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Preface

Categorical data, whether categories are nominal or ordinal, consist of multinomial
responses along with suitable covariates from a large number of independent
individuals, whereas longitudinal categorical data consist of similar responses and
covariates collected repeatedly from the same individuals over a small period of
time. In the latter case, the covariates may be time dependent but they are always
fixed and known. Also it may happen in this case that the longitudinal data are not
available for the whole duration of the study from a small percentage of individuals.
However, this book concentrates on complete longitudinal multinomial data analysis
by developing various parametric correlation models for repeated multinomial
responses. These correlation models are relatively new and they are developed
by generalizing the correlation models for longitudinal binary data [Sutradhar
(2011, Chap. 7), Dynamic Mixed Models for Familial Longitudinal Data, Springer,
New York]. More specifically, this book uses dynamic models to relate repeated
multinomial responses which is quite different than the existing books where
longitudinal categorical data are analyzed either marginally at a given time point
(equivalent to assume independence among repeated responses) or by using the so-
called working correlations based GEE (generalized estimating equation) approach
that cannot be trusted for the same reasons found for the longitudinal binary (two
category) cases [Sutradhar (2011, Sect. 7.3.6)]. Furthermore, in the categorical data
analysis, whether it is a cross-sectional or longitudinal study, it may happen in some
situations that responses from individuals are collected on more than one response
variable. This type of studies is referred to as the bivariate or multivariate categorial
data analysis. On top of univariate categorical data analysis, this book also deals with
such multivariate cases, especially bivariate models are developed under both cross-
sectional and longitudinal setups. In the cross-sectional setup, bivariate multinomial
correlations are developed through common individual random effect shared by
both responses, and in the longitudinal setup, bivariate structural and longitudinal
correlations are developed using dynamic models conditional on the random effects.

As far as the main results are concerned, whether it is a cross-sectional or longi-
tudinal study, it is of interest to examine the distribution of the respondents (based
on their given responses) under the categories. In longitudinal studies, the possible
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change in distribution pattern over time is examined after taking the correlations
of the repeated multinomial responses into account. All these are done by fitting
a suitable univariate multinomial probability model in the cross-sectional setup
and correlated multinomial probability model in the longitudinal setup. Also these
model fittings are first done for the cases where there is no covariate information
from the individuals. In the presence of covariates, the distribution pattern may also
depend on them, and it becomes important to examine the dependence of response
categories on the covariates. Remark that in many existing books, covariates are
treated as response variables and contingency tables are generated between response
variable and the covariates, and then a full multinomial or equivalently a suitable
log linear model is fitted to the joint cell counts. This approach lacks theoretical
justification mainly because the covariates are usually fixed and known and hence
the Poisson mean rates for joint cells should not be constructed using association
parameters between covariates and responses. This book avoids such confusions
and emphasizes on regression analysis all through to understand the dependence of
the response(s) on the covariates.

The book is written primarily for the graduate students and researchers in
statistics, biostatistics, and social sciences, among other applied statistics research
areas. However, the univariate categorical data analysis discussed in Chap. 2 under
cross-sectional setup, and in Chap. 3 under longitudinal setup with time indepen-
dent (stationary) covariates, is written for undergraduate students as well. These
two chapters containing cross-sectional and longitudinal multinomial models, and
corresponding inference methodologies, would serve as the theoretical foundation
of the book. The theoretical results in these chapters have also been illustrated by
analyzing various biomedical or social science data from real life. As a whole, the
book contains six chapters. Chapter 4 contains univariate longitudinal categorical
data analysis with time dependent (non-stationary) covariates, and Chaps. 5 and 6
are devoted to bivariate categorical data analysis in cross-sectional and longitudinal
setup, respectively. The book is technically rigorous. More specifically, this is
the first book in longitudinal categorical data analysis with high level technical
details for developments of both correlation models and inference procedures,
which are complemented in many places with real life data analysis illustrations.
Thus, the book is comprehensive in scope and treatment, suitable for a graduate
course and further theoretical and/or applied research involving cross-sectional
as well as longitudinal categorical data. In the same token, a part of the book
with first three chapters is suitable for an undergraduate course in statistics and
social sciences. Because the computational formulas all through the book are well
developed, it is expected that the students and researchers with reasonably good
computational background should have no problems in exploiting them (formulas)
for data analysis.

The primary purpose of this book is to present ideas for developing correlation
models for longitudinal categorical data, and obtaining consistent and efficient
estimates for the parameters of such models. Nevertheless, in Chaps. 2 and 5,
we consider categorical data analysis in cross-sectional setup for univariate and
bivariate responses, respectively. For the analysis of univariate categorical data in
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Chap. 2, multinomial logit models are fitted irrespective of the situations whether
the data contain any covariates or not. To be specific, in the absence of covariates,
the distribution of the respondents under selected categories is computed by
fitting multinomial logit model. In the presence of categorical covariates, similar
distribution pattern is computed but under different levels of the covariate, by fitting
product multinomial models. This is done first for one covariate with suitable levels
and then for two covariates with unequal number of levels. Both nominal and ordinal
categories are considered for the response variable but covariate categories are
always nominal. Remark that in the presence of covariates, it is of primary interest to
examine the dependence of response variable on the covariates, and hence product
multinomial models are exploited by using a multinomial model at a given level of
the covariate. Also, as opposed to the so-called log linear models, the multinomial
logit models are chosen for two main reasons. First, the extension of log linear
model from the cross-sectional setup to the longitudinal setup appears to be difficult
whereas the primary objective of the book is to deal with longitudinal categorical
data. Second, even in the cross-sectional setup with bivariate categorical responses,
the so-called odds ratio (or association) parameters based Poisson rates for joint cells
yield complicated marginal probabilities for the purpose of interpretation. In this
book, this problem is avoided by using an alternative random effects based mixed
model to reflect the correlation of the two variables but such models are developed
as an extension of univariate multinomial models from cross-sectional setup.
With regard to inferences, the likelihood function based on product multinomial
distributions is maximized for the case when univariate response categories are
nominal. For the inferences for ordinal categorical data, the well-known weighted
least square method is used. Also, two new approaches, namely a binary mapping
based GQL (generalized quasi-likelihood) and pseudo-likelihood approaches, are
developed. The asymptotic covariances of such estimators are also computed.

Chapter 3 deals with longitudinal categorical data analysis. A new parametric
correlation model is developed by relating the present and past multinomial
responses. More specifically, conditional probabilities are modeled using such
dynamic relationships. Both linear and non-linear type models are considered
for these dynamic relationships based conditional probabilities. The models are
referred to as the linear dynamic conditional multinomial probability (LDCMP)
and multinomial dynamic logit (MDL) models, respectively. These models have
pedagogical virtue of reducing to the longitudinal binary cases. Nevertheless, for
simplicity, we discuss the linear dynamic conditional binary probability (LDCBP)
and binary dynamic logit (BDL) models in the beginning of the chapter, followed by
detailed discussion on LDCMP and MDL models. Both covariate free and stationary
covariate cases are considered. As far as the inferences for longitudinal binary data
are concerned, the book uses the GQL and likelihood approaches, similar to those
in Sutradhar (2011, Chap. 7), but the formulas in the present case are simplified in
terms of transitional counts. The models are then fitted to a longitudinal Asthma
data set as an illustration. Next, the inferences for the covariate free LDCMP model
are developed by exploiting both GQL and likelihood approaches; however, for
simplicity, only likelihood approach is discussed for the covariate free MDL model.
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In the presence of stationary covariates, the LDCMP and MDL regression models
are fitted using the likelihood approach. As an illustration, the well-known Three
Miles Island Stress Level (TMISL) data are reanalyzed in this book by fitting the
LDCMP and MDL regression models through likelihood approach. Furthermore,
correlation models for ordinal longitudinal multinomial data are developed and the
models are fitted through a binary mapping based pseudo-likelihood approach.

Chapter 4 is devoted to theoretical developments of correlation models for lon-
gitudinal multinomial data with non-stationary covariates, whereas similar models
were introduced in Chap. 3 for the cases with stationary covariates. As opposed
to the stationary case, it is not sensible to construct contingency tables at a given
level of the covariates in the non-stationary case. This is because the covariate
levels are also likely to change over time in the non-stationary longitudinal setup.
Consequently, no attempt is made to simplify the model and inference formulas in
terms of transitional counts. Two non-stationary models developed in this chapter
are referred to as the NSLDCMP (non-stationary LDCMP) and NSMDL (non-
stationary MDL) models. Likelihood inferences are employed to fit both models.
The chapter also contains discussions on some of the existing models where odds
ratios (equivalent to correlations) are estimated using certain “working” log linear
type working models. The advantages and drawbacks of this type of “working”
correlation models are also highlighted.

Chapters 2 through 4 were confined to the analysis of univariate longitudinal
categorical data. In practice, there are, however, situations where more than one
response variables are recorded from an individual over a small period of time.
For example, to understand how diabetes may affect retinopathy, it is important
to analyze retinopathy status of both left and right eyes of an individual. In this
problem, it may be of interest to study the effects of associated covariates on both
categorical responses, where these responses at a given point of time are structurally
correlated as they are taken from the same individual. In Chap. 5, this type of
bivariate correlations is modeled through a common individual random effect shared
by both response variables, but the modeling is confined, for simplicity, to the cross-
sectional setup. Bivariate longitudinal correlation models are discussed in Chap. 6.
For inferences for the bivariate mixed model in Chap. 5, we have developed a
likelihood approach where a binomial approximation to the normal distribution
of random effects is used to construct the likelihood estimating equations for
the desired parameters. Chapter 5 also contains a bivariate normal type linear
conditional model, but for multinomial response variables. A GQL estimation
approach is used for the inferences. The fitting of the bivariate normal model
is illustrated by reanalyzing the well-known WESDR (Wisconsin Epidemiologic
Study of Diabetic Retinopathy) data.

In Chap. 6, correlation models for longitudinal bivariate categorical data are
developed. This is done by using a dynamic model for each multinomial variables
conditional on the common random effect shared by both variables. Theoretical
details are provided for both model development and inferences through a GQL
estimation approach. The bivariate models discussed in Chaps. 5 and 6 may be
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extended to the multivariate multinomial setup, which is, however, beyond the scope
of the present book. The incomplete longitudinal multinomial data analysis is also
beyond the scope of the present book.

St. John’s, Newfoundland, Canada Brajendra C. Sutradhar
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Chapter 1
Introduction

1.1 Background of Univariate and Bivariate
Cross-Sectional Multinomial Models

In univariate binary regression analysis, it is of interest to assess the possible
dependence of the binary response variable upon an explanatory or regressor
variable. The regressor variables are also known as covariates which can be
dichotomized or multinomial (categorical) or can take values on a continuous
or interval scale. In general the covariate levels or values are fixed and known.
Similarly, as a generalization of the binary case, in univariate multinomial regression
setup, one may be interested to assess the possible dependence of the multinomial
(nominal or categorical) response variable upon one or more covariates. In a more
complex setup, bivariate or multivariate multinomial responses along with associ-
ated covariates (one or more) may be collected from a large group of independent
individuals, where it may be of interest to (1) examine the joint distribution of the
response variables mainly to understand the association (equivalent to correlations)
among the response variables; (2) assess the possible dependence of these response
variables (marginally or jointly) on the associated covariates. These objectives are
standard. See, for example, Goodman (1984, Chapter 1) for similar comments
and/or objectives. The data are collected in contingency table form. For example, for
a bivariate multinomial data, say response y with J categories and response z with R
categories, a contingency table with J×R cell counts is formed, provided there is no
covariates. Under the assumption that the cell counts follow Poisson distribution, in
general a log linear model is fitted to understand the marginal category effects (there
are J−1 such effects for y response and R−1 effects for z response) as well as joint
categories effect (there are (J −1)(R−1) such effects) on the formation of the cell
counts, that is, on the Poisson mean rates for each cell. Now suppose that there are
two dichotomized covariates w1 and w2 which are likely to put additional effect on
the Poisson mean rates in each cell. Thus, in this case, in addition to the category
effects, one is also interested to examine the effect of w1, w2, w1w2(interaction)
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2 1 Introduction

on the Poisson response rates for both variables y and z. A four-way contingency
table of dimension 2× 2× J ×R is constructed and it is standard to analyze such
data by fitting the log linear model. One may refer, for example, to Goodman
(1984); Lloyd (1999); Agresti (1990, 2002); Fienberg (2007), among others, for
the application of log linear models to fit such cell counts data in a contingency
table. See also the references in these books for 5 decades long research articles
in this area. Note that because the covariates are fixed (as opposed to random), for
the clarity of model fitting, it is better to deal with four contingency tables each
at a given combined level for both covariates (there are four such levels for two
dichotomized covariates), each of dimension J ×R, instead of saying that a model
is fitted to the data in the contingency table of dimension 2×2× J×R. This would
remove some confusions from treating this single table of dimension 2×2× J ×R
as a table for four response variables w1,w2,y, and z. To make it more clear, in
many studies, log linear models are fitted to the cell counts in a contingency table
whether the table is constructed between two multinomial responses or between
one or more covariates and a response. See, for example, the log linear models
fitted to the contingency table (Agresti 2002, Section 8.4.2) constructed between
injury status (binary response with yes and no status) and three covariates: gender
(male and female), accident location (rural and urban), and seat belt use (yes or no)
each with two levels. In this study, it is important to realize that the Poisson mean
rates for cell counts do not contain any association (correlations) between injury
and any of the covariates such as gender. This is because covariates are fixed. Thus,
unlike the log linear models for two or more binary or multinomial responses, the
construction of a similar log linear model, based on a table between covariates and
responses, may be confusing. To avoid this confusion, in this book, we construct the
contingency tables only between response variables at a given level of the covariates.
Also, instead of using log linear models we use multinomial logit models all through
the book whether they arise in cross-sectional or longitudinal setup.

In cross-sectional setup, a detailed review is given in Chap. 2 on univariate
nominal and ordinal categorical data analysis (see also Agresti 1984). Unlike other
books (e.g., Agresti 1990, 2002; Tang et al. 2012; Tutz 2011), multinomial logit
models with or without covariates are fitted. In the presence of covariates product
multinomial distributions are used because of the fact that covariate levels are fixed
in practice. Many data based numerical illustrations are given. As an extension of
the univariate analysis, Chap. 5 is devoted to the bivariate categorical data analysis
in cross-sectional setup. A new approach based on random effects is taken to model
such bivariate categorical data. A bivariate normal type model is also discussed.

Note however that when categorical data are collected repeated over time from an
individual, it becomes difficult to write multinomial models by accommodating the
correlations of the repeated multinomial response data. Even though some attention
is given on this issue recently, discussions on longitudinal categorical data remain
inadequate. In the next section, we provide an overview of the existing works on the
longitudinal analysis for the categorical data, and layout the objective of this book
with regard to longitudinal categorical data analysis.
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1.2 Background of Univariate and Bivariate
Longitudinal Multinomial Models

It is recognized that for many practical problems such as for public, community and
population health, and gender and sex health studies, it is important that binary or
categorical (multinomial) responses along with epidemiological and/or biological
covariates are collected repeatedly from a large number of independent individuals,
over a small period of time. More specifically, toward the prevention of overweight
and obesity in the population, it is important to understand the longitudinal
effects of major epidemiological/socio-economic variables such as age, gender,
education level, marital status, geographical region, chronic conditions and lifestyle
including smoking and food habits; as well as the effects of sex difference based
biological variables such as reproductive, metabolism, other possible organism, and
candidate genes covariates on the individual’s level of obesity (normal, overweight,
obese class 1, 2, and 3). Whether it is a combined longitudinal study on both
males and females to understand the effects of epidemiological/socio-economic
covariates on the repeated responses such as obesity status, or two multinomial
models are separately fitted to males and females data to understand the effects
of both epidemiological/socio-economic and biological covariates on the repeated
multinomial responses, it is, however, important in such longitudinal studies to
accommodate the dynamic dependence of the multinomial response at a given time
on the past multinomial responses of the individual (that produces longitudinal
correlations among the repeated responses) in order to examine the effects of the
associated epidemiological and/or biological covariates. Note that even though
multinomial mixed effects models have been used by some health economists to
study the longitudinal employment transitions in women in Australia (e.g., Haynes
et al. 2005, Conference paper available online), and the Manitoba longitudinal
home care use data (Sarma and Simpson 2007), and by some marketing researchers
(e.g., Gonul and Srinivasan 1993; Fader et al. 1992) to study the longitudinal
consumer choice behavior, none of their models are, however, developed to address
the longitudinal correlations among the repeated multinomial responses in order
to efficiently examine the effects of the covariates on the repeated responses
collected over time. More specifically, Sarma and Simpson (2007), for example,
have analyzed an elderly living arrangements data set from Manitoba collected
over three time periods 1971, 1976, and 1983. In this study, living arrangement
is a multinomial response variable with three categories, namely independent living
arrangements, stay in an intergenerational family, or move into a nursing home.
They have fitted a marginal model to the multinomial data for a given year and
produced the regression effects of various covariates on the living arrangements
in three different tables. The covariates were: age, gender, immigration status,
education level, marital status, living duration in the same community, and self-
reported health status. Also home care was considered as a latent or random effects
variable. There are at least two main difficulties with this type of marginal analysis.
First, it is not clear how the covariate effects from three different years can be
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combined to interpret the overall effects of the covariates on the responses over the
whole duration of the study. This indicates that it is important to develop a general
model to find the overall effects of the covariates on the responses as opposed to the
marginal effects. Second, this study did not accommodate the possible correlations
among the repeated multinomial responses (living arrangements) collected over
three time points. Thus, these estimates are bound to be inefficient. Bergsma et al.
(2009, Chapter 4) analyze the contingency tables for two or more variables at a
given time point, and compare the desired marginal or association among variables
over time. This marginal approach is, therefore, quite similar to that of Sarma and
Simpson (2007).

Some books are also written on longitudinal models for categorical data in the
social and behavioral sciences. See, for example, Von Eye and Niedermeir (1999);
Von Eye (1990). Similar to the aforementioned papers, these books also consider
time as a nominal fixed covariates defined through dummy variables, and hence
no correlations among repeated responses are considered. Also, in these books,
the categorical response variable is dichotomized which appears to be another
limitation.

Further, there exists some studies in this area those reported mainly in the
statistics literature. For a detailed early history on the development of statistical
models to fit the repeated categorical data, one may, for example, refer to Agresti
(1989); Agresti and Natarajan (2001). It is, however, evident that these models also
fail to accommodate the correlations or the dynamic dependence of the repeated
multinomial responses. To be specific, most of the models documented in these two
survey papers consider time as an additional fixed covariate on top of the desired
epidemiological/socio-economic and biological covariates where marginal analysis
is performed to find the effects of the covariates including the time effect. For
example, see the multinomial models considered by Agresti (1990, Section 11.3.1);
Fienberg et al. (1985); Conaway (1989), where time is considered as a fixed
covariate with certain subjective values, whereas in reality time should be a nominal
or index variable only but responses collected over these time occasions must be
dynamically dependent. Recently, Tchumtchoua and Dey (2012) used a model to
fit multivariate longitudinal categorical data, where responses can be collected from
different sets of individuals over time. Thus, this study appears to address a different
problem than dealing with longitudinal responses from the same individual. As
far as the application is concerned, Fienberg et al. (1985); Conaway (1989) have
illustrated their models fitting to an interesting environmental health data set. This
health study focuses on the changes in the stress level of mothers of young children
living within 10 miles of the three mile island nuclear plant in USA. that encountered
an accident. The accident was followed by four interviews; winter 1979 (wave 1),
spring 1980 (wave 2), fall 1981 (wave 3), and fall 1982 (wave 4). In this study,
the subjects were classified into one of the three response categories namely low,
medium, and high stress level, based on a composite score from a 90-item checklist.
There were 267 subjects who completed all four interviews. Respondents were
stratified into two groups, those living within 5 miles of the plant and those live
within 5–10 miles from the plant. It was of interest to compare the distribution
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of individuals under three stress levels collected over four different time points.
However, as mentioned above, these studies, instead of developing multinomial
correlation models, have used the time as a fixed covariate and performed marginal
analysis. Note that the multinomial model used by Sarma and Simpson (2007) is
quite similar to those of Fienberg et al. (1985); Conaway (1989).

Next, because of the difficulty of modeling the correlations for repeated multi-
nomial responses, some authors such as Lipsitz et al. (1994); Stram et al. (1988);
Chen and Kuo (2001) have performed correlation analysis by using certain arbitrary
‘working’ longitudinal correlations, as opposed to the fixed time covariates based
marginal analysis. Note that in the context of binary longitudinal data analysis, it
has, however, been demonstrated by Sutradhar and Das (1999) (see also Sutradhar
2011, Section 7.3.6) that the ‘working’ correlations based so-called generalized
estimating equations (GEE) approach may be worse than simpler method of
moments or quasi-likelihood based estimates. Thus, the GEE approach has serious
theoretical limitations for finding efficient regression estimates in the longitudinal
setup for binary data. Now because, longitudinal multinomial model may be treated
as a generalization of the longitudinal binary model, there is no reasons to believe
that the ‘working’ correlations based GEE approach will work for longitudinal
multinomial data.

This book, unlike the aforementioned studies including the existing books,
uses parametric approach to model the correlations among multinomial responses
collected over time. The models are illustrated with real life data where applicable.
More specifically, in Chaps. 3 and 4, lag 1 dynamic relationship is used to model
the correlations for repeated univariate responses. Both conditionally linear and
non-linear dynamic logit models are used for the purpose. For the cases, when
there is no covariates or covariates are stationary (independent of time), category
effects after accommodating the correlations for repeated responses are discussed
in detail in Chap. 3. The repeated univariate multinomial data in the presence of
non-stationary covariates (i.e., time dependent covariates) are analyzed in Chap. 4.
Note that these correlation models based analysis for the repeated univariate
multinomial responses generalizes the longitudinal binary data analysis discussed in
Sutradhar (2011, Chapter 7). In Chap. 6 of the present book, we consider repeated
bivariate multinomial models. This is done by combining the dynamic relationships
for both multinomial response variables through a random effect shared by both
responses from an individual. This may be referred to as the familial longitudinal
multinomial model with family size two corresponding to two responses from
the same individual. Thus this familial longitudinal multinomial model used in
Chap. 6 may be treated as a generalization of the familial longitudinal binary
model used in Sutradhar (2011, Chapter 11). The book is technically rigorous. A
great deal of attention is given all through the book to develop the computational
formulas for the purpose of data analysis, and these formulas, where applicable,
were computed using Fortran-90. One may like to use other softwares such as R or
S-plus for the computational purpose. It is, thus, expected that the readers desiring
to derive maximum benefits from the book should have reasonably good computing
background.
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Chapter 2
Overview of Regression Models
for Cross-Sectional Univariate Categorical Data

2.1 Covariate Free Basic Univariate Multinomial Fixed
Effect Models

Let there be K individuals and an individual responds to one of the J categories.
For j = 1, . . . ,J, let π j denote the marginal probability that the response of an
individual belongs to the jth category so that ∑J

j=1 π j = 1. Suppose that yi =
[yi1, . . . ,yi j, . . . ,yi,J−1]

′ denotes the J−1 dimensional multinomial response variable
of the ith (i = 1, . . . ,K) individual such that yi j = 1 or 0, with ∑J

j=1 yi j = 1. Further
suppose that for a q-dimensional unit vector 1q, for example,

y( j)
i = δi j = [01′j−1,1,01′J−1− j]

′

denotes the response of the ith individual that belongs to the jth category for j =
1, . . . ,J−1, and

y(J)i = δiJ = 01J−1

denotes that the response of the ith individual belongs to the Jth category which
may be referred to as the reference category. It then follows that

P[yi = y( j)
i = δi j] = π j, for all j = 1, . . . ,J. (2.1)

For convenience of generalization to the covariate case, we consider

π j =

⎧
⎨

⎩

exp(β j0)

1+∑J−1
g=1 exp(βg0)

for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0)
for j = J,

(2.2)
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It then follows that the elements of yi follow the multinomial distribution given by

P[yi1, . . . ,yi j, . . . ,yi,J−1] =
1!

yi1! · · ·yi j! · · ·yiJ!
Π J

j=1πyi j
j , (2.3)

where yiJ = 1−∑J−1
j=1 yi j. Now suppose that out of these K independent individuals,

Kj = ∑K
i=1 yi j individuals belong to the jth category for j = 1, . . . ,J, so that

∑J
j=1 Kj = K. By an argument similar to that of (2.3), one may write the joint

distribution for {Kj} with KJ = K −∑J−1
j=1 Kj, that is, the multinomial distribution

for {Kj} as

P[K1, K2, . . . ,Kj, . . . ,KJ−1] =
K!

K1! · · ·Kj! · · ·KJ!
Π J

j=1π∑K
i=1 yi j

j

=
K!

K1! · · ·KJ!
Π J

j=1π j
Kj . (2.4)

In the next section, we provide some basic properties of this multinomial distri-
bution. Inference for the multinomial probabilities through the estimation of the
parameters β j0( j = 1, . . . ,J−1), along with an example, is discussed in Sect. 2.1.2.

A derivation of the multinomial distribution (2.4):
Suppose that

Kj ∼ Poi(μ j), j = 1, . . . ,J,

where Poi(μ j) denotes the Poisson distribution with mean μ j, that is,

P(Kj|μ j) =
exp(−μ j)μ

Kj
j

Kj!
, Kj = 0,1,2, . . .

Also suppose that Kj’s are independent for all j = 1, . . . ,J It then follows that

K =
J

∑
j=1

Kj ∼ Poi(μ =
J

∑
j=1

μ j),

and conditional on total K, the joint distribution of the counts K1, . . . ,Kj, . . . ,KJ−1,
has the form

P[K1, . . . ,Kj, . . . ,KJ−1|K] =
Π J

j=1[
exp(−μ j)μ

Kj
j

Kj!
]

exp(−μ)μK

K!

,
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where now KJ = K −∑J−1
j=1 Kj is known. Now by using π j =

μ j
μ , one obtains the

multinomial distribution (2.4), where πJ = 1−∑J−1
j=1 π j is known.

Note that when K = 1, one obtains the multinomial distribution (2.3) from (2.4)
by using Kj = yi j as a special case.

2.1.1 Basic Properties of the Multinomial Distribution (2.4)

Lemma 2.1.1. The count variable Kj( j = 1, . . . ,J − 1) marginally follows a bino-
mial distribution B(Kj;K,π j), with parameters K and π j , yielding E[Kj] = Kπ j and
var[Kj] = Kπ j(1 − π j). Furthermore, for j �= k, j,k = 1, . . . ,J − 1, cov[Kj,Kk] =
−Kπ jπk.

Proof. Let

ξ1 = π1, ξ2 = [1−π1], ξ3 = [1−π1 −π2], . . . ,ξJ−1 = [1−π1 −·· ·−πJ−2].

By summing over the range of KJ−1 from 0 to [K −K1 − . . . ,KJ−2], one obtains the
marginal multinomial distribution of K1, . . . ,KJ−2 from (2.4) as

P[K1, . . . ,Kj, . . . ,KJ−2] =
K!

K1! · · ·Kj! · · ·{K −K1 −·· ·−KJ−2}!
Π J−2

j=1 πKj
j [ξJ−1]

{K−K1−···−KJ−2}

× {K −K1 −·· ·−KJ−2}!
KJ−1!{K −K1 −·· ·−KJ−2 −KJ−1}!

K−K1−···−KJ−2

∑
KJ−1=0

[
πJ−1

ξJ−1
]KJ−1 [1− πJ−1

ξJ−1
]{(K−K1−···−KJ−2)−KJ−1}

=
K!

K1! · · ·Kj! · · ·{K −K1 −·· ·−KJ−2}!
Π J−2

j=1 πKj
j [ξJ−1]

{K−K1−···−KJ−2}. (2.5)

By summing, similar to that of (2.5), successively over the range of KJ−2, . . . ,K2,
one obtains the marginal distribution of K1 as

P[K1] =
K!

K1!{K −K1}!
πK1 [1−π1]

K−K1 , (2.6)

which is a binomial distribution with parameters (K,π1). Note that this averaging
or summing technique to find the marginal distribution is exchangeable. Thus, for
any j = 1, . . . ,J −1, Kj will have marginally binomial distribution with parameters
(K,π j). This yields the mean and the variance of Kj as in the Lemma.

Next to derive the covariance between Kj and Kk, for convenience we find the
covariance between K1 and K2. For this computation, following (2.5), we first write
the joint distribution of K1 and K2 as

P[K1,K2] =
K!

K1!K2!{K −K1 −K2}!
Π 2

j=1πKj
j [ξ3]

{K−K1−K2}

=
K!

K1!K2!{K −K1 −K2}!
Π 2

j=1πKj
j [1−π1 −π2]

{K−K1−K2}. (2.7)
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It then follows that

E[K1K2] =
K

∑
K1=0

{K−K1}
∑

K2=0
K1K2

K!
K1!K2!{K−K1−K2}!

Π 2
j=1πKj

j [1−π1−π2]
{K−K1−K2}

= K(K −1)π1π2

K−2

∑
K∗

1=0

{K−2−K∗
1}

∑
K∗

2=0

{K −2}!
K∗

1 !K∗
2 !{K −2−K∗

1 −K∗
2}!

×Π 2
j=1π

K∗
j

j [1−π1 −π2]
{K−2−K∗

1−K∗
2}

= K(K −1)π1π2, (2.8)

yielding

cov[K1,K2] = E[K1K2]−E[K1]E[K2] = K(K −1)π1π2 −K2π1π2 =−Kπ1π2.
(2.9)

Now because the multinomial distribution is exchangeable in variables, one obtains
cov[Kj,Kk] =−Kπ jπk, as in the Lemma.

Lemma 2.1.2. Let

ψ1 = π1

ψ2 =
π2

1−π1
. . . . . . . . . . . .

ψJ−1 =
πJ−1

1−π1 −·· ·−πJ−2
. (2.10)

Then the multinomial probability function in (2.3) can be factored as

B(yi1;1,ψ1)B(yi2;1− yi1,ψ2) · · ·B(yi,J−1;1− yi1 −·· ·− yi,J−2,ψJ−1) (2.11)

where B(x;K∗,ψ), for example, represents the binomial probability of x successes
in K∗ trials when the success probability is ψ in each trial.

Proof. It is convenient to show that (2.11) yields (2.3). Rewrite (2.11) as

[
1!

yi1!(1− yi1)!
πyi1

1 (1−π1)
1−yi1 ]

× (1− yi1)!
yi2!(1− yi1 − yi2)!

[
π2

1−π1
]yi2 [

1−π1 −π2

1−π1
]1−yi1−yi2

. . . . . . . . .

× (1− yi1 −·· ·− yi,J−2)!
yi,J−1!(1− yi1 −·· ·− yi,J−1)!

[
πJ−1

1−π1 −·· ·−πJ−2
]yi,J−1 [

1−π1 −·· ·−πJ−1

1−π1 −·· ·−πJ−2
]1−yi1−···−yi,J−1 .

By some algebras, this reduces to (2.3).
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Lemma 2.1.3. The binomial factorization (2.11) yields the conditional means and
variances as follows:

E[Yi1] = ψ1, var[Yi1] = ψ1(1−ψ1)

E[Yi2|yi1] = (1− yi1)ψ2, var[Yi2|yi1] = (1− yi1)ψ2(1−ψ2)

. . . . . . . . .

E[Yi,J−1|yi1, · · · ,yi,J−2] = (1− yi1 −·· ·− yi,J−2)ψJ−1

var[Yi,J−1|yi1, · · · ,yi,J−2] = (1− yi1 −·· ·− yi,J−2)ψJ−1(1−ψJ−1). (2.12)

Example 2.1. Consider the multinomial model (2.4) with J = 3 categories. This
model is referred to as the trinomial probability model. Suppose that π1,π2, and π3

denote the probabilities that an individual fall into categories 1, 2, and 3, respec-
tively. Also suppose that out of K independent individuals, these three cells were
occupied by K1,K2, and K3 individuals so that K = K1 +K2 +K3. Let ψ1 = π1 and
ψ2 = π2

1−π1
. Then, similar to (2.11), it can be shown that the trinomial probability

function (2.4) (with J = 3) can be factored as the product of two binomial probability
functions as given by

B(K,K1;ψ1)B(K −K1,K2;ψ2).

Similar to Lemma 2.1.3, one then obtains the mean and variance of K2 conditional
on K1 as

E[K2|K1] = [K −K1]ψ2, and var[K2|K1] = [K −K1]ψ2(1−ψ2), (2.13)

respectively. It then follows that the unconditional mean and variance of K2 are
given by

E[K2] =EK1E[K2|K1] =EK1 [(K−K1)ψ2] = [K−Kψ1]ψ2 =K(1−π1)
π2

1−π1
=Kπ2,

(2.14)
and

var[K2] = EK1 [var{K2|K1}]+varK1 [E{K2|K1}]
= EK1 [{K −K1}ψ2(1−ψ2)]+varK1 [{K −K1}ψ2]

= K(1−π1)
π2

1−π1
[
1−π1 −π2

1−π1
]+Kπ1(1−π1)

π2
2

(1−π1)2

=
Kπ2

1−π1
[1−π1 −π2 +π1π2]

= Kπ2(1−π2), (2.15)
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respectively. Note that these unconditional mean (2.14) and variance (2.15) are the
same as in Lemma 2.1.1, but they were derived in a different way than that of
Lemma 2.1.1. Furthermore, similar to that of (2.15), the unconditional covariance
between K1 and K2 may be obtained as

cov[K1,K2] = EK1 [cov{(K1,K2)|K1}]+ covK1 [K1,E{K2|K1}]
= covK1 [K1,E{K2|K1}]
= covK1 [K1,(K −K1)ψ2] =−ψ2var[K1] =−Kπ1π2, (2.16)

which agrees with the covariance results in Lemma 2.1.

2.1.2 Inference for Proportion � j(j= 1, . . . ,J−1)

Recall from (2.4) that

P[K1, K2, . . . ,Kj, . . . ,KJ−1] =
K!

K1! · · ·KJ!
Π J

j=1π j
Kj , (2.17)

where π j by (2.2) has the formula

π j =

⎧
⎨

⎩

exp(β j0)

1+∑J−1
g=1 exp(βg0)

for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0)
for j = J,

(a) Moment estimation for �j
When Kj for j = 1, . . . ,J − 1, follow the multinomial distribution (2.17), it

follows from Lemma 2.1 that E[Kj] =Kπ j yielding the moment estimating equation
for π j as

Kj −Kπ j = 0 subject to the condition
J

∑
j=1

π j = 1. (2.18)

Because by (2.18), one writes

πJ = 1−
J−1

∑
j=1

π j = 1−
J−1

∑
j=1

Kj

K
=

K −∑J−1
j=1 Kj

K
=

KJ

K
,

thus, in general, the moment estimator for π j for all j = 1, . . . ,J, has the form

π̂ j,MM =
Kj

K
. (2.19)
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Note however that once the estimation of π j for j = 1, . . . ,J−1 is done, estimation
of πJ does not require any new information because KJ = K −∑J−1

j=1 Kj becomes
known.
(b) Likelihood Estimation of proportion �j, j = 1, . . . ,J-1

It follows from (2.17) that the log likelihood function of {π j} with πJ = 1−
∑J−1

j=1 π j is given by

logL(π1, . . . ,πJ−1) = k0 +
J

∑
j=1

Kjlog(π j), (2.20)

where k0 is the normalizing constant free from {π j}. It then follows that the
maximum likelihood (ML) estimator of π j, for j = 1, . . . ,J − 1, is the solution of
the likelihood equation

∂ logL(π1, . . . ,πJ−1)

∂π j
=

Kj

π j
− KJ

1−∑J−1
j=1 π j

= 0, (2.21)

and is given by

π̂ j,ML = π̂J,ML
Kj

KJ
. (2.22)

But, as ∑J
j=1 π̂ j,ML = 1, it follows from (2.22) that

π̂J,ML =
KJ

K
,

yielding

π̂ j,ML =
Kj

K
=

Kj

∑J
j=1 Kj

for j = 1, . . . ,J−1.

Thus, in general, one may write the formula

π̂ j,ML =
Kj

K
=

Kj

∑J
j=1 Kj

, (2.23)

for all j = 1, . . . ,J. This ML estimate in (2.23) is the same as the moment estimate
in (2.19).
(c) Illustration 2.1

To illustrate the aforementioned ML estimation for the categorical proportion,
we, for example, consider a modified version of the health care utilization data,
studied by Sutradhar (2011). This data set contains number of physician visits by
180 members of 48 families over a period of 6 years from 1985 to 1990. Various
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Table 2.1 Summary statistics of physician visits by four covariates in the health care
utilization data for 1985

Number of Visits
Covariates Level 0 1 2 3–5 ≥6 Total

Gender Male 28 22 18 16 12 96

Female 11 5 15 21 32 84

Chronic Condition No 26 20 15 16 11 88

Yes 13 7 18 21 33 92

Education Level < High School 17 5 11 10 15 58

High School 6 4 4 8 11 33

> High School 16 18 18 19 18 89

Age 20–30 23 17 14 15 15 84

31–40 1 1 3 3 3 11

41–50 4 4 5 12 8 33

51–65 10 5 8 5 13 41

66–85 1 0 3 2 5 11

Table 2.2 Categorizing the
number of physician visits

Latent number of visits Visit category 1985 visit

0 None K1 = 39

1–2 Few K2 = 60

3–5 Not so few K3 = 37

6 or more High K4 = 44

covariates such as gender, age, education level, and chronic conditions for each of
these 180 members were also collected. The full data set is available in Sutradhar
(2011, Appendix 6A). The primary objective of this study was to examine the
effects of these covariates on the physician visits by accommodating familial and
longitudinal correlations among the responses of the members. To have a feeling
about this data set, we reproduce below in Table 2.1, some summary statistics on the
physicians visit data for 1985 only.

Suppose that we group the physician visits into J = 4 categories as in Table 2.2.
In the same table we also give the 1985 health status for 180 individuals.

Note that an individual can belong to one of the four categories with a
multinomial probability as in (2.3). Now by ignoring the family grouping, that is,
assuming all 180 individuals are independent, and by ignoring the effects of the
covariates on the visits, one may use the multinomial probability model (2.17) to fit
the data in Table 2.2.

Now by (2.23), one obtains the likelihood estimate for π j, for j = 1, . . . ,4, as

π̂ j,ML =
Kj

K
,
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where K = 180. Thus, for example, for j = 1, since, K1 = 39 individuals did not pay
any visits to the physician, an estimate (likelihood or moment) for the probability
that an individual in St. John’s in 1985 belong to category 1 was

π̂1,ML = π̂1,MM = 39/180 = 0.217.

That is, approximately 22 out of 100 people did not pay any visits to the physician
in St. John’s (indicating the size of the group with no health complications) during
that year. Note that these naive estimates are bound to change when multinomial
probabilities will be modeled involving the covariates. This type of multinomial
regression model will be discussed in Sect. 2.2 and in many other places in the book.

2.1.3 Inference for Category Effects ˇj0, j = 1, . . . ,J−1,
with ˇJ0 = 0

2.1.3.1 Moment Estimating Equations for ˇj0(j = 1, . . . , J−1) Using
Regression Form

Because

E[Kj] = Kπ j for j = 1, . . . ,J−1,

with

π j =
m j

m
=

exp(β j0)

1+∑J−1
j=1 exp(β j0)

=
exp(x′jθ)

∑J
j=1 exp(x′jθ)

,

and πJ has to satisfy the relationship

πJ = 1−
J−1

∑
j=1

π j = 1−
J−1

∑
j=1

Kj

K
=

KJ

K
,

one needs to solve for θ = (β10, . . . ,β j0, . . . ,βJ−1,0)
′ satisfying

Kj −Kπ j = 0, for all j = 1, . . . ,J.

For convenience, we express all π j as functions of θ . We do this by using

x j = (01′j−1,1,01′J−1− j)
′ for j = 1, . . . ,J−1, and xJ = 01J−1,
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so that

π j =
exp(x′jθ)

∑J
j=1 exp(x′jθ)

, for all j = 1, . . . ,J. (2.24)

Now solving the moment equations Kj −Kπ j = 0 for θ = (β10, . . . ,β j0, . . . ,βJ−1,0)
′

is equivalent to solve

f (θ) = X ′(y−Kπ) = 0, (2.25)

for θ , where y = (K1, . . . ,Kj, . . . ,KJ)
′, π = (π1, . . . ,π j, . . . ,πJ)

′, and

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x′1
x′2
·

x′J−1
x′J

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 · 0 0
0 1 · 0 0
· · · · ·
0 0 · 0 1
0 0 · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

: J× J−1.

2.1.3.2 Marginal Likelihood Estimation for ˇj0 (j = 1, . . . , J-1)
with ˇJ0 = 0

Note that due to invariance principle of the likelihood estimation method, one would
end up with solving the same likelihood estimating equation (2.23) even if one
attempts to obtain the likelihood estimating equations for β j0, j = 1, . . . ,J − 1,
directly. We clarify this point through following direct calculations.

Rewrite the multinomial distribution based log likelihood function (2.20) as

logL(π1, . . . ,πJ) = k0 +
J

∑
j=1

Kjlog(π j),

where, by (2.17), π j has the formulas

π j =

⎧
⎪⎨

⎪⎩

exp(β j0)

1+∑J−1
j=1 exp(β j0)

for j = 1, . . . ,J−1

1
1+∑J−1

j=1 exp(β j0)
for j = J.

It then follows for j = 1, . . . ,J−1, that

∂ logL(π1, . . . ,πJ)

∂β j0
=

J−1

∑
c=1

[
Kc

πc

]
∂πc

∂β j0
+[

KJ

πJ
]

∂πJ

∂β j0
, (2.26)
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where

∂πc

∂β j0
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{1+∑J−1
c=1 exp(βc0)}exp(β j0)−exp(β j0){exp(β j0)}

[1+∑J−1
c=1 exp(βc0)]

2 = π j(1−π j) for c = j

−exp(βc0){exp(β j0)}
[1+∑J−1

c=1 exp(βc0)]
2 =−πcπ j for c �= j, c = 1, . . . ,J−1.

−exp(β j0)

[1+∑J−1
c=1 exp(βc0)]

2 =−πJπ j for c = J.

(2.27)

By using (2.27) in (2.26), we then write the likelihood equation for β j0 as

∂ logL(π1, . . . ,πJ)

∂β j0
=

J

∑
c=1

[
Kc

πc
][−πcπ j]+

Kj

π j
[π j] = 0, (2.28)

yielding

−Kπ j +Kj = 0, for j = 1, . . . ,J−1, (2.29)

which are the same likelihood equations as in (2.23). Thus, in the likelihood
approach, similar to the moment approach, one solves the estimating equation
(2.25), that is,

f (θ) = X ′(y−Kπ) = 0 (2.30)

for θ iteratively, so that f (θ̂) = 0.
Further note that because of the definition of π j given by (2.2) or (2.17), all

estimates β̂ j0 for j = 1, . . . ,J−1 are interpreted comparing their value with βJ0 = 0.

2.1.3.3 Joint Estimation of ˇ10, . . . ,ˇj0, . . . ,ˇJ-1,0 Using Regression Form

The log likelihood function by (2.20) has the form

logL(β10, . . . ,β(J−1)0) = k0 +
J

∑
j=1

Kjlog π j.

We now write m j = exp(β j0) for j = 1, . . . ,J−1, and mJ = exp(βJ0) = 1, and m =

∑J
j=1 m j, and re-express the above log likelihood function as

logL(β10, . . . ,β(J−1)0) = k0 +
J

∑
j=1

Kj[log m j − log m]. (2.31)

Next for θ = (β10, . . . ,β j0, . . . ,β(J−1)0)
′ express log m j in linear regression form

log m j = x′jθ (2.32)
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such that log m j = β j0 for j = 1, . . . ,J −1, and log mJ = 0. Note that finding x′j for
all j = 1, . . . ,J is equivalent to write

log m̃ = [log m1, . . . , log m j, . . . , log mJ ]
′ = Xθ ,

where the J× (J−1) covariate matrix X has the same form as in (2.25), i.e.,

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x′1
x′2
·

x′J−1
x′J

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 · 0 0
0 1 · 0 0
· · · · ·
0 0 · 0 1
0 0 · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

: J× J−1. (2.33)

It then follows from (2.31) and (2.32) that

f (θ) =
∂ logL(θ)

∂θ
=

∂
∂θ

[
J

∑
j=1

Kjx
′
jθ −Klog m]

=
J

∑
j=1

Kjx j − K
m

∂
∂θ

[
J

∑
j=1

exp(x′jθ)]

=
J

∑
j=1

Kjx j − K
m

J

∑
j=1

m jx j

=
J

∑
j=1

Kjx j −K
J

∑
j=1

π jx j, (2.34)

yielding the likelihood estimating equation

f (θ) = X ′(y−Kπ) = 0, (2.35)

same as (2.30).

2.1.3.3.1 Likelihood Estimates and their Asymptotic Variances

Because the likelihood estimating equations in (2.35) are non-linear, one obtains
the estimate of θ = (β10, . . . ,β j0, . . . ,βJ−1,0)

′ iteratively, so that f (θ̂) = 0. Suppose
that θ̂0 is not a solution for f (θ) = 0, but a trial estimate and hence f (θ̂0) �= 0. Next
suppose that θ̂ = θ̂0+h∗ is the estimate of θ satisfying f (θ̂) = f (θ̂0+h∗) = 0. Now
by using the first order Taylor’s expansion, one writes

f (θ̂) = f (θ̂0 +h∗) = f (θ̂0)+h∗ f ′(θ)|θ=θ̂0
= f (θ)|θ=θ̂0

+(θ̂ − θ̂0) f ′(θ)|θ=θ̂0
= 0
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yielding the solution

θ̂ = θ̂0 −
[{ f ′(θ)}−1 f (θ)

] |θ=θ̂0
. (2.36)

Further, because

∂π j

∂θ ′ =
1

m2 [m
∂m j

∂θ ′ −m j
∂m
∂θ ′ ]

=
1

m2 [mm jx
′
j −m j

J

∑
j=1

m jx
′
j]

= π jx
′
j −π j

J

∑
j=1

π jx
′
j

= π jx
′
j −π jπ ′X , (2.37)

one obtains

K
∂π j

∂θ ′ = K[π jx
′
j −π jπ ′X ]. (2.38)

Consequently, it follows from (2.35) that

f ′(θ) =−KX ′ ∂π
∂θ ′ = −KX ′{diag[π1, . . . ,πJ ]−ππ ′}X

= −KX ′[Dπ −ππ ′]X , (2.39)

and the iterative equation (2.36) takes the form

θ̂(r+1) = θ̂(r)+
[

1
K
[X ′{Dπ −ππ ′}X ]−1X ′(y−Kπ)

]

θ=θ̂(r)
, (2.40)

yielding the final estimate θ̂ . The covariance matrix of θ̂ has the formula

var(θ̂) =
1
K

[
X ′{Dπ −ππ ′}X

]−1
. (2.41)

2.1.4 Likelihood Inference for Categorical Effects
ˇj0, j = 1, . . . ,J−1 with ˇJ0 =−∑J−1

j=1 β j0 Using
Regression Form

There exists an alternative modeling for π j such that β̂ j0 for j = 1, . . . ,J − 1 are
interpreted by using the restriction
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J

∑
j=1

β̂ j0 = 0, that is, β̂J0 =−
J−1

∑
j=1

β̂ j0.

As opposed to (2.17), π j’s are then defined as

π j =

⎧
⎪⎨

⎪⎩

exp(β j0)

∑J−1
c=1 exp(βc0)+exp(−∑J−1

c=1 βc0)
for j = 1, . . . ,J−1

exp(−∑J−1
c=1 βc0)

∑J−1
c=1 exp(βc0)+exp(−∑J−1

c=1 βc0)
for j = J.

(2.42)

Now for m j = exp(β j0) for j = 1, . . . ,J−1, and mJ = exp(−∑J−1
c=1 βc0), one may

use the linear form log m j = x′jθ , that is,

log m̃ = [log m1, . . . , log m j, . . . , log mJ ]
′ = Xθ ,

where, unlike in (2.25) and (2.33), X now is the J × (J − 1) covariate matrix
defined as

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 · 0 0
0 1 · 0 0
· · · · ·
0 0 · 0 1
−1 −1 · −1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (2.43)

Thus, the likelihood estimating equation has the same form

f (θ) = X ′(y−Kπ) = 0 (2.44)

as in (2.35), but with covariate matrix X as in (2.43) which is different than that of
(2.33).

Note that because βJ0 = 0 leads to different covariate matrix X as compared to
the covariate matrix under the assumption βJ0 =−∑J−1

j=1 β j0, the likelihood estimates
for θ = (β10, . . . ,β(J−1)0)

′ would be different under these two assumptions.

2.2 Univariate Multinomial Regression Model

2.2.1 Individual History Based Fixed Regression Effects Model

Suppose that a history based survey is done so that in addition to the categorical
response status, an individual also provides p covariates information. Let wi =
[wi1, . . . ,wis, . . . ,wip]

′ denote the p-dimensional covariate vector available from
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the ith (i = 1, . . . ,K) individual. To incorporate this covariate information, the
multinomial probability model (2.1)–(2.2) may be generalized as

P[yi = y( j)
i = δi j] = π(i) j =

⎧
⎪⎨

⎪⎩

exp(β j0+β ′
jwi)

1+∑J−1
g=1 exp(βg0+β ′

gwi)
for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0+β ′
gwi)

for j = J,
(2.45)

(see also Agresti 1990, p. 343, Exercise 9.22) where β j = [β j1, . . . ,β js, . . . ,β jp]
′ for

j = 1, . . . ,J−1. Let

θ ∗ = [β ∗
1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′]′, where β ∗

j = [β j0,β ′
j]
′.

Then as an extension to (2.4), one may write the likelihood function as

L(θ ∗) = L(β ∗
1 , . . . ,β ∗

J−1) =
K

∏
i=1

J

∏
j=1

1! × {
π(i) j

}yi j

yi j!
(2.46)

where yiJ =
(

1−∑J−1
j=1 yi j

)
and π(i)J =

(
1−∑J−1

j=1 π(i) j

)
. It then follows that the

likelihood estimating equation for β ∗
j =

(
β j 0, β ′

j

)′
for j = 1, . . . ,J−1, that is,

∂ logL(θ ∗)
∂β ∗

j
=

∂
∂β ∗

j

[

C+
K

∑
i=1

J−1

∑
g=1

yig

(
1
wi

)′
β ∗

g −
K

∑
i=1

log

{

1+
J−1

∑
g=1

(
1
wi

)′
β ∗

g

}]

=
K

∑
i=1

[(
1
wi

)

yi j −
(

1
wi

)

π(i) j

]

=
K

∑
i=1

(
1
wi

)
[

yi j −π(i) j

]
= 0 , (2.47)

leads to the likelihood equation for θ ∗ as

∂ logL(θ ∗)
∂θ ∗ =

K

∑
i=1

[

IJ−1 ⊗
(

1
wi

)] [
yi −π(i)

]
= 0 (2.48)

where π(i) =
(
π(i)1, · · · , π(i)(J−1)

)′
corresponding to yi = (yi1, . . . ,yi(J−1))

′; wi is the
p× 1 design vector, IJ−1 is the identity matrix of order J−1, and ⊗ denotes the
Kronecker or direct product. In (2.47), C is a normalizing constant.

This likelihood equation (2.48) may be solved for θ ∗ by using the iterative
equation
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Table 2.3 Snoring and heart
disease: A frequency table

Heart disease
Snoring Yes No

Never 24 1355

Occasionally 35 603

Nearly every night 21 192

Every night 30 224

θ̂ ∗(r+1) = θ̂ ∗(r)+

[
K

∑
i=1

[

IJ−1 ⊗
(

1
wi

)]
[
diag[πi1, . . . ,πJ−1]−π(i)π ′

(i)

]
[

IJ−1 ⊗
(

1
wi

)]′]−1

|θ̂∗(r)

×
K

∑
i=1

[

IJ−1 ⊗
(

1
wi

)]
[

yi −π(i)

]

|θ̂∗(r)
, (2.49)

and the variances of the estimator may be found from the covariance matrix

var[θ̂∗] =

[
K

∑
i=1

[

IJ−1 ⊗
(

1
wi

)]
[
diag[πi1, . . . ,πJ−1]−π(i)π ′

(i)

]
[

IJ−1 ⊗
(

1
wi

)]′]−1

.

(2.50)

Note that in the absence of covariates, one estimates θ ∗ = [β10, . . . ,β j0, . . .,
βJ−1.0]

′. In this case, the estimating equation (2.48) for θ ∗ reduces to the estimating
equation (2.35) for θ , because ∑K

i=1 yi j = Kj and ∑K
i=1 π(i) j = ∑K

i=1 π j = Kπ j, for
example.

2.2.1.1 Illustration 2.2: Binary Regression Model (J= 2) with One
Covariate

2.2.1.1 (a) An Existing Analysis (Snoring as a Continuous Covariate
with Arbitrary Values)

Consider the heart disease and snoring relationship problem discussed in Agresti
(2002, Section 4.2.3, p. 121–123). The data is given in the following Table 2.3.

By treating snoring as an one dimensional (p = 1) fixed covariate wi = wi1 for
the ith individual with its values

wi ≡ wi1 = 0,2,4,5, (2.51)

for snoring never, occasionally, nearly every night, and every night, respectively,
and treating the heart disease status as the binary (J = 2) variable and writing

yi = yi1 =

⎧
⎨

⎩

1 if i ∈ yes

0 otherwise,
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Agresti (2002, Section 4.2.3, p. 121–123), for example, analyzed this ‘snoring and
heart disease’ data by fitting the binary probability model (a special case of the
multinomial probability model (2.45))

P[yi = y(1)i ] = P[yi1 = 1] = π(i)1(wi) =
exp(β10 +β11wi)

1+ exp(β10 +β11wi)
, (2.52)

and

P[yi = y(2)i ] = P[yi1 = 0] = π(i)2(wi) =
1

1+ exp(β10 +β11wi)
.

The binary likelihood is then given by

L(θ ∗) = L(β10,β11) = Π K
i=1[π(i)1(wi)]

yi1 [π(i)2(wi)]
yi2

= Π K
i=1[π(i)1(wi)]

yi1 [1−π(i)1(wi)]
1−yi1 , (2.53)

yielding the log likelihood estimating equations as

∂ log L(θ ∗)
∂θ ∗ =

∂ logΠ K
i=1

exp[yi1(w
∗
i
′θ∗)]

1+exp(w∗
i
′θ∗)

∂θ ∗ = 0, (2.54)

where

w∗
i
′ = (1,wi), and θ ∗ = β ∗

1 = (β10,β11)
′.

This log likelihood equations may be simplified as

∂ log L(θ ∗)
∂θ ∗ =

K

∑
i=1

yi1w∗
i −

K

∑
i=1

π(i)1w∗
i

=
K

∑
i=1

w∗
i [yi1 −π(i)1]

=
K

∑
i=1

(
1
wi

)

[yi1 −π(i)1] = 0. (2.55)

Note that the binary likelihood equation (2.45) is a special case of the multino-
mial likelihood equation (2.48) with J = 2. This equation may be solved for θ̂ ∗ by
using the iterative equation

θ̂ ∗(r+1) = θ̂ ∗(r)+

[
K

∑
i=1

(
1
wi

) [
π(i)1(1−π(i))

]( 1
wi

)′]−1

|θ̂∗(r)
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×
K

∑
i=1

(
1
wi

) [
yi −π(i)1

]

|θ̂∗(r)
, (2.56)

and the variances of the estimator may be found from the covariance matrix

var[θ̂ ∗] =

[
K

∑
i=1

(
1
wi

) [
π(i)1(1−π(i)1)

]( 1
wi

)′]−1

. (2.57)

For the snoring and heart disease relationship problem, the scalar covariate (wi =
wi1) based estimates are given by

θ̂ ∗ = β̂ ∗
1 ≡ [β̂10 =−3.87, and β̂11 = 0.40]′.

However using this type of scalar covariate, i.e., wi = wi1 with arbitrary values for
snoring levels does not provide actual effects of the snoring on heart disease. Below,
we illustrate a categorical covariate based estimation for this problem.

2.2.1.1 (b) A Refined Analysis (Snoring as a Fixed Covariate with Four
Nominal Levels)

In the aforementioned existing analysis, the snoring status: never, occasionally,
nearly every night, every night, has been denoted by a covariate w with values
0,2,4, and 5, respectively. This is an arbitrary coding and may not correctly reflect
the levels. To avoid confusion, in the proposed book, we will represent these L = 4
levels of the ‘snoring’ covariate for the ith individual by three dummy covariates
(p = 3) wi1,wi2,wi3 with values

(wi1,wi2,wi3) =

⎧
⎪⎪⎨

⎪⎪⎩

(1,0,0) for occasionally snoring, level 1 (�=1)
(0,1,0) for nearly every night snoring, level 2 (�=2)
(0,0,1) for every night snoring, level 3 (�=3)
(0,0,0) for never snoring, level 4 (�=4) .

Now for j = 1, . . . ,J − 1 with J = 2, by using β j1,β j2,β j3 as the effects of
wi1,wi2,wi3, on an individual’s (i = 1, . . . ,K) heart status belonging to jth category,
one may fit the probability model (2.45) to this binary data. For convenience, write
the model as

π(i) j =

⎧
⎨

⎩

exp(β j0+β j1wi1+β j2wi2+β j3wi3)

1+∑J−1
g=1 exp(βg0+βg1wi1+βg2wi2+βg3wi3)

for j = 1

1
1+∑J−1

g=1 exp(βg0+βg1wi1+βg2wi2+βg3wi3)
for j = J = 2.

(2.58)

It is of interest to estimate the parameters θ ∗ = β ∗
1 = (β10,β11,β12,β13)

′.
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After a slight modification, we may use the likelihood equation (2.45) to estimate
these parameters. More specifically, by (2.45), the likelihood equation for θ ∗ = β ∗

1
now has the form

K

∑
i=1

w∗
i [yi1 −π(i)1] =

K

∑
i=1

⎛

⎜
⎜
⎝

1
wi1

wi2

wi3

⎞

⎟
⎟
⎠ [yi1 −π(i)1] = 0. (2.59)

This equation may be solved for θ̂ ∗ iteratively by using

θ̂ ∗(r+1) = θ̂ ∗(r)+

⎡

⎢
⎢
⎢
⎣

K

∑
i=1

⎛

⎜
⎜
⎝

1
wi1

wi2

wi3

⎞

⎟
⎟
⎠

[
π(i)1(1−π(i))

]

⎛

⎜
⎜
⎝

1
wi1

wi2

wi3

⎞

⎟
⎟
⎠

′⎤

⎥
⎥
⎥
⎦

−1

|θ̂∗(r)

×
K

∑
i=1

⎛

⎜
⎜
⎝

1
wi1

wi2

wi3

⎞

⎟
⎟
⎠

[
yi −π(i)1

]

|θ̂∗(r)
, (2.60)

and the variances of the estimator may be found from the covariance matrix

var[θ̂ ∗] =

⎡

⎢
⎢
⎢
⎣

K

∑
i=1

⎛

⎜
⎜
⎝

1
wi1

wi2

wi3

⎞

⎟
⎟
⎠

[
π(i)1(1−π(i)1)

]

⎛

⎜
⎜
⎝

1
wi1

wi2

wi3

⎞

⎟
⎟
⎠

′⎤

⎥
⎥
⎥
⎦

−1

(2.61)

2.2.2 Multinomial Likelihood Models Involving One Covariate
with L = p+1 Nominal Levels

Suppose that the L = p + 1 levels of a covariate for an individual i may be
represented by p dummy covariates as

(wi1, · · · , wip) ≡

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

( 1, 0, · · · , 0 ) −→ Level 1
( 0, 1, · · · , 0 ) −→ Level 2
( · · · · · · · · · · · ·)
( 0, 0, · · · , 1 ) −→ Level p
( 0, 0, · · · , 0 ) −→ Level p+1

(2.62)
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Table 2.4 A notational display for cell counts and probabilities for J categories under each
covariate level �

J categories of the response variable
Covariate level Quantity 1 . . . j . . . J Total

1 Cell count K[1]1 . . . K[1] j . . . K[1]J K[1]

Cell probability π[1]1 . . . π[1] j . . . π[1]J 1

. . . . . . . . . . . .

. . . . . . . . . . .

� Cell count K[�]1 . . . K[�] j . . . K[�]J K[�]

Cell probability π[�]1 . . . π[�] j . . . π[�]J 1

. . . . . . . . . . . .

. . . . . . . . . . .

L = p+1 Cell count K[p+1]1 . . . K[p+1] j . . . K[p+1]J K[p+1]

Cell probability π[p+1]1 . . . π[p+1] j . . . π[p+1]J 1

Total count K1 . . . Kj . . . KJ K

By (2.45), one may then write the probability for an individual i with covariate
at level �(�= 1, . . . , p) to be in the jth category as

π[�] j = π(i∈�) j =

⎧
⎨

⎩

exp(β j0+β j�)

1+∑J−1
g=1 exp(βg0+βg�)

for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0+βg�)
for j = J,

(2.63)

whereas for �= p+1, these probabilities are written as

π[p+1] j = π(i∈(p+1)) j =

⎧
⎨

⎩

exp(β j0)

1+∑J−1
g=1 exp(βg0)

for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0)
for j = J.

(2.64)

Using the level based probability notation from (2.63)–(2.64) into (2.46), one
may write the likelihood function as

L(θ ∗) = L[(β ∗
1 , . . . ,β ∗

j , . . . ,β ∗
(J−1)|y]

= Π p+1
�=1 Π

K[�]

i∈�
1!

yi1!yi2! . . .yiJ!
πyi1
[i∈(�)]1πyi2

[i∈(�)]2 . . . ,π
yiJ
[i∈(�)]J, (2.65)

where β ∗
j = (β j0,β j1, . . . ,β jp)

′, and K[�] denotes the number of individuals with

covariate level � so that ∑p+1
�=1 K[�] = K. Further suppose that K[�] j denote the number

of individuals those belong to the jth response category with covariate level � so that
∑J

j=1 K[�] j =K[�]. For convenience of writing the likelihood estimating equations, we
have displayed these notations for cell counts and cell probabilities as in the L× J
contingency Table 2.4.
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Note that in our notation, the row dimension L refers to the combined L levels
for the categorical covariates under consideration, and J refers to the number of
categories of a response variable. By this token, in Chap. 4, a contingency table for
a bivariate multinomial problem with L level categorical covariates will be referred
to as the L×R× J contingency table, where J refers to the number of categories of
the multinomial response variable Y as in this chapter, and R refers to the number of
categories of the other multinomial response variable Z, say. When this notational
scheme is used, the contingency Table 2.2 with four categories for Y (physician visit
status) but no covariates, has the dimension 1× 4. Thus, for a model involving no
covariates, p = 0, i.e., L = 1. Further, when there are, for example, two categorical
covariates in the model one with p1 +1 levels and the other with p2 +1 levels, one
uses p1 + p2 dummy covariates to represent these L = (p1 +1)(p2 +1) levels.

Turning back to the likelihood function (2.65), because yi j = 1 or 0, with
∑J

j=1 yi j = 1, by using the cell counts from Table 2.4, one may re-express this
likelihood function as

L(θ ∗) = L[(β ∗
1 , . . . ,β ∗

j , . . . ,β ∗
(J−1)|y] = Π p+1

�=1 (π[�]1)
K[�]1 . . .(π[�]J)

K[�]J . (2.66)

which one will maximize to estimate the desired parameters in θ ∗.

2.2.2.1 Product Multinomial Likelihood Based Estimating Equations
with a Global Regression form Using all Parameters

In some situations, it may be appropriate to assume that the cell counts for a
given level in Table 2.3 follow a multinomial distribution and the distributions
corresponding to any two levels are independent. For example, in a gender related
study, male and females may be interviewed separately and hence K[�] at �th level
may be assumed to be known, and they may be distributed in J cells, i.e., J
categories, following the multinomial distribution. Note that in this approach K
is not needed to be known in advance, rather all values for K[�] together yield

∑L
�=1 K[�] = K. Following Table 2.4, we write this multinomial probability function

at level � as

f (K[�]1, . . . ,K[�](J−1)) =
K[�]!

K[�]1! . . .K[�]J!
Π J

j=1[π[�] j]
K[�] j = L�, (2.67)

yielding the product multinomial function as

L(θ ∗) = Π p+1
�=1 f (K[�]1, . . . ,K[�](J−1)) = Π p+1

�=1 L�. (2.68)

At a given level �(� = 1, . . . , p + 1), one may then write the probabilities in
(2.63)–(2.64) for all j = 1, . . . ,J, as
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π[�] j =
exp(x′[�] jθ

∗)

∑J
g=1 exp(x′

[�]gθ ∗)
, (2.69)

where

θ ∗ = [β ∗
1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′]′, with β ∗

j = [β j0,β ′
j]
′,

and x′[�] j is the jth ( j = 1, . . . ,J) row of the J× (J−1)(p+1) matrix X�, defined for
�th level as follows:

X� =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x′[�]1
x′[�]2
·

x′[�](J−1)

x′[�]J

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 01′�−1,1,01′p−� 0 01′p · 0 01′p
0 01′p 1 01′�−1,1,01′p−� · 0 01′p
· · · · · · ·
0 01′p 0 01′p · 1 01′�−1,1,01′p−�

0 01′p 0 01′p · 0 01′p

⎞

⎟
⎟
⎟
⎟
⎟
⎠

for �= 1, . . . , p

Xp+1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x′[p+1]1

x′[p+1]2

·
x′[p+1](J−1)

x′[p+1]J

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 01′p 0 01′p · 0 01′p
0 01′p 1 01′p · 0 01′p
· · · · · · ·
0 01′p 0 01′p · 1 01′p
0 01′p 0 01′p · 0 01′p

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (2.70)

Following (2.35), the likelihood function (2.68) yields the likelihood equations

∂ log L(θ ∗)
∂θ ∗ =

p+1

∑
�=1

X ′
�

[
y[�]−K[�]π[�]

]
= 0, (2.71)

where

y[�] = [K[�]1, . . . ,K[�] j, . . . ,K[�]J]
′ and π[�] = [π[�]1, . . . ,π[�] j, . . . ,π[�]J]

′,

and X� matrices for �= 1, . . . , p+1 are given as in (2.70).
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2.2.2.1.1 Likelihood Estimates and their Asymptotic Variances

Note that the likelihood estimating equation (2.35) was developed for the covariates
free cases, that is, for the cases with p = 0, whereas the likelihood estimating
equation (2.71) is developed for one covariate with p + 1 levels, represented by
p dummy covariates. Thus, the estimating equation (2.71) may be treated as a
generalization of the estimating equation (2.35) to the p covariates case. Let θ̂ ∗ be
the solution of f (θ ∗) = 0 in (2.71). Assuming that θ̂ ∗

0 is not a solution for f (θ ∗) = 0,
but a trial estimate and hence f (θ̂ ∗

0 ) �= 0, by similar calculations as in (2.36), the
iterative equation for θ̂ ∗ is obtained as

θ̂ ∗ = θ̂ ∗
0 − [{ f ′(θ ∗)}−1 f (θ ∗)

] |θ∗=θ̂∗
0
. (2.72)

Further, by similar calculations as in (2.38), one obtains from (2.71) that

K[�]

∂π[�] j

∂θ ∗′ = K[�]

[
π[�] jx

′
[�] j −π[�] jπ ′

[�]X�

]
. (2.73)

Consequently, it follows from (2.71) that

f ′(θ ∗) =−
p+1

∑
�=1

K[�]X
′
�

∂π[�]

∂θ ∗′ = −
p+1

∑
�=1

K[�]X
′
�

[
diag(π[�]1, . . . ,π[�]J)−π[�]π ′

[�]

]
X�

= −
p+1

∑
�=1

K[�]X
′
�

[
Dπ[�] −π[�]π ′

[�]

]
X�, (2.74)

and the iterative equation (2.72) takes the form

θ̂ ∗(r+1) = θ̂ ∗(r)+

[
p+1

∑
�=1

K[�]X
′
�

[
Dπ[�] −π[�]π ′

[�]

]
X�

]−1

×
[

p+1

∑
�=1

X ′
�

(
y[�]−K[�]π[�]

)
]

θ∗=θ̂∗(r)
, (2.75)

yielding the final estimate θ̂ ∗. The covariance matrix of θ̂ ∗ has the formula

var(θ̂ ∗) =

[
p+1

∑
�=1

K[�]X
′
�{Dπ[�] −π[�]π ′

[�]}X�

]−1

. (2.76)
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2.2.2.2 Product Multinomial Likelihood Based Estimating Equations
with Local (Level Specified) Regression form Using Level Based
Parameters

Note that in the last two sections, regression parameters were grouped category
wise, that is, θ ∗ = [β ∗

1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′]′, where β ∗

j = [β j0,β j1, . . . ,β jp]
′ is formed

corresponding to the covariates from all p+1 levels under the jth category response.
Under product multinomial approach, it however makes more sense to group the
parameters for all categories together under a given level �(� = 1, . . . , p+ 1), and
write the estimating equations for these parameters of the multinomial distribution
corresponding to the level �, and then combine all estimating equations for overall
parameters. Thus, we first use

θ� ==

{
(β10, · · · ,βJ−1,0,β1�, · · · ,βJ−1,�)

′ = (β ′
0,β ′

�)
′ : 2(J−1)×1, for �= 1, . . . , p

(β10, · · · ,βJ−1,0)
′ = β0 : (J−1)×1 for �= p+1,

and define

log m� j = x̃′[�] jθ�

satisfying the probability formulas

π[�] j =
m� j

∑J
j=1 m� j

=
exp(x̃′[�] jθ�)

∑J
j=1 exp(x̃′

[�] jθ�)

in (2.63)–(2.64) for all j = 1, . . . ,J at a given level �. In regression form, it is
equivalent to construct the J × 2(J − 1) dummy covariate matrix X̃� for � = 1, p,
and J× (J−1) dummy covariate matrix X̃p+1, so that

log m̃� = [log m�1, · · · , log m� j, · · · , log m�J ]
′ = X̃�θ�.

It follows that X̃� must have the form

X̃� =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 · 0 1 0 · 0
0 1 0 · 0 0 1 · 0
· · · · · · · · ·
0 0 0 · 1 0 0 · 1
0 0 0 · 0 0 0 · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

: J×2(J−1), for �= 1, . . . , p (2.77)

X̃� =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 · 0
0 1 0 · 0
· · · · ·
0 0 0 · 1
0 0 0 · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

: J× (J−1), for �= p+1. (2.78)
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By similar calculations as in (2.35) (no covariate case), it follows from (2.67) (for
covariate level �) that the likelihood equation for θ� has the form

f (θ�) = X̃ ′
�(y[�]−K[�]π[�]) = 0 (2.79)

where X̃� have the forms as in (2.77) and (2.78), and

y[�] = [K[�]1, . . . ,K[�] j, . . . ,K[�]J]
′ and π[�] = [π[�]1, . . . ,π[�] j, . . . ,π[�]J]

′.

We then write a vector of distinct parameters, say θ , collecting them from all
levels and append the estimating equation (2.79) for θ� to the final estimating
equation for θ simply by using the chain rule of derivatives. In the present case
for a single categorical covariate with p+1 levels, the θ vector can be written as

θ = [β ′
0,β ′

1, . . . ,β ′
�, . . . ,β

′
p]
′ : (J−1)(p+1)×1,

with

β0 = (β10, . . . ,β j0, . . . ,β(J−1)0)
′ and β� = (β1�, . . . ,β j�, . . . ,β(J−1)�)

′ for �= 1, . . . , p,

and by appending (2.79), the likelihood estimating equation for θ has the form

f (θ) =
p+1

∑
�=1

[
∂θ ′

�

∂θ
X̃ ′
�(y[�]−K[�]π[�])

=
p+1

∑
�=1

Q�X̃
′
�(y[�]−K[�]π[�]) = 0, (2.80)

where Q�, for �= 1, . . . , p, is the (p+1)(J−1)×2(J−1) matrix and of dimension
(p+1)(J−1)× (J−1) for �= p+1. These coefficient matrices are given by

Q� =

⎛

⎜
⎜
⎜
⎝

IJ−1 0(J−1)×(J−1)

0(�−1)(J−1)×(J−1) 0(�−1)(J−1)×(J−1)

0(J−1)×(J−1) IJ−1

0(p−�)(J−1)×(J−1) 0(p−�)(J−1)×(J−1)

⎞

⎟
⎟
⎟
⎠

for �= 1, . . . , p

Qp+1 =

(
IJ−1

0(p)(J−1)×(J−1)

)

.
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2.2.2.3 Illustration 2.3 (Continuation of Illustration 2.2): Partitioning
the Product Binary (J = 2) Likelihood into Four Groups
Corresponding to Four Nominal Levels of the Snoring Covariate

Note that Table 2.3 shows that the data were collected from 2,484 independent
individuals. Because the individual status was recorded with regard to both snoring
and heart disease problems, it is reasonable to consider the snoring status and heart
disease status as two response variables. One would then analyze this data set
by using a bivariate multinomial model to be constructed by accommodating the
correlation between two multinomial response variables. This will be discussed in
Chap. 5.

2.2.2.3.1 Product Binomial Approach

If one is, however, interested to examine the effect of snoring levels on the heart
disease status, then the same data set may be analyzed by conditioning on the
snoring levels and fitting a binary distribution at a given snoring level. This leads
to a product binomial model that we use in this section to fit this snoring and heart
disease data. To be specific, following the notations from Sect. 2.2.1.1(b), let K[�] be
the number of individuals at �th snoring level. The responses of these individuals
are distributed into two categories with regard to the heart disease problem. Thus
the two cell counts at level � will follow a binomial distribution. More specifically,
because the L = p+ 1 = 4 levels are non-overlapping, one may first rewrite the
product binary likelihood function (2.65) as

L∗[(β10,β11,β12,β13)|y] = Π p+1
�=1 Π

K[�]

i=1
1!

yi1!yi2!
πyi1
[i∈(�)]1πyi2

[i∈(�)]2, (2.81)

where

yi2 = 1− yi1 and π[i∈(�)]2 = 1−π[i∈(�)]1.

Further note that because π[i∈(�)] j is not a function of i any more, without any loss
of generality we denote this by π[�] j, for j = 1,2. Also suppose that π[�]2 = 1−π[�]1,

and K[�]1 +K[�]2 = K[�], where ∑K�
i=1 yi1 = K[�]1. When these notations are used, the

binary likelihood function from (2.81) at a given level � reduces to the binomial
distribution

f (K[�]1) =
K[�]!

K[�]1!K[�]2!
(π[�]1)

K[�]1(π[�]2)
K[�]2 , (2.82)

for all �= 1, . . . , p+1, yielding the product binomial likelihood as
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L[(β10,β11,β12,β13)|K] = Π p+1
�=1

K[�]!

K[�]1!K[�]2!
(π[�]1)

K[�]1(π[�]2)
K[�]2 . (2.83)

This product binomial (2.83) likelihood function may be maximized to obtain the
likelihood estimates for the parameters involved, i.e., for β10,β11,β12, and β13.

2.2.2.3.1 (a) Estimating Equations: Global Regression Approach

Because in this example J = 2 and p+1 = 4, it follows from (2.69) that

θ ∗ = (β10,β11,β12,β13)
′,

and by following (2.70), one writes

X1 =

(
1 1 0 0
0 0 0 0

)

X2 =

(
1 0 1 0
0 0 0 0

)

X3 =

(
1 0 0 1
0 0 0 0

)

X4 =

(
1 0 0 0
0 0 0 0

)

.

Thus, by (2.71), the estimating equation for θ ∗ has the form

p+1

∑
�=1

X ′
�

[
y[�]−K[�]π[�]

]
= 0, (2.84)

where

y[�] =

(
K[�]1

K[�]2

)

and π[�] =

(
π[�]1

π[�]2

)

.

Note that for this heart disease and snoring relationship problem, the data and
probabilities in terms of global parameters θ ∗ = (β10,β11,β12,β13)

′ are given by
Level 1 (Occasional snoring):
Response count: K[1]1 = 35, K[1]2 = 603, K[1] = 638.

Probabilities: π[1]1 =
exp(β10+β11)

1+exp(β10+β11)
, and π[1]2 =

1
1+exp(β10+β11)

.
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Global regression form: π[1]1 =
exp(x′[1]1θ∗)

∑2
g=1 exp(x′

[1]gθ∗) , and π[1]2 =
exp(x′[1]2θ∗)

∑2
g=1 exp(x′

[1]gθ∗) , where

x′[1]1, for example, is the first row vector of the above written X1 : 2×4 matrix.
Level 2 (Nearly every night snoring):
Response count: K[2]1 = 21, K[2]2 = 192, K[2] = 213.

Probabilities: π[2]1 =
exp(β10+β12)

1+exp(β10+β12)
, and π[2]2 =

1
1+exp(β10+β12)

.

Global regression form: π[2]1 =
exp(x′[2]1θ∗)

∑2
g=1 exp(x′

[2]gθ∗) , and π[2]2 =
exp(x′[2]2θ∗)

∑2
g=1 exp(x′

[2]gθ∗) .

Level 3 (Every night snoring):
Response count: K[3]1 = 30, K[3]2 = 224, K[3] = 254.

Probabilities: π[3]1 =
exp(β10+β13)

1+exp(β10+β13)
, and π[3]2 =

1
1+exp(β10+β13)

.

Global regression form: π[3]1 =
exp(x′[3]1θ∗)

∑2
g=1 exp(x′

[3]gθ∗) , and π[3]2 =
exp(x′[3]2θ∗)

∑2
g=1 exp(x′

[3]gθ∗) .

Level 4 (Never snoring):
Response count: K[4]1 = 24, K[4]2 = 1355, K[4] = 1379.

Probabilities: π[4]1 =
exp(β10)

1+exp(β10)
, and π[4]2 =

1
1+exp(β10)

.

Global regression form: π[4]1 =
exp(x′[4]1θ∗)

∑2
g=1 exp(x′

[4]gθ∗) , and π[4]2 =
exp(x′[4]2θ∗)

∑2
g=1 exp(x′

[4]gθ∗) .

2.2.2.3.1 (b) Estimating Equations: Local Regression Approach

For convenience we rewrite the binary probabilities under all four levels as
Level 1 (Occasional snoring):
Probabilities: π[1]1 =

exp(β10+β11)
1+exp(β10+β11)

, and π[1]2 =
1

1+exp(β10+β11)
.

Local regression parameters: θ1 = (β10,β11)
′.

Local regression form: π[1]1 =
exp(x̃′[1]1θ1)

∑2
g=1 exp(x̃′

[1]gθ1)
, and π[1]2 =

exp(x̃′[1]2θ1)

∑2
g=1 exp(x̃′

[1]gθ1)
, yielding

the X̃1 : J×2(J−1) matrix (see (2.78)) as

X̃1 =

(
1 1
0 0

)

.

Level 2 (Nearly every night snoring):
Probabilities: π[2]1 =

exp(β10+β12)
1+exp(β10+β12)

, and π[2]2 =
1

1+exp(β10+β12)
.

Local regression parameters: θ2 = (β10,β12)
′.

Local regression form: π[2]1 =
exp(x̃′[2]1θ2)

∑2
g=1 exp(x̃′

[2]gθ2)
, and π[2]2 =

exp(x̃′[2]2θ2)

∑2
g=1 exp(x̃′

[2]gθ2)
, yielding

the X̃2 : J×2(J−1) matrix (see (2.78)) as

X̃2 =

(
1 1
0 0

)

.
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Level 3 (Every night snoring):
Probabilities: π[3]1 =

exp(β10+β13)
1+exp(β10+β13)

, and π[3]2 =
1

1+exp(β10+β13)
.

Local regression parameters: θ3 = (β10,β13)
′.

Local regression form: π[3]1 =
exp(x̃′[3]1θ3)

∑2
g=1 exp(x̃′

[3]gθ3)
, and π[3]2 =

exp(x̃′[3]2θ3)

∑2
g=1 exp(x̃′

[3]gθ3)
, yielding

the X̃3 : J×2(J−1) matrix (see (2.78)) as

X̃3 =

(
1 1
0 0

)

.

Level 4 (Never snoring):
Probabilities: π[4]1 =

exp(β10)
1+exp(β10)

, and π[4]2 =
1

1+exp(β10)
.

Local regression parameters: θ4 = (β10).

Local regression form: π[4]1 =
exp(x̃′[4]1θ4)

∑2
g=1 exp(x̃′

[4]gθ4)
, and π[4]2 =

exp(x̃′[4]2θ4)

∑2
g=1 exp(x̃′

[4]gθ4)
, yielding

the X̃4 : J× (J−1) matrix (see (2.79)) as

X̃4 =

(
1
0

)

.

The likelihood estimating equation for

θ� =
{
(β ′

0,β ′
�)

′ = (β10,β1�)
′ : 2(J−1)×1; for �= 1, . . . , p,

β10 for �= p+1 = 4,

by (2.79), has the form

X̃ ′
�(y[�]−K[�]π[�]) = 0,

for �= 1, . . . ,4. Next in this special case with

θ = (β ′
0,β ′

1, . . . ,β ′
p)

′ = (β10,β11,β12,β13)
′

the estimating equation for this parameter θ , by (2.80), has the form

4

∑
�=1

Q�X̃
′
�(y[�]−K[�]π[�]) = 0, (2.85)

where

Q� =
∂θ ′

�

∂θ
,
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for all �= 1, . . . ,4, have the forms

Q1 =

⎛

⎜
⎜
⎝

1 0
0 1
0 0
0 0

⎞

⎟
⎟
⎠ ,Q2 =

⎛

⎜
⎜
⎝

1 0
0 0
0 1
0 0

⎞

⎟
⎟
⎠ ,Q3 =

⎛

⎜
⎜
⎝

1 0
0 0
0 0
0 1

⎞

⎟
⎟
⎠ ,Q4 =

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠ .

2.2.2.3.1 (c) Equivalence of the Likelihood Equations (2.59)(i), (2.84)(ii), and
(2.85)(iii)

(i) The estimating equation (2.59) has the form

K

∑
i=1

⎛

⎜
⎜
⎝

1
wi1

wi2

wi3

⎞

⎟
⎟
⎠ [yi1 −πi] = 0,

which, by using

K

∑
i=1

yi1 = K[·]1,
K

∑
i=1

π(i)1 =
4

∑
�=1

K[�]π[�]1

K

∑
i=1

yi1zi1 = K[1]1,
K

∑
i=1

wi1π(i)1 = K[1]π[1]1

K

∑
i=1

yi1wi2 = K[2]1,
K

∑
i=1

wi2π(i)1 = K[2]π[2]1

K

∑
i=1

yi1wi3 = K[3]1,
K

∑
i=1

wi3π(i)1 = K[3]π[3]1, (2.86)

reduces to
⎛

⎜
⎜
⎜
⎝

K[·]1 −∑4
�=1 K[�]π[�]1

K[1]1 −K[1]π[1]1

K[2]1 −K[2]π[2]1

K[3]1 −K[3]π[3]1

⎞

⎟
⎟
⎟
⎠

= 0. (2.87)

(ii) Next, the estimating equation in (2.84) has the form

p+1

∑
�=1

X ′
�

[
y[�]−K[�]π[�]

]
= 0,
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which, for convenience, we re-express as

⎛

⎜
⎜
⎝

1 0
1 0
0 0
0 0

⎞

⎟
⎟
⎠

(
K[1]1 −K[1]π[1]1

K[1]2 −K[1]π[1]2

)

+

⎛

⎜
⎜
⎝

1 0
0 0
1 0
0 0

⎞

⎟
⎟
⎠

(
K[2]1 −K[2]π[2]1

K[2]2 −K[2]π[2]2

)

+

⎛

⎜
⎜
⎝

1 0
0 0
0 0
1 0

⎞

⎟
⎟
⎠

(
K[3]1 −K[3]π[3]1

K[3]2 −K[3]π[3]2

)

+

⎛

⎜
⎜
⎝

1 0
0 0
0 0
0 0

⎞

⎟
⎟
⎠

(
K[4]1 −K[4]π[4]1

K[4]2 −K[4]π[4]2

)

= 0. (2.88)

After a simple algebra, (2.88) reduces to (2.87).
(iii) Further, the estimating equation (2.85) has the form

p+1

∑
�=1

Q�X̃
′
�(y[�]−K[�]π[�]) = 0.

Now to see that this estimating equation is the same as (2.88), one has to simply
verify that Q�X̃ ′

� = X ′
� for � = 1, . . . , p+ 1. As the algebra below shows, this

equality holds. Here

Q1X̃ ′
1 =

⎛

⎜
⎜
⎝

1 0
0 1
0 0
0 0

⎞

⎟
⎟
⎠

(
1 0
1 0

)

=

⎛

⎜
⎜
⎝

1 0
1 0
0 0
0 0

⎞

⎟
⎟
⎠= X ′

1,

Q2X̃ ′
2 =

⎛

⎜
⎜
⎝

1 0
0 0
0 1
0 0

⎞

⎟
⎟
⎠

(
1 0
1 0

)

=

⎛

⎜
⎜
⎝

1 0
0 0
1 0
0 0

⎞

⎟
⎟
⎠= X ′

2,

Q3X̃ ′
3 =

⎛

⎜
⎜
⎝

1 0
0 0
0 0
0 1

⎞

⎟
⎟
⎠

(
1 0
1 0

)

=

⎛

⎜
⎜
⎝

1 0
0 0
0 0
1 0

⎞

⎟
⎟
⎠= X ′

3,

Q4X̃ ′
4 =

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠

(
1 0
)
=

⎛

⎜
⎜
⎝

1 0
0 0
0 0
0 0

⎞

⎟
⎟
⎠= X ′

4.

Hence, as expected, all three estimating equations are same. Note that the estimating
equation (2.59) requires individual level information, whereas the estimating equa-
tions (2.84) and (2.85) are based on grouped or contingency type data. Between
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(2.84) and (2.85), it is easier to construct the X̃� matrices in (2.85) as coefficients
of the local level parameters than constructing similar matrices X� for (2.84)
corresponding to global parameters. However, unlike in (2.85), there is no need of
constructing the chain derivative matrices Q�, in (2.84). Thus, it is up to the users
to choose between (2.84) and (2.85). In this book we will mostly follow the global
parameters based estimating equation (2.84).

2.2.2.3.1 (d) Illustration 2.3 Continued: Application of the Product Binomial
Model to the Snoring and Heart Disease Problem

Forming the X�(� = 1, . . . ,4) matrices and writing the probabilities in global
regression form as in Sect. 2.2.2.3.1(a), and using the 4× 2 cross-table data from
Table 2.3, we now solve the likelihood estimating equation (2.85) (see also (2.71))
using the iterative equation (2.75). To be specific, because the observed probabilities
under category one (having heart disease) are relatively much smaller as compared
to those under category two, starting with an initial value of β10,0 = −3.0 and
small positive initial values for other parameters (β11,0 = β12,0 = β13,0 = 0.10), the
iterative equation (2.75) yielded converged estimates for these four parameters in
five iterations. These estimates were then used in (2.76) to compute the estimated
variances and pair-wise covariances of the estimators. The estimates and their
corresponding estimated standard errors are given in Table 2.5 below.

Note that as the snoring status is considered to be a fixed covariate (as
opposed to a response variable) with four levels, the heart disease status of an
individual follow a binary distribution at a given level. For example, it is clear
from Sect. 2.2.2.3.1(a) that an individual belonging to level 4, i.e., who snores every
night (see Table 2.3), has the probability π[4]1 =

exp(β10)
1+exp(β10)

for having a heart disease.

Table 2.5 Parameter
estimates for the snoring and
heart disease data of Table 2.3

Regression parameters
Quantity β10 β20 β30 β40

Estimate −4.034 1.187 1.821 2.023

Standard error 0.206 0.269 0.309 0.283

Table 2.6 Observed and estimated probabilities for the snoring and heart
disease data

Heart disease
Yes No

Snoring level Observed Estimated Observed Estimated
Occasionally 0.055 0.055 0.945 0.945

Nearly every night 0.099 0.099 0.901 0.901

Every night 0.118 0.118 0.882 0.882

Never 0.017 0.017 0.983 0.983
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These probabilities at all four levels may now be estimated by using the parameter
estimates from Table 2.5. These estimated probabilities along with their respective
observed probabilities are shown in Table 2.6.

Notice from the results in Table 2.6 that there is no difference between the
observed and estimated probabilities at any snoring level. This result is expected
because of the fact that the product binomial model is constructed with four
independent regression parameters to fit data in four independent cells. This type
of models are known as saturated models. In summary, the product binomial model
and the estimation of its parameters by using the likelihood approach appear to
be perfect for both fitting and interpretation of the data. Note that the observed
and estimated probabilities appear to support that as the snoring level increases the
probability for an individual to have a heart disease gets larger.

Remark that when the same snoring data is analyzed by using the snoring as a
covariate with arbitrary codes, as it was done in Sect. 2.2.1.1(a) following Agresti
(2002, Section 4.2.3, p. 121–123), one obtains the estimated probabilities for an
individual to have a heart disease as

0.049, 0.094, 0.134, 0.020

based on individual’s corresponding snoring level: occasional; nearly every night;
every night; or never. Agresti (2002, Table 4.2) reported these probabilities as

0.044, 0.093, 0.132, 0.021,

which are slightly different. In any case, these estimated probabilities, as opposed
to the estimated probabilities shown in Table 2.6, appear to be far apart from the
corresponding observed probabilities under the ‘yes’ heart disease category. Thus,
it is recommended not to use any modeling approach based on arbitrary coding for
the fixed categorical covariates.

2.2.2.4 Illustrations Using Multinomial Regression Models Involving
Responses with J > 2 Categories Along with One Two Levels
Categorical Covariate

2.2.2.4.1 Illustration 2.4: Analysis of 2× J(= 3) Aspirin and Heart Attacks
Data Using Product Multinomial Approach

To illustrate the application of product multinomial model (2.68)–(2.69) we revisit
here the aspirin use and heart attack data set earlier described by Agresti (2002,
Section 2.1.1), for example, using a full multinomial (or log linear model) approach.
We reproduce the data set below in Table 2.7. We describe and analyze this data
using product multinomial approach.

This data set was originally recorded from a report on the relationship between
aspirin use and heart attacks by the Physicians Health Study Research Group at
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Table 2.7
Cross-classification of aspirin
use and myocardial infarction

Myocardial infarction
Fatal Non-Fatal No
Attack Attack Attack Total

Aspirin 5 99 10,933 11,037

Placebo 18 171 10,845 11,034

Total 23 270 21,778 22,071

Harvard Medical School. The Physicians Health Study was a 5 year randomized
study of whether regular aspirin intake reduces mortality from cardiovascular
disease. A physician participating in the study took either one aspirin tablet or a
placebo, every other day, over the 5 year study period. This was a blind study
for the participants as they did not know whether they were taking aspirin or
a placebo for all these 5 years. By considering the heart attack status as one
multinomial response variable with three categories (fatal, non-fatal, and no attacks)
and the treatment as another multinomial response variable with two categories
(placebo and aspirin use), Agresti (2002) used a full multinomial approach and
described the association (correlation equivalent) between the two variables through
computing certain odds ratios. In notation, let zi = (zi1, . . . ,zir, . . . ,zi,R−1)

′ be the
second multinomial response, but, with R categories, so that when zi is realized at
the rth category, one writes

z(r)i = (01′r−1,1,01′R−1−r)
′, for r = 1, . . . ,R−1; and z(R)i = 01′R−1.

Then many existing approaches write the joint probabilities, for example, for the
aspirin use and heart attack data, as

πr j = P[zi = z(r)i ,yi = y( j)
i ], for all i = 1, . . . ,22071, r = 1,2, j = 1, . . . ,3

=
exp(αr +β j +φr j)

∑2
r=1 ∑3

j=1 exp(αr +β j +φr j)

=
mr j

∑2
r=1 ∑3

j=1 mr j
=

mr j

m
, (2.89)

where αr is the rth category effect of the z variable, β j is the jth category effect of
the y variable, and φr j is the corresponding interaction effect of y and z variables,
on any individual. These parameters are restricted by the dependence of the last
category of each variable on their remaining independent categories. Thus, in this
example, one may use

α2 = β3 = φ13 = φ21 = φ22 = φ23 = 0,

and fit the full multinomial model to the data in Table 2.7 by estimating the
parameters

α1,β1,β2,φ11, and φ12.
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The estimation is achieved by maximizing the full multinomial likelihood

L(θ ∗) = Π 2
r=1Π 3

j=1πKr j
r j , (2.90)

with respect to θ ∗ = (α1,β1,β2,φ11,φ12)
′, where Kr j is the number of individuals in

the (r, j)th cell in Table 2.7, for example, K12 = 99.
This full multinomial approach, that is, considering the treatment as a response

variable, lacks justification. This can be understood simply by considering a
question that, under the study condition, can the response of one randomly chosen
individual out of 22,071 participants belong to one of the six cells in the Table 2.7.
This is not possible, because, even though, the placebo pill or aspirin was chosen by
some one for a participant with a prior probability, the treatment was made fixed for
an individual participant for the whole study period. Thus, treatment variable here
must be considered as a fixed regression covariate with two levels. This prompted
one to reanalyze this data set by using the product multinomial model (2.68)–(2.69)
by treating heart attack status as the multinomial response variable only and the
treatment as a categorical covariate with two levels. By this token, for both cross-
sectional and longitudinal analysis, this book emphasizes on appropriate modeling
for the categorical data by distinguishing categorical covariates from categorical
responses.

Product multinomial global regression approach:

Turning back to the analysis of the categorical data in Table 2.7, following (2.69) we
first write the multinomial probabilities at two levels of the treatment covariate as
follows. Note that in notation of the model (2.69), for this heart attack and aspirin
use data, we write J = 3 and p+1 = 2, and

θ ∗ = (β10,β11,β20,β21)
′.

When the model (2.68)–(2.69) is compared with (2.90)–(2.91), α1 from the latter
model is not needed. Also, even though

β10,β20,β11,β21

in the model (2.69) are, respectively, equivalent to the notations

β1,β2,φ11,φ12

of the model (2.90), they do not have, however, the same interpretation. This is
because, β11 and β21 in (2.69) are simply regression effects of the covariate level 1
on first two categories, whereas φ11 and φ12 in (2.90) are treated to be association
or odds ratio parameters. But, there is a definition problem with these odds ratio
parameters in this situation, because treatment here cannot represent a response
variable.
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Now for the product multinomial model (2.68)–(2.69), one writes the level based
{J× (J−1)(p+1)} ≡ {3×4} covariate matrices as

X1 =

⎛

⎝
1 1 0 0
0 0 1 1
0 0 0 0

⎞

⎠

X2 =

⎛

⎝
1 0 0 0
0 0 1 0
0 0 0 0

⎞

⎠ .

Then the cell probabilities and their forms in terms of the global parameters θ ∗ =
(β10,β11,β20,β21)

′ are given by
Level 1 (Aspirin user):
Response count: K[1]1 = 5, K[1]2 = 99, K[1]3 = 10,933, K[1] = 11,037.
Probabilities:

π[1]1 =
exp(β10 +β11)

1+∑2
g=1 exp(βg0 +βg1)

, π[1]2 =
exp(β20 +β21)

1+∑2
g=1 exp(βg0 +βg1)

,

π[1]3 =
1

1+∑2
g=1 exp(βg0 +βg1)

. (2.91)

Global regression form:

π[1]1 =
exp(x′[1]1θ ∗)

∑3
j=1 exp(x′

[1] jθ ∗)
, π[1]2 =

exp(x′[1]2θ ∗)

∑3
j=1 exp(x′

[1] jθ ∗)
,

π[1]3 =
exp(x′[1]3θ ∗)

∑3
j=1 exp(x′

[1] jθ ∗)
,

where x′[1]2, for example, is the second row vector of the above written X1 : 3× 4
matrix.
Level 2 (Placebo user):
Response count: K[2]1 = 18, K[2]2 = 171, K[2]3 = 10,845, K[2] = 11,034.
Probabilities:

π[2]1 =
exp(β10)

1+∑2
g=1 exp(βg0)

, π[2]2 =
exp(β20)

1+∑2
g=1 exp(βg0)

,

π[2]3 =
1

1+∑2
g=1 exp(βg0)

. (2.92)
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Table 2.8 Parameter
estimates for the treatment
and heart attack status data of
Table 2.7

Regression parameters
Quantity β10 β11 β20 β21

Estimate −6.401 −1.289 −4.150 −0.555

Standard error 0.2360 0.5057 0.0771 0.1270

Global regression form:

π[2]1 =
exp(x′[2]1θ ∗)

∑3
j=1 exp(x′

[2] jθ ∗)
, π[2]2 =

exp(x′[2]2θ ∗)

∑3
j=1 exp(x′

[2] jθ ∗)
,

π[2]3 =
exp(x′[2]3θ ∗)

∑3
j=1 exp(x′

[2] jθ ∗)
.

Now following (2.71) and using the iterative equation (2.75), we solve the
product multinomial based likelihood estimating equation

2

∑
�=1

X ′
�

[
y[�]−K[�]π[�]

]
= 0, (2.93)

where

y[�] =

⎛

⎜
⎝

K[�]1

K[�]2

K[�]3

⎞

⎟
⎠ and π[�] =

⎛

⎜
⎝

π[�]1

π[�]2

π[�]3

⎞

⎟
⎠ .

These estimates and their corresponding standard errors computed by using (2.76)
are reported in Table 2.8.

In order to interpret these parameter estimates, notice from the formulas from
the probabilities under level 2 (placebo group) that the values of β10 and β20 would
determine the probabilities of a placebo user individual to be in the ‘fatal attack’
or ‘non-fatal attack’ group, as compared to β30 = 0 used for probability for the
same individual to be in the reference group, that is, in the ‘no attack’ group. To
be specific, when the large negative values of β10(= −6.401) and β20(= −4.150)
are compared to β30 = 0, it becomes clear by (2.92) that the probability of a
placebo user to be in the ‘no attack’ group is very large, as expected, followed
by the probabilities for the individual to be in the ‘non-fatal’ and fatal groups,
respectively. Further because the value of β10+β11 would determine the probability
of an aspirin user in the ‘fatal attack’ group, the negative value of β11(= −1.289)
shows that an aspirin user has smaller probability than a placebo user to be in the
‘fatal attack’ group. Other estimates can be interpreted similarly. Now by using
these estimates from Table 2.8, the estimates for all three categorized multinomial
probabilities in (2.91) under aspirin user treatment level, and in (2.92) under
placebo user treatment level, may be computed. These estimated probabilities along
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Table 2.9 Observed and estimated multinomial probabilities for
the treatment versus heart attack status data of Table 2.7

Myocardial Infarction
Proportion/ Fatal Non-Fatal No
Probability Attack Attack Attack Total

Aspirin Observed 0.00045 0.00897 0.99058 1.00
Estimated 0.00045 0.00897 0.99058 1.00

Placebo Observed 0.00163 0.01550 0.98287 1.00
Estimated 0.00163 0.01550 0.98287 1.00

with their counterpart (observed proportions) are displayed in Table 2.9. Similar to
Table 2.6 for the snoring and heart disease problem data, it is clear from Table 2.9
that the observed and estimated probabilities are same. This happens because the
four independent parameters, namely β10, β11, β20, and β21 are used to define
the probabilities in (2.91)–(2.92) (see also (2.68)–(2.69)) to fit four independent
observations, two under aspirin user treatment level and another two under the
placebo user treatment level. Thus a saturated model is fitted through solving the
corresponding optimal likelihood estimating equations (2.93), and the parameter
estimates shown in Table 2.8 are consistent and highly efficient (details are not
discussed here).

Remark that the estimates of the regression parameters under two (independent)
categories shown in Table 2.8 were obtained by applying the product multinomial
estimating equation (2.93) to the observed data given in the contingency Table 2.7.
However, because the data in this table are clearly laid out under each of the
two treatment levels, one may easily reconstruct the individual level response
and covariate information without any identity of the individual. Suppose that the
treatment covariate is defined as

wi =

{
1 for aspirin taken by the ith individual
0 otherwise,

and the multinomial response of this individual is given by

yi =

⎧
⎨

⎩

(1, 0)′ if this ith individual had fatal attack
(0, 1)′ if this ith individual had non fatal attack
(0, 0)′ otherwise, i.e., if this ith individual had no attack.

Consequently, one may directly solve the individual history based multinomial
likelihood estimating equation (2.48) to obtain the same estimates (as in Table 2.8)
of the regression parameters involved in the probability model (2.45).

Turning back to the results shown in Table 2.9, it is clear that the estimated
proportion of individuals whose heart attack was either fatal or non-fatal is shown to
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Table 2.10
Cross-classification of gender
and physician visit

Physician visit status
Gender None Few Not so few High Total

Male 28 40 16 12 96

Female 11 20 21 32 84

Total 38 62 36 44 180

be (0.00045+0.00897)= 0.00942 for the aspirin group, and (0.00164+0.01562)=
0.01726 for the placebo group, indicating the advantage of using aspirin as
opposed to using none. This type of comparison is also available in Agresti (1990,
Section 2.2.4, page 17), but by using only observed data. Later on it was emphasized
in Agresti (2002, Section 2.1.1) for the comparison of the distribution of responses
under each treatment level, but unlike in this section, no model was fitted.

2.2.2.4.2 Analysis of Physician Visits Data with J = 4 Categories

We continue to illustrate the application of the product multinomial likelihood
models now by considering the physician visits data described in Table 2.1. We
consider the physician visits in four categories: none, few, not so few, and high visits,
as indicated in Table 2.2, whereas there were three categories for heart attack status
in the treatment versus heart attack data considered in the last section. To be specific,
for the physician visits data, we will fit the product multinomial models to examine
the marginal effects of (1) gender; (2) chronic disease; and (3) education levels, on
the physician visits, in the following Sects. 2.2.2.4.2(a), (b), and (c), respectively.

2.2.2.4.2 (a) Illustration 2.5: Analysis for Gender Effects on Physician Visits

To examine the gender effects on the physician visits we use the data from Table 2.1
and display them in the 2× 4 contingency Table 2.10. For convenience of fitting
the product multinomial model (2.67)–(2.69) to this data, for each gender level we
write the multinomial observation, probabilities under each of four categories, and
the global regression form along with corresponding covariate matrix, as follows:
Level 1 (Male):
Response count: K[1]1 = 27, K[1]2 = 42, K[1]3 = 15, K[1]4 = 12, K[1] = 96.
Probabilities:

π[1]1 =
exp(β10 +β11)

1+∑3
g=1 exp(βg0 +βg1)

, π[1]2 =
exp(β20 +β21)

1+∑3
g=1 exp(βg0 +βg1)

,

π[1]3 =
exp(β30 +β31)

1+∑3
g=1 exp(βg0 +βg1)

, π[1]4 =
1

1+∑3
g=1 exp(βg0 +βg1)

. (2.94)
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Global regression form:

π[1]1 =
exp(x′[1]1θ ∗)

∑4
j=1 exp(x′

[1] jθ ∗)
, π[1]2 =

exp(x′[1]2θ ∗)

∑4
j=1 exp(x′

[1] jθ ∗)
,

π[1]3 =
exp(x′[1]3θ ∗)

∑4
j=1 exp(x′

[1] jθ ∗)
,π[1]4 =

exp(x′[1]4θ ∗)

∑4
j=1 exp(x′

[1] jθ ∗)
,

where

θ ∗ = (β10,β11,β20,β21,β30,β31)
′,

and x′[1]3, for example, is the third row vector of the X1 : 4×6 matrix given by

X1 =

⎛

⎜
⎜
⎝

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0

⎞

⎟
⎟
⎠ . (2.95)

Level 2 (Female):
Response count: K[2]1 = 11, K[2]2 = 20, K[2]3 = 21, K[2]4 = 32, K[2] = 84.
Probabilities:

π[2]1 =
exp(β10)

1+∑3
g=1 exp(βg0)

, π[2]2 =
exp(β20)

1+∑3
g=1 exp(βg0)

,

π[2]3 =
exp(β30)

1+∑3
g=1 exp(βg0)

, π[2]4 =
1

1+∑3
g=1 exp(βg0)

. (2.96)

Global regression form:

π[2]1 =
exp(x′[2]1θ ∗)

∑4
j=1 exp(x′

[2] jθ ∗)
, π[2]2 =

exp(x′[2]2θ ∗)

∑4
j=1 exp(x′

[2] jθ ∗)
,

π[2]3 =
exp(x′[2]3θ ∗)

∑4
j=1 exp(x′

[2] jθ ∗)
,π[2]4 =

exp(x′[2]4θ ∗)

∑4
j=1 exp(x′

[2] jθ ∗)
,

where θ ∗ remains the same as

θ ∗ = (β10,β11,β20,β21,β30,β31)
′,

and x′[2]3, for example, is the third row vector of the X2 : 4×6 matrix given by
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Table 2.11 Parameter estimates for the gender and physician visit status data
of Table 2.10

Regression parameters
Quantity β10 β11 β20 β21 β30 β31

Estimate −1.068 1.915 −0.470 1.674 −0.421 0.709

Standard error 0.3495 0.4911 0.2850 0.4354 0.2808 0.4740

X2 =

⎛

⎜
⎜
⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

⎞

⎟
⎟
⎠ . (2.97)

Now following (2.71) and using the iterative equation (2.75), we solve the
product multinomial based likelihood estimating equation

2

∑
�=1

X ′
�

[
y[�]−K[�]π[�]

]
= 0, (2.98)

where

y[�] =

⎛

⎜
⎜
⎜
⎝

K[�]1

K[�]2

K[�]3

K[�]4

⎞

⎟
⎟
⎟
⎠

and π[�] =

⎛

⎜
⎜
⎜
⎝

π[�]1

π[�]2

π[�]3

π[�]3

⎞

⎟
⎟
⎟
⎠
.

These estimates and their corresponding standard errors computed by using (2.76)
are reported in Table 2.11.

Notice from (2.96) that the estimates of β10, β20, and β30 indicate the relative
probability for a female to be in none, few, and not so few categories, respectively,
as compared to the probability for high category determined by β40 = 0 (by
assumption).

Because all three estimates are negative, the estimate for β10 being large negative,
it follows that a female has the highest probability to be in ‘high visit’ group and
smallest probability to be in the ‘none’ (never visited) group. By the same token, it
follows from (2.94) that the largest value for β20+β21 = 1.204 estimate as compared
to its reference value 0.0 indicates that a male has the highest probability to be in
the ‘few visits’ group. These probabilities can be verified from Table 2.12 where
we have displayed the estimated as well as observed probabilities. In summary, the
estimated probabilities in Table 2.12 show that a female visits the physician for more
number of times as compared to a male. These results are in agreement with those
of health care utilization study reported in Sutradhar (2011, Section 4.2.8) where
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Table 2.12 Observed and estimated multinomial probabilities for the
gender versus physician visits data of Table 2.10

Physician visit status

Gender Probability None Few Not so few High Total

Male Observed 0.2917 0.4166 0.1667 0.1250 1.0

Estimated 0.2917 0.4166 0.1667 0.1250 1.0

Female Observed 0.1309 0.2381 0.2500 0.3810 1.0

Estimated 0.1309 0.2381 0.2500 0.3810 1.0

Table 2.13
Cross-classification of
chronic condition and
physician visit

Physician visit status

Chronic condition None Few Not so few High Total

Yes 13 25 21 33 92

No 26 35 16 11 88

Total 39 60 37 44 180

the actual number of visits (as opposed to visit category) were analyzed by fitting
a familial/clustered model using the so-called generalized quasi-likelihood (GQL)
estimation approach.

2.2.2.4.2 (b) Illustration 2.6: Analysis for Chronic Condition Effects
on Physician Visits

To examine the chronic condition effects on the number of visits, we first display
the physician visit data in the form a contingency (cross-classified) table. More
specifically, the 2 × 4 cross-classified Table 2.13 shows the distribution of the
number of the respondents under four visit categories at a given chronic condition
level. The chronic condition covariate has two levels. One of the levels represents
the individuals with no chronic disease, and the individuals with one or more
chronic disease have been assigned to the other group (level). Note that because
both Tables 2.10 and 2.13 contain one categorical covariate with two levels, the
probability models for the data in Table 2.13 would be the same as that of Table 2.10.
The only difference is in the names of the levels. For this reason we do not reproduce
the probability formulas and the form of X� matrices. However because the data are
naturally different we write them in notation as follows:
Chronic condition level 1 (Yes):
Response count: K[1]1 = 13, K[1]2 = 25, K[1]3 = 21, K[1]4 = 33, K[1] = 92.
Chronic condition level 2 (No):
Response count: K[2]1 = 25, K[2]2 = 37, K[2]3 = 15, K[2]4 = 11, K[2] = 88.
We then solve the product multinomial likelihood estimating equation (2.98). The
estimates of the regression parameters involved in the probability formulas (2.94)
and (2.96) for the cross-classified data in Table 2.13 are given in Table 2.14. The
estimates probabilities are shown in Table 2.15.
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Table 2.14 Parameter estimates for the chronic condition and physician visit
status data of Table 2.13

Regression parameters
Quantity β10 β11 β20 β21 β30 β31

Estimate 0.860 −1.792 1.157 −1.435 0.375 −0.827

Standard error 0.3597 0.4864 0.3457 0.4356 0.3917 0.4810

Table 2.15 Observed and estimated multinomial probabilities for the chronic condi-
tion versus physician visits data of Table 2.13

Physician visit status

Chronic condition Probability None Few Not so few High Total

Yes Observed 0.1413 0.2717 0.2283 0.3587 1.0

Estimated 0.1413 0.2717 0.2283 0.3587 1.0

No Observed 0.2955 0.3977 0.1818 0.1250 1.0

Estimated 0.2955 0.3977 0.1818 0.1250 1.0

Notice from (2.96) that the estimates of β10, β20, and β30, would indicate the
relative probability for an individual with no chronic disease to be in none, few, and
not so few categories, respectively, as compared to the probability for being in high
category determined by β40 = 0 (by assumption). Consequently,

β̂20 = 1.157 > β̂10 > β̂30 > β40 = 0

indicates that an individual with no chronic disease has higher probability of paying
no visits or a few visits, as compared to paying higher number of visits, which is
expected. By the same token,

[β̂10 + β̂11 = 0.860−1.792 =−0.932]< [β̂30 + β̂31]< [β̂20 + β̂21]< 0,

indicates that an individual with chronic disease has higher probability of paying
larger number of visits. Note however that these estimates also indicate that
irrespective of chronic condition a considerably large number of individuals pay
at least a few visits, which may be natural or due to other covariate conditions.

2.2.2.4.2 (c) Illustration 2.7: Analysis for Education Level Effects
on Physician Visits

We continue to illustrate the application of product multinomial approach now by
examining the marginal effects of education status of an individual on the physician
visit. Three levels of education are considered, namely low (less than high school
education), medium (high school education), and high (more than high school
education). The cross-classified data for education level versus physician visits,
obtained from Table 2.1, are shown in Table 2.16.
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Table 2.16 Cross-classification of education level and physician visit

Physician visit status

Education level None Few Not so few High Total

Low (< High School) 17 16 10 15 58

Medium (High School) 6 8 8 11 33

High (> High School) 16 36 19 18 89

Total 39 60 37 44 180

Notice that it is appropriate to consider the education level at a given year (1985)
as a fixed covariate. Here this covariate has three levels and two dummy covariates
can be used to represent these three levels of education. Now to construct the
likelihood estimating equation (2.71), following (2.69), we, for convenience, present
the probabilities and their regression form as follows.
Level 1 (Low education):
Response count: K[1]1 = 17, K[1]2 = 16, K[1]3 = 10, K[1]4 = 15, K[1] = 58.
Probabilities:

π[1]1 =
exp(β10 +β11)

1+∑3
g=1 exp(βg0 +βg1)

, π[1]2 =
exp(β20 +β21)

1+∑3
g=1 exp(βg0 +βg1)

,

π[1]3 =
exp(β30 +β31)

1+∑3
g=1 exp(βg0 +βg1)

, π[1]4 =
1

1+∑3
g=1 exp(βg0 +βg1)

. (2.99)

Global regression form: For

θ ∗ = (β10,β11,β12,β20,β21,β22,β30,β31,β32)
′,

the above probabilities may be re-expressed as

π[1]1 =
exp(x′[1]1θ ∗)

∑4
j=1 exp(x′

[1] jθ ∗)
, π[1]2 =

exp(x′[1]2θ ∗)

∑4
j=1 exp(x′

[1] jθ ∗)
,

π[1]3 =
exp(x′[1]3θ ∗)

∑4
j=1 exp(x′

[1] jθ ∗)
,π[1]4 =

exp(x′[1]4θ ∗)

∑4
j=1 exp(x′

[1] jθ ∗)
,

where x′[1]3, for example, is the third row vector of the X1 : 4×9 matrix given by

X1 =

⎛

⎜
⎜
⎝

1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎠ . (2.100)
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Level 2 (Medium education):
Response count: K[2]1 = 6, K[2]2 = 8, K[2]3 = 8, K[2]4 = 11, K[2] = 33.
Probabilities:

π[2]1 =
exp(β10 +β12)

1+∑3
g=1 exp(βg0 +βg2)

, π[2]2 =
exp(β20 +β22)

1+∑3
g=1 exp(βg0 +βg2)

,

π[2]3 =
exp(β30 +β32)

1+∑3
g=1 exp(βg0 +βg2)

, π[2]4 =
1

1+∑3
g=1 exp(βg0 +βg2)

. (2.101)

Global regression form:

π[2]1 =
exp(x′[2]1θ ∗)

∑4
j=1 exp(x′

[2] jθ ∗)
, π[2]2 =

exp(x′[2]2θ ∗)

∑4
j=1 exp(x′

[2] jθ ∗)
,

π[2]3 =
exp(x′[2]3θ ∗)

∑4
j=1 exp(x′

[2] jθ ∗)
,π[2]4 =

exp(x′[2]4θ ∗)

∑4
j=1 exp(x′

[2] jθ ∗)
,

where θ ∗ remains the same, but the covariate matrix X2 is given by

X2 =

⎛

⎜
⎜
⎝

1 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎠ . (2.102)

Level 3 (High education):
Response count: K[3]1 = 16, K[2]2 = 36, K[3]3 = 19, K[3]4 = 18, K[3] = 89.
Probabilities:

π[3]1 =
exp(β10)

1+∑3
g=1 exp(βg0)

, π[3]2 =
exp(β20)

1+∑3
g=1 exp(βg0)

,

π[3]3 =
exp(β30)

1+∑3
g=1 exp(βg0)

, π[3]4 =
1

1+∑3
g=1 exp(βg0)

. (2.103)

Global regression form:

π[3]1 =
exp(x′[3]1θ ∗)

∑4
j=1 exp(x′

[3] jθ ∗)
, π[3]2 =

exp(x′[3]2θ ∗)

∑4
j=1 exp(x′

[3] jθ ∗)
,

π[3]3 =
exp(x′[3]3θ ∗)

∑4
j=1 exp(x′

[3] jθ ∗)
,π[3]4 =

exp(x′[3]4θ ∗)

∑4
j=1 exp(x′

[3] jθ ∗)
,



52 2 Overview of Regression Models for Cross-Sectional Univariate Categorical Data

Table 2.17 Parameter estimates for the education level and physician visit status data of
Table 2.16

Regression parameters

Quantity β10 β11 β12 β20 β21 β22 β30 β31 β32

Estimate −0.118 0.243 −0.488 0.693 −0.629 −1.012 0.054 −0.460 −0.373

Standard error 0.3436 0.4935 0.6129 0.2887 0.4610 0.5470 0.3289 0.5243 0.5693

where θ ∗ remains the same, but the covariate matrix X3 is given by

X3 =

⎛

⎜
⎜
⎝

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎠ . (2.104)

Now following (2.71) and using the iterative equation (2.75), we solve the
product multinomial based likelihood estimating equation

2

∑
�=1

X ′
�

[
y[�]−K[�]π[�]

]
= 0, (2.105)

where

y[�] =

⎛

⎜
⎜
⎜
⎝

K[�]1

K[�]2

K[�]3

K[�]4

⎞

⎟
⎟
⎟
⎠

and π[�] =

⎛

⎜
⎜
⎜
⎝

π[�]1

π[�]2

π[�]3

π[�]4

⎞

⎟
⎟
⎟
⎠
.

These estimates and their corresponding standard errors computed by using (2.76)
are reported in Table 2.17. Further by using these estimates in the probability
formulas in (2.99), (2.101), and (2.103), we compute the estimated probabilities,
which are same as the corresponding observed probabilities. For the sake of
completeness, these probabilities are displayed in Table 2.18.

Notice from (2.103) that the estimates of β10, β20, and β30 indicate the relative
probability for an individual with high education to be in none, few, and not so few
categories, respectively, as compared to the probability for high category determined
by β40 = 0 (by assumption). A large positive value of β̂20 = 0.693 as compared to
β40 = 0 shows that a large proportion of individuals belonging to the high education
group paid a few visits to the physician. Similarly, for the individuals with medium
level education, the negative values of β̂ j0 + β̂ j2 for j = 1,2,3, such as β̂20 + β̂22 =
(0.693 − 1.012) = −0.319, as compared to 0 show that a large proportion of
individuals in this group paid high visits to the physician. On the contrary, by using
(2.99), the largest positive value of β̂10+ β̂11 = (−0.118+0.243) = 0.125 indicates
that a large proportion of individuals in the low education group did not pay any
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Table 2.18 Observed and estimated multinomial probabilities for the education
level versus physician visits data of Table 2.16

Physician visit status

Education level Probability None Few Not so few High Total

Low Observed 0.2931 0.2759 0.1724 0.2586 1.0

Estimated 0.2931 0.2759 0.1724 0.2586 1.0

Medium Observed 0.1819 0.2424 0.2424 0.3333 1.0

Estimated 0.1819 0.2424 0.2424 0.3333 1.0

High Observed 0.1798 0.4045 0.2135 0.2022 1.0

Estimated 0.1798 0.4045 0.2135 0.2022 1.0

visits. Thus, in general, most of the individuals in the low education group paid no
visits to the physician, whereas most of the individuals with higher education paid
a moderate number of visits (few visits). These categorical data based results agree,
in general, with those reported in Sutradhar (2011, Section 4.2.8) based on original
counts. However, the present categorical data based analysis naturally reveals more
detailed pattern of visits.

2.2.3 Multinomial Likelihood Models with L= (p+1)(q+1)
Nominal Levels for Two Covariates with Interactions

Let there be two categorical covariates, one with p+1 levels and the other with q+1
levels. Following (2.45), for an individual i, we use the p-dimensional vector wi =
[wi1, . . . ,wis, . . . ,wip]

′ containing p dummy covariates to represent p+ 1 levels of
the first categorical covariate, and the q-dimensional vector vi = [vi1, . . . ,vim, . . . ,viq]

′
containing q dummy covariates to represent the q+1 levels of the second categorical
covariate. Further, let wi(vi) be a pq-dimensional nested covariate vector with vi

nested within wi. That is,

wi(vi) = [wi1vi1, . . . ,wi1viq,wi2v11, . . . ,wisvim, . . . ,wipviq]
′.

Similar to (2.45), one may then write the probability for the response of the ith
individual to be in the jth ( j = 1, . . . ,J) category as

P[yi = y( j)
i = δi j] = π(i) j =

⎧
⎨

⎩

exp(β j0+β ′
jwi+ξ ′

jvi+φ ∗
j
′wi(vi))

1+∑J−1
g=1 exp(βg0+β ′

gwi+ξ ′
gvi+φ ∗

g
′wi(vi))

for j = 1, . . . , J−1

1
1+∑J−1

g=1 exp(βg0+β ′
gwi+ξ ′

gvi+φ ∗
g
′wi(vi))

for j = J,

(2.106)

where β j = [β j1, . . . ,β js, . . . ,β jp]
′, ξ j = [ξ j1, . . . ,ξ jm, . . . ,ξ jq]

′, and φ ∗
j be the

pq-dimensional vector of interaction effects of the covariates defined as

φ ∗
j = [φ ∗

j11, . . . ,φ ∗
j1q,φ ∗

j21, . . . ,φ ∗
jsm, . . . ,φ ∗

jpq]
′.
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Note that in (2.89), the interaction effects of two response variables are denoted by
{φr j} whereas in (2.106), {φ ∗

jum} represent the interaction effects of two covariates

on the response yi = y( j)
i . Thus, a clear difference is laid out so that one does not

use the same model to deal with contingency tables between two responses, and
the contingency tables between one response and one or two or more categorical
covariates. To be more explicit, one must use the probabilities in (2.89) to construct
a full multinomial model, whereas the probabilities in (2.106) should be used to
construct the product multinomial model.

Note that the p + 1 levels corresponding to the covariate vector wi may be
formed as

(wi1, · · · , wip) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 1, 01′p−1) −→ Level 1
( 01′1, 1, 01′p−2) −→ Level 2
( · · · · · · · · · · · ·)

( 01′�1−1, 1, 01′p−�1
) −→ Level �1

( · · · · · · · · · · · ·)
( 01′p−1, 1 ) −→ Level p

( 01′p) −→ Level p+1

(2.107)

Similarly, the q+1 levels corresponding to the covariate vector vi may be formed as

(vi1, · · · , viq) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 1, 01′q−1) −→ Level 1
( 01′1, 1, 01′q−2) −→ Level 2
( · · · · · · · · · · · ·)

( 01′�2−1, 1, 01′q−�2
) −→ Level �2

( · · · · · · · · · · · ·)
( 01′q−1, 1 ) −→ Level q

( 01′q) −→ Level q+1

(2.108)

Consequently, by (2.106), we may write the level based probabilities for an
individual i, with covariates at level (�1, �2), to be in the jth category as

π[�1,�2] j = π(i∈{�1,�2}) j

=

⎧
⎪⎨

⎪⎩

exp(β j0+β j�1+ξ j�2+φ ∗
j,�1�2

)

1+∑J−1
g=1 exp(βg0+βg�1+ξg�2+φ ∗

g,�1�2
)

for j = 1, . . . ,J−1;�1 = 1, . . . , p;�2 = 1, . . . ,q

1
1+∑J−1

g=1 exp(βg0+βg�1+ξg�2+φ ∗
g,�1�2

)
for j = J; �1 = 1, . . . , p;�2 = 1, . . . ,q,

(2.109)
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π[�1,q+1] j = π(i∈{�1,q+1}) j

=

⎧
⎨

⎩

exp(β j0+β j�1 )

1+∑J−1
g=1 exp(βg0+βg�1 )

for j = 1, . . . ,J−1;�1 = 1, . . . , p

1
1+∑J−1

g=1 exp(βg0+βg�1 )
for j = J; �1 = 1, . . . , p,

(2.110)

π[p+1,�2] j = π(i∈{p+1,�2}) j

=

⎧
⎨

⎩

exp(β j0+ξ j�2
)

1+∑J−1
g=1 exp(βg0+ξg�2

)
for j = 1, . . . ,J−1;�2 = 1, . . . ,q

1
1+∑J−1

g=1 exp(βg0+ξg�2
)

for j = J; �2 = 1, . . . ,q,
(2.111)

and

π[p+1,q+1] j = π(i∈{p+1,q+1}) j

=

⎧
⎨

⎩

exp(β j0)

1+∑J−1
g=1 exp(βg0)

for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0)
for j = J.

(2.112)

Next we display the observed cell counts in notation under all J categories
and covariates level (�1, �2). Note that by transforming the rectangular levels to
a real valued level, that is, using the relabeling formula {� ≡ [(�1 − 1)(q + 1) +
�2], �1 = 1, . . . , p+1;�2 = 1, . . . ,q+1}, one may still use the Table 2.4 after a slight
adjustment to display the cell counts in the present setup with two covariates. The
cell counts with level adjustment are shown in Table 2.19.

Note that even though the cell probabilities in Tables 2.4 and 2.19 are denoted by
the same notation π[�] j, they are however different. The difference lies in the form of
global regression parameter θ ∗. To be more specific, the probabilities in Table 2.4
follow the formulas in (2.63)–(2.64), which were further re-expressed by (2.69) as

π[�] j =
exp(x′[�] jθ

∗)

∑J
g=1 exp(x′

[�]gθ ∗)
,

with

θ ∗ = [β ∗
1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′]′, where β ∗

j = [β j0,β ′
j]
′.

Note that once θ ∗ is written, the row vector x′[�] j becomes specified from the prob-
ability formulas. Now because π[�] j in Table 2.19 represent the two covariates level
based probabilities defined in (2.109)–(2.112), the global regression parameters are
different than θ ∗ in (2.69).
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Table 2.19 A notational display for cell counts and probabilities for J categories under
covariates level (�1, �2)−→ Newlevel �= (�1 −1)(q+1)+ �2

J response categories

Covariates level New level Quantity 1 . . . J Total

(1,1) 1 Count K[1]1 . . . K[1]J K[1]

Probability π[1]1 . . . π[1]J 1

. . . . . . . . .

. . . . . . .

(1,q+1) q+1 Count K[q+1]1 . . . K[q+1]J K[q+1]

Probability π[q+1]1 . . . π[q+1]J 1

(2,1) q+2 Count K[q+2]1 . . . K[q+2]J K[q+2]

Probability π[q+2]1 . . . π[q+2]J 1

. . . . . . . . .

. . . . . . .

(�1, �2) � Count K[�]1 . . . K[�]J K[�]

Probability π[�]1 . . . π[�]J 1

. . . . . . . . .

. . . . . . .

(p+1,q+1) (p+1)(q+1) Count K[(p+1)(q+1)]1 . . . K[(p+1)(q+1)]J K[(p+1)(q+1)]

Probability π[(p+1)(q+1)]1 . . . π[(p+1)(q+1)]J 1

Let θ ∗∗ denote the regression parameters used in two covariates level based
probabilities in (2.109)–(2.112). To be specific, we write

θ ∗∗ = [β ∗∗
1

′, . . . ,β ∗∗
j

′, . . . ,β ∗∗
J−1

′]′ : {(J−1)(p+1)(q+1)}×1, (2.113)

where

β ∗∗
j = [β j0, β ′

j, ξ ′
j, φ ∗′

j]
′ : {(p+1)(q+1)}×1,

with

β ′
j = [β j1, . . . ,β js, . . . ,β jp]

ξ ′
j = [ξ j1, . . . ,ξ jm, . . . ,ξ jq]

φ ∗′
j = [φ ∗

j,11, . . . ,φ ∗
j,1q,φ ∗

j,21, . . . ,φ ∗
j,sm, . . . ,φ ∗

j,pq],

by (2.106).
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Consequently, at level

�= (�1 −1)(q+1)+ �2, �1 = 1, . . . , p+1; �2 = 1, . . . ,q+1,

all probabilities defined in (2.109)–(2.112) may be expressed as

π[�] j =
exp(x′[�] jθ

∗∗)

∑J
g=1 exp(x′

[�]gθ ∗∗)
, (2.114)

where x′[�] j : 1× (J − 1)(p+ 1)(q+ 1) is the jth ( j = 1, . . . ,J) row vector of the
X� : J× (J−1)(p+1)(q+1) matrix at the �th level (�= 1, . . . ,(p+1)(q+1)). We
construct this jth row vector of the X� matrix in four groups as follows.

Group 1: �= {(�1 −1)q+ �2} for �1 = 1, . . . , p; �2 = 1, . . . ,q

x′[�] j = x′[(�1−1)q+�2] j

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
01′( j−1)(p+1)(q+1),

{1,01′�1−1,1,01′p−�1
,01′�2−1,1,01′q−�2

,01′(�1−1)q+�2−1,1,01′pq−[(�1−1)q+�2]
},

01′(J−1− j)(p+1)(q+1)

]
, for j = 1, . . . ,J−1

01′(J−1)(p+1)(q+1), for j = J.

(2.115)

Group 2: �= {(�1 −1)(q+1)+(q+1)} for �1 = 1, . . . , p

x′[�] j = x′[(�1−1)(q+1)+(q+1)] j

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
01′( j−1)(p+1)(q+1),

{1,01′�1−1,1,01′p−�1
,01′q,01′pq,},

01′(J−1− j)(p+1)(q+1)

]
, for j = 1, . . . ,J−1

01′(J−1)(p+1)(q+1), for j = J.

(2.116)

Group 3: �= {p(q+1)+ �2} for �2 = 1, . . . ,q

x′[�] j = x′[p(q+1)+�2] j

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
01′( j−1)(p+1)(q+1),

{1,01′p,01′�2−1,1,01′q−�2
,01′pq,},

01′(J−1− j)(p+1)(q+1)

]
, for j = 1, . . . ,J−1

01′(J−1)(p+1)(q+1), for j = J.

(2.117)

Group 4: �= {(p+1)(q+1)}

x′[�] j = x′[(p+1)(q+1)] j



58 2 Overview of Regression Models for Cross-Sectional Univariate Categorical Data

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
01′( j−1)(p+1)(q+1),

{1,01′p,01′q,01′pq,},
01′(J−1− j)(p+1)(q+1)

]
, for j = 1, . . . ,J−1

01′(J−1)(p+1)(q+1), for j = J.

(2.118)

Now by replacing θ ∗ with θ ∗∗ in (2.67)–(2.68), by similar calculations as in
(2.71), one obtains the likelihood equations for θ ∗∗ as

∂ log L(θ ∗∗)
∂θ ∗∗ =

(p+1)(q+1)

∑
�=1

X ′
�

[
y[�]−K[�]π[�]

]
= 0, (2.119)

where

y[�] = [K[�]1, . . . ,K[�] j, . . . ,K[�]J]
′ and π[�] = [π[�]1, . . . ,π[�] j, . . . ,π[�]J]

′,

with probabilities are being given by (2.114) or equivalently by (2.109)–(2.112), and
furthermore X� matrices for �= 1, . . . ,(p+1)(q+1) are given as in (2.115)–(2.118).

Note that after slight adjustment in notation, one may use the iterative equation
(2.75) to solve this likelihood equation in (2.119). To be specific, the iterative
equation to solve (2.119) for the final estimate for θ ∗∗ is given by

θ̂ ∗∗(r+1) = θ̂ ∗∗(r)+

[
(p+1)(q+1)

∑
�=1

K[�]X
′
�

[
Dπ[�] −π[�]π ′

[�]

]
X�

]−1

×
[
(p+1)(q+1)

∑
�=1

X ′
�

(
y[�]−K[�]π[�]

)
]

θ∗∗=θ̂∗∗(r)
, (2.120)

where Dπ[�] = diag[π[�]1, . . . ,π[�] j, . . . ,π[�]J]. Furthermore, the covariance matrix of

θ̂ ∗∗ has the formula

var(θ̂ ∗∗) =

[
(p+1)(q+1)

∑
�=1

K[�]X
′
�{Dπ[�] −π[�]π ′

[�]}X�

]−1

. (2.121)

2.2.3.1 Illustration 2.8: Analysis for the Effects of Both Gender
and Chronic Condition on the Physician Visits

The marginal effects of gender and chronic condition on the physician visits
were discussed in Sects. 2.2.2.4.2(a) and (b), respectively. To illustrate the product
multinomial model for a response variable (physician visit) based on two categorical
covariates, discussed in the last section, we now consider gender and chronic
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Table 2.20 2×2×4 contingency table for the physician visit data corresponding to gender
and chronic condition of the individuals

Physician visit status

Gender Chronic condition None Few Not so few High Level total (K�)

Male One or more 8 13 9 10 40

None 20 27 7 2 56

Female One or more 5 12 12 23 52

None 6 8 9 9 32

Table 2.21 Cell counts and probabilities for J = 4 physician visit categories under covariates
level (�1, �2) for �1 = 1,2; and �2 = 1,2

Physician visit status

Covariates level New level (�) Quantity None Few Not so few High Level total (K[�])

(1,1) 1 Count 8 13 9 10 40

Probability π[1]1 π[1]2 π[1]3 π[1]4 1.0

(1,2) 2 Count 20 27 7 2 56

Probability π[2]1 π[2]2 π[2]3 π[2]4 1.0

(2,1) 3 Count 5 12 12 23 52

Probability π[3]1 π[3]2 π[3]3 π[3]4 1.0

(2,2) 4 Count 6 8 9 9 32

Probability π[4]1 π[4]2 π[4]3 π[4]4 1.0

condition as two covariates and examine their marginal as well as joint (interaction
between the two covariates) effects on the physician visit. For the purpose, following
the Table 2.19, we first present the observed counts as in the 2×2×4 contingency
Table 2.20. Note that this contingency table is not showing the distribution for
three response variables, rather, it shows the distribution of one response variable
at different marginal and joint levels for the two covariates. Consequently, it is
appropriate to use the product multinomial approach to analyze the data of this
Table 2.20.

Further to make the cell probability formulas clear and precise, we use the data
from Table 2.20 and put them in Table 2.21 along with probabilities following the
format of Table 2.19.

Next, we write the formulas for the probabilities in Table 2.21 in the form of
(2.109)–(2.112), and also in global regression form as follows:
Level 1 (Group 1) (based on �1 = 1, �2 = 1):
Probabilities:

π[1]1 =
exp(β10 +β11 +ξ11 +φ∗

1,11)

1+∑3
g=1 exp(βg0 +βg1 +ξg1 +φ∗

g,11)
, π[1]2 =

exp(β20 +β21 +ξ21 +φ∗
2,11)

1+∑3
g=1 exp(βg0 +βg1 +ξg1 +φ∗

g,11)
,
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π[1]3 =
exp(β30 +β31 +ξ31 +φ∗

3,11)

1+∑3
g=1 exp(βg0 +βg1 +ξg1 +φ∗

g,11)
, π[1]4 =

1

1+∑3
g=1 exp(βg0 +βg1 +ξg1 +φ∗

g,11)
.

(2.122)

Global regression form:

π[1]1 =
exp(x′[1]1θ ∗∗)

∑4
j=1 exp(x′

[1] jθ ∗∗)
, π[1]2 =

exp(x′[1]2θ ∗∗)

∑4
j=1 exp(x′

[1] jθ ∗∗)
,

π[1]3 =
exp(x′[1]3θ ∗∗)

∑4
j=1 exp(x′

[1] jθ ∗∗)
,π[1]4 =

exp(x′[1]4θ ∗∗)

∑4
j=1 exp(x′

[1] jθ ∗∗)
,

where

θ ∗∗ = (β10,β11,ξ11,φ ∗
1,11,β20,β21,ξ21,φ ∗

2,11,β30,β31,ξ31,φ ∗
3,11,)

′,

and x′[1]3, for example, is the third row vector of the X1 : 4×12 matrix given by

X1 =

⎛

⎜
⎜
⎝

1′4 01′4 01′4
01′4 1′4 01′4
01′4 01′4 1′4
01′4 01′4 01′4

⎞

⎟
⎟
⎠ . (2.123)

Level 2 (Group 2) (based on �1 = 1):
Probabilities:

π[2]1 =
exp(β10 +β11)

1+∑3
g=1 exp(βg0 +βg1)

, π[2]2 =
exp(β20 +β21)

1+∑3
g=1 exp(βg0 +βg1)

,

π[2]3 =
exp(β30 +β31)

1+∑3
g=1 exp(βg0 +βg1)

, π[2]4 =
1

1+∑3
g=1 exp(βg0 +βg1)

. (2.124)

Global regression form:

π[2]1 =
exp(x′[2]1θ ∗∗)

∑4
j=1 exp(x′

[2] jθ ∗∗)
, π[2]2 =

exp(x′[2]2θ ∗∗)

∑4
j=1 exp(x′

[2] jθ ∗∗)
,

π[2]3 =
exp(x′[2]3θ ∗∗)

∑4
j=1 exp(x′

[2] jθ ∗∗)
,π[2]4 =

exp(x′[2]4θ ∗∗)

∑4
j=1 exp(x′

[2] jθ ∗∗)
,

where θ ∗∗ is the same as above, that is,

θ ∗∗ = (β10,β11,ξ11,φ ∗
1,11,β20,β21,ξ21,φ ∗

2,11,β30,β31,ξ31,φ ∗
3,11,)

′,
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and x′[2]3, for example, is the third row vector of the X2 : 4×12 matrix given by

X2 =

⎛

⎜
⎜
⎝

1′2 01′2 01′4 01′4
01′4 1′2 01′2 01′4
01′4 01′4 1′2 01′2
01′2 01′2 01′4 01′4

⎞

⎟
⎟
⎠ . (2.125)

Level 3 (Group 3) (based on �2 = 1):
Probabilities:

π[3]1 =
exp(β10 +ξ11)

1+∑3
g=1 exp(βg0 +ξg1)

, π[3]2 =
exp(β20 +ξ21)

1+∑3
g=1 exp(βg0 +ξg1)

,

π[3]3 =
exp(β30 +ξ31)

1+∑3
g=1 exp(βg0 +ξg1)

, π[3]4 =
1

1+∑3
g=1 exp(βg0 +ξg1)

. (2.126)

Global regression form:

π[3]1 =
exp(x′[3]1θ ∗∗)

∑4
j=1 exp(x′

[3] jθ ∗∗)
, π[3]2 =

exp(x′[3]2θ ∗∗)

∑4
j=1 exp(x′

[3] jθ ∗∗)
,

π[3]3 =
exp(x′[3]3θ ∗∗)

∑4
j=1 exp(x′

[3] jθ ∗∗)
,π[3]4 =

exp(x′[3]4θ ∗∗)

∑4
j=1 exp(x′

[3] jθ ∗∗)
,

where x′[3]3, for example, is the third row vector of the X3 : 4×12 matrix given by

X3 =

⎛

⎜
⎜
⎝

1 0 1 0 01′4 01′4
01′4 1 0 1 0 01′4
01′4 01′4 1 0 1 0
01′4 01′4 0 0 0 0

⎞

⎟
⎟
⎠ . (2.127)

Level 4 (Group 4)
Probabilities:

π[4]1 =
exp(β10)

1+∑3
g=1 exp(βg0)

, π[4]2 =
exp(β20)

1+∑3
g=1 exp(βg0)

,

π[4]3 =
exp(β30)

1+∑3
g=1 exp(βg0)

, π[4]4 =
1

1+∑3
g=1 exp(βg0)

. (2.128)

Global regression form:

π[4]1 =
exp(x′[4]1θ ∗∗)

∑4
j=1 exp(x′

[4] jθ ∗∗)
, π[4]2 =

exp(x′[4]2θ ∗∗)

∑4
j=1 exp(x′

[4] jθ ∗∗)
,
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Table 2.22 Parameter estimates for the gender and chronic condition versus physician
visit status data of Table 2.21

Regression parameters
Quantity β10 β11 ξ11 φ ∗

1,11 β20 β21 ξ21 φ ∗
2,11

Estimate −0.405 2.708 −1.121 −1.405 −0.118 2.720 −.533 −1.808

Standard error 0.5270 0.9100 0.7220 1.1385 0.4859 0.8793 0.6024 1.0377

Quantity β30 β31 ξ31 φ ∗
3,11

Estimate 0.000 1.253 −0.651 −0.708

Standard error 0.4714 0.9301 0.5908 1.0968

Table 2.23 Estimated/observed probabilities corresponding to the data
given in 2×2×4 contingency Table 2.20

Physician visit status

Gender Chronic condition None Few Not so few High

Male One or more 0.2000 0.3250 0.2250 0.2500

None 0.3572 0.4821 0.1250 0.0357

Female One or more 0.0962 0.2308 0.2308 0.4422

None 0.1874 0.2500 0.2813 0.2813

π[4]3 =
exp(x′[4]3θ ∗∗)

∑4
j=1 exp(x′

[4] jθ ∗∗)
,π[4]4 =

exp(x′[4]4θ ∗∗)

∑4
j=1 exp(x′

[4] jθ ∗∗)
,

where x′[4]3, for example, is the third row vector of the X4 : 4×12 matrix given by

X4 =

⎛

⎜
⎜
⎝

1 01′3 01′4 01′4
01′4 1 01′3 01′4
01′4 01′4 1 01′3
01′4 01′4 01′3 0

⎞

⎟
⎟
⎠ . (2.129)

Using the gender and chronic condition versus physician visits data from
Table 2.21, we now solve the likelihood estimating equation (2.119), i.e.,

∂ log L(θ ∗∗)
∂θ ∗∗ =

(p+1)(q+1)

∑
�=1

X ′
�

[
y[�]−K[�]π[�]

]
= 0,

for θ ∗∗. The estimates for all components in θ ∗∗ along with their standard errors are
given in Table 2.22.

Now by using the regression estimates from Table 2.22 into the probability for-
mulas (2.112), (2.124), (2.126), and (2.128), one obtains the estimated probabilities
as in Table 2.23. The estimated and observed probabilities are the same.

We now interpret the estimates of the parameters from Table 2.22. Because at
level 4, i.e., for a female with no chronic disease, the category probabilities for the
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first three categories are determined by the respective estimates of β10,β20, and β30,
as compared to the conventional value β40 = 0, it is easier to interpret their role
first. For example, β̂30 = 0.0 shows that an individual in this group has the same
probability to be in the third (not so few ) or fourth (high) physician visits category.
Further, smaller negative value for β̂20 = −0.118 as compared to β̂10 = −0.405
shows that the individual in this group has a much higher probability to pay a few
visits to the physician as opposed to paying no visits at all.

Next the values of (β̂ j0 + ξ̂ j1) for j = 1,2,3, as compared to β40 + ξ41 = 0.0
would determine relative probability of an individual at level 3 (group 3) to be in
the jth category. Note that group 3 individuals are female with one or more chronic
disease. For example, the small negative and equal values of β̂20 + ξ̂21 =−0.651 =

β̂30 + ξ̂31 as compared to large negative value of β̂10 + ξ̂11 = −1.526 indicate that
a female with chronic disease has increasing probabilities to pay more visit to the
physicians. But a male with chronic disease, i.e., an individual belonging to group
1 (level 1), has smaller probability to pay a high physician visit. This follows from
relatively large positive value of β̂20 + β̂21 + ξ̂21 + φ̂ ∗

2,11 = 0.261 as compared to

small negative value of β̂30 + β̂31 + ξ̂31 + φ̂ ∗
3,11 = −0.106, and β40 + β41 + ξ41 +

φ ∗
4,11 = 0.0.

2.3 Cumulative Logits Model for Univariate Ordinal
Categorical Data

There are situations where the categories for a response may also be ordinal by
nature. For example, when the individuals in a study are categorized to examine
their agreement or disagreement on a policy issue with, say, three political groups
A, B, and C, these three categories are clearly nominal. However, in the treatment
versus heart attack status data analyzed in Sect. 2.2.2.4.1, the three categories
accommodating the heart attack status, namely no attack, non-fatal, and fatal attacks,
can also be treated as ordinal categories. Similarly, in the physician visit study in
Sect. 2.2.2.4.2, four physician visit status, namely none, few, not so few, and high
visits, can be treated as ordinal categories. Now because of this additional ordinal
property of the categorical responses, one may collapse the J > 2 categories in
a cumulative fashion into two (J′ = 2) categories and use simpler binary model
to fit such collapsed data. Note however that there will be various binary groups
depending on which category in the middle is used as a cut point. This approach is
referred to as the cumulative logits model approach and we discuss this alternative
modeling of the categorical data in this section provided the categories also exhibit
order in them.
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2.3.1 Cumulative Logits Model Involving One Covariate
with L = p+1 Levels

Suppose that similar to Sect. 2.2.2, π[�] j denotes the probability for an individual
i with covariate at level �(� = 1, . . . , p+ 1) to be in the jth category, but because
categories are ordered, one may collapse the J categories based multinomial model
to a binary model with

F[�] j =
j

∑
c=1

π[�]c

representing the probability for the binary response to be in any categories between
1 and j, and

1−F[�] j =
J

∑
c= j+1

π[�]c

representing the probability for the binary response to be in any categories beyond j.
Consequently, unlike in Sect. 2.2.2, instead of modeling individual category based
probabilities π[�] j, one may model the binary probability F[�] j by using the linear
logits relationship

L[�] j = log

[
1−F[�] j

F[�] j

]

=

{
α j0 +α j� for j = 1, . . . ,J−1; �= 1, . . . , p
α j0 for j = 1, . . . ,J−1; �= p+1.

(2.130)

We refer to this model (2.130) as the logit model 1 (LM1). Also, three other logit
models are considered in the next section with relation to a real life data example.

Note that for j = 1, . . . ,J − 1, the logit relationship in (2.130) is equivalent to
write

1−F[�] j =

⎧
⎨

⎩

exp(α j0+α j�)

1+exp(α j0+α j�)
for �= 1, . . . , p

exp(α j0)

1+exp(α j0)
for �= p+1.

(2.131)

Remark that the logits in (2.130) satisfy the monotonic constraint given in the
following lemma.

Lemma 2.3.1. The logits in (2.130) satisfy the monotonic property

L[�]1 ≥ L[�]2 ≥ . . .≥ L[�](J−1). (2.132)

Proof. Since

F[�]1 ≤ F[�]2 ≤ . . .≤ F[�](J−1),



2.3 Cumulative Logits Model for Univariate Ordinal Categorical Data 65

and

(1−F[�]1)≥ (1−F[�]2)≥ . . .≥ (1−F[�](J−1)),

one obtains

F[�]1
1−F[�]1

≤ F[�]2
1−F[�]2

≤ . . .≤ F[�](J−1)

1−F[�](J−1)
.

Hence the lemma follows because L[�] j = log
[

1−F[�] j
F[�] j

]
for all j = 1, . . . ,J−1.

2.3.1.1 Weighted Least Square Estimation for the Parameters
of the Cumulative Logits Model (2.130)

We describe this estimation technique in the following steps.

Step 1. Writing the logits in linear regression form

Let F(π) be a vector consisting of all possible logits, where π represents all
J(p+1) individual cell probabilities. That is,

F = F(π) =
[
L′

1, . . . ,L
′
�, . . . ,L

′
p+1

]′
: (J−1)(p+1)×1, (2.133)

where L� is the vector of J−1 logits given by

L� =
[
L[�]1, . . . ,L[�] j, . . . ,L[�](J−1)

]′
, (2.134)

with L[�] j defined as in (2.130). Note that these logits for j = 1, . . . ,J − 1 are
functions of all J individual probabilities π[�]1, . . . ,π[�]J at the covariate level �.

Now define the regression parameters vector α as

α =
[
α ′

0,α ′
1, . . . ,α ′

�, . . . ,α
′
p

]′
, (2.135)

where

α0 = [α10, . . . ,α(J−1)0]
′ and α� = [α1�, . . . ,α(J−1)�]

′,

for �= 1, . . . , p. Next by using (2.135) and (2.130), one may then express the logits
vector (2.133) in the linear regression form as

F = Xα, (2.136)
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where

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

IJ−1 X1

IJ−1 X2

· ·

IJ−1 Xp

IJ−1 Xp+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

: (J−1)(p+1)× (J−1)(p+1), (2.137)

with

X� =

⎛

⎜
⎜
⎜
⎝

x′[�]1
x′[�]2
·

x′[�](J−1)

⎞

⎟
⎟
⎟
⎠

: (J−1)× (J−1)p, for �= 1, . . . , p+1 (2.138)

where, for j = 1, . . . ,J−1,

x′[�] j =
(

01′(�−1)(J−1) 01′j−1 1 01′J−1− j 01′(p−�)(J−1)

)
for �= 1, . . . , p

x′[p+1] j = 01′p(J−1). (2.139)

Step 2. Formulation of F(�) in terms of �

Write

π = [π ′
[1], . . . ,π

′
[�], . . . ,π

′
[p+1]]

′ : J(p+1)×1, (2.140)

where at covariate level �, as in Sect. 2.2.2, all J cell probabilities are denoted by
π[�], that is,

π[�] = [π[�]1, . . . ,π[�] j, . . . ,π[�]J]
′,

π[�] j being the probability for the response of an individual with �th level covariate
information to be in the jth category.

Notice from (2.130) that L[�] j has the form

L[�] j = log

[
1−F[�] j

F[�] j

]

= log

[
∑J

c= j+1 π[�]c

∑ j
c=1 π[�]c

]
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=

[

log{
J

∑
c= j+1

π[�]c}− log{
j

∑
c=1

π[�]c}
]

. (2.141)

Consequently, L� defined in (2.134) can be expressed as

L� = [L[�]1, . . . ,L[�](J−1)]
′

= [

(

log{
J

∑
c=2

π[�]c}− log{
1

∑
c=1

π[�]c}
)

, . . . ,

(

log{
J

∑
c=J

π[�]c}− log{
J−1

∑
c=1

π[�]c}
)

]′

= M∗log (A∗π[�]), (2.142)

where π[�] is defined by (2.140), and A∗ and K∗ have the forms:

A∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1′1 01′J−1

01′1 1′J−1

1′2 01′J−2

01′2 1′J−2

· ·

· ·

1′J−1 01′1

01′J−1 1′1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

: 2(J−1)× J, (2.143)

and

M∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 01′2 01′2(J−3)

01′2 −1 1 01′2(J−3)

· · · ·

01′2(J−3) 01′2 −1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

: (J−1)×2(J−1), (2.144)

respectively. Now by using (2.142), it follows from (2.133) that
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F = F(π) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

L1

L2

·
·

L�

·
·

Lp+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

M∗log (A∗π[1])

M∗log (A∗π[2])

·
·

M∗log (A∗π[�])

·
·

M∗log (A∗π[p+1])

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= [Ip+1 ⊗M∗] log [(Ip+1 ⊗A∗)π]

= Mlog (Aπ), (2.145)

where π = [π ′
[1], . . . ,π

′
[�], . . . ,π

′
[p+1]]

′, and ‘⊗’ denotes the direct or Kronecker
product.

Step 3. Forming a ‘working’ linear model

Using notations from Step 2 (2.145) in (2.136) under Step 1, one consequently
solves α satisfying

F = F(π) = Mlog (Aπ) = Xα. (2.146)

Note that this (2.146) is not an estimating equation yet as π is unknown in practice.
This means the model (population average) Eq. (2.146) does not involve any data.
However, by using the observed proportion p for π , one may write an approximate
(working) linear regression model with correlated errors as follows:

F(p)≈ F(π)+
∂F(π)

∂π ′ [p−π] = F(π)+ ε , (J−1)(p+1)×1 (2.147)

where ε may be treated as an error vector. Next, because for a given �, the cell counts
{K[�] j, j = 1, . . . ,J} follow the multinomial probability distribution (2.67) [see also
Table 2.4 for data display], it follows that

E[p[�] j] = E[
K[�] j

K[�]
] = π[�] j, for all j and �,

that is E[p] = π , where π is defined by (2.140), and p is the corresponding observed
proportion vector, with p[�] = [p[�] j, . . . , p[�] j, . . . , p[�]J]

′. It then follows that

E[ε ] = 0,

cov[ε ] =
[

∂F(π)
∂π ′

]

cov(p)

[
∂F ′(π)

∂π

]
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=

[
∂F(π)

∂π ′

]

V

[
∂F ′(π)

∂π

]

= Σε (say), (J−1)(p+1)× (J−1)(p+1). (2.148)

Note that the approximation in (2.147) follows from the so-called Taylor’s series
expansion for F(p). To be specific, for u = 1, . . . ,(J−1)(p+1), the uth component
of F(p) may be expanded in Taylor’s series form as

Fu(p) = Fu(π)+(p−π)′
∂Fu(π)

∂π
+ ε∗u,K(||p[1]−π[1]||, . . . , ||p[�]−π[�]||, . . . , ||p[p+1]−π[p+1]||), (2.149)

where for K = ∑p+1
�=1 K[�], ε∗u,K(·) is a higher order remainder term in the Taylor’s

expansion, and it is a function of Euclidian distances

||p[�]−π[�]||=
√
√
√
√

J

∑
j=1

[p[�] j −π[�] j]2, for all �= 1, . . . , p+1.

Further note that when min�{K[�]}→ ∞ it can be shown that

ε∗u,K(·)→ 0 in probability (2.150)

(see, for example, Rao (1973, p. 387); Bishop et al. (1975, Sec. 14.6) for details on
this convergence property). Thus, for all u= 1, . . . ,(J−1)(p+1), and using (2.150),
one obtains the approximate linear relationship (2.147) from (2.149). Finally by
using (2.146), one may fit the linear model

F(p) = F(π)+ ε

= Xα + ε , (2.151)

(see also Grizzle et al. (1969), Haberman (1978, pp. 64–77)) where F(p) =
Mlog (Ap) with M and A as given by (2.145), and the error vector ε has the zero
mean vector and covariance matrix Σε as given by (2.148).

Step 4. WLS (weighted least square) estimating equation

Consequently, one may write the WLS estimating equation for α as

X ′Σ−1
ε [F(p)−Xα] = 0, (2.152)

and obtain the WLS estimator of α as

α̂WLS = [X ′Σ−1
ε X ]−1X ′Σ−1

ε F(p). (2.153)
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For similar use of the WLS approach in fitting models to ordinal data, one may
be referred to Semenya and Koch (1980) and Semenya et al. (1983) (see also
Agresti (1984, Section 7.2, Appendix A.2); Koch et al. (1992)). For computation
convenience, one may further simplify Σε from (2.148) as

Σε = cov[F(p)] =

[
∂F(π)

∂π ′

]

V

[
∂F ′(π)

∂π

]

=

[
∂Mlog Aπ

∂π ′

]

V

[
∂Mlog Aπ

∂π ′

]′

= MD−1AVA′D−1M′ = QV Q′, (say), (2.154)

where D = diag[Aπ] : 2(J − 1)(p+ 1)× 2(J − 1)(p+ 1), Aπ : 2(J − 1)(p+ 1)× 1
being given by (2.145). Hence, using Σε from (2.154) into (2.153), one may re-
express α̂WLS as

α̂WLS =
[
X ′(QV Q′)−1X

]−1
X ′(QV Q′)−1F(p), (2.155)

with F(p) = Mlog Ap. Note that to compute α̂WLS by (2.155), one requires
to replace the D matrix by its unbiased estimate D̂ = diag[Ap]. Next, because,
cov[F(p)] = QV Q′ by (2.154), by treating D as a known matrix, one may compute
the covariance of the WLS estimator of α as

cov[α̂WLS] =
[
X ′(QV Q′)−1X

]−1
, (2.156)

which can be estimated by replacing π with p, that is,

ˆcov[α̂WLS] =
[
X ′(QV Q′)−1X

]−1
|π=p . (2.157)

Further note that the V matrix in (2.154)–(2.157) has the block diagonal form
given by

V =
⊕p+1

�=1
[cov(p[�])] : (p+1)J× (p+1)J, (2.158)

where

cov(p[�]) =
1

K[�]

[
diag[π[�]1, . . . ,π[�] j, . . . ,π[�]J]−π[�]π ′

[�]

]
. (2.159)
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Table 2.24 Cross-classification of gender and physician visit along
with observed proportions

Physician visit status

Gender None Few Not so few High Total

Male 28 40 16 12 96

Cell proportion 0.2917 0.4166 0.1667 0.1250 1.0

Female 11 20 21 32 84

Cell proportion 0.1309 0.2381 0.2500 0.3810 1.0

2.3.1.1.1 Illustration 2.9: Weighted Least Square Fitting of the Cumulative
Logits Model to the Gender Versus Physician Visit Data

Recall the physician visit status data for male and female from Table 2.10. For
convenience, we redisplay these data along with observed proportions as in the
following Table 2.24. Note that the physician visit status can be treated as ordinal
categorical. However, among others, this data set was analyzed in Sect. 2.2.2.4 by
applying the product multinomial likelihood approach discussed in Sects. 2.2.2.1
and 2.2.2.2, where categories were treated to be nominal. As discussed in last
section, when categories are treated to be ordinal, one may fit the cumulative
probability ratios based logits model to analyze such data. The logit models
are different than standard multinomial models used for the analysis of nominal
categorical data. We now follow the logit model and inferences discussed in the
last section to reanalyze the gender versus physician visit status data shown in
Table 2.24.

We first write the observed proportion vector p as

p = [p′[1], p′[2]]
′, (2.160)

with

p[1] = [p[1]1, p[1]2, p[1]3, p[1]4]
′ = [0.2917, 0.4166, 0.1667, 0.1250]′

p[2] = [p[2]1, p[2]2, p[2]3, p[2]4]
′ = [0.1309, 0.2381, 0.2500, 0.3810]′.

Next we follow the steps from the previous section and formulate the matrices
and vectors to compute α̂ by (2.155).

Step 1. Constructing F(�) = X˛ under LM 1

To define X and α , we write the vector of logits by (2.133) as

F(π) = [L′
1,L

′
2]
′ : 6×1, (2.161)
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with

L1 = [L[1]1,L[1]2,L[1]3]
′

L2 = [L[2]1,L[2]2,L[2]3]
′,

where by (2.130)

L[1]1 = α10 +α11

L[1]2 = α20 +α21

L[1]3 = α30 +α31,

and

L[2]1 = α10

L[2]2 = α20

L[2]3 = α30,

producing α by (2.135) as

α = [α ′
0,α ′

1]
′

= [α10,α20,α30,α11,α21,α31]
′. (2.162)

Now to express F(π) in (2.161) as F(π) = Xα with α as in (2.162), one must write
the 6×6 matrix X as

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.163)

This matrix satisfies the notations from (2.137) to (2.139).
Note that as indicated in the last section, we also consider three other logit models

as follows:

LM2. Instead of using the model (2.130), one may use different restriction on the
level effect parameters and write the logit model as
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L[�] j = log

[
1−F[�] j

F[�] j

]

=

{
α j0 +α j� for j = 1, . . . ,J−1; �= 1, . . . , p
α j0 −∑p

�=1 α j� for j = 1, . . . ,J−1; �= p+1.
(2.164)

yielding six logits for the gender versus physician visit data as

L[1]1 = α10 +α11

L[1]2 = α20 +α21

L[1]3 = α30 +α31,

and

L[2]1 = α10 −α11

L[2]2 = α20 −α21

L[2]3 = α30 −α31.

For

α = [α ′
0,α ′

1]
′

= [α10,α20,α30,α11,α21,α31]
′,

the aforementioned six logits produce the X matrix as

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.165)

LM3. Now suppose that unlike the models (2.130) and (2.164), one uses the same
level effect parameter, say α1�, under all response categories. Then, similar to
LM1, the logits can be expressed as

L[�] j = log

[
1−F[�] j

F[�] j

]

=

{
α j0 +α1� for j = 1, . . . ,J−1; �= 1, . . . , p
α j0 for j = 1, . . . ,J−1; �= p+1.

(2.166)

yielding six logits for the gender versus physician visit data as
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L[1]1 = α10 +α11

L[1]2 = α20 +α11

L[1]3 = α30 +α11,

and

L[2]1 = α10

L[2]2 = α20

L[2]3 = α30.

For

α = [α ′
0,α ′

1]
′

= [α10,α20,α30,α11]
′,

the aforementioned six logits produce the X : 6×4 matrix as

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1

0 1 0 1

0 0 1 1

1 0 0 0

0 1 0 0

0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.167)

LM4. Suppose that we use the same regression parameters as in the model
(2.166), but use the restriction on the level effect parameters as in (2.164). One
may then express the logits as

L[�] j = log

[
1−F[�] j

F[�] j

]

=

{
α j0 +α1� for j = 1, . . . ,J−1; �= 1, . . . , p
α j0 −∑p

�=1 α1� for j = 1, . . . ,J−1; �= p+1.

(2.168)

yielding six logits for the gender versus physician visit data as

L[1]1 = α10 +α11

L[1]2 = α20 +α11

L[1]3 = α30 +α11,
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and

L[2]1 = α10 −α11

L[2]2 = α20 −α11

L[2]3 = α30 −α11.

For

α = [α ′
0,α ′

1]
′

= [α10,α20,α30,α11]
′,

the aforementioned six logits produce the X : 6×4 matrix as

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1

0 1 0 1

0 0 1 1

1 0 0 −1

0 1 0 −1

0 0 1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.169)

Step 2. Developing notations to write F(�) = Mlog (A�) satisfying (2.145)

Now because J = 4, for a given �(� = 1,2), A∗ and M∗ matrices by (2.143) and
(2.144), are written as

A∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 1 1 1

1 1 0 0

0 0 1 1

1 1 1 0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

: 6×4, (2.170)
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and

M∗ =

⎡

⎢
⎢
⎢
⎣

−1 1 0 0 0 0

0 0 −1 1 0 0

0 0 0 0 −1 1

⎤

⎥
⎥
⎥
⎦

: 3×6, (2.171)

respectively. Note that these matrices are constructed following the definition of the
logits, that is, satisfying

L� = [L[�]1,L[�]2,L[�]3]
′ = M∗log (A∗π[�]),

as shown by (2.141)–(2.142). Thus, for the present gender versus physician visit
status data, by (2.145), we write

M =

(
M∗ 0U3×6

0U3×6 M∗

)

: 6×12, A =

(
A∗ 0U6×4

0U6×4 A∗

)

: 12×8, (2.172)

with U3×6, for example, as the 3× 6 unit matrix, satisfying F(π) = Mlog (Aπ),
where

π = [π ′
[1],π

′
[2]]

′

= [π[1]1,π[1]2,π[1]3,π[1]4,π[2]1,π[2]2,π[2]3,π[2]4]
′.

We now directly go to Step 4 and use (2.155) to compute the WLS estimate for
the regression parameter vector α .

Step 4. Computation of ˆ̨ WLS by (2.155)

Notice that V matrix in (2.155) is computed by (2.158), that is,

V = var[p] = var[p′[1], p′[2]]
′

=

(
var[p[1]] cov[p[1], p′[2]]

cov[p[2], p′[1]] var[p[2]]

)

=

(
V1 0
0 V2

)

, (2.173)

where

K[1]V1 = diag[π[1]1,π[1]2,π[1]3,π[1]4]−π[1]π ′
[1]

K[2]V2 = diag[π[2]1,π[2]2,π[2]3,π[2]4]−π[2]π ′
[2].
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Table 2.25 Parameter estimates and their standard errors under selected cumulative logit
models for gender versus physician visit status data

Logit model parameters based on gender and 4 visit categories

Logit model Quantity α̂10 α̂20 α̂30 α̂11 α̂21 α̂31

LM1 Estimate 1.893 0.537 −0.485 −1.006 −1.424 −1.461

Standard error 0.324 0.226 0.225 0.394 0.319 0.382

LM2 Estimate 1.390 −0.175 −1.216 −0.503 −0.712 −0.750

Standard error 0.197 0.159 0.190 0.197 0.159 0.191

LM3 Estimate 2.107 0.508 −0.524 −1.312 - -

Standard error 0.261 0.215 0.214 0.285 - -

LM4 Estimate 1.451 −0.148 −1.180 −0.656 - -

Standard error 0.189 0.157 0.181 0.142 - -

One however needs to use an estimate of this V matrix to compute α̂WLS by (2.155).
Now because p[1] and p[2] are unbiased estimates for π[1] and π[2], respectively, V
matrix may be estimated as

V̂ =

(
V̂1 0
0 V̂2

)

, (2.174)

where

K[1]V̂1 = diag[p[1]1, p[1]2, p[1]3, p[1]4]− p[1]p
′
[1]

K[2]V̂2 = diag[p[2]1, p[2]2, p[2]3, p[2]4]− p[2]p
′
[2],

with p[1] and p[2] as given by (2.160).
Next we compute D̂ = diag[Ap], where A is given in (2.172). Further compute

Q̂ = MD̂−1A. Finally by using these estimates V̂ , Q̂, and F(p) = Mlog (Ap) into
(2.155), we obtain α̂WLS by using X matrix from (2.163), (2.165), (2.167), and
(2.169), under the models LM1, LM2, LM3, and LM4, respectively. These estimates
along with their standard errors computed by (2.157) are reported in Table 2.25.

We now use the estimates from Table 2.25 and compute the logits under all four
models. The observed logits are also computed using the observed proportions from
Table 2.24. For interpretation convenience we display the exponent of the logits, i.e.,
exp(L[�] j) under all four models in Table 2.26. Notice that LM1 and LM2 produce
the same logits, similarly LM3 and LM4 also produce the same logits. Thus, proper
restriction on level based parameters is important but restrictions can vary. Next, it
is clear from the table that LM1 (or LM2) fits the observed logits exactly, whereas
the logits produced by LM3 (or LM4) are slightly different than the observed logits.
This shows that level (gender) based covariates do not play the same role under all
four response categories. Thus, using three different regression parameters, namely
α1 j for j = 1, . . . ,3, is more appropriate than using only one parameter, namely α11.
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Table 2.26 Observed and estimated logits under selected cumulative
logit models for gender versus physician visit status data

Logit estimates

Gender Logits Observed LM1 LM2 LM3 LM4

Male exp(L[1]1) 2.428 2.428 2.428 2.214 2.214

exp(L[1]2) 0.411 0.411 0.411 0.447 0.447

exp(L[1]3) 0.143 0.143 0.143 0.159 0.159

Female exp(L[2]1) 6.639 6.639 6.639 8.225 8.225

exp(L[2]2) 1.710 1.710 1.710 1.662 1.662

exp(L[2]3) 0.616 0.616 0.616 0.592 0.592

Furthermore, when logits of males are compared to those of the females, all three
logits for the male group appear to be smaller than the corresponding logits for the
female group, i.e.,

L[1] j ≤ L[2] j, for all j = 1,2,3,

showing that more females pay large number of visits to their physician as compared
to males. These results agree with the analysis discussed in Sect. 2.2.2.4.2(a) and
the results reported in Table 2.12, where it was found through direct multinomial
regression fitting that females paid relatively more visits as compared to males.

2.3.1.2 Binary Mapping Based Pseudo-Likelihood Estimation Approach

Based on the form of the cumulative logits from (2.130)–(2.131), in this approach
we utilize the binary information at every cut point for an individual and write a
likelihood function. For the purpose, for an individual i with covariate level � and
responding in category h(h = 1, . . . ,J) [this identifies the ith individual as i ∈ (�,h)],
we define a cut point j ( j = 1, . . . ,J−1) based ‘working’ or ‘pseudo’ binary variable

b( j)
i∈(�,h) =

{
1 for given response category h > j
0 for given response category h ≤ j,

(2.175)

with probabilities following (2.130)–(2.131) as

Pr[b( j)
i∈(�,h) = 1] =

J

∑
c= j+1

π[�]c = 1−F[�] j

=

⎧
⎨

⎩

exp(α j0+α j�)

1+exp(α j0+α j�)
for �= 1, . . . , p

exp(α j0)

1+exp(α j0)
for �= p+1.

(2.176)
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Table 2.27 Cumulative counts as responses at cut points j =
1, . . . ,J − 1, reflecting the cumulative probabilities (2.176), under
covariate level �

Binomial response
Cut point Low group (g∗ = 1) High group (g* = 2) Total
1 K∗

[�]1 = ∑1
c=1 K[�]c K[�]−K∗

[�]1 K[�]

. . . .

j K∗
[�] j = ∑ j

c=1 K[�]c K[�]−K∗
[�] j K[�]

. . . .

J−1 K∗
[�](J−1) = ∑J−1

c=1 K[�]c K[�]−K∗
[�](J−1) K[�]

representing the probability for the binary response to be in category h beyond j;
and

Pr[b( j)
i∈(�,h) = 0] =

j

∑
c=1

π[�]c = F[�] j

= =

{
1

1+exp(α j0+α j�)
for �= 1, . . . , p

1
1+exp(α j0)

for �= p+1.
(2.177)

representing the probability for the binary response to be in a category h between 1
and j inclusive.

Now as a reflection of the cut points based cumulative probabilities (2.176)–
(2.177), for convenience, we display the response counts computed from Table 2.4,
at every cut points, as in Table 2.27. We use the notation K∗

[�] j = ∑ j
c=1 K[�]c, whereas

in Table 2.4, K[�]c is the number of individuals with covariate at level � those belong
to category c for their responses.

Note that K[�]−K∗
[�] j follows the binomial distribution Bin(K[�],1−F[�] j), where

[1−F[�] j] = ∑J
c= j+1 π[�]c = π∗

[�] j by (2.176). Furthermore, the regression parameters
in (2.176)–(2.177) may be expressed by a vector α as in (2.135), that is,

α =
[
α ′

0,α ′
1, . . . ,α ′

�, . . . ,α
′
p

]′
,

where

α0 = [α10, . . . ,α(J−1)0]
′ and α� = [α1�, . . . ,α(J−1)�]

′,

for �= 1, . . . , p. Alternatively, similar to (2.69), these parameters may be represented
by

α = [α∗
1
′, . . . ,α∗

j
′, . . . ,α∗

J−1
′]′, with α∗

j = [α j0,α j1, . . . ,α j�, . . . ,α jp]
′. (2.178)
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Now for a given form of α , we first write a pseudo-likelihood function by using the
pseudo binary probabilities from (2.175)–(2.177), as

L(α) = Π p+1
�=1 Π J−1

j=1 Π
K[�]

[i∈(�,h)| j,�]

[

{F[�] j}1−b( j)
i∈(�,h)

][

{1−F[�] j}b( j)
i∈(�,h)

]

= Π p+1
�=1 Π J−1

j=1

[
{F[�] j}∑ j

c=1 K[�]c

][
{1−F[�] j}∑J

c= j+1 K[�]c
]

= Π p+1
�=1 Π J−1

j=1

[
{F[�] j}∑ j

c=1 K[�]c

][
{1−F[�] j}K[�]−∑ j

c=1 K[�]c

]
(2.179)

= Π J−1
j=1

[

Π p
�=1

exp{(K[�]−K∗
[�] j)(α j0 +α j�)}

[1+ exp(α j0 +α j�)]
K[�]

]

×
[

exp{(K[p+1]−K∗
[p+1] j)(α j0)}

[1+ exp(α j0)]
K[p+1]

]

, (2.180)

where K∗
[�] j = ∑ j

c=1 K[�]c for j = 1, . . . ,J−1, and for all �= 1, . . . , p+1.
Next, in order to write the log likelihood estimating equation in an algebraic

convenient form, we use the α in the form of (2.178) and first re-express 1−F[�] j
and F[�] j from (2.176)–(2.177) as

1−F[�] j =
exp(x′[�] jα)

1+ exp(x′
[�] jα)

F[�] j =
1

1+ exp(x′
[�] jα)

, (2.181)

where x′[�] j is the jth ( j = 1, . . . ,J−1) row of the (J−1)× (J−1)(p+1) matrix X�,
defined for �th level as follows:

X� =

⎛

⎜
⎜
⎜
⎝

x′[�]1
x′[�]2
·

x′[�](J−1)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

1 01′�−1,1,01′p−� 0 01′p · 0 01′p
0 01′p 1 01′�−1,1,01′p−� · 0 01′p
· · · · · · ·
0 01′p 0 01′p · 1 01′�−1,1,01′p−�

⎞

⎟
⎟
⎟
⎠

for �= 1, . . . , p
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Xp+1 =

⎛

⎜
⎜
⎜
⎝

x′[p+1]1

x′[p+1]2

·
x′[p+1](J−1)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

1 01′p 0 01′p · 0 01′p
0 01′p 1 01′p · 0 01′p
· · · · · · ·
0 01′p 0 01′p · 1 01′p

⎞

⎟
⎟
⎟
⎠
. (2.182)

The log likelihood equation for α may then be written from (2.179) as

∂Log L(α)

∂α
=

p+1

∑
�=1

J−1

∑
j=1

[

(K[�]−K∗
[�] j)

∂
∂α

{log (1−F[�] j)}

+ K∗
[�] j

∂
∂α

{log F[�] j}
]

=
p+1

∑
�=1

J−1

∑
j=1

[

(K[�]−K∗
[�] j)

∂
∂α

{log (
exp(x′[�] jα)

1+ exp(x′
[�] jα)

)}

+ K∗
[�] j

∂
∂α

{log
1

1+ exp(x′
[�] jα)

}
]

=
p+1

∑
�=1

J−1

∑
j=1

[
(K[�]−K∗

[�] j){F[�] jx[�] j}

− K∗
[�] j{(1−F[�] j)x[�] j}}

]

=
p+1

∑
�=1

J−1

∑
j=1

x[�] j
[
K[�]F[�] j −K∗

[�] j

]

= −
p+1

∑
�=1

J−1

∑
j=1

x[�] j
[
K∗
[�] j −K[�]F[�] j

]

=
p+1

∑
�=1

J−1

∑
j=1

x[�] j
[
(K[�]−K∗

[�] j)−K[�](1−F[�] j)
]

(2.183)

=
p+1

∑
�=1

X ′
�

[
y∗[�]−K[�]π∗

[�]

]
= f (α) = 0, (2.184)

where

y∗[�] = [K[�]−K∗
[�]1, . . . ,K[�]−K∗

[�] j, . . . ,K[�]−K∗
[�](J−1)]

′ and

π∗
[�] ≡ [π∗

[�]1, . . . ,π
∗
[�] j, . . . ,π

∗
[�](J−1)]

′ = [1−F[�]1, . . . ,1−F[�] j, . . . ,1−F[�](J−1)]
′,
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with X� matrices for � = 1, . . . , p+ 1 as given in (2.182). Note that this estimating
equation form in (2.184) is similar to (2.71), but they are quite different estimating
equations.

2.3.1.2.1 Pseudo-Likelihood Estimates and their Asymptotic Variances

Let α̂ be the solution of f (α) = 0 in (2.184). Assuming that α̂0 is not a solution
for f (α) = 0 but a trial estimate, and hence f (α̂0) �= 0, by similar calculations as in
(2.36), the iterative equation for α̂∗ is obtained as

α̂ = α̂0 −
[{ f ′(α)}−1 f (α)

] |α=α̂0 . (2.185)

Next, by similar calculations as in (2.183), one writes

∂π∗
[�] j

∂α ′ =
∂ (1−F[�] j)

∂α ′

= F[�] j(1−F[�] j)x
′
[�] j = π∗

[�] j(1−π∗
[�] j)x

′
[�] j, (2.186)

yielding

∂π∗
[�]

∂α ′ = diag[π∗
[�]1(1−π∗

[�]1), . . . ,π
∗
[�](J−1)(1−π∗

[�](J−1))]X�

= Dπ∗
[�]

X�. (2.187)

By (2.187), it then follows from (2.184) that

f ′(α) =
∂ 2Log L(α)

∂α∂α ′

= −
p+1

∑
�=1

K[�]X
′
�Dπ∗

[�]
X�. (2.188)

Thus, by (2.188), the iterative equation (2.185) takes the form

α̂(r+1) = α̂(r)+

[
p+1

∑
�=1

K[�]X
′
�Dπ∗

[�]
X�

]−1

×
[

p+1

∑
�=1

X ′
�

(
y∗[�]−K[�]π∗

[�]

)
]

α=α̂(r)

, (2.189)

yielding the final estimate α̂ .
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Next because

var[y∗[�] j −K[�]π∗
[�] j] = var[K∗

[�] j −K[�]F[�] j]

= var[
j

∑
c=1

K[�]c], (2.190)

and K∗
[�] j follows the binomial distribution with parameters K[�] and π∗

[�] j = [1−F[�] j],
one writes

var[y∗[�] j −K[�]π∗
[�] j] = K[�]F[�] j[1−F[�] j] = K[�]π∗

[�] j[1−π∗
[�] j]. (2.191)

It then follows from (2.189) that var(α̂) has the formula given by

var(α̂) =

[
p+1

∑
�=1

K[�]X
′
�Dπ∗

[�]
X�

]−1

. (2.192)

2.3.1.3 Binary Mapping Based GQL Estimation Approach

By Table 2.27, consider the response vector

y∗[�] = [K[�]−K∗
[�]1, . . . ,K[�]−K∗

[�] j, . . . ,K[�]−K∗
[�](J−1)]

′

[see also (2.184)], where

y∗[�] j = [K[�]−K∗
[�] j]∼ Bin(K[�],π∗

[�] j),

with

π∗
[�] j = 1−F[�] j =

exp(x′[�] jα)

1+ exp(x′
[�] jα)

by (2.181). By following Sutradhar (2003, Section 3), one may then write a GQL
estimating equation for α as

p+1

∑
�=1

∂ [K[�]π∗
[�]

′]

∂α

[
cov(Y ∗

[�])
]−1

[y∗[�]−K[�]π∗
[�]] = 0, (2.193)

where

∂π∗
[�]

′

∂α
= X ′

�Dπ∗
[�]
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by (2.187), and

cov[Y ∗
[�]] = K[�]Dπ∗

[�]

by (2.191). The GQL estimating equation (2.193) then reduces to

p+1

∑
�=1

X ′
�[y

∗
[�]−K[�]π∗

[�]] = 0,

which is the same as the pseudo-likelihood estimating equation given by (2.184).
Hence the GQL estimate of α is the same as the likelihood estimate found by
(2.189), and its asymptotic covariance matrix is the same as that of the likelihood
estimates given by (2.192).

2.3.1.4 Some Remarks on GQL Estimation for Fitting the Multinomial
Model (3.63) Subject to Category Order Restriction

Notice from (2.184) that

y∗[�] = [K[�]−K∗
[�]1, . . . ,K[�]−K∗

[�] j, . . . ,K[�]−K∗
[�](J−1)]

′

= [y∗[�]1, . . . ,y
∗
[�] j, . . . ,y

∗
[�](J−1)]

′, (2.194)

is a cumulative response vector with its expectation

E[y∗[�]] = K[�]π∗
[�]

≡ K[�][π∗
[�]1, . . . ,π

∗
[�] j, . . . ,π

∗
[�](J−1)]

′

= K[�][1−F[�]1, . . . ,1−F[�] j, . . . ,1−F[�](J−1)]
′, (2.195)

with

π∗
[�] j = 1−F[�] j =

J

∑
c= j+1

π[�]c, (2.196)

where, by (2.63) and (2.64), the multinomial probabilities are defined as

π[�]c =

⎧
⎨

⎩

exp(βc0+βc�)

1+∑J−1
g=1 exp(βg0+βg�)

for c = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0+βg�)
for c = J,

(2.197)

for �= 1, . . . , p, whereas for �= p+1, these probabilities are given as
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π[p+1]c =

⎧
⎨

⎩

exp(βc0)

1+∑J−1
g=1 exp(βg0)

for c = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0)
for c = J.

(2.198)

Use x[�]J = 01(J−1)(p+1) for all � = 1, . . . , p+ 1, along with x[�]c from (2.182) for
c = 1, . . . ,J−1; and �= 1, . . . , p+1, and re-express all π[�]c in (2.196)–(2.197) as

π[�]c =
exp(x′[�]cβ )

∑J
g=1 exp(x′

[�]gβ )
, (2.199)

where, similar to (2.178),

β = [β ∗
1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′]′, with β ∗

j = [β j0,β j1, . . . ,β j�, . . . ,β jp]
′. (2.200)

Note that α parameters in (2.178) and β parameters in (2.198) are different, even
though they have some implicit connection. Here, one is interested to estimate β for
the purpose of comparing π∗

[�] j = ∑J
c=1 π[�]c with 1−π∗

[�] j = ∑ j
c=1 π[�]c. We construct

a GQL estimating equation (Sutradhar 2004, 2011) for β as follows.

2.3.1.4.1 GQL Estimating Equation for β

2.3.1.4.1 (a) Computation of cov(y∗[�]) = Γ[�] = (γ[�] jh) : (J−1)× (J−1)

The elements of the Γ matrix are computed as follows.

γ[�] j j = var[y∗[�] j −K[�]π∗
[�] j]

= var[K∗
[�] j −K[�]F[�] j]

= var[
j

∑
c=1

K[�]c]

= K[�]

[
j

∑
c=1

π[�]c(1−π[�]c)−
j

∑
c�=c′

π[�]cπ[�]c′

]

, for j = 1, . . . ,J−1. (2.201)

Next, for j < h, j,h = 1, . . . ,J−1,

γ[�] jh = cov[y∗[�] j −K[�]π∗
[�] j,y

∗
[�]h −K[�]π∗

[�]h]

= cov[
j

∑
c=1

K[�]c,
h

∑
c=1

K[�]c]
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= K[�]

[
j

∑
c=1

π[�]c(1−π[�]c)−
j

∑
c �=c′

π[�]cπ[�]c′ −
j

∑
c=1

h

∑
c′= j+1

π[�]cπ[�]c′

]

.(2.202)

Also it follows that γ[�] jh = γ[�]h j.

2.3.1.4.1 (b) Computation of
∂π∗

[�]
′

∂β : (J−1)(p+1)× (J−1)

It is sufficient to compute the derivative of a general element, say π∗
[�] j with respect

to β . That is,

∂π∗
[�] j

∂β
=

J

∑
c= j+1

∂π[�]c

∂β

=
J

∑
c= j+1

[

π[�]c

{

x[�]c −
J

∑
u=1

π[�]ux[�]u

}]

=
J

∑
c= j+1

[
π[�]c

{
x[�]c −X ′

�π[�]

}]

= A∗
[�] j(x,β ) : (J−1)(p+1)×1, (say), (2.203)

yielding

∂π∗
[�]

′

∂β
=
(

A∗
[�]1(x,β ) . . . A∗

[�] j(x,β ) . . . A∗
[�](J−1)(x,β )

)
(J−1)(p+1)× (J−1)

= A∗
[�](x,β ), (say). (2.204)

Next, by following Sutradhar (2004), and using (2.200)–(2.201), and (2.203), we
can write a GQL estimating equation for β as

p+1

∑
�=1

K[�]

∂π∗
[�]

′

∂β
Γ −1
[�]

(
y∗[�]−K[�]π∗

[�]

)

=
p+1

∑
�=1

K[�]A
∗
[�](x,β )Γ

−1
[�]

(
y∗[�]−K[�]π∗

[�]

)
= 0 (2.205)

The solution of this GQL estimating equation (2.204) for β may be obtained
iteratively by using the iterative formula
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β̂ (r+1) = β̂ (r)+

⎡

⎣

{
p+1

∑
�=1

K2
[�]A

∗
[�](x,β )Γ

−1
[�] A∗

[�]
′(x,β )

}−1

×
p+1

∑
�=1

K[�]A
∗
[�](x,β )Γ

−1
[�]

(
y∗[�]−K[�]π∗

[�]

)
]

β=β̂ (r)

, (2.206)

yielding the final GQL estimate β̂GQL, along with its asymptotic (as min1≤�≤p+1

K[�] → ∞) covariance matrix

cov[β̂GQL] =

[
p+1

∑
�=1

K2
[�]A

∗
[�](x,β )Γ

−1
[�] A∗

[�]
′(x,β )

]−1

. (2.207)
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Chapter 3
Regression Models For Univariate Longitudinal
Stationary Categorical Data

3.1 Model Background

Note that the multinomial model discussed in Chap. 2 and the inferences therein
for this model are described for a cross-sectional study, where the multinomial
responses with corresponding covariates are collected from a large number of
independent individuals at a single point of time. There are, however, situations in
practice where this type of multinomial responses are collected over a small period
of time. Here the repeated multinomial responses are likely to be correlated. But,
the modeling and inferences for such repeated multinomial data are not addressed
adequately in the literature. One of the main reasons for this is the difficulty of
modeling the correlations among the repeated categorical responses. This is not
surprising as the modeling for repeated binary data has also been a challenging
problem over the last few decades (e.g., Park et al. 1996; Prentice 1988; Oman
and Zucker 2001; Qaqish 2003; Farrell and Sutradhar 2006; Sutradhar 2010a, 2011,
Chapter 7), indicating that the modeling for correlations for repeated multinomial
responses would naturally be more complex.

Let yit = (yit1, . . . , yit j, . . . ,yit,J−1)
′ be the (J − 1)-dimensional multinomial

response variable and for j = 1, . . . ,J−1,

y( j)
it = (y( j)

it1 , . . . , y( j)
it j , . . . ,y

( j)
it,J−1)

′ = (01′j−1, 1, 01′J−1− j)
′ ≡ δit j (3.1)

indicates that the multinomial response of ith individual belongs to jth category at

time t. For j = J, one writes y(J)it = δitJ = 01J−1. Here 1m, for example, denotes the
m-dimensional unit vector. Also, let

wit = [wit1, . . . ,wits, . . . ,wit p]
′ (3.2)

© Springer Science+Business Media New York 2014
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be the p×1 vector of fixed and known covariates corresponding to yit , and β j denote
its effect on yit belonging to the jth category. For example, in a longitudinal obesity
study, wit may represent the epidemiological/socio-economic variables such as

wit ≡ [age, gender, education level, marital status, geographical region,

chronic conditions and lifestyle including smoking and food habits]′ (3.3)

at a given year (t) for the ith individual. This wit will have β j influence to put the
response yit in the jth obesity level, where for J = 5, for example, standard obesity
levels are normal, overweight, obese class 1, 2, and 3.

3.1.1 Non-stationary Multinomial Models

Next, as a generalization to the longitudinal setup, one may follow (2.45) from
Chap. 2, and write the marginal probability for yit to belong to the jth category as

P[yit = y( j)
it = δit j] = π(it) j =

⎧
⎪⎨

⎪⎩

exp(β j0+β ′
jwit )

1+∑J−1
g=1 exp(βg0+β ′

gwit )
for j = 1, . . . , J−1

1
1+∑J−1

g=1 exp(βg0+β ′
gwit )

for j = J,
(3.4)

where β j = [β j1, . . . ,β js, . . . ,β jp]
′ for j = 1, . . . ,J −1, is the same as in (2.45) indi-

cating that the regression effects remain the same for all t = 1, . . . ,T, even though
we now have time dependent covariates wit , whereas in the cross-sectional setup,
i.e., in (2.45), wi is expressed as wi = [wi1, . . . ,wis, . . . ,wip]

′. Note that except for
gender, all other covariates used to illustrate wit through (3.3) can be time dependent.
Thus, wit in (3.3) may be referred to as a time dependent (non-stationary) covariate
vector, which makes the marginal multinomial probabilities (3.4) non-stationary
over time. For example, to understand the time effect on longitudinal multinomial
responses, some authors such as Agresti (2002, Chapter 11, Eqs. (11.3)–(11.6)) (see
also Agresti 1989, 1990) have modeled the marginal multinomial probabilities at a
given time t(t = 1, . . . ,T ) by adding a deterministic time effect to the category effect
of the response variable. To be specific, for

wit = [time, gender, time × gender]′ = [t,G, tG]′

the marginal probability in (3.4) reduces to

P[yit = y( j)
it = δit j] = π(it) j =

⎧
⎨

⎩

exp(β j0+β j1t+β j2G+β j3Gt)

1+∑J−1
g=1 exp(βg0+βg1t+βg2G+βg3Gt)

for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0+βg1t+βg2G+βg3Gt)
for j = J,

(3.5)
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which is similar to the marginal probability model (11.6) in Agresti (2002). Note
that when wit is properly constructed using associated time dependent covariates
such as in (3.3), it is unlikely that time (t) will directly influence the probability
as in (3.5). Thus, any model similar to (3.5) will have little practical values.
To understand the time effect, it is however important to exploit the possible
correlation structure for the repeated multinomial responses yi1, . . . ,yit , . . . ,yiT ,
when marginal probabilities are modeled by (3.4). Here yit is the (J − 1)× 1
response vector defined as yit = [yit1, . . . ,yit j, . . . ,yit,J−1]

′. As far as the correlation
structure is concerned, Agresti (2002, Section 11.4) made an attempt to use the so-
called working correlation structure for the repeated multinomial responses, and
the regression effects were suggested to be computed by solving the so-called
generalized estimating equations (GEE) (Liang and Zeger 1986). But, as discussed
in detail by Sutradhar (2011, Chapter 7), for example in the context of longitudinal
binary data, this type of GEE approach can produce less efficient estimates than
the ‘independence’ assumption based moment or QL (quasi-likelihood) approaches,
which makes the GEE approach useless. Further as a remedy, Sutradhar (2010a,
2011) suggested to use an auto-correlation structure based GQL (generalized quasi-
likelihood) (see also Sutradhar 2010b, www.statprob.com) estimation approach that
always produces more efficient estimates than the aforementioned ‘independence’
assumption based estimates. However, in this book, instead of using the whole
auto-correlation class, we will exploit the most likely auto-regressive type model
but in both linear and non-linear forms. These linear and non-linear non-stationary
multinomial models and parameter estimation are discussed in detail in Chap. 4. The
so-called odds ratio based existing correlation models will also be discussed.

3.1.2 Stationary Multinomial Models

In some situations, covariates of an individual can be time independent. In such
cases, it is sufficient to use the notation

wi = [wi1, . . . ,wis, . . . ,wip]
′

in place of wit (3.2) for all t = 1, . . . ,T , to represent p covariates of the ith individual.
For example, suppose that one is interested to study the effects of gender and race
on the repeated multinomial responses yit : (J−1)×1 collected over T time periods.
For this problem, for the ith (i = 1, . . . ,K), one writes

wi = [genderi, racei]
′ = [wi1,wi2]

′,

and consequently, the marginal multinomial probability, similar to (3.4), may be
written as

www.statprob.com
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P[yit = y( j)
it ] = π(i) j =

⎧
⎪⎨

⎪⎩

exp(β j0+β ′
jwi)

1+∑J−1
g=1 exp(βg0+β ′

gwi)
for j = 1, . . . ,J−1; t = 1, . . . ,T

1
1+∑J−1

g=1 exp(βg0+β ′
gwi)

for j = J; t = 1, . . . ,T,
(3.6)

where β j for j = 1, . . . ,J − 1, has the same notation as in (3.4), that is, β j =
[β j1, . . . ,β js, . . . ,β jp]

′. Notice that these marginal multinomial probabilities in (3.6)
are the same as the multinomial probability (2.45) used in the cross-sectional case,
that is, for the t = 1 case. However, unlike the probability formula in (2.45), the
marginal probability in (3.6) cannot represent the complete model in the longitudinal
setup. More specifically, a complete model involving (3.6) also must accommo-
date, at least, the correlation structure for the repeated multinomial responses
yi1, . . . ,yit , . . . ,yiT . We deal with the inferences for this type of complete longitudinal
stationary multinomial models in Sect. 3.3 for the binary case (J = 2) for simplicity
and in Sect. 3.5 for general case with more than two categories (J > 2). To be
specific, in these Sects. 3.3 and 3.5 we will generalize the cross-sectional level
inferences discussed in Sect. 2.2 (of Chap. 2) to the longitudinal setup.

3.1.3 More Simpler Stationary Multinomial Models:
Covariates Free (Non-regression) Case

Similar to Sect. 2.1 (Chap. 2), it may happen in some situations that the multinomial
(categorical) data are collected from a group of individuals with similar covariates
background. For example, suppose that a treatment is applied to 500 males and a
multinomial response with three categories such as ‘highly effective,’ ‘somewhat
effective,’ and ‘not effective at all’ is collected from every individual. Further
suppose that this survey is repeated for T = 3 times with the same 500 individuals.
To model this type of data, it is appropriate to use the marginal probability as

P[yit = y( j)
it ] = π j =

⎧
⎨

⎩

exp(β j0)

1+∑J−1
g=1 exp(βg0)

for j = 1, . . . ,J−1; t = 1, . . . ,T

1
1+∑J−1

g=1 exp(βg0)
for j = J; t = 1, . . . ,T,

(3.7)

which is a covariates free and hence a simpler version of the marginal probability
relationship in (3.6). This marginal probability is the same as (2.2) which was
defined under a cross-sectional setup. In the present case, the repeated multinomial
responses yi1, . . . ,yit , . . . ,yiT are likely to be correlated. In Sects. 3.2–3.5, we
accommodate the correlations of the repeated responses and develop the inference
procedure for efficient estimation of the parameters β10, . . . ,β j0, . . . ,βJ−1,0. For
simplicity, the binary case (J = 2) is discussed in Sect. 3.2 with no covariates
involved in the model, and in Sect. 3.4 we deal with the general longitudinal
multinomial (J > 2) cases without covariates in the model. To be specific, in these
sections, we generalize the cross-sectional level inference discussed in Sect. 2.1.3
(of Chap. 2) to the longitudinal setup. Both likelihood and GQL estimating equation
approaches will be discussed.
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3.2 Covariate Free Basic Univariate Longitudinal
Binary Models

For simplicity, in this section, we discuss various longitudinal binary models (J = 2)
and inferences, and turn back to the general longitudinal multinomial case with
J > 2 categories in Sect. 3.3.

3.2.1 Auto-correlation Class Based Stationary Binary
Model and Estimation of Parameters

In the stationary longitudinal setup for binary (J = 2) data, for i = 1, . . . ,K, the
marginal probabilities by (3.7) have the forms:

P[yit = y( j)
it ] = π j =

{
exp(β10)

1+exp(β10)
for j = 1

1
1+exp(β10)

for j = J = 2,
(3.8)

for all t = 1, . . . ,T, where

y( j)
it =

{
1 for j = 1; t = 1, . . . ,T
0 for j = J = 2; t = 1, . . . ,T.

For this stationary case, one may summarize the response frequencies over T
time periods through following initial contingency Table 3.1 and T − 1 lag (h∗ =
1, . . . ,T −1) contingency tables (Tables 3.2(1)–3.2(1)(T −1)):

Table 3.1 Contingency table
at initial time t = 1

t (t = 1)

Category

1 2 Total

K1(1) K2(1) K

Table 3.2 Lag h∗ (h∗ = 1, . . . ,T − 1) based [h∗(T − h∗)] contin-
gency tables

t (t = h∗+1, . . . ,T )
Time Category

Time Category 1 2 Total

t-h∗ 1 K11(t −h∗, t) K12(t −h∗, t) K1(t −h∗)
2 K21(t −h∗, t) K22(t −h∗, t) K2(t −h∗)
Total K1(t) K2(t) K



94 3 Regression Models For Univariate Longitudinal Stationary Categorical Data

As far as the correlation structure for the repeated binary responses is concerned,
following Sutradhar (2010a, 2011), it is quite reasonable to assume that they follow
an ARMA (auto-regressive moving average) type auto-correlation class which
accommodates simpler AR(1), MA(1) and equi-correlations (EQC) correlation
models. Note that the correlation structure of any correlation model within this auto-
correlation class can be understood simply by consistently estimating all possible
lag correlations, namely ρh∗ for h∗ = 1, . . . ,T − 1. These auto-correlations for the
stationary binary data form the common stationary T ×T auto-correlation matrix,
say Ci(ρ) = Corr(Yi) = Corr(Yi1, . . . ,Yit , . . . ,YiT )

′ given by

Ci(ρ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 ρ1 ρ2 · · · ρT−1

ρ1 1 ρ1 · · · ρT−2
...

...
...

...
ρT−1 ρT−2 ρT−3 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=C(ρ), (3.9)

which is same for all i = 1, . . . ,K.

3.2.1.1 GQL Estimation of ˇ10

To develop the GQL estimating equation for β10, we first provide a moment
estimating equation for ρh∗ by assuming that β10 is known. Following Sutradhar
(2011, Eq. 7.67), for example, this moment equation is given by

ρ̂h∗ =
∑K

i=1 ∑T
t=h∗+1 ỹi,t−h∗ ỹit/K(T −h∗)

∑K
i=1 ∑T

t=1 ỹ2
it/KT

, (3.10)

where ỹit is the standardized deviance, defined as

ỹit =
yit −π1

{π1(1−π1)}1/2
,

where π1 is defined by (3.8). Now by using the frequencies from the contingency
Tables 3.1 and 3.2, one writes

K

∑
i=1

T

∑
t=1

yit =
T

∑
t=1

K

∑
i=1

yit =
T

∑
t=1

K1(t), or

K

∑
i=1

T

∑
t=h∗+1

yit =
T

∑
t=h∗+1

K

∑
i=1

yit =
T

∑
t=h∗+1

K1(t); and

K

∑
i=1

T

∑
t=h∗+1

yi,t−h∗ =
T

∑
t=h∗+1

K

∑
i=1

yi,t−h∗ =
T

∑
t=h∗+1

K1(t −h∗)
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K

∑
i=1

T

∑
t=h∗+1

yi,t−h∗yit =
T

∑
t=h∗+1

K

∑
i=1

yi,t−h∗yit =
T

∑
t=h∗+1

K11(t −h∗, t). (3.11)

By using (3.11), it then follows from (3.10) that

ρ̂h∗ =
1

T−h∗ ∑T
t=h∗+1

[
K11(t −h∗, t)−π1{K1(t)+K1(t −h∗)}+π2

1 K
]

1
T ∑T

t=1

[
(1−2π1)K1(t)+π2

1 K
] . (3.12)

For the GQL estimation of β10 we follow the steps below.

Step 1. Use ρh∗ = 0, that is, Ci(ρ) = C(ρ) = IT , the T ×T identity matrix, and
construct the covariance matrix Σi(β10,ρ) as

Σi(β10,ρ) = A1/2
i C(ρ)A1/2

i , (3.13)

where

Ai = diag[σ(i)11, . . . ,σ(i)tt , . . . ,σ(i)TT ], (3.14)

with σ(i)tt = var[Yit ]. Now because, in the present stationary case σ(i),tt = π1(1−
π1), that is Ai = π1(1− π1)IT , the covariance matrix in (3.13) has the simpler
form given by

Σi(β10,ρ) = π1(1−π1)C(ρ). (3.15)

Step 2. Then for

π(i) = E[Yi] = E[Yi1, . . . ,Yit , . . . ,YiT ]
′ = π11T ,

solve the GQL estimating equation

K

∑
i=1

∂π ′
(i)

∂β10
Σi

−1(ρ)(yi −π(i))

=
K

∑
i=1

1′TC−1(ρ)(yi −π11T )

=
K

∑
i=1

(ω1, . . . ,ωt , . . . ,ωT )(yi −π11T )

=
T

∑
t=1

ωtK1(t)−Kπ1

T

∑
t=1

ωt = 0, (3.16)

(Sutradhar 2011, Section 7.3.5) for β10, by using the iterative equation
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β̂10(r+1) = β̂10(r)+

⎡

⎣

{
K

∑
i=1

∂π ′
(i)

∂β10
Σi

−1(ρ)
∂π ′

(i)

∂β10

}−1 K

∑
i=1

∂π ′
(i)

∂β10
Σi

−1(ρ)(yi −π(i))

⎤

⎦

|β10=β̂10(r)

= β̂10(r)+
1

K{π1(1−π1)}∑T
t=1 ωt

[
T

∑
t=1

ωt K1(t)−Kπ1

T

∑
t=1

ωt

]

(3.17)

Step 3. Use this estimate of β10 from (3.17) into π1 and compute ρ̂h∗ by (3.12),
and then compute the Ci(ρ) by (3.9). Next, use this Ci(ρ) in Step 1 to construct
the covariance matrix Σi by (3.15), and then obtain improved estimate of β10 by
using (3.17) from Step 2.

These three steps continue until convergence for β10 yielding the converged value
as the estimate.

Note that one can conveniently use the above iterative formula (3.17) to obtain the
standard error of the GQL estimate for β10. To be specific, because the variance of
the estimator depends on the variance of second term in the right-hand side of (3.17),
and because K individuals are independent, for known ρ , it follows that the variance
of the estimator β̂10 has the formula

var[β̂10] =

[
K

∑
i=1

∂π ′
(i)

∂β10
Σi

−1(ρ)
∂π ′

(i)

∂β10

]−1 K

∑
i=1

∂π ′
(i)

∂β10
Σi

−1(ρ)var[yi −π(i)]Σi
−1(ρ)

∂π(i)

∂β10

×
[

K

∑
i=1

∂π ′
(i)

∂β10
Σi

−1(ρ)
∂π ′

(i)

∂β10

]−1

=

[
K

∑
i=1

∂π ′
(i)

∂β10
Σi

−1(ρ)
∂π ′

(i)

∂β10

]−1

=
1

K{π1(1−π1)}∑T
t=1 ωt

, (3.18)

because var[yi −π(i)] = Σi(ρ).

3.2.1.2 A Simpler Alternative Estimation Formula for β 10

Note that in the present covariate free stationary case, one can first write a closed
formula for the estimate of π1 and then solve for β10 from the formula for
π1 =

exp(β10)
1+exp(β10)

. To be specific, the estimating equation (3.16) provides

π̂1 =
∑T

t=1 ωtK1(t)

K ∑T
t=1 ωt

, (3.19)

where K1(t) is the number of individuals those belong to category 1 (yes group) at
time t, and ωt is the t-th element of the row vector
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ω ′ = [ω1, . . . ,ωt , . . . ,ωT ]≡ 1′TC−1(ρ).

Next, by equating π̂1 from (3.19) to exp(β10)
1+exp(β10)

, one writes

exp(β̂10) =
∑T

t=1 ωtK1(t)

K ∑T
t=1 ωt −∑T

t=1 ωtK1(t)
,

and obtains the estimate of β10 as

β̂10 = log

[
∑T

t=1 ωtK1(t)

K ∑T
t=1 ωt −∑T

t=1 ωtK1(t)

]

. (3.20)

which is easy to compute. However, finding the standard error of this estimate is
somewhat complex but can be done by using the so-called delta method, whereas
it is relatively much easier to use the variance formula (3.18) to obtain this
standard error.

3.2.1.3 Illustration 3.1: Analysis of Longitudinal Asthma Data Using
Auto-correlations Class Based GQL Approach

Consider the asthma data for 537 children from Ohio collected over a period of
4 years. This data set containing yearly asthma status for these children along with
their mother’s smoking habits was earlier analyzed by Zeger et al. (1988), Sutradhar
(2003), and Sutradhar and Farrell (2007), among others. The data set is available
in Appendix 7F in Sutradhar (2011, p. 320) (see also Zeger et al. 1988). Children
with asthma problem are coded as 1 and no asthma attack is coded as 0. However to
match with the notation of Table 3.2, we rename them (coded response) as category
1 and 2, respectively. Note that it is assumed in this study that mother’s smoking
habit remains unchanged over the study period. Thus, there is no time dependent
covariate. Consequently, it is reasonable to assume that probability of an asthma
attack to a child is not time dependent, but the repeated responses over 4 time periods
will be auto-correlated. It is, therefore, of interest to compute this probability after
taking the correlations into account. Further note that to compute this probability, in
this section, we even ignore the mother’s smoking habits as a covariate. In Sect. 3.3,
we reanalyze this data set again by including the smoking habits of the mother as a
binary covariate.

To be clear and precise, we first display all transitional contingency tables
corresponding to Tables 3.1 and 3.2, as follows:

Now to compute the probability (3.8) of having an asthma attack for a child, we
need to compute β10, taking into account that the asthma status of a child over two
different times is correlated. For the purpose, we however compute this parameter
first by treating the repeated responses as independent. Thus, by putting ρh∗ = 0 as
guided by Step 1, we compute an initial estimate of β10 by solving (3.16). More
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Table 3.3 Contingency table
for the asthma data at initial
time t = 1 for 537 children

t (t = 1)

Category

1 (Asthma attack) 2 (No attack) Total

K1(1) = 87 K2(1) = 450 K=537

Table 3.4 (1): Lag h∗ = 1 based transitional table from time t−h∗ = 1
to t = 2 for the asthma data

2
Time Category

Time Category 1 2 Total

1 1 K11(1,2) = 41 K12(1,2) = 46 K1(1) = 87

2 K21(1,2) = 50 K22(1,2) = 400 K2(1) = 450

Total K1(2) = 91 K2(2) = 446 537

Table 3.4 (2): Lag h∗ = 1 based transitional table from time t−h∗ = 2
to t = 3 for the asthma data

3

Time Category

Time Category 1 2 Total

2 1 K11(2,3) = 47 K12(2,3) = 44 K1(2) = 91

2 K21(2,3) = 38 K22(2,3) = 408 K2(2) = 446

Total K1(3) = 85 K2(3) = 452 537

Table 3.4 (3): Lag h∗ = 1 based transitional table from time t−h∗ = 3
to t = 4 for the asthma data

4

Time Category

Time Category 1 2 Total

3 1 K11(3,4) = 34 K12(3,4) = 51 K1(3) = 85

2 K21(3,4) = 29 K22(3,4) = 423 K2(1) = 452

Total K1(4) = 63 K2(4) = 474 537

specifically we do this by using the iterative equation (3.17) under the assumption
that all ρh∗ = 0 (h∗ = 1,2,3). This initial estimate of β10 is found to be

β̂10(initial) =−1.7208.

Next we use this initial estimate of β10 and follow Step 3 to compute the auto-
correlations by using the formula (3.12). These auto-correlation values are then
used in (3.15) and (3.17) to obtain the improved estimate for β10. In three cycles
of iterations, the final estimates for 3 lag correlations were found to be

ρ̂1 = 0.40, ρ̂2 = 0.3129, ρ̂3 = 0.2979, (3.21)
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Table 3.4 (4): Lag h∗ = 2 based transitional table from time t − h∗ = 1
to t = 3 for the asthma data

3

Time Category

Time Category 1 2 Total

1 1 K11(1,3) = 36 K12(1,3) = 51 K1(1) = 87

2 K21(1,3) = 49 K22(1,3) = 401 K2(1,3) = 450

Total K1(3) = 85 K2(3) = 452 537

Table 3.4 (5): Lag h∗ = 2 based transitional table from time t−h∗ = 2
to t = 4 for the asthma data

4

Time Category

Time Category 1 2 Total

2 1 K11(2,4) = 32 K12(2,4) = 59 K1(2) = 91

2 K21(2,4) = 31 K22(2,4) = 415 K2(2) = 446

Total K1(4) = 63 K2(4) = 474 537

Table 3.4 (6): Lag h∗ = 3 based transitional table from time t−h∗ = 1
to t = 4 for the asthma data

4

Time Category

Time Category 1 2 Total

1 1 K11(1,4) = 31 K12(1,4) = 56 K1(1) = 87

2 K21(1,4) = 32 K22(1,4) = 418 K2(1) = 450

Total K1(4) = 63 K2(4) = 474 537

yielding the final binary category effect (regression effect) as

β̂10 =−1.7284, (3.22)

with its standard error, computed by (3.18) as

s.e.(β̂10) =
√

0.00748 = 0.0865.

Note that the above correlation values are in agreement with those found in
Sutradhar (2003, Section 5.2) but this regression estimate in (3.22) is computed
by using a simpler regression model involving only binary category effect, whereas
Sutradhar (2003) (see also Zeger et al. 1988) has used a slightly different regression
model involving covariate (mother’s smoking habits) specific category effects. This
latter model but based on contingency (transitional) tables is discussed in the next
section. Turning back to the marginal model (3.8), by using the final regression
estimate from (3.22) into (3.8), one obtains the probability of having an asthma
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attack for a child as π̂1 = 0.1508, which appears to be a large probability and can be
a matter of practical concern. Note that the direct estimating formula (3.19) also
produces the same estimate 0.1508 for this probability and (3.20) consequently
yields the same estimate for β10 as in (3.22).

3.2.2 Stationary Binary AR(1) Type Model and Estimation
of Parameters

In the last section, the repeated categorical (binary) responses were assumed to
follow a general class of auto-correlation structures, and the inferences were made
by using the so-called GQL approach. Now suppose that one is interested to fit a
specific such as lag 1 dynamic (AR(1)) model to the same repeated binary data. It is
demonstrated below that one may use the likelihood approach in such cases for the
estimation of the parameters. Also, one may alternatively use the specific correlation
structure based GQL approach for the estimation.

3.2.2.1 LDCP Model and Likelihood Estimation

Refer to the repeated binary data for K individuals with transitional counts displayed
through the contingency Tables 3.1 and 3.2. For example, K11(1,3) denotes the
number of individuals with responses who were in category 1 at time t = 1 and
also belong to category 1 at time t = 3. We now assume that the repeated binary
responses of these individuals follow the so-called LDCP model (also known
as Markovian or AR(1) type LDCP model (Zeger et al. 1985; Sutradhar 2011,
Section 7.2.3.1)) given by

P[yi1 = y( j)
i1 ] = π j =

{
exp(β10)

1+exp(β10)
for j = 1

1
1+exp(β10)

for j = J = 2;
(3.23)

P[yit = y(1)it |yi,t−1 = y(g)i,t−1] = π1 +ρ(y(g)i,t−1 −π1)

= λ (1)
it|t−1(g) (say),g = 1,2; t = 2, . . . ,T ; (3.24)

and

λ (2)
it|t−1(g) = 1−λ (1)

it|t−1(g), for g = 1,2; t = 2, . . . ,T. (3.25)

This LDCP model presented by (3.23)–(3.25) produces the marginal mean and
variance of yit for t = 1, . . . ,T, as
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E[Yit ] = EYi1 EYi2 · · ·EYit [Yit |yi,t−1] = π1

var[Yit ] = E[Yit ]− [E[Yit ]]
2 = π1(1−π1), (3.26)

and for u < t, the Gaussian type lag t −u auto-covariances as

Cov[Yiu,Yit ] = E[YiuYit ]−E[Yiu]E[Yit ]

= EYiu

[
YiuEYi,t−(t−u−1)

· · ·EYi,t−1EYit [Yit |yi,t−1]
]
−π2

1

= ρ t−uvar[Yiu],

yielding the auto-correlations as

Corr[Yiu,Yit ] = ρ t−u. (3.27)

3.2.2.1.1 Likelihood Function

In the LDCP model (3.23)–(3.25), there are 2 parameters, namely the intercept
parameter β10 (categorical regression parameter) and correlation index parameter
ρ . To construct the likelihood function, let f1(yi1) denote the binary density of
the initial response variable yi1, and ft(yit |yi,t−1) denote the conditional binary
distribution of response variable at time t given the response at previous time t −1.
Because K individuals are independent, the likelihood function based on lag 1
dynamic dependent observations has the form

L(β10,ρ) = Π K
i=1Li, (3.28)

where

Li = f1(yi1) f2(yi2|yi1) · · · fT (yiT |yi,T−1),

with

f1(yi1) = [π1]
yi1 [π2]

1−yi1 =
exp[yi1β10]

1+ exp(β10)
, and

ft(yit |yi,t−1) = [λ (1)
it|t−1(yi,t−1)]

yit [λ (2)
it|t−1(yi,t−1)]

1−yit , for t = 2, . . . ,T, (3.29)

yielding the log likelihood function as

LogL(β10,ρ) =
K

∑
i=1

[yi1log π1 +(1− yi1)log π2]

+
2

∑
g=1

K

∑
i∈g

T

∑
t=2

[yit log λ (1)
it|t−1(g)+(1− yit)log λ (2)

it|t−1(g)]. (3.30)
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Note that under the present stationary model, it follows from (3.24) that λ (1)
it|t−1(1)

and λ (1)
it|t−1(2) are free from i and t. Consequently, for convenience, we suppress the

subscripts from these conditional probabilities and use λ (1)(2) for λ (1)
it|t−1(2), for

example. Next by using the cell frequencies from the contingency Table 3.2, we
express the log likelihood function (3.30) as

Log L(β10,ρ) = [K1(1)log π1 +K2(1)log π2]

+ log λ (1)(1)
T

∑
t=2

K11(t −1, t)+ log λ (2)(1)
T

∑
t=2

K12(t −1, t)

+ log λ (1)(2)
T

∑
t=2

K21(t −1, t)+ log λ (2)(2)
T

∑
t=2

K22(t −1, t), (3.31)

where by (3.24)–(3.25),

λ (1)(1) = π1 +ρ(1−π1), λ (2)(1) = 1−λ (1)(1) = (1−ρ)(1−π1)

λ (1)(2) = (1−ρ)π1, λ (2)(2) = 1−λ (1)(2) = 1− (1−ρ)π1. (3.32)

This log likelihood function is maximized in the next section to estimate the
parameters β10 and ρ . We remark that unlike the computation of the likelihood
function under the present AR(1) type model (3.24), the likelihood computation
under other linear dynamic models such as MA(1) and EQC, however, would be
impossible or extremely complicated (see Sutradhar 2011, Section 7.3.4).

3.2.2.1.2 Likelihood Estimating Equations

The following derivatives, first, with respect to β10 and then with respect to ρ will
be helpful to write the likelihood estimating equations for β10 and ρ , respectively.

Derivatives with Respect to β10 and ρ

It follows from (3.24)–(3.25) and (3.32) that

∂π1

∂β10
= π1(1−π1);

∂π2

∂β10
=−π1(1−π1),

∂λ (1)(1)
∂β10

= (1−ρ)π1(1−π1) =
∂λ (1)(2)

∂β10
,

∂λ (2)(1)
∂β10

= −(1−ρ)π1(1−π1) =
∂λ (2)(2)

∂β10
, (3.33)
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and

∂π1

∂ρ
= 0;

∂π2

∂ρ
= 0,

∂λ (1)(1)
∂ρ

= (1−π1);
∂λ (2)(1)

∂ρ
=−(1−π1),

∂λ (1)(2)
∂ρ

= −π1;
∂λ (2)(2)

∂ρ
= π1. (3.34)

By (3.33), it then follows from (3.31) that the likelihood estimating equation for β10

has the form

∂Log L(β10,ρ)
∂β10

= [π1(1−π1)]

[
K1(1)

π1
− K2(1)

π2

]

+ [(1−ρ)π1(1−π1)]

[
∑T

t=2 K11(t −1, t)

λ (1)(1)
− ∑T

t=2 K12(t −1, t)

λ (2)(1)

]

+ [(1−ρ)π1(1−π1)]

[
∑T

t=2 K21(t −1, t)

λ (1)(2)
− ∑T

t=2 K22(t −1, t)

λ (2)(2)

]

= [π2K1(1)−π1K2(1)]

+ [(1−ρ)π1(1−π1)]

[
∑T

t=2 K11(t −1, t)

λ (1)(1)
− ∑T

t=2 K12(t −1, t)

λ (2)(1)

+
∑T

t=2 K21(t −1, t)

λ (1)(2)
− ∑T

t=2 K22(t −1, t)

λ (2)(2)

]

= 0. (3.35)

Similarly, the likelihood estimating equation for ρ has the form

∂Log L(β10,ρ)
∂ρ

= [1−π1]

[
∑T

t=2 K11(t −1, t)

λ (1)(1)
− ∑T

t=2 K12(t −1, t)

λ (2)(1)

]

− [π1]

[
∑T

t=2 K21(t −1, t)

λ (1)(2)
− ∑T

t=2 K22(t −1, t)

λ (2)(2)

]

= 0. (3.36)

Note that it is relatively easier to solve these score equations (3.35) for β10

and (3.36) for ρ , marginally, as opposed to their joint estimation. To be specific,
for known ρ , the marginal likelihood estimate for β10 may be obtained by using the
iterative equation

β̂10(r+1) = β̂10(r)−
[{

∂ 2Log L(β10,ρ)
∂β 2

10

}−1 ∂Log L(β10,ρ)
∂β10

]

|β10=β̂10(r)

,

(3.37)
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where the second derivative by (3.35) has the formula

∂ 2Log L(β10,ρ)
∂β 2

10

= −Kπ1(1−π1)

+ [(1−ρ)π1(1−π1)(1−2π1)]

[
∑T

t=2 K11(t −1, t)

λ (1)(1)
− ∑T

t=2 K12(t −1, t)

λ (2)(1)

+
∑T

t=2 K21(t −1, t)

λ (1)(2)
− ∑T

t=2 K22(t −1, t)

λ (2)(2)

]

− [(1−ρ)π1(1−π1)]
2

[
∑T

t=2 K11(t −1, t)

{λ (1)(1)}2
+

∑T
t=2 K12(t −1, t)

{λ (2)(1)}2

+
∑T

t=2 K21(t −1, t)

{λ (1)(2)}2
+

∑T
t=2 K22(t −1, t)

{λ (2)(2)}2

]

. (3.38)

Similarly, for known β10, the marginal likelihood estimate for ρ may be obtained
by using the iterative equation

ρ̂(r+1) = ρ̂(r)−
[{

∂ 2Log L(β10,ρ)
∂ρ2

}−1 ∂Log L(β10,ρ)
∂ρ

]

|ρ=ρ̂(r)

, (3.39)

where the second derivative by (3.36) has the formula

∂ 2Log L(β10,ρ)
∂ρ2 = −[1−π1]

2
[

∑T
t=2 K11(t −1, t)

{λ (1)(1)}2
+

∑T
t=2 K12(t −1, t)

{λ (2)(1)}2

]

− [π2
1 ]

[
∑T

t=2 K21(t −1, t)

{λ (1)(2)}2
+

∑T
t=2 K22(t −1, t)

{λ (2)(2)}2

]

. (3.40)

3.2.2.1.3 Illustration 3.2 (Continuation of Illustration 3.1 for Longitudinal
Asthma Data Analysis): AR(1) Correlation Model Based
Likelihood Estimates

To use the iterative equations (3.37) and (3.39) for maximum likelihood estimates
for β10 and ρ , we follow the cyclical iterations as follows. Starting with initial
values β̂10(0) = 0 and ρ = ρ̂(0) = 0, the iterative equation (3.37) is used to obtain
an improved estimate for β10. This improved estimate for β10, along with initial
value ρ̂(0) = 0, is then used in (3.39) to obtain an improved estimate for ρ . Next,
the β10 estimate is further improved by (3.37) using this new estimate for ρ . This
cycle of computations continues until convergence. The resulting likelihood (L)
estimates were
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β̂10,L =−1.7306, and ρ̂L = 0.5258.

Note that the likelihood estimate of ρ is much larger than lag 1 correlation estimate
ρ̂1 = 0.40 found in Sect. 3.2.1.3, by using the method of moments based on a
general auto-correlation structure. This is not surprising as the lag correlations
found in (3.21) indicate an equi-correlation structure for the data whereas we have
fitted the likelihood method to the data assuming that they follow AR(1) structure.
Nevertheless, the estimates of β10 (β̂10,L = −1.7306) and the resulting probability
of an asthma attack (π̂1 = 0.1505) were found to be almost the same as those
(β̂10 =−1.7284, π̂1 = 0.1508) under the general auto-correlation model.

3.2.2.2 LDCP Model and GQL Estimation

Note that under the lag 1 based LDCP model (3.23)–(3.25), the stationary correla-
tion structure specified by (3.27) has the form

Ci(ρ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 ρ ρ2 · · · ρT−1

ρ1 1 ρ1 · · · ρT−2

...
...

...
...

ρT−1 ρT−2 ρT−3 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= C̃(ρ), (3.41)

for all i = 1, . . . ,K. Consequently, similar to (3.16), one may use this known
correlation matrix C̃(ρ) and construct the GQL estimating equation as

K

∑
i=1

∂π ′
(i)

∂β10
Σi

−1(ρ)(yi −π(i))

=
K

∑
i=1

1′TC̃−1(ρ)(yi −π11T )

=
K

∑
i=1

(ω̃1, . . . , ω̃t , . . . , ω̃T )(yi −π11T )

=
T

∑
t=1

ω̃tK1(t)−Kπ1

T

∑
t=1

ω̃t = 0, (3.42)

and solve it iteratively by using

β̂10(r+1) = β̂10(r)+
1

K{π1(1−π1)}∑T
t=1 ω̃t

[
T

∑
t=1

ω̃tK1(t)−Kπ1

T

∑
t=1

ω̃t

]

.

(3.43)
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Note that this GQL estimation by (3.42) and (3.43) is much simpler than obtaining
the estimate of β10 by using the likelihood based iterative equation (3.37). Further-
more, the moment estimate of ρ parameter may be obtained easily either by (a) an
approximation, or (b) exact moment matching, as follows.

(a) Approximate moment estimate
To estimate the correlation matrix (3.41) one may argue that once ρ is estimated
by using the lag 1 sample correlations, the other elements can be computed.
Note that this would however yield an approximate moment estimate as higher
order sample moments, in relation to lag 1 moment, may not satisfy the pattern
in (3.41). Nevertheless, it would be simpler to use such an approximation which
may not affect adversely the regression, that is, β10 estimation. This simpler
estimate can be computed by (3.12) using h∗ = 1. Thus,

ρ̂ ≡ ρ̂1 =
1

T−1 ∑T
t=2

[
K11(t −1, t)−π1{K1(t)+K1(t −1)}+π2

1 K
]

1
T ∑T

t=1

[
(1−2π1)K1(t)+π2

1 K
] . (3.44)

(b) Exact moment estimate
When sample moments of all possible lags are used, a moment equation for
ρ is constructed by matching the decaying correlation pattern in (3.41). To be
specific, ρ may be computed by solving the polynomial moment equation

T−1

∑
h∗=1

(T −h∗)ρh∗ =
T−1

∑
h∗=1

(T −h∗)ρ̂h∗ , (3.45)

where ρ̂h∗ is computed by (3.12) for all h∗ = 1, . . . ,T −1.

3.2.2.2.1 Illustration 3.3 (Continuation of Illustration 3.1 for Longitudinal
Asthma Data Analysis): AR(1) Correlation Model Based GQL
Estimates

(a) Using approximate correlation estimate:
For the asthma data considered in illustrations 3.1 and 3.2, the GQL estimating
equation (3.43) for β10 and the approximate moment equation (3.41) for ρ ,
produce by iteration, their estimates as

β̂10 =−1.7445 and ρ̂ = 0.40,

with standard error of β̂10, by (3.43) and (3.18), as s.e.(β̂10) = 0.0802.
Notice that the approximate moment estimate ρ̂ = 0.40 under AR(1) model is
different than the likelihood estimate ρ̂L = 0.5258 under the same AR(1) model.
However, the β10 QL estimate under the AR(1) model, that is, β̂10 = −1.7445
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produces similar but slightly different probability of asthma attack, namely
π̂1 = 0.1487, whereas under the general auto-correlation model (illustration
3.1), the probability was found to be 0.1508.

(b) Using exact correlation estimate:
In this approach, β10 is estimated by (3.43), but the moment estimate of ρ is
obtained by solving the polynomial equation (3.45). To be specific, for T = 4,
by (3.45), we write the moment estimating equation as

f (ρ) = 3ρ +2ρ2 +ρ3 − (3ρ̂1 +2ρ̂2 + ρ̂3) = 0, (3.46)

where ρ̂h∗ for h∗ = 1,2,3 are computed by using the formula (3.12) with
adjusted value of π1 using β10 estimate from (3.43). This moment equation
may be solved by using the iterative equation

ρ̂(r+1) = ρ̂(r)−
[

{∂ f (ρ)
∂ρ

}−1 f (ρ)
]

ρ=ρ̂(r)
. (3.47)

After five iterations, (3.43) and (3.47) yielded

β̂10 =−1.7525, and ρ̂ = 0.4998.

These estimates are very close to the likelihood estimates computed for
illustration 3.2. This is expected as both likelihood and the present GQL
approach use the exact correlation estimate for the AR(1) model. The GQL
estimate β̂10 = −1.7525 has the s.e.(β̂10) =

√
0.007393 = 0.0860, and this

yields the probability estimate as π̂1 = 0.1477.

3.2.3 Stationary Binary EQC Model and Estimation
of Parameters

In Sect. 3.2.1.3, the lag correlations for the longitudinal asthma data were found
to indicate equal correlations (3.21) among binary responses. For this and other
similar data, one may like to consider an EQC model as opposed to AR(1) type
linear dynamic conditional probability (LDCP) model discussed in Sect. 3.2.2.1.

3.2.3.1 EQC Model and Likelihood Estimation

Unlike the AR(1) model, the EQC model for binary responses may be modeled as
follows (Sutradhar 2011, Section 7.3.3). Let yi0 be an unobservable initial binary
response with its mean π1 =

exp(β10)
1+exp(β10)

. That is
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P[yi1 = y( j)
i0 ] = π j =

{
exp(β10)

1+exp(β10)
for j = 1

1
1+exp(β10)

for j = J = 2;
(3.48)

P[yit = y(1)it |yi0 = y(g)i0 ] = π1 +ρ(y(g)i0 −π1)

= λ (1)
it|0(g) (say),g = 1,2; t = 1, . . . ,T ; (3.49)

and

λ (2)
it|0(g) = 1−λ (1)

it|0(g), for g = 1,2; t = 1,2, . . . ,T. (3.50)

This model (3.48)–(3.50) has the following basic properties:

E[Yit ] = π1, and var[Yit ] = π1(1−π1), for all t = 1, . . . ,T

cov[Yiu,Yit ] = ρ2π1(1−π1), for u �= t, (3.51)

yielding

Corr[Yiu,Yit ] = ρ2, for all u �= t.

3.2.3.1.1 Likelihood Function and Estimation Complexity

Refer to the conditional probability model (3.49). It is clear that given yi0, all
repeated responses are independent, whereas the latent binary response yi0 follows
the binary distribution with parameter π1 given in (3.48). Also, conditional on yi0,
each of the responses yi1, . . . ,yiT follows the binary distribution with proportion

parameter 0 < λ (1)
it|0(g)< 1. Thus, one writes the likelihood function as

L(β10,ρ) = Π K
i=1

1

∑
yi0=0

Π T
t=1 [ f (yit |yi0) f (yi0)]

= Π K
i=1

2

∑
g=1

Π T
t=1

[

{λ (1)
it|0(g)}yit{1−λ (1)

it|0(g)}1−yit πg
y(g)i0

]

= Π K
i=1

[(
πT

1 Π T
t=1{λ (1)

it|0(1)}yit{1−λ (1)
it|0(1)}1−yit

)

+
(

Π T
t=1{λ (1)

it|0(2)}yit{1−λ (1)
it|0(2)}1−yit

)]
, (3.52)
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where

λ (1)
it|0(1) = π1 +ρ(1−π1)≡ λ (1)(1), and λ (1)

it|0(2) = π1(1−ρ)≡ λ (1)(2).

The log likelihood function may then be written as

Log L(β10,ρ) =
K

∑
i=1

log [ai(β10,ρ)+bi(β10,ρ)] , (3.53)

where

ai(β10,ρ) = πT
1 Π T

t=1{λ (1)(1)}yit{1−λ (1)(1)}1−yit

bi(β10,ρ) = Π T
t=1{λ (1)(2)}yit{1−λ (1)(2)}1−yit .

Notice that the log likelihood function became complicated for the purpose of
writing likelihood estimating equations for β10 and ρ , which happened mainly
because of the summation over the binary distribution of the latent response yi0

to derive the likelihood function as in (3.52). Nevertheless, interested readers may
go through some algebras as in the next section and derive the desired likelihood
estimating equations.

3.2.3.1.2 Likelihood Estimating Equation

The likelihood equations have the forms

∂LogL(β10,ρ)
∂β10

=
K

∑
i=1

∂ai(β10,ρ)
∂β10

+ ∂bi(β10,ρ)
∂β10

ai(β10,ρ)+bi(β10,ρ)
= 0, and

∂LogL(β10,ρ)
∂ρ

=
K

∑
i=1

∂ai(β10,ρ)
∂ρ + ∂bi(β10,ρ)

∂ρ

ai(β10,ρ)+bi(β10,ρ)
= 0, (3.54)

for β10 and ρ , respectively. Now write

ai(β10,ρ) = exp

[

T log π1 + logλ (1)(1)
T

∑
t=1

yit + log λ (2)(1)
T

∑
t=1

(1− yit)

]

bi(β10,ρ) = exp

[

log λ (1)(2)
T

∑
t=1

yit + log λ (2)(2)
T

∑
t=1

(1− yit)

]

. (3.55)

Notice that the forms ai(β10,ρ) and bi(β10,ρ) are determined by the categorical
status of the ith individual collectively over all T time period. Thus, if an
individual belongs to category 1 in any d time points, say, and in category two



110 3 Regression Models For Univariate Longitudinal Stationary Categorical Data

Table 3.5 Contingency table with overall status for the whole period

Distribution of individuals based on number of times (d) in category 1

0 1 2 . . . d . . . T Total

K∗
1 (0) K∗

1 (1) K∗
1 (2) . . . K∗

1 (d) . . . K∗
1 (T ) K

in remaining times T − d, then ∑T
t=2 yit = d. Note that this d ranges from 0 to T.

Now for convenience of taking summation over all i to compute the likelihood
equations (3.54), one can form the contingency Table 3.5.

Using the frequency Table 3.5, one may then simplify the likelihood equations
in (3.54) as

∂LogL(β10,ρ)
∂β10

=
T

∑
d=0

∂a∗d(β10,ρ)
∂β10

+
∂b∗d(β10,ρ)

∂β10

a∗d(β10,ρ)+b∗d(β10,ρ)
= 0, and

∂LogL(β10,ρ)
∂ρ

=
T

∑
d=0

∂a∗d(β10,ρ)
∂ρ +

∂b∗d(β10,ρ)
∂ρ

a∗d(β10,ρ)+b∗d(β10,ρ)
= 0, (3.56)

for β10 and ρ , respectively, with

a∗d(β10,ρ) = exp
[
K∗

1 (d)
{

T log π1 +d log λ (1)(1)+(T −d)log λ (2)(1)
}]

b∗d(β10,ρ) = exp
[
K∗

1 (d)
{

d log λ (1)(2)+(T −d)log λ (2)(2)
}]

. (3.57)

Next by using the derivatives from (3.33) one writes

∂a∗d(β10,ρ)
∂β10

= a∗d(β10,ρ)
[

K∗
1 (d)(1−π1)

{

T +(1−ρ)π1

(
d

λ (1)(1)
− T−d

λ (2)(1)

)}]

∂b∗d(β10,ρ)
∂β10

= b∗d(β10,ρ)
[

K∗
1 (d)(1−ρ)π1(1−π1)

(
d

λ (1)(2)
− T −d

λ (2)(2)

)]

,

(3.58)

yielding, by (3.56), the likelihood estimating equation for β10 as

∂LogL(β10,ρ)
∂β10

=
T

∑
d=0

K∗
1 (d)(1−π1)

×
[

a∗d(β10,ρ)
a∗d(β10,ρ)+b∗d(β10,ρ)

{

T +(1−ρ)π1

(
d

λ (1)(1)
− T −d

λ (2)(1)

)}

+
b∗d(β10,ρ)

a∗d(β10,ρ)+b∗d(β10,ρ)

{

π1(1−ρ)
(

d

λ (1)(2)
− T −d

λ (2)(2)

)}]

= 0. (3.59)
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Similarly, by using the basic derivatives from (3.34) into (3.56), one obtains the
likelihood estimating equation for ρ as

∂LogL(β10,ρ)
∂ρ

=
T

∑
d=0

K∗
1 (d)

×
[

a∗d(β10,ρ)
a∗d(β10,ρ)+b∗d(β10,ρ)

{

(1−π1)

(
d

λ (1)(1)
− T −d

λ (2)(1)

)}

− b∗d(β10,ρ)
a∗d(β10,ρ)+b∗d(β10,ρ)

{

π1

(
d

λ (1)(2)
− T −d

λ (2)(2)

)}]

= 0.

(3.60)

These equations (3.59) and (3.60) are then solved iteratively to obtain the
likelihood estimates for β10 and ρ under the EQC model, ρ2 being the common
correlations between any two binary responses. Note that writing the iterative
equations, similar to (3.37) and (3.39) under the AR(1) model, requires to compute
the second order derivatives

∂ 2LogL(β10,ρ)
∂β 2

10

, and
∂ 2LogL(β10,ρ)

∂ρ2 ,

respectively. However the calculus is straightforward but lengthy and hence not
given here.

Remark that the computation for the likelihood estimates obtained in Sect. 3.2.2.1
for the AR(1) model (3.23)–(3.27) was much more involved than that of the
GQL estimation in Sect. 3.2.2.2. Under the equi-correlation model (3.48)–(3.51),
the likelihood estimation became more cumbersome. In the next section, it is
demonstrated that obtaining the GQL estimates for the parameters of the EQC
model is rather straightforward, and hence much easier than obtaining the likelihood
estimates.

3.2.3.2 EQC Model and GQL Estimation

Note that the marginal means and variances produced by the EQC model (3.48)–
(3.50) are the same as those of the AR(1) model (3.23)–(3.25). The difference
between the two models lies in the correlation structure, with decaying correlations
(as lag increases) as given by (3.41) under the AR(1) model, whereas the equi-
correlation model (3.48)–(3.50) yields the equi-correlation matrix as

Ci(ρ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 ρ2 ρ2 · · · ρ2

ρ2 1 ρ2 · · · ρ2

...
...

...
...

ρ2 ρ2 ρ2 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=C∗(ρ), (say), (3.61)
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for all i = 1, . . . ,K. Thus, similar to the AR(1) case (Eqs. (3.42)–(3.43)), the GQL
estimating equation for β10 under the EQC model may be written as

K

∑
i=1

∂π ′
(i)

∂β10
Σi

−1(ρ)(yi −π(i))

=
K

∑
i=1

1′TC∗−1(ρ)(yi −π11T )

=
K

∑
i=1

(ω∗
1, . . . ,ω∗

t , . . . ,ω∗
T )(yi −π11T )

=
T

∑
t=1

ω∗
tK1(t)−Kπ1

T

∑
t=1

ω∗
t = 0, (3.62)

and solve it iteratively by using

β̂10(r+1) = β̂10(r)+
1

K{π1(1−π1)}∑T
t=1 ω∗

t

[
T

∑
t=1

ω∗
tK1(t)−Kπ1

T

∑
t=1

ω∗
t

]

.

(3.63)

As far as the estimation of the common correlation ρ2 is concerned in this EQC
setup, similar to the exact moment estimating equation (3.46) under the AR(1) case,
one may equate the data based auto-correlation matrix (3.9)–(3.10) with the model
based correlation matrix C∗(ρ) (3.61), and obtain the moment estimating equation
for ρ2 as

{T (T −1)/2}ρ2 =
T−1

∑
h∗=1

(T −h∗)ρ̂h∗ , (3.64)

(see (3.45)) where ρ̂h∗ is computed by (3.12), that is,

ρ̂h∗ =
1

T−h∗ ∑T
t=h∗+1

[
K11(t −h∗, t)−π1{K1(t)+K1(t −h∗)}+π2

1 K
]

1
T ∑T

t=1

[
(1−2π1)K1(t)+π2

1 K
] ,

where K1(t) and K11(t −h, t) are counts from the contingency Tables 3.1 and 3.2.
Note that when correlations are known to be common for all individuals at any

two time points u and t, (u < t), instead of the weighted sum of the lag correlations
as shown in (3.64), similar to (3.10), one may compute, say ρut by

ρ̂ut =
∑K

i=1 ỹiuỹit/K
√

[∑K
i=1 ỹ2

iu/K][∑K
i=1 ỹ2

it/K]
, (3.65)
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where ỹit , for example, is the standardized deviance, defined as

ỹit =
yit −π1

{π1(1−π1)}1/2
,

with π1 as in (3.48) (also same as (3.8)). Note that in terms of cell counts, this
estimate in (3.65) is equivalent to

ρ̂ut =
[K11(u, t)−π1(K1(u)+K1(t))+Kπ2

1 ]/K
√

[{(1−2π1)K1(u)+Kπ2
1}/K][{(1−2π1)K1(t)+Kπ2

1}/K]
, (3.66)

Next, because ρut ≡ ρ2 for all u, t, under the EQC structure (3.61), one may
estimate this parameter as

ρ̂2 =
2

T (T −1)

T

∑
t=u+1

T−1

∑
u=1

ρ̂ut . (3.67)

In summary, once ρ2 is computed by (3.64) or (3.67), we use this estimate
in (3.63) to compute β̂10, and the iterations continue until convergence.

3.2.3.2.1 Illustration 3.4 (Continuation of Illustration 3.1 for Longitudinal
Asthma Data Analysis): EQC Correlation Model Based GQL
Estimates

Recall from Sect. 3.2.1.3 that the lag correlations for the asthma data were found
to be

ρ̂1 = 0.40, ρ̂2 = 0.3129, ρ̂3 = 0.2979,

(Eq. (3.21)) indicating EQC perhaps would be a better model to fit the data as
compared to the AR(1) model. Now to illustrate the application of the EQC
model (3.48)–(3.50), we have estimated the correlations by using both the lag
correlations (3.64) and pair-wise correlations (3.67) based moment equations, and in
each case β10 was estimated by solving the GQL estimating equation (3.62). To be
specific, the moment formula (3.64) for correlation ρ2 and the GQL equation (3.62)
yielded

ρ̂2 = 0.3538, β̂10 =−1.7208, (3.68)

with s.e.(β̂10) = 0.0863. Furthermore, this estimate of β10 from (3.68) yielded the
estimated probability as π̂1 = 0.1518. Similarly, the pair-wise correlations based
moment formula (3.67) and the GQL estimating equation (3.62) produced the
estimates as

ρ̂2 = 0.3470, β̂10 =−1.7208, (3.69)
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with s.e.(β̂10) = 0.0859, further yielding the same probability estimate as π̂1 =
0.1518. Thus two approaches using slightly different moment formulas for corre-
lations produce almost the same results. For the sake of completeness, one may note
the pair-wise correlation values as

ρ̂12 = 0.3545, ρ̂23 = 0.4435, ρ̂34 = 0.3768,

ρ̂13 = 0.3081, ρ̂24 = 0.2772,

ρ̂14 = 0.3216,

which again tend to support the EQC model for the data. By the same token, the
correlation estimate from (3.47) under the AR(1) model assumption was found to
be ρ̂ = 0.4998, which is much larger than ρ̂2 = 0.3545. Furthermore, as expected,
the EQC model based estimate ρ̂2 = 0.3545 is close to the aforementioned lag
correlations (see also Eq. (3.21)).

3.2.4 Binary Dynamic Logit Model and Estimation
of Parameters

As opposed to the LDCP model discussed in Sect. 3.2.2.1, there exists a non-linear
(in logit form) dynamic conditional probability model for the analysis of binary
and multinomial panel data. See, for example, Amemiya (1985, p. 422), Farrell and
Sutradhar (2006), Sutradhar and Farrell (2007) for such models in the regression
setup with fixed covariates (resulting to fixed effects model); and Fienberg et al.
(1985), Manski (1987), Conaway (1989), Honore and Kyriazidou (2000), Sutradhar
et al. (2008) and Sutradhar et al. (2010) for similar models in the regression setup
with random effects (resulting to mixed effects model). This type of non-linear
dynamic models is useful when the mean response level at a given time appears
to maintain a recursive relationship with other past mean levels. In this section,
we consider the binary dynamic logit (BDL) models in the most simple stationary
setup with no covariates. The multinomial dynamic logit (MDL) models involving
no covariates will be discussed in Sect. 3.4, whereas similar models with time
independent (stationary) covariates will be discussed in Sect. 3.3 for the binary data
and in Sect. 3.5 for general categorical data.

3.2.4.1 BDL Model and Basic Properties

For the BDL model, the marginal probability function for the initial binary response
yi1 has the form
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P[yi1 = y( j)
i1 ] = π([·]1) j =

{
exp(β10)

1+exp(β10)
for j = 1

1
1+exp(β10)

for j = J = 2,
(3.70)

which is same as in the LDCP model (3.23). However, for t = 2, . . . ,T, the
conditional probability, unlike the LDCP model (3.24), has the dynamic logit form
given by

η( j)
it|t−1(g) = P

(
Yit = y( j)

it

∣
∣
∣Yi,t−1 = y(g)i,t−1

)

=

⎧
⎪⎪⎨

⎪⎪⎩

exp
[
β10+γ1y(g)i,t−1

]

1+exp
[
β10+γ1y(g)i,t−1

] , for j = 1;g = 1,2; t = 2, . . . ,T

1

1+exp
[
β10+γ1y(g)i,t−1

] , for j = J = 2;g = 1,2; t = 2, . . . ,T,
(3.71)

where γ1 denotes the dynamic dependence parameter, which is neither a correlation
nor an odds ratio parameter. But it is clear that the correlations of the repeated
multinomial responses will be function of this γ1 parameter. Furthermore, the
marginal probabilities (3.70) at time t = 1 and conditional probabilities (3.71) for
t = 2, . . . ,T, yield the marginal probabilities at time t(t = 2, . . .) as functions of β10

and they are also influenced by γ1 parameter. For example, in the binary case (J = 1)
the unconditional (marginal) probabilities have the forms

E[Yit ] = π([·]t)1 == Pr[Yit = y(1)it ]

=

{
exp(β10)

1+exp(β10)
, for t = 1

η∗
1 +π([·](t−1))1[η̃1 −η∗

1 ], for t = 2, . . . ,T,
(3.72)

(Sutradhar and Farrell 2007) for all i = 1, . . . ,K, with

η̃1 =
exp(β10 + γ1)

1+ exp(β10 + γ1)
and η∗

1 =
exp(β10)

1+ exp(β10)
.

Note that in (3.72), π([·]1)1 = η∗
1 . Now, to see the role of γ1 parameter on

the correlations of the repeated responses, one may, for example, compute the
correlations for the repeated binary responses yiu and yit (u < t) as

corr(Yiu,Yit) =

√
π([·]u)1(1−π([·]u)1)
π([·]t)1(1−π([·]t)1)

Π t
k=u+1(η̃1 −η∗

1 )

=

√
π([·]u)1(1−π([·]u)1)
π([·]t)1(1−π([·]t)1)

(η̃1 −η∗
1 )

t−u , for all i, and u < t, (3.73)

where the marginal probability π([·]t)1 at time t is given by (3.72).
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3.2.4.2 Likelihood Estimation of Parameters

For the BDL model (3.70)–(3.71), the likelihood function for the parameters β10

and γ1 has the formula

L(β10,γ1) = Π K
i=1Li, (3.74)

where

Li = f1(yi1) f2(yi2|yi1) · · · fT (yiT |yi,T−1),

with

f1(yi1) = [π([·]1)1]yi1 [π([·]t)2]1−yi1 =
exp[yi1β10]

1+ exp(β10)
, and

ft(yit |yi,t−1) = [η(1)
it|t−1(g)]

yit [η(2)
it|t−1(g)]

1−yit , for t = 2, . . . ,T, (3.75)

yielding the log likelihood function as

Log L(β10,γ1) =
K

∑
i=1

[yi1log π([·]1)1 +(1− yi1)log π([·]1)2]

+
2

∑
g=1

K

∑
i∈g

T

∑
t=2

[yit log η(1)
it|t−1(g)+(1− yit)log η(2)

it|t−1(g)]. (3.76)

Note that under the present stationary model, similar to (3.30), it follows

from (3.71) that η(1)
it|t−1(1) and η(1)

it|t−1(2) are free from i and t. Thus, for convenience,

suppressing the subscripts from these conditional probabilities and using η(1)(1)

for η(1)
it|t−1(1), for example, and by using the cell frequencies from the contingency

Table 3.2, one can express the log likelihood function (3.76) as

Log L(β10,γ1) = [K1(1)log π([·]1)1 +K2(1)log π([·]1)2]

+ log η(1)(1)
T

∑
t=2

K11(t −1, t)+ log η(2)(1)
T

∑
t=2

K12(t −1, t)

+ log η(1)(2)
T

∑
t=2

K21(t −1, t)+ log η(2)(2)
T

∑
t=2

K22(t −1, t), (3.77)

where by (3.71)–(3.72)

π([·]1)1 = η∗
1 , π([·]1)2 = 1−η∗

1
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η(1)(1) = η̃1, η(2)(1) = 1−η(1)(1) = 1− η̃1

η(1)(2) = η∗
1 , η(2)(2) = 1−η(1)(2) = 1−η∗

1 . (3.78)

Also it follows from the formulas for η∗
1 and η̃1 in (3.72) that

∂π([·]1)1
∂β10

=
∂η(1)(2)

∂β10
= η∗

1 (1−η∗
1 )

∂π([·]1)2
∂β10

=
∂η(2)(2)

∂β10
=−η∗

1 (1−η∗
1 )

∂η(1)(1)
∂β10

= η̃1(1− η̃1),
∂η(2)(1)

∂β10
=−η̃1(1− η̃1); (3.79)

and

∂π([·]1)1
∂γ1

=
∂η(1)(2)

∂γ1
=

∂π([·]1)2
∂γ1

=
∂η(2)(2)

∂γ1
= 0

∂η(1)(1)
∂γ1

= η̃1(1− η̃1),
∂η(2)(1)

∂γ1
=−η̃1(1− η̃1). (3.80)

3.2.4.2.1 Likelihood Estimating Equations

By using (3.79), it follows from (3.77) that the likelihood estimating equation for
β10 has the form

∂Log L(β10,γ1)

∂β10
= [η∗

1 (1−η∗
1 )]

[
K1(1)

η∗
1

− K2(1)
η∗

2

]

+ [η̃1(1− η̃1)]

[
∑T

t=2 K11(t −1, t)

η(1)(1)
− ∑T

t=2 K12(t −1, t)

η(2)(1)

]

+ [η∗
1 (1−η∗

1 )]

[
∑T

t=2 K21(t −1, t)

η(1)(2)
− ∑T

t=2 K22(t −1, t)

η(2)(2)

]

= 0. (3.81)

Similarly, by using (3.80), the likelihood function (3.77) yields the likelihood
estimating equation for γ1 as

∂Log L(β10,γ1)

∂γ1
= [η̃1(1− η̃1)]

[
∑T

t=2 K11(t −1, t)

η(1)(1)
− ∑T

t=2 K12(t −1, t)

η(2)(1)

]

= 0.

(3.82)



118 3 Regression Models For Univariate Longitudinal Stationary Categorical Data

As opposed to the joint estimation, the estimating equations (3.81) and (3.82)
may be solved marginally through iterations. To be specific, for known γ1, the
marginal likelihood estimate for β10 may be obtained by using the iterative equation

β̂10(r+1) = β̂10(r)−
[{

∂ 2Log L(β10,γ1)

∂β 2
10

}−1 ∂Log L(β10,γ1)

∂β10

]

|β10=β̂10(r)

,

(3.83)

and using this estimate, that is, for known β10, the marginal likelihood estimate of
γ1 may be obtained as a solution of (3.82) by using the iterative equation

γ̂1(r+1) = γ̂1(r)−
[{

∂ 2Log L(β10,γ1)

∂γ2
1

}−1 ∂Log L(β10,γ1)

∂γ1

]

|ρ=ρ̂(r)

. (3.84)

In (3.83), the second derivative of the likelihood function with respect to β10 has the
formula

∂ 2Log L(β10,γ1)

∂β 2
10

=−K[η∗
1 (1−η∗

1 )]

+ [η̃1(1− η̃1)(1−2η̃1)]

[
∑T

t=2 K11(t −1, t)

η(1)(1)
− ∑T

t=2 K12(t −1, t)

η(2)(1)

]

+ [η∗
1 (1−η∗

1 )(1−2η∗
1 )]

[
∑T

t=2 K21(t −1, t)

η(1)(2)
− ∑T

t=2 K22(t −1, t)

η(2)(2)

]

− [η̃1(1− η̃1)]
2
[

∑T
t=2 K11(t −1, t)

{η(1)(1)}2
+

∑T
t=2 K12(t −1, t)

{η(2)(1)}2

]

− [η∗
1 (1−η∗

1 )]

[
∑T

t=2 K21(t −1, t)

{η(1)(2)}2
+

∑T
t=2 K22(t −1, t)

{η(2)(2)}2

]

, (3.85)

and in (3.84), the second derivative of the likelihood function with respect to γ1 has
the formula given by

∂ 2Log L(β10,γ1)

∂γ2
1

= [η̃1(1− η̃1)(1−2η̃1)]

[
∑T

t=2 K11(t −1, t)

η(1)(1)
− ∑T

t=2 K12(t −1, t)

η(2)(1)

]

− [η̃1(1− η̃1)]
2

[
∑T

t=2 K11(t −1, t)

{η(1)(1)}2
+

∑T
t=2 K12(t −1, t)

{η(2)(1)}2

]

. (3.86)
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3.2.4.2.2 Illustration 3.5 (Continuation of Illustration 3.1 for Longitudinal
Asthma Data Analysis): BDL Model Based Likelihood Estimates

Notice that the longitudinal asthma status data described through contingency type
Tables 3.3 and 3.4(1)–3.4(6) were analyzed in Sect. 3.2.1.3 by fitting a general
auto-correlation structure for repeated binary (asthma status) data. A LDCP model
was fitted to the same data set using likelihood approach in Sect. 3.2.2.1.3, and
the GQL approach in Sect. 3.2.2.2.1. Also an EQC model was fitted by using the
GQL estimation approach and the results were discussed in Sect. 3.2.3.2.1. We now
illustrate the fitting of a completely different, namely non-linear dynamic model,
to be more specific the BDL model, to the same asthma status data, by using the
likelihood approach.

The estimation was carried out as follows.

Step 1. Using initial values β10 = 0 and γ1 = 0, and applying the iterative
equation (3.83), β10 was estimated as −1.6394, in a few iterations.

Step 2. Using the initial value γ1 = 0.0 and β10 value from Step 1, the iterative
equation (3.84) was applied only once to obtain the value for γ1 as 2.2137.

Step 3. The γ1 value from Step 2 was used in Step 1 to obtain an improved
estimate for β10 by (3.83), and this improved β10 estimate was applied in (3.84)
as in Step 2 to obtain an improved estimate for γ1.

Step 4. The above three steps constitute a cycle of iterations. This cycle was
repeated a few times (5 times to be precise) to obtain the final estimates as

β̂10 =−2.1184, and γ̂1 = 1.9737.

Next, to understand the model parameters such as recursive means (π([·]t)1) and
variances (π([·]t)1{1−π([·]t)1}) over time, we have applied the final estimates from
Step 4 to (3.72), which were found to be as in the following Table 3.6. Note that the
means reported in Table 3.6, found by using the recursive relation (3.72), appear to
reflect well the observed proportions calculated by K1(t)/K at a time point t. Further
to understand the longitudinal correlations of the data, we have computed them by
using the BDL model based correlation formula given by (3.73). These correlations
are given in Table 3.7. It is interesting to observe that these lag correlations appear
to satisfy a Gaussian AR(1) type structure. Note that if the marginal variances
over time are almost equal, then following (3.73), one would have computed the
correlations by

Table 3.6 Marginal means
and variances for the asthma
data over time based on BDL
model (3.70)–(3.71)

Time

Quantity Year 1 Year 2 Year 3 Year 4

Mean 0.1073 0.1456 0.1592 0.1641

Variance 0.0958 0.1244 0.1339 0.1372

Observed Proportion 0.1620 0.1694 0.1583 0.1173
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Table 3.7 BDL model based
pair-wise correlations (3.73)
for the asthma data

Time

Time Year 1 Year 2 Year 3 Year 4

Year 1 1.0 0.3129 0.1075 0.0.0379

Year 2 0.3129 1.0 0.3437 0.1210

Year 3 0.1075 0.3437 1.0 0.3522

Year 4 0.0379 0.1210 0.3522 1.0

corr(Yiu,Yit) = [π̃1 −π∗
1 ]

t−u,

indicating AR(1) type correlations. Further note that these results are not
directly comparable with likelihood estimates under the LDCP model found in
Sect. 3.2.2.1(b). This is because, even though the same likelihood approach is used
for the estimation of the model parameters, models are, however, quite different,
one being linear and the present model in this section is non-linear. Nevertheless,
the probability of having an asthma attack under the LDCP model was found to
be 0.1447, for any time points, which is close to the probabilities (means) at time
points 2, 3, and 4, shown in Table 3.6.

3.3 Univariate Longitudinal Stationary Binary
Fixed Effect Regression Models

In Sect. 3.2, individuals were categorized into one of the two (J = 2) categories at a
given time t, without considering their covariates. But in many practical situations,
information about some of their possibly influential covariates are also collected.

Recall from Chap. 2, specifically from Sect. 2.2.2 that at a cross-sectional setup
as opposed to the longitudinal setup, the probability for an individual i with a single
covariate, say, at level �(� = 1, . . . , p) to be in the jth category (see Eqs. (2.63)–
(2.64)) has the form

π[�] j = π(i∈�) j =

{
exp(β10+β1�)

1+exp(β10+β1�)
for j = 1

1
1+exp(β10+β1�)

for j = J = 2,

and for �= p+1, these probabilities have the formulas

π[p+1] j = π(i∈(p+1)) j =

{
exp(β10)

1+exp(β10)
for j = 1

1
1+exp(β10)

for j = J = 2.

Now using the notation from (3.6), in the stationary binary (J = 2) longitudinal
setup, for all time points t = 1, . . . ,T, these probabilities may be written as
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Table 3.8 Contingency table
at initial time t = 1 for binary
category versus covariate
level data

t (t = 1)

Category

Covariate level 1 2 Total

1 K[1]1(1) K[1]2(1) K[1]

2 K[2]1(1) K[2]2(1) K[2]

· . . . . . . ·
� K[�]1(1) K[�]2(1) K[�]

· . . . . . . ·
p+1 K[p+1]1(1) K[p+1]2(1) K[p+1]

Total K1(1) K2(1) K

Table 3.9 Lag h∗ (h∗ = 1, . . . ,T − 1) based [h∗(T − h∗)] transitional counts for binary
responses for individuals belonging to �-th (�= 1, . . . , p+1) level of a covariate

t (t = h∗+1, . . . ,T )

Time Category

Covariate level Time Category 1 2 Total

� t-h∗ 1 K[�]11(t −h∗, t) K[�]12(t −h∗, t) K[�]1(t −h∗)
2 K[�]21(t −h∗, t) K[�]22(t −h∗, t) K[�]2(t −h∗)
Total K[�]1(t) K[�]2(t) K[�]

P[yit = y( j)
it |i ∈ �] = π([i∈�]t) j ≡ π[�] j

=

{
exp(β10+β1�)

1+exp(β10+β1�)
for j = 1; �= 1, . . . , p

1
1+exp(β10+β1�)

for j = J = 2; �= 1, . . . , p,
(3.87)

and for �= p+1, these probabilities have the formulas

P[yit = y( j)
it |i ∈ (p+1)] = = π(i∈(p+1)t) j ≡ π[p+1] j

=

{
exp(β10)

1+exp(β10)
for j = 1; �= p+1

1
1+exp(β10)

for j = J = 2; �= p+1.
(3.88)

For this stationary case, as an extension of the contingency Tables 3.1 and 3.2,
one may accommodate the covariates or a covariate with p + 1 levels, and
summarize the response frequencies over T time periods, through following the
contingency Table 3.8 at the initial time point, and T − 1 lag (h∗ = 1, . . . ,T − 1)
contingency tables (Tables 3.9(1)–3.9(T −1)):
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3.3.1 LDCP Model Involving Covariates and Estimation
of Parameters

Similar to the covariate free LDCP model given in (3.23)–(3.25), we first write the
probabilities at initial time point t = 1 as

P[yi1 = y( j)
i1 |i ∈ �] = π[(i∈�]1) j ≡ π[�] j

=

{
exp(β10+β1�)

1+exp(β10+β1�)
for j = 1; �= 1, . . . , p

1
1+exp(β10+β1�)

for j = J = 2; �= 1, . . . , p,
(3.89)

and for �= p+1, these probabilities have the formulas

P[yi1 = y( j)
i1 |i ∈ (p+1)] = = π(i∈(p+1)1) j ≡ π[p+1] j

=

{
exp(β10)

1+exp(β10)
for j = 1

1
1+exp(β10)

for j = J = 2.
(3.90)

Next, for � = 1, . . . , p+ 1, and t = 2, . . . ,T, the lag 1 based LDC probabilities
may be written as

P[yit = y(1)it |yi,t−1 = y(g)i,t−1, i ∈ �] = π[�]1 +ρ(y(g)i,t−1 −π[�]1)

= λ (1)
it|t−1(g, �) (say),g = 1,2; t = 2, . . . ,T ; (3.91)

and

λ (2)
it|t−1(g, �) = 1−λ (1)

it|t−1(g, �), for g = 1,2; t = 2, . . . ,T. (3.92)

3.3.1.1 GQL Estimation

It follows from (3.90)–(3.92) that the repeated binary observations for the ith
individual follow the stationary auto-correlation model with correlation matrix
Ci(ρ) = C̃(ρ) as given by (3.41). That is,

C̃(ρ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 ρ ρ2 · · · ρT−1

ρ1 1 ρ1 · · · ρT−2

...
...

...
...

ρT−1 ρT−2 ρT−3 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,
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for all i = 1, . . . ,K. Thus, the LDCP model contains p+ 1 regression parameters,
namely

β10; β11, . . . ,β1�, . . . ,β1p,

and one correlation parameter, namely ρ .

3.3.1.1.1 Estimation of Correlation Parameter

Now to develop the GQL estimating equations for these regression parameters, we
first provide a moment estimating equation for ρh∗ by assuming that these regression
parameters are known, and then similar to (3.45), ρ may be estimated by solving the
polynomial moment equation

T−1

∑
h∗=1

(T −h∗)ρh∗ =
T−1

∑
h∗=1

(T −h∗)ρ̂h∗ , (3.93)

where ρ̂h∗ is computed as follows.

ρ̂h∗ =
∑p+1
�=1

[
∑K

i∈� ∑T
t=h∗+1 ỹi∈�,t−h∗ ỹi∈�,t/{K[�](T −h∗)}]

∑p+1
�=1

[

∑K
i∈� ∑T

t=1 ỹ2
i∈�,t/{K[�]T}

] , (3.94)

where ỹi∈�,t is the standardized deviance, defined as

ỹi∈�,t =
yi∈�,t −π[�]1

{π[�]1(1−π[�]1)}1/2
,

where π[�]1 is defined by (3.89)–(3.90). Note that this formula for ρ̂h in (3.94) is
written by modifying (3.10) in order to reflect the data and model involving the �-th
specified level (� = 1, . . . , p+ 1) of the covariate. Further note that this pooling of
quantities from all p+1 levels is appropriate because of the fact that one individual
belongs to one level only and hence at a given level, the responses at a time point
have a binomial or multinomial distribution. This is similar to product binomial
approach used in Chap. 2 (see, for example, Sect. 2.2.2.3). The difference lies in
the fact that in the present longitudinal setup, at each level of the covariate, binary
responses are correlated over time, whereas in Chap. 2, models were developed at
the cross-sectional level, that is, for T = 1 only.

Now by using the frequencies from the contingency Tables 3.8 and 3.9, one may
modify the formulas in (3.11) as
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K

∑
i∈�

T

∑
t=1

yi∈�,t =
T

∑
t=1

K

∑
i∈�

yi∈�,t =
T

∑
t=1

K[�]1(t), or

K

∑
i∈�

T

∑
t=h∗+1

yi∈�,t =
T

∑
t=h∗+1

K

∑
i∈�

yi∈�,t =
T

∑
t=h∗+1

K[�]1(t); and

K

∑
i∈�

T

∑
t=h∗+1

yi∈�,t−h∗ =
T

∑
t=h∗+1

K

∑
i∈�

yi∈�,t−h∗ =
T

∑
t=h∗+1

K[�]1(t −h∗)

K

∑
i∈�

T

∑
t=h∗+1

yi∈�,t−h∗yi∈�,t =
T

∑
t=h∗+1

K

∑
i∈�

yi∈�,t−h∗yi∈�,t =
T

∑
t=h∗+1

K[�]11(t −h∗, t). (3.95)

By using (3.95), it then follows from (3.94) that

ρ̂h∗ =

1
T−h∗ ∑T

t=h∗+1

[

∑p+1
�=1

1
K[�]

{
K[�]11(t −h∗, t)−π[�]1{K[�]1(t)+K[�]1(t −h∗)}+π2

[�]1K[�]

}]

1
T ∑T

t=1

[

∑p+1
�=1

1
K[�]

{
(1−2π[�]1)K[�]1(t)+π2

[�]1K[�]

}] ,

(3.96)

where, for all � = 1, . . . , p+ 1, the marginal probabilities π[�]1 are given by (3.87)
and (3.88).

3.3.1.1.2 Estimation of Regression Parameters

Next, once the correlation parameter ρ is estimated by (3.93), one computes the
C̃(ρ) matrix (see also (3.41)) and then computes the covariance matrix for the ith
individual having covariate level � as

Σi∈�(ρ) = A
1
2
i∈�C̃(ρ)A

1
2
i∈�, (3.97)

where

Ai∈� = π[�]1(1−π[�]1)IT ,

IT being the T × T identity matrix. Consequently, to reflect the covariate levels,
one may modify the GQL estimating equation (3.42) for regression parameters
as follows. By using the notation θ ∗ = [β10,β11, . . . ,β1p]

′ as in Sect. 2.2.2.1 (from
Chap. 2), first write

π[�]1 =

{
exp(β10+β1�)

1+exp(β10+β1�)
for �= 1, . . . , p

exp(β10)
1+exp(β10)

for �= p+1
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=
exp(x′[�]1θ ∗)

1+ exp(x′
[�]1θ ∗)

,

where

x′[�]1 =

⎧
⎨

⎩

(
1 01′�−1 1 01′p−�

)
for �= 1, . . . , p

(
1 01′p

)
for �= p+1,

and use

π(i∈�) = E
{
[Yi1, . . . ,Yit , . . . ,YiT ]

′|i ∈ �
}

= [π[�]1, . . . ,π[�]1, . . . ,π[�]1]
′

= π[�]11T

= π̄[�],

and then construct the GQL estimating equation for θ ∗ as

p+1

∑
�=1

K

∑
i∈�

∂π ′
(i∈�)

∂θ ∗ Σ−1
i∈�(ρ)(yi −π(i∈�))

=
p+1

∑
�=1

K

∑
i∈�

∂ π̄ ′
[�]

∂θ ∗ Σ−1
i∈�(ρ)(yi − π̄[�]) = 0, (3.98)

where yi = (yi1, . . . ,yit , . . . ,yiT )
′. Note that the derivative matrix in (3.98) may be

computed as

∂π ′
(i∈�)

∂θ ∗ = X ′
�Ai∈�

= X ′
�[π[�]1(1−π[�]1)IT , (3.99)

where X� is the T × (p+1) coefficient matrix defined as

X� = 1T ⊗ x′[�]1

=

⎧
⎨

⎩

1T ⊗
(

1 01′�−1 1 01′p−�

)
for �= 1, . . . , p

1T ⊗
(

1 01′p
)

for �= p+1.
(3.100)
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Now by using (3.99) in (3.98), the GQL estimating equation for θ ∗ reduces to

f (θ ∗) =
p+1

∑
�=1

K

∑
i∈�

X ′
�C̃

−1(ρ)(yi −π[�]11T )

=
p+1

∑
�=1

K

∑
i∈�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω̃[�]11 · · · ω̃[�]1t · · · ω̃[�]1T
...

...
...

...
...

ω̃[�]s1 · · · ω̃[�]st · · · ω̃[�]sT
...

...
...

...
...

ω̃[�](p+1,1) · · · ω̃[�](p+1,t) · · · ω̃[�](p+1,T )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(yi −π[�]11T )

=
p+1

∑
�=1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T

∑
t=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω̃[�]1t
...

ω̃[�]st
...

ω̃[�](p+1)t

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

K[�]1(t)−π[�]1K[�]

T

∑
t=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω̃[�]1t
...

ω̃[�]st
...

ω̃[�](p+1)t

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
p+1

∑
�=1

[
T

∑
t=1

ω̃[�]tK[�]1(t)−π[�]1K[�]

T

∑
t=1

ω̃[�]t

]

= 0, (3.101)

where K[�]1(t) for all � = 1, . . . , p + 1, and t = 1, . . . ,T, and the values of K[�]

are available from the contingency Table 3.9. Now to solve the GQL estimating
equation (3.98) or (3.101), we first compute

f ′(θ ∗) =
∂ f (θ ∗)

∂θ ∗′

= −
p+1

∑
�=1

K

∑
i∈�

∂ π̄ ′
[�]

∂θ ∗ Σ−1
i∈�(ρ)

∂ π̄[�]

∂θ ∗′

= −
p+1

∑
�=1

K

∑
i∈�

X ′
�C̃

−1(ρ)
∂π[�]11T

∂θ ∗′

= −
p+1

∑
�=1

K

∑
i∈�

X ′
�C̃

−1(ρ)Ai∈�X�

= −
p+1

∑
�=1

K

∑
i∈�

[π[�]1(1−π[�]1)]X
′
�C̃

−1(ρ)X�

= −
p+1

∑
�=1

[π[�]1(1−π[�]1)]K[�]
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×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω̃∗
[�]11 · · · ω̃∗

[�]1s · · · ω̃∗
[�]1,p+1

...
...

...
...

...
ω̃∗
[�]s1 · · · ω̃∗

[�]ss · · · ω̃∗
[�]s,p+1

...
...

...
...

...
ω̃∗
[�](p+1,1) · · · ω̃∗

[�](p+1,s) · · · ω̃∗
[�](p+1,p+1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= −
p+1

∑
�=1

[π[�]1(1−π[�]1)]K[�]Ω̃ ∗
[�]. (3.102)

One may then obtain the GQL estimate for θ ∗ by using the iterative equation

θ̂ ∗(r+1) = θ̂ ∗(r)+

⎡

⎣

{
p+1

∑
�=1

[π[�]1(1−π[�]1)]K[�]Ω̃ ∗
[�]

}−1

×
p+1

∑
�=1

[
T

∑
t=1

ω̃[�]tK[�]1(t)−π[�]1K[�]

T

∑
t=1

ω̃[�]t

]]

|(r)
. (3.103)

Note that in the present setup, at a given covariate level �, the K[�] individuals
are independent. Further because levels are mutually exclusive, responses from any
two levels are independent. Consequently, similar to (3.18), one may obtain the
covariance matrix of θ̂ ∗ obtained from (3.103) as

var[θ̂∗] =

[
p+1

∑
�=1

K

∑
i∈�

∂ π̄ ′
[�]

∂θ∗ Σ−1
i∈�(ρ)

∂ π̄[�]

∂θ∗′

]−1 p+1

∑
�=1

K

∑
i∈�

∂ π̄ ′
[�]

∂θ∗ Σ−1
i∈�(ρ)var(yi −π[�]11T )Σ−1

i∈�(ρ)
∂ π̄[�]

∂θ∗′

×
[

p+1

∑
�=1

K

∑
i∈�

∂ π̄ ′
[�]

∂θ ∗ Σ−1
i∈�(ρ)

∂ π̄[�]

∂θ ∗′

]−1

=

[
p+1

∑
�=1

K

∑
i∈�

∂ π̄ ′
[�]

∂θ ∗ Σ−1
i∈�(ρ)

∂ π̄[�]

∂θ ∗′

]−1

=

{
p+1

∑
�=1

[π[�]1(1−π[�]1)]K[�]Ω̃ ∗
[�]

}−1

,

(3.104)

by (3.102)–(3.103).
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3.3.1.1.3 Illustration 3.6 : Mothers Smoking Effect on Longitudinal Asthma
Status: An Application of the GQL Approach

In the illustration 3.3(b) under the Sect. 3.2.2.2.1, this longitudinal asthma data were
analyzed by ignoring any covariates, which is the same to say that the covariate
‘mother’s smoking habit’ did not play any role to determine the asthma status of a
child. This produced the AR(1) lag correlation ρ̂ = 0.4998 based regression estimate
β̂10 =−1.7525, yielding the probability for a child at any time point to have asthma
as π̂1 = 0.1477. In this section, we have analyzed the same response data collected
over 4 years but with a major difference that in the present case these responses are
analyzed conditional on the covariate level. For the first year, that is at t = 1, the
covariate ‘mother’s smoking habit’ specific response data are given in Table 3.10,
and for other years the transitional data are given in Tables 3.11(1)–3.11(6). More
specifically, by using the data from these tables and the initial estimate ρ̂ = 0, we
have computed the first step estimate of β10 and β11 by using their iterative equation
(103) with initial values β̂10 = 0, β̂11 = 0. These first step estimate of β ’s are then
used in (3.96) to estimate lag correlations for the computation of ρ̂ by (3.93). This
cycle of iteration continues until convergence. The convergence was very quick. The
final estimate of lag correlations from (3.96) were found to be

ρ̂1 = 0.4017, ρ̂2 = 0.3148, ρ̂3 = 0.3038

Table 3.10 Maternal smoking versus children asthma status contingency
table at initial time t = 1

t (t = 1)

Asthma category

Covariate level Yes (1) No (2) Total

Smoking mother (1) K[1]1(1) = 31 K[1]2(1) = 156 K[1] = 187

Non-smoking mother (2) K[2]1(1) = 56 K[2]2(1) = 294 K[2] = 350

Total K1(1) = 87 K2(1) = 450 K = 537

Table 3.11 (1): Lag h∗ = 1 based transitional table from time t − h∗ = 1 to t = 2 for the
maternal smoking versus children asthma status data

2

Time Category

Covariate level Time Category 1 2 Total

1 1 1 K[1]11(1,2) = 17 K[1]12(1,2) = 14 K[1]1(1) = 31

2 K[1]21(1,2) = 22 K[1]22(1,2) = 134 K[1]2(1) = 156

Total K[1]1(2) = 39 K[1]2(2) = 148 K[1] = 187

2 1 1 K[2]11(1,2) = 24 K[2]12(1,2) = 32 K[2]1(1) = 56

2 K[2]21(1,2) = 28 K[2]22(1,2) = 266 K[2]2(1) = 294

Total K[2]1(2) = 52 K[2]2(2) = 298 K[2] = 350
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Table 3.11 (2): Lag h∗ = 1 based transitional table from time t − h∗ = 2 to t = 3 for the
maternal smoking versus children asthma status data

3

Time Category

Covariate level Time Category 1 2 Total

1 2 1 K[1]11(2,3) = 21 K[1]12(2,3) = 18 K[1]1(2) = 39

2 K[1]21(2,3) = 14 K[1]22(2,3) = 134 K[1]2(2) = 148

Total K[1]1(3) = 35 K[1]2(3) = 152 K[1] = 187

2 2 1 K[2]11(2,3) = 26 K[2]12(2,3) = 26 K[2]1(2) = 52

2 K[2]21(2,3) = 24 K[2]22(2,3) = 274 K[2]2(2) = 298

Total K[2]1(3) = 50 K[2]2(3) = 300 K[2] = 350

Table 3.11 (3): Lag h∗ = 1 based transitional table from time t − h∗ = 3 to t = 4 for the
maternal smoking versus children asthma status data

4

Time Category

Covariate level Time Category 1 2 Total

1 3 1 K[1]11(3,4) = 14 K[1]12(3,4) = 21 K[1]1(3) = 35

2 K[1]21(3,4) = 12 K[1]22(3,4) = 140 K[1]2(3) = 152

Total K[1]1(4) = 26 K[1]2(4) = 161 K[1] = 187

2 3 1 K[2]11(3,4) = 20 K[2]12(3,4) = 30 K[2]1(3) = 50

2 K[2]21(3,4) = 17 K[2]22(3,4) = 283 K[2]2(3) = 300

Total K[2]1(4) = 37 K[2]2(4) = 313 K[2] = 350

Table 3.11 (4): Lag h∗ = 2 based transitional table from time t − h∗ = 1 to t = 3 for the
maternal smoking versus children asthma status data

3

Time Category

Covariate level Time Category 1 2 Total

1 1 1 K[1]11(1,3) = 15 K[1]12(1,3) = 16 K[1]1(1) = 31

2 K[1]21(1,3) = 20 K[1]22(1,3) = 136 K[1]2(1) = 156

Total K[1]1(3) = 35 K[1]2(3) = 152 K[1] = 187

2 1 1 K[2]11(1,3) = 21 K[2]12(1,3) = 35 K[2]1(1) = 56

2 K[2]21(1,3) = 29 K[2]22(1,3) = 265 K[2]2(1) = 294

Total K[2]1(3) = 50 K[2]2(3) = 300 K[2] = 350
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Table 3.11 (5): Lag h∗ = 2 based transitional table from time t − h∗ = 2 to t = 4 for the
maternal smoking versus children asthma status data

4

Time Category

Covariate level Time Category 1 2 Total

1 2 1 K[1]11(2,4) = 14 K[1]12(2,4) = 25 K[1]1(2) = 39

2 K[1]21(2,4) = 12 K[1]22(2,4) = 136 K[1]2(2) = 148

Total K[1]1(4) = 26 K[1]2(4) = 161 K[1] = 187

2 2 1 K[2]11(2,4) = 18 K[2]12(2,4) = 34 K[2]1(2) = 52

2 K[2]21(2,4) = 19 K[2]22(2,4) = 279 K[2]2(2) = 298

Total K[2]1(4) = 37 K[2]2(4) = 313 K[2] = 350

Table 3.11 (6): Lag h∗ = 3 based transitional table from time t − h∗ = 1 to t = 4 for the
maternal smoking versus children asthma status data

4

Time Category

Covariate level Time Category 1 2 Total

1 1 1 K[1]11(1,4) = 13 K[1]12(1,4) = 18 K[1]1(1) = 31

2 K[1]21(1,4) = 13 K[1]22(1,4) = 143 K[1]2(1) = 156

Total K[1]1(4) = 26 K[1]2(4) = 161 K[1] = 187

2 1 1 K[2]11(1,4) = 18 K[2]12(1,4) = 38 K[2]1(1) = 56

2 K[2]21(1,4) = 19 K[2]22(1,4) = 275 K[2]2(1) = 294

Total K[2]1(4) = 37 K[2]2(4) = 313 K[2] = 350

yielding the AR(1) correlation parameter estimate by (3.93) as ρ̂ = 0.5024. This
final estimate of AR(1) correlation parameter yielded the GQL estimates for β10

and β11 by (3.102)–(3.103) as

β̂10 =−1.8393 and β̂11 = 0.2360,

along with their standard errors (s.e.) computed by (3.104) as

s.e.β̂10 = 0.1100 and s.e.β̂11 = 0.1770,

respectively.
Notice from (3.87) and (3.88) that β10 determines the probability for a child with

a non-smoking mother to have an asthma attack, whereas both β10 and β11 play
a role to determine the probability of an asthma attack to a child with a smoking
mother. By using the aforementioned estimate of β10 in (3.88), and the estimates of
both β10 and β11 in (3.87), the probabilities for an asthma attack to these two groups
of children were found to be as follows (Table 3.12):
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Table 3.12 Observed over the years and fitted stationary probabilities
using GQL approach

Asthma status probability
Observed/fitted Covariate level Yes No

Fitted Smoking mother 0.1675 0.8325
Non-smoking mother 0.1371 0.8639

Observed at t = 1 Smoking mother 0.1658 0.8342
Non-smoking mother 0.1600 0.8400

Observed at t = 2 Smoking mother 0.2085 0.7915
Non-smoking mother 0.1486 0.8514

Observed at t = 3 Smoking mother 0.1872 0.8128
Non-smoking mother 0.1429 0.8571

Observed at t = 4 Smoking mother 0.1390 0.8610
Non-smoking mother 0.1057 0.8943

The fitted probabilities show that the mother’s smoking habit has a detrimental
effect on the asthma status, and they agree with those results discussed in Sutradhar
(2003, Section 5.2).

3.3.1.2 Likelihood Estimation

Because the response of an individual i with covariate level � follows the multino-
mial (binary in the present case) at any given time t, using the notation from the last
section, one may modify the likelihood function for the covariate free case (3.28)
to accommodate the covariates as follows. Altogether there are p + 1 regression
parameters which are denoted by θ ∗ = [β10,β11, . . . ,β1p]

′, and ρ is the correlation
index parameter involved in the conditional probability relating yi,t−1 and yit for all i.
Following (3.28), the likelihood function for the present problem may be written as

L(θ ∗,ρ) = Π p+1
�=1 Π K

i∈�Li∈�, (3.105)

where

Li∈� = f�,1(yi1) f�,2(yi2|yi1) · · · f�,T (yiT |yi,T−1),

with

f�,1(yi1) = [π[�]1]
yi1 [π[�]2]

1−yi1

=

{
exp[yi1(β10+β1�)]
1+exp(β10+β1�)

for �= 1, . . . , p
exp[yi1β10]
1+exp(β10)

, for �= p+1,
(3.106)
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and

f�,t(yit |yi,t−1) = [λ (1)
it|t−1(g, �)]

yit [λ (2)
it|t−1(g, �)]

1−yit , for t = 2, . . . ,T, (3.107)

where

λ (1)
it|t−1(g, �) = π[�]1 +ρ(y(g)i,t−1 −π[�]1)

λ (2)
it|t−1(g, �) = 1−λ (1)

it|t−1(g, �). (3.108)

Hence, by (3.105), the log likelihood function is given by

LogL(θ ∗,ρ) =
p+1

∑
�=1

K

∑
i∈�

[yi1log π[�]1 +(1− yi1)log π[�]2]

+
p+1

∑
�=1

2

∑
g=1

K

∑
i∈(g,�)

T

∑
t=2

[yit log λ (1)
it|t−1(g, �)

+ (1− yit)log λ (2)
it|t−1(g, �)]. (3.109)

Note that because by (3.108), λ (1)
it|t−1(1, �) and λ (1)

it|t−1(2, �) are free from i and t,
for convenience, we suppress the subscripts from these conditional probabilities and

use λ (1)(2, �) for λ (1)
it|t−1(2, �), for example. Next by using the cell frequencies from

the contingency Table 3.9, we express the log likelihood function (3.109) as

Log L(θ ∗,ρ) =
p+1

∑
�=1

[{
K[�]1(1)log π[�]1 +K[�]2(1)log (1−π[�]1)

}

+ log λ (1)(1, �)
T

∑
t=2

K[�]11(t −1, t)+ log λ (2)(1, �)
T

∑
t=2

K[�]12(t −1, t)

+ log λ (1)(2, �)
T

∑
t=2

K[�]21(t −1, t)+ log λ (2)(2, �)
T

∑
t=2

K[�]22(t −1, t)

]

, (3.110)

where by (3.108),

λ (1)(1, �) = π[�]1 +ρ(1−π[�]1), λ (2)(1, �) = 1−λ (1)(1, �) = (1−ρ)(1−π[�]1)

λ (1)(2, �) = (1−ρ)π[�]1, λ (2)(2, �) = 1−λ (1)(2, �) = 1− (1−ρ)π[�]1. (3.111)

This log likelihood function in (3.110) is maximized in the next section to estimate
the parameters θ ∗ and ρ .
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3.3.1.2.1 Likelihood Estimating Equations

Note that as opposed to the covariate free likelihood estimation discussed in
Sect. 3.2.2.1.1, it is now convenient to use the notation

π[�]1 =
exp(x′[�]1θ ∗)

1+ exp(x′
[�]1θ ∗)

, (3.112)

as in (3.99)–(3.100), where θ ∗ = (β10,β11, . . . ,β1p)
′, and

x′[�]1 =
(

1 01′�−1 1 01′p−�

)
for �= 1, . . . , p; and x′[p+1]1 =

(
1 01′p

)
.

The following derivatives, first, with respect to θ ∗ and then with respect to ρ will
be helpful to write the likelihood estimating equations for θ ∗ and ρ , respectively.

Derivatives with Respect to θ ∗ and ρ

It follows from (3.110)–(3.112) that

∂π[�]1

∂θ ∗ =
[
π[�]1(1−π[�]1)

]
x[�]1,

∂λ (1)(1, �)
∂θ ∗ =

∂λ (1)(2, �)
∂θ ∗ = (1−ρ)

[
π[�]1(1−π[�]1)

]
x[�]1,

∂λ (2)(1, �)
∂θ ∗ =

∂λ (2)(2, �)
∂θ ∗ =−(1−ρ)

[
π[�]1(1−π[�]1)

]
x[�]1, (3.113)

and

∂π[�]1

∂ρ
= 0,

∂λ (1)(1, �)
∂ρ

= (1−π[�]1);
∂λ (2)(1, �)

∂ρ
=−(1−π[�]1),

∂λ (1)(2, �)
∂ρ

= −π[�]1;
∂λ (2)(2, �)

∂ρ
= π[�]1. (3.114)

By (3.113), it then follows from (3.110) that the likelihood estimating equation for
θ ∗ has the form
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∂Log L(θ ∗,ρ)
∂θ ∗ =

p+1

∑
�=1

[
K[�]1(1)−π[�]1K[�]

]
x[�]1

+ (1−ρ)
p+1

∑
�=1

[

π[�]1(1−π[�]1)

{
∑T

t=2 K[�]11(t −1, t)

λ (1)(1, �)
− ∑T

t=2 K[�]12(t −1, t)

λ (2)(1, �)

+
∑T

t=2 K[�]21(t −1, t)

λ (1)(2, �)
− ∑T

t=2 K[�]22(t −1, t)

λ (2)(2, �)

}

x[�]1

]

= 0. (3.115)

Similarly, the likelihood estimating equation for ρ has the form

∂Log L(θ ∗,ρ)
∂ρ

=
p+1

∑
�=1

[
∑T

t=2 K[�]11(t −1, t)

λ (1)(1, �)
− ∑T

t=2 K[�]12(t −1, t)

λ (2)(1, �)

]

−
p+1

∑
�=1

[

π[�]1

{
∑T

t=2 K[�]11(t −1, t)

λ (1)(1, �)
− ∑T

t=2 K[�]12(t −1, t)

λ (2)(1, �)

+
∑T

t=2 K[�]21(t −1, t)

λ (1)(2, �)
− ∑T

t=2 K[�]22(t −1, t)

λ (2)(2, �)

}]

= 0. (3.116)

These likelihood equations (3.115)–(3.116) may be solved iteratively by using
the iterative equations for θ ∗ and ρ given by

θ̂ ∗(r+1) = θ̂ ∗(r)−
[{

∂ 2Log L(θ ∗,ρ)
∂θ ∗′∂θ ∗

}−1 ∂Log L(θ ∗,ρ)
∂θ ∗

]

|θ∗=θ̂∗(r)
; (p+1)×1,

(3.117)
and

ρ̂(r+1) = ρ̂(r)−
[{

∂ 2Log L(θ ∗,ρ)
∂ρ2

}−1 ∂Log L(θ ∗,ρ)
∂ρ

]

|ρ=ρ̂(r)

, (3.118)

respectively. In (3.117), the (p + 1)× (p + 1) second derivative matrix has the
formula given by

∂ 2Log L(θ ∗,ρ)
∂θ ∗′∂θ ∗ =−

p+1

∑
�=1

[
π[�]1(1−π[�]1)K[�]

]
x[�]1x′[�]1

+ (1−ρ)
p+1

∑
�=1

[

π[�]1(1−π[�]1)(1−2π[�]1)

{
∑T

t=2 K[�]11(t −1, t)

λ (1)(1, �)
− ∑T

t=2 K[�]12(t −1, t)

λ (2)(1, �)

+
∑T

t=2 K[�]21(t −1, t)

λ (1)(2, �)
− ∑T

t=2 K[�]22(t −1, t)

λ (2)(2, �)

}

x[�]1x′[�]1

]
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− (1−ρ)2
p+1

∑
�=1

[

{π[�]1(1−π[�]1)}2

{
∑T

t=2 K[�]11(t −1, t)

{λ (1)(1, �)}2
+

∑T
t=2 K[�]12(t −1, t)

{λ (2)(1, �)}2

+
∑T

t=2 K[�]21(t −1, t)

{λ (1)(2, �)}2
+

∑T
t=2 K[�]22(t −1, t)

{λ (2)(2, �)}2

}

x[�]1x′[�]1

]

(3.119)

Similarly, by using (3.111), it follows that the scalar second derivative in (3.118)
has the formula

∂ 2Log L(θ ∗,ρ)
∂ρ2 = −

p+1

∑
�=1

(1−π[�]1)

[
∑T

t=2 K[�]11(t −1, t)

{λ (1)(1, �)}2
+

∑T
t=2 K[�]12(t −1, t)

{λ (2)(1, �)}2

]

+
p+1

∑
�=1

π[�]1(1−π[�]1)

[
∑T

t=2 K[�]11(t −1, t)

{λ (1)(1, �)}2
+

∑T
t=2 K[�]12(t −1, t)

{λ (2)(1, �)}2

]

−
p+1

∑
�=1

{π[�]1}2

[
∑T

t=2 K[�]21(t −1, t)

{λ (1)(2, �)}2
+

∑T
t=2 K[�]22(t −1, t)

{λ (2)(2, �)}2

]

.

(3.120)

3.3.1.2.2 Illustration 3.7 : Mothers Smoking Effect on Longitudinal Asthma
Status: Likelihood Approach for LDCP Regression Model

The likelihood estimates for θ ∗ = (β10,β11)
′ and ρ were obtained as follows. Using

initial values

θ̂ ∗(0) = (β̂10(0) = 0.0, β̂11(0) = 0.0)′ and ρ̂(0) = 0.0,

we first obtain the first step estimate θ̂ ∗(1) by (3.117). This first step estimate of θ ∗
and initial value ρ̂(0) = 0.0 were then used in (3.118) to obtain the first step estimate
of ρ , that is ρ̂(1), which was in turn used in (3.117) to obtain improved estimate
for θ ∗. This whole operation constitutes a cycle. This cycle of iterations continued
until convergence. Only 4 cycles of iterations provide the final marginal likelihood
estimates (MMLE) as

θ̂ ∗
MMLE = (β̂10,MMLE =−1.8317, β̂11,MMLE = 0.2410)′ and ρ̂MMLE = 0.3836.

These regression estimates are similar but slightly different than those found by the
GQL approach in Sect. 3.3.1.1.3. However the GQL approach produced ρ̂ = 0.5024,
which is considerably different than ρ̂MMLE = 0.3836. Thus, the GQL and MLE
approaches would produce different estimates for conditional probabilities, and
hence for joint cell probabilities, yielding slightly different estimates for marginal
probabilities. The aforementioned MLE estimates for regression effects produces
the marginal probabilities as in Table 3.13, which are slightly different than those
found in Table 3.12 by the GQL approach.
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Table 3.13 Fitted stationary probabilities using MMLE and JMLE
approaches

Asthma status probability

Fitting approach Covariate level Yes No

MMLE Smoking mother 0.1693 0.8307

Non-smoking mother 0.1380 0.8620

JMLE Smoking mother 0.1693 0.8307

Non-smoking mother 0.1380 0.8620

To obtain the joint maximum likelihood estimates (JMLE) for the parameters
(θ ∗,ρ), instead of (3.117)–(3.118), one uses the iterative equation

(
θ̂ ∗(r+1)
ρ̂(r+1)

)

=

(
θ̂ ∗(r)
ρ̂(r)

)

−

⎡

⎢
⎣

⎛

⎝

{
∂ 2Log L(θ∗,ρ)

∂θ∗′∂θ∗

} {
∂ 2Log L(θ∗,ρ)

∂ρ∂θ∗
}

·
{

∂ 2Log L(θ∗,ρ)
∂ρ2

}

⎞

⎠

−1( ∂Log L(θ∗,ρ)
∂θ∗

∂Log L(θ∗,ρ)
∂ρ

)
⎤

⎥
⎦

|θ∗=θ̂∗(r),ρ=ρ̂(r)

,

where

∂ 2Log L(θ ∗,ρ)
∂θ ∗∂ρ

= −
p+1

∑
�=1

[

π[�]1(1−π[�]1)

{
∑T

t=2 K[�]11(t −1, t)

λ (1)(1, �)
− ∑T

t=2 K[�]12(t −1, t)

λ (2)(1, �)

+
∑T

t=2 K[�]21(t −1, t)

λ (1)(2, �)
− ∑T

t=2 K[�]22(t −1, t)

λ (2)(2, �)

}

x[�]1

]

+ (1−ρ)
p+1

∑
�=1

[

π[�]1(1−π[�]1)

{(
∑T

t=2 K[�]11(t −1, t)

{λ (1)(1, �)}2
+

∑T
t=2 K[�]12(t −1, t)

{λ (2)(1, �)}2

+
∑T

t=2 K[�]21(t −1, t)

{λ (1)(2, �)}2
+

∑T
t=2 K[�]22(t −1, t)

{λ (2)(2, �)}2

)

π[�]1

−
(

∑T
t=2 K[�]11(t −1, t)

{λ (1)(1, �)}2
+

∑T
t=2 K[�]12(t −1, t)

{λ (2)(1, �)}2

)}

x[�]1

]

.

Using the initial values

θ̂ ∗(0) = (β̂10(0) = 0.0, β̂11(0) = 0.0)′ and ρ̂(0) = 0.0,

the aforementioned iterative equations in 5 cycles of iterations produced the
JMLE as

θ̂ ∗
JMLE = (β̂10,JMLE =−1.8317, β̂11,JMLE = 0.2410)′ and ρ̂JMLE = 0.3836,
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which are the same as the MMLE Thus for this particular data set, the MMLE and
JMLE produce the same probability estimates as shown in Table 3.13.

3.3.2 BDL Regression Model and Estimation of Parameters

The probabilities at initial time point t = 1 have the same formulas (3.89)–(3.90)
under both LDCP and this BDL models involving covariates, that is,

P[yi1 = y( j)
i1 |i ∈ �] = π[(i∈�]1) j ≡ π[�] j

=

{
exp(β10+β1�)

1+exp(β10+β1�)
for j = 1; �= 1, . . . , p

1
1+exp(β10+β1�)

for j = J = 2; �= 1, . . . , p,
(3.121)

and for �= p+1, these probabilities have the formulas

P[yi1 = y( j)
i1 |i ∈ (p+1)] = = π(i∈(p+1)1) j ≡ π[p+1] j

=

{
exp(β10)

1+exp(β10)
for j = 1

1
1+exp(β10)

for j = J = 2.
(3.122)

However, for t = 2, . . . ,T, the conditional probability, unlike the LDCP
model (3.90)–(3.91) (see also (3.24)), has the dynamic logit form given by

η( j)
it|t−1(g, �) = P

(
Yit = y( j)

it

∣
∣
∣Yi,t−1 = y(g)i,t−1, i ∈ �

)

=

⎧
⎪⎪⎨

⎪⎪⎩

exp
[
β10+β1�+γ1y(g)i,t−1

]

1+exp
[
β10+β1�+γ1y(g)i,t−1

] , for j = 1;g = 1,2;�= 1, . . . , p

1

1+exp
[
β10+β1�+γ1y(g)i,t−1

] , for j = J = 2;g = 1,2;�= 1, . . . , p,
(3.123)

where γ1 denotes the dynamic dependence parameter, which is neither a correlation
nor an odds ratio parameter. But it is clear that the correlations of the repeated
multinomial responses will be function of this γ1 parameter. For � = p+ 1, these
conditional probabilities have the formulas

η( j)
it|t−1(g, p+1) = P

(
Yit = y( j)

it

∣
∣
∣Yi,t−1 = y(g)i,t−1, i ∈ �

)

=

⎧
⎪⎪⎨

⎪⎪⎩

exp
[
β10+γ1y(g)i,t−1

]

1+exp
[
β10+γ1y(g)i,t−1

] , for j = 1;g = 1,2;�= p+1

1

1+exp
[
β10+γ1y(g)i,t−1

] , for j = J = 2;g = 1,2;�= p+1.
(3.124)
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Define

η̃[�]1 =

⎧
⎨

⎩

exp(β10+β1�+γ1)
1+exp(β10+β1�+γ1)

, for �= 1, . . . , p

exp(β10+γ1)
1+exp(β10+γ1)

, for �= p+1,
(3.125)

and

η∗
[�]1 =

⎧
⎨

⎩

exp(β10+β1�)
1+exp(β10+β1�)

, for �= 1, . . . , p

exp(β10)
1+exp(β10)

, for �= p+1.
(3.126)

For the individuals with covariate level �, it then follows that (see also (3.72)) the
marginal probabilities at time t = 1, . . . ,T, are given by

E[Yit |i ∈ �] = π([�]t)1 = Pr[Yit = y(1)it |i ∈ �]

=

{
η∗
[�]1, for t = 1

η∗
[�]1 +π([�](t−1))1[η̃[�]1 −η∗

[�]1], for t = 2, . . . ,T,
(3.127)

(Sutradhar and Farrell 2007) for i = 1, . . . ,K[�].
Note that as the marginal probabilities in (3.127) are covariate level (�) depen-

dent, the lag correlations can be different for individuals belonging to different
groups corresponding to their covariate levels. To be specific, for u < t, the t − u
lag correlations under the �-th group (that is, for individuals i ∈ �) have the formulas

ρ{[�],t−u} = corr{(Yiu,Yit)|i ∈ �}=
√

π([�]u)1(1−π([�]u)1)

π([�]t)1(1−π([�]t)1)
Π t

k=u+1(η̃[�]1 −η∗
[�]1)

=

√
π([�]u)1(1−π([�]u)1)

π([�]t)1(1−π([�]t)1)

(
η̃[�]1 −η∗

[�]1

)t−u
, for all i ∈ �, and u < t, (3.128)

where the marginal probability π([�]t)1 at time t is given by (3.127).

3.3.2.1 Likelihood Estimation

Similar to the LDCP model, denote all regression parameters involved in the BDL
regression model (3.121)–(3.124) by θ ∗. That is, θ ∗ = [β10,β11, . . . ,β1p]

′. Note
however that γ1 in the present model describes the dynamic dependence parameter
in a logit function, whereas ρ was used in (3.91) as a dynamic dependence parameter
in a linear conditional probability function. Thus, similar to (3.105), one writes the
likelihood function in θ ∗ and γ1 as

L(θ ∗,γ1) = Π p+1
�=1 Π K

i∈�Li∈�, (3.129)
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where

Li∈� = f�,1(yi1) f�,2(yit |yi1) · · · f�,T (yiT |yi,T−1),

with

f�,1(yi1) = [π[�]1]
yi1 [π[�]2]

1−yi1

=

{
exp[yi1(β10+β1�)]
1+exp(β10+β1�)

for �= 1, . . . , p
exp[yi1β10]
1+exp(β10)

, for �= p+1,
(3.130)

and

f�,t(yit |yi,t−1) = [η(1)
it|t−1(g, �)]

yit [η(2)
it|t−1(g, �)]

1−yit , for t = 2, . . . ,T, (3.131)

where η(1)
it|t−1(g, �) and η(2)

it|t−1(g, �) = 1−η(1)
it|t−1(g, �) are given by (3.123) for � =

1, . . . , p, and by (3.124) for �= p+1.
Hence, by (3.129), the log likelihood function is given by

LogL(θ ∗,γ1) =
p+1

∑
�=1

K

∑
i∈�

[yi1log π[�]1 +(1− yi1)log π[�]2]

+
p+1

∑
�=1

2

∑
g=1

K

∑
i∈(g,�)

T

∑
t=2

[yit log η(1)
it|t−1(g, �)+(1− yit)log η(2)

it|t−1(g, �)]. (3.132)

Next because η(1)
it|t−1(1, �) and η(1)

it|t−1(2, �) are free from i and t, by using the
cell frequencies from the contingency Tables 3.8 and 3.9, the log likelihood
function (3.132) may be expressed as

Log L(θ ∗,γ1) =
p+1

∑
�=1

[{
K[�]1(1)log π[�]1 +K[�]2(1)log (1−π[�]1)

}

+ log η(1)(1, �)
T

∑
t=2

K[�]11(t −1, t)+ log η(2)(1, �)
T

∑
t=2

K[�]12(t −1, t)

+ log η(1)(2, �)
T

∑
t=2

K[�]21(t −1, t)+ log η(2)(2, �)
T

∑
t=2

K[�]22(t −1, t)

]

, (3.133)

where by (3.121)–(3.122) and (3.125)–(3.126),

π[�]1 = η(1)(2, �) = η∗
[�]1 =

{
exp(β10+β1�)

1+exp(β10+β1�)
, for �= 1, . . . , p

exp(β10)
1+exp(β10)

, for �= p+1,
(3.134)
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and

η(1)(1, �) = η̃[�]1 =

{
exp(β10+β1�+γ1)

1+exp(β10+β1�+γ1)
, for �= 1, . . . , p

exp(β10+γ1)
1+exp(β10+γ1)

, for �= p+1.
(3.135)

3.3.2.1.1 Likelihood Estimating Equations

Note that unlike the parameters θ ∗ and ρ in the LDCP model (3.90)–(3.91), θ ∗ and
γ1 in the present BDL model (3.121)–(3.124) appear in the same exponent used to
define the associated probabilities. Consequently, for computational convenience,
one may treat the dynamic dependence parameter γ1 as a regression parameter
and estimate θ ∗ and γ1 jointly. Furthermore, the exponents in the probabilities
may be expressed in standard linear regression form in the manner similar to
that of (3.112) used under the likelihood estimation approach. Remark that the
likelihood estimation for the regression parameter β10 and dynamic dependence
parameter γ1 under the covariate free BDL model discussed in Sect. 3.2.4.2.1 could
be done jointly using similar linear regression form for the exponents, but they were
estimated marginally because of smaller (scalar) dimension for regression effects.

We now turn back to the probability functions (3.134)–(3.135) and re-express
them as follows using the linear regression form in the exponents. Note however
that there are two groups (g = 1,2) of probability functions and consequently we
define two regression variables x[�]1(1) and x[�]1(2) to represent these groups. That
is, for the joint estimation of the elements of parameter vector

θ̃ = [β10,β11, . . . ,β1�, . . . ,β1p,γ1]
′,

we re-express the functions in (3.135) and (3.134), in terms of θ̃ as

η(1)(1, �) = η̃[�]1 =
exp(x′[�]1(1)θ̃)

1+ exp(x′
[�]1(1)θ̃)

, (3.136)

and

π[�]1 = η(1)(2, �) = η∗
[�]1 =

exp(x′[�]1(2)θ̃)

1+ exp(x′
[�]1(2)θ̃)

, (3.137)

respectively, where

x′[�]1(1) =

⎧
⎨

⎩

(
1 01′�−1 1 01′p−� 1

)
, for �= 1, . . . , p

(
1 01′p 1

)
, for �= p+1,

(3.138)
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and

x′[�]1(2) =

⎧
⎨

⎩

(
1 01′�−1 1 01′p−� 0

)
, for �= 1, . . . , p

(
1 01′p 0

)
, for �= p+1.

(3.139)

Notice that

∂π[�]1

∂ θ̃
=

∂η(1)(2, �)

∂ θ̃
=

∂η∗
[�]1

∂ θ̃
= η∗

[�]1[1−η∗
[�]1]x[�]1(2),

and

∂η(1)(1, �)

∂ θ̃
=

∂ η̃[�]1

∂ θ̃
= η̃[�]1[1− η̃[�]1]x[�]1(1).

Consequently, it follows from (3.133) that the likelihood estimating equation for θ̃
has the form

∂Log L(θ ∗,γ1)

∂ θ̃
=

p+1

∑
�=1

[
K[�]1(1)−π[�]1K[�]

]
x[�]1(2)

+
p+1

∑
�=1

[

η̃[�]1(1− η̃[�]1)

{
∑T

t=2 K[�]11(t −1, t)

η(1)(1, �)
− ∑T

t=2 K[�]12(t −1, t)

η(2)(1, �)

}

x[�]1(1)

]

+
p+1

∑
�=1

[

η∗
[�]1(1−η∗

[�]1)

{
∑T

t=2 K[�]21(t −1, t)

η(1)(2, �)

− ∑T
t=2 K[�]22(t −1, t)

η(2)(2, �)

}

x[�]1(2)

]

= 0. (3.140)

These likelihood equations in (3.140) may be solved iteratively by using the iterative
equations for θ̃ given by

ˆ̃θ(r+1) = ˆ̃θ(r)−
[{

∂ 2Log L(θ ∗,γ1)

∂ θ̃ ′∂ θ̃

}−1 ∂Log L(θ ∗,γ1)

∂ θ̃

]

|θ̃= ˆ̃θ(r)

; (p+2)×1.

(3.141)

In (3.141), the (p+2)× (p+2) second derivative matrix has the formula given by

∂ 2Log L(θ ∗,γ1)

∂ θ̃ ′∂ θ̃
=−

p+1

∑
�=1

[
π[�]1(1−π[�]1)K[�]

]
x[�]1(2)x

′
[�]1(2)
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+
p+1

∑
�=1

[

η̃[�]1(1− η̃[�]1)(1−2η̃[�]1)

{
∑T

t=2 K[�]11(t −1, t)

η(1)(1, �)
− ∑T

t=2 K[�]12(t −1, t)

η(2)(1, �)

}

x[�]1(1)x
′
[�]1(1)

]

−
p+1

∑
�=1

[

{η̃[�]1(1− η̃[�]1)}2

{
∑T

t=2 K[�]11(t −1, t)

{η(1)(1, �)}2
+

∑T
t=2 K[�]12(t −1, t)

{η(2)(1, �)}2

}

x[�]1(1)x
′
[�]1(1)

]

+
p+1

∑
�=1

[

η∗
[�]1(1−η∗

[�]1)(1−2η∗
[�]1)

{
∑T

t=2 K[�]21(t −1, t)

η(1)(2, �)
− ∑T

t=2 K[�]22(t −1, t)

η(2)(2, �)

}

x[�]1(2)x
′
[�]1(2)

]

−
p+1

∑
�=1

[

{η∗
[�]1(1−η∗

[�]1)}2

{
∑T

t=2 K[�]21(t −1, t)

{η(1)(2, �)}2
+

∑T
t=2 K[�]22(t −1, t)

{η(2)(2, �)}2

}

x[�]1(2)x
′
[�]1(2)

]

.

(3.142)

3.3.2.1.2 Illustration 3.8 : Mothers Smoking Effect on Longitudinal Asthma
Status: Likelihood Approach for BDL Regression Model

Under the LDCP regression model (3.89)–(3.92), the marginal probabilities at
p + 1 level of covariates are determined only by the regression parameters
β10; β11, . . . ,β1�, . . . ,β1p which were however estimated in Sect. 3.3.1.2.1 by
exploiting the AR(1) correlation parameter ρ under the likelihood approach. These
marginal probabilities remain the same for all times t = 1, . . . ,T. But the marginal
probabilities under the present BDL regression model are determined by (3.127)
and they change over time unless the dynamic dependence parameter is γ1 = 0.

Now to fit the BDL model with 2 level of covariates to the asthma data, the model
parameters, that is,

θ̃ = [β10,β11,γ1]
′,

are estimated by solving the likelihood iterative equation (3.141) by using the initial
values

ˆ̃θ(0) = [β̂10(0) = 0.0, β̂11(0) = 0.0 γ̂1(0) = 0.0].

After 5 iterations, we obtain the likelihood estimates as

ˆ̃θMLE = [β̂10,MLE =−2.1886, β̂11,MLE = 0.2205 γ̂1,MLE = 1.9554]

which are the same as in Sutradhar and Farrell (2007) (see also lower half of
Table 7.10 in Sutradhar 2011).

Notice from (3.127) that the marginal probabilities at a given level of the
covariate maintain a recursive relationship over time. The above likelihood estimates
for the parameters produce the asthma status probabilities for two groups of children
(with smoking or non-smoking mother) as in Table 3.14.
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Table 3.14 Asthma status
probabilities over time by
fitting BDL model with MLE
(maximum likelihood
estimation) approach

Asthma status probability

Time (t) Covariate level Yes No

t = 1 Smoking mother 0.1226 0.8774

Non-smoking mother 0.1008 0.8992

t = 2 Smoking mother 0.1685 0.8315

Non-smoking mother 0.1352 0.8648

t = 3 Smoking mother 0.1856 0.8144

Non-smoking mother 0.1469 0.8531

t = 4 Smoking mother 0.1921 0.8079

Non-smoking mother 0.1506 0.8494

Table 3.15 Lag correlations for asthma responses for children
belonging to �-th (�= 1,2) level of the smoking mother covariate

Time

Covariate level Time 1 2 3 4

Smoking mother 1 1.0 0.3279 0.1181 0.0436
2 1.0 0.3603 0.1331
3 1.0 0.3694
4 1.0

Non-smoking mother 1 1.0 0.3004 0.0990 0.0340
2 1.0 0.3295 0.1112
3 1.0 .3374
4 1.0

The results of this table show that while the probabilities having asthma for
both groups of children are increasing over time, the children with smoking mother
always have larger probability for having asthma as compared to their counterparts
with non-smoking other. Note that the LDCP model produces constant probabilities
over time for both groups as shown in Table 3.13 which appear to be very close for
the case with t = 2 produced by the BDL model as seen from Table 3.14.

Furthermore, on top of marginal probabilities, the dynamic dependence parame-
ter γ1 of the BDL model naturally influences the lag correlations of the asthma status
responses. For simplicity, the lag correlations among the responses of two groups of
children computed by (3.128) are shown in Table 3.15.

The results of this Table 3.15 show that the lag 1 correlations are only large and
positive, and they are slightly larger under the smoking mother group as compared
to the non-smoking mother group.
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3.4 Covariate Free Basic Univariate Longitudinal
Multinomial Models

Recall from Sect. 3.1 that yit = (yit1, . . . , yit j, . . . ,yit,J−1)
′ denotes the (J − 1)-

dimensional multinomial response variable and for j = 1, . . . ,J−1,

y( j)
it = (y( j)

it1 , . . . , y( j)
it j , . . . ,y

( j)
it,J−1)

′ = (01′j−1, 1, 01′J−1− j)
′ ≡ δit j (3.143)

indicates that the multinomial response of ith individual belongs to jth category at

time t. For j = J, one writes y(J)it = δitJ = 01J−1. Also recall from Sect. 3.1.3 that
in the stationary case one uses the same marginal probability for all time points
t = 1, . . . ,T. This becomes much more simpler when the data is covariate free for
all individuals i = 1, . . . ,K. In such cases, the constant multinomial probability has
the form (see Eq. (3.7))

P[yit = y( j)
it ] = π(it) j ≡ π j =

⎧
⎨

⎩

exp(β j0)

1+∑J−1
g=1 exp(βg0)

for j = 1, . . . ,J−1; t = 1, . . . ,T

1
1+∑J−1

g=1 exp(βg0)
for j = J; t = 1, . . . ,T,

(3.144)

and the elements of yit = (yit1, . . . ,yit j, . . . ,yit,J−1)
′ follow the multinomial probabil-

ity distribution given by

P[yit1, . . . ,yit j, . . . ,yit,J−1] =
1!

yit1! . . .yit j! . . .yit,J−1!yitJ!
Π J

j=1πyit j
j , (3.145)

for all t = 1, . . . ,T. In (3.145),

yitJ = 1−
J−1

∑
j=1

yit j, and πJ =
J−1

∑
j=1

π j.

As far as the nature of the longitudinal multinomial data is concerned, in this
covariate free case, they may be displayed as in the contingency Tables 3.16
and 3.17, as a generalization of the binary longitudinal contingency Tables 3.1
and 3.2, respectively.

Table 3.16 Contingency
table for J > 2 categories at
initial time t = 1

t (t = 1)

Category

1 . . . j . . . J Total

K1(1) . . . Kj(1) . . . KJ(1) K
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Table 3.17 Lag h∗ (h∗ = 1, . . . ,T −1) based [h∗(T −h∗)] contingency tables for J > 2 categories

t (t = h∗+1, . . . ,T )

Time Category ( j)

Time Category (g) 1 . . . j . . . J Total

t-h∗ 1 K11(t −h∗, t) . . . K1 j(t −h∗, t) . . . K1J(t −h∗, t) K1(t −h∗)
· . . . . . . . . . . . . . . . ·
g Kg1(t −h∗, t) . . . Kg j(t −h∗, t) . . . KgJ(t −h∗, t) Kg(t −h∗)
· . . . . . . . . . . . . . . . ·
J KJ1(t −h∗, t) . . . KJ j(t −h∗, t) . . . KJJ(t −h∗, t) KJ(t −h∗)
Total K1(t) . . . Kj(t) . . . KJ(t) K

3.4.1 Linear Dynamic Conditional Multinomial
Probability Models

For the longitudinal binary data, an LDCP model was used in Sect. 3.2.2 to study the
correlations among repeated binary data. There exist some studies, where this LDCP
model has been generalized to the time series setup (Loredo-Osti and Sutradhar
2012, for example), as well as to the longitudinal setup (Chowdhury 2011, for
example), to study the role of correlations among repeated multinomial data in the
inferences for regression effects. In the present stationary longitudinal setup, this
generalized LDCMP (linear dynamic conditional multinomial probability) model
may be constructed as follows. For t = 2, . . . ,T, suppose that the response of the ith
individual at time t − 1 was in gth category. Because g can take a value from 1 to
J, the conditional probability for yit to be in jth category, given that the previous
response was in gth category, may have the linear form

P[Yit = y( j)
it |Yi,t−1 = y(g)i,t−1] = π(it) j +

J−1

∑
h=1

ρ jh

[
y(g)i,t−1,h −π(i,t−1)h

]

= π j +
J−1

∑
h=1

ρ jh

[
y(g)i,t−1,h −πh

]
by stationary property (3.144)

= π j +ρ ′
j

(
y(g)i,t−1 −π

)

= λ ( j)
it|t−1(g), (say), for g = 1, . . . ,J; j = 1, . . . ,J−1, (3.146)

and

P[Yit = y(J)it |Yi,t−1 = y(g)i,t−1] = λ (J)
it|t−1(g) = 1−

J−1

∑
j=1

λ ( j)
it|t−1(g), (3.147)

where

ρ j = (ρ j1, . . . ,ρ jc, . . . ,ρ j,J−1)
′ : (J−1)×1; π = [π1, . . . ,π j, . . . ,πJ−1]

′ : (J−1)×1.
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3.4.1.1 Correlation Properties of the LDCMP Model

3.4.1.1.1 Marginal Mean Vector and Covariance Matrix at a Given Time t

By (3.143) and (3.144), the multinomial response yit = (yit1, . . . ,yit j, . . . ,yit,J−1)
′ has

the stationary mean vector given by

E[Yit ] =
J−1

∑
g=1

y(g)it P[Yit = y(g)it ] =
J−1

∑
g=1

y(g)it πg

= [π1, . . . ,π j, . . . ,πJ−1]
′ = π : (J−1)×1, (3.148)

for all t = 1, . . . ,T, and the stationary covariance matrix Σ(π) given by

var[Yit ] = E[{Yit −π}{Yit −π}′]
= E[YitY

′
it ]−ππ ′, (3.149)

by (3.148).
Note that in general, E[Yit ] in (3.148) is derived by using the formula

E[Yit ] = EYi1 EYi2 · · ·EYi,t−1EYit [Yit |yi,t−1],

where by (3.146), the conditional expectation vector may be written as

EYit [Yit |yi,t−1] = π +ρM(yi,t−1 −π)

(see (3.154) below) with ρM as defined in (3.153). The above successive expecta-
tions in the end produces

E[Yit ] = π +EYi1 [ρ
t−1
M (Yi1 −π)] = π

as in (3.148). Here, for example, ρ2
M = ρMρM.

Next because for j �= k, the jth and kth categories are mutually exclusive, it
follows that

E[Yit jYitk] = P[Yit j = 1,Yitk = 1] = P[Yit = y( j)
it ,Yit = y(k)it ] = 0.

Furthermore,

E[Y 2
it j] = E[Yit j] = P[Yit j = 1] = 1P[Yit = y( j)

it ]+0
J

∑
g �= j

P[Yit = y(g)it ] = π(it) j = π j.
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Consequently, the covariance matrix in (3.149) has the form

Σ(π) = var[Yit ] = diag[π1, . . . ,π j, . . . ,πJ−1]−ππ ′, (3.150)

for all t = 1, . . . ,T ; and i = 1, . . . ,K. For a similar formula for the covariance matrix
at a cross-sectional level, see Lemma 2.1.1 in Chap. 2.

3.4.1.1.2 Auto-correlations Among Repeated Multinomial Responses

For the computations of any lag auto-correlations, it is convenient to compute the lag
h (h= 1, . . . ,T −1) auto-covariance matrix cov[Yiu,Y ′

it ] for u< t, which is defined as

cov[Yit ,Y
′
iu] = E[{Yit −π}{Yiu −π}′]

= E[YitY
′
iu]−ππ ′, (3.151)

where π = E[Yit ] by (3.148) for all t = 1, . . . ,T. Next it follows from the
model (3.147) that

E[Yit |y(g)i,t−1] =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

π1 +ρ ′
1(y

(g)
i,t−1 −π)

π2 +ρ ′
2(y

(g)
i,t−1 −π)

. . .

π j +ρ ′
j(y

(g)
i,t−1 −π)

. . .

πJ−1 +ρ ′
J−1(y

(g)
i,t−1 −π)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= π +ρM(y(g)i,t−1 −π), g = 1, . . . ,J, (3.152)

where ρM is the (J−1)× (J−1) linear dependence parameters matrix given by

ρM =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ ′
1
...

ρ ′
j

...
ρ ′

J−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

: (J−1)× (J−1). (3.153)

Note that in general, that is, without any category specification, the lag 1 conditional
expectation (3.152) implies that

E[Yit |yi,t−1] = π +ρM(yi,t−1 −π), (3.154)

where yi,t−1 = [yi,t−1,1, . . . ,yi,t−1, j, . . . ,yi,t−1,J−1]
′ and
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y(g)i,t−1 =

{
(y(g)i,t−1,1, . . . , y(g)i,t−1,g, . . . ,y

(g)
i,t−1,,J−1)

′ = (01′g−1, 1, 01′J−1−g)
′ for g = 1, . . . ,J−1;

(01J−1) for g = J.
(3.155)

Now because the covariance formula, that is, the right-hand side of (3.151) may be
expressed as

E[{Yit −π}{Yiu −π}′] = EYiu EYi,u+1 · · ·EYi,t−1E[{Yit −π}{Yiu −π}′|Yi,t−1, · · · ,Yiu],
(3.156)

by using the operation (3.154), this equation provides the formula for the covariance
as

cov[Yit ,Y
′
iu] = E[{Yit −π}{Yiu −π}′]

= ρ t−u
M EYiu [{Yiu −π}{Yiu −π}′]

= ρ t−u
M Σ(π)

= ρ t−u
M

[
diag[π1, . . . ,π j, . . . ,πJ−1]−ππ ′] , (3.157)

where, for example, ρ3
M = ρMρMρM.

3.4.1.2 GQL Estimation

Let θ ∗ = [β10, . . . ,β j0, . . . ,βJ−1,0]
′ be the (J−1)×1 vector of regression parameters

used to model the multinomial probabilities {π j, j = 1, . . . ,J − 1} as in (3.144).
Further let yi = [y′i1, . . . ,y

′
it , . . . ,y

′
iT ]

′ be the repeated multinomial responses of the
ith individual over T time periods. Here yit = [yit1, . . . ,yit j, . . . ,yit,J−1]

′ denotes the
multinomial variable with

E[Yit ] = π = (π1, . . . ,π j, . . . ,πJ−1)
′, and var[Yit ] = Σ(π),

as in (3.148) and (3.150), respectively. One may then obtain the mean vector

E[Yi] = E[Y ′
i1, . . . ,Y

′
it , . . . ,Y

′
iT ]

′

= 1T ⊗π : T (J−1)×1, (3.158)

where ⊗ denotes the Kronecker product. Next, by (3.157), one may obtain the T (J−
1)×T (J−1) covariance matrix of Yi as

cov[Yi] =

⎛

⎜
⎜
⎜
⎝

Σ(π) ρMΣ(π) ρ2
MΣ(π) . . . ρT−1

M Σ(π)
ρMΣ(π) Σ(π) ρMΣ(π) . . . ρT−2

M Σ(π)
...

...
...

...
ρT−1

M Σ(π) ρT−2
M Σ(π) ρT−3

M Σ(π) . . . Σ(π)

⎞

⎟
⎟
⎟
⎠
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=

⎛

⎜
⎜
⎜
⎝

IJ−1 ρM ρ2
M . . . ρT−1

M
ρM IJ−1 ρM . . . ρT−2

M
...

...
...

...
ρT−1

M ρT−2
M ρT−3

M . . . IJ−1

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

Σ(π) 0 0 . . . 0
0 Σ(π) 0 . . . 0
...

...
...

...
0 0 0 . . . Σ(π)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

IJ−1 ρM ρ2
M . . . ρT−1

M
ρM IJ−1 ρM . . . ρT−2

M
...

...
...

...
ρT−1

M ρT−2
M ρT−3

M . . . IJ−1

⎞

⎟
⎟
⎟
⎠
[IT ⊗Σ(π)]

= C̃(ρM)[IT ⊗Σ(π)]

= Σ̃(π,ρM), (say). (3.159)

By using π(i) = E[Yi] = 1T ⊗π from (3.158), similar to (3.42), one may write the
GQL estimating equation for θ ∗ = [β10, . . . ,β j0, . . . ,βJ−1,0]

′ as

K

∑
i=1

∂π ′
(i)

∂θ ∗ Σ̃−1
i (π,ρM)(ρ)(yi −π(i))

=
K

∑
i=1

∂ [1′T ⊗π ′]
∂θ ∗

{
[IT ⊗Σ−1(π)]C̃−1(ρM)

}
(yi −1T ⊗π) = 0. (3.160)

Next express π j as

π j =
exp(β j0)

1+∑J−1
g=1 exp(βg0)

=
exp(x′jθ ∗)

1+∑J−1
g=1 exp(x′gθ ∗)

, (3.161)

and use

∂π j

∂θ ∗ = π jx j −π j

J−1

∑
g=1

xgπg

∂π ′

∂θ ∗ = X ′Σ(π), (3.162)

where, corresponding to jth category, x′j is the jth row of the X matrix defined as

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x′1
...

x′j
...

x′J−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= IJ−1.
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Then, the GQL estimating equation (3.160) may be expressed as

K

∑
i=1

[1′T ⊗X ′Σ(π)]
{
[IT ⊗Σ−1(π)]C̃−1(ρM)

}
(yi −1T ⊗π)

=
K

∑
i=1

[1′T ⊗ IJ−1]
{

C̃−1(ρM)
}
(yi −1T ⊗π)

=
K

∑
i=1

(ω̃1M, . . . , ω̃tM, . . . , ω̃T M)(yi −1T ⊗π)

=
T

∑
t=1

ω̃tM

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

K1(t)
...

Kj(t)
...

KJ−1(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

−K

(
T

∑
t=1

ω̃tM

)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

π1
...

π j
...

πJ−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0, (3.163)

where, for a given t, ω̃tM is the (J−1)× (J−1) constant weight matrix (stationary
case) for all individuals i = 1, . . . ,K, and Kj(t) ( j = 1, . . . ,J − 1) is the number
of individuals those provide jth category response at time t as in the contingency
Table 3.17.

Next, because in the present case

∂π
∂θ ∗′ = Σ ′(π)X = Σ ′(π) = Σ(π),

the GQL estimating equation (3.163) for θ ∗ may be solved iteratively by using

θ̂ ∗(r+1) = θ̂ ∗(r)+

[

K

(
T

∑
t=1

ω̃tM

)

Σ ′(π)

]−1

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

T

∑
t=1

ω̃tM

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

K1(t)
...

Kj(t)
...

KJ−1(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

−K

(
T

∑
t=1

ω̃tM

)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

π1
...

π j
...

πJ−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.164)

3.4.1.2(a) Moment Estimation for ρM

The GQL estimation of θ ∗ by (3.164) requires the dynamic dependence parameters
matrix ρM to be known, which is, however, unknown in practice. In the longitudinal
binary data setup, ρM = ρ , a scalar dependence or correlation index parameter.
For the repeated binary data, this parameter ρ was estimated by using the moment
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equation (3.93) which utilized all possible lagged responses. This refined approach
appears to be complicated in the present longitudinal multinomial data setup.
For convenience, we therefore, use a lag 1 response based approximate moment
estimating formula to estimate the parameters in the ρM matrix. Remark that this
approximation was also used in the longitudinal binary data setup by Sutradhar
(2011, Chapter 7) for simplicity and it was found that such an approximation has a
little or no effect on regression estimation. Turning back to the lag 1 response based
moment estimation for ρM, one first observes from (3.159) that

cov[Yit ,Yi,t−1] = ρMΣ(π) = ρMvar[Yi,t−1]≡ ρMvar[Yit ], (3.165)

which, by indicating lags (0,1), we re-express as

Σ1(π) = ρMΣ0(π), (3.166)

yielding the moment estimate for ρM as

ρ̂M = Σ̂−1
0 (π)Σ̂1(π), (3.167)

where

Σ̂1(π) =
1

K(T −1)

K

∑
i=1

T

∑
t=2

(
[(yi,t−1,g −πg)(yit j −π j)]

)
: g, j = 1, . . . ,J−1

=
1

K(T −1)

T

∑
t=2

(
Kg j(t −1, t)−Kg(t −1)π j −Kj(t)πg +Kπgπ j

)
(3.168)

by the cell counts from the contingency Table 3.17 for g, j = 1, . . . ,J − 1. Also,
in (3.167),

Σ̂0(π) =
1

KT

K

∑
i=1

T

∑
t=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

[(yit1 −π1)
2] . . . −π1π j . . . −π1πJ−1

...
...

...
−π jπ1 . . . [(yit j −π j)

2] . . . −π jπJ−1
...

...
...

−πJ−1π1 . . . −πJ−1π j . . . [(yit,J−1 −πJ−1)
2]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
1

KT

T

∑
t=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

d11(t) . . . −Kπ1π j . . . −Kπ1πJ−1
...

...
...

−Kπ jπ1 . . . d j j(t) . . . −Kπ jπJ−1
...

...
...

−KπJ−1π1 . . . −KπJ−1π j . . . dJ−1,J−1(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.169)
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where d j j(t) = [Kj(t)− 2Kj(t)π j + π2
j ], for j = 1, . . . ,J − 1, by using cell counts

from Table 3.16.

3.4.1.2.1 Illustration 3.9: Analysis of Longitudinal Three Mile Island
Stress-Level (Three Categories) Data (Covariate Free) Using
Auto-correlations Class Based GQL Approach

Consider the Three Mile Island Stress-Level (TMISL) data (Fienberg et al. 1985;
Conaway 1989) collected from a psychological study of the mental health effects of
the accident at the Three Mile Island nuclear power plant in central Pennsylvania
began on March 28, 1979. The study focuses on the changes in the post accident
stress level of mothers of young children living within 10 miles of the nuclear plant.
The accident was followed by four interviews; winter 1979 (wave 1), spring 1980
(wave 2), fall 1981 (wave 3), and fall 1982 (wave 4). The subjects were classified
into one of the three response categories namely low, medium, and high stress level,
based on a composite score from a 90-item checklist. There were 267 subjects who
completed all four interviews. Respondents were stratified into two groups, those
living within 5 miles of the plant (LT5) and those live within 5–10 miles from the
plant (GT5). It was of interest to compare the distribution of individuals under three
stress levels collected over four different time points. For convenience of discussion
and analysis, we reproduce this data set in Table 3.18.

Note that this TMISL data set was analyzed by Fienberg et al. (1985) and
reanalyzed by Conaway (1989), among others. Fienberg et al. (1985) have collapsed
the trinomial (three category) data into 2 category based dichotomized data and
modeled the correlations among such repeated binary responses through a BDL
model (see also Sutradhar and Farrell 2007). Thus their model does not deal with
correlations of repeated multinomial (trinomial in this case to be specific) responses
and do not make the desired comparison among 3 original stress levels. Conaway
(1989) has however attempted to model the multinomial correlations but has used
a random effects, that is, mixed model approach to compute the correlations. There
are at least two major drawbacks with this mixed model approach used in Conaway
(1989). First, the random effects based correlations are not able to address the
correlations among repeated responses. Second, it is extremely difficult to estimate
the parameters involved in the multinomial mixed model. As a remedy, Conaway
(1989) has used a conditioning to remove the random effects from the model and
estimated the regression parameters exploiting the so-called conditional likelihood.
But a close look at this conditioning shows that there was a mistake in constructing
the conditional likelihood and this approach does not in fact remove the random
effects.

Unlike Fienberg et al. (1985), Conaway (1989), and other existing odds ratio
based approaches (Lipsitz et al. 1991, Eqs. (5)–(6), p. 155; Yi and Cook 2002,
Eq. (3), p. 1072), in this Sect. 3.4.1 we have modeled the correlations among
repeated multinomial responses through an LDCMP model. A nonlinear dynamic
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Table 3.18 Three Mile Island Stress-level (TMISL) data with J = 3 stress levels
(categories) over a period of T = 4 time points, and with distance of home as a
fixed binary covariate

Time (t)

t = 1 t = 2 t = 3 t = 4

Stress-level (SL)

Covariate SL SL SL Low Medium High

Distance ≤ 5 Miles Low Low Low 2 0 0
Medium 2 3 0
High 0 0 0

Medium Low 0 1 0
Medium 2 4 0
High 0 0 0

High Low 0 0 0
Medium 0 0 0
High 0 0 0

Medium Low Low 5 1 0
Medium 1 4 0
High 0 0 0

Medium Low 3 2 0
Medium 2 38 4
High 0 2 3

High Low 0 0 0
Medium 0 2 0
High 0 1 1

High Low Low 0 0 0
Medium 0 0 0
High 0 0 0

Medium Low 0 0 0
Medium 0 4 3
High 0 1 4

High Low 0 0 0
Medium 1 2 0
High 0 5 12

Distance > 5 Miles Low Low Low 1 2 0
Medium 2 0 0
High 0 0 0

Medium Low 1 0 0
Medium 0 3 0
High 0 0 0

High Low 0 0 0
Medium 0 0 0
High 0 0 0

(continued)
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Table 3.18 (continued)

Time (t)

t = 1 t = 2 t = 3 t = 4

Stress-level (SL)

Covariate SL SL SL Low Medium High

Medium Low Low 4 4 0
Medium 5 15 1
High 0 0 0

Medium Low 2 2 0
Medium 6 53 6
High 0 5 1

High Low 0 0 0
Medium 0 1 1
High 0 3 1

High Low Low 0 0 1
Medium 0 0 0
High 0 0 0

Medium Low 0 0 0
Medium 1 13 0
High 0 0 0

High Low 0 0 0
Medium 0 7 2
High 0 2 7

model, namely MDL model is used in Sect. 3.4.2 to model the correlations. These
models are however developed for covariates free repeated multinomial data. The
covariates based LDCMP and MDL models are discussed in Sects. 3.5.1 and 3.5.2,
respectively.

Turning back to the TMISL data analysis, we now apply the covariates free
LDCMP model and compute the probability for an individual worker to be in any
of the three stress level categories. These are computed after taking the correlations
among repeated multinomial responses into account. However, for the time being,
it is pretended that the distance covariates (distance ≤ 5 miles or >5 miles) do not
play any role and hence data under two covariates were merged. Note that because
the LDCMP model fitting is based on lag 1 time dependence, for convenience of
interpretation, we also provide all possible lag 1 transition counts over time ignoring
the covariate, in Tables 3.20(1)–3.20(3). When compared with the individuals in
high stress group, the results in Table 3.19 show that initially, that is, at year
1, only a small number of individuals had low stress (23 vs 65), whereas more
individuals (179 vs 65) were encountering medium level stress. When marginal
counts are compared over the years, the results of Tables 3.20(1)–3.20(3) show that
the stress situation was improved in year 2 as the number of individuals in low stress
group increased to 53 from 23 but again the situation got worsen at years 3 and
4. These numbers are also reflected from the transitional counts as, for example,
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Table 3.19 Contingency
table for Three Mile Island
Stress-level (J = 3 categories)
(TMISL) data at initial time
t = 1

Time (t = 1)

SL (Stress-level) Category

Low (1) Medium (2) High (3) Total

K1(1) = 23 K2(1) = 179 K3(1) = 65 K=267

Table 3.20 (1): Lag h∗ = 1 based transitional table from time t − h∗ = 1 to t = 2 for
Three Mile Island Stress-level (J = 3 categories) (TMISL) data

2

Time SL ( j)

Time SL (g) 1 2 3 Total

1 1 K11(1,2) = 12 K12(1,2) = 11 K13(1,2) = 0 K1(1) = 23

2 K21(1,2) = 40 K22(1,2) = 129 K13(1,2) = 10 K2(1) = 179

3 K31(1,2) = 1 K32(1,2) = 26 K33(1,2) = 38 K3(1) = 65

Total K1(2) = 53 K2(2) = 166 K3(2) = 48 K = 267

Table 3.20 (2): Lag h∗ = 1 based transitional table from time t − h∗ = 2 to t = 3 for
Three Mile Island Stress-level (J = 3 categories) (TMISL) data

3

Time SL ( j)

Time SL (g) 1 2 3 Total

2 1 K11(2,3) = 20 K12(2,3) = 33 K13(2,3) = 0 K1(2) = 53

2 K21(2,3) = 11 K22(2,3) = 139 K13(2,3) = 16 K2(2) = 166

3 K31(2,3) = 0 K32(2,3) = 16 K33(23) = 32 K3(2) = 48

Total K1(3) = 31 K2(3) = 188 K3(3) = 48 K = 267

Table 3.20 (3): Lag h∗ = 1 based transitional table from time t − h∗ = 3 to t = 4 for
Three Mile Island Stress-level (J = 3 categories) (TMISL) data

4

Time SL ( j)

Time SL (g) 1 2 3 Total

3 1 K11(3,4) = 18 K12(3,4) = 12 K13(3,4) = 1 K1(3) = 31

2 K21(3,4) = 22 K22(3,4) = 149 K13(3,4) = 17 K2(3) = 188

3 K31(3,4) = 0 K32(3,4) = 19 K33(3,4) = 29 K3(3) = 48

Total K1(4) = 40 K2(4) = 180 K3(4) = 47 K = 267
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K21(1,2) = 40 (from year 1 to 2) was higher than corresponding K21(2,3) (from
year 2 to 3) and K21(3,4) = 2 (from year 3 to 4). Note that even though the marginal
counts over time appear to change to a small extent perhaps because of certain
time dependent covariates, we however fit a stationary model in this section as no
other covariates were collected except the distance. The transitional counts under
separate distance groups (see Tables 3.24(1)–3.24(3) show similar pattern as those
in Tables 3.20(1)–3.20(3)). This is expected as the distance is not a time dependent
covariate.

However, to compute the stationary probabilities π j, j = 1,2 with π3 = 1 −
π1 − π3 under three categories defined by (3.144), we take the lag correlations of
the multinomial responses into account by using the lag 1 conditional probability
model (3.146). The regression parameters β10 and β20 involved in π j, j = 1, . . . ,3,
and the lag 1 dynamic dependence parameters

ρM =

(
ρ11 ρ12

ρ21 ρ22

)

defined by (3.153)–(3.154) are computed iteratively. We start the iteration using
initial ρM as

ρM(0) =

(
ρ11 = 0 ρ12 = 0
ρ21 = 0 ρ22 = 0

)

and compute the GQL estimate of

θ ∗ =
(

β10

β20

)

by using the iterative equation (3.164), and the first step estimate of θ ∗ in 5 iterations
was found to be

θ̂ ∗(1) =
(

β̂10 =−0.3471
β̂20 = 1.2319

)

.

We then compute the estimate of ρM by using the moment estimating for-
mula (3.167) and the first step estimate of ρM was found to be

ρ̂M(1) =

(
ρ̂11 = 0.3381 ρ̂12 =−0.3699

ρ̂21 =−0.0862 ρ̂22 =−0.1936

)

.

These estimates of ρM were then used in (3.164) to obtain a second step or an
improved estimate of θ ∗. This cycle of iterations continued until convergence. The
convergence was achieved only in 3 cycles of iterations and the final estimates were
found to be
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ρ̂M =

(
ρ̂11 = 0.3410 ρ̂12 =−0.3646

ρ̂21 =−0.0819 ρ̂22 =−0.2008

)

;

and

θ̂ ∗
GQL =

(
β̂10,GQL =−0.4092
β̂20,GQL = 1.2089

)

.

There is a noticeable difference between this GQL estimate and the aforementioned
step 1 estimate θ̂ ∗(1) obtained using independence assumption, that is, using

ρM(0) =

(
ρ11 = 0 ρ12 = 0
ρ21 = 0 ρ22 = 0

)

.

Next, the standard errors for the components of θ̂ ∗
GQL computed by using

cov[θ̂ ∗
GQL] =

[

K

(
T

∑
t=1

ω̃tM

)

Σ ′(π)

]−1

(see (3.164)) were found to be

s.e.(β̂10,GQL) = 0.1369; s.e.(β̂20,GQL) = 0.0416,

and using the GQL estimates

β̂10,GQL =−0.4092; β̂20,GQL = 1.2089,

the stationary multinomial probabilities (GQL) for an individual (that is probabili-
ties for an individual to belong to these three categories) by (3.144), were found to be

π̂1 = 0.1325(low stress group), π̂2 = 0.6681(medium stress group),

π̂3 = 0.1994(high stress group),

which, as seen from the following Table 3.21, appear to agree well in general with
marginal counts, that is, with observed marginal probabilities (OMP) over time.
The results of the table also show differences in estimates of probabilities computed
based on independence (I) assumption (ρM = 0).

Remark that by using the GQL estimates for the components of θ ∗ and
the moment estimate of ρM, one can also estimate the conditional probabilities
by (3.146) to reflect the lag 1 transitions and interpret the results corresponding
to the transitional counts shown in any of the Tables 3.20(1)–3.20(3).
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3.4.1.3 Likelihood Function

Recall from (3.145) that at time point t = 1, the multinomial response yi1 =
(yi11, . . . ,yi1 j, . . . ,yi1,J−1)

′ has the multinomial distribution given by

f (yi1) = P((yi11, . . . ,yi1 j, . . . ,yi1,J−1)

=
1!

yi11! . . .yi1 j! . . .yi1,J−1!yi1J!
Π J

j=1πyi1 j
j , (3.170)

Next, by using (3.146), one may write the conditional distribution of yit given yi,t−1

as

f (yit |yi,t−1) =
1!

yit1! . . .yit j! . . .yit,J−1!yitJ!
Π J

j=1

[
λ ( j)

it|t−1(yi,t−1)
]yit j

, (3.171)

where

λ (J)
it|t−1(yi,t−1) = 1−

J−1

∑
g=1

λ (g)
it|t−1(yi,t−1) with λ (g)

it|t−1(yi,t−1) = πg +ρ ′
g(yi,t−1 −π),

the past multinomial response yi,t−1 is being known as

yi,t−1 ≡ y(g)i,t−1, for any g = 1, . . . ,J.

It then follows from (3.170) and (3.171) that the likelihood function (of θ ∗ and ρM)
is given by

L(θ ∗,ρM) = Π K
i=1

[
f (yi1)Π T

t=2 f (yit |yi,t−1)
]
, (3.172)

which is equivalent to

L(θ ∗,ρM) =
[
Π K

i=1 f (yi1)
]

× Π T
t=2Π J

g=1Π K
i∈g

[
f (yit |y(g)i,t−1)

]

= c0

[
Π J

j=1Π K
i=1πyi1 j

j

]

× Π T
t=2Π J

j=1Π J
g=1Π K

i∈g

{
λ ( j)

it|t−1(y
(g)
i,t−1)

}yit j
, (3.173)

where c0 is the normalizing constant free from any parameters. Next, by using the

abbreviation λ ( j)(g)≡ λ ( j)
it|t−1(y

(g)
i,t−1), this log likelihood function is written as

Log L(θ ∗,ρM) = log c0 +
K

∑
i=1

J

∑
j=1

yi1 jlog π j

+
T

∑
t=2

J

∑
j=1

J

∑
g=1

K

∑
i∈g

[
yit jlog λ ( j)

it|t−1(g)
]
, (3.174)
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which, by using the cell counts from the contingency Table 3.17, reduces to

Log L(θ ∗,ρM) = log c0 +
J

∑
j=1

Kj(1)log π j

+
J

∑
j=1

J

∑
g=1

{
log λ ( j)(g)

}
[

T

∑
t=2

Kg j(t −1, t)

]

, (3.175)

where Kg j(t − 1, t) is the number of individuals with responses belonging to jth
category at time t, given that their responses were in the gth category at time t −1.
Also, in (3.175),

λ ( j)(g) =

{
π j +ρ ′

j(δg −π) for j = 1, . . . ,J−1; g = 1, . . . ,J
1−∑J−1

k=1

[
πk +ρ ′

k(δg −π)
]

for j = J; g = 1, . . . ,J,
(3.176)

where, similar to (3.155),

δg =

{
[01′g−1,1,01′J−1−g]

′ for g = 1, . . . ,J−1
01J−1 for g = J.

3.4.1.3.1 Likelihood Estimating Equations

3.4.1.3.1(a) Likelihood Estimating Equation for θ ∗

Recall from (3.160)–(3.161) that for

π j =
exp(β j0)

1+∑J−1
g=1 exp(βg0)

=
exp(x′jθ ∗)

1+∑J−1
g=1 exp(x′gθ ∗)

, j = 1, . . . ,J−1

with x′j = [01′j−1,1,01′J−1− j], the first derivative of π j with respect to θ ∗ =

[β10, . . . ,β j0, . . . ,βJ−1,0]
′ has the formula

∂π j

∂θ ∗ =

{
π jx j −π j ∑J−1

g=1 xgπg = π j(x j −π) for j = 1, . . . ,J−1
∂

∂θ∗ [1−∑J−1
j=1 π j] =−∑J−1

j=1 π j(x j −π) =−ππJ for j = J,
(3.177)

where π = (π1, . . . ,π j, . . . ,πJ−1)
′. Thus, one may write

1
π j

∂π j

∂θ ∗ =

{
x j −∑J−1

g=1 πgxg = x j −π for j = 1, . . . ,J−1

−π for j = J.
(3.178)

Next by re-expressing λ ( j)(g) in (3.176) as

λ ( j)(g) =

{
π j +(δg −π)′ρ j for j = 1, . . . ,J−1; g = 1, . . . ,J
1−∑J−1

k=1 [πk +(δg −π)′ρk] for j = J; g = 1, . . . ,J,
(3.179)
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one, by (3.177), obtains their derivatives with respect to θ ∗ as

∂λ ( j)(g)
∂θ ∗ =

⎧
⎨

⎩

∂π j
∂θ∗ −

[
∂π ′
∂θ∗

]
ρ j for j = 1, . . . ,J−1

−∑J−1
k=1

[
∂πk
∂θ∗ −

{
∂π ′
∂θ∗

}
ρk

]
for j = J

=

{
[π j(x j −π)]− [Σ(π)]ρ j for j = 1, . . . ,J−1
−[ππJ −{Σ(π)}∑J−1

k=1 ρk
]

for j = J,
(3.180)

for any g = 1, . . . ,J, where ρ j = (ρ j1, . . . ,ρ jc, . . . ,ρ j,J−1)
′ for j = 1, . . . ,J−1, and

∂π ′

∂θ ∗ =
(
π1(x1 −π) . . . π j(x j −π) . . . πJ−1(xJ−1 −π)

)

= diag[π1, . . . ,π j, . . . ,πJ−1]−ππ ′

= Σ(π).

Remark that the jth column (or row) of this matrix has the form

∂π j

∂θ ∗ = π j(x j −π) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−π jπ1
...

−π jπ j−1

π j(1−π j)

−π jπ j+1
...

−π jπJ−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Now by using the derivatives from (3.178) and (3.180), one may construct the
likelihood estimating equations for the components of θ ∗ from the log likelihood
function given by (3.175). To be specific, these equations have the form

∂Log L(θ ∗,ρM)

∂θ ∗ =
J

∑
j=1

Kj(1)
1
π j

∂π j

∂θ ∗

+
J

∑
j=1

J

∑
g=1

[{
T

∑
t=2

Kg j(t −1, t)

}
1

λ ( j)(g)

∂λ ( j)(g)
∂θ ∗

]

=
J−1

∑
j=1

Kj(1)(x j −π)−KJ(1)π

+
J−1

∑
j=1

J

∑
g=1

[{
T

∑
t=2

Kg j(t −1, t)

}
1

λ ( j)(g)

{
[π j(x j −π)]−Σ(π)ρ j

}
]
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−
J

∑
g=1

[{
T

∑
t=2

KgJ(t −1, t)

}
1

λ (J)(g)

×
{

ππJ −Σ(π)
J−1

∑
k=1

ρk

}]

= 0. (3.181)

In fact, by using some conventional notation, that is,

xJ = 01J−1, and ρJ =−
J−1

∑
k=1

ρk, (3.182)

one can re-express the log likelihood equation (3.181) in a simpler form as

∂Log L(θ ∗,ρM)

∂θ ∗ =
J

∑
j=1

Kj(1)(x j −π)+
J

∑
j=1

J

∑
g=1

[{
T

∑
t=2

Kg j(t −1, t)

}

× 1

λ ( j)(g)

{
[π j(x j −π)]−Σ(π)ρ j

}
]

= 0. (3.183)

Remark that the notations in (3.182) are used simply for writing the log likelihood
and subsequent equations in an easy and compact way. Thus, it should be clear that
ρJ is not a parameter vector so that ∑J

j=1 ρ j = 0 has to be satisfied, rather it is simply

used for −∑J−1
j=1 ρ j for notational convenience.

For known ρM, these likelihood equations in (3.181) or (3.183) may be solved
iteratively by using the iterative equations for θ ∗ given by

θ̂∗(r+1) = θ̂∗(r)−
[{

∂ 2Log L(θ∗,ρM)

∂θ∗′∂θ∗

}−1 ∂Log L(θ∗,ρM)

∂θ∗

]

|θ ∗=θ̂ ∗(r)

; (J−1)×1,

(3.184)

where the second order derivative matrix has the formula

∂ 2Log L(θ ∗,ρM)

∂θ ∗′∂θ ∗ = −
J

∑
j=1

Kj(1)

[
∂π

∂θ ∗′

]

+
J

∑
j=1

J

∑
g=1

[{
T

∑
t=2

Kg j(t −1, t)

}

×
{

1

λ ( j)(g)

∂
∂θ ∗′

{
[π j(x j −π)]−Σ(π)ρ j

}

− 1

[λ ( j)(g)]2
{
[π j(x j −π)]−Σ(π)ρ j

} ∂λ ( j)(g)
∂θ ∗′

}]

(3.185)
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Note that the formulas for
∂π j

∂θ∗′ = [
∂π j
∂θ∗ ]′ and ∂λ ( j)(g)

∂θ∗′ = [ ∂λ ( j)(g)
∂θ∗ ]′ are known

by (3.180). Thus, to compute the second derivative matrix by (3.185), one needs
to compute the formulas for

∂
∂θ ∗′

{
[π j(x j −π)]−Σ(π)ρ j

}

which may be simplified as
Computation of ∂

∂θ∗′
{
[π j(x j −π)]−Σ(π)ρ j

}
:

By (3.177) and (3.180) it follows that

∂
∂θ ∗′ [π j(x j −π)] = π j(x j −π)(x j −π)′ −π j

∂π
∂θ ∗′

= π j(x j −π)(x j −π)′ −π j

[
∂π

∂θ ∗′

]′

= π j(x j −π)(x j −π)′ −π j[Σ(π)]′

= π j(x j −π)(x j −π)′ −π jΣ(π)

= π j
[
(x j −π)(x j −π)′ −Σ(π)

]
= π jMj(x,π), (say). (3.186)

Now, to compute
∂{Σ(π)ρ j}

∂θ∗′ , one may first write

Σ(π)ρ j =
(
σ1 . . . σ j . . . σJ−1

)
ρ j =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ ′
1
...

σ ′
j

...
σ ′

J−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ρ j, (3.187)

where

σ j =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−π jπ1
...

−π jπ j−1

π j(1−π j)

−π jπ j+1
...

−π jπJ−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= π j(x j −π) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ1 j
...

σ j−1, j

σ j j

σ j+1, j
...

σJ−1, j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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(say), for j = 1, . . . ,J−1. Thus, one obtains

∂{Σ(π)ρ j}
∂θ ∗′ =

∂
∂θ ∗′

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ ′
1
...

σ ′
j

...
σ ′

J−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ρ j =
∂

∂θ ∗′

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑J−1
h=1 σh1ρ jh

...

∑J−1
h=1 σh jρ jh

...

∑J−1
h=1 σh,J−1ρ jh

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
∂

∂θ ∗′
J−1

∑
h=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σh1
...

σhk
...

σh,J−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ρ jh =
J−1

∑
h=1

∂
∂θ ∗′

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ1h
...

σkh
...

σJ−1,h

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ρ jh =
J−1

∑
h=1

∂σh

∂θ ∗′ ρ jh (3.188)

=
J−1

∑
h=1

[
ρ jh⊗

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−(πhσ11 +π1σ1h) . . . −(πhσc1 +π1σch) . . . −(πhσJ−1,1 +π1σJ−1,h)
...

...
...

−(πhσ1,h−1 +πh−1σ1h) . . . −(πhσc,h−1 +πh−1σch) . . . −(πhσJ−1,h−1 +πh−1σJ−1,h)

{(1−2πh)σ1h} . . . {(1−2πh)σch} . . . {(1−2πh)σJ−1,h}
−(πhσ1,h+1 +πh+1σ1h) . . . −(πhσc,h+1 +πh+1σch) . . . −(πhσJ−1,h+1 +πh+1σJ−1,h)

...
...

...
−(πhσ1,J−1 +πJ−1σ1h) . . . −(πhσc,J−1 +πJ−1σch) . . . −(πhσJ−1,J−1 +πJ−1σJ−1,h)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Alternatively, a simpler formula for this derivative may be obtained first by taking
the derivative of the scalar quantity σ ′

hρ j with respect to θ ∗′ as follows:

∂σ ′
hρ j

∂θ ∗′ =
∂ [πh(xh −π)′ρ j]

∂θ ∗′ : 1× J−1

=
∂
[
πh

{
ρ ′

j(xh −π)
}]

∂θ ∗′

= πh(xh −π)′
{

ρ ′
j(xh −π)

}−πh

[

ρ ′
j

∂π
∂θ ∗′

]

= πh(xh −π)′
{

ρ ′
j(xh −π)

}−πh
[
ρ ′

jΣ(π)
]
,by (3.180)

= πh
{

ρ ′
j(xh −π)

}
(xh −π)′ −πh

[
ρ ′

jΣ(π)
]

= πhρ ′
j[(xh −π)(xh −π)′ −Σ(π)]

= πh
{

ρ ′
jMh(x,π)

}
, (3.189)

where Mh(·) is the (J − 1)× (J − 1) matrix as in (3.186). Hence, by using (3.189),
it follows from (3.187) that
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∂{Σ(π)ρ j}
∂θ ∗′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

π1ρ ′
jM1(x,π)

...
π jρ ′

jMj(x,π)
...

πJ−1ρ ′
jMJ−1(x,π)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (J−1)× (J−1). (3.190)

By combining (3.190) and (3.186), one finally obtains

∂
∂θ ∗′

{
[π j(x j −π)]−Σ(π)ρ j

}
= π jMj(x,π)

−

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

π1ρ ′
jM1(x,π)

...
π jρ ′

jMj(x,π)
...

πJ−1ρ ′
jMJ−1(x,π)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.191)

Hence by using component derivative results from (3.191), (3.177), and (3.180)
into (3.185), one completes the computation of the second order likelihood deriva-

tive matrix ∂ 2Log L(θ∗,ρM)
∂θ∗′∂θ∗ .

Further Alternative Ways to Compute the Derivatives One may find the
following derivatives computation useful where the notation ∑J−1

g=1 xgπg is retained

instead of using its value π . Thus, to compute the general formula for
∂ 2π j

∂θ∗′∂θ∗ , one
uses

∂π j

∂θ ∗ = π jx j −π j

J−1

∑
g=1

xgπg = π j[x j −
J−1

∑
g=1

xgπg] = σ j(x), (say), (3.192)

where xg = (x1g, . . . ,xkg, . . . ,xJ−1,g)
′ is a known (J − 1)× 1 design vector involved

in the probability formula for the gth category response. It then follows that

∂ 2π j

∂θ ∗′∂θ ∗ =
∂σ j(x)

∂θ ∗′ = π j[{x j −
J−1

∑
g=1

xgπg}{x j −
J−1

∑
g=1

xgπg}′]

− π j

J−1

∑
g=1

πgxg{xg −
J−1

∑
k=1

xkπk}′

= π j[{x j −
J−1

∑
g=1

xgπg}{x j −
J−1

∑
g=1

xgπg}′]

− π j

[
J−1

∑
g=1

πgxgx′g −{
J−1

∑
g=1

xgπg}{
J−1

∑
g=1

xgπg}′
]
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= π j

[(

x jx
′
j −

J−1

∑
g=1

πgxgx′g

)

− 2

(

x j{
J−1

∑
g=1

xgπg}′ −{
J−1

∑
g=1

xgπg}{
J−1

∑
g=1

xgπg}′
)]

. (3.193)

In the binary case, that is when J = 2, x1 = 1, and θ ∗ = β10, this second order
derivative in (3.193) reduces to

π1[(1−π1)−2(π1 −π2
1 )] = π1(1−π1)(1−2π1),

as expected.

Next to compute the general version of the formula for ∂λ ( j)(g)
∂θ∗ , one writes

∂π ′

∂θ ∗ =
∂

∂θ ∗
(
π1 . . . π j . . . πJ−1

)

=

[

π1(x1 −
J−1

∑
g=1

πgxg) . . . π j(x j −
J−1

∑
g=1

πgxg)

. . . πJ−1(xJ−1 −
J−1

∑
g=1

πgxg)

]

: (J−1)× (J−1)

= Σ(π,x), (say), (3.194)

which is the same as Σ(π) in (3.180). More specifically, by writing (3.180) as

∂λ ( j)(g)
∂θ ∗ =

{
σ j(x)− [Σ(π,x)]ρ j for j = 1, . . . ,J−1
−∑J−1

k=1 [σk(x)−Σ(π,x)ρk] for j = J,
(3.195)

one computes the second order derivatives as

∂ 2λ ( j)(g)
∂θ ∗′∂θ ∗ =

∂σ j(x)

∂θ ∗′ −
[

∂{Σ(π,x)ρ j}
∂θ ∗′

]

for j = 1, . . . ,J−1

=
∂ 2π j

∂θ ∗′∂θ ∗ −
[

∂{Σ(π,x)ρ j}
∂θ ∗′

]

, (3.196)

where the first term
∂ 2π j

∂θ∗′∂θ∗ in general form involving x is known from (3.193). The
second term may be computed as

∂{Σ(π,x)ρ j}
∂θ ∗′ =

∂
∂θ ∗′

[{

π1(x1 −
J−1

∑
g=1

πgxg) . . . π j(x j −
J−1

∑
g=1

πgxg)

. . . πJ−1(xJ−1 −
J−1

∑
g=1

πgxg)

}

ρ j

]
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=
∂

∂θ ∗′
J−1

∑
m=1

[

πm(xm −
J−1

∑
g=1

πgxg)ρ jm

]

=
J−1

∑
m=1

[

πm

{(

xmx′m −
J−1

∑
g=1

πgxgx′g

)

− 2

(

xm{
J−1

∑
g=1

xgπg}′ −{
J−1

∑
g=1

xgπg}{
J−1

∑
g=1

xgπg}′
)}

ρ jm

]

, (3.197)

by (3.193). Hence all first and second order derivatives with respect to θ ∗ are
computed.

3.4.1.3.1(b) Likelihood Estimating Equation for ρM

Let

ρ∗ = (ρ ′
1, . . . ,ρ ′

j, . . . ,ρ ′
J−1)

′ : (J−1)2 ×1; with ρ j = (ρ j1, . . . ,ρ jc, . . . ,ρ j,J−1)
′,

(3.198)

where ρ j is the (J−1)×1 vector of dynamic dependence parameters involved in the

conditional linear function in (3.171), i.e., λ ( j)
it|t−1(yi,t−1) = π j +ρ ′

j(yi,t−1 −π). Also
recall that these conditional linear functions in (3.171) are re-expressed in (3.176)
for computational convenience by using an indication vector for the known past
response. That is, the conditional probabilities have the form

λ ( j)(g) =

{
π j +ρ ′

j(δg −π) for j = 1, . . . ,J−1; g = 1, . . . ,J
1−∑J−1

k=1

[
πk +ρ ′

k(δg −π)
]

for j = J; g = 1, . . . ,J.
(3.199)

Now because π j is free from ρ j and λ ( j)(g) depends on ρ j through (3.199), it
follows from the likelihood function (3.175) that the likelihood estimating equations
for ρ j ( j = 1, . . . ,J−1) have the form

∂Log L(θ ∗,ρM)

∂ρ j
=

J

∑
h=1

J

∑
g=1

[{
T

∑
t=2

Kgh(t −1, t)

}
1

λ (h)(g)

∂λ (h)(g)
∂ρ j

]

=
J

∑
g=1

[{
T

∑
t=2

Kg j(t −1, t)

}
1

λ ( j)(g)
(δg −π)

]

−
J

∑
g=1

[{
T

∑
t=2

KgJ(t −1, t)

}
1

λ (J)(g)
(δg −π)

]

= 0, (3.200)
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for j = 1, . . . ,J − 1, leading to the estimating equations for the elements of ρ∗ =
(ρ ′

1, . . . ,ρ ′
j, . . . ,ρ ′

J−1)
′ as

∂Log L(θ ∗,ρM)

∂ρ∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂Log L(θ∗,ρM)
∂ρ1
...

∂Log L(θ∗,ρM)
∂ρ j

...
∂Log L(θ∗,ρM)

∂ρJ−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0 : (J−1)2 ×1. (3.201)

One may solve these likelihood equations in (3.201) for ρ∗ by using the iterative
equation

ρ̂∗(r+1) = ρ̂∗(r)−
[{

∂ 2Log L(θ ∗,ρM)

∂ρ∗∂ρ∗′

}−1 ∂Log L(θ ∗,ρM)

∂ρ∗

]

|ρ∗=ρ̂∗(r)
,

(3.202)

where the (J − 1)2 × (J − 1)2 second derivative matrix is computed by using the
formulas

∂ 2Log L(θ∗,ρM)

∂ρ j∂ρ ′
j

= −
J

∑
g=1

[{
T

∑
t=2

Kg j(t −1, t)

}
1

{λ ( j)(g)}2
(δg −π)(δg −π)′

]

−
J

∑
g=1

[{
T

∑
t=2

KgJ(t −1, t)

}
1

{λ (J)(g)}2
(δg −π)(δg −π)′

]

, (3.203)

for all j = 1, . . . ,J−1, and

∂ 2Log L(θ ∗,ρM)

∂ρ j∂ρ ′
k

=−
J

∑
g=1

[{
T

∑
t=2

KgJ(t −1, t)

}
1

{λ (J)(g)}2
(δg −π)(δg −π)′

]

,

(3.204)
for all j �= k; j,k = 1, . . . ,J−1.

In Sect. 3.4.1.2 we have fitted the LDCMP model (3.146)–(3.147) by using the
GQL approach and the estimation methodology was illustrated in Sect. 3.4.1.2.1
by analyzing the TMISL data. Even though the estimation technique was different,
because in this Sect. 3.4.1.3 we have fitted the same LDCMP model, we did not
apply this technique of computation to the TMISL data. However, in Sect. 3.4.2.2 we
will analyze the TMISL data by fitting a different, namely non-linear MDL model.

3.4.2 MDL Model

In this section, we generalize the covariate free BDL model discussed in Sect. 3.2.4,
to the multinomial case. Remark that this type of non-linear dynamic logit model
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is appropriate for the situations where the mean and variance of the responses at
a given time are likely to be recursive functions of the past means and variances,
respectively. See Sutradhar (2011, Section 7.7.2) for details on such dynamic
logit models for binary data with time dependent covariates, whereas we have
concentrated on a simpler covariate free stationary binary case in Sect. 3.2.4. Further
stationary binary cases with stationary (time independent) covariates were discussed
in Sect. 3.3.2. Turning back to the multinomial case, similar to (3.170), we write the
probability density for the multinomial variable yit at initial time t = 1, that is, for
yi1 = (yi11, . . . ,yi1 j, . . . ,yi1,J−1)

′ as

f (yi1) = P((yi11, . . . ,yi1 j, . . . ,yi1,J−1)

=
1!

yi11! . . .yi1 j! . . .yi1,J−1!yi1J!
Π J

j=1πyi1 j
j , (3.205)

where, for t = 1, by (3.144), π j is defined as

P[yi1 = y( j)
i1 ] = π(i1) j ≡ π j =

⎧
⎨

⎩

exp(β j0)

1+∑J−1
g=1 exp(βg0)

for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0)
for j = J.

(3.206)

However, for t = 2, . . . ,T, as a generalization of the conditional probability (3.71)
for the binary data, we now consider that the conditional probability for the
multinomial variable at time t (t = 2, . . . ,T ) given the responses at time t − 1 has
the dynamic logit form given by

η( j)
it|t−1(g) = P

(
Yit = y( j)

it

∣
∣
∣Yi,t−1 = y(g)i,t−1

)

=

⎧
⎪⎪⎨

⎪⎪⎩

exp
(

β j0+γ ′jy
(g)
i,t−1

)

1+∑J−1
h=1 exp

(
βh0+γ ′hy(g)i,t−1

) , for j = 1, . . . ,J−1;g = 1, . . . ,J

1

1+∑J−1
h=1 exp

(
βh0+γ ′hy(g)i,t−1

) , for j = J;g = 1, . . . ,J,
(3.207)

where γ j = (γ j1, . . . ,γ jh, . . . ,γ j,J−1)
′ for j = 1, . . . ,J−1, and hence

γ ′jy
(g)
i,t−1 =

J−1

∑
h=1

γ jhy(g)i,t−1,h, for all g = 1, . . . ,J.

Note that for γ j = (γ j1, . . . ,γ jh, . . . ,γ j,J−1)
′,

γ = (γ ′1, . . . ,γ ′j, . . . ,γ ′J−1)
′

denotes the vector of dynamic dependence parameters, but they are neither cor-
relation nor odds ratio parameters. However, it is true that the correlations of the
repeated multinomial responses will be functions of these γ parameters.
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Basic Moment Properties of the MDL Model It follows from (3.148)–(3.150)
that for t = 1,

E[Yi1] = [π1, . . . ,π j, . . . ,πJ−1]
′ = π : (J−1)×1

var[Yi1] = Σ(π) = diag[π1, . . . ,π j, . . . ,πJ−1]−ππ ′.

For t = 2, . . . ,T, by using the initial marginal model (3.206) for t = 1 and the
conditional probability model (3.207) for t = 2, . . . ,T, similar to (3.72)–(3.73), one
may derive the recursive relationships for the unconditional mean, variance, and
covariance matrices (see also Loredo-Osti and Sutradhar 2012) as

E[Yit ] = π̃(t) = η(J)+
[
ηM −η(J)1′J−1

]
π̃(t−1)

var[Yit ] = diag[π̃(t)1, . . . , π̃(t) j, . . . , π̃(t)(J−1)]− π̃(t)π̃ ′
(t)

= (cov(Yit j,Yitk)) = (σ(t) jk), j,k = 1, . . . ,J−1

cov[Yiu,Yit ] = var[Yiu][ηM −η(J)1′J−1]
t−u, for u < t

= (cov(Yiu j,Yitk)) = (σ(ut) jk), j,k = 1, . . . ,J−1, (3.208)

where

π̃(1) = π : (J−1)×1,

and for example,

[ηM −η(J)1′J−1]
3 = [ηM −η(J)1′J−1][ηM −η(J)1′J−1][ηM −η(J)1′J−1],

and where

η(J) = [η(1)(J), . . . ,η( j)(J) . . . ,η(J−1)(J)]′ = π : (J−1)×1

ηM =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

η(1)(1) · · · η(1)(g) · · · η(1)(J−1)
...

...
...

...
...

η( j)(1) · · · η( j)(g) · · · η( j)(J−1)
...

...
...

...
...

η(J−1)(1) · · · η(J−1)(g) · · · η(J−1)(J−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

: (J−1)× (J−1).

3.4.2.1 Likelihood Function

Because yit is a multinomial variable at any time point t, it is clear that conditional

on Yi,t−1 = y(g)i,t−1, one may write the conditional distribution of yit as
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f (yit |y(g)i,t−1) =
1!

yit1! . . .yit j! . . .yit,J−1!yitJ!
Π J

j=1

[
η( j)

it|t−1(g)
]yit j

, g = 1, . . . ,J (3.209)

where η( j)
it|t−1(g) for j = 1, . . . ,J, are given by (3.207). Let γM be the (J−1)×(J−1)

dynamic dependence parameters matrix given by

γM =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

γ ′1
...

γ ′j
...

γ ′J−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

: (J−1)× (J−1), (3.210)

and θ ∗ = [β10, . . . ,β j0, . . . ,βJ−1,0]
′ denotes the vector of category index parameters.

Similar to the LDCMP model (3.172)–(3.173), one may write the likelihood
function under the present MDL model as

L(θ ∗,γM) = Π K
i=1

[
f (yi1)Π T

t=2 f (yit |yi,t−1)
]

=
[
Π K

i=1 f (yi1)
]

× Π T
t=2Π J

g=1Π K
i∈g

[
f (yit |y(g)i,t−1)

]

= c∗0
[
Π J

j=1Π K
i=1πyi1 j

j

]

× Π T
t=2Π J

j=1Π J
g=1Π K

i∈g

{
η( j)

it|t−1(y
(g)
i,t−1)

}yit j
, (3.211)

where c∗0 is the normalizing constant free from any parameters. Next, by using the

abbreviation η( j)(g)≡ η( j)
it|t−1(y

(g)
i,t−1), the log likelihood function may be written as

Log L(θ ∗,γM) = log c∗0 +
K

∑
i=1

J

∑
j=1

yi1 jlog π j

+
T

∑
t=2

J

∑
j=1

J

∑
g=1

K

∑
i∈g

[
yit jlog η( j)

it|t−1(g)
]
, (3.212)

which, by using the cell counts from the contingency Table 3.17, reduces to

Log L(θ ∗,γM) = log c∗0 +
J

∑
j=1

Kj(1)log π j

+
J

∑
j=1

J

∑
g=1

{
log η( j)(g)

}
[

T

∑
t=2

Kg j(t −1, t)

]

, (3.213)
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where Kg j(t − 1, t) is the number of individuals with responses belonging to jth
category at time t, given that their responses were in the gth category at time t −1.
Note that this log likelihood function is similar to (3.175) for the LDCMP model,
but the big difference lies in the definition of the conditional probabilities. That is,
unlike the linear conditional probabilities in (3.175), the conditional probabilities in
the present case are non-linear and they are given by

η( j)(g) =

⎧
⎨

⎩

exp(x′jθ∗+γ ′jδg)
1+∑J−1

h=1 exp(x′hθ∗+γ ′hδg)
for j = 1, . . . ,J−1; g = 1, . . . ,J

1
1+∑J−1

h=1 exp(x′hθ∗+γ ′hδg)
for j = J; g = 1, . . . ,J,

(3.214)

where, similar to (3.176),

δg =

{
[01′g−1,1,01′J−1−g]

′ for g = 1, . . . ,J−1
01J−1 for g = J.

3.4.2.1.1 Likelihood Estimating Equation for θ ∗

It follows from the log likelihood function in (3.213) that the likelihood estimating
equations for θ ∗ has the form

∂Log L(θ ∗,γM)

∂θ ∗ =
J

∑
j=1

Kj(1)
1
π j

∂π j

∂θ ∗

+
J

∑
j=1

J

∑
g=1

[{
T

∑
t=2

Kg j(t −1, t)

}
1

η( j)(g)

∂η( j)(g)
∂θ ∗

]

= 0. (3.215)

For given γM, these likelihood equations in (3.215) may be solved iteratively by
using the iterative equations for θ ∗ given by

θ̂ ∗(r+1)= θ̂ ∗(r)−
[{

∂ 2Log L(θ ∗,γM)

∂θ ∗′∂θ ∗

}−1 ∂Log L(θ ∗,γM)

∂θ ∗

]

|θ∗=θ̂∗(r)
; (J−1)×1,

(3.216)
where the second order derivative matrix has the formula

∂ 2Log L(θ ∗,γM)

∂θ ∗′∂θ ∗ =
J

∑
j=1

Kj(1)

[
∂

∂θ ∗′

{
1
π j

∂π j

∂θ ∗

}]

+
J

∑
j=1

J

∑
g=1

[{
T

∑
t=2

Kg j(t −1, t)

}{
1

η( j)(g)

∂ 2η( j)(g)
∂θ ∗′∂θ ∗



172 3 Regression Models For Univariate Longitudinal Stationary Categorical Data

− 1

{η( j)(g)}2

∂η( j)(g)
∂θ ∗

∂η( j)(g)
∂θ ∗′

}]

. (3.217)

The first and second order derivatives involved in the estimating equa-
tions (3.215)–(3.217) are computed as follows:

Computation of 1
π j

∂π j
∂θ∗ and ∂

∂θ∗′
{

1
π j

∂π j
∂θ∗

}
:

These formulas are the same as in (3.178) under the LDCMP model. That is,

1
π j

∂π j

∂θ ∗ =

{
x j −∑J−1

g=1 πgxg = x j −π for j = 1, . . . ,J−1

−π for j = J,
(3.218)

and

∂
∂θ ∗′

{
1
π j

∂π j

∂θ ∗

}

= − ∂π
∂θ ∗′

= −
[

∂π ′

∂θ ∗

]′
=−Σ ′(π) =−Σ(π), (3.219)

(see (3.180)).

Computation of ∂η( j)(g)
∂θ∗ and ∂ 2η( j)(g)

∂θ∗′∂θ∗ :
By (3.214), the first derivative has the formula

∂η( j)(g)
∂θ ∗ =

⎧
⎨

⎩

η( j)(g)
[
x j −∑J−1

h=1 xhη(h)(g)
]

for j = 1, . . . ,J−1; g = 1, . . . ,J

−
[
η(J)(g)∑J−1

h=1 xhη(h)(g)
]

for j = J; g = 1, . . . ,J,

=

{
η( j)(g) [x j −η(g)] for j = 1, . . . ,J−1; g = 1, . . . ,J

−
[
η(J)(g)η(g)

]
for j = J; g = 1, . . . ,J,

(3.220)

where

η(g) = [η(1)(g), . . . ,η( j)(g), . . . ,η(J−1)(g)]′.

The formulae for the second order derivatives follow from (3.220) and they are
given by

∂ 2η( j)(g)
∂θ ∗′∂θ ∗ =

⎧
⎨

⎩

η( j)(g)
[
(x j −η(g))(x j −η(g))′ − ∂η(g)

∂θ∗′
]

for j = 1, . . . ,J−1

η(J)(g)
[
η(g)η ′(g)− ∂η(g)

∂θ∗′
]

for j = J
(3.221)

= η( j)(g)

[

(x j −η(g))(x j −η(g))′ − ∂η(g)
∂θ ∗′

]

= η( j)(g)M∗
j (x,η(g)), (say), for all j = 1, . . . ,J; g = 1, . . . ,J, (3.222)
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by using the notation xJ = 01J−1. However, it remains yet to derive the formula for
∂η(g)
∂θ∗′ .

Computation of ∂η(g)
∂θ∗′ :

Notice from (3.220) that

∂η( j)(g)
∂θ ∗′ = η( j)(g)(x j −η(g))′ : 1× (J−1),

yielding

∂η(g)
∂θ ∗′ =

∂
∂θ ∗′

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

η(1)(g)
...

η( j)(g)
...

η(J−1)(g)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

η(1)(g)(x1 −η(g))′
...

η( j)(g)(x j −η(g))′
...

η(J−1)(g)(xJ−1 −η(g))′

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

: (J−1)× (J−1). (3.223)

3.4.2.1.2 Likelihood Estimating Equation for γM

Let

γ∗ = (γ ′1, . . . ,γ ′j, . . . ,γ ′J−1)
′ : (J−1)2 ×1; where γ j = (γ j1, . . . ,γ jh, . . . ,γ j,J−1)

′,
(3.224)

where γ j is the (J − 1)× 1 vector of dynamic dependence parameters involved
in the conditional multinomial logit function in (3.207). See also (3.214) for an
equivalent but simpler expression for these conditional logit functions. Using this
latter form (3.214), by similar calculations as in (3.220), one writes

∂η(h)(g)
∂γ j

=

⎧
⎨

⎩

δgη( j)(g)[1−η( j)(g)] for h = j;h, j = 1, . . . ,J−1
−δgη( j)(g)η(h)(g) for h �= j;h, j = 1, . . . ,J−1
−δgη( j)(g)η(J)(g) for h = J; j = 1, . . . ,J−1,

(3.225)

for all g = 1, . . . ,J. Using these derivatives, it follows from the likelihood func-
tion (3.213) that



174 3 Regression Models For Univariate Longitudinal Stationary Categorical Data

∂Log L(θ ∗,γM)

∂γ j
=

J

∑
h=1

J

∑
g=1

[{
T

∑
t=2

Kgh(t −1, t)

}
1

η(h)(g)

∂η(h)(g)
∂γ j

]

=
J

∑
g=1

[{
T

∑
t=2

Kg j(t −1, t)

}

δg

(
1−η( j)(g)

)
]

−
J

∑
g=1

J

∑
h �= j

[{
T

∑
t=2

Kgh(t −1, t)

}
1

η(h)(g)
δg

(
η( j)(g)η(h)(g)

)
]

=
J

∑
g=1

[{
T

∑
t=2

Kg j(t −1, t)

}

δg

]

−
J

∑
g=1

J

∑
h=1

[{
T

∑
t=2

Kgh(t −1, t)

}

δgη( j)(g)

]

= 0, (3.226)

for j = 1, . . . ,J − 1, leading to the estimating equations for the elements of γ∗ =
(γ ′1, . . . ,γ ′j, . . . ,γ ′J−1)

′ as

∂Log L(θ ∗,γM)

∂γ∗
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂Log L(θ∗,γM)
∂γ1
...

∂Log L(θ∗,γM)
∂γ j

...
∂Log L(θ∗,γM)

∂γJ−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0 : (J−1)2 ×1. (3.227)

One may solve this likelihood equation (3.224) for γ∗ by using the iterative equation

γ̂∗(r+1) = γ̂∗(r)−
[{

∂ 2Log L(θ ∗,γM)

∂γ∗∂γ∗′

}−1 ∂Log L(θ ∗,γM)

∂γ∗

]

|γ∗=γ̂∗(r)
,

(3.228)
where the (J − 1)2 × (J − 1)2 second derivative matrix is computed by using the
formulas

∂ 2Log L(θ ∗,γM)

∂γ j∂γ ′j
=−

J

∑
g=1

J

∑
h=1

[{
T

∑
t=2

Kgh(t −1, t)

}

η( j)(g)
(

1−η( j)(g)
)

δgδ ′
g

]

(3.229)
for all j = 1, . . . ,J−1, and

∂ 2Log L(θ ∗,γM)

∂γ j∂γ ′k
=

J

∑
g=1

J

∑
h=1

[{
T

∑
t=2

Kgh(t −1, t)

}
(

η( j)(g)η(k)(g)
)

δgδ ′
g

]

,

(3.230)
for all j �= k; j,k = 1, . . . ,J−1.
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Table 3.21 Observed and LDCMP model based fitted probabilities (by using GQL approach)
under all three stress levels for the TMISL data

OMP at time t

Stress level Probabilities (I) Probabilities (LDCMP) 1 2 3 4

Low 0.1376 0.1325 0.0861 0.1985 0.1161 0.1498

Medium 0.6676 0.6681 0.6704 0.6217 0.7041 0.6742

High 0.1948 0.1994 0.2435 0.1798 0.1798 0.1760

3.4.2.2 Illustration 3.10: Analysis of Longitudinal TMISL (Three
Categories) Data (Covariate Free) Fitting MDL Model Using
Likelihood Approach

In Sect. 3.4.1.2.1, we have fitted an LDCMP model to the TMISL data through a
GQL inference approach. Because the model was assumed to be covariate free, the
multinomial (three category) marginal probabilities at different times were time
independent, even though the data exhibit the change in marginal probabilities
over time. See, for example, Table 3.21 where these OMP along with estimated
stationary marginal probabilities are displayed. In fact the inclusion of the distance
covariate in the LDCMP model will also not change the marginal probabilities over
time, because this covariate is not time dependent. However, because the MDL
model considered in the present section (see (3.206)–(3.207)) is conditionally non-
linear, as shown in (3.208), it produces recursive mean, variance, and correlations
over time. Thus, even though the model is either covariate free completely or
contains time independent covariates, the MDL model is capable of producing
time dependent marginal probabilities through the recursive relationship due to non-
linearity. The purpose of this section is to illustrate such a non-linear MDL model
by applying it to the same TMISL data used in illustration 3.9. Furthermore, for
this MDL model, the standard likelihood approach is quite manageable and hence
we illustrate the fitting through maximum likelihood estimation (MLE) approach,
instead of using the GQL technique.

For easy understanding of the application of the MLE approach, we further
simplify the likelihood equations (3.215) for the category based intercept parameters
θ ∗ = (β10,β20)

′ and (3.227) for the category based dynamic dependence parameters
γ∗ = (γ11,γ12,γ21,γ22)

′ in the context of the present TMISL data. By writing, for
example,

K∗
g j = Kg j(1,2)+Kg j(2,3)+Kg j(3,4),

for g, j = 1, . . . ,3, and

K∗
g =

3

∑
j=1

K∗
g j,
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for g = 1, . . . ,3 the two likelihood equations in (3.215) have the form

f1(θ ∗,γ∗) = [K1(1)−Kπ1]+ [{K∗
11 −K∗

1 η(1)(1)}+{K∗
21 −K∗

2 η(1)(2)}
+{K∗

31 −K∗
3 η(1)(3)}] = 0

f2(θ ∗,γ∗) = [K2(1)−Kπ2]+ [{K∗
12 −K∗

1 η(2)(1)}+{K∗
22 −K∗

2 η(2)(2)}
+{K∗

32 −K∗
3 η(2)(3)}] = 0,

and similarly the four likelihood equations for γ∗ in (3.227) have the forms

g1(γ∗,θ ∗) = K∗
11 −K∗

1 η(1)(1) = 0

g2(γ∗,θ ∗) = K∗
21 −K∗

2 η(1)(2) = 0

g3(γ∗,θ ∗) = K∗
12 −K∗

1 η(2)(1) = 0

g4(γ∗,θ ∗) = K∗
22 −K∗

2 η(2)(2) = 0,

respectively. Similarly, the second order derivatives of the likelihood function with
respect to θ ∗ and γ∗ were simplified. The second order derivative matrix for θ ∗,
following (3.217), is given by

F(θ ∗,γ∗) =
(

f11(θ ∗,γ∗) f12(θ ∗,γ∗)
f21(θ ∗,γ∗) f22(θ ∗,γ∗)

)

,

where

f11(·) = −Kπ1(1−π1)−
[
K∗

1 η(1)(1)(1−η(1)(1))

+ K∗
2 η(1)(2)(1−η(1)(2))+K∗

3 η(1)(3)(1−η(1)(3))
]

f12(·) = Kπ1π2 +(K∗
12 +K∗

13)η(1)(1)η(2)(1)

+ (K∗
22 +K∗

23)η(1)(2)η(2)(2)+(K∗
31 +K∗

33)η(1)(3)η(2)(3)

f21(·) = f12(·)
f22(·) = −Kπ2(1−π2)−

[
K∗

1 η(2)(1)(1−η(2)(1))

+ K∗
2 η(2)(2)(1−η(2)(2))+K∗

3 η(2)(3)(1−η(2)(3))
]
,
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and similarly the second order derivative matrix for γ∗, following (3.229)–(3.230),
is given by

Γ (γ∗,θ ∗) =
(

G1 G2

G′
2 G3

)

,

where

G1 = −
(

K∗
1 η(1)(1)(1−η(1)(1)) 0

0 K∗
2 η(1)(2)(1−η(1)(2))

)

G2 =

(
K∗

1 η(1)(1)η(2)(1) 0
0 K∗

2 η(1)(2)η(2)(2)

)

G3 = −
(

K∗
1 η(2)(1)(1−η(2)(1)) 0

0 K∗
2 η(2)(2)(1−η(2)(2))

)

.

Now by using the iterative equations

θ̂ ∗(r+1) = θ̂ ∗(r)−
[

{F(θ ∗,γ∗)}−1
(

f1(θ ∗,γ∗)
f2(θ ∗,γ∗)

)]

|θ∗=θ̂∗(r)
: 2×1,

(see (3.216)) for θ ∗, and

γ̂∗(r+1) = γ̂∗(r)−

⎡

⎢
⎢
⎣{Γ (γ∗,θ ∗)}−1

⎛

⎜
⎜
⎝

g1(γ∗,θ ∗)
g2(γ∗,θ ∗)
g3(γ∗,θ ∗)
g4(γ∗,θ ∗)

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

|γ∗=γ̂∗(r)

: 4×1,

(see (3.228)) for γ∗, in ten cycles of iterations, we obtained the maximum likelihood
estimates (MLE) for the category intercept parameters as

β̂10,MLE =−1.9117; β̂20,MLE = 0.3798,

and for the lag 1 dynamic dependence parameters as

γ̂11,MLE = 5.8238, γ̂12,MLE = 2.4410; γ̂21,MLE = 3.6455, γ̂22,MLE = 1.8920.

To understand the marginal probabilities (3.208) for three categories over time,
we first use the above estimates to compute

π̃(1) = [π̃(1)1 (Low group), π̃(1)2 (Medium group)]′ : 2×1

= π : 2×1

= [0.0567, 0.5602]′,
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Table 3.22 Observed marginal probabilities (OMP) and MDL model based fitted marginal
probabilities (FMP) (π̃(t) (208)) under all three stress levels for the TMISL data

OMP at time t FMP at time t(π̃(t))

Stress level 1 2 3 4 1 2 3 4

Low 0.0861 0.1985 0.1161 0.1498 0.0567 0.1247 0.1624 0.1798

Medium 0.6704 0.6217 0.7041 0.6742 0.5602 0.6828 0.7076 0.7117

High 0.2435 0.1798 0.1798 0.1760 0.3831 0.1925 0.1290 0.1085

with π̃(1)3 (High group) = 1 − π̃(1)1 − π̃(1)2 = 0.3831, and the lag 1 based but
constant matrix of conditional probabilities ηM as

ηM =

(
η(1)(1) η(1)(2)
η(2)(1) η(2)(2)

)

: 2×2

=

(
0.4666 0.5240
0.1366 0.7827

)

,

and η(J)= π̃(1) = π. These results are then used in the recursive relationship (3.208)
to produce the marginal probabilities π̃(t) (3.208) for three categories over remaining
three time points as in Table 3.22.

Notice from the Table 3.22 that the FMP over time indicate that as time
progresses the stress decreases. Thus, for Low and Medium group the probabilities
are increasing over time, whereas for the High stress level the probabilities are
generally decreasing. This fitted pattern shows an excellent agreement with the
observed data, that is OMP shown in the same table. Thus as compared to fitting the
LDCMP model (see the constant probabilities shown in column 3 in Table 3.21),
the MDL model fits the marginal probabilities over time much better.

For the sake of completeness, by using the above estimates, following (3.208), we
also provide the covariances or correlations among the elements of the multinomial
responses. Thus, for t = 1, . . . ,4, we first provide the variance and covariances of
the elements of var[Yit ] = (σ(t) jk), j,k = 1,2, and then the values of correlations

corr[Yiu j,Yitk] = (
σ(ut) jk

[σ(u) j jσ(t)kk]
1
2

) = (ρ(ut) jk),

for u < t.
Values of (σ(t) jk) :

var[Yi1] = (σ(1) jk) =

(
0.0534 −0.0317
−0.0317 0.2464

)

var[Yi2] = (σ(2) jk) =

(
0.1091 −0.0851
−0.0851 0.2166

)
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var[Yi3] = (σ(3) jk) =

(
0.1360 −0.1149
−0.1149 0.2069

)

var[Yi4] = (σ(4) jk) =

(
0.1475 −0.1280
−0.1280 0.2052

)

,

Values of (ρ(ut) jk) :

corr[Yi1 j,Yi2k] = (ρ(12) jk) =

(
0.3019 −0.0259
−0.1337 0.2263

)

corr[Yi1 j,Yi3k] = (ρ(13) jk) =

(
0.1120 0.0117
−0.0594 0.0437

)

corr[Yi1 j,Yi4k] = (ρ(14) jk) =

(
0.0436 0.0099
−0.0253 0.0059

)

corr[Yi2 j,Yi3k] = (ρ(23) jk) =

(
0.3925 −0.0679
−0.2490 0.1954

)

corr[Yi2 j,Yi4k] = (ρ(24) jk) =

(
0.1574 0.0104
−0.1064 0.0274

)

corr[Yi3 j,Yi4k] = (ρ(34) jk) =

(
0.4230 −0.0879
−0.3125 0.1788

)

.

As expected the multinomial correlations appear to decay as time lag increases.

3.5 Univariate Longitudinal Stationary Multinomial
Fixed Effect Regression Models

In Sect. 3.4, we have used first order Markovian type linear (LDCMP) and non-
linear dynamic (MDL) models to analyze longitudinal multinomial responses in the
absence of any covariates. Thus, even though the original TMISL data based on 3
stress levels displayed in Table 3.18 were collected from 267 workers along with
their covariate information on their house distance (less or greater than 5 miles)
from the nuclear plant, the LDCMP (Sect. 3.4.1) and MDL (Sect. 3.4.2) models
were applied to this data set as an illustration ignoring the covariate (distance)
information. However, because finding the covariate effects on categories may
be of interest as well, in fact in some cases finding covariate effects may be of
primary interest, in this section, we generalize the LDCMP and MDL models from
Sects. 3.4.1 and 3.4.2 to accommodate the stationary covariates (time independent).
We refer to these generalized models as the LDCMP and MDL regression models.
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Table 3.23 Contingency table for J > 2 categories at initial time t = 1 for
individuals belonging to �-th (�= 1, . . . , p+1) level of a covariate

t (t = 1)

Category

Covariate level 1 . . . j . . . J Total

1 K[1]1(1) . . . K[1] j(1) . . . K[1]J(1) K[1]

· . . . . . . . . . . . . . . . ·
� K[�]1(1) . . . K[�] j(1) . . . K[�]J(1) K[�]

· . . . . . . . . . . . . . . . ·
p+1 K[p+1]1(1) . . . K[p+1] j(1) . . . K[p+1]J(1) K[p+1]

Total K1(1) . . . Kj(1) . . . KJ(1) K

Naturally one should be able to apply these regression models to analyze, for
example, the original TMISL data in Table 3.18. For convenience, to make the
application purpose of the regression models easier and clear, we first extend the
general contingency Tables 3.16 and 3.17 for J > 2 categories to the regression case
with a covariate with p+ 1 levels through Tables 3.23 and 3.24, respectively. Note
that these Tables 3.23 and 3.24 also generalize the covariates based contingency
Tables 3.8 and 3.9, respectively, for the binary longitudinal data.

To illustrate these Tables 3.23 and 3.24, we turn back to the original TMISL
data of Table 3.18 and first, corresponding to Table 3.23, display the marginal
counts at initial time t = 1 for two levels of the distance (between workplace and
home) covariate in Table 3.25. Next, corresponding to Table 3.24, we display three
(T − 1) lag 1 based transitional contingency Tables 3.26(1)–(3) to be constructed
from the TMISL data of Table 3.18. Each table contains the counts under two levels
of the distance covariate. Once the multinomial regression models are developed
and estimation methods are discussed in Sects. 5.1 and 5.2, they will be fitted, as an
illustration, to the TMISL data from Tables 3.25 and 3.26(1)–(3).

3.5.1 Covariates Based Linear Dynamic Conditional
Multinomial Probability Models

In this section, we generalize the LDCMP model discussed in Sect. 3.4.1 to examine
the effects of covariates as well on the multinomial responses. For convenience we
consider one covariate with p+1 levels, � being a general level so that �= 1, . . . , p+
1. For example, in the aforementioned TMISL data, distance covariate has 2 levels,
namely distance less than or equal to 5 miles (DLE5) (�= 1) and the distance greater
than 5 miles (DGT5) (�= 2). Suppose that for i ∈ �, in addition to β j0, β j� denotes
the effect of the covariate for the response of the ith individual to be in jth category.
Thus, for t = 1, . . . ,T, we may write the marginal probabilities as
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Table 3.24 Lag h∗ (h∗ = 1, . . . ,T −1) based [h∗(T −h∗)] transitional counts for multino-
mial responses with J > 2 categories, for individuals belonging to �-th (� = 1, . . . , p+ 1)
level of the covariate

Covariate level (�)

t (t = h∗+1, . . . ,T )

Time Category ( j)

Time Category (g) 1 . . . j . . . J Total

t-h∗ 1 K[�]11(t −h∗, t) . . . K[�]1 j(t −h∗, t) . . . K[�]1J(t −h∗, t) K[�]1(t −h∗)
· . . . . . . . . . . . . . . . ·
g K[�]g1(t −h∗, t) . . . K[�]g j(t −h∗, t) . . . K[�]gJ(t −h∗, t) K[�]g(t −h∗)
· . . . . . . . . . . . . . . . ·
J K[�]J1(t −h∗, t) . . . K[�]J j(t −h∗, t) . . . K[�]JJ(t −h∗, t) K[�]J(t −h∗)
Total K[�]1(t) . . . K[�] j(t) . . . K[�]J(t) K[�]

Table 3.25 Contingency table for TMISL data with J = 3 categories at initial
time t = 1 for individuals with covariate level 1 or 2

t (t = 1)

Stress level (j)

Covariate level (�) Low (1) Medium (2) High (3) Total

Distance ≤ 5 Miles (1) K[1]1(1) = 14 K[1]2(1) = 69 K[1]3(1) = 32 K[1] = 115

Distance > 5 Miles (2) K[2]1(1) = 9 K[2]2(1) = 110 K[2]3(1) = 33 K[2] = 152

Total K1(1) = 23 K2(1) = 179 K3(1) = 65 K = 267

Table 3.26 (1): Transitional counts for the TMISL data from time 1 to 2 (h∗ = 1) for individuals
belonging to �-th (�= 1,2) level of the distance covariate

Distance ≤ 5 Miles (1)

t=2

Time Stress level ( j)

Time Stress level (g) Low (1) Medium (2) High (3) Total

[t −h∗] = 1 Low (1) K[1]11(1,2) = 7 K[1]12(1,2) = 7 K[1]13(1,2) = 0 K[1]1(1) = 14

Medium (2) K[1]21(1,2) = 11 K[1]22(1,2) = 54 K[1]23(1,2) = 4 K[1]2(1) = 69

High (3) K[1]31(1,2) = 0 K[1]32(1,2) = 12 K[1]33(1,2) = 20 K[1]3(1) = 32

Total K[1]1(2) = 18 K[1]2(2) = 73 K[1]3(2) = 24 K[1] = 115

Distance > 5 Miles (2)

t=2

Time Stress level ( j)

Time Stress level (g) Low (1) Medium (2) High (3) Total

[t −h∗] = 1 Low (1) K[2]11(1,2) = 5 K[2]12(1,2) = 4 K[2]13(1,2) = 0 K[2]1(1) = 9

Medium (2) K[2]21(1,2) = 29 K[2]22(1,2) = 75 K[2]23(1,2) = 6 K[2]2(1) = 110

High (3) K[2]31(1,2) = 1 K[2]32(1,2) = 14 K[2]33(1,2) = 18 K[2]3(1) = 33

Total K[2]1(2) = 35 K[2]2(2) = 93 K[2]3(2) = 24 K[2] = 152
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Table 3.26 (2): Transitional counts for the TMISL data from time 2 to 3 (h∗ = 1) for individuals
belonging to �-th (�= 1,2) level of the distance covariate

Distance ≤ 5 Miles (1)

t=3

Time Stress level ( j)

Time Stress level (g) Low (1) Medium (2) High (3) Total

[t −h∗] = 2 Low (1) K[1]11(2,3) = 8 K[1]12(2,3) = 10 K[1]13(2,3) = 0 K[1]1(2) = 18

Medium (2) K[1]21(2,3) = 6 K[1]22(2,3) = 57 K[1]23(2,3) = 10 K[1]2(2) = 73

High (3) K[1]31(2,3) = 0 K[1]32(2,3) = 5 K[1]33(2,3) = 19 K[1]3(2) = 24

Total K[1]1(3) = 14 K[1]2(3) = 72 K[1]3(3) = 29 K[1] = 115

Distance > 5 Miles (2)

t=3

Time Stress level ( j)

Time Stress level (g) Low (1) Medium (2) High (3) Total

[t −h∗] = 2 Low (1) K[2]11(2,3) = 12 K[2]12(2,3) = 23 K[2]13(2,3) = 0 K[2]1(2) = 35

Medium (2) K[2]21(2,3) = 5 K[2]22(2,3) = 82 K[2]23(2,3) = 6 K[2]2(2) = 93

High (3) K[2]31(2,3) = 0 K[2]32(2,3) = 11 K[2]33(2,3) = 13 K[2]3(2) = 24

Total K[2]1(3) = 17 K[2]2(3) = 116 K[2]3(3) = 19 K[2] = 152

Table 3.26 (3) Transitional counts for the TMISL data from time 3 to 4 (h∗ = 1) for individuals
belonging to �-th (�= 1,2) level of the distance covariate

Distance ≤ 5 Miles (1)

t=4

Time Stress level ( j)

Time Stress level (g) Low (1) Medium (2) High (3) Total

[t −h∗] = 3 Low (1) K[1]11(3,4) = 10 K[1]12(3,4) = 4 K[1]13(3,4) = 0 K[1]1(3) = 14

Medium (2) K[1]21(3,4) = 8 K[1]22(3,4) = 57 K[1]23(3,4) = 7 K[1]2(3) = 72

High (3) K[1]31(3,4) = 0 K[1]32(3,4) = 9 K[1]33(3,4) = 20 K[1]3(3) = 29

Total K[1]1(4) = 18 K[1]2(4) = 70 K[1]3(4) = 27 K[1] = 115

Distance > 5 Miles (2)

t=4

Time Stress level ( j)

Time Stress level (g) Low (1) Medium (2) High (3) Total

[t −h∗] = 3 Low (1) K[2]11(3,4) = 8 K[2]12(3,4) = 8 K[2]13(3,4) = 1 K[2]1(3) = 17

Medium (2) K[2]21(3,4) = 14 K[2]22(3,4) = 92 K[2]23(3,4) = 10 K[2]2(3) = 116

High (3) K[2]31(3,4) = 0 K[2]32(3,4) = 10 K[2]33(3,4) = 9 K[2]3(3) = 19

Total K[2]1(4) = 22 K[2]2(4) = 110 K[2]3(4) = 20 K[2] = 152
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P[yit = y( j)
it |i ∈ �] = π[(i∈�]t) j ≡ π[�] j(same for all t using stationary assumption)

=

⎧
⎨

⎩

exp(β j0+β j�)

1+∑J−1
g=1 exp(βg0+βg�)

for j = 1, . . . ,J−1; �= 1, . . . , p

1
1+∑J−1

g=1 exp(βg0+βg�)
for j = J; �= 1, . . . , p,

(3.231)

and for �= p+1, these probabilities have the formulas

P[yit = y( j)
it |i ∈ (p+1)] = = π(i∈(p+1)t) j ≡ π[p+1] j

=

⎧
⎨

⎩

exp(β j0)

1+∑J−1
g=1 exp(βg0)

for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0)
for j = J.

(3.232)

Note that these marginal probabilities are similar to those for the binary case
given by (3.89)–(3.90), with a difference that j now ranges from 1 to J(≥ 2),
whereas in the binary case J = 2. Further note that for notational convenience, one
may re-express the probabilities in (3.231)–(3.232) as follows. Let

θ ∗ = [β ∗
1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′]′ : (J−1)(p+1)×1, with β ∗

j = [β j0, . . . ,β j�, . . . ,β jp]
′.

(3.233)
It then follows that

π[�] j =
exp(x′[�] jθ

∗)

∑J
g=1 exp(x′

[�]gθ ∗)
, (3.234)

where x′[�] j is the jth ( j = 1, . . . ,J) row of the J × (J −1)(p+1) matrix X�, defined
for �th level as follows:

X� =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x′[�]1
...

x′[�] j
...

x′[�](J−1)

x′[�]J

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.235)
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with

x′[�] j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
01′( j−1)(p+1) d′

[�]1 01′(J−1− j)(p+1)

)
for j = 1, . . . ,J−1; �= 1, . . . , p

(
01′( j−1)(p+1) d′

[�]2 01′(J−1− j)(p+1)

)
for j = 1, . . . ,J−1; �= p+1

(
01′(J−1)(p+1)

)
for j = J; �= 1, . . . , p+1,

(3.236)
where

d′
[�]m =

⎧
⎨

⎩

(
1 01′�−1 1 01′p−�

)
for m = 1

(
1 01′p

)
for m = 2.

(3.237)

Next, to accommodate the covariates, level (i ∈ �) specific conditional probabil-
ities in linear form may be written by modifying the LDCMPs in (3.146)–(3.147),
as

P[Yit = y( j)
it |Yi,t−1 = y(g)i,t−1, i ∈ �] = π(i∈�,t) j +

J−1

∑
h=1

ρ jh

[
y(g)i,t−1,h −π(i∈�,t−1)h

]

= π[�] j +
J−1

∑
h=1

ρ jh

[
y(g)i,t−1,h −π[�]h

]
by stationary property (3.144)

= π[�] j +ρ ′
j

(
y(g)i,t−1 −π[�]

)

= λ ( j)
it|t−1(g, �), (say), for g = 1, . . . ,J; j = 1, . . . ,J−1, (3.238)

and

P[Yit = y(J)it |Yi,t−1 = y(g)i,t−1, i ∈ �] = λ (J)
it|t−1(g, �) = 1−

J−1

∑
j=1

λ ( j)
it|t−1(g, �), (3.239)

where

ρ j = (ρ j1, . . . ,ρ jh, . . . ,ρ j,J−1)
′ : (J−1)×1; π[�] = [π[�]1, . . . ,π[�] j, . . . ,π[�],J−1]

′ : (J−1)×1.

3.5.1.1 Likelihood Function and Estimating Equations

When covariates are accommodated, following (3.172), one writes the product
multinomial likelihood function (see Poleto et al. 2013 for a more complex missing
data setup) as

L(θ ∗,ρM) = Π p+1
�=1 Π K

i∈�
[

f (yi1)Π T
t=2 f (yit |yi,t−1)

]
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=
[
Π p+1

�=1 Π K
i∈� f (yi1)

]

× Π T
t=2Π p+1

�=1 Π J
g=1Π K

i∈(g,�)
[

f (yit |y(g)i,t−1)
]

= d∗
0

[
Π p+1

�=1 Π J
j=1Π K

i∈�π
yi1 j

[�] j

]

× Π T
t=2Π p+1

�=1 Π J
j=1Π J

g=1Π K
i∈(g,�)

{
λ ( j)

it|t−1(y
(g)
i,t−1)

}yit j
, (3.240)

where θ ∗ now has the form as in (3.233) but ρM has the same form as before that is,
as in (3.153), that is,

ρM =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ ′
1
...

ρ ′
j

...
ρ ′

J−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

: (J−1)× (J−1).

In (3.240), d∗
0 is the normalizing constant free from any parameters. Next, by

using the abbreviation λ ( j)(g, �) for the conditional probabilities in (3.238)–(3.239),
that is,

λ ( j)(g, �) ≡
[
λ ( j)

it|t−1(y
(g)
i,t−1)

]

|i∈�

=

{
π[�] j +ρ ′

j(δ[�]g −π[�]) for j = 1, . . . ,J−1
1−∑J−1

k=1

[
π[�]k +(δ[�]g −π[�])

′ρk
]

for j = J,
(3.241)

with

δ[�]g =

{(
01′g−1 1 01′J−1−g

)′
for g = 1, . . . ,J−1; �= 1, . . . , p+1

01J−1 for g = J; �= 1, . . . , p+1,
(3.242)

the log of the likelihood function (3.240), that is,

Log L(θ ∗,ρM) = log d∗
0 +

p+1

∑
�=1

K

∑
i∈�

J

∑
j=1

yi1 jlog π[�] j

+
p+1

∑
�=1

T

∑
t=2

J

∑
j=1

J

∑
g=1

K

∑
i∈(g,�)

[
yit jlog λ ( j)

it|t−1(g, �)
]
, (3.243)

by using the cell counts from the contingency Tables 3.17 and 3.18, may be
written as
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Log L(θ ∗,ρM) = log d∗
0 +

p+1

∑
�=1

J

∑
j=1

K[�] j(1)log π[�] j

+
p+1

∑
�=1

J

∑
j=1

J

∑
g=1

[
{

log λ ( j)(g, �)
}
{

T

∑
t=2

K[�]g j(t −1, t)

}]

, (3.244)

where K[�]g j(t − 1, t) (Table 3.18) is the number of individuals with covariate level
�, whose responses were in gth category at time t −1 and in jth category at time t.

3.5.1.1.1 Likelihood Estimating Equation for θ ∗

It follows from (3.244) that the likelihood estimating equation for θ ∗ is given by

∂Log L(θ ∗,ρM)

∂θ ∗ =
p+1

∑
�=1

J

∑
j=1

K[�] j(1)
1

π[�] j

∂π[�] j

∂θ ∗

+
p+1

∑
�=1

J

∑
j=1

J

∑
g=1

[{
T

∑
t=2

K[�]g j(t −1, t)

}
1

λ ( j)(g, �)

× ∂λ ( j)(g, �)
∂θ ∗

]

= 0, (3.245)

where, by (3.234), one obtains

∂π[�] j

∂θ ∗ = π[�] jx[�] j −π[�] j

J−1

∑
g=1

x[�]gπ[�]g

=

{
π[�] j

(
x[�] j −π[�]⊗d[�]1

)
for �= 1, . . . , p; j = 1, . . . ,J

π[�] j

(
x[�] j −π[�]⊗d[�]2

)
for �= p+1; j = 1, . . . ,J,

(3.246)

or equivalently

1
π[�] j

∂π[�] j

∂θ ∗ =

{(
x[�] j −π[�]⊗d[�]1

)
for �= 1, . . . , p; j = 1, . . . ,J

(
x[�] j −π[�]⊗d[�]2

)
for �= p+1; j = 1, . . . ,J,

(3.247)

where x[�]J = 01(J−1)(p+1). Further, by (3.246), it follows from (3.241) that the first

derivative ∂λ ( j)(g,�)
∂θ∗ in (3.245) has the formula as
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∂λ ( j)(g, �)
∂θ ∗ =

{
∂

∂θ∗
[
π[�] j +ρ ′

j(δ[�]g −π[�])
]

for j = 1, . . . ,J−1

− ∂
∂θ∗

[
∑J−1

k=1

{
π[�]k +(δ[�]g −π[�])

′ρk
}]

for j = J,
(3.248)

=

⎧
⎪⎪⎨

⎪⎪⎩

[
∂π[�] j
∂θ∗ −

{
∂π ′

[�]

∂θ∗

}

ρ j

]

for j = 1, . . . ,J−1

−∑J−1
k=1

[
∂π[�]k
∂θ∗ −

{
∂π ′

[�]

∂θ∗

}

ρk

]

for j = J,
(3.249)

=

{
π[�] j

(
x[�] j −π[�]⊗d[�]1

)−[Σ(π[�])⊗d[�]1]ρ j for �=1, . . . , p
π[�] j

(
x[�] j −π[�]⊗d[�]2

)−[Σ(π[�])⊗d[�]2]ρ j for �=p+1,
(3.250)

for all j = 1, . . . ,J, where by using similar conventional notations as that of (3.182),
one writes

x[�]J = 01(J−1)(p+1) and ρJ =−
J−1

∑
k=1

ρk.

Also in (3.250),

Σ(π[�]) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

π[�]1(1−π[�]1) . . . −π[�]1π[�]g . . . −π[�]1π[�](J−1)
...

...
...

−π[�]gπ[�]1 . . . π[�]g(1−π[�]g) . . . −π[�]gπ[�](J−1)
...

...
...

−π[�](J−1)π[�]1 . . . −π[�](J−1)π[�]g . . . π[�](J−1)(1−π[�](J−1))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(3.251)

which, similar to (3.150), is the covariance matrix of the multinomial response
variable Yi∈�,t for the ith individual with covariate level �.

Now for known ρM, the likelihood equation in (3.245) for θ ∗ may be obtained
by using the iterative formula

θ̂∗(r+1)= θ̂∗(r)−
[{

∂ 2Log L(θ∗,ρM)

∂θ∗′∂θ∗

}−1 ∂Log L(θ∗,ρM)

∂θ∗

]

|θ ∗=θ̂ ∗(r)

; (J−1)(p+1)×1,

(3.252)

where the second order derivative matrix has the form

∂ 2Log L(θ ∗,ρM)

∂θ ∗′∂θ ∗ =
p+1

∑
�=1

J

∑
j=1

K[�] j(1)

[
∂

∂θ ∗′

{
1

π[�] j

∂π[�] j

∂θ ∗

}]

+
p+1

∑
�=1

J

∑
j=1

J

∑
g=1

[{
T

∑
t=2

K[�]g j(t −1, t)

}{
1

λ ( j)(g, �)

∂ 2λ ( j)(g, �)
∂θ ∗′∂θ ∗
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− 1

{λ ( j)(g, �)}2

∂λ ( j)(g, �)
∂θ ∗

∂λ ( j)(g, �)
∂θ ∗′

}]

. (3.253)

To compute this derivative matrix, first we notice that the formulas for λ ( j)(g, �)
and its first order derivative with respect to θ ∗ are given by (3.241) and (3.250),

respectively. Also the formula for 1
π[�] j

∂π[�] j
∂θ∗ is given in (3.247). We then turn back

to (3.253) and construct the necessary second order derivatives as follows.

Computation of ∂
∂θ∗′

{
1

π[�] j
∂π[�] j
∂θ∗

}
:

By (3.247), for all j = 1, . . . ,J, we write

∂
∂θ ∗′

{
1

π[�] j

∂π[�] j

∂θ ∗

}

=

{
∂

∂θ∗′
(
x[�] j −π[�]⊗d[�]1

)
for �= 1, . . . , p

∂
∂θ∗′

(
x[�] j −π[�]⊗d[�]2

)
for �= p+1,

(3.254)

which by (3.246) yields

∂
∂θ∗′

{
1

π[�] j

∂π[�] j

∂θ∗

}

= −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

d[�]1 ⊗ [σ ′
[�]1 ⊗d′

[�]1]

...
d[�]1 ⊗ [σ ′

[�] j ⊗d′
[�]1]

...
d[�]1 ⊗ [σ ′

[�](J−1)⊗d′
[�]1]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

: (J−1)(p+1)× (J−1)(p+1)

= −Σ∗
1 (π[�]), (say), for �= 1, . . . , p; j = 1, . . . ,J, (3.255)

and

∂
∂θ∗′

{
1

π[�] j

∂π[�] j

∂θ∗

}

= −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

d[�]2 ⊗ [σ ′
[�]1 ⊗d′

[�]2]

...
d[�]2 ⊗ [σ ′

[�] j ⊗d′
[�]2]

...
d[�]2 ⊗ [σ ′

[�](J−1)⊗d′
[�]2]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

: (J−1)(p+1)× (J−1)(p+1)

= −Σ∗
2 (π[�]), (say), for �= p+1; j = 1, . . . ,J, (3.256)

where σ ′
[�] j is the jth row of the Σ(π[�]) matrix given in (3.251), that is,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ ′
[�]1
...

σ ′
[�] j
...

σ ′
[�](J−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= Σ(π[�]). (3.257)
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Computation of ∂
∂θ∗′

{
∂λ ( j)(g,�)

∂θ∗
}

:

This derivative, by (3.250), for all j = 1, . . . ,J, is computed as

∂λ ( j)(g, �)
∂θ ∗

=

{
∂

∂θ∗′
{

π[�] j

(
x[�] j −π[�]⊗d[�]1

)− [Σ(π[�])⊗d[�]1]ρ j
}

for �= 1, . . . , p
∂

∂θ∗′
{

π[�] j

(
x[�] j −π[�]⊗d[�]2

)− [Σ(π[�])⊗d[�]2]ρ j
}

for �= p+1.

(3.258)

By combining (3.246) and (3.255)–(3.256), the derivatives for the first compo-
nents may be written as

∂
∂θ∗′

{
π[�] j

(
x[�] j −π[�]⊗d[�]1

)}
= π[�] j

[(
x[�] j −π[�]⊗d[�]1

)(
x[�] j −π[�]⊗d[�]1

)′]

−π[�] jΣ∗
1 (π[�])

= π[�] j

[(
x[�] j −π[�]⊗d[�]1

)(
x[�] j −π[�]⊗d[�]1

)′ −Σ∗
1 (π[�])

]

= π[�] jM
∗
j,1(x,π[�]), for �= 1, . . . , p; j = 1, . . . ,J, (3.259)

and

∂
∂θ∗′

{
π[�] j

(
x[�] j −π[�]⊗d[�]2

)}
= π[�] j

[(
x[�] j −π[�]⊗d[�]2

)(
x[�] j −π[�]⊗d[�]2

)′]

−π[�] jΣ∗
2 (π[�])

= π[�] j

[(
x[�] j −π[�]⊗d[�]2

)(
x[�] j −π[�]⊗d[�]2

)′ −Σ∗
2 (π[�])

]

= π[�] jM
∗
j,2(x,π[�]), for �= p+1; j = 1, . . . ,J. (3.260)

Note that these derivatives in (3.259) and (3.260) have similar form to that
of (3.186) for the covariate free case, but they are different. In the manner
similar to (3.190), we now compute the formulas for ∂

∂θ∗′
{
[Σ(π[�])⊗d[�]1]ρ j

}
and

∂
∂θ∗′

{
[Σ(π[�])⊗d[�]2]ρ j

}
as follows.

Computation of ∂
∂θ∗′

{
[Σ(π[�])⊗d[�]1]ρ j

}
and ∂

∂θ∗′
{
[Σ(π[�])⊗d[�]2]ρ j

}
:

Because
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∂
∂θ ∗′

{
[Σ(π[�])⊗d[�]1]ρ j

}
=

∂
∂θ ∗′

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[{σ ′
[�]1 ⊗d[�]1}ρ j]

...
[{σ ′

[�]h ⊗d[�]1}ρ j]
...

[{σ ′
[�](J−1)⊗d[�]1}ρ j]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.261)

with

σ ′
�]h = = [−π[�]hπ[�]1 . . .π[�]h(1−π[�]h) . . .−π[�]hπ[�](J−1)]

= π[�]h[δ[�]h −π[�]]
′, (3.262)

δ[�]h =
(
01′h−1 1 01′J−1−h

)′
is being given in (3.242) for h = 1, . . . ,J − 1; � =

1, . . . , p+1, one may compute the derivatives in (3.261) by using

∂
∂θ ∗′ [{σ ′

[�]h ⊗d[�]1}ρ j] =
∂

∂θ ∗′
[{

π[�]h(δ[�]h −π[�])
′ ⊗d[�]1

}
ρ j
]

=
∂

∂θ ∗′
[
π[�]h

{
ρ ′

j ⊗d[�]1
}
(δ[�]h −π[�])

]

=
{
(ρ ′

j ⊗d[�]1)(δ[�]h −π[�])
}⊗

{
π[�]h

(
x[�]h −π[�]⊗d[�]1

)′}

−
[
π[�]h

{
ρ ′

j ⊗d[�]1
}{

Σ(π[�])⊗d′
[�]1

}]

= π[�]h

{
ρ ′

j ⊗d[�]1
}[{

(δ[�]h −π[�])
}⊗

{(
x[�]h −π[�]⊗d[�]1

)′}

−
{

Σ(π[�])⊗d′
[�]1

}]

= π[�]h

{
ρ ′

j ⊗d[�]1
}
[Q∗

h,1(x,π[�])] : (p+1)× (J−1)(p+1). (3.263)

By using (3.263) in (3.261) for all h = 1, . . . ,J−1, one obtains

∂
∂θ ∗′

{
[Σ(π[�])⊗d[�]1]ρ j

}
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

π[�]1

{
ρ ′

j ⊗d[�]1
}
[Q∗

1,1(x,π[�])]

...

π[�]h

{
ρ ′

j ⊗d[�]1
}
[Q∗

h,1(x,π[�])]

...

π[�](J−1)

{
ρ ′

j ⊗d[�]1
}
[Q∗

(J−1),1(x,π[�])]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= Ω ∗
1 (π[�]). (3.264)
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Similarly, one obtains

∂
∂θ ∗′

{
[Σ(π[�])⊗d[�]2]ρ j

}
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

π[�]1

{
ρ ′

j ⊗d[�]2
}
[Q∗

1,2(x,π[�])]

...

π[�]h

{
ρ ′

j ⊗d[�]2
}
[Q∗

h,2(x,π[�])]

...

π[�](J−1)

{
ρ ′

j ⊗d[�]2
}
[Q∗

(J−1),2(x,π[�])]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= Ω ∗
2 (π[�]), (3.265)

where

Q∗
h,2(x,π[�]) =

[{
(δ[�]h −π[�])

}⊗
{(

x[�]h −π[�]⊗d[�]1
)′}−

{
Σ(π[�])⊗d′

[�]1

}]
.

Next by using (3.259) and (3.264) into (3.258) one obtains the desired derivatives
for j = 1, . . . ,J; �= 1, . . . , p, and similarly by using (3.260) and (3.265) into (3.258)
one obtains the derivatives for j = 1, . . . ,J; �= p+1. It completes the computation
for the derivatives in (3.258). Now by using (3.254) and (3.258), one completes the
calculation for the second order likelihood derivative matrix (3.253).

3.5.1.1.2 Likelihood Estimating Equation for ρM

The likelihood estimation of ρM is equivalent to estimate ρ j : (J − 1)× 1, for
j = 1, . . . ,J − 1, by maximizing the log likelihood function Log L(θ ∗,ρM) given
in (3.244). Next, because π[�] j is free of ρ j, the likelihood estimating equation for
ρ j has the form given by

∂Log L(θ ∗,ρM)

∂ρ j
=

p+1

∑
�=1

J

∑
h=1

J

∑
g=1

[{
T

∑
t=2

K[�]gh(t −1, t)

}
1

λ (h)(g, �)

× ∂λ (h)(g, �)
∂ρ j

]

= 0, (3.266)

where, by (3.241), one obtains

∂λ (h)(g, �)
∂ρ j

=

{ ∂
∂ρ j

[
π[�]h +ρ ′

h(δ[�]g −π[�])
]

for h = 1, . . . ,J−1

− ∂
∂ρ j

[
∑J−1

k=1

{
π[�]k +(δ[�]g −π[�])

′ρk
}]

for h = J,
(3.267)

=

⎧
⎨

⎩

[
δ[�]g −π[�]

]
for h = j;h, j = 1, . . . ,J−1

0 for h �= j;h, j = 1, . . . ,J−1
−[δ[�]g −π[�]

]
for h = J; j = 1, . . . ,J−1.

(3.268)
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It then follows from (3.266) that

∂Log L(θ ∗,ρM)

∂ρ j
=

p+1

∑
�=1

J

∑
g=1

[{
T

∑
t=2

K[�]g j(t −1, t)

}
1

λ ( j)(g, �)
(δ[�]g −π[�])

]

−
p+1

∑
�=1

J

∑
g=1

[{
T

∑
t=2

K[�]gJ(t −1, t)

}
1

λ (J)(g, �)
(δ[�]g −π[�])

]

= 0,

(3.269)

for j = 1, . . . ,J − 1. Note that this likelihood equation is quite similar to that
of (3.200) for the covariate free multinomial case. This is because, unlike the
form of θ ∗, the ρ j parameter is not covariate level (�) dependent. For this
reason, (3.269) and (3.200) look similar except that by adjusting the quantities
for the �th level covariate, an additional summation over � = 1, . . . , p+ 1 is taken
to construct (3.269). Consequently, the second order (J − 1)2 × (J − 1)2 derivative
matrices can easily be written following (3.203) and (3.204), and they are given by

∂ 2Log L(θ ∗,ρM)

∂ρ j∂ρ ′
j

= −
p+1

∑
�=1

J

∑
g=1

[{
T

∑
t=2

K[�]g j(t −1, t)

}
1

{λ ( j)(g, �)}2
(δ[�]g −π[�])(δ[�]g −π[�])

′
]

−
p+1

∑
�=1

J

∑
g=1

[{
T

∑
t=2

K[�]gJ(t −1, t)

}
1

{λ (J)(g, �)}2

× [(δ[�]g −π[�])(δ[�]g −π[�])
′]
]
, (3.270)

for all j = 1, . . . ,J−1, and

∂ 2Log L(θ ∗,ρM)

∂ρ j∂ρ ′
k

= −
p+1

∑
�=1

J

∑
g=1

[{
T

∑
t=2

K[�]gJ(t −1, t)

}
1

{λ (J)(g, �)}2

× [(δ[�]g −π[�])(δ[�]g −π[�])
′]
]
, (3.271)

for all j �= k; j,k = 1, . . . ,J−1.
Next by writing ρ∗ = (ρ ′

1, . . . ,ρ ′
j, . . . ,ρ ′

J−1)
′, the likelihood equations for this

stacked vector of parameters, that is,

∂Log L(θ ∗,ρM)

∂ρ∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂Log L(θ∗,ρM)
∂ρ1
...

∂Log L(θ∗,ρM)
∂ρ j

...
∂Log L(θ∗,ρM)

∂ρJ−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0 : (J−1)2 ×1. (3.272)
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may be solved by using the iterative equation

ρ̂∗(r+1) = ρ̂∗(r)−
[{

∂ 2Log L(θ ∗,ρM)

∂ρ∗∂ρ∗′

}−1 ∂Log L(θ ∗,ρM)

∂ρ∗

]

|ρ∗=ρ̂∗(r)
,

(3.273)
where

∂ 2Log L(θ ∗,ρM)

∂ρ∗∂ρ∗′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂ 2Log L(θ∗,ρM)
∂ρ1∂ρ ′

1
. . . ∂ 2Log L(θ∗,ρM)

∂ρ1∂ρ ′
j

. . . ∂ 2Log L(θ∗,ρM)
∂ρ1∂ρ ′

J−1
...

...
...

∂ 2Log L(θ∗,ρM)
∂ρ j∂ρ ′

1
. . . ∂ 2Log L(θ∗,ρM)

∂ρ j∂ρ ′
j

. . . ∂ 2Log L(θ∗,ρM)
∂ρ j∂ρ ′

J−1
...

...
...

∂ 2Log L(θ∗,ρM)
∂ρJ−1∂ρ ′

1
. . . ∂ 2Log L(θ∗,ρM)

∂ρJ−1∂ρ ′
j

. . . ∂ 2Log L(θ∗,ρM)
∂ρJ−1∂ρ ′

J−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.274)

3.5.2 Covariates Based Multinomial Dynamic Logit Models

In this nonlinear dynamic modeling approach, we assume that the marginal
probabilities at initial time t = 1 have the same form as (3.231)–(3.232) under the
covariates based linear dynamic conditional multinomial probability (CBLDCMP)
model. Thus, we write

P[yi1 = y( j)
i1 |i ∈ �] = π[(i∈�]1) j ≡ π[�] j

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

exp(β j0+β j�)

1+∑J−1
g=1 exp(βg0+βg�)

for j = 1, . . . ,J−1; �= 1, . . . , p

1
1+∑J−1

g=1 exp(βg0+βg�)
for j = J; �= 1, . . . , p

exp(β j0)

1+∑J−1
g=1 exp(βg0)

for j = 1, . . . ,J−1;�= p+1

1
1+∑J−1

g=1 exp(βg0)
for j = J;�= p+1.

(3.275)

Next for t = 2, . . . ,T, we write the conditional probabilities also in logit form
given by

P[Yit = y( j)
it |Yi,t−1 = y(g)i,t−1, i ∈ �]
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=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp(β j0+β j�+γ ′jy
(g)
i,t−1)

1+∑J−1
h=1 exp(βh0+βh�+γ ′hy(g)i,t−1)

for j = 1, . . . ,J−1; �= 1, . . . , p

exp(β j0+γ ′jy
(g)
i,t−1)

1+∑J−1
h=1 exp(βh0+γ ′hy(g)i,t−1)

for j = 1, . . . ,J−1;�= p+1

1

1+∑J−1
h=1 exp(βh0+βh�+γ ′hy(g)i,t−1)

for j = J; �= 1, . . . , p

1

1+∑J−1
h=1 exp(βh0+γ ′hy(g)i,t−1)

for j = J;�= p+1.

= η( j)
it|t−1(g, �), (say), for g = 1, . . . ,J, (3.276)

where

γ j = (γ j1, . . . ,γ jh, . . . ,γ j,J−1)
′ : (J−1)×1.

Note that these conditional probabilities are similar to those given in (3.207) for the
covariate free case, but they have now extended form to accommodate properly the
regression effects of the covariates under all J categories. Further note that by using
the notations

θ ∗ = [β ∗
1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′]′ : (J−1)(p+1)×1, with β ∗

j = [β j0, . . . ,β j�, . . . ,β jp]
′,

and

x′[�] j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
01′( j−1)(p+1) d′

[�]1 01′(J−1− j)(p+1)

)
for j = 1, . . . ,J−1; �= 1, . . . , p

(
01′( j−1)(p+1) d′

[�]2 01′(J−1− j)(p+1)

)
for j = 1, . . . ,J−1; �= p+1

(
01′(J−1)(p+1)

)
for j = J; �= 1, . . . , p+1,

with

d′
[�]m =

⎧
⎨

⎩

(
1 01′�−1 1 01′p−�

)
for m = 1

(
1 01′p

)
for m = 2,

from (3.233)–(3.237), and

δ[�]g = y(g)i,t−1

=

{(
01′g−1 1 01′J−1−g

)′
for g = 1, . . . ,J−1; �= 1, . . . , p+1

01J−1 for g = J; �= 1, . . . , p+1,

from (3.242), we may re-express the above logit form marginal probabilities, by
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π[�] j =
exp(x′[�] jθ

∗)

1+∑J−1
g=1 exp(x′

[�]gθ ∗)
, (3.277)

for all j = 1, . . . ,J, and �= 1, . . . , p+1, and the logit form conditional probabilities,
by

η( j)(g, �) =

⎧
⎪⎪⎨

⎪⎪⎩

exp
(

x′[�] jθ
∗+γ ′jδ[�]g

)

1+∑J−1
h=1 exp

(
x′
[�]hθ∗+γ ′hδ[�]g

) for j = 1, . . . ,J−1; �= 1, . . . , p+1

1

1+∑J−1
h=1 exp

(
x′
[�]hθ∗+γ ′hδ[�]g

) for j = J; �= 1, . . . , p+1,

(3.278)
for a given g = 1, . . . ,J.

As far as the fitting of this covariates based multinomial dynamic logit (CBMDL)
model (3.277)–(3.278) to a given data set is concerned, similar to the MDL model,
one may develop the likelihood estimation approach as follows.

3.5.2.1 Likelihood Function

By (3.277)–(3.278), similar to the likelihood function under the CBLDCMP
model (3.240), discussed in the last section, we write the likelihood function under
the present CBMDL model as

L(θ ∗,γM) = Π p+1
�=1 Π K

i∈�
[

f (yi1)Π T
t=2 f (yit |yi,t−1)

]

=
[
Π p+1

�=1 Π K
i∈� f (yi1)

]

× Π T
t=2Π p+1

�=1 Π J
g=1Π K

i∈(g,�)
[

f (yit |y(g)i,t−1)
]

= d∗∗
0

[
Π p+1

�=1 Π J
j=1Π K

i∈�π
yi1 j

[�] j

]

× Π T
t=2Π p+1

�=1 Π J
j=1Π J

g=1Π K
i∈(g,�)

{
η( j)

it|t−1(y
(g)
i,t−1)

}yit j
, (3.279)

where d∗∗
0 is the normalizing constant free from any parameters, and γM is the

(J−1)× (J−1) matrix of dynamic dependence parameters given by

γM =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

γ ′1
...

γ ′j
...

γ ′J−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

: (J−1)× (J−1).
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Next, similar to the linear dynamic model case (3.243)–(3.244), that is, by
replacing the conditional probabilities λ ( j)(g, �) with η( j)(g, �), the log of the
likelihood function is written as

Log L(θ ∗,γM) = log d∗∗
0 +

p+1

∑
�=1

K

∑
i∈�

J

∑
j=1

yi1 jlog π[�] j

+
p+1

∑
�=1

T

∑
t=2

J

∑
j=1

J

∑
g=1

K

∑
i∈(g,�)

[
yit jlog η( j)

it|t−1(g, �)
]
, (3.280)

which, by using the cell counts from the contingency Tables 3.17 and 3.18, may be
written as

Log L(θ ∗,γM) = log d∗∗
0 +

p+1

∑
�=1

J

∑
j=1

K[�] j(1)log π[�] j

+
p+1

∑
�=1

J

∑
j=1

J

∑
g=1

[
{

log η( j)(g, �)
}
{

T

∑
t=2

K[�]g j(t −1, t)

}]

, (3.281)

where K[�]g j(t − 1, t) (Table 3.18) is the number of individuals with covariate level
�, whose responses were in gth category at time t −1 and in jth category at time t.

3.5.2.1.1 Likelihood Estimating Equation for θ ∗

By using (3.281), the likelihood estimating equation for θ ∗ may be written as

∂Log L(θ ∗,γM)

∂θ ∗ =
p+1

∑
�=1

J

∑
j=1

K[�] j(1)
1

π[�] j

∂π[�] j

∂θ ∗

+
p+1

∑
�=1

J

∑
j=1

J

∑
g=1

[{
T

∑
t=2

K[�]g j(t −1, t)

}
1

η( j)(g, �)

× ∂η( j)(g, �)
∂θ ∗

]

= 0. (3.282)

For given γM, this likelihood equation in (3.282) may be solved iteratively by using
the iterative equation for θ ∗ given by

θ̂∗(r+1)= θ̂∗(r)−
[{

∂ 2Log L(θ∗,γM)

∂θ∗′∂θ∗

}−1 ∂Log L(θ∗,γM)

∂θ∗

]

|θ ∗=θ̂ ∗(r)

; (J−1)(p+1)×1,

(3.283)
where the second order derivative matrix has the formula
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∂ 2Log L(θ ∗,γM)

∂θ ∗′∂θ ∗ =
p+1

∑
�=1

J

∑
j=1

K[�] j(1)

[
∂

∂θ ∗′

{
1

π[�] j

∂π[�] j

∂θ ∗

}]

+
p+1

∑
�=1

J

∑
j=1

J

∑
g=1

[{
T

∑
t=2

K[�]g j(t −1, t)

}{
1

η( j)(g, �)

∂ 2η( j)(g, �)
∂θ ∗′∂θ ∗

− 1

{η( j)(g, �)}2

∂η( j)(g, �)
∂θ ∗

∂η( j)(g, �)
∂θ ∗′

}]

. (3.284)

The first and second order derivatives involved in the estimating equations
(3.282)–(3.284) are computed as follows:

Computation of 1
π[�] j

∂π[�] j
∂θ∗ and ∂

∂θ∗′
{

1
π[�] j

∂π[�] j
∂θ∗

}
:

These formulas, in particular, the formulas for 1
π[�] j

∂π[�] j
∂θ∗ are the same as (3.247),

and the formulas for ∂
∂θ∗′

{
1

π[�] j
∂π[�] j
∂θ∗

}
are as in (3.255)–(3.256) under the LDCMP

model.

Computation of ∂η( j)(g,�)
∂θ∗ and ∂ 2η( j)(g,�)

∂θ∗′∂θ∗ :

Note that the conditional probabilities η( j)(g, �) given by (3.278) for the MDL
model are different than those of λ ( j)(g, �) given in (3.241) under the LDCMP
model. Thus their derivatives will be different. However, because η( j)(g, �) is a
generalization of the conditional probabilities η( j)(g) (3.214) under the covariate
free MDL model, the first and second order derivatives of η( j)(g, �) can be obtained
in the fashion similar to those of η( j)(g) given by (3.220)–(3.221). Hence, for all
g = 1, . . . ,J; j = 1, . . . ,J, it follows from (3.278) that

∂η( j)(g, �)
∂θ ∗ =

⎧
⎨

⎩

η( j)(g, �)
[
x[�] j −∑J−1

h=1 x[�]hη(h)(g, �)
]

for �= 1, . . . , p

−
[
η(J)(g, �)∑J−1

h=1 x[�]hη(h)(g, �)
]

for �= p+1
(3.285)

=

{
η( j)(g, �)

[
x[�] j −η(g, �)⊗d[�]1

]
for �= 1, . . . , p

η( j)(g, �)
[
x[�] j −η(g, �)⊗d[�]2

]
for �= p+1,

(3.286)

where

η(g, �) = [η(1)(g, �), . . . ,η( j)(g, �), . . . ,η(J−1)(g, �)]′.

The formulae for the second order derivatives follow from (3.286) and they are
given by
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∂ 2η( j)(g, �)

∂θ∗′∂θ∗

=

⎧
⎪⎪⎨

⎪⎪⎩

η( j)(g, �)
[
(x[�] j −η(g, �)⊗d[�]1)(x[�] j −η(g, �)⊗d[�]1)

′ − ∂η(g,�)
∂θ ∗′

]
for �= 1, . . . , p

η( j)(g, �)
[
(x[�] j −η(g, �)⊗d[�]2)(x[�] j −η(g, �)⊗d[�]1)

′ − ∂η(g,�)
∂θ ∗′

]
for �= p+1,

(3.287)

= η( j)(g, �)M∗
[�] j(x,η(g, �)), (say), (3.288)

by using the notation xJ = 01J−1. In (3.287)–(3.288), the derivative ∂η(g,�)
∂θ∗′ is

computed as follows.

Computation of ∂η(g,�)
∂θ∗′ :

Notice from (3.286) that

∂η( j)(g, �)
∂θ ∗′ =

{
η( j)(g, �)

[
x[�] j −η(g, �)⊗d[�]1

]′
for �= 1, . . . , p; j = 1, . . . ,J

η( j)(g, �)
[
x[�] j −η(g, �)⊗d[�]2

]′
for �= p+1; j = 1, . . . ,J,

yielding

∂η(g, �)
∂θ ∗′ =

∂
∂θ ∗′

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

η(1)(g, �)
...

η( j)(g, �)
...

η(J−1)(g, �)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η(1)(g, �)
[
x[�]1 −η(g, �)⊗d[�]1

]′

...
η( j)(g, �)

[
x[�] j −η(g, �)⊗d[�]1

]′

...
η(J−1)(g, �)

[
x[�](J−1)−η(g, �)⊗d[�]1

]′

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, for �= 1, . . . , p, (3.289)

and

∂η(g, �)
∂θ ∗′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η(1)(g, �)
[
x[�]1 −η(g, �)⊗d[�]2

]′

...
η( j)(g, �)

[
x[�] j −η(g, �)⊗d[�]2

]′

...
η(J−1)(g, �)

[
x[�](J−1)−η(g, �)⊗d[�]2

]′

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, for �= p+1. (3.290)
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3.5.2.1.2 Likelihood Estimating Equation for γM

Let

γ∗ = (γ ′1, . . . ,γ ′j, . . . ,γ ′J−1)
′ : (J−1)2 ×1; where γ j = (γ j1, . . . ,γ jh, . . . ,γ j,J−1)

′,
(3.291)

where γ j is the (J − 1)× 1 vector of dynamic dependence parameters involved in
the conditional multinomial logit function in (3.278). By similar calculations as
in (3.225), it follows from (3.278) that

∂η(h)(g, �)
∂γ j

=

⎧
⎪⎨

⎪⎩

δ[�]gη( j)(g, �)[1−η( j)(g, �)] for h = j;h, j = 1, . . . ,J−1
−δ[�]gη( j)(g, �)η(h)(g, �) for h �= j;h, j = 1, . . . ,J−1
−δ[�]gη( j)(g, �)η(J)(g, �) for h = J; j = 1, . . . ,J−1,

(3.292)

where g = 1, . . . ,J, and �= 1, . . . , p+1.
Using these derivatives, by similar calculations as in (3.293), it follows from the

likelihood function (3.281) that

∂Log L(θ ∗,γM)

∂γ j
=

p+1

∑
�=1

J

∑
g=1

[{
T

∑
t=2

K[�]g j(t −1, t)

}

δ[�]g

]

−
p+1

∑
�=1

J

∑
g=1

J

∑
h=1

[{
T

∑
t=2

K[�]gh(t −1, t)

}

δ[�]gη( j)(g, �)

]

= 0, (3.293)

for j = 1, . . . ,J − 1, leading to the estimating equations for the elements of γ∗ =
(γ ′1, . . . ,γ ′j, . . . ,γ ′J−1)

′ as

∂Log L(θ ∗,γM)

∂γ∗
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂Log L(θ∗,γM)
∂γ1
...

∂Log L(θ∗,γM)
∂γ j

...
∂Log L(θ∗,γM)

∂γJ−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0 : (J−1)2 ×1. (3.294)

One may now solve this likelihood equation (3.294) for γ∗ by using the iterative
equation

γ̂∗(r+1) = γ̂∗(r)−
[{

∂ 2Log L(θ ∗,γM)

∂γ∗∂γ∗′

}−1 ∂Log L(θ ∗,γM)

∂γ∗

]

|γ∗=γ̂∗(r)
,

(3.295)
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where the (J − 1)2 × (J − 1)2 second derivative matrix is computed by using the
formulas

∂ 2Log L(θ ∗,γM)

∂γ j∂γ ′j
=−

p+1

∑
�=1

J

∑
g=1

J

∑
h=1

[{
T

∑
t=2

K[�]gh(t −1, t)

}

η( j)(g, �)
(

1−η( j)(g, �)
)

δ[�]gδ ′
[�]g

]

(3.296)

for all j = 1, . . . ,J−1, and

∂ 2Log L(θ∗,γM)
∂γ j∂γ ′k

=∑p+1
�=1 ∑J

g=1 ∑J
h=1

[{
∑T

t=2 K[�]gh(t −1, t)
}(

η( j)(g, �)η(k)(g, �)
)

δ[�]gδ ′
[�]g

]
,

(3.297)
for all j �= k; j,k = 1, . . . ,J−1.

3.5.2.2 Illustration 3.11: Analysis of Longitudinal TMISL (Three
Categories) Data by Fitting CBMDL Model with Distance
as a Covariate Using the Likelihood Approach

Recall that in illustration 3.9 in Sect. 3.4.1.2.1, the TMISL data analysis results
were presented where an LDCMP model was fitted to the data by using a GQL
approach. In Sect. 3.4.2.2 (illustration 3.10), the same data were fitted by using the
MDL model, and as results in Table 3.22 show, it was found that the MDL model
fits the data much better. The MDL model provides recursive means over time that
reflected the change in marginal probabilities well. However, the MDL model was
fitted for simplicity ignoring the distance covariate. But as it is also of interest to
find the effect of the distance on the stress level responses over time, in this section,
we fit the CBMDL model discussed in Sect. 5.2.

For the purpose, following the model (3.275)–(3.276), we first simplify the
marginal and conditional probability formulas using the distance as a covariate.
Note that in the TMISL data, distance is a binary covariate with � = 1,2. To be
specific, the level � = 1 would represent the group of workers commuting distance
≤ 5 miles, and �= 2 would represent the other group commuting distance > 5 miles.
Thus, by (3.275)–(3.276), the marginal probabilities at time t = 1 and conditional
probabilities at t = 2,3,4, corresponding to these two levels of distance have the
formulas as follows:
Group 1 (Distance ≤ 5 miles):
Marginal probabilities:

π[1]1 =
exp(β10 +β11)

1+∑2
g=1 exp(βg0 +βg1)

, π[1]2 =
exp(β20 +β21)

1+∑2
g=1 exp(βg0 +βg1)

,

π[1]3 =
1

1+∑2
g=1 exp(βg0 +βg1)

.
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Conditional probabilities:
From stress level 1 to 1,2,3:

η(1)(1,1) =
exp(β10 +β11 + γ11)

1+∑2
h=1 exp(βh0 +βh1 + γh1)

, η(2)(1,1) =
exp(β20 +β21 + γ21)

1+∑2
h=1 exp(βh0 +βh1 + γh1)

,

η(3)(1,1) =
1

1+∑2
h=1 exp(βh0 +βh1 + γh1)

;

From stress level 2 to 1,2,3:

η(1)(2,1) =
exp(β10 +β11 + γ12)

1+∑2
h=1 exp(βh0 +βh1 + γh2)

, η(2)(2,1) =
exp(β20 +β21 + γ22)

1+∑2
h=1 exp(βh0 +βh1 + γh2)

,

η(3)(2,1) =
1

1+∑2
h=1 exp(βh0 +βh1 + γh2)

;

From stress level 3 to 1,2,3:

η(1)(3,1) =
exp(β10 +β11)

1+∑2
h=1 exp(βh0 +βh1)

, η(2)(3,1) =
exp(β20 +β21)

1+∑2
h=1 exp(βh0 +βh1)

,

η(3)(3,1) =
1

1+∑2
h=1 exp(βh0 +βh1)

.

Group 2 (Distance > 5 miles):
Marginal probabilities:

π[2]1 =
exp(β10)

1+∑2
g=1 exp(βg0)

, π[2]2 =
exp(β20)

1+∑2
g=1 exp(βg0)

,

π[2]3 =
1

1+∑2
g=1 exp(βg0)

.

Conditional probabilities:
From stress level 1 to 1,2,3:

η(1)(1,2) =
exp(β10 + γ11)

1+∑2
h=1 exp(βh0 + γh1)

, η(2)(1,2) =
exp(β20 + γ21)

1+∑2
h=1 exp(βh0 + γh1)

,

η(3)(1,2) =
1

1+∑2
h=1 exp(βh0 + γh1)

;
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From stress level 2 to 1,2,3:

η(1)(2,2) =
exp(β10 + γ12)

1+∑2
h=1 exp(βh0 + γh2)

, η(2)(2,2) =
exp(β20 + γ22)

1+∑2
h=1 exp(βh0 + γh2)

,

η(3)(2,2) =
1

1+∑2
h=1 exp(βh0 + γh2)

;

From stress level 3 to 1,2,3:

η(1)(3,2) =
exp(β10)

1+∑2
h=1 exp(βh0)

, η(2)(3,2) =
exp(β20)

1+∑2
h=1 exp(βh0)

,

η(3)(3,2) =
1

1+∑2
h=1 exp(βh0)

.

Unlike in the illustration 3.10, β j1 for j = 1,2, represent the distance covariate
effect on the multinomial responses belonging to jth category, when β31 = 0, and
hence θ ∗ has four components. That is,

θ ∗ = (β10,β11,β20,β21)
′.

However when compared to the covariate free case in 3.10 illustration, dynamic
dependence parameter vector γ∗ = (γ11,γ12,γ21,γ22)

′ remains the same, but their
estimating equations would be different. Now by writing, for example,

K∗
[�]g j = K[�]g j(1,2)+K[�]g j(2,3)+K[�]g j(3,4),

for �= 1,2; g, j = 1, . . . ,3, and

K∗
[�]g =

3

∑
j=1

K∗
[�]g j,

for g = 1, . . . ,3, the four likelihood equations in (3.282) may be simplified as

f1(θ ∗,γ∗) =
2

∑
�=1

[K[�]1(1)−K[�]π[�]1]+
2

∑
�=1

[
{K∗

[�]11 −K∗
[�]1η(1)(1, �)}

+
2

∑
�=1

{K∗
[�]21 −K∗

[�]2η(1)(2, �)}+
2

∑
�=1

{K∗
[�]31 −K∗

[�]3η(1)(3, �)}
]

= 0

f2(θ ∗,γ∗) = [K[1]1(1)−K[1]π[1]1]+
[
{K∗

[1]11 −K∗
[1]1η(1)(1,1)}

+ {K∗
[1]21 −K∗

[1]2η(1)(2,1)}+{K∗
[1]31 −K∗

[1]3η(1)(3,1)}
]
= 0
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f3(θ ∗,γ∗) =
2

∑
�=1

[K[�]2(1)−K[�]π[�]2]+
2

∑
�=1

[
{K∗

[�]12 −K∗
[�]1η(2)(1, �)}

+
2

∑
�=1

{K∗
[�]22 −K∗

[�]2η(2)(2, �)}+
2

∑
�=1

{K∗
[�]32 −K∗

[�]3η(2)(3, �)}
]

= 0

f4(θ ∗,γ∗) = [K[1]2(1)−K[1]π[1]2]+
[
{K∗

[1]12 −K∗
[1]1η(2)(1,1)}

+ {K∗
[1]22 −K∗

[1]2η(2)(2,1)}+{K∗
[1]32 −K∗

[1]3η(2)(3,1)}
]
= 0,

and similarly the four likelihood equations for γ∗ in (3.294) have the forms

g1(γ∗,θ ∗) =
2

∑
�=1

[K∗
[�]11 −K∗

[�]1η(1)(1, �)] = 0

g2(γ∗,θ ∗) =
2

∑
�=1

[K∗
[�]21 −K∗

[�]2η(1)(2, �)] = 0

g3(γ∗,θ ∗) =
2

∑
�=1

[K∗
[�]12 −K∗

[�]1η(2)(1, �)] = 0

g4(γ∗,θ ∗) =
2

∑
�=1

[K∗
[�]22 −K∗

[�]2η(2)(2, �)] = 0,

respectively. Similarly, the second order derivatives of the likelihood function with
respect to θ ∗ and γ∗ were simplified. The second order derivative matrix for θ ∗,
following (3.284), is given by

F(θ ∗,γ∗) =

⎛

⎜
⎜
⎝

f11(θ ∗,γ∗) f12(θ ∗,γ∗) f13(θ ∗,γ∗) f14(θ ∗,γ∗

f21(θ ∗,γ∗) f22(θ ∗,γ∗) f23(θ ∗,γ∗) f24(θ ∗,γ∗)
f31(θ ∗,γ∗) f32(θ ∗,γ∗) f33(θ ∗,γ∗) f34(θ ∗,γ∗

f41(θ ∗,γ∗) f42(θ ∗,γ∗) f43(θ ∗,γ∗) f44(θ ∗,γ∗)

⎞

⎟
⎟
⎠ ,

where

f11(·) = −
2

∑
�=1

[
K[�]π[�]1(1−π[�]1)+

{
K∗
[�]1η(1)(1, �)(1−η(1)(1, �))

+ K∗
[�]2η(1)(2, �)(1−η(1)(2, �))+K∗

[�]3η(1)(3, �)(1−η(1)(3, �))
}]

f12(·) = −
[
K[1]π[1]1(1−π[1]1)+

{
K∗
[1]1η(1)(1,1)(1−η(1)(1,1))
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+ K∗
[1]2η(1)(2,1)(1−η(1)(2,1))+K∗

[1]3η(1)(3,1)(1−η(1)(3,1))
}]

f13(·) =
2

∑
�=1

[
K[�]π[�]1π[�]2 +(K∗

[�]12 +K∗
[�]13)η

(1)(1, �)η(2)(1, �)

+ (K∗
[�]22 +K∗

[�]23)η
(1)(2, �)η(2)(2, �)+(K∗

[�]31 +K∗
[�]33)η

(1)(3, �)η(2)(3, �)
]

f14(·) =
[
K[1]π[1]1π[1]2 +(K∗

[1]12 +K∗
[1]13)η

(1)(1,1)η(2)(1,1)

+ (K∗
[1]22 +K∗

[1]23)η
(1)(2,1)η(2)(2,1)+(K∗

[1]31 +K∗
[1]33)η

(1)(3,1)η(2)(3,1)
]

f21(·) = f12(·)
f22(·) = f12(·)
f23(·) = f14(·)
f24(·) = f14(·)
f31(·) = f13(·)
f32(·) = f23(·)

f33(·) = −
2

∑
�=1

[
K[�]π[�]2(1−π[�]2)+

{
K∗
[�]1η(2)(1, �)(1−η(2)(1, �))

+ K∗
[�]2η(2)(2, �)(1−η(2)(2, �))+K∗

[�]3η(2)(3, �)(1−η(2)(3, �))
}]

f34(·) = −
[
K[1]π[1]2(1−π[1]2)+

{
K∗
[1]1η(2)(1,1)(1−η(2)(1,1))

+ K∗
[1]2η(2)(2,1)(1−η(2)(2,1))+K∗

[1]3η(2)(3,1)(1−η(2)(3,1))
}]

f41(·) = f14(·)
f42(·) = f24(·)
f43(·) = f34(·)
f44(·) = f34(·),

and similarly the second order derivative matrix for γ∗, following (3.296)–(3.297),
is given by

Γ (γ∗,θ ∗) =
(

G1 G2

G′
2 G3

)

,
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where

G1 = −
(

∑2
�=1[K

∗
[�]1η(1)(1, �)(1−η(1)(1, �))] 0

0 ∑2
�=1[K

∗
[�]2η(1)(2, �)(1−η(1)(2, �))]

)

G2 =

(
∑2
�=1[K

∗
[�]1η(1)(1, �)η(2)(1, �)] 0

0 ∑2
�=1[K

∗
[�]2η(1)(2, �)η(2)(2, �)]

)

G3 = −
(

∑2
�=1[K

∗
[�]1η(2)(1, �)(1−η(2)(1, �))] 0

0 ∑2
�=1[K

∗
[�]2η(2)(2, �)(1−η(2)(2, �))]

)

.

Now by using the iterative equations

θ̂ ∗(r+1) = θ̂ ∗(r)−

⎡

⎢
⎢
⎣{F(θ ∗,γ∗)}−1

⎛

⎜
⎜
⎝

f1(θ ∗,γ∗)
f2(θ ∗,γ∗)
f3(θ ∗,γ∗)
f4(θ ∗,γ∗)

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

|θ∗=θ̂∗(r)

: 4×1,

(see (3.283)) for θ ∗, and

γ̂∗(r+1) = γ̂∗(r)−

⎡

⎢
⎢
⎣{Γ (γ∗,θ ∗)}−1

⎛

⎜
⎜
⎝

g1(γ∗,θ ∗)
g2(γ∗,θ ∗)
g3(γ∗,θ ∗)
g4(γ∗,θ ∗)

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

|γ∗=γ̂∗(r)

: 4×1,

(see (3.295)) for γ∗, in ten cycles of iterations, we obtained the maximum likelihood
estimates (MLE) for the category intercept and regression parameters as

β̂10,MLE =−1.6962, β̂11,MLE =−0.3745; β̂20,MLE = 0.6265, β̂21,MLE =−0.5196,

and for the lag 1 dynamic dependence parameters as

γ̂11,MLE = 5.7934, γ̂12,MLE = 2.4007; γ̂21,MLE = 3.6463, γ̂22,MLE = 1.8790.

The aforementioned regression and dynamic dependence parameter estimates
may now be used to compute the recursive means (multinomial probabilities) over
time at distance covariate level (� = 1,2) following (3.208). More specifically, for
distance group �(= 1,2), the recursive marginal probabilities have the formula

E[Yi∈�,t ] = π̃[t,�] = η(J, �)+
[
ηM(�)−η(J, �)1′J−1

]
π̃[t−1,�]

= [π̃[t,�]1, . . . , π̃[t,�] j, . . . , π̃[t,�](J−1)]
′ : (J−1)×1,
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where

π̃[1,�] = [π[�]1, . . . ,π[�] j, . . . ,π[�](J−1)]
′ = π[�]

η(J, �) = [η(1)(J, �), . . . ,η( j)(J, �) . . . ,η(J−1)(J, �)]′ = π̃[1,�] : (J−1)× (J−1)

ηM(�) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

η(1)(1, �) · · · η(1)(g, �) · · · η(1)(J−1, �)
...

...
...

...
...

η( j)(1, �) · · · η( j)(g, �) · · · η( j)(J−1, �)
...

...
...

...
...

η(J−1)(1, �) · · · η(J−1)(g, �) · · · η(J−1)(J−1, �)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

: (J−1)× (J−1).

For the TMISL data J = 3. For two distance groups, the constant vectors and
matrices are estimated as
Group 1: Distance ≤ 5 miles
Mean vector at t = 1:

π̃(1,1) = [π̃(1,1)1 (Low group), π̃(1,1)2 (Medium group)]′ : 2×1

= π[1] : 2×1

= [0.0563, 0.4970]′,

with π̃(1,1)3 (High group) = 1− π̃(1,1)1 − π̃(1,1)2 = 0.4466.
Constant conditional probabilities at any time:

ηM(1) =

(
η(1)(1,1) η(1)(2,1)
η(2)(1,1) η(2)(2,1)

)

: 2×2

=

(
0.4839 0.5043
0.1424 0.7541

)

,

and η(J,1) = π̃(1,1) = π[1].
Group 2: Distance > 5 miles
Mean vector at t = 1:

π̃(1,2) = [π̃(1,2)1 (Low group), π̃(1,2)2 (Medium group)]′ : 2×1

= π[2] : 2×1

= [0.0600, 0.6126]′,

with π̃(1,2)3 (High group) = 1− π̃(1,2)1 − π̃(1,2)2 = 0.3274.
Constant conditional probabilities at any time :

ηM(2) =

(
η(1)(1,2) η(1)(2,2)
η(2)(1,2) η(2)(2,2)

)

: 2×2



3.5 Univariate Longitudinal Stationary Multinomial Fixed Effect Regression. . . 207

Table 3.27 MDL model based fitted marginal probabilities (FMP) (π̃(t,�) for � = 1,2, under all
three stress levels for the TMISL data

FMP at time t(π̃(t,1))[Distance ≤ 5 miles] FMP at time t(π̃(t,2))[Distance > 5 miles]

Stress level 1 2 3 4 1 2 3 4

Low 0.0563 0.1232 0.1628 0.1826 0.0600 0.1270 0.1612 0.1757

Medium 0.4970 0.6253 0.6587 0.6676 0.6126 0.7252 0.7419 0.7427

High 0.4466 0.2515 0.1785 0.1498 0.3274 0.1478 0.0969 0.0816

=

(
0.4501 0.5423
0.1312 0.8033

)

,

and η(J,2) = π̃(1,2) = π[2].
These results are then used in the aforementioned recursive relationship for

both distance groups (� = 1,2) to compute the marginal probabilities π̃(t,�) for
three categories over remaining tree time points. These fitted recursive marginal
probabilities for both distance groups are shown in Table 3.27.

These probabilities clearly reveal differences between the stress levels under two
distance groups. For example, even though the probabilities in the high level stress
group decrease as time progresses under both distance groups, these probabilities
remain much higher in the short distance group as expected. As far as the other two
stress levels are concerned, the probabilities increase as time progresses under both
distance groups. Furthermore, relatively more workers appear to have medium stress
under both distance groups, with smaller proportion in the short distance group as
compared to the long distance group.

Note that to compute the correlations among the multinomial responses, one may
use the aforementioned regression and dynamic dependence parameter estimates
in (3.208) for each of the two distance groups. For t = 1, . . . ,4, we first provide the
variance and covariances of the elements of var[Yi∈�,t ] = (σ([�],t) jk), � = 1,2; j,k =
1,2, and then the values of correlations

corr[Yi∈�,u j,Yi∈�,tk] = (
σ([�],ut) jk

[σ([�],u) j jσ([�],t)kk]
1
2

) = (ρ([�],ut) jk),

for u < t. Group 1: Distance ≤ 5 miles
Values of (σ([1],t) jk) :

var[Yi∈1,1] = (σ([1],1) jk) =

(
0.0531 −0.0280
−0.0280 0.2500

)

var[Yi∈1,2] = (σ([1],2) jk) =

(
0.1080 −0.0770
−0.0770 0.2343

)
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var[Yi∈1,3] = (σ([1],3) jk) =

(
0.1363 −0.1072
−0.1072 0.2248

)

var[Yi∈1,4] = (σ([1],4) jk) =

(
0.1492 −0.1219
−0.1219 0.2219

)

,

Values of (ρ([1],ut) jk) :

corr[Yi∈1,1 j,Yi∈1,2k] = (ρ([1],12) jk) =

(
0.2972 −0.0235
−0.0618 0.2556

)

corr[Yi∈1,1 j,Yi∈1,3k] = (ρ([1],13) jk) =

(
0.1129 0.0116
−0.0211 0.0634

)

corr[Yi∈1,1 j,Yi∈1,4k] = (ρ([1],14) jk) =

(
0.0462 0.0106
−0.0080 0.0150

)

corr[Yi∈1,2 j,Yi∈1,3k] = (ρ([1],23) jk) =

(
0.3759 −0.0674
−0.1748 0.2336

)

corr[Yi∈1,2 j,Yi∈1,4k] = (ρ([1],24) jk) =

(
0.1530 0.0008
−0.0693 0.0487

)

corr[Yi∈1,3 j,Yi∈1,4k] = (ρ([1],34) jk) =

(
0.4031 −0.0911
−0.2414 0.2174

)

.

Group 2: Distance > 5 miles
Values of (σ([2],t) jk) :

var[Yi∈2,1] = (σ([2],1) jk) =

(
0.0564 −0.0368
−0.0368 0.2373

)

var[Yi∈2,2] = (σ([2],2) jk) =

(
0.1109 −0.0921
−0.0921 0.1993

)

var[Yi∈2,3] = (σ([2],3) jk) =

(
0.1352 −0.1196
−0.1196 0.1915

)

var[Yi∈2,4] = (σ([2],4) jk) =

(
0.1448 −0.1305
−0.1219 0.1911

)

,

Values of (ρ([2],ut) jk) :

corr[Yi∈2,1 j,Yi∈2,2k] = (ρ([2],12) jk) =

(
0.3109 −0.0283
−0.1912 0.1961

)



3.6 Cumulative Logits Model for Univariate Ordinal Longitudinal Data. . . 209

corr[Yi∈2,1 j,Yi∈2,3k] = (ρ([2],13) jk) =

(
0.1122 0.0113
−0.0842 0.0278

)

corr[Yi∈2,1 j,Yi∈2,4k] = (ρ([2],14) jk) =

(
0.0414 0.0089
−0.0340 0.0003

)

corr[Yi∈2,2 j,Yi∈2,3k] = (ρ([2],23) jk) =

(
0.4061 −0.0664
−0.3042 0.1610

)

corr[Yi∈2,2 j,Yi∈2,4k] = (ρ([2],24) jk) =

(
0.1584 0.0116
−0.1276 0.0125

)

corr[Yi∈2,3 j,Yi∈2,4k] = (ρ([2],34) jk) =

(
0.4369 −0.0820
−0.3609 0.1464

)

.

As expected the multinomial correlations appear to decay as time lag increases,
under both distance groups.

3.6 Cumulative Logits Model for Univariate Ordinal
Longitudinal Data With One Covariate

In this section, we generalize the ordinal categorical data analysis from the cross-
sectional (see Chap. 2, Sect. 2.3) to the longitudinal setup. Similar to Sect. 2.3, we
consider a single covariate case with p+ 1 levels for simplicity, and an individual
belong to a group based on the covariate level. For example, when gender covariate
is considered, there are 2 levels, and individual i either can belong to group 1 or
2. In general when an individual i belongs to �-th level or group, one writes i ∈ �,
where � = 1, . . . , p+ 1. As an extension of Sect. 2.3, we however now collect the
ordinal responses over a period of time T. To be specific, similar to Sect. 3.5, the
J−1 dimensional response at time t for the i (i ∈ �) individual may be denoted as

yi∈�,t = [yi∈�,t1, . . . ,yi∈�,t j, . . . ,yi∈�,t(J−1)]
′

and if this response belongs to jth category, then one writes

yi∈�,t = y( j)
i∈�,t = [01′j−1,1,01′J−1− j]

′ (3.298)

with a big difference that categories are now ordinal. It is of interest to develop a
longitudinal categorical model similar to Sect. 3.5 but by accommodating the ordinal
nature of the categories. Similar to Sect. 3.5, we consider both LDCP and MDL type
models. The LDCP type model is discussed in Sect. 3.6.1 and the MDL type model
in Sect. 3.6.2.
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Table 3.28 Contingency table for J > 2 ordinal categories at initial time
t = 1 for individuals belonging to �-th (�= 1, . . . , p+1) level of a covariate

t (t = 1)

Ordinal categories

Covariate level 1 . . . j . . . J Total

1 K[1]1(1) . . . K[1] j(1) . . . K[1]J(1) K[1]

· . . . . . . . . . . . . . . . ·
� K[�]1(1) . . . K[�] j(1) . . . K[�]J(1) K[�]

· . . . . . . . . . . . . . . . ·
p+1 K[p+1]1(1) . . . K[p+1] j(1) . . . K[p+1]J(1) K[p+1]

Total K1(1) . . . Kj(1) . . . KJ(1) K

Table 3.29 (a): Binary response b( j)
i∈(�,c)(1) generated at cut point

j = 1, . . . ,J−1 along with its probability for individual i ∈ �

b( j)
i∈(�,c)(1)

Group (g∗) based on cut point j Low (g∗ = 1) High (g∗ = 2)

Response 0 1

Probability F[�] j(1) 1−F[�] j(1)

Table 3.29 (b): Cumulative counts as responses at cut points j =
1, . . . ,J − 1, reflecting the cumulative probabilities (3.300)–(3.301),
under covariate level �

Binomial response
Cut point Low group (g∗ = 1) High group (g∗ = 2) Total

1 K∗
[�]1 = ∑1

c=1 K[�]c K[�]−K∗
[�]1 K[�]

. . . .

j K∗
[�] j = ∑ j

c=1 K[�]c K[�]−K∗
[�] j K[�]

. . . .

J−1 K∗
[�](J−1) = ∑J−1

c=1 K[�]c K[�]−K∗
[�](J−1) K[�]

The data will look similar to those in Table 3.23 for initial time t = 1 and as
in Table 3.24 for transitional counts from time t − h to t, h being the time lag in
the longitudinal setup. However, now the categories are ordinal. For clarity, we
reproduce Table 3.23 here as Tables 3.28, 3.29(a) and 3.29(b), indicating that the
categories are ordinal.

In the ordinal categorical setup, it is meaningful to model the odds ratios through
cumulative logits. Recall from Chap. 2, more specifically from Sects. 2.3.1.2
and 2.3.1.3, that with a cut point at jth category, one may use the binary variable at
initial time point t = 1 as
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b( j)
i∈(�,c)(1) =

{
1 for the i-th individual responded in category c > j
0 for the i-th individual responded in category c ≤ j,

(3.299)

with probabilities

P[b( j)
i∈(�,c)(1) = 1] =

J

∑
c= j+1

π[�]c(1) = 1−F[�] j(1) = π∗
[�] j(1)

=

⎧
⎨

⎩

exp(α j0+α j�)

1+exp(α j0+α j�)
for �= 1, . . . , p

exp(α j0)

1+exp(α j0)
for �= p+1,

(3.300)

and

P[b( j)
i∈(�,c)(1) = 0] =

j

∑
c=1

π[�]c(1) = F[�] j(1) = 1−π∗
[�] j(1)

= =

{
1

1+exp(α j0+α j�)
for �= 1, . . . , p

1
1+exp(α j0)

for �= p+1,
(3.301)

respectively, where π[�]c(1) is the probability for the ith individual to be in category
c at time point t = 1. That is

π[�]c(1) = Pr[yi∈�,1 = y(c)i∈�,1]

with y(c)i∈�,1 as in (3.298). These binary variables along with their probabilities at time
t = 1 are displayed in Table 3.29(a) for convenience. Further, based on this binary
characteristic of a response from Table 3.29(a), the cumulative counts computed
from Table 3.28 are displayed in Table 3.29(b) at all possible J−1 cut points.

Next to study the transitional counts over time, we first reproduce the Table 3.24
in its own form in Table 3.30 but indicating that the categories are now ordinal,
and in two other cumulative forms in Tables 3.31 and 3.32. In order to reflect
two ways (based on past and present times) cumulative logits, one requires to
cumulate the transitional counts displayed in Table 3.30. This cumulation is shown
in Tables 3.31 and 3.32 at various possible cut points. Following these two latter
tables, we now define a lag 1 conditional binary probability model as follows. Tables
for other lags can be constructed similarly. We will consider both LDCP (see (3.24)
in Sect. 3.2.2.1) and BDL (see (3.71) in Sect. 3.2.4.1) type models.
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Table 3.30 Lag h∗ (h∗ = 1, . . . ,T − 1) based [h∗(T − h∗)] transitional counts for multi-
nomial responses with J > 2 ordinal categories, for individuals belonging to �-th (� =
1, . . . , p+1) level of the covariate

Covariate level (�)

t (t = h∗+1, . . . ,T )

Time Ordinal category ( j)

Time Category (g) 1 . . . j . . . J Total

t-h∗ 1 K[�]11(t −h∗, t) . . . K[�]1 j(t −h∗, t) . . . K[�]1J(t −h∗, t) K[�]1(t −h∗)

· . . . . . . . . . . . . . . . ·
g K[�]g1(t −h∗, t) . . . K[�]g j(t −h∗, t) . . . K[�]gJ(t −h∗, t) K[�]g(t −h∗)

· . . . . . . . . . . . . . . . ·
J K[�]J1(t −h∗, t) . . . K[�]J j(t −h∗, t) . . . K[�]JJ(t −h∗, t) K[�]J(t −h∗)

Total K[�]1(t) . . . K[�] j(t) . . . K[�]J(t) K[�]

Table 3.31 Bivariate binary responses (b(g)i∈(�,c1)
(t − 1),b( j)

i∈(�,c2)
(t)) along

with their conditional probabilities λ̃ ( j∗)
[�],g j(g

∗) j∗ = 1,2;g∗ = 1,2, for the ith
individual based on cut points g at time t −1 and j at time t

t (t = 2, . . . ,T )

Time Category j∗ based on cut point j

Covariate level Time Category g∗ 1 2

� t-1 1 (0,0) (0,1)

λ̃ (1)
[�],g j(1) λ̃ (2)

[�],g j(1)

2 (1,0) (1,1)

λ̃ (1)
[�],g j(2) λ̃ (2)

[�],g j(2)

Table 3.32 Transitional counts from time t−1 to t, computed from Table 3.30 by reflecting
the cut points (g, j) based individual probabilities from Table 3.31

j∗ at t

g∗ at t −1 j∗ = 1 j∗ = 2 Total

g∗ = 1 ∑ j
c2=1 ∑g

c1=1 K[�]c1c2
(t −1, t) ∑J

c2= j+1 ∑g
c1=1 K[�]c1c2

(t −1, t) K∗
[�]1(t −1; g)

g∗ = 2 ∑ j
c2=1 ∑J

c1=g+1 K[�]c1c2
(t −1, t) ∑J

c2= j+1 ∑J
c1=g+1 K[�]c1c2

(t −1, t) K∗
[�]2(t −1; g)

Total K∗
[�]1(t; j) K∗

[�]2(t; j) K[�]
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3.6.1 LDCP Model with Cut Points g at Time t−1 and j
at Time t

Similar to (3.299), for t = 2, . . . ,T, define two binary variables b(g)i∈(�,c1)
(t − 1) and

b( j)
i∈(�,c2)

(t) at times t−1 and t, respectively, where g and j denote the cut points such
that g, j = 1, . . . ,J−1. We now write an LDCP model

P[b( j)
i∈(�,c2)

(t) = 1|b(g)i∈(�,c1)
(t −1)] = [π∗

[�] j(1)]+ ρ̃g j

[
b(g)i∈(�,c1)

(t −1)−π∗
[�]g(1)

]

= λ̃ (2)
[�],g j(b

(g)
i∈(�,c1)

(t −1))

=

{
λ̃ (2)
[�],g j(1) for b(g)i∈(�,c1)

(t −1) = 0

λ̃ (2)
[�],g j(2) for b(g)i∈(�,c1)

(t −1) = 1,
(3.302)

and

P[b( j)
i∈(�,c2)

(t) = 0|b(g)i∈(�,c1)
(t −1)] = 1− λ̃ (2)

[�],g j(b
(g)
i∈(�,c1)

(t −1))

=

{
λ̃ (1)
[�],g j(1) = 1− λ̃ (2)

[�],g j(1) for b(g)i∈(�,c1)
(t −1) = 0

λ̃ (1)
[�],g j(2) = 1− λ̃ (2)

[�],g j(2) for b(g)i∈(�,c1)
(t −1) = 1.

(3.303)

Note that there is an implicit connection between the multinomial linear conditional

probabilities λ (c2)
it|t−1(c1, �) in (3.238) and the cumulative conditional binary proba-

bilities in (3.302). For example, it is reasonable to relate them as

λ̃ (2)
[�],g j(1) =

1
g

g

∑
c1=1

J

∑
c2= j+1

λ (c2)
it|t−1(c1, �)

λ̃ (2)
[�],g j(2) =

1
J−g

J

∑
c1=g+1

J

∑
c2= j+1

λ (c2)
it|t−1(c1, �),

but their explicit relations are not needed as one is interested to understand the
logit ratios only, which can be done through fitting the dynamic (over time) cut
points based cumulative logits model. The above four conditional probabilities at
a given cut point were presented in Table 3.31. By the same token, in Table 3.32,
we displayed the transitional counts computed from Table 3.30 by reflecting the cut
points based individual probabilities given in Table 3.32.

3.6.1.1 Fitting Bivariate Binary Mapping Based LDCP Model:
A Pseudo-Likelihood Estimation Approach

Recall that in Chap. 2, more specifically in Sect. 2.3.1.2, a binary mapping based
likelihood function was constructed in a cross-sectional setup for the estimation of
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the cut points that lead to the estimation of the logit ratios. That likelihood function
from (2.179) still can be used here but as a segment only for time t = 1. More
specifically, for

α = [α∗
1
′, . . . ,α∗

j
′, . . . ,α∗

J−1
′]′, with α∗

j = [α j0,α j1, . . . ,α j�, . . . ,α jp]
′,

we label L(α) from (2.179) as L1(α) for t = 1 case, and by writing

b( j)
i∈(�,c)(1), F[�] j(1); and K[�]c(1)

for

b( j)
i∈(�,c), F[�] j; and K[�]c,

we compute L1(α) as

L1(α) = Π p+1
�=1 Π J−1

j=1 Π
K[�]

[i∈(�,h)| j,�]

[

{F[�] j(1)}1−b( j)
i∈(�,h)(1)

][

{1−F[�] j(1)}b( j)
i∈(�,h)(1)

]

= Π p+1
�=1 Π J−1

j=1

[
{F[�] j(1)}∑ j

c=1 K[�]c(1)
][

{1−F[�] j(1)}∑J
c= j+1 K[�]c(1)

]

= Π p+1
�=1 Π J−1

j=1

[
{F[�] j(1)}∑ j

c=1 K[�]c(1)
][

{1−F[�] j(1)}K[�]−∑ j
c=1 K[�]c(1)

]

= Π p+1
�=1 Π J−1

j=1

[
{F[�] j(1)}K∗

[�] j(1)
][

{1−F[�] j(1)}K[�]−K∗
[�] j(1)

]

= Π p+1
�=1 Π J−1

j=1

[
{1−π∗

[�] j(1)}K∗
[�] j(1)

][
{π∗

[�] j(1)}K[�]−K∗
[�] j(1)

]
. (3.304)

Next by using the conditional probabilities from (3.302)–(3.303), for t = 2, . . . ,T,
and by using the transitional counts from Table 3.25, we write the conditional like-
lihood, namely Lt|t−1(α, ρ̃M) where ρ̃M represents all (J−1)2 dynamic dependence
parameters {ρ̃g j} (g, j = 1, . . . ,J−1), as

Lt|t−1(α , ρ̃M)

= Π p+1
�=1 Π J−1

g=1 Π J−1
j=1 Π 2

g∗=1Π K[�]

[i∈(�,c2,g∗)| j,g,�]

[

{λ̃ (2)
[�],g j(g

∗)}b( j)
i∈(�,c2 ,)

(t){λ̃ (1)
[�],g j(g

∗)}1−b( j)
i∈(�,c2)

(t)
]

= Π p+1
�=1 Π J−1

g=1 Π J−1
j=1 Π 2

g∗=1

[
{λ̃ (1)

[�],g j(g
∗)}K∗

[�]g∗1(t−1,t;g, j){λ̃ (2)
[�],g j(g

∗)}K∗
[�]g∗2(t−1,t;g, j)

]
, (3.305)

where, by Table 3.28,

K∗
[�]11(t −1, t;g, j) =

j

∑
c2=1

g

∑
c1=1

K[�]c1c2
(t −1, t); K∗

[�]12(t −1, t;g, j) =
J

∑
c2= j+1

g

∑
c1=1

K[�]c1c2
(t −1, t),
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K∗
[�]21(t −1, t;g, j) =

j

∑
c2=1

J

∑
c1=g+1

K[�]c1c2
(t −1, t); K∗

[�]22(t −1, t;g, j) =
J

∑
c2= j+1

J

∑
c1=g+1

K[�]c1c2
(t −1, t).

Now by combining (3.304) and (3.305), for all t = 1, . . . ,T, we may write the
desired likelihood function as

L(α , ρ̃M) = Π p+1
�=1 Π J−1

j=1

[(
{F[�] j(1)}K∗

[�] j(1)
)(

{1−F[�] j(1)}K[�]−K∗
[�] j(1)

)

× Π T
t=2Π J−1

g=1 Π 2
g∗=1

(
{λ̃ (1)

[�],g j(g
∗)}K∗

[�]g∗1(t−1,t;g, j){λ̃ (2)
[�],g j(g

∗)}K∗
[�]g∗2(t−1,t;g, j)

)]
. (3.306)

3.6.1.1.1 Pseudo-Likelihood Estimating Equation for α

For convenience, we use the log likelihood function, which by (3.306) produces the
estimating equation for α as

∂Log L(α , ρ̃M)

∂α
=

p+1

∑
�=1

J−1

∑
j=1

[

(K[�]−K∗
[�] j(1))

∂
∂α

{log π∗
[�] j(1)}+K∗

[�] j(1)
∂

∂α
{log (1−π∗

[�] j(1))}
]

+
p+1

∑
�=1

J−1

∑
j=1

J−1

∑
g=1

2

∑
g∗=1

T

∑
t=2

[

K∗
[�]g∗1(t −1, t;g, j)

∂
∂α

log {λ̃ (1)
[�],g j(g

∗)}

+ K∗
[�]g∗2(t −1, t;g, j)

∂
∂α

log {λ̃ (2)
[�],g j(g

∗)}
]

= 0

≡ I + II = 0 (say). (3.307)

Notice that the first term in (3.307) corresponding to time t = 1 may easily
be computed by following the notations from (2.181)–(2.184) in Chap. 2. More
specifically, by using

π∗
[�] j(1) =

exp(x′[�] jα)

1+ exp(x′
[�] jα)

1−π∗
[�] j(1) =

1
1+ exp(x′

[�] jα)
, (3.308)

where x′[�] j is the jth ( j = 1, . . . ,J−1) row of the (J−1)× (J−1)(p+1) matrix X�,

defined for �th level as

X� =

⎛

⎜
⎜
⎜
⎝

x′[�]1
x′[�]2
·

x′[�](J−1)

⎞

⎟
⎟
⎟
⎠
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=

⎛

⎜
⎜
⎜
⎝

1 01′�−1,1,01′p−� 0 01′p · 0 01′p
0 01′p 1 01′�−1,1,01′p−� · 0 01′p
· · · · · · ·
0 01′p 0 01′p · 1 01′�−1,1,01′p−�

⎞

⎟
⎟
⎟
⎠

for �= 1, . . . , p,

Xp+1 =

⎛

⎜
⎜
⎜
⎝

x′[p+1]1

x′[p+1]2

·
x′[p+1](J−1)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

1 01′p 0 01′p · 0 01′p
0 01′p 1 01′p · 0 01′p
· · · · · · ·
0 01′p 0 01′p · 1 01′p

⎞

⎟
⎟
⎟
⎠
, (3.309)

the first term in (3.307) has the formula

I ≡
p+1

∑
�=1

X ′
�

[
y∗[�](1)−K[�]π∗

[�](1)
]
, (3.310)

where the observation and corresponding probability vectors at t = 1 are written as

y∗[�](1) = [K[�]−K∗
[�]1(1), . . . ,K[�]−K∗

[�] j(1), . . . ,K[�]−K∗
[�](J−1)(1)]

′ and

π∗
[�](1) ≡ [π∗

[�]1(1), . . . ,π
∗
[�] j(1), . . . ,π

∗
[�](J−1)(1)]

′. (3.311)

To compute the second term in (3.307), first write the conditional probabilities
by (3.302)–(3.303), as

λ̃ (2)
[�],g j(1) = π∗

[�] j(1)− ρ̃g jπ∗
[�]g(1)

λ̃ (1)
[�],g j(1) = 1− [π∗

[�] j(1)− ρ̃g jπ∗
[�]g(1)]

λ̃ (2)
[�],g j(2) = π∗

[�] j(1)+ ρ̃g j{1−π∗
[�]g(1)}, and

λ̃ (1)
[�],g j(2) = 1− [π∗

[�] j(1)+ ρ̃g j{1−π∗
[�]g(1)}]. (3.312)

The computation for the derivatives of these conditional probabilities with respect
to α is straightforward. To be specific,

∂ λ̃ (2)
[�],g j(1)

∂α
=

∂ λ̃ (2)
[�],g j(2)

∂α
= π∗

[�] j(1)[1−π∗
[�] j(1)]x[�] j

− ρg jπ∗
[�]g(1)[1−π∗

[�]g(1)]x[�]g,

and

∂ λ̃ (1)
[�],g j(1)

∂α
=

∂ λ̃ (1)
[�],g j(2)

∂α
=−

⎡

⎣
∂ λ̃ (2)

[�],g j(1)

∂α

⎤

⎦ .
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Now compute II using these derivatives and combine this formula with that
of I given in (3.310) to simplify the likelihood equation for α given by (3.307).
The simplified likelihood equation has the form

∂Log L(α,ρM)

∂α
=

p+1

∑
�=1

[
X ′
�

{
y∗[�](1)−K[�]π∗

[�](1)
}

+
J−1

∑
j=1

J−1

∑
g=1

⎡

⎣

⎧
⎨

⎩
−∑T

t=2 K∗
[�]11(t −1, t;g, j)

λ̃ (1)
[�],g j(1)

+
∑T

t=2 K∗
[�]12(t −1, t;g, j)

λ̃ (2)
[�],g j(1)

− ∑T
t=2 K∗

[�]21(t −1, t;g, j)

λ̃ (1)
[�],g j(2)

+
∑T

t=2 K∗
[�]22(t −1, t;g, j)

λ̃ (2)
[�],g j(2)

⎫
⎬

⎭

⎤

⎦

×
{

π∗
[�] j(1){1−π∗

[�] j(1)}x[�] j −ρg jπ∗
[�]g(1){1−π∗

[�]g(1)}x[�]g
}]

= f1(α)+ f2(α) = f (α) = 0. (3.313)

Let α̂ be the solution of f (α) = 0 in (3.313). Assuming that α̂0 is not a solution
for f (α) = 0 but a trial estimate, and hence f (α̂0) �= 0, the iterative equation for α̂
is obtained as

α̂ = α̂0 −
[{ f ′(α)}−1 f (α)

] |α=α̂0 , (3.314)

where

f ′(α) = f ′1(α)+ f ′2(α) =
∂ f1(α)

∂α ′ +
∂ f2(α)

∂α ′

is computed as follows.
Because

∂π∗
[�] j(1)

∂α ′ = π∗
[�] j(1)(1−π∗

[�] j(1))x
′
[�] j,

it then follows that

∂π∗
[�](1)

∂α ′ = diag[π∗
[�]1(1)(1−π∗

[�]1(1)), . . . ,π
∗
[�](J−1)(1)(1−π∗

[�](J−1)(1))]X�

= Dπ∗
[�]
(1)X�. (3.315)

Consequently, one obtains

f ′1(α) =
∂ f1(α)

∂α ′

= −
p+1

∑
�=1

K[�]X
′
�Dπ∗

[�]
(1)X�. (3.316)
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Next, by (3.313),

f ′2(α) =
∂ f2(α)

∂α ′

=
p+1

∑
�=1

J−1

∑
j=1

J−1

∑
g=1

⎧
⎨

⎩
−∑T

t=2 K∗
[�]11(t −1, t;g, j)

λ̃ (1)
[�],g j(1)

+
∑T

t=2 K∗
[�]12(t −1, t;g, j)

λ̃ (2)
[�],g j(1)

− ∑T
t=2 K∗

[�]21(t −1, t;g, j)

λ̃ (1)
[�],g j(2)

+
∑T

t=2 K∗
[�]22(t −1, t;g, j)

λ̃ (2)
[�],g j(2)

⎫
⎬

⎭

×
[{

π∗
[�] j(1)(1−π∗

[�] j(1))(1−2π∗
[�] j(1))

}
x[�] jx

′
[�] j

− ρg j

{
π∗
[�]g(1)(1−π∗

[�]g(1))(1−2π∗
[�]g(1))

}
x[�]gx′[�]g

]

−
p+1

∑
�=1

J−1

∑
j=1

J−1

∑
g=1

⎧
⎨

⎩

∑T
t=2 K∗

[�]11(t −1, t;g, j)

{λ̃ (1)
[�],g j(1)}2

+
∑T

t=2 K∗
[�]12(t −1, t;g, j)

{λ̃ (2)
[�],g j(1)}2

+
∑T

t=2 K∗
[�]21(t −1, t;g, j)

{λ̃ (1)
[�],g j(2)}2

+
∑T

t=2 K∗
[�]22(t −1, t;g, j)

{λ̃ (2)
[�],g j(2)}2

⎫
⎬

⎭

×
[{

π∗
[�] j(1){1−π∗

[�] j(1)}x[�] j −ρg jπ∗
[�]g(1){1−π∗

[�]g(1)}x[�]g
}

×
{

π∗
[�] j(1){1−π∗

[�] j(1)}x[�] j −ρg jπ∗
[�]g(1){1−π∗

[�]g(1)}x[�]g
}′]

(3.317)

3.6.1.1.2 Pseudo-Likelihood Estimating Equation for ρ̃M

The ρ̃M parameters matrix is written for the cut points based dynamic dependence
parameters, that is, ρ̃M = (ρ̃g j) where both g and j refer to cut points and they range
from 1 to J−1. Finding the estimating equation for ρ̃M means finding the estimating
equations for ρ̃g j for all g, j = 1, . . . ,J−1. This is done as follows.

Because the first term in the likelihood function (3.306) does not contain any
ρ̃g j parameters, by similar calculations as in (3.307), one obtains the likelihood
equations for ρ̃g j as

∂Log L(α)

∂ ρ̃g j
=

p+1

∑
�=1

⎧
⎨

⎩
[

T

∑
t=2

K∗
[�]11(t −1, t;g, j)]

π∗
[�]g

λ̃ (1)
[�],g j(1)

− [
T

∑
t=2

K∗
[�]12(t −1, t;g, j)]

π∗
[�]g

λ̃ (2)
[�],g j(1)

− [
T

∑
t=2

K∗
[�]21(t −1, t;g, j)]

1−π∗
[�]g

λ̃ (1)
[�],g j(2)



3.6 Cumulative Logits Model for Univariate Ordinal Longitudinal Data. . . 219

+ [
T

∑
t=2

K∗
[�]22(t −1, t;g, j)]

1−π∗
[�]g

λ̃ (2)
[�],g j(2)

⎫
⎬

⎭
= 0, (3.318)

for all g, j = 1, . . . ,J−1. By using

ρ̃ = (ρ̃ ′
1, . . . , ρ̃ ′

g, . . . , ρ̃ ′
J−1)

′ with ρ̃ ′
g = (ρ̃g1, . . . , ρ̃g j, . . . , ρ̃g,J−1),

the (J − 1)2 estimating equations in (3.318) may be solved iteratively by using the
formula

ˆ̃ρ(r+1) = ˆ̃ρ(r)−
[{

∂ 2Log L(α, ρ̃M)

∂ ρ̃ ′∂ ρ̃

}−1 ∂Log L(α, ρ̃M)

∂ ρ̃

]

|ρ̃= ˆ̃ρ(r)

, (3.319)

where the first order derivative vector ∂Log L(α ,ρ̃M)
∂ ρ̃ may be constructed by stacking

the scalar derivatives from (3.318). The computation of the second order derivative
matrix follows from the following two general second order derivatives:

∂ 2Log L(α)

∂ ρ̃g j∂ ρ̃g j
= −

p+1

∑
�=1

⎧
⎪⎨

⎪⎩
[

T

∑
t=2

K∗
[�]11(t −1, t;g, j)]

⎛

⎝
π∗
[�]g

λ̃ (1)
[�],g j(1)

⎞

⎠

2

+[
T

∑
t=2

K∗
[�]12(t −1, t;g, j)]

⎛

⎝
π∗
[�]g

λ̃ (2)
[�],g j(1)

⎞

⎠

2

+ [
T

∑
t=2

K∗
[�]21(t −1, t;g, j)]

⎛

⎝
1−π∗

[�]g

λ̃ (1)
[�],g j(2)

⎞

⎠

2

+ [
T

∑
t=2

K∗
[�]22(t −1, t;g, j)]

⎛

⎝
1−π∗

[�]g

λ̃ (2)
[�],g j(2)

⎞

⎠

2
⎫
⎪⎬

⎪⎭
, (3.320)

and

∂ 2Log L(α)

∂ ρ̃g′ j′∂ ρ̃g j
= 0, for all g = g′, j′ �= j;g �= g′, j′ �= j;g �= g′, j′ = j;g �= g′, j′ �= j.

(3.321)

3.6.1.2 Fitting Bivariate Binary Mapping Based LDCP Model:
A Conditional GQL Estimation Approach

In the last section, we have discussed the likelihood estimation for the parameters
involved in the LDCP model. In this section, it is shown how one can use the quasi-
likelihood approach for the estimation of parameters under these models.

We observe from the likelihood function (3.306) (see also Table 3.32) that at time
point t = 1, there are J−1 binomial responses, namely
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{y[�] j(1) = K[�]−K∗
[�] j(1), for j = 1, . . . ,J−1,} (3.322)

with parameters K[�] and π∗
[�] j(1). However, for t = 2, . . . ,T, there are 2(J − 1)2

binomial responses, namely

{K∗
[�]g∗2(t −1, t;g, j), for g, j = 1, . . . ,J−1,} (3.323)

with parameters K∗
[�]g∗(t −1; g) and λ̃ (2)

[�],g j(g
∗).

3.6.1.2.1 CGQL Estimation for α

For known {ρ̃g j, g, j = 1, . . . ,J−1}, we now construct a Conditional GQL (CGQL)
estimating equation for α as

p+1

∑
�=1

J−1

∑
j=1

[

K[�]

∂π∗
[�] j(1)

∂α

{
K[�]π∗

[�] j(1)[1−π∗
[�] j(1)]

}−1
[y[�] j(1)−K[�]π∗

[�] j(1)]

]

+
p+1

∑
�=1

J−1

∑
g=1

J−1

∑
j=1

T

∑
t=2

2

∑
g∗=1

⎡

⎣K∗
[�]g∗(t −1; g)

∂ λ̃ (2)
[�],g j(g

∗)

∂α

{
K∗
[�]g∗(t −1; g)λ̃ (2)

[�],g j(g
∗)λ̃ (1)

[�],g j(g
∗)
}−1

× [K∗
[�]g∗2(t −1, t; g, j)−K∗

[�]g∗(t −1; g)λ̃ (2)
[�],g j(g

∗)]
]
= 0. (3.324)

Now because

∂π∗
[�] j(1)

∂α
=
[
π∗
[�] j(1)(1−π∗

[�] j(1))
]

x[�] j and

∂ λ̃ (2)
[�],g j(g

∗)

∂α
=
[
π∗
[�] j(1)(1−π∗

[�] j(1))
]

x[�] j

− ρ̃g j

[
π∗
[�]g(1)(1−π∗

[�]g(1))
]

x[�]g (3.325)

for both g∗ = 1,2, the CGQL estimating equation (3.324) reduces to

p+1

∑
�=1

X ′
�

[
y∗[�](1)−K[�]π∗

[�](1)
]

+
p+1

∑
�=1

J−1

∑
g=1

J−1

∑
j=1

T

∑
t=2

2

∑
g∗=1

[{
π∗
[�] j(1)(1−π∗

[�] j(1))
}

x[�] j −ρg j

{
π∗
[�]g(1)(1−π∗

[�]g(1))
}

x[�]g
]

×
[{

λ̃ (2)
[�],g j(g

∗)λ̃ (1)
[�],g j(g

∗)
}−1

[K∗
[�]g∗2(t −1, t; g, j)−K∗

[�]g∗(t −1; g)λ̃ (2)
[�],g j(g

∗)]
]
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=
p+1

∑
�=1

X ′
�

[
y∗[�](1)−K[�]π∗

[�](1)
]

+
p+1

∑
�=1

J−1

∑
g=1

J−1

∑
j=1

[{
π∗
[�] j(1)(1−π∗

[�] j(1))
}

x[�] j −ρg j

{
π∗
[�]g(1)(1−π∗

[�]g(1))
}

x[�]g
]

×
[
{

λ̃ (2)
[�],g j(1)λ̃

(1)
[�],g j(1)

}−1
[

T

∑
t=2

K∗
[�]12(t −1, t; g, j)−

T

∑
t=2

K∗
[�]1(t −1; g)λ̃ (2)

[�],g j(1)]

+
{

λ̃ (2)
[�],g j(2)λ̃

(1)
[�],g j(2)

}−1
[

T

∑
t=2

K∗
[�]22(t −1, t; g, j)−

T

∑
t=2

K∗
[�]2(t −1; g)λ̃ (2)

[�],g j(2)]

]

= f1(α)+ f̃2(α) = f̃ (α) = 0. (3.326)

To solve (3.326) for the CGQL estimate of α, similar to the iterative equa-
tion (3.314) used in the likelihood approach, one may use the iterative equation
given by

α̂ = α̂0 −
[{ f̃ ′(α)}−1 f̃ (α)

] |α=α̂0 , (3.327)

where f̃ ′(α) = f ′1(α)+ f̃ ′2(α) with f ′1(α) same as in (3.316) under the likelihood
approach, that is,

f ′1(α) =−
p+1

∑
�=1

K[�]X
′
�Dπ∗

[�]
(1)X�,

and f̃ ′2(α), by (3.324), is computed as

f̃ ′2(α) −
p+1

∑
�=1

J−1

∑
g=1

J−1

∑
j=1

T

∑
t=2

2

∑
g∗=1

⎡

⎣K∗
[�]g∗ (t −1; g)

∂ λ̃ (2)
[�],g j(g

∗)

∂α

{
K∗
[�]g∗ (t −1; g)λ̃ (2)

[�],g j(g
∗)λ̃ (1)

[�],g j(g
∗)
}−1

× [K∗
[�]g∗2(t −1, t; g, j)−K∗

[�]g∗(t −1; g)λ̃ (2)
[�],g j(g

∗)]
] ∂ λ̃ (2)

[�],g j(g
∗)

∂α ′

=
p+1

∑
�=1

J−1

∑
g=1

J−1

∑
j=1

[{
π∗
[�] j(1)(1−π∗

[�] j(1))x[�] j − ρ̃g jπ∗
[�]g(1)(1−π∗

[�]g(1))x[�]g
}

×
{

π∗
[�] j(1)(1−π∗

[�] j(1))x[�] j − ρ̃g jπ∗
[�]g(1)(1−π∗

[�]g(1))x[�]g
}′]

×
[
{

λ̃ (2)
[�],g j(1)λ̃

(1)
[�],g j(1)

}−1
[

T

∑
t=2

K∗
[�]12(t −1, t; g, j)−

T

∑
t=2

K∗
[�]1(t −1; g)λ̃ (2)

[�],g j(1)]

+
{

λ̃ (2)
[�],g j(2)λ̃

(1)
[�],g j(2)

}−1
[

T

∑
t=2

K∗
[�]22(t −1, t; g, j)−

T

∑
t=2

K∗
[�]2(t −1; g)λ̃ (2)

[�],g j(2)]

]

. (3.328)
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3.6.1.2.2 Moment Estimation for {ρ̃g j}

Note that by using (3.300)–(3.301), it follows from the LDCP model (3.302) that
for any t = 1, . . . ,T,

E[b( j)
i∈(�,c)(t)] = π∗

[�] j

var[b( j)
i∈(�,c)(t)] = π∗

[�] j[1−π∗
[�] j], (3.329)

and

cov[b(g)i∈(�,c1)
(t −1),b( j)

i∈(�,c2)
(t)] = E[{b(g)i∈(�,c1)

(t −1)−π∗
[�]g}{b( j)

i∈(�,c2)
(t)−π∗

[�] j}]

= ρ̃g jE[b
(g)
i∈(�,c1)

(t −1)−π∗
[�]g]

2

= ρ̃g jπ∗
[�]g[1−π∗

[�]g]. (3.330)

Consequently, for g, j = 1, . . . ,J−1, by using

b∗( j)
i∈(�,c)(t) =

b( j)
i∈(�,c)(t)−π∗

[�] j

[π∗
[�] j(1−π∗

[�] j)]
1
2

,

one may develop a moment estimating equation for ρ̃g j as

ˆ̃ρg j =
∑p+1
�=1 ∑

K[�]

i=1 ∑T
t=2 b∗( j)

i∈(�,c2)
(t)b∗(g)i∈(�,c1)

(t −1)/[(T −1)∑p+1
�=1 K[�]]

∑p+1
�=1 ∑

K[�]

i=1 ∑T
t=1[b

∗(g)
i∈(�,c1)

(t)]2/[T ∑p+1
�=1 K[�]]

. (3.331)

Note that to compute (3.331), it is convenient to use the following formulas:

K[�]

∑
i=1

T

∑
t=2

b∗( j)
i∈(�,c2)

(t)b∗(g)i∈(�,c1)
(t −1)

=
T

∑
t=2

K∗
[�]22(t −1, t;g, j)

⎡

⎣

{
(1−π∗

[�] j)

π∗
[�] j

} 1
2
{
(1−π∗

[�]g)

π∗
[�]g

} 1
2
⎤

⎦

−
T

∑
t=2

K∗
[�]21(t −1, t;g, j)

⎡

⎣

{
π∗
[�] j

(1−π∗
[�] j)

} 1
2
{
(1−π∗

[�]g)

π∗
[�]g

} 1
2
⎤

⎦

−
T

∑
t=2

K∗
[�]12(t −1, t;g, j)

⎡

⎣

{
(1−π∗

[�] j)

π∗
[�] j

} 1
2
{

π∗
[�]g

(1−π∗
[�]g)

} 1
2
⎤

⎦
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+
T

∑
t=2

K∗
[�]11(t −1, t;g, j)

⎡

⎣

{
π∗
[�] j

(1−π∗
[�] j)

} 1
2
{

π∗
[�]g

(1−π∗
[�]g)

} 1
2
⎤

⎦ , (3.332)

and

K[�]

∑
i=1

T

∑
t=1

[b∗(g)i∈(�,c1)
(t)]2 =

T

∑
t=1

K∗
[�]2(t,g)

[
(1−π∗

[�]g)

π∗
[�]g

]

+
T

∑
t=1

K∗
[�]1(t,g)

[
π∗
[�]g

(1−π∗
[�]g)

]

. (3.333)

3.6.1.3 Fitting the LDCMP Model Subject to Order Restriction
of the Categories: A Pseudo-Likelihood Approach

In this approach, there is no need for any new modeling for the cut points
based marginal binary probabilities defined by (3.300)–(3.301) for time point
t = 1, and conditional probabilities for the lag 1 dynamic relationship between
two binary variables defined by (3.302)–(3.303) for the time points t = 2, . . . ,T.
More specifically, these marginal and conditional probabilities are written in terms
of the original multinomial probabilities given in (3.231)–(3.234), and (3.241),
respectively. Thus, the marginal probabilities in (3.300)–(3.301) are written as

P[b( j)
i∈(�,c)(1) = 1] =

J

∑
c= j+1

π[�]c(1)

=
∑J

c= j+1 exp(x′[�]cθ ∗)

∑J
u=1 exp(x′

[�]uθ ∗)

= π∗
[�] j(1) (3.334)

and

P[b( j)
i∈(�,c)(1) = 0] =

j

∑
c=1

π[�]c(1)

=
∑ j

c=1 exp(x′[�]cθ ∗)

∑J
u=1 exp(x′

[�]uθ ∗)

= 1−π∗
[�] j(1). (3.335)

In the same token, unlike (3.302)–(3.303), by using (3.241), the conditional
probabilities are now written as
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P[b( j)
i∈(�,c2)

(t) = 1|b(g)i∈(�,c1)
(t −1)] = λ̃ (2)

[�],g j(b
(g)
i∈(�,c1)

(t −1))

=

{
λ̃ (2)
[�],g j(1) for b(g)i∈(�,c1)

(t −1) = 0

λ̃ (2)
[�],g j(2) for b(g)i∈(�,c1)

(t −1) = 1,
(3.336)

where

λ̃ (2)
[�],g j(1) =

1
g

g

∑
c1=1

J

∑
c2= j+1

λ (c2)(c1, �) (3.337)

λ̃ (2)
[�],g j(2) =

1
J−g

J

∑
c1=g+1

J

∑
c2= j+1

λ (c2)(c1, �), with (3.338)

λ (c2)(c1, �) =

{
π[�]c2

+ρ ′
c2
(δ[�]c1

−π[�]) for c2 = 1, . . . ,J−1
1−∑J−1

c=1

[
π[�]c +(δ[�]c1

−π[�])
′ρc
]

for c2 = J,
(3.339)

where

δ[�]c1
=

{(
01′c1−1 1 01′J−1−c1

)′
for c1 = 1, . . . ,J−1

01J−1 for c1 = J.

By applying (3.336), one can compute the remaining conditional probabilities as

P[b( j)
i∈(�,c2)

(t) = 0|b(g)i∈(�,c1)
(t −1)] = 1− λ̃ (2)

[�],g j(b
(g)
i∈(�,c1)

(t −1))

=

{
λ̃ (1)
[�],g j(1) = 1− λ̃ (2)

[�],g j(1) for b(g)i∈(�,c1)
(t −1) = 0

λ̃ (1)
[�],g j(2) = 1− λ̃ (2)

[�],g j(2) for b(g)i∈(�,c1)
(t −1) = 1.

(3.340)

Next, the likelihood function for θ ∗ and ρM still has the same form as in (3.306),
that is,

L(θ ∗,ρM) = Π p+1
�=1 Π J−1

j=1

[(
{1−π∗

[�] j(1)}K∗
[�] j(1)

)(
{π∗

[�] j(1)}K[�]−K∗
[�] j(1)

)

× Π T
t=2Π J−1

g=1 Π 2
g∗=1

(
{λ̃ (1)

[�],g j(g
∗)}K∗

[�]g∗1(t−1,t;g, j){λ̃ (2)
[�],g j(g

∗)}K∗
[�]g∗2(t−1,t;g, j)

)]
,

(3.341)

but the marginal and conditional probabilities in (3.341) are now computed
from (3.334)–(3.340).
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3.6.1.3.1 Pseudo-Likelihood Estimating Equation for θ ∗

Following derivatives will be necessary to compute the desired likelihood
estimating equations. Note that here we are interested to estimate βc0 and βc�

(c = 1, . . . ,J − 1;� = 1, . . . , p) involved in the multinomial probabilities π[�]c
given in (3.231)–(3.232). These probabilities for computational convenience were
expressed in (3.234) as

π[�]c =
exp(x′[�]cθ ∗)

∑J
g=1 exp(x′

[�]gθ ∗)
,

where

θ ∗ = [β ∗
1
′, . . . ,β ∗

c
′, . . . ,β ∗

J−1
′]′ : (J−1)(p+1)×1, with β ∗

c = [βc0, . . . ,βc�, . . . ,βcp]
′.

Denote the derivatives

∂π[�]c

∂θ ∗ ,
1

π[�]c

∂π[�]c

∂θ ∗ , and
∂λ (c2)(c1, �)

∂θ ∗ ,

computed in (3.246), (3.247), and (3.250); by

π[�]c p[�]c, p[�]c, and λ (c2)
(1) (c1, �),

respectively. That is, by (3.246),

∂π[�]c

∂θ ∗ =

{
π[�]c

(
x[�]c −π[�]⊗d[�]1

)
for �= 1, . . . , p; c = 1, . . . ,J

π[�]c

(
x[�]c −π[�]⊗d[�]2

)
for �= p+1; c = 1, . . . ,J,

= π[�]c p[�]c,

and by (3.250),

∂λ (c2)(c1, �)

∂θ ∗ =

{
π[�]c2

(
x[�]c2

−π[�]⊗d[�]1
)− [Σ(π[�])⊗d[�]1]ρc2 for c2 = 1, . . . ,J;�= 1, . . . , p

π[�]c2

(
x[�]c2

−π[�]⊗d[�]2
)− [Σ(π[�])⊗d[�]2]ρc2 for c2 = 1, . . . ,J;�= p+1,

= λ (c2)
(1) (c1, �), for all c1 = 1, . . . ,J.

It then follows by (3.334) that for cut point j, one obtains

∂π∗
[�] j(1)

∂θ ∗ =
J

∑
c= j+1

∂π[�]c

∂θ ∗

=
J

∑
c= j+1

π[�]c p[�]c = p∗[�] j(θ
∗), (3.342)
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where x[�]c for all c = 1, . . . ,J;�= 1, . . . , p+1, is defined by (3.235). Also it follows
by (3.337), (3.338), and (3.340) that for cut points (g, j), one obtains

∂ λ̃ (2)
[�],g j(1)

∂θ ∗ =
1
g

g

∑
c1=1

J

∑
c2= j+1

λ (c2)
(1) (c1, �) = ξ[�]g j(1,2;θ ∗)

∂ λ̃ (2)
[�],g j(2)

∂θ ∗ =
1

J−g

J

∑
c1=g+1

J

∑
c2= j+1

λ (c2)
(1) (c1, �) = ξ[�]g j(2,2;θ ∗)

∂ λ̃ (1)
[�],g j(1)

∂θ ∗ = −1
g

g

∑
c1=1

J

∑
c2= j+1

λ (c2)
(1) (c1, �) = ξ[�]g j(1,1;θ ∗) =−ξ[�]g j(1,2;θ ∗)

∂ λ̃ (1)
[�],g j(2)

∂θ ∗ = − 1
J−g

J

∑
c1=g+1

J

∑
c2= j+1

λ (c2)
(1) (c1, �) = ξ[�]g j(2,1;θ ∗)

= −ξ[�]g j(2,2;θ ∗). (3.343)

Consequently, by (3.341) and by similar calculations as in (3.313), one obtains
the pseudo-likelihood estimating equation for θ ∗ as

∂Log L(θ ∗,ρM)

∂θ ∗ =
p+1

∑
�=1

J−1

∑
j=1

[{

(K[�]−K∗
[�] j(1))

(
p∗[�] j(θ

∗)

π∗
[�] j(1)

)

−K∗
[�] j(1)

(
p∗[�] j(θ

∗)

1−π∗
[�] j(1)

)}

+
J−1

∑
g=1

⎧
⎨

⎩
−

T

∑
t=2

K∗
[�]11(t −1, t;g, j)

ξ[�]g j(1,2;θ ∗)

λ̃ (1)
[�],g j(1)

+
T

∑
t=2

K∗
[�]12(t −1, t;g, j)

ξ[�]g j(1,2;θ ∗)

λ̃ (2)
[�],g j(1)

−
T

∑
t=2

K∗
[�]21(t −1, t;g, j)

ξ[�]g j(2,2;θ ∗)

λ̃ (1)
[�],g j(2)

+
T

∑
t=2

K∗
[�]22(t −1, t;g, j)

ξ[�]g j(2,2;θ ∗)

λ̃ (2)
[�],g j(2)

⎫
⎬

⎭

⎤

⎦

= h1(θ ∗)+h2(θ ∗) = h(θ ∗) = 0. (3.344)

This likelihood equation (3.344) may be solved iteratively by using

θ̂ ∗(r+1) = θ̂ ∗(r)−
[
{h(1)(θ ∗)}−1h(θ ∗)

]
|θ∗=θ̂∗(r), (3.345)

to obtain the final likelihood estimate θ̂ ∗. In (3.345), h(1)(θ ∗) = ∂h(θ∗)
∂θ∗′ .

Computation of ∂h(θ∗)
∂θ∗′ :

By (3.344),

h(1)(θ∗) =
∂Log L(θ∗,ρM)

∂θ∗′
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=
p+1

∑
�=1

J−1

∑
j=1

⎡

⎣

⎧
⎨

⎩
(K[�]−K∗

[�] j(1))

⎛

⎝
p∗(1)
[�] j (θ

∗,θ∗)
π∗
[�] j(1)

−
p∗[�] j(θ

∗)p∗′[�] j(θ
∗)

[π∗
[�] j(1)]

2

⎞

⎠

− K∗
[�] j(1)

⎛

⎝
p∗[�] j(θ

∗)p∗′[�] j(θ
∗)

[1−π∗
[�] j(1)]

2 +
p∗(1)
[�] j (θ

∗,θ∗)
1−π∗

[�] j(1)

⎞

⎠

⎫
⎬

⎭

+
J−1

∑
g=1

⎡

⎣−
⎧
⎨

⎩

T

∑
t=2

K∗
[�]11(t −1, t;g, j)

⎛

⎝
ξ (1)
[�]g j(1,2;θ∗,θ∗)

λ̃ (1)
[�],g j(1)

−
ξ[�]g j(1,2;θ∗)ξ ′

[�]g j(1,2;θ∗)

[λ̃ (1)
[�],g j(1)]

2

⎞

⎠

⎫
⎬

⎭

+

⎧
⎨

⎩

T

∑
t=2

K∗
[�]12(t −1, t;g, j)

⎛

⎝
ξ (1)
[�]g j(1,2;θ∗,θ∗)

λ̃ (2)
[�],g j(1)

−
ξ[�]g j(1,2;θ∗)ξ ′

[�]g j(1,2;θ∗)

[λ̃ (2)
[�],g j(1)]

2

⎞

⎠

⎫
⎬

⎭

−
⎧
⎨

⎩

T

∑
t=2

K∗
[�]21(t −1, t;g, j)

⎛

⎝
ξ (1)
[�]g j(2,2;θ∗,θ∗)

λ̃ (1)
[�],g j(2)

−
ξ[�]g j(2,2;θ∗)ξ ′

[�]g j(2,2;θ∗)

[λ̃ (1)
[�],g j(2)]

2

⎞

⎠

⎫
⎬

⎭

+

⎧
⎨

⎩

T

∑
t=2

K∗
[�]22(t −1, t;g, j)

⎛

⎝
ξ (1)
[�]g j(2,2;θ∗,θ∗)

λ̃ (2)
[�],g j(2)

−
ξ[�]g j(2,2;θ∗)ξ ′

[�]g j(2,2;θ∗)

[λ̃ (2)
[�],g j(2)]

2

⎞

⎠

⎫
⎬

⎭

⎤

⎦

⎤

⎦ ,

(3.346)

where

p∗(1)
[�] j (θ

∗,θ ∗) =
∂ p∗[�] j(θ

∗)

∂θ ∗′

=
J

∑
c= j+1

∂π[�]c p[�]c
∂θ ∗′ , by (3.342)

=
J

∑
c= j+1

[
π[�]c

{
p[�]c p′[�]c −Σ ∗(π[�])

}]
, (3.347)

where, by (3.342),

p[�]c ≡
{(

x[�]c −π[�]⊗d[�]1
)

for �= 1, . . . , p
(
x[�]c −π[�]⊗d[�]2

)
for �= p+1,

and by (3.255)–(3.256),

Σ ∗(π[�])≡
{

Σ ∗
1 (π[�]) for �= 1, . . . , p

Σ ∗
2 (π[�]) for �= p+1.

(3.348)
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Furthermore, in (3.346), by (3.343),

ξ (1)
[�]g j(1,2;θ ∗,θ ∗) =

∂ξ[�]g j(1,2;θ ∗)
∂θ ∗′

=
1
g

g

∑
c1=1

J

∑
c2= j+1

∂λ (c2)
(1) (c1, �)

∂θ ∗′

=
1
g

g

∑
c1=1

J

∑
c2= j+1

[
π[�]c2

M∗
c2
(x,π[�])−Ω ∗(π[�])

]
, (3.349)

ξ (1)
[�]g j(2,2;θ ∗,θ ∗) =

∂ξ[�]g j(2,2;θ ∗)
∂θ ∗′

=
1

J−g

J

∑
c1=g+1

J

∑
c2= j+1

∂λ (c2)
(1) (c1, �)

∂θ ∗′

=
1

J−g

J

∑
c1=g+1

J

∑
c2= j+1

[
π[�]c2

M∗
c2
(x,π[�])−Ω ∗(π[�])

]
, (3.350)

where, by (3.259)–(3.260),

M∗
c2
(x,π[�])≡

{
M∗

c2,1
(x,π[�]) for �= 1, . . . , p

M∗
c2,2

(x,π[�]) for �= p+1,
(3.351)

and by (3.264)–(3.265),

Ω ∗(π[�])≡
{

Ω ∗
1 (π[�]) for �= 1, . . . , p

Ω ∗
2 (π[�]) for �= p+1.

(3.352)

3.6.1.3.2 Pseudo-Likelihood Estimating Equation for ρM

The likelihood estimation of ρM is equivalent to estimate ρc : (J − 1)× 1, for
c = 1, . . . ,J − 1, by maximizing the log likelihood function Log L(θ ∗,ρM) given
in (3.341). Note that for a given cut point j, either c≤ j or c> j holds. Next, because
π∗
[�] j is free of ρc, for any c and j, the pseudo-likelihood estimating equation for ρc

can be computed as

∂Log L(θ ∗,ρM)

∂ρc
=

p+1

∑
�=1

J−1

∑
j=1

J−1

∑
g=1

⎡

⎣
T

∑
t=2

K∗
[�]11(t −1, t;g, j)

⎧
⎨

⎩

ξ ∗
[�]g j(1,1;ρc)

λ̃ (1)
[�],g j(1)

⎫
⎬

⎭

+
T

∑
t=2

K∗
[�]12(t −1, t;g, j)

⎧
⎨

⎩

ξ ∗
[�]g j(1,2;ρc)

λ̃ (2)
[�],g j(1)

⎫
⎬

⎭
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+
T

∑
t=2

K∗
[�]21(t −1, t;g, j)

⎧
⎨

⎩

ξ ∗
[�]g j(2,1;ρc)

λ̃ (1)
[�],g j(2)

⎫
⎬

⎭

+
T

∑
t=2

K∗
[�]22(t −1, t;g, j)

⎧
⎨

⎩

ξ ∗
[�]g j(2,2;ρc)

λ̃ (2)
[�],g j(2)

⎫
⎬

⎭

⎤

⎦= 0, (3.353)

where, for example,

ξ ∗
[�]g j(1,1;ρc) =

∂ λ̃ (1)
[�],g j(1)

∂ρc
, (3.354)

for a general c ≤ j or c > j, j being the cut point at time t. Next, it follows
by (3.337), (3.338), and (3.340) that for cut points (g, j), one obtains

∂ λ̃ (2)
[�],g j(1)

∂ρc
=

1
g

g

∑
c1=1

[
J

∑
c2= j+1

∂λ (c2)(c1, �)

∂ρc

]

= ξ ∗
[�]g j(1,2;ρc)

=
1
g

g

∑
c1=1

[
∂

∂ρc

J−1

∑
c2= j+1

{
π[�]c2

+(δ[�]c1
−π[�])

′ρc2

}

+
∂

∂ρc

{

1−
J−1

∑
h=1

(
π[�]h +(δ[�]c1

−π[�])
′ρh
)
}]

=

{
− 1

g ∑g
c1=1[δ[�]c1

−π[�]] for c ≤ j

0 for j < c ≤ (J−1),
(3.355)

and

∂ λ̃ (2)
[�],g j(2)

∂ρc
=

1
J−g

J

∑
c1=g+1

[
J

∑
c2= j+1

∂λ (c2)(c1, �)

∂ρc

]

= ξ ∗
[�]g j(2,2;ρc)

=
1

J−g

J

∑
c1=g+1

[
∂

∂ρc

J−1

∑
c2= j+1

{
π[�]c2

+(δ[�]c1
−π[�])

′ρc2

}

+
∂

∂ρc

{

1−
J−1

∑
h=1

(
π[�]h +(δ[�]c1

−π[�])
′ρh
)
}]

=

{
− 1

J−g ∑J
c1=g+1[δ[�]c1

−π[�]] for c ≤ j

0 for j < c ≤ (J−1).
(3.356)
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Using the above two derivatives, the derivatives for the remaining two
complementary conditional probabilities are easily obtained as

∂ λ̃ (1)
[�],g j(1)

∂ρc
= −

∂ λ̃ (2)
[�],g j(1)

∂ρc
= ξ ∗

[�]g j(1,1;ρc)

=

{
1
g ∑g

c1=1[δ[�]c1
−π[�]] for c ≤ j

0 for j < c ≤ (J−1), and
(3.357)

∂ λ̃ (1)
[�],g j(2)

∂ρc
= −

∂ λ̃ (2)
[�],g j(2)

∂ρc
= ξ ∗

[�]g j(2,1;ρc)

=

{
1

J−g ∑J
c1=g+1[δ[�]c1

−π[�]] for c ≤ j

0 for j < c ≤ (J−1).
(3.358)

Thus, the computation for the estimating equation (3.353) is complete, yielding the
estimating equation for ρ∗ = (ρ ′

1, . . . ,ρ ′
j, . . . ,ρ ′

J−1)
′, (i.e., for the elements of ρM) as

∂Log L(θ ∗,ρM)

∂ρ∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂Log L(θ∗,ρM)
∂ρ1
...

∂Log L(θ∗,ρM)
∂ρc
...

∂Log L(θ∗,ρM)
∂ρJ−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0 : (J−1)2 ×1. (3.359)

This estimating equation may be solved by using the iterative equation

ρ̂∗(r+1) = ρ̂∗(r)−
[{

∂ 2Log L(θ ∗,ρM)

∂ρ∗∂ρ∗′

}−1 ∂Log L(θ ∗,ρM)

∂ρ∗

]

|ρ∗=ρ̂∗(r)
,

(3.360)
where

∂ 2Log L(θ ∗,ρM)

∂ρ∗∂ρ∗′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂ 2Log L(θ∗,ρM)
∂ρ1∂ρ ′

1
. . . ∂ 2Log L(θ∗,ρM)

∂ρ1∂ρ ′
c

. . . ∂ 2Log L(θ∗,ρM)
∂ρ1∂ρ ′

J−1
...

...
...

∂ 2Log L(θ∗,ρM)
∂ρc∂ρ ′

1
. . . ∂ 2Log L(θ∗,ρM)

∂ρc∂ρ ′
c

. . . ∂ 2Log L(θ∗,ρM)
∂ρc∂ρ ′

J−1
...

...
...

∂ 2Log L(θ∗,ρM)
∂ρJ−1∂ρ ′

1
. . . ∂ 2Log L(θ∗,ρM)

∂ρJ−1∂ρ ′
j

. . . ∂ 2Log L(θ∗,ρM)
∂ρJ−1∂ρ ′

J−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.361)
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The second order derivatives involved in (3.361) may be computed by using the
first order derivatives from (3.355)–(3.358) into (3.353). To be specific, two general
second order derivatives are:

∂ 2Log L(θ ∗,ρM)

∂ρc∂ρ ′
c

=−
p+1

∑
�=1

J−1

∑
j=1

J−1

∑
g=1

⎡

⎣
T

∑
t=2

K∗
[�]11(t −1, t;g, j)

⎧
⎨

⎩

[ξ ∗
[�]g j(1,1;ρc)ξ ∗′

[�]g j(1,1;ρc)]

[λ̃ (1)
[�],g j(1)]

2

⎫
⎬

⎭

+
T

∑
t=2

K∗
[�]12(t −1, t;g, j)

⎧
⎨

⎩

[ξ ∗
[�]g j(1,2;ρc)ξ ∗′

[�]g j(1,2;ρc)]

[λ̃ (2)
[�],g j(1)]

2

⎫
⎬

⎭

+
T

∑
t=2

K∗
[�]21(t −1, t;g, j)

⎧
⎨

⎩

[ξ ∗
[�]g j(2,1;ρc)ξ ∗′

[�]g j(2,1;ρc)]

[λ̃ (1)
[�],g j(2)]

2

⎫
⎬

⎭

+
T

∑
t=2

K∗
[�]22(t −1, t;g, j)

⎧
⎨

⎩

[ξ ∗
[�]g j(2,2;ρc)ξ ∗′

[�]g j(2,2;ρc)]

[λ̃ (2)
[�],g j(2)]

2

⎫
⎬

⎭

⎤

⎦ (3.362)

and

∂ 2Log L(θ ∗,ρM)

∂ρc∂ρ ′
d

=−
p+1

∑
�=1

J−1

∑
j=1

J−1

∑
g=1

⎡

⎣
T

∑
t=2

K∗
[�]11(t −1, t;g, j)

⎧
⎨

⎩

[ξ ∗
[�]g j(1,1;ρc)ξ ∗′

[�]g j(1,1;ρd)]

[λ̃ (1)
[�],g j(1)]

2

⎫
⎬

⎭

+
T

∑
t=2

K∗
[�]12(t −1, t;g, j)

⎧
⎨

⎩

[ξ ∗
[�]g j(1,2;ρc)ξ ∗′

[�]g j(1,2;ρd)]

[λ̃ (2)
[�],g j(1)]

2

⎫
⎬

⎭

+
T

∑
t=2

K∗
[�]21(t −1, t;g, j)

⎧
⎨

⎩

[ξ ∗
[�]g j(2,1;ρc)ξ ∗′

[�]g j(2,1;ρd)]

[λ̃ (1)
[�],g j(2)]

2

⎫
⎬

⎭

+
T

∑
t=2

K∗
[�]22(t −1, t;g, j)

⎧
⎨

⎩

[ξ ∗
[�]g j(2,2;ρc)ξ ∗′

[�]g j(2,2;ρd)]

[λ̃ (2)
[�],g j(2)]

2

⎫
⎬

⎭

⎤

⎦ , (3.363)

where, for example,

[ξ ∗
[�]g j(1,1;ρc)ξ ∗′

[�]g j(1,1;ρd)]

=

{
1
g2 ∑g

c1=1[δ[�]c1
−π[�]]∑

g
c1=1[δ[�]c1

−π[�]]
′ for c ≤ j, and d ≤ j

0 otherwise.
(3.364)
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3.6.2 MDL Model with Cut Points g at Time t−1 and j
at Time t

3.6.2.1 Fitting Bivariate Binary Mapping Based MDL Model:
A Pseudo-Likelihood Approach

There is no difference for the probabilities at initial time t = 1 between the LDCP
and this BDL models. These probabilities at t = 1 are given by (3.300) and (3.301).
However, at time points t = 2, . . . ,T, instead of linear forms given by (3.302)–
(3.303), the conditional binary probabilities now have the logit form given by

P[b( j)
i∈(�,c2)

(t) = 1|b(g)i∈(�,c1)
(t −1)]

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp(α j0+α j�+γ̃g jb
(g)
i∈(�,c1)

(t−1))

1+exp(α j0+α j�+γ̃g jb
(g)
i∈(�,c1)

(t−1))
for �= 1, . . . , p

exp(α j0+γ̃g jb
(g)
i∈(�,c1)

(t−1))

1+exp(α j0+γ̃ jgb(g)i∈(�,c1)
(t−1))

for �= p+1,

(3.365)

= η̃(2)
[�],g j(b

(g)
i∈(�,c1)

(t −1)),

yielding

η̃(2)
[�],g j(1) =

⎧
⎨

⎩

exp(α j0+α j�)

1+exp(α j0+α j�)
for �= 1, . . . , p

exp(α j0)

1+exp(α j0)
for �= p+1,

(3.366)

η̃(2)
[�],g j(2) =

⎧
⎨

⎩

exp(α j0+α j�+γ̃g j)

1+exp(α j0+α j�+γ̃g j)
for �= 1, . . . , p

exp(α j0+γ̃ jg)

1+exp(α j0+γ̃g j)
for �= p+1,

(3.367)

and

P[b( j)
i∈(�,c2)

(t) = 0|b(g)i∈(�,c1)
(t −1)]

=

⎧
⎪⎨

⎪⎩

1

1+exp(α j0+α j�+γ̃g jb
(g)
i∈(�,c1)

(t−1))
for �= 1, . . . , p

1

1+exp(α j0+γ̃g jb
(g)
i∈(�,c1)

(t−1))
for �= p+1,

(3.368)

= 1− η̃(2)
[�],g j(b

(g)
i∈(�,c1)

(t −1)),

yielding

η̃(1)
[�],g j(1) =

{
1

1+exp(α j0+α j�)
for �= 1, . . . , p

1
1+exp(α j0)

for �= p+1,
(3.369)
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η̃(1)
[�],g j(2) =

{
1

1+exp(α j0+α j�+γ̃g j)
for �= 1, . . . , p

1
1+exp(α j0+γg j)

for �= p+1.
(3.370)

Let γ̃M = (γ̃g j) denote the (J − 1)× (J − 1) matrix of dynamic dependence
parameters under the BDL model.

Then simply by replacing the conditional probabilities, for example, λ̃ (1)
[�],g j(1)

with η̃(1)
[�],g j(1), in (3.306), one writes the likelihood function under the BDL

model as

L(α , γ̃M) = Π p+1
�=1 Π J−1

j=1

[(
{1−π∗

[�] j(1)}K∗
[�] j(1)

)(
{π∗

[�] j(1)}K[�]−K∗
[�] j(1)

)

× Π T
t=2Π J−1

g=1 Π 2
g∗=1

(
{η̃(1)

[�],g j(g
∗)}K∗

[�]g∗1(t−1,t;g, j){η̃(2)
[�],g j(g

∗)}K∗
[�]g∗2(t−1,t;g, j)

)]
, (3.371)

where π∗
[�] j(1) has the same formula as in (3.308), that is,

π∗
[�] j(1) =

exp(x′[�] jα)

1+ exp(x′
[�] jα)

1−π∗
[�] j(1) =

1
1+ exp(x′

[�] jα)
,

but unlike λ̃ ( j∗)
[�],g j(g

∗) for g∗ = 1,2; j∗ = 1,2 in (3.312), η̃( j∗)
[�],g j(g

∗) for g∗ = 1,2; j∗ =
1,2 have the formulas

η̃(2)
[�],g j(1) =

exp(x′[�] jα)

1+ exp(x′
[�] jα)

, η̃(2)
[�],g j(2) =

exp(x′[�] jα + γ̃g j)

1+ exp(x′
[�] jα + γ̃g j)

,

η̃(1)
[�],g j(1) =

1
1+ exp(x′

[�] jα)
, η̃(1)

[�],g j(2) =
1

1+ exp(x′
[�] jα + γ̃g j)

. (3.372)

3.6.2.1.1 Pseudo-Likelihood Estimating Equation for α

By similar calculations as in (3.307) and (3.313), one obtains the likelihood equation
for α as

∂Log L(α , γ̃M)

∂α
=

p+1

∑
�=1

[
X ′
�

{
y∗[�](1)−K[�]π∗

[�](1)
}

+
J−1

∑
j=1

J−1

∑
g=1

{

−
T

∑
t=2

K∗
[�]11(t −1, t;g, j){1− η̃(1)

[�],g j(1)}+
T

∑
t=2

K∗
[�]12(t −1, t;g, j){1− η̃(2)

[�],g j(1)}
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−
T

∑
t=2

K∗
[�]21(t −1, t;g, j){1− η̃(1)

[�],g j(2)}+
T

∑
t=2

K∗
[�]22(t −1, t;g, j){1− η̃(2)

[�],g j(2)}
}

x[�] j

]

= f1(α)+ f ∗2 (α) = f ∗(α) = 0. (3.373)

Let α̂ be the solution of f ∗(α) = 0 in (3.373). Assuming that α̂0 is not a solution
for f ∗(α) = 0 but a trial estimate, and hence f ∗(α̂0) �= 0, the iterative equation for
α̂ is obtained as

α̂ = α̂0 −
[{ f ∗′(α)}−1 f ∗(α)

] |α=α̂0 , (3.374)

where

f ∗′(α) = f ′1(α)+ f ∗′2(α) =
∂ f1(α)

∂α ′ +
∂ f ∗2 (α)

∂α ′

is computed as follows.
Note that f ′1(α) has the same formula as in (3.316), that is,

f ′1(α) =
∂ f1(α)

∂α ′ =−
p+1

∑
�=1

K[�]X
′
�Dπ∗

[�]
(1)X�.

Next, by (3.372), it follows from (3.373) that

f ∗′2(α) =
∂ f ∗2 (α)

∂α ′

−
p+1

∑
�=1

J−1

∑
j=1

J−1

∑
g=1

[{
T

∑
t=2

K∗
[�]11(t −1, t;g, j)[η̃(1)

[�],g j(1){1− η̃(1)
[�],g j(1)}]

+
T

∑
t=2

K∗
[�]12(t −1, t;g, j)[η̃(2)

[�],g j(1){1− η̃(2)
[�],g j(1)}]

+
T

∑
t=2

K∗
[�]21(t −1, t;g, j)[η̃(1)

[�],g j(2){1− η̃(1)
[�],g j(2)}]

+
T

∑
t=2

K∗
[�]22(t −1, t;g, j)[η̃(2)

[�],g j(2){1− η̃(2)
[�],g j(2)}]

}

x[�] jx
′
[�] j

]

. (3.375)

3.6.2.1.2 Pseudo-Likelihood Estimating Equation for γ̃M

Because γ̃g j is involved in the conditional probabilities as shown in (3.372), similar
to (3.373), we write the likelihood estimating equations for γ̃g j as
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∂Log L(α, γ̃M)

∂ γ̃g j
=

p+1

∑
�=1

{

−
T

∑
t=2

K∗
[�]11(t −1, t;g, j){1− η̃(1)

[�],g j(1)}

+
T

∑
t=2

K∗
[�]12(t −1, t;g, j){1− η̃(2)

[�],g j(1)}

−
T

∑
t=2

K∗
[�]21(t −1, t;g, j){1− η̃(1)

[�],g j(2)}

+
T

∑
t=2

K∗
[�]22(t −1, t;g, j){1− η̃(2)

[�],g j(2)}
}

= 0. (3.376)

By using

γ̃ = (γ̃ ′1, . . . , γ̃ ′g, . . . , γ̃ ′J−1)
′ with γ̃ ′g = (γ̃g1, . . . , γ̃g j, . . . , γ̃g,J−1),

the (J − 1)2 estimating equations in (3.376) may be solved iteratively by using the
formula

ˆ̃γ(r+1) = ˆ̃γ(r)−
[{

∂ 2Log L(α, γ̃M)

∂ γ̃ ′∂ γ̃

}−1 ∂Log L(α, γ̃M)

∂ γ̃

]

|γ̃= ˆ̃γ(r)

, (3.377)

where the first order derivative vector ∂Log L(α ,γ̃M)
∂ γ̃ may be constructed by stacking

the scalar derivatives from (3.376). The computation of the second order derivative
matrix follows from the following two general second order derivatives:

∂ 2Log L(α)

∂ γ̃g j∂ γ̃g j
= −

p+1

∑
�=1

{

[
T

∑
t=2

K∗
[�]11(t −1, t;g, j)][η̃(1)

[�],g j(1){1− η̃(1)
[�],g j(1)}]

+ [
T

∑
t=2

K∗
[�]12(t −1, t;g, j)][η̃(2)

[�],g j(1){1− η̃(2)
[�],g j(1)}]

+ [
T

∑
t=2

K∗
[�]21(t −1, t;g, j)][η̃(1)

[�],g j(2){1− η̃(1)
[�],g j(2)}]

+ [
T

∑
t=2

K∗
[�]22(t −1, t;g, j)][η̃(2)

[�],g j(2){1− η̃(2)
[�],g j(2)}]

}

, (3.378)

and

∂ 2Log L(α)

∂ γ̃g′ j′∂ γ̃g j
= 0, for all g = g′, j′ �= j;g �= g′, j′ �= j;g �= g′, j′ = j;g �= g′, j′ �= j.

(3.379)
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3.6.2.2 Fitting the MDL Model Subject to Order Restriction
of the Categories: A Pseudo-Likelihood Approach

In Sect. 3.5.2, MDL models were fitted by assuming that the categories are nominal.
In this section we fit the same MDL model (3.275)–(3.276) but by assuming that the
categories are ordinal. For nominal categories, recall from (3.277) and (3.278) that
the marginal probabilities at initial time t = 1, are given by

π[�] j(1) =
exp(x′[�] jθ

∗)

1+∑J−1
g=1 exp(x′

[�]gθ ∗)
, (3.380)

for all j = 1, . . . ,J, and � = 1, . . . , p+ 1; and the conditional probabilities at time t
conditional on the response at time t −1 (for t = 2, . . . ,T ) are given by

η( j)
t|t−1(g, �) =

⎧
⎪⎪⎨

⎪⎪⎩

exp
(

x′[�] jθ
∗+γ ′jδ[�]g

)

1+∑J−1
h=1 exp

(
x′
[�]hθ∗+γ ′hδ[�]g

) for j = 1, . . . ,J−1; �= 1, . . . , p+1

1

1+∑J−1
h=1 exp

(
x′
[�]hθ∗+γ ′hδ[�]g

) for j = J; �= 1, . . . , p+1,

(3.381)
for a given g = 1, . . . ,J. In (3.380) and (3.381),

θ ∗ = [β ∗
1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′]′ : (J−1)(p+1)×1, with β ∗

j = [β j0, . . . ,β j�, . . . ,β jp]
′,

represents the vector of parameters for the MDL model for nominal categorical data,
and x[�] j is the design covariate vector defined as in (3.277).

Now because categories are considered to be ordinal, similar to the bivariate
binary mapping based LDCP model (see (3.334) and (3.337)–(3.338)), for given cut
points j at time t and g at time point t − 1, we write the marginal and conditional
probabilities in cumulative form as

π∗
[�] j(1) =

J

∑
c= j+1

π[�]c(1)

=
∑J

c= j+1 exp(x′[�]cθ ∗)

∑J
h=1 exp(x′

[�]hθ ∗)
, (3.382)

with π[�]c(1) as in (3.380), and

η̃(2)
[�],g j(1) =

1
g

g

∑
c1=1

J

∑
c2= j+1

η(c2)
t|t−1(c1, �) (3.383)

η̃(2)
[�],g j(2) =

1
J−g

J

∑
c1=g+1

J

∑
c2= j+1

η(c2)
t|t−1(c1, �) (3.384)



3.6 Cumulative Logits Model for Univariate Ordinal Longitudinal Data. . . 237

with η(c2)
t|t−1(c1, �) as in (3.381). Note that as we are dealing with stationary

correlations case, the conditional probabilities in (3.383)–(3.384) remain the same
for all t = 2, . . . ,T, and hence the subscript t|t − 1 may be suppressed. Next by
using the marginal (at t = 1) and conditional probabilities (at t|t − 1; t = 2, . . . ,T,)
from (3.382)–(3.384), and the transitional count data corresponding to cut points
(g, j), one writes the pseudo-likelihood function

L(θ∗,γM) = Π p+1
�=1 Π J−1

j=1

[(
{1−π∗

[�] j(1)}K∗
[�] j(1)

)(
{π∗

[�] j(1)}K[�]−K∗
[�] j(1)

)

× Π T
t=2Π J−1

g=1 Π 2
g∗=1

(
{η̃(1)

[�],g j(g
∗)}K∗

[�]g∗1(t−1,t;g, j){η̃(2)
[�],g j(g

∗)}K∗
[�]g∗2(t−1,t;g, j)

)]
, (3.385)

which is similar but different than the likelihood function (3.341) under the LDCP
model.

3.6.2.2.1 Pseudo-Likelihood Estimating Equation for θ ∗

The following derivatives are required to construct the desired likelihood equation.
The derivative of π∗

[�] j(1) with respect to θ ∗ is the same as (3.342) under the LCDMP
model. That is,

∂π∗
[�] j(1)

∂θ ∗ =
J

∑
c= j+1

∂π[�]c

∂θ ∗ =
J

∑
c= j+1

π[�]c p[�]c = p∗[�] j(θ
∗).

However, to compute the derivatives of the cumulative probabilities such as

η̃(2)
[�],g j(1) (3.383) with respect to θ ∗, by (3.286) under the MDL model, we first

write

∂η( j)(g, �)
∂θ ∗ =

{
η( j)(g, �)

[
x[�] j −η(g, �)⊗d[�]1

]
for �= 1, . . . , p; j = 1, . . . ,J

η( j)(g, �)
[
x[�] j −η(g, �)⊗d[�]2

]
for �= p+1; j = 1, . . . ,J,

(3.386)

= η( j)
(1)(g, �), (say), (3.387)

where

η(g, �) = [η(1)(g, �), . . . ,η( j)(g, �), . . . ,η(J−1)(g, �)]′.

By (3.383)–(3.384), we then obtain

∂ η̃(2)
[�],g j(1)

∂θ ∗ =
1
g

g

∑
c1=1

J

∑
c2= j+1

∂η(c2)(c1, �)

∂θ ∗
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=
1
g

g

∑
c1=1

J

∑
c2= j+1

η(c2)
(1) (c1, �) = ζ[�]g j(1,2;θ ∗)

∂ η̃(2)
[�],g j(2)

∂θ ∗ =
1

J−g

J

∑
c1=g+1

J

∑
c2= j+1

∂η(c2)(c1, �)

∂θ ∗

=
1

J−g

J

∑
c1=g+1

J

∑
c2= j+1

η(c2)
(1) (c1, �) = ζ[�]g j(2,2;θ ∗)

∂ η̃(1)
[�],g j(1)

∂θ ∗ = −ζ[�]g j(1,2;θ ∗) = ζ[�]g j(1,1;θ ∗)

∂ η̃(1)
[�],g j(1)

∂θ ∗ = −ζ[�]g j(2,2;θ ∗) = ζ[�]g j(2,1;θ ∗), (3.388)

yielding, by (3.385), the likelihood equation for θ ∗ as

∂Log L(θ ∗,γM)

∂θ ∗ =
p+1

∑
�=1

J−1

∑
j=1

[{

(K[�]−K∗
[�] j(1))

(
p∗[�] j(θ

∗)

π∗
[�] j(1)

)

−K∗
[�] j(1)

(
p∗[�] j(θ

∗)

1−π∗
[�] j(1)

)}

+
J−1

∑
g=1

⎧
⎨

⎩
−

T

∑
t=2

K∗
[�]11(t −1, t;g, j)

ζ[�]g j(1,2;θ ∗)

η̃(1)
[�],g j(1)

+
T

∑
t=2

K∗
[�]12(t −1, t;g, j)

ζ[�]g j(1,2;θ ∗)

η̃(2)
[�],g j(1)

−
T

∑
t=2

K∗
[�]21(t −1, t;g, j)

ζ[�]g j(2,2;θ ∗)

η̃(1)
[�],g j(2)

+
T

∑
t=2

K∗
[�]22(t −1, t;g, j)

ζ[�]g j(2,2;θ ∗)

η̃(2)
[�],g j(2)

⎫
⎬

⎭

⎤

⎦

= h̃1(θ ∗)+ h̃2(θ ∗) = h̃(θ ∗) = 0. (3.389)

This likelihood equation (3.389) may be solved iteratively by using

θ̂ ∗(r+1) = θ̂ ∗(r)−
[
{h̃(1)(θ ∗)}−1h̃(θ ∗)

]
|θ∗=θ̂∗(r), (3.390)

to obtain the final likelihood estimate θ̂ ∗. In (3.390), h̃(1)(θ ∗) = ∂ h̃(θ∗)
∂θ∗′ .

Computation of ∂ h̃(θ∗)
∂θ∗′ :

By (3.389),

h(1)(θ∗) =
∂Log L(θ∗,ρM)

∂θ∗′

=
p+1

∑
�=1

J−1

∑
j=1

⎡

⎣

⎧
⎨

⎩
(K[�]−K∗

[�] j(1))

⎛

⎝
p∗(1)
[�] j (θ

∗,θ∗)
π∗
[�] j(1)

−
p∗[�] j(θ

∗)p∗′[�] j(θ
∗)

[π∗
[�] j(1)]

2

⎞

⎠
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− K∗
[�] j(1)

⎛

⎝
p∗[�] j(θ

∗)p∗′[�] j(θ
∗)

[1−π∗
[�] j(1)]

2 +
p∗(1)
[�] j (θ

∗,θ∗)
1−π∗

[�] j(1)

⎞

⎠

⎫
⎬

⎭

+
J−1

∑
g=1

⎡

⎣−
⎧
⎨

⎩

T

∑
t=2

K∗
[�]11(t −1, t;g, j)

⎛

⎝
ζ (1)
[�]g j(1,2;θ∗,θ∗)

η̃(1)
[�],g j(1)

−
ζ[�]g j(1,2;θ∗)ζ ′

[�]g j(1,2;θ∗)

[η̃(1)
[�],g j(1)]

2

⎞

⎠

⎫
⎬

⎭

+

⎧
⎨

⎩

T

∑
t=2

K∗
[�]12(t −1, t;g, j)

⎛

⎝
ζ (1)
[�]g j(1,2;θ∗,θ∗)

η̃(2)
[�],g j(1)

−
ζ[�]g j(1,2;θ∗)ζ ′

[�]g j(1,2;θ∗)

[η̃(2)
[�],g j(1)]

2

⎞

⎠

⎫
⎬

⎭

−
⎧
⎨

⎩

T

∑
t=2

K∗
[�]21(t −1, t;g, j)

⎛

⎝
ζ (1)
[�]g j(2,2;θ∗,θ∗)

η̃(1)
[�],g j(2)

−
ζ[�]g j(2,2;θ∗)ζ ′

[�]g j(2,2;θ∗)

[η̃(1)
[�],g j(2)]

2

⎞

⎠

⎫
⎬

⎭

+

⎧
⎨

⎩

T

∑
t=2

K∗
[�]22(t −1, t;g, j)

⎛

⎝
ζ (1)
[�]g j(2,2;θ∗,θ∗)

η̃(2)
[�],g j(2)

−
ζ[�]g j(2,2;θ∗)ζ ′

[�]g j(2,2;θ∗)

[η̃(2)
[�],g j(2)]

2

⎞

⎠

⎫
⎬

⎭

⎤

⎦

⎤

⎦ ,

(3.391)

where p∗(1)
[�] j (θ

∗,θ ∗) is given by (3.347)–(3.348), and the remaining two second order
derivative matrices in (3.391) are given by

ζ (1)
[�]g j(1,2;θ ∗,θ ∗) =

∂ζ[�]g j(1,2;θ ∗)
∂θ ∗′

=
1
g

g

∑
c1=1

J

∑
c2= j+1

∂η(c2)
(1) (c1, �)

∂θ ∗′ , (3.392)

ζ (1)
[�]g j(2,2;θ ∗,θ ∗) =

∂ζ[�]g j(2,2;θ ∗)
∂θ ∗′

=
1

J−g

J

∑
c1=g+1

J

∑
c2= j+1

∂η(c2)
(1) (c1, �)

∂θ ∗′ , (3.393)

where, for

η(c2)
(1) (c1, �) =

{
η(c2)(c1, �)

[
x[�]c2

−η(c1, �)⊗d[�]1
]

for �= 1, . . . , p
η(c2)(c1, �)

[
x[�]c2

−η(c1, �)⊗d[�]2
]

for �= p+1,
(3.394)

(see (3.386)–(3.387)) with

η(c1, �) = [η(1)(c1, �), . . . ,η( j)(c1, �), . . . ,η(J−1)(c1, �)]
′,

the second order derivative
∂η(c2)

(1) (c1,�)

∂θ∗′ by (3.287)–(3.288) has the formula
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∂η(c2)
(1) (c1, �)

∂θ ∗′ = η(c2)(c1, �)M
∗
[�]c2

(x,η(c1, �))

=

⎧
⎨

⎩

η(c2)(c1, �)
[
(x[�]c2

−η(c1, �)⊗d[�]1)(x[�]c2
−η(c1, �)⊗d[�]1)

′ − ∂η(c1 ,�)
∂θ∗′

]
for �= 1, . . . , p

η(c2)(c1, �)
[
(x[�]c2

−η(c1, �)⊗d[�]2)(x[�]c2
−η(c1, �)⊗d[�]1)

′ − ∂η(c1 ,�)
∂θ∗′

]
for �= p+1,

with ∂η(c1,�)
∂θ∗′ given as in (3.290).

3.6.2.2.2 Pseudo-Likelihood Estimating Equation for γM

The likelihood estimation of γM is equivalent to estimate γc : (J − 1)× 1, for
c = 1, . . . ,J−1, by maximizing the log likelihood function Log L(θ ∗,γM) computed
from (3.385). Note that for a given cut point j, either c ≤ j or c > j holds. Next,
because π∗

[�] j(1) is free of γc, for any c and j, the pseudo-likelihood estimating
equation for γc can be computed as

∂Log L(θ ∗,γM)

∂γc
=

p+1

∑
�=1

J−1

∑
j=1

J−1

∑
g=1

⎡

⎣
T

∑
t=2

K∗
[�]11(t −1, t;g, j)

⎧
⎨

⎩

ζ ∗
[�]g j(1,1;γc)

η̃(1)
[�],g j(1)

⎫
⎬

⎭

+
T

∑
t=2

K∗
[�]12(t −1, t;g, j)

⎧
⎨

⎩

ζ ∗
[�]g j(1,2;γc)

η̃(2)
[�],g j(1)

⎫
⎬

⎭

+
T

∑
t=2

K∗
[�]21(t −1, t;g, j)

⎧
⎨

⎩

ζ ∗
[�]g j(2,1;ρc)

η̃(1)
[�],g j(2)

⎫
⎬

⎭

+
T

∑
t=2

K∗
[�]22(t −1, t;g, j)

⎧
⎨

⎩

ζ ∗
[�]g j(2,2;γc)

η̃(2)
[�],g j(2)

⎫
⎬

⎭

⎤

⎦= 0, (3.395)

where, for example,

ζ ∗
[�]g j(1,2;γc) =

∂ η̃(2)
[�],g j(1)

∂γc
, (3.396)

for a general c≤ j or c> j, j being the cut point at time t. More specifically, because

∂η(h)(g, �)
∂γ j

=

⎧
⎪⎨

⎪⎩

δ[�]gη( j)(g, �)[1−η( j)(g, �)] for h = j;h, j = 1, . . . ,J−1
−δ[�]gη( j)(g, �)η(h)(g, �) for h �= j;h, j = 1, . . . ,J−1
−δ[�]gη( j)(g, �)η(J)(g, �) for h = J; j = 1, . . . ,J−1,
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by (3.225), the derivatives of the conditional probabilities in (3.395), that is, the
formulas for ζ ∗

[�]g j(·, ·;γc), at cut point (g, j), are given by

∂ η̃(2)
[�],g j(1)

∂γc
=

1
g

g

∑
c1=1

[
J

∑
c2= j+1

∂η(c2)(c1, �)

∂γc

]

= ζ ∗
[�]g j(1,2;γc)

=

{− 1
g ∑g

c1=1 δ[�]c1
η(c)(c1, �)∑J

c2= j+1 η(c2)(c1, �) for c ≤ j
1
g ∑g

c1=1 δ[�]c1
η(c)(c1, �)

[
1−∑J

c2= j+1 η(c2)(c1, �)
]

for j < c ≤ (J−1),
(3.397)

∂ η̃(2)
[�],g j(2)

∂γc
=

1
J−g

J

∑
c1=g+1

[
J

∑
c2= j+1

∂η(c2)(c1, �)

∂γc

]

= ζ ∗
[�]g j(2,2;γc)

=

{− 1
J−g ∑J

c1=g+1 δ[�]c1
η(c)(c1, �)∑J

c2= j+1 η(c2)(c1, �) for c ≤ j
1

J−g ∑J
c1=g+1 δ[�]c1

η(c)(c1, �)
[
1−∑J

c2= j+1 η(c2)(c1, �)
]

for j < c ≤ (J−1),

(3.398)

∂ η̃(1)
[�],g j(1)

∂γc
=−

∂ η̃(2)
[�],g j(1)

∂γc
=−ζ ∗

[�]g j(1,2;γc) = ζ ∗
[�]g j(1,1;γc), (3.399)

and

∂ η̃(1)
[�],g j(2)

∂γc
=−

∂ η̃(2)
[�],g j(2)

∂γc
=−ζ ∗

[�]g j(2,2;γc) = ζ ∗
[�]g j(1,1;γc). (3.400)

Thus, the computation for the estimating equation (3.395) is complete, yielding
the estimating equation for γ∗ = (γ ′1, . . . ,γ ′j, . . . ,γ ′J−1)

′, (i.e., for the elements of γM)
as

∂Log L(θ ∗,γM)

∂γ∗
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂Log L(θ∗,γM)
∂γ1
...

∂Log L(θ∗,γM)
∂γc
...

∂Log L(θ∗,γM)
∂γJ−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0 : (J−1)2 ×1. (3.401)

This estimating equation may be solved by using the iterative equation

γ̂∗(r+1) = γ̂∗(r)−
[{

∂ 2Log L(θ ∗,γM)

∂γ∗∂γ∗′

}−1 ∂Log L(θ ∗,γM)

∂γ∗

]

|γ∗=γ̂∗(r)
,

(3.402)
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where

∂ 2Log L(θ ∗,γM)

∂γ∗∂γ∗′
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂ 2Log L(θ∗,γM)
∂γ1∂γ ′1

. . . ∂ 2Log L(θ∗,γM)
∂γ1∂γ ′c

. . . ∂ 2Log L(θ∗,γM)
∂γ1∂γ ′J−1

...
...

...
∂ 2Log L(θ∗,γM)

∂γc∂γ ′1
. . . ∂ 2Log L(θ∗,γM)

∂γc∂γ ′c
. . . ∂ 2Log L(θ∗,γM)

∂γc∂γ ′J−1
...

...
...

∂ 2Log L(θ∗,γM)
∂γJ−1∂γ ′1

. . . ∂ 2Log L(θ∗,γM)
∂γJ−1∂γ ′j

. . . ∂ 2Log L(θ∗,γM)
∂γJ−1∂γ ′J−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.403)
The second order derivatives involved in (3.403) may be computed by using the
first order derivatives from (3.397)–(3.400) into (3.395). To be specific, two general
second order derivatives are:

∂ 2Log L(θ ∗,γM)

∂γc∂γ ′c
=

p+1

∑
�=1

J−1

∑
j=1

J−1

∑
g=1

[
T

∑
t=2

K∗
[�]11(t −1, t;g, j)

×
⎧
⎨

⎩
−
[ζ ∗

[�]g j(1,1;γc)ζ ∗′
[�]g j(1,1;γc)]

[η̃(1)
[�],g j(1)]

2
+

[ζ ∗∗
[�]g j(1,1;γc,γc)]

[η̃(1)
[�],g j(1)]

⎫
⎬

⎭

+
T

∑
t=2

K∗
[�]12(t −1, t;g, j)

⎧
⎨

⎩
−
[ζ ∗

[�]g j(1,2;γc)ζ ∗′
[�]g j(1,2;γc)]

[η̃(2)
[�],g j(1)]

2
+

[ζ ∗∗
[�]g j(1,2;γc,γc)]

[η̃(2)
[�],g j(1)]

⎫
⎬

⎭

+
T

∑
t=2

K∗
[�]21(t −1, t;g, j)

⎧
⎨

⎩
−
[ζ ∗

[�]g j(2,1;γc)ζ ∗′
[�]g j(2,1;γc)]

[η̃(1)
[�],g j(2)]

2
+

[ζ ∗∗
[�]g j(2,1;γc,γc)]

[η̃(1)
[�],g j(2)]

⎫
⎬

⎭

+
T

∑
t=2

K∗
[�]22(t −1, t;g, j)

⎧
⎨

⎩
−
[ζ ∗

[�]g j(2,2;γc)ζ ∗′
[�]g j(2,2;γc)]

[η̃(2)
[�],g j(2)]

2

+
[ζ ∗∗

[�]g j(2,2;γc,γc)]

[η̃(2)
[�],g j(2)]

⎫
⎬

⎭

⎤

⎦ (3.404)

and

∂ 2Log L(θ ∗,γM)

∂γc∂γ ′d
=

p+1

∑
�=1

J−1

∑
j=1

J−1

∑
g=1

[
T

∑
t=2

K∗
[�]11(t −1, t;g, j)

×
⎧
⎨

⎩
−
[ζ ∗

[�]g j(1,1;γc)ζ ∗′
[�]g j(1,1;γd)]

[η̃(1)
[�],g j(1)]

2
+

[ζ ∗∗
[�]g j(1,1;γc,γd)]

[η̃(1)
[�],g j(1)]

⎫
⎬

⎭
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+
T

∑
t=2

K∗
[�]12(t −1, t;g, j)

⎧
⎨

⎩
−
[ζ ∗

[�]g j(1,2;γc)ζ ∗′
[�]g j(1,2;γd)]

[η̃(2)
[�],g j(1)]

2
+

[ζ ∗∗
[�]g j(1,2;γc,γd)]

[η̃(2)
[�],g j(1)]

⎫
⎬

⎭

+
T

∑
t=2

K∗
[�]21(t −1, t;g, j)

⎧
⎨

⎩
−
[ζ ∗

[�]g j(2,1;γc)ζ ∗′
[�]g j(2,1;γd)]

[η̃(1)
[�],g j(2)]

2
+

[ζ ∗∗
[�]g j(2,1;γc,γd)]

[η̃(1)
[�],g j(2)]

⎫
⎬

⎭

+
T

∑
t=2

K∗
[�]22(t −1, t;g, j)

⎧
⎨

⎩
−
[ζ ∗

[�]g j(2,2;γc)ζ ∗′
[�]g j(2,2;γd)]

[η̃(2)
[�],g j(2)]

2

+
[ζ ∗∗

[�]g j(2,2;γc,γd)]

[η̃(2)
[�],g j(2)]

⎫
⎬

⎭

⎤

⎦ , (3.405)

where, for example,

ζ ∗∗
[�]g j(1,1;γc,γc) =

∂ζ ∗
[�]g j(1,1;γc)

∂γ ′c

ζ ∗∗
[�]g j(1,1;γc,γd) =

∂ζ ∗
[�]g j(1,1;γc)

∂γ ′d
, for c �= d, c,d = 1, . . . ,J−1. (3.406)

The second order derivative matrices in (3.404) may be computed as follows. By
using the basic derivatives for conditional probabilities from (3.225) into (3.397),
one obtains

ζ ∗∗
[�]g j(1,2;γc,γc)

=
∂

∂γ ′c

{− 1
g ∑g

c1=1 δ[�]c1
η(c)(c1, �)∑J

c2= j+1 η(c2)(c1, �) for c ≤ j
1
g ∑g

c1=1 δ[�]c1
η(c)(c1, �)

[
1−∑J

c2= j+1 η(c2)(c1, �)
]

for j < c ≤ (J−1)

=

⎧
⎪⎪⎨

⎪⎪⎩

− 1
g ∑g

c1=1 δ[�]c1
δ ′
[�]c1

η(c)(c1, �)
[
{1−2η(c)(c1, �)}∑J

c2= j+1 η(c2)(c1, �)
]

for c ≤ j
1
g ∑g

c1=1 δ[�]c1
δ ′
[�]c1

η(c)(c1, �)

×
[
{1−η(c)(c1, �)}−{1−2η(c)(c1, �)}∑J

c2= j+1 η(c2)(c1, �)
]

for j < c ≤ (J−1),

(3.407)

ζ ∗∗
[�]g j(2,2;γc,γc)

=
∂

∂γ ′c

{− 1
J−g ∑J

c1=g+1 δ[�]c1
η(c)(c1, �)∑J

c2= j+1 η(c2)(c1, �) for c ≤ j
1

J−g ∑J
c1=g+1 δ[�]c1

η(c)(c1, �)
[
{1−∑J

c2= j+1 η(c2)(c1, �)
]

for j < c ≤ (J−1)
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=

⎧
⎪⎪⎨

⎪⎪⎩

− 1
J−g ∑J

c1=g+1 δ[�]c1
δ ′
[�]c1

η(c)(c1, �)
[
{1−2η(c)(c1, �)}∑J

c2= j+1 η(c2)(c1, �)
]

for c ≤ j
1

J−g ∑J
c1=g+1 δ[�]c1

δ ′
[�]c1

η(c)(c1, �)

×
[
{1−η(c)(c1, �)}−{1−2η(c)(c1, �)}∑J

c2= j+1 η(c2)(c1, �)
]

for j < c ≤ (J−1),

(3.408)

and

ζ ∗∗
[�]g j(1,1;γc,γc) = −ζ ∗∗

[�]g j(1,2;γc,γc)

ζ ∗∗
[�]g j(2,1;γc,γc) = −ζ ∗∗

[�]g j(2,2;γc,γc). (3.409)

Similarly the second order derivative matrices in (3.405) may be computed by
using the basic derivatives for conditional probabilities from (3.225) into (3.397).
That is,

ζ ∗∗
[�]g j(1,2;γc,γd) (3.410)

=
∂

∂γ ′d

{− 1
g ∑g

c1=1 δ[�]c1
η(c)(c1, �)∑J

c2= j+1 η(c2)(c1, �) for c ≤ j
1
g ∑g

c1=1 δ[�]c1
η(c)(c1, �)

[
1−∑J

c2= j+1 η(c2)(c1, �)
]

for j < c ≤ (J−1)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2
g ∑g

c1=1 δ[�]c1
δ ′
[�]c1

η(c)(c1, �)η(d)(c1, �)
[

∑J
c2= j+1 η(c2)(c1, �)

]
for c ≤ j; d ≤ j

− 1
g ∑g

c1=1 δ[�]c1
δ ′
[�]c1

η(c)(c1, �)η(d)(c1, �)
[
1−2∑J

c2= j+1 η(c2)(c1, �)
]

for c ≤ j; d > j

− 1
g ∑g

c1=1 δ[�]c1
δ ′
[�]c1

η(c)(c1, �)η(d)(c1, �)
[
1−2∑J

c2= j+1 η(c2)(c1, �)
]

for c > j; d ≤ j

− 2
g ∑g

c1=1 δ[�]c1
δ ′
[�]c1

η(c)(c1, �)η(d)(c1, �)
[
1−∑J

c2= j+1 η(c2)(c1, �)
]

for c > j; d > j,

ζ ∗∗
[�]g j(2,2;γc,γd) (3.411)

=
∂

∂γ ′d

{− 1
J−g ∑J

c1=g+1 δ[�]c1
η(c)(c1, �)∑J

c2= j+1 η(c2)(c1, �) for c ≤ j
1

J−g ∑J
c1=g+1 δ[�]c1

η(c)(c1, �)
[
1−∑J

c2= j+1 η(c2)(c1, �)
]

for j < c ≤ (J−1)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2
J−g ∑J

c1=g+1 δ[�]c1
δ ′
[�]c1

η(c)(c1, �)η(d)(c1, �)
[

∑J
c2= j+1 η(c2)(c1, �)

]
for c ≤ j; d ≤ j

− 1
J−g ∑J

c1=g+1 δ[�]c1
δ ′
[�]c1

η(c)(c1, �)η(d)(c1, �)
[
1−2∑J

c2= j+1 η(c2)(c1, �)
]

for c ≤ j; d > j

− 1
J−g ∑J

c1=g+1 δ[�]c1
δ ′
[�]c1

η(c)(c1, �)η(d)(c1, �)
[
1−2∑J

c2= j+1 η(c2)(c1, �)
]

for c > j; d ≤ j

− 2
J−g ∑J

c1=g+1 δ[�]c1
δ ′
[�]c1

η(c)(c1, �)η(d)(c1, �)
[
1−∑J

c2= j+1 η(c2)(c1, �)
]

for c > j; d > j,

and

ζ ∗∗
[�]g j(1,1;γc,γd) = −ζ ∗∗

[�]g j(1,2;γc,γd)

ζ ∗∗
[�]g j(2,1;γc,γd) = −ζ ∗∗

[�]g j(2,2;γc,γd). (3.412)
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Chapter 4
Regression Models For Univariate Longitudinal
Non-stationary Categorical Data

4.1 Model Background

In Chap. 3, specifically in Sects. 3.4.1 and 3.4.2, we have studied covariates free
LDCMP (linear dynamic conditional multinomial probability) and MDL (multi-
nomial dynamic logit) models. Because the models were free from covariates,
the underlying correlation structures (see (3.157) for LDCMP model, and (3.208)
for BDL model) are free from covariates and hence stationary. These correlations
depend only on lags. These models were extended in Sects. 3.5.1 and 3.5.2 to the
cases involving covariates, but the covariates were time independent. Consequently,
these models also have stationary correlation structure. See these stationary corre-
lation structures for the binary (2 category) case given in Sect. 3.3.1.1 (C̃(ρ)) for
the LDCP model and (3.128) for the BDL model. In this chapter, we deal with a
general situation where the covariates collected from an individual over time may be
time dependent. Time dependent covariates cause non-stationary correlations which
makes the inference procedures relatively difficult as compared to the stationary
covariates cases, which is, however, not discussed in the literature adequately for the
multinomial response models. For differences in inferences between the stationary
and non-stationary binary models, one may refer to Chap. 7 in Sutradhar (2011).

Turning back to the multinomial models with time dependent covariates, for
convenience we re-express (3.4) here from Chap. 3 to begin the discussion on non-
stationary multinomial models. Thus, in the non-stationary case, we formulate the
marginal probability for yit to belong to the jth category as

P[yit = y( j)
it = δit j] = π(it) j =

⎧
⎪⎨

⎪⎩

exp(β j0+β ′
jwit )

1+∑J−1
g=1 exp(βg0+β ′

gwit )
for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0+β ′
gwit )

for j = J,
(4.1)
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where β j = [β j1, . . . ,β js, . . . ,β jp]
′ for j = 1, . . . ,J−1, is the regression effects of the

time dependent covariates wit , with wit = [wit1, . . . ,wits, . . . ,wit p]
′. Note that some

of the p covariates may be time independent. This marginal probability in (4.1)
yields the marginal mean vector and covariance matrix for the multinomial response
yit = (yit1, . . . ,yit j, . . . ,yit,J−1)

′ at time t as follows: The mean vector is given by

E[Yit ] =
J−1

∑
g=1

y(g)it P[Yit = y(g)it ] =
J−1

∑
g=1

y(g)it π(it)g

= [π(it)1, . . . ,π(it) j, . . . ,π(it)(J−1)]
′ = π(it) : (J−1)×1, (4.2)

for all t = 1, . . . ,T, and by similar calculations as in (3.149)–(3.150), the covariance
matrix has the form

Σ(i,tt)(β )=var[Yit ] = diag[π(it)1, . . . ,π(it) j, . . . ,π(it)(J−1)]−π(it)π ′
(it) : (J−1)×(J−1),

(4.3)

for all t = 1, . . . ,T ; and i = 1, . . . ,K, where β denotes all regression parameters,
that is,

β ≡ (β ∗
1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′)′, where β ∗

j = (β j0,β ′
j)
′.

As far as the correlation properties of the repeated multinomial responses
yi1, . . . ,yit , . . . ,yiT are concerned, it is likely that they will be pair-wise correlated.
These pair-wise correlations along with the mean and variance structures (4.2)–(4.3)
must be exploited to obtain efficient estimates for the regression parameter vectors
{β ∗

j , j = 1, . . . ,J−1} involved in the marginal probability model (4.1). However, as
the modeling for correlations for the longitudinal multinomial responses is difficult,
some authors such as Lipsitz et al. (1994), Williamson et al. (1995), and Chen et al.
(2009) have used an odds ratio based ‘working’ correlations approach to estimate
the regression parameters. This odds ratio based GEE (generalized estimating
equations) approach encounters estimation breakdown and/or inefficiency problems
similar to those for the longitudinal binary cases (Sutradhar 2011, Chapter 7).
Nevertheless for the sake of completeness, we discuss this odds ratio approach in
brief in Sect. 4.2. The difficulties encountered by this approach are also pointed out.

As opposed to the ‘working’ correlations approach, we consider parametric
modeling for the non-stationary correlations for multinomial responses, and discuss
a conditionally linear dynamic probability model and its fitting in Sect. 4.3; and a
non-linear dynamic logit model and its fitting in Sect. 4.4. Note that these linear and
non-linear dynamic models are similar to those LDCMP and MDL models discussed
in Sects. 3.4.1 and 3.4.2. But these models in the last chapter were developed for
time independent covariates, whereas in the present chapter, that is, in Sects. 4.3
and 4.4, we use the time dependent covariates leading to non-stationary correlations
among the multinomial responses. For convenience we will refer to these models in
this chapter as the non-stationary LDCMP (NSLDCMP) and non-stationary MDL
(NSMDL) models, respectively.



4.2 GEE Approach Using ‘Working’ Structure/Model for Odds Ratio Parameters 249

4.2 GEE Approach Using ‘Working’ Structure/Model
for Odds Ratio Parameters

Let yi = (y′i1, . . . ,y
′
it , . . . ,y

′
iT )

′ be the T (J − 1)× 1 vector of observations for the
ith individual with its mean πi = (π ′

i1, . . . ,π ′
it , . . . ,π ′

iT )
′, where yit and πit are J−1

dimensional observation and probability vectors as defined in (4.2). Further, let
Σi(β ,τ) be the T (J − 1)× T (J − 1) covariance matrix of yi, where β represents
all β ∗

1 , . . . ,β ∗
j , . . . ,β ∗

J−1, and τ represents the so-called correlations or log odds ratio
parameters. This covariance matrix for the ith individual may be expressed as

Σi(β ,τ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Σ(i,11)(β ) . . . Σ(i,1u)(β ,τ) . . . Σ(i,1t)(β ,τ) . . . Σ(i,1T )(β ,τ)
...

...
...

...
Σ(i,u1)(β ,τ) . . . Σ(i,uu)(β ) . . . Σ(i,ut)(β ,τ) . . . Σ(i,uT )(β ,τ)

...
...

...
...

Σ(i,t1)(β ,τ) . . . Σ(i,tu)(β ,τ) . . . Σ(i,tt)(β ) . . . Σ(i,tT )(β ,τ)
...

...
...

...
Σ(i,T1)(β ,τ) . . . Σ(i,Tu)(β ,τ) . . . Σ(i,Tt)(β ,τ) . . . Σ(i,TT )(β )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(4.4)
where Σ(i,tt)(β ) is given by (4.3) for all t = 1, . . . ,T, and by writing

cov[Yiug,Yit j] = σ(i,ut)g j(β ,τ),

the covariance matrix Σ(i,ut)(β ,τ) for u �= t, involved in (4.4) may be expressed as

Σ(i,ut)(β ,τ) =
(
σ(i,ut)g j(β ,τ)

)
=
(
P(Yiug = 1,Yit j = 1)−π(iu)gπ(it) j

)

=
(
π(i,ut)g j −π(iu)gπ(it) j

)
, (4.5)

where yiug = 1 indicates that the ith individual at time u is in the �th category,
similarly yit j = 1 represents that the ith individual at time t is in the jth category.
In (4.4)–(4.5), τ represents all odds ratios involved in the joint probabilities π(i,ut)g j,
these odds ratios for the ith individual being defined as

τi(ut)g j =
P(Yiug = 1,Yit j = 1)P(Yiug = 0,Yit j = 0)
P(Yiug = 1,Yit j = 0)P(Yiug = 0,Yit j = 1)

, (4.6)

(e.g., Lipsitz et al. 1991).
It is however not easy to model these odds ratios in (4.6) for their estimation.

Many researchers such as Lipsitz et al. (1991), Williamson et al. (1995), Yi and
Cook (2002), Chen et al. (2009, 2010) have used a so-called working model (see
(4.10) below) for these odds ratio parameters and estimated them. Let τ̂w represent
such ‘working (w)’ model based estimate for τ . This estimate τ̂w is then used to
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estimate the joint probabilities π(i,ut)g j in (4.5). In the next step, the regression
parameter vector β involved in the multinomial probabilities is estimated by solving
the GEE

K

∑
i=1

∂ μ ′
i

∂β
Σ−1

i (β , τ̂w)(yi −μi) = 0, (4.7)

(Liang and Zeger 1986).
Remark that as opposed to (4.4), in Chap. 3, we have used the i free constant

Σ(π) matrix for var[Yit ] and Σ̃(π,ρ) (3.159) for var[Yi], under the covariates
free stationary LDCMP model. When covariates are present but stationary, these
covariance matrices were denoted by Σ(π[�]) and Σ̃(π[�],ρ), that is,

var[Yit |i ∈ �] = Σ(π[�]), and var[Yi|i ∈ �] = Σ̃(π[�],ρ),

under the covariates based LDCMP model, � being the �th level of the covariate.

4.2.1 ‘Working’ Model 1 for Odds Ratios (τ)

To use the odds ratio based covariance matrix in β estimation such as in (4.7), one
needs to compute the joint probability in terms of odds ratios. This follows from the
relationship (4.6), that is,

τi(ut)g j =
π(i,ut)g j[1−π(iu)g −π(it) j +π(i,ut)g j]

[π(iu)g −π(i,ut)g j][π(it) j −π(i,ut)g j]
, (4.8)

yielding

π(i,ut)g j =

⎧
⎨

⎩

fi(ut)g j−[ f 2
i(ut)g j−4τi(ut)g j(τi(ut)g j−1)πi(ug)π(it) j ]

1
2

2(τi(ut)g j−1) (τi(ut)g j �= 1),

π(iu)gπ(it) j (τi(ut)g j = 1),
(4.9)

where

fi(ut)g j = 1− (1− τi(ut)g j)(π(iu)g +π(it) j).

But as the odds ratios τi(ut)� j are unknown, it is not possible to compute the joint
probabilities by (4.9). As a remedy, some authors such as Lipsitz et al. 1991,
Eqs. (5)–(6), p. 155, Williamson et al. 1995, Eq. (3) (see also Yi and Cook 2002,
Eq. (3), p. 1072) have used ‘working (w)’ odds ratios τi(ut)g j,w, say, instead of the
true parameters in (4.8), and assumed that these ‘working’ odds ratio parameters
maintain a linear relationship with category and time effects as

log τi(ut)g j,w = ϕ +ϕg +ϕ j +ϕg j +w∗
it
′ξ ∗, (4.10)
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where w∗
it : q × 1, (say), is a suitable subset of the covariate vector wit in (4.1),

those are considered to be responsible to correlate yiu j and yit j. The selection of
this subset also appears to be arbitrary. In (4.10), ϕ, ϕg, ϕ j, ϕg j, and ξ ∗, are so-
called working parameters, which generate ‘working’ odds ratios (through (4.10),
whereas true odds ratios are given by (4.8). In Sect. 4.3, we consider the modeling
of the joint probabilities πi(ut)g j through the modeling of correlations or equivalently
conditional probabilities. Similar modeling of conditional probabilities was also
done in Chap. 3 but for either covariate free or time independent covariate cases.

4.2.1.1 Estimation of ‘Working’ Odds Ratios and Drawbacks

The existing studies such as Yi and Cook (2002, Section 3.2) treat the ‘working’
parameters

ϕ∗ = [ϕ, ϕ1, . . . ,ϕ j, . . . ,ϕJ−1, ϕ11, . . . ,ϕg j, . . . ,ϕ(J−1)(J−1), ξ ∗′]′ : J(J−1)+q+1×1

as a set of ‘working’ association parameters and estimate them by solving a
second order GEE (generalized estimating equation) (Fitzmaurice and Laird 1993)
constructed based on a distance measure between pair-wise multinomial responses
and their ‘working’ means. To be specific, let

siut = [yiu1yit1, . . . ,yiugyit j, . . . ,yiu,J−1yit,J−1]
′ : (J−1)2 ×1, for u < t, t = 2, . . . ,T,

(4.11)
and

si = [s′i12, . . . ,s
′
iut , . . . ,s

′
i,T−1,T ]

′ :
T (T −1)(J−1)2

2
×1. (4.12)

Note that if the true model for odds ratios (indexed by τ) was known, one would
then have computed the E[Siut ] and E[Si] by using the true joint probability P(Yiug =
1,Yit j = 1) given by

π(i,ut)g j(β ,τ) = E[YiugYit j|true model indexed by τ ], (4.13)

(see (4.9)). However, because the true joint probabilities are unknown, the GEE
approach, by using (4.10) in (4.9), computes the ‘working’ joint probabilities as

π(i,ut)g j,w(β ,τw(ϕ∗)) = E[YiugYit j]

=

⎧
⎨

⎩

fi(ut)g j,w−[ f 2
i(ut)g j,w−4τi(ut)g j,w(τi(ut)g j,w−1)πi(ug)π(it) j ]

1
2

2(τi(ut)g j,w−1) (τi(ut)g j,w �= 1),

π(iu)gπ(it) j (τi(ut)g j,w = 1),
(4.14)

with

fi(ut)g j,w = 1− (1− τi(ut)g j,w)(π(iu)g +π(it) j),
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and constructs an estimating equation for ϕ∗, given by

K

∑
i=1

∂ξw
′(β ,ϕ∗)
∂ϕ∗ Ω−1

i,w (si −ξw(β ,ϕ∗)) = 0, (4.15)

where

ξw(β ,ϕ∗) = [ξ ′
i12,w(β ,ϕ∗), . . . ,ξ ′

iut,w(β ,ϕ∗), . . . ,ξ ′
i,T−1,T,w(β ,ϕ∗)]′,

with

ξiut,w(β ,ϕ∗) = E[{Yiu1Yit1, . . . ,YiugYit j, . . . ,Yiu,J−1Yit,J−1}| models (4.10),(4.14)]′

= [π(i,ut)11,w(β ,τw(ϕ∗)), . . . ,π(i,ut)g j,w(β ,τw(ϕ∗)), . . . ,π(i,ut)(J−1),(J−1),w(β ,τw(ϕ∗))]′.

In (4.15), Ωi,w is a ‘working’ covariance matrix of Si, for which Yi and Cook (2002,
Section 3.2) have used the formula

Ωi,w = cov[Si] = diag[π(i,12)11,w(β ,τ(ϕ∗))s{1−π(i,12)11,w(β ,τw(ϕ∗))}, . . . ,
π(i,ut)g j,w(β ,τw(ϕ∗)){1−π(i,ut)g j,w(β ,τw(ϕ∗))}, . . . ,
π(i,T−1,T )(J−1),(J−1),w(β ,τw(ϕ∗)){1−π(i,T−1,T )(J−1),(J−1),w(β ,τw(ϕ∗))}],

(4.16)

to avoid the computation of third and fourth order moments. Remark that while the
use of such a ‘working’ covariance matrix lacks justification to produce efficient
estimates, there is, however, a more serious problem in using the GEE (2.15) for
the estimation of ϕ. This is because, the distance function (si −ξw(β ,ϕ∗)) does not
produce an unbiased equation, as si’s are generated from a model involving true τ .
That is,

E[Si −ξ (β ,τ)] = 0, (4.17)

whereas

E[Si −ξw(β ,ϕ∗] �= 0. (4.18)

Consequently, the second order GEE (4.15) would produce ϕ̂∗ which however may
not be unbiased for ϕ∗, rather

ϕ̂∗ → ϕ∗
0 (τ), (say)

(see Sutradhar and Das 1999; Crowder 1995). Thus, τ̂w(ϕ̂∗) obtained by (4.15) and
(4.10) will be inconsistent for τ unless true τ satisfies the relation (4.10) which is,
however, unlikely to happen. This, in turn, makes the τ̂w(·) based GEE (4.7) for β
useless.
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As opposed to ‘working’ models, in the next section, we introduce a non-
stationary parametric model, namely the non-stationary linear dynamic conditional
multinomial probability (NSLDCMP) model.

4.3 NSLDCMP Model

Recall from Chap. 3 (more specifically from Sect. 3.5.1) that when covariates are
time independent (referred to as the stationary case), it is possible to make a
transition counts table such as Table 3.24 for individuals belonging to �-th (� =
1, . . . , p+ 1) level of a covariate, and use them for model fitting and inferences.
For example, in Table 3.24, K[�]g j(t −h∗, t) denotes the number of individuals with
covariate information at level � who were under category g at time t − h∗ and in
category j at time t. To reflect these transitional counts, conditional probabilities in
linear form (see (3.238)) were modeled as

P[Yit = y( j)
it |Yi,t−1 = y(g)i,t−1, i ∈ �] = π(i∈�,t) j +

J−1

∑
h=1

ρ jh

[
y(g)i,t−1,h −π(i∈�,t−1)h

]

= π[�] j +
J−1

∑
h=1

ρ jh

[
y(g)i,t−1,h −π[�]h

]

= λ ( j)
it|t−1(g, �), for g = 1, . . . ,J; j = 1, . . . ,J−1, (4.19)

showing that π(i∈�,t) j = π[�] j (see (3.231)–(3.232) for their formulas), that is, the
covariates in marginal and conditional probabilities are time independent.

In the present linear non-stationary setup, by using a general p-dimensional time
dependent covariates wit as in (4.1), we define the marginal probabilities at time
t(t = 1, . . . ,T ) as

P[yit = y( j)
it = δit j] = π(it) j =

⎧
⎪⎨

⎪⎩

exp(β j0+β ′
jwit )

1+∑J−1
g=1 exp(βg0+β ′

gwit )
for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0+β ′
gwit )

for j = J,

and for t = 2, . . . ,T, the lag 1 based LDCM probabilities as

P[Yit = y( j)
it |Yi,t−1 = y(g)i,t−1] = π(it) j +

J−1

∑
h=1

ρ jh

[
y(g)i,t−1,h −π(i,t−1)h

]

= π(it) j +ρ ′
j

(
y(g)i,t−1 −π(i,t−1)

)

= λ ( j)
it|t−1(g), for g = 1, . . . ,J; j = 1, . . . ,J−1

P[Yit = y(J)it |Yi,t−1 = y(g)i,t−1] = 1−
J−1

∑
j=1

λ ( j)
it|t−1(g), for g = 1, . . . ,J, (4.20)
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where

ρ j = (ρ j1, . . . ,ρ jh, . . . ,ρ j,J−1)
′ : (J−1)×1

y(g)i,t−1 =

{
(y(g)i,t−1,1, . . . , y(g)i,t−1,g, . . . ,y

(g)
i,t−1,,J−1)

′ = (01′g−1, 1, 01′J−1−g)
′ for g = 1, . . . ,J−1;

(01J−1) for g = J.

π(it) = (π(it)1, . . . ,π(it) j, . . . ,π(it)(J−1))
′ : (J−1)×1.

4.3.1 Basic Properties of the LDCMP Model (4.20)

4.3.1.1 Marginal Expectation

Notice from (4.20) that for t = 1,

E[Yi1] =
J

∑
g=1

y(g)i1 P[Yi1 = y(g)i1 ] =
J

∑
g=1

y(g)i1 π(i1)g

= [π(i1)1, . . . ,π(i1) j, . . . ,π(i1)(J−1)]
′ = π(i1) : (J−1)×1. (4.21)

Next, for t = 2, . . . ,T, the conditional probabilities produce

E[Yit |y(g)i,t−1] =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

πit)1 +ρ ′
1(y

(g)
i,t−1 −π(i,t−1))

π(it)2 +ρ ′
2(y

(g)
i,t−1 −π(i,t−1))

. . .

π(it) j +ρ ′
j(y

(g)
i,t−1 −π(i,t−1))

. . .

π(it)(J−1) +ρ ′
J−1(y

(g)
i,t−1 −π(i,t−1))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= π(it) +ρM(y(g)i,t−1 −π(i,t−1)), g = 1, . . . ,J, (4.22)

where ρM is the (J−1)× (J−1) linear dependence parameters matrix given by

ρM =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ ′
1
...

ρ ′
j

...
ρ ′

J−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

: (J−1)× (J−1). (4.23)

Note that in general, that is, without any category specification, the lag 1 conditional
expectation (4.22) implies that

E[Yit |yi,t−1] = π(it) +ρM(yi,t−1 −π(i,t−1)). (4.24)
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Next because

E[Yit ] = EYi1 EYi2 · · ·EYi,t−1E[Yit |yi,t−1],

it follows by (4.24) that

E[Yit ] = π(it) +EYi1 [ρ
t−1
M (Yi1 −π(i1))]

= π(it). (4.25)

In (4.25), ρ3
M = ρMρMρM, for example.

This marginal mean vector in (4.25) also can be computed as

E[Yit ] =
J−1

∑
g=1

y(g)it P[Yit = y(g)it ] =
J−1

∑
g=1

y(g)it π(it)g

= [π(it)1, . . . ,π(it) j, . . . ,π(it)(J−1)]
′ = π(it) : (J−1)×1, (4.26)

4.3.1.2 Marginal Covariance Matrix

By using similar idea as in (4.26), one may compute the marginal covariance matrix
at time t as follows. Because for j �= k, the jth and kth categories are mutually
exclusive, it follows that

E[Yit jYitk] = P[Yit j = 1,Yitk = 1] = P[Yit = y( j)
it ,Yit = y(k)it ] = 0. (4.27)

For j = k one obtains

E[Y 2
it j] = E[Yit j] = P[Yit j = 1] = 1P[Yit = y( j)

it ]+0
J

∑
g �= j

P[Yit = y(g)it ] = π(it) j. (4.28)

Consequently, by combining (4.27) and (4.28), one computes the covariance
matrix as

var[Yit ] = E[{Yit −π(it)}{Yit −π(it)}′]
= E[YitY

′
it ]−π(it)π ′

(it)

= diag[π(it)1, . . . ,π(it) j, . . . ,π(it)(J−1)]−π(it)π ′
(it)

= Σ(i,tt)(β ), (4.29)

as in (4.3).
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4.3.1.3 Auto-covariance Matrices

For u < t, the auto-covariance matrix is written as

cov[Yit ,Y
′
iu] = E[{Yit −π(it)}{Yiu −π(iu)}′]. (4.30)

Now because the covariance formula, that is, the right-hand side of (4.30) may be
expressed as

E[{Yit −π(it)}{Yiu −π(iu)}′] = EYiu EYi,u+1 · · ·EYi,t−1 E[{Yit −π(it)}{Yiu −π(iu)}′|Yi,t−1, · · · ,Yiu],
(4.31)

by using the operation as in (4.24)–(4.25), this equation provides the formula for the
covariance matrix as

cov[Yit ,Y
′
iu] = E[{Yit −π(it)}{Yiu −π(iu)}′]

= ρ t−u
M EYiu [{Yiu −π(iu)}{Yiu −π(iu)}′]

= ρ t−u
M var[Yiu]

= ρ t−u
M

[
diag[π(iu)1, . . . ,π(iu) j, . . . ,π(iu)(J−1)]−π(iu)π ′

(iu)

]

= Σ(i,ut)(β ,ρM), (say), (4.32)

where, for example, ρ3
M = ρMρMρM.

4.3.2 GQL Estimation of the Parameters

Similar to Sect. 3.4.1.2 (of Chap. 3), we estimate all regression parameters β
by solving a GQL estimating equation, and the conditionally linear dynamic
dependence parameters ρM by using the method of moments. The GQL estimating
equation for β is constructed as follows.

Let

yi = [y′i1, . . . ,y
′
it , . . . ,y

′
iT ]

′ : T (J−1)×1

be the repeated multinomial responses of the ith individual over T time periods. Here
yit = [yit1, . . . ,yit j, . . . ,yit,J−1]

′ denotes the multinomial response of the ith individual
collected at time t. The expectation and the covariance matrix of this response vector
are given by

E[Yi] = E[Y ′
i1, . . . ,Y

′
it , . . . ,Y

′
iT ]

′

= [π ′
(i1), . . . ,π

′
(it), . . . ,π

′
(iT )]

′ : T (J−1)×1

= π(i) (4.33)
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and

cov[Yi] = Σ(i)(β ,ρM) (4.34)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Σ(i,11)(β ) . . . Σ(i,1u)(β ,ρM) . . . Σ(i,1t)(β ,ρM) . . . Σ(i,1T )(β ,ρM)
...

...
...

...
Σ(i,u1)(β ,ρM) . . . Σ(i,uu)(β ) . . . Σ(i,ut)(β ,ρM) . . . Σ(i,uT )(β ,ρM)

...
...

...
...

Σ(i,t1)(β ,ρM) . . . Σ(i,tu)(β ,ρM) . . . Σ(i,tt)(β ) . . . Σ(i,tT )(β ,ρM)
...

...
...

...
Σ(i,T1)(β ,ρM) . . . Σ(i,Tu)(β ,ρM) . . . Σ(i,Tt)(β ,ρM) . . . Σ(i,TT )(β )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

Σ(i,tt)(β ) = diag[π(it)1, . . . ,π(it) j, . . . ,π(it)(J−1)]−π(it)π ′
(it),

by (4.29), and

Σ(i,ut)(β ,ρM) = ρ t−u
M

[
diag[π(iu)1, . . . ,π(iu) j, . . . ,π(iu)(J−1)]−π(iu)π ′

(iu)

]
,

by (4.32), for u < t. Also

Σ(i,tu)(β ,ρM) = Σ ′
(i,ut)(β ,ρM).

Following Sutradhar (2003, Section 3) (see also Sutradhar 2011), using the
aforementioned notation (4.33)–(4.34), for known ρM, one may now construct the
GQL estimating equation for

β ≡ (β ∗
1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′)′ : (J−1)(p+1)×1, where β ∗

j = (β j0,β ′
j)
′,

as

K

∑
i=1

∂π ′
(i)

∂β
Σ−1
(i) (β ,ρM)(yi −π(i)) = 0, (4.35)

where for

π ′
(it) = [π(it)1, . . . ,π(it) j, . . . ,π(it)(J−1)]
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with

π(it) j =

⎧
⎪⎨

⎪⎩

exp(β j0+β ′
jwit )

1+∑J−1
g=1 exp(βg0+β ′

gwit )
for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0+β ′
gwit )

for j = J

=

⎧
⎪⎪⎨

⎪⎪⎩

exp(
(

1 w′
it

)
β ∗

j )

1+∑J−1
g=1 exp(

(

1 w′
it

)
β ∗

g )
for j = 1, . . . ,J−1

1

1+∑J−1
g=1 exp(

(

1 w′
it

)
β ∗

g )
for j = J

=

⎧
⎪⎨

⎪⎩

exp(w∗′
it β ∗

j )

1+∑J−1
g=1 exp(w∗′

it β ∗
g )

for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(w∗′
it β ∗

g )
for j = J

one computes the derivative
∂π ′

(i)
∂β as

∂π ′
(i)

∂β
= [

∂π ′
(i1)

∂β
, . . . ,

∂π ′
(it)

∂β
, . . . ,

∂π ′
(iT )

∂β
] : (J−1)(p+1)× (J−1)T, (4.36)

where

∂π(it) j

∂β ∗
j

= π(it) j[1−π(it) j]w
∗
it

∂π(it) j

∂β ∗
k

= −[π(it) jπ(it)k]w
∗
it , (4.37)

yielding

∂π(it) j

∂β
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−π(it)1π(it) j
...

π(it) j[1−π(it) j]
...

−π(it)(J−1)π(it) j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊗w∗
it : (J−1)(p+1)×1

=
[
π(it) j(δ j −π(it))

]⊗w∗
it , (4.38)

with δ j = [01′j−1,1,01′J−1− j]
′ for j = 1, . . . ,J−1. Thus,

∂π ′
(it)

∂β
= Σ(i,tt)(β )⊗w∗

it : (J−1)(p+1)× (J−1). (4.39)
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By using (4.39) in (4.36), one obtains the (J − 1)(p + 1)× (J − 1)T derivative
matrix as

∂π ′
(i)

∂β
=
(

Σ(i,11)(β )⊗w∗
i1 · · · Σ(i,tt)(β )⊗w∗

it · · · Σ(i,TT )(β )⊗w∗
iT

)

= D′
i(w

∗
i ,Σ(i)(β )) : (J−1)(p+1)× (J−1)T, (say). (4.40)

Consequently, by using (4.40) in (4.35), we now solve the GQL estimating equation

K

∑
i=1

D′
i(w

∗
i ,Σ(i)(β ))Σ−1

(i) (β ,ρM)(yi −π(i)) = 0, (4.41)

for β . By treating β in D′
i(w

∗
i ,Σ(i)(β )) and Σ(i)(β ,ρM) as known from a previous

iteration, this estimating equation (4.41) is solved iteratively by using

β̂ (r+1) = β̂ (r)+

⎡

⎣

{
K

∑
i=1

D′
i(w

∗
i ,Σ(i)(β ))Σ−1

(i) (β ,ρM)Di(w
∗
i ,Σ(i)(β ))

}−1

×
{

K

∑
i=1

D′
i(w

∗
i ,Σ(i)(β ))Σ−1

(i) (β ,ρM)(yi −π(i))

}]

|β=β̂ (r)

, (4.42)

until convergence.
Note that it is necessary to estimate ρM in order to use the iterative equation

(4.42). An unbiased (hence consistent under some mild conditions) estimator of ρM

may be obtained by using the method of moments as follows.

4.3.2.1 Moment Estimation for ρM

For u(= t −1)< t, it follows from (4.34) that

cov[Yit ,Yi,t−1] = Σ(i,(t−1)t)(β ,ρM)

= ρMΣ(i,(t−1)(t−1))(β )

= ρMvar[Yi,t−1]. (4.43)

Consequently, one may obtain a moment estimate of ρM as

ρ̂M =

[
K

∑
i=1

Σ̂(i,(t−1)(t−1))(β )

]−1 K

∑
i=1

Σ̂(i,(t−1)t)(β ,ρM), (4.44)



260 4 Regression Models For Univariate Longitudinal Non-stationary Categorical Data

where

Σ̂(i,(t−1)t)(β ,ρM) =
1

T −1

T

∑
t=2

[(yi,t−1,g −π(i,t−1)g)(yit j −π(it) j)] : g, j = 1, . . . ,J−1

Σ̂(i,(t−1)(t−1))(β ) =
1

T −1

T

∑
t=2

[(yi,t−1,g −π(i,t−1)g)(yi,t−1, j −π(i,t−1) j)] : g, j = 1, . . . ,J−1.

(4.45)

4.3.3 Likelihood Estimation of the Parameters

Using the notation from (4.20), similar to Chap. 3, more specifically Sect. 3.4.1.3,
one writes the likelihood function for β and ρM as

L(β ,ρM) = Π K
i=1

[
f (yi1)Π T

t=2 f (yit |yi,t−1)
]
, (4.46)

where

f (yi1) ∝ Π J
j=1πyi1 j

(i1) j,

f (yit |yi,t−1) ∝ Π J
j=1Π J

g=1

[
λ ( j)

it|t−1(y
(g)
i,t−1)

]yit j
, for t = 2, . . . ,T, (4.47)

where

λ (J)
it|t−1(y

(g)
i,t−1) = 1−

J−1

∑
k=1

λ (k)
it|t−1(y

(g)
i,t−1) with λ (k)

it|t−1(y
(g)
i,t−1) = π(it)k +ρ ′

k(y
(g)
i,t−1 −π(i,t−1)).

The likelihood function in (4.46) may be re-expressed as

L(β ,ρM) = c0

[
Π K

i=1Π J
j=1πyi1 j

(i1) j

]

× Π K
i=1Π T

t=2Π J
j=1Π J

g=1

{
λ ( j)

it|t−1(y
(g)
i,t−1)

}yit j
, (4.48)

where c0 is the normalizing constant free from any parameters. Next, by using the

abbreviation λ ( j)
it|t−1(y

(g)
i,t−1)≡ λ ( j)

it|t−1(g), the log likelihood function is written as

Log L(β ,ρM) = log c0 +
K

∑
i=1

J

∑
j=1

yi1 jlog π(i1) j

+
K

∑
i=1

T

∑
t=2

J

∑
g=1

J

∑
j=1

[
yit jlog λ ( j)

it|t−1(g)
]
. (4.49)
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For convenience, the conditional probabilities in (4.49) may be expressed as

λ ( j)
it|t−1(g) =

{
π(it) j +ρ ′

j(δg −π(i,t−1)) for j = 1, . . . ,J−1; g = 1, . . . ,J
1−∑J−1

k=1

[
π(it)k +ρ ′

k(δg −π(i,t−1))
]

for j = J; g = 1, . . . ,J,

(4.50)

where, similar to (3.155),

δg =

{
[01′g−1,1,01′J−1−g]

′ for g = 1, . . . ,J−1
01J−1 for g = J.

4.3.3.1 Likelihood Estimating Equation for β

To compute the likelihood equation for β , we first compute the derivatives
∂π(i1) j

∂β

and
∂λ ( j)

it|t−1(g)

∂β for all j = 1, . . . ,J, as follows.

Formula for
∂π(i1) j

∂β

∂π(i1) j

∂β
=

{[
π(i1) j(δ j −π(i1))

]⊗w∗
i1 for j = 1, . . . ,J−1

[
π(i1)J(01J−1 −π(i1))

]⊗w∗
i1 for j = J

=
[
π(i1) j(δ j −π(i1))

]⊗w∗
i1, for all j = 1, . . . ,J, (4.51)

with

δ j =

{
[01′j−1,1,01′J−1− j]

′ for j = 1, . . . ,J−1
01J−1 for j = J.

Formula for
∂λ ( j)

it|t−1(g)

∂β for t = 2, . . . ,T and all g = 1, . . . ,J

∂λ ( j)
it|t−1(g)

∂β
=

∂
∂β

{
π(it) j +ρ ′

j(δg −π(i,t−1)) for j = 1, . . . ,J−1

1−∑J−1
k=1

[
π(it)k +ρ ′

k(δg −π(i,t−1))
]

for j = J,

=
∂

∂β

⎧
⎨

⎩

π(it) j −π ′
(i,t−1)ρ j for j = 1, . . . ,J−1

−∑J−1
k=1

[
π(it)k −π ′

(i,t−1)ρk

]
for j = J,

=

⎧
⎨

⎩

[
{π(it) j(δ j −π(it))}⊗w∗

it

]
+
[
Σ(i,t−1,t−1)(β )⊗w∗

i,t−1

]
ρ j for j = 1, . . . ,J−1

[
{π(it)J(δJ −π(it))}⊗w∗

it

]
+
[
Σ(i,t−1,t−1)(β )⊗w∗

i,t−1

]

∑J−1
k=1 ρk for j = J,

,

(4.52)
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by (4.38)–(4.39). By using ρJ = ∑J−1
k=1 ρk, this derivative in (4.52), for convenience,

may be expressed as

∂λ ( j)
it|t−1(g)

∂β
=
[{π(it) j(δ j −π(it))}⊗w∗

it

]
+
[
Σ(i,t−1,t−1)(β )⊗w∗

i,t−1

]
ρ j, (4.53)

for all j = 1, . . . ,J; t = 2, . . . ,T, and g = 1, . . . ,J.
Now by using (4.51) and (4.53), one derives the likelihood equation for β from

(4.49) as

∂Log L(β ,ρM)

∂β
=

K

∑
i=1

J

∑
j=1

yi1 j

π(i1) j

[
π(i1) j(δ j −π(i1))

]⊗w∗
i1

+
K

∑
i=1

T

∑
t=2

J

∑
g=1

J

∑
j=1

⎡

⎣
yit j

λ ( j)
it|t−1(g)

[({π(it) j(δ j −π(it))}⊗w∗
it

)

+
(
Σ(i,t−1,t−1)(β )⊗w∗

i,t−1

)
ρ j
]]

= 0. (4.54)

This equation is solved for β estimate iteratively by using the iterative formula

β̂ (r+1) = β̂ (r)−
[{

∂ 2Log L(β ,ρM)

∂β ′∂β

}−1

×
{

∂Log L(β ,ρM)

∂β

}]

|β=β̂ (r)
, (4.55)

until convergence. Similar to the derivation of the iterative equation (4.42) under the

GQL approach, we compute the second order derivative ∂ 2Log L(β ,ρM)
∂β ′∂β by treating β

involved in the first derivative formulas
∂π(i1) j

∂β and
∂λ ( j)

it|t−1(g)

∂β , as known, from the
previous iteration. This provides a simpler formula for the second order derivative
as given by

∂ 2Log L(β ,ρM)

∂β ′∂β
=−

K

∑
i=1

T

∑
t=2

J

∑
g=1

J

∑
j=1

⎡

⎣
yit j

{λ ( j)
it|t−1(g)}2

× [({π(it) j(δ j −π(it))}⊗w∗
it

)
+
(
Σ(i,t−1,t−1)(β )⊗w∗

i,t−1

)
ρ j
]

× [({π(it) j(δ j −π(it))}⊗w∗
it

)
+
(
Σ(i,t−1,t−1)(β )⊗w∗

i,t−1

)
ρ j
]′]

(4.56)
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4.3.3.2 Likelihood Estimating Equation for ρM

Recall from (4.23) that

ρM =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ ′
1
...

ρ ′
j

...
ρ ′

J−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

: (J−1)× (J−1).

Thus, to compute the likelihood equation from (4.49) for ρM, we first compute the

derivatives
∂λ ( j)

it|t−1(g)

∂ρk
for j = 1, . . . ,J, and k = 1, . . . ,J−1, as follows.

Formula for
∂λ ( j)

it|t−1(g)

∂ρ j
for t = 2, . . . ,T ; g = 1, . . . ,J; and k = 1, . . . ,J−1

By (4.50),

∂λ ( j)
it|t−1(g)

∂ρk
=

∂
∂ρk

{
π(it) j +ρ ′

j(δg −π(i,t−1)) for j = 1, . . . ,J−1
1−∑J−1

h=1

[
π(it)h +ρ ′

h(δg −π(i,t−1))
]

for j = J,

=

⎧
⎨

⎩

(δg −π(i,t−1)) for j = 1, . . . ,J−1; k = j
0 for j = 1, . . . ,J−1; k �= j
−(δg −π(i,t−1)) for j = J; k = 1, . . . ,J−1.

(4.57)

It then follows from (4.49) that the likelihood estimating equation for ρk, k =
1, . . . ,J−1, is given by

∂Log L(β ,ρM)

∂ρk
=

K

∑
i=1

T

∑
t=2

J

∑
g=1

⎡

⎣
J−1

∑
j=1

yit j

λ ( j)
it|t−1(g)

I j|k(δg −π(i,t−1))

− yitJ

λ (J)
it|t−1(g)

(δg −π(i,t−1))

⎤

⎦= 0, (4.58)

where, for a selected value of k, I j|k is an indicator variable such that

I j|k =
{

1 for j = k
0 for j �= k,
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leading to the estimating equations for the elements of ρ∗=(ρ ′
1, . . . ,ρ ′

j, . . . ,ρ ′
J−1)

′ as

∂Log L(β ,ρM)

∂ρ∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂Log L(β ,ρM)
∂ρ1
...

∂Log L(β ,ρM)
∂ρk
...

∂Log L(β ,ρM)
∂ρJ−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0 : (J−1)2 ×1. (4.59)

Similar to Chap. 3 (see (3.201)), one may solve these likelihood equations in (4.59)
for ρ∗ by using the iterative equation

ρ̂∗(r+1) = ρ̂∗(r)−
[{

∂ 2Log L(β ,ρM)

∂ρ∗∂ρ∗′

}−1 ∂Log L(β ,ρM)

∂ρ∗

]

|ρ∗=ρ̂∗(r)
, (4.60)

where the (J − 1)2 × (J − 1)2 second derivative matrix is computed by using the
formulas

∂ 2Log L(β ,ρM)

∂ρk∂ρ ′
k

= −
K

∑
i=1

T

∑
t=2

J

∑
g=1

⎡

⎣
J−1

∑
j=1

yit j

{λ ( j)
it|t−1(g)}2

I j|k(δg −π(i,t−1))(δg −π(i,t−1))
′

+
yitJ

{λ (J)
it|t−1(g)}2

(δg −π(i,t−1))(δg −π(i,t−1))
′
⎤

⎦ , (4.61)

for all k = 1, . . . ,J−1, and

∂ 2Log L(β ,ρM)

∂ρh∂ρ ′
k

=−
K

∑
i=1

T

∑
t=2

J

∑
g=1

⎡

⎣
yitJ

{λ (J)
it|t−1(g)}2

(δg −π(i,t−1))(δg −π(i,t−1))
′
⎤

⎦ ,

(4.62)

for all h �= k;h,k = 1, . . . ,J−1.

4.4 NSMDL Model

The MDL models with time independent covariates were discussed in Chap. 3, more
specifically in Sect. 3.5.2. In this section we deal with a general MDL model where
covariates can be time dependent. As far as the marginal probabilities at time t = 1
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are concerned, they remain the same as in (4.1), see also (4.35) under the LDCMP
model. For convenience we rewrite these probabilities from (4.35) as

P[yi1 = y( j)
i1 = δi1 j] = π(i1) j =

⎧
⎪⎨

⎪⎩

exp(w∗′
i1 β ∗

j )

1+∑J−1
g=1 exp(w∗′

i1 β ∗
g )

for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(w∗′
i1 β ∗

g )
for j = J,

(4.63)

where w∗
i1 =

(
1 w′

i1

)′
, wi1 being the p-dimensional covariate vector recorded at time

t = 1, and β ∗
j = (β j0,β ′

j)
′ is the effect of w∗

i1, leading to the regression parameters
set as

β ≡ (β ∗
1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′)′ : (J−1)(p+1)×1.

However, unlike the LDCMP model (4.20), at times t = 2, . . . ,T, we now use the
logit type non-linear conditional probabilities given by

η( j)
it|t−1(g) = P

(
Yit = y( j)

it

∣
∣
∣Yi,t−1 = y(g)i,t−1

)
=

⎧
⎪⎪⎨

⎪⎪⎩

exp
[
w∗′

it β∗
j +γ ′j y

(g)
i,t−1

]

1+∑J−1
v=1 exp

[
w∗′

it β∗
v +γ ′vy

(g)
i,t−1

] , for j = 1, . . . ,J−1

1

1+∑J−1
v=1 exp

[
w∗′

it β∗
v +γ ′vy

(g)
i,t−1

] , for j = J,

(4.64)

where γ j = (γ j1, . . . ,γ jv, . . . ,γ j,J−1)
′ denotes the dynamic dependence parameters,

which may be referred to as the correlation index or a particular type of odds
ratio parameters. More specifically, the correlations of the repeated multinomial
responses will be functions of these γ parameters. Furthermore, the marginal
probabilities (4.63) at time t = 1 and conditional probabilities (4.64) for t = 2, . . . ,T,
yield the marginal probabilities at time t(t = 2, . . .) as function of w∗′

it and they
are also influenced by γ parameters. Suppose that unlike in the LDCMP model,
we use π̃(it) j for the marginal probabilities under the present MDL model for all
time t = 1, . . . ,T. When marginal probabilities under the MDL model are computed
recursively by using (4.63) and (4.64), it becomes clear that even though

π̃(i1) j = P[yi1 = y( j)
i1 ] = π(i1) j =

⎧
⎪⎨

⎪⎩

exp(w∗′
i1 β ∗

j )

1+∑J−1
g=1 exp(w∗′

i1 β ∗
g )

for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(w∗′
i1 β ∗

g )
for j = J,

(4.65)

π̃(it) j = P[yit = y( j)
it ] �= π(it) j =

⎧
⎪⎨

⎪⎩

exp(w∗′
it β ∗

j )

1+∑J−1
g=1 exp(w∗′

it β ∗
g )

for j = 1, . . . ,J−1; t = 2, . . . ,T

1
1+∑J−1

g=1 exp(w∗′
it β ∗

g )
for j = J; t = 2, . . . ,T.

(4.66)

The formulas for the marginal probabilities π̃(it) j are given below under the basic
properties of the model (4.63)–(4.64).
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4.4.1 Basic Moment Properties of the MDL Model

4.4.1.1 Marginal Expectation Vector and Covariance Matrix at t = 1

For t = 1, the expectation and covariance matrix of the response vector yi1 are the
same as in (4.21) and (4.29) under the LDCMP model. That is,

E[Yi1] =
J

∑
g=1

y(g)i1 P[Yi1 = y(g)i1 ] =
J

∑
g=1

y(g)i1 π(i1)g

= [π(i1)1, . . . ,π(i1) j, . . . ,π(i1)(J−1)]
′ = π(i1)

≡ [π̃(i1)1, . . . , π̃(i1) j, . . . , π̃(i1)(J−1)]
′

= π̃(i1) : (J−1)×1, (4.67)

and

var[Yi1] = diag[π(i1)1, . . . ,π(i1) j, . . . ,π(i1),J−1]−π(i1)π ′
(i1) = Σ(i,11)(β )

≡ diag[π̃(i1)1, . . . , π̃(i1) j, . . . , π̃(i1),J−1]− π̃(i1)π̃ ′
(i1)

= Σ̃(i,11)(β ), (say). (4.68)

4.4.1.2 Marginal Expectation Vectors and Covariance Matrices
for t = 2, . . . , T

For t = 2, . . . ,T, by using the initial marginal model (4.63) for t = 1 and the
conditional probability model (4.64) for t = 2, . . . ,T, one may derive the recursive
relationships for the unconditional means, variance and covariance matrices (see
also Loredo-Osti and Sutradhar 2012, unpublished Ph.D. thesis by Chowdhury
2011) as

E[Yit ] = π̃(it)(β ,γ) = η(it|t−1)(J)+
[
η(it|t−1),M −η(it|t−1)(J)1

′
J−1

]
π̃(i,t−1)

= (π̃(it)1, . . . , π̃(it) j, . . . , π̃(it)(J−1))
′ : (J−1)×1 (4.69)

var[Yit ] = diag[π̃(it)1, . . . , π̃(it) j, . . . , π̃(it)(J−1)]− π̃(it)π̃ ′
(it)

= (cov(Yit j,Yitk)) = (σ̃(i,tt) jk), j,k = 1, . . . ,J−1

= Σ̃(i,tt)(β ,γ) (4.70)

cov[Yiu,Yit ] = Π t
s=u+1

[
η(is|s−1),M −η(is|s−1)(J)1

′
J−1

]
var[Yiu], for u < t

= (cov(Yiu j,Yitk)) = (σ̃(i,ut) jk), j,k = 1, . . . ,J−1

= Σ̃(i,ut)(β ,γ), (4.71)
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where

η(is|s−1)(J) = [η(1)
is|s−1(J), . . . ,η

( j)
is|s−1(J) . . . ,η

(J−1)
is|s−1(J)]

′ = π(is) : (J−1)×1, by (4.64) and (4.66);

η(is|s−1),M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η(1)
is|s−1(1) · · · η(1)

is|s−1(g) · · · η(1)
is|s−1(J−1)

...
...

...
...

...

η( j)
is|s−1(1) · · · η( j)

is|s−1(g) · · · η( j)
is|s−1(J−1)

...
...

...
...

...

η(J−1)
is|s−1(1) · · · η(J−1)

is|s−1(g) · · · η(J−1)
is|s−1(J−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

: (J−1)× (J−1),

with

η( j)
is|s−1(g) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp
[
w∗′

is β ∗
j +γ jg

]

1+∑J−1
v=1 exp

[
w∗′

is β ∗
v +γvg

] , for j = 1, . . . ,J−1; g = 1, . . . ,J−1

exp
[
w∗′

is β ∗
j

]

1+∑J−1
v=1 exp

[
w∗′

is β ∗
v

] , for j = 1, . . . ,J−1; g = J,

(4.72)
by (4.64).

4.4.1.3 Illustration

We illustrate the computation of the marginal means, variance and covariances for
the case with T = 2.

For t = 1, the formulas for the mean E[Yi1], variance–covariance matrix var[Yi1]
are derived in (4.67) and (4.68), respectively.

For t = 2, the formula for E[Yi2] given in (4.69) can be derived, for example, as
follows:

Computation of E[Yi2]:

E[Yi2] = EYi1 E[Yi2|yi1]

= EYi1 [
J

∑
j=1

y( j)
i2 η( j)

i2|1(yi1)] (4.73)

= EYi1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η(1)
i2|1(yi1)

...

η( j)
i2|1(yi1)

...

η(J−1)
i2|1 (yi1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= EYi1 [ηi2|1(yi1)], (4.74)
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where η( j)
it|t−1(y

(g)
i1 ) is given by (4.64). Next because

Yi1 = y(g)i1 =

{
(y(g)i11, . . . , y(g)i1g, . . . ,y

(g)
i1,J−1)

′ = (01′g−1, 1, 01′J−1−g)
′ for g = 1, . . . ,J−1;

(01J−1) for g = J,

(4.75)

with

P[Yi1 = y(g)i1 ] = π(i1)g ≡ π̃(i1)g,

where

π̃(i1)J = 1−
J−1

∑
g=1

π̃(i1)g,

it then follows that

EYi1 [ηi2|1(yi1)] =
J

∑
g=1

[ηi2|1(y
(g)
i1 )]π̃(i1)g

=
J

∑
g=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η(1)
i2|1(g)

...

η( j)
i2|1(g)

...

η(J−1)
i2|1 (g)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

π̃(i1)g

=
J−1

∑
g=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η(1)
i2|1(g)

...

η( j)
i2|1(g)

...

η(J−1)
i2|1 (g)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

π̃(i1)g +

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η(1)
i2|1(J)

...

η( j)
i2|1(J)

...

η(J−1)
i2|1 (J)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

[1−
J−1

∑
g=1

π̃(i1)g]

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η(1)
i2|1(J)

...

η( j)
i2|1(J)

...

η(J−1)
i2|1 (J)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+
J−1

∑
g=1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η(1)
i2|1(g)

...

η( j)
i2|1(g)

...

η(J−1)
i2|1 (g)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η(1)
i2|1(J)

...

η( j)
i2|1(J)

...

η(J−1)
i2|1 (J)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

π̃(i1)g
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=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η(1)
i2|1(J)

...

η( j)
i2|1(J)

...

η(J−1)
i2|1 (J)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η(1)
i2|1(1) · · · η(1)

i2|1(g) · · · η(1)
i2|1(J−1)

...
...

...
...

...

η( j)
i2|1(1) · · · η( j)

i2|1(g) · · · η( j)
i2|1(J−1)

...
...

...
...

...

η(J−1)
i2|1 (1) · · · η(J−1)

i2|1 (g) · · · η(J−1)
i2|1 (J−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η(1)
i2|1(J)

...

η( j)
i2|1(J)

...

η(J−1)
i2|1 (J)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1′J−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

π̃(i1)

= η(i2|1)(J)+
[
η(i2|1),M −η(i2|1)(J)1′J−1

]
π̃(i1)

= π̃(i2) = [π̃(i2)1, . . . , π̃(i2) j, . . . , π̃(i2)(J−1)]
′. (4.76)

Computation of var[Yi2] :

var[Yi2] = E[Yi2 − π̃(i2)][Yi2 − π̃(i2)]
′

= E[Yi2Y ′
i2]− π̃(i2)π̃ ′

(i2). (4.77)

Notice from (4.64) that

η( j)
i2|1(g) = P

(
Yi2 = y( j)

i2

∣
∣
∣Yi1 = y(g)i1

)

for all j with η(J)
i2|1(g) = 1−∑J−1

j=1 η( j)
i2|1(g), yielding the conditional multinomial

covariance matrix

var[Yi2|y(g)i1 ] = diag[η(1)
i2|1(g), . . . ,η

( j)
i2|1(g), . . . ,η

(J−1)
i2|1 (g)]−ηi2|1(g)η ′

i2|1(g),
(4.78)

where

ηi2|1(g) = [η(1)
i2|1(g), . . . ,η

( j)
i2|1(g), . . . ,η

(J−1)
i2|1 (g)]′.

By (4.78), it then follows from (4.77) that

var[Yi2] = EYi1 E[Yi2Y ′
i2|yi1]− π̃(i2)π̃ ′

(i2)

= EYi1 diag[η(1)
i2|1(yi1), . . . ,η

( j)
i2|1(yi1), . . . ,η

(J−1)
i2|1 (yi1)]− π̃(i2)π̃ ′

(i2)

= diag[π̃(i2)1, . . . , π̃(i2) j, . . . , π̃(i2)(J−1)]− π̃(i2)π̃ ′
(i2), (4.79)

by (4.76).
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Computation of cov[Yi2,Yi1] :

cov[Yi2,Yi1] = EYi1Yi1E[Y ′
i2|yi1]− π̃(i1)π̃ ′

(i2)

= EYi1Yi1[η
(1)
i2|1(yi1), . . . ,η

( j)
i2|1(yi1), . . . ,η

(J−1)
i2|1 (yi1)]− π̃(i1)π̃ ′

(i2)

=
J

∑
g=1

[
y(g)i1

{
η(1)

i2|1(y
(g)
i1 ), . . . ,η( j)

i2|1(y
(g)
i1 ), . . . ,η(J−1)

i2|1 (y(g)i1 )
}]

π̃(i1)g − π̃(i1)π̃ ′
(i2)

= diag[π̃(i1)1, . . . , π̃(i1) j, . . . , π̃(i1)(J−1)]

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η(1)
i2|1(1) · · · η( j)

i2|1(1) · · · η(J−1)
i2|1 (1)

...
...

...
...

...

η(1)
i2|1( j) · · · η( j)

i2|1( j) · · · η(J−1)
i2|1 ( j)

...
...

...
...

...

η(1)
i2|1(J−1) · · · η j

i2|1(J−1) · · · η(J−1)
i2|1 (J−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

− π̃(i1)π̃ ′
(i2)

= diag[π̃(i1)1, . . . , π̃(i1) j, . . . , π̃(i1)(J−1)]η ′
(i2|1),M − π̃(i1)π̃ ′

(i2)

= diag[π̃(i1)1, . . . , π̃(i1) j, . . . , π̃(i1)(J−1)]η ′
(i2|1),M

− π̃(i1)

[
η(i2|1)(J)+

[
η(i2|1),M −η(i2|1)(J)1′J−1

]
π̃(i1)

]′

= diag[π̃(i1)1, . . . , π̃(i1) j, . . . , π̃(i1)(J−1)]η ′
(i2|1),M

− π̃(i1)η ′
(i2|1)(J)− π̃(i1)π̃ ′

(i1)η
′
(i2|1),M + π̃(i1)π̃ ′

(i1)1J−1η ′
(i2|1)(J)

= diag[π̃(i1)1, . . . , π̃(i1) j, . . . , π̃(i1)(J−1)]η ′
(i2|1),M

− diag[π̃(i1)1, . . . , π̃(i1) j, . . . , π̃(i1)(J−1)]1J−1η ′
(i2|1)(J)− π̃(i1)π̃ ′

(i1)η
′
(i2|1),M

+ π̃(i1)π̃ ′
(i1)1J−1η ′

(i2|1)(J)

= var[Yi1]
[
η ′
(i2|1),M −1J−1η ′

(i2|1)(J)
]

=
[
η(i2|1),M −η(i2|1)(J)1′J−1

]
var[Yi1]. (4.80)

4.4.2 Existing Models for Dynamic Dependence Parameters
and Drawbacks

Recall from (4.6) that odds ratios are, in general, defined based on joint probabilities
or joint cell frequencies from an associated contingency table. However by defining
odds ratios based on a transitional or conditional (on previous time) contingency
table, such as Table 3.24 from Chap. 3, one may verify that the dynamic dependence
parameters {γ jg} parameters in the conditional probabilities (4.64) (see also (4.72))
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have interpretation of such odds ratio parameters. To be specific, irrespective of time
t = 2, . . . ,T, the lag 1 dynamic dependence parameter may be expressed as

γ jg ≡ γ jg(t|t −1)

= log
η( j)

it|t−1(g)η
(J)
it|t−1(J)

η(J)
it|t−1(g)η

( j)
it|t−1(J)

. (4.81)

To illustrate this odds ratio, consider J = 3, for example. By (4.72) one writes

η(1)
it|t−1(1) =

exp
[
w∗′

it β ∗
1 + γ11

]

1 + ∑2
v=1 exp

[
w∗′

it β ∗
v + γv1

] ; η(2)
it|t−1(1) =

exp
[
w∗′

it β ∗
2 + γ21

]

1 + ∑2
v=1 exp

[
w∗′

it β ∗
v + γv1

] ;

η(3)
it|t−1(1) =

1

1 + ∑2
v=1 exp

[
w∗′

it β ∗
v + γv1

] ; η(1)
it|t−1(2) =

exp
[
w∗′

it β ∗
1 + γ12

]

1 + ∑2
v=1 exp

[
w∗′

it β ∗
v + γv2

] ;

η(2)
it|t−1(2) =

exp
[
w∗′

it β ∗
2 + γ22

]

1 + ∑2
v=1 exp

[
w∗′

it β ∗
v + γv2

] ; η(3)
it|t−1(2) =

1

1 + ∑2
v=1 exp

[
w∗′

it β ∗
v + γv2

] ;

η(1)
it|t−1(3) =

exp
[
w∗′

it β ∗
1

]

1 + ∑2
v=1 exp

[
w∗′

it β ∗
v

] ; η(2)
it|t−1(3) =

exp
[
w∗′

it β ∗
2

]

1 + ∑2
v=1 exp

[
w∗′

it β ∗
v

] ;

η(3)
it|t−1(3) =

1

1 + ∑2
v=1 exp

[
w∗′

it β ∗
v

] . (4.82)

It is clear, for example, that

η(1)
it|t−1(2)η

(3)
it|t−1(3)

η(3)
it|t−1(2)η

(1)
it|t−1(3)

=
exp

[
w∗′

it β ∗
1 + γ12

]

exp
[
w∗′

it β ∗
1

] , (4.83)

yielding

γ12 = log
η(1)

it|t−1(2)η
(3)
it|t−1(3)

η(3)
it|t−1(2)η

(1)
it|t−1(3)

. (4.84)

Note that these dynamic dependence parameters {γ jg(t|t−1), j,g= 1, . . . ,J−1}
in conditional probabilities also get involved in the joint and marginal probabilities.
For example, by (4.69),

P[Yit = y( j)
it ] = π̃(it) j = E[Y ( j)

it ]

= η( j)
it|t−1(J)+

J−1

∑
g=1

[{η( j)
it|t−1(g)−η( j)

it|t−1(J)}π̃(i,t−1) j], (4.85)
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showing that {γ jg(t|t − 1), j,g = 1, . . . ,J − 1} are involved in the marginal proba-
bility in a complicated way. Some authors such as Chen et al. (2009, Eq. (4), see
also Sect. 3.1) determine the values of these dynamic dependence parameters by
equating π̃(it) j in (4.85) to a LDCM (4.20) type marginal probability

π(it) j =

⎧
⎪⎨

⎪⎩

exp(w∗′
it β ∗

j )

1+∑J−1
g=1 exp(w∗′

it β ∗
g )

for j = 1, . . . ,J−1; t = 2, . . . ,T

1
1+∑J−1

g=1 exp(w∗′
it β ∗

g )
for j = J; t = 2, . . . ,T.

But as shown in (4.66), under the present MDL model, marginal probabilities except
for initial time t = 1, do not have the form as π(it) j. That is,

π̃(it) j = P[yit = y( j)
it ] �= π(it) j. (4.86)

Thus, the restriction, that is, π̃(it) j = P[yit = y( j)
it ] = π(it) j, used in Chen et al. (2009,

Eq. (4), see also Section 3.1) to understand the odds ratio parameters, is not justified.
In fact, as we demonstrate in the next section, under the present MDL model

(4.63)–(4.64), the dynamic dependence parameters {γ jg(t|t −1), j,g = 1, . . . ,J−1}
along with regression parameters (β ), can be estimated easily by using the
traditional likelihood estimation method, without any additional restrictions.

4.5 Likelihood Estimation for NSMDL Model Parameters

The likelihood estimation for a similar MDL model was discussed in Chap. 3,
more specifically in Sect. 3.4.2 for an MDL model involving no covariates (see
Eqs. (3.206)–(3.207)) and in Sect. 3.5.2 for an MDL model involving a categorical
covariate with p+ 1 levels (see Eqs. (3.275)–(3.276)). In this section, we construct
the likelihood function and develop estimating equations for the parameters of
the general NSMDL model (see Eqs. (4.63)–(4.64)), where covariates involved are
general, that is, they can vary from individual to individual and they can be time
dependent as well. These general covariates are denoted by w∗

it =
(
1 w′

it

)′
, wit

being the p-dimensional covariate vector recorded from the ith individual at time
t = 1, . . . ,T.

4.5.1 Likelihood Function

Note that yit is a J category based multinomial variable at any time point t = 1, . . . ,T.
At t = 1, yi1 has the marginal distribution as

f (yi1) =
1!

yi11! . . .yi1 j! . . .yi1,J−1!yi1J!
Π J

j=1

[
π(i1) j

]yi1 j , (4.87)
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where by (4.63),

π(i1) j =

⎧
⎪⎨

⎪⎩

exp(w∗′
i1 β ∗

j )

1+∑J−1
g=1 exp(w∗′

i1 β ∗
g )

for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(w∗′
i1 β ∗

g )
for j = J.

Next, at time t = 2, . . . ,T, conditional on Yi,t−1 = y(g)i,t−1, one may write the
conditional distribution of yit as

f (yit |y(g)i,t−1) =
1!

yit1! . . .yit j! . . .yit,J−1!yitJ!
Π J

j=1

[
η( j)

it|t−1(g)
]yit j

, g = 1, . . . ,J

(4.88)
where η( j)

it|t−1(g) for j = 1, . . . ,J, by (4.64), have the formulas

η( j)
it|t−1(g) = P

(
Yit = y( j)

it

∣
∣
∣Yi,t−1 = y(g)i,t−1

)
=

⎧
⎪⎪⎨

⎪⎪⎩

exp
[
w∗′

it β ∗
j +γ ′jy

(g)
i,t−1

]

1+∑J−1
v=1 exp

[
w∗′

it β ∗
v +γ ′vy(g)i,t−1

] , for j = 1, . . . ,J−1

1

1+∑J−1
v=1 exp

[
w∗′

it β ∗
v +γ ′vy(g)i,t−1

] , for j = J,

where γ j = (γ j1, . . . ,γ jv, . . . ,γ j,J−1)
′ denotes the dynamic dependence parameters.

Similar to (4.1)–(4.3), we use

β ≡ (β ∗
1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′)′ : (J−1)(p+1)×1,

where β ∗
j = (β j0,β ′

j)
′, with β j = [β j1, . . . ,β js, . . . ,β jp]

′. Also, the dynamic depen-
dence parameters are conveniently denoted by γM with

γM =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

γ ′1
...

γ ′j
...

γ ′J−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

: (J−1)× (J−1). (4.89)

One may then write the likelihood function for β and γM, under the present MDL
model, as

L(β ,γM) = Π K
i=1

[
f (yi1)Π T

t=2 f (yit |yi,t−1)
]

=
[
Π K

i=1 f (yi1)
]

× Π K
i=1Π T

t=2Π J
g=1

[
f (yit |y(g)i,t−1)

]

= c∗0
[
Π K

i=1Π J
j=1πyi1 j

(i1) j

]

× Π K
i=1Π T

t=2Π J
j=1Π J

g=1

{
η( j)

it|t−1(y
(g)
i,t−1)

}yit j
, (4.90)
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where c∗0 is the normalizing constant free from any parameters. This yields the log
likelihood function as

Log L(β ,γM) = log c∗0 +
K

∑
i=1

J

∑
j=1

yi1 jlog π(i1) j

+
K

∑
i=1

T

∑
t=2

J

∑
j=1

J

∑
g=1

[
yit jlog η( j)

it|t−1(g)
]
. (4.91)

For further notational convenience, we re-express the conditional probabilities in
(4.91) as

η( j)
it|t−1(g) =

⎧
⎪⎪⎨

⎪⎪⎩

exp
[
w∗′

it β ∗
j +γ ′jδ(i,t−1)g

]

1+∑J−1
v=1 exp

[
w∗′

it β ∗
v +γ ′vδ(i,t−1)g

] , for j = 1, . . . ,J−1

1

1+∑J−1
v=1 exp

[
w∗′

it β ∗
v +γ ′vδ(i,t−1)g

] , for j = J,

where for all i = 1, . . . ,K, and t = 2, . . . ,T, δ(i,t−1)g is defined as

δ(i,t−1)g =

{
[01′g−1,1,01′J−1−g]

′ for g = 1, . . . ,J−1
01J−1 for g = J.

4.5.1.1 Likelihood Estimating Equation for β

It follows from the log likelihood function in (4.91) that the likelihood estimating
equations for β has the form

∂Log L(β ,γM)

∂β
=

K

∑
i=1

J

∑
j=1

yi1 j

π(i1) j

∂π(i1) j

∂β

+
K

∑
i=1

T

∑
t=2

J

∑
j=1

J

∑
g=1

⎡

⎣
yit j

η( j)
it|t−1(g)

∂η( j)
it|t−1(g)

∂β

⎤

⎦= 0, (4.92)

where by (4.37)–(4.38),

∂π(i1) j

∂β ∗
j

= π(i1) j[1−π(i1) j]w
∗
i1

∂π(i1) j

∂β ∗
k

= −[π(i1) jπ(i1)k]w
∗
i1, (4.93)
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yielding

∂π(i1) j

∂β
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−π(i1)1π(i1) j
...

π(i1) j[1−π(i1) j]
...

−π(i1)(J−1)π(i1) j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊗w∗
i1 : (J−1)(p+1)×1

=
[
π(i1) j(δ(i1) j −π(i1))

]⊗w∗
i1, (4.94)

with

δ(i1) j =

{
[01′j−1,1,01′J−1− j]

′ for j = 1, . . . ,J−1; i = 1, . . . ,K
01J−1 for j = J; i = 1, . . . ,K.

Similarly, for t = 2, . . . ,T, it follows from (4.91) that

∂η( j)
it|t−1(g)

∂β ∗
j

= η( j)
it|t−1(g)[1−η( j)

it|t−1(g)]w
∗
it

∂η( j)
it|t−1(g)

∂β ∗
k

= −[η( j)
it|t−1(g)η

(k)
it|t−1(g)]w

∗
it , (4.95)

yielding

∂η( j)
it|t−1(g)

∂β
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−η(1)
it|t−1(g)η

( j)
it|t−1(g)

...

η( j)
it|t−1(g)[1−η( j)

it|t−1(g)]
...

−η(J−1)
it|t−1 (g)η

( j)
it|t−1(g)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊗w∗
it : (J−1)(p+1)×1

=
[
η( j)

it|t−1(g)(δ(i,t−1) j −ηit|t−1(g))
]
⊗w∗

it , (4.96)

where

ηit|t−1(g) = [η(1)
it|t−1(g), . . . ,η

( j)
it|t−1(g), . . . ,η

(J−1)
it|t−1 (g)]

′.



276 4 Regression Models For Univariate Longitudinal Non-stationary Categorical Data

Thus, the likelihood equation in (4.92) has the computational formula

∂Log L(β ,γM)

∂β
=

K

∑
i=1

J

∑
j=1

yi1 j

π(i1) j

[{
π(i1) j(δ(i1) j −π(i1))

}⊗w∗
i1

]

+
K

∑
i=1

T

∑
t=2

J

∑
j=1

J

∑
g=1

yit j

η( j)
it|t−1(g)

[{
η( j)

it|t−1(g)(δ(i,t−1) j −ηit|t−1(g))
}
⊗w∗

it

]
= 0, (4.97)

For given γM (4.89), the likelihood equations in (4.97) may be solved iteratively
by using the iterative equations for β given by

β̂ (r+1) = β̂ (r)−
[{

∂ 2Log L(β ,γM)

∂β ′∂β

}−1 ∂Log L(β ,γM)

∂β

]

|β=β̂ (r)

; (J−1)(p+1)×1,

(4.98)

where the formula for the second order derivative matrix ∂ 2Log L(β ,γM)
∂β ′∂β may be

derived by taking the derivative of the (J −1)(p+1)×1 vector with respect to β ′.
The exact derivative has a complicated formula. We provide an approximation first
and then give the exact formula for the sake of completeness.

An approximation for ∂ 2Log L(β ,γM)
∂β ′∂β based on iteration principle:

In this approach, one assumes that β in the derivatives in (4.92), that is, β involved in
∂π(i1) j

∂β and
∂η( j)

it|t−1(g)

∂β are known from a previous iteration, and then take the derivative

of ∂Log L(β ,γM)
∂β in (4.92) or (4.97), with respect to β ′. This provides a simpler formula

for the second order derivative as

∂ 2Log L(β ,γM)

∂β ′∂β
=−

K

∑
i=1

J

∑
j=1

yi1 j

[π(i1) j]
2

[{
π(i1) j(δ(i1) j −π(i1))

}⊗w∗
i1

][{
π(i1) j(δ(i1) j −π(i1))

}⊗w∗
i1

]′

−
K

∑
i=1

T

∑
t=2

J

∑
j=1

J

∑
g=1

⎡

⎣
yit j

[η( j)
it|t−1(g)]

2

[{
η( j)

it|t−1(g)(δ(i,t−1) j −ηit|t−1(g))
}
⊗w∗

it

]

×
[{

η( j)
it|t−1(g)(δ(i,t−1) j −ηit|t−1(g))

}
⊗w∗

it

]′]
: (J−1)(p+1)× (J−1)(p+1). (4.99)

Exact formula for ∂ 2Log L(β ,γM)
∂β ′∂β :

Here it is assumed that β in the derivatives in (4.92), that is, β involved in
∂π(i1) j

∂β and

∂η( j)
it|t−1(g)

∂β are unknown, implying that the second order derivatives of these quantities
cannot be zero. Hence, instead of (4.99), one obtains

∂ 2Log L(β ,γM)

∂β ′∂β
=−

K

∑
i=1

J

∑
j=1

yi1 j

[π(i1) j]
2

[{
π(i1) j(δ(i1) j −π(i1))

}⊗w∗
i1

][{
π(i1) j(δ(i1) j −π(i1))

}⊗w∗
i1

]′

+
K

∑
i=1

J

∑
j=1

yi1 j

π(i1) j

∂
∂β ′

[{
π(i1) j(δ(i1) j −π(i1))

}⊗w∗
i1

]
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−
K

∑
i=1

T

∑
t=2

J

∑
j=1

J

∑
g=1

⎡

⎣
yit j

[η( j)
it|t−1(g)]

2

[{
η( j)

it|t−1(g)(δ(i,t−1) j −ηit|t−1(g))
}
⊗w∗

it

]

×
[{

η( j)
it|t−1(g)(δ(i,t−1) j −ηit|t−1(g))

}
⊗w∗

it

]′]

+
K

∑
i=1

T

∑
t=2

J

∑
j=1

J

∑
g=1

yit j

η( j)
it|t−1(g)

∂
∂β ′

[{
η( j)

it|t−1(g)(δ(i,t−1) j −ηit|t−1(g))
}
⊗w∗

it

]
, (4.100)

where ∂
∂β ′

[{
π(i1) j(δ(i1) j−π(i1))

}⊗w∗
i1

]
and ∂

∂β ′
[{

η( j)
it|t−1(g)(δ(i,t−1) j−ηit|t−1(g))

}

⊗w∗
it ] are computed as follows.

Computation of ∂
∂β ′

[{
π(i1) j(δ(i1) j −π(i1))

}⊗w∗
i1

]
:

By (4.94),

∂
∂β ′

[{
π(i1) j(δ(i1) j −π(i1))

}⊗w∗
i1

]

=
∂

∂β ′

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−π(i1)1π(i1) j
...

π(i1) j[1−π(i1) j]
...

−π(i1)(J−1)π(i1) j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊗w∗
i1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[
−π(i1)1π(i1) j

{(
δ(i1) j +δ(i1)1 −2π(i1)

)′ ⊗w∗′
i1

}]
⊗w∗

i1[
−π(i1)2π(i1) j

{(
δ(i1) j +δ(i1)2 −2π(i1)

)′ ⊗w∗′
i1

}]
⊗w∗

i1

...[
π(i1) j(1−2π(i1) j)

{(
δ(i1) j −π(i1)

)′ ⊗w∗′
i1

}]
⊗w∗

i1

...[
−π(i1)(J−1)π(i1) j

{(
δ(i1) j +δ(i1)(J−1)−2π(i1)

)′ ⊗w∗′
i1

}]
⊗w∗

i1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.101)

Computation of ∂
∂β ′

[{
η( j)

it|t−1(g)(δ(i,t−1) j −ηit|t−1(g))
}
⊗w∗

it

]
:

By (4.96),

∂
∂β ′

[{
η( j)

it|t−1(g)(δ(i,t−1) j −ηit|t−1(g))
}
⊗w∗

it

]
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=
∂

∂β ′

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−η(1)
it|t−1(g)η

( j)
it|t−1(g)

...

η( j)
it|t−1(g)[1−η( j)

it|t−1(g)]
...

−η(J−1)
it|t−1 (g)η

( j)
it|t−1(g)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊗w∗
it

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[

−η(1)
it|t−1(g)η

( j)
it|t−1(g)

{(
δ(i,t−1) j +δ(i,t−1)1 −2ηit|t−1(g)

)′ ⊗w∗′
it

}]

⊗w∗
it

[

−η(2)
it|t−1(g)η

( j)
it|t−1(g)

{(
δ(i,t−1) j +δ(i,t−1)2 −2ηit|t−1(g)

)′ ⊗w∗′
it

}]

⊗w∗
it

...[

η( j)
it|t−1(g)(1−2η( j)

it|t−1(g))

{(
δ(i,t−1) j −ηit|t−1(g)

)′ ⊗w∗′
it

}]

⊗w∗
it

...[

−η(J−1)
it|t−1 (g)η

( j)
it|t−1(g)

{(
δ(i,t−1) j +δ(i,t−1)(J−1)−2ηit|t−1(g)

)′ ⊗w∗′
it

}]

⊗w∗
it

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(4.102)

4.5.1.2 Likelihood Estimating Equation for γM

Consider γ∗ equivalent to γM (4.89), where

γ∗ = (γ ′1, . . . ,γ ′j, . . . ,γ ′J−1)
′ : (J−1)2 ×1; with γ j = (γ j1, . . . ,γ jh, . . . ,γ j,J−1)

′

(4.103)

as the (J − 1) × 1 vector of dynamic dependence parameters involved in the
conditional multinomial logit function in (4.64). See also (4.91) for an equivalent
but simpler expression for these conditional logit functions. Using this latter form
(4.91), one obtains

∂η(h)
it|t−1(g)

∂γ j
=

⎧
⎪⎪⎨

⎪⎪⎩

δ(i,t−1)gη( j)
it|t−1(g)[1−η( j)

it|t−1(g)] for h = j;h, j = 1, . . . ,J−1

−δ(i,t−1)gη( j)
it|t−1(g)η

(h)
it|t−1(g) for h �= j;h, j = 1, . . . ,J−1

−δ(i,t−1)gη( j)
it|t−1(g)η

(J)
it|t−1(g) for h = J; j = 1, . . . ,J−1,

(4.104)

for all g = 1, . . . ,J. Using these derivatives, it follows from the likelihood function
(4.91) that
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∂Log L(β ,γM)

∂γ j
=

K

∑
i=1

T

∑
t=2

J

∑
h=1

J

∑
g=1

⎡

⎣
yith

η(h)
it|t−1(g)

∂η(h)
it|t−1(g)

∂γ j

⎤

⎦

=
K

∑
i=1

T

∑
t=2

J

∑
g=1

yit jδ(i,t−1)g[1−η( j)
it|t−1(g)]

−
K

∑
i=1

T

∑
t=2

J

∑
g=1

J

∑
h �= j

yith

η(h)
it|t−1(g)

δ(i,t−1)g

(
η( j)

it|t−1(g)η
(h)
it|t−1(g)

)

=
K

∑
i=1

T

∑
t=2

J

∑
g=1

yit jδ(i,t−1)g

−
K

∑
i=1

T

∑
t=2

J

∑
g=1

J

∑
h=1

yithδ(i,t−1)g

(
η( j)

it|t−1(g)
)

= 0, (4.105)

for j = 1, . . . ,J − 1, leading to the estimating equations for the elements of γ∗ =
(γ ′1, . . . ,γ ′j, . . . ,γ ′J−1)

′ as

∂Log L(β ,γM)

∂γ∗
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂Log L(β ,γM)
∂γ1
...

∂Log L(β ,γM)
∂γ j

...
∂Log L(β ,γM)

∂γJ−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0 : (J−1)2 ×1. (4.106)

One may solve this likelihood equation (4.106) for γ∗ by using the iterative equation

γ̂∗(r+1) = γ̂∗(r)−
[{

∂ 2Log L(β ,γM)

∂γ∗∂γ∗′

}−1 ∂Log L(β ,γM)

∂γ∗

]

|γ∗=γ̂∗(r)
, (4.107)

where the (J − 1)2 × (J − 1)2 second derivative matrix is computed by using the
formulas

∂ 2Log L(β ,γM)

∂γ j∂γ ′j
=−

K

∑
i=1

T

∑
t=2

J

∑
g=1

J

∑
h=1

yith

[
η( j)

it|t−1(g)
(

1−η( j)
it|t−1(g)

)
δ(i,t−1)gδ ′

(i,t−1)g

]

(4.108)
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for all j = 1, . . . ,J−1, and

∂ 2Log L(β ,γM)

∂γ j∂γ ′k
=

K

∑
i=1

T

∑
t=2

J

∑
g=1

J

∑
h=1

[
yith

(
η( j)

it|t−1(g)η
(k)
it|t−1(g)

)
δ(i,t−1)gδ ′

(i,t−1)g

]
,

(4.109)
for all j �= k; j,k = 1, . . . ,J−1.
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Chapter 5
Multinomial Models for Cross-Sectional
Bivariate Categorical Data

Let Yi and Zi denote the two multinomial response variables. Suppose that Yi

from the ith (i = 1, . . . ,K) individual belongs to one of J categories, and Zi

belongs to one of R categories (J≥2, R≥2). For example, in a diabetic retinopathy
(DR) study, when left and right eyes retinopathy status of a patient, say in three
categories such as absence of DR, non-severe DR, and severe DR, are studied,
Yi with J = 3, and Zi with R = 3, may be used to represent the three status of
the left and right eyes, respectively. In general, we express these two responses
as yi = (yi1, . . . ,yi j, . . . ,yi,J−1)

′ and zi = (zi1, . . . ,zir, . . . ,zi,R−1)
′. Further if yi falls

into the jth category, then we denote this by yi = y( j)
i = (y( j)

i1 , . . . ,y( j)
i j , . . . ,y

( j)
i,J−1)

′ =
(0′j−1,1,0

′
J−1− j)

′. Similarly, if zi falls into the rth category, we denote this by writing

zi = z(r)i = (z(r)i1 , . . . ,z(r)ir , . . . ,z(r)i,R−1)
′ = (0′r−1,1,0

′
R−1−r)

′.

5.1 Familial Correlation Models for Bivariate Data
with No Covariates

5.1.1 Marginal Probabilities

Before writing the marginal probabilities for each of y and z variables, it is important
to note that because yi and zi are two categorical responses for the same ith
individual, it is quite likely that these responses, on top of category prune effect, will
also be influenced by certain common effect, say ξ ∗

i , shared by both variables. This
common effect is usually treated to be random and will cause correlation between
yi and zi. Suppose that

ξ ∗
i

iid∼ N(0,σ2
ξ ), or equivalently ξi =

ξ ∗
i

σξ

iid∼ N(0,1). (5.1)
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Now as an extension of the univariate multinomial model from Chap. 2, more
specifically from (2.1)–(2.2), it is sensible to condition on ξi and write the marginal
probabilities for yi and zi, as

P[yi = y( j)
i |ξ ∗

i ] = π∗
(i) j·(ξi) =

⎧
⎨

⎩

exp(β j0+σξ ξi)

1+∑J−1
u=1 exp(βu0+σξ ξi)

for j = 1, . . . ,J−1

1
1+∑J−1

h=1 exp(βh0+σξ ξi)
for j = J,

(5.2)

and

P[zi = z(r)i |ξ ∗
i ] = π∗

(i)·r(ξi) =

⎧
⎨

⎩

exp(αr0+σξ ξi)

1+∑R−1
h=1 exp(αh0+σξ ξi)

for r = 1, . . . ,R−1

1
1+∑R−1

h=1 exp(αh0+σξ ξi)
for r = R,

(5.3)

respectively. By (5.1), it follows from (5.2) and (5.3) that the unconditional marginal
probabilities have the forms

π(i) j· = P(yi = y( j)
i ) = Eξi

E[Yi j|ξi] = Eξi
[π∗

(i) j·(ξi)|ξi].

=
∫ ∞

−∞
π∗
(i) j·(ξi) fN(ξi)dξi, (5.4)

and

π(i)·r = P(zi = z(r)i ) = Eξi
E[Zir|ξi] = Eξi

[π∗
(i)·r(ξi)|ξi]

=
∫ ∞

−∞
π∗
(i)·r(ξi) fN(ξi)dξi, (5.5)

with fN(ξi) =
exp(

−ξ 2
i

2 )√
2π .

Note that there is no closed form expressions for these expectations. However, as
shown in Sect. 5.3, they can be computed empirically.

5.1.2 Joint Probabilities and Correlations

As far as the computation of the joint probabilities is concerned, two variables yi

and zi are independent conditional on the common random effect ξi. Thus,

P[{yi = y( j)
i ,zi = z(r)i }|ξi] = π∗

(i) j·(ξi)π∗
(i)·r(ξi)

= π∗
(i) jr(ξi), (say), (5.6)
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yielding the unconditional joint probabilities as

P[yi = y( j)
i ,zi = z(r)i ] =

∫ ∞

−∞
π∗
(i) jr(ξi) fN(ξi)dξi

= π(i) jr. (5.7)

This further produces the correlations between yi j and zir as

corr[Yi j,Zir] =
cov[Yi j,Zir]

[var(Yi j)var(Zir)]
1
2

=
P[yi = y( j)

i ,zi = z(r)i ]−P(yi = y( j)
i )P(zi = z(r)i )

[var(Yi j)var(Zir)]
1
2

=
π(i) jr −π(i) j·π(i)·r

[{π(i) j·(1−π(i) j·)}{π(i)·r(1−π(i)·r)}]
1
2

, (5.8)

where the unconditional marginal and joint probabilities are given in (5.4), (5.5),
and (5.7).

It is clear from (5.4) and (5.5) that the computation of the marginal
probabilities requires the estimation of β = (β10, . . . ,β j0, . . . ,β(J−1)0)

′, α =

(α10, . . . ,αr0, . . . ,α(R−1)0)
′, and σ2

ξ . This inference problem will be discussed
in Sect. 5.3 in detail. In Sect. 5.2, we consider an existing approach of modeling the
joint probabilities by using a two-way ANOVA concept.

5.1.3 Remarks on Similar Random Effects Based Models

For familial data modeling, it is standard to use a common random effect shared
by family members which causes correlations among the responses of the same
family. For this type binary data modeling, we, for example, refer to Sutradhar
(2011, Chapter 5). The bivariate multinomial model introduced in (5.1)–(5.3) may
be treated as a generalization of familial binary model with a family consisting
of two members. The ith individual in (5.1)–(5.3) is compared to ith family with
two (bivariate) responses which are equivalent to responses from two members
of the family. Some other authors such as MacDonald (1994) used individual
random effects to construct correlation models for longitudinal binary data. Various
scenarios for the distribution of the random effects are considered. This approach,
however, appears to be more suitable in the present bivariate multinomial setup as
opposed to the univariate longitudinal setup. As far as the distribution of the random
effects is concerned, in (5.2)–(5.3), we have used normal random effects similar
to Breslow and Clayton (1993), for example, and develop the familial correlation
model through such random effects. In a familial longitudinal setup, Ten Have and
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Morabia (1999) used a mixed model similar to (5.2)–(5.3) to model the binary
data. More specifically, they have used two different random effects for two binary
responses to represent possible overdispersion only, which however do not cause
any familial or structural correlations between the bivariate binary responses at a
given time. The bivariate association between the two binary responses was modeled
through certain additional random effects based odds ratios, but the estimation
of the odds ratios requires an extra regression modeling (equivalent to ‘working’
correlation approach) as pointed out in Chap. 4, specifically in Sect. 4.2.1, which is
a limitation to this approach.

5.2 Two-Way ANOVA Type Covariates Free Joint
Probability Model

Let Kr j and mr j denote the observed and expected counts in the (r, j)-th cell of
a two-way ANOVA type table, where K = ∑R

r=1 ∑J
j=1 Kr j is the total number of

individuals. Suppose that m = ∑R
r=1 ∑J

j=1 mr j. When K individuals are distributed to
the RJ cells following a Poisson distribution, one writes

Kr j ∼ Poi(μr j), r = 1, . . . ,R; j = 1, . . . ,J,

where Poi(μr j) denotes the Poisson distribution with mean μr j, that is,

P(Kr j|μr j) =
exp(−μr j)μ

Kr j
r j

Kr j!
, Kr j = 0,1,2, . . . (5.9)

Also suppose that Kr j’s are independent for all r = 1, . . . ,R; j = 1, . . . ,J. It then
follows that

K =
R

∑
r=1

J

∑
j=1

Kr j ∼ Poi(μ =
R

∑
r=1

J

∑
j=1

μr j),

and conditional on total K, the joint distribution of the counts {Kr j,r �= R∩ j �= J}
has the form

P[{Kr j,r �= R∩ j �= J}|K] =
Π R

r=1Π J
j=1[

exp(−μr j)μ
Kr j
r j

Kr j!
]

exp(−μ)μK

K!

,

where now KRJ = K−∑r �=R∩ j �=J Kr j is known. Now by using πr j =
μr j
μ , one obtains

the multinomial distribution
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P[{Kr j,r �= R∩ j �= J}] = K!

Π R
r=1Π J

j=1Kr j!
Π R

r=1Π J
j=1π∑K

i=1 yi jzir
r j

=
K!

K11! · · ·Kr j! · · ·KRJ!
Π R

r=1Π J
j=1πr j

Kr j . (5.10)

where πRJ = 1−∑r �=R∩ j �=J πr j is known. In (5.10), yi j and zir are the jth and rth
component of the multinomial response vector yi and zi, respectively, as in the
last section. Further, when K = 1, one obtains the desired multinomial distribution
from (5.10) by using Kr j = yi jzir as a special case.

Note that in Poisson case, one models the means {μr j,r = 1, . . . ,R; j = 1, . . . ,J}
or {log(μr j),r = 1, . . . ,R; j = 1, . . . ,J}, and in the multinomial case one models the
probabilities {πr j,r = 1, . . . ,R; j = 1, . . . ,J}. However, as opposed to the random
effects approach discussed in the last section, many studies over the last two decades
modeled these joint probabilities directly by using the so-called two-way ANOVA
type relationship

πir j = Pr(yi = y( j)
i ,zi = z(r)i )

=
exp(αr +β j + γr j)

∑R
r=1 ∑J

j=1 exp(αr +β j + γr j)
=

μr j

μ
,

≡ πr j, r = 1, . . . ,R, j = 1, . . . , J, (5.11)

(e.g., Agresti 2002, Eqn. (8.4); Fienberg 2007, Eqn. (2.19)) for all i = 1, . . . ,K.
In (5.11), for a constant effect m0, the two-way ANOVA type relationship is
observed for log(μr j) as

log(μr j) = mr j = m0 +αr +β j + γr j. (5.12)

These parameters αr and β j are treated to be rth row and jth column effect, and γr j

are so-called interaction effects, satisfying the restrictions

R

∑
r=1

αr = 0;
J

∑
j=1

β j = 0;
R

∑
r=1

γr j =
J

∑
j=1

γr j = 0. (5.13)

Thus, when the bivariate cell counts follow a Poisson model, that is, K is random,
one would estimate the model parameters in the right-hand side of (5.12) to compute
the mean (or log of the mean) rate for an individual to be in that cell. Because, by
using (5.13), it follows from (5.12) that

m0 =
∑R

r=1 ∑J
j=1 mr j

RJ
= m++
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αr =
∑J

j=1 mr j

J
−m0 = mr+−m++

β j =
∑R

r=1 mr j

R
−m0 = m+ j −m++

γr j = [mr j −mr+−m+ j +m++], (5.14)

as indicated above, αr and β j may be interpreted as the marginal effects and γr j as
the interaction effect, in the two-way table for the log of the cell counts.

5.2.1 Marginal Probabilities and Parameter Interpretation
Difficulties

As opposed to (5.14), the interpretation of the parameters αr, β j, and γr j to
understand their role in marginal probabilities in multinomial setup (5.11) is not
easy. This is because, using a simple logit transformation to (5.11) does not separate
αr from β j. That is, one cannot understand the role of αr in row effect probabilities
πr· = ∑J

j=1 πr j without knowing β j. To be more clear, by a direct calculation, one
writes the marginal probabilities from (5.11) as

π· j =
R

∑
r=1

πr j =
∑R

r=1 exp(αr +β j + γr j)

∑R
r=1 ∑J

j=1 exp(αr +β j + γr j)

πr· =
J

∑
j=1

πr j =
∑J

j=1 exp(αr +β j + γr j)

∑R
r=1 ∑J

j=1 exp(αr +β j + γr j)
. (5.15)

These formulas show that the marginal probabilities for one variable are compli-
cated functions of marginal and association parameters for both variables, making
the interpretation of parameter effects on marginal probabilities unnecessary diffi-
cult. But, as opposed to the two-way ANOVA type model, the marginal probabilities
under the familial model, for example, π(i) j· in (5.4) is a function of β j0 but not
of αr0.

However, the estimation of the parameters in the ANOVA type model (5.11) may
be achieved relatively easily, for example, by using the likelihood approach, and
subsequently one can compute the joint and marginal probabilities by using such
estimates. We demonstrate this in the following section.
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5.2.2 Parameter Estimation in Two-Way ANOVA Type
Multinomial Probability Model

5.2.2.1 Likelihood Estimating Equations

For πr j in (5.11), it follows from (5.10) that the log likelihood function is given by

log L(·) = const.+
R

∑
r=1

J

∑
j=1

Kr j log πr j

= const.+
R

∑
r=1

J

∑
j=1

Kr j log (
μr j

μ
)

= const.+
R

∑
r=1

J

∑
j=1

Kr j log μr j −Klog μ , (5.16)

with

μr j = exp(αr +β j + γr j), μ =
R

∑
r=1

J

∑
j=1

exp(αr +β j + γr j).

Parameter Constraints (C):
As far as the parameter constraints are concerned, in the multinomial case as
opposed to the Poisson case, it is convenient to use the constraints
C : αR = βJ = 0; γR j = 0 for j = 1, . . . ,J; and γrJ = 0 for r = 1, . . . ,R.

Likelihood estimating equations under the constraint C:
Note that because of the constraint on the parameters, there are (R − 1) +
(J − 1) + {RJ − (R+ J − 1)} = RJ − 1 parameters to estimate under the present
two-way table based multinomial model. When the restriction C is used, the
formulas for μr j and μ can be conveniently expressed as

μr j|C =

⎧
⎪⎪⎨

⎪⎪⎩

exp(αr +β j + γr j) for r = 1, . . . ,R−1; j = 1, . . . ,J−1
exp(αr) for r = 1, . . . ,R−1, and j = J
exp(β j) for r = R, and j = 1, . . . ,J−1
1 for r = R and j = J,

(5.17)

and

μ |C = 1+
R−1

∑
r=1

exp(αr)+
J−1

∑
j=1

exp(β j)+
R−1

∑
r=1

J−1

∑
j=1

exp(αr +β j + γr j), (5.18)
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respectively. One may then write the likelihood function under the constraints as

log L(·)|C = const.+
R

∑
r=1

J

∑
j=1

Kr j log μr j|C −K log μ |C

= const.+

[

KRJ +
R−1

∑
r=1

KrJαr +
J−1

∑
j=1

KR jβ j +
R−1

∑
r=1

J−1

∑
j=1

Kr j{αr +β j + γr j}
]

−K log

[

1+
R−1

∑
r=1

exp(αr)+
J−1

∑
j=1

exp(β j)+
R−1

∑
r=1

J−1

∑
j=1

exp(αr +β j + γr j)

]

. (5.19)

It then follows that

∂ log L(·)|C
∂αr

=

[

KrJ +
J−1

∑
j=1

Kr j

]

−K
1

μ |C

[

exp(αr)+
J−1

∑
j=1

exp(αr +β j + γr j)

]

∂ log L(·)|C
∂β j

=

[

KR j +
R−1

∑
r=1

Kr j

]

−K
1

μ |C

[

exp(β j)+
R−1

∑
r=1

exp(αr +β j + γr j)

]

∂ log L(·)|C
∂γr j

= [Kr j]−K
1

μ |C [exp(αr +β j + γr j)] , (5.20)

and the likelihood equations are given by

∂ log L(·)|C
∂αr

= 0

∂ log L(·)|C
∂β j

= 0

∂ log L(·)|C
∂γr j

= 0. (5.21)

Let

θ = [α1, . . . ,αR−1,β1, . . . ,βJ−1,λ11, . . . ,λ1,J−1, . . . ,λR−1,1, . . . ,λR−1,J−1]
′

= [α ′,β ′,γ ′]′, (5.22)

be the (RJ − 1)× 1 vector of regression parameters. One may then solve the
likelihood equations in (5.21) by using the iterative equations

θ̂(q+1) = θ̂(q)+

([
∂ 2log L|C

∂θ ′

]−1

[
∂ log L|C

∂θ
]

)

|θ=θ̂(q), (5.23)
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where, by (5.20), one writes

∂ log L|C
∂θ

=

⎛

⎜
⎝

∂ log L(·)|C
∂α

∂ log L(·)|C
∂β

∂ log L(·)|C
∂γ

⎞

⎟
⎠ : (RJ−1)×1. (5.24)

Now to compute the second order derivatives in (5.23), it is sufficient to compute
the following elements-wise derivatives:

∂ 2log L(·)|C
∂α2

r
= −K

[
exp(αr)+∑J−1

j=1 exp(αr +β j + γr j)

μ|C

{

1− exp(αr)+∑J−1
j=1 exp(αr +β j + γr j)

μ|C

}]

∂ 2log L(·)|C
∂αr∂αs

= K

[
exp(αr)+∑J−1

j=1 exp(αr +β j + γr j)

μ|C

{
exp(αs)+∑J−1

j=1 exp(αs +β j + γs j)

μ|C

}]

, for r �= s

∂ 2log L(·)|C
∂αr∂β j

= −K

[
exp(αr +β j + γr j)

μ|C

−
{

exp(αr)+∑J−1
j=1 exp(αr +β j + γr j)

μ|C

}{
exp(β j)+∑R−1

r=1 exp(αr +β j + γr j)

μ|C

}]

∂ 2log L(·)|C
∂αr∂γr j

= −K

[
exp(αr +β j + γr j)

μ|C

{

1− exp(αr)+∑J−1
j=1 exp(αr +β j + γr j)

μ|C

}]

∂ 2log L(·)|C
∂αr∂γs j

= −K

[
exp(αs +β j + γs j)

μ|C

{

1− exp(αr)+∑J−1
j=1 exp(αr +β j + γr j)

μ|C

}]

∂ 2log L(·)|C
∂β 2

j

= −K

[
exp(β j)+∑R−1

r=1 exp(αr +β j + γr j)

μ|C

{

1− exp(β j)+∑R−1
r=1 exp(αr +β j + γr j)

μ|C

}]

∂ 2log L(·)|C
∂β j∂βs

= K

[
exp(β j)+∑R−1

r=1 exp(αr +β j + γr j)

μ|C

{
exp(βs)+∑R−1

r=1 exp(αr +βs + γrs)

μ|C

}]

, for r �= s

∂ 2log L(·)|C
∂β j∂γr j

= −K

[
exp(αr +β j + γr j)

μ|C

{

1− exp(β j)+∑R−1
r=1 exp(αr +β j + γr j)

μ|C

}]

∂ 2log L(·)|C
∂β j∂γrs

= −K

[
exp(αr +βs + γrs)

μ|C

{

1− exp(β j)+∑R−1
r=1 exp(αr +β j + γr j)

μ|C

}]

∂ log L(·)|C
∂γ2

r j

= −K

[
exp(αr +β j + γr j)

μ|C

{

1− exp(αr +β j + γr j)

μ|C

}]

.

∂ log L(·)|C
∂γr j∂γsk

= K

[{
exp(αr +β j + γr j)

μ|C

}{
exp(αs +βk + γsk)

μ|C

}]

. (5.25)

5.2.2.2 (Alternative) Likelihood Estimation Using Regression Form

Let c denote the cth cell of the two-way table with RJ cells. Suppose that the RJ
cells are read across the R rows of the table as follows:

c ≡

⎧
⎪⎪⎨

⎪⎪⎩

(J−1)(r−1)+ j for r = 1, . . . ,R−1; j = 1, . . . ,J−1
(R−1)(J−1)+ r for r = 1, . . . ,R−1, and j = J
(R−1)J+ j for r = R, and j = 1, . . . ,J−1
RJ for r = R and j = J.

(5.26)
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Notice that following this layout in (5.26), log μr j|C in (5.17) can be expressed as

log μc = x′cθ , (5.27)

where

θ=[α1, . . .,αR−1,β1, . . . ,βJ−1,λ11, . . . ,λ1,J−1, . . . ,λR−1,1, . . . ,λR−1,J−1]
′ : (RJ−1)×1,

and x′c = [xc1, . . . ,xcd , . . . ,xc,RJ−1] be the cth row of the RJ × (RJ − 1) covariate
matrix X = (xcd) involving RJ − 1 dummy covariates. To be specific, for c =
1, . . . ,RJ, x′c : 1× (RJ−1) are defined as

x′(J−1)(r−1)+ j = [δ ′
1,r,δ ′

2, j,δ ′
3,(r, j)] for r = 1, . . . ,R−1; j = 1, . . . ,J−1

x′(R−1)(J−1)+r = [δ ′
1,r,01′J−1,01′(R−1)(J−1)] for r = 1, . . . ,R−1, and j = J

x′(R−1)J+ j = [01′R−1,δ ′
2, j,01′(R−1)(J−1)] for r = R, and j = 1, . . . ,J−1

x′RJ = [01′RJ−1] for r = R and j = J, (5.28)

where δ ′
1,r is a 1× (R− 1) row vector with all elements except the rth element as

zero, the rth element being 1; similarly δ ′
2, j is a 1× (J − 1) row vector with all

elements except the jth element as zero, the jth element being 1; and δ ′
3,(r, j) is a

1× (R− 1)(J − 1) stacked row vector constructed by stacking the elements of a
matrix with all elements except the (r, j)th element as zero, the (r, j)th element being
1. Furthermore, in (5.28), 1′b, for example, is the 1×b row vector with all elements
as 1. Consequently, the multinomial log likelihood function (5.19) reduces to

log L(·)|C = const.+
R

∑
r=1

J

∑
j=1

Kr j log (
μr j|C
μ |C )

=
RJ

∑
c=1

Kclog
μc

μ |C , (5.29)

where μ |C = ∑RJ
c=1 μc|C.

By using (5.27), this log likelihood function may be re-written as

log L(·)|C = const.+
RJ

∑
c=1

Kcx′cθ −Klog

[
RJ

∑
c=1

exp(x′cθ)

]

. (5.30)

Thus, the likelihood equation for θ is given by

∂ log L(·)|C
∂θ

=
RJ

∑
c=1

Kcxc −K
1

∑RJ
c=1 exp(x′cθ)

RJ

∑
c=1

μcxc

= X ′y−KX ′π = 0, (5.31)
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where X ′ = [x1, . . . ,xc, . . . ,xRJ ] is the (RJ − 1) × RJ covariate matrix, y =
[K1, . . . ,Kc, . . . ,KRJ ]

′ is the RJ × 1 response vector of counts, and π =
[π1, . . . ,πc, . . . ,πRJ ]

′ is the corresponding multinomial probability vector, with
πc =

μc
μ .

Now to solve the likelihood estimating equation (5.31), we use the iterative
equation

θ̂(q+1) = θ̂(q)+

([
∂ 2log L

∂θ ′

]−1

[X ′y−KX ′π]

)

θ̂(q)

, (5.32)

with

∂ 2log L
∂θ ′ = −KX ′ ∂π

∂θ ′

= −KX ′[diag(π)−ππ ′]X , (5.33)

because πc =
μc
μ = exp(x′cθ)/∑RJ

c=1 exp(x′cθ), and

∂πc

∂θd
=

μ μcxcd −μc ∑RJ
c=1 μcxcd

μ2

= πcxcd −πc

RJ

∑
k=1

πkxkd , (5.34)

yielding

∂π
∂θ ′ = [diag(π)−ππ ′]X . (5.35)

5.2.2.2.1 Cov(θ̂) and its Estimate

Note that θ̂ , the likelihood estimator of θ , is computed from (5.31)–(5.32). It then
follows that Cov(θ̂) has the formula given by

Cov(θ̂) = −
[

E
∂ 2log L

∂θ ′

]−1

=
1
K

[
X ′{diag(π)−ππ ′}X

]−1
, (5.36)

by (5.33). Next, this covariance may be estimated by replacing π with its estimate π̂.



292 5 Multinomial Models for Cross-Sectional Bivariate Categorical Data

5.2.2.2.2 Estimation of π and the Covariance Matrix of its Estimate

Because π represents the cell probabilities, that is,

π = [π1, . . . ,πi, . . . ,πRJ ]
′

with

πc =
μc

μ
= exp(x′cθ)/

RJ

∑
c=1

exp(x′cθ),

one may obtain the likelihood estimate of π by using θ̂ (likelihood estimate of θ )
from (5.31)–(5.32), for θ in πc, that is,

π̂c = exp(x′cθ̂)/
RJ

∑
k=1

exp(x′kθ̂), (5.37)

for all c = 1, . . . ,RJ.

Computation of Cov(π̂) :
Write

π̂c = exp(x′cθ̂)/
RJ

∑
k=1

exp(x′kθ̂) = gc(θ̂),

so that

π̂ = [g1(θ̂), . . . ,gc(θ̂), . . . ,gRJ(θ̂)]′.

Because by first order Taylor’s expansion, one can write

gc(θ̂) = gc(θ + θ̂ −θ)

≈ gc(θ)+
RJ−1

∑
k=1

(θ̂k −θk)g
′
c(θk), (5.38)

with g′c(θk) =
∂gc(θ)

∂θk
, it then follows that

E[gc(θ̂)] = gc(θ)

var(gc(θ̂)) =
RJ−1

∑
k=1

var(θ̂k)[g
′
c(θk)]

2 +
RJ−1

∑
k �=�

cov(θ̂k, θ̂�)g′c(θk)g
′
c(θ�)

= [g′c(θ1), . . . ,g
′
c(θk), . . . ,g

′
c(θRJ−1)]cov(θ̂)[g′c(θ1), . . . ,g

′
c(θk), . . . ,g

′
c(θRJ−1)]

′

cov(gc(θ̂),gm(θ̂)) = [g′c(θ1), . . . ,g
′
c(θk), . . . ,g

′
c(θRJ−1)]cov(θ̂)
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× [g′m(θ1), . . . ,g
′
m(θk), . . . ,g

′
m(θRJ−1)]

′. (5.39)

Because g′c(θk) =
∂gc(θ)

∂θk
= ∂πc

∂θk
, cov(π̂) has the formula

cov(π̂) = [
∂π
∂θ ′ ]cov(θ̂)[

∂π ′

∂θ
] (5.40)

Furthermore, as ∂π
∂θ ′ = [diag(π)−ππ ′]X by (5.35), the covariance matrix in (5.40)

may be expressed as

cov(π̂) = [diag(π)−ππ ′]Xcov(θ̂)X ′[diag(π)−ππ ′]

= [diag(π)−ππ ′]X
1
K

[
X ′{diag(π)−ππ ′}X

]−1
X ′[diag(π)−ππ ′], (5.41)

by (5.36).
Remark that the likelihood estimating equation (5.31) for θ , the formula

for Cov(θ̂) given by (5.36), and the formula for Cov(π̂) given by (5.41)
are also available in the standard textbooks. See, for example, Agresti (2002,
Sections 8.6.6–8.6.8).

5.3 Estimation of Parameters for Covariates Free Familial
Bivariate Model (5.4)–(5.7)

Remark that for a situation when binary responses are collected from the members
of a family, these responses become correlated as they share a common family effect
(equivalent to a random effect). For the estimation of the effects of the covariates
of the individual members as well as the random effects variance parameter for
the underlying familial binary model (equivalent to binary mixed model), one may
refer to the simulated GQL and simulated MLE approaches discussed in Sutradhar
(2011, Sections 5.2.3 and 5.2.4). Because the present familial bivariate multinomial
model may be treated as a generalization of the familial binary model for families
with two members with a difference that now each of the two members is providing
multinomial instead of binary responses, similar to the familial binary model, one
may develop GQL and MLE approaches for the estimation of the parameters of the
present multinomial mixed model.

To be specific, similar to Sutradhar (2011, Section 5.2.3) we first develop
both marginal GQL (MGQL) and joint GQL (JGQL) estimating equations for the
parameters of the bivariate mixed model (5.4)–(5.7) in the next section. These
parameters are

{β j0, j = 1, . . . ,J−1};{αr0, r = 1, . . . ,R−1}; and σ2
ξ . (5.42)
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We then discuss the ML estimation of the parameters in Sect. 5.3.2. Note however
that instead of simulation (of random effects) approach, we will use the so-
called binomial approximation to construct the MGQL, JGQL, and ML estimating
equations.

5.3.1 Binomial Approximation Based GQL Estimation

5.3.1.1 Binomial Approximation Based MGQL Estimation

As far as the marginal properties of yi = (yi1, . . . ,yi j, . . . ,yi,J−1)
′ and zi =

(zi1, . . . ,zir, . . . ,zi,R−1)
′ are concerned, it follows, for example, from Chap. 3 [see

Eqs. (3.148) and (3.150)] that the mean, variance, and structural covariance of these
two multinomial variables are given by:

E(Yi j) = π(i) j·, var(Yi j) = π(i) j·(1−π(i) j·), cov(Yi j,Yi�) =−π(i) j·π(i)�·;

and E(Zir) = π(i)·r, var(Zir) = π(i)·r(1−π(i)·r), cov(Zir,Ziq) =−π(i)·rπ(i)·q. (5.43)

One may then write the covariance matrices for yi and zi as

var(Yi) = diag[π(i)1·, . . . ,π(i) j·, . . . ,π(i)(J−1)·]−π(i)y(β ,σξ )π ′
(i)y(β ,σξ )

= Σ(i)yy;

var(Zi) = diag[π(i)·1, . . . ,π(i)·r, . . . ,π(i)·(R−1)]−π(i)z(α,σξ )π ′
(i)z(α,σξ )

= Σ(i)zz, (5.44)

where

π(i)y(β ,σξ ) = E[Yi] = [π(i)1·, . . . ,π(i) j·, . . . ,π(i)(J−1)·]′,

π(i)z(α,σξ ) = E[Zi] = [π(i)·1, . . . ,π(i)·r, . . . ,π(i)·(R−1)]
′,

with β = (β10, . . . ,β j0, . . . ,β(J−1)0)
′ and α = (α10, . . . ,αr0, . . . ,α(R−1)0)

′ from
Sect. 5.1.2.

5.3.1.1.1 MGQL Estimation for ψ = (β ′,α ′)′

Next by using the notation ψ = (β ′,α ′)′, for known σ2
ξ , we write the MGQL

estimating equation for ψ as
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f (ψ) =
K

∑
i=1

∂ (π ′
(i)y(β ,σξ ),π ′

(i)z(α,σξ ))

∂ψ
Σ−1
(i)11(ψ,σξ )

(
yi −π(i)y(β ,σξ )

zi −π(i)z(α,σξ )

)

= 0,

(5.45)
(Sutradhar 2011) where Σ(i)11(ψ,σξ ) has the formula given by

Σ(i)11(ψ,σξ ) =

(
Σ(i)yy Σ(i)yz

Σ ′
(i)yz Σ(i)zz

)

(5.46)

with

Σ(i)yz = cov(Yi,Z
′
i) = (π(i) jr)−π(i)yπ ′

(i)z, (5.47)

where π(i) jr is the joint probability with its formula given as in (5.7).

Computation of the mean vectors and covariance matrix:
To compute the mean vectors π(i)y(β ,σξ ) and π(i)z(α,σξ ), and the covariance
matrix Σ(i)11(ψ,σξ ) involved in (5.45), it is sufficient to compute

π(i) j·, π(i)·r, π(i) jr

for j = 1, . . . ,J − 1; r = 1, . . . ,R − 1. Exact computation for these probabilities
by (5.4), (5.5), and (5.7), respectively, is however not possible because of the
difficulty of the evaluation of the integral involved in these probabilities. As a
remedy to this integration problem, we, therefore, use a Binomial approximation
(Sutradhar 2011, eqns. (5.24)–(5.27); Ten Have and Morabia 1999, eqn. (7)) and
compute these probabilities as

π(i) j· =
∫ ∞

−∞
π∗
(i) j·(ξi) fN(ξi)dξi

≡

⎧
⎪⎪⎨

⎪⎪⎩

∑V
vi=0[

exp(β j0+σξ ξi(vi))

1+∑J−1
u=1 exp(βu0+σξ ξi(vi))

]

(
V
vi

)

(1/2)vi(1/2)V−vi for j = 1, . . . ,J−1

∑V
vi=0[

1
1+∑J−1

h=1 exp(βh0+σξ ξi(vi))
]

(
V
vi

)

(1/2)vi(1/2)V−vi for j = J,
(5.48)

π(i)·r =
∫ ∞

−∞
π∗
(i)·r(ξi) fN(ξi)dξi

≡

⎧
⎪⎪⎨

⎪⎪⎩

∑V
vi=0[

exp(αr0+σξ ξi(vi))

1+∑R−1
h=1 exp(αh0+σξ ξi(vi))

]

(
V
vi

)

(1/2)vi(1/2)V−vi for r = 1, . . . ,R−1

∑V
vi=0[

1
1+∑R−1

h=1 exp(αh0+σξ ξi(vi))
]

(
V
vi

)

(1/2)vi(1/2)V−vi for r = R,
(5.49)
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and

π(i) jr =

∫ ∞

−∞
π∗
(i) j·(ξi)π∗

(i)·r(ξi) fN(ξi)dξi

≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑V
vi=0[{

exp(β j0+σξ ξi(vi))

1+∑J−1
u=1 exp(βu0+σξ ξi(vi))

}{ exp(αr0+σξ ξi(vi))

1+∑R−1
h=1 exp(αh0+σξ ξi(vi))

}]

×
(

V

vi

)

(1/2)vi (1/2)V−vi for j = 1, . . . ,J−1; r = 1, . . . ,R−1

∑V
vi=0[{

exp(β j0+σξ ξi(vi))

1+∑J−1
u=1 exp(βu0+σξ ξi(vi))

}{ 1
1+∑R−1

h=1 exp(αh0+σξ ξi(vi))
}]

×
(

V

vi

)

(1/2)vi (1/2)V−vi for j = 1, . . . ,J−1; r = R

∑V
vi=0[{ 1

1+∑J−1
u=1 exp(βu0+σξ ξi(vi))

}{ exp(αr0+σξ ξi(vi))

1+∑R−1
h=1 exp(αh0+σξ ξi(vi))

}]

×
(

V
vi

)

(1/2)vi (1/2)V−vi for j = J; r = 1, . . . ,R−1

∑V
vi=0[{ 1

1+∑J−1
u=1 exp(βu0+σξ ξi(vi))

}{ 1
1+∑R−1

h=1 exp(αh0+σξ ξi(vi))
}]

×
(

V

vi

)

(1/2)vi (1/2)V−vi for j = J; r = R,

(5.50)

respectively, where, for vi ∼ binomial(V,1/2) with a suitable V such as V = 10, one
writes

ξi(vi) =
vi −V (1/2)

√
V (1/2)(1/2)

.

Computation of the Derivative
∂ (π ′

(i)y(β ,σξ ),π ′
(i)z(α ,σξ ))

∂ψ : (J+R−2)× (J+R−2)

Because ψ = (β ′,α ′)′, this derivative matrix may be computed as follows:

∂π ′
(i)y(β ,σξ )

∂β
=

[∂π(i)1·
∂β

, . . . ,
∂π(i) j·

∂β
, . . . ,

∂π(i)(J−1)·
∂β

]

, (5.51)

where, for j = 1, . . . ,J−1,

∂π(i) j·
∂β

=
∫ ∞

−∞

∂π∗
(i) j·(ξi)

∂β
fN(ξi)dξi

=
∫ ∞

−∞
[π∗

(i) j·(ξi)x j −π∗
(i) j·(ξi)

J−1

∑
g=1

xgπ∗
(i)g·(ξi)] fN(ξi)dξi, (5.52)

where x′j = [01′j−1,1,01′(J−1)− j] is the 1× J − 1 row vector with jth element as 1
and others 0. By using (5.52) in (5.51), we obtain

∂π ′
(i)y(β ,σξ )

∂β
=

∫ ∞

−∞
[Σ ∗

(i)yy(ξi)] fN(ξi)dξi, (5.53)
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where

Σ ∗
(i)yy(ξi) = diag[π∗

(i)1·(ξi), . . . ,π∗
(i) j·(ξi), . . . ,π∗

(i)(J−1)·(ξi)]−π∗
(i)y(ξi)π∗′

(i)y(ξi),

with

π∗
(i)y(ξi) = [π∗

(i)1·(ξi), . . . ,π∗
(i) j·(ξi), . . . ,π∗

(i)(J−1)·(ξi)]
′,

and

π∗
(i) j·(ξi) =

exp(β j0 +σξ ξi)

1+∑J−1
u=1 exp(βu0 +σξ ξi)

.

By calculations similar to that of (5.53), one obtains

∂π ′
(i)z(α,σξ )

∂α
=
∫ ∞

−∞
[Σ ∗

(i)zz(ξi)] fN(ξi)dξi, (5.54)

where

Σ ∗
(i)zz(ξi) = diag[π∗

(i)·1(ξi), . . . ,π∗
(i)·r(ξi), . . . ,π∗

(i)·(R−1)(ξi)]−π∗
(i)z(ξi)π∗′

(i)z(ξi),

with

π∗
(i)z(ξi) = [π∗

(i)·1(ξi), . . . ,π∗
(i)·r(ξi), . . . ,π∗

(i)·(R−1)(ξi)]
′,

and

π∗
(i)·r(ξi) =

exp(αr0 +σξ ξi)

1+∑R−1
h=1 exp(αh0 +σξ ξi)

.

Consequently, we obtain

∂ (π ′
(i)y(β ,σξ ),π ′

(i)z(α,σξ ))

∂ψ
=
∫ ∞

−∞

(
Σ ∗
(i)yy(ξi) 0

0 Σ ∗
(i)zz(ξi)

)

fN(ξi)dξi. (5.55)

Remark that applying the aforementioned formulas for the mean vectors, asso-
ciated covariance matrix, and the derivative matrix, one may now solve the MGQL
estimating equation (5.45) for ψ = (β ′,α,)′ by using the iterative equation

ψ̂(q+1) = ψ̂(q)+

⎡

⎣

{
K

∑
i=1

∂ (π ′
(i)y(β ,σξ ),π ′

(i)z(α,σξ ))

∂ψ
Σ−1
(i)11(ψ,σξ )

∂ (π ′
(i)y(β ,σξ ),π ′

(i)z(α,σξ ))
′

∂ψ ′

}−1

×
{

K

∑
i=1

∂ (π ′
(i)y(β ,σξ ),π ′

(i)z(α,σξ ))

∂ψ
Σ−1
(i)11(ψ,σξ )

(
yi −π(i)y(β ,σξ )

zi −π(i)z(α,σξ )

)}]

|ψ=ψ̂(q). (5.56)
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5.3.1.1.2 MGQL Estimation for σ2
ξ

We exploit the pair-wise products of the bivariate responses to estimate this random
effects variance component parameter σ2

ξ . Let

gi = (yi1zi1, . . . ,yi jzir, . . . ,yi,J−1zi,R−1)
′ (5.57)

which has the mean

E[Gi] = (π(i)11, . . . ,π(i) jr, . . . ,π(i),J−1,R−1)
′

= π(i)yz(ψ,σξ ), (5.58)

where, for j = 1, . . . ,J−1;r = 1, . . . ,R−1,

π(i) jr =
∫ ∞

−∞
π∗
(i) j·(ξi)π∗

(i)·r(ξi) fN(ξi)dξi

is computed by (5.50). Notice that by using the joint cell probabilities π(i) jr, the
likelihood function for the parameters involved in φ = (ψ ′,σ2

ξ )
′ may be written as

L(φ) =
K

∏
i=1

πyi1zi1
(i)11 . . .πyi jzir

(i) jr . . .πyiJziR
(i)JR . (5.59)

This multinomial probability function for the bivariate cells also implies that

cov(Gi) = diag(π(i)yz(ψ,σξ ))−π(i)yz(ψ,σξ )π ′
(i)yz(ψ,σξ )

= diag[π(i)11, . . . ,π(i) jr, . . . ,π(i)J−1,R−1]−π(i)yz(ψ,σξ )π ′
(i)yz(ψ,σξ )

= Σ(i)22(ψ,σξ ), (say), (5.60)

where π(i) jr is given in (5.58). Next we compute the gradient function, that is, the
derivative of E[Gi] with respect to σ2

ξ as

∂E[Gi]

∂σ2
ξ

=
∂π(i)yz(ψ,σξ )

∂σ2
ξ

= (
∂π(i)11

∂σ2
ξ

, . . . ,
∂π(i) jr

∂σ2
ξ

, . . . ,
∂π(i)J−1,R−1

∂σ2
ξ

)′, (5.61)
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where, for example,

∂π(i) jr

∂σ2
ξ

=
∫ ∞

−∞

∂
[
π∗
(i) j·(ξi)π∗

(i)·r(ξi)
]

∂σ2
ξ

fN(ξi)dξi

=
1

2σξ

∫ ∞

−∞
ξi

[
π∗
(i) j·(ξi)π∗

(i)·r(ξi)
]

×
[

1

1+∑J−1
u=1 exp(βu0 +σξ ξi)

+
1

1+∑R−1
h=1 exp(αh0 +σξ ξi)

]

fN(ξi)dξi,

(5.62)

for all j = 1, . . . ,J−1; r = 1, . . . ,R−1.
By using (5.57)–(5.58), (5.60), and (5.61)–(5.62), one may construct the MGQL

estimating equation for σ2
ξ as

K

∑
i=1

∂π ′
(i)yz(ψ,σξ )

∂σ2
ξ

Σ−1
(i)22(ψ,σξ )[gi −π(i)yz(ψ,σξ )] = 0, (5.63)

which for known ψ = (β ′,α ′)′ may be solved iteratively by using the formula

σ̂2
ξ (q+1) = σ̂2

ξ (q)+

⎡

⎣

{
K

∑
i=1

∂π ′
(i)yz(ψ,σξ )

∂σ2
ξ

Σ−1
(i)22(ψ,σξ )

∂π(i)yz(ψ,σξ )

∂σ2
ξ

}−1

×
{

K

∑
i=1

∂π ′
(i)yz(ψ,σξ )

∂σ2
ξ

Σ−1
(i)22(ψ,σξ )[gi −π(i)yz(ψ,σξ )]

}]

|σ2
ξ =σ̂2

ξ (q)

.

(5.64)

5.3.1.2 Binomial Approximation Based JGQL Estimation

In the MGQL approach, we have estimated the intercept parameters ψ = (β ′,α ′)′
and the variance component parameter σ2

ξ , by solving two separate, i.e., MGQL
estimating equations (5.45) and (5.63). As opposed to this MGQL approach, we
now estimate these parameters jointly by using a single GQL estimating equation
which is constructed by combining (5.45) and (5.63) as follows.

Notice from (5.59) that φ denotes a stacked vector of parameters ψ and σ2
ξ .

A JGQL estimating equation for φ by combining (5.45) and (5.63) has the form
given by



300 5 Multinomial Models for Cross-Sectional Bivariate Categorical Data

f (φ) =
K

∑
i=1

∂ (π ′
(i)y(β ,σξ ),π ′

(i)z(α ,σξ ),π ′
(i)yz(ψ ,σξ ))

∂φ
Σ−1
(i) (ψ ,σξ )

⎛

⎜
⎝

yi −π(i)y(β ,σξ )

zi −π(i)z(α ,σξ )

gi −π(i)yz(ψ ,σξ )

⎞

⎟
⎠= 0,

(5.65)

where

Σ(i)(ψ,σξ ) =

(
Σ(i)11(ψ,σξ ) Σ(i)12(ψ,σξ )

Σ ′
(i)12(ψ,σξ ) Σ(i)22(ψ,σξ )

)

, (5.66)

with Σ(i)11(ψ,σξ ) and Σ(i)22(ψ,σξ ) are as in (5.46) and (5.60), respectively, and
Σ(i)12(ψ,σξ ) has the form

Σ(i)12(ψ,σξ ) = cov

[(
Yi

Zi

)

,G′
i

]

=

(
cov(Yi,G′

i)

cov(Zi,G′
i)

)

, (5.67)

where

cov(Yi,G
′
i) = [cov(yik,yi jzir)](J−1)×(J−1)(R−1) (5.68)

with

cov(yik,yi jzir) =

{
π(i) jr(1−π(i) j·) j = k,
−π(i)k·π(i) jr j �= k,

(5.69)

and similarly

cov(Zi,G
′
i) = [cov(ziq,yi jzir)](R−1)×(J−1)(R−1) (5.70)

with

cov(ziq,yi jzir) =

{
π(i) jr(1−π(i)·r) r = q,
−π(i)·qπ(i) jr r �= q.

(5.71)

Furthermore, in (5.65), the gradient function may be computed as

∂ (π ′
(i)y(β ,σξ ),π ′

(i)z(α ,σξ ),π ′
(i)yz(ψ,σξ ))

∂φ
=

⎛

⎜
⎝

∂ (π ′
(i)y(β ,σξ ),π ′

(i)z(α,σξ ))

∂ψ
∂π ′

(i)yz(ψ ,σξ )

∂ψ
∂ (π ′

(i)y(β ,σξ ),π ′
(i)z(α,σξ ))

∂σ 2
ξ

∂π ′
(i)yz(ψ ,σξ )

∂σ 2
ξ

⎞

⎟
⎠ ,

(5.72)
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where the formulas for

∂ (π ′
(i)y(β ,σξ ),π ′

(i)z(α,σξ ))

∂ψ
and

∂π ′
(i)yz(ψ,σξ )

∂σ2
ξ

,

are given by (5.55) and (5.61), respectively. The formulas for remaining two
derivatives are derived as follows.

Computation of
∂π ′

(i)yz(ψ,σξ )

∂ψ :
Similar to (5.61), we write

∂π ′
(i)yz(ψ,σξ )

∂ψ
= (

∂π(i)11

∂ψ
, . . . ,

∂π(i) jr

∂ψ
, . . . ,

∂π(i)J−1,R−1

∂ψ
), (5.73)

where

∂π(i) jr

∂ψ
=

( ∂π(i) jr
∂β

∂π(i) jr
∂α

)

, (5.74)

with

∂π(i) jr

∂β
=

∫ ∞

−∞

∂
[
π∗
(i) j·(ξi)π∗

(i)·r(ξi)
]

∂β
fN(ξi)dξi

=
∫ ∞

−∞
π∗
(i)·r(ξi)

∂
[
π∗
(i) j·(ξi)

]

∂β
fN(ξi)dξi, (5.75)

for all j = 1, . . . ,J − 1; r = 1, . . . ,R− 1, the formula for
∂
[
π∗
(i) j·(ξi)

]

∂β is being given
by (5.52). Now for convenience of applying the result from (5.75) to (5.73), we first
re-express (5.73) as

∂π ′
(i)yz(ψ,σξ )

∂ψ
=

[∂π(i)11

∂ψ
, . . . ,

∂π(i) j1

∂ψ
, . . . ,

∂π(i)J−1,1

∂ψ
,

. . . . . . . . . . . . . . .

∂π(i)1r

∂ψ
, . . . ,

∂π(i) jr

∂ψ
, . . . ,

∂π(i)J−1,r

∂ψ
,

. . . . . . . . . . . . . . .

∂π(i)1,R−1

∂ψ
, . . . ,

∂π(i) j,R−1

∂ψ
, . . . ,

∂π(i)J−1,R−1

∂ψ

]

. (5.76)
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Next by using (5.53) and (5.75), we obtain

∂π ′
(i)yz(ψ,σξ )

∂β
=

[∂π(i)11

∂β
, . . . ,

∂π(i) j1

∂β
, . . . ,

∂π(i)J−1,1

∂β
,

. . . . . . . . . . . . . . .

∂π(i)1r

∂β
, . . . ,

∂π(i) jr

∂β
, . . . ,

∂π(i)J−1,r

∂β
,

. . . . . . . . . . . . . . .

∂π(i)1,R−1

∂β
, . . . ,

∂π(i) j,R−1

∂β
, . . . ,

∂π(i)J−1,R−1

∂β

]

=
∫ ∞

−∞

(
π∗
(i)·1(ξi)Σ ∗

(i)yy(ξi) . . . π∗
(i)·r(ξi)Σ ∗

(i)yy(ξi) . . . π∗
(i)·,R−1(ξi)Σ ∗

(i)yy(ξi)
)

× fN(ξi)dξi. (5.77)

Similarly, one obtains

∂π ′
(i)yz(ψ ,σξ )

∂α
=

[∂π(i)11

∂α
, . . . ,

∂π(i) j1

∂α
, . . . ,

∂π(i)J−1,1

∂α
,

. . . . . . . . . . . . . . .

∂π(i)1r

∂α
, . . . ,

∂π(i) jr

∂α
, . . . ,

∂π(i)J−1,r

∂α
,

. . . . . . . . . . . . . . .

∂π(i)1,R−1

∂α
, . . . ,

∂π(i) j,R−1

∂α
, . . . ,

∂π(i)J−1,R−1

∂α

]

=

∫ ∞

−∞

[
π∗
(i)1·{π∗

(i)·1(x1 −π∗
(i)z)}, . . . ,π∗

(i) j·{π∗
(i)·1(x1 −π∗

(i)z)}, . . . ,π∗
(i),J−1·{π∗

(i)·1(x1 −π∗
(i)z)},

. . . . . . . . . . . . . . .

π∗
(i)1·{π∗

(i)·r(xr −π∗
(i)z)}, . . . ,π∗

(i) j·{π∗
(i)·r(xr −π∗

(i)z)}, . . . ,π∗
(i),J−1·{π∗

(i)·r(xr −π∗
(i)z)},

. . . . . . . . . . . . . . .

π∗
(i)1·{π∗

(i)·,R−1(xR−1 −π∗
(i)z)}, . . . ,π∗

(i) j·{π∗
(i)·,R−1(xR−1 −π∗

(i)z)}, . . . ,

π∗
(i),J−1·{π∗

(i)·,R−1(xR−1 −π∗
(i)z)}

]
fN(ξi)dξi

=
∫ ∞

−∞

[
π∗′

(i)y ⊗{π∗
(i)·1(x1 −π∗

(i)z)}, . . . ,π∗′
(i)y ⊗{π∗

(i)·r(xr −π∗
(i)z)}, . . . ,

π∗′
(i)y ⊗{π∗

(i)·,R−1(xR−1 −π∗
(i)z)}

]
fN(ξi)dξi, (5.78)

where similar to (5.52), x′r = [01′r−1,1,01′(R−1)−R] is the 1×R− 1 row vector with
rth element as 1 and others 0; ⊗ denotes the Kronecker or direct product, and

π∗
(i)y = [π∗

(i)1·(ξ ), . . . ,π
∗
(i) j·(ξ ), . . . ,π

∗
(i)(J−1)·(ξ )]

′,

π∗
(i)z = [π∗

(i)·1(ξ ), . . . ,π
∗
(i)·r(ξ ), . . . ,π

∗
(i)·,R−1(ξ )]

′.
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Computation of
∂ (π ′

(i)y(β ,σξ ),π ′
(i)z(α ,σξ ))

∂σ2
ξ

:

To compute these derivatives, we compute, for example, the formula for
∂π ′

(i)y(β ,σξ )

∂σ2
ξ

.

One may then write a similar formula for the other derivative. Note that

∂π ′
(i)y(β ,σξ )

∂σ2
ξ

=

[
∂π(i)1·
∂σ2

ξ
, . . . ,

∂π(i) j·
∂σ2

ξ
, . . . ,

∂π(i)(J−1)·
∂σ2

ξ

]

, (5.79)

where, for j = 1, . . . ,J−1,

∂π(i) j·
∂σ2

ξ
=

∫ ∞

−∞

π∗
(i) j·(ξi)

∂σ2
ξ

fN(ξi)dξi

=
1

2σξ

∫ ∞

−∞
ξiπ∗

(i) j·

[
1

1+∑J−1
u=1 exp(βu0 +σξ ξi)

]

fN(ξi)dξi. (5.80)

Similarly, one computes

∂π ′
(i)z(α,σξ )

∂σ2
ξ

=

[
∂π(i)·1
∂σ2

ξ
, . . . ,

∂π(i)·r
∂σ2

ξ
, . . . ,

∂π(i)·(R−1)

∂σ2
ξ

]

, (5.81)

where, for r = 1, . . . ,R−1,

∂π(i)·r
∂σ2

ξ
=
∫ ∞

−∞

π∗
(i)·r(ξi)

∂σ2
ξ

fN(ξi)dξi

=
1

2σξ

∫ ∞

−∞
ξiπ∗

(i)·r

[
1

1+∑R−1
u=1 exp(αu0 +σξ ξi)

]

fN(ξi)dξi. (5.82)

Because the formulas for the derivatives and the covariance matrix involved in
the JGQL estimating equation (5.65) are obtained, one may now solve this equation
by applying the iterative equation given by

φ̂(m+1) = φ̂(m)+

[{
K

∑
i=1

∂ (π ′
(i)y(β ,σξ ),π ′

(i)z(α,σξ ),π ′
(i)yz(ψ ,σξ ))

∂φ

× Σ−1
(i) (ψ ,σξ )

∂ (π ′
(i)y(β ,σξ ),π ′

(i)z(α,σξ ),π ′
(i)yz(ψ ,σξ ))

′

∂φ ′

}−1

×
K

∑
i=1

∂ (π ′
(i)y(β ,σξ ),π ′

(i)z(α,σξ ),π ′
(i)yz(ψ ,σξ ))

∂φ
Σ−1
(i) (ψ ,σξ )

⎛

⎜
⎝

yi −π(i)y(β ,σξ )

zi −π(i)z(α,σξ )

gi −π(i)yz(ψ ,σξ )

⎞

⎟
⎠

⎤

⎥
⎦

|φ=φ̂(m).

(5.83)
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5.3.2 Binomial Approximation Based ML Estimation

In this section we demonstrate how one can compute the maximum likelihood (ML)
estimate of

φ = (ψ ′,σ2
ξ )

′ = (β ′,α ′,σ2
ξ )

′

by exploiting likelihood function given in (5.59). For the purpose, write the log
likelihood function as

Log L(φ) =
K

∑
i=1

[
J

∑
j=1

R

∑
r=1

yi jzirlog π(i) jr

]

, (5.84)

where

π(i) jr =
∫ ∞

−∞
[π∗

(i) j·π
∗
(i)·r] fN(ξi)dξi,

with

π∗
(i) j·(ξi) =

⎧
⎨

⎩

exp(β j0+σξ ξi)

1+∑J−1
u=1 exp(βu0+σξ ξi)

for j = 1, . . . ,J−1

1
1+∑J−1

h=1 exp(βh0+σξ ξi)
for j = J,

as in (5.2), and

π∗
(i)·r(ξi) =

⎧
⎨

⎩

exp(αr0+σξ ξi)

1+∑R−1
h=1 exp(αh0+σξ ξi)

for r = 1, . . . ,R−1

1
1+∑R−1

h=1 exp(αh0+σξ ξi)
for r = R,

as in (5.3). One may then write the likelihood estimating equation for φ as

∂Log L(φ)
∂φ

=
K

∑
i=1

[
J

∑
j=1

R

∑
r=1

yi jzir
1

π(i) jr

∂π(i) jr

∂φ

]

= 0, (5.85)

where for all j = 1, . . . ,J; r = 1, . . . ,R, the cell probabilities π(i) jr are computed
by the binomial approximation based formulas given by (5.50). Because φ =
(β ′,α ′,σ2

ξ )
′, for convenience, we express the first order derivatives in (5.85) as

∂π(i) jr

∂φ
=

⎛

⎜
⎜
⎜
⎝

∂π(i) jr
∂β

∂π(i) jr
∂α

∂π(i) jr

∂σ2
ξ

⎞

⎟
⎟
⎟
⎠
, (5.86)

and compute the components as follows.
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In (5.86), for all j = 1, . . . ,J; r = 1, . . . ,R,

∂π(i) jr

∂β
=
∫ ∞

−∞

∂ [π∗
(i) j·π

∗
(i)·r]

∂β
fN(ξi)dξi

=
∫ ∞

−∞
π∗
(i)·r

∂ [π∗
(i) j·]

∂β
fN(ξi)dξi; (5.87)

∂π(i) jr

∂α
=
∫ ∞

−∞

∂ [π∗
(i) j·π

∗
(i)·r]

∂α
fN(ξi)dξi

=
∫ ∞

−∞
π∗
(i) j·

∂ [π∗
(i)·r]

∂α
fN(ξi)dξi; (5.88)

∂π(i) jr

∂σ2
ξ

=
∫ ∞

−∞

∂ [π∗
(i) j·π

∗
(i)·r]

∂σ2
ξ

fN(ξi)dξi. (5.89)

where, by (5.52),

∂π(i) j·
∂β

=
∫ ∞

−∞

∂π∗
(i) j·(ξi)

∂β
fN(ξi)dξi

=

{∫ ∞
−∞ π∗

(i) j·(ξi)[x j −π∗
(i)y] fN(ξi)dξi for j = 1, . . . ,J−1

−∫ ∞
−∞ π∗

(i)J·(ξi)π∗
(i)y fN(ξi)dξi for j = J

=
∫ ∞

−∞
π∗
(i) j·(ξi)[x j −π∗

(i)y] fN(ξi)dξi, (5.90)

for all j = 1, . . . ,J, with

x j =

{
[01′j−1,1,01′(J−1)− j] for j = 1, . . . ,J−1

01′J−1 for j = J,

and

π∗
(i)y = [π∗

(i)1·(ξ ), . . . ,π
∗
(i) j·(ξ ), . . . ,π

∗
(i)(J−1)·(ξ )]

′;

and similarly

∂π(i)·r
∂α

=

∫ ∞

−∞

∂π∗
(i)·r(ξi)

∂α
fN(ξi)dξi

=

{∫ ∞
−∞ π∗

(i)·r(ξi)[xr −π∗
(i)z] fN(ξi)dξi for r = 1, . . . ,R−1

−∫ ∞
−∞ π∗

(i)·R(ξi)π∗
(i)z fN(ξi)dξi for r = R

=

∫ ∞

−∞
π∗
(i)·r(ξi)[xr −π∗

(i)z] fN(ξi)dξi, (5.91)
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for all r = 1, . . . ,R, with

xr =

{
[01′r−1,1,01′(R−1)−r] for r = 1, . . . ,R−1

01′R−1 for r = R,

and

π∗
(i)z = [π∗

(i)·1(ξ ), . . . ,π
∗
(i)·r(ξ ), . . . ,π

∗
(i)·,R−1(ξ )]

′.

This completes the computation for the derivatives in (5.87) and (5.88). The remain-
ing derivatives, that is, the derivatives in (5.89) may be computed as follows for all
j = 1, . . . ,J; r = 1, . . . ,R. More specifically, by using (5.62), (5.80), and (5.82), one
obtains

∂π(i) jr

∂σ2
ξ

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2σξ

∫ ∞
−∞ ξi

[
π∗
(i) j·π

∗
(i)·r

][
π∗
(i)J·+π∗

(i)·R
]

fN(ξi)dξi for j = 1, . . . ,J−1;r = 1, . . . ,R−1

1
2σξ

∫ ∞
−∞ ξi

[
π∗
(i) j·π

∗
(i)·R

]
[π∗

(i)J·+π∗
(i)·R −1] fN(ξi)dξi for j = 1, . . . ,J−1;r = R

1
2σξ

∫ ∞
−∞ ξi

[
π∗
(i)J·π

∗
(i)·r

]
[π∗

(i)J·+π∗
(i)·R −1] fN(ξi)dξi for j = J;r = 1, . . . ,R−1

1
2σξ

∫ ∞
−∞ ξi

[
π∗
(i)J·π

∗
(i)·R

]
[π∗

(i)J·+π∗
(i)·R −2] fN(ξi)dξi for j = J;r = R.

(5.92)

Notice that by (5.90) and (5.91), for the sake of completeness, we write

∂π(i) jr

∂β
=
∫ ∞

−∞
π∗
(i)·rπ

∗
(i) j·[x j −π∗

(i)y] fN(ξi)dξi (5.93)

∂π(i) jr

∂α
=
∫ ∞

−∞
π∗
(i) j·π

∗
(i)·r[xr −π∗

(i)z] fN(ξi)dξi, (5.94)

for all j = 1, . . . ,J; r = 1, . . . ,R.
Thus, the derivatives in (5.86) required for the computation of the likelihood

equation (5.85) are computed by (5.93), (5.94), and (5.92). One may now solve
the likelihood estimating equation (5.85) for φ by applying the iterative equation
given by

φ̂(m+1) = φ̂(m)+

[{
∂ 2Log L(φ)

∂φ∂φ ′

}−1 ∂Log L(φ)
∂φ

]

|φ=φ̂(m)

, (5.95)

where the second order derivative matrix ∂ 2Log L(φ)
∂φ∂φ ′ is computed as follows.
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5.3.2.1 An Approximation for ∂ 2Log L(φ)
∂φ∂φ ′

In the spirit of iteration, suppose that the parameters in the derivatives, that is, in
∂π(i) jr

∂φ , of the likelihood estimating function

∂Log L(φ)
∂φ

=
K

∑
i=1

[
J

∑
j=1

R

∑
r=1

yi jzir
1

π(i) jr

∂π(i) jr

∂φ

]

,

are known from the previous iteration. One may then obtain an approximate formula
for the second derivative of this likelihood estimating function as

∂ 2Log L(φ)
∂φ∂φ ′ =−

K

∑
i=1

[
J

∑
j=1

R

∑
r=1

yi jzir
1

π2
(i) jr

{∂π(i) jr

∂φ
∂π(i) jr

∂φ ′

}]

: (J+R−1)× (J+R−1),

(5.96)

where
∂π(i) jr

∂φ ′ is the transpose of the (J +R− 1)× 1 column vector
∂π(i) jr

∂φ already
computed by (5.92)–(5.94).

5.3.2.2 Exact Computational Formula for ∂ 2Log L(φ)
∂φ∂φ ′

The first order derivatives involved in the likelihood estimating function (5.85)
contain unknown φ parameter. Therefore, as opposed to the approximation used
in (5.96), the exact second order derivatives of the log likelihood function Log L(φ)
are given by

∂ 2Log L(φ)
∂φ∂φ ′ = −

K

∑
i=1

[
J

∑
j=1

R

∑
r=1

yi jzir
1

π2
(i) jr

{∂π(i) jr

∂φ
∂π(i) jr

∂φ ′

}]

+
K

∑
i=1

[
J

∑
j=1

R

∑
r=1

yi jzir
1

π(i) jr

{
∂ 2π(i) jr

∂φ∂φ ′

}]

, (5.97)

where the first term is computed as in (5.96), and the computation of the second

term requires the formula for
∂ 2π(i) jr
∂φ∂φ ′ which may be computed as follows.
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By (5.93), we obtain

∂ 2π(i) jr

∂β∂β ′ =
∫ ∞

−∞
π∗
(i)·rπ

∗
(i) j·

[
(x j −π∗

(i)y)(x j −π∗
(i)y)

′

−

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

π∗
(i)1·(x1 −π∗

(i)y)
′

...
π∗
(i) j·(ξi)(x j −π∗

(i)y)
′

...
π∗
(i)(J−1)·(xJ−1 −π∗

(i)y)
′

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

fN(ξi)dξi. (5.98)

Similarly, by (5.93) and (5.94), we obtain

∂ 2π(i) jr

∂β∂α ′ =
∫ ∞

−∞
π∗
(i)·rπ

∗
(i) j·

[
(x j −π∗

(i)y)(xr −π∗
(i)z)

′
]

fN(ξi)dξi, (5.99)

and by (5.92) and (5.93), one computes

∂ 2π(i) jr

∂β∂σ2
ξ
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2σξ

∫ ∞
−∞ ξiπ∗

(i) j·π
∗
(i)·r[

(π∗
(i)J·+π∗

(i)·R)(x j −π∗
(i)y)−π∗

(i)J·π
∗
(i)y

]
fN(ξi)dξi for j = 1, . . . ,J−1;r = 1, . . . ,R−1

1
2σξ

∫ ∞
−∞ ξiπ∗

(i) j·π
∗
(i)·R[

(π∗
(i)J·+π∗

(i)·R −1)(x j −π∗
(i)y)−π∗

(i)J·π
∗
(i)y

]
fN(ξi)dξi for j = 1, . . . ,J−1;r = R

1
2σξ

∫ ∞
−∞ ξiπ∗

(i)J·π
∗
(i)·r[

(π∗
(i)J·+π∗

(i)·R −1)(x j −π∗
(i)y)−π∗

(i)J·π
∗
(i)y

]
fN(ξi)dξi for j = J;r = 1, . . . ,R−1

1
2σξ

∫ ∞
−∞ ξiπ∗

(i)J·π
∗
(i)·R[

(π∗
(i)J·+π∗

(i)·R −2)(x j −π∗
(i)y)−π∗

(i)J·π
∗
(i)y

]
fN(ξi)dξi for j = J;r = R.

(5.100)

Next by similar operation as in (5.98) and (5.100), it follows from (5.94) that

∂ 2π(i) jr

∂α∂α ′ =
∫ ∞

−∞
π∗
(i)·rπ

∗
(i) j·

[
(xr −π∗

(i)z)(xr −π∗
(i)z)

′

−

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

π∗
(i)·1(x1 −π∗

(i)z)
′

...
π∗
(i)·r(ξi)(xr −π∗

(i)z)
′

...
π∗
(i)·(R−1)(xR−1 −π∗

(i)z)
′

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

fN(ξi)dξi, (5.101)
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and by (5.94) and (5.92), one writes

∂ 2π(i) jr

∂α∂σ2
ξ
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2σξ

∫ ∞
−∞ ξiπ∗

(i) j·π
∗
(i)·r[

(π∗
(i)J·+π∗

(i)·R)(xr −π∗
(i)z)−π∗

(i)·Rπ∗
(i)z

]
fN(ξi)dξi for j = 1, . . . ,J−1;r = 1, . . . ,R−1

1
2σξ

∫ ∞
−∞ ξiπ∗

(i)·rπ∗
(i)J·[

(π∗
(i)J·+π∗

(i)·R −1)(xr −π∗
(i)z)−π∗

(i)·Rπ∗
(i)z

]
fN(ξi)dξi for j = J;r = 1, . . . ,R−1

1
2σξ

∫ ∞
−∞ ξiπ∗

(i)·Rπ∗
(i) j·[

(π∗
(i)J·+π∗

(i)·R −1)(xr −π∗
(i)z)−π∗

(i)·Rπ∗
(i)z

]
fN(ξi)dξi for j = 1, . . . ,J−1;r = R

1
2σξ

∫ ∞
−∞ ξiπ∗

(i)J·π
∗
(i)·R[

(π∗
(i)J·+π∗

(i)·R −2)(xr −π∗
(i)z)−π∗

(i)·Rπ∗
(i)z

]
fN(ξi)dξi for j = J;r = R.

(5.102)

The remaining second order derivative, that is,
∂ 2π(i) jr

∂σ4
ξ

is computed by (5.92) as

∂ 2π(i) jr

∂σ4
ξ

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∞
−∞

ξi(π∗
(i) j·π

∗
(i)·r)

4σ2
ξ

[

ξi

{
π∗
(i)J·+π∗

(i)·R
}2

−ξi[π∗
(i)J·(1−π∗

(i)J·)+π∗
(i)·R(1−π∗

(i)·R)]

− 1
σξ

{
π∗
(i)J·+π∗

(i)·R
}]

fN(ξi)dξi for j = 1, . . . ,J−1;r = 1, . . . ,R−1

∫ ∞
−∞

ξi(π∗
(i) j·π

∗
(i)·R)

4σ2
ξ

[

ξi

{
π∗
(i)J·+π∗

(i)·R −1
}2

−ξi[π∗
(i)J·(1−π∗

(i)J·)+π∗
(i)·R(1−π∗

(i)·R)]

− 1
σξ

{
π∗
(i)J·+π∗

(i)·R −1
}]

fN(ξi)dξi for j = 1, . . . ,J−1;r = R

∫ ∞
−∞

ξi(π∗
(i)J·π

∗
(i)·r)

4σ2
ξ

[

ξi

{
π∗
(i)J·+π∗

(i)·R −1
}2

−ξi[π∗
(i)J·(1−π∗

(i)J·)+π∗
(i)·R(1−π∗

(i)·R)]

− 1
σξ

{
π∗
(i)J·+π∗

(i)·R −1
}]

fN(ξi)dξi for j = J;r = 1, . . . ,R−1

∫ ∞
−∞

ξi(π∗
(i)J·π

∗
(i)·R)

4σ2
ξ

[

ξi

{
π∗
(i)J·+π∗

(i)·R −2
}2

−ξi[π∗
(i)J·(1−π∗

(i)J·)+π∗
(i)·R(1−π∗

(i)·R)]

− 1
σξ

{
π∗
(i)J·+π∗

(i)·R −2
}]

fN(ξi)dξi for j = J;r = R.

(5.103)

5.4 Familial (Random Effects Based) Bivariate Multinomial
Regression Model

For the univariate case, a multinomial regression model was discussed in Chap. 2,
more specifically in Sect. 2.2. However, the covariates were considered to be
categorical. In this and next sections, also in the next chapter, we consider general
covariates which can be continuous, categorical or both. Note that in the absence of
covariates, this model to be discussed in this section reduces to the covariates free
bivariate multinomial model studied in the last three Sects. 5.1–5.3.

We use similar notations for covariates as in Sect. 2.2. In the present bivariate
case, suppose that wi1 and wi2 are covariate vectors corresponding to yi and zi. More
specifically, we write
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wi1 = (w′
iy : 1× p1,w

′
ic : 1× p2)

′ : p×1, wi2 = (w′
iz : 1×q1,w

′
ic : 1× p2)

′ : q×1,
(5.104)

where wiy and wiz are individual response specific covariates and wic is a common
covariate vector influencing both responses of the ith individual. For example, the
so-called WESDR (Wisconsin Epidemiologic Study of Diabetic Retinopathy) data
set (see Williamson et al. 1995, for example) contains diabetic categorical retinopa-
thy status of left and right eyes (two response variables) of K = 996 individuals
along with their associated covariates. This data set did not have any individual
response variable specific covariates, but there were seven important common
covariates, namely: (1) duration of diabetes (DD), (2) glycosylated hemoglobin
level (GHL), (3) diastolic blood pressure (DBP), (4) gender, (5) proteinuria (Pr),
(6) dose of insulin per day (DI), and (7) macular edema (ME). Thus, in notation
of (5.104), p1 = q1 = 0, and p2 = 7. Note that these covariates wi1 and wi2 are
considered to be fixed and known. However, as the bivariate categorical responses
Yi and Zi are collected from the same ith individual, they are likely to be correlated,
and it may be reasonable to assume that this bivariate correlation is caused by a
common individual latent effect shared by both responses. Thus, conditional on
such latent/random effects, we may modify the marginal probabilities given in (5.1)
and (5.2) to incorporate the covariates and write these new marginal probabilities
conditional on the random effects as

P[yi = y( j)
i |ξ ∗

i ,wi1] = π∗
(i) j·(ξi,wi1) =

⎧
⎪⎨

⎪⎩

exp(β j0+β ′
jwi1+σξ ξi)

1+∑J−1
u=1 exp(βu0+β ′

uwi1+σξ ξi)
for j = 1, . . . ,J−1

1
1+∑J−1

u=1 exp(βu0+β ′
uwi1+σξ ξi)

for j = J,
(5.105)

and

P[zi = z(r)i |ξ ∗
i ,wi2] = π∗

(i)·r(ξi,wi2) =

⎧
⎪⎨

⎪⎩

exp(αr0+α ′
rwi2+σξ ξi)

1+∑R−1
h=1 exp(αh0+α ′

hwi2+σξ ξi)
for r = 1, . . . ,R−1

1
1+∑R−1

h=1 exp(αh0+α ′
hwi2+σξ ξi)

for r = R,
(5.106)

where

β j = (β j1, . . . ,β j�, . . . ,β jp)
′,and αr = (αr1, . . . ,αrm, . . . ,αrq)

′,

for j = 1, . . . ,J−1, and r = 1, . . . ,R−1.
Similar to Sect. 2.1 (from Chap. 2), define

β ∗
j = [β j0,β ′

j]
′

θ ∗
1 = [β ∗

1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′]′;

α∗
r = [αr0,α ′

r]
′

θ ∗
2 = [α∗

1
′, . . . ,α∗

r
′, . . . ,α∗

R−1
′]′. (5.107)
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Also define

w∗
i1 = [1,w′

i1]
′

w∗
i2 = [1,w′

i2]
′. (5.108)

Using the notations from (5.107) and (5.108), re-express the marginal probabilities
conditional on the random effects from (5.105)–(5.106) as

P[yi = y( j)
i |ξ ∗

i ,w
∗
i1] = π∗

(i) j·(ξi,w
∗
i1) =

⎧
⎨

⎩

exp(β ∗
j
′w∗

i1+σξ ξi)

1+∑J−1
u=1 exp(β ∗

u
′w∗

i1+σξ ξi)
for j = 1, . . . ,J−1

1
1+∑J−1

u=1 exp(β ∗
u
′w∗

i1+σξ ξi)
for j = J,

(5.109)

and

P[zi = z(r)i |ξ ∗
i ,w

∗
i2] = π∗

(i)·r(ξi,w
∗
i2) =

⎧
⎨

⎩

exp(α∗
r
′w∗

i2+σξ ξi)

1+∑R−1
h=1 exp(α∗

h
′w∗

i2+σξ ξi)
for r = 1, . . . ,R−1

1
1+∑R−1

h=1 exp(α∗
h
′w∗

i2+σξ ξi)
for r = R,

(5.110)

where w∗
i1 and w∗

i2 are fixed and known covariates, whereas ξi
iid∼ N(0,1) as in (5.1).

Hence, the (unconditional) marginal and joint probabilities have the formulas

π(i) j·(w∗
i1) = P(yi = y( j)

i ) =
∫ ∞

−∞
π∗
(i) j·(ξi,w

∗
i1) fN(ξi)dξi; (5.111)

π(i)·r(w∗
i2) = P(zi = z(r)i ) ==

∫ ∞

−∞
π∗
(i)·r(ξi,w

∗
i2) fN(ξi)dξi; (5.112)

π(i) jr(w
∗
i1,w

∗
i2) = P[yi = y( j)

i ,zi = z(r)i ]

=
∫ ∞

−∞
[π∗

(i) j·(ξi,w
∗
i1)π∗

(i)·r(ξi,w
∗
i2)] fN(ξi)dξi, (5.113)

where fN(ξi) =
exp(

−ξ 2
i

2 )√
2π . Notice that the integrations in (5.111)–(5.113) for the

computation of marginal and joint probabilities may be computed by using the
binomial approximation similar to that of (5.48)–(5.50). For example,

π(i) j·(w∗
i1) =

∫ ∞

−∞
π∗
(i) j·(ξi,w

∗
i1) fN(ξi)dξi

≡

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑V
vi=0[

exp(β∗
j
′w∗

i1+σξ ξi(vi))

1+∑J−1
u=1 exp(β∗

u
′w∗

i1+σξ ξi(vi))
]

(
V
vi

)

(1/2)vi (1/2)V−vi for j = 1, . . . ,J−1

∑V
vi=0[

1
1+∑J−1

h=1 exp(β∗
j
′w∗

i1+σξ ξi(vi))
]

(
V

vi

)

(1/2)vi (1/2)V−vi for j = J,

(5.114)
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where, for vi ∼ binomial(V,1/2) with a user’s choice large V,

ξi(vi) =
vi −V (1/2)

√
V (1/2)(1/2)

.

The parameters of the model (5.111)–(5.113), namely

θ ∗
1 = (β ∗

1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′)′;θ ∗

2 = (α∗
1
′, . . . ,α∗

r
′, . . . ,α∗

R−1
′)′; and σ2

ξ ,

may be estimated by using the MGQL, JGQL, or ML approach discussed in the last
section. In the next section, we, however, demonstrate how one can construct the
MGQL estimating equations for these parameters. The formulas for the estimating
equations under other two approaches may be obtained similarly.

5.4.1 MGQL Estimation for the Parameters

Using the marginal probabilities from (5.111) and (5.112) we first write

π(i)y(θ ∗
1 ,σξ ,w

∗
i1) = E[Yi] = [π(i)1·(w∗

i1), . . . ,π(i) j·(w∗
i1), . . . ,π(i)(J−1)·(w∗

i1)]
′, (5.115)

π(i)z(θ ∗
2 ,σξ ,w

∗
i2) = E[Zi] = [π(i)·1(w∗

i2), . . . ,π(i)·r(w∗
i2), . . . ,π(i)·(R−1)(w

∗
i2)]

′, (5.116)

var(Yi) = diag[π(i)1·(w∗
i1), . . . ,π(i) j·(w∗

i1), . . . ,π(i)(J−1)·(w∗
i1)]−π(i)y(θ ∗

1 ,σξ ,w
∗
i1)π

′
(i)y(θ

∗
1 ,σξ ,w

∗
i1)

= Σ(i)yy(θ ∗
1 ,σξ ,w

∗
i1); (5.117)

var(Zi) = diag[π(i)·1(w∗
i2), . . . ,π(i)·r(w∗

i2), . . . ,π(i)·(R−1)(w
∗
i2)]−π(i)z(θ ∗

2 ,σξ ,w
∗
i2)π

′
(i)z(θ

∗
2 ,σξ ,w

∗
i2)

= Σ(i)zz(θ ∗
2 ,σξ ,w

∗
i2), (5.118)

and

cov(Yi,Z
′
i) = Σ(i)yz(θ ∗

1 ,θ ∗
2 ,σξ ,w

∗
i1,w

∗
i2)

= (π(i) jr(θ ∗
1 ,θ ∗

2 ,w
∗
i1,w

∗
i2))−π(i)y(θ ∗

1 ,σξ ,w
∗
i1)π ′

(i)z(θ
∗
2 ,σξ ,w

∗
i2), (5.119)

where

π(i) jr(θ ∗
1 ,θ ∗

2 ,w
∗
i1,w

∗
i2)≡ π(i) jr(w

∗
i1,w

∗
i2)

is the joint probability with its formula given in (5.113).
Next, use ψ∗ = (θ ∗

1
′,θ ∗

2
′)′ and construct the MGQL for this vector parameter as

in the next section.
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5.4.1.1 MGQL Estimation for ψ∗ = (θ ∗
1
′,θ ∗

2
′)′

For known σ2
ξ , we write the MGQL estimating equation for ψ∗ as

f (ψ∗) =
K

∑
i=1

∂ (π ′
(i)y(θ

∗
1 ,σξ ,w

∗
i1),π ′

(i)z(θ
∗
2 ,σξ ,w

∗
i2))

∂ψ∗

× Σ−1
(i)11(ψ

∗,σξ ,w
∗
i1,w

∗
i2)

(
yi −π(i)y(θ ∗

1 ,σξ ,w
∗
i1)

zi −π(i)z(θ ∗
2 ,σξ ,w

∗
i2)

)

= 0, (5.120)

(Sutradhar 2004) where Σ(i)11(ψ∗,σξ ,w
∗
i1,w

∗
i2) has the formula given by

Σ(i)11(ψ∗,σξ ,w
∗
i1,w

∗
i2) =

(
Σ(i)yy(θ ∗

1 ,σξ ,w
∗
i1) Σ(i)yz(θ ∗

1 ,θ ∗
2 ,σξ ,w

∗
i1,w

∗
i2)

Σ ′
(i)yz(θ

∗
1 ,θ ∗

2 ,σξ ,w
∗
i1,w

∗
i2) Σ(i)zz(θ ∗

2 ,σξ ,w
∗
i2)

)

.

(5.121)
In (5.120), the first order derivative matrix is computed as follows.

Computation of the derivative
∂ (π ′

(i)y(θ
∗
1 ,σξ ,w

∗
i1),π

′
(i)z(θ

∗
2 ,σξ ,w

∗
i2))

∂ψ∗ : ((J − 1)(p + 1) +
(R−1)(q+1))× (J+R−2)
For the purpose, we first re-express the marginal probabilities in (5.109)–(5.110) as
functions of θ ∗

1 ,θ ∗
2 ,σξ , as follows.

π∗
(i) j·(ξi,w

∗
i1) =

⎧
⎨

⎩

exp(θ∗
1
′x∗i j+σξ ξi)

1+∑J−1
u=1 exp(θ∗

1
′x∗iu+σξ ξi)

for j = 1, . . . ,J−1

1
1+∑J−1

u=1 exp(θ∗
1
′x∗iu+σξ ξi)

for j = J,
(5.122)

with

x∗i j =

⎛

⎝
01( j−1)(p+1)

w∗
i1

01(J−1− j)(p+1)

⎞

⎠ ,

for j = 1, . . . ,J−1; and

π∗
(i)·r(ξi,w

∗
i2) =

⎧
⎨

⎩

exp(θ∗
2
′ x̃ir+σξ ξi)

1+∑R−1
h=1 exp(θ∗

2
′ x̃ih+σξ ξi)

for r = 1, . . . ,R−1

1
1+∑R−1

h=1 exp(θ∗
2
′ x̃ih+σξ ξi)

for r = R,
(5.123)

with

x̃ir =

⎛

⎝
01(r−1)(q+1)

w∗
i2

01(R−1−r)(q+1)

⎞

⎠ ,

for r = 1, . . . ,R−1.
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Because ψ∗ = (θ ∗
1
′,θ ∗

2
′)′, the desired derivative matrix may be computed as

follows:

∂π ′
(i)y(θ

∗
1 ,σξ ,w

∗
i1)

∂θ ∗
1

=

[∂π(i)1·
∂θ ∗

1
, . . . ,

∂π(i) j·
∂θ ∗

1
, . . . ,

∂π(i)(J−1)·
∂θ ∗

1

]

, (5.124)

where, for j = 1, . . . ,J−1,

∂π(i) j·
∂θ ∗

1
=
∫ ∞

−∞

∂π∗
(i) j·(ξi,w∗

i1)

∂θ ∗
1

fN(ξi)dξi

=
∫ ∞

−∞
π∗
(i) j·(ξi,w

∗
i1)[x

∗
i j −

J−1

∑
g=1

x∗igπ∗
(i)g·(ξi,w

∗
i1)] fN(ξi)dξi, (5.125)

where x∗i j
′ = [01′( j−1)(p+1),w

∗
i1
′,01′(J−1− j)(p+1)] is the 1× (J −1)(p+1) row vector

as defined in (5.122). For convenience, we re-express the (J −1)(p+1)×1 vector
in (5.125) as

∂π(i) j·
∂θ ∗

1
=
∫ ∞

−∞

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−π∗
(i) j·(ξi,w∗

i1)π∗
(i)1·(ξi,w∗

i1)w
∗
i1

...
−π∗

(i) j·(ξi,w∗
i1)π∗

(i)( j−1)·(ξi,w∗
i1)w

∗
i1

[π∗
(i) j·(ξi,w∗

i1)(1−π∗
(i) j·(ξi,w∗

i1))]w
∗
i1

−π∗
(i) j·(ξi,w∗

i1)π∗
(i)( j+1)·(ξi,w∗

i1)w
∗
i1

...
−π∗

(i) j·(ξi,w∗
i1)π∗

(i)(J−1)·(ξi,w∗
i1)w

∗
i1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

fN(ξi)dξi

=
∫ ∞

−∞

[
{π∗

(i) j·(ξi,w
∗
i1)1J−1 −π∗

(i) j·(ξi,w
∗
i1)π(i)y(θ ∗

1 ,σξ ,w
∗
i1)}

⊗w∗
i1] fN(ξi)dξi, (5.126)

and write the formula for the derivative as

∂π ′
(i)y(θ

∗
1 ,σξ ,w

∗
i1)

∂θ ∗
1

=
∫ ∞

−∞
[Σ(i)yy(θ ∗

1 ,σξ ,w
∗
i1)⊗w∗

i1] fN(ξi)dξi, (5.127)

where Σ(i)yy(θ ∗
1 ,σξ ,w

∗
i1) is the (J − 1)× (J − 1) covariance matrix of yi as given

by (5.117). By calculations similar to that of (5.127), one obtains

∂π ′
(i)z(θ

∗
2 ,σξ ,w

∗
i2)

∂θ ∗
2

=
∫ ∞

−∞
[Σ(i)zz(θ ∗

2 ,σξ ,w
∗
i2)⊗w∗

i2] fN(ξi)dξi, (5.128)



5.4 Familial (Random Effects Based) Bivariate Multinomial Regression Model 315

where Σ(i)zz(θ ∗
2 ,σξ ,w

∗
i2) is the (R− 1)× (R− 1) covariance matrix of zi as given

by (5.118). Consequently, we obtain

∂ (π ′
(i)y(θ

∗
1 ,σξ ,w

∗
i1),π ′

(i)z(θ
∗
2 ,σξ ,w

∗
i2))

∂ψ∗

=
∫ ∞

−∞

(
Σ(i)yy(θ ∗

1 ,σξ ,w
∗
i1)⊗w∗

i1 0
0 Σ(i)zz(θ ∗

2 ,σξ ,w
∗
i2)⊗w∗

i2

)

fN(ξi)dξi. (5.129)

Remark that applying the aforementioned formulas for the mean vectors
[(5.115)–(5.116)], associated covariance matrix (5.121), and the derivative
matrix (5.129), one may now solve the MGQL estimating equation (5.120) for
ψ∗ = (θ ∗

1
′,θ ∗

2
′)′ by using the iterative equation

ψ̂∗(m+1) = ψ̂∗(m)+

[{
K

∑
i=1

∂ (π ′
(i)y(θ

∗
1 ,σξ ,w

∗
i1),π

′
(i)z(θ

∗
2 ,σξ ,w

∗
i2))

∂ψ∗ Σ−1
(i)11(ψ

∗,σξ ,w
∗
i1,w

∗
i2)

×
∂ (π ′

(i)y(θ
∗
1 ,σξ ,w

∗
i1),π

′
(i)z(θ

∗
2 ,σξ ,w

∗
i2))

′

∂ψ∗′

}−1{ K

∑
i=1

∂ (π ′
(i)y(θ

∗
1 ,σξ ,w

∗
i1),π

′
(i)z(θ

∗
2 ,σξ ,w

∗
i2))

∂ψ∗

× Σ−1
(i)11(ψ

∗,σξ ,w
∗
i1,w

∗
i2)

(
yi −π(i)y(θ ∗

1 ,σξ ,w
∗
i1)

zi −π(i)z(θ ∗
2 ,σξ ,w

∗
i2)

)}]

|ψ∗=ψ̂∗(m). (5.130)

5.4.1.2 MGQL Estimation for σ2
ξ

Similar to Sect. 5.3.1.1.2, we exploit the pair-wise products of the bivariate
responses to estimate this random effects variance component parameter σ2

ξ . Let

gi = (yi1zi1, . . . ,yi jzir, . . . ,yi,J−1zi,R−1)
′ (5.131)

which has the mean

E[Gi] = (π(i)11(w
∗
i1,w

∗
i2), . . . ,π(i) jr(w

∗
i1,w

∗
i2), . . . ,π(i),J−1,R−1(w

∗
i1,w

∗
i2))

′

= π(i)yz(ψ∗,σξ ,w
∗
i1,w

∗
i2), (5.132)

where, by (5.113),

π(i) jr(w
∗
i1,w

∗
i2) =

∫ ∞

−∞
[π∗

(i) j·(ξi,w
∗
i1)π∗

(i)·r(ξi,w
∗
i2)] fN(ξi)dξi,

for j = 1, . . . ,J;r = 1, . . . ,R.
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Next following (5.60), one writes

cov(Gi) = diag[π(i)11(w
∗
i1,w

∗
i2), . . . ,π(i) jr(w

∗
i1,w

∗
i2), . . . ,π(i)J−1,R−1(w

∗
i1,w

∗
i2)]

− π(i)yz(ψ∗,σξ ,w
∗
i1,w

∗
i2)π ′

(i)yz(ψ
∗,σξ ,w

∗
i1,w

∗
i2)

= Σ(i)22(ψ∗,σξ ,w
∗
i1,w

∗
i2), (say). (5.133)

Furthermore, we compute the gradient function, that is, the derivative of E[Gi] with
respect to σ2

ξ as

∂E[Gi]

∂σ2
ξ

=
∂π(i)yz(ψ∗,σξ ,w

∗
i1,w

∗
i2)

∂σ2
ξ

= (
∂π(i)11(w

∗
i1,w

∗
i2)

∂σ2
ξ

, . . . ,
∂π(i) jr(w

∗
i1,w

∗
i2)

∂σ2
ξ

, . . . ,
∂π(i)J−1,R−1(w

∗
i1,w

∗
i2)

∂σ2
ξ

)′, (5.134)

where, for example,

∂π(i) jr(w
∗
i1,w

∗
i2)

∂σ2
ξ

=
∫ ∞

−∞

∂
[
π∗
(i) j·(ξi,w∗

i1)π∗
(i)·r(ξi,w∗

i2)
]

∂σ2
ξ

fN(ξi)dξi

=
1

2σξ

∫ ∞

−∞
ξi

[
π∗
(i) j·(ξi,w

∗
i1)π∗

(i)·r(ξi,w
∗
i2)
]

×
[
π∗
(i)J·(ξi,w

∗
i1)+π∗

(i)·R(ξi,w
∗
i2)
]

fN(ξi)dξi, (5.135)

for all j = 1, . . . ,J−1; r = 1, . . . ,R−1.
By using (5.131)–(5.134), one may now construct the MGQL estimating equa-

tion for σ2
ξ as

K

∑
i=1

∂π ′
(i)yz(ψ

∗,σξ ,w
∗
i1,w

∗
i2)

∂σ2
ξ

Σ−1
(i)22(ψ

∗,σξ ,w
∗
i1,w

∗
i2)[gi −π(i)yz(ψ∗,σξ ,w

∗
i1,w

∗
i2)] = 0,

(5.136)

which, for known ψ∗ = (θ ∗
1
′,θ ∗

2
′)′ may be solved iteratively by using the formula

σ̂2
ξ (m+1) = σ̂2

ξ (m)

+

⎡

⎣

{
K

∑
i=1

∂π ′
(i)yz(ψ

∗,σξ ,w
∗
i1,w

∗
i2)

∂σ2
ξ

Σ−1
(i)22(ψ

∗,σξ ,w
∗
i1,w

∗
i2)

∂π(i)yz(ψ∗,σξ ,w
∗
i1,w

∗
i2)

∂σ2
ξ

}−1

×
{

K

∑
i=1

∂π ′
(i)yz(ψ

∗,σξ ,w
∗
i1,w

∗
i2)

∂σ2
ξ

Σ−1
(i)22(ψ

∗,σξ ,w
∗
i1,w

∗
i2)[gi −π(i)yz(ψ∗,σξ ,w

∗
i1,w

∗
i2)]

}]

|σ2
ξ =σ̂2

ξ (m)

.

(5.137)
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5.5 Bivariate Normal Linear Conditional Multinomial
Probability Model

In Sect. 5.4, the correlation between two multinomial variables is modeled in a
natural way through a random effect shared by these variables. Recently in an
unpublished Ph.D. thesis, Sun (2013) (see also Sun and Sutradhar 2014) has used a
bivariate normal type linear conditional multinomial probability (BNLCMP) model
to explain the correlations between two multinomial variables. This model is simpler
than the random effects based model discussed in the last section. However, the
ranges for the correlations under such a linear conditional probability model may be
narrow because of the restriction that the conditional probability of one variable is
linear in other variable. We discuss this simpler model in the following section.

5.5.1 Bivariate Normal Type Model and its Properties

In this approach, unlike in random effects approach (5.105)–(5.110), we assume
that Yi and Zi marginally follow the multinomial distributions with marginal
probabilities as

P[yi = y( j)
i |wi1] = π(i) j·(wi1) =

⎧
⎨

⎩

exp(β j0+β ′
jwi1)

1+∑J−1
u=1 exp(βu0+β ′

uwi1)
for j = 1, . . . ,J−1

1
1+∑J−1

u=1 exp(βu0+β ′
uwi1)

for j = J,
(5.138)

and

P[zi = z(r)i |wi2] = π(i)·r(wi2) =

⎧
⎨

⎩

exp(αr0+α ′
rwi2)

1+∑R−1
h=1 exp(αh0+α ′

hwi2)
for r = 1, . . . ,R−1

1
1+∑R−1

h=1 exp(αh0+α ′
hwi2)

for r = R,
(5.139)

where

β j = (β j1, . . . ,β j�, . . . ,β jp)
′,and αr = (αr1, . . . ,αrm, . . . ,αrq)

′,

for j = 1, . . . ,J−1, and r = 1, . . . ,R−1. Equivalently, writing

β ∗
j = [β j0,β ′

j]
′, w∗

i1 = [1,w′
i1]

′

α∗
r = [αr0,α ′

r]
′, w∗

i2 = [1,w′
i2]

′, (5.140)
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these marginal probabilities in (5.138)–(5.139) may be re-expressed as

P[yi = y( j)
i |w∗

i1] = π(i) j·(w∗
i1) =

⎧
⎨

⎩

exp(β ∗
j
′w∗

i1)

1+∑J−1
u=1 exp(β ∗

u
′w∗

i1)
for j = 1, . . . ,J−1

1
1+∑J−1

u=1 exp(β ∗
u
′w∗

i1)
for j = J,

(5.141)

and

P[zi = z(r)i |w∗
i2] = π(i)·r(w∗

i2) =

⎧
⎨

⎩

exp(α∗
r
′w∗

i2)

1+∑R−1
h=1 exp(α∗

h
′w∗

i2)
for r = 1, . . . ,R−1

1
1+∑R−1

h=1 exp(α∗
h
′w∗

i2)
for r = R,

(5.142)

respectively. Note that these marginal probabilities in (5.140)–(5.141) are quite
different and simpler than those random effects based marginal (unconditional)
probabilities given in (5.111)–(5.112).

Now to develop a correlation model for {yi,zi}, Sun and Sutradhar (2014) have
used a conditional regression approach. More specifically, to write a conditional
regression function of yi given zi, these authors have used the aforementioned
simpler marginal probabilities but assume a bivariate normal type correlation
structure between yi and zi. Note that if yi and zi were bivariate normal responses,
one would then relate them using the conditional mean of yi given zi, that is, through

E[Yi|Zi = zi] = μy +Σ−1
y|z (zi −μz), (5.143)

where μy and μz are the marginal mean vectors corresponding to yi and zi and Σy|z is
the conditional covariance matrix of yi given zi. However, as yi and zi in the present
setup are two multinomial responses, we follow the linear form (4.20) [see Sect. 4.3]
used in Chap. 4, for example, to model the conditional probabilities, i.e., Pr(yi|zi),
and write

λ ( j)
iy|z(r;w∗

i1,w
∗
i2) = Pr(yi = y( j)

i |zi = z(r)i )

=

{
π(i) j·(w∗

i1)+∑R−1
h=1 ρ jh(z

(r)
ih −π(i)·h(w∗

i2)), j = 1, . . . ,J−1; r = 1, . . . ,R,

1−∑J−1
j=1 λ ( j)

iy|z(r), j = J;r = 1, . . . ,R,

(5.144)

where z(r)ih is the hth (h = 1, . . . ,R−1) component of z(r)i , with z(r)ih = 1 if h = r, and

0 otherwise; ρ jh is referred to as the dependence parameter relating y( j)
i with z(h)i .

Note that this conditional model (5.144) may not be symmetric especially when
J �= R. However, this does not cause any problems in inferences as we will use all
unconditional product responses (see also Sect. 5.5.2.2) to estimate the dependence
parameters.
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5.5.1.1 Means, Variance, and Covariances of Marginal Variables

Using the marginal probabilities from (5.141) and (5.142), the mean vectors and
covariance matrices for each of yi and zi are written as

π(i)y(θ ∗
1 ,w

∗
i1) = E[Yi] = [π(i)1·(w∗

i1), . . . ,π(i) j·(w∗
i1), . . . ,π(i)(J−1)·(w∗

i1)]
′, (5.145)

π(i)z(θ ∗
2 ,w

∗
i2) = E[Zi] = [π(i)·1(w∗

i2), . . . ,π(i)·r(w∗
i2), . . . ,π(i)·(R−1)(w

∗
i2)]

′, (5.146)

var(Yi) = diag[π(i)1·(w∗
i1), . . . ,π(i) j·(w∗

i1), . . . ,π(i)(J−1)·(w∗
i1)]−π(i)y(θ∗

1 ,w
∗
i1)π

′
(i)y(θ

∗
1 ,w

∗
i1)

= Σ(i)yy(θ∗
1 ,w

∗
i1); (5.147)

var(Zi) = diag[π(i)·1(w∗
i2), . . . ,π(i)·r(w∗

i2), . . . ,π(i)·(R−1)(w
∗
i2)]−π(i)z(θ∗

2 ,w
∗
i2)π

′
(i)z(θ

∗
2 ,w

∗
i2)

= Σ(i)zz(θ∗
2 ,w

∗
i2), (5.148)

where

θ ∗
1 = [β ∗

1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′]′, θ ∗

2 = [α∗
1
′, . . . ,α∗

r
′, . . . ,α∗

R−1
′]′.

Note that these formulas appear to be the same as in (5.111)–(5.118), except that the
marginal probabilities, that is,

π(i) j·(w∗
i1), and π(i)·r(w∗

i2),

are now given by (5.141) and (5.142), and they are free of σξ .

5.5.1.2 Covariances and Correlations Between yi and zi

Using the proposed conditional probability from (5.144), one may write the joint
probability π(i) jr(w

∗
i1,w

∗
i2) as

π(i) jr(w
∗
i1,w

∗
i2) = Pr[yi = y( j)

i ,zi = z(r)i ]

= Pr(yi = y( j)
i |zi = z(r)i )Pr(zi = z(r)i ) = λ ( j)

iy|z(r;w∗
i1,w

∗
i2)π(i)·r(w∗

i2)

=

[

π(i) j·(w∗
i1)+

R−1

∑
h=1

ρ jh(z
(r)
ih −π(i)·h(w∗

i2))

]

π(i)·r(w∗
i2), (5.149)

yielding the covariance between Yi j and Zir as

cov(Yi j,Zir) = E(Yi jZir)−E(Yi j)E(Zir) = π(i) jr(w
∗
i1,w

∗
i2)−π(i) j·(w∗

i1)π(i)·r(w∗
i2)

= π(i)·r(w∗
i2)

[
R−1

∑
h=1

ρ jh(z
(r)
ih −π(i)·h(w∗

i2))

]

. (5.150)
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Following (5.150), after some algebras, we can write the R− 1 covariance quanti-
ties in

cov(Zi,Yi j) = [cov(Yi j,Zi1), . . . ,cov(Yi j,Zir), . . . ,cov(Yi j,Zi,R−1)]
′

in a matrix form as

cov(Zi,Yi j) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

π(i)·1(w∗
i2)
[

∑R−1
h=1 ρ jh(z

(1)
ih −π(i)·h(w∗

i2))
]

...

π(i)·r(w∗
i2)
[

∑R−1
h=1 ρ jh(z

(r)
ih −π(i)·h(w∗

i2))
]

...

π(i)·(R−1)(w
∗
i2)
[

∑R−1
h=1 ρ jh(z

(R−1)
ih −π(i)·h(w∗

i2))
]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

π(i)·1(w∗
i2)
[
(1,0′R−2)−π ′

(i)z(θ
∗
2 ,w

∗
i2)
]

ρ j

...

π(i)·r(w∗
i2)
[
(0′r−1,1,0

′
R−1−r)−π ′

(i)z(θ
∗
2 ,w

∗
i2)
]

ρ j

...

π(i)·r(w∗
i2)
[
(0′R−2,1)−π ′

(i)z(θ
∗
2 ,w

∗
i2)
]

ρ j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= var(Zi)ρ j, (5.151)

where

ρ j = [ρ j1, . . . ,ρ jh, . . . ,ρ j,R−1]
′, and

π(i)z(θ ∗
2 ,w

∗
i2) = [π(i)·1(w∗

i2), . . . ,π(i)·r(w∗
i2), . . . ,π(i)·(R−1)(w

∗
i2)]

′,

by (5.146), and the (R−1)× (R−1) covariance matrix var(Zi) is given in (5.148).
Consequently, for every j = 1, . . . ,J−1, one obtains

cov(Zi,Y
′
i ) = [var(Zi)ρ1, . . . ,var(Zi)ρ j, . . . ,var(Zi)ρJ−1]

= var(Zi)ρM

= Σ(i)yz(θ ∗
2 ,w

∗
i2,ρM), (5.152)

where ρM = [ρ1, . . . ,ρ j, . . . ,ρJ−1] is the (R − 1)× (J − 1) matrix of dependence
parameters. Next, by (5.152), one may compute the correlation matrix between the
pair-wise components of yi and zi, as
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corr(Zi,Y
′
i ) = [var(Zi)]

− 1
2 var(Zi)ρM[var(Yi)]

− 1
2

= [var(Zi)]
1
2 ρM[var(Yi)]

− 1
2

= CiM, (say). (5.153)

Note however that these correlations given by (5.153) among the components
of Zi and Yi for the ith individual may not have full range from −1 to 1, because
of the fact that ρ jh parameters in (5.144) are restricted by the constraint that

λ ( j)
iy|z(r;w∗

i1,w
∗
i2) has to lie between 0 and 1. This is however not a major problem

as this type of linear conditional model was demonstrated to accommodate wider
ranges for correlation index parameters for the binary data as compared to other
competitive models (see Sutradhar 2011, Table 7.1). But it would be important to
estimate these index parameters ρ jr in ρM matrix in (5.152) consistently, so that
regression parameters can be estimated consistently and as efficiently as possible.
This estimation issue is discussed in the next section.

5.5.2 Estimation of Parameters of the Proposed
Correlation Model

Recall that

θ ∗
1 = [β ∗

1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′]′, θ ∗

2 = [α∗
1
′, . . . ,α∗

r
′, . . . ,α∗

R−1
′]′

are referred to as the regression parameters involved in the marginal probabili-
ties (5.141)–(5.142), that is,

P[yi = y( j)
i |w∗

i1] = π(i) j·(w∗
i1) =

⎧
⎨

⎩

exp(β ∗
j
′w∗

i1)

1+∑J−1
u=1 exp(β ∗

u
′w∗

i1)
for j = 1, . . . ,J−1

1
1+∑J−1

u=1 exp(β ∗
u
′w∗

i1)
for j = J

=

⎧
⎨

⎩

exp(θ∗
1
′x∗i j)

1+∑J−1
u=1 exp(θ∗

1
′x∗iu)

for j = 1, . . . ,J−1
1

1+∑J−1
u=1 exp(θ∗

1
′x∗iu)

for j = J,
(5.154)

with

x∗i j =

⎛

⎝
01( j−1)(p+1)

w∗
i1

01(J−1− j)(p+1)

⎞

⎠ ,

for j = 1, . . . ,J−1; and



322 5 Multinomial Models for Cross-Sectional Bivariate Categorical Data

P[zi = z(r)i |w∗
i2] = π(i)·r(w∗

i2) =

⎧
⎨

⎩

exp(α∗
r
′w∗

i2)

1+∑R−1
h=1 exp(α∗

h
′w∗

i2)
for r = 1, . . . ,R−1

1
1+∑R−1

h=1 exp(α∗
h
′w∗

i2)
for r = R

=

⎧
⎨

⎩

exp(θ∗
2
′ x̃ir)

1+∑R−1
h=1 exp(θ∗

2
′ x̃ih)

for r = 1, . . . ,R−1
1

1+∑R−1
h=1 exp(θ∗

2
′ x̃ih)

for r = R,
(5.155)

with

x̃ir =

⎛

⎝
01(r−1)(q+1)

w∗
i2

01(R−1−r)(q+1)

⎞

⎠ ,

for r = 1, . . . ,R−1, and the components in

ρ∗ = (ρ11,ρ12, . . . ,ρ jr, . . . ,ρJ−1,R−1)
′,

are variables dependence parameters involved in the conditional probabili-
ties (5.144), or equivalently in the joint probabilities (5.149), that is,

π(i) jr(w
∗
i1,w

∗
i2) = Pr[yi = y( j)

i ,zi = z(r)i ]

=

[

π(i) j·(w∗
i1)+

R−1

∑
h=1

ρ jh(z
(r)
ih −π(i)·h(w∗

i2))

]

π(i)·r(w∗
i2)

=
[
π(i) j·(w∗

i1)+
{
(0′r−1,1,0

′
R−1−r)−π ′

(i)z(θ
∗
2 ,w

∗
i2)
}

ρ j

]
π(i)·r(w∗

i2). (5.156)

For convenience, we write

ψ = (θ ∗
1
′,θ ∗

2
′)′, and

φ = (ψ ′,ρ∗′)′, (5.157)

and estimate the parameters in φ by using the so-called GQL estimation approach.
More specifically, we use two GQL approaches, first, an MGQL (marginal GQL)
approach, and then a joint GQL (JGQL) approach.

5.5.2.1 MGQL Approach

In this approach, for known ρM ≡ ρ∗, we exploit the first order moments to estimate
ψ = (θ ∗

1
′,θ ∗

2
′)′ parameter at the first stage. This we do by using the GQL approach.

Once an estimate of ψ = (θ ∗
1
′,θ ∗

2
′)′ is available, we use it as a known value of ψ in

the moment estimating equation for ρM which is developed exploiting both first and
second order moments.
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5.5.2.1.1 MGQL Estimation for ψ

The MGQL estimating equation for ψ = (θ ∗
1
′,θ ∗

2
′)′ is given by

f (ψ) =
K

∑
i=1

∂ (π ′
(i)y(θ

∗
1 ,w

∗
i1),π ′

(i)z(θ
∗
2 ,w

∗
i2))

∂ψ
Σ−1

i11 (ψ,ρM)

(
yi −π(i)y(θ ∗

1 ,w
∗
i1)

zi −π(i)z(θ ∗
2 ,w

∗
i2)

)

= 0,

(5.158)
where, by (5.147)–(5.148) and (5.152), Σi11(ψ,ρM) has the form

Σi11(ψ,ρM) = cov

(
Yi

Zi

)

=

(
var(Yi) cov(Yi,Z′

i)

cov(Zi,Y ′
i ) var(Zi)

)

=

(
Σ(i)yy(θ ∗

1 ,w
∗
i1) Σ ′

(i)yz(θ
∗
2 ,w

∗
i2,ρM)

Σ(i)yz(θ ∗
2 ,w

∗
i2,ρM) Σ(i)zz(θ ∗

2 ,w
∗
i2)

)

. (5.159)

Computation of the Derivative
∂ (π ′

(i)y(θ
∗
1 ,w

∗
i1),π

′
(i)z(θ

∗
2 ,w

∗
i2))

∂ψ :

Because ψ = (θ ∗
1
′,θ ∗

2
′)′, the desired derivative matrix may be computed as follows:

∂π ′
(i)y(θ

∗
1 ,w

∗
i1)

∂θ ∗
1

=

[∂π(i)1·
∂θ ∗

1
, . . . ,

∂π(i) j·
∂θ ∗

1
, . . . ,

∂π(i)(J−1)·
∂θ ∗

1

]

, (5.160)

where, for j = 1, . . . ,J−1, by (5.154),

∂π(i) j·
∂θ ∗

1
= π(i) j·(w∗

i1)[x
∗
i j −

J−1

∑
g=1

x∗igπ(i)g·(w∗
i1)], (5.161)

where x∗i j
′ = [01′( j−1)(p+1),w

∗
i1
′,01′(J−1− j)(p+1)] is the 1× (J −1)(p+1) row vector

as defined in (5.154). For convenience, we re-express the (J −1)(p+1)×1 vector
in (5.161) as

∂π(i) j·
∂θ ∗

1
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−π(i) j·(w∗
i1)π(i)1·(w∗

i1)w
∗
i1

...
−π(i) j·(w∗

i1)π(i)( j−1)·(w∗
i1)w

∗
i1

[π(i) j·(w∗
i1)(1−π(i) j·(w∗

i1))]w
∗
i1

−π(i) j·(w∗
i1)π(i)( j+1)·(w∗

i1)w
∗
i1

...
−π(i) j·(w∗

i1)π(i)(J−1)·(w∗
i1)w

∗
i1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
[{π(i) j·(w∗

i1)1J−1 −π(i) j·(w∗
i1)π(i)y(θ ∗

1 ,w
∗
i1)}

⊗w∗
i1] , (5.162)
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and write the formula for the derivative as

∂π ′
(i)y(θ

∗
1 ,w

∗
i1)

∂θ ∗
1

= [Σ(i)yy(θ ∗
1 ,w

∗
i1)⊗w∗

i1], (5.163)

where Σ(i)yy(θ ∗
1 ,w

∗
i1) is the (J − 1)× (J − 1) covariance matrix of yi as given

by (5.147). By calculations similar to that of (5.163), one obtains

∂π ′
(i)z(θ

∗
2 ,w

∗
i2)

∂θ ∗
2

= [Σ(i)zz(θ ∗
2 ,w

∗
i2)⊗w∗

i2], (5.164)

where Σ(i)zz(θ ∗
2 ,w

∗
i2) is the (R − 1)× (R − 1) covariance matrix of zi as given

by (5.148). Consequently, we obtain

∂ (π ′
(i)y(θ

∗
1 ,w

∗
i1),π ′

(i)z(θ
∗
2 ,w

∗
i2))

∂ψ

=

(
Σ(i)yy(θ ∗

1 ,w
∗
i1)⊗w∗

i1 0
0 Σ(i)zz(θ ∗

2 ,w
∗
i2)⊗w∗

i2

)

. (5.165)

For known ρM, one may then solve the MGQL estimating equation (5.158) for ψ
by applying the iterative equation

ψ̂(m+1) = ψ̂(m)+

[{
K

∑
i=1

∂ (π ′
(i)y(θ

∗
1 ,w

∗
i1),π ′

(i)z(θ
∗
2 ,w

∗
i2))

∂ψ
Σ−1
(i)11(ψ,w∗

i1,w
∗
i2)

×
∂ (π ′

(i)y(θ
∗
1 ,w

∗
i1),π ′

(i)z(θ
∗
2 ,w

∗
i2))

′

∂ψ ′

}−1{ K

∑
i=1

∂ (π ′
(i)y(θ

∗
1 ,w

∗
i1),π ′

(i)z(θ
∗
2 ,w

∗
i2))

∂ψ

× Σ−1
(i)11(ψ,w∗

i1,w
∗
i2)

(
yi −π(i)y(θ ∗

1 ,w
∗
i1)

zi −π(i)z(θ ∗
2 ,w

∗
i2)

)}]

|ψ=ψ̂(m). (5.166)

Furthermore, it follows that the MGQL estimator, say ψ̂MGQL, obtained from (5.166)
has the asymptotic variance given by

limitK→∞var[ψ̂MGQL] =

{
K

∑
i=1

∂ (π ′
(i)y(θ

∗
1 ,w

∗
i1),π ′

(i)z(θ
∗
2 ,w

∗
i2))

∂ψ
Σ−1
(i)11(ψ,w∗

i1,w
∗
i2)

×
∂ (π ′

(i)y(θ
∗
1 ,w

∗
i1),π ′

(i)z(θ
∗
2 ,w

∗
i2))

′

∂ψ ′

}−1

. (5.167)
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5.5.2.1.2 MM Estimation for ρM

At the second stage we estimate ρ∗ or equivalently ρM by using the well-known
method of moments (MM). Because

cov(Zi,Y
′
i ) = [var(Zi)]ρM. (5.168)

by (5.152), and because this relationship holds for all i = 1, . . . ,K, by taking
averages on both sides, we obtain the method of moments (MM) estimator of ρM as

ρ̂M,MM =

[
1
K

K

∑
i=1

ˆvar(Zi)

]−1[
1
K

K

∑
i=1

ˆcov(Zi,Y
′
i )

]

, (5.169)

where ˆcov(Zir,Yi j) in ˆcov(Zi,Y ′
i ), for example, has the formula, ˆcov(Zir,Yi j) =

(zir − π̂(i)·r)(yi j − π̂(i) j·).

5.5.2.2 JGQL Approach

In the last section, the regression effects ψ = (θ ∗
1
′,θ ∗

2
′)′ were estimated by using

the GQL approach, whereas the bivariate response dependence parameters in ρM

were estimated by the method of moments. In this section we estimate all these
parameters jointly by using the GQL approach only. Thus, the JGQL estimating
equation for

φ = (ψ ′,ρ∗′)′

will be a generalization of the GQL estimating equation for ψ given by (5.158). For
the purpose, because the joint cell probabilities π(i) jr(w

∗
i1,w

∗
i2) given in (5.156), i.e.,

π(i) jr(w
∗
i1,w

∗
i2) = Pr[yi = y( j)

i ,zi = z(r)i ]

=

[

π(i) j·(w∗
i1)+

R−1

∑
h=1

ρ jh(z
(r)
ih −π(i)·h(w∗

i2))

]

π(i)·r(w∗
i2)

=
[
π(i) j·(w∗

i1)+
{
(0′r−1,1,0

′
R−1−r)−π ′

(i)z(θ
∗
2 ,w

∗
i2)
}

ρ j

]
π(i)·r(w∗

i2),

contain the parameters ψ = (θ ∗
1
′,θ ∗

2
′)′ as well as

ρ∗ = (ρ ′
1, . . . ,ρ ′

j, . . . ,ρ ′
J−1)

′

= (ρ11, . . . ,ρ j1, . . . ,ρ jr, . . . ,ρ j,R−1, . . . ,ρJ−1,R−1)
′,

we consider a statistic gi with joint cell observations, namely

gi = (yi1zi1, . . . ,yi jzir, . . . ,yi,J−1zi,R−1)
′, (5.170)
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for the estimation of ρ∗. This statistic gi has the mean

E[Gi] = (π(i)11, . . . ,π(i) jr, . . . ,π(i)(J−1)(R−1))
′ = π(i)yz(ψ,ρ∗), (say). (5.171)

As an extension of (5.158), one may now construct the JGQL estimating equation
for φ = (ψ ′,ρ∗′)′ as

f (φ) =
K

∑
i=1

∂ (π ′
(i)y(θ

∗
1 ,w

∗
i1),π ′

(i)z(θ
∗
2 ,w

∗
i2),π ′

iyz(ψ,ρ∗))

∂φ

×
⎡

⎣cov

⎛

⎝
Yi

Zi

Gi

⎞

⎠

⎤

⎦

−1⎛

⎝
yi −π(i)y(θ ∗

1 ,w
∗
i1)

zi −π(i)z(θ ∗
2 ,w

∗
i2)

gi −πiyz(ψ,ρ∗)

⎞

⎠= 0, (5.172)

which may be solved iteratively to obtain the JGQL estimates for all elements in φ ,
including ρ∗. The construction of the covariance matrix of (Y ′

i ,Z
′
i ,G

′
i)
′ is outlined

below.

5.5.2.2.1 Construction of the Covariance Matrix of (Y ′
i ,Z

′
i ,G

′
i)
′ for the JGQL

Approach

In (5.172), the covariance matrix of (Y ′
i ,Z

′
i ,G

′
i)
′ has the form

cov

⎛

⎝
Yi

Zi

Gi

⎞

⎠=

(
Σi11(ψ,ρ∗) Σi12(ψ,ρ∗)

Σi22(ψ,ρ∗)

)

= Σi(ψ,ρ∗) (say), (5.173)

where

Σi11(ψ,ρ∗) = cov

(
Yi

Zi

)

,

is already computed in (5.159), ρ∗ being equivalent to ρM, with ρM as the
(R − 1) × (J − 1) matrix given by ρM = (ρ1, . . . ,ρ j, . . . ,ρJ−1), where ρ j =
(ρ j1, . . . ,ρ jr, . . . ,ρ j,R−1)

′.
The computation for the remaining covariance matrices in (5.173) is done as

follows. More specifically,

Σi22(ψ,ρ∗) = cov(Gi) = diag(πiyz(ψ,ρ∗))−πiyz(ψ,ρ∗)π ′
iyz(ψ,ρ∗)

= diag[π(i)11, . . . ,π(i) jr, . . . ,π(i)(J−1)(R−1)]−πiyz(ψ,ρ∗)π ′
iyz(ψ,ρ∗),
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where πiyz(ψ,ρ∗) = [π(i)11, . . . ,π(i) jr, . . . ,π(i)(J−1)(R−1)]
′ as in (5.171), with π(i) jr as

given in (5.156). Next,

Σi12(ψ,ρ∗) =
(

cov(Yi,G′
i)

cov(Zi,G′
i)

)

, (5.174)

where

cov(Yi,G
′
i) = [cov(yih,yi jzir)] : (J−1)× (J−1)(R−1) (5.175)

with

cov(yih,yi jzir) =

{
π(i) jr(1−π(i) j·) h = j,
−π(i) jrπ(i) j· h �= j,

(5.176)

and

cov(Zi,G
′
i) = [cov(ziq,yi jzir)] : (R−1)× (R−1)(J−1) (5.177)

with

cov(ziq,yi jzir) =

{
π(i) jr(1−π(i)·r) q = r,
−π(i) jrπ(i)·r q �= r.

(5.178)

5.5.2.2.2 Computation of the Derivative Matrix
∂ (π ′

(i)y(θ
∗
1 ,w

∗
i1),π

′
(i)z(θ

∗
2 ,w

∗
i2),π

′
iyz(ψ,ρ∗))

∂φ

Because φ = (ψ ′,ρ∗′)′ with ψ = (θ ∗
1
′,θ ∗

2
′)′, and the derivative

∂ (π ′
(i)y(θ

∗
1 ,w

∗
i1),π ′

(i)z(θ
∗
2 ,w

∗
i2))

∂ψ

was computed in (5.165), it is convenient to re-express the desired derivative
matrix as

∂ (π ′
(i)y(θ

∗
1 ,w

∗
i1),π ′

(i)z(θ
∗
2 ,w

∗
i2),π ′

iyz(ψ,ρ∗))

∂φ

=

⎛

⎝

∂ (π ′
(i)y(θ

∗
1 ,w

∗
i1),π

′
(i)z(θ

∗
2 ,w

∗
i2))

∂ψ
∂ (π ′

iyz(ψ,ρ∗))
∂ψ

∂ (π ′
(i)y(θ

∗
1 ,w

∗
i1),π

′
(i)z(θ

∗
2 ,w

∗
i2))

∂ρ∗
∂ (π ′

iyz(ψ,ρ∗))
∂ρ∗

⎞

⎠ , (5.179)
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where

∂ (π ′
(i)y(θ

∗
1 ,w

∗
i1),π ′

(i)z(θ
∗
2 ,w

∗
i2))

∂ρ∗ = 0 : (J−1)(R−1)×{(J−1)+(R−1)}

because the components in π ′
(i)y(θ

∗
1 ,w

∗
i1) and π ′

(i)z(θ
∗
2 ,w

∗
i2), that is, the marginal

probabilities are free from ρ∗. The remaining two derivatives in (5.179) are
computed as follows:

∂ (π ′
iyz(ψ,ρ∗))

∂ψ
=
(

∂π(i)11
∂ψ · · · ∂π(i) jr

∂ψ · · · ∂π(i)(J−1)(R−1)
∂ψ

)
, (5.180)

where by (5.156), for all j = 1, . . . ,J−1; r = 1, . . . ,R−1, one writes

∂π(i) jr

∂ψ
=

∂
[(

π(i) j·(w∗
i1)+

{
(0′r−1,1,0

′
R−1−r)−π ′

(i)z(θ
∗
2 ,w

∗
i2)
}

ρ j

)
π(i)·r(w∗

i2)
]

∂ψ

=

[(
∂π(i) j·(w∗

i1)

∂ψ
+

{

(0′r−1,1,0
′
R−1−r)−

∂π ′
(i)z(θ

∗
2 ,w

∗
i2)

∂ψ

}

ρ j

)

π(i)·r(w∗
i2)

]

+

[(
π(i) j·(w∗

i1)+
{
(0′r−1,1,0

′
R−1−r)−π ′

(i)z(θ
∗
2 ,w

∗
i2)
}

ρ j

) ∂π(i)·r(w∗
i2)

∂ψ

]

, (5.181)

with

∂π(i) j·
∂ψ

=

([{π(i) j·(w∗
i1)1J−1 −π(i) j·(w∗

i1)π(i)y(θ ∗
1 ,w

∗
i1)}⊗w∗

i1

]

0

)

(5.182)

∂π(i)·r
∂ψ

=

(
0

[{π(i)·r(w∗
i2)1R−1 −π(i)·r(w∗

i2)π(i)z(θ ∗
2 ,w

∗
i2)}⊗w∗

i2

]

)

(5.183)

∂π ′
(i)z(θ

∗
2 ,w

∗
i2)

∂ψ
=

(
0

Σ(i)zz(θ ∗
2 ,w

∗
i2)⊗w∗

i2

)

, (5.184)

by (5.162) and (5.165).
Next

∂ (π ′
iyz(ψ,ρ∗))

∂ρ∗ =
(

∂π(i)11
∂ρ∗ · · · ∂π(i) jr

∂ρ∗ · · · ∂π(i)(J−1)(R−1)
∂ρ∗

)
, (5.185)

where

∂π(i) jr

∂ρ∗ =
∂
[(

π(i) j·(w∗
i1)+

{
(0′r−1,1,0

′
R−1−r)−π ′

(i)z(θ
∗
2 ,w

∗
i2)
}

ρ j

)
π(i)·r(w∗

i2)
]

∂ρ∗ .

(5.186)
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Now because

ρ∗ = [ρ ′
1, . . . ,ρ ′

j, . . . ,ρ ′
J−1]

′,

the derivative in (5.186) has the formula

∂π(i) jr

∂ρ∗ =

⎛

⎜
⎝

01(R−1)( j−1)

−π(i)·r(w∗
i2)π(i)z(θ ∗

2 ,w
∗
i2)

01(R−1)(J−1− j)

⎞

⎟
⎠ , (5.187)

for all j = 1, . . . ,J−1; r = 1, . . . ,R−1.

5.5.2.2.3 JGQL Estimate and Variance

By using the formulas for the covariance matrix given by (5.173) and the derivative
matrix from the last section, one then solves the JGQL estimating equation (5.172)
for φ by applying the iterative equation

φ̂(m+1) = φ̂(m)+

[[
K

∑
i=1

{
∂ (π ′

(i)y(θ
∗
1 ,w

∗
i1),π

′
(i)z(θ

∗
2 ,w

∗
i2),π

′
iyz(ψ,ρ∗))

∂φ

}

Σ−1
i (ψ,ρ∗)

×
{

∂ (π ′
(i)y(θ

∗
1 ,w

∗
i1),π

′
(i)z(θ

∗
2 ,w

∗
i2),π

′
iyz(ψ,ρ∗))′

∂φ ′

}]−1

×
[

K

∑
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∂ (π ′
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∗
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∗
i1),π

′
(i)z(θ

∗
2 ,w

∗
i2),π
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iyz(ψ,ρ∗))

∂φ
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×

⎛

⎜
⎝
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∗
i1)
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∗
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gi −πiyz(ψ,ρ∗)

⎞

⎟
⎠

⎤

⎥
⎦

⎤

⎥
⎦

φ=φ̂(m)

. (5.188)

Let var[φ̂JGQL] be the estimate obtained from (5.188). It then follows that this
estimate has the asymptotic variance given by

limitK→∞var[φ̂JGQL] =

[
K

∑
i=1

{
∂ (π ′

(i)y(θ
∗
1 ,w

∗
i1),π

′
(i)z(θ

∗
2 ,w

∗
i2),π

′
iyz(ψ,ρ∗))

∂φ

}

Σ−1
i (ψ,ρ∗)

×
{

∂ (π ′
(i)y(θ

∗
1 ,w

∗
i1),π

′
(i)z(θ

∗
2 ,w

∗
i2),π

′
iyz(ψ,ρ∗))′

∂φ ′

}]−1

. (5.189)
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5.5.3 Fitting BNLCMP Model to a Diabetic
Retinopathy Data: An Illustration

In this section, we illustrate an application of the bivariate multinomial model
described by (5.138)–(5.139) and (5.144), under Sect. 5.5.1, by reanalyzing the so-
called WESDR data, which was analyzed earlier by Williamson et al. (1995), for
example. As far as the inference techniques are concerned, we apply both MGQL
and JGQL approaches discussed in Sects. 5.5.2.1 and 5.5.2.2, respectively. Note that
this illustration is also available in Sun and Sutradhar (2014). We now explain the
WESDR data set in brief as follows. This data set contains diabetic retinopathy
status on a ten-point interval scale for left and right eyes of 996 independent patients,
along with information on various associated covariates. Williamson et al. (1995)
have considered four categories, namely None, Mild, Moderate, and Proliferative,
for the DR status for each eye. There were 743 subjects with complete response
and covariate data. Some of the important covariates are: (1) duration of diabetes
(DD), (2) glycosylated hemoglobin level (GHL), (3) diastolic blood pressure
(DBP), (4) gender, (5) proteinuria (Pr), (6) dose of insulin per day (DI), and (7)
macular edema (ME). Note that these covariates are not eye specific. That is, these
covariates are common for both left and right eyes. Let wi = (wi1, . . . ,wip)

′ be the
p−dimensional common (to both eyes) covariate for the ith individual. Also, in
this example, the number of categories for DR status of two eyes would be the
same. That is, J = R. Thus, one has to adjust the marginal probabilities in (5.138)
and (5.139) as

P[yi = y( j)
i |wi] = π(i) j·(wi) =

⎧
⎨

⎩

exp(β j0+θ ′
jwi)

1+∑J−1
u=1 exp(βu0+θ ′

uwi)
for j = 1, . . . ,J−1

1
1+∑J−1

u=1 exp(βu0+θ ′
uwi)

for j = J,
(5.190)

and

P[zi = z(r)i |wi] = π(i)·r(wi) =

⎧
⎨

⎩

exp(αr0+θ ′
rwi)

1+∑R−1
h=1 exp(αh0+θ ′

hwi)
for r = 1, . . . ,R−1

1
1+∑R−1

h=1 exp(αh0+θ ′
hwi)

for r = R,
(5.191)

where for j = r under J = R,

θ j = (θ j1, . . . ,θ j�, . . . ,θ jp)
′,

which is the same for both y and z. Equivalently, writing

β ∗
j = [β j0,θ ′

j]
′,

α∗
r = [αr0,θ ′

r]
′,

w∗
i = [1,w′

i]
′, (5.192)
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one still can use the notation

θ ∗
1 = [β ∗

1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′]′, θ ∗

2 = [α∗
1
′, . . . ,α∗

r
′, . . . ,α∗

R−1
′]′

as in the last section (see (5.147)–(5.148)), but there are fewer parameters now
because θ j : p× 1 is common to both β ∗

j and α∗
r for all j = r = 1, . . . ,J − 1. This

common covariate situation would make the conditional probability (5.144) simpler,
which now is given by

λ ( j)
iy|z(r;w∗

i ) = Pr(yi = y( j)
i |zi = z(r)i )

=

⎧
⎪⎨

⎪⎩

π(i) j·(w∗
i )+∑R−1

h=1 ρ jh(z
(r)
ih −π(i)·h(w∗

i )), j = 1, . . . ,J−1; r = 1, . . . ,R,

1−∑J−1
j=1 λ ( j)

iy|z(r), j = J;r = 1, . . . ,R.

(5.193)

To better understand the data, in Sect. 5.5.3.1, for simplicity, we first use two
categories for each variable and fit such a bivariate binary model by computing
the correlation index and regression parameters. This bivariate binary analysis is
followed by a bivariate trinomial model fitting in Sect. 5.5.3.2.

As far as the dependence parameters {ρ jr} are concerned, for the binary case
there is one parameter, namely ρ11. For the trinomial case, because J = K = 3, there
will be four dependence parameters, namely {ρ jr} for j = 1,2 and r = 1,2. These
are interpreted as the left eye category j (for y) versus right eye category r (for z)
dependence parameter.

5.5.3.1 Diabetic Retinopathy Data Analysis Using Bivariate Binary
(J = 2, R = 2) Model

In this section, for simplicity, we collapsed the four categories of left and eye
diabetic retinopathy (DR) status in Williamson et al. (1995) into two categories
for each of the bivariate responses. More specifically, these two categories are
‘presence’ and ‘absence’ of DR. The DR responses in the bivariate binary format is
shown in Table 5.1.

Table 5.1 Bivariate binary model based counts for left and right eyes diabetic
retinopathy status

right eye \ left eye Y=1 (presence of DR) Y=0 (absence of DR) Total

Z=1 (presence of DR) 424 31 455

Z=0 (absence of DR) 39 249 288

Total 463 280 743
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As far as the covariates are concerned, we denote the seven covariates as follows.
First, we categorize duration of diabetes (DD) into three categories, to do so we use
two dummy covariates wi11 and wi12 defined as follows:

(wi11,wi12) =

⎧
⎨

⎩

(1,0), DD < 5 years
(0,0), DD between 5 and 10 years
(0,1), DD > 10 years.

The other six covariates are denoted as:

wi2 =
GHLi −GHL

se(GHL)
, wi3 =

{
0, DBP < 80
1, DBP ≥ 80,

wi4 =

{
0, male
1, female,

wi5 =

{
0, Pr absence
1, Pr presence,

wi6 =

{
0, DI ≤ 1
1, DI ≡ 2,

wi7 =

{
0, ME absence
1, ME presence.

The effects of the above seven covariates are denoted by

θ1 ≡ θ = (θ11,θ12,θ2,θ3,θ4,θ5,θ6,θ7)
′

on the binary response variables yi and zi.
The bivariate binary response counts from Table 5.1 and the above covariates are

now used to fit the following marginal and correlation models:

π(i)y = Pr(yi = 1) =
exp(β10 +w′

iθ)
1+ exp(β10 +w′

iθ)
,

π(i)z = Pr(zi = 1) =
exp(α10 +w′

iθ)
1+ exp(α10 +w′

iθ)
,

and λ (1)
iy|z = Pr(yi = 1|zi,wi) = π(i)y +ρ11(zi −π(i)z). (5.194)

These models are special cases of the marginal multinomial models (5.190)–(5.191)
and the multinomial correlation model (5.193), where β10 (β20 = 0) represents the
category effect for the left eye and similarly, α10 (α20 = 0) represents the category
effect for the right eye, and ρ11 represents the dependence of left eye DR on the
right eye DR. Note that the bivariate binary model produces the correlation between
left and right eye DR as

ρ(i)yz = corr(yi,zi) =
π(i)11 −π(i)zπ(i)y

√
π(i)y(1−π(i)y)π(i)z(1−π(i)z)

= ρ11

√
π(i)z(1−π(i)z)

π(i)y(1−π(i)y)
, (5.195)
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Table 5.2 The joint GQL (JGQL) and MGQL estimates for the regression
effects and the left eye category j = 1 (for y) versus right eye category k = 1
(for z) dependence (C11D) parameter {ρk j, j = 1;k = 1} , along with their
estimated standard errors (ESE), under the normal linear conditional bivariate
binary probability model for the diabetic retinopathy data

Approach JGQL MGQL

Parameter (Effect of) Estimate ESE Estimate ESE

α10 −0.317 0.197 −0.320 0.201

β10 −0.215 0.197 −0.238 0.200

θ11 (DD low) −2.040 0.274 −2.119 0.287

θ12 (DD high) 2.235 0.206 2.238 0.210

θ2 (GHL) 0.387 0.093 0.417 0.095

θ3 (DBP) 0.573 0.189 0.554 0.193

θ4 (Gender) −0.249 0.183 −0.230 0.187

θ5 (Pr) 0.527 0.321 0.510 0.327

θ6 (DI) 0.003 0.184 0.018 0.187

θ7 (ME) 2.064 1.043 2.603 1.378

ρ11 (C11D) 0.637 0.039 0.636 –

where π(i)11 = Pr(yi = 1,zi = 1) = Pr(zi = 1)P(yi = 1|zi = 1) = π(i)zλ
(1)
iy|z =

π(i)z[π(i)y +ρ11(1−π(i)z)].
The MGQL estimates for the regression effects (θ) of the bivariate binary

model (5.194) are computed by (5.166), along with their standard errors computed
by (5.167). The MM estimate for ρ11 is computed by (5.169). Next, the JGQL
estimates for both regression effects (θ) and dependence parameter (ρ) along with
their standard errors are computed by using (5.188) and (5.189). These estimates for
the parameters of bivariate binary model are given in Table 5.2.

Now by using the model parameter estimates given in Table 5.2, we can calculate
the correlation ρiyz for each i = 1, . . . ,743. This we do by using the MGQL
estimates. As far as the correlation index parameter is concerned, it was found to
be ρ̂11,JGQL = 0.637 (ρ̂11,MM = 0.636) implying that right eye retinopathy status
is highly dependent on the retinopathy status of left eye. This high dependence
appears to reflect well the correlation indicated by the observations in Table 5.1. We
also have computed the summary statistics for the distribution of ρ(i)yz (5.195) for
i = 1, . . . ,743. It was found that most correlations cluster around 0.61 which is far
from zero correlation, whereas the correlations for some individuals may be larger
than 0.61 and in some cases they can reach a high value such as 0.64. To be precise,
the minimum of ρ(i)yz was found to be 0.611, and the maximum is 0.641, with
average of ρ(i)yz given by ρ̄yz = 0.617. Thus, the present model helps to understand
the correlation between the left and right eye retinopathy status.

The results from Table 5.2 show that the JGQL estimates are very close to the
MGQL estimates. However, when ESEs (estimated standard errors) are compared,
it is clear that the ESEs of the JGQL estimates are smaller than the corresponding
MGQL estimates, which is expected because unlike the MGQL estimating equation,
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the JGQL estimating equation is fully standardized for all parameters. We now
interpret the estimates. The results of the table show that the propensity of diabetic
retinopathy (probability of having diabetic retinopathy problem) tends to increase
with longer DD, higher GHL, higher DBP, male gender, presence of Pr, more
DI per day, and presence of ME. Note that the estimates of effects of DD and
ME are found to deviate from zero clearly, indicating that these two covariates
are important risk factors of diabetic retinopathy problem. To be specific, (1) the
marginal parameter estimates α̂10,JGQL = −0.317 and β̂10,JGQL = −0.215 indicate
that when other covariates are fixed, an individual has small probabilities to develop
left and right eye retinopathy problem. Next, (2) because DD was coded as (0,0)
for duration between 5 and 10 years, the large positive value of θ̂12,JGQL = 2.235
and negative value of θ̂11,JGQL =−2.040 show that as DD increases, the probability
of an individual to have retinopathy problem increases. (3) The positive values of
θ̂2,JGQL = 0.387 and θ̂3,JGQL = 0.573 indicate that an individual with high GHL and
DBP has greater probability to have retinopathy problem given the other covariates
fixed, respectively. (4) The negative value of θ̂4,JGQL =−0.249 indicates that males
are more likely to develop retinopathy problem compared with females. Next,
θ̂5,JGQL = 0.527 show that presence of Pr (proteinuria) increases one’s probability
to develop retinopathy compared with those who don’t have Pr problem. (6) The
small values of θ̂6 under both approaches, to be specific, θ̂6,MGQL = 0.018, indicate
that dose of insulin per day (DI) does not have much influence on one’s propensity
to have retinopathy problem. (7) The regression effect of ME (macular edema) on
the probability of having diabetic retinopathy in left or right eye was found to be
θ̂7,MGQL = 2.603. Because ME was coded as w7 = 1 in the presence of ME, this
high positive value θ̂7,MGQL = 2.603 indicates that ME has great effects on the
retinopathy status.

5.5.3.2 Diabetic Retinopathy Data Analysis Using Trinomial
(K = 3, J = 3) Model

Under the bivariate binary model fitted in the last section, dichotomous diabetic
retinopathy status such as absence or presence of DR in both left and right
eyes were considered. In this section we subdivide the presence of DR into two
categories, i.e., non-severe DR and severe DR. Thus, for illustration of the proposed
correlation model, altogether we consider three categories, namely none, non-
severe, and severe, for both left (y) and right (z) eyes, whereas Williamson et al.
(1995), for example, considered four categories, namely none, mild, moderate, and
proliferative. This is done for simplicity only, whereas the proposed approach is
quite general and is able to deal with any suitable finite number of categories for
a response variable. In notation, we represent three categories of left eye diabetic
retinopathy status by using two dummy variables yi1 and yi2 defined as follows:

(yi1,yi2) =

⎧
⎨

⎩

(1,0), non− severe DR (category 1)
(0,1), severe o f DR (category 2)
(0,0), absence o f DR (category 3).
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Table 5.3 Trinomial model based counts of left and right eyes diabetic
retinopathy status

right eye \ left eye non-severe DR severe DR absence of DR Total

non-severe DR 354 15 31 400

severe DR 12 43 0 55

absence of DR 39 0 249 288

Total 405 58 280 743

Similarly, we use two dummy variables zi1 and zi2 to represent the three categories
of right eye diabetic retinopathy status as follows:

(zi1,zi2) =

⎧
⎨

⎩

(1,0), non− severe DR (category 1)
(0,1), severe DR (category 2)
(0,0), absence of DR (category 3).

The distribution of the 743 individuals under three categories of each of y and z
are shown in Table 5.3.

As far as the covariates are concerned, in the bivariate binary analysis in the last
section, we considered seven covariates. However, one of the covariates, namely
dose of insulin per day (DI) was found to have no obvious effect on DR evident
from the JGQL and MGQL estimates for this effect, which were found to be
θ̂6,JGQL = 0.003 and θ̂6,MGQL = 0.018. Thus, we do not include DI in the present
multinomial analysis. The rest of the covariates are: (1) duration of diabetes (DD),
(2) glycosylated hemoglobin level (GHL), (3) diastolic blood pressure (DBP), (4)
gender, (5) proteinuria (Pr), and (6) macular edema (ME); and it is of interest to find
the effects of the six covariates on the trinomial status of DR. Furthermore, unlike in
the previous section, in this section, we use standardized DD to estimate the effect of
DD on DR. There are two obvious advantages of doing so, first the total number of
model parameters can be reduced by two, yielding simpler calculations; second it is
easier to interpret effects of DD on different categories of DR. We give the formula
for standardizing DD as follows:

wi1 =
DDi −DD

se(DD)
. (5.196)

Next, to specify the bivariate trinomial probabilities following (5.190)–
(5.191), and (5.193), we use the notation wi = (wi1,wi2,wi3,wi4,wi5,wi6)

′ to
represent aforementioned 6 covariates, and use θ1 = (θ11,θ21,θ31,θ41,θ51,θ61)

′
to represent the effects of wi on the response variables yi1 and zi1, and θ2 =
(θ12,θ22,θ32,θ42,θ52,θ62)

′ to represent the effects of wi on the response variables
yi2 and zi2. For example, θ11 is the effect of DD on non-severe DR, and θ12

represent the effect of DD on severe retinopathy problem. Note that in addition to
wi, the probabilities for the response variables zi1 and zi2 are functions of marginal
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Table 5.4 The marginal GQL (MGQL) estimates for the regression
effects along with their estimated standard errors (ESE), and the
estimates of the left eye category j (for y) versus right eye category r
(for z) dependence (C jrD) parameters {ρ jr, j = 1,2;r = 1,2} under
the normal linear conditional bivariate trinomial probability model for
the diabetic retinopathy data

Parameter (Effect of) Estimate ESE

(α10,α20) (0.682,−2.528) ( 0.147,0.312)

(β10,β20) (0.753,−2.388) (0.148, 308)

θ11 (DD on non-severe DR) 2.177 0.141

θ12 (DD on severe DR) 2.591 0.177

θ21 (GHL on non-severe DR) 0.367 0.070

θ22 (GHL on severe DR) 0.391 0.132

θ31 (DBP on non-severe DR) 0.673 0.142

θ32 (DBP on severe DR) 1.146 0.287

θ41 (Gender on non-severe DR) −0.190 0.138

θ42 (Gender on severe DR) −0.374 0.261

θ51 (Pr on non-severe DR) 0.545 0.245

θ52 (Pr on severe DR) 1.741 0.335

θ61 (ME on non-severe DR) 2.077 1.035

θ62 (ME on severe DR) 4.154 1.050

ρ11 (C11D) 0.641 −
ρ21 (C12D) 0.017 −
ρ12 (C21D) 0.009 −
ρ22 (C22D) 0.674 −

parameters α10 and α20, respectively; similarly, the probabilities for the response
variables yi1 and yi2 are functions of marginal parameters β10 and β20, respectively.
These latter parameters are category effects.

Because there is no big difference between JGQL and MGQL estimation
techniques, for simplicity, in this section we have used the MGQL approach only.
The MGQL estimates of all model parameters and the estimated standard errors
(ESE) of all regression parameters (α10, α20, β10, β20, θ1 and θ2) are reported in
Table 5.4.

The results in Table 5.4 show that the propensity of diabetic retinopathy (prob-
ability of having diabetic retinopathy problem) tends to increase with longer DD,
higher GHL, higher DBP, male gender, presence of proteinuria, and presence of
ME. This observation agrees with the results in Table 5.2 under the bivariate binary
analysis. To be specific, (1) the marginal parameter estimates α̂10,MGQL = 0.682
and α̂20,MGQL = −2.528, along with the marginal parameter estimates β̂10,MGQL =

0.753 and β̂10,MGQL = −2.388, indicate that when other covariates are fixed, a
diabetic patient tends to develop retinopathy problem. However, the probability
to have moderate (non-severe) retinopathy problem is larger as compared to the
probability of having severe retinopathy problem. This observation agrees with the
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descriptive statistics in Table 5.3. (2) The large positive values of θ̂11,MGQL = 2.177
and θ̂12,MGQL = 2.591 show that as DD increases, the probability of an individual
to have retinopathy problem increases, the longer DD, the severer retinopathy status
will be. (3) The positive values of θ̂31,MGQL = 0.673 and θ̂32,MGQL = 1.146 indicate
that an individual with higher DBP has greater probability to have retinopathy
problem given the other covariates fixed. The positive values of θ̂21 and θ̂22 give
similar interpretation of the effects of GHL on one’s retinopathy status. (4) The
negative values of θ̂41,MGQL = −0.190 and θ̂42,MGQL = −0.374 indicate that males
are more likely to develop retinopathy problem as compared to females, and males
are more likely to develop severe retinopathy problem than females. (5) The large
positive values of θ̂61 = 2.077 and θ̂62 = 4.154 indicate that ME has a strong
influence on one’s propensity of diabetic retinopathy, and that presence of ME leads
to severe DR more likely than moderate retinopathy problems.

Next, the large correlation index parameter values ρ̂11,MM = 0.641 and ρ̂22,MM =
0.674, and the small values of ρ̂21,MM = 0.017 and ρ̂12,MM = 0.009 imply that right
eye retinopathy severity is highly correlated with the retinopathy severity of left
eye. For example, for individuals whose left eye retinopathy status is non-severe,
it is highly possible for them to have non-severe right eye retinopathy problem.
Similarly, for those who have severe left eye retinopathy problem, it is greatly
possible for them to have severe right eye retinopathy problem as well. This high
correlation appears to reflect well the correlation indicated by the observations in
Table 5.3.

Note that Williamson et al. (1995) also found similar but different (in magnitude)
regression effect values as in Table 5.4, but the present estimation techniques
provide more efficient estimates for the regression effects involved in the proposed
normal linear conditional probability model. Furthermore, the correlation index
parameters interpretation is quite appealing to understand the dependence of left
eye retinopathy status on the right eye status and vice versa, whereas the odds ratio
approach does not offer such correlation ideas but uses only one global odds ratio
parameter to understand the dependence of multiple categories which appears to be
inadequate.
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Chapter 6
Multinomial Models for Longitudinal Bivariate
Categorical Data

6.1 Preamble: Longitudinal Fixed Models for Two
Multinomial Response Variables Ignoring Correlations

Recall from Chap. 4, specifically from Sect. 4.4 that the marginal probability at
initial time (t = 1) and all possible lag 1 conditional probabilities for a multinomial
response repeated over time were modeled as:

Marginal probability at t = 1 for y variable:

P[yi1 = y( j)
i1 ] = π(i1) j(y) =

⎧
⎪⎨

⎪⎩

exp(w∗′
i1 β ∗

j )

1+∑J−1
g=1 exp(w∗′

i1 β ∗
g )

for j = 1, . . . , J−1

1
1+∑J−1

g=1 exp(w∗′
i1 β ∗

g )
for j = J,

(6.1)

where w∗
i1 =

(
1 w′

i1

)′
, wi1 being the p−dimensional covariate vector recorded at

time t = 1, and β ∗
j = (β j0,β ′

j)
′ is the effect of w∗

i1 influencing yi1 to be y( j)
i1 . Here

β j = [β j1, . . . ,β ju, . . . ,β jp]
′.

Lag 1 based conditional probabilities at t = 2, . . . ,T, for y variable:

η( j)
it|t−1(g|y) = P

(
Yit = y( j)

it

∣
∣
∣Yi,t−1 = y(g)i,t−1

)
=

⎧
⎪⎪⎨

⎪⎪⎩

exp
[
w∗′

it β ∗
j +γ ′j y

(g)
i,t−1

]

1+∑J−1
v=1 exp

[
w∗′

it β ∗
v +γ ′vy(g)i,t−1

] , for j = 1, . . . ,J−1

1

1+∑J−1
v=1 exp

[
w∗′

it β ∗
v +γ ′vy(g)i,t−1

] , for j = J,
(6.2)

where g = 1, . . . ,J, is a given (known) category, and γ j = (γ j1, . . . ,γ jv, . . . ,γ j,J−1)
′

denotes the dynamic dependence parameters.
Also recall from Chap. 5 that in the bivariate multinomial case in cross-sectional

setup, one collects two multinomial responses yi and zi from the ith individual.
In the longitudinal setup, both responses will be repeatedly collected over time
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t = 1, . . . ,T. Using individual specific covariate (i.e., common covariate for both
responses), a separate marginal and conditional probabilities model for zit , similar
to (6.1)–(6.2) may be written as

Marginal probability at t = 1 for z variable:

P[zi1 = z(r)i1 ] = π(i1)r(z) =

⎧
⎪⎨

⎪⎩

exp(w∗′
i1 α∗

r )

1+∑R−1
g=1 exp(w∗′

i2 α∗
g )

for r = 1, . . . ,R−1

1
1+∑R−1

g=1 exp(w∗′
i1 α∗

g )
for r = R,

(6.3)

where α∗
r = (αr0,α ′

r)
′ is the effect of w∗

i1 influencing zi1 to be z(r)i1 , where r =
1, . . . ,R−1. Here αr = [αr1, . . . ,αru, . . . ,αrp]

′.

Lag 1 based conditional probabilities at t = 2, . . . ,T, for z variable:

η(r)
it|t−1(h|z) = P

(
Zit = z(r)it

∣
∣
∣Zi,t−1 = z(h)i,t−1

)
=

⎧
⎪⎪⎨

⎪⎪⎩

exp
[
w∗′

it α∗
r +λ ′

r z
(h)
i,t−1

]

1+∑R−1
v=1 exp

[
w∗′

it α∗
v +λ ′

vz
(h)
i,t−1

] , for r = 1, . . . ,R−1

1

1+∑R−1
v=1 exp

[
w∗′

it α∗
v +λ ′

vz
(h)
i,t−1

] , for r = R,
(6.4)

where h = 1, . . . ,R is a given (known) category, and λr = (λr1, . . . ,λrv, . . . ,λr,R−1)
′

denotes the dynamic dependence parameters.

6.2 Correlation Model for Two Longitudinal Multinomial
Response Variables

Notice that yit = (yit1, . . . ,yit j, . . . ,yit,J−1)
′ and zit = (zit1, . . . ,zitr, . . . ,zit,R−1)

′ are
two multinomial responses recorded at time t for the ith individual. Thus, two
multinomial responses for the ith individual may be expressesd as

yi = [y′i1, . . . ,y
′
it , . . . ,y

′
iT ]

′ : (J−1)T ×1,

zi = [z′i1, . . . ,z
′
it , . . . ,z

′
iT ]

′ : (R−1)T ×1. (6.5)

Similar to Sect. 5.4 (specifically see (5.109)–(5.110)), it is quite reasonable to
assume that these two responses are influenced by a common random or latent
effect ξ ∗

i . Conditional on this random effect ξ ∗
i , one may then modify (6.1)–(6.2),

and develop the marginal and conditional probabilities for the repeated responses
yi1, . . . ,yit , . . . ,yiT as

P[yi1 = y( j)
i1 |ξ ∗

i ] = π∗
(i1) j· =

⎧
⎪⎨

⎪⎩

exp(w∗′
i1 β ∗

j +ξ ∗
i )

1+∑J−1
g=1 exp(w∗′

i1 β ∗
g +ξ ∗

i )
for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(w∗′
i1 β ∗

g +ξ ∗
i )

for j = J,
(6.6)
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and

η∗( j·)
it|t−1(g) = P

(
Yit = y( j)

it

∣
∣
∣Yi,t−1 = y(g)i,t−1,ξ

∗
i

)

=

⎧
⎪⎪⎨

⎪⎪⎩

exp
[
w∗′

it β ∗
j +γ ′jy

(g)
i,t−1+ξ ∗

i

]

1+∑J−1
v=1 exp

[
w∗′

it β ∗
v +γ ′vy(g)i,t−1+ξ ∗

i

] , for j = 1, . . . ,J−1

1

1+∑J−1
v=1 exp

[
w∗′

it β ∗
v +γ ′vy(g)i,t−1+ξ ∗

i

] , for j = J,
(6.7)

for t = 2, . . . ,T. We will use

β = [β ∗′
1 , . . . ,β ∗′

j , . . . ,β ∗′
J−1]

′ : (J−1)(p+1)×1

to denote regression parameters under all categories, and

γ = [γ∗
′

1 , . . . ,γ∗
′

j , . . . ,γ∗
′

J−1]
′ : (J−1)(J−1)×1

to denote all dynamic dependence parameters.
Similarly, by modifying (6.3)–(6.4), one may develop the marginal and condi-

tional probabilities for zi1, . . . ,zit , . . . ,ziT as

P[zi1 = z(r)i1 |ξ ∗
i ] = π∗

(i1)·r =

⎧
⎪⎨

⎪⎩

exp(w∗′
i1 α∗

r +ξ ∗
i )

1+∑R−1
g=1 exp(w∗′

i2 α∗
g+ξ ∗

i )
for r = 1, . . . ,R−1

1
1+∑R−1

g=1 exp(w∗′
i1 α∗

g+ξ ∗
i )

for r = R,
(6.8)

and

η∗(·r)
it|t−1(h) = P

(
Zit = z(r)it

∣
∣
∣Zi,t−1 = z(h)i,t−1,ξ

∗
i

)

=

⎧
⎪⎪⎨

⎪⎪⎩

exp
[
w∗′

it α∗
r +λ ′

rz(h)i,t−1+ξ ∗
i

]

1+∑R−1
v=1 exp

[
w∗′

it α∗
v +λ ′

vz(h)i,t−1+ξ ∗
i

] , for r = 1, . . . ,R−1

1

1+∑R−1
v=1 exp

[
w∗′

it α∗
v +λ ′

vz(h)i,t−1+ξ ∗
i

] , for r = R,
(6.9)

for t = 2, . . . ,T. All regression and dynamic dependence parameters corresponding
to the z response variable will be denoted by

α = [α∗′
1 , . . . ,α∗′

r , . . . ,α∗′
R−1]

′ : (R−1)(q+1)×1,

and

λ = [λ ∗′
1 , . . . ,λ ∗′

r , . . . ,λ ∗′
R−1]

′ : (R−1)(R−1)×1,

respectively.
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6.2.1 Correlation Properties For Repeated Bivariate Responses

6.2.1.1 (a) Marginal Expectation Vector and Covariance Matrix for y
Response Variable at Time t

Conditional on ξ ∗
i or equivalently ξi =

ξ ∗
i

σξ
(see (5.1)), these expectation vector

and covariance matrix may be written following Chap. 4, specifically following
Sect. 4.4.1. Thus these properties will be constructed as follows by combining
the longitudinal properties of a variable from Sect. 4.4.1 and its possible common
correlation property with another variable as discussed in Sect. 5.4.1. That is, in
notation of (6.6)–(6.7), we write

E[Yit |ξi] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[π∗
(i1)1·, . . . ,π

∗
(i1) j·, . . . ,π

∗
(i1)(J−1)·]

′ = π∗
(i1)∗· for t = 1,

π∗(∗·)
(i1) (β ,γ ,σξ |ξi) = π∗

(i1)∗· for t = 1,

π∗(∗·)
(it) (β ,γ ,σξ |ξi) = η∗(∗·)

(it|t−1)(J)

+
[
η∗(∗·)
(it|t−1),M −η∗(∗·)

(it|t−1)(J)1
′
J−1

]
π∗(∗·)
(i,t−1)(β ,γ ,σξ |ξi)

= [π∗(1·)
(it) , . . . ,π∗( j·)

(it) , . . . ,π∗((J−1)·)
(it) ]′ for t = 2, . . . ,T,

(6.10)

and

var[Yit |ξi] =

{
diag[π∗

(i1)1·, . . . ,π
∗
(i1) j·, . . . ,π

∗
(i1)(J−1)·]−π∗

(i1)∗·π
∗′
(i1)∗· for t = 1,

diag[π∗(1·)
(it) , . . . ,π∗( j·)

(it) , . . . ,π∗((J−1)·)
(it) ]−π∗(∗·)

(it) π∗(∗·)
(it)

′
for t = 2, . . . ,T.

(6.11)

= Σ ∗(∗·)
(i,tt) (β ,γ ,σξ |ξi) : (J−1)× (J−1), (say), for t = 1, . . . ,T. (6.12)

In (6.10)–(6.11),

η∗(∗·)
(it|t−1)(J) = [η∗(1·)

(it|t−1)(J), . . . ,η
∗( j·)
(it|t−1)(J), . . . ,η

∗((J−1)·)
(it|t−1) (J)]′

= π∗(∗·)
(i1) (β ,γ = 0,σξ |ξi) (6.13)

η∗(∗·)
(it|t−1),M

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η∗(1·)
(it|t−1)(1) · · · η∗(1·)

(it|t−1)(g) · · · η∗(1·)
(it|t−1)(J−1)

...
...

...
...

...

η∗( j·)
(it|t−1)(1) · · · η∗( j·)

(it|t−1)(g) · · · η∗( j·)
(it|t−1)(J−1)

...
...

...
...

...

η∗((J−1)·)
(it|t−1) (1) · · · η∗((J−1)·)

(it|t−1) (g) · · · η∗((J−1)·)
(it|t−1) (J−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

: (J−1)×(J−1), (6.14)

with η∗( j·)
(it|t−1)(g) as in (6.7), for j,g = 1, . . . ,J−1.
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Now to obtain the unconditional mean vector and covariance matrix for yit ,
similar to (5.1), we assume that the random effects are independent and they follow

the standard normal distribution, i.e., ξi =
ξ ∗

i
σξ

iid∼ N(0,1). More specifically, after

taking the average over the distribution of ξi, these unconditional moment properties
are obtained from (6.10)–(6.11), as follows:

Unconditional mean vector at time t = 1, . . . ,T :

E[Yit ] = Eξi
E[Yit |ξi] =

{∫ ∞
−∞ π∗

(i1)∗·(β ,σξ |ξi) fN(ξi)dξi for t = 1,
∫ ∞
−∞ π∗(∗·)

(it) (β ,γ ,σξ |ξi) fN(ξi)dξi for t = 2, . . . ,T,
(6.15)

= π(∗·)
(it) (β ,γ ,σξ ) : (J−1)×1, (say), for t = 1, . . . ,T, (6.16)

where fN(ξi) =
1√
2π exp[− 1

2 ξ 2
i ]. Note that all integrations over the desired functions

in normal random effects in this chapter including (6.16) may be computed by using
the binomial approximation, for example, introduced in the last chapter, specifically
in Sect. 5.3.

Unconditional covariance matrix at time t = 1, . . . ,T :

var[Yit ] = Eξi
var[Yit |ξi]+varξi

E[Yit |ξi]

=
∫ ∞

−∞
Σ ∗(∗·)
(i,tt) (β ,γ ,σξ |ξi) fN(ξi)dξi +varξi

[π∗(∗·)
(it) (β ,γ ,σξ |ξi)]

=

∫ ∞

−∞
Σ ∗(∗·)
(i,tt) (β ,γ ,σξ |ξi) fN(ξi)dξi +

∫ ∞

−∞
[{π∗(∗·)

(it) (β ,γ ,σξ |ξi)}

{π∗(∗·)
(it) (β ,γ ,σξ |ξi)

′}] fN(ξi)dξi

− π(∗·)
(it) (β ,γ ,σξ )π

(∗·)
(it)

′
(β ,γ ,σξ )

= Σ (∗·)
(i,tt)(β ,γ ,σξ ), (6.17)

where π(∗·)
(it) (β ,γ ,σξ ) is given in (6.16).

6.2.1.1 (b) Auto-Covariances Between Repeated Responses for y Variable
Recorded at Times u < t

Conditional on ξi, following (4.71), the covariance matrix between the response
vectors yiu and yit has the form

cov[{Yiu,Yit}|ξi] = Π t
s=u+1

[
η∗(∗·)
(is|s−1),M −η∗(∗·)

(is|s−1)(J)1
′
J−1

]
var[Yiu|ξi], for u < t
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= (cov(Yiu j,Yitk)) = (σ∗(∗·)
(i,ut) jk), j,k = 1, . . . ,J−1

= Σ ∗(∗·)
(i,ut)(β ,γ ,σξ |ξi). (6.18)

One then obtains the unconditional covariance matrix as follows by using the
conditioning un-conditioning principle.

Unconditional covariance matrix between yiu and yit for u < t :

cov[Yiu,Y
′
it ] = Eξi

cov[{Yiu,Y
′
it}|ξi]+ covξi

[E[Yiu|ξi],E[Y
′
it |ξi]]

=
∫ ∞

−∞
Σ ∗(∗·)
(i,ut)(β ,γ ,σξ |ξi) fN(ξi)dξi + covξi

[{π∗(∗·)
(iu) (β ,γ ,σξ |ξi)},{π∗(∗·)

(it)

′
(β ,γ ,σξ |ξi)}]

=
∫ ∞

−∞
Σ ∗(∗·)
(i,ut)(β ,γ ,σξ |ξi) fN(ξi)dξi +

∫ ∞

−∞
[{π∗(∗·)

(iu) (β ,γ ,σξ |ξi)}{π∗(∗·)
(it) (β ,γ ,σξ |ξi)

′}] fN(ξi)dξi

− π(∗·)
(iu) (β ,γ ,σξ )π

(∗·)
(it)

′
(β ,γ ,σξ )

= Σ (∗·)
(i,ut)(β ,γ ,σξ ), (6.19)

where π(∗·)
(it) (β ,γ ,σξ ) is given in (6.16), and Σ ∗(∗·)

(i,ut)(β ,γ ,σξ |ξi) for u < t is given by
(6.18).

6.2.1.2 (a) Marginal Expectation Vector and Covariance Matrix for z
Response Variable at Time t

The computation for these moments is similar to those for the moments of y. More

specifically, replacing the notations π∗
(i1) j·, π∗(∗·)

(it) (β ,γ ,σξ |ξi), and η∗( j·)
(it|t−1)(g) in the

formulas for the moments of y variable, with π∗
(i1)·r (6.8), π∗(·∗)

(it) (α,λ ,σξ |ξi), and

η∗(·r)
(it|t−1)(h) (6.9), respectively, one may write the formulas for the moments for z

variable. To be brief, we write the formulas only as follows, without giving any
further explanation on computation.

E[Zit |ξi] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[π∗
(i1)·1, . . . ,π

∗
(i1)·r, . . . ,π

∗
(i1)·(R−1)]

′ = π∗
(i1)·∗ for t = 1,

π∗(·∗)
(i1) (α,λ ,σξ |ξi) = π∗

(i1)·∗ for t = 1,

π∗(·∗)
(it) (α,λ ,σξ |ξi) = η∗(·∗)

(it|t−1)(R)

+
[
η∗(·∗)
(it|t−1),M −η∗(·∗)

(it|t−1)(R)1
′
R−1

]
π∗(·∗)
(i,t−1)(α,λ ,σξ )

= [π∗(·1)
(it) , . . . ,π∗(·r)

(it) , . . . ,π∗(·(R−1))
(it) ]′ for t = 2, . . . ,T,

(6.20)
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using π∗(·∗)
(i1) (α,λ = 0,σξ ) = π∗

(i1)·∗, and

var[Zit |ξi] =

⎧
⎪⎪⎨

⎪⎪⎩

diag[π∗
(i1)·1, . . . ,π

∗
(i1)·r, . . . ,π

∗
(i1)·(R−1)]−π∗

(i1)·∗π∗′
(i1)·∗ for t = 1,

diag[π∗(·1)
(it) , . . . ,π∗(·r)

(it) , . . . ,π∗(·(R−1))
(it) ]−π∗(·∗)

(it) π∗(·∗)
(it)

′
for t = 2, . . . ,T.

(6.21)

= Σ∗(·∗)
(i,tt) (α ,λ ,σξ |ξi) : (R−1)× (R−1), (say), for t = 1, . . . ,T. (6.22)

In (6.20)–(6.21),

η∗(·∗)
(it|t−1)(R) = [η∗(·1)

(it|t−1)(R), . . . ,η
∗(·r)
(it|t−1)(R), . . . ,η

∗(·(R−1))
(it|t−1) (R)]′

= π∗(·∗)
(i1) (α,λ ,σξ |ξi) (6.23)

η∗(·∗)
(it|t−1),M

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η∗(·1)
(it|t−1)(1) · · · η∗(·1)

(it|t−1)(g) · · · η∗(·1)
(it|t−1)(R−1)

...
...

...
...

...

η∗(·r)
(it|t−1)(1) · · · η∗(·r)

(it|t−1)(g) · · · η∗(·r)
(it|t−1)(R−1)

...
...

...
...

...

η∗(·(R−1))
(it|t−1) (1) · · · η∗(·(R−1))

(it|t−1) (g) · · · η∗(·(R−1))
(it|t−1) (R−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

:(R−1)×(R−1),(6.24)

with η∗(·r)
(it|t−1)(g) as in (6.9), for r,g = 1, . . . ,R−1.

Next the unconditional moments are obtained by taking the average of the desired
quantities over the distribution of the random effects xii.:

Unconditional mean vector at time t = 1, . . . ,T :

E[Zit ] = Eξi
E[Zit |ξi] =

{∫ ∞
−∞ π∗

(i1)·∗(α,σξ |ξi) fN(ξi)dξi for t = 1,
∫ ∞
−∞ π∗(·∗)

(it) (α,λ ,σξ |ξi) fN(ξi)dξi for t = 2, . . . ,T,
(6.25)

= π(·∗)
(it) (α,λ ,σξ ) : (J−1)×1, (say), for t = 1, . . . ,T, (6.26)

where fN(ξi) =
1√
2π exp[− 1

2 ξ 2
i ].

Unconditional covariance matrix at time t = 1, . . . ,T :

var[Zit ] = Eξi
var[Zit |ξi]+varξi

E[Zit |ξi]

=
∫ ∞

−∞
Σ∗(∗·)
(i,tt) (α,λ ,σξ |ξi) fN(ξi)dξi +varξi

[π∗(·∗)
(it) (α,λ ,σξ |ξi)]

=
∫ ∞

−∞
Σ∗(·∗)
(i,tt) (α,λ ,σξ |ξi) fN(ξi)dξi +

∫ ∞

−∞
[{π∗(·∗)

(it) (α,λ ,σξ |ξi)}{π∗(·∗)
(it) (α,λ ,σξ |ξi)

′}] fN(ξi)dξi



346 6 Multinomial Models for Longitudinal Bivariate Categorical Data

− π(·∗)
(it) (α,λ ,σξ )π

(·∗)
(it)

′
(α,λ ,σξ )

= Σ (·∗)
(i,tt)(α,λ ,σξ ), (6.27)

where π(·∗)
(it) (α,λ ,σξ ) is given in (6.26).

6.2.1.2 (b) Auto-Covariances Between Repeated Responses for z Variable
Recorded at Times u < t

Similar to (6.18), the covariance matrix between the response vectors ziu and zit has
the form

cov[{Ziu,Zit}|ξi] = Π t
s=u+1

[
η∗(·∗)
(is|s−1),M −η∗(·∗)

(is|s−1)(R)1
′
R−1

]
var[Ziu|ξi], for u < t

= (cov(Ziu j,Zitk)) = (σ∗(·∗)
(i,ut)r�), r, �= 1, . . . ,R−1

= Σ ∗(·∗)
(i,ut)(α,λ ,σξ |ξi). (6.28)

One then obtains the unconditional covariance matrix as follows by using the
conditioning un-conditioning principle.

Unconditional covariance matrix between ziu and zit for u < t :]

cov[Ziu,Z
′
it ] = Eξi

cov[{Ziu,Z
′
it}|ξi]+ covξi

[E[Ziu|ξi],E[Z
′
it |ξi]]

=
∫ ∞

−∞
Σ ∗(·∗)
(i,ut)(α,λ ,σξ |ξi) fN(ξi)dξi + covξi

[{π∗(·∗)
(iu) (α,λ ,σξ |ξi)},{π∗(·∗)

(it)

′
(α,λ ,σξ |ξi)}]

=

∫ ∞

−∞
Σ ∗(·∗)
(i,ut)(α,λ ,σξ |ξi) fN(ξi)dξi +

∫ ∞

−∞
[{π∗(·∗)

(iu) (α,λ ,σξ |ξi)}{π∗(·∗)
(it) (α,λ ,σξ |ξi)

′}] fN(ξi)dξi

− π(·∗)
(iu) (α,λ ,σξ )π

(·∗)
(it)

′
(α,λ ,σξ )

= Σ (·∗)
(i,ut)(α,λ ,σξ ), (6.29)

where π(·∗)
(it) (α,λ ,σξ ) is given in (6.26), and Σ ∗(·∗)

(i,ut)(α,λ ,σξ |ξi) for u < t is given by
(6.28).

6.2.1.3 (a) Covariance Matrix Between yit and zit of Dimension
(J−1)× (R−1)

Because y and z are uncorrelated conditional on ξi, the covariance matrix between
these two multinomial response variables at a given time point may be computed as:

cov[Yit ,Z
′
it ] = Eξi

cov[{Yit ,Z
′
it}|ξi]+ covξi

[E[Yit |ξi],E[Zit |ξi]]
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= covξi
[E[Yit |ξi],E[Zit |ξi]]

=

⎧
⎨

⎩

covξi

[
π∗(∗·)
(i1) (β ,γ = 0,σξ |ξi),π

∗(·∗)
(i1)

′
(α ,λ = 0,σξ |ξi)

]
for t = 1

covξi

[
π∗(∗·)
(it) (β ,γ,σξ |ξi),π

∗(·∗)
(it)

′
(α ,λ ,σξ |ξi)

]
for t = 2, . . . ,T.

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ ∞
−∞

[
π∗(∗·)
(i1) (β ,γ = 0,σξ |ξi)π

∗(·∗)
(i1)

′
(α ,λ = 0,σξ |ξi)

]
fN(ξi)dξi

−π(∗·)
(i1) (β ,γ = 0,σξ )π

(·∗)
(i1)

′
(α ,λ = 0,σξ ) for t = 1

∫ ∞
−∞

[
π∗(∗·)
(it) (β ,γ,σξ |ξi)π

∗(·∗)
(it)

′
(α ,λ ,σξ |ξi)

]
fN(ξi)dξi

−π(∗·)
(it) (β ,γ,σξ )π

(·∗)
(it)

′
(α ,λ ,σξ ) for t = 2, . . . ,T.

= Σ (∗∗)
(i,tt)(β ,γ,α ,λ ,σξ ). (6.30)

6.2.1.3 (b) Covariance Matrix Between yiu and zit of Dimension
(J−1)× (R−1)

For all u, t, this covariance matrix may be obtained as follows. Thus, the following
formulas accommodate the u = t case provided in Sect. 6.2.1.3(a). The general
formula is given by

cov[Yiu,Z
′
it ] = Eξi

cov[{Yiu,Z
′
it}|ξi]+ covξi

[E[Yiu|ξi],E[Zit |ξi]]

= covξi
[E[Yiu|ξi],E[Zit |ξi]]

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

covξi

[
π∗(∗·)
(i1) (β ,γ = 0,σξ |ξi),π

∗(·∗)
(i1)

′
(α,λ = 0,σξ |ξi)

]
for u = 1, t = 1

covξi

[
π∗(∗·)
(i1) (β ,γ = 0,σξ |ξi),π

∗(·∗)
(it)

′
(α,λ ,σξ |ξi)

]
for u = 1, t = 2, . . . ,T

covξi

[
π∗(∗·)
(iu) (β ,γ,σξ |ξi),π

∗(·∗)
(i1)

′
(α,λ = 0,σξ |ξi)

]
for u = 2, . . . ,T ; t = 1

covξi

[
π∗(∗·)
(iu) (β ,γ,σξ |ξi),π

∗(·∗)
(it)

′
(α,λ ,σξ |ξi)

]
for u, t = 2, . . . ,T.

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∞
−∞

[
π∗(∗·)
(i1) (β ,γ = 0,σξ |ξi)π

∗(·∗)
(i1)

′
(α,λ = 0,σξ |ξi)

]
fN(ξi)dξi

−π(∗·)
(i1) (β ,γ = 0,σξ )π

(·∗)
(i1)

′
(α,λ = 0,σξ ) for u = t = 1

∫ ∞
−∞

[
π∗(∗·)
(i1) (β ,γ = 0,σξ |ξi)π

∗(·∗)
(it)

′
(α,λ ,σξ |ξi)

]
fN(ξi)dξi

−π(∗·)
(i1) (β ,γ = 0,σξ )π

(·∗)
(it)

′
(α,λ ,σξ ) for u = 1; t = 2, . . . ,T

∫ ∞
−∞

[
π∗(∗·)
(iu) (β ,γ,σξ |ξi)π

∗(·∗)
(i1)

′
(α,λ = 0,σξ |ξi)

]
fN(ξi)dξi

−π(∗·)
(iu) (β ,γ,σξ )π

(·∗)
(i1)

′
(α,λ = 0,σξ ) for u = 2, . . . ,T ; t = 1

∫ ∞
−∞

[
π∗(∗·)
(iu) (β ,γ,σξ |ξi)π

∗(·∗)
(it)

′
(α,λ ,σξ |ξi)

]
fN(ξi)dξi

−π(∗·)
(iu) (β ,γ,σξ )π

(·∗)
(it)

′
(α,λ ,σξ ) for u, t = 2, . . . ,T.

= Σ (∗∗)
(i,ut)(β ,γ,α,λ ,σξ ). (6.31)
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6.3 Estimation of Parameters

6.3.1 MGQL Estimation for Regression Parameters

Recall that the regression parameters involved in the marginal (6.6) and conditional
(6.7) probabilities for the y variable with J categories are denoted by

β ∗
j = (β j0,β ′

j)
′, j = 1, . . . ,J−1

= (β j0,β j1, . . . ,β jp)
′, j = 1, . . . ,J−1,

and similarly the regression parameters involved in the marginal (6.8) and condi-
tional (6.9) probabilities for the z variable with R categories are denoted by

α∗
r = (αr0,α ′

r)
′, r = 1, . . . ,R−1

= (αr0,αr1, . . . ,αrq)
′, r = 1, . . . ,R−1.

Also recall that

β = (β ∗
1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′)′ : (J−1)(p+1)×1

α = (α∗
1
′, . . . ,α∗

r
′, . . . ,α∗

R−1
′)′ : (R−1)(q+1)×1,

and by further stacking we write

μ = [β ′,α ′]′ : {(J−1)(p+1)+(R−1)(q+1)}×1. (6.32)

Next, for dynamic dependence parameters we use

θ = (γ ′,λ ′)′ : {(J−1)2 +(R−1)2}×1, (6.33)

where

γ = (γ ′1, . . . ,γ ′j, . . . ,γ ′J−1)
′ : (J−1)2 ×1

λ = (λ ′
1, . . . ,λ ′

r , . . . ,λ ′
R−1)

′ : (R−1)2 ×1.

In this section, it is of interest to estimate the regression (μ) parameters by
exploiting the GQL estimation (Sutradhar et al. 2008; Sutradhar 2011, Chapter
11) approach. Note that this GQL approach was used in Chap. 5, specifically
in Sect. 5.4, for the estimation of both regression and random effects variance
parameters involved in the cross-sectional bivariate multinomial models, whereas
in this chapter, more specifically in this section, the GQL approach is used only
for the estimation of regression parameters involved in the longitudinal bivariate
multinomial model. The application of the GQL approach for the estimation of
dynamic dependence parameters as well as σ2

ξ would be complex for the present
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bivariate longitudinal model. For simplicity we estimate these latter parameters by
using the traditional method of moments (MM) in the next two sections. Note that,
similar to the GQL approach, the MM approach also produces consistent estimators
but they will be less efficient than the corresponding GQL estimators.

We now turn back to the GQL estimation of the regression parameter μ =
(β ′,α ′)′. This is also referred to as the marginal GQL (MGQL) approach as it is
constructed for a marginal set of parameters. For known γ , λ , the MGQL estimating
equation for μ = (β ′,α ′)′ is given by

f (μ) =
K

∑
i=1

∂ (π(∗·)
(i)

′
(β ,γ ,σξ ),π

(·∗)
(i)

′
(α,λ ,σξ ))

∂ μ

× Σ−1
(i) (μ ,γ ,λ ,σξ )

(
yi −π(∗·)

(i) (β ,γ ,σξ )

zi −π(·∗)
(i) (α,λ ,σξ )

)

= 0, (6.34)

where, for

yi = [y′i1, . . . ,y
′
it , . . . ,y

′
iT ]

′ : (J−1)T ×1, and

zi = [z′i1, . . . ,z
′
it , . . . ,z

′
iT ]

′ : (R−1)T ×1,

E[Yi] = π(∗·)
(i) (β ,γ ,σξ )

= [π(∗·)
(i1)

′
(·), . . . ,π(∗·)

(it)

′
(·), . . . ,π(∗·)

(iT )

′
(·)]′, (6.35)

by (6.16). Similarly by (6.26), one writes

E[Zi] = π(·∗)
(i) (α,λ ,σξ )

= [π(·∗)
(i1)

′
(·), . . . ,π(·∗)

(it)

′
(·), . . . ,π(·∗)

(iT )

′
(·)]′. (6.36)

Note that in (6.35),

π(∗·)
(it) (·) ≡ π(∗·)

(it) (β ,γ ,σξ )

= [π(1·)
(it) (β ,γ ,σξ ), . . . ,π

( j·)
(it) (β ,γ ,σξ ), . . . ,π

((J−1)·)
(it) (β ,γ ,σξ )]

′, (6.37)

with

π( j·)
(it) (β ,γ ,σξ ) =

∫ ∞

−∞
π∗( j·)
(it) (β ,γ ,σξ |ξi) fN(ξi)dξi,
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as in (6.10) and (6.16). Similarly, in (6.36),

π(·∗)
(it) (·) ≡ π(·∗)

(it) (α,λ ,σξ )

= [π(·1)
(it) (α,λ ,σξ ), . . . ,π

(·r)
(it) (α,λ ,σξ ), . . . ,π

(·(R−1))
(it) (α,λ ,σξ )]

′, (6.38)

with

π(·r)
(it) (α,λ ,σξ ) =

∫ ∞

−∞
π∗(·r)
(it) (α,λ ,σξ |ξi) fN(ξi)dξi,

as in (6.20) and (6.26).

6.3.1.1 Construction of the Covariance Matrix Σi(μ ,γ ,λ ,σξ )

In (6.34), the covariance matrix has the formula

Σi(μ ,γ ,λ ,σξ ) = cov

(
Yi

Zi

)

: {(J−1)+(R−1)}T ×{(J−1)+(R−1)}T

=

(
var(Yi) : (J−1)T × (J−1)T cov(Yi,Z′

i) : (J−1)T × (R−1)T
cov(Zi,Y ′

i ) : (R−1)T × (J−1)T var(Zi) : (R−1)T × (R−1)T

)

, (6.39)

where

var(Yi) = var

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Yi1
...

Yit
...

YiT

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

: (J−1)T × (J−1)T

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

var[Yi1] · · · cov[Yi1,Y ′
it ] · · · cov[Yi1,Y ′

iT ]
...

...
...

cov[Yit ,Y ′
i1] · · · var[Yit ] · · · cov[Yit ,Y ′

iT ]
...

...
...

cov[YiT ,Y ′
i1] · · · cov[YiT ,Y ′

it ] · · · var[YiT ]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Σ (∗·)
(i,11)(β ,γ ,σξ ) · · · Σ (∗·)

(i,1t)(β ,γ ,σξ ) · · · Σ (∗·)
(i,1T )(β ,γ ,σξ )

...
...

...

Σ (∗·)
(i,t1)(β ,γ ,σξ ) · · · Σ (∗·)

(i,tt)(β ,γ ,σξ ) · · · Σ (∗·)
(i,tT )(β ,γ ,σξ )

...
...

...

Σ (∗·)
(i,T1)(β ,γ ,σξ ) · · · Σ (∗·)

(i,Tt)(β ,γ ,σξ ) · · · Σ (∗·)
(i,TT )(β ,γ ,σξ )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (6.40)
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with block diagonal variance matrices as in (6.17) and off-diagonal covariance
matrices as in (6.19). Note that

Σ (∗·)
(i,tu)(β ,γ ,σξ ) = Σ (∗·)′

(i,ut)(β ,γ ,σξ ), for u < t.

Similarly,

var(Zi) = var

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Zi1
...

Zit
...

ZiT

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

: (R−1)T × (R−1)T

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

var[Zi1] · · · cov[Zi1,Z′
it ] · · · cov[Zi1,Z′

iT ]
...

...
...

cov[Zit ,Z′
i1] · · · var[Zit ] · · · cov[Zit ,Z′

iT ]
...

...
...

cov[ZiT ,Z′
i1] · · · cov[ZiT ,Z′

it ] · · · var[ZiT ]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Σ (·∗)
(i,11)(α,λ ,σξ ) · · · Σ (·∗)

(i,1t)(α,λ ,σξ ) · · · Σ (·∗)
(i,1T )(α,λ ,σξ )

...
...

...

Σ (·∗)
(i,t1)(α,λ ,σξ ) · · · Σ (·∗)

(i,tt)(α,λ ,σξ ) · · · Σ (·∗)
(i,tT )(α,λ ,σξ )

...
...

...

Σ (·∗)
(i,T1)(α,λ ,σξ ) · · · Σ (·∗)

(i,Tt)(α,λ ,σξ ) · · · Σ (·∗)
(i,TT )(α,λ ,σξ )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (6.41)

with block diagonal variance matrices as in (6.27) and off-diagonal covariance
matrices as in (6.29). Note that

Σ (·∗)
(i,tu)(α,λ ,σξ ) = Σ (·∗)

(i,ut)(α,λ ,σξ ), for u < t.

We now compute the formula for cov[Yi,Z′
i ] as follows.

cov(Yi,Z
′
i ) = cov

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Yi1

.

.

.

Yiu

.

.

.

Yit

.

.

.

YiT

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
(

Z′
i1 · · · Z′

iu · · · Z′
it · · · Z′

iT

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

: (J−1)T × (R−1)T
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=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cov[Yi1,Z′
i1] · · · cov[Yi1,Z′

iu] · · · cov[Yi1,Z′
it ] · · · cov[Yi1,Z′

iT ]

.

.

.
.
.
.

.

.

.
.
.
.

cov[Yiu,Z′
i1] · · · cov[Yiu,Z′

iu] · · · cov[Yiu,Z′
it ] · · · cov[Yiu,Z′

iT ]

.

.

.
.
.
.

.

.

.
.
.
.

cov[Yit ,Z′
i1] · · · cov[Yit ,Z′

iu] · · · cov[Yit ,Z′
it ] · · · cov[Yit ,Z′

iT ]

.

.

.
.
.
.

.

.

.
.
.
.

cov[YiT ,Z′
i1] · · · cov[YiT ,Z′

iu] · · · cov[YiT ,Z′
it ] · · · cov[YiT ,Z′

iT ]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Σ (∗∗)
(i,11)(μ,γ,λ ,σξ ) · · · Σ (∗∗)

(i,1u)(μ,γ,λ ,σξ ) · · · Σ (∗∗)
(i,1t)(μ,γ,λ ,σξ ) · · · Σ (∗∗)

(i,1T )(μ,γ,λ ,σξ )

.

.

.
.
.
.

.

.

.
.
.
.

Σ (∗∗)
(i,u1)(μ,γ,λ ,σξ ) · · · Σ (∗∗)

(i,uu)(μ,γ,λ ,σξ ) · · · Σ (∗∗)
(i,ut)(μ,γ,λ ,σξ ) · · · Σ (∗∗)

(i,uT )(μ,γ,λ ,σξ )

.

.

.
.
.
.

.

.

.
.
.
.

Σ (∗∗)
(i,t1)(μ,γ,λ ,σξ ) · · · Σ (∗∗)

(i,tu)(μ,γ,λ ,σξ ) · · · Σ (∗∗)
(i,tt)(μ,γ,λ ,σξ ) · · · Σ (∗∗)

(i,tT )(μ,γ,λ ,σξ )

.

.

.
.
.
.

.

.

.
.
.
.

Σ (∗∗)
(i,T1)(μ,γ,λ ,σξ ) · · · Σ (∗∗)

(i,Tu)(μ,γ,λ ,σξ ) · · · Σ (∗∗)
(i,Tt)(μ,γ,λ ,σξ ) · · · Σ (∗∗)

(i,TT )(μ,γ,λ ,σξ )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (6.42)

with formulas for Σ (∗∗)
(i,tt)(μ ,γ ,λ ,σξ ) as given by (6.30) for t = 1, . . . ,T, and the

formulas for Σ (∗∗)
(i,ut)(μ ,γ ,λ ,σξ ) as given by (6.31) for u �= t.

6.3.1.2 Computation of the Derivative Matrix
∂ (π(∗·)

(i)

′
(β ,γ ,σξ ),π

(·∗)
(i)

′
(α ,λ ,σξ ))

∂ μ :
{(J−1)(p+1)+(R−1)(q+1)}×{(J−1)+(R−1)}T

Because μ = (β ′,α ′)′, the desired derivative matrix may be expressed as follows:

∂ (π(∗·)
(i)

′
(β ,γ ,σξ ),π

(·∗)
(i)

′
(α,λ ,σξ ))

∂ μ

=

⎛

⎜
⎝

∂π(∗·)
(i)

′
(β ,γ ,σξ )

∂β
∂π(·∗)

(i)

′
(α ,λ ,σξ )

∂β
∂π(∗·)

(i)

′
(β ,γ ,σξ )

∂α
∂π(·∗)

(i)

′
(α ,λ ,σξ )

∂α

⎞

⎟
⎠

=

⎛

⎜
⎝

∂π(∗·)
(i)

′
(β ,γ ,σξ )

∂β 0

0
∂π(·∗)

(i)

′
(α ,λ ,σξ )

∂α

⎞

⎟
⎠ . (6.43)
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6.3.1.2 (a) Computation of the Derivative Matrix
∂ (π(∗·)

(i)

′
(β ,γ ,σξ )

∂β :
{(J−1)(p+1)}× (J−1)T

By (6.35) and (6.37), one may write

∂π(∗·)
(i)

′
(β ,γ ,σξ )

∂β

= [
∂π(∗·)

(i1)

′
(·)

∂β
, . . . ,

∂π(∗·)
(it)

′
(·)

∂β
, . . . ,

∂π(∗·)
(iT )

′
(·)

∂β
] : (J−1)(p+1)× (J−1)T, (6.44)

with

∂π(∗·)
(it)

′
(·)

∂β
= [

∂π(1·)
(it) (β ,γ ,σξ )

∂β
, . . . ,

∂π( j·)
(it) (β ,γ ,σξ )

∂β
, . . . ,

∂π((J−1)·)
(it) (β ,γ ,σξ )

∂β
],

(6.45)
where

∂π( j·)
(it) (β ,γ ,σξ )

∂β
=
∫ ∞

−∞

∂π∗( j·)
(it) (β ,γ ,σξ |ξi)

∂β
fN(ξi)dξi.

However, by applying (6.15)–(6.16) and (6.10), one may directly compute the
derivative matrix in (6.44) as

∂π(∗·)
(it) (·)

′

∂β
=

⎧
⎪⎨

⎪⎩

∫ ∞
−∞

∂π∗′
(i1)∗·(β ,σξ |ξi)

∂β fN(ξi)dξi for t = 1,

∫ ∞
−∞

∂π∗(∗·)
(it)

′
(β ,γ ,σξ |ξi)

∂β fN(ξi)dξi for t = 2, . . . ,T,

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ ∞
−∞

∂ [π∗
(i1)1·,...,π

∗
(i1) j·,...,π

∗
(i1)(J−1)·]

∂β fN(ξi)dξi for t = 1,
∫ ∞
−∞

∂
∂β

[
η∗(∗·)
(it|t−1)(J)+ [η∗(∗·)

(it|t−1),M −η∗(∗·)
(it|t−1)(J)1

′
J−1]

π∗(∗·)
(i,t−1)(β ,γ,σξ |ξi)

]′
fN(ξi)dξi for t = 2, . . . ,T,

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ ∞
−∞

∂ [π∗
(i1)1·,...,π

∗
(i1) j·,...,π

∗
(i1)(J−1)·]

∂β fN(ξi)dξi for t = 1,
∫ ∞
−∞

∂
∂β

[
η∗(∗·)′
(it|t−1)(J)+π∗(∗·)′

(i,t−1)(β ,γ,σξ |ξi)

[η∗(∗·)′
(it|t−1),M −1J−1η∗(∗·)′

(it|t−1)(J)]
]

fN(ξi)dξi for t = 2, . . . ,T,

(6.46)

Now the computation of the derivative in (6.46) can be completed by computing

∂π∗′
(i1)∗·(β ,σξ |ξi)

∂β
=

∂ [π∗
(i1)1·, . . . ,π

∗
(i1) j·, . . . ,π

∗
(i1)(J−1)·]

∂β
, and (6.47)
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∂π∗(∗·)
(it)

′
(β ,γ ,σξ |ξi)

∂β
=

∂
∂β

[
η∗(∗·)′
(it|t−1)(J)+π∗(∗·)′

(i,t−1)(β ,γ ,σξ |ξi)

× [η∗(∗·)′
(it|t−1),M −1J−1η∗(∗·)′

(it|t−1)(J)]
]
, for t = 2, . . . ,T, (6.48)

where, in (6.48), we treat

π∗(∗·)′
(i1) (β ,γ ,σξ |ξi)≡ π∗(∗·)′

(i1) (β ,γ = 0,σξ |ξi)≡ π∗′
(i1)∗·(β ,σξ |ξi).

Notice that to compute the derivative in (6.47), it is sufficient to compute
∂π∗

(i1) j·
∂β and using back the results for all j = 1, . . . ,J − 1, in (6.47). Because β =

[β ∗
1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′]′, by similar calculations as in (6.38), this derivative is given

by

∂π∗
(i1) j·

∂β
=

∂
∂β

[
exp(w∗′

i1β ∗
j +σξ ξi)

1+∑J−1
g=1 exp(w∗′

i1β ∗
g +σξ ξi)

], for j = 1, . . . ,J−1

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−π∗
(i1)1·π

∗
(i1) j·

...
π∗
(i1) j·[1−π∗

(i1) j·]
...

−π∗
(i1)(J−1)·π

∗
(i1) j·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊗w∗
i1 : (J−1)(p+1)×1

=
[
π∗
(i1) j·(δ j −π∗

(i1)∗·)
]
⊗w∗

i1, (6.49)

with δ j = [01′j−1,1,01′J−1− j]
′ for j = 1, . . . ,J−1. Thus,

∂π∗′
(i1)∗·(β ,σξ |ξi)

∂β
= Σ ∗(∗·)

(i,11)(β ,γ ,σξ |ξi)⊗w∗
i1 : (J−1)(p+1)× (J−1), (6.50)

where

Σ ∗(∗·)
(i,11)(β ,σξ |ξi) = diag[π∗

(i1)1·, . . . ,π
∗
(i1) j·, . . . ,π

∗
(i1)(J−1)·]−π∗

(i1)∗·π
∗′
(i1)∗·,

yielding the derivative in (6.47).
We now compute the derivative matrices in (6.48) for all other t = 2, . . . ,T. First

we simplify (6.48) as
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∂π∗(∗·)
(it)

′
(β ,γ ,σξ |ξi)

∂β
=

∂
∂β

[
η∗(∗·)′
(it|t−1)(J)

]
+

∂
∂β

[
π∗(∗·)′
(i,t−1)(β ,γ ,σξ |ξi)

]{
η∗(∗·)′
(it|t−1),M −1J−1η∗(∗·)′

(it|t−1)(J)
}

+ π∗(∗·)′
(i,t−1)(β ,γ ,σξ |ξi)

∂
∂β

[
η∗(∗·)′
(it|t−1),M −1J−1η∗(∗·)′

(it|t−1)(J)
]
. (6.51)

Notice that ∂
∂β

[
π∗(∗·)′
(i,t−1)(β ,γ ,σξ |ξi)

]
in the second term in (6.51) is available

recursive way. For t = 2, the formula for ∂
∂β

[
π∗(∗·)′
(i1) (β ,γ = 0,σξ |ξi)

]
is the same

as in (6.50). Thus, to compute the formula in (6.51), we compute the first term as

∂
∂β

[
η∗(∗·)′
(it|t−1)(J)

]
=

∂
∂β

[η∗(1·)
(it|t−1)(J), . . . ,η

∗( j·)
(it|t−1)(J), . . . ,η

∗((J−1)·)
(it|t−1) (J)]

= [
∂η∗(1·)

(it|t−1)(J)

∂β
, . . . ,

∂η∗( j·)
(it|t−1)(J)

∂β
, . . . ,

∂η∗((J−1)·)
(it|t−1) (J)

∂β
]. (6.52)

Next because for known category g(g = 1, . . . ,J) from the past,

η∗( j·)
it|t−1(g) = P

(
Yit = y( j)

it

∣
∣
∣Yi,t−1 = y(g)i,t−1,ξi

)

=

⎧
⎪⎪⎨

⎪⎪⎩

exp
[
w∗′

it β ∗
j +γ ′jy

(g)
i,t−1+σξ ξi

]

1+∑J−1
v=1 exp

[
w∗′

it β ∗
v +γ ′vy(g)i,t−1+σξ ξi

] , for j = 1, . . . ,J−1

1

1+∑J−1
v=1 exp

[
w∗′

it β ∗
v +γ ′vy(g)i,t−1+σξ ξi

] , for j = J,
(6.53)

for t = 2, . . . ,T, by (6.7), it then follows that

∂η∗( j·)
(it|t−1)(g)

∂β
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−η∗(1·)
it|t−1(g)η

∗( j·)
it|t−1(g)

...

η∗( j·)
it|t−1(g)[1−η∗( j·)

it|t−1(g)]
...

−η∗((J−1)·)
it|t−1 (g)η∗( j·)

it|t−1(g)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊗w∗
it : (J−1)(p+1)×1

=
[
η∗( j·)

it|t−1(g)(δ(i,t−1) j −η∗(∗·)
it|t−1(g))

]
⊗w∗

it , (6.54)

where

δ(i,t−1) j = [01′j−1,1,01′J−1− j]
′

η∗(∗·)
it|t−1(g) = [η∗(1·)

it|t−1(g), . . . ,η
∗( j·)
it|t−1(g), . . . ,η

∗((J−1)·)
it|t−1 (g)]′.
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Hence by using (6.54) into (6.52), one obtains

∂
∂β

[
η∗(∗·)′
(it|t−1)(J)

]

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η∗(1·)
it|t−1(J)[1−η∗(1·)

it|t−1(J)] · · · −η∗(1·)
it|t−1(J)η

∗( j·)
it|t−1(J) · · · −η∗(1·)

it|t−1(J)η
∗((J−1)·)
it|t−1 (J)

... · · ·
... · · ·

...

−η∗( j·)
it|t−1(J)η

∗(1·)
it|t−1(J) · · · −η∗( j·)

it|t−1(J)[1−η∗( j·)
it|t−1(J)] · · · −η∗( j·)

it|t−1(J)η
∗((J−1)·)
it|t−1 (J)

... · · ·
... · · ·

...

−η∗(1·)
it|t−1(J)η

∗((J−1)·)
it|t−1 (J) · · · −η∗((J−1)·)

it|t−1 (J)η∗( j·)
it|t−1(J) · · · η∗((J−1)·)

it|t−1 (J)[1−η∗((J−1)·)
it|t−1 (J)]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊗ w∗
it . (6.55)

Now compute the third term in (6.51) as follows. First, re-express η∗(∗·)′
(it|t−1),M

matrix as

η∗(∗·)′
(it|t−1),M

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η∗(1·)
(it|t−1)(1) · · · η∗(1·)

(it|t−1)(g) · · · η∗(1·)
(it|t−1)(J−1)

...
...

...
...

...

η∗( j·)
(it|t−1)(1) · · · η∗( j·)

(it|t−1)(g) · · · η∗( j·)
(it|t−1)(J−1)

...
...

...
...

...

η∗((J−1)·)
(it|t−1) (1) · · · η∗((J−1)·)

(it|t−1) (g) · · · η∗((J−1)·)
(it|t−1) (J−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

′

: (J−1)× (J−1)

=
(
b1 · · · b j · · · bJ−1

)
, (6.56)

and the 1J−1η∗(∗·)′
(it|t−1)(J) matrix as

1J−1η∗(∗·)′
(it|t−1)(J) =

(
1J−1η∗(1·)

(it|t−1)(J) · · · 1J−1η∗( j·)
(it|t−1)(J) · · · 1J−1η∗((J−1)·)

(it|t−1) (J)
)

=
(

f1 · · · f j · · · fJ−1
)
. (6.57)

The third term in (6.51) may then be written as

π∗(∗·)′
(i,t−1)(β ,γ,σξ |ξi)

∂
∂β

[
η∗(∗·)′
(it|t−1),M −1Jη∗(∗·)′

(it|t−1)(J)
]

=
(

∂b′1
∂β π∗(∗·)

(i,t−1)(β ,γ,σξ |ξi) · · · ∂b′j
∂β π∗(∗·)

(i,t−1)(β ,γ,σξ |ξi) · · · ∂b′J−1
∂β π∗(∗·)

(i,t−1)(β ,γ,σξ |ξi)
)

−
(

∂ f ′1
∂β π∗(∗·)

(i,t−1)(β ,γ,σξ |ξi) · · · ∂ f ′j
∂β π∗(∗·)

(i,t−1)(β ,γ,σξ |ξi) · · · ∂ f ′J−1
∂β π∗(∗·)

(i,t−1)(β ,γ,σξ |ξi)
)
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=
(

∂b′1
∂β · · · ∂b′j

∂β · · · ∂b′J−1
∂β

)
[IJ−1 ⊗π∗(∗·)

(i,t−1)(β ,γ,σξ |ξi)]

−
(

∂ f ′1
∂β · · · ∂ f ′j

∂β · · · ∂ f ′J−1
∂β

)
[IJ−1 ⊗π∗(∗·)

(i,t−1)(β ,γ,σξ |ξi)], (6.58)

where

∂b′j
∂β

=
∂

∂β

(
η∗( j·)
(it|t−1)(1) · · · η∗( j·)

(it|t−1)(g) · · · η∗( j·)
(it|t−1)(J−1)

)

=
[{

η∗( j·)
it|t−1(1)(δ(i,t−1) j −η∗(∗·)

it|t−1(1))
}
⊗w∗

it , . . . ,
{

η∗( j·)
it|t−1(g)(δ(i,t−1) j −η∗(∗·)

it|t−1(g))
}
⊗w∗

it ,

. . . ,
{

η∗( j·)
it|t−1(J−1)(δ(i,t−1) j −η∗(∗·)

it|t−1(J−1))
}
⊗w∗

it

]
: (J−1)(p+1)× (J−1), (6.59)

and

∂ f ′j
∂β

=
∂

∂β
[1′J−1η∗( j·)

(it|t−1)(J)]

= 1′J−1 ⊗
[{

η∗( j·)
it|t−1(J)(δ(i,t−1) j −η∗(∗·)

it|t−1(J))
}
⊗w∗

it

]
. (6.60)

6.3.1.2 (b) Computation of the Derivative Matrix
∂π(·∗)

(i)

′
(α ,λ ,σξ )

∂α :
{(R−1)(q+1)}× (R−1)T

The computation of this derivative matrix corresponding to z response variable is

quite similar to that of
∂ (π(∗·)

(i)

′
(β ,γ ,σξ )

∂β given in Sect. 6.3.1.2(a) corresponding to the y
variable. For simplicity, we provide the formulas only without showing background
derivations. To be specific,

∂π(·∗)
(i)

′
(α,λ ,σξ )

∂α

= [
∂π(·∗)

(i1)

′
(·)

∂α
, . . . ,

∂π(·∗)
(it)

′
(·)

∂α
, . . . ,

∂π(·∗)
(iT )

′
(·)

∂α
] : (R−1)(q+1)× (R−1)T, (6.61)

with

∂π(·∗)
(it)

′
(·)

∂α
=
∫ ∞

−∞
[
∂π(·1)

(it) (α ,λ ,σξ |ξi)

∂α
, . . . ,

∂π(·r)
(it) (α ,λ ,σξ |ξi)

∂α
,
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. . . ,
∂π(·(R−1))

(it) (α ,λ ,σξ |ξi)

∂α
] fN(ξi)dξi (6.62)

=

⎧
⎪⎪⎨

⎪⎪⎩

∫ ∞
−∞

∂ [π∗
(i1)·1,...,π

∗
(i1)·r ,...,π

∗
(i1)·(R−1)]

∂α fN(ξi)dξi for t = 1,
∫ ∞
−∞

∂
∂α

[
η∗(·∗)′
(it|t−1)(R)+π∗(·∗)′

(i,t−1)(α ,λ ,σξ |ξi)

[η∗(·∗)′
(it|t−1),M −1R−1η∗(·∗)′

(it|t−1)(R)]
]

fN(ξi)dξi for t = 2, . . . ,T

(6.63)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫ ∞
−∞[Σ

∗(·∗)
(i,11)(α ,λ ,σξ |ξi)⊗w∗

i1] fN(ξi)dξi for t = 1,
∫ ∞
−∞

[
∂

∂α

{
η∗(·∗)′
(it|t−1)(R)

}
+ ∂

∂α

{
π∗(·∗)′
(i,t−1)(α ,λ ,σξ |ξi)

}

×
{

η∗(·∗)′
(it|t−1),M −1R−1η∗(·∗)′

(it|t−1)(R)
}
+π∗(·∗)′

(i,t−1)(α ,λ ,σξ |ξi)

× ∂
∂α

{
η∗(·∗)′
(it|t−1),M −1R−1η∗(·∗)′

(it|t−1)(R)
}]

fN(ξi)dξi for t = 2, . . . ,T

(6.64)

=

⎧
⎨

⎩

∫ ∞
−∞

∂
∂α

{
π∗(·∗)′
(i1) (α ,λ ,σξ |ξi)

}
fN(ξi)dξi for t = 1,

∫ ∞
−∞

∂
∂α

{
π∗(·∗)′
(it) (α ,λ ,σξ |ξi)

}
fN(ξi)dξi for t = 2, . . . ,T.

(6.65)

In (6.64),

Σ∗(·∗)
(i,11)(α,σξ |ξi) = diag[π∗

(i1)·1, . . . ,π
∗
(i1)·r, . . . ,π

∗
(i1)·(R−1)]−π∗

(i1)·∗π∗′
(i1)·∗, and

∂
∂α

[
η∗(·∗)′
(it|t−1)(R)

]

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η∗(·1)
it|t−1(R)[1−η∗(·1)

it|t−1(R)] · · · −η∗(·1)
it|t−1(R)η

∗(·r)
it|t−1(R) · · · −η∗(·1)

it|t−1(R)η
∗(·(R−1))
it|t−1 (R)

... · · ·
... · · ·

...

−η∗(·r)
it|t−1(R)η

∗(·1)
it|t−1(R) · · · −η∗(·r)

it|t−1(R)[1−η∗(·r)
it|t−1(R)] · · · −η∗(·r)

it|t−1(R)η
∗(·(R−1))
it|t−1 (R)

... · · ·
... · · ·

...

−η∗(·1)
it|t−1(r)η

∗(·(R−1))
it|t−1 (R) · · · −η∗(·(R−1))

it|t−1 (R)η∗(·r)
it|t−1(R) · · · η∗(·(R−1))

it|t−1 (R)[1−η∗(·(R−1))
it|t−1 (R)]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊗ w∗
it . (6.66)

Notice that the first term in (6.64) is computed by (6.66). The second term in (6.64)
is computed recursive way by comparing (6.64) with (6.65). It remains to compute
the third term in (6.64) which is, similar to (6.58), given as

π∗(·∗)′
(i,t−1)(α ,λ ,σξ |ξi)

∂
∂α

[
η∗(·∗)′
(it|t−1),M −1Rη∗(·∗)′

(it|t−1)(R)
]

=
(

∂m′
1

∂β π∗(·∗)
(i,t−1)(α ,λ ,σξ |ξi) · · · ∂m′

r
∂β π∗(·∗)

(i,t−1)(α ,λ ,σξ |ξi) · · · ∂m′
R−1

∂β π∗(·∗)
(i,t−1)(α ,λ ,σξ |ξi)

)

−
(

∂h′1
∂β π∗(·∗)

(i,t−1)(α ,λ ,σξ |ξi) · · · ∂h′r
∂β π∗(·∗)

(i,t−1)(α ,λ ,σξ |ξi) · · · ∂h′R−1
∂β π∗(·∗)

(i,t−1)(α ,λ ,σξ |ξi)
)
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=
(

∂m′
1

∂α · · · ∂m′
r

∂α · · · ∂m′
R−1

∂α

)
[IR−1 ⊗π∗(·∗)

(i,t−1)(α ,λ ,σξ |ξi)]

−
(

∂h′1
∂α · · · ∂h′r

∂α · · · ∂h′R−1
∂α

)
[IR−1 ⊗π∗(·∗)

(i,t−1)(α ,λ ,σξ |ξi)], (6.67)

where

∂m′
r

∂α
=

∂
∂α

(
η∗(·r)
(it|t−1)(1) · · · η∗(·r)

(it|t−1)(g) · · · η∗(·r)
(it|t−1)(R−1)

)

=
[{

η∗(·r)
it|t−1(1)(δ(i,t−1)r −η∗(·∗)

it|t−1(1))
}
⊗w∗

it , . . . ,
{

η∗(·r)
it|t−1(g)(δ(i,t−1)r −η∗(·∗)

it|t−1(g))
}
⊗w∗

it ,

. . . ,
{

η∗(·r)
it|t−1(R−1)(δ(i,t−1)r −η∗(·∗)

it|t−1(R−1))
}
⊗w∗

it

]
: (R−1)(q+1)× (R−1), (6.68)

and

∂h′r
∂α

=
∂

∂α
[1′R−1η∗(·r)

(it|t−1)(R)]

= 1′R−1 ⊗
[{

η∗(·r)
it|t−1(R)(δ(i,t−1)r −η∗(·∗)

it|t−1(R))
}
⊗w∗

it

]
. (6.69)

Thus the computation for the derivative matrix in the MGQL estimating equa-
tion (6.34) is completed.

6.3.1.3 MGQL Estimator and its Asymptotic Covariance Matrix

Because the covariance matrix Σ(i)(·) and the derivative matrix ∂
∂ μ [·] in (6.34) are

known, for given values of γ ,λ ,σξ , one may now solve the MGQL estimating
equation (6.34) for the regression parameter μ . Let μ̂MGQL be the estimate, i.e.,
the solution of (6.34). This estimate may be obtained by using the iterative equation

μ̂(m+1) = μ̂(m)+

⎡

⎣

⎧
⎨

⎩

K

∑
i=1

∂ (π(∗·)
(i)

′
(β ,γ,σξ ),π

(·∗)
(i)

′
(α ,λ ,σξ ))

∂ μ
Σ−1
(i) (μ ,γ,λ ,σξ )

×
∂ (π(∗·)

(i) (β ,γ,σξ ),π
(·∗)
(i) (α ,λ ,σξ )q)

∂ μ ′

⎫
⎬

⎭

−1⎧
⎨

⎩

K

∑
i=1

∂ (π(∗·)
(i)

′
(β ,γ,σξ ),π

(·∗)
(i)

′
(α ,λ ,σξ ))

∂ μ

× Σ−1
(i) (μ ,γ,λ ,σξ )

⎛

⎝
yi −π(∗·)

(i) (β ,γ,σξ )

zi −π(·∗)
(i) (α ,λ ,σξ )

⎞

⎠

⎫
⎬

⎭

⎤

⎦ |μ=μ̂(m). (6.70)
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Furthermore, it follows that the MGQL estimator, μ̂MGQL, obtained from (6.70)
has the asymptotic variance given by

limitK→∞var[μ̂MGQL] =

⎧
⎨

⎩

K

∑
i=1

∂ (π(∗·)
(i)

′
(β ,γ ,σξ ),π

(·∗)
(i)

′
(α,λ ,σξ ))

∂ μ
Σ−1
(i) (μ ,γ ,λ ,σξ )

×
∂ (π(∗·)

(i) (β ,γ ,σξ ),π
(·∗)
(i) (α,λ ,σξ )q)

∂ μ ′

⎫
⎬

⎭

−1

(6.71)

6.3.2 Moment Estimation of Dynamic Dependence
(Longitudinal Correlation Index) Parameters

Estimation of γ:
Notice from (6.7) that γ j( j = 1, . . . ,J − 1) is the lag 1 dynamic dependence

parameter relating y( j)
it and y(g)i,t−1 where g is a known category and ranges from 1

to J. Thus, it would be appropriate to exploit all lag 1 product responses to estimate
this parameter. More specifically, for t = 2, . . . ,T, following (6.19), we first write

E[Yi,t−1Y ′
it ] =

∫ ∞

−∞

[{
η∗(∗·)
(it|t−1),M −η∗(∗·)

(it|t−1)(J)1
′
J−1

}
var[Yi,t−1|ξi]

]
fN(ξi)dξi

+
∫ ∞

−∞
[{π∗(∗·)

(i,t−1)(β ,γ ,σξ |ξi)}{π∗(∗·)
(it) (β ,γ ,σξ |ξi)

′}] fN(ξi)dξi

=
∫ ∞

−∞
[M∗

i,(t−1)t(β ,γ ,σξ |ξi)] fN(ξi)dξi : (J−1)× (J−1), (say). (6.72)

One may then obtain the moment estimator of γ j by solving the moment equation

K

∑
i=1

T

∑
t=2

J−1

∑
h=1

J−1

∑
k=1

∫ ∞

−∞

[
∂

∂γ j
[m∗

i,(t−1)t;h,k(β ,γ ,σξ |ξi)]

× {yi,t−1,hyitk −m∗
i,(t−1)t;h,k(β ,γ ,σξ |ξi)}

]
fN(ξi)dξi = 0, (6.73)

where m∗
i,(t−1)t;h,k(β ,γ ,σξ |ξi) is the (h,k)th element of the M∗

i,(t−1)t(β ,γ ,σξ |ξi)

matrix of dimension (J − 1) × (J − 1), and yi,t−1,h and yitk are, respectively,
the hth and kth elements of the multinomial response vectors yi,t−1 =
(yi,t−1,1, . . . ,yi,t−1,h, . . . ,yi,t−1,J−1)

′ and yit = (yit1, . . . ,yitk, . . . ,yit,J−1)
′, of the

ith individual. Next, in the spirit of iteration, by assuming that γ j in
∂

∂γ j
[m∗

i,(t−1)t;h,k(β ,γ ,σξ |ξi) is known from previous iteration, the moment equation

(6.73) may be solved for γ j by using the iterative equation



6.3 Estimation of Parameters 361

γ̂ j(�+1) = γ̂ j(�)+

[
K

∑
i=1

T

∑
t=2

J−1

∑
h=1

J−1

∑
k=1

∫ ∞

−∞

{
∂

∂γ j
[m∗

i,(t−1)t;h,k(β ,γ,σξ |ξi)]

× ∂
∂γ ′j

[m∗
i,(t−1)t;h,k(β ,γ,σξ |ξi)]

}

fN(ξi)dξi

]−1 K

∑
i=1

T

∑
t=2

J−1

∑
h=1

J−1

∑
k=1

∫ ∞

−∞

[
∂

∂γ j
[m∗

i,(t−1)t;h,k(β ,γ,σξ |ξi)]

× {yi,t−1,hyitk−m∗
i,(t−1)t;h,k(β ,γ,σξ |ξi)}

]
fN(ξi)dξi

]

γ j=γ̂ j(�)
. (6.74)

Note that to compute the derivative of the elements of the matrix M∗
i,(t−1)t(β ,γ ,

σξ |ξi) with respect to γ j, i.e., to compute ∂
∂γ ′j

[m∗
i,(t−1)t;h,k(β ,γ ,σξ |ξi)] in (6.73)–

(6.74), we provide the following derivatives as an aid:

∂π∗
(i1)h·

∂γ j
=

∂
∂γ j

⎧
⎪⎨

⎪⎩

exp(w∗′
i1 β ∗

h +σξ ξi)

1+∑J−1
g=1 exp(w∗′

i1 β ∗
g +σξ ξi)

for h = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(w∗′
i1 β ∗

g +σξ ξi)
for h = J,

=

⎧
⎨

⎩

0 for h = j;h, j = 1, . . . ,J−1
0 for h �= j;h, j = 1, . . . ,J−1
0 for h = J; j = 1, . . . ,J−1,

(6.75)

and

∂
∂γ j

[η∗(h·)
it|t−1(g)] =

∂
∂γ j

⎧
⎪⎪⎨

⎪⎪⎩

exp
[
w∗′

it β ∗
h +γ ′hy(g)i,t−1+σξ ξi

]

1+∑J−1
v=1 exp

[
w∗′

it β ∗
v +γ ′vy(g)i,t−1+σξ ξi

] , for h = 1, . . . ,J−1

1

1+∑J−1
v=1 exp

[
w∗′

it β ∗
v +γ ′vy(g)i,t−1+σξ ξi

] , for h = J,

=

⎧
⎪⎪⎨

⎪⎪⎩

δ(i,t−1)gη∗( j·)
it|t−1(g)[1−η∗( j·)

it|t−1(g)] for h = j;h, j = 1, . . . ,J−1

−δ(i,t−1)gη∗( j·)
it|t−1(g)η

∗(h·)
it|t−1(g) for h �= j;h, j = 1, . . . ,J−1

−δ(i,t−1)gη∗( j·)
it|t−1(g)η

∗(J·)
it|t−1(g) for h = J; j = 1, . . . ,J−1,

(6.76)

where for all i = 1, . . . ,K, and t = 2, . . . ,T, one writes

δ(i,t−1)g =

{
[01′g−1,1,01′J−1−g]

′ for;g = 1, . . . ,J−1
01′J−1 for g = J.

(6.77)

Estimation of λ :
Recall that λ = [λ ′

1, . . . ,λ ′
r , . . . ,λ ′

R−1]
′ and the moment estimation of λr is quite

similar to that of γ j. The difference between the two is that γ j is a dynamic
dependence parameter vector for y response variable, whereas λr is a similar
parameter vector for z response variables. More specifically, λr(r = 1, . . . ,R−1) is
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the lag 1 dynamic dependence parameter relating z(r)it and z(g)i,t−1 where g is a known
category and ranges from 1 to R. Thus, it would be appropriate to exploit all lag 1
product responses corresponding to the z variable in order to estimate this parameter.
More specifically, for t = 2, . . . ,T, following (6.29), we write

E[Zi,t−1Z′
it ] =

∫ ∞

−∞

[{
η∗(·∗)
(it|t−1),M −η∗(·∗)

(it|t−1)(R)1
′
R−1

}
var[Zi,t−1|ξi]

]
fN(ξi)dξi

+
∫ ∞

−∞
[{π∗(·∗)

(i,t−1)(α ,λ ,σξ |ξi)}{π∗(·∗)
(it) (α ,λ ,σξ |ξi)

′}] fN(ξi)dξi

=
∫ ∞

−∞
[M̃i,(t−1)t(α ,λ ,σξ |ξi)] fN(ξi)dξi : (R−1)× (R−1), (say). (6.78)

It then follows that the moment estimator of λr may be obtained by solving the
moment equation

K

∑
i=1

T

∑
t=2

R−1

∑
h=1

R−1

∑
k=1

∫ ∞

−∞

[
∂

∂λr
[m̃i,(t−1)t;h,k(α,λ ,σξ |ξi)]

× {zi,t−1,hzitk − m̃i,(t−1)t;h,k(α,λ ,σξ |ξi)}
]

fN(ξi)dξi = 0, (6.79)

where m̃i,(t−1)t;h,k(α,λ ,σξ |ξi) is the (h,k)th element of the M̃i,(t−1)t(α,λ ,σξ |ξi)
matrix of dimension (R − 1) × (R − 1), and zi,t−1,h and zitk are, respectively,
the hth and kth elements of the multinomial response vectors zi,t−1 =
(zi,t−1,1, . . . ,zi,t−1,h, . . . ,zi,t−1,R−1)

′ and zit = (zit1, . . . ,zitk, . . . ,zit,R−1)
′, of the

ith individual. Next, in the spirit of iteration, by assuming that λr in
∂

∂λr
[m̃i,(t−1)t;h,k(α,λ ,σξ |ξi) is known from previous iteration, the moment

equation (6.79) may be solved for λr by using the iterative equation

λ̂r(�+1) = λ̂r(�)+

[
K

∑
i=1

T

∑
t=2

R−1

∑
h=1

R−1

∑
k=1

∫ ∞

−∞

{
∂

∂λr
[m̃i,(t−1)t;h,k(α,λ ,σξ |ξi)]

× ∂
∂λ ′

j
[m̃i,(t−1)t;h,k(α,λ ,σξ |ξi)]

}

fN(ξi)dξi

]−1 K

∑
i=1

T

∑
t=2

R−1

∑
h=1

R−1

∑
k=1

∫ ∞

−∞

[
∂

∂λr
[m̃i,(t−1)t;h,k(α,λ ,σξ |ξi)]

× {zi,t−1,hzitk − m̃i,(t−1)t;h,k(α,λ ,σξ |ξi)}
]

fN(ξi)dξi
]

λr=λ̂r(�)
. (6.80)

Note that to compute the derivative of the elements of the matrix M̃i,(t−1)t(α,λ ,
σξ |ξi) with respect to λr, i.e., to compute ∂

∂λ ′
r
[m̃i,(t−1)t;h,k(α,λ ,σξ |ξi)] in (6.79)–

(6.80), we provide the following derivatives as an aid:
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∂π∗
(i1)·h

∂λr
=

∂
∂λr

⎧
⎪⎨

⎪⎩

exp(w∗′
i1 α∗

h+σξ ξi)

1+∑R−1
g=1 exp(w∗′

i1 α∗
g+σξ ξi)

for h = 1, . . . ,R−1

1
1+∑R−1

g=1 exp(w∗′
i1 α∗

g+σξ ξi)
for h = R,

=

⎧
⎨

⎩

0 for h = r;h,r = 1, . . . ,R−1
0 for h �= r;h,r = 1, . . . ,R−1
0 for h = R;r = 1, . . . ,R−1,

(6.81)

and

∂
∂λr

[η∗(·h)
it|t−1(g)] =

∂
∂λr

⎧
⎪⎪⎨

⎪⎪⎩

exp
[
w∗′

it α∗
h+λ ′

hz(g)i,t−1+σξ ξi

]

1+∑R−1
v=1 exp

[
w∗′

it α∗
v +λ ′

vz(g)i,t−1+σξ ξi

] , for h = 1, . . . ,R−1

1

1+∑R−1
v=1 exp

[
w∗′

it α∗
v +λ ′

vz(g)i,t−1+σξ ξi

] , for h = R,

=

⎧
⎪⎪⎨

⎪⎪⎩

δ ∗
(i,t−1)gη∗(·r)

it|t−1(g)[1−η∗(·r)
it|t−1(g)] for h = r;h,r = 1, . . . ,R−1

−δ ∗
(i,t−1)gη∗(·r)

it|t−1(g)η
∗(·h)
it|t−1(g) for h �= r;h,r = 1, . . . ,R−1

−δ ∗
(i,t−1)gη∗(·r)

it|t−1(g)η
∗(·R)
it|t−1(g) for h = R; r = 1, . . . ,R−1,

(6.82)

where for all i = 1, . . . ,K, and t = 2, . . . ,T, one writes

δ ∗
(i,t−1)g =

{
[01′g−1,1,01′R−1−g]

′ for;g = 1, . . . ,R−1
01′R−1 for g = R.

(6.83)

6.3.3 Moment Estimation for σ2
ξ (Familial Correlation

Index Parameter)

Because σ2
ξ is involved in all pair-wise product moments for y and z variables,

we exploit the corresponding observed products as follows to develop a moment
estimating equation for this scalar parameter.

Recall from (6.19) that for u < t,

E[YiuY ′
it ] =

∫ ∞

−∞

[
Σ ∗(∗·)
(i,ut)(β ,γ ,σξ |ξi)+ [{π∗(∗·)

(iu) (β ,γ ,σξ |ξi)}{π∗(∗·)
(it) (β ,γ ,σξ |ξi)

′}]
]

fN(ξi)dξi

=
∫ ∞

−∞
[M∗

i,ut(β ,γ ,σξ |ξi)] fN(ξi)dξi : (J−1)× (J−1) (6.84)
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(6.72) being a special case. Similarly, for u < t, one writes from (6.29) that

E[ZiuZ′
it ] =

∫ ∞

−∞

[
Σ ∗(·∗)
(i,ut)(α ,λ ,σξ |ξi)+ [{π∗(·∗)

(iu) (α ,λ ,σξ |ξi)}{π∗(·∗)
(it) (α ,λ ,σξ |ξi)

′}]
]

fN(ξi)dξi

=
∫ ∞

−∞
[M̃i,ut(α ,λ ,σξ |ξi)] fN(ξi)dξi : (R−1)× (R−1) (6.85)

(6.78) being a special case. Next for all u, t, the pair-wise product moments for y
and z variables may be written from (6.31), as

E[YiuZ′
it ] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ ∞
−∞

[
π∗(∗·)
(i1) (β ,γ = 0,σξ |ξi)π

∗(·∗)
(i1)

′
(α,λ = 0,σξ |ξi)

]
fN(ξi)dξi for u = t = 1

∫ ∞
−∞

[
π∗(∗·)
(i1) (β ,γ = 0,σξ |ξi)π

∗(·∗)
(it)

′
(α,λ ,σξ |ξi)

]
fN(ξi)dξi for u = 1; t = 2, . . . ,T

∫ ∞
−∞

[
π∗(∗·)
(iu) (β ,γ,σξ |ξi)π

∗(·∗)
(i1)

′
(α,λ = 0,σξ |ξi)

]
fN(ξi)dξi for u = 2, . . . ,T ; t = 1

∫ ∞
−∞

[
π∗(∗·)
(iu) (β ,γ,σξ |ξi)π

∗(·∗)
(it)

′
(α,λ ,σξ |ξi)

]
fN(ξi)dξi for u, t = 2, . . . ,T.

=
∫ ∞

−∞
[Q∗

i,ut(β ,γ;α,λ ;σξ |ξi)] fN(ξi)dξi : (J−1)× (R−1), (say)

=
∫ ∞

−∞
(q∗i,ut;h,k(β ,γ;α,λ ;σξ |ξi)) fN(ξi)dξi : (J−1)× (R−1). (6.86)

Now by exploiting the moments from (6.84)–(6.86), we develop a moment
equation for σ2

ξ as

K

∑
i=1

T−1

∑
u=1

T

∑
t=u+1

J−1

∑
h=1

J−1

∑
k=1

∫ ∞

−∞

[
∂

∂σ2
ξ
[m∗

i,ut;h,k(β ,γ,σξ |ξi)]{yiuhyitk −m∗
i,ut;h,k(β ,γ,σξ |ξi)}

]

fN(ξi)dξi

+
K

∑
i=1

T−1

∑
u=1

T

∑
t=u+1

R−1

∑
h=1

R−1

∑
k=1

∫ ∞

−∞

[
∂

∂σ2
ξ
[m̃i,ut;h,k(α,λ ,σξ |ξi)]{ziuhzitk − m̃i,ut;h,k(α,λ ,σξ |ξi)}

]

fN(ξi)dξi

+
K

∑
i=1

T−1

∑
u=1

T

∑
t=u+1

J−1

∑
h=1

R−1

∑
k=1

∫ ∞

−∞

[
∂

∂σ2
ξ
[q∗i,ut;h,k(β ,γ;α,λ ;σξ |ξi)]

× {yiuhzitk −q∗i,ut;h,k(α,λ ,σξ |ξi)}
]

fN(ξi)dξi = 0. (6.87)

This moment equation (6.87) may be solved by using the iterative equation

σ̂2
ξ (�+1) = σ̂2

ξ (�)

+

⎡

⎣

⎧
⎨

⎩

K

∑
i=1

T−1

∑
u=1

T

∑
t=u+1

J−1

∑
h=1

J−1

∑
k=1

∫ ∞

−∞

[
∂

∂σ2
ξ
[m∗

i,ut;h,k(β ,γ ,σξ |ξi)]

]2

fN(ξi)dξi

+
K

∑
i=1

T−1

∑
u=1

T

∑
t=u+1

R−1

∑
h=1

R−1

∑
k=1

∫ ∞

−∞

[
∂

∂σ2
ξ
[m̃i,ut;h,k(α,λ ,σξ |ξi)]

]2

fN(ξi)dξi

+
K

∑
i=1

T−1

∑
u=1

T

∑
t=u+1

J−1

∑
h=1

R−1

∑
k=1

∫ ∞

−∞

[
∂

∂σ2
ξ
[q∗i,ut;h,k(β ,γ;α,λ ;σξ |ξi)]

]2

fN(ξi)dξi

⎫
⎬

⎭

−1
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×
{

K

∑
i=1

T−1

∑
u=1

T

∑
t=u+1

J−1

∑
h=1

J−1

∑
k=1

∫ ∞

−∞

[
∂

∂σ2
ξ
[m∗

i,ut;h,k(β ,γ ,σξ |ξi)]{yiuhyitk−m∗
i,ut;h,k(β ,γ ,σξ |ξi)}

]

fN(ξi)dξi

+
K

∑
i=1

T−1

∑
u=1

T

∑
t=u+1

R−1

∑
h=1

R−1

∑
k=1

∫ ∞

−∞

[
∂

∂σ2
ξ
[m̃i,ut;h,k(α,λ ,σξ |ξi)]{ziuhzitk − m̃i,ut;h,k(α,λ ,σξ |ξi)}

]

fN(ξi)dξi

+
K

∑
i=1

T−1

∑
u=1

T

∑
t=u+1

J−1

∑
h=1

R−1

∑
k=1

∫ ∞

−∞

[
∂

∂σ2
ξ
[q∗i,ut;h,k(β ,γ;α,λ ;σξ |ξi)]

× {yiuhzitk −q∗i,ut;h,k(α,λ ,σξ |ξi)}
]

fN(ξi)dξi
}]

σ2
ξ =σ̂2

ξ (�)
. (6.88)

Note that the computation of the derivatives for the elements of three matrices will
require the following basic derivatives:

∂π∗
(i1)h·

∂σ2
ξ

=
∂

∂σ2
ξ

⎧
⎪⎨

⎪⎩

exp(w∗′
i1 β ∗

h +σξ ξi)

1+∑J−1
g=1 exp(w∗′

i1 β ∗
g +σξ ξi)

for h = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(w∗′
i1 β ∗

g +σξ ξi)
for h = J,

=

⎧
⎨

⎩

ξi
σξ

π∗
(i1)h·π

∗
(i1)J· for h = 1, . . . ,J−1

− ξi
σξ

π∗
(i1)J·[1−π∗

(i1)J·] for h = J;
(6.89)

∂
∂σ2

ξ
[η∗(h·)

it|t−1(g)] =
∂

∂σ2
ξ

⎧
⎪⎪⎨

⎪⎪⎩

exp
[
w∗′

it β ∗
h +γ ′hy(g)i,t−1+σξ ξi

]

1+∑J−1
v=1 exp

[
w∗′

it β ∗
v +γ ′vy(g)i,t−1+σξ ξi

] , for h = 1, . . . ,J−1

1

1+∑J−1
v=1 exp

[
w∗′

it β ∗
v +γ ′vy(g)i,t−1+σξ ξi

] , for h = J,

=

⎧
⎨

⎩

ξi
σξ

η∗(h·)
it|t−1(g)η

∗(J·)
it|t−1(g) for h = 1, . . . ,J−1

− ξi
σξ

η∗(J·)
it|t−1(g)[1−η∗(J·)

it|t−1(g)] for h = J;
(6.90)

∂π∗
(i1)·r

∂σ2
ξ

=
∂

∂σ2
ξ

⎧
⎪⎨

⎪⎩

exp(w∗′
i1 α∗

r +σξ ξi)

1+∑R−1
g=1 exp(w∗′

i1 α∗
g+σξ ξi)

for r = 1, . . . ,R−1

1
1+∑R−1

g=1 exp(w∗′
i1 α∗

g+σξ ξi)
for r = R,

=

⎧
⎨

⎩

ξi
σξ

π∗
(i1)·rπ

∗
(i1)·R for r = 1, . . . ,R−1

− ξi
σξ

π∗
(i1)·R[1−π∗

(i1)·R] for r = R;
(6.91)
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and

∂
∂σ2

ξ
[η∗(·r)

it|t−1(g)] =
∂

∂σ2
ξ

⎧
⎪⎪⎨

⎪⎪⎩

exp
[
w∗′

it α∗
r +λ ′

ry(g)i,t−1+σξ ξi

]

1+∑R−1
v=1 exp

[
w∗′

it α∗
v +λ ′

vy(g)i,t−1+σξ ξi

] , for r = 1, . . . ,R−1

1

1+∑R−1
v=1 exp

[
w∗′

it α∗
v +λ ′

vy(g)i,t−1+σξ ξi

] , for r = R,

=

⎧
⎨

⎩

ξi
σξ

η∗(·r)
it|t−1(g)η

∗(·R)
it|t−1(g) for r = 1, . . . ,R−1

− ξi
σξ

η∗(·R)
it|t−1(g)[1−η∗(·R)

it|t−1(g)] for r = R.
(6.92)
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