB

Iy
= My

Wel,yB
,




(5.4)

in tension, in which Wel,yT = − Iy/zT and Wel,yB = Iy/zB are the elastic section
moduli for the top and bottom fibres, respectively, for bending about the y axis.

The corresponding equations for bending in the principal plane xy are

Mz = EIz
d2v

dx2
(5.5)

where the sign conventions for the moment Mz and the deflection v are also shown
in Figure 5.5,

σ = −Mzy/Iz (5.6)
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and
σmax = Mz/Wel,zL

σmax = −Mz/Wel,zR


 (5.7)

in which Wel,zL = − Iz/yL and Wel,zR = Iz/yR are the elastic section moduli for
bending about the z axis.

Values of Iy, Iz, Wel,z, Wel,z for hot-rolled steel sections are given in [9], while
values for other sections can be calculated as indicated in Section 5.9 or in standard
textbooks [1, 2]. Expressions for the properties of some thin-walled sections are
given in Figure 5.6 [10]. When a section has local holes, or excessive widths (see
Section 4.2.2.2), these properties may need to be reduced accordingly.

Worked examples of the calculation of cross-section properties are given in
Sections 5.12.1–5.12.4.

5.3.2 Biaxial bending

When a beam deflects only in a plane xz1 which is not a principal plane (see
Figure 5.7a), so that its curvature d2v1/d x2 in the perpendicular xy1 plane is zero,
then the bending stresses

σ = −Ez1d2w1/dx2 (5.8)

have moment resultants

and
My1 = −EIy1d2w1/dx2

Mz1 = −EIy1z1d2w1/dx2


 (5.9)
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Figure 5.6a Thin-walled section properties.

where Iy1z1 is the product second moment of area (see Section 5.9). Thus the
resultant bending moment

M = √(
M 2

y1 + M 2
z1

)
, (5.10)

is inclined to the xz1 plane of the bending deflections, as shown in Figure 5.7a.
The simplest method of analysing this or any other biaxial bending situation is

to replace the moments My1, Mz1 by their principal plane static equivalents My,
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Mz calculated from

My = My1 cosα + Mz1 sin α
Mz = −My1 sin α + Mz1 cosα,

}
(5.11)
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Figure 5.8 Biaxial bending of a zed beam.

in which α is the angle between the y1, z1 axes and the principal y, z axes, as shown
in Figure 5.7b. The bending stresses can then be determined from

σ = Myz

Iy
− Mzy

Iz
, (5.12)

in which Iy, Iz are the principal second moments of area. If the values of α, Iy, Iz

are unknown, they can be determined from Iy1, Iz1, Iy1z1 as shown in Section 5.9.
Care needs to be taken to ensure that the correct signs are used for My and Mz

in equation 5.12, as well as for y and z. For example, if the zed section shown in
Figure 5.8a is simply supported at both ends with a uniformly distributed load q
acting in the plane of the web, then its principal plane components qy, qz cause
positive bending My and negative bending Mz, as indicated in Figure 5.8b and c.



 

In-plane bending of beams 163

The deflections of the beam can also be determined from the principal plane
moments by solving equations 5.2 and 5.5 in the usual way [1–8] for the principal
plane deflections w and v, and by adding these vectorially.

Worked examples of the calculation of the elastic stresses and deflections in an
angle section cantilever are given in Section 5.12.5.

5.4 Shear stresses in elastic beams

5.4.1 Solid cross-sections

A vertical shear force Vz acting parallel to the minor principal axis z of a section of
a beam (see Figure 5.9a) induces shear stresses τxy, τxz in the plane of the section.
In solid section beams, these are usually assumed to act parallel to the shear force
(i.e. τxy = 0), and to be uniformly distributed across the width of the section, as
shown in Figure 5.9a. The distribution of the vertical shear stresses τxz can be
determined by considering the horizontal equilibrium of an element of the beam
as shown in Figure 5.9b. Because the bending normal stresses σ vary with x, they
create an imbalance of force in the x direction, which can only be compensated
for by the horizontal shear stresses τzx = τv which are equal to the vertical shear
stresses τxz. It is shown in Section 5.10.1 that the stress τv at a distance z2 from
the centroid where the section width is b2 is given by

τv = − Vz

Iyb2

∫ z2

zT

bzdz. (5.13)

y

z

x

V

– z

z

bx
2

z

b

z

T

2

�bδz

x
+ )(

+
z

)(

(b) Horizontal equilibrium(a) Assumed shear stress distribution 

Shear stresses �v
parallel to shear
force Vz and constant
across width of section 

�vbδx

� �

δx

bδzδx

(�vb)
�vb

δz

δz
∂

∂

∂
∂

Figure 5.9 Shear stresses in a solid section.
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This can also be expressed as

τv = −VzA2z̄2

Iyb2
(5.14)

in which A2 is the area above b2 and z̄2 is the height of its centroid.
For the particular example of the rectangular section beam of width b and depth

d shown in Figure 5.10a, the width is constant, and so equation 5.13 becomes

τv = Vz

bd

(
1.5 − 6z2

d2

)
. (5.15)

This shear stress distribution is parabolic, as shown in Figure 5.10b, and has a
maximum value at the y axis of 1.5 times of average shear stress Vz/bd.

The shear stresses calculated from equations 5.13 or 5.14 are reasonably accurate
for solid cross-sections, except near the unstressed edges where the shear stress is
parallel to the edge rather than to the applied shear force.

5.4.2 Thin-walled open cross-sections

The shear stress distributions in thin-walled open-section beams differ from those
given by equations 5.13 or 5.14 for solid section beams in that the shear stresses
are parallel to the wall of the section as shown in Figure 5.11a instead of parallel
to the applied shear force. Because of the thinness of the walls, it is quite accurate
to assume that the shear stresses are uniformly distributed across the thickness t of
the thin-walled section. Their distribution can be determined by considering the
horizontal equilibrium of an element of the beam, as shown in Figure 5.11b. It is
shown in Section 5.10.2 that the stress τv at a distance s from the end of the section

b
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z z

d

Vz

1.5Vz /bd

 (a) Cross-section (b) Shear stress distribution

�v

Figure 5.10 Shear stress distribution in a rectangular section.
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caused by a vertical shear force Vz can be obtained from the shear flow

τvt = −Vz

Iy

∫ s

0
ztds. (5.16)

This can also be expressed as

τv = −VzAsz̄s

Iyt
(5.17)

in which As is the area from the free end to the point s and z̄s is the height of the
centroid of this area above the point s.

At a junction in the cross-section wall, such as that of the top flange and the
web of the I-section shown in Figures 5.12 and 5.13, horizontal equilibrium of the
zero area junction element requires

(τvtf )21δx + (τvtf )23δx = (τvtw)24δx (5.18)

This can be thought of as an analogous flow continuity condition for the corre-
sponding shear flows in each cross-section element at the junction, as shown in
Figure 5.13c, so that

(τvtf )21 + (τvtf )23 = (τvtw)24 (5.19)

which is a particular example of the general junction condition∑
(τvt) = 0 (5.20)

in which each shear flow is now taken as positive if it acts towards the junction.
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Afree end of a cross-section element is the special case of a one-element junction,
for which equation 5.20 reduces to

τvt = 0 (5.21)

This condition has already been used (at s = 0) in deriving equation 5.16.
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An example of the analysis of the shear flow distribution in the I-section beam
shown in Figure 5.12a is given in Section 5.12.6. The shear flow distribution
is shown in Figure 5.12b. It can be seen that the shear stress in the web is nearly
constant and equal to its average value

τv(av) = Vz

df tw
, (5.22)

which provides the basis for the commonly used assumption that the applied shear
is resisted only by the web. A similar result is obtained for the shear stress in the
web of the channel section shown in Figure 5.14 and analysed in Section 5.12.7.

When a horizontal shear force Vy acts parallel to the y axis, additional shear
stresses τh parallel to the walls of the section are induced. These can be obtained
from the shear flow

τht = −Vy

Iz

∫ s

0
ytds. (5.23)

which is similar to equation 5.17 for the shear flow due to a vertical shear force.
A worked example of the calculation of the shear flow distribution caused by a
horizontal shear force is given in Section 5.12.8.
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Figure 5.14 Shear flow distribution in a channel section.
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5.4.3 Shear centre

The shear stresses τv induced by the vertical shear force Vz exert a torque equal
to ∫E

0 τvtρds about the centroid C of the thin-walled cross-section, as shown in
Figure 5.15, and are therefore statically equivalent to a vertical shear force Vz

which acts at a distance y0 from the centroid equal to

y0 = 1

Vz

∫ E

0
τvtρds. (5.24)

Similarly, the shear stresses τh induced by the horizontal shear force Vy are
statically equivalent to a horizontal shear force Vy which acts at a distance z0 from
the centroid equal to

z0 = − 1

Vy

∫ E

0
τhtρds. (5.25)

The coordinates y0, z0 define the position of the shear centre S of the cross-section,
through which the resultant of the bending shear stresses must act. When any
applied load does not act through the shear centre, as shown in Figure 5.16,
then it induces another set of shear stresses in the section which are additional
to those caused by the changes in the bending normal stresses described above
(see equations 5.16 and 5.23). These additional shear stresses are statically equiv-
alent to the torque exerted by the eccentric applied load about the shear centre.
They can be calculated as shown in Sections 10.2.1.4 and 10.3.1.2.
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Figure 5.15 Moment of shear stress τv about centroid.
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The position of the shear centre of the channel section shown in Figure 5.14 is
determined in Section 5.12.8. Its y0 coordinate is given by

y0 = d2
f tf b2

4Iy
+ b2tf

2btf + df tw
(5.26)

while its z0 coordinate is zero because the section is symmetrical about the y axis.
In Figure 5.17, the shear centres of a number of thin-walled open sections are

compared with their centroids. It can be seen that

(a) if the section has an axis of symmetry, then the shear centre and centroid lie
on it,
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(b) if the section is of a channel type, then the shear centre lies outside the web
and the centroid inside it, and

(c) if the section consists of a set of concurrent rectangular elements (tees, angles,
and cruciforms), then the shear centre lies at the common point.

A general matrix method for analysing the shear stress distributions and for
determining the shear centres of thin-walled open-section beams has been prepared
[11, 12].

Worked examples of the determination of the shear centre position are given in
Sections 5.12.8 and 5.12.10.

5.4.4 Thin-walled closed cross-sections

The shear stress distribution in a thin-walled, closed-section beam is similar to
that in an open-section beam, except that there is an additional constant shear
flow τvct around the section. This additional shear flow is required to prevent any
discontinuity in the longitudinal warping displacements u which arise from the
shear straining of the walls of the closed sections. To show this, consider the slit
rectangular box whose shear flow distribution τvot due to a vertical shear force Vz is
as shown in Figure 5.18a. Because the beam is not twisted, the longitudinal fibres
remain parallel to the centroidal axis, so that the transverse fibres rotate through
angles τvo/G equal to the shear strain in the wall, as shown in Figure 5.19. These
rotations lead to the longitudinal warping displacements u shown in Figure 5.18b,
the relative warping displacement at the slit being

∫ E
0 (τvo/G)ds.
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Figure 5.18 Warping of a slit box.
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However, when the box is not slit, as shown in Figure 5.20, this relative warping
displacement must be zero. Thus

∮
τv

G
ds = 0, (5.27)

in which total shear stress τv can be considered as the sum

τv = τvc + τvo (5.28)

of the slit box shear stress τvo (see Figure 5.18a) and the shear stress τvc due to a
constant shear flow τvct circulating around the closed section (see Figure 5.20a).
Alternatively, equation 5.16 for the shear flow in an open section can be modified
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for the closed section to

τvt = τvct − Vz

Iy

∫ s

0
ztds, (5.29)

since it can no longer be said that τv is zero at s = 0, this not being a free end (the
closed section has no free ends). Mathematically, τvct is a constant of integration.
Substituting equation 5.28 or 5.29 into equation 5.27 leads to

τvct = −
∮
τvods∮
(1/t)ds

, (5.30)

which allows the circulating shear flow τvct to be determined.
The shear stress distribution in any single-cell closed section can be obtained

by using equations 5.29 and 5.30. The shear centre of the section can then be
determined by using equations 5.24 and 5.25 as for open sections. For the particular
case of the rectangular box shown in Figure 5.20,

τvct = Vz

Iy

(
d2

f tw

8
+ df tf b

4

)
, (5.31)

and the resultant shear flow shown in Figure 5.20b is symmetrical because of the
symmetry of the cross-section, while the shear centre coincides with the centroid.

A worked example of the calculation of the shear stresses in a thin-walled closed
section is given in Section 5.12.11.

The shear stress distributions in multi-cell closed sections can be determined
by extending this method, as indicated in Section 5.10.3. A general matrix method
of analysing the shear flows in thin-walled closed sections has been described
[11, 12]. This can be used for both open and closed sections, including composite
and asymmetric sections, and sections with open and closed parts. It can also be
used to determine the centroid, principal axes, section constants, and the bending
normal stress distribution.

5.4.5 Shear lag

In the conventional theory of bending, shear strains are neglected so that it can be
assumed that plane sections remain plane after loading. From this assumption
follow the simple linear distributions of the bending strains and stresses dis-
cussed in Section 5.3, and from these the shear stress distributions discussed in
Sections 5.4.1–5.4.4. The term shear lag [13] is related to some of the discrep-
ancies between this approximate theory of the bending of beams and their real
behaviour, and in particular, refers to the increases of the bending stresses near the
flange-to-web junctions, and the corresponding decreases in the flange stresses
away from these junctions.

The shear lag effects near the mid-point of the simply supported centrally loaded
I-section beam shown in Figure 5.21a are illustrated in Figure 5.22. The shear
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Figure 5.22 Shear lag effects in an I-section beam.

stresses calculated by the conventional theory are as shown in Figure 5.23a, and
these induce the warping (longitudinal) displacements shown in Figure 5.23b. The
warping displacements of the web are almost linear, and these are responsible for
the shear deflections [13] which are usually neglected when calculating the beam’s
deflections. The warping displacements of the flanges vary parabolically, and it
is these which are responsible for most of the shear lag effect. The application
of the conventional theory of bending at either side of a point in a beam where
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there is a sudden change in the shear force, such as at the mid-point of the beam
of Figure 5.21a, leads to two different distributions of warping displacement, as
shown in Figure 5.21b. These are clearly incompatible, and so changes are required
in the bending stress distribution (and consequently in the shear stress distribution)
to remove the incompatibility. These changes, which are illustrated in Figure 5.22,
constitute the shear lag effect.

Shear lag effects are usually very small except near points of high concentrated
load or at reaction points in short-span beams with thin wide flanges. In particular,
shear lag effects may be significant in light-gauge, cold-formed sections [14]
and in stiffened box girders [15–17]. Shear lag has no serious consequences in
a ductile structure in which any premature local yielding leads to a favourable
redistribution of stress. However, the increased stresses due to shear lag may be
of consequence in a tension flange which is liable to brittle fracture or fatigue
damage, or in a compression flange whose strength is controlled by its resistance
to local buckling.

An approximate method of dealing with shear lag is to use an effective width
concept, in which the actual width b of a flange is replaced by a reduced width
beff given by

beff

b
= nominal bending stress

maximum bending stress
. (5.32)

This is equivalent to replacing the actual flange bending stresses by constant
stresses which are equal to the actual maximum stress and distributed over the
effective flange area beff × t. Some values of effective widths are given in [14–16].
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This approach is similar to that used to allow for the redistribution of stress which
takes place in a thin compression flange after local buckling (see Chapter 4). How-
ever, the two effects of shear lag and local buckling are quite distinct, and should
not be confused.

5.5 Plastic analysis of beams

5.5.1 General

As the load on a ductile steel beam is increased, the stresses in the beam also
increase, until the yield stress is reached. With further increases in the load, yielding
spreads through the most highly strained cross-section of the beam until it becomes
fully plastic at a moment Mp. At this stage the section forms a plastic hinge which
allows the beam segments on either side to rotate freely under the moment Mp.
If the beam was originally statically determinate, this plastic hinge reduces it to a
mechanism, and prevents it from supporting any additional load.

However, if the beam was statically indeterminate, the plastic hinge does not
reduce it to a mechanism, and it can support additional load. This additional load
causes a redistribution of the bending moment, during which the moment at the
plastic hinge remains fixed at Mp, while the moment at another highly strained
cross-section increases until it forms a plastic hinge. This process is repeated until
enough plastic hinges have formed to reduce the beam to a mechanism. The beam
is then unable to support any further increase in load, and its ultimate strength is
reached.

In the plastic analysis of beams, this mechanism condition is investigated to
determine the ultimate strength. The principles and methods of plastic analysis are
fully described in many textbooks [18–24], and so only a brief summary is given
in the following sub-sections.

5.5.2 The plastic hinge

The bending stresses in an elastic beam are distributed linearly across any section of
the beam, as shown in Figure 5.4, and the bending moment M is proportional to the
curvature −d2w/dx2 (see equation 5.2). However, once the yield strain εy = fy/E
(see Figure 5.24) of a steel beam is exceeded, the stress distribution is no longer
linear, as indicated in Figure 5.2c. Nevertheless, the strain distribution remains
linear, and so the inelastic bending stress distributions are similar to the basic
stress–strain relationship shown in Figure 5.24, provided the influence of shear
on yielding can be ignored (which is a reasonable assumption for many I-section
beams). The moment resultant M of the bending stresses is no longer proportional
to the curvature −d2w/dx2, but varies as shown in Figure 5.2d. Thus the section
becomes elastic-plastic when the yield moment My = fyWel is exceeded, and the
curvature increases rapidly as yielding progresses through the section. At high
curvatures, the limiting situation is approached for which the section is completely
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yielded at the fully plastic moment

Mp = fyWpl , (5.33)

where Wpl is the plastic section modulus. Methods of calculating the fully plastic
moment Mp are discussed in Section 5.11.1, and worked examples are given in
Sections 5.12.12 and 5.12.13. For solid rectangular sections, the shape factor
Wpl/Wel is 1.5, but for rolled I-sections, Wpl/Wel varies between 1.1 and 1.2
approximately. Values of Wpl for hot-rolled I-section members are given in [9].

In real beams, strain-hardening commences just before Mp is reached, and the
real moment–curvature relationship rises above the fully plastic limit of Mp, as
shown in Figure 5.2d. On the other hand, high shear forces cause small reductions
in Mp below fyWpl , due principally to reductions in the plastic bending capacity
of the web. This effect is discussed in Section 4.5.2.

The approximate approach of the moment–curvature relationship shown in
Figure 5.2d to the fully plastic limit forms the basis of the simple rigid-plastic
assumption for which the basic stress–strain relationship is replaced by the rect-
angular block shown by the dashed line in Figure 5.24. Thus elastic strains
are completely ignored, as are the increased stresses due to strain-hardening.
This assumption ignores the curvature of any elastic and elastic–plastic regions
(M <Mp), and assumes that the curvature becomes infinite at any point where
M = Mp.

The consequences of the rigid-plastic assumption on the theoretical behaviour
of a simply supported beam with a central concentrated load are shown in
Figures 5.25 and 5.26. In the real beam shown in Figure 5.25a, there is a finite
length of the beam which is elastic-plastic and in which the curvatures are large,
while the remaining portions are elastic, and have small curvatures. However,
according to the rigid-plastic assumption, the curvature becomes infinite at mid-
span when this section becomes fully plastic (M = Mp), while the two halves of
the beam have zero curvature and remain straight, as shown in Figure 5.25b. The
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Figure 5.26 Behaviour of a simply supported beam.

infinite curvature at mid-span causes a finite change θ in the beam slope, and so
the deflected shape of the rigid-plastic beam closely approximates that of the real
beam, despite the very different curvature distributions. The successive stages in
the development of the bending moment diagram and the central deflection of the
beam as the load is increased are summarised in Figure 5.26b and c.
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Figure 5.27 Plastic hinge behaviour.

The infinite curvature at the point of full plasticity and the finite slope change
θ predicted by the rigid-plastic assumption lead to the plastic hinge concept illus-
trated in Figure 5.27a. The plastic hinge can assume any slope change θ once the
full plastic moment Mp has been reached. This behaviour is contrasted with that
shown in Figure 5.27b for a frictionless hinge, which can assume any slope change
θ at zero moment.

It should be noted that when the full plastic moment Mp of the simply supported
beam shown in Figure 5.26a is reached, the rigid-plastic assumption predicts that
a two-bar mechanism will be formed by the plastic hinge and the two frictionless
support hinges, as shown in Figure 5.25b, and that the beam will deform freely
without any further increase in load, as shown in Figure 5.26c. Thus the ultimate
load of the beam is

Qult = 4Mp/L, (5.34)

which reduces the beam to a plastic collapse mechanism.

5.5.3 Moment redistribution in indeterminate beams

The increase in the full plastic moment Mp of a beam over its nominal first yield
moment My is accounted for in elastic design (i.e. design based on an elastic
analysis of the bending of the beam) by the use of Mp for the moment capacity
of the cross-section. Thus elastic design might be considered to be ‘first hinge’
design. However, the feature of plastic design which distinguishes it from elastic
design is that it takes into account the favourable redistribution of the bending
moment which takes place in an indeterminate structure after the first hinge forms.
This redistribution may be considerable, and the final load at which the collapse
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mechanism forms may be significantly higher than that at which the first hinge is
developed. Thus, a first hinge design based on an elastic analysis of the bending
moment may significantly underestimate the ultimate strength.

The redistribution of bending moment is illustrated in Figure 5.28 for a built-in
beam with a concentrated load at a third point. This beam has two redundan-
cies, and so three plastic hinges must form before it can be reduced to a collapse
mechanism. According to the rigid-plastic assumption, all the bending moments
remain proportional to the load until the first hinge forms at the left-hand sup-
port A at Q = 6.75Mp/L. As the load increases further, the moment at this hinge
remains constant at Mp, while the moments at the load point and the right-hand
support increase until the second hinge forms at the load point B at Q = 8.68Mp/L.
The moment at this hinge then remains constant at Mp while the moment at the
right-hand support C increases until the third and final hinge forms at this point at
Q = 9.00Mp/L. At this load the beam becomes a mechanism, and so the ultimate
load is Qult = 9.00Mp/L which is 33% higher than the first hinge load of 6.75Mp/L.
The redistribution of bending moment is shown in Figure 5.28b and d, while the
deflection of the load point (derived from an elastic–plastic assumption) is shown
in Figure 5.28c.

5.5.4 Plastic collapse mechanisms

A number of examples of plastic collapse mechanisms in cantilevers and single-
and multi-span beams is shown in Figure 5.29. Cantilevers and overhanging beams
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Figure 5.29 Beam plastic collapse mechanisms.

generally collapse as single-bar mechanisms with a plastic hinge at the support.
When there is a reduction in section capacity, then the plastic hinge may form in
the weaker section.

Single-span beams generally collapse as two-bar mechanisms, with a hinge
(plastic or frictionless) at each support and a plastic hinge within the span.
Sometimes general plasticity may occur along a uniform moment region.

Multi-span beams generally collapse in one span only, as a local two-bar mech-
anism, with a hinge (plastic or frictionless) at each support, and a plastic hinge
within the span. Sometimes two adjacent spans may combine to form a three-bar
mechanism, with the common support acting as a frictionless pivot, and one plastic
hinge forming within each span. Similar mechanisms may form in over-hanging
beams.

Potential locations for plastic hinges include supports, points of concentrated
load, and points of cross-section change. The location of a plastic hinge in a beam
with distributed load is often not well defined.

5.5.5 Methods of plastic analysis

The purpose of the methods of plastic analysis is to determine the ultimate load at
which a collapse mechanism first forms. Thus, it is only this final mechanism con-
dition which must be found, and any intermediate load conditions can be ignored.
A further important simplification arises from the fact that in its collapse condi-
tion, the beam is a mechanism, and can be analysed by statics, without any of the
difficulties associated with the elastic analysis of a statically indeterminate beam.

The basic method of plastic analysis is to assume the locations of a series of
plastic hinges and to investigate whether the three conditions of equilibrium, mech-
anism and plasticity are satisfied. The equilibrium condition is that the bending
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moment distribution defined by the assumed plastic hinges must be in static
equilibrium with the applied loads and reactions. This condition applies to all
beams, elastic or plastic. The mechanism condition is that there must be a suffi-
cient number of plastic and frictionless hinges for the beam to form a mechanism.
This condition is usually satisfied directly by the choice of hinges. The plastic-
ity condition is that the full plastic moment of every cross-section must not be
exceeded, so that

−Mp ≤ M ≤ Mp. (5.35)

If the assumed plastic hinges satisfy these three conditions, they are the correct
ones, and they define the collapse mechanism of the beam, so that

(Collapse mechanism) satisfies


Equilibrium

Mechanism
Plasticity


 (5.36)

The ultimate load can then be determined directly from the equilibrium conditions.
However, it is usually possible to assume more than one series of plastic hinges,

and so while the assumed plastic hinges may satisfy the equilibrium and mechanism
conditions, the plasticity condition (equation 5.35) may be violated. In this case,
the load calculated from the equilibrium condition is greater than the true ultimate
load (Qm>Qult). This forms the basis of the mechanism method of plastic analysis(

Mechanism method
Qm ≥ Qult

)
satisfies

(
Equilibrium
Mechanism

)
. (5.37)

which provides an upper-bound solution for the true ultimate load.
A lower bound solution (Qs ≤ Qult) for the true ultimate load can be obtained

by reducing the loads and bending moments obtained by the mechanism method
proportionally (which ensures that the equilibrium condition remains satisfied)
until the plasticity condition is satisfied everywhere. These reductions decrease
the number of plastic hinges, and so the mechanism condition is not satisfied. This
is the statical method of plastic analysis(

Statical Method
Qs ≤ Qult

)
satisfies

(
Equilibrium
Plasticity

)
(5.38)

If the upper and lower bound solutions obtained by the mechanism and statical
methods coincide or are sufficiently close, the beam may be designed immediately.
If, however, these bounds are not precise enough, the original series of hinges
must be modified (and the bending moments determined in the statical analysis
will provide some indication of how to do this), and the analysis repeated.

The use of the methods of plastic analysis is demonstrated in Sections 5.11.2
and 5.11.3 for the examples of the built-in beam and the propped cantilever shown
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in Figures 5.30a and 5.31a. A worked example of the plastic collapse analysis of
a non-uniform beam is given in Section 5.12.14.

The limitations on the use of the method of plastic analysis in the EC3 strength
design of beams are discussed in Section 5.6.2.

The application of the methods of plastic analysis to rigid-jointed frames is
discussed in Section 8.3.5.5. This application can only be made provided the effects
of any axial forces in the members are small enough to preclude any instability
effects and provided any significant decreases in the full plastic moments due to
axial forces are accounted for (see Section 7.2.2).
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5.6 Strength design of beams

5.6.1 Elastic design of beams

5.6.1.1 General

For the elastic method of designing a beam for the strength limit state, the strength
design loads are first obtained by multiplying the nominal loads (dead, imposed,
or wind) by the appropriate load combination factors (see Section 1.5.6). The dis-
tributions of the design bending moments and shear forces in the beam under the
strength design load combinations are determined by an elastic bending analysis
(when the structure is statically indeterminate), or by statics (when it is statically
determinate). EC3 also permits a moment redistribution to be made in each ade-
quately braced Class 1 or Class 2 span of a continuous beam of up to 15% of the
span’s peak elastic moment, provided equilibrium is maintained. The beam must
be designed to be able to resist the design moments and shears, as well as any
concentrated forces arising from the factored loads and their reactions.

The processes of checking a specified member or of designing an unknown
member for the design actions are summarised in Figure 5.32. When a specified

Check serviceability 

Guess fy and section
classification

Check fy and
classification

Select trial section
(usually for moment)

Check bracing
Check shear
Check shear and bending
Check bearing

Analysis for MEd, VEd, REd

DesigningChecking 

Section Length and loading

Find fy 
Classify section 

Check moment

Figure 5.32 Flow chart for the elastic design of beams.
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member is to be checked, then the cross-section should first be classified as
Class 1, 2, 3, or 4. This allows the effective section modulus to be determined
and the design section moment resistance to be compared with the maximum
design moment. Following this, the lateral bracing should be checked, then the
web shear resistance, and then combined bending and shear should be checked
at any cross-sections where both the design moment and shear are high. Finally,
the web bearing resistance should be checked at reactions and concentrated load
points.

When the member size is not known, then a target value for the effective section
modulus may be determined from the maximum design moment, and a trial section
chosen whose effective section modulus exceeds this target. The remainder of the
design process is then the same as that for checking a specified member. Usually
the moment resistance governs the design, but when it doesn’t, then an iterative
process may need to be followed, as indicated in Figure 5.32.

The following sub-sections describe each of the EC3 checking processes sum-
marised in Figure 5.32. A worked example of their application is given in
Section 5.12.15.

5.6.1.2 Section classification

The moment, shear, and concentrated load bearing resistances of beams whose
plate elements are slender may be significantly influenced by local buckling con-
siderations (Chapter 4). Because of this, beam cross-sections are classified as
Class 1, 2, 3, or 4, depending on the ability of the elements to resist local buckling
(Section 4.7.2).

Class 1 sections are unaffected by local buckling and are able to develop and
maintain their fully plastic resistances until a collapse mechanism forms. Class 2
sections are able to form a first plastic hinge, but local buckling prevents subsequent
moment redistribution. Class 3 sections are able to reach the yield stress, but local
buckling prevents full plastification of the cross-section. Class 4 sections have their
resistances reduced below their first yield resistances by local buckling effects.

Sections are classified by comparing the slendernessλ= (c/t)√(fy/235)of each
compression element with the appropriate limits of Table 5.2 of EC3. These limits
depend on the way in which the longitudinal edges of the element are supported
(either one edge supported as for the flange outstand of an I-section, or two edges
supported as for the internal flange element of a box section), the bending stress
distribution (uniform compression as in a flange, or varying stresses as in a web),
and the type of section, as indicated in Figures 5.33 and 4.29.

The section classification is that of the lowest classification of its elements, with
Class 1 being the highest possible and Class 4 the lowest. All UB’s in S275 steel
are Class 1, all UC’s are Class 1 or 2, but welded I-section members may also be
Class 3 or 4.

Worked examples of section classification are given in Sections 5.12.15 and
4.9.2–4.9.4.
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Figure 5.33 Local buckling limits λ = (c/t)/ε for some beam sections.

5.6.1.3 Checking the moment resistance

For the moment resistance check of a beam that has adequate bracing against lateral
buckling, the inequality

MEd ≤ Mc,Rd (5.39)

must be satisfied, in which MEd is the maximum design moment, and

Mc,Rd = Wfy/γM0 (5.40)

is the design section moment resistance, in which W is the appropriate section
modulus, fy the nominal yield strength for the section, and γM0(=1) the partial
factor for section resistance.

For Class 1 and Class 2 sections, the appropriate section modulus is the plastic
section modulus Wpl , so that

W = Wpl , (5.41)

For Class 3 sections, the appropriate section modulus may simply be taken as the
minimum elastic section modulus Wel,min. For Class 4 sections, the appropriate
section modulus is reduced below the elastic section modulus Wel,min, as discussed
in Section 4.7.2.
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Worked examples of checking the moment resistance are given in
Sections 5.12.15 and 4.9.2–4.9.4, and a worked example of using the moment
resistance check to design a suitable section is given in Section 5.12.16.

5.6.1.4 Checking the lateral bracing

Beams with insufficient lateral bracing must also be designed to resist lateral
buckling. The design of beams against lateral buckling is discussed in Section 6.9.
It is assumed in this chapter that there is sufficient bracing to prevent lateral
buckling. While the adequacy of bracing for this purpose may be checked by
determining the lateral buckling moment resistance as in Section 6.9, EC3 also
gives simpler (and often conservative) rules for this purpose. For example, lateral
buckling may be assumed to be prevented if the geometrical slenderness of each
segment between restraints satisfies

Lc

if ,z
≤ 37.56

kc

Mc,Rd

My,Ed

√
235

fy
(5.42)

in which if , z is the radius of gyration about the z axis of an equivalent compression
flange, kc is a correction factor which allows for the moment distribution, Mc,Rd is
the design resistance of a fully braced segment, and My,Ed is the maximum design
moment in the segment.

A worked example of checking the lateral bracing is given in Section 5.12.15.

5.6.1.5 Checking the shear resistance

For the shear resistance check, the inequality

VEd ≤ Vc,Rd (5.43)

must be satisfied, in which VEd is the maximum design shear force, and Vc,Rd the
design shear resistance.

For a stocky web with dw/tw ≤ 72
√
(235/fy) and for which the elastic shear

stress distribution is approximately uniform (as in the case of an equal flanged
I-section), the uniform shear resistance Vc,Rd is usually given by

Vc,Rd = Av(fy/
√

3) (5.44)

in which fy/
√

3 is the shear yield stress τy (Section 1.3.1) and Av is the shear area
of the web defined in Clause 6.2.6(2) of EC3. All the webs of UB’s and UC’s
in S275 steel satisfy dw/tw ≤ 72

√
(235/fy). A worked example of checking the

uniform shear capacity of a compact web is given in Section 5.12.15.
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For a stocky web with dw/tw ≤ 72
√
(235/fy) and with a non-uniform elastic

shear stress distribution (such as an unequal flanged I-section), the inequality

τEd ≤ fy/
√

3 (5.45)

must be satisfied, in which τEd is the maximum design shear stress induced in the
web by VEd , as determined by an elastic shear stress analysis (Section 5.4).

Webs for which dw/tw ≥ 72
√
(235/fy) have their shear resistances reduced by

local buckling effects, as discussed in Section 4.7.4. The shear design of thin webs
is governed by EC3-1-5 [25]. Worked examples of checking the shear capacity of
such webs are given in Sections 4.9.5 and 4.9.6.

5.6.1.6 Checking for bending and shear

High shear forces may reduce the ability of a web to resist bending moment, as
discussed in Section 4.5. To allow for this, Class 1 and Class 2 beams under
combined bending and shear, in addition to satisfying equations 5.39 and 5.43,
must also satisfy

MEd ≤ Mc,Rd

{
1 −

(
2VEd

Vpl,Rd
− 1

)2
}

(5.46)

in which VEd is the design shear at the cross-section being checked and Vpl,Rd is
the design plastic shear resistance. This condition need only be considered when
VEd > 0.5Vpl,Rd , as indicated in Figure 4.32. It therefore need only be checked at
cross-sections under high bending and shear, such as at the internal supports of
continuous beams. Even so, many such beams have VEd ≤ 0.5Vpl,Rd and so this
check for combined bending and shear rarely governs.

5.6.1.7 Checking the bearing resistance

For the bearing check, the inequality

FEd ≤ FRd (5.47)

must be satisfied at all supports and points of concentrated load. In this equation,
FEd is the design-concentrated load or reaction, and FRd the bearing resistance of
the web and its load-bearing stiffeners, if any. The bearing design of webs and
load-bearing stiffeners is governed by EC3-1-5 [25] and discussed in Sections 4.6
and 4.7.6. Stocky webs often have sufficient bearing resistance and do not require
the addition of load-bearing stiffeners.

A worked example of checking the bearing resistance of a stocky unstiffened
web is given in Section 5.12.15, while a worked example of checking the bearing
resistance of a slender web with load-bearing stiffeners is given in Section 4.9.9.
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5.6.2 Plastic design of beams

In the plastic method of designing for the strength limit state, the distributions of
bending moment and shear force in a beam under factored loads are determined
by a plastic bending analysis (Section 5.5.5). Generally, the material properties
for plastic design should be limited to ensure that the stress–strain curve has an
adequate plastic plateau and exhibits strain-hardening, so that plastic hinges can
be formed and maintained until the plastic collapse mechanism is fully developed.
The use of the plastic method is restricted to beams which satisfy certain limitations
on cross-section form and lateral bracing (additional limitations are imposed on
members with axial forces, as discussed in Section 7.2.4.2).

EC3 permits only Class 1 sections which are symmetrical about the axis per-
pendicular to the axis of bending to be used at plastic hinge locations, in order to
ensure that local buckling effects (Sections 4.2 and 4.3) do not reduce the ability of
the section to maintain the full plastic moment until the plastic collapse mechanism
is fully developed, while Class 1 or Class 2 sections should be used elsewhere.
The slenderness limits for Class 1 and Class 2 beam flanges and webs are shown
in Figure 5.33.

The spacing of lateral braces is limited in plastic design to ensure that inelastic
lateral buckling (see Section 6.3) does not prevent the complete development of
the plastic collapse mechanism. EC3 requires the spacing of braces at both ends
of a plastic hinge segment to be limited. A conservative approximation for the
spacing limit for sections with h/tf ≤ 40

√
(235/fy) is given by

Lstable ≤ 35iz
√
(235/fy) (5.48)

in which iz is the radius of gyration about the minor z axis, although higher values
may be calculated by allowing for the effects of moment gradient.

The resistance of a beam designed plastically is based principally on its plastic
collapse load Qult calculated by plastic analysis using the full plastic moment Mp

of the beam. The plastic collapse load must satisfy QEd ≤ Qult in which QEd is the
corresponding design load.

The shear capacity of a beam analysed plastically is based on the fully plastic
shear capacity of the web (see Section 4.3.2.1). Thus the maximum shear VEd

determined by plastic analysis under the design loads is limited to

VEd ≤ Vpl,Rd = Avfy/
√

3 (5.49)

EC3 also requires web stiffeners to be provided near all plastic hinge locations
where an applied load or reaction exceeds 10% of the above limit.
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The ability of a beam web to transmit concentrated loads and reactions is
discussed in Section 4.6.2. The web should be designed as in Section 4.7.6 using
the design loads and reactions calculated by plastic analysis.

A worked example of the plastic design of a beam is given in Section 5.12.17.

5.7 Serviceability design of beams

The design of a beam is often governed by the serviceability limit state, for
which the behaviour of the beam should be so limited as to give a high proba-
bility that the beam will provide the serviceability necessary for it to carry out its
intended function. The most common serviceability criteria are associated with
the stiffness of the beam, which governs its deflections under load. These may
need to be limited so as to avoid a number of undesirable situations: an unsightly
appearance; cracking or distortion of elements fixed to the beam such as cladding,
linings, and partitions; interference with other elements such as crane girders; or
vibration under dynamic loads such as traffic, wind, or machinery loads.

Aserviceability design should be carried out by making appropriate assumptions
for the load types, combinations, and levels; for the structural response to load;
and for the serviceability criteria. Because of the wide range of serviceability limit
states, design rules are usually of limited extent. The rules given are often advisory
rather than mandatory because of the uncertainties as to the appropriate values to
be used. These uncertainties result from the variable behaviour of real structures,
and what is often seen to be the non-catastrophic (in terms of human life) nature
of serviceability failures.

Serviceability design against unsightly appearance should be based on the total
sustained load, and so should include the effects of dead and long-term imposed
loads. The design against cracking or distortion of elements fixed to a beam should
be based on the loads imposed after their installation, and will often include the
unfactored imposed load or wind load, but exclude the dead load. The design
against interference may need to include the effects of dead load as well as of
imposed and wind loads. Where imposed and wind loads act simultaneously, it
may be appropriate to multiply the unfactored loads by combination factors such
as 0.8. The design against vibration will require an assessment to be made of the
dynamic nature of the loads.

Most stiffness serviceability limit states are assessed by using an elastic anal-
ysis to predict the static deflections of the beam. For vibration design, it may be
sufficient in some cases to represent the dynamic loads by static equivalents and
carry out an analysis of the static deflections. More generally, however, a dynamic
elastic analysis will need to be made.

The serviceability deflection limits depend on the criterion being used. To avoid
unsightly appearance, a value of L/200 (L/180 for cantilevers) might be used after
making allowances for any pre-camber. Values as low as L/360 have been used
for design against the cracking of plaster finishes, while a limit of L/600 has been
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used for crane gantry girders. Avalue of H/300 has been used for horizontal storey
drift in buildings under wind load.

A worked example of the serviceability design is given in Section 5.12.18.

5.8 Appendix – bending stresses in elastic beams

5.8.1 Bending in a principal plane

When a beam bends in the xz principal plane, plane cross-sections rotate as
shown in Figure 5.4, so that sections δx apart become inclined to each other at
−(d2w/dx2)δx, where w is the deflection in the z principal direction as shown
in Figure 5.5, and δx the length along the centroidal axis between the two cross-
sections. The length between the two cross-sections at a distance z from the axis
is greater than δx by z(−d2w/d x2)δx, so that the longitudinal strain is

ε = −z
d2w

d x2

The corresponding tensile stress σ = Eε is

σ = −Ez
d2w

d x2
(5.50)

which has the stress resultants

N =
∫

A
σdA = 0

since
∫

A zdA = 0 for centroidal axes (see Section 5.9), and

My =
∫

A
σ zdA

whence

My = −EIy
d2w

dx2
(5.2)

since
∫

A z2dA = Iy (see Section 5.9). If this is substituted into equation 5.50, then
the bending tensile stress σ is obtained as

σ = Myz

Iy
. (5.3)
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5.8.2 Alternative formulation for biaxial bending

When bending moments My1, Mz1 acting about non-principal axes y1, z1 cause
curvatures d2w1/dx2, d2v1/dx2 in the non-principal planes xz1, xy1, the stress σ
at a point y1, sz1 is given by

σ = −Ez1d2w1/dx2 − Ey1d2v1/dx2 (5.51)

and the moment resultants of these stresses are

and
My1 = −EIy1d2w1/dx2 − EIy1z1d2v1/dx2

Mz1 = EIy1z1d2w1/dx2 + EIz1d2v1/dx2


 (5.52)

These can be rearranged as

and

−E
d2w1

dx2
= My1Iz1 + Mz1Iy1z1

Iy1Iz1 − I2
y1z1

E
d2v1

dx2
= My1Iy1z1 + Mz1Iy1

Iy1Iz1 − I2
y1z1




(5.53)

which are much more complicated than the principal plane formulations of
equations 5.9.

If equations 5.53 are substituted, then equation 5.51 can be expressed as

σ =
(

My1Iz1 + Mz1Iy1z1

Iy1Iz1 − I2
y1z1

)
z1 −

(
My1Iy1z1 + Mz1Iy1

Iy1Iz1 − I2
y1z1

)
y1 (5.54)

which is much more complicated than the principal plane formulation of
equation 5.12.

5.9 Appendix – thin-walled section properties

The cross-section properties of many steel beams can be analysed with suffi-
cient accuracy by using the thin-walled assumption demonstrated in Figure 5.34,
in which the cross-section is replaced by its mid-thickness line. While the thin-
walled assumption may lead to small errors in some properties due to junction and
thickness effects, its consistent use will avoid anomalies that arise when a more
accurate theory is combined with thin-walled theory, as might be the case in the
determination of shear flows. The small errors are typically of the same order as
those introduced by the common practice of ignoring the fillets or corner radii of
hot-rolled sections.
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(a) Actual cross-section (b) Thin-walled approximation

Figure 5.34 Thin-walled cross-section assumption.

The area A of a thin-walled section composed of a series of thin rectangles bn

wide and tn thick (bn � tn) is given by

A =
∫

A
dA =

∑
n

An (5.55)

in which An = bntn. This approximation may make small errors of the order of
(t/b)2 at some junctions.

The centroid of a cross-section is defined by

∫
A

ydA =
∫

A
zdA = 0

and for a thin-walled section these conditions become

∑
n

Anyn =
∑

n

Anzn = 0 (5.56)

in which yn, zn are the centroidal distances of the centre of the rectangular ele-
ment, as demonstrated in Figure 5.35a. The position of the centroid can be found
by adopting any convenient initial set of axes yi, zi as shown in Figure 5.35a,
so that

yn = yin − yic

zn = zin − zic
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A2 = b2 × t2 A2 = b2 × t2

z1z1
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z12

y1C 
0

2

C

2

(b) Second moments of area(a) Centroid  

Figure 5.35 Calculation of cross-section properties.

When these are substituted into equation 5.56, the centroid position is found from

yic =
∑

Anyin/A

zic =
∑

Anzin/A


 (5.57)

The second moments of area about the centroidal axes are defined by

Iy =
∫

A
z2 dA =

∑
(Anz2

n + In sin2 θn)

Iz =
∫

A
y2 dA =

∑
(Any2

n + In cos2 θn)

Iyz =
∫

A
yz dA =

∑
(Anynzn + In sin θn cos θn)




(5.58)

in which θn is always the angle from the y axis to the rectangular element (positive
from the y axis to the z axis), as shown in Figure 5.35b, and

In = b3
ntn/12. (5.59)

These thin-walled approximations ignore small terms bnt3
n/12, while the use of

the angle θn adjusts for the inclination of the element to the y, z axes.
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The principal axis directions y, z are defined by the condition that

Iyz = 0. (5.60)

These directions can be found by considering a rotation of the centroidal axes from
y1, z1 to y2, z2 through an angle α, as shown in Figure 5.36a. The y2, z2 coordinates
of any point are related to its y1, z1 coordinates as demonstrated in Figure 5.36a by

y2 = y1 cosα + z1 sinα
z2 = −y1 sinα + z1 cosα

}
(5.61)

The second moments of area about the y2, z2 axes are

Iy2 =
∫

A
z2

2 dA = Iy1 cos2 α − 2Iy1z1 sinα cosα + Iz1 sin2 α

Iz2 =
∫

A
y2

2 dA = Iy1 sin2α + 2Iy1z1 sinα cosα + Iz1 cos2 α

Iy2z2 =
∫

A
y2z2 dA = 1

2
(Iy1 − Iz1) sin 2α + Iy1z1 cos 2α




(5.62)

The principal axis condition of equation 5.60 requires Iy2z2 = 0, so that

tan 2α = −2Iy1z1/(Iy1 − Iz1). (5.63)

In this book, y and z are reserved exclusively for the principal centroidal axes.

C 

(y1, z1) 

z1
z2

y2

z2

z1

z1 cos 	

Iy

1z

Iy,Iz

(Iy1, –Iy1z1)

(Iy1,Iy1z1)

Iyz

y1 sin 	

2	

z1 sin 	
y1 cos 	

y2

y1 	

(y2, z2) 

(a) Rotation of axes (b) Mohr’s circle construction

Figure 5.36 Calculation of principal axis properties.
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The principal axis second moments of area can be obtained by using this value
of α in equation 5.62, whence

Iy = 1

2
(Iy1 + Iz1)+ (Iy1 − Iz1)/2 cos 2α

Iz = 1

2
(Iy1 + Iz1)− (Iy1 − Iz1)/2 cos 2α


 . (5.64)

These results are summarised by the Mohr’s circle constructed in Figure 5.36b on
the diameter whose ends are defined by (Iy1, Iy1z1) and (Iz1, −Iy1z1). The angles
between this diameter and the horizontal axis are equal to 2α and (2α+ 180◦),
while the intersections of the circle with the horizontal axis define the principal
axis second moments of area Iy, Iz.

Worked examples of the calculation of cross-section properties are given in
Sections 5.12.1–5.12.4.

5.10 Appendix – shear stresses in elastic beams

5.10.1 Solid cross-sections

A solid cross-section beam with a shear force Vz parallel to the z principal axis is
shown in Figure 5.9a. It is assumed that the resulting shear stresses also act parallel
to the z axis and are constant across the width b of the section. The corresponding
horizontal shear stresses τzx = τv are in equilibrium with the horizontal bending
stresses σ . For the element b × δz × δx shown in Figure 5.9b, this equilibrium
condition reduces to

b
∂σ

∂x
δxδz + ∂(τvb)

∂z
δzδx = 0

whence

τv = − 1

b2

∫ z2

zT

b
∂σ

∂x
dz, (5.65)

which satisfies the condition that the shear stress is zero at the unstressed boundary
zT . The bending normal stresses σ are given by

σ = Myz

Iy

and the shear force Vz is

Vz = dMy

dx
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and so

∂σ

∂x
= Vzz

Iy
. (5.66)

Substituting this into equation 5.65 leads to

τv = − Vz

Iyb2

∫ z2

zT

bz dz. (5.13)

5.10.2 Thin-walled open cross-sections

A thin-walled open cross-section beam with a shear force Vz parallel to the z prin-
cipal axis is shown in Figure 5.11a. It is assumed that the resulting shear stresses
act parallel to the walls of the section and are constant across the wall thickness.
The corresponding horizontal shear stresses τv are in equilibrium with the hori-
zontal bending stresses σ . For the element t × δs × δx shown in Figure 5.11b, this
equilibrium condition reduces to

∂σ

∂x
δxtδs + ∂(τvt)

∂x
δsδx = 0,

and substitution of equation 5.66 and integration leads to

τvt = −Vz

Iy

∫ s

0
zt ds, (5.16)

which satisfies the condition that the shear stress is zero at the unstressed boundary
s = 0.

The direction of the shear stress can be determined from the sign of the right-
hand side of equation 5.16. If this is positive, then the direction of the shear stress
is the same as the positive direction of s, and vice versa. The direction of the shear
stress may also be determined from the direction of the corresponding horizontal
shear force required to keep the out-of-balance bending force in equilibrium, as
shown for example in Figure 5.13a. Here a horizontal force τvtf δx in the positive x
direction is required to balance the resultant bending force δσ δA (due to the shear
force Vz = dMy/dx), and so the direction of the corresponding flange shear stress
is from the tip of the flange towards its centre.

5.10.3 Multi-cell thin-walled closed sections

The shear stress distributions in multi-cell closed sections can be determined by
extending the method discussed in Section 5.4.4 for single-cell closed sections. If
the section consists of n junctions connected by m walls, then there are (m − n + 1)
independent cells. In each wall there is an unknown circulating shear flow τvct.
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There are (m − n + 1) independent cell warping continuity conditions of the type
(see equation 5.27)

∑
cell

∫
wall
(τ/G) ds = 0,

and (n − 1) junction equilibrium equations of the type∑
junction

(τ t) = 0.

These equations can be solved simultaneously for the m circulating shear
flows τvct.

5.11 Appendix – plastic analysis of beams

5.11.1 Full plastic moment

The fully plastic stress distribution in a section bent about a y axis of symmetry
is antisymmetric about that axis, as shown in Figure 5.37a for a channel section
example. The plastic neutral axis, which divides the cross-section into two equal
areas so that there is no axial force resultant of the stress distribution, coincides with
the axis of symmetry. The moment resultant of the fully plastic stress distribution is

Mp,y = fy
∑

T

Anzn − fy
∑

C

Anzn (5.67)

in which the summations
∑

T ,
∑

C are carried out for the tension and com-
pression areas of the cross-section, respectively. Note that zn is negative for
the compression areas of the channel section, so that the two summations in

y
y

z

z

T 

C 

T

C
T

	

C

(a) Bending about an
 axis of symmetry

(b) Bending of a monosymmetric
 section in a plane of symmetry

(c) Bending of an
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Figure 5.37 Full plastic moment.
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equation 5.67 are additive. The plastic section modulus Wpl,y = Mp,y/fy is obtained
from equation 5.67 as

Wpl,y =
∑

T

Anzn −
∑

C

Anzn. (5.68)

A worked example of the determination of the full plastic moment of a doubly
symmetric I-section is given in Section 5.12.12.

The fully plastic stress distribution in a monosymmetric section bent in a plane
of symmetry is not antisymmetric, as can be seen in Figure 5.37b for a channel
section example. The plastic neutral axis again divides the cross-section into two
equal areas so that there is no axial force resultant, but the neutral axis no longer
passes through the centroid of the cross-section. The fully plastic moment Mp,y

and the plastic section modulus Wpl,y are given by equations 5.67 and 5.68. For
convenience, any suitable origin may be used for computing zn. Aworked example
of the determination of the full plastic moment of a monosymmetric tee-section is
given in Section 5.12.13.

The fully plastic stress distribution in an asymmetric section is also not antisym-
metric, as can be seen in Figure 5.37c for an angle section example. The plastic
neutral axis again divides the cross-section into two equal areas. The direction of
the plastic neutral axis is perpendicular to the plane in which the moment resul-
tant acts. The full plastic moment is given by the vector addition of the moment
resultants about any convenient y1, z1 axes, so that

Mp = √
(M 2

p,y1 + M 2
p,z1) (5.69)

where Mp,y1 is given by an equation similar to equation 5.67, and Mp,z1 is
given by

Mp,z1 = −fy
∑

T

Any1n + fy
∑

C

Any1n. (5.70)

The inclination α of the plastic neutral axis to the y1 axis (and of the plane of the
full plastic moment to the zx plane) can be obtained from

tan α = Mp,z1/Mp,y1. (5.71)

5.11.2 Built-in beam

5.11.2.1 General

The built-in beam shown in Figure 5.30a has two redundancies, and so three plastic
hinges must form before it can be reduced to a collapse mechanism. In this case
the only possible plastic hinge locations are at the support points 1 and 4 and at the
load points 2 and 3, and so there are two possible mechanisms, one with a hinge at
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point 2 (Figure 5.30c), and the other with a hinge at point 3 (Figure 5.30d). Three
different methods of analysing these mechanisms are presented in the following
sub-sections.

5.11.2.2 Equilibrium equation solution

The equilibrium conditions for the beam express the relationships between the
applied loads and the moments at these points. These relationships can be obtained
by dividing the beam into the segments shown in Figure 5.30b and expressing the
end shears of each segment in terms of its end moments, so that

V12 = (M2 − M1)/(L/3)

V23 = (M3 − M2)/(L/3)

V34 = (M4 − M3)/(L/3).

For equilibrium, each applied load must be equal to the algebraic sum of the shears
at the load point in question, and so

Q = V12 − V23 = 1

L
(−3M1 + 6M2 − 3M3)

2Q = V23 − V34 = 1

L
(−3M2 + 6M3 − 3M4)

which can be rearranged as

4QL = − 6M1 + 9M2 − 3M4

5QL = − 3M1 + 9M3 − 6M4

}
. (5.72)

If the first mechanism chosen (incorrectly, as will be shown later) is that with
plastic hinges at points 1, 2, and 4 (see Figure 5.30c), so that

−M1 = M2 = −M4 = Mp

then substitution of this into the first of equations 5.72 leads to 4QL = 18Mp

and so

Qult ≤ 4.5Mp/L.

If this result is substituted into the second of equations 5.72, then

M3 = 1.5 Mp > Mp,
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and the plasticity condition is violated. The statical method can now be used to
obtain a lower bound by reducing Q until M3 = Mp, whence

Q = 4.5Mp

L

/
M3

Mp
= 3Mp

L

and so

3Mp/L < Qult < 4.5Mp/L.

The true collapse load can be obtained by assuming a collapse mechanism
with plastic hinges at point 3 (the point of maximum moment for the previous
mechanism) and at points 1 and 4. For this mechanism

−M1 = M3 = −M4 = Mp,

and so, from the second of equations 5.72,

Qult ≤ 3.6Mp/L.

If this result is substituted into the first of equations 5.72, then

M2 = 0.6Mp < Mp,

and so the plasticity condition is also satisfied. Thus

Qult = 3.6Mp/L.

5.11.2.3 Graphical solution

A collapse mechanism can be analysed graphically by first plotting the known free
moment diagram (for the applied loading on a statically determinate beam), and
then the reactant bending moment diagram (for the redundant reactions) which
corresponds to the collapse mechanism.

For the built-in beam (Figure 5.38a), the free moment diagram for a simply
supported beam is shown in Figure 5.38c. It is obtained by first calculating the
left-hand reaction as

RL = (Q × 2L/3 + 2Q × L/3)/L = 4Q/3
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Figure 5.38 Graphical solution for the plastic collapse of a built-in beam.

and then using this to calculate the moments

M2 = (4Q/3)× L/3 = 4QL/9

and

M3 = (4Q/3)× 2L/3 − QL/3 = 5QL/9

Both of the possible collapse mechanisms (Figure 5.29c and d) require plastic
hinges at the supports, and so the reactant moment diagram is one of uniform
negative bending, as shown in Figure 5.38d. When this is combined with the free
moment diagram as shown in Figure 5.38b, it becomes obvious that there must be
a plastic hinge at point 3 and not at point 2, and that at collapse

2Mp = 5QultL/9

so that

Qult = 3.6Mp/L

as before.

5.11.2.4 Virtual work solution

The virtual work principle [4, 7, 8] can also be used to analyse each mechanism.
For the first mechanism shown in Figure 5.30c, the virtual external work done
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by the forces Q, 2Q during the incremental virtual displacements defined by the
incremental virtual rotations δθ and 2δθ shown is given by

δW = Q × (δθ × 2L/3)+ 2Q × (δθ × L/3) = 4QLδθ/3

while the internal work absorbed at the plastic hinge locations during the
incremental virtual rotations is given by

δU = Mp × 2δθ + Mp × (2δθ + δθ)+ Mp × δθ = 6Mpδθ .

For equilibrium of the mechanism, the virtual work principle requires

δW = δU

so that the upper-bound estimate of the collapse load is

Qult ≤ 4.5Mp/L

as in Section 5.11.2.2.
Similarly, for the second mechanism shown in Figure 5.30d,

δW = 5QLδθ/3

δU = 6Mpδθ

so that

Qult ≤ 3.6Mp/L

once more.

5.11.3 Propped cantilever

5.11.3.1 General

The exact collapse mechanisms for beams with distributed loads are not always as
easily obtained as those for beams with concentrated loads only, but sufficiently
accurate solutions can usually be found without great difficulty. Three different
methods of determining these mechanisms are presented in the following sub-
sections for the propped cantilever shown in Figure 5.31.
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5.11.3.2 Equilibrium equation solution

If the plastic hinge is assumed to be at the mid-span of the propped cantilever as
shown in Figure 5.31c (the other plastic hinge must obviously be located at the
built-in support), then equilibrium considerations of the left and right segments of
the beam allow the left and right reactions to be determined from

RLL/2 = 2Mp + (qL/2)L/4

and

RRL/2 = Mp + (qL/2)L/4

while for overall equilibrium

qL = RL + RR.

Thus

qL = (4Mp/L + qL/4)+ (2Mp/L + qL/4)

so that

qult ≤ 12Mp/L
2.

The left-hand reaction is therefore given by

RL = 4Mp/L + (12Mp/L
2)L/4 = 7Mp/L.

The bending moment variation along the propped cantilever is therefore given by

M = −Mp + (7Mp/L)x − (12Mp/L
2)x2/2

which has a maximum value of 25Mp/24>Mp at x = 7L/12. Thus the lower
bound is given by

qult ≥ (12Mp/L
2)/(25/24) ≈ 11.52Mp/L

2

and so

11.52Mp

L2
< qult <

12Mp

L2
.

If desired, a more accurate solution can be obtained by assuming that the hinge is
located at a distance 7L/12(= 0.583L) from the built-in support (i.e. at the point
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of maximum moment for the previous mechanism), whence

11.6567Mp

L2
< qult <

11.6575Mp

L2
.

These are very close to the exact solution of

qult = (6 + 4
√

2)Mp/L
2 ≈ 11.6569Mp/L

2

for which the hinge is located at a distance (2 − √
2)L ≈ 0.5858L from the built-in

support.

5.11.3.3 Graphical solution

For the propped cantilever of Figure 5.31, the parabolic free moment diagram
for a simply supported beam is shown in Figure 5.39c. All the possible collapse
mechanisms have a plastic hinge at the left-hand support and a frictionless hinge
at the right-hand support, so that the reactant moment diagram is triangular, as
shown in Figure 5.39d. A first attempt at combining this with the free moment
diagram so as to produce a trial collapse mechanism is shown in Figure 5.39b. For
this mechanism, the interior plastic hinge occurs at mid-span, so that

Mp + Mp/2 = qL2/8

which leads to

q = 12Mp/L
2

as before.

q

L
RL RR

(+)

Mp ( + ) qL /8 

L /2 L/ 2 

Mp

Mp /2
2

qL /82

Mp

Mp
Mmax

(-)
( - )

(d) Reactant moment diagram

(a) Propped cantilever

(b) T ri a l                    c ol l ap s e                  m o m e n t                      d ia gram

(c)            Free           moment            diagram

Figure 5.39 Graphical analysis of the plastic collapse of a propped cantilever.
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Figure 5.39b indicates that in this case, the maximum moment occurs to the right
of mid-span, and is greater than Mp, so that the solution above is an upper bound.
A more accurate solution can be obtained by trial and error, by increasing the
slope of the reactant moment diagram until the moment of the left-hand support
is equal to the interior maximum moment, as indicated by the dashed line in
Figure 5.39b.

5.11.3.4 Virtual work solution

For the first mechanism for the propped cantilever shown in Figure 5.31c, for
virtual rotations δθ ,

δW = qL2δθ/4

δU = 3Mpδθ

and

qult ≤ 12Mp/L
2

as before.

5.12 Worked examples

5.12.1 Example 1 – properties of a plated UB section

Problem. The 610 × 229 UB 125 section shown in Figure 5.40a is strengthened by
welding a 300 mm × 20 mm plate to each flange. Determine the section properties
Iy and Wel,y.

Solution. Because of the symmetry of the section, the centroid of the plated UB
is at the web centre. Adapting equation 5.58,

Iy = 98 610 + 2 × 300 × 20 × [(612.2 + 20)/2]2/104 = 218 500 cm4

Wel,y = 218 500/[(612.2 + 2 × 20)/(2 × 10)] = 6701 cm3

5.12.2 Example 2 – properties of a tee-section

Problem. Determine the section properties Iy and Wel,y of the welded tee-section
shown in Figure 5.40b.
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Figure 5.40 Worked examples 1, 2, and 18.

Solution. Using the thin-walled assumption and equations 5.57 and 5.58,

zi = (80 + 5/2)× 10 × (80 + 5/2)/2

(80 × 5)+ (80 + 5/2)× 10
= 27.8 mm

Iy = (80 × 5)× 27.82 + (82.53 × 10/12)+ (82.5 × 10)

× (82.5/2 − 27.8)2 mm4

= 92.63 cm4

Wel,y = 92.63/{(8.25 − 2.78)/10} = 16.93 cm3

Alternatively, the equations of Figure 5.6 may be used.

5.12.3 Example 3 – properties of an angle section

Problem. Determine the properties A, Iy1, Iz1, Iy1z1, Iy, Iz, and α of the thin-walled
angle section shown in Figure 5.41c.

Solution. Using the thin-walled assumption, the angle section is replaced by two
rectangles 142.5(= 150 − 15/2)× 15 and 82.5(= 90 − 15/2)× 15, as shown in
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Figure 5.41 Worked examples 3 and 5.

Figure 5.41d. If the initial origin is taken at the intersection of the legs and the
initial yi, zi axes parallel to the legs, then using equations 5.55 and 5.57,

A = (142.5 × 15)+ (82.5 × 15) = 3375 mm2

yic = {(142.5 × 15)× 0 + (82.5 × 15)× (−82.5/2)}/3375

= −15.1 mm

zic = {(142.5 × 15)× (−142.5/2)+ (82.5 × 15)× 0}/3375

= −45.1 mm

Transferring the origin to the centroid and using equations 5.58,

Iy1 = (142.5 × 15)× (−142.5/2 + 45.1)2 + (142.53 × 15/12)× sin2 90◦

+ (82.5 × 15)× (45.1)2 + (82.53 × 15/12)× sin2 180◦

= 7.596 × 106 mm4 = 759.6 cm4
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Iz1 = (142.5 × 15)× (15.1)2 + (142.53 × 15/12)× cos2 90◦

+ (82.5 × 15)× (−82.5/2 + 15.1)2 + (82.53 × 15/12)× cos2 180◦

= 2.035 × 106 mm4 = 203.5 cm4

Iy1z1 = (142.5 × 15)× (−142.5/2 + 45.1)× 15.1 + (142.53 × 15/12)

× sin 90◦ cos 90◦ + (82.5 × 15)× (45.1)× (−82.5/2 + 15.1)

+ (82.53 × 15/12)× sin 180◦ cos 180◦

= −2.303 × 106 mm4 = −230.3 cm4

Using equation 5.63,

tan 2α = −2 × (−230.3)/(759.6 − 203.5) = 0.8283

whence 2α= 39.63◦ and α= 19.82◦.
Using Figure 5.30b, the Mohr’s circle centre is at

(Iy1 + Iz1)/2 = (759.6 + 203.5)/2 = 481.6 cm4

and the Mohr’s circle diameter is

√{(Iy1 − Iz1)
2 + (2Iy1z1)

2} = √{(759.6 − 203.5)2 + (2 × 230.3)2}
= 722.1 cm4

and so

Iy = 481.6 + 722.1/2 = 842.6 cm4

Iz = 481.6 − 722.1/2 = 120.5 cm4

5.12.4 Example 4 – properties of a zed section

Problem. Determine the properties Iyl , Izl , Iylzl , Iy, Iz, and α of the thin-walled
Z-section shown in Figure 5.42a.
Solution.

Iy1 = 2 × (75 × 10 × 752)+ (1503 × 5/12) = 9844 × 103 mm4

= 984.4 cm4,
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Figure 5.42 Worked examples 4, 9, 10, and 11.

Iz1 = 2 × (75 × 10 × 37.52)+ 2 × (753 × 10/12)

= 2813 × 103 mm4 = 281.3 cm4,

Iy1z1 = 75 × 10 × 37.5 × (−75)+ 75 × 10 × (−37.5)× 75

= −4219 × 103 mm4 = −421.9 cm4.

The centre of the Mohr’s circle (see Figure 5.37b) is at

Iy1 + Iz1

2
=

[
984.4 + 281.3

2

]
= 6328 cm4.

The diameter of the circle is
√[(984.4 − 281.3)2 + (2 × 421.9)2] = 1098.3 cm4

and so

Iy = (632.8 + 1098.3/2) = 1182 cm4,

Iz = (632.8 − 1098.3/2) = 83.7 cm4,

tan 2α = 2 × 421.9

(984.4 − 281.3)
= 1.200,

α = 25.1◦.

5.12.5 Example 5 – biaxial bending of an angle
section cantilever

Problem. Determine the maximum elastic stress and deflection of the angle section
cantilever shown in Figure 5.41 whose section properties were determined in
Section 5.12.3.
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Solution for maximum stress. The shear centre (see Section 5.4.3) load of 6 kN
acting in the plane of the long leg of the angle has principal plane components of

6 cos 19.82◦ = 5.645 kN parallel to the z axis, and

6 sin 19.82◦ = 2.034 kN parallel to the y axis,

as indicated in Figure 5.41d. These load components cause principal axis moment
components at the support of

My = −5.645 × 1.5 = −8.467 kNm about the y axis, and

Mz = +2.034 × 1.5 = +3.052 kNm about the z axis.

The maximum elastic bending stress occurs at the point A (y1A = 15.1 mm,
z1A = −97.4 mm) shown in Figure 5.41d. The coordinates of this point can be
obtained by using equation 5.61 as

y = 15.1 cos 19.82◦ − 97.4 sin 19.82◦ = −18.8 mm, and

z = −15.1 sin 19.82◦ − 97.4 cos 19.82◦ = −96.7 mm.

The maximum stress at A can be obtained by using equation 5.12 as

σmax = (−8.467 × 106)× (−96.7)

842.6 × 104
− (3.052 × 106)× (−18.8)

120.5 × 104

= 146.9 N/mm2

The stresses at the other leg ends should be checked to confirm that the maximum
stress is at A.

Solution for maximum deflection. The maximum deflection occurs at the tip of the
cantilever. Its components v and w can be calculated using QL3/3EI. Thus

w = (5.645 × 103)× (1500)3/(3 × 210, 000 × 842.6 × 104) = 3.6 mm,

and

v = (2.034 × 103)× (1500)3/(3 × 210, 000 × 120.5 × 104) = 9.0 mm.

The resultant deflection can be obtained by vector addition as

δ = √
(3.62 + 9.02) = 9.7 mm

Using non-principal plane properties. Problems of this type are sometimes incor-
rectly analysed on the basis that the plane of loading can be assumed to be a
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principal plane. When this approach is used, the maximum stress calculated for
the cantilever is

σmax = (6 × 103)× 1500 × (97.4)/759.6 × 104 = 115 N/mm2

which seriously underestimates the correct value by more than 20%. The correct
non-principal plane formulations which are needed to solve the example in this
way are given in Section 5.8.2. The use of these formulations should be avoided,
since their excessive complication makes them very error-prone. The much simpler
principal plane formulations of equations 5.9–5.12 should be used instead.

It should be noted that in this book y and z are reserved exclusively for the
principal axis directions, instead of also being used for the directions parallel to
the legs.

5.12.6 Example 6 – shear stresses in an I-section

Problem. Determine the shear flow distribution and the maximum shear stress in
the I-section shown in Figure 5.12a.

Solution. Applying equation 5.16 to the left-hand half of the top flange,

τvtf = −(Vz/Iy)

∫ sf

0
(−df /2)tf dsf = (Vz/Iy)df tf sf /2,

which is linear, as shown in Figure 5.12b.
At the flange web junction, (τvtf )12 = (Vz/Iy)df tf b/4, which is positive, and

so the shear flow acts into the flange–web junction, as shown in Figure 5.12a.
Similarly, for the right-hand half of the top flange, (τvtf )23 = (Vz/Iy)df tf b/4, and
again the shear flow acts in to the flange–web junction.

For horizontal equilibrium at the flange–web junction, the shear flow from the
junction into the web is obtained from equation 5.20 as

(τvtw)24 = (Vz/Iy)df tf b/4 + (Vz/Iy)df tf b/4 = (Vz/Iy)df tf b/2

Adapting equation 5.16 for the web,

τvtw = (Vz/Iy)(df tf b/2)− (Vz/Iy)

∫ sw

0
(−df /2 + sw)twdsw

= (Vz/Iy)(df tf b/2)+ (Vz/Iy)(df sw/2 − s2
w/2)tw

which is parabolic, as shown in Figure 5.12b. At the web centre, (τvtw)df /2 =
(Vz/Iy)(df tf b/2 + d2

f tw/8) which is the maximum shear flow.
At the bottom of the web,

(τvtw)df = (Vz/Iy)(df tf b/2 + d2
f tw/2 − d2

f tw/2)

= (Vz/Iy)(df tf b/2) = (τvtw)24,

which provides a symmetry check.
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The maximum shear stress is

(τv)df /2 = (Vz/Iy)(df tf b/2 + d2
f tw/8)tw

A vertical equilibrium check is provided by finding the resultant of the web shear
flow as

Vw =
∫ df

0
(τvtw)dsw

= (Vz/Iy)[df tf bsw/2 + df tws2
w/4 − s3

wtw/6]df

0

= (Vz/Iy)(d
2
f tf b/2 + d3

f tw/12)

= Vz

when Iy = d2
f tf b/2 + d3

f tw/12 is substituted.

5.12.7 Example 7 – shear stress in a channel section

Problem. Determine the shear flow distribution in the channel section shown in
Figure 5.14.

Solution. Applying equation 5.15 to the top flange,

τvtf = −(Vz/Iy)

∫ sf

0
(−df /2)tf dsf = (Vz/Iy)df tf sf /2

(τvtf )b = (Vz/Iy)df tf b/2

τvtw = (Vz/Iy)(df tf b/2 −
∫ sw

0
(−df /2 + sw)twdsw)

= (Vz/Iy)(df tf b/2 + df swtw/2 − s2
wtw/2)

(τvtw)df = (Vz/Iy)(df tf b/2 + d2
f tw/2 − d2

f tw/2)

= (Vz/Iy)(df tf b/2) = (τvtf )b

which provides a symmetry check.
A vertical equilibrium check is provided by finding the resultant of the web

flows as

Vw =
∫ df

0
(τvtw)dsw

= (Vz/Iy)[df tf bsw/2 + df s2
wtw/4 − s3

wtw/6]df

0

= (Vz/Iy)(d
2
f tf b/2 + d3

f tw/12)

= Vz

when Iy = d2
f tf b/2 + d3

f tw/12 is substituted.
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5.12.8 Example 8 – shear centre of a channel section

Problem. Determine the position of the shear centre of the channel section shown
in Figure 5.14.

Solution. The shear flow distribution in the channel section was analysed in
Section 5.12.7 and is shown in Figure 5.14a. The resultant flange shear forces
shown in Figure 5.14b are obtained from

Vf =
∫ b

0
(τvtf )dsf

= (Vz/Iy)[df tf s2
f /4]b

0

= (Vz/Iy)(df tf b2/4),

while the resultant web shear force is Vw = Vz (see Section 5.12.7).
These resultant shear forces are statically equivalent to a shear force Vz acting

through the point S which is a distance

a = Vf df

Vw
= d2

f tf b2

4Iy
from the web, and so

y0 = d2
f tf b2

4Iy
+ b2tf

2btf + df tw
.

5.12.9 Example 9 – shear stresses in a pi-section

Problem. The pi shaped section shown in Figure 5.42b has a shear force of 100
kN acting parallel to the y axis. Determine the shear stress distribution.

Solution. Using equation 5.23, the shear flow in the segment 12 is

(τh × 12)12 = −100 × 103

1400 × 104

∫ s1

0
(−100 + s1)× 12 × ds1,

whence (τh)12 = 0.007143 × (100s1 − s2
1/2) N/mm2.

Similarly, the shear flow in the segment 62 is

(τh × 6)62 = −100 × 103

1400 × 104

∫ s6

0
(−50)× 6 × ds1,

whence (τh)62 = 0.007143 × (50s6) N/mm2.
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For horizontal equilibrium of the longitudinal shear forces at the junction 2, the
shear flows in the segments 12, 62, and 23 must balance (equation 5.20), and so

[(τh × 12)23]s3=0 = [(τh × 12)12]s1=50 + [(τh × 6)62]s6=200

= 0.007143

[(
100 × 50 − 502

2

)
× 12 + 50 × 200 × 6

]

= 0.007143 × 8750.

The shear flow in the segment 23 is

(τh × 12)23 = 0.007143 × 12 × 8750 − 100 × 103

1400 × 104

×
∫ s2

0
(−50 + s2)× 12 × ds2

whence (τh)23 = 0.007143(8750 + 50s2 − s2
2/2) N/mm2.

As a check, the resultant of the shear stresses in the segments 12, 23, and 34 is

∫
τhtds = 2 × 0.007143 × 12

∫ 50

0
(100s1 − s2

1/2)ds1

+ 0.007143 × 12 ×
∫ 100

0
(8750 + 50s2 − s2

2/2)ds2

= 0.007143 × 12{2 × (100 × 502/2 − 503/6)

+ (8750 × 100 + 50 × 1002/2 − 1003/6)}N
= 100 kN

which is equal to the shear force.

5.12.10 Example 10 – shear centre of a pi-section

Problem. Determine the position of the shear centre of the pi section shown in
Figure 5.42b.

Solution. The resultant of the shear stresses in the segment 62 is

∫
τhtds = 0.007143 × 6

∫ 200

0
(50s6)× ds6

= 0.007143 × 6 × 50 × 2002/2 N

= 42.86 kN.

The resultant of the shear stresses in the segment 53 is equal and opposite to this.
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The torque about the centroid exerted by the shear stresses is equal to the sum
of the torques of the force in the flange 1234 and the forces in the webs 62 and 53.
Thus

∫
A
τhtρds = (100 × 50)+ (2 × 42.86 × 50) = 9286 kNmm.

For the applied shear to be statically equivalent to the shear stresses, it must exert
an equal torque about the centroid, and so

−100 × z0 = 9286

whence z0 = −92.9 mm.
Because of symmetry, the shear centre lies on the z axis, and so y0 = 0.

5.12.11 Example 11 – shear stresses in a box section

Problem. The rectangular box section shown in Figure 5.42c has a shear force of
100 kN acting parallel to the y axis. Determine the maximum shear stress.

Solution. If initially a slit is assumed at point 1 on the axis of symmetry so that
(τ hot)1 = 0, then

(τhot)12 = −100 × 103

6 × 106

∫ s1

0
s1 × 12 × ds1 = −0.1s2

1

(τhot)2 = −0.1 × 502 = −0.1 × 2500 N/mm

(τhot)23 = −0.1 × 2500 − 100 × 103

6 × 106

∫ s2

0
50 × 6 × ds2

= −0.1(2500 + 50s2)

(τhot)3 = −0.1(2500 + 50 × 150) = −0.1 × 10 000 N/mm

(τhot)34 = −0.1 × 10 000 − 100 × 103

6 × 106

∫ s3

0
(50 − s3)× 6 × ds3

= −0.1[10 000 + (50s3 − s2
3/2)]

(τhot)4 = −0.1[10 000 + (50 × 100 − 1002/2)] = −0.1 × 10 000 N/mm

= (τhot)3, which is a symmetry check.

The remainder of the shear stress distribution can therefore be obtained by
symmetry.
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The circulating shear flow τ hct can be determined by adapting equation 5.30.
For this∮

τhods = 2 × (0.1 × 503/3)/12

+ 2 × (−0.1)× (2500 × 150 + 50 × 1502/2)/6

+ (−0.1)× (10 000 × 100 + 50 × 1002/2 − 1003/6)/6

= (−0.1)× (6 000 000)/12 N/mm∮
1

t
ds = 100

12
+ 150

6
+ 100

6
+ 150

6

= 900/12.

Thus

τhct = (−0.1)× (6 000 000)

12
× 12

900

= 6666.7 N/mm.

The maximum shear stress occurs at the centre of the segment 34, and adapting
equation 5.29,

(τh)max = {−0.1 × (10 000 + 50 × 50 − 502/2)+ 666.7}/6 N/mm2

= −76.4 N/mm2

5.12.12 Example 12 – fully plastic moment of a plated UB

Problem. A 610 × 229 UB 125 beam (Figure 5.40a) of S275 steel is strengthened
by welding a 300 mm × 20 mm plate of S275 steel to each flange. Compare the
full plastic moments of the unplated and the plated sections.

Unplated section.

For tf = 19.6 mm, fy = 265 N/mm2. EN10025-2

Mpl,u = fyWpl,y = 265 × 3676 × 103 Nmm = 974 kNm.

Plated section.

For tp = 20 mm, fy = 265 N/mm2. EN10025-2

Because of the symmetry of the cross-section, the plastic neutral axis is at the
centroid. Adapting equation 5.67,

Mpl,p = {974 + 2 × 265 × (300 × 20)× (612.2/2 + 20/2)/106} kNm

= 1979 kNm ≈ 2 × Mpl,u
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5.12.13 Example 13 – fully plastic moment of a tee-section

Problem. The welded tee-section shown in Figure 5.40b is fabricated from two
S275 steel plates. Compare the first yield and fully plastic moments.

First yield moment. The minimum elastic section modulus was determined in
Section 5.12.2 as

Wel,y = 16.93 cm3.

For tmax = 10 mm, fy = 275 N/mm2. EN10025-2

Mel,y = fyWel,y = 275 × 16.93 × 103 Nmm = 4.656 kNm.

Full plastic moment. For the plastic neutral axis to divide the cross-section into
two equal areas, then using the thin-walled assumption leads to

(80 × 5)+ (zp × 10) = (82.5 − zp)× 10

so that zp = (82.5 × 10 − 80 × 5)/(2 × 10) = 21.3 mm.
Using equation 5.67,

Mpl,y = 275 × [(80 × 5)× 21.3 + (21.3 × 10)× 21.3/2

+ (82.5 − 21.3)2 × 10/2] Nmm

= 8.117 kNm.

Alternatively, the section properties Wel,y and Wpl,y can be calculated using
Figure 5.6, and used to calculate Mel,y and Mpl,y.

5.12.14 Example 14 – plastic collapse of a non-uniform beam

Problem. The two-span continuous beam shown in Figure 5.43a is a 610 × 229
UB 125 of S275 steel, with 2 flange plates 300 mm × 20 mm of S275 steel
extending over a central length of 12 m. Determine the value of the applied loads
Q at plastic collapse.

Solution. The full plastic moments of the beam (unplated and plated) were
determined in Section 5.12.12 as Mpl,u = 974 kNm and Mpl,p = 1979 kNm.

The bending moment diagram is shown in Figure 5.43b. Two plastic collapse
mechanisms are possible, both with a plastic hinge (−Mpl,p) at the central support.
For the first mechanism (Figure 5.43c), plastic hinges (Mpl,p) occur in the plated
beam at the load points, but for the second mechanism (Figure 5.43d), plastic
hinges (Mpl,u) occur in the unplated beam at the changes of cross-section.
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Figure 5.43 Worked example 14.

For the first mechanism shown in Figure 5.43c, inspection of the bending
moment diagram shows that

Mpl,p + Mpl,p/2 = Q1 × 9.6/4

so that

Q1 = (3 × 1979/2)× 4/9.6 = 1237 kN.

For the second mechanism shown in Figure 5.43d, inspection of the bending
moment diagram shows that

Mpl,u + 3.6Mpl,p/9.6 = (3.6/4.8)× Q2 × 9.6/4

so that

Q2 = [974 + (3.6/9.6)× 1979] × (4.8/3.6)× 4/9.6 = 954 kN,

which is less than Q1 = 1237 kN.
Thus plastic collapse occurs at Q = 954 kN by the second mechanism.

5.12.15 Example 15 – checking a simply supported beam

Problem. The simply supported 610 × 229 UB 125 of S275 steel shown in
Figure 5.44a has a span of 6.0 m and is laterally braced at 1.5 m intervals. Check
the adequacy of the beam for a nominal uniformly distributed dead load of 60 kNm
together with a nominal uniformly distributed imposed load of 70 kNm.
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Figure 5.44 Worked examples 15–18.

Classifying the section.

tf = 19.6 mm, fy = 265 N/mm2 EN10025-2

ε =
√
(235/265) = 0.942 T5.2

cf /(tf ε) = (229/2 − 11.9/2 − 12.7)/(19.6 × 0.942) T5.2

= 5.19 < 9 and the flange is Class 1. T5.2

cw/(twε) = (612.2 − 2 × 19.6 − 2 × 12.7)/(11.9 × 0.942) T5.2

= 48.9 < 72 and the web is Class 1. T5.2

(Note the general use of the minimum fy obtained for the flange.)

Checking for moment.

qEd = (1.35 × 60)+ (1.5 × 70) = 186 kNm

MEd = 186 × 62/8 = 837 kNm

Mc,Rd = 3676 × 103 × 265/1.0 Nmm 6.2.5

= 974 kNm > 837 kNm = MEd

which is satisfactory.
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Checking for lateral bracing.

if ,z =
√

2293 × 19.6/12

229 × 19.6 + (612.2 − 2 × 19.6)× 11.9/6
= 59.1 mm 6.3.2.4

kcLc/(if ,zλ1) = 1.0 × 1500/(59.1 × 93.9 × 0.942) = 0.287 6.3.2.4

λ̄c0Mc,Rd/MEd = 0.4 × 974/837 = 0.465 > 0.287 6.3.2.4

and the bracing is satisfactory.

Checking for shear.

VEd = 186 × 6/2 = 558 kN

Av = 159 × 102 − 2 × 229 × 19.6 + (11.9 + 2 × 12.7)× 19.6

= 7654 mm2 6.2.6(3)

Vc,Rd = 7654 × (265/
√

3)/1.0 N = 1171 kN > 558 kN = VEd 6.2.6(2)

which is satisfactory.

Checking for bending and shear. The maximum MEd occurs at mid-span where
VEd = 0, and the maximum VEd occurs at the support where MEd = 0, and so there
is no need to check for combined bending and shear. (Note that in any case, 0.5
Vc,Rd = 0.5 × 1171 = 585.5 kN > 558 kN = VEd and so the combined bending
and shear condition does not operate.)

Checking for bearing.

REd = 186 × 6/2 = 558 kN

tw = 11.9, fy,w = 275 N/mm2 EN10025-2

hw = 612.2 − 2 × 19.6 = 573.0 mm.

Assume (ss + c) = 100 mm, which is not difficult to achieve.

kF = 2 + 6 × 100/573.0 = 3.047 EC3-1-5, 6.1(4)(c)

Fcr = 0.9 × 3.047 × 210 000 × 11.93/573.0 N = 1694 kN
EC3-1-5, 6.4(1)

m1 = (265 × 229)/(275 × 11.9) = 18.54 EC3-1-5, 6.5(1)

m2 = 0.02 × (572.7/19.6)2 = 17.09 if λF > 0.5 EC3-1-5, 6.5(1)



 

In-plane bending of beams 221

�e = 3.047 × 210 000 × 11.92/(2 × 275 × 573.0) = 287.5 > 100
EC3-1-5, 6.5(3)

�y1 = 100 + 19.6 × √
(18.54/2 + (100/19.6)2 + 17.09) = 241.9

EC3-1-5, 6.5(3)

�y2 = 100 + 19.6 × √
(18.54 + 17.09) = 217.0 < 241.9 EC3-1-5, 6.5(3)

�y = 217.0 mm. EC3-1-5, 6.5(3)

λ̄F =
√

217.0 × 11.9 × 275

1694 × 103
= 0.648 > 0.5 EC3-1-5, 6.4(1)

χF = 0.5/0.648 = 0.772 EC3-1-5, 6.2

Leff = 0.772 × 217.0 = 167.6 mm EC3-1-5, 6.2

FRd = 275 × 167.6 × 11.9/1.0 N = 548 kN EC3-1-5, 6.2

< 558 kN = REd , and so the assumed value of (ss + c) = 100 mm

is inadequate.

5.12.16 Example 16 – designing a cantilever

Problem. A 3.0 m long cantilever has the nominal imposed and dead loads (which
include allowances for self weight) shown in Figure 5.44c. Design a suitable UB
section in S275 steel if the cantilever has sufficient bracing to prevent lateral
buckling.

Selecting a trial section.

MEd = 1.35 × (40 × 3 + 20 × 32/2)+ 1.5 × (120 × 3 + 10 × 32/2)

= 891 kNm.

Assume that fy = 265 MPa and that the section is Class 2.

Wpl,y ≥ MEd/fy = 891 × 106/265 mm3 = 3362 cm3 6.2.5

Choose a 610 × 229 UB 125 with Wpl,y = 3676 cm3 > 3362 cm3.

Checking the trial section. The trial section must now be checked by classifying
the section and checking for moment, shear, moment and shear, and bearing. This
process is similar to that used in Section 5.12.15 for checking a simply supported
beam. If the section chosen fails any of the checks, then a new section must be
chosen.
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5.12.17 Example 17 – checking a plastically analysed beam

Problem. Check the adequacy of the non-uniform beam shown in Figure 5.43
and analysed plastically in Section 5.12.14. The beam and its flange plates are
of S275 steel, and the concentrated loads have nominal dead load components of
250 kN (which include allowances for self weight), and imposed load components
of 400 kN.

Classifying the sections. The 610 × 229 UB 125 was found to be Class 1 in
Section 5.12.15.
For the 300 × 20 plate, tp = 20 mm, fy = 265 N/mm2 EN10025-2

ε= √
(235/265)= 0.942 T5.2

For the 300 × 20 plate as two outstands

cp/(tpε) = (300/2)/(19.6 × 0.942) T5.2

= 8.13 < 9 and the outstands are Class 1. T5.2

For the internal element of the 300 × 20 plate,

cp/(tpε) = 229/(20 × 0.942) T5.2

= 12.2 < 33 and the internal element is Class 1. T5.2

Checking for plastic collapse. The design loads are QEd = (1.35 × 250)+ (1.5 ×
400)= 937.5 kN.

The plastic collapse load based on the nominal full plastic moments of the
beam was calculated in Section 5.12.14 as

Q = 954 kN > 937.5 kN = QEd ,

and so the resistance appears to be adequate.

Checking for lateral bracing. For the unplated segment,

Lstable = (60 − 40 × 0)× 0.924 × 4.97 × 10 = 2808 mm. 6.3.5.3

Thus a brace should be provided at the change of section (a plastic hinge location),
and a second brace between this and the support.

For the plated segment,

iz =
√{

(3932 × 104)+ (2 × 3003 × 20/12)

(159 × 102)+ (2 × 300 × 20)

}
= 68.1 mm

and so,

Lstable = {60 − 40 × 974/(−1979)} × 0.924 × 68.1 = 5109 mm. 6.3.5.3

Thus a single brace should be provided in the plated segment. A satisfactory
location is at the load point.
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Checking for shear. Under the collapse loads Q = 954 kN, the end reactions are

RE = {(954×4.8)−1979}/9.6 = 270.6 kN

and the central reaction is

RC = 2 × 954 − 2 × 270.6 = 1366 kN

so that the maximum shear at collapse is

V = 1366/2 = 683 kN.

From Section 5.12.15, the design shear resistance is Vc,Rd = 1171 kN> 683 kN
which is satisfactory.

Checking for bending and shear. At the central support, V = 683 kN and

0.5 Vc,Rd = 0.5 × 1171 = 586 kN< 683 kN

and so there is a reduction in the full plastic moment Mpp. This reduction is from
1979 kNm to 1925 kNm (after using Clause 6.2.8(3) of EC3). The plastic collapse
load is reduced to 942 kN> 937.5 kN = QEd , and so the resistance is adequate.

Checking for bearing. Web stiffeners are required for beams analysed plastically
within h/2 of all plastic hinge points where the design shear exceeds 10% of the
web capacity, or 0.1 × 1171 = 117.1 kN (Clause 5.6(2b) of EC3). Thus stiffeners
are required at the hinge locations at the points of cross-section change and at the
interior support. Load-bearing stiffeners should also be provided at the points of
concentrated load, but are not required at the outer supports (see Section 5.12.15).
An example of the design of load-bearing stiffeners is given in Section 4.9.9.

5.12.18 Example 18 – serviceability of a simply
supported beam

Problem. Check the imposed load deflection of the 610 × 220 UB 125 of
Figure 5.44a for a serviceability limit of L/360.

Solution. The central deflection wc of a simply supported beam with uniformly
distributed load q can be calculated using

wc = 5qL4

384EIy
= 5 × 70 × 60004

384 × 210 000 × 98 610 × 104
= 5.7 mm. (5.73)

(The same result can be obtained using Figure 5.3.)
L/360 = 6000/360 = 16.7 mm> 5.7 mm = wc and so the beam is satisfactory.
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5.13 Unworked examples

5.13.1 Example 19 – section properties

Determine the principal axis properties Iy, Iz of the half box section shown in
Figure 5.45a.

5.13.2 Example 20 – elastic stresses and deflections

The box section beam shown in Figure 5.45b is to be used as a simply supported
beam over a span of 20.0 m. The erection procedure proposed is to fabricate the
beam as two half boxes (the right half as in Figure 5.45a), to erect them separately,
and to pull them together before making the longitudinal connections between the
flanges. The total construction load is estimated to be 10 kN/m × 20 m.

(a) Determine the maximum elastic bending stress and deflection of one
half box.

(b) Determine the horizontal distributed force required to pull the two half boxes
together.

(c) Determine the maximum elastic bending stress and deflection after the half
boxes are pulled together.
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5.13.3 Example 21 – shear stresses

Determine the shear stress distribution caused by a vertical shear force of 500 kN
in the section shown in Figure 5.45c.

5.13.4 Example 22 – shear centre

Determine the position of the shear centre of the section shown in Figure 5.45c.

5.13.5 Example 23 – shear centre of a box section

Determine the shear flow distribution caused by a horizontal shear force of 2000 kN
in the box section shown in Figure 5.45b, and determine the position of its shear
centre.

5.13.6 Example 24 – plastic moment of a monosymmetric
I-section

Determine the fully plastic moment and the shape factor of the monosymmetric
I-beam shown in Figure 5.45d if the yield stress is 265 N/mm2.

5.13.7 Example 25 – elastic design

Determine a suitable hot-rolled I-section member of S275 steel for the propped
cantilever shown in Figure 5.45e by using the elastic method of design.

5.13.8 Example 26 – plastic collapse analysis

Determine the plastic collapse mechanism of the propped cantilever shown in
Figure 5.45e.

5.13.9 Example 27 – plastic design

Use the plastic design method to determine a suitable hot-rolled I-section of S275
steel for the propped cantilever shown in Figure 5.45e.

References

1. Popov, E.P. (1968) Introduction to Mechanics of Solids, Prentice-Hall, Englewood
Cliffs, New Jersey.

2. Hall, A.S. (1984) An Introduction to the Mechanics of Solids, 2nd edition, John Wiley,
Sydney.

3. Pippard, A.J.S. and Baker, J.F. (1968) The Analysis of Engineering Structures,
4th edition, Edward Arnold, London.



 

226 In-plane bending of beams

4. Norris, C.H., Wilbur, J.B., and Utku, S. (1976) Elementary Structural Analysis,
3rd edition, McGraw-Hill, New York.

5. Harrison, H.B. (1973) Computer Methods in Structural Analysis, Prentice-Hall,
Englewood Cliffs, New Jersey.

6. Harrison, H.B. (1990) Structural Analysis and Design, Parts 1 and 2, 2nd edition,
Pergamon Press, Oxford.

7. Ghali, A., Neville, A.M., and Brown, T.G. (1997) Structural Analysis – A Unified
Classical and Matrix Approach, 5th edition, Routledge, Oxford.

8. Coates, R.C., Coutie, M.G., and Kong, F.K. (1990) Structural Analysis, 3rd edition,
Van Nostrand Reinhold (UK), Wokingham.

9. British Standards Institution (2005) BS4-1:2005 Structural Steel Sections – Part1:
Specification for hot-rolled sections, BSI, London.

10. Bridge, R.Q. and Trahair, N.S. (1981) Bending, shear, and torsion of thin-walled beams,
Steel Construction, Australian Institute of Steel Construction, 15(1), pp. 2–18.

11. Hancock, G.J. and Harrison, H.B. (1972) A general method of analysis of stresses
in thin-walled sections with open and closed parts, Civil Engineering Transactions,
Institution of Engineers, Australia, CE14, No. 2, pp. 181–8.

12. Papangelis, J.P. and Hancock, G.J. (1995) THIN-WALL – Cross-section Analysis
and Finite Strip Buckling Analysis of Thin-Walled Structures, Centre for Advanced
Structural Engineering, University of Sydney.

13. Timoshenko, S.P. and Goodier, J.N. (1970) Theory of Elasticity, 3rd edition, McGraw-
Hill, New York.

14. Winter, G. (1940) Stress distribution in and equivalent width of flanges of wide, thin-
walled steel beams, Technical Note 784, NationalAdvisory Committee forAeronautics.

15. Abdel-Sayed, G. (1969) Effective width of steel deck-plates in bridges, Journal of the
Structural Division, ASCE, 95, No. ST7, pp. 1459–74.

16. Malcolm, D.J. and Redwood, R.G. (1970) Shear lag in stiffened box girders, Journal
of the Structural Division, ASCE, 96, No. ST7, pp. 1403–19.

17. Kristek, V. (1983) Shear lag in box girders, Plated Structures. Stability and Strength,
(ed. R. Narayanan), Applied Science Publishers, London, pp. 165–94.

18. Baker, J.F. and Heyman, J. (1969) Plastic Design of Frames – 1. Fundamentals,
Cambridge University Press, Cambridge.

19. Heyman, J. (1971) Plastic Design of Frames – 2. Applications, Cambridge University
Press, Cambridge.

20. Horne, M.R. (1978) Plastic Theory of Structures, 2nd edition, Pergamon Press, Oxford.
21. Neal, B.G. (1977) The Plastic Methods of Structural Analysis, 3rd edition, Chapman

and Hall, London.
22. Beedle, L.S. (1958) Plastic Design of Steel Frames, John Wiley, New York.
23. Horne, M.R. and Morris, L.J. (1981) Plastic Design of Low-rise frames, Granada,

London.
24. Davies, J.M. and Brown, B.A. (1996) Plastic Design to BS5950, Blackwell Science

Ltd, Oxford.
25. British Standards Institution (2006) Eυρoχoδε 3 – Design of Steel Structures – Part

1–5: Plated structural elements, BSI, London.



 

Chapter 6

Lateral buckling of beams

6.1 Introduction

In the discussion given in Chapter 5 of the in-plane behaviour of beams, it was
assumed that when a beam is loaded in its stiffer principal plane, it deflects only in
that plane. If the beam does not have sufficient lateral stiffness or lateral support
to ensure that this is so, then it may buckle out of the plane of loading, as shown in
Figure 6.1. The load at which this buckling occurs may be substantially less than
the beam’s in-plane load resistance, as indicated in Figure 6.2.

For an idealised perfectly straight elastic beam, there are no out-of-plane defor-
mations until the applied moment M reaches the elastic buckling moment Mcr ,
when the beam buckles by deflecting laterally and twisting, as shown in Figure 6.1.
These two deformations are interdependent: when the beam deflects laterally, the
applied moment has a component which exerts a torque about the deflected longi-
tudinal axis which causes the beam to twist. This behaviour, which is important for
long unrestrained I-beams whose resistances to lateral bending and torsion are low,
is called elastic flexural–torsional buckling, (referred to as elastic lateral–torsional
buckling in EC3). In this chapter, it will simply be referred to as lateral buckling.

The failure of a perfectly straight slender beam is initiated when the additional
stresses induced by elastic buckling cause the first yield. However, a perfectly
straight beam of intermediate slenderness may yield before the elastic buckling
moment is reached, because of the combined effects of the in-plane bending
stresses and any residual stresses, and may subsequently buckle inelastically, as
indicated in Figure 6.2. For very stocky beams, the inelastic buckling moment
may be higher than the in-plane plastic collapse moment Mp, in which case the
moment resistance of the beam is not affected by lateral buckling.

In this chapter, the behaviour and design of beams which fail by lateral buckling
and yielding are discussed. It is assumed that local buckling of the compression
flange or of the web (which is dealt with in Chapter 4) does not occur. The behaviour
and design of beams bent about both principal axes, and of beams with axial loads,
are discussed in Chapter 7.
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Figure 6.1 Lateral buckling of a cantilever.

6.2 Elastic beams

6.2.1 Buckling of straight beams

6.2.1.1 Simply supported beams with equal end moments

A perfectly straight elastic I-beam which is loaded by equal and opposite end
moments is shown in Figure 6.3. The beam is simply supported at its ends so
that lateral deflection and twist rotation are prevented, while the flange ends are
free to rotate in horizontal planes so that the beam ends are free to warp (see
Section 10.8.3). The beam will buckle at a moment Mcr when a deflected and
twisted equilibrium position, such as that shown in Figure 6.3, is possible. It is
shown in Section 6.12.1.1 that this position is given by

v = Mcr

π2EIz/L2
φ = δ sin

πx

L
, (6.1)
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where δ is the undetermined magnitude of the central deflection, and that the elastic
buckling moment is given by

Mcr = Mzx, (6.2)
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where

Mzx =
√{(

π2EIz

L2

) (
GIt + π2EIw

L2

)}
, (6.3)

and in which EIz is the minor axis flexural rigidity, GIt is the torsional rigidity,
and EIw is the warping rigidity of the beam. Equation 6.3 shows that the resistance
to buckling depends on the geometric mean of the flexural stiffness EIz and the
torsional stiffness (GIt + π2EIw/L2). Equations 6.2 and 6.3 apply to all beams
which are bent about an axis of symmetry, including equal flanged channels and
equal angles.

Equation 6.3 ignores the effects of the major axis curvature d2w/dx2 =
−Mcr/EIy, and produces conservative estimates of the elastic buckling moment
equal to √[(1−EIz/EIy){1− (GIt +π2EIw/L2)/2EIy}] times the true value. This
correction factor, which is just less than unity for many beam sections but may be
significantly less than unity for column sections, is usually neglected in design.
Nevertheless, its value approaches zero as Iz approaches Iy so that the true elastic
buckling moment approaches infinity. Thus an I-beam in uniform bending about
its weak axis does not buckle, which is intuitively obvious. Research [1] has indi-
cated that in some other cases the correction factor may be close to unity, and that
it is prudent to ignore the effect of major axis curvature.

6.2.1.2 Beams with unequal end moments

A simply supported beam with unequal major axis end moments M and βmM is
shown in Figure 6.4a. It is shown in Section 6.12.1.2 that the value of the end
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moment Mcr at elastic flexural–torsional buckling can be expressed in the form of

Mcr = αmMzx, (6.4)

in which the moment modification factor αm which accounts for the effect of
the non-uniform distribution of the major axis bending moment can be closely
approximated by

αm = 1.75 + 1.05βm + 0.3β2
m ≤ 2.56, (6.5)

or by

1/αm = 0.57 − 0.33βm + 0.10β2
m ≥ 0.43. (6.6)

These approximations form the basis of a very simple method of predicting the
buckling of the segments of a beam which is loaded only by concentrated loads
applied through transverse members preventing local lateral deflection and twist
rotation. In this case, each segment between load points may be treated as a beam
with unequal end moments, and its elastic buckling moment may be estimated by
using equation 6.4 and either equation 6.5 or 6.6 and by taking L as the segment
length. Each buckling moment so calculated corresponds to a particular buckling
load parameter for the complete load set, and the lowest of these parameters gives
a conservative approximation of the actual buckling load parameter. This simple
method ignores any buckling interactions between the segments. A more accurate
method which accounts for these interactions is discussed in Section 6.8.2.

6.2.1.3 Beams with central concentrated loads

A simply supported beam with a central concentrated load Q acting at a distance
−zQ above the centroidal axis of the beam is shown in Figure 6.5a. When the beam
buckles by deflecting laterally and twisting, the line of action of the load moves
with the central cross-section, but remains vertical, as shown in Figure 6.5c. The
case when the load acts above the centroid is more dangerous than that of centroidal
loading because of the additional torque −Q zQφL/2 which increases the twisting
of the beam and decreases its resistance to buckling.

It is shown in Section 6.12.1.3 that the dimensionless buckling load
QL2/

√
(EIzGIt) varies as shown in Figure 6.6 with the beam parameter

K = √
(π2EIw/GItL

2) (6.7)

and the dimensionless height ε of the point of application of the load given by

ε = zQ

L

√(
EIz

GIt

)
. (6.8)
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For centroidal loading (ε = 0), the elastic buckling load Q increases with the
beam parameter K in much the same way as does the buckling moment of beams
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with equal and opposite end moments (see equation 6.3). The elastic buckling load

Qcr = 4Mcr/L (6.9)

can be approximated by using equation 6.4 with the moment modification factor
αm (which accounts for the effect of the non-uniform distribution of major axis
bending moment) equal to 1.35.

The elastic buckling load also varies with the load height parameter ε, and
although the resistance to buckling is high when the load acts below the cen-
troidal axis, it decreases significantly as the point of application rises, as shown in
Figure 6.6. For equal flanged I-beams, the parameter ε can be transformed into

2zQ

df
= π

K
ε (6.10)

where df is the distance between flange centroids. The variation of the buckling
load with 2zQ/df is shown by the solid lines in Figure 6.6, and it can be seen that the
differences between top (2zQ/df = −1) and bottom (2zQ/df = 1) flange loading
increase with the beam parameter K . This effect is therefore more important for
deep beam-type sections of short span than for shallow column-type sections of
long span. Approximate expressions for the variations of the moment modifica-
tion factor αm with the beam parameter K which account for the dimensionless
load height 2zQ/df for equal flanged I-beams are given in [2]. Alternatively, the
maximum moment at elastic buckling Mcr = QL/4 may be approximated by using

Mcr

Mzx
= αm

{√[
1 +

(
0.4αmzQNcr,z

Mzx

)2
]

+ 0.4αmzQNcr,z

Mzx

}
(6.11)

and αm ≈ 1.35, in which

Ncr,z = π2EIz/L
2. (6.12)

6.2.1.4 Other loading conditions

The effect of the distribution of the applied load along the length of a simply
supported beam on its elastic buckling strength has been investigated numerically
by many methods, including those discussed in [3–5]. A particularly powerful
computer method is the finite element method [6–10], while the finite integral
method [11, 12], which allows accurate numerical solutions of the coupled minor
axis bending and torsion equations to be obtained, has been used extensively. Many
particular cases have been studied [13–16], and tabulations of elastic buckling
loads are available [2, 3, 5, 13, 15, 17], as is a user-friendly computer program
[18] for analysing elastic flexural–torsional buckling.

Some approximate solutions for the maximum moments Mcr at elastic buckling
of simply supported beams which are loaded along their centroidal axes can be
obtained from equation 6.4 by using the moment modification factors αm given
in Figure 6.7. It can be seen that the more dangerous loadings are those which
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Figure 6.7 Moment modification factors for simply supported beams.

produce more nearly constant distributions of major axis bending moment, and
that the worst case is that of equal and opposite end moments for which αm = 1.0.

For other beam loadings than those shown in Figure 6.7, the moment
modification factor αm may be approximated by using

αm = 1.75Mmax√
(M 2

2 + M 2
3 + M 2

4 )
≤ 2.5 (6.13)

in which Mmax is the maximum moment, M2, M4 are the moments at the quarter
points, and M3 is the moment at the mid-point of the beam.

The effect of load height on the elastic buckling moment Mcr may generally
be approximated by using equation 6.11 with αm obtained from Figure 6.7 or
equation 6.13.

6.2.2 Bending and twisting of crooked beams

Real beams are not perfectly straight, but have small initial crookednesses and
twists which cause them to bend and twist at the beginning of loading. If a simply
supported beam with equal and opposite end moments M has an initial crookedness
and twist rotation which are given by

v0

δ0
= φ0

θ0
= sin

πx

L
, (6.14)
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in which the central initial crookedness δ0 and twist rotation θ0 are related by

δ0

θ0
= Mzx

π2EIz/L2
, (6.15)

then the deformations of the beam are given by

v

δ
= φ

θ
= sin

πx

L
, (6.16)

in which

δ

δ0
= θ

θ0
= M/Mzx

1 − M/Mzx
, (6.17)

as shown in Section 6.12.2. The variations of the dimensionless central deflection
δ/δ0 and twist rotation θ/θ0 are shown in Figure 6.8, and it can be seen that
deformation begins at the commencement of loading, and increases rapidly as the
elastic buckling moment Mzx is approached.

The simple load–deformation relationships of equations 6.16 and 6.17 are of
the same forms as those of equations 3.8 and 3.9 for compression members
with sinusoidal initial crookedness. It follows that the Southwell plot tech-
nique for extrapolating the elastic buckling loads of compression members from
experimental measurements (see Section 3.2.2) may also be used for beams.

Beam with initial crookedness and twist 
�0/�0 = f0/0 = sin �x/L

�0 /f0  = Mzx / Ncr,z
equation 6.17 

Straight beam �0 = f0 = 0 
equations 6.1 and 6.3 
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Figure 6.8 Lateral deflection and twist of a beam with equal end moments.
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As the deformations increase with the applied moments M , so do the stresses. It
is shown in Section 6.12.2 that the limiting moment ML at which a beam without
residual stresses first yields is given by

ML

My
= 1

Φ +
√
Φ2 − λ

2
(6.18)

in which

Φ = (1 + η + λ
2
)/2, (6.19)

λ = √
(My/Mzx) (6.20)

is a generalised slenderness, My = Wel,yfy is the nominal first yield moment, and
η is a factor defining the imperfection magnitudes, when the central crookedness
δ0 is given by

δ0Ncr,z

Mzx
= θ0 = Wel,z/Wel,y

1 + (df /2) (Ncr,z/Mzx)
η, (6.21)

in which Ncr,z is given by equation 6.12. Equations 6.18–6.20 are similar to
equations 3.11, 3.12, and 3.5 for the limiting axial force at first yield of a
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compression member. The variation of the dimensionless limiting moment ML/My

for η = λ
2
/4 is shown in Figure 6.9, in which λ = √

(My/Mzx) plotted along the
horizontal axis is equivalent to the generalised slenderness ratio used in Figure 3.4
for an elastic compression member. Figure 6.9 shows that the limiting moments
of short beams approach the yield moment My, while for long beams the limiting
moments approach the elastic buckling moment Mzx.

6.3 Inelastic beams

The solution for the buckling moment Mzx of a perfectly straight simply sup-
ported I-beam with equal end moments given by equations 6.2 and 6.3 is only
valid while the beam remains elastic. In a short-span beam, yielding occurs
before the ultimate moment is reached, and significant portions of the beams
are inelastic when buckling commences. The effective rigidities of these inelastic
portions are reduced by yielding, and consequently, the buckling moment is also
reduced.

For beams with equal and opposite end moments (βm = −1), the distribution
of yield across the section does not vary along the beam, and when there are no
residual stresses, the inelastic buckling moment can be calculated from a modified
form of equation 6.3 as

MI =
√{[

π2(EIz)t

L2

] [
(GIt)t + π2(EIw)t

L2

]}
(6.22)

in which the subscripted quantities ( )t are the reduced inelastic rigidities which
are effective at buckling. Estimates of these rigidities can be obtained by using
the tangent moduli of elasticity (see Section 3.3.1) which are appropriate to the
varying stress levels throughout the section. Thus the values of E and G are used
in the elastic areas, while the strain-hardening moduli Est and Gst are used in
the yielded and strain-hardened areas (see Section 3.3.4). When the effective
rigidities calculated in this way are used in equation 6.22, a lower bound esti-
mate of the buckling moment is determined (Section 3.3.3). The variation of the
dimensionless buckling moment M/My with the geometrical slenderness ratio
L/iz of a typical rolled-steel section which has been stress-relieved is shown in
Figure 6.2. In the inelastic range, the buckling moment increases almost linearly
with decreasing slenderness from the first yield moment My = Wel,yfy to the
full plastic moment Mp = Wpl,yfy, which is reached soon after the flanges are
fully yielded, beyond which buckling is controlled by the strain-hardening moduli
Est , Gst .

The inelastic buckling moment of a beam with residual stresses can be obtained
in a similar manner, except that the pattern of yielding is not symmetrical about the
section major axis, so that a modified form of equation 6.76 for a monosymmetric
I-beam must be used instead of equation 6.22. The inelastic buckling moment
varies markedly with both the magnitude and the distribution of the residual
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stresses. The moment at which inelastic buckling initiates depends mainly on
the magnitude of the residual compressive stresses at the compression flange tips,
where yielding causes significant reductions in the effective rigidities (EIz)t and
(EIw)t . The flange-tip residual stresses are comparatively high in hot-rolled beams,
especially those with high ratios of flange to web area, and so the inelastic buckling
is initiated comparatively early in these beams, as shown in Figure 6.2. The resid-
ual stresses in hot-rolled beams decrease away from the flange tips (see Figure 3.9
for example), and so the extent of yielding increases and the effective rigidities
steadily decrease as the applied moment increases. Because of this, the inelastic
buckling moment decreases in an approximately linear fashion as the slenderness
increases, as shown in Figure 6.2.

In beams fabricated by welding flange plates to web plates, the compressive
residual stresses at the flange tips, which increase with the welding heat input, are
usually somewhat smaller than those in hot-rolled beams, and so the initiation of
inelastic buckling is delayed, as shown in Figure 6.2. However, the variations of
the residual stresses across the flanges are more nearly uniform in welded beams,
and so, once flange yielding is initiated, it spreads quickly through the flange with
little increase in moment. This causes large reductions in the inelastic buckling
moments of stocky beams, as indicated in Figure 6.2.

When a beam has a more general loading than that of equal and opposite end
moments, the in-plane bending moment varies along the beam, and so when
yielding occurs its distribution also varies. Because of this the beam acts as if
non-uniform, and the torsion equilibrium equation becomes more complicated.
Nevertheless, numerical solutions have been obtained for some hot-rolled beams
with a number of different loading arrangements [19, 20], and some of these
(for unequal end moments M and βmM ) are shown in Figure 6.10, together with
approximate solutions given by

MI

Mp
= 0.7 + 0.3(1 − 0.7Mp/Mcr)

(0.61 − 0.3βm + 0.07β2
m)

(6.23)

in which Mcr is given by equations 6.4 and 6.5.
In this equation, the effects of the bending moment distribution are included

in both the elastic buckling resistance Mcr = αmMzx through the use of the end
moment ratio βm in the moment modification factor αm, and also through the direct
use of βm in equation 6.23. This latter use causes the inelastic buckling moments
MI to approach the elastic buckling moment Mcr as the end moment ratio increases
towards βm = 1.

The most severe case is that of equal and opposite end moments (βm = −1), for
which yielding is constant along the beam so that the resistance to lateral buckling
is reduced everywhere. Less severe cases are those of beams with unequal end
moments M andβmM withβm > 0, where yielding is confined to short regions near
the supports, for which the reductions in the section properties are comparatively
unimportant. The least severe case is that of equal end moments that bend the beam
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Figure 6.10 Inelastic buckling of beams with unequal end moments.

in double curvature (βm = 1), for which the moment gradient is steepest and the
regions of yielding are most limited.

The range of modified slenderness √
(Mp/Mcr) for which a beam can reach

the full plastic moment Mp depends very much on the loading arrangement. An
approximate expression for the limit of this range for beams with end moments
M and βmM can be obtained from equation 6.23 as√(

Mp

Mcr

)
p

=
√(

0.39 + 0.30βm − 0.07β2
m

0.70

)
. (6.24)

In the case of a simply supported beam with an unbraced central concen-
trated load, yielding is confined to a small central portion of the beam, so
that any reductions in the section properties are limited to this region. Inelas-
tic buckling can be approximated by using equation 6.23 with βm = −0.7 and
αm = 1.35.

6.4 Real beams

Real beams differ from the ideal beams analysed in Section 6.2.1 in much the
same way as do real compression members (see Section 3.4.1). Thus any small
imperfections such as initial crookedness, twist, eccentricity of load, or horizon-
tal load components cause the beam to behave as if it had an equivalent initial
crookedness and twist (see Section 6.2.2), as shown by curve A in Figure 6.11.
On the other hand, imperfections such as residual stresses or variations in material
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Figure 6.11 Behaviour of real beams.

properties cause the beam to behave as shown by curve B in Figure 6.11. The
behaviour of real beams having both types of imperfection is indicated by curve C
in Figure 6.11, which shows a transition from the elastic behaviour of a beam with
curvature and twist to the inelastic post-buckling behaviour of a beam with residual
stresses.

6.5 Design against lateral buckling

6.5.1 General

It is possible to develop a refined analysis of the behaviour of real beams which
includes the effects of all types of imperfection. However, the use of such an
analysis is not warranted because the magnitudes of the imperfections are uncer-
tain. Instead, design rules are often based on a simple analysis for one type of
equivalent imperfection which allows approximately for all imperfections, or on
approximations of experimental results such as those shown in Figure 6.12.

For the EC3 method of designing against lateral buckling, the maximum moment
in the beam at elastic lateral buckling Mcr and the beam section resistance Wyfy
are used to define a generalised slenderness

λLT =
√
(Wyfy/Mcr) (6.25)
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and this is used in a modification of the first yield equation 6.18 which approximates
the experimental resistances of many beams in near-uniform bending, such as those
shown in Figure 6.12.

6.5.2 Elastic buckling moment

The EC3 method for designing against lateral buckling is an example of a more
general approach to the analysis and the design of structures whose strengths are
governed by the interaction between yielding and buckling. Another example of
this approach was developed in Section 3.7, in which the relationship between the
ultimate strength of a simply supported uniform member in uniform compression
and its squash and elastic buckling loads was used to determine the in-plane ulti-
mate strengths of other compression members. This method has been called the
method of design by buckling analysis, because the maximum moment at elastic
buckling Mcr must be used, rather than the approximations of somewhat variable
accuracy which have been used in the past.

The first step in the method of design by buckling analysis is to determine the
load at which the elastic lateral buckling takes place, so that the elastic buckling
moment Mcr can be calculated. This varies with the beam geometry, its loading,
and its restraints, but unfortunately there is no simple general method of finding it.

However, there are a number of general computer programs which can be used
for finding Mcr [6, 8, 10, 21–23], including the user-friendly computer program
PRFELB [18] which can calculate the elastic buckling moment for any beam or
cantilever under any loading or restraint conditions. While such programs have
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not been widely used in the past, it is expected that the use of EC3 will result in
their much greater application.

Alternatively, many approximations for the elastic buckling moments Mcr under
a wide range of loading conditions are given in [16]. Later sections summarise
the methods of obtaining Mcr for restrained beams, cantilevers, and overhanging
beams, braced and continuous beams (Figure 6.13), rigid frames, and monosym-
metric and non-uniform beams under common loading conditions which cause
bending about an axis of symmetry.

6.5.3 EC3 design buckling moment resistances

The EC3 design buckling moment resistance Mb,Rd is defined by

Mb,RdγM1

Wyfy
= 1

ΦLT +
√
Φ2

LT − βλ
2
LT

(6.26)

and

ΦLT = 0.5
{

1 + αLT (λLT − λLT ,0)+ βλ
2
LT

}
, (6.27)

in which γM1 is the partial factor for member instability which has a recommended
value of 1.0 in EC3, Wyfy is the section moment resistance, λLT is the modified
slenderness given by equation 6.25, and the values of αLT ,β and λLT ,0 depend on
the type of beam section. Equations 6.25–6.27 are similar to equations 6.20, 6.18,
and 6.19 for the first yield of a beam with initial crookedness and twist, except
that the section moment resistance Wyfy replaces the yield moment My, the term
αLT (λLT − λLT ,0) replaces η, and the term β is introduced.
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The EC3 uniform bending design buckling resistances Mb,Rd for β = 0.75,
λLT ,0 = 0.4, and αLT = 0.49 (rolled I-sections with h/b > 2) are compared with
experimental results for beams in near-uniform bending in Figure 6.12. For very
slender beams with high values of the modified slenderness λLT , the design buck-
ling moment resistance Mb,Rd shown in Figure 6.12 approaches the elastic buckling
moment Mcr , while for stocky beams the moment resistance Mb,Rd reaches the
section resistance Wyfy, and so is governed by yielding or local buckling, as
discussed in Section 4.7.2. For beams of intermediate slenderness, equations 6.25–
6.27 provide a transition between these limits, which is close to the lower bound
of the experimental results shown in Figure 6.12. Also shown in Figure 6.12 are
the EC3 design buckling moment resistances for αLT = 0.76 (welded I-sections
with h/b > 2).

The EC3 provides two methods of design, a simple but conservative method
which may be applied to any type of beam section, and a less conservative limited
method.

For the simple general method, β = 1.0, λLT ,0 = 0.2, and the imperfection
factor αLT depends on the type of beam section, as set out in Tables 6.4 and 6.3 of
EC3. This method is conservative because it uses a very low threshold modified
slenderness of λLT ,0 = 0.2, above which the buckling resistance is reduced below
the section resistance Wyfy, and because it ignores the increased inelastic buckling
resistances of beams in non-uniform bending shown for example in Figure 6.10.

For the less conservative limited method for uniform beams of rolled I-section,
β = 0.75 and λLT ,0 = 0.4, and a modified design buckling moment resistance

Mb,Rd,mod = Mb,Rd/f ≤ Mb,Rd (6.28)

is determined using

f = 1 − 0.5(1 − kc){1 − 2(λLT − 0.8)2} (6.29)

in which the values of the correction factor kc depend on the bending moment
distribution, and are given by

kc = 1/
√

C1 = 1/
√
αm (6.30)

in which αm is the moment modification factor obtained from Figure 6.7 or
equation 6.5, 6.6, or 6.13. The EC3 design buckling moment resistances Mb,Rd,mod

for β = 0.75, λLT ,0 = 0.4, and αLT = 0.49 (rolled I-sections with h/b > 2) are
compared with the inelastic buckling moment approximations of equation 6.23 in
Figure 6.14.

6.5.4 Lateral buckling design procedures

For the EC3 strength design of a beam against lateral buckling, the distribution of
the bending moment and the value of the maximum moment MEd are determined
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Figure 6.14 EC3 design buckling moment resistances.

by an elastic analysis (if the beam is statically indeterminate), or by statics (if
the beam is statically determinate). The strength design loads are obtained by
summing the nominal loads multiplied by the appropriate partial load factors γF

(see Section 1.5.6).
In both the EC3 simple general and less conservative methods of checking a

uniform equal-flanged beam, the section moment resistance Wyfy/γM0 is checked
first, the elastic buckling moment Mcr is determined, and the modified slenderness
λLT is calculated using equation 6.25. The appropriate EC3 values of αLT ,β,
and λLT ,0 (the values of these differ according to which of the two methods of
design is used) are then selected and the design buckling moment resistance Mb,Rd

calculated using equations 6.26 and 6.27. In the simple general method, the beam
is satisfactory when

MEd ≤ Mb,Rd ≤ Wyfy/γM0 (6.31)

In the less conservative method, Mb,Rd in equation 6.31 is replaced by Mb,Rd,mod

obtained using equations 6.28–6.30.
The beam must also be checked for shear, shear and bending, and bearing

as discussed in Sections 5.6.1.5–5.6.1.7, and for serviceability, as discussed in
Section 5.7.

When a beam is to be designed, the beam section is not known, and so a trial
section must be chosen. An iterative process is then used, in which the trial section
is evaluated and a new trial section chosen, until a satisfactory section is found.
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One method of finding a first-trial section is to make initial guesses for fy (usually
the nominal value) and Mb,Rd/Wyfy (say 0.5), to use these to calculate a target
section plastic modulus

Wpl,y ≥ MEd/ fy
Mb,Rd/(Wyfy)

(6.32)

and then to select a suitable trial section.
After the trial section has been selected, its elastic buckling moment Mcr , yield

stress fy, and design moment resistance Mb,Rd can be found and used to calculate a
new value of Wpl,y, and to select a new trial section. The iterative process usually
converges within a few cycles, but convergence can be hastened by using the mean
of the previous and current values of Mb,Rd/Wyfy in the calculation of the target
section modulus.

Worked examples of checking and designing beams against lateral buckling
are given in Sections 6.15.1–6.15.7

6.5.5 Checking beams supported at both ends

6.5.5.1 Section moment resistance

The classification of a specified beam cross-section as Class 1, 2, 3, or 4 is described
in Sections 4.7.2 and 5.6.1.2, and the determination of the design section moment
resistance Mc,Rd = Wyfy/γM0 in Sections 4.7.2 and 5.6.1.3.

6.5.5.2 Elastic buckling moment

The elastic buckling moment Mcr of a simply supported beam depends on
its geometry, loading, and restraints. It may be obtained by calculating Mzx

(equation 6.3), Ncr,z (equation 6.12), and αm (equation 6.13), and substituting
these into equation 6.11, or by using a computer program such as those referred
to in Section 6.5.2.

6.5.5.3 Design buckling moment resistance

The design buckling moment resistance Mb,Rd can be obtained as described in
Section 6.5.3.

6.6 Restrained beams

6.6.1 Simple supports and rigid restraints

In the previous sections it was assumed that the beam was supported laterally only
at its ends. When a beam with equal and opposite end moments (βm = −1.0) has
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an additional rigid restraint at its centre which prevents lateral deflection and twist
rotation, then its buckled shape is given by

φ

(φ)L/4
= v

(v)L/4
= sin

π x

L/2
, (6.33)

and its elastic buckling moment is given by

Mcr =
√{(

π2EIz

(L/2)2

) (
GIt + π2EIw

(L/2)2

)}
. (6.34)

The end supports of a beam may also differ from simple supports. For example,
both ends of the beam may be rigidly built-in against lateral rotation about the minor
axis and against end warping. If the beam has equal and opposite end moments,
then its buckled shape is given by

φ

(φ)L/2
= v

(v)L/2
= 1

2

(
1 − cos

π x

L/2

)
, (6.35)

and its elastic buckling moment is given by equation 6.34.
In general, the elastic buckling moment Mcr of a restrained beam with equal

and opposite end moments (βm = −1.0) can be expressed as

Mcr =
√{(

π2EIz

L2
cr

) (
GIt + π2EIw

L2
cr

)}
, (6.36)

in which

Lcr = kcrL (6.37)

is the effective length and kcr is an effective length factor.
When a beam has several rigid restraints which prevent local lateral deflection

and twist rotation, then the beam is divided into a series of segments. The elastic
buckling of each segment may be approximated by using its length as the effective
length Lcr . One segment will be the most critical, and the elastic buckling moment
of this segment will provide a conservative estimate of the elastic buckling resis-
tance of the whole beam. This method ignores the interactions between adjacent
segments which increase the elastic buckling resistance of the beam. Approximate
methods of allowing for these interactions are given in Section 6.8.

The use of the effective length concept can be extended to beams with loading
conditions other than equal and opposite end moments. In general, the maximum
moment Mcr at elastic buckling depends on the beam section, its loading, and its
restraints, so that

McrL√
(EIzGIt)

= fn

(
π2EIw

GItL2
, loading,

2zQ

df
, restraints

)
. (6.38)

A partial separation of the effect of the loading from that of the restraint
conditions may be achieved for beams with centroidal loading (zQ = 0) by
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approximating the maximum moment Mcr at elastic buckling by using

Mcr = αm

√{(
π2EIz

L2
cr

) (
GIt + π2EIw

L2
cr

)}
, (6.39)

for which it is assumed that the factor αm depends only on the in-plane bend-
ing moment distribution, and that the effective length Lcr depends only on the
restraint conditions. This approximation allows the αm factors calculated for sim-
ply supported beams (see Section 6.2.1) and the effective lengths Lcr determined
for restrained beams with equal and opposite end moments (αm = 1) to be used
more generally.

Unfortunately, the form of equation 6.39 is not suitable for beams with loads
acting away from the centroid. It has been suggested that approximate solutions
for Mcr may be obtained by using equation 6.11 with Lcr substituted for L in
equations 6.3 and 6.12, but it has been reported [16] that predictions obtained in
this way are sometimes of somewhat variable accuracy.

6.6.2 Intermediate restraints

In the previous sub-section it was shown that the elastic buckling moment of a
simply supported I-beam is substantially increased when a restraint is provided
which prevents the centre of the beam from deflecting laterally and twisting. This
restraint need not be completely rigid, but may be elastic, provided its translational
and rotational stiffnesses exceed certain minimum values.

The case of the beam with equal and opposite end moments M shown in
Figure 6.15a is analysed in [24]. This beam has a central translational restraint of
stiffnessαt (whereαt is the ratio of the lateral force exerted by the restraint to the lat-
eral deflection of the beam measured at the height zt of the restraint), and a central
torsional restraint of stiffness αr (where αr is the ratio of the torque exerted by the
restraint to the twist rotation of the beam). It is shown in [24] that the elastic buck-
ling moment Mcr can be expressed in the standard form of equation 6.39 when the
stiffnessesαt , αr are related to each other and the effective length factor kcr through

αtL3

16EIz

(
1 + 2zt/df

2zc/df

)
=

(
π

2kcr

)3
cot π

2kcr

π
2kcr

cot π
2kcr

− 1
, (6.40)

αrL3

16EIw

/ (
1 − 2zt2zc

df df

)
=

(
π

2kcr

)3
cot π

2kcr

π
2kcr

cot π
2kcr

− 1
, (6.41)

in which

zc = Mcr

π2EIz/(kcrL)2
= df

2
√
(1 + k2

cr/K
2) (6.42)

and K = √
(π2EIw/GItL2).
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Figure 6.15 Beam with elastic intermediate restraints.

These relationships are shown graphically in Figure 6.15b, and are similar to
that shown in Figure 3.16c for compression members with intermediate restraints.
It can be seen that the effective length factor kcr varies from 1 when the restraints
are of zero stiffness to 0.5 when

αtL3

16EIz

(
1 + 2zt/df

2zc/df

)
= αrL3

16EIw

/(
1 − 2zt

df

2zc

df

)
= π2. (6.43)

If the restraint stiffnesses exceed these values, the beam buckles in the second
mode with zero central deflection and twist at a moment which corresponds to
kcr = 0.5. When the height −zt of the translational restraint above the centroid
is equal to −d2

f /4zc, the required rotational stiffness αr given by equation 6.43
is zero. Since zc is never less than df /2 (see equation 6.42), it follows that a top
flange translational restraint of stiffness

αL = 16π2EIz/L3

1 + df /2zc
(6.44)

is always sufficient to brace the beam into the second mode. This minimum stiffness
can be expressed as

αL = 8Mcr

L df

1

{1 + √
(1 + 4K2)} , (6.45)



 

Lateral buckling of beams 249

Shear diaphragm Shear diaphragm
I - beam

(a) Elevation (b) Section

M M

L

Figure 6.16 Diaphragm-braced I-beams.

and the greatest value of this is

αL = 4Mcr

L df
. (6.46)

The flange force Qf at elastic buckling can be approximated by

Qf = Mcr/df , (6.47)

and so the minimum top-flange translational stiffness can be approximated by

αL = 4Qf /L. (6.48)

This is of the same form as equation 3.33 for the minimum stiffness of
intermediate restraints for compression members.

There are no restraint stiffness requirements in EC3. This follows the finding
[25, 26] that compression member restraints which are capable of transmitting
2.5% of the force in the compression member invariably are stiff enough to ensure
the second mode buckling. Thus EC3 generally requires any restraining element
at a plastic hinge location to be capable of transmitting 2.5% of the flange force
in the beam being restrained.

The influence of intermediate restraints on beams with central concentrated and
uniformly distributed loads has also been studied, and many values of the minimum
restraint stiffnesses required to cause the beams to buckle as if rigidly braced have
been determined [16, 24, 27–30].

The effects of diaphragm bracing on the lateral buckling of simply supported
beams with equal and opposite end moments (see Figure 6.16) have also been
investigated [16, 31, 32], and a simple method of determining whether a diaphragm
is capable of providing full bracing has been developed [31].
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6.6.3 Elastic end restraints

6.6.3.1 General

When a beam forms part of a rigid-jointed structure, the adjacent members
elastically restrain the ends of the beam (i.e. they induce restraining moments
which are proportional to the end rotations). These restraining actions significantly
modify the elastic buckling moment of the beam. Four different types of restraining
moment may act at each end of a beam, as shown in Figure 6.17. They are

(a) the major axis end moment M which provides restraint about the major axis,
(b) the bottom flange end moment MB, and
(c) the top flange end moment MT , which provide restraints about the minor axis

and against end warping, and
(d) the axial torque T0 which provides restraint against end twisting.

6.6.3.2 Major axis end moments

The major axis end restraining moments M vary directly with the applied loads,
and can be determined by a conventional in-plane bending analysis. The degree of
restraint experienced at one end of the beam depends on the major axis stiffness αy

of the adjacent member (which is defined as the ratio of the end moment to the end
rotation). This may be expressed by the ratio R1 of the actual restraining moment to
the maximum moment required to prevent major axis end rotation. Thus R1 varies
from 0 when there is no restraining moment to 1 when there is no end rotation.
For beams which are symmetrically loaded and restrained, the restraint parameter

MB

MT

T0 df M

z

y

x

Figure 6.17 End-restraining moments.
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R1 is related to the stiffness αy of each adjacent member by

αy = EIy

L

2R1

1 − R1
. (6.49)

Although the major axis end moments are independent of the buckling deforma-
tions, they do affect the buckling load of the beam because of their effect on the
in-plane bending moment distribution (see Section 6.2.1.4). Many particular cases
have been studied, and tabulations of buckling loads are available [5, 12, 13,
33–35].

6.6.3.3 Minor axis end restraints

On the other hand, the flange end moments MB and MT remain zero until the
buckling load of the beam is reached, and then increase in proportion to the flange
end rotations. Again, the degree of end restraint can be expressed by the ratio of the
actual restraining moment to the maximum value required to prevent end rotation.
Thus, the minor axis end restraint parameter R2 (which describes the relative
magnitude of the restraining moment MB + MT ) varies between 0 and 1, and the
end warping restraint parameter R4 (which describes the relative magnitude of the
differential flange end moments (MT −MB)/2) varies from 0 when the ends are free
to warp to 1 when end warping is prevented. The particular case of symmetrically
restrained beams with equal and opposite end moments (Figure 6.18) is analysed in
Section 6.13.1. It is assumed for this that the minor axis and end warping restraints
take the form of equal rotational restraints which act at each flange end and whose
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Figure 6.18 Elastic buckling of end-restrained beams.
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stiffnesses are such that

Flange end moment

Flange end rotation
= −EIz

L

R

1 − R
, (6.50)

in which case

R2 = R4 = R. (6.51)

It is shown in Section 6.13.1 that the moment Mcr at which the restrained beam
buckles elastically is given by equations 6.36 and 6.37 when the effective length
factor kcr is the solution of

R

1 − R
= −π

2kcr
cot

π

2kcr
. (6.52)

It can be seen from the solutions of this equation shown in Figure 6.18c that
the effective length factor kcr decreases from 1 to 0.5 as the restraint parameter R
increases from 0 to 1. These solutions are exactly the same as those obtained from
the compression member effective length chart of Figure 3.21a when

k1 = k2 = 1 − R

1 − 0.5R
, (6.53)

which suggests that the effective length factors kcr for beams with unequal end
restraints may be approximated by using the values given by Figure 3.21a.

The elastic buckling of symmetrically restrained beams with unequal end
moments has also been analysed [36], while solutions have been obtained for
many other minor axis and end warping restraint conditions [16, 27, 32–34].

6.6.3.4 Torsional end restraints

The end torques T0 which resist end twist rotations also remain zero until elastic
buckling occurs, and then increase with the end twist rotations. It has been assumed
that the ends of all the beams discussed so far are rigidly restrained against end
twist rotations. When the end restraints are elastic instead of rigid, some end twist
rotation occurs during buckling and the elastic buckling load is reduced. Analytical
studies [21] of beams in uniform bending with elastic torsional end restraints have
shown that the reduced buckling moment Mzx,r can be approximated by

Mzx,r

Mzx
=

√{
1

(4.9 + 4.5 K2)R3 + 1

}
(6.54)

in which 1/R3 is the dimensionless stiffness of the torsional end restraints given by

1

R3
= αxL

GIt
(6.55)

in which αx is the ratio of the restraining torque T0 to the end twist rotation
(φ)0. Reductions for other loading conditions can be determined from the elastic
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Top flange unrestrained

Bottom flange prevented from twisting

Figure 6.19 End distortion of a beam with an unrestrained top flange.

buckling solutions in [16, 34, 37] or by using a computer program [18] to carry
out an elastic buckling analysis.

Another situation for which end twist rotation is not prevented is illustrated in
Figure 6.19, where the bottom flange of a beam is simply supported at its end
and prevented from twisting but the top flange is unrestrained. In this case, beam
buckling may be accentuated by distortion of the cross-section which results in the
web bending shown in Figure 6.19. Studies of the distortional buckling [38–40] of
beams such as that shown in Figure 6.19 have suggested that the reduction in the
buckling capacity can be allowed for approximately by using an effective length
factor

kcr = 1 + (
df /6L

) (
tf /tw

)3 (
1 + bf /df

)
/2, (6.56)

in which tf and tw are the flange and web thicknesses and bf is the flange width.
The preceding discussion has dealt with the effects of each type of end restraint,

but most beams in rigid-jointed structures have all types of elastic restraint acting
simultaneously. Many such cases of combined restraints have been analysed, and
tabular, graphical, or approximate solutions are given in [12, 16, 33, 35, 41].

6.7 Cantilevers and overhanging beams

6.7.1 Cantilevers

The support conditions of cantilevers differ from those of beams in that a cantilever
is usually assumed to be completely fixed at one end (so that lateral deflection,
lateral rotation, and warping are prevented) and completely free (to deflect, rotate,
and warp) at the other. The elastic buckling solution for such a cantilever in uniform
bending caused by an end moment M which rotatesφL with the end of the cantilever
[16] can be obtained from the solution given by equations 6.2 and 6.3 for simply
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supported beams by replacing the beam length L by twice the cantilever length 2L,
whence

Mcr =
√{(

π2EIz

4L2

) (
GIt + π2EIw

4L2

)}
. (6.57)

This procedure is similar to the effective length method used to obtain the
buckling load of a cantilever column (see Figure 3.15e). This loading condition is
very unusual and probably never occurs, and so the solution of equation 6.57 has
no practical relevance.

Cantilevers with other loading conditions are not so easily analysed, but numer-
ical solutions are available [16, 37, 42, 43]. The particular case of a cantilever
with an end concentrated load Q is discussed in Section 6.12.1.4, and plots of
the dimensionless elastic buckling moments QL2/

√
(EIzGIt) for bottom flange,

centroidal, and top flange loading are given in Figure 6.20, together with plots
of the dimensionless elastic buckling moments (qL3/2)/

√
(EIzGIt) of cantilevers

with uniformly distributed loads q.
More accurate approximations may be obtained by using

QL2

√
(EIzGIt)

= 11

{
1 + 1.2ε√

(1 + 1.22ε2)

}

+ 4(K − 2)

{
1 + 1.2(ε − 0.1)√

(1 + 1.22(ε − 0.1)2)

}
(6.58)
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Figure 6.20 Elastic buckling loads of cantilevers.
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or

qL3

2
√
(EIzGIt)

= 27

{
1 + 1.4(ε − 0.1)√

(1 + 1.42(ε − 0.1)2)

}

+ 10(K − 2)

{
1 + 1.3(ε − 0.1)√

(1 + 1.32(ε − 0.1)2)

}
(6.59)

Cantilevers which have restraints at the unsupported end which prevent lateral
deflection and twist rotation (Figure 6.13) may be treated as beams which are
supported laterally at both ends, as in Section 6.6.

Intermediate restraints which prevent lateral deflection and twist rotation divide
a cantilever into segments (Figure 6.13). The elastic buckling of each segment
can be approximated by assuming that there are no interactions between adjacent
segments. The segment with the free end can then be treated as an overhanging
beam as in Section 6.7.2 following, while the interior segments may be treated as
beams supported laterally at both ends, as in Section 6.6.

6.7.2 Overhanging beams

Overhanging beams are similar to cantilevers in that they are free to deflect, rotate,
and warp at one end (Figure 6.13). However, lateral rotation and warping are not
completely prevented at the supported end, but are elastically restrained by the
continuity of the overhanging beam with its continuation beyond the support. The
buckling moments of some examples are reported in [16, 37].

It is usually very difficult to predict the degrees of lateral rotation and warping
restraint, in which case they should be assumed to be zero. The elastic buck-
ling moments of such overhanging beams with either concentrated end load or
uniformly distributed load can be predicted by using [16]

QL2

√
(EIzGIt)

= 6

{
1 + 1.5(ε − 0.1)√

(1 + 1.52(ε − 0.1)2)

}

+ 1.5(K − 2)

{
1 + 3(ε − 0.3)√

(1 + 32(ε − 0.3)2)

}
(6.60)

or

qL3

2
√
(EIzGIt)

= 15

{
1 + 1.8(ε − 0.3)√

(1 + 1.82(ε − 0.3)2)

}

+ 40(K − 2)

{
1 + 2.8(ε − 0.4)√

(1 + 2.82(ε − 0.4)2)

}
. (6.61)
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Overhanging beams which have restraints at the unsupported end which prevent
lateral deflection and twist rotation (Figure 6.13) may be treated as beams which
are supported laterally at both ends, as in Section 6.6.

Intermediate restraints which prevent lateral deflection and twist rotation divide
an overhanging beam into segments (Figure 6.13). The elastic buckling of each
segment can be approximated by assuming that there are no interactions between
adjacent segments. The segment with the free end is an overhanging beam, while
the interior segments may be treated as beams supported laterally at both ends, as
in Section 6.6.

6.8 Braced and continuous beams

Perhaps the simplest types of rigid-jointed structure are the braced beam and the
continuous beam (Figure 6.13), which can be regarded as a series of segments
which are rigidly connected together at points where lateral deflection and twist
are prevented. In general, the interaction between the segments during buckling
depends on the loading pattern for the whole beam, and so also do the magnitudes
of the buckling loads. This behaviour is similar to the in-plane buckling behaviour
of rigid frames discussed in Section 8.3.5.3.

6.8.1 Beams with only one segment loaded

When only one segment of a braced or continuous beam is loaded, its elastic
buckling load may be evaluated approximately when tabulations for segments
with elastic end restraints are available [12, 33, 35]. To do this it is first necessary
to determine the end restraint parameters R1, R2, R4, (R3 = 0 because it is assumed
that twisting is prevented at the supports and brace points) from the stiffnesses of
the adjacent unloaded segments. For example, when only the centre span of the
symmetrical three span continuous beam shown in Figure 6.21a is loaded (Q1 = 0),
then the end spans provide elastic restraints which depend on their stiffnesses. By
analysing the major axis bending, minor axis bending, and differential flange
bending of the end spans, it can be shown [34] that

R1 = R2 = R4 = 1

1 + 2L1/3L2
(6.62)

approximately. With these values, the elastic buckling load for the centre span can
be determined from the tabulations in [33, 35]. Some elastic buckling loads (for
beams of narrow rectangular section for which K = 0) determined in this way are
shown in a non-dimensional form in Figure 6.22.

A similar procedure can be followed when only the outer spans of the symmetri-
cal three span continuous beam shown in Figure 6.21 are loaded (Q2 = 0). In this
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Figure 6.21 Buckling modes for a symmetrical three span continuous beam.
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Figure 6.22 Significant buckling loads of symmetrical three span beams.

case the restraint parameters [12] are given by

R1 = R2 = R4 = 1

1 + 3L2/2L1
(6.63)

approximately. Some dimensionless buckling loads (for beams of narrow rectan-
gular section) determined by using these restraint parameters in the tabulations of
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Figure 6.23 Elastic buckling load combinations of symmetrical three span beams.

[12] are shown in Figure 6.22. Similar diagrams have been produced [44] for two
span beams of narrow rectangular section.

6.8.2 Beams with general loading

When more than one segment of a braced or continuous beam is loaded, the buck-
ling loads can be determined by analysing the interaction between the segments.
This has been done for a number of continuous beams of narrow rectangular
section [44], and the results for some symmetrical three span beams are shown in
Figure 6.23. These indicate that as the loads Q1 on the end spans increase from zero,
so does the buckling load Q2 of the centre span until a maximum value is reached,
and that a similar effect occurs as the centre span load Q2 increases from zero.

The results shown in Figure 6.23 suggest that the elastic buckling load interaction
diagram can be closely and safely approximated by drawing straight lines as shown
in Figure 6.24 between the following three significant load combinations:

1 When only the end spans are loaded (Q2 = 0), they are restrained during
buckling by the centre span, and the buckled shape has inflection points in the
end spans, as shown in Figure 6.21b. In this case the buckling loads Q1 can
be determined by using R1 = R2 = R4 = 1/(1 + 3L2/2L1) in the tabulations
of [12].

2 When only the centre span is loaded (Q1 = 0), it is restrained by the end spans,
and the buckled shape has inflection points in the centre span, as shown in
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Figure 6.24 Straight line approximation.

Figure 6.21c. In this case the buckling load Q2 can be determined by using
R1 = R2 = R4 = 1/(1 + 2L1/3L2) in the tabulations of [33, 35].

3 Between these two extremes exists the zero interaction load combination for
which the buckled shape has inflection points at the internal supports, as shown
in Figure 6.21d, and each span buckles as if unrestrained in the buckling plane.
In this case the buckling loads can be determined by using

R2 = R4 = 0, (6.64)

R11 = 1 + Q2L2
2/Q1L2

1

1 + 3L2/2L1
(6.65)

R12 = 1 + Q1L2
1/Q2L2

2

1 + 2L1/3L2
, (6.66)

in the tabulations of [12, 33, 35]. Some zero interaction load combinations
(for three span beams of narrow rectangular section) determined in this way
are shown in Figure 6.22, while other zero interaction combinations are given
in [44].

Unfortunately, this comparatively simple approximate method has proved too
complex for use in routine design, possibly because the available tabulations of
elastic buckling loads are not only insufficient to cover all the required loading and
restraint conditions, but also too detailed to enable them to be easily used. Instead,
an approximate method of analysis [45] is often used, in which the effects of lateral
continuity between adjacent segments are ignored and each segment is regarded
as being simply supported laterally. Thus the elastic buckling of each segment is
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analysed for its in-plane moment distribution (the moment modification factors of
equation 6.13 or Figure 6.7 may be used) and for an effective length Lcr equal to
the segment length L. The so-determined elastic buckling moment of each segment
is then used to evaluate a corresponding beam load set, and the lowest of these
is taken as the elastic buckling load set. This method produces a lower bound
estimate which is sometimes remarkably close to the true buckling load set.

However, this is not always the case, and so a much more accurate but still
reasonably simple method has been developed [36]. In this method, the accuracy of
the lower bound estimate (obtained as described above) is improved by allowing for
the interactions between the critical segment and the adjacent segments at buckling.
This is done by using a simple approximation for the destabilising effects of the
in-plane bending moments on the stiffnesses of the adjacent segments, and by
approximating the restraining effects of these segments on the critical segment by
using the effective length chart of Figure 3.21a for braced compression members to
estimate the effective length of the critical beam segment. A step-by-step summary
[36] is as follows:

(1) Determine the properties EIz, GIt , EIw, L of each segment.
(2) Analyse the in-plane bending moment distribution through the beam, and

determine the moment modification factors αm for each segment from
equation 6.13 or Figure 6.7.

(3) Assume all effective length factors kcr are equal to unity.
(4) Calculate the maximum moment Mcr in each segment at elastic buckling

from

Mcr = αm

√{(
π2EIz

L2
cr

) (
GIt + π2EIw

L2
cr

)}
(6.67)

with Lcr = L, and the corresponding beam buckling loads Qs.
(5) Determine a lower-bound estimate of the beam buckling load as the lowest

value Qms of the loads Qs, and identify the segment associated with this as
the critical segment 12. (This is the approximate method [45] described in
the preceding paragraph.)

(6) If a more accurate estimate of the beam buckling load is required, use the val-
ues Qms and Qrs1, Qrs2 calculated in step 5 together with Figure 6.25 (which
is similar to Figure 3.19 for braced compression members) to approximate
the stiffnesses αr1,αr2 of the segments adjacent to the critical segment 12.

(7) Calculate the stiffness of the critical segment 12 from 2EIzm/Lm.
(8) Calculate the stiffness ratios k1, k2 from

k1,2 = 2EIzm/Lm

0.5αr1,r2 + 2EIzm/Lm
. (6.68)

(9) Determine the effective length factor kcr for the critical segment 12 from
Figure 3.21a, and the effective length Lcr = kcrL.
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Figure 6.25 Stiffness approximations for restraining segments.

(10) Calculate the elastic buckling moment Mcr of the critical segment 12
using Lcr in equation 6.67, and from this the corresponding improved
approximation of the elastic buckling load Qcr of the beam.

It should be noted that while the calculations for the lower bound (the first five
steps) are made for all segments, those for the improved estimate are only made
for the critical segment, and so comparatively little extra effort is involved. The
development and application of this method is further described in [36]. The use
of user-friendly computer programs such as in [18] eliminates the need for these
approximate procedures.

6.9 Rigid frames

Under some conditions, the elastic buckling loads of rigid frames with only one
member loaded can be determined from the available tabulations [12, 33, 35] in a
similar manner to that described in Section 6.8.1 for braced and continuous beams.
For example, consider a symmetrically loaded beam which is rigidly connected to
two equal cross-beams as shown in Figure 6.26a. In this case the comparatively
large major axis bending stiffnesses of the cross-beams ensure that end twisting
of the loaded beam is effectively prevented, and it may therefore be assumed that
R3 = 0. If the cross-beams are of open section so that their torsional stiffness is
comparatively small, then it is not unduly conservative to assume that they do not
restrain the loaded beam about its major axis, and so

R1 = 0. (6.69)



 

262 Lateral buckling of beams

L2

L1

Position and torsional
end restraints

(a) Beam supported by cross-beams (b) Symmetrical portal frame

L2

L1

Figure 6.26 Simple rigid-jointed structures.

By analysing the minor axis and differential flange bending of the cross-beams,
it can be shown that

R2 = R4 = 1/(1 + L1Iz2/6L2Iz1). (6.70)

This result is based on the assumption that there is no likelihood of the cross-
beams themselves buckling, so that their effective minor axis rigidity can be taken
as EIz1. With these values for the restraint parameters, the elastic buckling load
can be determined from the tabulations in [33, 35].

The buckling loads of the symmetrical portal frame shown in Figure 6.26b can
be determined in a similar manner provided there are sufficient external restraints
to position-fix the joints of the frame. The columns of portal frames of this type
are usually placed so that the plane of greatest bending stiffness is that of the
frame. In this case, the minor axis stiffness of each column provides only a small
resistance against end twisting of the beam, and this resistance is reduced by the
axial force transmitted by the column, so that it may be necessary to provide
additional torsional end restraints to the beam. If these additional restraints are
stiff enough (and the information given in [16, 34] will give some guidance), then
it may be assumed without serious error that R3 = 0. The major axis stiffness of
a pinned base column is 3EIy1/L1 and of a fixed base column is 4EIy1/L1, and it
can be shown by analysing the in-plane flexure of a portal frame that for pinned
base portals

R1 = 1/(1 + 2L1Iy2/3L2Iy1), (6.71)
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and for fixed base portals,

R1 = 1/(1 + L1Iy2/2L2Iy1). (6.72)

If the columns are of open cross-section, their torsional stiffness is comparatively
small, and it is not unduly conservative to assume that the columns do not restrain
the beam element or its flanges against minor axis flexure, and so

R2 = R4 = 0. (6.73)

Using these values of the restraint parameters, the elastic buckling load can be
determined from the tabulations in [33, 35].

When more than one member of a rigid frame is loaded, the buckling restraint
parameters cannot be easily determined because of the interactions between mem-
bers which take place during buckling. The typical member of such a frame acts as
a beam-column which is subjected to a combination of axial and transverse loads
and end moments. The buckling behaviour of beam-columns and of rigid frames
is treated in detail in Chapters 7 and 8.

6.10 Monosymmetric beams

6.10.1 Elastic buckling resistance

When a monosymmetric I-beam (see Figure 6.27) which is loaded in its plane of
symmetry twists during buckling, the longitudinal bending stresses Myz/Iy exert
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Figure 6.27 Properties of monosymmetric sections.
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a torque (see Section 6.14)

TM = Myβy
dφ

dx
(6.74)

in which

βy = 1

Iy

∫
A
(y2z + z3)dA − 2z0 (6.75)

is the monosymmetry property of the cross-section. An explicit expression for βy

for an I-section is given in Figure 6.27.
The action of the torque TM can be thought of as changing the effective torsional

rigidity of the section from GIt to (GIt + Myβy), and is related to the effect which
causes some short concentrically loaded compression members to buckle torsion-
ally (see Section 3.7.5). In that case the compressive stresses exert a disturbing
torque so that there is a reduction in the effective torsional rigidity. In doubly sym-
metric beams, the disturbing torque exerted by the compressive bending stresses is
exactly balanced by the restoring torque due to the tensile stresses, and βy is zero.
In monosymmetric beams, however, there is an imbalance which is dominated by
the stresses in the smaller flange which is further from the shear centre. Thus, when
the smaller flange is in compression there is a reduction in the effective torsional
rigidity (Myβy is negative), while the reverse is true (Myβy is positive) when the
smaller flange is in tension. Consequently, the resistance to buckling is increased
when the larger flange is in compression, and decreased when the smaller flange
is in compression.

The elastic buckling moment Mcr of a simply supported monosymmetric beam
with equal and opposite end moments can be obtained by substituting Mcr for
Mzx and the effective rigidity (GIt + Mcrβy) for GIt in equation 6.3 for a doubly
symmetric beam and rearranging, whence

Mcr =
√(

π2EIz

L2

) 

√

GIt + π2EIw

L2
+

{
βy

2

√(
π2EIz

L2

)}2



+βy

2

√(
π2EIz

L2

)}
, (6.76)

in which the warping section constant Iw is as given in Figure 6.27.
The evaluation of the monosymmetry property βy is not straightforward, and it

has been suggested that the more easily calculated parameter

ρm = Icz/Iz (6.77)
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should be used instead, where Icz is the section minor axis second moment of
area of the compression flange. The monosymmetry property βy may then be
approximated [46] by

βy = 0.9df (2ρm − 1)(1 − I2
z /I

2
y ) (6.78)

and the warping section constant Iw by

Iw = ρm(1 − ρm)Izd2
f . (6.79)

The variations of the dimensionless elastic buckling moment McrL/
√
(EIzGIt)

with the values of ρm and Km = √
(π2EIzd2

f /4GItL2) are shown in Figure 6.28.
The dimensionless buckling resistance for a T-beam with the flange in compression
(ρm = 1.0) is significantly higher than for an equal flanged I-beam (ρm = 0.5)
with the same value of Km, but the resistance is greatly reduced for a T-beam with
the flange in tension (ρm = 0.0).

The elastic flexural–torsional buckling of simply supported monosymmetric
beams with other loading conditions has been investigated numerically, and tabu-
lated solutions and approximating equations are available [5, 13, 16, 42, 47–49]
for beams under moment gradient or with central concentrated loads or uni-
formly distributed loads. Solutions are also available [16, 42, 50] for cantilevers
with concentrated end loads or uniformly distributed loads. These solutions can
be used to find the maximum moment Mcr in the beam or cantilever at elastic
buckling.
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Figure 6.28 Monosymmetric I-beams in uniform bending.
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6.10.2 Design rules

EC3 has no specific rules for designing monosymmetric beams against lateral
buckling, because it regards them as being the same as doubly symmetric beams.
Thus it requires the value of the elastic buckling moment resistance Mcr of the
monosymmetric beam to be used in the simple general design method described
in Section 6.5.3. However, the logic of this approach has been questioned [49],
and in some cases may lead to less safe results.

A worked example of checking a monosymmetric T-beam is given in
Section 6.15.6.

6.11 Non-uniform beams

6.11.1 Elastic buckling resistance

Non-uniform beams are often more efficient than beams of constant section, and
are frequently used in situations where the major axis bending moment varies
along the length of the beam. Non-uniform beams of narrow rectangular section
are usually tapered in their depth. Non-uniform I-beams may be tapered in their
depth, or less commonly in their flange width, and rarely in their flange thickness,
while steps in flange width or thickness are common.

Depth reductions in narrow rectangular beams produce significant reductions
in their minor axis flexural rigidities EIz and torsional rigidities GIt . Because of
this, there are also significant reductions in their resistances to lateral buckling.
Closed form solutions for the elastic buckling loads of many tapered beams and
cantilevers are given in the papers cited in [13, 16, 51, 52].

Depth reductions in I-beams have no effect on the minor axis flexural rigidity
EIz, and little effect on the torsional rigidity GIt , although they produce significant
reductions in the warping rigidity EIw. It follows that the resistance to buckling of
a beam which does not depend primarily on its warping rigidity is comparatively
insensitive to depth tapering. On the other hand, reductions in the flange width
cause significant reductions in GIt and even greater reductions in EIz and EIw,
while reductions in flange thickness cause corresponding reductions in EIz and
EIw and in GIt . Thus the resistance to buckling varies significantly with changes
in the flange geometry.

General numerical methods of calculating the elastic buckling loads of tapered
I-beams have been developed in [51–53], while the elastic and inelastic buckling
of tapered monosymmetric I-beams are discussed in [53–55]. Solutions for beams
with constant flanges and linearly tapered depths under unequal end moments are
given in [56, 57], and more general solutions are given in [58]. The buckling of
I-beams with stepped flanges has also been investigated, and many solutions are
tabulated in [59].

Approximations for the elastic buckling moment Mcr of a simply supported
non-uniform beam can be obtained by reducing the value calculated for a uniform
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beam having the properties of the maximum section of the beam by multiplying
it by

αst = 1.0 − 1.2

(
Lr

L

) {
1 −

(
0.6 + 0.4

dmin

dmax

)
Af ,min

Af ,max

}
(6.80)

in which Af ,min, Af ,max are the flange areas and dmin, dmax are the section depths
at the minimum and maximum cross-sections, and Lr is either the portion of the
beam length which is reduced in section, or is 0.5L for a tapered beam. This
equation agrees well with the buckling solutions shown in Figure 6.29 for central
concentrated loads on stepped [59] and tapered [51] beams whose minimum cross-
sections are at their simply supported ends.

6.11.2 Design rules

EC3 requires non-uniform beams to be designed against lateral buckling by using
the methods described in Section 6.5.3 with the section moment resistance Mc,Rd =
Wyfy and the elastic buckling moment Mcr being the values for the most critical
section where the ratio of MEd/Mc,Rd of the design bending moment to the section
moment capacity is greatest.

A worked example of checking a stepped beam is given in Section 6.15.7.
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6.12 Appendix – elastic beams

6.12.1 Buckling of straight beams

6.12.1.1 Beams with equal end moments

The elastic buckling moment Mcr of the beam shown in Figure 6.3 can be deter-
mined by finding a deflected and twisted position which is one of equilibrium. The
differential equilibrium equation of bending of the beam is

EIz
d2v

dx2
= −Mcrφ (6.81)

which states that the internal minor axis moment of resistance EIzd2v/dx2 must
exactly balance the disturbing component −Mcrφ of the applied bending moment
Mcr at every point along the length of the beam. The differential equation of torsion
of the beam is

GIt
dφ

dx
− EIw

d3φ

dx3
= Mcr

dv

dx
(6.82)

which states that the sum of the internal resistance to uniform torsion GItdφ/dx
and the internal resistance to warping torsion −EIwd3φ/dx3 must exactly balance
the disturbing torque Mcrdv/dx caused by the applied moment Mcr at every point
along the length of the beam.

The derivation of the left-hand side of equation 6.82 is fully discussed in Sec-
tions 10.2 and 10.3. The torsional rigidity GIt in the first term determines the
beam’s resistance to uniform torsion, for which the rate of twist dφ/dx is constant,
as shown in Figure 10.la. For thin-walled open sections, the torsion constant It is
approximately given by the summation

It ≈
∑

bt3/3

in which b is the length and t the thickness of each rectangular element of the
cross-section. Accurate expressions for It are given in [3: Chapter 10] from which
the values for hot-rolled I-sections have been calculated [4: Chapter 10].

The warping rigidity EIw in the second term of equation 6.82 determines the
additional resistance to non-uniform torsion, for which the flanges bend in opposite
directions, as shown in Figure 10.1b and c. When this flange bending varies along
the length of the beam, flange shear forces are induced which exert a torque
−EIwd3φ/dx3. For equal flanged I-beams,

Iw = Izd2
f

4
,

in which df is the distance between flange centroids. An expression for Iw for a
monosymmetric I-beam is given in Figure 6.27.
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When equations 6.81 and 6.82 are both satisfied at all points along the beam,
then the deflected and twisted position is one of equilibrium. Such a position is
defined by the buckled shape

v = Mcr

π2EIz/L2
φ = δ sin

π x

L
, (6.1)

in which the maximum deflection δ is indeterminate. This buckled shape satisfies
the boundary conditions at the supports of lateral deflection prevented,

(v)0 = (v)L = 0, (6.83)

twist rotation prevented,

(φ)0 = (φ)L = 0, (6.84)

and ends free to warp (see Section 10.8.3),

(
d2φ

dx2

)
0

=
(

d2φ

dx2

)
L

= 0. (6.85)

Equation 6.1 also satisfies the differential equilibrium equations (equations 6.81
and 6.82) when Mcr = Mzx, where

Mzx =
√{(

π2EIz

L2

) (
GIt + π2EIw

L2

)}
(6.3)

which defines the moment at elastic lateral buckling.

6.12.1.2 Beams with unequal end moments

The major axis bending moment My and shear Vz in the beam with unequal end
moments M and βmM shown in Figure 6.4a are given by

My = M − (1 + βm)Mx/L,

and

Vz = −(1 + βm)M/L.

When the beam buckles, the minor axis bending equation is

EIz
d2v

dx2
= −Myφ,
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and the torsion equation is

GIt
dφ

dx
− EIw

d3φ

dx3
= My

dv

dx
− Vzv.

These equations reduce to equations 6.81 and 6.82 for the case of equal and
opposite end moments (βm = −1).

Closed form solutions of these equations are not available, but numerical meth-
ods [3–11] have been used. The numerical solutions can be conveniently expressed
in the form of

Mcr = αmMzx (6.4)

in which the factor αm accounts for the effect of the non-uniform distribution of
the bending moment My on elastic lateral buckling. The variation of αm with the
end moment ratio βm is shown in Figure 6.4c for the two extreme values of the
beam parameter

K =
√(

π2EIw

GJL2

)
(6.7)

of 0.05 and 3. Also shown in Figure 6.4c is the approximation

αm = 1.75 + 1.05βm + 0.3β2
m ≤ 2.56. (6.5)

6.12.1.3 Beams with central concentrated loads

The major axis bending moment My and the shear Vz in the beam with a central
concentrated load Q shown in Figure 6.5 are given by

My = Q x/2 − Q 〈x − L/2〉
Vz = Q/2 − Q 〈x − L/2〉0,

in which the values of the second terms are taken as zero when the values inside
the Macaulay brackets 〈〉 are negative. When the beam buckles, the minor axis
bending equation is

EIz
d2v

dx2
= −Myφ,

and the torsion equation is

GIt
dφ

dx
− EIw

d3φ

dx3
= Q

2
(v − zQ φ)L/2(1 − 2〈x − L/2〉0)+ My

dv

dx
− Vzv

in which zQ is the distance of the point of application of the load below the centroid,
and (Q/2)(v − zQφ)L/2 is the end torque.
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Numerical solutions of these equations for the dimensionless buckling load
QL2/

√
(EIzGIt) are available [3, 13, 16, 42], and some of these are shown in

Figure 6.6, in which the dimensionless height ε of the point of application of the
load is generally given by

ε = zQ

L

√(
EIz

GIt

)
, (6.8)

or for the particular case of equal flanged I-beams, by

ε = K

π

2zQ

df
.

6.12.1.4 Cantilevers with concentrated end loads

The elastic buckling of a cantilever with a concentrated end load Q applied at a
distance zQ below the centroid can be predicted from the solutions of the differential
equations of minor axis bending

EIz
d2v

dx2
= −Myφ,

and of torsion

GIt
dφ

dx
− EIw

d3φ

dx3
= Q(v − zQφ)L + My

dv

dx
− Vzv,

in which

My = −Q(L − x)

and

Vz = Q.

These solutions must satisfy the fixed end (x = 0) boundary conditions of

(v)0 = (φ)0 = (dv/dx)0 = (dφ/dx)0 = 0

and the condition that the end x = L is free to warp, whence

(d2φ/dx2)L = 0.

Numerical solutions of these equations are available [16, 37, 42, 43], and some
of these are shown in Figure 6.20.



 

272 Lateral buckling of beams

6.12.2 Deformations of beams with initial crookedness
and twist

The deformations of a simply supported beam with initial crookedness and twist
caused by equal and opposite end moments Mcan be analysed by considering the
minor axis bending and torsion equations

EIz
d2v

dx2
= −M (φ + φ0), (6.86)

GIt
dφ

dx
− EIw

d3φ

dx3
= M

(
dv

dx
− dv0

dx

)
, (6.87)

which are obtained from equations 6.81 and 6.82 by adding the additional moment
Mφ0 and torque Mdv0/dx induced by the initial twist and crookedness.

If the initial crookedness and twist rotation are such that

v0

δ0
= φ0

θ0
= sin

π x

L
, (6.14)

in which the central initial crookedness δ0 and twist rotation θ0 are related by

δ0

θ0
= Mzx

π2EIz/L2
, (6.15)

then the solution of equations 6.86 and 6.87 which satisfies the boundary conditions
(equations 6.83–6.85) is given by

v

δ
= φ

θ
= sin

π x

L
, (6.16)

in which

δ

δ0
= θ

θ0
= M/Mzx

1 − M/Mzx
. (6.17)

The maximum longitudinal stress in the beam is the sum of the stresses due to
major axis bending, minor axis bending, and warping, and is equal to

σmax = M

Wel,y
− EIz

Wel,z

(
d2(v + df φ/2)

dx2

)
L/2

.

If the elastic limit is taken as the yield stress fy, then the limiting nominal stress
σL for which this elastic analysis is valid is given by

σL = fy − δ0Ncr,z

Mzx

(
1 + df

2

Ncr,z

Mzx

)
1

Wel,z

ML

1 − ML/Mzx
,
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or

ML = My − δ0Ncr,z

Mzx

(
1 + df

2

Ncr,z

Mzx

)
Wel,y

Wel,z

ML

1 − ML/Mzx

in which Ncr,z = π2EIz/L2, ML = fLWel,y is the limiting moment at first yield,
and My = fyWel,y is the nominal first yield moment. This can be solved for the
dimensionless limiting moment ML/My. In the case where the central crookedness
δ0 is given by

δ0Ncr,z

Mzx
= θ0 = Wel,z/Wel,y

1 + (df /2) (Ncr,z/Mzx)
η, (6.21)

in which η defines the magnitudes δ0,θ0, then the dimensionless limiting moment
simplifies to

ML

My
= 1

Φ +
√
Φ2 − λ

2
(6.18)

in which

Φ = (1 + η + λ
2
)/2, (6.19)

and

λ =
√
(My/Mzx) (6.20)

is a generalised slenderness.

6.13 Appendix – effective lengths of beams

6.13.1 Beams with elastic end restraints

The beam shown in Figure 6.18 is restrained at its ends against minor axis rotations
dv/dx and against warping rotations (df /2)dφ/dx, and the boundary conditions
at the end x = L/2 can be expressed in the form of

MB + MT

(dv/dx)L/2
= −EIz

L

2R2

1 − R2
,

and

MT − MB

(df /2) (dφ/dx)L/2
= −EIz

L

2R4

1 − R4
,
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in which MT and MB are the flange minor axis end restraining moments

MT = 1/2EIz(d
2v/dx2)L/2 + (df /4)EIz(d

2φ/dx2)L/2

MB = 1/2EIz(d
2v/dx2)L/2 − (df /4)EIz(d

2φ/dx2)L/2,

and R2 and R4 are the dimensionless minor axis bending and warping end restraint
parameters. If the beam is symmetrically restrained, then similar conditions apply
at the end x = −L/2. The other support conditions are

(v)±L/2 = (φ)±L/2 = 0.

The particular case for which the minor axis and warping end restraints are
equal, so that

R2 = R4 = R (6.51)

may be analysed. The differential equilibrium equations for a buckled position
v,φ of the beam are

EIz
d2v

dx2
= −Mcrφ + (MB + MT )

and

GIt
dφ

dx
− EIw

d3φ

dx3
= Mcr

dv

dx
.

These differential equations and the boundary conditions are satisfied by the
buckled shape

v = Mcrφ

π2EIz/k2
crL2

= A

(
cos

π x

kcrL
− cos

π

2kcr

)
,

in which the effective length factor kcr satisfies

R

1 − R
= − π

2kcr
cot

π

2kcr
. (6.52)

The solutions of this equation are shown in Figure 6.18c.

6.14 Appendix – monosymmetric beams

When a monosymmetric beam (see Figure 6.27) is bent in its plane of symmetry
and twisted, the longitudinal bending stresses σ exert a torque which is similar
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to that which causes some short concentrically loaded compression members to
buckle torsionally (see Sections 3.7.5 and 3.11). The longitudinal bending force

σ δA = Myz

Iy
δA

acting on an element δA of the cross-section rotates a0dφ/dx (where a0 is the
distance to the axis of twist through the shear centre y0 = 0, z0), and so its transverse
component σ · δA · a0dφ/dx exerts a torque σ · δA · a0dφ/dx · a0 about the axis of
twist. The total torque TM exerted is

TM = dφ

dx

∫
A

a2
0

Myz

Iy
dA

in which

a2
0 = y2 + (z − z0)

2.

Thus

TM = Myβy
dφ

dx
, (6.74)

in which the monosymmetry property βy of the cross-section is given by

βy = 1

Iy

{∫
A

z3 dA +
∫

A
y2zdA

}
− 2z0. (6.75)

An explicit expression for βy for a monosymmetric I-section is given in
Figure 6.27, and this can also be used for tee-sections by putting the flange thick-
ness t1 or t2 equal to zero. Also given in Figure 6.27 is an explicit expression for
the warping section constant Iw of a monosymmetric I-section. For a tee-section,
Iw is zero.

6.15 Worked examples

6.15.1 Example 1 – checking a beam supported at both ends

Problem. The 7.5 m long 610 × 229 UB 125 of S275 steel shown in Figure 6.30 is
simply supported at both ends where lateral deflections v are effectively prevented
and twist rotations φ are partially restrained. Check the adequacy of the beam for
a central concentrated top flange load caused by an unfactored dead load of 60 kN
(which includes an allowance for self-weight) and an unfactored imposed load of
100 kN.

Design bending moment.

MEd = {(1.35 × 60)+ (1.5 × 100)} × 7.5/4 = 433 kNm.
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3.75 m 3.75 m 

QD = 60 kN 
QI = 100 kN 
at top flange 

Quantity 610 × 229 UB 125  457 × 191 UB 82  Units 
bf 229.0 191.3 mm
tf 19.6 16.0 mm
h 612.2 460.0 mm
tw 11.9 9.9 mm
r 12.7 10.2 mm

Wpl,y 3676 1831 cm3

Iz 3932 1871 cm4

It 154 69.2 cm4

Iw 3.45 0.922 dm6

(b) Section properties 

(a) Example 1

Figure 6.30 Examples 1 and 4.

Section resistance.
As in Section 5.12.15, fy = 265 N/mm2, the section is Class 1, and the section
resistance is Mc,Rd = 974 kNm > 433 kNm = MEd and the section resistance is
adequate.

Elastic buckling moment.
Using equation 6.56 to allow for the partial torsional end restraints

kcr = 1 + {(612.2 − 19.6)/(6 × 7500)}(19.6/11.9)3

× {1 + 229.0/(612.2 − 19.6)}/2
= 1.041

so that Lcr = 1.041 × 7500 = 7806 mm.
Adapting equation 6.36,

Mzx0 =

√√√√√√√
{
π2 × 210 000 × 3932 × 104

78062

×
(

81 000 × 154 × 104 + π2 × 210 000 × 3.45 × 1012

78062

)}
Nmm

= 569 kNm.

Using equation 6.12, Ncr,z = π .2 × 210 000 × 3932 × 104/75002 N = 1449 kN.
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Using Figure 6.7, αm = 1.35

0.4αmzQNcr,z

Mzx0
= 0.4 × 1.35 × (− 612.2/2)× 1449 × 103

569 × 106
= −0.421

Adapting equation 6.11,

Mcr = 1.35 × 569{√[1 + (−0.421)2] + (−0.421)} Nmm = 510 kNm.

(Using the computer program PRFELB [18] with L = 7806 mm leads to Mcr =
522 kNm.)

Member resistance.
Using equation 6.25, λLT = √

(974/510) = 1.382

h/b = 612.2/229.0 = 2.67 > 2

Using the EC3 simple general method with β = 1.0, λLT ,0 = 0.2 (Clause 6.3.2.2)
and αLT = 0.34 (Tables 6.4 and 6.3), and equation 6.27,

ΦLT = 0.5{1 + 0.34(1.382 − 0.2)+ 1.0 × 1.3822} = 1.656

Using equation 6.26,

Mb,Rd = 974/{1.656 + √
(1.6562 − 1.3822)} kNm

= 379 kNm < 433 kNm = MEd

and the beam appears to be inadequate.
Using the EC3 less conservative method with β = 0.75, λLT ,0 = 0.4 (Clause

6.3.2.3) and αLT = 0.49 (Tables 6.5 and 6.3), and equation 6.27,

ΦLT = 0.5{1 + 0.49(1.382 − 0.4)+ 0.75 × 1.3822} = 1.457

Using equation 6.26,

Mb,Rd = 974/{1.457 + √
(1.4572 − 0.75 × 1.3822)} kNm

= 426 kNm < 433 kNm = MEd

and the design moment resistance still appears to be inadequate.
The design moment resistance is further increased by using equations 6.29, 6.30,

and 6.28 to find

f = 1 − 0.5 × (1 − 1/
√

1.35){1 − 2 × (1.382 − 0.8)2} = 0.978, and

Mb,Rd,mod = 426/0.978 = 436 kNm > 433 kNm = MEd

and the design moment resistance is adequate after all.
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Brace prevents
lateral deflection 
and twist rotation 

254 × 146 UB 37

254 × 146 UB 37

457 × 191 UB 82

70 kN

70
kNm 

1 2 3

4.5 m 4.5 m

(a) Example 2 (c) Example 3 (b) Properties of 

12 kN/m at top flange 

8.0 m 

bf = 146.4 mm
tf = 10.9 mm
h = 256 mm 
tw = 6.3 mm 
r = 7.6 mm 

Wpl,y = 483 cm3

Iz = 571 cm4

It = 15.3 cm4

Iw = 0.0857 dm6

Figure 6.31 Examples 2 and 3.

6.15.2 Example 2 – checking a braced beam

Problem. The 9 m long 254 × 146 UB 37 braced beam of S275 steel shown
in Figure 6.31a and b has a central concentrated design load of 70 kN (which
includes an allowance for self-weight) and a design end moment of 70 kNm. Lateral
deflections v and twist rotations φ are effectively prevented at both ends and by a
brace at mid-span. Check the adequacy of the braced beam.

Design bending moment.

R3 = {(70 × 4.5)− 70}/9 = 27.22 kN, MEd,2 = 27.22 × 4.5 = 122.5 kNm.

Section resistance.

tf = 10.9 mm, fy = 275 N/mm2 EN10025-2

ε = √
(235/275) = 0.924 T5.2

cf /(tf ε) = (146.4/2 − 6.3/2 − 7.6)/(10.9 × 0.924) T5.2

= 6.20 < 9 and the flange is Class 1. T5.2

cw/(twε) = (256 − 2 × 10.9 − 2 × 7.6)/(6.3 × 0.924) T5.2

= 37.6 < 72 and the web is Class 1. T5.2

Mc,Rd = 275 × 483 × 103 Nmm 6.2.5

= 132.8 kNm > 122.5 kNm = MEd

and the section resistance is adequate.
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Elastic buckling moment.
The beam is fully restrained at mid-span, and so consists of two equal length
segments 12 and 23. By inspection, the check will be controlled by segment 23
which has the lower moment gradient, and therefore the lower value of αm. Using
Figure 6.7, αm = 1.75.

Using equation 6.3,

Mzx =

√√√√√√√√
{
π2 × 210 000 × 571 × 104

45002

×
(

81 000 × 15.3 × 104 + π2 × 210 000 × 0.0857 × 1012

45002

)} Nmm

= 111.2 kNm.

Using equation 6.4,

Mcr = 1.75 × 111.2 = 194.6 kNm.

(Using the computer program PRFELB [18] on the segment 23 alone leads to
Mcr = 204.5 kNm. Using PRFELB on the complete beam leads to Mcr =
237.9 kNm, which indicates the increase caused by the restraint offered by segment
12 to segment 23. The increased elastic buckling moment may be approxi-
mated by using the improved method given in Section 6.8.2, as demonstrated
in Section 6.15.5.)

Member resistance.
Using equation 6.25, λLT = √

(132.8/194.6) = 0.826

h/b = 256/146.4 = 1.75 < 2

Using the EC3 simple general method with β = 1.0, λLT ,0 = 0.2 (Clause 6.3.2.2)
and αLT = 0.21 (Tables 6.4 and 6.3), and equation 6.27,

ΦLT = 0.5{1 + 0.21(0.826 − 0.2)+ 1.0 × 0.8262} = 0.907

Using equation 6.26,

Mb,Rd = 132.8/{0.907 + √
(0.9072 − 0.8262)} kNm

= 103.7 kNm < 122.5 kNm = MEd

and the beam appears to be inadequate.
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Using the EC3 less conservative method with β = 0.75, λLT ,0 = 0.4 (Clause
6.3.2.3) and αLT = 0.34 (Tables 6.5 and 6.3), and equation 6.27,

ΦLT = 0.5{1 + 0.34(0.826 − 0.4)+ 0.75 × 0.8262} = 0.828

Using equation 6.26,

Mb,Rd = 132.8/{0.828 + √
(0.8282 − 0.75 × 0.8262)} kNm = 106.6 kNm.

The design moment resistance is further increased by using equations 6.29, 6.30
and 6.28 to find

f = 1 − 0.5 × (1 − 1/
√

1.75){1 − 2 × (0.826 − 0.8)2} = 0.878, and

Mb,Rd,mod = 106.6/0.878 = 121.4 kNm < 122.5 kNm = MEd

and the design moment resistance is just inadequate.

6.15.3 Example 3 – checking a cantilever

Problem. The 8.0 m long 457 × 191 UB 82 cantilever of S275 steel shown in
Figure 6.31c has the section properties shown in Figure 6.30b. The cantilever has
lateral, torsional, and warping restraints at the support, is free at the tip, and has
a factored upwards design uniformly distributed load of 12 kN/m (which includes
an allowance for self-weight) acting at the top flange. Check the adequacy of the
cantilever.

Design bending moment.

MEd = 12 × 82/2 = 384 kNm.

Section resistance.

tf = 16.0 mm, fy = 275 N/mm2 EN10025-2

ε = √
(235/275) = 0.924 T5.2

cf /(tf ε) = (191.3/2 − 9.9/2 − 10.2)/(16.0 × 0.924) T5.2

= 5.44 < 9 and the flange is Class 1. T5.2
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cw/(twε) = (460.2 − 2 × 16.0 − 2 × 10.2)/(9.9 × 0.924) T5.2

= 44.6 < 72 and the web is Class 1. T5.2

Mc,Rd = 275 × 1831 × 103 Nmm 6.2.5

= 503.5 kNm > 384 kNm = MEd

and the section resistance is adequate.

Elastic buckling moment.
The upwards load at the top flange is equivalent to a downwards load at the bottom
flange, so that zQ = 460.0/2 = 230.0 mm. Using equation 6.8,

ε = 230.0

8000

√(
210 000 × 1871 × 104

81 000 × 69.2 × 104

)
= 0.241

Using equation 6.7,

K = √{(π2 × 210 000 × 0.922 × 1012)/(81 000 × 69.2 × 104 × 80002)}
= 0.730

Using equation 6.59,

qL3

2
√

EIzGIt
= 27

{
1 + 1.4(0.241 − 0.1)√{1 + 1.42(0.241 − 0.1)2}

}

+ 10(0.730 − 2)

{
1 + 1.3(0.241 − 0.1)√{1 + 1.32(0.241 − 0.1)2}

}

= 17.23

Mcr = qL2/2 = 17.23 × √
(210 000 × 1871 × 104

× 81 000 × 69.2 × 104)/8000 Nmm

= 1011 kNm.

(Using the computer program PRFELB [18] leads to Mcr = 1051 kNm.)

Member resistance.
Using equation 6.25, λLT = √

(503.5/1011) = 0.706

h/b = 460.0/191.3 = 2.40 > 2

Using the EC3 simple general method with β = 1.0, λLT ,0 = 0.2 (Clause 6.3.2.2)
and αLT = 0.34 (Tables 6.4 and 6.3), and equation 6.27,

ΦLT = 0.5{1 + 0.34(0.706 − 0.2)+ 1.0 × 0.7062} = 0.835
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Using equation 6.26,

Mb,Rd = 503.5/{0.835 + √
(0.8352 − 0.7062)}

= 393.0 kNm > 384 kNm = MEd

and the design moment resistance is adequate.

6.15.4 Example 4 – designing a braced beam

Problem. Determine a suitable UB of S275 steel for the simply supported beam
of Section 6.15.1 if twist rotations are effectively prevented at the ends and if a
brace is added which effectively prevents lateral deflection v and twist rotation φ
at mid-span.

Design bending moment.
Using Section 6.15.1, MEd = 433 kNm.

Selecting a trial section.
The central brace divides the beam into two identical segments, each of length
L = 3750 mm, and eliminates the effect of the load height.

Guess fy = 275 N/mm2 and Mb,Rd/Wyfy = 0.9.
Using equation 6.32, Wpl,y ≥ (433 × 106/275)/0.9 mm3 = 1750 cm3.
Try a 457 × 191 UB 82 with Wpl,y = 1831 cm3 > 1750 cm3.

Section resistance.
As in Section 6.15.3, fy = 275 N/mm2, Mc,Rd = 503.5 kNm > 433 kNm = MEd

and the section resistance is adequate.

Elastic buckling moment.
Using Figure 6.7, αm = 1.75.

Using equation 6.3,

Mzx =

√√√√√√√
{
π2 × 210 000 × 1871 × 104

37502

×
(

81 000 × 69.2 × 104 + π2 × 210 000 × 0.922 × 1012

37502

)} Nmm

= 727.5 kNm

Using equation 6.4,

Mcr = 1.75 × 727.5 = 1273 kNm

(Using the computer program PRFELB [18] leads to Mcr = 1345 kNm.)

Member resistance.
Using equation 6.25, λLT = √

(503.5/1273) = 0.629

h/b = 460.0/191.3 = 2.40 > 2
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Using the EC3 simple general method with β = 1.0, λLT ,0 = 0.2 (Clause 6.3.2.2)
and αLT = 0.34 (Tables 6.4 and 6.3), and equation 6.27,

ΦLT = 0.5{1 + 0.34(0.629 − 0.2)+ 1.0 × 0.6292} = 0.771

Using equation 6.26,

Mb,Rd = 503.5/{0.771 + √
(0.7712 − 0.6292)} kNm

= 414 kNm < 433 kNm = MEd

and the beam appears to be inadequate.
Using the EC3 less conservative method with β = 0.75, λLT ,0 = 0.4 (Clause

6.3.2.3) and αLT = 0.49 (Tables 6.5 and 6.3), and equation 6.27,

ΦLT = 0.5{1 + 0.49(0.629 − 0.4)+ 0.75 × 0.6292} = 0.704

Using equation 6.26,

Mb,Rd = 503.5/{0.704 + √
(0.7042 − 0.75 × 0.6292)} kNm

= 437 kNm > 433 kNm = MEd

and so the design moment resistance is adequate after all.

6.15.5 Example 5 – checking a braced beam by
buckling analysis

Problem. Use the method of elastic buckling analysis given in Section 6.8.2 to
check the braced beam of Section 6.15.2.

Elastic buckling analysis.
The application of the method of elastic buckling analysis given in Section 6.8.2
is summarised below, using the same step numbering as in Section 6.8.2.

(2) The beam is fully restrained at mid-span, and so consists of two segments
12 and 23.
For segment 12, M1 = −70 kNm and M2 = 122.5 kNm (as in Section
6.15.2).
βm12 = 70/122.5 = 0.571
Using equation 6.5, αm12 = 1.75 + 1.05 × 0.571 + 0.3 × 0.5712

= 2.448 < 2.56
For segment 23, βm23 = 0/122.5 = 0 and αm23 = 1.75 as in Section 6.15.2

(3) Lcr12 = Lcr23 = 4500 mm.
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(4) Using Mzx12 = Mzx23 = 111.2 kNm from Section 6.15.2,

Mcr12 = 2.448 × 111.2 = 272.3 kNm.

Qs12 = 70 × 272.3/122.5 = 155.6 kN.

Mcr23 = 1.75 × 111.2 = 194.6 kNm.

Qs23 = 70 × 194.6/122.5 = 111.2 kN.

(5) Qs23 < Qs12 and so 23 is the critical segment.
(6) αr12 = (3 × 210 000 × 571 × 104/4500)× (1 − 111.2/155.6)

= 227.9 × 106 Nmm.
(7) α23 = 2 × 210 000 × 571 × 104/4500 = 532.9 × 106 Nmm.
(8) k2 = 532.9 × 106/(0.5 × 227.9 × 106 + 532.9 × 106) = 0.824

k3 = 1.0 (zero restraint at 3).
(9) Using Figure 3.21a, kcr23 = 0.93, Lcr23 = 0.93 × 4500 = 4185 mm.

(10) Using equation 6.39,

Mzx =

√√√√√√√
{
π2 × 210 000 × 571 × 104

41852

×
(

81 000 × 15.3 × 104 + π2 × 210 000 × 0.0857 × 1012

41852

)} Nmm

= 123.4 kNm

and Mcr23 = 1.75 × 123.4 = 215.9 kNm.

(Using the computer program PRFELB [18] leads to Mcr23 = 237.9 kNm.)

Member resistance.
Mc,Rd = 132.8 kNm as in Section 6.15.2

Using equation 6.25, λLT = √
(132.8/215.9) = 0.784

h/b = 256/146.4 = 1.75 < 2

Using the EC3 less conservative method with β = 0.75, λLT ,0 = 0.4 (Clause
6.3.2.3) and αLT = 0.34 (Tables 6.5 and 6.3), and equation 6.27,

ΦLT = 0.5{1 + 0.34(0.784 − 0.4)+ 0.75 × 0.7842} = 0.796

Using equation 6.26,

Mb,Rd = 132.8/{0.796 + √
(0.7962 − 0.75 × 0.7842)} kNm = 105.6 kNm.
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Using equations 6.29, 6.30, and 6.28,

f = 1 − 0.5 × (1 − 1/
√

1.75){1 − 2 × (0.784 − 0.8)2} = 0.878, and

Mb,Rd,mod = 105.6/0.878 = 120.2 kNm < 122.5 kNm = MEd

and the design moment resistance is just inadequate.

6.15.6 Example 6 – checking aT-beam

Problem. The 5.0 m long simply supported monosymmetric 229 × 305 BT 63
T-beam of S275 steel shown in Figure 6.32 has the section properties shown in
Figure 6.32c. Determine the uniform bending design moment resistances when
the flange is in either compression or tension.

Section resistance (flange in compression).

tf = 19.6 mm, fy = 265 N/mm2 EN10025-2

ε = √
(235/265) = 0.942 T5.2

cf /(tf ε) = (229.0/2 − 11.9/2 − 12.7)/(19.6 × 0.942) T5.2

= 5.19 < 9 and the flange is Class 1. T5.2

The plastic neutral axis bisects the area, and in this case lies in the flange (at
zp = {229.0 × 19.6 + (306.0 − 19.6)× 11.9}/(2 × 229.0) = 17.2 mm).

Thus the whole web is in tension, and is automatically Class 1.

Mc,Rd = 265 × 531 × 103 Nmm = 140.7 kNm. 6.2.5

M

11.9

19.6
306.0 

229.0 

5.0 m 

M
r = 12.7 mm

Wpl,y = 531 cm3

Wel,y,min = 299 cm3

Iz = 1966 cm4

It = 76.9 cm4

(a) Beam (b) Cross-section (c) Properties 

Figure 6.32 Example 6.
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Elastic buckling (flange in compression).
Using Figure 6.27,

df = 306.0 − (19.6 + 0)/2 = 296.2 mm.

z = 0 + (306.0 − 19.6 − 0)× (306.0 − 0)× 11.9/2

(229.0 × 19.6)+ 0 + (306.0 − 19.6 − 0)× 11.9
= 66.0 mm.

Iy = (229.0 × 19.6 × 66.02)+ 0 + (306.0 − 19.6 − 0)3 × 11.9/12

+ (306.0 − 19.6 − 0)× 11.9 × {66.0 − (306.0 − 0)/2}2

= 68.64 × 106 mm4

1 − ρm = 0

z0 = 0 × 296.2 − 66.0 = −66.0 mm.

βy = 1

68.64 × 106



(296.2 − 66.0)× (0 + 0)− 66.0
× (

2293 × 19.6/12 + 229 × 19.6 × 66.02
)

+ [
(296.2 − 66.0 − 0)4

− (66.0 − 19.6/2)4
] × 11.9/4




− 2 × (−66.0) = 215.6 mm.

Iw = 0

π2EIz

L2
= π2 × 210 000 × 1966 × 104

50002
= 1.630 × 106N

βy

2

√
π2EIz

L2
= 215.6

2
×

√
1.630 × 106 = 137.6 × 103

Using equation 6.76,

Mcr =
√
(1.633 × 106)× {√[81 000 × 76.9 × 104 + 0 + (137.6 × 103)2]

+ 137.6 × 103} = 540.1 kNm.

(Using the computer program PRFELB [18] leads to Mcr = 540.1 kNm.)

Member resistance (flange in compression).
Using equation 6.25, λLT = √

(140.7/540.3) = 0.510
Using the EC3 simple general method with β = 1.0, λLT ,0 = 0.2 (Clause

6.3.2.2) and αLT = 0.76 (Tables 6.4 and 6.3), and equation 6.27,

ΦLT = 0.5{1 + 0.76(0.510 − 0.2)+ 1.0 × 0.5102} = 0.748
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Using equation 6.26,

Mb,Rd = 140.7/{0.748 + √
(0.7482 − 0.5102)} kNm = 108.6 kNm.

Section resistance (flange in tension).
Using Table 4.2 of EN1993-1-5 [60] and the ratio of the web outstand tip
compression to tension of

ψ = σ2/σ1 = −(66.0 − 19.6/2 − 12.7)/(306.0 − 19.6/2 − 66.0)

= −0.189,

kσ = 0.57 − 0.21 × (−0.189)+ 0.07 × (−0.189)2 = 0.612, and

21
√

kσ = 21 × √
(0.612) = 16.4

cw/(twε) = (306.0 − 19.6 − 12.7)/(11.9 × 0.942) T5.2

= 24.4> 16.4 = 21
√

kσ and the web is Class 4. T5.2

The section may be treated as Class 3 if the effective value of ε is increased so that
the Class 3 limit is just satisfied, in which case

ε = cw/tw
21

√
kσ

= (306.0 − 19.6 − 12.7)/11.9

16.4
= 1.400 5.5.2(9)

in which case the maximum design compressive stress is

σcom,Rd = fy/γM0

ε2
= 265/1.0

1.4002
= 135 N/mm2 5.5.2(9)

and so the section resistance is

Mc,Rd = 135 × 299 × 103 Nmm = 40.4 kNm. 6.2.5

(If the effective section method of Clause 4.3(4) of EN1993-1-5 [60] is used, then
an increased section resistance of Mc,Rd = Wel,y,minfy = 53.2 kNm is obtained.)

Elastic buckling (flange in tension).
Using Figure 6.27 leads to βy = −215.6 mm.

Using equation 6.76 leads to Mcr = 188.3 kNm.
(Using the computer program PRFELB [18] leads to Mcr = 188.3 kNm.)

Member resistance (flange in tension).
Using equation 6.25, λLT = √

(40.4/188.3) = 0.463
Using the EC3 simple general method as before and equation 6.27,

ΦLT = 0.5{1 + 0.76(0.463 − 0.2)+ 1.0 × 0.4632} = 0.708

Using equation 6.26,

Mb,Rd = 40.4/{0.708 + √
(0.7082 − 0.4632)} kNm = 32.6 kNm.
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6.15.7 Example 7 – checking a stepped beam

Problem. The simply supported non-uniform welded beam of S275 steel shown in
Figure 6.33 has a central concentrated design load Q acting at the bottom flange.
The beam has a 960 × 16 web, and its equal flanges are 300 × 32 in the central
2.0 m region and 300 × 20 in the outer 3.0 m regions. Determine the maximum
value of Q.

Section properties.

Wpl,yi = 300 × 32 × (960 + 32)+ 9602 × 16/4 = 13.21 × 106 mm3.

Wpl,yo = 300 × 20 × (960 + 20)+ 9602 × 16/4 = 9.566 × 106 mm3.

Izi = 2 × 3003 × 32/12 = 144 × 106 mm4.

Iti = 2 × 300 × 323/3 + 960 × 163/3 = 7.864 × 106 mm4.

Iwi = 144 × 106 × (960 + 32)2/4 = 35.43 × 1012 mm6.

Section resistances.

tfi = 32 mm, fy = 265 N/mm2. EN10025-2

tfo = 20 mm, fy = 265 N/mm2. EN10025-2

ε = √
(235/265) = 0.942 T5.2

cfo/(tfoε) = (300 − 16)/2/(20 × 0.942) T5.2

= 7.54 < 9 and the flange is Class 1. T5.2

cw/(twε) = 960/(16 × 0.942) T5.2

= 63.7 < 72 and the web is Class 1. T5.2

Mc,Rd,o = 265 × 9.566 × 106 Nmm = 2535 kNm. 6.2.5

Mc,Rd,i = 265 × 13.21 × 106 Nmm = 3501 kNm. 6.2.5

Quantity 
Inner 
length 

Outer 
length Units 

bf 300 300 mm 
tf 32 20 mm 
d 960 960 mm 
tw 16 16 mmbf

bf

tf

tw d

tf
Q

3.0 m    1.0  1.0      3.0 m 

(a) Beam and loading                           (b) Section                         (c) Dimensions 

Figure 6.33 Example 7.
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Critical section.
At mid-span, MEd,4 = Q × 8/4 = 2.0 Q kNm.
At the change of section, MEd,3 = (Q/2)× 3 = 1.5 Q kNm.
MEd,4/Mc,Rd,i = 2.0 × Q/3501 = 0.000571 Q
MEd,3/Mc,Rd,o = 1.5 × Q/2535 = 0.000592 Q > 0.000571 Q
and so the critical section is at the change of section.

Elastic buckling.
For a uniform beam having the properties of the central cross-section, using
equation 6.3,

Mzxi =

√√√√√√√



π2 × 210 000 × 144 × 106

80002

×
(

81 000 × 7.864 × 106 + π2 × 210 000 × 35.43 × 1012

80002

)

Nmm

= 2885 kNm.

Using equation 6.12, Ncr,z = π .2 × 210000 × 144 × 106/80002 N = 4663 kN.
Using Figure 6.7, αm = 1.35

0.4αmzQNcr,z

Mzxi
= 0.4 × 1.35 × (960/2)× 4663 × 103

2885 × 106
= 0.491

Using equation 6.11,

Mcri = 1.35 × 2885{√[1 + 0.4912] + 0.491} Nmm = 5854 kNm.

(Using the computer program PRFELB [18] leads to Mcri = 5972 kNm.)
For the non-uniform beam,

Lr/L = 6.0/8.0 = 0.75(
0.6 + 0.4

dmin

dmax

)
Af min

Af max
=

(
0.6 + 0.4 × 960 + 2 × 20

960 + 2 × 32

)
300 × 20

300 × 32
= 0.619

Using equation 6.80,

αst = 1.0 − 1.2 ×
(

6000

8000

)
× (1 − 0.619) = 0.657

Mcr = 0.657 × 5854 = 3847 kNm.

(Using the computer program PRFELB [18] leads to Mcr = 4420 kNm.)

Moment resistance.
At the critical section, Mcro = 3847 × 3000/4000 = 2885 kNm.
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Using the values for the critical section in equation 6.25, λLT = √
(2535/2885) =

0.937

h/b = (960 + 2 × 20)/300 = 3.33 > 2.

Using the EC3 simple general method with β = 1.0 and λLT ,0 = 0.2
(Clause 6.3.2.2) and αLT = 0.34 (Tables 6.4 and 6.3) and equation 6.27,

ΦLT = 0.5{1 + 0.34(0.937 − 0.2)+ 0.9372} = 1.065

Using equation 6.26,

Mb,Rd = 2535/{1.065 + √
(1.0652 − 0.9372)} kNm

= 1615 kNm = (
Qb,Rd/2

) × 3.0

Qb,Rd = 1615 × 2/3.0 = 1077 kN.

6.16 Unworked examples

6.16.1 Example 8 – checking a continuous beam

A continuous 533×210 UB 92 beam of S275 steel has two equal spans of 7.0 m. A
uniformly distributed design load q is applied along the centroidal axis. Determine
the maximum value of q.

6.16.2 Example 9 – checking an overhanging beam

The overhanging beam shown in Figure 6.34a is prevented from twisting and
deflecting laterally at its end and supports. The supported segment is a 250 ×
150 × 10 RHS of S275 steel and is rigidly connected to the overhanging segment
which is a 254 × 146 UB 37 of S275 steel. Determine the maximum design load
Q that can be applied at the end of the UB.

Q

(a) Overhanging beam                                                   (b) Braced beam 

7.0 m          14.0 m                                           4.0 m         6.0 m               8.0 m 

254 ×146 UB 37 250 ×150 ×10 RHS Q kN 1.5 Q kN 

5Q kNm 

Lateral deflection and twist 
prevented at supports and load points 

Lateral deflection and twist 
prevented at end and at supports 

Figure 6.34 Unworked examples 9 and 10.
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6.16.3 Example 10 – checking a braced beam

Determine the maximum moment at elastic buckling of the braced 533 × 210 UB
92 of S275 steel shown in Figure 6.34b.

6.16.4 Example 11 – checking a monosymmetric beam

A simply supported 6.0 m long 530×210 UB 92 beam of S275 steel has equal and
opposite end moments. The moment resistance is to be increased by welding a full
length 25 × 16 mm plate of S275 steel to one flange. Determine the increases in
the moment resistances of the beam when the plate is welded to

(a) the compression flange, or
(b) the tension flange.

6.16.5 Example 12 – checking a non-uniform beam

A simply supported 530 × 210 UB 92 beam of S275 steel has a concentrated
shear centre load at the centre of the 10.0 m span. The moment resistance is to be
increased by welding 250 × 16 plates of S275 steel to the top and bottom flanges
over a central length of 4.0 m. Determine the increase in the moment resistance of
the beam.
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Chapter 7

Beam-columns

7.1 Introduction

Beam-columns are structural members which combine the beam function of
transmitting transverse forces or moments with the compression (or tension)
member function of transmitting axial forces. Theoretically, all structural members
may be regarded as beam-columns, since the common classifications of tension
members, compression members, and beams are merely limiting examples of
beam-columns. However, the treatment of beam-columns in this chapter is gen-
erally limited to members in axial compression. The behaviour and design of
members with moments and axial tension are treated in Chapter 2.

Beam-columns may act as if isolated, as in the case of eccentrically loaded
compression members with simple end connections, or they may form part of a
rigid frame. In this chapter, the behaviour and design of isolated beam-columns
are treated. The ultimate resistance and design of beam-columns in frames are
discussed in Chapter 8.

It is convenient to discuss the behaviour of isolated beam-columns under the
three separate headings of In-Plane Behaviour, Flexural–Torsional Buckling, and
Biaxial-Bending, as is done in Sections 7.2–7.4. When a beam-column is bent
about its weaker principal axis, or when it is prevented from deflecting laterally
while being bent about its stronger principal axis (as shown in Figure 7.1a), its
action is confined to the plane of bending. This in-plane behaviour is related to the
bending of beams discussed in Chapter 5 and to the buckling of compression mem-
bers discussed in Chapter 3. When a beam-column which is bent about its stronger
principal axis is not restrained laterally (as shown in Figure 7.1b), it may buckle
prematurely out of the plane of bending by deflecting laterally and twisting. This
action is related to the flexural–torsional buckling of beams (referred to as lateral–
torsional buckling in EC3) discussed in Chapter 6. More generally, however, a
beam-column may be bent about both principal axes, as shown in Figure 7.1c.
This biaxial bending, which commonly occurs in three-dimensional rigid frames,
involves interactions of beam bending and twisting with beam and column buck-
ling. Sections 7.2–7.4 discuss the in-plane behaviour, flexural–torsional buckling,
and biaxial bending of isolated beam-columns.
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Figure 7.1 Beam-column behaviour.

7.2 In-plane behaviour of isolated beam-columns

When the deformations of an isolated beam-column are confined to the plane
of bending (see Figure 7.1a), its behaviour shows an interaction between beam
bending and compression member buckling, as indicated in Figure 7.2. Curve 1 of
this figure shows the linear behaviour of an elastic beam, while curve 6 shows the
limiting behaviour of a rigid-plastic beam at the full plastic moment Mpl . Curve 2
shows the transition of a real elastic – plastic beam from curve 1 to curve 6.
The elastic buckling of a concentrically loaded compression member at its elastic
buckling load Ncr, y is shown by curve 4. Curve 3 shows the interaction between
bending and buckling in an elastic member, and allows for the additional moment
Nδ exerted by the axial load. Curve 7 shows the interaction between the bending
moment and axial force which causes the member to become fully plastic. This
curve allows for reduction from the full plastic moment Mpl to Mpl,r caused by the
axial load, and for the additional moment Nδ. The actual behaviour of a beam-
column is shown by curve 5 which provides a transition from curve 3 for an elastic
member to curve 7 for full plasticity.

7.2.1 Elastic beam-columns

A beam-column is shown in Figures 7.1a and 7.3a which is acted on by axial
forces N and end moments M and βmM , where βm can have any value between
−1 (single curvature bending) and +1 (double curvature bending). For isolated
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beam-columns, these end moments are independent of the deflections, and have no
effect on the elastic buckling load Ncr, y =π2EIy/L2. (They are therefore quite dif-
ferent from the end restraining moments discussed in Section 3.6.3 which increase
with the end rotations and profoundly affect the elastic buckling load.) The beam-
column is prevented from bending about the minor axis out of the plane of the end
moments, and is assumed to be straight before loading.
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The bending moment in the beam-column is the sum of M − M (1 + βm)x/L
due to the end moments and shears, and Nw due to the deflection w, as shown
in Figure 7.3b. It is shown in Section 7.5.1 that the deflected shape of the beam-
column is given by

w = M

N

[
cosµx − (βmcosecµL + cotµL) sinµx − 1 + (1 + βm)

x

L

]
,

(7.1)

where

µ2 = N

EIy
= π2

L2

N

Ncr, y
. (7.2)

As the axial force N approaches the buckling load Ncr, y, the value of µL
approaches π , and the values of cosecµL, cotµL, and therefore of w approach
infinity, as indicated by curve 3 in Figure 7.2. This behaviour is similar to that of
a compression member with geometrical imperfections (see Section 3.2.2). It is
also shown in Section 7.5.1 that the maximum moment Mmax in the beam-column
is given by

Mmax = M


1 +

{
βmcosecπ

√
N

Ncr, y
+ cot π

√
N

Ncr, y

}2



0.5

, (7.3)

when βm < − cosπ
√
(N/Ncr, y) and the point of maximum moment lies in the

span, and is given by the end moment M , that is

Mmax = M , (7.4)

when βm ≥ − cosπ
√
(N/Ncr, y).

The variations of Mmax/M with the axial load ratio N/Ncr, y and the end moment
ratio βm are shown in Figure 7.4. In general, Mmax remains equal to M for low
values of N/Ncr, y but increases later. The value of N/Ncr, y at which Mmax begins
to increase above M is lowest for βm = −1 (uniform bending), and increases
with increasing βm. Once Mmax departs from M , it increases slowly at first, then
more rapidly, and reaches very high values as N approaches the column buckling
load Ncr, y.

For beam-columns which are bent in single curvature by equal and oppo-
site end moments (βm = −1), the maximum deflection δmax is given by (see
Section 7.5.1)

δmax

δ
= 8/π2

N/Ncr, y

[
sec

π

2

√
N

Ncr, y
− 1

]
(7.5)
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in which δ = ML2/8EIy is the value of δmax when N = 0, and the maximum
moment by

Mmax = M sec
π

2

√
N

Ncr, y
. (7.6)

These two equations are shown non-dimensionally in Figure 7.4. It can be seen
that they may be approximated by using a factor 1/(1 − N/Ncr, y) to amplify the
deflection δ and the moment M due to the applied moments alone (N = 0). This
same approximation was used in Section 3.6.3 to estimate the reduced stiffness of
an axially loaded restraining member.

For beam-columns with unequal end moments (βm > −1), the value of Mmax

may be approximated by using

Mmax

M
= Cm

1 − N/Ncr, y
≥ 1.0 (7.7)

in which

Cm = 0.6 − 0.4βm. (7.8)

These approximations are also shown in Figure 7.4. It can be seen that they are
generally conservative for βm > 0, and only a little unconservative for βm < 0.



 

300 Beam-columns

Approximations for the maximum moments Mmax in beam-columns with trans-
verse loads can be obtained by using

Mmax = δMmax,0 (7.9)

in which Mmax,0 is the maximum moment when N = 0,

δ = γm(1 − γsN/Ncr)

(1 − γnN/Ncr)
, (7.10)

Ncr = π2EI/(k2
crL2), (7.11)

and kcr = Lcr/L is the effective length ratio. Expressions for Mmax,0 and values
of γm, γn, γs, and kcr are given in Figure 7.5 for beam-columns with central
concentrated loads Q and in Figure 7.6 for beam-columns with uniformly dis-
tributed loads q. A worked example of the use of these approximations is given in
Section 7.7.1.

The maximum stress σmax in the beam-column is the sum of the axial stress and
the maximum bending stress caused by the maximum moment Mmax. It is therefore
given by

σmax = σac + σbcy
Mmax

M
(7.12)
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in which σac = N/A and σbcy = M/Wel,y. If the member has no residual stresses,
then it will remain elastic while σmax is less than the yield stress fy, and so the
above results are valid while

N

Ny
+ M

My

Mmax

M
≤ 1.0 (7.13)

in which Ny = Afy is the squash load and My = fyWel the nominal first yield
moment. A typical elastic limit of this type is shown by the first yield point marked
on curve 3 of Figure 7.2. It can be seen that this limit provides a lower bound
estimate of the resistance of a straight beam-column, while the elastic buckling
load Ncr, y provides an upper bound.

Variations of the first yield limits of N/Ny determined from equation 7.13 with
M/My and βm are shown in Figure 7.7a for the case where Ncr, y = Ny/1.5. For a
beam-column in double curvature bending (βm = 1), Mmax = M , and so N varies
linearly with M until the elastic buckling load Ncr, y is reached. For a beam-column
in uniform bending (βm = −1), the relationship between N and M is non-linear and
concave due to the amplification of the bending moment from M to Mmax by the
axial load. Also shown in Figure 7.7a are solutions of equation 7.13 based on the
use of the approximations of equations 7.7 and 7.8. A comparison of these with
the accurate solutions also shown in Figure 7.7a again demonstrates the
comparative accuracy of the approximate equations 7.7 and 7.8.
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The elastic in-plane behaviour of members in which the axial forces cause
tension instead of compression can also be analysed. The maximum moment in
such a member never exceeds M , and so a conservative estimate of the elastic
limit can be obtained from

N

Ny
+ M

My
≤ 1.0. (7.14)

This forms the basis for the methods of designing tension members for in-plane
bending, as discussed in Section 2.4.

7.2.2 Fully plastic beam-columns

An upper bound estimate of the resistance of an I-section beam-column bent about
its major axis can be obtained from the combination of bending moment Mpl,r and
axial force Ny,r which causes the cross-section to become fully plastic. A particular
example is shown in Figure 7.8, for which the distance zn from the centroid to the
unstrained fibre is less than (h − 2tf )/2. This combination of moment and force
lies between the two extreme combinations for members with bending moment
only (N = 0), which become fully plastic at

Mpl = fybf tf (h − tf )+ fytw

(
h − 2tf

2

)2

, (7.15)
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and members with axial force only (M = 0), which become fully plastic at

Ny = fy[2bf tf + (h − 2tf )tw]. (7.16)

The variations of Mpl,r and Ny,r are shown by the dashed interaction curve in
Figure 7.9. These combinations can be used directly for very short beam-columns
for which the bending moment at the fully plastic cross-section is approximately
equal to the applied end moment M .

Also shown in Figure 7.9 is the approximation

Mpl,r,y

Mpl,y
= 1.18

[
1 − Ny,r

Ny

]
≤ 1.0, (7.17)
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which is generally close to the accurate solution, except when Ny,r ≈ 0.15Ny,
when the maximum error is of the order of 5%. This small error is quite acceptable
since the accurate solutions ignore the strengthening effects of strain-hardening.

A similar analysis may be made of an I-section beam-column bent about its
minor axis. In this case, a satisfactory approximation for the load and moment at
full plasticity is given by

Mpl,r,z

Mpl, z
= 1.19

[
1 −

(
Ny,r

Ny

)2
]

≤ 1.0. (7.18)

Beam-columns of more general cross-section may also be analysed to deter-
mine the axial load and moment at full plasticity. In general, these may be safely
approximated by the linear interaction equation

Mpl,r

Mpl
= 1 − Ny,r

Ny
. (7.19)

In a longer beam-column, instability effects become important, and failure
occurs before any section becomes fully plastic. Afurther complication arises from
the fact that as the beam-column deflects by δ, its maximum moment increases
from the nominal value M to (M +Nδ). Thus, the value of M at which full plasticity
occurs is given by

M = Mpl,r − Nδ, (7.20)

and so the value of M for full plasticity decreases from Mpl,r as the deflection δ
increases, as shown by curve 7 in Figure 7.2. This curve represents an upper bound
to the behaviour of beam-columns which is only approached after the maximum
strength is reached.

7.2.3 Ultimate resistance

7.2.3.1 General

An isolated beam-column reaches its ultimate resistance at a load which is greater
than that which causes first yield (see Section 7.2.1), but is less than that which
causes a cross-section to become fully plastic (see Section 7.2.2), as indicated
in Figure 7.2. These two bounds are often far apart, and when a more accurate
estimate of the resistance is required, an elastic–plastic analysis of the imperfect
beam-column must be made. Two different approximate analytical approaches to
beam-column strength may be used, and these are related to the initial crookedness
and residual stress methods discussed in Sections 3.2.2 and 3.3.4 of allowing for
the effects of imperfections on the resistances of real compression members. These
two approaches are discussed below.
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7.2.3.2 Elastic–plastic resistances of straight beam-columns

The resistance of an initially straight beam-column with residual stresses may
be found by analysing numerically its non-linear elastic–plastic behaviour and
determining its maximum resistance [1]. Some of these resistances [2, 3] are shown
as interaction plots in Figure 7.10. Figure 7.10a shows how the ultimate load N
and the end moment M vary with the major axis slenderness ratio L/iy for beam-
columns with equal and opposite end moments (βm = −1), while Figure 7.10b
shows how these vary with the end moment ratio βm for a slenderness ratio of
L/iy = 60.

It has been proposed that these ultimate resistances can be simply and closely
approximated by using the values of M and N which satisfy the interaction
equations of both equation 7.17 and

N

Nb,y,Rd
+ Cm

(1 − N/Ncr, y)

M

Mpl,y
≤ 1 (7.21)

in which Nb,y,Rd is the ultimate resistance of a concentrically loaded column (the
beam-column with M = 0) which fails by deflecting about the major axis, Ncr, y

is the major axis elastic buckling load of this concentrically loaded column, and
Cm is given by

Cm = 0.6 − 0.4βm ≥ 0.4. (7.22)

Equation 7.17 ensures that the reduced plastic moment Mpl,r is not exceeded
by the end moment M , and represents the resistances of very short members
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Figure 7.11 Interaction formulae.

(L/iy → 0), and of some members which are not bent in single curvature (i.e.
βm > 0), as shown, for example, in Figure 7.11b.

Equation 7.21 represents the interaction between buckling and bending which
determines the resistance of more slender members. If the case of equal and oppo-
site end moments is considered first (βm = −1 and Cm = 1), then it will be seen that
equation 7.21 includes the same approximate amplification factor 1/(1−N/Ncr, y)

as does equation 7.7 for the maximum moments in elastic beam-columns. It is of
a similar form to the first yield condition of equation 7.13, except that a conver-
sion to ultimate resistance has been made by using the ultimate resistance Nb,y,Rd ,
and moment Mpl,y instead of the squash load Ny and the yield moment My. These
substitutions ensure that this interaction formula gives the same limit predictions
for concentrically loaded columns (M = 0) and for beams (N = 0) as do the
treatments given in Chapters 3 and 5. The accuracy of equation 7.21 for beam-
columns with equal and opposite end moments (βm = −1) is demonstrated in
Figure 7.11a.

The effects of unequal end moments (βm > −1) on the ultimate resistances of
beam-columns are allowed for approximately in equation 7.21 by the coefficient
Cm which converts the unequal end moments M andβmM into equivalent equal and
opposite end moments CmM . Although this conversion is for in-plane behaviour, it
is remarkably similar to the conversion used for beams with unequal end moments
which buckle out of the plane of bending (see Section 6.2.1.2). The accuracy of
equation 7.21 for beam-columns with unequal end moments is demonstrated in
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Figure 7.11b, and it can be seen that it is good except for high values of βm when
it tends to be oversafe, and for high values of M when it tends to overestimate
the analytical solutions for the ultimate resistance (although this overestimate is
reduced if strain-hardening is accounted for in the analytical solutions). The over-
conservatism for high values ofβm is caused by the use of the 0.4 cut-off in equation
7.22 for Cm, but more accurate solutions can be obtained by using equation 7.8
for which the minimum value of Cm is 0.2.

Thus, the interaction equations (equations 7.17 and 7.21) provide a reasonably
simple method of estimating the ultimate resistances of I-section beam-columns
bent about the major axis which fail in the plane of the applied moments. The
interaction equations have been successfully applied to a wide range of sections,
including solid and hollow circular sections as well as I-sections bent about the
minor axis. In the latter case, Mpl,y, Nb,y,Rd , and Ncr, y must be replaced by their
minor axis equivalents, while equation 7.17 should be replaced by equation 7.18.

It should be noted that the interaction equations provide a convenient way of
estimating the ultimate resistances of beam-columns. An alternative method has
been suggested [4] using simple design charts to show the variation of the moment
ratio M/Mpl,r with the end moment ratio βm and the length ratio L/Lc, in which Lc

is the length of a column which just fails under the axial load N alone (the effects
of strain-hardening must be included in the calculation of Lc).

7.2.3.3 First yield of crooked beam-columns

In the second approximate approach to the resistance of a real beam-column, the
first yield of an initially crooked beam-column without residual stresses is used.
For this, the magnitude of the initial crookedness is increased to allow approx-
imately for the effects of residual stresses. One logical way of doing this is to
use the same crookedness as is used in the design of the corresponding compres-
sion member, since this has already been increased so as to allow for residual
stresses.

The first yield of a crooked beam-column is analysed in Section 7.5.2, and
particular solutions are shown in Figure 7.7b for a beam-column with Ncr, y/Ny =
1/1.5 and whose initial crookedness is defined by η = 0.290(L/i − 0.152). It can
be seen that as M decreases to zero, the axial load at first yield increases to the
column resistance Nb,y,Rd which is reduced below the elastic buckling load Ncr, y

by the effects of imperfections. As N decreases, the first yield loads for crooked
beam-columns approach the corresponding loads for straight beam-columns.

For beam-columns in uniform bending (βm = −1), the interaction between M
and N is non-linear and concave, as it was for straight beam-columns (Figure 7.7a).
If this interaction is plotted using the maximum moment Mmax instead of the end
moment M , then the relationships between Mmax and N becomes slightly convex,
since the non-linear effects of the amplification of M are then included in Mmax.
Thus a linear relationship between Mmax/My and N/Nb,y,Rd will provide a sim-
ple and conservative approximation for first yield which is of good accuracy.
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Figure 7.12 Resistances of beam-columns.

However, if this approximation is used for the resistance, then it will become
increasingly conservative as Mmax increases, since it approaches the first yield
moment My instead of the fully plastic moment Mpl . This difficulty may be over-
come by modifying the approximation to a linear relationship between Mmax/Mpl

and N/Nb,y,Rd which passes through Mmax/Mpl = 1 when N/Nb,y,Rd = 0, as shown
in Figure 7.12a. Such an approximation is also in good agreement with the uniform
bending (βm = −1) analytical strengths [2, 3] shown in Figure 7.12b for initially
straight beam-columns with residual stresses.

For beam-columns in double curvature bending (βm = 1), the first yield inter-
action shown in Figure 7.7b forms an approximately parabolic transition between
the bounds of the column resistance Nb,y,Rd and the first yield condition of a
straight beam-column. In this case, the effects of initial curvature are greatest
near mid-span, and have little effect on the maximum moment which is gener-
ally greatest at the ends. Thus the strength may be simply approximated by a
parabolic transition from the column resistance Nb,y,Rd to the full plasticity condi-
tion given by equation 7.17 for I-sections bent about the major axis, as shown in
Figure 7.12a. This approximation is in good agreement with the double curvature
bending (βm = 1) analytical resistances [2, 3] shown in Figure 7.12b for straight
beam-columns with residual stresses and zero strain-hardening.

The ultimate resistances of beam-columns with unequal end moments may be
approximated by suitable interpolations between the linear and parabolic approx-
imations for beam-columns in uniform bending (βm = −1) and double curvature
bending (βm = 1). It has been suggested [5, 6] that this interpolation should be
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made according to

M

Mpl,y
=

{
1 −

(
1 + βm

2

)3
}(

1 − N

Nb,y,Rd

)

+ 1.18

(
1 + βm

2

)3
√(

1 − N

Ncr, y

)
≤ 1. (7.23)

This interpolation uses a conservative cubic weighting to shift the resulting curves
downwards towards the linear curve for βm = −1, as shown in Figure 7.12a. This
is based on the corresponding shift shown in Figure 7.12b of the analytical results
[2, 3] for initially straight beam-columns with residual stresses.

7.2.4 Design rules

7.2.4.1 Cross-section resistance

EC3 requires beam-columns to satisfy both cross-section resistance and overall
member buckling resistance limitations. The cross-section resistance limitations
are intended to prevent cross-section failure due to plasticity or local buckling.

The general cross-section resistance limitation of EC3 is given by a modification
of the first yield condition of equation 7.14 to

NEd

Nc,Rd
+ MEd

Mc,Rd
≤ 1 (7.24)

in which NEd is the design axial force and MEd the design moment acting at the
cross-section under consideration, Nc,Rd is the cross-section axial resistance Afy
(obtained using the effective cross-sectional area Aeff for slender cross-sections in
compression), and Mc,Rd is the cross-section moment resistance (based on either
the plastic, elastic or effective section modulus, depending on classification).

This linear interaction equation is often conservative, and so EC3 allows the
use of the more economic alternative for Class 1 and 2 cross-sections of directly
calculating the reduced plastic moment resistance MN ,Rd in the presence of an
axial load NEd . The following criterion should be satisfied:

MEd ≤ MN ,Rd . (7.25)

For doubly symmetrical I- and H-sections there is no reduction to the major axis
plastic moment resistance (i.e. MN ,Rd = Mpl,Rd), provided both

NEd ≤ 0.25Npl,Rd (7.26a)

and

NEd ≤ 0.5hwtwfy
γM0

. (7.26b)
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For larger values of NEd , the reduced major axis plastic moment resistance is
given by

MN ,y,Rd = Mpl,y,Rd
(1 − n)

(1 − 0.5a)
≤ Mpl,y,Rd (7.27)

in which

n = NEd/Npl,Rd (7.28)

and

a = A − 2btf
A

≤ 0.5 (7.29)

where b and tf and the flange width and thickness respectively.
In minor axis bending, there is no reduction to the plastic moment resistance of

doubly symmetrical I- and H-sections provided

NEd ≤ hwtwfy
γM0

. (7.30)

For larger values of NEd , the reduced plastic minor axis moment resistance is given
by

MN , z,Rd = Mpl, z,Rd (7.31a)

for n ≤ a, and by

MN , z,Rd = Mpl, z,Rd

[
1 −

(
n − a

1 − a

)2
]

(7.31b)

for n > a. Similar formulae are also provided for box sections.

7.2.4.2 Member resistance

The general in-plane member resistance limitation of EC3 is given by a simplifi-
cation of equation 7.21 to

NEd

Nb,y,Rd
+ kyy

My,Ed

Mc,y,Rd
≤ 1 (7.32)

for major axis buckling, and

NEd

Nb, z,Rd
+ kzz

Mz,Ed

Mc,z,Rd
≤ 1 (7.33)
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for minor axis buckling, in which kyy and kzz are interaction factors whose values
may be obtained from Annex A or Annex B of EC3 and Mc,y,Rd and Mc,z,Rd are
the in-plane bending resistances about the major and minor axes respectively. The
former is based on enhancing the elastically determined resistance to allow for
partial plastification of the cross-section (i.e. following Section 7.2.3.3), whilst the
latter reduced the plastically determined resistance to allow for instability effects
(i.e. following Section 7.2.3.2). Lengthy formulae to calculate the interaction
factors are provided in both cases.

7.3 Flexural–torsional buckling of isolated
beam-columns

When an unrestrained beam-column is bent about its major axis, it may buckle
by deflecting laterally and twisting at a load which is significantly less than the
maximum load predicted by an in-plane analysis. This flexural–torsional buckling
may occur while the member is still elastic, or after some yielding due to in-plane
bending and compression has occurred, as indicated in Figure 7.13.

7.3.1 Elastic beam-columns

7.3.1.1 Beam-columns with equal end moments

Consider a perfectly straight elastic beam-column bent about its major axis (see
Figure 7.1b) by equal and opposite end moments M (so that βm = −1), and loaded
by an axial force N . The ends of the beam-column are assumed to be simply

Load Load

Out-of-plane deformation In-plane deflection

(a) Out-of-plane behaviour (b) In-plane behaviour

1

2

3

Elastic buckling1

Inelastic buckling2

3

Inelastic buckling

Elastic–plastic
bending

First yield

Elastic buckling

Figure 7.13 Flexural–torsional buckling of beam-columns.
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supported and free to warp but end twist rotations are prevented. It is also assumed
that the cross-section of the beam-column has two axes of symmetry so that the
shear centre and centroid coincide.

When the applied load and moments reach the elastic buckling values Ncr,MN ,
Mcr,MN , a deflected and twisted equilibrium position is possible. It is shown in
Section 7.6.1 that this position is given by

v = Mcr,MN

Ncr, z − Ncr,MN
φ = δ sin

πx

L
(7.34)

in which δ is the undetermined magnitude of the central deflection, and that the
elastic buckling combination Ncr,MN , Mcr,MN is given by

M 2
cr,MN

i2
pNcr, zNcr,T

=
(

1 − Ncr,MN

Ncr, z

)(
1 − Ncr,MN

Ncr,T

)
(7.35)

in which ip = √[(Iy + Iz)/A] is the polar radius of gyration, and

Ncr, z = π2EIz/L
2, (7.36)

Ncr,T = GIt

i2
p

(
1 + π2EIw

GItL2

)
(7.37)

are the minor axis and torsional buckling loads of an elastic axially loaded column
(see Sections 3.2.1 and 3.7.5). It can be seen that for the limiting case when
Mcr,MN = 0, the beam-column buckles as a compression member at the lower of
Ncr, z and Ncr,T , and when Ncr,MN = 0, it buckles as a beam at the elastic buckling
moment (see equation 6.3)

Mcr = Mzx =
√(

π2EIz

L2

)(
GIt + π2EIw

L2

)
= ip

√
Ncr, zNcr,T . (7.38)

Some more general solutions of equation 7.35 are shown in Figure 7.14.
The derivation of equation 7.35 given in Section 7.6.1 neglects the approx-

imate amplification by the axial load of the in-plane moments to Mcr,MN /

(1 − Ncr,MN /Ncr, y) (see Section 7.2.1). When this is accounted for, equation 7.35
for the elastic buckling combination of Ncr,MN and Mcr,MN changes to

M 2
cr,MN

i2
pNcr, zNcr,T

=
(

1 − Ncr,MN

Ncr, y

)(
1 − Ncr,MN

Ncr, z

)(
1 − Ncr,MN

Ncr,T

)
(7.39)

The maximum possible value of Ncr,MN is the lowest value of Ncr, y, Ncr, z, and
Ncr,T . For most sections this is much less than Ncr, y and so equation 7.39 is usually
very close to equation 7.35. For most hot-rolled sections, Ncr, z is less than Ncr,T ,
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Figure 7.14 Elastic buckling load combinations for beam-columns with equal end moments.

so that (1 − Ncr,MN /Ncr,T ) > (1 − Ncr,MN /Ncr, z)(1 − Ncr,MN /Ncr, y). In this case,
equation 7.39 can be safely approximated by the interaction equation

Ncr,MN

Ncr, z
+ 1

(1 − Ncr,MN /Ncr, y)

Mcr,MN

Mzx
= 1. (7.40)

7.3.1.2 Beam-columns with unequal end moments

The elastic flexural–torsional buckling of simply supported beam-columns with
unequal major axis end moments M and βmM has been investigated numerically,
and many solutions are available [7–11]. The conservative interaction equation(

M/
√

F

ME

)2

+
(

N

Ncr, z

)
= 1 (7.41)

has also been proposed [9], in which

M 2
E = π2EIzGIt/L

2. (7.42)

The factor 1/
√

F in equation 7.41 varies with the end moment ratio βm as shown in
Figure 7.15, and allows the unequal end moments to be treated as equivalent equal
end moments M/

√
F . Thus the elastic buckling of beam-columns with unequal

end moments can also be approximated by modifying equation 7.35 to

(Mcr,MN /
√

F)2

M 2
zx

=
(

1 − Ncr,MN

Ncr, z

)(
1 − Ncr,MN

Ncr,T

)
, (7.43)

or by a similar modification of equation 7.40.
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It is of interest to note that the variation of the factor 1/
√

F for the flexural–
torsional buckling of beam-columns is very close to that of the coefficient 1/αm

obtained from

αm = 1.75 + 1.05βm + 0.3β2
m ≤ 2.56 (7.44)

used for the flexural–torsional buckling of beams (see Section 6.2.1.2), and close
to that of the coefficient Cm (see equation 7.22) used for the in-plane behaviour of
beam-columns.

However, the results shown in Figure 7.16 of a more recent investigation [12]
of the elastic flexural–torsional buckling of beam-columns have indicated that the
factor for converting unequal end moments into equivalent equal end moments
should vary with N/Ncr, z as well as with βm. More accurate predictions have been
obtained using

(
Mcr,MN

αbcMzx

)2

=
(

1 − Ncr,MN

Ncr, z

)(
1 − Ncr,MN

Ncr,T

)
, (7.45)

with

1

αbc
=

(
1 − βm

2

)
+

(
1 + βm

2

)3 (
0.40 − 0.23

Ncr,MN

Ncr, z

)
. (7.46)
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Figure 7.16 Flexural–torsional buckling coefficients 1/αbc in equation 7.45.

7.3.1.3 Beam-columns with elastic end restraints

The elastic flexural–torsional buckling of symmetrically restrained beam-columns
with equal and opposite end moments (βm = −1) is analysed in Section 7.6.2.
The particular example considered is one for which the minor axis bending and
end warping restraints are equal. This corresponds to the situation in which both
ends of both flanges have equal elastic restraints whose stiffnesses are such that

Flange end moment

Flange end rotation
= −EIz

L

R

1 − R
(7.47)

in which the restraint parameter R varies from 0 (flange unrestrained) to 1 (flange
rigidly restrained).

It is shown in Section 7.6.2 that the elastic buckling values Mcr,MN and Ncr,MN

of the end moments and axial load for which the restrained beam-column buckles
elastically are given by

M 2
cr,MN

i2
pNcr, zNcr,T

=
(

1 − Ncr,MN

Ncr, z

)(
1 − Ncr,MN

Ncr,T

)
(7.48)

in which

Ncr, z = π2EIz/L
2
cr , (7.49)
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and

Ncr,T = GIt

i2
p

(
1 + π2EIw

GItL2
cr

)
, (7.50)

where Lcr is the effective length of the beam-column

Lcr = kcrL, (7.51)

and the effective length ratio kcr is the solution of

R

1 − R
= −π

2kcr
cot

π

2kcr
. (7.52)

Equation 7.48 is the same as equation 7.35 for simply supported beam-columns,
except for the familiar use of the effective length Lcr instead of the actual length
L in equations 7.49 and 7.50 defining Ncr, z and Ncr,T . Thus the solutions shown
in Figure 7.14 can also be applied to end-restrained beam-columns.

The close relationships between the flexural–torsional buckling condition of
equation 7.35 for unrestrained beam-columns with equal end moments (βm = −1)
and the buckling loads Ncr, z, Ncr,T of columns and moments Mzx of beams have
already been discussed. It should also be noted that equation 7.52 for the effective
lengths of beam-columns with equal end restraints is exactly the same as equation
3.43 for columns when (1 − R)/R is substituted for γ1 and γ2, and equation 6.52
for beams. These suggest that the flexural–torsional buckling condition for beam-
columns with unequal end restraints could well be approximated by equations
7.48–7.51 if Figure 3.21a is used to determine the effective length ratio kcr in
equation 7.51.

A further approximation may be suggested for restrained beam-columns with
unequal end moments (βm �= −1), in which modifications of equations 7.45 and
7.46 (after substituting i2

pNcr, zNcr,T for M 2
zx) are used (with equations 7.49–7.51)

instead of equation 7.48.

7.3.2 Inelastic beam-columns

The solutions obtained in Section 7.3.1 for the flexural–torsional buckling of
straight isolated beam-columns are only valid while they remain elastic. When
the combination of the residual stresses with those induced by the in-plane load-
ing causes yielding, the effective rigidities of some sections of the member are
reduced, and buckling may occur at a load which is significantly less than the
in-plane maximum load or the elastic buckling load, as indicated in Figure 7.13.

A method of analysing the inelastic buckling of I-section beam-columns with
residual stresses has been developed [13], and used [14] to obtain the predictions
shown in Figure 7.17 for the inelastic buckling loads of isolated beam-columns



 

Beam-columns 317

0 0.5 1.0
M/MIu

0

0.5

1.0

N
/N

Iz

0 1 2 0 1 2 3

 = –1

300

150

100 250

200

150

300

200

Accurate [13]

Approximate 
equations 
7.53 – 7.56

M

N

N

L/iz

L/iz

L/iz

 = 0  = +1

M/MIu M/MIu

�m

�m M

�m �m

Figure 7.17 Inelastic flexural–torsional buckling of beam-columns.

with unequal end moments. It was found that these could be closely approximated
by modifying the elastic equations 7.45 and 7.46 to

(
M

αbcI MIu

)2

=
(

1 − N

NIz

)(
1 − N

Ncr,T

)
, (7.53)

1

αbcI
=

(
1 − βm

2

)
+

(
1 + βm

2

)3 (
0.40 − 0.23

N

NIz

)
(7.54)

in which

MIu/Mpl = 1.008 − 0.245Mpl/Mzx ≤ 1.0 (7.55)

is an approximation for the inelastic buckling of a beam in uniform bending
(equation 7.55 is similar to equation 6.23 when βm = −1), and

NIz/Ny = 1.035 − 0.181
√

Ny/Ncr, z − 0.128Ny/Ncr, z ≤ 1.0 (7.56)

provides an approximation for the inelastic buckling of a column.

7.3.3 Ultimate resistance

The ultimate resistances of real beam-columns which fail by flexural–torsional
buckling are reduced below their elastic and inelastic buckling loads by the pres-
ence of geometrical imperfections such as initial crookedness, just as are those of
columns (Section 3.4) and beams (Section 6.4).
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One method of predicting these reduced resistances is to modify the approximate
interaction equation for in-plane bending (equation 7.21) to

N

Nb, z,Rd
+ Cmy

(1 − N/Ncr, y)

My

Mb0,y,Rd
≤ 1, (7.57)

where Nb, z,Rd is the minor axis strength of a concentrically loaded column
(My = 0), and Mb0,y,Rd the resistance of a beam (N = 0) with equal and oppo-
site end moments (βm = −1) which fails either by in-plane plasticity at Mpl,y,
or by flexural–torsional buckling. The basis for this modification is the remark-
able similarity between equation 7.57 and the simple linear approximation of
equation 7.40 for the elastic flexural–torsional buckling of beam-columns with
equal and opposite end moments (βm = −1). The application of equation 7.57 to
beam-columns with unequal end moments is simplified by the similarity shown in
Figure 7.15 between the values of Cm for in-plane bending and 1/

√
F and 1/αm

for flexural–torsional buckling.
However, the value of this simple modification is lost if the in-plane strength

of a beam-column is to be predicted more accurately than by equation 7.21. If,
for example, equation 7.23 is to be used for the in-plane strength as suggested in
Section 7.2.3.3, then it would be more appropriate to modify the flexural–torsional
buckling equations 7.45 and 7.53 to obtain out-of-plane strength predictions. It has
been suggested [15] that the modified equations should take the form

(
M

αbcuMb0,y,Rd

)2

=
(

1 − N

Nb, z,Rd

)(
1 − N

Ncr,T

)
(7.58)

in which

1

αbcu
=

(
1 − βm

2

)
+

(
1 + βm

2

)3 (
0.40 − 0.23

N

Nb, z,Rd

)
. (7.59)

7.3.4 Design rules

The design of beam-columns against out-of-plane buckling will generally be
governed by

NEd

Nb, z,Rd
+ kzy

My,Ed

Mb,Rd
≤ 1 (7.60)

in which kzy is an interaction factor that may be determined from Annex A or
Annex B of EC3. Equation 7.60 is similar to equation 7.32 for in-plane major
axis buckling resistance, except for the allowance for lateral torsional buckling in
the second term and the use of the minor axis column buckling resistance in the
first term.
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For members with the intermediate lateral restraints against minor axis buckling,
failure by major axis buckling with lateral torsional buckling between the restraints
becomes a possibility. This leads to requirement

NEd

Nb,y,Rd
+ kyy

My,Ed

Mb,Rd
≤ 1 (7.61)

which incorporates the major axis flexural buckling resistance Nb,y,Rd and the
lateral torsional buckling resistance Mb,Rd . For members with no lateral restraints
along the span, equation 7.60 will always govern over equation 7.61.

The design of members subjected to bending and tension is discussed in
Section 2.4.

A worked example of checking the out-of-plane resistance of a beam-column is
given in Section 7.7.4.

7.4 Biaxial bending of isolated beam-columns

7.4.1 Behaviour

The geometry and loading of most framed structures are three-dimensional, and
the typical member of such a structure is compressed, bent about both principal
axes and twisted by the other members connected to it, as shown in Figure 7.1c.
The structure is usually arranged so as to produce significant bending about the
major axis of the member, but the minor axis deflections and twists are often
significant as well, because the minor axis bending and torsional stiffnesses are
small. In addition, these deformations are amplified by the components of the
axial load and the major axis moment which are induced by the deformations of
the member.

The elastic biaxial bending of isolated beam-columns with equal and opposite
end moments acting about each principal axis has been analysed [16–22], but
the solutions obtained cannot be simplified without approximation. These anal-
yses have shown that the elastic biaxial bending of a beam-column is similar to
its in-plane behaviour (see curve 3 of Figure 7.2), in that the major and minor
axis deflections and the twist all begin at the commencement of loading, and
increase rapidly as the elastic buckling load (which is the load which causes elas-
tic flexural–torsional buckling when there are no minor axis moments and torques
acting) is approached. First yield predictions based on these analyses have given
conservative estimates of the member resistances. The elastic biaxial bending of
beam-columns with unequal end moments has also been investigated. In one of
these investigations [16], approximate solutions were obtained by changing both
sets of unequal end moments into equivalent equal end moments by multiply-
ing them by the conversion factor 1/

√
F (see Figure 7.15) for flexural–torsional

buckling.
Although the first yield predictions for the resistances of slender beam-columns

are of reasonable accuracy, they are rather conservative for stocky members in
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which considerable yielding occurs before failure. Sophisticated numerical analy-
ses have been made [18, 20–24] of the biaxial bending of inelastic beam-columns,
and good agreement with test results has been obtained. However, such an analysis
requires a specialised computer program, and is only useful as a research tool.

A number of attempts have been made to develop approximate methods of
predicting the resistances of inelastic beam-columns. One of the simplest of these
uses a linear extension

N

Nb,Rd
+ Cmy

(1 − N/Ncr, y)

My

Mb0,y,Rd
+ Cmz

(1 − N/Ncr, z)

Mz

Mc0,z,Rd
≤ 1 (7.62)

of the linear interaction equations for in-plane bending and flexural–torsional buck-
ling. In this extension, Mb0,y,Rd is the ultimate moment which the beam-column
can support when N = Mz = 0 for the case of equal end moments (βm = −1), while
Mc0,z,Rd is similarly defined. Thus equation 7.62 reduces to an equation similar
to equation 7.21 for in-plane behaviour when My = 0, and to equation 7.57 for
flexural–torsional buckling when Mz = 0. Equation 7.62 is used in conjunction
with

My

Mpl,r,y
+ Mz

Mpl,r,z
≤ 1, (7.63)

where Mpl,r,y is given by equation 7.17 and Mpl,r,z by equation 7.18. Equation 7.63
represents a linear approximation to the biaxial bending full plasticity limit for the
cross-section of the beam-column, and reduces to equation 7.18 or 7.17 which
provides the uniaxial bending full plasticity limit when My = 0 or Mz = 0.

A number of criticisms may be made of these extensions of the interaction
equations. First there is no allowance in equation 7.62 for the amplification of the
minor axis moment Mz by the major axis moment My (the term (1−N/Ncr, z) only
allows for the amplification caused by axial load N ). A simple method of allowing
for this would be to replace the term (1−N/Ncr, z) by either (1−N/Ncr,MN ) or by
(1 − My/Mcr,MN ) where the flexural–torsional buckling load Ncr,MN and moment
Mcr,MN are given by equation 7.45.

Second, studies [22–26] have shown that the linear additions of the moment
terms in equations 7.62 and 7.63 generally lead to predictions which are too con-
servative, as indicated in Figure 7.18. It has been proposed that for column type
hot-rolled I-sections, the section full plasticity limit of equation 7.63 should be
replaced by(

My

Mpl,r,y

)α0

+
(

Mz

Mpl,r,z

)α0

≤ 1, (7.64)

where Mpl,r,y and Mpl,r,z are given in equations 7.17 and 7.18 as before, and the
index α0 by

α0 = 1.60 − N/Ny

2 ln(N/Ny)
. (7.65)
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Figure 7.18 Interaction curves for biaxial bending.

At the same time, the linear member interaction equation (equation 7.62) should
be replaced by(

My

Mb,r,y,Rd

)αL

+
(

Mz

Mc,r,z,Rd

)αL

≤ 1, (7.66)

where Mb,r,y,Rd , the maximum value of My when N acts but Mz = 0, is obtained
from equation 7.57, Mc,r,z,Rd is similarly obtained from an equation similar to
equation 7.21, and the index αL is given by

αL = 1.40 + N

Ny
. (7.67)

The approximations of equations 7.64–7.67 have been shown to be of reasonable
accuracy when compared with test results [27]. This conclusion is reinforced
by the comparison of some analytical solutions with the approximations of
equations 7.64–7.67 (but with α0 = 1.70 instead of 1.725 approximately for
N/Ny = 0.3) shown in Figure 7.18. Unfortunately, these approximations are of
limited application, although it seems to be possible that their use may be extended.

7.4.2 Design rules

7.4.2.1 Cross-section resistance

The general biaxial bending cross-section resistance limitation of EC3 is given by

NEd

Nc,Rd
+ My,Ed

Mc,y,Rd
+ Mz,Ed

Mc,z,Rd
≤ 1 (7.68)
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which is a simple linear extension of the uniaxial cross-section resistance limitation
of equation 7.24. For Class 1 plastic and Class 2 compact sections, a more economic
alternative is provided by a modification of equation 7.63 to

(
My,Ed

MN ,y,Rd

)α
+

(
Mz,Ed

MN , z,Rd

)β
≤ 1 (7.69)

in which α = 2.0 and β = 5n ≥ 1 for equal flanged I-sections, α = β = 2.0 for
circular hollow sections, and α = β = 1.66/(1 − 1.13n2) ≤ 6) for rectangular
hollow sections, where n = NEd/Npl,Rd . Conservatively, α and β may be taken
as unity.

7.4.2.2 Member resistance

The general biaxial bending member resistance limitations are given by extensions
of equations 7.61 and 7.60 for uniaxial bending to

NEd

Nb,y,Rd
+ kyy

My,Ed

Mb,Rd
+ kyz

Mz,Ed

Mz,Rd
≤ 1 (7.70)

and

NEd

Nb, z,Rd
+ kzy

My,Ed

Mb,Rd
+ kzz

Mz,Ed

Mz,Rd
≤ 1, (7.71)

both of which must be satisfied.
Alternative expressions for the interaction factors kyy, kyz, kzy, and kzz are pro-

vided inAnnexesAand B of EC3. TheAnnex B formulations for the determination
of the interaction factors kij are less complex than those set out in Annex A, result-
ing in quicker and simpler calculations, though generally at the expense of some
structural efficiency [28]. Annex B may therefore be regarded as the simplified
approach whereas Annex A represents a more exact approach. The background to
the development of the Annex A interaction factors has been described in [29], and
that of the Annex B interaction factors in [30].

For columns in simple construction, the bending moments arising as a result
of the eccentric loading from the beams are relatively small, and much simpler
interaction expressions can be developed with no significant loss of structural
efficiency. Thus, it has been shown [31] that for simple construction with hot-rolled
I- and H-sections and with no intermediate lateral restraints along the member
length, equations 7.70 and 7.71 may be replaced by the single equation

NEd

Nb, z,Rd
+ My,Ed

Mb,Rd
+ 1.5

Mz,Ed

Mc,z,Rd
≤ 1 (7.72)
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provided the ratio of end moments is less than zero (i.e. a triangular, or less severe,
bending moment diagram).

Aworked example for checking the biaxial bending of a beam-column is given in
Section 7.7.5. Further worked examples of the application of the EC3 beam-column
formulae are given in [30] and [32].

7.5 Appendix – in-plane behaviour of elastic
beam-columns

7.5.1 Straight beam-columns

The bending moment in the beam-column shown in Figure 7.3 is the sum of the
moment [M − M (1 + βm)x/L] due to the end moments and reactions and the
moment Nw due to the deflection w. Thus the differential equation of bending is
obtained by equating this bending moment to the internal moment of resistance
−EIyd2w/dx2, whence

−EIy
d2w

dx2
= M − M (1 + βm)

x

L
+ Nw. (7.73)

The solution of this equation which satisfies the support conditions (w)0 =
(w)L = 0 is

w = M

N

[
cosµx − (βmcosecµL + cotµL) sinµx − 1 + (1 +βm)

x

L

]
, (7.1)

where

µ2 = N

EIy
= π2

L2

N

Ncr, y
. (7.2)

The bending moment distribution can be obtained by substituting equation 7.1 into
equation 7.73. The maximum bending moment can be determined by solving the
condition

d(−EIyd2w/dx2)

dx
= 0

for the position xmax of the maximum moment, whence

tanµxmax = −βmcosecµL − cotµL. (7.74)

The value of xmax is positive while

βm < −cosπ

√
N

Ncr, y
,



 

324 Beam-columns

and the maximum moment obtained by substituting equation 7.74 into equation
7.73 is

Mmax = M


1 +

{
βmcosecπ

√
N

Ncr, y
+ cot π

√
N

Ncr, y

}2



0.5

. (7.3)

When βm > − cosπ
√
(N/Ncr, y), xmax is negative, in which case the maximum

moment in the beam-column is the end moment M at x = 0, whence

Mmax = M , (7.4)

For beam-columns which are bent in single curvature by equal and opposite
end moments (βm = −1), equation 7.1 for the deflected shape simplifies, and the
central deflection δmax can be expressed non-dimensionally as

δmax

δ
= 8/π2

N/Ncr, y

[
sec

π

2

√
N

Ncr, y
− 1

]
(7.5)

in which δ = ML2/8EIy is the value of δmax when N = 0. The maximum moment
occurs at the centre of the beam-column, and is given by

Mmax = M sec
π

2

√
N

Ncr, y
. (7.6)

Equations 7.5 and 7.6 are plotted in Figure 7.4.

7.5.2 Beam-columns with initial curvature

If the beam-column shown in Figure 7.3 is not straight, but has an initial
crookedness given by

w0 = δ0sinπx/L,

then the differential equation of bending becomes

−EIy
d2w

dx2
= M − M (1 + βm)

x

L
+ N (w + w0). (7.75)

The solution of this equation which satisfies the support conditions of (w)0 =
(w)L = 0 is

w = (M/N )[cos µx − (βmcosecµL + cotµL) sinµx − 1

+ (1 + βm)x/L] + [(µL/π)2/{1 − (µL/π)2}]δ0sinπx/L, (7.76)
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where

(µL/π)2 = N/Ncr, y. (7.77)

The bending moment distribution can be obtained by substituting equation 7.76
into equation 7.75. The position of the maximum moment can then be determined
by solving the condition d(−EIyd2w/dx2)dx = 0, whence

Nδ0

M
= µL

π

(
1 − µ2L2

π2

) {(βmcosecµL + cotµL) cosµxmax + sinµxmax}
cosπxmax/L

.

(7.78)

The value of the maximum moment Mmax can be obtained from equations 7.75
and 7.76 (with x = xmax) and from equation 7.78, and is given by

Mmax

M
= cosµxmax − (βmcosecµL + cotµL) sinµxmax

+ (Nδ0/M )

(1 − µ2L2/π2)
sin

πxmax

L
. (7.79)

First yield occurs when the maximum stress is equal to the yield stress fy, in
which case

N

Ny
+ Mmax

My
= 1,

or

N

Ny

{
1 + Mmax

M

Nyδ0

My

M

Nδ0

}
= 1. (7.80)

In the special case of M = 0, the first yield solution is the same as that given in
Section 3.2.2 for a crooked column. Equation 7.78 is replaced by xmax = L/2, and
equation 7.79 by

Mmax = Nδ0

(1 − µ2L2/π2)
.

The value NL of N which then satisfies equation 7.80 is given by the solution of

NL

Ny
+ NLδ0/My

{1 − (NL/Ny)/(Ncr, y/Ny)} = 0. (7.81)

The value of M/My at first yield can be determined for any specified set of
values of Ncr, y/Ny, βm, δ0Ny/My, and N/Ny. An initial guess for xmax/L allows
Nδ0/M to be determined from equation 7.78, and Mmax/M from equation 7.79,
and these can then be used to evaluate the left-hand side of equation 7.80. This
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process can be repeated until the values are found which satisfy equation 7.80.
Solutions obtained in this way are plotted in Figure 7.7b.

7.6 Appendix – flexural–torsional buckling of
elastic beam-columns

7.6.1 Simply supported beam-columns

The elastic beam-column shown in Figure 7.1b is simply supported and prevented
from twisting at its ends so that

(v)0,L = (φ)0,L = 0, (7.82)

and is free to warp (see Section 10.8.3) so that(
d2φ

dx2

)
0,L

= 0. (7.83)

The combination at elastic buckling of the axial load Ncr,MN and equal and
opposite end moments Mcr,MN (i.e. βm = −1) can be determined by finding
a deflected and twisted position which is one of equilibrium. The differential
equilibrium equations for such a position are

EIz
d2v

dx2
+ Ncr,MN v = −Mcr,MNφ (7.84)

for minor axis bending, and

(
GJ − Ncr,MN i2

p

)dφ

dx
− EIw

d3φ

dx3
= Mcr,MN

dv

dx
(7.85)

for torsion, where i2
p = √[(Iy+Iz)/A] is the polar radius of gyration. Equation 7.84

reduces to equation 3.59 for compression member buckling when Mcr,MN = 0,
and to equation 6.82 for beam buckling when Ncr,MN = 0. Equation 7.85 can
be used to derive equation 3.73 for torsional buckling of a compression mem-
ber when Mcr,MN = 0, and reduces to equation 6.82 for beam buckling when
Ncr,MN = 0.

The buckled shape of the beam-column is given by

v = Mcr,MN

Ncr, z − Ncr,MN
φ = δ sin

πx

L
, (7.34)

where Ncr, z = π2EIz/L2 is the minor axis elastic buckling load of an axially
loaded column, and δ the undetermined magnitude of the central deflection. The
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boundary conditions of equations 7.82 and 7.83 are satisfied by this buckled shape,
as is equation 7.84, while equation 7.85 is satisfied when

M 2
cr,MN

i2
pNcr, zNcr,T

=
(

1 − Ncr,MN

Ncr, z

)(
1 − Ncr,MN

Ncr,T

)
(7.35)

where

Ncr,T = GIt

i2
p

(
1 + π2EIw

GItL2

)
(7.37)

is the elastic torsional buckling load of an axially loaded column (see Section 3.7.5).
Equation 7.35 defines the combinations of axial load Ncr,MN and end moments
Mcr,MN which cause the beam-column to buckle elastically.

7.6.2 Elastically restrained beam-columns

If the elastic beam-column shown in Figure 7.1b is not simply supported but is elas-
tically restrained at its ends against minor axis rotations dv/dx and against warping
rotations (df /2)dφ/dx (where df is the distance between flange centroids), then
the boundary conditions at the end x = L/2 of the beam-column can be expressed
in the form

MB + MT

(dv/dx)L/2
= −EIz

L

2R2

1 − R2

MT − MB

(df /2)(dφ/dx)L/2
= −EIz

L

2R4

1 − R4




, (7.86)

where MT and MB are the flange minor axis end restraining moments

MT = 1/2EIz
(
d2v/dx2)

L/2 + (
df /4

)
EIz

(
d2φ/dx2)

L/2 ,

MB = 1/2EIz
(
d2v/dx2)

L/2 − (
df /4

)
EIz

(
d2φ/dx2)

L/2 ,

and R2 and R4 are dimensionless minor axis bending and warping end restraint
parameters, which vary between zero (no restraint) and one (rigid restraint).
If the beam-column is symmetrically restrained, similar conditions apply at the
end x = −L/2. The other support conditions are

(v)±L/2 = (φ)±L/2 = 0 (7.87)
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The particular case for which the minor axis and warping end restraints are
equal, so that

R2 = R4 = R (7.88)

can be analysed. When the restrained beam-column has equal and opposite end
moments (βm = −1), the differential equilibrium equations for a buckled position
v, φ are

EIz
d2v

dx2
+ Ncr,MN v = −Mcr,MNφ + (MB + MT )(

GIt − Ncr,MN i2
p

)dφ

dx
− EIw

d3φ

dx3
= Mcr,MN

dv

dx


 . (7.89)

These differential equations and the boundary conditions of equations 7.86–7.88
are satisfied by the buckled shape

v = Mcr,MNφ

Ncr, z − Ncr,MN
= A

(
cos

πx

kcrL
− cos

π

2kcr

)
,

where

Ncr, z = π2EIz/L
2
cr , (7.49)

Lcr = kcrL, (7.51)

when the effective length ratio kcr satisfies

R

1 − R
= −π

2kcr
cot

π

2kcr
. (7.52)

This is the same as equation 6.52 for the buckling of restrained beams, whose
solutions are shown in Figure 6.18c. The values Mcr,MN and Ncr,MN for flexural–
torsional buckling of the restrained beam-column are obtained by substituting the
buckled shape v, φ into equations 7.89, and are related by

M 2
cr,MN

i2
pNcr, zNcr,T

=
(

1 − Ncr,MN

Ncr, z

)(
1 − Ncr,MN

Ncr,T

)
(7.48)

where

Ncr,T = GIt

i2
p

(
1 + π2EIw

GItL2
cr

)
. (7.51)
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7.7 Worked examples

7.7.1 Example 1 – approximating the maximum elastic
moment

Problem. Use the approximations of Figures 7.5 and 7.6 to determine the maxi-
mum moments Mmax,y, Mmax, z for the 254 × 146 UB 37 beam-columns shown in
Figure 7.19d and c.

Solution for Mmax,y for the beam-column of Figure 7.19d.

Using Figure 7.5, kcr = 1.0, γm = 1.0, γn = 1.0, γs = 0.18
My = 20 × 9/4 = 45 kNm.

Ncr, y = π2 × 210 000 × 5537 × 104/(1.0 × 9000)2 N = 1417 kN.

Using equation 7.10, δy = 1.0 × (1 − 0.18 × 200/1417)

(1 − 1.0 × 200/1417)
= 1.135.

Using equation 7.9, Mmax, y = 1.135 × 45 = 51.1 kNm.

Solution for Mmax,z for the beam-column of Figure 7.19c.

Using Figure 7.6, kcr = 1.0, γm = 1.0, γn = 0.49, γs = 0.18

Mz = 3.2 × 4.52/8 = 8.1 kNm.

Ncr, z = π2 × 210 000 × 571 × 104/(1.0 × 4500)2 N = 584.4 kN.

Using equation 7.10, δz = 1.0 × (1 − 0.18 × 200/584.4)

(1 − 0.49 × 200/584.4)
= 1.127.

Using equation 7.9, Mmax, z = 1.127 × 8.1 = 9.1 kNm.
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Figure 7.19 Examples 1–5.
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7.7.2 Example 2 – checking the major axis in-plane
resistance

Problem. The 9 m long simply supported beam-column shown in Figure 7.19b
has a factored design axial compression force of 200 kN and a design concen-
trated load of 20 kN (which includes an allowance for self-weight) acting in the
major principal plane at mid-span. The beam-column is the 254 × 146 UB 37
of S275 steel shown in Figure 7.19a. The beam-column is continuously braced
against lateral deflections v and twist rotations φ. Check the adequacy of the
beam-column.

Simplified approach for cross-section resistance.

tf = 10.9 mm, fy = 275 N/mm2 EN 10025-2

ε = (235/275)0.5 = 0.924 T5.2

cf /(tf ε) = ((146.4 − 6.3 − 2 × 7.6)/2)/(10.9 × 0.924) = 6.20 < 9 T5.2

and the flange is Class 1.

cw = 256.0 − (2 × 10.9)− (2 × 7.6) = 219.0 mm.

The compression proportion of web is

α =
(

h

2
− (tf + r)+ 1

2

NEd

twfy

)/
cw

=
(

256

2
− (10.9 + 7.6)+ 1

2
× 200 × 103

6.3 × 275

)/
219.0

= 0.76 > 0.5 T5.2

cw/tw = 219.0/6.3 = 34.8 < 41.3 = 396ε

13α − 1
T5.2

and the web is Class 1.

Mc,y,Rd = 275 × 483 × 103/1.0 Nmm = 132.8 kNm. 6.2.5(2)

My,Ed = 20 × 9/4 = 45.0 kNm.

200 × 103

47.2 × 102 × 275/1.0
+ 45.0

132.8
= 0.493 ≤ 1 6.2.1(7)

and the cross-section resistance is adequate.
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Alternative approach for cross-section resistance.

Because the section is Class 1, Clause 6.2.9.1 can be used.
No reduction in plastic moment resistance is required provided both

NEd = 200 kN < 324.5 kN = (0.25 × 47.2 × 102 × 275/1.0)/103

= 0.25Npl,Rd and 6.2.9.1(4)

NEd = 200 kN < 202.9 kN = 0.5 × (256.0 − 2 × 10.9)× 6.3 × 275

1.0 × 103

= 0.5 hwtwfy
γM0

6.2.9.1(4)

and so no reduction in the plastic moment resistance is required.
Thus MN ,y,Rd = Mpl,y,Rd = 132.8 kNm > 45.0 kNm = My,Ed

and the cross-section resistance is adequate.

Compression member buckling resistance.

Because the member is continuously braced, beam lateral buckling and column
minor axis buckling need not be considered.

λy =
√

Afy
Ncr, y

= Lcr, y

iy

1

λ1
= 9000

(10.8 × 10)

1

93.9 × 0.924
= 0.960 6.3.1.3(1)

For a rolled UB section (with h/b > 1.2 and tf ≤ 40 mm), buckling about the
y-axis, use buckling curve (a) with α = 0.21 T6.2, T6.1

Φy = 0.5[1 + 0.21(0.960 − 0.2)+ 0.9602] = 1.041 6.3.1.2(1)

χy = 1/(1.041 +
√

1.0412 − 0.9602) = 0.693 6.3.1.2(1)

Nb,y,Rd = χyAfy/γM1 = 0.693 × 47.2 × 102 × 275/1.0 N

= 900 kN > 200 kN = NEd 6.3.1.1(3)

Beam-column member resistance – simplified approach (Annex B).

αh = Mh/Ms = 0, ψ = 0, Cmy = 0.90 + 0.1αh = 0.90 TB.3

Cmy

(
1 + (λy − 0.2)

NEd

χyNRk/γM1

)
= 0.90

×
(

1 + (0.960 − 0.2)× 200 × 103

0.693 × 47.2 × 102 × 275/1.0

)
= 1.052
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< Cmy

(
1 + 0.8

NEd

χyNRk/γM1

)
= 0.90

×
(

1 + 0.8 × 200 × 103

0.693 × 47.2 × 102 × 275/1.0

)
= 1.060 TB.1

so that kyy = 1.052

NEd

Nb,y,Rd
+ kyy

My,Ed

Mc,y,Rd
= 200

900
+ 1.052 × 45.0

132.8

= 0.222 + 0.356 = 0.579 < 1 6.3.3(4)

and the member resistance is adequate.

Beam-column member resistance – more exact approach (Annex A).

λmax = λy = 0.960 TA.1

Ncr, y = π2EIy/L
2
cr = π2 × 21 0000 × 5537 × 104/90002 = 1417 kN.

Since there is no lateral buckling, λ0 = 0, bLT = 0, CmLT = 1.0 TA.1

Cmy = Cmy,0 = 1 − 0.18NEd/Ncr, y = 1 − 0.18 × 200/1417 = 0.975 TA.2

wy = Wpl,y

Wel,y
= 483

433
= 1.115,

npl = NEd

NRk/γM1
= 200 × 103

47.2 × 102 × 275/1.0
= 0.154 TA.1

Cyy = 1 + (wy − 1)

[(
2 − 1.6

wy
C2

myλmax − 1.6

wy
C2

myλ
2
max

)
npl − bLT

]

≥ Wel,y

Wpl,y

= 1 + (1.115 − 1)

[(
2 − 1.6

1.115
× 0.9752 × 0.960 − 1.6

1.115

×0.9752 × 0.9602) × 0.154 − 0
]

= 0.990 > 0.896 = 1/1.115 TA.1
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µy = 1 − NEd/Ncr, y

1 − χyNEd/Ncr, y
= 1 − 200/1417

1 − 0.693 × 200/1417
= 0.952 TA.1

kyy = CmyCmLT
µy

(1 − NEd/Ncr, y)

1

Cyy

= 0.975 × 1.0 × 0.952

1 − 200/1417
× 1

0.990
= 1.091 TA.1

NEd

Nb,y,Rd
+ kyy

My,Ed

Mc,y,Rd
= 200

900
+ 1.091 × 45.0

132.8

= 0.222 + 0.370 = 0.592 < 1 6.3.3(4)

and the member resistance is adequate.

7.7.3 Example 3 – checking the minor axis in-plane
resistance

Problem. The 9 m long two span beam-column shown in Figure 7.19c has a fac-
tored design axial compression force of 200 kN and a factored design uniformly
distributed load of 3.2 kN/m acting in the minor principal plane. The beam-column
is the 254 × 146 UB 37 of S275 steel shown in Figure 7.19a. Check the adequacy
of the beam-column.

Simplified approach for cross-section resistance.

Mz,Ed = 3.2 × 4.52/8 = 8.1 kNm.

The flange is Class 1 under uniform compression, and so remains Class 1 under
combined loading.

cw/(twε)= (256.0 − 2 × 10.9 − 2 × 7.6)/(6.3 × 0.924)= 37.6< 38 T5.2

and the web is Class 2. Thus the overall cross-section is Class 2.

Mc,z,Rd = 275 × 119 × 103/1.0 Nmm = 32.7 kNm. 6.2.5(2)

200 × 103

47.2 × 102 × 275/1.0
+ 8.1

32.7
= 0.402 < 1 6.2.1(7)

and the cross-section resistance is adequate.
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Alternative approach for cross-section resistance.

Because the section is Class 2, Clause 6.2.9.1 can be used.

NEd = 200 kN < 406 kN = (256 − 2 × 10.9)× 6.3 × 275

1.0 × 103
= hwtwfy

γM0
.

6.2.9.1(4)

and so no reduction in plastic moment resistance is required.

Thus MN , z,Rd = Mpl, z,Rd = 32.7 kNm > 8.1 kNm = Mz,Ed 6.2.5(2)

and the cross-section resistance is adequate.

Compression member buckling resistance.

λz =
√

Afy
Ncr, z

= Lcr, z

iz

1

λ1
= 4500

(3.48 × 10)

1

93.9 × 0.924
= 1.490 6.3.1.3(1)

For a rolled UB section (with h/b > 1.2 and tf ≤ 40 mm), buckling about the
z-axis, use buckling curve (b) with α = 0.34 T6.2, T6.1

Φz = 0.5[1 + 0.34 (1.490 − 0.2)+ 1.4902] = 1.829 6.3.1.2(1)

χz = 1/(1.829 +
√

1.8292 − 1.4902) = 0.346 6.3.1.2(1)

Nb, z,Rd = χzAfy/γM1 = 0.346 × 47.2 × 102 × 275/1.0 N

= 449 kN > 200 kN = NEd 6.3.1.1(3)

Beam-column member resistance – simplified approach (Annex B).

Because the member is bent about the minor axis, beam lateral buckling need not
be considered, and eLT = 0.

Mh = −8.1 kNm, Ms = 9 × 3.2 × 4.52/128 = 4.56 kNm, ψ = 0 TB.3

αs = Ms/Mh = 4.56/(−8.1) = −0.563, TB.3

Cmz = 0.1 − 0.8αs = 0.1 − 0.8 × (−0.563) = 0.550 > 0.40 TB.3

Cmz

(
1 + (2λz − 0.6)

NEd

χzNRk/γM1

)
= 0.550 ×

(
1 + (2 × 1.490 − 0.6)

× 200 × 103

0.346 × 47.2 × 102 × 275/1.0

)
= 1.133
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> Cmz

(
1 + 1.4

NEd

χzNRk/γM1

)

= 0.550 ×
(

1 + 1.4 × 200 × 103

0.346 × 47.2 × 102 × 275/1.0

)
= 0.893 TB.1

kzz = 0.893 TB.1

NEd

Nb, z,Rd
+ kzz

Mz,Ed

Mc,y,Rd
= 200

449
+ 0.893

8.1

32.7
= 0.445 + 0.221 = 0.666 ≤ 1

6.3.3(4)

and the member resistance is adequate.

Beam-column member resistance – more exact approach (Annex A).

From Section 7.7.2, λy = 0.960

λmax = λz = 1.490 > 0.960 = λy TA.1

Ncr, z = π2EIz/L
2
cr, z = π2 × 210 000 × 571 × 104/45002 N = 584.4 kN.

|δx| = qL4

185EIz
= 3.2 × 45004

185 × 210 000 × 571 × 104
= 5.92 mm,

∣∣Mz,Ed(x)
∣∣ = 8.1 kNm

Cmz = Cmz,0 = 1 +
(

π2EIz |δx|
L2

∣∣Mz,Ed(x)
∣∣ − 1

)
NEd

Ncr, z

= 1 +
(
π2 × 210 000 × 571 × 104 × 5.9

45002 × 8.1 × 106
− 1

)
200

584.4
= 0.804 TA.2

wz = Wpl, z

Wel,z
= 119

78
= 1.526 > 1.5,

npl = NEd

NRk/γM1
= 200 × 103

47.2 × 102 × 275/1.0
= 0.154 TA.1

Czz = 1 + (wz − 1)

[(
2 − 1.6

wz
C2

mzλmax − 1.6

wz
C2

mzλ
2
max

)
npl − eLT

]
≥ Wel,z

Wpl, z

= 1 + (1.5 − 1)

[(
2 − 1.6

1.5
× 0.8042 × 1.490 − 1.6

1.5
× 0.8042 × 1.4902

)

× 0.154 − 0

]
= 0.958 > 0.667 = 1/1.5 TA.1
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µz = 1 − NEd/Ncr, z

1 − χzNEd/Ncr, z
= 1 − 200/584.4

1 − 0.346 × 200/584.4
= 0.746 TA.1

kzz = Cmz
µz

(1 − NEd/Ncr, z)

1

Czz
= 0.804 × 0.746

1 − 200/584
× 1

0.958
= 0.952

TA.1

NEd

Nb, z,Rd
+ kzz

My,Ed

Mc,y,Rd
= 200

449
+ 0.952 × 8.1

32.7
= 0.445 + 0.236 = 0.681 < 1

6.3.3(4)

and the member resistance is adequate.

7.7.4 Example 4 – checking the out-of-plane resistance

Problem. The 9 m long simply supported beam-column shown in Figure 7.19d
has a factored design axial compression force of 200 kN and a factored design
concentrated load of 20 kN (which includes an allowance for self-weight) acting
in the major principal plane at mid-span. Lateral deflections v and twist rotations
φ are prevented at the ends and at mid-span. The beam-column is the 254 ×
146 UB 37 of S275 steel shown in Figure 7.19a. Check the adequacy of the
beam-column.

Design bending moment.

My,Ed = 45.0 kNm as in Section 7.7.2.

Simplified approach for cross-section resistance.

The cross-section resistance was checked in Section 7.7.2.

Beam-column member buckling resistance – simplified approach (Annex B).

While the member major axis in-plane resistance without lateral buckling was
checked in Section 7.7.2, the lateral buckling resistance between supports should
be used in place of the in-plane bending resistance to check against equation 6.61
of EC3.

From Section 6.15.2, Mb,Rd = 121.4 kNm.
From Section 7.7.2, Nb,y,Rd = 900 kN, kyy = 1.052, and My,Ed = 45.0 kNm.

NEd

Nb,y,Rd
+ kyy

My,Ed

Mb,Rd
= 200

900
+ 1.052 × 45.0

121.4
= 0.222 + 0.390

= 0.612 ≤ 1 6.3.3(4)

and the member in-plane resistance is adequate.
For the member out-of-plane resistance (equation 6.62 of EC3),



 

Beam-columns 337

From Section 7.7.3, Nb, z,Rd = 449 kN, χz = 0.346, λz = 1.490, λmax = 1.490,
Ncr, z = 584.4 kN, and wz = 1.5.

ψ = 0, CmLT = 0.6 + 0.4ψ = 0.6 > 0.4 TB.3(
1 − 0.1λz

(CmLT − 0.25)

NEd

χzNRk/γM1

)

=
(

1 − 0.1 × 1.490

(0.6 − 0.25)
× 200 × 103

0.346 × 47.2 × 102 × 275/1.0

)
= 0.810

(
1 − 0.1

(CmLT − 0.25)

NEd

χzNRk/γM1

)

=
(

1 − 0.1

(0.6 − 0.25)
× 200 × 103

0.346 × 47.2 × 102 × 275/1.0

)
= 0.873 TB.1

kzy = 0.873 TB.1

NEd

Nb, z,Rd
+ kzy

My,Ed

Mb,Rd
= 200

449
+ 0.873 × 45.0

121.4
= 0.445 + 0.324 = 0.769 < 1

6.3.3(4)

and the member out-of-plane resistance is adequate.

Beam-column member buckling resistance – more exact approach (Annex A).

The member in-plane resistance was checked in Section 7.7.2, but as for the sim-
plified approach, equation 6.61 should be checked by taking the lateral buckling
resistance in place of the in-plane major axis bending resistance. The interaction
factor kyy also requires re-calculating due to the possibility of lateral buckling.

λy = 0.960, λmax = λz = 1.490 TA.1

Using Mzx = 111.2 kNm from Section 6.15.2,

λ0 = √
132.8/111.2 = 1.093 TA.1

Since cross-section is doubly-symmetrical, using equation 7.37 with

ip =
√
(Iy + Iz)/A =

√
(5537 × 104 + 571 × 104)/47.2 × 102

= 113.8 mm,

Ncr,T = 1

i2
p

(
G It + π2EIw

L2
cr,T

)

= 1

113.82

(
81000 × 15.3 × 104 + π2 × 210 000 × 0.0857 × 1012

45002

)

= 1636 kN.
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Using αm of equation 6.5 for C1 with βm = 0 leads to C1 = 1.75

0.2
√

C1
4

√(
1 − NEd

Ncr, z

)(
1 − NEd

Ncr,T

)

= 0.2 × √
1.75 × 4

√(
1 − 200

584.4

)(
1 − 200

1636

)

= 0.231 < 1.093 = λ0 TA.1

aLT = 1 − It/Iy = 1 − 15.4/5537 = 0.997 > 0 TA.1

εy = My,Ed

NEd

A

Wel,y
= 45 × 106

200 × 103
× 47.2 × 102

433 × 103
= 2.453 TA.1

Using Ncr, y = 1417 kN from Section 7.7.2,

Cmy,0 = 1 − 0.18NEd/Ncr, y = 1 − 0.18 × 200/1417 = 0.975 TA.2

Cmy = Cmy,0 + (1 − Cmy,0)

√
εyaLT

1 + √
εyaLT

= 0.975 + (1 − 0.975)×
√

2.453 × 0.997

1 + √
2.453 × 0.997

= 0.990 TA.1

CmLT = C2
my

aLT√(
1 − NEd

Ncr, z

)(
1 − NEd

Ncr,T

)

= 0.9902 × 0.997√(
1 − 200

584.4

)(
1 − 200

1636

) = 1.287 > 1 TA.1

wy = Wpl,y

Wel,y
= 483

433
= 1.115,

npl = NEd

NRk/γM1
= 200 × 103

47.2 × 102 × 275/1.0
= 0.154 TA.1

Cyy = 1 + (wy − 1)

[(
2 − 1.6

wy
C2

myλmax − 1.6

wy
C2

myλ
2
max

)
npl − bLT

]

≥ Wel,y

Wpl,y
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= 1 + (1.115 − 1)

[(
2 − 1.6

1.115
× 0.9902 × 1.490 − 1.6

1.115

× 0.9902 × 1.4902
)

× 0.154 − 0

]

= 0.942 > 0.896 TA.1

Using χy = 0.693 from Section 7.7.2,

µy = 1 − NEd/Ncr, y

1 − χyNEd/Ncr, y
= 1 − 200/1417

1 − 0.693 × 200/1417
= 0.952 TA.1

kyy = CmyCmLT
µy

1 − NEd/Ncr, y

1

Cyy
= 0.9900 × 1.287

× 0.952

1 − 200/1417

1

0.942
= 1.499 TA.1

NEd

Nb,y,Rd
+ kyy

My,Ed

Mb,Rd
= 200

900
+ 1.499 × 45.0

121.4

= 0.222 + 0.556 = 0.778 < 1 6.3.3(4)

and the member in-plane resistance (with lateral buckling between the lateral
supports) is adequate.

For the member out-of-plane resistance (equation 6.62 of EC3),

Czy = 1 + (wy − 1)




2 − 14

C2
myλ

2
max

w5
y


 npl − dLT


 ≥ 0.6

√
wy

wz

Wel,y

Wpl,y

= 1 + (1.115 − 1)

[(
2 − 14 × 0.9902 × 1.4902

1.1155

)
× 0.154 − 0

]

= 0.722 > 0.46 TA.1

Using χz = 0.346 from Section 7.7.3,

µz = 1 − NEd/Ncr, z

1 − χzNEd/Ncr, z
= 1 − 200/584.4

1 − 0.346 × 200/584.4
= 0.746 TA.1

kzy = CmyCmLT
µz

1 − NEd

Ncr, y

1

Czy
0.6

√
wy

wz
= 0.990 × 1.287

× 0.746

1 − 200

1417

× 1

0.722
× 0.6 ×

√
1.115

1.5
= 0.793 TA.1
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NEd

Nb, z,Rd
+ kzy

My,Ed

Mb,Rd
= 200

449
+ 0.793 × 45.0

121.4
= 0.445 + 0.294 = 0.739 < 1

6.3.3(4)

and the member out-of-plane resistance is adequate.

7.7.5 Example 5 – checking the biaxial bending capacity

Problem. The 9 m long simply supported beam-column shown in Figure 7.19c
and d has a factored design axial compression force of 200 kN, a factored design
concentrated load of 20 kN (which includes an allowance for self-weight) acting
in the major principal plane, and a factored design uniformly distributed load
of 3.2 kN/m acting in the minor principal plane. Lateral deflections v and twist
rotations φ are prevented at the ends and at mid-span. The beam-column is the
254 × 146 UB 37 of S275 steel shown in Figure 7.19a. Check the adequacy of the
beam-column.

Design bending moments.

My,Ed = 45.0 kNm(Section 7.7.2), Mz,Ed = 8.1 kNm(Section 7.7.3)

Simplified approach for cross-section resistance.

Combining the calculations of Sections 7.7.2 and 7.7.3,

200 × 103

47.2 × 102 × 275/1.0
+ 45.0

132.8
+ 8.1

32.7
= 0.740 < 1 6.2.1(7)

and the cross-section resistance is adequate.

Alternative approach for cross-section resistance.

As shown in Sections 7.7.2 and 7.7.3, the axial load is sufficiently low for there is to
be no reduction in the moment resistance about either the major or the minor axis.

n = NEd/Npl,Rd = 200 × 103/(47.2 × 102 × 275/1.0) = 0.154,

β = 5n = 0.770 6.2.9.1(6)[
My,Ed

MN ,y,Rd

]α
+

[
Mz,Ed

MN , z,Rd

]β
=

[
45.0

132.8

]2

+
[

8.1

32.7

]0.770

= 0.456 ≤ 1

6.2.9.1(6)

and the cross-section resistance is adequate.
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Beam-column member resistance – simplified approach (Annex B).

Checks are required against equations 6.61 and 6.62 of EC3. From the appropriate
parts of Sections 7.7.2–7.7.4,

kyy = 1.052, kzz = 0.893, kzy = 0.873, Nb,y,Rd = 900 kN,

Mb,Rd = 121.4 kNm, Mz,Rd = 32.7 kNm, and Nb, z,Rd = 449 kN.

kyz = 0.6kzz = 0.6 × 0.893 = 0.536 TB.1

NEd

Nb,y,Rd
+ kyy

My,Ed

Mb,Rd
+ kyz

Mz,Ed

Mz,Rd
= 200

900
+ 1.052 × 45.0

121.4
+ 0.536

× 8.1

32.7
= 0.222 + 0.390 + 0.133 = 0.745 < 1

NEd

Nb, z,Rd
+ kzy

My,Ed

Mb,Rd
+ kzz

Mz,Ed

Mz,Rd
= 200

449
+ 0.873 × 45.0

121.4

+ 0.893 × 8.1

32.7
= 0.445 + 0.324 + 0.221 = 0.990 < 1

and the member resistance is adequate.

Beam-column member resistance – more exact approach (Annex A).

Checks are required against equations 6.61 and 6.62 of EC3. Relevant details are
taken from the appropriate parts of Sections 7.7.2, 7.7.3, and 7.7.4.

bLT = 0.5aLTλ
2
0

My,Ed

χLT Mpl,y,Rd

Mz,Ed

Mpl, z,Rd
= 0.5 × 0.997 × 1.0932

× 45

121.4
× 8.1

32.7
= 0.0546 TA.1

cLT = 10aLT
λ

2
0

5 + λ
4
z

My,Ed

CmyχLT Mpl,y,Rd
= 10 × 0.997

× 1.0932

5 + 1.4904
× 45

0.990 × 121.4
= 0.449 TA.1

dLT = 2aLT
λ0

0.1 + λ
4
z

My,Ed

CmyχLT Mpl,y,Rd

Mz,Ed

CmzMpl, z,Rd

= 2 × 0.997 × 1.093

0.1 + 1.4904
× 45

0.990 × 121.4
× 8.1

0.804 × 32.7

= 0.0500 TA.1

eLT = 1.7aLT
λ0

0.1 + λ
4
z

My,Ed

CmyχLT Mpl,y,Rd
= 1.7 × 0.997 × 1.093

0.1 + 1.4904

× 45

0.990 × 121.4
= 0.138 TA.1
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Cyy = 1 + (wy − 1)

[(
2 − 1.6

wy
C2

myλmax − 1.6

1.12
C2

myλ
2
max

)
npl − bLT

]

≥ Wel,y

Wpl,y

= 1 + (1.115 − 1)

[(
2 − 1.6

1.115
× 0.9902 × 1.490 − 1.6

1.115

×0.9902 × 1.4902) × 0.154 − 0.0546
] = 0.936 > 0.896 TA.1

Cyz = 1 + (wz − 1)

[(
2 − 14

C2
mzλ

2
max

w5
z

)
npl − cLT

]
≥ 0.6

√
wz

wy

Wel,z

Wpl, z

= 1 + (1.5 − 1)

[(
2 − 14 × 0.8042 × 1.4902

1.55

)
× 0.154 − 0.449

]

= 0.726 > 0.456 TA.1

Czy = 1 + (wy − 1)




2 − 14

C2
myλ

2
max

w5
y


 npl − dLT


 ≥ 0.6

√
wy

wz

Wel,y

Wpl,y

= 1 + (1.115 − 1)

[(
2 − 14 × 0.9902 × 1.4902

1.1155

)
× 0.154 − 0.0500

]

= 0.716 > 0.464 TA.1

Czz = 1+ (wz −1)

[(
2 − 1.6

wz
C2

mzλmax − 1.6

wz
C2

mzλ
2
max

)
npl − eLT

]
≥ Wel,z

Wpl, z

= 1 + (1.5 − 1)

[(
2 − 1.6

1.5
× 0.8042 × 1.490 − 1.6

1.5
× 0.8042

×1.4902
)

× 0.154 − 0.138

]
= 0.888 > 0.655 TA.1

kyy = CmyCmLT
µy

1 − NEd/Ncr, y

1

Cyy

= 0.990 × 1.287 × 0.952

1 − 200/1417
× 1

0.936
= 1.508 TA.1

kyz = Cmz
µy

1 − NEd/Ncr, z

1

Cyz
0.6

√
wz

wy
= 0.804 × 0.952

1 − 200/584.4

× 1

0.726
× 0.6 ×

√
1.5

1.115
= 1.115 TA.1
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kzy = CmyCmLT
µz

1 − NEd/Ncr, y

1

Czy
0.6

√
wy

wz
= 0.990

× 1.287 × 0.746

1 − 200/1417
× 1

0.716
× 0.6 ×

√
1.115

1.5
= 0.800 TA.1

kzz = Cmz
µz

1 − NEd/Ncr, z

1

Czz
= 0.804 × 0.746

1 − 200/584.4
× 1

0.888
= 1.027

TA.1

NEd

Nb,y,Rd
+ kyy

My,Ed

Mb,Rd
+ kyz

Mz,Ed

Mz,Rd
= 200

900
+ 1.508 × 45.0

121.4

+ 1.115 × 8.1

32.7
= 0.222 + 0.559 + 0.276 = 1.057 > 1

NEd

Nb, z,Rd
+ kzy

My,Ed

Mb,Rd
+ kzz

Mz,Ed

Mz,Rd
= 200

449
+ 0.800 × 45.0

121.4
+ 1.027

× 8.1

32.7
= 0.445 + 0.296 + 0.254 = 0.995 < 1

and the member resistance appears to be inadequate.

7.8 Unworked examples

7.8.1 Example 6 – non-linear analysis

Analyse the non-linear elastic in-plane bending of the simply supported beam-
column shown in Figure 7.20a, and show that the maximum moment Mmax may
be closely approximated by using the greater of Mmax = qL2/8 and

Mmax = 9qL2

128

(1 − 0.29N/Ncr, y)

(1 − N/Ncr, y)

in which Ncr, y = π2EIy/L2.

7.8.2 Example 7 – non-linear analysis

Analyse the non-linear elastic in-plane bending of the propped cantilever shown
in Figure 7.20b, and show that the maximum moment Mmax may be closely
approximated by using

Mmax

qL2/8
≈ (1 − 0.18N/Ncr, y)

(1 − 0.49N/Ncr, y)

in which Ncr, y = π2EIy/L2.
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qL L
8

2

(a) Simply supported beam-column

L

(b) Propped cantilever

q

L

(c) Continuous beam-column

q
N

L

Figure 7.20 Examples 6–8.

7.8.3 Example 8 – non-linear analysis

Analyse the non-linear elastic in-plane bending of the two-span beam-column
shown in Figure 7.20c, and show that the maximum moment Mmax may be closely
approximated by using

Mmax

qL2/8
≈ (1 − 0.18N/Ncr, y)

(1 − 0.49N/Ncr, y)

while N ≤ Ncr, y, in which Ncr, y = π2EIy/L2.

7.8.4 Example 9 – in-plane design

A 7.0 m long simply supported beam-column, which is prevented from swaying
and from deflecting out of the plane of bending, is required to support a factored
design axial load of 1200 kN and factored design end moments of 300 and 150 kNm
which bend the beam-column in single curvature about the major axis. Design a
suitable UB or UC beam-column of S275 steel.

7.8.5 Example 10 – out-of-plane design

The intermediate restraints of the beam-column of example 9 which prevent
deflection out of the plane of bending are removed. Design a suitable UB or
UC beam-column of S275 steel.

7.8.6 Example 11 – biaxial bending design

The beam-column of example 10 has to carry additional factored design end
moments of 75 and 75 kNm which cause double curvature bending about the
minor axis. Design a suitable UB or UC beam-column of S275 steel.
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Chapter 8

Frames

8.1 Introduction

Structural frames are composed of one-dimensional members connected together
in skeletal arrangements which transfer the applied loads to the supports. While
most frames are three-dimensional, they may often be considered as a series of par-
allel two-dimensional frames, or as two perpendicular series of two-dimensional
frames. The behaviour of a structural frame depends on its arrangement and
loading, and on the type of connections used.

Triangulated frames with joint loading only have no primary bending actions,
and the members act in simple axial tension or compression. The behaviour and
design of these members have already been discussed in Chapters 2 and 3.

Frames which are not triangulated include rectangular frames, which may be
multi-storey, or multi-bay, or both, and pitched-roof portal frames. The members
usually have substantial bending actions (Chapters 5 and 6), and if they also have
significant axial forces, then they must be designed as beam-ties (Chapter 2) or
beam-columns (Chapter 7). In frames with simple connections (see Figure 9.3a),
the moments transmitted by the connections are small, and often can be neglected,
and the members can be treated as isolated beams, or as eccentrically loaded beam-
ties or beam-columns. However, when the connections are semi-rigid (referred to
as semi-continuous in EC3) or rigid (referred to as continuous in EC3), then there
are important moment interactions between the members.

When a frame is or can be considered as two-dimensional then its behaviour is
similar to that of the beam-columns of which it is composed. With in-plane loading
only, it will fail either by in-plane bending, or by flexural – torsional buckling out
of its plane. If, however, the frame or its loading is three-dimensional, then it will
fail in a mode in which the individual members are subjected to primary biaxial
bending and torsion actions.

In this chapter, the in-plane, out-of-plane, and biaxial behaviour, analysis,
and design of two- and three-dimensional frames are treated, and related to the
behaviour and design of isolated tension members, compression members, beams,
and beam-columns discussed in Chapters 2, 3, 5, 6, and 7.
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8.2 Triangulated frames

8.2.1 Statically determinate frames

The primary actions in triangulated frames whose members are concentrically
connected and whose loads act concentrically through the joints are those of axial
compression or tension in the members, and any bending actions are secondary
only. These bending actions are usually ignored, in which case the member forces
may be determined by a simple analysis for which the member connections are
assumed to be made through frictionless pin-joints.

If the assumed pin-jointed frame is statically determinate, then each member
force can be determined by statics alone, and is independent of the behaviour
of the remaining members. Because of this, the frame may be assumed to
fail when its weakest member fails, as indicated in Figure 8.1a and b. Thus,
each member may be designed independently of the others by using the pro-
cedures discussed in Chapters 2 (for tension members) or 3 (for compression
members).

If all the members of a frame are designed to fail simultaneously (either by
tension yielding or by compression buckling), there will be no significant moment
interactions between the members at failure, even if the connections are not pin-
jointed. Because of this, the effective lengths of the compression members should
be taken as equal to the lengths between their ends. If, however, the members
of a rigid-jointed frame are not designed to fail simultaneously, there will be
moment interactions between them at failure. While it is a common and conserva-
tive practice to ignore these interactions and to design each member as if pin-ended,
some account may be taken of these by using one of the procedures discussed in
Section 8.3.5.3 to estimate the effective lengths of the compression members, and
exemplified in Section 8.5.1.

Frame fails after
tension diagonal
yields or fractures

Frame fails after
compression diagonal
buckles

Frame remains stable
after compression
diagonal buckles

with tension diagonal
Determinate frame
with compression
diagonal

Indeterminate frame
with double-braced
panel

(a) Determinate frame (b) (c)

Figure 8.1 Determinate and indeterminate triangulated frames.
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8.2.2 Statically indeterminate frames

When an assumed pin-jointed triangulated frame without primary bending actions
is statically indeterminate, then the forces transferred by the members will depend
on their axial stiffnesses. Since these decrease with tension yielding or compression
buckling, there is usually some force redistribution as failure is approached. To
design such a frame, it is necessary to estimate the member forces at failure, and
then to design the individual tension and compression members for these forces, as
in Chapters 2 and 3. Four different methods may be used to estimate the member
forces.

In the first method, a sufficient number of members are ignored so that the frame
becomes statically determinate. For example, it is common to ignore completely
the compression diagonal in the double-braced panel of the indeterminate frame
of Figure 8.1c, in which case the strength of the now determinate frame is con-
trolled by the strength of one of the other members. This method is simple and
conservative.

A less conservative method can be used when each indeterminate member can
be assumed to be ductile, so that it can maintain its maximum strength over a
considerable range of axial deformations. In this method, the frame is converted
to a statically determinate frame by replacing a sufficient number of early failing
members by sets of external forces equal to their maximum load capacities. For
the frame shown in Figure 8.1c, this might be done for the diagonal compression
member, by replacing it by forces equal to its buckling strength. This simple
method is very similar in principle to the plastic method of analysing the collapse
of flexural members (Section 5.5) and frames (Section 8.3.5.7). However, the
method can only be used when the ductilities of the members being replaced are
assured.

In the third method, each member is assumed to behave linearly and elastically,
which allows the use of a linear elastic method to analyse the frame and deter-
mine its member force distribution. The frame strength is then controlled by the
strength of the most severely loaded member. For the frame shown in Figure 8.1c,
this would be the compression diagonal if this reaches its buckling strength before
any of the other members fail. This method ignores redistribution, and is conser-
vative when the members are ductile, or when there are no lacks-of-fit at member
connections.

In the fourth method, account is taken of the effects of changes in the member
stiffnesses on the force distribution in the frame. Because of its complexity, this
method is rarely used.

When the members of a triangulated frame are eccentrically connected, or
when the loads act eccentrically or are applied to the members between the
joints, the flexural effects are no longer secondary, and the frame should be
treated as a flexural frame. Flexural frames are discussed in the following
sections.
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8.3 Two-dimensional flexural frames

8.3.1 General

The structural behaviour of a frame may be classified as two-dimensional when
there are a number of independent two-dimensional frames with in-plane loading,
or when this is approximately so. The primary actions in a two-dimensional frame
in which the members support transverse loads are usually flexural, and are often
accompanied by significant axial actions. The structural behaviour of a flexural
frame is influenced by the behaviour of the member joints, which are usually
considered to be either simple, semi-rigid (or semi-continuous), or rigid (or con-
tinuous), according to their ability to transmit moment. The EC3 classifications of
joints are given in [1].

In the following sub-sections, the behaviour, analysis, and design of two-
dimensional flexural frames with simple, semi-rigid, or rigid joints are discussed,
together with the corresponding EC3 requirements. An introduction to the EC3
requirements is given in [2].

8.3.2 Frames with simple joints

Simple joints may be defined as being those that will not develop restraining
moments which adversely affect the members and the structure as a whole,
in which case the structure may be designed as if pin-jointed. It is usually assumed,
therefore, that no moment is transmitted through a simple joint, and that the mem-
bers connected to the joint may rotate. The joint should therefore have sufficient
rotation capacity to permit member end rotations to occur without causing failure
of the joint or its elements. An example of a typical simple joint between a beam
and column is shown in Figure 9.3a.

If there are a sufficient number of pin-joints to make the structure statically
determinate, then each member will act independently of the others, and may
be designed as an isolated tension member (Chapter 2), compression member
(Chapter 3), beam (Chapters 5 and 6), or beam-column (Chapter 7). However,
if the pin-jointed structure is indeterminate, then some part of it may act as a
rigid-jointed frame. The behaviour, analysis, and design of rigid-jointed frames
are discussed in Sections 8.3.4, 8.3.5, and 8.3.6.

One of the most common methods of designing frames with simple joints is
often used for rectangular frames with vertical (column) and horizontal (beam)
members under the action of vertical loads only. The columns in such a frame are
assumed to act as if eccentrically loaded. A minimum eccentricity of 100 mm from
the face of the column was specified in [3], but there is no specific guidance in
EC3. Approximate procedures for distributing the moment caused by the eccentric
beam reaction between the column lengths above and below the connection are
given in [1]. It should be noted that such a pin-jointed frame is usually incapable
of resisting transverse forces, and must therefore be provided with an independent
bracing or shear wall system.
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8.3.3 Frames with semi-rigid joints

Semi-rigid joints are those which have dependable moment capacities and which
partially restrain the relative rotations of the members at the joints. The action
of these joints in rectangular frames is to reduce the maximum moments in the
beams, and so the semi-rigid design method offers potential economies over the
simple design method [4–10]. An example of a typical semi-rigid joint between a
beam and column is shown in Figure 9.3b.

Amethod of semi-rigid design is permitted by EC3. In this method, the stiffness,
strength, and rotation capacities of the joints based on experimental evidence are
suggested in [1], and may be used to assess the moments and forces in the members.
However, this method has not found great favour with designers, and therefore
will not be discussed further.

8.3.4 In-plane behaviour of frames with rigid joints

A rigid joint may be defined as a joint which has sufficient rigidity to virtually pre-
vent relative rotation between the members connected. Properly arranged welded
and high-strength friction grip bolted joints are usually assumed to be rigid (ten-
sioned high strength friction grip bolts are referred to in [1] as preloaded bolts).
An example of a typical rigid joint between a beam and column is shown in
Figure 9.3c. There are important interactions between the members of frames with
rigid joints, which are generally stiffer and stronger than frames with simple or
semi-rigid joints. Because of this, rigid frames offer significant economies, while
many difficulties associated with their analysis have been greatly reduced by the
widespread availability of standard computer programs.

The in-plane behaviour of rigid frames is discussed in general terms in
Section 1.4.2, where it is pointed out that, although a rigid frame may behave
in an approximately linear fashion while its service loads are not exceeded, espe-
cially when the axial forces are small, it becomes non-linear near its in-plane
ultimate load because of yielding and buckling effects. When the axial compres-
sion forces are small, then failure occurs when a sufficient number of plastic hinges
has developed to cause the frame to form a collapse mechanism, in which case the
load resistance of the frame can be determined by plastic analysis of the collapse
mechanism. More generally, however, the in-plane buckling effects associated
with the axial compression forces significantly modify the behaviour of the frame
near its ultimate loads. The in-plane analysis of rigid-jointed frames is discussed
in Section 8.3.5, and their design in 8.3.6.

8.3.5 In-plane analysis of frames with rigid joints

8.3.5.1 General

The most common reason for analysing a rigid-jointed frame is to determine the
moments, shears, and axial forces acting on its members and joints. These may
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then be used with the design rules of EC3 to determine if the members and joints
are adequate.

Such an analysis must allow for any significant second-order moments arising
from the finite deflections of the frame. Two methods may be used to allow for
these second-order moments. In the first of these, the moments determined by a
first-order elastic analysis are amplified by using the results of an elastic buckling
analysis. In the second and more accurate method, a full second-order elastic
analysis is made of the frame.

Aless common reason for analysing a rigid-jointed frame is to determine whether
the frame can reach an equilibrium position under the factored loads, in which case
the frame is adequate. A first-order plastic analysis may be used for a frame with
negligible second-order effects. When there are significant second-order effects,
then an advanced analysis may be made in which account is taken of second-order
effects, inelastic behaviour, and residual stresses and geometrical imperfections,
although this is rarely done in practice.

These various methods of analysis are discussed in more detail in the following
sub-sections.

8.3.5.2 First-order elastic analysis

A first-order (linear) elastic analysis of a rigid-jointed frame is based on the
assumptions that:

(a) the material behaves linearly, so that all yielding effects are ignored,
(b) the members behave linearly, with no member instability effects such as those

caused by axial compressions which reduce the members’ flexural stiffnesses
(these are often called the P-δ effects), and

(c) the frame behaves linearly, with no frame instability effects such as those
caused by the moments of the vertical forces and the horizontal frame
deflections (these are often called the P-� effects).

For example, for the portal frame of Figure 8.2, a first-order elastic analysis ignores
all second-order moments such as RR(δ+�z/h) in the right-hand column, so that
the bending moment distribution is linear in this case. First-order analyses predict
linear behaviour in elastic frames, as shown in Figure 1.15.

Rigid-jointed frames are invariably statically indeterminate, and while there
are many manual methods of first-order elastic analysis available [11–13], these
are labour-intensive and error-prone for all but the simplest frames. In the past,
designers were often forced to rely on approximate methods or available solutions
for specific frames [14, 15]. However, computer methods of first-order elastic
analysis [16, 17] have formed the basis of computer programs such as [18–20]
which are now used extensively. These first-order elastic analysis programs require
the geometry of the frame and its members to have been established (usually by
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Figure 8.2 First-order analysis and second-order behaviour.

a preliminary design), and then compute the first-order member moments and
forces, and the joint deflections for each specified set of loads. Because these are
proportional to the loads, the results of individual analyses may be combined by
linear superposition. The results of computer first-order elastic analyses [18] of a
braced and an unbraced frame are given in Figures 8.3 and 8.4.

8.3.5.3 Elastic buckling of braced frames

The results of an elastic buckling analysis may be used to approximate any second-
order effects (Figure 8.2). The elastic buckling analysis of a rigid-jointed frame is
carried out by replacing the initial set of frame loads by a set which produces the
same set of member axial forces without any bending, as indicated in Figure 8.5b.
The set of member forces Ncr which causes buckling depends on the distribution
of the axial forces in the frame, and is often expressed in terms of a load factor αcr

by which the initial set of axial forces Ni must be multiplied to obtain the member
forces Ncr at frame buckling, so that

Ncr = αcrNi (8.1)
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(c) Elastic
deflections

(d) Elastic
buckling

(e) Plastic
collapse

(a) Frame and loads

40 80

6000 6000

5000

500020

10

1

2

3 4 5

(kN, mm units)

810.6

286.4

=11.32	cr 	p= 1.248

99.8
49.9

12.5

25.0

Member Section  

123 152 152 UC 37 2210 47 . 1 8 5 . 0
345 305 165 UB 40 8503 51 . 3 1 7 1 . 3 

(b) Section properties

Iy (cm4) A (cm2) Mpy(kNm)

Quantity Units First-order
elastic

Elastic
buckling

Second-order
elastic

First-order
plastic

M kNm 23..5 24.6 19.9
M kNm –53.0 0

0
–53.6 –85.0

M kNm 136.6 0

0

137.3 171.3
M kNm –153.8 –154.6 –171.3

N kN –71.6 –810.6 –71.6 –92.6
N kN –25.3 –286.4 –25.2 –33.5

v mm 57.4 (0.154) 57.8
u mm 18.5 (1.000) 20.6

2

3

4

5

123

345

4

2

(f) Analysis results

–

–

×
×

Figure 8.3 Analysis of a braced frame.

Alternatively, it may be expressed by a set of effective length factors kcr = Lcr/L
which define the member forces at frame buckling by

Ncr = π2EI/(kcrL)2. (8.2)

For all but isolated members and very simple frames, the determination of the
frame buckling factor αcr is best carried out numerically, using a suitable computer
program. The bases of frame elastic buckling programs are discussed in [16, 17].
The computer program PRFSA [18] first finds the initial member axial forces {Ni}
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Figure 8.4 Analysis of an unbraced frame.

by carrying out a first-order elastic analysis of the frame under the initial loads.
It then uses a finite element method to determine the elastic buckling load factors
αcr for which the total frame stiffness vanishes [21], so that

[K]{D} − αcr[G]{D} = {0} (8.3)

in which [K] is the elastic stiffness matrix, [G] is the stability matrix associated
with the initial axial forces {Ni}, and {D} is the vector of nodal deformations which
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define the buckled shape of the frame. The results of a computer elastic buckling
analysis [18] of a braced frame are given in Figure 8.3.

For isolated braced members or very simple braced frames, a buckling analysis
may also be made from first principles, as demonstrated in Section 3.10. Alterna-
tively, the effective length factor kcr of each compression member may be obtained
by using estimates of the member relative end stiffness factors k1, k2 in a braced
member chart such as that of Figure 3.21a. The direct application of this chart is
limited to the vertical columns of regular rectangular frames with regular loading
patterns in which each horizontal beam has zero axial force and all the columns
buckle simultaneously in the same mode. In this case, the values of the column
end stiffness factors can be obtained from

k = �(Ic/Lc)

�(Ic/Lc)+�(βeIb/Lb)
(8.4)

where βe is a factor which varies with the restraint conditions at the far end of
the beam (βe = 0.5 if the restraint condition at the far end is the same as that at
the column, βe = 0.75 if the far end is pinned, and βe = 1.0 if the far end is
fixed – note that the proportions 0.5:0.75:1.0 of these are the same as 2:3:4 of the
appropriate stiffness multipliers of Figure 3.19), and where the summations are
carried out for the columns (c) and beams (b) at the column end.

The effective length chart of Figure 3.21a may also be used to approximate the
buckling forces in other braced frames. In the simplest application, an effective
length factor kcr is determined for each compression member of the frame by
approximating its member end stiffness factors (see equation 3.46) by

k = I/L

I/L +�(βeαrIr/Lr)
(8.5)

where αr is a factor which allows for the effect of axial force on the flexural
stiffness of each restraining member (Figure 3.19), and the summation is carried
out for all of the members connected to that end of the compression member. Each
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effective length factor so determined is used with equations 8.1 and 8.2 to obtain
an estimate of the frame buckling load factor as

αcr,i = π2EIi/(kcr,iLi)
2

Ni
. (8.6)

The lowest of these provides a conservative approximation of the actual frame
buckling load factor αcr .

The accuracy of this method of calculating effective lengths using the stiffness
approximations of Figure 3.19 is indicated in Figure 8.6c for the rectangular frame
shown in Figure 8.6a and b. For the buckling mode shown in Figure 8.6a, the
buckling of the vertical members is restrained by the horizontal members. These
horizontal members are braced restraining members which bend in symmetrical
single curvature, so that their stiffnesses are (2EI1/L1)(1 − N1/Ncr1) in which
Ncr1 =π2EI1/L2

1, as indicated in Figure 3.19. It can be seen from Figure 8.6c that
the approximate buckling loads are in very close agreement with the accurate val-
ues. Worked examples of the application of this method are given in Sections 8.5.1
and 8.5.2.

A more accurate iterative procedure [22] may also be used, in which the accu-
racies of the approximations for the member end stiffness factors k increase with
each iteration.

8.3.5.4 Elastic buckling of unbraced frames

The determination of the frame buckling load factor αcr of a rigid-jointed unbraced
frame may also be carried out using a suitable computer program such as that
described in [16, 17].
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Figure 8.6 Buckling of a braced frame.
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For isolated unbraced members or very simple unbraced frames, a buckling
analysis may also be made from first principles, as demonstrated in Section 3.10.
Alternatively the effective length factor kcr of each compression member may be
obtained by using estimates of the end stiffness factors k1, k2 in a chart such as that
of Figure 3.21b. The application of this chart is limited to the vertical columns of
regular rectangular frames with regular loading patterns in which each horizontal
beam has zero axial force and all the columns buckle simultaneously in the same
mode and with the same effective length factor. The member end stiffness factors
are then given by equation 8.4.

The effects of axial forces in the beams of an unbraced regular rectangular
frame can be approximated by using equation 8.5 to approximate the relative
end stiffness factors k1, k2 (but with βe = 1.5 if the restraint conditions at the
far end are the same as at the column, βe = 0.75 if the far end is pinned, and
βe = 1.0 if the far end is fixed – note that the proportions 1.5:0.75:1.0 of these
are the same as 6:3:4 of the appropriate stiffness multipliers of Figure 3.19) and
Figure 3.21b.

The accuracy of this method of using the stiffness approximations of Figure 3.19
is indicated in Figure 8.7c for the rectangular frame shown in Figure 8.7a and b. For
the sway buckling mode shown in Figure 8.7a, the sway buckling of the vertical
members is restrained by the horizontal members. These horizontal members are
braced restraining members which bend in antisymmetrical double curvature, so
that their stiffnesses are (6EI1/L1)(1 − N1/4Ncr1) as indicated in Figure 3.19.
It can be seen from Figure 8.7c that the approximate buckling loads are in close
agreement with the accurate values. A worked example of the application of this
method is given in Section 8.5.4.

The effective length factor chart of Figure 3.21b may also be used to approximate
the storey buckling load factor αcr,s for each storey of an unbraced rectangular
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Figure 8.7 Buckling of an unbraced frame.
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frame with negligible axial forces in the beams as

αcr,s =
∑
(Ncr/L)∑
(Ni/L)

(8.7)

in which Ncr is the buckling load of a column in a storey obtained by using
equation 8.4, and the summations are made for each column in the storey. For a
storey in which all the columns are of the same length, this equation implies that
the approximate storey buckling load factor depends on the total stiffness of the
columns and the total load on the storey, and is independent of the distributions of
stiffness and load. The frame buckling load factor αcr may be approximated by the
lowest of the values of αcr,s calculated for all the stories of the frame. This method
gives close approximations when the buckling pattern is the same in each storey,
and is conservative when the horizontal members have zero axial forces and the
buckling pattern varies from storey to storey.

A worked example of the application of this method is given in Section 8.5.3.
Alternatively, the storey buckling load factor αcr,s may be approximated by

using

αcr,s = Hs

Vs

hs

δHs
(8.8)

in which Hs is the storey shear, hs is the storey height, Vs is the vertical load
transmitted by the storey, and δHs is the first-order shear displacement of the storey
caused by Hs. This method is an adaptation of the sway buckling load solution
given in Section 3.10.6 for a column with an elastic brace (of stiffness Hs/δHs).

The approximate methods described above of analysing the elastic buckling
of unbraced frames are limited to rectangular frames. While the buckling of
non-rectangular unbraced frames may be analysed by using a suitable computer
program such as that described in [18], there are many published solutions for
specific frames [23].

Approximate solutions for the elastic buckling load factors of symmetrical portal
frames have been presented in [24–27]. The approximations of [27] for portal
frames with elastically restrained bases take the general form of

αcr =
{(

Nc

ρcNcr,c

)C

+
(

Nr

ρrNcr,r

)C
}−1/C

(8.9)

in which Nc, Nr are the column and rafter forces, Ncr,c, Ncr,r are the reference
buckling loads obtained from

Ncr,c,r = π2EIc,r/L
2
c,r (8.10)

and the values of C, ρc, and ρr depend on the base restraint stiffness and the
buckling mode.
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Figure 8.8 Pinned base portal frame.

For portal frames with pinned bases

C = 1.2 (8.11)

and for antisymmetric buckling as shown in Figure 8.8b,

ρc = 3/(10R + 12) (8.12a)

and

ρr = 1 (8.12b)

in which

R = (Ic/Lc)/(Ir/Lr) (8.13)

For symmetric buckling as shown in Figure 8.8c,

ρc = 4.8 + 12R(1 + RH )

2.4 + 12R(1 + RH )+ 7R2R2
H

(8.14a)

and

ρr = 12R + 8.4RRH

12R + 4
(8.14b)

in which

RH = (Lr/Lc) sin θR (8.15)

in which θR is the inclination of the rafter. A worked example of the application of
this method is given in Section 8.5.5.
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For portal frames with fixed bases

C = 1.6 (8.16)

and for antisymmetric buckling,

ρc = R + 3

4R + 3
(8.17a)

and

ρr = 2R + 4

R + 4
(8.17b)

For symmetric buckling,

ρc = 1 + 4.8R + 4.2RRH

2.4R + 2R2R2
H

(8.18a)

and

ρr = 4R + 4.2RRH + R2R2
H

4R + 2
(8.18b)

Approximate methods for multi-bay frames are given in [25].

8.3.5.5 Second-order elastic analysis

Second-order effects in elastic frames include additional moments such as
RR(δ +�z/h) in the right-hand column of Figure 8.2 which result from the finite
deflections δ and� of the frame. The second-order moments arising from the mem-
ber deflections from the straight line joining the member ends are often called the
P-δ effects, while the second-order moments arising from the joint displacements
� are often called the P-� effects. In braced frames, the joint displacements� are
small, and only the P-δ effects are important. In unbraced frames, the P-� effects
are important, and often much more so than the P-δ effects. Other second-order
effects include those arising from the end-to-end shortening of the members due
to stress (= NL/EA), due to bowing (= 1

2

∫ L
0 (dδ/dx)2dx), and from finite deflec-

tions. Second-order effects cause non-linear behaviour in elastic frames, as shown
in Figure 1.14.

The second-order P-δ effects in a number of elastic beam-columns have
been analysed, and approximations for the maximum moments are given in
Section 7.2.1. A worked example of the use of these approximations is given
in Section 7.7.1.

The P-δ and P-� second-order effects in elastic frames are most easily and
accurately accounted for by using a computer second-order elastic analysis pro-
gram such as those of [18–20]. The results of second-order elastic analyses [18]
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of braced and unbraced frames are given in Figures 8.3 and 8.4. For the braced
frame of Figure 8.3, the second-order results are only slightly higher than the
first-order results. This is usually true for well-designed braced frames that have
substantial bending effects and small axial compressions. For the unbraced frame
of Figure 8.4, the second-order sway deflections are about 18% larger than those of
the first-order analysis, while the moment at the top of the right-hand lower-storey
column is about 10% larger than that of the first-order analysis.

Second-order effects are often significant in unbraced frames.

8.3.5.6 Approximate second-order elastic analysis

There are a number of methods of approximating second-order effects which allow
a general second-order analysis to be avoided. In many of these, the results of a
first-order elastic analysis are amplified by using the results of an elastic buckling
analysis (Sections 8.3.5.3 and 8.3.5.4).

For members without transverse forces in braced frames, the maximum member
moment Mmax determined by first-order analysis may be used to approximate the
maximum second-order design moment M as

M = δMmax (8.19)

in which δ is an amplification factor given by

δ = δb = cm

1 − N/Ncr,b
≥ 1, (8.20)

in which Ncr,b is the elastic buckling load calculated for the braced member, and

cm = 0.6 − 0.4βm ≤ 1.0 (8.21)

in which βm is the ratio of the smaller to the larger end moment (equations 8.20
and 8.21 are related to equations 7.7 and 7.8 used for isolated beam-columns).
A worked example of the application of this method is given in Section 8.5.6.
A procedure for approximating the value of βm to be used for members with
transverse forces is available [28], while more accurate solutions are obtained by
using equations 7.9–7.11 and Figures 7.5 and 7.6.

For unbraced frames, the amplification factor δ may be approximated by

δ = δs = 1

1 − 1/αcr
(8.22)

in which αcr is the elastic sway buckling load factor calculated for the unbraced
frame (Section 8.3.5.4). A worked example of the application of this method is
given in Section 8.5.7.

For unbraced rectangular frames with negligible axial forces in the beams,
a more accurate approximation can be obtained by amplifying the column moments
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of each storey by using the sway buckling load factor αcr,s for that storey obtained
using equation 8.7 in

δ = δs = 1

1 − 1/αcr,s
(8.23)

in which αcr,s is the elastic sway buckling load factor calculated for the storey
(Section 8.3.5.4). A worked example of the application of this method is given in
Section 8.5.8.

Alternatively, the first-order end moment

Mf = Mfb + Mfs (8.24)

may be separated into a braced frame component Mfb and a complementary sway
component Mfs [29]. The second-order maximum moment M may be approximated
by using these components in

M = Mfb + Mfs

(1 − 1/αcr)
(8.25)

in which αcr is the load factor at frame elastic sway buckling (Section 8.3.5.4).
Amore accurate second-order analysis can be made by including the P-� effects

of sway displacement directly in the analysis. An approximate method of doing
this is to include fictitious horizontal forces equivalent to the P-� effects in an
iterative series of first-order analyses [30, 31]. A series of analyses must be carried
out because the fictitious horizontal forces increase with the deflections �. If the
analysis series converges, then the frame is stable. An approximate method of
anticipating convergence is to examine the value of (�n+1 − �n)/(�n − �n−1)

computed from the values of � at the steps (n − 1), n, and (n + 1). If this is
less than n/(n + 1), then the analysis series probably converges. This method of
analysing frame buckling is slow and clumsy, but it does allow the use of the
widely available first-order elastic computer programs. The method ignores the
decreases in the member stiffnesses caused by axial compressions (the P-δ effects),
and therefore tends to underestimate the second-order moments.

8.3.5.7 First-order plastic analysis

In the first-order method of plastic analysis, all instability effects are ignored, and
the collapse strength of the frame is determined by using the rigid-plastic assump-
tion (Section 5.5.2) and finding the plastic hinge locations which first convert the
frame to a collapse mechanism.

The methods used for the plastic analysis of frames are extensions of those
discussed in Section 5.5.5 which incorporate reductions in the plastic moment
capacity to account for the presence of axial force (Section 7.2.2). These meth-
ods are discussed in many texts, such as those [18–24: Chapter 5] referred to in
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Section 5.14. The manual application of these methods is not as simple as it is for
beams, but computer programs such as [18] are available. The results of computer
first-order plastic analyses [18] of a braced and an unbraced frame are given in
Figures 8.3 and 8.4.

8.3.5.8 Advanced analysis

Present methods of designing statically indeterminate steel structures rely on pre-
dictions of the stress resultants acting on the individual members, and on models of
the strengths of these members. These member strength models include allowances
for second-order effects and inelastic behaviour, as well as for residual stresses
and geometrical imperfections. It is therefore possible that the common methods
of second-order elastic analysis used to determine the member stress resultants,
which do not account for inelastic behaviour, residual stresses, and geometrical
imperfections, may lead to inaccurate predictions.

Second-order effects and inelastic behaviour cause redistributions of the mem-
ber stress resultants in indeterminate structures as some of the more critical
members lose stiffness and transfer moments to their neighbours. Non-proportional
loading also causes redistributions. For example, frame shown in Figure 8.9, the
column end moments induced initially by the beam loads decrease as the col-
umn load increases and the column becomes less stiff, due to second-order effects
at first, and then due to inelastic behaviour. The end moments may reduce to
zero, or even reverse in direction. In this case the end moments change from ini-
tially disturbing the column to stabilising it by resisting further end rotations. This
change in the sense of the column end moments, which contributes significantly
to the column strength, cannot be predicted unless an analysis is made which more
closely models the behaviour of the real structure than does a simple plastic analy-
sis (which ignores second-order effects) or a second-order elastic analysis (which
ignores inelastic behaviour).
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Figure 8.9 Reversal of column end moments in frames.
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Ideally, the member stress resultants should be determined by a method of
frame analysis which accounts for both second-order effects (P-δ and P-�), inelas-
tic behaviour, residual stresses, and geometrical imperfections, and any local or
out-of-plane buckling effects. Such a method has been described as an advanced
analysis. Not only can an advanced analysis be expected to lead to predictions that
are of high accuracy, it has the further advantage that the design process can be
greatly simplified, since the structure can be considered to be satisfactory if the
advanced analysis can show that it can reach an equilibrium position under the
design loads.

Past research on advanced analysis and the prediction of the strengths of real
structures has concentrated on frames for which local and lateral buckling are
prevented (by using Class 1 sections and full lateral bracing). One of the earliest,
and perhaps the simplest, methods of approximating the strengths of rigid-jointed
frames was suggested in [32] where it was proposed that the ultimate load factor
αult of a frame should be calculated from the load factorαp at which plastic collapse
occurs (all stability effects being ignored) and the load factor αcr at which elastic
in-plane buckling takes place (all plasticity effects being ignored) by using

1

αult
= 1

αp
+ 1

αcr
(8.26)

or

αult/αp = 1 − αult/αcr (8.27)

However, it can be said that this method represents a considerable simplification
of a complex relationship between the ultimate strength and the plastic collapse
and elastic buckling strengths of a frame.

More accurate predictions of the strengths of two-dimensional rigid frames can
be made using a sub-assemblage method of analysis. In this method, the braced
or unbraced frame is considered as a number of subassemblies [33–35] such as
those shown in Figure 8.10. The conditions at the ends of the sub-assemblage are
approximated according to the structural experience and intuition of the designer
(it is believed that these approximations are not critical), and the sub-assemblage is
analysed by adding together the load-deformation characteristics ([36] and curve 5
in Figure 7.2) of the individual members. Although the application of this manual
technique to the analysis of braced frames was developed to an advanced stage
[37, 38], it does not appear to have achieved widespread popularity.

Further improvements in the prediction of frame strength are provided by com-
puter methods of second-order plastic analysis, such as the deteriorated stiffness
method of analysis, in which progressive modifications are made to a second-order
elastic analysis to account for the formation of plastic hinges [16, 39, 40]. The use
of such an analysis is limited to structures with appropriate material properties,
and for which local and out-of-plane buckling effects are prevented. However, the
use of such an analysis has in the past been largely limited to research studies.
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(a) No-sway sub-assemblage (b) Sway sub-assemblage

Figure 8.10 Sub-assemblages for multi-storey frames.

More recent research [41] has concentrated on extending computer methods of
analysis so that they allow for residual stresses and geometrical imperfections as
well as for second-order effects and inelastic behaviour. Such methods can dupli-
cate design code predictions of the strengths of individual members (through the
incorporation of allowances for residual stresses and geometrical imperfections) as
well as the behaviour of complete frames. Two general types of analysis have devel-
oped, called plastic zone analysis [42, 43] and concentrated plasticity analysis [44].
While plastic zone analysis is the more accurate, concentrated plasticity is the more
economical of computer memory and time. It seems likely that advanced meth-
ods of analysis will play important roles in the future design of two-dimensional
rigid-jointed frames in which local and lateral buckling are prevented.

8.3.6 In-plane design of frames with rigid joints

8.3.6.1 Residual stresses and geometrical imperfections

The effects of residual stresses are allowed for approximately in EC3 by using
enhanced equivalent geometrical imperfections. These include both global (frame)
imperfections (which are associated with initial sway or lack of verticality) and
local (member) imperfections (which are associated with initial bow or crooked-
ness). EC3 also allows the equivalent geometrical imperfections to be replaced by
closed systems of equivalent fictitious forces. The magnitudes of the equivalent
geometrical imperfections and equivalent fictitious forces are specified in Clause
5.3.2 of EC3.

In some low slenderness frames, the equivalent imperfections or fictitious forces
have only small effects on the distributions of moments and axial forces in the
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frames, and may be ignored in the analysis (their effects on member resistance
are included in Clause 6.3 of EC3). More generally, the global (frame) imperfec-
tions or fictitious forces are included in the analysis, but not the local (member)
imperfections or fictitious forces. It is rare to include both the global and the local
imperfections or fictitious forces in the analysis.

The EC3 methods used for the analysis and design of frames with rigid joints
are discussed in the following sub-sections.

8.3.6.2 Strength design using first-order elastic analysis

When a braced or unbraced frame has low slenderness so that

αcr = Fcr/FEd ≥ 10 (8.28)

in which FEd is the design loading on the frame and Fcr is the elastic buckling load,
then EC3 allows the moments and axial forces in the frame to be determined using
a first-order elastic analysis of the frame with all the equivalent imperfections or
fictitious forces ignored. The frame members are adequate when their axial forces
and moments satisfy the section and member buckling resistance requirements of
Clauses 6.2 and 6.3.3 of EC3.

When a braced frame does not satisfy equation 8.28, Clause 5.2.2(3)b of EC3
appears to allow a first-order elastic analysis to be used which neglects all second-
order effects and the imperfections associated with member crookedness, provided
the member axial forces and moments satisfy the buckling resistance require-
ments of Clause 6.3.3. It is suggested, however, that amplified first-order analysis
should be used for frames of moderate slenderness which satisfy equation 8.29
(Section 8.3.6.3), and that second-order analysis should be used for frames of high
slenderness which satisfy equation 8.30 (Section 8.3.6.4).

8.3.6.3 Strength design using amplified first-order elastic analysis

When an unbraced frame has moderate slenderness so that

10 > αcr = Fcr/FEd ≥ 3 (8.29)

then EC3 allows the moments in the frame to be determined by amplifying
(Section 8.3.5.6) the moments determined by a first-order elastic analysis, pro-
vided the equivalent global imperfections or fictitious forces are included in the
analysis. The frame members are adequate when their axial forces and moments
satisfy the section resistance requirements of Clause 6.2 of EC3 and the member
buckling resistance requirements of Clause 6.3.3. EC3 allows the member length
to be used in Clause 6.3.3, but this may overestimate the resistances of members for
which compression effects dominate. It is suggested that in this case, the member
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should also satisfy the member buckling requirements of Clause 6.3.1 in which
the effective length is used.

If the member imperfections or fictitious forces are also included in the analysis,
then the frame members are satisfactory when their axial forces and moments
satisfy the section resistance requirements of Clause 6.2 of EC3.

8.3.6.4 Strength design using second-order elastic analysis

When an unbraced frame has high slenderness so that

3 > αcr = Fcr/FEd (8.30)

then EC3 requires a more accurate analysis to be made of the second-order effects
(Section 8.3.5.5) than by amplifying the moments determined by a first-order
elastic analysis. EC3 requires the equivalent global imperfections or fictitious
forces to be included in the analysis. The frame members are adequate when their
axial forces and moments satisfy the section resistance requirements of Clause 6.2
of EC3 and the member buckling resistance requirements of Clause 6.3.3. EC3
allows the member length to be used in Clause 6.3.3, but this may overestimate the
resistances of members for which compression effects dominate. It is suggested
that in this case, the member should also satisfy the member buckling requirements
of Clause 6.3.1 in which the effective length is used.

If the member imperfections or fictitious forces are also included in the analysis,
then the frame members are satisfactory when the axial forces and moments satisfy
the section resistance requirements of Clause 6.2 of EC3.

8.3.6.5 Strength design using first-order plastic collapse analysis

When a braced or unbraced frame has low slenderness so that

αcr = Fcr/FEd ≥ 15 (8.31)

then EC3 allows all the equivalent imperfections or fictitious forces to be ignored
and a first-order rigid plastic collapse analysis (Section 8.3.5.7) to be used. This
limit is reduced to αcr ≥ 10 for clad structures, and to αcr ≥ 5 for some portal
frames subjected to gravity loads only.

All members forming plastic hinges must be ductile so that the plastic moment
capacity can be maintained at each hinge over a range of hinge rotations sufficient
to allow the plastic collapse mechanism to develop. Ductility is usually ensured by
restricting the steel type to one which has a substantial yield plateau and significant
strain-hardening (Section 1.3.1) and by preventing reductions in rotation capacity
by local buckling effects (by satisfying the requirements of Clause 5.6 of EC3,
including the use of Class 1 sections), by out-of-plane buckling effects (by sat-
isfying the requirements of Clause 6.3.5 of EC3, including limiting the unbraced
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lengths), and by in-plane buckling effects (by using equation 8.31 to limiting the
member in-plane slendernesses and axial compression forces).

The frame members are adequate when

αp = Fp/FEd ≥ 1 (8.32)

in which Fp is the plastic collapse load. It should be noted that the use of reduced
full plastic moments (to allow for the axial forces) will automatically ensure that
Clause 6.2.9 of EC3 for the bending and axial force resistance is satisfied.

8.3.6.6 Strength design using advanced analysis

EC3 permits the use of a second-order plastic analysis. When the effects of residual
stresses and geometrical imperfections are allowed for through the use of global
and local equivalent imperfections or fictitious forces, and when local and lateral
buckling are prevented (Clauses 5.6 and 6.3.5 of EC3), then this provides a method
of design by advanced analysis.

The members of the structure are satisfactory when the section resistance
requirements of Clause 6.2 of EC3 are met. Because these requirements are auto-
matically satisfied by the prevention of local buckling and the accounting for
inelastic behaviour, the members can be regarded as satisfactory if the analysis
shows that the structure can reach an equilibrium position under the design loads.

8.3.6.7 Serviceability design

Because the service loads are usually substantially less than the factored loads
used for strength design, the behaviour of a frame under its service loads is
usually closely approximated by the predictions of a first-order elastic analysis
(Section 8.3.5.2). For this reason, the serviceability design of a frame is usually
carried out using the results of a first-order elastic analysis. The serviceability
design of a frame is often based on the requirement that the service load deflec-
tions must not exceed specified values. Thus the member sizes are systematically
changed until this requirement is met.

8.3.7 Out-of-plane behaviour of frames with rigid joints

Most two-dimensional rigid frames which have in-plane loading are arranged so
that the stiffer planes of their members coincide with that of the frame. Such a frame
deforms only in its plane until the out-of-plane (flexural–torsional) buckling loads
are reached, and if these are less than the in-plane ultimate loads, then the members
and the frame will buckle by deflecting out of the plane and twisting.

In some cases, the action of one loaded member dominates, and its elastic buck-
ling load can be determined by evaluating the restraining effects of the remainder
of the frame. For example, when the frame shown in Figure 8.11 has a zero beam



 

370 Frames

Q1

Q2

Q1

L2

L1

Lateral restraint

Rigid joint

Column built-in at base

Figure 8.11 Flexural–torsional buckling of a portal frame.

load Q2, then the beam remains straight and does not induce moments in the
columns, which buckle elastically out of the plane of the frame at a load given
by Q1 ≈ π2EIz/(0.7L1)

2 (see Figure 3.15c). On the other hand, if the effects
of the compressive forces in the columns are small enough to be neglected, then
the elastic stiffnesses and restraining effects of the columns on the beam can be
estimated, and the elastic flexural–torsional buckling load Q2 of the beam can be
evaluated. The solution of a related problem is discussed in Section 6.9.

In general, however, both the columns and the beams of a rigid frame buckle,
and there is an interaction between them during out-of-plane buckling. This
interaction is related to that which occurs during the in-plane buckling of rigid
frames (see Sections 8.3.5.3 and 8.3.5.4 and Figures 8.6 and 8.7), and also to
that which occurs during the elastic flexural–torsional buckling of continuous
beams (see Section 6.8.2 and Figure 6.21). Because of the similarities between the
elastic flexural–torsional buckling of restrained beam-columns (Section 7.3.1.3)
and restrained columns (Section 3.6.4), it may prove possible to extend further
the approximate method given in Section 8.3.5.3 for estimating the in-plane
elastic buckling loads of rigid frames (which was applied to the elastic
flexural–torsional buckling of some beams in Section 6.8.2). Thus, the elas-
tic flexural–torsional buckling loads of some rigid frames might be calculated
approximately by using the column effective length chart of Figure 3.21a.
However, this development has not yet been investigated.

On the other hand, there have been developments [45–47] in the analytical tech-
niques used to determine the elastic flexural–torsional buckling loads of general
rigid plane frames with general in-plane loading systems, and a computer program
[48] has been prepared which requires only simple data specifying the geometry
of the frame, its supports and restraints, and the arrangement of the loads. The use
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Figure 8.12 Elastic flexural–torsional buckling loads of portal frames.

of this program to calculate the elastic flexural–torsional buckling load of a frame
will simplify the design problem considerably.

Interaction diagrams for the elastic flexural–torsional buckling loads of a number
of frames have been determined [45], and two of these (for the portal frames
shown in Figure 8.11) are given in Figure 8.12. These diagrams show that the
region of stability is convex, as it is for the in-plane buckling of rigid frames
(Figures 8.6 and 8.7) and for the flexural–torsional buckling of continuous beams
(Figure 6.23b). Because of this convexity, linear interpolations (as in Figure 6.24)
made between known buckling load sets are conservative.

Although the elastic flexural–torsional buckling of rigid frames has been inves-
tigated, the related problems of inelastic buckling and its influence on the strength
of rigid frames have not yet been systematically studied. However, advanced com-
puter programs for the inelastic out-of-plane behaviour of beam-columns [49–54]
have been developed, and it seems likely that these will be extended in the near
future to rigid-jointed frames.

8.3.8 Out-of-plane design of frames

While there is no general method yet available of designing for flexural–torsional
buckling in rigid frames, design codes imply that the strength formulations for
isolated beam-columns (see Section 7.3.4) can be used in conjunction with the
moments and forces determined from an appropriate elastic in-plane analysis of
the frame.
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A rational design method has been developed [55] for the columns of
two-dimensional building frames in which laterally braced horizontal beams form
plastic hinges. Thus, when plastic analysis is used, columns which do not par-
ticipate in the collapse mechanism may be designed as isolated beam-columns
against flexural–torsional buckling. In later publications [56, 57] the method was
extended so that the occurrence of plastic hinges at one or both ends of the column
(instead of in the beams) could be allowed for. Because the assumption of plastic
hinges at all the beam-column joints is only valid for frames with vertical loads,
the analysis for lateral loads must be carried out independently. A frame analysed
by this method must therefore have an independent bracing or shear wall system
to resist the lateral loads.

A number of current research efforts are being directed towards the extension of
advanced methods of analysing the in-plane behaviour of frames (Section 8.3.5.8)
to include the out-of-plane flexural–torsional buckling effects [52–54]. The
availability of a suitable computer program will greatly simplify the design of two-
dimensional frames in which local buckling is prevented, since such a frame can
be considered to be satisfactory if it can be shown that it can reach an equilibrium
position under the factored design loads.

8.4 Three-dimensional flexural frames

The design methods commonly used when either the frame or its loading is three-
dimensional are very similar to the methods used for two-dimensional frames.
The actions caused by the design loads are usually calculated by allowing for
second-order effects in the elastic analysis of the frame, and then compared with
the design resistances determined for the individual members acting as isolated
beam-columns. In the case of three-dimensional frames or loading, the elastic
frame analysis is three-dimensional, while the design resistances are based on the
biaxial bending resistances of isolated beam-columns (see Section 7.4).

A more rational method has been developed [55, 56] of designing three-
dimensional braced rigid frames for which it could be assumed that plastic hinges
form at all major and minor axis beam ends. This method is an extension of the
method of designing braced two-dimensional frames ([55–57] and Section 8.3.8).
For such frames, all the beams can be designed plastically, while the columns can
again be designed as if independent of the rest of the frame. The method of design-
ing these columns is based on a second-order elastic analysis of the biaxial bending
of an isolated beam-column. Once again, the assumption of plastic hinges at all
the beam ends is valid only for frames with vertical loads, and so an independent
design must be made for the effects of lateral loads.

In many three-dimensional rigid frames, the vertical loads are carried principally
by the major axis beams, while the minor axis beams are lightly loaded and do not
develop plastic hinges at collapse, but restrain and strengthen the columns. In this
case, an appropriate design method for vertical loading is one in which the major
axis beams are designed plastically and the minor axis beams elastically. The chief
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difficulty in using such a method is in determining the minor axis column moments
to be used in the design. In the method presented in [58], this is done by first
making a first-order elastic analysis of the minor axis frame system to determine
the column end moments. The larger of these is then increased to allow for the
second-order effects of the axial forces, the amount of the increase depending on
the column load ratio N/Ncr,z (in which Ncr,z is the minor axis buckling load of the
elastically restrained column) and the end moment ratio βm. The increased minor
axis end moment is then used in a nominal first yield analysis of the column which
includes the effects of initial crookedness.

However, it appears that this design method is erratically conservative [59], and
that the small savings achieved do not justify the difficulty of using it. Another
design method was proposed [60] which avoids the intractable problem of inelastic
biaxial bending in frame structures by omitting altogether the calculation of the
minor axis column moments. This omission is based on the observation that the
minor axis moments induced in the columns by the working loads reduce to zero
as the ultimate loads are approached, and even reverse in sign so that they finally
restrain the column, as shown in Figure 8.9. With this simplification, the moments
for which the column is to be designed are the same as those in a two-dimensional
frame. However, the beneficial restraining effects of the minor axis beams must be
allowed for, and a simple way of doing this has been proposed [60]. For this, the
elastic minor axis stiffness of the column is reduced to allow for plasticity caused
by the axial load and the major axis moments, and this reduced stiffness is used
to calculate the effects of the minor axis restraining beams on the effective length
Lcr of the column. The reduced stiffness is also used to calculate the effective
minor axis flexural rigidity EIeff of the column, and the ultimate strength Nult of
the column is taken as

Nult = π2EIeff /L
2
cr . (8.33)

The results obtained from two series of full-scale three-storey tests indicate that
the predicted ultimate loads obtained by this method vary between 84% and 104%
of the actual ultimate loads.

8.5 Worked examples

8.5.1 Example 1 – buckling of a truss

Problem. All the members of the rigid-jointed triangulated frame shown in
Figure 8.13a have the same in-plane flexural rigidity which is such that
π2EI/L2 = 1. Determine the effective length factor of member 12 and the elastic
in-plane buckling loads of the frame.

Solution. The member 12 is one of the longest compression members and one of
the most heavily loaded, and so at buckling it will be restrained by its adjacent
members. An initial estimate is required of the buckling load, and this can be
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Figure 8.13 Worked examples 1 and 4.

obtained after observing that the end 1 will be heavily restrained by the tension
member 14 and that the end 2 will be moderately restrained by the short lightly
loaded compression member 24. Thus the initial estimate of the effective length
factor of member 12 in this braced frame should be closer to the rigidly restrained
value of 0.5 than to the unrestrained value of 1.0.

Accordingly, assume kcr12 = 0.70.
Then, by using equation 8.2, Ncr12 = π2EI/(0.70L)2 = 2.04,

and Qcr = Ncr12/3.00 = 0.68
Thus N23 = 1.70, N24 = 0.59, N14 = −1.77.
Using the form of equation 3.45, α12 = 2EI/L. Using Figure 3.19,

α23 = 3EI

L

[
1 − 1.70

π2EI/L2

]
= −2.10

EI

L
,

α24 = 4EI

0.58L

[
1 − 0.59

π2EI/(0.58L)2

]
= 6.22

EI

L
,

α14 = 4EI

1.16L

[
1 − (−1.77)

2π2EI/(1.16L)2

]
= 7.55

EI

L
.

Using equation 3.45,

k1 = 2/(0.5 × 7.55 + 2) = 0.346

k2 = 2/{0.5 × (−2.10 + 6.22)+ 2} = 0.493

Using Figure 3.21a, kcr12 = 0.65
The calculation can be repeated using kcr12 = 0.65 instead of the initial estimate

of 0.70, in which case the solution kcr12 = 0.66 will be obtained. The corresponding
frame buckling loads are Qcr = {π2EI/(0.66L)2}/3 = 0.77.
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8.5.2 Example 2 – buckling of a braced frame

Problem. Determine the effective length factors of the members of the braced
frame shown in Figure 8.3a, and estimate the frame buckling load factor αcr .

Solution.
For the vertical member 13, using equation 8.5,

k1 = 1.0 (theoretical value for a frictionless hinge).

Using the form of equation 3.45 and Figure 3.19,

k3 = 2 × 2210 × 104/10 000

0.5 × 4 × 8503 × 104/12 000 + 2.0 × 2210 × 104/10 000
= 0.238

kcr13 = 0.74 (using Figure 3.21a).

(kcr13 = 0.73 if a base stiffness ratio of 0.1 is used so that

k1 = (2 × 2210 × 104/10 000)/(2 × 1.1 × 2210 × 104/10 000) = 0.909)

Ncr13 = π2 × 210 000 × 2210 × 104/(0.74 × 10 000)2N = 836.5 kN

αcr13 = 836.5/71.6 = 11.7

For the horizontal member 35, using equation 8.5,

k3 = 2 × 8503 × 104/12 000

0.5 × 3 × 2210 × 104/10 000 + 2 × 8503 × 104/12 000
= 0.810.

k5 = 0 (theoretical value for a fixed end).

kcr35 = 0.66 (using Figure 3.21a).

(kcr35 = 0.77 if a base stiffness ratio of 1.0 is used so that k5 = 0.5)

Ncr35 = π2 × 210 000 × 8503 × 104

(0.66 × 12 000)2
N = 2809.6 kN

αcr35 = 2809.6/25.3 = 111 > 11.7 = αcr13

∴ αcr = 11.7 (compare with the computer analysis value of αcr = 11.32 given
in Figure 8.3d).

A slightly more accurate estimate might be obtained by using equation 8.5 with
αr obtained from Figure 3.19 as

αr = 1 − 25.3 × 103

(2 × π2 × 210 000 × 8503 × 104/12 0002)
= 0.990
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so that

k3 = 2 × 2210 × 104/10000

0.5 × 4 × 0.990 × 8503 × 104/12 000 + 2 × 2210 × 104/10 000

= 0.240

but kcr13 is virtually unchanged, and so therefore is αcr .

8.5.3 Example 3 – buckling of an unbraced two-storey frame

Problem. Determine the storey buckling load factors of the unbraced two-storey
frame shown in Figure 8.4a, and estimate the frame buckling load factor, by
using

a. the storey deflection method of equation 8.8, and
b. the member buckling load method of equation 8.7.

(a) Solution using equation 8.8
For the upper storey, using the first-order analysis results shown in Figure 8.4,

αcr,su = 10

(20 + 40 + 20)
× 5000

(121.4 − 85.5)
= 17.41

For the lower storey, using the first-order analysis results shown in Figure 8.4,

αcr,sl = (10 + 20)

(20 + 40 + 20 + 40 + 80 + 40)
× 5000

85.5
= 7.31 < 17.41 = αcr,su

∴ αcr = 7.31 (compare with the computer analysis value of αcr = 6.905 given in
Figure 8.4d).
(b) Solution using equation 8.7

For the upper-storey columns, using equation 8.4,

kT = 2210 × 104/5000

2210 × 104/5000 + 1.5 × 3415 × 104/12 000
= 0.508

kB = 2210 × 104/5000 + 5259 × 104/5000

2210 × 104/5000 + 5259 × 104/5000 + 1.5 × 14136 × 104/12 000

= 0.458

kcr,u = 1.44 (using Figure 3.21b)

Ncr,u = π2 × 210 000 × 2210 × 104/(1.44 × 5000)2N = 883.6 kN
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For the lower-storey columns, using equation 8.4,

kT = 2210 × 104/5000 + 5259 × 104/5000

2210 × 104/5000 + 5259 × 104/5000 + 1.5 × 14136 × 104/12 000

= 0.458

kB = ∞ (theoretical value for a frictionless hinge).

kcr,l = 2.4 (using Figure 3.21b).

Ncr,l = π2 × 210 000 × 5259 × 104/(2.4 × 5000)2N = 756.9 kN

Using equation 8.7 and the axial forces of Figure 8.4f,

αcr,su = 2 × 883.6/5.0

(37.6 + 42.4)/5.0
= 22.1

αcr,sl = 2 × 756.9/5.0

(103.3 + 136.7)/5.0
= 6.31 < 22.1 = αcr,su

∴ αcr = 6.31 (compare with the storey deflection method value of αcr = 7.31
calculated above and the computer analysis value of αcr = 6.905 given in
Figure 8.4d).

8.5.4 Example 4 – buckling of unbraced single storey frame

Problem. Determine the effective length factor of the member 12 of the unbraced
frame shown in Figure 8.13b (and for whichπ2EI/L2 = 1), and the elastic in-plane
buckling loads.

Solution. The sway member 12 is unrestrained at end 1 and moderately restrained
at end 2 by the lightly loaded member 23. Its effective length factor is therefore
greater than 2, the value for a rigidly restrained sway member (see Figure 3.15e).
Accordingly, assume kcr,12 = 2.50.

Then, by using equation 8.2, Ncr,12 = π2EI/(2.50L)2 = 0.16,

and Qcr = Ncr,12/5 = 0.032,

and N23 = Qcr = 0.032.

Using Figure 3.19,

αb23 = {6 × (2EI)/(2L)}
(

1 − 0.032

4π2(2EI)/(2L)2

)
= 5.904EI/L
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and using equation 3.49,

k2 = 6EI/L

1.5 × 5.904EI/L + 6EI/L
= 0.404

k1 = 1.0 (theoretical value for a frictionless hinge).

Using Figure 3.21b, kcr,12 = 2.3
The calculation can be repeated using kcr,12 = 2.3 instead of the initial estimate

of 2.50, in which case the solution kcr,12 = 2.3 will be obtained. The corresponding
frame buckling loads are given by

Qcr = π2EI/(2.3L)2

5
= 0.038.

8.5.5 Example 5 – buckling of a portal frame

Problem. A uniform section pinned-base portal frame is shown in Figure 8.14 with
its member axial compression forces [42]. Determine the elastic buckling load
factor of the frame.
Solution.

Lr = √
(12 0002 + 30002) = 12 369 mm

The average axial forces are

Nc = (51.4 + 69.1)/2 = 60.3 kN,

Nr = (58.1 + 48.0 + 43.0 + 53.0)/4 = 50.5 kN.

For a pinned base portal frame, C = 1.2 (8.11)

58.1 

51.4 43.0 48.0 69.1 

69.1 51.4 

53.0 

12 000

356 × 171 UB 45, I = 12 066 cm4

12 000

3000

4000
3

Figure 8.14 Worked example 5.
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For antisymmetric buckling,

R = (12 080 × 104/4000)/(12 080 × 104/12 369) = 3.09 (8.13)

ρc = 3/(10 × 3.09 + 12) = 0.0699 (8.12a)

ρr = 1 (8.12b)

Ncr,c = π2 × 210 000 × 12 080 × 104/40002N = 15 648 kN (8.10)

Ncr,r = π2 × 210 000 × 12 080 × 104/12 3692N = 1637 kN (8.10)

αcr,as =
{(

60.3

0.0699 × 15 648

)1.2

+
(

50.5

1 × 1637

)1.2
}−1/1.2

= 13.0 (8.9)

For symmetric buckling,

RH = (12 369/4000)× (3000/12 369) = 0.75 (8.15)

ρc = 4.8 + 12 × 3.09 × (1 + 0.75)

2.4 + 12 × 3.09 × (1 + 0.75)+ 7 × 3.092 × 0.752

= 0.664 (8.14a)

ρr = 12 × 3.09 + 8.4 × 3.09 × 0.75

12 × 3.09 + 4
= 1.377 (8.14b)

αcr,s =
{(

60.3

0.664 × 15 648

)1.2

+
(

50.5

1.377 × 1637

)1.2
}−1/1.2

= 38.4

> 13.0 = αcr,as (8.9)

and so the frame buckling factor isαcr = 13.0. This is reasonably close to the value
of 13.9 predicted by a computer elastic frame buckling analysis program [18].

8.5.6 Example 6 – moment amplification
in a braced frame

Problem. Determine the amplified design moments for the braced frame shown in
Figure 8.3. (Second-order effects are rarely important in braced members which
have significant moment gradients. It can be inferred from Clause 5.2.2(3)b of EC3
that second-order effects need not be considered in braced frames. Nevertheless,
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an approximate method of allowing for second-order effects by estimating the
amplified design moments is illustrated below.)

Solution. For the vertical member 123, the first-order moments are M1 = 0,
M2 = 23.5 kNm, M3 = −53.0 kNm, and for these, the method of [28] leads to
βm = 0.585, and so using equation 8.21,

cm = 0.6 − 0.4 × 0.585 = 0.366

Using Ncr,13 = 836.5 kN from Section 8.5.2, and using equations 8.19 and 8.20,

MEd,3 = 0.366 × 53.0

1 − 71.6/836.5
= 21.2 kNm < 53.0 kNm = M3

and so MEd,3 = 53.0 kNm. This is close to the second-order moment of 53.6 kNm
determined using the computer program of [18].

For the horizontal member 345, the first-order moments are M3 = −53.0 kNm,
M4 = 136.6 kNm, M5 = −153.8 kNm, and for these, the method of [28] leads to
βm = 0.292, and so

cm = 0.6 − 0.4 × 0.292 = 0.483

Using Ncr35 = 2809.6 kN from Section 8.5.2, and using equations 8.19, and 8.20,

MEd,5 = 0.483 × 153.8

1 − 25.3/2809.6
= 75.0 kNm < 153.8 kNm = M5

and so MEd,5 = 153.8 kNm. This is close to the second-order moment of 154.6 kNm
determined using the computer program of [18].

8.5.7 Example 7 – moment amplification in a portal frame

Problem. The maximum first-order elastic moment in the portal frame of
Figure 8.14 whose buckling load factor was determined in Section 8.5.5 is
151.8 kNm [26]. Determine the amplified design moment.

Solution. Using the elastic frame buckling load factor determined in Section 8.5.5
of αcr,s = 13.0 and using equations 8.19 and 8.22,

MEd = 151.8

1 − 1/13.0
= 164.5 kNm

which is about 6% higher than the value of 155.4 kNm obtained using the computer
program of [18].

8.5.8 Example 8 – moment amplification
in an unbraced frame

Problem. Determine the amplified design moments for the unbraced frame shown
in Figure 8.4.
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Solution. For the upper-storey columns, using the value of αcr,su = 22.1
determined in Section 8.5.3(b) and using equation 8.23,

δsu = 1/(1 − 1/22.1) = 1.047, and so

MEd,8 = 1.047 × 62.5 = 65.5 kNm,

which is close to the second-order moment of 64.4 kNm determined using the
computer program of [18].

For the lower-storey columns, using the value of αcr,sl = 6.31 determined in
Section 8.5.3(b) and using equation 8.23,

δsl = 1/(1 − 1/6.31) = 1.188, and so

MEd,76 = 1.188 × 119.3 = 141.8 kNm,

which is 9% higher than the value of 130.5 kNm determined using the computer
program of [18].

For the lower beam, the second-order end moment MEd,74 may be approximated
by adding the second-order end moments MEd,76 and MEd,78, so that

MEd,74 = 141.8 + 53.5/(1 − 1/22.1) = 197.8 kNm,

which is 7% higher than the value of 184.7 kNm determined using the computer
program of [18].

Slightly different values of the second-order moments are obtained if the values
of αcr,slu and αcr,sl determined by the storey deflection method in Section 8.5.3(a)
are used.

8.5.9 Example 9 – plastic analysis of a braced frame

Problem. Determine the plastic collapse load factor for the braced frame shown in
Figure 8.3, if the members are all of S275 steel.
Solution. For the horizontal member plastic collapse mechanism shown in
Figure 8.3e,

δW = 80αph × (δθh × 6.0) = 480αphδθh for a virtual rotation δθhof 34,

and

δU = (85.0 × δθh)+ (171.3 × 2δθh)+ (171.3 × δθh) = 598.9 δθh

so that

αph = 598.9/480 = 1.248.
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Checking for reductions in Mp using equation 7.17,

Mpr13 = 1.18 × 85.0 × {
1 − 89.5/(275 × 47.1 × 102/103)

}
= 93.4 kNm > 85.0 kNm = Mp13

and so there is no reduction in Mp for member 13.

Mpr35 = 1.18 × 171.3 × {
1 − 32.1/(275 × 51.3 × 102/103)

}
= 197.5 kNm > 171.3 kNm = Mp35

and so there is no reduction in Mp for member 35.
Therefore αph = 1.248.
For a plastic collapse mechanism in the vertical member with a frictionless hinge

at 1 and plastic hinges at 2 and 3,

αpv = 85.0 × 2 × δθv + 85.0 × δθv

20 × 5.0 × δθv

= 2.55 > 1.248 = αph

and so

αp = 1.248.

8.5.10 Example 10 – plastic analysis of an unbraced frame

Problem. Determine the plastic collapse load factor for the unbraced frame shown
in Figure 8.4, if the members are all of S275 steel.
Solution. For the beam plastic collapse mechanism shown in Figure 8.4e,

δW = 40αp × 6δθ = 240αpδθ

for virtual rotations δθ of the half beams 35 and 58, and

δU = (84.2 × δθ)+ (84.2 × 2δθ)+ (84.2 × δθ) = 336.8δθ

so that

αp = 36.8/240 = 1.403.

The frame is only partially determinate when this mechanism forms, and so the
member axial forces cannot be determined by statics alone. The axial force N358

determined by a computer first-order plastic analysis (18) is N358 = 33.8 kN and
the axial force ratio is (N/Ny)358 = 33.8/(275 × 32.0 × 102/103) = 0.0384,
which is less than 0.15, the approximate value at which N/Ny begins to reduce
Mp, and so αp is unchanged at αp = 1.403.
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The collapse load factors calculated for the other possible mechanisms of

• lower beam (αp = 2 × (155.9 + 85.0 + 246.4)/(80 × 6) = 2.030)
• lower-storey sway (αp = 2 × 155.9/(30 × 5) = 2.079)
• upper-storey sway (αp = 2 × (84.2 + 85.0)/(10 × 5) = 6.768)
• combined beam sway

(
αp = 2 × (84.2 + 84.2 + 246.4 + 85.0 + 155.9)

{(40 + 80)× 6 + (20 × 5 + 10 × 10)} = 1.425

)

are all greater than 1.403, and so αp = 1.403.

8.5.11 Example 11 – elastic member design

Problem. Check the adequacy of the lower-storey column 67 (of S275 steel) of the
unbraced frame shown in Figure 8.4. The column is fully braced against deflection
out of the plane of the frame and twisting.

Design actions.
The first-order actions are N67 = 136.7 kN and M76 = 119.3 kNm (Figure 8.4)
and the amplified moment is 141.8 kNm (Section 8.5.8).

HEd = 10 + 20 = 30 kN and

VEd = (20 + 40 + 20)+ (40 + 80 + 40) = 240 kN.

HEd/VEd = 30/240 = 0.125 < 0.15, 5.3.2(4)B

and so the effects of sway imperfections should be included.

φ0 = 1/200 5.3.2(3)

αh = 2/
√

10 = 0.632 < 2/3 and so αh = 2/3 5.3.2(3)

m = 1 (one of the columns will have less than the average force), 5.3.2(3)

αm = √{0.5(1 + 1/1)} = 1.0, and 5.3.2(3)

φ = (1/200)× (2/3)× 1.0 = 0.00333 5.3.2(3)

The increased horizontal forces are 5.3.2(7)

10 + 0.00333 × 80 = 10.27 kN for the upper storey, and
20 + 0.00333 × 240 = 20.80 kN for the lower storey.

If the frame is reanalysed for these increased forces, then the axial force will
increase from 136.7 to NEd = 137.2 kN, and the moment from 119.3 × 1.188 =
141.8 kNm to My,Ed = 121.9 × 1.188 = 144.8 kNm.
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Section resistance.

tf = 12.5 mm, fy = 275 N/mm2 EN10025-2

ε =
√
(235/275) = 0.924 T5.2

cf /(tf ε) = (204.3/2 − 7.9/2 − 10.2)/(12.5 × 0.924) = 7.62 < 9 T5.2

and the flange is Class 1. T5.2
The worst case for the web classification is when the web is fully plastic in

compression, for which

cw/(twε) = (206.2 − 2 × 12.5 − 2 × 10.2)/(7.9 × 0.924) = 22.0 < 33
T5.2

and the web is Class 1. T5.2
Thus the section is Class 1.

γM0 = 1.0 6.1

Nc,Rd = 66.3 × 102 × 275/1.0 N = 1823 kN = Npl,Rd 6.2.4(2)

0.25Npl,Rd = 0.25 × 1826 = 455.8 kN > 137.2 kN = NEd , 6.2.9.1(4)

0.5hwtwfy = 0.5(206.2 − 2 × 12.5)× 7.9 × 275 N = 196.8 kN 6.2.9.1(4)

> 137.2 kN = NEd ,

and so no allowance need be made for the effect of axial force on the plastic
resistance moment. 6.2.9.1(4)

MN ,Rd = Mpl,Rd = 567 × 103 × 275/1.0 Nmm

= 155.9 kNm > 144.8 kNm = MEd 6.2.9.1(5)

and the section resistance is adequate. 6.2.9.1(2)

Member resistance.
Because the member is continuously braced out-of-plane, beam lateral buckling

and column minor axis and torsional buckling need not be considered.
Thus Mz,Ed = 0,χLT = 1.0, and

λ0 = 0, CmLT = 1.0, aLT = 0, and bLT = 0 TA.1

Lcr = 5000 5.2.2.(7b)
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Ncr = π2 × 210 000 × 5259 × 104/50002 N = 4360 kN

h

b
= 206.2/204.3 = 1.009 < 1.2, tf = 12.5 < 100, and so for a S275 steel

UC buckling about the y axis, use buckling curve b. T6.2

α = 0.34 T6.1

λy =
√
(66.3 × 102 × 275)/(4360 × 103) = 0.647 6.3.1.2(1)

Φ = 0.5 × [1 + 0.34 × (0.647 − 0.2)+ 0.6472] = 0.785 6.3.1.2(1)

χy = 1

0.785 + √
0.7852 − 0.6472

= 0.813 6.3.1.2(1)

Using Annex A,

µy = 1 − 137.2/4360

1 − 0.813 × 137.2/4360
= 0.994 TA.1

ψy = 0/144.9 = 0 TA.2

Cmy = Cmy,0 = 0.79 + 0.21 × 0 + 0.36 × (0 − 0.33)× 137.2/4360 TA.2

= 0.786

wy = 567 × 103/510 × 103 = 1.112 < 1.5 TA.1

λmax = λy = 0.647 TA.1

NRk = Npl,Rd × γM0 = 1823 × 1.0 = 1823 kN 5.3.2(11)

γM1 = 1.0 6.1

npl = 137.2/(1823/1.0) = 0.0753 TA.1

Cyy = 1 + (1.112 − 1)

[(
2 − 1.6

1.112
× 0.7852 × 0.647 − 1.6

1.112

×0.7852 × 0.6472) × 0.0753 − 0
] = 1.009 TA.1

kyy = 0.785 × 1.0 × 0.994

1 − 137.2/4360
× 1

1.009
= 0.798 TA.1

Substituting into equation 6.61 of EC3,

137.2

0.813 × 1823
+ 0.798 × 144.8

1.0 × 155.9
= 0.834 < 1.0 6.3.3(4)

and so the member resistance is adequate.
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Alternatively, using Annex B,

Cmy = 0.9 TB.3

kyy = 0.9

{
1 + (0.647 − 0.2)

137.2

0.813 × 1823/1.0

}
= 0.937 TB.1

Substituting into equation 6.61 of EC3,

137.2

0.813 × 1823
+ 0.937 × 144.8

1.0 × 155.9
= 0.963 < 1.0 6.3.3(4)

and so the member resistance is adequate.

8.5.12 Example 12 – plastic design of a braced frame

Problem. Determine the plastic design resistance of the braced frame shown
in Figure 8.3.

Solution. Using the solution of Section 8.5.2,

αcr = 11.7 < 15 5.2.1(3)

and so EC3 does not allow first-order plastic analysis to be used for this frame,
unless it is clad. The restriction of Clause 5.2.1(3) of EC3 appears to be unnec-
essarily severe in this case, since the second-order effects are dominated by the
buckling of the column 123, and will have little effect on the plastic collapse
mechanism of the beam 345.

If first-order plastic analysis were allowed for this frame, then using the solution
of Section 8.5.9,
αp = 1.248 > 1.0, and the structure would appear to be satisfactory.

8.5.13 Example 13 – plastic design of an unbraced frame

Problem. Determine the plastic design resistance of the unbraced frame shown in
Figure 8.4.

Solution. Using the solution of Section 8.5.3,

αcr = 6.31 < 10 5.2.1(3)

and so EC3 does not allow first-order plastic analysis to be used for this frame.

8.6 Unworked examples

8.6.1 Example 14 – truss design

The members of the welded truss shown in Figure 8.15a are all UC sections of
S275 steel with their webs perpendicular to the plane of the truss. The member
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1 2 3

4 5 6

8.0

Member Section I

8.0 8.0 8.0

(a) Truss and loads
(m, kN)

8.0

100 100 100

f(cm4) (N/mm2)z A(cm2) y

14, 36 305 305 UC 97 7308 123 275
45, 65 12569 201 265
12, 32
42, 62

7308 123 275
7308 123 275

Member M (kNm)L

14 16.8 –68.8 –217.4
45
56
12

–150.2
249.8
–16.8

42 81.5

N (kN)M (kNm)R

249.8 –172.7
–150.2 –172 .7

8.9 159.1
–40.6 8.5

(b) Member
properties

(c) Elastic
actions

305 305 UC 158
305 305 UC 97
305 305 UC 97

×
×
×
×

Figure 8.15 Example 14.

properties and the results of a first-order elastic analysis of the truss under the
design loads are shown in Figure 8.15b and c.

Determine:

(a) the effective length factors kcr of the compression members and the frame
elastic buckling load factor αcr ,

(b) the amplified first-order design moments MEd for the compression members,
(c) the adequacy of the members for the actions determined by elastic analysis,
(d) the plastic collapse load factor αp, and
(e) the adequacy of the truss for plastic design.

8.6.2 Example 15 – unbraced frame design

The members of the unbraced rigid-jointed two-storey frame shown in
Figure 8.16a are all of S275 steel. The member properties and the results of
a first-order elastic analysis of the frame under its design loads are shown in
Figure 8.16b and c.

Determine:

(a) the column effective length factors kcr , the storey buckling load factors αcr,s,
and the frame buckling load factor αcr ,

(b) the amplified first-order design moments MEd for the columns,
(c) the adequacy of the members for the actions determined by elastic analysis,
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Member Section I

(a) Frame and loads (m, kN)

A f(cm ) (cm ) (N/mm )y y

1–3, 10–12 152 × 152 UC 37
305 × 165 UB 40
254 × 102 UB 25

2210 47.1 275
2–11 8503 51.3 275

(c) Member properties

(b) Elastic actions

3–12 3415 32.0 275

1

2

3

4

5

6

7

8

9

10

11

12

5.0

5.0

3.0 3.0 3.0 3.0

20

10 20 20 20 10

20 40 40 40 20

10

Member M (kNm)L

1–2

N (kN)M (kNm)R

10–11
2–3

11–12
2–4
4–6
6–8
8–11
3–5
5–7
7–9
9–12

–18.8
–65.4
54.6

–77.4
–68.3
89.5

127.4
45.2

–48.8
34.5
57.7
20.9

–13.8
79.5

–48.8
75.9
89.5

127.4
45.2

–156.9
34.5
57.7
20.9

–75.9

–110.4
–129.7

–37.7
–42.3

1.7
1.7
1.7
1.7

–30.7
–30.7
–30.7
–30.7

4 2 2

Figure 8.16 Example 15.

(d) the plastic collapse load factor αp, and
(e) the adequacy of the frame for plastic design.
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Chapter 9

Joints

9.1 Introduction

Connections or joints are used to transfer the forces supported by a structural
member to other parts of the structure or to the supports. They are also used
to connect braces and other members which provide restraints to the structural
member. Although the terms connections and joints are often regarded as having
the same meaning, the definitions of EC3-1-8 [1] are slightly different, as follows.
A connection consists of fasteners such as bolts, pins, rivets, or welds, and the
local member elements connected by these fasteners, and may include additional
plates or cleats. A joint consists of the zone in which the members are connected,
and includes the connection as well as the portions of the member or members at
the joint needed to facilitate the action being transferred.

The arrangement of a joint is usually chosen to suit the type of action (force
and/or moment) being transferred and the type of member (tension or compres-
sion member, beam, or beam-column) being connected. The arrangement should
be chosen to avoid excessive costs, since the design, detailing, manufacture, and
assembly of a joint is usually time consuming; in particular the joint type has a
significant influence on costs. For example, it is often better to use a heavier mem-
ber rather than stiffeners since this will reduce the number of processes required
for its manufacture.

A joint is designed by first identifying the force transfers from the member
through the components of the joint to the other parts of the structure. Each com-
ponent is then proportioned so that it has sufficient strength to resist the force that
it is required to transmit. General guidance on joints is given in [2–11].

9.2 Joint components

9.2.1 Bolts

Several different types of bolts may be used in structural joints, including ordinary
structural bolts (i.e. commercial or precision bolts and black bolts), and high-
strength bolts. Turned close tolerance bolts are now rarely used. Bolts may transfer
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Figure 9.1 Use of bolts in joints.

loads by shear and bearing, as shown in Figure 9.1a, by friction between plates
clamped together as shown in the preloaded friction-grip joint of Figure 9.1b, or
by tension as shown in Figure 9.1c. The shear, bearing, and tension capacities
of bolts and the slip capacities of preloaded friction-grip joints are discussed in
Section 9.6.

The use of bolts often facilitates the assembly of a structure, as only very simple
tools are required. This is important in the completion of site joints, especially
where the accessibility of a joint is limited, or where it is difficult to provide
the specialised equipment required for other types of fasteners. On the other hand,
bolting usually involves a significant fabrication effort to produce the bolt holes and
the associated plates or cleats. In addition, special but not excessively expensive
procedures are required to ensure that the clamping actions required for preloaded
friction-grip joints are achieved. Precautions may need to be taken to ensure that the
bolts do not become undone, especially in situations where fluctuating or impact
loads may loosen them. Such precautions may involve the provision of special
locking devices or the use of preloaded high-strength bolts. Guidance on bolted
(and on riveted) joints is given in [2–11].

9.2.2 Pins

Pin joints used to be provided in some triangulated frames where it was thought
to be important to try to realise the common design assumption that these frames
are pin-jointed. The cost of making a pin joint is high because of the machining
required for the pin and its holes, and also because of difficulties in assembly. Pins
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are used in special architectural features where it is necessary to allow relative
rotation to occur between the members being connected. In addition, a joint which
requires a very large diameter fastener often uses a pin instead of a bolt. Guidance
on the design of pin joints is given in Clause 3.13 of EC3-1-8 [1].

9.2.3 Rivets

In the past, hot-driven rivets were extensively used in structural joints. They were
often used in the same way as ordinary structural bolts are used in shear and bearing
and in tension joints. There is usually less slip in a riveted joint because of the
tendency for the rivet holes to be filled by the rivets when being hot-driven. Shop-
riveting was cheaper than site riveting, and for this reason shop-riveting was often
combined with site-bolting. However, riveting has been replaced by welding or
bolting, except in some historical refurbishments. Rivets are treated in a similar
fashion to bolts in EC3-1-8 [1].

9.2.4 Welds

Structural joints between steel members are often made by arc-welding techniques,
in which molten weld metal is fused with the parent metal of the members or com-
ponent plates being connected at a joint. Welding is used extensively in fabricating
shops where specialised equipment is available and where control and inspection
procedures can be readily exercised, ensuring the production of satisfactory welds.
Welding is often cheaper than bolting because of the great reduction in the prepa-
ration required, while greater strength can be achieved, the members or plates no
longer being weakened by bolt holes, and the strength of the weld metal being supe-
rior to that of the material connected. In addition, welds are more rigid than other
types of load-transferring fasteners. On the other hand, welding often produces
distortion and high local residual stresses, and may result in reduced ductility,
while site welding may be difficult and costly.

Butt welds, such as that shown in Figure 9.2a, may be used to splice tension
members. A full penetration weld enables the full strength of the member to be
developed, while the butting together of the members avoids any joint eccentric-
ity. Butt welds often require some machining of the elements to be joined. Special
welding procedures are usually needed for full strength welds between thick mem-
bers to control the weld quality and ductility, while special inspection procedures
may be required for critical welds to ensure their integrity. These butt welding
limitations often lead to the selection of joints which use fillet welds.

Fillet welds (see Figure 9.2b) may be used to connect lapped plates, as in the
tension member splice (Figure 9.2c), or to connect intersecting plates (Figure 9.2d).
The member force is transmitted by shear through the weld, either longitudinally
or transversely. Fillet welds, although not as efficient as butt welds, require little
if any preparation, which accounts for their extensive use. They also require less
testing to demonstrate their integrity.
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9.2.5 Plates and cleats

Intermediate plates (or gussets), fin (or side) plates, end plates, and angle or tee
cleats are frequently used in structural joints to transfer the forces from one member
to another. Examples of flange cleats and plates are shown in the beam-to-column
joints of Figure 9.3, and an example of a gusset plate is shown in the truss joint of
Figure 9.4b. Stiffening plates, such as the seat stiffener (Figure 9.3b) and the col-
umn web stiffeners (Figure 9.3c), are often used to help transfer the forces in a joint.

Plates are comparatively strong and stiff when they transfer the forces by
in-plane actions, but are comparatively weak and flexible when they transfer the
forces by out-of-plane bending. Thus the angle cleat and seat shown in Figure 9.3a
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are flexible, and allow the relative rotation of the joint members, while the flange
plates and web stiffeners (Figure 9.3c) are stiff, and restrict the relative rotation.

The simplicity of welded joints and their comparative rigidity has often resulted
in the omission of stiffening plates when they are not required for strength purposes.
Thus the rigid joint of Figure 9.3c can be greatly simplified by butt welding the
beam directly onto the column flange and by omitting the column web stiffeners.
However, this omission will make the joint more flexible since local distortions
of the column flange and web will no longer be prevented.

9.3 Arrangement of joints

9.3.1 Joints for force transmission

In many cases, a joint is only required to transmit a force, and there is no
moment acting on the group of connectors. While the joint may be capable of
also transmitting a moment, it will be referred to as a force joint.

Force joints are generally of two types. For the first, the force acts in the con-
nection plane formed by the interface between the two plates connected, and the
connectors between these plates act in shear, as in Figure 9.1a. For the second
type, the force acts out of the connection plane and the connectors act in tension,
as in Figure 9.1c.

Examples of force joints include splices in tension and compression members,
truss joints, and shear splices and joints in beams. A simple shear and bearing
bolted tension member splice is shown in Figure 9.1a, and a friction-grip bolted
splice in Figure 9.1b. These are simpler than the tension bolt joint of Figure 9.1c,
and are typical of site joints.

Ordinary structural and high-strength bolts are used in clearance holes (often
2 or 3 mm oversize to provide erection tolerances) as shown in Figure 9.1a. The
hole clearances lead to slip under service loading, and when this is undesirable, a
preloaded friction-grip joint such as that shown in Figure 9.1b may be used. In this
joint, the transverse clamping action produced by preloading the high-strength
bolts allows high frictional resistances to develop and transfer the longitudinal
force. Preloaded friction-grip joints are often used to make site joints which need
to be comparatively rigid.

The butt and fillet welded splices of Figure 9.2a and c are typical of shop joints,
and are of high rigidity. While they are often simpler to manufacture under shop
conditions than the corresponding bolted joints of Figure 9.1, special care may
need to be taken during welding if these are critical joints.

The truss joint shown in Figure 9.4b uses a gusset plate in order to provide
sufficient room for the bolts. The use of a gusset plate is avoided in the joint of
Figure 9.4a, while end plates are used in the joint of Figure 9.4c to facilitate the
field-bolted connection of shop-welded assemblies.

The beam web shear splice of Figure 9.5a shows a typical shop-welded and
site-bolted arrangement. The common simple joint between a beam and column
shown in Figure 9.3a is often considered to transmit only shear from the beam to
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the column flange. Other examples of joints of this type are shown by the beam-
to-beam joints of Figure 9.6a and b. Common arrangements of beam splices are
given in [2–9] and discussed in Sections 9.5.8 and 9.5.9.

9.3.2 Joints for moment transmission

While it is rare that a real joint transmits only a moment, it is not uncommon that the
force transmitted by the joint is sufficiently small for it to be neglected in design.
Examples of joints which may be used when the force to be transmitted is negligible
include the beam moment splice shown in Figure 9.5b which combines site-bolting
with shop-welding, and the welded moment joint of Figure 9.6c. A moment joint is
often capable of transmitting moderate forces, as in the case of the beam-to-column
joint shown in Figure 9.3c.

9.3.3 Force and moment joints

A force and moment joint is required to transmit both force and moment, as
in the beam-to-column joint shown in Figure 9.7. Other examples include the
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semi-rigid beam-to-column connection of Figure 9.3b, the full-strength beam
splice of Figure 9.5c, and the beam joint of Figure 9.6c. Common beam-to-column
joints are given in [2–11], and are discussed in Section 9.5.

In some instances, joints may actually transfer forces or moments which are
not intended by the designer. For example, the cleats shown in Figure 9.3a may
transfer some horizontal forces to the column, even though the beam is designed
as if simply supported, while a similar situation occurs in the shear splice shown
in Figure 9.5a.

9.4 Behaviour of joints

9.4.1 Joints for force transmission

When shear and bearing bolts in clearance holes are used in an in-plane force joint,
there is an initial slip when the shear is first applied to the joint as some of the
clearances are taken up (Figure 9.8). The joint then becomes increasingly stiff as
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more of the bolts come into play. At higher forces, the more highly loaded bolts
start to yield, and the joint becomes less stiff. Later, a state may be reached in
which each bolt is loaded to its maximum capacity.

It is not usual to analyse this complex behaviour, and instead it is commonly
assumed that equal size bolts share equally in transferring the force as shown in
Figure 9.9b (except if the joint is long), even in the service load range. It is shown
in Section 9.9.1 that this is the case if there are no clearances and all the bolts
fit perfectly, and if the members and connection plates act rigidly and the bolts
elastically. If, however, the flexibilities of the joint component members and plates
are taken into account, then it is found that the forces transferred are highest in
the end bolts of any line of bolts parallel to the joint force and lowest in the centre
bolts, as shown in Figure 9.9c. In long bolted joints, the end bolt forces may be
so high as to lead to premature failure (before these forces can be redistributed by
plastic action) and the subsequent ‘unbuttoning’ of the joint.

Shear and bearing joints using close tolerance bolts in fitted holes behave in a
similar manner to connections with clearance holes, except that the bolt slips are
greatly reduced. (It was noted earlier that fitted close tolerance bolts are now rarely
used.) On the other hand, slip is not reduced in preloaded friction-grip bolted shear
joints, but is postponed until the frictional resistance is overcome at the slip load
as shown in Figure 9.8. Again, it is commonly assumed that equal size bolts share
equally in transferring the force.

This equal sharing of the force transfer is also often assumed for tension force
joints in which the applied force acts out of the connection plane. It is shown in
Section 9.9.2 that this is the case for joints in which the plates act rigidly and the
bolts act elastically.

Welded force joints do not slip, but behave as if almost rigid. Welds are often
assumed to be uniformly stressed, whether loaded transversely or longitudinally.
However, there may be significantly higher stresses at the ends of long welds
parallel to the joint, just as there are in the case of long bolted joints.
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Due to the great differences in the stiffnesses of joints using different types of
connectors, it is usual not to allow the joint force to be shared between slip and
non-slip connectors, and instead, the non-slip connectors are required to transfer
all the force. For example, when ordinary site-bolting is used to hold two members
in place at a joint which is subsequently site welded, the bolts are designed for
the erection conditions only, while the welds are designed for the final total force.
However, it is rational and generally permissible to share the joint force between
welds and preloaded friction-grip bolts which are designed against slip, and this
is allowed in EC3-1-8 [1].

On the other hand, it is always satisfactory to use one type of connector to
transfer the complete force at one part of a joint and a different type at another
part. Examples of this are shown in Figure 9.5a and b, where shop welds are used
to join each connection plate to one member and field bolts to join it to the other.

9.4.2 Joints for moment transmission

9.4.2.1 General

Although a real connection is rarely required to transmit only a moment, the
behaviour of a moment joint may usefully be discussed as an introduction to the
consideration of joints which transmit both force and moment and to the component
method of joint design used in EC3-1-8 [1].

The idealised behaviour of a moment joint is shown in Figure 9.10, which ignores
any initial slip or taking up of clearances. The characteristics of the joint are the
design moment resistance Mj,Rd , the design rotational stiffness Sj, and the rotation
capacity φCd . These characteristics are related to those of the individual compo-
nents of the joint. For most joints, it is difficult to determine their moment-rotation
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characteristics theoretically, owing to the uncertainties in modelling the various
components of the joint, even though a significant body of experimental data is
available.

EC3-1-8 uses a component method of moment joint design, in which the charac-
teristics of a joint can be determined from the properties of its basic components,
including the fasteners or connectors, beam end plates acting in bending, col-
umn web panels in shear (Section 4.3), or column webs in transverse compression
caused by bearing (Section 4.6). The use of this method for moment joints between
I-section members is given in Section 6 of EC3-1-8 and discussed in the following
subsections, while the method for moment joints between hollow section members
is given in Section 7 of EC3-1-8.

9.4.2.2 Design moment resistance

Each component of a joint must have sufficient resistance to transmit the actions
acting on it. Thus the design moment resistance of the joint is governed by the
component which has the highest value of its design action to resistance. It is
therefore necessary to analyse the joint under its design moment to determine the
distribution of the design actions on the joint components.

Joints where the moment acts in the plane of the connectors (as in Figure 9.11a)
so that the moment is transferred by connector shear are often analysed elastically
[12], by assuming that all the connectors fit perfectly and that each plate acts
as if rigid, so that the relative rotation between them is δθ x. In this case, each
connector transfers a shear force Vvi from one plate to the other. This shear force
acts perpendicular to the radius ri to the axis of rotation, and is proportional to the
relative displacement riδθ x of the two plates at the connector, whence

Vvi = kvAiriδθx, (9.1)

where Ai is the shear area of the connector, and the constant kv depends on the shear
stiffness of that type of connector. It is shown in Section 9.9.1 by considering the
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equilibrium of the connector forces Vvi that the axis of rotation lies at the centroid
of the connector group. The moment exerted by the connector force is Vviri, and
so the total moment Mx is given by

Mx = kvδθx

∑
i

Air
2
i . (9.2)

If this is substituted into equation 9.1, the connector force can be evaluated as

Vvi = MxAiri∑
i

Air2
i

. (9.3)

However, the real behaviour of in-plane moment joints is likely to be somewhat
different, just as it is for the force joints discussed in Section 9.4.1. This difference
is due to the flexibility of the plates, the inelastic behaviour of the connectors at
higher moments, and the slip due to the clearances between any bolts and their
holes.

Welded moment joints may be analysed by making the same assumptions as
for bolted joints [12]. Thus equations 9.2 and 9.3 may be used, with the weld size
substituted for the bolt area, and the summations replaced by integrals along the
weld.

The simplifying assumptions of elastic connectors and rigid plates are sometimes
also made for joints with moments acting normal to the plane of the connectors,
as shown in Figure 9.12b. It is shown in Section 9.9.2 that the connector tension
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forces Nxi can be determined from

Nxi = MyAizi∑
Aiz2

i

− MzAiyi∑
Aiy2

i

(9.4)

in which yi, zi are the principal axis coordinates of the connector measured from
the centroid of the connector group.

This result implies that the compression forces are transmitted only by the con-
nectors, but in real bolted joints these are transmitted primarily through those
portions of the connection plates which remain in contact. Thus the connector
tension forces determined from equation 9.4 will be inaccurate when there is a sig-
nificant difference between the centroid of the contact area and that of the assumed
compression connectors. Clause 6.2.7 of EC3-1-8 [1] corrects this defect by defin-
ing the centres of compression for a number of bolted beam-column joints, and
by requiring the lever arms used in determining the bolt tensions to be measured
from these centres.

The result of equation 9.4 is also defective when prying forces are introduced
by flexure of any T-stubs (real or idealised) used to transfer bolt tensions, as
shown in Figure 9.13 [13–15]. This shows two T-stubs connected through their
flanges (or tables) by rows of bolts, which are used to model the tension zone of
bolted joints in Clause 6.2.4 of EC3-1-8. Isolating a T-stub simplifies the analysis
of a joint. For example, the prying forces in the joint in Figure 9.13b that are
produced by flexure of the flange of the T-stub and which must be included in the
tensile action Nt,Ed on the bolt can be determined from bending theory (Chapter 5).
Examples of tension zones which include idealised T-stub assemblies are shown
in Figures 9.12 and 9.14.
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9.4.2.3 Design moment stiffness

Joints need to be classified for frame analysis purposes (Chapter 8) as being either
effectively pinned (low moment stiffness), semi-rigid, or effectively rigid (high-
moment stiffness). When a joint cannot be assumed to be either effectively pinned
or rigid, then its moment stiffness needs to be determined so that it can be classified.
If a frame is to be analysed as if semi-rigid (Section 8.3.3), then the moment
stiffnesses of its semi-rigid joints need to be used in the analysis.

In the component method used in Clause 6.3 of EC3-1-8 [1], the moment stiff-
ness of a joint is determined from the inverse of the sum of the flexibilities of the
components used at each link in the chain of force transfer through the joint. Thus
the flexibilities of any plate or cleat components used must be included with those
of the fasteners. Plates are comparatively stiff (and often assumed to be rigid)
when loaded in their planes, but are comparatively flexible when bent out of their
planes. In general, the overall behaviour of a joint can be assessed by determining
the path by which force is transferred through the joint, and by synthesising the
responses of all the components to their individual loads.
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9.4.2.4 Rotation capacity

When rigid plastic analysis is used in the design of a frame (Section 8.5.3.7),
each plastic hinge location must have sufficient rotation capacity to ensure that
the plastic moment can be maintained until the collapse mechanism is developed.
Clause 6.4 of EC3-1-8 [1] provides methods of determining whether joints between
I-section members have sufficient rotation capacity.

9.4.2.5 Joint classification

The behaviour of a structure is influenced as much by the behaviour of its joints as
by the behaviour of its individual members. Flexural frames are therefore analysed
as being simple, semi-continuous, or continuous (Section 8.3.1), depending on the
resistance and stiffness classifications of their joints.

Clause 5.2.3 of EC3-1-8 [1] classifies joints according to strength as being
nominally pinned, of partial strength, or of full strength. A joint may be classified
as full strength if its design moment resistance is not less than that of the connected
members. A joint may be classified as nominally pinned if its design moment
resistance is not greater than 0.25 times that required for a full strength joint,
provided it has sufficient rotation capacity. A joint which cannot be classified as
either nominally pinned or full strength is classified as partial strength.

Clause 5.2.2 of EC3-1-8 classifies joints according to stiffness as being nomi-
nally pinned, semi-rigid, or rigid. Ajoint in a frame that is braced against significant
sway may be classified as rigid if Sj ≥ 8EIb/Lb where EIb is the flexural rigidity
of the beam connected and Lb is its length. A joint may be classified as nom-
inally pinned if Sj ≤ 0.5EIb/Lb. A joint which cannot be classified as either
nominally pinned or rigid is classified as semi-rigid.

9.4.3 Force and moment joints

Joints which are required to transfer both force and moment may be analysed
elastically by using the method of superposition, as shown in Section 9.9. Thus, the
individual bolt forces in the eccentrically loaded in-plane plate connections shown
in Figure 9.7 can be determined as the vector sum of the components caused by a
concentric force Q and a moment Qe. Similarly, the individual connector forces
in a joint loaded out of its plane as shown in Figure 9.11b may be determined
from the sum of the forces due to the out-of-plane force Nx and the principal axis
moments My and Mz in which the centre of compression is used to determine the
connector lever arms.

The connector forces in joints subjected to combined loadings may be analysed
elastically by using superposition to combine the separate effects of in-plane and
out-of-plane loading.

The following section provides simplified descriptions of the response of
common joints.
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9.5 Common joints

9.5.1 General

There are many different joint arrangements used for force and moment transmis-
sion between members and supports, depending on the actions which are to be
transferred. Fabrication and erection procedures may be simplified by standardis-
ing a number of joints for the more frequently occurring situations. Examples of
some common joints are shown in Figures 9.12 and 9.14–9.17.

Flexible joints for simple construction (for which any moment transfer can be
neglected) are described in Sections 9.5.2–9.5.4, a semi-rigid joint in Section 9.5.5,
and rigid joints for continuous structures (which are able to transfer moment as
well as force) in Sections 9.5.6 and 9.5.7. Welded and bolted splices are described
in Sections 9.5.8 and 9.5.9, and seats and base plates in Sections 9.5.10 and 9.5.11,
respectively.

Guidance on the arrangement and analysis of some of these joints is given in
[2–11] , while EC3-1-8 [1] provides extensive and detailed methods of analysis for
a large number of joints, by considering them as assemblies of basic components
whose properties are known. Worked examples of a web side plate (fin plate) and
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a flexible end plate connection designed in accordance with EC3-1-8 are given in
Section 9.10.

9.5.2 Angle seat joint

An angle seat joint (Figure 9.14a) transfers a beam reaction force REd to the
supporting member through the angle seat. The top cleat is for lateral restraint
only, and may be bolted either to the top of the web or to the top flange. The angle
seat may be bolted or fillet welded to the supporting member. The joint has very
little moment capacity, and is classified as a nominally pinned joint. It may be
used for simple construction.

The beam reaction is transferred by bearing, shear, and bending of the horizon-
tal leg of the angle, by vertical shear through the connectors, and by horizontal
forces in the connectors and between the vertical leg and the supporting member.

In this joint, the beam is designed for zero end moment, and the supporting
member for the eccentric beam reaction. The beam web may need to be stiffened to
resist shear (Section 4.7.4) and bearing (Section 4.7.6). Although this joint is easily
designed, its use is often discouraged because of erection difficulties associated
with the close depth tolerances required at the top and bottom of the beam.

9.5.3 Flexible end plate joint

A flexible end plate joint (Figures 9.6a and 9.14b) also transfers a beam reaction
REd to the supporting member. The end plate is fillet welded to the beam web,
and bolted to the supporting member. The flanges may be notched or coped, if
required. This joint also has very little moment capacity, as there may be significant
flexibility in the end plate, and is classified as a nominally pinned joint. It may be
used for simple construction.
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The beam reaction is transferred by weld shear to the end plate, by shear and
bearing to the bolts, and by shear and bearing to the supporting member. In mod-
elling this joint, the idealised T-stub assembly consists of the end plate and the
beam web to which it is welded as one T-stub, which is bolted to the column flange
which with the column web forms the other T-stub.

The beam is designed for zero end moment, with the end plate augmenting the
web shear and bearing capacity, while the supporting member is designed for the
eccentric beam reaction.

9.5.4 Angle cleat joint

An angle cleat joint (Figure 9.14c) also transfers a beam reaction REd to the sup-
porting member. One or two angle cleats may be used, and bolted to the beam web
and to the supporting member. The flanges may be notched or coped, if required.
This joint also has very little moment capacity, as there may be significant flex-
ibility in the angle legs connected to the supporting member and in the bolted
connection to the beam web. The joint is classified as a nominally pinned joint,
and may be used for simple construction.

The beam reaction is transferred by shear and bearing from the web to the
web bolts and to the angle cleats. These actions are transferred by the cleats to
the supporting member bolts, and by these to the supporting member by shear,
tension and compression. If two angle cleats are used, the idealised T-stub assembly
consists of the column flange and web as one T-stub, and angle cleats bolted to the
beam web as the other T-stub.

The beam is designed for zero end moment, with the angles augmenting the
web shear and bearing capacity, while the supporting member is designed for the
eccentric beam reaction.

9.5.5 Web side plate (fin plate) joint

A web side plate (fin plate) joint (Figure 9.15) transfers a beam reaction REd to
the supporting member, and can also transfer a moment MEd . The fin plate is fillet
welded to the supporting member, and bolted to the beam web. The flanges may be
notched or coped, if required. This joint has limited flexibility, and is classified as
semi-rigid. It may be used for simple construction, and also for semi-continuous
construction provided that the degree of interaction between the members can be
established.

The beam reaction REd and moment MEd are transferred by shear through the
bolts to the fin plate, by in-plane bending and shear to the welds, and by vertical
and horizontal shear to the supporting member.

The beam and the supporting member are designed for the reaction REd and
moment MEd .

9.5.6 Welded moment joint

A fully welded moment joint (Figure 9.12a) transfers moment MEd , axial force
NEd , and shear VEd from one member to another. The welds may be fillet or butt
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welds, and erection cleats may be used to facilitate field welding. The concentrated
flange forces resulting from the moment MEd and axial force NEd may require the
other member in the joint to be stiffened (Section 4.5) in order to transfer these
forces. When suitably stiffened, such a joint acts as if rigid, and may be used in
continuous construction.

The shear VEd is transferred by shear through the welds from one member to the
other. The flange forces are transferred by tension through the flange welds and
by compression to the other member, while the web moment and the axial force
are transferred by tension through the web welds and by compression to the other
member.

9.5.7 Bolted moment end plate joint

A bolted moment end plate (extended end plate) joint (Figure 9.12b) also transfers
moment MEd , axial force NEd , and shear VEd from one member to another. The end
plate is fillet welded to the web and flanges of one member, and bolted to the other
member. Concentrated flange forces may require the other member to be stiffened
in order to transfer these forces. This joint is also classified as rigid, although it is
less stiff than a welded moment joint, due to flexure of the end plate. EC3-1-8 [1]
allows bolted moment end plate joints to be used in continuous construction.

The beam moment, axial force, and shear are transferred by tension through the
flange and web welds and compression, and by shear through the web welds to
the end plate, by bending and shear through the end plate to the bolts, and by bolt
shear and tension and by horizontal plate reaction to the other member.

The bolt tensions are increased by prying actions resulting from bending of the
end plate, as in Figure 9.13. They can be determined by considering an analysis of
the idealised T-stub assembly of the end plate and beam web, and of the column
flange and web to which it is bolted. These prying actions must be considered in
the design of bolts subjected to tension, and are discussed in Section 9.6.2.

9.5.8 Welded splice

A fully welded splice (Figure 9.16a) transfers moment MEd , axial force NEd , and
shear VEd from one member to another concurrent member. The flange welds are
butt welds, while the web welds may be fillet welds, and erection plates may be
used to facilitate site welding. A welded splice acts as a rigid joint between the
members, and may be used in continuous construction.

The shear VEd is transferred by shear through the welds. The flange forces
resulting from the moment MEd and axial force NEd are transferred by tension or
compression through the flange welds, while the web moment and the axial force
are transferred by tension or compression (or shear) through the web welds.

9.5.9 Bolted splice

A fully bolted splice (Figure 9.16b) also transfers moment MEd , axial force NEd ,
and shear VEd from one member to another concurrent member. Flange and web
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plates may be provided on one or both sides. This joint may be used in continuous
construction.

The moment, axial force, and shear are transferred from one member by bearing
and shear through the bolts to the plates, to the other bolts, and then to the other
member. The flange plates only transfer the flange axial force components of the
moment MEd , axial force NEd , while the web plates transfer all of the shear VEd

together with the web components of MEd and NEd .

9.5.10 Beam seat

A beam seat (Figure 9.17a) transfers a beam reaction REd to its support. A seating
plate may be fillet welded to the bottom flange to increase the support bearing
area, while holding-down bolts provide positive connections to the support. If a
load-bearing stiffener is provided to increase the web bearing capacity, then this
will effectively prevent lateral deflection of the top flange (see Figure 6.19).

The beam reaction REd is transferred by bearing through the seating plate to the
support.

9.5.11 Base plate

A base plate (Figure 9.17b) transfers a column axial force NEd and shear VEd to
a support or a concrete foundation, and may also transfer a moment MEd . The
base plate is fillet welded to the flanges and web of the column, while the anchor
or holding-down bolts provide connections to the support. Pinned bases used in
simple construction often use four anchor bolts, and the flexibility of these and the
base plate limits the effective moment resistance.

An axial compression NEd is transferred from the column by end bearing or
weld shear to the base plate, and then by plate bending, shear, and bearing to the
support. An axial tension force NEd is transferred from the column by weld shear
to the base plate, by plate bending and shear to the holding-down anchor bolts,
and then by bolt tension to the support. The shear force VEd is transferred from
the column by weld shear to the base plate, and then by shear and bearing through
the holding-down bolts to the support, or by friction. Specific guidance on the
design of holding-down bolts is given in Clause 6.2.6.12 of EC3-1-8 [1], while
more general guidance on the design of base plates as idealised T-stub assemblies
is given in Clause 6.2.

9.6 Design of bolts

9.6.1 Bearing bolts in shear

The resistance Fv of a bolt in shear (Figure 9.1a) depends on the shear strength
of the bolt (of tensile strength fub) and the area A of the bolt in a particular shear
plane (either the gross area, or the tensile stress area through the threads As, as
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appropriate). It can be expressed in the form

Fv = αvfubA (9.5)

in which αv = 0.6 generally (except Grade 10.9 bolts when the shear plane passes
through the threaded portion of the bolt, in which case αv = 0.5). The factor
αv = 0.6 is close to the theoretical yield value of τy/fy ≈ 0.577 (Section 1.3.1)
and the experimental value of 0.62 reported in [9].

EC3-1-8 [1] therefore requires the design shear force Fv,Ed to be limited by

Fv,Ed ≤ Fv,Rd = fub

γM2

∑
n

αvnAn, (9.6)

where γM2 = 1.25 is the partial factor for the connector resistance (1.50 for Grade
4.6 bolts), n is the number of shear planes, An and αvn are the appropriate values
for the nth shear plane. It is common and conservative to determine the area An at
a shear plane by substituting the tensile stress area As for the shank area A of the
bolt.

For bolts in long joints with a distance Lj between the end bolts in the joint, the
shear resistance of all bolts is reduced by using the factor

βLf = 1 − Lj − 15d

200d
(9.7)

provided that 0.75 ≤ βLf ≤ 1, where d is the diameter of the bolt.

9.6.2 Bolts in tension

The resistance of a bolt in tension (Figure 9.1c) depends on the tensile strength
fub of the bolt and the minimum cross-sectional area of the threaded length of the
bolt. The design force Ft,Ed is limited by EC3-1-8 [1] to

Ft,Ed ≤ Ft,Rd = 0.9fubAs/γM2, (9.8)

where γM2 = 1.25 (1.50 for Grade 4.6 bolts) and As is the tensile stress area of the
bolt. The use of 0.9fub for the limit state of bolt fracture in addition to the partial
factor γM2 for the connector resistance reflects the reduced ductility at tensile
fracture compared with shear failure.

If any of the connecting plates is sufficiently flexible, then additional prying
forces may be induced in the bolts, as in Figure 9.13b. However, EC3-1-8 does not
provide specific guidance on how to determine the prying force in the bolt, even in
the T-stub component based method of design. Under some circumstances which
minimise plate flexure in a joint component so that the additional tensile forces
caused by prying are small, it has been suggested that the prying forces need not
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be calculated, provided that Ft,Rd is determined from

Ft,Rd = 0.72fubAs/γM2, (9.9)

which results from the insertion of a reduction factor of 0.8 into equation 9.8.
Some methods for determining prying forces in T-stub connections are given in
[13–15].

9.6.3 Bearing bolts in shear and tension

Test results [9] for bearing bolts in shear and tension suggest a circular interaction
relationship (Figure 9.18) for the strength limit state. EC3-1-8 [1] uses a more
conservative interaction between shear and tension, which can be expressed in the
form of equations 9.6, 9.8, and

Fv,Ed

Fv,Rd
+ Ft,Ed

1.4Ft,Rd
≤ 1 (9.10)

where Fv,Rd is the shear resistance when there is no tension, and Ft,Rd is the tension
resistance when there is no shear.

9.6.4 Bolts in bearing

It is now commonly the case that bolt materials are of much higher strengths than
those of the steel plates or elements through which the bolts pass. As a result of

Circular [9]
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Figure 9.18 Bearing bolts in shear and tension.
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this, bearing failure usually takes place in the plate material rather than in the bolt.
The design of plates against bearing failure is discussed in Section 9.7.2.

For the situation in which bearing failure occurs in the bolt rather than the plate,
EC3-1-8 [1] requires the design bearing force Fb,Ed on a bolt whose ultimate tensile
strength fub is less than that of the plate material fu to be limited to

Fb,Ed ≤ Fb,Rd = fubdt

γM2
(9.11)

in which γM2 = 1.25 (1.50 for Grade 4.6 bolts), t is the thickness of the connected
element, and d is the diameter of the bolt. Equation 9.11 ignores the enhancement
of the bearing strength caused by the triaxial stress state that exists in the bearing
area of the bolt, but it seldom governs except for very high-strength plates.

9.6.5 Preloaded friction-grip bolts

9.6.5.1 Design against bearing

High-strength bolts may be used as bearing bolts, or as preloaded bolts in friction-
grip joints (Figure 9.1b) which are designed against joint slip under service or
factored loads. When high-strength bolts are used as bearing bolts, they should be
designed as discussed in Sections 9.6.1–9.6.4.

9.6.5.2 Design against slip

For design against slip in a friction-grip joint for either serviceability or at ultimate
loading, the shear force on a preloaded bolt Fv,Ed,ser or Fv,Ed determined from the
appropriate loads must satisfy

Fv,Ed ≤ Fs,Rd = nksµFp,C/γM3 (9.12)

in which γM3 = 1.25 for ultimate loading (for serviceability γM3,ser = 1.1), n is
the number of friction surfaces, ks is a coefficient given in Table 3.6 of EC3-1-8
[1] which allows for the shape and size of the hole, µ is a slip factor given in
Table 3.7 of EC3-1-8, and the preload Fp,C is taken as

Fp,C = 0.7fubAs. (9.13)

When the joint loading induces bolt tensions, these tend to reduce the friction
clamping forces. EC3-1-8 requires the shear serviceability or ultimate design load
Fv,Ed,ser or Fv,Ed to satisfy

Fv,Ed ≤ Fs,Rd = nksµ
(
Fp,C − 0.8Ft,Ed

)
/γM3 (9.14)

in which Ft,Ed,ser or Ft,Ed is the total applied tension at service loading or ultimate
loading, including any prying forces, and the slip resistance partial safety factor
is γM3 = 1.1 for service loading and 1.25 for ultimate loading.
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9.7 Design of bolted plates

9.7.1 General

Aconnection plate used in a joint is required to transfer actions which may act in the
plane of the plate, or out of it. These actions include axial tension and compression
forces, shear forces, and bending moments, and may include components induced
by prying actions. The presence of bolt holes often weakens the plate, and failure
may occur very locally by the bearing of a bolt on the surface of the bolt hole
through the plate (punching shear), or in an overall mode along a path whose
position is determined by the positions of several holes and the actions transferred
by the plate, such as that considered in Section 2.2.3 for staggered connectors in
tension members.

Generally, the proportions of the plates should be such as to ensure that there
are no instability effects, in which case it will be conservative for the strength
limit state to design against general yield, and satisfactory to design against local
fracture.

The actual failure stress distributions in bolted connection plates are both uncer-
tain and complicated. When design is to be based on general yielding, it is logical
to take advantage of the ductility of the steel and to use a simple plastic analysis.
A combined yield criterion such as

σ 2
y + σ 2

z − σyσz + 3τ 2
yz ≤ f 2

y (9.15)

(Section 1.3.1) may then be used, in which σ y and σ z are the design normal stresses
and τ yz is the design shear stress.

When design is based on local fracture, an elastic analysis may be made of the
stress distribution. Often approximate bending and shear stresses may be deter-
mined by elastic beam theory (Chapter 5). The failure criterion should then be
tested at all potentially critical locations.

9.7.2 Bearing and tension

Bearing failure of a plate may occur where a bolt bears against part of the surface
of the bolt hole through the plate, as shown in Figure 9.19a. After local yielding,
the plate material flows plastically, increasing the circumference and thickness of
the bearing area, and redistributing the contact force exerted by the bolt.

EC3-1-8 [1] requires the plate-bearing force Fb,Ed due to the design loads to be
limited by

Fb,Ed ≤ Fb,Rd = k1αd fudt/γM2 (9.16)

in which fu is the ultimate tensile strength of the plate material, d is the bolt
diameter, t is the plate thickness and γM2 = 1.25 is the partial factor for connector
resistance (1.50 for Grade 4.6 bolts).
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The coefficient αd in equation 9.16 is associated with plate tear-out by shearing
in the direction of load transfer, commonly when the bolt is close to the end of a
plate, as shown in Figure 9.19b. In this case, EC3-1-8 requires αd to be determined
from

αd = e1

3d0
≤ 1 (9.17)

for an end bolt, or from

αd = p1

3d0
− 0.25 ≤ 1 (9.18)

for internal bolts if these bolts are closely spaced, in which d0 is the bolt diameter
and the dimensions e1 and p1 are shown in Figure 2.7.

The coefficient k1 in equation 9.16 is associated with tension fracture perpen-
dicular to the direction of load transfer, commonly when the bolt is close to an
edge, as shown in Figure 9.19e. Hence, EC3-1-8 uses

k1 = 2.8e2/d0 − 1.7 ≤ 2.5 (9.19)

if the bolts are at the edge of the plate, and

k1 = 1.4p2/d0 − 1.7 ≤ 2.5 (9.20)

for internal bolts, where p2 is the distance between rows of holes (p in Figure 2.5).
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Figure 9.19 Bolted plates in bearing, shear, tension, or bending.
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Tension failure may be caused by tension actions as shown in Figure 9.19d.
Tension failures of tension members are treated in Section 2.2, and it is logical to
apply the EC3 tension members method discussed in Section 2.6.2 to the design
of plates in tension. However, there are no specific limits given in EC3-1-8.

9.7.3 Shear and tension

Plate sections may be subjected to simultaneous normal and shear stress, as in
the case of the splice plates shown in Figure 9.20a and b. These may be designed
conservatively against general yield by using the shear and bending stresses deter-
mined by elastic analyses of the gross cross-section in the combined yield criterion
of equation 9.15, and against fracture by using the stresses determined by elastic
analyses of the net section in an ultimate strength version of equation 9.15.

Block failure may occur in some connection plates as shown in Figure 9.20c
and d. In these failures, it may be assumed that the total resistance is provided partly
by the tensile resistance across one section of the failure path, and partly by the
shear resistance along another section of the failure path. This assumption implies
considerable redistribution from the elastic stress distribution, which is likely to
be very non-uniform. Hence EC3-1-8 [1] limits the block-tearing resistance for
situations of concentric loading such as in Figure 9.20c to

NEd ≤ Veff ,1,Rd = fuAnt/γM2 +
(

fy/
√

3
)

Anv/γM0, (9.21)

in which Ant and Anv are the net areas subjected to tension and shear, respectively,
fy/

√
3 is the yield stress of the plate in shear (Section 1.3), γM0 = 1.0 is the partial
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Figure 9.20 Bolted plates in shear and tension.
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factor for plate resistance to yield and γM2 = 1.1 is the partial factor for fracture.
Equation 9.21 corresponds to an elastic analysis of the net section subjected to
uniform shear and tensile stresses.

For situations of eccentric loading such as in Figure 9.20d, the block-tearing
resistance is limited to

NEd ≤ Veff ,2,Rd = 0.5fuAnt/γM2 +
(

fy/
√

3
)

Anv/γM0, (9.22)

which corresponds to an elastic analysis of the net section subjected to a uniform
shear stress and a triangularly varying tensile stress.

9.8 Design of welds

9.8.1 Full penetration butt welds

Full penetration butt welds are so made that their thicknesses and widths are not
less than the corresponding lesser values for the elements joined. When the weld
metal is of higher strength than those of the elements joined (and this is usually
the case), the static capacity of the weld is greater than those of the elements
joined. Hence, the design is controlled by these elements, and there are no design
procedures required for the weld. EC3-1-8 [1] requires butt welds to have equal
or superior properties to those of the elements joined, so that the design resistance
is taken as the weaker of the parts connected.

Partial penetration butt welds have effective (throat) thicknesses which are less
than those of the elements joined. EC3-1-8 requires partial penetration butt welds
to be designed as deep-penetration fillet welds.

9.8.2 Fillet welds

Each of the fillet welds connecting the two plates shown in Figure 9.21 is of length
L, and the throat thickness a of the weld is inclined at α = tan−1(s2/s1). Each
weld transfers a longitudinal shear VL and transverse forces or shears VTy and VTz

between the plates. The average normal and shear stresses σw and τw on the weld
throat may be expressed in terms of the forces

σwLa = VTy sin α + VTz cosα (9.23)

τwLa = √ [(
VTy cosα − VTz sin α

) 2 + V 2
L

]
. (9.24)

In addition to these stresses, there are local stresses in the weld arising from
bending effects, shear lag, and stress concentrations, together with longitudinal
normal stresses induced by compatibility between the weld and each plate.

It is customary to assume that the static strength of the weld is determined by
the average throat stresses σw and τw alone, and that the ultimate strength of the
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weld is reached when

√(
σ 2

w + 3τ 2
w

) = fuw (9.25)

in which fuw is the ultimate tensile strength of the weld, which is assumed to be
greater than that of the plate. This equation is similar to equation 1.1 used in Section
1.3.1 to express the distortion energy theory for yield under combined stresses.
Substituting equations 9.23 and 9.24 into equation 9.25 and rearranging leads to

3
(

V 2
Ty + V 2

Tz + V 2
L

)
− 2

(
VTy sin α + VTz cosα

) 2 = (fuwLa) 2. (9.26)

This is often simplified conservatively to

VR

La
= fuw√

3
(9.27)

in which VR is the vector resultant

VR =
√(

V 2
Ty + V 2

Tz + V 2
L

)
(9.28)

of the applied forces VTy, VTz, and VL.
In the simple design method of EC3-1-8 [1] based on equations 9.27 and 9.28,

the design weld forces FTy,Ed , FTz,Ed , and FL,Ed per unit length due to the factored
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loads are limited by

Fw,Ed ≤ Fw,Rd (9.29)

where Fw,Ed is the resultant of all of the forces transmitted by the weld per unit
length given by

Fw,Ed =
√(

F2
Ty,Ed + F2

Tz,Ed + F2
L,Ed

)
(9.30)

and

Fw,Rd = fvw,da (9.31a)

is the design weld resistance per unit length, in which

fvw,d = fu/
√

3

βw γM2
(9.31b)

is the design shear strength of the weld, fu is the ultimate tensile strength of the
plate which is less than that of the weld, βw is a correlation factor for the steel
type between 0.8 and 1.0 given in Table 4.1 of EC3-1-8, and γM2 = 1.25 is the
connector resistance partial safety factor.

EC3-1-8 also provides a less conservative directional method which is based on
equations 9.23 to 9.25, and which makes some allowance for the dependence of
the weld strength on the direction of loading by assuming that the normal stress
parallel to the axis of the weld throat does not influence the design resistance. For
this method, the normal stress perpendicular to the throat σ⊥ is determined from
equation 9.23 as

σ⊥a = FTy,Ed sin α + FTz,Ed cosα, (9.32)

the shear stress perpendicular to the throat τ⊥ from equation 9.24 as

τ⊥a = FTy,Ed cosα − FTz,Ed sin α, (9.33)

and the shear stress parallel to the throat τ || from equation 9.24 as

τ||a = FL,Ed . (9.34)

The stresses in equations 9.32 to 9.34 are then required to satisfy√[
σ 2⊥ + 3

(
τ 2⊥ + τ 2||

)]
≤ fu
βwγM2

(9.35)

and

σ⊥ ≤ 0.9fu/γM2 (9.36)

where γM2 = 1.25 and βw is the correlation factor used in equation 9.31b.
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9.9 Appendix – elastic analysis of joints

9.9.1 In-plane joints

The in-plane joint shown in Figure 9.11a is subjected to a moment Mx and to forces
Vy, Vz acting through the centroid of the connector group (which may consist of
bolts or welds) defined by (see Section 5.9)

∑
Aiyi = 0∑
Aizi = 0

}
(9.37)

in which Ai is the area of the ith connector and yi, zi its coordinates.
It is assumed that the joint undergoes a rigid body relative rotation δθ x between

its plate components about a point whose coordinates are yr , zr . If the plate com-
ponents are rigid and the connectors elastic, then it may be assumed that each
connector transfers a force Vvi, which acts perpendicular to the line ri to the centre
of rotation (Figure 9.11a) and which is proportional to the distance ri, so that

Vvi = kvAiriδθx (9.1)

in which kv is a constant which depends on the elastic shear stiffness of the
connector.

The centroidal force resultants Vy, Vz of the connector forces are

Vy = −�Vvi (zi − zr)/ri = kvδθxzr�Ai

Vz = �Vvi (yi − yr)/ri = −kvδθxyr�Ai (9.38)

after using equations 9.37 and 9.1. The moment resultant Mx of the connector
forces about the centroid is

Mx = �Vvi(zi − zr) zi/ri +�Vvi(yi − yr) yi/ri,

whence

Mx = kvδθx

∑
Ai

(
y2

i + z2
i

)
, (9.39)

after using equations 9.37 and 9.1. This can be used to eliminate kvδθ x from
equations 9.38 and these can then be rearranged to find the coordinates of the
centre of rotation as

yr = −Vz
∑

Ai
(
y2

i + z2
i

)
Mx

∑
Ai

, (9.40)

zr = Vy
∑

Ai
(
y2

i + z2
i

)
Mx

∑
Ai

. (9.41)
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The term kvδθ x can also be eliminated from equation 9.1 by using equation 9.39
so that the connector force can be expressed as

Vvi = MxAiri∑
Ai

(
y2

i + z2
i

) . (9.42)

Thus the greatest connector shear stress Vvi/Ai occurs at the connector at the
greatest distance ri from the centre of rotation yr , zr .

When there are n bolts of equal area, these equations simplify to

yr = −Vz
∑(

y2
i + z2

i

)
nMx

, (9.40a)

zr = Vy
∑(

y2
i + z2

i

)
nMx

, (9.41a)

Vvi = Mxri∑(
y2

i + z2
i

) . (9.42a)

When the connectors are welds, the summations in equations 9.40–9.42 should
be replaced by integrals, so that

yr = −Vz
(
Iy + Iz

)
MxA

, (9.40b)

zr = Vy
(
Iy + Iz

)
MxA

, and (9.41b)

τw = Mxr(
Iy + Iz

) (9.42b)

in which A is the area of the weld group given by the sum of the products of the
weld lengths L and throat thicknesses a, Iy, and Iz are the second moments of area
of the weld group about its centroid, and r is the distance to the weld where the
shear stress is τw. The properties of some specific weld groups are given in [5].

In the special case of a moment joint with Vy, Vz equal to zero, the centre of
rotation is at the centroid of the connector group (equations 9.41 and 9.42), and
the connector forces are given by

Vvi = MxAiri∑
i

Air2
i

(9.3)

with ri = √
(y2

i + z2
i ). In the special case of a force joint with Mx, Vz equal to zero,

the centre of rotation is at zr = ∞, and the connector forces are given by

Vvi = VyAi∑
Ai

. (9.43)
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In the special case of a force joint with Mx, Vy equal to zero, the centre of rotation
is at yr = −∞, and the connector forces are given by

Vvi = VzAi∑
Ai

. (9.44)

Equations 9.43 and 9.44 indicate that the connector stresses Vvi/Ai caused by
forces Vy, Vz are constant throughout the joint.

It can be shown that the superposition by vector addition of the components of
Vvi obtained from equations 9.3, 9.43, and 9.44 for the separate connection actions
of Vy, Vz, and Mx leads to the general result given in equation 9.42.

9.9.2 Out-of-plane joints

The out-of-plane joint shown in Figure 9.11b is subjected to a normal force Nx

and moments My, Mz acting about the principal axes y, z of the connector group
(which may consist of bolts or welds) defined by (Section 5.9)∑

Aiyi = 0∑
Aizi = 0∑
Aiyizi = 0


 (9.45)

in which Ai is the area of the ith connector and yi, zi are its coordinates.
It is assumed that the plate components of the joint undergo rigid body relative

rotations δθ y, δθ z about axes which are parallel to the y, z principal axes and which
pass through a point whose coordinates are yr , zr and that only the connectors
transfer forces. If the plates are rigid and the connectors elastic, then it may be
assumed that each connector transfers a force Nxi which acts perpendicular to
the plane of the joint, and which has components which are proportional to the
distances (yi − yr), (zi − zr) from the axes of rotation, so that

Nxi = ktAi (zi − zr) δθy − ktAi (yi − yr) δθz (9.46)

in which kt is a constant which depends on the axial stiffness of the connector.
The centroidal force resultant Nx of the connector forces is

Nx =
∑

Nxi = kt
(−zrδθy + yrδθz

)∑
Ai, (9.47)

after using equations 9.45. The moment resultants My, Mz of the connector forces
about the centroidal axes are

My =
∑

Nxizi = ktδθy�Aiz
2
i , (9.48)

Mz = −
∑

Nxiyi = ktδθz�Aiy
2
i , (9.49)

after using equations 9.46.



 

Joints 423

Equations 9.47–9.49 can be used to eliminate kt , δθ y, δθ z, yr , zr from equation
9.46, which then becomes

Nxi = NxAi∑
Ai

+ MyAizi∑
Aiz2

i

− MzAiyi∑
Aiy2

i

. (9.50)

This result demonstrates that the connector force can be obtained by super-
position of the separate components due to the centroidal force Nx and the prin-
cipal axis moments My, Mz. When there are n bolts of equal area, this equation
simplifies to

Nxi = Nx

n
+ Myzi∑

z2
i

− Mzyi∑
y2

i

. (9.50a)

When the connectors are welds, the summations in equation 9.47 should be
replaced by integrals, so that

σw = Nx

A
+ Myz

Iy
− Mzy

Iz
(9.50b)

in which y, z are the coordinates of the weld where the stress is σw.
The assumption that only the connectors transfer compression forces through

the connection may be unrealistic when portions of the plates remain in contact.
In this case the analysis above may still be used, provided that the values Ai, yi,
zi used for the compression regions represent the actual contact areas between the
plates.

9.10 Worked examples

9.10.1 Example 1 – in-plane analysis of a bolt group

Problem. The semi-rigid web side plate (fin plate) joint shown in Figure 9.22a is to
transmit factored design actions equivalent to a vertical downwards force of Q kN
acting at the centroid of the bolt group and a clockwise moment of 0.2Q kNm.
Determine the maximum bolt shear force.

Solution.
For the bolt group,�(y2

i +z2
i ) = 4×(702+1052)+4×(702+352) = 88 200 mm2.

Using equation 9.40, yr = −Q × 103 × 88 200

−0.2Q × 106 × 8
= 55.1 mm

and so the most heavily loaded bolts are at the top and bottom of the right-hand
row.

For these, ri = √{(55.1 + 70)2 + 1052} = 163.3 mm,
and the maximum bolt force may be obtained from equation 9.3 as

Fv,Ed = −0.2Q × 106

88200
N = −0.370 Q kN.
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t = 8 mm

fy = 355 N/mm2

fu = 510 N/mm2

t =10 mm  

fy =355 N/mm2 

fu

65

35

70

70

70

35

25 30 140 55

35

70

70

70

35

All bolts are Grade 8.8,
20 mm diameter in 22 mm
holes, with threads in the
shear plane

8
6

(a) Semi-rigid web fin plate joint (b) Flexible end plate joint

30 90 30

= 510 N/mm2

Figure 9.22 Examples 1–9.

9.10.2 Example 2 – in-plane design resistance of a bolt group

Problem. Determine the design resistance of the bolt group in the web fin plate
joint shown in Figure 9.22a.

Solution. For 20 mm Grade 8.8 bolts, As = At = 245 mm2,

αv = 0.6, EC3-1-8 T3.4

fub = 800 N/mm2, EC3-1-8 T3.1

and so

Fv,Rd = 0.6 × 800 × 245

1.25
N = 94.1 kN. EC3-1-8 T3.4

Using this with the solution of example 1,

0.370 Q ≤ 94.1 so that Qv ≤ 254.0.

9.10.3 Example 3 – plate-bearing resistance

Problem. Determine the bearing resistance of the web fin plate shown in
Figure 9.22a.
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Solution.

αd = 35/(3 × 22) = 0.530, fub/fu = 800/510 = 1.569 > 0.530,
EC3-1-8 T3.4

and so

αb = 0.530. EC3-1-8 T3.4

2.8e2/d0 − 1.7 = 2.8 × 55/22 − 1.7 = 5.3 > 2.5, and so k1 = 2.5.
EC3-1-8 T3.4

Fb,Rd = 2.5 × 0.530 × 510 × 20 × 10/1.1 N = 122.9 kN. EC3-1-8 T3.4

Using this with the solution of example 1, Qb ≤ 122.9/0.370 = 331.9 >

254.0(≥ Qv).

9.10.4 Example 4 – plate shear and tension resistance

Problem. Determine the shear and tension resistance of the web fin plate shown
in Figure 9.22a.

Solution. If the yield criterion of equation 9.15 is used with the elastic stresses
on the gross cross-section of the plate, then the elastic bending stress may be
determined using an elastic section modulus of bd2/6, so that

σy = 0.2 Q × 106 × 6/(10 × 2802) N/mm2 = 1.531 Q N/mm2

and the average shear stress is

τyz = Q × 103/(280 × 10) N/mm2 = 0.357 Q N/mm2.

Substituting into equation 9.15, (1.531 Q)2 + 3 × (0.357Q)2 ≤ 3552

so that Qvty ≤ 215.0 < 254.0(≥ Qv).

If the equivalent fracture criterion derived from equation 9.15 is used with the
elastic stresses on the net cross-section of the plate, then

Ip = 2803 × 10/12 − 2 × 22 × 10 × 1052 − 2 × 22 × 10 × 352

= 12.90 × 106 mm4

so that

Wel,p = 12.90 × 106/140 = 92.2 × 103mm3, and

σy = 0.2 Q × 106/(92.2 × 103)N/mm2 = 2.170 Q N/mm2
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and the average shear stress is

τyz = Q × 103/{(280 − 4 × 22)× 10} N/mm2 = 0.521 Q N/mm2.

Using the equivalent of equation 9.15 for fracture with fu = 510 N/mm2

(EN10025-2),

(2.170 Q)2 + 3 × (0.521 Q)2 ≤ 5102

so that Qvtu ≤ 228.5 > 215.0(≥ Qvty).
However, these calculations are conservative, since the maximum bending

stresses occur at the top and bottom of the plate, where the shear stresses are zero.
If the shear stresses are ignored, then Qty ≤ 355/1.531 = 231.9 < 254.3(≥ Qv)

and

Qtu ≤ 510/2.170 = 235.0> 231.9(≥ Qty).

9.10.5 Example 5 – fillet weld resistance

Problem. Determine the resistance of the two fillet welds shown in Figure 9.22a.
Weld forces per unit length.
At the welds, the design actions consist of a vertical shear of Q kN and a moment of

(−0.2 Q − Q × (25 + 30 + 70)/1000) kNm = −0.325 Q kNm.

leff = 280 − 2 × 8/
√

2 = 268.7 mm EC3-1-8 4.5.1(1)

The average shear force per unit weld length can be determined as

FL,Ed = (Q × 103)/(2 × 268.7)N/mm = 1.861 Q N/mm,

and the maximum bending force per unit weld length from equation 9.50b as

FTy,Ed = (−0.325 Q × 106)× (268.7/2)

2 × 268.73/12
N/mm = −13.51 Q N/mm,

and using equation 9.30, the resultant of these forces is

Fw,Ed = √[(1.861 Q)2 + (13.51 Q)2] = 13.63 Q N/mm.

Simplified method of EC3-1-8.

For Grade S355 steel, βw = 0.9 EC3-1-8 T4.1

fvw,d = 510/
√

3

0.9 × 1.25
= 261.7 N/mm2 EC3-1-8 4.5.3.3

Fw,Rd = 261.7 × (8/
√

2) = 1481 N/mm EC3-1-8 4.5.3.3

Hence 13.63 Q ≤ 1481
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so that

Qw ≤ 108.6 < 231.9(≥ Qty).

Directional method of EC3-1-8.

Using equations 9.32–9.34,

σ⊥ = (−0.325 Q × 106)× (268.7/2) sin 45o

2 × (268.73/12)× (8/
√

2)
= −1.688 Q N/mm2

τ⊥ = (−0.325 Q × 106)× (268.7/2) cos 45o

2 × (268.73/12)× (8/
√

2)
= −1.688 Q N/mm2

τ|| = Q × 103

2 × 268.7 × (8/
√

2)
= 0.329 Q N/mm2

The strength condition is

{(−1.688 Q)2 + 3 × [(−1.688 Q)2 + (0.329Q)2]}0.5 ≤ 510

0.9 × 1.25
EC3-1-8 4.5.3.2(6)

so that

Qw ≤ 132.4 < 231.9(≥ Qty)

and

1.688Q ≤ 0.9 × 510/1.25 EC3-1-8 4.5.3.2(6)

so that

Qw ≤ 217.5 > 132.4

and so the joint resistance is governed by the shear and bending capacity of the
welds.

9.10.6 Example 6 – bolt slip

Problem. If the bolts of the semi-rigid web fin plate joint shown in Figure 9.22a
are preloaded, then determine the value of Q at which the first bolt slip occurs, if
the joint is designed to be non-slip in service and the friction surface is Class B.
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Solution.

Fp,C = 0.7 × 800 × 245 N = 137.2 kN EC3-1-8 3.9.1(2)

ks = 1.0 EC3-1-8 T3.6

µ = 0.4 EC3-1-8 T3.7

γM3,ser = 1.1 EC3-1-8 2.2(2)

Fs,Rd = 1.0 × 0.4 × 137.2/1.1 = 49.9 kN EC3-1-8 3.9.1(1)

and using the solution of example 1,

QsL = 49.9/0.370 = 134.7.

9.10.7 Example 7 – out-of-plane resistance of a bolt group

Problem. The flexible end plate joint shown in Figure 9.22b is to transmit fac-
tored design actions equivalent to a downwards force of Q kN acting at the
centroid of the bolt group and an out-of-plane moment of Mx = −0.05 Q
kNm. Determine the maximum bolt forces, and the design resistance of the bolt
group.

Bolt group analysis.

�z2
i = 4 × 1052 + 4 × 352 mm2 = 49 000 mm2,

and using equation 9.50a, the maximum bolt tension is

Ft,Ed = (−0.05 Q × 106)× (−35 − 70)

49 000
N = 0.107 Q kN.

(A less-conservative value of Ft,Ed = 0.0824 Q kN is obtained if the centre of
compression is assumed to be at the lowest pair of bolts so that the lever arm to
the highest pair of bolts is 175 mm).

The average bolt shear is Fv,Ed = (Q × 103)/8 N = 0.125 Q kN.

Plastic resistance of plate.

If the web thickness is 8.8 mm,

m = 90/2 − 8.8/2 − 0.8 × 6 = 35.8 mm EC3-1-8 F6.8

leff = 2 × 35.8 + 0.625 × 30 + 35 = 125.4 mm EC3-1-8 T6.4

Mpl,1,Rd = 0.25 × 125.4 × 82 × 355/1.0 Nmm = 0.712 kNm EC3-1-8 T6.2

FT ,1,Rd = 4 × 0.712 × 106/30 N = 94.9 kN EC3-1-8 T6.2

and so FT ,1,Rd ≥ 2 × 0.107 Q, whence Qp ≤ 443.0 kN.
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Bolt resistance.
At plastic collapse of the plate, the prying force causes a plastic hinge at the bolt
line, so that the prying force = 0.712 × 106/30 N = 23.7 kN.

Bolt tension = 0.107 × 443.0 + 23.7 = 70.6 kN.

Using the solution of example 2, Fv,Rd = 94.1 kN.
For 20 mm Grade 8.8 bolts, At = 245 mm2 and fub = 800 N/mm2

EC3-1-8 T3.1

Ft,Rd = 0.9 × 800 × 245/1.25 N = 141.1 kN. EC3-1-8 T3.4

Hence,
0.125 × 443.0

94.1
+ 70.6

1.4 × 141.1
= 0.946 < 1.0 EC3-1-8 T3.1

and so the bolt resistance does not govern.
Thus Q ≤ 443.0.

9.10.8 Example 8 – plate-bearing resistance

Problem. Determine the bearing resistance of the end plate of example 7 shown
in Figure 9.22b.

Solution.

αd = 35/(3 × 22) = 0.530, fub/fu = 800/510 = 1.569 > 0.530,
EC3-1-8 T3.4

and so αb = 0.530. EC3-1-8 T3.4

k1 = 2.8 × 30/22 = 3.82 > 2.5 so that k1 = 2.5 EC3-1-8 T3.4

Fb,Rd = 2.5 × 0.530 × 510 × 20 × 8/1.1 N = 98.3 kN EC3-1-8 T3.4

Using this with the analysis solution of example 7, 0.125 Q ≤ 98.3
so that Qb ≤ 786.8 > 443.0 (≥ Qp).

9.10.9 Example 9 – fillet weld resistance

Problem. Determine the resistance of the two fillet welds shown in Figure 9.22b.

Solution.
lw = 268.7 mm and FL,Ed = 1.861 Q N/mm, as in example 5.
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The maximum bending force per unit weld length can be determined from
equation 9.50b as

FTy,Ed = (−0.05 Q × 106)× (268.7/2)

2 × 268.73/12
= 2.078 Q N/mm.

Using equation 9.30, the resultant of these is

Fw,Ed = √[(1.861 Q)2 + (2.078 Q)2] = 2.789 Q N/mm.

For S355 Grade steel, βw = 0.9 EC3-1-8 T4.1

fvw,d = 510/
√

3

0.9 × 1.25
= 261.7 N/mm2 EC3-1-8 4.5.3.3

Fw,Rd = 261.7 × (
6/

√
2
) = 1110 N/mm. EC3-1-8 4.5.3.3

Hence 2.789 Q ≤ 1110,
so that Qw ≤ 398.1 < 443.0 (≥ Qp)

Using the directional method of EC3-1-8 with equations 9.32–9.34,

σ⊥ = (−0.05 Q×106)× (268.7/2) sin 45o

2 × (268.73/12)× (6/
√

2)
= −0.346 Q N/mm2

τ⊥ = (−0.05 Q × 106)× (268.7/2) cos 45o

2 × (268.73/12)× (6/
√

2)
= −0.346 Q N/mm2

τ|| = Q × 103

2 × 268.7 × (6/
√

2)
= 0.439 N/mm2

The strength condition is

{(−0.346 Q)2 + 3 × [(−0.346 Q)2 + (0.439 Q)2]}0.5 ≤ 510

0.9 × 1.25
EC3-1-8 4.5.3.2(6)

so that

Qw ≤ 441.0 < 443.0 (≥ Qp)

and

0.346 Q ≤ 0.9 × 510/1.25

so that

Qw ≤ 1060 > 441.0.

Thus the connection capacity is governed by the shear and bending resistance
of the welds.
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9.11 Unworked examples

9.11.1 Example 10 – bolted joint

Arrange and design a bolted joint to transfer a design force of 800 kN from the
inclined member to the truss joint shown in Figure 9.23a.

9.11.2 Example 11 – tension member splice

Arrange and design the tension member splice shown in Figure 9.23b so as to
maximise the tension resistance.

9.11.3 Example 12 – tension member welds

Proportion the weld lengths shown in Figure 9.23c to transfer the design tension
force concentrically.

9.11.4 Example 13 – channel section bracket

Determine the design resistance Q of the fillet welded bracket shown in
Figure 9.23d.

9.11.5 Example 14 – tee-section bracket

Design the fillet welds for the bracket shown in Figure 9.23e.

Tee
bf = 209
tf = 15.6
d = 266
tw = 10.2

bf tf = 152 9.4       d tw = 157.5   6.6 

(d) Channel column bracket
fy = 275 N/mm2

fu = 430 N/mm2

Ft,Ed = 800 kN

Ft,Ed = 800 kN 

2L/100 100 10

(b) Tension member splice (c) Tension member welds

2L/125 × 75 × 10

fy = 275 N/mm2

225 243 150

Q

380

(a) Bolted truss joint (e) Tee column bracket

28.2

71.8

152 152 UC 30

8

Q

f = 275 N/mmy
2

f = 275 N/mmy
2×

×
× × ×

× ×

Figure 9.23 Examples 10–14.
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Chapter 10

Torsion members

10.1 Introduction

The resistance of a structural member to torsional loading may be considered to
be the sum of two components. When the rate of change of the angle of twist
rotation is constant along the member (see Figure 10.1a), it is in a state of uniform
(or St Venant) torsion [1, 2], and the longitudinal warping deflections are also
constant along the member. In this case, the torque acting at any cross-section
is resisted by a single set of shear stresses distributed around the cross-section.
The ratio of the torque acting to the twist rotation per unit length is defined as the
torsional rigidity GIt of the member.

The second component of the resistance to torsional loading may act when
the rate of change of the angle of twist rotation varies along the member (see
Figures 10.1b and c), so that it is in a state of non-uniform torsion [1]. In this
case the warping deflections vary along the member, and an additional set of shear
stresses may act in conjunction with those due to uniform torsion to resist the
torque acting. The stiffness of the member associated with these additional shear
stresses is proportional to the warping rigidity EIw.

When the first component of the resistance to torsional loading completely
dominates the second, the member is in a state of uniform torsion. This occurs
when the torsion parameter K = √

(π2EIw/GItL2) is very small, as indicated
in Figure 10.2, which is adapted from [1]. Thin-walled closed-section members
whose torsional rigidities are very large behave in this way, as do members with
narrow rectangular sections and angle and tee-sections, whose warping rigidi-
ties are negligible. If, on the other hand, the second component of the resistance
to torsional loading completely dominates the first, the member is in a limit-
ing state of non-uniform torsion referred to as warping torsion. This may occur
when the torsion parameter K is very large, as indicated in Figure 10.2, which
is the case for some very thin-walled open sections (such as light gauge cold-
formed sections) whose torsional rigidities are very small. Between these two
extremes, the torsional loading is resisted by a combination of the uniform and
warping torsion components, and the beam is in the general state of non-uniform
torsion. This occurs for intermediate values of the parameter K , as shown in



 

434 Torsion members

(a) Uniform torsion (c) Non-uniform torsion(b) Non-uniform torsion

Varying torqueConstant torque
ends free to warp

End warping prevented

Figure 10.1 Uniform and non-uniform torsion of an I-section member.
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Figure 10.2 Effect of cross-section on torsional behaviour.

Figure 10.2, which are appropriate for most hot-rolled I- or channel-section
members.

Whether a member is in a state of uniform or non-uniform torsion also depends
on the loading arrangement and the warping restraints. If the torque resisted is con-
stant along the member and warping is unrestrained (as in Figure 10.la), then the
member will be in uniform torsion, even if the torsional rigidity is very small. If,
however, the torque resisted varies along the length of the member (Figure 10.1b),
or if the warping displacements are restrained in any way (Figure 10.1c), then
the rate of change of the angle of twist rotation will vary, and the member will
be in non-uniform torsion. In general, these variations must be accounted for,
but in some cases they can be ignored, and the member analysed as if it were
in uniform torsion. This is the case for members of very low warping rigidity
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(d) Distortion(c) Torsion

++≡

(b) Bending(a) Eccentric load

Figure 10.3 Eccentric loading of a thin-walled closed section.

and for members of high-torsional rigidity, for which the rates of change of the
angle of twist rotation vary only locally near points of concentrated torque and
warping restraint. This simple method of analysis usually leads to satisfactory pre-
dictions of the angles of twist rotation, but may produce underestimates of the local
stresses.

In this chapter, the behaviour and design of torsion members are discussed.
Uniform torsion is treated in Section 10.2, and non-uniform torsion in Section 10.3,
while the design of torsion members for strength and serviceability is treated in
Section 10.4.

Structural members, however, are rarely used to resist torsion alone, and it is
much more common for torsion to occur in conjunction with bending and other
effects. For example, when the box section beam shown in Figure 10.3a is subjected
to an eccentric load, this causes bending (Figure 10.3b), torsion (Figure 10.3c),
and distortion (Figure 10.3d). There may also be interactions between bending and
torsion. For example, the longitudinal stresses due to bending may cause a change
in the effective torsional rigidity. This type of interaction is of some importance
in the flexural–torsional buckling of thin-walled open-section members, as dis-
cussed in Sections 3.7.5 and 6.10. Also, significant twist rotations of the member
may cause increases in the bending stresses in thin-walled open-section members.
However, these interactions are usually negligible when the torsional rigidity is
very high, as in thin-walled closed-section members. The behaviour of members
under combined bending and torsion is discussed in Section 10.5.

The effects of distortion of the cross-section are only significant in very thin-
walled open-sections, and in thin-walled closed sections with high-distortional
loadings. Thus, for the box-section beam shown in Figure 10.3, the relatively
flexible plates may bend out of their planes as indicated in Figure 10.3d, causing
the cross-section to distort. Because of this, the in-plane plate bending and shear
stress distributions are changed, and significant out-of-plane plate bending stresses
may be induced. The distortional behaviour of structural members is discussed
briefly in Section 10.6.
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10.2 Uniform torsion

10.2.1 Elastic deformations and stresses

10.2.1.1 General

In elastic uniform torsion, the twist rotation per unit length is constant along the
length of the member. This occurs when the torque is constant and the ends of
the member are free to warp, as shown in Figure 10.1a. When a member twists in
this way,

(a) lines which were originally parallel to the axis of twist become helices,
(b) cross-sections rotate φ as rigid bodies about the axis of twist, and
(c) cross-sections warp out of their planes, the warping deflections (u) being

constant along the length of the member (see Figure 10.4).

The uniform torque Tt acting at any section induces shear stresses τxy, τxz which
act in the plane of the cross-section. The distribution of these shear stresses can
be visualised by using Prandtl’s membrane analogy, as indicated in Figure 10.5
for a rectangular cross-section. Imagine a thin uniformly stretched membrane
which is fixed to the cross-section boundary and displaced by a uniform transverse
pressure. The contours of the displaced membrane coincide with the shear stress

x 
y 

z 

Element δx × δs × t

Tt

Tt

Helix

Warping
displacements u

Figure 10.4 Warping displacements u due to twisting.
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(b) Distribution of shear stress (a) Transversely loaded membrane 
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contours 

Rectangular
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t 

Figure 10.5 Prandtl’s membrane analogy for uniform torsion.
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Figure 10.6 Warping displacements.

trajectories, the slope of the membrane is proportional to the shear stress, and the
volume under the membrane is proportional to the torque. The shear strains caused
by these shear stresses are related to the twisting and warping deformations, as
indicated in Figure 10.6.

The stress distribution can be found by solving the equation [2]

∂2θ

∂y2
+ ∂2θ

∂z2
= −2G

dφ

dx
, (10.1)
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(in which G is the shear modulus of elasticity) for the stress function θ (which
corresponds to the membrane displacement in Prandtl’s analogy) defined by

τxz = τzx = −∂θ/∂y

τxy = τyx = ∂θ/∂z


, (10.2)

subject to the condition that

θ = constant (10.3)

around the section boundary. The uniform torque Tt , which is the static equivalent
of the shear stresses τxy, τxz, is given by

Tt = 2
∫∫

section

θ dy dz. (10.4)

10.2.1.2 Solid cross-sections

Closed-form solutions of equations 10.1–10.3 are not generally available, except
for some very simple cross-sections. For a solid circular section of radius R, the
solution is

θ = G

2

dφ

dx
(R2 − y2 − z2). (10.5)

If this is substituted in equations 10.2, the circumferential shear stress τt at a radius
r = √

(y2 + z2) is found to be

τt = Gr
dφ

dx
. (10.6)

The torque effect of these shear stresses is

Tt =
∫ R

0
τt(2πr)dr (10.7)

which can be expressed in the form

Tt = GIt
dφ

dx
(10.8)

where the torsion section constant It is given by

It = πR4/2, (10.9)

which can also be expressed as

It = A4

4π2 (Iy + Iz)
. (10.10)

The same result can be obtained by substituting equation 10.5 directly into
equation 10.4. Equation 10.6 indicates that the maximum shear stress occurs at
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the boundary and is equal to

τt,max = TtR

It
. (10.11)

For other solid cross-sections, equation 10.10 gives a reasonably accurate
approximation for the torsion section constant, but the maximum shear stress
depends on the precise shape of the section. When sections have re-entrant cor-
ners, the local shear stresses may be very large (as indicated in Figure 10.7),
although they may be reduced by increasing the radius of the fillet at the re-entrant
corner.

10.2.1.3 Rectangular cross-sections

The stress function θ for a very narrow rectangular section of width b and thickness
t is approximated by

θ ≈ G
dφ

dx

(
t2

4
− z2

)
. (10.12)

The shear stresses can be obtained by substituting equation 10.12 into
equations 10.2, whence

τxy = −2zG
dφ

dx
, (10.13)

which varies linearly with z as shown in Figure 10.8c. The torque effect of the
τxy shear stresses can be obtained by integrating their moments about the x axis,
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Figure 10.7 Stress concentrations at re-entrant corners.
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Figure 10.8 Uniform torsion of a thin rectangular section.

whence

−
∫ t/2

−t/2
τxybz dz = G

bt3

6

dφ

dx
(10.14)

which is one half of the total torque effect. The other half arises from the shear
stresses τxz, which have their greatest effects near the ends of the thin rectangle.
Although they act there over only a small length of the order of t (compared with
b for the τxy stresses), they have a large lever arm of the order of b/2 (instead of
t/2), and they make an equal contribution. The total torque can therefore be
expressed in the form of equation 10.8 with

It ≈ bt3/3. (10.15)

The same result can be obtained by substituting equation 10.12 directly into
equation 10.4. Equation 10.13 indicates that the maximum shear stress occurs at
the centre of the long boundary, and is given by

τt,max ≈ Ttt

It
. (10.16)

For stockier rectangular sections, the stress function θ varies significantly along
the width b of the section, as indicated in Figure 10.5, and these approximations
may not be sufficiently accurate. In this case, the torsion section constant It and
the maximum shear stress τt,max can be obtained from Figure 10.9.

10.2.1.4 Thin-walled open cross-sections

The stress distribution in a thin-walled open cross-section is very similar to that in
a narrow rectangular section, as shown in Figure 10.10a. Thus, the shear stresses
are parallel to the walls of the section, and vary linearly across the thickness t, this
pattern remaining constant around the section except at the ends. Because of this
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Figure 10.10 Shear stresses due to uniform torsion of thin-walled sections.

similarity, the torsion section constant It can be closely approximated by

It ≈
∑

bt3/3, (10.17)
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where b is the developed length of the mid-line and t the thickness of each thin-
walled element of the cross-section, while the summation is carried out for all such
elements.

The maximum shear stress away from the concentrations at re-entrant corners
can also be approximated as

τt,max ≈ Tttmax

It
, (10.18)

where tmax is the maximum thickness. When more accurate values for the torsion
section constant It are required, the formulae developed in [3] can be used. The
values given in [4–6] for British hot-rolled steel sections have been calculated in
this way.

10.2.1.5 Thin-walled closed cross-sections

The uniform torsional behaviour of thin-walled closed-section members is quite
different from that of open-section members, and there are dramatic increases in
the torsional stiffness and strength. The shear stress no longer varies linearly across
the thickness of the wall, but is constant as shown in Figure 10.10b, and there is a
constant shear flow around the closed section.

This shear flow is required to prevent any discontinuities in the longitudinal
warping displacements of the closed section. To show this, consider the slit rect-
angular tube shown in Figure 10.11a. The mid-thickness surface of this open
section is unstrained, and so the warping displacements of this surface are entirely
due to the twisting of the member. The distribution of the warping displacements
caused by twisting (see Section 10.3.1.2) is shown in Figure 10.11b. The relative
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Figure 10.11 Warping of a slit tube.
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warping displacement at the slit is equal to

uE − u0 = −dφ

dx

∫ E

0
ρ0ds, (10.19)

in whichρ0 is the distance (see Figure 10.12a) from the tangent at the mid-thickness
line to the axis of twist (which passes through the shear centre of the section, as
discussed in Sections 10.3.1.2 and 5.4.3).

However, when the tube is not slit, this relative warping displacement cannot
occur. In this case, the relative warping displacement due to twisting shown in
Figure 10.13a is exactly balanced by the relative warping displacement caused
by shear straining (see Figure 10.6) of the mid-thickness surface shown in
Figure 10.13b, so that the total relative warping displacement is zero. It is shown
in Section 10.7.1 that the required shear straining is produced by a constant shear
flow τt t around the closed section which is given by

τt t = Tt

2Ae
(10.20)

where Ae is the area enclosed by the section, and that the torsion section constant
is given by

It = 4A2
e∮

(1/t)ds
. (10.21)

The maximum shear stress can be obtained from equation 10.20 as

τt,max = Tt

2Aetmin
(10.22)
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The membrane analogy can also be used for thin-walled closed sections, by
imagining that the inner-section boundary is fixed to a weightless horizontal plate
supported at a distance equivalent to τt t above the outer-section boundary by
the transverse pressures and the forces in the membrane stretched between the
boundaries, as shown in Figure 10.14b. Thus the slope (τt t)/t of the membrane
is substantially constant across the wall thickness, and is equivalent to the shear
stress τt , while twice the volume Aeτt t under the membrane is equivalent to the
uniform torque Tt given by equation 10.20.

The membrane analogy is used in Figure 10.14 to illustrate the dramatic
increases in the stiffnesses and strengths of thin-walled closed sections over those
of open sections. It can be seen that the torque (which is proportional to the volume
under the membrane) is much greater for the closed section when the maximum
shear stress is the same. The same conclusion can be reached by considering the
effective lever arms of the shear stresses, which are of the same order as the overall
dimensions of the closed section, compared with those of the same order as the
wall thickness of the open section.

The behaviour of multi-cell closed-section members in uniform torsion can be
determined by using the warping displacement continuity condition for each cell,
as indicated in Section 10.7.1. Ageneral matrix method of carrying out this analysis
by computer has been given in [7], and a computer program has been developed
[8]. Alternatively, the membrane analogy can be extended by considering a set of
horizontal plates at different heights, one for each cell of the cross-section.
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10.2.2 Elastic analysis

10.2.2.1 Statically determinate members

Some members in uniform torsion are statically determinate, such as the cantilever
shown in Figure 10.15. In these cases, the distribution of the total torque Tx = Tt

can be determined from statics, and the maximum stresses can be evaluated from
equations 10.11, 10.16, 10.18, or 10.20, or from Figures 10.7 or 10.9. The twisted
shape of the member can be determined by integrating equation 10.8, using the
sign conventions of Figure 10.16a. Thus, the angle of twist rotation in a region of
constant torque Tx will vary linearly in accordance with

φ = φ0 + Txx

GIt
, (10.23)

as indicated in Figure 10.15c.

10.2.2.2 Statically indeterminate members

Many torsion members are statically indeterminate, such as the beam shown in
Figure 10.17, and the distribution of torque cannot be determined from statics
alone. The redundant quantities can be determined by substituting the correspond-
ing compatibility conditions into the solution of equation 10.8. Once these have
been found, the maximum torque can be evaluated by statics, and the maximum
stress can be determined. The maximum angle of twist can also be derived from
the solution of equation 10.8.
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As an example of this procedure, the indeterminate beam shown in Figure 10.17
is analysed in Section 10.7.2. The theoretical twisted shape of this beam is shown
in Figure 10.17c, and it can be seen that there is a jump discontinuity in the twist per
unit length dφ/dx at the loaded point. This discontinuity is a consequence of the use
of the uniform torsion theory to analyse the behaviour of the member. In practice
such a discontinuity does not occur, because an additional set of local warping
stresses is induced. These additional stresses, which may have high values at the
loaded point, have been investigated in [9, 10]. High local stresses can usually
be tolerated in static loading situations when the material is ductile, whether the
stresses are induced by concentrated torques or by other concentrated loads. In
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members for which the use of the uniform torsion theory is appropriate, such as
those with high torsional rigidity and low warping rigidity, these additional stresses
decrease rapidly as the distance from the loaded point increases. Because of this, the
angles of twist predicted by the uniform torsion analysis are of sufficient accuracy.

10.2.3 Plastic collapse analysis

10.2.3.1 Fully plastic stress distribution

The elastic shear stress distributions described in the previous sub-sections remain
valid while the shear yield stress τy is not exceeded. The uniform torque at nominal
first yield Tty may be obtained from equations 10.11, 10.16, 10.18, or 10.22 by
using τt,max = τy. Yielding commences at Tty at the most highly stressed regions,
and then generally spreads until the section is fully plastic.

The fully plastic shear stress distribution can be visualised by using the ‘sand
heap’ modification of the Prandtl membrane analogy. Because the fully plastic
shear stress distribution is constant, the slope of the Prandtl membrane is also
constant, and its contours are equally spaced in the same way as are those of a
heap formed by pouring sand on to a base area of the same shape as the member
cross-section until the heap is fully formed.

This is demonstrated in Figure 10.18a for a circular cross-section, for which the
sand heap is conical. Its fully plastic uniform torque may be obtained from

Ttp =
∫ R

0
τy(2πr)r dr (10.24)

whence

Ttp = (
2πR3/3

)
τy (10.25)
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Figure 10.18 First yield and fully plastic uniform torsion shear stress distributions.

The corresponding first yield uniform torque may be obtained from
equations 10.9 and 10.11 as

Tty = (
πR3/2

)
τy (10.26)

and so the uniform torsion plastic shape factor is Ttp/Tty = 4/3.
The sand heap for a fully plastic rectangular section b × t is chisel-shaped

as shown in Figure 10.18b. In this case, the fully plastic uniform torque is
given by

Ttp = bt2

2

(
1 − t

3b

)
τy, (10.27)

and for a narrow rectangular section this becomes Ttp ≈ (bt2/2)τy. The
corresponding first yield uniform torque is

Tty ≈ (
bt2/3

)
τy (10.28)

and so the uniform torsion plastic shape factor is Ttp/Tty = 3/2.
For thin-walled open sections, the fully plastic uniform torque is approximated

by

Ttp ≈ �
(
bt2/2

)
τy (10.29)

and the first yield torque is obtained from equation 10.18 as

Tty = τyIt

tmax
(10.30)
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For a hollow section, the equilibrium condition of constant shear flow lim-
its the maximum shear flow to the shear flow τytmin in the thinnest wall (see
equation 10.22), so that the first yield uniform torque is given by

Tty = 2Aetminτy (10.31)

This is the maximum torque that can be resisted, even though walls with t > tmin

are not fully yielded, and so this value of Tty should also be used for the fully plastic
uniform torque Ttp.

10.2.3.2 Plastic analysis

A member in uniform torsion will collapse plastically when there is a sufficient
number of fully plastic cross-sections to transform the member into a mechanism,
as shown for example in Figure 10.19. Each fully plastic cross-section can be
thought of as a shear ‘hinge’ which allows increasing torsional rotations under
the uniform plastic torque Ttp. The plastic shear hinges usually form at the sup-
ports where there are reaction torques, as indicated in Figure 10.19. In general,
the plastic shear hinges develop progressively until the collapse mechanism is
formed. Examples of uniform torsion plastic collapse mechanisms are shown in
Figures 10.20 and 10.21.

At plastic collapse, the mechanism is statically determinate, and can be analysed
by using statics to determine the plastic collapse torques. For the member shown
in Figure 10.19, the mechanism forms when there are plastic shear hinges at each
support. The total applied torque αtT at plastic collapse must be in equilibrium
with these plastic uniform torques, and so

αtT = 2Ttp (10.32)

so that the uniform torsion plastic collapse load factor is given by

αt = 2Ttp/T (10.33)

Values of the uniform torsion plastic collapse load factor αt for a number of
example torsion members can be obtained from Figures 10.20 and 10.21.

10.3 Non-uniform torsion

10.3.1 Elastic deformations and stresses

10.3.1.1 General

In elastic non-uniform torsion, both the rate of change of the angle of twist rotation
dφ/dx and the longitudinal warping deflections u vary along the length of the



 
T

L

(–)
(+)

t T
Ttp

Ttp

(b) Uniform torsion collapse mechanism 

(c) Uniform torque distribution (a) Torsion member and loading 

Prevention of warping
ineffective in uniform torsion 

Uniform torsion
plastic shear hinge 

Bottom flange

Top flange

	

Figure 10.19 Uniform torsion plastic collapse.

Mechanism

T

T

T

T

L

L

L L

L L

T

L
T

L

T

L

T

L L

T

L L

T

L L

T

L L

1.0

1.0

1.0

1.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

0

1.0

1.0

1.0

4.0

6.0

8.0

6.0

6.0

8.0

8.0

1.0

1.0

1.0

1.0

0.25

0.25

0.25

0.25

0.25

0.25

0.25

 

0.333

0.667

0.583

0.0208

0.00931

0.00521

0.0150

0.0142

0.00751

0.00721

tT /Ttp wTL/Mfp df

Warping torsion frictionless hinge

Warping torsion plastic hinge

Uniform torsion shear hinges

Free to warp 

Warping prevented

Top flange

Bottom flange

Plastic collapse
Warping torsionUniform torsion

Member
and

loading

Rotations

Mechanism

Warping

�wmEIw/TL3

Uniform tm

�tmGIt /TL 	 	

∞

Figure 10.20 Plastic collapse and maximum rotation – concentrated torque.



 

Torsion members 451

T/L

L

L

L

L

L

L

L

1.0

1.0

1.0

1.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

0

2.0

2.0

2.0

8.0

11.66

16.0

11.66

11.66

16.0

16.0

0.5

0.5

0.5

0.5

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.139

0.292

0.250

0.0130

0.00541

0.00260

0.00915

0.00860

0.00417

0.00397

T/L

L

T/L

L

T/L

L

T/L

L
T/L

L
T/L

L

T/L

L
T/L

L
T/L

L
T/L

L

Warping torsion frictionless hinge

Warping torsion plastic hinge

Uniform torsion shear hinges

Free to warp 

Warping prevented

Top flange

Bottom flange

tT /Ttp wTL/Mfp df

Plastic collapse
Warping torsionUniform torsion

Member
and

loading

Rotations

Mechanism

Warping

�wmEIw/TL3
Uniform 

�tmGIt/TL 	 	Mechanism

∞

Figure 10.21 Plastic collapse and maximum rotation – uniformly distributed torque.

member. The varying warping deflections induce longitudinal strains and stresses
σw. When these warping normal stresses also vary along the member, there are
associated warping shear stresses τw distributed around the cross-section, and
these may act in conjunction with the shear stresses due to uniform torsion to
resist the torque acting at the section [1, 11]. In the following sub-sections, the
warping deformations, stresses, and torques in thin-walled open-section members
of constant cross-section are treated. The local warping stresses induced by the
non-uniform torsion of closed sections are beyond the scope of this book, but are
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treated in [9, 10], while some examples of the non-uniform torsion of tapered
open-section members are discussed in [12, 13].

10.3.1.2 Warping deflections and stresses

In thin-walled open-section members, the longitudinal warping deflections u due
to twist are much greater than those due to shear straining (see Figure 10.6), and
the latter are usually neglected. The warping deflections due to twist arise because
the lines originally parallel to the axis of twist become helical locally, as indicated
in Figures 10.4, 10.22 and 10.23. In non-uniform torsion, the axis of twist is the
locus of the shear centres (see Section 5.4.3), since otherwise the shear centre axis
would be deformed, and the member would be bent as well as twisted. It is shown
in Section 10.8.1 that the warping deflections due to twist (see Figure 10.23) can
be expressed as

u = (αn − α)
dφ

dx
, (10.34)

where

α =
∫ s

0
ρ0ds, (10.35)

and

αn = 1

A

∫ E

0
α t ds (10.36)

where ρ0 is the perpendicular distance from the shear centre S to the tangent to
the mid-line of the section wall (see Figures 10.16b and 10.23).

In non-uniform torsion, the warping displacements u vary along the length of the
member, as shown for example in Figure 10.1b and c. Because of this, longitudinal
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Figure 10.22 Rotation of a line parallel to the axis of twist.
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strains are induced, and the corresponding longitudinal warping normal
stresses are

σw = E(αn − α)
d2φ

dx2
. (10.37)

These stresses define the bimoment stress resultant

B = −
∫ E

0
σw(αn − α) tds. (10.38)

Substituting equation 10.37 leads to

B = −EIw
d2φ

dx2
(10.39)

in which

Iw =
∫ E

0
(αn − α)2tds (10.40)

is the warping section constant. Substituting equation 10.39 into equation 10.37
allows the warping normal stresses to be expressed as

σw = −B(αn − α)

Iw
. (10.41)

Values of the warping section constant Iw and of the warping normal stresses
σw for structural sections are given in [5, 6] while a general computer program for
their evaluation has been developed [8].
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When the warping normal stresses σw vary along the length of the member,
warping shear stresses τw are induced, in the same way that variations in the
bending normal stresses in a beam induce bending shear stresses (see Section 5.4).
The warping shear stresses can be expressed in terms of the warping shear flow

τwt = −E
d3φ

dx3

∫ s

0
(αn − α) tds. (10.42)

Information for calculating the warping shear stresses in structural sections is
also given in [5, 6], while a general computer program for their evaluation has
been developed [8].

The warping shear stresses exert a warping torque

Tw =
∫ E

0
ρ0τwtds (10.43)

about the shear centre, as shown in Figure 10.12a. It can be shown [14, 15] that
this reduces to

Tw = −EIw
d3φ

dx3
, (10.44)

after substituting for τw and integrating by parts. The warping torque Tw given by
equation 10.44 is related to the bimoment B given by equation 10.39 through

Tw = dB

dx
. (10.45)

Sign conventions for Tw and B are illustrated in Figure 10.16.
A somewhat simpler explanation of the warping torque Tw and bimoment B

can be given for the I-section illustrated in Figure 10.24. This is discussed in
Section 10.8.2 where it is shown that for an equal flanged I-section, the bimoment
B is related to the flange moment Mf through

B = df Mf (10.46)

and the warping section constant Iw is given by

Iw = Izd2
f

4
(10.47)

in which df is the distance between the flange centroids.

10.3.2 Elastic analysis

10.3.2.1 Uniform torsion

Some thin-walled open-section members, such as thin rectangular sections and
angle and tee sections, have very small warping section constants. In such cases
it is usually sufficiently accurate to ignore the warping torque Tw, and to analyse
the member as if it were in uniform torsion, as discussed in Section 10.2.2.
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10.3.2.2 Warping torsion

Very thin-walled open-section members have very small torsion-section constants
It , while some of these, such as I- and channel sections, have significant warping
section constants Iw. In such cases, it is usually sufficiently accurate to analyse the
member as if the applied torque were resisted entirely by the warping torque, so
that Tx = Tw. Thus, the twisted shape of the member can be obtained by solving

−EIw
d3φ

dx3
= Tx, (10.48)

as

−EIwφ =
∫ x

0

∫ x

0

∫ x

0
Txdxdxdx + A1x2

2
+ A2x + A3, (10.49)

where A1, A2, and A3 are constants of integration whose values depend on the
boundary conditions.

For statically determinate members, there are three boundary conditions from
which the three constants of integration can be determined. As an example of
the three commonly assumed boundary conditions, the statically determinate can-
tilever shown in Figures 10.1c and 10.25 is analysed in Section 10.8.3. The twisted
shape of the cantilever is shown in Figure 10.25c, and it can be seen that the
maximum angle of twist rotation occurs at the loaded end and is equal to TL3/3EIw.

For statically indeterminate members such as the beam shown in Figure 10.26,
there is an additional boundary condition for each redundant quantity involved.
These redundants can be determined by substituting the additional boundary

vf

y
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y
x

z

z (a) Rotation of
cross-section (b) Bimoment and warping stresses
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Flange shears Vf

df
�

Figure 10.24 Bimoment and stresses in an I-section member.
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conditions into equation 10.49. As an example of this procedure, the beam shown
in Figure 10.26 is analysed in Section 10.8.4.

The warping torsion analysis of equal flanged I-sections can also be carried out
by analysing the flange bending model shown in Figure 10.27. Thus the warping
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���L= 0
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Figure 10.25 Warping torsion of a statically determinate cantilever.
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Figure 10.27 Flange bending model of warping torsion.
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torque Tw = Tx acting on the I-section is replaced by two transverse shears

Vf = Tx/df , (10.50)

one on each flange. The bending deflections vf of each flange can then be deter-
mined by elastic analysis or by using available solutions [4], and the twist rotations
can be calculated from

φw = 2vf /df (10.51)

10.3.2.3 Non-uniform torsion

When neither the torsional rigidity nor the warping rigidity can be neglected, as
in hot-rolled steel I- and channel sections, the applied torque is resisted by a
combination of the uniform and warping torques, so that

Tx = Tt + Tw. (10.52)

In this case, the differential equation of non-uniform torsion is

Tx = GIt
dφ

dx
− EIw

d3φ

dx3
, (10.53)

the general solution of which can be written as

φ = p(x)+ A1ex/a + A2e−x/a + A3, (10.54)

where

a2 = EIw

GIt
= K2L2

π2
. (10.55)

The function p(x) in this solution is a particular integral whose form depends
on the variation of the torque Tx along the beam. This can be determined by the
standard techniques used to solve ordinary linear differential equations (see [16]
for example). The values of the constants of integration A1, A2, and A3 depend on
the form of the particular integral and on the boundary conditions.

Complete solutions for a number of torque distributions and boundary conditions
have been determined, and graphical solutions for the twist φ and its derivatives
dφ/dx, d2φ/dx2, and d3φ/dx3 are available [5, 6]. As an example, the non-uniform
torsion of the cantilever shown in Figure 10.28 is analysed in Section 10.8.5.

Sometimes the accuracy of the method of solution described above is not
required, in which case a much simpler method may be used. The maximum
angle of twist rotation φm may be approximated by

φm = φtmφwm

φtm + φwm
(10.56)

in which φtm is the maximum uniform torsion angle of twist rotation obtained by
solving equation 10.8 with Tt = Tx, and φwm is the maximum warping torsion
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Figure 10.28 Non-uniform torsion of a cantilever.

angle of twist rotation obtained by solving equation 10.48. Values of φtm and φwm

can be obtained from Figures 10.20 and 10.21 for a number of different torsion
members.

This approximate method tends to overestimate the true maximum angle of twist
rotation, partly because the maximum values φtm and φwm often occur at different
locations along the member. In the case of the cantilever of Figure 10.28, the
approximate solution

φm = TL/GIt

1 + 3EIw/GItL2
(10.57)

obtained using Figures 10.15c and 10.25c in equation 10.56 has a maximum error
of about 12% [17].

10.3.3 Plastic collapse analysis

10.3.3.1 Fully plastic bimoment

The warping normal stresses σw developed in elastic warping torsion are usually
much larger than the warping shear stresses τw. Thus the limit of elastic behaviour
is often reached when the bimoment is close to its nominal first yield value for
which the maximum value of σw is equal to the yield stress fy.

For the equal flanged I-section shown in Figure 10.24, the first yield bimoment
By corresponds to the flange moment Mf reaching the yield value

Mfy = fyb2
f tf /6 (10.58)

so that

By = fydf b2
f tf /6 (10.59)

in which bf is the flange width, tf is the flange thickness, and df is the dis-
tance between flange centroids. As the bimoment increases above By, yielding
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spreads from the flange tips into the cross-section, until the flanges become fully
yielded at

Mfp = fyb2
f tf /4 (10.60)

which corresponds to the fully plastic bimoment

Bp = fydf b2
f tf /4 (10.61)

The plastic shape factor for warping torsion of the I-section is therefore given by
Bp/By = 3/2.

Expressions for the full plastic bimoments of a number of monosymmetric
thin-walled open sections are given in [18].

10.3.3.2 Plastic analysis of warping torsion

An equal flanged I-section member in warping torsion will collapse plastically
when there is a sufficient number of warping hinges (frictionless or plastic) to
transform the member into a mechanism, as shown for example in Figure 10.29.
In general, the warping hinges develop progressively until the collapse mechanism
forms.

A frictionless warping hinge occurs at a point where warping is unrestrained
(φ′′ = 0) so that there is a frictionless hinge in each flange, while at a
plastic warping hinge, the bimoment is equal to the fully plastic value Bp

(equation 10.61) and the moment in each flange is equal to the fully plastic value
Mfp (equation 10.60), so that there is a flexural plastic hinge in each flange. Warping
torsion plastic collapse therefore corresponds to the simultaneous plastic collapse

T

L

Mfp

Mfp

(-)

(+)

End warping
prevented

End free to
warp

(a) Torsion member and loading

(b) Warping torsion collapse mechanism

(c) Top flange moment distribution

Top flange

Warping torsion
plastic hinges

Bottom
flange

Frictionless
hinge

Figure 10.29 Warping torsion plastic collapse.
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of the flanges in opposite directions, with a series of flexural hinges (frictionless
or plastic) in each flange. Thus warping torsion plastic collapse can be analysed
by using the methods discussed in Section 5.5.5 to analyse the flexural plastic
collapse of the flanges.

Warping torsion plastic hinges often form at supports or at points of concentrated
torque, as indicated in Figure 10.29. Examples of warping torsion plastic collapse
mechanisms are shown in Figures 10.20 and 10.21.

At plastic collapse, each flange becomes a mechanism which is statically
determinate, so that it can be analysed by using statics to determine the plas-
tic collapse torques. For the member shown in Figure 10.29, each flange forms
a mechanism with plastic hinges at the concentrated torque and the right-hand
support and a frictionless hinge at the left-hand support where warping is unre-
strained. If the concentrated torque αwT acts at mid-length, then the flanges
collapse when

αw(T/df )L/4 = Mfp + Mfp/2 (10.62)

so that the warping torsion plastic collapse load factor is given by

αw = 6Mfpdf /TL (10.63)

Values of the warping torsion plastic collapse load factor αw for a number of
example-torsion members are given in Figures 10.20 and 10.21.

10.3.3.3 Plastic analysis of non-uniform torsion

It has not been possible to develop a simple but rigorous model for the analysis of
the plastic collapse of members in non-uniform torsion where both uniform and
warping torsion are important. This is because

(a) different types of stress (shear stresses τt , τw, and normal stress σw) are
associated with uniform and warping torsion collapse,

(b) the different stresses τt , τw, and σw are distributed differently across the
section, and

(c) the uniform torque Tt and the warping torque Tw are distributed differently
along the member.

A number of approximate theories have been proposed the simplest of which is
the Merchant approximation [19] according to which the plastic collapse load
factor αx is the sum of the uniform and warping torsion collapse load factors,
so that

αx = αt + αw (10.64)
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This approximation assumes that there is no interaction between uniform and
warping torsion at plastic collapse, so that the separate plastic collapse capacities
are additive.

If strain-hardening is ignored and only small twist rotations are considered,
then the errors arising from this approximation are on the unsafe side, but are
small because the warping torsion shear stresses τw are small, because the yield
interactions between normal and shear stresses (see Section 1.3.1) are small,
and because cross-sections which are fully plastic due to warping torsion often
occur at different locations along the member than those which are fully plas-
tic due to uniform torsion. These small errors are more than compensated for
by the conservatism of ignoring strain-hardening and second-order longitudinal
stresses that develop at large rotations. Test results [20, 21] and numerical studies
[22, 23] have shown that these cause significant strengthening at large rotations
as indicated in Figure 10.30, and that the approximation of equation 10.64 is
conservative.

An example of the plastic collapse analysis of the non-uniform torsion is given
in Section 10.9.6.

10.4 Torsion design

10.4.1 General

EC3 gives limited guidance for the analysis and design of torsion members.
While both elastic and plastic analysis are permitted generally, only accurate
and approximate methods of elastic analysis are specifically discussed for torsion
members. Also, while both first yield and plastic design resistances are referred
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to generally, only the first yield design resistance is specifically discussed for tor-
sion members. Further, there is no guidance on section classification for torsion
members, nor on how to allow for the effects of local buckling on the design
resistance.

In the following sub-sections, the specific EC3 provisions for torsion analysis
and design are extended so as to provide procedures which are consistent with
those used in EC3 for the design of beams against bending and shear.

First the member cross-section is classified as Class 1, Class 2, Class 3, or
Class 4 in much the same way as is a beam cross-section (see Sections 4.7.2
and 5.6.1.2), and then the effective section resistances for uniform and warping
torsion are determined. Following this, an appropriate method of torsion analysis
(plastic or elastic) is selected, and then an appropriate method (plastic, first hinge,
first yield, or local buckling) is used for strength design. All of the strength design
methods suggested ignore the warping shear stresses τw because these are generally
small, and because they occur at different points in the cross-section and along
the member than do the much more significant uniform torsion shear stresses τt

and the warping bimoment normal stresses σw. Finally, a method of serviceability
design is discussed.

10.4.2 Section classification

Cross-sections of torsion members need to be classified according to the extent
by which local buckling effects may reduce their cross-section resistances. Cross-
sections which are capable of reaching and maintaining plasticity while a torsion
plastic hinge collapse mechanism develops may be called Class 1, as are the
corresponding cross-sections of beams. Class 2 sections are capable of developing
a first hinge, but inelastic local buckling may prevent the development of a plastic
collapse mechanism. Class 3 sections are capable of reaching the nominal first
yield before local buckling occurs, while Class 4 sections will buckle locally
before the nominal first yield is reached.

For open cross-sections, the warping shear stresses τw are usually very small,
and can be neglected without serious error. The uniform torsion shear stresses τt

change sign and vary linearly across the wall thickness t, and so can be considered
to have no effect on local buckling. The flange elastic and plastic warping normal
stress distributions are similar to those due to bending in the plane of the flange,
and so the section classification may be based on the same width–thickness limits.
Thus the flange outstands of a Class 1 open section would satisfy

λ ≤ 9 (10.65)

in which λ is the element slenderness given by

λ = (c/t)
√ (

fy/235
)

. (10.66)
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Class 2 open sections would satisfy

9 < λ ≤ 10, (10.67)

Class 3 open sections would satisfy

10 < λ ≤ 14, (10.68)

and Class 4 open sections would satisfy

14 < λ. (10.69)

For closed cross-sections, the only significant stresses that develop during tor-
sion are uniform torsion shear stresses τt that are constant across the wall thickness
t and along the length b of any element of the cross-section. This stress distribu-
tion is very similar to that caused by a bending shear force in the web of an
equal-flanged I-section, and so the section classification may be based on the
same width–thickness limits [24]. Thus the elements of Class 1, Class 2, and Class
3 rectangular hollow sections would satisfy

λ ≤ 60 (10.70)

in which λ is the element slenderness given by

λ = (hw/t)
√ (

fy/235
)

. (10.71)

in which hw is the clear distance between flanges. Rectangular hollow sections
which do not satisfy this condition would be classified as Class 4. Circular hollow
sections do not buckle under shear, unless they are exceptionally slender, and so
they may generally be classified as Class 1.

10.4.3 Uniform torsion section resistance

The effective uniform torsion section resistance of all open sections Tt,Rd can be
approximated by the plastic section resistance Ttp given by equation 10.29 in which
the shear yield stress is given by

τy = fy/
√

3 (10.72)

The uniform torsion section resistance of Class 1, Class 2, and Class 3 rectangular
hollow sections Tt,Rd,123 can be determined by using the first yield uniform torque
Tty of equation 10.31. The effective uniform torsion section resistance of a Class 4
rectangular hollow section Tt,Rd,4 can be approximated by reducing the first yield
uniform torque Tty of equation 10.31 to

Tt,Rd,4 = Tty(60/λ) (10.73)

The effective uniform torsion section resistance of a circular hollow section Tt,Rd

can generally be approximated by using equation 10.31 to find the first yield
uniform torque Tty.
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10.4.4 Bimoment section resistance

The bimoment section resistance of Class 1 and Class 2 equal-flanged I-sections
BRd,12 is given by equation 10.61. The bimoment section resistance of a Class 3
equal-flanged I-section can be approximated by using

BRd,3 = By + (Bp − By)(14 − λ)/4 (10.74)

in which By is the first yield bimoment given by equation 10.59. The bimoment
section resistance of a Class 4 equal-flanged I-section can be approximated by
using

BRd,4 = By (14/λ) (10.75)

These equations may also be used for the bimoment section resistances of other
open sections by using their fully plastic bimoments Bp [18] or first yield bimo-
ments By. Alternatively, the bimoment section resistances of other Class 1, Class 2,
or Class 3 open sections can be conservatively approximated by using

BRd,123 = By (10.76)

and the bimoment section resistances of other Class 4 open sections can be approx-
imated using equation 10.75.

It is conservative to ignore bimoments in hollow section members, and so there
is no need to consider their bimoment section resistances.

10.4.5 Plastic design

The use of plastic design should be limited to Class 1 members which have suf-
ficient ductility to reach the plastic collapse mechanism. Plastic design should be
carried out by using plastic analysis to determine the plastic collapse load factor
αx (see Section 10.3.3.3), and then checking that

1 ≤ αx (10.77)

10.4.6 First hinge design

The use of first hinge design should be limited to Class 1 and Class 2 members
in which the first hinge of a collapse mechanism can form. The design uniform
torques Tt and bimoments B can be determined by using elastic analysis, and the
member is satisfactory if(

Tt

Tt,Rd,2

)2

+
(

B

BRd,2

)2

≤ 1 (10.78)

is satisfied at all points along the member. The first hinge method is more conserva-
tive than plastic design, and more difficult to use because elastic member analysis
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is much more difficult than plastic analysis, and also because equation 10.78 often
needs to be checked at a number of points along the member.

10.4.7 First yield design

The use of first yield design should be limited to Class 1, Class 2, and Class 3
members which can reach first yield. The maximum design uniform torques Tt and
bimoments B can be determined by elastic analysis. The member is satisfactory if(

Tt

Tt,Rd,3

)2

+
(

B

BRd,3

)2

≤ 1 (10.79)

is satisfied at all points along the member. This first yield method is the same as
that specified in EC3 except for the neglect of the warping shear stresses τw. It is
just as difficult to use as the first hinge method.

10.4.8 Local buckling design

Class 4 members should designed against local buckling. The maximum design
uniform torques Tt and bimoments B can be determined by elastic analysis. The
member is satisfactory if(

Tt

Tt,Rd,4

)2

+
(

B

BRd,4

)2

≤ 1 (10.80)

is satisfied at all points along the member.

10.4.9 Design for serviceability

Serviceability design usually requires the estimation of the deformations under part
or all of the serviceability loads. Because these loads are usually significantly less
than the factored combined loads used for strength design, the member remains
largely elastic, and the serviceability deformations can be evaluated by linear
elastic analysis.

There are no specific serviceability criteria for satisfactory deformations of a
torsion member given in EC3. However, general recommendations such as ‘the
deformations of a structure and of its component members should be appropriate
to the location, loading and function of the structure and the component members’
may be applied to torsion members, so that the onus is placed on the designer to
determine what are appropriate magnitudes of the twist rotations.

Because of the lack of precise serviceability criteria, highly accurate predictions
of the serviceability rotations are not required. Thus the maximum twist rotations
of members in non-uniform torsion may be approximated by using equation 10.56.

Usually, the twist rotations of thin-walled closed-section members are very
small, and can be ignored (although in some cases, the distortional deformations
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may be quite large, as discussed in Section 10.6). On the other hand, thin-walled
open-section members are comparatively flexible, and special measures may be
required to limit their rotations.

10.5 Torsion and bending

10.5.1 Behaviour

Pure torsion occurs very rarely in steel structures. Most commonly, torsion occurs
in combination with bending actions. The torsion actions may be classified as
primary or secondary, depending on whether the torsion action is required to trans-
fer load (primary torsion), or whether it arises as a secondary action. Secondary
torques may arise as a result of differential twist rotations compatible with the joint
rotations of primary frames, as shown in Figure 10.31, and are often predicted by
three-dimensional analysis programs. They are not unlike the secondary bend-
ing moments which occur in rigid-jointed trusses, but which are usually ignored
(a procedure justified by many years of satisfactory experience based on the long-
standing practice of analysing rigid-jointed trusses as if pin-jointed). Secondary
torques are usually small when there are alternative load paths of high stiffness,
and may often be ignored.

Primary torsion actions may be classified as being restrained, free, or destab-
lising, as shown in Figure 10.32. For restrained torsion, the member applying the
torsion action (such as ABC shown in Figure 10.32b) also applies a restraining
action to the member resisting the torsion (DEC in Figure 10.32b). In this case, the
structure is redundant, and compatibility between the members must be satisfied in
the analysis if the magnitudes of the torques and other actions are to be determined
correctly. Free torsion occurs when the member applying the torsion action (such as

Joint rotation of
flexible portal
frame

Negligible rotation
at end wall

Differential end
rotations induce
secondary
torsion

Figure 10.31 Secondary torsion in an industrial frame.
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Figure 10.32 Torsion actions.

ABC in Figure 10.32c) does not restrain the twisting of the torsion member (DEF),
but does prevent its lateral deflection. Destablising torsion may occur when the
member applying the torsion action (such as BC in Figure 10.32d) does not restrain
either the twisting or the lateral deflection of the torsion member (DCE). In this
case, lateral buckling actions (Chapter 6) caused by the in-plane loading of the
torsion member amplify the torsion and out-of-plane bending behaviour.

The inelastic non-linear bending and torsion of fully braced, centrally braced,
and unbraced I-beams with central concentrated loads (see Figure 10.33) have been
analysed [25], and interaction equations developed for predicting their strengths. It
was found that while circular interaction equations are appropriate for short length
braced beams, these provide unsafe predictions for beams subject to destablis-
ing torsion, where lateral buckling effects become important. On the other hand,
destablising interactions between lateral buckling and torsion tend to be masked by
the favourable effects of the secondary axial stresses that develop at large rotations,
and linear interaction equations based on plastic analyses provide satisfactory
strength predictions, as shown in Figure 10.34. Proposals based on these find-
ings are made below for the analysis and design of members subject to combined
torsion and bending.
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Figure 10.34 Interaction between lateral buckling and torsion for unbraced beams.

10.5.2 Plastic design of fully braced members

The member must be Class 1. Plastic collapse analyses should be used to determine
the plastic collapse load factors αi for in-plane bending (Section 5.5) and αx for
torsion (Section 10.3.3.3).

The member should satisfy the circular interaction equation

1/α2
i + 1/α2

x ≤ 1 (10.81)
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10.5.3 Design of members without full bracing

A member without full bracing has its bending resistance reduced by lateral buck-
ling effects (Chapter 6). Its bending should be analysed elastically, and the resulting
moment distribution used to determine its bending resistance Mb,Rd according to
EC3.

An elastic torsion analysis should be used to find the values of the design uniform
torques Tt and bimoments B. An appropriate torsion design method should be
selected from Sections 10.4.5–10.4.8 and used to find the load factor αx by which
the design torques and bimoments should be multiplied so that the appropriate
torsion design equation (equations 10.77–10.80) is just satisfied.

The member should then satisfy the linear interaction equation

MEd

Mb,Rd
+ 1

αx
≤ 1 (10.82)

There is no need to amplify the moment because of the finding [25] that lin-
ear interaction equations are satisfactory, even for unbraced beams, as shown in
Figure 10.34.

10.6 Distortion

Twisting and distortion of a flexural member may be caused by the local distri-
bution around the cross-section of the forces acting, as shown in Figure 10.3.
If the member responds significantly to either of these actions, the bending stress
distribution may depart considerably from that calculated in the usual way, while
additional distortional stresses may be induced by out-of-plane bending of the wall
(see Figure 10.3d). To avoid possible failure, the designer must either increase the
strength of the member, which may be uneconomic, or must limit both twisting
and distortion.

The resistance to distortion of a thin-walled member depends on the arrangement
of the cross-section. Members with triangular closed cells have high resistances
because of the truss-like action of the triangulated cross-section which causes the
distortional loads to be transferred by in-plane bending and shear of the cell walls.
On the other hand, the walls of the members with rectangular or trapezoidal cells
bend out of their planes when under distortional loading and when the resistances
to distortion are low [26], while members of open cross-section are even more
more flexible. Concentrated distortional loads can be distributed locally by pro-
viding stiff diaphragms which reduce or prevent local distortion. However, isolated
diaphragms are not fully effective when the distortional loads are distributed or
can move along the member. In such cases, it is necessary to analyse the distortion
of the section and the stresses induced by the distortion.

The resistance to torsion of a thin-walled open section is comparatively small,
and the dominant mode of deformation is twisting of the member. Because this
twisting is usually accounted for, the importance of distortion lies in its modifying
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influence on the torsional behaviour. Significant distortions occur only in very
thin-walled members, for which the distortional rigidity, which varies as the cube
of the wall thickness, reduces at a much faster rate than the warping rigidity, which
varies directly with the thickness [27]. These distortions may induce significant
wall bending stresses, and may increase the angles of twist and change the warping
stress distributions [28, 29].

Thin-walled closed-section members are very stiff torsionally, and the twisting
deformations due to uniform torsion are not usually of great importance except in
curved members. On the other hand, rectangular and trapezoidal members are not
very resistant to distortional loads, and the distortional deformations may be large,
while the stresses induced by the distortional loads may dominate the design [26].

The distortional behaviour of single-cell rectangular or trapezoidal members
can be classified as uniform or non-uniform. Uniform distortion occurs when the
applied distortional loading is uniformly distributed along a member of constant
cross-section which has no diaphragms. In this case the distortional loading is
resisted solely by the out-of-plane bending rigidity of the plate elements of the
section. In non-uniform distortion, the distortions vary along the member, and the
plate elements bend in their planes, producing in-plane shear stresses which help
to resist the distortional loading.

Perhaps the simplest method of analysing non-uniform distortion is by using an
analogy to the problem [30] of a beam on an elastic foundation (BEF analogy). In
this analogy, which is shown diagrammatically in Figure 10.35, the distortional

Q q
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Beam rigidity EI
Foundation modulus k
Beam loads Q, q
Beam moment
Beam shear 

Distortion
In-plane stiffness
Out-of-plane stiffness
Distortional loads
Warping normal stress
Warping shear stress
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(b) Beam on an elastic
foundation 

(a) Elevation of a
box section member

Rigid
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free to
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distortional
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Flexible
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Distributed
distortional
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Rigid
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EI d4w/dx4 + kw = q

Figure 10.35 BEF analogy for box section distortion.



 

Torsion members 471

Distortion deflections

Warping normal stresses

Warping shear stresses

Figure 10.36 Warping stresses in non-uniform distortion.

loading corresponds to the applied beam loads in the analogy, and the out-of-plane
resistance of the plate elements corresponds to the stiffness k of the elastic foun-
dation, while the in-plane resistance of these elements corresponds to the flexural
rigidity EI of the analogous beam. The BEF analogy can account for concentrated
and distributed distortional loads, for rigid diaphragms which either permit or
prevent warping, and for flexible diaphragms and stiffening rings, as indicated in
Figure 10.35. Many solutions for problems of beams on elastic foundations have
been obtained [31], and these can be used to find the out-of-plane bending stresses
in the plate elements (which are related to the foundation reactions), and the warp-
ing and normal shear stresses due to non-uniform distortion (which are related
to the bending moment and shear force in the beam on the elastic foundation).
The distributions of the warping stresses in a rectangular box section are shown in
Figure 10.36.

10.7 Appendix – uniform torsion

10.7.1 Thin-walled closed sections

The shear flow τt t around a thin-walled closed-section member in uniform torsion
can be determined by using the condition that the total change in the warping
displacement u around the complete closed section must be zero for continuity.
The change in the warping displacement due to the twist rotations φ is equal to
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−(dφ/dx)
∮
ρ0ds (see Section 10.2.1.5 and Figure 10.13a), while the change in

the warping displacement due to the shear straining of the mid-surface is equal to∮
(τt/G)ds (see Figures 10.6 and 10.13b). Thus∮

τt

G
ds = dφ

dx

∮
ρ0ds.

The shear flow τt t is constant around the closed section (otherwise the correspond-
ing longitudinal shear stresses would not be in equilibrium), while

∮
ρ0ds is equal

to twice the area Ae enclosed by the section, as shown in Figure 10.12b. Thus,

τt t
∮

1

t
ds = 2GAe

dφ

dx
. (10.83)

The moment resultant of the shear flow around the section is equal to the torque
acting, and so

Tt =
∮
τt tρ0ds (10.84)

whence

τt t = Tt

2Ae
. (10.20)

Substituting this into equation 10.83 leads to

Tt = G
4A2

e∮
(1/t)ds

dφ

dx
,

and so the torsion section constant is

It = 4A2
e∮

(1/t)ds
. (10.21)

The torsion section constants and the shear flows in multi-cell closed-section
members can be determined by extending this method. If the member consists of
n junctions linked by m walls, then there are (m − n + 1) independent cells. The
longitudinal equilibrium conditions require there to be m constant shear flows τt t,
one for each wall, and (n − 1) junction equations of the type∑

junction

(τt t) = 0 (10.85)

There are (m − n + 1) independent cell warping continuity conditions of the type∑
cell

∫
wall

(τt/G)ds = 2Ae
dφ

dx
(10.86)

where Ae is the area enclosed by the cell. Equations 10.85 and 10.86 can be
solved simultaneously for the m shear flows τt t. The total uniform torque Tt can
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be determined as the torque resultant of these shear flows, and the torsion section
constant It can then be found from

It = Tt

Gdφ/dx
.

10.7.2 Analysis of statically indeterminate members

The uniform torsion of the statically indeterminate beam shown in Figure 10.17a
may be analysed by taking the left-hand reaction torque T0 as the redundant quan-
tity. The distribution of torque Tx is therefore as shown in Figure 10.17b, and
equation 10.8 becomes

GIt
dφ

dx
= T0 − T 〈x − a〉0 ,

where the value of the second term is taken as zero when the value inside the
Macaulay brackets 〈 〉 is negative.

The solution of this equation which satisfies the condition that the angle of twist
at the left-hand support is zero is

GItφ = T0x − T 〈x − a〉. (10.87)

The other condition which must be satisfied is that the angle of twist at the right-
hand support must be zero. Using this in equation 10.87,

0 = T0L − T (L − a),

and so

T0 = T (L − a)

L
.

Thus the maximum torque is T0 when a is less than L/2, while the maximum angle
of twist rotation occurs at the loaded point, and is equal to

φa = Ta(L − a)

GItL
.

10.8 Appendix – non-uniform torsion

10.8.1 Warping deflections

When a member twists, lines originally parallel to the axis of twist become helical,
and any element δx × δs × t of the section wall rotates a0dφ/dx about the line a0
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from the shear centre S, as shown in Figures 10.4 and 10.22. The increase δu in
the warping displacement of the element is shown in Figure 10.23, and is equal to

δu = −ρ0
dφ

dx
δs

where ρ0 is the perpendicular distance from the shear centre S to the tangent to the
mid-line of the wall. The sign convention for ρ0 is demonstrated in Figure 10.16b,
which shows a cross-section viewed by looking in the positive x direction. The
value of ρ0 is positive when the line a0 from the shear centre rotates in a clockwise
sense when the distance s increases, which is the case for Figure 10.16b. Thus the
warping displacement is given by

u = (αn − α)
dφ

dx
, (10.34)

where

α =
∫ s

0
ρ0ds, (10.35)

and the quantity αn is chosen to be

αn = 1

A

∫ E

0
αtds, (10.36)

so that the average warping displacement of the section is zero.

10.8.2 Warping torque and bimoment in an I-section

When an equal flanged I-section member twists φ as shown in Figure 10.24a, the
flanges deflect laterally

vf = df

2
φ.

Thus the flanges may have curvatures

d2vf

dx2
= df

2

d2φ

dx2

in opposite directions as for example in the cantilever shown in Figure 10.1c.
These curvatures can be thought of as being produced by the equal and opposite
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flange bending moments

Mf = EIf
d2vf

dx2
= EIz

2

df

2

d2φ

dx2

shown in Figure 10.24b. This pair of equal and opposite flange moments Mf ,
spaced df apart, form the bimoment

B = df Mf . (10.46)

The bending stresses induced by the bimoment are the warping normal stresses

σw = ∓Mf y

If
= ∓E

df

2
y

d2φ

dx2

shown in Figure 10.24b. These can also be obtained from equation 10.37.
When the flange moments Mf vary along the member, they induce equal and

opposite flange shears

Vf = −dMf

dx
= −EIz

2

df

2

d3φ

dx3
,

as shown in Figure 10.24b. The warping shear stresses

τw = ± Vf

bf tf

(
1.5 − 6y2

b2
f

)

(in which bf is the flange width) which are statically equivalent to these shear forces
are also shown in Figure 10.24b. They can also be obtained from equation 10.42.

The equal and opposite flange shears Vf are statically equivalent to the warping
torque

Tw = Vf df = −EIzd2
f

4

d3φ

dx3
.

If this is compared with equation 10.44, it can be deduced that the warping section
constant for the I-section is

Iw = Izd2
f

4
. (10.47)

This result can also be obtained from equation 10.40.
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10.8.3 Warping torsion analysis of statically
determinate members

The twisted shape of a statically determinate member in warping torsion is given
by equation 10.49. For example, the cantilever shown in Figure 10.25a, the torque
Tx is constant and equal to the applied torque T , and so the twisted shape is given
by

−EIwφ = Tx3

6
+ A1x2

2
+ A2x + A3. (10.88)

The constants of integration A1, A2, and A3 depend on the boundary conditions.
At the support, it is assumed that twisting is prevented, so that

φ0 = 0

and that warping is also prevented, so that (see equation 10.34)(
dφ

dx

)
0

= 0.

At the loaded end, the member is free to warp (i.e. the warping normal stresses σw

are zero), so that (see equation 10.37)(
d2φ

dx2

)
L

= 0.

By substituting these conditions into equation 10.88, the constants of integration
can be determined as

A1 = −TL,

A2 = 0,

A3 = 0.

If these are substituted into equation 10.88, the complete solution for the twisted
shape is obtained as

−EIwφ = Tx3

6
− TLx2

2
.

The maximum angle of twist occurs at the loaded end and is equal to

φL = TL3

3EIw
.

The warping shear stress distribution (see equation 10.42) is constant along the
member, but the maximum warping normal stress (see equation 10.37) occurs at
the support where d2φ/dx2 reaches its highest value.
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10.8.4 Warping torsion analysis of statically
indeterminate members

The warping torsion of the statically indeterminate beam shown in Figure 10.26a
may be analysed by taking the left-hand reaction torque T0 as the redundant. The
distribution of torque Tx is then given by (see Figure 10.26b)

Tx = T0 − mx

and equation 10.49 becomes

−EIwφ = T0x3

6
− mx4

24
+ A1x2

2
+ A2x + A3.

After using the boundary conditions φ0 = (dφ/dx)0 = 0, the constants A2 and A3

are determined as

A2 = A3 = 0,

while the condition φL = 0 requires that

A1 = −T0L

3
+ mL2

12
.

The additional boundary condition is (d2φ/dx2)L = 0, and so

T0 = 5mL/8.

Thus the complete solution is

−EIwφ = m

(−x4

24
+ 5Lx3

48
− L2x2

16

)
.

The maximum angle of twist occurs near x = 0.58L, and is approximately equal to
0.0054mL4/EIw. The warping shear stresses are greatest at the left-hand support,
where the torque Tx has its greatest value of 5mL/8. The warping normal stresses
are greatest at x = 5L/8, where – EIwd2φ/dx2 has its maximum value of 9mL2/128.

10.8.5 Non-uniform torsion analysis

The twisted shape of a member in non-uniform torsion is given by equation 10.54.
For the example of the cantilever shown in Figure 10.28a, the torque Tx is constant
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and equal to the applied torque T . In this case, a particular integral is

p(x) = Tx

GIt
,

while the boundary conditions require that

0 = A1 + A2 + A3

0 = T

GIt
+ A1

a
− A2

a

0 = A1

a2
eL/a + A2

a2
e−L/a




,

so that

φ = Tx

GIt
− Ta

GIt(1 + e−2L/a)

[
e(x−2L)/a − e−x/a + 1 − e−2L/a

]
.

At the fixed end, the uniform torque is zero because dφ/dx = 0. Because of
this, the torque Tx there is resisted solely by the warping torque, and the maximum
warping shear stresses occur at this point. The value of d2φ/dx2 is greatest at the
fixed end, and therefore the value of the warping normal stress is also greatest there.
The value of dφ/dx is greatest at the loaded end of the cantilever, and therefore the
value of the shear stress due to uniform torsion is also greatest there. The warping
torque at the loaded end is

TwL = T
2e−L/a

1 + e−2L/a
,

which decreases from T to zero as L/a increases from 0 to ∞. Thus the warp-
ing shear stresses at the loaded end are not zero, but are less than those at the
fixed end.

10.9 Worked examples

10.9.1 Example 1 – approximations for the serviceability
twist rotation

Problem. The cantilever shown in Figure 10.28 is 5 m long and has the properties
shown in Figure 10.37. If the serviceability end torque T is 3 kNm, determine
approximate values of the serviceability end twist rotation either by

(a) assuming that the cantilever is in uniform torsion (EIw ≡ 0), or
(b) assuming that the cantilever is in warping torsion (GIt ≡ 0), or
(c) using the approximation of equation 10.56.
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Figure 10.37 Examples 1–7.

Solution.

(a) If EIw = 0, then the end twist rotation (see Section 10.2.2.1) is

φum = TL

GIt
= 3 × 106 × 5000

81 000 × 75.7 × 104
= 0.245 radians = 14.0◦.

(b) If GIt = 0, then the end twist rotation is (see Section 10.3.2.2)

φwm = TL3/3EIw = 3 × 106 × 50003

3 × 210 000 × 1.6 × 1012
= 0.372 radians = 21.3◦.

(c) Using the results of (a) and (b) above in the approximation of equation 10.56

φm = 0.245 × 0.372

0.245 + 0.372
= 0.148 radians = 8.5◦

10.9.2 Example 2 – serviceability twist rotation

Problem. Use the solution obtained in Section 10.8.5 to determine an accurate
value of the serviceability end twist rotation of the cantilever of example 1.

Solution. Using equation 10.51,

a =
√

EIw

GIt
=

√(
210 000 × 1.6 × 1012

81 000 × 75.7 × 104

)
= 2341 mm.

Therefore e−2L/a = e−2×5000/2341 = 0.01396
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Using Section 10.8.5,

φL = TL

GIt

[
1 − a

L

(1 − e−2L/a)

(1 + e−2L/a)

]

= 3×106×5000

81 000×75.7×104

[
1−2341

5000

(1 − 0.01396)

(1 + 0.01396)

]
= 0.133 radians = 7.6◦.

which is about 10% less than the approximate value of 8.5◦ obtained in
Section 10.9.1c.

10.9.3 Example 3 – elastic uniform torsion shear stress

Problem. For the cantilever of example 2, determine the maximum elastic uniform
torsion shear stress caused by a strength design end torque of 5 kNm.

Solution. An expression for the nominal maximum elastic uniform torsion shear
stress can be obtained by combining equations 10.8 and 10.18, whence

τt,max ≈ G

(
dφ

dx

)
max

tmax.

An expression for dφ/dx can be obtained from the solution for φ in
Section 10.8.5, whence

dφ

dx
= T

GIt

{
1 − [e(x−2L)/a + e−x/a]

(1 + e−2L/a)

}
.

The maximum value of this occurs at the free end x = L and is given by

(
dφ

dx

)
max

= T

GIt

[
1 − 2e−L/a

(1 + e−2L/a)

]
.

Adapting the solution of example 2,

(
dφ

dx

)
max

= T

GIt

[
1 − 2 × √

(0.01396)

1.01396

]
= 0.767

T

GIt
.

Thus

τt,max ≈ 0.767
Ttmax

It
≈ 0.767 × 5 × 106 × 15.6

75.7 × 104
N/mm2 ≈ 79.0 N/mm2.
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This nominal maximum shear stress occurs at the centre of the long edge of the
flange. A similar value may be calculated for the opposite edge, but the actual
stresses near this point are increased because of the re-entrant corner at the junction
of the web and flange. An approximate estimate of the stress concentration factor
can be made by using Figure 10.7b with

r

t
= 12.7

15.6
= 0.81.

Thus the actual local maximum stress is approximately τt,max = 1.7 × 79.0 =
134 N/mm2.

10.9.4 Example 4 – elastic warping shear and normal stresses

Problem. For the cantilever of example 3, determine the maximum elastic warping
shear and normal stresses.

Solution. The maximum warping shear stress τw occurs at the fixed end (x = 0)
of the cantilever (see Section 10.8.5) where the uniform torque is zero. Thus the
total torque there is resisted only by the warping torque, and so

Vf = T/df ,

where Vf is the flange shear (see Section 10.8.2). The shear stresses in the flange
vary parabolically (see Figure 10.24b), and so

τw,max = 1.5 Vf

bf tf
.

Thus

τw,max = 1.5 × (5 × 106)/517.5

209.3 × 15.6
N/mm2 = 4.4 N/mm2.

The maximum warping normal stress σw occurs where d2φ/dx2 is a maximum
(see equation 10.37). An expression for d2φ/dx2 can be obtained from the solution
in Section 10.8.5 for φ,

whence
d2φ

dx2
= T

aGIt

[
(−e(x−2L)/a + e−x/a)

(1 + e−2L/a)

]
.

The maximum value of this occurs at the fixed end x = 0 and is given by

(
d2φ

dx2

)
max

= T

aGIt

(1 − e−2L/a)

(1 + e−2L/a)
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The corresponding maximum warping normal stress (see Section 10.8.2) is

σw,max = Edf bf

2 × 2

(
d2φ

dx2

)
max

= 210 000 × 517.5 × 209.3 × 5 × 106

2 × 2 × 2341 × 81 000 × 75.7 × 104
× (1 − 0.01396)

(1 + 0.01396)
N/mm2

= 192.6 N/mm2.

10.9.5 Example 5 – first yield design torque capacity

Problem. If the cantilever of example 2 has a yield stress of 275 N/mm2, then use
Section 10.4.7 to determine the torque resistance which is consistent with EC3 and
a first yield strength criterion.

Solution. In this case, the maximum uniform torsion shear and warping torsion
shear and normal stresses occur either at different points along the cantilever, or
else at different points around the cross-section. Because of this, each stress may
be considered separately.

For first yield in uniform torsion, equation 10.79 is equivalent to

τt/τy ≤ 1

in which τy ≈ 275/
√

3 = 159 N/mm2. Thus

τt,max ≤ 159 N/mm2.

Using Section 10.9.3, a design torque of T = 5 kNm causes a maximum shear stress
of τt,max = 79.0 N/mm2, if the stress concentration at the flange–web-junction is
ignored. Thus the design uniform torsion torque resistance is

Tt = 5 × 159/79.0 = 10.05 kNm.

The maximum warping shear stress τw,max caused by a design torque of
T = 5 kNm (see Section 10.9.4) is 4.4 N/mm2, which is much less than the corre-
sponding maximum uniform torsion shear stress τt,max = 79.0 N/mm2. Because
of this, the design torque resistance is not limited by the warping shear stress.

For first yield in warping torsion, equation 10.79 reduces to

σw/fy ≤ 1

Thus

σw,max ≤ 275 N/mm2.

Using Section 10.9.4, a design torque of T = 5 kNm causes a design warping
normal stress of σw,max = 192.6 N/mm2. Thus the design warping torsion torque
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resistance is

Tw = 5 × 275/192.6 = 7.14 kNm.

This is less than the value of 10.05 kNm determined for uniform torsion, and so
the design torque resistance is 7.14 kNm.

10.9.6 Example 6 – plastic collapse analysis

Problem. Determine the plastic collapse torque of the cantilever of example 5.

Uniform torsion plastic collapse.
Using equation 10.29,

Ttp = (
2 × 209.3 × 15.62/2 + (533.1 − 2 × 15.6)× 10.12/2

)
× 159 Nmm = 12.15 kNm

Using Figure 10.20, αtT = Ttp = 12.15 kNm.

Warping torsion plastic collapse.

Using equation 10.60, Mfp = 275 × 209.32 × 15.6/4 Nmm = 46.98 kNm.
Using Figure 10.20, αwT = Mfpdf /L = 46.98 × 517.5/5000 = 4.86 kNm.

Non-uniform torsion plastic collapse.

Using equation 10.64, αxT = 12.15 + 4.86 = 17.01 kNm.

10.9.7 Example 7 – plastic design

Problem. Determine the plastic design torque capacity of the cantilever of
example 5.

Section classification. Using equation 10.65,

tf = 15.6 mm, fy = 275 N/mm2

ε = √
(235/275) = 0.924

cf /(tf ε) = (209.3/2 − 10.1/2 − 12.7)/(15.6 × 0.924) = 6.0 < 9

and so the section is Class 1, and plastic design can be used.

Plastic design torque resistance.

Using the result of section 10.9.6, T = 17.01 kNm,
which is significantly higher than the first yield design torque resistance of
7.14 kNm determined in Section 10.9.5.
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Figure 10.38 Examples 8–13.

10.10 Unworked examples

10.10.1 Example 8 – uniform torsion of a box section

Determine the torsion section constant It for the box section shown in
Figure 10.38a, and find the maximum elastic shear stress caused by a uniform
torque of 10 kNm.

10.10.2 Example 9 – warping torsion section constant of a
channel section

Determine the warping torsion section constant Iw for the channel section shown
in Figure 10.38b.

10.10.3 Example 10 – approximation for the maximum
twist rotation

The steel beam shown in Figure 10.38c is 5 m long, has the cross-section shown
in Figure 10.38b and a torque per unit length of m = 1000 Nm/m. Determine
approximate values of the maximum angle of twist rotation by assuming

(a) that the beam is in uniform torsion (EIw ≡ 0), or
(b) that the beam is in warping torsion (GIt ≡ 0), or
(c) the approximation of equation 10.56.

10.10.4 Example 11 – accurate twist rotation

If the steel beam shown in Figure 10.26 is 5 m long and has the cross-section
shown in Figure 10.38b, determine an accurate value for the maximum angle of
twist rotation.
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10.10.5 Example 12 – elastic stresses

Use the solutions of examples 9 and 11 to determine

(a) the maximum nominal uniform torsion shear stress,
(b) the maximum warping shear stress, and
(c) the maximum warping normal stress.

10.10.6 Example 13 – design

Determine the maximum design torque per unit length that should be permitted on
the beam of examples 11 and 12 if the beam has a yield stress of fy = 275 N/mm2.
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156, 157, 352, 353, 369, second-order
24, 361–3, 372; elastic buckling 24,
51–4, 67–73, 74–9, 83–9, 228–30, 241,
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aspect ratio 103, 104, 107, 115,
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axis of twist 78, 88, 437, 443, 452

beam 1, 154–226, 227–94; built-in 179,
182, 198–202; continuous 256–61;
hot-rolled 229, 238, 243;
monosymmetric 263–6;
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tapered 266; welded 229, 238

beam-column 295–346
beam-tie 39, 44, 347
bearing 124–6, 138; bolt 392, 410–13;

plate 124–6, 415
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behaviour 14–17; brittle 13, 15;
dynamic 18–19; elastic 8, 22, 23,
33, 155; inelastic 15, 55–61, 81, 82,
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bending 37–40, 54, 79, 118–24, 154–226,
234–7, 272; biaxial 159, 191, 295,
319–21, 466

bimoment 453–4; plastic 458–60, 464
blunder 26
bolt 2, 392, 396–402, 410–14; bearing

410–13; preloaded friction-grip 393,
396, 400, 413–14

bracing 67, 73, 83, 87, 186, 188, 247–9,
256–61, 467–9

brittle fracture 13
buckling: flexural 15, 50–99;

flexural-torsional 76–8, 88, 89, 227–94,
295, 311–19, 326–8, 369–72; frame
353–61, 369–71; inelastic 55–61, 81–2,
108, 237–40, 316; lateral see buckling,
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63, 64, 100–53, 184, 462–4, 465;
torsional 76–8, 88, 89

buckling coefficient 103–8, 114, 119–21,
125, 139–41
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cantilever 179, 253–5, 271, 455, 457, 477;
propped 182, 202–5

capacity see resistance
centroid 37, 168–70, 192
circular hollow section 45, 128, 463
cleat 392, 393, 407, 408
cold working 8
component method of design 401, 403, 404
compression member 50–99
compression resistance curve 62
connection see joint
connector 392–4; combination of 400
crack 9, 13
critical stress see stress, buckling
crookedness 35, 54, 61, 79, 100, 112,

234–7, 272, 307–9, 324
curvature: initial see crookedness; major

axis 230

defect 10, 13
deflection 4, 25, 30, 39, 54, 79, 154, 156,

163, 189, 190, 296–9, 323–6, 352, 361
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depth-thickness ratio 115, 121
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member 62–4, 74–8, fatigue 9–13,
frame 348, 366–9, 371, plate 126–39,
414–17, tension member 42–5, torsion
member 461–6; ultimate load 27;
working stress 27

design by buckling analysis 74, 241
design code 7, 27
design criterion 24
design process 4–7
design requirements 3, 4
destabilizing: load 231–3; torsion 466
diaphragm 469
dispersion 126, 139
distortion 253, 469–71
ductility 8, 13, 34, 175

effective area 126
effective length: beam 245–52, 258–61,

273; beam-column 315, 327;
compression member 63, 65–74, 83, 86;
frame 353–61

effective width: local buckling 111, 121,
129, 130; shear lag 174

elasticity 8
endurance limit 10
example: beam 205–25, 273–91;

beam-column 329–44; compression
member 89–98; frame 373–88;
joint 423–31; tension member 45–9;
thin-plate element 141–52; torsion
member 478–85

fabrication 14, 154, 393, 406
factor of safety 27
fastener see connector
fatigue 9–13
fracture 34, 36; brittle 13
frame 15, 347–91; advanced analysis 24,

364–6; design 366–9, 371, 372; elastic
buckling 24, 353–61; first-order
analysis 23, 352; flexural 350–73;
pin-jointed 348, 350; plastic analysis
24, 352, 363; rigid 74, 261–3, 351–72;
second-order analysis 24, 361, 362;
semi-rigid 351; serviceability 369;
statically determinate 22, 348, 350;
statically indeterminate 23, 349;
three-dimensional 372; triangulated
348, 349; two-dimensional 350–72

friction coefficient 413

gauge 37
gusset 395

hole 35–7, 41, 42

impact 14, 18
imperfection: geometrical see twist,

initial; material 10, 13, 56–61,
237–40

interaction: bearing and tension 414–15;
compression and bending 131, 295–346;
shear and bending 121–4, 137; shear
and tension 412, 413, 416; tension and
bending 39, 44

interaction behaviour see behaviour,
interaction

joint 392–432; angle cleat 408; angle
seat 407; base plate 410; beam
seat 410; bolted moment end plate 409;
bolted splice 409–10; eccentric 37–9,
44; fin plate 408; flexible end
plate 408–9; force 396, 398; force and
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moment 397–8, 405; moment 397,
400–5; pin 393; preloaded
friction-grip 393, 396, 399, 400, 413;
rivet 394; web side plate 408; welded
moment 408–9; welded splice 409

joint flexibility 399, 404

limit state 25, 28, 30
load: combination 20; dead 17; design

effect 28; design resistance 28;
dynamic 18, 19; earth or ground-water
19; earthquake 19; impact 13, 18;
imposed 18; indirect 20; intermediate
76; nominal 27; patch 125; repeated
18; snow 18; squash 50, 60, 82; top
flange 233, 254; wind 19

load effect 28
load factor 20, 27, 28
load sharing 399
loading code 6

maximum distortion energy theory 9, 122,
414, 418

mechanism 156, 175, 178–82, 198–205,
351, 363, 368, 449, 459, 462, 464

mechanism method 180, 198–205
member: non-uniform 76, 266;

structural 1–2
membrane analogy 436, 440, 444
Miner’s rule 12
modulus: effective elastic 56, 108;

effective section 130, 185; elastic
section 130, 185; plastic section 130,
176, 185, 198, 245; reduced 56, 81;
shear 14, 170, 230, 312, 313, 316, 326,
439; strain-hardening 8, 59, 108, 237;
tangent 55, 237; Young’s 8, 14

monosymmetry property 263–5, 275

non-linear behaviour see behaviour,
non-linear

partial factor 21, 28
pin 392, 393
plastic hinge 154, 175–82, 188, 363,

449, 459
plastic moment 130, 175–82, 188, 197,

363, 459
plastic uniform torque 447, 463
plate 395, 396, 401, 405, 407, 408, 409,

410, 414–17
plate assembly 107, 120
Poisson’s ratio 103, 114, 119, 125, 140

principal axes 157–63, 190–5
probability 9, 20, 28
product second moment of area 159, 191–5
prying force 403

redistribution: post-buckling 109–12, 117,
121; yielding 34, 38, 41, 126,
175–82, 364

residual stress see stress, residual
resistance: bearing 138, 187; biaxial

bending 321–3; bimoment 464;
bolt 410–14; bolted plate 414–17;
compression 62, 74–8, 126–32;
concentrated load 124–6, 138; factor
27; in-plane 309–11; member 45, 64,
130, 131, 185, 242–5, 310; moment
183–6, 242–5, 309–11, 318;
out-of-plane 240–5, 317–19; section
42, 44, 126, 130, 131, 185, 243, 245,
309; shear 133–8, 186; uniform
torsion 463; weld 417–20

restraint: end 65, 67–73, 85–7, 250–3, 255,
256–62, 273, 315, 327; intermediate 67,
83, 247–9; lateral buckling 186, 188;
minor axis rotation 250, 251, 256–62,
273, 315, 327; rigid 65, 245; twist 250,
252; warping 250, 251, 256–62, 273,
315, 327

restraint stiffness 67–71, 73, 84, 85, 247–9,
251–3, 256–63, 273, 315, 327

return period 19
rigidity: flexural 52, 82, 230; torsional 77,

89, 230, 268, 433; warping 77, 89, 230,
268, 433

rigid-plastic assumption 176, 178
rivet 392, 394
rotation capacity 368, 405

safety 4, 26, 27
safety index 28
sand heap analogy 447
second moment of area 156, 157, 191–5
section: asymmetric 77, 198; Class 1 126,

128, 131, 184, 187, 188, 309, 462–5;
Class 2 126, 128, 131, 184, 187, 188,
309, 462–5; Class 3 126, 128, 131, 184,
462–5; Class 4 126, 128, 131, 184,
462–5; closed 170–2, 196, 433, 442–5;
monosymmetric 77, 263–6, 274;
open 164–70, 196, 433, 440; rectangular
164, 439, 448; rolled 1, 58, 237; solid 1,
195, 438; thin-walled 1, 191–5, 196;
welded 238
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serviceability 4, 25, 30, 189, 369, 413, 465
settlement 20, 157
Shanley’s theory 58
shear 113–24, 133–8, 163–75, 186, 187,

195–7; bolt 393, 396, 399, 410, 411,
412; plate 416

shear and bending 121–4, 137
shear and tension 412, 416
shear centre 168, 452
shear flow 164–7, 196, 442–4
shear lag 38, 172–5
slenderness: compression member 53, 55,

62, 66, 75; flange 111, 126–9; plate
104, 116, 126–9; web 126–9

slip 396, 399, 401, 413
Southwell plot 54, 235
splice 396, 397, 398, 406, 409
squash load see load, squash
stagger 36
statical method 181, 200
stiffener 105, 106, 115, 117, 119, 123, 124,

126, 132, 135, 137, 139, 187, 188
stiffness see restraint stiffness
strain 8, 33, 158, 170, 437, 443, 453
strain-hardening 8, 35, 36, 58, 108, 113,

176, 237
strength 27–30; beam 183–7, 188, 240–5,

266, 267; beam-column 309–11, 318,
321–3; bolt 410–14; bolted plate
414–17; compression member 64, 74,
76; frame 366–9, 371; local buckling
126–39; tensile 8, 34, 36, 42, 43; tension
member 42–5; torsion member 461–5,
468, 469; weld 417–20; see also
resistance

strength limit state 20, 28
stress: bending 157–63, 190; buckling 53,

103, 109, 111, 113, 117, 119, 122, 124,
134; normal 8; permissible 27;
residual 33, 58, 61, 82, 112, 155, 237,
239; shear 9, 113–18, 121–4, 133, 136,
137, 163–75, 186, 195–7, 411, 412, 416,
417–20, 436–44, 451, 454, 458, 460,
462, 471, 475, 476, 477, 478; shear
yield 9, 114, 116, 133, 186, 411, 417,
447, 463; ultimate tensile see strength,
tensile; warping normal 417, 449, 453,
458, 460, 462; yield 8, 34, 50, 104, 154,
236, 301, 414, 458

stress concentration 10, 13, 33, 37, 40, 442
stress raiser 13
stress range 10
structure: statically determinate 22, 348,

350; statically indeterminate 23, 349,
352; steel 1

tension: bolt 393, 411, 412; plate 414–17
tension field 117, 134, 135, 136
tension member 33–49
torque see torsion
torsion 433–86; non-uniform 433,

449–61; uniform 433, 436–49, 463;
warping 433, 449–57

torsion member 1, 433
torsion section constant 438, 440, 441, 443
twist 76–8, 88, 227, 228, 239, 246, 250,

252, 268–73, 275, 311, 326, 369,
433–86; initial 234–7, 272

unbuttoning, connection 349
uncertainty 25, 27, 401

vibration 19, 30, 189
virtual work method 201, 205

warping 170, 173, 197, 230, 268, 433, 436,
442–4, 449–61

warping section constant 312, 326, 328,
433, 453, 455

web 116–18, 122–6, 128–39, 165, 172,
186, 187, 188, 397

weld 392, 394, 397, 400, 403, 407, 408,
409, 410, 421, 423; butt 394, 417;
fillet 394, 417–19

wind load see load, wind
wind pressure, dynamic 19
wind speed, basic 19

yield 8; beam 175–82, 184, 185, 186, 197,
234–9, 272; beam-column 300–9, 316,
324; compression member 54–60,
79–82; frame 363; plate 101, 104, 106,
108, 112, 114, 117, 119, 121, 122, 125,
126, 129, 131, 137, 138, 414; tension
member 34, 35, 39, 40, 42; torsion
member 447–9, 458–61, 461–5,
467, 468




