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Preface

Usage is the best language teacher.

Quintilianus

The use of random sampling sustains the development of current statistical theory.
In many cases it is necessary to have some control of the units to be selected. The
solution in classic sampling is to use stratification, clustering, unequal probabilities
of selection, etc. Ranked Set Sampling (RSS) is a new method of selection of
samples. RSS allows controlling the selection procedure, as the sample will
contain units in which the values of the variables of interest are spread throughout
the interval of possible values. The sample consists of units with different ranks.
Ranks are assigned using some auxiliary information; the judgment of experts is a
particular case.

RSS is a kind of stratification. Hence, using this design instead of simple
random sampling with replacement means that a gain in accuracy is straightfor-
wardly achieved. It is sustained by the fact that each strata consists of population
units with the same rank. The statistical properties of order statistics allow deriving
the properties of RSS-based estimators. One of the main consequences of the study
of RSS methods is determining formulas for evaluating the gains in accuracy as
well as relative precision measures.

From the proposal of McIntyre (1952) to the book of Chen et al. (2004), the
study of particular RSS strategies has produced a large number of papers and a
body of models has formed an alternative theory of sampling. The number of
theoretical papers and applications of RSS is growing. One of the usual problems
in sampling applications is the presence of non-sampling errors. The effects of
ranking errors have been studied. This work deals with the problems derived by no
responses. RSS models after subsampling the non-respondents and imputation
procedures are studied.

The aim of this book is quite modest; it attempts to be a systematic exposition
of all that is contained in the literature on RSS in the area of missing observations.
In writing this book, I tried to produce a text that is as simple as possible. My aim
is to spread awareness of the potentialities of RSS. I am hopeful that this oeuvre
will trigger additional theoretical research, as well as provide tools for practical
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applications, when non-sampling errors are present and an RSS model is used.
Hence my torch was Quintilianus maxima: consuetudo certissima est loquendi
magistra.

I am deeply indebted to my family for their invaluable and kind support. I give
my hearty thanks to the staff of SpringerBriefs, Evelyn Best, Eva Hiripi, and
Veronika Rosteck, for their responsiveness through the entire Editorial Process,
and, last but not least, to the specialists whose comments and suggestions allowed
improving the initial version of this book.

La Habana, Cuba, October 29, 2012 Carlos N. Bouza-Herrera
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Chapter 1
Missing Observations and Data Quality
Improvement

Abstract Missing data is a well-recognized problem which arises in statistical
inferences and data analysis. We address different possible ways to handle missing
data, to ameliorate its effect on the reliability and accuracy of survey-based
inferences. Subsampling the non-respondents and imputation of missing values,
are considered as methods for dealing with non-responses. This book presents the
work developed on Ranked Set Sampling (RSS) in dealing with missing data. RSS
is a relatively new sampling design. This chapter may be considered as an intro-
duction to the rest of the oeuvre.

Keywords Non respondent � Imputation � Randomized responses � Simple ran-
dom sampling � Ranked set sampling

What the caterpillar calls the end of the world, the rest of the
world calls a butterfly.

Lao Tse

1.1 Missing Observations and Data Quality

Consider a finite population U of size N from which a simple random sample s, of
size n, is drawn with replacement. Full response surveys are rare situations. In
sample surveys it is common that some units are missing at the first measurement
attempt. Let the characteristic under study determine a variable Y. For each
i 2 U we can determine the value of Yi. When some units do not provide infor-
mation we have that the sample is divided into two subsets.

sr ¼ i 2 U the response Yi is obtainedjf g; srn

¼ i 2 U the response Yi is not obtainedjf g

An estimate obtained from sr only is biased and may be misleading.

C. N. Bouza-Herrera, Handling Missing Data in Ranked Set Sampling,
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-39899-5_1,
� The Author(s) 2013
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Sampling survey practice compromises fixing a series of considerations. Before
a survey can be developed many factors must be taken into account. Concepts,
definitions, methods of collecting and processing data must be determined
beforehand. They determine a working system, which is shaped by the aims of the
survey and some key decisions, determined by the statisticians, are involved in the
design of the inquiry.

It is common that data are not collected for all the units in the sample. Data can
be missing for a part of the population and different problems arise when con-
clusions are to be taken using statistical methods. For different reasons the units
may be unavailable, when they are going to be measured, or refuse giving
information. Missing data is the common name for all cases in which the value of
the variable of interest is not obtained.

The existence of missing values is one of the most pervasive problems in data
analysis because they are present in many research activities. The seriousness of
the problem depends on the pattern of the missing data, the distribution of miss-
ingness, how much is missing, and why it is missing. Missing data are widespread
in social science surveying, as the interviewees are unable or unwilling to answer
some questions. But it is a recurrent issue not only in sampling human populations.
It is also a common problem in psychological, medical research and, recently,
informatics is also dealing with it. The decision about how to handle missing data
is very important as it affects the reliability and accuracy of the inferences about
the population of interest. Missing data rates are a measure of the level of unit
response. Frequently, surveyors use them as an indirect indicator of the quality of
the data.

Missing data in survey research are present because:

1. An element in the target population U is not included on the survey’s sampling
frame (non-coverage);

2. A sampled element does not participate in the survey (total nonresponse);
3. A unit in the sample fails to provide acceptable responses (item or unit

nonresponse).

Weighting adjustments are often used to compensate for non-coverage and total
nonresponse (NR). Subsampling among the nonrespondents or imputation
methods are used for dealing with unit nonresponse. A variety of methods have
been developed trying to compensate for missing data. The magnitude of nonre-
sponse (NR) bias may be partially assessed, Särndal and Lundstrom (2005) for a
detailed discussion on this issue. Data quality often needs to subsample nonre-
spondents for following-up.

The existence of nonresponse in surveys induces a non-observational error
reflecting an unsuccessful attempt to obtain the desired (needed) information from
a selected unit. Unit nonresponse is a failure to obtain any data from a sample unit.
Item nonresponse is defined when we deal with the measurement of k variables and
some of them are not measured. Usually the values of Y in the nonrespondents are
in general not similar to the values of it in the respondents. Hence, ignoring them is
not a good decision. Many studies have attempted to determine if there is a
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difference between respondents and nonrespondents. Some researchers have
reported that people who respond to surveys answer questions differently than
those who do not. Others have found that late responders answer differently than
early responders, and that the differences may be due to the different levels of
interest in the subject matter or to avoid being identified as belonging to a stig-
matized group.

Generally surveyors decide to subsample the nonrespondents when the response
rate is lower than expected and to interview them all is too costly. Another reason
is that nonresponse constitutes an important potential source of bias. Subsampling
the nonrespondents allows also studying the reasons for avoiding responding.
Commonly a representative subsample of nonrespondents is taken (those units
generating missing data) and it is used for inferring about them. The work of
Hansen and Hurwitz (1946), pioneering the treatment of nonresponse, suggested a
double sampling scheme for estimating population mean. Different authors have
discussed approaches for subsampling the nonrespondents; see Srinath (1971) and
Bouza (1981).

There is an extensive literature concerning missing data, much of which has
focused on missing outcomes. The best way to deal with nonresponses (NR) is to
prevent its happening. It determines that the surveyor must spend the needed time
in designing surveys and building previsions, for dealing with nonresponse. To
design experiments to reduce nonresponse is advisable. When NR are present it is
advisable to use existent information to predict the missing data. Then a model is
to be used to predict values for the nonresponse and imputation can be used for
adjusting for item nonresponse.

Imputation means to substitute missing data with plausible values. Some
practitioners consider that it solves the missing-data problem. But it must use some
model. A naïve method, subjective evaluations or unsound modeling imputation
methods may generate serious additional problems. The processes of imputation
and analysis should be guided by common sense. If not, we will be dealing with
bad estimates, false standard errors, and unreliable hypothesis tests. See Little and
Rubin (2002) for a documented discussion. In some cases, good estimates can be
obtained by substituting the missing observation by some supposedly close value
of Y or by using some weighting estimation procedures. The usual approach in
survey sampling is based in imposing a probability model on the complete data
(observed and missing values). Surveyors are aware that real data are seldom
described by convenient models. The theory of imputation for missing data
requires that imputations be made conditional on the sampling design. It is
advisable that an imputation model should produce imputation values, which are at
least approximately compatible with the analyses to be performed on the imputed
datasets. For example it must preserve the associations or relationships among
items. For modeling we should consider that exists the Bernoulli variable.

Ri ¼
1 if unit i responds
0 otherwise

�
; i ¼ 1; . . .; N
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Then, at least, an additional source of randomness is present in imputation
procedures. Another approach is to consider the set of simulation methods that
have appeared in the statistical literature for imputing. These methods, known as
Markov Chain Monte Carlo (MCMC), are being increasingly considered but rely
on a knowledge of the phenomena under study, which is uncommon in survey
sampling applications.

1.2 Ranked Set Sample in the Presence of Missing Data

Chapter 2 is intended to provide the reader with an introduction to Ranked Set
Sampling (RSS). It was introduced by McIntyre (1952) to estimate the pasture
yields. Recently attention is being paid to the basic theory of RSS. The literature in
the subject presents new techniques and approaches. RSS is a method of collecting
data that improves estimation by utilizing the sampler’s judgment or auxiliary
information about the relative sizes of the sampling units. The procedure involves
randomly drawing independently m sets of m units each from the population.
Hence, the selection of the units evaluated takes into account the order of them in
the combined m samples. The units in each set are cheaply ranked. From the first
set of m units, the unit ranked lowest is measured; from the second set of m units,
the unit ranked second lowest is measured and the process is continued until from
the m- th set of m units the m -th ranked unit is measured. A sample of size n is
obtained by repeating the procedure r (r C 1) times independently for obtaining
n = mr. RSS is an alternative to simple random sampling which has been shown
to outperform simple random sampling (SRS) in many situations. RSS outper-
forms SRSWR in terms of efficiency, as it has a smaller variance in estimating, and
increases the power in testing hypothesis, especially for nonparametric ones. As a
result it provides the same accuracy using smaller sample sizes than the SRS
alternatives. Auxiliary variables are commonly used in survey sampling. They may
be derived from various sources as registers, administrative sources subjective
evaluation of the interest variable etc. In RSS the sampled units are ranked using
some non-costly auxiliary variable. The auxiliary variable X must be related with
Y. We may also rank using judgments. We will deal with the estimation of the
population mean.

The literature addressing how to deal with missing data can be divided by the
need of obtaining information from the nonresponses and to diminish the amount
of missing data.

In Chap. 3 we will consider subsampling among the nonrespondents for dealing
with missing data. The usual theory is presented in text books for simple random
sampling, see (Cochran 1997), Hedayat and Sinha (1992). The use of ranked set
sample is considered and models are discussed. Two problems are posed and
studied at large:
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1. Dealing with nonresponses in RSS.
2. Using RSS for subsampling among the nonrespondents using the information at

hand in the population or provided in the first attempt for measuring Y.

The existence of nonresponse motivates to select a subsample among the
nonrespondents or imputing the values of the interest variables on the nonre-
spondents. The use of imputation techniques for dealing with missing information
is a theme of actuality. See for example Bouza and Al-Omari (Bouza and
Al-Omari 2011a, b), Chang and Huang (2001), Fitzenberger et al. (2005), Rueda
and González (2004), Young-Jae (2005), Singh and Deo (2003), Singh and Horn
(2000), Toutenburg et al. (2008) and Zou and Feng (1998).

Chapter 4 is concerned with the use of imputation in RSS. The missing values
can be identified with no-responses on a certain order statistic. Hence we have
some missing observations but in general there are replicas of them if the RSS
procedure is repeated r times (cycles) to have n = rm observations, for example.
Different imputation procedures used in survey sampling are visited and developed
for RSS. To study the properties of imputation-based estimators, are often con-
sidered through the consideration of a superpopulation model, the sampling
mechanism generating the sample, the variable response mechanism and the
imputation mechanism. In survey sampling practice it is advisable to use simple
relations between the variable of interest Y and the auxiliary one X. In RSS as we
may use X for ranking which seems to increase the accuracy. Some ratio relations
are the simpler models. A study of the existent models is developed at large. Other
models are also developed and discussed.

Chapter 5 is devoted to analyzing different numerical experiments planned for
evaluating the efficiency of RSS-based estimators. They permit comparing
SRSWR and the RSS alternatives. Some experiments are simulations using certain
friendly probability distribution functions. The rest use real-life data and artificial
populations are constituted. Monte Carlo experiments evaluate the behavior of the
efficiency of the estimators.
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Chapter 2
Sampling Using Ranked Sets: Basic
Concepts

Abstract Simple random sampling is the kernel of sampling theory. The basic
theory of statistical inference is supported by the assumption of using samples
selected by means of this design. During the last decade Ranked Set Sampling has
appeared as a challenge to this design. It is implemented by selecting units with
replacement and the sampled units are ordered (ranked). Each order statistic is
observed once. This process can be repeated if needed to observe various real-
izations of each order statistic. A review of the most significant results is devel-
oped in this chapter, taking into account the modeling of missing data.

Keywords Estimation � Ranking � Order statistics � Unbiasedness � Accuracy �
Precision

God grant me the serenity to accept the things I cannot change;
courage to change the things I can; and wisdom to know the
difference.
From the Serenity Prayer (Copyright � The AA Grapevine,
Inc. (January, 1950). Reprinted with permission. Permission to
reprint The AA Grapevine, Inc., copyrighted material in this
publication does not in any way imply affiliation with or
endorsement by either Alcoholics Anonymous or The AA
Grapevine, Inc.).

2.1 Introduction

Ranked set sampling (RSS) was first proposed by McIntyre (1952). He used this
model for estimating the mean of pasture yields. This design appeared as a useful
technique for improving the accuracy of the estimation of means. This fact was
affirmed by McIntyre but a mathematical proof of it was settled by Takahashi-
Wakimoto (1968). An interesting paper is Yanagawa (2000) where and account of

C. N. Bouza-Herrera, Handling Missing Data in Ranked Set Sampling,
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-39899-5_2,
� The Author(s) 2013
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Wakinoto‘s contributions is made. In many situations the statistician deals with the
need of combining some control and/or implementing some flexibility in the use of
a random-based sample. This is a common problem in the study of environmental
and medical studies, for example. In these cases the researcher generally has
abundant and accurate information on the population units. It is related with the
variable of interest Y and to rank the units using this information is cheap. The RSS
procedure is based on the selection of m independent samples, not necessarily of the
same size, by using simple random sampling (SRS) with replacement (SRSWR).
The sampled units are ranked and the selection of the units evaluated takes into
account the order of them in the combined m samples. The proposal of McIntyre
(1952) was to use a prediction of Y. After some experiences with its application the
lack of a coherent statistical theory appeared as an interesting theme of study by
theoretical statisticians. An important role was played by Hall-Dell (1966) who
established that RSS was more efficient than SRSWR for estimating the population
mean derived from a large study of sampling forage yields. The interest for RSS in
applications is reflected not only in initial papers but in the orientation of a series of
papers to practice. See for example Chen (1999), Demir-Singh (2000), Kaur et.al.
(1997), Hall-Dell (1966) for examples. The interest in the development of a new
statistical theory using RSS can be illustrated by the contributions of Adatia (2000),
Abu-Dayyeh and Muttlak (1996), Al-Saleh and Al-Khadari (2000), Barabasi-El-
Shamawi (2001), Bouza (2002b), Chen (2001a, b), Yu-Lam (1997). A huge amount
of papers are dedicated to the study of RSS as an alternative to the use of SRSWR,
see for example Bai-Chen (2003), Muttlak-McDonald. (1992), and Chen-Bai
(2001a). Different papers present a discussion of the State of the Art in RSS. We
have the superb book on the theme Chen-Bai-Sinha (2004). It presents statistical
inferences based on RSS and several experiments. Different recent oeuvres deal
with discussions on certain aspects of the development of RSS, see for example
Ahmad et al. (2010), where several authors present interesting issues on the theme
from their perspective and experience.

The applications of RSS are not so widespread but since its beginnings appli-
cations was the motivation of developing the theory. Some of them are the esti-
mation of mass herbage in a paddock, McIntyre (1978), Cobby et al.(1985), forage
yields Halls-Dell (1966), and shrub Phytomass, Martin et al.(1980) and Muttlak-
McDonald (1992), vegetation research Johnson et al. (1993), fishering Hankin-
Reeves (1988), medicine as Chen-Stasny-Wolfe (2000): Some other results on the
use of RSS in estimating plutonium soil concentrations are Gilbert (1995), in
quality testing of reformulated gasoline as well as other technical issues as
Nussbaum-Sinha (1997), and Al-Saleh-AL-Shrafat (2001).

When we deal with practical survey sampling the existence of missing obser-
vations is a usual problem to be solved. This oeuvre is concerned with the dealing
with this problem in RSS applications and with the use or Randomized Responses
for obtaining reliable information on sensitive variables.

To follow the ideas and proofs involved in RSS a knowledge of non-parametric
statistics and sampling is needed at a level which is covered by advanced text
books as Arnold et al. (1992), Sinha–Sinha-Purkayasthra (1996) and Hedayat-
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Sinha (1992). A recent result is given in Arnold et al. (2009), where multivariate
order statistics are considered in terms of their use in RSS:

The usual frame used in sampling theory considers a population and a variable
of interest Y. A sampling design d(s) is used for selecting a random sample s. The
inclusion probabilities pi ¼ Prob ðui 2 sÞ and pij ¼ Prob ðui ^ uj 2 sÞ are per-
fectly calculable. Once s is selected Y is evaluated on the sampled units and
y1,…,yn are obtained. A well-known estimator of the population mean l is
Horvitz-Thomson estimator lHT ¼

P
i2s Yi=Npi. If SRS is used pi ¼ n=N and lHT

is the sample mean ls. Note that if we rank the observation and define the order

statistics (os) YðiÞ; i ¼ 1; . . .; n we have ls ¼
Pn

i¼1
YðiÞ

n ¼ lðsÞ.

EðlðsÞÞ ¼
Pn

i¼1 EðYðiÞÞ
n

¼
Pn

i¼1 lðiÞ
n

¼ l:

When srswr is used the usual estimator of the population mean based on the

observations is ls ¼
Pn

i¼1
Yi

n : Its variance is VðlsÞ ¼
Pn

i¼1
VðYiÞ

n ¼ r2

n :

If we base our inferences on the os’s

VðlðsÞÞ ¼
Pn

i¼1 VðYðiÞÞ
n2

¼
Pn

i¼1 r2
ðiÞ

n2

Note that the ranks do not intervene in the selection of the sample. We can
define a map g(ui) such that it assigns to each sampled unit ui a rank and only one.
Each sampled unit may be ranked using g without measuring Y using some
judgements. Say that the rank represents certain judgment on the value of Y. For
example if we plan to study the stature of children we are able to rank them
visually before selecting the sample. Similarly occurs when we use satellite
information on the biomass for ecological studies. The first arising question is
whether this ranking affects the behavior of a statistical procedure based in it. The
first results in this theme considered that the rank was perfect, see McIntyre
(1952), Takahasi-Wakimoto (1968). Dell-Clutter (1972) studied this problem
considering a cumulative distribution function (cdf) p(y) in each sample unit were
measured Yi and Rank [Y(i)]. Taking

Y(i) = i-th judgment rank of the order statisticsand f(i) (y) as its probability
density function (pdf) we have that, as g is a one-to-one map P yð Þ ¼Pn

i¼1 fðiÞ yð Þ=n and E YðiÞ
� �

¼
Pn

t¼1 YtfðyÞ yð Þ=n ¼ l ið Þ. Hence, when we deal with
lðsÞ the unbiasedness property is maintained even using judgments and not the
values of Y makes the ranking. Therefore,

Xn

i¼1

ðl ið Þ � lÞ ¼
Xn

i¼1

D ið Þ ¼ 0

The differences between the expected mean of the os’s and the population mean
play and important role in RSS because r2

ið Þ ¼ r2 � D2
ið Þ. Then
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V½l sð Þ� ¼
Xn

i¼1

r2
ið Þ=n2 ¼ V½ls� �

Xn

i¼1

D2
ið Þ=n2

Note that as j D ið Þ j =r� ½b 2i� 1; 2n� 2iþ 1ð Þ � ðb i; n� iþ 1ð ÞÞ2�1=2=
ðb i; n� iþ 1ð ÞÞ

r2�D2
ið Þðb 2i� 1; 2n� 2iþ 1ð ÞÞ2= ½b 2i� 1; 2n� 2iþ 1ð Þ � ðb i; n� iþ 1ð ÞÞ2�:

An extreme case is that in which none of the ranks assigned by judgement
coincide with the true ones. The orders are considered as assigned by a random
mechanism. Then D ið Þ ¼ 0 for any i ¼ 1; . . .; n and the RSS design is equivalent to
the srs design. Patil et al. (1997a) discussed the notion of coherent sampling.
Taking into account that we are sampling a set of units and that any sample s is a
subset of the population U; we can establish the following definition.

Definition 2.1 Define a protocol (a one-to-one map) g, which orders the units in a
finite population Uðg uið Þ ¼ rankðuiÞÞ and induces an ordering on each s , U. It is
called coherent if for any s and U the ranking induced on s is the same that the
application of it directly in s½gðuijUÞ\g ujjU

� �
) uijsð Þ\g ujjs

� �
; 8s � U; 8i 6¼ j�:

We consider the use of coherent ordering protocols. It allows using a global
ranking of the units for ordering the observed sample without inconsistencies.
Hence census information permits to establish an ordering in the sampled units. As
pointed out by Patil et. al. (Patil et al. 1997a) if we have a coherent RSS design we
are implementing an imperfect stratification. The knowledge of the true ranks of
all the population units allows using them for stratifying. Some kind of optimal
stratification can be implemented and it will provide more accurate estimates than
RSS. Therefore, g permits to stratify in ‘small sets’ where each member have very
similar values of Y.

We may rank using judgments. It can be characterized by an auxiliary variable
X related with Y. David-Levine (1972) quoted this problem. Dell-Clutter (1972)
analyzed the case in which the ranking is made with errors and established that the
usual estimates from the computed os’s maintain the unbiasedness property.
Stokes (1977a, b) used this result by considering that X is known for any unit and
is used for ranking. An apparent source of errors in RSS is the use of X for ranking.
A practical methodology is to consider that we select s and the sequence
Xð1Þ; . . .;XðnÞ is obtained.

Take the location model YðiÞ ¼ XðiÞ þ ei; i ¼ 1; . . .; n and consider that the
random errors have null expectation E eið Þ ¼ 0; i ¼ 1; . . .; n½ �. A common
assumption is that they are independently normal variables with variance r2

i . It is
clear that the RSS estimator is still unbiased.

Another model is to consider that the regression Yi ¼ aþ bXi þ ei; i ¼ 1; . . .; n
characterizes the relationship between two equally distributed variables X and Y.

10 2 Sampling Using Ranked Sets



The correct os is Y(i) but as the regression allows to fix that E YðiÞjXðiÞ
� �

¼
lY þ qrY ½XðiÞ � lX�=rX �; i ¼ 1; . . .; n and then, if X and Y are positively correlated
the os determined by X and by Y will be the similar.

2.2 The Basic RSS Strategy

2.2.1 The Sampling Procedure

The theoretical frame that permits to use the RSS model is based on the
hypothesis:

i. We wish to enumerate the measurable variable Y.
ii. The units can be ordered linearly without ties.
iii. Any sample s , U of size m can be enumerated.
iv. To identify a unit, order the units in s and enumerate them which is less costly

than to evaluate {Yi, i[s} or to order U.

The first hypothesis is commonly assumed in the general theory of sampling
problem, the second fixes that the rank can be made without confusions and that any
rank is assigned to only one of the sampled units. The third assumption is also
common in the applications. The fourth has an economical and a statistical moti-
vation: only if it is cheap to rank RSS is a good alternative with respect to rank all
the units of U and to stratify, which is more accurate. Some definitions are needed.

Definition 2.2 A statistical sampling unit (ssu) is a set s with m units of U.
Usually m ssu’s are selected independently.

In survey sampling settings, it is logic rankingof the units based on the values of
an auxiliary variable correlated with the variable of interest. The basic RSS pro-
cedure is the following:

Step 1: Randomly select m2 units from the target population. These units are
randomly allocated into m sets, each of size m.

Step 2: The m units of each set are ranked visually or by any inexpensive method
free of cost, say X, with respect to the variable of interest Y. From the first
set of m units, the smallest ranked unit is measured; from the second set of
m units the second smallest ranked unit is measured. Continue until the
mth smallest unit (the largest) is measured from the last set.

Step 3: Repeat the whole process r(i) times (cycles).
Step 4: Evaluate the corresponding units.
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We can denote it as follows

Xi1

Xi2

..

.

Xim

9>>=
>>;

r

� [ XðiiÞr ¼ Y ið Þr;r ¼ 1; . . .; r ið Þ; i ¼ 1; . . .;m

Let Y1; . . .; Ym be a sample selected using SRSWR from probability density
function f(y), with mean lY and variance r2

Y . Considering the selection of
m independent samples selected using a SRSWR design, of size m each, we have
Y11; . . .; Y1m; Y21; . . .; Y2m; . . .:Ym1; . . .; Ymm. Let Yið1mÞ; . . .; Yiðmm; . . .YiðmmÞ, be the
order statistics of the sample Y1i; . . .; Y1m; ; . . .;Yim; for i ¼ 1; 2; . . .;mð Þ.

Takahasi and Wakimoto (1968) provided the mathematical theory of RSS and

showed that f yð Þ ¼
Pm

j¼1
f jmð ÞðyÞ

m , lY ¼
Pm

j¼1
lYðjmÞ

ðyÞ
m and VðY jmð Þ ¼ r2

Y jmð Þ
� D2

Y jmð Þ
;

D2
Y jmð Þ
¼ lY jmð Þ

� lY

� �2
; j ¼ 1; . . .;m:

Without losing in generality we will drop the value m of the sample size in the
notation in the sequel when it provides no further information.

Note that if r = 1 we observe only a RSS of size m = n.

Definition 2.3 When r(i) = r the RSS design is denominated as balanced and
unbalanced otherwise.

For balanced RSS designs, we have that each sample s(j) is a SRSWR of size
r and n = rm.

2.2.2 Estimation of l

The usual estimator of lZ , for a variable Z, is lZ rssð Þ ¼
Pm

j¼1

Pr

i¼1
Zði:iÞj

n ; n ¼ rm:

Noting that for any j, E Z i:ið Þj
� �

¼ lZðiÞ the unbiasedness of this estimator is

easily derived because

EðlZ rssð ÞÞ ¼
Pm

j¼1

Pr
i¼1 lZðiÞ

n
¼
Pm

j¼1 lZðiÞ

m
¼ lZ

The samples s(j) are independent. Hence, the variance of lZ rssð Þ is:

V lZ rssð Þ

� �
¼
Pm

j¼1

Pr
i¼1 r2

Z ið Þ
n2

¼
Pm

j¼1 r2
Z ið Þ

rm2
¼ r2

Z

n
�
Pm

j¼1 D2
Y j:mð Þ

mn
;

D2
Y jmð Þ
¼ lZ jð Þ

� lZ

� �2
; n ¼ rm:
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This allows writing

r2
Z ¼

Pr
i¼1 r2

Z ið Þ
þ
Pr

i¼1 l2
Z ið Þ
� l2

Z

� �
r

Note that once we know that m is fixed, the notation may be simplified dropping
the subscript m and writing Y(j:t) for denoting the jth-os of the t-th ranked sample
s(t).

Definition 2.4 The relative precision of lRSS with respect to ls is RP ls; lrssð Þ ¼
VðlsrsÞ
VðlrssÞ and the relative saving (RS) due to RSS is measured by RS ¼ 1� 1

RP : h

The net gain in accuracy due to the use of RSS is measured by

Pm

j¼1
D2

Y j:jð Þ
mn .

In the balanced case RP 2 1; mþ 1ð Þ=2½ � and in the unbalanced RP 2 1;m½ �.
The later depends on the allocation of the sample. Patil et al. (1997b) established
that if we deal with a skewed distribution or if an adequate stratification is
implemented the unbalanced design may not be so efficient. RS may be used with
the purpose of evaluating the relative gain in accuracy due to the use of RSS.

Kaur et al. (1996) studied the allocation problem. When Neymann’s allocation
principle is used for determining r(i)’s and n is fixed the optimal sample sizes are
given by:

r	 ið Þ ¼
nr2

YðiÞPm
j¼1 r2

Y jð Þ

Another approach is based on the knowledge of the existence of a large tail pdf.
In the case of a heavy right tail, a skewed distribution we have that the os’s
variance are ordered and r2

1ð Þ � r2
2ð Þ � � � � r2

mð Þ. The statistician fixes a constant

h[ 1 and r	 
 r ið Þ ¼ r mð Þ=h; i ¼ 1; . . .;m� 1. Then

V lrss hjð Þ ¼
Pm�1

j¼1

r2
Y jð Þ
r	 þ

r2
Y mð Þ
hr	

m2

Hence, using a larger number of replicas reduces seriously the summand with
larger variance of the os.

The use of r [ 1 is justified by practical reasons mainly. To rank subjectively
the units are easier when m is small. Hence for obtaining a sample of size n is
better to repeat the selection or m2 RSS samples r times once n = rm. Some
evidence on the usefulness of the usage of small m and large r is present in studies
with particular distributions.

Usually, SRSWR is used for selecting the samples independently but simple
random sampling without replacement may be used (SRSWOR). This is more
important when we study a finite population because a correction should be
introduced for computing the sampling error. The problem is certainly very
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complicated when compared with the usual one. Patil et al. (1995) derived the
expression of the corresponding variance. A gain in precision due to RSS now
depends heavily on the replication factor. The theoretical problems associated with
the use of os in finite population sampling using RSS are the kernel of the behavior
of the wor procedure. Lehman (1966) established some properties of the random
variables generated by a univariate distribution and their os’s. One of them is that
any pair of os’s has a joint pdf, which is positively likelihood ratio dependent.
Then, if we sample a finite population of os’s using srswor this property holds.
Takasi-Fututsya (1998) used these results for deriving a method for computing the
finite population correction factor.

2.2.3 The Estimation of the Variance

Let us consider the estimation of the variance. For details see Stokes (1977a, b,
1980) and Yanagawa (2000). An unbiased estimator of r2

Y jð Þ
is

r̂2
Z ið Þ
¼
Pr

j¼1 Z i:mð Þj � l̂Zði:mÞ

� �2

r � 1
; l̂Zði:mÞ ¼

Pr
j¼1 Z i:mð Þj

r
; i ¼ 1; . . .;m

Hence, an unbiased estimator of the variance r2
Z ¼

PN

j¼1
Zj�lZð Þ2
N ; lZ ¼

PN

j¼1
Zj

N

using RSS is

r̂2
Z ¼

n� mþ 1ð Þ
Pm

j¼1

Pr
i¼1 Z i:mð Þj � l̂Zði:mÞ

� �2

n rðr � 1Þ þ
Pr

j¼1 l̂Zði:mÞ�lZ rssð Þ

� �2

m
; l̂Zði:mÞ

¼
Pm

j¼1 Z i:mð Þj

r

An analysis establishes that the first term is the ‘‘within’’ variation and the
second one means from the ‘‘between’’ variation source in terms of the cycles.
Note that it cannot be used when r = 1.

Stokes (1980) considered the use of the naïve estimator

r̂2
ZðrssÞ ¼

Pm
j¼1

Pr
i¼1 Z i:mð Þj � l̂ZðrssÞ

� �2

n� 1
¼
Pn

i¼1 ZðiiÞ � lZ rssð Þ

� �2

n� 1

It is worthy to note that the naïve estimator of r2
Z can be used also for r = 1. It

is not unbiased because
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Eðr̂2
ZrssÞ ¼

E
Pn

i¼1 Z2
ðiiÞ

� �
nðn� 1Þ �

Pn
i 6¼j¼1 EðZðiiÞÞEðZðjjÞÞ

n

[
E
Pn

i¼1 Z2
ðiiÞ

� �
nðn� 1Þ �

Pn
i 6¼j¼1 EðZðiiÞZðjjÞÞ

n
¼ r2

Z

r̂2
Zðm;rÞ ¼

Pm
j¼1

Pr
i¼1 Z i:mð Þj � l̂ZðrssÞ

� �2

n� 1

It is asymptotically unbiased because

Eðr̂2
Z m;rð ÞÞ ¼ r2

Z þ
Pm

j¼1

Pr
i¼1 lZ i:mð Þ � lZ

� �2

mðn� 1Þ

and

Pm

j¼1

Pr

i¼1
lZ i:mð Þ�lZð Þ2

mðn�1Þ ! 0 for m or r large.

The relative precision of this estimator is

RP r2
Z ; r

2
Z m;rð Þ

� �
¼ Vðr̂2

ZÞ
MSEðr̂2

Z m;rð ÞÞ
¼ Vðr̂2

ZÞ

V r̂2
Z m;rð Þ

� �
þ

Pr

i¼1
lZ i:mð Þ�lZð Þ2

mðn�1Þ

� 	2

where r̂2
Z ¼

Pn

j¼1
Zi��Zð Þ2

n�1 ; �Z ¼
Pn

j¼1
Zi

n . It is worthy to note that
Pr

i¼1
lZ i:mð Þ�lZð Þ2

mðn�1Þ is a

decreasing function of m and r and
Pr

i¼1
lZ i:mð Þ�lZð Þ2

m \r2
Z . As a consequence

r̂2
Z ; r̂

2
Z m;rð Þ

� �
\ARE r̂2

Z ; r̂
2
m;r

� �
. Hence, this estimator is used frequently in statis-

tical inferences because lim
k!1

RP r̂2
Z ; r̂

2
Z m;rð Þ

� �
¼ ARE r̂2

Z ; r̂
2
Z m;rð Þ

� �
; k ¼ m or r.

In practice m is small, for ranking adequately and cheaply, but we are able to fix
a large number of cycles.

Therefore, the relative precisions can be estimated using the ratio between the
estimated variance.

2.2.4 Confidence Intervals

The estimators (averages across de sets)

l	ZðjÞ ¼
Pm

i¼1 Z i:mð Þj
m

; j ¼ 1; . . .; r

2.2 The Basic RSS Strategy 15



are independent and identically distributed (iid) with expectation lZ . Their vari-

ances are proportional to
Pm
i¼1

r2
ZðiÞ
:

An estimator of r2
ZðiÞ

, the variance across cycles, is

r̂	2ZðiÞ
¼
Pr

j¼1 Z i:mð Þj � l̂Zði:mÞ

� �2

r � 1

It is consistent because it is the variance of iid variables and as a consequencePm
i¼1

r̂2
ZðiÞ

is consistent for Vðl	ZðjÞ Þ which is proportional to
Pm
i¼1

r2
ZðiÞ

.

Approximate confidence intervals can be derived, using the consistency of the

estimators, using the fact that m
ffiffi
r
p lZrss�lZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1
r̂2

ZðiÞ

q
0
@

1
A!d N 0; 1ð Þ.

For further reading is recommended Chen et al. (2004).

2.3 Some Other RSS Strategies

Some transformations to the basic RSS design have been proposed. We will
present some of the most popular for finite population framework. They use some
criteria that are good for certain particular cases in terms of their accuracy,
measured in terms of the variance. We will present them for one cycle. The
development for r [ 1 is straightforward.

2.3.1 Median RSS Sampling (MRSS)

The MRSS procedure was proposed by Muttlak (1995). Muttlak (1998 and 2003)
proposed to select the median of s(j) in each ssu. The pdf of Y must have finite
mean and variances l and r2. We observe Y 1:1ð Þ;...;Y 1:mð Þ;Y 2:1ð Þ;...;Yðm:mÞ

� �
t
; t ¼

1; . . .; r: If m is odd the os’s measured are Y	ðj:medÞt ¼ Y mþ1
2 :mð Þt; t ¼ 1; ::; r. If m is

even is used

Y	ðj:medÞt ¼
Y m

2 :mð Þt if m\
m

2
þ 1

Y m
2þ1:mð Þt if m [

m

2
;

8><
>:

t ¼ 1; . . .; r
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The estimator is lrss med½ � ¼
Pm

j¼1

Pr

t¼1
Y	ðj:medÞt

mr and its expectation is

E lrss med½ �

� �
¼
Pm

j¼1
lY ðj:medÞ

m . Note that for n odd lY ðj:medÞ ¼ lY ðmþ1
2 Þ for any j, then

E lrss med½ �

� �
¼ lYðmþ1

2 Þ. If m is even E lY rss med½ �

� �
¼

l
Y m

2ð Þþl
Y m

2þ1ð Þ
2 :

The variance of the estimator is given by

V lY rss med½ �

� �
¼
Pm

j¼1 r2
Y ðj:medÞ

m2r
¼ r2

Y

n
�
Pm

j¼1 D2
Y ðj:medÞ

mn

where

D2
Y ðj:medÞ ¼

lY mþ1
2ð Þ � lY

� �2
if m is odd

lY m
2ð Þ � lY

� �2
if m is even and j� m

2

lY m
2þ1ð Þ � lY

� �2
if m is even and j [

m

2

8>>>>><
>>>>>:

Muttlak’s estimator is unbiased only if the pdf is symmetric with respect to l

and V lY rss med½ �

� �
�V lY rssð Þ�V lY sð Þ. The relative precision of it (RP) increases

with m. For not symmetric pdf’s the estimator is still more precise than the
arithmetic mean of SRS, lY s; but it is biased. The RP decreases if m C 6. The
errors in the ranking do not affect seriously these results. Hence the use of median-
RSS provides a gain in accuracy.

2.3.2 Extreme RSS Sampling (ERSS)

Another particular procedure is to use the extreme os of the samples. Further
reading can be obtained in Samawi et al. (1996), Bhoj (1997). That is, in each RSS
sample we measure Y(1:j) and Y(n:j). Take m even and compute

Yðj:eÞ ¼
Yð1:jÞ þ Yðm:jÞ

2

Its expectation and variances are, as SRSWR is used,

E Yðj:eÞ
� �

¼
lY ð1Þ þ lY ðmÞ

2
; V Yðj:eÞ
� �

¼
r2

Y ð1Þ þ r2
Y mð Þ

4

Samawi et al. (1996) proposed the estimator:

lY rssðeÞ ¼
Pm

j¼1 Yðj:eÞ
m
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This estimator also is biased because

E lY rssðeÞ

� �
¼

lY ð1Þ þ lY ðmÞ
2

and

V lY rssðeÞ

� �
¼

r2
Y ð1Þ þ r2

Y mð Þ
2m

For m odd the variable used is

Y	ðj:eÞ ¼

Yð1:jÞ if j\m and j odd

Yðm:jÞ if j\m and j even

Yð1:jÞ þ Yðm:jÞ
2

if j ¼ m

8>>><
>>>:

An estimator of the population mean is l	rssðeÞ ¼
Pm

j¼1
Y	ðj:eÞ

m :

Its expectation is equal to the expectation of lRSS e½ � but

V l	rss eð Þ

� �
¼

rY 1;mð Þ
2m2

þ
2m� 1ð Þ r2

Y 1ð Þ þ r2
Y mð Þ

� �
4m2

;

rY ð1;mÞ ¼ CovðYð1:m; Ym:mÞ

An alternative estimator analyzed for m odd is:

l		rssðeÞ ¼

Pm�1
j¼1 Y j:eð Þ þ Y mþ1

2 :mð Þ
m

It is also biased as

E l		rssðeÞ

� �
¼

mþ 1ð Þ lY ð1Þ þ lY ðnÞ

� �
2m

þ
lY mþ1

2ð Þ
m

which variance is:

V l		rss eð Þ

� �
¼

r2
Y mþ1

2ð Þ
m2

þ
m� 1ð Þ r2

Y ð1Þ þ r2
YðnÞ

� �
2m2

If the pdf is symmetric with respect to lY ¼ 0 the median is equal to zero. From
the results of Arnold et al. (1992) we have that, in this case:

1. lY ð1Þ ¼ �lY ðnÞ for m even and l mþ1½ Þ=2ð Þ ¼ 0 if m is odd.

2. r2
Y ð1Þ ¼ r2

Y ðnÞ
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Therefore in this particular case:

E lrssðeÞ

� �
¼ E l	rssðeÞ

� �
¼ E l		rssðeÞ

� �
¼ 0

V lrssðeÞ

� �
¼

r2
Y ð1Þ
m

;V l	rssðeÞ

� �
¼

2m� 1ð Þ r2
Y ð1Þ þ rY ð1;nÞ

� �
2m2

;

V l		rssðeÞ

� �
¼

m� 1ð Þ r2
Y ð1Þ þ r2

Y ð1Þ mþ1
2ð Þ

� 	

m2

When the distribution is uniform these estimators have a smaller variance than
ls. The preference of one or another estimator depends of the value of m including
when compared with the use of the usual RSS estimator.

2.3.3 L-RSS Sampling

The L-RSS procedure is described, following the paper of Al-Nasser (2007). It is
implemented by the following procedure.

2.3.3.1 L-RSS Procedure

Step 1: Randomly select m2 units from the target population of size N;
ðU ¼ 1; . . .;Nf g:

Step 2: Rank the units within each set with respect to the variable of interest Y

Step 3: Calculate k ¼ mp½ �; p 2 0; 1=2½ �:

Step 4: For i B k select the units with rank k ? 1.

Step 5: For k \ i B m–k-1 measure the units with rank i.

Step 6: For each i C m–k measure the unit with rank m–k.

Step 7: Repeat the steps 1-6 r times.

The estimator proposed by Al-Nasser (2007), when r = 1, m = n and is
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�yLRSS ¼
Pk

i¼1 Yiðkþ1Þ þ
Pn�k

i¼kþ1 YiðiÞ þ
Pn

i¼n�kþ1 Yiðn�kÞ
m

Its variance is given by

Vð�yLRSSÞ ¼
Pk

i¼1 VðYi kþ1ð ÞÞ þ
Pn�k

i¼kþ1 VðYiðiÞÞ þ
Pn

i¼n�kþ1 VðYiðn�kÞÞ
n2

Remembering that the expectation of an os is

E YiðjÞ
� �

¼ lYðjÞ ¼ lY þ ðllYðjÞ
� lYÞ ¼ lY þ DY ðjÞ

we have that

nE �yLRSSð Þ ¼ k½lY ðkþ1Þ þ lY ðn�kþ1Þ� þ
Xn�k

i¼kþ1

lY ið Þ

¼ lY þ k DY kþ1ð Þ þ DY m�kð Þ
� �

þ
Xn�k

i¼kþ1

DY ðiÞ

Therefore, when the distribution is symmetric this estimator is unbiased. Taking
into account that the variance of an order statistics is YiðjÞ

� �
¼ r2

YðjÞ
¼ r2

Y � D2
Y ðjÞ.

We have that

V �yLRSSð Þ ¼
kr½r2

Yðkþ1Þ
þ r2

Y ðn�k�1Þ� þ r
Pn�k

i¼kþ1 r2
YðiÞ

n2

2.4 Some Particular Estimators

2.4.1 The Ratio Estimator

2.4.1.1 Usual Estimator

One of the most popular estimation problems is to estimate the ratio. Consider as
usual that X is well known and that it is used for ranking. The selection of a sample
of size n yields the estimators based on a RSS-same are

�yrss ¼

Pn
i¼1

yði:iÞ

n
; �xrss ¼

Pn
i¼1

xði:iÞ

n

The ratio estimator of the mean is
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�yr�rss ¼
�yrss

�xrss

lX

Its study is developed using some expansion in Taylor Series E �yr�rss � lYð Þ2.
Using it is obtained that the MSE is given by:

Mð�yr�rssÞ ¼
r2

y �
Pm
i¼1

D2
YðiÞ
m þR2 r2

x �
Pm
i¼1

D2
XðiÞ
m


 �
� 2Rq r2

x �
Pm
i¼1

D2
XðiÞ
m

� 	1=2

x r2
y �

Pm
i¼1

D2
YðiÞ
m

� 	1=2

n

Then we prefer this estimator to the SRSWR one when

dr�rss ¼

Pm
i¼1

D2
YðiÞ
m þR2Pm

i¼1

D2
YðiÞ
m � 2Rq rXrY � r2

x �
Pm
i¼1

D2
XðiÞ
m

� 	1=2

x r2
y �

Pm
i¼1

D2
YðiÞ
m

� 	1=2
" #

n
[ 0

In terms of the correlation we have that RSS should be preferred to SRSWR
estimator if

q\

Pm
i¼1

D2
YðiÞ
m þR2

Pm
i¼1

D2
YðiÞ
m

2R rXrY �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
x �

Pm
i¼1

D2
XðiÞ
m

� 	s
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

y �
Pm
i¼1

D2
YðiÞ
m

� 	s" #

The terms under the square root sign are positive, as they are variances. Then,
we can rewrite the relationship deriving that

q\

Pm
i¼1

D2
YðiÞ
m þR2

Pm
i¼1

D2
YðiÞ
m

2R rXrY 1� 1�
Pm
i¼1

D2
XðiÞ

mr2
x

� 	1=2

1�
Pm
i¼1

D2
YðiÞ

mr2
y

� 	1=2
 !" #

The right-hand side of the equation is positive then, if q\ 0, RSS is better than
SRSWR strategy.

Take r [ 1 and note that X is known then we can compute the mean of the
rm2 = mn selected units

x
¼ ¼

Pr
t¼1

Pm
i¼1

Pm
j�1

xði;jÞt

rm2

Therefore, we may use another ratio estimator defined as

�yr�rss2 ¼ �yð0;1;0Þ�rss2 ¼
�yrss

x
¼ X
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We use rss2 to distinguish this proposal from y
r�rss

, and

Mð�yr�rsss2Þ ¼
r2

y �
Pm
i¼1

D2
YðiÞ
m þR2 r2

x
r � 2Rq rxffiffi

r
p

x
r2

y �
Pm
i¼1

D2
YðiÞ
m

� 	1=2

n

This estimator should be preferred to the classic ratio estimator when the fol-
lowing inequality holds

dr�rsss2 ¼

Pm
i¼1

D2
YðiÞ
m � 2Rq rXrYffiffi

r
p � 1�

Pm
i¼1

D2
YðiÞ

mrY

� 	1=2
" #

n
[ 0

That is if

q\

Pm
i¼1

D2
YðiÞ
m

2R rXrYffiffi
r
p � 1�

Pm
i¼1

D2
YðiÞ

mrY

� 	1=2
" #

A comparison between the two RSS strategies determines that a preference for
this estimator is a result when

Mð�yr�rssÞ �Mð�yr�rsss2Þ[ 0

that is if

drss;rss2 ¼
R2r2

X 1�1
rð Þ�R2

Pm
i¼1

D2
XðiÞ
m


 �
�2RqrX 1�

Pm
i¼1

D2
XðiÞ

mrx

� 	1=2

� 1ffi
r
p

" #
r2

y�
Pm
i¼1

D2
YðiÞ
m

� 	1=2

n [ 0

It is biased but the bias usually is small with respect to n. Bouza (2001a, b) used
RSS for selecting a sample using a third variable related with X and Y.

2.4.1.2 Median Ratio Estimator

The use of ratio-tupe estimators using RSS is receiving more attention from the
researchers recently, see for example Al-Omari et al. (2008, 2009), Bouza and
Al-Omari (2011a).

One of the first approaches of RSS for ratio estimation is due Samawi-Muttlak
(1996). They assumed that the auxiliary variable X is ranked without error, r = 1.
The observation (X(i:j)t, Y(i:j)t) is the pair of values in the i-th judgment os in the
RSS sample s(j). Their proposal was not to use the pairs in the diagonal but the
medians
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Z	i:jð Þ ¼
Z nþ1

2 :jð Þ if n is odd

Z n
2:jð Þ þ Z nþ2

2 :jð Þ
2

if n is even

8><
>: ; Z ¼ X; Y

The estimation of the mean is made by averaging the Z*(i:j)t’s.

lrss m½ �Z	 ¼
Pm

j¼1 Z	ði:jÞ
n

; Z ¼ X; Y

The estimator of the ratio based on these RSS median-based estimators of the
mean is Rm ¼

lrss m½ �Y	

lrss m½ �X	
. Taking

VZðhÞ ¼
r2

ZðhÞ

l2
Z

; Z ¼ X; Y ;CðhÞ ¼
Cov XðhÞ; YðhÞ

� �
lXlY

The variance of this estimator is:

V Rmð Þ ¼

R2VX nþ1
2ð Þ
þ VY nþ1

2ð Þ
� C nþ1

2ð Þ
n

if n is odd

R2VX n
2ð Þ
þ VY n

2ð Þ
� 2 C n

2ð Þ þ C nþ2
2ð Þ

� �

n
if n is even

8>>>>><
>>>>>:

The involved variances of the RSS estimators are expressed as the difference
between a function of the population variance of Z and a function of sum of the

D2
i
0
s. The relative merit of this strategy is that the estimation is fitted in a non-

parametric sense and we need to rank only a part of the sample. Other intents in
this line are presented in Patil et al. (1997a, b).

2.4.1.3 Ratio Estimator’s Classes

A large class of ratio type estimators is given by fixing a vector of parameters

h ¼ a;B; kð ÞT , where a 2 A; B 2 B	; k 2 L. Denote this class as

F ¼ �yh ¼
�Yest þ a

B�Xest þ k
B�X þ kð Þ; h ¼ a;B; kð ÞT2 A� B	 � L

� �

�Zest, Z = X, Y, is an estimator to the corresponding mean. Consider

A ¼ 0; bð�X � �xÞ; rxf g ¼ a1; a2; a3f g
B	 ¼ 1; B2ðxÞ; Cx; qf g ¼ B1;B2;B3:B4f g
L ¼ 0; q; B2ðxÞ; Cxf g ¼ k1; k2; k3:k4f g:
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where

b ¼ sxy=s2
x is the linear regression coefficient

B2 xð Þ is the coefficient of kurtosis of the distribution of X
Cx is the variation coefficient of X
q is the coefficient of linear correlation between X and Y

Then, this class contains some well-known estimators. For example, the classic
estimator is obtained when h ¼ 0; 1; 0ð Þ ¼ ða1;B1; k1Þ as

�yr ¼ �yð0;1;0Þ ¼
�y

�x
X

The mean squared error of the corresponding subclass is characterized by

Mð�yraznÞ ¼
r2

yþR2r2
x wðw�2cÞ
n with w ¼ 1; c ¼ q Cy

Cx
¼ q

ry
�Y
rx
�X
:

Singh-Dao (2003) developed a estimator assuming that the existence of infor-
mation on q. It belongs to the subclass determined by h ¼ ð0; 1; qÞ, and is char-
acterized by

�yST ¼
�y

�xþ q
ðX þ qÞ

Its MSE is

Mð�ySTÞ ¼ �yrazon w ¼ X

X þ q
; c ¼ 2qCy=Cx

����
� 	

¼
r2

y þ R2r2
x

�X
�Xþq

� �2
�2

�Yqryrx
�Xþq

n

We prefer �yn to �yST when q\Rrx wþ 1ð Þ=ry:
Kadilar-Cingi {Kadilar-Cingi 2004 & 2005} analyzed different families of

estimators belonging to F identifying them by �yðhtÞ, where

•

h1 ¼ ða2; B1; k1Þ

•

h2 ¼ ða2; B1; k3Þ

•

h3 ¼ ða2; B1; k4Þ

•

h4 ¼ ða2; B2; k1Þ
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•

h5 ¼ ða2; B3; k3Þ

•

h6 ¼ ða2; B1; k2Þ

•

h7 ¼ ða2; B3 k2Þ

•

h8 ¼ ða2; B4; k4Þ

•

h9 ¼ ða2; B2; k2Þ

•

h10 ¼ ða2; B4; k3Þ

Their explícit forms are

�yðh1Þ ¼
�yþ bð�X � �xÞ

�x
�X; �yðh2Þ ¼

�yþ bð�X � �xÞ
�xþ B2ðxÞ

ð�X þ B2ðxÞÞ

�yðh3Þ ¼
�yþ bð�X � �xÞ

�xþ Cx
ð�X þ CxÞ; �yðh4Þ ¼

�yþ bð�X � �xÞ
�xB2ðxÞ þ Cx

ð�XB2ðxÞ þ CxÞ

�yðh5Þ ¼
�yþ bð�X � �xÞ
�xCx þ B2ðxÞ

ð�XCx þ B2ðxÞÞ; �yðh6Þ ¼
�yþ bð�X � �xÞ

�xþ q
ð�X þ qÞ

�yðh7Þ ¼
�yþ bð�X � �xÞ

�xCx þ q
ð�XCx þ qÞ; �yðh8Þ ¼

�yþ bð�X � �xÞ
�xqþ Cx

ð�Xqþ CxÞ

�yðh9Þ ¼
�yþ bð�X � �xÞ
�xB2ðxÞ þ q

ð�XB2ðxÞ þ qÞ; �yðh10Þ ¼
�yþ bð�X � �xÞ
�xqþ B2ðxÞ

ð�Xqþ B2ðxÞÞ

Their errors are typified by the expression:

Mð�yðhtÞÞ ¼
R2ðhtÞr2

x þ r2
yð1� q2Þ

n
; t ¼ 1; . . .; 10

The ratios, indexed by ht are defined as:
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Rðh1Þ ¼ R ¼
�Y
�X
; Rðh2Þ ¼

�Y
�X þ B2ðxÞ

; Rðh3Þ ¼
�Y

�X þ Cx
; Rðh4Þ ¼

�YB2ðxÞ
�XB2ðxÞ þ Cx

Rðh5Þ ¼
�YCx

�XCx þ B2ðxÞ
; Rðh6Þ ¼

�Y
�X þ q

; Rðh7Þ ¼
�YCx

�XCx þ q
; Rðh8Þ ¼

�Yq
�Xqþ Cx

;

Rðh9Þ ¼
�YB2ðxÞ

�XB2ðxÞ þ q
; Rðh10Þ ¼

�YB2ðxÞ
�XB2ðxÞ þ q

;

�yn is preferred whenever q [
r2

x R2w2�RðhtÞð Þ
ry ryþ2rxð Þ :

Bouza and Al-Omari (2011a) derived RSS versions of these estimators. The
RSS- Singh-Deo (2003) estimator developed is

�yST�rss ¼
�yrss

�xþ q
ð�X þ qÞ

Its MSE is expressed by

Mð�yST�rssÞ ¼
r2

y �
Pm
i¼1

D2
YðiÞ
m þ R2 r2

x �
Pm
i¼1

D2
YðiÞ
m

� 	
�X

�Xþq

� �2
�2n

n
where

n ¼
�Yq r2

y �
Pm
i¼1

D2
YðiÞ
m

� 	1=2

r2
x �

Pm
i¼1

D2
YðiÞ
m

� 	1=2

�X þ q

The comparisons of this estimator and the srswr‘s one fixes to prefer �yST�rss if

dST ¼ Mð�ySTÞ �Mð�yST�rssÞ[ 0)
Xm

i¼1

D2
YðiÞ
m
þ 2

�Yqry 1�
Pm
i¼1

D2
YðiÞ

mr2
y

� 	1=:2

rx

�X þ q
[ 0

In terms of the correlation is expressed as

q [ �
�X
Pm
i¼1

D2
YðiÞ
m

Pm
i¼1

D2
YðiÞ
m þ2�Yry 1�

Pm
i¼1

D2
YðiÞ

mr2
y

� 	1=:2

r

which is generally valid.
A similar study of Kadilar-Cingi (2008) type estimators under RSS permitted to

propose the estimators
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�yðh1�rssÞ ¼
�yrss þ bð�X � �xrssÞ

�xrss

lX; �yðh2�rssÞ ¼
�yrss þ bð�X � �xrssÞ

�xrss þ B2ðxÞ
ðlX þ B2ðxÞÞ

�yðh3�rssÞ ¼
�yrss þ bðlX � �xrssÞ

�xrss þ Cxrss

ðlX þ Cxrss
Þ; �yðh4�rssÞ ¼

�yrss þ bðlX � �xrssÞ
�xrssB2ðxÞ þ Cxrss

ðlXB2ðxÞ þ Cxrss
Þ

�yðh5�rssÞ ¼
�yrss þ bðlX � �xrssÞ

�xCx þ B2ðxÞ
ðlXCx þ B2ðxÞÞ; �yðh6�rssÞ ¼

�yrss þ bðlX � �xrssÞ
�xrss þ q

ð�X þ qÞ

�yðh7�rssÞ ¼
�yrss þ bðlX � �xrssÞ

�xrssCx þ q
ð�XCx þ qÞ; �yðh8�rssÞ ¼

�yrss þ bðlX � �xrssÞ
�xqþ Cx

ðlXqþ CxÞ

�yðh9�rssÞ ¼
�yrss þ bðlX � �xrssÞ

�xrssB2ðxÞ þ q
ðlXB2ðxÞ þ qÞ; �yðh10�rssÞ ¼

�yrss þ bðlX � �xrssÞ
�xrssqþ B2ðxÞ

ðlXqþ B2ðxÞÞ

The MSE of these RSS estimators of lY has the structure:

Mð�yðht�rssÞÞ ¼
R2ðht�rssÞ r2

x �
Pm
i¼1

D2
YðiÞ
m


 �
þ r2

y �
Pm
i¼1

D2
YðiÞ
m �ð1� q2Þ


 �

n
; t ¼ 1; . . .; 10

We prefer them to the srs counterparts whenever
MðyðhtÞÞ �Mðyðht�rssÞÞ[ 0

Say if

dt ¼
R2ðhtÞ

Pm
i¼1

D2
XðiÞ
m

n
þ

Pm
i¼1

D2
YðiÞ
m ð1� q2Þ

n
[ 0; t ¼ 1; ::; 10

This relationship always holds.

2.4.2 The Difference of Means

Bouza-Prabhu Ajgaonkar (1993) studied the estimation of a difference within the
frame proposed by Pi-Ehr (1971). Once a SRSWR is selected from U the differ-
ence between the means D ¼ lY � lX is estimated by

Dsrs ¼ �y� �x ¼
Pn

i¼1 di

n
; di ¼ yi � xi

Its error is

V Dsrsð Þ ¼ r2
Y þ r2

X � 2qrYrX

n
; q ¼ rYX

rYrX

Bouza (2002b) derived the RSS counterpart. An unbiased estimator of D, when
RSS is used is ranking the differences dði:iÞ:
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Using the results derived above, it is easily obtained that when we use RSS and
two variables are measured. Ranking the differences an unbiased estimator of D, is

Drss ¼

Pr
t¼1

Pm
i¼1

dði:mÞt

rm
with

V drss

� �
¼ r2

d

rm
�

Pm
i¼1

D2
dði:mÞ

rm2
¼ r2

d

n
� D2

d

nm

as variance.
The positiveness of D2

d grants that the RSS design provides more accurate
results than its srs counterpart.
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Chapter 3
The Non-response Problem: Subsampling
Among the Non-respondents

Abstract The existence of missing observations in the estimation problems
present in random sampling can be considered unimportant. But the risk of mis-
understanding is high because the non-responses may be generated by the exis-
tence of a very different behavior of a group of units. This is especially important
when human populations are sampled. The solution of subsampling among the
non-respondents is the most intelligent approach in such cases. The usual simple
random sampling models are revisited and their ranked set sample counterpart
developed. Generally they are more accurate.

Keywords Non-respondent’s strata � Subsampling rules � Expected variance �
SRS � RSS � Efficiency

See all, conceal much, modify little.
Gregorio Magno

3.1 Some Aspects of Non-response

As quoted the usual theory of survey sampling is developed assuming that the
finite population U = {u1,…,uN} is composed of individuals that can be perfectly
identified. A sample s of size n B N is selected. The variable of interest Y is
measured in each selected unit. Real life surveys should deal with the existence of
missing observations. Non-responses may be motivated by a refusal of some units
to give the true value of Y or by other causes. Refusals to respond are present in the
majority of the surveys. There are three solutions to cope with this fact: ignore the
non-respondents to subsample the non-respondents or to impute the missing val-
ues. To ignore the non-responses is a dangerous decision, to subsample is a
conservative and costly solution, see Cochran (1977), Bouza (1981a, b, 2001).
Imputation is often used to compensate for item non-response. See for discussions
on the theme Singh (2003), Särndal and Lundström (2005) for example.

C. N. Bouza-Herrera, Handling Missing Data in Ranked Set Sampling,
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-39899-5_3,
� The Author(s) 2013
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The existence of non-responses does not permit to compute the sample mean

�y ¼

Pn
i¼ 1

yi

n

which estimates the population mean l because we obtain response only from the
units in s1 = {i[sji gives a response at the first visit}.

This fact suggests that the population U is divided into two strata: U1, where are
grouped the units giving a response at the first visit, and U2 which contains the rest
of the individuals. This is the so-called ‘response strata’ model and was first
proposed by Hansen-Hurvitz (1946), see Cochran (1977), Singh (2003). They
proposed to select a subsample s02 of size n02 among the n2 non-respondents
grouped in the sample s2. When subsampling the non-respondents the researcher
contacts a subsample of the non-respondents, usually by means of telephone or
personal interviews.

Then we obtain information on the non-respondent’s strata U2 through s02

3.2 Estimation of the Mean

Non-responses may be motivated by a refusal of some units to give the true value
of Y or by other causes. Hansen-Hurvitz in 1946 proposed selecting a sub-sample
among the non-respondents, see Cochran (1977), Singh (2003), Särndal and
Lundström (2005), Singh-Kumar (2008a). The idea is that we select a sample from
the population U without knowing that it is stratified into U1, stratum of the units
to give a response at the first visit, and U2 the stratum that contains the rest of the
units. The mean of the variable of interest is

lY ¼
P2

i¼ 1

P
j2Ui

Yj

N
¼
X2

i¼ 1

Wi

P
j2Ui

Yj

Ni
¼
X2

i¼ 1

WilYðiÞ;Wi ¼
Ni

N
; i ¼ 1; 2:

It is supposed that the non-responses are due to the fact that the units in U2 have
a behavior different of those in U1 and that it affects the values of Y in such a way
that the strata means are different.

Take s as the initial sample and si , Ui, with size ni. A sub-sample of size
n02 = hn2 is selected among the non-respondents and a response is obtained from
them. This feature depends heavily on the sub-sampling rule. Some sub-sampling
rules have been proposed by Hansen-Hurvitz (1946), Srinath (1971) and Bouza
(1981b). The rule of Hansen-Hurvitz uses

RHH : h ¼ 1=K; K [ 1

The proposal of Srinath (1971) was to set
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RS : h ¼ n2

Hnþ n2
;H [ 0

The rule of Bouza (1981b) is

RB : h ¼ n2

n

As this rule is randomized the surveyor does not have to fix an arbitrary value of h.
The sampling procedure is a particular case of double sampling design

described as follows:

Step 1: Select a sample s from U and evaluate Y among the respondents
determine

yi : i 2 s1 � U1 : s1j j ¼ n1f g:

Step 2: Determine n02 ¼ hn2; 0\h\1; =s2= ¼ n2 with s2 ¼ sns1:

Step 3: Select a sub-sample s’02 of size n02’ from s2 and evaluate Y among the units
in s02; yi : i 2 s02; s02 � s2; s2 � U2

� �
.

Step 4: Compute �y1 ¼
Pn1

i¼1
yi

n1
; �y02 ¼

Pn0
2

i¼1
yi

n02
:, and the estimate of l is

y ¼ n1
n �y1 þ n2

n �y02 ¼ w1�y1 þ w2�y02

Note that �y1 is the mean of a SRSWR-sample selected from U1, the response
stratum, then its expected value is the mean of Y in the respondent stratum: lYð1Þ.

We have the conditional expectation of �y02 ¼
Pn0

2
i¼ 1

yi

n02
is

E½�y02 sj � ¼ �y2

as it is the mean of a SRSWR-sample selected from the non-response stratum U2

EE½�y02 sj � ¼ lYð2Þ

Taking into account that for i = 1,2 E(ni) = nWi the unbiasedness of y is easily
derived.

The variance of the estimator can be deduced using the following trick
y ¼ w1�y1 þ w2�y2ð Þ þ w2 �y02 � �y2

� �
:

The first term is the mean of Y in s, and then its variance is r2/n. For the second
term we have that

V w2 �y02 � �y2
� �

sj
� �

¼ w2
2E �y02 � lYð2ÞÞ � ð�y2 � lYð2ÞÞ sj
� �2

¼ w2
2

h
E �y02 � lYð2ÞÞ sj
� �2

þE ð�y2 � lYð2ÞÞ sj
� �2

� 2E �y02 � lYð2ÞÞ ð�y2 � lYð2ÞÞ
� �

sj
� �i
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Conditioning to a fixed n2 we have that the expectation of the third term is

ð�y2 � lYð2ÞÞ2. Then we have that:

V w2 �y02 � �y2
� �

sj
� �

¼ w2
2

r2
Yð2Þ
n02
�

r2
Yð2Þ
n2

 !
¼ w2

2r
2
Yð2Þ

1� h
hn2

� 	

For the different rules we have

EV w2 �y02 � �y2
� �

sj
� �

¼
If RHH is used

W2ðK�1Þr2
Yð2Þ

n

If RS is used
Hr2

Yð2Þ
n

If RB is used
W1r2

Yð2Þ
n

8>><
>>:

We will use in the sequel

- ¼
W2 K � 1ð Þ if RHH is used

H k if RS is used

W1 if RB is used

8><
>:

as the factor of r2
Yð2Þ.

This discussion sustains the validity of the following proposition.

Corollary 3.1 Consider that a sample of size n is selected from a finite population
of size stratified into a response stratum U1 of size N1 and a non-responses stratum
U2 of size N2

. . If a SRSWR is selected among the non-respondents an unbiased
estimator of the population mean lY is

y
¼
¼ w1�y1 þ w2�y2; wi ¼

ni

n
; i ¼ 1; 2; �y1 ¼

Pn1

i¼1
yi

n1
; �y02 ¼

Pn02
i¼1

yi

n02

and its expected variance is

EVðyÞ ¼ r2
Y

n
þ

-r2
Yð2Þ
n

h

3.3 RSS Designs and the Non-responses

3.3.1 Managing with NR

Commonly the sample is selected using SRSWR. A sample s is selected and the
units in the sample are visited for obtaining information on Y. The units which can
not be interviewed at the first visit are revisited, and the surveyor obtains some
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information on them. This information allows ranking the non-respondents. This
procedure permits to use a smaller sample size, as RSS is more precise than
SRSWR, for the same error fixed and accepted for deriving the initial sample size.
We will consider the usage of a RSS procedure for sub-sampling s2. We take a
subsample s02(RSS) from s using RSS. That is, we select n02 independent samples of
size n02 = hn2 using SRSWR. The units are ranked accordingly with the variable
closely related with the variable of interest Y collected at the first visit.

3.3.2 The Use of RSS for Subsampling s2

As RSS provides more reliable estimations of the population mean it seems that to
use it for subsampling the non-respondent stratum would provide a better alter-
native than to use again SRSWR.

Y11; Y12. . .;Y1n02
; Y21; Y22. . .; Y2n02

; . . .; Yn021; Yn022. . .; Yn02n02

Take the n02 independent random samples.
They are ranked and we obtain

Yð1:1Þ; Yð2:1Þ. . .; Yðn02:1Þ; Yð1:2Þ;Yð2:2Þ. . .; Yðn02:2Þ; . . .; Yðn02:1Þ; Yðn02:2Þ. . .; Yðn02:n02Þ

where Y(j:t) is the j-th order statistic (os) in the sample of size m of the t-th sample,
j = 1,…,n02, and t = 1,…,n’2. As usual the RSS sample is formed by the n’2 os in
the diagonal. That is the measurements of Y are

Yð1:1Þ; Yð2:2Þ. . .; Yðn02:n02Þ

The estimate of the mean of the non-respondent stratum is made by using the
estimator:

�y02 rssð Þ ¼

Pn02
j¼1

Yðj:jÞ

n02

The behavior of this model is characterized in the following proposition.

Proposition 3.2 Consider that a sample of size n is selected from a finite popu-
lation of size N stratified into a response stratum U1 of size N1 and a non-responses
stratum U2 of size N2

0
If a RSS sample of size n02 is selected among the non-

respondents an unbiased estimator of the population mean lY is s

yðrssÞ ¼
n1

n
�y1 þ

n2

n
�y02 rssð Þ ¼ w1�y1 þ w2�y

0
2 rssð Þ
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and

EVðyðrssÞÞ ¼
r2

Y

n
þ

-r2
Yð2Þ
n
� E

Pn02
j¼1

D2
YðjÞ

t

0
BBBB@

1
CCCCA

where

t ¼

n

W2K
if RHH is used

n2

Hnþ n2
if RS is used

n if RB is used

8>>>>><
>>>>>:

Proof First note that E[Y(j:j) jn2] = l(j), j = 1,…,n02. At this randomization stage
the parameter of interest is the mean of Y in s2. The RSS estimator of the non-
respondents mean is unbiased:

E �y02 rssð Þ

� �
¼ E

Pn02
j¼1

E Yðj:jÞ
� �

n02

0
BBBB@

1
CCCCA ¼ E �y2½ � ¼ lYð2Þ

We may write yðrssÞ ¼ w1�y1 þ w2�y2ð Þ þ w2 �y02 rssð Þ � �y2

� �
:

Its conditional variance is VðyðrssÞ sj Þ ¼
r2

Yð2Þ
n þ w2

2V �y02 rssð Þ � �y2 sj
� �

: We needed

to obtain an explicit expression of the second term in the right-hand side. It is:

V w2 �y02 � �y2
� �

sj
� �

¼ w2
2E ð�y02 rssð Þ � lYð2ÞÞ � ð�y2 � lYð2ÞÞ sj
� �2

¼ w2
2 E ð�y02 rssð Þ � lYð2ÞÞ sj
� �2

þE ð�y2 � lYð2ÞÞ sj
� �2




� 2E ð�y02 rssð Þ � lYð2ÞÞð�y2 � lYð2ÞÞ sj
� ��

The first term of the equation within brackets is equal to

Pn02
j¼1

D2
YðjÞ

n02
¼

Pn02
j¼1
ðlY jð Þ

� lYÞ2

n02
E ð�y02 rssð Þ � lYð2ÞÞ
� �

sj 2¼

Pn02
j¼1

r2
YðjÞ

n02
¼

r2
Yð2Þ
n02
�

Pn02
j¼1

D2
YðjÞ

n02
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where
Then

E E½ð�y02 rssð Þ � lYð2ÞÞ� ð�y2 � lYð2ÞÞ
� �

sj
� �

¼ E ð�y2 � lYð2ÞÞ
� �2

sj
� 	

¼
r2

Yð2Þ
n2

The second term of V w2 �y02 � �y2
� �

sj
� �

is related to the use of SRSWR for
selecting s2 and it is equal to

E ð�y2 � lYð2ÞÞ sj
� �2

¼
r2

Yð2Þ
n2

Hence the counterpart of V w2 �y02 � �y2
� �

sj
� �

is

V w2 �y02 rssð Þ � �y2

� �
sj

� �
¼ w2

2

r2
Yð2ÞðrssÞ

n02
�

r2
Yð2Þ
n2

 !
¼ w2

2

r2
Yð2Þ
n02
�

r2
Yð2Þ
n2
�

Pn02
j¼1

D2
YðjÞ

n02

0
BBBB@

1
CCCCA

ð3:4Þ

Substituting n02 = hn2 we derived that the two first terms are equal to
V w2 �y02 � �y2

� �
sj

� �
and we obtain the stated results. h

The proposed model is more accurate that the use of SRSWR for subsampling
the non-respondents because

E

Pn02
j¼1

D2
YðjÞ

t

0
BBBB@

1
CCCCA� 0:

Computing the involved expectation is rather complicated as the n02 is a random
variable.

It is clear that if the procedure is applied for r RSS samples of size m02,
n02 = rm02, the following corollary is easily derived.

Corollary 3.3 Under the conditions of the previous proposition when n02 = hrm2,
r [ 1, substituting

�y02 rssð Þ ¼

Pr
t¼1

Pm02
j¼1

Yðj:jÞt

rm02
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in

yðrssÞ ¼
n1

n
�y1 þ

n2

n
�y02 rssð Þ ¼ w1�y1 þ w2�y

0
2 rssð Þ

is

EVðyðrssÞÞ ¼
r2

n
þ -r2

2

n
� E

Pn02
j¼1

D2
YðjÞ

tr

0
BBBB@

1
CCCCA;

3.3.3 The Use of the Extreme RSS for Subsampling s2

Extreme RSS has a practical sound basis because the surveyor can be interested
only in the extreme behavior of Y among the non-respondents. In addition, it is
easier to identify them in the first visit as to rank all the units may be subject to
large errors. Some further considerations can be obtained in Samawi-Abu-Dayyeh-
Ahmed (1996):

Considering that n02 is even when we evaluate only the extremes in the sub-
sample among the non-respondents

Y2ðj:eÞ ¼
Y2 j:1ð Þ þ Y2 j:n02ð Þ

2

An estimator of the mean in U2 is:

�y02 rssð Þ ¼

Pn02
j¼1

Y2ðj:eÞ

n02
¼

Y2ð1Þ þ Y2ðn02Þ

2

Hence we have that

Eð�y02 erssð ÞÞ ¼
l2ð1Þ þ l2ðn02Þ

2
¼ l2ðeÞ

For n odd we introduce the variable

Y2ðj:eÞ ¼

Y2ðj:1ÞþY2ðj:n0
2
Þ

2 if j ¼ n02
Y2ðj:1Þ if j\n02 j odd
Y2ðj:n02Þ if j\n02 j even

8><
>:
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and

EðY2ðj:eÞÞ ¼

l2ð1Þþl2ðn0
2
Þ

2 if j ¼ n02
l2ð1Þ if j\n02 j odd
l2ðn02Þ if j\n02 j even

8><
>:

Hence, it is possible using the estimator

�y02 erssð Þ ¼

Pn02
j¼1

Y2ðj:eÞ

n02

and it has the same expectation as in the even case but a different variance.
Previously, in Chap. 2 we have derived that this estimator is biased.
If the distribution is symmetric with respect to lYð2Þ, its bias

Bð�y02 erssð ÞÞ ¼
lYð2Þð1Þ � lYð2Þ

� �
þ lYð2Þðn02Þ � lYð2Þ

� �
2

is equal to zero. Then the symmetry of the distribution plays a role in the mag-
nitude of the bias. The variance of the involved os0s are r2

Yð2Þð1Þ and r2
Yð2Þðn02Þ

. Then

V �y02 erssð Þ

� �
¼

r2
Yð2Þð1Þþr2

Yð2Þðn0
2
Þ

2n02
¼ r2

Yð2Þ
n02
� D2

ðeÞ
2n02

if n02 even

ð2n02�1Þ r2
Yð2Þð1Þþr2

Yð2Þðn0
2
Þ

� �
þ2rð1;nÞ

4n022
¼ ð2n02�1Þðr2

Yð2Þ�D2
ðeÞÞ

4n022
þ rð1;nÞ

n022

if n02 odd

8>>>>><
>>>>>:

D2
eð Þ ¼ D2

Y 2ð Þ 1ð Þ þ D2
Y 2ð Þ n02ð Þ; 2r 1;nð Þ ¼ Cov Y2 1:n02ð Þ; Y2 n02:n02ð Þ

� �

with DY 2ð Þ 1ð Þ ¼ lYð2Þð1Þ � lYð2Þ and DY 2ð Þ n02ð Þ ¼ lYð2Þðn02Þ � lYð2Þ.
We may use the estimator

yðerssÞ ¼ w1�y1 þ w2�y
0
2 erssð Þ ¼ �yþ w2 �y02 erssð Þ � �y2

� �

Its bias is W2B(ERSS). The general expression of the variance is

VðyðerssÞÞ ¼ Vð�y1Þ þ w2
2Eð�y02 erssð Þ � �y2 sj Þ2

Considering the relationships used for deriving the expectation of the condi-
tional variance we have that in the even case
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w2
2

r2
Yð2Þ
n02
�

D2
ðeÞ

2n02

 !
¼ n2

n2

r2
Yð2Þ
h
�

D2
ðeÞ

2h

 !

Hence

EðVðyðerssÞÞÞ ¼
r2

n
þW2

n

r2
Yð2Þ
h
�

D2
ðeÞ

2h

 !
if n02 is even

For the odd case we have

w2
2

ð2n02 � 1Þðr2
Yð2Þ � D2

ðeÞÞ þ 4rð1;nÞ

4n022

 !
¼ 1

n2

ð2n2h� 1Þðr2
Yð2Þ � D2

ðeÞÞ þ 4rð1;nÞ

4h2

 !

Therefore if RHH: h = 1/K, K [ 1 is used

EðVðyðerssÞÞÞ ¼
r2

n
þ

Kð2W2 � KÞðr2
Yð2Þ � D2

ðeÞÞ þ 4K2rð1;nÞ

4n2

When it is considered RS : h ¼ n2
Hnþn2

;H [ 0

w2
2

ð2n02 � 1Þðr2
Yð2Þ � D2

ðeÞÞ þ 4rð1;nÞ

4n022

 !
¼ 1

n2

ð 2n2
2

Hnþn2
� 1Þðr2

Yð2Þ � D2
ðeÞÞ þ 4rð1;nÞ

2n2

Hn + n2

� �2

0
B@

1
CA

This results permit to establish the following proposition.

Proposition 3.4 Consider the use of extreme RSS and

Y2ðj:eÞ ¼

Y2ðj:1ÞþY2ðj:n0
2
Þ

2 if j ¼ n02 and odd or n02 is even
Y2ðj:1Þ if n02 and j\n02 are odd
Y2ðj:n02Þ if n02 is odd and j\n02 is even

8><
>:

yðerssÞ ¼ w1�y1 þ w2�y
0
2ðerssÞ; �y02ðerssÞ ¼

Pn02
j¼1

Y2ðj:eÞ

n02
; n02 ¼ hn2

has bias

Bð�y02 erssð ÞÞ ¼
lYð2Þð1Þ � lYð2Þ

� �
þ lYð2Þðn02Þ � lYð2Þ

� �
2

and expected variance
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EðVðyðerssÞÞÞ ¼
r2

n þ
W2
n

r2
Yð2Þ
h �

D2
ðeÞ

2h

� 	
if n02 is even

r2

n þ
ð2W2h�1Þðr2

Yð2Þ�D2
ðeÞÞþ4rð1;nÞ

4n2h2 if n02 is odd

8><
>:

h

3.3.4 The Use of Median RSS for Subsampling s2

Muttlak (1996) proposed using Median RSS. Let us define an operational variable

Y�2ðj:medÞ ¼

Y
2 j:

n0
2
þ1

2

� � if n02 odd

Y
2 j:

n0
2
2

� � if n02 even j ¼ 1; 2; . . .; n02=2

Y
2 j:

n0
2
þ2

2

� � if n02 even j ¼ n02
2 þ 1; . . .; n02

8>>>>>>><
>>>>>>>:

�y02ðmrssÞ ¼

Pn02
j¼1

Y�2ðj:medÞ

n02

and

E �y02ðmrssÞ

� �
¼

l n00
2
þ1

2

� � if n02 is odd

1
2

l n00
2
2

� � þ l n00
2
2 þ1

� �
0
@

1
A if n02 is even

8>>>><
>>>>:

An estimator of the non-responses based on the subsample is
The variances of the random variables which are

VðY2ðj:mÞÞ ¼

r2

2
n00

2
þ1

2

� � if n02 is odd

r2

2
n0

2
2

� � if n02 is even and j ¼ 1; . . .;
n02
2

r2

2
n0

2
þ2

2

� � if n02 is even and j ¼ n02
2 þ 1; . . .; n02

8>>>>>>>>><
>>>>>>>>>:
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Consider the odd case

Vð�y02ðmrssÞÞ ¼

Pn02
j¼1

VðY2ðj:mÞÞ

n022
¼

r2

2
n0

2
þ1

2

� �
n02

¼ r2
2

n02
�

D2

2
n0

2
þ1

2

� �
n02

In the even case

Vð�y02ðmrssÞÞ ¼

Pn02
j¼1

VðY2ðj:mÞÞ

n022
¼

r2

2
n0

2
2

� � þ r2

2
n0

2
þ2

2

� �
2n02

¼ r2
2

n02
�

D2

2
n0

2
2

� � þ D2

2
n0

2
þ2

2

� �
2n02

¼ r2
2

n02
�

D2
2ðmÞ

2n02

The estimators is biased because

Eð�y02ðmrssÞÞ ¼

l
2

n0
2
þ1

2

� � if n02 is odd

l
2

n0
2
2

� � þ l
2

n0
2
þ2

2

� �
2

if n02 is even

8>>>><
>>>>:

When we deal with distributions symmetric with respect to l2, we may expect
that it will be close to the median. A good example is the normal distribution
where the median and mean coincides. In general the bias is:

ðBðmrssÞÞ ¼

l
2

n0
2
þ1

2

� � if n02 is odd

l
2

n0
2
2

� ��l2

0
@

1
Aþ l

2
n0

2
þ2

2

� ��l2

0
@

1
A

2 if n02 is even

8>>>>><
>>>>>:

The estimator of the overall mean is derived from the general expression. It is

yðmrssÞ ¼ w1�y1 þ w2�y
0
2ðmrssÞ

It is easily derived that its expected variance for the even case is:

EVð y
¼

2ðmrssÞ
Þ ¼ r2

n
þ -r2

2

n
�

E D2
ðmÞ

� �
2t

Then we have proven the following proposition.
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Proposition 3.5 Select an RSS subsample from s02 of size n02 and measure Y�2ðj:medÞ.

The RSS median estimator of the population mean �y02ðMRSSÞ with expected variance

EVð y
¼

2ðmrssÞ
Þ ¼ r2

n
þ -r2

2

n
�

W2E D2
ðmÞ

� �
2t

and expected error

D2
mð Þ ¼

D2

2
n0

2
þ1

2

� � if n02 is odd

D2

2
n0

2
2

� � þ D2

2
n0

2
þ2

2

� � if n02 is even

8>>><
>>>:

where h

Remark 3.6 The median RSS should be preferred to RSS whenever.

E
Xn02
j¼1

D2
2ðjÞ

 !
[ E

D2
2ðmÞ
2

 !

h

3.4 The Estimation of a Difference

Bouza (1983) considered the estimation of the difference of population means with
missing observations. We use the considerations of Pi-Ehr (1971) that the popu-
lation can be stratified as follows U = U1 [U2[U3, Uj\Uj = [,Vi = j’,
j,j’ = 1,2,3.

A SRSWR sample s is selected from U for estimating D = lX -lY. The units in
s can be denoted as s = s1 [s2[s3, sj [\sj’,V i = j’, j,j’ = 1,2,3. The sample size
is |s| = n. The units in s1 give information on X and Y, but we have missing
information of Y those in s2 and in X by the respondents in s3. Without loosing in
generality we may rearrange the units in s and to denote:

s1 ¼ i 2 sj1	 i	 n1f g; =s1= ¼ n1

s2 ¼ 1 2 sjn1 þ 1	 i	 n1 þ n2f g; =s2= ¼ n2

s3 ¼ i 2 sjn1 þ n2 þ 1	 i	 nf g; =s1= ¼ n3

The need of obtaining information from the non-respondents establishes that the
subsamples sj, j = 2,3, should be resampled for obtaining it. This decision is
reasonable when we expect that the means and variances of the variables in the
strata are very different. Denote by s’j , sj the corresponding subsample of size
|s’j| = n’j, j = 2,3. Using the notation of Bouza and Prabhu-Ajgaonkar (1993)
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each subsample st belongs to a stratum Ut, t = 1, 2, 3. The information provided
by s permits to calculate

x1 ¼

Pn1

i¼1
xi

n1
; y1 ¼

Pn1

i¼1
yi

n1
; d1 ¼

Pn1

i¼1
ðxi � yiÞ

n1
¼

Pn1

i¼1
di

n1
; x2 ¼

Pn1þn2

i¼n1þ1
xi

n2
; y3 ¼

Pn
i¼n1þn2þ1

yi

n3

An unbiased estimator of the difference between the population means is

dsrs ¼ x
� � y

�

where

x
� ¼

P
t2f1;2g

ntxt þ n3x03

n
¼
X

t2f1;2g
wtxt þ w3x03

y
� ¼

P
t2f1;3g

ntyt þ n2y02

n
¼
X

t2f1;3g
wtyt þ w3y02

where

x03 ¼

Pn
i¼n1þn2þ1

xi

n03
; y02 ¼

Pn1þn2

i¼n1þ1
yi

n02

and wi ¼
ni

n

The corresponding model is characterized in the following proposition.

Theorem 3.7 (Bouza and Prabhu-Ajgaonkar 1993). Take a SRSWR-sample
selected from U. The units in the stratum U1 report X and Y, the units in U2 only
report X while Y is the variable reported by U3 at the first visit. The estimator

dsrs ¼ x
� � y

�

is unbiased for D and its expected error is

V ¼ V1 ¼
r2

d þ -2r2
Yð2Þ þ -3r2

Xð3Þ
n

Wi ¼
Ni

N
¼ number of units in Ui

N
and N ¼ N1 þ N2 þ N3

and -i, i = 2,3 is the coefficient generated by the subsampling rule. h

Let us take r as fixed, nj = rmj, then the subsampling size among the non-
respondents of stratum Uj. As n’j = rm’j. = hrmj. It makes sense to use as con-
comitant variable X (Y) if j = 2(3). Considering the conditional unbiasedness of
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z0jrss ¼

Pr
t¼1

Pm0j
i¼1

zði:m0jÞt

rm0j
; j ¼ 2ð3Þ; if Z ¼ YðXÞ

Mimicking the structure of dsrs we consider the estimator.

drss ¼ w1d1rss þ w2 x2rss � y02rss

� �
þ w3 x03rss � y3rss

� �
; d1rss ¼

Xm1

i¼1

Xr

t¼1

dði:mÞt
n1

The use of RSS instead of SRSWR was studied by Bouza (2002). The corre-
sponding results are given in the following proposition.

Proposition 3.8 Take a RSS-sample selected from U. The units in the stratum U1

report X and Y, the units in U2 only report X while Y is the variable reported by U3

at the first visit. An unbiased estimator of the difference of the means is

drss ¼ w1d1rss þ w2 x2rss � y02rss

� �
þ w3 x03rss � y3rss

� �
wi ¼

ni

n

and its error is

EV drssjs
� �

¼ r2
d

n
þ -r2

2Y

n
þ -r2

3X

n
� D2

d

n
þW

� 	
;

W ¼ E

Pm2

i¼1
W2D

2
2Yði:m2Þ

tm2
þ

Pm3

i¼1
W3D

2
3Xði:m3Þ

tm3

0
BB@

1
CCA

Proof Take

drss ¼ w1d1rss þ
X3

j¼2

wj xjrss � yjrss

� �
þ w2 x2rss � y02rs

� �
þ w3 x03rss � y3

� �

The sum of the two first terms of drss is equal to drss, hence the conditional

variance with expectation equal to V ¼ V1 ¼
r2

dþ-2r2
Yð2Þþ-3r2

Xð3Þ
n . Let us analyze the

second term.

V y2rss � y02rssjs
� �

¼ E y02rss � y2rssjs
� �2�V y2rssjsð Þ

because

y2rss � l2Y ¼ ðy02rss � y2rssÞ þ ðy2rss � l2YÞ

The cross expectation’s expected value is zero. In this case, the RSS is balanced
and we may express the variance of the os as a function of the variance of Y in U2

and the gains in accuracy measured by the D2
2Y ið Þ ‘s as
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V y2 � y02rssjs
� �

¼ r2
Yð2Þ

1
n02
� 1

n2

� 	
�
Xm2

i¼1

D2
2YðiÞ

n02m2

substituting n02 = hrm2 we obtain:

V y2rss � y02rssjs
� �

¼
r2

Yð2Þ
n2

1� h
h

� 	
�
Xm2

i¼1

D2
2Yði:m2Þ
hmn2

¼ V2

A similar reasoning with the last term yields

V x03rss � y3rssjs
� �

¼
r2

Xð3Þ
n3

1� h
h

� 	
�
Xm2

i¼1

D2
3Xði:m3Þ
hmn3

¼ V3

V drssjs
� �

¼ V1 þ w2
2V2 þ w2

3V3

Now we have that as nj is a Binomial random variable with expectation
nW j = nNj/N

V drssjs
� �

¼ V1 þ w2
2V2 þ w2

3V3

and

EV drssjs
� �

¼ r2
d

n
þ -r2

2Y

n
þ -r2

3X

n
� D2

d

n
þW

� 	

where

W ¼ E

Pm2

i¼1
D2

2Yði:m2Þ

tm2
þ

Pm3

i¼1
D2

3Xði:m3Þ

tm3

0
BB@

1
CCA

h

Remark 3.9 The last term of the expected error is always positive and represents
the gain in accuracy due to RSS. Hence the use of RSS for subsampling the NR
when D is estimated is a better alternative than the SRSWR strategy. h

3.5 Product-Type Estimators

Bouza (2008) analyzed the use of RSS alternatives when a product estimator is
used. The product estimator is defined by

yp ¼
�x�y

lX

46 3 The Non-response Problem: Subsampling Among the Non-respondents



where

z ¼
Pn

i¼1 zj

n
; z ¼ x; y; lX ¼

PN
i¼1 Xj

N

It is closely related to ratio estimators, see Cocrhan (1977), David-Sukhatme
(1974). Its expectation is given by

E yp

� �
¼ E xyð Þ

lXlY
¼ lY þ

rXY

nX

where rXY ¼
PN

i¼1 ðXj � lXÞðYj � lYÞ
N

; lY ¼
PN

i¼1 Xj

N

Hence it has a bias BðypÞ ¼ rXY
nlX

. Its variance is

VðypÞ ¼
r2

Y þ R2r2
X þ 2RrXY

N

where

R ¼ lY

lX
; r2

Z ¼
PN

j¼1 Zj � lZ

� �2

N
; Z ¼ X; Y

A version of it is

yp� ¼
Pn

i¼1 xjyj

nlX

and it has the same bias and variance as yp.
These estimators can be used for deriving the estimation of the mean of the NR

stratum.
Agrawal and Sthapit (1997) derived the exact formulas for the bias and variance

of the product estimator under simple random sampling. Its asymptotic normality
was rigorously established under weak and interpretable regularity conditions on
the finite populations.

Let us consider the separate product estimator

yps ¼
n1y1 þ n2y02p

n
¼ n1y1 þ n2y2

n
þ

n2ðy02p � y2Þ
n

where

y02p ¼
y02x2

lX

The first member at the right-hand side of yps is the mean of Y in s. Hence the
bias of yps depends on the expectation of the last term. The conditional expectation
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of it, for a fixed n02, is equal to the product estimator based on the subsample s2.
Therefore

E
n2ðy02p � y2Þ

n
n02
��� 	

¼ n2y2x2

nlX
� n2y2

n

as

E
n2y2x2

nlX
� n2y2

n
n2j

� 	
¼ n2

n

r2XY

n2lX

� 	
;

where

r2XY ¼
PN2

j¼1 X2j � l2X

� �
Y2j � l2Y

� �
N2

; lZð2Þ ¼
PN2

j¼1 Z2j

N2
; Z ¼ X; Y

Then the bias is equal to

Bps ¼ BðypsÞ ¼
rXY

nlX

Using the results obtained previously we have that under the regularity
condition

R1 :
r2ZY

n02l2YlX
ffi
Pn2

j¼1 y2j � y2

� �
x2j � x2
� �

n02l2YlX

we have that

E E yps n02
��� �

n2j
� �

ffi yþ lY2q2XY C2Y C2X

hn

The variance of yps is obtained by calculating

V E E yps n02; ne

��� �� �� �
þ E V E yps n02; ne

��� �� �� �
þ E E V yps n02; ne

��� �� �� �
Let us compute the first term

V E E yps n02; n2

��� �� �� �
¼ V yþ C2XC2Yl2Y

n

� 	

¼ V yð Þ þ V
C2XC2Yl2Y

#n

� 	
þ 2Cov y;

C2XC2Yl2Y

n

� 	

The first term is the variance of the sample mean in SRSWR

V yð Þ ¼ r2
Y

n

while the second and third ones are equal to zero.
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For the second term we have the expression

E V E yps n02
��� �

n2j
� �� �

¼ E V yþ n2

n
y2p � y2

� �
n2j

� �� �

¼ E
n2

n

� �2
V y2p � y2

� �
n2j

� �� 	

Calculating the conditional variance we obtain

V y2p � y2

� �
n2j

� �
¼ V y2p

� �
n2j

� �
þ V y2ð Þ n2jð Þ

� 2Cov y2p; y2

� �
n2j

� �
The first two terms are easily derived as

V y2p

� �
n2j

� �
ffi r2

2Y þ R2
2r

2
2X þ 2R2r2XY

n2
; V y2ð Þ n2jð Þ ¼ r2

2Y

n2

For computing the third term we relay on the properties of the sampling
moments enounced by David and Sukhatme (1974). This term can be written as

Cov y2p; y2

� �
n2j

� �
¼ E

y2
2x2

lX
n2j

� 	
� lY 2ð Þ þ

lY 2ð Þq2C2XC2Y

n2

� 	
lY 2ð Þ

As

E y2
2x2 n2j

� �
¼ l2

Yð2ÞlXð2Þ þ
2lYð2Þr2XY þ lXr2

Y

n2
þ Oðn�2Þ

we have that

Cov y2p; y2

� �
n2j

� �
ffi

l2
Yð2Þ
lX

lXð2Þ �
q2C2XC2Y

n2

� 	
þ

2lYð2Þr2XYþ
n2lX

þ
r2

Yð2Þ � l2
Yð2Þ

n2

Substituting the terms derived previously we have that

V y2p � y2

� �
n2j

� �
ffi

R2
2r

2
2X þ 2r2XY R2 �

2lY 2ð Þ
lXð2Þ

� �
n2

� 2
l2

Yð2Þ
lX

lX 2ð Þ �
q2C2XC2Y

n2

� 	
�

l2
Yð2Þ
n2

 !

The analyzed variance term is derived by computing the unconditional
expectation
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E
n2

n

� �2
V y2p � y2

� �
n2j

� �� 	
ffi W2 Sð1Þ þ Sð2Þð Þ � 2k2XY

where

Sð1Þ ¼
R2

2r
2
Xð2Þ þ 2r2XY R2 �

2lYð2Þ
l2X

� �
n

Sð2Þ ¼ 2
q2C2XC2Y

nlX
þ

l2
Yð2Þ

nlX

 !

and

k2XY ¼
l2

Yð2ÞlXð2Þ

nlX

 !
nW2

2 þ nW1W2
� �

The third term of the sampling error is

E E V yps n02
��� �

n2j
� �� �

¼ E E
n2

n

� �2
E y02p � y2

� �2
n02
��� 	

n2j
� 	� 	

As y02p � lYð2Þ ¼ y02p � y2

� �
þ y2 � lYð2Þ

� �
is derived that

E y02p � y2

� �2
n02
��� 	

¼ E y2 � lYð2Þ

� �2
n02
��� 	

� E y2 � lYð2Þ

� �2
n02
��� 	

¼
1� hð Þr2

Yð2Þ
hn2

because the expectation of the cross term is equal to zero. As a consequence

E E V yps n02
��� �

n2j
� �� �

¼
W2 1� hð Þr2

Yð2Þ
nh

these results enhance to give a characterization of the proposed estimator.

Proposition 3.9 yps is asymptotically unbiased as an estimator of the population
mean and its variance is

V yps

� �
¼ r2

Y

n
þ

W2rpsð2Þ
n

þ
W2 1� hð Þr2

Yð2Þ
nh

� 2k�2XY
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where

rpsð2Þ ffi R2
2r

2
2X þ 2r2XY R2 �

2lYð2Þ
l2X

� 	
þ 2

q2C2XC2Y

lX
þ

l2
Yð2Þ
lX

 ! !

k�2XY ¼
l2

2ð2ÞYlXð2Þ

lX

 !

if the regularity condition R1 holds.

Proof The first result is derived by fixing that limn!1
r2XY
nlX

� �
¼ 0: The expression

of the variance is obtained by summing V yð Þ; E n2
n

� �2
V y2p � y2

� �
n2j

� �� �
and

E y02p � y2

� �2
n02
��� 	

and doing some algebraic work. h

A combined product estimator of lY for non-responses is the alternative the
estimator

ypc ¼
n1y1 þ n2y02

n

� 	
x

lx

It uses the combination of the subsamples. As stated previously

ypc ¼
n1y1 þ n2y2

n

� 	
x

lx
þ n2ðy02 � y2Þ

n

� 	
x

lx

The first term is the expression of the product estimator in the original sample.
The conditional expectation of the second term is zero. Hence we have that ypc is
asymptotically unbiased because

EEE ypc n02; n2

��� �
¼ E yp

� �
¼ lY þ lY

qCXCY

n

� 	

and the last term (the bias) tends to zero for large sample size values.
The unconditional variance of ypc is given by

V EE ypc n02; n2

��� �� �
¼ V yp

� �
¼ r2

Y þ R2r2
X þ 2RrXY

n
¼ Vð1Þ

It is easily derived that

E VðE ypc n02Þ n2j
��� �� �

¼ EðV yp n2j
� �

¼ 0

because at the second conditional level we are calculating the variance of a
constant.

Let us calculate the last component of the sampling error. Using the result

derived for E n2
n

� �2
V y2p � y2

� �
n2j

� �� �
we have that
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Vðypc n02
�� Þ ¼ n2x

nlx

� 	2

E ðy02 � y2Þ2 n02
��� �

¼ n2x

nlx

� 	2 1� hð Þr2
2Y

hn2

The expectation conditional to a fixed n2 is

E
n1x1 þ n2x2

n

� 	2

n2j
 !

¼ n1

n

� �2
l2

Xð1Þ þ
r2

Xð1Þ
n1

 !
þ n2

n

� �2
l2

Xð2Þ þ
r2

Xð2Þ
n2

 !

þ 2
n1n2

n2

� �
lXð1ÞlXð2Þ

� �

Calculating E n2
i

� �
; I ¼ 1; 2; Eðn1n2Þ, and adding this result to V(1), after

grouping we obtain

V ypc

� �
¼ r2

Y þ R2r2
X þ 2RrXY

n

þ
1� hð Þr2

Yð2Þ

hl2
X

l2
X þ

W1W2 lXð1Þ � lXð2Þ

� �2

n
þ

P2
i¼1

Wir2
XðiÞ

n

0
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Then we have the following Lemma.

Proposition 3.10 The estimator of lY. ypc is asymptotically unbiased and
its variance is given by

V ypc

� �
¼ r2

Y þ R2r2
X þ 2RrXY

n

þ
1� hð Þr2

Yð2Þ

hl2
X

l2
X þ

W1W2 lXð1Þ � lXð2Þ

� �2

n
þ

P2
i¼1

Wir2
XðiÞ

n

0
BB@

1
CCA

h

3.6 The Non-response Problem: Double Sampling

We will consider that double sampling is used for obtaining a sample s* from
U using SRSWR. This is the basic procedure used in textbooks, see Cochran
(1977), Sing Deo (2003), and in many approaches to the study of NR, see for
example Singh-Kumar (2008a), Bouza (2011).: A cheap variable X, correlated
with Y, is measured in the n* units selected. We are able to compute the means of

the first stage and second stage samples of X : �xs� ¼
Pn�

i¼1
xi

n� and �x ¼
Pn

i¼1
xi

n .
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Non-responses are present in the second stage sample and a subsample among
the non-respondents is selected. Singh-Kumar (2009) considered this problem for
simple random sampling. They proposed the family of estimators characterized by

�y� ¼ y
axþ b

a�xs� þ b

� 	a
a�xþ b

a�xs� þ b

� 	b

The sampler fixes the constants a and b as well as a and b. They can be
constants or functions, a different from zero. Taking

e ¼ y� lY

lY
; h ¼ x� lX

lX
; # ¼ xs� � lX

lX
;x ¼ x� lX

lX

Theorem 3.11 (Singh-Kumar 2009). The bias of

�y� ¼ y
axþ b

a�xs� þ b

� 	a
a�xþ b

a�xs� þ b

� 	b

is B �y�ð Þ ¼ lY u1 þ u2ð Þ defining

u1 ¼ c/ aKxy þ
a� 1

2
/


 �
þ b Kxy þ a/þ b� 1

2
/

� 	� 	
c2

x

u2 ¼ ka/ Kx2y þ
a� 1

2
/

� 	
c2

x2

where c ¼ 1
n� 1

n� ; k ¼ W2ðK�1Þ
n ; c2

x ¼
r2

x
l2

x
; c2

x2
¼ r2

x2
l2

x2

;Kxy ¼ lxrxy

lyr2
x
;Kx2y ¼

lx2xrx2y

lyr2
x2

2

x2

rxy ¼ E X � lxð Þ Y � lYð Þ; rx2y ¼ E X � lxð Þ Y � lYð Þ=U2ð Þ

The variance is given by

V y
�� �
¼ l2

Y d1 þ d2ð Þ

defining

d1 ¼ c c2
Y þ aþ bð Þ/ aþ bð Þ/þ 2Kxy

� �
c2

x


 �� �

d2 ¼ k c2
y2
þ a/ða/þ 2Kx2y

� �
c2

x2
Þ þ

c2
y

n�

; c2
y ¼

r2
y

l2
y

; c2
y2
¼

r2
y2

l2
y2

;

h
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We are going to derive the RSS counter part of this family. The first phase
sample is selected using SRSWR and the information on X is used for selecting the
initial sample and to subsample the non-respondents. Our proposal is to use

�y�rss ¼ yrss

axrss þ b

a�xs� þ b

� 	a
a�xrss þ b

a�xs� þ b

� 	b

Hence

erss ¼
yrss � lY

lY
; hrss ¼

xrss � lX

lX
; # ¼ �xs� � lX

lX
;xrss ¼

�xrss � lX

lX

Let us represent the involved estimators by

yrss ¼ lYð1þ erssÞ
xrss ¼ lX 1þ hrssð Þ
�xs� ¼ lX 1þ #ð Þ
�xrss ¼ lXð1þ xrssÞ

Due to the unbiasedness of the estimators E Zð Þ ¼ 0; Z ¼ erss; hrss; #;xrss:
Taking / ¼ alX

alxþb we can rewrite �y�rss as

y
�
rss ¼ lY 1þ erssð Þ 1þ /hrssð Þa 1þ /#ð Þ�a 1þ /xrssð Þb 1þ /#ð Þ�b

h i

Note that

EðerssÞ2 ¼
Eðyrss � lYÞ2

l2
Y

¼
r2

Y
n þ

W2ðK�1Þr2
2Y

n�

l2
Y

�
W2 K � 1ð ÞE

Pm2
i¼1

D2
2Yði:m2Þ

m2

� 	

l2
Y

EðhrssÞ2 ¼
r2

x
n þ

W2ðK�1Þr2
2x

n

l2
x

�
W2 K � 1ð ÞE

Pm2
i¼1

D2
2xði:m2Þ

nm2

� 	

l2
x

Eð#Þ2 ¼ Eð�xs� � lXÞ2

l2
X

¼ r2
X

n�l2
X

EðxrssÞ2 ¼
r2

x
n �

Pm

i¼1
D2

xðiÞ
rn

l2
x

Under the hypothesis j/Zj\ 1, =/Z=\1; Z ¼ erss; hrss; #;xrss, an expansion in
Taylor Series of y

�
rss may be worked out. Grouping conveniently the terms we have

that
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y
�
rss � lY ffi D 1ð Þ

¼ lY erss þ b xrss þ erssxrss � erss#ð Þ þ a/ hrss þ ersshrss � erss#ð Þ



� aþ bð Þ/#þ ab/2 #2 þ #ðxrss þ hrssÞ þ #xrss

� �
� /2 b2#xrss þ a2#hrss

� �

þ b bþ 1ð Þ/2

2
#2 þ x2

rss

� �
þ a aþ 1ð Þ/2

2
#2 þ x2

rss

� ��

Note that the cross products are expressed by the general expression

Xh

i¼1

ZðiÞ � lZðiÞ

� �
Z 0ið Þ � lZ0

ið Þ

� �
¼
Xh

i¼1

ZðiÞ � lZ � lZðiÞ

� �
Z 0ið Þ � lZ 0 � lZ 0

ið Þ

� �

¼
Xh

i¼1

ZðiÞ � lZ

� �
Z 0ið Þ � lZ0

� �
�
Xh

i¼1

ZðiÞDZ 0
ið Þ
þ Z 0ið ÞDZðiÞ � DZðiÞDZ 0ðiÞ

¼ h� 1ð ÞðrZZ 0 þWZZ 0 Þ

On the other hand, the conditional expectations of the RSS estimators are

E �xrss=s�ð Þ ¼ E E xrss=s
� �

=s�
� �

¼ �x�

Using these results we have that

E ersshrssð Þ ¼ rXY þWXY

nlxly
þW2 K � 1ð ÞðrX2Y þWX2YÞ

nlxly

E erss#ð Þ ¼ rXY þWXY

n�lxly

E erssxrssð Þ ¼ rXY þWXY

nlxly

defining

WX2Y ¼ �E

Pm02
i¼1 XðiÞ2DxðiÞ2 þ YðiÞ2DyðiÞ2 � DxðiÞ2DyðiÞ

m2

 !

WXY ¼ �E

Pm
i¼1 XðiÞDxðiÞ þ YðiÞDyðiÞ � DxðiÞDyðiÞ

m

� 	

In addition

E xrsshrssð Þ ¼ r2
xþX

nl2
x

;WX ¼ �
Pm

i¼1 D2
xð8iÞ

r
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E #hrssð Þ ¼ r2
x

n�l2
x

E #xrssð Þ ¼ r2
x

n�l2
x

Substituting in D(1) after some algebraic work we obtain that the bias of �y�rss is

B �y�rss

� �
¼ lY u1rss þ u2rssð Þ

u1rss ¼ c/ a Kxyc2
x þ

XY

nlxly

 !
þ a� 1

2
/ c2

x þ
X

nl2
x

� 	" # 

þ b Kxyc2
x þ

WXY

nlxly
þ a/ c2

x þ
WX

nl2
x

� 	
þ b� 1

2
/c2

x

 !!

Wz2 ¼ �
E

Pm2
i¼1

D2
2zði:m2Þ

m2

� 	

nl2
z

; z ¼ x; y

For a large value of n the bias tends to zero. Then we have proved the first
statement of the following proposition.

Proposition 3.12 The estimator �y�rss ¼ yrss
axrssþb
a�xs�þb

� �a
a�xrssþb
a�xs�þb

� �b
is asymptotically

unbiased in terms of n and its variance is given by

Vðy�rssÞ ¼
r2

Y

n
þ cl2

Y ðaþ bÞ/ð Þ2c2
x þ 2 aþ bð Þ/Kxyc2

x þ
WXY

lxlY

� 	

þ kl2
Y2

r2
Y2

l2
Y2

þWY2

l2
Y2

þ a/ a/
r2

x

l2
x

þWx2

� 	� 	
þ 2ðKx2Y c2

x2
Þ

 

þWX2Y

lxlY
ð1þWx2Þ þ

r2
x2Y

lxlY

	

if =/Z=\1; Z ¼ erss; hrss; #;xrss:

Proof An expansion in Taylor Series of ðy�rss � lYÞ
2 may be worked out. It is

neglecting the terms of order t [ 2,

ðy�rss � lYÞ2 ¼ l2
Yðs1 þ s2 þ s3 þ s4Þ
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where

s1 ¼ e2
rss þ ða2h2

rss þ b2x2
rss þ 2aberssxrssÞ/2

s2 ¼ e2
rss þ ðaþ bÞ2#2/2

s3 ¼ 2/ðaersshrss þ berssxrss

s4 ¼ �2 aþ bð Þð/#erss þ /2ða#erss þ b#xrssÞ

Calculating the expected value and grouping we have that

Eðy�rss � lYÞ2 ¼
r2

Y

n
þ cl2

Y ðaþ bÞ/ð Þ2c2
x þ 2 aþ bð Þ/Kxyc2

x þ
WXY

lxlY

� 	

þ kl2
Y2

r2
Y2

l2
Y2

þWY2

l2
Y2

þ a/ a/
r2

x

l2
x

þWx2

� 	� 	
þ 2ðKx2Yc2

x2
Þ

 

þ WX2Y

lxlY
ð1þWx2Þ þ

r2
x2Y

lxlY

	
h

Remark 3.13 The gain in accuracy due to the use of �y�rss in terms of the variance is

Grss ¼
rx2yþcl2

yWxyþ2Wxy 1þW2ð ÞþkWx2 l2
y

lxly
h

Hence, as V y
�
rss

� �
¼ V y

�� �
þ G the proposed method is more precise if G \ 0.

This result allows deducing the RSS counterparts of different double sampling
estimators of the mean. For example

a; b; a; bð Þ ¼ �1; 0; 1; 0ð Þ ! Khare - Srivastava - Tabasum - Khan estimator 1

a; b; a; bð Þ ¼ 0;�1; 1; 0ð Þ ! Khare - Srivastava - Tabasum - Khan estimator 2

a; b; a; bð Þ ¼ �1;�1; 1; 0ð Þ ! Singh - Kumar ratio estimator

a; b; a; bð Þ ¼ �1; 0; 1; 0ð Þ ! Singh - Kumar product estimator

See Khare and Srivastava (1993), Singh, H. P and Kumar, S (2008a, b, 2009).
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Chapter 4
Imputation of the Missing Data

Abstract We may consider the existence of missing observations as unimportant,
considering that the risk of misunderstanding is negligible. The surveyor assumes
some model that allows adequately explaining the variable of interest. In such
cases, we are able to predict the unknown values and to plug them into some
estimator. Generally, the models used for imputing in sampling are not compli-
cated and rely on simple ideas. Imputation in simple random sampling has been
developed for decades; the literature is increased yearly. Ranked Set Sampling
(RSS) alternatives are presented in this chapter. The efficiency of this approach is
supported for the different models. On some occasions the preference of RSS is
doubtful and needs numerical comparisons.

Keywords Imputation procedures � Ignorable case � Missing at random �
Expected variance � SRS � RSS � Efficiency

Let us act on what we have, since we have not what we wish.
Cardinal Newman

4.1 Introduction

The use of imputation techniques for dealing with missing information is a theme
of actuality. See for example, Chang-Huang (2000a, b, 2001), Rueda and González
(2004), Rueda et al. (2006), Tsukerman (2004), Young-Jae (2005), Liu et al.
(2006), Zou et al. (2002).

Rubin (1976), classified missing data mechanisms into three types.

1. Missing completely at random (MCAR). This mechanism is characterized by a
distribution such that the probability that a value is missing is independent of
values (observed or missing) in the dataset. Hence the observed value of Y is a

C. N. Bouza-Herrera, Handling Missing Data in Ranked Set Sampling,
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-39899-5_4,
� The Author(s) 2013
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random result from the set of observed and unobserved values. That is any
sampled unit from the population is representative and the subsample inter-
viewed is a representative subsample of the selected sample.

2. Missing at random (MAR). The distribution that characterizes it is such that if
Y is missing in a unit and may depend on some observed values in the dataset
but is independent of any missing data. Then the subsample interviewed is not a
representative subsample of those selected. An appropriate analysis needs to be
used to address the bias.

3. Not missing at random (NMAR). If missing data cannot be considered that are
generated neither by MCAR nor by MAR the probability that Y be missing may
be generated by a dependence on missing data. A NMAR mechanism is present
when the missing values are systematically different from observed values,
even after conditioning on observed values. Any statistical procedure is
expected to behave inaccurately if the missing data mechanism is NMAR.

Weighting adjustment is often used to compensate for unit non-response.
Imputation is usually used to compensate for item non-response. Imputation is
widely used in sample surveys to assign values for item non-responses. If the
imputed values are treated as if they were observed, then the estimates of the
variances of the estimator will be increased. If a bias is present, the square of it is
present in the sampling error. When only the responses are used the estimates will
generally be underestimations. Methods for imputing missing data in survey
sampling under various cases of item non-response are of importance.

When the non-response mechanism can be evaluated as MCAR or MAR the
missing data may be classified as ignorable. The term ignorable is used for
establishing that it is not necessary specifying it explicitly. That is, the missing
data mechanism can be ignored. In any case, the statistical analysis should take the
missing data for diminishing the bias of the estimators. Hence, though the missing
data mechanism that is ignorable, the existence of missing data must be taken into
account. Procedures using of the responses and ignoring the missing observations
is commonly identified as ‘‘amputation’’ as a counterpart of ‘‘imputation’’.

If MCAR is the NR mechanism we may consider the so-called complete-case
analysis. It discards the need of considering the subjects missing. It is the simplest
procedure for handling missing data. It is usually done automatically by most
software packages when missing data are present. If the mechanism is not MCAR
it produces biased estimates.

Different imputation procedures are commonly used in practice.
The procedure called mean substitution is typically implemented by replacing a

missing value with the average of the observed values, and analyzing the dataset as
if it were complete. It does not take into account uncertainty in the true but
unknown value. It is used both for MCA and MR responses mechanisms.

Single imputation is a general method of replacing missing values with values
derived ad hoc. The imputed values have the same distribution as the non-missing
data. For each sampled unit having any missing data, a substitution model uses
some available non-missing data of it to form a predictor. Once each missing value
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that imputed the estimator uses the completed dataset. This procedure has the
advantage of replacing missing data with values whose distributions are like the
non-missing ones. For an imputation procedure to be valid, it must take into
account the fact that imputed values are only a guess and not the value that would
have been observed and not the missing values. It is typically used in the presence
of a MAR mechanism.

In the sequel, we present results on imputation for RSS which extend recent
results on imputing under srswr.

4.2 Ignoring the Non-responses in the Estimation
of the Mean

Surveyors have ignored the non-responses since the beginnings of surveying using
random samples. See Chen et al. (2004), Toutenburg et al. (2008), (Bai and Chen
2003).

Consider lz ¼
PN

i¼1
Zi

N; ; and r2
z ; z ¼ X; Y to be the population mean and variance

and q as the correlation coefficient between X and Y. Y is the variable of interest,
which presumably exhibits some missing values pattern, X is a known variable.
X may be known for all the units in the population or, at least, for all the units in
the sample.

Let k be the number of responding units, out of the sampled n units selected
using simple random sampling method with replacement (SRSWR) from a pop-
ulation of size N. The respondents sample is given by:

�ys ¼
1
k

Xk

i¼1

yi;

with variance V ysð Þ ¼
r2

y

k . A MCAR mechanism is assumed and the probability
P obtaining a response at a visit is a constant and E �ykð Þ ¼ ly.

Under this mechanism we can use the mean substitution method. Define

y�i ¼
yi if i responds
�ys if i does not respond

�

and use the sample mean of the defined variables

�y�m ¼
Pn

i¼1 y�i
n

As Eð�ysÞ ¼ ly we have that E �y�m
� �

¼ ly and
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V �y�m
� �

¼
kr2

y þ ðn� kÞ r2
y

n

n2
¼ nþ k n� 1ð Þ

n3
r2

y

Note that when k = n it attains the srswr value
r2

y

n .
The ratio method suggests the naïve point estimator of the population mean

�yk ¼
�ys

�xs
�x;

where �xs ¼ 1
k

Pk
i¼1

xi: is the sample mean of X under the mean method of ignorability

of the missing values and �x ¼
Pn

i¼1
xi

n is the sample mean based on n units with

variance Vð�xÞ ¼ r2
x

n :

As we have a random sample of size k, from standard results of the theory of
ratio estimation, the bias and mean square error (MSE) of �yk are

B �ykð Þ ffi
1
k
� 1

n

� �
C2

x � qCyCx

� �
ly

MSE �ykð Þ ffi
r2

y

k
þ 1

k
� 1

n

� �
R2r2

X � 2RrXY

� �

where CZ ¼ rZ
lZ
; Z ¼ X; Y; R ¼ ly

lx
; q ¼ rXY

rXrY
, and rxy is the covariance between

X and Y. Note that if k ffi n the bias is close to zero.
We have that, �yk is more efficient than �ys if Cx

Cy
\2q for R [ 0 and Cx

Cy
[ 2q for

R\0:

4.3 Ratio Imputation Procedures

4.3.1 SRWR Designs

Kadilar and Cingi (2008) considered the case of missing data in estimating the
population suggesting the following estimators of the population mean of the study
variable Y:

�yKC1 ¼
�ys þ b lx � �xð Þ

�x
lx; �yKC2 ¼

�ys þ b lx � �xsð Þ
�xs

lx; �yKC3 ¼
�ys þ b �x� �xsð Þ

�xs
�x

where b ¼ sxy

s2
x

is the regression coefficient, sxy is the sample covariance between
X and Y, and s2

x is the sample variance of X. Their biases are

Bð�yKC1Þ ffi
C2

xly

n
; Bð�yKC2Þ ffi

C2
xly

k
; Bð�yKC3Þ ffi

1
k
� 1

n

� �
qCx Cyly;
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respectively. The mean square errors of these estimators are

MSE �yKC1ð Þ ffi
r2

y

k
þ R2 � B2ð Þr2

x

n

MSE �yKC2ð Þ ffi 1
k
ðr2

y � Brxy þ R2r2
xÞ

MSE �yKC3ð Þ ffi
r2

y

k
þ 1

k
� 1

n

� �
R2 � B2
� �

r2
x

where B ¼ rxy

r2
x
¼ qry

rx
.

Singh and Horn (2000) suggested a ratio estimator of the population mean in
the form

�ySH ¼ a�ys þ ð1� aÞ�ys�x

�xs

the value of which makes the MSE minimum is a0 ¼ 1� q Cy

CX
. The bias and MSE

of �ySH respectively are

B �ySHð Þ ffi ð1� aÞ 1
k
� 1

n

� �
C2

x � qCyCx

� �
ly;

and

MSEmin �ySHð Þ ffi MSE �ykð Þ �
1
k
� 1

n

� �
1� q

Cy

Cx

� �
lyC2

x

Singh and Deo (2003) considered the estimator

�ySD ¼ �ys
�x

�xs

� �k

;

using k ¼ q Cy

Cx
. The bias and MSE of �ySD, respectively are

B �ySDð Þ ffi 1
k
� 1

n

� �
kðk� 1Þ

2
C2

x � kqCyCx

� �
ly;

and

MSEmin �ySDð Þ ffi MSE �ykð Þ �
1
k
� 1

n

� �
ðB� RÞ2r2

x

Al-Omari and Jaber (2008), Al-Omari et al. (2008), Al-Omari et al. (2009)
considered ratio-type estimators using the knowledge of the first or the third
quartiles of the auxiliary variable X. The suggested estimators had the structure
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�y1qh ¼ �ys
lx þ qh

�xþ qh

� �

where q1 and q3 are the first and third quartiles of the auxiliary variable X. For
simplicity we denote these classes of estimators by the order of the quartile
h ¼ 1; 3. Using Taylor Series approximation, the estimators can be written as

�y1qh ffi �ys � Th �x� lxð Þ þ ThGh �x� lxð Þ2�Gh �x� lxð Þ �y� ly

� �
where Th ¼

ly

lxþqh
;Gh ¼ 1

lxþqh
; h ¼ 1; 3. For the first degree of approximation the

estimator is given by �y1qh ffi �ys � Th �x� lxð Þ. Calculating its expectation is derived
that

Eð�y1qhÞ ffi Eð�ysÞ � Th �x� lxð Þ ¼ ly

Then Bð�y1qhÞ ffi 0: Since the estimator is approximately unbiased the variance
and MSE are approximately equal. As B ¼ rxy

r2
x
¼ qry

rx
, and Cov �x;�ysð Þ ¼ qrx ry

n we

have that

MSE �y1qh

� �
ffi V �ysð Þ þ T2

h V �xð Þ � 2ThCovð�x;�ysÞ ¼
r2

y

k
þ Thr2

xðTh � 2BÞ
n

The second suggested class of estimators is

�y2qh ¼ �y
lx þ qh

�xs þ qh

� �

where h ¼ 1; 3. Using Taylor series approximation this estimator can be expressed
by

�y2qh ffi �y� Th �xs � lxð Þ þ ThGh �xs � lxð Þ2�Gh �xs � lxð Þ �y� ly

� �
and the first degree of approximation the estimator is given by �y2qh ffi �ys�
Th �xs � lxð Þ.

The bias of �y2qh is Bð�y2qhÞ ffi 0, and

MSE �y2qh

� �
ffi V �ysð Þ þ T2

h V �xð Þ � 2ThCovð�x;�ysÞ ¼
r2

y

n
þ T2

h r2
xðTh � 2BÞ

k
� 2ThBr2

x

n

The third class of Bouza and Al-Omari (2013) estimators is

�y3qh ¼ �ys
lx þ qh

�xs þ qh

� �

where h = 1, 3. Using again Taylor Series approximation for the first degree this
estimator is derived

�y3qh ffi �ys � Th �xs � lxð Þ þ ThGh �xs � lxð Þ2�Gh �xs � lxð Þ �ys � ly

� �
;
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Its first degree of approximation is �y3qh ffi �ys � Th �xs � lxð Þ. The bias of this
class of estimators has a similar behavior and Bð�y23Þ ffi 0 the MSE is:

MSE �y3qh

� �
ffi V �ysð Þ þ T2

h V �xsð Þ � 2ThCov �xs;�ysð Þ ¼
r2

y þ T2
h r2

x � 2ThBr2
x

k

The efficiency of the classes of estimators under SRSWR provides an insight for
selecting to use one of them under certain circumstances.

The efficiency of the estimators �ytqh;t ¼ 1; 2; 3; h ¼ 1; 2 is established compar-
ing the corresponding MSE’s.

�y1qh and �y3qh are more efficient than �ys if Th\2B and �y2qh
is more efficient than

�ys if 1
k � 1

n

� �
r2

y þ
r2

x ThðTh�2BÞ
k \0. The condition

1
n

� �
Th Th � 2Bð Þ � 1

k
� 1

n

� �
ðR� 2BÞ\ 0

supports that �y1qh; is more efficient than �yk. The condition

2Thr
2
x

Th

k
� 2B

n

� �
þ 1

k
� 1

n

� �
ð2RBr2

x � R2r2
x � r2

yÞ\0

provides the same conclusion for �y2qh and �y3qh is more efficient when

1
k

� �
Th Th � 2Bð Þ � 1

k
� 1

n

� �
RðR� 2BÞ\0

Therefore, the knowledge of certain parameters allows establishing which
criteria provides more efficiency estimation when compared with �yk.

The efficiency of these classes with respect to Kadilar and Cingi (2008) esti-
mators are fixed similarly.

We have that the estimators of type �y1qh are more efficient than Kadilar and
Cingi (2008) estimators under the following conditions:

• �y1qh is better than �yKC1 if T2
h þ B2 � R2 � 2ThB\0

• �y1qh is better than �yKC2 if 1
n

� �
T2

h � 2ThB
� �

� 1
k

� �
ðB2 � R2Þ\0

• �y1qh is better than �yKC3 if 1
n

� �
T2

h � 2ThB
� �

� 1
k � 1

n

� �
ðB2 � R2Þ\0

For estimators of type �y2qh the conditions of efficiency are

• �y2qh is better than �yKC1 if
T2

h r2
x�r2

y

k þ r2
y�2ThBr2

x�r2
xðR2�B2Þ

n \0

• �y2qh is better than �yKC2 if
ðT2

hþB2�R2Þr2
x�r2

y

k þ r2
y�2ThBr2

x

n \0
• �y2qh is better than �yKC3 if

T2
h r2

x � r2
y

k
þ

r2
y � 2Th Br2

x

n
þ 1

k
� 1

n

� �
ðRþ BÞ2r2

x � 2ðRþ BÞrxy

h i
\0
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The conditions for preferring the estimators of type �y3qh are:

• �y3qh is better than �yKC1 if 1
k

� �
T2

h � 2ThB
� �

� 1
n

� �
ðR2 � B2Þ\0

• �y3qh is better than �yKC2 if T2
h � 2ThB� R2 þ B2\0

• �y3qh is better than �yKC3 if
T2

h�2ThB
k � 1

k � 1
n

� �
R2 � B2
� �

\0

The efficiency with respect to Singh and Horn (2000) and Singh and Deo (2003)
estimators is derived using the fact that the MSE the estimators proposed can be
rewritten as

MSEmin �ySHð Þ ¼ MSEmin �ySDð Þ ffi
r2

y

k
� 1

k
� 1

n

� �
B2r2

x

The efficiency of the quartiles based classes of ratio-type estimators developed
is characterized as follows:

• �y1qh is more efficient than �ySD and �ySH if 1
n

� �
T2

h � 2ThB
� �

� 1
k � 1

n

� �
B2\0

• �y2qh is more efficient than �ySD and �ySH if
•

T2
h r2

x � r2
y

k
þ

r2
y � 2ThBr2

x

n
þ 1

k
� 1

n

� �
1
k
� 1

n

� �
B2r2

x\0

• �y3qh is more efficient than �ySD and �ySH if
T2

h�2ThB
k þ 1

k � 1
n

� �
B2\0

Another class was considered by Bouza and Al-Omari (2011c) exploiting the
fact that the correlation coefficient between X and Y, q

��
is known. They are given

by:

�y1q ¼ �ys
lx þ q
�xþ q

� �
; �y2q ¼ �y

lx þ q
�xs þ q

� �
; �y3q ¼ �ys

lx þ q
�xs þ q

� �

Their Taylor Series approximations are

�y1q ffi �ys � D �x� lxð Þ þ DL �x� lxð Þ2�L �x� lxð Þ �y� ly

� �
�y2q ffi �y� D �xs � lxð Þ þ DL �xs � lxð Þ2�L �xs � lxð Þ �y� ly

� �
�y3q ffi �ys � D �xs � lxð Þ þ DL �xs � lxð Þ2�L �xs � lxð Þ �y� ly

� �
where D ¼ ly

lxþq ; L ¼ 1
lxþq, for the first degree of approximation, the estimator is

given by
�y1q ffi �ys � D �x� lxð Þ;�y2q ffi �y� D �xs � lxð Þ and �y3q ffi �ys � D �xs � lxð Þ. They

are approximately unbiased as D Eð�xÞ � lxð Þ ¼ D Eð�xsÞ � lxð Þ ¼ 0. Their MSE’s
are
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MSE �y1q
� �

ffi r2
Y

k
þ 1

n
Dr2

X D� 2Bð Þ
� �

; B ¼ rXY

r2
X

¼ qrY

rX

MSE �y2q
� �

ffi r2
Y

n
þ D2r2

X

k
� 2DBr2

X

n

MSE �y3q
� �

ffi 1
k

r2
Y þ D2r2

X � 2DBr2
X

� �

Noting that the estimators are approximately unbiased, it is clear that the var-
iance and MSE are equal approximately.

The suggested estimators are easily evaluated considering that

• �y1q and �y3q are more efficient than �ys if D\2B.
• �y2q is more efficient than �ys if 1

k � 1
n

� �
r2

Y þ 1
k r2

XD D� 2Bð Þ
� �

\0.

• �y1q is more efficient than �yk if 1
n D D� 2Bð Þ � 1

k � 1
n

� �
R� 2Bð Þ\0.

• �y2q is more efficient than �yk if 1
k � 1

n

� �
2RBr2

X � R2r2
X � r2

Y

� �
þ D

k � 2B
n

� �
2Dr2

X\0.
• �y3q is more efficient than �yk if 1

k D D� 2Bð Þ � 1
k � 1

n

� �
R R� 2Bð Þ\0.

A comparison with the estimators, proposed by Kadilar and Cingi (2008),
should be based on considering that

• �y1q is more efficient than �yKC1 if D2 þ B2 � R2 � 2DB\0.
• �y1q is more efficient than �yKC2 if 1

n D2 � 2DB
� �

þ 1
k B2 � R2ð Þ\0.

• �y1q is more efficient than �yKC3 if 1
n D2 � 2DB
� �

� 1
k � 1

n

� �
B2 � R2ð Þ\0.

An analysis of �y2q leads to establish as efficiency conditions

• It is more efficient than �yKC1 if
•

1
k

D2r2
X � r2

Y

� �
þ 1

n
r2

Y � 2DBr2
X � r2

X R2 � B2
� �� �

\0:

• It is more efficient than �yKC2 if
•

1
k

D2 þ B2 � R2
� �

r2
X � r2

Y

� �
þ 1

n
r2

Y � 2DBr2
X

� �
\0:

• It is more efficient than �yKC3 if

1
k

D2r2
X � r2

Y

� �
þ 1

n
r2

Y � 2DBr2
X

� �
þ 1

k
� 1

n

� �
Rþ Bð Þ2r2

X � 2 Rþ Bð ÞrXY

h i
\0:
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A similar analysis of �y3q fixes that

• �y3q is more efficient than �yKC1 if 1
k D2 � 2DB
� �

� 1
n R2 � B2ð Þ\0.

• �y3q is more efficient than �yKC2 if D� Bð Þ2�R2\0.
• �y3q is more efficient than �yKC3 if 1

k D2 � 2DB
� �

� 1
k � 1

n

� �
R2 � B2ð Þ\0.

A comparison of the MSE of the estimators of Singh and Horn (2000) and
Singh and Deo (2003) yields that

• �y1q is more efficient than �ySD and �ySH if 1
n D2 � 2DB
� �

þ 1
k � 1

n

� �
B2\0.

• �y2q is more efficient than �ySD and �ySH because

1
k

D2r2
X � r2

Y

� �
þ 1

n
r2

Y � 2DBr2
X

� �
þ 1

k
� 1

n

� �
B2r2

X\0:

• �y3q is more efficient than �ySD and �ySH if 1
k D2 � 2DB
� �

þ 1
k � 1

n

� �
B2\0.

4.3.2 The RSS Design

The case of SRSWR can be extended to RSS using the relationships between the
sample mean and the average of the os’s. The existence of missing observations
establishes that for each order statistic there are only rðjÞ responses, 1� rðjÞ� r.
Hence k ¼

Pm
j¼1 r jð Þ:

The existence of missing observations establishes that, for each os, there are
only rðjÞ responses, 1� rðjÞ� r. Following the line of considering only the ele-
ments that respond can use

�z0 rssð Þ ¼
1
m

Xm

j¼1

PrðjÞ
k zðj:jÞk
rðjÞ

it is an unbiased estimator of the population mean of Z = X, Y because

E �z0 rssð Þ

	 

¼ 1

m

Xm

j¼1

PrðjÞ
k lZðjÞ
rðjÞ ¼ 1

m

Xm

j¼1

lZðjÞ

due to the property of the os, see Takahasi and Wakimoto (1968). As the samples
are independent and they were selected using srswr the variance is given by

V �z0 rssð Þ

	 

¼ 1

m2

Xm

j¼1

PrðjÞ
k r2

zðjÞ

rðjÞ2
¼

r2
z

m2

Xm

j¼1

rðjÞ�1 � 1
m2

Xm

j¼1

D2
zðjÞrðjÞ

�1

using the fact that the variance of an os is r2
ZðjÞ ¼ r2

Z � D2
ZðjÞ; DzðjÞ ¼ lzðjÞ � lz:

Take Z = X, then the counterpart of �yk is �y rssð Þ. Hence the use of RSS is
measured by
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Gð�yk;�y
0
rssð ÞÞ ¼ Vð�ykÞ � V �y0 rssð Þ

	 

¼ r2

Y

1
k
� 1

m2

Xm

j¼1

rðjÞ�1

 !
þ 1

m2

Xm

j¼1

D2
zðjÞrðjÞ

�1

P is the probability of obtaining a unit with full response, accepting that

E rðjÞ�k
	 


ffi E rðjÞð Þ½ ��k we obtain

E V �z0 rssð Þ

	 
	 

ffi

r2
z

nP
� 1

nmP

Xm

j¼1

D2
zðjÞ; n ¼ mr

Then E k�1ð Þ ffi E kð Þ½ ��1¼ nP and the expected gain in accuracy due to the use
of RSS is

EðGð�yk;�y
0
rssð ÞÞÞ ffi

1
nmP

Xm

j¼1

D2
zðjÞ

Samawi and Muttlak (1996) developed estimation of a ratio. The RSS coun-

terpart estimator of the population ratio is rðrssÞ ¼
�yðrssÞ
�xðrssÞ

and the ratio of the estimator

of the mean is �yr rssð Þ ¼ r rssð ÞlX . Take the Taylor approximation

�yrðrssÞ ffi �y rssð Þ � Q1 �xðrssÞ � lX

� �
þ Q2 �xðrssÞ � lX

� �2�Q3 �xðrssÞ � lX

� �
�yðrssÞ � lY

� �
where Q1 ¼ lY

lX
; Q2 ¼ lY

l2
X

and Q3 ¼ 1
lX

. Using the first order approximation

E �yr rssð Þ
� �

ffi E �y rssð Þ
� �

� Q1E �xr rssð Þ � lX

� �
¼ lY

The MSE is approximated considering the Taylor Series with terms Oðn�1Þ by

MSE �yðrssÞ
� �

ffi Var �yðrssÞ
� �

þ Q2
2Var �xðrssÞ

� �
� 2Q1Cov �xðrssÞ;�yðrssÞ

� �
;

where Cov �xðrssÞ;�yðrssÞ
� �

¼ E �xðrssÞ � �X
� �

�yðrssÞ � �Y
� �

:
Bouza and Al-Omari (2011b, c) assumed that the ranking is performed on a

known variable A which allows to rank X and Y. Using RSS and the structure of the
estimators of the classes we have the RSS-classes characterized by

�yKC1ðrssÞ ¼
�y0ðrssÞ þ bðlX � �x0 rssð ÞÞ

�x rssð Þ
lX

�yKC2ðrssÞ ¼
�y0 rssð Þ þ bðlX � �x0 rssð ÞÞ

�x0
rssð Þ

lX

�yKC3ðrssÞ ¼
�y0 rssð Þ þ bð�x rssð Þ � �x0 rssð ÞÞ

�x0
rssð Þ

�x rssð Þ
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Proposition 4.1 The results of the RSS versions of Kadilar and Cingi (2008)
estimators are

1. �yKC1ðrssÞ has the Expected Mean Squared Error (EMSC)

E MSE �yKC1 rssð Þ
� �� �

¼ M �yKC1 rssð Þ
� �

ffi r2
Y

nP
þ ðR

2 � B2Þr2
X

n

� 1
n2

1
P

Xm

j¼1

D2
YðjÞ þ ðR2 � B2Þ

Xm

j¼1

D2
XðjÞ

 !

and its expected bias is EB �yKC1ðrssÞ
� �

ffi lY

nP l2
X

r2
X �

Pm

j¼1
D2

XðjÞ
m

� �
:

2. �yKC2ðrssÞ has the EMSE

M �yKC2ðrssÞ
� �

ffi r2
Y

nP
þ R2r2

x � B2rxy

nP

� 1
nmP

Xm

j¼1

D2
YðjÞ þ R2

Xm

j¼1

D2
XðjÞ �

Xm

j¼1

DX jð ÞYðjÞ

 !

where DX jð ÞYðjÞ ¼ lXðjÞ � lX

	 

lYðjÞ � lY

	 

. The expected bias is

EBð�yKC2ðrssÞÞ ¼
lY

nP l2
X

r2
X �

Pm
j¼1 D2

XðjÞ
m

 !
:

3. �yKC3ðrssÞ has the EMSE

M �yKC3ðrssÞ
� �

ffi r2
Y

nP
þ ðRþ BÞ2r2

x � 2ðRþ bÞrxy

nP
� -

- ¼ 1
nmP

ðRþ BÞ2
Xm

j¼1

D2
XðjÞ � 2ðRþ BÞ

Xm

j¼1

D2
XðjÞ �

Xm

j¼1

DX jð ÞYðjÞ

 !

The expected bias is

EBð�yKC3ðrssÞÞ ¼
lY

nP lX
rxy �

�
Pm

j¼1 DX jð ÞYðjÞ

m

� �
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Proof From the results derived for �yKC1 using the properties of RSS estimators we
have that

M �yKC1ðrssÞ
� �

ffi r2
Y

nP
þ ðR

2 � B2Þr2
X

n
� 1

n2

1
P

Xm

j¼1

D2
YðjÞ þ ðR2 � B2Þ

Xm

j¼1

D2
XðjÞ

 !

As EðC2
xðrssÞÞ ffi 1

nP l2
X

r2
X �

Pm

j¼1
D2

XðjÞ
m

� �
substituting

EB �yKC1ðrssÞ
� �

ffi lY

nP l2
X

r2
X �

Pm
j¼1 D2

XðjÞ
m

 !

Similarly we obtain the results stated for �yKC2ðrssÞ h

and �yKC3ðrssÞ:

From these results are derived that, �yKC1ðrssÞ is more accurate �yKC1 if R2\B2.
For �yKC2ðrssÞ we have that it is more accurate whenever

Xm

j¼1

D2
YðjÞ þ R2

Xm

j¼1

D2
XðjÞ[

Xm

j¼1

DXðjÞDYðjÞ

This relationship is valid generally. In the particular case in which the linear
model Y ¼ BXþ e holds it is reduced to

R2
Xm

j¼1

D2
XðjÞ[

Xm

j¼1

DXðjÞDYðjÞ ffi B
Xm

j¼1

D2
XðjÞ:

�yKC3ðrssÞ is more accurate than its srs counterpart when - [ 0. If Y can be
expressed by Y ¼ BXþ e this condition holds when RðB� 2Þþ
B B2 þ 2RB� 3ð Þ[ 0.

The corresponding RSS version of Singh and Horn (2000) estimator is

�ySHðrssÞ ¼ a�y0 rssð Þ þ
ð1� aÞ�y0 rssð Þ

�x0
rssð Þ

�x rssð Þ

Its behavior is characterized in the following proposition.

Proposition 4.2 The expected bias of �ySHðrssÞ is approximated by

EBð�ySHðrssÞÞ ffi
ð1� a0ÞlY

nP
r2

X

l2
X

� q
rX

lX

rY

lY
�

Pm
j¼1 D2

X jð Þ

ml2
X

þ
Pm

j¼1 D2
Y jð Þ

ml2
Y

� 2

Pm
j¼1 DX jð ÞYðjÞ

mlXlY

 ! !
;

a0 ¼ 1� q
CY

CX
;CZ ¼

rZ

lZ
; Z ¼ X; Y

Its EMSE is Mð�ySHðrssÞÞ ffi M �ykð Þ � -1 þ -2ð Þ
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where

-1 ¼
R2

nmP

Pm
j¼1 D2

X jð Þ

ml2
X

þ
Pm

j¼1 D2
Y jð Þ

ml2
Y

� 2

Pm
j¼1 DX jð ÞYðjÞ

mlXlY

 !

-2 ¼
R2

nP
1� q

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Y �
Pm

j¼1

D2
X jð Þ
m

r2
X �

Pm

j¼1
D2

Y jð Þ
m

vuuut
0
B@

1
CA

0
B@

1
CA r2

X �
Pm

j¼1 D2
X jð Þ

m

 !

Proof It follows using the same procedure as in the previous proposition: setting
the results of the SRSWR case and using the properties of the RSS estimators.h

Note that the first term at the right-hand side of Mð�ySHðrssÞÞ is the error of the
srswr ratio estimator. Under the linear regression model Y ¼ BXþ e we have that

-1 ¼ B2

nmP ðB� 1Þ
Pm

j¼1
D2

X jð Þ
ml2

X

� �
, which is positive if B [ 1. On the other hand

-2 ¼ B2

nP 1� qBð Þ r2
X �

Pm

j¼1
D2

X jð Þ
m

� �
: As qB [ 0 the first within brackets term

cannot be negative, hence the RSS estimator is always more accurate than its srswr
version.

The RSS counterpart of �ySDðrssÞ is

�ySDðrssÞ ¼ �y0 rssð Þ
�x

�xðrssÞ

� �c0

Proposition 4.3 The expected bias of �ySDðrssÞ is

EBð�ySDðrssÞÞ ffi
lY a a� 1ð ÞC2

X � aCXCY

� �
nP

� 1
nP

a a� 1ð Þ
Pm

j¼1 D2
X jð Þ

2l2
X

�
Pm

j¼1 DX jð ÞYðjÞ

lXlY

 !

The approximated expected MSE is given by

Mð�ySDðrssÞÞ ffi M �ykð Þ �
r2

XðB� RÞ2 � R2G KC1;RSSð Þ
nP

 !

� 1
nP

ðB� RÞ2
Pm

j¼1 D2
X jð Þ

m

 !

Proof We omit it for same reasons used in the previous propositions. h

Remark 4.4 Note that again the gain in accuracy may be negative but if Y ¼
BXþ e the proposed estimator is more accurate than �ySD.
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4.4 Imputation in Median RSS

4.4.1 Some Quotations

We will consider the behavior of the RSS median estimator, see Chap. 2. The
srswr model was first proposed by Muttlak (1997). Some other contribution in
median estimstion are Jemain and Al-Omari (2006). For an economy in the
notations we will drop be subindex Y in the notation of the mean and variance
when there is no possible confusion.

The use of subsampling for obtaining information from the non-respondents
was presented in Chap. 3. We will consider the use of imputation procedures.

4.4.2 Mean Imputation

Let us consider that there are non-responses. First, we will study the effect of
imputation of the missing observations.

The first imputation method to be analyzed is the mean substitution. Take n odd

Y�i:medð ÞmIð1Þ ¼
Yði:medÞm if a response is obtained
1

nð1Þ
P

Yði:medÞm wði : mÞ otherwiseas

�

where w(i:m) is a Bernoulli random variable with parameter Q = 1-P, P is the
probability of response. Hence if the number of responses is n(1)

Xn

i¼1

w i : mð Þ ¼ n 2ð Þ:

Proposition 4.5 Taking n(2) = n–n(1), the imputation estimator and
E a=bð Þ ffi E að Þ=E bð Þ

l rssf gmedI 1ð Þ ¼ lI 1oð Þ

¼

Pnð1Þ
i¼1

Pr
m¼1 Y i:medð Þm þ

Pn
i¼1

wði:mÞ
nð1Þ

Pr
m¼1

Pn 1ð Þ
j¼1 Y� j:medð Þm

	 

i

nr

If n is odd:

E lI 1oð Þ

	 

¼ l nþ1

2ð Þ; and E V lI 1oð Þ

	 
	 
 nPþ Q
P

� �
r2
ðnþ1

2 Þ

n2r
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If n is even

lI 1eð Þ ¼

Pn 1ð Þ
i¼1

Pr
m¼1 Y i:medð Þm þ

Pn
i¼1

wððð1Þi:mÞ
n 11ð Þ

Pr
m¼1

Pn 11ð Þ
j¼1 Y� j:medð Þm

	 

i

2nr

þ

Pn
i¼1

wððð2Þi:mÞ
nð11Þ

Pr
m¼1

Pn 11ð Þ
j¼1 Y� j:medð Þm

	 

i

2nr

with expectation E lI 1eð Þ

	 

¼

l n
2ð Þþl n

2þ1ð Þ
2 and expected variance

EVðlI 1eð ÞÞ ffi
1

4n2r
nP 1ð Þ þ Q 1ð Þ

P 1ð Þ

� �
r2

n
2ð Þ þ nP 2ð Þ þ Q 2ð Þ

P 2ð Þ

� �
r2

n
2þ1ð Þ

� �

Accepting that w((h)i:m), h = 1, 2, is a Bernoulli random variable with
parameter Q(h) = 1-P(h), P(h) is the probability of response in the h-th set of
samples.

Proof Consider n odd

E lI 1oð Þ

	 

¼

Pnð1Þ
i¼1

Pr
m¼1 l nþ1

2ð Þ þ
Pnð2Þ

i¼1

Pr
m¼1 l nþ1

2ð Þ
nr

¼ l nþ1
2ð Þ

The conditional variance is

V lI 1oð Þ

	 

¼

Pn 1ð Þ
i¼1

Pr
m¼1 VðY i:medð ÞmÞ þ

Pn
i¼1 w i : mð Þ2

Pr
m¼1 V

Pn 1ð Þ
j¼1

Y j:medð Þm
n 1ð Þ

	 

i

nrð Þ2

¼
rnð1Þr2

ðnþ1
2 Þ
þ

rnð2Þr2

ðnþ1
2 Þ

nð1Þ

nrð Þ2
¼

nð1Þ þ nð2Þ
nð1Þ

	 

r2
ðnþ1

2 Þ

n2r

and, accepting the approximation E a=bð Þ ffi E að Þ=E bð Þ the expected variance is

A ¼ EðV lI 1oð Þ

	 

Þ

nPþ Q
P

� �
r2
ðnþ1

2 Þ

n2r

As in this case, the conditional expectation is not random and the error of the
mean imputation median variance is equal to A.

When n is even we have to consider the no responses obtained in the two sets of
samples.

Y�i:medð ÞmIð1Þ ¼

Yði:medÞm if a response is obtained

1
n 11ð Þ

Pn
j¼1

Y j:medð Þmw 1ð Þj : mð Þ i does not respond and i� n=2

1
nð12Þ

Pn
j¼1

Yðj:medÞmwðð2Þj : mÞ i does not respond and i [ n=2

8>>>><
>>>>:
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Now w((h)i:m), h = 1,2, is a Bernoulli random variable with parameter
Q(h) = 1-P(h), P(h) is the probability of response in the h-th set of samples.
Hence if the number of responses are n(1 h), h = 1, 2, n(1) = n(11) ? n(12), and

Xn

i¼1

w hð Þi : mð Þ ¼ n� n hð Þ1ð Þ ¼ n h2ð Þ:

The imputation estimator proposed in this case is:

l rssf gmedI 1ð Þ ¼ lI 1eð Þ ¼
Pn 1ð Þ

i¼1

Pr
m¼1 Y i:medð Þm þ I 1ð Þ þ I 2ð Þ

2nr

where

I 1ð Þ ¼
Xn

i¼1

wððð1Þi : mÞ
n 11ð Þ

Xr

m¼1

Xn 11ð Þ

j¼1

Y� j:medð Þm

 !

i

I 2ð Þ ¼
Xn

i¼1

wððð2Þi : mÞ
nð11Þ

Xr

m¼1

Xn 11ð Þ

j¼1

Y� j:medð Þm

 !

i

We can divide lI 1eð Þ as

lI 11ð Þ¼

Pn 11ð Þ
i¼1

Pr
m¼1 Y i:medð Þm þ I 1ð Þ

2nr

lI 12ð Þ¼

Pn 12ð Þ
i¼1

Pr
m¼1 Y i:medð Þm þ I 2ð Þ

2nr

The expectations of these terms are

E

Pn 11ð Þ
i¼1

Pr
m¼1 Y i:medð Þm þ I 1ð Þ

nr

 !�
¼
ðn 11ð Þ þ nð21Þl n

2ð Þ
n

¼ 1
2
l n

2ð Þ

E

Pn 12ð Þ
i¼1

Pr
m¼1 Y i:medð Þm þ I 2ð Þ

nr

 !�
¼
ðn 12ð Þ þ nð22Þl n

2þ1ð Þ
n

¼ 1
2
l n

2þ1ð Þ

Hence

E lI 1eð Þ

	 

¼

l n
2ð Þþl n

2þ1ð Þ
2

Consequently, the variance of the conditional expectation is zero. The condi-
tional variances are
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VðlI 11ð ÞÞ ¼
1

n2r
n 11ð Þ þ n 21ð Þ

n 11ð Þ

� �
r2

n
2ð Þ

VðlI 12ð ÞÞ ¼
1

n2r
n 12ð Þ þ nð22Þ

nð12Þ

� �
r2
ðn2þ1Þ

Let us define P(t) as the probability of obtaining a response of the statistics of
order n/2 if t = 1 and P(2) when t = 2 and the order is 1 ? n/2. Then

EVðlI 1eð ÞÞ ffi
1

4n2r
nP 1ð Þ þ Q 1ð Þ

P 1ð Þ

� �
r2

n
2ð Þ þ nP 2ð Þ þ Q 2ð Þ

P 2ð Þ

� �
r2

nþ2
2ð Þ

� �
h

4.4.3 Ratio Imputation

Muttlak (2003) considered the use of quartiles for improving the estimation of the
mean based on median RSS. Bouza and Al-Omari (2013) developed imputation
procedures for the median RSS considering ratio imputation methods. Let lX be
the population mean of the auxiliary variable X, and rx

2 its population variance.
X is a known variable and �x is the mean of it in the sample. Consider the estimator

�yr rssð Þ ¼
�y rssð Þ
�x rssð Þ

lX . A Taylor approximation is

�yrðrssÞ ffi �yðrssÞ � Q1 �xðrssÞ � lX

� �
þ Q2 �xðrssÞ � lX

� �2�Q3 �xðrssÞ � lX

� �
�yðrssÞ � lY

� �
where

Q1 ¼
lY

lX þ qi
; Q2 ¼

lY

lX þ qi

1
lX þ qi

; Q3 ¼
1

lX þ qi
�xðrssÞ � lX

� �
�yðrssÞ � lY

� �

Using these formulae it is derived that
The MSE approximated, considering the Taylor Series with terms O(n-2) as a

good approximation is

MSEð�yðrssÞÞ ffi Varð�yðrssÞÞ þ Q2
2Varð�xðrssÞÞ � 2Q1Covð�xðrssÞ;�yðrssÞÞ

where

Covð�xðrssÞ;�yðrssÞÞ ¼ Eð�xðrssÞ � lXÞð�yðrssÞ � lYÞ

These results are stated as follow:

Theorem 4.6 Bouza and Al-Omari (2013). Take the ratio of the RSS means as

rðrssÞ ¼
�yðrssÞ
�xðrssÞ

and �yrðrssÞ ¼ rðrssÞlX as the estimated mean. Let Q1 and Q3 denote the

known first and third quartiles of the distribution of X, respectively then
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Eð�yrðrssÞÞ ffi lY þ Q2V �xðrssÞ
� �

� Q3Cov �xðrssÞ;�yðrssÞ
� �

and

MSEð�yðrssÞÞ ffi Varð�yðrssÞÞ þ Q2
2Varð�xðrssÞÞ � 2Q1Covð�xðrssÞ;�yðrssÞÞ:h

We will consider the median RSS estimator when there are missing observa-
tions. Define the Bernoulli random variable w*(i:m) with probability of success
P(1). If we obtain a response at the ith-sample in the cycle m then w(i:m) = 1. The
number of responses is

n 1ð Þ ¼
Xn

i¼1

Xr

m¼1

w i : mð Þ ¼
Xn

i¼1

r ið Þ

In the case of full response r(i) = r for any i and n(1) = n.
When non-responses are present we propose to use the ratio of mean of the

responses to Y to the mean in the sample of the auxiliary variable X. r�ðrssÞ ¼
l�YðrssÞ
l�XðrssÞ

and �y rssð ÞmedðRÞ ¼ r�ðrssÞlX are the ratio imputation estimator of the mean.

Proposition 4.7 Take r�ðrssÞ ¼
l�YðrssÞ
l�XðrssÞ

and �y rssð ÞmedðRÞ ¼ r�ðrssÞlX its expected value is

Eð�yðrssÞmedðRÞÞ ffi

lY nþ1
2ð Þ
� Q1EðAð1ÞÞ þ Q2EðAð2ÞÞ � Q3EðAð3ÞÞ if n odd

lY n
2ð Þ
þ lY n

2þ1ð Þ
2

� Q1EðAð1ÞÞ þ Q2EðAð2ÞÞ � Q3EðAð3Þ if n even

8>><
>>:

where

E A 1ð Þð Þ ¼ DX nþ1
2ð Þ; E A 2ð Þð Þ ¼

r2
X nþ1

2ð Þ
n2r2

¼ r2
X

n r
�

nr� 1ð ÞD2
X nþ1

2ð Þ
n r

;

E A 3ð Þð Þ ¼ Cov �x rssð Þ;�y rssð Þ
� �

� lYDX nþ1
2ð Þ þ lXDY nþ1

2ð Þ
	 


and

EV l�YðrssÞ

	 

ffi

r2
Y nþ1

2 :tð Þ
nPð1Þ if n is odd

r2
Y n

2ð Þ
þr2

Y nþ2
2ð Þ

2nPð1Þ if n is even

8>>><
>>>:

Proof The mean of the responses to Y is
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l�YðrssÞ
¼
Pn

i¼1

Pr
m¼1 Y i:medð Þmw i : mð Þ

nð1Þ

Its expectation is given, for n odd, by:

Eðl�YðrssÞ sj Þ ¼

Pn
i¼1

Pr
m¼1 lY nþ1

2ð Þ
w i : mð Þ

nð1Þ ¼ lY nþ1
2ð Þ

and hence it is derived that Eð�yðrssÞmedðRÞÞ ffi lY nþ1
2ð Þ
� Q1EðAð1ÞÞþ

Q2EðAð2ÞÞ � Q3EðAð3ÞÞ:

For n even l�YðrssÞ
¼ 1

2

Pn
2
i¼1

Pr

m¼1
Y

i:n2ð Þmwði:mÞ

nð11Þ þ
Pn

i¼n
2þ1

Pr

m¼1
Y

i:n2þ1ð Þmwði:mÞ

nð12Þ

 !
and

n 1ð Þ ¼
Pn

2
i¼1

Pr
m¼1 w i : mð Þ þ

Pn
i¼n

2þ1

Pr
m¼1 w i : mð Þ ¼ n 11ð Þ þ nð12Þ. Calculat-

ing the expected value we have that EE l�Y rssð Þ
sj

	 

¼

lY n
2ð Þ
þlY n

2þ1ð Þ
2 and we derive that

Eð�yðrssÞmedðRÞÞ ffi
lY n

2ð Þ
þ lY n

2þ1ð Þ
2

� Q1EðAð1ÞÞ þ Q2EðAð2ÞÞ � Q3EðAð3ÞÞ

The conditional variances of the terms of l*Y(rss) for n even are

Vðl�YðrssÞ
sj Þ ¼ 1

2

Xn
2

i¼1

Pr
m¼1 VðY i:n2ð ÞmÞw

2ði : mÞ
n2ð11Þ þ

Xn

i¼n
2þ1

Pr
m¼1 VðY i:n2þ1ð ÞmÞw

2ði : mÞ
n2ð12Þ

0
@

1
A

¼ 1
2

r2
Y n

2ð Þ
Xn

2

i¼1

Pr
m¼1 w2ði : mÞ

n2ð11Þ þ r2
Y n

2þ1ð Þ
Xn

i¼n
2þ1

Pr
m¼1 w2ði : mÞ

n2ð12Þ

0
@

1
A

Then

EðVðl�YðrssÞ
sj ÞÞ ¼

r2
Y n

2ð Þþr2
Y n

2þ1ð Þ
2nPð1Þ

On the other hand

VðEðl�YðrssÞ
sj ÞÞ ¼ 1

4
l2

Y n
2ð Þ

V
Xn

2

i¼1

Pr
m¼1 wði : mÞ

nð11Þ

 !
þ l2

Y n
2þ1ð Þ

V
Xn

i¼n
2þ1

Pr
m¼1 wði : mÞ

nð12Þ

0
@

1
A

0
@

1
A ¼ 0
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Hence

e l�YðrssÞ

	 

¼ EV l�YðrssÞ

	 

ffi

r2
Y nþ1

2 :tð Þ
nPð1Þ if n is odd

r2
Y n

2ð Þ
þr2

Y nþ2
2ð Þ

2nPð1Þ if n is even

8>>>><
>>>>:

h

4.5 Imputation Using Product-Type Estimators

Bouza (2008a) proposed an imputation procedure based on a product-type predictor
of the non-respondents. The prediction of the mean of the non-respondents is:

�y�2p ¼

Pn2

i¼1

xi
lX

�y1

n2

for computing the mean of the missing observations. Mimicking the estimator
developed for subsampling the non-respondent strata we propose

�yIC ¼
n1�y1 þ n2�y�2p

n

Due to the conditional independence between the subsamples we have that

E E �yIC sjð Þð Þ ¼ E
n1l1 þ n2

l1Y l2X
lX

n

 !
¼ W1l1 þW2

l1Yl2X

lX

Its bias is

B �yICð Þ ¼ W2
l2Xl1Y

lX
� l2Y

� �

Hence if the population is balanced in the sense l2X ffi lX . The bias of �y�2p is
equal to the bias obtained when a srswr is the sampling design and the information
provided by s1 is used. Expressing �yIC as

�yIC ¼ �yþ n2

n
�y2p � �y2
� �

is easily derived that

V E yIC sðð Þð Þ ¼ l1Yl2X

lX
� l1Y

� �2W1W2

n
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The conditional variance of the estimator is

V yIC sjð Þ ¼ V y sjð Þ þ n2

n

	 
2
V y�2p � y2 sj
	 


because the cross term is equal to zero. The expectation of the first term is

EðV y sjð ÞÞ ¼ VðIC� 1Þ ¼ E
w2

1r
2
1Y þ w2

2r
2
2Y

n2

� �

¼ ðnW2
1 þW1W2Þr2

1Y þ ðnW2
2 þW1W2Þr2

2Y

n

The expectation of the second term is

V y�2p � y2 sf
	 


¼ V y �2p sf
� �

þ V y2 sfð Þ � 2Cov y�2p; y2 sf
� �

Note that

V y�2p sj
	 


¼

Pn2

i�1
E xiy1ð Þ2 � l1Yl2Xl2Y

n2
2l

2
X

As the subsamples are independent the first term in the numerator is the product
of the expectation and is equal to

gð1Þ ¼
l2

2X þ r2
2X

� �
l2

1Y þ
r2

1Y
n1

	 

n2l2

X

The expectation of the other terms sum -l1Yl2X. Then the second term of (4.4)
is given by

n2
2

n

� �2

V y�2p sj
	 


¼ n2

n2l2
X

� �
l2

1Yr2
2X þ l2

1Yl2
2X þ

l2
2Xr2

1Y

n1
þ l2

1Yr2
2X

n1

� �

Hence the expectation of the second term in the conditional variance V yIC sjð Þ is

VðIC� 2Þ ¼ W2

n l2
X

� �
l2

1Yr2
2X þ l2

1Yl2
2X

� �
þ l2

2Xr2
1Y þ l2

1Yr2
2X

n2l2
X

E
n2

n1

� �

Doing some algebraic arrangements we have that its expected value is

V� ffi ðnW2
1 þW1W2Þr2

1Y þ ðnW2
2 þW1W2Þr2

2Y

n
þW2ðl2

1Yr2
2X þ l2

1Yl2
2XÞ

nl2
X

þ
W2 l2

1Xr2
1Y þ l1Yr2

2X

� �
n2W1l2

X
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The expected variance second term of the srswr mean of the non-respondent
subsample is equal to V�� ¼ Eðn2r2

2=n2Þ ¼ W2r2
2=n.

The development of the covariance term leads to accept that it is equal to zero.
Then we can state now the following Lemma.

Proposition 4.8 The estimator yIC is equivalent to y1 if the first order population
balancedness l2X ffi lX . holds and its variance is approximately equal to

VIC ¼
l2

2Xl2
1Y

lX
� l1Y

� �
W1W2

n

� �

þ ðnW2
1 þW1W2Þr2

1Y þ ðnW2
2 þ ðW1 þ 1ÞWÞr2

2Y

n
þW2ðl2

1Yr2
2X þ l2

1Yl2
2XÞ

nl2
X

when n!1 and the second order regularity condition E nt
2=nq

1

� �
ffi

Eðnt
2=E =nq

1

� �
; t ¼ 1; . . .4; h ¼ 1; . . .; 4 is satisfied.

Proof The first result is obtained by using the balance condition posed and sim-
plifying the derived bias.

Take

V E yIC sjð Þð Þ þ V�

Assuming that E nt
2=nq

1

� �
ffi Eðnt

2=E =nq
1

� �
; t ¼ 1; . . .4; h ¼ 1; . . .; 4 holds that

we have for n sufficiently large for accepting the terms of order O(n-2) in the
variance are negligible and we have the stated result. h

In many occasions the interest of the results is not only to estimate the mean but
to predict the response of the individual non-responses. The estimator proposed is
not longer a solution. Proposed the use of a ratio imputation method for the
missing values of the variable Y in the non-response item ‘i’:

yiI ¼
y1

x1

� �
xi

Liu et al. (2006) proposed using

yiII ¼
1
n1

Xn1

j¼1

yj

xj

 !
xi

We will use the auxiliary information provided by X using the product esti-
mation principle. The result is the imputed value

y��i ¼
y1x1

lX
xi

for the missing observation i. Its expectation is E y��i sj
� �

¼ r1XYx1
n1
þ l1Xl1Y

	 

l2X
lX

.
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Hence if the condition C nð Þ : E nt
2=nq

1

� �
ffi Eðnt

2=E =nq
1

� �
; t ¼ 1; . . .4; h ¼

1; . . .; 4 is accepted the mean of the imputed values has as an approximated
expected value

EE

Pn2

i¼1
y��i

n2
sj

0
BB@

1
CCA � r1XYx1

nW1
þ l1Xl1Y

� �
l2X

lX

For improving the simplicity in the reasoning let us consider the estimator of lY

yIS ¼
n1y1 þ n2y��2p

n

using the expression

yIS ¼ yþ
n2ðy��2p � y2Þ

n

Its conditional mean is given by

EðyIS sÞj ¼ w1l1Y þ w2l2Y

n
þ

n2
l2Xr1XY

n1lX
þ l1Xl1Yl2X

lX
� l2X

	 

n

Calculating the expected value of this last expression we have that

E EðyIS sÞjð Þ ¼ lY þW2
l1Xl1Yl2X

lX
� l2X

� �
þ l2Xr1XY

nlX
E

n2

n1

� �

The two last terms are equal to the bias of yIS. Note that that it is considerably
larger than the bias of the combined product estimator. If C(n) is accepted we have
an approximation to the expectation of yIS given by

E EðyIS sÞjð Þ � lY þW2
l1Xl1Yl2X

lX
� l2X

� �
þW2l2Xr1XY

nW1lX

It is also larger than the bias of yIC.
The calculation of error of the imputed mean using the separated principle is

very cumbersome. We will give the main results in the sequel.
Accepting that C(n) is valid

V E yIS sjð Þð Þ ffi
W1W2 l2

1Y þ l2
2Y

� �
n

þ l2Xr1XY

nlX

� �2

¼ Vð1IPSÞ

Take

V yIS sjð Þ ¼ V y sjð Þ þ n2

n

	 
2
V y��2P � y2 sj
� �

þ 2
n2

n

	 

Cov y; y��2P � y2 sj

� �� �
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The first term is equal to zero and

V2P sj ¼ V ðy��2P � y2 sj Þ
� �

¼ Eðy��2PjsÞ
2Eðy2 sj Þ2 � 2Eðy��2Py2 sj Þ � Eðy��2P � y2 sj Þ

� �2

We computed the terns and arranged the similar terms. Afterwards the
unconditional expectation was calculated. Assuming that the regularity conditions
C(n) and C Wð Þ : Wt

2 ffi 0, for t C 3 hold we have that

EV2P sj ffi Vð1psÞ þ Vð2psÞ þ Vð3psÞ þ Vð4psÞ ¼ Vð2IPSÞ

where

Vð1psÞ ffi W2 2l1Xl1Yl2Xl2Y þ l1Xl1Yl2XlY þ
r2

2X

n
þ l1Xl1Yr2XY

nlX

� �

Vð2psÞ ffi W2
2

l1Xl1Yl2X

lX

� �2

þW1l2Y
2 � 2ðl1Xl1Y þ l1Xl1Yl2XlY

nW1lX

 !

Vð3psÞ ffi r1XYl21Y

lX

� �2

þ 2W2r1XYl1Xl1Yl2
2X

nw1l2
X

Vð4psÞ ffi W1 r1XY þ l1Xl1Yl2Xð Þ
nlX

þ l1Xl1Yl2Xl2Y

nlX

� �

Let us fixe the behavior of the separate imputation product estimator.

Proposition 4.9 The estimator yIS is biased and y1 is preferred in terms of the bias
and variance.

Proof Comparing the biases the first affirmation is evident. On the other hand, as
the approximate variance of yIS is V(ISP) = V(1IPS) ? V(2IPS), the second result
is obtained because it is larger than the variance of y1. h

4.6 Imputation in LRSS

4.6.1 Modeling the Non-responses

Al-Nasser (2007) considered that in common practice, some of the units cannot be
measured. Assume that the non responses are generated at random (MAR mech-
anism). For 1 B i B k our information allows to compute

Tðkþ1Þ ¼
Xk

i¼1

Xr

j¼1

Yi kþ1ð Þjaði; jÞ

where

a i; jð Þ ¼ 1 if a response is obtained for the unit i at the cycle j
0 if not

�
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is a Bernoulli random variable with parameter W.

The number of responses of the corresponding units is r 1jkð Þ ¼Pk
i¼1

Pr
j¼1 aði; jÞ and r� 1jkð Þ ¼ r � r 1jkð Þ is the number of missing responses.

4.6.2 The Mean Substitution

Under this model and the use of the imputations by the mean substitution method,
we redefine the measurements for 1 B i B k as

Y�i kþ1ð Þj ¼
Yi kþ1ð Þj if a response is obtained for i� th ordered unit at cycle j

Tðkþ1Þ
rðijkÞ if non response is obtained for the i� th ordered unit at cycle j

8<
:

and r ijkð Þ as the number of responding units associated to the i-th os.
For k þ 1�m� k � 1

Y�i ið Þj ¼
Yi ið Þj if a response is obtained for i-th ordered unit at cycle j

TðiÞ
rð2jkÞ if non response is obtained for the i-th ordered unit at cycle j

8<
:

TðiÞ ¼
Xr

j¼1

Yi ið Þjaði; jÞ

In this case r 2jkð Þ ¼
Pm�k�1

i¼kþ1

Pr
j¼1 aði; jÞ and we have r� 2jkð Þ ¼ r � r 1jkð Þ non

responses.
In the third set of units we define

Y�i m�kð Þj ¼
Yi m�kð Þj if a response is obtained for i� th ordered unit at cycle j

Tðm�kÞ
rð3jkÞ if non response is obtained for the i� th ordered unit at cycle j

8<
:

where rð3jkÞ is the number of responses and r�ð3jkÞ ¼ r � rð3jkÞ of non responses
and

Tðm�kÞ ¼
Xk

i¼1

Xr

j¼1
Yi m�kð Þjaði; jÞ
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Proposition 4.11 Bouza (2012): Take

�yLRSSðMÞ ¼
Pr

j¼1

Pk

i¼1
Y�iðkþ1Þjþ

Pm�k

i¼kþ1
Y�iðiÞjþ

Pm

i¼m�kþ1
Y�iðm�kÞj

	 

mr ¼ T 1ð ÞþT 2ð Þ�Tð3Þ

mr its
expectation is

Eð�yLRSSðMÞÞ ¼
k l kþ1ð Þ þ l m�kð Þ

h i
þ
Pm�k

i¼kþ1 lðiÞ

m

Its variance is given by

V �yLRSSðMÞ
� �

¼
Pk

i¼1 r2
ðkþ1Þ r 1jkð Þ þ r�ð1jkÞ

rð1jkÞ

	 

þ
Pm�k

i¼kþ1 r2
ðiÞ r 2jkð Þ þ 1

r�ð2jkÞ

	 

þ
Pk

i¼1 r2
ðm�kÞ r 3jkð Þ þ r�ð3jkÞ

rð3jkÞ

	 

ðmrÞ2

Proof The expectations with respect to RSS procedure are

E T 1ð Þð Þ ¼
Xk

i¼1

X
j2sð1;RÞ lðkþ1Þ þ

X
j2sð2;NRÞ lðkþ1Þ

	 

¼ krlðkþ1Þ

E T 2ð Þð Þ ¼
Xm�k

i¼kþ1

X
j2sð2;RÞ lðiÞ þ

X
j2sð2;NRÞ lðiÞ

	 

¼
Xm�k

i¼kþ1
rl ið Þ

E T 3ð Þð Þ ¼
Xm

i¼m�k�1

X
j2sð3;RÞ lðm�kÞ þ

X
j2sð3;NRÞ lðm�kÞ

	 

¼ krlðm�kÞ

Then we have that Eð�yLRSSðMÞÞ ¼
k l kþ1ð Þþl m�kð Þ½ �þ

Pm�k

i¼kþ1
lðiÞ

m .
Let us consider the conditional variance of this estimator. Due to the

independence

V T 1ð Þð Þ ¼
Xk

i¼1

X
j2sð1;RÞ r

2
ðkþ1Þ þ

X
j2sð2;NRÞ

r2
ðkþ1Þ

rð1jkÞ

 !
¼
Xk

i¼1
r2
ðkþ1Þ r 1jkð Þ þ r�ð1jkÞ

rð1jkÞ

� �

V T 2ð Þð Þ ¼
Xm�k

i¼kþ1

X
j2sð2;RÞ r

2
ðiÞ þ

X
j2sð2;NRÞ

r ið Þr2
ðiÞ

r�ð2jkÞð Þ2

 !
¼
Xm�k

i¼kþ1
r2
ðiÞ r 2jkð Þ þ 1

r�ð2jkÞ

� �

V T 3ð Þð Þ ¼
Xm

i¼m�k�1

X
j2sð3;RÞ r

2
ðm�kÞ þ

X
j2sð3;NRÞ

r2
ðm�kÞ

rð3jkÞ

 !
¼
Xk

i¼1
r2
ðm�kÞ r 3jkð Þ þ r�ð3jkÞ

rð3jkÞ

� �

Hence

V �yLRSSðMÞ
� �

¼
Pk

i¼1 r2
ðkþ1Þ r 1jkð Þ þ r�ð1jkÞ

rð1jkÞ

	 

þ
Pm�k

i¼kþ1 r2
ðiÞ r 2jkð Þ þ 1

r�ð2jkÞ

	 

þ
Pk

i¼1 r2
ðm�kÞ r 3jkð Þ þ r�ð3jkÞ

rð3jkÞ

	 

ðmrÞ2

Remark 4.12 Our proposal leads to an estimator which is unbiased if the distri-
bution is symmetric.

This result fixes that VðEð�yLRSSðMÞÞ ¼ 0.
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Substituting the os0s variances in this expression the unconditional variance can
be written as

V �yLRSSðMÞ
� �

¼ r2

mr
� b

taking b ¼ B 1ð Þ þ B 2ð Þ þ B 3ð Þ where B 1ð Þ ¼
kD2

kþ1ð Þ r 1jkð Þþr� 1jkð Þ
r 1jkð Þ

	 

mrð Þ2 , B 2ð Þ ¼Pk

i¼1
þ
Pm�k

i¼kþ1
D2

ið Þ r 2jkð Þþ 1
r� 2jkð Þ

	 

mrð Þ2 and B 3ð Þ ¼

D2
ðm�kÞ r 3jkð Þþr�ð3jkÞ

rð3jkÞ

	 

mrð Þ2 :.

Remark 4.13 Note that if for t = 1, 2, 3 we have r tjkð Þ þ r� tjkð Þ
r tjkð Þ

	 

¼ r then

V �yLRSSðMÞ
� �

¼ V �yLRSSð Þ which holds when there are not NR.

4.6.3 Ratio Imputation

Let us consider the ratio imputation method. Take X as the auxiliary variable used
for ranking Y and X as its population mean. The proposed L-RSS ratio is

R LRSSð Þ ¼
Pr

j¼1

Pk
i¼1 Yiðkþ1Þj þ

Pm�k
i¼kþ1 YiðiÞj þ

Pm
i¼m�kþ1 Yiðm�kÞj

	 

Pr

j¼1

Pk
i¼1 Xiðkþ1Þj þ

Pm�k
i¼kþ1 XiðiÞj þ

Pm
i¼m�kþ1 Xiðm�kÞj

	 
 ¼ tðYÞ
tðXÞ

The estimation of the mean of Y based on this ratio is given by

�yRðLRSSÞ ¼ �XR(LRSS)

Following the usual approach used to analyze the ratio estimation defining
tðZÞ
mr ¼ zðLRSSÞ and R ¼ l=�X

R LRSSð Þ ¼ Rþ �yðLRSSÞ � R�xðLRSSÞ
�X

1� �xðLRSSÞ � �X
�X

� �

Taking DX jð Þ ¼ �XðjÞ � �X we have that

A LRSSð Þ ¼ E �y LRSSð Þ � R�x LRSSð Þð Þ

¼
k D kþ1ð Þ � RDX kþ1ð Þ
� �

þ D m�kð Þ � RDX m�kð Þ
� �� �

þ
Pm�k

i¼kþ1ðDðiÞ � R� RDX ið ÞÞ
mr

Using the Taylor Series expansion the bias of this estimator is approximately

Bð�y LRSSð ÞÞ ffi A LRSSð Þ þ B LRSSð Þ þ C LRSSð Þ

B LRSSð Þ ¼
Rð r2

X
mrþ k

m2r ½D
2
X kþ1ð Þ þ D2

X m�k�1ð Þ� þ 1
m2r

Pm�k
i¼kþ1 D2

X ið ÞÞ
�X2

¼ RVð�xLRSSÞ
�X2
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C LRSSð Þ ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð�xLRSSÞVð�yLRSSÞ

p
�X2

Therefore, as E �yRðLRSSÞ
� �

ffi lþ �XB yðLRSSÞð Þ we have that �yRðLRSSÞ is ap-
proximatlely unbiased whenever the sample size n ¼ nr!1. Using the same-
Taylor’s development

Vð�yRðLRSSÞÞ ¼ Vð�yðLRSSÞÞ þ R2Vð�xðLRSSÞÞ � 2qR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð�yðLRSSÞVð�xðLRSSÞ

q

When non response are present we may impute the values of Y in the non
respondents by

YRðiÞ ¼ �y1
rðiÞXðiÞ

�x1

taking for z = x, y, n = mr

�z1 ¼
Pk

i¼1

Pr
j¼1 Zi kþ1ð Þja i; jð Þþ

Pm�k
i¼kþ1

Pr
j¼1 Zi ið Þja i; jð Þþ

Pm
i¼m�kþ1

Pr
j¼1 Zi m�kð Þja i; jð ÞPm

i¼1

Pr
j¼1 a i; jð Þ

r ið Þ ¼
Xr

j¼1
a i; jð Þ; n1 ¼

Xm

i¼1
r ið Þ; n2 ¼ n� n1

Its conditional expectation and variance are

Eð�z1Þ ¼
k½rðk þ 1Þl kþ1ð Þ þ rðm� kÞl m�kð Þ� þ

Pm�k
i¼kþ1 r ið Þl ið Þ

n1

Vð�z1Þ ¼
kðrðk þ 1Þr2

kþ1ð Þ þ rðm� kÞr2
kþ1ð Þ� þ

Pm�k
i¼kþ1 rðiÞr2

ðiÞ

n2
1

¼
r2

zð1Þ

n2
1

We have obtained basic results for proving the following proposition.

Proposition 4.14 Take the RSS alternative to the estimator

�yLRSS Rð Þ ¼ �y1
n1�x1 þ n2 �X

n�x1

� 


Converges to the population mean and its error is

E �yLRSS Rð Þ � l
� �2
	 


ffiE � ey LRSS1ð ÞÞ �
nlexðLRSS1ÞeyðLRSS1Þ

n1X

0
@

1
A

¼ 1
#1

r2

mr
þ k

m2r
½D2
ðkþ1Þ þ D2

ðm�k�1Þ� þ
1

m2r

Xm�k

i¼kþ1
D2
ðiÞ

� �

� 2 � #1Eðn=n1Þqrxð1Þryð1Þ
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Proof Using the previous results note that the unconditional expectations of the
deviations are

E ex LRSS2ð Þ
� �

¼ E �x2 � �Xð Þð Þ ffi
kr� 1jkð ÞDX kþ1ð Þ þ

Pm�k
i¼kþ1 r� 2jkð ÞDX ið Þ þ kr� 3jkð ÞDX m�kð Þ

n2
¼ �eð2; xÞ

n2

E ey LRSSð Þ
� �

¼ E �y1 � lð Þð Þ ffi
kr 1jkð ÞD kþ1ð Þ þ

Pm�k
i¼kþ1 r 2jkð ÞD ið Þ þ kr 3jkð ÞD m�kð Þ

n1
¼ �eð1; yÞ

n1

E ex LRSS1ð Þ
� �

¼ E �x1 � �Xð Þð Þ ffi
kr 1jkð ÞDX kþ1ð Þ þ

Pm�k
i¼kþ1 r 2jkð ÞDX ið Þ þ kr 3jkð ÞDX m�kð Þ

n1
¼ �eð1; xÞ

n1

Developing the Taylor Series and retaining the terms or order O (h-2) and after
some algebraic work we obtain that

EE �yLRSS Rð Þ
� �

ffi EE ey LRSSð Þ
� �

�REE n2exðLRSS1Þ
� �

� 1
n�X

EE n2ey LRSSð Þex LRSS1ð Þ
� �

� REEðn2e
2
xðLRSS1Þ

	 
	 


¼ �e 1;yð ÞE n�1
1

� �
�R�e 1;xð ÞE n2

n1

� �
�Eðn2=n1Þqrxð1Þryð1Þ

Note that they are random variables because they depend of the number of
responses. We denote

E n�1
1

� �
¼ #�1

1 ;E
n2

n1

� �
¼ #12

The approximate variance is obtained developing the Taylor Series. The result
is

E �yLRSS Rð Þ � l
� �2
	 


ffiE � ey LRSS1ð ÞÞ �
nlexðLRSS1ÞeyðLRSS1Þ

n1X

0
@

1
A

¼ 1
#1

r2

mr
þ k

m2r
½D2
ðkþ1Þ þ D2

ðm�k�1Þ� þ
1

m2r

Xm�k

i¼kþ1
D2
ðiÞ

� �

� 2 � #1Eðn=n1Þqrxð1Þryð1Þ
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Chapter 5
Some Numerical Studies of the Behavior
of RSS

Abstract The superiority of Ranked Set Sampling (RSS) models is measured by
the comparison of the Mean Square Errors of the models with respect to their
alternatives. The expressions support general evaluations of the gains in accuracy
but their values depend on the underlying distribution or the characteristics of the
studied population. We present some numerical studies for illustrating the
behavior of RSS strategies.

Keywords Non-responses � Imputation � Randomized responses � Monte carlo
simulation

Numbers speak all the languages.
Cuban Version of a Congo Proverb

5.1 Introduction

The selection of a certain RSS model is related to the gain in accuracy due to its
use. This accuracy usually is measured by the difference between the mean
squared error (MSE) of a RSS estimator and alternative ones. Sometimes the
evaluation is more informative when we use a relative precision measure, as the
ratio of the MSE0s, a measure of efficiency, or the ratio of the difference between
of the alternative0s MSE0s and the RSS MSE, a measure of the relative gain in
precision. In some cases there is not a clear gain in accuracy and it is needed to
analyze the behavior of the method through numerical experimentations.

We will present some numerical experimentations developed with the aims of
fixing the behavior of some RSS strategies through real life data and/or by
developing Monte Carlo experiments. The behavior is measured by some relative
precision measure or by evaluating the mean difference between the true values of
the parameter and the estimations, computed from the results obtained in the

C. N. Bouza-Herrera, Handling Missing Data in Ranked Set Sampling,
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-39899-5_5,
� The Author(s) 2013
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experiments. Usually a relative measure is considered. Bootstrap methodology,
Efron (1979), Babu and Singh (1983), Parr (1983), is usually used for deriving
inferences. Some particular procedures are developed and used in the simulations.
The experiments, to be presented, were conducted in our personal studies of the
models.

We will use the following data bases repeatedly:

B1. Sells in supermarkets, Castro (2000). They were obtained from the study of
two supermarkets developed in Xalapa, Mexico.

B2. Infestation. The data used by Bouza and Schubert (Bouza Herrera and
Schubert 2003) on infestation levels in sugar cane plantations were used.
Y = number of adult insects, X = number of eggs.

B3. Diminish in the area affected by psoriasis. The data were obtained in a
research reported by Viada et. al. (2004). Y = affected area in moment 2,
X = initial area.

B4. Blood Analysis, Castro (2000). Y = contents of hemoglobin, X = level of
leucocytes, developed in Veracruz, Mexico in 1998.

5.2 Studies of Some Estimators in RSS

5.2.1 Antecedents

Chapter 2 has presented some popular RSS estimators. They were characterized
theoretically. In this section we present some numerical studies developed for
obtaining more insight into the behavior of the estimators.

A series of real life data bases are used in the studies. The usual procedure was
to select samples form the data base and compare the estimators, computing the
mean absolute deviation (AD) of the estimates with respect tot the true parameter.
Some studies used a relative measure defined by dividing AD by the population
parameter.

The behavior for certain distribution functions is analyzed in some cases.
Each section will present the study of the estimators.

5.2.2 Analysis of a Monte Carlo Experiment of the Behavior
of the Estimator of the Difference of Means

We will analyze the accuracy of the proposed RSS sampling strategies for esti-
mating the difference of means. See Bouza (2001b, 2002b). The data used were
obtained from a national inquiry developed for determining the effect of AcM
murino of isotope IgG2a. It was developed by Centro de Inmunología Molecular of
Cuba the researchers aimed to estimate the diminish of the area affected by
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psoriasis. A sample of 200 patients was selected and a longitudinal survey was
developed, the patients were evaluated in 13 occasions, see Viada et al. (2004) for
details. The index called PASI (Psoriasis Severity Index) is, see Laupracis et al.
(1988), was determined in each visit. We considered:

X = Value of the index at the first visit, Y = value of the index at the end of the
treatment.

The set of measurements of PASI constituted an artificial population of the data
base B3. It was partitioned using the non-responses at the second (U2) and third
visit (U3). We selected a sample from s and the subsamples were determined by
classifying a selected patient in U1 if he/she assisted to the evaluation in occasions
1, 2 and 3, in U2 if failed the second visit and in U3 if failed the third one. The last
evaluation was made for all the patients.

One hundred samples were generated and were considered as sample fractions
0.10, 0.20 and 0.50 using SRSWR and RSS. D was computed and estimated using
dsrs and drss:

Gb ¼
X100

t¼1

db � Dj jt
100D

b ¼ srs, rss

was used for measuring the behavior of the alternative estimators.
The results appear in Table 5.1 for Kj = K = 2, j = 2, 3. They sustain that RSS

provided more accurate estimations than SRSWR were expected. These results
give an idea of how large the gains can be. They are increased with the increase in
the sample fractions. A similar result is expected for other sets of values of the sub-
sampling fractions.

5.2.3 Numerical Study of Ratio Type Estimators

Some relevant papers in RSS ratio estimation are Samawi and Muttlak (1996),
Al-Omari et al. (2008, 2009) and Bouza (2001a). They as well as some extensions of
them are analyzed. Some data-bases were used for computing the sampling error for
each estimator for RSS and SRSWR. The relative accuracy was measured by

RP ¼ MSEðrssÞ=MSEðsrsÞ

It was computed for each alternative. The results are given in the Table 5.2
considering r = 5 and m = 4. The results suggest that it is better to use in all the
cases except for h6 y h7 in the study of blood. The distribution was a Gaussian.

Table 5.1 Relative mean
accuracy in aercent

Sample fraction 100 Gsrs 100 Grss

0.10 13.12 4.45
0.20 09.03 2.24
0.50 08.17 1.95
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The largest gain was obtained by the estimator of Singh-Taylor followed by the
classic ratio estimator.

We analyzed also the behavior of the estimators generating the Gaussian case:
Y *[ (N(0,1), X *[ N(1,1)). Using a normal standard for both variables is
unnatural as we will have a un-definition of the ratio of the means. We considered
that Y and X had the same distribution: the exponential case Exp(1) and the Uniform
U(0,1). The moments of the involved order statistics were calculated using a Taylor
Series approximation. The joint distribution were generated using the following
values of the correlation coefficient q [{-0.9, -0.5, -0.1, 0.1, 0.5, 0.9}.

The estimators were compared. See the corresponding tables.
The results in Table 5.3 suggest that a larger gain in accuracy is obtained for the

exponential with negative values of q.
The results for the estimator of Singh and Taylor (2003) in Table 5.4 fix that if

the expectation is cero q is unimportant in the study of the accuracy. When q is
negative RSS is the best strategy. Again the best results for RSS are obtained for
the E(1).

Table 5.2 Relative accuracy of RSS versus SRSWR

Estimator Supermarkets Infestation Área affected Study of the blood

Classic 0.56 0.66 0.60 0.89
Singh-Taylor 0.35 0.55 0.59 0.88
h1 0.84 0.81 0.68 0.95
h2 0.66 0.73 0.61 0.92
h3 0.92 0.83 0.72 0.77
h4 0.97 0.72 0.61 0.85
h5 0.98 0.84 0.60 0.98
h6 0.89 0.87 0.55 1.07
h7 0.80 0.68 0.64 1.09
h8 0.84 0.75 0.66 0.97
h9 0.81 0.68 0.62 0.91
h10 0.79 0.77 0.7 0.91

Table 5.3 Relative accuracy of RSS versus srs for the classic ratio estimator

Distribution q = -0.9 q = -0.5 q = -0.1 q = 0.1 q = 0.5 q = 0.9

Gaussian 0.33 0.46 0.52 0.67 0.71 0.82
E(1) 0.21 0.30 0.34 0.39 0.43 0.48
U(0,1) 0.46 0.49 0.51 0.54 0.55 0.59

Table 5.4 Relative accuracy of RSS versus srs for the estimator of: singh and taylor

Distribution q = -0.9 q = -0.5 q = -0.1 q = 0.1 q = 0.5 q = 0.9

Gaussian 0.43 0.43 0.43 0.43 0.43 0.43
E(1) 0.28 0.23 0.24 0.18 0.13 0.11
U(0,1) 0.74 0.72 0.69 0.62 0.68 0.72
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Table 5.5 presents the results for the estimator developed by Kandilar-Cingi. In
every case RSS was the best alternative.

Table 5.5 Relative accuracy of RSS versus SRS for the estimators of Kadilar and Cingi

Distribution q = -0.9 q = -0.5 q = -0.1 q = 0.1 q = 0.5 q = 0.9

h1

Gaussian 0.53 0.45 0.40 0.40 0.45 0.53
E(1) 0.41 0.38 0.27 0.27 0.38 0.41
U(0,1) 0.69 0.55 0.49 0.49 0.55 0.69
h2

Gaussian 0.51 0.46 0.38 0.38 0.46 0.51
E(1) 0.43 0.39 0.24 0.24 0.39 0.43
U(0,1) 0.68 0.57 0.51 0.51 0.57 0.68
h3

Gaussian 0.55 0.49 0.40 0.40 0.49 0.55
E(1) 0.40 0.38 0.27 0.27 0.38 0.40
U(0,1) 0.66 0.58 0.52 0.52 0.58 0.66
h4

Gaussian 0.47 0.40 0.38 0.38 0.40 0.47
E(1) 0.41 0.35 0.30 0.30 0.35 0.41
U(0,1) 0.78 0.74 0.71 0.71 0.74 0.78
h5

Gaussian 0.56 0.52 0.48 0.48 0.52 0.56
E(1) 0.39 0.36 0.33 0.33 0.36 0.39
U(0,1) 0.67 0.64 0.61 0.61 0.64 0.67
h6

Gaussian 0.55 0.49 0.40 0.40 0.49 0.55
E(1) 0.40 0.38 0.27 0.27 0.38 0.40
U(0,1) 0.66 0.58 0.52 0.52 0.58 0.66
h7

Gaussian 0.55 0.45 0.40 0.40 0.45 0.55
E(1) 0.40 0.38 0.35 0.35 0.38 0.40
U(0,1) 0.66 0.58 0.53 0.53 0.58 0.66
h8

Gaussian 0.66 0.49 0.40 0.40 0.49 0.66
E(1) 0.40 0.37 0.27 0.27 0.37 0.40
U(0,1) 0.69 0.67 0.62 0.62 0.67 0.69
h9

Gaussian 0.48 0.40 0.36 0.36 0.40 0.48
E(1) 0.41 0.35 0.30 0.30 0.35 0.41
U(0,1) 0.58 0.54 0.51 0.51 0.54 0.58
h10

Gaussian 0.57 0.50 0.38 0.38 0.50 0.57
E(1) 0.51 0.35 0.30 0.30 0.35 0.51
U(0,1) 0.68 0.65 0.60 0.60 0.65 0.68

5.2 Studies of Some Estimators in RSS 95



5.2.4 Numerical Study of Other Estimators

The measurement of the accuracy was RP = MSE (Arss)/MSE(srs). We consider
the case m even and r = 5, m = 4.

Take the median RSS sampling (MRSS) proposed by Muttlak (1995, 1998 and
2003). The estimator and its variance are:

lrss med½ � ¼
Pm

j¼1

Pr
t¼1 Y�ðj:medÞt
mr

V lYrss med½ �

� �
¼
Pm

j¼1 r2
Yðj:medÞ

m2r
¼ r2

Y

n
�
Pm

j¼1 D2
Yðj:medÞ

mn

As the bias is

B lrss med½ �

� �
¼
Pm

j¼1 lYðj:medÞ

m
� lY

the MD is

MSE lYrss med½ �

� �
¼ r2

Y

n
�
Pm

j¼1 D2
Yðj:medÞ

mn
þ

Pm
j¼1 lYðj:medÞ

m
� lY

 !2

The extreme RSS sampling (ERSS) was developed by Samawi et al. (1996a and
b), Muttlak (2001), Bhoj (1997) used the estimator

lYrssðeÞ
¼
Pm

j¼1 Yðj:eÞ
m

and

V lYrssðeÞ

� �
¼

r2
Yð1Þ
þ r2

YðmÞ

2m

As

B lYrssðeÞ

� �
¼

lYð1Þ þ lYðmÞ

2
� lY

MSE lYrssðeÞ

� �
¼

r2
Yð1Þ
þ r2

YðmÞ

2m
þ

lYð1Þ þ lYðmÞ

2
� lY

� �2

Table 5.6 Relative accuracy of the median and extreme RSS estimators versus srs

Estimator Supermarkets Infestation Área affected Study of the blood

lrss med½ � 2.14 1.57 1.53 1.08

lYrssðeÞ
1.14 2.63 2.46 1.11
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We instrumented the same experiment with the data bases for these estimators
and obtained the results in the Table 5.6.

The results obtained sustain that these estimators are not recommendable for
studying problems similar to those of the data bases. Particularly their best results
are for the study of the blood, where the normality can be accepted.

5.3 Analysis of Non-response Models

5.3.1 Introduction

RSS for non responses (NR) was the subject of Chap. 3. The behavior of the non
respondents depends of different external causes. Therefore the development of
numerical analysis gives an idea of what is to be expected in applications. Monte
Carlo experiments mimic some non response mechanisms. As in previous sections
the behavior of the RSS procedures is evaluated by means of computing efficiency
and/or relative precision. The basic theory appears in a series of papers, see Bouza
(2002a), Kadilar and Cingi (2008), Rueda and González (2004) for example.

5.3.2 A Monte Carlo Comparison of the Accuracy
for Estimating the Population Mean

The comparison was developed using two data base sets. They provided the set of
values of the interest variable Y in the population: Y1,…YN. Some of the Yj’s are
identified as non-respondents. They correspond to units for which the first mea-
surement was inaccurate and a second visit was made for obtaining a correct
evaluation. Hence, once a sample s was selected we were able to identify s1 and s2.

In our notation each RSS procedure is identified with:

R ¼ RSS, ERSS, MRSS:

The Monte Carlo experiment worked as follows:

Step 1: We select s then the sample mean of Y in s1 is calculated and n02 is
determined.

Step 2: We select n02 sub-samples from s2 and they are ranked.
Step 3: A Bootstrap procedure selects re-samples of size n02 using srswr from

each of the n02 sub-samples.
Step 4: For each b ? 1,.., B the Bootstrap estimate of l:

yðRÞmbw1y1 þ w2y0ð2RÞb
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is computed for the m-th sample using

yðerssÞ ¼ w1�y
0
2ðerssÞ ¼ w1�y1 þ w2�y

0
2ðerssÞ

yðrssÞ ¼
n1

n
y1 þ

n2

n
�y02ðrssÞ ¼ w1�y1 þ w2�y

0
2ðrssÞ

correspondingly to each R.
The cycle is repeated for obtaining M samples. Then the variance is estimated

and the Bootstrap confidence interval (CI) is calculated using the B obtained
Bootstrap’s samples. As we know the real value of l we can compute the pro-
portion of times that the CI contains it. R identifies the RSS estimator to be used
for estimating the non-respondent’s stratum means.

The Bootstrap procedure algorithm used is described as follows.

BOOTSTRAP PROCEDURE
Fix Y = {Y1,…, YN}, K, M and B.
While m \ M do
m = 0, h = 0, p(R) = 0
Select a sample {y1,…,yn}from Y using simple random sampling with

replacement.
If yj is a non-respondent then yj 2 s2; s2j j ¼ n2; fj 2 s2gj j ¼ n1; n02 ¼ n2=Kb c

w1 ¼ n1=n; w2 ¼ n2=n

Compute �y1 ¼

P
j 62s2

yj

n1

While b \ B do
While h \ n02 do
Select a sample s2h = {y1,…,yn2’} from s2 using simple random sampling with

replacement.
Rank s2h and determine the ranked sample s2(h)

h ¼ hþ 1

Select using srswr a Bootstrap subsample s2hb from s2h

Compute �yðRÞb ¼

Pn02
j¼1

yðj:RÞb

n02

y
¼

ðRÞmb
w1�y1 þ w2�y0ð2RÞb

b ¼ b þ 1
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Calculate

y
¼

ðRÞmB
¼

PB
b¼1

y
¼

ðRÞmb

B

sðRÞmB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPB
b¼1

yðRÞmb � yðRÞmB

� �2

B� 1

vuuut

IðRÞmB ¼ yðRÞmB �
2sðRÞmbffiffiffi

B
p ; kþ

2sðRÞmBffiffiffi
B
p

� �

ZðRÞm ¼
1 if l 2 IðRÞmB

0 otherwise

�

pðRÞ ¼ pðRÞ þ ZðRÞm

M ¼ M þ 1

p Rð Þ ¼ p Rð Þ=M

END
Note that the CI uses 2 as an approximation of the 95 % percentile.
We used K = 2, 5 and 10, B/n % 0.1, 0.2 and 0.5 f = n/N % 0.1, 0.05 and

0.01 and M = 100. Considering the proportions q(R), the relative evaluation of a
method’s precision is measured by:

q Rð Þ ¼
XM

m¼1
l Rð Þ � l
��� ���

m
=Ml

where l(R) is the estimator of the mean l made by the corresponding RSS
estimator.

Analyzing Table 5.7 we may consider that the use of RSS for sub-sampling the
non-respondents, in the study of sugar cane infestation, provided the best coverage
of l. It is acceptable in any case. For f = 0.10 the obtained percentages of cov-
erage are close to the nominal a = 0.05 for any value of the sub-sampling rule
parameter K. For the rest of the values of f it is not so close except when K = 2.
The use of ERSS provided what may be considered as an acceptable coverage only
for f = 0.1 and K = 2. The results for MRSS are not satisfactory in any case. With
the increment in B the situation is very similar. Then it seems that B does not
sensibly affect the behavior of the proposed estimators.

Table 5.8 presents the percentage of coverage of l by the Bootstrap CI’s
computed using samples from the data providing from Hemoglobin’s analysis.
Again the use of RSS is the best option but MRSS has a good behavior for f = 0.1
and f = 0.05 as well as when B/n % 0.5. The increase in this parameter is gen-
erally associated with better values of p(MRSS). These results may be generated
by the fact that the percent in hemoglobin is well described by a normal distri-
bution. The behavior of ERSS again is poor.
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A look to Table 5.9 suggests that for RSS the increment of f and a disminish in
K have a significant influence in obtaining small values of q(RSS). It seems that
the levels of f and K have not a significant influence in q(RSS). A similar comment
may be made on the behavior of ERSS. This procedure is considerably more
inaccurate than RSS. q(MRSS) is always smaller than q(ERSS) for f = 0.1 it
performs better than RSS for K = 2.

The results given in Table 5.10 suggest that for RSS the increment of
K determines larger value of q(RSS). It seems that the levels of f have not a
significant influence in q(RSS). ERSS has a worse behavior compared with the
other procedures. Its accuracy is seriously affected by the increments in K and
f. MRSS has a better behavior than RSS which is not seriously affected by changes

Table 5.7 Percent of coverage of the confidence intervals: 100p(R) for the variable
Y = Coefficient of infestation in sugar cane fields

B=n ffi 0:1
Subsample .RSS ERSS .MRSS
Parameter .f = 0.1 f = 0.05 f = 0.01 .f = 0.1 f = 0.05 f = 0.01 .f = 0.1 f = 0.05 f = 0.01
K = 2 96.78 93.24 92.53 89.41 83.69 84.30 81.48 79.45 77.61
.K = 5 94.23 89.45 91.10 84.44 81.69 81.84 81.17 78.48 73.53
K = 10 94.09 89.62 91.04 84.66 80.798 81.29 81.38 77.68 71.89

B=n ffi 0:2
K = 2 96.87 93.31 92.84 89.32 83.42 85.23 82.18 80.11 77.84
.K = 5 94.44 89.26 91.17 84.02 81.44 81.38 81.67 78.83 73.22
K = 10 94.29 89.19 90.38 84.08 80.30 81.66 81.54 77.88 71.67

B=n ffi 0:5
K = 2 96.77 93.33 92.09 89.09 83.38 84.42 81.73 79.93 77.54
.K = 5 94.19 89.31 91.12 84.03 81.79 81.88 81.19 77.49 73.69
K = 10 94.10 89.19 91.03 84.07 80.88 81.39 81.89 77.31 71.07

Table 5.8 Percent of coverage of the confidence intervals: 100p(R) for the variable
Y = Hemoglobin in blood in adolescents

B=n ffi 0:1
Subsample .RSS ERSS .MRSS
Parameter .f = 0.1 f = 0.05 f = 0.01 .f = 0.1 f = 0.05 f = 0.01 .f = 0.1 f = 0.05 f = 0.01
K = 2 95.45 93.21 90.02 89.39 83.71 84.26 94.25 92.00 89.42
.K = 5 94.72 91.37 93.63 84.35 81.74 81.81 93.58 91.03 87.44
K = 10 94.33 91.11 90.37 84.67 80.8 81.33 92.86 94.51 85.03

B=n ffi 0:2
K = 2 93.42 92.88 92.92 89.33 83.39 85.20 97.49 95.14 92.00
.K = 5 92.37 90.04 90.61 84.02 81.36 81.37 91.11 93.67 91.69
K = 10 92.21 94.32 93.00 84.13 80.31 81.74 92.30 91.38 88.39

B=n ffi 0:5
K = 2 95.40 90.01 90.58 89.08 83.44 84.40 94.84 92.67 92.86
.K = 5 95.28 94.39 93.14 84.01 81.82 81.92 94.32 89.62 91.59
K = 10 94.69 94.03 90.30 84.13 80.90 81.39 95.80 90.54 91.71
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in any of the parameters. Again the possible normality of the involved variable
should be having a determinant influence in the behavior of the accuracy of MRSS.

5.3.3 Estimation of the Difference of Means: Analysis
of a Monte Carlo Experiment

We will analyze the accuracy of the proposals using the same data as in 5.2: the
effect of AcM murino of isotope IgG2a. in diminishing the area affected by pso-
riasis by means of PASI (Psoriasis Severity Index) is).

Experiment 1:

The set of measurements of PASI constituted an artificial population. It was
partitioned using the non-responses at the second (U2) and third visit. (U3). We
selected a sample from s and the subsamples were determined by classifying a
selected patient in U1 if he/she assisted to the evaluation in occasions 1, 2 and 3, in
U2 if failed the second visit and in U3 if failed the third one. The last evaluation
was made for all the patients.

100 samples were generated and with sample fractions of 0.10, 0.20 and 0.50
using SRSWR and RSS. D was computed and estimated using dsrs and drss. The
relative accuracy:

Gb ¼
P100

t¼1

db�Dj jt
100D b ¼ srs, rss was used for measuring the behavior of the

alternative estimators.
The results appear in Table 5.11 for Kj = K = 2, j = 2, 3. They sustatin that

RSS provided more accurate estimations than srs were expected. These results
give an idea of how large the gains are. They are increased with the increase in the

Table 5.9 Values of q(R) for the variable Y = Coefficient of infestation in sugar cane fields

Subsample .RSS ERSS .MRSS

Parameter .f = 0.1 f = 0.05 f = 0.01 .f = 0.1 f = 0.05 f = 0.01 .f = 0.1 f = 0.05 f = 0.01
K = 2 0.431 0.477 0.52 0.988 0.962 0.943 0.420 0.421 0.441
.K = 5 0.513 0.503 0.56 0.986 0.923 0.872 0.427 0.573 0.594
K = 10 0.560 0.534 0.56 0.967 0.918 0.977 0.488 0.559 0.592

Table 5.10 Values of q(R) for the variable Y = Hemoglobin in blood in adolescents

Subsample .RSS ERSS .MRSS

Parameter .f = 0.1 f = 0.05 f = 0.01 .f = 0.1 f = 0.05 f = 0.01 .f = 0.1 f = 0.05 f = 0.01
K = 2 0.274 0.222 0.288 0.667 0.622 0.629 0.214 0.212 0.256
.K = 5 0.372 0.289 0.338 0.804 0.724 0.727 0.213 0.237 0.214
K = 10 0.420 0.313 0.311 0.942 0.842 0.852 0.203 0.219 0.263
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sample fractions. A similar result is expected for other sets of values of the sub-
sampling fractions.

Experiment 2:

We used the data base sets of 200 the PASI of 200 patients, it is normal variable,
and the percent of infestation of a pest in 1500 measurements made in sugar cane
fields, which is has a skewed distribution. They provided the set of values of the
interest variable Y in the population: Y1,…YN. Some of the Yj’s are identified as
non-respondents. They correspond to units for which the first measurement was
inaccurate or and a second visit was made for obtaining a correct evaluation.
Hence, once a sample s was selected we were able to identify s1 and s2. In our
notation each RSS procedure is identified with R = RSS, ERSS, MRSS.

The Monte Carlo experiment worked as follows:

Step 1: We select s then the sample mean of Y in s1 is calculated and n02 is
determined.

Step 2: We select n02 sub-samples from s2 and they are ranked.
Step 3: Calculate the srswr estimator in each sample.
Step 4: Calculate the estimator in each RSS alternative (Table 5.12).

q Rð Þ ¼
XM

m¼1
l Rð Þ � l
��� ���

m
=Ml

for the RSS estimator and for srswr

q Rð Þ ¼
XM

m¼1

Xn0 m;2ð Þ
t¼1

lðRÞ � lj jm=Mn0 m; 2ð Þl

where n0 m; 2ð Þ is the number size of s02 in the generated sample m.
Analyzing Table 5.13 we may consider that the use of RSS for sub-sampling

the non-respondents, in the study of sugar cane infestation, provided the best
coverage of l. It is acceptable in any case. For f = 0.10 the obtained percentages
of coverage are close to the nominal a = 0.05 for any value of the sub-sampling
rule parameter K. For the rest of the values of f it is not so close except when
K = 2. The use of eRSS provided what may be considered as an acceptable
coverage only for f = 0.1 and K = 2. The results for MRSS are not satisfactory in
any case. With the increment in B the situation is very similar. Then it seems that
B does not sensibly affect the behavior of the proposed estimators.

Table 5.11 Relative mean
accuracy in percent

Sample fraction 100Gsrs 100Grss

0.10 13.12 4.45
0.20 9.03 2.24
0.50 8.17 1.95
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Table 5.14 presents the percentage of coverage of l by the Bootstrap CI’s
computed using samples from the data providing from Hemoglobin’s analysis.
Again the use of RSS is the best option but MRSS has a good behavior for f = 0.1
and f = 0.05 as well as when B/n % 0.5. The increase in this parameter is gen-
erally associated with better values of p(MRSS). These results may be generated
by the fact that the percent in hemoglobin is well described by a normal distri-
bution. The behavior of ERSS again is poor.

A look to Table 5.15 suggests that for RSS the increment of f and a diminishing
in K have a significant influence in obtaining small values of q(RSS). It seems that
the levels of f and K have not a significant influence in q(RSS). A similar comment
may be made on the behavior of ERSS. This procedure is considerably more

Table 5.13 Percent of coverage of the confidence intervals: 100p(R) for the variable
Y = Coefficient of infestation in sugar cane fields

B=n ffi 0:1
Subsample .RSS ERSS .MRSS
Parameter .f = 0.1 f = 0.05 f = 0.01 .f = 0.1 f = 0.05 f = 0.01 .f = 0.1 f = 0.05 f = 0.01
K = 2 96.81 93.19 92.45 89.44 83.67 84.32 81.47 79.54 77.60
.K = 5 94.19 89.48 91.03 84.38 81.69 81.89 81.23 78.49 73.48
K = 10 94.14 89.56 91.02 84.68 80.77 81.27 81.38 77.70 71.89

B=n ffi 0:2
K = 2 96.88 93.27 92.83 89.33 83.38 85.20 82.22 80.07 77.83
.K = 5 94.43 89.33 91.19 84.02 81.39 81.43 81.71 78.79 73.21
K = 10 94.31 89.24 90.37 84.14 80.31 81.73 81.53 77.89 71.66

B=n ffi 0:5
K = 2 96.83 93.32 92.11 89.09 83.42 84.38 81.69 79.89 77.48
.K = 5 94.17 89.29 91.14 84.03 81.88 81.86 81.22 77.49 73.69
K = 10 94.11 89.21 91.02 84.08 80.89 81.39 81.89 77.32 71.23

Table 5.14 Percent of coverage of the confidence intervals: 100p(R) for the variable
Y = Hemoglobin in blood in adolescents

B=n ffi 0:1
Subsample .RSS ERSS .MRSS
Parameter .f = 0.1 f = 0.05 f = 0.01 .f = 0.1 f = 0.05 f = 0.01 .f = 0.1 f = 0.05 f = 0.01
K = 2 95.53 93.23 90.04 89.38 83.74 84.33 94.314 92.02 89.37
.K = 5 94.66 91.40 93.60 84.42 81.73 81.82 93.6 91.04 87.41
K = 10 94.32 91.12 90.36 84.70 80.79 81.34 92.90 94.48 85.00

0 B=n ffi 0:2
K = 2 93.40 92.88 92.89 89.31 83.42 85.24 97.53 95.11 92.03
.K = 5 92.41 90.03 90.64 84.04 81.38 81.40 91.13 93.73 91.71
K = 10 92.21 94.34 93.01 84.12 80.32 81.74 92.28 91.40 88.37

B=n ffi 0:5
K = 2 95.37 90.02 90.58 89.07 83.39 84.40 94.78 92.72 92.9
.K = 5 95.28 94.38 93.12 84.02 81.84 81.88 94.33 89.63 91.61
K = 10 94.70 94.04 90.30 84.11 80.92 81.39 95.84 90.45 91.69
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inaccurate than RSS. q(mRSS) is always smaller than q(eRSS) for f = 0.1 it
performs better than RSS for K = 2.

The results given in Table 5.16 suggest that for RSS the increment of
K determines larger value of q(RSS). It seems that the levels of f have not a
significant influence in q(RSS). ERSS has a worse behavior compared with the
other procedures. Its accuracy is seriously affected by the increments in K and f.
MRSS has a better behavior than RSS which is not seriously affected by changes in
any of the parameters. Again the possible normality of the involved variable
should be having a determinant influence in the behavior of the accuracy of mRSS.

5.4 Numerical Studies of Imputation Methods

5.4.1 Some General Remarks

Chapter 4 was devoted to the study of some imputation procedures and RSS. They
used some additional information for avoiding to sub sample among the non
respondents. The methods are important by themselves as RSS provides additional
information through the ranking. Some key references are Liu et al. (2006), Little
and Rubin (1987), Singh and Deo (2003). The kernel of imputations is whether
non responses are generated by a random mechanism or not. The generated MSE0s
error formulas are rather complicated for explaining the increase in the precision
due to the use of RSS.

It makes sense to evaluate the methods by comparing the imputed estimate with
the true parameter. Therefore the experiments presented below deal generally with
evaluating the relative MD.

Table 5.15 Values of q(R) for the variable Y = Coefficient of infestation in sugar cane fields

Subsample .RSS ERSS .MRSS

Parameter .f = 0.1 f = 0.05 f = 0.01 .f = 0.1 f = 0.05 f = 0.01 .f = 0.1 f = 0.05 f = 0.01
K = 2 0.426 0.480 0.519 0.993 0.962 0.944 0.421 0.418 0.439
.K = 5 0.509 0.503 0.558 0.991 0.919 0.866 0.433 0.569 0.586
K = 10 0.563 0.528 0.562 0.968 0.920 0.979 0.489 0.562 0.577

Table 5.16 Values of q(R) for the variable Y = Hemoglobin in blood in adolescents

Subsample .RSS ERSS .MRSS

Parameter .f = 0.1 f = 0.05 f = 0.01 .f = 0.1 f = 0.05 f = 0.01 .f = 0.1 f = 0.05 f = 0.01
K = 2 0.272 0.223 0.293 0.673 0.623 0.633 0.214 0.208 0.264
.K = 5 0.374 0.286 0.344 0.802 0.719 0.734 0.212 0.237 0.214
K = 10 0.417 0.306 0.307 0.938 0.840 0.849 0.204 0.218 0.255

5.3 Analysis of Non-response Models 105

http://dx.doi.org/10.1007/978-3-642-39899-5_4
http://dx.doi.org/10.1007/978-3-642-39899-5_4


5.4.2 The Median Estimator

The error of the missing observation estimator is

eðl�YðrssÞÞ � 1=2½l2
n=2ð ÞrQ 1ð Þ þ l2

1þn=2ð ÞrQ 1ð Þ� þ s2
n=2ð Þ þ s2

1þn=2ð Þ�=2nP 1ð Þ

We develop a numerical comparison using this measure.
We will consider the efficiency of the proposals with respect to the corre-

sponding full response models. 1,000 samples of size 100 and a 10 % of non-
responses were generated with median friendly distributions. Defining e(I, i) and
e(i) as the estimator using the imputation and the full response one. The efficiency
measure used was

ne I; ið Þð Þ ¼
X

e I; ið Þ � lYj jh=
X

e I; ið Þ � lYj jh

The same distribution was used for describing the behaviour of X and Y.
The results are given in Table 5.17. Note that the imputation works very well

for the normal and the Laplace distributions. For the uniform it doubles the error.
The ratio-product estimator.

To study the properties of imputation based estimator, are often considered
through the consideration of a super population model, the sampling mechanism
generating the sample, the variable response mechanism and the imputation
mechanism. The properties of the variance estimators rely, among others, on the
assumption.

C.1: the complete-sample point estimator h*n satisfies Eðh�nÞ ¼ hþ O n�1ð Þ:
It is not accomplished neither by yIC ¼

n1y1þn2y�2p

n nor by yIS ¼
n1y1þn2y��2p

n , see
Chap. 4.

Hence to develop an estimator of the variances of the proposed estimators must
cope with this disadvantage. The posed statistical problem is to obtain an interval
I(h) of minimum volume for a fixed probability p. Usually the methods are sup-
ported by a particular Central Limit Theorem that must establish that when
m ? ?

Prob ðhÞ 2 fI�ðhÞ ¼ ðh Fmð Þ � z1�a=2rmðh�mÞ; ðh Fmð Þ þ z1�a=2rmðh Fmð ÞÞg� p

h(Fm) is the estimator (predictor) of the parameter, z1-a/2 is the percentile of the
Standard Normal and rm(h(Fm)) is the standard deviation estimator of r(h(F)). The
robustness of h(Fm) and rm(h(Fm)) play a key role in the validity that p be close to
the coverage probability.

The Bootstrap, introduced by Efron (1979), is a powerful tool for nonparametric
estimation of sampling distributions and standard errors. It may be described as
follows. Let Z = (Z1;Z2; : : :;Zm) be a random sample from an unknown distri-
bution F, and let Tm = Tm(Z; F) be a statistic of interest. Let Fm be the empirical
distribution function of the random sample. An independent random sample from
Fm, Zb, is called a Bootstrap sample. We can use the Bootstrap method for
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estimating the distribution of Tm through the conditional distribution of Tb(m) = Tm

(Z; Fm), given Z1;Z2; : : :;Zm. The method works by drawing B Bootstrap samples
selected by using simple random samples of size m, selected with replacement
from the original sample.

The Bootstrap distribution is denoted by F*B(m) and
T*m = T(FB(m)*) = T(Z*1,..,Z*m) estimates T(Fm). Due to the definitions, the
conditional independence is supported and Prob Zi� ¼ ZtjFmð Þ ¼ 1=m;
8t ¼ 1; . . .;m; i ¼ 1; . . .; m. Each sample s(b)[S(BS), S(BS) the space of the
Boostrap samples, is drawn with a probability 1/mm, hence

E T � F�BðmÞ
	 


jFm

	 

¼ m�m

X
s bð Þ2S BSð Þ

T Z �1;...; Z�m

	 

b¼ m�m

X
s bð Þ2S BSð Þ

TB mð Þ:

Its conditional error is E T � F�mð Þ � TmjFmð Þ2¼ m�m
P

s bð Þ2S BSð Þ

TBðmÞ � Tm

	 
2
. It converges to rT

2 if n ? ?. In practice we select B random
samples independently from S(BS) and Tnb, is calculated for s(b), b = 1,…,B. The
Boostrap estimator of the variance is

V�BðmÞ ¼ mBð Þ�1
XB

b¼1

TBðmÞ � Tm

	 
2¼ r2
B mð Þ

It is expected, if the functional is smooth, that the limit of r2
B mð Þ is the true

variance of the estimator (predictor). A Central Limit Theorem supports that

Table 5.17 Efficiency of the developed imputation estimators versus the corresponding full
response

Uniform (0.1) Normal (0.1) Laplace(0.1)

n r mimp rimp mimp rimp mimp rimp

2 2 2.29 2.35 1.73 1.62 2.35 1.41
3 2 2.28 2.34 1.72 1.67 2.35 1.97
4 2 2.42 2.34 1.73 1.59 1.73 1.66
5 2 2.23 2.35 1.71 1.62 1.70 1.51
2 3 2.22 2.32 1.90 1.90 1.63 1.43
3 3 2.03 2.29 2.23 2.73 1.69 1.58
4 3 2.28 2.35 1.71 1.62 1.66 1.58
5 3 2.22 2.36 1.72 1.72 1.98 1.63
2 4 2.32 2.37 1.65 1.25 1.73 1.65
3 4 2.24 2.35 1.72 1.62 1.66 1.71
4 4 2.56 2.42 1.77 1.17 1.46 1.45
5 4 2.29 2.43 1.88 1.68 1.99 1.51
2 5 2.80 2.35 1.72 1.62 1.66 1.61
3 5 2.37 2.36 1.72 1.72 1.68 1.71
4 5 2.44 2.37 1.70 1.20 1.85 1.71
5 5 2.39 2.35 1.72 1.62 1.66 1.65
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Prob ðhÞ 2 fI � ðhÞ
¼ ðh Fmð Þ � z1�a=2rBðmÞðh�mÞ; ðh Fmð Þ þ z1�a=2rBðmÞðh Fmð ÞÞg� p

Note that the accuracy of h*m may be measured using its distribution function
by estimating the confidence limits based on

L Z1; . . .; Zmð Þ ¼ Lm ¼ Sup ftjFq zð Þ� tg; U Z1; . . .; Zmð Þ ¼ Um

¼ Inf ftjFh zð Þ	 tg

The interval (Ln, Un) has random bounds and the coverage probability of h, p is
such that

ProbhfT Fð Þ ¼ h 2 Lm;Umð Þg� p; for any h:

Usually p = 1-a is fixed as a value close to 1.
An alternative confidence interval, see Parr (1983) and Babu and Singh (1983)

for example, is obtained by defining the parameter as the functional h(F), F[ � , and
to denote the confidence interval from the relationship ProbFfh Fð Þ 2
Lm;Umð Þ ¼ IðhÞ jF 2 !g� p. The Bootstrap distribution allows to calculate

directly the quantiles F �m tð Þ ¼ B�1UB
b¼1Ið TBðmÞ � Tm

	 

m�1=2	 tÞ; t 2 <.

They converge, under weak regularity conditions, see Jurečkovà-Sen (1996),
r2

B mð Þ ! r2
T and the quantiles of F�m to those of the true distribution function of

the data G, whenever, for m ? ?

PFfðT Fmð Þ � T Fð Þm�1=2	 tg ! G tð Þ

The first intervals will be called normalized Bootstrap (parametric) and the
second ones Bootstrap quantiles (non parametric) confidence intervals.

We evaluate the behavior of the estimators proposed by computing the percent
of samples in which the mean is included in the confidence intervals

IðlYÞq ¼ blYtðqÞ � eYptðqÞ; blYptðqÞ þ eYptðqÞ

� �

where q identifies the criteria used for constructed confidence interval as follows
q = 1 if the normal approximation is accepted
q = 2 if the Parametric Boostrap is used
q = 3 if the Non-parametric Bootstrap is used
t ¼ separate product estimator, combined product estimator, separate imputa-

tion predictor, combined imputation predictor.
eYpt qð Þ is the semi-amplitude of the interval calculated using the corresponding

method q for the estimator t with a = 0.05.

Experiment 1

We compared the different proposals developed in this paper using a data base
provided from an experiment where the results for obtaining a recombinant protein
production using fermentation in 786 samples. They are considered as a population
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and we identified the total protein in the liquid as the auxiliary variable X. The
measured content of a protein is considered as Y. The non responses were con-
sidered for the samples which were re-evaluated due to technical problems. The
results of interest for the estimation are given in the following table.

1,000 samples of size 80 were selected independently and the behavior of the
estimations are in Table 5.18. The results establishes that to sub sample is better
than to impute being the use of the Non Parametric Bootstrap the best alternative.
The separate estimator is more reliable. The use of imputation using the separate
criteria has a considerable better behavior. We compare the behavior of

yps ¼
n1y1 þ n2y02p

n
¼ n1y1 þ n2y2

n
þ

n2ðy02p � y2Þ
n

;

ypc ¼
n1y1 þ n2y02

n

� �
x

lx

Experiment 2

The other set of experiments consisted in the generation of 1,000 variables
distributed according with the distributions normal, lognormal and exponential.
Rueda et al. (2004) developed a similar experience for evaluating the behavior of
some estimators of the mean when some observations were missing. We use the
same parameters for generating variables distributed Normal and a lognormal
variables with mean 4.9 and standard deviation 0.586. For the exponential the
parameter was k = 4.9. Once a variable was generated a Bernoulli experiment
with parameter W2 = 0.372 was performed. If the generated variable took the
value one it was considered as a NR. The Monte Carlo procedure was used for
evaluating the behavior of the estimators (Tables 5.19, 5.20).

5.4.3 Imputation in LRSS

In this section we analyze a simulation study for establishing the behavior of the
imputation procedures proposed in Chap. 4. The experiments used six probability
distribution functions. They are used usually in the evaluation of RSS strategies.
10,000 samples were generated and the accuracy of the estimates computed cal-
culating the errors

Table 5.18 Evaluation of
the proposals

Strata Wi Mean of the
auxiliary variable

Variance of the
auxiliary variable

1 0.682 66.39 58.9
2 0.372 131.83 16.2
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A eð Þ ¼ 1
10000

X10;000

s¼1
bl � lj jsðeÞ=l; e ¼ LRSS; LRSS Mð Þ; R LRSSð Þ; LRSS Rð Þ

The overall sample size was n = mr = 100. A 10 % of non responses were
generated at random.

Results of simulation, in terms of the accuracy, are summarized for m = 4 in
Table 5.21. The differences between LRSS and the proposed estimator R(LRSS)
are generally negligible, particularly for symmetric distributions. The use of the
mean imputation, LRSS(M), seems to have a worse behavior, with respect to
LRSS than LRSS(R) for R(LRSS).

A similar analysis is performed for m = 5 in Table 5.21. The differences
between the full response estimators and the imputed are larger but the symmetry
of the distributions seems to be important for establishing the existence of an
adequate behavior of the imputation procedures (Tables 5.22, 5.23).

Table 5.19 Percent of inclusion of the mean in 1,000 samples generated from a population of
measurements of total and recombinant protein in fermentation experiments

Estimator q = 1
Normal approximation

q = 2, B = 20
Parametric bootstrap

q = 3, B = 20
Non-parametric bootstrap

yps 0.80 0.85 0.91

ypC 0.60 0.70 0.75

yIs 0.41 0.59 0.74
yIC 0.75 0.79 0.74

Table 5.20 Percent of inclusion of the mean in 1,000 samples generated from continuous
variables

N(4.9 0.586) q = 1
Normal approximation

q = 2. B = 100
Parametric boostrap

q = 3. B = 100
Non-parametric bootstrap

yps 0.833 0.893 0.934

ypC 0.714 0.807 0.867

yIs 0.444 0.516 0.583
yIC 0.489 0.57 0.678
logN(4.9 0.586) q = 1

Normal approximation
q = 2. B = 20
Parametric boostrap

q = 3. B = 20
Non-parametric bootstrap

yps 0.807 0.878 0.942

ypC 0.817 0.854 0.889

yIs 0.724 0.773 0.805
yIC 0.663 0.704 0.789
Exp(4.9) q = 1

Normal approximation
q = 2. B = 20
Parametric boostrap

q = 3. B = 20
Non-parametric bootstrap

yps 0.740 0.788 0.923

ypC 0.627 0.711 0.887

yIs 0.533 0.655 0.714
yIC 0.454 0.559 0.674
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The performance of the considered imputation methods is measured using the
increment in the measurements of CO2 in 250 monitoring stations. The ranking
was made using the mean of the emission in the previous month in each of them.
The mean l = 1.056 % and the variance r2 ¼ 89:33. The skewness was of 1.794.
Hence its distribution can not be considered symmetric. The simulation was made
using different values of m for r = 5 and a 10 % of non responses were generated
in each of the 10,000 simulated samples.

Table 5.21 Values of A(e) for m = 4

Distribution m ¼ 4

LRSS LRSS(M) R(LRSS) LRSS(R)

Uniform (0.1) 1.95 2.46 1.97 2.07
Normal (0.1) 1.34 3.46 1.37 2.19
Logistic (-1.1) 0.92 4.67 0.97 2.38
Exponential (1)
Exponential (2)

1.71 3.38 1.72 2.07
1.18 4.55 1.24 2.01

Gamma (1.2)
Ganma (2.1)

2.34 5.37 1.89 1.97
1.84 5.56 1.86 1.98

Weibull (1.3)
Weibull (3.1)

1.37 4.89 1.17 2.96
3.65 5.02 2.06 3.99

Table 5.22 Values of A(e) for m = 5

Distribution m = 5

LRSS LRSS(M) R(LRSS) LRSS(R)

Uniform (0.1) 2.22 4.22 2.11 4.24
Normal (0.1) 2.34 3.97 2.28 4.01
Logistic (-1.1) 1.99 4.03 1.92 3.98
Exponential (1) 2.37 4.78 3.89 4.81
Exponential (2) 3.02 5.79 3.90 5.77
Gamma (1.2)
Gamma (2.1)

3.83 6.91 4.39 5.94
4.23 8.82 3.92 9.02

Weibull (1.3)
Weibull (3.1)

3.98 7.90 4.01 7.86
3.02 5.77 3.90 5.71

Table 5.23 Accuracy of the estimators for m ¼ 4; 5; 6; 7; 10; 11

Method Sample size

m ¼ 4 m ¼ 5 m ¼ 6 m ¼ 7 m ¼ 10 m ¼ 11

LRSS 1.180 2.213 2.995 3.158 3.228 4.004
LRSS(M) 2.887 2.889 3.895 3.970 3.905 4.180
R(LRSS) 1.230 2.551 3.001 3.322 3.452 3.974
LRSS(R) 2.008 2.676 3.152 3.405 3.615 3.912
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