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Preface

Usage is the best language teacher.

Quintilianus

The use of random sampling sustains the development of current statistical theory.
In many cases it is necessary to have some control of the units to be selected. The
solution in classic sampling is to use stratification, clustering, unequal probabilities
of selection, etc. Ranked Set Sampling (RSS) is a new method of selection of
samples. RSS allows controlling the selection procedure, as the sample will
contain units in which the values of the variables of interest are spread throughout
the interval of possible values. The sample consists of units with different ranks.
Ranks are assigned using some auxiliary information; the judgment of experts is a
particular case.

RSS is a kind of stratification. Hence, using this design instead of simple
random sampling with replacement means that a gain in accuracy is straightfor-
wardly achieved. It is sustained by the fact that each strata consists of population
units with the same rank. The statistical properties of order statistics allow deriving
the properties of RSS-based estimators. One of the main consequences of the study
of RSS methods is determining formulas for evaluating the gains in accuracy as
well as relative precision measures.

From the proposal of McIntyre (1952) to the book of Chen et al. (2004), the
study of particular RSS strategies has produced a large number of papers and a
body of models has formed an alternative theory of sampling. The number of
theoretical papers and applications of RSS is growing. One of the usual problems
in sampling applications is the presence of non-sampling errors. The effects of
ranking errors have been studied. This work deals with the problems derived by no
responses. RSS models after subsampling the non-respondents and imputation
procedures are studied.

The aim of this book is quite modest; it attempts to be a systematic exposition
of all that is contained in the literature on RSS in the area of missing observations.
In writing this book, I tried to produce a text that is as simple as possible. My aim
is to spread awareness of the potentialities of RSS. I am hopeful that this oeuvre
will trigger additional theoretical research, as well as provide tools for practical

vii



viii Preface

applications, when non-sampling errors are present and an RSS model is used.
Hence my torch was Quintilianus maxima: consuetudo certissima est loquendi
magistra.

I am deeply indebted to my family for their invaluable and kind support. I give
my hearty thanks to the staff of SpringerBriefs, Evelyn Best, Eva Hiripi, and
Veronika Rosteck, for their responsiveness through the entire Editorial Process,
and, last but not least, to the specialists whose comments and suggestions allowed
improving the initial version of this book.

La Habana, Cuba, October 29, 2012 Carlos N. Bouza-Herrera
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Chapter 1
Missing Observations and Data Quality
Improvement

Abstract Missing data is a well-recognized problem which arises in statistical
inferences and data analysis. We address different possible ways to handle missing
data, to ameliorate its effect on the reliability and accuracy of survey-based
inferences. Subsampling the non-respondents and imputation of missing values,
are considered as methods for dealing with non-responses. This book presents the
work developed on Ranked Set Sampling (RSS) in dealing with missing data. RSS
is a relatively new sampling design. This chapter may be considered as an intro-
duction to the rest of the oeuvre.

Keywords Non respondent - Imputation - Randomized responses : Simple ran-
dom sampling - Ranked set sampling

What the caterpillar calls the end of the world, the rest of the
world calls a butterfly.
Lao Tse

1.1 Missing Observations and Data Quality

Consider a finite population U of size N from which a simple random sample s, of
size n, is drawn with replacement. Full response surveys are rare situations. In
sample surveys it is common that some units are missing at the first measurement
attempt. Let the characteristic under study determine a variable Y. For each
i € U we can determine the value of Y;. When some units do not provide infor-
mation we have that the sample is divided into two subsets.

s, = {i € U| the response ¥; is obtained}, s,,
= {i € U] the response ¥; is not obtained}

An estimate obtained from s, only is biased and may be misleading.

C. N. Bouza-Herrera, Handling Missing Data in Ranked Set Sampling, 1
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-39899-5_1,
© The Author(s) 2013



2 1 Missing Observations and Data Quality Improvement

Sampling survey practice compromises fixing a series of considerations. Before
a survey can be developed many factors must be taken into account. Concepts,
definitions, methods of collecting and processing data must be determined
beforehand. They determine a working system, which is shaped by the aims of the
survey and some key decisions, determined by the statisticians, are involved in the
design of the inquiry.

It is common that data are not collected for all the units in the sample. Data can
be missing for a part of the population and different problems arise when con-
clusions are to be taken using statistical methods. For different reasons the units
may be unavailable, when they are going to be measured, or refuse giving
information. Missing data is the common name for all cases in which the value of
the variable of interest is not obtained.

The existence of missing values is one of the most pervasive problems in data
analysis because they are present in many research activities. The seriousness of
the problem depends on the pattern of the missing data, the distribution of miss-
ingness, how much is missing, and why it is missing. Missing data are widespread
in social science surveying, as the interviewees are unable or unwilling to answer
some questions. But it is a recurrent issue not only in sampling human populations.
It is also a common problem in psychological, medical research and, recently,
informatics is also dealing with it. The decision about how to handle missing data
is very important as it affects the reliability and accuracy of the inferences about
the population of interest. Missing data rates are a measure of the level of unit
response. Frequently, surveyors use them as an indirect indicator of the quality of
the data.

Missing data in survey research are present because:

1. An element in the target population U is not included on the survey’s sampling
frame (non-coverage);

2. A sampled element does not participate in the survey (total nonresponse);

3. A unit in the sample fails to provide acceptable responses (item or unit
nonresponse).

Weighting adjustments are often used to compensate for non-coverage and total
nonresponse  (NR). Subsampling among the nonrespondents or imputation
methods are used for dealing with unit nonresponse. A variety of methods have
been developed trying to compensate for missing data. The magnitude of nonre-
sponse (NR) bias may be partially assessed, Sdrndal and Lundstrom (2005) for a
detailed discussion on this issue. Data quality often needs to subsample nonre-
spondents for following-up.

The existence of nonresponse in surveys induces a non-observational error
reflecting an unsuccessful attempt to obtain the desired (needed) information from
a selected unit. Unit nonresponse is a failure to obtain any data from a sample unit.
Item nonresponse is defined when we deal with the measurement of k variables and
some of them are not measured. Usually the values of Y in the nonrespondents are
in general not similar to the values of it in the respondents. Hence, ignoring them is
not a good decision. Many studies have attempted to determine if there is a
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difference between respondents and nonrespondents. Some researchers have
reported that people who respond to surveys answer questions differently than
those who do not. Others have found that late responders answer differently than
early responders, and that the differences may be due to the different levels of
interest in the subject matter or to avoid being identified as belonging to a stig-
matized group.

Generally surveyors decide to subsample the nonrespondents when the response
rate is lower than expected and to interview them all is too costly. Another reason
is that nonresponse constitutes an important potential source of bias. Subsampling
the nonrespondents allows also studying the reasons for avoiding responding.
Commonly a representative subsample of nonrespondents is taken (those units
generating missing data) and it is used for inferring about them. The work of
Hansen and Hurwitz (1946), pioneering the treatment of nonresponse, suggested a
double sampling scheme for estimating population mean. Different authors have
discussed approaches for subsampling the nonrespondents; see Srinath (1971) and
Bouza (1981).

There is an extensive literature concerning missing data, much of which has
focused on missing outcomes. The best way to deal with nonresponses (NR) is to
prevent its happening. It determines that the surveyor must spend the needed time
in designing surveys and building previsions, for dealing with nonresponse. To
design experiments to reduce nonresponse is advisable. When NR are present it is
advisable to use existent information to predict the missing data. Then a model is
to be used to predict values for the nonresponse and imputation can be used for
adjusting for item nonresponse.

Imputation means to substitute missing data with plausible values. Some
practitioners consider that it solves the missing-data problem. But it must use some
model. A naive method, subjective evaluations or unsound modeling imputation
methods may generate serious additional problems. The processes of imputation
and analysis should be guided by common sense. If not, we will be dealing with
bad estimates, false standard errors, and unreliable hypothesis tests. See Little and
Rubin (2002) for a documented discussion. In some cases, good estimates can be
obtained by substituting the missing observation by some supposedly close value
of Y or by using some weighting estimation procedures. The usual approach in
survey sampling is based in imposing a probability model on the complete data
(observed and missing values). Surveyors are aware that real data are seldom
described by convenient models. The theory of imputation for missing data
requires that imputations be made conditional on the sampling design. It is
advisable that an imputation model should produce imputation values, which are at
least approximately compatible with the analyses to be performed on the imputed
datasets. For example it must preserve the associations or relationships among
items. For modeling we should consider that exists the Bernoulli variable.

, LN

__J 1 if unit i responds
"7 ] 0 otherwise



4 1 Missing Observations and Data Quality Improvement

Then, at least, an additional source of randomness is present in imputation
procedures. Another approach is to consider the set of simulation methods that
have appeared in the statistical literature for imputing. These methods, known as
Markov Chain Monte Carlo (MCMC), are being increasingly considered but rely
on a knowledge of the phenomena under study, which is uncommon in survey
sampling applications.

1.2 Ranked Set Sample in the Presence of Missing Data

Chapter 2 is intended to provide the reader with an introduction to Ranked Set
Sampling (RSS). It was introduced by Mclntyre (1952) to estimate the pasture
yields. Recently attention is being paid to the basic theory of RSS. The literature in
the subject presents new techniques and approaches. RSS is a method of collecting
data that improves estimation by utilizing the sampler’s judgment or auxiliary
information about the relative sizes of the sampling units. The procedure involves
randomly drawing independently m sets of m units each from the population.
Hence, the selection of the units evaluated takes into account the order of them in
the combined m samples. The units in each set are cheaply ranked. From the first
set of m units, the unit ranked lowest is measured; from the second set of m units,
the unit ranked second lowest is measured and the process is continued until from
the m- th set of m units the m -th ranked unit is measured. A sample of size n is
obtained by repeating the procedure r (r > 1) times independently for obtaining
n = mr. RSS is an alternative to simple random sampling which has been shown
to outperform simple random sampling (SRS) in many situations. RSS outper-
forms SRSWR in terms of efficiency, as it has a smaller variance in estimating, and
increases the power in testing hypothesis, especially for nonparametric ones. As a
result it provides the same accuracy using smaller sample sizes than the SRS
alternatives. Auxiliary variables are commonly used in survey sampling. They may
be derived from various sources as registers, administrative sources subjective
evaluation of the interest variable etc. In RSS the sampled units are ranked using
some non-costly auxiliary variable. The auxiliary variable X must be related with
Y. We may also rank using judgments. We will deal with the estimation of the
population mean.

The literature addressing how to deal with missing data can be divided by the
need of obtaining information from the nonresponses and to diminish the amount
of missing data.

In Chap. 3 we will consider subsampling among the nonrespondents for dealing
with missing data. The usual theory is presented in text books for simple random
sampling, see (Cochran 1997), Hedayat and Sinha (1992). The use of ranked set
sample is considered and models are discussed. Two problems are posed and
studied at large:
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1. Dealing with nonresponses in RSS.
2. Using RSS for subsampling among the nonrespondents using the information at
hand in the population or provided in the first attempt for measuring Y.

The existence of nonresponse motivates to select a subsample among the
nonrespondents or imputing the values of the interest variables on the nonre-
spondents. The use of imputation techniques for dealing with missing information
is a theme of actuality. See for example Bouza and Al-Omari (Bouza and
Al-Omari 2011a, b), Chang and Huang (2001), Fitzenberger et al. (2005), Rueda
and Gonzilez (2004), Young-Jae (2005), Singh and Deo (2003), Singh and Horn
(2000), Toutenburg et al. (2008) and Zou and Feng (1998).

Chapter 4 is concerned with the use of imputation in RSS. The missing values
can be identified with no-responses on a certain order statistic. Hence we have
some missing observations but in general there are replicas of them if the RSS
procedure is repeated r times (cycles) to have n = rm observations, for example.
Different imputation procedures used in survey sampling are visited and developed
for RSS. To study the properties of imputation-based estimators, are often con-
sidered through the consideration of a superpopulation model, the sampling
mechanism generating the sample, the variable response mechanism and the
imputation mechanism. In survey sampling practice it is advisable to use simple
relations between the variable of interest Y and the auxiliary one X. In RSS as we
may use X for ranking which seems to increase the accuracy. Some ratio relations
are the simpler models. A study of the existent models is developed at large. Other
models are also developed and discussed.

Chapter 5 is devoted to analyzing different numerical experiments planned for
evaluating the efficiency of RSS-based estimators. They permit comparing
SRSWR and the RSS alternatives. Some experiments are simulations using certain
friendly probability distribution functions. The rest use real-life data and artificial
populations are constituted. Monte Carlo experiments evaluate the behavior of the
efficiency of the estimators.
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Chapter 2
Sampling Using Ranked Sets: Basic
Concepts

Abstract Simple random sampling is the kernel of sampling theory. The basic
theory of statistical inference is supported by the assumption of using samples
selected by means of this design. During the last decade Ranked Set Sampling has
appeared as a challenge to this design. It is implemented by selecting units with
replacement and the sampled units are ordered (ranked). Each order statistic is
observed once. This process can be repeated if needed to observe various real-
izations of each order statistic. A review of the most significant results is devel-
oped in this chapter, taking into account the modeling of missing data.

Keywords Estimation - Ranking - Order statistics - Unbiasedness + Accuracy -
Precision

God grant me the serenity to accept the things I cannot change;
courage to change the things I can; and wisdom to know the
difference.

From the Serenity Prayer (Copyright © The AA Grapevine,
Inc. (January, 1950). Reprinted with permission. Permission to
reprint The AA Grapevine, Inc., copyrighted material in this
publication does not in any way imply affiliation with or
endorsement by either Alcoholics Anonymous or The AA
Grapevine, Inc.).

2.1 Introduction

Ranked set sampling (RSS) was first proposed by McIntyre (1952). He used this
model for estimating the mean of pasture yields. This design appeared as a useful
technique for improving the accuracy of the estimation of means. This fact was
affirmed by Mclntyre but a mathematical proof of it was settled by Takahashi-
Wakimoto (1968). An interesting paper is Yanagawa (2000) where and account of

C. N. Bouza-Herrera, Handling Missing Data in Ranked Set Sampling, 7
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-39899-5_2,
© The Author(s) 2013
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Wakinoto‘s contributions is made. In many situations the statistician deals with the
need of combining some control and/or implementing some flexibility in the use of
a random-based sample. This is a common problem in the study of environmental
and medical studies, for example. In these cases the researcher generally has
abundant and accurate information on the population units. It is related with the
variable of interest Y and to rank the units using this information is cheap. The RSS
procedure is based on the selection of m independent samples, not necessarily of the
same size, by using simple random sampling (SRS) with replacement (SRSWR).
The sampled units are ranked and the selection of the units evaluated takes into
account the order of them in the combined m samples. The proposal of McIntyre
(1952) was to use a prediction of Y. After some experiences with its application the
lack of a coherent statistical theory appeared as an interesting theme of study by
theoretical statisticians. An important role was played by Hall-Dell (1966) who
established that RSS was more efficient than SRSWR for estimating the population
mean derived from a large study of sampling forage yields. The interest for RSS in
applications is reflected not only in initial papers but in the orientation of a series of
papers to practice. See for example Chen (1999), Demir-Singh (2000), Kaur et.al.
(1997), Hall-Dell (1966) for examples. The interest in the development of a new
statistical theory using RSS can be illustrated by the contributions of Adatia (2000),
Abu-Dayyeh and Muttlak (1996), Al-Saleh and Al-Khadari (2000), Barabasi-El-
Shamawi (2001), Bouza (2002b), Chen (2001a, b), Yu-Lam (1997). A huge amount
of papers are dedicated to the study of RSS as an alternative to the use of SRSWR,
see for example Bai-Chen (2003), Muttlak-McDonald. (1992), and Chen-Bai
(2001a). Different papers present a discussion of the State of the Art in RSS. We
have the superb book on the theme Chen-Bai-Sinha (2004). It presents statistical
inferences based on RSS and several experiments. Different recent oeuvres deal
with discussions on certain aspects of the development of RSS, see for example
Ahmad et al. (2010), where several authors present interesting issues on the theme
from their perspective and experience.

The applications of RSS are not so widespread but since its beginnings appli-
cations was the motivation of developing the theory. Some of them are the esti-
mation of mass herbage in a paddock, McIntyre (1978), Cobby et al.(1985), forage
yields Halls-Dell (1966), and shrub Phytomass, Martin et al.(1980) and Muttlak-
McDonald (1992), vegetation research Johnson et al. (1993), fishering Hankin-
Reeves (1988), medicine as Chen-Stasny-Wolfe (2000): Some other results on the
use of RSS in estimating plutonium soil concentrations are Gilbert (1995), in
quality testing of reformulated gasoline as well as other technical issues as
Nussbaum-Sinha (1997), and Al-Saleh-AL-Shrafat (2001).

When we deal with practical survey sampling the existence of missing obser-
vations is a usual problem to be solved. This oeuvre is concerned with the dealing
with this problem in RSS applications and with the use or Randomized Responses
for obtaining reliable information on sensitive variables.

To follow the ideas and proofs involved in RSS a knowledge of non-parametric
statistics and sampling is needed at a level which is covered by advanced text
books as Arnold et al. (1992), Sinha—Sinha-Purkayasthra (1996) and Hedayat-
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Sinha (1992). A recent result is given in Arnold et al. (2009), where multivariate
order statistics are considered in terms of their use in RSS:

The usual frame used in sampling theory considers a population and a variable
of interest Y. A sampling design d(s) is used for selecting a random sample s. The
inclusion probabilities 7; = Prob (u; € s) and 7m; = Prob (u; Au; € s) are per-
fectly calculable. Once s is selected Y is evaluated on the sampled units and
¥i,..,y, are obtained. A well-known estimator of the population mean u is
Horvitz-Thomson estimator p; = >, Y;/Nm;. If SRS is used n; = n/N and uyr
is the sample mean y,. Note that if we rank the observation and define the order

n
Zz:l i)
n

statistics (0s) Y, i =1,...,n we have y, = = H(s)-
S E(Yy) 2o )
E(pgy) = ==E 0 = S50 =

When srswr is used the usual estimator of the population mean based on the
L 7 . . Y07
observations is u, = ZT:‘ Its variance is V(y,) = 2V _ g
If we base our inferences on the 0s’s

n n 2
_ D i V(Y(i)) Zi:l %)

2 = 2

n n

Note that the ranks do not intervene in the selection of the sample. We can
define a map g(u;) such that it assigns to each sampled unit u; a rank and only one.
Each sampled unit may be ranked using g without measuring Y using some
judgements. Say that the rank represents certain judgment on the value of Y. For
example if we plan to study the stature of children we are able to rank them
visually before selecting the sample. Similarly occurs when we use satellite
information on the biomass for ecological studies. The first arising question is
whether this ranking affects the behavior of a statistical procedure based in it. The
first results in this theme considered that the rank was perfect, see Mclntyre
(1952), Takahasi-Wakimoto (1968). Dell-Clutter (1972) studied this problem
considering a cumulative distribution function (cdf) p(y) in each sample unit were
measured Y; and Rank [Y;]. Taking

Y(;) = i-th judgment rank of the order statisticsand f;, (y) as its probability
density function (pdf) we have that, as g is a one-to-one map P(y)=

S fw(y)/n and E[Y] = Y, Yifty) () /n = p(;). Hence, when we deal with
Is) the unbiasedness property is maintained even using judgments and not the
values of Y makes the ranking. Therefore,

n

Dol —m =Y 4y =0
i=1

i=1

The differences between the expected mean of the os’s and the population mean
play and important role in RSS because a%i) =0’ - A%i). Then
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n

V[:u(v)] = Zo-%i)/nz = V[:ur} - EI:A(ZI)/nZ

i=1

Note that as |Ag |/o<[B(2i—1,2n—2i+1)— (Bi,n—i+1))"]"/
(Bi, n—i+1))

o? > A (B2i— 1,20 =2+ 1))*/ [B(2i — 1,20 = 2i + 1) — (B(i, n — i+ 1))%].

An extreme case is that in which none of the ranks assigned by judgement
coincide with the true ones. The orders are considered as assigned by a random
mechanism. Then A;) = O forany i = 1,. .., n and the RSS design is equivalent to
the srs design. Patil et al. (1997a) discussed the notion of coherent sampling.
Taking into account that we are sampling a set of units and that any sample s is a
subset of the population U; we can establish the following definition.

Definition 2.1 Define a protocol (a one-to-one map) g, which orders the units in a
finite population U(g(u;) = rank(u;)) and induces an ordering on each s C U. It is
called coherent if for any s and U the ranking induced on s is the same that the
application of it directly in s[g(u;|U) <g(u;|U) = (ui|s) <g(ujls),Vs C U,Vi # j].

We consider the use of coherent ordering protocols. It allows using a global
ranking of the units for ordering the observed sample without inconsistencies.
Hence census information permits to establish an ordering in the sampled units. As
pointed out by Patil et. al. (Patil et al. 1997a) if we have a coherent RSS design we
are implementing an imperfect stratification. The knowledge of the true ranks of
all the population units allows using them for stratifying. Some kind of optimal
stratification can be implemented and it will provide more accurate estimates than
RSS. Therefore, g permits to stratify in ‘small sets” where each member have very
similar values of Y.

We may rank using judgments. It can be characterized by an auxiliary variable
X related with Y. David-Levine (1972) quoted this problem. Dell-Clutter (1972)
analyzed the case in which the ranking is made with errors and established that the
usual estimates from the computed os’s maintain the unbiasedness property.
Stokes (1977a, b) used this result by considering that X is known for any unit and
is used for ranking. An apparent source of errors in RSS is the use of X for ranking.
A practical methodology is to consider that we select s and the sequence

X1y, - - -» X(n) 1s obtained.
Take the location model Y; = X +e¢;,i=1,...,n and consider that the
random errors have null expectation [E(e;) =0,i=1,...,n]. A common

assumption is that they are independently normal variables with variance al-z. Itis
clear that the RSS estimator is still unbiased.

Another model is to consider that the regression ¥; = a+ bX; +e¢;,i=1,...,n
characterizes the relationship between two equally distributed variables X and Y.
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The correct os is Y but as the regression allows to fix that E[Y|X] =
ty + poy[X) — uxl/ox],i =1,...,n and then, if X and Y are positively correlated
the os determined by X and by Y will be the similar.

2.2 The Basic RSS Strategy
2.2.1 The Sampling Procedure

The theoretical frame that permits to use the RSS model is based on the
hypothesis:

i. We wish to enumerate the measurable variable Y.

ii. The units can be ordered linearly without ties.

iii. Any sample s C U of size m can be enumerated.

iv. To identify a unit, order the units in s and enumerate them which is less costly
than to evaluate {Y,, ies} or to order U.

The first hypothesis is commonly assumed in the general theory of sampling
problem, the second fixes that the rank can be made without confusions and that any
rank is assigned to only one of the sampled units. The third assumption is also
common in the applications. The fourth has an economical and a statistical moti-
vation: only if it is cheap to rank RSS is a good alternative with respect to rank all
the units of U and to stratify, which is more accurate. Some definitions are needed.

Definition 2.2 A statistical sampling unit (ssu) is a set s with m units of U.
Usually m ssu’s are selected independently.

In survey sampling settings, it is logic rankingof the units based on the values of
an auxiliary variable correlated with the variable of interest. The basic RSS pro-
cedure is the following:

Step 1: Randomly select m? units from the target population. These units are
randomly allocated into m sets, each of size m.

Step 2: The m units of each set are ranked visually or by any inexpensive method
free of cost, say X, with respect to the variable of interest Y. From the first
set of m units, the smallest ranked unit is measured; from the second set of
m units the second smallest ranked unit is measured. Continue until the
mth smallest unit (the largest) is measured from the last set.

Step 3: Repeat the whole process r(i) times (cycles).

Step 4: Evaluate the corresponding units.
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We can denote it as follows

X;
X;
. ~ >X<,»,»),:Y(,»),_r:1,...,r(i);i:l,...,m
Xim ),
Let Yy,...,Y,, be a sample selected using SRSWR from probability density
function f{y), with mean pu, and variance 0%. Considering the selection of
m independent samples selected using a SRSWR design, of size m each, we have
Yit,oo s Yim, Yor, oo s Yoy oo o You1y o o oy Yo Let Yi(lm)v R Yi(mm7 .. 'Yi(mm)’ be the
order statistics of the sample Yy;, ..., Yim,, ..., Yim, for (i =1,2,...,m).
Takahasi and Wakimoto (1968) provided the mathematical theory of RSS and

- Z;n:lf(jm) ™ . ij:] Gy )
= m » My = m

showed that f(y) and V(Y = 0} A}

Yimy — ¥y

AZ o _ 2 1
Yo — \ MV —Hr ) ) = Lo

Without losing in generality we will drop the value m of the sample size in the
notation in the sequel when it provides no further information.
Note that if »r = 1 we observe only a RSS of size m = n.

Definition 2.3 When r(i) = r the RSS design is denominated as balanced and
unbalanced otherwise.

For balanced RSS designs, we have that each sample s(j) is a SRSWR of size
rand n = rm.

2.2.2 Estimation of u

" L Z
The usual estimator of i, for a variable Z, is iz = @ n=rm.

n )

Noting that for any j, E (Z(i:i)j) = Uiz, the unbiasedness of this estimator is

easily derived because

E(:“Z(rss) ) - - m = Uz

_ 27:1 >im Hzy ij:1 Mz
n

The samples s(j) are independent. Hence, the variance of pu ) is:

m r m m 2
2 2in ) = %) oy 2imhy,,
V(#z(rss)) - n? T m: on mn ’

2
2 _
AY(/-,,,> = (IJZ(/) - .Uz) , =rm.
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This allows writing

(S, + S, - 2)

r

2 _
0; =

Note that once we know that m is fixed, the notation may be simplified dropping
the subscript m and writing Y,;.,) for denoting the jth-os of the ¢-th ranked sample

s(t).

Definition 2.4 The relative precision of ppgg With respect to u, is RP(y, lyes) =

Yls) gnd the relative saving (RS) due to RSS is measured by RS =1 — #. (]

V(#tess)
. . 8,
The net gain in accuracy due to the use of RSS is measured by ’TW

In the balanced case RP € [1, (m + 1)/2] and in the unbalanced RP € [1,m].
The later depends on the allocation of the sample. Patil et al. (1997b) established
that if we deal with a skewed distribution or if an adequate stratification is
implemented the unbalanced design may not be so efficient. RS may be used with
the purpose of evaluating the relative gain in accuracy due to the use of RSS.

Kaur et al. (1996) studied the allocation problem. When Neymann’s allocation
principle is used for determining r(i)’s and n is fixed the optimal sample sizes are
given by:

2
no
Y

m 2
Z]:l GY(j)

Another approach is based on the knowledge of the existence of a large tail pdf.

In the case of a heavy right tail, a skewed distribution we have that the os’s

variance are ordered and 0'(21) < 6(22) <..< G%m). The statistician fixes a constant
1,.

(i) =

0>1landr*=r(i)=r(m)/0,i=1,...,m— 1. Then
m—1 Y a%,m
Zj:l r(*) + F);X)

Hence, using a larger number of replicas reduces seriously the summand with
larger variance of the os.

The use of r > 1 is justified by practical reasons mainly. To rank subjectively
the units are easier when m is small. Hence for obtaining a sample of size n is
better to repeat the selection or m” RSS samples r times once n = rm. Some
evidence on the usefulness of the usage of small m and large r is present in studies
with particular distributions.

Usually, SRSWR is used for selecting the samples independently but simple
random sampling without replacement may be used (SRSWOR). This is more
important when we study a finite population because a correction should be
introduced for computing the sampling error. The problem is certainly very



14 2 Sampling Using Ranked Sets

complicated when compared with the usual one. Patil et al. (1995) derived the
expression of the corresponding variance. A gain in precision due to RSS now
depends heavily on the replication factor. The theoretical problems associated with
the use of os in finite population sampling using RSS are the kernel of the behavior
of the wor procedure. Lehman (1966) established some properties of the random
variables generated by a univariate distribution and their os’s. One of them is that
any pair of os’s has a joint pdf, which is positively likelihood ratio dependent.
Then, if we sample a finite population of os’s using srswor this property holds.
Takasi-Fututsya (1998) used these results for deriving a method for computing the
finite population correction factor.

2.2.3 The Estimation of the Variance

Let us consider the estimation of the variance. For details see Stokes (1977a, b,
1980) and Yanagawa (2000). An unbiased estimator of a%,(j) is

2
r A~
o Zj:l (Z(ilm)j - ’uZ(i:m)) . . Z;:1 Z(i:m)j .
Z(l)_ rfl ) :uZ(‘-:m)_ r = 1,...

2 27:1(2/7"2)2 Z/N:lzl

Hence, an unbiased estimator of the variance o3 = e
using RSS is

2 2
, (=m0 S (Z(i:m» - ﬂz@m)) 21 (ﬂz@m)—#zuss)) R
%z = nr(r—1) + m g
_ 21 Zimy
r

An analysis establishes that the first term is the “within” variation and the
second one means from the “between” variation source in terms of the cycles.
Note that it cannot be used when r = 1.

Stokes (1980) considered the use of the naive estimator

2 2
o Dot Die (Z(i:m)j - #z(,ss)) B D et (Z(ii) - Hz<rss))

GZ(rss) -

n—1 n—1

It is worthy to note that the naive estimator of g2 can be used also for r = 1. It
is not unbiased because
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n 2 n
E (Zizl Z(ii)) izim1 E(Zi))E(Z(y)

E(63.) = -
(Gers) n(n . 1) n
n 2 n
E(Zi:l Z(ii)) B Zi;ﬁj:l E(ZinZgy) 2
nn—1) n z
2
") EJ 1 Zl 1 ( NZ(I‘YY )
UZ(m,r) - n—1
It is asymptotically unbiased because
2
> 2 Zj 1 El 1(#2 (izm) :uZ)
E(GZ(m,r)) 07 + m(n _ ])
and 2 'Zm 'n(uf)('m) ) — 0 for m or r large.
The relative precision of this estimator is
V(63 V(62
RP(O-%?O-%(m,r)> = MSE((AZZ) ) = (;-:Z,) 2\ 2
Z(m,r) 2 (12 @ —12)
V() + ( ln—T) )
L z2? Lz .
where 6% = Zf:};( - ) Z = Zf:‘ . It is worthy to note that E(ﬂi# is a

(l‘z (izm) Hz)2
m

decreasing function of m and r and 2 <02. As a consequence

(a%, o%(m r>) <ARE (JZ, m,) Hence, this estimator is used frequently in statis-
ceal 3 : 2 52 _ 2 2 —
tical inferences because kll»nolo RP (O‘Z, T2(m, )) = ARE (GZ, 0% m, )) k=morr.

In practice m is small, for ranking adequately and cheaply, but we are able to fix
a large number of cycles.

Therefore, the relative precisions can be estimated using the ratio between the
estimated variance.

2.2.4 Confidence Intervals

The estimators (averages across de sets)

o it Ziimy

:uz(,.)_ m a]_lv"'ar
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are independent and identically distributed (iid) with expectation u,. Their vari-

m
ances are proportional to ) 0'%().
=1
An estimator of a%(_), the variance across cycles, is
]

2
Zj:] (Z(iil11)j - ’uZ(i'm))

6_*2 _
r—1

Ziy

It is consistent because it is the variance of iid variables and as a consequence

m

&%(_) is consistent for V(u}o) which is proportional to > o%(_).
1A 2 =1
Approximate confidence intervals can be derived, using the consistency of the

s

L

estimators, using the fact that m/r \/’lzzm—mi”z —4 N(0,1).
i=1 6;(,')

For further reading is recommended Chen et al. (2004).

2.3 Some Other RSS Strategies

Some transformations to the basic RSS design have been proposed. We will
present some of the most popular for finite population framework. They use some
criteria that are good for certain particular cases in terms of their accuracy,
measured in terms of the variance. We will present them for one cycle. The
development for » > [ is straightforward.

2.3.1 Median RSS Sampling (MRSS)

The MRSS procedure was proposed by Muttlak (1995). Muttlak (1998 and 2003)
proposed to select the median of s(j) in each ssu. The pdf of Y must have finite
mean and variances u and ¢>. We observe {Y(l:l),“.,Y(l:m).Y(Z:l),““,Y(m:m)}t; t=
1,...,r. If m is odd the os’s measured are Yﬁ;;med); = Y(mT“:m)wt =1,..,r.if mis

even is used

m
Yiw,y, ifm<=+1
(gm)e HM<ZF

YG:med)t = . m
ifm> —,

Y(%+ 1 :m)t 2

t=1,...,r



2.3 Some Other RSS Strategies 17

The estimator is [flimeq) = - and its expectation is

E (,urss[med]) = W Note that for n odd fiy (j.mea) = Hy (st for any j, then

~ Fr(e) T ()
E(.“rss[med]) = HY(%) If m is even E(:“Y rss[med]) = 2 -

The variance of the estimator is given by

2 2
D1 0F med) 0% D1 AV (imea)
14 Hy rss[med] ) = m2r = 7 - mn

where
2
(uy (1) = uy) if m is odd
2
A% (jomed) = (:“Y (2) ~ ,uY> if misevenand j< %
2 . m
(,uY (z+1) ~ ,uY) if m is even and j > 0}
Muttlak’s estimator is unbiased only if the pdf is symmetric with respect to u

and V(.“Y rss[med]) <V(ly ) < V(pty ). The relative precision of it (RP) increases

with m. For not symmetric pdf’s the estimator is still more precise than the
arithmetic mean of SRS, uy,, but it is biased. The RP decreases if m > 6. The
errors in the ranking do not affect seriously these results. Hence the use of median-
RSS provides a gain in accuracy.

2.3.2 Extreme RSS Sampling (ERSS)

Another particular procedure is to use the extreme os of the samples. Further
reading can be obtained in Samawi et al. (1996), Bhoj (1997). That is, in each RSS
sample we measure Y;.; and Y,.;. Take m even and compute

Y1) + Yimy)
Y(ift’) = 2
Its expectation and variances are, as SRSWR is used,

2 2
Ry (1) + Ky (m) Ty (1) T Ty (m)
E(Yjg) =———— V(¥Yp) =———F——

Samawi et al. (1996) proposed the estimator:

. Z;n:l Yije)
Hymse) = — 7=
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This estimator also is biased because

By (1) T By (m
E(#Y rss(e)) = f()
and
v( ) _ %) T %
Hy rss(e) | = m
For m odd the variable used is
Yo if j<m and j odd
ve = ¢ Yo if j<m and j even
YN Yy + Yoy
(14) (m3f) if j=m

2
ij:] Y(*j:e)

An estimator of the population mean is p* O =

ISS m

Its expectation is equal to the expectation of iz but

vl ) = 9rim (2"1_1)("5(1#“?(»1))
(Hiio) =T+ n ’

Oy (I,m) = COV(Y(I:m7 Ym:m)

An alternative estimator analyzed for m odd is:

m—1
2 Yooy + ¥ (mn)

/lfs*s(e) =

It is also biased as

E (,u::s(e)) = + :

which variance is:

2
e )T = D(F o+ o)
urss(e) ) + 2m2
If the pdf is symmetric with respect to ¢ty = 0 the median is equal to zero. From
the results of Arnold et al. (1992) we have that, in this case:

L py 1y = —Hy (n) for m even and 1 1y/5) = 0 if m is odd.
2. 02”1) =07 ()
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Therefore in this particular case:

E(:urss(e)) = E(:u:ss(e)) = E(lu:s*s(e)) =0

2 2m—1)(o% , + 0
% (1) . ( ( Y (1) ”‘f'”)
V(:urss(e)) = m 7V(:urss(e)) Im2 )

2 2
Ly (“”” " "Y<1><m+’>)
V(:urss(e)) = "2

When the distribution is uniform these estimators have a smaller variance than
Us. The preference of one or another estimator depends of the value of m including
when compared with the use of the usual RSS estimator.

2.3.3 L-RSS Sampling

The L-RSS procedure is described, following the paper of Al-Nasser (2007). It is
implemented by the following procedure.

2.3.3.1 L-RSS Procedure

Step 1: Randomly select m’ units from the target population of size N,
(U=A{1,..,N}.

Step 2: Rank the units within each set with respect to the variable of interest ¥
Step 3: Calculate k = [mp], p € [0, 1/2].

Step 4: For i < k select the units with rank k + 1.

Step 5: For k < i < m—k—1 measure the units with rank i.

Step 6: For each i > m—k measure the unit with rank m—«.

Step 7: Repeat the steps /—6 r times.

The estimator proposed by Al-Nasser (2007), when r = I, m = n and is
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Z,lYk+1+Z, o1 i) + i1 Yin

m

VLRSS =

Its variance is given by

Zf;l V(Yigerr)) + Zz v Vi) + 30t Vi)

n2

V(YLrss) =
Remembering that the expectation of an os is
E(Yi) = ty,, =ty + (4, — y) = py + Ay

we have that

nE(yirss) = K[ty (ei1) + Ky (k1)) Z Hy (i
i=k+1
n—k

= pty +k[Ay 1) + Ay moi] + Z Ay (i)
i=k+1
Therefore, when the distribution is symmetric this estimator is unbiased. Taking
into account that the variance of an order statistics is (Yi(,-)) G%’m = GY A2

We have that

kr [O'y(k+1 +Gy(n k- 1)]+”Zz —k+1 U%/(,
2
n

V(¥Lrss) =

2.4 Some Particular Estimators
2.4.1 The Ratio Estimator

2.4.1.1 Usual Estimator

One of the most popular estimation problems is to estimate the ratio. Consider as
usual that X is well known and that it is used for ranking. The selection of a sample
of size n yields the estimators based on a RSS-same are

_ i _
Yrss = y o Xpss =

The ratio estimator of the mean is
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Its study is developed using some expansion in Taylor Series E(y,_rs — ,uy)z.
Using it is obtained that the MSE is given by:

SRR ) N A R Py T
X (i X (i Y (i
0= 2w | ~2Rp| o — 2] x(oy -2

i=1 i=1 i=1

moA2
- >
m
i=1

M(Yy_rss) =
(y rss) n

Then we prefer this estimator to the SRSWR one when

Af’ m %, ) moa 1/2 2 mAi(_) 1/2
el ina - (d-£5) o(2-£%)

n

G

Ms

>0

5r—rss =

In terms of the correlation we have that RSS should be preferred to SRSWR
estimator if

._‘

p<

2 A}zm‘) Rl
2R|axoy — ol =Y xfler =2t
i=1 i=1

The terms under the square root sign are positive, as they are variances. Then,
we can rewrite the relationship deriving that

i= i=1
2R Ox0y 1-— <1_Zma'2> (1—2#{;&)
i=1 i=1
The right-hand side of the equation is positive then, if p < 0, RSS is better than
SRSWR strategy.

Take r > 1 and note that X is known then we can compute the mean of the
rm® = mn selected units

p<

Therefore, we may use another ratio estimator defined as

_ _ Vrss
Vrorss2 = Y(0,10)-rss2 = =X
x
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We use rss2 to distinguish this proposal from Y , and

r—rss

m

FR2% _oRp e (o2 - 300 v
r p\/;x O_y : m

M()_)rerSSZ) = !

n

This estimator should be preferred to the classic ratio estimator when the fol-
lowing inequality holds

That is if

<
p n g NV
ax 0 Y(i)
2R |2 — (1 > m_o'y>
A comparison between the two RSS strategies determines that a preference for

this estimator is a result when

M(}_’r—rss) - M()_’r—rSSSZ) >0

that is if

m A2 m A2 172 m A2 172
2 2 1 2 X(i) X(i) 1 2 Y(i)
Ro}(1-1)-R [IZ:T] —2Rpox (12 m) -7 <in] T)
>

6rss,r552 = P 0

It is biased but the bias usually is small with respect to n. Bouza (2001a, b) used
RSS for selecting a sample using a third variable related with X and Y.

2.4.1.2 Median Ratio Estimator

The use of ratio-tupe estimators using RSS is receiving more attention from the
researchers recently, see for example Al-Omari et al. (2008, 2009), Bouza and
Al-Omari (2011a).

One of the first approaches of RSS for ratio estimation is due Samawi-Muttlak
(1996). They assumed that the auxiliary variable X is ranked without error, r = 1.
The observation (X;.j), Y(i:j)) is the pair of values in the i-th judgment os in the
RSS sample s(j). Their proposal was not to use the pairs in the diagonal but the
medians
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Z(Mj) if n is odd
Zin =98 Ziun + Zimn Z=X,Y
) w if n is even

The estimation of the mean is made by averaging the Z*;)’s.

217

()
Hessm)ze = 71]5Z =X,Y
n
The estimator of the ratio based on these RSS median-based estimators of the
. _ Hassm]y* :
mean is R,, = pra— Taking

2

0z Cov Xh Yh

Vo = 220 2= x. v, = 0 1)
Hz HxHly

The variance of this estimator is:

sz + V — C n+
Xy T gy ~C(5) if nis odd
V(Rn) = ’
RV + Vi ~2(Ce + Cen)
2 2 - -

if n is even

n
The involved variances of the RSS estimators are expressed as the difference
between a function of the population variance of Z and a function of sum of the

Al.z s. The relative merit of this strategy is that the estimation is fitted in a non-
parametric sense and we need to rank only a part of the sample. Other intents in
this line are presented in Patil et al. (1997a, b).

2.4.1.3 Ratio Estimator’s Classes

A large class of ratio type estimators is given by fixing a vector of parameters
0 = («,B, /l)T, where o € A, B € Bx, /. € L. Denote this class as

— Yest + o v T
F = =————(BX+1);0= B AXB" XL
{y() BXest T )»( + )a (0(7 a’“) c X X }

Zo, Z = X, Y, is an estimator to the corresponding mean. Consider

A = {07 b(X _X)a O'x} = {0‘170527“3}
B = {17 B2(x)7 Gy, P} = {Bl7B2aB3-B4}
L = {0, P, BQ(X), Cx} = {/l],/lz,}g./ﬂm}.
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where

b = s,,/s> is the linear regression coefficient

B;(x) is the coefficient of kurtosis of the distribution of X
C, is the variation coefficient of X
0 is the coefficient of linear correlation between X and Y

Then, this class contains some well-known estimators. For example, the classic
estimator is obtained when 68 = (0,1,0) = (oy, By, A1) as
%

Yr =Y0,10) = p

The mean squared error of the corresponding subclass is characterized by

_ 2+R*cZw(w—2y) . C, 2
M) = =———— withw =1,y = pz =ps.

Singh-Dao (2003) developed a estimator assuming that the existence of infor-
mation on p. It belongs to the subclass determined by 6 = (0, 1, p), and is char-
acterized by

s = —— (X + p)

X+ p
Its MSE is
_ 2 4 R2o2 (X 2 Ypoy0,
M(ysr) = (3 X 2pC,/C o TR \F) T
== 7 W==—-, V= X —
yst Yrazon X+p V pLy n

We prefer ¥, to ysr when p <Ra,(w+1)/0,.
Kadilar-Cingi {Kadilar-Cingi 2004 & 2005} analyzed different families of
estimators belonging to F identifying them by y(0;), where

01 = (062, 31711)

0, = (o2, B, 43)

03 = (o2, By, A4)

04 = (0(2, 327/11)
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0s = (o2, B3, 43)

06 = (o2, B, 42)

07 = (a2, B3 A)

03 = (o2, Ba, A4)

0y = (o2, B2, 42)

010 = (02, B4, 23)

Their explicit forms are

o) Iy ST )
o) =2 x ey, 509 LD
o) =2 D e ), 00 -T2 )
90) =TEE D e ) s =2 D 0y
3(0) =D () ), o) =S o+ )
Their errors are typified by the expression:
Moy = OB

n

The ratios, indexed by 0, are defined as:
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Y Y Y VB, (x)
R(O))=R== R(O R(03) = —— R(Oy) = =—"""—
) X (62) X+By(x)’ (6) X+C (64) XB,(x) + C;
YC, y YC, Yp
R(0s) = . R(0g) = ——, R(07) = = . R(0) = ,
0) = e T B0 (0o) =5 (07) XC+p (Os) =% ¢
YBz(x) YBz(X)
R(0y) = = . RO 7
©) =B+ X0 = B0+

¢’ (szsz(G,))

a_v(ay+2<rx)

Bouza and Al-Omari (2011a) derived RSS versions of these estimators. The
RSS- Singh-Deo (2003) estimator developed is

Yn is preferred whenever p >

X +p)

y — yrss
ST—rss T+ P

Its MSE is expressed by

M()_’ST—rss) =

where

A

2
Y(i)
m

>l/2

The comparisons of this estimator and the srswr‘s one fixes to prefer ysr_; if

1/2 m
) (-2t
i=1
X+p

Yp <0§ - Z:l

g‘/:

w2 N\ /2
v AYi
A2 Ypay(l—zm;§> Oy
2

st = M(ysr) — M (Ysr—rss) > 0 = Z ;1([) + = >0
p

X+p

In terms of the correlation is expressed as

p> -

mo a2 _ m A2 /2
S v, (1- £2)
i=1 ' y
which is generally valid.
A similar study of Kadilar-Cingi (2008) type estimators under RSS permitted to
propose the estimators
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?(914“) _ Viss + b(x - xrss) Ly, S’(92—rss) _ Yiss + b(X - xrss)

= = ty + Br(x
Xrss Xrss +BZ(X) (I-X 2( ))

_ yrss + b(ﬂx - ers)

7r. + b - jr. _
= ds PO ) (e ) 50 =

)7(934% = (:uXBZ(x) + er«)

Xrss + Cu, XrssB2(x) + Cy,
(05 ) =S 0 ), (0 ) I
$(0r-s) = % (XCo+ ), 505 ) = % (xp + C.)
F(0o ) = 2 PUR = 0) () 4 ) $(01g ) =2 P ()

XessBa(x) + p XrssP + B2 (x)

The MSE of these RSS estimators of uy has the structure:

m 2 m 2
RZ(H,_rSS) [G)Zc - E%} + {‘73 - Z Aryn(i)](l - Pz)
MG(0r-rss)) = =l - =l yt=1,...,10
We prefer them to the srs counterparts whenever

M(y(0,)) —M(Y(0i—rss)) >0

Say if
m 2 m 2
R(0) 250 S5 =)
0 = S—n >0, t=1,.,10
n

n
This relationship always holds.

2.4.2 The Difference of Means

Bouza-Prabhu Ajgaonkar (1993) studied the estimation of a difference within the
frame proposed by Pi-Ehr (1971). Once a SRSWR is selected from U the differ-
ence between the means D = py — piy is estimated by

n
o i1 di
Dyy =y — %= %,di =yi—Xi
Its error is
(7% + 6}( — 2poyoy Oyx
V(Dsrs) - P =
n OyOyx

Bouza (2002b) derived the RSS counterpart. An unbiased estimator of D, when
RSS is used is ranking the differences d;.;).
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Using the results derived above, it is easily obtained that when we use RSS and
two variables are measured. Ranking the differences an unbiased estimator of D, is

r m
Z d(i:m)t
=1i=1
DTSS = l m
with
f: 2
A

v(d,) I R = R B-v1
rss rm rm? n  nm

as variance.

The positiveness of Afl grants that the RSS design provides more accurate
results than its srs counterpart.
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Chapter 3
The Non-response Problem: Subsampling
Among the Non-respondents

Abstract The existence of missing observations in the estimation problems
present in random sampling can be considered unimportant. But the risk of mis-
understanding is high because the non-responses may be generated by the exis-
tence of a very different behavior of a group of units. This is especially important
when human populations are sampled. The solution of subsampling among the
non-respondents is the most intelligent approach in such cases. The usual simple
random sampling models are revisited and their ranked set sample counterpart
developed. Generally they are more accurate.

Keywords Non-respondent’s strata - Subsampling rules - Expected variance -
SRS - RSS - Efficiency

See all, conceal much, modify little.
Gregorio Magno

3.1 Some Aspects of Non-response

As quoted the usual theory of survey sampling is developed assuming that the
finite population U = {u;,...,uy/ is composed of individuals that can be perfectly
identified. A sample s of size n < N is selected. The variable of interest Y is
measured in each selected unit. Real life surveys should deal with the existence of
missing observations. Non-responses may be motivated by a refusal of some units
to give the true value of Y or by other causes. Refusals to respond are present in the
majority of the surveys. There are three solutions to cope with this fact: ignore the
non-respondents to subsample the non-respondents or to impute the missing val-
ues. To ignore the non-responses is a dangerous decision, to subsample is a
conservative and costly solution, see Cochran (1977), Bouza (1981a, b, 2001).
Imputation is often used to compensate for item non-response. See for discussions
on the theme Singh (2003), Sidrndal and Lundstrom (2005) for example.

C. N. Bouza-Herrera, Handling Missing Data in Ranked Set Sampling, 31
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-39899-5_3,
© The Author(s) 2013
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The existence of non-responses does not permit to compute the sample mean

which estimates the population mean u because we obtain response only from the
units in s; = {ies|i gives a response at the first visit).

This fact suggests that the population U is divided into two strata: U;, where are
grouped the units giving a response at the first visit, and U, which contains the rest
of the individuals. This is the so-called ‘response strata’ model and was first
proposed by Hansen-Hurvitz (1946), see Cochran (1977), Singh (2003). They
proposed to select a subsample s', of size n’, among the n, non-respondents
grouped in the sample s,. When subsampling the non-respondents the researcher
contacts a subsample of the non-respondents, usually by means of telephone or
personal interviews.

Then we obtain information on the non-respondent’s strata U, through s,

3.2 Estimation of the Mean

Non-responses may be motivated by a refusal of some units to give the true value
of Y or by other causes. Hansen-Hurvitz in 1946 proposed selecting a sub-sample
among the non-respondents, see Cochran (1977), Singh (2003), Séarndal and
Lundstrom (2005), Singh-Kumar (2008a). The idea is that we select a sample from
the population U without knowing that it is stratified into U,, stratum of the units
to give a response at the first visit, and U, the stratum that contains the rest of the
units. The mean of the variable of interest is

Y eu Vi & YIS N;
PR SEPNETL N PRI/ < R B RS
N i—1 Ni i=1 N

It is supposed that the non-responses are due to the fact that the units in U, have
a behavior different of those in U; and that it affects the values of Y in such a way
that the strata means are different.

Take s as the initial sample and s; C U,, with size n;. A sub-sample of size
n', = On, is selected among the non-respondents and a response is obtained from
them. This feature depends heavily on the sub-sampling rule. Some sub-sampling
rules have been proposed by Hansen-Hurvitz (1946), Srinath (1971) and Bouza
(1981b). The rule of Hansen-Hurvitz uses

RHH: 0=1/K, K > 1

The proposal of Srinath (1971) was to set
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np
RS: 0= H>0
Hn+ny’ =
The rule of Bouza (1981Db) is
RB:0="2
n

As this rule is randomized the surveyor does not have to fix an arbitrary value of 0.
The sampling procedure is a particular case of double sampling design
described as follows:

Step 1: Select a sample s from U and evaluate Y among the respondents
determine

{vi:ies CU:|s1| =m}.
Step 2: Determine n) = 0ny,0<0<1; /s2/ = ny withsy = s\sy.

Step 3: Select a sub-sample s, of size n’,” from s, and evaluate Y among the units
in s, {yi ti€sh;sh Csa,50 C Uz}.

!

Z:'ll]y’ _ Z:‘ZI i

= Yy =447=., and the estimate of pu is

Step 4: Compute y; =
Y =312y = wiyt +wayy

Note that y; is the mean of a SRSWR-sample selected from U, the response
stratum, then its expected value is the mean of Y in the respondent stratum: fuy ;).

!

Ty
We have the conditional expectation of ¥, = n—,:‘y is
2

E[y3|s] = y2
as it is the mean of a SRSWR-sample selected from the non-response stratum U,
EE[y)|s] = py(a)

Taking into account that for i = 1,2 E(n;) = nW; the unbiasedness of ¥ is easily
derived.
The variance of the estimator can be deduced using the following trick

y = (wiy1 + waya) + Wz()_/z —)_’2)-
The first term is the mean of Y in s, and then its variance is 6°/n. For the second
term we have that

2
V(w2 (35 = 32)ls) = W§E<)7lz — Uy)) — (2 — Hy(z))|s)
2 2
= w3 {E(Y/z - My(z))|s) +E((Y2 - .Uy(z))|s)

- 2E()7'2 — Uy(2)) ((Yz - /“‘Y(Z))) \s)}
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Conditioning to a fixed n, we have that the expectation of the third term is
(52 — yy<2>)2. Then we have that:

2 2
A %) 9y 1—-0
Vim0 < it ()

For the different rules we have

Wa(K—1)a>
If RHH is used %%
- - Ho?
EV (w2 (¥, — ¥2)Is) = { If RS is used T
. W‘U%/z
If RB is used —

We will use in the sequel

Wo(K — 1) if RHH isused
W= Hk if RS isused
W if RB isused

as the factor of ‘73/(2)'
This discussion sustains the validity of the following proposition.

Corollary 3.1 Consider that a sample of size n is selected from a finite population
of size stratified into a response stratum U, of size N; and a non-responses stratum
U, of size N>. If a SRSWR is selected among the non-respondents an unbiased
estimator of the population mean Ly is

ni 2
_ , >V > Vi
_ ) i . &
Y=wiyi+wayn, wi=—, i=12 y =" y=—
n ny 1

and its expected variance is

_ o @Oy,
O

3.3 RSS Designs and the Non-responses

3.3.1 Managing with NR

Commonly the sample is selected using SRSWR. A sample s is selected and the
units in the sample are visited for obtaining information on Y. The units which can
not be interviewed at the first visit are revisited, and the surveyor obtains some
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information on them. This information allows ranking the non-respondents. This
procedure permits to use a smaller sample size, as RSS is more precise than
SRSWR, for the same error fixed and accepted for deriving the initial sample size.
We will consider the usage of a RSS procedure for sub-sampling s,. We take a
subsample s'»(xss), from s using RSS. That is, we select n’, independent samples of
size n', = On;, using SRSWR. The units are ranked accordingly with the variable
closely related with the variable of interest Y collected at the first visit.

3.3.2 The Use of RSS for Subsampling s,

As RSS provides more reliable estimations of the population mean it seems that to
use it for subsampling the non-respondent stratum would provide a better alter-
native than to use again SRSWR.

Yi,Yioo o Y Yo, Yoo o Youys oo Y1, Yoo oo Yy

Take the n’, independent random samples.
They are ranked and we obtain

Yoy, Yoy - o Yoy Ya2), Yoy o Y 2)s -5 Yy, Y 2)- - o Yiuon)

where Y/;. is the j-th order statistic (os) in the sample of size m of the t-th sample,
j=1,...,n'5 andt = 1,...,n’5_ As usual the RSS sample is formed by the n’, os in
the diagonal. That is the measurements of Y are

Yy, Ye2)- - Yyl

The estimate of the mean of the non-respondent stratum is made by using the
estimator:

The behavior of this model is characterized in the following proposition.

Proposition 3.2 Consider that a sample of size n is selected from a finite popu-
lation of size N stratified into a response stratum U; of size N; and a non-responses
stratum U, of size N> If a RSS sample of size 1, is selected among the non-
respondents an unbiased estimator of the population mean Uy is s

= nl — n2 -/ — =/
Yirss) = ;yl + ;yZ(rss) =wiyr + W2Y7(rss)
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and
A 5
2 Ay,
N s - W = W
(y(rss))*7+T_ v
where
n . .
if RHH is used
WK
_ 2
v " if RS is used
Hn + n?
n if RB is used

Proof First note that E[Y;;) [n2] = pj), j = 1,...,n’. At this randomization stage
the parameter of interest is the mean of Y in s,. The RSS estimator of the non-
respondents mean is unbiased:

We may write §(m) = (W11 + waya) + wy (y’z(rss) — )‘72).

n

2
Its conditional variance is V(¥ |s) = Doy 4 W%V()_),Z(rss) — yz\s). We needed

to obtain an explicit expression of the second term in the right-hand side. It is:
V(w2 (5 = 32)ls) = WgE((y;(rss) — ty) — (02 — #Y(z))\s)z
=w; [E((?'z(rss) - Hy<2>)|s>2+E<(§2 - Hy(z))|s)2
—2E (()_),Z(rss) — Hy(2)(¥2 — Hy(z))|s)}

The first term of the equation within brackets is equal to

/

A 5 ) ) 1y )y 5

Z AY(,-) Z (:uY(f) — iy) > G%/U) 2 > AY(,-)

= = B B )| ) =1 _ % =
o e O
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where
Then
i _ ~ 2 T
E<E[(y2(rss) - ﬂy(z))] ((Y2 - Hy(z))) |S) = E((()& - ,uy<2))> |s> = .

The second term of V(w» (¥, — y2)|s) is related to the use of SRSWR for
selecting s, and it is equal to

2
Y(2)

E((52— yp)ls) =

Hence the counterpart of V(w2 (¥, — ¥2)[s) is

V<W2 (y;(rss) - 5)2) |S> = W% ! =

> AL
Vo) V) 2 Ve Ove A
nly ny 2 /

Substituting n’, = On, we derived that the two first terms are equal to
V(w2 (¥, — ¥2)|s) and we obtain the stated results. O

The proposed model is more accurate that the use of SRSWR for subsampling
the non-respondents because

n
A2
/ M0

E|C= >0.

v

Computing the involved expectation is rather complicated as the ', is a random
variable.

It is clear that if the procedure is applied for r RSS samples of size m',,
n', = rm’;_ the following corollary is easily derived.

Corollary 3.3 Under the conditions of the previous proposition when n'> = 0rm,
r > 1, substituting

!
room

> 2 Yy
o=l

Yo(rss) =
(rss) rm/2
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in
= o ny_ ny_, o — —
YV(rss) = ;yl + ;y2(rss) =wiyr + W2Y)(rss)

is

3.3.3 The Use of the Extreme RSS for Subsampling s,

Extreme RSS has a practical sound basis because the surveyor can be interested
only in the extreme behavior of ¥ among the non-respondents. In addition, it is
easier to identify them in the first visit as to rank all the units may be subject to
large errors. Some further considerations can be obtained in Samawi-Abu-Dayyeh-
Ahmed (1996):

Considering that n’, is even when we evaluate only the extremes in the sub-
sample among the non-respondents

Yagit) + Yo (i)
Yage) = s

An estimator of the mean in U, is:

)
> Yo

g i 7 Y+ Yy

2(rss) — -
(rss) , 2
Hence we have that
_ () + Haw)
E(y/Z(erss)) = ) — = H2(e)

For n odd we introduce the variable
Y1) +Ya X .

(j:1) - 2(jenly) if j= n/2

Yage) = Yo (1) if j<ny, j odd

Ya(jnt) if j<n, j even
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and
F !
Ha1) 2#2( 5 if ] _ n,z
E(YZ(j:e)) = .Uz(l) if ]<I’l/2 _] odd

,uz(n/z) if ] < I’llz ] even

Hence, it is possible using the estimator

Z Y2(j:e)
=

Foferss) =
(erss) n/2

and it has the same expectation as in the even case but a different variance.
Previously, in Chap. 2 we have derived that this estimator is biased.
If the distribution is symmetric with respect to fiy(y), its bias

(.UY(Z)(I) - MY(2)) + (Hy(zxn;) - Mm))

7/ _
B(yZ(erss)) -
2
is equal to zero. Then the symmetry of the distribution plays a role in the mag-
nitude of the bias. The variance of the involved os’s are a§(2> ) and ay( 20" Then
2 2
Yomoou) o2 A?
2 _ % _ B : !
BT = T if n, even
V(¥ =< @2-1)| 2 2 2
Y2 (erss) (2n,—1) oy(z)(1)+gy(2)(nf2) +20(1.0) B (2n’271)(a§(2)7A(“e)) o)
4n% - 4n} + W

if n, odd

2
A(e)—A( —|—A @)(n)’ 20171) COV( (1”’2)’Y2(”’23"’z))

with Aye)) = fy)) = Fre) a0d Ayp)) = Ry ~ Fre)-
We may use the estlmator

y(erss) =wiyr + Wzy;(erss) =Yy+w (y/Z(erss) - )_]2)
Its bias is W,B(ERSS). The general expression of the variance is

V(i(erss)) = V()_)l) + W%E(y;(erss) - )_]Z‘S)Z

Considering the relationships used for deriving the expectation of the condi-
tional variance we have that in the even case
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2 2 2 2
2 Ao _m (e A
2\ n, 24 n\ 0 20

= P2 W (T A . ,
E(V(y(erss))):_+— 0()— 2(;) if n’2 1S even

Hence

n n

For the odd case we have

> <(2n’z — (o7 — Al + 4"<1’”)> 1 <(2n20 ~ V(b — 8) + 4U(M)>

n2

"2 4n’} 40?
Therefore if RHH: 0 = I/K, K > 1 is used

_ o2 K@Wy —K)(0}, — AL,) +4K20(1,)
E(V(y(erss))) = 7 + <4>|-}’l2 -

When it is considered RS : 6 = Hn"jnz JH>0

2n2
2 (2nh — 1)((;%,(2) - A<28>) + 401, 1 (Tt — 1)(‘75(2) - A%e)) + 40 (1)
2 4”1,22 n? ( 21, >2
Hn + n,

This results permit to establish the following proposition.

Proposition 3.4 Consider the use of extreme RSS and

g taga) .. , , .
————= if j=mn; and odd or n, is even
Yage) = Y1) if ny and j<n, are odd
Yo(jont) if n is odd and j<n, is even
1y
Z Y2(j:e)
= _ — —/ —/ _j:I /o 0
Y(erss) = W11 + W2Y(erss)r Y2(erss) — n—/7n2 = Um
2
has bias
. (Hy(z)(l) - My(z)) + (#y(z)(n;) - #y(z))
B(yZ(erss)) = 2

and expected variance
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5 W 52 AZ
Lom L (7 O if n, is even
E(V = . n n 0 20 2
( (y(erss))) - (QWr0—1)(c2, —A2 )44
L D) Ro) T e e odd
n 4n20? 2

3.3.4 The Use of Median RSS for Subsampling s,

Muttlak (1996) proposed using Median RSS. Let us define an operational variable

Y .\ ifn odd
)

. Y , ifny even j=1,2,...,n,/2
YZ(j:med) = Z(j:%)

/

. ’ .oy /
Y2<'n,2+2) if iy even j=3+1,...,m,
J3

&

Z Y;(j:med)
— ‘I:1

=
y =
2(mrss) n/2

and

if n} is odd

ﬂ(n;m)
2

E(yIZ(mrss)) =
u (,,«2/) +u (,,,/ ) if n} is even

N —

+ ++1

2

An estimator of the non-responses based on the subsample is
The variances of the random variables which are

o’ if n) is odd
n’21+l
2
a? ifn)iseven and j=1 "
V(Yz(j:m)) = 2(?) 2 ) 2
2 .f /2 d . n'z 1 /
<nuz> ifnyiseven and j=3+1,...,n
21 2=
2
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Consider the odd case

1 2 2
V(il ) :j:1 = ’ :2—72
y2(mrss) n/22 nlz n/2 n/2
In the even case
rl/2 o / + 02 . AZ , + 2 ,
A O I GO I O B
V(. =1 = =2 _
(yZ(mrss)) n/22 21’1/2 n/2 2”’2
2

_ O-_% . AZ(m)

n, 2n

The estimators is biased because

2
2

+ R
) (%)
2
When we deal with distributions symmetric with respect to u,, we may expect

that it will be close to the median. A good example is the normal distribution
where the median and mean coincides. In general the bias is:

Hz("/”) if n) is odd

n

b

— _
E(yZ(mrss)) - M2<

if n, is even

U ("Q*') if n’z is odd
2\

(B(mrss)) =

" n H A nl+2 —H
27 2%
if n

ny, 1is even

The estimator of the overall mean is derived from the general expression. It is

— —
Y(mrss) = W11 + W2Y)(mrss)
It is easily derived that its expected variance for the even case is:

7 oo E()

EV( y
(2(r3)rss) n n 20

Then we have proven the following proposition.
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Proposition 3.5 Select an RSS subsample from s, of size ny and measure Y;G:med).

The RSS median estimator of the population mean )’)’2<MRSS> with expected variance

2

_ 2 w2 WE (A(m>)

EV =t 22— 7
(2(131135)) n + n 20

and expected error

A? () if n, is odd
2

where O
Remark 3.6 The median RSS should be preferred to RSS whenever.

E S A2 E Asin)
Z ) | =5\
<

3.4 The Estimation of a Difference

Bouza (1983) considered the estimation of the difference of population means with
missing observations. We use the considerations of Pi-Ehr (1971) that the popu-
lation can be stratified as follows U = U; UU,UU3;, UNU; = DNi #
B = 1,23.

A SRSWR sample s is selected from U for estimating D = uy -fty. The units in
s can be denoted as s = s; UsyUss, s; UNsp Vi # j', j,j’ = 1,2,3. The sample size
is |s| = n. The units in s; give information on X and Y, but we have missing
information of Y those in s, and in X by the respondents in s3. Without loosing in
generality we may rearrange the units in s and to denote:

S1 :{iESIISiSI’H},/Sl/:nl
sp={l€sln +1<i<n +m},/s2/ =m
ss={i€slm+m+1<i<n}, /s1/ =n;

The need of obtaining information from the non-respondents establishes that the
subsamples s;, j = 2,3, should be resampled for obtaining it. This decision is
reasonable when we expect that the means and variances of the variables in the
strata are very different. Denote by s’; C s; the corresponding subsample of size
|s’l = n’; j =273. Using the notation of Bouza and Prabhu-Ajgaonkar (1993)
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each subsample s, belongs to a stratum U, t = 1, 2, 3. The information provided
by s permits to calculate

ny n n ny ny+ny n
> Xi > Vi > (i—yi)  Xod; PR 2 i
- _ =1 — _i=l a _ =1 =1 - i=m+l - I=mtmAl]
X1 = V1 = ,d] — - , X2 = y V3 =
ni ni ni ni ns ns

An unbiased estimator of the difference between the population means is

=k =k
dsrs =X —Yy
where
> nX 4 X,
—* re{1,2} _ —
X =——= g WXy + w3Xy
n re{1,2}
= =/
>y, +may,
—x te{1,3} _ —
= —n = E wiy; + w3y,
te{1,3}
where
n ni+ny
> X > i
f/ o i=n;+n,+1 y, o i=n;+1
T T
n:
and wp=—
n

The corresponding model is characterized in the following proposition.

Theorem 3.7 (Bouza and Prabhu-Ajgaonkar 1993). Take a SRSWR-sample
selected from U. The units in the stratum U, report X and Y, the units in U, only
report X while Y is the variable reported by Uj; at the first visit. The estimator

dsrs - ):C* - 5*
is unbiased for D and its expected error is

03 + WZG%/(z) + w3o'§((3)

V=V =
n
N; number of units in U;
W, =—= andN = N; + N, + N3
N N
and @; i = 2,3 is the coefficient generated by the subsampling rule. U

Let us take r as fixed, n; = rm; then the subsampling size among the non-

respondents of stratum U;. As n’; = rm’;. = Orm,. It makes sense to use as con-

comitant variable X (Y) if j = 2(3). Considering the conditional unbiasedness of
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rom
DD
—r t=1i

erss -

3

,j =2(3), if Z=Y(X)

gl

Mimicking the structure of dg; we consider the estimator.

,
drss - Wldlrss + wy (x2rss erSS) +ws (x'irss y’;rsg) dlrss - E § Tl
i=1 t=1

The use of RSS instead of SRSWR was studied by Bouza (2002). The corre-
sponding results are given in the following proposition.

Proposition 3.8 Take a RSS-sample selected from U. The units in the stratum U,
report X and Y, the units in U, only report X while Y is the variable reported by U
at the first visit. An unbiased estimator of the difference of the means is

= n;
— —/ —/ —_ 1
drss = Widirss + W2 (x2rss - yzrss> + w3 <x3rss - y3rss)wi = ;

and its error is

- 2 2 2 A2
EV(drss|s):;d+%+¥ ( +‘I’>

m3
Z WAy (i) Zl W3 A3 (i)

Y_F i=1 + i=
vmy vms

Proof Take

3

Erss = widirss + Z wj (xjrss - erss) +wy (Xers - ylzrg) + w3 (fgrss - y3)
j=2

The sum of the two first terms of dy is equal to d,,, hence the conditional

(rfl—HUz(r +m302

2" XG0 et us analyze the

variance with expectation equal to V = V| = -

second term.
_ _ _ _ 2 _
V(y2rss - y/2rss|s> = E(yIers - y2l”SS|s) _V(y2f85|s)
because

yva y = (y2rss erSS) + (erss - :uZY)

The cross expectation’s expected value is zero. In this case, the RSS is balanced
and we may express the variance of the os as a function of the variance of Y in U,

and the gains in accuracy measured by the Agm) ‘s as
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11 - A%Y(i)
(32 = Forsls) GY(2)< / > < nymy

substituting n’, = Orm, we obtain:

— - ( 2y

V(erss _y,2rss|s) = ny < ) Z Hm’n": =
A similar reasoning with the last term yields
2 m A2
o 1—0 2 Ay

—/ — _ X(3) 3X(z.m3) .

V(x3rss - y3rss|s) - n—3 <T) - ; 0mn3 =V
V(dss|s) = Vi +w3Va +w3V3

Now we have that as n; is a Binomial random variable with expectation
nW ; = nN/N
V(Em|s) =V, + w2V2 + w3V3
and
2 2 2 2
— g;  @a wo A
EV (k) = 7+ 7020 4 P ( w)

where

O

Remark 3.9 The last term of the expected error is always positive and represents
the gain in accuracy due to RSS. Hence the use of RSS for subsampling the NR
when D is estimated is a better alternative than the SRSWR strategy. U

3.5 Product-Type Estimators

Bouza (2008) analyzed the use of RSS alternatives when a product estimator is
used. The product estimator is defined by

xy

y, =
p,ux
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where

It is closely related to ratio estimators, see Cocrhan (1977), David-Sukhatme
(1974). Its expectation is given by

_ E(xy) gxy
E®y,) = = uy + 2
( ) Hx Ly ¢
N N
V(X — ) (Y — VX,
FSND . T [ AT DTE

Hence it has a bias B(y,) = AL Its variance is
X

O'%/ + RZO'%( + ZRO'XY

VG, = X
where
N 2
1 (Z -
R_ﬂ,agzz’—‘ (% = 1) Z=X,Y
Hx N

A version of it is

Do Y

yp* = npty

and it has the same bias and variance as y,.

These estimators can be used for deriving the estimation of the mean of the NR
stratum.

Agrawal and Sthapit (1997) derived the exact formulas for the bias and variance
of the product estimator under simple random sampling. Its asymptotic normality
was rigorously established under weak and interpretable regularity conditions on
the finite populations.

Let us consider the separate product estimator

_omy nzyép _ mYy; +md, . nz(?’zp - )

s = n n n
where
L TR
» Hx

The first member at the right-hand side of y,, is the mean of Y in 5. Hence the
bias of y,; depends on the expectation of the last term. The conditional expectation
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of it, for a fixed n’',, is equal to the product estimator based on the subsample s.
Therefore

("2 (3, = ¥2) ,) my,X2 M2y,
E(—LZ—"n) | === — =2
n

nity n
as
E(”zyzfz MY, |n2> _m (0'2XY)7
npy on n \napy
where
N N
2 (X — ax) (Yo — fay) 21Dy Xy
O2xy = N, » Hz(2) = N, YT h

Then the bias is equal to
— oxy
B,, =B =
ps (yps) iy
Using the results obtained previously we have that under the regularity
condition

Gazy er‘il (yZJ' - yz) (x2j - 7@)

R1:— ~ /
) Ly Mx Hytipy fix
we have that
— ~G Uyr P Czyczx
E(E(y,|ny)In2) 2y + %

The variance of y,, is obtained by calculating
V(E(EGps|n3ne))) + E(V(Eps|sine))) + EE(V Gl me)))
Let us compute the first term

CxC
V(E(EGp i) = v 5+ 220

C:
— V() + V( 2x§iy,u2y) +2Cov <)T’ CZXC:Y:UZY>

The first term is the variance of the sample mean in SRSWR

while the second and third ones are equal to zero.
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For the second term we have the expression
E(V(Ey|m)inz)) = E(V(5+72 5y =52)m2) )

2
= £((2) V(G - 5im))

Calculating the conditional variance we obtain

V(2 = 32)In2) = V((3a) In2) + V((32)Im2)
— 2C0v((y2p,y2) \ng)
The first two terms are easily derived as
N 03y + R30%y + 2Ry00xy a3y

V((sz)|”2) = s , V(O Im2) = r.

For computing the third term we relay on the properties of the sampling
moments enounced by David and Sukhatme (1974). This term can be written as

_2_
S VaXa Iy(2)P2Cox Coy
Cov((5 52 m) = E(22 1) = (s + 2222222
D¢ na
As
20y () 0oxy + Hy Ty
ny

E(¥5%|ny) = H%f(z)ﬂx(z) + +0(n?)

we have that

2
_ .uy(z)< 0>CaxCoy 2y 2)02xy +
Cov( (¥, ¥, )|n2) = Uy (o) — +
((F2p:32)In2) i\ o gty

ns

Substituting the terms derived previously we have that

2 2 2y ()
RZGZX + 202xy (Rz — T(z))

V((y — 32 |m2) =2 Py

_5 #i(z) _ P2CxCoy) ﬂi(z)
—M Hx(2) n n
X 2 2

The analyzed variance term is derived by computing the unconditional
expectation




50 3 The Non-response Problem: Subsampling Among the Non-respondents

E((@)ZV((M —?z)lnz)) = Wy (S(1) + S(2)) — 2axy

n
where
2
Ry + 2000 (R — 522)
S(1) =
n
2
Cox C u
5(2):2 PrCox 2Y+ Y(2)
' npx
and

2

, Hy)Hx2

Aoxy = (7}/(’111 ( >> (nW22 + nW, Wz)
X

The third term of the sampling error is

BE( plin)) = £(2( () B (3 ) )

As ?’2,, — Hyp) = (ygp — y2> + (y - ,uy<2>) is derived that

E((Y’zp - §2)2’n3> = E((yz - .“Y(z))z‘”/2> - E((yz - Ny(z))2’n£>
(1= 0)3,
an

because the expectation of the cross term is equal to zero. As a consequence

Wo(1 -0 o'f/
BE(V (5l ) = o)

these results enhance to give a characterization of the proposed estimator.

Proposition 3.9 y,, is asymptotically unbiased as an estimator of the population
mean and its variance is

_ ab  Waopn  Wa(l— 9)03/@) .
V(yps) = 7Y + S 10 —2hoxy

n
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where

2 CoxCoy 3
Ops(2) = R305x + 20xy <R2 - ZY‘Z)) + (2 <92;X2Y n ;w))
2X x v

P (ﬂg(z)yﬂX(Z))
2XY —
Hx

if the regularity condition R1 holds.

Proof The first result is derived by fixing that lim,_, (‘Z—’fxy) = 0. The expression

n

of the variance is obtained by summing V(y), E (("—2)2V((y2p -%) |n2)) and

2
E ((y’zp - yz) |n’2) and doing some algebraic work. O

A combined product estimator of py for non-responses is the alternative the

estimator
o (mYitmyy X
pr n ﬂx
It uses the combination of the subsamples. As stated previously
5 = ("l% +”2y2) i_’_ (”2(72 —y2)> x
re n Iy n T

The first term is the expression of the product estimator in the original sample.
The conditional expectation of the second term is zero. Hence we have that y,. is
asymptotically unbiased because

CxC
EEE(5,. |y, m) = E(5,) =uy+uy(p x )

and the last term (the bias) tends to zero for large sample size values.
The unconditional variance of y,. is given by

03 + R*6% + 2Raxy B
n

V(EE(ypc‘”g’nz)) = V(yp) = V(1)

It is easily derived that

E(V(E(yp6|n/2)‘”2)) = E(V(yp|n2) =0

because at the second conditional level we are calculating the variance of a
constant.
Let us calculate the last component of the sampling error. Using the result

derived for E((%)zV((yzp —%) |n2)> we have that
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VGt = (22) B - 77) = ()“—9)

X B np, 0”2

The expectation conditional to a fixed n; is

_ N2 2 2
mxy + naxz N\ 5 Ix(1) m\2( , OX(2)
(2] = (2 (s + ) 0 (2 1 %
niny
+2(7n2 )(Hx(1)ﬂx(z))

Calculating E(nlz), I=1,2, E(niny), and adding this result to V(I), after
grouping we obtain

B 6% + R*0% + 2Roxy

V() = SR
: 22: W;o3
(1=00yn [ , WiW2 (#x(1) - ,Ux(z)) = X ()
+ Ouz ot n n

Then we have the following Lemma.

Proposition 3.10 The estimator of py. Y, is asymptotically unbiased and
its variance is given by

O'%/ + RZO')Z( + 2RO'XY

V(3pe) = p
g i Wia2
(1 — 0)0’%/(2> Wi W, (#X(l) - .uX(Z)) = UX(i)
g |7 n n

3.6 The Non-response Problem: Double Sampling

We will consider that double sampling is used for obtaining a sample s* from
U using SRSWR. This is the basic procedure used in textbooks, see Cochran
(1977), Sing Deo (2003), and in many approaches to the study of NR, see for
example Singh-Kumar (2008a), Bouza (2011).: A cheap variable X, correlated
with Y, is measured in the n* units selected. We are able to compute the means of
the first stage and second stage samples of X : Xy = h and X = L

n n
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Non-responses are present in the second stage sample and a subsample among
the non-respondents is selected. Singh-Kumar (2009) considered this problem for
simple random sampling. They proposed the family of estimators characterized by

. (ax+b\[ax+b\’
Y= axe +b) \axy +b

The sampler fixes the constants « and f as well as a and b. They can be
constants or functions, a different from zero. Taking

X—u Xg — [ X—u
= X”l?: il X,w: X

Hy Ux Hx Uy

Theorem 3.11 (Singh-Kumar 2009). The bias of

= ax+b\" [ ax+b b
y =y afcs*+b a)?s*—i—b

is B(Y*) = py(@, + @) defining

o—1
2

p

¢ = <v¢{al<xy + ¢>] +B<ny+oc¢+%l¢>>c§

o—1
02 = i (Ko + 257 0) 2

1= Wo(K—1) 2 af 2 Uiz K. — Oy _ HyaOxyy
- 2 0 By

1
= . —=—=5,C = 7 - T 2 y —
peg) n s Cx w2 Cx iy02 ) X2y ,uyafz -

0y = E(X = 1 )(Y = tty), 00y = E((X = 1) (Y = 1y)/U2)

2

The variance is given by

V(') = 1561 +6)

defining

o1 = (y[c} + (2 + B)p((+ B)p + 2Ky )2])

2
C
6= (& + o + 2Ky ) )+

*

2 2
2= % V2
e

w2 12,
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We are going to derive the RSS counter part of this family. The first phase
sample is selected using SRSWR and the information on X is used for selecting the
initial sample and to subsample the non-respondents. Our proposal is to use

% = airss'i‘b * AXyss + b d
Yoo T\ 16 ) \axg +b

Hence

yrss Uy O = Xrss — Uy 9 = Xs+ — Ux _ Xrss — My
rss — -

Uy Ux ’ Hx ‘ Ux

Erss =

Let us represent the involved estimators by

Vess = Hy (1 + &)
irss = MUy ( + gr&)
Xo = pux(14+9)

Xiss = iy (1 + Orgs)

Due to the unbiasedness of the estimators E(Z) = 0,Z = &g, s, U, Orss-
Taking ¢ = we can rewrite yr a

b

ﬁss = iy [ (1 + &rs) (1 + $0rss)*(1 + 0) *(1 + ¢wrss)ﬁ(1 + (lw)iﬁ}

Note that
> Ay
= 2 > mk-1)2, Wi(K—1)E[—=———2
2 _ E(yrss — ,uY) _ % + n* - ( ) "
E(ers)” = 2 = 2 - 2
Hy Hy Hy
> i
o + M WZ(K - 1)E< ll’lmg .
E(0r)* =2 N .
My My
E(xy+ —
E('l9)2 _ (XS > :uX) fX
Hx n"px
a2 Z:”:l A’zf(,)
T m

Under the hypothesis |¢pZ| < 1, /¢Z/<1,Z = g, brss, ¥, 55, an expansion in
Taylor Series of y,., may be worked out. Grouping conveniently the terms we have
that
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i:ss — Uy = D(l)
= Uy | s T+ ﬁ(wrss + ErgsWyss — Srssﬁ) + O‘d)(erss + &rsslrss — 51‘5579)

- (OC + ﬁ)d)ﬁ + aﬁ({bz ('192 + ﬂ(wrss + erss) + flgwrss) - ¢2 (ﬁzﬂwrss + 062796rss)

# BT 4 o) + 2O D 524 )

Note that the cross products are expressed by the general expression

Zh: (Z(i) - Hzm) ( Mz, ) Zh: (Z T Uz — .uz(,>> (Z(,i) T Uz — .L‘Z(’i))

i=1 i=1
h h

— Z(z(,.) — i) (zg,.) - MZ,) - ZZ@AZEn +Z{yAz, — Dz, Az,
= (h—1)(0zz + ¥zz)
On the other hand, the conditional expectations of the RSS estimators are
E(Xs/s") = E(E():crss/s) /s*) =X
Using these results we have that

oxy +¥xy n Wi (K —1)(ox,y + Px,v)

E(grsserss) = n
Kty np,py,
Y
(o) = m

n-p

oxy + ¥

E(Srsswrss) T X
npy iy

defining

my

Wyy = —E (Zi—zl XU)zA"W + Y(i)sz(I)Z - Axu)z Aym)
v =

m

Yyy = —F (Z:nl XAy + YAy, — Ay Aym)

In addition

m 2
af—i—x Zi:l Ax(g,.)
==, _ @&

X

E(wrss Grss ) =
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2
X

n*u2
2

a
E(Vo) = n*—;;z
X

E(00,) =

Substituting in D(1) after some algebraic work we obtain that the bias of yj

B(S):;S) = :uY((plrss + (p2rss)
Xy o—1 X
Prrss = V¢ of K ,% + (f)(C/% +—2)
Ny 2 nyL;
Wxy b g -1
+ﬂ KXVC +— +d¢<§+—§)+ﬁ—¢ci
YLy np 2

X
Zmz A% " mz))

Yos-——m7
z

7Z:‘x7y

For a large value of n the bias tends to zero. Then we have proved the first

statement of the following proposition.

_ = oy i
Proposition 3.12 The estimator y;, = Y <Z§“iﬁ) (2“;12) is asymptotically

unbiased in terms of n and its variance is given by
=* oy 2 22 2, Pxr
V(yrss> :7 + ’W"Y ((O( + ﬁ>¢)) cx + 2(0C + ﬁ)¢nyCx + U
XY

0'2 v 2
+/I#y2< Yz + ¢< ¢<O-_;+sz>) +2(szycx )
1y u 0

)6} Y, X

Yy, o2
+ (14 )+ 2 )
:ux:uY Kty

lf/(ﬁZ/ <1,Z = &, Grss; 0V, Wrss.-

Proof An expansion in Taylor Series of @;S — ,ul,)2 may be worked out. It is

neglecting the terms of order ¢ > 2,

@:ss - HY)2 = lizy(fl + 1+ 13+ 14)
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where

T = Srss ( 2Grzss ﬁzwrss + Zaﬂerngm)qsz

1 =& + (2 + B)*9 ¢

T3 = 2¢(0erssOrss + PrssDrss

1y = —2(00 + B)(PVerss + ¢ (erss + P
Calculating the expected value and grouping we have that

2

G — ) =+ wé(«a +BIBPE +2ak (P 4 )
n x Y

, 2 G%; quz 2
+ Ay, M_ZZJF,u + o adp I Jr‘.I’l)fz +2( XZYCXZ)

Y, Y X

Y o’
+ﬂ(1+\1@,)+ﬂ) 0
Hxly Hxlty

Remark 3.13 The gain in accuracy due to the use of y;, in terms of the variance is
Oy, 718 Wy +2W 0y (142 + AP, 12 O
Girss = Helty

Hence, as V(y.,) = V(3') + G the proposed method is more precise if G < 0.
This result allows deducing the RSS counterparts of different double sampling
estimators of the mean. For example

—1,0,1,0) — Khare - Srivastava - Tabasum - Khan estimator 1
0,—1,1,0) — Khare - Srivastava - Tabasum - Khan estimator 2
—1,—1,1,0) — Singh - Kumar ratio estimator

—1,0,1,0) — Singh - Kumar product estimator

See Khare and Srivastava (1993), Singh, H. P and Kumar, S (2008a, b, 2009).

References

Agrawal, M. C., Sthapit, A. B. (1997). Hierarchic predictive ratio-based and product-based
estimators and their efficiency. Journal of Applied Statistics, 24, 97-104.

Bouza, C. N., & Prabhu-Ajgaonkar, S. G. (1993). Estimation of the difference of population
means when observations are missing. Biometrical Journal, 35, 245-252.

Bouza, C. N. (1983). Estimation of the difference of population means with missing observations.
Biometrical Journal, 25, 123—-128.

Bouza, C. N. (2001). Random set sampling with non-responses. Revista de Matemdtica e
Estatistica, 19, 297-308.



58 3 The Non-response Problem: Subsampling Among the Non-respondents

Bouza, C. N. (2002). Ranked set sub sampling the nonresponse strata for estimating the difference
of means. Biometrical Journal, 44, 903-915.

Bouza, C. N. (2008). Estimation of the population mean with missing observations using product
type estimators. Revista Investigacion Operacional, 29, 207-223.

Bouza, C. N. (1981a). Bias and NR rate reduction using a RR model among the NR. Survey
Statistician, 1-5.

Bouza, C. N. (1981b). Sobre el problema de la fraccion de muestreo para el caso de las no
respuestas. Trabajos de Estadistica, 21, 18-24.

Bouza, C. N. (2011). Handling with missing observations in simple random sampling and
rankedset sampling. International Encyclopedia of Statistical Science part 8, 621-622.

Cochran, W. G. (1977). Sampling techniques. New York: Wiley.

David, I. P., & Sukhatme, B. V. (1974). On the bias and mean square error of the ratio estimator.
Journal of the American Statistical Association, 69, 464.

Hansen, M. H., & Hurwitz, W. N. (1946). The problem of non responses in sample surveys.
Journal of the American Statistical Association, 41, 517-529.

Khare, B. B., & Srivastava, S. (1993). Estimation of population mean using auxiliary character in
presence of non-response. National Academy of Sciences, India, 16, 111-114.

Muttlak, H. A. (1996). Median ranked set sampling. Journal of Applied Statistical Science, 6,
91-98.

Pi-ehr, L. (1971). Estimation procedures for the difference of means with missing observations.
Journal of the American Statistical Association, 41, 517-553.

Samawi, H., Abu-Dayyeh, W., & Ahmed, S. (1996). Extreme ranked set sampling. Biometrical
Journal, 30, 577-586.

Karl-erik, S., Sdrndal, K-E., & Lundstrom, S. (2005). Estimation in surveys with nonresponse.
Chichester: Wiley.

Singh, S. (2003). Advanced sampling theory with applications, kluwer. Dordrecht, Amsterdam:
Academic publishers.

Singh, H. P., Kumar, S. (2008a). Estimation of mean in presence on non response using two phase
sampling scheme. Statistical Papers. doi 10.1007/s00362-008-01040-5.

Singh, H. P., & Kumar, S. (2008b). A regression approach to the estimation of finite population
mean in presence on non response. Australian and New Zealand Journal of Statistics, 50,
395-408.

Singh, H. P., & Kumar, S. (2009). A general procedure of estimating the population mean in the
presence under double sampling using auxiliary information. Statistics and Operations
Research Transactions, 33, 71-84.

Srinath, K. P. (1971). Multi-phase sampling in non-response problems. Journal of the American
Statistical Association, 66, 583-5809.



Chapter 4
Imputation of the Missing Data

Abstract We may consider the existence of missing observations as unimportant,
considering that the risk of misunderstanding is negligible. The surveyor assumes
some model that allows adequately explaining the variable of interest. In such
cases, we are able to predict the unknown values and to plug them into some
estimator. Generally, the models used for imputing in sampling are not compli-
cated and rely on simple ideas. Imputation in simple random sampling has been
developed for decades; the literature is increased yearly. Ranked Set Sampling
(RSS) alternatives are presented in this chapter. The efficiency of this approach is
supported for the different models. On some occasions the preference of RSS is
doubtful and needs numerical comparisons.

Keywords Imputation procedures - Ignorable case - Missing at random -
Expected variance - SRS - RSS - Efficiency

Let us act on what we have, since we have not what we wish.
Cardinal Newman

4.1 Introduction

The use of imputation techniques for dealing with missing information is a theme
of actuality. See for example, Chang-Huang (2000a, b, 2001), Rueda and Gonzélez
(2004), Rueda et al. (2006), Tsukerman (2004), Young-Jae (2005), Liu et al.
(2006), Zou et al. (2002).

Rubin (1976), classified missing data mechanisms into three types.

1. Missing completely at random (MCAR). This mechanism is characterized by a
distribution such that the probability that a value is missing is independent of
values (observed or missing) in the dataset. Hence the observed value of Y is a

C. N. Bouza-Herrera, Handling Missing Data in Ranked Set Sampling, 59
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-39899-5_4,
© The Author(s) 2013
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random result from the set of observed and unobserved values. That is any
sampled unit from the population is representative and the subsample inter-
viewed is a representative subsample of the selected sample.

2. Missing at random (MAR). The distribution that characterizes it is such that if
Y is missing in a unit and may depend on some observed values in the dataset
but is independent of any missing data. Then the subsample interviewed is not a
representative subsample of those selected. An appropriate analysis needs to be
used to address the bias.

3. Not missing at random (NMAR). If missing data cannot be considered that are
generated neither by MCAR nor by MAR the probability that ¥ be missing may
be generated by a dependence on missing data. A NMAR mechanism is present
when the missing values are systematically different from observed values,
even after conditioning on observed values. Any statistical procedure is
expected to behave inaccurately if the missing data mechanism is NMAR.

Weighting adjustment is often used to compensate for unit non-response.
Imputation is usually used to compensate for item non-response. Imputation is
widely used in sample surveys to assign values for item non-responses. If the
imputed values are treated as if they were observed, then the estimates of the
variances of the estimator will be increased. If a bias is present, the square of it is
present in the sampling error. When only the responses are used the estimates will
generally be underestimations. Methods for imputing missing data in survey
sampling under various cases of item non-response are of importance.

When the non-response mechanism can be evaluated as MCAR or MAR the
missing data may be classified as ignorable. The term ignorable is used for
establishing that it is not necessary specifying it explicitly. That is, the missing
data mechanism can be ignored. In any case, the statistical analysis should take the
missing data for diminishing the bias of the estimators. Hence, though the missing
data mechanism that is ignorable, the existence of missing data must be taken into
account. Procedures using of the responses and ignoring the missing observations
is commonly identified as “amputation” as a counterpart of “imputation”.

If MCAR is the NR mechanism we may consider the so-called complete-case
analysis. It discards the need of considering the subjects missing. It is the simplest
procedure for handling missing data. It is usually done automatically by most
software packages when missing data are present. If the mechanism is not MCAR
it produces biased estimates.

Different imputation procedures are commonly used in practice.

The procedure called mean substitution is typically implemented by replacing a
missing value with the average of the observed values, and analyzing the dataset as
if it were complete. It does not take into account uncertainty in the true but
unknown value. It is used both for MCA and MR responses mechanisms.

Single imputation is a general method of replacing missing values with values
derived ad hoc. The imputed values have the same distribution as the non-missing
data. For each sampled unit having any missing data, a substitution model uses
some available non-missing data of it to form a predictor. Once each missing value
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that imputed the estimator uses the completed dataset. This procedure has the
advantage of replacing missing data with values whose distributions are like the
non-missing ones. For an imputation procedure to be valid, it must take into
account the fact that imputed values are only a guess and not the value that would
have been observed and not the missing values. It is typically used in the presence
of a MAR mechanism.

In the sequel, we present results on imputation for RSS which extend recent
results on imputing under srswr.

4.2 Ignoring the Non-responses in the Estimation
of the Mean

Surveyors have ignored the non-responses since the beginnings of surveying using
random samples. See Chen et al. (2004), Toutenburg et al. (2008), (Bai and Chen
2003).
N
Consider pu, = 1\7] Z , and Uf, z =X, Y to be the population mean and variance
and p as the correlation coefficient between X and Y. Y is the variable of interest,
which presumably exhibits some missing values pattern, X is a known variable.
X may be known for all the units in the population or, at least, for all the units in
the sample.
Let k be the number of responding units, out of the sampled »n units selected
using simple random sampling method with replacement (SRSWR) from a pop-

ulation of size N. The respondents sample is given by:

1 k
Vs = %;yia
2

with variance V(J;) = . A MCAR mechanism is assumed and the probability
P obtaining a response at a visit is a constant and E(y;) = Iy
Under this mechanism we can use the mean substitution method. Define

« )i if 7 responds
Yi = 'y, if i does not respond

and use the sample mean of the defined variables

—% Z?Zl yt*

m n

As E(y;) = p, we have that E ()7;;) = u, and
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2
kof+ (=BT _ntkn—1) ,

2 y

n n3

V) =
. . a2
Note that when k = n it attains the srswr value .
The ratio method suggests the naive point estimator of the population mean

k
where x; = ,'( > x;. is the sample mean of X under the mean method of ignorability

i=1 E”
n

of the missing values and x = % is the sample mean based on n units with

variance V(x) = ‘:—;2

As we have a random sample of size k, from standard results of the theory of
ratio estimation, the bias and mean square error (MSE) of y; are

B(y) = (%-%) (C; — pCyC) 1,

1
MSE(y;) = 7 + (— — Z) (Rzoi — 2R6Xy)

where C; =%, Z=X,Y, R=% p= GZX;Y and oy, is the covariance between

X and Y. Note that if k 22 n the bias is close to zero.
We have that, y is more efficient than y, if & <2p for R > 0 and & > 2p for

R<O.

4.3 Ratio Imputation Procedures
4.3.1 SRWR Designs

Kadilar and Cingi (2008) considered the case of missing data in estimating the
population suggesting the following estimators of the population mean of the study
variable Y:

~ V. +b(p, — % ~ V. +b(n, — % ~ V. +bET—%)

YKC1 = Wﬂx, YKC2 :ww, YKC3 :yYEiY)x

X X X5

where b = ‘y is the regression coefficient, sxy is the sample covariance between
X and Y, and 52 is the sample variance of X. Their biases are

Clu Ci,

_ _ _ 1 1
B(ykc1) & xTy, B(ykc2) = );C =, B(¥kc3) & (z - Z)PC)C Cypy,
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respectively. The mean square errors of these estimators are

o2 (R* - B%)d?
MSE (Ykc1) = f + %
1
MSE(chz) = % (O’i — BO'xy —+ RZO'f)
o2 /1 1
MSE()_JKc3) =~ 7\) —+ (% — Z) (R2 _ BZ)O'i

poy
O’X

a.
where B = =%

o
Singh and Horn (2000) suggested a ratio estimator of the population mean in
the form
_ _ YsX
ysu = oys + (1 — oc)):—
X

the value of which makes the MSE minimum is ap = 1 — p % The bias and MSE
X

of ysy respectively are

_ 1 1
B(ysu) = (1 —a) (% - ;) (C; = pC\Ci) sy,
and
1 1 C,
MSE min (Ysu) 22 MSE(y;) — (% - Z) (1 — pé) uycf

Singh and Deo (2003) considered the estimator

)
Ysp =Ys\ = | »
Xs

using 4 = p% The bias and MSE of ysp, respectively are
1 N\/A2-1) ,
B(ysp) =2 [-—- )| —=—=C; — ApC,C; |,
(¥sp) <k n) < 57— C = CCe |y,

and

1 1
MSEmin (¥sp) =2 MSE (3;) — <% - ﬁ) (B—R)’d?

Al-Omari and Jaber (2008), Al-Omari et al. (2008), Al-Omari et al. (2009)
considered ratio-type estimators using the knowledge of the first or the third
quartiles of the auxiliary variable X. The suggested estimators had the structure
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Vigh = Ys <L ha %)
qh X+ an

where g; and g3 are the first and third quartiles of the auxiliary variable X. For
simplicity we denote these classes of estimators by the order of the quartile
h = 1,3. Using Taylor Series approximation, the estimators can be written as

quh = 5}‘? - Th(x - :ux) + ThG/’l(x - ﬂx)szh(X - :ux) (y - :uy)

where T), = m i‘qh Gy = mJquh h =1, 3. For the first degree of approximation the

estimator is given by 1., = ys — T, (x — 1t,). Calculating its expectation is derived
that

E(qur,) = E(yv) - Th(jf - ,Ux) =Ly

Then B(yi4,) = 0. Since the estimator is approximately unbiased the variance
and MSE are approximately equal. As B = ‘;‘zy = ‘::, and Cov(x,y,) =222 we
have that

o> T,0(T, — 2B
MSE (31,,) 2 V() + T3V() ~ 2T,Cov(x,5,) = 2 + T, (Ti — 2B)

The second suggested class of estimators is
)—]2 _ )—) <qu + Qh)
g Xs + qn

where & = 1, 3. Using Taylor series approximation this estimator can be expressed
by

og 2 — Ti(X — 1) + TaGu(Xs — p1,)> = Gu(%s — 1) (v — 1)

and the first degree of approximation the estimator is given by Yy, = y,—
Ty ()_CS - :ux)
The bias of y,,, is B(¥2,,) = 0, and
2

o T26%(T, —2B) 2T,Bo>
MSE(32,) = V(3) + T3 V() — 2T5Cov(x,3,) =~ 4~ il I’; )_ hn x

The third class of Bouza and Al-Omari (2013) estimators is

Y, = ¥ Kt Gn
o ' Xs + qn
where h = 1, 3. Using again Taylor Series approximation for the first degree this
estimator is derived

)_]3411 = 5)3 - Th(xs - rux) + ThGh()_Cs - ,ux)z_Gh(Xs - :ux) ()_}S - :uy)a
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Its first degree of approximation is y3,, = y; — T(X; — p,). The bias of this
class of estimators has a similar behavior and B(y,3) =2 0 the MSE is:

oy + Tyo; — 2T,Bo;
k

The efficiency of the classes of estimators under SRSWR provides an insight for
selecting to use one of them under certain circumstances.

The efficiency of the estimators ¥y, t = 1,2,3,h = 1,2 is established compar-
ing the corresponding MSE’s.

Vig, and y3,, are more efficient than y; if 7, <2B and y,,, is more efficient than

ys if (% _ —)O’ + a, T;,(T/, 2B)

MSE (y3,) = V(3s) + TV (%) — 2T;,Cov(%;, ¥s) =

<0. The condition

(%) T(T) — 2B) - (% = %) (R—2B) <0

supports that y,, is more efficient than y;. The condition

T, 2B\ (1
2T, x(k n>+(k n)(ZRBa R0y —0;)<0

provides the same conclusion for y,,, and ys,,is more efficient when

(%) T(T) — 2B) — (% - %)R(R ~2B)<0

Therefore, the knowledge of certain parameters allows establishing which
criteria provides more efficiency estimation when compared with yy.

The efficiency of these classes with respect to Kadilar and Cingi (2008) esti-
mators are fixed similarly.

We have that the estimators of type ¥4, are more efficient than Kadilar and
Cingi (2008) estimators under the following conditions:

® Y4, is better than ygc; if Tf +B*—R*-2T,B<0
® yig4, is better than ygco if (%) (T,% — 2ThB) _ (%) (B> — R?) <0
* ¥, is better than ygcs if () (77 — 2T,B) — (+ — 1) (B> — R*) <0

n

For estimators of type ¥,,, the conditions of efficiency are
- . — .p Troi—a? —2T,Bo?—a2(R*—B*
® Yy, is better than ykc; if - T 4 i i na il )

T2+Bz R*)o2— 22T Bo?
® Vg, is better than ygco 1f< z Joi = >y e <0

® 3y, is better than ygc3 if

<0

2 2 2 2
Tha — 0 oy — 2T, Bo:

11
Y .- 2 2
— . + (k n) [(R+B) a 2(R+B)axy} <0
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The conditions for preferring the estimators of type y3,, are:

® 33, is better than ykc if (1) (T7 — 27B) — ()(R* — B*) <0
® 3,4, 1s better than ygc if T —2T,B — R*+ B*<0

® y3,, is better than ygcs if i ThB (% — %) [RZ — Bz] <0

The efficiency with respect to Singh and Horn (2000) and Singh and Deo (2003)
estimators is derived using the fact that the MSE the estimators proposed can be
rewritten as

B _ 05 1 1 2 2
MSEmin(ySH) - MSEmin(YSD) = ? - % - ; B Jx

The efficiency of the quartiles based classes of ratio-type estimators developed
is characterized as follows:

® Y1, is more efficient than ygp and ysy if (%) (Th2 — 2ThB) — (% — %)B2 <0

® y,,, is more efficient than ysp and ygy if
L ]

120 — 62 ¢%—2T,Bg? 1 1 1 1

y y h="x 2 2

+ +-—-)(-—=|B°0:<0
k n (k n) (k n) x

—2T,B

* ¥, is more efficient than ysp and ysy if "— + (¢ -1B2<0

Another class was considered by Bouza and Al-Omari (2011c) exploiting the
fact that the correlation coefficient between X and Y, p is known. They are given

y] =y(—“*+p) 2 y(’“”) 2 =y<”x+p)
P\ x ke )T ke T g

Their Taylor Series approximations are

by:

)_}lﬂ gyS (x_:ux) +DL(X—‘UX) (X—‘le)(y—,uy)

Y2 2y = D(X, — t,) + DL(X, — )’ ~L(% — 1,) (5 — 1,

)73[) = 5)5 - D(XS - :ux) + DL(XS - :ux)z_L(xS - :ux) ()7 - 'uv)
where D = uﬂi 5 L= i + o for the first degree of approximation, the estimator is
given by

)_7]/) = )_}s - D()_C - ,ux)7)_)2p = )_7 - D(Xs - :ux) and )_73/1 = )_}s - D()_Cs - :ux)' They

are approximately unbiased as D(E(X) — u,) = D(E(X;) — u,) = 0. Their MSE’s
are




4.3 Ratio Imputation Procedures 67

21
MSE (1) = % +- (Do(D~2B)), B = "% _ %Y
X
_ 62 D?c% 2DBo?
MSE (35, o 7L 4 7% - 220K
MSE (3,) = % (6% + D*oy — 2DBoy)

Noting that the estimators are approximately unbiased, it is clear that the var-
iance and MSE are equal approximately.
The suggested estimators are easily evaluated considering that

Y1, and y3, are more efficient than y, if D <2B.

* ¥, is more efficient than y if ( —1)o3 + 1 (63D(D — 2B)) <O0.

* ¥, is more efficient than y; if 1 D(D — 2B) — (+ — 1)(R — 2B) <0.

* 3, is more efficient than y, if (1 —1)(2RBo} — R*c% —o3) + (2— %)
2Dg% <O0.

* 3, is more efficient than y; if 1 D(D — 2B) — (+ — 1)R(R — 2B) <0.
A comparison with the estimators, proposed by Kadilar and Cingi (2008),

should be based on considering that

* y, is more efficient than yc if D* + B> — R* — 2DB <0.

* 31, is more efficient than ykc, if 1 (D* — 2DB) + 1 (B? — R?) <O.

* ¥, is more efficient than ykcs if 1 (D* — 2DB) — (; — 1)(B* — R?) <0.
An analysis of y,, leads to establish as efficiency conditions

e [t is more efficient than ygc; if

D6 — 3] + L o} — 2DBa} - 3 (& — )] <0,

x| =

o [t is more efficient than ygc; if
°

% [(D* + B* — R*)oy, — o7 +% [0 — 2DBoy] <O0.

o It is more efficient than ygcs if

1 1 11
(D0} = a}] +~ [0} —2DBa}] + <% = E) |(R+ B0} — 2(R+ B)oxy| <0.
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A similar analysis of ¥3, fixes that
* 3, is more efficient than ykc; if 1 (D* — 2DB) — 1 (R? — B?) <O.
* 3, is more efficient than ykc; if (D — B)*—R2<0.
* 3, is more efficient than ykcs if 1 (D* — 2DB) — (1 — 1)(R* — B?) <0.

A comparison of the MSE of the estimators of Singh and Horn (2000) and
Singh and Deo (2003) yields that

* 31, is more efficient than ysp and ysy if 1 (D? — 2DB) + (L — 1) B2 <.
® ¥, is more efficient than ysp and ysy because
e 2 [ 2 L1\ n s
%(D oy — ay) +;(O’Y —2DB0X) + - B0y <0.

* 3, is more efficient than ysp and ysy if  (D? — 2DB) + (+ — 1) B2 <0.

4.3.2 The RSS Design

The case of SRSWR can be extended to RSS using the relationships between the
sample mean and the average of the os’s. The existence of missing observations
establishes that for each order statistic there are only r(j) responses, 1 <r(j) <r.
Hence k =37, r(j).

The existence of missing observations establishes that, for each os, there are
only r(j) responses, 1 <r(j) <r. Following the line of considering only the ele-
ments that respond can use

Zry = ZZk 2(ji)k

it is an unbiased estimator of the population mean of Z = X, Y because
Zk .“Z(/
=/
() = 53 S = 5 Db
=

due to the property of the os, see Takahasi and Wakimoto (1968). As the samples
are independent and they were selected using srswr the variance is given by

) L _ 1 & N
( rss) ZZ ::Tzzzlr(]) I_WZ]D?(/)r(]> :
J= J=

using the fact that the variance of an os is o%m =03 — D2 76y D) = o) —
Take Z = X, then the counterpart of y; is ). Hence the use of RSS is
measured by



4.3 Ratio Imputation Procedures

69

G(ykayl(rss)) = V(yk) - V(yl(rss)) Y( er(] > +WXI:D§(I)I-(J) 1
j=

P is the probability of obtaining a unit with full response, accepting that

E(r(j)_k> =~ [E(r(j))]* we obtain

E(V (o)) = 25~
Xrss) nmP

Then E(k™') = [E(k)] ™

of RSS is

E(G(ykvj/(rss))) =

nmP 4
J=1

= nP and the expected gain in accuracy due to the use

m
2
D 2(j)

Samawi and Muttlak (1996) developed estimation of a ratio. The RSS coun-

terpart estimator of the population ratio is () =

rss)

o and the ratio of the estimator

of the mean is ¥,(r5) = Frss)tix- Take the Taylor approximation

HZ

Y(rss) Ql( (rss) .“X) + QZ( (rss)
, Oy =1k +and Q3 =

E( r(rss)) gE( rss)

y r(rss)
where Q) =

The MSE is approximated considering the Taylor Series with terms O(n

MSE (¥rss))

where Cov (x(rss) ) y(rss)) = E<X(rss) - X) (y(rss) -

= Var( (rss) ) + szar( (rss) )
7).

1x)” =03 (Rss) — ) (Fess) — Hy)

- Using the first order approximation

QIE( r(rss)

HX) = Uy
1) by

2QICOV( (rss) y(rss))>

Bouza and Al-Omari (2011b, c) assumed that the ranking is performed on a
known variable A which allows to rank X and Y. Using RSS and the structure of the
estimators of the classes we have the RSS-classes characterized by

_ j/(rss) + b('ux - x,(rss))

YKCl(rss) = )_C(rss) 154

- (rss) + b('ux (rss))

YKC2(rss) = ¥ 154
(rss)

_ )_/(rss) + b()_C(rss) - )_C;rss)) _

YKC3(rss) — —7 X(rss)

x(rss)
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Proposition 4.1 The results of the RSS versions of Kadilar and Cingi (2008)
estimators are

1. Ykci(ss) has the Expected Mean Squared Error (EMSC)

E(MSE ()_jKCl(rss))) = M(yKCI(rss))
a% (R* — B2)<72

nP
Z D) + (R Z Dig) )

" D%
and its expected bias is EB (Vkci(rss)) = nl,;ﬂ (U)Z( Z,’;xo))
2. Ykca(rss) has the EMSE

2 2 2 2
oy RO’—BO’XY
nP

" amP <ZD )+ Dy = D J>Yo>>
<

M(yKCZ(rss)) =

where Dy (jyy) = (#Xm - ,“x) (/lym - ,uy>. The expected bias is
m oy
v u Z':] DX i
EB (Ykco(rss)) = Y (o')z( _ JO))

nP 1% m

3. YKkc3(ss) has the EMSE

o2 (R+B)’e>—2(R+b)o
My ss = L - 2
(ch3( “>) P + P

1 m m
o (G YL FEETITD oL T oL ety
p= =

The expected bias is

EB(Ykc3(rss)) =

1y ( -2 Dx<j>m>)
Oy ————————

nP uy m
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Proof From the results derived for ykc; using the properties of RSS estimators we

have that

(72 2 m
Y (’?73 ( ZD _BZ)ZD)ZKU)>

M()_}KCl(rss)) = E"’ "

oD
(ai - M) substituting

m D2
_ Ly 2 Z X(j)

EB rss) ) =2
()’Kc1(“)) P ,uf( <0' p )

As E(Cf(mq ) e HPlui

O

Similarly we obtain the results stated for ygca(rss)

and yKC?)(rss) .
From these results are derived that, Ygci(rs) 1S more accurate ygci if R?<B?
For ykca(ss) We have that it is more accurate whenever

m

> Dy, RZZDXO > ZDX(, Dy
j=1

This relationship is valid generally. In the particular case in which the linear

model Y = BX + e holds it is reduced to
R Dy > D DxgDyy = BY Dy
=1 =1 =1

YKC3(rss) 18 more accurate than its srs counterpart when @ > 0. If ¥ can be
expressed by Y =BX+e this condition holds when R(B-—2)+
B(B*> +2RB —3) > 0.
The corresponding RSS version of Singh and Horn (2000) estimator is

(1 - a)yl(rss) _

j’SH(rss) = aj/(rss) + X_z ) -x(rss)
1SS

Its behavior is characterized in the following proposition.

Proposition 4.2 The expected bias of ysy(rs) is approximated by

m 2 m 2 m
(o@ gx 0y (Zjl DX(j) n Zj:l DY(j) . 22,‘:1 DX(./W(/)))

(1 — a0)py

EB yS 1ss)) =
Ostes) np myg my miy iy

> P
Hx Hx Ky

C
aozl—pc—;,cz:Z—Z,zzx,Y
A

HZ
;?
\
E)
+
8

Its EMSE is M (Jspi(rss))
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where

m 2 m 2 m
_ R (Zj—lDX(j) +Z.i=l Dy _ZZj_lDX(j)YU)>

nmP m,u)Z( muff mpiy fy
2 2 m Di m e
R p | |08 -2 -1 Dy
m=—|1-= — = oy — ——=
nP R , 2B m

m

Proof It follows using the same procedure as in the previous proposition: setting
the results of the SRSWR case and using the properties of the RSS estimators.[]

Note that the first term at the right-hand side of M (ySH(rSS)) is the error of the
srswr ratio estimator. Under the linear regression model ¥ = BX 4 e we have that

" D
W = mlizlP <(B - l)zfm'iﬂix“)) which is positive if B > 1. On the other hand

" D2
@) = % (1 - pB) (0)2( — —Z’:rln X0

cannot be negative, hence the RSS estimator is always more accurate than its srswr
version.
The RSS counterpart of Ysprss) iS

B i X Yo
YsD(rss) = Yrss) | =
D(rss) (rss) (x(rss))

Proposition 4.3 The expected bias of ysp(rs) 18

). As pB >0 the first within brackets term

by (a(x = 1)Cy — aCxCy)

EB (ySD(rss)> = nP
1 (e =D DY S Dxive)
nP 21% Hx Hy

The approximated expected MSE is given by

B B 62(B — R)* — R*G(KC1,RSS
M(ySD(rss)) = M(yk) - X( ) ( )>

nP
2
1 (B-R) > Dxg
nP m
Proof We omit it for same reasons used in the previous propositions. O

Remark 4.4 Note that again the gain in accuracy may be negative but if ¥ =
BX + e the proposed estimator is more accurate than ygp.
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4.4 Imputation in Median RSS
4.4.1 Some Quotations

We will consider the behavior of the RSS median estimator, see Chap. 2. The
srswr model was first proposed by Muttlak (1997). Some other contribution in
median estimstion are Jemain and Al-Omari (2006). For an economy in the
notations we will drop be subindex Y in the notation of the mean and variance
when there is no possible confusion.

The use of subsampling for obtaining information from the non-respondents
was presented in Chap. 3. We will consider the use of imputation procedures.

4.4.2 Mean Imputation

Let us consider that there are non-responses. First, we will study the effect of
imputation of the missing observations.
The first imputation method to be analyzed is the mean substitution. Take n odd

. | Yimeaym if aresponse is obtained
Y meaymi(1) = 70y 22 Y(imeaym w(i - m)  otherwiseas

where w(i:m) is a Bernoulli random variable with parameter Q = 1—P, P is the
probability of response. Hence if the number of responses is n(1)

Proposition 4.5 Taking n(2) = n—n(l), the imputation estimator and
E(a/b) = E(a)/E(b)

:u{rss}medl( 1) = Hi(10)

n(1 r n w(iim r n(1
Ziil) Zm:1 Y(i:med)m + Zizl n((l)) Zm:l (Zjil) Y*(j:med)m)

i

If n is odd:

E(lul(]u)) = Ky and E(V(,ul(lo))) —


http://dx.doi.org/10.1007/978-3-642-39899-5_2
http://dx.doi.org/10.1007/978-3-642-39899-5_2
http://dx.doi.org/10.1007/978-3-642-39899-5_3
http://dx.doi.org/10.1007/978-3-642-39899-5_3
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If n is even

n(1 r ((1)izm) r n(11
Ziil) Zm:1 (i:med)m + Zl 1 n(l>l Zm:l (Zjil ) Y*(iimed)m>i
2nr
n w(((2)iim r n(11
2in1 (,(1((1)1) )Zm:1 (Zjil ) Y*(/‘:med)m)l.
+ 2nr

MORNCRD)

with expectation E (/11(16)) = —*—>-+— and expected variance

EV(1y10) & ﬁ ((nP(l) + %) a@) + (nP(z) + %) G%%H)>

Accepting that w((h)i:m), h =1, 2, is a Bernoulli random variable with
parameter Q(h) = 1—P(h), P(h) is the probability of response in the h-th set of
samples.

Proof Consider n odd

Hirey =

n(1 r
E Zii1> >t :“(%) + Zl 1 Em 1 :“(%)
(HI(I")) N nr N ,u(%)
The conditional variance is

n(1) r n . 2r n(1) Yimed)ym
St S VY mem) + S wli )3, v () ).
V(ﬂz(w)) = 3
(nr)

rn(l)o%m) +—m e (n(l) —|—%) O'<2,,42r71)

nr)2 n’r

—~

and, accepting the approximation E(a/b) = E(a)/E(b) the expected variance is

(nP + &) 42 Oz
nZr

A= E(V(:ul(lo)))

As in this case, the conditional expectation is not random and the error of the
mean imputation median variance is equal to A.

When 7 is even we have to consider the no responses obtained in the two sets of
samples.

Yimeayn 1if a response is obtained

§ w0y 2 Y(imeaynw((1)j : m) i does not respond and i<n/2
Y imeaymi(1) = j=1

((2)j : m) 1 does not respond and i > n/2
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Now w((h)i:m), h = 1,2, is a Bernoulli random variable with parameter
Q(h) = 1—P(h), P(h) is the probability of response in the h-th set of samples.
Hence if the number of responses are n(1 h), h = 1, 2, n(1) = n(11) 4+ n(12), and

n

> w((h)i:m) =n—n((h)1) = n(h2).

i=1
The imputation estimator proposed in this case is:

_ Z?Lll) Z;q:l Y(i:med)m + I(l) + 1(2)
2nr

Hrssymedi(1) = Hi(1e)

where

We can divide ) as

Z:illl) Z:n:l Y(i:med)m + I(l)
2nr

n(12 r
Ziil ) Zm:l Y(i:med)m + 1(2)
2nr

Hiany =

Hi(12) =

The expectations of these terms are

E(Z?(lll) Dot Y(imedym + I(l)) ©(n(11) + n(Zl)y(%) 1

nr - n 2k

E (Z?ﬁllz) Z:n:l Y(i:med)m + 1(2)) ' (n(lZ) + n(zz)l[’l(%+1) 1

nr - n ~ M)

Hence

E(Mz(m) = w

Consequently, the variance of the conditional expectation is zero. The condi-
tional variances are
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V() = % <”(11) + n<21)>0% )

1
V() = o (”(12) +

S
~

—

)
=
N

S
L
T

Let us define P(¢) as the probability of obtaining a response of the statistics of
order n/2 if t = 1 and P(2) when ¢t = 2 and the order is 1 + n/2. Then

Vo) g5 (00 5if) e+ (00 55) )

4.4.3 Ratio Imputation

Muttlak (2003) considered the use of quartiles for improving the estimation of the
mean based on median RSS. Bouza and Al-Omari (2013) developed imputation
procedures for the median RSS considering ratio imputation methods. Let uy be
the population mean of the auxiliary variable X, and o2 its population variance.
X is a known variable and x is the mean of it in the sample. Consider the estimator

Vr(ss) = y““ L Hxe A Taylor approximation is
yr(rss) =y Y(rss) -0 ( (rss) ﬂX) + QZ( (rss) ) Q3( (rss) ,uX) (y(rss) - ,uY)
where
0= g M i (g i) B~ )
ux +ai’ i+ aqiy +a 0 pe+q rss

Using these formulae it is derived that
The MSE approximated, considering the Taylor Series with terms O(n2) as a
good approximation is

MSE(y(rss)) = Var( Y(rss) ) + szar( (rss) ) 2QICOV( (rss) y(rss))

where

COV()_C(TSS) y(rss)) - E( X(rss) — :uX)()_](rss) - ,uy)
These results are stated as follow:

Theorem 4.6 Bouza and Al-Omari (2013). Take the ratio of the RSS means as

_ y(rss)
Flrss) = S

known first and third quartiles of the distribution of X, respectively then

and Y, (rs) = F(rss) My as the estimated mean. Let Q0 and Q3 denote the
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(yl'<1'§§)) =py + QZV( (rss) ) - QSCOV(X(rss)ay(rss))

and

MSE( (rss) Var( Y(rss) ) + szar( (rss) ) 2QICOV( (rss) .)_J(rss))-lj

We will consider the median RSS estimator when there are missing observa-
tions. Define the Bernoulli random variable w*(i:m) with probability of success
P(1). If we obtain a response at the ith-sample in the cycle m then w(i:m) = 1. The
number of responses is

E:E: U

i=1 m=1 i=1
In the case of full response 7(i) = r for any i and n(l) = n.
When non-responses are present we propose to use the ratio of mean of the

rss)

responses to Y to the mean in the sample of the auxiliary variable X. r<

rss) ‘ux(m)
and Y(rss)med(r) = ”zﬂrss)/‘X are the ratio imputation estimator of the mean.
Proposition 4.7 Take r<m) = z > and V(rss)med(R) = (m) Ly its expected value is
X(rss)
yy(H) — Q1E(A(1)) + O2E(A(2)) — Q3E(A(3)) if n odd
E(y(rss)med(l@)) = My () + ,uy( )
S - QUEAD) + QE(A(2) — Q:E(A(3) f n even
where
2 2
0y 2 (or— DAL
_ _ x4 o X(+£)
E(A(1) = Ay(ary, EAQR)) =) = K - 22,
E(A(3)) = CoV (X(rss)s Yrss)) — (ﬂyA x(x1) t HxA (%))
and

2

Oy

ntl,

2
BV (k) =4 .

3 (9
2nP(1)

if nis odd

if n is even

Proof The mean of the responses to Y is
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- Elr‘l:l Z:n:l Y(i:med)mW(i : m)
uy(rss) - n(l)

Its expectation is given, for n odd, by:

Zl lZm—l My nil ( )
"
n(1) ()

E(M;(rw)‘s) -

and hence it is derived that E(Yrsmed(r)) = My
QE(A(2)) ~ O5E(A(3)). (
n Zm:l y(i»

. :
1 > 7 \)m
For n even By, =2 (Zil n(11)

n

n(l)=>2 5" wi:m)+ ZL%H S _yw(i:m)=n(11) +n(12). Calculat-

+;¢Y(%+l)

ing the expected value we have that EE ,uy( ) ) = %f and we derive that

E(Y(rss)med(r)) = — Q1E(A(1)) + QE(A(2)) — Q3E(A(3))

The conditional variances of the terms of p ¥y for n even are

1 (G et Vg )W em) a5 V(Y (g, )W (0 m)
V(:“ym |s) = 2 (; n2(11) +i:z%;1 n2(12)
Domet WA Do Wi s m)
( g n?( 11 Y(go) "ZH n?( 12 )
Then

2
Ty +o?
® (g
E(V(H3, ) = —p)
On the other hand

V(E(,u;m\)‘ ) 4 (HY (Z Zm nl("fll m)) (Z Zm 1 W(l m))) —0

5+
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Hence
0.2
'(251)
an(l) if n is odd
8(” Y<rss>) =EV (“ Y<rss>) = 4o} .
® ) if n is even
nP(1)

4.5 Imputation Using Product-Type Estimators

Bouza (2008a) proposed an imputation procedure based on a product-type predictor
of the non-respondents. The prediction of the mean of the non-respondents is:

ny

Xio
Z nyl
i=1

n;

=%
Yop =
for computing the mean of the missing observations. Mimicking the estimator
developed for subsampling the non-respondent strata we propose
my\ + mys,
n

Yic =

Due to the conditional independence between the subsamples we have that

nu +ny Haytox
E(E(yicls)) =E (71 = Firfox

= Wiy + Wo———=
n Hx

Its bias is

_ Hox I
B(yic) = W, <M - ﬂzy)
Hx

Hence if the population is balanced in the sense p,x = uy. The bias of y;, is
equal to the bias obtained when a srswr is the sampling design and the information
provided by s, is used. Expressing yic as

ic =5+ (32 = 32)

is easily derived that

2
_ Uiyl Wi W,
V(E(Gc(s)) = (—1; X .Uw) —
X
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The conditional variance of the estimator is

_ _ N2
VGicls) = V(sls) + (5) v(53, — 5als)
because the cross term is equal to zero. The expectation of the first term is

252 2 2
E(V(5]s)) = V(IC — 1) = E(w

(nW% + W, Wz)a%y + (nW% + W Wz)G%Y
n

The expectation of the second term is

V(y;p — iz{s) = V(y *2p {s) + V(,{s) — 2Cov (y*z,,,yz{s)

Note that

ny

—\2
ZIE(xiy‘) — MytoxHoy
V(?EAS) ==

As the subsamples are independent the first term in the numerator is the product
of the expectation and is equal to

2.2
n; ix

2
(e + 3 (1 +52)

2
na ty

n(l) =

The expectation of the other terms sum —u;yu,x. Then the second term of (4.4)
is given by

2\ 2 2 2 2 2
n —x _ (M 2 2 2 2 Hox 01y | Miy92x
(7) V(yz” |S) B <n2#§> <M1y02X L T )

Hence the expectation of the second term in the conditional variance V (y;¢|s) is

[5x0iy T iyTax E(@)

W,
V(C - 2) = (—n /12) iy oo + pivitey) + =00 5 .
X

X
Doing some algebraic arrangements we have that its expected value is
(MW + Wi W>)aty + (0W3 + WiWa)a3, n Wa(1iy o3y + iy kay)
2
n Ny

W> (IM%XO-%Y + 'ulYG%X)
n2W g

V*

1%

+
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The expected variance second term of the srswr mean of the non-respondent
subsample is equal to V** = E(ny03/n*) = Wha3/n.

The development of the covariance term leads to accept that it is equal to zero.
Then we can state now the following Lemma.

Proposition 4.8 The estimator - is equivalent to y; if the first order population
balancedness i,y = uy. holds and its variance is approximately equal to

2 2
u W, W
Vic ( My ,U1y>( 1 2)
Hx n

+ (”le + W WZ)O'%Y + (nW22 + (W1 + I)W)G%Y i WZ(:“%YG%X + ﬂ%Yﬂ%X)
2
n nii

when n— oo and the second order regularity condition E(ny/n{) =
E(ny/E(/nf), t=1,..4, h=1,...,4 is satisfied.

Proof The first result is obtained by using the balance condition posed and sim-
plifying the derived bias.
Take

V(EGcls)) +V*

Assuming that E(nb/n?) = E(n/E(/n{), 1= 1,...4, h=1,...,4 holds that
we have for n sufficiently large for accepting the terms of order O(n~?) in the
variance are negligible and we have the stated result. O

In many occasions the interest of the results is not only to estimate the mean but
to predict the response of the individual non-responses. The estimator proposed is
not longer a solution. Proposed the use of a ratio imputation method for the
missing values of the variable Y in the non-response item ‘i’:

- <y] >
Yir == |Xi
X1

Liu et al. (2006) proposed using

1 ul y]
yir ==Y 2 |x
ill (nl v X i

We will use the auxiliary information provided by X using the product esti-
mation principle. The result is the imputed value

Fk yl)_cl
Y
Hx

for the missing observation i. Its expectation is E(yjf*|s) = ("";—]Y’_“ + ,le,uly> ’/%X
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Hence if the condition C(n): E(ny/n{) = E(ny/E(/nl), t=1,...4, h=
1,...,4 is accepted the mean of the imputed values has as an approximated
expected value

1y
2 -
i=1 _ [ 01XYX1 u
EE| - P s| = ( W, +#1x#1y> =

For improving the simplicity in the reasoning let us consider the estimator of uy
_ mYy+my,

Yis = n
using the expression

_ _ m(y3, — )
Yis =Y+ ————

Its conditional mean is given by

ny Hoxo1XY Mxtiytox u
E(v _ Williy + Wallyy ny fly 0% 2X
(Visls) = " + "

Calculating the expected value of this last expression we have that

o n
E(EGs)) = py + W (Hlxﬂlyﬂzx _ Hzx) 4 Fax IXYE<_2>
Hx npy n

The two last terms are equal to the bias of y;5. Note that that it is considerably
larger than the bias of the combined product estimator. If C(n) is accepted we have
an approximation to the expectation of y;g given by

W c
.le.uly.uleuzx> 4 2Hox O1XY

B(EGsls) = i + W e

10
It is also larger than the bias of y,..
The calculation of error of the imputed mean using the separated principle is

very cumbersome. We will give the main results in the sequel.
Accepting that C(n) is valid

W, W- 2 4 2 2
V(EGg|s)) = 1 2(#11/ :qu) n (sz(ﬂXY) — V(1IPS)

n nfly
Take

}’122

Visls) = V1) + (52) V(55— 3als) +2(5) Cov 5. (55 — 32ls))
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The first term is equal to zero and

%k — —sek | N2 /= 2 —skok — — — 2
Vapis = V((p = Mal5)) = EGapls) E(als)” — 2E(Vapyals) — (E(5p — Tals))

We computed the terns and arranged the similar terms. Afterwards the
unconditional expectation was calculated. Assuming that the regularity conditions
C(n) and C(W) : W3 =2 0, for t > 3 hold we have that

EVop, = V(Ips) + V(2ps) + V(3ps) + V(4ps) = V(2IPS)
where

o G%X Mix 1y 02xY
V(1ps) = Wa( 2uixtlyy taxtlay + tix iy tax ity + Py + Y
X

2
2 +
V(2ps) =~ W3 ((M) Wity — (Paxtay MlXHlYlhxﬂy)

My nWipx
2 2
2W.
V(3ps) = <01XYN21Y> 4 ZGIXY,ul);,UlY:UZX
Iix nwi ity
Wi(oixy + tuxthiybox) | HaxBytax i

V(4ps) = - ixtivbox) | Hix ;:u 2x Moy

X X

Let us fixe the behavior of the separate imputation product estimator.

Proposition 4.9 The estimator yig is biased and y; is preferred in terms of the bias
and variance.

Proof Comparing the biases the first affirmation is evident. On the other hand, as
the approximate variance of yig is V(ISP) = V(1IPS) + V(2IPS), the second result
is obtained because it is larger than the variance of y,. U

4.6 Imputation in LRSS
4.6.1 Modeling the Non-responses

Al-Nasser (2007) considered that in common practice, some of the units cannot be
measured. Assume that the non responses are generated at random (MAR mech-
anism). For 1 < i < k our information allows to compute

k r

Ty = Z Z Yigkr1)0:(0, )

i=1 j=1

where

ali,j) = 1 if a response is obtained for the unit i at the cycle j
JI = 0if not
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is a Bernoulli random variable with parameter W.
The number of responses of the corresponding units is r(l]k) =

Z;;l > 1 ®(i,j) and r*(1|k) = r — r(1]k) is the number of missing responses.

4.6.2 The Mean Substitution

Under this model and the use of the imputations by the mean substitution method,
we redefine the measurements for 1 < i < k as

Yiky1); if aresponse is obtained for i —th ordered unit at cycle j

* _
i(k+1)) ™ Ty1

r(ilk)

if non response is obtained for the i — th ordered unit at cycle j

and r(ilk) as the number of responding units associated to the i-th os.
Fork+1<m—k—1

Yi;); if a response is obtained for i-th ordered unit at cycle j

HOTEN T . . . . ;
% if non response is obtained for the i-th ordered unit at cycle j

Ty = Z Yigo(i. )
=

In this case r(2|k) = ngﬁ] -1 (i, j) and we have r*(2|k) = r — r(1|k) non
responses.

In the third set of units we define

Yiom—k); if @ response is obtained for i — th ordered unit at cycle j

Y .=
i(m—k)j Ton) . . . . ;
ré3"kk)) if non response is obtained for the i — th ordered unit at cycle j

where r(3]k) is the number of responses and r*(3|k) = r — r(3]k) of non responses
and

k r ..
T(m—k) = Zi:l Zj:l Yi(m—k)ja(lvj)
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Proposition 4.11 Bouza (2012): Take
r k m—k m
Z/zl (Z, | Vit Z, et Vi Zi:m—k+l Y*i("’fk)i) T(1)+T(2)+T(3)

YLRSS(M) = mr = mr 1ts
expectation is

k[ﬂ(k+l)+:um k] +20 k+1#

m

E(Yirss(m)) =
Its variance is given by

V (Frrss())
b o (1K) +

S + ko (2l + k) + S0 (610 + 55

(mr)®

Proof The expectations with respect to RSS procedure are

k
E(T(1)) = Zi:l (Zja(,’m Batn + D _icsonm) H(k+1)) = krpgp

m—k m—k
E(T(2)) = Zi:k+1 (Zjex(Z‘R) Hiy + jes(2,NR) 'u(i)) - Zi:k+1 THG)
E(T(3)) = Zi:m—k—l (Zjey(3,k) Fni) T 2_jes(anr) W”’*")) = ket

m—k
k k)| i
Then we have that E(yirss(u)) = [ 21] 2o Mo

Let us consider the conditional variance of this estimator. Due to the
independence

2
_\* %\ _ Nk 2 r(1]k)
V(T(1)) = Zi:] <Zjes(] R) (Hl) + jes(2NR) r(1|k)) - Zi:l T(k+1) r(1jk) + r(1]k)
o m—k 2 V(l)
V(T(2) = Zi:k+l <Zj€x(2,k) 0 jes(2,NR)

%\ _ gt ) !
<r*<2|k>>2> = X7 (e + )
" 2 7 (3]k
V<T(3)) = Zi:mfkfl <Zj€s(3‘R) U%’”’k) + jes(3,NR) r(3|]j))> = Z:c 1 ( ( (3|k) (gl‘k)))

o

Hence

V (YLrss())
i Tlkt1) < (1]k) + (1]\‘:)) + 3 %) ( (21k) + 12|k)> +¥0 i) (r(3|k) +

2

(zk)
k

(mr)

Remark 4.12 Our proposal leads to an estimator which is unbiased if the distri-
bution is symmetric.
This result fixes that V(E(YLrssm)) = 0.
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Substituting the os’s variances in this expression the unconditional variance can
be written as

o2
V (Yirssm)) = e B
KA (’“‘k) :<(11\$))
taking f=B(1)+B(2)+B(3) where B(l)=———>—+, B(2)=

(mr)?
ko > e
PDEDY k+lA (’ZV‘ r(zwk) and B(3) — A(m—k>(’(3|")+r<3\k>)
(mr)* ”

Remark 4.13 Note that if for =1, 2, 3 we have ( (1) +~ %) — 7 then

V(¥irss(m)) = V(¥Lrss) which holds when there are not NR.

4.6.3 Ratio Imputation

Let us consider the ratio imputation method. Take X as the auxiliary variable used
for ranking Y and X as its population mean. The proposed L-RSS ratio is

S (S Vi S Yy + St Yint) (v
R(LRSS) = 1 1Y + j :Q

2 (Zi:l Xigery + 20 Xy + X i Xi(m—k)j) 4

The estimation of the mean of Y based on this ratio is given by

~

Yr(Lrss) = XR(LRSS)

Following the usual approach used to analyze the ratio estimation defining
1) — Z(LRSS) and R = /X

y(LRSS) — Rx(LRSS ¥(LRSS) — X
R(LRSS) — R + YLRSS) — RX(LRSS) [\ x(LRSS)
X X
Taking Ay(;) = X(jy — X we have that

A(LRSS) = E(y(LRSS) — R¥(LRSS))

[(A k1) — RAxs ) + (At — RAxnn)] + Sl (A — R — RAx()
mr

Using the Taylor Series expansion the bias of this estimator is approximately

B(3(LRSS)) =2 A(LRSS) + B(LRSS) + C(LRSS)

2 2 2 m—k A2 _
R + i [Ax(es1) + Axpni—y] + iy it Ax ()) _ RV(Xrrss)
B(LRSS) = o _ RV
X2 X2
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p+/V(xLrss)V (Vrss)
X2

C(LRSS) =

Therefore, as E(yR(LRSS)) >~ 11+ XB(y(LRSS)) we have that ygqgss) is ap-
proximatlely unbiased whenever the sample size n = nr — oo. Using the same-
Taylor’s development

V(¥rarss)) = V(Firss)) + RV (X1rss)) — 2PR\/ V(¥wrss)V (XLrss)

When non response are present we may impute the values of Y in the non
respondents by

Yriy =W
taking for z = x, y, n = mr

k r P m—k r .. m r ..

. Dict 2 Ziterioig) + 3250 21 ZiaytUsf) + D2t D1 Ziom—i(i,J)
1= 7 7 —
2oin Zj:l (i)

(i) =D i) =Y ri)m=n—m

Its conditional expectation and variance are

klr(k + 1) prgesry + r(m — k), k]+zl ra1 TR

E(z)) = o
Kkt Doy +r(im—k)ag, )|+ it r(i)ag, oy
V(zi) = 2 )
1 1

We have obtained basic results for proving the following proposition.

Proposition 4.14 Take the RSS alternative to the estimator

B _ lmx + an
YLRSS(R) = V1|7 =
nx;

Converges to the population mean and its error is

V UEE (LRSS ) €0(LRSS )

_ 2
E((yLRSS(R) — 1) ) ~E* | egrssi)) —
V@.:

B 1 [a? A2 A ! ok A?
=3 E+m2 [Alerr) + Alni—ny) + _eri:k+1 @

— 2% 19®€(V/VQ),DO'§(®)O'9(Q)
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Proof Using the previous results note that the unconditional expectations of the
deviations are

_ kr*(1]k)A + 5 PRI A F kG Ak E(2,x
Esxassa) = E((52 — X)) (MR Ax ey + 250 7 (21k) Axq) (k) Axm—r) _ E(2,%)

IR

np ny
_ ke(10) A + 3158 rCIkAG + kB Amx  &(1,
E(eyurss)) = E(0h — 1) = i o o - ) (nly)
L ke(1) Ax ey + 00 r2I0) Axy + kr(3lk) Axiy (1, x
E(exurssy) = E((01 — X)) = A (k1) kel . U] Xmh) _ (m )

Developing the Taylor Series and retaining the terms or order O (h~2) and after
some algebraic work we obtain that

1
EE (yLRSS(R)) =EE (Sy(LRss)) —REE (HZS,V(LRSSI)) X (EE (nZSy(LRSS)Sx(LRSS])) - (REE(nzﬁ,%(LRSSU))

=z(1 ,y)E(nI*I) —Rg(1 ,x)E(:—?) — E(nz/nl)paxmo'y(l)

Note that they are random variables because they depend of the number of
responses. We denote

E(l’ll_l) = 191_1,E<Z—?> =Y,

The approximate variance is obtained developing the Taylor Series. The result

is
¥ 2 VUEE(LRSS1)EQ(LRSS
E((yLRSS(R) — 1) ) = E % | eyrrsst) — &( )& )
V@E
1 (o k 2 2 1 m—k 5
= 19—1 (E + 2r [A(k+1) + A<mik71)} + Ezi:kH A(i)

— 2 % 19®€(V/V®)p0'§(®)0'9(®)
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Chapter 5

Some Numerical Studies of the Behavior
of RSS

Abstract The superiority of Ranked Set Sampling (RSS) models is measured by
the comparison of the Mean Square Errors of the models with respect to their
alternatives. The expressions support general evaluations of the gains in accuracy
but their values depend on the underlying distribution or the characteristics of the
studied population. We present some numerical studies for illustrating the
behavior of RSS strategies.

Keywords Non-responses - Imputation - Randomized responses « Monte carlo
simulation

Numbers speak all the languages.
Cuban Version of a Congo Proverb

5.1 Introduction

The selection of a certain RSS model is related to the gain in accuracy due to its
use. This accuracy usually is measured by the difference between the mean
squared error (MSE) of a RSS estimator and alternative ones. Sometimes the
evaluation is more informative when we use a relative precision measure, as the
ratio of the MSE’s, a measure of efficiency, or the ratio of the difference between
of the alternative’s MSE’s and the RSS MSE, a measure of the relative gain in
precision. In some cases there is not a clear gain in accuracy and it is needed to
analyze the behavior of the method through numerical experimentations.

We will present some numerical experimentations developed with the aims of
fixing the behavior of some RSS strategies through real life data and/or by
developing Monte Carlo experiments. The behavior is measured by some relative
precision measure or by evaluating the mean difference between the true values of
the parameter and the estimations, computed from the results obtained in the

C. N. Bouza-Herrera, Handling Missing Data in Ranked Set Sampling, 91
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-39899-5_5,
© The Author(s) 2013
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experiments. Usually a relative measure is considered. Bootstrap methodology,
Efron (1979), Babu and Singh (1983), Parr (1983), is usually used for deriving
inferences. Some particular procedures are developed and used in the simulations.
The experiments, to be presented, were conducted in our personal studies of the
models.

We will use the following data bases repeatedly:

B1. Sells in supermarkets, Castro (2000). They were obtained from the study of
two supermarkets developed in Xalapa, Mexico.

B2. Infestation. The data used by Bouza and Schubert (Bouza Herrera and
Schubert 2003) on infestation levels in sugar cane plantations were used.
Y = number of adult insects, X = number of eggs.

B3. Diminish in the area affected by psoriasis. The data were obtained in a
research reported by Viada et. al. (2004). Y = affected area in moment 2,
X = initial area.

B4. Blood Analysis, Castro (2000). Y = contents of hemoglobin, X = level of
leucocytes, developed in Veracruz, Mexico in 1998.

5.2 Studies of Some Estimators in RSS
5.2.1 Antecedents

Chapter 2 has presented some popular RSS estimators. They were characterized
theoretically. In this section we present some numerical studies developed for
obtaining more insight into the behavior of the estimators.

A series of real life data bases are used in the studies. The usual procedure was
to select samples form the data base and compare the estimators, computing the
mean absolute deviation (AD) of the estimates with respect tot the true parameter.
Some studies used a relative measure defined by dividing AD by the population
parameter.

The behavior for certain distribution functions is analyzed in some cases.

Each section will present the study of the estimators.

5.2.2 Analysis of a Monte Carlo Experiment of the Behavior
of the Estimator of the Difference of Means

We will analyze the accuracy of the proposed RSS sampling strategies for esti-
mating the difference of means. See Bouza (2001b, 2002b). The data used were
obtained from a national inquiry developed for determining the effect of AcM
murino of isotope IgG2a. It was developed by Centro de Inmunologia Molecular of
Cuba the researchers aimed to estimate the diminish of the area affected by
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psoriasis. A sample of 200 patients was selected and a longitudinal survey was
developed, the patients were evaluated in 13 occasions, see Viada et al. (2004) for
details. The index called PASI (Psoriasis Severity Index) is, see Laupracis et al.
(1988), was determined in each visit. We considered:

X = Value of the index at the first visit, Y = value of the index at the end of the
treatment.

The set of measurements of PASI constituted an artificial population of the data
base B3. It was partitioned using the non-responses at the second (U,) and third
visit (Us). We selected a sample from s and the subsamples were determined by
classifying a selected patient in U, if he/she assisted to the evaluation in occasions
1, 2 and 3, in U, if failed the second visit and in Uj if failed the third one. The last
evaluation was made for all the patients.

One hundred samples were generated and were considered as sample fractions
0.10, 0.20 and 0.50 using SRSWR and RSS. D was computed and estimated using
dsrs and drss:

100 d—D
G, = |d» I

b = srs, 158
100D ’

was used for measuring the behavior of the alternative estimators.

The results appear in Table 5.1 for K; = K = 2, j = 2, 3. They sustain that RSS
provided more accurate estimations than SRSWR were expected. These results
give an idea of how large the gains can be. They are increased with the increase in
the sample fractions. A similar result is expected for other sets of values of the sub-
sampling fractions.

5.2.3 Numerical Study of Ratio Type Estimators

Some relevant papers in RSS ratio estimation are Samawi and Muttlak (1996),
Al-Omari et al. (2008, 2009) and Bouza (2001a). They as well as some extensions of
them are analyzed. Some data-bases were used for computing the sampling error for
each estimator for RSS and SRSWR. The relative accuracy was measured by

RP = MSE(rss)/MSE(srs)

It was computed for each alternative. The results are given in the Table 5.2
considering » = 5 and m = 4. The results suggest that it is better to use in all the
cases except for O¢ y 05 in the study of blood. The distribution was a Gaussian.

Table 5.1 Relative mean

. Sample fraction 100 Gy 100 G
accuracy in aercent
0.10 13.12 4.45
0.20 09.03 2.24

0.50 08.17 1.95
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Table 5.2 Relative accuracy of RSS versus SRSWR

Estimator Supermarkets Infestation Area affected Study of the blood
Classic 0.56 0.66 0.60 0.89
Singh-Taylor 0.35 0.55 0.59 0.88
0; 0.84 0.81 0.68 0.95
0, 0.66 0.73 0.61 0.92
03 0.92 0.83 0.72 0.77
0, 0.97 0.72 0.61 0.85
05 0.98 0.84 0.60 0.98
O 0.89 0.87 0.55 1.07
0, 0.80 0.68 0.64 1.09
0g 0.84 0.75 0.66 0.97
0o 0.81 0.68 0.62 0.91
0;0 0.79 0.77 0.7 0.91

The largest gain was obtained by the estimator of Singh-Taylor followed by the
classic ratio estimator.

We analyzed also the behavior of the estimators generating the Gaussian case:
Y ~ > (N(,1), X ~ > N(1,1)). Using a normal standard for both variables is
unnatural as we will have a un-definition of the ratio of the means. We considered
that Y and X had the same distribution: the exponential case Exp(1) and the Uniform
U(0,1). The moments of the involved order statistics were calculated using a Taylor
Series approximation. The joint distribution were generated using the following
values of the correlation coefficient p {—0.9, —0.5, —0.1, 0.1, 0.5, 0.9}.

The estimators were compared. See the corresponding tables.

The results in Table 5.3 suggest that a larger gain in accuracy is obtained for the
exponential with negative values of p.

The results for the estimator of Singh and Taylor (2003) in Table 5.4 fix that if
the expectation is cero p is unimportant in the study of the accuracy. When p is
negative RSS is the best strategy. Again the best results for RSS are obtained for
the E(1).

Table 5.3 Relative accuracy of RSS versus srs for the classic ratio estimator
Distribution p=-09 p=—0.5 p=—0.1 p=0.1 p =05 p =09

Gaussian 0.33 0.46 0.52 0.67 0.71 0.82
E(1) 0.21 0.30 0.34 0.39 0.43 0.48
U(,1) 0.46 0.49 0.51 0.54 0.55 0.59

Table 5.4 Relative accuracy of RSS versus srs for the estimator of: singh and taylor
Distribution p=-09 p=—05 p=—0.1 p=0.1 p =05 p =09
Gaussian 0.43 0.43 0.43 0.43 0.43 0.43
EQ) 0.28 0.23 0.24 0.18 0.13 0.11
U(©,1) 0.74 0.72 0.69 0.62 0.68 0.72
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Table 5.5 Relative accuracy of RSS versus SRS for the estimators of Kadilar and Cingi
Distribution p=-09 p=-05 p=—0.1 p=0.1 p =05 p =09

0;

Gaussian 0.53 0.45 0.40 0.40 0.45 0.53
E(1) 0.41 0.38 0.27 0.27 0.38 0.41
U(,1) 0.69 0.55 0.49 0.49 0.55 0.69
02

Gaussian 0.51 0.46 0.38 0.38 0.46 0.51
E(1) 0.43 0.39 0.24 0.24 0.39 0.43
U(0,1) 0.68 0.57 0.51 0.51 0.57 0.68
03

Gaussian 0.55 0.49 0.40 0.40 0.49 0.55
E(1) 0.40 0.38 0.27 0.27 0.38 0.40
U(0,1) 0.66 0.58 0.52 0.52 0.58 0.66
04

Gaussian 0.47 0.40 0.38 0.38 0.40 0.47
E(1) 0.41 0.35 0.30 0.30 0.35 0.41
U(0,1) 0.78 0.74 0.71 0.71 0.74 0.78
0s

Gaussian 0.56 0.52 0.48 0.48 0.52 0.56
E(1) 0.39 0.36 0.33 0.33 0.36 0.39
U(0,1) 0.67 0.64 0.61 0.61 0.64 0.67
Os

Gaussian 0.55 0.49 0.40 0.40 0.49 0.55
E(1) 0.40 0.38 0.27 0.27 0.38 0.40
U(0,1) 0.66 0.58 0.52 0.52 0.58 0.66
07

Gaussian 0.55 0.45 0.40 0.40 0.45 0.55
E(1) 0.40 0.38 0.35 0.35 0.38 0.40
U(0,1) 0.66 0.58 0.53 0.53 0.58 0.66
Os

Gaussian 0.66 0.49 0.40 0.40 0.49 0.66
E(1) 0.40 0.37 0.27 0.27 0.37 0.40
U(0,1) 0.69 0.67 0.62 0.62 0.67 0.69
09

Gaussian 0.48 0.40 0.36 0.36 0.40 0.48
E(1) 0.41 0.35 0.30 0.30 0.35 0.41
U(0,1) 0.58 0.54 0.51 0.51 0.54 0.58
010

Gaussian 0.57 0.50 0.38 0.38 0.50 0.57
E(1) 0.51 0.35 0.30 0.30 0.35 0.51
U(0,1) 0.68 0.65 0.60 0.60 0.65 0.68

Table 5.5 presents the results for the estimator developed by Kandilar-Cingi. In
every case RSS was the best alternative.
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5.2.4 Numerical Study of Other Estimators

The measurement of the accuracy was RP = MSE (A, )/MSE(srs). We consider
the case m even and r = 5, m = 4.

Take the median RSS sampling (MRSS) proposed by Muttlak (1995, 1998 and
2003). The estimator and its variance are:

Zj 12[ 1 (/med

mr

Hrss[med] =

m 2 m 2
) 2 ;
v - ijl O jmea) _ 9% ijl AY(/':med)
‘uym@[msd - -

m2r n mn

As the bias is

le Ky,
B(Mrss[med]) == ) Ky

m

the MD is

2 YA ! 2
o =1 Y (jme =1 Y j:me
MSE (#y,ss[med) =2 Tme ( sy

n mn m

The extreme RSS sampling (ERSS) was developed by Samawi et al. (1996a and
b), Muttlak (2001), Bhoj (1997) used the estimator

2 Y
uYrss(y) - m
and
2 2
v _ %y + T (m)
‘LtYrss((') - m
As

Ky, Ty,
B (MYM(@) T 5, M

2 2 2
Oy, + O-Y(m) My, + Hy (m)
MSE( ) =0 0 -
Y0 om + 5 Uy

Table 5.6 Relative accuracy of the median and extreme RSS estimators versus srs

Estimator Supermarkets Infestation Area affected Study of the blood
Hrssfmed] 2.14 1.57 1.53 1.08
My, 1.14 2.63 2.46 1.11
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We instrumented the same experiment with the data bases for these estimators
and obtained the results in the Table 5.6.

The results obtained sustain that these estimators are not recommendable for
studying problems similar to those of the data bases. Particularly their best results
are for the study of the blood, where the normality can be accepted.

5.3 Analysis of Non-response Models
5.3.1 Introduction

RSS for non responses (NR) was the subject of Chap. 3. The behavior of the non
respondents depends of different external causes. Therefore the development of
numerical analysis gives an idea of what is to be expected in applications. Monte
Carlo experiments mimic some non response mechanisms. As in previous sections
the behavior of the RSS procedures is evaluated by means of computing efficiency
and/or relative precision. The basic theory appears in a series of papers, see Bouza
(2002a), Kadilar and Cingi (2008), Rueda and Gonzalez (2004) for example.

5.3.2 A Monte Carlo Comparison of the Accuracy
Jor Estimating the Population Mean

The comparison was developed using two data base sets. They provided the set of
values of the interest variable Y in the population: Yy,...Yy. Some of the Y;’s are
identified as non-respondents. They correspond to units for which the first mea-
surement was inaccurate and a second visit was made for obtaining a correct
evaluation. Hence, once a sample s was selected we were able to identify s; and s,
In our notation each RSS procedure is identified with:

R = RSS, ERSS, MRSS.

The Monte Carlo experiment worked as follows:

Step 1: We select s then the sample mean of Y in s; is calculated and 5 is
determined.

Step 2: We select n’, sub-samples from s, and they are ranked.

Step 3: A Bootstrap procedure selects re-samples of size n', using srswr from
each of the n’, sub-samples.

Step 4: For each b + 1,.., B the Bootstrap estimate of u:

IRymbW1Y1 + W2 2y
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is computed for the m-th sample using

Y(erss) = Wl)_/z(erss) =wiy + Wzy,Z(erss)

ny_ np _

§(rss) =—yt ;y/Z(rss) =wiyr + Wzy/Z(rss)

n
correspondingly to each R.

The cycle is repeated for obtaining M samples. Then the variance is estimated
and the Bootstrap confidence interval (CI) is calculated using the B obtained
Bootstrap’s samples. As we know the real value of u we can compute the pro-
portion of times that the CI contains it. R identifies the RSS estimator to be used
for estimating the non-respondent’s stratum means.

The Bootstrap procedure algorithm used is described as follows.

BOOTSTRAP PROCEDURE

Fix Y = {Y;,..., Yy}, K, M and B.

While m < M do

m=0 h=0, n(R)=0

Select a sample {yj,...,y,/from Y using simple random sampling with
replacement.

If y; is a non-respondent then y; € 52, [s2| = n2,|{j € $2}| = n1,n, = [n2 /K|

wy =ni/n, wa =m/n

Zyj

jgs2

Compute y; =
ny
While b < B do
While h < #n'5, do
Select a sample s,, = {y1,...,V2-/ from s, using simple random sampling with
replacement.
Rank s,;, and determine the ranked sample s,(h)

h=h+1

Select using srswr a Bootstrap subsample s,p,;, from s,y

/
2

n
Y(j:R)b
=1

Compute _)7 (R =~ A
RO

b=>b+1
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Calculate
B _
>y
; _ b=l (R)mb
(R)ymB B
B 2
Z R)mb (R)mB)
b=1
S(R
= mb - 25 (R)mB>
J A+
<y VB
_ { 1 K€ LRymp
otherwise
=n(R) + Z(Rym
M=M+1
n(R) = n(R)/M
END

Note that the CI uses 2 as an approximation of the 95 % percentile.

We used K =2, 5 and 10, B/n = 0.1, 0.2 and 0.5 f = n/N =~ 0.1, 0.05 and
0.01 and M = 100. Considering the proportions p(R), the relative evaluation of a
method’s precision is measured by:

M
p(R) =D \um) - u\m/Mu
where g(R) is the estimator of the mean y made by the corresponding RSS
estimator.

Analyzing Table 5.7 we may consider that the use of RSS for sub-sampling the
non-respondents, in the study of sugar cane infestation, provided the best coverage
of u. It is acceptable in any case. For f = 0.10 the obtained percentages of cov-
erage are close to the nominal « = 0.05 for any value of the sub-sampling rule
parameter K. For the rest of the values of f it is not so close except when K = 2.
The use of ERSS provided what may be considered as an acceptable coverage only
for f = 0.1 and K = 2. The results for MRSS are not satisfactory in any case. With
the increment in B the situation is very similar. Then it seems that B does not
sensibly affect the behavior of the proposed estimators.

Table 5.8 presents the percentage of coverage of p by the Bootstrap CI’s
computed using samples from the data providing from Hemoglobin’s analysis.
Again the use of RSS is the best option but MRSS has a good behavior for f = 0.1
and f = 0.05 as well as when B/n =~ 0.5. The increase in this parameter is gen-
erally associated with better values of 7(MRSS). These results may be generated
by the fact that the percent in hemoglobin is well described by a normal distri-
bution. The behavior of ERSS again is poor.
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Table 5.7 Percent of coverage of the confidence intervals: 100m(R) for the variable
Y = Coefficient of infestation in sugar cane fields

B/n=0.1

Subsample .RSS ERSS .MRSS

Parameter .f=0.1f=0.05f=0.01 f=0.1f=0.05f=0.01 .f=0.1f=0.05f=0.01
K=2 96.78 93.24 9253 89.41 83.69 8430 8148 7945 77.61
K=5 9423 89.45 91.10 8444 81.69 81.84 81.17 7848 7353
K=10 94.09 89.62 91.04 84.66 80.798 81.29 8138 77.68 71.89

B/n=>=0.2
K=2 96.87 9331 9284 8932 8342 8523 8218 80.11 77.84
K= 9444  89.26 91.17 84.02 81.44 81.38 81.67 78.83 73.22
K=10 9429  89.19 90.38  84.08 80.30 81.66 8154 77.88  71.67
B/n=>=0.5

K=2 96.77 9333 9209 89.09 83.38 8442 81.73 7993 7754
K=5 94.19 8931 91.12 84.03 81.79 81.88 81.19 7749  73.69
K=10 94.10  89.19 91.03 84.07 80.88 81.39 8189 7731  71.07

Table 5.8 Percent of coverage of the confidence intervals: 100m(R) for the variable

Y = Hemoglobin in blood in adolescents

B/n=0.1

Subsample .RSS ERSS .MRSS

Parameter .f= 0.1 f=0.05f=0.01 f=0.1f=0.05f=0.01 f=0.1f=0.05f=0.01

K=2 9545 9321 90.02 89.39 8371 8426 9425 92.00 89.42

K=5 9472 9137 93.63 8435 81.74 81.81 93.58 91.03 87.44

K=10 9433  91.11 90.37 84.67 80.8 81.33 9286 9451 85.03
B/n=0.2

K=2 93.42 92.88 9292 89.33 8339 8520 9749 95.14 92.00

K=5 92.37 90.04 90.61 84.02 81.36 81.37 91.11 93.67 91.69

K=10 9221 9432 93.00 84.13 80.31 81.74 9230 9138 88.39
B/n=0.5

K=2 9540 90.01 90.58 89.08 83.44 8440 9484 92.67 92.86

K=5 9528 9439 93.14 8401 81.82 8192 9432 89.62 91.59

K =10 94.69 94.03 9030 84.13 8090 81.39 9580 90.54 91.71

A look to Table 5.9 suggests that for RSS the increment of f and a disminish in
K have a significant influence in obtaining small values of p(RSS). It seems that
the levels of f and K have not a significant influence in p(RSS). A similar comment
may be made on the behavior of ERSS. This procedure is considerably more
inaccurate than RSS. p(MRSS) is always smaller than p(ERSS) for f= 0.1 it
performs better than RSS for K = 2.

The results given in Table 5.10 suggest that for RSS the increment of
K determines larger value of p(RSS). It seems that the levels of f have not a
significant influence in p(RSS). ERSS has a worse behavior compared with the
other procedures. Its accuracy is seriously affected by the increments in K and
f- MRSS has a better behavior than RSS which is not seriously affected by changes
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Table 5.9 Values of p(R) for the variable Y = Coefficient of infestation in sugar cane fields
Subsample .RSS ERSS .MRSS

Parameter .f= 0.1 f=0.05f=0.01 .f=0.1f=0.05f=0.01 f=0.1f=0.05f=0.01
K=2 0.431 0.477 0.52 0.988 0962 0943 0420 0421 0.441
K=5 0.513 0.503 0.56 0986 0923 0.872 0427 0573 0.594
K=10 0.560 0.534 0.56 0.967 0918 0977 0488 0.559 0.592

Table 5.10 Values of p(R) for the variable Y = Hemoglobin in blood in adolescents
Subsample .RSS ERSS .MRSS

Parameter .f= 0.1 f=0.05f=0.01 .f=0.1f=0.05f=0.01 f=0.1f=0.05f=0.01
K=2 0.274 0222 0288 0.667 0.622 0.629 0.214 0.212 0.256
K=5 0.372 0289 0.338 0804 0.724 0.727 0.213 0.237 0214
K=10 0420 0313 0311 0942 0.842 0.852 0.203 0.219 0.263

in any of the parameters. Again the possible normality of the involved variable
should be having a determinant influence in the behavior of the accuracy of MRSS.

5.3.3 Estimation of the Difference of Means: Analysis
of a Monte Carlo Experiment

We will analyze the accuracy of the proposals using the same data as in 5.2: the
effect of AcM murino of isotope 1gG2a. in diminishing the area affected by pso-
riasis by means of PASI (Psoriasis Severity Index) is).

Experiment 1:

The set of measurements of PASI constituted an artificial population. It was
partitioned using the non-responses at the second (U,) and third visit. (Us). We
selected a sample from s and the subsamples were determined by classifying a
selected patient in U, if he/she assisted to the evaluation in occasions 1, 2 and 3, in
U, if failed the second visit and in Uj if failed the third one. The last evaluation
was made for all the patients.

100 samples were generated and with sample fractions of 0.10, 0.20 and 0.50
using SRSWR and RSS. D was computed and estimated using d,, and d,. The

relative accuracy:
100

Gy, =Y D p=grs, rss was used for measuring the behavior of the

=1
alternative estimators.
The results appear in Table 5.11 for K; = K = 2, j = 2, 3. They sustatin that
RSS provided more accurate estimations than srs were expected. These results
give an idea of how large the gains are. They are increased with the increase in the
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Table 5.1.1 Relative mean Sample fraction 100G 100G,
accuracy in percent
0.10 13.12 4.45
0.20 9.03 2.24
0.50 8.17 1.95

sample fractions. A similar result is expected for other sets of values of the sub-
sampling fractions.

Experiment 2:

We used the data base sets of 200 the PASI of 200 patients, it is normal variable,
and the percent of infestation of a pest in 1500 measurements made in sugar cane
fields, which is has a skewed distribution. They provided the set of values of the
interest variable Y in the population: Y,...Yx. Some of the Y;’s are identified as
non-respondents. They correspond to units for which the first measurement was
inaccurate or and a second visit was made for obtaining a correct evaluation.
Hence, once a sample s was selected we were able to identify s; and s, In our
notation each RSS procedure is identified with R = RSS, ERSS, MRSS.
The Monte Carlo experiment worked as follows:

Step 1: We select s then the sample mean of Y in s; is calculated and n', is
determined.

Step 2: We select n’, sub-samples from s, and they are ranked.

Step 3: Calculate the srswr estimator in each sample.

Step 4: Calculate the estimator in each RSS alternative (Table 5.12).

p(R)=>" ‘ﬂ(R) - u‘m/Mu

m=1

for the RSS estimator and for srswr

p(R) =S ST u(R) - /M (m, 2)u

1=

where n'(m,2) is the number size of s, in the generated sample m.

Analyzing Table 5.13 we may consider that the use of RSS for sub-sampling
the non-respondents, in the study of sugar cane infestation, provided the best
coverage of p. It is acceptable in any case. For f = (.10 the obtained percentages
of coverage are close to the nominal o = 0.05 for any value of the sub-sampling
rule parameter K. For the rest of the values of f it is not so close except when
K = 2. The use of eRSS provided what may be considered as an acceptable
coverage only for f = 0.1 and K = 2. The results for MRSS are not satisfactory in
any case. With the increment in B the situation is very similar. Then it seems that
B does not sensibly affect the behavior of the proposed estimators.
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Table 5.13 Percent of coverage of the confidence intervals: 100m(R) for the variable
Y = Coefficient of infestation in sugar cane fields

B/n=0.1

Subsample .RSS ERSS .MRSS

Parameter .f=0.1f=0.05f=0.01 f=0.1f=0.05f=0.01 .f=0.1f=0.05f=0.01
K=2 96.81 93.19 9245 8944 83.67 8432 8147 7954 77.60
K=5 94.19 8948 91.03 8438 81.69 81.89 81.23 7849  73.48
K=10 94.14  89.56 91.02 84.68 80.77 8127 8138 77770 71.89

B/n=>=0.2
K=2 96.88 9327 9283 89.33 8338 8520 8222 80.07 77.83
K= 9443 8933 91.19 84.02 81.39 8143 8L.71 7879 73.21
K=10 9431 89.24 90.37 84.14 8031 81.73 8153 7789 71.66
B/n=0.5

K=2 96.83 9332 9211 89.09 8342 8438 81.69 79.89 7748
K=5 94.17 8929 91.14 8403 81.88 81.86 81.22 7749 73.69
K=10 94.11 8921 91.02 8408 8089 8139 81.89 7732 71.23

Table 5.14 presents the percentage of coverage of i by the Bootstrap CI’s
computed using samples from the data providing from Hemoglobin’s analysis.
Again the use of RSS is the best option but MRSS has a good behavior for f = 0.1
and f = 0.05 as well as when B/n = 0.5. The increase in this parameter is gen-
erally associated with better values of 7(MRSS). These results may be generated
by the fact that the percent in hemoglobin is well described by a normal distri-
bution. The behavior of ERSS again is poor.

A look to Table 5.15 suggests that for RSS the increment of f and a diminishing
in K have a significant influence in obtaining small values of p(RSS). It seems that
the levels of fand K have not a significant influence in p(RSS). A similar comment
may be made on the behavior of ERSS. This procedure is considerably more

Table 5.14 Percent of coverage of the confidence intervals: 100m(R) for the variable

Y = Hemoglobin in blood in adolescents

B/n=0.1

Subsample .RSS ERSS .MRSS

Parameter .f=0.1f=0.05f=0.01 f=0.1f=0.05f=0.01 .f=0.1f=0.05f=0.01

K=2 95.53 93.23 90.04 89.38 83.74 8433 94314 92.02 89.37

K=5 94.66 9140 93.60 8442 81.73 81.82 93.6 91.04 87.4l1

K=10 9432 91.12 9036 84.70 80.79 81.34 9290 94.48  85.00
0 B/n=>=0.2

K=2 93.40 92.88 92.89  89.31 8342 8524 9753 95.11 92.03

K=5 9241 90.03 90.64 84.04 81.38 8140 91.13 93.73  91.71

K=10 9221 9434 93.01 84.12 80.32 81.74 92.28 91.40 88.37

B/n=>=0.5

K=2 9537 90.02 90.58 89.07 83.39 8440 94.78 92.72 929

K=5 9528 9438 93.12 84.02 81.84 81.88 94.33 89.63 91.61

K=10 9470  94.04 90.30 84.11 80.92  81.39 9584 9045 91.69
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Table 5.15 Values of p(R) for the variable ¥ = Coefficient of infestation in sugar cane fields
Subsample .RSS ERSS .MRSS

Parameter .f= 0.1 f=0.05f=0.01 .f=0.1f=0.05f=0.01 f=0.1f=0.05f=0.01
K=2 0426 0480 0519 0993 0962 0944 0.421 0418 0439
K=5 0.509 0.503 0558 0991 0919 0866 0433 0.569 0.586
K=10 0.563 0.528 0.562 0968 0920 0979 0489 0.562 0.577

Table 5.16 Values of p(R) for the variable Y = Hemoglobin in blood in adolescents
Subsample .RSS ERSS .MRSS

Parameter .f= 0.1 f=0.05f=0.01 f=0.1f=0.05f=0.01 f=0.1f=0.05f=0.01
K=2 0.272 0223 0293 0.673 0.623 0.633 0.214 0.208 0.264
K=5 0.374 0286 0344 0802 0.719 0.734 0.212 0.237 0.214
K=10 0417 0306 0307 0938 0.840 0.849 0.204 0.218 0.255

inaccurate than RSS. p(mRSS) is always smaller than p(eRSS) for f= 0.1 it
performs better than RSS for K = 2.

The results given in Table 5.16 suggest that for RSS the increment of
K determines larger value of p(RSS). It seems that the levels of f have not a
significant influence in p(RSS). ERSS has a worse behavior compared with the
other procedures. Its accuracy is seriously affected by the increments in K and f.
MRSS has a better behavior than RSS which is not seriously affected by changes in
any of the parameters. Again the possible normality of the involved variable
should be having a determinant influence in the behavior of the accuracy of mRSS.

5.4 Numerical Studies of Imputation Methods
5.4.1 Some General Remarks

Chapter 4 was devoted to the study of some imputation procedures and RSS. They
used some additional information for avoiding to sub sample among the non
respondents. The methods are important by themselves as RSS provides additional
information through the ranking. Some key references are Liu et al. (2006), Little
and Rubin (1987), Singh and Deo (2003). The kernel of imputations is whether
non responses are generated by a random mechanism or not. The generated MSE's
error formulas are rather complicated for explaining the increase in the precision
due to the use of RSS.

It makes sense to evaluate the methods by comparing the imputed estimate with
the true parameter. Therefore the experiments presented below deal generally with
evaluating the relative MD.
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5.4.2 The Median Estimator

The error of the missing observation estimator is

e(Wxy(rss)) A l/z[lvl?n/z)’”Q(l) + ,u(an/z)rQ(l)] + S%n/z) + 5(21+n/2)]/2”P(1)

We develop a numerical comparison using this measure.

We will consider the efficiency of the proposals with respect to the corre-
sponding full response models. 1,000 samples of size 100 and a 10 % of non-
responses were generated with median friendly distributions. Defining e(1, i) and
e(i) as the estimator using the imputation and the full response one. The efficiency
measure used was

e((1, 1)) = _le(L,i) = nyly/ > le(Li) — pyl,

The same distribution was used for describing the behaviour of X and Y.

The results are given in Table 5.17. Note that the imputation works very well
for the normal and the Laplace distributions. For the uniform it doubles the error.
The ratio-product estimator.

To study the properties of imputation based estimator, are often considered
through the consideration of a super population model, the sampling mechanism
generating the sample, the variable response mechanism and the imputation
mechanism. The properties of the variance estimators rely, among others, on the
assumption.

C.1: the complete-sample point estimator 0%, satisfies E(0x,) = 0+ O(n~'):

. . . — y y _ ny;+n2ys,
It is not accomplished neither by yio = "% por by yg = "2

Chap. 4.

Hence to develop an estimator of the variances of the proposed estimators must
cope with this disadvantage. The posed statistical problem is to obtain an interval
1(0) of minimum volume for a fixed probability 7. Usually the methods are sup-
ported by a particular Central Limit Theorem that must establish that when
m — 0

Prob (0) € {I*(0) = (0(F) — 21-420m(0},), (0(F) + 21-2/20m(0(F))} >

S€e

O(F,,) is the estimator (predictor) of the parameter, z;_,, is the percentile of the
Standard Normal and a,,(0(F,,)) is the standard deviation estimator of a(0(F)). The
robustness of 6(F,,) and o,,(0(F,,)) play a key role in the validity that 7 be close to
the coverage probability.

The Bootstrap, introduced by Efron (1979), is a powerful tool for nonparametric
estimation of sampling distributions and standard errors. It may be described as
follows. Let Z = (Z;,Z,; : : :;Z,,) be a random sample from an unknown distri-
bution F, and let 7,, = T,,(Z; F) be a statistic of interest. Let F,, be the empirical
distribution function of the random sample. An independent random sample from
F,., Z, is called a Bootstrap sample. We can use the Bootstrap method for


http://dx.doi.org/10.1007/978-3-642-39899-5_4
http://dx.doi.org/10.1007/978-3-642-39899-5_4

5.4 Numerical Studies of Imputation Methods 107

Table 5.17 Efficiency of the developed imputation estimators versus the corresponding full
response

Uniform (0.1) Normal (0.1) Laplace(0.1)

n r mimp rimp mimp rimp mimp rimp
2 2 2.29 2.35 1.73 1.62 2.35 1.41
3 2 2.28 2.34 1.72 1.67 2.35 1.97
4 2 2.42 2.34 1.73 1.59 1.73 1.66
5 2 2.23 2.35 1.71 1.62 1.70 1.51
2 3 2.22 2.32 1.90 1.90 1.63 1.43
3 3 2.03 2.29 2.23 2.73 1.69 1.58
4 3 2.28 2.35 1.71 1.62 1.66 1.58
5 3 2.22 2.36 1.72 1.72 1.98 1.63
2 4 2.32 2.37 1.65 1.25 1.73 1.65
3 4 2.24 2.35 1.72 1.62 1.66 1.71
4 4 2.56 2.42 1.77 1.17 1.46 1.45
5 4 2.29 243 1.88 1.68 1.99 1.51
2 5 2.80 2.35 1.72 1.62 1.66 1.61
3 5 2.37 2.36 1.72 1.72 1.68 1.71
4 5 2.44 2.37 1.70 1.20 1.85 1.71
5 5 2.39 2.35 1.72 1.62 1.66 1.65

estimating the distribution of T, through the conditional distribution of T,,) = T,,
(Z; F,,), given Z;;Z5; : : :;Z,,. The method works by drawing B Bootstrap samples
selected by using simple random samples of size m, selected with replacement
from the original sample.

The  Bootstrap  distribution  is  denoted by  F¥g,, and
T%,, = T(Fpum*) = T(Z*,,..,Z%,) estimates T(F,,). Due to the definitions, the
conditional ~independence is supported and Prob(Zx = Z|F,,) = 1/m,
Vi=1,....m,i=1,..., m. Each sample s(b)eS(BS), S(BS) the space of the
Boostrap samples, is drawn with a probability //m™, hence

E(T« (Fiam)[Fa) = m™ 3 T(Zs1.,Zon)y=m™" > Tam
s(b)eS(BS) s(b)eS(BS)
Its  conditional error is  E(T  (Fxy) — Tp|Fu)*= m™ 2 s(b)es(BS)

(TB(,,,) — Tm)2. It converges to o3 if n — co. In practice we select B random
samples independently from S(BS) and T, is calculated for s(b), b = I,...,B. The
Boostrap estimator of the variance is

B
* -1 2

VB(m) = (MB> Z(TB(m) - Tm) = Ué(m)

b=1

It is expected, if the functional is smooth, that the limit of aé(m) is the true

variance of the estimator (predictor). A Central Limit Theorem supports that
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Prob (0) € {I = (0)
= (O(Fm) - Zl—x/Zo-B(m)(O*m)a (O(Fm) + Zl—oc/ZUB(m)(O(Fm))} >7

Note that the accuracy of 0%*,, may be measured using its distribution function
by estimating the confidence limits based on

L(Z],..‘, Zm) = L,, = Sup {tqu(Z) Zt}v U(le'-; Zm) =Uy
= Inf {1| Fy(z) <t}

The interval (L,, U,) has random bounds and the coverage probability of 0, 7 is
such that

Probg{T(F) = 0 € (L,y, Uy,) } > =, for any 0.

Usually n = 1-a is fixed as a value close to 1.

An alternative confidence interval, see Parr (1983) and Babu and Singh (1983)
for example, is obtained by defining the parameter as the functional §(F), Fe T, and
to denote the confidence interval from the relationship Probp{0(F) €
(L, Un) =1(0)|F € Y} >n. The Bootstrap distribution allows to calculate
directly the quantiles F x,, (t) = B~'®5_ I((Tp(y — T))m /2 <t),t € R.

They converge, under weak regularity conditions, see Jureckova-Sen (1996),
)~ 02 and the quantiles of Fx,, to those of the true distribution function of

2
Op (m

the data G, whenever, for m — oo
Pe{(T(F,) — T(F)m™'* <t} — G(1)

The first intervals will be called normalized Bootstrap (parametric) and the
second ones Bootstrap quantiles (non parametric) confidence intervals.

We evaluate the behavior of the estimators proposed by computing the percent
of samples in which the mean is included in the confidence intervals

I(:“’Y)q = (ﬁYU(q) — Eypu(q)» ﬁva(q) + 'Sva(q))

where ¢ identifies the criteria used for constructed confidence interval as follows

q = 1 if the normal approximation is accepted

q = 2 if the Parametric Boostrap is used

q = 3 if the Non-parametric Bootstrap is used

v = separate product estimator, combined product estimator, separate imputa-
tion predictor, combined imputation predictor.

Eypu(q) 18 the semi-amplitude of the interval calculated using the corresponding
method g for the estimator v with o = 0.05.

Experiment 1
We compared the different proposals developed in this paper using a data base

provided from an experiment where the results for obtaining a recombinant protein
production using fermentation in 786 samples. They are considered as a population
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and we identified the total protein in the liquid as the auxiliary variable X. The
measured content of a protein is considered as Y. The non responses were con-
sidered for the samples which were re-evaluated due to technical problems. The
results of interest for the estimation are given in the following table.

1,000 samples of size 80 were selected independently and the behavior of the
estimations are in Table 5.18. The results establishes that to sub sample is better
than to impute being the use of the Non Parametric Bootstrap the best alternative.
The separate estimator is more reliable. The use of imputation using the separate
criteria has a considerable better behavior. We compare the behavior of

_omy;+ ”272,, _mYy; +my, N n2(y/2p -,)

y =
ps n n n ’

_(my +myh) x
Ype = n ;
X

Experiment 2

The other set of experiments consisted in the generation of 1,000 variables
distributed according with the distributions normal, lognormal and exponential.
Rueda et al. (2004) developed a similar experience for evaluating the behavior of
some estimators of the mean when some observations were missing. We use the
same parameters for generating variables distributed Normal and a lognormal
variables with mean 4.9 and standard deviation 0.586. For the exponential the
parameter was A = 4.9. Once a variable was generated a Bernoulli experiment
with parameter W, = 0.372 was performed. If the generated variable took the
value one it was considered as a NR. The Monte Carlo procedure was used for
evaluating the behavior of the estimators (Tables 5.19, 5.20).

5.4.3 Imputation in LRSS

In this section we analyze a simulation study for establishing the behavior of the
imputation procedures proposed in Chap. 4. The experiments used six probability
distribution functions. They are used usually in the evaluation of RSS strategies.
10,000 samples were generated and the accuracy of the estimates computed cal-
culating the errors

Table 5.18 Evaluation of

Strata w; Mean of the Variance of the
the proposals auxiliary variable auxiliary variable
1 0.682 66.39 58.9

2 0.372 131.83 16.2
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Table 5.19 Percent of inclusion of the mean in 1,000 samples generated from a population of
measurements of total and recombinant protein in fermentation experiments

Estimator g=1 gq=2,B=20 q=3B=20
Normal approximation Parametric bootstrap Non-parametric bootstrap
Vps 0.80 0.85 0.91
e 0.60 0.70 0.75
Vis 0.41 0.59 0.74
Yic 0.75 0.79 0.74

Table 5.20 Percent of inclusion of the mean in 1,000 samples generated from continuous
variables

N(4.9 0.586) g=1 qg=72.B=100 qg=3.B=100
Normal approximation  Parametric boostrap ~ Non-parametric bootstrap
Vps 0.833 0.893 0.934
e 0.714 0.807 0.867
Vis 0.444 0.516 0.583
Yic 0.489 0.57 0.678
logN(4.9 0.586) q =1 qg=2.B=20 g=3B=20
Normal approximation  Parametric boostrap ~ Non-parametric bootstrap
Vps 0.807 0.878 0.942
Yoc 0.817 0.854 0.889
Vis 0.724 0.773 0.805
Yic 0.663 0.704 0.789
Exp(4.9) g=1 q=2.B=20 qg=3B=20
Normal approximation  Parametric boostrap ~ Non-parametric bootstrap
Vps 0.740 0.788 0.923
e 0.627 0.711 0.887
Vis 0.533 0.655 0.714
Yic 0.454 0.559 0.674

1 10,000 ,
Ale) = mzs:1 |t — ll|s(e>/#7@ = LRSS, LRSS(M), R(LRSS), LRSS(R)

The overall sample size was n = mr = 100. A 10 % of non responses were
generated at random.

Results of simulation, in terms of the accuracy, are summarized for m = 4 in
Table 5.21. The differences between LRSS and the proposed estimator R(LRSS)
are generally negligible, particularly for symmetric distributions. The use of the
mean imputation, LRSS(M), seems to have a worse behavior, with respect to
LRSS than LRSS(R) for R(LRSS).

A similar analysis is performed for m = 5 in Table 5.21. The differences
between the full response estimators and the imputed are larger but the symmetry
of the distributions seems to be important for establishing the existence of an
adequate behavior of the imputation procedures (Tables 5.22, 5.23).
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Table 5.21 Values of A(e) for m = 4
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Distribution m=4

LRSS LRSS(M) R(LRSS) LRSS(R)
Uniform (0.1) 1.95 2.46 1.97 2.07
Normal (0.1) 1.34 3.46 1.37 2.19
Logistic (—1.1) 0.92 4.67 0.97 2.38
Exponential (1) 1.71 3.38 1.72 2.07
Exponential (2) 1.18 4.55 1.24 2.01
Gamma (1.2) 2.34 5.37 1.89 1.97
Ganma (2.1) 1.84 5.56 1.86 1.98
Weibull (1.3) 1.37 4.89 1.17 2.96
Weibull (3.1) 3.65 5.02 2.06 3.99
Table 5.22 Values of A(e) form =5
Distribution m=>5

LRSS LRSS(M) R(LRSS) LRSS(R)
Uniform (0.1) 222 4.22 2.11 4.24
Normal (0.1) 2.34 3.97 2.28 4.01
Logistic (—1.1) 1.99 4.03 1.92 3.98
Exponential (1) 2.37 4.78 3.89 4.81
Exponential (2) 3.02 5.79 3.90 5.77
Gamma (1.2) 3.83 6.91 4.39 5.94
Gamma (2.1) 4.23 8.82 3.92 9.02
Weibull (1.3) 3.98 7.90 4.01 7.86
Weibull (3.1) 3.02 5.77 3.90 5.71
Table 5.23 Accuracy of the estimators for m =4, 5, 6, 7, 10, 11
Method

m=>5 m==6 m=717 m=10 m=11

LRSS 2.213 2.995 3.158 3.228 4.004
LRSS(M) 2.889 3.895 3.970 3.905 4.180
R(LRSS) 2.551 3.001 3.322 3.452 3.974
LRSS(R) 2.676 3.152 3.405 3.615 3912

The performance of the considered imputation methods is measured using the
increment in the measurements of CO, in 250 monitoring stations. The ranking
was made using the mean of the emission in the previous month in each of them.
The mean u = 1.056 % and the variance 6> = 89.33. The skewness was of 1.794.
Hence its distribution can not be considered symmetric. The simulation was made
using different values of m for r = 5 and a 10 % of non responses were generated
in each of the 10,000 simulated samples.
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