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Preface

My thanks are due to the many people who have assisted in the work reported
here and in the preparation of this book. The work is incomplete and this
account of it rougher than it might be. Such virtues as it has owe much to
others; the faults are all mine.

My work leading to this book began when David Boulton and I attempted
to develop a method for intrinsic classification. Given data on a sample from
some population, we aimed to discover whether the population should be
considered to be a mixture of different types, classes or species of thing,
and, if so, how many classes were present, what each class looked like, and
which things in the sample belonged to which class. I saw the problem as
one of Bayesian inference, but with prior probability densities replaced by
discrete probabilities reflecting the precision to which the data would allow
parameters to be estimated. Boulton, however, proposed that a classification
of the sample was a way of briefly encoding the data: once each class was
described and each thing assigned to a class, the data for a thing would be
partially implied by the characteristics of its class, and hence require little
further description. After some weeks’ arguing our cases, we decided on the
maths for each approach, and soon discovered they gave essentially the same
results. Without Boulton’s insight, we may never have made the connection
between inference and brief encoding, which is the heart of this work.

Jon Patrick recognized in the classification work a possible means of
analysing the geometry of megalithic stone circles and began a PhD on the
problem. As it progressed, it became clear that the message-length tools used
in the classification method could be generalized to apply to many model-
selection and statistical inference problems, leading to our first attempts to
formalize the “Minimum Message Length” method. However, these attempts
seemed to be incomprehensible or repugnant to the referees of statistical
journals. Fortunately, Peter Freeman, a proper statistician who had looked
at the stone circle problem, saw some virtue in the approach and very kindly
spent a year’s sabbatical helping to frame the idea in acceptable statistical
terms, leading to the first publication of MML in a statistical journal [55].
Acceptance was probably assisted by the simultaneous publication of the
independent but related work of Jorma Rissanen [35].
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Over the 35-year gestation of this book, I have benefited greatly from
the suggestions, comments and criticisms of many colleagues and anonymous
referees. The list includes Mike Georgeff, Peter Cheeseman, Ray Solomonoff,
Phil Dawid, David Hand, Paul Vitanyi, Alex Gammerman, Ross Quinlan,
Peter Tischer, Lloyd Allison, Trevor Dix, Kevin Korb, Murray Jorgenson,
Mike Dale, Charles Twardy, Jon Oliver, Rohan Baxter and especially David
Dowe, who has contributed significantly both to the range of applications of
MML and to the development of new approximations for message lengths
and MML estimators.

I must also thank Julie Austin, who typed and proofread the early chap-
ters, and Steve Gardner and Torsten Seeman, who helped convert the original
draft into LaTeX.

Finally, without the constant support of my wife Judith, I would never
have managed to complete the work.

Victoria, Australia, August 2004 C.S. Wallace

Disclaimer

The reader should be warned that I make no claim to be an authority on
statistical inference, information theory, inductive reasoning or the philos-
ophy of science. I have not read widely in any of these fields, so my dis-
cussions of others’ work should be treated with some suspicion. The ideas
in this book are those of a one-time physicist who drifted into computing
via work on computer hardware and arithmetic. In this uncertain progress
towards enlightenment, I encountered a succession of problems in analysing
and understanding data for which I could find no very satisfactory solution
in standard texts. Over the years, the MML approach was developed from
rather ad hoc beginnings, but the development was driven mostly by the chal-
lenge of new problems and informal argument with colleagues, rather than
by a proper study of existing work. This casual, indeed almost accidental,
evolution partly excuses my paucity of citations.

Editorial Notes

This book is essentially the manuscript left behind by Christopher Wallace
when he died on August 7, 2004.

We wanted to publish a book that was as close as possible to the original
manuscript. We have therefore made only minimal changes to the manuscript.
We have corrected typing and spelling errors. We have also attempted as best
as we could to include all the references that the author intended to include.
Where the author made it clear that he wanted to add citations, but did not
indicate to what they referred, we have included our best guesses of what
these references might be.
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1. Inductive Inference

1.1 Introduction

The best explanation of the facts is the shortest.

This is scarcely a new idea. In various forms, it has been proposed for
centuries, at least from Occam’s Razor on. Like many aphorisms, it seems to
express a notion which is generally accepted to be more or less true, but so
vague and imprecise, so subject to qualifications and exceptions, as to be use-
less as a rule in serious scientific enquiry. But, beginning around 1965, a small
number of workers in different parts of the world and in different disciplines
began to examine the consequences of taking the statement seriously and
giving it a precise, quantitative meaning. The results have been surprising.
At least three related but distinct lines of work have been developed, with
somewhat different aims and techniques. This book concentrates on just the
one line in which the author has worked, but two other important lines are
briefly surveyed in Chapter 10. The major claims of this line refer to several
fields.

— Bayesian Inference: The new method unifies model selection and estima-
tion, usually treated as separate exercises. In many cases, the results ob-
tained by treating both questions at once are superior to previous methods.
While closely related to existing Bayesian statistical theory, it provides a
sound basis for point estimation of parameters which, unlike “MAP” and
“mean of posterior” estimates, do not depend on how the assumed data
distribution is parameterized.

— Best Explanation of the Data: For the engineer, scientist or clinician who
needs to work with a single, well-defined “best guess” hypothesis, the new
result is more useable than methods which provide only “confidence inter-
vals” or posterior densities over a sometimes complex hypothesis space.

— Induction: The work gives a new insight into the nature of inductive
reasoning, i.e., reasoning from a body of specific facts and observations
to general theories. Hitherto, there has been no accepted logical basis for
inductive reasoning despite its great importance.

— Philosophy of Science: The discovery, refinement (and sometimes wholesale
replacement) of scientific theories is essentially inductive, and the philoso-
phy of science has been hampered by a lack of a logic for induction. The
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new insight is at least a step towards a theory of scientific enquiry which
is both normative and descriptive.

— Machine Learning: As a branch of Artificial Intelligence research, machine
learning is an attempt to automate the discovery of patterns in data, which
amounts to the formation of a theory about the data. One result of the
new work has been a sound criterion for assessing what has been “learnt”,
leading to successful new algorithms for machine learning applications.

These claims may seem rather dry, of interest only to the specialist statis-
tician, machine learning expert, or logician. There are much wider implica-
tions.

If the basis of the new approach is sound, it seems to lead to a clearer
understanding of the role and methods of science and the validity of its claim
to be a search for objective truth about the world. It also places scientific
enquiry in the same conceptual basket as the development of human lan-
guage, traditional techniques of navigation, tool-use, agriculture, hunting,
animal husbandry, and all the other skills our species has learnt. They all,
including science as we practice it, are based on inductive reasoning from
real-world observations to general theories about how the world behaves. In
the earliest developments of human culture, these “theories” were possibly
not consciously formulated: the emergence of vocal signals for danger, food,
enemy, friend, come-here, etc. and the earliest skills for finding food, more
likely came from many generations of gradual refinement of simple instinctive
actions, but in logical terms they are theories indeed: recognition of similarity
or more subtle regularity among many things or happenings. In this light,
science and engineering are not wholly revolutionary initiatives of recent cen-
turies, but just the gradual systemization of what humans have always done.

Viewing science as common sense used carefully, we find that the new
insight gives strong theoretical support for the belief that, given the same
physical environment, any sufficiently long-lived, large and motivated com-
munity of intelligent beings will eventually come to the same, or at least
equivalent, theories about the world, and use more or less equivalent lan-
guages to express them. This conclusion is not unqualified: the development
of theories about different aspects of the world may well proceed at differ-
ent rates and not follow the same paths of refinement and replacement in
different communities, but, if our account of induction is right, convergence
will occur. The idea that there may be different, correct, but incompatible
views of reality seems untenable. If two sets of belief are incompatible but
equally valid, it can only be that they are equally wrong. Note that we are not
asserting that scientific communities will inevitably converge to a finite set
of fundamental theories which then express everything which can be learnt.
Our account of inductive reasoning admits the possibility that complete and
ultimate “theories of everything” may never be reached in a finite time, and
perhaps may not even be expressible, as will be explained later.
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It has been said that to a man with a hammer, all problems look like
nails. Having perhaps acquired a new and shiny hammer in the shape of a
theory of induction, we will of course fall to temptation and swing it at a
couple of “nails” which it may miss. These attempts have been left to the
end of this work, but may have some value.

This book presents the basic theory of the new approach and shows in
numerous examples its application to problems in statistical inference and
automated inductive inference, which is usually called “learning” in the Ar-
tificial Intelligence literature. I emphasize statistical and machine-learning
applications because in these limited arenas, the new approach can be ap-
plied with sufficient rigour to allow its performance to be properly assessed. In
less well-understood and wider arenas, the approach can arguably be shown
to have some merit, but the arguments cannot at this stage be made com-
pelling and must involve some arm-waving. By contrast, statistical inference
is relatively simple and its language of probability well defined in operational
terms, even if it rests on somewhat ambiguous conceptual foundations. If our
approach cannot at least handle problems of some difficulty in this relatively
simple field, it cannot be credible. We therefore think it important to show
that it performs well in this field, and believe the examples given in this book
demonstrate that it does. Moreover, at least some of the examples seem to
show its performance to better that of previous general principles of statis-
tical inference, and we have so far found no problems where its performance
is notably inferior.

The formal arguments in-principle for the approach, as opposed to specific
demonstrations of performance on particular problems, are mainly confined
to statistical inference, but are extended to a less-restricted formal treatment
of inductive inference. The extensions are based on the theory of Universal
Turing Machines, which deals with the capabilities of digital computers, and
as far as is currently known, also covers the capabilities of all sufficiently
general reasoning systems, including human reasoning. The extensions draw
on the work of Turing, Solomonoff, Chaitin and others and provide formal
arguments for supposing that our approach is applicable to the inductive
inference of any theories whose implications are computable. According to
some theorists, this range includes all theories which can be explicitly com-
municated from one person to another and then applied by the recipient, but
we will not pursue that argument. We will, however, argue that the approach
provides the basis for a partial account of scientific inference which is both
normative and descriptive. It says how science ought to choose its theories,
and fairly well describes how it actually does, but has little to contribute to
an account of what drives science as a social activity, i.e., what determines
the direction of social investment in different areas of enquiry.

This first chapter continues with an informal introduction to inductive
inference and our approach to it. It outlines the more obvious problems as-
sociated with inductive inference and mentions a couple of well-known ap-
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proaches to these problems. The critique of classical approaches is neither
comprehensive nor fair.

To advance any further with the argument, the informal discussion must
be followed by a formal treatment which is inevitably quantitative and math-
ematical. We assume some familiarity with elementary statistics and simple
distributions such as the Normal and Binomial forms. Where less familiar
statistical models are used, the models will be briefly introduced and de-
scribed. The mathematics required is restricted to elementary calculus and
matrix algebra.

The chapter concludes with a brief introduction to probability and statis-
tics, essentially just to establish the notations and assumptions used later.
The nature of the inferences which can be made using conventional non-
Bayesian and Bayesian reasoning are outlined, and certain criticisms made.
We do not pretend this critique is comprehensive or impartial. It is intended
merely to clarify the distinctions between conventional statistical inference
and the method developed in this work. Not all of the workers who have con-
tributed to the new approach would necessarily agree with the critique, and
the results obtained with the new approach do not depend on its validity.
These sections might well be merely skimmed by readers with a statistical
background, but the criticisms may be of interest.

The second chapter introduces the elementary results of Information The-
ory and Turing Machine theory which will be needed in the sequel. These
results are needed to define the notion of the “length” of an explanation and
to sharpen the concepts of “pattern” and “randomness”. There is nothing
really novel in this treatment, and it could well be skipped by readers who
are familiar with Shannon information and Kolmogorov-Chaitin complexity.
However, at the time of writing (2004) it seems some of this material is still
not as well understood as one might expect. In recent years several papers
have been published on applications of Minimum Message Length or Ris-
sanen’s related Minimum Description Length, which have made significant
and in some cases serious errors in estimating the length of “explanation”
messages. The commonest errors have arisen from a failure to realize that
for the statement of a hypothesis about a given body of data, the shortest
useable code need not in general allow the encoding of all hypotheses initially
contemplated, and should never state a parameter of the asserted hypothesis
more precisely than is warranted by the volume and nature of the data. A
couple of examples are discussed in later chapters. Other errors have arisen
because the authors have applied approximations described in early MML
papers in which the limitations of the approximations were not emphasized.

The third, fourth and fifth chapters formally develop the new approach
to statistical inference. In Chapter 3, the development is exact, but leads to
a method which is computationally infeasible except in the simplest prob-
lems. Chapters 4 and 5 introduce approximations to the treatment, leading
to useable results. A number of simple inference problems are used in these
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chapters to illustrate the nature and limitations of the exact and approxi-
mate treatments. Chapter 6 looks in more detail at a variety of fairly simple
problems, and introduces a couple of techniques needed for some rather more
difficult problems. Chapter 7 gives examples of the use of MML in problems
where the possible models include models of different order, number of free
parameters or logical structure. In these, MML is shown to perform well in se-
lecting a model of appropriate complexity while simultaneously estimating its
parameters. Chapter 8 is speculative, presenting an argument that, while de-
ductive (probabilistic) logic is properly applied in predicting the future state
of a system whose present state is partly known, useful assertions about the
past state of the system require inductive reasoning for which MML appears
well suited. Chapter 9 considers whether scientific enquiry can be seen as
conforming to the MML principle, at least over the long term. Chapter 10
briefly discusses two bodies of work, Solomonoff’s predictive process and Ris-
sanen’s Normalized Maximum Likelihood, both of which embody the same
“brief encoding” notion as Minimum Message Length but apply it to different
ends.

1.2 Inductive Inference

The term “inductive” is sometimes used in the literature to apply to any
reasoning other than deductive, i.e., any reasoning where the conclusions
are not provably correct given the premises. We will use the term only in the
above narrower (and more common) sense. Deductive reasoning, from general
theories and axioms to specific conclusions about particular cases, has been
studied and systematized since Aristotle and is now fairly well understood,
but induction has been much more difficult to master. The new results give
an account of inductive reasoning which avoids many of the difficulties in
previous accounts, and which has allowed some limited forms of inductive
reasoning to be successfully automated.

With the exception of “knowledge” that we are born with or which comes
through extraordinary routes such as divine inspiration, our knowledge of the
external world is limited to what our senses tell us and to the inferences we
may draw from this data. To the extent that a language like English allows,
the information gained about our surroundings can be framed as very specific
propositions, for instance “I feel warm”, “I hear a loud rhythmic sound of
varying pitch”, “I see blue up high, green-brown lower down, brown at the
bottom”. Groups of such elementary sensory propositions can be interpreted
by most people to arrive at propositions whose terms involve some abstraction
from the immediate sense data. “That motor car has rust in its doors”, “Joe
is lying down”, “Percy said ‘Crows are black’ 7. Let us accept that at least
this degree of abstraction may be taken for granted, to save us the trouble of
having to treat all our information in purely sensory terms. Attempts such
as Carnap’s [7] to base all reasoning on natural-language sentences relating
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to uninterpreted sense data have not been fruitful. Then virtually all of our
knowledge comes from simple observational propositions like those above,
which I will call directly available. Note that even when we are taught by
our mothers or learn from books, the propositions directly available to us are
not “crossing the road is dangerous” or “France is a major wine producer”,
but the observational propositions “I heard Mother say crossing the road is
dangerous”, “I read in this book maps and tables implying that France is a
major wine producer”.

Each observation tells us something about a specific object or event at
a specific time, and when framed as a proposition has no generality. That
is, the propositions do not concern classes of things or events, only single
isolated things or events. Yet somehow we work from collections of such
specific propositions to very general ones, which make assertions about wide
classes of objects and events most of which we have never observed, and
never will. “Apples and pears both contain malic acid”, “1960 V-8 Roadrats
are a bad buy”, “All power corrupts”, “The universe became transparent
to electromagnetic radiation one year after the big bang”. The process(es)
used to obtain such general propositions from masses of specific ones is called
“inductive” reasoning or “induction”.

This inductive process is fundamental to our culture, our technology, and
our everyday survival. We are perhaps more used to regarding deductive
reasoning, and in particular the formalized quantitative deduction of the
sciences, as being the hallmark of rational activity, but deduction must be
based on premises. The premises of scientific deductions include many general
propositions, the “natural laws” of the physical world. Except for deductions
based on hypotheses accepted for the sake of argument, deductive reasoning
requires the fruits of induction before it can start, and our deduced con-
clusions are no better than the inductively derived premises on which they
are based. Thus, induction is at least as important a mode of reasoning as
deduction.

The priority of induction is even stronger than these arguments have
shown. When we look at the specific propositions illustrated above, we find
that their very expression relies on previous inductive steps. Before I can
frame an observation as an assertion like “This car has rust in its doors”, I
and my cultural forebears must somehow form the belief that there is a class
of observable phenomena which share so many features correlating usefully
with features of other phenomena that the class deserves a name, say, “rust”.
This is an inductive conclusion, no doubt based on many thousands of obser-
vations of pieces of iron. Inductive conclusions of this type must lie behind
the invention of all the common nouns and verbs of natural languages. In-
deed, without induction, language could use only proper nouns: the subject
of every sentence could be named only as itself, with its own unique grunt.
Induction is needed for us to invent and accept the general proposition that
all observed phenomena satisfying certain criteria are likely to share certain
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unobserved but interesting properties, and hence are worth a common name.
Thus, we can claim that every generally used common noun and verb in a
natural language is the product of inductive inference. We do not claim those
inductions were all necessarily sound. The empirical justification for some
of them, such as those leading to the nouns “dragon”, “miracle” and the
compound “free will”, may be quite unsound.

With every such word are associated two clusters of propositions. The
first cluster one might call the defining propositions — those which allow us
to recognize an instance of the class named by the word. For example:

Cows tend to be between 1.5 and 3 m long.

Cows usually have 4 legs.

Cows move against the background.

Cows have a head at one end, often bearing horns, etc., etc.

Then there is a second cluster of propositions which are not needed for recog-
nition, but which allow useful inferences. We may call them “consequential”.

Cows are warm.

Cows can (sometimes) be induced to give milk.
Those that can’t are often dangerous.

Cows need vegetation to eat.

etc., ete.

The two clusters often overlap: some propositions may be used as defining
in some instances, but treated as consequential if not directly observed. The
concept of “cow” is accepted because we can recognize an instance of “cow”
using a subset of the propositions, and can then infer the probable truth of
the remaining propositions in this instance, even though we have not ob-
served them. The induction embodied in the “cow” concept is thus the gen-
eral proposition that any phenomenon observed to satisfy a certain defining
cluster of propositions will also (usually) satisfy the associated consequential
propositions.

Some common nouns result from conscious, systematic, “scientific” rea-
soning. Terms such as “electron”, “quark”, “cyclonic depression” and “catal-
yse” label clusters of propositions whose association was unobvious and dis-
covered only after much directed effort. Others, like “man” and “fire” (in
whatever language) predate history. We suggest that inductive processes are
not necessarily a matter of conscious rational thought, or even of any sort of
reasoning.

Any biological organism can be regarded as, at least in a metaphorical
sense, embodying such clusters of propositions. Organisms have means, not
always neural, of detecting properties of their environment, and many have
means to detect with some reliability when several properties are present si-
multaneously or in a specific sequence. That is, many organisms are equipped
to detect when a cluster of propositions is true of their environment. Detec-
tion of such a defining cluster instance may trigger behaviour expected to
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be advantageous to the organism if the environment has other properties not
directly detectable by the organism. That is to say, the organism may behave
in a way whose benefit depends on certain consequential propositions being
true of its environment, although the truth of these propositions cannot at
the time be detected by the organism. For instance, seedlings of some species,
when grown in a closed dark box with a tiny hole admitting some light, will
grow towards the hole even though the light admitted by it is far too weak to
support photosynthesis. This behaviour is beneficial to the species because,
in the environments naturally encountered by its seedlings, it is indeed usu-
ally the case that instances of weak light coming from some direction are
associated with useful light being available in a region located in that di-
rection. We do not suggest that such a seedling “knows” or has “inferred” a
concept “light source” as a cluster of defining and consequential propositions.
However, it is not unreasonable to suggest that the genetic endowment of the
species incorporates in some way an association among a cluster of possible
properties of its environment, and that other species which grow in environ-
ments where such clustering is not evident will not show such behaviour.
Further, we suggest that the incorporation of such a cluster of environmental
properties differs from a “concept” formed by a reasoning agent only in that
the latter is expressible in language-centred terms such as “proposition” and
“assertion”.

It seems to us proper to regard the genetic makeup of organisms as in-
corporating many powerful theories about the natural environment. These
have not been induced by any reasoning agent. Rather, mutation and other
mechanisms result in the creation of many organisms each incorporating a
different set of theories. The inductive process which infers good theories is
the natural selection of those organisms which carry them. Our aim in this
work is to characterize what are good inductions, regardless of how the in-
ductions have been made. The phototropism of a growing seedling, the alarm
cry of a seagull, the concept of momentum, and wave equations of quantum
mechanics are all the result of the inductive inference of general propositions
from hosts of specific “observations”. The methods of induction may differ
greatly among these examples, but any satisfactory account of how specific
data can lead to general assertions should cover them all.

What then are the problems in giving an account of, or logic for, inductive
inference? Clearly, one negative requirement which an inferred general propo-
sition must satisfy is that it should not be contradicted by the accepted data.
Thus, we cannot conclude that all crows are black if our observations record
a large number of black crows, but a few white ones as well. In strictly logical
terms, a single counter-example is sufficient to show a general proposition to
be false. In practice, the matter is not so clear-cut. Two qualifications are (al-
most always) implicit in our assertion of a general proposition. First, we are
well aware that a general proposition cannot be proved true by any number
of conforming observations, so when we assert “All crows are black”, most of
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us mean something a little less. We expect our audience to understand the
assertion as an acceptable abbreviation for something like “My best guess is
that all crows are black. However, my evidence is incomplete, and I will be
prepared to modify my assertion in the light of conflicting evidence”. If the
assertion is so read, the discovery of one or two white crows among millions of
black ones would not cause us to apologize abjectly for misleading. Outside
of deductive argument from unquestioned premises, an assertion of universal
scope is either meant to be understood in this less than literal way or else is
almost certainly unjustified. How can anyone possibly know that all crows,
past, present and future, are black?

The second qualification is logically more of a problem. Even if we read the
assertion “All crows are black” in its absolute sense, will we really abandon it
if we see a single white crow fly past? Not necessarily. The counter-example
proposition “The crow that just flew past was white” may itself be suspect.
Was the bird indeed a crow? Had it been bleached white by some joker? Was
it really white or was it a trick of the light or that last drink over lunch? In
the real world, a general assertion which has been long and widely held by
people knowledgeable in the field is not rejected on the grounds of a single
reported contrary observation. There is always the possibility of error in the
observation, perhaps even of malicious misrepresentation or delusion.

Even a steady trickle of contrary reports may not suffice to discredit the
proposition. If one observer can make an error, so can others, and perhaps one
or two mistaken observations per year must be expected. We also tend to be
skeptical of observations, no matter how frequent, which cannot be confirmed
by others. Joe may report, frequently and consistently, seeing crows which
seem to others black, but which to Joe are distinguished from their fellows
by a colour which he cannot otherwise describe. Even if Joe shows he is able
consistently to distinguish one crow from another by “colour”, we will suspect
that the exceptional nature of the observations lies in Joe rather than in what
everyone else calls the crows’ colour. Similar doubts may arise with respect to
observational apparatus: does it really measure what we think it measures?

Before we reject a well-regarded general assertion, it seems we need to be
satisfied that, perhaps only under certain specified but achievable conditions,
any competent observer can obtain as many counter-examples as are wished.
If the bird can be caught, and we find that any competent ornithologist
will confirm that it is indeed a crow and indeed white, we will abandon the
proposition at least in its absolute sense. If anyone willing to visit lower
Slobovia with a pair of binoculars can count a dozen white crows within a
day of arrival, we will abandon it completely. But note what needs to be
established before we regard the proposition as false: we need to establish
that any competent person can consistently accumulate contrary data. This
is itself a general proposition. It asserts something about a possibly large
class of phenomena: the unlimited observations of any number of competent
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observers. Note that the large class of observations might all relate to the one
white crow.

To summarize, except in special domains, a well-supported general propo-
sition is not regarded as disproven by a single contrary observation or even a
limited number of contrary observations. It is usually rejected only when we
come to accept a new general proposition, namely that we can get as much
credible contrary evidence as we like. The evidence may come from one or
many counter-instances (white crows), but the evidential observations are in
principle unlimited. However, the requirement that the inductive inference
should not conflict with the data, while valid and necessary, does not much
advance our understanding of how the inference can be formed from and be
supported by the data.

A third qualification may be implicit in a general assertion. It may be
true only in an approximate sense, its context implying that it is meant as
an approximation. For instance, Boyle’s Law that the pressure of a confined
gas rises in proportion to its absolute temperature is still taught at school,
but is only approximately true of most gasses.

A second necessary requirement of an inductive inference is that the gen-
eralization should be falsifiable. The importance of this requirement was first
clearly stated by Popper (1934), whose writings have influenced much modern
discussion of induction. The first requirement we asked was that the inference
not be falsified by the data we have. Now we require also that it be possible
for future data to falsify the inference. That is, we require it to be at least
conceivable, given all we know of the source and nature of the data, that
we might find data sufficient to make us reject the proposition. Essentially,
this requirement is equivalent to requiring the inferred proposition to have
empirical content. If we can deduce, from what is already known about the
nature and source of the data, that it is impossible for future data to meet
our criteria for falsifying the proposition, then the proposition is telling us
nothing of interest. To accept the proposition is to exclude no repeatable
observation except those already excluded as impossible.

Popper rightly criticizes theories, advanced as inductive inferences from
known data, which are so phrased and hedged with qualifications that no
conceivable new data can be considered as damning. He finds most of his bad
examples among social, political and economic theories, but examples are not
unknown in other domains. His requirement places on any proposed account
of inductive inference the duty of showing that any inference regarded as
acceptable in the proposed framework must ipso facto be falsifiable. This
duty we hope to fulfill in the present work.

The two requirements above, that an inductively derived general propo-
sition be falsifiable but not yet falsified, are far from sufficient to describe
inductive inference. They also perhaps place undue emphasis on the notion
of disproof. Many useful inductive inferences (let us call them theories for
brevity) are known to be false in the form originally inferred, yet are still
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regarded as useful premises in further reasoning, provided we are careful. A
classic example are Newton’s laws of motion and gravitation. Reproducible
sources of data in apparent conflict with these laws have been known at least
since the early 1900s. The reaction to this “falsification” was, first, a series of
quite successful attempts to modify the interpretation of these laws, and then
the inference of the new theories of Relativity. The new theories were rapidly
recognized as superior to the old Newtonian theories, explaining simply all of
the results which appeared to falsify the old theories, at least in their original
form. Yet the old unreconstructed Newtonian “laws” continue to be used for
the great majority of engineering calculations. Although known to be wrong,
they in fact fit and explain vast bodies of data with errors that are negligible
compared with the measurement errors and uncertainties of the data. In fact,
one of the early concerns of the exponents of the Relativistic theories was to
show that the new theories did not contradict Newtonian theories except un-
der extreme conditions. Similarly, the new quantum theories which replaced
Newtonian mechanics under other extreme conditions had to be shown not
to contradict the old theory to any measurable degree outside these extreme
conditions.

We are forced to conclude that an account of inductive inference must ac-
commodate the fact that theories which have been conclusively falsified can
remain acceptable (albeit within a circumscribed domain of phenomena) even
though their basic concepts have been shown to be mistaken. The account
must also accommodate the fact that two theories can both command general
acceptance even though their formulations appear mutually inconsistent. We
accept the present situation that Relativistic theory is basically concerned
with the relationships among “events” regarded as having precise locations
in space and time, while quantum theory denies the possibility of precisely
locating an event involving only finite energy. We accept that Relativistic
theory describes gravitational effects in geometric terms, while quantum the-
ory, insofar as it can treat gravity at all, must invoke as yet undiscovered
particles.

Any satisfactory account of induction must therefore not be overly con-
cerned with absolute notions of truth and falsification. In practice, we do
not expect our inferences to be true. We tolerate falsifying data provided
it relates to conditions outside our immediate arena, and we tolerate the
co-existence (and even the joint application to the one problem) of theories
whose conceptual bases seem to belong to different universes.

1.3 The Demise of Theories

The strictly logical requirement that a theory not be falsified cannot be ac-
cepted at face value. Merely being shown to be wrong is not sufficient to
damn an inference. We can accept the requirement that a theory be falsi-
fiable, i.e., that we can conceive of data which would falsify a theory, as
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otherwise the theory is empirically vacuous, but we cannot accept that such
a falsification will necessarily lead us to reject the inference, because history
shows otherwise. How, then, do we ever come to reject theories?

One possible route to rejection is the accumulation of falsifying data.
When a theory is falsified, we may not reject it but we must at least qualify
it by restricting its application to arenas not including such data, and/or
weakening its assertions to approximations. If falsifying data is found in a
sufficient range of conditions, the theory may become so qualified and re-
stricted that it ceases to be falsifiable, i.e., becomes empty. The cases of data
which do appear to conform to the theory may be found to be no more than
might be expected to arise by chance in the absence of the theory, in which
case we may decide that the amended theory explains nothing and should be
abandoned.

Another route to rejection is that the theory is never decisively falsified,
but is supplemented by a theory of greater accuracy or wider applicability.
That is, it is found that all the data explained by the theory is explained
as well or better by a new theory, which may in addition explain data not
covered by the old theory.

A third route is the usual fate of most hypotheses proposed in a scien-
tific investigation. The theory may be compatible with known data, but not
regarded as adding much to our understanding of that data compared with
other possible theories about the same data. A new experiment or observa-
tion is designed such that its expected outcome, if the theory is valid, is one
which would not be expected without the theory. The observation is per-
formed, and does not conform with the prediction of the theory. The theory
is then rejected as having little explanatory power for the old data, and not
fulfilling the hope of explaining the new data.

A fourth, less common, route is that the theory is supplanted by a new
theory which is not (at least initially) in better conformity with the known
data either in accuracy or scope, but which is in some way simpler or more
“elegant” than the old. The criteria of simplicity and elegance are not obvi-
ously quantifiable, especially the latter, and people may legitimately disagree
in their assessments of theories on these criteria. However, there might be
general agreement that, for instance, of two theories otherwise similar in
structure, the one needing fewer numeric values to be assumed in order to
explain a set of data is the simpler. Similarly, of two theories requiring the
same number of assumed quantities, we might assess as the simpler the theory
having the shorter mathematical or logical description.

An example may serve to clarify these notions. Observation of the ap-
parent positions of the planets, sun and moon gave rise to the “Ptolemaic”
theory, which supposed the motions of the bodies to be composed of simple
circular motions with constant radii and speeds. To fit the observations, it
was necessary to assume that the motions of most of the heavenly bodies
were epicyclic. That is, a body moved round a circle whose centre was mov-
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ing round another circle whose centre might be moving round yet another
circle. This theory could be made to fit the observations quite well, to predict
future movements with fair accuracy, and to predict events such as eclipses.
It is structurally a simple theory: the circle is one of the simplest geometric
shapes by any criterion. However, it required the assumption of a rather large
number of numeric values, the radii and speeds of rotation of all the circles,
of which there were two, three or more for each body. These quantities had
to be assumed: the theory gave no explanation of their values and asserted
no useful relationships among them.

The later Keplerian theory was in marked contrast. Structurally, it might
be considered more complex or less elegant, since it assumed the motions
to be elliptical rather than circular, and to take place with varying rather
than constant speed. Each ellipse requires both a major and minor axis to be
specified rather than just a radius. In these respects, the new theory seems
messier and more complex than the Ptolemaian. However, only one ellipse
is needed per body, rather than several circles. The speeds of motion, while
not constant, have a fixed and simple relationship to the position of the body
round its elliptic path, and the one number for each body required to describe
this relationship was shown to have a fixed relation to the size of the ellipse.
Thus, the number of values which had to be assumed dropped from half a
dozen per body to essentially two. (We are deliberately oversimplifying here:
the descriptions of the orbital planes of the bodies involve more numbers but
these are essentially the same in both theories.)

The smaller number of arbitrary constants required by Kepler’s laws could
be held to outweigh his use of more complex geometry, but the issue was not
clear-cut on this score. Of course, as observational accuracy increased, it was
found that Kepler’s theory required only minor refinement to maintain its
agreement with observation, whereas more and more circles had to be added
to the epicycles of the Ptolemaian model, each with its new inexplicable
numbers. The “simplicity” argument in favour of Kepler’s model became
overwhelming.

This sketch of how theories may be rejected, usually but not always in
favour of a new theory, has argued that rejection is not a simple matter of
falsification. Rather, it involves factors such as the scope of data explained,
the accuracy of explanation, the number of inexplicable or arbitrary values
which must be assumed, and some notion of structural simplicity or elegance.
Together, we may call these factors the explanatory power of the theory.
The explanatory power increases with the volume and diversity of the data
explained, and with the accuracy of the explanation. It decreases with the
structural complexity of the theory, and with the number and precision of
the parameters, initial conditions and unobservable quantities which must be
assumed in the explanation.

In the above, we have used the terms ezplanation and accuracy without
elaboration. While it is our intent to use these words in accordance with
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normal usage, both are sufficiently loosely used in everyday speech as to
demand some definition.

1.4 Approximate Theories

The notion of the accuracy of a theory, as applied to some data, rests on
belief that a theory is rarely intended or taken in an absolute sense. If we
assert the theory that a floating ship displaces its own weight of water, we do
not intend to claim that careful measurement of the ship and the displaced
water will show them to be equal within a milligram. Rather, we are claiming
that they will be equal within a small margin due to measurement error,
the effects of wind and wave, motion of the ship, etc. The theory does not
attempt to explain the causes of this margin of error, which in practice might
be of the order of 0.1%. We might then say the theory is “accurate” within
0.1%. It could be argued that the theory does indeed claim exact equality,
at least under certain ideal and probably unattainable conditions such as
zero wind, zero motion, no surface tension, etc., and that it is unfair to
regard measurement errors and deviations caused by inevitable disturbances
as inaccuracies of the theory. But a theory which asserts a conclusion only
under forever unattainable conditions is empty, since it can never apply to
real data. It may alternatively be suggested that if careful measurement is
made, it will be found that the weight of the ship, plus any downwards pull of
surface tension, minus any hydrodynamic wave force, etc., etc., will exactly
equal the weight of water displaced within measurement error. But this is not
the same theory — it is a more elaborate and perhaps more accurate theory.

In a slightly different vein, the Newtonian equation for the kinetic energy
of a moving mass, F = %mv2, can be said to have inaccuracies due not only
to the kind of error and unobserved effects described above, but also an error
of order %’U2 /c? because it ignores relativistic effects. If the speed v is less
than 1000 km/sec, this inaccuracy is less than 0.01%. Whatever the sources
of error, it seems plausible that all theories will fail to match our data exactly,
but that some will be more accurate than others. Exactly how we can most
usefully quantify the inaccuracy of a theory will be discussed later.

1.5 Explanation

A dictionary definition of the word “explain” is “to make plain or under-
standable”. We take an explanation of a body of data to be a demonstration
that the data are not unexpected given a relatively small set of premises. By
“not unexpected” we mean that the premises either imply the data proposi-
tions, or, more commonly, imply close approximations to the data. Two cases
need to be distinguished. In some explanations, the necessary premises are
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already known and accepted by the reader of the explanation. In this case,
the explanation is purely a deductive demonstration that the data should be
expected to be more or less as they are, given what is already known. We will
not be interested in such explanations. In other explanations, not all of the
necessary premises are known a priori. Rather, the explanation proposes one
or more new premises, and then goes on to show that the new premises, com-
bined with ones already known and accepted, imply or approximately imply
the data. In forming such explanations, the new premises are an inductive
inference from the data. Typically, they are general propositions which can-
not be deduced from the data and premises already known. However, if they
are assumed to be true, the data is found to be unsurprising.

Two imaginary examples may clarify the distinction we wish to draw.

First, suppose there is an amateur carpenter who knows and is familiar
with concepts of length, area and angle, is competent at arithmetic and ele-
mentary algebra, but who has never studied geometry. The carpenter notices
that it is possible to make right-angled triangular frames whose sides are in-
tegral numbers of decimetres, but only if the numbers are multiples of a few
sets such as {3, 4, 5}, {5, 12, 13} and {15, 8, 17}. In seeking an explanation
of these observations, he might, given time, deduce Pythagoras’s theorem
from the premises he knows and accepts about lines, areas and angles, then
deduce that these sets of integers satisfy the theorem but most others do
not. He might even be able to deduce that any such integer set must have
the form {(a® — b?),2ab, (a®> + b?)}, where a and b are any unequal positive
integers. This would be an explanation of the first kind: a demonstration that
what has been observed is not surprising given what the carpenter already
believed. No new premise is required and nothing is inductively inferred from
the data.

Now imagine an ancient Egyptian surveyor who was a competent user of
geometry and knew many of the simple properties of triangles, but otherwise
knew no more than his fellows. In particular, he knew that the sum of the
three angles of a triangle equals two right angles (180°). As he rose in the
surveyors’ hierarchy, he noticed minor inconsistencies appearing in the data
and ordered the large-scale resurveying of the kingdom. He was surprised to
find that in the largest triangles covered by the survey, the sum of the angles
consistently exceeded 180° by a small amount, which seemed to be propor-
tional to the area of the triangle. After much reflection, he finds that the data
can be explained if he supposes that the world is not flat, as everyone had
thought, but spherical, with a diameter of about 7000 miles. If he adds this
premise to what he knows of geometry, he can deduce that the sum of the
angles of a triangular piece of land should exceed 180° by about five thou-
sandths of a degree for every thousand square miles of area. This deduction
agrees well with the survey data, so he accepts the explanation.

This explanation requires a new premise in addition to what the surveyor
knew. The new premise, that the world is a sphere of 7000 miles diameter, is
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more complex than the old implicit assumption of a flat earth, and involves
a number. It could not be deduced from the data. Rather, it was derived
by induction from the data, and the diameter estimated from the data. The
new premise is falsifiable — new data could conceivably show it to be untrue
— and is actually false. The world is not quite spherical, nor is its diameter
7000 miles. However, the explanation is good. At the expense of one inferred
premise of no great complexity, the deviations of the data from what is ex-
pected are greatly reduced. Henceforth, we will restrict the term explanation
to this second sort, which involves the inductive inference of a new premise
or theory and/or the estimation of unknown quantities.

1.5.1 Explanatory Power

Our view is that an inductive inference from a body of data is a premise which,
if assumed, allows the data to be explained. Other propositions already known
and accepted may be involved in the explanation, but are by themselves
insufficient to allow a satisfactory explanation of a purely deductive kind.

To develop this view into an account of when an inductive inference can be
regarded as satisfactory and how competing inferences may be compared, it is
necessary to develop a quantitative measure of the merit of an explanation, or
at least of the relative merits of competing explanations. We have suggested
that the explanatory power of an inductive inference or theory increases with
the volume of data explained and the accuracy of the explanation. It decreases
with the complexity of the theory, the number of inexplicable parameter
values appearing in the theory, and (we will see later) the precision with which
these quantities must be specified in order to achieve an accurate explanation.
In short, a good inductive inference is one which explains much by assuming
little. Other considerations, such as causal structure, have been proposed as
contributing to or necessary for explanatory power. At least for now, we will
not consider them, and rather discuss only what follows from the criteria
above. We now propose a step towards quantifying these considerations.

First, we will simplify the problem by assuming that all the inductive
inferences to be assessed apply to the same body of data. The extension to
situations where one theory explains more data than another is easy but is
best treated later.

For a given fixed body of data, we propose to recast all competing expla-
nations into the same canonical form.

1.5.2 The Explanation Message

An ezplanation message of a body of data comprises two parts. The first is
a statement of all the inductively derived premises used in the explanation,
including numeric values for quantities assumed in these premises (the di-
ameter of the earth, for example). The second part of the explanation is a
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statement of all those details of the data which cannot be deduced from the
combination of the induced premises and such other premises as are already
known, accepted, and not in question. Let us call the already-known premises
the prior premises. Being already known to the receiver, no statement of the
prior premises need appear in the message.

First, note that a person knowing only the prior premises and not the data
is able to recover the original body of data exactly from this message. The
first part tells him to assume the truth of the new premises — the “theory”.
From these and the prior premises, he can then deduce much about the data.
The second part completes his knowledge of the data by telling him all the
details which he could not so deduce. Thus, the explanation message may
be regarded as a restatement of the data without loss of any information
or detail. The restatement is in a “coded” form which can be “decoded” by
anyone with knowledge of the prior premises. Another way of regarding the
explanation message is that it states a theory about the data, then states the
data itself in a condensed form which assumes the truth of the theory.

We will argue that the best explanation of the data is the one leading to
the shortest explanation message, and that the best inductive inference which
can be drawn from the data is the inference used in the shortest explanation
message. That is, we claim the shortness of the explanation message using an
inferred theory is a measure of its explanatory power. Henceforth, we will not
distinguish between an explanation message and an explanation expressed in
other forms. When we refer to an explanation or its length, we mean the
explanation message or its length.

Even from the above informal account, it is clear that the length of an
explanation takes into account all the factors affecting explanatory power.
The length of the first part, which states the inductively inferred premises or
theory, will be longer for a complex theory than for a short one. Its length
increases with every quantity assumed, as the first part must state its assumed
numeric value. Its length increases with the precision to which these values
need be specified.

On the other hand, the length of the second part decreases with the scope
and accuracy of the theory. Data falling outside the scope of the theory must
be stated in full, since nothing about such data can be deduced from the
theory. Hence, the greater the scope of the theory, the less data need be stated
fully. Typically, the theory, together with the prior premises, will not allow
exact deduction of the data as observed. For quantitative data, the best that
we can hope is that values may be deduced close to but not exactly equaling
the measured values. The observed value may be corrupted by measurement
error, and the deduced value will often be deduced in part from other values in
the data, and hence itself be corrupted by error. And of course the theory and
its parameters may only be approximate. Thus, for quantitative data within
the scope of the theory, the second part of the message must at least record
the differences between deduced and measured values. The more accurate
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the theory, the smaller will be these differences, and hence the shorter will
be their representation in the second part.

Similarly, for data which refers to discrete values rather than real-valued
quantities, there remains some possibility of errors in observation. If, further,
the theory is not entirely accurate, the deduced values will sometimes differ
from correctly recorded observations. Thus, for discrete data, the second part
will typically require a list of “exceptions” recording which observed values
differ from the predictions of the theory, and the actual observations in these
exceptional cases. The more accurate the theory, the fewer will be these
exceptions, and the shorter will be the second part.

Overall, the “best” inference or theory, as assessed by its explanation
length, will be a compromise between complexity on the one hand, and scope
and accuracy on the other. An overly complex theory may be slightly more
accurate, and hence give a slightly shorter second part, but will require a
long description in the first part. An overly simple theory will require only a
short first part, but will be relatively less accurate or have narrower scope,
and hence leave more errors and exceptions to be stated in the second part.

Note that if a proposed theory is particularly poor or overly-complex, or
if the data is very sparse, the length of the explanation may exceed the length
of a message which simply records the data as measured, with no attempt at
explanation. In such a case, we regard the proposed theory as unacceptable.

This informal discussion suggests that the two-part explanation model
conforms qualitatively with what we expect and require of inductive infer-
ence. Inferences regarded as good in this model must have content, because
the second part will be shorter than a simple transcription of the given data
only if the first part implies something of substance about the data. The
model has an inherent balance between the complexity of the theory and
its having meaningful implications about the data. It provides a criterion
for rejecting a theory as useless and for comparing the merits of compet-
ing theories. The model accommodates the observation that theories are not
necessarily rejected on the grounds of a single or a few contradictory mea-
surements: such data can be flagged as “exceptional” in the second part and
recorded as measured. The “flagged” record of inexplicable data is slightly
longer than a bare transcription of the data, so if too many observations dis-
agree with the theory, the explanation may become longer than a copy of the
data as given, and so be rejected, but small amounts of conflicting data need
not lead to rejection. Finally, an acceptable theory in this model necessarily
makes testable predictions about new data on the same subject. It predicts
that the data will be such that after taking into account what can be deduced
from the theory and prior premises, the remaining details of the new data
can be specified more briefly than the data as measured.

The reader may have noticed a loophole in the discussion of whether an
explanation is acceptable. It may be the case that the prior premises alone,
without any inductively-derived theory, imply enough about the data to al-
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low it to be restated more briefly. In this case we could have an explanation
message shorter than the original statement of the data as measured, yet
containing no first part, i.e., no inference from the data. Such an explanation
is not ridiculous and is often met in practice. It is an example of the first
kind of “explanation” mentioned above, in which it is shown that the data
is not surprising given what is already known and accepted. Since our inter-
est is in explanations involving inductive inference, we wish to exclude such
explanations from discussion even though they have a useful place in human
discourse. They also provide a base length, shorter than the original data,
against which inductive explanations should be compared.

We therefore modify slightly our definition of “acceptable” theories and
explanations. We will require the length of the explanation message which
states and uses an acceptable theory to be shorter than any message restat-
ing the data using only the implications of prior premises. That is, we shift
the target for an inductive theory by allowing for the implications of prior
premises. This modification affects only the criterion for acceptability of a
theory. It does not affect comparisons among competing theories. In a sense,
we have simply redefined the “null hypothesis” against which all theories
must compete. Rather than taking as the null hypothesis the assumption
that the data as given shows no regularities at all which might be exploited
to recast it more briefly, we now take as the null hypothesis the assumption
that the only regularities in the data are those implied by the prior premises.

Qualitatively, our model has much to recommend it. However, if it is to
be anything more than an aphorism, it must be given quantitative substance.
That is, we must be able to put numeric values on the lengths of explanations.
The necessary tools are described in the next chapter, and show a close
relation between this account of inductive inference and Bayesian statistical
inference.

1.6 Random Variables

A random variable has a value which is not known with certainty. For in-
stance, if a coin is tossed, its attitude when it comes to rest may be assigned
one of the two values Head and Tail. If the coin has not yet been tossed, or
if it has landed under a table and no-one has yet looked to see how it lies,
the value of the toss (i.e., the attitude of the coin) is not as yet known and
could be either Head or Tail. The value may then be represented by a random
variable, say, “v”. (For no good reason, this book departs from a common
convention, and usually names random variables by lower-case letters.) Then
the equation “v = Head” is the proposition that the coin will be found to
land, or to have landed, with its head uppermost.

Note that we are using a subjective interpretation of random variables.
If the coin has been tossed and come to rest under a table, and my friend
has crawled under the table and had a look at it but not yet told me the
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outcome, I am still justified (in this interpretation) in representing the value
of the toss as a random variable, for I have no certain knowledge of it. Indeed,
my knowledge of the value is no greater than if the coin had yet to be tossed.
Other definitions and interpretations of the idea of a random variable are
possible and widely used. We will later hope to show that, for our purposes,
the differences in definition lead to no differences in the conclusions drawn
from any statistical enquiry. For the moment, let it suffice that the subjective
interpretation adopted here is convenient for our present exposition.

The range of a random variable is the set of values which the variable (as
far as we know) might equal. Thus, the range of the coin-toss variable v is
the set {Head, Tail}. The value of a random variable is the actual (but as
yet unknown) value denoted by the variable.

Random variables may be either discrete or continuous. A discrete random
variable has a range which is a discrete set of values, e.g., { Head, Tail } or
{ Married, Single, Divorced }. The range may be countably infinite. That
is, it may include an infinite number of values, but if so there must be a
rule for establishing a one-to-one correspondence between the values in the
range and the positive integers. For instance, the range of a random variable
“s” might be the set of all non-empty finite sequences of symbols 0 and 1.
There is an infinite number of such sequences, since the length of a sequence
is unbounded, but they can be placed in one-to-one correspondence with the
integers, as shown in Table 1.1.

Integer  Sequence

O 00 O U Wi -
—
[en)

10 011
etc etc

Table 1.1. An enumeration of binary strings

A continuous random variable has a range which is a continuum or part
of one. For instance, if the random variable “m” denotes the mass (in grams)
of a raindrop, its range might be all the real numbers between 0.01 and 20.0.
This range is uncountably infinite. That is, this range cannot be placed in
1-to-1 correspondence with the positive integers.

A wector-valued continuous random variable has a range which is (part
of) a continuum of more than one dimension. For instance, if “p” denotes
the point of impact of a dart on a dart board, the range of p is the two-
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dimensional area of the face of the board, and two real numbers (say the
height of the point and its East-West location across the width of the board)
are needed to specify a value of the variable. In general, the value of a vector-
valued variable with a D-dimensional continuum range is a vector, or ordered
list, of D real numbers. We may also have vectors which are ordered lists of
discrete variables. In either case the individual simple variables in the list are
termed components of the vector.

1.7 Probability

Consistent with our subjective definition of a random variable, we adopt a
subjective definition of probability. Let v be a discrete random variable, with
a range

{111,112,...,1}1‘,...,’013}
Note that here the symbols v, v;, etc. are not random variables. Rather, they
represent the known values forming the range of v, and any one of them might
be the actual value of v.

The probability of the proposition “v = v1” is a real number between zero
and one representing how likely it is that the value of v is v;. We use the nota-
tion Pr(proposition) or sometimes Prob(proposition) or just P(proposition)
to mean the probability of the proposition. Thus, we write the probability
that v has value vy as Pr(v = v2). In contexts where the identity of the ran-
dom variable is obvious, we may abbreviate this notation simply to Pr(vsy).
(Note that were v continuous, no non-zero probability could attach to the
proposition “v = v;” for arbitrary v;.)

A probability of one represents certain knowledge that the proposition is
true. Zero represents certain knowledge that the proposition is false. A prob-
ability of 1/2 represents complete uncertainty: we consider the proposition
equally likely to be true or false. In general, the higher the probability, the
more likely we consider the proposition.

We require the numerical values assigned to probabilities to satisfy cer-
tain axioms set out below. These axioms are also satisfied by “probabilities”
defined in other, non-subjective, ways. In what follows, X, Y, etc. denote
propositions. X denotes the negation of X. That is, X is true if and only if
(iff) X is false, and vice versa. X.Y denotes the proposition that both X and
Y are true. X VY denotes the proposition that X is true, or Y is true, or
both are true.

Axiom 1 0 < Pr(X) <1
Axiom 2 Pr(X|Y)+Pr(X|Y) =1
Axiom 3 Pr(X.Y) =Pr(Y) Pr(X|Y)

)

where Pr(X|Y) is the probability we assign to proposition X if we know
Y is true. Pr(X]Y) is read “the probability of X given Y”, and is called a
conditional probability.
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Notation: We will often write Pr(X.Y") as Pr(X,Y). Also, we often write
Pr(X|Y.Z) as Pr(X|Y, Z). This is the conditional probability of X given that
both Y and Z are true.

From the above axioms and the axioms of Aristotelian propositional logic
follow the identities:

PH(X,Y) = Pi(Y,X)= Pr(Y)Pr(X[Y) = Pr(X) Pr(Y|X)
Pr(X,Y,Z) = Pr(X)Pr(Y|X)Pr(Z|X,Y)
Pr(XVY) = Pr(X,Y)+Pr(X,Y)+Pr(X,Y)
= Pr(X)+Pr(Y)-Pr(X,Y)
Pr(X|Y) = Pr(X)Pr(Y|X)/Pr(Y) (Bayes’ Theorem)

(The singular case Pr(Y’) = 0 will not arise in our use of Bayes’ theorem.)
If {X1, X5, X3,...,X;,...} is a set of propositions which are exhaustive

and mutually exclusive, so that one and only one of them must be true, then

>, Pr(X;) = 1. Hence, if {v,v2,...,v;,...} is the range of discrete random

variable v,
Z Pr(v=wv;) =

or, in abbreviated notation where the identity of v is obvious,

Z Pr(v;) =1

1.8 Independence

If two propositions X and Y are such that Pr(X|Y) = Pr(X), then the truth
or falsity of Y does not affect the probability of X. If this is so,

Pr(X,Y) =Pr(X|Y)Pr(Y) =Pr(X)Pr(Y)

Also,
Pr(X,Y) = Pr(Y|X)Pr(X)
Pr(X)Pr(Y) = Pr(Y|X)Pr(X)
Pr(Y) = Pr(Y|X)

Hence, the truth or falsity of X does not affect the probability of Y. Such
propositions are called “statistically independent” of one another, or simply
“independent”.
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1.9 Discrete Distributions

For a discrete random variable v with range {vy,va,...,v;,...}, it is conve-
nient to represent the probabilities of the various values in its range by a
function of the integer “” indexing the values. Generally, we can write such
a function as a function of either the index or the value, whichever is the
more convenient:

Pr(v=wv;) = f(i) or f(v) Vi

Since v must equal some value in its range,

Z flo)) =1

range of v

Such a function is called a probability distribution function, or simply a
distribution, and will here usually be denoted by the letter f. If f(i) gives
the probability that v = v; for all values in the range of v, f will be called
the “distribution of v”.

Often, we may know that the distribution of a variable v is one of a
parameterized family or class of functions, but we may not know which one.
In such cases, we will write the distribution of v as the function

Pr(v =v;) = f(il§) or f(v;]0)

meaning that the distribution of v is that function in the family identified by
the parameter value 6. Sometimes, the family of functions will have more than
one parameter, i.e., it will be a family of two or more dimensions. In such case
we may still write the distribution as f(v;|6), but read 6 as a vector whose
components are the several parameters, or we may write the distribution as
flui|e, B, ...) where a, 3, ... are the parameters.

Note the use of the vertical bar in the same sense as it is used in the
notation for probabilities. Pr(X|Y) means the probability of X given that Y
is true. Similarly, f(v|f) means the distribution of v given that the parameter
has the value 6. The symbols after the bar show what is assumed to be
known or fixed that can affect the probability or distribution. They are said
to condition the probability or distribution.

Finally, be warned that in discussing distribution, we often treat the ran-
dom variable v as an ordinary algebraic variable, and use it as the argument
of the distribution function. Thus, we will write

f(vl)

and treat it as an ordinary function of two algebraic variables, v and 6.

The algebraic variable v has the same range of values as the random
variable v, and the algebraic variable # ranges over the values identifying
members of the family of distributions.
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1.9.1 Example: The Binomial Distribution

A series of N trials is conducted. Each trial either succeeds or fails. It is
believed that Pr(trial succeeds) has the same value 6 (0 < 6 < 1) for all
trials, and that the trials are independent. Let n be the number of successes.
Then n is a random variable with range {0,1,..., N}. The distribution of n
is called a “Binomial distribution” and depends on the parameter 6.

o) = (V)ora oo

N
Here, < ) is the mathematical notation for the number of ways of selecting
n

a subset of n things out of a set of IV things. The distribution is a member
of a family of distributions, each characterized by a different value of the
parameter . For example, if § = 0.3 and N = 100,

100

Pr(20 successes) = < 20

>0.3200.780
and the distribution of n is
100
f(n) = f(n|0.3) = ( . )0.3"0.7(100—75)

Note that the number of trials NV is not normally regarded as a parameter,
even although it enters into the distribution function. Strictly, we should
write the distribution of n as f(n|f, N), meaning the probability of getting
n successes given that there were N trials and that each trial had success
probability 6. However, values such as N describing known, fixed conditions
under which the random variable will be observed are often not treated as
parameters of the distribution. The status of a parameter is often reserved
for those quantities affecting the distribution whose values might well not be
known.

1.10 Continuous Distributions

Suppose v is a continuous random variable, i.e., one which can take any
value in a continuous range, and let a be a value in that range. Then, in
general, one cannot usefully define the probability Pr(v = a). For instance,
if it is believed that v could equally well have any value in the real interval
1 < v < 2, the probability that v will have exactly the value a should equal
the probability that v will equal b, for any pair of values a and b in (1, 2).
But there are infinitely many values in this interval. If all are to have equal
probability and the probabilities are to sum to 1, each probability must be
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infinitesimally small. Thus, we cannot define the kind of distribution function
used for discrete random variables.

Instead, for a scalar continuous random variable v, we define a probability
density function, or simply density, by

b
Pr(a <v<b)= / fv)dv

For sufficiently well-behaved variables,

. Prla<v<a+d)
lim
5§—0 1)

= f(a)

That is, §f(a) gives the probability that the value of v will lie in a small
interval of size § near the value a.

Note that we will often use the same function symbol f(-) for either a
discrete distribution or a density. As with discrete variables, the density may
be one of a family of densities with parameter 6, where we write the density
as f(v]f), or perhaps as f(v|a, 3,...) if there are several parameters.

If v is a vector-valued continuous random variable, the same notation is
used, but the element dv must be interpreted as an element of area, volume,
etc. rather than as an element of the real line. For instance, if v is a 2-vector
with components x and y, we may write the density of v either as f(v) or as
f(x,y). The probability that v lies within a region R of the (z,y) plane can

be written as either
/ f(v)dv or // flz,y)dzdy

vER (z,y)ER

1.11 Expectation

If v is a discrete random variable with range {vi,vs,...,v;,...} and distri-
bution f(v), and if g(v) is some function defined for all values in the range
of v, then we define the “expectation” of g(v) as

S F)gw)

range of v

and symbolically denote it as Eg(v) or simply Eg.

In situations where we can obtain or observe an unlimited number of in-
stances or realizations of v, the long-term average of g(v) over many instances
of v will approach Eg(v). In N instances, we expect v to take the value vy
about N f(v1) times, and in each of these occasions g will take the value g(vy).
Similarly, we expect g will take the value g(v2) about N f(vy) times, and so
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on. Thus, the sum of all the g values obtained in the N instances should be
approximately

> Nf(w)g(v) =N flui)g(v:)

range of v

Dividing by N to obtain the average gives

> fwi)g(vi) = Eg

Thus, Eg represents the average value we expect to get for g(v) over many
instances.

Even when there is no possibility of observing many instances of v, i.e.,
when it is not possible to interpret f(v;) as a long-term average frequency
of getting v = v;, the expected value Eg still usefully summarizes what a
rational person might consider to be a “fair average” value for g(v), assum-
ing that the distribution f(v) properly represents his uncertainty about v.
For instance, suppose I arranged a wager with you, that I will pay you 3.50
dollars, we toss a 6-sided dice, and then you pay me 1 dollar for each dot
showing on the uppermost surface of the die. Let v; = ¢ be the number shown
by the die, with the range {1,2,...,6}. Let g(v;) = ¢g(¢) be my net monetary
gain from the wager. Then we have

g(1) = —2.50 dollars (I paid 3.50 dollars and got 1 dollar back)
g(2) = —1.50 dollars

9(6) = +2.50 dollars (I paid 3.50 dollars and got 6 dollars back)

Consider my situation before the die is cast. I do not know what the value
of my net gain g(v) will be, and there will be no repetitions of the wager,
so there is no consideration of a long-term average gain over many tosses.
However, if T believe that all numbers in the range 1 to 6 are equally likely
to come up, so f(v;) = 1/6 for all 4, then the expectation Eg(v;) is

6
Z f(i)g(i) = Z é(i —3.5) = 0 dollars

i=1 =1

The “expected” net gain is zero, and we would normally regard the wager as
a “fair bet”: neither you nor I have an advantage.

By contrast, if there are grounds for believing the die to be biased so that
number 5 is twice as likely to occur as any other, then my “expected” net
gain is

1 1 1 1 2 1
=(=2.5) + =(—1.5) + =(—0.5) + =(0.5) + =(1.5) + =(2.5) = 0.214 dollars
2(225) & 2 (—15) 4+ (0.5 + 2 (0.5) + (L) + 2 (2.5)
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The positive “expectation” of g or “expected net gain” is an indication that
the wager is biased in my favour. Were it to be repeated 1000 times, I could
expect to win about 214 dollars, and even though there will in fact be only
the one wager, Eg represents a fair assessment of how beneficial (in purely
monetary terms) the wager is likely to be to me.

Note that this use of the term “expectation” (and “expected value”) is a
technical definition which does some violence to the normal English meaning
of the word. In the biased-die case, the definition gives an expected value
Eg = 0.214 dollars, or about 21 cents. However, I certainly do not expect
(in the usual sense) my net gain to be anything of the sort. My net gain
can only be one of the values —2.5, —1.5, —0.5, 0.5, 1.5 or 2.5, and cannot
possibly be 21 cents. The value Eg(v) might better be termed an “average
in probability” rather than “expected value” or “expectation”, but the latter
terms are entrenched in the statistical literature and will be used in their
technical sense in this work.

The definition of expectation extends in the obvious way to functions
of continuous random variables. If v is a continuous random variable with
probability density f(v), and g(v) is a function of v, then the expected value
of g(v) is defined as

Eg(v) = / F@)g(v)dv

Conditional expectations are also useful: the expected value of g(v) given
some value or proposition y which affects the distribution of v is defined as

E(g)ly)= > f(uily)g(vi) (discrete)
range of v

B(g(0)ly) = / f(oly)g(v)dv  (continuous)

Finally, we may be interested in the expected value of v itself (called the
mean of v), in which case g(+) is the identity function. Then

Ev = Z fvi)v;

range of v

Ely) = Y. filyo

range of v

or for continuous v:
Ev = /f(v)vdv
Blly) = [ foly)vio
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1.12 Non-Bayesian Inference

Given some data and a set of probabilistic models for the data, we would like
to be able to infer some statement about which model or subset of models
should be preferred in the light of the data. We will represent the data by a
proposition or vector of values z, and the set of models by ©, with 6 denoting
a model in the set.! Note that we use the term “model” to denote a fully-
specified probability distribution over the possible range of the data, with no
parameters left free. We use “family of models” or “model family” to refer
to a set of models individually identified by different parameter values.

For each model 0, we assume the probability of getting data x given model
0 is known, and we write it as Pr(z|6).

Classical non-Bayesian inference attempts to draw some conclusion about
the model using only x and the probabilities {Pr(z|d) : § € ©}. The diffi-
culty of doing so is evident if we consider the simplest of examples. Suppose
there are only two models considered possible, #; and 65, and that data x is
obtained such that

Pr(z|61) = 0.001 Pr(z|f2) = 0.01

Armed only with those facts, what can be said about the true source of the
data, 6?7 Clearly, we cannot deduce any statement of the form “6 = 6,7,
since the data does not logically exclude either model. Nor do the axioms of
probability and logic allow us to deduce a probability for any such statement.
That is, we cannot obtain from these facts any value for Pr(6 = 6;) (which
we can abbreviate to Pr(6;)).

The inequality Pr(z|62) > Pr(z|f;) is the only deducible statement which
distinguishes between 6; and 6 in the light of the data. We may well feel
that the inequality favours belief in 65 over belief in #;, but the strength of
this preference cannot be quantified as a probability.

When the set of possible models © is a family with a single real parameter,
the situation is superficially improved but actually no better. Let € denote the
parameter identifying a member of the family, and Pr(z|0) be the probability
of obtaining the data given the parameter value 6. If we consider a proposition
such as A: “a < 6 < b”, we cannot even deduce the probability Pr(z|A), let
alone the probability Pr(A). However, at least in some cases, it appears that
we can deduce something useful about such a proposition.

Suppose that @ is the family of Normal densities with standard deviation
1.0 and mean 6 (the parameter). Let the data be a sample of 8 values inde-
pendently drawn from the density, x1,zo,...,zs. Let T be the sample mean

1
3 Zmi, and suppose T = 1.272. It is easily proved for the Normal density
i=1

! For notational simplicity, we let = denote either scalar or vector data values, and
do not use z to distinguish the vector case.
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that the mean of N independent random values drawn from Normal(u, o?)
is a random value drawn from Normal(y,o?/N). Thus, in this case,  is a
random variable drawn from Normal(f,1/8). Equivalently, we may say that
(z—0) is a random variable drawn from Normal(0, 1/8). Then, since we know
Z from the data, cannot we infer some probabilistic statement about (6 — ),
and hence 0?7 For example, tables of the Normal distribution function show
that a random value from Normal(0, 1/8) has probability 0.99 of lying in
the range +0.911. Can we not then say that the proposition B: “f lies in the
range 1.27240.911” has probability 0.99, i.e., Pr(B) = 0.99 ? Unfortunately,
we cannot.

If we know nothing except that z is the mean of 8 values drawn from
Normal(f, 1), then the proposition C: “|z — 0] < 0.911” is distinct from B
and has probability 0.99, i.e., Pr(C) = 0.99. However, in the present case we
know more, namely the 8 data values. We have no right to assume that C is
independent of the data, i.e., that Pr(C) = Pr(Clzy,...,zs). In some special
cases, C may be approximately independent of the data, but in general it is
not.

For this simple example, we can be sure that C is independent of some
aspects of the data. The Normal distribution has the property that if the
standard deviation is known, then for any set of data values, Pr(z1,...,2n|0)
can be factorized into two probabilities:

Pr(z1,...,zn|0) = Pr(zy,...,2n|Z) Pr(Z]0)

where the first factor does not depend on 6. Hence the probability of any
proposition about § or (z — #) may depend on the data only via Z, and all
other aspects of the data must be irrelevant. A function of the data, such as
the mean Z in this example, which allows the probability of the data given the
parameters to be factorized in this way, is called a “sufficient statistic”. The
value of a sufficient statistic contains all the information about the parameters
which can be recovered from the data.

However, it remains possible that proposition C is dependent on Z, and
hence that Pr(z—0.911 < § < £+0.911) # 0.99. An example may clarify this
possibility. Suppose that, in addition to knowing the data to be drawn from
Normal(6, 1.0), we also happen to know that 6 is positive, although its value
is unknown. This additional knowledge does not affect the probability of the
proposition that the mean of 8 values drawn from the Normal distribution will
lie within 40.911 of the true mean 6. However, it does change the probability,
given T, of proposition C, that 6 lies within £0.911 of Z. Although 6 >
0, it is quite possible that the data will give a negative sample mean, say,
Tz = —0.95. If we observe such data, then we will be sure that proposition
C is false, since the range T £+ 0.911 becomes the range —1.861 to —0.039,
and we are sure # > 0 and hence not in this range. Thus, if £ ~ —0.95,
Pr(C|z) = 0. Again, suppose the data yielded Z = —0.90. Then proposition
C becomes “|6 4+ 0.90| < 0.911” or “—1.811 < 6 < 0.011”. Combined with
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our knowledge that 8 > 0, proposition C now implies “0 < 6 < 0.011”. While
this proposition is not known to be false, we would be hesitant to regard it
as having probability 0.99, i.e., very probably true, but we have no means of
calculating its probability from what is known. More generally, if we know
almost anything about 6 in addition to the observed data, we must conclude
that the probability of proposition C is dependent on Z, even if we cannot
compute it.

The impossibility of deducing probabilities for propositions such as “6
lies within +0.911 of the sample mean”, using knowledge only of the model
probability distribution, is well known. However, a range such as & 4+ 0.911
is often stated as an inference from the data, and is called a “confidence
interval”. Rather than claiming that the proposition “f lies within £0.911
of 7 has probability 0.99, the proposition is said to have confidence 0.99.
“Confidence” is not the same as probability, no matter how the latter term
is defined. It is rather unsatisfactory that starting with assumptions stated
in terms of probability, one can only make an inference stated in terms of the
even more problematic concept of “confidence”.

1.12.1 Non-Bayesian Estimation

Given data z believed to be drawn from a source modelled by some distribu-
tion in a known family with unknown parameter #, one might wish to infer
a “best guess” value of @, accepting that no probabilistic statement will be
possible about its accuracy. Such a “best guess” is called an estimate. In a
non-Bayesian framework, the raw material for forming an estimate comprises
the observed data x and the function f(x|f) giving the probability of ob-
taining data x from a source with parameter value . With such limited raw
material, the most general process available for forming an estimate appears
to be the “Maximum Likelihood” (ML) method. This method chooses as the
estimate that value of § which maximizes f(x|6).

Viewed as a function of § with given data x, the function f(z|0) is called
the likelihood of 8. Clearly, for given x, f(x|6) is not a probability distribution
or density for 6. No such distribution or density can be inferred from x and
f(z]0). The ML method is just an extension to a parameterized family of
models of the simple preference scheme first discussed for two models: prefer
the model having the highest probability of giving the data.

If no information other than the data and the function f(x|f) is to be
used in the estimation, it is difficult to see any alternative to ML. How else
can one obtain a value within the range © of the unknown parameter from
such raw material? Indeed, so long as f(z|#) has only a single local maximum
as a function of 0, the ML estimate can be shown to have several desirable
properties. It depends on the data only via functions of the data which are
sufficient statistics, and so uses no information in the data which is not rel-
evant to #. For many model families, ML is consistent. That is, if more and
more data is obtained, the ML estimate can be expected to approach the
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true value of 6. Also, for many model families, ML is efficient, meaning that
it uses all the information in the data which is relevant to the value of 6.
However, ML is not unique among estimation methods in possessing these
features. In some cases, ML can be improved upon by allowing a little more
information into the non-Bayesian framework.

Up to this point, we have tacitly treated the value of 6 identifying a
member of a family of models simply as an identifying label, with no quanti-
tative interpretation. However, in many cases, the parameter(s) of a family of
models are quantities whose numeric values are meaningful. For instance, the
mean diameter of a population of sand grains is itself a diameter, to be stated
in some physical unit such as millimetres, and its value may be important in,
say, calculations of wind erosion. Similarly, the mean kinetic energy of a col-
lection of gas molecules is itself an energy, and has physical meaning related
to the temperature of the gas. In such cases, we may well import into the
statistical inference process arguments based on the quantitative difference
between the true parameter value and the estimate. Let 6y denote the true
value and @ an estimated value based on data z. We write the estimate as a
function of the data: # = m(z). The function m() is called an estimator.

The bias of an estimator is the expected difference between the true value
0 and the estimate:

B(m,0) = E(@—6)
= /fx|00 m(x) — 0y) dx

Clearly, the bias in general depends on the estimator and on the true param-
eter value 6y, and where possible it seems rational to choose estimators with
small bias.

Similarly, the variance of an estimator is the expected squared difference
between the true parameter value and the estimate:

V(m,é?o) = 9 90)
/f z|6o) (m(x) — 6o)* da

Again, it seems rational to prefer estimators with small variance.

In general, it is not possible to base a choice of estimator on a preference
for small bias and/or variance, because both B and V depend on 6y, which
is unknown. However, for a few particularly well-behaved model classes, it
is possible to choose an estimator which has zero bias and minimal variance
whatever the value of 6. Such estimators are called “Minimum Variance Un-
biased”. More generally, even when the model class is such that no minimum
variance unbiased estimator exists, it may be possible to choose an estimator
which is, say, less biased than the ML estimator, yet which retains all the
favourable properties of the ML estimator. A familiar example is the estima-
tion of the variance (squared standard deviation) of a Normal distribution
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with unknown mean p and unknown variance o2. Given data comprising N
values (x1,Z2,...,7x) drawn from Normal(y, 0?), the ML estimate of o2 is

R 1 _
R =Y L2y
which has bias (—o?/N). The estimate

. 1 _
U%B:ZNil(fEi_xf

i

however, has zero bias for any true p, o, and is usually preferred.

Note that considerations of bias and variance apply only to a particular
parameterization of the model family. For instance in the above example,
while 67 5 is an unbiased estimate of 02, 6 p is not an unbiased estimate of
0. Also, the few model families which admit of Minimum Variance Unbiased
estimators have such estimators for only one parameterization. Thus, the
usefulness of these considerations is quite limited.

1.12.2 Non-Bayesian Model Selection

One of the most difficult targets for statistical inference is to make a choice
among two or more model families, where each family has a different mathe-
matical form and/or a different number of unknown parameters. For example,
given data comprising N values from a univariate distribution, we might like
to suppose whether the data comes from a Normal density with unknown p
and o2, or from a Cauchy density

S

A P )

with unknown location ¢ and spread s. This problem is analogous to the
choice between two simple models for the data, but more difficult because
the parameter values for either family are unknown. The only choice crite-
rion available without using additional premises is to compare the maximum
likelihood obtained in one family with the maximum likelihood obtained in
the other, and to choose the family giving the greater. This process is equiv-
alent to choosing a single model from each family by ML estimation of the
unknown parameters, and then comparing the two resulting models.

An important subclass of this type of inference problem arises when one
family of models is a subset of the other. Typically, the restricted family is
defined by fixing one or more of the unknown parameters in the more general
family, so the smaller family has fewer unknown parameters, and these are
a subset of the parameters of the larger family. The smaller family is then
called the null hypothesis, and one seeks to infer whether the data give reason
to suppose that they come from some model in the full family rather than
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some model in the null hypothesis. A simple comparison of the maximum
likelihoods obtained within the two families will no longer suffice. Since the
full family includes all the models in the null hypothesis, the maximum like-
lihood in the full family must be at least as great as that in the subset family,
and will almost always be greater.

The typical non-Bayesian approach to this problem is to devise some
statistic, i.e., some function of the data, whose distribution can be calculated
on the assumption that the data comes from a model in the null hypothesis,
but whose distribution does not depend on the parameters of that model.
The statistic is also chosen so that its distribution for models not in the null
hypothesis is different, typically in such a way that the statistic is likely to
take values which would be improbable under the null hypothesis. The value
of this test statistic is then computed from the data, and the null hypothesis
rejected if the value obtained is deemed sufficiently improbable.

A classic example of this inference technique was devised for choosing
between the full family of Normal models Normal (u,0?) with 4 and o un-
known, and the null hypothesis Normal(u1,02) where p; is a known value
but o is unknown. Thus, the desired inference is to decide whether or not the
true mean equals p;. Given data comprising N values (z1,...,2zy) drawn
from the distribution, the test statistic

L=
1 7)2
eI

is computed. If 4 = p1, the numerator of this expression has a distribution
of form Normal(0,02?/N). The denominator has a more complex distribution
with mean o, but both distributions have widths proportional to . Thus, the
distribution of ¢t does not depend on ¢. Its mean is zero. Further, if the true
mean differs from p;, the distribution of ¢ no longer has zero mean. Thus, if
the observed value of t is far from zero, this event is improbable if p = g,
but not improbable for some other values of u, and the null hypothesis is
rejected.

There is an extensive literature on the construction and use of test statis-
tics for many inference problems of this general class. Many of the test statis-
tics are related to a rather general test statistic called the log likelihood ratio,
and defined as

t =

0
fulln%ggily f(l" f)

A=log max f(x|6,)

null
It is the natural logarithm of the ratio between the maximum likelihood
obtained in the full family and the maximum likelihood obtained in the null
family. Here, 0; denotes the full set of parameters and 6, the restricted
set. Under certain regularity and smoothness conditions on the form of the
function f(x]0y), it can be shown that for large data samples and assuming
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the data comes from a model in the null hypothesis, the statistic 2\ has a
distribution close to the ChiSquared form with d degrees of freedom (written
X3)7 where d is the number of parameters having fixed values in the null
hypothesis. Thus, if the null hypothesis is true, 2] is expected to have a value
around d (the mean of x?) and rarely to have values very much greater.

The log likelihood ratio can be interpreted in another way. Suppose data
x is obtained from an unknown member of a family with general distribution
form f(x|0), and that the family has n parameters, i.e., 8 is a vector with
n components. Let 6y be the true parameter values. Then, under regularity
and smoothness conditions, the random variable

max f(x|6)
—9log [ O
“‘”g( Falfo) )

has asymptotically a distribution close to x2 form, and E(v) = n. Let 8 be
the maximum likelihood estimate of 6, so v = 2log f(x|0) — 21og f(x|6o).

The value of log f(x|6y) is of course unknown, but may be guessed as
being roughly given by

log f(a{fy) ~log f(ald) ~ LE(v)
~ log f(al0) — 5

where the value of 8, and hence of f(x|), is calculated from the given data x.
Now suppose that it is believed that the data comes from one of two different
families, with forms f(z|0) and g(x|¢), and that they have respectively nq
and ns parameters. We do not assume that one family is a subset of the other.

In comparing the two families f and g, it can be argued that if the data
comes from an unknown model in family f, then the log of its probability
given that model is roughly log f(x|0) — n1/2. Similarly, if the data comes
from an unknown model in family g, its log-probability under that model is
roughly log g(x|<;AS) — ng/2. Hence, to choose between the two families, one
might prefer the larger of these two quantities. Equivalently, we might prefer
family f if

tog  (#10) ~ Tog g(x18) > 5 (1 )
ie., if
og f($|?) > 1(7711 — ng)
glzle) 2

Thus, we are again led to the log likelihood ratio test, as (ny — ng) is the
number of parameters for family f over and above the number for family g,
but it is no longer required that g be a subset of f.

In the above rule, the value of the test statistic (the log likelihood ratio)
is compared with %(nl — ng), which would be its expected value were g a
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subset of f and the data came from a model in g. We do not require the first
of these conditions, and certainly do not know whether the second is true.
Hence, it is not obvious that %(nl — ngy) is necessarily the best value against
which to compare the test statistic. It has been argued by Akaike [1] that it
is better to compare the log likelihood ratio against (n; — nz) rather than
%(nl — ng). That is, the log likelihood of each family should be “penalized”
by 1 for each free parameter, rather than 1/2. Later we will see arguments for
a “penalty” which is not a constant for each parameter, but rather a value of
order %log N, where N is the sample size of the data. It is known [5, 40, 60]
that for some pairs of families f and g, the Akaike criterion is inconsistent.
That is, no matter how much data is acquired, it can be expected to show
a preference for the more complex model family even when the data comes
from the simpler family.

1.13 Bayesian Inference

We have seen that non-Bayesian statistical inference cannot lead to prob-
abilistic statements about the source of the data. In choosing among com-
peting models, or model families, we can at best compare the likelihoods
of the competing models, and more generally only estimates or bounds on
these likelihoods. The form of statement which can be deduced from these
comparisons is usually equivalent to the statement below.

“Something has happened which would be surprising if I knew the data
came from model/family A, but less surprising if I knew it came from
model/family B.” Since the substance of such a statement is conditional upon
conditions which are not true, the statement is counterfactual and a leap of
faith is required to translate it into what we want to hear, which is something
like the statement that the source of the data is probably in family B, or at
least that family B is a better guess than family A.

The introduction of new premises into the argument can allow the de-
duction of rather more meaningful conclusions. We now outline Bayesian
statistical inference, in which we assume that probabilistic knowledge about
the source of the data is available independent of, or prior to, the observed
data.

We will begin by discussing inference problems in which the set of possible
models is discrete. Model families with unknown real valued parameters will
be treated later. Let © be the set of models with identifying labels {1, 6, . . .}.
The Bayesian approach assumes that, even before the data = is known, we
have reason to assign a probability Pr(6;)(0; € ©) to each competing model.
This is called the prior probability of the model, since it is the probability
we assign to the proposition that the data come from the model before, or
prior to, our seeing the data. The probability distribution {P(6;),0; € O}
is called the prior distribution or simply the prior. As in the classical non-
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Bayesian approach, we also assume the data probability distribution function
or likelihood Pr(z|6;) is known for every model.
Then, using Bayes’ theorem we write

Pr(x|6;) Pr(6;)

0;
Pr(z) Wi €O

Pr(6;|x) =
Here, {Pr(6;|x)} is a new probability distribution over the possible models,
called the posterior distribution or simply the posterior. Pr(z) is the marginal
data probability given by

Pr(z) = Z Pr(z|6;) Pr(6;)
0;

Pr(z) acts as a normalizing constant for the posterior distribution. The value
of Pr(6;|x) for model 0; is called its posterior probability, interpreted as the
probability that model 6; is indeed the source (or an accurate model of the
source) of the observed data x. Loosely, it is the probability, given the data,
that model 6; is “true”. (Since Pr(z) does not depend on 6, it need not be
calculated if we are only interested in comparing the posterior probabilities
of different models for fixed data.)

The Bayesian approach thus makes possible the inference of probabilistic
statements about the source of the data. The posterior probabilities, unlike
measures of “confidence”, obey the usual axioms of probability. For instance,
the posterior probability that the source was either 6; or 0; is

Pr((6; v 8;)|xz) = Pr(6;|x) + Pr(8;|x)

Also, if two sets of data x and y are obtained from the same unknown source,
then

~ Pr(z]0;,y) Pr(6;y)
Pr(0;ly,z) = >, Pr(x|0;,y) Pr(0;y)

If the data sets are independent, that is, if for a known model 6 the probability
of its yielding data x is not affected by knowing that it has also yielded data
y, then Pr(z|6;,y) = Pr(z]6;) and we have

Pr(z|6;) Pr(0;|y) Pr(x|6;) Pr(y|6;) Pr(6;)

Py 2) = = Be(alf;) Pr(bs )~ S, Pr(al6) Pr(y]f,) Pr(6;)

Pr(0;|y) is the posterior probability assigned to 6; after seeing data y. The
above equation shows that, in considering further data x, Pr(6;|y) plays the
role of the prior probability of #;, and leads to the posterior probability
Pr(6;]y, ) assigned to 6; after seeing the additional data z.

Note that the final posterior distribution Pr(|y, z) is independent of the
order in which the two data sets are considered. Whether or not the data sets
are independent for a given model, we have
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_ Pr(x,y[0;) Pr(6;)
Pr(0;|z,y) = >, Pr(z,yl0;) Pr(6;)

which is a symmetric function of = and y.

The above results show that, given a prior probability distribution over
a discrete set of possible models, the Bayesian method makes it possible to
choose that model which is most probably the source of the data, and to make
statements about the probability that this choice, or any other, is correct.

Henceforth, we will usually denote the prior on a set of possible models
by the generalized function “h(0)”. Here, h(f) may represent a probability,
if # is discrete, or, as discussed below, a probability density.

We now consider problems in which ©, the set of possible models, is a con-
tinuum rather than a discrete set. Let 6 denote the real-valued parameter or
vector of parameters identifying a particular model. Since @ is a continuum,
prior knowledge cannot assign a non-zero prior probability to every member
of 6. Instead, we may have a prior probability density over 6. (It is of course
possible to have a prior distribution which assigns a non-zero probability to
every member of some countable subset of @, and a probability density over
the remainder of @, but this possibility introduces only mathematical com-
plexity to the problem, and nothing new in principle. We shall ignore it for
the time being.)

We write the prior density over © as h(#), with the meaning that the
prior probability that the true model lies in some region R of @ is given by

Pr(R) — /R h(0)d6

where df is an element of line, area, volume, etc., depending on the number
of scalar parameters, i.e., depending on the dimension of the continuum 6.
Given data z and the data probability function Pr(z|f), the Bayes identity
now allows the calculation of a posterior density on ©:

h(0) Pr(x|0)

p(0le) = S

where the marginal probability of data x is now
Pr(z) = / h(0) Pr(z|6)do
e

(Henceforth, all integrals or summations with respect to 6 will be over the
set © of possible models unless otherwise shown.)

Note that the prior density h(€) and posterior density p(6|x) are often
called simply the prior and posterior, as is also done with distributions over
a set of discrete models.

The posterior density can be used to calculate the probability, given the
data x, that the source is in some region R of O:
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Pr(R\x):/Rp(ﬂx)d@

and so to attach posterior probabilities to such propositions as “a < 6 <
b7, “0 < 07, “logh > 17, etc. for a scalar parameter 6. Similarly, if 6 has
two or more components, § = (u,v) say, then by integrating the posterior
density p(f|x) = p(u,v|x) with respect to some components, one can compute
posterior probability densities involving only the other components. Thus, the
posterior probability density of component v is given by

/ p(u, v|z)dv

vEO

However, the posterior density of 8 does not allow us to attach a non-zero
probability to individual values of 6. Being a density, it cannot give a prob-
ability to a proposition of the form “0 = a”.

Thus, the Bayesian argument, when applied to a continuum of possible
models, does not lead directly to a simple rule for choosing a “best guess”
estimate of the parameter. When © is discrete, one may choose the discrete
model of highest posterior probability, but when © is a continuum, no one
model has any posterior probability. It might be thought that an obvious es-
timation rule analogous to the simple rule for discrete © would be to estimate
0 by that value having the largest posterior density given the data, that is,
to choose the mode of the posterior density:

6 = Mode p(0]z)

This rule is in general unacceptable, as it depends on the particular param-
eterization or coordinate system used for identifying members of ©. Instead
of identifying models by the parameter 8, we could equally well use any other
quantity which is a one-to-one function of 6, say

p=g0) O=g"'(9)

Assuming for simplicity that the function g is differentiable, we can then use
the standard rules for transforming probability densities to obtain the prior
and posterior densities of ¢:

~—

Prior density hg(¢) = h(@)% = }gLEZ)

where
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(9) Pr(x|6)
j(0) Pr(z)
(0]z)
9(0)

In general, the mode of py(¢|x) will not correspond to the mode of p(f|x)

Mode py(@lz) # g(Mode p(6]2))

The modes can only correspond if () happens to have zero slope at the mode.

A similar objection can be raised to using the mean of the posterior
density as an estimate: it also is not invariant under a change in the choice
of parameter. However, if € is a single scalar parameter, there is some logic
in choosing as the estimate the median of the posterior density. One can say
that the true parameter is equally likely, given the data, to be above or below
this value, and the median is invariant under a (monotonic) change in the
choice of parameter. However, the median is not defined when there are two
or more parameters, and the posterior medians of single components of a
vector parameter are not invariant.

The difficulty outlined above in obtaining a parameter estimate from the
Bayesian argument alone is one of the problems we believe has been overcome
in the new approach to be developed here.

We now consider Bayesian choice among two or more model families,
perhaps with different numbers of parameters. One family may or may not
be a subset of another. Let the families be indexed by 7, and let the probability
of data x for a model in family j be f;(x|0;), where parameter variable 6; is
the parameter for family j. It is convenient to describe the prior distribution
by the notation

=
~—~

" @

Prior = h(j,0;) = h(j)h(6;7)

Here h() is a generalized function symbol denoting prior probability or den-
sity, h(j) is the prior probability that the data source is a model in family j,
and h(0;|j) is the prior density of parameter 6;, given that the model is in
family j. Then

Zh(j) =1 /h(aju) df; =1 (for all 5)

Given data z, the posterior can be similarly described by a generalized func-
tion symbol p().

p(j, 0;lz) = W

= p(jlz) p(0;]5, )

Here, Pr(z) is the marginal probability of obtaining data = from any model
in any family
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Pr(x)

S [ a0 1.05) a0
Zﬁm/ﬁmwh@mw

The latter form can be recognized as summing (prior probability that the
family is j) times (marginal probability of getting x from some model in
family j). Thus, we can write

Zh ) Pr(z|j)

where
Pr(alj) = [ 1;(al65) hi6;1) 49
The posterior probability that the data comes from family j is

Prgle) - 20Tl

and the posterior density of parameter 6;, given or assuming that the data
comes from family j, is

[i(x105) h(0;15)
Pr(z|j)

The posterior distribution {p(j|z)} over the families behaves exactly as the
posterior distribution over a discrete set of unparameterized models. It allows
us to make probability statements about families or groups of families in the
light of the data, and suggests a simple choice rule for inferring the family
when a choice must be made, namely, choose the family of highest posterior
probability. However, the difficulty of estimating parameter values, i.e., of
choosing the “best” model within a family, remains. Nor is it entirely obvious
that the “best” model, however that is defined, will necessarily be a member
of the family with highest posterior probability.

Pr(0;]j,x) =

1.14 Bayesian Decision Theory

In certain circumstances, the inability of the Bayesian argument by itself to
pick a “best” estimate of parameter values is of no consequence. It may be
that the objective of the statistical investigation is to choose among a set
of possible actions whose favourable or unfavourable consequences depend
on the true state of the source of the data. A much-studied example is the
problem of deciding on the treatment of a patient on the basis of the patient’s
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symptoms. Here, the set of “models” is the set of possible causes of the
symptoms, i.e., © is a set of possible diseases or conditions. Let 6 be some
disease in O, x be the observed symptoms and Pr(z|f) be the probability
that someone suffering 6 would show z. The prior h(6) may reflect the known
frequency of disease 6 in the population to which the patient belongs. Then
the Bayesian argument allows us to calculate the posterior

h(0) Pr(z|0)

Pr(0|z) = Pr(z)

for any 6.

Suppose now that there is a set A of actions {ay, ag, ..., ak, ...} which may
be taken, i.e., a set of treatments which could be given, and that previous
experience has shown that the cost, in terms of money, time, suffering and
final outcome, of treating a sufferer from 6 with treatment ax is C(6,ag).
(In general, C' would usually represent an expected or average cost, as 6 and
aj, might not fully determine the consequences.) Then the expected cost of
taking action aj given the data x is

h(6) Pr(z|0) C(6,ax)
Z Pr(x) .

E(C(ax)|z)
0

= Z Pr(f|z) C(0,ax)
0

It is then rational to choose that action d for which E(C(a)|z) is least.

This technique of using the posterior to decide on the action of least
expected cost, given the data, is known as Bayesian decision analysis, and
has been much studied. Although presented above in terms of a discrete set
of possible models and a discrete set of possible actions, the extension to
parameterized models and/or a continuum of possible actions is immediate
and raises no problems. If @ is a continuum with parameter 6, the expected
cost of action a given data z is

E(C(a)|x) = /p(9|x)C(0,a) de

where p(f|x) is the posterior density of §. This expression is valid whether
the set A of possible actions is continuous or discrete. When A is continuous,
C(0,a) remains a “cost”, e.g., a sum of money, and is not a density over
A. Similarly, E(C(a)|x) is not a density, and its minimum is invariant under
changes of parameterization of @ and A.

We see that, given the addition of a cost function, Bayesian inference leads
to a rational basis for decision which is valid whether or not the set of possible
models is or contains a continuum family with unknown parameters. Where
a cost function is available, we can see no conceptual objection to Bayesian
decision analysis, and the approach developed in this work adds nothing to
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Bayesian decision theory save (we hope) some useful comments about prior
probabilities.

Bayesian decision theory does not require or involve making any statement
about the “best” or most probable model of the data, nor does it involve any
estimation of parameters. In fact, it really makes no inference about the
source of the data other than a statement of the form: “Our knowledge of the
source of the data is such that the action of least expected cost is a@”, which
is not about the source, but about our knowledge of it.

In some circumstances, Bayesian decision analysis can appear to lead to
estimates of parameters. Consider a problem where the set of possible models
is a single family with parameter 6, and the set of possible actions is also a
continuum, having the same dimension as the family of models. Then it may
be that the choice of action can be expressed in a form similar to a statement
about the model. For example, imagine a traveller faced with the problem
of what clothes to pack for a visit to Melbourne. Her extensive wardrobe
offers an almost unlimited range of garments, each suitable for one particular
narrow range of temperatures. Prior knowledge and meteorological data allow
the traveller to infer a posterior density over 6, tomorrow’s temperature in
Melbourne. In this case, the action chosen, i.e., the selection of clothes, can
also be expressed as a temperature: the temperature 6, for which the chosen
clothes are ideal. The cost C(0,80,) is related to the difference between the
temperature 6, and the actual temperature 6 to be encountered in Melbourne.

In cases such as the above, where the parameters of the action or decision
are commensurable with the unknown parameters of the model, the action
parameters 6, of the least-cost action are sometimes considered to be an
estimate of the model parameter 6. This possibility arises most commonly
when the cost function can be expressed as a function C(0 — 6,) of the
difference between “estimate” and true value. In our view, this use of the term
“estimate” is misleading. It is not difficult to imagine cases where the least-
cost action is described by an action parameter 6, such that Pr(z|6 = 6,) = 0.
For instance to use a fanciful example, the meteorological data might show
quite conclusively that the temperature in Melbourne will not be in the range
22-23°C, but has high posterior probability of being either about 20° or about
25°. The least-cost action might then be to pack clothes ideal for 22.5°C,
even although the traveller is certain that this will not be the temperature.
Of course, it is more usually the case that the least-cost 6, is a reasonable
estimate of 6, even if it is not so intended.

The above remarks are no criticism of the Bayesian decision-making pro-
cess. They aim only to argue that the process need not and does not make
any estimate about the source of the data. No assertion, however qualified,
is made about the “true state of the world”.

Similar but stronger remarks can be made about the outcome of Bayesian
decision when the set of possible models includes different parameterized
families. The process makes no assertion about which family contains the
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source of the data. Even if the chosen action is described in the same terms as
are used to name a family, we cannot properly regard the terms describing the
least-expected-cost action as an assertion or guess about the “true” family.

If Bayesian decision analysis is accepted as a sound basis for choosing
actions, as we argue, there may seem no need ever to go beyond it in any
analysis of data. Whenever data is collected, observations made, model fam-
ilies devised and inferences drawn, it is for some purpose or purposes. These
purposes may be vital or frivolous, but almost always some action will be
taken in the light of the data to further these aims. If Bayesian decision can
reliably guide these actions, need we ever worry about weighing one theory
against another, or trying to discover precise values for unknown parame-
ters? The decision process automatically takes into account all the theories,
models and possible parameter values we are prepared to consider, weights
each in due proportion to the support it gets from the data, and leads to an
appropriate choice of action.

If the Bayesian decision process were universally feasible, we would have
indeed no reason other than idle curiosity to pursue any other kind of sta-
tistical inference. Unfortunately, the limitations of human reason and the
division of responsibilities in human societies make the process infeasible in
all but a few arenas. An obvious obstacle is that the investigator who col-
lects and analyses the data is rarely in a position to know what decisions will
be made using the conclusions of the investigation. Some of the immediate
objectives of the study may be known, but many inferences, especially those
widely published, will be used by persons and for purposes quite unknown to
the investigator. The investigator will often have even less knowledge of the
cost functions involved in the decisions based on his work. It is unlikely that
Kepler could have had any idea of the consequences of accepting his inference
that planetary orbits are elliptical, or that Millikan could have put a cost to
any error in his estimation of the electronic charge.

Because an investigator is not usually in a position to know the uses
which will be made of his conclusions and the cost functions relevant to those
uses, one can argue that a statistical analysis of the data should proceed no
further than the calculation of the posterior distribution. Any agent who,
faced with a range of decisions and a cost function, wishes to use the results
of the investigation will find all the relevant results expressed in the posterior
distribution. The posterior encapsulates everything about the source of the
data that can be inferred within the assumptions of the investigation (i.e.,
within the constraints imposed by the set of models considered). On the
other hand, if the investigator goes beyond the posterior, and states as his
inference a “best guess” of model family and parameter values, he is in general
censoring and/or distorting the data. Except in those simple cases where a
small set of sufficient statistics exists, no one model can accurately summarize
all the information in the data which may be relevant to future decisions.
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There are thus good reasons to consider the task of a statistical investiga-
tion to be complete when the posterior has been calculated. Further inference,
e.g., the choice among actions or the prediction of future events, can be based
on the posterior but require additional information not normally known to
the original investigator.

In the real world, however, the above policy is a counsel of perfection,
rarely able to be carried out and rarely meeting practical needs. There are two
difficulties. First, in even modestly complicated problems, the set of models
considered possible may be quite large and have a fairly complex structure.
For instance, it may commonly include several structurally different families
of models with different numbers of parameters. The result can be that the
posterior is a complicated function, difficult both to express and to evaluate.
Indeed, in some cases an accurate specification of the posterior is just as
lengthy as the body of data on which it is based. “Conclusions” of such a
sort are hard to communicate and give little or no insight into the nature of
the data source.

The second difficulty is that posterior distributions of any complexity are
often too difficult to use in further reasoning. Consider a study on the effect
of various inputs on the yield of a crop. The data might include observed
yields under a range of fertilizer and rainfall inputs, soil types, temperature
profiles over the growing season, etc. The models considered might range
from simple linear families through ones allowing for interaction of different
inputs and saturation effects to model families which incorporate detailed
modelling of photosynthesis and other biochemical reactions. The posterior
distribution over these families and their numerous parameters would be a
very complicated function. Even within a single family, such as the family
of non-linear regression models, the posterior densities of the unknown pa-
rameters would have complex shapes and correlations. It would be extremely
difficult to use such a function in answering practical questions such as “If
November is unusually cool and dry, will fertilizer applied in December have
any useful effect?” Here, the most useful result that could be obtained from
the study is a single model, preferably of no great mathematical complex-
ity, which captured most of the effects visible in the data with reasonable
accuracy.

A further striking example where a posterior would be almost useless is
the “computer enhancement” of noisy images such as satellite photographs.
Here, the “models” are all those 2-dimensional brightness patterns which the
subject of the photo might have had, the data is the brightness pattern of
the available image(s), the data probability function describes the probability
distributions of the various noise and distortion processes which corrupt the
image, and the prior should reflect what is already known about the subject.
The processing of the given image to provide a clearer picture of the subject
is essentially a statistical inference. However, to give as the result a posterior
distribution over all possible pictures would be ludicrous: what is needed is a
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single picture showing the “best guess” which can be made about the subject.
Merely to enumerate all the “models” of the subject would be infeasible for
an image comprising a million pixels. It is likely that the set of models with
high posterior probability would allow at least two brightness values for each
pixel independently, giving at least 21099900 models to be enumerated.

1.15 The Origins of Priors

The Bayesian argument takes a prior probability distribution over a set of
models, adds information gleaned from data whose source is believed or as-
sumed to be in the model set, and results in a new, posterior, probability
distribution over the set. We have seen that the new distribution can prop-
erly be taken as the prior in analyzing more data from the same source,
giving a new posterior which in turn serves as the prior when yet more data
is obtained. Well-known convergence results assure us that as more and more
data is obtained, the final posterior will almost certainly converge towards a
distribution placing all the probability on the model of the data source, pro-
vided that this model is in the set considered possible by the original prior.
Thus, to some extent we can regard the choice of prior as unimportant. Pro-
vided the prior is not extreme, i.e., does not give zero prior probability to
any model (or interval of models in the case of a continuum), the evidence
gained from sufficient data can always overwhelm the prior distribution. In
real life, however, the option of collecting more and more data is not always
feasible and economic, and the data which is available may not suffice to
overwhelm the effects of a misleading prior. In practice, the prior should be
treated seriously, and care should be taken to ensure that it represents with
some fidelity what we really know and expect about the source of the data.

Here, we should remark that the Bayesian approach seems to demand that
prior probabilities have a meaning distinct from a naive frequentist interpre-
tation of probabilities. First, the very concept of a “probability” attaching
to a proposition such as “giant pandas evolved from the bear family” is in-
admissible if probability is to be interpreted in naive frequentist terms. The
proposition either is or is not true. There is no useful sense in which it can be
said to be true 83% of the time, or in 83 out of 100 cases on average in this
universe. The frequentist interpretation has been extended to accommodate
probabilities for such statements by such devices as an ensemble of possible
universes, but we do not follow this line. Rather, we believe this objection
to prior (and posterior) probabilities is empty if probabilities are regarded
as measures of subjective certainty. Later, we will address the question of
how such a subjective interpretation can be reconciled with the apparently
objective probabilities involved in statements like: “Every plutonium atom
has probability 0.5 of decaying radioactively in the next 12,000 years”.

A more fundamental problem with priors is that the Bayesian argument
cannot explain how a prior distribution is arrived at. More generally, it fails
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to explain how we come to have varying degrees of certainty about any propo-

sitions. Given some initial distribution of belief or probability, the Bayesian

approach shows us how observed data should lead us to modify that dis-

tribution. But in the absence of a prior distribution, the standard Bayesian

argument cannot lead us to infer any probability distribution over alternative

models, no matter how much data we obtain. Whence, then, come our priors?
There are several possible answers to this question.

1.15.1 Previous Likelihood

The prior could be based on previous data relevant to the current problem.
Without a pre-existing distribution, it could not be obtained from the data
by a Bayesian inference, but by a leap of faith the prior over a discrete set of
models could be obtained from the likelihood function Pr(z|6) for previous
data z. The likelihood as it stands is not a probability distribution over the
possible models, i.e., the possible (discrete) values of 8, but a normalized form
o) = Il
>_; Pr(z165)
could usually be constructed and used as a prior. (For some model families,
Pr(z|0), the sum in the denominator, may be infinite.) In effect, the prior is
obtained by stretching non-Bayesian inference and regarding the likelihood
of a model on data z as being an indication of its probability.

Formally, the above device is equivalent to assuming an original, primitive
prior in which all models have equal prior probability, then using the previous
data z to obtain a posterior by a conventional Bayesian argument. Hence,
deriving a “prior” by appeal to previous data in this way is no more or less
defensible than supposing all models to have equal prior probability.

When this kind of process is used to construct a prior over a continuum
of models with parameter 0, a further leap of faith is required. For some
previous data z, the likelihood function Pr(z|€), when regarded as a function
of @ with given z, is not a density. To infer from it a prior density over the
continuum of the form

h(6) = flfg’r(z|0)
r(z|0)do

could be justified only if one is persuaded that the variable 6 is the “correct”,
or “most natural”, parameter for the continuum. Use of the same device to
obtain a “prior” for some other parameter ¢, non-linearly related to 6, would
give a prior for ¢ implying quite different prior expectations about the model.

1.15.2 Conjugate Priors

The prior could be based on the mathematical properties of the data distri-
bution function (or density) Pr(z|@). For instance, it is common to choose
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a “conjugate prior” h(f) which has the property that, when used with data
from the distribution family Pr(z|), it gives a posterior of the same math-
ematical form as the prior. That is, h(#) and Pr(f|z) = h(0) Pr(z|0)/ Pr(x)
belong to the same mathematical family, whatever the value of . An exam-
ple of a conjugate prior is the Beta prior density for the parameter 6 of a
Binomial distribution. If the data x is the number of successes in N trials,
where each trial has independently an unknown but constant probability
of succeeding, then

Pr(z]0) = (]Z) 67 (1 — g)N-=

If the prior density h(f) has the Beta form
01— g)P !
B(a, )

where B(a, () is the Beta function I'(«) I'(8) /I'(a+ ) and «, 3 are constants
greater than zero, then the posterior density p(f|z) is given by

h(6) (0<0<1)

91+a—1(1 _ Q)N—x—i—ﬁ—l
B(x4+a,N —x+03)

p(Olz) =

which is also of Beta form.

Priors which are normalized forms of the likelihood function derived from
some real or imagined pre-existing data z are always conjugate. The prior
h(6) then has the form

h(6) = K Pr(z|0)

where K is a normalization constant. The posterior given data x becomes

pol) = & Pr(;fgx)Pr(xW)

= K, Pr(z,z(0)

where K5 is a new normalization constant. Thus, the posterior p(f|z) is a
normalized form of the likelihood function arising from the combined data z
and z, and so is of the same mathematical form as the prior.

A useful listing of the general forms of conjugate priors for many common
probability models is given in Bernardo and Smith’s book on Bayesian Theory
[4]. They also give the resulting forms for the posterior distributions.

Conjugate priors are mathematically convenient but any argument for
basing the prior on the mathematical form of the data distribution family
Pr(z|6) must be suspect.

Under our subjective view of probabilities, the prior should represent what
we expect about the model before the data to be analysed is known. Only if
this is so are we justified in using the Bayes identity. We also consider that an
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honest choice of prior should be independent of the data probability distribu-
tion given the model. We may properly think of the collection of observable
data as an (imperfect) procedure designed to measure the unobservable pa-
rameter f. The kind of data collected and its probabilistic dependence on 6
determine the function Pr(z|#). That is, this function describes the procedure.
Our prior beliefs about 6 are not, or should not be, modified by knowledge
of the procedure available to measure 6.

1.15.3 The Jeffreys Prior

There is a weak argument which might be used by a statistician who is given
data to analyse and who is unable to extract from his client any coherent
statement about prior expectations. The statistician could argue that, if the
client has chosen a procedure characterized by Pr(z|0) to investigate 6, the
choice might reflect what the client originally believed about 6. Thus, if the
form of Pr(z|0) is such that the distribution of x is a rapidly varying func-
tional of 8 only when 6 is in some range a < 6 < b, the statistician might
argue that the client must have expected 6 to lie in this range, or he would
have chosen a better procedure. The most general expression of this line of
argument is the “Jeffreys” prior, which is a density proportional to /F(6),
where F'() is the “Fisher Information”, a generalized measure of how sen-
sitive the probability of x is to variation of 6 (described more fully later in
Section 5.1).

This argument is not very convincing. It assumes that a range of “proce-
dures” was available to the investigator, each procedure being well-matched
to some set of prior beliefs about . The real world is rarely so obliging.
Jeffreys, while noting the interesting mathematical properties of the Jeffreys
prior, did not advocate its use as a genuine expression of prior knowledge (or
ignorance).

Our prior beliefs about the model will usually be fairly vague. Even when
we have reason to expect one model, or one range of parameter values, to
be more likely than others, the strength of this prior certainty would rarely
be quantifiable more precisely than within a factor of two, and more com-
monly only within an order of magnitude. So there is usually no value in
attempting to specify our prior distribution with great precision. If we can
find a conjugate or other mathematically convenient prior distribution which
roughly accords with our prior beliefs, and excludes no model or parameter
value which we consider at all possible, then there is no reason not to adopt
it. For instance, the Beta prior is convenient for the parameter of a Binomial
distribution, and by choosing appropriate values for the constants o and 3
we can find within the Beta family distributions expressing a wide range of
prior beliefs. Thus, if we set « = 3 = 0.1, the Beta density diverges at § = 0
and 0 = 1, expressing a strong expectation that 6 is extreme, i.e., we expect
that either success is very common or failure is very common. Conversely,
setting & = 4 and (8 = 3, the density has a broad peak at § = 0.6. If we can
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find values of o and (3 which give a density doing no violence to our prior
knowledge, we might well use it in preference to some other mathematical
form marginally more in line with our expectations.

1.15.4 Uninformative Priors

A prior may be formulated to express our ignorance of the source of the data
rather than substantial prior belief. That is, when almost nothing useful is
known or suspected about the source of the data, we can try to form a prior
which says nothing about 6. Such colourless or uninformative priors have
been well described in the literature. To take a simple example, suppose that
the data comprises the locations of serious cracks in a long straight road. If
we believe the cracks are the result of minor earth tremors due to some deep
geological fault, we might take as the model family a Normal distribution of
locations with unknown mean p (presumably over the fault) and unknown
standard deviation o. For such a distribution, p is known as a parameter of
location and o as a parameter of scale. These terms are used whenever, as in
this case, the probability density of a value y can be expressed as

1 _
Density(y) = -G (y,u)

(oa g

where the function G does not otherwise depend on y, p or o. In this case,
if the location y of a crack has the density Normal(u,0?) then the linearly
transformed value (y — p)/o has the density Normal(0,1).

A location parameter may have no “natural” origin of measurement. The
location y of a crack can equally well be expressed in kilometres North or
South of town X as in km N or S of town Y. We may feel that whether X
or Y is taken as the origin of measurement for y (and hence for p) has no
bearing on our prior expectations about the numeric value of y. Equivalently,
we may feel that our prior knowledge is so irrelevant that we would be no
more and no less surprised to learn that g was 10 km N of X than we would
be to learn that p was 10 km N of Y, or anywhere else along the road for
that matter. In such a case, we may argue that the prior density for u, h(u),
should be a Uniform density, i.e., that A(u) should be a constant independent
of u. This prior density then expresses no preference for any value of u over
any other.

Similarly, if we have no useful information about the depth and activity of
the suspected fault, we may feel totally ignorant about the expected spread
of the crack locations, i.e., about o. We may feel that we would be no more
or less surprised to learn that ¢ was 1 m, 10 m, 100 m or 10 km. If so,
knowing the unit of measurement for o (m, km, mile, etc.) would not lead us
to modify our prior expectations as to the numerical value of o. Being wholly
ignorant of the location parameter y means our h,(x) should be unaffected
by a shift of origin, hence h, (1) = h, (1 —a) for any a, and hence h,, (1) must
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be uniform. Being wholly ignorant of the scale parameter ¢ means that our
prior h, (o) should be unaffected by a change of units, hence h,(c) = bh,(bo)
for any positive b. The factor b arises from the rule for transforming densities.
If 2 has density f(x) and variable y = g(x), then the density of y is
flo" )
(#)
dz

The only prior satisfying h, (o) = bhy(bo) for all b > 0 is h, (o) proportional
to 1/0. Equivalently, we may suppose the prior density of log o to be uniform,
since a change in units for o is equivalent to a change in origin for logo.

The above arguments, or variants, support the common practice that
prior ignorance of a parameter of location is expressed by a uniform prior
density, and prior ignorance of a parameter of scale is expressed by a (1/6)
prior density or, equivalently, by a uniform prior density for log#. There is
an objection to these uninformative priors: they cannot be normalized. If we
are wholly ignorant of p, its possible range is +oco, and the integral of any
non-zero uniform density over this range cannot be finite. Similarly, if we
are wholly ignorant of o, its possible range is [0, 00), and the integral of any
non-zero density proportional to 1/ over this range cannot be finite. The
fact that these priors are improper is a reminder that we are never wholly
ignorant a priori about any quantity which we hope to measure or estimate.
This point will be elaborated in the next chapter.

In practice, the use of these improper priors is often admissible. Although
the priors are improper, when combined with some real data they usually
lead to posterior densities which are proper, i.e., normalizable. Conceptually,
we may argue that when we use, say, a uniform prior for a location parameter
u, we really mean that the prior density of p is almost constant over some
large but finite interval of width W, i.e., we really mean something like

1 .
W b
Provided that the data x is such that Pr(z|u) falls to negligible values for u
outside the range a £+ W/2, the values of the constants a and W will have
negligible effect on the posterior density of i, so we need not specify them.

The arguments for these uninformative priors are special cases of a more
general “argument from ignorance”. If we feel that our expectations about
some parameter # are unchanged by any operation on 6 in some group of
operations, then the prior we use for  should have at least the same symmetry
as the group. Here, the terms group and symmetry are used in the sense of
group theory. Thus, if we feel our expectations about u are unchanged by the
group of translation operators p — p + a, h(p) should have the symmetry of
this group, and hence must be uniform.

If some trial can produce outcomes A, B or C, and we feel that our prior
knowledge about A is the same as about B or C, then our expectations

h(p) = (a—W/2<pu<a+W/2)
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should be unchanged by any permutation of the outcomes. Our prior for the
probabilities of the outcomes should then have the same symmetry, so we
should choose a prior with the property that

Prior density (Prob (A)) = Prior density (Prob (B)), etc.

1.15.5 Maximum-Entropy Priors

The prior may be chosen to express maximum ignorance subject to some
constraints imposed by genuine prior knowledge. The most well-known form
is called a mazimum entropy prior. Suppose we have an unknown parameter
6 about which we know little, but we do have reason to believe that h(6)
should satisfy one or more equations of the form

G(h(0)) = C

where G is a known operator taking a distribution or density as argument and
giving a numeric value, and C is a known constant. The maximum entropy
approach chooses h(f) to maximize

0o — [h(9) log(h()) d& k() a density
—> o h(8) logh(0) h() a discrete distribution

subject to the constraints {Gj(h(0)) = Cy, k=1,2,...}

The quantity H is called the entropy of the distribution A(). At least
when 6 ranges over a fixed discrete set of values, i.e., when h() is a discrete
distribution, it can plausibly be argued that, of all distributions satisfying
the constraints, the maximum entropy distribution implies the least amount
of information about #. The theory is given in the next chapter. Note that
the constraints

=> W) =Co=1;  h(®) >0 (all6)

are always imposed.

If no other constraint is imposed, H is maximized by choosing h(6) to be
constant.

The term “entropy” derives from thermodynamics, and we now give an
example with a thermodynamic flavour. Suppose that our data x relates to
the vertical velocity 6 of a gas molecule, and we have a known data probability
function Pr(z|6). Our prior knowledge is that the molecule has been selected
from a fixed body of gas by some process which should not be affected by 6,
the body of gas as a whole has no vertical momentum, and the mean squared
vertical velocity (which can be inferred from the temperature) is known. All
molecules have the same mass. Assuming the subject molecule to be randomly
selected, we can then argue that k() should satisfy the constraints
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[ h(6)o (No average momentum)
[ h(6)6? d0 =T (Known average squared vertical velocity)
[ 1) (Normalization)

h(0) >0 Vo (No negative density)

—_

Using the method of indeterminate (Lagrange) multipliers, it is then easily
shown that H is maximized by the Normal prior

1 2
h(f) = 57 p( 29T> = Normal(0,T)

When, as in this example, h() is a density rather than a discrete dis-
tribution, the maximum entropy construction unfortunately depends on the
chosen parameterization. If we ask for the prior which is least informative
about, say, 6% rather than 6, then under exactly the same constraints we
get a different prior for #. Like many of the arguments outlined above for
original priors, the result depends on the choice of parameterization of the
continuum of possible models. These arguments can command our support
only to the extent that we are persuaded that the chosen parameters give
the most “natural” way of specifying a particular model in the continuum.
The only argument so far presented which is exempt from this criticism is
the argument based on symmetry. This argument requires as its premise a
prior belief that our expectations should be unaffected by a certain group of
operations on the continuum. It does not depend on how we parameterize the
continuum (provided we appropriately modify the parametric description of
the group), but leaves unexplained how we might ever come to believe in the
premise. In general, it also fails fully to determine the prior.

1.15.6 Invariant Conjugate Priors

The conjugate prior h(6), which is the normalized form of the likelihood of 6
given some prior (possibly imaginary) data z

h(f) = constant x Pr(z|6)

has the unfortunate property that for fixed z, the prior distribution over mod-
els depends on how the models are parameterized. However, this objection
does not apply to a prior constructed as the posterior density of 8 given some
initial prior ho(f) and some real or imagined prior data z. If we define the
normalized prior density as

h(0) = constant x ho(6) Pr(z|6)

then h(0) is invariant under transformations of the parameter, providing ho(6)
is appropriately transformed. That is, if ¢ = ¢(#) where the transformation
g() is invertible, and the “initial” priors for 6 and ¢ obey
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hoo(0)d0 = hoy(d)dd
— hg(9(0) ( 5900) )

then the priors for § and ¢ resulting from the “prior data” z are also equiv-
alent:

he(0)do ConstPy(z|0)hoe(6)do
Const Py (z|¢)ho(¢)de

he(#)do

for ¢ = g(0).

This construction may seem only to defer the problem, leaving us still to
choose the “initial” prior ho(6). However, for model families possessing simple
conjugate prior forms (essentially the exponential family of distributions), the
“uninformative” priors of Section 1.15.4 usually turn out to be degenerate or
extreme members of the conjugate family, and by virtue of their genesis in
the symmetry or transformation properties of the model family, inherently
transform properly. Thus, prior densities defined as the “posteriors”

h(0|z) = constant x ho(0) Pr(z|0)

where ho(0) is the “uninformative” prior, are also of conjugate form, but
unlike those based purely on the likelihood, transform correctly. The uninfor-
mative prior hg(#) is usually improper, but provided the “prior data” z are
sufficiently numerous, the resulting posterior, which we then take as the prior
for analysing new data, is normalizable. We will call such priors “invariant
conjugate”. Note that although convenient, they have no other special virtue
or claim to credence.

1.15.7 Summary

To summarize this introduction to priors, we have so far found no explanation
in either Bayesian or non-Bayesian inference of how our prior experience and
observations could lead us to formulate a prior over a continuum of models.
Even over a discrete set of models, the symmetry and maximum-entropy
arguments so far presented can suggest how we might come to formulate a
prior which assigns every model the same probability, but cannot suggest how
we might rationally come to any other prior belief except by starting with
an equiprobable prior and using some pre-existing data. This last exception
is more rarely available than might appear, since it applies only when the
pre-existing data is believed to come from the same source as the data to be
analysed.

Despite this gloomy picture, it is often, perhaps usually, found that ratio-
nal persons with similar background knowledge of the subject of an investi-
gation can agree as to their priors, at least within an order of magnitude, and
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agree that some compromise prior does little violence to anyone’s expecta-
tions. We will later attempt to give an account of how such agreement is not
only possible but to be expected. However, for the time being let us simply
assume that prior expectations are not wholly irrational and /or idiosyncratic,
and that a prior distribution in rough conformity with the expectations of
most rational investigators will be available as a premise for a Bayesian anal-
ysis.

1.16 Summary of Statistical Critique

The foregoing sections do not do justice to the statistical inference methods
described. However, they do suggest that classical non-Bayesian methods are
incapable of obtaining conclusions which (a) have a well-defined interpreta-
tion in terms of probability, and (b) are not conditional on propositions not
known to be true. Classical Bayesian inference, because it assumes more, can
infer more. Probabilities, at least of the subjective kind treated in this work,
can be calculated for propositions about the source of the data, and in par-
ticular, it is possible to choose that model or model family among a discrete
set of competitors which has the highest probability given the data.

Neither classical approach can offer a convincingly general solution to the
estimation of real-valued unknown parameters. The non-Bayesian approach
can at best derive assertions about intervals of possible parameter values,
framed in terms of the rather vague concept of “confidence”. In a few par-
ticularly simple cases, estimators of no bias and/or minimal variance can be
deduced, but these properties apply only to one special parameterization of
the model family. The Bayesian approach can deduce a posterior density over
parameters, but offers no general method of selecting a “best” estimate which
is not tied to a particular parameterization of the model family.

If a “cost function” is added to the Bayesian premises, it becomes possible
to deduce actions or decisions of least expected cost. It may be possible to
argue that making an estimate 6 of a parameter @ is an “action”, and that,
lacking more specific knowledge of the uses to which the estimate will be put,
it is reasonable to assume that the “cost” of an estimate will be some function
such as (6 — 0)? or |# — 0| reflecting the error of the estimate. However, such
“least cost” estimates again depend on the parameterization. Where genuine
cost functions are known, Bayesian decision analysis is justified. However, it
does not lead to genuine estimates of parameter values.

In the absence of a cost function, it can be argued that Bayesian inference
is complete when it has obtained a posterior distribution over the possible
models and their parameters. In effect, it is argued that this is as far as
statistical inference can or should go; the rest is up to the user. This program
is in principle defensible but impractical except for very simple sets of models.
Generally, the user of the results can absorb and work with only a single model
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and wants it to be the best available in the light of the data. The classical
Bayesian approach gives no convincing way of choosing this model.

Finally, we note that any Bayesian analysis assumes the availability of
a prior probability distribution. While in practice there may be no great
difficulty in obtaining agreement among reasonable people as to what distri-
bution to use in a specific case, the classical Bayesian argument gives no basis
for this agreement. A prior distribution over models may be refined in the
light of data to give a posterior distribution, which can serve as the prior in
the analysis of further data, but neither the non-Bayesian nor the Bayesian
approach gives any grounds for choosing an original prior.



2. Information

This chapter has three sections. The first gives a short introduction to Shan-
non’s theory of information, or at least those aspects which relate to coding
theory. The second introduces the theory of algorithmic complexity arising
from the work of Kolmogorov, Chaitin and others. These sections could be
skipped by readers familiar with the material, as they contain nothing novel.
The third section connects these two approaches to the measurement of in-
formation with Bayesian statistics, and introduces some slight but useful
restrictions on the measure of algorithmic complexity which assist in the
connection. It should be of interest to most readers.

2.1 Shannon Information

For our purposes, we define information as something the receipt of which
decreases our uncertainty about the state of the world. If we are planning
a visit to Melbourne, we may not know whether it is raining there, and be
wondering whether to take an umbrella. A phone call to a weather service can
inform us of the present and forecast weather in Melbourne. Even if we do not
wholly believe the report, its receipt has reduced our uncertainty: it has given
us information. Information is not directly related to physical quantities. It is
not material, nor is it a form of energy, although it may be stored and com-
municated using material or energy means (e.g., printed paper, radio-waves
etc.). Hence, it cannot be directly measured with instruments, or in units,
appropriate for physical quantities. The measurement of information is most
conveniently introduced in the context of the communication of information.
That is, we will look at what happens when information is passed from a
sender to a receiver.

The communication of information normally involves the transfer from
sender to receiver of some material object (a magnetic disc, a handwritten
letter, etc.) or some form of energy (sound waves, light or radio waves, elec-
trical currents on a phone line etc.) but the choice of vehicle is not important
for our purposes. In fact, many communications in everyday life involve sev-
eral transformations of the information as it is transferred from vehicle to
vehicle. Consider just a part of the communication taking place when we
hear the race results summarized on the radio. The summary may be given
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to the news reader as a typed sheet of paper: patterns of black ink on a
white substrate. These patterns modify the light waves falling on them from
the ceiling lights. Some of the light waves enter the reader’s eyes and trigger
electro-chemical pulses in her retina, which trigger many other pulses in her
brain, and eventually pulses in nerves controlling her lungs, voice box, mouth
and tongue. The resulting muscular motions cause pressure waves in the sur-
rounding air. These waves are detected by a microphone which generates
an electrical voltage varying in sympathy with the air pressure. The voltage
eventually has the effect of controlling the strength or frequency of a rapidly
oscillating current in the radio station’s antenna, causing modulated electro-
magnetic waves to be emitted. These waves are detected in a radio receiver
and decoded by a rather complex process to produce an electric voltage vary-
ing in roughly the same way as that produced by the studio microphone. This
voltage drives a cone of stiff paper into rapid vibration, causing sound waves
which our ears detect. More electro-chemical pulses travel to and around our
brains, and suddenly we are fairly certain that Pink Drink won the 3.20 race
at Caulfield. Through all these transformations in representation and vehicle
(which we have grossly over-simplified) somehow this information has been
preserved and transmitted.

The full theory of information stemming from the work of Shannon [41]
has much to say about all the processes involved in the above scenario, al-
though those taking place in human brains remain largely mysterious. How-
ever, we need only consider an abstract and simple view of what takes place
in such communications.

We will view all representations of the information, be they printed page,
waves, nerve impulses, muscle movements, pictures or whatever, as sequences
of symbols. A symbol is an abstract entity selected from a discrete set (usually
finite) called an alphabet. The use of the words in this technical sense is based
on their familiar use in relation to written or typed text in a natural language.
The race summary was first seen as a sheet of paper marked with letters
(symbols) selected from the alphabet of written English. The arrangement
of the letters on the paper implied by convention a sequence of presentation:
left to right, then top to bottom. The colour and chemistry of the ink, the
size and font style of the printing etc. are all unimportant for our purposes.
What matters is the sequence of symbols. (Note that the alphabet must be
considered to comprise not only the 26 ordinary letters, but also (at least) the
symbols “space” and “full stop”. These punctuation symbols must appear in
the sequence to delimit words and sentences. They carry an essential part of
the information.)

It is less obvious that a pressure wave in the air or a microphone voltage
can be regarded as a sequence of symbols. In both cases, the sequence is clear
enough — it is the temporal sequence of the changing pressure or voltage.
However, a pressure or voltage can take infinitely many values within a finite
range, so it appears that the “alphabet” is infinite. Further, the pressure or
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voltage is constantly changing, so it takes infinitely many different values in
the course of a single second, so it appears that for such media, the com-
munication can only be represented by an infinite sequence of “symbols”,
each selected from an infinite alphabet. Fortunately these difficulties are only
apparent. One of the early results of Information Theory shows that when
information is conveyed by a time-varying physical quantity such as pressure
or voltage, all the information conveyed can be recovered from measurements
of the quantity at regular, discrete intervals, and that these measurements
need be made only to a limited precision. When information is conveyed by
speech, the words spoken and in fact the whole sound of the utterance can
be recovered from pressure or microphone-voltage measurements made about
40,000 times per second, and each measurement need only be accurate enough
to distinguish about 65,000 different pressure or voltage values. Speech (or
any other audible sound) can thus be represented without loss of information
by a sequence of symbols where the sequence contains about 40,000 symbols
for every second of sound, and each symbol is selected from an alphabet of
size 65,000.

Such a representation of sound as a symbol sequence is routinely used on
Compact Discs and increasingly in telephone networks. The measured values
of pressure can themselves be represented as decimal numbers, e.g., one of
the numbers 0-64,999. Thus, the whole sequence representing a passage of
sound can be recorded as a sequence of decimal digits in which groups of 5
consecutive digits represent pressure measurements. In practice, binary rather
than decimal numbers are used, so each pressure would be represented as a
group of 16 binary digits indicating a number in the range 0, ..., 65,535.
Using binary digits allows the entire sequence to be a binary sequence, using
only the symbols 0 and 1. The length of the sequence required for one second
of sound is then 40,000 x 16 = 640,000 binary digits.

Using similar techniques, pictures, measurements and texts can all be
translated (or rather their information can be translated) into binary se-
quences. As far as is now known, information in any physical medium can be
so translated in principle, although no adequate translation mechanisms yet
exist for some media such as smells. Since the kinds of data presented for sys-
tematic scientific analysis are almost always available in a symbolic form, we
will assume henceforth that all information of concern will be representable
as sequences of binary digits. We now consider how these sequences may be
constructed.

2.1.1 Binary Codes

A binary sequence conveying some information is called a message. Clearly,
there must be some agreement between sender and receiver as to how to
represent information in binary form. That is, they must agree on the meaning
of the binary sequences. Such an agreement defines a code, which we may
also think of as a kind of language. Often, a complete message will convey
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several pieces of information of the same kind, one after another. If these
pieces are independent of one another, in the sense that knowing one piece
gives us no hint about what the next might be, each piece may well be
independently encoded. That is, the message will comprise several binary
subsequences concatenated together. Each subsequence conveys one piece
of information, and the same code may be used repeatedly for each piece
of information in turn. For example, suppose the information as presented
is an apparently random sequence of 2000 Roman letters. To encode this
message in binary form, we might agree that, rather than deciding on a binary
sequence for each of the 262°°° possible messages, we will encode each letter
in turn as a 5-binary-digit subsequence and then form the whole message
by concatenating the subsequences. Five binary digits per letter will suffice,
because there are 2° = 32 possible subsequences. A simple code might be:

A—00000 B—00001 C—00010 D—00011...
M—01100... P—01111... Z—11011

If the message began
CBPM ...

the binary sequence would begin
00010000010111101100...

When messages are encoded piece-by-piece in this way, each subsequence is
often known as a word and the code definition requires only that the binary
subsequence for each word be defined. There is no hard-and-fast distinction
between messages and words. We introduce the notion of words merely to
emphasize that messages may be encoded piecemeal, and that a meaningful
binary sequence may be followed by more binary symbols representing more
information. It will be convenient in the following discussion to consider the
construction of a code for words rather than for complete messages, although
there is no real difference in the two problems. We will use the term “word”
to indicate both the fragment of message being encoded and the sequence or
string of binary digits by which it is represented.

Assume we wish to construct a code for a known finite set of words.
Let the number of different words be N. (In the example above, N=26.)
The code is a mapping from the set of words to a set of finite non-empty
binary strings. We assume the mapping to be one-to-one, as for our purposes
there is nothing to be gained by allowing several binary representations of
the same word. The strings in the code must obviously be all distinct. If
two words were represented by the same string, the receiver would have no
way of knowing which of the two was meant by the string. Further, we will
require the code to have the prefiz property: no string is a prefix of any other.
The reason for this requirement is easily seen. Suppose in the random-letters
example above, the code for A was 0000, the code for B was 00001 and the
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code for Z was 11001. Then if the message began AZ ...the binary form
would begin 00001 ...The receiver of the binary sequence would have no
way of knowing whether the message began with A followed by some letter
whose binary string began with 1, or began with B. A code having the prefix
property is called a prefiz code. (It is possible to define codes which lack the
prefix property yet allow unambiguous decoding. However, such codes have
no advantages for our purposes.)

A binary prefix code with N distinct words can easily be constructed. We
can find the lowest integer k such that 2k > N and let all words have k binary
digits. Since all words have the same length, the prefix property is obvious.
Since there are 2¥ distinct sequences of k binary digits, and 2 > N, each
of the N words can be assigned its own binary sequence or word according
to some convenient convention. Such equal-length codes are commonly used
because of their simplicity. A well-known example is the ISO-7 code whose
“words” all have seven digits, and are used to represent 128 different letters,
digits, punctuation marks and other symbols. However, equal-length codes
are not the only possible codes, and we shall be interested in codes whose
words are of unequal length.

Any binary prefix code for a set of N words can be represented by a code
tree. A code tree is usually drawn as an inverted tree with the root at the top.
The nodes of the tree are all those points where branches meet or end, so the
root is a node. Every node save the root is at the lower end of some branch,
and every node may have 0, 1 or 2 branches depending from it. Nodes having
no dependent branches are called leaves. Each leaf corresponds to, and can
be labelled with, one of the N words. Every word labels exactly one leaf, so
there are N leaves. We will be mainly interested in trees in which all non-
leaf nodes have exactly two dependent branches. Example: a possible binary
prefix code for the set of 5 words { ABCDE }is

A—0 B—100 C—101 D—110 E—111

This code can be shown as the tree in Figure 2.1. The rule for reading the
binary strings from the tree is as follows. To find the binary string for a
word, follow a path from the root to the node labelled by the desired word.
The path must follow branches of the tree. Whenever a branch to the left
is taken, write down a “0”. Whenever a branch to the right is taken, write
down a “1”. When the desired labelled node is reached, the digits written
down will form the binary string for the desired word. For instance, to get
from the root to the leaf labelled “C” we branch right, left, and right, so the
string for C is 101. Note that words of the given set label only leaf nodes.
This fact guarantees the prefix property, since the path from the root to a
leaf cannot continue on (downwards) to another leaf.

The code tree is convenient for decoding a message comprising sev-
eral words. Suppose the message were BABD. Then the binary form is
1000100110.
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ROOT NODE

____________ 0___________

Fig. 2.1. Tree for prefix code.

To decode it, begin at the root of the code tree and follow left or right
branches downward, guided by successive digits of the message string. Follow
a left branch if the digit is “0”, right if it is “1”. Thus, the first three digits
lead us to the leaf labelled “B”, so the first letter of the message is B. Having
reached a leaf and decoded a word, start again at the root with the next digit
of the string (in this case the fourth digit). As it is “0” follow the left branch
from the root to leaf “A”. Starting again from the root, the next three digits
(100) lead again to “B” and so on.

We need not be concerned with codes whose code tree contains a node
having just one dependent branch. Any such node and its dependent branch
may be deleted from the tree, and the branch leading to it joined directly to
the node at the lower end of the deleted branch. The resulting tree preserves
all the leaves of the original, it still has the prefix property (i.e., only leaves are
labelled as words) and the code strings for some words are now shorter than
in the original code. Such a deletion of a useless node is shown in Figure 2.2.

Original Revised

Fig. 2.2. Deletion of a useless node.
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The revision shortens the strings for words S and T from 4 digits to 3,
leaving the strings for other words unchanged. Since there is no advantage
in making the binary strings of a code longer than they need be, we assume
all codes and trees to have no nodes with just one dependent branch. All
interior (non-leaf) nodes have two dependent branches, and leaves of course
have none.

2.1.2 Optimal Codes

Codes using strings of different lengths for different words are useful because
they offer the possibility of making binary message strings short. When a
body of information is to be stored in or communicated via some medium,
there are obvious economic advantages in minimizing the use of the medium,
which may be expensive. Other things being equal, a code which allows the
information to be represented in a short string is preferable to one requiring a
longer string. We are thus led to ask whether the code for a given set of words
can be chosen to minimize the length of the binary string. Suppose that the
set of possible words has N members. It is obvious that, whatever the word
actually communicated, there is a code which encodes this word with a single
binary digit. For instance, if the set of words is {A B C D E}, there is a code
encoding A with one digit and all other words with 3 digits. The same is true
for every other word in the set. This fact is of no use in practice, because
sender and receiver must agree on the code to be used before the information
to be communicated is available. There is no point in agreeing to use a code
which minimizes the length of the string for “A” if we have no grounds for
supposing that A will be sent rather than B C D or E. (It is of course possible
for sender and receiver to agree that one of a set or family of codes will be
employed, to be determined by the sender after the information is available.
But if it is so agreed, the binary string must begin with some additional digits
identifying the chosen code. Although this technique will later be seen to be
very important, it really amounts to no more than an agreement to use a
certain single rather complicated code. It would certainly not permit a word
from the 5-member set to be encoded with one digit, no matter what that
word might be.)

Since it is meaningless to ask for the code which gives the least string
length, we may choose to seek the code which gives the least mazimum string
length. That is, we can choose the code to minimize the length of the longest
string for any word. It is easily shown that this code assigns strings of the
same length k to some words of the set and length (k — 1) to the remainder,
where k is the smallest integer satisfying 2¥ > N. If 2 = N, all strings have
length k. Essentially, the code of minimal maximum length is an equal-length
code with some nodes deleted if N < 2*.

When the sender and receiver negotiate the choice of code, they do not yet
know the information to be sent. However, they may have grounds to believe
that some words are more probable than others. That is, they may agree on
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ROOT
_______ 0---———- level 0
| |
| |
—m———— o——--—- level 1
| I | X |
| | | |
———g———— a3 1) ————0———- level 2
| | | | |
| | | | |
al a2 a4 ---o——- a7 level 3
| I
| I
ab aé level 4

Fig. 2.3. Sample binary tree for N words.

a non-uniform prior probability distribution over the set of words. Let the
set of words be {a; : i = 1,..., N} and the probability of word a; be p; for all
1. This probability is the subjective probability held by the communicating
parties that the word to be sent will be a;. Then we may seek a code which
minimizes the expected length of the code string. If the chosen code encodes
word a; with a string of length [;, the expected string length is

E(l) = Zpili

Codes which minimize E(l) are called optimal codes.

Before considering how E(I) can be minimized, we must establish a bound
on the choice of the string lengths. The chosen code can be represented by
a code tree, i.e., a rooted binary tree with N leaves corresponding to the N
words. Consider any such tree, for example the tree in Figure 2.3.

Each node may be placed on a level corresponding to the number of
branches on the path from the root to the node. In particular, the level of a
leaf node equals the length of the string encoding the word at that leaf. For
instance, the leaf for word as is on level 3, and the tree shows that the string
for ag is 001, of length 3.

Now give each node of the tree a “weight” according to the following rule:
the weight of a node on level [ is 2. Then

(a) The weight of a node is greater than or equal to the sum of the weights
of its children, where the children of a node are the nodes (if any) at the
lower ends of the branches depending from the node.

(b) Tt follows by mathematical induction from (a) that the weight of a non-
leaf node is greater than or equal to the sum of the weights of all the
leaves of the subtree rooted at the node. For example, the weight of the
node X in the diagram must be not less than the sum of the weights of
the leaves ay, a5, ag and ay.
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(¢c) The weight of the root is 1.
Hence, from (b) and (c):

22—“ <1
i

where the summation is over all leaves, i.e., over all words of the code. This
inequality is a form of Kraft’s inequality. Equality is reached unless the tree
contains one or more nodes having just one dependent branch. The example
tree above has such a node, but as we have mentioned before, there is no
reason to use codes having such nodes. For codes of interest, we will usually

have the equality Z 27l =1

i

We can now proceed to choose the string lengths [; to minimize the ex-
pected string length E(I) = ) . p;l; subject to the above constraint. Using
the method of indeterminate multipliers:

0 1 _1
ol (Zmli —AQ 2 - 1>) = pi + A(log 2)27"

Equating to zero gives »
3
Aln2
Using >, 275 =1 and Y, p; = 1 gives 271 = p;, so I; = — log, p;.

That is, the expected string length is minimized when a word of proba-
bility p; is encoded using a string of length —log, p; binary digits. Probable
words are encoded with short strings, improbable ones with long strings. Ex-
cept in the unlikely event that all the word probabilities are negative powers
of 2, it will not be possible to choose string lengths (which are of course in-
tegers) exactly satisfying Y°,27% = 1. For the moment, we will ignore this
complication and assume that either the probabilities are negative powers of
2 or that we can somehow have non-integer string lengths.

Assuming that for every word, p; = 27% it is clear that the “weight” of the
leaf node for a word equals its probability. The probability that some interior
node of the code tree will be visited in decoding a string equals the sum of the
probabilities of all the leaf words in the subtree rooted at that node. Thus,
since we exclude trees with nodes having only one child, the probability of
visiting any interior or leaf node equals its weight. Further, for any interior
node Y at level I, the probability of visiting Y is 27! and the probability of
visiting its left child is 2~¢*+1) . Thus, the probability of visiting the left child
given that the decoding process has reached Y is 27 (*1 /270 = 1/2. But, if we
have reached Y, its left child will be visited if and only if the next digit in the
string being decoded is “0”. Hence, given that we have reached Y, the next
digit is equally likely to be “0” or “1”. But this is true for any interior node
Y. Reaching Y while decoding a string is determined by the digits already

27k =
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decoded: these determine the choice of left or right branch at each step, and
hence determine what node is reached. Hence, regardless of what digits have
already been decoded, i.e., regardless of what node the decoding has reached,
the next digit has probability 1/2 of being “0”. Thus, in the strings produced
by an optimal binary code, each binary digit has equal probability of being
0 or 1 independently of the other digits. Knowledge of the early digits of a
string gives no clue about the values of later digits. It follows that each binary
digit in the string optimally encoding a word of probability p is distinguishing
between two equally probable possibilities.

2.1.3 Measurement of Information

The above considerations have led to the idea that the amount of information
conveyed by a word (or message) can usefully be equated to the number of
binary digits in a string optimally encoding the word or message. The unit
of this measure is the amount of information conveyed by naming one of
two equally probable alternatives. As we have seen, every binary digit of the
string conveys just this amount of information. This unit of information is
conventionally named the bit. The word is a contraction of “binary digit”, but
its meaning in Information Theory is distinct from the meaning of “binary
digit”. The latter is a symbol having value either 0 or 1. The bit is an amount
of information which, in an optimal code, is encoded as a single binary digit.

In other codes, a binary digit can convey other amounts of information.
For instance, we could arrange to communicate every day a single binary
digit showing whether rain had been recorded in Alice Springs during the
preceding 24 hours. Let 0 mean no rain, 1 mean rain has fallen. Alice Springs
has a very dry climate, so the great majority of transmitted digits would be
zero, and the subjective probability that tomorrow’s digit will be 1 would
be perhaps 0.1. Then the information conveyed by each digit would not be
one bit, since the two possibilities distinguished by the digit are not equally
probable.

If we take the information conveyed by a word as being the number of
binary digits in a string optimally encoding the word, then the information
conveyed by a word of probability p; is —log, p;. This definition is unambigu-
ous for a set of words admitting an ideal optimum code, i.e., a set in which all
words have probabilities which are negative powers of 2. We will assume for
the time being that it can be adopted whatever the probabilities of the words.
For instance, we will define the information conveyed by a word of probabil-
ity 0.01 as —log, 0.01 = 6.6438 ... bits. Since this number is not integral, it
cannot equal the number of binary digits in a string optimally encoding the
word. However, the extension of the definition to arbitrary probabilities can
be justified on two grounds. First, the number of digits in an optimal encod-
ing of the word is usually close to —log, p;. Second, and more persuasively,
we will later show that when any long message of many words is optimally
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encoded, the length of the resulting string is expected to be within one digit
of the sum of the information contents of its words as given by this definition.

This definition of information content satisfies several intuitive expecta-

tions.

(a)
(b)
()

A message announcing something we strongly expected has little infor-
mation content.

A message announcing a surprising (low probability) event has high in-
formation content.

If two messages convey independent pieces of information, then the in-
formation content of a message announcing both pieces is the sum of the
information contents of the two separate messages. If message M; an-
nounces event E; of probability P(E1), and message Ms announces event
Es of probability P(FE>), then their information contents are respectively
—log, P(E;) and —log, P(E2). A message announcing both events has
content — log, P(FE1, E3) and since E1, Es are independent, P(FE;, Es) =
P(Ey)P(E,), so —log, P(E1, Es) = —log, P(E1) —log, P(E5).

If two propositions Fi, Fs are not independent, the information in a
message asserting both does not equal the sum of the information in two
messages asserting each proposition singly, but does not depend on the
order of assertion. Suppose a message optimally encodes F; and Fs in
that order. The first part, asserting Fy, has length —log, P(F4) binary
digits (ignoring any rounding-off to integer values). The second part en-
codes F>. But, by the time the receiver comes to decode the second part
of the message, the receiver knows proposition F to be true. Hence, the
probability he gives to Fs is not in general P(FEs3) but P(FE3|E;), the
probability of Fo given F;. An optimal encoding of the second part will
therefore have length — log, P(E2|E1). The length of the whole optimally
coded string is therefore

—log, P(FE1) —logy, P(E2|E)
= —logy P(E1)P(E,|En)
= —logy P(E1, E2) = —logy P(E», E1)

which is independent of the order of Fy and FEs.

By definition, the information in the message asserting F; and FEs is the
length of the coded message in binary digits. Hence, the above equations
apply to the information contents as well as to the string lengths. This
result is in accord with our intuition. If we are told F, and E5 is to be
expected if Fy is true, then the additional information we get when told
Es5 is small. In particular, if F; logically implies Eo, P(E3|Eq1) = 1 so
once we have been told E7, a further assertion of Fy adds nothing to our
information.

The information in a message relates in an obvious way to the ability of
the message to distinguish among equiprobable possibilities. Intuitively,
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we would regard a message which names one of 1000 possibilities as being
more informative than a message which names one of only five possibili-
ties. The relationship between information and number of possibilities is
easily seen to be logarithmic. Imagine a message which names one of 12
possibilities. We can think of the twelve possibilities as being arranged
in a table having 3 rows and 4 columns. Any possibility can be named
by naming its row and column. Thus, the message could be made of two
words: the first naming one of 3 possible rows, the second naming one of
4 possible columns. The information conveyed in the two words together
names one of 12 possibilities. Generalizing to an N-by-M table of (NM)
possibilities, we see that

Information to name one of N x M possibilities

= Information to name one of N possibilities (the row)

+ Information to name one of M possibilities (the column)
If I(N) denotes the information needed to name one of N equiprobable
possibilities, we have

I(N x M) =I(N) + I(M)

The only function I() satisfying this relation for all positive integers is
the logarithmic function I(N) = log(/N). This argument does not fix the
base of the logs, but if we note that one of 2* possibilities can be named
by a k-digit binary number, we must have

I(2¥) = k bits
I(N) = logy N bits
Since the N possibilities are assumed equally likely, the probability of
each is 1/N. Hence, we can write
I(N) = logy N

= —logy(1/N)
— log, (probability of thing named)

The information conveyed by a word or message announcing some event
or proposition depends on only the probability p of the event announced.
What other events might have been announced by the word, and the
distribution of the remaining probability (1 — p) over them, are of no
consequence. The amount of information in the message depends on what
did happen, not on what did not. This observation has the practical
consequence that, in discussing the information content of a message, we
need only establish the probability of the event or proposition conveyed
by the message. We need not enumerate the entire set of messages which
might have been sent but were not, nor need we calculate the probabilities
of the events that might have been announced.
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2.1.4 The Construction of Optimal Codes

An optimal binary code for a set of words minimizes the expected string
length . p;l; where p; is the probability of the ith word of the set and I;
is the length, in binary digits, of the string encoding that word. Given a set
of words and their probabilities {p; : i = 1,2,...}, we now consider how an
optimal code can be constructed. We have seen that in the ideal case where all
probabilities are negative powers of two, the optimal code obeys the relation

Vi ll = — 1Og2 Di

giving expected length
> pili ==Y pilogypi
i i

When the probabilities are not all negative powers of two, this relation cannot
be observed because all lengths [ must be integral.
First, observe that whatever the probabilities, we can easily design a code

such that
Zpili < - Zpi logy p; +1

That is, we can devise a code with expected string length exceeding the ideal
value by less than one digit. For every word in the set (assumed finite), let g;
be the largest negative power of two not exceeding p;. Then p; > ¢; > p;/2
for all ¢, and — log, ¢; is an integer satisfying

—logy i < —logyp; +1

In general, > ,¢; < 1. Add to the set of words some additional dummy
words with “probabilities” which are negative powers of 2, such that for the
augmented set of words ), ¢; = 1. Then design an optimal binary code for
the now-ideal set of probabilities { ¢; : ¢ covers real and dummy words }.
This code can then be used as a code for the given set of words. The expected
string length is

— Z pilogy q; (summation over real words only)
i
< > pi(—logypi+1)
i
< Y pilogapi+ Y ps
i i
< =) pilogypi+1
i

The code has the capacity to encode the dummy words. As this capacity
will never be used, the code is obviously not the most efficient possible, but



70 2. Information

TQIHDOQE
O EFEFOOOO
O OO FHKFEO
Ok, OOOo

—

Fig. 2.4. Sample code table.

none the less has an expected string length exceeding the ideal value by less
than one. We now describe two constructions which do better than this crude
approach.

A Shannon-Fano code [41, 14] is based on the principle that in an optimal
code, each digit of a code string should have equal probability of being zero
or one. The construction builds the code tree from the root downwards. The
first digit of a string shows whether the word encoded lies in the left subtree
depending from the root, or the right subtree. In order to make these two
possibilities as nearly as possible equiprobable, the set of words is divided into
two subsets with nearly equal total probabilities. Words in the first subset are
assigned to the left subtree and have code strings beginning with zero. Those
in the other subset are assigned to the right subtree and have code strings
beginning with one. The construction then proceeds recursively. Words in
the left subtree are divided into nearly equiprobable subsets, and the subsets
assigned to different subtrees, and so on until all words are fully coded. For
example, consider the set of words and probabilities below:

A (1/36) B (2/36) C (3/36) D (4/36)
E (5/36) F (6/36) G (7/36) H (8/36)

One way of dividing the set into equiprobable subsets is {A, B, C, D, H} ,
{E, F, G}.

The left subset can be exactly equally divided into {A, H}, {B, C, D},
each subset having probability 9/36. The right subset cannot. The best that
can be done is the split {E,F}, {G}. Proceeding in this way we obtain the code
in Figure 2.4. It can be seen that the choice of an equiprobable split for the
early digits can lead to unfortunate consequences later in the construction.
For instance, the subtree of words beginning “00” contains only A and H
with probabilities 1/36 and 8/36. Although these are far from equal, there
is no choice but to split them, with the result that the most-probable and
least-probable words are coded with strings of the same length. The expected
string length is 2.944 digits. This may be compared with the ideal expected
string length, or entropy defined as — ", p; logy p; = 2.7942 bits.

A Huffman code [19] is also based on an attempt to have each binary
digit decide between equiprobable subsets, but the construction is bottom-
up, moving from the leaves of the code tree towards the root. It is both easier
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to construct and more efficient than the Shannon-Fano scheme. We begin
with a set of nodes comprising leaves of the tree labelled with the words and
their probabilities. Then this set of nodes is searched to find the two nodes of
smallest probability. These two nodes are joined in a subtree by introducing
a new node which has the two nodes as children. The child nodes so joined
are removed from the set of nodes and replaced by the new node. The new
node is labelled with a probability equal to the sum of the probabilities of its
children. Then again the set of nodes is searched for the two nodes of smallest
probability, these are joined and replaced by their parent, and so on until the
set of nodes is reduced to a single node, which is the root of the tree. Using
the same example as above:

F6 Al B2 c3 D4 E5 G7 H8
| |__Z3__| | | | | |
| | | | | | |
| ____Y6____|I | | I I
| | |__X9__| |
| __ Wi2______ | | | |
| | | |
| | |__Vi5__|
| u21__ | |
| |
l___ T36 _l
(Root)

Fig. 2.5. Construction of a code tree.

The first step joins nodes A and B, replacing them with a new node (say 7)
of probability (1 4 2)/36. Then Z and C are joined and replaced by a parent
Y of probability (3 4+ 3)/36, and so on. Schematically, the construction can
be shown as in Figure 2.5. Probabilities are shown as times 36.

The leaves were slightly rearranged to avoid branches of the tree crossing
one another. Using the convention that left branches are labelled “0”, the
resulting code is as shown in Figure 2.6.

TQIEOQE >
OSHRHOOOO OO
HOORREFEFOOO
OO =

—_ oo

_ o

Fig. 2.6. Rearranged code table.
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The improvement over the Shannon-Fano code is evident. The string
lengths are now monotonically decreasing with increasing word probabil-
ity. The expected string length is 2.833 digits, about 0.11 less than for the
Shannon-Fano code but still, of course, greater than the entropy. The Huff-
man construction can be proved to give optimal codes.

For both constructions, and indeed for any binary code tree, the labelling
of the left and right branches depending from a node with the digit values
0 and 1 is arbitrary. A different choice will give different code strings for
the words, but the lengths of the strings and the expected string length
are unchanged. Thus, there are many “Huffman” codes for the same set of
words. All are optimal, and the choice of one of them can be made by some
convention.

2.1.5 Coding Multi-Word Messages

We have discussed the construction of optimal codes for “words” or “mes-
sages” indifferently. If we are considering the encoding of long messages con-
veying many bits of information, it may be inconvenient to attempt an op-
timal code construction for the set of all possible messages. There may be
many millions of possible messages any one of which could be sent, each
having a very small probability. A Shannon-Fano or Huffman code for the
whole set would be efficient, but very tedious to construct by the methods
outlined above. A common approach is to divide the message into sequence
of “words” each of which can take only a manageable number of values. The
simplest situation, which we will consider first, arises when the message can
be expressed as a sequence of words in such a way that all words are selected
from the same set of values, and the probabilities of these values are known
constants which do not depend on the position of the word in the message or
on the values of preceding words. For instance, it may be possible to express
the message as a sequence of letters where each letter is one of A, B or C, and
the probabilities of these letter values are in the ratio 1:4:5 independently of
what preceding letters may be. In this situation, we can construct an opti-
mum code just for the alphabet, or set of possible letters. To encode a message
of many letters, one simply concatenates the binary strings representing each
letter of the message in turn. For the 3-letter alphabet { A, B, C } above,
with the probabilities as given, an optimal (Huffman) code is

A:00 B:01 C:1

with expected string length 1.5 digits. In a long message of, say, 1000 letters,
one could expect each letter to occur with a frequency nearly proportional
to its probability, so we would expect the length of the coded message to
be about 1500 binary digits. However, the Huffman code for the alphabet,
while as good as can be achieved, is not very efficient. For the given letter
probabilities, the entropy, or ideal expected string length — . p; log, p;, is
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AA 001 000100
AB 004 000101
AC 005 00000
BA 004 00001
BB 016 001

BC 020 10

CA 005 00011
CB 020 11

CcC 025 01

Fig. 2.7. Code table for pairs.

only 1.361, so the expected information content of a 1000-letter message is
only 1361 bits. The use of the Huffman coding of each letter in turn wastes
about 139 binary digits.

This inefficiency can be reduced if we make a small step towards coding
entire messages rather than individual letters. The simplest modification is
to devise a Huffman code for pairs of letters rather than individual letters.
The set of possible pairs, their probabilities and a Huffman code for the set
of pairs is shown in Figure 2.7.

This code has expected string length 2.78 binary digits per letter pair, or
1.39 digits per letter. Hence, if we code the letters of a 1000-letter message
in pairs, the expected length is reduced from 1500 digits to 1390 digits, only
29 digits longer than the ideal minimum.

A further increase in efficiency might be obtained by devising a Huffman
code for the 27 possible triplets of letters, or the 81 possible quadruplets.
However, in this case most of the achievable improvement has been gained
simply by coding pairs.

2.1.6 Arithmetic Coding

An ingenious coding technique has been devised by Langdon et al. [37] called
arithmetic coding. This technique achieves a coding efficiency very close to
the theoretical optimum which would be reached by a Huffman code for the
entire set of possible messages. In practice, arithmetic coding easily achieves
a string length for a long message within 0.01% of the information content of
the message. We give only an outline of the method. Its full implementation
is well described in [59]. While not unduly complicated, it requires careful
attention to details of computer arithmetic which are outside our present
interest.

Arithmetic coding is applicable to messages presented as a sequence of
words. The set of possible words is not necessarily fixed: it may depend on the
position of a word in the message and on the preceding words of the message.
Also, the probability distribution over the set of possible words may depend
on position in the message and on the preceding words. These dependencies
must be known a priori to the receiver. It is also necessary that the set
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of possible next words, given the preceding words, be ordered in some way
known a priori to the receiver. Thus, at any point along the message, we have
an ordered set of possible next words with known probabilities. Whatever the
set might be, let us label its members A, B, C, etc. Then any message can be
represented as a sequence of label letters. The same letter, D say, may stand
for different words at different places in the message, and may have different
probabilities, but the rules for determining the word corresponding to D and
its probability are implied by the rules already known by the receiver for
determining the ordered set of possible words and their probabilities, given
the preceding words. This labelling scheme for representing a message as a
sequence of letters allows us to define a lexical ordering on the set of all
possible messages. A message beginning Z A P Q B V ...is lexically earlier
than a message beginning Z A P Q B W .... That is, the relative order of two
messages is determined by the relative alphabetic order of the first letter in
which they differ. Note that we need no rule to determine the relative order
of A X B and A X B C. The set of messages must have the prefix property, as
otherwise the receiver could not know when the message was finished. Hence,
the above two sequences could not both be possible messages.

As well as establishing a lexical order in the set of possible messages, we
can in principle calculate the probability of each message. The probability of
a message C A B A is

P(C)P(A|C)P(B|CA)P(A|CAB)

where each of these probabilities is derivable from the known rules of the
message set.

With these preliminaries, we can now define the following representation
of the set of possible messages. Consider the interval [0, 1] of the real line. We
will call this interval the probability line. It can be divided into a number of
small intervals, each corresponding to a possible message. Let the interval for
a message have a length equal to the probability of the message. Since the sum
of the probabilities of all messages is one, the message intervals exactly fill
the probability line. Further, let the message intervals be arranged in lexical
order, so that the lexically earliest message (“AAA ...”) is represented by
an interval beginning at zero, and the lexically last by an interval ending at
one. The diagram in Figure 2.8 shows the resulting probability line for a set
of two-word messages in which the set of possible words is { A, B, C } with
constant probabilities { 0.4, 0.3, 0.3 }.

It is now obvious that any message in the possible set can be specified
by specifying a number between 0 and 1 which lies in its interval. Thus,
message AB could be identified by any number z in the range 0.16 < x <
0.28. Arithmetic coding chooses a binary fraction to identify a message. That
is, it encodes a message as a binary string which, when interpreted as a
binary fraction, lies in the interval corresponding to the message. The binary
fractions must be somewhat constrained to ensure that the code strings have
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1 ________________
| cc 1111 (0.9375-1)
0.91 -—-
| CB 11011 (0.84375 - 0.875)
0.82 -—-
| CA 11000 (0.75 - 0.78125)
0.7 ——————-
| BC 1010 (0.625 - 0.6875)
0.61 -——
| BB 10001 (0.53125 - 0.5625)
0.52 -—-
| BA 0111 (0.4375 - 0.5)
0.4 -—-————-
| AC 0101 (0.3125 - 0.3750)
0.28 -—-
| AB 0011 (0.1875 - 0.25)
0.16 -—-
| AA 000 (0 - 0.125)
O ________________
Probability line | Message | String | Binary Fraction Interval

Fig. 2.8. Probability line for a set of two-word messages.

the prefix property. This is ensured by regarding a binary fraction with n
binary digits as denoting, not a point on the probability line, but an interval of
size 27", For instance, the code string 010 is interpreted as the interval 1/4 <
x < 3/8, and 0111 is interpreted as the interval 7/16 < z < 1/2. Then the
arithmetic coding of a message chooses the shortest binary string representing
an interval lying wholly within the message interval. The diagram above
shows the resulting codes for this simple example. In the worst case, the
size of the interval represented by the code string can be almost as small as
a quarter of the size of the message interval. Thus, the length of the code
string for a message can exceed — log, (Probability of message) by almost 2.
This excess is negligible for a long message, but it might seem that arithmetic
coding is no more than a rather roundabout implementation of Shannon-Fano
coding, as each digit of the code string effectively divides an interval of the
probability line into equiprobable subsets.

The advantage of arithmetic coding is that it is not necessary ever to
calculate the probabilities of all possible messages. One need only compute
the boundaries on the probability line of the interval representing the given
message. This calculation can be done progressively, dealing with each word
of the message in turn. For example, consider the message A B C A, where
the alphabet {A, B, C} and their probabilities {0.4, 0.3, 0.3} remain fixed as
in the example above.

The first letter divides the probability line into three intervals with bound-
aries at 0.4 and 0.7. Since the first letter is A, the message interval will be
somewhere in [ 0, 0.4 ). The second letter divides this interval into three,
in the ratio 0.4:0.3:0.3 with boundaries at 0.16 and 0.28. Since the second
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letter is B, the message interval will be somewhere in [ 0.16, 0.28 ). The third
letter again divides this interval at 0.208 and 0.244. Since it is C, the message
interval is reduced to [ 0.244, 0.28 ). The final letter A reduces the interval
to [ 0.244, 0.2584 ). These boundaries are derived without ever enumerating
or considering any message other than the one to be sent.

Further, as the calculation of the interval proceeds, it is possible to gen-
erate binary digits of the code string progressively. After the first letter has
been inspected, the working interval is [0, 0.4). As this interval is wholly be-
low 0.5, the first digit of the binary fraction must be 0, regardless of what
letters follow. As it happens in this example, the next three letters reduce the
interval to [0.244, 0.2584), which contains 0.25. Thus, they do not directly
allow us to conclude whether the final message interval will be wholly below
0.25, in which case the next binary digit would be zero, or wholly above,
in which case it would be one. If the message continued with a further fifth
letter, say, C, the working interval would be reduced to [0.25408, 0.2584),
allowing us to decide that the second digit must be 1, since the interval now
lies wholly in the range [0.25, 0.5). In fact, we can determine all digits up
to the sixth, since the interval now lies wholly within [0.25, 0.265625), or in
binary, [0.010000, 0.010001). Thus, the binary string must begin 010000. .. .
Proceeding in this way, arithmetic coding deals with the words of the message
in turn, and produces binary digits of the code string whenever the working
interval is sufficiently reduced. At the end of the message, some small number
of additional binary digits may be needed to specify a binary interval wholly
within the final message interval.

It may appear from the above that arithmetic coding requires arithmetic
of arbitrarily high precision in order to calculate the interval boundaries.
However, it turns out to be possible to do the calculations with a fixed and
quite modest precision by periodically rescaling the numbers involved. There
is a slight loss of efficiency involved, but use of 32-digit binary arithmetic typ-
ically gives code strings whose length exceeds — log, (Probability of message)
by less than 0.1%.

The importance of arithmetic coding for the present study is that it gives
a constructive demonstration that it is not only possible in principle but also
feasible to encode messages as binary strings whose length is essentially equal
to the information content of the message.

2.1.7 Some Properties of Optimal Codes

If an optimal code is used to encode a message, the length of the code string
is (within one digit) given by —log, (Prob. of message), and so is almost
exactly equal to the information (in bits) conveyed by the message. Thus,
each binary digit conveys one bit on average. For this to be possible, each
binary digit must, independently of all others, be equally likely to be one
or zero. This property, as we have seen, forms the basis for optimal code
constructions. When asserting that each digit is equally likely to be 0 or 1,
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there are two senses in which these equal probabilities may be understood.
First, we may mean that, if a message is in some way randomly selected
from the set of possible messages in accordance with the assumed probability
distribution over that set, then each digit of the resulting message is randomly
and equiprobably selected from the values of 0 and 1. That is, the digits are
the result of a random process with probability 1/2 of giving a one.

Even if the observational protocol which gave rise to the message to be
sent cannot properly be regarded as such a random selection, there is another
sense in which the assertion may be read. We assume that the probability
distribution over messages used in constructing the code accurately models
the receiver’s expectations about what message might be received. In this
case, however the message was in fact acquired by the transmitter, it will still
be true that, after receiving some digits of the coded message, the receiver
will still have no reason to expect the next digit to be more likely one than
zero, or vice versa. That is, from the receiver’s point of view, the digits are
no more predictable than those generated by an independent equiprobable
random process.

Indeed, if a receiver who is expecting a series of messages in some optimal
code instead receives a random stream of digits, the receiver will still decode
the stream as a series of messages, and find nothing in the messages to show
that they are garbage. When an optimal code matched to the receiver’s ex-
pectations is used, any long string of digits decodes to a perfectly meaningful
series of messages.

Suppose the set of possible messages has a probability distribution {p; :
i =1,2,...} and for all i, message ¢ is encoded by a string of length I; =
—log, p; digits. Then the probability that a stream of random, equiprobable
binary digits will begin with the string for message ¢ is just the probability
that its first [; digits will match those of the message string. Each random
digit has probability 1/2 of matching the corresponding message digit, so the
probability of a match to message i is (1/2)% = p;. That is, message i will
appear at the beginning of the random stream with precisely the probability
that the receiver expects.

A further consequence is that if a random stream of digits is decoded, the
expected length of the first message decoded is ), p;l;, which, for an optimal
code, is nearly equal to — >, p; log, p;.

2.1.8 Non-Binary Codes: The Nit

All the above discussion of codes generalizes easily to codes using more than
two digit values. Most obviously, if the coded string uses the four digits 0,
1, 2 and 3 rather than just the binary digits 0 and 1, the length of the code
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string can be halved. Each base-4 digit can represent two binary digits using
the mapping

00 -=> 0
o1 > 1
10 > 2
11 > 3
Similarly, if base-8 digits are used, allowing the digit values 0, 1, ..., 7,

the code string will be only one third the length of the equivalent binary
string, since each base-8 digit can represent a group of three binary digits.
Generally, if N digit values are allowed, where N is a power of 2, each can
represent log, IV binary digits. Hence,

length of binary string

length of base N string logy N
This result can also be seen to follow from our conclusion that naming one
of N equiprobable possibilities involves an information of logy, N bits. That
is, one base N digit can convey log, N bits.

For long messages, the above ratio between the lengths of binary and base
N representations holds approximately for any N, even if N is not a power
of 2. The Huffman and Arithmetic constructions generalize directly to any
N > 2, with the result that the length of a base N string optimally encoding
a message of probability p satisfies

length —(logy p)/(logy N) + 1

<
< —logyp+1

We will have little or no need to consider the use of non-binary message
strings. However, it will later be convenient to use a measure of information
which can be thought of as the “length” of a message string employing e =
2.718. .. possible digit values, where e is the base of natural logarithms. The
information conveyed by one such “digit” is

logoe=1.44... Dbits

This unit is termed the nit (for “natural bit”) or, by some writers, the nat.
It is often a more convenient unit than the bit. The information conveyed
by a message of probability p is —In(p) nits. Often, approximations used in
computing p and its logarithm yield expressions directly involving natural
logarithms rather than logs to base 2. There is no distinction in principle
between information measured in nits and information measured in bits. It
is merely a matter of choice of unit.
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2.1.9 The Subjective Nature of Information

The information content of a message, as we have defined it, is the negative
log of its probability, i.e., the probability of the event or data or proposition it
conveys. As our view of probability is subjective, it follows that the informa-
tion content is also a subjective measure. A message which tells us something
we already know conveys no information, a message which tells us something
we regarded as improbable gives us a great deal of information. This view
may appear to be at odds with objective concepts such as the information-
carrying capacity of a telegraph channel, or the information-storage capacity
of a magnetic disc. However, such measures relate to the physical capability
of a medium to store or transmit information. Whether the medium actu-
ally conveys or stores that much information depends on the code used and
the prior expectations of the receiver. What the physical limit means is that
it is the maximum amount of information which can be conveyed using a
code which maximizes the expected amount of information given the prior
expectations of the receiver. If some other code is employed, the amount of
information which one can expect to store or convey will be less than the
physical capacity. The actual information conveyed in a particular instance
may in fact exceed the physical capacity, but this can occur only if the code
gives high probability, and hence a short code string, to a proposition which
the receiver regarded as improbable. If the receiver’s prior expectations are
not unfounded, such an accident is expected to be rare.

Note that a receiver may well be able to decode information coded using
a code which is far from optimal, given his prior expectations. The receiver
must normally have prior knowledge of the code in order to be able to decode
the strings he receives. Whether or not he regards the code as efficient is im-
material. A receiver may even be able to decode strings in a code of which he
has imperfect prior knowledge. Humans often use codes, such as natural lan-
guages, which are not optimal for any set of prior expectations. In such codes,
many strings may have no meaning, i.e., be nonsense conveying no message,
and the meaningful strings may exhibit regularities of structure such as rules
of grammar and spelling, which do not serve to convey information. Given
messages in such a redundant code, a receiver may be able to discover much
of the coding rules, especially if he has strong and well-founded expectations
about the content of the messages, and the code is not optimized for these
expectations. For instance, a coded message may announce that gold has
been found in Nowheresville. The message may be intended for an audience
with little reason to expect such an announcement, and hence be coded as
a rather long string. A receiver who happens already to know of the gold
discovery, but does not know the code, may be able work out the code using
this knowledge. Cryptoanalysis, the art of “breaking” codes designed to be
obscure, relies heavily on the redundancies of natural languages and on prior
expectations about the content of the messages.
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There are good reasons for natural languages to be less than “optimal”
when regarded as codes. One reason is that spoken language is transmitted
from speaker to listener via a noisy channel. The listener may not be able to
hear correctly all the words spoken. Codes with substantial redundancy can
tolerate some degree of corruption without becoming unintelligible, whereas
optimal codes, in which every digit matters, are very sensitive to corrup-
tion. Most possible symbol sequences (possible vocal utterances in the case
of speech) are ruled out by the grammar and vocabulary of natural languages.
Thus, if a listener hears something like “Today the weather is very kelled”,
the listener knows the sentence must have been mis-uttered or misheard, be-
cause it does not conform to the rules of English. The listener may guess
(probably correctly) that he should have heard “Today the weather is very
cold”, because this sentence, out of all legal sentences, sounds most like what
he heard. Artificial codes for information transmission and storage are often
designed so that legal strings conform to a strict pattern while most strings
do not. A corrupted received string can then be corrected by replacing it by
the nearest legal string, provided the degree of corruption is not too great. Al-
though of great practical importance, such error-correcting codes are outside
our concerns.

Another reason for the inefficiency of natural languages is that they must
serve for communication among the members of a large and diverse popu-
lation. It is not normally possible for a speaker to have detailed knowledge
of the prior expectations of her listener(s), and quite impossible for a broad-
caster or journalist even to know who are the listeners and readers. Thus, the
use of an optimal code is impossible, since a code can be optimized only with
knowledge of the receiver’s subjective probabilities for possible messages. A
code intended for receipt by a wide and imperfectly known audience cannot
be based on strong assumptions about the probabilities of different messages.
Rather, it must allow every message a string length comparable to the neg-
ative log of the lowest probability accorded the message by any receiver. A
receiver of a message whose length is less than the negative log of the prob-
ability which that receiver gave to the message will tend to find the message
unintelligible or unbelievable. Thus, we find that users of natural languages
will typically tend to frame the meaning they wish to convey as a long ut-
terance or text when addressing an unknown or unfamiliar audience, but in
a much shorter form when addressing a person whose prior expectations are
well-known. Also, allowing some redundancy can make coding and decoding
much simpler.

The implications for our present concerns are that, when discussing or
calculating an amount of information, we must be careful to specify what
prior knowledge we are assuming on the part of the receiver. We must be
prepared to enter arguments as to whether it is or is not reasonable to as-
sume certain prior knowledge or expectations and to modify our calculations
of information content accordingly. However, for our purposes we need not
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consider errors in the transmission of messages, and hence need not be con-
cerned with error-correcting codes.

To summarize this section, the information content of a message is the
negative log of the (subjective) probability of the propositions conveyed. With
negligible error, the content in bits equals the length of the binary string
encoding the message in an optimal code. We are suspicious of measures
advanced as measures of “information” unless it can be demonstrated that
the measure equals the length of a message conveying a specified proposition
to a receiver with specified prior expectations. To illustrate the grounds for
this suspicion, and the importance of specifying the receiver, we give an
example discussed by Boulton [6].

2.1.10 The Information Content of a Multinomial Distribution

Suppose we have a bag containing a very large number of balls of K different
colours. Balls of the same colour are identical for our purposes. Let N balls
be drawn in sequence from the bag, where IV is a very small fraction of the
number of balls in the bag. The result of the draw can be represented as a
sequence of N colour symbols, each naming one of the K colours. Suppose
the draw yielded M)}, balls of colour k& (k =1,...,K, . M, = N) so the
sequence has M symbols for colour k. At least two expressions have been
proposed and used as measures of the “amount of information” in such a
multinomial sequence. At least two others have some claim to the title. By
examining these measures and attempting to relate them to the lengths of
optimally coded messages, we can show the importance of the message length
concept in measuring information.
Measure A is given by

N!
[T, My!

It is the logarithm of the number of ways the IV balls could be arranged in
a sequence. A is the log of the number of colour sequences which could be
drawn to yield My balls of colour k for all k. If the balls are picked in such
a way that each ball remaining in the bag is equally likely to be picked next,
each of those colour sequences is equally likely, so A is the log of a number of
equally likely events. Thus, A matches one of the ideas described before as a
measure of information.

Suppose that the sequence of colours drawn from the bag is to be encoded
as a message. Then it is certainly possible for a message of length A to inform
a receiver of the sequence, provided that the receiver already knows N and
the colour counts {My : k = 1,..., N}. The message could be encoded in
several ways. One way would be simply to number all the possible colour
sequences with a binary number, using some agreed enumeration, and then
to transmit the binary digits of the number specifying the actual sequence

A =log
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obtained. Another way of some interest is to construct the message from N
segments, each segment giving the colour of the next ball in the sequence.
Suppose that n balls have already been encoded, of which m.; had colour
k (k =1,...,K). Then the number of balls remaining is N — n, of which
M}, — my,y, are of colour k. The probability that the next ball will be of colour
k is then (M —myx)/(N —n), so a segment announcing that the next colour is
k should optimally have length — log{ (M —m,x)/(N —n)}. It is easily shown
that, using this ball-by-ball encoding, the total message length is exactly A,
whatever the order of colours in the sequence. The receiver of the message
can decode it segment by segment. After decoding the first n segments, he
will know my,y for all k. Knowing {My} a priori, he can then calculate the
probabilities (M — my,x)/(N —n) for all k, and hence decode segment n + 1,
which is encoded using these probabilities.

Thus, A deserves to be regarded as a measure of information: the infor-
mation needed to convey the sequence to a receiver who already knows the
exact number of each colour.

Measure B has the form

B:—ZMkIOng
k

where 1, = My /N. (Here and elsewhere, we take xzlogx to be zero when
2 =0.) It is N times the “entropy” of the frequency distribution of colours in
the sequence if the fractions {ry} are regarded as probabilities of the various
colours. This form again is familiar as an expression for a message length. It
is the length of an optimally coded message conveying a sequence of events
(the colours in this case) where each “event” is one of a set of K possible
events, and the probability of event type k is r; independently of whatever
events have preceded it. That is, B is the length of a message conveying the
colour sequence to a receiver who does not know the exact number of each
colour, but who believes the next ball has probability r; of being colour k
regardless of the preceding colours. For instance, the receiver might believe
that a fraction r; of the balls in the bag had colour k. Thus, B is again a
message length, and hence a measure of information, but one which assumes
different, and weaker, prior knowledge on the part of the receiver. Hence,
B > A, as we will see below.

Form B is questionable as a measure of the information in the colour
sequence, in that it assumes a receiver who happens to believe the population
colour probabilities {py : k = 1,..., K} have values which exactly equal the
relative frequencies {ry : k = 1,..., K} of the colours in the actual sequence.
More realistically, we might suppose that the sender and receiver know the
true bag population colour probabilities {px}, and that the actual colour
counts {My : k = 1,..., K} result from the random sampling of N balls
from the bag. In that case, the frequencies {r;} would be expected to differ
somewhat from the population probabilities {py }. The message length, using
a code optimal for the known probabilities, is then — 3", M, log py, which is
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greater than — ), My logry = — >, My log(M/N) unless py = r, for all k.
For any given set of probabilities {px}, it is easily shown that for a random
sample of N balls, the expected difference

E[f ZMk Ingk + ZMk log T‘k]
k k

is approximately (K — 1)/2. It might therefore be argued that a better indi-
cation of the information needed to inform a receiver who already knows the
probabilities is

(K1)

Blz—ZMklogrk+ 5

k

Forms C and D again differ from A and B in the assumptions made about the
receiver’s prior knowledge. For both C' and D, we will assume that the receiver
knows N but neither the exact numbers {Mj} nor the probabilities {py}.
Rather, we assume the receiver to believe initially that all colour mixtures
are equally likely. That is, the receiver has a uniform prior probability density
over the continuum of possible probability tuples ({px} : > . pr = 1,px > 0
for all k). It is easily shown that with this prior density, all colour-number
tuples ({My} : >, M = N, M), > 0 for all k), are equally likely a priori.
One way of optimally encoding a message conveying the colour sequence to
such a receiver is as follows.

A first part of the message can convey the tuple of colour counts
{M}, : k=1,...,K}. For N balls, the number of possible tuples is (N;Ifl_l) ,
and under the prior expectations of the receiver, all are equally likely. Hence,
the length of the first part is the log of the number of possible tuples:

(N + K —1)!

1
(K _1)IN!

Once the receiver has received this part, he knows the colour counts and so
can understand a second part framed in form A. The total message length is
thus

(N+K—1)! NI

= log X FRZ ) g

¢ BRI T
ey (NHE 1)
%K - DITL, M

An Incremental Code. Another way of encoding the message for such a
receiver who knows neither the probabilities {px} nor the counts {Mj} is
also of interest. The message can be encoded in segments each giving the
colour of the next ball. For the first ball, the receiver must expect all colours
with equal probability, so the length of the first segment is log K. However,
after receiving the first n segments, the receiver will no longer have a uniform



84 2. Information

prior density over the possible colour probability tuples. Rather, he will have
a posterior density

K

Dens({py :k=1,....K}) =G [[ pf™  (px>0:> pu=1)
k=1 k

where G is a normalization constant. He will therefore consider the probabil-
ity that the (n 4 1)th ball will have colour k to be

/// /[(GHP"“”) pk] dprdps -+~ dpxc 1

p1<1 ,pi >0

Pn+1(k)

7,1
M+ 1
 n+K

The length of segment (n + 1) encoding colour k using an optimal code is
thus —log((mur + 1)/(n + K)). The total message length is the negative log
of the product of all the IV progressive probabilities used in the N segments.
The denominators of the probability fractions range from K to (N + K — 1)
as n ranges from 0 to (N — 1). The M}, segments announcing colour k give
numerators ranging from 1 to My. Hence, the product of all the fractions is

[T, My! (I M) (K — 1))
KK+1)(K+2)...(K+N-1)  (N+K-1)

giving the same measure C as before.

m 1
It is important to note that the probabilities { P, 1(k) = L—’—

} used
in encoding the colour of the (n + 1)th ball need not be interpreted as es-
timates of the population probabilities of the colours. The receiver may, if
interested, use some such expression to obtain progressive estimates of the
population probabilities but such estimates would be immaterial to the de-
coding of the message. The probability P,1(k) is the probability that the
next ball will have colour k, given the initial uniform density over colour dis-
tributions and the numbers of the different colours {m,} so far known. It is
not an estimate.

As form C assumes less prior knowledge on the part of the receiver, we
must expect the message to be longer than for forms A or B, as is seen later.

An Explanation Code. Form D is the length of a message which assumes
the same prior knowledge as C, i.e., a uniform prior over population proba-
bilities. However, the message is encoded differently. For form D, we assume
that the message comprises two parts, as in form C, but their content is dif-
ferent. The first part asserts a set of colour probabilities {py : k=1,..., K}.
The second encodes the colour sequence using a code similar to that of form
B. That is, the code is optimal if the probability that the next ball is colour
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k equals p, and is independent of preceding balls. The length of the second
part is thus

— > My log pr
k

The calculation of the length of the first part is not trivial and is discussed
in later chapters.

Form D assumes the same prior knowledge as does form C. It is slightly
longer than form C because it is somewhat redundant. Once the details of
how the coding is to be done have been agreed by sender and receiver, form C
provides just one message string for each possible colour sequence (as do forms
A and B). Form D, however, permits a colour sequence to be represented by
any of several message strings, all intelligible to the receiver. To use form
D, sender and receiver must have agreed on a way of encoding tuples of
colour probabilities, for use in the first part of the message. When the sender
wishes to transmit a colour sequence, there is nothing to stop her choosing
any codeable probability tuple to be encoded in the first part and used in
the second part for encoding the colours, provided only that the chosen tuple
does not state a zero probability for some colour which actually appears in the
sequence. The length of the second part, — >, M, log p, will be minimized if
the sender chooses a probability tuple closely matching the actual frequencies
of colours in the sequence to be sent, i.e., if she chooses a tuple with py ~ 7y
for all k. However, a message encoding the sequence (albeit a longer message)
can still be constructed if she makes some other choice of tuple.

The redundancy inherent in form D can be viewed another way. The
receiver of a form-D message can decode it to discover the colour sequence.
But he also discovers something else, not deducible from the colour sequence.
He discovers that the sender has estimated the population colour probabilities
to be those she stated in the first part of the message. Thus, form D is a
very simple example of what we have defined as an explanation. Its first
part asserts a simple “theory” about the origins of the colour sequence, viz.,
that the colours were drawn from a source which produces colour k& with
probability pg, for all k. The second part of the message then encodes the
colour sequence using a code which would be optimal were the theory true:
it encodes an occurrence of colour k£ with a segment of length — log py.

Strictly speaking, the value of the form-D message length should not be
regarded as a measure of the information in the colour sequence, since a form-
D message informs the receiver not only about the sequence, but also about
a theory which is not implied by the sequence. However, the extra length of
form D over form C is small when the best possible “theory” is used. Thus, in
situations where it is easier to compute the length of form D than the length
of form C, there is little error in using the former as an approximation to the
latter.

Comparison of Measures of Information. The values of the message
lengths for forms A, B, C and D are shown below. For forms A and C, we
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have used Stirling’s approximation
1 1 1
log(n!) = (n + 5) logn —n + 3 log(27) + O (n)

Here, the logs are natural logs, to base e. The resulting lengths below are
given in nits rather than bits, and all logs are natural. We have also used the
approximation

d d?
log(z +d) =logz + -~ + 0| —
x x

to manipulate the expressions into forms showing their differences most
clearly. All the expressions below are accurate to order 1/Mjy, so if every
colour appears at least 10 times in the sequence, the error is less than one
nit.

Form A: Exact colour counts already known.

1 K-1 K-1
A —Xk:Mk logry, — 3 Zk:logrk — TlogN - log(2m)
Form B: Colour probabilities already known.
K-1
B =~ —;Mklogrk + —5
Form C: Uniform prior on colour probabilities.
1 K-1
C = —%:Mklogrk—izk;logrk—i— 3 log N —

K-1

log(27) — log(K — 1)!

Form D: Uniform prior on colour probabilities. Message is explanation using
best estimates of probabilities.

1
D%C’—i—ilog((K—l)ﬂ')—l

In all of the above, 1, = My /N for all k.

All of the expressions A to C are measures of information about the same
set of data. They differ only in what is assumed to be already known about
the data. They all agree in the dominant term, which is proportional to the
size of the data set, i.e., the length IV of the sequence. However, the differences
are not trivial, being of order %log N.

We will consider one more case to emphasize the importance of the re-
ceiver’s prior knowledge. Here, we suppose that the receiver is already sure
that the colours are independently selected from a population with probabil-
ities {px : kK = 1,..., K} which he already knows. In this case the optimal
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message length for a colour sequence is — ), Mj logpy. The message can
take the form of N segments each coding a ball’s colour, where each segment
uses a fixed code encoding colour k with a string of length — logps. This
result obtains regardless of what the sequence of colours might be, or how
many times each colour occurs. It might be thought that, if the actual colour
frequencies {ry = My /N,all k} differ greatly from the probabilities {p}, a
shorter message could be obtained using a version of form C. That is, we
can send the message in two parts, the first giving the actual colour counts
{M,,} and the second encoding the sequence using this information. As shown
above, the length of the second part is given by form A: log HN]\'@' The
length of the first part, however, now depends on the receiver’s pllc"obabilities
{pr}. The first part announces that, in a sample of known size N, colour k
occurred My, times (for all k). Given the receiver’s beliefs, he expects such
an event to occur with probability

N! M
p k
I, a1 L7
and hence the optimal coding of the first part has length

N!

—log
¢ 11, M

— Y My log pi
k

The total length of this form of message is thus — )", M logpy exactly as
before. This case is an example of a general result. If a receiver has a fixed
belief that the data to be sent in a message will conform to a fixed, prob-
abilistic pattern (or no pattern at all), there is no advantage in terms of
message length in using a code which states and then exploits any other
probabilistic pattern. Even if the data to be sent appear to exhibit a different
pattern, adoption of which could give a short encoding of the data, the mes-
sage must begin with a statement of this pattern. As the receiver believes the
true pattern to be otherwise, he will regard the apparent different pattern
as a statistical fluke of low probability. The first part, stating the apparent
pattern, will therefore require a long code string, of length the negative log of
this low probability. The resulting length of the complete two-part message
will thus not be shorter than a message which ignores the apparent pattern
and codes the data in accord with the pattern believed by the receiver.

2.1.11 Entropy

Entropy is a term borrowed from classical thermodynamics. As originally
used, the term could be defined as follows.

(a) When a body at an absolute temperature T' is given a small amount of
heat Ag, its entropy H increases by the amount Ay = Ag/T.
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(b) The entropy of a body at absolute zero temperature is zero.

Among the many important properties of entropy is the famous Second Law
of thermodynamics: the entropy of a closed system cannot decrease. Later,
it was shown that the entropy of a body in thermal equilibrium could be
expressed as

H=klogZ

where k is Boltzmann’s constant and Z is the number of distinct micro-states
in which the body might exist consistent with its macroscopic thermodynamic
state (macro-state), as defined by its total energy and momentum and any
other macroscopically observable features. Here, a micro-state of the body
means a full specification of the position and velocity of each of its constituent
particles.

Shannon noted that —log Z equals the amount of information which
would be needed to specify the micro-state of the body to a receiver who
knew only its macro-state (assuming all micro-states consistent with the
macro-state to be equally probable). He was thus led to suggest that in-
formation could be regarded as negative entropy, if physical units are chosen
such that Boltzmann’s constant k has the value one. The inevitable increase
in the entropy of a closed system undergoing irreversible thermodynamic
change is mirrored by the fact that whatever information we may have had
about its micro-state is destroyed by the random or quasi-random interac-
tions among the particles in the system. As the system approaches thermal
equilibrium, its classical entropy increases towards a maximum, the number
of micro-states in which it might be increases, and so an observer measuring
only the macro-state becomes more and more ignorant of the micro-state.

The term has been adopted into Information Theory in accord with Shan-
non’s suggestion. However, it should be treated with caution, as it has been
used rather loosely, and with a variety of related but not exactly equivalent
meanings. Roughly, these meanings have paralleled the various measures of
information content of a multinomial sequence discussed above.

(a) The entropy of a multinomial collection. Suppose a collection of N balls
is known to contain Mj, balls of colour k (k =1,...,K; >, M) = N).
The entropy of the collection can be defined as H, = log L

> o My!

In this definition, there is an implicit equation of the set of colour counts
{M}} with the macro-state of an isolated thermodynamic body, and of a
particular arrangement or sequence of the balls with a particular micro-
state. H, measures the amount of information needed to specify a micro-
state given prior knowledge of the macro-state. H is given in bits if the
base of logs is 2, in nits if natural logs are used. Pro tem, we assume base
2.

(b) The entropy of a discrete distribution. Consider a random variable x
drawn from a discrete probability distribution over the values 1,..., K,



2.1 Shannon Information 89

where Pr(z = k) = pr (k= 1,...,K; >, pr = 1). The entropy of the
distribution is often defined as Hy = — ), py log pi.

It equals the expected amount of information needed to specify the
value z, given prior knowledge that it is drawn from the distribution.
Equivalently, if a message is a sequence of symbols drawn from the set
{1,..., K}, and symbol k occurs with probability py for all k, indepen-
dently of previous symbols, then the message can on average convey H,
bits (or nits) of information per symbol.

Again, if a discrete distribution has entropy Hj, the expected length of
a message naming a value drawn from the distribution equals Hj, when
an optimal code is used.

Clearly, Hj is not directly comparable with H,, since it is a per-instance
measure. However, even if applied to a sequence of N instances, giving a
total entropy NHy, = —N Y, pi log py, this measure still differs from H,
by an amount of order log N, or (log N)/N per instance.

The quantity N Hj is analogous to a thermodynamic quantity, namely
the entropy of a body which is not isolated, but in equilibrium with a
“heat bath” of known temperature. In this case, the exact macro-state of
the body is unknown, but the expected value of the macro-state variable
My, is pp N, where N is the number of particles in the body and py is
related to the temperature. In thermodynamic applications, the fractional
difference of order (1/N)log N between H, and N H, is negligible, as
N is typically very large. However, in dealing with the statistics and
information of typical data sets, the difference may be significant.

The entropy of a density distribution. If z is a real-valued random variable
taking values drawn from a probability density f(x), the term “entropy”
is sometimes applied to the quantity

H, = — / f(2) log(f(x) dax

H_. may be regarded as the limiting value of the entropy Hj of the discrete
distribution

Pr(z <z <z +90) = / f(z) dx (z1 = ko, k integral)

Tk

as 0—0. Its use in this way is unexceptionable, but it must be noted that
the interpretation relies on the discretization interval § being uniform,
i.e., not dependent on x. A non-uniform discretization of the density f(x)
will yield a different limit for Hp, no matter how fine the discretization.
Equivalently, if y is a random variable defined as a monotonic invertible
function of z, y =g~ '(x), = = g(y) say, the H. entropy of the density
of y will differ from the H. entropy of the density of x. The density of y
is
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where ¢(y) = dz/dy, and

/ £y log £, (y) dy # / F(@)log f(z) do

Thus, the entropy H. of a probability density depends on the choice of
random variable. In any use of H., one must be careful that the variable
x is such that a uniform discretization is appropriate, and that it is to
be preferred to any functionally equivalent variable y = g~!(z).

It is this dependence on choice among functionally equivalent variables
which vitiates “maximum entropy” arguments for deriving “uninformative”
priors for real-valued model parameters. However, the use of a maximum
entropy argument for approximating a probability distribution over a data
space when the true data distribution is unknown, except for some known
constraints, is valid and useful.

Example. It is sometimes stated that the Normal or Gaussian density is
the “maximum entropy” density distribution for given mean p and given
second moment p? 4+ 0. Maximizing H, = — [ f(x)log f(z) dz subject to
the constraints

[ flz)de=1 (Normalization)

Jxf(z)de=p (First moment)

[2?f(z) dz = p* + 0%  (Second moment)

indeed leads to the solution

1

2ro

f(z) = e~2@=m*/7* — the Normal density N(z|u,o?)

However, were we to define a variable y by y*> = z (sign y = sign z), and
obtain the “maximum entropy” density for y subject to the corresponding

constraints
ffy(y) dy =1
[ dy = n
Jv°fy(y) dy p? +o?

we would obtain a density of the form

Fy(y) = exp(=1 = Ao — My’ — Aay®)
implying a density for x of the form

1

323 exp(—ag — a1 — asx?)

which is clearly not Normal.
In thermodynamics, the fact that the maximum entropy density for x
subject to the constraints is Normal has been used to conclude (correctly)
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that the velocity component distribution in the molecules of a gas in thermal
equilibrium has Normal form, since the constraints used correspond to the
given macro-state momentum and energy. However, the argument succeeds
only because the true distribution (for an enclosed gas) is in fact discrete
and the discrete possible velocity components allowed by quantum mechanics
are evenly spaced. Under conditions where the discrete values are unevenly
spaced, e.g., at temperatures high enough to involve relativistic velocities,
the maximum (thermodynamic) entropy distribution is not Normal.

To summarize this section, the importation of the term “entropy” into
discussions of information brings some benefits, but can lead to confusion
arising from subtly different uses of the term. In particular, the use of H, in
connection with probability densities is dangerous.

In cases where all that is known of a discrete probability distribution can
be expressed as one or more constraints on the probabilities of the possi-
ble variable values, a distribution which maximizes the H; entropy of the
distribution subject to the known constraints can reasonably be accepted as
representing our knowledge of the variable. In a useful sense, it is the weakest
assumption that can be made about the distribution of the variable, in that it
maximizes the expected amount of additional information needed to specify
a value of the variable.

2.1.12 Codes for Infinite Sets

Sometimes the set of possible messages which might be sent in some defined
communication is potentially infinite. We say “potentially” because in any
real-world communication, the length of the message string must be bounded
if it is to be sent and read in bounded space and time. As the number of
binary strings of lengths not exceeding some bound is finite, so is the number
of different messages which might be sent. However, there are interesting
situations in which no bound on message length can easily be set, or where
at least the analysis would be complicated by setting a bound. In such cases
we may prefer to ignore the limitations of human life and consider a code for
an infinite set of messages.

Note that the set must be countable. The set of finite (but unbounded)
binary strings can be enumerated, for instance by enumerating them in order
of increasing length, as shown in Figure 2.9. The string represented by integer
n is just the binary form of n with the leading one deleted.

An uncountably infinite set cannot be mapped 1-to-1 onto the set of finite
binary strings.

Given that the set is countable, there is no difficulty in principle in map-
ping onto a set of finite strings and so producing a code (not necessarily effi-
cient) for the set of messages. We need only ensure that the set of strings has
the prefix property, and thereby that the string for each message is unique.
Without loss of generality, we can simplify the discussion by first establishing
an enumeration of the set of possible messages, i.e., we can label each message
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String
A (the empty string)
0

—
=
jol)
)
"

1
00
01
10
11
000

0O W

15 111
16 0000

Fig. 2.9. Set of binary strings in order of increasing length.

with a unique, finite, positive integer. Then the task of constructing a code
for the set of messages can be reduced to the construction of a code for the
positive integers. Many prefix codes for the integers can be constructed. Two
examples are shown below.

2.1.13 Unary and Punctuated Binary Codes

The unary code for integer n is a string of (n — 1) Os followed by a 1. The
string length equals n.

Integer “Unary” code “Punctuated Binary” code

1 1 01

2 01 11

3 001 0001

4 0001 0011

5 00001 1001

6 000001 1011

7 0000001 000001
8 00000001 000011
9 000000001 001001
10 0000000001 001011

Fig. 2.10. Unary code and Punctuated-Binary code.

The Punctuated Binary code string (shown in Figure 2.10) for integer n is

constructed as follows: First, note that any integer n > 0 can be written as a
k

binary integer with digits di, dx_1,...,d2,d1,dy such that n = Z 2'd;. The
i=0
usual binary form uses digit values 0 and 1 for the digits. However, a binary
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representation of n > 0 can also be written using the digit values 1 and 2 as
shown in Figure 2.11. (In general for any base B, n > 0 can be written using

Decimal Number Binary Form

i 1
9 2
3 11
4 12
47 21111

Fig. 2.11. Binary representation of n > 0 using digit values 1 and 2.

digits 1... B rather than the more usual form using digits 0... (B — 1).)

To form the Punctuated Binary string for n, express n in the above “in-
flated binary” form as a string of 1s and 2s. Then change all the 1s to Os, all
the 2s to 1s. Finally, insert a zero after each digit save the last, and add a one
after the last digit. These inserted symbols act as punctuation: an inserted
zero means the string continues, the final inserted one acts as a full stop. The
resulting string length is 2|log,(n+1) |, where | 2| means the greatest integer
<z

Both the above codes clearly are prefix codes, and include all the positive
integers. Many other constructions are possible.

2.1.14 Optimal Codes for Integers

Just as for codes over finite sets, we will be interested in optimal codes for
infinite sets, and will discuss optimal codes for the positive integers as ex-
amples. As before, we define optimal codes as those of least expected length,
given some specified probability distribution over the set of messages (inte-
gers). Let p, be the probability of integer n > 0, and I,, the length of the
binary code string for n. Then an optimal code minimizes

o0
> paln
n=1

We of course require the probability distribution {p,, : n > 0} to be proper,
ie, > 2 pp=1and p, >0 for all n. (To accommodate the possibility that
pn = 0 for some n, we define p,l, as zero whenever p,, = 0, no matter what
the value of 1,,.)

For finite sets, an optimal code exists for every proper probability dis-
tribution, namely the Huffman code having l; ~ —logyp;. Such a code
gives an expected string length close to the entropy of the distribution,
— Z p; log p; However, there exist proper distributions over the integers for

3
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which (— an log p,) is infinite. Such infinite entropy distributions do not

admit of o;timal codes, at least in our sense. An infinite entropy distribution
may be thought implausible in the real world, since, using any code at all, the
expected length of the message announcing a value drawn from the distribu-
tion must be infinite. However, for some infinite entropy distributions, there
may be a very high probability that, using a suitable code, the announcement
of a value will require a string of less than, say, 100 digits. Hence, infinite
entropy distributions cannot be totally dismissed as unrealistic.

For codes over finite sets, we have shown that an optimal code represents
a value or event ¢ of probability p; by a string of length close to —log, p;.
Equivalently, a code which encodes event i by a string of length [; is optimal
for an implied probability distribution {p; = 27%; Vi}. These relations may
be extended to cover codes for infinite sets, whether or not the given or
implied probability distribution has finite entropy. That is, we may regard
use of a code encoding integer n by a string of length [,, as “optimal” if and
only if p, = 27!, whether or not Y. p,l, is finite. This extension of the
notion of optimality to cases where the expected string length is infinite can
be rationalized as follows.

Consider some distribution p,, over the integers. For any integer N > 0,
we may derive a distribution over the finite set {n : 1 < n < N} defined by
pL =p, forn < N, p§y =1 Zg;ll pL. This distribution is in effect the
distribution obtained by lumping all integers > N into the one value “N”,
which now just means “big”. The distribution {p. : n =1,..., N} is over a
finite set and has finite entropy. Hence, it admits of an optimal code in the
sense of least expected length, and in such an optimal code,

I, = —logp: = —logp, for 0<n<N

That is, if all integers N or greater are lumped together, a code encoding
n < N with length —logp, is optimal in the usual sense. Since N may be
chosen as large as we please, we may always choose N to be greater than
any integer n actually encountered, and so conclude that a code is optimal
if it encodes n with length l,, = —log p,, for all finite n. Conversely, we may
have reason to adopt a code characterised by the string lengths {l,, : n > 0}
and be entitled to regard it as good if we are satisfied that the probability of
finding integer n is about 277, even if this implied distribution has infinite
entropy.

Note that a distribution of infinite entropy may, but need not, imply a
non-zero probability of drawing an infinite integer. The “Unary” code above
has [, = n. Hence, it is optimal for, or implies, the probability distribution
P = 27"(n > 0). The entropy of this distribution is 2 bits. The “Punctuated
Binary” code has I, = 2|logy(n + 1)]. Hence, all the 2* integers between
2% —1 and (21 —2) have l,, = 2k, p, = 27%F for all k > 0. They contribute
a value

2k (272k) (2k) = 2k /2"
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to the entropy sum. The total entropy is thus

23 " k/2" = 4 bits

k=1

A Binary Tree Code. We now consider a code for the set of binary trees
rather than the set of integers. Here, a binary tree is either a single (leaf)
node, or is a node with two dependents, a left subtree and a right subtree,
each subtree being itself a binary tree. For this example, the trees

—---0---- and --—-0----

| I | I
A B B A

are regarded as different if the subtrees A and B are different. This set of trees
corresponds to the set of code trees defining non-redundant binary prefix
codes, so a code for this set is also a binary prefix code for the set of binary
prefix codes. The particular code for trees which we consider is defined as
follows:

The string for a leaf is 0.
The string for a non-leaf tree is 1 followed by the string for its left
subtree followed by the string for its right subtree.

Some example trees and their code strings are given in Figure 2.12.

0 * 0 —-——- 0----- x  mme—e—— 0-------
* | | * | |
* 0 0 * -—0--- - 0-----
* * | | | |
* * 0 0 -—-0--- 0
* * | |
* * 0 0

Code * Code * Code
0 * 100 * 110011000

Fig. 2.12. Sample trees and their code strings.

As before, the code implies a probability distribution over binary trees,
i.e., that distribution for which the code is optimal. As the code uses
one binary digit for each node of the tree, the probability of a tree is
9~ (number of nodes) ' Nqte that the number of nodes, and hence the string
length, is always odd.

To calculate the entropy of this distribution, we may note that, as for any
optimal code, the entropy is the expected string length. In this case, the string
length equals the size of the tree measured in nodes, so we should calculate
the expected tree size. Assume for the moment that any node independently
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has probability a of being a leaf, and (1 — a) of having dependent subtrees.
Then the expected size L of a tree is given by

L = ax1 (if the node is a leaf)
+(1 —a)(1 +2L) (if the node has dependents)

Hence, L = 1/(2a — 1) We may also calculate the probability ¢ that the tree
is finite, noting that it is finite only if it is a leaf or if both its subtrees are
finite. Thus,

g=a+(1—a)g’

This equation has solutions ¢ = 1 and ¢ = a/(1 —a). Noting that, since ¢ is a
probability, 0 < ¢ < 1, it is clear that for a > 1/2, the only solution is ¢ = 1.
Fora <1/2, ¢g=a/(1 —a).

The implied distribution of a code is the distribution for which the code is
optimal. But in any string of an optimal binary code, each digit independently
of all others has probability 1/2 of being 0. Since, in the tree code, a node is
encoded by the digit 0 if it is a leaf, the probability that a node is a leaf in
the implied distribution is also 1/2. That is, a = 1/2. Hence, L = o0, ¢ = 1.
The expected tree size, and hence the entropy of the distribution, are infinite,
but the probability of drawing an infinite tree from the distribution is zero.

This code for binary trees could also be used as a code for the positive
integers by labelling every tree with a unique integer. One way of doing this
is to label the code strings for the trees in lexographic order, within order of
increasing string length. This leads us to the code shown in Figure 2.13 for the
integers. The corresponding trees are also shown for the first few numbers.

This code for the integers has infinite entropy, but assigns a zero prob-
ability to the set of all infinite integers. Being itself a prefix binary code,
the code has a (infinite) binary code tree. This tree is represented by a code
string beginning

10110110110110.

2.1.15 Feasible Codes for Infinite Sets

For some infinite sets, it may be difficult in practice to construct an optimal
code. Let the set be the set of integers, with a known probability distribu-
tion {p, : n > 0}. To construct an optimal code, we would have to choose a
unique string for each integer, having length [, ~ —log, p,, with no string
being a prefix of another. If the mathematical form of the distribution is at
all complicated, this could be a formidable task, and we may well be content
to settle for something less than optimality. In particular, if the distribution
{pn : m > 0} has finite entropy, we may be content to use some binary
prefix code encoding n with length I, (n > 0) provided it leads to a fi-
nite expected message length. For a given distribution {p,} of finite entropy
H =3, pnlog, pp, we will define a code as feasible if its expected string
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Number String Tree
1 0 0 (The null tree)
2 100 -—=-0----
[ [
0 0
3 10100 -—=-0----
[ [
0 -—-0---
[ |
0 0
4 11000 -===0----
[ [
---0--- 0
[ [
0 0
5 1010100 -—=-0----
| |
0 -—-0---
[ |
0 --—-0---
| |
0 0
6 1011000
7 1100100
8 1101000
9 1110000 etc.

Fig. 2.13. Code for positive integers and their corresponding trees.
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length E(I) = ", pnly is finite. Of course, E(I) > H unless the code is op-
timal, and feasible codes do not exist for distributions of infinite entropy. It
might be thought that if H is finite, any code optimal for some finite-entropy
distribution would give finite E(I), but this is not the case. For instance, the
Unary code described in Section 2.1.13 is not feasible for the distribution {p,
proportional to 1/n?}, since the Unary code has I,, = n, and Y - n/n? is
infinite. But the distribution {p, proportional to 1/n?} has finite entropy.
The punctuated binary code is approximately optimal for it, and gives an ex-
pected length of only a few digits. On the other hand, the punctuated binary
code is feasible for the distribution implied by the unary code, that is, for the
distribution p,, = 27". It gives an expected string length for this distribution
of

oo
23 27" |log,(n+ 1) ~ 2.52 digits
n=1
which is little more than the 2 digits expected if the optimal unary code is
used.

Any finite-entropy distribution over the integers must give integer n a
probability p, which decreases with n for n greater than some integer K.
That is, any finite-entropy distribution must eventually “tail-off” for large
integers. (Of course, the “tailing off” need not be monotonic: we could have
a finite-entropy distribution such that pe,11 > pa, for all integer n.) More
precisely, if {p,, : n > 0} is a finite-entropy distribution, there must exist some
finite K and some monotonically decreasing function f(n) such that p, <
f(n) for n > K. Generally speaking, a code optimal for some distribution
{pn} will be feasible for some finite-entropy distribution {g¢,} only if {p,}
“tails off” no more rapidly than {g,}.

2.1.16 Universal Codes

An interesting code for the positive integers has been discussed by Leung-
Yan-Cheong and Cover (1978). Any integer n > 0 can be written in ordinary
binary form as a string of k digits, where k = |log, n] 4+ 1. The first digit of
this string is always 1. Of course, these strings themselves do not form a code
for the integers, as they lack the prefix property. For instance, the string for
n = 5 is 101, but this string is a prefix of the string for 10, (1010) among
others. To devise a prefix code, first define a function head(n) from integers
to strings as:

head(1) = A (the empty string)
For n > 1 a k-digit binary number
head(n) = head(k — 1) followed by the k digits of n

Thus, for n =3 (k = 2), head(3) = head(1).11 = A.11 = 11.
For n =9 (k = 4), head(9) = head(3).1001 = 111001, etc.



2.1 Shannon Information 99

The prefix “log *” codeword for n is
Code word for n = head(n) followed by 0

A few examples are shown below

n : code string

1 : 0

9 : 1110010

501 : 1110001111101010

Decoding a string in this code is easy. The steps are shown below.

1. Set n =1, and begin at the start of the string.

2. If the next digit is 0, exit with n. Otherwise, read this digit and the
following n digits as a binary number m.

3. Set n =m and return to Step 2.

Recalling that k = [logy n] + 1, the length h(n) of the string head(n) is
given by
h(n) =h(k — 1)+ k = h(|logyn]) + [logon] +1

where we take h(0) = 0. For large n,

h(n) = h([logy([loga n])]) + [logy([logy n])| + 1 + [logyn| + 1

Of course, for any n, the code string length I,, = h(n) + 1. Rissanen [34] has
suggested the approximate length function

log™ n = log, n + log, log, n + log, logy logsn + ... + C

where the series is continued up to the first term which is less than or equal
to one, and C' is a normalization constant chosen to satisfy

00
Z 9- log"n _ 1
n=1

That is, C' is chosen to make the implied probability distribution {p, = 27!}
normalized, and the fact that the “string lengths” {l,, = log* n} are in general
not integers is disregarded.

The log* code, and the distributions over the integers implied by it or by
the length function log™ n, are in a certain sense universal. The implied distri-
bution has infinite entropy: "o ; I(n)27!() is infinite. That is, the probabil-
ity p, = 274" tails off more slowly than does any finite-entropy distribution.
In consequence, if the integer n is in fact selected from some finite-entropy dis-
tribution {g, : n =1,2,...,}, the expected string length required to encode
n using the log* code is finite. The log* code is feasible for all finite-entropy
distributions.
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There are other “universal” codes over the integers. All universal codes
correspond to probability distributions of infinite entropy. An example is the
code derived from the binary prefix code for binary trees discussed in Sec-
tion 2.1.14. It again has infinite entropy, and is feasible for any finite-entropy
distribution. In fact, Rissanen (1983) has shown that in a sense all infinite-
entropy distributions which tail off after some finite integer are equivalent.
Let p, and ¢, be two such distributions. Suppose an integer is drawn from
{pn} and encoded using a code for g, Define

N N
Ly=-=) paloggn , Hy=-) pnlogp,
n=1 n=1

Then lim LN/HN =1.
N—o00

This result proves only a rather weak equivalence among universal codes.
The expected string lengths arising when a number from a finite-entropy dis-
tribution is encoded using different infinite-entropy codes may differ greatly.

The “binary tree” code and the log* code are actually very similar in their
length functions. Numerical calculations show that the lengths in either code
of an integer differ by only a few digits for integers at least up to 21000000

Universal codes are of interest in that they allow us to attach a “prior
probability” to an unknown integer parameter in some model about data.
If we have almost no well-founded prior expectations about the likely value
of the integer, use of a “universal” prior still allows us to encode the integer
with a string whose expected length is finite, provided we at least have reason
to believe that the unknown integer can be represented by a finite string.
Similarly, a universal code can be used to define a prior over any infinite
countable set. For instance, the set of finite binary strings can be encoded by
a string which first gives the length of the given string, then a copy of the
given string. Such a code might have length L + log* L for a binary string of
length L, thus assigning the string a probability

2—L % 9~ log™ L

2.2 Algorithmic Complexity

This section introduces a slightly different approach to the measurement of
information. We again suppose that we have data recorded in a given binary
string, and ask how we might recode it more briefly in another binary string
for transmission to a receiver. The measure of “information” in the given
data is again the length of the recoded string. We depart from the earlier
treatment, in which the receiver was characterized by prior expectations de-
scribed by probability distributions, by now supposing that the receiver is a
specified Turing machine, i.e., a computer.
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2.2.1 Turing Machines

For our purposes, a Turing machine is a machine with

(a)

(b)

A clock which synchronizes all its activities. The machine performs one
(possibly complicated) action or step every time the clock ticks. The
period of time from just after one tick up to and including the next tick
is called a clock cycle.

A finite set of internal states. What the machine does in a clock cycle
(i.e., what action it performs in synchronism with the tick ending the
cycle) depends in part on its internal state. The state remains constant
during a cycle, but the machine may change to a different state at the
tick. The set of states is indexed by the integers 1 to S, where S is the
number of states. We assume the machine starts in state 1.

A binary work tape. This is a recording medium like a magnetic tape,
divided lengthways into cells. Each cell records a binary digit. The action
of the machine at a tick depends in part on the value of the digit recorded
in the work-tape cell which is under the machine’s work-tape head. The
action may involve changing the digit recorded in this cell, and possibly
moving the work-tape one cell to the left or right, so that a different
cell will be under the head during the next cycle. The work-tape extends
infinitely in both directions. Note every cell of this infinite tape always
holds either a “1” or a “0”. There is no such thing as a blank cell. For
simplicity we may assume the work tape is initially all zeros.

A one-way binary input tape. This is the part of the machine which will
receive the binary message string, which we imagine to be recorded in the
cells of a tape similar to the work tape. The machine has an input tape
head and its action in a cycle may depend on the binary value recorded
in the cell of the input tape currently under this tape head. The action
may also involve moving the input tape by one cell to the left, so the
next cell can be read. However, the machine cannot move the input tape
to the right, and so can never re-read a cell of the input tape. Initially,
the first binary digit of the received message is under the input head.

A one-way binary output tape. The machine can, as part of its action on
a clock tick, write a binary digit into the cell of the output tape under its
output tape head and move the tape to the left. It cannot read or change
what it has written on its output tape. Initially, the first cell of the output
tape is under the output tape head, and its contents are undefined.

A list of 4S instructions. The action taken at each clock tick depends
on the current state, the binary digit under the work-tape head, and the
binary digit under the input-tape head. Thus, for a machine of S states
there are S x 2 x 2 = 48 possible situations. The instruction list contains
one instruction for each situation. The instruction dictates the machine’s
action at the next tick. The instruction has four parts:

Next state: a number in (1, ..., S) specifying the next internal state.
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Work write: a binary digit to write into the current cell of the work
tape.

Work move: a symbol indicating one of the three choices: move work-
tape left, move work-tape right, or do not move it. The move takes
place after the write action.

Input/Output: two binary digits controlling the input and output
tapes, by selecting one of the four options:

(00) Do nothing

(01) Move input tape one cell to the left

(10) Write “0” on the output and move it one cell to the left
(11) Write “1” on the output and move it one cell to the left

Those familiar with computer design will recognise the instruction list as
equivalent to the microcode of a microcoded computer. In our discussion,
different Turing machines differ only in their numbers of states and their
instruction lists.

When we use a Turing machine (TM) as receiver, we suppose that we
encode the given binary information or data into a binary string which is
written on the input tape. This string is the “transmitted message”. The
TM is then started, and it begins to read the input tape, write and read its
work tape, and eventually writes some binary string onto its output tape. We
consider that the TM has correctly decoded the message if the final content
of its output tape is an exact copy of the given binary information or data.
Thus, given a binary string A representing some data or information, we
propose that the amount of information in A (in bits) equals the length of
the shortest input tape which will cause the TM to output a copy of A. This
definition of the information in A is called the Algorithmic Complezity of A.
The idea was first proposed by Kolmogorov and later refined by Chaitin [9].
Note that the algorithmic complexity of a binary string A can be entirely
divorced from any interpretation of A as a body of data, propositions or
other sort of meaningful information. The string A is treated simply as an
uninterpreted string of binary digits. However, we will be using the notion of
algorithmic complexity principally for strings which do represent data.

2.2.2 Start and Stop Conditions

For the definition of Algorithmic Complexity to be complete, we need to
impose some technical conditions.

(a) The machine must start in some specified state, say, state 1, with zeroed
work tape.

(b) There are two versions of this condition. Which version we choose to
impose will depend on whether the data string A is regarded as a unique
data object (version (bl)), or a sample of data from some process which
might well produce more data later (version(b2)).

(bl) Immediately after outputting the last digit of A, the machine will
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stop (by entering a state whose next state is itself regardless of input and
work digits, and which performs no tape action).
(b2) Immediately after outputting the last digit of A, the machine will
attempt to read input beyond the end of the input I.

(¢) No proper prefix of I will cause the machine to output A and also meet
condition (b).

If (b1) applies, the conditions effectively require the allowed input sequences
for all possible A to form a prefix set. That is, no input I which is allowed
as an encoding of A can be the prefix of an input J which is allowed as the
encoding of A or any other string.

If instead we require (b2), then if I is an allowed encoding of A, I may
be a prefix of an allowed input J which encodes B if and only if A is a prefix
of B.

We will say a TM accepts an input [ if and only if, according to the above
rules, I encodes any string. Note that, whichever version of condition (b) is
adopted, I must allow the Turing machine to “know” when it has completed
the decoding of I and the production of A.

2.2.3 Dependence on the Choice of Turing Machine

Obviously the definition of the algorithmic complexity of a string depends
on the choice of the TM. Indeed, if the TM is poorly chosen, there may be
no input which will cause it to output a given string. In general, we will be
interested only in TMs which are capable of producing any arbitrary string.

There is an obvious correspondence between TMs and efficient coding
schemes such as Huffman and Arithmetic codes. For any such code, there is
a TM which decodes it. Thus, the Algorithmic Complexity concept embraces
all the coding schemes based on probabilities which were mentioned in the
discussion of Shannon information. An “optimal” coding scheme which gives
the minimum expected message length given certain prior expectations can
be decoded by a TM which, in effect, can compute the message probabilities
implied by those prior expectations. A coding scheme of the “explanation”
type which begins each coded message with an assertion inferred from the
data, then codes the data using an optimal code for the probability distribu-
tion implied by the assertion, can be decoded by a TM which can interpret
the assertion and then compute the implied probability distribution. Hence,
it appears that the Algorithmic Complexity formulation is no more than an
unduly complicated way of re-formalizing Shannon’s approach to informa-
tion, in which the prior expectations are expressed in the design of a TM
rather than directly as probability distributions.

2.2.4 Turing Probability Distributions

If we adopt condition (bl), which requires a TM to stop after producing a
finite string A by decoding an acceptable input I, any TM can be regarded
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as defining a probability distribution over the set of finite binary strings. The
definition follows from equating the Shannon measure of the information in
a string with the Algorithmic Complexity measure. Let A be a finite binary
string and T a TM. We have defined the Algorithmic Complexity (AC) mea-
sure of the information in A as the length of the shortest input I/ which will
cause T to output A (assuming the conditions of Section 2.2.2 above). Write
the length of I in binary digits as |I|. Then, with respect to T,

AC(A) = 11}

The Shannon measure is defined with respect to a probability distribution
P() over strings as
Info (A) = —log, P(A)

Equating the measures gives

We can interpret Pr(A) as a probability distribution over strings inherent in
the design of T'. Loosely, it is that distribution over finite strings for which T°
decodes an optimal code. Note that Pr(A) is not normalized. The sum over
all finite strings of Pr(A) is in general less than one.

If instead we adopt the “stopping rule” (b2), which requires the TM
to attempt to read more input after decoding I to A, the AC measure so
defined does not define a probability distribution over the set of finite strings,
since the set of allowable inputs which decode to finite strings no longer has
the prefix property. A string I which decodes to the finite string A may
be a proper prefix of a string I.J which decodes to A.B. However, when
we consider a TM as the “receiver” which must decode an “explanation” of
some data string A, the data string A is normally a member of a prefix set
of possible data strings, and the receiver may be presumed to have sufficient
knowledge of the set to determine when A is complete. No transmission of
the data, in “explanation” or any other form, would be possible unless the
receiver can tell when the transmission is complete. It is thus reasonable to
suppose that the set U of strings A for which the TM is required to decode
compressed inputs form a prefix set. If so, then the form of Algorithmic
Complexity assuming stopping rule (b2) defines a probability distribution
over U again of the form

Pr(A) =271l = 9=4C(4) (4 € 1)

Thus far, for either stopping rule, there appears to be no useful advantage
of the Turing-Machine formulation of information, and its derived probability
distributions, over the Shannon formulation which takes probability distri-
butions as given, and derives measures of information from them. The new
formulation does, however, have a new feature not normally apparent in the
Shannon approach. The new feature arises from the existence of certain spe-
cial Turing Machines called Universal Turing Machines.
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2.2.5 Universal Turing Machines

Despite the simplicity of the formal description of a Turing Machine, it in fact
enables the description of machines equivalent in most respects to a modern
computer. A modern computer differs from the kind of TM we have described
only in that it has less restricted input/output facilities, and in particular, by
using magnetic discs rather than a tape for its “work-tape”, can move much
more rapidly between distant cells. Otherwise, the random-access memory,
central processing unit and control units of a computer all fit within the TM
formalism of a finite set of internal states with a list of fixed rules (the TM
instruction list) for moving from state to state and reading and writing cells
of input, output and work-tape. The set of internal states of a real computer
is usually very large, of the order of 10009990 and so could not feasibly be
described in the conceptually simple way we have outlined, but a computer
is still no more than a TM.

Computers as we know them today have an important property which can
also be exhibited by much simpler TMs. Given the right input, a computer
can be forced into a state, defined both by its internal state and what it has
written onto its work-tape, such that it thereafter behaves like a different
TM. That is, the initial input it is given will cause no output, and the output
produced in response to any further input will be exactly the same as would
be produced by the different TM given that input. The computer may not
operate as rapidly as would the TM it imitates: it may require many clock
cycles to imitate what would be done in one cycle by the imitated TM, but
the final output will be the same. In terms familiar to computer users, we
can get computer X to initiate TM Y by inputting to X an “interpreter”
program containing a table of constants representing the instruction list of
Y. In general, the interpreter program will have to copy this table onto X’s
work-tape, while leaving room on the tape to imitate Y’s work-tape, but this
is not difficult. The interpreter program then, in essence, uses some further
work-tape cells to remember the number indicating the current state of Y,
consults the table to determine what Y would do next, then does it.

A computer or TM which can be programmed (i.e., given an input pro-
gram) to imitate any specified TM is called universal. The use of a Universal
Turing Machine (UTM) as the “receiver” in a communication opens up the
possibility of coding schemes not obvious in the Shannon formalism. In par-
ticular, the coded message, which is the input to the UTM, can begin with
an interpreter program effectively changing the receiver into a different TM.
Thus, if the sender of the message determines, after seeing the data, that the
“prior expectations” inherent in the design of the receiver TM are inappropri-
ate, she can begin the message with a string effectively redefining the receiver
to have different “expectations”. The sender may, after inspecting the data
to be sent, form a theory that the data conforms (at least probabilistically)
to some pattern or regularity. She can devise a coding scheme which would
be optimal were the theory true, and begin the coded message with a string
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programming the receiver to become a decoder for this scheme. The coded
message can then continue with the optimally coded form of the data.

The ability to make a UTM imitate any other TM (including any other
UTM) using an “interpreter” program of finite length suggests a general-
ity to the Algorithmic Complexity definition of information not apparent in
the probability-based definition. In the latter definition, the information in a
message is defined in terms of the probability of the events or propositions
conveyed by the message. As the probability is subjective, and depends on the
prior expectations of the receiver, the numerical value of the information con-
tent so defined also depends on the receiver, and the assumption of different
receivers can change the value to an arbitrary extent. No obvious bounds can
be placed on the ratio between the probabilities assigned to the same message
by two different receivers, and hence no bound can be placed on the difference
between the two corresponding measures of information, which is the log of
the probability ratio. The same arbitrarily large differences in information
measure can occur if arbitrary TMs are substituted for the receivers. In par-
ticular, some TMs may be incapable of producing certain output strings. In
effect, their design assigns a zero probability to these strings, and so leads to
an infinite value for their “information content”. However, if we consider two
UTMs as alternative receivers, the situation is somewhat different.

First, any UTM can, given the right input, produce any output. At worst
the input to a UTM can begin with a program which simply copies the
remaining input to the output. Thus, any output can be produced encoded
as a “copy” program followed by a copy of the desired output.

Secondly, for any string A and any two UTMs, the difference between the
lengths of the shortest input I; which will cause UTM1 to output A and
the shortest input Is which will cause UTM?2 to output A is bounded. The
length of Is need never exceed the length of I; by more than the length of
a program which will make UTM2 imitate UTM1. That is, if we know a
short input I; for UTM 1, we can make an input I for UTM 2 which begins
with an interpreter program making UTM?2 imitate UTM1, and continues
with a copy of I;. Hence, the difference in the information measures of a
string A defined with respect to UTM 1 or UTM?2 is bounded, and the bound
is independent of A. The bound is the length of a program to make one
machine behave like the other. The length of such programs depends on the
designs of the two UTMs, but is finite and independent of any string the
machines may be later required to produce.

For sufficiently long messages, the differences in information content aris-
ing from different choices of receiver UTM become a small fraction of the
information measure. This fact suggests that the choice of UTM is relatively
unimportant in the Algorithmic Complexity definition of information, at least
for long strings having a very high information content. That is, all UTMs
have in a sense the same “prior expectations”. It is tempting to conclude that
we can therefore arrive at a non-subjective definition of information. A non-



2.2 Algorithmic Complexity 107

subjective AC definition of information would then imply a non-subjective
definition of the probability of a data string via the relation Information =
— log(Probability). Unfortunately, in most practical situations the differences
between UTMs are not negligible. The length of the “interpreter” required
to make one UTM imitate another can often be large. For example, consider
the two UTMs which respectively accept and execute programs written in the
two computer languages “C” and “Fortran”. These languages are not very
different, and the lengths of the two inputs required to make a “C machine”
and a “Fortran machine” give the same specified output A are found in prac-
tice to be quite similar. That is, whether a program is written in C or Fortran
makes little difference to its length, whatever the nature of the computation
performed. Hence, the two UTMs must be regarded as being broadly simi-
lar, and equivalent to rather similar probability distributions over the set of
finite output strings. However, the length of the interpreter (written in C)
required to make a “C machine” behave exactly like a “Fortran machine” is
many thousands of binary digits. Even after allowing for the facts that the
C language is fairly redundant and that practical interpreter programs are
usually written to satisfy other requirements as well as brevity, it seems un-
likely that the interpreter could be expressed in less than 1000 digits. Hence,
the common universality of both UTMs can probably guarantee an equality
of C-based and Fortran-based measures of information only to within £1000
bits. Many data sets from which we might wish to infer theories or estimates
might contain only a few thousand bits of information (by any measure), so
such a large difference cannot be ignored.

An equivalent way of expressing the importance of the chosen UTM is
that the same string will have different probabilities with respect to C and
Fortran UTMs, and the universality argument only guarantees that these
probabilities will not differ by more than a factor of about 2190, As we are
accustomed to regard probability ratios over 1000:1 as being important, such
a guarantee gives no comfort.

2.2.6 Algorithmic Complexity vs. Shannon Information

The algorithmic complexity (AC) of a string is the length of the shortest
input required to make a given TM output the string. The Shannon Informa-
tion of a string is minus the log of its probability in a given distribution over
strings. For any given computable distribution over strings P(S), there is a
TM such that the AC agrees with the Shannon information for all strings S,
at least to within one bit. Informally, the TM is a computer programmed to
decode a Huffman or similar optimal code for the distribution P(S). For non-
computable distributions, no such agreement can be guaranteed. However,
in practice we would expect to deal only with distributions which are either
computable or capable of being approximated by computable distributions.
Other distributions, by definition, would not allow us to compute the proba-
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bility of a string, nor to compute its Shannon information. Thus, in practice,
the AC model of information can subsume the Shannon model.

If the AC is defined with respect to a given UTM T, and the Shannon
information defined with respect to a given probability distribution P(), the
AC of a string S may exceed —log P(S), but only by a constant Crp de-
pending on T and P, and independent of S. The constant is the length of the
interpreter required to make T imitate a TM which decodes an optimal code
for P. Thus, the AC of S is never much more than the Shannon information
defined by the given distribution P. However, the AC of S may be consid-
erably less than —log P(S), since the UTM T is not required to imitate a
decoder for an optimum code for P. Instead, the shortest input to 7" which
outputs S may have any form. It may, for instance, comprise an interpreter
for a TM based on some other computable distribution @, followed by S
encoded in an optimal code for @. Thus, the algorithmic complexity of S
cannot exceed

ngn[— log Q(S) + Crg]

where @ ranges over all computable distributions over strings. This relation
can be used to set an upper limit on ACT(S) by defining Q(S) as follows:
There are 2© strings of length L. If these are regarded as equiprobable,

Q(S) = %r(S|L) X I;r(L) = %r(\SD x 27151 where |S| = Length(S)

%9

The Universal “log™” code of Section 2.1.16 defines a computable probability
distribution over the strictly positive integers given by 1Pr (N) =218 (),
og *

Let Pr(L) = Pr(L). Then
Q log*

ACr(S) < —logQ(S) + Crq
< —logPr(S]) —log2™*l + Crg
< +log*(|S]) + S| + Crq

Hence, for any choice of UTM T, ACr(S) can exceed |S|+log™(|S|) only by
a constant independent of S.

If we map the set of finite strings onto the positive integers by the lexo-
graphic enumeration of Table 1.1, the integer N(S) corresponding to string
S'is

N(S) =251 — 1. |S] ~log N(S) — 1
Hence, if we regard T as “decoding” an input string I to produce a string S
representing the integer N(S), the above bound on ACT(S) shows that |I]
need not exceed

I(N)

ACT(S) < |S|+1og™(|S]) + Crq
log N +log *(log N) + Crq
log*(N) +CTQ

IN N
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Hence, the shortest input I causing T to output S representing the integer
N(S) defines a Universal code for the integers, albeit a defective one in that
not all input strings will represent any integer, as some may fail to give any
finite output and many will decode to the same integer.

There are some long, finite strings whose AC will be small for almost any
choice of UTM. These are the strings which can be easily generated by a short
computer program. Examples are strings of all zeros, strings of alternating
zeros and ones, strings representing the first IV binary digits of easily com-
puted irrationals such as , e, v/2, etc., and strings which exhibit significant
departures from the statistics expected in a sequence of tosses of an unbiased
coin, such as strings containing many more ones than zeros. Chaitin [8] has
proposed that such strings be termed non-random. More precisely, a finite
string S is non-random (with respect to some UTM T) if AC(S) < |S| — 4,
where ¢ is some fixed value indicating a threshold “significance” or “degree”
of non-randomness. Intuitively, this definition regards a string as random if
(in our terms) there is no acceptable explanation of the string. Note that the
number of strings with ACr(S) < K cannot exceed 25! since each such
string must have an input string for T of length < K, and there are only
2K+1 guch strings. Thus, of all strings of length L, at most 2X17% can have
ACr < L—6, and hence at most a fraction 27° can be non-random. If we set
the threshold § = 20 say, at most one string in a million can be non-random.

This definition of the “randomness” of a finite string may seem strange.
Definitions of randomness traditionally relate to processes which produce
strings rather than to any finite output of such a process. For instance, we
may regard the tossing of an unbiased coin as a process for producing strings
of binary digits (1 for a head, 0 for a tail) and regard it as a random process
because our (subjective) probability that the next toss will yield a head is
(at least in practical terms) 0.5, and is independent of the results of all pre-
vious tosses. We regard a binary-output process as somewhat non-random
if (possibly using knowledge of the producing process and of previous out-
puts) we can give probabilities other than a half to subsequent digits, and
find that when these probabilities are used to encode the output string, the
encoded form is consistently shorter than the raw output. Our judgement
of the non-randomness of a process is thus related to the compressibility
of its output, suggesting that the AC definition of the randomness of finite
strings is in line with the process-oriented definition. The notable difference
is that a process will be regarded as (partially) non-random if its output is
compressible in the limit of long strings, so the “cost” of specifying the na-
ture of its non-randomness (in effect the length of the compression algorithm
used) is immaterial. The AC definition, since it is quite independent of the
process producing the finite string and does not regard the string as part of
a potentially infinite output, includes the specification of the nature of the
non-randomness in the compressed string.
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It is important to realize that a random process can produce a string
which is non-random in the AC sense, but its probability of doing so is small.

2.3 Information, Inference and Explanation

This section concerns the connexions among Bayesian inference (Section 1.13),
the notions of information discussed in Sections 2.1 and 2.2, and the “expla-
nation message” introduced in Section 1.5.2.

Given a body of data represented in a finite binary string D, an “expla-
nation” of the data is a two-part message or binary string encoding the data
in a particular format. The first part of the message (the “assertion”) states,
in some code, an hypothesis or theory about the source of the data. That is,
it asserts some general proposition about the data source. The second part
(the “detail”) states those aspects of the data which cannot be deduced from
this assertion and prior knowledge. Section 1.5 suggested that out of all pos-
sible theories which might be advanced about the data, the best inference is
that theory which leads to the shortest explanation. The measures of infor-
mation introduced in Sections 2.1 and 2.2 now allow the length of such an
explanation to be defined and calculated.

2.3.1 The Second Part of an Explanation

As noted in Sections 1.4 and 1.5, the “theory” asserted of some data is to
be read as expressing a relationship or pattern which is expected to hold
approximately for data as observed or measured. That is, even if the theory
is conceived as an absolute universal and exact relationship (e.g., force =
mass X acceleration), the practical application of the theory to real-world
data must allow for imprecision, measurement error and (perhaps) outright
mistake. Thus, the practical use of a theory requires that it be regarded as
expressing an approximate relationship. Such an interpretation of a theory
0, when applied to a body of data x, can well be described by a probability
distribution Pr(x) = f(z|0). (Here we assume pro tem that x is discrete.)

That is, f(x]0) tells us that if we believe the theory 6, certain values for
the data are unsurprising (high probability) and certain other values, if found,
should be regarded as very surprising or even flatly unbelievable (probability
low or zero).

For example, suppose the data comprised triples (z;,m;, a;) being the
forces, masses and accelerations measured in a series of experiments on dif-
ferent objects, all measured to about 1% accuracy. Then the theory “force
= mass X acceleration”, when applied to such data, really means that in
each experiment, we expect the measurement for z; to be within about 1.7%
of the product m;a;. Of the possible values for z; (recalling that the value
will have been measured and recorded with only a limited number of binary
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digits), the value closest to m;a; will be regarded as the most probable, if
we believe the theory, but other values close to m;a; will not be regarded
as improbable, and even values differing from m;a; by 10% or more not im-
possible. Thus, given two measured values m;, a;, the theory is interpreted
as implying a probability distribution over the possible values of z;, having
most of the probability concentrated on values close to m;a;.

Note that this distribution, which might be written as

Pr(z;) = f(20,m;, a;)

is tacitly conditional not only on the theory 6 and the values m; and a;, but
also on some “background knowledge” or (in the language of Section 1.5.2)
“prior premises”. In this case, the background knowledge at least includes
knowledge that each data triple comprises a force, a mass and an acceler-
ation, in that order, and that each is subject to about 1% measurement
error. Such background knowledge will normally be available with all data
sets for which explanations are attempted, and will have some effect on the
probability distribution f(z|@) implied by theory 6. However, we will not
explicitly include it in our notation for the distribution. Instead of writing
f(z]0, prior premises), we write simply f(z|6), since in considering different
theories which might be inferred from the data, the same prior premises will
obtain for all theories and all possible data values.

Returning to the example, note that for a triple (z;, m;,a;), the distribu-
tion f(z;]0,m;, a;) is not the full expression for the probability of the data
triple 2; = (2;, My, a;). The distribution f(z;|6, m;, a;) encapsulates what the
theory 6 says about the relationship among z;, m; and a; but the theory im-
plies nothing about the actual masses or accelerations which might be used
in the experiments. The full expression for the probability of a data triple
assuming theory # can be written as

Pr(x;|0) = Pr(zi,mi, a|0)
Pr(z;|mg, a;, 0) Pr(m;) Pr(a;)
= [f(zil0,ms, ai)gm(mi)ga(ai)

Here, we are assuming that background knowledge suggests that different
masses will occur in the experiments with probability conforming to the dis-
tribution g, (), and different accelerations will occur with probability distri-
bution ¢,(), independently of the masses. For instance, g,,() and g,() might
both be uniform distributions bounded by the largest masses and acceler-
ations our instruments are capable of handling. Since the theory 6 (force
= mass X acceleration) implies nothing about the experimental selection of
masses and accelerations, neither distribution is conditioned on 6. We have
also assumed that each triple in the data set is independent: a new mass and
acceleration was chosen in each case.

The conclusion to be drawn from the above example is that the probability
of a data set x assuming some theory 6, although written simply as the
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distribution f(x|6), will in most cases be conditioned on a large amount
of tacitly assumed background knowledge to do with the selection of data,
accuracy of measurement and so on. This dependence need not often be made
explicit, since we will be concerned with how the distribution changes with
differing choices of 6, and not on how it might change with a different choice
of experimental protocol or measuring instruments.

With these preliminaries, it is now possible to define the length of the
second part of an explanation, which encodes the data assuming the truth of
some theory 6. From Section 2.1.2, if 8 is assumed to be true, the length of
a binary string encoding data x using an optimal code is log, f(z|0) binary
digits.

If the data are not surprising, given # and the background knowledge,
the second part will be short. If the data are very surprising (assuming 6)
the second part will be long. Here, “short” should not be taken to mean
very short. Much of the given data may concern matters which 6 does not
attempt to “explain”, and this unexplained detail may require thousands of
binary digits to encode. If the (force, mass, acceleration) data set comprised
1000 triples, the encoded values of mass and acceleration might alone require
several thousand binary digits. Since # implies nothing about the distribution
of these values, their encoding cannot be shortened by use of the theory. The
coding of the forces z; might also have taken some 7000 digits in the original
data string (1000 values x 7 digits to give each value to a precision of 2~7 or
1/128 ~ 1%). However, by assuming the theory 0, the second part can now in
effect encode a force z; by encoding just its small difference from the product
mja;. If the theory that “force = mass x acceleration” is correct (within the
1% measurement error) then the actual distribution of z; given m; and a; will
have most of its probability concentrated on 3 or 4 values close to m;a;, and
only two or three binary digits will be needed to encode z;. Thus, assumption
of # may shorten the encoding of the data by four or five thousand digits,
but this is still only about a third of the original data string length.

2.3.2 The First Part of an Explanation

The first part of an explanation specifies, in some code, the theory 6 being
asserted of the data. The coding of this part, and the calculation of its length,
require careful attention. First, it is usually the case, at least in the limited
contexts in which automatic inductive inference is currently feasible, that the
set © of possible theories to be entertained is heavily restricted. Normally,
a good explanation is sought by exploring only a single family of possible
theories, all of which have similar structure and mathematical form. The
family may be as simple as the family of Normal distributions with unknown
mean and variance. It may be rather more complex, such as the family of
all finite-state automata or the set of all binary trees, but even in these
cases, a single kind of structure is the basis of all members of the family. In
discussing the first part of an explanation message, we will assume that these
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restrictions on the kind of theory which can be asserted are well-known to the
receiver of the message, and are accepted as “background premises” which
need not be detailed in the explanation, and which will not be modified by
the explanation.

For example, suppose that some data = were obtained, and an explanation
of x were sought within a restricted set @ of possible theories comprising just
ten theories 61, ...,6019. Here, x might be data collected in investigating an
Agatha Christie murder mystery, and the ten theories might correspond to
ten suspects who might possibly be the murderer. Assume that “background
premises” rule out all other possibilities. An explanation message would then
have a first part simply identifying one of the “theories” or suspects, say, é,
and a second part encoding x in a code which would be optimal were 0 indeed
correct. (The length of the second part would be —log Pr(x|d).)

In this simple case, a optimal coding of the first part, naming é, need only
encode one of ten possibilities, the possible theories 61, ...,6019. An optimal
code (in the sense of least expected string length) would, as described in
Section 2.1.2, encode theory 6; using a string of length — log Pr(6;). Note that
the first part of the explanation naming the inferred theory 6 must be decoded
by the receiver of the message before the receiver knows the data x. The
receiver can only discover x by decoding the second part of the explanation,
but since the second part uses a code based on the asserted theory é, it
cannot be decoded until the receiver knows é, i.e., until after the receiver has
decoded the first part. Thus, the form “Pr(6;)” in the expression for the length
of the first part means the probability which the receiver places on theory 6;
before knowing the data x. This probability is just the prior probability of 6;
occurring in a Bayesian account of the situation (Section 1.13). It is a measure
of how probable the theory is thought to be based on considerations other
than the present data z. Since “Pr(6;)” can be identified with the Bayesian
prior probability of theory 6;, we will use the notation h(6;) for it, and hence
obtain length of first part = — log h(é) where 6 is the theory identified by the
first part. To expand on the “murder mystery” analogy, the data x might be
a collection of facts obtained by the detective such as:

X1: Edith says she found the front door unlocked at 11.28 pm.

X2: The victim’s will was not found in his desk.

X3: The victim was shot no later than midnight.

X4: Thomas was found drunk and unconscious in the kitchen at 7 am
etc.

These are the data to be explained. Background premises, not requiring ex-
planation and not encoded in the message, but assumed known to the receiver
might include:

B1: Edith is the victim’s mother.
B2: Besides the victim, only Edith, Thomas, ..., etc. were in the house.
B3: Thomas is the butler.
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B4: Mabel is the victim’s widow.

Background information, together with previous knowledge, might suggest
prior probabilities for the theories “Edith did it”, “Thomas did it”, etc. in-
corporating such considerations as:

h(6; = Edith did it): Low. Edith highly reputable person, and mothers
rarely murder sons.

h(62 = Mabel did it): Higher, because a high fraction of murders are com-
mitted by spouses, and Mabel known to dislike her husband.

h(63 = Thomas did it): Very high, by convention.

etc.

These priors depend on background B but not on data X. The conditional
probabilities used in encoding the second part of the message are probabilities
of the form Pr(z|f) and represent the probability that the data would be
as it appears, on the assumption of a particular theory. Factors in these
probabilities might be probabilities such as

Pr (Mabel would remove the will if she were the murderer)
Pr (Thomas would get drunk if Edith were the murderer)
etc.

These probabilities are based on our understanding of how the people might
have behaved on the assumption that a particular person was the murderer.
They are probabilities of getting the data observed, assuming all background
premises and a theory premise.

2.3.3 Theory Description Codes as Priors

In the simple case above, where the set of possible theories is discrete and
small, it is easy to imagine how background knowledge could lead to an
a priori probability for, or willingness to believe in, each theory. In more
complex situations, there might be no obvious, intuitive way of assigning
prior probabilities. Suppose for instance that each possible theory could be
represented by a different, finite, binary tree with every non-leaf node having
two child nodes, and suppose that each such tree represented a different
possible theory. It could well be that with such a complex family of theories,
prior experience could give no guidance as to the prior probabilities of the
possible theories, except perhaps for a belief that the tree was not likely to
be huge. In such a case it might be decided, faut de mieux, to encode the first
part of an explanation using some code chosen simply on the basis that it
had the prefix property, and its strings could be mapped one-to-one onto the
set of binary trees by a simple algorithm. That is, the code might be chosen
on the basis that its strings could be easily interpreted as straightforward,
non-redundant descriptions of binary trees. A possible candidate code is the
“binary tree code” of Section 2.1.14. A string of this code gives a direct
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representation of the structure of a tree, and is coded and decoded by trivial
algorithms. The code length for a tree of n nodes is n binary digits. Hence,
this code would be optimal if the prior probability distribution over the set
of trees gave probability 27" to a tree of n nodes.

More generally, the adoption in the first part of an explanation of a par-
ticular code for the set of possible theories can be regarded as the tacit accep-
tance of a particular prior probability distribution h(6), where for every the-
ory 0, h(0) = 9—(length of code for 6) pyoyided the code is non-redundant,
i.e., gives only one way of representing each theory, the implied prior is nor-
malized. In practice, a small amount of redundancy in the code may be ac-
ceptable, in which case the implied prior is sub-normalized:

Z h(0) <1 where © is the set of possible theories.
oce

The general point being made here is that even when prior knowledge does
not lead by any obvious path to a prior probability distribution over the
set of possible theories, the choice of a prior may be re-interpreted as the
choice of a code for describing theories. If a prefix code can be devised which
is non-redundant, and which prior knowledge suggests to be a sensible and
not inefficient way of describing the kind of theory likely to be useful in
an explanation, then that code can well be adopted for the first part of
explanations. In constructing such a code, some thought should be given
to the behaviour of the “prior” which is implied by the lengths of the code
strings for different theories. If the code turns out to use longer strings for the
theories thought a priori to be less plausible, its implied prior may well be an
acceptable encapsulation of vague prior beliefs. If however the code assigns
long strings to some plausible theories and short strings to implausible ones,
it does violence to prior beliefs and should be modified.

In later chapters describing some applications of Minimum Message
Length inference, there are several examples of coding schemes for theories
which have been constructed as fairly direct representations of the theories,
and which lead to intuitively acceptable implied priors over quite complex
theory sets.

2.3.4 Universal Codes in Theory Descriptions

In constructing a descriptive code for a complex set of theories, one may
encounter a need to devise a code for naming a member of a potentially
infinite set. In the example of the preceding section, if the set of possible
theories can be regarded as the set of finite binary trees, there may be no
obvious upper limit on the number of nodes in the tree, so the adopted code
should impose no such limit. Similarly, if the data is a time sequence of values
of some random variable observed at regular intervals, one might adopt the
set of Markov processes as the set of possible theories, but there may be no
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obvious prior grounds for limiting the order of the process. If the investigator
is reluctant to impose an arbitrary prior on such an infinite set, there is a
case for using an appropriate universal code (Section 2.1.16) since such a
code guarantees that for any finite-entropy prior over the set, the expected
code length will at least be finite. For instance, whatever finite-entropy prior
truly represents our prior knowledge about the set of binary-tree theories,
the use of the code of Section 2.1.14 at least guarantees that we can expect
the length of the first part of an explanation to be finite.

There is a weak objection to the use of universal codes in encoding theo-
ries, and in fact to the use of any codes for infinite sets. Given any finite body
of data represented as a binary string, we are interested only in explanations
which lead to a shorter encoding of the data. Thus, we will never infer a
theory whose specification, as the first part of an explanation, is itself longer
than the original data. This fact sets an upper limit to the number of binary
digits within which the inferred theory can be stated, namely the number of
binary digits in the original representation of the data. The number of differ-
ent theories which can be coded in strings no longer than this upper limit is
of course finite, and so in principle the set of theories which can possibly be
entertained given some finite data is itself finite. It follows that codes for in-
finite theory sets are never strictly optimal in framing explanations for finite
bodies of data.

The above objection, while valid, is only weak. A universal code for “bi-
nary tree” theories allows the representation of trees with millions of nodes,
and so cannot be ideal if the limited volume of data available implies that
no tree with more than 1000 nodes will be used. However, redesigning the
code to eliminate strings for trees with more than 100 nodes, while keep-
ing the relative probabilities of smaller trees unchanged, would make only
a small difference to the code lengths for the remaining trees, of order 0.12
of a binary digit. In practice, universal codes can provide simple and conve-
nient codes for integers, trees and other structures, and in some cases their
implied probability distributions are not unreasonable reflections of a vague
prior preference for the “simpler” members of the set.

2.3.5 Relation to Bayesian Inference

From Section 2.3.2, the length of the first part of an explanation for data «x,
asserting an inferred theory 6 selected from a discrete set of possible theories
O, is —log h(0), where h(f) is the Bayesian prior probability of theory . From
Section 2.3.1, the length of the second part, which encodes x using a code
which would be optimal if § were correct, is — log f(x|6), where f(x|0) is the
probability of obtaining data = given that 6 is correct. The total explanation
length is thus

—log h() —log f(z|0) = —log(h(8) f (x|0))
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But, from Bayes’ theorem, the posterior probability of 6 given data x is

Pr(é|x) = h(?ég@)

For given data x, Pr(x) is constant. Hence, choosing 0 to minimize the ex-
planation length is equivalent to choosing 6 to maximize Pr(f|x), i.e., choosing
the theory of highest posterior probability.

If this were the only result of the Minimum Message Length approach,
it would represent no real advance over simple Bayesian induction. About
all that could be claimed for the MML approach would be that it might
assist in the construction of prior probability distributions, by establishing a
correspondence between the language or code used to describe a theory and
the prior probability of that theory, as in Section 2.3.3. However, the exact
equivalence between MML and simple Bayesian induction is apparent only
when the set @ of possible theories is discrete. When the set is or contains
a continuum, e.g., when the theories have unknown real-valued parameters,
the straightforward equivalence breaks down.

As described in Section 1.13, it is then not possible to assign non-zero prior
probabilities to all theories in the set, and h(f) becomes a prior probability
density rather than a prior probability. Similarly, by direct use of Bayes’
theorem, we can no longer obtain posterior probabilities for theories, but
only a posterior probability density

(8l — PO (10)
Pr(z)

As discussed in Section 1.13, it is then not clear that choosing 6 to max-
imize the posterior density p(é|x) is a sensible or acceptable inductive pro-
cedure, since the result depends on exactly how the continuum © has been
parameterized. The mode of the posterior density is not invariant under non-
linear transformations of the parameters used to specify 6.

As will be fully discussed in later chapters, MML overcomes this problem.
Essentially, minimizing the length of the explanation message requires that
the first part may specify real-valued parameters to only a limited precision,
e.g., to only a limited number of binary or decimal places. The more severely
the stated parameter values are rounded off, the fewer binary digits are needed
to state the values, thus shortening the first part of the explanation. However,
as the stated parameter values are more severely rounded off, they will deviate
more and more from the values which would minimize the length of the
second part of the message, so the length of the second part will be expected
to increase. Minimization of the message length involves a balance between
these two effects, and results in the parameters of theories being rounded off
to a finite precision. It will be shown that the best precision gives round off
errors roughly equal to the expected estimation errors, i.e., to the errors in
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estimating the parameters likely to arise from random sampling and noise
effects in the data.

The fact that an MML explanation message states estimated parameters
to limited precision, using only a limited number of binary digits, means that
it becomes conceptually possible to attach a non-zero prior probability to
the stated values. Again roughly, the prior probability of an estimate value
stated as 3.012, using only three decimal places, is given by 0.001 times the
prior density h(3.012). It approximates the total prior probability contained
in the interval of values 3.0115 to 3.0125, as all values within this interval
round to 3.012.

In effect, the MML approach replaces a continuum of possible theories or
parameter values by a discrete subset of values, and assigns a non-zero prior
probability to each discrete theory or value in the subset. Since each theory
now has a non-zero prior probability, a posterior probability can be defined
for it, given the data, and the explanation length minimized by choosing the
discrete theory or parameter value having the highest posterior probability.
Thus, MML reduces the continuum-of-theories problem to a discrete-theories
problem, allowing simple Bayesian induction to proceed. Although it is not
obvious from this brief account, the resulting MML inferences are invariant
with respect to monotonic non-linear transformations of the parameters, as
will be shown in Chapter 3.

The non-zero “prior probabilities” which MML gives to a discrete subset
of a continuum of theories are clearly not identical to any prior probability ap-
pearing in the initial concept of the continuum of possible theories. However,
it appears to be useful and legitimate to treat them as prior probabilities,
and similarly to treat the resulting posterior probabilities as genuinely indi-
cating the relative merits of competing explanations of the data. That is, if
two competing explanations of the same data using two theories #; and 65
have lengths /1 and Iy binary digits respectively, it is still possible to regard
the difference in lengths as indicating the log posterior odds ratio between
the theories:

Pr(6s|x
o
Pr(0y|z) _ 9(l2—1)

PI‘(92|$)

2.3.6 Explanations and Algorithmic Complexity

Section 2.3.5 has shown a close relation between conventional Bayesian induc-
tion and MML induction based on minimizing the length of an explanation.
In that section, the treatment of message length was based on Shannon’s the-
ory of information. This section discusses the consequences of basing message
lengths on the theory of Algorithmic Complexity. As shown in Section 2.2.4,
the definition of the Algorithmic Complexity (AC) of a string with respect
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to a Universal Turing Machine T can be related to Shannon’s theory by re-
garding T as defining a probability distribution over binary strings P(.S) such
that

Pr(S) =274 for all strings S

The fact that Pr(S) as so defined is sub-normalized, i.e., that > ¢ Pr(S) <
1, is of no particular concern. This relation between AC and Shannon infor-
mation suggests that Minimum Message Length induction can be based on
AC measures of message length instead of Shannon measures, and indeed this
is so.

Given some UTM T and a body of data x represented by a non-null finite
binary string D, we will define an “explanation” of D with respect to T as
a shorter input I such that I encodes D. That is, when given input I and
started in state 1, T reads I and outputs D, then tries to read more input (the
formal conditions were stated in Section 2.2.2). As with the Shannon-based
treatment, we impose a further condition on the coded message I, namely
that it has a two-part format (Sections 1.5.2, 2.3 and 2.3.5). In the Shannon-
based treatment of Section 2.3.5, the first part is an (encoded) statement
of a theory or estimate 6 about the data, and the second part an encoded
representation of x using a code which assumes 6. However, given a UTM
T, a binary representation D of x, and an input string I which causes T
to output D, it is not clear how or whether we can interpret I as stating
some theory about x and then using that theory to encode D more briefly.
The “meaning” of an input string to a UTM can be quite obscure, making
it very difficult for a human to determine what part of I, if any, constitutes
a “statement of theory”. We therefore impose some formal conditions on [
to ensure that it can properly be regarded as an explanation. Stating these
conditions will be facilitated by some further definitions.

— For any TM T and any input I accepted by T using the second stopping
rule (2.2.2), define O(T, I) as the string output by 7" when given input I.
If T does not accept I, O(T, I) is undefined.

— Two TMs Ty and T3 are equivalent iff, for all inputs I, O(T1,I) = O(T5,I).
Equivalence is written as Ty = Ts.

— For any TM T and any I accepted by T, define N(T,I) as denoting any
one of a set of equivalent TMs such that for all strings J, O(T,1.J) =
O(T,I).O(N(T,I),J) where “.” denotes concatenation. That is, N(T',I) is
a TM which behaves just as T' does after T has accepted I. When T accepts
1, it produces output O(T,I) and thereafter behaves as if it were the TM
N(T,I). We may say that I, when input to T, not only causes output
O(T,I) but also programs T to imitate a different TM N (T, I). Note that
even if T is universal, N (7', I) may not be, and if T" is not universal, N (T, I)
is not.

We now define an ezplanation of data string D with respect to a UTM
T. A string [ is an explanation of D iff
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C1: |I] < |D|
C2: O(T,I) = D

and I has the form A.B, where

C3: neither A nor B is null,

C4: O(T, A) = A (The null string),

C5: N(T, A) = N(T,I), and

C6: A has no proper prefix A; such that A;.B is an explanation of
D.

Informally, these conditions require that

— A produces no output, but programs T to behave like N(T, A); B, when
input to N(T,A), is accepted and gives output D, but leaves the TM
N(T, A) unchanged. That is, N(T, A) in no sense remembers B.

— The division of an explanation I into parts A and B is unique. Suppose it
were not. Then I could be divided into three non-null segments. I = X.Y.Z
with both divisions {4; = X, By = Y.Z} and {4y = XY, By = Z}
satisfying C1-C6.

Using the second division, C5 = O(T,X.Y.Z.Z) = D.D.

Using the first division, C5 = N(T, X.Y.Z) = N(T, X).

Hence, O(T, X.Z) = D contradicting C6.

The intention of these conditions on [ is to ensure that it comprises a part
A identifiable as a theory about the data, and a part B which encodes the data
string D using a code based on that theory. Consider the TM equivalent to
N(T,A). Let us call it H. When B is input to H, H accepts B and outputs D,
and is not changed by so doing. Thus, O(H,B) = D and O(H,B.B) = D.D.
We can regard H as a mechanism which decodes the string B to produce D.

2.3.7 The Second Part

Since H is a TM, it defines a (possibly sub-normalized) probability distribu-
tion over all data strings S

Py(S) = 274Cn(S)

where ACy (S) is the length of the shortest input accepted by H and produc-
ing output S. Thus, H defines a probabilistic “theory” about the source of
the data. If the data D is probable, given this theory, i.e., if Py (D) is large,
then it is possible to find a short second part B such that O(H,B) = D, with
|B| = ACy (D) = —logy Py (D). However, if D is improbable in the proba-
bility distribution P (), the shortest string B causing H to output D will be
long. In the extreme case that Py (D) = 0, no such string B will exist.

Since H = N(T, A) defines a probability distribution P () over the pos-
sible data, it can be regarded as embodying a probabilistic theory 6 about
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the data which can formally be represented by the conditional probability
function

f(16) = Pu (D)

where string D represents data x, and H embodies 0.

2.3.8 The First Part

In an explanation I = A.B using a given TM T, it is the first part (A) which
determines H. Thus, A may be interpreted as describing the theory 6 to T,
or, equivalently, A is an encoding of 6 which is decoded by T'. Given the close
relation between Algorithmic Complexity and Shannon information and the
logarithmic relation between Shannon information and probability, we can
reasonably define the “probability” of the TM H with respect to T as

Qr(H) = 9—14]
where A is the shortest string such that
O(T,A)=A and N(T,A)=H

(Observe that, if I = A.B is the shortest explanation of data string D, and
if N(T, A) = H, then A must be the shortest string such that N(T, A) = H,
and B must be the shortest string such that O(H, B) = D .)

Thus, just as a TM T defines a probability function Pr(S) over strings,
so T also defines a probability function Qr(H) over TMs. But as with Pr(),
the normalization of Qr() requires special mention. We have observed (Sec-
tion 2.2.4) that, using our preferred (second) stopping rule, Pr() defines a
probability distribution over a prefix set of strings rather than over the set
of all finite strings, and is (sub-)normalized over the prefix set. If we adopt
Qr(H) as defining a “probability” of TM H with respect to TM T, the
function Qr() is certainly not normalized (or sub-normalized) over the set
of all TMs. For instance, Qr(T) = 1, since no input is required to make T'
behave like T'. Rather, we must interpret Q7 () in the same way as we might
define and interpret a probability function over a set of propositions or asser-
tions which are not necessarily mutually exclusive nor together exhaustive.
If L ={w;:i=1,2,...} is such a set of propositions, a probability function
P() may be defined over subsets of L so that P(A) = 1 where A is the empty
subset, P(w;) represents the probability that w; is true, P(w; A w;) is the
probability that both w; and w; are true, and so on. (Here, “/\” means logi-
cal conjunction.) Such a probability function is meaningful even although it
obviously does not satisfy either

Z Plw;) =1 or Z P(subset) =1

wiel subsets of L
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Such a probability function may well be appropriate for expressing subjective,
or “prior”, probabilities which a person may attach to subsets of a set of non-
factual general propositions about the real world such as

“The U.N. will in future intervene in all international conflicts in-
volving more than one million civilians.”

“World food production will match population growth at least to
2100.”

“Unregulated international trade in goods and services will damage
developing nations.”

“Nation states will be irrelevant in 100 years.”

“Vegetarian diets lead to less aggressive populations.”

etc.

In a similar way, Q7() can be viewed as defining a probability function over
a set of Turing Machines which, in a sense, are not mutually exclusive. A TM
which can execute FORTRAN programs and which has an extensive matrix-
manipulation library is certainly different from a TM which can only execute
FORTRAN, but in a useful sense the latter is a subset of the former. The
latter “knows” the propositions defining FORTRAN, the former “knows”
these and also the propositions defining matrix arithmetic.

When we consider explanation messages intended to be decoded by some
TM T, the first part of the explanation I = A.B is both a description of the
TM H = N(T, A) and an encoding of a “theory” about the data. In conven-
tional Bayesian induction, the set of possible theories is normally required to
be a set of mutually exclusive and together exhaustive models, so the prior
probability function or density over the set is properly normalized. However,
in more general scientific induction, we do not necessarily regard theories as
mutually exclusive. Rather, some theories may be regarded as additions to
other theories, or completely independent. The theory of electromagnetic phe-
nomena expressed by Maxwell’s equations is somewhat dependent on New-
ton’s theory of motion, but is an addition to Newton’s theory rather than an
alternative. A reasonable 19th-century assessment of prior probabilities would
regard the prior probability of (Newton.Maxwell) as smaller than prior (New-
ton), but would not treat (Newton.Maxwell) as an alternative to (Newton).
Rather, it would give priors related by

Prior(Newton) = Prior(Newton.Maxwell)

+ Prior(Newton.All other electromagnetic theories)

Further, given Newton’s theory of motion, his theory of gravity would
be regarded as having a prior probability almost independent of the prior
probability of Maxwell’s theory, as the two deal with different phenomena. 1
say “almost” because the occurrence in both the gravitational and electro-
magnetic theories of an inverse-square law would suggest to most people that
believing the truth of one theory would incline one favourably to the other,
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but on the other hand, the assumption in Maxwell’s theory of interactions’
being mediated by local effects propagating with finite speed would, if ac-
cepted, cast doubt on Newton’s model of instantaneous gravitational action
at a distance.

The above discussion suggests that, if we regard the length of the first
part of an explanation I = A.B as indicating a prior probability

2714 = Qr(H)

for the “theory” embodied in the TM H = N (T, A), the fact that Qr() is not
normalized should be of no concern. The “theory” embodied in H may be
the conjunction of several “theories”, each individually expressible in some
TM. As theories are not necessarily mutually exclusive, the sum of their
(prior) probabilities is meaningless. We can properly regard Qr(H) as being
the prior probability, with respect to T', of the theory embodied by H. Qr()
cannot as it stands be regarded as a probability distribution over all TMs.

2.3.9 An Alternative Construction

The definition of an AC-based explanation given in Section 2.3.6 leads, as
shown above (Section 2.3.8), to the conclusion that the first part of the ex-
planation does not necessarily nominate one of a set of mutually exclusive
models or theories. Rather, it may encode a set of mutually compatible the-
ories, in effect asserting that all of these theories are true of the data. This
interpretation goes beyond the usual Bayesian assumption that the models
to be entertained are mutually exclusive, and may be seen as a useful en-
richment of the usual framework. However, a relatively minor re-definition
of a TM-based explanation message can be made which narrows the differ-
ence between the two formalisms. Given a TM T and a data string D, the
alternative definition of an explanation string I = A.B is:

C1: |I| < |D|

C2: O(T,I)=‘0.D

C3: Neither A nor B is null.
C4L: O(T,A) =0

C5: N(T,A) = N(T,I)

In the above, only C2’ and C4’ differ from the original conditions of Sec-
tion 2.3.6, and the original C6 is no longer necessary. The effect of the
change is that 7', on accepting A, must output a single binary zero and
immediately begin to read B. With this change, the set of possible first-
parts A clearly form a prefix set, since the output of the initial zero signals
the end of A. Hence, the probability function over the set of Turing ma-
chines H : H = N(T, A),O(T, A) = ‘0’ defined by Qr(H) = 27141 is (sub-
Jnormalized, and Q7 (H) may be regarded as a conventional prior probability
for H, or the “theory” which it embodies.
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With this definition, it is still possible, given a sufficiently powerful T,
to choose A in ways which result in H “knowing” different combinations of
Newton’s theory of motion, his theory of gravity, and/or Maxwell’s electro-
magnetic theory. The only difference is that now the first part of the expla-
nation is required explicitly to announce its own completion. In general, if
one defines some input string J for a given TM by requiring J to cause some
specified output O(T, J) or final state N(T,J), imposing on J the further
requirement that it be a member of a prefix set has the effect of requiring
some lengthening of the input. Without the additional requirement, J need
encode only the specified output string or final TM. With the requirement,
J must also in effect encode its own length. Thus, if .J; satisfies the original
definition, and J, satisfies also the prefix condition, we in general expect

|Jo| & |J1| + log™ [ J1]

where the log* term represents the additional information needed to specify
|J|. However, in changing the definition of an explanation as outlined above,
we may expect little change in the length of the explanation. The change now
requires part A to determine its own length, which will in general require part
A to be slightly longer than with the original definition of Section 2.3.6. But
in that definition, the second part B of the explanation had to convey to
the TM that the TM was to make no permanent change of state dependent
on B, but rather to decode B and forget it. With the alternative definition
of this section, B need not convey this fact to the TM, since the ending of
A is already known to the TM. Overall, it is difficult to see that the two
different ways of defining an explanation would lead to significantly different
explanation lengths or inferred “theories”.

2.3.10 Universal Turing Machines as Priors

In the Algorithmic Complexity formalism, we assume a Turing Machine T is
to be the receiver of the explanation message. The choice of T is equivalent to
the adoption of prior probability distribution Qr() over the possible inferred
models which might be used in the explanation. For most induction problems
which can feasibly be automated, the set of possible models entertained is
severely limited, usually to a relatively sample family of parameterized data
probability functions {f(z|6) : § € ©}. In such cases, the Turing Machine
which embodies a reasonable prior over @ will not need to be very powerful.
It need only have sufficient power to decode the “theory description code”
(Section 2.3.3) used to nominate the inferred theory 6, and then to compute
the resulting data probability function f (x\é) For this purpose, a finite state
machine or stack machine will usually suffice, and when the explanation-
decoding process is simulated on a conventional computer, the processing and
memory demands are small. Further, the theory description code will usually
be quite simple, and be such that the end of the theory description is obvious.
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That is, the possible first-parts of explanations will form a prefix set, so the
distinction between the alternative explanation definitions of Sections 2.3.6
and 2.3.9 becomes irrelevant. The implied prior probability function Qr() is
usually properly normalized.

Although the above simple situation obtains in most currently feasible
applications of MML induction, the possibility of using a Universal Turing
Machine (UTM) as the receiver is of some interest for the philosophy of
induction.

When a UTM is the receiver, the implied prior probability function over
possible theories cannot be normalized. It is well known that there is no
algorithm which can always determine whether a given program for a given
UTM will ever cause output. Hence, however we design the UTM, there will
be input strings which never cause output, and so do not correspond to any
meaningful assertion, and we can have no general method for weeding them
out.

Although it is not normalized, the “prior probability distribution” over
possible assertions or theories about the data which is implied by a UTM
has a unique virtue. It allows the assertion of any theory giving rise to a
computable probabilistic model of the data. This scope arguably includes all
theories at present seriously considered in scientific enquiry. That is, it can be
argued that the scientific community does not accept any theory which does
not lead to probabilistic expectations about what data might be observed,
or such that the expectations implied by the theory cannot be computed at
least in principle. We admit that such an argument cannot at present be
compelling. There are current theories which cannot as yet be expressed as
computable probability distributions over the set of possible raw data which
an investigator might observe, and yet these theories are widely accepted as
meaningful, if not necessarily correct. For example:

“In recent years the personal language of symbolic forms with which
he invests his constructions has been simplified and clarified, his
compositions are more controlled, and his colour has become richer,
denser and more flexible.”

(Bernard Smith, writing about the artist Leonard French, in Aus-
tralian Painting 1788-1970, 2nd edition, OUP Melbourne, 1971, p.
311.)

This passage asserts a general proposition about a change over time in the
observable characteristics of a time-series of coloured images. It is intended
to be, and probably is, meaningful to anyone with a cursory knowledge of
modern art, and would lead the reader to have different expectations about
earlier and later images in the series. Most readers would be able to decide,
after seeing the images, whether the data conformed to these expectations
or not. Thus, we must accept the passage as making an assertion about the
data series which implies a kind of pattern or regularity capable of verification
(or falsification). However, the science of cognition and the art of computing
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are still nowhere near being able to express the assertion as a computable
probability distribution over a time-series of digitized colour images.

To give another example of more “scientific” character, a theory propos-
ing an evolutionary tree for a group of plant species might purport to explain
observed characteristics of their leaves, flowers, seeds, etc. At present, reli-
able identification and measurement of parts like stamens and anthers from
raw photographic data is probably beyond the competence of computerized
pattern recognition. Hence, such a theory cannot at present be held to make
a computable assertion about photographic data.

As there is yet no compelling evidence to the contrary, we may reason-
ably believe that theories using terms like “flexible colour” and “anther” may
eventually be shown to have computable implications about raw image data.
However, at the present stage of computer and software technology, it must
be admitted that there are many important and respected inductive theo-
ries which can be formally represented as probabilistic models of data only if
we accept as “data” the interpretations and inferences of human observers.
We cannot restrict the idea of explanations to messages conveying only raw
data about visual fields, instrument readings, air pressure waves, etc. The
informed human must be accepted as an indispensable instrument for trans-
lating such data into terms admitting formal analysis. Thus, in applying our
theory of “explanations” to data concerning visual images, sounds and other
phenomena at present beyond full automated analysis, we will suppose that
the data string to be encoded as an explanation has already been processed
by human interpretation. The data string presented for an “explanation” of
the grammatical forms of spoken English will not be the sampled pressure-
wave values as recorded on a compact disc, but rather the sequence of spoken
words written in the usual 26-letter alphabet. The data presented for an “ex-
planation” of the evolutionary relationships among a family of plant species
will not be a binary string representing digitized photographs of the various
plants, but rather a binary string representing the “characters” and mea-
surements of the plants as determined by a competent botanist. At present,
any theory about natural language grammars, evolutionary trees and the like
can be represented as a probability distribution or TM decoder only for such
pre-processed data expressed in terms whose interrelationships are more or
less understood. Although, as humans, we are obviously capable of extracting
word sequences from sounds, and formal character-lists of plants from visual
images, we do not as yet fully understand how we do this preprocessing, and
cannot incorporate an account of the preprocessing into a formal theory.

The above proviso applies equally whether theories are framed in terms
of probability distributions or Turing machines or any other way admitting
formal analysis. Thus, while the proviso limits the scope of the approach
to inductive inference presented here, it seems to us to limit equally the
scope of all other approaches known to the author. Henceforth we assume
all data to be available in a pre-processed, or “interpreted”, form. Thus,
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we will assume that any scientific theory about the data is expressible as a
computable probability distribution over the set of possible data strings.

With this assumption, the use of a UTM as receiver allows an explana-
tion message to assert and use any scientifically meaningful theory whatso-
ever about the data. Equivalently, we may say that any given UTM implies
an (un-normalized) prior over possible theories which gives a non-zero prior
probability to every meaningful theory and estimate. Further, the results of
computability theory show that no receiver which is less powerful than a
UTM can accept all computable probability distributions. Equivalently, no
computable prior can assign a non-zero prior probability to every possible
theory unless it corresponds to the prior implied by some UTM.

In less abstract terms, if we choose to frame explanations of data in such a
way that any meaningful theory can be asserted, then the explanations will be
decodable only by receivers which are at least as powerful as a UTM. The code
used to assert the inferred theory will necessarily be redundant, i.e., capable
of asserting nonsense theories, and will therefore imply an unnormalized prior
over the set of meaningful theories. The lack of normalization is unfortunate,
but is an inevitable consequence of the fact that it is not in general possible
to compute whether a given input string for a given UTM will ever result in
output. That is, because of the “halting problem”, there is no computable
method of excluding “meaningless” theories from the code used to assert
theories.

Strictly speaking, the UTM is too powerful to serve as a realistic model of
the receiver of an explanation. A UTM has an unbounded work-tape, which
serves as an unbounded memory capable of storing any finite number of bi-
nary digits. In the real world, no computer or human has access to such
an unbounded memory, nor has the luxury of the unbounded time needed
to use it. Any computation or act of inference performed by any person or
computer has been performed using limited memory and time. When bounds
are placed on the memory and/or computation time of a TM, it cannot be
universal. In fact, such a bounded machine is reduced in principle to a much
more limited kind of machine called a finite-state machine (FSM). In the
theory of computability, a FSM is the simplest and most lowly of comput-
ing machines. It can compute only a limited set of functions, called reqular
expressions, and can at best be made to imitate only a small range of other
FSMs, all simpler than itself. If the real world only offers us FSMs as possible
receivers of explanations, it may seem curious to base an account of induction
and explanation on a model using UTMs which do not exist, and which have
very different theoretical properties. This objection to our approach must be
conceded as valid. If we assume a UTM as the receiver of an explanation, we
allow in principle that the explanation may assert and use in encoding the
data a theory whose consequences could never be computed by any present
human or computer. That is, we allow in principle explanations which can-
not be decoded within feasible limits of memory and time. A fully developed
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account of inductive inference should incorporate such limits. Although there
is a growing body of theory, called the theory of Computational Complexity,
which characterizes what can and cannot be computed within specified limits
of memory and time, we have not attempted here to extend our account to
allow for such limits. There are arguments in our defense. Firstly, the limits
on available memory and computation effort are (for machines) determined
by current techniques, and are improving rapidly. Thus, it would be hard to
fix on specific values for the limits. Secondly, Computational Complexity is
not as yet able to characterize the resource needs of computations very well.
For many computations of interest in inductive inference, it is not known
whether the needs grow exponentially or only as a polynomial function with
increasing volumes of data. Thus, the boundaries of the “feasible” are not
well defined. Thirdly, while any one human or computer has only finite mem-
ory and computational power, scientific inference is not really an activity of
a single agent. Rather, scientific investigation is an activity carried out by a
culture, and the memory and information processing power available to the
culture grow as time goes by. In accounting for the history of the inductive
inferences formed in such a culture, it is not unreasonable to suppose that
the culture has been able to record in its “work-tape” of libraries and human
skulls whatever information it has needed to record. That is, the unbounded
memory of a UTM, while clearly not available to an individual or single
computer, is in some sense available to a lasting culture. Finally, while an
individual or computer may be only a FSM in the terms of Computability
Theory, a sufficiently large and powerful FSM can imitate a UTM within
the limits of its resources. Unless the computational resources required to
decode an explanation exceed these limits, a powerful FSM can decode the
explanation in the same way as a UTM. In practice, working out how some
given data can best be encoded as an explanation appears to be much more
difficult than decoding the resulting explanation. Informally, it seems harder
to make a good inductive inference than it is to compute its consequences.
Our account of inductive inference does not directly concern how inferences
are formed, but rather attempts merely to characterize “good” inferences as
ones which allow a concise explanation of observed data. If induction is com-
putationally harder than the deduction involved in decoding an explanation,
it is reasonable to expect that the receiver of a real-world explanation will
need less computational power than the sender who had to make the induc-
tion used in the explanation. Hence, we might expect that any explanation
framed by a human could be decoded by a human. We do not expect in the
real world that a receiver will often encounter explanations whose decoding
is beyond the limits of the receiver’s computational resources.

Some theories current in science might appear to be counter-examples to
the above argument. For instance, it is widely believed that quantum me-
chanics gives an accurate theory of the electron motions in atoms, and how
these interact to bind atoms together as molecules. Yet the theory is compu-
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tationally so difficult that no exact solutions of its equations have yet been
computed for any non-trivial molecule. (Here, we mean by an exact solu-
tion not an algebraic solution in closed form, which may well not exist, but
a computational algorithm capable of providing a numerical solution to an
accuracy comparable with the accuracy of observed data.) But in this case,
practical explanations of observed data on, say, the absorption spectra of
molecules, do not directly encode the data in terms of quantum mechanics.
Rather, the explanations assert and use approximate “theories” derived from
quantum mechanics but using grossly simplified terms and variables whose
behaviour is computationally simpler than that of the variables actually ap-
pearing in the original theory. For example, the explanation of some data
concerning lithium atoms, which have three electrons, may describe these
electrons as occupying distinct “orbits” around the nucleus of the atom. The
notion of an “orbit” or state for an electron derives from exact solutions
to the quantum-mechanical equations describing a single electron orbiting a
nucleus. These solutions show that such a single electron must exist in one
of a discrete set of states, or orbits. To assume that the three electrons of
a lithium atom will occupy three such states is a distortion and simplifica-
tion of the theory. Strictly, the theory only allows the definition of complex
“states” involving all three electrons: the trio of electrons can exist in one
such complex state out of a set of states. Describing such a complex state as
being the result of three separate electrons individually occupying three dis-
tinct single-electron states amounts to replacing quantum mechanics proper
with a simplified but different “theory” which, fortunately, happens to work
quite well. The conclusion of this digression is this: there certainly are current
theories whose consequences cannot feasibly be computed as yet. However,
explanations of data purporting to use these theories will usually be found
to encode the data using approximate, derived theories rather than the pure
theory. The derived theories are not feasibly deducible from the pure theory:
if they were, the explanation could begin with the pure theory. Typically, the
derived theory will introduce terms having no exact definition in terms of the
pure theory, and its “laws” are not deduced from the pure theory. Rather,
the terms and laws of the derived theory are themselves inductive inferences
based on observed regularities in the data. They may be suggested or inspired
by the pure theory, or may even have been formed before the pure theory,
but their acceptance is based on their own explanatory power as much as
on their in-principle relationship to the pure theory. For example, the theory
of atomic interactions uses terms such as “orbitals” having no strict inter-
pretation in quantum dynamics. The thermodynamics of gasses uses terms
such as “collision”, “viscosity” and “temperature” having no strict definition
in atomic interaction theory. Gas flow dynamics uses terms such as “tur-
bulence” not directly definable in thermodynamics. Meteorology uses “cold
front” and “cyclone”, terms not exactly definable in flow dynamics. Thus,
while we may argue that meteorological phenomena are ultimately explica-
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ble in terms of quantum mechanics, no such explanation (as we have defined
the term) has ever been given, or is likely in the near future. Assertion of the
laws of quantum mechanics is in practical terms useless in attempting a brief
encoding of weather data, even if we have reason to believe that encoding
based on quantum mechanics should be possible, and would be decodable by
a UTM.

To summarize this discussion, the assumption of a UTM as receiver allows
an in-principle extension of our account to cover any theory with computable
consequences. It offers a formal definition of a prior over all computable the-
ories. However in practical terms, we are unable to use theories in an expla-
nation if the computational effort becomes excessive. The limits on available
computing or reasoning resources are more likely to be reached in trying to
frame explanations than in decoding them. While the UTM is a useful ab-
stract model, real explanations are unlikely to tax the computing power of
modern computers when used as receivers, even though these computers are
only FSMs. The limits on what is computationally feasible provide one limit
on how far reductionism can be pushed in explanations.

2.3.11 Differences among UTMs

We have noted above that one of the attractions of proposing UTMs as re-
ceivers of messages, and basing measures of information on the lengths of
messages decodable by a UTM, is that the ability of one UTM to imitate
another bounds the differences between information measures based on dif-
ferent UTMs. Because the bound depends only on the UTMs, and not on
the content or length of the message, some writers have concluded that the
differences among UTMs are essentially negligible. For very long messages,
the differences in message length arising from different choices of receiver
UTM become a very small fraction of the lengths. However, as we have also
noted, the differences in absolute terms are not necessarily small, and can
easily be several thousand binary digits. Recall that the difference in length
between two explanations corresponds to the difference in the logarithms of
their posterior probabilities, so an absolute difference in length of 100 digits
corresponds to a huge probability ratio, even for explanations of millions of
digits. It is particularly important to note that the differences can never be
neglected when we are considering explanation messages.

When we frame an explanation of some data for a given UTM receiver,
the explanation message begins with an assertion of a theory inductively
inferred from the data. This assertion may be regarded as an interpreter
program which programs the receiver to imitate a different TM (also perhaps
universal). We will call the new TM the “Educated Turing machine” (ETM)
since it now “understands” the asserted theory. The ETM is designed to
decode the rest of the explanation message, which conveys the data in a code
which is optimal if the asserted theory is true. That is, the ETM expects the
data to be coded assuming the truth of the theory.
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In comparing the merits of competing theories about some given data, our
approach is to take each theory in turn, and use it to frame an explanation
of the data. We then prefer the theory which gave the shortest explanation.
The same receiver UTM is assumed for all theories. Clearly, the length of
the first part of each explanation, which asserts the theory, is an important
component of the explanation length, and cannot be neglected. If we were
to neglect it, and so assess theories purely on the basis of the lengths of the
second part of the corresponding explanations, we would always be able to
find a “theory” (i.e., an ETM) such that the given data was an inevitable
consequence of the theory, and the length of the second part was zero. That is,
we could always find an explanation whose first part transformed the receiver
UTM into an ETM designed to output the given data without reading any
input. Our preferred inference would then be “the world is such that the data
has to be <given data string>”. That is, the data would be built into the
“theory”. It is only the inclusion of the length of the first part of the message,
asserting the theory, in the assessment of explanations which prevents such
nonsense, and provides a balance between the complexity of the theory and
its ability to account for the data. Hence, in comparing explanation lengths,
we cannot neglect the first part.

However, when a UTM is used as receiver, the first part is precisely an
interpreter which transforms the UTM into the ETM. Its length is the differ-
ence in length between an encoding of the data for one UTM (the assumed
receiver) and for another (the ETM). If, as shown above, this difference is vi-
tal, we must conclude that, at least for explanation messages, the differences
in length arising from different choices of receiver are not in general negligible.
It is just such a difference which prevents the inference of absurdly complex
theories which have all the data built in.

Having shown that differences between receiver UTMs are not in general
negligible, we must now ask how should the receiver UTM be chosen. Exactly
the same considerations apply as in the specification of a prior in Bayesian
inference. The length of the interpreter required to make the receiver UTM
imitate the ETM which accepts an optimal data code given some theory
may be equated to the negative log prior probability of that theory. That
is, the design of the receiver UTM embodies and defines a prior probability
distribution over the set of possible theories. We should choose our receiver
UTM so that the prior it defines accords well with our prior knowledge.
The only real difference between choosing a receiver UTM and choosing a
prior in a conventional Bayesian analysis is that the UTM “prior” admits all
computable theories, and so is not normalized.

There is, however, a useful cosmetic change in the way we may think about
the choice of prior. If we use the conventional Bayesian approach, we will
probably think of the different possible theories as parameterized members
of different families of data probability distributions, which of course they
are. However, this line of thought does not seem to lead in any obvious way
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to attaching prior probabilities to the different families or their members,
except when we can draw on a history of many previous similar data sets,
each of which has been somehow identified as coming from a particular family.
In this probably rare situation, we might well equate the prior probability of
a family to the fraction of previous data sets identified as coming from this
family. More generally, it might be difficult to translate our prior knowledge
into a prior probability distribution over possible theories.

Regarding the receiver as a UTM gives us another way of thinking about
priors which can be helpful. For example, suppose our data concerns the
observed vibrations of various points on a building which is subjected to an
impact at some point. We might be interested in inferring from the data a
theory about the internal structure of the building and the mass and stiffness
of its structural members. Assuming the receiver to be a UTM, we realize that
our explanation will begin with an inferred description of the structure, and
that the UTM will have to compute from this description things such as the
natural modes of vibration of the structure, their frequencies, amplitudes and
phases at each point in the building, and the rates at which the vibrations
decay. Before we even think of prior probabilities over different structural
arrangements, it is clear that we expect the UTM to have to deal with vectors,
sine waves, exponential decay functions, forces, positions, masses and so on.
If the UTM is to embody our prior knowledge of the form the theory is likely
to take, it should be a computer already equipped to perform high-precision
arithmetic, to calculate trigonometric and exponential functions, to handle
matrices and eigenvalue calculations, etc. If it is so equipped, we can now
concentrate on designing it to accept structural descriptions in some code
matched to the kinds of structure that prior knowledge leads us to expect.
The code might encode horizontal and vertical members more briefly than
oblique ones, since we expect the former to be more common. It might build
in expectations that the structure will fill only a small fraction of the volume
of the building, that the members will be more massive low in the building,
that slab members will more often be horizontal than vertical, and so on.
But if we consider the length of input required to bring an initially naive
UTM up to the specifications we want in our receiver, we will probably find
that most of the input is concerned with the basic mathematical functions
we want the UTM to perform, rather than the expectations we have about
specific structural details. That is, we may find that the important parts of
our prior (in terms of determining the length of our encoded theory) are
not to do with just what kind of building we expect to infer, but rather
with the expectation that the explanation will use the kind of mathematics
previously found to be applicable to structures in general. In other words,
thinking about the receiver as a UTM makes us realize that, in specifying a
prior, a very important part is specifying a language in which we can hope to
describe our inferences concisely. The choice of language for the first part of
the explanation can greatly affect its length, and should be made on the basis
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of our prior experience in stating propositions of the kind we expect to infer
from the data. Of course, any further and more specific prior expectations
can be incorporated in the UTM design: our expectations about the kind of
structure to be found in an office block, in a small domestic residence, or in
an aircraft hangar are rather different.

When the set of possible theories is sufficiently restricted, a UTM may
be unnecessarily powerful as the receiver of an explanation. Rather, the ex-
planation may be decoded by a non-universal TM or FSM. In such a case,
rather than considering the detailed design of the receiver as embodying our
prior, it is usually more convenient to think in terms of the code or language
which will be used to assert the inferred theory in an explanation. This code
must, of course, be decoded or “understood” by the receiver machine, and in
fact, specifying the language to be accepted by the receiver is just another
way of specifying its machine design. In later chapters we give examples of
explanations and discuss the choice of theory-description language in each ex-
ample. Generally, if the receiver is not universal, it will be possible to specify
a non-redundant theory-description language, corresponding to a normalized
prior over theories. It appears in practice that thinking about what kind of
theory-description language should be efficient, given our prior expectations,
is less confusing and more “natural” than attempting to specify the prior
directly.

2.3.12 The Origins of Priors Revisited

We have argued in Section 1.15 that conventional Bayesian statistical rea-
soning gives no satisfactory account of how we might come to have a prior
probability distribution over possible theories or estimates. It does show how
an original prior is modified by data to give a posterior, and that this poste-
rior is an appropriate prior for the analysis of further data, but fails to give
any line of reasoning leading to the original prior. We now argue that, by
considering the prior to be inherent in the choice of a receiver UTM, we can
reason soundly about the original prior.

We saw that an attempt to choose a conventional Bayesian prior express-
ing “complete ignorance” founders when the set of possible theories is or
includes a continuum. What might be regarded as expressing prior ignorance
about one parameterization of the continuum (e.g., a uniform or minimum-
entropy density) is not colourless in a different parameterization of the same
continuum. However, if we consider the explanation receiver to be character-
ized by a UTM design rather than by a prior, the picture is different. The
TMs we have described are specified by an instruction list, containing four
instructions for every internal state of the TM. Hence, the complexity of a
TM is monotone increasing with its number of states. An overly simple TM,
say one with only one or two states, cannot be universal. There must be,
and is, a simplest UTM, or a small set of simplest UTMs. Adoption of such
a UTM as receiver can reasonably be regarded as expressing no expectation
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about the theory or estimate to be inferred, save that it will be computable
(i.e., imply a computable probability distribution over possible data strings.)
Adoption of any UTM (or TM) with more states seems necessarily to assume
something extra, i.e., to adopt a “less ignorant” prior. We therefore suggest
that the only prior expressing total ignorance is that implied by a simplest
UTM.

This definition of total ignorance avoids the objections raised to maximum-
entropy priors and other uninformative priors over continua of theories. Even
if we choose to regard a theory as a member of a parameterized continuum,
to be identified by one or more real-valued parameters, the theory must be
specified to the receiver UTM by an assertion of finite length. Since the set of
finite binary strings is countable, the set of theories which can ever be used in
the explanation of any data is also countable, i.e., discrete. For the simplest
UTM (or indeed any specified UTM), the theory to be asserted will have a
shortest assertion, and its prior probability (as implied by the UTM) is just

o—length of this assertion

Questions of non-linear transformation of parameters simply do not arise.
When we choose to regard a theory as being identified by parameter values,
i.e., co-ordinates in a continuum, the continuum and its parameters are ar-
tifacts of our own devising. For a UTM receiver, every theory which can be
asserted is a discrete entity having a shortest assertion and hence a non-zero
prior probability. Whether we choose to regard two computable theories as
near or distant neighbours in some continuum is of no consequence, and has
no direct effect on their relative prior probabilities as defined by the UTM.

(Note, however, that in an explanation of the kinematic behaviour of many
bodies, the theory may well involve hypothesising a “mass” for each body,
and it to be expected that examination of the UTM “program” asserting
this theory will be found to deal with these quantities using representations
recognizable as masses rather than logs, arctans or cubes of masses. That
is, the “theory” may effectively assert a “natural” parameterization of what
humans would recognize as concepts involved in the theory.)

The definition of the “simplest” UTM which we have offered could be
questioned, since it assumes a particular way of describing a UTM, viz., its
instruction list. Other methods of description are possible, and would lead
to a different scale of simplicity. For instance, real-world machines represent
their current internal state as a pattern of binary values called state variables
held in electrical circuits. Our form of description treats this pattern sim-
ply as a binary number indexing the entries in the instruction list. However,
in most real computers, at least some of these state variables have specific
meanings which are relatively independent of the values of other state vari-
ables. That is, the state variables of the machine are such that the values
they will assume in the next cycle, and the actions taken by the machine,
can be expressed as relatively simple Boolean functions, each involving only
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a few of the state variables and perhaps the input and work-tape digits. Ma-
chines are often designed in this way because it is cheaper or faster to build
circuits to compute these simple Boolean functions than to store and refer
to an arbitrary instruction list. If this style of design is followed rather than
the instruction-list style, the machine may well require more states to do the
same job, but less actual hardware. Hence, it is at least arguable that the
complexity of a machine should be judged by the number of Boolean logic
circuits needed to build it rather than by its number of states.

We concede the uncertainty in the notion of “simplest UTM” resulting
from alternative design styles and the possibility of ties on whatever criterion
is used. However, it seems plausible that a UTM accepted as “simplest”
by any reasonable criterion will incorporate no significant prior knowledge
about any sort of data. Any such machine, and its implied prior, should be
acceptable as an expression of prior ignorance. It would, for instance, require
an input of many digits simply to give it the ability to perform addition and
multiplication of integers.

The model we propose for a wholly uninformative prior avoids the ob-
jections raised to the conventional Bayesian proposals. It is primitive in an
absolute sense which cannot directly be applied to priors expressed as prob-
ability densities or distributions over enumerable sets of theories. An aspect
of its primitive nature is that it excludes no computable theory about data
strings. In a conventional Bayesian analysis, considerable care may be given
to choosing an uninformative prior density for the parameters of a model
family, yet the usual restriction of the analysis to a single family of models
is equivalent to the assumption of an extremely “informative” prior which
eliminates all other potentially applicable families. However, our proposed
primitive prior is too primitive to be usable in most explanations, because in
fact we have some prior knowledge about virtually all data sets we encounter.
We offer the model only to show that, if the measurement of information is
based on a UTM, the existence of a simplest UTM provides a basis on which
Bayesian reasoning can build without having to resort to leaps of faith or
arbitrary choices of parameterization.

2.3.13 The Evolution of Priors

It is of some interest to consider how Bayesian reasoning or inductive inference
of the form we propose could lead in the real world from a most-primitive
prior to the development of scientific theories as we know them today. We
will attempt to sketch such a development based on our explanation model
of induction.

Suppose we start with a primitive UTM, say, UTMO0, and obtain some
data. Since UTMO requires a long string to make it imitate an ETM of any
significant complexity, it is likely that the shortest explanation of the data
will assert only a simple inferred theory about it. Indeed it is possible that no
explanation will be possible, i.e., that no input to UTM 0 which is shorter than
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the data string can cause UTMO0 to output the data string. However, as more
data accumulates, an explanation will eventually become possible if the data
exhibits any computable pattern. Suppose this first body of explicable data
D1 has a shortest explanation comprising an interpreter for an “educated”
TM, ETM1 say, and a second part or “detail” encoding D1 as an input to
ETM1. In other words, the detail encodes D1 using a code which would be
optimal were the theory embodied in ETM1 true. If we like to translate into
Bayesian terms, the length of the assertion (the interpreter) is the negative
log of the prior probability of the theory in the prior distribution defined by
UTMO. The length of the detail is the negative log of the probability of the
data, given the asserted theory. The total explanation length is the negative
log of the joint probability of theory and data, as shown in Figure 2.14.

length of assertion
length of detail
length of explanation

—log Pr(Theory ETM1)
—log Pr(Data D1|ETM1)
—log Pr(ETM1)Pr(D1|ETM1)
—log Pr(ETM1, D1)
(D1) —logPr(ETM1|D1)

—log Pr

Fig. 2.14. Length of explanation.

Since Pr(D1) does not depend on the theory, choosing ETM1 to mini-
mize the explanation length is equivalent to choosing the theory of highest
posterior probability given data D1.

In a purely Bayesian inference, we would at least in principle carry for-
ward the entire posterior distribution Pr(Theory|D1) into the analysis of
further data. We suggest that a more realistic model of scientific enquiry is
to suppose that what is carried forward is not the whole of the posterior,
but rather the Educated Turing Machine ETM1 which is effectively built by
reading the assertion of, or interpreter for, FTM 1 into the primitive UTMO.
This suggestion requires that we impose a new condition on ETM1, namely
that it be universal. The condition is not onerous, and need not involve any
significant increase in the length of the interpreter for ETM1. In its simplest
implementation it requires only that, after reading the detail and outputting
D1, the interpreter for ETM1 should go to the initial internal state of the
primitive UTMO0, but leaving a copy of itself on the UTMO0 work-tape. A
more sophisticated implementation would design FTM 1 to recognize a spe-
cial bit sequence on the input tape, different from any sequence used for
encoding data in the detail, and signalling that the machine should accept
any following input digits as defining a new interpreter or modifying the
ETM1 interpreter. Reserving such an escape sequence in the code decoded
by ETM1 necessarily increases slightly the length of the detail encoding a
data string, since the detail must avoid this sequence. However, by using a
sufficiently long escape sequence, the increase in detail length can be made
as small as we please.
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We suggest, then, that when the best explanation of data D1 is found,
using theory ETM1, the receiver Turing machine is left as a UTM, but is
now ETM1 rather than the primitive UTMO0. New data D2 will be analysed
using ETM1 as the receiver rather than UTMO0. Thus, rather than carrying
forward a posterior derived from data D1, in our suggested model we carry
forward only the theory inferred from D1. In analysing new data D2, we
will seek the shortest explanation which, when input to ETM 1, will cause
it to output D2. If D2 comes from exactly the same source as D1, but is
an independent and less voluminous sampling from that source, we may well
find that the shortest explanation of D2 has no assertion part, but consists
simply of a detail using the code expected by ETM1. That is, D2 gives no
reason to change or elaborate the theory ETM1 already inferred from D1.
More generally, D2 may have a shortest explanation whose assertion part
slightly modifies the machine FTM1, e.g., by refining some parameter es-
timate embodied in FTM1. If D2 is much more voluminous than D1, and
is drawn from a wider and/or different range of phenomena, the explana-
tion of D2 may assert a quite new theory ETM 2, which however uses some
concepts and laws already embodied in ETM1 as subroutines. In this case,
while ETM?2 may be a new theory, its assertion to FTM1 may be much
shorter than the assertion required to program UTMO to imitate ETM?2,
since ETM1 already contains subroutines useful in imitating FTM2. Note
that this economy in the description of ETM2 may be found even when the
data D2 concerns phenomena totally different from the source of D1. For in-
stance, suppose D1 was an extensive list of (mass, force, acceleration) triples
observed in experiments applying forces to particles. No matter how the data
is presented in D1, it seems inevitable that the inferred theory ETM 1 would
involve some form of addition and multiplication operations. The detail of
the explanation of D1 could then condense each triple into the form (mass,
acceleration, force — mass x acceleration) where the third component of each
triple, being typically very small, could be encoded briefly. That is, we can
confidently expect that the “computer” ETM1 would contain routines for
addition and multiplication. Suppose then that a second body of data D2 is
obtained concerning the length, width, soil type, rainfall and harvest yield
of a set of paddocks. An explanation of D2 might assert some subtle theory
about the interaction of soil type and rainfall, but it would surely also relate
the yield of a paddock to its area, i.e., length x width. The presence in ETM 1
of a routine for multiplication would make the interpreter for ETM?2 shorter
when the receiver is ETM 1 than when the receiver is UTMO, since ETM1
would not have to be instructed how to multiply. It is quite possible that D2
would be inexplicable to UTM0, because the shortest input encoding D2 for
UTMO was longer than D2, yet D2 would be explicable to ETM1.

It is noteworthy that our model permits data about particle dynamics to
modify the “prior” used in analysing crop yields. Such an accumulation of
prior knowledge is difficult to account for in the conventional Bayesian frame-
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work, but emerges naturally when probability distributions are modelled by
Turing machines and their inputs. In principle, it appears that our model of
induction provides for the inductive inference of all mathematics useful in
the explanation of real-world data.

The idea that nothing is retained from the analysis of previous data save
the ETMused in its explanation is over-simplified. The retention and recon-
sideration of some previous data clearly play a role in scientific enquiry. To
consider an extreme situation, if data is acquired in small parcels, the first
parcel may have no acceptable explanation for receiver UTMO0, so consid-
eration of the parcel leaves UTMO0 unchanged. The same may apply to all
subsequent parcels. No theory will ever be formed unless sufficient parcels
are retained and encoded in a single explanation. Even when the first body
of data D1 permits an explanation asserting ETM1 to UTMO0, and a second
body D2 permits an explanation asserting FTM?2 to receiver ETM1, it may
well be that the shortest explanation of the combined data (D1, D2) which
can be decoded by UTMO asserts a theory ETM 3 different from ETM?2. In
that case we should prefer ETM3 to ETM2, as giving the shorter explana-
tion of the whole data. In a Bayesian analysis, it would make no difference
whether we considered the whole data sequentially, first D1 then D2, or as
a single body of data (D1, D2). In the sequential analysis, the complete pos-
terior distribution Pr(Theory|D1) would be taken as the prior in analysing
D2, and no relevant information in D1 would be lost. However, in the model
we propose, the educated machine FTM 1 resulting from the analysis of D1
does not capture quite all of the relevant information in D1. Hence, when
it is used as the prior, or receiver machine in analysing D2, the final the-
ory ETM?2 cannot in general be expected to be the best possible given all
the data. Moreover, the final theory ETM?2 may depend on which of the two
data sets D1 and D2 was analysed first. Ideally, a process of scientific enquiry
based on our model should not discard data once it has been used to infer
a theory, but rather accumulate all data. Periodically, a revision of current
theory should be performed to see whether, if all the data is considered at
once and encoded for transmission to the original primitive UTMO, some
theory may be found yielding a shorter explanation than that given by the
currently accepted, and incrementally developed, FTMn. This ideal would
bring our model back into line with the ideal Bayesian analysis, in that no
information would be lost, and the order of presentation of the data would
not matter.

The actual practice of scientific enquiry seems to fall somewhere between
the extremes of, on the one hand, a purely incremental approach where only
the current “best” theory is carried over into the explanation of new data, and
on the other hand, retention of all data and requiring any new theory to be
inferred from the entire data set without reference to previous theory. Some
old data is certainly retained and used as evidence to be explained by new
theory, especially when the new theory involves discarding a previous theory
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based on the old data. But much data which has led to scientific theories
is never re-examined after the theory has been accepted. A proponent of
a new theory of gravitation would feel little need to demonstrate that the
raw data used by Kepler could be explained by the new theory (if the data
are still available). Rather, old bodies of data are often treated as being fully
summarized by the theories inferred from them, with perhaps some anomalies
noted. A new theory is then regarded as explaining the old data if it can be
shown deductively that any data explicable by the old theory necessarily
admits of an equally brief detail when encoded using the new theory. The
new theory may also, one hopes, be capable of explaining the data regarded
as anomalous under the old theory.

In the physical sciences, the pattern of enquiry seems in the twentieth
century to have followed the incremental model rather well. Few of the new
concepts and patterns enunciated in theories accepted in the twentieth cen-
tury seem to have been discarded in later, more successful theories. This
assertion is just an impression based on a modest education in the physi-
cal sciences, and might well be disputed by those better informed. However,
we can at least observe that a great number of concepts and patterns used
in 19th century physics are still to be found in present theory. In Turing
Machine terms, our present Educated Turing Machine uses many of the im-
portant subroutines of its 19th century predecessors.

Lastly, a slightly different form of incremental theory development may,
and I think does, occur. Suppose, as above, that some data D1 admits of
an explanation /1 accepted by the primitive UTMO0, and that I1 comprises
an assertion part Al followed by a detail part X1. Let ETM1 denote the
UTM N(UTMO, Al), i.e., the Educated Turing Machine which results when
UTMO is fed the theory Al. More packets of data D2, D3, D4, etc. are
collected, and it is found that each admits of explanation by the theory Al.
That is, detail packets X2, X3, X4, etc. can be found, each shorter than the
corresponding data packet, which when fed to ETM 1 cause it to output the
data packets. It may be that none of the additional data packets is sufficient
to justify scrapping assertion Al and replacing it by a new theory. That
is, none of the new data packets admits of an explanation to UTMO0, but
each admits of a null-assertion explanation to ETM1. Now suppose that,
although the original data packets are not carried forward into new analysis,
the detail packets are. It may then be noted that the concatenation of the
details X2.X3.X4... seems to have some regularities. Then this string may
admit of a two-part explanation to ETM 1. That is, there may exist an input
string 12 which begins with an assertion part A2 and which, when input to
ETM1, causes it to output X2.X3.X4....

Now, if a program for a UTM causes it to read an input, process it and
output a results string, the program can easily be modified to make the
UTM remember the results string instead of outputting it, and then behave
as if it had been given this string as input. Thus, if there exists a string
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12 = A2.Y2 which when input to FTM1 makes it output X2.X3.X4...
there exists a trivially different string J2 which when input to ETM1 makes
ETM1 compute and remember the string X2.X3.X4... then “read it back”
and produce the output string D2.D3.D4 .. .. The final situation then is that
a string has been found with the structure

13 =A1.J2 = A1.A2.Y2

which when input to UTM0 makes it produce the string D2.D3.D4. ...

What we are suggesting is that, after some theory Al has been inferred
from data D1, and found to explain further data D2, D3, etc. fairly well, it
may be noticed that the ‘details’ required by these additional data, when con-
sidered in toto, exhibit significant regularities. A further theory A2 is inferred
from these regularities, allowing an acceptable explanation of these details to
be framed for input to a UTM which already uses theory Al. That is, the
original theory A1l is not rejected or even substantially modified. Rather, a
further theory A2 is inferred, which succeeds in more briefly explaining the
new data, using the concepts and regularities already embodied in Al.

An example may clarify. The “wave” theory of optics successfully ex-
plained numerous properties of light, including refraction, diffraction, colours,
the resolution limits of telescopes, etc. but “details” in these explanations
needed to provide unexplained values for things like the speeds of light in
different media and the dispersion of different colours. Maxwell’s electromag-
netic theory used the wave-motion theory, but allowed many of the details
unexplained in the original theory to be explained in terms of the dielectric
and magnetic properties of different media. The modern quantum theory uses
all the terms of wave motion and Maxwell, but allows explanation of much
that Maxwell’s theory left as unexplained detail (besides accounting for phe-
nomena such as the photo-electric effect which Maxwell’s theory could not
account for quantitatively). In this history, later theories did not really su-
percede the earlier ones, which remain valid theories. Rather, they built upon
their predecessors by finding regularities in what for the earlier theory were
unexplained “details”.

An alternative (but I think equivalent) account of this form of evolution
arises from regarding a theory as the definition of a new language, or at least
a tightening of the “grammar” of an existing one. Data observed must be
recorded in some “observational” code or language, say, LO. When a UTM
is used as the receiver of data, it defines a new language L1: the set of
input strings which will it can translate into meaningful L0 strings. In the
simplest situation, L1 differs little from L0, but when the UTM is given an
“explanation” message with a non-trivial assertion part, its reading of the
assertion changes it into a different (educated) UTM which will now accept
a language L1 which (if the explanation is acceptable) allows a more concise
representation of data strings actually observed, and which it can translate
back into the original language of observation LO. If regularities are found
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in the sentences of L1 which encode real data, the UTM may be further
“educated” by a new assertion to understand a yet more concise language L2
which it can now translate first into L1 and then into LO. The new assertion
does not replace the old one. In fact, the new assertion is couched in the
language L1 defined by the old assertion, and in general would not even be
acceptable to the original uneducated UTM.

The above is an account in mechanical terms of what seems to have hap-
pened during the evolution of scientific theories. Old theories, if they had
explanatory power, are not usually wholly discarded. They introduced new
language and concepts in which their “detail” accounts of observations were
expressed, and this new language was often used to express new theories.
Most modern accounts of the physical world still use terms such as mass,
energy, wavelength, density, cause, etc. with pretty much their old meanings,
and we would probably be reluctant to scrap our current scientific language
in favour of one which made no use of them.



3. Strict Minimum Message Length (SMML)

This chapter begins the development of methods for constructing short expla-
nation messages, and hence obtaining statistical or inductive inferences from
data. Actually, the detailed construction of an explanation as a sequence of
binary digits will not be developed. Rather, as our interest lies in the infer-
ences to be drawn, we will need only to develop methods for computing the
lengths of explanations based on different possible inferences. The preferred
inference is that giving the shortest explanation message, and the difference
in length between two explanations based on different hypotheses can be
used as a measure of the relative posterior probabilities of the hypotheses.
The actual digit sequences need not be computed.

The discussion will be based on Shannon’s theory of information, using
the relation

information = — log(probability)

and assuming use of coding techniques such as Huffman and Arithmetic codes
which give message lengths closely approximating the ideal

length in binary digits = information in bits = — log, (probability)

The Algorithmic Complexity theory of information will not be needed.

The chapter begins by defining the assumptions and functions which are
taken as describing the induction problem to be addressed. Essentially, these
are the assumptions and functions conventionally used in describing a sta-
tistical estimation problem in a Bayesian framework, but the conventional
view of parameter spaces is slightly generalized so that our treatment encom-
passes model selection or “hypothesis testing” as well as estimation in the
same framework.

The main result of the chapter is an exact formal characterization of esti-
mator functions which exactly minimize the expected length of explanations,
and derivation of certain relations which must be satisfied by the estimators.
Such estimators are called “Strict Minimum Message Length” (SMML). Un-
fortunately, these relations are in general insufficient to allow calculation of
the SMML estimator, and in fact the estimator function has been obtained
for only a few very simple problems. Some of these simple cases are used as
illustrative examples, as despite their simplicity, they give some insight into
the general nature of MML estimators.
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Later chapters will develop approximations to SMML estimators which
can feasibly be calculated for a wide range of problems.

3.1 Problem Definition

Our aim is to construct a brief (ideally the briefest possible) explanation
of given data, where an explanation is a message conveying first, a general
assertion about the source of the data, and second, the data itself encoded
in a code which would be optimal were the assertion true. We now consider
what is involved in the construction of such a message.

The assertion inferred from the data, and stated in the first part of the
message, will in general imply a probabilistic model for the data, i.e., proba-
bility distribution over the set of all data values which might be observed if
the assertion were true. Even when the inference embodied in the assertion is
not inherently probabilistic, it will still imply such a probability distribution
in most cases. For instance, if the data comprises many independent triples,
each comprising a voltage, current and resistance observed in an experiment
on direct current electricity, the basic inference conveyed in the first part
might be voltage = current x resistance, which asserts a deterministic rather
than a probabilistic relationship. However, we would not expect the triple of
numbers representing the measured voltage, current and resistance exactly
to satisfy this relation. Inevitable measurement error, and the finite precision
of the numbers representing the measurements, would cause some variation
around the ideal relation. Thus, in practice the assertion would have to take
the form of a probabilistic relation, e.g., “The measured voltage is a random
variate from a Gaussian distribution with mean V' = measured current times
measured resistance and standard deviation 0.001 x V' 4+0.01 volt”. Although
later we shall extend our discussion to include the possibility of truly deter-
ministic assertions, we shall now assume that the inferred assertion always
implies a probability distribution over the set of possible data values. We
will write this distribution as the function f (x|é), where z is a data value
and 6 denotes an inference. Note that the data value z will usually be a set
of numbers (or other types of value such as Boolean values). For instance,
x could be a set of 100 triples, each triple being a voltage, a current and a
resistance expressed in suitable units.

3.1.1 The Set X of Possible Data

Initially, we shall depart from the usual treatment of data in statistics by
assuming that the set of possible values which the data x might take is finite.
That is, we regard = as a discrete variable, not as continuously variable. (At
this point we admit to a confusion of notation: in some contexts we use = to
mean a data value, and in other contexts, e.g., in the distribution function
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f(x|0), we use & to denote a random variable, rather than a value which
might be taken by that variable. The intent of each use of x should be clear
enough from the context.)

The assumption of discrete data values may appear restrictive: surely we
must be able to deal with data about quantities such as length, tempera-
ture and mass, which can take any value in a continuum. However, we are
concerned with the construction of a message which conveys observed data;
and any observed data presented for analysis will be presented in some form,
be it a set of numbers, a picture, a sequence of sounds, etc., which can be
represented by or translated into a finite string of symbols from a finite al-
phabet. Certainly, any observation which can be conveyed from one person
to another via telecommunication media is often so represented during its
transmission. One may argue perhaps that data presented for analysis by the
analyst’s own direct sense impressions need not be so representable, but even
in this case, it is plausible that the sequence of nerve impulses which carry
data from sense organs to the analyst’s brain can be represented without loss
of information by a sequence of numbers representing, with finite frequency
and precision, the time-varying action potentials of the nerve cells involved.
Thus, if we assume that any data value must be representable by a finite
string in a finite alphabet, we are actually making our model of the inference
problem more rather than less realistic.

If every possible data value can be represented as a finite string in a finite
alphabet, it can be represented as a finite string in a binary alphabet, i.e.,
as a finite string of “0s” and “1s”, using standard coding techniques. Since
the set of finite binary strings is countable, it follows that the set X of all
possible data values which may arise in a given inference problem is countable.
We could, indeed, argue that X is not only countable but finite. There are
experimental procedures which could in principle yield any one of an infinite,
countable set of data strings. For instance, we could decide to record as our
data the sequence of head or tail outcomes in a coin-tossing experiment, and
to continue tossing until we produce either a run of 10 heads or a run of 10
tails. As there is an infinite number of binary strings containing no group of
10 consecutive Os or 10 consecutive 1s, the set of data strings which could
in principle be obtained is infinite. But in the real world, we may be sure
that no analyst will ever be given an infinite data string, since transmitting
it would take an infinite time, and if none of the really possible data strings
is infinite, the set X of all really possible strings must be finite.

While the finiteness of X is assured in the real world, we do not need
this property, but will assume countability. Since the set X of possible data
values which can arise in any given inference problem is countable, we may
index its members. Normally, we will use the index ¢, and write

X={z:i=1,2,3,...}
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3.1.2 The Probabilistic Model of Data

For any inference 6 asserted in the first part of the explanation message,
there must be, as we have noted, an implied probability distribution function
f(x0).

For given 0, f(x|0) must be defined for all z € X and satisfy 0 < f(x|6)
and ) o+ f(z]0) = 1.

We assume that the statement of 6 in the first part of the explanation is
sufficient to define the corresponding function f(z|d) to the receiver of the
message. In the simplest problems of statistical estimation, the mathematical
form of f() may be assumed to be given, and already known to the receiver.
In such cases, the assertion 0 need only give the estimated value(s) of any free
parameter(s) of the distribution function. For example, the data may consist
of the outcomes of a sequence of 100 tosses of a coin, and it may be accepted
without question that these outcomes are independent Bernoulli trials, i.e.,
that each outcome has probability p of being a head, and probability (1 — p)
of being a tail, where p is some unknown probability characteristic of the coin
and the tossing apparatus.

All this is accepted as given, is not subject to further inference, and is
assumed already known to the receiver of the explanation. Thus, both sender
and receiver of the message know that the probability of obtaining a partic-
ular data string containing n heads and (100 — n) tails has the form

pn(l _ p)(100—n)

What is not known is the value p of the probability of heads. The framer of
the explanation must form some estimate of p, assert that estimate in the first
part of the explanation, then encode the data sequence using a code based
on that estimate. Thus, in this case, the assertion or inference 0 is simply a
single number p, the estimate of p, and this is sufficient, given what is already
known to the receiver, to define the probability distribution f (z|é) as

ﬁn(l _ ﬁ)(lOO—n)

where p = 6 and n is the number of heads in the sequence z.

Our early development and examples will concentrate on just such simple
cases, where 0 is no more than a set of estimated parameter values. Later,
we will consider more complex problems, where the assertion 0 asserts one
of a number of possible forms for the function f(), as well as any parameters
for the chosen form. Ultimately, we consider inferences where 0 comprises, in
effect, an arbitrary computer program for computing f().

3.1.3 Coding of the Data

The first part of an explanation message asserts some inference or estimate 6
which implies a probability distribution f(x|f) over the set X of possible data
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values. Having chosen 6 and constructed the first part, the transmitter of the
message can now construct an optimum code for the distribution f (x|é), and
hence encode the actual data value as the second part of the explanation. The
explanation message is readily decodable by any receiver. Having received and
decoded the first part (the coding of which is discussed later), the receiver
can compute the distribution function f (x\é) and hence construct the same
optimum code over X as was used by the sender. Knowing this code, the
receiver can now decode the second part of the explanation, and so recover
the data value z.

Since the code used in the second part is chosen to be optimal for the
distribution f(z|0), the coding probability for data z is f(x|@), and the length
(in nits) of the second part is — log f(z|6).

This simple result will be used in all our calculations of explanation
lengths. Once a probabilistic model has been specified by the inference 6,
there is no further complication in principle to the construction and use of
an optimal code for the data. We now turn to the problem of coding the first
part of the message, which asserts 0. This problem is not so straightforward,
and various approaches to it will be the main concern of this work.

3.1.4 The Set of Possible Inferences

The value 0 asserted in the first part of the message specifies a particular
probabilistic model f(z|@) for the data. In any one inference problem, the
range of models considered possible before the data is seen will usually be
quite restricted. In simple estimation problems, it will have been decided a
priori that the only models to be considered are those within a parameterized
family of fixed mathematical form. For instance, it may be accepted a priori
that the data will be modelled as a set of 100 values drawn independently
from a Normal distribution, so the set of possible models is just the family
of distributions spanned by some possible range of values for the mean and
standard deviation of the Normal. In this case, 6 need only specify the esti-
mated values of the mean and standard deviation: the sample size (100), the
assumption of independence, and the mathematical form of the Normal dis-
tribution are not in question, and are assumed already known to the receiver
of the explanation.

In an even simpler case, the set of models considered may be discrete,
with no free real-valued parameters. For instance, where the data is a coin-
toss sequence, knowledge of the circumstances may dictate that the only
models to be considered are (a) that the sequence is a Bernoulli sequence
with Pr(head) = 1/2, and (b) that it is a Bernoulli sequence with Pr(head)
= 1/3. In this case, 6 need only have two possible values, naming options (a)
and (b) respectively. The form of the probability distributions, and their two
Pr(head) values, are not in question and need not be included in the first
part of the message.
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More complex problems may involve a much more complex set of possi-
ble models for the data. For instance, it may be believed that the data, a
sequence of numeric values, are independently drawn from a probability dis-
tribution which is a mixture of a number of different Normal distributions,
but the number, means, standard deviations and relative abundances (or
mixing proportions) of these Normals are all unknown. Then 6 must specify
the number of component Normals inferred from the data, and estimates of
the parameter values of each component. The set of possible models is the
union of several sets. The set of one-component models is a two-dimensional
continuum spanned by the mean and standard deviation of the one Normal.
The set of two-component models is a continuum of five dimensions, the
means, the SDs and the relative abundance of the two Normals. The set of
three-component models is a continuum of eight dimensions, and so on.

Whatever its structure, we will denote the set of possible inferences (or
data models) by ©, and use # to mean a variable taking values in ©, and also
to denote a specific value in 6.

3.1.5 Coding the Inference ]

The first part of the message encodes an inference or estimate 6 which, to-
gether with assumptions already known to the receiver, specifies a probabilis-
tic model for the data. If we aim to produce the shortest possible explanation,
the code used to encode 6 must be chosen with some care. We have seen that,
to name one of a countable set of possibilities each having a known probability
of occurrence, techniques exist for constructing a code which gives minimal
expected message length, and that such codes have the property that the
message asserting some possibility has a length of minus the logarithm of the
probability of that possibility. However, in attempting to devise an optimum
code for the set O, two difficulties emerge.

Assume pro tem that © is discrete. The construction of an optimal code
for © requires that we know the probability Pr(0) for every 6 € ©. However, it
is not obvious what the meaning of Pr(6) is, nor how the analyst might come
to know this probability if it indeed exists. We have mentioned an example,
in which the inference 6 was (a form of) Newton’s second law of motion,
supposedly inferred from measurements of the accelerations of various par-
ticles. What sense can we apply to the notion of the “probability” of such
an inference? A modern physicist would consider the assertion false (prob-
ability approaching zero), as there is abundant evidence that the assertion
only approximates the truth when the particles’ speeds are small, and that at
high speeds, relativistic “laws” are more accurate. More reasonably, consider
the situation in Newton’s own time, when Newton or a follower might have
made the assertion in an explanation of experimental data. The sender of the
explanation likely considered the assertion to be very probably true (Prob
—1) but, as we have seen, the coding probabilities used in the construction of
a code must reflect the expectations of the receiver. What probability might
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have been assigned to the assertion of Newton’s second law by an intelligent
person prior to Newton, assuming that person to be already familiar with
the terms mass, force and acceleration, and with simple mathematics?

We might argue that such a receiver could conceive of an infinite number
of possible relations, e.g., F = m 4+ a, F = ma''%, F = ma if motion
upwards but F = %ma if motion downwards, etc. Given an infinite number
of possible relations, why should the receiver assign a non-zero probability
to any particular relation? This argument would suggest that the receiver’s
“probability” would be zero for any arbitrary relation.

In fact the difficulties raised by such arguments are, in this context, only
apparent. We are concerned with assigning probabilities to possible infer-
ences only for the purpose of devising a code capable of efficiently encoding
the assertion of an inference. We may imagine this code to be negotiated
and agreed between the sender and the receiver of the explanation before the
data is acquired and an inference made from it. It is only necessary that we
define a code which, in the light of the rational expectations of the receiver
based on knowledge of the circumstances of the data collection and any other
relevant prior knowledge, cannot be materially improved. In other words, we
turn the question on its head and ask, not what is the probability of every
possible inference given the receiver’s prior knowledge, but rather what code
for inferences will the receiver accept as efficient? We may then, if we wish,
regard an inference coded with a string of length [ binary digits as having a
“prior probability” of 2~!. In practice, the question of how inferences might
efficiently be encoded appears to raise fewer philosophical arguments and ob-
jections than the question of assigning probabilities to inferences. Our view
is that the questions are in fact equivalent, but we accept that treating the
“probability” of an assertion as being reflected in the code or language a
rational person would use in making the assertion is at odds with some inter-
pretations of “probability”. To avoid confusion with situations where prior
knowledge allows the assignment of prior probability having a conventional
frequentist interpretation, we will use the term “coding probability” for the
quantity 27!, or more generally for the probabilities implied by adoption of
a particular code.

In the “Newton’s Law” example, for instance, we need only ask, what
kind of language or code might Newton’s peers have accepted as likely to
be efficient for specifying a universal relation among the quantities involved
in particle dynamics. It is not unreasonable to suppose that the language of
mathematics, in which the operations of addition, multiplication and expo-
nentiation are coded very concisely, reflected quite well the prior expectations
of Newton’s contemporaries as to what kinds of quantitative relations would
prove to be useful in explaining the physical world. That is, we may reason-
ably suppose the relations concisely represented in the mathematical notation
of the time to be those then regarded as having a high probability of appear-
ing in the assertion of inferred “natural laws”. Thus, even though the set of
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conceivable relations among the quantities of dynamics might have been infi-
nite, the language conventionally used in discussing the subject corresponded
to a probability distribution over the set placing most probability on relations
involving elementary mathematics.

Given a code accepted as efficient for naming one of a discrete set of pos-
sible inferences, the probability implied by the length of the string encoding
an inference will be termed the “coding probability” of that inference. Alter-
natively, in situations where we have more conventional statistical evidence,
e.g., a history of previous similar situations, for the probability of a particular
inference being true, we will regard that probability as the “prior probabil-
ity” of the inference, and adopt a code for the first part of the explanation
which encodes the inference with a string of length

—log (Prior Probability)

That is, we will use a coding probability equal to the prior probability. An
example of the latter situation is the diagnosis of a disease 0 given some
patient symptom data x. The relative frequency of occurrence of the disease
6 in the population may be taken as the prior probability of the disease
0, being in fact the probability that a randomly selected member of the
population would have the disease. (Here, “population” should be defined
as the population of persons presenting for diagnosis, rather than the entire
population.)

3.1.6 Prior Probability Density

Often the set of possible inferences considered will be or include a continuum
spanned by one or more “parameters”. An example is the set of all Nor-
mal distributions, which is a continuum with two parameters, the mean and
standard deviation. Since such a set is not discrete, it is not possible to asso-
ciate non-zero prior probabilities with its members. Equivalently, an arbitrary
member of the set can be specified only by a message giving its parameter
values to infinite precision, which in general would require an infinitely long
message.

Instead of a prior probability for each possible inference, we must consider
a Prior Probability density, which we will write as h(6) (6§ € ©). The meaning
of h(6) is that, for any subset ¢ of @, the prior probability that € lies in ¢ is

/0 t h(0) do

We will use the density h(f) in a generalized sense to include problems
where the set © includes continua of different dimensionality. For instance,
the set of models for some data x comprising 100 scalar values might be that
the values are independently and randomly drawn from a population which
either has a single Normal distribution with mean pg, SD oy, or is the sum of
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two equally abundant subpopulations having different Normal distributions
with parameters respectively (u1,01) and (e, 02), the two possibilities being
equally likely.

Then @ is the union of two continua, a two-dimensional continuum ©
for the one-Normal case and a four-dimensional continuum @, for the two-
Normal case. When 6 € ©4, the element df = dugdog; when 6§ € Oy, df =
dpidoydpsdos. Since the two cases are equally likely a priori, we would have

/ h(&)d@:/ h(0)do = -
€O, 0€O, 2

Although formally this generalized definition of h(#) allows us to deal with
unions of continua in a single expression, in practice it is usually expedient
to deal with the various continua in a complex © separately.

For the next several sections it will be sufficient to consider © to be a single
continuum spanned by some vector parameter 6 of fixed dimensionality. For
discrete sets © we regard the assignment of prior probabilities to members of
the set as equivalent to choosing an efficient code for the set. The equivalence
does not extend directly to a continuum set @ because neither a non-zero
probability nor a finite code string can be determined for arbitrary points in
a continuum.

However, if we consider some partition of © into a countable set S of
regions {s; : j = 1,2,...}, a probability p; = feesj h(6) df can be associ-
ated with each region, and, given that the receiver knows the details of the
partition, an efficient code for naming regions will encode region s; with a
string of length — log p;. We may therefore regard as equivalent the choice of
a prior probability density h(#) and the choice of a family of codes for naming
the regions in any agreed partition of ©. A family of codes is involved since
different partitions require different codes.

In the usual practical case for @ with one dimension and a scalar param-
eter 0, the equivalence is very simple.

Suppose we wish to encode values of 8 as integer multiples of some small
unit A. (For instance, we may wish to encode values of a temperature to
the nearest 0.1°C, i.e., as integer multiples of a tenth-degree unit.) Then,
if we consider 6 to have a prior density h(#), we should accept as an effi-
cient code one which encodes value 6 with a string of length approximately
—log(h(#)A). In this context, a string encoding some value § would be in-
terpreted as asserting that 6 lay in the interval 6 — A/2 <0 < 0+ A/2.

A later chapter will discuss the questions involved in selection of a prior
distribution or density, especially when there is little prior knowledge about
the possible models. For the time being, we take the prior density as given
as part of the inference problem specification.
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3.1.7 Meaning of the Assertion

An explanation consists of two parts: a string encoding the assertion of a
model for the data, and a string encoding the data using a code which would
be optimal were the assertion true. Henceforth, we will often use “assertion”
to refer to the first string, and “detail” to refer to the second.

If it is agreed a priori to restrict the possible models to a continuum
O, then the detail will encode data z using a code based on some model
distribution f(z|0), 6 € O, and the assertion will encode the chosen model
or parameter 0.

Given that an assertion of finite length cannot name an arbitrary 6 c O, it
is tempting to interpret an assertion which encodes 6 to some finite precision
A (e.g., to one decimal place if A = 0.1) as meaning only that the data
conforms to some model in the range O+A /2. But if we interpret the assertion
in this way, as specifying an interval rather than a value for 6, we can no longer
suppose that the distribution f(x|é) defines an optimal code for the data
values expected if the assertion is true. Given only that éfA/Q <0< é+A/2,

the probability of obtaining data value  is not f(x|) but rather

6+A/2
RRIONCRLT
6—A/2
6+A/2
f h(0)de
6—-A/2

Pr(z|0 + A/2) =

We will write the numerator as Pr(z,0 + A/2). It is the joint probability
that 0 lies in 6 + A/2 and the data x has value z. The denominator, Pr(é +
A/2) is the prior probability that 6 € 6 + A/2. Using this interpretation
of the assertion 6, the length of the assertion is —log Pr(f & A/2), and the
length of the detail is — log Pr(x|é + A/2), giving a total message length

—log (Pr(é + A/2) Pr(z|f + A/Q))

= —logPr(z,0+ A/2)

= —log [}/ () f (a]0)d0

For fixed z and 0, this expression is a monotonically decreasing function
of A. Thus, our aim of obtaining a short encoding of the data would lead us
to choose A as large as possible, i.e., to choose the interval 6+ A/2 to cover
the entire set ©. The “assertion” would then mean only “0 € ©”. It would
have zero length, and would tell us nothing not already known a priori. The
message length for data  would be

—log [ h(0) f(x|0)db
= —logr(z), say.
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There is nothing wrong with this mathematics. Indeed, a code for X
chosen with no objective other than to minimize the expected message length
would encode z with a string of the above length, since r(z) is just the
probability of obtaining data x from any model in ©. The expected length
of such an optimally coded representation of the data is a quantity of some
interest, which we write as

o=~ r(z)logr(x)

X

It gives a lower bound for the expected length of any code for X.

The above argument shows that, if we treat the assertion as specifying an
interval A of models for the data, conciseness gives no basis for choosing A,
and no basis for inferring any non-trivial assertion about the source of the
data. We therefore insist that the assertion in an explanation be interpreted
as asserting a single model 6 for the data, and that the detail encode the data
using this single model f(x|d), rather than some mixture of models centred
on 6.

3.2 The Strict Minimum Message Length Explanation
for Discrete Data

We are now in a position to define the construction of explanations of minimal
expected length, called SMML explanations, but first rehearse our assump-
tions.
An inference problem is specified by:
X a discrete set of possible data values.
x a variable taking values in X.
x the actual data value.
e a set of possible probabilistic models for the data.
We assume initially that © is a simple continuum of
some known dimension D.
0 a variable taking values in ©.
The values in @ are probabilistic models of known
mathematical form. Hence, ©® may be regarded as
the continuum of a D-component vector parameter 6.
f(x]6) the function embodying the mathematical form of
the data models. For a model characterized by
parameter value 0, f(x|0) gives the probability
distribution over X implied by that model.
h(#) a prior probability density over ©.

X, 60 and the functions h(f), f(x|f) are assumed to be known a priori
to both sender and receiver of the explanation message. Before the data is
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acquired, the sender and receiver agree on a code for X, using knowledge
only of X, ©, h(#) and f(x]0). Messages in the code are required to be
“explanations”. That is, a message begins with an “assertion” naming an
inferred model § € O, then continues with a “detail” encoding data x using
the model f(z|0). We will seck that code giving least expected explanation
length.

Useful quantities derived from the problem specification include:

/h f(x|6)do

the marginal prior probability of data z. We usually call it simply the
marginal probability. We sometimes write r; for r(z;).

Io(x) = —log r(x)

the length of a string encoding data z in the optimal, non-explanation, code

for X.
Iy =— Z r(x)logr(x)
reX

the expectation of Ip(x).

The assertion, being a finite string, can name at most a countable subset
of ©. Let ©* = {0; : j = 1,2,3,...} be this subset. The code for ©* may
encode the different possible assertions with strings of different length.

The choice of the code for @* is equivalent to adopting a coding proba-
bility distribution over ©* : Pr(f;) =¢; >0:j=1,2,3,..., with . ¢; = 1.
(Summation over index j will be taken to be over the set {j : §; € ©*}.)
That is, the length of the string encoding assertion 6; is —logg;. We will
sometimes write ¢(6;) instead of g;.

The choice of ©* and {g;} determine the code for the assertion part of
an explanation. The code for the detail is determined by the data model

f(x]). If some data value z; € X is “explained” using assertion 6 = 6,
the length of the detail is —log f(z;]0;), and the length of the explanation is
—logg; — log f(x;]6;). These codes are agreed between sender and receiver
before the actual data is known.

The agreed explanation coding scheme will in general allow a data value
z; € X to be encoded in any of several ways, i.e., by making any of sev-
eral assertions. For data z;, and any 6, € ©* for which f(z;|¢;) > 0, an
explanation asserting ; will have finite length and will correctly encode x;.
Since the sender of the explanation is trying to make the explanation short,
we assume that the sender will, given data x;, choose to make the assertion
which minimizes the explanation length. This choice can be described by an
“estimator function” m(x) mapping X into ©* so that

—log q(m(x;)) —log f(xilm(x;)) < —logq; —log f(xi|6;)
Vj : Hj 66*, 0j #m(xz)
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We will later show the inequality to be strict, so there is no ambiguity in this
definition of m().
Then the length of the explanation for data x is

I(x) = —log q(m(x)) — log f(z|m(x))

and the expected length is

L == r(x)[logq(m(x)) +log f (x|m(x))]

zeX

We now consider how ©* and the coding distribution {g; : 6, € ©*}
should be chosen to minimize I, i.e., to allow the shortest possible explana-
tion on average.

Define t; = {z : m(z) = 6;}. That is, ¢; is the set of data values any of
which results in assertion ; being used in the explanation. Then I; can be
written as

L = - Z Z 7 [log g(m(z;)) + log f(z;|m(x;))]

0;€0* x;EL;

- _ Z Z ri [log ¢; + log f(x;]0;)]

0;€0* z€l;
= - E E i | logg; — E E rilog f(z:]6;)
0;€0* \zi€Et; 0;€0* xz;€l;

The first term gives the expected length of the assertion, and the second
gives the expected length of the detail. The first term is minimized, subject
to Zj g; = 1, by choosing coding probabilities

QjZZTi

x; €L

That is, the coding probability assigned to assertion or estimate 0; is the
sum of the marginal probabilities of the data values resulting in estimate 6;.
It is the probability that estimate ¢; will actually be used in the explanation.

The second term is the expected length of the detail encoding x using the
inferred model. If we consider the contribution to this expectation from the
set t;, i.e.,

- Z rilog f(x;|6;)
Ti€l;
this is the only contribution to I; which depends on the value 6;, and I; is
minimized by choosing ¢; to minimize this expression. It will be recognized
that 0; then maximizes the logarithmic average of the likelihood function
f(xi]0;) over z; € t;.
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3.2.1 Discrete Hypothesis Sets

Even when the set @ of possible models is discrete, each member having a
non-infinitesimal prior probability, it may well happen that the minimum
expected message length for some set X of possible data is achieved using a
set @* of assertable hypotheses which is a proper subset of ©. This outcome is
likely if the information expected to be obtained from the data is insufficient
to distinguish all members of @ with much reliability. By omitting some
hypotheses from ©*, the coding probability of the assertable hypotheses is
increased, leading to a shorter assertion, and the increase in detail length
resulting from a more limited choice of models for the data may on average
be a less important effect.

Note that in such a case, the “coding probability” ¢; used for some model
0; € ©* will not in general equal the discrete prior probability h(6;). In fact,
even if ©* = O, in general g; # h(;) for some or all hypotheses.

3.2.2 Minimizing Relations for SMML

We have found above three necessary relations which must be satisfied by
SMML explanations.
Obeyed by the estimator, m():

R1: g(m(zx))f(z|m(x)) > ¢; f(z|0;) for all x and all §; # m(z)

The estimator m() “explains” data x using the assertion of highest posterior
probability.
Obeyed by the code for assertions, represented by ¢():

R2:q(0) = Y r(@)=) r()
z:m(x)=0; TEL;

The code for assertions is optimal for the probability distribution over ©*
expressing the probability that an assertion will occur in an explanation.
Obeyed by the assertions or estimates {6;}:

R3: 6; maximizes Z r(z)log f(x|6;)

TEL;

These three relations are unfortunately insufficient fully to define the
SMML explanation code, as will appear in the first example below.
Using R2, we can write

L =- Z qjlogq; — Z Z rilog f(i|0;)
0;€0 0;€0" zict,

but in general there will be many choices of ©* and m() which satisfy R1
and R3, yet do not minimize I;.
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For many non-optimal choices of ©* and m(), it may be that no re-
assignment of a single data value x to a different estimate will decrease I, so
R1 is satisfied; no adjustment of any one coding probability ¢; will decrease
I, so R2 is satisfied; and no adjustment of any one estimate value 6, will
decrease I7, so R3 is satisfied. Reduction of I; may only be possible by a
simultaneous change to many assignments of data to estimates, and to many
coding probabilities and estimates.

3.2.3 Binomial Example

The data consist of the outcomes of 100 ordered trials, each giving success
(S) or failure (F). Thus, the data x can be written as a string of 100 S or
F symbols and X is the set of binary strings of length 100. It is believed
that the outcomes are independent of one another, and that the probability
of success in a trial is some fixed value 8, which is unknown. The family of
possible data models is therefore

F(al0) = 0"(1 - )00

where n is the number of successes in the string x.

The unknown parameter 6 is considered equally likely a priori to have
any value in ©, the interval 0 to 1, so h(9) = 1.

An explanation will begin with an assertion asserting some estimated
value 6 for 6. The detail, encoding x, can consist of 100 segments, each en-
coding one outcome. A success will be encoded by a segment of length — log 0,
a failure by a segment of length — log(1— ). The length of the detail is there-
fore

—nlogf — (100 — n)log(1 — 6) = —log f(z|6)

The marginal probability of obtaining a particular data vector x with n suc-

1
r@) = / F(x[6)h(0)d6

/ 9n _ 100_”d9

n!(100 — n)!
101!
1

101(%7)

The minimum expected non-explanation message length
In=—->,r(x)logr(xz) = 51.900 nits.

We now consider the construction of an explanation code for X. We
might first consider the naive choice defined by the estimator 6 = n/100.
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For this estimator, the set of possible estimates ©* = {6; : ; = j/100,j =
0,1,2,...,100} has 101 members. The set t; of data values z resulting in
estimate 0; is just {z : j successes }, so

g = > r@

TEL;
- (100) 1
- : 100
Jj /) 101("7)
1
= — for all 5
101

The explanation length for data = with n successes is:

Li(z) = —logg, —log f(x|é)
= —logg, —log [(n/lOO)”(1 _ n/loo)l()()fn]

and the expected length is

100

1 n n
I, = — |log 101 — log((—)"(1 — — )100—n
! ;101 [Og 08((199)" (1 ~ 100 )}
= 54.108 nits

This choice of ©* and m() satisfies all relations R1-R3, but it does not
minimize [;. It is substantially less efficient than the non-explanation code:
I; — Iy = 2.208 nits. Consider for example the two sets of data strings with 20
and 21 success counts respectively. The explanation lengths of data strings
with 20 or 21 success counts are respectively:

Total

length
20 | log101 =4.615 | —201og0.20 — 801og 0.80 = 50.040 | 54.655
21 | log101 =4.615 | —211log0.21 — 7910g0.79 = 51.396 | 56.011

n Assertion Detail

Suppose now we modify ©*, replacing 29 = 0.20 and 037 = 0.21 by a single
estimate 0295 = 0.205. We also modify the estimator so that m(z : n =
20) = m(x : n = 21) = 0205 That is, t2.5, the set of data strings resulting in
estimate 6o 5, includes all strings with 20 or 21 successes, and g20.5 = 2/101.
The rest of ©* and m() is left unaltered, leaving the explanation lengths of
all other data strings unchanged. The explanation lengths for strings with
n = 20 or 21 are now:

Total
length

n Assertion Detail

20 | —log(2/101) = 3.922 | —201og0.205 — 801og 0.795 = 50.045 | 53.970

21 | —log(2/101) = 3.922 | —211og0.205 — 7910g 0.795 = 51.403 | 55.325
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The new choice of ©* and m() gives reduced lengths for n = 20 or 21.
For each set of strings, the detail has become slightly longer, because the
new estimate 6o 5 is not exactly optimal for either set. However, the new
estimate has coding probability 2/101 rather than 1/101, since it will occur
as the assertion whenever the data shows either 20 or 21 successes. The length
of the assertion is thus reduced by log2 for these data strings, outweighing
the increased detail length. Since the new code gives unchanged explanations
for other strings, on average it gives shorter explanations than the original
code, i.e., a lower value of Iy, and hence is preferable.

The grouping together of data strings with different but similar success
counts into the same t; set can be carried further with advantage. If carried
too far, however, the estimates available in ©* for use in assertions become
so few, and so widely separated in value, that no good detail code may be
found for some values of n. As an extreme case, consider the code with only
one member of ©*, 055 = 0.50. As this estimate will perforce be used for
all data strings, it has coding probability 1.0, giving a zero assertion length.
However, the detail length, which will be the same for all strings, is

—nlog0.5 — (100 — n)log(1.0 — 0.5) = —1001og 0.5 = 69.3 nits

This value for I; is much worse than for even the naive code (I; = 54.108).

The optimum explanation code represents a compromise between a large
number of possible estimates (which gives shorter details but requires long
assertions) and a small number (which gives short assertions but longer de-
tails). The optimum for the simple Binomial SMML problem can be found by
an algorithm due to Graham Farr, which will be described in Section 3.2.8.
The solution is not unique, as discussed later in Section 3.2.5.

Table 3.1 shows one of the optimal solutions. There are 10 possible esti-
mates in 6. The column headed ¢; shows the range of success counts in the

Table 3.1. Success count ranges and estimates.

L[t 16 ]
i 0 o0

2 | 1-6 | 0.035
3 | 7417 | 0.12
4 | 1832 | 0.25
5 | 33-49 | 0.41
6 | 5066 | 0.58
7 | 67-81 | 0.74
8 | 8293 | 0.875
9 | 94-99 | 0.965
10| 100 | 1.0

strings resulting in estimate 6;. These ranges may seem surprisingly wide. In
fact, they are not unreasonable, and do not lead to implausible explanations
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of the data. For instance, if the data results in the assertion “9 = 0.417, it
would not be surprising to find anything from 33 to 49 successes. The proba-
bility that 100 trials with # = 0.41 would yield exactly 41 successes is 0.0809,
and the probabilities of 33 and 49 successes are 0.0218 and 0.0216 respec-
tively, which are over a quarter that of the most probable value 41. We will
see later that the spacing of the estimates {#;} in © reflects the expected
error in estimating 6.

The solution of Table 3.1 gives I; = 52.068, which is very little more than
the length of the optimal non-explanation code: I — Iy = 0.168. Recall that
for the naive code with 101 possible estimates, Iy — I = 2.208. Moreover, for
increasing sample size, i.e., more trials, I; — Iy for the naive code increases
roughly as % log N, whereas I; — Iy for the SMML code approaches a limiting
value of }log(me/6) =0.176... .

3.2.4 Significance of I — I

For any data value x resulting in SMML estimate 6 = m(z), the explanation
length is . .
Ii(z) = —log(q(0) f(x]0))

For the same data x, the length of its encoding in the optimal non-explanation
code is

Io(x) = — logr(z)

The difference

Ii(z) — Io(x) = —logW

is formally identical to the negative log of the Bayes posterior probabil-
ity of estimate 0 given data x. If the set of possible models were discrete,
with © = ©* and ¢(f) the prior probability of model 6, the correspondence
would be exact. However, when © is a continuum and @* a discrete subset of
O, q(0 € ©*) is not the prior probability that “4 is true”: indeed no non-zero
probability could be attached to such a statement. Nonetheless, the difference
can play the role of a negative log posterior probability, and its expectation
(I1 — Ip) is a good measure of the “believability” of the estimates.

I, exceeds Iy because an explanation conveys not only the data but also
something not logically deducible from the data, viz., the estimate. The ex-
planation code permits the encoding of = using any model or estimate in ©*
for which f(x]|¢) > 0. The explanation chosen for the data tells the receiver
the data, and also which of these possible estimates was chosen. It is therefore
necessarily longer than a message which encoded the data and nothing more.

In the binomial example, a string of outcomes with n = 8 say is optimally
explained using § = 0.12, with an explanation length 30.940 (vs. Iy(z) =
30.56). The same string could also be encoded in the same agreed code using
6 = 0.035 with a length of 32.766, or using § = 0.25 with a length 39.46,
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or even using 6 = 0.965 for a length 311.53. Any of these “explanations” of
the string conveys the choice of estimate as well as the string itself, and the
choice of estimate is not dictated by the code.

3.2.5 Non-Uniqueness of ©*

The optimum choice of ©* is not necessarily unique. For instance, in the
binomial example, the inference problem is exactly symmetric with respect
to success and failure. However, the ©* shown in Table 3.1 is not symmetric.
Indeed, no partition of the 101 possible success counts into ten sets ¢1, ..., 1
could be symmetric. Thus, the “mirror image” of the SMML estimator shown
in this table gives a different but equally efficient explanation code. However,
it is easily shown that for any given optimal choice of ©*, the estimator
function is unique. Equality in relation R1, which would allow an alternative
optimal m(), cannot occur.

Different optimal choices of @* will, of course, give different estimator
functions. The non-uniqueness of SMML estimators has little practical con-
sequence. The different optimal estimators will give different estimates for
some data values, but the different estimates are always plausible.

3.2.6 Sufficient Statistics

Usually, the data value z is a vector comprising many component numbers
and/or discrete values. For some families of model distribution f(x|6) it is
possible to find a function s(x) such that the model distribution function
f(z]0) can be factored into the form

f(x]0) = g(s(2)|0)v(z)

where g(s|0) = EI:S(I):S f(x]0) is the probability of obtaining data yielding
function value s, and where the function v(z) does not depend on . Such a
function s() is called a “sufficient statistic”, and its value for some x contains
all the information about # which can be recovered from x. In particular, if
0, and 05 are different estimates which might be asserted,

f]01) _ g(s(2)|01)

fl02)  g(s(x)]02)
The data z itself is of course always a sufficient statistic, but for some model
families there exists a sufficient statistic s(z) having fewer components than
2. The value s(z) is then a more compact representation of all the information
in x relevant to 6.
For any choice of ©* and ¢(6), where § € ©*, the estimator m() is deter-
mined by relation R1, which may be written as

q(m(x))f(x|m(z))
q(0)f(xl0)

>1
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for all § € ©%, 0 # m(x).
If s = s(x) is a sufficient statistic, relation R1 becomes

. alm(@))g(s|m(x))
R1:

q(0)g(s10)
whence it follows that m(x) depends on z only via the sufficient statistic s.

Further, since all data values x having the same value s for s(z) clearly result
in the same estimate, we can write the estimator as

>1

m(x) = ms(s(z))

or simply m(s), and we can define for all 6 € ©*

ts(0) = {s:ms(s) =6}

and

z:s(x)=s

Clearly, the coding probability ¢(6) is the same whether we work with the
raw data x or the sufficient statistic s:

@@= 3 rne= 3 r@

simg(s)=0 z:m(z)=0
Defining S as the set of possible values of s,
S={s:s=s(z),z € X}

the entire estimation problem, and its SMML solution, can be expressed in
terms of © | h(f), S and ¢(s]0) (s € S, 6 € ©). That is, we need not consider
the set of all possible data values at all, only the set of all possible sufficient
statistic values. We then choose ©*,m;(s) and ¢(#) (6 € ©*) to minimize

== rs(s) [loga(my(s)) + log g(sms(s))]

ses

Of course, I1s # I;. 115 is the expected length of a message encoding s only,

not z. In fact
L =1, — Z r(z)logv(z)
rzeX

where the second term is the expected length of a message segment encoding
x for a receiver who already knows s(x). Since v(z) does not depend on 6,
this length does not depend on the choice of ©* or the estimator and so can
be ignored in constructing the SMML estimator.

In message-coding terms, the use of a sufficient statistic s suggests that an
explanation of z can be encoded in three parts. The assertion of the estimate
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6 remains as previously discussed. The detail now comprises a part encoding
s, of length — log g(s|§), and a part encoding x using a code which assumes
knowledge of s(x), of length — logv(x). This third part is independent of 6,
and can be ignored in choosing the assertion. However, its contribution to
I (x) cannot be ignored if we wish for instance to compare the length of an
explanation of = assuming the model family f() with explanations assuming
some other model family. A function s(x) which is a sufficient statistic for
the family f() may not be a sufficient statistic if some other model family is
assumed.

A sufficient statistic is particularly useful if it has no more components
than 6. Such a statistic can be called a “minimal sufficient statistic”. In
some of the literature, the word “sufficient” seems to be reserved for minimal
sufficient statistics. When a minimal sufficient statistic exists, it is a function
of the data no more complex than the unknown parameter, but gives all the
information about the parameter which can be extracted from the data.

3.2.7 Binomial Example Using a Sufficient Statistic

The binomial example, where the data consist of an ordered list of outcomes
from 100 trials, each independently having Pr(success) = 6, can be reframed
to use a sufficient statistic. If « denotes the binary string representing the
outcomes,

F(al0) = 0"(1 - )00~

where n is the number of successes in the string x. The success count n is
clearly a (minimal) sufficient statistic, since we can write

pem= (-]

The first factor is g(n|f), the