Computer Architecture:
Complexity and Correctness

SilviaM. Mueller Wolfgang J. Paul
IBM Germany Development University of Saarland
Boeblingen, Germany Saarbruecken, Germany

Preface

IN THIS BOOK we develop at the gate level the complete design of a
pipelined RISC processor with delayed branch, forwarding, hardware
interlock, precise maskable nested interrupts, caches, and a fully 1EEE-
compliant floating point unit. The design is completely modular. This
permits us to give rigorous correctness proofs for amost every part of the
design. Also, because we can compute gate counts and gate delays, we can
formally analyze the cost effectiveness of al parts of the design.

Acknowledgments

This book owes much to the work of the following students and postdocs:
P. Dell, G. Even, N. Gerteis, C. Jacobi, D. Knuth, D. Kroening, H. Leister,
P-M. Seidel.

March 2000
SilviaM. Mueller
Wolfgang J. Paul

Contents

1 Introduction 1
2 Basics 7
21 HardwareModel L. 7
211 Components 7

212 CycleTimes 9

2.1.3 Hierarchical Designs 10

2.1.4 Notationsfor Delay Formulae 10

2.2 Number Representations and Basic Circuits 12
221 Natura Numbers 12
222 Integers 14

23 BasicCircuits oo 17
2.3.1 Trivial Constructions 17
2.3.2 Testingfor Zeroor Equaity 19

233 Decoders 19

234 LeadingZeroCounter 21

24 ArithmeticCircuits 22
241 CaryChanAdders 22

24.2 Conditional SumAdders 24
2.4.3 Pardlel Prefix Computation 27
244 Carry Lookahead Adders 28

245 ArithmeticUnits 30

246 Shifter. 31

Table of contents

viii

3

25 Multipliers. 34
251 School Method L 34
252 CarySaveAdders 35
253 Multiplication Arrays. 36
254 A2-Trees 37
255 Multiplierswith Booth Recoding 42
2.5.6 Cost and Delay of the Booth Multiplier 47

26 Control Automata 50
2.6.1 FiniteState Transducers 50
26.2 CodingtheState 51
26.3 GeneratingtheOutputs 51
2.6.4 Computingthe Next State 52
265 MooreAutomata 54
2.6.6 Precomputing the Control Signals 55
26.7 MedyAutomata 56
2.6.8 Interaction withthe DataPaths 58

2.7 Selected References and Further Reading 61

28 EXErCises e 61

A Sequential DL X Design 63

3.1 Instruction Set Architecture 63
311 InstructionFormats 64
3.1.2 InstructionSetCoding 64
313 Memory Organization 68

3.2 HighLevd DataPaths 69

33 Environments 71
3.3.1 General Purpose Register File 71
3.3.2 Instruction Register Environment 73
333 PCEnvironment 74
334 ALUEnvironment 75
335 Memory Environment 78
3.3.6 Shifter Environment SHenv 81
3.3.7 Shifter Environment SH4Lenv 85

34 Sequential Control 88
34.1 Seguentia Control without Stalling 88
3.4.2 Parameters of the Control Automaton 95
343 ASmpleStal Engine 97

3.5 HardwareCostand CycleTime. 99
351 HadwareCost 99
352 CycleTime 100

3.6 Selected References and Further Reading 104

Table of contents

4 Basic Pipelining 105
4.1 DelayedBranchandDelayedPC 107
4.2 Prepared Sequential Machines 111

421 Prepared DLX DataPaths 114
4.2.2 FSD for the Prepared DataPaths 120
423 Precomputed Control 122
424 ABascObservation 128
4.3 PipdiningasaTransformation 130
431 COrrectness i 131
4.3.2 Hardware Costand CycleTime 139
44 ResultForwarding. 143
441 VdidFlags 144
442 3-StageForwarding. 145
443 COIrectness v oo 148
45 Hardwarelnterlock L 151
451 SdlEngine. 151
452 Scheduling Function 154
453 Simulation Theorem 157
4.6 Cost Perfformance Analysis 159
4.6.1 HardwareCostand CycleTime 159
4.6.2 PeformanceMode 160
4.6.3 Delay Sots of Branch/Jump Instructions 162
46.4 CPlRatiooftheDLXDesigns. 163
46,5 DesignEvauation 166
4.7 Selected References and Further Reading 168
48 EXErCISES . . . v v i 169

5 Interrupt Handling 171
5.1 Attempting a Rigorous Treatment of Interrupts 171
5.2 Extended Instruction Set Architecture 174
5.3 Interrupt Service Routines For Nested Interrupts 177
54 Admissible Interrupt Service Routines 180

541 Setof Constraints. 180
54.2 Bracket Structures L. 181
5.4.3 Properties of Admissible Interrupt Service Routines 182
55 InterruptHardware 190
551 EnvironmentPCerwv 191
55.2 CircuitDaddr 193
55.3 Register FileEnvironment RFenv 194
554 Modified DataPaths 198
555 CauseEnvironment CAenv 202
55.6 ControlUnit 204 -

Table of contents

5.6 Pipelined Interrupt Hardware
5.6.1 PCEnvironment
5.6.2 Forwarding and Interlocking
563 StalEngine.
5.6.4 Cost and Delay of the DLXy Hardware

5.7 Correctness of the Interrupt Hardware

5.8 Selected References and Further Reading

59 Exercises

Memory System Design
6.1 A MonolithicMemory Design
6.1.1 TheLimitsof On-chipRAM
6.1.2 A Synchronous BusProtocol
6.1.3 Sequential DLX with Off-Chip Main Memory . .
6.2 TheMemory Hierarchy
6.2.1 ThePrincipleof Locality
6.22 ThePrinciplesof Caches
6.2.3 Execution of Memory Transactions
6.3 ACacheDesign.
6.3.1 Designof aDirect Mapped Cache
6.3.2 Designof aSet AssociativeCache
6.3.3 Designof aCachelnterface
6.4 Sequential DLX with CacheMemory
6.4.1 ChangesintheDLX Design
6.4.2 Vaiationsof theCacheDesign.
6.5 Pipelined DLX withCacheMemory
6.5.1 ChangesintheDLX DataPaths
6.52 Memory Control
6.5.3 Design Evaluation
6.6 Selected Referencesand Further Reading
6.7 Exercises

| EEE Floating Point Standard and Theory of Rounding

7.1 Number Formats
711 BinayFractions
7.1.2 Two's Complement Fractions
7.1.3 BiasedInteger Format
7.1.4 |EEEFloating Point Numbers
7.1.5 Geometry of Representable Numbers
7.1.6 Conventionon Notation

72 Rounding
721 RoundingModes

722 TwoCentral Concepts
7.2.3 Factorings and Normalization Shifts
7.24 Algebraof Rounding and Sticky Bits
7.2.5 Rounding with Unlimited Exponent Range
7.2.6 Decomposition Theorem for Rounding
7.2.7 Rounding Algorithms
7.3 EXceptions.
731 Oveflow
732 Undeflow
733 WrappedExponents
734 InexactResult.
7.4 Arithmetic on Special Operands
741 OperationswithNaNs
7.4.2 Addition and Subtraction
743 Multiplication.
744 DiviSion.
745 Comparison
7.4.6 Format Corversions
7.5 Selected References and Further Reading
76 Exercises

Floating Point Algorithms and Data Paths

81 Unpacking.,

8.2 Addition and Subtraction,
8.2.1 AdditionAlgorithm.
822 AdderCircuitry

8.3 Multiplicationand Divison
8.3.1 Newton-Raphson Iteration
8.3.2 Initial Approximation
8.3.3 Newton-Raphson Iteration with Finite Precision . .
8.34 Table Size versus Number of Iterations
8.3.5 Computing the Representative of the Quotient . . .
8.3.6 Multiplier and Divider Circuits.

84 FloatingPointRounder
8.4.1 Specificationand Overview
84.2 NormaizationShift.
8.4.3 Selection of the Representative
84.4 SgnificandRounding
845 PostNormalization
8.4.6 Exponent Adjustment
84.7 ExponentRounding
84.8 CircuitSPECFPRND

Table of contents

Xi

Table of contents

xii

85 CircuitFCon 412
8.5.1 Floating Point Condition Test 414
85.2 Absolute Valueand Negation. 417
85.3 |EEE Hoating Point Exceptions 418

86 FormatConversion 418
8.6.1 Specification of the Conversions 419
8.6.2 Implementation of the Conversions 423

8.7 Evauationof theFPUDesign 432

8.8 Selected References and Further Reading 435

89 Exercises 436

Pipelined DL X Machinewith Floating Point Core 439

9.1 Extended Instruction Set Architecture 441
911 FPURegisterSet 441
9.12 InterruptCauses 443
9.13 FPUlnstructionSet. 444

9.2 DataPathswithout Forwarding 445
9.21 InstructionDecode 448
922 MemoryStage, 451
9.23 WriteBackStage 455
924 ExecuteStage. 461

9.3 Control of the Prepared Sequential Design 470
9.3.1 Precomputed Control without Division 474
9.3.2 Supporting Divisions 479

9.4 Pipelined DLX DesignwithFPU 485
941 PCEnvironment 485
9.4.2 Forwarding and Interlocking 486
943 StlEngine. 498
9.4.4 Cost and Delay of theControl 503
945 SimulationTheorem 507

95 Evduation., 508
951 HardwareCostand CycleTime 508
9.5.2 \Variation of theCacheSize. 511

96 Exercises 516

DL X Instruction Set Architecture 519

A.1l DLX Fixed-PointCore: FXU 519
A.11l InstructionFormats. 520
A.12 InstructionSetCoding 521

A.2 Floating-Point Extension 521
A21 FPURegisterSet 521
A22 FPUIngtructionSet. 522

Table of contents

B Specification of the FDL X Design 527
B.1 RTL Ingtructionsof theFDLX 527
B.1l1l StagelF. 527

B.12 StagelD 527

B.1.3 StageEX 529

B.14 StageM 532

B.15 StageWB 534

B.2 Control Automataof the FDLX Design 534
B.2.1 Automaton Controlling StagelD 535

B.22 Precomputed Control 536
Bibliography 543
Index 549

xiii

Introduction

Overview of the Content

In this book we devel op at the gate level the complete design of apipelined
RISC processor with delayed branch, forwarding, hardware interlock, pre-
cise maskable nested interrupts, caches, and a fully IEEE-compliant float-
ing point unit.

The educated reader should immediately ask “So what? Such designs
obvioudly existed in industry several years back. What is the point of
spreading out al kinds of details?’

The point is: the complete design presented here is modularand clean
It iscertainly clean enough to be presented and explained to students. This
opens the way to covering the following topics, both in this text and in the
class room.

e To begin with the obvious: we determine cost and and cycle times of
designs. Whenever a new technique is introduced, we can evauate
its effects and side effect®n the cycle count, the hardware cost,
and the cycle time of the whole machine. We can study tradeoffs
between these very real complexity measures.

e Asthe design is modular, we can give for each module a clean and
precise specification, of what the module is supposed to do.

e Following the design for a module, we give a complete explanation
asto why the design meetsthe specification. By far the fastest way to

Chapter 1

INTRODUCTION

give such an explanation is by a rigorous mathematical correctness
proof.

e From known modules, whose behavior is well defined, we hierar-
chically construct new modules, and we show that the new compli-
cated modules constructed in this way meet their specifications by
referring only to the specifications of the old modules and to the
construction of the new modules. We follow this route up to the
construction of entire machines, where we show that the hardware
of the machines interprets the instruction set and that interrupts are
serviced in a precise way.

Because at all stages of the design we use modules with well defined
behavior, the process of putting them all together isin this text completely
precise.

How to Use This Text
We see three ways to use this book:

e Again, we begin with the obvious. one can try to learn the material
by reading the book alone. Because the book is completely self con-
tained this works. A basic understanding of programming, knowl-
edge of high school math, and some familiarity with proofs by in-
duction suffices to understand and verify (or falsify!) each and every
statement in this book.

e Themateria of thisbook can be covered in university classes during
two semesters. For a class in “computer structures’ followed by
“computer architecture 1” the material is somewhat heavy. But our
experience is, that students of the classes “computer architecture 1
and 2” deal well with the entire material. Many advanced topics like
superscalar processors, out-of-order execution, paging, and parallel
processing, that are not covered in this book, can betreated very well
inaseminar parallel to the class “computer architecture 2”. Students
who have worked through the first part of this book usually present
and discuss advanced material in seminars with remarkable maturity.

Sections 2.1 to 2.5, chapter 7 and chapter 8 present a self-contained
construction of the data paths of an |EEE-compliant floating point
unit. This material can be covered during one semester in a class on
computer arithmetic.

IWhether mathematical correctness proofs are to be trusted is a sore issue which we
will address shortly.

e The book can be used as supplementary reading in more traditional
architecture classes or as areference for professionals.

To Believe or Not to Believe in Proofs

Computer architects tend not to like proofs. It is amost as if computer
architects do not believe in mathematics. Even mathematical formulae are
conspicuously rare in most textbooks on computer architecture, in contrast
to most other engineering disciplines. The reason for thisis simple:

e Correctness proofs are incredibly error prone. When it comes to the
verification of computer systems, it is very difficult to tell a correct
proof from aproof, which isalmost but not quite correct. The proofs
in this book are no exception.

e Shipping hardware which is believed to be correct and which turns
out to be faulty later can cost acomputer manufacturer a GREAT deal
of money.

Thus, do we expect our readers to buy the correctness of all designs
presented here based solely on the written proofs? Would we — the authors
— be willing to gamble our fortune on the correctness of the designs? The
only sane answer is. no. On the contrary, in spite of our best efforts and
our considerable experience we consider it quite likely, that one or more
proofs in the second half of the book will receive a nontrivial fix over the
next two years or so.

Keeping the above stated limitations of written correctness proofs firmly
in mind, we see nevertheless three very strong points in favor of using
mathematics in atext book about computer architecture.

e Themainforemost reason is speed. If oneinvestsinthe development
of appropriate mathematical formalism, then one can express one's
thoughts much more clearly and succinctly than without formalism.
Thisin turn permits one to progress more rapidly.

Think of the famous formula stating, that the square of the sum of
afirst number and a second number equals the sum of the square of
the first number, two times the product of the first number with the
second number, and the square of the second number. Theline

(a+b)? = a® 4 2ab+ b?

says the very same, but it is much easier to understand. Learning the
formalism of algebrais an investment one makes in high school and
which costs time. It pays off, if the time saved during calculations
with the formalism exceeds the time spent learning the formalism.

Section 1.0

INTRODUCTION

w

Chapter 1

INTRODUCTION

In this book we use mathematical formalism in exactly this way. It
isthe very reason why we can cover so much material so quickly.

We have dready stated it above: at the very least the reader can
take the correctness proofs in this book as a highly structured and
formalized explanation as to why the authors think the designs work.

But thisis not all. Over the last years much effort has been invested
in the development of computer systems which allow the formula-
tion of theorems and proofs in such a precise way, that proofs can
actually be verified by the computer. By now proofs like the ones
in this book can be entered into computer-aided proof systems with
almost reasonable effort.

Indeed, at the time of this writing (February 2000) the correctness
of amachine closely related to the machine from chapter 4 (with a
dlightly different more general forwarding mechanism) has been ver-
ified using the system PVS[CRSS94, KPMO0Q]. This aso includes
the verification of al designs from chapter 2 used in chapter 4. Ver-
ification of more parts of the book including the floating point unit
of chapter 8 is under way and progressing smoothly (so far).

Key Concepts
There are three key concepts, which permit us to develop the material of
this book very quickly and at the same time in a completely precise way.

1. Wedistinguish rigorously between numbers and their representation.

The simple formalism for thisis summarized in chapter 2. Thiswill
immediately help to reduce the correctness proofs of many auxiliary
circuits to easy exercises. More importantly, this formalism main-
tains order — and the sanity of the reader — in the construction of
floating point units which happen to manipulate numbersin 7 differ-
ent formats.?

. The details of pipelining are very tricky. Asatool to better under-

standing them, we introduce in chapter 4 preparedsequential ma-
chines. This are machines which have the data path of a pipelined
machine but which are operated sequentially. They are very easy to
understand.

Pipelined machines have to simulate prepared sequential machines
in afairly straightforward formal sense. In this way we can at least

2packed single and double precision, unpacked single and double precision, binary
numbers, two's complement numbers, and biased integers

easily formulate what pipelined machines are supposedo do. Show-
ing that they indeed do what they are supposed to do will occasion-
aly involve some short but subtle arguments about the scheduling of
instructions in pipelines.

3. In chapter 7 we describe the algebra of rounding from [EP97]. This
permits us to formulate very concise assertions about the behavior
of floating point circuits. It will allow us to develop the schematics
of the floating point unit in a completely structured way.

Highlights

We conclude the introduction by highlighting some results from the chap-
ters of this book. In chapter 2 we develop many auxiliary circuits for later
use: various counters, shifters, decoders, adders including carry |ookahead
adders, and multipliers with Booth recoding. To a large extent we will
specify the control of machines by finite state diagrams. We describe a
simple tranglation of such state diagrams into hardware.

In chapter 3 we specify a sequential DLX machine much in the spirit
of [PH94] and prove that it works. The proof is mainly bookkeeping. We
have to go through the exercise because later we establish the correctness
of pipelined machines by showing that they simulate sequential machines
whose correctness is aready established.

In section 4 we deal with pipelining, delayed branch, result forwarding,
and hardware interlock. We show that the delayed branch mechanism can
be replaced by a mechanism we call “delayed PC” and which delays all
instruction fetches, not just branches? We partition machines into data
paths, control automaton, forwarding engine, and stall engine. Pipelined
machines are obtained from the prepared machines mentioned above by an
amost straightforward transformation.

Chapter 5 deal s with a subject that is considered tricky and which has not
been treated much in the literature: interrupts. Even formally specifying
what an interrupt mechanism should do turns out to be not so easy. The
reason is, that an interrupt is a kind of procedure call; procedure calls in
turn are a high level language concept at an abstraction level way above
the level of hardware specifications.

Achieving preciseness turns out to be not so bad. After all preciseness
istrivial for sequential machines, and we generate pipelined machines by
transformation of prepared sequential machines. But the interplay of in-
terrupt hardware and forwarding circuits is nontrivial, in particular when it
comes to the forwarding of specia purpose registers like, e.g., the register,
which contains the masks of the interrupts.

3\We are much more comfortable with the proof since it has been verified in PVS.

Section 1.0

INTRODUCTION

Chapter 1

(=]

INTRODUCTION

Chapter 6 deals with caches. In particular we specify a bus protocol by
which data are exchanged between CPU, caches, and main memory, and
we specify automata, which (hopefully) realize the protocol. We explain
the automata, but we do not prove that the automata realize the protocol.
Model checking [HQR98] is much better suited to verify a statement of
that nature.

Chapter 7 contains no designs at al. Only the |EEE floating point stan-
dard is rephrased in mathematical |anguage and theorems about rounding
are proven. The whole chapter is theory. It is an investment into chap-
ter 8 where we design an entire fully |EEE-compatible floating point units
with denormals, and exceptions, dual precision adder, multiplier, iterative
division, format conversion, rounding. All this on only 120 pages.

In chapter 9 we integrate the pipelined floating point unit into the DLX
machine. As one would expect, the control becomes more complicated,
both because instructions have variable latency and because the iterative
division is not fully pipelined. We invest much effort into a very com-
fortable forwarding mechanism. In particular, this mechanism will permit
the rounding mode of floating point operations to be forwarded. This, in
turn, permitsinterval arithmetic to be realized while maintaining pipelined
operation of the machine.

Basics

2.1 Hardware Model

TUDYING COMPUTER architecture without counting the cost of hard-

ware and the length of critical pathsis great fun. It islike going shop-
ping without looking at price tags at all. In this book, we specify and
analyze hardware in the model from [MP95]. Thisis a model at the gate
level which gives at least rough price tags.

2.1.1 Components

In the model there are five types of basic components, namely: gates,
flipflops, tristate drivers, RAMs and ROMs. Cost and delay of the basic
components arelisted in table 2.1. They are normalized relative to the cost
and delay of a 1-bit inverter. For the basic components we use the symbols
from figure 2.1.

Clock enable signals ce of flipflops and registers, output enable signals
oe of tristate drivers and write signals w of RAMs are always active high.
RAMSs have separate data input and data output ports. All flipflops are
assumed to be clocked in each cycle; thus there is no need to draw clock
inputs.

A RAM with A addresses and d-bit data has cost

Cram(A, d) = Cramcen- (A+3) - (d+loglogd)

Chapter 2

BAsICS

[=-]

Table 2.1 Cost [g] (gate equivalents) and delay [d] of the basic components

cost | delay cost | delay
not 1 1 flipflop 8 4
nand, nor 2 1 3-state driver 5 2
and, or 2 1 RAM cell 2 -
XOr, Xnor 4 2 ROM cell 0.25 -
mux 3 2
{Z :
inverter AND NOR multiplexer
| |
Ad Din
oe w_| RAM
Dout
N
XOR NAND tristate driver Axd RAM
Din A‘d
ce ROM
Dout Dout
[
XNOR OR flipflop Axd ROM

Figure 2.1 Symbols of the basic components

Figure 2.2 Circuit of afull adder FA

Section 2.1

Table 2.2 Read and write times of registers and RAMS; dram denotesthe access HaRDWARE M ODEL
time of the RAM.

\ | register | RAM |
I’ead 0 dram
write || A=Dft+90 | dam+90

and delay
_ | logd+A/4 ; A<64
Dram(A, d) = { 3-logA+10 ; A>64

For the construction of register files, we use 3-port RAMs capable of
performing two reads and one writein asingle cycle. If in one cycle aread
and awrite to the same address are performed, then the output data of the
read operation are left undefined.

Cost and delay of these multi-port RAMs are

Cramg(A, d) = 16 Cram(A, d)
Dran’B(A, d) = 15 Dram(A, d)

The circuit in figure 2.2 has cost Cga and delay Da, with <« Example 2.1

Cra = 2:Cyor+2-Cang+Cor
Dra = Dxor + max{Dyor, Dand+ Dor}-

2.1.2 Cycle Times

In the computation of cycle times, we charge for reads and writesin regis-
ters and RAMs the times specified in table 2.2. Note that we start and end
counting cycles at the point in time, when the outputs of registers have new
values. The constant & accounts for setup and hold times; we use d = 1.

Suppose circuit S has delay ds and RAM R has access time dragm. The four <€ Example 2.2
schematicsin figure 2.3 then have cycle times

ds+A incased)
_— Oram+ ds+ A in case b)
) ds+diam+90 in case ¢)

ds+2-diam+90 incased)

o

Chapter 2

10

BAsICs

2.1.3 Hierarchical Designs

It is common practice to specify designsin ahierarchical or even recursive
manner. It is aso no problem to describe the cost or delay of hierarchi-
cal designs by systems of equations. For recursive designs one obtains
recursive systems of difference equations. Section 2.3 of this chapter will
contain numerous examples.

Solving such systems of equations in closed form is routine work in the
analysis of agorithms if the systems are small. Designs of entire proces-
sors contain dozens of sheets of schematics. We will not even attempt
to solve the associated systems of equations in closed form. Instead, we
trandate the equations in a straightforward way into C programs and let
the computer do the work.

Running a computer program is a particular form of experiment. Scien-
tific experiments should be reproducible as easily as possible. Therefore,
all C programs associated with the designsin this book are accessible at our
web sitel. The reader can easily check the analysis of the designs, analyze
modified designs, or reevaluate the designs with a new set of component
costs and delays.

2.1.4 Notations for Delay Formulae

Let Sbe acircuit with inputs | and outputs O as shown in figure 2.4. It is
often desirable to analyze the delay Ds(l’; O') from a certain subset I of
the inputs to a certain subset O of the outputs. Thisis the maximum delay
of apath pfromaninput in |’ to an output in O'. We use the abbreviations

[)5(|I;()) = [)S(V
Ds(| ; OI) = Ds(ol)
[)S = [)S(l;())

Circuits Sdo not exist in isolation; their inputs and outputs are connected
to registers or RAMs, possibly vialong paths. We denote by Ag(1'; O') the
maximum delay of a path which startsin aregister or RAM, enters Svial
and leaves SviaO'. We call Ag(l’;O') an accumulated delayif al inputs
I" are directly connected to registers, we have

As(l’;0) = Dg(I’;0').

Ihttp://www-wjp.cs.uni-sb.de/info/papers/#books

Section 2.1

| q q
| [HARDWARE MODEL
A Din A Din
circuit S RAM circuit S RAM
0=lw 0=lw
¢ Dout Dout
4 A~ oin
circuit S RAM circuit S
ister t i st 1=
a) register to register ¢ Dout E 1
4 A Din
RAM
b) RAM to register C) register to RAM Dout
d) RAM to RAM

Figure 2.3 Thefour types of transfer between registers and RAMs

inputs | S

outputs O Ny ps

| q

Figure 2.4 Pathsthrough acircuit S. I isasubset of itsinputs|, and O’ is a subset
of its outputs O.

Similarly we denote by Tg(l’; Q') the maximum cycle time required by
cycles through I’ and O'. If I’ =1 or O = O we abbreviate as defined
above.

The schematic S of figure 2.5 comprises three cycles: <« Example 2.3
e leaving circuit S; via output ds,
e entering circuit Sp viainput dy,
e entering circuit Sp viainput do.

Thus, the cycle time of S; can be expressed as

Ts. = max{Ts,(ds), Ts,(d1), Ts,(d2) },
11

Chapter 2

12

BAsICs

ds l
—>> registers ‘
‘ d
! 1
- A
circuit S1 r circuit S2
| \ L |

Figure 2.5 Schematic &

with
Tg(d3) = Ag(d3)+A = Dg/(d3)+Dst+9d
Ts,(d1) = As(dh)+A = Ds,(di)+Dtt+9d
Ts(de) = Asg(de) +A = Ag(dr)+Dsy(d2) + Dt +0.

2.2 Number Representations and Basic Circuits
2.2.1 Natural Numbers

For bits x € {0,1} and natural numbers n, we denote by X' the string con-
sisting of n copies of x. For example, 0° =000 and 1° = 11111. Weusually
index the bits of stringsa € {0, 1}" fromright to left with the numbers from
Oton— 1. Thus, we write

a=an 1...9 or a=an—1:0].

For stringsa=an_1...8 € {0,1}", we denote by

@-5 a2

the natural number with binary representation .20bviously we have
(a) €{0,...,2"—1}.

We denote by B, = {0,...,2" — 1} the range of numbers which have a
binary representation of length n. For x € B, and a € {0,1}" with x = (a),
we denote by

biny(x) = a

the n-bit binary representation of x. A binary numbeiis a string which is
interpreted as a binary representation of a number. We have for example

(1o = 2
@ = 2"—1

Table 2.3 Computing the binary representation (c's) of the sum of the bitsa, b, c.

la b c]c s]
O 0 0jJO0 O
O 0 1{0 1
0O 1 0|0 1
0O 1 11 O
1 0 00 1
1 0 1)1 O
1 1 01 O
1 1 1)1 1

From the definition one immediately concludes for any j € {0,...,n—1}

(an—1:0)) = (an—1:j])-2' +(a[j —1:0)). (2.1)

Addition Theentriesintable 2.3 obvioudy satisfy

s = adboc
d=1 < a+b+c>2
(ds) = a+b+c

This is the standard algorithm for computing the binary representation of
the sum of three bits. For the addition of two n-bit numbersain—1: 0] and
b[n—1: 0], one first observes that

(an—1:0))+(bjn—1:0)) € {0,..., 21— 2},

Thus, even the sum+ 1 can be represented with n+ 1 bits. The standard
algorithm for adding the binary numbersajn—1: 0] and bjn—1: 0] aswell
asacarry in g, isinductively defined by

Ci1 = Gpn
(Gs) = GC_1t+a+bh (2.2)
S = Cp

fori € {0,...,n—1}. Bit s iscalled the sum bitat position i, and g is
called the carry bit from position i to position i + 1. Thefollowing theorem
asserts the correctness of the algorithm.

(an—1:0))+(b[n—1:0]) +cn = (cn_1S[n—1:0]).

Section 2.2

NUMBER
REPRESENTATIONS
AND BAsIC
CIRCUITS

4 Theorem 2.1
13

Chapter 2

14

BAsICs

QED

PROOF

by induction on n. For n= 0, this follows directly from the definition of
the algorithm. From n to n+ 1 one concludes with equation (2.1) and the
induction hypothesis:

(@n:0))+ (b[n:0))+cn = (an+hby)-2"+(an—1:0])

<b[n—110]>+qn
an+bn)-2"+ (ch_19n—1:0])
an+bn+cn 1)-2"+(sln—1:0])
tash) - 2"+ (sln— 1:0))
Cas[n:0])

(
(
{
{

2.2.2 Integers

For strings ajn — 1 : 0], we use the notation a =3,_1...ag, e.g., 104 =
01111, and we denote by

[a] = —an_1- 2"+ (an—2:0)
the integer with two’s complement representation &bviously, we have
[a) e {—2"1,..., 21 1}
Wedenote by T, = {—2"1,...,2"~1 1} the range of numbers which have
atwo’s complement representation of length n. For x € T, and a € {0, 1}"
with x = [a], we denote by
twon(X) =
the n-bit two’'s complement representation of x. A two’s complement num-
beris a string which is interpreted as a two’s complement representation
of anumber. Obviously,

@ <0 « a-1=1

The leading bit of atwo’s complement number is therefore called its sign
bit. The basic properties of two’'s complement numbers are summarized in

Lemma 2.2 » Leta=a[n—1:0], then

[0a] = (&)
@ = (an—2:0]) mod 2"
[@ = (a) mod2"
[an-18] = [a] (sign extension)
- = [@+1

The first two eguations are obvious. An easy calculation shows, that
(@) —[a] = an—1-2%
this shows the third equation.

[an 18] = —an 1-2"+(an—1:0])
= —ar1-2"+a,1-2" "+ (an-2:0)
= [a]

This proves the fourth equation.
n—-2)
[@t,....3) = —2"tag+ %a-z
i=
n—2

- —2”*1-(1—an,1)+_;(1—a)-2‘

n-2 _ n-2)
— _2nfl+2nfl‘an_l+ Z)ZI . Z)al ol
i= i=

= 2niportlg, 42"t -1 (an-2:0])

= —[an—-1:0]-1

This proves the last equation.

Subtraction The basic subtraction algorithm for n bit binary numbers a

and b in the case where the result is nonnegative works as follows:
1. Add the binary numbers a,b and 1.
2. Throw away the leading bit of the result

We want to perform the subtraction (1100) — (0101) = 12 — 5= 7. We compute
1. (1100) — (0101) = (1100) 4 (1010) + 1 = (1100) + (1011) = (10111).

2. We discard the leading bit and state that the result is (0111) = 7.

Section 2.2

NUMBER
REPRESENTATIONS
AND BAsIC
CIRCUITS

PROOF

QED

< Example 2.4

15

Chapter 2

16

BAsICs

Theorem 2.3 »

PROOF

QED

Theorem 2.4 »

PROOF

QED

Thisisreassuring but it does not prove anything. In order to see why the
algorithm works, observethat (a) — (b) > 0implies (a) — (b) € {0,...,2'—
1}. Thus, it suffices to compute the result modulo 2, i.e., throwing away
the leading bit does not hurt. The correctness of the algorithm now imme-
diately follows from

Leta=aln—1:0] and b=b[n—1:0], then
(a) — (b) = (a) + (b) + 1 mod 2".

o
=)

@—(b) = (-]
= (a)+[1b]+1
(@) + (b) +1 mod 2"

The salient point about two’s complement numbers is that addition al-
gorithms for the addition of n-bit binary numbers work just fine for n-bit
two's complement numbers as long as the result of the addition staysin the
range T,. Thisisnot completely surprising, because the last n— 1 bits of n-
bit two’'s complement numbers are interpreted exactly as binary numbers.
The following theorem makes this precise.

Leta=aln—1:0],b=Dbn—1:0] and let ¢ € {0,1}. Let(gn:0]) =
(aln—1:0])+ (b[n—1:0]) + 6n and let the bitsicand $ be defined as in
the basic addition algorithm for binary numbers. Then

o [a+[0]+Cn€Th < Ch1=Cpho.

e If [a] + [b] +Gin € Ty, then[a] + [b] +cin = [sin—1: 0]].

[a]+[b]+cn = 2" (—am_1—bn1)+(an—2:0])+ (b[n—2:0]) +cn
= —2"Ya, 1+by 1)+ (ch29n—2:0))
= —2"Yah 14+by1+C2—2-Ci2)+(sn—2:0)
= —2"Y((ch18-1) —2-Ch2) 4+ (sn—2:0])
= 2" (—Cr1+Cr2)+[sn—1:0]
One immediately verifies
2" (—Ch1+Cr2)+[sln—1:0]]€Th > Ch-1=Cn 2

and the theorem follows.

Observethat fora=a[n—1:0] and b=b[n—1: 0] we have
(@] + [b] + Gin € T,
Thus, if we perform the binary addition
(an—18) + (bn_1b) +Cin = (s[n+1:0}),

then we always get
[a] + [b] + cin = [g[n: 0]].

2.3 Basic Circuits

N THIS section anumber of basic building blocks for processors are con-
structed.

2.3.1 Trivial Constructions

One calls n multiplexers with a common select line sl an n-bit multiplexer
or n-bit mux. Similarly, n flipflops with common clock enable line ce are
called an n-bit register and n tristate drivers with a common output enable
line oe are called an n-bit driver.

For x =x[n—1:0], we defined X =%,7...X5. Fora=an—1:0],
b=Db[n—1:0] and o € {AND, OR, NAND, NOR, XOR, XNOR}, We define

aob= (anflobnfla---aaOObO)-

The circuit in figure 2.6 () has inputs ajn— 1 : O] and outputs b[n—1:
0] =a. Itiscaled an n-bit inverter. The circuit in figure 2.6 (b) has inputs
an—1:0],b[n—1:0] and outputs c[n—1: 0] = aoh. It iscalled an n-bit
o-gate

Forae {0,1},b=b[n—1:0] and o € {AND, OR, NAND, NOR, XOR,
XNOR}, we define

aocb=a"ob=(aoby_1,...a0hp).

The circuit in figure 2.6 () has inputs a,b[n— 1 : 0] and outputs c = aob.
The circuit consists of an n-bit o-gate where al inputs g are tied to the
same hit a.
For o € {AND, OR}, a balanced tree of n— 1 many o-gates has inputs
an—1:0] and output b= a,_10...0ap. Itiscaled an n-inputo-tree
The cost and the delay of the above trivial constructions are summarized
in table 2.4. The symbols of these constructions are depicted in figure 2.7.

Section 2.3

BAsic CIRCUITS

17

Chapter 2

18

BAsICS b) 9

a0] an-1 b[n-1] a[O] b[O] a bn1] b[O]

a{n{f?@ &

b[n-1] b[0] c[n-1] c[n-1] c[0]

Figure 2.6 Circuits of an n-bit inverter (a) and of an n-bit o-gate. The circuit (c)
computesac bln—1:0].

8 gn-10] b) gn1.00 bn-10] 9 an10]

b[n-1:0] c[n-1:0] b[n-1:0]
) gn1.0 bn-20] @ abnuo D gnio]

A A 4

c[n-1:0] c[n-1:0]
Figure 2.7 Symbolsof an n-bit register (a), an n-bit mux (b), an n-bit tristate driver

(c), an n-hit o-gate (d, €), and an n-input o-tree (f). In (e), al theinputsa; aretied
to one bit a.

Table 2.4 Cost and delay of the basic n-bit componentslisted in figure 2.7.

n-bit n-input
register | mux | driver | o-gate o-tree
cost N-Cs¢s | N-Cux | N°Cariv | N-Cs | (N—=1)-C,
delay Di+ Dmux Dariv D, “09 n—| -D

2.3.2 Testing for Zero or Equality
An n-zero testersacircuit with input ajn— 1 : 0] and output

b=a_1V...Vag.

The obvious realization is an n-bit ORr-tree, where the output gate is re-
placed by a NOR gate. Thus,

Crerdn) = (N—2)-Cor+Chor
Dzerd(n) = ([logn] —1)-Dor + Dnor.

An n-equality testers a circuit with inputs ajn—1: 0] and b[n—1: Q]
and output ¢ such that

c=1 «+ an—-1:0=bn—-1:0].

Since ali] = b[i] is equivalent to afi] @ b[i] = 0, the equality test can also be
expressed as

c=1 « an-1:0l@bn—1:0=0"

Thus, the obvious realization is to combine the two operands bitwise by
XOR and to pass the result through an n-zero tester:

Cequal(n) = N-Cyor+CrerdN)
Dequal(n) = Dyxor+ Dzerd(N).

2.3.3 Decoders

An n-decodeiis a circuit with inputs xin — 1 : 0] and outputs Y[2' — 1: O]
such that for all i
Yi=1<+ (X)=I.

A recursive construction with delay logarithmic in nisdepicted in figure
2.8. Let k= [n/2] and | = |[n/2]|. The correctness of the construction is
shown by induction on n. For the induction step one argues

Y[2%i+j=1 « V[]=1AU[jj=1
< (Xn—1:K) =1 A (Xk=1:0]) = j
& (Xn—1:Kxk—1:0]) =2 i+]

Section 2.3

BAsic CIRCUITS

19

Chapter 2

20

BAsICs

n=1 n>1
k K=2K .
X(0] Xik-1:0] ——+] dec(k) [+ K20
I -
Y[1] Y[Q] x[n-1:K [dec(l) % | VIL-1:0]
2 V[i]%} uli
Y[O] - Y[Ki+j] - Y[2n-1]

Figure 2.8 Recursive definition of an n-decoder circuit

The cost and delay of this decoder circuit run at

Cdec(1) = G

Cdedn) = Cued[n/2]) +Cyed([n/2]) +2"-Cang
Ddec(1) = Dinv

DdednN) = Dded [n/2]) + Dana

Half Decoder An n-half decodetis acircuit with inputs xin—1: 0] and
outputs Y[2" — 1: O] such that

Y[2"—1:0] = 07~%1¥,

Thus, input x turns on the (x) low order bits of the output of the half de-
coder.

Let L denote the lower half and H the upper half of the index range
[2"—1:0]:

L=[2"1-1:00 , H=[2"—-1:2"1.

With these abbreviations, figure 2.9 shows a recursive construction of a
half decoder. The cost and the delay are

Chdedl) = O
ChdedN) = Chdedn—1) +2"% (Cand+ Cor)
theo(l) =0
DhdedN) = Dndedn— 1)+ max{Dand, Dor}-

Section 2.3

n=1 n>1 X[n-2: 0]
| BAsic CIRCUITS

0 X0 hdec(n-1)

U[L]
2n-l
x[n-1] L4
MBI o ol
Y[H] Y[L]

Figure 2.9 Recursive definition of an n-half decoder circuit

In the induction step of the correctness proof the last (x(n—2: Q]) bits
of U are set to one by induction hypothesis. If %1 = 0, then

X = (xn-2:0])
yH = 0@ and
yjL] = U.

If Xn—1 = 1, then
xy = 214 (xn-2:0)

yH = U and
yiL = 17

Thus, in both cases the last (x) bits of y are one.

2.3.4 Leading Zero Counter

For strings x, we denote by 1z(x) the number of leading zeros of x. Let
n = 2" be a power of two. An n-leading zero counter is a circuit with
inputs X[n— 1 : 0] and outputs y[m: Q] satisfying (y) = 1z(x).

Figure 2.10 shows a recursive construction for n-leading zero counters.
For the induction step of the correctness proof we use the abbreviations

H = [n—1:n/2
L = [n/2—-1:0]
(Y1) Iz(x[H]) and

) = 1z(-qL]).

21

Chapter 2

22

m=0 m>0
BAsics x[0] X[L] yLm
=
X[H] lz(V2)
y[O]

Figure 2.10 Recursive definition of an n-leading zero counter

Thus,
Z0qHML]) = { Izzmi([lﬂ)lz(x[u) :; :ﬁmi ; 22—1
_ {<0yH[m—1:01> if yu[m—1] =0
z if yym—1]=1
where
z = (10™YH+(y[m-1:0])
_ Oly [m—2:0] if yy[m—1]=0
N { 10y [m—2:0] if y[m—-1]=1
= ym-1y[m-1y[m-2:0].
Cost and delay of this circuit are
Ciz(1) Cinv
Cz(n) = 2-C3(n/2) +Crux(Mm+ 1) + Ciny
Di,(1) Dinv
Diz(n) = Diz(n/2) + Dinv + Dmux.

2.4 Arithmetic Circuits

E USE three varieties of adders: carry chain adders, conditional sum
adders, and carry look ahead adders.

2.4.1 Carry Chain Adders

A full adderisacircuit with inputs a, b, c and outputs ¢, s satisfying
(ds)y=a+b+c.

Section 2.4

& by
C.
" ARITHMETIC
a by CIRCUITS
"
31 bha w00 & S
1
Ch-2
Sn Sn-1

Figure 2.11 Circuit of the n-bit carry chain adder CCA

Table 2.5 Functionality of ahalf adder

(@)

= O O
= O PFR OO0
= O OO
O rFr - O|lwn

Full adders implement one step of the basic addition agorithm for binary
numbers as illustrated in table 2.3 of section 2.2. The circuit in figure 2.2
of section 2.1 happens to be afull adder with the following cost and delay

CFA = 2'Cx0r+2‘Cand+Cor
Dra = Dxor+ max{Dxor, Dand+ Dor}-

Ann-adderisacircuit withinputsajn—1: 0], b[n—1: 0], G, and outputs
g[n: Q] satisfying

(@) + (b) +cin = (s).

The most obvious adder construction implements directly the basic ad-
dition algorithm: by cascading n full adders as depicted in figure 2.11, one
obtains a carry chain adders Such adders are cheap but slow, and we
therefore do not use them.

A half adderis acircuit with inputs a, c and outputs ¢, s satisfying

(ds)=a+c

The behavior of half addersisillustrated in table 2.5. Aswe have

s=a®dc ad d = aAc,

23

Chapter 2

24

BAsICs

c S

Figure 2.12 Circuit of ahalf adder HA

aOI ‘Cm
a HA
| e |
HA o
%1 c,y |
[
HA
s 7 s

Figure 2.13 Circuit of an n-carry chain incrementer CCl

the obvious realization of half adders consists of one AND gate and one OR

gate, as depicted in figure 2.12.

An n-incrementeris a circuit with inputs ajn— 1 : 0],G, and outputs

gn: 0] satisfying
(@) +cin=(9).

By cascading n half adders as depicted in figure 2.13 (b), one obtains a

carry chain incrementewith the following cost and delay:

CCC|(n) = n (Cxor +Cand)
Dcci(n) = (n—1)-Dand+ max{Dxor, Dand}-

The correctness proof for this construction follows exactly the lines of the

correctness proof for the basic addition algorithm.

2.4.2 Conditional Sum Adders

The most simple construction for conditional sum addersis shown in figure

2.14. Let m=[n/2] and k = |n/2] and write

gn: 0] =gn:mgm-—1:0],

b[n-1:m] an-1:m] b[m-1:0] am-1:0]

l 1 0 cin

adder(k) adder(k) adder(m)

sl[n:m]l | ‘ sO[n:m] m

k+1

1 0
Cm-1
gn:m] gm-1:0]

Figure 2.14 Simple version of an n-bit conditional sum adder; m= [n/2] and
k=[n/2].

then

(gn:ml) = (an—21:m))+(b[n—1:mJ)+Ccn1
{ (@n—1:m)+ (b[n—1:mj) if cn1=0
(@n—1:m)+dn-1:m)+1 if gr1=1

Thus, the high order sum bits in figure 2.14 are computed twice: the sum
bits °[n : m| are for the case ¢n_1 = 0 and bits s'[n : m] are for the case
Ccm—1 = 1. Thefinal selection is done once Gy_1 is known.

This construction should not be repeated recursively because halving the
problem size requires 3 copies of hardware for the half sized problem and
the muxes. Ignoring the muxes and assuming n = 2’ is a power of two,
one obtains for the cost ¢(n) of an n-adder constructed in this manner the
estimate

c(n) > 3-¢c(n/2)
3V.¢(1) = 2U1093.¢(1)
n%93.¢(1) > n".¢(1)

V

Thisistoo expensive.
For incrementers things look better. The high order sum bits of incre-
menters are

(gn:m)) = (an—21:m))+cm1
{ (an—1:mj) if cm1=0
(@n—-1m)+1 if cp1=1

This leads to the very simple construction of figure 2.15. Our incrementer
of choice will be constructed in this way using carry chain incrementers

Section 2.4

ARITHMETIC
CIRCUITS

25

Chapter 2

26

BAsICs

m-1
g[n:m] sm-1:0]

Figure 2.15 An n-bit conditional sum incrementer; m= [n/2] and k= [n/2].

for solving the subproblems of size k and m. Such an n-incrementer then
has the following cost and delay

Cinc(n) = Ccci(m) +Ccci(K) +Crudk+ 1)
Dinc(n) = Dcci(M) + Dmux

Note that in figure 2.15, the origina problem is reduced to only two
problems of half the size of the original problem. Thus, this construction
could be applied recursively with reasonable cost (see exercise 2.1). One
then obtains a very fast conditional sum incrementer CSI.

Indeed, a recursive construction of simple conditional sum adders turns
out to be so expensive because disjoint circuits are used for the computa
tion of the candidate high order sum bits £[n: m] and s'[n: m]. This flaw
can be remedied if one constructs adders which compute both, the sum and
the sum +1 of the operands a and b.

An n-compound adddsacircuit with inputsajn—1: 0],b[n—1: 0] and
outputs [n : 0],s*[n : 0] satisfying

(&) = (a)+(b)
(sh = (@+(b)+1

A recursive construction of the n-compound adders is shown in figure
2.16. It will turn out to be useful in the rounders of floating point units.

Note that only two copies of hardware for the half sized problem are used.
Cost and delay of the construction are

Cad2(1) = Cxor+ Cxnor+ Cand+ Cor
Cade(n) = Cadr(K) +Cadee(M) +2-Cruxdk+ 1)

(n)
Dade(1) = max{Dxor, Dxnor; Dand, Dor}
(n)

Dadee(n) = Dadee(M) 4+ Dmudk+1).

Section 2.4

n=1 n>1 gnim] bn-Llm] am-1:0] b[m-10]

mux(k+1)

Sl[n:m] SO [n:m] Sl[m 1.0] So[m 1:0]

ARITHMETIC
add2(m) CIRCUITS

sh10] SY1:0]
Figure 2.16 An n-compound adder add2(n); m= [n/2], k= [n/2]

Xn1 Xn2 X3 X2 X1 Xg

.k

Yn1 Yn2 Yo Y1 Yo

Figure 2.17 The recursive specification of an n-fold parallel prefix circuit of the
function o for an evenn

2.4.3 Parallel Prefix Computation

Leto: M x M — M be an associative, dyadic function. its n-fold parallel
prefix function PRn) : M" — M" maps n inputs X, - - -, X, into n results
Y10, Yo Withy; =Xg 0+ 0X.

A recursive construction of efficient parallel prefix circuits based on o-
gates is shown in figure 2.17 for the case that n is even. If nis odd, then
oneredlizes PR, (n— 1) by the construction in figure 2.17 and one computes
Y1 = Xn_10 Y2 in astraightforward way using one extra o-gate.

The correctness of the construction can be easily seen. From

X/ = Xair10Xa,
it follows
= X'o...oX5 = Xay10...0X = Yaiy1.
The computation of the outputs

Yoi = Xpi0Ypi_1

27

Chapter 2

28

BAsICs

is straightforward. For cost and delay, we get

Cpps (1) 0

Cepo(n) = Cppo(ln/2])+(n—1)-C
Dpps(1) = O

Dppo(n) < Dppo([N/2]) +2:Do.

2.4.4 Carry Lookahead Adders

Foraln—1:0],bln—1:0] and indicesi, j withi < j one defines
pij(ab) =1« (afj:i])y+(b[j:i]) = (U-1+1,

Thisisthe case if ¢j = ¢i_1, in other words if carry G_1 is propagatedby
positions i to j of the operands to position j. Similarly, one defines for
O<i<ij:

gij(@ab) =1 ¢ (afj i)+ (b[j:i]) > (104,

i.e., if positions i to | of the operands generatea carry ¢ independent of
Ci_1. For i = 0 one has account for G, thus one defines

oj(ab,cn) =1 ¢ (aj:0)) + (b[j : O]) +cn > (1011,
In the following calculations, we simply write g j and p; j, respectively.
Obviously, we have
pi = aob
gii = aAb for i>0
Go = ((ao®bo)Acin)V(agAhbo).

Suppose one has already computed the generate and propagate signals
for the adjacent intervals of indices[i : j] and [j+ 1: k], wherei < j < k.
The signals for the combined interval [i : k| can then be computed as

Pik = PijAPj+ik
Ok = 9j+1kVGijAPjrik-

This computation can obviously be performed by the circuit in figure
2.18 which takes inputs (g1, p1) and (gp, p2) from M = {0, 1}? to output

(,p) = (92,P2)°(91,pP1)
= (@VOAP,PLAP2) €M

9 P 91 Pq

l
i

Figure 2.18 Circuit o, to be used in the carry lookahead adder

& B
31 b a2 b a b, T cin
On-1 Pna 91 P21 90 Po
PP{N)
Gna Gn2 G Gq Pg cin

:

0

Figure 2.19 Circuit of an n-bit carry lookahead adder

A simple exercise shows that the operation o defined in this way is asso-
ciative (for details see, e.g., [KP95]).

Hence, figure 2.18 can be substituted as a o-gate in the parallel prefix
circuits of the previous subsections. The point of this construction is that
the i-th output of the parallel prefix circuit computes

(Gi,R) = (gi,pi)o -2 (o, Po) = (di0,Pio) = (CisPi0)-

It follows that the circuit in figure 2.19 is an adder. It is called a carry
look ahead adder

The circuit in figure 2.18 has cost 6 and delay 4. We change the compu-
tation of output g using

g=0VauApP=0A01Vp.
For the cost and the delay of operation o this gives

C = Cand+Cnand+Cnor+Cinv =7
D, = max{Dand, Dnand+ Max{Dnor,Dinv}} = 2.

Section 2.4

ARITHMETIC
CIRCUITS

29

Chapter 2

30

BAsICs

b[n-1:0]
an-1:0]
|

| 7 sub

pn-1] -
neg ﬁ—@i -adder cin
c[n-1]

% gn-1] l ¢ gn-1:0]

Figure 2.20 Circuit of an n-bit arithmetic unit AU

ovf

The cost and the delay of the whole CLA adder are

Cera(n) = Cppo(N)+2n-Cyor + (N+1) - Cang + Cor
Dcra(n) = Dppo(n) 42 Dyor + Dand+ Dor.

2.4.5 Arithmetic Units

Ann bit arithmetic unit isacircuit with inputsaln—1: 0], bjn—1: 0], sub
and outputs s|n : 0],neg ov f. It performs operation

op=4 T if sub=0
P=193 _ if sub=1

The sum outputs s satisfy
s =[a] op[b] if [a]op[b] € T

The flag ovf indicates that [a] op [b] ¢ Tn, whereas flag negindicates that
[a] op[b] < 0. Thisflag has to be correct even in the presence of an over-
flow. With the help of this flag one implements for instance instructions
of the form “branch if a < b”. In this case one wants to know the sign of
a—bevenif a—bisnot representable with n bits.

Figure 2.20 shows an implementation of an n-bit arithmetic unit. The
equation

trangates into
b=b@sub and ¢,=-sub

The flag negis the sign bit of the sum [a] + [b] € Ty;1. By the argument
at the end of section 2.2, the desired flag is the sum bit s, of the addition

(an—18) + (bn_1b) +cin = (sn+1: Q]).

Section 2.4

It can be computed as
ARITHMETIC

neg= $ = C-1®@a-1®bn_1 = Cr_1® Pn-1. CIrRCUITS

By theorem 2.4, we have ovf = ¢,_1 ® Cy_». In the carry lookahead
adder, al the carry bits are available, whereas the conditional sum adder
only provides the final carry bit G,_;. Since the most significant sum bit
equals s, 1 = pn_1 Cy_1, an overflow can be checked by

ovf = (Cho1® Pn-1) ® (Ch2® Pr-1) = S-1DNeg

Let add denote the binary adder of choice; the cost and the delay of the
arithmetic unit, then be expressed as

Cau(n) = (n+2)-Cyor+Cadd(n)
Dau(n) = 3-Dyor+ Dadd(n).
2.4.6 Shifter

For strings aj[n— 1 : 0] and natural numbersi € {0,...,n—1} we consider
the functions

cls(a,i) = (an—i—1]...a0an—1}...an—i))
crs(a,i) = (ali—1]...a0lan—1]...ali])
Irs(a,i) = (Oain—1]...afi]).

Thefunction clsiscalled acyclic left shiff thefunction crsiscalled acyclic
right shift, and the function Irs is called logic right shift We obviously
have

crs(a,i) = cls(a,n—i mod n).

Cyclic Left Shifter An (n,i)-cyclic left shifteris a circuit with inputs
an—1:0], select input s€ {0,1} and outputs r[n— 1: 0] satisfying

cls(a,i) ifs=1
r= .
a otherwise

As shown in figure 2.21 such shifters can be built from n muxes.

Let n= 2" be a power of two. An n-cyclic left shifteris a circuit with
inputsaln—1: 0], select inputs bjm— 1: 0] and outputs r[n— 1 : O] satisfy-
ing

r =cls(a, (b)).

Chapter 2

32

BAsics

%1 - i @il - G a1 -

01 0 ZII. }? 0 1 }] 071 }?
. . s
1 rwI rih N 1

Figure 2.21 (n,i)-Cyclic left shifter

an-1:0]

ds(n, 2°) b[O]

ds(n, 21 b[1]

ds(n, 2™y — p[m-1]

344

Figure 2.22 Circuit of an n-cyclic |eft shifter CLS(n)

b[m-1:0]

r[n-1:0]

Figure 2.23 Circuit of an n-cyclic right shifter CRSn)

a1 g 8.1 g
0 0
0 1 0 1@ 0 1@ 0 1q
! i >
rnl . ri ri_l ro

Figure 2.24 (n,i)-Logic right shifter

Such shifters can be built by cascading (n,i)-cyclic left shiftersfori € { O,
1,2,4,...,2™1} asshown in figure 2.22.

By induction on i, one easily shows that the output K1) of the (n,2')-
cyclic left shifter in figure 2.22 satisfies

ri) = cls(a, (bfi : 0])).

Cyclic Right Shifter An n-cyclic right shifteris a circuit with inputs
aln—1:0], select inputs bjm— 1: 0] and outputs r[n— 1: 0] satisfying

r =crs(a, (b)).

It can be built from an n-cyclic left shifter by the construction shown in
figure 2.23. Thisworks, because

n—(b) = n—[Ob] = n+[1b]+1

= (b)+1modn.

Logic Right Shifter An (n,i)-logic right shifteris a circuit with inputs
an—1:0], select input s€ {0,1} and outputs r[n— 1: 0] satisfying

Irs(a,i) ifs=1
r= .
a otherwise

It can be built from n muxes, as depicted in figure 2.24.

Let n= 2™ be a power of two. An n-logic right shifteris a circuit with
inputs ajn—1: 0], select inputs bjm—1: 0] and outputs r[n— 1 : O] satisfy-
ing

r=1Irs(a, (b)).
In analogy to the cyclic left shifter, the n-logic right shifter can be built by
cascading the (n,i)-logic right shiftersforie { 0,1, 2,4, ...,2™1}.

Section 2.4

ARITHMETIC
CIRCUITS

33

Chapter 2

34

BAsICs

2.5 Multipliers

LET a=an—1:0andb=bm—1:0], then
(@-(b) < (2"-1)-(2"-1) < 2MM_1 (2.3
Thus, the product can be represented with n+ m bits.
An (n,m)-multiplier is a circuit with an n-bit input a=ajn—1: 0], an
mebit input b = bim—1: 0], and an n+ m-bit output p = p[n+m—1: Q]
such that (a) - (b) = (p) holds.

2.5.1 School Method

Obviously, one can write the product (a) - (b) as a sum of partial products

m-1

(@) - (b) = t;)<a>‘bt‘2t-

with

(a)-by-2' = (aln— 1] Ab[t],...a[0] Abt],0).
Thus, al partia products can be computed with cost n- m-G,ng and delay
Dang. We denote by

Sk = it Ha)-bit]- 2
= (a)-(b[j +k—1:]])-2) < 2Nkt
the sum of the k partial products from position j to position j +k— 1.
Because S x isamultiple of 2! it hasabinary representation with j trailing
zeros. Because Sj is smaller than 20" it has a binary representation of
length n+ j + k (see figure 2.25). We have
Si = (a)-b[j]-2
@-(b) = Sm
Sikth = Sjk+ Sjikh
St = S-1+S-11
The last line suggests an obvious construction of multipliers comprising
m— 1 many n-adders. This construction corresponds to the school method
for the multiplication of natural numbers. If one realizes the adders as

carry chain adders, then cost and delay of this multiplier construction can
be shown (see exercise 2.2) to be bounded by

(2.4)

Chu(n,m) < m-n-(Cang+Cra)
Dmul(n, m) < Dand+ (m+ n) - DEa.

Sik | 0..0 |

n+k - —

Figure 2.25 §j i, the sum of the k partial products starting from position j.

2.5.2 Carry Save Adders

Let x be anatural number and suppose the two binary numbers sih— 1 : 0]
andt[n—1: O] satisfy

(9) + (t) = x.

We then call s,t acarry save representatioof x with length n.

A crucia building block for speeding up the summation of partial prod-
ucts are n-carry save adders These are circuits with inputs ajn—1: 0],
b[n—1:0], c[n—1:0] and outputs sin— 1: 0], t[n : O] satisfying

i.e., the outputs s and t are a carry save representation of the sum of the
numbers represented at the inputs. As carry save adders compress the sum
of three numbers to two numbers, which have the same sum, they are al'so
caled n-3/2-adders Such adders are realized, as shown in figure 2.26,
simply by putting n full addersin parallel. Thisworks, because

(@) +(b)+(c) = nZ:(ai‘i‘bi-i-Ci)-Zi

i
n—1

= _;(tHlS)‘Zi

n—1
- %(2-ti+1+s)-2i = (9 +(t).

The cost and the delay of such a carry save adder are

Cs/zadd(n) = nN-Cra
D3/2add(N) = Dra.

The point of the construction is, of course, that the delay of carry save
adders is independent of n.

Section 2.5

MULTIPLIERS

35

Chapter 2

36

BAsICs

an-1] b[n-1] a1] b[1] a0] b[O]
* * * ",
tin] §n-1]] §1] t[1] 0] t[q]

Figure 2.26 Circuit of an n-bit carry save adder, i.e., of an n-3/2-adder.

b[m-1] blj] b[0]
a a a

om-l 0m-l-j O] om-l
| | | |

m-operand addition tree

p[n+m-1:0]

Figure 2.27 Circuit of an (n,m)-multiplier

2.5.3 Multiplication Arrays

Anaddition tree with m operandsacircuit which takes asinputs mbinary
numbers and which outputs acarry save representation of their sum. Using
addition trees, one can construct (n,m)-multipliers as suggested in figure
2.27. First, one generates binary representations of the m partial products
S 1. These are fed into an addition tree with m operands. The output of the
treeisacarry save representation of the desired product. An ordinary adder
then produces from the carry save representation the binary representation
of the product.

We proceed to construct a particularly simple family of addition trees. In
figure 2.28 (a) representations of the partial sums $1,S;; and S ; are fed
into an n-carry save adder. The result isacarry save representation of 93
with length n+ 3. In figure 2.28 (b) the representation of $_, 1 and acarry
save representation of $;_1 are fed into an n-carry save adder. The result
isacarry save representation of $; with length n+t. By cascading m— 2
many n-carry save adders as suggested above, one obtains an addition tree
which isaso called amultiplication arraybecause of its regular structure.

If the final addition is performed by an (n+ m)-carry lookahead adder,
one obtains an (n, m)-multiplier with the following cost and delay

a) b)
So1 | —

S11] Sot-1 [TTTTT T A
%21 | \ St1,1 [0}.0
carry save adder(n) carry save adder(n)

| | | | | |
Soslol . sl r]

Figure 2.28 Generating a carry save representation of the partial sums Sg 3 (a) and

Sot (D).

CwmuLarray(n,m) = n-m-Cang+ (M—2) 'C3/2add(n) +Ccra(n+m)
Dmutarray(n,m) = Dang+ (M—2) - D3/2add(N) + Dcra(n+m).

2.5.4 4/2-Trees

The delay of multiplication arrays is proportional to m. The obvious next
step isto balance the addition trees, hereby reducing the delay to O(logm).
We use here a construction which is particularly regular and easy to ana-
lyze.

Ann-4/2-addelisacircuit withinputsajn—1: 0], bjn—1:0], c[n—1:0],
dn—1:0] and outputs sin—1: 0], t[n— 1: 0] satisfying

(@) + (b) + (c) + (d) = (s)+(t) mod 2".

The obvious construction of n-4/2-adders from two n-3/2-adders is shown
in figure 2.29. Its cost and delay are

Ca/2add(N) = 2-Cgj2add(N) = 2-N-Cra
D4j2add(N) = 2-Dgj2add(N) = 2- Da.

Complete Addition Trees

With the help of 4/2-adders, one constructs complete balanced addition
trees by the recursive construction suggested in figure 2.30. Note that we
do not specify the width of the operands yet. Thus, figure 2.30 is not yet
a complete definition. Let K > 2 be a power of two. By this construction,

Section 2.5

MULTIPLIERS

37

Chapter 2

38

BAsICs

n

3/2add(n)

o

Figure 2.29 Circuit of an n-4/2-adder

3 b sy Sk Sk So
| Tk || Tk |
T 1
] 4/2-adder \

N N

Figure 2.30 Complete balanced addition tree T (K) with 2K operands Sy, ...,
Sk -1, where K is apower of two; @) tree T(2), b) tree T (K).

one obtains addition trees T(K) with 2K inputs. Such a 4/2-tree T (K) has
the delay
DT(K) = logK -2 Dga.

Incomplete Addition Trees
For the construction of |EEE-compliant floating point units we will have
to construct (n, m)-multipliers where mis not a power of two. Let

M = 219" and u = log(M/4).

Thus, M isthe smallest power of two with M > m. Asaconsequence of the
|EEE floating point standard [Ins85] and of the division algorithm used in
the floating point unit, the length m € {27,58} of the operand bjm—1: 0],
and hence the number of operands of the addition tree, will satisfy the
condition

3/4-M <m< M.

In this case, we construct an addition tree 7(m) with m operands as
suggested in figure 2.312. Thetree 7 (m) has depth (. The bottom portion

2For the complementary case see exercise 2.3

M/4-amany amany
Sm-2 Stat1 Ssal
Bl I i B R B R

]3/2-adder\]3/2-adder\]4/2-adder\]4/2-adder
[[[] [

l l

complete 4/2-adder tree T(M/4)

Figure 2.31 Construction of a4/2-adder tree 7 (m) adding inputs S, ..., Sn-1

of thetreeisacompletely regular and balanced 4/2-tree T (M /4) with M /4
many pairs of inputs and M /8 many 4/2-adders as leaves. In the top level,
we have a many 4/2-adders and M /4 — a many 3/2-adders. Here, aisthe
solution of the equation

4a+3-(M/4—a)=m,

hence
a=m-3M/4.

Note that for i = 0,1,..., the partial products S are entered into the
tree from right to left and that in the top level of the tree the 3/2-adders are
arranged left of the 4/2-adders. For the delay of a multiplier constructed
with such trees one immediately sees

Da/amui(n,m) = Dang+2- (U+ 1) - Dra+ Dera(n+m).

Cost of the Addition Trees

Estimating the cost of the treesis more complicated. It requiresto estimate
the cost of all 3/2-adders and 4/2-adders of the construction. For this es-
timate, we view the addition trees as complete binary trees T in the graph
theoretic sense. Each 3/2-adder or 4/2-adder of the construction is a node
v of the tree. The 3/2-adders and 4/2-adders at the top level of the addition
tree are then the leaves of T.

The cost of theleavesiseasily determined. Carry save representations of
the sums § 3 are computed by n-3/2-adders in away completely analogous
to figure 2.28 (a). The length of the representation is n+ 3. Figure 2.32
shows that carry save representations of sums $ 4 can be computed by two

Section 2.5

MULTIPLIERS

39

Chapter 2

40

BAsICs

Si |
S+1,l ‘
Sﬁ+2,1 ‘ {
| | |
carry save adder(n)
I
Si+3.1 |
| | |
carry save adder(n)
] ‘
Sia P REEEE

Figure 2.32 Partial compression of § 4

n-3/2 adders 3. The length of the representation is n+ 4. Thus, we have
c(v) =2:n-Cgp

for al leavesvof T.
Let v be an interior node of the tree with left son L(v) and right son R(v).
Node v then computes a carry save representation of the sum

Sk+h = Sk+ Stkh,

where R(v) provides acarry save representation of Sy and L(v) provides a
carry save representation of S, . If the length of the representations are
i+ k and i+ k+ h, by Equation (2.4) we are then in the situation of figure
2.33. Hence node v consists of 2n+ 2h full adders.

If all 3/2-adders in the tree would have exactly n full adders, and if all
4/2-adders would have 2n full adders, the cost of the tree would ben- (m—
2). Thus, it remains to estimate the number of excess full adderg the
tree.

A Combinatorial Lemma

Let T beacomplete binary tree with depth p. We number the levels £ from
the leaves to the root from O to . Each leaf u has weight W(u). For some
natural number k, we haveW (u) € {k, k+ 1} for all leaves, and the weights
are nondecreasing from left to right. Let m be the sum of the weights of

3Formally, figure 2.32 can be viewed as a simplified (n+ 3)-4/2-adder

‘ . Section 2.5
0<—><—><I—>
g\ 8...8 Sk MULTIPLIERS
Y075 | Sk
l l l
4/2-adder(n+h)
l l R
00| Sikth
n+h k i

Figure 2.33 Partial compression of § j4n

the leaves. For u= 4, m= 53, and k = 3, the leaves would, for example,
have the weights 3333333333344444. For each subtreet of T, we define

W(t) = W(u),
() ulegoft (U)

where u ranges over al leaves of t. For each interior node v of T we define

L(v) and R(v) asthe weight of the subtree rooted in the | eft or right son of
v, respectively. We are interested in the sums

M
Hy = Z L(V) and H = /ZH[,
=1

level ¢

where v ranges over al nodes of level £. The cost H then obeys

<4 Lemma 2.5
(W-m)/2-2%1 < H < (u-m)/2

By induction on the levels of T one shows that in each level weights are

PROOF
nondecreasing from left to right, and their sum ism. Hence,

2H; < z L(v) + Z R(v) = Z W(v) = m.

level ¢ level ¢ level ¢
This proves the upper bound.

In the proof of the upper bound we have replaced each weight L(v) by
the arithmetic mean of L(v) and R(v), overestimating L(v) by

h(v) = (L(V) +R(v))/2=L(v) = (R(v) =L(v))/2.

41

Chapter 2

42

BAsICs

QED

Observe that all nodes in level £, except possibly one, have weights in
{k-2', (k+1)-2}. Thus, in each level ¢ there is at most one node v; with
R(v¢) # L(vy). For this node we have

h(vg) < ((k41)-2-"1—k.2°Yy 2 = 22,

Hence, the error in the upper bound is at most
1]
/z 277 < L
=1

We now use this lemma in order to estimate the number of excess full
adders in the adder tree 7 (m) of figure 2.31. For that purpose, we label
every leaf u of 7 (m) with the number W(u) of partial products that it
sums, i.e., in case of a 3/2-adder, u is labeled with W(u) = 3, and in case
of a4/2-adder it islabeled with W(u) = 4. In figure 2.31, we then have

h=W(L(u)),
and the number E of excess full adders can be estimated as
E=2H<pum
The error in this bound is at most
2.21 =2.05-M/4 < m/3.

Thus, the upper bound is quite tight. A very good upper bound for the cost
of 4/2-trees istherefore

Ca/aree(n,m) = (n-(M—2)+E)-Cra
(n-(m—2)+u-m)-C|:A.

IN

A good upper bound for the cost of multipliers built with 4/2-treesis

Ca/2mu(n,m) = Nn-mM-Cand+ Cy)2tree(N, M) +CorLa(n+m).

2.5.5 Multipliers with Booth Recoding

Booth recoding is a method which reduces the number of partial products
to be summed in the addition tree. This makes the addition tree smaller,
cheaper and faster. On the other hand, the generation of partial products

an-1.0] b[m-1:0]

Booth partial products Bgen(n,m’) ‘

Som-2.2 e S22 So2

m’ -Booth addition tree

add(n+m)

p[n+m-1:0]

Figure 2.34 Structure of a (n,m)-Booth multiplier with addition tree

becomes more expensive and slower. One therefore has to show, that the
savings in the addition tree outweigh the penalty in the partial product
generation.

Figure 2.34 depicts the structure of a 4/2-tree multiplier with Booth re-
coding. Circuit Bgengenerates the m Booth recoded partial products S, 2
which are then fed into a Booth addition tree. Finally, an ordinary adder
produces from the carry save result of the tree the binary representation of
the product. Thus, the cost and delay of an (n,m)-multiplier with 4/2-tree
and Booth recoding can be expressed as

Ca/zemui(n,m) = Cgger(n, M) +Cy)2tree(’, M) +Cera(n+m)
Dajzgmu(n,m) = Dager(n,M) + Dy 2ptree(N’, M) + Dera(n+m).

Booth-2 Recoding

In the ssimplest form (called Booth-2) the multiplier b is recoded as sug-
gested in figure 2.35. With b1 =bn=b_3=0and m = [(m+1)/2],
one writes

m—1 ,
(b) = 2(b) —(b) = § Byj-4,
J; j
where
Boj = 2bpj+boj_1—2bpj1—bpj = —2byj 114 boj +boj_1.

The numbers Byj € {—2,—1,0,1,2} are called Booth digits and we define
their sign bits ,; by

{0 if By>0
®i= 1 it By<O.

Section 2.5

MULTIPLIERS

43

Chapter 2

BAasICcS 2 o ?,“,,1} cee b'”i, b'b'l cee & 3,,b9, °
 | 0 |b, i, LFLELN b b,
3 Bm 5 Bm—2 3 BI 3 BZ 3 B0 3
Figure 2.35 Booth digits B;
With
Coj = (a)-By e{-2"t-2.. 2"}
Dyj = (a)-|By| €{0,...2"1}
doj = bing 1(Dyj),

the product can be computed from the sums
m—1 i m—1 -
(@-(b) = ijo <a>BZj4J = Zi=0 CZJ"4J
= ST Dy 4l

In order to avoid negative numbers G;, one sums the positive E; in-

stead:
By = C2j+3-2n+1
Eg = Co+4.2M1
&j = biny3(Ezj)

& = biny4(Eo).
Thisisillustrated in figure 2.36. The additional terms sum to

m-1 4n'{_1
2114 3. %41) = 2M(1+43.
J:

) — 2n+1+2~m’

Because 2- m’ > mthese terms are congruent to zero modulo 2™, Thus,

m -1

(a)-(b) = E --4j> mod 2" ™,
(2=

Lemma 2.6 » The binary representationeof Ej can be computed by

(&) = (15,02} ©® %)) + S
(&) = (S%0%,do® o)+ So-

44

Section 2.5

1
1 1,0 0 00
+ dy = <a>-[B|
1 110 0 0 0
* d, = <a>-[B,
1 110 0 00
* d, = <a>:[B|
1[0 o 00
+ d. =<a> ‘B ’ ‘
- 2m'-2 2m'-2

Figure 2.36 Summation of the Ey;

For j > 0and ; = 0, we have

(&j) = (11,0™71)+(00,dz5) = (11,dy;)
= (Is,th; © %)) + Sj-

For j > 0and ; = 1, we have

(&) = (110™1) + (11dy;) + 1 mod 273
= (10,dpj) + 1 mod 2"3
= (15],j © %)) + ;-

For j = 0, one shows along the same lines that

(e0) = (0S50S0, do® S0) + 0

By lemma 2.6, the computation of the numbers

is easy, namely

Foj = Ezj—%

f2j = biny3(Fyj)

fo = bim4(Fo)
f2; = (1%, dj& %))
fo = (S0%%;do®).

MULTIPLIERS

PROOF

QED

Chapter 2

46

BAsICs

Lemma 2.7 »

77777777777777777 q So So ‘ d0® S0 ‘ 00
92 7777777777777 1 g‘ CIZéB SZ ‘ 0 So

@ LS, de S, oS

me 717 §7m‘ dZm’eB SZm’ ‘VO,VS,ZmeV—Z,

Figure 2.37 Construction of the partial products Sy, ,

Instead of adding the sign bits $; to the numbers F;, one incorporates
them at the proper position into the representation of k;,.», as suggested
in figure 2.37. The last sign bit does not create a problem, because By_»
is aways positive. Formally, let

G = (f208j2) € {0,1}"°
g = (fo00) € {0,1}"*C,

then
(@2)) = 4-(f2)) +92j—2 = 4-Fj+%j_2,
and with s » = spy_» = 0, the product can aso be written as
(@-(b) = (ZT:)lEZjAJ) mod 2™
m-1 -
= 5o (4 (Rjtsy) 471
m-1 - m-1 -
= Yo 4Ryt 47 = 5 Ngy) 47N

We define
j+k—1 _
Six= Y (goj) -4 1,
t=]
then

Sz = (@) 47" = (f2),082)- 47
szj',z(k+h) = Sjxt+Sjixon

and it holds:
S); 2 is a multiple of2%1 2 bounded by 5 , < 2"+21+2+2, Therefore, at

most n+4+2k non-zero positions are necessary to repre%:gg B both
carry-save or binary form.

PROOF by induction over k. For k = 1:
S2j2 < <1n+6>.4j—1 < M6 Q2i=2 _ onH2j+21+2

For k> 1: Itisknown from the assumption that $; ,,_, < 2""21*2 Thus,

Six = Sjak-1)+ {92k 1) L4tk
< 2n+2]+2k 2n+5_221+2k 2

(1+ 2) . 2n+2j+2k < 2n+2j+2k+2

2.5.6 Cost and Delay of the Booth Multiplier

Partial Product Generation The binary representation of the numbers
S j 2 Must be computed (see figure 2.37). These are

Gj = (15,0 © %), 08)-2)

G = (S0S%0,do® o,00)

shifted by 2j — 2 bit positions. The tb; = bin,,1((a) - |Byj|) are easily
determined from By; and a by

(0,...,0) if By =0
dzj = (O,a) if |sz|:l
(a,0) if |By|=2

For this computation, two signals indicating |Byj| = 1 and |Byj| = 2 are
necessary. We denote these signals by

1 if|By| =1 o 1 if|Byj|=2
blaj = { 0 otherwise b22i =\ 0 otherwise

and calculate them by the Booth decoder logic BD of figure 2.38 (8). The
decoder logic BD can be derived from table 2.6 in a straightforward way.
It has the following cost and delay:

CBD = Cxor + anor + Cnor + Cinv
Dep = maX{DXOI'a Dxnor} + Dnor.

The selection logic BSLof figure 2.38 (b) directs either bit a[i], bit a[i +
1], or O to position i + 1. The inversion depending on the sign bit $; then
yields bit gpj[i +3]. The select logic BSLhas the following cost and delay:

CBSL = 3‘Cnand+ Cxor
I:)BSL = 2 Dnand+ onr-

Section 2.5

MULTIPLIERS

QED

47

Chapter 2

48

BAsICs

Table 2.6 Representation of the Booth digits

[B2j+1:2)—1] [By [b2j+1:2]—1] | By |

000 0 100 -2
001 1 101 -1
010 1 110 -1
011 2 111 -0

a) byj+1 by by b) bly ali+l] ai] b2y
[| [|

dli+1] %

Isy; spj b2y bly .
= % S Goi[i+3]

Figure 2.38 The Booth decoder BD (a) and the Booth selection logic BSL(b)

The select logic BSLis only used for selecting the bits gp;[n+2: 2]; the
remaining bits gp;j[1: 0] and gj[n+5: n+ 3] are fixed. For these bits, the
selection logic is replaced by the simple signal of a sign bit, itsinverse, a
zero, or aone. Thus, for each of the m partial products n+ 1 many select
circuits BSLare required. Together with the m Booth decoders, the cost of
the Booth preprocessing runs at

Capre(n, m) = m' - (Cgp+ (n+1)-Cgsy)-

Redundant Partial Product Addition Let M’ = 29" be the smallest
power of two which is greater or equal m = [(m+1)/2], and let / =
log(M/4). For me {27,58}, it holds that

3/4-M < m < M.

For the construction of the Booth 4/2-adder tree 7'(n), we proceed asin
section 2.5.4, but we just focus on trees which satisfy the above condition.

The standard length of the 3/2-adders and the 4/2-adders is now ri =
n-+ 5 bits; longer operands require excess full adders. Let E be the number
of excess full adders. Considering the sums S instead of the sums S, one
shows that the top level of the tree has no excess full adders. Let H be the

Section 2.5

sum of the labels of the left sonsin the resulting tree. With Booth recoding,
successive partial products are shifted by 2 positions. Thus, we now have

MULTIPLIERS
E' =4.H.
Since H' is bounded by (U - m') /2, we get
E' < 2-((4-m).

Thus, the delay and the cost of the 4/2-tree multiplier with Booth-2 recod-
ing can be expressed as

Ca/oBtree = - (m —2)+E')-Cra
(n’-(nf—2)+2-u’-rrf)-CFA
Du/ogtree = 2- (M +1)-Dra.

IN

Let C’' and D’ denote the cost and delay of the Booth multiplier but with-
out the (n+ m)-bit CLA adder, and let C and D denote the corresponding
cost and delay of the multiplier without Booth recoding:

C' = Cy42mui(n,m) —Ccra(n+m)

D' = Da/2gmui(n,m) — Dcra(n+m)
C = Cyomu(n,m) —Cera(n+m)
D = Da/omu(n,m) —Dcra(n+m).

For n = m= 58, wethen get

C'/C = 45246/55448 = 81.6%
D/D = 55/62 = 88.7%,

and for n=m= 27, we get

C/C = 10234/12042 = 84.9%
D'/D = 43/50 = 86.0%

Asymptotically, C'/C tends to 12/16 = 0.75. Unless mis a power of two,
we have py={ +1and D — D' = 7. Hence D’/D tends to one as n grows
large.

When taking wire delaysin aVLSI layout into account, it can be shown
that Booth recoding also saves a constant fraction of time (independent of
n) in multipliers built with 4/2-trees [PS98].

Chapter 2

50

BAsICs

2.6 Control Automata
2.6.1 Finite State Transducers

Finite state transducersre finite automata which produce an output in
every step. Formally, a finite state transducer is specified by a 6-tuple
(Z,In,0ut, 29,0,), where Z is afinite set of states;, z € Z is called the
initial state In isafinite set of input symbolsOut is afinite set of output
symbols

0:ZxIn—Z

is the transition function and
n:ZxIln— Out

isthe output function
Such an automaton works step by step according to the following rules:

e The automaton is started in state z.

e If the automaton isin state z and reads input symbol in, it then out-
puts symbol n(zin) and goes to state 8(z in).

If the output function does not depend on the input in, i.e., if it can be
written as
n:Z— Out,

then the automaton is called a Moore automatonOtherwise, it iscaled a
Mealy automaton

Obvioudly, the input of an automaton which controls parts of a com-
puter will come from a certain number o of input lines injo — 1: 0], and
it will produce outputs on a certain number y of output lines outly— 1: Q.
Formally, we have

IN={0,1}° and Out={0,1}".

It is common practice to visualize automata as in figure 2.39 which
shows a Moore automaton with 3 states z, z1, and z, with the set of input
symbols In = {0,1}? and with the set of output symbols Out = {0,1}?.
The automaton is represented as adirected graph (V, E) with labeled edges
and nodes.

The set of nodesV of the graph are the states of the automaton. We draw
them as rectangles, the initial state is marked by a double border. For any
pair of states (Z,z), there is an edge from Z to z in the set E of edges if
0(Z,in) = zfor some input symbol in, i.e, if atransition from state Z to

{01, 10, 11} (00, m}o \
20 71 2
out=(010) | {00} [out=(101)| {113 ~ [out=(011)
N I{O, 12

Figure 2.39 Representation of a Moore automaton with tree states, the set In =
{0,1}? of input symbols and the set Out = {0, 1} 2 of output symbols.

state zis possible. The edge (Zz) islabeled with al input symbols in that
take the automaton from state Z to state z. For Moore automata, we write
into the rectangle depicting state z the outputs signals which are active in
State z.

Transducers play an important role in the control of computers. There-
fore, we specify two particular implementations; their cost and delay can
easily be determined if the automaton is drawn as a graph. For a more
general discussion seeg, e.g., [MP95].

2.6.2 Coding the State
Let k = #Z be the number of states of the automaton. Then the states can be

numbered from 0 to k — 1, and we can rename the states with the numbers
fromOtok—1;

We always code the current state zin aregister with outputs Sk—1: O]

satisfying
5— 1 if z=i
1 0 otherwise

for al i. This means that, if the automaton isin state i, bit S isturned on
and all other bits § with j # i are turned off. Theinitia state always gets
number 0. The cost of storing the state is obviously k- G+.

2.6.3 Generating the Outputs

For each output signal out; € Out, we define the set of states

Z; = {ze Z|outj isactivein state z}

Section 2.6

CONTROL
AUTOMATA

51

Chapter 2

52

BAsICs

inwhich it is active. Signal out; can then obviously be computed as
outj = \/ S,
zeZ;
We often refer to the cardinality
Vj = #Z;

as the frequency of the output signal out; Vmax and vsym denote the maxi-
mum and the sum of all cardinalities v;:

y—1
J:

In the above example, the subsets are 2y = {z1,2}, Z1 = {2, 2}, Zo =
{21}, and the two parameters have the values Vmax= 2 and Vgym= 5.

Each output signal out; can be generated by avj-input OR-tree at the cost
of (vj —1)-Cor and the delay of [logv;]-Dor. Thus, acircuit O generating
all output signals has the following cost and delay:

y—1

Co = %(Vi —1)-Cor = (Vsum—Y) - Cor

Do = max{[logvi] | 1<i <Yy} -Dor = [l0gVmax] - Dor-

2.6.4 Computing the Next State

For each edge (z,Z) € E, we derive from the transition function & the
booleanfunction &, specifying under which inputs the transition from
state z to state Z is taken:

O,2(in[o—1:0)) =1 « d(zinjo—1:0]) = 7.

Let D(z Z) be adisjunctive normal form of &, . If the transition from
zto Z occurs for al inputs in, then &, = 1, and the disunctive normal
form of &,, consists only of the trivial monomial m = 1. The automaton
of figure 2.39 comprises the following disjunctive normal forms:

D(z0,z1) =ingAing, D(z0,22) =iny V ing, D(z,2) =1,
D(Z]_,Zl) = E, D(Z]_,Zz) =ing Aing.
Let M(z Z) be the set of monomiasin D(z Z) and let
M= U Mz)\{1}

(zZ)eE

Section 2.6

be the set of all nontrivial monomials occurring in the disjunctive forms

D(z 7). The next state vector N[k — 1 : 1] can then be computed in three CONTROL
steps: AUTOMATA

1. compute in; for each input signal in;,
2. compute all monomials me M,
3. and then compute for al z between 1 and k — 1 the bit

N[z = V(z’,z)eESZ’ N VmeM(z’,z)m
(2.5)
= V(z’,z)eE VmeM(z’,z)(SZ' Am).

Note that we do not compute N[O] yet. For each monomia m, its length
[(m) denotes the number of literalsin m; Imaxand lsymdenote the maximum
and the sum of al I(m):

Imax = max{l(m)|me M} | lsym= Zwl(m).

The computation of the monomials then adds the following cost and delay:
Cocm = 0-Cinv+ (Isum—#M) - Cang
Dcm = Dinv+ [IOglmax-| -Dand-

For each node z, let

fanin(z) = #M(Z,2)
(Z,2)€E

faninpax = max{fanin(z)|1<z<k-1}
k-1

faningm = Z fanin(z),
z=1

the next state signals N[k — 1 : 1] can then be generated at the following
cost and delay:
Cen = faningm: (Cang+Cor) — (k—1) -Cor
Thus, acircuit N Scomputing these next state signals along these linesfrom
the state bits Sk— 1 : 0] and the input in[o — 1: 0] has cost and delay
Cns = Cem+Cen
Dns = Dcwm+ Den:

Table 2.7 summarizes all the parameters which must be determined from

the specification of the automaton in order to determine cost and delay of
thetwo circuits O and NS

53

Chapter 2

54

BAsICs

Table 2.7 Parameters of a Moore control automaton

| Parameter || Meaning

o #inputsin; of the automaton
Y # output signals outj of the automaton
k # states of the automaton
Vmax Vsum maximal / accumulated frequency of all outputs
#M # monomialsme M (nontrivial)
Imase lsum maximal / accumulated length of all me M
fanmax fansum || Mmaximal / accumulated fanin of statesz# z

O (+—= out

Figure 2.40 Realization of a Moore automaton

2.6.5 Moore Automata

Figure 2.40 shows a straightforward realization of Moore automata with
clock enable signal ce and clear signa clr. The automaton is clocked
when at least one of the signals ce and clr is active. At the start of the
computation, the clear signal clr is active. This forces the pattern ¢ 11,
i.e., the code of theinitial state O into register S. Aslong asthe clear signal
isinactive, the next state N is computed by circuit NSand a zero tester. If
none of the next state signals N[k— 1: 1] is active, then the output of the
zero tester becomes active and next state signal N[0] is turned on.

This construction has the great advantage that it works even if the tran-
sition function is not completely specified, i.e., if d(z in) is undefined for
some state zand input in. This happens, for instance, if the input in codes
an instruction and a computer controlled by the automaton tries to execute
an undefined (called illegd) instruction.

In the Moore automaton of figure 2.39, the transition function is not
specified for z and in = (10). We now consider the case, that the automa-
ton isin state z and reads input (10). If all next state signals including
signal N[0] are computed according to equation (2.5) of the previous sub-
section, then the next state becomes (¢. Thus, the automaton hangs and

Figure 2.41 Realization of a Moore automaton with precomputed outputs

can only be re-started by activating the clear signal clr. However, in the
construction presented here, the automaton falls gracefully back into its
initial state. Thus, the transition d(z,10) = z is specified implicitly in
this automaton.

Let A(in) and A(clr, ce) denote the accumulated delay of the input sig-
nalsin and of the signals clr and ce The cost, the delay and the cycle time
of this realization can then be expressed as

Cmoore = Cif(K) +Co+Cns+ Crerd K— 1) + Crmux(K) + Cor

A(out) = Do
TMoore = maX{A(CIr, Ce) + Dor, A(ln) + DNS+ Dzero(k— 1)}
+Dmux+ A

2.6.6 Precomputing the Control Signals

In the previous construction of the Moore automaton it takes time D from
the time registers are clocked until the output signal are valid. In the con-
struction of figure 2.41, the control signals are therefore precomputed and
clocked into a separate register Ry.. This increases the cycle time of the
automaton by Do, but the output signals outly— 1 : 0] are valid without
further delay. The cost, the delay, and the cycle time of the automaton then
run at

CpMoore = Cff(k) +CO+CNS+CzerO(k_ 1) +Cmux(k) +Cff(y) + Cor
Alout) = O
TpMoore = maX{A(Ch’, Ce) + Dor, A(|n) + DNS+ Dzero(k— 1)}
+Dmux+ I:)O +A.
Thiswill be our construction of choice for Moore automata. The choice

is not completely obvious. For aformal evaluation of various realizations
of control automata see [MP95].

Section 2.6

CONTROL
AUTOMATA

55

Chapter 2

56

BAsICs

{01, 10, 11} N\
00, 0 22
20 ot~ %101)[) I o =(011)
out = (010) || {OC} out[3] if info]| {11} out[3] if /in[1]
“ [{0,1)2

Figure 2.42 Representation of a Mealy automaton with tree states, inputsin[1: Q],
and outputs out[3: 0]; out[3] is the only Mealy component of the output.

2.6.7 Mealy Automata

Consider a Mealy automaton with input signals injo — 1 : 0] and output
signals outly—1: Q]. In general, not all components out[j] of the output
will depend on both, the current state and the input signals injo — 1 : 0].
We call out|j] aMealy componenif it depends on the current state and the
current input; otherwise we call out[j] a Moore component

Let out; be aMealy component of the output. For every state zin which
out; can be activated, there is aboolean function f,j such that

outj isactiveinstatez < f,j(in) = 1.

If the Mealy output outj is never activated in state z, then f,; = 0. If the
Mealy output out; is always turned on in state z, then f,; = 1. For any
Mealy output out; we define the set of states

Zj = {z| f,; #Z0}

where out; can possibly be turned on.

Let F(z j) beadisunctive normal form of f,;. With the help of F(z, j)
we can visualize Mealy outputs oufj in the following way. Let z be a state
—visualized as arectangle —in Z}; we then write inside the rectangle:

out; if F(z1i).

Infigure 2.42, we have augmented the example automaton by anew Mealy
output out[3].
Let MF(z j) bethe set of monomialsin F(z j), and let

y—1
MF = U U MF(zj)\ {1}
j=0 zezg

be the set of al nontrivial monomials occurring in the digunctive normal
formsF(z j). The Mealy outputs out; can then be computed in two steps:

1. compute all monomialsme MUMF inacircuit CM (the monomials
of M are used for the next state computation),

2. and for any Mealy output out;, circuit O computes the bit

oy = \/S4A \/ m=1\ \/ (SZ2Am).

zeZ; meMF(z,j) zeZ meMF(z,j)

Circuit CM computes the monomials me M UMF in the same way as
the next state circuit of section 2.6.4, i.e,, it first inverts al the inputs in
and then computes each monomial m by a balanced tree of AND-gates.
Let | fmax and Inmax denote the maximal length of al monomialsin MF and
M, respectively, and let Is,m denote the accumul ated length of all nontrivial
monomials. Circuit CM can then generate the monomials of M = MF UM
at the following cost and delay:

Cocm = 0:-Cinv+ (Isum—#M') - Cang
DCM(M F) = Dinv + HOQI fmax-| : Dand
DCM(M) = Dinv+ [IOgImax-| : Dand-

Circuit CM is part of the circuit N Swhich implements the transition func-
tion of the automaton.

Since the Moore components of the output are still computed as in the
Moore automaton, it holds

ot — Vaez, 97 for aMoore component
: Vaez) Viner(zj)(SZAm) for aMealy component.

The number of monomials required for the computation of a Mealy output
out; equals
Vi =) #MF(z]).

zeZ;
In analogy to the frequency of a Moore output, we often refer to v; as the
frequencyof the Mealy output ou. L et vinaxand vsymdenote the maximal
and the accumulated frequency of all outputs outly— 1 : 0]. The cost and
the delay of circuit O which generates the outputs fromthe signalsme MF
and Sk—1: 0] can be estimated as:

Co = Vsum (Cand+Cor) —Y-Cor
Do = Dand+ [10gVmax] - Dor.

A Mealy automaton computes the next state in the same way as aMoore
automaton, i.e., as outlined in section 2.6.4. The only difference isthat in

Section 2.6

CONTROL
AUTOMATA

57

Chapter 2

58

BAsICs

zero(k-1) N[O]k OT'll
N[k-1:1] 3 0 1 Clrce

,,,,,,,,,,,,,,,,,,,,,,,

! NS! T
in ¥ MU o s
; CM |\ME ! O |—+— out

Figure 2.43 Realization of a Mealy automaton

the Mealy automaton, circuit CM generates the monomials required by the
transition function as well as those required by the output function. Thus,
the cost and delay of the next state circuit NScan now be expressed as

Cns = Cem+Cen
Dns = Dcm(M)+ Den.

Let A(in) and A(clr,ce) denote the accumulated delay of the input sig-
nalsin and of the signals cIr and ce. A Mealy automaton (figure 2.43) can
then be realized at the following cost and delay:

CMealy = Cys (k) +Co+Cns+ Czero(k_ 1) +Cmux(k) + Cor

A(out) = A(in) 4+ Dew(MF) + Do

Tvealy = max{A(clr,ce) 4 Dor, A(in) + Dns+ Dzerdk—1) }
+Dmux+A.

2.6.8 Interaction with the Data Paths

All the processor designs of this monograph consist of control automata
and the so called data paths(i.e., the rest of the hardware). In such a
scenario, the inputs in of an automaton usually code the operation to be
executed; they are provided by the data paths DP. The outputs out of the
automaton govern the data paths; these control signalsat least comprise
al clock enable signals, output enable signals, and write signals of the
components in DP.

The interface between the control automaton and the data paths must be
treated with care for the following two reasons:

1. Not all of the possible outputs out € {0, 1} are admissible; for some
values out, the functionality of the data paths and of the whole hard-
ware may be undefined. For example, if severa tristate drivers are

connected to the same bus, at most one these drivers should be en-
abled at atimein order to prevent bus contentions.

2. Thesignalsin provided by the data paths usually depend on the cur-
rent control signals out, and on the other hand, the output out of the
automaton may depend on the current input in. Thus, after clocking,
the hardware not necessarily gets into astable state again, i.e., some
control signals may not stabilize. However, stable control signals
are crucia for the deterministic behavior of designs.

Admissible Control Signals
The functionality of combinatorial circuitsiswell defined [Weg87]. How-
ever, the structure of the processor hardware H is more complicated; its
schematics also include flipflops, registers, RAMs, and tristate drivers.
These components require control signals which are provided by a con-
trol automaton.

The control signals definefor every value out € Out amodified hardware
H (out). In the modified hardware, atristate driver with active enable signal
en= 1 is treated like a gate which forwards its input data signals to its
outputs. A tristate driver with inactive enable signal en= 0 is treated like
there would be no connection between its inputs and its outputs. As a
consequence, components and combinatorial circuits of H(out) can have
open inputs with an undefined input value.

A value out € Out of the control signalsis called admissibleif the fol-
lowing conditions hold:

e Tristate drivers are used in the data paths but not in the control au-
tomata.

e In the modified hardware H(out), combinatorial circuits and basic
components may have open inputs with an undefined value. Despite
of these open inputs, each input of aregister with active clock enable
signa or of aRAM with active write signal has avalue in {0, 1}.

¢ Inthe modified hardware H(out), any transfer between registers and
RAMs s of one of the four types depicted in figure 2.3.

Note, for all of our processor designs, it must be checked that the control
automata only generate admissible control signals.

Stable Control Signals
In order to keep the functionality of the whole hardware (control automa-
ton and data paths DP) well defined, the data paths and the circuit O are

Section 2.6

CONTROL
AUTOMATA

59

Chapter 2

60

BAsICs

partitioned into p parts each, DP(1),...,DP(p) and O(1),...,0(p), such
that

e Circuit O(i) gets the inputs in(i) C {ino,...,ing_1}; these inputs
are directly taken from registers or they are provided by circuits of
DP(j), with j <.

e Circuit O(i) generates the output signals out(i) C {oup,...,0ut,._1}.
These signals only govern the data paths DP(i).

Circuit NS can receive inputs from any part of the data paths and from any
output circuit O(i).

The whole hardware which uses acommon clock signal worksin cycles.
L et the control automaton only generate admissible control signals out. It
then simply follows by induction over p that the control signals out(i)
stabilize again after clocking the hardware, and that the functionality of
the hardware is well defined (for every clock cycle). The control signals
out(i) have an accumulated delay of

i
Ao(iy = Do(1)+ ZZ(DDP(J')JFDO(J'))'
J:

For Moore automata, such a partitioning of the data paths and of the
automaton is unnecessary, since the control signals do not depend on the
current state. However, in aMealy automaton, the partitioning is essential.
The signals out(1) then form the Moore component of the output.

Parameters of the Mealy Automaton

The output signals of a Mealy automaton tend to be on the time critical
path. Thus, it is essentia for agood performance estimate, to provide the
accumulated delay of every output circuit O(i) respectively the accumu-
lated delay of every subset out(i) of output signals:

Aoy = Alout(i)).

Let vinax(i) denote the maximal frequency of all output signalsin out(i),
and let [fnax(i) denote the maximal length of the monomials in the dis-
junctive normal forms F(z, j), with j € out(i). Thus:

A(out(i)) = A(in(i)) +Dcm(MF,i) + Doy
Doy = Dand+ [10gVmax(i)] - Dor
Dcm(MF,i) = Din+ [logl fmax(i)] - Dang-

Table 2.8 summarizes all the parameters which must be determined from
the specification of the automaton in order to determine the cost and the
delay of aMealy automaton.

Table 2.8 Parameters of a Mealy control automaton with p output levels
0(1),...,0(p)

| Symbol || Meaning |
o #input signals in; of the automaton
% # output signals out; of the automaton
k # states of the automaton

fansym || accumulated fanin of al states z # z
fanmax || maximal fanin of all states z# z
#Mm’ # monomials me M’ = MF UM of the automaton
Isum accumulated length of all monomials me M
| fmaxi), || maximal length of the monomials of output level O(i)
I max and of the monomials me M of the next state circuit
Vsum accumulated frequency of al control signals
Vmaxi) || maximal frequency of the signals out(i) of level O(i)
Acirce || accumulated delay of the clear and clock signals
Ay, | accumulated delay of the inputsin(i) of circuit O(i)
Ain and of the inputs in of the next state circuit

2.7 Selected References and Further Reading

HE FORMAL hardware model used in this book is from [MP95]. The

extensive use of recursive definitions in the construction of switching
circuits is very common in the field of Complexity of Boolean Functions;
a standard textbook is [Weg87]. The description of Booth recoding at an
appropriate level of detail is from [AT97], and the analysis of Booth re-
coding is from [PS98]. Standard textbooks on computer arithmetic are
[Kor93, Omao94]. An early text on computer arithmetic with complete cor-
rectness proofsis[Spar6].

2.8 Exercises

Exercise 2.1 Let m= [n/2] for any n > 1. The high order sum bits of
an n-bit incrementer with inputs ajn—1: 0], g, and output s[n : O] can be
expressed as

(gn:m}) = (an—21:m)+cm1

(aln—1:mj) if cn1=0
{(a[n—l:m])+1 if cme1=1,

Section 2.7

SELECTED
REFERENCES AND
FURTHER READING

61

Chapter 2

62

BAsICs

where ¢y,_1 denotes the carry from position m— 1 to position m. This
suggests for the circuit of an incrementer the simple construction of fig-
ure 2.15 (page 26); the original problem is reduced to only two half-sized
problems. Apply this construction recursively and derive formulae for the
cost and the delay of the resulting incrementer circuit CSI.

Exercise 2.2 Derive formulae for the cost and the delay of an (n, m)-mul-
tiplier which is constructed according to the school method, using carry
chain adders as building blocks.

Exercise 2.3 In section 2.5.4, we constructed and analyzed addition trees
7' (m) for (n,m)-multipliers without Booth recoding. The design was re-
stricted to m satisfying the condition

3/44M <m< M with M = 2Mgml

This exercise deals with the construction of the tree 7' (m) for the remain-
ing cases, i.e.,, for M/2 < m< 3/4-M. The bottom portion of the treeis
still a completely regular and balanced 4/2-tree T(M/4) with M /4 many
pairs of inputs and M /8 many 4/2-adders as leaves. In the top level, we
now have a many 3/2-adders and M /4 — a many pairs of inputs which are
directly fed to the 4/2-tree T (M /4). Here, ais the solution of the equation

3a+2-(M/4—a)=m,

hence
a=m-M/2

Fori=0,1,...,thepartial products § ; are entered into the tree from right
to left and that in the top level of the tree the 3/2-adders are placed at the
right-hand side.

1. Determine the number of excess adders in the tree 7 (m) and derive
formulae for its cost and delay.

2. The Booth multiplier of section 2.5.5 used a modified addition tree
7'(m) in order to sum the Booth recoded partial products. Extend
the cost and delay formulae for the case that M/ /2 < m/ < 3/4-M'.

A Sequential DLX Design

N THE remainder of this book we develop a pipelined DLX machine

with precise interrupts, caches and an |EEE-compliant floating point
unit. Starting point of our designs is a sequential DL X machine without
interrupt processing, caches and floating point unit. The cost effectiveness
of later designs will be compared with the cost effectiveness of this basic
machine.

Wewill be able to reuse amost al designs from this chapter. The design
process will be —amost — strictly top down.

3.1 Instruction Set Architecture

E SPECIFY the DLX instruction set without floating point instruc-

tions and without interrupt handling. DLX is a RISC architecture
with only three instruction formats. It uses 32 general purpose registers
GPRj][31: 0] for j € {0,...31}. Register GPRO] is always 0.

Load and store operations move data between the general purpose reg-
isters and the memory M. There isasingle addressing mode: the effective
address eais the sum of aregister and an immediate constant. Except for
shifts, immediate constants are alwayssign extended.

Chapter 3

6 5 5 16
A SEQUENTIAL Hype | opcode | RST | RD | immediate |
DLX DESIGN
6 5 5 5 5 6

Riyoe | opcode | RSt | RS2 | RD | sA | functon |

6 26
J-type ‘ opcode ‘ PC offset ‘

Figure 3.1 The three instruction formats of the DLX fixed point core. RSL and
RS are source registers;, RD is the destination register. SA specifies a special
purpose register or an immediate shift amount; functionis an additional 6-bit
opcode.

3.1.1 Instruction Formats

All three instruction formats (figure 3.1) have a 6-bit primary opcode and
specify up to three explicit operands. The I-type (Immediate) format spec-
ifies two registers and a 16-bit constant. That is the standard layout for
instructions with an immediate operand. The J-type (Jump) format is used
for control instructions. They require no explicit register operand and profit
from alarger 26-bit immediate operand. The third format, R-type (Regis-
ter) format, provides an additional 6-bit opcode (functior). The remaining
20 bits specify three general purpose registers and a field SAwhich spec-
ifies a 5-bit constant or a special purpose register. A 5-bit constant, for
example, is sufficient for a shift amount.

3.1.2 Instruction Set Coding

Since the DLX description in [HP90] does not specify the coding of the
instruction set, we adapt the coding of the MIPS R2000 machine ([PH94,
KH92)) to the DLX instruction set. Tables 3.1 through 3.3 list for each
DLX instruction its effect and its coding; the prefix “hx” indicates that the
number is represented as hexadecimal. Taken alone, the tables are almost
but not quite a mathematical definition of the semantics of the DLX ma-
chine language. Recall that mathematical definitions have to make sense if
taken literally.
S0, let ustry to take the effect

o RD = (RSL>imm?1:0)
64

Section 3.1

Table 3.1 I-type instruction layout. All instructions except the control instruc- ~ |NSTRUCTION SET
tions also increment the PC by four; sxt(a) is the sign-extended version of a. ARCHITECTURE
The effective address of memory accesses equals ea= (GPRRSL]) + (sxt(imm)),

where immis the 16-bit intermediate. The width of the memory accessin bytesis

indicated by d. Thus, the memory operand equals m= M[ea+d—1],---,M[ed.

| IR[31:26] || Mnemonic | d | Effect |

Data Transfer
hx20 b 1| RD =sxt(m)
hx21 Ih 2 | RD = sxt(m)
hx23 Iw 4| RD=m
hx24 lbu 1| RD=0"m
hx25 Ihu 2 | RD=0%m
hx28 sb 1| m=RD[7:0]
hx29 sh 2 | m=RDI[15: Q]
hx2b sw 4| m=RD
Arithmetic, Logical Operation
hx08 addi RD = RS1 +imm
hx09 addi RD = RS1 +imm
hx0a subi RD =RS1 - imm
hxOb subi RD =RS1 - imm
hxOc andi RD = RS1 A sxt(imm)
hx0d ori RD = RS1 Vv sxt(imm)
hxOe XOri RD = RS1 & sxt(imm)
hxOf Ihgi RD =imm 0'6
Test Set Operation
hx18 clri RD =(fase ? 1: 0);
hx19 sgri RD=(RS1>imm ? 1: 0);
hxla seqi RD=(RS1=imm ? 1: 0Q);
hx1b sgel RD=(RS1>imm ? 1: 0);
hx1c dsi RD=(RS1<imm ? 1:0),
hx1d snei RD=(RS1#imm ? 1:0);
hxle dei RD=(RS1<imm ? 1:0);
hx 1f Seti RD = (true ? 1: 0);
Control Operation
hx04 beqgz PC=PC+4+(RS1=0 ? imm: 0)
hx05 bnez PC=PC+4+(RS1#0 ? imm: 0)
hx16 jr PC = RS1
hx17 jar R31=PC+4; PC=RSl

65

Chapter 3

A SEQUENTIAL

Table 3.2 R-typeinstruction layout. All instructionsexecute PC += 4. SAdenotes
DLX DESIGN

the 5-bit immediate shift amount specified by the bits IR[10: 6].

| IR[31:26] [IR[5:0] || Mnemonic | Effect

Shift Operation
hx00 hx00 dli RD =dI(RS1, SA)
hx00 hx02 srli RD = srl(RS1, SA)
hx00 hx03 sral RD = sra(RS1, SA)
hx00 hx04 S| RD =dlI(RS1, RS2[4: 0])
hx00 hx06 sl RD = srl(RS1, RS2[4: Q)
hx00 hx07 sra RD = sra(RS1, RS2[4: 0])
Arithmetic, Logical Operation
hx00 hx20 add RD =RS1 + RS2
hx00 hx21 add RD = RS1 + RS2
hx00 hx22 sub RD = RS1 - RS2
hx00 hx23 sub RD =RS1 - RS2
hx00 hx24 and RD = RS1 A RS2
hx00 hx25 or RD =RS1V RS2
hx00 hx26 Xor RD = RS1 ¢ RS2
hx00 hx27 Ihg RD = RS2[15:0] 0%
Test Set Operation
hx00 hx28 clr RD =(fase ? 1:0);
hx00 hx29 sgr RD=(RS1>RS2 ? 1: 0);
hx00 hx2a seq RD=(RS1=RS2 ? 1: 0);
hx00 hx2b sge RD=(RS1>RS2 ? 1: 0);
hx00 hx2c ds RD=(RS1< RS2 ? 1:0);
hx00 hx2d sne RD=(RS1#RS2 ? 1: 0);
hx00 hx2e de RD=(RS1< RS2 ? 1:0);
hx00 hx2f Set RD = (true ? 1: 0);

Table 3.3 Jtypeinstruction layout. sxt(imm)is the sign-extended version of the
26-bit immediate called PC offset.

| IR[31: 26] || Mnemonic | Effect |

Control Operation
hx02] PC = PC + 4 + sxt(imm)
hx03 ja R31=PC+4; PC=PC+ 4+ sxt(imm)

of instruction beqz in table 3.1 literally: the 5-bit string RSL is compared
with the 16-bit string imm using a comparison “>" which is not defined
for such pairs of strings. The 1-bit result of the comparison is assigned to
the 5-bit string RD.

This insanity can be fixed by providing five rules specifying the abbre-
viations and conventions which are used everywhere in the tables.

1. RD s a shorthand for GPRRDJ. Strictly speaking, it is actually a
shorthand for GPR(RD)]. The same holds for R1 and R2.

2. Except in logical operations, immediate constants imm are always
two’s complement numbers.

3. Inarithmetic operations and in test set operations, the equations refer
to two’'s complement numbers.

4. All integer arithmetic is modulo 2%2. This includes all address cal-
culations and, in particular, al computations involving the PC.

By lemma 2.2 we know that [a] = (a) mod 22 for 32-bit addresses a.
Thus, the last convention implies that it does not matter whether we in-
terpret addresses as two’'s complement numbers or as binary numbers.

The purpose of abbreviations and conventions is to turn long descrip-
tions into short descriptions. In the tables 3.1 through 3.3, this has been
done quite successfully. For three of the DLX instructions, we now list the
almost unabbreviated semantics, where sxt(imm) denotes the 32-bit sign
extended version of imm

1. Arithmetic instruction addi:

[GPRRD]] = [GPRRSl]]+imm mod 2%

= [GPRRSL]] + [sxt(imm)].

2. Test set instruction sgri:

[GPRRD]] = [([GPRRAL]] > [imm 71 : 0)],

or, equivaently
GPRRD] = 0*!([GPRRSL]] > [sxt(imm)] 21 : 0).

3. Branch instruction beqz:

(PC) = (PC)+4+ ([GPRRSL]] > 07?[imn : 0) mod 2%
= (PC)+4+ ([GPRRSI]] > 0?[sxt(imm)] : 0) mod 22,

Section 3.1

INSTRUCTION SET
ARCHITECTURE

67

Chapter 3

A SEQUENTIAL

68

DLX DESIGN

Lemma 3.1 »

Observe that in the more detailed equations many hints for the imple-
mentation of the instructions become visible: immediate constants should
be sign extended, and the 1-bit result of tests should be extended by 31
Zeros.

3.1.3 Memory Organization

The memory is byte addressable, i.e., each memory address | specifies
a memory location M([]j] capable of storing a single byte. The memory
performs byte, half word, and word accesses. All instructions are coded in
four bytes. In memory, data and instructions are alignedin the following

way:

e half words must have even (byte) addresses. A half word h with
address eis stored in memory such that

h[15:0] = M[e+1:¢€].

e words or instructions must have (byte) addresses divisible by four.
These addresses are called word boundaries A word or instruction
w with address eis stored in memory such that

w[31:0] = M[e+3:¢.

The crucial property of this storage scheme is, that half words, words
and instructions stored in memory never cross word boundaries (see figure
3.2). For word boundaries e, we define the memory wordvith address e as

Mword[e] = M[e+3: €.

Moreover, we number the bytes of words w[31 : O] in little endian order
(figure 3.3), i.e.

bytg(w) = w[8j+7:8j]
byte;.jj(w) = byte(w)...bytg(w)
The definitions immediately imply the following lemma:

Let (a[31: O]) be a memory address, and let e be the word boundaty e
(a[31:2]00). Then

1. the byte with addres&) is stored in bytga[l: O]) of the memory
word with address e:

M((a)) = byteqi.q (Mword[(a[31: 2]00)]).

Section 3.2

a) 1-bank desing

HIGH LEVEL DATA
addr byte hafword word

PATHS
<a> b) 4-bank design
bank address g[1:0]
11 10 01 oo addr
<ga>
et4 | L ‘ et4
et+3 I b3 b3 |1 b2 1| b1l [l b0 e
e+2 L b2
***** |
e+l : l ! bl : 0
e [N L o O I |
el . . . 4 bytes
0

Figure 3.2 Storage scheme in an 1-bank memory system (&) and in a 4-bank
memory system (b). A bank is always one byte wide. a’ = (a[31: 2]00) and
e=(a).

bits 31 24 23 16 15 87 0
word w ’ bytes H byte, H byte; H byte, ‘

Figure 3.3 Ordering of the bytes within aword w[31: 0] —little endian order

2. The piece of data which is d bytes wide and has addegss stored
in the bytes(a[1: 0]) to (a[1: 0]) +d — 1 of the memory word with
address e:

bytq(a[l:O}del: (a[1:.0])] (Mword[(a[31 : 2]00)]).

3.2 High Level Data Paths

IGURE 3.4 presents a high level view of the data paths of the machine.

It shows busses, drivers, registers, a zero tester, amultiplexer, and the
environmentsEnvironments are named after some major unit or aregister.
They contain that unit or register plus some glue logicthat is needed to
adapt that unit or register to the coding of the instruction set. Table 3.4
gives a short description of the units used in figure 3.4. The reader should
copy the table or better learn it by heart. -

69

Chapter 3

MDout

A SEQUENTIAL bc] D MDRr]

DLX DESIGN —

C
PCenv
PC
a ‘t

GPRenv IRenv

AEQZ

! !

Y- J; %07 Y-

b

Menv

|ALUew| [SHen|

D

MDin

> MAR | >PMDRw]

fetch (1 o MA

Figure 3.4 High level view of the sequential DLX data paths

We use the following naming conventions:

1. Clock enable signals for register R are called Rce Thus, IRceis the
clock enable signal of the instruction register.

2. A driver from X to bus Y is caled XY d its output enable signal is
called XY doe Thus, SH4LDdoeis the output enable signal of the
driver from the shifter for loads to the internal data bus.

3. A mux from anywheretoY iscaled Y mux Its select signal is called
Y muxsel

We complete the design of the machine and we provide a rigorous proof
that it worksin a completely structured way. This involves the following
three steps:

1. For each environment we specify its behavior and we then design it
to meet the specifications.

2. We specify a Moore automaton which controls the data paths.

3. We show that the machine interprets the instruction set, i.e., that the
hardware works correctly.

70

Table 3.4 Units and busses of the sequential DL X data paths

Section 3.3

Large Units, Environments

GPRenv | environment of the general purpose register file GPR
ALUenv | environment of the arithmetic logic unit ALU
SHenv environment of the shifter SH

SH4Lenv | environment of the shifter for loads SH4L
PCenv environment of the program counter PC

IRenv environment of the instruction register IR

Menv environment of the memory M

Registers

A, B output registers of GPR

MAR memory address register

MDRw memory data register for data to be written to M
MDRr memory data register for dataread from M
Busses

A, B input of register A and register B

ab left/right source operand of the ALU and the SH
D internal data bus of the CPU

MA memory address

MDin Input data of the memory M

MDout Output data of the memory M

Inputs for the control

AEQZ indicates that the current content of register A equals zero
IR[31:26] | primary opcode

IR[5:0] secondary opcode

Theoretically, we could postpone the design of the environments to the end.
The design process would then be strictly top down — but the specification
of seven environments in arow would be somewhat tedious to read.

3.3 Envir

onments

3.3.1 General Purpose Register File

The general purpose register file environment contains a 32-word 3-port
register file with registers GPR[31: O] for i =0,...,31. Itiscontrolled by

three control

signals, namely

ENVIRONMENTS

71

Chapter 3

72

A SEQUENTIAL
DLX DESIGN

e the write signal GPRwof the register file GPR,
e signal Rtypeindicating an R-type instruction, and
e signal Jlink indicating ajump and link instruction (jal, jalr)

In each cycle, the behavior of the environment is completely specified
by very few equations. The first equations specify that the registers with
addresses RS1 and RS2 are always read and provided as inputs to registers
A and B. Reading from address O, however, should force the output of the
register file environment to zero.

N {GPF{RSL] if (RSL)#£0
~ o if (RSL)=0
g {GPF{RSZ] if (R)#£0
~ o if (R®)=0

Let Cad be the address to which register C is written. This address is
usually specified by RD. In case of jump and link instructions (Jlink = 1),
however, the PC must be saved into register 31. Writing should only occur
if the signa GPRwis active:

RD if Jlink=0
Cad = {31 it Jlink =1
GPRCad = C if GPRw=1

The remaining equations specify simply the positions of the fields RS,
RS and RD; only the position of RD depends on the type of the instruction:

RSL = IR[25:2]]
R = IR[20: 16
RD — IR[20:16] if Rtype=0
N IR[15:11] if Rtype=1.
This completes the specification of the GPR environment.

Circuit CAddrof figure 3.5 generates the destination address at the fol-
lowing cost and delay:

CCAddr = 2'Cmux(5)
I:)DAddr = 2'Dmux(5)-

The design in figure 3.5 is a straightforward implementation of the GPR
environment with the cost:

CGPRenv = Cram3(327 32) + CCAddr+ 2. (Czero(5) + Cinv + Cand(32))-

Section 3.3

' |R[20:16] IR[15:11] !

| CAddr! ENVIRONMENTS
IR[25:21] | Rtype | IR[20:16]
o T e e
} GPRw
lbﬁ ‘ . [—0
Aad Din Bad
zero(5) GPR zero(5)
3-port RAM (32 x 32)
DoA DoB
az 32 32 bz
A B’

Figure 3.5 Implementation of the GPR environment

The register file performs two types of accesses; it provides data A and B/,
or it writes dataC' back. The read access accounts for the delay

Deprread = Dgpren!R,GPRWA',B')
maxX{Dramz(32, 32), Dzero(5) + Dinv} + Dands

whereas the write access takes time

Deprwrite = Dcaddr+ Drams(32,32).

3.3.2 Instruction Register Environment

This environment is controlled by the three control signals
e Jjumpindicating an Jtype jump instruction,
¢ shiftl indicating a shift instruction with an immediate operand, and
¢ theclock enable signal IRceof the instruction register IR.

The environment contains the instruction register, which isloaded from the
bus MDout. Thus,

IR := MDout if IRce=1
The environment |Renv outputs the 32-bit constant

27 . . .
co31:0] = { +'SA if shiftl=1

73

sxt(imm) if shiftl=0, S

Chapter 3

A SEQUENTIAL

74

DLX DESIGN

IRce N _ - o o ______
[31:26] [25] [24:16] [15:5] [4:0]

IR[15] | IR[15]9 IR[10:6]

| |
Jump— 1 O 1 0 —Jump 0 1 shiftl
sign

co[31:25] co[24:16] co[15:5] co[4:0]

Figure 3.6 Implementation of the IR environment

where sxt(a) denotes the 32-bit, sign extended representation of a. The
position of the shift amount SAand of the immediate constant immin the
instruction word is specified by

SA = IR[10: §]
imm - IR[15:0] if Jjump=0
N IR[25:0] if Jjump=1.
This completes the specification of the environment IRenv. The design in

figure 3.6 is a straightforward implementation. Its cost and the delay of
output co are:

CIRenv = Cff(32)+cmux(15)
DirenCO) = Dmux(15).

3.3.3 PC Environment

This environment is controlled by the resetsignal and the clock enable
signal PCceof the PC. If the reset signal is active, then the start address
0% of the boot routine is clocked into the PC register:

. D if PCceA /reset
PC = { 0% if reset

This compl etes the specification of the PC environment. The designin fig-
ure 3.7 implements PCenv in astraightforward manner. Let DpcenIn; PC)
denote the delay which environment PCenv adds to the delay of the inputs
of register PC. Thus:

Cpcenv = Cit (32) + Cmux(32) +Cor

Figure 3.7 Implementation of the PC environment

3.3.4 ALU Environment

This environment is controlled by the three control signals
e Rtypeindicating an R-type instruction,
e addforcing the ALU to add, and

e testforcing the ALU to perform atest and set operation.

The ALU is used for arithmetic/logic operations and for test operations.
The type of the ALU operation is specified by three bits which we call
f[2:0]. These bits are the last three bits of the primary or secondary
opcode, depending on the type of instruction:

f2:0] = IR[28:26] if Rtype=0
| IR[2: 0] if Rtype=1

In case atest operation is performed, theresult t € {0,1} is specified by
table 3.5. In case of an arithmetic/logic operation, the result al is specified
by table 3.6. Observe that in this table al = a+ b isashorthand for [al] =
[a] + [b] mod 2%2; the meaning of a— b is defined similarly. For later use,
we define the notation

al = aoph
The flag ovf of the arithmetic unit AU indicates an overflow, i.e., it indi-
cates that the value [a] op[b] does not lie in the range T, of a 32-bit two's
complement number.

If signal addis activated, the ALU performs plain binary addition mod-
ulo 22, The final output alu of the ALU is selected under control of the
signalstestand add in an obvious way such that

alu — 0t if test=1
B al if test=0 AND add=0

(aluy = (a)+(b) mod2* if test=0 AND add=1
This completes the specification of the ALU.

Section 3.3

ENVIRONMENTS

75

Chapter 3

76

A SEQUENTIAL Table 3.5 Specification of the test condition
DLX DESIGN [cond. [fdse[a>b]a=b]a>b[a<b|a#b[a<b] true]
f[<] O 0 0 0 1 1 1 -
fl=1| o0 0 1 1 0 0 1 s
fo| > O 1 0 1 0 1 o | 1

Table 3.6 Coding of the arithmetic/logical ALU operations

| [atb|ablanblavb]|asb]| b[15:0/0" *° |

f2| O 0 1 1 1 1
fi| O 1 0 0 1 1
fo| * * 0 1 0 1

The Comparator

The coding of conditions from table 3.5 is frequently used. The obvious
implementation proceeds in two steps. First, one computes the auxiliary
signals|, e g (less, equal, greater) with

=1 < a<b + a-b<o0
e=1 < a=b < a-b=0
g=1 + a>b «+ a-b>0

and then, one generates
t(ab, f) = faAl vV fiAeV foAQ.

Figure 3.8 depicts arealization along these lines using an arithmetic unit
from section 2.4. Assuming that the subtraction signal subis active, it

holds
| = neg
e=1 « ¢g31:0/=0%
g = eAnl

The cost and the delay of a 32-bit comparator are

Ccomp(32) = Czero(32) +2'Cinv+4‘cand+2'cor
Dcomp32) = max{Diny + Dand: Dzero(32) + Dor, Dzero(32) + Dinv}
+Dand+ Dor.

a31:0] b[31:0] sub Section 3.3

| | ENVIRONMENTS
AU(32)

negy

a }32
b 3 I
sub
AU(32)
ovf n‘eg S
f[2:00 4 comp(32)
03t t
a
test
au

Figure 3.9 Implementation of the ALU comprising an arithmetic unit AU, alogic
unit LU and a comparator

The Logic Unit

The coding of the arithmetic/logic functions in table 3.6 translates in a
straightforward way into figure 3.9. Thus, the cost and the delay of the
logic unit LU and of this ALU run at

Clu(32) = Cand(32) +Cor(32) + Cxor(32) + 3- Cmux(32)
Dw(32) = max{Dand+ Dor, Dxor} + 2 Dmux

Cau = Cau(32) +CLu(32) +Ceomp(32) + 2 Crux(32)
DALU = max{DAU (32) + Dcomp(gz), DAU (32) + Dmux,
I:)LU (32) + Dmux} + I:)mux-

77

Chapter 3

test IR[28:26] IR[2:0]
A SEQUENTIAL 1]
DLX DESIGN

sub

Figure 3.10 Gluelogic of the ALU environment

The Glue Logic

Figure 3.10 suggests how to generate the signals suband f[2: 0] from
control signals add and Rty pe The mux controlled by signal Rty peselects
between primary and secondary opcode. The mux controlled by add can
force f[2: Q] to 000, that is the code for addition.

The arithmetic unit is only used for tests and arithmetic operations. In
case of an arithmetic ALU operation, the operation of the AU is an addition
(add or addi) if f; =0anditisasubtraction (sub or subi) if f; = 1. Hence,
the subtraction signal can be generated as

sub = testv fi.

The environment ALUenv consists of the ALU circuit and the ALU glue
logic. Thus, for the entire ALU environment, we get the following cost and
delay:

CALUque = C0r+2'cmu><(3)
I:)ALUque = 2‘Dmux(3)+D0r

Cavenv = Caru +CaLuglue
Datvenv = DaLugluet Daru-

3.3.6. Memory Environment

The memory environment Menvis controlled by three signals
e mrindicating amemory read access,
e mwindicating a memory write access, and
e fetchindicating an instruction fetch.

On instruction fetch (i.e., fetch= 1), the memory write signal must be
inactive, i.e., mw= 0. The address of amemory access is aways specified
by the value on the memory address bus MA[31: 0].

Table 3.7 Coding the width of a memory write access

[1R[27:26] [d | MAR[L:0] | mbw[3:0]]

00 1 00 0001
01 0010
10 0100
11 1000
01 2 00 0011
10 1100
11 4 00 1111

Recall that the memory M is byte addressable. Half words are aligned at
even (byte) addresses; instructions and words are aligned at word bound-
aries, i.e., at (byte) addresses divisible by 4. Dueto the alignment, memory
data never cross word boundaries. We therefore organize the memory in
such away that for every word boundary e the memory word

Mword[e] = M[e+3: €]

can be accessed in parallel. Thus, a single access suffices in order to load
or store every byte, half word, word or instruction.

If mr =1, the memory environment Menv performs a read operation,
i.e., aload operation or an instruction fetch. Menv then provides on the
bus MDout the word

MDout[31: 0] = Mword[(MA[31: 2]00}].

If the read operation accesses the d-byte data X, by lemma 3.1, X is then
the subword

X = byt@ma1.0))+d-1: (MAL:0]) (MDout)

of the memory bus MDout.

On mw= 1, thefetch signal isinactive (fetch= 0). Thus, astore opera-
tion is executed, and the memory environment performs a write operation.
During a store operation, the bits IR[27 : 26] of the primary opcode specify
the number of bytes d to be stored in memory (table 3.7). The address of
the store is specified by the memory address register MAR If the d-byte
data X are to be stored, then the memory environment expects them as the
subword

X = bytemar1.0))+d-1:(MaRL0)) (MDIn)

Section 3.3

ENVIRONMENTS

79

Chapter 3

80

A SEQUENTIAL
DLX DESIGN

MDout [31: 2a [23: 1@ [15:@ [7:0]?

do do do do
mr —=1 bank mr —=1 bank mr —=1 pank mr —= bank
—1MBJ[3 ——=1MBJ[2 S —=1MBJ0
mow3] |Vl mowiz | VB mbwpyy MBI mpwig | MEL
d a d a d a d a
[31:24] [23:16] [15:8] [7:0]
o))) J

MA[31:2]

Figure 3.11 Connecting the memory banks to the data and address busses

of the memory bus MDin and performs the write operation
Mle+d—1:¢ = X.

The data on the memory bus MDin are provided by register MDRw. For
|ater use, we introduce for this the notation

m = bytesMDRw).

Since memory accesses sometimes require multiple clock cycles, we
need a signal mbusyindicating that the current memory access will not
be completed during the current clock cycle. Thissignal isan input of the
control unit; it can only be active on a memory access, i.e., if mr=1or
mw= 1. We expect signal mbusyto be valid dystattime units after the start
of each clock cycle.

This completes the specification of the memory environment Menv. Its
realization is fairly straightforward. We use four memory banks MBJ[j]
with j € {0,...,3}. Each bank MBJ[j] is one byte wide and has its own
write signal mbwj j]. Figure 3.11 depicts how the four banks are connected
to the 32-bit data and address busses.

The Memory Control
The bank write signals mbw3 : 0] are generated as follows: Feeding the
address bits MAR[1 : 0] into a 2-decoder gives four signals B[3 : O] satisfy-
ing

Blj] =1+ (MARL:0]) = |
for al j. From the last two bits of the opcode, we decode the width of the
current access according to table 3.7 by

B = IR[26
H = IR[27] AIR[26]
W = IR[27] A IR[26].

IR[26] — =0 MAR[1:0]

IR[27] m mw
B[3:0] ‘

W H B
GenMbw

¥ mbw{3:0]

Figure 3.12 Memory control MC. Circuit GenMbwgenerates the bank write sig-
nals according to Equation 3.1

The bank write signals are then generated in a brute force way by

mbwO] = mwA BJ[0]

mbw1l] = mwA(WAB[O] vV HAB[O] vV BAB[1]) (3.1)
mbw2] = mwA ((WAB[O] V HAB[2]) vV BAB[2)) '
mbw3] = mwaA ((WAB[O] Vv HAB[2]) v BAB[3]).

When reusing common subexpressions, the cost and the delay of the
memory control MC (figure 3.12) runs at

CMC = Cdec(z) +2- Cinv+ 12. Cand+ 5'Cor
Dvmc = maxX{Dged2), Dinv+ Dand} +2-Dand+ 2 Dor.

Let dmem be the access time of the memory banks. The memory environ-
ment then delays the data MDout by

DMenv(MDOUt) = DMC+dmem

We do not elaborate on the generation of the mbusysignal. Thiswill only
be possible when we built cache controllers.

3.3.6 Shifter Environment SHenv

The shifter environment SHenvis used for two purposes: for the execution
of the explicit shiftoperations sll (shift left logical), srl (shift right logical)
and sra (shift right arithmetic), and second, for the execution of implicit
shifts. Animplicit shifted is only used during the store operations sb and
sw in order to align the data to be stored in memory. The environment
SHenv is controlled by asingle control signal

e shiftds, denoting a shift for a store operation.

Section 3.3

ENVIRONMENTS

81

Chapter 3

A SEQUENTIAL

82

DLX DESIGN

Table 3.8 Coding of the explicit shifts

IR[1:0] | OO 10 11
type dl sl sra

Explicit Shifts

We formally define the three explicit shifts. Obvioudly, left shifts and right
shifts differ by the shift direction. Logic shifts and arithmetic shifts differ
by the fill bit. This bit fills the positions which are not covered by the
shifted operand any more. We define the explicit shifts of operand ajn—1:
0] by distance b[m— 1: 0] in the following way:

S”(av b) = (an——17 -+, d0, fill)
sti(ab) = (fill® ay 1,...,a4)
)

sra(ab) = (fill® a1...,ap)

where
fill = 0 for logic shifts
] an-1 for arithmetic shifts.
Thus, arithmetic shifts extend the sign bit of the shifted operand. They
probably have their name from the equality

[sra(a,b)] = [[a]/2"],

which can be exploited in division a gorithmsfor 2's complement numbers.

In case of an explicit shift operation, the last two bits IR[1: Q] of the
secondary opcode select among the three explicit shifts according to table
3.8. By shift(a,b,IR[1: 0]), we denote the result of the shift specified by
IR[1: O] with operands a and b.

Implicit Shifts

Implicit left shifts for store operation are necessary if a byte or half word
—which is aligned at the right end of a[31 : 0] —is to be stored at a byte
address which is not divisible by 4. The byte address is provided by the
memory address register MAR Measured in bits, the shift distance (moti-
vated by lemma 3.1) in this case equals

8- (MAR1:0]) = (MAR[1: 0]000).
The operand a is shifted cyclically by this distance. Thus, the output shof
the shifter environment SHenv is

sh— shift(a,b,IR[1: Q]) if shiftds=0
| cls(a,MAR1:0]000) if shiftds=1.

a MAR[1:0] b

13 }2

!

CLS(32) | Dis

r
1 32 fill Fill

Scor mask Mask

32
$ 32

sh

Figure 3.13 Top level of the shifter environment SHenv

This completes the specification of the shifter environment. Figure 3.13
depicts avery general design for shifters from [MP95]. A 32-bit cyclic left
shifter CLSshifts operand a[31 : 0] by adistance dist[4 : O] provided by the
distance circuit Dist. Theresult r[31 : O] of the shift is corrected by circuit
Scoras afunction of thefill bit fill and a replacement mask mask31 : O]
which are provided by the corresponding subcircuits.

The Shift Correction
For every hit positioni, circuit Scorreplaces bit r, of the intermediate result
by the fill bit in case that the mask bit maskis active. Thus,

_f fill i mask=1
sh = { ri if mask=0

Figure 3.14 depicts a straightforward realization of the correction circuit.
For the whole shifter environment SHenv, one obtains the following cost
and delay:

CSHenv = CCLS(SZ) + CDist + CFiII + CMask+ 32- Cmux
Dshenv = max{Dpist + Dc1s(32), Driil , Dmask} + Dmux

The Shift Distance
According to the shifters of section 2.4.6, an n-cyclic right shift can also
be expressed as an n-cyclic left shift:

crs(a, (b)) = cls(a, (b) +1 mod n).

Section 3.3

ENVIRONMENTS

83

Chapter 3

84

A SEQUENTIAL
DLX DESIGN

a1 M fo fill
mask31 maskl masko
shs; shy shy

Figure 3.14 The shift-correction circuit Scor

MAR[1:0] 000

dist[4:0]

Figure 3.15 Circuit Dist selects the shift distance of shifter SH

Thus, in the distance circuit Dist of figure 3.15, the mux controlled by
signal right selects the proper left shift distance of the explicit shift. Ac-
cording to table 3.8, bit IR[1] can be used to distinguish between explicit
left shifts and explicit right shifts. Thus, we can set

right = IR[1].

The additional mux controlled by signal shift4s can force the shift distance
to MAR[1: 0]000, i.e., the left shift distance specified for stores. The cost
and the delay of the distance circuit Dist are

CDist = Cinv(5)+cinc(5)+2‘cmux(5)

Dpist(b) = Din(5) + Dinc(5) + 2 Dmux(5)
DDist(MAR) = Dmux(5)'

The Fill Bit

Thefill bit is only different from 0 in case of an arithmetic shift, which is
coded by IR[1: O] = 11 (table 3.8). In this case, the fill bit equals the sign
bit ag; of operand a, and therefore

fill = IR[1] AIR[O] A &z1.
The cost and the delay of the fill bit computation run at

Crin = 2-Cand
Drit = 2-Dana.

.. mask[31:0]

shiftds

b[4:0] —

right

Figure 3.16 Circuit Mask generating the mask for the shifter SH.

The Replacement Mask

During an explicit left shift, the least significant (b) bits of the intermediate
result r have to be replaced. In figure 3.16, a half decoder generates from
b the corresponding mask 02?1 During an explicit right shift, the
most significant (b) bits of the intermediate result r have to be replaced.
The corresponding mask is simply obtained by flipping the left shift mask.
Note that no gates are needed for this. Thus, in the gate model used here,
flipping the mask does not contribute to the cost and the delay. On shifts
for store, the mask is forced to (°2, and the intermediate result r is not
corrected at all. The cost and the delay of the mask circuit are

Cmask = Chded5) +2-Cmux(32)
Dmask = Dhded5) +2-Dmux(32).
For later use, we introduce the notation
sh = shift(a,dist).

Observe that in this shorthand, lots of parameters are hidden.

3.3.7 Shifter Environment SH4Lenv

This environment consists of the shifter for loads SH4L and a mux; it is
controlled by a single control signal

shiftdl denoting a shift for load operation.

If signal shiftdl is active, the result R of the shifter SH4L is provided to
the output C' of the environment, and otherwise, input C is passed to C:

c R if shifdl =1
" C if shiftdl =0.
Figure 3.17 depicts the top level schematics of the shifter environment
SH4L env; its cost and delay can be expressed as
CSH4Lenv = CSH4L‘+‘Cmux(32)
Dstatenv = DspaL + Dmux(32).

Section 3.3

ENVIRONMENTS

85

Chapter 3

86

A SEQUENTIAL
DLX DESIGN

MDRr ——=
shifter SHAL R 1
MAR[1:0] —= 0 c

c — _
32 shiftdl

Figure 3.17 Top level schematics of the shifter environment SHAL

The shifter SHAL is only used in load operations. The last three bits
IR[28 : 26] of the primary opcode specify the type of the load operation
(table 3.9). The byte address of the data, which is read from memory on
aload operation, is stored in the memory address register MAR. If a byte
or half word is loaded from a byte address which is not divisible by 4, the
loaded data MDRr has to be shifted to the right such that it isaligned at the
right end of the data bus D[31: Q]. A cyclic right shift by (MAR[1 : 0]000)
bits (the distance is motivated by lemma 3.1) will produce an intermediate
result

r = crs(MDRr, MAR[1: 0]000),

where the loaded data is already aligned at the right end. Note that this
also covers the case of aload word operation, because words are stored at
addresses with MAR[1: 0] = 00. After the loaded data has been aligned,
the portion of the output R not belonging to the loaded data are replaced
with afill bit:

fill?4r[7:0] forlb, Ibu
R[31:0] = { fill®r[15:0] for Iw, lwu
r[31:0] for lw

In an unsigned load operation, the fill bit equals 0, whereas in signed
load operations, the fill bit is the sign bit of the shifted operand. Thisis
summarized in table 3.9 which completes the specification of the shifter
SHA4L.

Figure 3.18 depicts a straightforward realization of the shifter SHAL.
The shift distance is always a multiple of 8. Thus, the cyclic right shifter
only comprises two stages for the shift distances 8 and 16. Recall that for
32 bit data, acyclic right shift by 8 (16) bits equals a cyclic left shift by 24
(16) bits.

The first half word r[31 : 16] of the intermediate result is replaced by
the fill bit in case that a byte or half word is loaded. During loads, this
is recognized by IR[27]=0. Byte r[15: 8] is only replaced when loading
asingle byte. During loads, this is recognized by IR[27 : 26] = 00. This
explains the multiplexer construction of figure 3.18.

Table 3.9 Fill bit of the shiftsfor load

| IR[28] | IR[27:26] | Type | MAR[L.0] | fill |
0 00 byte, signed 00 MDRIr[7]
01 MDRr[15]
10 MDRr[23]
11 MDRr[31]
01 halfword, signed 00 MDRr[15]
10 MDRr[31]
11 word *
1 00 byte, unsigned 0
01 halfword, unsigned 0
MDRr([31:0] |
MAR[0]
CSR3p8=CSk3p. 24
! MAR[1]
‘ CSR32,16= “SL32,16 }
T8 T8 T8 fill
. LFILL
IR[26]
c%l 0 <o¢iﬁ*@; R
R[31:16] R[15:8] R[7:0]

Figure 3.18 The shifter SHA4L for load instructions

Thecircuit LFILL of figure 3.19 is abrute force redlization of the fill bit
function specified in table 3.9. The cost and the delay of the shifter SHAL
and of circuit LFILL are

Cstat = 2-Chux(32) +Cinux(24) + Chand+ CLriLL
Dsta = max{2:-Dmux(32), Dnand, DLFILL } + Dmux(24)
CLFILL = 5'Cmux+ Camd‘f‘cinv

Diril = max{3-Dmux Dinv} + Dand-

For later use, we introduce the notation

R = shdl(MDRr,MAR[1: 0]000).

Section 3.3

ENVIRONMENTS

87

Chapter 3

88

A SEQUENTIAL
DLX DESIGN

MDRI[7] MDRr[15] MDRI[23] MDRI[3]]

MAR[O] MAR[(]
MDRI[15] MDRI[31]
MAR[1] MARLL

IR[26]
o<;— IR[28]

fill

Figure 3.19 Circuit LFILL computesthefill bit for the shifter SH4L

3.4 Sequential Control

IT IS now amazingly easy to specify the control of the sequential machine
and to show that the whole design is correct. In afirst design, we will
assume that memory accesses can be performed in a single cycle. Later
on, thisis easily corrected by a simple stalling mechanism.

3.4.1 Sequential Control without Stalling

Figure 3.20 depicts the graph of afinite state diagram. Only the names
of the states and the edges between them are presently of interest. In order
to complete the design, one has to specify the functions & » for all states z
with more than one successor state. Moreover, one has to specify for each
state z the set of control signals active in state z.

We begin with an intermediate step and specify for each state z a set of
register transfer language (RTL) instructions rt(z) to be executed in that
state (table 3.10). The abbreviations and the conventions are those of the
tables 3.1 to 3.3. In addition, we use M(PC) as a shorthand for M({PC)).
Also notethat the functions op, shift, shdl and rel have hidden parameters.

We also specify for each type t of DLX instruction the intended path
path(t) through the diagram. All such paths begin with the states fetchand
decode The succeeding states on the path depend on the typet asindicated
in table 3.11. One immediately obtains

Table 3.10 RTL instructions of the FSD of figure 3.20

Section 3.4

| State | RTL Instruction

fetch IR=M((PC))

decode | A=RS4l,
B—{ RD if I-typeinstruction

RS if R-typeinstruction
{ *2/SA if shift immediate slli, srli, srai
co= : ,
sxt(imm) otherwise

PC=PC+4

au C=AopB

test C=(Arel B?1:0)

shift C = shift(A,B[4:0])

aul C=Aopco

testl C=(Arelco?1:0)

shiftl C = shift(A,co/4: 0)])

wbR RD=C (R-type)

wbl RD=C (I-type)

addr MAR= A+ co

load MDRr = Mword[(MAR31: 2]00)]

shdl RD = sh4l (MDRr, MAR[1 : 0]000)

shds MDRw= cls(B,MAR1 : 0]000)

store m= bytesMDRw)

branch

btaken | PC=PC+co

jimm PC=PC+co

jreg PC=A

savePC | C=PC

jaR PC=A

jal PC=PC+co

wbL GPR31=C

SEQUENTIAL
CONTROL

89

Chapter 3

A SEQUENTIAL
DLX DESIGN

Lemma 3.2 »

90

fetch
e o=
D2 D4 D6 D7 D8 D9v D10 D12
[au | | [sniftl] | [testi] [addar| [ireg| [saverC] [branch |
D1 D3 D5 /D13 \I\DlS DE/ \510 bt
else
[snift | | [test | | [aul | | [load| [sws] | [jaR] [jal | | [btaken]
D11
———{ whR | [wbl | sl | |[store] jimm
| | | |

Figure 3.20 Finite state diagram (FSD) of the DLX machine

If the design is completed such that

1. for each type of instruction t, the path péthis taken, and that

2. for each state s, the set of RTL instructiongsitis executed,

then the machine is correct, i.e., it interprets the instruction set.

The proof isasimple exercise in bookkeeping. For each type of instruc-
tion t one executes the RTL instructions on the path path(t). The effect of
this on the visible DL X registers has to be as prescribed by the instruction
set. We work out the details in some typical cases.

Arithmetic Instruction
Supposet = addi. By table 3.11, the sequence of states executed is

patht) = (fetchdecodealui,wbi),

and by table 3.10, the sequence of RTL-instructions on this path is:

states | rtl(s)

fetch | IR=M(PC)

decode | A= GPRRSI], B= GPRR%), (PC) = (PC) + 4 mod 2%
aui [C]=[Al+[imm ifthisisin Tz

whi GPRRD|=C

Table 3.11 Paths path(t) through the FSD for each typet of DLX instruction

| DLX instruction type | path through the FSD |
arithmetic/logical, I-type: fetch, decode, alul, whl
addi, subi, andi, ori, xori, lhgi
arithmetic/logical, R-type: fetch, decode, alu, wbR
add, sub, and, or, xor, lhg
test set, I-type: fetch, decode, testl, whl
clri, sgri, seqi, sgei, slsi, snei, slei,
seti
test set, R-type: fetch, decode, test, wbR
clr, sgr, seq, sge, sls, sne, sle, set
shift immediate: slli, srli, srai fetch, decode, shiftl, wbR
shift register: sll, srl, sra fetch, decode, shift, wbR
load: Ib, Ih, Iw, Ibu, lhu fetch, decode, addr, load, sh4l
store: sb, sh, sw fetch, decode, addr, sh4s, store
jump register: jr fetch, decode, jreg
jump immediate: | fetch, decode, jimm
jump & link register: jalr fetch, decode, savePC, jaR, wbL
jump & link immediate: jal fetch, decode, savePC, jall, wbL
taken branch beqz, bnez fetch, decode, branch, btaken
untaken branch beqz, bnez fetch, decode, branch

The combined effect of this on the visible registersis— asit should be

[GPRRD]] = C = [Al+[imm
= [GPRRS]]+ [imm if thisisinTsp,
(PC) = (PC)+4

It isthat easy and boring. Keep in mind however, that with literal appli-
cation of the abridged semantics, this simple exercise would end in com-
plex and exciting insanity. Except for loads and stores, the proofs for all
cases follow exactly the above pattern.

Store Instruction
Suppose instruction M(PC) has type t = store and the operand X to be
stored isd bytes wide

X = bytey_1.0(GPRRD]),

Section 3.4

SEQUENTIAL
CONTROL

91

Chapter 3

then path(t) = (fetchdecodeaddr shds,store). The effect of the RTL

A SEQUENTIAL ingryctions of the last three states is

DLX DESIGN

state s | rtl(s)

addr | (MAR) = (A) + [imm] mod 2%

shds | MRDw= cls(B,MAR{1: 0]000)

store | M((MAR) +d—1: (MAR)

= bytemar.o)+d-1:(MARL0) (MDRW)

Thus, the combined effect of all states on MARIs

(MAR) = (A)+ [imm mod 2%
(GPRRS]) 4 [imm] mod 2%
and the combined effect of all states on MDRwis
MDRw = cls(B,MAR1: 0]000)
= cls(GPRRD],MAR[1: 0]000).
Hence,
X = bytemar1:0))+d—1:(MAR1:0)) (MDRW)
and the effect of the store operation is

Mlea+d—1:eq = X.

A Load Instruction

Suppose M(PC) has type t = load, and the operand X to be loaded into
register GPRRD] isd bytes wide. Thus, path(t) = (fetchdecodeaddr,
load, sh4l), and the RTL instructions of the last three states are:

states | rtl(s)

addr | (MAR) = (A) + [imm] mod 2%

load | MDRr= Mword((MAR[31: 2]00))

shdl GPRRD] = sl (MDRr, MAR[1 : 0]000)

Asin the previous case, MAR= ea By lemma3.1, it follows

X = bytemar1.0))+d—1:(MaARL0) Mword((MAR31: 2]00))
= byt@var10))+d-1:(maRL0) (MDRT).

Section 3.4

With the fill bit fill defined asin table 3.9, one concludes

SEQUENTIAL
GPF{RD] = shl (M DRr, MAR[]. . 0]000) CONTROL
fill 32-8dx
B sxt(m) for load (signed)
B 0%2-8m for load unsigned
The design is now easily completed. Table 3.12 is an extension of table
3.10. It lists for each state s not only the RTL instructions rtl (s) but also
the control signals activated in that state. Oneimmediately obtains
For all states s, the RTL instructions () are executed in state s. < Lemma 3.3

For all states except addr and btaken this follows immediately fromthe ~ PROOF
specification of the environments. In state s= addr, the ALU environment
performs the address computation
(MAR) = (A)+ (sxt(imm)) mod 2%
= (A) + [immys, sxt(imm)] mod 2%
= (A)+[imm.
The branch target computation of state s= btakenis handled in a com-

pletely analogous way. QED

It only remains to specify the disjunctive normal forms D for figure 3.20
such that it holds:

For each instruction type t, the sequence pgathof states specified byt Lemma 3.4
table 3.11 is followed.

Each D; has to test for certain patterns in the primary and secondary
opcodes IR[31: 26,5 : 0], and it possibly has to test signal AEQZas well.
These patterns are listed in table 3.13. They have simply been copied from
the tables 3.1 to 3.3. Disjunctive form Dg, for instance, tests if the actual
instruction isajump register instruction jr coded by

IR[31:26] = hx16 = 010110.
It can be realized by the single monomial
Dg = m/\ |R30/\@/\ IR2g A |R27/\m.

In general, testing for a single pattern with k zeros and ones can be done
with amonomial of length k. This completes the specification of the whole
machine. Lemmas 3.2 to 3.4 imply

The design correctly implements the instruction set. < Theorem 3.5

93

Chapter 3

94

A SEQUENTIAL
DLX DESIGN

Table 3.12 RTL instructions and their active control signals

state | RTL instruction | active control signals
fetch IR=M((PC)) fetch, mr, IRce
decode | A=RSl, Ace,
RD if I-type
B= { RS if R-type Bee, Pee
PC=PC+4 PCadoe, 4bdoe, add, ALUDdoe,
*?’'SA ; shiftl .
- {sxt(imm) ; other. shiftl,
au C=AopB Aadoe, Bbdoe, ALUDdoe, Cce,
Rtype
test C=(Are B?1:0) like alu, test
shift C = shift(A,B[4:0]) Aadoe, Bbdoe, SHDdoe, Cce,
Rtype
alul C=Aopco Aadoe, cobdoe, ALUDdog, Cce
testl C=(Arel co?1:0) like alul, test
shiftl C =shift(A,co4:0]) | Aadoe, cobdoe, SHDdoe, Cce,
shiftl, Rtype
wbR RD=C (R-type) GPRw, Rtype
whl RD=C (I-type) GPRw
addr MAR= A+ co Aadoe, cobdoe, ALUDdoe, add,
MARce
load MDRr = mr, MDRrce
Mword[{(MAR31: 2]00)]
shdl RD = sh4l (MDR, shift4l, GPRw
MAR1:0]000)
sh4s MDRw= Badoe, SHDdoe, shift4s,
cls(B, MAR{1:0]000) MDRwce
store m= byte§MDRw) mw
branch
btaken | PC=PC+co PCadoe, cobdoe, add,
ALUDdoe, PCce
jimm PC=PC+co like btaken Jjump
jreg PC=A Aadoe, Obdoe, add, ALUDdoe,
PCce
savePC | C=PC PCadoe, Obdoe, add, ALUDdoe,
Cce
jaR PC=A, like jreg
jal PC=PC+ co, like jimm
wbL GPR31=C GPRw, Jink

Section 3.4

Table 3.13 Nontrivial disunctive normal forms (DNF) of the DLX finite state SpqueNTIAL

diagram and the corresponding monomials CONTROL
Nontrivial | Target Monomia me M Length
DNF State IR[31:26] | IR5:0] | I(m)
D1 shift 000000 | 0001*0 11
000000 | OOO11* 11
D2 au 000000 | 100*** 9
D3 test 000000 | 101*** 9
D4 shiftl 000000 | 0000*0 11
000000 | 0OOO1* 11
D5 alul 001*** *kkkkx 3
D6 testl 011*** *kkkk%x 3
D7 addr 100* 0* FHRIHAE 4
lo* 0* 1 *kkkk*k 4
10* 00* *kkkk*k 4
D8 jreg 010110 | *xx**x* 6
D9 jaR 010111 | *xxx** 6
D10 jall 000011 | *xxxs*x 6
D9V D10 | savePC like D9 and D10
D11 jimm 000010 | *xxxxx* 6
D12 branch 00010* HHFIEE 5
D13 Sh4S **1*** *kkkk*k 1
/D13 Ioad **O*** *kkkk*k 1
bt btaken AEQZ - /IR[26] 2
IAEQZ -IR[26] 2
Accumulated length of me M: 5 e (M) 115

3.4.2 Parameters of the Control Automaton

In the previous subsection, we have specified the control of the sequential
DL X architecture without stalling. Its output function, i.e., the value of the
control signals, depends on the current state of the control automaton but
not on its current inputs. Thus, the sequential control can be implemented
as a Moore automaton with precomputed control signals.

In this scenario, the automaton is clocked in every cycle, i.e., its clock
signal isce=CONce= 1. Signal resetserves as the clear signals clr of
the Moore automaton in order to initialize the control on reset. Except for
signal AEQZ all the inputs of the control automaton are directly provided

Chapter 3

96

A SEQUENTIAL
DLX DESIGN

Table 3.14 Parameters of the Moore control automaton

| Parameter | Value |

k # states of the automaton 23

o #input signals in; 13

% # output signals out; 29
Vmax | maxima frequency of the outputs 12
Vsum | @cumulated frequency of the outputs 9
#M #monomials me M (nontrivial) 20

I max length of longest monomial me M 11
lsum accumulated length of al monomials me M 115
faninmax | maximal fanin of nodes (# fetch) in the FSD 4
faningym | accumulated fanin 33

by the instruction register IR at zero delay. Thus, the input signals of the
automaton have the accumulated delay:

A(in) = A(AEQZ) = Dzer0(32)
A(clr,ce) = A(resed.

According to section 2.6, the cost and the delay of such aMoore automa-
ton only depend on afew parameters (table 3.14). Except for the fanin of
the states/nodes and the frequency of the control signals, these parameters
can directly be read off the finite state diagram (figure 3.20) and table 3.13.

State fetchserves astheinitia state z of the automaton. Recall that our
realization of a Moore automaton has the following peculiarity: whenever
the next state is not specified explicitly, a zero tester forces the automaton
initsinitia state. Thus, in the next state circuit NS transitions to state
fetchcan be ignored.

Fanin of the Nodes

For each edge (Z,z) € E and z# fetch we refer to the number #M(Z,2)

of monomialsin D(Z,z) asthe weight of the edge. For edges with nontriv-
ial monomials, the weight can be read off table 3.13; all the other edges
have weight 1. The fanin of a node z equal's the sum of the weights of all
edges ending in z. Thus, state wbRhas the highest fanin of al states differ-
ent from fetch namely, faninmax = 4, and all the states together have an
accumulated fanin of faningm= 31.

Table 3.15 Control signals of the DLX architecture and their frequency. Signals
printed in italics are used in several environments.

\ | control signals | | control signals |
Top PCadoe, Aadoe, Badoe, GPRenv | GPRw, Jink, Rtype

level Bbdoe, Obdoe, SHDdoe, PCenv PCce
coBdoe, 4bdoe, ALUDdoe, || ALUenv | add, test, Rtype

Ace, Bce, Cce, MARCce, Menv mr, mw, fetch
MDRrce, MDRwce, fetch SHenv shift4s
IRenv | Jump, shiftl, IRce SH4Lenv | shiftdl

[outputs out; with afrequency vj > 1 |

Cce 7 || PCce 6 || GPRw 5 mr 2
PCadoe | 5 || Aadoe 9 || Bbdoe 3 || cobdoe | 7
Obdoe | 3| ALUDdoe | 12 | SHDdoe | 3 | Rtype | 5
Jink 2 || Jump 2 | add 9| test 2

Frequency of the Control Signals

The first part of table 3.15 summarizes the control signals used in the top
level schematics of the DLX architecture and in its environments. For each
control signal out;, its frequency can be derived from table 3.12 by simply
counting the states in which ouf; is active. These values are listed in the
second part of table 3.15; signals with afrequency of 1 are omitted. Thus,
the automaton generates y = 29 control signals; the signals have amaximal
frequency of Vmax= 12 and an accumulated frequency of vgym= 93.

3.4.3 A Simple Stall Engine

So far, we have assumed that a memory access can be performed in a
single cycle, but that is not always the case. In order to account for those
multi-cycle accesses, it is necessary to stall the DLX data paths and the
main contral, i.e., the update of registers and RAMs must be stopped. For

that purpose, we introduce a stall enginewhich provides an update enable

signal uefor each register or RAM.

Update Enable Signals

A register Risnow controlled by two signals, the signal Rcewhich request
the update and the update enable signal Rughich enables the requested
update (figure 3.21). Theregister isonly updated if both signals are active,

Section 3.4

SEQUENTIAL
CONTROL

Chapter 3

A SEQUENTIAL
DLX DESIGN

Rce Rce di a Kw' Kw
Rue RAMK —w 46: Kue

Figure 3.21 Controlling the update of registersand RAMs. The control automaton
provides the request signals Rce Kw; the stall engine provides the enable signals
Rue Kue

i.e.,, Rce= Rue= 1. Thus, the actual clock enable signabf register R,
which is denoted by Rcé, equals

Rcé = RceA Rue

The clock request signal Rds usually provided by the control automaton,
whereas signals Rueand Rcé are generated by a stall engine.

In anal ogy, the update of aRAM Risrequested by signal Rwand enabled
by signal Rue Both signals are combined to the actual write signal

RwW = RwA Rue

Handling Multi-Cycle Memory Accesses

A memory access sometimes requires multiple clock cycles. The memory
system M therefore provides a status signal mbusyindicating that the ac-
cess will not be completed in the current cycle. Thus, on mbusy= 1, the
DLX hardware is unable to run the RTL instructions of the current state to
completion. In this situation, the correct interpretation of the instruction is
achieved asfollows:

e While mbusyis active, the memory system M proceeds its access,
but the data paths and the control are stalled. This means that the
Moore control automaton still requests the register and RAM up-
dates according to the RTL instructions of its current state z, but the
stall engine disables these updates. Thus, the hardware executes a
NOP (no-operation), and the control automaton remains in its cur-
rent state.

¢ In the cycle in which mbusybecomes inactive, the memory system
completes its access, the stall engine enables the requested updates,
and the data paths and the control execute the RTL instructions of
the current state z

Since the data paths and the control automaton are stalled simultaneously,
the stall engine only provides a single update enable signal UE, which is

inactive during an ongoing memory access (mbusy= 1). However, the up-
date must be enabled during resetin order to ensure that the DL X machine
can be restarted:

UE = mbusyV reset

This signal enables the update of all the registers and RAMs in the data
paths and in the control automaton. Thus, the write signal of the general
purpose register file GPR and the clock signal CONcé of the Moore au-
tomaton, for instance, are then obtained as

GPRW = GPRwA GPRue = GPRwA UE
CONcé = CONceA CONue = CONceA UE.

Note that the read and write signals Mr and Mw of the memory M are not
masked by signal UE.

According to table 3.15, the control automaton provides 8 clock request
signals and 1 write request signal. Together with the clock of the Moore
automaton, the stall engine has to manipulate 10 clock and write signals.
Thus, the cost and the delay of this simple stall engine run at

Cstall = Cinv +Cor +10- Cand
Dstall = Dinv + Dor + Dand-

3.5 Hardware Cost and Cycle Time

N THE previous sections, we derived formulae which estimate the cost

and the delay of the data paths environments and of the control automa-
ton. Based on these formulae, we now determine the cost and the cycle
time of the whole DLX hardware. Note that al the adders in our DLX
designs are carry lookahead adders, if not stated otherwise.

3.5.1 Hardware Cost

The hardware consists of the data paths and of the sequential control. If
not stated otherwise, we do not consider the memory M itself to be part of
the DLX hardware.

The data paths DP (figure 3.4) of the sequential DL X fixed-point core
consist of six registers, nine tristate drivers, amultiplexer and six environ-
ments. the arithmetic logic unit ALUenv, the shifters SHenv and SH4L env,

Section 3.5

HARDWARE COST
AND CYCLE TIME

99

Chapter 3

100

A SEQUENTIAL
DLX DESIGN

Table 3.16 Cost of the DLX fixed-point core and of al its environments

\ | cost || | cost || | cost |
ALUenv | 1691 || IRenv 301 || DP 10846

SHenv 952 || GPRenv | 4096 || CON | 1105
SH4lLenv | 380 || PCenv 354 || DLX | 11951

and the environments of the instruction register IR, of the general purpose
registers GPR and of the program counter PC. Thus, the cost of the 32-hit
data paths equals

CDP = 6 Cff (32) + 9. Cdriv(:-?)z) + Cmux(32) + CALUenv+ CSHenv
+CshaLenv+t Cirenvt Copr+ Cpceny

The sequential control consists of a Moore automaton, of the memory
control MC, and of the stall engine. The automaton precomputes its out-
puts and has the parameters of table 3.14. Thus, the control unit has cost

Ccon = Cpmoore+ Cuc + Cstall-

Table 3.16 lists the cost of the sequential DLX hardware and of al its
environments. The register file is the single most expensive environment;
its cost account for 37% of the cost of the data paths. Of course, this
fraction depends on the size of the register file. The control only accounts
for 9% of the whole hardware cost.

3.5.2 Cycle Time

For the cycle time, we have to consider the four types of transfers illus-
trated in figure 2.3 (page 11). Thisrequires to determine the delay of each
paths which start in a register and end in a register, in a RAM, or in the
memory. In this regard, the sequential DL X design comprises the follow-
ing types of paths:

1. the paths which only pass through the data paths DP and the Moore
control automaton,

2. the paths of amemory read or write access, and

3. the paths through the stall engine.

These paths are now discussed in detail. For the paths of type 1 and 2, the
impact of the global update enable signal UE isignored.

Paths through DP and the Moore Automaton
All these paths are governed exclusively by the output signal s of the Moore
automaton; these standard control signals, denoted by Csig have zero de-
lay:
A(Csig) = Apmoore(out) = 0.
Onetype of pathsisresponsible for the update of the Moore automaton.
A second type of paths isused for reading from or writing into the register
file GPR. All the remaining paths pass through the ALU or the shifter SH.

Update of the Automaton

The time Tpmoore denotes the cycle time of the Moore control automaton,
as far as the computation of the next state and of the outputs is concerned.
According to section 2.6, this cycle time only depends on the parameters
of table 3.14 and on the accumulated delay A(in), A(clr,ce) of its input,
clear and clock signals.

Register File Accesses

For the timing, we distinguish between read and write accesses. During
a read access, the two addresses come directly from the instruction word
IR. The data A’ and B' are written into the registers A and B. The control
signals Csig switch the register file into read mode and provide the clock
signals Aceand Bce Theread cycle therefore requires time:

Teprr = A(Csig) + Dgprr+A.

During write back, the value C', which is provided by the shifter envi-
ronment SH4L env, is written into the multiport RAM of the GPR register
file. Both environments are governed by the standard control signals Csig
Sincetheregister file hasawrite delay of Dgprw the write back cycle takes

Teprw = A(Csig) + Dsrurenv+ Deprwt 0.

This aready includes the time overhead for clocking.

Paths through ALUenv and SHenv

The ALU and the shifter SH get their operands from the busses a and b.
Except for value cowhich is provided by environment | Renv, the operands
are either hardwired constants or register values. Thus, the data on the two
operand busses are stable Agysapdelays after the start of acycle:

Agusab = A(Csig) + Diren(€0) + Dyriv-

As soon as the operands become valid, they are processed in the ALU and
the shifter SHenv. From the data bus D, the result is then clocked into

Section 3.5

HARDWARE COST
AND CYCLE TIME

101

Chapter 3

102

A SEQUENTIAL
DLX DESIGN

aregister (MAR, MDRw or C) or it passed through environment PCenv
which adds delay DpcenfIN; PC). Thus, the ALU and shift cycles require
acycle time of

Tawu/sH = Asusabt MaX{DaLuenw DsHeny
+Dariv + DpcendIN; PC) +A.

Memory Read and Write Accesses
The memory environment performs read and write accesses. The memory
M aso provides a status flag mbusywhich indicates whether the access can
be completed in the current cycle or not. The actual data access has adelay
of dmem Whereas the status flag has adelay of dystas

According to figure 3.4, bus MA provides the memory address, and reg-
ister MDRw provides the data to be written into memory. Based on the
address MA and some standard control signals, the memory control MC
(section 3.3.5) generates the bank write signals mbw3 : 0]. Thus,

AMC = A(CSIg) + Dmux+ DMC

delays after the start of each cycle, all the inputs of the memory system
are valid, and the memory access can be started. The status flag mbusy
therefore has an accumulated delay of

Avendmbusy = Auc + dmstat

and awrite access requires acycle time of
Terite = AMC + dmem+ d.

On aread access, the memory data arrive on the bus MDout dnemdelays
after the inputs of the memory are stable, and then, the data are clocked
into the instruction register IR or into register MDRYr. Thus, the read cycle
timeis

TM = TMread = AMC + dmem+ A.

A read access takes dlightly longer than awrite access.

Paths through the Stall Engine

Based on the status flag mbusythe stall engine generates the update enable
signal U E which enables the update of all registers and RAMsin the DLX
hardware. The stall engine then combinesflag U E with the write and clock
request signals provided by the Moore control automaton.

Table 3.17 Cycle time of the sequential DLX design

Top Tcon T
Teprr | Toprw | Tatusst || Tomoore | Tstall
| 27 [37 | 70 | 42 | 37+dmsta| 16+ Omem]

Since mbusyhas amuch longer delay than the standard control signals of
the Moore automaton, the stall engine provides the write and clock enable
signals at an accumulated delay of

Astall = AmendMbusy + Dstall.

Clocking aregister adds delay Dss + &, whereas the update of the 3-port
RAM in environment GPRenv adds delay Dyamg(32,32) + 6. Thus, the
paths through the stall engine require a cycle time of

Tstall = Astall + Max{Dramz(32,32), D¢t} + d.

Evaluation of the Cycle Time

Table 3.17 lists the cycle times of the DLX data paths, of the control and
of the memory system. In the data paths, the cycles through the functional
units are most time critical; the register file itself could tolerate a clock
which is twice as fast. The DLX data paths require a minimal cycle time
of Tpp = 70 gate delays.

The control does not dominate the cycle time of the sequential DLX
design, as long as the memory status time dysta: Stays under 44% of Tpp.
The cycle time of the memory system only becomes time critical, if the
actual access time dmemis at least 74% of Tpp.

The cycle time 1p x of the sequential DLX design is usually the maxi-
mum of the cycle times required by the data paths and the control:

Tpix = Max{Tpp, Tcon}-

The cycle time Ty of the memory environment only has an indirect im-
pact on the cycle time Tp_x. If the memory cycle time is less than 1px,
memory accesses can be performed in a single machine cycle. In the other
case, Ty > TpLx, the cycle time of the machine must be increased to Ty or
memory accesses require [Tu/TpLx | cycles. Our designs use the second
approach.

Section 3.5

HARDWARE COST
AND CYCLE TIME

103

Chapter 3

3.6 Selected References and Further Reading
A SEQUENTIAL

DLX DesiGN HE DL X instruction set is from the classical textbook [HP90]. The

design presented here is partly based on designs from [HP90, PH94,
KP95, MP95]. A formal verification of a sequential processor is reported
in [Win95].

104

Basic Pipelining

IN THE CPU constructed in the previous chapter DLX instructions are
processed sequentially this means that the processing of an instruction
starts only after the processing of the previous instruction is completed.
The processing of an instruction takes between 3 and 5 cycles. Most of
the hardware of the CPU is idle most of the time. One therefore tries to
re-schedule the use of the hardware resources such that severa instruc-
tions can be processed simultaneously. Obviously, the following condi-
tions should be fulfilled:

1. No structural hazardexigt, i.e., at no time, any hardware resource
is used by two instructions simultaneously.

2. The machine is correct, i.e., the hardware interprets the instruction
Set.

The simplest such schedule is basic pipelining the processing of each
instructions is partitioned into the five stages Wisted in table 4.1. Stages
IF and ID correspond directly to the states fetchand decodeof the FSD
in figure 3.20. In stage M, the memory accesses of load and store instruc-
tions are performed. In stage W B, results are written back into the general
purpose registers. Roughly speaking, everything else is done in stage EX.
Figure 4.1 depicts a possible partition of the states of the FSD into these
five stages.

We consider the execution of sequencel =1, I1, ... of DLX instructions,
where instruction Iy is preceded by areset For thecyclesT =0,1,..., the

Chapter 4

BASIC PIPELINING

106

Table 4.1 Stages of the pipelined instruction execution

| k | shorthand | name |

0 IF instruction fetch

1 ID instruction decode
2 EX execute

3 M memory

4 WB write back

D4 D5 |D6 D7 D8 D9v D10 D11 D12

[ador | [Jreg | [sawepc] [imm] [branch]
D13 D 10
[jar] [jal |

WB

Figure 4.1 Partitioning of the FSD of the sequential DLX design into the five
stages of table 4.1.

stages k and the instructions I, we use
[(k,T) =i

as ashorthand for the statement, that instruction | isin stage k during cycle
T. The execution startsin cycle T = 0 with 1(0,0) = 0.

Ideally, we would like to fetch anew instruction in every cycle, and each
instruction should progress by one stage in every cycle, i.e.,

e if1(0,T)=ithenl(0,T+1)=i+1,and
e ifI(k,T)=iandk<4thenl(k+1,T+1)=i.
For al stages k and cycles T we therefore have

IkT)=i < T=k+i

IF |0‘ |1‘ |2‘ |3‘ |4‘ © oydles
D |y 1y I Iy

EX R T

Mol dE T, a1
wB ol o, 1

Figure 4.2 Pipelined execution of the instruction sequence l g, 11, 12, I3, 14

Thisidea scheduleisillustrated in figure 4.2. Obviously, two instructions
are never in the same stage simultaneously. If we can alocate each hard-
ware resource to a stage k such that the resource isonly used by instruction
li while |; isin stage k, then no hardware resource is ever used by two in-
structions simultaneously, and thus, structural hazards are avoided.

For the machine constructed so far this cannot be done for the following
two reasons:

1. The adder is used in stage decodefor incrementing the PC, and in
stage executdt is either used for ALU operations or for branch tar-
get computations. The instructions jal and jalr use the adder even
twice in the execute stage, namely for the target computation and for
passing the PC to the register file. Thus, we at least have to provide
an extraincrementer for incrementing the PC during decodeand an
ALU bypass path for saving the PC.

2. The memory is used in stages fetchand memory Thus, an extra
instruction memory IM has to be provided.

4.1 Delayed Branch and Delayed PC

T IS dtill impossible to fetch an instruction in every cycle. Before we

explain the simple reason, we introduce more notation.

For aregister Rand aninstruction |;, we denote by R, the content of regis-
ter R afterthe (sequential) execution of instruction k. Note that instruction
li is fetched from instruction memory location PG_1. The notation can
be extended to fields of registers. For instance, imm denotes the content
of the immediate field of the instruction register IR. The notation can be
extended further to expressions depending on registers.

Section 4.1

DELAYED BRANCH
AND DELAYED PC

107

Chapter 4

BASIC PIPELINING

108

Recall that the control operationsare the DLX instructions beqz, bnez,
jr, jalr, j and jal. The branch target btargetof a control operation | is
defined in the obvious way by

RSl for jr, jalr

btargef = { PG 1+4+imm for beqz, bnez, |, jal

We say that abranch or jump is takein I;, (short b jtaken = 1), if
e |; hasthetypej, jal, jr or jalr, or
e |;isabranch beqz and RSL; = 0, or
e |;isabranch bnez and RS} # 0.

Now suppose that instruction |, isacontrol operation which isfetched in
cycle T, where

li = IM[PG_1].
The next instruction ;1 then has to be fetched from location PG with

PG — btarget if bjtaken=1
~ | PG_1+4 otherwise,

but instruction |; is not in the instruction register before cycle T + 1. Thus,
even if we provide an extraadder for the branch target computation in stage
decode PG cannot be computed before cycle T + 1. Hence, instruction
li+1 can only befetched incycle T + 2.

Semantics of the Delayed Branch
The way out of this difficulty is by very brute force: one changes the se-
manticsof the branch instruction by two rules, which say:

1. A branch taken ininstruction I; affects only the PC computed in the
following instruction, i.e., PG 1. This mechanism is called delayed
branch

2. If I; is a control operation, then the instruction k.1 following I; is
called the instruction in the delay slotof . No control operations
are allowed in delay dots.

A formal inductive definition of the delayed branch mechanismis

PC;, = 0
bjtaken; = 0
PG _ btarget if bjtaken=1
" PC +4 otherwise.

Section 4.1

Observe that the definition of branch targets PC+ 4+ imminstead of the
much more obvious branch targets PC+ immis mativated by the delayed
branch mechanism. After a control operation |, one always executes the
instruction IM[PG_1+ 4] inthe delay dlot of I; (because I; does not occupy
adelay dot and hence, bjtaken 1 = 0). With a branch target PC+ imm,
one would have to perform the computation

DELAYED BRANCH
AND DELAYED PC

PG = PG+imm,;—4

instead of
PGy1 = PG+immy;.

The delayed branch semantics is, for example, used in the MIPS [KH92],
the SPARC [SPA92] and the PA-RISC [Hew94] instruction set.

Semantics of the Delayed PC

Instead of delaying the effect of taken branches, one could opt for delay-
ing the effect of all PC calculations. A program counter PC is updated
according to the trivial sequential semantics

RS, if bjtaken=1 A I; € {jr,jalr}

PC_,+imm if bjtaken=1 A I; € {beqz, bnez,j,jal}
PC =
PG ,+4 otherwise

Theresult is simply clocked into a delayed program counter DPC:
DPG,; = PC.

The delayed program counter DPC is used for fetching instructions from
IM, namely I; = IM[DPGC;_1]. Computations are started with

PCI,]_ - 4
DPC, = 0

We call this uniform and easy to implement mechanism delayed PCThe
two mechanisms will later turn out to be completely equivalent.

Jump and Link Instructions

We continue our discussion with a subtle observation concerning the se-
mantics of the jump and link instructions (jal, jalr) which are usually used
for procedure calls. Their semantics changes by the delayed branch mech-
anism aswell! Saving PC+ 4 into GPR31] results in areturn to the delay
dot of the jump and link instruction. Of course, the return should be to -

109

Chapter 4

the instruction after the delay slot (e.g., see the MIPS architecture manual
BASIC PIPELINING [KH92]). Formally, if I; = IM(PC_1) isajump and link instruction, then

PC=PC_1+4
because I; isnot in adelay dlot, and instruction
liy1=IM(PG)

is the instruction in the delay slot of ;. The jump and link instruction |;
should therefore save

GPR31}i =PC+4=PG_1+8.
In the smpler delayed PC mechanism, one simply saves

GPR31); =PC_, +4.

Equivalence of Delayed Branch and Delayed PC

Theorem 4.1 » Suppose a machine with delayed branch and a machine with delayed PC
are started with the same program (without control operations in delay
slots) and with the same input data. The two machines then perform exactly
the same sequencglh,... of instructions.

PROOF This is actually a smulation theorem. By induction on i, we will show
two things, namely

1. (PG,PG1) = (DPG,PC),

2. andif I; isajump and link instruction, then the value GPR 31} saved
into register 31 during instruction |; isidentical for both machines.

Since b jtaken 1 = 0, it follows that PGy = 4. Thus
(PC 1,PGy) = (0,4) = (DPC 4,PC.),

and part one of the induction hypothesis holds for i = —1.
In the induction step, we conclude fromi— 1 to i, based on the induction
hypothesis (PG_1,PC) = (DPG_1,PC ;). Since

DPC = PG_; by thedefinition of DPC
= PG by the induction hypothesis,

it only remains to show that

PG = PG,
110

Since DPG_; = PG_4, the same instruction |; is fetched with delayed
branch and delayed PC, and in both cases, the variable b jtaken has the
same value.

If bjtaken = 0, it follows

PC. = PG,+4
= PCG+4 by the induction hypothesis
= PG by the definition of delayed branch.

If bjtaken = 1, theninstruction I; cannot occupy adelay slot, and there-
forebjtaken 1 = 0. If I; isof type beqz, bnez, j or jal, then

PC = PC_,+imm

PC ,+4+imm because bjtaken ;1 =0
PC_1+4+imm by the induction hypothesis for i — 2
btarget

= PG because bjtaken=1.

If Ij isof type jr or jalr, then

Pq = RSY_;
= Dbtarget
= PGCi1 because bijtaken=1,

and part one of the induction hypothesis follows.

For the second part, suppose |; is a jump and link instruction. With
delayed branch, PG_1 + 8 isthen saved. Because |; is nhot in adelay dot,
we have

PG_1+8 = PG+4
= DPGC+4 by induction hypothesis
= PC_,;+4 by definition of delayed PC.

Thisis exactly the value saved in the delayed PC version.

Table 4.2 illustrates for both mechanisms, delayed branch and delayed
PC, how the PCs are updated in case of ajump and link instruction.

4.2 Prepared Sequential Machines

N THIS section we construct a machine DLX; with the following prop-
erties:

1. Themachine consists of data paths, acontrol aswell asastall engine
for the clock generation.

Section 4.2

PREPARED
SEQUENTIAL
MACHINES

QED

111

Chapter 4

BASIC PIPELINING

112

Table 4.2 The impact of a jump and link instruction |; € {jal,jalr} on the PCs
under the delayed branch and the delayed PC regime

after delayed branch delayed PC
PC [GPR[31] || DPC [PC [GPR[31]
li—1 || PCi—1 PCi_1 PCi=PCi_1+4
li PCi_1+4 | PC_1+8| PC; 1=PG PCi1=btargeti | PC'i_1+4
liy1 || btarget PC'i=btargeti | PCi1»

2. The data paths and the control of the machine are arranged in a 5-
stage pipeline, but

3. Only one stage at atimeis clocked in around robin fashion. Thus,
machine DLX; will be sequentigl its correctness is easily proved
using the techniques from the previous chapter.

4. The machine can be turned into a pipelined machine DLX; by avery
simple transformation concerning only the PC environment and the
stall engine. Correctness is then shown by a simulation theorem
stating — under certain hypotheses — that machine DLX; simulates
machine DLX;.

We call machine DLX; a prepared sequentiainachine. The overall
structure of the data paths is depicted in figure 4.3. There are 5 stages
of registers and RAM cells. Note, that we have arranged all registers and
RAM cells at the bottom of the stage, where they are computed.

For each stage k —with the numbers or names of table 4.1 —we denote by
out(k) the set of registers and RAM cells computed in stage k. Similarly,
we denote by in(k) the set of registers and RAM cells which are inputs of
stage k. These sets are listed in table 4.3 for al k. Rk denotes that Ris an
output register of stagek—1, i.e,, Rk € out(k— 1).

The cost of the data paths is

CDF’ = CPCenv+ CI Menv+ CI Renvt CEXenv+ CDMenv
+ Csharenv+ Coprenvt Ccaddr+ 7-C£(32) + 3-Cr1(5+ 12).

Most of the environments can literally be taken from the sequential DLX
designs. Only two environment undergo nontrivial changes. the PC envi-
ronment and the execute environment EXenv The PC environment has to
be adapted for the delayed PC mechanism. For store instructions, the ad-
dress calculation of state addr and the operand shift of state shds have now
to be performed in asingle cycle. Thiswill not significantly slow down the

,, bR}
1D |Renv —| CAddr
PCenv 12
rrrrrrrrr b A B} b PC,link, DPC] | P co] p1R2] | Cad.2]
EX \i/ 15
D EXenv <h
T B MARF PMDRw] P IR3] | P Cad.3]
T 5
DMenv
v
———————————————— cl " DMDR] PIR4| | D Cada]
wB i 15
SH4L env
o Aad
Bad
A B GPRenv

Figure 4.3 High level view of the prepared sequential DL X data paths

Table 4.3 Inputs and outputs of each stage k of the prepared DLX data paths

| stage [in(k) | out(k) |
O| IF || DPC,IM IR
1| ID | GPR,PC,IR A, B, PC’, link, DPC,
co, Cad.2
2| EX || A, B,link, co, Cad.2, IR MAR, MDRw, Cad.3
3| M MAR, MDRw, DM, Cad.3, IR | DM, C, MDRr, Cad.4
4 | WB || C,MDRr, Cad/4, IR GPR

cycle time, because only the last two bits of the address influence the shift
distance, and these bits are known early in the cycle. Trivialy, the memory
M is split into an instruction memory IM and a data memory DM.

There is, however, a smple but fundamental change in which we clock
the output registers of the stages. Instead of a single update enable signal
UE (section 3.4.3), we introduce for every stage k a distinct update enable
signal uek. An output register R of stage k is updated iff its clock request

Section 4.2

PREPARED
SEQUENTIAL
MACHINES

113

Chapter 4

BASIC PIPELINING

114

Rice Rsce

uek

Figure 4.4 Controlling the update of the output registers of stage k

signal Rceand the update enable signal of stage k are both active (figure
4.4). Thus, the clock enable signal Rcé of such aregister Ris obtained as

Rcé = RceA uek.

Asbefore, the read and write signal s of the main memory M are not masked
by the update enable signal ue 3 but by the full bit full.3 of the memory
stage.

4.2.1 Prepared DLX Data Paths

Environment IRenv

of the instruction register is still controlled by the signals J jump (Jtype
jump), shiftl and the clock signal IRce The functionality is virtualy the
same as before. On IRce= 1, the output IMout of the instruction memory
is clocked into the instruction register

IR = IMout,

and the 32-bit constant cois generated as in the sequential design, namely
as
PCoffset if Jjump=1
co = constanfIR) = { *>'SA if shiftl
imm otherwise.

The cost and the delay of environment |Renv remain the same.
For the use in later pipeline stages, the two opcodes IR[31 : 26] and
IR[5: 0] are buffered in three registers IR.k, each of which is 12 bits wide.

Environment SH4Lenv

is controlled by signal shiftdl which requests a shift in case of a load
instruction. The only modification in this environment is that the memory
address is now provided by register C and not by register MAR. This has
an impact on the functionality of environment SH4Lenv but not on its cost
and delay.

Let skl (a, dist) denote the function computed by the shifter SHAL as
it was defined in section 3.3.7. The modified SH4Lenv environment then
provides the result

c _ shdl (MDRr, C[1:0]000) if shiftdl =1
| C if shiftdl =0.

Environments CAddr and GPRenv
Asinthe sequentia design, circuit CAddrgenerates the address Cad of the
destination register based on the contral signals Jlink (jump and link) and
Itype However, the address Cad is now precomputed in stage ID and is
then passed down stage by stage to the register file environment GPRenv.
For later use, we introduce the notation

Cad = CAddI(IR).

Environment GPRenv (figure 4.5) itself has still the same functionality.
It provides the two register operands

N {GPF{RSL]:GPF{(IR[ZS:Zl])] if (RSL) #0
- 0 otherwise

B {GPF{RSZ]:GPF{(lR[zo:lam it (R®) # 0
- 0 otherwise

and updates the register file under the control of the write signal GPRw
GPRCad4]=C" if GPRw=1.

Since circuit CAddr is now an environment of its own, the cost of the
register file environment GPRenv run at

CGPRenv = CramS(32a 32) +2- (Czero(5) + Cinv + Cand(32))

Due to the precomputed destination address Cad.4, the update of the reg-
ister file becomes faster. Environment GPRenv now only delays the write
access by

Dgprwrite = Dram3(32,32).

Let Acon(csW B denote the accumulated delay of the control signals
which govern stage WB; the cycle time of the write back stage then runs at

Astutenv = Acon(CSW B + Dsharenv
Twe = Toprw = AshaLenvt Deprwrite + A.

The delay Dgprread Of aread access, however, remains unchanged; it adds
to the cycle time of stage |F and of the control unit.

Section 4.2

PREPARED
SEQUENTIAL
MACHINES

115

Chapter 4

BASIC PIPELINING

116

IR[25:21] Cad4 GPRw C IR[20:16]
e IR IR N B s
Aad Cad Din Bad
zero(5) GPR zero(5)
3-port RAM (32 x 32)

DoA DoB
az 32 32 bz

A’ B’

Figure 4.5 Environment GPRenv of the DLX; design

Memory Environments
The DLX design which is prepared for pipelined execution comprises two
memories, one for instructions and one for the actual data accesses.

Environment IMenv of the instruction memory is controlled by asingle
signal fetchwhich activates the read signal Imr. The address of an in-
struction memory access is specified by register DPC. Thus, on fetch= 1,
the environment IMenv performs a read operation providing the memory
word

IMout = IMword[(DPC[31: 2] 00)].

Since memory IM performs no write accesses, its write signal Imw is
aways inactive.! The control IMC of the instruction memory istrivial and
has zero cost and delay. Let dmem denote the access time of the banks of
memory IM. Since the address is directly taken from a register, environ-
ment IMenv delays the instruction fetch by

DIMenv(lR) = DIMC‘|‘dImem = dImem

The instruction memory also provides a signa ibusy indicating that the
access cannot be finished in the current clock cycle. We expect this signal
to be valid dis5 time units after the start of an IM memory access.

Environment DMenv of the datamemory DM performs the memory ac-
cesses of load and store instructions. To alarge extend, DMenv isidentical
to the memory environment of the sequential design, but the address is now
always provided by register MAR.

Environment DMenv is controlled by the two signals Dmr and Dmw
which request amemory read or write access, respectively. Since memory

IThis is of course an abstraction. In chapter 6 we treat instruction caches which of
course can be written.

DM isbyte addressable, the control DM C generates four bank write signals

Dmbw3: 0] based on the address and the width of the write access asin
the sequential design. The cost and delay of the memory control remain
the same.

The data memory DM has an access time of bmemand provides a flag
dbusywith adelay of dbstar. Signal dbusyindicates that the current access
cannot be finished in the current clock cycle. Let Acon(csM) denote the
accumulated delay of the signals Dmr and Dmw, then

Tv = TpbMenvwread = Acon(CSM) + Dpmc + dpmem+ A
Apmenddbusy = Acon(csM) + Dpwmc + dpstat-

PC Environment
The environment PCenv of figure 4.6 is governed by seven control signals,
namely:

e resetwhich initializes the registers PC' and DPC,

the clock signals PCceand linkce,

jumpwhich denotes one of the four jump instructions j, jal, jr and
jalr,

jumpRwhich denotes an absolute jump instruction (jr, jalr),
e branchwhich denotes a branch instruction beqz, bnez, and
e bzerowhich is active on beqz and inactive on bnez.

Based on these signals, its glue logic PCgluegenerates the clock sig-
nal of the registers PC and DPC. They are clocked simultaneously when
signal PCceis active or on reset, i.e., they are clocked by

PCceV reset
In addition, PCgluetests operand A for zero
AEQZ=1 <+ [A31:0]]=0

and generates signal b jtakenaccording to the specifications of section 4.1.
Thus, b jtakenis set on any jump or on ataken branch:

bjtaken = jump Vv branchA (bzero XNOR AEQZ).

Section 4.2

PREPARED
SEQUENTIAL
MACHINES

117

Chapter 4

777777777777777777777777777777

BASIC PIPELINING [31:2] [Lop coy

Add(32)

0 1
-.mk—-pc 777777777777 > ore

Figure 4.6 Environment PCenv implementing the delayed PC

Let Acon(csID) denote the accumulated delay of the control signals
which govern stage ID. The cost of the glue logic and the delay of the
signals AEQZand b jtakenthen run at

CF’Cglue = 2 Cor + Camd + anor + Czero(32)
DPCque = Dor + Dand + I:)xnor
A(AEQZ) = Acpren(A) + Dzero(32)
A(bjtaken = max{Acon(csID),A(AEQ2Z)} + Dpcglue

The environment PCenv implements the delayed PC mechanism of sec-
tion 4.1 in a straightforward way. On an active clock signal, the two PCs
are set to
(0, 4) if reset

A
(DPC, PC) = { (PC, pd) otherwise,

where the value pc = nextPGPC', A, co) of the instruction |, which is
held in register IR, is computed as

pd = { A if 1e{jrjalr}

PC'+co if bjtakenA | € {beqz,bnez,j,jal}
PC'+4 otherwise.

PCenv also provides aregister link which is updated under the control
of signa linkce Onlinkce=1, it isset to

link = PC' + 4,

- that isthe PC to be saved in case of ajump and link instruction.
118

Section 4.2

link co B A B
PREPARED
A (0 1) bmuxsel (0 1) amuxsel SEQUENTIAL
ai b a ! MACHINES
ALUenv SHenv
ovf au g1:0] sh
Io sh

Figure 4.7 Execute environment of the prepared DL X

In order to update the two program counters, environment PCenv re-
quires some operands from other parts of the data paths. The register
operand A’ is provided by the register file environment GPRenv, whereas
the immediate operand cois provided by environment IRenv. The cost and
the cycle time of environment PCenv can be estimated as

CPCenv = 3 Cff (32) +4- Cmu><(32) + Cadd(32) + Cinc(go) +CPCg|ue

Tpcenv = mMax{Dinc(30), Airen€O) + Dadd(32), AGPRen\(AI)a

Execute Environment
The execute environment EXenvof figure 4.7 comprises the ALU envi-
ronment and the shifter SHenv and connects them to the operand and re-
sult busses. Since on a store instruction, the address computation and the
operand shift are performed in parallel, three operand and two result busses
are needed.

Register A always provides the operand a. The control signals bmuxsel
and @ muxselselect the data to be put on the busses b and d:

bl B if bmuxsek= 1 , | B ifdmuxsel=1
~ | co otherwise, | A otherwise.

The data on the result bus D is selected among the register link and the
results of the ALU and the shifter. This selection is governed by three
output enable signals

link if linkDdoe=1
D= alu if ALUDdoe=1
sh if SHDdoe= 1.

Note, that at most one of these signals should be active at atime.

119

Chapter 4

BASIC PIPELINING

120

ALU Environment Environment ALUenv is governed by the same con-
trol signals as in the sequentia design, and the specification of its results
alu and ov f remains unchanged. However, it now provides two additional
bits 51 : 0] which are fed directly to the shifter. These are the two least
significant bits of the result of the arithmetic unit AU(32). Depending on
signal suly which is provided by the ALU glue logic, the AU computes the
sum or the difference of the operands a and b modulo 22

[a] + [b] mod 232 if sub=0

[s) = ([+ (=1)™*-[b]) mod 2% = { [a] — [b] mod 22 if sub= 1.

The cost of the ALU environment and itstotal delay Dapyenvremain the
same, but the bits §[1 : O] have a much shorter delay. For all the adders
introduced in chapter 2, the delay of these bits can be estimated based on
the delay of a 2-bit AU

DatuendS[1:0]) = Daruglue+ Dau(2)

asitisshowninexercise 4.1.

Shifter Environment The shifter environment SHenv is still controlled
by signa shiftds which requests an implicit shift in case of a store oper-
ation, but its operands are different. On an explicit shift, the operands are
provided by the busses & and b, whereas on an implicit shift, they are pro-
vided by bus & and by the result s[1 : 0] of the ALU environment. Thus,
the output shof SHenv is now specified as

sh— shift(a,b,IR[1:0]) if shiftds=0

| cls(@,s[1:0]000) if shiftds=1.
However, this modification has no impact on the cost and the delay of the
environment. Assuming a delay of Acon(cSEX) for the control signals of

stage EX, the cost and the cycle time of the whole execute environment
EXenv run at

CEXenv = CALU envt CSHenv+ 2. Cmux(32) +3- Cdriv(32)
Aexenv = max{Daruenv DatuendS1: O]) + Dsnent + Dmux+ Ddriv
TEX = TEXenv = AEXenV'f‘ A.

4.2.2 FSD for the Prepared Data Paths

Figure 4.8 depicts an FSD for the prepared data paths; the tables 4.4 to
4.6 list the corresponding RTL instructions and their active control signals.

IF

ID

e N

J/Dg D1 D2 D3 D4 D5 D6 D7 D8 ese

laddrL| | au | [alul | | shift | [sniftl] [test | | testl | [savePC| [addrS| [noEX |

L i e i
‘Ioad‘ ‘ passC ‘ ‘store‘ ‘noM‘

WB T T
shdl

Figure 4.8 The FSD of the prepared sequential DLX design

Table 4.4 RTL instructions of stages IF and ID

| || RTL instruction | typeof | | control signals |
IF [IR=IM(DPC) fetch, IRce
ID || A=A =R4l, Ace,
AEQZ=zerdA'),
B=R2, link =PC +4, Bce, linkce,
DPC = (reset?0 : PC)), PCce,
PC' = (reset?4 : pc), PCce,
pc = nextPGPC',A’,co) | j, jal jump
jr, jalr JumpR, jump
beqz branch, bzero
bnez branch
otherwise
co= constan{IR) j, jal Jump
slli, srli, srai | shiftl
otherwise
Cad=CAddrnIR) jalr, jal Jink
R-type Rtype
otherwise

Thenontrivial DNFsare listed in table 4.7. Except for the clocks Ace Bce
PCceand linkce, all the control signals used in the decode stage ID are
Mealy signals. Following the pattern of section 3.4, one shows

Let the DLX design be completed such that

Section 4.2

PREPARED
SEQUENTIAL
MACHINES

<« Theorem 4.2

121

Chapter 4

BASIC PIPELINING Table 4.5 RTL instructions of stage EX
| state || RTL instruction | active control signals |

alu MAR= A op B, bmuxsel, ALUDdoe, MARce,
Cad3=Cad2 Rtype, Cad3ce

test MAR= (Arel B?1:0), bmuxsel, ALUDdoe, MARce,
Cad.3=Cad?2 test, Rtype, Cad3ce

shift MAR= shift(A,B[4:0]), | bmuxsel, SHDdoe, MARce,
Cad3=Cad2 Rtype, Cad3ce

aul MAR= A op co, ALUDdoe, MARce,
Cad.3=Cad2 Cad3ce

testl MAR= (Arel co?1:0), | ALUDdoe, MARce,
Cad.3=Cad2 test, Cad3ce

shiftl MAR= shift(A,co4: Q]), | SHDdoe, MARCce, shiftl,
Cad3=Cad2 Rtype, Cad3ce

savePC | MAR=link, linkDdoe, MARCce,
Cad.3=Cad2 Cad3ce

addrL MAR= A+ co, ALUDdoe, add, MARCce,
Cad3=Cadz2 Cad3ce

addrS MAR= A+ co, ALUDdoe, add, MARce,
MDRw= amuxsel, shiftds, MDRwce

cls(B, MAR{1:0]000)
NoEX

1. for each type of instruction, the path specified in table 4.8 is taken,
2. and for each state s, the set of RTL instructionésjtis executed.

If every memory access takes only one cycle, then the machine interprets
the DLX instruction set with delayed PC semantics.

The correctness of al pipelined machines in this chapter will follow
from this theorem. Adding the stall engine from section 3.4.3 takes care of
memory accesses which require more than one cycle.

4.2.3 Precomputed Control

We derive from the above FSD and the trivial stall engine a new control
and stall engine with exactly the same behavior. This will complete the
design of the prepared sequential machine DLX.

122

Table 4.6 RTL instructions of the memory and write back stage

\ | state || RTL instruction | control signals |
M | passC | C=MAR Cad4=Cad.3 Cce, Cad4ce
load MDRr = Mword[{MAR[31:2]00)], | Dmr, MDRrce,
C=MAR Cad4 =_Cad3 Cce, Cad4ce
store || m= bytegMDRw) Dmw
noM
WB | shdl GPRCad4| = shiftdl, GPRw
sh4l (MDRr, MAR[1: 0]000)
wb GPRCad4]=C GPRw
noWB || (no update)

We begin with a stall engine which clocks all stages in a round robin
fashion. It has a5-bit register full[4: 0], where for all stagesi, signa

ug = full; A /busy

enables the update of the registers in out(i). Since memory accesses can
take several cycles, the update of the data memory DM is enabled by fulk
and not by ue;. Register full is updated by

00001 if reset
full[4:0] := full[4:0] if busyA /reset
cls(full) otherwise.

Since the design comprises two memories, we compute the busy signal by
/busy = ibusy NOR dbusy

With signals full defined in this way, we obviously can keep track of the
stage which processes the instruction, namely: the instruction isin stage i
iff full; = 1. In particular, the instruction isin stage IF iff fullh =1, and
itisinstage ID if full, = 1.

We proceed to transform the FSD by the following four changes:

1. The control signals activated in state IF are now alwaysactivated.
In cycles with fully = 1, these signals then have the right value. In
other cycles, they do not matter because IR is not clocked.

2. Moore signals activated in state ID are now always activated. They
only matter in cycleswith full; = 1.

Section 4.2

PREPARED
SEQUENTIAL
MACHINES

123

Chapter 4

BASIC PIPELINING

Table 4.7 Nontrivia disjunctive normal forms (DNF) of the FSD corresponding

to the prepared data paths
Nontrivial | Target Monomial me M Length
DNF State IR[31: 26] | IR[5:0] | 1(m)
D1 alu 000000 100*** 9
D2 a]ul 001*** *kkkk*k 3
D3 shift 000000 | 0001*0 11
000000 | 00011* 11
D4 shiftl 000000 | 0000*0 11
000000 | 00001* 11
D5 test 000000 101*** 9
D6 teg-.l 011*** *kkkk*x 3
D7 savePC 010111 | *x**xx* 6
000011 | *x***x 6
D8 addrS 10100* kKK kK 5
1010* 1 *kkkk*x 5
D9 addrL 100* 0* kK kK 4
1000* 1 *kkkkk 5
10000* *kkkkk 5
[DNF [Medly Signals || | | |
D10 Rtype 000000 | ****=*x* 6
D4 shiftl 000000 | 0000*0 | (10)
000000 | 00001* (20)
D7 Jink 010111 | ****=** (6)
000011 | *x**x* (6)
D11 jumpR 01011* | *****x 5
D12 Jump 00001* ok kok 5
D13 jump D11 or D12
D14 branch 00010* ok k ok 5
D15 bzero *****0 *kkkk*x 1
| Accumulated length of me M: T e [(M) 126

124

Table 4.8 Paths path(t) through the FSD for each typet of DLX instruction

DLX Instruction Type | Path through FSD |

addi, subi, andi, ori, xori, lhgi | fetch, decode, alul, passC, wb

add, sub, and, or, xor, Ihg fetch, decode, alu, passC, wb

clri, sgri, seqi, sgei, slsi, snei, | fetch, decode, testl, passC, wb
slel, seti

clr, sgr, seq, sge, sls, sne, sle, | fetch, decode, test, passC, wb
set

slli, srli, srai fetch, decode, shiftl, passC, wb
sll, srl, sra fetch, decode, shift, passC, wb
Ib, Ih, lw, Ibu, lhu fetch, decode, addrL, load, sh4l
sb, sh, sw fetch, decode, addrS, store, nowWB
jalr, jal fetch, decode, savePC, passC, wb
others fetch, decode, noEX, noM, nowB

3. Mealy signals activated in state ID are now activated in every cycle;
they too matter only when full; = 1. Thus, the Mealy signals only

depend on the inputs IR but not on the current state.

4. Finaly observe that in figure 4.8 only state decodehas a fanout
greater than one. In stage ID, we can therefore precompute the con-
trol signals of all stages that follow and clock them into a register
R.2 € out(1). Table 4.9 lists for each state the signals to be clocked
into that register. The inputs of register R.2 are computed in every

cycle, but they are only clocked into register R.2 when
uel = full.1 A /busy= 1.

Register R.2 contains three classes of signals:

(a) signals x to be used in the next cycle only control stage EX,

(b) signalsy to be used in the next two cycles control the stages

EX and M, and

(c) signals zto be used in the next three cycles control the stages

EX, M and WB.

The control signals y of stage M are delayed by one additional reg-
ister R.3 € out(2), whereas the signals of stage WB are delayed by

the registers R.3 and R4 € out(3) as depicted in figure 4.9.

Section 4.2

PREPARED

SEQUENTIAL

MACHINES

125

Chapter 4

BASIC PIPELINING

126

Table 4.9 Control signals to be precomputed during stage 1D for each of the 10
execute states. The signals of thefirst table are all of typex, i.e., they only control

stage EX.

EX

ALUDdoe

SHDdoe

linkDdoe

add

test

Rtype

M

wWB

shift

shiftl

=

au

alul

test

testl

addrL

addrS

RPlR R R R -

savePC

NnoEX

EX

MARce

bmuxsel

MDRwce
amuxsel
shift4s

Cad3ce

Dmw

Cad4ce
Cce

Dmr
MDRrce

wWB

GPRw

shift4l

| Type

z

shift

shiftl

alu

alul

test

testl

addrL

S R

addrS

savePC

e R R T RS

NoEX

Figure 4.10 Structure of the data paths DP and the precomputed control CON of

-—

the DLXg; machine

Table 4.10 Parameters of the two control automata; one precomputes the Moore
signals (ex) and the other generate the Mealy signals (id).

Section 4.2

states | #inputs | # and frequency of outputs
k o Y ‘ Vsum ‘ Vmax
ex 10 12 11 | 39 9
id 1 12 9 11 2

fanin of the states

and length of monomials

fansum ‘ fanmax | #M ‘ lsum ‘ Imax
ex 15 3 15 | 104 11
id - - 5 22 10

PREPARED
SEQUENTIAL
MACHINES

127

Chapter 4

BASIC PIPELINING

128

The new precomputed control generates the same control signals as the
FSD, but the machine now has a very regular structure: Control signals
coming from register Rk € out(k— 1) control stage k of the data paths for
all k> 1. Indeed, if we define R.0 and R.1 as dummy registers of length
0, the same claim holds for all k. The structure of the data paths and the
precomputed control of machine DLX; isillustrated in figure 4.10.

The hardware generating the inputs of register R.2 isaMoore automaton
with the 10 EX states, precomputed control signals and the parameters ex
fromtable 4.10. The state noE X serves astheinitial state of the automaton.
The next state only depends on the input IR but not on the current state.
Including the registers R.3 and R.4, the control signals of the stages EX to
WB can be precomputed at the following cost and cycle time:

Ccon(moorg = Cpmoore(€X) + (3+2) - Ct¢
TCON(moore = TpMoorG(eX)'

The Mealy signals which govern stage ID are generated by a Mealy au-
tomaton with a single state and the parameters id of table 4.10. All its
inputs are provided by register IR at zero delay. According to section 2.6,
the cost of this automaton and the delay of the Mealy signals can be esti-
mated as

Ccon(mealy = CMea|y(id) +(3+2)-Cs¢
Acon(mealy = Ao(id).

We do not bother to analyze cost and cycle time of the stall engine.

4.2.4 A Basic Observation

Later on, we will establish the correctness of pipelined machines by show-
ing that they simulate machine DLX;. Thiswill require an inductive proof
on acycle by cycle basis. We will aways argue about afixed but arbitrary
sequence

I =lg,lg,...

of instructions which is preceded by resetand which is itself not inter-
rupted by reset

If during a cycle the busysignal is active, then the state of the machine
does not change at the end of that cycle. We therefore only number the
cycles during which the busy signal is inactiveth

T=01,...

Section 4.2

For such cycles T and signals R, we denote by R the value of R during

cycle T; Rcan also be the output of aregister. We abbreviate with PREPARED
SEQUENTIAL
lo(k, T) =i MACHINES
the fact that instruction |; is in stage k of machine DLX; during cycle T.
Formally, this can be defined as
e the execution startsincycle T =0, i.e,, I5(0,0) = 0,
e iflg(k,T) =iandk < 4, thenls(k+1,T+1) =i, and
o if 15(4,T)=i,thenls(0,T+1) =i+1.
For any other combination of T and k, the scheduling function k(k, T) is
undefined. Hence,
lo(k, T) =i <+ T=5i+k <« i=|T/5 and k=T modS5;
and for any cycle T > 0, stagekisfull (full"[K] = 1) iff I5(k, T) is defined.
Recall that we denote by R the value of R after execution of instruction
li. By R_; we denote the initial value of R, i.e, the value of R just after
reset. A basic observation about the cycle by cycle progress of machine
DLX; isformulated in the following lemma.
DatelineLemma. Let I(k,T') =i, and let Re out(t), then < Lemma 4.3
R — R if t>k
1 R if t<k

Thisisillustrated in figure 4.11. During cycle T', registers abovestage k
aready havethe new value R, whereas registers belowstage k still havethe
old value R_1. In other words, on downward arrows of figure 4.3 machine
DLX; reads values Rfrom the current instruction, whereas on upward
arrows the machine reads values Rfrom the previous instruction

This very intuitive formulation of the lemma s the reason why in figure
4.3 we have drawn the general purpose register file at the bottom of the
pipeline and not — asis usua —in the middle of stage ID. A formal proof
uses the fact that

Ri=FR

and proceeds for T = 5i 4 k by induction on k. We leave the simple details
as an exercise 4.2.

Another very intuitive way to state this lemmaisin the following way.
Imagine that wires between pipeline stages are so long, that we can wrap -

129

Chapter 4

BASIC PIPELINING

130

stage
0
Ri
k
Ri-1

Figure 4.11 Illustration of lemma4.3. In the current cycle, | is stage k.

the machine around the equator (with stage k east of stage k+ 1 mod 5).
Now imagine that we process one instruction per day and that we clock the
pipeline stages at the dateline, i.e., the border between today and yesterday.
Then the lemma states that east of the dateline we already havetoday’s data
whereas west of the dateline we still have yesterdays data.

Let1(4,T)=i,thenl(0,T+1) =i+ 1, and the dateline lemma applies
foral R

R = Ris)-1 = R.

4.3 Pipelining as a Transformation

ITH TWO very simple changes, we transform the prepared sequen-
tial machine DLX; from the previous section into a pipelined ma-
chine DLXy:

1. Register DPC, i.e., the delayed PC is discarded. The instruction
memory IM is now directly addressed by PC. At reset, the instruc-
tion memory is addressed with address 0, and PC isinitialized with
4. Thisisillustrated in figure 4.12. Register PC is still clocked by

PCceV reset

2. Thestal engine from figure 4.13 isused. For all i, signal ueg enables
the update of registers and RAM cellsin out(i). The update of the
data memory DM is now enabled by

fullz A reset

3[31:2]

CE
reset
uel
ue.2
ue.3
ffffffffff CE— full4 |----------
ued

Figure 4.13 The stall engine of the DLX;; design

At reset, the signals ugl4 : 0] are initialized with 00001. When only
counting cycles T with an inactive busysignal, the update enable sig-
nals ue become active successively as indicated in table 4.11. Note
that we now assume the reset signal to be active during cycle T = 0.

4.3.1 Correctness

We want to argue, that under certain hypotheses the pipelined machine
DLX;; simulates the prepared sequential machine DLX;. We will have to

Section 4.3

PIPELINING AS A
TRANSFORMATION

131

Chapter 4

BASIC PIPELINING

132

Table 4.11 Activation of the update enable signals ug{4 : 0] after reset

[T [reset [uef0] ue[l] ue[2] ue[3] ue[4]] full[2] full[3] full[4]]

0 1 1 0 0 0 0 * * *
1 0 1 1 0 0 0 0 0 0
2 0 1 1 1 0 0 1 0 0
3 0 1 1 1 1 0 1 1 0
4 0 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1

argue simultaneously about registers R occurring in machine DLX; and
their counterpart in machine DLX;. Therefore, we introduce the notation
Ry to denote aregister in machine DLX;; we denote by R; the correspond-
ing register in machine DLX;. The notation R; (the content of register R
at the end of instruction I;) will only be used for the sequential machine
DLXs.

Duration of Reset
We generally assume that the reset signal is active long enough to permit
an instruction memory access.

Initial Contents
The registers visible to the programmer are the general purpose registers
GPR the RAM céllsin IM and DM and the program counters. The re-
maining registers are called invisible

We assume, that during reset, the simulated machine (here DLX;) and
the smulating machine (here DLX;) have the same contents of the memo-
ries and the register file. In the sequential execution, reset is given in cycle
T’ = —1 whereas in the pipelined execution, reset isgivenincycle T = 0.
By construction, both machines do not update general purpose registers
or memory cells during reset. Thus, in the two DLX designs any register
Re {GPRPC',DPC} and any memory cell M of DM and IM must satisfy

R, = R = R
M, = M2 = ML

Note that we make no such assumption for the remaining registers. This
will be crucial when wetreat interrupts. The mechanism realizing the jump
totheinterrupt service routine (JISR will be almost identical to the present
reset mechanism.

The schedule for the execution of instructions | by machine DLXy; is
defined by
Ik, T) =i <+ T=Kk+i.

The strategy of the correctness proof is now easily described. We con-
sider cycle T for machine DLX; and the correspondingcycle T' for ma-
chine DLXy, when the same instruction, say |; isin the same stage, say k.
Formally

In(k,T) =i =Ilg(k T').

We then want to conclude by induction on T that stage k of the simulat-
ing machine has during cycle T the same inputs as stage k of the smulated
machine during cycle T'. Since the stages are identical, we want to con-
clude for al signals Sinside the stages

S-9

This should hold in particular for the signals which are clocked into the
output registers R € out(k) of stage k at the end of cycle T. This would
permit us to conclude for these registers

R1T[+1 — Rg'+1 =R. (42)

This amost works. Indeed it turns out that equations 4.1 and 4.2 hold
after every invisible register has been updated at least once. Until this has
happened, the invisible registers in the two machines can have different
values because they can be initialized with different values.

Thus, we have to formulate a weaker version of equations 4.1 and 4.2.
We exploit the fact, that invisible registers are only used to hold intermedi-
ate results (that is why they can be hidden from the programmer). Indeed,
if the invisible register Ris an input register of stage k, then the pipelined
machine uses this register in cycle T only if it was updated at the end of
the previous cycle. More formally, we have

!

(4.)

Section 4.3

PIPELINING AS A
TRANSFORMATION

Let I(k,T) =i, and let R be an invisible input register of stage k that wad emma 4.4

not updated at the end of cycleT1, then:

1. The set of output registers & stage k which are updated at the end

of cycle T is independent of R

2. Let R be an output register of stage k that is updated at the end of

cycle T, and let S be an input signal for, Bien S is independent
of RT.

This can be verified by inspection of the tables 4.4 to 4.6 and 4.8.

133

Chapter 4

BASIC PIPELINING

134

Theorem 4.5 »

PROOF

Therefore, it will suffice to prove equation 4.2 for all visible registers as
well asfor al invisible registers which are clocked at the end of cycle T. It
will also suffice to prove equation 4.1 for theinput signals Sof al registers
which are clocked at the end of cycle T.

Under the above assumptions and with a hypothesis about data depen-
dencies in the program executed we are now able to prove that the ma-
chines DLX;; and DLX; produce the same sequence of memory accesses.
Thus, the CPUs simulate each other in the sense that they have the same
input/output behavior on the memory. The hypotheses about data depen-
dencies will be removed later, when we introduce forwarding logic and a
hardware interlock.

Suppose that for all> 0 and for all r # 0, the instructions 13, ...,l;_; do
not write register GPR], where GPR] is a source operand of instruction
li. The following two claims then hold for all cycles T arigdfdr all stages
k, and for all instructions; lwith

Ik T) =i = lo(kT'):

1. For all signals S in stage k which are inputs to a registet But(k)
that is updated at the end of cycle T:

g -9

2. For all registers and Re out(k) which are visible or updated at the
end of cycle T:

!

R;Eﬁ*l — R|

Proof by induction on the cycles T of the pipelined execution. Let T = 0.
We have I7(0,0) = 0=15(0,0), i.e., instruction O is in stage 0 of machine
DLXy during cycle T = 0 and in stage 0 of machine DLX; during cycle
T’ =0. Theonly input of stage 0 is the address for the instruction mem-
ory. This address is the output of register DPC for machine DLX; and
signal dpcfor machine DLX;. By construction, both signals have in the
corresponding cycles T = 0 and T' = 0 the same value, namely

DPC? = dpd =0.
As stages 0 are for both machines identical, we have
S=%
for all internal signals S of stage 0 and claim 1 follows. In particular in

both machines IM (0) is clocked into the instruction register at the end of
cycleT = T’ = 0. Hence, claim 2 follows because of

IRL = IR =IRy.

Table 4.12 Illustration of the scheduling function | for the stagesk — 1 and k.

‘ stage s H In(s,T) In(sT—-1) ‘
k-1 [
k i i-1

In the induction step we conclude from T — 1 to T. Thus, we have to
show claim 1 for signals Sin cycle T, and we have to show claim 2 for
registers Rin cycle T 4+ 1. According to figure 4.14, which illustrates the
data flow between the stages of the DLX; design, there are the following
four cases:

1. k=2 (execute) or k= 4 (write back).This isthe easy case. In figures
4.3 and 4.14, all edges into stage k come from output registers

Re out(k—1)

of stage k— 1. From the scheduling functions it can be concluded
that
I(k—1,T—1) = Igk,T) = I5(k, T") = i.

Thisisillustrated in table 4.12. Let R be an input register of stage
k which is visible or which was updated at the end of cycle T — 1.
Using lemma 4.3 with t = 1 we conclude

Rl = R by induction hypothesis

!

R; by lemma 4.3.

Hence, except for invisible input registers R which were not updated
after cycle T — 1, stage k of machine DLX hasin cycle T the same
inputs as stage k of machine DLX; incycle T'. Stagekisidentical in
both machines (this is the point of the construction of the prepared
machine !). By lemma 4.4, the set of output registers R of stage k
which are updated after cycle T or T, respectively, is identical for
both machines, and the input signals S of such registers have the
same value: ,

St=S-
If follows that at the end of these cycles T and T’ identical values
are clocked into R:

T+1 T'+1
R = R,

= R bylemma4.3.

Section 4.3

PIPELINING AS A
TRANSFORMATION

135

Chapter 4

BASIC PIPELINING

136

Figure 4.14 Data flow between the pipeline stages of the DLX design

2. k=3 (memory). The inputs of this stage comprise registers from

out(2) and the memory DM which belongs to out(3). For input
registers R € out(2), one concludes as above that

RlL=R =R".
For i > 0, one concludes from the scheduling function (table 4.12)

I(3,T—1) = i—1.

We have M C out(3), i.e., every memory cell isan output register of
stage 3. Using lemma 4.3 witht = k= 3 and the induction hypothe-
Sis, we can conclude

ME = Mi_; = M['.

For i = 0, the scheduling function implies

I(3T)=i < T=23

Section 4.3

Table 4.13 Illustration of the scheduling function | for the stages 0 and 1. PIPELINING AS A
TRANSFORMATION
‘ stage s H In(s,T) In(sT—-1) ‘
0 i
1 i-1 i-2

In the DLX;; design, the data memory is only updated if
resetA full[3] = 1.

According to table 4.11, memory cell M isnot updated during cycles
t € {1,2}, because the full[3]}; = 0. Sincethe DLX; design is started
with contents Mt = M_y, it follows

M = M2 = ML = M_;.

In the DLX; design, the update of the data memory DM isenabled by
the flag full[3]. Thus, DM might be updated during reset, but then
the update is disabled until Iy reaches stage 3, since full[3]}; = O for
t € {0,1,2}. Therefore,

M_; = MJ = M.
Now the argument is completed as in thefirst case.

3. k=0 (fetch). Here we have to justify that the delayed PC can be
discarded. In the pipelined design, PC is the only input register of
stage |, whereasin the sequential design, the input register is DPC.
Both registers are outputs of stage s= 1.

For i > 2 one concludes from the scheduling functions (table 4.13)

(1, T—1) = Ix(0,T—-1)—1 =i—-2.
The induction hypothesis implies (for T > 1)
PCT = PC ..
Fori=1(and T = 1) we have by construction
PC_, = 4 = PCL.

Using lemma4.3 witht = 1, we conclude for T > 1

PCT =PC_, = DPG 1 by construction
= DPC/) by lemma 4.3.

Now the argument is completed as in thefirst case.
137

Chapter 4

BASIC PIPELINING Table 4.14 Illustration of the scheduling function | ; for the stages 1 to 4.

| stages || In(sT) In(sT-1) |

1 i
2 i-1
3 i-2
4 i-3 i-4

4. k =1 (decode). In either design, the decode stage has the input
registers IR € out(0) and GPRe out(4). One shows IRT = IR as
above. If instruction |; does not read a register GPRr] with r # 0,
we are done, because the outputs of stage 4 are not used. In the other
case, only the value GPRr]" can be used. The scheduling function
implies (table 4.14)

In(4,T—1) = i—4

For i > 4, we conclude using lemma 4.3 with s= 4 that

GPRr]; = GPRr]i4 by induction hypothesis
= GPRI)J.

According to the hypothesis of the theorem, instructions §_z to l;_;
do not write register GPRr]. Hence

GPF{I’]i_l = GPF{r]i_4.

i < 3. The update of the register file GPR is enabled by signal ue4.
The stall engine (table 4.11) therefore ensures that the register fileis
not updated during cyclest € {1,2,3}. Thus,

GPR ; = GPR, = --- = GPR.

The hypothesis of the theorem implies that instructions I; with 0 <
j < 3do not write register GPRr]. Hence,

GPRr]-1 = --- = GPRIr]i_1.
By lemma 4.3 with s= 4, we conclude
GPRr% = GPRr]i_1 = GPRI]!.
QED The argument is completed as before.
138

4.3.2 Hardware Cost and Cycle Time

In the following, we determine the cost and the cycle time of the DLX;
design. Except for the PC environment and the stall engine, the pipelined
design DL Xy and the prepared sequential design DLX; are the same. Since
in section 4.2, the environments of the DLX; design are described in detail,
we can focus on the PC environment and the stall engine.

The PC Environment

PCenv (figure 4.12) is governed by the same control signals asin the DLX;
design, the glue logic PCgluealso remains the same. The only modifica
tion in PCenv isthat the register DPC of the delayed PC is discarded. The
instruction memory IM is now addressed by

doc — PC if reset=0
PE=1 0 if reset=1.

Nevertheless, the PC environment still implements the delayed PC mecha-
nism, where d pctakes the place of DPC.

Due to the modification, the PC environment becomes cheaper by one
32-bit register. The new cost is

Crcenv = 2-C£(32) +4- Crux(32) + Cadd(32) + Cinc(30) + Crcglue

The cycle time Tpceny Of the PC environment remains unchanged, but the
address d pcof the instruction memory has now alonger delay. Assuming
that signal resethas zero delay, the address isvalid at

Apcend P = Dmux(32).

This delay adds to the cycle time of the stage IF and to the accumulated
delay of signal ibusyof the instruction memory:

TIF = APCen\(d pC) + DIMenv(I R) +A
Aivenv(ibusy = ApcenddpC) + distat.

The Stall Engine

determines for each stage i the update enable signal u€i] according to fig-
ure 4.13. The registers full[4: 2] are clocked by CE when neither the
instruction memory nor the data memory is busy or during reset

CE = /busyV (resetA /ibusy = /busyV (/reset NOR ibusy)
/busy = ibusy NOR dbusy

Section 4.3

PIPELINING AS A
TRANSFORMATION

139

Chapter 4

BASIC PIPELINING

140

During reset, the update is delayed until the instruction fetch is completed.
Since signal reset has zero delay, the clock CE can be generated at an
accumulated delay of

Astall(CE) = maX{AIMenv(ibUS”a Apmendd bUS})} + Dnor + Dor.

For each register R € out(i) and memory M € out(i), the stall engine
then combines the clock/write request signal and the update signal and
turns them into the clock/write signal:

Rcé = RceA udil, MW = Mw A udi].

The update of the data memory DM is only enabled if stage 3 is full, and
if thereis no reset:

Dmw = DmwA full[3] A Teset

The Moore control automaton provides 7 clock/write request signals and
signal Dmw (table 4.9). Together with two AND gates for the clocks of the
stages IF and 1D, the stall engine has cost

C:stall = 3'Cff +4'Cand+Cinv+2‘Cnor+Cor+(7+2+2) ‘Cand-

Asin the sequential design, the clocking of aregister adds delay Dss + 9,
whereas the update of the register file adds delay Diama(32,32) + 0. Thus,
the stall engine requires a cycle time of

Tstal = Astall(CE) + 3- Dang+ max{Dram3(32,32), D¢t} + .

The write signal Dmw of the data memory has now a dlightly larger accu-
mulated delay. However, an inspection of the data memory control DMC
(page 81) indicates that signal Dmwis still not time critical, and that the
accumulated delay of DM C remains unchanged.

Hardware Cost

For the DLX;; design and the DLX; design, the top level schematics of the
data paths DP are the same (figure 4.3), and so do the formula of the cost
CDp.

The control unit CON comprises the stall engine, the two memory con-
trollers IMC and DMC, and the two control automata of section 4.2.3. The
cost Ccon(moore aready includes the cost for buffering the Moore sig-
nals up to the write back stage. The cost of the control and of the whole
DLX;; core therefore sum up to

Ccon = Cimc +Cpmc + Cstail + Ccon(moorg + Ccon(mealy)
Coxp = Cpp+Ccon.

Table 4.15 Cost of the DLX data paths and al its environmentsfor the sequential
DLX core (1) and for the pipelined design DLX (2). Thelast row lists the cost of
the DLX; relative to that of the sequential design.

[T EX [SH4AL| GPR [IR]| PC | DP |CON | DLX |
1][4083] 380 | 4096 | 301] 416 || 10846 | 1105 11951
23315 | 380 | 4066/30 | 301 | 1906 || 12198 | 756 | 12954
0.81 1 458 | 112 | 068 | 1.08

Table 4.15 lists the cost of the DLX core and of its environments for
the sequential design (chapter 3) and for the pipelined design. The execute
environment of the sequential design consists of the environments ALUenv
and SHenv and of the 9 drivers connecting them to the operand and result
busses. In the DLXy design, the busses are more specialized so that EXenv
only requires three drivers and two muxes and therefore becomes 20%
cheaper.

In order to resolve structural hazards, the DLX; design requires an ex-
tended PC environment with adder and conditional sum incrementer. That
accounts for the 358% cost increase of PCenv and of the 12% cost increase
of the whole data paths.

Under the assumption that the data and control hazards are resolved in
software, the control becomes significantly cheaper. Due to the precompu-
tation and buffering of the control signals, the automata generate 19 instead
of 29 signals. In addition, the execution scheme is optimized, cutting the
total frequency vsymof the control signals by half. The constant, for exam-
ple, isonly extracted once in stage 1D, and not in every state of the execute
stage.

Cycle Time

In order to determine the cycle time of the DLX design, we distinguish
three types of paths, those through the control, through the memory system
and through the data paths.

Control Unit CON The automata of the control unit generate Mealy
and Moore control signals. The Mealy signals only govern the stage ID;
they have an accumulated delay of 13 gate delays. The Moore signals are
precomputed and therefore have zero delay:

Acon(csID) = Acon(mealy = 13
Acon(CSEX) = Acon(csM) = Acon(csWB = 0.

Section 4.3

PIPELINING AS A
TRANSFORMATION

141

Chapter 4

BASIC PIPELINING

142

Table 4.16 Cycletime of the DLX fixed-point core for the sequential (1) and for
the pipelined (2) design. In the pipelined design, dmem denotes the maximum of
the two access times dimem and dpmen; dmstat denotes the maximum of the two
status times djstat and dpstat.

ID EX WB IFEM control CON
GPRr | PC | ALU/SH | GPRw || memory [|auto | sl
1 27 70 70 37 16+ dmem || 42 | 37+ dmstat
2 27 54 66 33 16+ dnem || 32 | 41+ dmstat

The cycle time of the control unit isthe maximum of the times required by
the stall engine and by the automata

Tcon = Max{Tstall, Tauto}-

Compared to the sequential design, the automata are smaller. The maximal
frequency of the control signals and the maximal fanin of the states are cut
by 25% reducing time Tauto by 24% (table 4.16). The cycle time of the
whole control unit, however, is slightly increased due to the stall engine.

Memory Environments The cycle time Ty models the read and write
time of the memory environments IMenv and DMenv. Pipelining has no
impact on the time ty; which depends on the memory access times dmem
and dpmem

Tv = max{Timenv: ToMenv}-

Data Paths DP The cycle time Tpp is the maximal time of all cyclesin
the data paths except those through the memories. Thisinvolves the stages
decode, execute and write back:

Top = max{Tp, Tex, Twa}-

During decode, the DLX design updates the PC environment (Trceny),
reads the register operands (Tepri), extracts the constant, and determines
the destination address. Thus,

Tp = max{Tp(;emé Teprr, ACON(CS| D) + maX{DIRenV; DCAddr} + A}

Table 4.16 lists al these cycle times for the sequentia and the pipelined
DLX design. The DLX;; design aready determines the constant and the
destination address during decode. That saves 4 gate delays in the execute
and write back cycle and improves the total cycle time by 6%.

Section 4.4

The cycletime of stage ID isdominated by the updating of the PC. In the
sequential design, the ALU environment is used for incrementing the PC~ RESULT
and for the branch target computation. Since environment PCenv hasnow T ORWARDING
its own adder and incrementer, the updating of the becomes 20% faster.

Pipelining has the following impact on the cost and the cycle time ofdhesult 4.6
DLX fixed-point core, assuming that the remaining data and control haz-
ards can be resolved in software:

e The data paths are about 12% more expensive, but the control be-
comes cheaper by roughly 30%. Since the control accounts for 5%
of the total cost, pipelining increases the cost of the core by about
8%.

e The cycle time is reduced by 6%.

In order to analyze the impact which pipelining has on the quality of
the DLX fixed-point core, we have to quantify the performance of the
two designs. For the sequential design, this was done in [MP95]. For
the pipelined design, the performance strongly depends on how well the
data and control hazards can be resolved. Thisis analyzed in section 4.6.

4.4 Result Forwarding

N THIS section, we describe arather simple extension of the hardware of

machine DLX;; which permits to considerably weaken the hypothesis of
theorem 4.5. For the new machine, we will indeed show theorem 4.5 but
with the following hypothesis: If instruction | reads register GPRr], then
theinstructions I;_1, l;_» are not load operations with destination GPRr].

Suppose that for all» 0 and r# 0, the instructions; 11, li_, are not load < Theorem 4.7
operations with destination GRR, where GPIR] is a source operand of

instruction |. The following two claims then hold for all cycles T ard T

for all stages k and for all instructiongwith

lo(k, T') = In(k,T) =1.

1. For all signals S in stage k which are inputs to a registet But(k)
that is updated at the end of cycle T:

§-9

2. For all registers and Re out(k) which are visible or updated at the
end of cycle T:

!

R;+l — R|]
143

Chapter 4

BASIC PIPELINING

Lemma 4.8 »

144

4.4.1 Valid Flags

We first introduce three new precomputed control signals v[4 : 2] for the
prepared sequential machine DLX;. The valid signal v[j] indicates that the
data, which will be written into the register file at stage 4 (write back), is
already available in the circuitry of stage j. For an instruction |, the valid
signals are defined by

0 if instruction |; isaload
v[4] = 1; V3 =V[2] = { 1 otherwise ' = /Dmr;,

where Dmir; isthe read signal of the data memory for |;. Together with the
write signal GPRwof the register file and some other precomputed control
signals, the signals v[4 : 2] are pipelined in registers R2, R3 and R4 as
indicated in figure 4.15. For any stage k € {2,3,4}, the signas GPRwk
and v[k].k are available in stage k. At the end of stage k, the following
signals C' .k are available as well:

e C'.2whichistheinput of register MAR
e C'.3whichistheinput of register C, and
e C'.4which isthe datato be written into the register file GPR

Observe that the signals C'.k are inputs of output registers of stage k.

Therefore, one can apply part 1 of the theorem to these signals in certain

cycles. Thisiscrucia for the correctness proof of the forwarding logic.
Obvioudly, the following statements hold:

For all i, for any stage k> 2, and for any cycle T withy(k,T) =1, it
holds:

1. |y writes the register GPR] iff after the sequential execution @f |
the address r, which is different fro@yis kept in the registers Cakl
and the write signals GPRlare turned on, i.e.:

li writes GPRr] <« (Cadk)=r Ar#0 A GPRwk = 1.

2. If I; writes a register GPR], and if after its sequential execution,
the valid flag VK| is turned on, then the value of signélkCduring
cycle T equals the value written Qyile.:

li writes GPRr] A v[Ki=1 — C'.K' = GPRT];.

Moreover, C.k is clocked into an output register of stage k at the end

ofcycle T.

| CON ' IMm__| DP
3 1 stage IF
. DR1 out(0)
3 —| stageID
' R2 D GPRw.2[z [v[4].2[Y [v[3].2] X |v[2].2\f out(1)
3 1 stage EX
' R3 D GPRw.3[z[v[4].3[Y [v[3].3] | out(2)
3 | 1 stage M

' R4 > GPRw.4[z[v[4] 4] out(3)
3 77777777 ’””l”j”””””””j stage WB

out(4)

Figure 4.15 Structure of the data paths DP and of the precomputed control CON
of the extended DLX;; machine

In the decode stage, the valid signals are derived from the memory read
signal Dmr, which is precomputed by the control automata. The generation
and buffering of the valid signals therefore requires the following cost and
cycletime:

Cvaup = (34+2+1)-Ctt +Ciny
TVALID = Tauto+Dinv-

This extension effects the cost and cycle time of the precomputed control
of the pipelined DL X design.

4.4.2 3-Stage Forwarding

We describe a circuit Forw capable of forwarding data from the three
stages j = 2,3, 4 into stage 1. It has the following inputs

1. Cad.j,C'.j,GPRwj as described above,
2. an address ad to be matched with Cad, and
3. adata Din from a data output port of the register file,

and it has an output Dout feeding data into stage 1. The data Din are fed
into stage 1 whenever forwarding is impossible.

Section 4.4

FORWARDING

145

Chapter 4

BASIC PIPELINING

146

a) b)
topA topB
ad top Dout Aad T Ain Bad T Bin

ot ot

Cad.2, C'.2, GRPW.2 —= [4:2] ad Dout ad Dout

Cad.3, C'.3, GRPw.3 —=1 Forw(3) Forw(3) Forw(3)

Cad.4, C .4, GRPw.4 —= Din Din
Din GPRoutA GPRoutB

Figure 4.16 Block diagram of circuit Forw(3) and the forwarding engine

The data paths of the pipelined machine DLX; will be augmented by
a forwarding engineconsisting of two circuits Forw(3), as depicted in
figures 4.16. One of the circuits forwards data into register A, the other
forwards data into register B. In genera, forwarding engines will take
care of all data transport from high stages to low stages, except for the
instruction memory address. Thus, in the top level data path schematics
(figure 4.17), there will be no more upward edgdstween the stages 1 to
4.

We proceed to specify circuit Forw(3), give a simple realization and
then prove the theorem 4.7.

Circuit Forw
For the stages j € {2, 3,4}, we specify the following signals:

hit[j] = (full.j A GPRwj) A (ad#0) A (ad=Cad.j).

Signal hit[]] is supposed to indicate that the register accessed by the in-
struction in stage 1 is modified by the instruction in stage j. Except for the
first four clock cycles T = 0,...3 al pipeline stages are full (table 4.13),
i.e., they process regular instructions. However, during the initial cycles,
an empty stage is prevented from signaling a hit by itsfull flag. Signal

i—1
top.j = hit[j] A J/\ /hit[X
X=2

indicates moreover, that there occurs no hit in stages above stage j. The
data output Dout is then chosen as

, . . :
Dout — C..j if tOp..j =1 for some j
Din otherwise

Section 4.4

= IMenv —\L RESULT
FORWARDING
""""""""""""""""""""""""""""""" b IR
PCenv L ¢
"""""" > AB] D link,PC [| " Dcol
EX \i' \b —
B
o
v il
""""" o [C2 5 MAR o PMDRw] | &
M S %
0 c
= DMenv RS
5 |C3 5
] $ m
""""" s [P cl o DMDR
wB | 2
Ca SH4!_env
i Ve Cad.4
GPRenv Aad Bad

GPRoutA, GPRoutB

Figure 4.17 Top level schematics of the DLX;; data paths with forwarding. For
clarity’s sake, the address and control inputs of the stall engine are dropped.

Realization of Circuit Forw

An example realization is shown in figure 4.18. The circuitry to the left
generates the three hit signals hit[4 : 2], whereas the actual data selectionis
performed by the three multiplexers. The signalstop.j are implicit in the
order of the multiplexers. The signalstop.j, which will be needed by the
stall engine, can be generated by two inverters and three AND gates. The
cost of thisrealization of circuit Forw then runs at

Crow(3) = 3-(Cequal(5) +3-Cand+Cimux(32))
+Cortree(5) + 2 Cinv + 3 Cang.

This forwarding engine provides the output Dout and the signalstop.j at
the following delays

Drorw(Dout;3) = Dequal(5) + 2 Dand+ 3 Dmux
Drorw(top; 3) DequaI(S) +4-Dand+ 3- Dmux -
147

Chapter 4

BASIC PIPELINING

148

ad 5]
T ‘OR
GPRw. .
full. hit(2]
]
equal (5)
< full.
Z ual (5
il 4 D) hit[4]
pryma T (C] — ,

Din

Figure 4.18 A realization of the 3-stage forwarding circuit Forw(3)

the delay islargely due to the address check. The actual data Din and C. j
are delayed by no more than

Drorw(Data;3) = 3 Dmuyx

Let A(C',Din) denote the accumulated delay of the data inputs C.i and
Din. Since the addresses are directly taken from registers, the forwarding
engine can provide the operands Ain and Bin at the accumulated delay
A(Ain, Bin); this delay only impacts the cycle time of stage ID.

A(Cla Din) = max{Aexens AsHiLen DGPRread}
A(Ain,Bin) = max{A(C’,Din) + Arorw(Data, 3), Drorw(Dout, 3) }
The construction obviously generalizes to s-stage forwarding with s> 3,
but then the delay is proportional to s. Based on parallel prefix circuits one

can construct forwarding circuits Forw(s) with delay O(logs) (see exercise
4.3).

4.4.3 Correctness

We now proceed to prove theorem 4.7. We start with a simple observation
about valid bitsin asituation whereinstruction | reads register GPRr] and
one of the three preceding instructions k_4 (with o € {1,2,3}) writes to
register GPRr]. In the pipelined machine, the read occurs in acycle T
when instruction |j isin stage 1, i.e., when

In(k, T) = 1.
During this cycle, instruction |;_ isin stage 1+ a:
I(1+aT) = i—a.

We consider the time T’, when instruction l;_o is in stage 1+ a of the
prepared sequential machine:

ls(L+aT') =i—a.

Incycle T’, the prepared sequential machine has not yet updated register
GPRr]. The following lemma states, where we can find a precomputed
version of GPR[r]i_q in the sequential machine.

Suppose the hypothesis of theorem 4.5 hqldsatls GPR], instruction
li_q writes GPRr], and L(1+0a,T’) =i—a, then

C.(1+0a)) = GPRIrli_q.

If li_o isaload instruction, then by the hypothesis of the theorem we have
o = 3. Inthis case, the valid bits are generated such that

Vi4|i_q =V[1+a]iq=1
In any other case, the valid signals for any j > 2 equal
V[jlia =1
The claim now follows directly from lemma 4.8.

Proof of Theorem 4.7 The proof proceeds along the same lines as the
proof of theorem 4.5 by induction on T where T denotes a cycle in the
pipelined execution with I(k, T) =i. Since only the inputs of stage 1 were
changed, the proof for the case T = 0 and the induction step for k # 1
stay literally the same. Moreover, in the induction step, when we conclude
fromT —1to T for k=1, we can aready assume the theorem for T and
k> 1. We only need to show the claim for those input signals of stage 1,
which depend on the results of later stages, i.e., the signals Ain and Bin.
For all the other signals and output registers of stage 1, the claim can the
be concluded asin the proof of theorem 4.5.

A read from GPRr] can be into register A or into register B. In the
induction step, we only treat the case where instruction k reads GPRr]
into register A. Reading into register B istreated in the same way with the
obvious adjustments of notation.

There are two cases. In the interesting case, the hypothesis of theorem
4.5 does not hold for instruction I, i.e., thereisan a € {1,2,3} such that
instruction l;_q writes GPRr]. By the hypothesis of the theorem, this in-
struction is not aload instruction. For the valid bits thisimplies

V[j]ifa =1

Section 4.4

REsuLT
FORWARDING

< Lemma 4.9

PROOF

QED

PROOF

149

Chapter 4

BASIC PIPELINING

150

for al stages j. Application of the induction hypothesis to the instruction
register gives IR = IR!. Since |; reads GPR[r], it follows for signal Aadr:

= (Aad) = (Aady).

Since li_q writes register GPRr], it follows by lemma 4.8 for any stage
j > 2that
GPRwji_¢ A ((Cad.ji_q) =T1) A (r #0).

For stage j = 1+ @, the pipelining schedule implies (table 4.14, page 138)
In(j,T) = In(14+0a,T) = i—a,
Notethat none of the stagesOtoi +a isempty. By theinduction hypothesis
it therefore follows that
hit{l+a]f = full.(1+a)l A GPRW(1+a)}
(r#0) A ((Cad.(1+0a)])=r)
= 1A GPRw(1l+a);—
(r#0) A ((Cad (1+a)i—a) =T)
= 1
Let li_y be the last instruction before I; which writes GPRr]. Then no
instruction between |; and |;_q writes GPRr], and we have
hit[I]} =0
for any stage | with 1 < | < 1+ a, and hence
top.(1+a)f =1.
Let T’ denote the cycle in the sequential execution with
lo(1+0a,T) = Ig(1+0a,T) = i—a.
The forwarding logic delivers the output

Doutt = C.(1+a)}
= C.(1+a)) bylemma4.8and by
thetheoremfor Tandk =1+«
= GPRr]i_q by lemma 4.9
= GPHI’]F]_

In the simple second case, the stronger hypothesis of theorem 4.5 holds
for ;. For any i > 4, this means that none of theinstructions k_1,1;_2,li_3
writes GPRr]. As above, one concludes that

hit[jlr = O,

Section 4.5

for al j. Hence, the forwarding logic behaves like the old connection
between the data output GPRoutAof the GPR environment and the input ~ F/ARDWARE
Ain of the decode stage delivering INTERLOCK

Doutl = Dinl = GPRr]i_s = GPRr]i_1.

For i < 3, the DLX pipeline is getting filled. During these initial cycles
(T < 3), either stage k > 1 is empty or instruction I; with I(k, T) = j <2
does not update register GPR[r]. As above, one concludes that for any |
hit[jJ = 0,
and that
Doutl = Dinl = GPRr]_;
QED

4.5 Hardware Interlock
4.5.1 Stall Engine

In this section, we construct anontrivia stall engine called hardware inter-
lock This engine stalls the upper two stages of the pipeline in a situation
called adata hazard i.e., when the forwarding engine cannot deliver valid
dataon time. Recall that this occurs if

1. aninstruction I; which reads from aregister r A0 isin stage 1,

2. one of theinstructions ljwithj € {i — 1,i — 2} isaload with destina-
tionr,

3. and | isthelast instruction before |; with destination r.

This must be checked for both operands A and B. In the existing machine,
we could characterize this situation by the activation of the signal dhaz

dhaz = dhazAv dhazB
dhazA = topA2A/v[2].2 V topA3A /v[3].3
dhazB = topB2A/v[2].2 V topB3A /V[3].3.

Based on this signal, we define the two clocks, the clock CE1 of the stages
0 and 1, and the clock CE2 of the stages 2 to 4:

CE2 = /(ibusyvdbusy V (resetA /ibusy)
CE1 = /(ibusyvdbusyy dhaz Vv (resetA /ibusy). R
151

Chapter 4

BASIC PIPELINING

152

Thus, CE2 corresponds to the old clock signal CE, whereas CEL is aso
inactive in presence of a data hazard.

Whenever the lower stages of the pipeline are clocked while the upper
stages are stalled, a dummy instructior(i.e., an instruction which should
not be there) enters stage 2 and trickles down the pipe in subsequent cycles.
We have to ensure that dummy instructions cannot update the machine.
One methad is to force a NOP instruction into stage 2 whenever CE2 A
/CE1=1. Thismethod unfortunately depends on the particular instruction
set and its encoding. When stalling a different pipeline, the corresponding
part of the hardware has to be modified. A much more uniform method is
the following:

1. Track true instructions and dummy instruction in stage k by asingle
bit full .k, where full .k =1 signals atrue instruction and full.k=0
signals a dummy instruction.

2. In CE2 cycles with full.k = 0, do not update stage k and advance
the dummy instruction to stage k+ 1 if k+1 < 4.

The following equations define a stall engine which uses this mecha-
nism. It is clocked by CE2. A hardware realization is shown in figure
4.19. For k > 2,

ue0 = CEl1
fullll = 1
uel = CE1 A reset
uek = CE2 A resetA full.k

full,k = ue(k—1)

This is an amost trivial set of equations. However, enabling the hit
signals hit[j] by the corresponding full flagsis a subtle and crucial part of
the mechanism. It ensures that dummy instructions cannot activate a hit
signa hit[j] nor the data hazard signal (exercise 4.4).

In order to prevent dummy instructions from generating a dbusysignal
and from updating the data memory, the read and write signals Dmf and
Dmw of the data memory DM are also enabled by the full flag:

Dmr = Dmr A full.3
DmwW = DmwA full.3 A reset

where Dmr and Dmw are the read and write request signals provided by
the precomputed control.

CE1l
uel
rm _—— = CEZ ,,,,,,,,,,
CE2
ue.2
********* CE2— ful3 |----------
ue.3
********* CE2— full4 |----------
ued

Figure 4.19 Hardware interlock engine of the DLX;; design

Hardware Cost and Delay
The modifications presented above only effect the stall engine. The Stall
Engine of figure 4.19 determines the update enable signals uei based on
the clocks CE1 and CE2. These clock signals can be expressed as

CE2 = /busyV (/reset NOR ibusy)

CE1 = (/busyA/dha? Vv (/reset NOR ibusy)

/busy = ibusy NOR dbusy

The clocks now also depend on the data hazard signal dhazwhich can be
provided at the following cost and delay:

thaz = Z'Cinv+4‘cand+ 3'Cor
Asta(dha = Acorw(top;3) +Dand+2- Dor.

Since signal resethas zero delay, the clocks can be generated at an accu-
mulated delay of

Astall(/busy = max{Amen(ibusy), Aomenddbusy} + Dnor
Astall(CE) = max{Astail(/busy, Astaii(dhaz } + Dang+ Dor.
For each register and memory, the stall engine turns the clock/write re-
quest signal into aclock/write signal. Dueto the signal Dmr and Dmw that

now requires 11 AND gates. Altogether, the cost of the stall and interlock
engine then runs at

Cstall = 3‘Cff +Cinv+ (5+ 11+ 1) ‘Qand+2'cn0r+2'cor+cdhaz

Section 4.5

HARDWARE
INTERLOCK

153

Chapter 4

BASIC PIPELINING

154

Since the structure of the stall engine remains the same, its cycle time can
be expressed as before:

Tstal = Astall(CE) + 3 Dand+ max{Dram3(32,32), D¢t } + 0.

4.5.2 Scheduling Function

With the forwarding engine and the hardware interlock, it should be pos-
sible to prove a counterpart of theorem 4.7 with no hypothesis whatsoever
about the sequence of instructions.

Before stating the theorem, we formalize the new scheduling function
In(k,T). Thecycles T under consideration will be CE2 cycles. Intuitively,
the definition says that anew instruction isinserted in every CE1 cycleinto
the pipe, and that subsequently it trickles down the pipe together with its
full.k signals. We assume that cycle O is the last cycle in which the reset
signal is active.

The execution still starts in cycle 0 with I(0,0) = 0. The instructions
are always fetched in program order, i.e.,

[if ued’ =0

i+1 if uel' =1 (4-3)

I(0,T)=i — 140, T+1) = {
Any instructions makes a progress of at most one stage per cycle, i.e,, if
In(k, T) =i, then

_ { Ik, T +1) it uek =0 44

lnk+1,T+1) if uek'=1 and k+1<4

We assume that the reset signal is active long enough to permit an access
with address 0 to the instruction memory. With this assumption, activation
of the reset signal has the following effects:

CE2 = 1
ue0 = CE1
uel = ue2 = ue3 =ued4 = 0.

After at most one cycle, the full flags are initialized to
full.1=1, full.2 = full.3 = full.4 = 0,
read accesses to the data memory are disabled (DMr' = 0), and thus,

busy = dhaz = 0.

When the first access to IM is completed, the instruction register holds
IR=IM][O].

Thisisthesituation in cycle T = 0. From the next cycle on, the reset signal
is turned off, and a new instruction is then fed into stage O in every CE1
cycle. Moreover, we have

ue0’ = uel’ = CE1" foral T>1,

i.e., after cycle T = 0, stages 0 and 1 are always clocked simultaneously,
namely in every CE1 cycle. A simpleinduction on T givesforanyi > 1

IO,T)=i — I1,T)=i—1 (4.5)

This means that the instructions wander in lockstep through the stages 0
andl. ForT > 1and 1< k<3, it holds that

uek" =1 — ue(k+1)T=1

Onceaninstruction is clocked into stage 2, it passes one stage in each CE2
clock cycle. Thus, an instruction cannot be stalled after being clocked into
stage 2, i.e., it holds for k € {2, 3}

Ik, T)=i — Ig(k+1,T+1) =i. (4.6)
The stall engine ensures the following two features:

1. Aninstructionilcan never overtake the preceding instruction. |

2. For any stage k> 1 and any cycle T> 1, the value(k, T) of the

Section 4.5

HARDWARE
INTERLOCK

< Lemma 4.10

scheduling function is defined iff the flag f.llls active during cycle

T, full k™ =1.

1) Since the instructions are always fetched in-order (equation 4.3), in-
struction [; enters stage O after instruction 1. Due to the lockstep behav-
ior of the first two stages (equation 4.5), there exists acycle T with

IO, T) =i A In(L,T)=i—1.

Let T" > T bethe next cycle with an active CE1 clock. The stages0 and 1
are both clocked at the end of cycle T'; by equation 4.4 it then follows that
both instructions move to the next stage:

(LT +1) =i A (2T +1) =i—1.

PROOF

155

Chapter 4

BASIC PIPELINING

156

QED

Instruction l;_1 now proceeds at full speed (equation 4.6), i.e., it holds for
ac {1,2} that
In(2+aT +1+a)=i—1

Instruction I; can pass at most one stage per cycle (equation 4.4), and up
to cycle T + 1+ a it therefore did not move beyond stage 1+ a. Thus, |
cannot overtake I;_1. This proves the first statement.

2) The second statement can be proven by a simple induction on T; we
leave the details as an exercise (see exercise 4.5).

Deadlock Free Execution
Finally, we have to argue that the stall mechanism cannot produce dead-
locks. Let both clocks be active during cycle T — 1, i.e,,

CE1™"! =cCcE2™?! = 1,

let theinstructions I, I’ and I” bein the stages 1 to 3 during cycle T. I, ”
are possibly dummy instructions. Furthermore, let CEL" = 0. Thus, the
hazard flag must be raised (dhaZ = 1), and one of the instructions I’ and
I” must be aload which updates a source register of .

1. Assuming that instruction I’ in stage 2 is such aload, then
v2l =v3™'=0 and v4'?=1

Instruction I’ produces a data hazard during cycles T and T + 1.
During these cycles, only dummy instructions which cannot activate
the dhazsignal enter the lower stages, and therefore

dhaZt?=0 and CE1"t2=1.

2. Assuming that instruction 1" in stage 3 isthe last load which updates
asource register of 1, then

v2l =v3™1=1 v3"=0 and v4'™*i=1

Instruction |I” produces a data hazard during cycle T, and a dummy
instruction enters stage 2 at the end of the cycle. In the following
CE2 cycle, there exists no data hazard, and the whole pipeline is
clocked:

dhaZz™1=0 and CE1"'=1.

Thus, the clock CE1 isdisabled (CE1 = 0) during at most two consecutive
CE2 cycles, and all instructions therefore reach al stages of the pipeline.
Note that none of the above arguments hinges on the fact, that the pipelined
machine simulates the prepared sequential machine.

Section 4.5

4.5.3 Simulation Theorem
HARDWARE

We can now show the simulation theorem for arbitrary sequences of in- INTERLOCK

structions:

For all i, k, T, T’ such that (k, T) = lo(k, T’) =i and uek” = 1, the <« Theorem 4.11
following two claims hold:

1. for all signals S in stage k which are inputs to a registet But(k)
that is updated at the end of cycle T:
Si=
2. for all registers and Re out(k) which are visible or updated at the

end of cycle T:
R;+l — R|

We have argued above that IM[0] is clocked into register IR at theend PROOF
of CE2 cycle 0, and that the PC is initialized properly. Thus, the theorem
holds for T = 0. For the induction steps, we distinguish four cases:

1. k=0. Stage 0 only gets inputs from the stages 0 and 1. Without
reset, these two stages are clocked simultaneously. Thus, the inputs
of stage 0 only change on an active CE1 clock. Arguing about CE1
cyclesinstead of CE2 cycles, one can repeat the argument from the-
orem 4.7.

2. ke {2,4}. In the data paths, there exists only downward edges into
stage k, and the instructions pass the stages 2 to 4 at full speed. The
reasoning therefore remains unchanged.

3. k=3. From I(3,T) =i one cannot conclude I(3,T —1) =i—1
anymore. Instead, one can conclude

In(3,t) =i—1

for the last cyclet < T such that (3,t) is defined, i.e., such that a
non-dummy instruction wasin stage 3 during cycle t. Since dummy
instructions do not update the data memory cell M, it then follows
that

ML = M; 1 by induction hypothesis
= ML
157

Chapter 4

BASIC PIPELINING

158

4, k=1.Forl(1,T)=ianduel’ =1 we necessarily havedhaZ = 0.

If I; has no register operand GPR][], then only downward edges are
used, and the claim follows as before. Thus, let |, read a register
GPR[r] with r #£ 0. The read can be for operand A or B. We only
treat the reading of operand A; the reading of B istreated in the same
way with the obvious adjustments of notation.

If theinstructions |y, . .. l;_1 do not update register GPR[r], it follows
for any k > 1 that
(GPRwk! = 0) v ((Cadkl) #r),

or that stage k processes a dummy instruction, i.e., full.k' = 0.
Thus, hit signal hit.k" isinactive, and the reasoni ng of theorem 4.7
can be repeated.

If register GPR([r] isupdated by aninstruction preceding k, we define
last(i,r) asthe index of the last instruction before § which updates
register GPR([r], i.e.,

last(i,r) = max{j <i|l; updates register GPRr]}.

Instruction | =I5 r) iS€ither still being processed, or it has already
left the pipeline.

If instruction | is still in process, then there exists astage | > 2 with
(1, T) = last(i,r).
From lemma4.10 and the definition of last(i,r), it follows that
hitAIT = 1,

and that any stage between stage 1 and | is either empty or processes
an instruction with a destination address different from r. By the
construction of circuit Forw, it then follows that

topAk! = 1.

Since dhaz_T = 0, the hazard signal of operand A is also inactive,
dhazA = 0. By the definition of this signal and by the simulation
theorem for | > 2 it follows that

T
V-In =1= V-Ilast(i,r)-

The decode stage k = 1 then reads the proper operand A of instruc-
tion I,

Aint = C.I} ; design of the forwarding engine
GPRI]jastiy) theorem for stages 2 to 4
= GPRrji-1 ; definition of last(i,r),

Table 4.17 Cost of the sequential DLX core and of the pipelined DLX designs

\ Design H DP\ CON \ DLX \
sequential 10846 | 1105 | 11951
basic pipeline 12198 | 756 | 12954

pipeline + forwarding || 12998 | 805 | 13803
pipeline + interlock 13010 | 830 | 13840

and the claim follows for stage k = 1.

If instruction | already ran to completion, then there exists no stage
| > 2with

(1, T) = last(i,r).

With reasoning similar to the one of the previous case it then follows
that

Ainﬁ = GPF{r]L = GPF{r]Iast(i,r) = GPRr]i_1,
and thus, | gets the proper operand A.

4.6 Cost Performance Analysis

N PREVIOUS sections we have described severa variants of a pipelined

DLX core and have derived formulae for their cost and cycle time. In
the following, we will evaluate the pipelined and sequential DL X designs
based on their cost, cycle time, and performance-cost ratio. The SPEC
integer benchmark suite SPECint92 [Hil95, Sta] serves as workload.

4.6.1 Hardware Cost and Cycle Time

Table 4.17 lists the cost of the different DLX designs. Compared to the
sequential design of chapter 3, the basic pipeline increases the total gate
count by 8%, and result forwarding adds another 7%. The hardware inter-
lock engine, however, has virtually no impact on the cost. Thus, the DLX;
design with hardware interlock just requires 16% more hardware than the
sequential design.

Note that pipelining only increases the cost of the data paths; the control
becomes even less expensive. This even holds for the pipelined design
with forwarding and interlocking, despite the more complex stall engine.

Section 4.6

Cost

PERFORMANCE

ANALYSIS

QED

159

Chapter 4

BASIC PIPELINING

160

Table 4.18 Cycle time of the DLX core for the sequentia and the pipelined de-
signs. The cycletime of CON is the maximum of the two listed times.

| Design [AB[PCEX] IEM | CON |
sequential 27 | 70 | 70 || 184 dmem || 40 | 39+ dmstat
basic pipe 27 | 54 | 66 || 16+ Onem || 32 | 41+ dmstat

pipe + forwarding || 72 | 93 | 66 || 16+ dmem || 34 | 41+ dmstat
pipe + interlock 72 | 93 | 66 || 16+ dmem || 57 | 43+ Omstat

this time can be reduced to 89 by using afast zero tester for AEQZ

According to table 4.18, the result forwarding slows down the PC envi-
ronment and the register operand fetch dramatically, increasing the cycle
time of the DLX core by 40%. The other cycle times stay virtually the
same. The hardware interlocks make the stall engine more complicated
and increase the cycle time of the control, but the time critical paths re-
mains the same.

The significant slow down caused by result forwarding is not surprising.
In the design with a basic pipeline, the computation of the ALU and the
update of the PC are time critical. With forwarding, the result of the ALU
is forwarded to stage ID and is clocked into the operand registers A1 and
B1l. That accounts for the ow operand fetch. The forwarded result is
also tested for zero, and the signal AEQZ is then fed into the glue logic
PCglueof the PC environment. PCglueprovides the signal b jtakenwhich
governs the selection of the new program counter. Thus, the time critical
path is slowed down by the forwarding engine (6d), by the zero tester (9d),
by circuit PCglue(6d), and by the selection of the PC (6d).

With the fast zero tester of exercise 4.6, the cycle time can be reduced
by 4 gate delays at no additional cost. The cycle time (89d) is still 35%
higher than the one of the basic pipeline. However, without forwarding
and interlocking, all the data hazards must be resolved at compile time by
rearranging the code or by insertion of NOP instructions. The following
sections therefore analyze the impact of pipelining and forwarding on the
instruction throughput and on the performance-cost ratio.

4.6.2 Performance Model

The performance is modeled by the reciprocal of the benchmark’s execu-
tion time. For a given architecture A, this execution time is the product of

the design’s cycle time 1 and its cycle count CCa:
TA = Ta- CCA.

Cycle Count of Sequential Designs

In asequential design, the cycle count is usually expressed as the product
of the total instruction count IC and the average number of cycles CPI
which are required per instruction:

CC = IC-CPl. (4.7)

The CPI ratio depends on the workload and on the hardware design. The
execution scheme of the instruction set Is defines how many cycles CP|
an instruction | requires on average. On the other hand, the workload to-
gether with the compiler defines an instruction count IG for each machine
instruction, and so the CPI value can be expressed by

IC
CPl =Y —=CPl, = § v,-CPI, (4.8)
Iels IC IeZs

where v, denotes the relative frequency of instruction | in the given work-
load.

Cycle Count of Pipelined Designs

Pipelining does not speed up the execution time of a single instruction,
but it rather improves the instruction throughput, due to the interleaved
execution. Thus, it isdifficult to directly apply the formulae (4.7) and (4.8)
to apipelined design.

In case of perfect pipelining, it takes (k— 1) cycles to fill a k-stage
pipeline. After that, an instruction is finished per cycle. In this case, the
cycle count equals

CC =k-1+IC = IC.

For very long workloads, the cycle count virtually equals the instruction
count. However, perfect pipelining is unreadistic; the pipeline must be
stalled occasionaly in order to resolve hazards. Note, that the stalling is
either due to hardware interlocks or due to NOPs inserted by the compiler.
Let v, denote the relative frequency of a hazard h in the given workload,
and let CPH, denote the average number of stall cycles caused by this
hazard. The cycle count of the pipelined design can then be expressed as

CC=IC+ Z IC-v,-CPH, = IC- <1+;vh-CPHh>.
hazard h

Section 4.6

Cost
PERFORMANCE
ANALYSIS

161

Chapter 4

BASIC PIPELINING

162

In analogy to formula (4.8), the following term is treated as the CPI ratio
of the pipelined design:

CPl = 1+ Z Vh-CPH;. (4.9
hazard h

4.6.3 Delay Slots of Branch/Jump Instructions

It is the matter of an optimizing compiler to make a good use of the
branch/jump delay dlots. In the most trivial case, the compiler just fills
the delay slots with NOP instructions, but the compiler can do a much
better job (table 4.19, [HP96]). It tries to fill the delay slots with useful in-
structions. There are basically three code blocks to choose the instructions
from, namely:

1. The code block which immediately precedes the branch/jumfhe
delay dlot can befilled with anon-branch instruction from this block,
if the branch does not depend on the re-scheduled instruction, and if
the data dependences to other instructions permit the re-scheduling.
This aways improves the performance over using a NOP.

2. The code from the branch/jump target The re-scheduled instruc-
tion must not overwrite data which is still needed in the case that
the branch is not taken. This optimization only improves the perfor-
mance, if the branch is taken; the work of the delay dlot is wasted
otherwise.

3. The code from the fall through of a conditional branchin analogy
to the second case, the re-scheduled instruction must not overwrite
data needed if the branch is taken. This optimization only improves
the performance if the branch is not taken.

Strategy 1) isthe first choice. The other two strategies are only used when
the first one is not applicable. How well the delay slot can be filled also
depends on the type of the branch/jump instruction:

e An unconditional, PC relative branch/jump is aways taken and has
afixed target address. Thus, if the first strategy does not work, the
target instruction can be used to fill the delay slot.

e An unconditional, absolute jump is always taken, but the target ad-
dress may change. This type of jump usualy occurs on procedure
call or on return from procedure. In this case, there are plenty of
independent instructions which can be scheduled in the delay slot,
e.g., theinstructions for passing a parameter/resullt.

Table 4.19 Percentage of conditional branchesin the SPECint92 benchmarksand
how well their delay slot (DS) can befilled. AV denotes the arithmetic mean over
the five benchmarks.

\ | compress | egntott | espresso| gec| li] AV|
% branch 17.4 24.0 152 | 116 | 148 | 16.6
empty DS 49% 74% 48% | 49% | 75% || 59%

Table 4.20 Instruction mix [%] of the SPECint92 programs normalized to 100%.

| instructions | compress | eqntott | espresso | gec| i AV|
load 19.9 30.7 211 | 23.0| 316 253
store 5.6 0.6 51| 144 16.9 85
compute 55.4 42.8 572 | 471 | 283 | 46.2
cdl (d, jar) 01 05 04| 11| 31| 10
jump 16 14 10| 28| 53| 24
branch, taken 12.7 17.0 9.1 7.0 7.0 10.6
~, untaken 4.7 7.0 61| 46| 7.8 6.0

e A conditional branch. If the branch results from an if-then-else con-
struct, it is very difficult to predict the branch behavior at compile
time. Thus, if the first strategy does not work, the delay slot can
hardly be filled with an useful instruction. For loops the branch pre-
diction ismuch easier because the body of aloop isusually executed
several times.

Thus, the delay slot of an unconditional branch/jump can always be filled;
only conditional branches cause some problem. For these branches, the
compiler can only fill about 40% of the delay Slots (table 4.19).

4.6.4 CPI Ratio of the DLX Designs

For our analysis, we assume an average SPECint92 workload. Table 4.20
lists the frequencies of the DL X machine instructions on such aworkload.
The table is taken from [HP96], but we have normalized the number to
100%.

Section 4.6

Cost

PERFORMANCE

ANALYSIS

163

Chapter 4

BASIC PIPELINING

164

Table 4.21 Number of CPU cycles and memory accesses per DLX instruction.

| instructions | CPU cycles | memory accesses| CPl |
load, store 3 2 5+2-WS
compute 3 1 44+WS
cal (ja, jalr) 4 1 5+WS
jump 2 1 3+WS
branch, taken 3 1 44+WS
branch, untaken 2 1 3+WS

Sequential Design

For the sequential DLX design, table 4.21 specifies the number of CPU
cycles and the number of memory accesses required by any machine in-
struction |. This table is derived from the finite state diagram of figure
3.20 (page 90). Let amemory access require W Swait states, on average.
The CPI, vaue of an instruction | then equals the number of its CPU cy-
clesplus (W S+ 1) times the number of memory accesses. When combined
with the instruction frequencies from table 4.20, that yields the following
CPI ratio for the sequential DLX design:

CPlpLxs = 426+ 1.34-WS

Pipelined Design with Interlock

Even with result forwarding, the pipelined DLX design can be slowed
down by three types of hazards, namely by empty branch delay dlots, by
hardware interlocks due to loads, and by slow memory accesses.

Branch Delay Slots The compiler tries to fill the delay slot of a branch
with useful instructions, but about 59% of the delay slots cannot be filled
(table 4.19). In comparison to perfect pipelining, such an empty delay slot
stalls the pipeline for CPHyops= 1 cycles. This hazard has the following
frequency:

Since these control hazards are resolved in software, every empty delay
slot also causes an additional instruction fetch.

Hardware Interlock Since the result of aload can only be forwarded
from stage WB, the forwarding engine cannot always deliver the operands

on time. On such a data hazard, the hardware interlock engine inserts up
to two dummy instructions. The compiler reduces these data hazards by
scheduling independent instructions after aload wherever that is possible.

According to [HP96], both interlocks can be avoided for 63% of the
loads, and for another 11% at least one of the interlocks can be avoided.
Thus, two interlocks occur only for 26% of all loads. Each interlock in-
creases the cycle count by CPHyopL = 1 cycle. On the workload under
consideration, this hazard has a frequency of

Slow Memory Accesses In a hierarchical memory system, most of the
accesses can be completed in a single cycle, but there are also slow ac-
cesses which require some wait states. Let every memory access require
an average of CPHgjowm = W Swait states. The frequency of a slow mem-
ory access then equals the number of loads, stores and instruction fetches:

VslowM = Vioad 1+ Vstoret Vfetch

Since the branch hazards are resolved in software by inserting a NOP, they
cause Vnopg additional instruction fetches. Load hazards are resolved by
a hardware interlock and cause no additional fetches. Thus, the frequency
of instruction fetches equals

Vfetch = 1+Vnops = 1.1

Summing up the stall cycles of all the hazards yields the following CPI
ratio for the pipelined DLX design with forwarding:

CPloLx, = 1+VNopB' 1+ VNopL: 1+ Vsiowm: CPHsiowm
1.264+1.44-WS

Pipelined Design without Forwarding

The design DLX with the basic pipeline resolves the hazards in soft-
ware; if necessary, the compiler must inserts NOPs. This design faces
the same problems as the DLX;; design, but in addition, it must manage
without result forwarding. Whenever the DLX; pipeline would forward a
result, the compiler must re-arrange the code or insert aNOP. According to
simulations [Del97], these forwarding hazards stall the basic pipeline for
CPH oy = 1 cycles each, and they have afrequency of

VforW — 039

Section 4.6

Cost
PERFORMANCE
ANALYSIS

165

Chapter 4

BASIC PIPELINING Table 4.22 Hardware cost, cycletime and CPI ratio of the DLX designs (sequen-
tial, basic pipeline, pipeline with interlock)

Gate Count | Cycle Time CPI Ratio
abs. | rel. | abs. | rel. WS | 03] 1
DLXs | 11951 | 1.0 | 70 | 1.0 | 4.26+1.34-WS| 4.66 | 5.60

DLXmp || 12949 | 1.08 | 66 | 0.94 | 1.654+2.0-WS | 225 | 3.65
DLXy | 13833 | 1.16 | 89 | 1.27 | 1.26+1.44-WS| 1.70 | 2.70

The simulation assumed that the additional hazards are resolved by in-
serting a NOP. Thus, every branch, load or forwarding hazard causes an
additional instruction fetch. The frequency of fetches then runs at

Vfetch = 1+ VNope+ VNopL+ Viorw
= 1+0.1+0.16+0.39 = 1.65,

and slow memory accesses have a frequency of
V5|ow|\/| = V|oad + Vstore+ ertch = 0253+ 0085+ 165 ~ 20

Thus, the CPI ratio of the pipelined DLX design without forwarding is.

CPbix, = 1+ (VNopB+ VNopL+Vforw) - 1+ Vsiowm - CPHsjowm
~ 165+20-WS

4.6.5 Design Evaluation

Performance Study

According to table 4.22, pipelining and result forwarding improve the CPI
ratio, but forwarding also increases the cycle time significantly. The CPI
ratio of the three designs grows with the number of memory wait states.
Thus, the speedup caused by pipelining and forwarding also depends on
the speed of the memory system (figure 4.20).

Result forwarding and interlocking have only a minor impact (3%) on
the performance of the pipelined DL X design, dueto the slower cycletime.
However, both concept disburden the compiler significantly because the
hardware takes care of the data hazards itself.

The speedup due to pipelining increases dramatically with the speed
- of the memory system. In combination with an ideal memory system
166

3 T T T T T

DLXs/ DLXpb —
DLXs/DLXp ----
DLXpb/ DLXp -----

speedup

0 0.5 1 1.5 2 2.5 3
average nunber of wait states: WS

Figure 4.20 Speedup of pipelining and forwarding as a function of the memory
latency (DLXs: sequential, DLXpb: basic pipeline, DLXp: pipeline with inter-
lock)

(W S= 0), pipelining yields a speedup of 2.7, whereas for WS> 5.5, the
sequential DLX design becomes even faster than the pipelined designs.
Thus, pipelining calls for alow-latency memory system.

Powerful, cache based memory systems, like that of the Dec Alpha
21064 [HP96], require about W S= 0.25 wait states per memory access,
and even with asmall 2KB on-chip cache, amemory speed of WS=0.5is
still feasible (chapter 6). In the following, we therefore assume WS = 0.3.
Under this assumption, pipelining speeds the DLX design up by a factor
of 2.2.

Impact on the Quality of the DLX
Quality Metric The quality is the weighted geometric mean of the per-
formance P and the reciprocal of the cost C:

Q = PH9/ca. (4.10)

Theweighting parameter g € [0, 1] determines whether cost or performance
has a greater impact on the quality. Therefore, we denote q as quality
parameter Commonly used values are:

e (= 0: Only performance counts, Q = P.

e = 0.5: Theresulting quality metric Q = (P/C)®°> models the cost-
performance ratio.

Section 4.6

Cost
PERFORMANCE
ANALYSIS

167

Chapter 4

BASIC PIPELINING

168

2.4 T T T T
DLXs/ DLXs —
2.2 k DLXpb/ DLXs - §
=~ DLXp/ DLXs -----
o 2 b -
1]
Q@ 18} -
° 16t 1
©
= 1.4 .
>
= 1.2 | —
=
o
1
0.8 1 1 1 1
0 0.2 0.4 0.6 0.8 1

quality paranter: q

Figure 4.21 Quality ratio of the pipelined designsrelative to the sequential design
(DLXs: sequential, DLXpb: basic pipeline, DLXp: pipeline with interlock)

e = 1/3: Theresulting quality metricis Q = (P2/C)%/3. This means
that adesign Awhich istwice asfast as design B hasthe same quality
as B if itisfour times as expensive.

For arealistic quality metric, the quality parameter should be in the range
[0.2,0.5]: Usually, more emphasis is put on the performance than on the
cost, thus g < 0.5. For g = 0.2, doubling the performance aready allows
for acost ratio of 16; a higher cost ratio would rarely be accepted.

Evaluation Pipelining and result forwarding improve the performance
of the DLX architecture significantly, but they also increase the cost of
the fixed-point core. Figure 4.21 quantifies this tradeoff between cost and
performance.

In combination with a fast memory system (W S= 0.3), pipelining and
result forwarding improve the quality of the DLX fixed-point core, at least
under the realistic quality metric. In case that the cost is more emphasized
than the performance, pipelining becomes unprofitable for g > 0.8.

4.7 Selected References and Further Reading
HE DESIGN presented here is partly based on designs from [PH94,

HP96, Knu96]. The concept of delayed PC and pipelining as atrans-
formation is from [KMPQ9a]. The forma verification of pipeline con-

trol without delayed branch is reported in [BS90, SGGH91, BD94, BM 96,
LO96, HQR98].

4.8 Exercises

Exercise 4.1 In chapter 2, we have introduced a conditional sum adder
and a carry look-ahead adder, and extended them to an arithmetical unit
AU. In addition to the n-bit sum/difference, the n-bit AU provides two
flags indicating an overflow and a negative result. Let Day(n) denote the
maximal delay of the n-bit AU, and let Day(S[1 : O]; n) denote the delay of
the two least significant sum bits.

Show that for both AU designs and for any n > 2 the delay of these two
sum bits can be estimated as

DAu(S[:L:O];n) < DAu(Z).

Exercise 4.2 Provethe dateline lemma 4.3 by inductionon T.

Exercise 4.3 Fast s-stage Forwarding Engine. In section 4.4.2, we have
presented a forwarding engine capable of forwarding data from 3 stages.
The construction obviously generalizes to s-stage forwarding, with s> 3.
The actual data selection (figure 4.18) is then performed by s cascaded
multiplexers. Thus, the delay of this realization of an s-stage forwarding
engine is proportional to s.

However, these s multiplexers can also be arranged as a balanced binary
tree of depth [logs]. Signal top.j (as defined in section 4.4.2) indicates
that stage j provides the current data of the requested operand. These
signalstop.j can be used in order to govern the multiplexer tree.

1. Construct a circuit TOP which generates the signals top.j using a
paralel prefix circuit.

2. Construct an s-stage forwarding engine based on the multiplexer tree
and circuit TOP. Show that this realization has a delay of O(logs).

3. How can the delay of the forwarding engine be improved even fur-
ther?

Exercise 4.4 In case of a data hazard, the interlock engine of section 4.5
stalls the stages IF and ID. The forwarding circuit Forw signals a hit of
stage j € {2,3,4} by

hit[j] = (full.j A GPRwj) A (ad#£0) A (ad =Cad.j).

Section 4.8

EXERCISES

169

Chapter 4

BASIC PIPELINING

170

These hit signals are used in order to generate the data hazard signal dhaz
The check whether stage j isfull (i.e., full.j =1) isessentia for the cor-
rectness of the interlock mechanism.

Show that, when simplifying the hit signals to
hit[j] = GPRwj A (ad#0) A (ad=Cad.j),

dummy instructions could aso activate the hazard flag, and that the inter-
lock engine could run into a deadlock.

Exercise 4.5 Prove for the interlock engine of section 4.5 and the corre-
sponding scheduling function the claim 2 of lemma 4.10: for any stage k
and any cycle T > 0, the value In(k, T) is defined iff full k™ = 1.

Exercise 4.6 Fast Zero Tester. The n-zero tester, introduced in section
2.3, uses an OR-tree asits core. In the technology of table 2.1, NAND/NOR
gates are faster than OR gates. Based on the equality

avbvcvd = avbAcvd = (a NOR b) NAND (C NOR d),

the delay of the zero tester can therefore roughly be halved.
Construct such afast zero tester and provide formulae for its cost and del ay.

Interrupt Handling

5.1 Attempting a Rigorous Treatment of Interrupts

NTERRUPTS ARE events, which change the flow of control of aprogram

by means other than a branch instruction. They are triggered by the
activation of event signalswhich we denote by e\j], j=0,1,.... Here,
we will consider the interrupts shown in table 5.1.

Loosely speaking, the activation of an event signa eVfj] should result
in aprocedure call of aroutine H(j). Thisroutine is called the exception
handler for interrupt j and should take care of the problem signaled by

Table 5.1 Interrupts handled by our DLX design

| index j | name | symbol |

0 reset reset
1 illegal instruction ill
2 misaligned memory access | mal
3 page fault on fetch pff
4 page fault on load/store pfls
5 trap trap
6 arithmetic overflow ovf

6+i | externa I/O ex

Chapter 5

the activation of eV j]. The exception handler for a page fault for instance
should move the missing page from secondary memory into primary mem-
ory. Interrupts can be classified in various ways.

INTERRUPT
HANDLING

e They can be internal, i.e., generated by the CPU or the memory
system, or external

e They can be maskablei.e., they can be ignored under software con-
tral, or non maskable

e After an interrupt of instruction | the program execution can be re-
sumed in three ways.

— repeatinstruction I,

— continuewith the instruction 1™ which would follow | in the
uninterrupted execution of the program,

— abort the program.

Table 5.2 classifies the interrupts considered here.

Finally, the interrupts have priorities defined by theindices j. Activation
of e\{j] can only interrupt handler H(|') if j < j’. Moreover if eVj] and
eV j'] become active simultaneously and j < J, then handler H(j’) should
not be called. Thus, small indices correspond to high priorities!

If we want to design an interrupt mechanism and prove that it works, we
would like to do the usual three things:

1. define what an interrupt mechanism is supposed to do,
2. design the mechanism, and
3. show that it meets the specification.

The first step turns out to be not so easy. Recall that interrupts are a
kind of procedure cals, and that procedure call is a high level language
concept. On the other hand, our highest abstraction level so far is the as-
sembler/machine language level. Thisistheright level for stating what the
hardware is supposed to do. In particular, it permits to define the meaning
of instructions like jal, which supportprocedure call. However, the mean-
ing of the call and return of an entire procedure cannot be defined like the
meaning of an assembler instruction.

There are various way to define the semantics of procedure call and re-
turn in high level languages [LMW86, Win93]. The most elementary way
— called operational semantics — defines the meaning of a procedure by

- Priority 1 isurgent, priority 31 is not.
172

Table 5.2 Classifications of the interrupts

| index j || symbol | external | maskable | resume |
0 reset yes no abort
1 il no no abort
2 mal no no abort
3 pff no no repeat
4 pfls no no repeat
5 trap no no continue
6 ovf no yes continue/abort
6+i ex yes yes continue

prescribing how a certain abstract machine should interpret calls and re-
turns. One uses a stack of procedure frames. A call pushes a new frame
with parameters and return address on the stack and then jumps to the body
of the procedure. A return pops a frame from the stack and jumps to the
return address.

The obvious choice of the ‘abstract machine' is the abstract DLX ma
chine with delayed branch/delayed PC semantics defined by the DLX; in-
struction set and its semantics. The machine has, however, to be enriched.
There must be a place where interrupt masks are stored, and there must be
amechanism capable of changing the PC asareaction to event signals. We
will also add mechanisms for collecting return addresses and parameters,
that are visible at the assembler language level.

We will use a single interrupt service routine ISR which will branch
under software control to the various exception handlers H(j). We denote
by SISRthe start address of the interrupt service routine.

We are finally able to map out the rest of the chapter. In section 5.2, we
will define at the abstraction level of the assembler language

1. an extension of the DL X machine language,
2. amechanism collecting return addresses and parameters, and

3. amechanism capable of forcing the pair of addresses (SISR, SISR +
4) into (DPC, PC) as reaction to the activation of event signals.

In section 5.3, we define a software protocol for the interrupt service
routine which closely parallels the usual definition of procedure call and
return in operational semantics. This completes the definitionof the inter-
rupt mechanism.

Section 5.1

ATTEMPTING A

RiGoroOuUS

TREATMENT OF

INTERRUPTS

173

Chapter 5

174

INTERRUPT
HANDLING

In compiled programs, the body of procedures is generated by the com-
piler. Thus, the compiler can guarantee, that the body of the procedure
isin a certain sense well behaved, for instance, that it does not overwrite
the return address. In our situation, the compiled procedure body is re-
placed by the exception handler, which — among other things — obviously
can overwrite return addresses on a procedure frame. They can aso gen-
erate interrupts in many ways. Indeed, the attempt to execute an exception
handler for page faults, which does not reside in memory will immediately
generate another page fault interrupt, and so on.

In section 5.4, we therefore present a set of conditions for the excep-
tion handlers and show: if the exception handlers satisfy the conditions,
then interrupts behave like kind of procedure calls. The proof turns out
to be nontrivial mainly due to the fact, that instructions which change the
interrupt masks can themselves be interrupted.

Given the machinery developed so far, the rest is straightforward. In
section 5.5, we design the interrupt hardware for a prepared sequential
machine according to the specifications of section 5.2. In section 5.6, we
pipeline the machine and show that the pipelined machine simulates the
prepared sequential machine in some sense. The main technical issue there
will be a more powerful forwarding mechanism.

5.2 Extended Instruction Set Architecture

AGE FAULT and misalignment interrupts are obviously generated by

the memory system. lllegal interrupts are detected by the control au-
tomaton in the decode stage. Overflow interrupts can be generated by the
two new R-type instructions addo, subo and the two new I-type instruc-
tions addio, subio specified in table 5.4. They generate the (maskable)
overflow event signal eV[5], if the result of the computation is not repre-
sentable as a 32-hit 2's complement number. Trap interrupts are generated
by the new Jtype instruction trap (table 5.4). Externa interrupts are gen-
erated by external devices, for these interrupts we apply the following

Interrupt Convention:

The active event line eV j] of an external 1/O interrupt j is only turned off,
once interrupt j received service. Interrupt j receives services soon as
the ISR is started with interrupt level | where j’ = j, or where |’ < j and
interrupt j" is of type abort. A formal definition of the concept of interrupt
level will be given shortly.

Table 5.3 Special purpose registers used for exception handling

| address || name | meaning |
0 SR status register

ESR | exception status register
ECA | exception cause register
EPC | the exception PC

EDPC | the exception delayed PC
Edata | exception data register

a b~ wWwN P

The DLX architecture is extend by 7 new registers, 6 of them are visible
to the assembler programmer. They form the registers SPRO] to SPR5] of
the new special purpose register file SPR Names and addresses of the SPR
registers are listed in table 5.3; their function is explained later.

Register’'s contents can be copied between the general purpose register
file GPRand the specia purpose register file SPRby means of the special
move instructions movi2s (move integer to special) and movs2i (move spe-
cial tointeger). Both moves are R-type instructions (table 5.4). The binary
representation of the special register address is specified in field SA

The cause register CA is the new non visible register. It catches event
signals e\ j] which become active during the execution of instructions | in
the following sense:

e If jisaninterna interrupt, it is caught in the same instruction, i.e.,
CAjli=1

e If jisexternd, it is caught in the current or in the next instruction;
CAljli =1 or CAjli+1 = 1. Oncethe bit CA[j] is active, it remains
active till interrupt j receives service.

In any other situation, we have CAJj} = 0.

The interrupt masks are stored in the status register SR For a maskable
interrupt j, bit SHj] stores the mask of interrupt j. Masking means that
interrupt j isdisabled (masked) if SHj] = 0, and it is unmasked otherwise.
Themasked cause MCAisderived from the the cause register and the status
register. For instruction I, the masked cause equals

MCA(j]i = CAjji ; if interrupt j is not maskable
= CAjliASKjli_1 ;if interrupt j is maskable.

Notethat thisisanontrivial equation. It states that for instruction |, causes
are masked with the masks valid after instruction ;. Thus, if I; happens

Section 5.2

EXTENDED
INSTRUCTION SET
ARCHITECTURE

175

Chapter 5

176

INTERRUPT
HANDLING

to be a movi2s instruction with destination SR the new masks have no
affect on the MCA computation of |;.

Jump to the ISR
From the masked cause MCA, the signal JISR(jump to interrupt service
routine) is derived by

31

JISR = \/ MCA[jl.

j=0

Activation of signal JISRtriggers the jump to the interrupt service routine.
Formally we can treat this jump either asanew instruction k1 or asapart
of instruction ;. We chose the second alternative because thisreflects more
closely how the hardware will work. However, for interrupted instructions
li and registers or signals X, we have now to distinguish between

e X;, which denotes the value of X after the (interrupted) execution of
instruction i, i.e., after JISR and

e X, which denotes the value of X after the uninterrupted execution
of instruction |;.

We proceed to specify the effect of JISRfor instruction k. The interrupt
level il of theinterrupt is

il; = min{j | MCA[j} = 1}.

Interrupt il has the highest priority among all those interrupts which were
not masked during |; and whose event signals eV{j] were caught. Interrupt
il can be of type continue, repeat or abort. If it isof type repeat, no register
file and no memory location X should be updated, except for the specia
purpose registers. For any register or memory location X, we therefore
define o
X — { Xi_1 ifilj isof type repeat
X! otherwise

By SISR we denote the start address of the interrupt service routine. The
jump to ISRis then realized by

(DPC, PC); = (SISRSISRt4).
The return addresses for the interrupt service routine are saved as

(DPC, PC')i_y ifil; isof type repeat
(EDPC,EPC); = ¢ (DPC,PC){" ifil;isof type continue
(%, *) if il; is of type abort,

i.e., on an interrupt of type abort, the return addresses do not matter. The
exception data register stores a parameter for the exception handler. For
traps this is the immediate constant of the trap instruction. For page fault
and misalignment during |oad/store thisisthe memory address of the faulty
access.

sex{imm); for trap interrupts

EDATA = { ea for pf or misaduring load/store

For page faults during fetch, the address of the faulty instruction memory
access is DPG 1, which is saved aready. Thus, there isno need to save it
twice.

The exception cause register ECAstores the masked interrupt cause

ECA = MCA,
all maskable interrupts are masked by
SR=0,
and the old masks are saved as

SR_; ifiljisof type repeat
ESR =< SR ifilj isof type continue
* if il; is of type abort.

Thus, if the interrupt instruction sets new masks and it is interrupted by
an interrupt of type continue, then the new masks are saved. This com-
pletes at the instruction level the description of the semantics of JISR

The restoration of the saved parameters is achieved by a new Jtype in-
struction rfe (return from exception) specified in table 5.4.

5.3 Interrupt Service Routines For Nested Interrupts

ESTED interrupts are handled by a software protocol. The protocol
maintains an interrupt stack IS. The stack consists of frames. Each
frame can hold copies of all general purpose registers and all special reg-
isters. Thus, with the present design we have a frame size of 32+ 6 = 38
words.
We denote by IS. T OP the top frame of the interrupt stack. Its base
address is maintained in the interrupt stack pointer ISP. For this pointer,
we reserve a special purpose register, namely

ISP = GPR30.

Section 5.3

INTERRUPT
SERVICE ROUTINES
FOR NESTED
INTERRUPTS

177

Chapter 5

178

INTERRUPT
HANDLING

Table 5.4 Extensions to the DLX instruction set. Except for rfe and trap, all
instructions also increment the PC by four. SAis a shorthand for the specia
purposeregister SPRSA; sxt(imm)is the sign-extended version of theimmediate.

[IR[31:26] | IR[5:0] | | effect |

Arithmetic Operation (I-type)

hx08
hx0Oa

addio | RD = RS1 +imm; ovf signaled
subio | RD = RSL - imm; ovf signaled

Arithmetic Operation (R-type)

hx00
hx00

hx20 addo | RD = RSl + RS2; ovf signaled
hx22 subo | RD =RS1 - RS2; ovf signaled

Specia Move Instructions (R-type)

hx00
hx00

hx10 movs2i | RD = SA
hx11 movi2s | SA = RS1

Control Instructions (J-type)

hx3e
hx3f

trap | trap=1;, Edata=sxt(imm)
rfe SR = ESR; PC = EPC; DPC = EDPC

We call the sequence of registers

EHR = (ESRECA EDPC,EPC,EDATA

the exception handling registers. For each frame F of the interrupt stack
and for any register R, we denote by F.R the portion of F reserved for reg-
ister R. We denote by F.EHRthe portion of the frame reserved for copies
of the exception handling registers. We denote by IS.EHR the portions
of all frames of the stack, reserved for copies of the exception handling

registers.

The interrupt service routine, which is started after an JISR has three

phases:

1. SAVE (save status):

(@) The current interrupt level

il = min{j | ECAj] =1}

isdetermined. For this computation, ECAhasto be copied into
some general purpose register GPR]. Thisregister in turn has
first to be saved to some reserved location in the memory. This
write operation in turn does better not generate a page fault
interrupt.

Section 5.3

(b) If il isof type abort, an empty interrupt stack isinitialized, and

otherwise a new frame is pushed on the stack by the computa- | NTERRUPT
tion SERVICE ROUTINES
ISP = ISP+ framesize FOR NESTED
INTERRUPTS

(c) The exception handling registers are saved:

ISTOPEHR = EHR

(d) All maskable interrupts j < il are unmasked:
SR = 0317” lil)

This mask is precomputed and the assigned to SRin a single
special move instruction. After this instruction, the interrupt
service routine can be interrupted again by certain maskable
interrupts.

2. Exception Handler H(il): The interrupt service routine branches
to the start of the proper routine for interrupt il. This routine will
usually need some general purpose registers. It will save the corre-
sponding registers to IS. T OP. After the proper work for interrupt il
is done, the general purpose registers which were saved are restored.
Observe that al this can be interrupted by (maskable) interrupts of
higher priority. Finally the handler masks all maskable interrupts by
asingle specia move instruction:

SR= GPRO].

3. RESTORE (restore status): the following registers are restored from
the stack:

EDPC = ISTOREDPC
EPC = ISTOPREPC
ESR = ISTORESR

The top frame is popped from the stack:
ISP = ISP— framesize

The interrupt service routine ends with an rfe instruction.

179

Chapter 5

180

INTERRUPT
HANDLING

5.4 Admissible Interrupt Service Routines

WE INTEND interrupts to behave like procedure calls. The mechanism
of the previous section defines the corresponding call and return
mechanism. Handlers unfortunately are not generated by compilers and
thus, the programmer has many possibilities for hacks which make the
mechanism not at al behave like procedure cals. The obvious point of
attack are the fields ISEHR Manipulation of |S.TOREDPC obviously
allows to jump anywhere.

If the interrupt stack isnot on a permanent memory page, each interrupt,
including page fault interrupts, can lead to a page fault interrupt, and so
on. One can list many more such pitfalls. The interesting question then
obviously is: have we overlooked one?

In this section we therefore define an interrupt service routine to be ad-
missible if it satisfies a certain set of conditions (i.e., if it does not make
use of certain hacks). We then provethat with admissible interrupt service
routines the mechanism behaves like a procedure call and return.

5.4.1 Set of Constraints

An interrupt service routine is called admissibleif it complies with the
following set of constraints:

1. The data structures of the interrupt mechanism must be used in a
restricted manner:

(@) The interrupt stack pointer ISP is only written by SAVE and
RESTORE.

(b) The segments of an IS frame which are reserved for the EHR
registers are only updated by SAVE.

2. The ISR must be written according to the following constraints:

(@ Instruction rfe isonly used asthe last instruction of the ISR.

(b) The code segments SAVE and RESTORE avoid any non-mask-
ableinternal interrupt; in the current DLX architecture, that are
theinterrupts j with0 < j < 6.

(c) Every handler H(j) avoids any non-maskable internal interrupt
i with apriority i > j.

(d) If handler H(j) uses a special move with source register Rin
order to update the status register SR then the bit R[i] = 0 for
anyi>j.

Among other things, the conditions b) and c) require that page faults
are avoided in certain handlers. That can only be ensured if the
interrupt stack IS and the codes SAVE and RESTORE are held on
permanent pages, i.e., on pages which cannot be swapped out of
main memory. Let j, denote the priority level of the page fault pf f.
For any j < jp, the handler H(j) and all the data accessed by H ()
must also be held on permanent pages.

We will have to show that the interrupt mechanism can manage with
alimited number of permanent pages, i.e., that the interrupt stack IS
isof finite size.

3. Theinterrupt priorities are assigned such that

(&) Non-maskable externa interrupts are of type abort and have
highest priority j = 0.

(b) Maskable external interrupts are of type continue and have a
lower priority than any internal interrupt.

(o) If an instruction can cause severa internal interrupts at the
same time, the highest priorized of all the caused interrupts
must then be of type repeat or abort.

The assignment of the interrupt priorities used by our DLX design
(table 5.2) complies with these constraints.

The conditions 1 and 2 must hold whether the handler H () is interrupted
or not. Thisis hard to achieve because the ISR of another interrupt could
corrupt the data structures and the registers used by H(j). As a conse-
quence, H(j) could cause a misaligned memory access or overwrite an
EHR field on the interrupt stack.

The following approach could, for instance, protect the stack 1S against
illegal updates. Besides the EHR registers, a frame of stack IS also backs
data which are less critical, e.g., the general purpose registers. It is there-
fore suitable to use two stacks, one for the EHR registers and one for the
remaining data. The EHR stack can then be placed on a special memory
page which except for the code SAVE is read-only

5.4.2 Bracket Structures

The code segments SAVE and RESTORE can be interpreted as|eft and right
brackets, respectively. Before we can establish that admissible interrupt
service routines behave in some sense like procedures we have to review
some facts concerning bracket structures.

Section 5.4

ADMISSIBLE
INTERRUPT
SERVICE ROUTINES

181

Chapter 5

182

INTERRUPT
HANDLING

Lemma 5.1 »

For sequences S=§;...§ of brackets ‘(" and ‘)’ we define

I(S) = thenumber of left bracketsin S
r(S) = thenumber of right bracketsin S.

Sequence Sis called a bracket structuref

(s = r(S and
1(Q) > r(Q) foral prefixesQof S

i.e., the number of left brackets equals the number of right brackets, and in
prefixes of Sthere are never more right brackets than left brackets.

Obvioudly, if Sand T are bracket structures, then (S) and ST are bracket
structures as well. In bracket structures S one can pair brackets with the
following agorithm:

(5.1)

For al right brackets R from left to right do:
{ pair Rwith the left bracket L immediately left of R;
cancel Rand L from S}

The above algorithm proceeds inrounds k = 1,2,.... Let R(k) and L(k)
be the right and left bracket paired in round k, and let S(k) be the string S
before round k. We have S(1) = S. By induction on k one shows

1. RK) is the leftmost right bracket in(¥),
2. L(k) exists, and

3. the portion Q of S from (k) to R(k) is a bracket structure.

The proof is left as an exercise. Observe that up to round k, the above
agorithm only works with the prefix § ... R(k) of S.
5.4.3 Properties of Admissible Interrupt Service Routines

We begin with some definitions. First, we define the interrupt level il in
Situations, where SAVE sequences are not interrupted?

min{j | MCA[j] = 1} during SAVE
il = ¢ min{j|ISTORPMCA[j]=1} outside of SAVE, if it exists
32 otherwise

2\\e show later that thisis always the case

Section 5.4

A sequence of instructions SAVE H RESTORE is caled an instance of

ISR(j) if during H the interrupt level equals ADMISSIBLE

INTERRUPT
il =j. SERVICE ROUTINES

Itiscaled anon aborting execution of ISR if the interrupt level obeys

il = j during SAVE and RESTORE
il < j during H.
Thus, during executions of ISR(j) thehandler H() can beinterrupted. We
do not consider infinite executions.
Assume that H does not end with a RESTORE sequence of interrupt level
j, then
SAVE; H SAVE,; H' RESTORE

is called an aborting execution of ISR(jj

il = | during SAVE;
j during H

<
< 2 during SAVE,, H' and RESTORE.

We call the execution of an interrupt service routine properly nestedr
simply nestedif

1. no code segment SAVE or RESTORE is interrupted,

2. the sequence of code segments SAVE and RESTORE forms an initial
segment of aproper bracket structure, and if

3. paired brackets belong to an instancef some ISR(j) in the follow-
ing sensel Let L and R be paired SAVE and RESTORE sequences.
Let H consist of the instructions between L and R

(8 which do not belong to SAVE and RESTORE sequences, and
(b) which are not included by paired brackets inside L and R.

Then L H Risan instance of some ISR(j).

We call an execution perfectly nestedif it is properly nested and the se-
guence of SAVES and RESTORES forms a proper bracket structure. In the
following proofs we will establish among other things

Executions of admissible interrupt service routines are properly nested.Theorem 5.2

We will first establish properties of perfectly nested executions of in-
terrupt service routines in lemma 5.3. In lemma 5.4 we will prove by

183

Chapter 5

184

induction the existence of the bracket structure. In the induction step, we
INTERRUPT || apply lemma 5.3 to portions of the bracket structure, whose existence
HANDLING 5 giready guaranteed by the induction hypothesis. In particular, we will
need some effort to argue that RESTORES are never interrupted.

The theorem then follows directly from the lemmas 5.3 and 5.4.

Lemma 5.3 » Let the interrupt mechanism obey software constraints 1 to 3. Consider a
perfectly nested execution of ISR The sequence of instructions executed
has the form

SAVE H(J) RESTORE
we then have:

1. If the execution of ISR) is not aborted, then the interrupt stack IS
holds the same number of frames before and afte(J5Rnd the
segments of IS reserved for the EHR registers remain unchanged,
i.e.,

ISR,1=ISR and ISEHRs 1=ISEEHR.

2. Preciseness. If ISR(j) is not aborted, the execution is resumed at

(DPGy, PC,) (DPC, 2, PC, ,) if jis arepeat interrupt
7 | (DPCY_,,PCY ,) if jis a continue interrupt

with the masks

SR, = SR, if jis arepeat interrupt
~ | SR_, if jisacontinue interrupt

PROOF Proof by induction on the number n of interrupts which interrupt the exe-
cution of an ISR(j).
n= 0. The execution of ISR(j) is uninterrupted. Since interrupt j is
not aborting, SAVE alocates a new frame on the stack 1S, and RESTORE
removes one frame. The handler H(j) itself does not update the stack
pointer (constraint 1), and thus

ISR_1=ISR.

According to constraint 1, the EHR fields on the interrupt stack IS are only
written by SAVE. However SAVE just modifies the top frame of 1S which
isremoved by RESTORE. Thus

ISEHRy_1 =IS.EHRy,

Section 5.4

and claim 1 follows. With respect to claim 2, we only show the preciseness

of the masks SR the preciseness of the PCs can be shown in the sameway. APMISSIBLE
INTERRUPT
SRy = ESR.1 by definition of rfe SERVICE ROUTINES

= ISTORESR-1 by definition of RESTORE ,

where I1S.T OP denotes the top frame of the stack IS. Since the handler
itself does not update the stack pointer ISP nor the EHR fields on the stack
IS (constraint 1), it follows

ISTOPESR 1 = IS TOPESR
= ESR-1 by definition of SAVE ,

and by the definition of the impact of JISRit then follows that

SR, » if jisarepeat interrupt

SRy = ESR_1 = { SR._, if jisacontinueinterrupt.

In the induction step, we conclude from nto n+ 1. The execution of
ISRj) isinterrupted by n+ 1 interrupts, and the codes SAvE and RESTORE
of the corresponding instances of the ISR form a proper bracket structure.
Since SAVE and RESTORE are uninterrupted, there are m top level pairs
of brackets in the instruction stream of the handler H(j); each pair corre-
sponds to an instance ISR j;):

ISR(j1) ISR(j2) ISR jm)
I I I I I I I I | I
N 1 1 2 g 2 am m
SAVE H(j) RESTORE

Each of the ISR(j;) isinterrupted at most n times, and due to the induction
hypothesis, they return the pointer ISP and the EHR fields on the stack
unchanged:

ISR,_1=1ISR, and ISEHR,_1=ISEHR;.

Since the instructions of the handler H(j) do not update these data, it fol-
lows for the pointer ISP that

ISR, =ISR,_1=ISR, =... =ISR,,_1=ISR;, = ISR_1.
The same holds for the EHR fields of the interrupt stack:
ISEHR,=ISEHRy,-1=...=ISEHRy, =ISEHR._1. (5.2

Since RESTORE removes the frame added by SAVE, and since SAVE only -
185

Chapter 5

updates the EHR fields of the top frame, the claim 1 followsfor n+ 1. The
preciseness of the ISRj) can be concluded like in the case n = 0, except
for the equality

INTERRUPT
HANDLING

ISTOPEHR, = IS TOPEHR. ;.
QED However, this equality holds because of equation 5.2.

Lemma 5.4 » Let the interrupt mechanism obey the software constraints. Then, non
aborting executions of the interrupt service routine are properly nested.

PROOF We proceed in three steps:
1. SAVE is never interrupted: According to the software constraint 2, the
codes SAVE and RESTORE avoid any non-maskable internal interrupt. Re-
set is the only non-maskable external interrupt, but we are only interested
in anon aborted execution. Thus, SAVE and RESTORE can only be inter-
rupted by a maskable interrupt.

If aninstruction |; causes aninterrupt, all masksare cleared, i.e.,, SR=0,
and ajump to the ISR isinitiated: JISR= 1. In the code SAVE, the masks
are only updated by the last instruction. Since new masks apply to later
instructions, SAVE cannot be interrupted by maskable interrupts either.

2. The code RESTORE avoids non-maskable interrupts, and only its last
instruction updates the status register. Thus, RESTORE cannot be inter-
rupted if it is started with SR= 0. The last instruction of any non-aborting
interrupt handler isaspecial move

SR:= GPR0| =0.

If this special move is not interrupted, then RESTORE is not interrupted
either.

3. Let the code RESTORE comprise the instructions R, ... Rs. Note that by
the construction of interrupt service routines every instance of ISR starts
with a SAVE and — in case it is not aborted — it produces later exactly one
first instruction Ry of its RESTORE sequence. Therefore, in executions
of the interrupt service routine the sequence of SAVES (which are never
interrupted) and instructions R, form aninitial segment of a proper bracket
structure.

In a non aborting execution, we denote by R} the n" occurrence of Ry.
We prove by induction on n that until R}

e the code segment RESTORE is aways started with SR= 0 (hence it
is not interrupted),

186

Section 5.4

¢ the code segments SAVE and RESTORE form a start sequence of a

proper bracket structure, and ADMISSIBLE
INTERRUPT
e paired brackets belong to an executioaf some ISR(j). SERVICE ROUTINES

For n = 1 there must be a SAVE to the left of the first R,. Consider the
first such SAVE to the left of RL. Then, this SAVE and R} belong to an
uninterrupted instance of an ISR(j). Thus, R is started with SR= 0 and
the first RESTORE is not interrupted.

For the induction step, consider R}*X. There are n instructions R, to
its left. By induction hypothesis the code segments SAVE and RESTORE
up to R} form a start sequence of a proper bracket structure with paired
brackets belonging to executions of some ISR j). By lemma 5.3, these
executions are precise. Since the sequence of SAVES and R s forms an
initial segment of a bracket structure, we can pair F(l‘“ with a preceding
SAVE code sequence L. Let H' be the sequence of instructions between
L and RQ“. Construct H from H’ by canceling all executions of some
ISR(j). Because these executions are precise, we have during H a constant
interrupt level

il =i,
thus, handler H (i) is executed during H.

Let ISR jn) denote the instance of the ISR which belongsto R]. Instruc-

tion R}t isthen either directly preceded

(&) by the special move | with SR:= 0, or
(b) by the special move | followed by ISR(j,).

Thefirst caseistrivial (see n=1). In the second case, ISR j,) interrupts
the specia move, and interrupt j, is of type continue. Due to the precise-
ness of ISR jn), R}t is started with the masks SR, = 0, and the (n+ 1)st
RESTORE block is not interrupted. QED

Priority Criterion. For admissible interrupt service routines, it holds: < Lemma 5.5

1. During the execution of ISR, maskable interrupts i with® j are
masked all the time.

2. ISR j) can only be interrupted by an interrupti j of higher prior-
ity.

According to lemma 5.4, the codes SAVE and RESTORE can only be in- PROOF
terrupted by reset. Thus, we focus on the interrupt handlers. For any non-
maskablenterrupt j < 6, claim two follows directly by constraint 2. For

the maskable interrupts B 6, we prove the claims by induction on the

number n of interrupts which interrupt the handler H(j).

187

Chapter 5

e Nn=0: The ISR is aways started with SR= 0, due to signal JISR
The ISR only updates the masks by a special move movi2s or by an
rfe instruction. Since rfe isonly used asthelast instruction of an ISR
(constraint 2), it has no impact on the masks used by the ISR itself.
In case of a specia move SR:= R, the bit R[i] must be zero for any
i > j. Thus, the maskable interrupts are masked properly. Dueto the
definition of the masked interrupt cause of instruction |

[CA'NIASRj)i—1 ;ifinterrupt |’ is maskable
MCAT = { CAj'i ; otherwise

INTERRUPT
HANDLING

and the definition of the interrupt level
il = min{j’ | MCA“I]| = l},

ISR(j) cannot be interrupted by a maskable interrupt | > j, and the
claim follows.

e n> 0: Thehandler H(j) isinterrupted n times, and the codes SAVE
and RESTORE form a proper bracket structure. Thus, the instruction
sequence of ISR(j) has the following form

Save...ISRj1)...ISRjm) ... Restore,

for an m < n. The instructions which belong to the code of the han-
dier H(j) do not unmask interrupts j’ with j’ < j. Due to the pre-
ciseness of the ISR, any ISR j;) returns the masks SRdelivered to it
by register ESR By induction on mit then follows that interrupt j
has a higher priority than j,i.e, j < j.

Since any ISR(j;) is interrupted at most n— 1 times, the induc-
tion hypothesis applies. ISR(j;) keeps al interrupts j’ with j’ > j;
QED masked, and especially those with j > j.

Theorem 5.2 and lemma 5.5 imply:

Theorem 5.6 » Non aborting executions of admissible interrupt service routines are per-
fectly nested.

PROOF Let LHRbeanon aborting execution of ISR j), where L is asave sequence
and R is arestore sequence. By theorem 5.2, the sequence of SAVES and
REsTOREsinLHRisaninitial segment of abracket structure. If the brack-
etsL and R are paired, then the SAVE and RESTORE sequences in H form
a bracket structure. Hence, the brackets in LHR form a bracket structure

- and LHR is perfectly nested.

188

Section 5.4

Assume Ris paired with aleft bracket L’ right of L:

ADMISSIBLE
L L/ R INTERRUPT
Wdlsaj) SERVICE ROUTINES

Then by lemma 5.5, the interrupt level immediately before L is greater
than j, and LHRis not a non aborting execution. QED

According to lemma 5.5, the ISR of an interrupt j > 0 can only be
interrupted by an interrupt of higher priority. Thus, there can be at most
one frame on the stack IS for each interrupt level j > 0. Reset can even
interrupt ISR(0). However, on reset, the | SR does not allocate anew frame,
the stack ISis cleared instead. The size of the interrupt stack | Sistherefore
limited; the ISR uses at most 32 frames.

Like for many software protocols, fairness seems to be desirable for the
interrupt mechanism. In this context, fairness means that every interrupt
finaly gets service. Due to the pure priority scheme, that cannot aways
be achieved. Consider the case that the event signals of two external inter-
rupts eV{15] and eV[17] become active at the same time, that the external
interrupt e\{16] occurs whenever leaving ISR(15) and vice versa. Under
these conditions, interrupt 17 is starved by the interrupts 15 and 16. Thus
fairness and a pure priority scheme do not go together. Nevertheless, one
would at least like to guarantee that no internal interrupt gets lost.

Completeness Let the interrupt mechanism obey the software constraimtd.emma 5.7
Every internal interrupt j which occurs in instructionand which is not

masked receives service in instructiom | or instruction | is repeated

after the ISR which starts with instruction 4.

Let instruction |; trigger the internal interrupt j,i.e, ej = 1. Thecause =~ PROOF
bit CAlj]; is then activated as well. Under the assumption of the lemma, j
is either non-maskable or it is unmasked (SR jj_1 = 1). In either case, the
corresponding bit of MCA is raised, and an jump to the ISR is initiated.
Thus, li,1 isthe first instruction of routine ISRk), where k = il; denotes
theinterrupt level after I;. Due to the definition of the interrupt level, k < j.
For k = j, the claim follows immediately. For k < |, interrupt k is either
externa or internal. In case of an external interrupt, k must be areset (con-
straint 3) which aborts the execution servicing any pending interrupt. If kis
an internal interrupt, it is of type abort or repeat due to constraint 3. Thus,
ISRk) either services any pending interrupt by aborting the execution, or
after ISRk), the execution is resumed at instruction . QED

189

Chapter 5

190

INTERRUPT
HANDLING

If the constraint 3 is relaxed, the completeness of the interrupt mecha
nism in the sense of lemma5.7 cannot be guaranteed. Assume that instruc-
tion I; causes two internal interrupts j and |/, and that j < j'. If j isof type
continue, ISR(j) just services j and resumes the execution at the instruc-
tion which would follow |j in case of JISR = 0. Thus, interrupt j would
get lost. If interrupt j is of type repeat, ISR j) does not service interrupt |
either. However, instruction |; is repeated after the ISR, and the fault which
corresponds to interrupt j' can occur again.

5.5 Interrupt Hardware

IN THIS section, we design the interrupt hardware of the prepared se-
quential architecture DLX; according to the specifications of section 5.2.
The instruction set architecture (ISA) is extended by

e the specia purpose register file SPR
e aregister Swhich buffers data read from SPR®
e thecircuitry for collecting the interrupt events,

e the actual ISR call mechanism which in case of an active interrupt
event forces the interrupt parameters into the SPR register file and
the pair of addresses (SISR SISR+ 4) into the registers DPC and
PC, and by

e control reaizing the instructions from table 5.4.

The enhanced | SA requires changes in the data paths and in the control
(section 5.5.6). The data paths get an additional environment CAenv which
collects the interrupt event signals and determines the interrupt cause (sec-
tion 5.5.5). Except for the PC environment, the register file environment
RFenv and circuit Daddr, the remaining data paths undergo only minor
changes (section 5.5.4). Figure 5.1 depicts the top level schematics of the
enhanced DL X data paths. Their cost can be expressed as

Cop = Cpcenvt Cimenv+ Cirenvt Cexenvt Comenv+ CsHateny
+ CRFen\H’ CDaddr + CCAenv+ Cbu ffert 8- Cff (32)-

Note that without interrupt hardware, reset basically performs two tasks,
it brings the hardware in a well defined state (hardware initialization) and

3Registers A and B play thisrole for register file GPR

I IMenv TV
EPCs ¢ b IR1]
Ain, Bin IRenv Daddr |
ﬁv Sin PCenv TV ¢
b s[AB] D link,Pcs || poo]
CAenv ¢
~ =~ 107 D EXenv <
¢ ¢ buffers:
b MAR IRj
Cadj
o] DMenv PCs,j
¥ Sadj
pca] P MDRr
SH4L env
i c
— Sout Q
SR — RFenv

Figure 5.1 Data paths of the prepared sequential designs with interrupt support

restarts the instruction execution. In the DLX design with interrupt hard-
ware, the reset signal itself initializes the control and triggers an interrupt.
The interrupt mechanism then takes care of the restart, i.e., with respect to
restart, signal JISRtakes the place of signal reset

5.5.1 Environment PCenv

The environment PCenv of figure 5.2 till implements the delayed PC
mechanism, but it now provides an additional register DDPC (delayed de-
layed PC) which buffers the PC of the current instruction k:

DDPGC = DPG_;.

The functionality of the environment also needs to be extended in order
to account for the new control instruction rfe and to support a jump to
the ISR. Without interrupt handling, the PCs are initialized on reset. Now,
reset istreated like any other interrupt, and therefore, the PCsareinitialized

Section 5.5

INTERRUPT
HARDWARE

191

Chapter 5

192

INTERRUPT
HANDLING

Figure 5.2 Environment PCenv with interrupt support

on JISR instead:

| [(SISRSISR+-4) if JISR=1
(DPG, PC) _{ (DPCY, PCY) otherwise.

Except for an rfe instruction, the values PC;' and DPC! are computed as
before:

EPG_; it 1= rfe
pCY PC ,+imm if Dbjtaken=1 A |; € {beqz,bnez,j,jal}
") RS if bjtaken=1 A I; € {jr,jalr}

PG ,+4 otherwise

EDPG 1 if Ij=rfe

u_

DPG { PC_, otherwise

Thus, the new PC computation just requires two additional muxes con-
trolled by signal rfe. The two registers link and DDPC are only updated
on an active clock signal PCce whereas PC and DPC are also updated on
ajump to the ISR:

DPCce = PC'ce = PCceV PCinit.

These modifications have no impact on register link nor on the glue logic
PCgluewhich generates signal b jtaken The cost of the environment now
are

Crcenv = 4-Cys (32) +6- Cmux(32) + Cadd(32) + Cinc(go) +CPCg|ue

The two exception PCs are provided by environment RFenv. Let csID
denote the control signals which govern stage ID, including signal JISR

IR[20:11] IR[10:6] 00001 IR[10:6] 00000
|
Jink —
Caddr
Rtype —1
| cad

Figure 5.3 Circuit Daddr

and let Acon(cslID) denote their accumulated delay. Environment PCenv
then requires a cycle time of

Tpcenv = Max{Dinc(30), AirRen €O) + Dadd(32), AcprentAin),
Arrend EPCS, A(bjtaken, Acon(csID)}

5.5.2 Circuit Daddr

Circuit Daddr consists of the two subcircuits Caddrand Saddr Asbefore,
circuit Caddrgenerates the destination address Cad of the general purpose
register file GPR. Circuit Saddr(figure 5.3) provides the source address
Sasand the destination address Sad of the special purpose register file
SPR.

The two addresses of the register file SPR are usually specified by the
bits SA= IR[10: 6]. However, on an rfe instruction, the exception status
ESR is copied into the status register SR. According to table 5.3, the reg-
isters ESR and SR have address 1 and O, respectively. Thus, circuit Saddr
selects the source address and the destination address of the register file
SPR as

[(SASA if rfe=0
(Sas Sad = { (00001, 00000) if rfe—1.

Circuit Daddr provides the three addresses Cad, Sasand Sad at the
following cost and delay:

Cpaddr = Ccaddr+Csaddr
CSaddr = 2 Cmux(5)
max{Dcaddr, Dmux(5)} = Dcaddr-

DDaddr

Section 5.5

INTERRUPT
HARDWARE

193

Chapter 5

194

INTERRUPT
HANDLING

5.5.3 Register File Environment RFenv

The DL X architecture now comprises two register files, one for the general
purpose registers GPR and one for the special purpose registers SPR. Both
register files form the environment RFenv.

CRFenv = CGPRenV'f‘ CSPRenv

The environment GPRenv of the general purpose register file has the same
functionality as before. The additional SPR registers are held in aregister
file with an extended access mode. The specia move instructions movi2s
and movs2i access these registers as a regular register file which permits
simultaneously one read and one write operation. However, on JISR all
registers are read and updated in parallel. Before describing the environ-
ment SPRenv in detail, we first introduce a special register file with such
an extended access mode.

A Special Register File

An (K x n) specia register file SF comprises K registers, each of which
isn bitswide. The file SF can be accessed like aregular two-port register
file:

e the flag w specifies, whether a write operation should be performed

¢ the addresses adr and adw specify the read and write address of the
register file, and

¢ Din and Dout specify the data input and output of the register file.

In addition, the special register file SF provides a distinct write and read
port for each of its registers. For any register SHr],

e Doir] specifies the output of its distinct read port, and

e Di[r] specifies the data to be written into register SF[r] on an active
write flag w(r].

In case of an address conflict, such a special write takes precedence over
the regular write access specified by address adw. Thus, the datad[r] to be
written into SF[r] equals

dir] — { Di[r] if w[rj=1

Din otherwise.

Theregister isupdated in case of w[r] = 1 and in case of aregular write to
addressr:
cer] = wjr] V (wA ((adw) =r)). (5.3

Section 5.5

Di[K-1] Di[0] Din adr adw W w[]
s BN INTERRUPT
w[K-1] w[0] AdDec HARDWARE
TK
cefK-1] P SFK-1] “ cd] SF[0] *® 4
b ~| DataSdl
Do[K-1] Do[0] Dout

Figure 5.4 Specia register file SF of size (K x n)

adr adw w w[K-1:0]
| |
k-dec k-dec
K K
si[K-1: 0] ce[K-1: 0]

Figure 5.5 Address decoder AdDec of an SF register file

We do not specify the output Dout of the special purpose register fileif a
register is updated and read simultaneously.

Realization

Figure 5.4 depicts an example realization of a specia register file SF of
size (K x n). The multiplexer in front of register SFr] selects the proper
input depending on the special write flag w[r].

The address decoder circuit AdDecin figure 5.5 contains two k-bit de-
coders (k= [logK1). The read address adr is decoded into the select bits
sI[K —1: Q]. Based on this decoded address, the select circuit DataSelse-
lects the proper value of the standard data output Dout. For that purpose,
the data Do[r] are masked by the select bit sl[r]. The masked data are then
combined by n-oRr-trees in a bit sliced manner:

K—1
Dout; = \/ (Do[r]j A sl[r])
r=0

The write address adwis decoded into K select bits. The clock signals of
the K registers are generated from these signals according to equation 5.3.
Thus, the cost of the whole register file SF runs at

CSF(K, n) = K- (Cff (n) +Cmux(n)) +CAdDe((K)
+n-Cor - Ciree(K) + K- Cang(n)

195

Chapter 5

! SPRsel PC.4 DPC.4 DDPC.4 |
INTERRUPT | |
HANDLING ; C4 SR 0 1)repeat _ |
I MCA !
SCT $ repet ;

Di[0] Di[1] Di[2] Di[3] Di[4] Di[5] Din r | sprw

(6 x 32) special register file W[5:0] |~ SPRW[]

Do[0Q] Do[1] Do[2] Do[3] Do[4] Do[5] Dout
oo Vo N
SR ESR ECA EPC EDPC Edata Sout

Figure 5.6 Environment SPRenv of the DLX;s design

CadvedK) = 2-Caed [10gK]) +Cana(K) + Cor(K).

Thedistinct read ports have azero delay, whereas the standard output Dout
is delayed by the address decoder and the select circuit:

DSF(DO[I’]) = 0
Dsg(Dout) = Dged [10gKT) + Dand+ Dor * Diree(K).

On awrite access, the special register file has an access time of Dsgy, and
the write signals w and w(] delay the clock signals by Dsg(w; ce):

Dsrw = max{Dmux(N), Ddec([10gKT) + Dand+ Dor} + D¢
DSF(W; Ce) = Dand + Dor.

Environment SPRenv
The core of the special purpose register environment SPRenv (figure 5.6) is
aspecial register file of size 6 x 32. The names of these registers SPR5:0]
are listed in table 5.3. The environment is controlled by the write signals
SPRwand SPRV5 : 0], and by the signals JISR repeat and sel.

The standard write and read ports are only used on the special move
instructions movi2s and movs2i and on an rfe instruction. The standard
data output of the register file equals

Sout = SPRSa$;_1,
and in case of awrite request SPRw= 1, the register fileis updated as

SPRSad" = C.4;.
196

Section 5.5

According to the specification of section 5.2, the SPR registers must also
be updated on a trap instruction and on a jump to the ISR. These updates
are performed viathe six distinct write ports of the specia register file.

Since a trap instruction always triggers an interrupt, i.e., trap = 1 im-
plies JISR = 1, the SPR register only require aspecial writeon JISR The
write signals are therefore set to

INTERRUPT
HARDWARE

SPRvr] = JISR

On JISR the status register SR is cleared. Register ECA buffers the
masked cause MCA, and register Edata gets the content of C.4. On atrap,
C.4 provides the trap constant, and on aload or store, it provides the effec-
tive memory address:

(Di[0], Di[2], Di[5]) = (0, MCA, C.4).

The selection of input Di[1] is more complicated. If instruction | is
interrupted, the new value of ESR depends on the type of the interrupt and
on the type of |;

SR 1 ifilj isof type repeat
Di[1l}i = ¢ SR' ifil; isof type continue
* if il; isof type abort.

where
SR — C.4 if SPRwA ((Sad)=0)
~ | SR_; otherwise.

The environment SPRenv selects the proper input

o C4 if sel=1
Dif1)i = { SR_; otherwise,

with
sel = repeat A SPRwA ((Sad = 0).
According to the specification of JISR if instruction | isinterrupted, the
two exception PCs have to be set to

(PC,DPC);_; ifil; isof type repeat

(EPC EDPC); = { (PC,DPC)Y if il; is of type continue;

whereas on an abort interrupt, the values of the exception PCs do not mat-
ter. Environment PCenv generates the values PG, DPC, and

DDPC" = DPG_1, -
197

Chapter 5

198

INTERRUPT
HANDLING

which are then passed down the pipeline together with instruction |. Ex-
cept on an rfe instruction,

DPC' = PG_1,

but due to the software constraints, rfe can only be interrupted by reset
which aborts the execution. Thus, the inputs of the two exception PCs can
be selected as

: : [(PC.4,DPC.4) if repeat=0
(Dif3), Dif4)) = { (DPC.4,DDPC.4) if repeat=1

Environment SPRenv consists of a specia register file, of circuit SPRsel
which selects the inputs of the distinct read ports, and of the glue logic
which generates signal sel. Thus, the cost run at

Csprenv = CsF(6,32) + Csprsert Csprglue
CSPRseI = 3 Cmux(32)
CSPRque = Czero(3) +2-Cang+ Cinv-

All the data inputs are directly provided by registers at zero delay. Let its
control inputs have adelay of Acon(CSSPR. The output Sinand the inputs
Di then have an accumulated delay of

Aspren(Sin) = Dsg(Dout)
Aspren(Di) = maX{ACON(CSSPR Dzero(3)} +2-Dand+ Dmux

and the write access requires a cycle time of at most

Tsprenv = Aspren(Di) + Dsrw+ 0.

5.5.4 Modified Data Paths

The decode stage 1D gets the new output register S. The two opcodes
IR[31:26] and IR[5:0] and the destination address Cad of the general pur-
pose register file are provided by stage ID, but they are also used by later
stages. As before, these data are therefore passed down the pipeline, and
they are buffered in each stage. Due to the interrupt handling, stage WB
now also requires the three PCs and the address Sad of the register file
SPR. Like the opcodes and the address Cad, these data wander down the
pipeline together with the instruction. That requires additional buffering
(figure 5.7); its cost runs at

Couffer = Ct1(22) +2-Ct1(22+3-32).

IR.1[31:26,5:0] Cadl Sad.l

I B

el IR2 Cad2 Sad2] pc ppc DDPC

72 b

ue2 IR3 Cad3 Sad3| PC.3 DPC.3 DDPC3]

vge

ue3> IR4 Cad4 Sad4| PC4 DPC4 DDPCA4]

Figure 5.7 Buffering

The interrupt handling has no impact on the instruction register envi-
ronment |Renv which extracts the immediate operand co and the shifter
environment SH4L env.

Execute Environment

The execute environment E X envof figure 5.8 still comprises the ALU en-
vironment and the shifter SHenv and connects them to the operand and
result busses. The three operand busses are controlled as before, and the
outputs shand ov f also remain the same.

The only modification is that the result D is now selected among six
values. Besides the register value link and the results of the ALU and the
shifter, environment EXenv can also put the constant co or the operands S
or A on the result bus:

(link if linkDdoe=1
alu if ALUDdoe=1
sh if SHDdoe=1
co if coDdoe=1
A if ADdoe=1

L S if SDdoe=1.

The result D = co is used in order to pass the trap constant down the
pipeline, whereas the result D = A is used on the special move instruction
movi2s. D = Sisused on rfe and movs2i.

The selection of D now requires two additional tristate drivers, but that
has no impact on the delay of the environment. The cost of EXenv are

CEXenv = CALUenv+ CSHenv+ 2- Cmux(32) +6- cdriv(32)-

Section 5.5

INTERRUPT
HARDWARE

199

Chapter 5

200

INTERRUPT
HANDLING

S link co B A B
A (0 1) bmuxsel @ a muxsel
b a b a
v
ALUenv SHenv
ovf au g1.0] sh
YY Y ¢ %} g ;/
Io o

Figure 5.8 Execute environment EXenv with interrupt support

Instruction Memory Environment IMenv

The environment IMenv of the instruction memory is controlled by asingle
control signal Imr. The address is still specified by register DPC, but the
memory IM has a dightly extended functionality. In addition to the data
output IMout and the busy flag ibusy, IM provides asecond statusflagipf.
Theflag ipf indicates that the memory is unable to perform the requested
access due to a page fault. The flag ibusy indicates that the memory re-
quires at least one more cycle in order to complete the requested access.
Both flags are inactive if the memory IM does not perform an access. In
case of a successful access (ibusy=ipf = 0), the instruction memory |M
provides the requested memory word at the data output IMout and other-
wise, it provides an arbitrary but fixed binary value IMde fault

IMword[(DPC[31:2]00)] if Imr A /ibusyA /ipf

IMout = { IMde fault otherwise,

The instruction memory control IMC checks for a misaligned access.
The 4-byte instruction fetch is misaligned if the address is not a multiple
of four:

imal = DPC[0] v DPC[1].

Let distar denote the status time of the instruction memory. Since the ad-
dress is directly taken from aregister, the status flags imal, ibusyand ip f
are provided at the following cost and accumulated delay:

Cvmc = GCor
AIMenv(ﬂagS) = maX{Doradlstat}-

Data Memory Environment DMenv
The environment DMenv still consists of the data memory DM and the
memory controller DMC. The memory DM performs the actual load or

store access, whereas the controller DMC generates the four bank write
signals Dmbw3: 0] and checks for misalignment.

Except for the data output DMout and an additional flag dpf, the func-
tionality of the data memory DM itself remains the same. The flag dpf
indicates that the memory is unable to perform the requested access due to
a page fault. If the memory DM detects a page fault (dpf = 1), it cancels
the ongoing access. Thus, the memory itself ensures that it is not updated
by a store instruction which causes a page fault. The flagsd p f and dbusy
areinactiveif the memory performs no access (Dmr.3=Dmw3=0). Ona
successful read access, the data memory DM provides the requested mem-
ory word, and otherwise it provides afixed value DMde fault

DMout — { DMword[{MDRw31: 2]00)] if DmrA /dbusyA /dpf
DMde fault otherwise,

Memory Control DMC In addition to the bank write signals, the mem-

ory controller DMC now provides signal dmal which indicates a mis-

aligned access.

The bank write signals Dmbw{3:0] are generated as before (page 81). In
addition, this circuit DMbw provides the signals B (byte), H (half word),
and W (word) which indicate the width of the memory access, and the
signals B[3:0] satisfying

Bjl=1 « (§1:0)=].

A byte accessis always properly aligned. A word accessisonly aligned,
if it startsin byte O, i.e,, if B[O] = 1. A half word accessis misaligned, if it
starts in byte 1 or 3. Flag dmal signals that an access to the data memory
is requested, and that this access is misaligned (malAc= 1):

dmal = (Dmr3V Dmw3) A malAc

malAc = WABIO] v HA (B[1] v B[3])
The cost Cpmc of the memory controller isincreased by some gates, but
the delay Dpwc of the controller remains unchanged:
CDMC = CDMbw+Cinv+ 3- Cand+ 3‘Cor
= Cdec(z) +3- Cinv+ 15. Cand+ 8- Cor-

Let Acon(csM) denote the accumulated delay of the signals Dmr and
Dmw, the cycle time of the data memory environment and the delay of
its flags can then be expressed as

Tv = Acon(csM) + Dpmc + domem+ A
Apmend flags) = Acon(csM) + Dpmc + dpstat-

Section 5.5

INTERRUPT
HARDWARE

201

Chapter 5

202

INTERRUPT
HANDLING

' CAcaol 3.7 ipf, ima |

| w0 cAl |

: (6] ~ ovf

- we1pcAl — — (¢

1 [5, 1] iz, ill - ovf?
) | :

| y e |

| w2 CA3 |

reset dmal

i evl[31:7] L[O] [2] L[“] | cause processing

o Q@?’”f”j CApro
CA4ce > MCA, jisr.4, repeat

Figure 5.9 Schematics of the cause environment CAenv

5.5.5 Cause Environment CAenv

The cause environment CAenv (figure 5.9) performs two major tasks:

e Its circuit CAcal collects the interrupt events and clocks them into
the cause register.

e |t processes the caught interrupt events and initiates the jump to the
ISR. This cause processing circuit CApro generates the flags jisr
and re peat and provides the masked interrupt cause MCA.

Cause Collection

Theinternal interrupt events are generated by the data paths and the control
unit, but the stage in which a particular event is detected depends on the
event itself (table 5.5).

Theinstruction memory and its controller IMC providetheflagsipf and
imal which indicate a page fault or misaligned access on fetch. The flag
dmal, generated by the controller DM C signals amisaligned data memory
access. The flags dmal and imal are combined to the event flag mal. In
the memory stage, the flag d p f of the data memory signals a page fault on
load/store.

A trap and anillegal instruction ill are detected by the control unit. This
will be done in stage EX in order to keep the automaton simple (see page
208). The ALU provides the overflow flag ovf, but an arithmetical over-
flow should only be reported in case of an instruction addo, subo, addio,
or subio. Such an instruction is indicated by the control signal ovf? which
activates the overflow check.

Section 5.5

Table 5.5 Assignment of Internal Interrupt Events. Itislisted in which stagean |NTERRUPT
event signal is generated and by which unit. HARDWARE

| event | signal | stage | unit \

ill ill EX | control unit
mal imal IF | instruction memory control IMC
dmal M | datamemory control DMC
pff ipf IF | instruction memory environment IMenv
pfls dpf M | datamemory environment DMenv
trap trap EX | control unit
ovf ovfAovf?| EX | ALU environment, control unit

Since the interrupt event signals are provided by several pipeline stages,
the cause register CA cannot be assigned to asingle stage. Register CAis
therefore pipelined: CA.i collects the events which an instruction triggers
up to stage i. That takes care of internal events. External events could be
caught at any stage, but for a shorter response time, they are assigned to
the memory stage.

The control signals of the stage EX are precomputed. The cycle time of
the cause collection CAcol, the accumulated delay of its output CA.3, and
its cost can be expressed as:

Teacok = max{Amen(flags), AaLuend0VTf) + Dand} + A
ACAcoI(CA-?’/) = max{Apwmend flags), Aomc + Dor }
CCAcoI = Cand‘f‘Cor + 9'Cff-

Cause Processing

(figure 5.10) The masked cause mcais obtained by masking the maskable
interrupt events CA 3 with the corresponding bits of the status register SR.
Theflag jisr israised if mcais different from zero, i.e., if at least one bit
mcdi] equals one.

— CAZ[iJASRi] ifi>6
medi] = { CA3[i] otherwise
jisr = i}mca{i]
i=0

A repeat interrupt is signaled if one of the page faults is the event of
highest priority among al the interrupt events j with mcd j] = 1:

repeat = mcg0] v mcdl] vV mcgd2] A (mcd3] vV mcd4))

203

Chapter 5

204

CA.3[31:6] CA.3[50]

INTERRUPT E L
HANDLING SR[31:6] mca
W CAtype

jisr
CA4ce—d mca CA4CG—‘§ repeat

Figure 5.10 Cause processing circuit CApro.

Circuit CAtypegenerates flag repeat according to this equation. At the
end of the cycle, the masked cause and the two flags jisr and repeatare
clocked into registers. The cost and cycle time of the cause processing
circuit CApro can be estimated as

Ccapro = Cand(26) + Ciree(32) - Cor +Ct1(34) + Ceatype
Ceatype = 3-Cor +Cand+Cinv

Dcapro = Dand+ Diree(32) - Dor

Teapo = Acacol(CAZ') + Dcaprot+A.

The cost and cycle time of the whole cause environment CAenv run at

Ccaenv = Ccacol+Ccapro

max{Tcacol; TcApro}-

TCAenv

5.5.6 Control Unit

As in the previous designs, the control unit basically comprises two cir-
cuits:

e The control automaton generates the control signals of the data paths
based on an FSD. These signals include the clock and write request
signals of the registers and RAMSs.

e The stall engine schedules the instruction execution. It determines
the stage which currently executes the instruction and enables the
update of its registers and RAMSs.

The control automaton must be adapted to the extended instruction set, but
the new instructions have no impact on the stall engine. Nevertheless, the
DLX;s design requires a new stall engine, due to the ISR call mechanism.

Figure 5.11 Stall engine of the sequential DL X design with interrupt hardware

Stall Engine of the DLXs Design

There is still one central clock CE for the whole DLX design. The stall

engine (figure 5.11) clocks the stages in around robin fashion based on the
vector full[4:Q]. Thisvector isinitialized on reset and shifted cyclicaly
on every clock CE. However, in the first cycle after reset, the execution is
now started in stage WB:

10000 if reset
full[4:0] := < cls(full) if CEA /reset
full otherwise.

The update enable bit uei enables the update of the of the output registers
of stagei. During reset, al the update enable flags are inactive

ug4: 0] = full[4:0] A CE A Teset

A jump to the interrupt service routine is only initiated, if the flag jisr.4
israised and if the write back stage isfull:

JISR= jisr.4 A full[4].

Thus, a dummy instruction can never initiate ajump to the ISR.

Section 5.5

INTERRUPT
HARDWARE

205

Chapter 5

206

INTERRUPT
HANDLING

On reset, the flags CA 3[0] and jisr are raised. However, ajump to the
ISR can only beinitiated in the following cycle, if the global clock CE and
the clock CA4ce of the cause processing circuit are also active on reset

CE = (lbusy NOR Dbusy V reset
CAdce = uel3V reset

As before, the clock CE is stalled if one of the memoriesis busy. In order
to avoid unnecessary stalls, the busy flags are only considered in case of
a successful memory access. Since the memories never raise their flags
when they areidle, the flags Ibusyand Dbusycan be generated as

Ibusy = ibusyA full.0 A (imal NOR ipf)
Dbusy = dbusyA full.3 A (dmal NOR dpf).

The interrupt mechanism requires that the standard writeto aregister file
or to the memory is canceled on arepeat interrupt. Since the register files
GPR and SPR belong to stage WB, their protection is easy. Thus, the write
signals of the two register files are set to

GPRW = GPRwA ue4 A (JISRNAND repeal
SPRW = SPRwA ue4 A (JISRNAND repeal.

For the data memory, the protection is more complicated because the
memory DM is accessed prior to the cause processing. There are only two
kinds of repeat interrupts, namely the two page faults pf f and pfls; both
interrupts are non-maskable. Since the interrupt event p flsis provided by
the memory DM, the memory system DM itself must cancel the update if
it detects apage fault. The other type of page fault (eV[2] = pf f) isalready
detected during fetch. We therefore redefine the write signal Dmwas

Dmw3 := Dmw2 A CA2[2].
As before, the memory update is disabled if the memory stage is empty

Dmw.3 = Dmw3 A full.3.

Signal Dmw.3is used by the memory controller DMC in order to generate
the bank write signals.

Section 5.5

The remaining clock and write signals are enabled as before. With this
stall engine, areset brings up the DLX: design no matter in which state the
hardware has been before:

INTERRUPT
HARDWARE

Let T be the last machine cycle in which the reset signal is active«lbemma 5.8
the next machine cycle, the DL.¥esign then signals a reset interrupt and
performs a jump to the ISR:

resef =1 Aresef1=0 — JISR*1=1 and MCAQ]" "1 =1.
Since the global clock is generated as PROOF
CE = (lbusy NOR Dbusy) V reset

the DLXs design is clocked whenever the reset signal is active, and espe-
cidly incycle T. Dueto reset, the flags full[4 : O] get initialized

full[4:0]"*1 = 10000,
and the clock enable signal for the output registers of CAprois
CAdce’ = ue3' v resel = 1.

Hence, the output registers of the cause processing circuit are updated at
the end of cycle T with the values

MCA0]™™! = mcd0]" = resef

31
jisr.4T = \/mcdj]" = 1.
j=0
Consequently,
JISRHL = jisr.4™1 A full 4T+ = 1,

and ISR(0) isinvoked incycle T + 1. QED

Control Automaton

The control automaton is constructed as for the DLX; design without in-
terrupt handling (section 4.2.3). The automaton is modeled by a sequential
FSD which is then transformed into precomputed control:

e The control signals of stage IF and the Moore signals of ID are al-
ways active, whereas the Mealy signals of stage ID are computed in
every cycle.

207

Chapter 5

208

INTERRUPT
HANDLING

e The control signals of the remaining stages are precomputed during
ID. Thisis possible because al their states have an outdegree of one.
There are three types of signals. signals x are only used in stage EX,
signals y are used in stage EX and M, and signals z are used in all
three stages.

However, there are three modifications. The automaton must account for
the 8 new instructions (table 5.4). It must check for an illegal opcode,
i.e., whether the instruction word codes a DL X instruction or not. Unlike
the DLX; design, al the data paths registers invisible to the assembler
programmer (i.e., al the registers except for PC’, DPC, and the two register
files) are now updated by every instruction. For all these registers, the
automaton just provides the trivial clock request signal 1.

The invisible registers of the execute stage comprise the data registers
MAR and MDRw and the buffers IR.3, Cad.3, Sad.3, PC.3, DPC.3, and
DDPC.3. By default, these registers are updated as

(IR3,Cad3, Sad3) = (IR.2,Cad2, Sad2)
(PC.3,DPC.3,DDPC.3) := (PC.2, DPC.2, DDPC.2)
(MAR MDRw) := (A, shift(A cof4:0]))

Besides the buffers, the invisible registers of the memory stage comprise
the data registers C.4 and MDRr. Their default update is the following:

(IR4,Cad4, Sad4) = (IR.3,Cad3, Sad3)
(PC.4, DPC.4,DDPC.4) := (PC.3,DPC.3, DDPC.3)
(C.4,MDRr) := (MAR DMdefaull).

The automaton is modeled by the FSD of figure 5.12. The tables 5.6
and 5.7 list the RTL instruction; the update of the invisible registers is
only listed if it differs from the default. Note that in the stages M and
WB, an rfe is processed like a special move movi2s. Table 5.8 lists the
nontrivial disjunctive normal forms, and table 5.10 lists the parameters of
the automaton.

In stage ID, only the selection of the program counters and of the con-
stant got extended. This computation requires two additional Mealy sig-
nals rfe.1 and Jimm In stage EX, the automaton now also has to check
for illega instructions; in case of an undefined opcode, the automaton gets
into state I1l. Since this state has the largest indegree, 11l serves as the new
initial state. State noEX is used for al lega instructions which aready
finish their actual execution in stage ID, i.e., the branches beqz and bnez
and the two jumps jr and j.

Section 5.5

Figure 5.12 FSD of the DLXs design with interrupt handling

Table 5.6 RTL instructions of the stages |F and ID

| | RTL instruction | typeof | | signals
\IF HIRJ;:IM(DPC) \fdchIRce
ID | A=A =RSl, AEQZ= zerdA), Ace,
B=R2, PC = (reset?4 : pc), Bce, PC'ce,
DPC = (reset?0 : dpo), DPCcee
S= SPRSaj$, Sce
link = PC' + 4, DDPC = DPC, PCce,
IR.2=1IR.1, Sad2 = Sad
co= constan{IR.1) J, jal, trap Jimm
slli, srli, srai | shiftl
otherwise
(pc,dpg = rfe rfe.l
nextPGPC,A’,co,EPC9 j, jal jump
jr, jalr JumpR, jump
beqz branch, bzero
bnez branch
otherwise
Cad=Caddr(IR.1) jalr, jal Jink
R-type Rtype
otherwise
(SasSad = Sadd(IR.1) rfe rfe.l
otherwise

INTERRUPT
HARDWARE

209

Chapter 5

210

INTERRUPT
HANDLING

Table 5.7 RTL instructions of the stages EX, M, and WB. The update of the
invisibleregistersis only listed if it differs from the default.

| state || RTL instruction | control signals
EX | au MAR= A op B, ALUDdoe, Rtype,
MDRw= shift(A, B[4:0]) bmuxsel
aluo MAR= A op B, overflow? | ALUDdoe, Rtype, ovf?
MDRw= shift(A, B[4:0]) bmuxsel
test MAR= (Arel B?1:0), ALUDdoe, test, Rtype,
MDRw= shift(A, B[4:0]) bmuxsel
shift MAR= MDRw= SHDdoe, Rtype,
shift(A,B[4:0]), bmuxsel
aul MAR= A op co, ALUDdoe
aulo MAR= A op co, overflow? | ALUDdoe, ovf?
testl MAR= (Arel co?1:0) ALUDdoe, test
shiftl MAR= shift(A,co[4:0]) SHDdoe, shiftl, Rtype
savePC || MAR= link linkDdoe,
addrL MAR= A+ co, ALUDdoe, add,
addrS || MAR=A+co, ALUDdoe, add,
MDRw= amuxsel, shiftds
cls(B, MAR{1:0]000)
trap MAR=co,trap=1 coDdoe, trap
Il MAR=Aill =1 ADdoe, ill
rfe MAR=S SDdoe
ms2i MAR=S SDdoe
mi2s default updates ADdoe
noEX
M | load MDRr = Dmr
Mword[{(MAR31: 2]00)]
store m = bytesMDRw) Dmw
others || default updates
WB | sh4l GPRCad4] = shiftdl, GPRw
shdl (MDRr, MAR[1: 0]000)
wb GPRCad4] =C.4 GPRw
mi2sW || SPRSad4] =C.4 SPRw
noWB | no update

Table 5.8 Nontrivial disjunctive normal forms of the DLXs control automaton

| stage | DNF | state/signal || IR[31:26] | IR[5:0] | length |
EX D1 au 000000 1001** 10
000000 100**1 10
D2 aluo 000000 1000*0 11
D3 alul 0011** Fokk ko 4
001* * 1 *kkkkk*k 4
D4 aulo 0010*0 kokkkkk 5
D5 shift 000000 0001*0 11
000000 00011* 11
D6 shiftl 000000 0000*0 11
000000 00001* 11
D7 test 000000 101*** 9
D8 t%tl 011*** *kkkk*k 3
D9 savePC 010111 Fokok kK 6
000011 Fok ko ko 6
D10 | addrS 10100* Fokkkk ok 5
1010* 1 *kkkk* 5
D11 | addrL 100*0* Fokkk ok 4
1000* 1 *kkkk*k 5
loooo* *kkkk*k 5
D12 | mi2s 000000 010001 12
D13 | ms2i 000000 010000 12
D14 | trap 111110 kokkkkk 6
D15 | rfe 111111 Fkkkkx 6
D16 | noEX 00010* Fokokkk ok 5
000010 Fok ko kk 6
010110 kokkkkk 6
ID | D17 | Riype 000000 | ****** | 6
D6 shiftl 000000 0000*0 | (10)
000000 00001* (10)
D9 | Jink 010111 | ****** | (6)
000011 kokkkk ok (6)
D18 | jumpR 01011F | ****** | 5
D19 | jump 00001* Fokk ok k ok 5
01011* *kkkkk*k (5)
D20 | branch 00010* Fkokkkk 5
Dzl bzero ****‘ko *kkkk*k l
D15 | rfel 111111 Fokkkk ok (6)
D22 | Jmm 00001 | %% | (5)
111110 kokkkkk (6)
Accumulated length of all nontrivial monomials | 206 |

Section 5.5

INTERRUPT
HARDWARE

211

Chapter 5

INTERRUPT Table 5.9 Control signals to be precomputed during stage ID
HANDLING | [EX M [wB | [typexsignals (stage EX only) |
y || shiftds, | Dmw trap, ADdoe | ovf?
amuxsel coDdoe SDdoe | add?
z Dmr | shiftdl linkDdoe | Rtype ill

SPRw ALUDdoe | bmuxsel | test
GPRw SHDdoe

\ [il | add | test | Rtype| ovf?| bmuxsel | Dmw | Dmr| SHDdoe|

shift 1 1 1
shiftl 1 1
alu 1 1

aluo 1 1 1

alulo 1

test 1 1 1

testl 1

addrL 1 1

addrS 1 1

[l 1

inactive in states: alul, savePC, trap, mi2s, rfe ms2i, noEX

\ | ALUDdoe| linkDdoe | trap| ADdoe| SDdoe| SPRw | GPRw |
shift 1
shiftl
au
auo
alul
aulo
test
testl
addrL
addrS
savePC 1 1
trap 1
mi2s 1 1
ms2i 1 1
rfe 1 1
" 1
noEX 1

RPlRr R R R R R -

RPlRr R R R R R~

212

Table 5.10 Parameters of the two control automata; one precomputes the Moore
signals (eX) and the other generate the Mealy signals (id).

states | #inputs | # and frequency of outputs
K o Y ‘ Vsum ‘ Vmax
ex 17 12 16 | 48 11
id 1 12 9 13 2

fanin of the states | # and length of monomials

fansum ‘ fanmax | #M ‘ lsum ‘ Imax
ex 26 3 26 | 189 12
id — - 4 17 10

The stage EX, M and WB are only controlled by Moore signals, which
are precomputed during decode. All their states have an outdegree of one.
It therefore suffices to consider the states of stage EX in order to generate
all these control signals. For any of these signals, the table 5.9 list its type
(i.e, x, y, or 2) and the EX states in which it becomes active.

Correctness of the Design
Along thelines of section 3.4 it can be show that the DL design interprets
the extended DL X instruction set of section 5.2 with delayed PC semantics.
In the sequential DL X design without interrupt handling, any instruction
which has passed a stage k only updates output registers of stages K > k
(lemma 4.3). In the DLXs design, this dateline criterion only applies for
the uninterrupted execution. If an instruction k gets interrupted, the two
program counters PC' and DPC get aso updated when |; is in the write
back stage. Furthermore, in case of arepeat interrupt, the update of the data
memory is suppressed. Thus, for the DLX; design, we can just formulate
awesak version of the dateline criterion:

Section 5.5

INTERRUPT
HARDWARE

Let Is(k, T') =i. For any memory cell or register R out(t) different from <€ Lemma 5.9

PC’ and DPC, we have

ar_ [R if t>k
“1R if t<k

If Re {PC, DPC}, then R is an output register of stage-tl and

RT/_ R_1 if kE{O,l}
1R if k>2

213

Chapter 5

214

INTERRUPT
HANDLING

If the execution of instruction is not interrupted, i.e., if JISR= 0 with
I5(4,T') =i, then R= R for any register R.
If 15(4,T') =i, then 15(0, T+ 1) =i+ 1 and lemma 5.9 implies for all
R
RT’+1 — R|

5.6 Pipelined Interrupt Hardware

S IN the basic DLX design (chapter 4), the same three modifications
are sufficient in order to transform the prepared sequential design
DLXs into the pipelined design DLXq. Except for

e amodified PC environment,
e extensive hardware for result forwarding and hazard detection, and

e adifferent stall engine,

the DL X5 hardware can be used without changes. Figure 5.13 depicts the
top-level schematics of the DLXq data paths. The modified environments
are now described in detail.

5.6.1 PC Environment

Figure 5.14 depicts the PC environment of the DLXq design. The only
modification over the DLXs design is the address provided to the instruc-
tion memory IM. As for the transformation of chapter 4, memory IM is
now addressed by the input d pcof register DPC and not by its output.
SISR if JISR=1
dpc = { EDPC if JISR=0Arfel=1
PC otherwise

However, the delayed program counter must be buffered for later use, and
thus, register DPC cannot be discarded.

The cost of environment PCenv and most of its delays remain the same.
The two exception PCsare now provided by theforwarding circuit FORW.
Thus,

Ap(_jen\(d pC) = max{AJ|3R, AFORw(EDPC)} + 2. Dmu><(32)
Tecenv = Max{Dinc(30), Airend €O) + Dadd(32), AcprentAin),

Arorw(EPCS, A(bjtaker), Acon(csID) }
+3-Dmux(32) + A.

<~ T TTTTTTTTTTTT T IMenv Tv
¢ b IR1
—=
IRenv Daddr
PCenv WV ¢
D link,PCs || pco]
> L -
é:;; =~ EXenv sh
> v buffers:
& MAR IRj
SR| & Cad,j
=4 DMenv PCs;j
= | @ - ¥ Sadj
£| pca] b MDRr
2
5 SH4Lenv
T te— |
RFenv

C’, Aout, Bout, Sout

Figure 5.13 Data paths of the pipelined design DLXp with interrupt support

(to IMenv)

dpc

Figure 5.14 Environment PCenv of the DLX design

Section 5.6

PIPELINED
INTERRUPT
HARDWARE

215

Chapter 5

216

INTERRUPT
HANDLING

The modified PC environment also impacts the functionality and delay
of the instruction memory environment. On a successful read access, the
instruction memory now provides the memory word

IMout = IMword[(dpd31: 2]00)].
The cycletime of IMenv and the accumulated delay of its flags are

TIMenv = APCen\(d pC) + dlmem+ A
AIMenv(flags) = APCen\(d pC) + ma){Dora dlstat}-

5.6.2 Forwarding and Interlocking

The data paths comprise two register files, GPR and SPR. Both are up-
dated during write back. Since their data are read by earlier stages, result
forwarding and interlocking is required. The two register files are treated

separately.

General Purpose Registers

During movs2i instructions, data are copied from register file SPR viareg-
ister S and the C.k registers into the register file GPR. The forwarding
circuits to Shave to guarantee that the uninterrupted execution of |, i.e.,

In(2,T) = In(3,T+1) = In(4T+2) =i,

implies S = §_;. During stages EX, M and W B the data then wander
down the C.k registers like the result of an ordinary fixed point operation.
Thus we do not modify the forwarding circuits for registers A and B at all.

Special Purpose Registers
Datafrom the specia purpose registers are used in three places, namely

e on amovs2i instruction, SPRSag is read into register S during de-
code,

e the cause environment reads the interrupt masks SR in the memory
stage, and

e on an rfe instruction, the two exception PCs are read during decode.
Updates of the SPR registers are performed in three situations:

e Onamovi2s instruction, value C.4 iswritten into register SPRSad.

Sasl Sin
Sad.2,C'.2, SRPw.2 —=| & Dout
Sad.3,C' .3, SRPW.3 —=| SFor(3)
Sad.4, C' .4, SRPw.4 —= Din
ﬁ Sout

Figure 5.15 Forwarding of SPR into register S

e Register SRis updated by rfe. Recall that in stages 2 to 4, we have
implemented this update like a regular write into SPR with write
address Sad= 0.

e All special purpose registers are updated by JISR Forwarding the
effect of this looks like a nightmare. Fortunately, al instructions
which could use forwarded versions of values forced into SPR by
JISRget evicted from the pipe by the very same occurrence of JISR

Therefore, one only needs to forward data from the inputs of the C.k reg-
isters with destinations in SPRspecified by Sad

Forwarding of S Forwarding data with destination SPRinto register S
is exactly like forwarding data with destination GPRinto A or B, except
that for address ad = O the data are now forwarded as well. Thus, con-
necting the three stage forwarding circuit SFor(3) as depicted in figure
5.15 handles the forwarding into register S. Note that no data hazards are
introduced.

Circuit SFor Figure 5.16 depicts arealization of the 3-stage forwarding
circuit SFor. It is derived from the circuit Forw of figure 4.18 in the ob-
vious way. Let Dspor(Data; 3) denote the delay, the data inputs require to
pass circuit SFor(3). For an n-bit address ad, the cost and delay of SFor(3)
can be modeled as

Csror(3) = 3-Chux(32) 4 6-Cand+ 3+ Cequal(n)
Dsror(hit) = Dequal(n) 4+ Dand
Dsror(Dout;3) = Dsror(hit) + 3 Dmux(32)
Dsror(Data;3) = 3-Dmux(32).

Circuit SForisdlightly faster than the forwarding circuit Forw for the GPR
operands.

Section 5.6

PIPELINED
INTERRUPT
HARDWARE

217

Chapter 5

218

INTERRUPT
HANDLING

Figure 5.16 3-stage forwarding circuit SFor(3) for an SPR register

a) 011 EPC b)
| | 000 SR
, ad Dout ¢ ﬂ\
Sad.2, C' .2, SRPW.2 —= o, [D0
Sad.3,C'.3, SRPW.3 —=| SFor(3) A e
Sad.4, C' .4, SRPw.4 —= Din
! Erc | R

Figure 5.17 Forwarding of EPC into register PC' (@) and of register SR into the
memory stage (b)

Forwarding of EPC The forwarding of EPC into the program counter
PC' during rfe instructions is done by acircuit SFor(3) which is connected
as depicted in figure 5.17 (a). Note that the address input ad of the for-
warding circuit has now been tied to the fixed address 3 of the register
EPC. No data hazards are introduced.

Forwarding of SR The forwarding of register SRinto the memory en-
vironment requires forwarding over a single stage with a circuit SFor(1)
connected as depicted in figure 5.17 (b). This circuit is obtained from cir-
cuit SFor(3) by the obvious simplifications. It has cost and delay

Csror(1) = Cmux(32) 4+ 2-Cand+ Cequal(3)
Dsror(Dout;1) = Dsror(hit) + Dmux(32)

Again, no data hazards were introduced.

Forwarding of EDPC The forwarding of EDPC during rfe instructions
to signa dpcin the PC environment would work along the same lines,

100 dhaz(EDPC)

Figure 5.18 Data hazard detection for EDPC

but this would increase the instruction fetch tineherefore, forwarding
of EDPC to dpcis omitted. The data hazards caused by this can always
be avoided if we update in the RESTORE sequence of the interrupt service
routine register EDPC before register EPC.
If this precaution is not taken by the programmer, then a data hazard
signal
dhagEDPC) = hit.2 v hit.3 Vv hit.4

is generated by the circuit in figure 5.18. Note that this circuit is obtained
from circuit SFor(3) by the obvious simplifications. Such adata hazard is
only of interest, if the decode stage processes an rfe instruction. That isthe
only case in which a SPR register requests an interlock:

dhazS= dhagEDPC) A rfe.l.

Cost and Delay The hazard signal dhazSis generated at the following
cost and delay

Cdhazs = 3-Cequal(3) +7-Cand+2-Cor
Adhazs = Dequal(3) +2:-Dand+2-Dor.

The address and control inputs of the forwarding circuits SForare directly
taken from registers. The input data are provided by the environment EX-
env, by register C.4 and by the special read ports of the SPR register file.
Thus,

Arorw(S EPC) = max{DsFor(Dout;3), Dsror(Data; 3) + Aexenyt
Arorw(SR = max{Dsfor(Dout; 1), Dsror(Data; 1) + Asrutenv}
Arorw(EDPC) = 0.

Section 5.6

PIPELINED
INTERRUPT
HARDWARE

219

Chapter 5

220

INTERRUPT
HANDLING

The forwarding of the SPR operands is performed by an 1-stage and two
3-stage forwarding circuits:

Csrorw = Csror(1) +2-Csror(3).

5.6.3 Stall Engine

The stall engine of the DLXq design is very similar to the interlock engine
of section 4.5 except for two aspects: theinitialization isdifferent and there
are additional data hazards to be checked for. On a data hazard, the upper
two stages of the pipeline are stalled, whereas the remaining three stages
proceed. The upper two stages are clocked by signal CE1, the other stages
are clocked by signal CE2.

A data hazard can now be caused by one of the general purpose operands
Aand B or by aspecia purpose register operand. Such ahazard issignaled
by the activation of the flag

dhaz = dhazAv dhazBVv dhazS

Updating of the Full Vector
The full vector isinitialized on reset and on every jump to the ISR. Asin
the DLXs design, ajump to the ISR isonly initiated if the write back stage
is not empty

JISR = jisr.4 A full.4.
On JISR, the write back stage is updated and stage IF already fetches the
first instruction of the ISR. The update enable signals ue4 and ue0 must
therefore be active. Theinstructions processed in stages 1 to 3 are canceled
on ajump to the ISR; signal JISRdisables the update enable signals ue3:
1]. In the cycle after JSR, only stages 0 and 1 hold avalid instruction, the
other stages are empty, i.e., they process dummy instructions.

Like in the DLXs design, an active reset signal is caught immediately
and is clocked into register MCA even if the memory stage is empty. In
order to ensure that in the next cycle ajump to the ISR isinitiated, the reset
signal forces the full bit full.4 of the write back stage to one.

The following equations define such a stall engine. A hardware realiza-
tion is depicted in figure 5.19.

ue0=CEl

uel=CE1A/JISR fulll=1
ue2=CE2A /JISRA full.2 full.2:=uel
ue3=CE2A /JISRA full.3 full.3:=ue2
ued4d=CE2A full .4 full.4:=ue3Vreset

ue.d

Figure 5.19 Stall engine of the DLXp design with interrupt support

Clock Signals

Likein the pipelined design DLX;; without interrupt handling, there are two
clock signals. Signal CE1 governs the upper two stages of the pipeline, and
signal CE2 governs the remaining stages.

CE1 = (/busyA/dha Vv (JISRA /Ibusy)
= (/busyA /dhaz v (/JISRNOR lbusy)
CE2 = /busyV (/JISRNOR lbusy V reset
Both clocks are inactive if one of the memoriesisbusy; CElisasoinactive
on a data hazard. However, on JISR both clocks become active once the
instruction memory is not busy. In order to catch an active reset signal

immediately, the clock CE2 and the clock CAdce of the cause processing
circuit must be active on reset

CAdce = ue3 V reset

In order to avoid unnecessary stalls, the busy flags are only considered in
case of a successful memory access. Since the memories never raise their
flags when they areidle, the busy flags are generated as

Ibusy = ibusyA (imal NOR ipf)
Dbusy = dbusyA (dmal NOR dpf)
/busy = Ibusy NOR Dbusy

The interrupt mechanism requires that the standard write to a register
file or memory is canceled on a repeat interrupt. The register files GPR

Section 5.6

PIPELINED
INTERRUPT
HARDWARE

221

Chapter 5

and SPR are protected as in the sequential design. A specia write to the
SPR register fileisenabled by signal ue4. The write signals of the register
files are therefore generated as

INTERRUPT
HANDLING

GPRW = GPRwA ue4 A (JISRNAND repeat)
SPRW = SPRwA ue4 A (JISRNAND repeal)
SPRW5:0] = SPRJ5:0] A ued.

For the data memory, the protection becomes more complicated. Like in
the sequential design DLXs, the memory system DM itself cancels the
update if it detects a page fault, and in case of a page fault on fetch, the
write request signal is disabled during execute

Dmw3 := Dmw2 A CA2[2].
However, the access must also be disabled on JSR and on reset. Thus,
signal Dmw3 which is used by the memory controller DMC in order to
generate the bank write signalsis set to
Dmw.3 = Dmw3 A full.3 A (JISRNOR rese}.
The remaining clock and write signals are enabled as in the pipelined de-
sign DLX;; without interrupt handling: the data memory read request is
granted if stage M isfull
Dmr'.3 = Dmr.3 A full.3,
and the update of an register R € out(i) is enabled by uei
Rcé = RceA uei.
Likefor the DLXs design (lemmab5.8), it followsimmediately that with this

stall engine, an active reset signal brings up the DLX5 design, no matter in
which state the hardware has been before:

Lemma 5.10 » Let T be the last machine cycle in which the reset signal is active. In the
next machine cycle, the DigXdesign then signals a reset interrupt and
performs a jump to the ISR:

resel =1 Aresef "'=0 — JISR™=1and MCAO]'*'=1

222

Section 5.6

Table 5.11 Start of the execution after reset under the assumption that no data pypgL INED

hazards occur. A blank entry indicates that the value is undefined. INTERRUPT
[T [reset JISR| u€0,1,2,3,4] | full2,3,4] | IF| HARDWARE
-1 1 1
0 0 1 |1 0 0 01 1 |1
1 0 0O |11 00 0[]0 0 O |1
2 0 0O |1 11 001 0 0]I
3 0 0 111101 1 0|l
4 0 0O |1 1 1 1 1|1 1 1 |1

Scheduling Function

The scheduling functions of the pipelined DLX designs with and without
interrupt handling are very much alike. The execution startsincycle T =0,
which isthe first cycle after reset (table 5.11). According to lemma 5.10,
thefirst instruction lg of the ISR isfetched in cycle T =0, and

In(0,0) = 0.

The instructions are still fetched in program order and wander in lock-
step through the stages 0 and 1:

[if ued" =0

In(L,T)=i — In(0,T)=i+1
Any instruction makes a progress of at most one stage per cycle, and it
cannot be stalled once it is clocked into stage 2. However, on an active
JISRsignal, the instructions processed in stages 1 to 3 are evicted from the
pipeline. Thus, In(k,T) =i A (JISR =0 Vv k= 0) implies

[In(kT+1) if uek” =0
T Intk+1,T+1) if uek'=1 and k+1<4

and for k > 2, the instructions proceed at full speed:
In(k, T)=i AJISR =0 — Ink+1LT+1)=i.

Note that on JISR= 1, the update enable signals of the stages 0 and 4 are
active whereas the ones of the remaining stages are inactive.

223

Chapter 5

224

INTERRUPT
HANDLING

Cost and Delay

The computation of the inverted hazard signal /dhazrequires the data haz-
ard signals of the two GPR operands A and B and the data hazard signal
dhazSof the SPR operands.

/dhaz = (dhazAv dhazB NOR dhazS

Since for the two GPR operands, the hazard detection isvirtually the same,
the cost and delay of signal /dhazcan be modeled as

thaz = 2 thazA+ thazS+ Cor + Cnor
Adhaz = mMax{Adhaza+ Dor, Adhazg + Dnor.

The inverted flag /busy which combines the two signals Dbusy and
Ibusy, depends on the flags of the memory environments. Its cost and
delay can be modeled as

Cbusy = 2 Cand +3- Cnor
Apusy = mMax{Amen flags), Aomend flags)} + Dand+ 2 Dnor-

The two clock signals CE1 and CE2 depend on the busy flag, the data
hazard flag /dhaz and the JISR flags.

JISR= jisr.4 A full.4 /JISR= jisr.4 NAND full.4.

We assume that the reset signal has zero delay. The two clocks can then be
generated at the following cost and delay

Cce = 3-Cor +Chor+ Cand + Cdhazt+ Cousy+ Cand + Cnand
Ajyisr = max{Dand, Dnand}
Ace = max{Adhas AJisr Aobusy} + Dand+ Dor.

The core of the stall engine is the circuit of figure 5.19. In addition,
the stall engine generates the clock signals and enables the update of the
registers and memories. Only the data memory, the two register files, the
output registers of environment CApro, and the registers PC' and DPC
have non-trivial update request signals. All the other data paths registers
R € out(i) are clocked by uei. The cost and the cycle time of the whole
stall engine can therefore be modeled as

C:stall = 3'Cff +Cor + 5'Cand
+Cck + Chand+ Cnor + Cor + Cinv + 9+ Cand
Tstall = ACE +3- Dand +9

+ max{DSF(W, ce 6, 32) + Ds+, Dram3(32, 32)}

Table 5.12 Cost of the data paths of the pipelined DLX designs with/without
interrupt hardware

| environment | EX| RF| PC|[CA | buffer | FORW | DP |

DLXy 3315 | 4066 | 1906 - 408 812 | 13010
DLXn 3795 | 7257 | 2610 | 471 | 2064 1624 | 20610
increase 14% | 78% | 37% — | 406% | 100% 58%

5.6.4 Cost and Delay of the DLXy Hardware

In following, we determine the cost and the cycle time of the DLX; de-
sign and compare these values to those of pipelined design DLX; without
interrupt handling.

Cost of the Data Paths

Except for the forwarding circuit FORW, the top level schematics of the
data paths of the two DL X design with interrupt support are the same. The
cost of the DLXn data paths DP (figure 5.13) can therefore be expressed as

CDF’ = CI Menv+ CIRenv+ CF’CenV‘f‘ CDaddr
+Cexenvt CoMenv+ CsraLenv+ Crrenv
+Chut fer+ Coaenvt Crorw+ 8- C£(32).

Table 5.12 lists the cost of the data paths and its environments for the
two pipelined DLX designs. Environments which are not effected by the
interrupt mechanism are omitted. The interrupt mechanism increases the
cost of the data paths by 58%. Thisincrease is largely caused by the reg-
ister files, the forwarding hardware, and by the buffering. The other data
paths environments become about 20% more expensive.

Without interrupt hardware, each of the stages ID, EX and M requires
17 buffers for the two opcodes and one destination address. In the DLXq
design, each of these stages buffers now two addresses and three 32-bit
PCs. Thus, the amount of buffering isincreased by afactor of 4.

The environment RFenv now consists of two register files GPR and SPR.
Although there are only 6 SPR registers, they almost double the cost of en-
vironment RFenv. That is because the GPR is implemented by a RAM,
whereas the SPR is implemented by single registers. Note that an 1-bit
register isfour times more expensive than aRAM cell. The register imple-
mentation is necessary in order to support the extended access mode — all
6 SPR registers can be accessed in paralléel.

Section 5.6

PIPELINED
INTERRUPT
HARDWARE

225

Chapter 5

226

INTERRUPT
HANDLING

Table 5.13 Cost of the control of the two pipelined DLX designs

| environment | stall | MC | automata | buffer | CON | DLX |

DL Xy 77 48 609 89 830 | 13840
DLXn 165 61 952 105 || 1283 | 21893
increase 114% | 27% 56% | 18% || 44% | 58%

Cost of the Control

According to the schematics of the precomputed control (figure 4.15), the
control unit CON buffers the valid flags and the precomputed control sig-
nals. For the GPR result, 6 valid flags are needed, i.e., v[4: 2].2, v[4: 3].3
and Vv[4].4. Due to the extended ISA, there is also an SPR result. Since
this result always becomes valid in the execute stage, there is no need for
additional valid flags.

Since the control automata already provide one stage of buffering, pre-
computed control signals of type x need no explicit buffering. Typey sig-
nals require one additional stage of buffers, whereas type z signals require
two stages of buffers. According to table 5.9, there are three control signals
of type zand one of typey. Thus, the control requires

6+2-3+1-1=13

flipflops instead of 11. One inverter is used in order to generate the valid
signal of the GPR result. In addition, the control unit CON comprises the
stall engine, the two memory controllers IMC and DMC, and two control
automata (table 5.10). Thus, the cost of unit CON can be modeled as

Ccon = Cimc +Cpmc + Cstail + Ccon(moorg + Ccon(mealy)

Table 5.13 lists the cost of the control unit, of al its environments, and
of the whole DLX hardware. The interrupt mechanism increases the cost
of the pipelined control by 44%. The cost of the stall engine is increased
above-average (+114%).

Cycle Time

According to table 5.14, theinterrupt support hasvirtually no impact on the
cycle time of the pipelined DLX design. The cycle times of the data paths
environments remain unchanged, only the control becomes slightly slower.
However, as long as the memory status time stays below 43 gate delays,
the cycle time of the DLXn design is dominated by the PC environment.

Table 5.14 Cycletimes of the two pipelined DLX designs; dmemdenotes the max-
imum of the two access times djmem and dpmemand dmstat denotes the maximum
of the two status times d;stat and dpstat.

ID CON / stall
A/B|PC EX | WB | DP IFM max(,)

DLXy || 72 | 89 | 66 | 33 | 89 || 16+ Onem || 57 | 43+ Omstat
DLXn || 72 | 89| 66 | 33 | 89 || 16+ Onem || 57 | 46+ Omstat

5.7 Correctness of the Interrupt Hardware

IN THIS section, we will prove that the pipelined hardware DLX; to-
gether with an admissible ISR processes nested interrupts in a precise
manner. For asequential design, the preciseness of theinterrupt processing
is well understood. We therefore reduce the preciseness of the pipelined
interrupt mechanism to the one of the sequential mechanism by showing
that the DLXn design simulates the DLXs design on any non-aborted in-
struction sequence.

In afirst step, we consider an uninterrupted instruction sequence b, ...,
Ip, where lg is preceded by JISR, and where I, initiates a JISR. In a sec-
ond step, it is shown that the simulation still works when concatenating
several of these sequences. With respect to these simulations, canceled
instructions and external interrupt events are a problem.

Canceled Instructions

Between the fetching of instruction I, whichinitiates ajump to the ISR and
the actual JISR, the DLXn design starts further instructions Ipy 1, ..., 1, 5.
However, these instructions are canceled by J SR before they reach the
write back stage. Thus, with respect to the simulation, we consider se-
quence P =lo,...,lp,..., 1,5 for the pipelined design, and sequence P =
lo,...,lp for the sequential design.

External Interrupt Events

are asynchronous to the instruction execution and can occur at any time.
Due to the pipelined execution, an instruction sequence P is usualy pro-
cessed faster on the DLXq design than on the DLXs design. For the simu-
lation, it is therefore insufficient to assign a given external event to a fixed
cycle. Instead, the instruction sequences P and P are extended by a se-
quence of external events. For any external interrupt eV{j], we use the
following assignment, which isillustrated in table 5.15:

Section 5.7

CORRECTNESS OF
THE INTERRUPT

HARDWARE

227

Chapter 5

228

INTERRUPT
HANDLING

Table 5.15 Assignment of external interrupt events for an uninterrupted instruc-
tion sequence P

[cycle [ev[j] JSR[full3 ful4|M WB
T-1] 0 0
T
T+1

= O OO

t—1
t

e
ocoooo
, O OO

|

|

Let the externa interrupt event eV[j] be raised during cycle T of the
pipelined execution of P

efili '=0 and eVjln=1,

let t be thefirst cycle after T for which the write back stage is full, and let
T’ + 1 bethecycle in the sequential execution of P corresponding to cycle
t,i.e,

In(4,t) =i = 15(4,T'+1).

In the sequential execution of P, event e\[j] isthen assigned to cycle T
ejjf =1

Since the external events are collected in stage 3, it is tempting to argue
about the first cyclet > T in which stage 3 isfull, i.e,, i = In(3,f). For
asingle uninterrupted instruction sequence P that makes no difference be-
cause the instruction processed in stage 3 is always passed to stage 4 at the
end of the cycle. Thus,

In(3.£) = In(4,f+1) = In(4,t).

However, when concatenating two sequences P = Iy, ...l 5 and Q = Jo,
Ji,..., theinstruction processed in stage 3 can be canceled by JISR. There-
fore, it is essential to argue about the instruction executed in stage 4. In
the example of table 5.16, the external event eV{j] is signaled while the
DLXp design performs ajump to the ISR. When arguing about stage 3, the
external event is assigned to instruction I, 1 which has no counterpart in
the sequential execution, whereas when arguing about stage 4, the event is
assigned to the first instruction of sequence Q.

Section 5.7

Table 5.16 Assignment of external interrupt events when concatenating two in- CoRRECTNESS OF

struction sequences P and Q THE INTERRUPT
[cyde [ev[j] JSR[full3 fuld] M WB HARDWARE
T-1] 0 0 | 1 i
T=f| 1 1| 1 1 | lps
T+1| 12 o | o o0 | - -
1 0 0 0 _ _
t-1 1 o | 1 0 | ¥ -
t 1 0 1 J

The proofs dealing with the admissibility of the ISR (section 5.4) only
argue about signal JISRand the values of the registers and memories vis-
ible to the assembler programmer, i.e., the general and specia purpose
register files, the two PCs and the two memories IM and DM:

C = {GPRO0],...GPR31],SPR0],...,SPR5],PC',DPC,DM, IM}.

For the ssimulation, signal JISRand the contents of storage C are therefore
of specia interest.

LetP=lo,...,lp,...,Ipr5@and P =1lq,..., I, be two instruction sequenced Theorem 5.11
extended by a sequence of external events, as defined above. Sequence P

is processed by the pipelined design Blafd P by the sequential design

DLXs. Letinstruction ¢ be preceded by JISR

JISR'=1 and JISR =1,
and let both designs start in the same configuration, i.e.,
VRe C R2=R}.

Let T, and T} denote the cycles in whicp s processed in the write back
stage
In(4,Tp) = 1:(4,T)) = p A ue4y? = 1.

The initial PCs then have values RG- SISRt 4 and DPQ = SISR. For
any instructionle P', any stage k, and any two cycles T yiith

|r|(k,T):|z(k,Tl):i A ueky =1

=

the following two claims hold: -
229

Chapter 5

0 Tp
| | T

INTERRUPT ‘o
HANDLING k=0 | |0 Iy Ip

k:]. IO

k=2 | |box 0 lo box 1 box 2

k:3 IO

k=4 I I

0 p

Figure 5.20 Pairs (k,T) of the pipelined execution. Box O is covered by the
hypothesis of the simulation theorem, the boxes 1 and 2 correspond to the claims
land2.

1. (a) for all signals S in stage k which are inputs to a registet R
out(k) that is updated at the end of cycle T:

!

=9,

(b) for all registers Re out(k) which are visible or updated at the
end of cycle T:

Te1 ora1 [RUE T <T,
R =R _{a it T=T,

(c) for any cell M of the data memory DM and=3:
M;H _ M‘zr’+1 =M;,
2. andforany Re Cand T=T,
REH — R;’H =R,

With respect to the pipelined execution, there are three types of pairs
(k, T) for which the values S" and R"** of the signals S and output regis-
ters R of stage k are of interest (figure 5.20):

e For thefirst cycle, the theorem makes an assumption about the con-
tents of al registers and memories R € C independent of the stage
they belong to (box 0).

e Clam 1 covers al the pairs (k, T) for which In(k, T) is defined and
- lies between 0 and p (box 1).

230

Table 5.17 Start of the execution after reset or JISR respectively

DLXg DLXs
T || reset uef0:4] full[O:4] || reset JSR ueg[0:4] full[0:4]
- 2 1 * * *
-1 1 * * 0 1 00001 00001
0 0 10000 10000 0 0 10000 10000
1 0 01000 01000 0 0 01000 01000
2 0 00100 00100 0 0 00100 00100
3 0 00010 00010 0 0 00010 00010
4 0 00001 00001 0 0 00001 00001
5 0 10000 10000 0 0 10000 10000
DLX DLXp
T || reset ug[0:4] full[2:4] || reset JSR ug0:4] full[2:4]
-1 1 * * *
0 1 10000 * 0 1 10001 **1
1 0 11000 000 0 0 11000 000
2 0 11100 100 0 0 11100 100
3 0 11110 110 0 0 11110 110
4 0 11111 111 0 0 11111 111

e For thefinal cycle Ty, claim 2 covers all the registers and memories
R € C independent of the stage they belong to (box 2).

The above theorem and the simulation theorem 4.11 of the DLX design
without interrupt handling are very similar. Thus, it should be possible to
largely reuse the proof of theorem 4.11. Signal JISRof the designs DLX
and DLXn isthe counterpart of signal resetin the designs DLX; and DL X
This pair of signalsisused to initiaize the PC environment and they mark
the start of the execution. In the sequential designs, the execution is started
in cycle —1, whereas in the pipelined designs, it is started in cycle O:

resef! = JISR! = JISK = resef = 1.

Proof of Theorem 5.11
Claim 1 is proven by induction on the cycles T of the pipelined execution,
but we only present the arguments which are different from those used in
the proof of theorem 4.11. Theoriginal proof strongly relies on the dateline
lemma 4.3 and on the stall engines (the scheduling functions).
Except for theinitial cycle, the stall engines of the two sequential designs
produceidentical outputs (table 5.17). The sameistruefor the stall engines

Section 5.7

CORRECTNESS OF
THE INTERRUPT

HARDWARE

PROOF

231

Chapter 5

232

INTERRUPT
HANDLING

of the two pipelined designs. For the initial cycle T = 0, the pipelined
scheduling function is only defined for stage k = O:

In(0,0) = 15(0,1) = 0.

Stage 0 has the instruction memory and its address as inputs. In the pipe-
lined design, IM is addressed by dpc, whereas in the sequential designitis
addressed by register DPC. Since

DPCce= PCceA uel Vv JISR

it follows from the hypothesis of the theorem and the update enable flags
that

dpd, = DPCL = DPC? = DPCL.
The memory IM isread-only and therefore keepsitsinitial contents. Thus,
on desigh DLXn in cycle T = 0 stage 0 has the same inputs as on design
DLXs incycleT' = 1.

Note that the stages k of the designs DLX: and DLX generate the same
signals Sand update their output registers in the same way, given that they
get identical inputs. This also appliesto the data memory DM and its write
request signal Dmw.3 which in either design is disabled if the instruction
encounters a page fault on fetch. Thus, with the new dateline lemma 5.9,
the induction proof of claim 1 can be completed as before.

Claim 2 isnew and therefore requires afull proof. For the output regis-
tersof stage 4, claim 1 already impliesclaim 2. Furthermore, in the designs
DLXs and DLXp, the instruction memory is never updated. Thus, claim 2
only needs to be proven for the two program counters PC' and DPC, and
for the data memory DM.

The instruction sequence P of the sequential design was constructed
such that instruction I, causes an interrupt. Since signal JISRis generated
in stage 4, claim 1 implies

JISRP = JISRP = 1.

In either design, the two PCs are initialized on an active JISRsignal, and
therefore

ppcy™ = sISR = DPCY'
PCP™ = SISRr4 = PORH

The data memory DM belongs to the set out(3). For stage 3, the two
scheduling functions imply

In(3,Tp—1) = 15(3,T,—1) = p.

In the sequential design, the data memory is only updated when the in-
struction isin stage 3, i.e., when full.3 = 1. Claim 1 then implies that

DM = DM = DM,,

JSRisonly signaled if full.4= 1. For cycle T/, the sequential stall engine
then implies that

full3P =1 and Dmw’ =0.

Thus, the data memory is not updated during JISR, and therefore

DMy® = DM,

In the pipelined design, the write enable signal of the data memory is gen-
erated as

Dmw3 = Dmw.3 A full.3 A (JISRNOR resed.

Since signal Dmw3 is disabled on an active JISRsignal, the data memory
is not updated during cycle Ty, and therefore,

DM = DM/P.

That completes the proof of claim 2.

We will now consider an arbitrary instruction sequence Q, which is pro-
cessed by the pipelined DLX design, and which is interrupted by several
non-aborting interrupts. Such a sequence Q can be broken down into sev-
eral uninterrupted subsequences

B =10y, iy lp+a)-

This means that for any sequence R, instruction | o) is preceded by JISR,
l(i,p) Isthe only instruction of B which causes an interrupt, and instruction
l(i,p+5) isthe last instruction fetched before the jump to the ISR. For the
sequential execution, we consider the instruction sequence QG = P, P, ...
which is derived from sequence Q by dropping the instructions evicted by
JSR,i.e,

Pil = |(i,0), ceey I(i,pi)'
The external interrupt events are assigned as before. The scheduling func-
tions are extended in an obvious way. For the designs DLX and DLXp,

IZ(kaT) = (Iaj) and II'I(kaT) = (Iaj)

denote that in cycle T pipeline stage k processes instruction | j).

Section 5.7

CORRECTNESS OF
THE INTERRUPT
HARDWARE

QED

233

Chapter 5

Likethetwo DL X designs without interrupt hardware, the designs DLX
INTERRUPT onq DLXq are started by reset and not by JISR. Lemmas 5.8 and 5.10
HANDLING iy that after reset, both designs come up gracefully; one cycle after
reset JISR= 1 and the designs initiate a jump to ISR(0). Thus, we can
now formulate the general simulation theorem for the designs DLX and
DLXp:

Theorem 5.12 » Let Q= Py, P,,... and Q = P[,P,,... be two instruction sequences ex-
tended by a sequence of external events, as defined above. Sequence Q is
processed by the pipelined design BlLahd J by the sequential design
DLXs. In the sequential execution, reset is given in cyel; whereas in
the pipelined execution, reset is given in cyel&

resef? = 1 = resef’.

Let both designs be started with identical contents, amy, register and
memory R of the data paths satisfies

Ry =RY, (5.4)
and let the first instruction o, be preceded by JISR
JISR! = 1 = JISR,.

For every pair(R,P/) of subsequences, the DiXlesign processing; P
then simulates the Dlpxdesign on Pin the sense of theorem 5.11.

PROOF Asshown in the proof of theorem 5.11 claim 2, both designs initialize the
PCson JISR in the same way, thus

(PC', DPC){ = (PC/, DPC),.

The instruction memory is ready-only, and the update of the data memory
isdisabled onue3 = 0. Table 5.17 and equation 5.4 therefore imply

(IM,DM)2 = (IM, DM)3.

In either design, the output registers of stage 4 are updated during JISR.
Since stage 4 getsidentical inputsit also produces identical outputs. Thus,

VRe C RY=RE,

and for the subsequences P, and P simulation theorem 5.11 is applicable.
Sinceinstruction |y ;) causes aninterrupt, claim 2 of theorem 5.11 implies
that during the cycles T; and T, with

R In(4,T1)=(1,p1) and I5(4,T])=(1,p1)
234

Section 5.8

T

k=0 | ||l(1,0 l2.0) SELECTED

el box' 1 REFERENCES AND
- box' 0 FURTHER READING

k=2

k=3 box 0 box 1 box 2

k=4 lwp)

Figure 5.21 Scheduling of the first two subsequences P1, P, for the pipelined ex-
ecution of sequence Q

the two designs are in the same configuration, i.e.,

VRe ¢ RUTT =R (5.5)

In the sequential execution, the next subsequence is stared one cycle
after JISR, i.e,,

I5(4,T) = (i,p) — ISR =1 A 150,/ +1) = (i+1,0),

whereas in the pipelined execution, the next subsequence is already started
during JISR, i.e,,

In(4,T)=(G,p) — JISH=1AIn(0,T)=(i+1,0).

For the first two subsequences, figure 5.21 illustrates this scheduling be-
havior.

Thus, cycle T + 1 corresponds to the cycle O of the sequential execution
of P, and that cycle Ty + 1 corresponds to the cycle 1 of the pipelined
execution of P,. Equation 5.5 then implies that the subsequences B and P,
are started in the same configuration, and that theorem 5.11 can be applied.

With the same arguments, the theorem follows by induction on the sub-
sequences of Qand Q.. QED

5.8 Selected References and Further Reading

NTERRUPT SERVICE routines which are not nested are, for example,
described in [PH94]. Mechanisms for nested interrupts are treated in
[MP95] for sequential machines and in [Knu96] for pipelined machines. -

235

Chapter 5

236

5.9 Exercises
INTERRUPT

HANDLING E,orcise 5.1 Lett; andt, be cycles of machine DLXq, and let t; < to. Sup-

pose external interruptsi and j are both enabled, interrupt i becomes active
in cycle ty, interrupt j becomes active in cycle t, and no other interrupts
are serviced or pending in cyclet.

1. Show that it is possible that interrupt j is serviced before interrupt i.
2. Why does this not constitute a counterexample for the correctness
proof?

Exercise 5.2 Invalid address exception. Two addresses are stored in spe-
cial purpose registers UP and LOW. A maskable exception of type abort
has to be signalled, if a memory location below LOW or above UP is ac-
cessed.

1. Design the hardware for this exception.
2. Design the forwarding mechanism for the registers UP and LOW.
3. Determine the effect on the cost and the cycle time.

Exercise 5.3 Protected mode. We want to run the machine in two modes,
namely protected mode and user mode. Only the operating system should
run in protected mode.

1. Design an interrupt mechanism for a mode exception which is acti-
vated if a change of the following values is attempted in user mode:
mode UP, LOW, the mask bits for the mode exception and the in-
valid address exception.

2. Isit possible to merge the invalid address exception and the mode
exception into a single exception?

3. What should be the priorities of the new exception(s)?
4. How isthe correctness proof affected?

Exercise 5.4 Protection of theinterrupt stack.

1. Design an interrupt mechanism, where the interrupt stack can only
be accessed by the operating system; the code segments SAVE and
RESTORE are part of the operating system.

2. What requirements for the interrupt service routine from the correct-
ness proof can be guaranteed by the operating system?

3. What requirements for the interrupt service routine cannot be guar-
anteed by the operating system alone?

Section 5.9

Exercise 5.5 Suppose we want to make the misaligned exception of type

repeat. EXERCISES

1. Sketch an exception handler which fetches the required data.
2. What should be the priority of such an exception?
3. How isthe correctness proof affected?

237

Memory System Design

NE WAY to improve the performance of an architecture, is trying to
O increase the instruction throughput, for example by pipelining, but
that calls for a fast memory system, as the analysis of section 4.6.5 has
turned out.

Thus, users would like to have a very large (or even unlimited) amount
of fast and cheap memory, but that is unredlistic. In general, only small
RAM isfast, and fast RAMs are more expensive than slower ones. In this
chapter we therefore study the key concept for designing a memory system
with high bandwidth, low latency, high capacity, and reasonable cost.

The pipelined DLX design requires two memory ports, one port for in-
struction fetch and the second port for data accesses. Since the sequential
DL X design can manage with just one memory port, wefirst develop afast
memory system based on the sequential DLX architecture. In section 6.5,
we then integrate the memory system into the pipelined DL X design.

6.1 A Monolithic Memory Design

IN THE simplest case, the memory system is monolithic, i.e., it just com-
prises a single level. This memory block can be realized on-chip or
off-chip, in static RAM (SRAM) or in dynamic RAM (DRAM). DRAM is
about 4 to 10 times cheaper and slower than SRAM and can have a 2 to
4 times higher storage capacity [Ng92]. We therefore model the cost and

Chapter 6

MEMORY SYSTEM

240

DESIGN

delay of DRAM as

Coram(A,d) = CsramA,d)/a
Dpram(A,d) = o-DsraMA d),

with o € {4,8,16}. Thus, on-chip SRAM yields the fastest memory sys-
tem, but that solution has specia drawbacks, as will be shown now.

6.1.1 The Limits of On-chip RAM

Chapter 3 describes the sequentia design of aDLX fixed point core. The
main memory is treated as a black box which has basically the function-
ality of a RAM; itstempora behavior is modeled by two parameters, the
(minimal) memory access time dnhemand the memory status time Apstat

All CPU internal actions of this DLX design require a cycle time of
Tcpu = 70 gate delays, whereas the memory access takes Ty = 18+ dmem
delays. If amemory access is performed in 14+ W cycles, then the whole
DLX fixed point unit can run at a cycle time of

Tm
= max — | 7. 6.1
TpLx {TCPU, [W—i— -‘} (6.1)
The parameter W denotes the number of wait states. From a performance

point of view, it is desirable to run the memory without wait states and at
the speed of the CPU, i.e.,

Tv = 18+ dimem < Tcpy = 70. (6.2)

Under these constraints, the memory access time dnemcan be at most 52
gate delays. On-chip SRAM isthe fastest memory available. According to
our hardware model, such an SRAM with A entries of d bits each has the
following cost and access time

CSRAN(A,d) = 2(A+3)(d+loglogd)
DSRAN(A,d) = 3-logA+10, if A>64.

The main memory of the DLX isorganized in four banks, each of which
isone byte wide. If each bank isrealized as an SRAM, then equation (6.2)
limits the size of the memory to

4.A = 4.20(52-10)/3] _ 16 bytes.

That is much to small for main memory. Nevertheless, these 64 kilo bytes
of memory aready require 1.3 million gates. That isroughly 110 timesthe

Table 6.1 Signals of the bus protocol

\ signal \ type | CPU | memory |

MDat | d20f the bidirectional | VM€ | rex
memory access read write

MAd | memory address unidirectiona | write read

burst | burst transfer Satus

wir write/read flag fl unidirectiona | write read

BE byte enable flags X

req request access hand- write read

regp | request pending unidirectional .

Brdy | bus ready shake read write

cost of the whole DLX fixed point core (Co x = 11951). Thus, a large,
monoalithic memory system must be implemented off-chip, and a memory
access then definitely takes several CPU cycles. The access time of the
main memory depends on many factors, like the memory address and the
preceding requests. In case of DRAMS, the memory also requires some
time for internal administration, the so called refresh cycles Thus, the
main memory has anon-uniform accesstime, and in general, the processor
cannot foresee how many cycles a particular access will take. Processor
and main memory therefore communicate via abus.

6.1.2 A Synchronous Bus Protocol

There exist plenty of bus protocols; some are synchronous, the others are
asynchronous. In a synchronous protocol, memory and processor have a
common clock. That simplifies matters considerably. Our memory designs
therefore uses a synchronous bus protocol similar to the pipelined protocol
of the INTEL Pentium processor [Int95].

The bus signals comprise the address MAd and the data MDat of the
memory access, the status flags specifying the type of the access, and the
handshake signal's coordinating the transfer. The data lines MDat are bidi-
rectional, i.e., they can be read and written by both devices, the processor
and the memory system. The remaining bus lines are unidirectional; they
are written by one device and read by the other (table 6.1). The protocol
uses the three handshake signal s request (req), request pending (reqp), and
bus ready (Brdy) with the following meaning:

Section 6.1

A MONOLITHIC
MEMORY DESIGN

241

Chapter 6

MEMORY SYSTEM

242

DESIGN

e Requesis generated by the processor. This signal indicates that a
new transfer should be started. The type of the access is specified by
some status flags.

e Request Pending reqip generated by the main memory. An active
signal reqp = 1 indicates that the main memory is currently busy
performing an access and cannot accept a new request.

e Bus Readys also generated by the main memory. On aread access,
an active bus ready signal (Brdy = 1) indicates that there are valid
data on the bus MDat. On awrite access, an active bus ready signal
indicates that the main memory no longer needs the data M Dat.

The main memory provides its handshake signals reqpand Brdy one cycle
ahead. That leaves the processor more time for the administration of the
bus. During the refresh cycles, the main memory does not need the bus.
Thus, the processor can aready start a new request but the main memory
will not respond (reqp= 1,Brdy = 0) until the refresh is finished.

Bus Convention

The dataunit to be transferred on the busiscalled bus word In our memory
design, the busword corresponds to the amount of datawhich the processor
can handle in asingle cycle. In this monograph, the bus width is either 32
bits or 64 bits. The memory system should be able to update subwords
(e.g., asingle byte) and not just awhole bus word. On awrite access, each
bytei of the bus word is therefore accompanied by an enable bit BE.

On a burst transfer, which is indicated by an active burst flag, MAd
specifies the address of the first bus word. The following bus words are
referenced at consecutive addresses. The bus word count bwc specifies the
number of bus words to be transferred. Our protocol supports burst reads
and burst writes. All the bursts have afixed length, i.e., they all transfer the
same amount of data. Thus, the bwcbits can be omitted; the status flag®of
the bus protocol comprise the write/read flag w/r, the burst flag, and the
byte enable flags BE.

Read Bus Transfers

Figure 6.1 depicts the idealized timing of the bus protocol on asingle-word
read transfer (burst= 0) followed by afast burst read (burst= 1). Thetwo
transfers are overlapped by one cycle.

In order to initiate a read access, the processor raises the request signal
req for one cycle and pulls the write/read signal to zero, w/r = 0. In the
same cycle, the processor provides the address MAd and the burst flag to
the memory. The width bwc of the access can be derived from the burst

Section 6.1

MAd { 18t address >< 2nd address j j A MONOLITHIC
‘ : ! ‘ ‘ 1 1 ‘ MEMORY DESIGN

e I N e e
wir L : : : : : : :
R e I e

regp _ [l : [3 3

Brdy = I L

et~ 0 o)} Yoer)(ox)

*

Figure 6.1 A single-word read transfer followed by afast x-word burst read. On
afast read transfer, the cycle marked with * is omitted.

MAd (" address | ‘ ‘ |
burst _] L
wir : : ‘ ‘ ‘ ‘ ‘ ‘ :
req ﬁ : : : : : 3 3 : :
T B S S S S S S
By L L

Figure 6.2 A 4-2-3-1read burst transfer

flag. The memory announces the data by an active bus ready signal Brdy=
1, one cycle ahead of time. After arequest, it can take several cycles till
the data is put on the bus. During this time, the memory signals with
repq= 1 that it is performing an access. This signal is raised one cycle
after the request and stays active (repq= 1) till one cycle before a new
request is allowed. The processor turns the address and the status signals
off one cycle after req= 0. A new read access can be started one cycle
after req=0and reqp=0.

On aburst read any of the bus words can be delayed by some cycles, not
just the first one. In this case, the Brdy line toggles between 0 and 1. The
burst transfer of figure 6.2 has a 4-2-3-1 access pattern; the first bus word
arrives in the fourth cycle, the second word arrives two cycles later, and so
on. The fastest read access supported by this protocol takes 2 + bwc bus
cycles. Thefirst word aready arrives two cycles after the request.

243

Chapter 6

MEMORY SYSTEM

244

DESIGN

MAd { 1st address Zhdingriefss >< 3rd address

burst
wir

reqp
Brdy

MDat

Figure 6.3 Fast read transfer followed by awrite transfer and another read.

Write Bus Transfers

Figure 6.3 depicts the idealized timing of the bus protocol on a fast read
followed by awrite and another fast read. The write transfer starts in the
fourth cycle.

In order to initiate a write transfer, the processor raises the request line
reqfor onecycle, it raises the write/read line and puts the address MAd, the
burst flag burstand the byte enable flags BE on the bus. In the second cycle,
the (first) bus word is transferred. The memory signals with Brdy = 1 that
it needs the current data M Dat for just one more cycle.

Like on aread access, signal reqpisturned on one cycle after the request
if the transfer takes more than 3 cycles. One cycle before the memory can
accept anew access, it turns signal reqpoff. One cycle later, the processor
turns the address and the status signals off.

On awrite burst transfer, each of the bus words can be delayed by some
cycles. The burst write of figure 6.4 performs a 4-2-1-1 transfer. The
fastest write transfer supported by this protocol takes bwc+ 2 bus cycles.

Back to Back Transfers

The bus protocol supports that two succeeding transfers can be overlapped
by one cycle. However, when switching between reads and writes, the data
bus MDat must be disabled for at least one cycle in order to prevent bus
contention. On a write transfer, the processor uses the MDat bus from the
second to the last cycle, whereas on aread transfer, the bus MDat isused in
the third cycle at the earliest. Thus, aread transfer can be overlapped with
any preceding transfer, but a write transfer can only be overlapped with a
preceding write. At best, the processor can start a new read transfer one
cycle after

req=0 A reqp=0,

MAd {"1g address Y | . ondaddress ‘ ‘ ‘
bust L
wir | % % % % % % % % L
req] | | | } } } } } i i
ep——————4 .~
Brdy | ‘ : | T | : L

e 5 X = X_ D2 X ps XD4)

Figure 6.4 Fast single-word write transfer followed by a 4-2-1-1 burst write.

and it can start anew write transfer one cycle after

req=0 A reqp=0 A (w/r =0V Brdy=0).

6.1.3 Sequential DLX with Off-Chip Main Memory

In this section, we connect the sequential DL X design of chapter 3 to a64
MB (MegaByte) off-chip memory, using the bus protocol of section 6.1.2.
This modification of the memory system only impacts the implementation
of the memory environment and its control. The other environments of the
DLX design remain unchanged.

Moreover, the global functionality of the memory system and its inter-
action with the data paths and main control of the design also remains the
same. The memory system is still controlled by the read and write signals
mr and mw, and by the opcode bits IR[27 : 26] which specify the width of
the access. On aread, the memory system provides the memory word

MDout[31: 0] = Mword[(MA[31: 2]00)],

whereas on a d-byte write access with address e = (MA[31: O]) and offset
0= (MA[1: 0]), the memory system performs the update

Mle+d—1:¢€| = bytey,y_1.q(MDin).
With mbusy= 1, the memory systems signals the DL X core that it cannot
compl ete the access in the current cycle.

Implementation of the Memory System
So far, the memory environment, i.e., the data paths of the memory system,
consists of four memory banks, each of whichisaRAM of one byte width

Section 6.1

A MONOLITHIC
MEMORY DESIGN

245

Chapter 6

MEMORY SYSTEM

246

DESIGN

”””” BE[3:0]

MA[31:2] H}_'ﬁi - MAd _ |4 mbw MC [=— MA[L0]
| : mw
MDout <, | Mba oM req, wir
| =< }— (o]
. : : ——= di LBrdy MifC - mr
MDin H‘}ﬁ*
 Mif | —= mbusy

777777 MAdoe, MDindoe

Figure 6.5 Memory system of the DL X with off-chip memory

(figure 3.11). Based on the control signals and the offset, the memory
control MC generates the bank write signals mbw[3:0] which enable the
update of the memory (figure 3.12).

Now the memory system (figure 6.5) consists of the off-chip main mem-
ory M, the memory interface Mif, the memory interface control MifC,
and the original memory control MC. The memory interface connects the
memory M to the data paths.

The memory of the 32-bit DLX architecture is byte addressable, but all
reads and the majority of the writes are four bytes (one word) wide. Thus,
the data bus MDat between the processor and the main memory can be
made one to four bytes wide. On a one-byte bus, half word and word
accesses require a burst access and take at least one to three cycles longer
than on a four-byte bus. In order to make the common case fast, we use
afour-byte data bus. On a write transfer, the 32-bit data are accompanied
by four byte enable flags BE[3: O]. Since bursts are not needed, we restrict
the bus protocol to single-word transfers.

Memory Interface The memory interface Mif which connects the data
paths to the memory bus and the external memory uses 32-bit address and
data lines. Interface Mif forwards the data from the memory bus MDat to
the data output MDout. On MAdoe= 1, the interface puts the address MA
on the address bus MAd, and on MDindoe= 1 it puts the data MDin on
the bus MDat.

Except for the memory interface Mif, the data paths of environment
Menv are off-chip and are therefore not captured in the cost model. Thus,

Cmenv = Cmit = 2-Cyriv(32).

Off-Chip Memory The off-chip memory M obeys the protocol of sec-
tion 6.1.2. On aread access requested by req= 1 and w/r =0, it provides
the data

MDat[31: 0] = Mword[(MAd[31: 2]00)].

On awrite access (w/r = 1), the memory performs the update
Mword[(MAd[31 : 2]00)] := X3, X2, X1, Xo,

wherefor i € {0,...,3} the byte X is obtained as

- | M[(MAd[31:2]00) +i] if BE[ij=0
% = { byte(MDat) if BE[] =1
Memory Interface Control The memory interface control MifC con-
trols the tristate drivers of the memory interface and generates the hand-
shake signal req and the signals w/r and mbusyaccording to the bus pro-
tocol of section 6.1.2. In the sequential DLX design, transfers are never
overlapped, and the address on bus MAd is always provided by the same
source MA. The bus protocol can therefore be simplified; the address MA
and signal w/r are put on the bus during the wholetransfer.

In the FSD of the main control (figure 3.20) there are three states per-
forming a memory access, namely fetch, load and store. The only combi-
nation of accesses which are performed directly one after another isstore -
fetch. Inthefirst two cycles of aread access, bus MDat is not used. Thus,
the memory interface can already put the data on the bus MDat during the
first cycle of the write transfer without risking any bus contention. The
control MifC can therefore generate the enable signals and the write/read
signal as

w/r = mw
MAdoe = mem= mr V mw
MDindoe = mw

The handshake signals are more complicated. Signal reqis only active
during thefirst cycle of the access, and signal mbusyis always active except
during the last cycle of the transfer. Thus, for the control MifC a single
transfer is performed in three steps. In the first step, MifC starts the off-
chip transfer as soon asreqp= 0. In the second step, which usually takes
severa cycles, MifC waits till the memory signals Brdy = 1. In the third
step, the transfer is terminated. In addition, MifC has to ensure that a
new request is only started if in the previous cycle the signals reqp and
Brdy were inactive. Since the accesses are not overlapped, this condition
is satisfied even without special precautions.

The signals req and mbusyare generated by a Mealy automaton which
is modeled by the FSD of figure 6.6 and table 6.2. According to section
2.6, cost and delay of the automaton depend on the parameters listed in

Section 6.1

A MONOLITHIC
MEMORY DESIGN

247

Chapter 6

MEMORY SYSTEM
DESIGN

248

elsem D
< D1 3 D3 .
ar N wait finish

Figure 6.6 FSD underlying the Mealy automaton MifC; theinitial stateis start

Table 6.2 Disjunctive normal forms DNF of the Mealy automaton of MifC

| DNF || source state | target state | monomial me M | length I(m) |

D1 start wait mem 1
D2 wait wait /Brdy 1
D3 wait finish Brdy 1

| DNF || medly signal | state | me M | I(m) |
D1 req start mem (1)
D4 mbusy start mem @
wait 1 0

table 6.3 and on the accumulated delay of its inputs Brdy and mem Let
Cwmealy(MifC) denote the cost of the automaton, then

Cumitc = Cwmealy(MifC)+Cor.

The input Brdy only affects the next state of the automaton, but input
memal so affects the computation of the Mealy outputs. L et the main mem-
ory provide the handshake signals with an accumulated delay of A, (Brdy),
and let the bus have adelay of d,ys The inputs and outputs of the automa-
ton then have the following delays:

An(MifC) = Awu(Brdy) + dyus (next state)
Ain1)(MIfC) = Acon(mwmr) + Doy (outputs only)
Avitc = Awean(out).

Cost and Delay

Table 6.4 lists the cost of the DLX design and of the environments affected
by the change of the memory interface. The new memory interfaceisfairly
cheap and therefore has only aminor impact on the cost of the whole DL X
design.

Table 6.3 Parameters of the Mealy automaton used in the control MifC

states | #inputs | # and frequency of outputs
k o Y | Vsum Vmax
3 2 2 3 2
fanin of the states | # and length of monomials
fanmax | fansum | #M | lsum Imax
2 3 3 3 1

Table 6.4 Cost of the memory interface Mif, of the data paths DP, of the control
CON and of thewhole DLX for the two memory interfaces.

\ | Mif | DP | CON | DLX |

old memory interface — | 10846 | 1105 | 11951
new memory interface | 320 | 11166 | 1170 | 12336
increase [%0] +3 +6 +3

Cycle Time Thecycletime 1p x of the DLX design is the maximum of
three times, namely: the cycle time Tcon required by the control unit, the
time Ty of amemory access, and the time Tpp for al CPU internal cycles.

Toux = max{Tcon, Tm, Tor}

The connection of the DLX to an off-chip memory system only affects the
memory environment and the memory control. Thus, the formula of Tcon
and Ty need to be adapted, whereas the formula of Top remains unchanged.

Sofar, time Tcon accounted for the update of the main control automaton
(Tauto) and for the cycle time Tsa Of the stall engine. The handling of
the bus protocol requires a Mealy automaton, which needs to be updated
as well; that takes Tveay(MifC) delays. In addition, the new automaton
provides signal mbusyto the stall engine. Therefore,

Tstat = Awiftc + Dstain + max{Dranma(32,32), D¢t } + &

and the control unit now requires aminimal cycle time of

Tecon = max{Tauto, Tstall, Tmealy(MifC)}.

Section 6.1

A MONOLITHIC
MEMORY DESIGN

249

Chapter 6

MEMORY SYSTEM

250

DESIGN

Timing of Memory Accesses The delay formula of a memory access
changes in amajor way. For the timing, we assume that the off-chip mem-
ory is controlled by an automaton which precomputes its outputs. We fur-
ther assume that the control inputs which the off-chip memory receives
through the memory bus add dvnhsh (Memory handshake) delays to the cy-
cle time of its automaton.

The memory interface starts the transfer by sending the address and the
request signal req to the off-chip memory. The handshake signals of the
DLX processor are valid Auisc delays after the start of the cycle. For-
warding signal req and address MA to the memory bus and off-chip takes
another Dyyjy + dpys delays, and the processing of the handshake signals
adds dyinsh delays. Thus, the transfer request takes

TMreq = AMifC + I:)driv + dbus+ thsh+ A.

After the request, the memory performs the actual access. On a read
access, the memory reads the memory word, which on a 64 MB memory
takes Dym(64MB) gate delays. The memory then puts the data on the
bus through a tristate driver. The memory interface receives the data and
forwards them to the data paths where they are clocked into registers. The
read cycle therefore takes at |east

Tvread = Dmm(64MB) + Dgriy + dous+ A.

In case of awrite access, the memory interface first requests a transfer.
In the following cycles, the memory interface sends the data MDin and the
byte enable bits. Once the off-chip memory receives these data, it performs
the access. The cycle time of the actual write access (without the memory
request) can be estimated as

Tvwrite = Max{Awmc,Awmitc + Ddriv} + dous+ Dmm (64MB) + &

Tmaccess = Max{ Tuwrite; TMread} = TMwrite-

Table 6.5 lists the cycle times of the data paths and control, as well as
the access and request time of the memory system, assuming a bus delay
of dyus= 15 and dynsh = 10. The access time of the memory depends on
the version of the DRAM used.

The control and the memory transfer time are lesstime critical. They can
tolerate a bus delay and handshake delay of d,ys+ dwvnsh = 56 before they
slow down the DL X processor. However, the actual memory access takes
much longer than the other cycles, even with the fastest DRAM (a = 4).
In order to achieve a reasonable processor cycle time, the actual memory
access is performed in W cycles; the whole transfer takes W + 1 cycles.

Table 6.5 Cycletime of the DLX design and of its main parts, which are the data
paths DP, the control unit CON and the memory system MM.

TDP TCON TM TMaccess
ma{A, | B} ~ [a=4Ta=8]a=16
0 |53 _—|-2d8bus a0 | 14+ de;gr dvnsn | 355 | g3 | 1339

The DLX design with adirect connection to the off-chip memory can then
be operated at a cycle time of

Tox(W) = max{Tpp, Tcon, Tw(W)}
Tm(W) = max {TMreq, [TMacces¢ W | } .

Increasing the number W of wait states improves the cycle time of the DLX
design, at least till W = [Tymaccesd Top |- For larger W, the main memory
is no longer time critical, and a further increase of the wait states has no
impact on the cycle time.

According to section 4.6, the performance is modeled by the reciprocal
of abenchmark’s execution time, and on asequential DLX design, the run
time of a benchmark Be s the product of the instruction count IC(Be) of
the benchmark, of the average cycles per instruction CPI, and of the cycle
time Tp x:

TDLx(Be) = |C(B€)-CP|(BQW)-TDL)((W).

Increasing the number of wait states improves the cycle time, but is also
increases the CPI ratio. Thus, there is a trade-off between cycle time and
cycle count which we now quantify based on SPECint92 benchmark work-
loads. Table 6.6 lists the DLX instruction mix of these workloads and the
number of cyclesrequired per instruction. According to formula(4.8) from
section 4.6, the benchmarks compress and li and the average SPECint92
workload, for example, achieve the following CPI ratios:

CPIl(compress) = 4.19+1.25-W
CPI(li) = 4.38+1.49-W
CPI(SPECint) = 4.26+1.34-W.

We increase the number of wait states W from 1 to [Tvaccesd Tor| and
study the impact on the cycle time, on the CPI ratio and on the run time of

Section 6.1

A MONOLITHIC
MEMORY DESIGN

251

Chapter 6

MEMORY SysTem Table 6.6 DLX instruction mix for the SPECint92 programs and for the average
Desicn Workload. CPI; denotes the average number of cycles required by instruction |.

CP| instruction mix .

compress | egntott | espresso| gec| i AV
load 5+2W 19.9 30.7 21.1| 23.0| 316 | 25.3
store 54+2W 5.6 0.6 51| 144 | 16.9 85
compute| 44+1W 554 | 428 572 | 47.1| 283 | 46.2
cal 5+1W 0.1 0.5 04| 11| 31 1.0
jump 3+1W 1.6 1.4 10| 28| 53 2.4
taken 44+1W 12.7 17.0 91| 70| 70| 106
untaken | 3+1W 4.7 7.0 61| 46| 78 6.0

Table 6.7 Performance of the DLX core on the compress and li benchmarks and
on the average SPECint92 workload. Parameter a denotes the factor by which
off-chip DRAM is slower than standard SRAM.

DRAM W | ToLx compress li SPEC aver.
a CPl | TPI CPl | TPI CPl | TPI
1| 35| 54 |19340| 59 | 2083.8 | 5.6 | 1988.7
2 | 178 | 6.7 | 11931 | 7.4 | 1309.2 | 6.9 | 12353
4 3| 119 | 80 | 9470 | 88 | 10520 | 83 | 985.1
4 | 8 | 92 | 8200 | 103 | 9189 | 96 | 855.8
5| 71 | 105| 7432 | 11.8| 8385 | 11.0| 777.7
6 | 70 | 117 | 820.6 | 13.3| 930.6 | 12.3| 860.4
8 9| 76 | 15511771 | 17.8 | 1349.0 | 16.3 | 1239.3
10| 70 | 16.7 | 11720 | 19.2 | 1346.5| 176 | 1235.1
16 19| 71 | 28.0| 1990.7 | 32.6 | 2314.6 | 29.7 | 2107.7
20| 70 | 29.3 | 2050.5 | 34.1 | 2386.0 | 31.0| 2171.7

the benchmarks. Sincethe instruction count 1C of the benchmarks remains
the same, table 6.7 lists the average time required per instruction

T

TPl = E = CP|-TD|_x.

instead of the run time. The CPI ratio and the TPI ratio vary with the
workload, but the optimal number of wait states is the same for al the
benchmarks of the SPECint92 suite.
R On fast DRAM (a = 4), the best performance is achieved on a memory

252

Table 6.8 Typical memory hierarchy of alarge workstation in 1995

| level | size | location | technology | accesstime |
register <1KB | on-chip | custom memory 2-5ns
CMOS/ BiCMOS
L1 cache < 64 KB | on-chip
L2 cache <4MB | off-chip CMOS SRAM 3-10ns
main memory || <4 GB | off-chip | CMOS DRAM 80400 ns
disk storage || >1GB | off-chip | Magnetic disk 5ms

system with five wait states. The DLX system then spends about 61%
(1.34-5/11.0) of the run time waiting for the off-chip memory. On the
slower DRAM with a = 8 (16), the memory is operated with 10 (19) wait
states, and the DL X even waits 76% (86%) of the time.

Thus a large, monolithic memory has got to be slow, and even in a se-
guential processor design, it causes the processor to wait most of the time.
Pipelining can increase the performance of a processor significantly, but
only if the average latency of the memory system is short (W < 2). Thus,
the monolithic memory is too slow to make pipelining worthwhile, and
the restriction to a single memory port makes things even worse. In the
next section, we therefore analyze whether a hierarchical memory system
is better suited.

6.2 The Memory Hierarchy

RESENTLY (2000) alow to mid range desktop machine has about 64
to 128 MB of main memory. In order to provide that much memory at
reasonable cost and high speed, all commercial designs use a memory hi-
erarchy. Between the on-chip register files and the off-chip main memory,
there are placed severa levels of memory (table 6.8, taken from [HP96]).
The levels close to the CPU are called cache
As one goes down the hierarchy, the cost per bit decreases and the stor-
age capacity and the access time increase. This is achieved by changing
the type of memory and the technology. With respect to the memory type,
one switches from fast on-chip SRAM (static random access memory) to
off-chip SRAM, to DRAM (dynamic RAM) and then to disks and tapes.
On a memory access, the processor first accesses the first level (L1)
cache. When the requested data is in the L1 cache, a hit occurs and the

Section 6.2

THE MEMORY
HIERARCHY

253

Chapter 6

MEMORY SYSTEM

254

DESIGN

datais accessed at the speed of the L1 cache. When the datais not in this
memory level, a missoccurs and the hardware itself forwards the request
to the next level in the memory hierarchy till the dataisfinally found.

A well designed multi-level memory system gives the user the illusion
that the whole main memory runsroughly at the speed of the L1 cache. The
key to this temporal behavior isthe locality of memory referencesection
6.2.1). In addition, the levels of the memory hierarchy are transparent, i.e.,
invisible to the user. For the levels between the CPU and the main memory,
thisis achieved by caching (section 6.2.2).

In ahierarchical memory system, specia attention has to be payed to the
following aspects:

e The identification of a memory reference, i.e., how can a memory
reference be found in the memory hierarchy.

e The placement policyletermines where the data is placed in a par-
ticular memory level.

e If aparticular level of the memory hierarchy is full, new data can
only be brought into this level, if another entry is evicted. The re-
placement policyetermines which one to replace.

e Theallocation policydetermines under which circumstances datais
transfered to the next higher level of the hierarchy.

e The write policy determines which levels of the memory hierarchy
are updated on awrite access.

e Theinitialization of the cache after power-up.

The transfer between two neighboring levels of RAM memory goes al-
ways along the same lines! For simplicity, we therefore focus on a two-
level memory system, i.e., an L1 cache backed by the main memory.

6.2.1 The Principle of Locality

The key for the nice tempora behavior of multi-level memory is a princi-
ple known as locality of referencdDen68]. This principle states that the
memory references, both for instructions and data, tend to cluster. These
clusters change over time, but over a short time period, the processor pri-
marily works on afew clusters of references. Locality in references comes
in two flavors:

LAdditional considerations come into play, when one level is no random access mem-
ory, like disks or tapes.

e Temporal Locality After referencing a sequence Sof memory loca
tions, it is very likely that the following memory accesses will aso
reference locations of sequence S.

e Spatial Locality After an access to a particular memory location s,
it is very likely that within the next several references an access is
made to location s or a neighboring location.

For the instruction fetches, the clustering of the references is plausible
for the following two reasons. First, the flow of control isonly changed by
control instructions (e.g., branch, trap, and call) and interrupts, but these
instructions are only a small fraction of all executed instructions. In the
SPEC benchmarks, for example, the control instructions account for 15%
of al instructions, on average [HP96]. Second, most iterative constructs,
like loops and recursive procedures, consist of arelatively small number of
instructions which are repeated may times. Thus, in the SPEC benchmarks,
90% of the execution time is spent in 10 to 15% of the code [HP96].

For the data accesses, the clustering is harder to understand, but has for
example been observed in [Den80, CO76]. The clustering occurs because
much of the computation involves data structures, such as arrays or se-
quences of records. In many cases, successive references to these data
structures will be to closely located data items.

Hierarchical memory designs benefit from the locality of references in
the following two ways. Starting a memory transfer requires more time
than the actual transfer itself. Thus, fetching larger blocks from the next
level of the memory hierarchy saves time, if the additional data is aso
used later on. Due to spatial locality, thiswill often be the case. Temporal
locality states, that once a memory item is brought into the fast memory,
this item is likely to be used several times before it is evicted. Thus, the
initial slow access is amortized by the fast accesses which follow.

6.2.2 The Principles of Caches

All our designs use byte addressable memory. Let the main memory size be
2™ bytes, and let the cache size be Z bytes. The cacheis much smaller than
the main memory; 2° < 2™M. The unit of data (bytes) transferred between
the cache and the main memory is called block or cache line In order
to make use of gpatial locality, the cache line usually comprises severa
memory data; the line sizes specifies how many. The cache size therefore
equals

2° = #lines x linesize.

Section 6.2

THE MEMORY
HIERARCHY

255

Chapter 6

MEMORY SYSTEM

256

DESIGN

The cache lines are organized in one of three ways, namely: direct mapped,
set associative, or fully associative.

A Direct Mapped Cache

For every memory address a= (ajm— 1: 0]), the placement policy spec-
ifies a setof cache locations. When the data with memory address a is
brought into the cache, it is stored at one of these locations. In the simplest
case, all the sets have cardinality one, and the memory address a is mapped
to cache address

ca= (cac—1:0]) = amod?
= (am—1:0]) mod 2° = (alc—1:0]).

i.e., the memory address is taken modul o the cache size.

A cache which implements this placement policy iscalled direct mapped
cache The replacement policy of such a cache istrivial, because there is
only one possible cache location per memory address. Thus, the requested
cache lineis either empty, or the old entry must be evicted.

Since the cache is much smaller than the main memory, several memory
locations are mapped to the same cache entry. At any given time, one needs
to know whether a cache entry with address ca holds valid memory data,
but that is not enough. If the entry isvalid (valid(ca) = 1), one aso needs
to know the corresponding memory address madr(ca). The cache data C
with address ca then stores the following memory data

C[ca = M[(madr(ca))].

Since the cache is direct mapped, the c least significant bits of the two
addresses caand a= (madr(ca)) are the same, and one only needs to store
the leading m— c bits of the memory address as tag:

tag(ca) = am—1:c|
madrica) = am—1:0] = tag(ca), cac—1:0].

A cache line therefore comprises three fields, the valid flag, the address
tag, and the data (figure 6.7). Valid flag and tag are also called the directory
information of the cache line. Note that each of the 2 cache lines holds
line-size many memory data, but the cache only provides a singletag and
valid bit per line. Let the cache address ca be a line boundary, i.e., cais
divisible by the line size 22, then

valid(ca) = valid(ca+1) = ... = valid(ca+2—1)
taglca) = tag(ca+1l) = ...= tag(ca+2X-1).

cache address
memory address ’ tag | line addr. I line offset ‘
+o +i +o
cache directory cache data
' line | valid tag data l

2! lines

2° data (bytes) per line

Figure 6.7 Organization of a byte addressable, direct mapped cache. The cache
comprises 2' lines, each of which is 2° byteswide.

Thus, all the bytes of a cache line must belong to consecutive memory
addresses.

Cling(ca) = Clca+2°—1:cd = M[(madr(ca))+2° —1: (madr(ca))].

Such a data structure makes it straightforward to detect whether the
memory data with address a is in the cache or not. If the data is in the
direct mapped cache, it must be stored at cache address ca= (ajc—1: 0]).
The cache access is a hit, if the entry is valid and if the tag matches the
high-order bits of the memory address, i.e.,

hit = (valid(ca) A (tag(ca) =am—1:c])).

On aread access with address ca, the cache provides the valid flag v =
valid(ca), the tag t = tag(ca) and the data

d =Cline({calc—1:0]0°)).

Each field of the cache lineg, i.e., valid flag, tag and data, can be updated
separately. A write access to the cache data can update as little as asingle
byte but no more than the whole line.

Sectored Cache

The cache line can be very wide, because it holds several memory data. In
order to reduce the width of the cache data RAM, the line is broken into
several (2°) sectorswhich are stored in consecutive cells of the cache data

Section 6.2

THE MEMORY
HIERARCHY

257

Chapter 6

MEMORY SYSTEM

258

DESIGN

line offset

memory address ’ tag ‘Iineaddr.‘ sector | offset ‘

+t 1 s +b

cache data

cache directory

IR s
2 lines || valid | | t8g | podoono oo o|] 27 SeClOrS
L = 1line

20 bytes per sector

Figure 6.8 Organization of a byte addressable, direct mapped cache with sectors.
Each cache line comprises 25 sectors, each of which is 2° byteswide.

RAM. However, al the sectors of a cache line still have the same tag and
valid flag?. The line-offset in the memory address is split accordingly in
an s-bit sector address and in a b-bit sector offset, where 0 = s+ b. Figure
6.8 depicts the organization of such adirect mapped cache.

With sectoring, the largest amount of cache data to be accessed in par-
alel isasector not awhole line. Thus, on read access with address ca the
sectored cache provides the data

d = Csectof(calc—1:b]0P)]
— Cl(cac—1:b]°)+2°—1: (cac—1:b]OP)].

A k-Way Set Associative Cache

A k-way set associative cache provides a setof k possible cache locations
for amemory address. Such an associative cache comprises k ways(figure
6.9), which are referenced with the same cache address. Each way is a
direct mapped cache with directory and cache data providing exactly one

2Some cache designs allow that each sector hasits own valid flag, in order to fetch only
some sectors of aline.

cache address
memory address ’ tag | line addr. | line offset ‘
+t 4 +o
way 0 (direct mapped) way k-1
o jdr)] gma | dr || daa

! j .)
Rl LI P | [|line | | 2 sats

VO {0 do 29 bytes per line

Figure 6.9 Organization of a byte addressable, k-way set associative cache. The
cache comprises k ways (direct mapped caches). Each way holds 2! lines which
are 20 byteswide; V', t' and d' denote the valid flag, the tag and the data of way i.

cache position per cache address ca. These k positions form the set of ca.
There are two special cases of k-way set associative caches.

e For k=1, the cache comprises exactly one way; the cache is direct
mapped.

e If thereisonly one set, i.e., each way holds a single line, then each
cache entry is held in a separate way. Such a cache is called fully
associative

The associativity of a set associative, first level cache is typically 2 or 4.
Occasionally a higher associativity is used. For example, the PowerPC
uses an 8-way cache [WS94] and the SuperSPARC uses a 5-way instruc-
tion cache [Sun92]. Of course, the cache line of a set associative cache can
be sectored like aline in a direct mapped cache. For simplicity’s sake, we
describe a non-sectored, set associative cache. We leave the extension of
the specification to sectored caches as an exercise (see exercise 6.1).

Cache Size

Let | denote the width of the line address, and let o denote the width of
the line offset. Each way then comprises 2 lines, and the whole cache
comprises 2 sets. Since in a byte addressable cache, the lines are still 2
bytes wide, each way has a storage capacity of

size(way) = 2° = 2'.2°

Section 6.2

THE MEMORY
HIERARCHY

259

Chapter 6

bytes. The size (in byte) of the whole k-way set associative cache equals
MEMORY SYSTEM

DESIGN k-size(way) = k-2 - 2°.

Since in a k-way set associative cache there are several possible cache
positions for a memory address a, it becomes more complicated to find
the proper entry, and the placement and replacement policies are no longer
trivial. However, the placement is such that at any given time, a memory
address is mapped to at most one cache position.

Identification of a Cache Entry

The set of aset associative cache corresponds to the line of adirect mapped
cache (way). Thus, the cache address cais computed as the memory ad-
dress a modulo the size % of a cache way

cac —1:0] = alc—1:0].
For this address ca, every way provides datad, avalid flagV, and atag t':
v =valid'(ca), t =tad(ca), d'=Cliné((cald —1:0]0°)).

A local hit signal h indicates whether the requested data is held in way |
or not. Thisloca hit signal can be generated as

h =V A (t'=am—1:m—t]).

In aset associative cache, ahit occurs if one of the k ways encounters a hit,
i.e,
hit = hi°vhtv...vh<?t

On a cache hit, exactly one local hit signal h is active, and the corre-
sponding way j holds the requested data d. On a miss, the cache provides
an arbitrary value, e.g., d = 0. Thus,

di if hit=landhi=1 %} .
d_{o if hit=0 _i\:/o(dAh)'

Line Replacement

In case of a miss, the requested data is not in the cache, and a new line
must be brought in. The replacement policy specifies which way gets the
new line. The selection is usually done as follows:

1. Aslong as there are vacant lines in the set, the replacement circuit
- picks one of them, for example, the way with the smallest address.

260

2. If the set isfull, aline must be evicted; the replacement policy sug-
gests which one. The two most common policies are the following:

¢ LRU replacement picks the line which was least recently used
For each set, additional history flags are required which store
the current ordering of the k ways. This cache historymust be
updated on every cache access, i.e., on acache hit and on aline
replacement.

e Randonreplacement picks a random line of the set and there-
fore manages without cache history.

Allocation and Write Policies
The alocation policy distinguishes between read and write accesses. New
data is only brought into the cache on amiss, i.e, if the referenced data
is not in the cache. Besides the requested data, the whole line which cor-
responds to that data is fetched from the next level of the memory hierar-
chy. The cache alocation operation can either be combined with the actual
cache access (forwarding), or the cache access must be re-started after the
alocation.

In case the miss occurs on aread access, i.e., on an instruction fetch or
on a load operation, the requested data is always brought into the cache.
For write accesses, three different types of allocation policies are possible:

1. Read Allocate: A write hit always updates the data RAM of the
cache. On a write miss, the requested data and the corresponding
line will not be transferred into the cache. Thus, new data is only
brought in on aread miss.

2. Write Allocate: A write aways updates the data RAM of the cache.
In case of awrite miss, the referenced line is first transferred from
the memory into the cache, and then the cache line is updated. This
policy allocates new lines on everycache miss.

3. Write Invalidate: A write never updates the data RAM of the cache.
On the contrary, in case of awrite hit, the write even invalidates the
cache line. This allocation policy isless frequently used.

A particular piece of data can be stored in several levels of the hierar-
chical memory system. In order to keep the memories consistent, a write
access must update all the instances of the data. For our two-level mem-
ory system, this means that on a write hit, cache and main memory are
updated. However, the main memory is rather slow. From a performance
point of view, it is therefore desirable to hide the main memory updates or

Section 6.2

THE MEMORY
HIERARCHY

261

Chapter 6

MEMORY SYSTEM

262

DESIGN

Table 6.9 Combinations of write and allocation policies for caches.

\ | Write Allocate | Read Allocate | Write Invalidate |

Write Through + + +
Write Back + + -

even avoid some of them. The latter results in aweak memory consistency
The write policy specifies which of the two consistency models should be
used:

1. Write Throughsupports the strong consistency model. A write al-
ways updates the main memory. Write buffers between cache and
main memory allow the processor to go on, while the main memory
performs the update. Thus, the slow memory updates can largely
be hidden. The update of the cache depends on the allocation pol-
icy. Write through can be combined with any of the three allocation
policies.

2. Write Backapplies the weak consistency model. A write hit only
updates the cache. A dirty flag indicates that a particular line has
been updated in the cache but not in the main memory. The main
memory keeps the old data till the whole line is copied back. This
either occurs when adirty cachelineisevicted or on aspecial update
request. This write policy can be combined with read allocate and
write allocate but not with write invalidate (exercises in section 6.7).

Table 6.9 lists the possible combinations of the allocation and write poli-
cies.

Initialization and Invalidation
After power-up, all the cache RAMs hold binary but arbitrary values, and
the information stored in a cache line is invalid even if the correspond-
ing valid flag israised. Thus, the valid flags must be cleared under hard-
ware control, before starting the actual program execution. In case that
the replacement policy relies on a cache history, the history RAM must be
initialized as well. This initialization depends on the type of the history
information.

Besides reads and writes, the cache usually supports a third type of ac-
cess, namely the line invalidation In case that the line invalidation access
isahit, the corresponding cachelineisevicted, i.e., itsvalid flag is cleared,

Jhit* () scnt< S-1
| mr + mw

Fill Request Line Fill sent = S-1
N | | ¢L¢

Cache Read mr | Last Sector

mw

linv * hit hit * mw

Invalidate Update M \e{ Cache Update \

Figure 6.10 Cache accesses of the memory transactions read, write and line in-
validate on a sectored, write through cache with write allocation.

and the history isupdated aswell. In case of amiss, theinvalidation access
has no impact on the cache. Line invalidation is necessary, if a particular
level of the memory system comprises more than one cache, as it will be
the case in our pipelined DLX design (section 6.5). In that situation, line
invalidation is used in order to ensure that a particular memory word is
stored in at most one of those parallel caches.

6.2.3 Execution of Memory Transactions

The cache as part of the memory hierarchy has to support four types of
memory transactions which are reading (rw = 1) or writing (mw= 1) a
memory data, invalidating acacheline (linv = 1), and initializing the whole
cache. Except for the initialization, any of the memory transactions is
performed as a sequence of the following basic cache accesses:

e reading a cache sector including cache data, tag and valid flag,
e updating the cache directory, and
e updating a sector of the cache data.

The sequences of the memory transactions depend on the allocation and
write policies. The flow chart of figure 6.10 depicts the sequences for a
sectored, write through cache with write allocation and read forwarding.
Each transaction startsin state Cache Read. A cachelineis Ssectors wide.
Let the sector boundary a denote the memory address of the transaction,
and let ca denote the corresponding cache address.

Read Transaction
Theread transaction starts with a Cache Read access. The cache generates
the hit signal hit(ca) and updates the cache history. On ahit (hit(ca) = 1),

Section 6.2

THE MEMORY
HIERARCHY

263

Chapter 6

MEMORY SYSTEM

264

DESIGN

the cache determines the address way of the cache way which holds the
requested data, and it provides these data

d = CsectoF®¥(ca) = Msecto(a).

That already completes the read transfer.

In case of a miss, address way specifies the cache way chosen by the
replacement policy. In subsequent cycles, the cache performs a line fill,
i.e., it fetches the memory line Mline(d) with & = (ajm— 1: 0]0°)] sector
by sector and writesit at cache line address cd = (cajc— 1: 0]0°).

This line fill starts with a Fill Request. The cache line is invalidated,
i.e., valid"®(ca) = 0. This ensures that a valid cache line aways holds
consistent data, even if the line fill is interrupted in between. The cache
also requests the line from memory and clears a sector counter scnt

In each of the next S— 1 Line Fill cycles, one sector of the line iswritten
into the cache and the sector counter is incremented:

CsectolF®(cd +scnt) := Msectold + scnt)
scnt = scnt+ 1

Inthe cycle Last Sector, the cache fetches the last sector of theline. Dueto
forwarding, the requested data are provided at the data output of the cache.
In addition, the directory is updated, i.e., the new tag is stored in the tag
RAM and the valid flag is turned back on:

tag"®(ca) := ajm—1:m—t], valid"® = 1.
Thisisthe last cycle of aread transaction which does not hit the cache.

Write Transaction

Like aread transaction, the write transaction starts with a Cache Read ac-
cess, whichin case of amissisfollowed by alinefill. Thewrite transaction
then proceeds with a Cache Update cycle, in which a memory update is
requested and the cache sector is updated as

Csectot®(ca) = Xg_1,...,Xo,
with

bytg(Din) if CDwli]=1.

The transaction ends with an Update M cycle, in which the memory per-
forms the requested write update.

X — { byte(CsectoV®(ca)) if CDw[i]=0

Section 6.3

Line Invalidation Transaction

This transaction also starts with a Cache Read access, in order to chec
whether the requested line isin the cache. In case of amiss, thelineis not
in the cache, and the transaction ends after the Cache Read access. In case
of ahit, thelineisinvalidated in the next cycle (Invalidate):

valid"® := 0.

K A CACHE DESIGN

6.3 A Cache Design

K-WAY set associative cache comprises k cache ways, each of which
A isidentical with a direct mapped cache. In afirst step, we therefore
design a byte addressable, sectored, direct mapped cache. We then extend
the design to a k-way associative cache (section 6.3.2). Finally, the cache
isintegrated into a cache interface which implements the write allocation,
write through policy.

The cache design must support all the cache accesses which according
to section 6.2.3 are required to perform the standard memory transactions.
In order to split the update of the directory and of the cache data, the tags,
valid flags and cache data are stored in separate RAMs. The cacheis con-
trolled by the following signals:

¢ the $d flag which indicates a cache read access,
¢ the clear flag which clears the whole cache,

e the write signals Vw and Tw which enable the update of the cache
directory (valid and tag), and

e the B = 2° bank write signals CDW{B — 1:0] which specify the bytes

of the cache sector to be updated.
The cache gets a memory address a = (ajm— 1: 0]), avalid flag, and a
B-byte data Di and provides a flag hit and data Do. The flag hit indicates
whether the requested memory data are held in the cache or not. As de-

picted in figure 6.8 (page 258), the memory address a is interpreted as tag
atag, line address a_line, sector address a_ sector, and sector offset a byte

atag = am—1:1+s+0b]
aline = all+s+b—1:s+b
asector = a[s+b—1:b
abyte = ab—-1:0]. R
265

Chapter 6

MEMORY SYSTEM

266

DESIGN

a line . \ \ a_sector
a tag 1 Di
|
vaid—din A A din A din
Vw— valid tag — Tw dataRAM — CDw[B-1:0]
cdlear - RAM RAM B banks
Lx1 Lxt L*S x 8
1
dout dout dout

8B

hit Do

Figure 6.11 Byte addressable, direct mapped cache with L = 2' lines. The cache
lineis organizedin S= 25 sectors, each of which is B = 2° bytes wide.

According to the FSD of figure 6.10, all the memory transactions start
with a cache read access ($rd = 1); updates of the directory and of the
cache data only occur in later cycles. The design of the k-way set associa-
tive cache will rely on this feature.

6.3.1 Design of a Direct Mapped Cache

Figure 6.11 depicts the data paths of a sectored, byte addressable, direct
mapped cache with L = 2 cache lines. The cache consists of valid, tag and
data RAMs and an equality tester. The valid RAM V and the t bits wide
tag RAM T form the cache directory.

Since al sectors of aline share the same tag and valid flag, they are only
stored once; thevalid and tag RAM are of sizeL x 1 and L x t. Both RAMs
are referenced with the line address a_line. The write signasVwand Tw
control the update of the directory. On Tw= 0 the tag RAM provides the
tag

tag = T[(aline)],

and on Tw= 1, thetag a_tag is written into the tag RAM
T[(aline)] := atag

Thevalid RAM V isaspecia type of RAM which can be cleared in just a
few cycles’. That allows for afast initialization on reset. The RAM V is

3The IDT71B74 RAM, which is used in the cache system of the Intel 1486 [Han93],
can be cleared in two to three cycles [Int96].

Section 6.3

cleared by activating signa clear. OnVw= clear = 0, it provides the flag
A CACHE DESIGN

v = V[(aline)],

whereas on awrite access, requested by Vw= 1 and clear = 0, the RAM
V performs the update

V(a_line)] := valid.

On every cache access, the equality tester EQ checks whether the line
entry is valid and whether the tag provided by the tag RAM matches the
tag a_tag. If that isthe case, ahit issignaled:

ht=1 <« (vA (tag=atag) <« ((vtag) =(1,atag)).

The data portion of the cache lineis organized in S= 2 sectors, each of
which is B = 2° bytes wide. The dataRAM of the cache therefore holds
atotal of 2'*S sectors and is addressed with the line and sector addresses
a_line and a_sector The cache is byte addressable, i.e., asingle write can
update aslittle as asingle byte but no more than awhole sector. In order to
account for the different widths of the writes, the data RAM is organized
in B banks. Each bank isa RAM of size L-Sx 8, and is controlled by a
bank write signal CDw/i].

On aread access, the B bank write signals are zero. In case of a hit, the
cache then provides the whole sector to the output Do:

Do = datd(a_line,a secto) +B— 1: (a line,a secto].

If CDW[B—1: 0] # 08 and if the accessisa hit, the data RAM s are updated.
For every i with CDw/i] = 1, bank i performs the update

datg(a_line,a_sectod +i] := byte(Di).
The cost of this direct mapped cache (1-way cache, $1) run at:

Ca(t,1,5b) = Csram2,1) +Csram2,t)
+Ceq(t+1) +2°-Cspam25, 8).

Thecacheitself delays the read/write accessto its data RAMsand directory
and the detection of a hit by the following amount:

Dgi(data) = DsramL-S 8)
Dgy(dir) = max{DsramL,1),DsramL,t)}
Dgy(hit) = Dy (dir) + Deoft +1).

267

Chapter 6

MEMORY SYSTEM

268

DESIGN

Tw, Vw, | Wadapt: k-way write signal adapter

CDw(B-1:0] TwovwC cow® e TwkL vkl cpwk? $rd
w
valid %

a[31:b] - .
Di - \L K - cI(Tar
Di vdid a Di valid a a way
clear— clear—
way 0 . way k-1 replacement

(direct mapped cache) (dlirect mapped cache) circuit

Do hit v Do hit v Repl

0 0 0 k-1 k-1 | k-1
d h v V[O: k- 1] d h \4

V h[Ok-1]
Sel: k-way data select ‘
e t
Do hit

Figure 6.12 Byte addressable, k-way set associative cache. The sectors of a cache
lineare B = 2P byteswide.

6.3.2 Design of a Set Associative Cache

The core of a set associative cache (figure 6.12) are k sectored, direct
mapped caches with L lines each. The k cache ways provide the local
hit signals H, the valid flags v, and the local datad'. Based on these sig-
nals, the select circuit Sel generates the global hit signal and selects the
data output Do. An access only updates a single way. The write signal
adapter Wadapttherefore forwards the write signals Tw,Vw, and CDw to
this active cache way.

The replacement circuit Re pl determines the address way of the active
cache way; the address is coded in unary. Since the active cache way
remains the same during the whole memory transaction, address way is
only computed during the first cycle of the transaction and is then buffered
in aregister. Thisfirst cycle is aways a cache read ($rd). Altogether, the
cost of the k way cacheis:

C$k(ta I,S, b) = k'C$1(ta |,S, b) +CSeI+CWadapt

+CRrepi+ Cr1(K).

Data Select Circuit ' '
Each cache way provides alocal hit signal H, avalid flag V', and the local
datad'. Anaccessisacache hit, if one of the k-ways encounters a hit:

hit = hOvhtyv...vh<L

On acache hit, exactly onelocal hit signal H is active, and the correspond-
ing way i holds the requested data Do. Thus,

Do= \/ (diAh)
j=0,....k—1

When arranging these OR gates as a binary tree, the output Do and the hit
signal can be selected at the following cost and delay:

Csel = Ciree(K) - Cor+ 8B (Cand(K) + Ciree(K) - Cor)
Dsel = Dand+ Dtree(K) - Dor.

Write Signal Adapter
Circuit Wadaptgets the write signals Tw, Vw and CDwWB — 1: 0] which
request the update of the tag RAM, the valid RAM and the B data RAMSs.
However, in aset associative cache, an access only updates the active cache
way. Therefore, the write signal adapter forwards the write signals to the
active way, and for the remaining k — 1 ways, it disables the write signals.
Register way provides the address of the active cache way coded in
unary. Thus, the write signals of way i are obtained by masking the signals
Tw, Vwand CDWB — 1: 0] with signal bit wayji], e.q.,

i [Vw if wayij=1 ,
vw = { 0 it wayij=0 — VWA wayfi].

The original B+ 2 write signals can then be adapted to the needs of the set
associative cache at the following cost and delay

C\Nadapt = k‘Cand(B+2)
DWadapt = Dand-

LRU Replacement Circuit
The replacement circuit Repl performs two major tasks. On every cache
read access, it determines the address way of the active cache way and
updates the cache history. On a cache miss, circuit Repl determines the
eviction address ey, thisis the address of the way which gets the new data.
The circuit Repl of figure 6.13 keeps a K-bit history vector for each
set, where K = k- logk. The history isstored in an L x K RAM which is
updated on a cache read access ($rd = 1) and by an active clear signal:

Hw = $rd V clear

On clear = 1, all the history vectors are initialized with the value Hid.
Since the same value is written to all the RAM words, we assume that

Section 6.3

A CACHE DESIGN

269

Chapter 6

MEMORY SYSTEM

270

DESIGN

a line
hit h[O:k-1]
JEQ| T oo
$rd Q ‘ ‘ : active |
ev ! w
. 1 |
s Al Aw Nistory OlH | LrRuwp | ‘
RAM 1 H | h[O:k-1] |
AT LxK clear | L
clear — 2-port clear hit !
| |
Hw —w Din 1—Hd 7 —="" Loy
0

Figure 6.13 Circuit Replof ak-way set associative cache with LRU replacement

thisinitialization can be done in just afew cycles, asit is the case for the
valid RAM. Circuit LRU updetermines the new history vector H' and the
eviction address eV, circuit activeselects the address way.

Updating the cache history involves two consecutive RAM accesses, a
read of the cache history followed by awrite to the history RAM. In order
to reduce the cycle time, the new history vector H' and the address are
buffered in registers. The cache history is updated during the next cache
read access. Since the cache history is read and written in paralel, the
history RAM is dual ported, and a multiplexer forwards the new history
vector H/, if necessary. On clear = 1, register H' isinitialized aswell. The
cost of circuit Replcan be expressed as:

Crepl = Csrame(L,K)+Cs(K) +3-CmuxK)
+Ct£(1) +Ceo(l) + Cor + CLruup+ Cactive

We now describe the circuits activeand LRU upin detail.

Detection of the Active Way

On a cache hit, the active cache way is the way which holds the requested
data; this is also the cache way which provides an active hit signal H.
On a miss, the active way is specified by the eviction address ev which
is provided by the cache history. Since evis coded in binary, it is first
decoded providing value EV. Thus,

way— | EV if hit=0
Y= U hk—1:0/= (1,0 if hit=1

is the address of the active way coded in unary. The circuit active (figure
6.13) determines the address of the active way at the following cost and
delay:

Calctive = Cdec(|09k)+cmux(k)

Dactive(€V) = Ddec(l0gK) + Dmux(K)
Dactive(hit) = Dmux(k)-

Cache History
For each set |, circuit Replkeeps a history vector

H = (HY... . H<Y, (H)e{o,....k—1}.

H, is a permutation of the addresses 0, ...,k — 1 of the cache ways, it pro-
vides an ordering of the k ways of set |. The elements of the vector H
are arranged such that the data of way I—\‘ was used more recently than the
data of way H/". Thus, H? (H*") points to the data of set | which was
most (least) recently used. In case of a miss, the cache history suggests
the candidate for the line replacement. Due to LRU replacement, the least
recently used entry is replaced; the eviction address evequals I-r‘l.

On power-up, the whole cache is invaidated, i.e., al the valid flags in
the k direct mapped caches are cleared. The cache history holds binary but
arbitrary values, and the history vectors H are usually not a permutation
of the addresses 0,...,k— 1. In order to ensure that the cache comes up
properly, al the history vectors must be initialized, e.g., by storing the
identity permutation. Thus,

Hid = (H....,H*Y, (H))=i.

Update of the Cache History
The cache history must be updated on every cache read access, whether
the accessis ahit or amiss. The update of the history also depends on the
type of memory transaction. Read and write accesses are treated alike; line
invalidation is treated differently.

Let aread or write access hit the way Hli. This way is at position i in
vector H;. In the updated vector R, the way H|i is at the first position, the
elements H|°, ey H|‘*1 are shifted one position to theright, and al the other
elements remain the same:

H=(H, .. HLHLHT, L HD

-

R=(H, H, .. ,HLH™, . Hh
x=(0 .. 010 . 0)
y=(*0.. 001 . 1)

The meaning of the vectors x and y will be described shortly.

Section 6.3

A CACHE DESIGN

271

Chapter 6

MEMORY SYSTEM

272

DESIGN

In case of aread/write miss, the line of way ev= I—|,"‘l isreplaced. Thus,
all the elements of the history vector H are shifted one position to the right
and evis added at the first position:

R = (e\é H|07 Hlla ey Hlk_z) = (Hlk_17 Hloa Hlla [N Hlk_z)'

In case that an invalidation access hits the way H', the cache line corre-
sponding to way H|i is evicted and should be used at the next linefill. In
the updated vector |, the way H|i istherefore placed at the last position, the
elements H' 1, ... H" ! are shifted one position to the left, and the other
elements remain the same:

H=(H, . HLH, HYT, L
L= (HY, .. HLHY, L HLH)

If the invalidation access causes a cache miss, the requested line is not in
the cache, and the history remains unchanged: | = H. Note that the vector
| can be obtained by shifting cyclically vector R one position to the left

| = (RL...,RLRO). (6.3)

Realization of the History Update

Circuit LRUup(figure 6.14) performs the update of the history vector. On
acache hit, the binary address J of the cache way with H?) = 1 is obtained
by passing the local hit signals hjk— 1 : O] through an encoder. The flag

=1 ¢ (H'=JAhit=1),

indicates whether the active cache way is at position (i + 1) of the history
vector H;. Circuit LRUupobtains these flagsin the obvious way. A parallel
prefix OR circuit then computes the signals

i1
yi=\/x ,i=1..k-1,
n=0

where y; = 0 indicates that the active cache way is not among the first i
positions of the history vector H. Thus, the first element of the updated
history vector R can be expressed as

J if hit=1
R = { H<Y if hit=0,

hit
h[0:k-1] 9
B

0 |
W ek parallel
prefix
el OR

l K ylk-1:1]

ev H’ﬁ sl = hit

Figure 6.14 Circuit LRU upwhich updates the cache history

andforanyi>1 _
B _ JHTif yi=0

According to equation 6.3, the new history vector H' can be obtained as

H’—{R if linv=0 _{(RO,Rl,...,R"l) if linv=0

I if linv=1 (RL...,RCLRY) if linv=1

Circuit Hsel implements these selections in a straightforward manner at
the following cost and delay

Chsel = 2k-Crux(logk)
I:)Hsel = 2‘Dmux(|09k)-

The cost of the whole history update circuit LRUuprun at:

CLRUup = Cenc(IOQ k) +k- (CEQ(IOQ k) +Q-1nd)
+Cpp(K) - Cor + Chisel-

Delay of the Replacement Circuit

The circuit Replgets the address a and the hit signals H and hit. Based

on these inputs, it updates the history RAM and the registers H and way.

The update of the RAM is obviously much faster than the update of the
registers. We therefore focus on the amount of time by which circuit Repl
itself delays the update of its registers. For any particular input signal, the
propagation delay from the input to the registers of Replcan be expressed
as.

DRepI(hit) = Dand+ DF’P(k) : Dor + DHseH‘ Dmux+ fo

Section 6.3

A CACHE DESIGN

273

Chapter 6

HO R Hi-l Hi Hk2 kel Hkl g
MEMORY SYSTEM s
DESIGN yial yli] ylk-1] 0 1) hit
A

Figure 6.15 Circuit Hsel selects the history vector H'. Flag linv signals a line
invalidation access.

Table 6.10 Updating the LRU history of set | in a2-way cache.

inputs read/write line invalidation
HEHC [hthO [R ‘ waytway’ || H'H'P ‘ way* way’

0O* |00 1 0 0 1 01 oo
1* 100 0 1 1 0 10 oo
** 101 10 0 1 0 1 0 1
** 110 01 1 O 10 1 0

Drepl(n') = Dendlogk) 4 Deq(logk) 4 Drepi(hit)
Drepi(@) = max{Dsram(L,K),Deq(l)} + DmudK)
+ max{DEQ(Iog k) + DRep|(hit), Dactive(e\o + fo},

where K = k- logk. Note that these delays already include the propagation
delay of the register. Thus, clocking just adds the setup time .

LRU Replacement in a 2-Way Cache

When accessing a set | in a2-way cache, one of the two ways is the active
cache way and the other way becomes least recently used. In case of a
line invalidation (linv = 1), the active way becomes least recently used.
According to table 6.10, the elements of the new history vector H and the

address of the active way obey
[HY ;onamiss B
way = { ht ; onahit way’ = /way
H'T = way' xNOR linv H? = /H'}.

Thus, it suffices to keep one history bit per set, e.g., H!. That smplifies
the LRU replacement circuit significantly (figure 6.16), and the initializa-

274

Section 6.3

|
| $rd A CACHE DESIGN
l |
. | .

a line ? Al Aw history
! RAM
! Ar Lx1
! clear — 2-port
} $rd — | w Din

,,,

Figure 6.16 LRU replacement circuit Re plof a 2-way set associative cache.

tion after power-up can be dropped. Since an inverter is not slower than an
XNOR gate, the cost and delay of circuit Re plcan then be estimated as

CRepl = CSRAMZ(La 1) +Cff (I) +CEQ(|) + 2‘Cmux+ Cinv+an0r+Cff

DRepI(hi) = DRepI(hit) = Dmux+ Dxnor+ D+t
DRepI(a) = max{Dsram(L,1), DEQ(I)} + 2 Dmux+ Dxnor+ D+.

Delay of a Set Associative Cache
The k-way set associative cache receives the address a, the data Di and
the control signals clear, $rd, Vw, Twand CDWB —1: Q]. In the delay
formula, we usually distinguish between these three types of inputs; by cs$
we denote all the control inputs of the cache design.

The cache design of figure 6.12 delays its data Do and its hit signal by
the following amount;

Dg(Do) = Dg;(DO0) + Dsel
D$k(hit) = D$1(hit)+D59|.

The cache also updates the directory, the data RAMs and the cache history.
The update of the cache history H is delayed by

Dg(;H) = max{Dgy(hit) + Drepi(h'), Dgy(hit) + Drepi(hit), Drepi(@)}-

Thus, the propagation delay from a particular input to the storage of the
k-way cache can be expressed as:

Dg(a;$k) = max{Dg(;H),Dg; (;datadir)}

Dgy(cs$; $K) max{Dg(;H), Dwadapt+ Dg; (;data dir)}
D$k(Di;$k) D$1(;data).

275

Chapter 6

MEMORY SysTem Table 6.11 Active cache interface control signals for each state of the standard
DESIGN Memory transactions, i.e., for each state of the FSD of figure 6.10.

| state | cache control signals | CDw[B:0] |
Cache Read $rd, (linv) 0B
Fill Request scntclr, scntece, Vw, Ifill
Line Fill scntce, Ifill, Sw 1B
Last Sector scntee, valid, Vw, Tw, Ifill,Sw
Cache Update || $w MBW/[B-1:0]
Update M — 0B
Invalidate Vw

6.3.3 Design of a Cache Interface

In the following, a sectored cache is integrated into a cache interface $if
which implements the write allocate and write through policies. The cache
interface also supports forwarding, i.e., while a cache line is fetched from
main memory, the requested sector is directly taken from the memory bus
and is forwarded to the data output of $if.

Section 6.2.3 describes how such acache interface performs the standard
memory transactions as a sequence of basic cache accesses. That already
specifies the functionality of $if. Those sequences, which are depicted in
the FSD of figure 6.10, consist of four types of cache accesses, namely a
read access ($rd), a write hit access ($w), a line invalidation (linv) and a
linefill (Ifill). Thelinefill requires several cycles.

The cache interface is controlled by the following signals.

the signals $rd, $w, linv and [fill specifying the type of the cache
access,

the write signals Vwand Twof the valid and tag RAM,
the memory bank write signals MBW[B —1: (O],

the write signal Sw (sector write) requesting the update of a whole
cache sector, and

the clock and clear signal of the sector counter scnt

Table 6.11 lists the active control signals for each state of the standard

276

memory transactions.

abye —— g OV CcDw hit —= hit
s
a_sector S ma a
a line)
T
atag I+t

Din—{ 0

MAd[31L:b] \
MDat

Figure 6.17 Cacheinterface $if with forwarding capability

The cache interface receives the address a and the data Din and MDat.
Since al cache and memory accesses affect a whole sector, address ais a
sector boundary:

(abyte = 0,
and the cache and memory ignore the offset bits a byte of the address.
The interface $if provides a hit signal, the data Dout, the memory address
MAd, a cache address, and the input data Di of the cache. On alinefill, Di
is taken from the memory data bus MDat, whereas on a write hit access,
the data is taken from Din

Di — { MDat if Ifill =1

Din if Ifill =0. (6.4)

Figure 6.17 depicts an implementation of such a cache interface. The
core of the interface is a sectored k-way cache, where k may be one. The
width of a sector (B = 2° bytes) equals the width of the data bus between
the main memory and the cache. Each line comprises S= 2 sectors. A
multiplexer selects the input data Di of the cache according to equation
6.4. The address generator circuit AdG generates the addresses and bank
write signals CDw for the accesses. Circuit $forw forwards the memory
datain case of aread miss. The cost of the cache interface runs at

Cgi(t,1,5b) = Cglt,],5b)+CnuxB-8) +Cadc+ Csronw
Cstorw = 2:Cmux(B-8)+Ctt(B-8).

The Cache Address Generator

The address generator (figure 6.18) generates the write signals CDw and

the low order address bits of the cache and main memory address.
According to section 6.2.3, astandard access (I fill = 0) affectsasingle

sector of a cache line. On such an access, the low order bits of the main

Section 6.3

A CACHE DESIGN

277

Chapter 6

MEMORY SYSTEM

278

DESIGN

oS MBWI[B-1:0]
scntclr $w
a sector
(0 W
|
ifil—1 0) [EQ] (o 1) il
ca rs ma CDw[B-1:0]

Figure 6.18 Address generation for the line fill of a sectored cache. The outputs
ca and ma are the low order hits of the cache and memory address. Signal rs
indicates that the current sector equals the requested sector.

memory and of the cache address equal the sector address a sector On
alinefill (Ifill = 1), the whole line must be fetched from main memory.
The memory requires the start address of the cache line:

MAd[31:b] = (a_tag, aline, ma
with

0° if Ifill =1.

Thus, the address generator clears maon aline fill.

On aline fill, the cache line is updated sector by sector. The address
generator therefore generates al the sector addresses 0,...,2 — 1 for the
cache, using an s-bit counter scnt The counter is cleared on scntclr= 1.
The sector hits of the cache address equal

{ asector if Ifill =0
ma =

cq — 4 asector if Ifill =0
~ | sent if Ifill =1.

In addition, circuit AdG provides asignal rs (requested sector) which indi-
cates that the current sector with address scntequal s the requested sector

rs=1 <+ asector=scnt

Thisflag is obtained by an s-hit equality tester.

The address generator aso generates the bank write signal CDwWB—1:
0] for the data RAM of the cache. Because of write allocate, the data RAM
is updated on aline fill and on awrite hit (table 6.11). On alinefill, signa
Swrequests the update of the whole cache sector (CDWB—1: 0] = 1),
whereas on a write hit (3w = 1), the bank write signals of the memory
determine which cache banks have to be updated. Thus, for 0 <i < B, the
bank write signal CDW/i] is generated as

CDWi] = SwV MBWIi] A $w.

By csbif, we denote al the control inputs of the cache interface. These
signals are provided by the control unit CON. The data paths provide the
address a. Let Acon(cshif) and App(a) denote the accumulated delay of
these inputs. The cost and the cycle time of circuit AdG and the delay of
its outputs can then be expressed as

Cadc = Ctt(S) +Cinc(S) +Ceq(s) + 3 Cnux(S)
+Cand(B) 4+ Cor(B)

Andc(Mad) = Andc(ca) = max{App(a),Acon(Cshif)} + Dmux
Anda(rs) = Aop(a) +Deq(s)
Andc(CDW) = Acon(Cs$if) + Dand+ Dor
Tade = mMax{Acon(CS$if), Dinc(s)} + Dmux+ Dt + 0.

Forwarding of the Requested Cache Sector

Circuit $forw of figure 6.17 performs the read forwarding. On a read
hit, the output data Dout are provided directly by the cache. On a cache
miss, the line is fetched from main memory. During the linefill access, the
requested sector, i.e., the sector with address ca= a sector is clocked into
aregister as soon asit is provided on the MDat bus. This event is signaled
by rs = 1. Inthe last linefill cycle, circuit $forw provides the requested
sector to the output Dout, bypassing the cache. If (a sectol = S—1, the
requested sector lies on the bus M Dat during the last fill cycle and has not
yet been clocked into the register. Thus, the forwarding circuit selects the
data output as

Do if Ifill =0
Dout = sector if Ifill =1 Ars=0
MDat if Ifill =1Ars=1
at the following delay

D$forw = 2'Dmu><(8B)-

Delays of the Cache Interface
Based on the cache address ca, the cache itself provides the hit signal and
the data Do. These two outputs therefore have an accumulated delay of

Agit (hit) = Angc(ca) 4 Dgy(hit)
Agt (Do) = Anda(ca) + Dg(Do).

As for the whole DLX design, we distinguish between cycles which
involve the off-chip memory and those which are only processed on-chip.

Section 6.3

A CACHE DESIGN

279

Chapter 6

MEMORY SYSTEM

280

DESIGN

The memory address MAd and the data MDat are used in the first kind
of cycles. The cache interface provides address MAd at an accumulated
delay of

Agit (MAd) = Angc(ma).

The propagation of the data MDat to the output Dout and to the registers
and RAMs of the interface adds the following delays:

D$if(MDat; Dout) = Dstorw
D$if(MDat;$if) = DmUX(SB)+D$k(Di;$k).

With respect to the on-chip cycles, the output Doutand the input data Di
of the cache have the following accumulated delays:

Agit(Dout) = max{Agit (DO), Aadc(rs)} + Dgorw
Ag¢(Di) = max{Acon(cs$if),App(Din)} + Dmux(8B).

The k-way cache comprises RAMs and registers, which have to be up-
dated. The actual updating of aregister includes the delay Dy of the reg-
ister and the setup time 8, whereas the updating of a RAM only includes
the setup time. The additional delay Ds¢ for the registers is already incor-
porated in the delay of the k-way cache. In addition to the cache address
ca, the cache also needs the input data Di and the write signals in order to
update its directory and cache data. The minimal cycle time of the cache
interface can therefore be expressed as.

Tt = mMaxX{Tadc, Aadc(CDW) + Dg(cs$; $k) + d,
Andc(€a) + Dy (85 8K) + 8, Ag;t (Di) + Dgy (Di; $k) + 3}

6.4 Sequential DLX with Cache Memory
6.4.1 Changes in the DLX Design

IN SECTION 6.1.3, it has turned out that the sequential DLX core which
is directly connected to the slow external memory spends most of its
run time waiting for the memory system. We now analyze whether a fast
cache between the processor core and the external memory can reduce
this waiting time. Adding the cache only affects the memory environment
Menv and the memory control. As before, the global functionality of the
memory system and its interaction with the data paths and main control of
the DL X design remain the same.

di BE =

req
M wir =
burst
regp |
| Brdy

a clear hit

I

r&eeA

Figure 6.19 Memory environment of the sequential DL X with cache memory

Memory Environment

Figure 6.19 depicts the memory environment Menv. The cache interface
$if of section 6.3 is placed between the memory interface Mif and the data
paths interface Dif. The cache interface implements the write through,
write allocate policy. Sincethereisonly asingle cacheinthe DLX design,
line invalidation will not be supported. The cache is initialized/cleared on
reset. The off-chip data bus MDat and the cache sectors are B= 2 = 8
bytes wide.

Memory Interface Mif The memory interface still forwards data and
addresses between the off-chip memory and the memory environment.
However, the memory address MAd is now provided by the cache inter-
face, and the data from the memory data bus are forwarded to the data
input MDat of the cache interface.

Interface Dif The cache interface is connected to the data paths through
a 32-bit address port MA and two data ports MDin and MDout. In the
memory environment, the data busses are 64 bits wide, whereas in the data
paths they are only 32 hit wide. Thus, the data ports must be patched
together. On the input port MDin, circuit Dif duplicates the data MDRw

MDin[63:32] = MDin[31: 0] = MDRw31: 0].

On the output port Dout, a multiplexer selects the requested 32-bit word
within the double-word based on the address bit MA[2]:

Dout[31:0] if

MA[2] =0
Dout[63:32] if =1

MDout = { MA2]
Let the sectored cache comprise 2 lines, each of which issplitin S= 2
sectors. The cost of the memory environment and of the interfaces Mif and

Section 6.4

SEQUENTIAL DLX

wWITH CACHE
MEMORY

281

Chapter 6

MEMORY SYSTEM

282

DESIGN

mbusy mr mw MA[1:0]

N tbe—
' req, wir $rd Mc 1 Mif
| - . = |

M 1 regp, Brdy MifC MBW |
| - - $if
. hit Lo

Figure 6.20 Block diagram of the memory control

Dif then run at

CMif = Cdriv(32) +Cdriv(64)
CDif = Cmux(32)
Cvenv = Cwmift +Cpit +Cg¢(29—1—-5s,1,8,3).

The Memory Control

Asinthe sequential DLX design which isdirectly connected to the off-chip
memory (section 6.1.3), the memory system is governed by the memory
control circuit MC and the memory interface control MifC (figure 6.20).

Memory Controller MC The memory controller generates the memory
bank write signals. Since the memory system now operates on double-
words, twice as many write signals Mbw[7:0] are required. The original
four signals mbw[3:0] still select within aword, and the leading offset bit
of the write address MA[2] selects the word within the sector. Thus, the
new bank write signals can be obtained as

mbwj] A MAZ] i=1

Mbw{4-i+j] = {me\{j]/\/MA[Z] Zo i=0..3

Stores always take several cycles, and the bank write signals are used in
the second cycle, at the earliest. The memory control therefore buffers the
signals Mbw in a register before feeding them to the cache interface and
to the byte enable lines BE of the memory bus. Register MBW is clocked
during the first cycle of amemory transaction, i.e., on $rd = 1:

Mbw{7:0] if $rd=1

MBW[7: 0] := { MBW[7:0] if $rd =0.

Thus, circuit MC provides the signal MBW at zero delay
Avc(MBW) = O.

The cost and cycle time of the memory control MC run at

Cvc = Cuc(mbw + Cand(8) +Cinv +Cs+(8)
TMC = AMc(me\b + Dand(8) +A.

Memory Interface Control AsintheDLX of section 6.1.3, the memory
interface control MifC controls the tristate drivers of the memory interface
and generates the handshake signal req and the bust status signals burst,
w/r and mbusyaccording to the bus protocol. In addition, control MifC
provides the control signals of the cache interface.

The FSD of figure 6.10 together with table 6.11 specify the cache oper-
ations for the different memory transactions. However, the linefill and the
write hit also access the off-chip memory. On such a memory access, the
bus protocol of section 6.1.2 must be obeyed. Thus, the FSD must be ex-
tended by the bus operations. Figure 6.21 depicts the extended FSD. Note
that on aburst read (line fill), the memory turns signal reqp off two cycles
before sending the last sector. Thus, signal reqp= 0 can be used in order
to detect the end of the linefill. Table 6.12 lists the active control signals
for each state of the FSD.

Circuit MifC uses a Mealy automaton which generates the control sig-
nals as modeled by the FSD. Table 6.13 lists the parameters of the au-
tomaton. There are only two Mealy signals, namely mbusyand $rd. Both
signals are just used for clocking. According to section 2.6.8, their accu-
mulated delay can be expressed as

Acon(mbusy$rd) = Auirc(Mealy) = Agy) (MIfC).

The remaining MifC control signals are Moore signals. Since the automa-
ton precomputes its Moore outputs, these control signals are provided at
zero delay

Awifc = AMifC(MOOI’E) = 0.

The MifC automaton receives the inputs mwand mr from the main con-
trol, the hit signal from the cache interface, and the handshake signals Brdy
and reqpfrom the memory. These inputs have an accumulated delay of

Ain(MifC) = max{Acon(mwmr), Ag; (hit), Ay (Brdy,reqp) + dous}-

Timing of Memory Accesses

Asinthe DLX design without cache, we assume that the off-chip memory
is controlled by an automaton which precomputes its outputs and that the
control inputs which the off-chip memory receives through the memory
bus add dyihsh delays to the cycle time of its automaton. With a cache, the

Section 6.4

SEQUENTIAL DLX

wWITH CACHE
MEMORY

283

Chapter 6

MEMORY SYSTEM
DESIGN

284

/Brdy /Brdy * regp
wait | - /Brdy * /reqp_ ||astwait ;/Brdy
/Brdy * regp A | Brdy /Brdy * /reqp 7 Brdy
Brdy [e Brdy* freqp [~ o
it * fill last fill
/hit* mr = Brdy * recp mrd

$RD |
= hit* mw mw

else last M Brdy write M - Pwrite

/Brdy

/hit * mw

Figure 6.21 FSD of the MifC control automaton; $RD istheinitia state.

Table 6.12 Active control signalsfor the FSD modeling the MifC control. Signals
$rd and /mbusyere Mealy signals, the remaining signals are Moore signals.

| state || signals for $if | additional signals |
$RD $rd =mr v mw /mbusy = (hit A mr)
V (/mr A /mw)
fill req scntclr, scntce, Vw, Ifill | req, burst, MAddoe
fill scntee, Ifill, Sw burst, MAddoe
wait Ifill burst, MAddoe
last wait || Ifill burst, MAddoe
last fill scntee, valid, Vw, Tw, MAddoe
Ifill, Sw /mbusy = mr
$write || $w w/r, req, MAddoe, MDindoe
write M w/r, MAddoe, MDindoe
last M MDindoe, /mbusy

off-chip memory only performs aburst read access or asingle write access.
Both accesses start with arequest cycle.

The memory interface starts the memory access by sending the address
and the request signal req to the off-chip memory, but the address is now
provided by the cache interface. That is the only change. Forwarding
signal req and address MAd to the memory bus and off-chip still takes
Dgriv + dpus delays, and the processing of the handshake signals adds djnsh
delays. Thus, the memory request takes

TMreq = maX{AMifC7A$if (MAd)} + Dygriy + dous+ dmnsh+ A.

After the request, the memory performs the actual access. The timing
of the single write access is modeled as in the design without cache. The

Table 6.13 Parameters of the MifC Mealy automaton; index (1) corresponds to
the Moore signals and index (2) to the Mealy signals.

states | #inputs # and frequency of the outputs
k o Y | Vsum | Vmax1) Vmax2)
9 5 15 | 40 7 4
fanin of the states | #, length, frequency of the monomials
fansym | famax | #M | lsum | Imax Imax(2)
18 3 14 | 24 2 2

memory interface sends the data MDin and the byte enable bits. Once the
off-chip memory receives these data, it performs the access:

Tmwrite = Max{Auc(MBW), Auitc + Ddriv} + Obus+ Dmm (64MB) + 8.

On a burst read transfer, we distinguish between the access of the first
sector and the access of the later sectors. A 64 MB memory provides the
first sector with a delay of Dy (64MB). Sending them to the memory
interface adds another Dgyyiy + dpys delays. The sector is then written into
the cache. Thus, reading the first sector takes at least

We assume, that for the remaining sectors, the actual memory access time
can be hidden. Thus, the cache interface receives the next sector with
a delay of Dyriy + dpys Circuit $if writes the sector into the cache and
forwards the sector to the data paths where the data are multiplexed and
clocked into aregister:

Tmrburst = Ddriv + dous+ 0
+max{Dg;; (MDat; $if), Dg;s (MDat; Dout) + Dmux+ D¢}

Due to the memory access time, the write access and the reading of the
first sector take much longer than the CPU internal cycles. Therefore, they
are performed in W CPU cycles.

If a read access hits the cache, the off-chip memory is not accessed
at all. The cache interface provides the requested data with an delay of
Ag;¢ (Dout). After selecting the appropriate word, data MDout is clocked
into aregister:

Tgread = Agit (Dout) 4 Dmyx+ D

Section 6.4

SEQUENTIAL DLX

wWITH CACHE
MEMORY

285

Chapter 6

MEMORY SYSTEM

286

DESIGN

Table 6.14 Cost of the DLX design which is connected to the off-chip DRAM,
either directly or through a 16 KB, direct mapped cache.

| Llcache | Menw| DP|CON| DLX |
no 320 | 11166 | 1170 | 12336

16KB 375178 | 386024 | 1534 | 387558
increase factor 1170 35 1.3 31

Updating the cache interface on aread or write access takes . Thus, the
memory environment of the DLX design requires a CPU cycle time of at
least

Tm (W) = maX{T$reada T$if s Tm reqs TMrburst, [TMacceS$/W—|}
Tmaccess = Max{ Tmwrite; TMread}-

Cost and Cycle Time

Presently (2000) large workstations have a first level cache of 32KB to
64K B (table 6.8), but the early RISC processors (e.g. MIPS R2000/3000)
started out with as little as 4KB to 8KB of cache. We consider a cache
size of 16KB for our DLX design. This sectored, direct mapped cache is
organized in 1024 lines. A cache line comprises S = 2 sectors, each of
which is B = 8 bytes wide. The cache size and other parameters will be
optimized later on.

According to table 6.14, the 16KB cache increases dramatically the cost
of the memory environment Menv (factor 1200) and of the DL X processor
(factor 31), but the cost of the control stays roughly the same. Adding a
first level cache makes the memory controller MC more complicated; its
automaton requires 9 instead of 3 states. However, this automaton is still
fairly small, and thus, the whole DL X control isonly 30% more expensive.

Table 6.15 lists the cycle times of the data paths, the control, and the
memory system. The stall engine generates the clock and write signals
based on signal mbusy Due to the slow hit signal, signal mbusyhas a
much longer delay. That more then doubles the cycle time of the control,
which now becomes time critical. The cycletime 1p, x of the DLX coreis
increased by afactor of 1.27.

A memory request, a cache update, and a cache read hit can be per-
formed in asingle processor cycle. The time Tyrpurst 1S @S0 not time crit-
ical. Reading the first word from the off-chip memory requires severa
processor cycles; the same is true for the write access (Tvacces- Since
the memory data is written into a register and into the cache, such a read

Table 6.15 Cycle time of the DLX design which and without cache memory

| cache || Anit | Ambusy| Tmitc | Tstanr | Tcon | Top |
no — 7 28 33 42 70
16KB 55 64 79 89 89 70
cache | Tgi¢ | Tgread | TMreq | TMrburst Twiaccess
a=4|a=8|a=16
no _ 1 39 [35| 683| 1339
16KB 48 57 36 63 391 719 1375

access takes even 36 delays longer.
The DLX design with first level cache can be operated at a cycle time of

Tox (W) = max{Tpp, Tcon, Tu(W)}.

Increasing the number W of wait states improves the cycle time, but it also
increases the CPI ratio. There is a trade-off between cycle time and cycle
count.

Performance and Quality of the Design
In order to make the cache worthwhile, the cache better improves the per-
formance of the DLX quite a bit. The memory system has no impact on
the instruction count. However, the cache can improve the CPI ratio and
the TP ratio by speeding up the average memory accesses.

T

TPl = E :Cpl-TDLx.

Number of Memory Cycles Inthe DLX design without cache, a mem-
ory access takes always 1+ W cycles. After adding the cache, the time
of aread or write access is no longer fixed. The access can be a cache
hit or miss. In case of a miss, the whole cache line (S= 2 sectors) must
be fetched from the external memory. Such aline fill takesW + S cycles.
Thus, the read access can be performed in a single cycle, if the requested
dataisin the cache, and otherwise, the read access takes 1+ W + Scycles
due to the linefill.

A store first checks the cache before it performs the write access. Dueto
the write through, write allocate policy, the write always updates the cache
and the external memory. Like in the system without cache, the update
of the memory takes 1+ W cycles, and together with the checking of the

Section 6.4

SEQUENTIAL DLX

wWITH CACHE
MEMORY

287

Chapter 6

MEMORY SYSTEM

288

DESIGN

Table 6.16 Number of processor cycles required for a memory access.

\ | read hit | read miss | writehit | writemiss |
with cache 1 |1+S+W | 24+W | 24+W+S4+W
without cache 1+W 1+W

cache, a write hit takes 2+ W cycles. A cache miss adds another W + S
cycles (table 6.16).

CPI Ratio For agiven benchmark, the hit ratio p, measures the fraction
of all the memory accesses which are cache hits, and the miss ratio(p, =
1— pn) measures the fraction of the accesses which are cache misses. This
means that the fraction py, of the memory accesses is a cache miss and
requires alinefill.

Let CPligea denote the CPI ratio of the DLX design with an ideal mem-
ory, i.e.,, with a memory which performs every access in a single cycle.
In analogy to the CPI ratio of a pipelined design (section 4.6), the cache
misses and memory updates can be treated as hazards. Thus, the CPI ratio
of the DLX design with L1 cache can be expressed as.

CPl1 = CPligeal+ Vstore (1 +W) +Vpmiss: (W +9)
Vmiss = Pm- (14 Vioad + Vstore)-

The CPI ratio of the DL X design with ideal memory can be derived from
the instruction mix of table 6.6 in the same manner asthe CPI ratio of the
DLX without cache. That table also provides the frequency of the loads
and stores. According to cache simulations [Kro97, GHPS93], the 16KB
direct mapped cache of the DLX achieves a miss ratio of 3.3% on the
SPECint92 workload. On the compress benchmark, the cache performs
slightly better (pm = 3.1%). Thus, the DLX with 16KB cache yields on
these two workloads a CPI ratio of

CPl.i(compy = 4.19+0.056-(1+W)+0.031-1.255- (S+W)
= 4.32+40.09-W

CPIL1(SPEQ = 4.26+0.085-(1+W)+0.033-1.338- (S+W)
= 443+0.13-W.

Based on these formulae, the optimal cycle time and optimal number of
wait states can be determined as before. Although the CPl and TPI ra-
tios vary with the workload, the optimal cycle time is the same for all the

Table 6.17 Optimal cycle time and number W of wait states

L1 a=4 a=8 | a=16
cache (W[T [W[T|W]T1
no 5|171110| 70| 19| 71
16KB || 5 | 8| 8 | 90| 16| 89

Table 6.18 CPI and TP ratios of the two DLX designs on the compress bench-
mark and on the average SPECint92 workload.

compress (pm = 3.1%) SPECint (pm = 3.3%)
DRAM: o 4 1 8 | 16 4] 8 | 16
CPl o1 10.5 16.7 28.0 11.0 17.6 29.7
CPI 1 4.8 5.0 5.8 51 55 6.5
CPlhot1/CPIL1 2.2 3.3 4.8 2.1 3.2 4.6
TPlhol1 753.7 | 1172.0 | 1990.7 || 788.7 | 1235.1 | 2107.7
TPI 1 4245 | 453.6 | 5126 || 452.1 | 492.3 | 5794
TPlhot1/TPI1 18 2.6 39 17 25 3.6

[Breakevenieq [0.14 | 021 | 0.28 | 014 | 021 | 0.28 |

SPECint92 benchmarks; it only depends on the speed of the main mem-
ory (table 6.17). Depending on the speed of the main memory, the cache
increases the optimal cycle time by 25% or 30%, but for slow memories it
reduces the number of wait states.

According to table 6.18, the cache improves the CPI ratio roughly by
a factor of 2 to 5. Due to the slower cycle time, the TPI ratio and the
performance of the DLX processor is only improved by a factor of about
2 to 4. Especially in combination with avery slow external memory (a =
16), the cache achieves a good speedup. Thus, there is a trade-off between
cost and performance.

Cost Performance Trade-Off For any two variants A and B of the DLX
design, the parameter eq specifies the quality parameter g for which both
variants are of the same quality:

1 1

cl.TP @ cl. TP @

Section 6.4

SEQUENTIAL DLX

wWITH CACHE
MEMORY

289

Chapter 6

MEMORY SYSTEM

290

DESIGN

For quality parameters q < eq, the faster of the two variants is better, and
for g > eq the cheaper one is better. For a redlistic quality metric, the
quality parameter g liesin the range of [0.2,0.5].

Depending on the speed of the off-chip memory, the break even point lies
between 0.14 and 0.28 (table 6.18). The DL X with cacheisthefaster of the
two designs. Thus, the 16KB cache improves the quality of the sequential
DLX design, as long as the performance is much more important than the
cost.

Altogether, it is worthwhile to add a 16K B, direct mapped cache to the
DLX fixed point core, especially in combination with avery slow external
memory. The cache increases the cost of the design by afactor of 31, but
it also improves the performance by a factor of 1.8 to 3.7. However, the
DLX still spends 13% to 30% of its run time waiting for the main memory,
due to cache misses and write through accesses.

6.4.2 \Variations of the Cache Design

Every cache design has many parameters, like the cache size, the line size,
the associativity, and the cache policies. This section studies the impact
of these parameters on the performance and cost/performance ratio of the
cache design.

Impact of the Line Size

As already pointed out in section 6.2.1, the memory accesses tend to clus-
ter, i.e., at least over a short period of time, the processor only works on
a few clusters of references. Caches profit from the tempora and spatial
locality.

Temporal Locality Once a memory data is brought into the cache, it is
likely to be used several times before it is evicted. Thus, the slow initial
access is amortized by the fast accesses which follow. If the cache is to
small, it cannot accommodate all the clusters required, and data will be
evicted although they are needed shortly thereafter. Large caches can re-
duces these evictions, but cache misses cannot vanish completely, because
the addressed clusters change over time, and the first access to a new clus-
ter isalwaysamiss. According to table 6.19 ([Kro97]), doubling the cache
size cuts the missratio by about one third.

Spatial Locality The cache also makes use of the spatial locality, i.e.,
whenever the processor accesses a data, it is very likely that it soon ac-

Table 6.19 Miss ratio of a direct mapped cache depending on the cache size [K
byte] and the line size [byte] for the average SPECint92 workload; [Kro97].

cache line size [byte]
size 8 | 6 | 32 | 64 | 128

1KB | 0.227616 | 0.164298 | 0.135689 | 0.132518 | 0.150158

2KB | 0.162032 | 0.112752 | 0.088494 | 0.081526 | 0.088244

4KB || 0.109876 | 0.077141 | 0.061725 | 0.057109 | 0.059580

8KB | 0.075198 | 0.052612 | 0.039738 | 0.034763 | 0.034685
16 KB || 0.047911 | 0.032600 | 0.024378 | 0.020493 | 0.020643
32 KB || 0.030686 | 0.020297 | 0.015234 | 0.012713 | 0.012962
64 KB || 0.020660 | 0.012493 | 0.008174 | 0.005989 | 0.005461

cesses adata which is stored close by. Starting amemory transfer requires
W cycles, and then the actual transfer delivers 8 bytes per cycle. Thus
fetching larger cache lines saves time, but only if most of the fetched data
are used later on. However, thereis only limited amount of spatial locality
in the programs.

According to table 6.19, the larger line sizes reduces the miss ratio sig-
nificantly up to aline size of 32 bytes. Beyond 64 bytes, there is virtually
no improvement, and in some cases the miss ratio even increases. \When
analyzing the CPI ratio (table 6.20), it becomes even more obvious that
32-byte lines are optimal. Thus, it is not a pure coincidence that commer-
cia processors like the Pentium [AA93] or the DEC Alpha [ERP95] use
L1 caches with 32-byte cache lines.

However, 32 bytes is not a random number. In the SPECint92 integer
workload, about 15% of al the instructions change the flow of control
(e.g., branch, jump, and call). On average, the instruction stream switches
to another cluster of references after every sixth instruction. Thus, fetching
more than 8 instructions (32 bytes) rarely pays off, especially since the
instructions account for 75% of the memory references.

Impact on Cost and Cycle Time Doubling the cache size cuts the miss
ratio by about one third and improves the cycle count, but it also impacts
the cost and cycle time of the DLX design (table 6.21). If a cache of 8KB
or moreisused, the fixed point core with its 12 kilo gates accounts for less
than 10% of the total cost, and doubling the cache size roughly doubles the
cost of the design.

For afixed cache size, doubling the line size implies that the number of
cachelinesin cut by half. Therefore, the cache directory only requires half

Section 6.4

SEQUENTIAL DLX

wWITH CACHE
MEMORY

201

Chapter 6

MEMORY SYSTEM
DESIGN

292

Table 6.20 CPI ratio of the DLX with direct mapped cache on the SPECint92
workload. Taken from [Kro97].

DRAM | cache line size [byte]

a size|| 8 | 16 | 32 | 64 | 128
1KB || 6.60 | 6.31 | 6.40 | 7.08 | 8.99
2KB || 6.07 | 583 | 584 | 6.19 | 7.25
4KB || 565 | 549 | 551 | 576 | 6.44
4 8KB || 537 | 5.26 | 5.25 | 5.37 | 5.74
16 KB || 515 | 5.08 | 5.06 | 513 | 5.35
32KB || 5.02 | 496 | 495 | 499 | 5.13
64KB || 494 | 4.89 | 487 | 4.87 | 492

1KB || 7.77 | 7.22 | 7.20 | 7.86 | 9.85
2KB || 6.98 | 653 | 6.45| 6.77 | 7.86
4KB || 6.35| 6.06 | 6.02 | 6.25 | 6.94
8 8KB || 593 | 5.73 | 5.66 | 5.77 | 6.14
16 KB || 5.60 | 5.46 | 5.42 | 5.46 | 5.69
32KB || 539 | 530 | 5.27 | 5.30 | 5.44
64KB || 527 | 519 | 5.16 | 5.15 | 5.20

asmany entries as before, and the directory shrinks by half. Thus, doubling
the line size reduces the cost of the cache and the cost of the whole DLX
design. Increasing the line size from 8 to 16 bytes reduces the cost of the
DLX design by 7-10%. Doubling the line size to 32 bytes saves another
5% of the cost. Beyond 32 bytes, an increase of the line size has virtually
no impact on the cost.

Table 6.21 also lists the cycle timeimposed by the data paths, the control
and the cache interface:

Towx = max{Top, Tcon: Tgit» Tread)-

The cache influences this cycle time in three ways: Tg;¢ and Tg;e,q account

for the actual update of the cache and the time of a cache read hit. The
cache directory also provides the hit signal, which is used by the control in
order to generate the clock and write enable signals (Tton). This usually

takes longer than the cache update itself and for large caches it becomes
even time critical. Doubling the line size then reduces the cycle time by 3
gate delays due to the smaller directory.

Table 6.21 Cost and cycle time of the DLX design with a direct mapped cache

cache cost Cp, x [kilo gates] | cycletime Tp. x
size line size [B]
[KB] | 8] 16| 32] 64] 128 8] 16] 32| 64| 128
1] 42| 39| 37| 36| 36| 8] 70]70]70] 70
2 69 62 59 57 5718380 70| 70| 70
4| 121 | 109 | 103 | 100 98| 86| 83| 80| 70| 70
8 226 | 202 | 190 | 185| 182 89| 8| 83| 80| 70
16 | 433 | 388 | 365| 354 | 348 92| 89| 8| 83| 80
32| 842 | 756 | 713 | 692 | 681 | 95| 92| 89| 86| 83
64 || 1637 | 1481 | 1403 | 1364 | 1345 | 98| 95| 92| 89| 86

Increasing the Associativity

Caches are much smaller than the main memory, and thus, many memory
addresses must be mapped to the same set of cache locations. In the direct
mapped cache, there is exactly one possible cache location per memory
address. Thus, when fetching a new memory data, the cache line is either
empty, or the old entry must be evicted. That can cause severe thrashing

Two or more clusters of references (e.g., instruction and data) share the
same cache line. When accessing these clusters by turns, al the accesses
are cache misses and the line must be replaced every time. Thus, the slow
line fills cannot be amortized by fast cache hits, and the cache can even
deteriorate the performance of the memory system.

Using a larger cache would help, but that is very expensive. A standard
way out is to increase the associativity of the cache. The associativity of a
first level cache is typically two or four. In the following, we analyze the
impact of associativity on the cost and performance of the cache and DLX
design.

Impact on the Miss Ratio Table 6.22 lists the miss ratio of an asso-
ciative cache with random or LRU replacement policy on a SPECint92
workload. Thistable istaken from [Kro97], but similar results are given in
[GHPS93]. LRU replacement is more complicated than random replace-
ment because it requires acache history, but it also results in asignificantly
better miss ratio. Even with twice the degree of associativity, a cache with
random replacement performs worse than a cache with LRU replacement.
Thus, we only consider the LRU replacement.

In combination with LRU replacement, 2-way and 4-way associativity
improve the miss ratio of the cache. For moderate cache sizes, a 2-way

Section 6.4

SEQUENTIAL DLX

wWITH CACHE
MEMORY

293

Chapter 6

MEMORY SYSTEM

294

DESIGN

Table 6.22 Miss ratio [%)] of the SPECint92 workload on a DLX cache system
with 32-byte lines and write allocation; [Kro97].

cache direct 2-way 4-way
size || mapped || LRU | random || LRU | random

1KB 13.57 10.72 | 19.65 9.41 12.30
2KB 8.85 7.02 13.34 6.53 8.40
4 KB 6.17 4,54 8.82 4.09 541
8 KB 3.97 2.52 6.16 2.04 3.05
16 KB 2.44 1.39 3.97 1.00 1.52
32 KB 1.52 0.73 2.44 0.58 0.83
64 KB 0.82 0.52 1.52 0.44 0.56

Table 6.23 Cost and CPU cycletime of the DLX design with ak-way set associa
tive cache (32-bytelines).

cache cost Cpx [Kilo gates]

size absolute increase
[KB] || k= 1| 2| 4 1—>2|2—>4 1|2|4
1 37 38 41 || 39% | 7.2% | 70| 70 | 70
2 59 61 62| 26% | 50% || 70| 70| 70
4 103 | 105| 108 | 1.7% | 34% | 80| 74| 70
8 190 | 193 | 197 | 1.2% | 24% || 83| 84| 76
16 365 | 368| 375| 09% | 1.8% | 86| 87 | 86
32 713 | 718 | 729 | 0.7% | 1.5% || 89 | 90 | 89
64 1403 | 1416 | 1436 || 0.8% | 1.4% | 92| 93| 92

ToLx

cache achieves roughly the same miss ratio as a direct mapped cache of
twicethe size.

Impact ontheCost Likefor adirect mapped cache, the cost of the cache
interface with a set associative cache roughly doubles when doubling the
cache size. The cache interface accounts for over 90% of the cost, if the
cache size is 8KB or larger (table 6.23). 2-way and 4-way associativity
increase the total cost by at most 4% and 11%, respectively. The relative
cost overhead of associative caches gets smaller for larger cache sizes.
When switching from 2-way to 4-way associativity, the cost overhead
is about twice the overhead of the 2-way cache. That is for the following

reasons. In addition to the cache directory and the cache data RAMs, a
set associative cache with LRU replacement also requires a cache history
and some selection circuits. In a2-way cache, the history holds one bit per
sector, and in a4-way cache, it holds 8 bits per sector; that islessthan 0.5%
of the total storage capacity of the cache. The significant cost increase
results from the selection circuits which are the same for all cache sizes.
In the 2-way cache, those circuits account for about 900 gate equivalents.
The overhead of the 4-way cache is about three times as large, due to the
more complicated replacement circuit.

Impact on the Cycle Time The cache provides the hit signal which is
used by the control in order to generate the clock signals. Except for small
caches (1KB and 2KB), the control even dominates the cycle time To.x
which coversal CPU internal cycles (table 6.23). Doubling the cache size
then increases the cycle time by 3 gate delays due to the larger RAM.

In a 32-bit design, the tags of adirect mapped cache of size X KB are

tp = 32—logX

bits wide according to figure 6.7. Thus, doubling the cache size reduces the
tag width by one. In a set associative cache, the cache lines are distributed
equally over the k cache ways, and each way only holds afraction (1/k) of
the lines. For aline size of 32 bytes, we have

Lk = Li/k = X/(32-K)

tx« = 32—logX+logk = t;+logk
The cache tags are therefore logk bits wider than the tags of an equally
sized direct mapped cache.

In each cache way, the local hit signal h[i] is generated by an equality
tester which checks the t-bit tag and the valid flag:

D$k(h[i]) = Dram(Lk,tk) + DEQ(tk +1).

The core of the tester is a (& + 1)-bit Or-tree. For a cache size of of 1KB
to 64K B and an associativity of k < 4, we have

32—log(64K)+logl < t < 32-log(1K)+log4
17 < +1 < 25

and the equality tester in the hit check circuit of the k-way cache has afixed
depths. However, the access of the cache data and the directory is 3logk
delays faster due to the smaller RAMs

Dg(hli]) = Dg, (h(i]) —3logk.

Section 6.4

SEQUENTIAL DLX

wWITH CACHE
MEMORY

295

Chapter 6

MEMORY SYSTEM

296

DESIGN

Table 6.24 Optimal cycletimetp.x and number of wait states for the DL X design
with caches and two types of main memory (a € {4,8}).

cache a=4 a=8
size 1 2 4 1 2 4
CIW[T|W]T|[W]T[W][T|W][T|W]T

1KB| 6 |70 6 | 70| 5 |72} 10| 71| 10| 70| 10| 70

2KB| 6 | 70| 6 | 70| 6 | 70|/ 10| 71| 10| 71| 10| 70

4KB|| 5|80 6 |74 6 | 70|l 9 | 80| 10| 74| 10| 71

8KB| 58| 5|8 |5 |77) 9|183| 984| 10| 76
16KB| 5|18 |5 |8 | 5|8 9|8 9|87 9| 86
32KB| 5|18 | 5|9 | 5,8 9|8)| 89| 8|9
64KB || 5192| 5(93| 5 (92| 8 |92 8 93| 8| 92

The local hit signals of the k cache ways are combined to a global hit
signal using an AND gate and an k-bit Or-tree. For k > 2, we have

Dgy(hit) = Dg(h[i]) + Dand+ Dortred K)
= Dg(h[i]) —3logk+ 2+ 2logk.

Thus, for a moderate cache size, the 2-way cache is one gate delay slower
than the other two cache designs.

Impact on the Performance Table 6.24 lists the optimal cycle time of
the DLX design using an off-chip memory with parameter a € {4,8}, and
table 6.25 lists the CPI and TPI ratio of these designs. In comparison to a
direct mapped cache, associative caches improve the miss ratio, and they
also improve the CPI ratio of the DLX design. For small caches, 2-way
associativity improves the TPI ratio by 4 — 11%, and 4-way associativity
improvesit by 5— 17%. However, beyond a cache size of 4KB, the slower
cycle time of the associative caches reduces the advantage of the improved
miss ratio. The 64KB associative caches even perform worse than the
direct mapped cache of the same size.

Doubling the cache size improves the miss ratio and the CPI, but it aso
increases the cycle time. Thus, beyond a cache size of 4KB, the 4-way
cache dominates the cycle time Tpx, and the larger cycle time even out-
weights the profit of the better miss ratio. Thus, the 4KB, 4-way cache
yields the best performance, at least within our model. Since larger caches
increase cost and TP ratio, they cannot compete with the 4KB cache.

In combination with a fast off-chip memory (o = 4), this cache speeds
the DL X design up by afactor of 2.09 at 8.8 times the cost. For a memory

Table 6.25 CPI and TPl ratio of the DLX design with cache. The third table
lists the CPI and TPI reduction of the set associative cache over the direct mapped

cache (32-bytelines).

CPl ratio
cache a=4 a=28
size 1 | 2 | 4 1 | 2 | 4
1KB | 667 | 629 | 590 | 774 | 7.20 | 6.96
2KB || 6.04 | 579 | 573 | 685 | 651 | 6.42
4KB || 551 | 546 | 540 | 6.18 | 6.05 | 5.96
8KB || 525 | 507 | 502 | 580 | 555 | 558
16KB || 5.06 | 494 | 489 | 553 | 535 | 5.28
32KB || 495 | 486 | 484 | 537 | 514 | 512
64KB || 487 | 483 | 482 | 516 | 511 | 5.10
TPI ratio
cache a=4 a=28
size 1 | 2 | 4 1 | 2 | 4
1KB || 466.9 | 440.3 | 425.0 | 549.3 | 504.2 | 487.0
2KB || 422.7 | 405.6 | 401.1 | 486.5 | 462.2 | 449.3
4KB || 441.1 | 404.2 | 378.2 | 494.7 | 447.4 | 423.2
8KB || 435.6 | 426.2 | 386.2 | 481.5 | 466.1 | 423.9
16 KB || 435.5 | 429.6 | 420.6 | 475.9 | 465.7 | 4545
32KB || 4409 | 437.2 | 430.7 | 478.4 | 462.8 | 460.6
64 KB || 4479 | 449.4 | 443.7 | 474.4 | 475.0 | 468.8
CPI reduction TPI reduction
cache a=4 a=28 a=4 a=28
size || 2 | 4 2 | 4 2 | 4 2 | 4
1KB | 61]|130|74|112| 61| 99 | 89 | 128
2KB || 42| 54 |53| 68 | 42 | 54 | 53 | 83
4KB||09| 21 | 23| 37 || 91 | 166 | 10.6 | 16.9
8KB | 34| 46 |45| 40 || 22 | 128 | 3.3 | 136
16KB || 25| 35 |34 | 47 || 14 | 35| 22 | 47
32KB || 20| 24 |45| 50 || 08| 24 | 34 | 39
64KB||07| 09 |09 12 | -03| 09 | -01| 1.2

Section 6.4

SEQUENTIAL DLX
WITH CACHE
MEMORY

297

Chapter 6

MEMORY SYSTEM Table 6.26 Speedup and cost increase of the DLX with 4-way cache over the
DESIGN design without cache

| cachesize | IKB | 2KB | 4KB |

speedup: o =4 1.86 | 1.97 | 2.09
oa=8 254 | 275 | 2.92
relative cost increase | 3.34 | 5.16 | 8.78

2. 2 T T T T T
. 1KB 4- way
2 . 2KB 4-way ------- B
s AR 4KB 4-way --------
To1sp no cache -
g
< 1.6 b
S 1.4t S .
° 1.2} -
© 1 Simeg
2 o8t e .
T 0.6 =
3 T~
o
0.4} 3
0. 2 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6
quality paranter: q
5 N T T T T T T
1KB 4-way
4.5 PO 2KB 4-way ---—--- .
= 4KB 4-way --------
kit 4 no cache -~
© <
—E 3.5 N T
© 3k i
° 25} .
S 2t 4
2 15t R, i
T 1 e
=) T
o e T
0.5 F -
0 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6

quality paranter: q

Figure 6.22 Quality ratio of the designs with 4-way cache relative to the design
without cache for two types of off-chip memory.

298

system with a = 8, the cache even yields a speedup of 2.9. According to
table 6.26, the speedup of the 1KB and 2K B caches are at most 6% to 15%
worse than that of the 4KB cache at a significantly better cost ratio. Thus,
there is a trade-off between cost and performance, and the best cache size
is not so obvious. Figure 6.22 depicts the quality of the DLX designs with
a 4-way cache of size 1KB to 4KB relative to the quality of the design
without cache. The quality is the weighted geometric mean of cost and
TPl ratio: Q=C 9. TPI9 L,

As long as more emphasis is put on the performance than on the cost,
the caches are worthwhile. In combination with fast off-chip memory
(o = 4), the design with an 1KB cache is best over the quality range of
g € [0.1, 0.34]. For slower memory, the 1KB cache even wins up to aqual-
ity parameter of p = 0.55 (at q = 0.5 cost and performance are equally
important). Only for q < 0.13, the 4KB cache wins over the 1KB cache,
but these quality parameters are not realistic (page 167). Thus, when opti-
mizing the DLX design for a reasonable performance and quality, a cache
size of 1 KB is most appropriate.

Artifact The performance optimization suggests a 4 times larger cache
than the quality metric. This is due to the very inexpensive DLX core
which so far only comprises a simple fixed point core without multiplier
and divider. Adding afloating point unit (chapter 9) will increase the cost
of the DLX core dramatically, and then optimizing the DLX design for
a good performance or for a good quality will result in roughly the same
cache size.

6.5 Pipelined DLX with Cache Memory

N ORDER to avoid structural hazards, the pipelined DLX core of the sec-

tions 4 and 5 requires an instruction memory IM and adata memory DM.
The cache system described in this section implements this split memory
by a separate instruction and data cache. Both caches are backed by the
unifiedmain memory, which holds data and instructions.

The split cache system causes two additional problems:

e The arbitration of the memory busOur main memory can only
handle one access at atime. However, an instruction cache miss can
occur together with a write through access or a data cache miss. In
such acase, the data cache will be granted access, and theinstruction
cache must wait until the main memory allows for a new access.

Section 6.5

PIPELINED DL X

wWITH CACHE
MEMORY

299

Chapter 6

MEMORY SYSTEM

300

DESIGN

e The data consistency of the two cach&slong asamemory word is
placed in the instruction cache, the instruction cache must be aware
of the changes done to that memory word. Sincein our DLX design,
al the memory writes go through the data cache, it is only the in-
struction cache which must be protected against data inconsistency.

Although we do not allow for self modifying code, data consistency is
still aproblem for the following reason. During compile time, the program
code generated by the compiler istreated asdataand istherefore held in the
data cache. When running the program, the code is treated as instructions
and must be placed in the instruction cache. After re-compiling a program,
the instruction cache may still hold some lines of the old, obsolete code.
Thus, it must be ensured that the processor fetches the new code from the
main memory instead of the obsolete code held in the instruction cache.

As usual, one can leave the consistency to the user and the operating
system or can support it in hardware. In case of a software solution, the
instruction cache must be flushed(i.e., all entries are invalidated) whenever
changing existing code or adding new code. It is aso feasible to flush the
instruction cache whenever starting a new program.

In our design, we will go for a hardware solution. The two caches snoop
on the memory bus. On a data cache miss, the requested line is loaded
into the data cache, as usua. If the instruction cache holds this line, its
corresponding cache entry is invalidated. In analogy, a line of the data
cache which holds the instructions requested by the instruction cache is
also invalidated on an instruction cache miss. At any time a particular
memory lineisin at most onecache.

6.5.1 Changes in the DLX Data Paths

As in the sequential DLX design (section 6.4), the caches only impact
the memory environments and the memory control circuits. This section
describes how to fit the instruction and data cache into the memory en-
vironments IMenv and DMenv of the pipelined design DLXq supporting
interrupts, and how the memory interface Mif connects these two environ-
ments to the external main memory. The new memory control is described
in section 6.5.2.

Environment of the Data Memory

The core of the dataenvironment DMenv(figure 6.23) isthe cache interface
D$if as it was introduced in section 6.3. The data cache (Dcache) is a
sectored, write through, write allocate cache with a 64-bit word size. In

dpc MAR DMRw DMRw
iy
32 L MDin
a Din
resst — clear DS$if (Dcache) Mad D$a

MDat |<— MDat
hit Dout[63:32, 31:0]

$ MAR[2]
Dhit DMout

Figure 6.23 Datamemory environment DMenv with cache

addition to the standard control signals of a cache interface, the memory
environment is governed by the reset signal and by signal Dlinv which
requests a line invalidation access due to an instruction cache miss.

Asinthe sequential design (section 6.4), the cache interface D$if is con-
nected to the data paths through a 32-bit address port and two data ports
MDin and DMout. Due to the 64-bit cache word size, the data ports must
be patched together. On the input port MDin, data MDRw is still dupli-
cated

MDin[63:32] = MDin[31: 0] = MDRw31: 0].

On the output port Dout, a multiplexer selects the requested 32-bit word
within the double-word based on the address bit MAR[2]:

_ | Dout31:0] if MARZ2]=0
DMout = { Doutl63:32] if MARZ = 1.

On an instruction cache miss the data cache is checked for the requested
line (Dlinv = 1). In case of a snoop hit, the corresponding Dcache entry
isinvalidated. For the snoop access and the line invalidation, the Dcache
interface uses the address d pcof the instruction memory instead of address
MAR:

_ J MAR if Dlinv=0
B { dpc if Dlinv=1

A multiplexer selects between these two addresses. Since the Dcache is
only flushed on reset, the clear input of the Dcache interface D$if is con-
nected to the reset signal. The hit signal Dhit is provided to the memory
control.

The data memory environment communicates with the memory interface
Mif and the external memory via the address port D$a and the data ports

Section 6.5

PIPELINED DL X

wWITH CACHE
MEMORY

301

Chapter 6

MEMORY SYSTEM

302

DESIGN

MAR . dpc
llinv
32 |
a Din
reset —| dlear I$if (Icache) Mad —= 13a
MDat |<— MDat
hit Dout[63:32, 3L:0]

R
Ihit IMout

Figure 6.24 Instruction memory environment IMenv with cache

MDin and MDat. The Dcache interface provides the memory address
D$a = Mad.

Let the sectored cache comprise 29 lines, each of which is split in S=
259 sectors. The data memory environment then has cost

Assuming that control signal Dlinv is precomputed, address a and data Din
have the following accumulated delay:

Apgit(@) = Apcen(dpC) + Dmux
Ao (Din) = 0.

Environment of the Instruction Memory

Figure 6.24 depicts how to fit afirst level instruction cache (Icache) into
the instruction memory environment IMenv. The instructions in the Icache
areonly read by the DL X core but never written. Thus, the Icache interface
[$if could actually be simplified. Nevertheless, we use the standard cache
interface. However, the input data port Din is not connected.

The address port a and the data port Dout of the cache interface 1$if
are connected to the data paths like in the environment DMenv. However,
the program counter d pc now serves as standard cache address, whereas
address MARIis only used in case of a snoop access or aline invalidation.
Flag llinv signals such an access:

[Douf31:0] if dpd2]=0
'DOUI_{ Doutl63:32] if dpd2] =1

_ [MAR if llinv=1
~ | dpc if llinv=0.

IMenv DMenv
1$a Mdat D$a MDat MDin

external memory

Figure 6.25 Interface Mif connecting IMenvand DMenvto the external memory

The Icache is, like the Dcache, flushed on reset; its hit signa Ihit is
provided to the memory control. The environment IMenv communicates
with memory interface Mif and the external memory via the address port
I$a and the data port MDat. The Icache interface provides the memory
address 1$a = Mad.

Let the instruction cache comprise 2' lines with 25' sectors per line and
2% — 8 bytes per sector; the cost of environment IMenv can be expressed
as

The Icache address a has the same accumulated delay as the Dcache ad-
dress.

Interface of the Main Memory

The memory interface Mif (figure 6.25) connects the two memory envi-
ronments of the pipelined DLX design to the external memory. The envi-
ronments DMenv and IMenv communicate with the external memory via
the 32-bit address bus MAd and the 64-bit data bus MDat. The memory
interface is controlled by the signals MDindoeand Igrant.

On Igrant = 1, the Icache interface is granted access to the external
memory; the memory interface forwards address I$a to the address bus.
On Igrant = 0, the Dcache interface can access the external memory and
circuit Mif forwards address D$a:

_ J I%a if Igrant=1
MAd = { D$a if Igrant=0.
On MDindoe= 1, the memory interface forwards the data MDin of the
data memory environment to the data bus MDat.

Section 6.5

PIPELINED DL X

wWITH CACHE
MEMORY

303

Chapter 6

MEMORY SYSTEM

304

DESIGN

6.5.2 Memory Control

In analogy to the sequential DL X design with cache, the memory system
is governed by the memory control circuits DMC and IMC and by the
memory interface control MifC.

Instruction Memory Control IMC

The control IMC of the instruction memory is exactly the same as the one
used in the pipelined design DLXq of chapter 5. Circuit IMC signals a
misaligned instruction fetch by imal = 1. Since the DLX core never writes
to the instruction memory, the bank write signals are always inactive and
can betied to zero:

Imbw[7: 0] = 0°.

Data Memory Control DMC

Asin the pipelined design DLXn without caches, the data memory control
DMC generates the bank write signals of the data memory and checks for
a misaligned access. However, twice as many write signals DMbw][7:0]
are required because the memory system now operates on double-words.
The original four signals Dmbw[3:0] select within aword, and the address
bit MAR[2] selects the word within the sector. Thus, the new bank write
signals are obtained as

DMbw{3:0] = Dmbw3:0] A /MARZ2]

DMbw{7:4] = Dmbw3:0] A MAR?Z2].
As in the sequential design with cache, the control DMC buffers these
bank write signalsin aregister before feeding them to the Dcache interface
and to the byte enable lines BE of the memory bus. Register DMBw is

clocked during the first cycle of a data memory transaction, signaled by
D$rd = 1:

DMBW[7: 0] := DMbw{7: 0] if D$rd = 1.

Circuit DMC detects a misaligned access like in the DLXq design. Flag
dmal = 1 signals that an access to the data memory is requested, and that
this access is misaligned (i.e., malAc= 1):

dmal = (Dmr.3 v Dmw3) A malAc

In addition, it now also masks the memory read and write signals Dmr and
Dmwwith the flag dmal:

Dmra = Dmr3 A /dmal = /Dmr.3 NOR malAc
Dmwa = Dmw3 A /dmal = /Dmw3 NOR malAc

Let dmcdenote the data memory control of the pipelined design without
cache. The cost, delay and cycle time of the extended memory control
DMC can then be expressed as

Comc = Cdmc+Cand(8) +3‘Cinv+cff(8) +2-Chor
Apmc(DMBw) = 0
Apmc(dmal) = Apuc(Dmra, Dmwa) = Agmc
Tomc = Admct Dand+A.

Memory Interface Control

Like in the sequentia design, the memory interface control MifC controls
the cache interface and the access to the external memory bus. Since there
are two caches in the pipelined DLX design, the control MifC consists
of two automata | $i fC and D$i fC. Each automaton generates a busy flag
(ibusy, dbusy), aset of cache control signals, a set of handshake and control
signals for the memory bus, and some signals for the synchronization. The
cache control signals (i.e.: $rd, Vw, Tw, Sw, [fill, valid, scntce, scntclr,
linv, $w) are forwarded to the corresponding cache interface I$if and D$if.

The D$ifC control provides the following synchronization signals

e Dinit indicating that D$iIfC isinitsinitial state,
¢ |grant granting the Icache access to the memory bus, and
e isnooprequesting the Icache to perform a snoop access.

The I1$ifC signal iaccessindicates an ongoing transaction between Icache
and memory.

For the memory bus, control D$ifC provides the request signal Dreg,
the flags Dw/r, Dburst and the enable signal MDindoe Since the Icache
interface only uses the bus for fetching a new cache line, its burst and r/w
flag have afixed value. Based on flag Igrant, control MifC selects the bus
signals as

| (Dreqg,Dw/r,Dburst) if Igrant=0
(reqw/r,burst) = { (Ireq,0,1) if Igrant=1

using a 3-bit multiplexer. Thus, the cost of circuit MifC can be expressed
as
Cmitc = Cmux(3) +Cigirc + Cosirc-

The two automata |1$ifC and D$ifC are very much like the Mealy au-
tomaton of the sequential MifC control, except that they provide some new
signals, and that they need two additional states for the snoop access. In

Section 6.5

PIPELINED DL X
wWITH CACHE
MEMORY

305

Chapter 6

MEMORY SYSTEM

306

DESIGN

D$ifC

/Brdy

Dwait

/Brdy * regp

/Brdy

I

/Brdy * /redp _|DL wait

Dmra* /Dhit * fiaccess /Brdy * regp /| Brdy /Brdy * /reqp Brdy
Dmwa* /Dhit * /iaccess Br B * -
% Dfill dBrdy e Ly il
B *
I 1— oy reap Dmra
D$RD [Dmwa
. Dmwa* Dhit * /iaccess
Mlast Mwrite D$w
s | Miast = Mwrite[o
1$ifC
/Dinit * /isnoop - /Brdy
Dinit * /Brdy /Brdy * regp
Iwait | /Brdy * /reqp _| |Lwait <
/it * /imal * /isnoop /Brdy * reqp ! | Brdy /Brdy * /regp Brdy
i *
isnoop — il Broy* reap [} i
Dinit * Brdy Brdy * regp

Figure 6.26 FSDs modeling the Mealy automata of the controls D$if and 1$if

the 1$ifC automaton, the states for the memory write access are dropped.
Figure 6.26 depicts the FSDs modeling the Mealy automata of the D$ifC
and I$ifC control. Table 6.27 lists the active control signals for each state;
table 6.28 lists the parameters of the two automata, assuming that the au-
tomata share the monomials.

The inputs of the two automata have the following accumulated del ay:

An(I$ifC) =
An(DS$IfC) =

max{Amc, Aimenv(Ihit), A (reqp Brdy) + dyus}
mMax{Adme, Aomend Dhit), Ay (reqp, Brdy) + Ohys} -

The two busy signals and the signals D$rd and |1$rd are the only Mealy
control signals. Asin the sequential design, these signals are just used for
clocking. The remaining cache control signals (cs$if) and the bus control
signals are of type Moore and can be precomputed. They have delay

AMifc(Cﬁif) = 0
Awitc(reg,w/r,burst) =

Dmux-

Since the automata only raise the flags ibusyand dbusyin case of anon-
faulty memory access, the clock circuit of the stall engine can now simply

Section 6.5

PIPELINED DL X
wWITH CACHE

Table 6.27 Active control signals for the FSDs modeling the MifC control; X
MEMORY

denotes the data (D) or the instruction (1) cache.

| state || $if control | D$ifC only [1$ifConly |

XFreq | scntclr, scntce, Dreq, Dburst, isnoop | Ireqg, iaccess
Vw, [fill

Xfill scntee, Ifill, Sw Dburst jaccess

Xwait Ifill Dburst iaccess

XLwait || [fill Dburst iaccess

XLFill || scntee, valid, Vw, | /dbusy = Dmra /ibusy, iaccess
Tw, Ifill, Sw

Xsnoop D%rd, Dlinv, Igrant 1$rd, llinv

Xlinv Vw Dlinv, Igrant Iinv

| ISRD || 1$rd =/imal, /ibusy = (imal A /isnoop) V (Ihit A /isnoop) |
D$w $w, Dw/r, Dreq, MDindoe

Mwrite || Dw/r, MDindoe

Mlast MDindoe, /mbusy

D$RD Igrant, Dinit, D$rd = Dmrav Dmwa
/dbusy = (dmal A /lreq) v (Dhit A /Ireq)

Table 6.28 Parameters of the Mealy automata used in the memory interface con-

trol MifC
states | #inputs # and frequency of outputs
k o Y ‘ Vsum ‘ Vmax1) ‘ Vmax2)
DS$ifC 11 8 18 | 42 5 3
I$ifC 8 6 11 | 29 5 3
fanin of the states | # and length of nontrivial monomials
fansym ‘ fanmax | #M ‘ lsum ‘ Imax ‘ Imax(2)
D&$ifC 20 3 18 | 35 3 2
I$ifC 16 3 10 | 17 3 2

307

Chapter 6

obtain the busy signal as
MEMORY SYSTEM

DESIGN busy = ibusy Vv dbusy

at an accumulated delay of
Ace(busy = maX{Aout(Z)(|$ifc)aAout(Z)(D$ifc)}+ Dor-

Bus Arbitration
Thisisthe tricky part. Let us call D$ifC the D-automatonand let us call
I$i fC the I-automaton We would like to show the following properties:

Lemma 6.1 » 1. Memory accesses of the D-automaton and of the I-automaton do not
overlap,

2. memory accesses run to completion once they are started, and

3. a cache miss in DM (IM) always generates a snoop access in IM
(DM).

Before we can prove the lemma, wefirst have to formally define, in what
cyclesamemory access takes place. We refer to the bus protocol and count
an access from the first cycle, when the first address is on the bus until the
last cycle, when the last data are on the bus.

PROOF Proof of thelemma:
After power up, the automataareintheir initial state and no accessistaking
place.

The D-automaton controls the bus viasignal Igrant. It grants the bus to
the I -automaton (Igrant = 1) only during states DSRD, Dsnoop and Dlinv,
and it ownsthe bus (Igrant = 1) during the remaining states. Therefore, ac-
cesses of the D-automaton can only last from state DFreq to DLfill or from
state D$w to Mlast. During these states, the | -automaton does not have the
bus. Thus, accesses do not overlap, and accesses of the D-automaton run
to completion once they are started.

The |-automaton attempts to start accesses in state | Freq, but it may not
have the bus. Thus, accesses of the |—-automaton can only last from state
IFreq with Igrant = 1 until state ILfill. In each of these states we have
iaccess= 1.

Suppose state IFreq is entered with Igrant = 0. Then, the access starts
in the cycle when the D-automaton isback initsinitial state D$RD. In this
cycle we have

- Igrant = Dinit = iaccess= 1.
308

Thus, the access of the |-automaton starts, the |-automaton leaves state
IFreq, and the active signal iaccessprevents the D-automaton from en-
tering states DFreq or D$w before the access of the I-automaton runs to
completion.

If state IFreq is entered with Igrant = 1, the access starts immediately,
and the D-automaton returnsto itsinitial statewithin 0, 1 or 2 cycles. From
then on, things proceed as in the previous case.

In state DFreq signal isnoopis active which sends the | -automaton from
its initial state into state Isnoop. Similarly, in state IFreq signal Ireq is
active which sends the D-automaton from itsinitial state into state Dsnoop.

6.5.3 Design Evaluation

For the sequential DL X design (section 6.4) which is connected to a64 MB
main memory, it has turned out that a4 KB cache with 32 byte lines yields
areasonable performance and cost performance ratio. Thus, our pipelined
DLX design will also implement 4 KB of first level cache; the data and the
instruction cache comprise 2 KB each.

Timing of the Memory Accesses
Asfor the sequential DLX design with cache, the temporal behavior of the
memory system is modeled by the request cycle time Tyreq, the burst read
time Turburst, the read/write access time Tyaccessto off-chip memory, the
cache read access time Tg,.,q, aNd the cycle time Tg;; of the caches (see
page 283).

In the pipelined DLX design, the Icache and the Dcache have the same
size, and their inputs have the same accumulated delay, thus

Tsir = Tigir = Togir ad Tgead = Tigread = Togread:

The formulae of the other three memory cycle times remain unchanged.
The cycle time Tp_x of al internal cycles and the cycle time 1p_x of the
whole system are still modeled as

Torx = max{Top, Tcon; Tgread: Tsif» TMreqs TMrburst}
Tpoix = Mmax{TpLx, [TMaccesy W1}.

Impact on Cost and Cycle Time

According to table 6.29, the 4KB cache memory increases the cost of the
pipelined design by a factor of 5.4. In the sequential design this increase
factor is significantly larger (8.8) due to the cheaper data paths.

Section 6.5

PIPELINED DL X

wWITH CACHE
MEMORY

QED

309

Chapter 6

MEMORY SYSTEM

310

DESIGN

Table 6.29 Cost of the DLXn design without cache and with 2KB, 2-way Icache
and Dcache

| [Mew] DP][CON]| DLX |

no cache —| 20610 | 1283 | 21893
with caches || 96088 | 116698 | 2165 | 118863

Table 6.30 Cycletime of the design DLXp with 2KB, 2-way |cache and Dcache

Maccess
a=4|a=8
\65\79\89\55\47\42\ 51 \379\707\

MifC | stall | DP | $read | $if | Mreq | Mrburst

The two caches and the connection to the external memory account for
81% of the total cost of the pipelined design. The memory interface con-
trol now comprises two Mealy automata, one for each cache. It therefore
increases the cost of the control by 69%, which is about twice the increase
encountered in the sequential design.

Table 6.30 lists the cycle time of the DLXy design and of its memory
system, assuming a bus and handshake delay of d,,s= 15 and dynsh =
10. The data paths dominate the cycle time Tp_x of the processor core.
The caches themselves and the control are not time critical. The memory
request and the burst read can be performed in a single cycle; they can
tolerate a bus delay of dy,s= 53.

Impact of the Cache Size

The pipelined DLX design implements a split cache system, i.e., it uses a
separate instruction cache and data cache. The cost of this cache system is
roughly linear in the total cache size (table 6.31). Compared to the unified
cache system of the sequential DL Xs design, the split system implements
the cache interface twice, and it therefore encounters a bigger overhead.
Using 2-way set associative caches, the split system with atotal cache size
of 1KB is 15% more expensive than the unified cache system. For alarger
cache size of 4KB (32 KB), the overhead drops to 4% (1%).

The split cache can also be seen as a special associative cache, where
half the cache ways are reserved for instructions or data, respectively. The
cost of the split and unified cache system are then virtualy the same; the
difference is at most 2%.

Likein the sequentia design, the cycle time of the control increases with

Section 6.5

Table 6.31 Cost of the memory environments and the cycle time of the pipelined pypgLINED DL X
DLX design depending on the total cache size and the associativity. Cmvenys d& \wTH CACHE
notes the cost of the unified cachein the sequential DLX design. Thecostisgiven M EeEMORY

inkilo gates.

Cwmenyz Cwmenv Tcon | Top
way 2| 4 1] 2]1] 2 |12
1KB 26| 29 27| 30| 71| 73| 89
2KB 48 | 51 49| 52| 75| 75 | 89
4 KB 92| 96 93| 96 |83| 79 | 89
8KB || 178 | 185 | 181 | 184 | 93| 87 | 89
16 KB || 353 | 363 || 356 | 360 | 96 | 97 | 89
32KB || 701 | 717 | 705 | 711 | 99| 100 | 89

the cache size, due to the computation of the hit signal. However, if the size
of asingle cache way is at most 2KB, the control is not time critical. In
spite of the more complex cache system, thisis the same cache size bound
asinthe sequential DLX design. That is because the stall engine and main
control of the pipelined design are also more complicated than those used
in the sequential design.

Impact on the Performance and the Quality

CPI Ratio Insection 4.6.4, we have derived the CPI ratio of the pipelined
design DLXn on a SPECint92 workload as

CPlbLx, = 1.26+ (Vfetch+ Vioad + Vstore) - CPHslowm-

The workload comprises 25.3% |oads and 8.5% stores. Due to some empty
delay slots of branches, the pipelined DLX design must fetch 10% addi-
tional instructions, so that Vietch= 1.1.

Asin the sequential DLX design with cache interface, the memory ac-
cess time is not uniform (table 6.16, page 288). A read hit can be per-
formed in just asingle cycle. A standard read/write access to the external
memory (Tyvaccess requires W processor cycles. Due to the write through
policy, awrite hit then takes 2+ W cycles. For acache line with S sectors,
a cache miss adds another S+ W cycles. Let pm, and ppny, denote the miss
ratio of the instruction and data cache. Since on a cache miss, the whole
pipeline is usualy stalled, the CPI ratio of the pipelined design with cache

311

Chapter 6

MEMORY SYSTEM

312

DESIGN

Table 6.32 Miss ratios of a split and a unified cache system on the SPECint92
workload depending on the total cache size and the associativity.

Icache Dcache Effective Unified Cache
#way | 1 2 1 2 1 2 1 2 4

1KB | 89 82|228 152|124 99| 136 108 94
2KB || 66 59|141 94| 85 68| 89 70 65
4KB || 47 44| 94 55| 59 47| 62 45 41
8KB |30 24| 68 35| 40 27| 40 25 20
16KB |20 11| 35 26| 24 15| 24 15 10
32KB| 11 04| 26 18| 15 08| 15 07 06

interface can be expressed as

CP||_1p = 1.264 Vsiore: (1+W)
+(Vtetch: Pim + Vioad/store" Pom) - (W +S)
= 1.3540.085-W
+(1.1-pm+0.34- ppom) - (W+S).

(6.5)

Effective MissRatio According to table 6.32, theinstruction cache hasa
much better miss ratio than the data cache of the same size. That is not sur-
prising, because instruction accesses are more regular than data accesses.
For both caches, the miss ratio improves significantly with the cache size.

The pipelined DLX design strongly relies on the split first level cache,
whereas the first level cache of the sequential DLX design and any higher
level cache can either be split or unified. We have aready seen that a split
cache system is more expensive, but it maybe achieves a better perfor-
mance.

For an easy comparison of the two cache designs, we introduce the ef-
fective missratio of the split cache as:

#miss on fetch + #miss on load/store
#fetch + #load/store

Vtetch Pim + Vioad/store* Pbm
Vfetcht Vioad/store

Pmisseff =

This effective missratio directly corresponds to the missratio of a unified
cache. According to table 6.32, a split direct mapped cache has a smaller
miss ratio than a unified direct mapped cache; that is because instructions
and data will not thrash each other. For associative caches, the advantage

Table 6.33 Optimal cycle time 1, number of wait states W, CPl and TPI ratio of
the pipelined DLX design with split 2-way cache.

total memory: a =4 memory: o = 8

cachesize | W T CPI TP | W T CPl TPI
1KB | 4 90 282 2535| 8 89 372 3312
2KB || 4 92 246 2263| 8 89 319 2837
4KB|| 4 9 222 2111| 8 89 283 2519
8KB| 5 89 212 18384 | 8 89 249 2214
16KB || 4 97 18 1792 | 8 97 227 2201
32KB | 4 100 177 1773| 7 103 206 2123

of a split system is not so clear, because two cache ways aready avoid
most of the thrashing. In addition, the unified cache space can be used
more freely, e.g., more than 50% of the space can be used for data. Thus,
for a2-way cache, the split approach only wins for small caches (< 4KB).

On the other hand, the split cache can also be seen as a specia asso-
ciative cache, where half the cache ways are reserved for instructions or
data, respectively. Since the unified cache space can be used more freely,
the unified 2-way (4-way) cache has a better miss ratio than the split direct
mapped (2-way) cache. Commercial computer systems use large, set asso-
ciative second and third level caches, and these caches are usually unified,
as the above results suggest.

Performance Impact Table 6.33 lists the optimal number of wait states
and cycle time of the pipelined DLX design as well as the CPI and TPl
ratios for two versions of main memory. The CPI ratio improves signifi-
cantly with the cache size, due to the better miss ratio. Despite the higher
cycletime, increasing the cache size also improves the performance of the
pipelined design by 30 to 36%. In the sequential DLX design, the cache
size improved the performance by at most 12% (table 6.25). Thus, the
speedup of the pipelined design over the sequential design increases with
the cache size.

Compared to the sequential design with 4-way cache, the pipelined de-
sign with asplit 2-way cache yields a 1.5 to 2.5 higher performance (table
6.34). The cacheis by far the most expensive part of the design; a small
1K B cache already accounts for 60% of the total cost. Since the pipelined
and sequentia cache interfaces have roughly the same cost, the overhead
of pipelining decreases with the cache size. The pipelined DLX designisat
most 27% more expensive, and the cost increase is smaller than the perfor-

Section 6.5

PIPELINED DL X

wWITH CACHE
MEMORY

313

Chapter 6

MEMORY SYSTEM

314

DESIGN

Table 6.34 Speedup and cost increase of the pipelined design with split 2-way
cache relative to the sequential design with unified 4-way cache.

total cost [kilo gates] speedup
cachesize || DLXs DLXp increase | a =4 oa=8

1KB 41 52 27% 1.68 1.47

2KB 62 74 19% | 177 158

4KB 108 118 9% | 179 168
8 KB 197 207 50| 205 191
16 KB 375 383 2% | 235 206
32KB 729 734 1% | 243 217

mance improvement. In combination with caches, pipelining is definitely
worthwhile.

6.6 Selected References and Further Reading

WO TEXTBOOKS on cache design are [Prz90, Han93]. A detailed
analysis of cache designs can also be found in Hill’s Thesis [Hil87].

6.7 Exercises

Exercise 6.1 Insection 6.2.2, we specified asectored, direct mapped cache
and a non-sectored, set associative cache. Extend these specifications to a
sectored, set associative cache. Asbefore, acache line comprises Ssectors.

Exercise 6.2 This and the following exercises deal with the design of a
write backcache and its integration into the sequential DLX design. Such
a cache applies the weak consistency model. A write hit only updates the
cache but not the external memory. A dirty flag for each line indicates
that the particular line has been updated in the cache but not in the main
memory. |If such a dirty line is evicted from the cache, the whole line
must be copied back before starting the line fill. Figure 6.27 depicts the
operations of a write back cache for the memory transactions read and
write.

Modify the design of the k-way cache and of the cache interface in order
to support the write back policy and update the cost and delay formulae.
Special attention has to be payed to the following aspects:

e A cachelineis only considered to be dirty, if the dirty flag is raised
and if the line holds valid data.

e The memory environment now performs two types of burst accesses,
the line fill and the write back of a dirty cache line. The data RAMs
of the cache are updated on aline fill but not on the write back.

Exercise 6.3 Integrate the write back cache interface into the sequential
DLX design and modify the cost and delay formulae of the memory sys-
tem. The memory environment and the memory interface control have to
be changed. Note that the FSD of figure 6.27 must be extended by the bus
operations.

Exercise 6.4 A write back cache basically performs four types of accesses,
namely a cache read access (read hit), a cache update (write hit), alinefill,
and awrite back of adirty line. Let a cache line comprise S sectors. The
read hit then takes one cycle, the write hit two cycles, and the line fill and
the write back take W + Scycles each.

Show that the write back cache achieves a better CPI ratio than the write
through cache if the number of dirty misses and the number of writes
(stores) obey:

W—-1 _ #dirty misses

W+S Z " Hwrites

Exercise 6.5 Analyze theimpact of the write back policy on the cost, per-
formance, and quality of the sequential DLX design. Table 6.35 lists the
ratio of dirty misses to writes for a SPECint92 workload [Kro97].

Section 6.7

EXERCISES

315

Chapter 6

MEMORY SYSTEM
DESIGN

/hit * dirty whack line scnt=S-1 whack
*(mw + mr) request whack last sector
ol scnt< S1 ¢
cache /hit * /dirty * (mw + mr) fill
rem reguest
D\ mr t <t < S-1 |
dse cache fill last line
mw* hit write mw sector scnt=S1 fill

Figure 6.27 Cache operations of the memory transactions read and write

Table 6.35 Ratio of dirty misses to write accesses on the SPECint92 workload.

cache line size [byte]
size 8 | 16 | 32 | 64 | 128

1KB || 0.414 | 0.347 | 0.328 | 0.337 | 0.402

2KB || 0.315 | 0.243 | 0.224 | 0.223 | 0.262

4KB || 0.256 | 0.190 | 0.174 | 0.169 | 0.183

8KB | 0.197 | 0.141 | 0.107 | 0.093 | 0.098
16 KB | 0.140 | 0.097 | 0.073 | 0.061 | 0.060
32KB || 0.107 | 0.072 | 0.053 | 0.044 | 0.042

316

IEEE Floating Point
Standard and Theory of
Rounding

N THIS chapter, we introduce the algebra needed to talk concisely about

floating point circuits and to argue about their correctness. In this for-
malism, we specify parts of the IEEE floating point standard [Ins85], and
we derive basic properties of IEEE-compliant floating point algorithms.
Two issues will be of central interest: the number representation and the
rounding.

7.1 Number Formats
7.1.1 Binary Fractions

Leta=an—1:0]€{0,1}"and f = f[1: p—1] € {0, 1}P ! bestrings. We
then call the string ajn—1: 0].f[1: p— 1] abinary fraction An example
is110.01. The value of the fraction is defined in the obvious way

n1 pl .
(@n—-1:0.f[1:p-1)) = Ya-2+ Y fi-27".
ZAETY T
In the above example, we have (110.01) = 6+ .25 = 6.25. We permit
the cases p = 0 and n = —1 by defining

(@) = (a0 =(a
(f) = (0.f).

Chapter 7

|EEE FLOATING
POINT STANDARD
AND THEORY OF

318

ROUNDING

Thus, binary fractions generalize in a natural way the concept of binary
numbers, and we can use the same notation to denote their values. Some
obvious identities are

(0a.f) = (af) = (a.f0)
(af) = (af).27(P-1

As in the decimal system, this permits to use fixed point algorithms to
perform arithmetic on binary fractions. Suppose, for instance, we want to
add the binary fractionsajn—1:0].f[1: p—1] and bjm—1:0].g[1:q—1],
wherem > nand p > . For some result §m: 0].t[1: p— 1] of an ordinary
binary addition we then have

(af)+(bg =

bgoP~9)). 2~ (P-1)
sm:Ojt[1: p—1])-2- (P~

—~

7.1.2 Two’s Complement Fractions

Of course, also two’s complement arithmetic can be extended to fractions.
Onecaninterpret astringan—1:0].f[1: p—1] as

[an—1:0).f[1:p—1)] = —an—1]-2"" 4+ (an—2:0].f[1: p—1]).

We call string a.f interpreted in this way a two’s complement fraction
Using

[an—1:0).f[1:p—1]] = [aln—1:0]f[1: p—1]]-2 P~V

oneimmediately trans ates algorithms for two’'s complement numbers into
algorithms for two's complement fractions.

7.1.3 Biased Integer Format

The |IEEE floating point standard makes use of arather particular integer
format called the biased integer formatin this format, a string

gn—1:0 ¢ {0", 1"}
represents the number

[e[n—1:0]]pias = (e[n—1:0Q]) — bias,

Section 7.1

where
bias, — 211 NUMBER FORMATS

Strings interpreted in this way will be called biased integer8iased inte-
gerswith n bitsliein arange [@nin : €may, Where

enn = 1—(2"1-1)=-2"142
Enax = 2"—2—-(2"1-1)=2"1_1

Instead of designing new adders and subtractors for biased integers, we
will convert biased integers to two’'s complement numbers, perform all
arithmetic operations in ordinary two's complement format, and convert
the final result back. Recall that for n-bit two’s complement numbers, we
have

Xn—1:0]] = —%_1-2" 1+ (xn-2:0))

and therefore
Xn—1:0]] € {-2"1. .. 211}

Thus, the two numbers excluded in the biased format are at the bottom of
the range of representable numbers. Converting abiased integer x[n—1: 0]
to a two's complement number y[n— 1 : O] requires solving the following
equation for y

[[X]]bias = M
& =211 =~y -2t (yn—2:0)
& XN+1 = 21 (1—yy 1)+ (yn—2:0))
= (Ya-z,¥[n—2:0]).

Thisimmediately gives the conversion algorithm, namely:
1. Interpret x as abinary number and add 1. No overflow will occur.
2. Invert the leading bit of the result.

Conversely, if we would like to convert a two's complement number
y[n—1:0] with[y] ¢ {—2""1,..., 2714 1} into biased representation, the
above eguation must be solved for x. Thisis equivalent to

) = M+2"—1 = [y +1"h = (y)+(1"") mod 2",

It suffices to perform the computation modulo 2" because the result lies
between 1 and 21 — 2,

319

Chapter 7

|EEE FLOATING
POINT STANDARD
AND THEORY OF

320

ROUNDING

Table 7.1 Components of an |EEE floating point number

\ | normal | denormal |

exponent [€llbias €min
significand || (1.f') (0.f")
hidden bit 1 0

7.1.4 |EEE Floating Point Numbers

An |EEE floating point number isatriple (s,e[n—1:0], f[1: p—1]), where
se {0,1} is called the sign bit e = e[n— 1: 0] represents the exponent
and f' = f[1: p— 1] amost represents the significandof the number (if it
would represent the significand, we would call it f). The most common
parameters for nand p are

(n,p) = (8,24) for single precision
= (11,53) for double precision

Obviously, single precision numbers fit into one machine word and double
precision numbers into two words.

|EEE floating point numbers can represent certain rational numbers as
well as the symbols +o0, —oo and NaN. The symbol NaN represents ‘ not a
number’, e.g., the result of computing 0/0. Let (s, e, f') be afloating point
number, then the value represented by (s, e, f') is defined by

(l) . Dlelbias . <1 f’> if e¢{on,ln}
o) CDEEEr) i e=0
[se] = (=1)%- 0 if e=1" and f=0P1
NaN if e=1" and f#0PL

The |EEE floating point number (s, e, f') iscalled
e normalif e¢ {0",1"} and
e denormal(denormalized) if e=0".

For normal or denormal |EEE floating point numbers, exponent, signifi-
candand hidden bitare defined by table 7.1. Observe that the exponent
€min has two representations, namely e = 0"11 for normal numbers and
e = 0" for denormal numbers. Observe also, that string ' alone does not
determine the significand, because the exponent is required to determine
the hidden bit. If we call the hidden bit f[Q], then the significand obviously

Section 7.1

zemin -(p-1) zemin -(p1)
- - NUMBER FORMATS
Y i o A
0 Xmin Zemin ZQ’nln"'l
22-(}0-1)
[N I A B B
I 1
2 2xt
ZemaX'(pl)
Xmax
| |
Zemax za’nax"'l

Figure 7.1 Geometry of the non-negative representable numbers

equals (f[0].f[1: p—1]). Thebinary fraction f = f[0].f[1: p— 1] thenis
a proper representation of the significand. It is called normal, if f[0] =1
and denormal if f[0] = 0. We have

fl0] < (f) = f[O]+(f[1:p-1))-
< fOj4+ (2P t-1)-27(P
= flo]+1-27(PD.

2—(p-1)
(p—1)

Thus, we have
1< (f)y <2-27P7Y

for normal significands and
0< (f)y <1-27(PD

for denormal significands.

7.1.5 Geometry of Representable Numbers

A rational number x is called representablef x = [[s, e, f'] for some |IEEE
floating point number. The number x iscalled normalif (s, e, f') isnormal.

Itis caled denormalif (s,e, f') is denormal.
Normal numbers have asignificand in the range [1,2— 2 (P-Y] c [1,2).
Denormal numbers have asignificand in therange [0,1—2(P-Y] c [0, 1). -
321

Chapter 7

|EEE FLOATING
POINT STANDARD
AND THEORY OF

322

ROUNDING

Figure 7.1 depicts the non-negative representable numbers; the picture for
the negative representable numbersis symmetric. Thefollowing properties
characterize the representable numbers:

1. For every exponent value z € {@nin, .. .,emax}, there are two inter-
vals containing normal representable numbers, namely [Z,27+1) and
(—27t1 —27]. Each interval contains exactly 2°~* numbers. The

gap between consecutive representable numbers in these intervalsis
2z—(p—1)

2. Asthe exponent value increases, the length of the interval doubles.

3. Denormal floating point numbers lie in the two intervals [0, Zmin)
and (—2®in_0]. The gap between two consecutive denorma num-
bers equals 22mn—(P-1) This is the same gap as in the intervals
[28min, 28mint1) gng (—28min+1 _2&nin] The property, that the gap be-
tween the numbers 2%min and —2°n s filled with the denormal num-
bersis called gradual underflow

Note that the smallest and largest positive representable numbers are

Xin = 28min . 9—(P—1)
Xmax = 2%mec. (2—27(P-1),

The number x = 0 has two representations, one for each of the two pos-
sible sign bits. All other representable numbers have exactly one represen-
tation. A representable number x = [[s, e, f'] iscalled evenif f[p—1] =0,
anditiscalled oddif f[p—1] = 1. Notethat even and odd numbers alter-
nate through the whole range of representable numbers. Thisistrivia to
see for numbers with the same exponent. Consecutive humbers with dif-
ferent exponent have significands 0, which is even, and 1+ (~1), which
is odd.

7.1.6 Convention on Notation

One should aways work on as high an abstraction level as possible, but
not on a higher level. In what follows, we will be able to argue for very
long periods about numbers instead of their representations.

So far, we have used the letters eand f for the representations e = e[n—
1:0]and f = f[0].f[1: p— 1] of the exponent and of the significand. Since
there is a constant shortage of letters in mathematical texts, we will use
singleletterslike eand f aso for the valuesof exponents and significands,
respectively. Obviously, we could use (e) and (f[0].f) instead, but that

Section 7.2

would mess up the formulae in later calculations. Using the same notation
for two things without proper warning can be the source of very serious
confusion. On the other hand, confusion can be avoided, as long as

ROUNDING

e We are aware that the letters e and f are used with two meanings
depending on context, and

¢ the context indicates whether we are talking about values or repre-
sentations.

But what dowedo if wewant to talk about values and representations
in the same context? In such a case, single letters are used exclusively for
values. Thus, we would, for instance, write

e = [e[n—1]pias and f = [f[0].f[1: p—1]],
but we would not write

e = [elbas nor f = [f].

7.2 Rounding
7.2.1 Rounding Modes

We denote by R the set of representable numbers and by
g(,oo = RU {00’ —00}

Since R isnot closed under the arithmetic operations, one rounds the result
of an arithmetic operation to a representable number or to plus infinity or
minus infinity. Thus, arounding is afunction

rR— %,

mapping real numbers x to rounded valuesr (x). The | EEE standard defines
four rounding modeswhich are

e I, round up,
e rq round down,
e I, round to zero, and

e I'ne round to nearest even.

323

Chapter 7

26maX' p
|EEE FLOATING “—’|
POINT STANDARD | .
AND THEORY OF X max Xax 28max +1
ROUNDING

Figure 7.2 Geometry of X7

The first three modes have the obvious meaning

ru(x) min{y € R, | x<y}
ra(x) = max{y€ R, |x>y}

ra(x) if x>0
r2() { re(x) if x<0
The fourth rounding mode is more complicated to define. For any x with
—Xmax < X < Xmax 0One defines rpe(X) as a representable number y closest
to x. If there are two such numbers y, one chooses the number with even
significand Let

Xnax = 27(2—-27P)

(see figure 7.2). This number is odd, and thus, it is the smallest number,
that would be rounded by the above rules to Zmat1 jf that would be a
representable number. For X ¢ [—Xmnax Xmax, one defines

o0 if Xhmax< X

Xmax it Xmax< X < Xhax
—Xmax 1T —Xmaxx < X< —Xmax
—00 if X< —Xhax

The above definition can be simplified to

Me(X) =

o For —Xiax < X < Xnmax ONe defines rpe(Xx) as arepresentable number
y closest to x. If there are two such numbers y, one chooses the
number with even significand

e For the remaining x, one defines

Fe(X) = { © T KX

—oo if XS_Xr’aax

324

Section 7.2

7.2.2 Two Central Concepts
ROUNDING
Let
rrR— =%,

be one of the four rounding functions defined above, and let
o:R?>R
be an arithmetic operation. Then, the corresponding operation
o 1 R? = R,
in |EEE arithmetic is—amost — defined by

Xopy = r(xoy).

The result has to be represented in |IEEE format. The definition will be
completed in the section on exceptions.

If wefollow the aboverule literally, wefirst compute an exact result, and
then we round. The computation of exact results might require very long
intermediate results (imagine the computation of Xnax+ Xmin). In the case
of divisions the final result will, in general, not even have a significand of
finite length, e.g., think of 1/3. Therefore, one often replaces the two exact
operands x and y by appropriate inexact —and in general shorter — operands
X andy such that the following basic identity holds

r(xoy) = r(xX oy). (7.0)

This means that no harm is done by working with inexact operands,
because after rounding the result is the same as if the exact operands had
been used. ldentities like (7.1) need, of course, proof. Large parts of
this section are therefore devoted to the development of an algebra which
permits to formulate such proofs in a natural and concise way.

7.2.3 Factorings and Normalization Shifts

Factorings are an abstract version of 1EEE floating point numbers. In fac-
torings, the representations of exponents and significands are simply re-
placed by values. This turns out to be the right level of abstraction for the
arguments that follow. Formally, afactoringisatriple (s,e, f) where

1. se {0,1} iscaled the sign bit, R
325

Chapter 7

|EEE FLOATING
POINT STANDARD
AND THEORY OF

326

ROUNDING

2. eisaninteger, it is called the exponentand
3. f isanon-negative real number, it is called the significand

We say that f isnormalif f € [1,2) and that f isdenormalif f € [0,1).
We say that a factoring is normalif f is normal and that a factoring is
denormalif e = enj, and f isdenormal. Notethat f ¢ [0,2) is possible.
In this case, the factoring is neither normal nor denormal. The valueof a
factoring is defined as

[sef] = (-1)°-2°f.
For real numbers x, we say that (s,e, f) isafactoring of xif
x = [sef]

i.e., if the value of the factoring is x. For x = o0 and x = —oo we provide
the special factorings (s, ,0) with

[5.%0.0] = (~1)%-o.

We consider the special factorings both normal and |EEE-normal.
Obvioudly, there are infinitely many factorings for any number x, but
only one of them is normal. The function j which maps every non-zero
x € RU {0, —oo} to the unique normal factoring (s, &, f) of x is called nor-
malization shift Note that arbitrary real numbers can only be factored if
the exponent range is neither bounded from above nor from below.
A factoring (s, e, f) of xis caled IEEE-normalif

(sef) is normal if |x| > 28min
56 denormal if |x| < 28min,

The function n which maps every value x € RU {0, —o0} to the unique
|EEE-normal factoring of x is called IEEE normalization shiftThe |EEE-
normal factoring of Zero is unique except for the sign. Note that arbi-
trary real numbers can only be |EEE factored, if the exponent range is not
bounded from above. Finally observe, that

A =n(x) if [x =2

7.2.4 Algebra of Rounding and Sticky Bits

We define afamily of equivalence relations on the real numbers which will
help usidentify real numbers that are rounded to the same value.

Section 7.2

N ROUNDING

Figure 7.3 Partitioning of the real numbers

Let o be aninteger. Let qrange over al integers, then the open intervals
(9-27%,(g+1)-27%) and the singletons {q-2-%} form a partition of the
real numbers (see figure 7.3). Note that O is always an endpoint of two
intervals.

Two real numbers x and y are called a—equivalent if according to this
partition they are in the same equivalence class, i.e., if they lie either in the
same open interval or if they both coincide with the same endpoint of an
interval. We use for this the notation x =, y. Thus, for some integer g we
have

X=qy ¢ XYE(q-27%,(q+1)-27%
o x=y=q-27°%

From each equivalence class, we pick a representative. For singleton
sets there is no choice, and from each open interval we pick the midpoint.
This defines for each real number x the a—representativef x:

Mo = (q+0.5)-27% if xe(q-27%(q+1)-27%)
a X if x=q-279,

for some integer q.

Observe that an a-representative is always the value of a binary frac-
tion with a + 1 bits after the binary point. We list a few simple rules for
computations with a—equivalences and o—representatives.

Let x =4 X'. By mirroring intervals at the origin, we see

—X=q X and [-Xq=—[Xq-
Stretching intervals by afactor of two gives
2X=¢ 12X and [2Aq_1=2[X,
and shrinking intervals by afactor of two gives
X/2=q11X/2 and [X/2]qs1=[Xa/2.
Induction gives for arbitrary integers e

2e‘X:afe ZeXl and [ZEX] :Ze[x]a

a—e

327

Chapter 7

r*Zep*’r*Zehp

—

|
[
z

|EEE FLOATING

x ep
POINT STANDARD y y+2
AND THEORY OF 2¢- (D)
ROUNDING

Figure 7.4 Geometry of thevaluesy, y+ 2% P, and z

Let y beamultiple of 2-%. Trandlation of intervals by y yields
X+y=aX+Y.

Let B < a, then the equivalence classes of = are a refinement of the
equivalence classes of [3, and one can conclude

X:BX,

The salient properties of the above definition are, that under certain cir-
cumstances rounding x and its representative leads to the same result, and
that representatives are very easy to compute. Thisis made precise in the
following lemmas.

Lemma 7.1 » Letn(x) = (s,e f), and let r be an IEEE rounding mode, then
1r(¥) = r([Xp-e)
2. N([p-e) = (s&[f]p)
3. if X =p_eX, then (x) =r(X).
PROOF For the absolute value of x, we have

X [2¢8,28tY) if fisnormal
[0,28in) if f isdenormal.

Inthisinterval, representable numbers have a distance of
d=2s(P-1),
Thus, x is sandwiched between two numbers
= Q- zef(p*l)
z = (q+1)- 2e—(p-1)

- as depicted in figure 7.4. Obvioudly, x € [y,z) can only be rounded to y, to
328

y+ 2P, or to z. For any rounding mode it suffices to know [X],_e in order
to make this decision. This proves part one.

Since
Mpe = [(=1)°-2°f]p e
= (=1 [2° flpe
= (=1)%-2°-[f]p,

we know that (s,e,[f]p) is afactoring of [X|p_e. This factoring is IEEE-
normal because

e (se f)isIEEE-normal,
o X >2%in & |[Xp_e|l > 2%, and
e fisnormal iff [f], isnormal.

This proves part 2. Part 3 follows immediately from part 1, because
r() = r(Xp-e) = r(Xlp-e) = r'x).

The next lemma states how to get p-representatives of the value of a

binary fraction by a so called sticky bitcomputation. Such a computation
simply replaces all bits f[p+ 1: v] by the OR of these hits.

Let f= f[—u:0].f[1:V] be a binary fraction. Let
g = f[-u:0.f[1:p],

and let y
s=\/ fli
i=p+1
be the sticky bit of f for position p (see figure 7.5), then
[(D)lp = (99

If s=0then (f) = (g9), and there is nothing to show. In the other case,

we have v

@ <f=(@+ Y fll-2" <(g+2"

Thus,

Section 7.2

ROUNDING

QED

<4 lLemma 7.2

PROOF

QED

329

Chapter 7

f: fl-u:0].f[1:p] flp+1:v]

g S

Figure 7.5 Sticky bit sof f for position p

|EEE FLOATING
POINT STANDARD
AND THEORY OF
ROUNDING

7.2.5 Rounding with Unlimited Exponent Range

We define the set 5{ of real numbers that would be representable if the
exponent range would be unlimited. Thisis simply the set of numbers

(—1)5-28-(Lf[1: p—1])

where eisan arbitrary integer. Moreover, weinclude 0 € f{
For every rounding mode r, we can define a corresponding rounding

mode A
f:R— R.

For the rounding modes f,, f4, F, one simply replaces R by f{ in the defi-
nition of the rounding mode. One defines fre(X) as a number in R closest
to x. In case of atie, the one with an even significand is chosen.

Observe that

r(x) =f(x) if 2% <|x < Xmax

Letf(x) = (s, 6, f). Along the lines of the proof of lemma 7.1, one shows
the following lemma:

Lemma 7.3 » Letxs#0, letf(x) = (s,&, f), and let r be an IEEE rounding mode, then

3. if X =p_aX, thenf(x) = f(X).

7.2.6 Decomposition Theorem for Rounding

Let r be any rounding mode. We would like to break the problem of com-
puting r(x) into the following four steps:

330

. |EEE normalization shift. This step computes the |EEE-normal fac-
toring of x

nx = (sef).
. Significand round. This step computes the rounded significand
f1 = sigrd(s,).

The function sigrd will be defined below separately for each round-
ing mode. It will produce results f; in the range [0, 2].

. Post normalization. This step normalizestheresultinthecase fi =2

_ | (e +1,12/2) if fi=2
(&, Tz) = pos(efy) = { (e fq) otherwise

. Exponent round. Thisstep takes care of caseswherethe intermediate
result (—1)%-2% . f, liesoutside of . It computes

(e3a f3) = eXprCKS,EZ, f2)

The function exprdwill be defined below separately for each round-
ing mode.

We will have to define four functions sgrd and four functions exprd such
that we can prove

For all rounding modes r holds

(€3, f3) =n(r(x)).

This means that the result (s,es, f3) of the rounding algorithm is an
IEEE-normal factoring of the correctly rounded result.

Letn(x) = (s,e f), then f € [0,2). Significand rounding rounds f to an
element in the set

F = {(dl0].g[1: p—1]) [gfil € {0, 1}, forall i} U {2}.

For any f, the binary fractions

yl:p-1)) = max{ye F[f>y}

= (y[-1:0].
1:0ly[1:p-1)) = minfye F|f<y}

y
y = (-

Section 7.2

ROUNDING

< Theorem 7.4

331

Chapter 7

|EEE FLOATING
POINT STANDARD
AND THEORY OF
ROUNDING

Lemma 7.5 »

PROOF

QED

Lemma 7.6 »

332

satisfy y < f <y. The definitions for the four rounding modes are

. B y[-1:p—1] if s=0
sigray(s, f) - = {y[l:p-1 if s=1
. B y[-1:p—1] if s=0
sigry(s,) = {y’[1:p-1 if s=1
sigrd(s,f) = y[-1:p-1].

In case of round to nearest even, sigrdie(s, f) isabinary fraction g closest

to f withg[—1:0].g[1: p—1] € #. In case of atie one chooses the one
withg[p—1] =0. Let f' = (f[0].f[1: p—1]1), then
y—1:p—-1] if f<f
grche(s 1) o (f=1f Afl[p-1=0) 72)
sigr = .
Ithels y[-1:p—1] if (f=f A /f[p—1=1)
or f>f
We define
xl_[[s,efl]]_() .28, fq.

The following lemma summarizes the properties of the significand round-

ing:
X1 = {

For f € [1,2), x lies in the interval [22,2%*1) if s= 0, and it lies in
(—28+1,2°] if s= 1. Mirroring this interval at the origin in case of s=1
and scaling it by 27€ trandates exactly from rounding with f to signifi-
cand rounding in the interval [1,2). Mirroring if s= 1 and scaling by Z
translates in the other direction.

If f €[0,1) then e= eyjn. Mirroring if s= 1 and scaling by 2-%n trans-
lates from rounding with r into significand rounding in the interval [0, 1).
Mirroring if s= 1 and scaling by 2" trandlates in the other direction.

Finally observe that r(x) = f(x) if [x| < Xnaxand f isnormal.

r(x) if
F(x) if

IX| < Xmax
IX| > Xmax

The following lemma summarizes the properties of the post normaliza-
tion:

(s,) = n(x).

Section 7.2

PROOF

Post normalization obviously preserves value: ROUNDING

X1 = Xo = [[S,Ez, fz]] = (—1)3-262- fo.

Thus, we only have to show that (s, e, f2) is|EEE-normal. We started out
with n(x) = (s,e, f) which is |[EEE-normal. Thus,

1. fisnormal if |x| > 2%in and
2. fisdenormal and e = g if |x| < 28,

If |x] > 2%in, then |x;| > 2%in and f; € [1,2]. If f; € [1,2), then f, = f1is

normal, and if f; = 2, then f, = 1isnormal aswell.
If |X| < 2%in, then |x1| < 2% or |x;| = 2%, and & = e = eyin. In the

first case, f, = f1 € [0,1) isdenormal. In the second case, f, = fy =1is

normal. QED
We proceed to specify the four functions exprd

(00,0) if &>enax and s=0
exrdi(s.e,f2) = { (emax2—2 P V) if e>enx and s=1
(&2, f2) if & < emax
(0,0) if &>enax and s=1
exrdy(s.e, f) = (Bnax2—2"(PD) if e >enx and s=0
(&2, f2) if & < émax
2—2-(P1) if e>ey
exrd(s, e, f) = (&man, : &
*(s €2, f2) { (€2, f2) it € < emax
(0,0) if € > énax
exrche(s, e, f = .
he(S €2, T2) { (&, 2) if € < emax
Let
X3 = [[S,eg, fg]] = (—1)5-283- f3.
We can proceed to prove the statement
(s.e3,f3) = n(r(x)
of the theorem.
Proof of Theorem 7.4 PROOF

If (e3,f3) = (&, f2), then (s,e3, f3) is IEEE-normal by lemma 7.6. In all
other cases, the factoring (s, e, f3) is obviously |IEEE-normal taking into -

333

Chapter 7

|EEE FLOATING
POINT STANDARD
AND THEORY OF
ROUNDING

QED

334

account the convention that the special factorings are IEEE-normal. Thus,
it remains to show that

X3 = r(x).
If |X| < Xmax then lemma 7.5 implies that
X2 = X1 = r(x).

According to lemma 7.6, (s, e, f2) isan IEEE-normal factoring of %, and
therefore
€ < €max

Thus, we can conclude that
(e3,f3) = (&2,F2) and X=X =r(X).

Now let |X| > Xmax. One then easily verifies for all rounding modesr:

fx) # rx
< f(X]) > Xmax
o F(X) > 2l (7.3)
<~ & > Enax by lemmas 7.5 and 7.6

Recall that in the definition of rpe, the threshold X, Was chosen such
that this holds. We now can complete the proof of the theorem. Forr = 1,
we have

X3 = [s ez, f3]
o0 if and s=0

€2 > €max
X2 if
—Xmax if - F(X) #r(x)

X2 if
= r(x

{ 0 if F(X) #r(x)
f
f

because x, = f(x) by lemma 7.5.
The proof for the other three rounding modes is completely analogous.

We summarize the results of this subsection: Let n(x) = (s,e, f), it then
holds

n(r(x)) = (sexprds, poste,sigrd(s, f)))). (7.4)

Exactly along the same lines, one shows for x # 0 andfj (x) = (s, &, f) that

F(x) = [s.&sigrd(s f)],

and then

A(F(X) = (s postésigrd(s,f))). (7.5)

Table 7.2 |EEE floating point exceptions

| symbol || meaning |

INV invalid operation
DBz division by 0
OVF overflow

UNF underflow

INX inexact result

7.2.7 Rounding Algorithms

By thelemmas 7.1 and 7.2, we can substitute in the above algorithms f and
f by their p-representatives. This givesthe following rounding algorithms:

e For limited exponent range: let n(x) = (s,e,), then
n(r(x)) = (s,exprd(s, post(e,sigrd(s,[f]y))). (7.6)

e For unlimited exponent range: let x # 0 andf(x) = (s, &, f), then

A(F(x)) = (s, post(&,sigrd(s, [f]p-e)))- (7.7)

7.3 Exceptions

HE |EEE floating point standard defines the five exceptions of table

7.2. These exceptions activate event signals of maskable interrupts.
The mask bits for these interrupts are also called enable bits Here, we will
be concerned with the enable bits OV Fenand UNFenfor overflow and
underflow.

Implementation of the first two exceptions will turn out to be easy. They
can only occur if at least one operand isfrom the set {0, 0, —co, NaN}. For
each operation, these two exceptions therefore just require a straightfor-
ward bookkeeping on the type of the operands (section 7.4).

According to the standard, arithmetic on infinity and NaN is aways
exact and therefore signals no exceptions, except for invalid operations.
Thus, the last three exceptions can only occur if both operands are finite
numbers. These exceptions depend on the exact result of the arithmetic
operation but not on the operation itself. Therefore, we will now concen-
trate on situations, where afinite but not necessarily representable number

Section 7.3

EXCEPTIONS

335

Chapter 7

|EEE FLOATING
POINT STANDARD
AND THEORY OF

336

ROUNDING

x € R isthe exactresult of an operation
Xx=aob where abeR.

In this section, we will also complete the definition of the result of an
arithmetic |EEE operation, given that both operands are finite, non-zero,
representable numbers. The arithmetic on infinity, zero, and NaN will be
defined in section 7.4.

7.3.1 Overflow

An overflowoccurs, if the absolute value of f(x) exceeds Xnax i.€.,

OVF(X) ¢ [F(X)] > Xma
Let X =p_eX. Sincef(x) = F([X|p—e), it follows that

OVF(X) <> OVF([Xp_e) > OVF(X).
Only results x with |x| > XmaxCan cause overflows, and for these results,
we have n(x) =R (x). Let
nx =Ax = (sef).

By lemma 7.5, we then have

OVF(x) <« 2°-sigrd(s, f) > Xmax
& e>emax O (7.8)
e=emnax and sigrd(s,f) =2

The first case is called overflow before roundingthe second case over-
flow after rounding

7.3.2 Underflow

Informally speaking, an underflowoccurs if two conditions are fulfilled,
namely

1. tininess the result is below 2 and

2. loss of accuracyaccuracy is lost, when the result is represented as
adenormalized floating point number.

The |EEE standard givestwodefinitions for each of these conditions. Thus,
the standard gives four definitions of underflow. It is, however, required
that the same definition of underflow is used for all operations.

Section 7.3

Tininess
The two definitions for tininess are tiny—after—rounding

TINYa(X) <+ 0<|[f(x)] < 2%in

EXCEPTIONS

and tiny—before—rounding
TINYG(X) <« 0<|x| < 28,
In the four rounding modes, we have
0 < |x| < 28min. (1—2-(PF1)) if e
0 < |x] < 28min if rs
—28min < x < 28min. (1 —27P) A x#0 ifry
—28min. (1 —2"P) <x< 2%in A x#0 ifrg

TINYa(X) <«

For all rounding modes, one easily verifies that tiny-after-rounding im-
plies tiny-before-rounding

TINYa(X) — TINYy(X).
Let x# 0 and f(x) = (s, &, f), it immediately follows that

TINYy(X) ¢ TINY([Xp_e)

Asf(x) = F([X]p—e), we can also conclude that
TINYa(X) < TINYa([Xp_e)-

Loss of Accuracy

The two definitions for loss of accuracy are denormalization loss
LOSS(x) < r(x) #f(x)

and inexact result
LOSS(x) <+ r(X)#x.

An example for denormalization lossis x = (0.0°1) because
re(x) =0 and f(x)=x

A denormalization loss implies an inexact result, i.e., < Lemma 7.7
LOSS(x) — LOSS3(X).

The lemmais proven by contradiction. Assumer(x) = x, thenxe R C ®, PROOF
and it follows that
f(x) = X = r(x).

QED

337

Chapter 7

|EEE FLOATING
POINT STANDARD
AND THEORY OF

338

ROUNDING

A

Let 4(X) = (s,& f) and n(x) = (s, e f). By definition,

Since é < e, we have
and hence,

This shows, that
LOS3(x) +» LOSS([X|p-¢)-

AsT(x) = F([X]p—e), we can conclude
LOSS(X) + LOSS([Xp o).
Hence, for any definition of LOSSand TINY, we have
LOSSx) <« LOS§[Xp-e)
TINY(X) < TINY(Xp_e),

and therefore, the conditions can always be checked with the representative
[X|p—e instead of with x.

Detecting LOS$(x) is particularly simple. If n(x) = (s,e, f) and |x| <
Xmax then exponent rounding does not take place and

f(X) #x <« sigrd(s,f) # f
< sigrd(s,[f]p) # [f]p.

Whether the underflow exception UNF should be signaled at al depends

in the following way on the underflow enable flag UNFen

UNE {TINY/\LOSS if /UNFen

TINY if UNFen

7.3.3 Wrapped Exponents

In this subsection we complete the definition of the resultof an |EEE float-
ing point operation. Let
a=23-2"2

let a,b € R be representable numbers, and for o € {4, —, ./}, let

X=aob

Section 7.3

bethe exact result. The proper definition of the result of the |EEE operation

isthen EXCEPTIONS

aob = r(y)

where

x-2% if UNF(X) AUNFen

x-2°% if OVF(x)AOVFen
y =
X otherwise.

Thus, whenever non masked overflows or underflows occur, the expo-
nent of the result is adjusted. For some reason, thisis called wrapping the
exponent. The rounded adjustedresult isthen given to the interrupt service
routine. In such cases one would of course hope that r(y) itself isanormal
representable number. Thisis asserted in the following lemma:

The adjusted result lies strictly betweZn» and Xyax 4 Lemma 7.8
1. OVF(X) — 2%in < x-27% < Xmax
2. UNF(x) — 28nin < x- 29 < Xnax

We only show the lemma for multiplication in the case of overflow. The ~ PROOF
remaining cases are handled in a completely analogous way.
The largest possible product of two representable numbersis

X = Xr%ax< (Zetnax+1)2 — 223ma><+2.
For the exponent, it therefore holds

2-€naxt+2-a = 2-(21-1)42-3.2"2
— 4‘2n72_3_2n72
"2 < €max

and thus, |X| < Xmax
There cannot be an overflow unless

IX| > Xmax > 2%
For the exponents, we conclude that

Enax—0 = 271_-1-3.2"2
— _2n—2_ 1
> 2" 42 = ein

Thus, it also holds that |x| > 2%in, QED

339

Chapter 7

|EEE FLOATING
POINT STANDARD

AND THEQRY7QF »

ROUNDING

PROOF

QED

340

The following lemma shows how to obtain a factoring of r(y) from a
factoring of x.

LetA(f(x)) = (s,u,v), then
1. OVFx) — nx-29 =(su—aqa,v).
2. UNF(x) — n(x-29) =(s,u+a,v).
We only show part 1; the proof of part 2 is completely analogous. L et
A = (s.&f),

then
A(x-27%) = (sé-a,f).
Define f; and (u,v) as

fl = Sigrd(sa [f]p*é)
(uv) = posié f).
The definition of post normalization implies
(u—a,v) = posté—a, f1).

Applying the rounding algorithm for unlimited exponent range (equation
7.7) gives:

N(F(x)) = (s post& f1)) = (su,v)
and
A(F(x-27%)) = (s posté—a,f1)) = (su—a,v).
Lemma7.8 implies
2% < |yl =|x]-27% < Xmax

For such numbers, we have

28min < r(lyl) = f(y) < Xmax

It follows that
n(r(y)) = n(k(y))

and part 1 of the lemma.is proven.

Section 7.4

7.3.4 Inexact Result
ARITHMETIC ON

Let SPECIAL OPERANDS
x-2°¢ if OVF(x) AOVFen
y=1g x-2¢ if UNF(x) AUNFen
X otherwise.

be the exact result of an IEEE operation, where the exponent iswrapped in
case an enabled overflow or underflow occurs. The |IEEE standard defines
the occurrence of an inexact result by

INX(y) <« r(y)#yV (OVF(y) A /OVFen.

So far, we have only considered finite resultsy. For such results, OV F(y)
alwaysimpliesr(y) # y and the second condition is redundant. Hence, we
have for finitey

INX(y) <« r(y)#V.

When dealing with special operands o, —co and NaN, computations like
00 + 00 = oo With r(co) = co Will be permitted. However, the | EEE standard
defines the arithmetic on infinity and NaN to be always exact. Thus, the
exceptions INX, OVF and UNF never occur when special operands are
involved.

Letn(x) = (s,e f) and {(x) = (s,& f). If
(OVF(x) A OVFen V (UNF(x) A UNFen)

holds, then exponent rounding does not take place, and significand round-
ing isthe only source of inaccuracy. Thus, we have in this case

INX(y) ¢« sigrd(s, f) #
& sigrd(s, [ﬂ) [flp.

In al other cases we have

INX(y) <« sigrd(s, f) # f vV OVF(x)
< sigrd(s,[f]p) # [f]p V OVF([X]p-e)-

7.4 Arithmetic on Special Operands

N THE |EEE floating point standard [Ins85], the infinity arithmetic and
the arithmetic with zeros and NaNs are treated as special cases. This
special arithmetic is considered to be always exact Nevertheless, there -

341

Chapter 7

|EEE FLOATING
POINT STANDARD
AND THEORY OF

342

ROUNDING

are situations in which an invalid operation exception INX or adivision by
zero exception DBZ can occur.

In the following subsections, we specify this special arithmetic and the
possible exceptions for any |EEE operation. The factorings of the numbers
aand b are denoted by (s, €a, fa) and (s, &, fp) respectively.

7.4.1 Operations with NaNs

There are two different kinds of not a number, signaling NaN and quiet
NaN. Lete=¢en—1:0] and f' = f[1: p— 1]. The value represented by
the floating point number (s,e, ') isaNaN if e= 1" and f’ # 0P~1. We
chose f[1] = 1 for the quiet and f[1] = O for the signaling variety of NaN'.

Ise f] = quiet NaN if e=1"Af[1]=1
S =\ sgndingNaN if e=1" A f[1]=0 A ' #0P L.

A signaling NaN signal an invalid operation exception INV whenever
used as an operand. However, copying a signaling NaN without a change
of format does not signal INV. This also applies to operations which only
modify the sign, e.g., the absolute value and reversed sigr? operations.

If an arithmetic operation involves one or two input NaNs, none of them
signaling, the delivered result must be one of the input NaNs. In the spec-
ifications of the arithmetic operations, we therefore distinguish between
three types of NaNs:

e gNAN denotes an arbitrary quiet NaN,
e sNAN denotes an arbitrary signaling NaN, and
e gNAN* indicates that the result must be one of the quiet input NaNs.

For the absolute value and reversed sign operations, this restriction does
not apply. These two operations modify the sign bit independent of the
type of the operand.

1The | EEE standard only specifies that the exponent eln—1: 0] = 1" isreserved for in-
finity and NaN; further details of the coding are left to the implementation. For infinity and
the two types of NaNs we therefore chose the coding used in the Intel Pentium Processor
[Int95]
2= X

Table 7.3 Result of the addition; x and y denote finite numbers.

a+b b
a y | +o | —o [gNAN | sSNAN
X r(x+y) | o —00

400 400 400 dNAN

—00 —00 gNAN —00

gNAN gNAN*

sNAN gNAN

7.4.2 Addition and Subtraction

The subtraction of two representable numbers a and b can be reduced to
the addition of the two numbers a and c, where ¢ has the factoring

(SCae(b fC) = (gae()a fb)

In the following, we therefore just focus on the addition of two numbers.
Table 7.3 lists the result for the different types of operands. There are just
afew cases in which floating point exceptions do or might occur:

e AnINV exception does occur whenever

— one of the operands a, bisasignaling NaN, or
— when performing the operation ‘400 — 0’ Or * —o00 4 00’,

e Theexceptions OVF, UNF and INX can only occur when adding two
finite non-zero numbers. However, it depends on the value of the
exact result, whether one of these interrupts occurs or not (section
7.3).

Sign

Since zero has two representations, i.e., +0 and —0, special attention must
be paid to the sign of a zero result a+ b. In case of a subtraction, the sign
of azero result depends on the rounding mode

+0 if ry,Mefz

XmX = XX = { 0 if rg

When adding two zero numbers with like signs, the sum retains the sign of
the first operand, i.e., for x € {+0, —0},

X+X = X—(—=X) = X

Section 7.4

ARITHMETIC ON
SPECIAL OPERANDS

343

Chapter 7

|EEE FLOATING
POINT STANDARD
AND THEORY OF
ROUNDING

344

Table 7.4 Result of themultiplication a- b; x and y denote finite non-zero numbers.

a-b b
a y \ 0 \ 00 \ gNAN \ SNAN
X r(x-y) 0 o0
0 0 0 gNAN
00 00 gNAN 0
gNAN gNAN*
SNAN gNAN

7.4.3 Multiplication

Table 7.4 lists the result of the multiplication a- b for the different types
of operands. If the result of the multiplication is a NaN, the sign does not
matter. In any other case, the sign of the result c = a- b isthe exclusive or
of the operands’ signs:

& = SaDS.

There are just a few cases in which floating point exceptions do or might
occur:

e AnINV exception does occur whenever

— one of the operands a, bisasignaling NaN, or

— when multiplying a zero and an infinity number, i.e., ‘0-c0’ or
‘0.0

e Theexceptions OVF, UNF and INX depend on the value of the exact
result (section 7.3); they can only occur when both operands are
finite non-zero numbers.

7.4.4 Division

Table 7.5 lists the result of the division a/b for the different types of
operands. The sign of the result is determined as for the multiplication.
This means that except for a NaN, the sign of the result ¢ is the exclusive
or of the operands’ signs. & = Sa P S-

In the following cases, the division signals a floating point exception:

e AnINV exception does occur whenever

Table 7.5 Result of the division a/b; x and y denote finite non-zero numbers.

a/b b
a y | 0 | o [dNAN |SsNAN
X r(x/y) o0 0
0 0 gNAN 0
0 00 o0 dNAN
oqNAN gNAN*
sNAN agNAN

— one of the operands a, b isasignaling NaN, or
— when performing the operation ‘0/0’ or co/co’.

e An DBZ (division by zero) exception is signaled whenever dividing
a finite non-zero number by zero.

e Theexceptions OVF, UNF and INX depend on the value of the exact
result (section 7.3); they can only occur when both operands are
finite non-zero numbers.

7.4.5 Comparison

The comparison operation is based on the four basic relations greater than
less than equaland unordered These relations are defined over the set
ﬂ(mNaN consisting of al representable numbers, the two infinities, and
NaN:

Roo,NaN =RU {+°°7 —, NaN}7

Let the binary relation o € {<, =, >} be defined over the real numbers
R, the corresponding |EEE floating point relation is denoted by q. For
any representable number x € R, none of the pairs (x,NaN), (NaN,Xx)
angj (NaN,NaN) is an element of o;. Thus, the relation o, is a subset of
R

¢ |EEE floating point relations ignore the sign of zero, i.e., +0= —0.
Thus, over the set of representable numbers, the relations o and q
are the same:

YVXYERCR Xoy <+ Xoy

Section 7.4

ARITHMETIC ON

SPECIAL OPERANDS

345

Chapter 7

|EEE FLOATING
POINT STANDARD
AND THEORY OF
ROUNDING

346

Table 7.6 Floating point predicates. The value 1 (0) denotes that the relation is
true (false). Predicates marked with x are not indigenousto the | EEE standard.

predicate greater | less | equal | unordered INV if
true | fase > < = ? unordered
F* T* 0 0 0 0

UN OR 0 0 0 1

EQ NEQ 0 0 1 0

UEQ | OGL 0 0 1 1 NoO
OLT UGE 0 1 0 0

ULT | OGE 0 1 0 1

OLE | UGT 0 1 1 0

ULE | OGT 0 1 1 1

SF ST 0 0 0 0

NGLE | GLE 0 0 0 1

SEQ* | SNE* 0 0 1 0

NGL | GL 0 0 1 1 Yes
LT NLT 0 1 0 0

NGE | GE 0 1 0 1

LE NLE 0 1 1 0

NGT* | GT* 0 1 1 1

e Thetwoinfinities (+o and —o) are interpreted in the usual way. For
any finite representable x € R, we have

—00 < X < +0o.

NaN compares unorderedwith every representable number and with
NaN. Thus, for every x € K., nan, the pairs (x,NaN) and (NaN,x) are
elements of the relation ‘unordered’, and that are the only elements. Let
this relation be denoted by the symbol ?, then

?= {(XaNaN)a (NaN,x) | Xe Roo,NaN}-

The comparison of two operands x and y delivers the value o(x,y) of a
specific binary predicate

0! ReonaN X Reonan — 10, 1}

Table 7.6 lists al the predicates in question and how they can be obtained
from the four basic relations. The predicates OLT and UGE, for example,

Section 7.4

can be expressed as
ARITHMETIC ON

SPECIAL OPERANDS

OLT(XY) = UGE(XY) = (X>1Y) V (X<1y) V (X=1Y) V (X%).

Note that for every predicate the implementation must also provide its
negation.

In addition to the boolean value o(x,y), the comparison also signals an
invalid operation. With respect to the flag INV, the predicates fall into one
of two classes. The first 16 predicates only signal INV when comparing a
signaling NaN, whereas the remaining 16 predicates also signal INV when
the operands are unordered.

Comparisons are always exact and never overflow or underflow. Thus,
INV is the only IEEE floating point exception signaled by a comparison,
and the flags of the remaining exceptions are al inactive:

INX = OVF = UNF = DBZ = 0.

7.4.6 Format Conversions

Conversions have to be possible between the two floating point formats and
the integer format. Integers are represented as 32-bit two's complement
numbers and liein the set

INT = Tap = {—2%%,..., 251 —1}.

Floating point numbers are represented with an n-bit exponent and a p-
bit significand. The range of finite, representable numbers is bounded by
—Xmaxand Xmax where Xmax= (1—2"P)- 22" Fors ngle precision n= 8,
p = 24 and the finite, representable numbers lie in the range

RS - [_(1 - 2724) ’ 21287 (1 - 2724) ’ 2128]7
whereas for double precision n= 11, p= 53 and
Rd C [_(1 _ 2—53) . 21024’ (1 _ 2—53) . 21024]‘
Table 7.7 lists the floating point exceptions which can be caused by the
different format conversions. The result of the conversion is rounded as
specified in section 7.2, even if the result is an integer. All four rounding

modes must be supported. -
347

Chapter 7

|EEE FLOATING
POINT STANDARD
AND THEORY OF

348

ROUNDING

Table 7.7 Floating point exceptions which can be caused by format conversions
(d: double precision floating point, s: single precision floating point, i: 32-bit
two’s complement integer)

| [TNV [DBZ | OVF [UNF [INX |

d—s + + + +
s—d +

i—s +
i —d

S—i + +
d—i + +

Floating Point Format Conversions

Double precision covers a wider range of numbers than single precision,
and the numbers are represented with alarger precision. Thus, aconversion
from single to double precision is always exact and never overflows or
underflows, but that is not the case for a conversion from double to single
precision.

The conversion signals an invalid operation exception iff the operand
isasignaling NaN. Unlike the arithmetical operations, a quiet input NaN
cannot pass the conversion unchanged. Thus, in case of an input NaN, the
result of the conversion is always an arbitrary, quiet NaN.

Integer to Floating Point Conversions
For either floating point format, we have

~Xmax< =221 and 2% < Xaxe

Thus, any 32-hit integer x can be represented as a single or double pre-
cision floating point number. In case of double precision, the conversion
is performed without loss of precision, whereas the single precision result
might be inexact due to the 24-hit significand. Other floating point excep-
tions cannot occur.

Floating Point to Integer Conversions
When converting a floating point number into an integer, the result is usu-
aly inexact. The conversion signals an invalid operation if the input is a
NaN or infinity, or if the finite floating point input x exceeds the integer
range, i.e.,

x< -2 o x>2%

Section 7.5

In the latter case, afloating point overflow OVF is not signaled because the

result of the conversion is an integer. SELECTED

REFERENCES AND
FURTHER READING

7.5 Selected References and Further Reading

THE TRANSLATION of the IEEE standard 754 [Ins85] into mathemat-
ical language and the theory of rounding presented in this chapter is
based on [EP97].

7.6 Exercises
Exercise 7.1 Prove or disprove: For all rounding modes, rounding to sin-

gle precision can be performed in two steps:

a) round to double precision, then
b) round the double precision result to single precision.

Exercise 7.2 Complete the following proofs:

1. the proof of lemma7.3

2. the proof of theorem 7.4 for rounding mode rne

3. the proof of lemma 7.9 part 2
Exercise 7.3 Let x be the unrounded result of the addition of two repre-
sentable numbers. Show:

1. TINYa(X) < TINYy(X)

2. LOSS(x) = LOS$(x) = FALSE
Exercise 7.4 Let x=2°- f, where e is represented as a 14-bit two's com-
plement number e = [e[13 : O]] and the significand f is represented as a
57-bit binary fraction f = (f[0].f[1: 56]). Design circuits which compute
for double precision:

1. LOSS(x)

2. LOSS$(x)

Compare the cost and delay of the two circuits.

349

Floating Point Algorithms
and Data Paths

N THIS chapter the data paths of an IEEE-compatible floating point unit

FPU are developed. The unit is depicted in figure 8.2. It is capable
of handling single and double precision numbers under control of signals
like db,dbsdbr,... (double). This requires embedding convention®r
embedding single precision numbers into 64-bit data.

The data inputs of the the unit are (packed) | EEE floating point numbers
with values

a = [sa,ean—1:0]fa[l: p—1]]
b = [ss,es[n—1:0],f[1l: p—1]],

where
(np) — { (8311) it db=1
P~ (24,8 if db=o.

As shown in figure 8.1, single precision inputs are fed into the unit as
the left subwords of FA[63: 0] and FB[63 : 0]. Thus,

(sa,ealn—1:0], fa[l: p—1])
(FA2[63], FA2[62 : 55],FA2[54:32] if /db
{ (FA2[63],FA2[62: 52],FA2[51:0] if dh

The b operand is embedded in the same way.
The unpacking unit detects specia inputs 0,00, NaN,sNaNand signals
them with the flags fl, and fl,. For normal or denormal inputs, the hidden

Chapter 8 63 3231 0

FLOATING POINT X.S z
ALGORITHMS AND
DATA PATHS Figure 8.1 Embedding asingle precision floating point datax.sinto a 64-bit word;
zisan arbitrary bit string. In our implementation z = x.s.

FA2 FB2
V v ¥
FCon fla flo' unpacker FPunp FXunp
test/abs/neg (s ea fa fla) | nan [(s, eb, ofib) | |(su, ey, fu, flu)
i |
Fc fcc
V
Cvt Mul/Div Add/Sub
(sv, ev, fv, flv) (sa, eq, fq, flg) (ss, es, fs, fls)

A S S

Fr

129 b (s, er, fr fl) |
v

| Fxmd | | FPmd

V Fx | Fp

Figure 8.2 Top level schematics of the floating point unit. The outputs Fc, Fx and
Fp consist of a 64-bit data and the floating point exception flags.

bit is unpacked, the exponent is converted to two's complement represen-
tation, and single precision numbers are internally converted into double
precision numbers. Under control of signal normal, denormal significands
are normalized, and the shift distances 1z,[5: 0] and Iz,[5 : 0] of this nor-
malization shift are signaled.

Thus, the a-outputs of the unpacker satisfy for both single and double
precision numbers

(—1)% . 2&l100]. (f[0]. f4[1: 52)) if normal=0
a =
(—1)% . 2&[100]={1z[50]) . (£.[0].f5[1:52]) if normal=1
The b-outputs of the unpacker satisfy an analogous equation. The normal-

ization shift activated by normal = 1 is performed for multiplications and
divisions but not for additions and subtractions.

352

Table 8.1 Coding of the IEEE rounding modes

| RM[1:0] | symbol | rounding mode |

00 ry round to zero
01 Mme round to nearest even
10 ruy round up
11 rg round down
Let
X=aob

be the exact result of an arithmetic operation, and let
A = (5.8 1)
In the absence of special cases the converter, the multiply/divide unit and
the add/subtract unit deliver as inputs to the rounder the data ($,e[12 :
0], fr[—1: 55]) satisfying
X =p & (—1)5 - 2&1200. (f[-1:55).
and
fi[-1:00=00 — OVF(x)=0.

Note that A(x) is undefined for x = 0. Thus, aresult x = 0 is aways

handled as a special case. Let

x-279 if OVF(x) AOVFen
y=¢ x-2% if UNF(x) AUNFen
X otherwise.

The rounder then has to output r(y) coded as a (packed) |EEE floating
point number. The coding of the rounding modesislisted in table 8.1.

Cost and Delay
The cost of the floating point unit depicted in figure 8.2 can be expressed
as

Crru = Crcont Crpunp+ Crxunp+ Cevt + Cmuibiv
+Caddsubt Crxrnd + Crprnd + Ctt (129) + 4'Cdriv(129)'

We assume that al inputs of the FPU are taken from registers and therefore
have zero delay. The outputs F, F,, Fc and fcc then have the following
accumulated delay:

Arpy = max{Arcon, Arxrnd, AFprnd}-

Section 8.0

FLOATING POINT
ALGORITHMS AND
DATA PATHS

353

Chapter 8

FA2[63:0] FB2[63:0]
FLOATING POINT
ALGORITHMS AND F263:0] F2[63.0]
DATA PATHS Unpack Unpack
s, €10:0], 17[5:0], f[0:52], einf, fz, ez, h[1], h[2:52] h[2:52], s, €[10:0], 12[5:0], f[0:52], einf, fz, ez, h[1]
| I
4> sa, ea[10:0], Iza[5:0], fa[0:52]\ 4> sb, eb[10:0], Izb[5:0], b[0:52] \
SpecUnp saha hbsb SpecUnp
ZERO, INF, SNAN, leﬁ NaN select ZERO, INF, SNAN, NAN
—> ZEROa INFa SNANa NANa | —p snan, fran[1:57] | —p ZEROb, INFb, SNAND, NAND|
4 53 4
fla nan flb

Figure 8.3 Top level schematics of the unpacker FPUNP

Note that Arcon includes the delay of the inputs fla and flb'. In our
implementation, the multiply/divide unit, the add/subtract unit and the two
rounders FPRND and FXRND have an additional register stage. Thus, the
FPU requires aminimal cycle time of

Teru = max{Tmuipiv, Taddsub TFPrnd, TExrd, Arpu (Fr) 4+ A}
Arpu(Fr) = max{Arpunp+ Dcwt; Arxunp AMulDivs Aaddsul + Dariv-

8.1 Unpacking

FIGU RE 8.3 depicts the schematics of an unpacking unit FPUNP which
unpacks two operands FA2 and FB2. For either operand, the unpack
unit comprises some registers (for pipelining), a circuit UNPACK and a
circuit SPECUNP. In addition, there isacircuit NANSELECT which deter-
mines the coding of an output NaN.

Circuit UNPACK
The circuit UNPACK (figure 8.4) has the following control inputs

e dbswhich indicates that a double precision source operand is pro-
cessed,

¢ and normal which requests a normalization of the significand.
354

F2[63] F2[62:52] F2[62:55] F2[51:0] F2[54:32] Section 8.1

o UNPACKING
s <1 0

h{1:52]

zero(11)

zero(11) T+ 52

h[o] zero(52)

Q

inc(11)

s anf €100] ez 1[5:0] f[0:52) fz h[1:52]

Figure 8.4 Schematics of the circuit UNPACK

The data inputs are F2[63: 0]. Single precision humbers are fed into the
unpacking circuit as the left subword of F2[63:0] (figure 8.1). Input data
are always interpreted as | EEE floating point numbers, i.e.,

(s,en[n—1:0], fin[1: p—1))

| (F2[63],F2[62:52],F2[51:0]) if dbs=1
_{ (F2[63],F2[62:55],F2[54:32]) if dbs=0

We now explain the computation of the outputs. The flag
einf=1 & g,=1"

signals that the exponent is that of infinity or NaN. The signals ezdand
ezsindicate a denormal double or single precision input. The flag

ez=1 + g,=0"

signals that the input is denormal.

If the (double or single precision) input is normal, then the correspond-
ing flag ezdor ezsis0, the bits g,[n—1: 0] arefed into an incrementer, and
theleading bit of the result isinverted. This converts the exponent from bi-
ased to two's complement format. Sign extension produces a 11-bit two's
complement number. For normal inputs we therefore have

[€[10: 0] = [en]bias

355

Chapter 8

For denormal inputs the last bit of g, isforced to 1, and the biased repre-
FLOATING POINT sentation of

ALGORITHMS AND n—1
DATA PATHS n = [071]
is fed into the incrementer. We conclude for denormal inputs

[€[10: Q)] = emin-
Theinverted flag h[0] = /ezsatisfies

ho] = 1 for normal inputs
| 0 for denormal inputs.

Thus, h[0] is the hidden bit of the significand. Padding single precision
significands by 29 trailing zeros extends them to the length of double pre-
cision significands

. [F251:0] if dbs= 1
hi1:52] = { F2[54:32)0%° if dbs=0,

and we have
(.h[1:52]) = (.fin[1l: p—1]).

Hence, for norma or denormal inputs the binary fraction h[0].h[1 : 53]
represents the significand and

[sen, fin] = (—1)°-2-(h).
Let 1z be the number of leading zeros of the string h[0 : 53], then
Iz = (12[5:0]).

In case of normal = 1 and a non-zero significand, the cyclic left shifter
CLS(53) produces a representation f[0].f[1 : 53] of a normal significand
satisfying

(h) = (f)-27"%.

For normal or denormal inputs we can summarize

o (=Ds-2@82.(f) if normal=1
[[Saanyfln]] - { (_l)s‘z[e]‘”) if normal=0

Flag fzsignalsthat fi,[1: p— 1] consists of al zeros:

fz=1 « fp[l:p—1=0"1
356

Signal h[1] is used to distinguish the two varieties of NaN. We chose
h[1] = O for the signalingand h[1] = 1 for the quietvariety of NaN (sec-
tion 7.4.1). Inputs which are signaling NaNs produce an invalid operation
exception (INV).

The cost of circuit UNPACK can be expressed as

Cunpack = 2-Cgero(11) + 2- Crerd(8) +Czerd(52) +Ciz(53)
Cinc(11) + Cinc(8) +CcLs(53) + 22 Ciny
Cmux(13) + Cmux(53) + Cmux(52) +2-Cor

With respect to the delay of circuit UNPACK, we distinguish two sets of
outputs. The outputs reg = {e |z, f} are directly clocked into a register,
whereas the remaining outputs flag = {s,einf, fz ez h} arefed to circuits
SEPcUNP and NANSELECT:

DUnpack(reQ) = Dzero(ll) + Dinv + Dmux+

Dunpac flag) = Dmux+ mMax{Dzero(11) + Diny, Dzero(52) }.

Special Cases
From the flags einf, h[1], fz and ez one detects whether the input codes
zero, plus or minus infinity, aquiet or asignaling NaN in an obvious way:

ZERO = ezAfz

INF = einfAfz

NAN = einfAh[1]
SNAN = einfA(/h[1]A/fz) = einfA(h[1] NOR f2z).

This computation is performed by the circuit SPECUNP depicted in figure
8.5. Thiscircuit has the following cost and delay:

CSpchnp = 4‘Cand+cnor
DSpchnp = Dand+ I:)nor-

Circuit NANSELECT

This circuit determines the representation ($an, €nan, fnan) Of the output
NaN. According to the specifications of section 7.4, the output NaN pro-
vided by an arithmetic operation is of the quiet variety. Thus,

a']an — 1n and fnan[l] — 1

Section 8.1

UNPACKING

357

Chapter 8

FLOATING POINT
ALGORITHMS AND

358

DATA PATHS

einf
h[1]
fz

el

¥

ZERO INF NAN SNAN

Figure 8.5 Circuit SPECUNP

Quiet NaNs propagate through almost every arithmetic operation, i.e., if
one or two input NaNs are involved, none of them signaling, the delivered
result must be one of the input NaNs. If both operands are quiet NaNs, the
a operand is selected. However, in case of an invalid operation (INV =
1), an arbitrary quiet NaN can be chosen. Thus, the circuit NANSELECT
determines the sign and significand of the output NaN as

[(su1lh2:52) if NANa=1
(Snan f”a”[l'sz])_{(sb,lhb[2:52]) if NANa=O0.

Thisjust requires a 53-bit multiplexer. Thus,

CN aNselect — Cmux(53)

DNaNseIect = I:)mux-

Cost and Delay of the Unpacker
The floating point unpacker FPUNP of figure 8.3 has cost

Crpunp = 2 (Cunpack+ Cspecunpt Ctt(75)) + Cnanselectt Ct 1 (53)

With fl; and I}, we denote theinputs of the registers buffering theflags fh
and fl,. These signals are forwarded to the converter CvT and to circuit
FCoN; they have delay

AFPunp(ﬂalaﬂbl) = DunpacK flag) + Dspecunp

Assuming that all inputs of the FPU are provided by registers, the outputs
of the unpacker then have an accumulated delay of

Arpunp = max{DuynpacKreg), Drpunp(f la’) + Dnanselect-

Section 8.2

8.2 Addition and Subtraction
ADDITION AND

8.2.1 Addition Algorithm SUBTRACTION

Suppose we want to add the representable numbers a and b with IEEE-
normal factorings (S, €a, fa) and (S, &, fp). Without loss of generality we
can assume that

d==e—& >0

otherwise we exchange a and b. The sum S can then be written as

S = [fa] + [0, &, fo]
2% (=1%o 4+ (—1)®- 270 fy).
This suggests a so called alignment shifof significand § by & positions
to the right. As d can become as large as gnax— emin this would require

very large shifters. In this situation one replaces the possibly very long
aligned significand 272 f,, by its (p+ 1)-representative

' =127% fp]pi1,

which can be represented as a binary fraction with only p+ 2 bits behind
the binary point. Thus, the length of significand f, isincreased by only 3
extra bits. The following theorem implies, that the rounded result of the
addition is not affected by this:

For a non-zero sum & 0 let(S) = (s, &, f), then < Theorem 8.1
S =pe 2% ((-1)% fa+(-1)>-f).
If & < 3, then PROOF
f/ =270 f,
and there is nothing to prove. If 3 > 2 then
2% f, < 22.2=1/2

Since (s, €3, fa) and (s, &, fp) are IEEE factorings, neither exponent can
be less than enin,

€a> €min and & > enin,
and a denormal significand implies that the exponent equals g,in. Due to
the assumption that e; > &,, we have
e/a:eo+62 emin+6- -
359

Chapter 8

Thus, for & > 2, the f, and the factoring (s, €, fa) ae normal, and hence,
FLOATING POINT

ALGORITHMS AND [(—1)% . fat (=1)%-270. fp| > 1-1/2 = 1/2.
DATA PATHS

It follows that
€>e—1>enn and p—€é< ptl-ea

Since
' =pi1 270

and f, isamultiple of 2-(P*1) one concludes

(D fak (~)*-20 6 =pyr (D) fak (D> f
S =piie, 22 ((=1)% - fat (=%).

QED Thetheorem followsbecause p+1—e,> p—&.

Subtraction Algorithm

Let a, b and b be three representable numbers with factorings (s, €, fa),
(So, &, fp) and (%, &, fp). The subtraction of the two numbers a and b can
then be reduced to the addition of the numbers a and B:

a—b = a—(-1)>.2%.f,
= a+(—1)/*.2%.f, = a+b.

8.2.2 Adder Circuitry

Figure 8.6 depicts an add/subtract unit which is divided into two pipeline
stages. The essential inputs are the following

e the factorings of two operands
a= [[537 ed’ fa]]’ b = [[S(Jae()a fb]]

where for (n, p) = (11,53) the exponents are given as n-bit two’'s
complement numbers

e, = [ea[n—1:0]], & = [&[n—1:0]],
and the significands are given as binary fractions

fa = (fa[0].fa[1: p—1]), fo = (fo[0]. fo[1: p—1]),
360

Section 8.2

fa[0:52] - [10:0] es e510:0] ADDITION AND
ea[10:0] = [osg| 2 1 fo-1:55] ~SUBTRACTION
a—— = ' 3 fszero
fo[0:52) — = ?cj, CET g -
eb[10:0] —=| 3 sa2) « 8 s
sb N sh2 §
sub —1/ X A =
o) s
sa__ o sa 8
N i
N
— »n INV
fla, flb § INFs fls
@ & N:al:s
nan I RM[1:0]

Figure 8.6 Top level schematics of the add/subtract unit

e theflags fl; and fly of the two operands,

¢ the rounding mode RM, which is needed for the sign computation,
and

¢ the flag subwhich indicates that a subtraction is to be performed.

In case of a subtraction sub= 1, the second operand is multiplied by —1,
i.e., itssign bit gets inverted. Thus, the operand

b= (-1)*"b
has the following factoring
(%aeﬁ)a fb) = (Sb@SUh &, fb)

The unit produces afactoring (s, es, fs) which, in general, is not a rep-
resentation of the exact sum

S=a+b,
but if (S) = (s.&, f), the output of the unit satisfies

Thus, the output is be rounded to the sameresult as S. If Sis zero, infinite
or aNaN, the result of the add/subtract unit is of course exact.

361

Chapter 8

FLOATING POINT
ALGORITHMS AND

362

DATA PATHS

In thefirst stage special cases are handled, the operands are possibly ex-
changed such that the a-operand has the larger exponent, and an alignment
shift with bounded shift distance is performed. Let

The first stage outputs sign bits s, Syp, an exponent e;, and significands
fa2, fp3 satisfying

& = max{e, &}
S =p-é 2e5-((—1)saz-faz + (—1)5"2-fb3).

The second stage adds the significands and performs the sign computation.
This produces the sign bit s; and the significand fs.

Cost and Delay

Let the rounding mode RM be provided with delay Arm. Let the circuit
SIGADD delay the significand fs by Dsigadd fs) and the flags fszeroand
Ss1 by Dsigadd flag). The cost and cycle time of the add/subtract circuit
and the accumulated delay AnggsupOf its outputs can then be expressed as

Caddsub = Cspecast Caiignshift+ Cxor + Cr(182)

+Csigadd+ Csignselect
Taddsub = Dxor + MaX{DspecasDaliignshift} + 24
Anddsub = max{Dsigadd fs), Dsigadd flag) + Dsignseleat
ARM + DSignSeIec}-

Alignment Shift

Thecircuit ALIGNSHIFT depicted in figure 8.7 is somewhat tricky. Subcir-
cuit ExPSuB depicted in figure 8.8 performs a straightforward subtraction
of n-bit two’s complement numbers. It delivers an (n+ 1)-bit two's com-
plement number agn : 0]. We abbreviate

as=[agn: 0],
then

as = e—g
<& <« as<0 « agn=1

Thisjustifies the use of result bit agn] asthe signal ‘eh gt ea’ (g greater
than e,), and we have

& = Max{€y, & }.

1 e9[10:0]
eb gt ea
eq[10:0] aq12:0] 2c2[5:0]
b -
e Limt LRS(55) = fb3[0:54]
eb[10:0]
eb_gt_ea : fb3[55]
Sticky = (sticky)
fa[0:52] —=| fb2[0:54]
a—= fa2[0:52]
Swap "L <0
fb[0:52] —= b——
o L 2

Figure 8.7 Circuit ALIGNSHIFT; circuit LRSisalogical right shifter.

es[10,9:0] eb[10, 9:0]

A

add(12)

asl1] |
eb gt ea ag10:0]

Figure 8.8 Circuit EXPSUB

11 as11000 /[50

7 .

as[10:0] 0 o = a2[50)
[10:6]

eb gt ea

Figure 8.9 Circuit LimMIT which approximates and limits the shift distance

Section 8.2

ADDITION AND
SUBTRACTION

363

Chapter 8

FLOATING POINT
ALGORITHMS AND

364

DATA PATHS

Cost and delay of circuit EXPSUB run at

CExpSub = Cinv(ll)"‘cadd(lz)
DExpSub = I:)inv‘i‘ Dadd(lz)}-

Approximating the Shift Distance
The shift distance of an unlimited alignment shift would be

d=|ag.

The obvious way to compute this distance is to complement and then in-
crement agn : O] in case asis negative. Because this computation lies on
the critical path of this stage, it makes sense to spend some effort in order
to save the incrementer.

Therefore, circuit LimIT depicted in figure 8.9 first computes an approx-
imation (as;[n— 1: Q]) of this distance by

agn—1:0] if as>0
agn-1:0=¢
agn—1:0] if as<O

If as> 0, then agn] = 0 and
(as)) = (ag10:0]) = 3,
i.e., noerror ismade. If as< —1, then

0—1 = —[agn:0]]—1 = [agn:(]].

Since
0<d-1<2"-1,
we have
(asi[n—1:0]) = [agn:0]] = 6—1.
Thus,

e if ea>e
<asl>_{6—1 if ey<ey.

Circuit Lim1T of figure 8.9 has the following cost and delay

CLimit = Cinv(ll) +Cmux(11) +Cor(6) +CORtre&7)
I:)Limit = I:)inv + Dmux+ Dor + DORtree(7)-

sa fa0:52) s, fb[052] s {052 0 sa O fef0:52)
| | —al— Sl
(o 1} ebgtea 0 1
0
sa2, fa2[0:52] b2, fb2[%:54]

Figure 8.10 Circuit SwAP which swaps the two operandsin case of ea< eb

Swapping Operands

Circuit SwAP in figure 8.10 swaps the two operands in case g, < &,. Inthis
case, the representation of significand f;, will be shifted in the alignment
shifter by a shift distance d — 1 which is smaller by 1 than it should be. In
this situation, the left mux in figure 8.10 preshifts the representation of
by 1 position to the right. Hence,

(fup. 1)_{ (fa, fo) if ea>e
a2 T02) = (fy, £2/2) if en< e

It follows that

N 20.f, if ee>e

Note that operand fy, is padded by atrailing zero and now has 54 bits after
the binary point. The swapping of the operands is done at the following
cost and delay

Cswap = Cmux(54) +Cinux(55)
DSwap = Dmux

Limiting the Shift Distance

The right part of circuit LimIT limits the shift distance of the aignment
shift. Motivated by theorem 8.1 (page 359), we replace significand 2-(@s) .
fo2 by its possibly much shorter (p+ 1)—representative

— [2—<asl)

fb3 fo2]pt1-

By lemma 7.2, a (p+ 1)—representative is computed by a sticky bit which
ORs together al bits starting at position p+ 2 behind the binary point.
However, once we have shifted f,y by p-+ 2 bits to the right, all nonzero
bits of fy, already contribute to the sticky bit computation and further shift-
ing changes nothing. Hence, the shift distance can belimited to p+ 2 = 55.

Section 8.2

ADDITION AND
SUBTRACTION

365

Chapter 8 (0

FLOATING POINT ho[s4] —

ALGORITHMS AND
DATA PATHS
— R
o ORtree(55) sidy
as2(5:0] —| 8
=
[54]
fb2[0] j >
4’7

9

Figure 8.11 Circuit STICKY which performsthe sticky bit computation

We limit instead the distance to a power of two minus 1. Thus, let

b = [log(p+3)] = 6

and
B=2"-1=(1° > p+2
then
n—1
(as) >B « \/=1
i=b
and

_ (B if (asi) > B
(a%) = { (ag) otherwise.

The alignment shift computation is completed by a 55-bit logical left
shifter and the sticky bit computation depicted in figure 8.11.

Sticky Bit Computation

Consider figure 8.12. If fip[0: p+ 1] is shifted by (ag) bits to the right,
then for each position i bit fy,]i] is moved to position i + (a$). The sticky
bit computation must OR together all bits of the shifted operand starting at
position p+ 2. The position i such that bit f,2[i] is moved to position p+ 2
isthe solution of the equation

i+(ag)=p+2, ie, i =p+2—(ag).
The sticky bit then equals
p+1
sticky=\/ fo2[j]-
- j=p+2—(ag)

366

Section 8.2

0 j [p+1‘
o2 [[0] 0l il , ADDITION AND
\ \ SUBTRACTION
| o b2 7 |

X X+ | pt2

Figure 8.12 Shifting operand f,2[0: p+ 1] x bits to the right

This means, that the last (ag) bits of fy2[0: p+ 1] must be ored together.
Thelast p+ 2 outputs of the half decoder in figure 8.11 produce the mask

oPt2—(aw) 1(aw)
ANDiNg the mask bitwise with fp, and oRrRing the results together produces
the desired sticky hit. Cost and delay of circuit STICKY run at

Csticky = Chded6) +55-Cand+ Cortred 55)
I:)Sticky = thec(6) + Dand+ DORtree(55)-

Correctness
The correctness of thefirst stage now follows from the theorem 8.1 because

S . {2%«v4ﬁ-m+w—n%wzﬁwdwﬂ if e>e
L2 (DI e+ ()R 270 falpir) O ea<e
= 2% (-1 fa 4 (1% [270 filpya)

= 2%5.((—1)%2- oo + (—1)%2- fyg).
(8.1)

Cost and Delay of the Alignment Shifter

Figure 8.7 depicts the circuit ALIGNSHIFT of the alignment shifter. Since
circuit LimIT has amuch longer delay than circuit Swap, the cost and the
delay of the alignment shifter can be expressed as

Caiignshift = Cexpsutt Cimit +Cswapt Csticky
+CLry(55) + Cxor + Crmux(11)
Daiignshift = Dexpsutt Drimit + max{Csticky CLrg(55) }-

Significand Add
Figure 8.13 depicts the addition/subtraction of the significands §, and fys.

Let . .
if 3=
s=s0%={] i ore _

367

Chapter 8

00 fa2[0:52] 00 fb3[0:55] sx
FLOATING POINT
ALGORITHMS AND
DATA PATHS
add(58)
ovf neg sum[-2:55]
{
s2,902 —= Sign | |Abs(s8)| |zeo(s8) |
ssl f9[-1:55] fszero

Figure 8.13 Circuit SIGADD which depending on the flag s, adds or subtractsthe
significands fa2 and fi3

the circuit computes
sum= fa+ (—1)%: fps.
The absolute value of the result is bounded by
Isum < fo+fiz < 2—2 P Y422 (P2 < 4

Therefore, both the sum and its absolute value can be represented by a
two's complement fraction with 3 bits before and p + 2 bits behind the
binary point.

Converting binary fractions to two’s complement fractions and extend-
ing signs, the circuit SIGADD computes

sum = fa+(—1)% fo3
= (fal0] faz[1: p—1]) + (1) (fo3[0]. foa[1: p+2])
— [0fs2[0]. fap[L: p— 2O
+ [(fa[0] @ S0)-(foa[1: p+ 2] @S] + S¢- 27 (P+2)
= [0%fx0]. fao[1: p— 1]0°
+ [(fa[0] @ sx)- (foa[1: p+ 2] @S] + sc-27 P+
= [sunm—2:0].sunjl: p+2]]

Figure 8.14 depicts a straightforward computation of

- sumj = fs = (f—1:0].f1: p+1]).
368

Section 8.2

ADDITION AND
SUBTRACTION

abg[n-2:0]

Figure 8.14 Circuit ABS computes the absolute value of an n-bit two’s comple-
ment number

A zero significand can be detected as
fszero=1 <+ ff—-1:p+1=0 <+ sunj-2:p+1]=0.

Let
neg = sunj—2]

be the sign bit of the two’s complement fraction sunj—2: 0].sunjl: p+
1]. Table 8.2 lists for the six possible combinations of g, s, and negthe
resulting sign bit sy such that

(—1)% - fs = (—1)% - fap+ (—1)%- i3 (8.2)
holds. In abrute force way, the sign bit 1 can be expressed as

1 = (ASANY V (aAS,ANeg V (saAS,ANEY
= ($,Aneg V (sa A (S, NAND neg)).

For the factoring (ss, es, fs) it then follows from the Equations 8.1 and 8.2
that

S = [saes fa] +[sh &, fi]
—p e 2% ((=1)%2. fpp + (—1)%2- fy3)
— 25, (_1)551 - fs.

Cost and Delay
Circuit SIGN generates the sign bit sy in a straightforward manner at the
following cost and delay:

CSign = 2 Camd + Cor + Cnand
DSign = Dand+ Dor + Dnand-

369

Chapter 8

FLOATING POINT
ALGORITHMS AND
DATA PATHS

370

Table 8.2 Possible combinations of the four sign bits s, S, negand ss1

[resut [[sa|s[neg| su|
fao + T3 0O 0 0
impossible || 0 | 0| 1 *
fao — T3 oj1| 0 0
fao — fo3 oO|1| 1 1
—fao + T3 10 0 1
—foo+f3 || 1|0 1 0
impossible || 1 | 1| O *
—foo—foz || 1|1 | 1 1

Circuit ABs of figure 8.14 computes the absolute value of an n-bit two's
complement number. It has cost and delay

Cabs(n) = Ciw(n—1)+Cinc(n—1) +Crun—1)
Dabs(N) = Dinv+ Dinc(N—1) 4+ Dmux

For the delay of the significand add circuit SIGADD, we distinguish be-
tween the flags and the significand fs. Thus,

Csigadd = Cxor(58) + Cadd(58) + Czero(58) + Cabs(58) + Csign
DSigAdo(flag) = Dyor+ Dadd(58) +max{Dzero(58), DSign}
Dsigadd fS) = Dxor+ Dadd(58) + Dabs(58).

Special Cases

The circuit SPECAS checks whether the operation involves special num-
bers, and checks for an invalid operation. Further floating point exceptions
— overflow, underflow and inexact result — will be detected in the rounder.
Circuit SPECA S generates the following three flags

¢ INFssignals an infinite result,
¢ NANssignalsthat the result isaquiet NaN, and
e INV signals aninvalid addition or subtraction.

The circuit gets 8 input flags, four for either operand. For operand a the
inputs comprise the sign bit s, the flag INFaindicating that a € {400, —co},
and the flags NANa and SNANa. The latter two flags indicate that a is a
quiet NAN or a signaling NaN, respectively. The flags g, INFb, NAND,
and SNAND belong to the operand b and have a similar meaning.

Section 8.2

According to the specifications of section 7.4.2, an invalid operation
must be signaled in one of two cases: if an operand is a signaling NaN,
or when adding two infinite values with opposite signs. Thus,

ADDITION AND
SUBTRACTION

INV = (SNANav SNAND Vv (INFa A INFb A (s,@,))

The result is a quiet NaN whenever one of the operands isa NaN, and in
case of an invalid operation:

NANs = INV Vv (NANaVv NAND

According to table 7.3 (page 343), an infinite result implies that at least
one of the operands isinfinite; and in case of an infinite operand, the result
is either infinite or aNaN. Thus, an infinite result can be detected as

INFs = (INFa V INFb) A NANs
Circuit SPECA'S generates the three flags along these lines at

Cspecas = 5-Cor + 3-Cand + Cyor +Cinv
Dspecas = Dxor+2-Dor +2- Dand + Diny-

Sign Computation

If the result is afinite non-zero number, circuit SIGADD aready provides

the correct sign s;. However, in case of a zero or infinite result, special

rules must be applied (section 7.4.2). For NaNs, the sign does not matter.
In case of an infinite result, at least one operand isinfinite, and the result

retains the same sign. If both operands are infinite, their signs must be

aike. Thus, an infinite result has the following sign

| sa if INFa
= g if INFOAINFa
In case of an effective subtraction (s = sa® §, = 1), a zero result is
always positive, except for the rounding mode rg (round down) which is

coded by RM[1: O] = 11. In case of s, = 0, the result retains the same sign
asthe a operand. Thus, the sign of a zero result equals

0 if scA (RM[1] NOR RM[0])
so =4 1 if s¢A (RM[1]VRM[0])
sa If 5
Depending on the type of the result, its sign g can be expressed as
Sg if INFs
S = So if /INFs A (fs=0)

sq if /INFs A (fs#0). -
371

Chapter 8

FLOATING POINT
ALGORITHMS AND
DATA PATHS

372

Figure 8.15 Circuit SIGNSELECT selects the appropriate sign Ss3

The circuit SIGNSELECT of figure 8.15 implements this selection in a
straightforward manner. It also provides a flag ZEROswhich indicates
that the sum is zero. Thisis the case, if the result is neither infinite nor a
NaN, and if its significand is zero (fszero= 1). Thus,

ZEROs= fszeroA (INFs NOR NANS.

The cost and the maximal delay of circuit SIGNSELECT can be ex-
pressed as

Csignselect = 4+ Crux+ 2-Cand+ Chor
Dsignselect = Dand+ mMax{3- Dmux Dnor}-

8.3 Multiplication and Division

HE UNPACKER delivers unpacked normalized floating point numbers
to the multiply/divide unit. The multiplication of normalized numbers
is straightforward. Specifying and explaining the corresponding circuits
will take very little effort.
Division is more complicated. Let a and b be finite, non-zero, repre-
sentable floating point numbers with normalfactorings

(a) = (sa,€a—lza,fa)
(b) = (sb,eo—lzb,fb).

Thus, fa, fp € [1,2). We will compute the rounded quotient r(a/b) in the
following way:

1. Let s, eq and g be defined as

S = SDS
& = €—&
q = fa/fp € (1/2,2),

then
a/b = [s,€q,q]
and the exponent € of the rounded result satisfies

€ > eg—1
For fq = [Q]pt+1, wethen have
28 . fg =pti-e 2 . a,

and hence
2% fy =p_¢ 2%.q.

Thus, it suffices to determine fy and then feed (s,€q, fq) into the
rounding unit.

2. In alookup table, an initial approximation » of (1/fy) is deter-
mined.

3. With an appropriate number i of iterations of the Newton-Raphson
method a much better approximation % of (1/fy) is computed. The
analysis will have to take into account that computations can only be
performed with finite precision.

4. Thevaued = fa-X; isan approximation of the quotient f,/f,. The
correct representative fy is determined by comparing the product
q - fp with f; inadightly nontrivial way.

8.3.1 Newton-Raphson Iteration

Newton-Raphson iteration is a numerical method for determining a zero of
areal valued function f(x). Consider figure 8.16. One starts with an initial
approximation Xy and then determines iteratively for each i > 0 from % a
(hopefully) better approximation %.1. This is repeated until the desired
accuracy is obtained.

In the approximation step of the Newton-Raphson method, one con-
structs the tangent to f(x) through the point (%, f(x)) and one defines

Section 8.3

MULTIPLICATION

AND DIVISION

373

Chapter 8

FLOATING POINT
ALGORITHMS AND
DATA PATHS

374

(X, f(xp))

X

X0 X1 X2 - f(x)

Figure 8.16 Newton iteration for finding the Zero x of the mapping f(x), i.e,
f(x) = 0. Thefigure plotsthe curve of f(x) anditstangentsat f(x;) fori=0,1,2.

Xi+1 &s the zero of the tangent. From figure 8.16 it immediately follows

that f(x) 0
Xi) —

f'(x) =
() X —Xit1

Solving thisfor %1 gives
Xi+1=x—T04)/f'(x)

Determining the inverse of a real number f, is obviously equivalent to
finding the zero of the function

f(x) =1/x— fp.
The iteration step then trandates into
Xin = X+ (/% —fo) -

= X(2—fp-%)
Let & = 1/ fp, — X be the approximation error after iteration i, then
i1 = 1/fo—X%p1
= 1/fp—2%+ fb‘Xi2
fb-(l/fb—Xi)Z
= fp-& < 2.8
Observethat & > Ofori > 1.

Section 8.3

For later use we summarize the classical argument above in a somewhat

peculiar form: MULTIPLICATION

AND DIVISION
Let < Lemma 8.2

X1 = X-(2—fp-X),

6 = 1/fpb—x and

Ois1 = 1/fp—Xia,
the approximation error is then bounded by

Siy1 < 2-82.

8.3.2 Initial Approximation

The unpacker delivers arepresentation 1. f,[1: p— 1] of f, satisfying
fo = (Lfp[l:p—1]) € [L2).
Theinterval [1,2) is partitioned into 2 half open intervals of the form
[1+t-27Y, 1+ (t+1)-27Y).

The midpoint of the interval containing f, is f} = (1.fy[1:y]1). Let X =
1/ f} be the exact inverse of f/. The initial approximation % of 1/fy is
determined by rounding X to the nearest multiple of 2-Y=1. In case two
multiples are equally near, one rounds up.

Lemma 8.3 below implies, that X liesin the interval (1/2,1). Hence %
can be represented in the form

X0 = (0x0[1: y+ 1))

and the initial approximation can be stored in a 2 x y-ROM. The crucial
properties of the initial approximation are summarized in the following
lemma:

The approximation errod, = 1/ f, — Xo of the initial approximation obeys« Lemma 8.3
0 < |8 = |1/fo—X| < 1.5-27V1

We first show the upper bound. Consider the mapping f(x) = 1/x as de- PROOF
picted in figure 8.17. Let u,v € [1,2] and let u < v, then

[f(u) = f(W)] < (v—u)-|F'(u)] < (v—u). —
375

Chapter 8

FLOATING POINT
ALGORITHMS AND

376

DATA PATHS

QED

1.0
f(u) -

f(v) -
g(v) 1

10 u vV 20

Figure 8.17 Themapping g(x) = f(u) + f'(u) - (x—u) isthetangent to f (x) = 1/x
ax=u.

Since |fp — f| < 27V~1, weimmediately conclude |1/ f, — x| < 27V-1.
Rounding changes X by at most 2-Y=2 and the upper bound follows.

For the lower bound we first show that the product of two representable
numbers u and v cannot be 1 unless both numbers are powers of 2. Let y
and v; be the least significant nonzero bits of (the representations of) u and
v. The product of u and v then has the form

u-v = 2+ A - (i+i)+1

for someinteger A. Thus, the product can only be 1if A= 0, in which case
the representations of u and v have both an 1 in the single position i or j,
respectively.

Thus, for representable f, # 1 any finite precision approximation of 1/ f,
isinexact, and the lower bound follows for al f, # 1.

For f, = 1 we have f, = 1+ 2 Y"1, Consider again figure 8.17. The
mapping f(x) = 1/x isconvex and liesin the interval (1,2) entirely under
the line through the points (1,1) and (2,1/2). The line has slope —1/2.
Thus,

1
Tot— f(l+t)<1-t/2
forallt € (0,1). Fort =27Y-1 weget

X =f(f)<1-2v2

Thus, X cannot be rounded to a number x, bigger than 1 — 2-Y=2.

Section 8.3

8.3.3 Newton-Raphson Iteration with Finite Precision
MULTIPLICATION

We establish some notation for arguments about finite precision calcula= AND DIVISION

tions where rounding is done by chopping all bits after position o. For real
numbers f and nonnegative integers o we define

[flo=|f-29]-2°,
then
Lflo = Lf].
Moreover, if f = (f[—i:0].f[1:9])) ands> o, then
| fle = (f[-i:0]f[1:0]).

Newton-Raphson iteration with precision o can then be formulated by
the formula
Xiy1=[%-[2— fo-Xi]o]o-
Let
z= fp-X%.
Assume z € (1,2) and let Z[0].Z[1 : S| be arepresentation of z, i.e.,

z=(Z0].41:9]).

The subtraction of z would require the complementation of z and an
increment in the last position. As computations are imprecise anyway one
would hope that little harm is done — and time is saved — if the increment
isomitted. Thisis confirmed in

Let ze (0,2), then < Lemma 8.4
0<2-z < (Z0].Z1: 0]) +2°.

PROOF

7071 o]) + i lﬁ-Z’i +2°8
1=0+

< (40l.71:0])+2°°.

QED _
377

Chapter 8

The simplified finite precision Newton-Raphson iteration is summarized
FLOATING POINT

ALGORITHMS AND *
DATA PATHS 7z = fp-X
A = (z[0:0])
X+1 = |[%-Ale
6i = l/fb—Xi.

For later use we introduce the notation
A = appr(2— fo-x).
The convergence of this method is analyzed in atechnical lemma:
Lemma 8.5 » Leto >4, letx € (1/2,1) and letO < |&]| < 1/8. Then
Xi+1 € (0,1) and
0<8,1<2-8+2 <1/4.
foralli > 0.

PROOF
Oir1=01+00+ A3

where

A = 1fo—%-(2-37)
Do = % (2—2)—X A
D3 = Xi-A—|x-Alo

By the classical analysisin lemma 8.2 we have
0<A;<2-8.
Because X liesin theinterval (0,1), we have
O0<z =fp-x <2
Lemma8.4 implies

0<Ay = %-(2-2-A)
< x-2°<2°°9.

Obviougly, we have

o
IN

N3 < 2°°
378

Section 8.3

and the first two inequalities of the lemmafollow. By induction we get

MULTIPLICATION

Oii1 < 2.5i2+2—0+1 AND DIVISION

< 1/8+1/8=1/4
Finally 0< 811 =1/fp—X+1 < 1/4implies

1/4<1/fp—1/4<x<1/fp <1

QED
8.3.4 Table Size versus Number of lterations
The following lemma bounds the number of iterations necessary to reach
p+ 2 bits of precision if we truncate intermediate results after o = 57 bits
and if we start with atable, where y = 8.
Leto =57, lety=8and let < Lemma 8.6
. 2 if p=24 : —(p+2)
'_{3if IO:53,then6.<2 .
By the lemmas 8.3 and 8.5 we have PROOF
& < 15.279
5 < 2-(152%.278127% < 46.2718
5 < 4232230125 <4233.2% < 2%
Thus, i = 2 iterations suffice for single precision.
53 < 3583.7.277242°%
< 35.29242% 2%
Thus, i = 3 iterations suffice for double precision. QED

By similar arguments one shows that one iteration less suffices, if one
starts with y = 15, and one iteration more is needed if one startswithy =15
(exercise 8.2). The number of iterations and the corresponding table size
and cost are summarized in table 8.3 We will later usey = 8.

379

Chapter 8

FLOATING POINT
ALGORITHMS AND

380

DATA PATHS

Table 8.3 Size and cost of the 2Y x y lookup ROM depending on the number of
iterations i, assuming that the cost of a ROM is one eighth the cost of an equally
sized RAM.

iy lookup ROM
size[K hit] | gate count

1| 15 480 139277

21 8 2 647

3| 5 0.16 61

8.3.5 Computing the Representative of the Quotient

By lemma 8.6 we have

0 < 1/fp—x < 2°(P+2

X < 1/ o < x+27(pH2)

fa-xi < fa/fp =q < fa-xi4+2°(PHD,
Thus,
Lfa‘XinJrl < fa-xi < ¢
< faxi4+2 P < [faxipa+2°P
In other words,
E=[fa-X]p+1

is an approximation of g, and the exact quotient lies in the open interval
(E,E+27P). Moreover, we have

E42-(P+2) if fa/fp <E++2°(PHY
[@/b]pi1 = { E+2°(PHY if fo/fp=E+2°(PHD)
E+3.2 (P2 jf fy/fy>E4+2(PHD
In the first case one appends 1 to the representation of E, in the second
case one increments E, and in the third case one increments and appends
1
For any relation o € {<,=, >} we have

fa/fo 0 E4+27(P+D) N fa o fp- (E+2 (P,
Thus, comparison of f; with the product
G=fy- (E+2 (P

determines which one of the three cases applies, and whether the result is
exact.

Section 8.3

1za[5:0] 1zb[5:0]
fa[0:52] fb[0:52] 310:0] :2[10:0] nan fla flb MULTIPLICATION
¢ ¢ I i \ i ¢ ¢ AND DIVISION
SigfMD ‘ SigV/ExpMD ‘ SpecMD ‘
(with register stage) \L \L % ¢ ¢ ¢ ¢ ¢
I > s, eq[12:0] - nan, ZEROg, INFg, NANg, INV, DBZ |
fq[-1:55] flg

Figure 8.18 Top level schematics of the multiply/divide unit

8.3.6 Multiplier and Divider Circuits

The multiply/divide unit depicted in figure 8.18 is partitioned in a natural
way into units

1. SIGN/ExPMD producing the sign 55 and the exponent g,
2. SIGFMD producing the significand fy and
3. SPECMD handling special cases.

The essential inputs for the unit are the sign bit, the exponent, the signif-
icand, and the number of leading zeros for two operands a and b satisfying

a= (_1)Sa_2ea—IZa_ faa b = (_1)&)_290—Izb_ fb7

where for (n, p) = (11,53) the exponents are given as n-bit two’'s comple-
ment numbers

e, = [ea[n—1:0]], & = [e[n—1:0]],
the significands are given as binary fractions
fa = (fal0].fa[l: p—1]), fo = (f[0].fo[1: p—1])

and for
r=[logp]
the numbers of leading zeros are given as r—bit binary numbers

1Za = (lza[r—1:0]), 1z = (Izo[r—1:0]).
In the absence of special cases the factorings are normalized, and thus

fa, fb S [1,2) [
381

Chapter 8

FLOATING POINT
ALGORITHMS AND
DATA PATHS

382

For operations o € {x, /}, let
X = aob
be the exact result of the operation performed, and let
(%) = (s, f).

In the absence of special cases, the unit hasto produce afactoring (g, €g,
fq) satisfying
[[Sqae(b fq]] —p-é& aob.

Cost and Delay

Circuit SIGFM D which produces the significand f; has an internal register
stage. Thus, the cost and the cycle time of the multiply/divide circuit and
the accumulated delay Avuipiv Of its outputs can be expressed as

CMuIDiv = CSingD+ CSignExpMD+ CSpecMD+Cff(72)
Tmupiv = MaxX{Dspecmp+ A, Dsignexpmot A, Tsigtmp}
Avupbiv = AsigfMD-

Sign and Exponent Computation

Figure 8.19 depicts the circuit SIGN/EXPMD for the computation of the
sign and the exponent. The computation of the sign

HG=%DD

is trivial. The computation of the exponent is controlled by signal fdiv
which distinguishes between multiplications and divisions. The exponent
is computed as

| ea—lza+(&—lzp) if /fdiv (multiply)
€ = €—lza— (ep—1zy) if fdiv (divide).

We can estimate &, by
=2 = 2-@nax > & > —2-€mn—p > -2

Therefore, the computation is performed with (n+ 2)-bit two's comple-
ment numbers. Circuit SIGN/ExPMD has the following cost and delay:

CSignExpMD = Cxort+ 23‘Cinv+cmux(11) +Cmux(13)
+C4/2add(13) + Cada(13)
DSignExpMD = Dinv+ Dmux+ D4/2add(l3) + Dadd(13)'

ed[10,9:0] 1za5:0] €eb[10:0] 1zb[5:0]

7
sa s 1 fdiv— 1 0) fdiv

| | 10

4J2 adder(13)
| L
add(13)
|

q eq[12:0]

Figure 8.19 Circuit SIGN/EXPMD

Significand Multiplication

Let a and b be the two operands of the floating point multiplication. In
case that the operand a is a finite non-zero number, its significand § is
normalized. The same holds for the significand f, of operand b. Hence

Let R
Xx=ab and ﬁ(X) = (S'.]aéa f)7
then
€> e—lzat+e—Ilzy = &
Unit SIGFM D depicted in figure 8.20 performs the significand computa-
tion of the multiply/divide unit. The multiplication algorithm shares with
the division algorithm a 58-bit multiplier. Therefore, the significands are

extended by 5 trailing zeros to length 58. Wallace tree, adder and sticky
bit computation produce for a 54-representative f, of the product:

(fl—1:55]) = [(falO]. Tl : 5210°) - (fo[O]. o[: 52107
Hence
[[queqv fm]] = (_l)sq'zeq'[fa' fb]54

—54—g (_l)sq'zeq‘(fa'fb)
=s4-6 (—1)%-2%(fa- fy).

For both single and double precision computations we have p < 54 and
therefore

[sq, €, fll =p—e (—=1)%-2%-(fa- fo).

Section 8.3

MULTIPLICATI
AND DIVISION

ON

383

Chapter 8

FLOATING POINT
ALGORITHMS AND

384

DATA PATHS

fb[0:52] 0°

~ fbbdoe

opa[0:57]
opb[0:57]

Eadoe

fm[-1:114]

[0:25] |[26:54]

fq[-1:55]

Figure 8.20 Circuit SIGFMD performing the division and multiplication of the
significands

Significand Division

Significand division is performed by unit SIGFMD (figure 8.20) under the
control of the counter Dcnt depicted in figure 8.21 and the FSD of figure
8.22. The corresponding RTL instructions in table 8.4 summarize the
steps of the iterative division asit was outlined above. A Newton-Raphson
iteration step comprises two multiplications, each of which takes two cy-
cles. Thus, asingleiteration takes four cycles; the corresponding states are
denoted by Newton 1 to Newton 4. The counter Dcnt counts the number
of iterations. During the table lookup, the counter is set to the number of
iterations required (i.e., 2 for single and 3 for double precision), and during
each iteration, Dcnt is counted down. After state lookup we have

X=Xy and Dcnt=dcnp= (db?3:2).

After the it" execution of state Newton 4 we have

A = A1
X = X
Dcnt = dcng—i.

The loop is left after i = dcng iterations. For this i, we have after state

Section 8.3

2 10 11

zero? decrement

_ db MULTIPLICATION
Dentce dont, AND DIVISION

Dentzero ﬂ\ tu—H0 1

Figure 8.21 Iteration Counter Dcnt

’ unpack }%’ Iookup‘

Newton 1 —| quotient 1
7

ton 2 quotient 2

Newton 3 quotient 3

Newton 4 quotient 4

Dent >0 Dent=0
’ select fd }%’ round 1 }%’ round 2 ‘

Figure 8.22 FSD underlyingtheiterative division. The states Newton 1 to Newton
4 represent one Newton-Raphson iteration. Dcnt counts the number of iterations;
it is counted down.

|
A

quotient 4

E = Ua'Xinﬂ
Enb = E-fp

After state quotient 2 we already have
Note that for single precision, E istruncated after position p+ 1 = 25.

Circuit SELECT FD
Figure 8.23 depicts the circuit selecting the (p+ 1)-representative f; of the
guotient g according to the RTL instructions of state select fd. Since

E = E+2 (Pt
385

Chapter 8

FLOATING POINT
ALGORITHMS AND
DATA PATHS

386

Table 8.4 RTL instructions of the iterative division (significand only). A multi-

plication always takes two cycles.

| state | RTL instruction | control signals
unpack normalize FA, FB
lookup x = table(fp) xce, tlu, fbbdoe
Dent= (db?3: 2) Dcntce,
Newton 1/2 | Dcnt= Dcnt—1 Dcntce, xadoe, fbbdoe
A=appr(2—x-b,57) | Ace
Newton 3/4 | x=|A-X|s57 Aadoe, xbdoe, sce, cce
Xce
quotient 1/2 | E = [a-X|ps1 faadoe, xbdoe, sce, cce
Da= fa, Dp= fp faadoe, fbbdoe, Dce, Ece
quotient 3/4 | B, =E - fy Eadoe, fbbdoe, sce, cce
Ebce
select fd E' =E+42-(PHD,
B= fa—Ep—2- (Pt . f,
E+2-(P*2 if B<0
fg=< FE ;if =0
E'+2 (P2 -if >0
Round /2 | round (s, &, fq) \
Da[0:57] 056 Db[0:57]
E[0:25] E[26:54]
Eb[0:114]
b 129
1 0Fdb 7 1‘ 1‘
inc(s5) 3/2 adder(116)
[oo \ \ 1
E{_ﬂﬂ o adder (117)
0 beta
-1:54] —o<] zero(117)
27 I 1T ‘v|“ 28 db
1 0fdb
fd[-1:25] fd[26] fd[27:54] fd[55]

Figure 8.23 Circuit SELECT FD which selects the representative of the exact q

its computation depends on the precision. For double precision (p = 53)
holds

(E'[0].E'[1:54]) = (E[0].E[1:54]) +2 .

For single precision (p = 24), E was truncated after position p+ 1 = 25.
Thus,

(E'[0].E'[1:25]) = (E[0].E[1:25])+2 %
= (E[0].E[1:25]) + 2 271454
i=26
= (E[0].E[1:25]1%) 4274,

The computation of value 3 also depends on the precision p. Operand
fp, which is taken from register Db, is first shifted p+ 1 positions to the
right:

(0.0%0°Dp[0:57])) ;if db
(0.0%*Dp[0:57]0%°) ;if /db
2= (P fp,

(0.07% fgpf25: 111]) = {

Now 3 can be computed as

B = fa—Ep— 2 (Pt f,
— [0D4[0].D4[1: 57]0°"] — [OEL[0].Ep[1 : 114]]
—[00.0% fop[25 : 111] 0°]

— [0D4[0].D4[1 : 57]0%° 1) + [1Ep[0].Ep[1 : 114]]
+[11.1%4 fgp[25 : 111] 23] + 27114

The output significand fq is computed in the following way: let

_JE if B<O
| E if B>0,
then
c if B=0
AT r+27(+2 jf B0

Thus, in case 3 # 0 one has to force bit fy[p+ 2] to 1.

Cost and Delay
Figure 8.23 depicts circuit SELECT FD which selects the representative of
the quotient. The cost and the delay of this circuit run at

Section 8.3

MULTIPLICATION

AND DIVISION

387

Chapter 8

FLOATING POINT
ALGORITHMS AND

388

DATA PATHS

CselectFd = Cinc(55) + Cmux(zg) + Cmux(56) + Crux
+Cmux(87) +C3/2add(116) + Cadd(117)
+Czero(117) +203- Gy +Cand
Dselectrd = 2 Dmux+ mMax{Dinc(55) + Dmux
+2- Diny + D3/2add(116) + Dadd(117) + Dzerd(117) }.

Circuit SELECT FD ispart of the circuit which performs the division and
multiplication of the significands. The data paths of circuit SIGFMD have
the following cost

Csigimp = 6-Cariv(58) +5- Ct1(58) + 3- Ct1(116) + Crom(256, 8)
+Cmux(58) + C4/2muITree(58a 58) + Cadd(116) + Cinv(58)
+Cand(29) + CORtree(GO) + Cmux(57) +Cselectrd

The counter Dcnt and the control automaton modeled by figure 8.22 have
been ignored. The accumulated delay of output f; and the cycle time of
circuit SIGFMD can be expressed as:

Asigimp = max{Dselectrd Dadd(116) + Dortred 60) } + Dmux
Tsigivp = MaX{Dgriv + Drom(256,8) + Dmux,
Ddriv + D4/2muITree(58a 58)3 Dadd(l]-G) + Dmux} +A.

Exceptions and Special Cases

The circuit SPECMD checks whether special operands are involved, i.e.,
whether an operand is zero, infinite or a NaN. In such a case, the result
cannot be afinite, non-zero number. The circuit signals the type of such a
special result by the three flags ZEROq, INFq and NANq according to the
tables 7.4 and 7.5.

Thecircuit aso detectsaninvalid operation (INV) and adivision by zero
(DBZ). These two |IEEE floating point exceptions can only occur when
special operands are involved, whereas for the remaining floating point
exceptions — overflow, underflow and inexact result — both operands must
be finite, non-zero numbers. Thus, OVF, UNF and INX will be detected
by adifferent circuit during rounding (section 8.4).

For each of the two operands, the circuit SPECM D gets four input flags
which indicate itstype (ZERO, INF, NAN, and SNAN). Most of the output
flags are generated in two steps. First, two sets of flags are generated,
one for the multiplication and one for the division. The final set of flagsis
then selected based on the control signal fdiv which distinguishes between
multiplication and division.

Exception Flags
According to section 7.4, the flag DBZ (division by zero) isonly activated
when afinite, non-zero number is divided by zero. Thus,

DBZ = fdivAZEROW\ (ZEROav INFaVv NANav SNANa.

Theflag INVm signals an invalid multiplication. According to the spec-
ification of section 7.4.3, it is raised when an operand is a signaling NaN
or when multiplying a zero with an infinite number:

INVm = (INFaAZEROB v (ZEROaA INFb) v (SNANa/ SNAND.

The flag INVd which indicates an invalid division is signaled in the fol-
lowing three cases (section 7.4.4): when an operand is a signaling NaN,
when both operands are zero, or when both operands are infinite. Thus,

INVd = (ZEROaAZEROB Vv (INFaAINFb) v (SNANa/ SNAND.
The |EEE exception flag INV is selected based on the type of the operation

INVm if fdiv
V= { INVd if fdiv.

Special Result
The flags NANQ, INFg and ZEROq which indicate the type of a specia
result are generated according to the tables 7.4 and 7.5.

The result is a quiet NaN whenever one of the operands is a NaN, and
in case of an invalid operation; this is the same for multiplications and di-
visions. Since signaling NaNs are already covered by INV, the flag NANQ
can be generated as

NANg = INV VvV (NANaVv NAND

The result of a multiplication can only be infinite if at least one of the
operands is infinite. However, if the other operand is a zero or a NaN, the
result isa NaN. Thus, the flag INFm signaling an infinite product can be
computes as

INFm = (INFa Vv INFb) A NANg

The result of a division can only be infinite, when an infinite numerator
or a zero denominator is involved. In case of DBZ, the result is always
infinite, whereas in case of an infinite numerator, the result can also be a
NaN. Thus,

INFd = (INFa A NANQ v DBZ

Section 8.3

MULTIPLICATION

AND DIVISION

389

Chapter 8

FLOATING POINT
ALGORITHMS AND
DATA PATHS

390

Theflag INFq isthen selected as
INFm if fdiv
INFq = { INFd if fdiv.

The flags ZEROmM and ZEROd which indicate a zero product or quotient
are derived from the tables 7.4 and 7.5 along the same lines. In case of a
zero product, at least one of the operands must be zero. A zero quotient
requires a zero numerator or an infinite denominator. Thus,

ZEROm = (ZEROaVv ZEROH A NANq
ZEROd = (ZEROaV INFb) A NANq
ZEROm if fdiv
ZEROd if fdiv
The circuit SPECMD generates al these flags along these lines. It has
the following cost and delay:
CSpecMD = 10‘Cand+12‘C0r+cnor+cinv+3‘cmux
DspecMp = 2-Dand+4-Dor + Diny + 2 Dimux

ZEROQ =

8.4 Floating Point Rounder

HE FLOATING point rounder FPRND of figure 8.24 implements ‘tiny
before rounding’ and the ‘type b’ loss of accuracy (i.e., inexact result).
The rounder FPrnd consists of two parts

e circuit RND which performs the rounding of afinite, non-zero result
x specified by the input factoring (s, &, f;), and

e circuit SPECRND which handles the special inputs zero, infinity,
and NaN. Such aninput issignaled by the flags fl.. Thiscircuit also
checks for |EEE floating point exceptions.

Cost and Delay
All the inputs of the floating point rounder have zero delay since they are
taken from registers. Thus, the cost and cycle time of the rounder FPRND
and the accumulated delay Arprng Of its outputs run at

Crpnd = Cnormshift+ Crepp+ Ctt(140) 4+ Csigrnd

+CF’ostNorm+ CAd justExp+ CEprnd+ CS pecFPrnd
Teprmd = Awormshiftt Dreppt+ A
AFPrnd = ASiand+ DPostNorm+ DAdjustExp+ DEprnd+ DSpecFPrnd

UNF/OVFen fr er s flr
S boooooo T
| NormShift M_| Repp %8 |
! |
| ! ! 1
lb UNF/OVFen TINY OVF1l en eni fI[0:54] s flr ;
! |
| 11 . \L <o RM :
| S'and |
! \
|2 |

|
1 PostNorm }
! |
| SIGovf | |e2 - |
! RND *—= . |
| r AdjustExp |[=—* |
| €3 |
| OVF ExpRnd l

|
! |
. I A | I T

eout, fout SIGinx
SpecFPrnd
|EEED V I Fore3:0)

Figure 8.24 Schematics of the floating point rounder FPRND

8.4.1 Specification and Overview

Letx € R \ {0} bethe exact, finite result of an operation, and let

2 %x :;if OVFAOVFen
y = 29x. ;if UNFAUNFen
X ; otherwise (8.3)
AX) = (s&f)
nly = (sef).

The purpose of circuit RND (figure 8.24) is to compute the normalized,
packed output factoring (S, &ut, fout) such that [[s, esut, fout]] =r(y), i.e,

(S, €out; fout) = (S, exprd(s, post(e,sigrd(s, f)))). (8.4)

Moreover the circuit produces the flags TINY, OVF and SIGinx. The ex-
ponent in the output factoring isin biasedformat. The inputs to the circuit
are

e the mask bits UNFen and OV Fen (underflow / overflow enable)

Section 8.4

FLOATING POINT

ROUNDER

391

Chapter 8

FLOATING POINT
ALGORITHMS AND
DATA PATHS

Lemma 8.7 »

PROOF

S QED
392

e the rounding mode RM[1: O]
e the signal dbr (double precision result) which defines

(np) = (11,53) ;if dbr=1
" (8,24) ; otherwise

e the factoring s, &, f;, where [12 : 0] is a 13-bit two’s complement
number and f;[—1: 55] has two bits |eft of the binary point.

The input factoring has only to satisfy the following two conditions:

e theinput factoring approximates x well enough, i.e.,
[s.&, fr] =p-e x (85)

e fi[-1:0]=00impliesOVF =0. Thus, if |x| islargethen f, € [1,4).

By far the most tricky part of the rounding unit is the normalization
shifter NORMSHIFT. It produces an approximatedoverflow signal

OVF1 = 2%f > 28mactl

which can be computed before significand rounding takes place. The re-
sulting error is characterized by

Let OVF2= OVFA /OVFL, then OV R implies
& =enax and sigrds f) = 2
By definition (section 7.3.1), aresult x causes an overflow if
[F()] > Xmax

According to equation 7.8, such an overflow can be classified as an over-
flow beforeor after rounding:

OVF(X) < (6>ema) OF (E=emax and sigrd(s f)=2).
Since /OV F1implies
X =p & 2% f < 2mactl

we have é < enax and the lemmafollows.

Thus, the flag OV F1 signals an overflow before rounding, whereas the
flag OV F2 signals an overflow after rounding.
The outputs of the normalization shifter NORMSHIFT will satisfy

B e+a ;if OVF2AOVFen
& = e ;otherwise (8.6)

fn :p f

The normalization shifter also produces output &; = e, + 1. Both expo-
nents will be in biased format.

The effect of the circuits REPP, SIGRND and POSTNORM is specified
by the equations:

f1 = [falp
fo = sigrd(s, f1) (8.7)
(e2,f3) = posten, f2).

Circuit SIGRND also provides the flag SIGinx indicating that the rounded
significand f, isnot exact:

SIGInx=1 <« fz 75 fl.

After post normalization, the correct overflow signal isknown and the error
produced by the approximated overflow signal OV F1 can be corrected in
circuit ADJUSTEXP. Finally, the exponent is rounded in circuit EXPRND.

(@naxt1—a,1) ;if OVF2AOVFen
(&,0) = (&.fs) : otherwise
e, fs : (89)

(€out, fout) = exprd(s, ez, f3)

In addition, circuit EXPRND converts the result into the packed |EEE for-
mat, i.e., bit fou[0] is hidden, and eyn is represented by 0" in case of a
denormal result.

With the above specifications of the subcircuits in place, we can show in
a straightforward way:

If the subcircuits satisfy the above specifications, then equation (8.4) held$eorem 8.8

i.e., the roundelRND works correctly for a finite, non-zero x.

By equations (8.6) we have
_ e+a ;if OVF2AOVFen
& = e ;otherwise
fn :p f

Section 8.4

FLOATING POINT

ROUNDER

PROOF

393

Chapter 8

FLOATING POINT
ALGORITHMS AND

394

DATA PATHS

QED

Equations (8.7) then imply

fi = [flp
f, = sigrd(s, f)

(e, s) = poste+ a,sigrd(s, f)) ;if OVF2AOVFen
€13 = post(e sigrd(s, f)) ; otherwise

and equations (8.8) finally yield

(es, f3) = postesigrd(s, f))
(s €ut; fout) = (s, exprds, postesigrd(s, f))))

8.4.2 Normalization Shift

Overview

Let 1z be the number of leading zeros of f[—1:55]. In genera, the nor-
malization shifter has to shift thefirst 1in f; to the left of the binary point
and to compensate for thisin the exponent. If the final result is a denormal
number, then |x| must be represented as

28 fl’ — 2Gmin, 2& —€min , fr‘

This requires a left shift by — enin which in many cases will be aright
shift by emin — & (see exercise 8.3). Finaly, for a wrapped exponent one
might have to add or subtract a in the exponent. The normalization shifter
in figure 8.25 works along these lines.

First in circuit FLAGS the signals TINY, OVF1 and the binary represen-
tation 1[5 : 0] of the number |z are computed. Then, the exponent g and
the (left) shift distance o are computed in circuits EXPNORM and SHIFT-
DisrT.

We derive formulae for &, and o such that equations (8.6) hold. From
equations (8.3) and

UNFAUNFen= TINYAUNFen

we conclude
(—1)5'2é70('fA if OVFAOVFen
y = {(1)3-2”“-1‘“ if TINYAUNFen
(-1)5-26.f ; otherwise
(s.é—a,f) ;if OVFAOVFen
nly) = {(s,é+a,f‘) if TINYAUNFen
(s,&f) : otherwise.

Section 8.4

fr[-1:55]

er[12:0] FLOATING POINT
OVFen, UNFen ROUNDER
‘ FLAGS
12[5:0] ‘
ShiftDist ExpNorm
i sh[12:0]
SigNormshift
n[0:127] TINY OVF1 eni[10:0] en[10:0]

Figure 8.25 Circuit NORMSHIFT of the normalization shift

Thetwo factoringsf}(y) and n(y) are the same except if y isdenormal, i.e.,
if (TINYA /UNFen). Inthis case,

X = (=1)5-28. f = (—1)S. 2828 Cmin.

and i
(sé—a,f) ;if OVFAOVFen
(y) = (s.é+a,f) ;if TINYAUNFen
MW= (semp 22 f) ;if TINYA/UNFen
(s&f) ; otherwise
and therefore,
é—a ;if OVFAOVFen
e _ é+a ;if TINYAUNFen
- enin ;if TINYA /UNFen
é ; otherwise (8.9)
2¢-emn. f if TINYA/UNFen
f = 2 _
f : otherwise.

Let f' = f,/2. Thus
f'[0:56] = f,[—1:55],

i.e., the representation f'[0: 56] is simply obtained by shifting the binary
point in representation f,[—1 : 55] one bit to the right. In the following we
will compute shift distances for f'[0 : 56].

395

Chapter 8

Let 1z be the number of leading zeros in f[—1:55] or in f'[0: 56],

FLOATING POINT respectively. Finally, let

ALGORITHMS AND

=g —lz+1.
DATA PATHS B=e

From eguation (8.5), we conclude
2f = x| =pe2%-f =20FL /= 2B.DZz. ¢/,
Since 27- f' € [1,2), it follows that
B=¢& and 27.f =, f.
Thisimmediately gives

B—a ;if OVFAOVFen
B+a ;if TINYAUNFen
enin ;if TINYA /UNFen
B : otherwise

and
o=1z ;unless TINYA/UNFen

If (TINY A /UNFen holds, then x =y and & < enin. From equations (8.9)
and (8.5) we know

f o= 22
Multiplying the second equation by 2-®min implies that

28—€min , § 26 —6min . f

= p—&+émin
f = p—&temin 26 —€min | f = Zeffemirﬁl‘ .
Since € < énin, it aso holds that

f =p 26 —€mintl §/
Thus, we have
o= —6emnt+l ;if TINYA/UNFen

Up to issues of number format the outputs of circuits SHIFTDIST and
ExPNORM are specified by the above calculations. Circuit SIGNORM-
- SHIFT will not produce a representation of f' - 2°, because in the case of

396

Section 8.4

right shifts such arepresentation might be very long (exercise 8.4). Instead,

it will produce a representation f,[0 : 63] such that FLOATING POINT
ROUNDER

holds.

With the above specifications of the subcircuits of the normalization
shifter in place (up to issues of number format), we can immediately con-
clude

Let < Lemma 8.9

B—a ;if OVF1IAOVFen
B+a ;if TINY AUNFen

=) emwn ;if TINYA/UNFen
B : otherwise
(8.10)
c - { & —emn+1 ;if TINYA/UNFen
Iz ; otherwise
fo =p f-29.

Then equations (8.4) hold, i.e., the normalization shifter works correctly.

Flags

Figure 8.26 depicts circuit FLAGS which determines the number |z of |ead-
ing zeros and the flags TINY and OVF1. The computation of 1z[5: Q] is
completely straightforward. Because no overflow occursif §[—1:0] = 00,
we have

OVFl <« (& >ema) V ((& =ema) A fi[-1]).

Now recall that bias= gnax= 2""1 —1 = (1"1) and that n either equals
11 or 8. For the two’'s complement number g we have

11
@l12:0]> (1Y o /e[A\ el

i=n—-1

This explains the computation of the OVF1 flag.
Since ' = f, /2, we have to consider two cases for the TINY flag.

& + 1 < emin if f'e[l2)

TINY {er+1—lz<amn if ' €[0,1)
< e+1-1z—enn<0,

397

Chapter 8

FLOATING POINT
ALGORITHMS AND

398

DATA PATHS

fr{-1:55) 8457 er[12:0] en[9:7]

1 dbr

emax er[12:0]

er[11:10]
|zero(64) e12]
1Z[6] g
5 r-1]
12[5:0] TINY OVF1

Figure 8.26 Circuit FLAGS. Depending on the precision, the exponent emax
equals [03dbr317].

because 1z= 0 for an f' in theinterval [1,2). Thus, the TINY flag can be
computed as the sign bit of the sum of the above 4 operands. Recall that
€min = 1— bias Thus

—emin+1 = bias—1+1 = (1",
bias—1z = (1" 4+1+[11z[5:0] = (10" +[171z[5: 0]]

[0%11z[5:0]] ;if n=8
{[0314Iz[5:0]] Jif n=11

This explains the computation of the TINY flag.
Circuit FLAGS gets its inputs directly from registers. Thus, its cost and
the accumulated delay of its outputs run at

CFLAGS = Clz(64) +Cadd(13) +CEQ(13) +8'Cinv+5'cor+3'cand
Ariacs = mMax{D;(64) + Diny + Dadd(13), Deq(13) + Dand+ Dor,
4' Dor + 2 . Cand}.

Exponent Normalization

The circuit in figure 8.27 implements the exponent g, of the equations
(8.10) in afairly straightforward way. Along the way it also converts from
two's complement to biased representation.

The case (TINY A /UNFen) is handled by two multiplexers which can
force the outputs directly to the biased representations 3°1 and 0°10 of
€min OF €min—+ 1, respectively. For the remaining three cases, the top portion
of the circuit computes biased representations of g and e, + 1, or equiva
lently, the two's complement representations of g, -+ biasand e,+ 1+ bias

Section 8.4

In particular, let
FLOATING POINT

—a ;if OVF1AOVFen ROUNDER
a ;if TINYAUNFen
0 ; otherwise,

y:

then the circuit computes the following sums sumand sum+ 1.

sum = e —lz+1+y+bias
= & +1+[11z[5:0]] +1+y+bias
= e+1+[11z[5:0]]+3,

where

bias+a+1 ;if TINYAUNFen

bias—a+1 ;if OVFAOVFen
d=
bias+1 ; otherwise .

Recall that o = 3-2"2 = (110"2) and bias= 2""1 — 1 = (1"1). Hence

bias+1 = (10™1) = [00100™2).

(
bias+oa+1 = (110" 2)+ (100" ?)
(1010"2) = [01010™2].

—a = [1001"?%+1 = [1010™ 2.
bias+1—-a = [1110"?] = [11110"2].

In single precision we have n = 8 and the above equations define two's
complement numbers with only 10 bits. By sign extension they are ex-
tended to 13 bits at the last multiplexer above the 3/2—adder. Like in the
computation of flag TINY, the value [Iz[5 : O]] can be included in the con-
stant &, and then, the 3/2-adder in the circuit of figure 8.27 can be dropped
(see exercise 8.5).

Without this optimization, circuit EXPNORM provides the two expo-

nents enand eni at the following cost and accumulated delay

CExpNorm = C3/2add(1l) + CaddZ(ll) +2- Cmux(z) +Cmux(5)
+Cinv(6) + 2 Crnux(11) + 3 Cand + Cinv
AexpNorm = MaX{Ariags, AuNF/ovFent + Dand
+4- Dmux+ D3/2add(11) 4+ Dage(11).

399

Chapter 8

FLOATING POINT
ALGORITHMS AND
DATA PATHS

er[10:0] 1Z[5:0]

15
3/2add(11)
f 11 # 1
add2(11) UNFen
emin+1
0 1
TINY
eni[10:0] en[10:0]

Figure 8.27 Circuit EXPNORM of the exponent normalization shift; the exponents
€min and emin + 1 are represented as 0191 and 0°10. In case of a single precision,
only the bits[7:0] of the two exponents enand eni are used.

17[5:0] er[12:0] 1-emin TINY UNFen
\ \

add(13)

r 13

h[12:0]

Figure 8.28 Circuit SHIFTDIST provides the shift distance of the normalization
shift. Depending on the precision, constant 1 — emi, equals 03dbr317.

400

Shift Distance
The circuit in figure 8.28 implements the shift distance o of the equations
(8.10) in a straightforward way. Recall that gnn = 1 — bias= —2"~1 4+ 2.
Thus
1—emn=1+2"1—2=2"1_1- (1",
It follows that
[sh12:0]] =o.

The shift isaright shift if sh12] = 1.

Circuit SHIFTDIST generates the shift distance shin the obvious way.
Since the inputs of the adder have zero delay, the cost and the accumul ated
delay of the shift distance can be expressed as

Cshiftpist = Cadd(13) + Cnux(13) + Cand + Cinv
Ashiftpist = MaX{Dadd(13), ArLacs+ Dana:
AUNFen+ I:)inv‘f‘ Dand} + I:)mux-

Significand Normalization Shift
This is dightly more tricky. As shown in figure 8.29 the circuit which
performs the normalization shift of the significand has three parts:

1. A cyclic 64 hit left shifter whose shift distance is controlled by the 6
low order bits of sh This takes the computation of the shift limita-
tion in the MASK circuit off the critical path.

2. A mask circuit producing a 128 bit mask v[0 : 63]w[0 : 63]

3. Let f5[0: 63] be the output of the cyclic left shifter. Then f; is
computed by the bitwise AND of fg] fs[] and v[jw][].

We begin with the discussion of the cyclic left shifter. For strings f €
{0,2}N and non-negative shift distances d, we denote by cls(f,d) the
string obtained by shifting f by d bits cyclically to the left. Similarly,
we denote by crs(f,d) the result of shifting f by d bitsto the right. Then
obviously

crs(f,d) = cls(f,N—d mod N)
= cls(f,—d mod N).

Let o’ = 0 mod 64. For both, positive and negative, shift distances we

then have
[sH = —sh12]-2'% 4 (sh11:0])
= (sh5:0)) mod64 = o'

We now can show

Section 8.4

FLOATING POINT
ROUNDER

401

Chapter 8 r[-1:55] 0 sh[50] s[12:0]

FLOATING POINT ‘ + - J ‘

ALGORITHMS AND
CLS(64 MASK
DATA PATHS 64

v0:63 |

f90:63] w[0:63]

and(64) and(64)
fn[0:63] fn[64:127]

Figure 8.29 Circuit SIGNORMSHIFT

Claim 8.10 » Let f' = f;/2. The output fs of the cyclic left shifter satisfies

fs — cls(f’,o’) ;if >0
~ | crs(f,|a]) ;otherwise.

PROOF For non-negative shift distances the claim follows immediately. For nega-
tive shift distance o it follows that

crs(f',|a|) = cls(f’,0 mod 64) = cls(f’, (sh5:0]))
QED

We proceed to explain the generation of the masks as depicted in figure
8.30. We obviously have

(t) = o ;if 0>0

| |o]—1 ;otherwise.

Next, the distance in the mask circuit is limited to 63: the output of the
OR-tree equals 1 iff (t) > (18) = 63, hence

. o (if 0<o0<63
sy = { O3P8 _) 5 4 it Jez<o<-1
63 ; otherwise
' 63 : otherwise

We show that

Claim 8.11 » The distance of the left shift in the significand normalization shift is boun-
ded by 56, i.e.g < 56.

402

sh[11:Q]

v[0:63] 0:63]

Figure 8.30 The MAsK for the significand normalization shift

Left shifts have distance |z < 56 or ¢ — enin+ 1. The second case only
occursif (TINY A /UNFen. In this case we have e = @i and f; # 0.
Assume g > enin+ 55. Since

X =p-e 21,
and since é < enqin, it follows that
X =p gy 2% - fr > 20mint55.2=55 . Demin,
This contradicts the tininess of x.
The half decoder produces from sH the masks
h[63:0] = 0% (M g(st),
In case the shift distance is negative a 1 is appended at the right end and

the string isflipped. Thus, for mask u we have

0%4-91° :if 0<o
uf0:63] = { 1lolg®*-lol :if —63<o< -1
164 if o< —64

Section 8.4

FLOATING POINT

ROUNDER

PROOF

QED

403

Chapter 8

FLOATING POINT
ALGORITHMS AND
DATA PATHS

404

3) 0 63 0 63
tqlfs] | floselo’ | x| * |
ﬁ
viwgl | 1.1 \ 0..0 |
b) 0 63 0 63
Wit |t | £[0:56] 07 \ * |
o] o]
viw] | 0.0 | 1.1 \ 0..0 |
) 0 63 0 63
il fs] | x \ ds(F[0:56] 070) |
viwg] | 0..0 \ 1.1 |

Figure 8.31 Relation between the strings fs f sand the masks vw in the three cases
a)0<o0,b)-63<0<—-1,andc) o< —64.

For the masks v[]w[] it follows that

16400840 -if 0<o
v[0:63]w[0:63] = ¢ 001180510l ;if —63<0o<-1
064164 (if o< —64.

The relation between the string fg]] fs[] and the masks v[Jw[] is illus-
trated in figure 8.31. Let f; be the result of shifting f' logically by o bits
to the left. From figure 8.31 we immediately read off

f, 0%4 (if 0<o
fo[—1:126] = fi 0%4-0 if —63<o0< -1
0%cls(f’,0’) ;if o< —64
In all cases we obviously have

Circuit MASK depicted in figure 8.30 generates the masks v and w at the
following cost and delay.

Cinv(12) + Cinux(12) + Cortred 6) + Crmux(6)
Chdeo(6) + Cmux(64) + Cinv(64) + Cand(64)

DMASK = I:)inv‘f‘ 3- Dmux+ DORtreé6) + thec(G) + Dand-

Cmask

Section 8.4

fn[0:24] fn[25:53] fn[54:127]
74 FLOATING POINT
ROUNDER
29 Ortr Ortr
sta
st
st db =
02 st db
1 0 dbr
£1[0:24] f1[25:54]

Figure 8.32 Circuit REPP computes the p-representative of fn. The Flag styp
(Stsg) denotes the sticky bit in case of adouble (single) precision result.

Cost and delay of the significand normalization shifter SIGNORMSHIFT
run at

CsigNormshift = CcLs(64) +Cuask+ 2 Cand(64)
Dsignormshift = Max{DcLs(64),Dmask} + Dand,
and the whole normalization shifter NORMSHIFT has cost and delay

CNormShift = CFIags+ CExpNorm+ CShiftDist+ CSigNormShift
Anormshift = maX{AExpNorm Ashiftpist+ DSigNormShif}-

8.4.3 Selection of the Representative

Thisisastraightforward sticky bit computation of the form
i>p+1

where p depends on the precision and is either 24 or 53. Circuit REPP of
figure 8.32 selects the p-representative of f, as

fi[=1:p+1] = (fa[-1: p],st).
This circuit has the following cost and delay

Crepp = Cortred29) + Cortred 74) + Cor + Cimux(30)
DREPp = DORtree(74) + Dor + I:)mux-

405

Chapter 8

FLOATING POINT
ALGORITHMS AND

406

DATA PATHS

0 1 dbr
0 1 dbr
f1[0:52]
I,r, st
Rounding Decision
inc
f2[-1:52] SIGinx

Figure 8.33 Circuit SIGRND

8.4.4 Significand Rounding

In figure 8.33, the least significand bit |, round bit r and sticky bit st are
selected depending on the precision and fed into circuit ROUNDINGDECI-
SION. The rounded significand is exact iff the bitsr and st are both zero:

SIGinX=r V st.

Depending on the rounding decision, f,[0: p+ 1] is chopped or incre-
mented at position p— 1. More formally

. |f1[0: p—1]| ;if inc=0 (chop)
27 U [faf0:p—1][+2 (P D ;if inc=1 (increment).

The rounding decision is made according to table 8.5 which were con-
structed such that

f, = sigrd(s, f1)

holds for every rounding mode.

Note that in mode rpe (nearest even), the rounding decision depends on
bitsl,r and st but not onthe sign bit s. Inmodesr, rq, the decision depends
on bitsr, st and the sign bit s but not on I. In mode r,, the significand is
always chopped, i.e., inc = 0. From table 8.5, one reads off

ra(vst if rpe
inc =< SA(rvst) if ry
SA(rvst) if rq.

With the coding of the rounding modes from table 8.1, thisis implemented
in a straightforward way by the circuit of figure 8.34.

Section 8.4

Table 8.5 Rounding decision of the significand rounding. Thetableslistthevalue F oaTING POINT
of the flag inc which indicates that the significand needs to be incremented. On° RouNDER
round to zero (r), the flag equal s 0.

(I r st rme] |s r stfr rq]
0O 0 0| O 0O 0 0|0 O
0O 0 1) 0 0O 0 11 O
0O 1 0| O 01 01 o0
0 1 1 1 01 1)1 O
1 0 O O 1 0 0|0 O
1 0 14 O 1 0 10 1
1 1 0 1 1 1 0|0 1
1 1 1 1 11 1410 1

B RM[O] r & s RM[0]

RM1

inc

Figure 8.34 Circuit of the rounding decision

The cost and delay of circuit SIGRND which performs the significand
rounding can be estimated as

CSiand = Cmux(53) + Cmux(54) + Cinc(53) + C0r + Cmux(3)
+3- Camd +2- Cor + Cxor + Cmux
Asigrnd = 2 Dmux+ max{Dinc(53), max{Arm, Dmux} + Dxor + Dand}-

8.4.5 Post Normalization

The rounded significand f, lies in the interval [1,2]. In case of f, = 2,
circuit PosTNORM (figure 8.35) normalizes the factoring and signals an
overflow of the significand by SIGov f= 1. Thisoverflow flag is generated

407

Chapter 8

en[10:0] eni[10:0] f2[-1:0] f2[1:52]
FLOATING POINT
ALGORITHMS AND
DATA PATHS

€2[10:0] SIGovf f3[0:52]

Figure 8.35 Post normalization circuit POSTNORM

SIGovf = fp[—1].
In addition, circuit POSTNORM has to compute

_ [(&a+11) ;iffa=2
(&2, f3)_{ (en, f2) ;otherwise

Since the normalization shifter NORM SHIFT provides g, and e,j = e, + 1,
the exponent e, can just be selected based on the flag SIGovf. With asingle
OR gate, one computes

1.0° pif f=2

f30]. f3[1:52] = (f[1]V f[0]).f3[0:52] = { f2[0:52] ; otherwise.

Thus, the cost and the delay of the post normalization circuit POSTNORM
are

CPostNorm = Cor+Cmux(11)
DpostNorm = MaX{Dor, Dmusx}-

8.4.6 Exponent Adjustment

The circuit shown in figure 8.36 corrects the error produced by the OV F1
signal in the most obvious way. The error situation OV F2 is recognized
by an active SIGovfsignal and & = [[€[10 : 0]]pias = €max+ 1. Since
[X]bias = (X) — bias we have
enax = (1"1)—bias
€max+ 1+bias = (1")
enaxt1l = [1"bias

Thus, the test whether € = emnax+ 1 holds issimply performed by an AND-
tree. If OVF2 A OV Fenholds, exponent & is replaced by the wrapped
408

3 e2108] OVFen

SIGovf

dbr emax+1-alpha

€2[10:0]

Andtree

SIGovf

|

Figure 8.36 Circuit ADJUSTEXP which adjusts the exponent. Depending on the
precision, the constant emax+ 1 — o equals 02dbr3 13,

exponent enax+ 1 — o in biased format. Note that

Emax+ 1+ bias = < 1" > and a=<110"2>

imply
emax+1—a+bias = < 001" 2>
Gnaxt+1—0a = [[OOlniz]]bias-

Circuit ADJUSTEXP of figure 8.36 adjusts the exponent at the following
cost and delay

CAdjustExp = Cmux(ll) +Cmux(3) +CAN Dtree(ll) +3- Cand+ Cinv
DAdjustExp = 2 Dmux+ DAN Dtree(ll) + Dand-

8.4.7 Exponent Rounding
The circuit EXPRND in figure 8.37 computes the function exprd More-
over, it converts the result into packed |EEE format. Thisinvolves

e hiding bit fo,[0] and

e representing enin by 0" in case of adenormal result.

In the case OV F A /OV Fen the absolute value of the result is rounded to
Xmax Or oo depending on signal in f. The decision is made according to table
8.6. Circuit Infinity Decisionimplements this in a straightforward way as
inf RM[O] if RM[1]=0
~ | RM[O] XxNOR s if RM[1] =1

Section 8.4

FLOATING POINT

ROUNDER

409

Chapter 8

FLOATING POINT
ALGORITHMS AND

410

DATA PATHS

e3 f3[0]11 Xmax infinity RM[1:0] S
f3[1:52] ‘ ‘
inf » .
e (0 1 Infinity Decision
% T 63
0 1 OVF
OVFen

eout[10:0] fout[1:52]

Figure 8.37 Circuit EXPRND. Depending on the precision, the constant Xmax
can be expressed as (dbr3170, 122dbr?®) and infinity can be expressed as
(dbr318, 0°?).

Table 8.6 Infinity decision of the exponent rounding. The tableslist the value of
theflag inf which indicates that the exponent must be set to infinity.

| RM[1:0] | mode | s=0| s=1]

00 r, 0 0
01 Ie 1 1
10 ry 1 0
11 rq 0 1

Denormal significands can only occur in the case TINY A /UNFen In
that case, we have e = enin and the result is denormal iff f3[0] =0, i.e., if
the significand f3 is denormal.

Circuit EXPRND which performs the exponent rounding has the follow-
ing cost and delay

CEprnd = 2 Cmux(63) +2- C%md + Cinv + Cmux+ anor
DEprnd = 3 Dmux+ I:)xnor-

8.4.8 Circuit SPECFPRND
This circuit (figure 8.38) covers the specia cases and detects the |IEEE
floating point exceptions overflow, underflow and inexact result. In case a

is afinite, non-zero number,

X = [se&,] =pea

NANTr UNF/OVFen SIGinx

ZEROr TINY
‘s eTut fo‘ut nTn ZEF‘QOr NA‘Nr INEr OVF ‘
SpecSelect Spec RndExceptions
sp ep[10:0] fp[1:52] OVFp UNPp INXp
INV DBZ
Fp[63:0] |EEEp

Figure 8.38 Circuit SPECFPRND

and circuit RND aready provides the packed | EEE factoring of x

(37 €out, 1Eout) = rd (S,ef, f,—).

In case of a special operand a (zero, infinity or NaN) the flags flr =
(ZEROTr, NANTr, INFr, nan, DBZ, INV) code the type of the operand and
provide the coding of the NaN

nan = (S]an, fnan[l 52])

Thus, circuit SPECSELECT of figure 8.39 computes

(Snam 122, fran1:52]) if NANr=1

(s, 11 052) if INFr=1
(sp.€e, o) = 4 (501 0%2) if ZEROr=1

(S, €outs fout) if spec=0,

where signa specindicates a special operand:
spec= NANr V INFr v ZEROr

Depending on the flag dbr, the output factoring is either in single or double
precision. The single precision result is embedded in the 64-bit word F p
according to figure 8.1. Thus,

.~ | (se,ep[11:0], fp[1:52)) if dbr
Fp[63'o]_{(SP,ep[7:0],fpl[al:23],sp,ep[7:0],fp[1:23]) if /dbr.

The circuit PRECISION implements this selection in the obvious way with
asingle 64-bit multiplexer.

In addition, circuit SPECFPRND detects the floating point exceptions
OVF, UNF and INX according to the specifications of section 7.3. These

Section 8.4

FLOATING POINT
ROUNDER

411

Chapter 8

FLOATING POINT
ALGORITHMS AND

412

DATA PATHS

Figure 8.39 Circuit SPECSELECT

exceptions can only occur if aisafinite, non-zero number, i.e., if spec= 0.
Since the rounder design implements LOSS, the loss of accuracy equals
INX. Thus,

OVF = spech OVF
UNFe specA TINY A (UNFenv LOSS)
specA TINY A (UNFenV INX)
INXe = SpecA INX.

T

Since an overflow and an underflow never occur together, signal INX can
be expressed as

Nx —] SIGinx if (OVFAOVFen v (UNFAUNFen
o SIGinxVv OVF otherwise

= SIGinxV (OVF A OVFen.

Circuit RNDEXCEPTIONS generates the exception flags along these equa-
tions. In also generates the flag specindicating a specia operand a.

The whole circuit SPECFPRND dealing with special cases and exception
flags has the following cost and delay

CS pecFPrnd — 2. Cmux(52) + Cmux(11) + Cmux+ Cinv
+Cmux(64) +5- Cand+ 4‘Cor +2. Cinv
DspecFPrnd = MaX{3-Dmux 2 (Dmux+ Dor), Diny +3-Dand+ Dor}.

8.5 Circuit FCon

FIGU RE 8.40 depicts the schematics of circuit FCON. The left subcir-
cuit compares the two operands FA2 and FB2, whereas the right sub-
circuit either computes the absolute value of operand FA2 or reverses its
sign. Thus, circuit FCoN provides the following outputs:

FA2[63:0] FB2[63:0] FB2[62:0] FA2[63, 62:0]
0, FA2[62:0] 1 ? abs
EQ(64) \ 1?2
FA2[63] FB2[63
neg add(64) [63] [63]
e ‘ fla flb
sign s \L \L
. sa sb
FCON[3:0] P test
fcc inv
ftest
0 INV
fee | EEEf FC[63:0]

Figure 8.40 Circuit FCoN; theleft subcircuit performsthe condition test, whereas
the right subcircuit implements the absol ute value and negate operations.

¢ the condition flag fcc,
¢ the packed floating point result FC[63:0], and
¢ the floating point exception flags

IEEEf[4:0] = (INX,UNF, OVF, DBZ, INV).

Its data inputs are the two packed | EEE floating point operands

a = [saealn—1:0] fa[1: p—1]]
b = [sesn-1:0fgl:p-1]]

and the flags 1} and fl{, which signal that the corresponding operand has
aspecia value. Thecircuit is controlled by

e flag ftestwhich request afloating point condition test,
e the coding Fcon3: 0] of the predicate to be tested, and

¢ flag abswhich distinguishes between the absolute value operation
and the sign negation operation.

Except for the flags fl; and flj, which are provided by the unpacker
FPuUNP, al inputs have zero delay. Thus, the cost of circuit FCoN and the

Section 8.5

CircuIT FCoN

413

Chapter 8

FLOATING POINT
ALGORITHMS AND

414

DATA PATHS

Table 8.7 Coding of the floating point test condition

predicate coding less | equal | unordered INV if
true | false | Feon[3:0] | < = ? unordered
F T 0000 0 0 0

UN OR 0001 0 0 1

EQ NEQ 0010 0 1 0

UEQ | OGL 0011 0 1 1 No
OLT UGE 0100 1 0 0

ULT OGE 0101 1 0 1

OLE UGT 0110 1 1 0

ULE | OGT 0111 1 1 1

SF ST 1000 0 0 0

NGLE | GLE 1001 0 0 1

SEQ SNE 1010 0 1 0

NGL GL 1011 0 1 1 Yes
LT NLT 1100 1 0 0

NGE GE 1101 1 0 1

LE NLE 1110 1 1 0

NGT GT 1111 1 1 1

accumulated delay of its outputs can be expressed as

Crcon = Cgg(64)+ Cadd(64) + Ciny(63) + Crptest+ Cand+ Chor
Arcon = maX{DEQ(64), Dinv + Dadd(64), AFPunp(fla, flbl)}
+Drptest+ Dang-

8.5.1 Floating Point Condition Test

Table 8.7 lists the coding of the predicates to be tested. The implementa
tion proceeds in two steps. First, the basic predicates unordered equaland
less tharere generated according to the specifications of section 7.4.5, and
then the condition flag fccand the invalid operation flag inv are derived as

fcc = Fcon0] AunorderedV Fconl] Aequal V Fcon2] Aless
inv. = Fcon3] Aunordered

Predicate Unordered

The operands a and b compare unordered if and only if at least one of them
isaNaN. It does not matter whether the NaNs are signaling or not. Thus,
the value of the predicate unorderedequals:

unordered= NANav NANbVv SNANa/ SNAND

Predicate Equal

The flag e indicates that the packed representations of the numbersaand b
areidentical, i.e,,

e=1 ¢+ FA2[63:0/=FB2[63:0].

Note that for the condition test the sign of zero isignored (i.e., +0= —0),
and that NaNs nevercompare equal. Thus, the result of the predicate equal
can be expressed as

1 if abe{-0,4+0}
0 if ae{NaN,sNaN}
0 if be {NaN,sNaN}
e otherwise

equal =

= (ZEROa\ZEROR Vv eAunordered

Predicate Less

According to section 7.4.5, therelation <; isatrue subset of the 17{30 Thus,
the value of the predicate lesscan be expressed as

less= | Aunordered
where for any two numbersa,b € &, the auxiliary flag | indicates that

=1 < a<h

The following lemma reduces the comparison of packed floating point
numbers to the comparison of binary numbers:

Section 8.5

CircuIT FCoN

415

Chapter 8

FLOATING POINT
ALGORITHMS AND
DATA PATHS

Table 8.8 Reducingthetest a < bto|al < |b|

|sa| | range [a<bif \
00| 0<ab |[fJ<0 <+ sign=1

1| b<0<al] never

0 ||a<0<b| exceptfora=—-0Ab=+0

1| ab<0 |[g>0 <+ (sign=0) A (a#b)

=

Lemma 8.12 » For any two numbers.® € R, with the packed representatiof&, ex, fa)

PROOF

416

and (s, es, fg) holds
lal <|b] < (eafa) < (esfs).

Thus, let sign= s[n+ p] denote the sign bit of the difference
[SIn+p:0]] = [0ea[n—1:0] fa[l: p—1]] — [0eg[n—1:0] fg[1: p—1]],
we then have

laj < b <« [sn+p:0]]<0 <« sign=1,
and according to table 8.8, the auxiliary flag | can be generated as

I = SZAFHASIgn
V SsASHA(ZEROaNAND ZEROD
V' SaASA(Sign NOR e).

Proof of Lemma 8.12
The numbers a and b can be finite normal numbers, finite denormal num-
bers or infinity. If aisafinite normal number, we have

a = [0,en, fa] = 2087PS.(f,)

with (fa) € [1,2) and 0 < (ea) < 2", whereas in case of adenormal signif-
icand we have

|a| = [0,en, fa] = 208 H1-bES. (1,

with (fA> € [O, 1) and <eA} =0.

If both numbers a and b have normal (denormal) significands, the claim
can easily be verified. Thus, let a be a denormal number and b be a normal
number, then

] < 2% < |b],

and the claim follows because

(O"1P-1y < 2t

<
< (es) 2"t = (eg0P1) < (esfg).

Let a be a finite number and let b = o, then g5 = 1" and fg = 0P~ 1.
Since |a| < « and

(eafa) < (1" 101P Yy < (1" 110P Yy = (epfa),
the claim also holds for the pairs (a,).

Realization of the Condition Test

In circuit FCoN of figure 8.40, a 64-hit equality tester provides the auxil-

iary flag e, and the output negof a64-bit adder provides the bit sign= g[64].

These bits are fed into circuit FPTEST which then generates the outputs

fccand inv and the flags of the three basic predicates as described above.
The cost and delay of circuit FPTEST can be expressed as

CF Ptest = 13- C:and +8- Cor +3- Cinv + Cnor + Cnand
Drptest = 3-Dand+ 3 Dor + max{Diny + Dand, Dnor, Dnand}-

8.5.2 Absolute Value and Negation

For the packed floating point operand a € &, with a = [sa, €, fal], the
absolute value |a| satisfies

&l = [O,en, fa].

Thus, the packed representation of the value |a] can simply be obtained by
clearing the sign bit of operand FA2. The value —a satisfies

—a = [[ﬁa €a, fA]]

and just requires the negation of the sign bit.

Thus, both operations only modify the sign bit. Unlike any other arith-
metic operation, this modification of the sign bit is also performed for any
type of NaN. However, the exponent and the significand of the NaN still
pass the unit unchanged. Since

0 if abs=1 (absolutevalue)

S = Sa NOR abs = i .
Sp if abs=0 (reversedsign)

Section 8.5

CircuIT FCoN

QED

417

Chapter 8

FLOATING POINT
ALGORITHMS AND

418

DATA PATHS

the subcircuit at the right hand side of figure 8.40 therefore generates the
packed representation of the the value

laj if abs=1

Depending on the flag abs it either implements the absolute value or re-
versed sign operation.

8.5.3 IEEE Floating Point Exceptions

In the |EEE floating point standard, the two operations absolute value and
sign reverse are considered to be specia copy operations, and therefore,
they never signal afloating point exception.

The floating point condition test is always exact and never overflows
nor underflows. Thus, it only signals an invalid operation; the remaining
exception flags are always inactive.

Depending on the control signal ftest which requests a floating point
condition test circuit FCON selects the appropriate set of exception flags:

INV = inv A ftest = { v if - ftest=1

0 if ftest=0
(INX,UNF,OVEDBZ) = (0,0,0,0).

8.6 Format Conversion

ONVERSIONS HAVE to be possible between the two packed floating
point formats (i.e., single and double precision) and the integer for-
mat. For each of the six conversions, the four |EEE rounding modes must
be supported.
Integers are represented as 32-bit two’'s complement number x[31 : O]
and liein the set Ts,:

X=[X31:0] € Tsp = {-2%,..., 281 —1}.

A floating point number y isrepresented by asign bit s, an n-bit exponent
e and an p-bit significand. The parameters (n, p) are (8,24) for single
precision and (11,53) for double precision. The exponent is represented
in biased integer format

e = [en—1:0]bias = (en—1:0])—bias,
= (gn—1:0)—(2"1-1)

and the significand is given as binary fraction
f = (f[0].f[1: p—1])).

In the packed format, bit f[0] is hidden, i.e., it must be extracted from the
exponent. Thus,

y = [sen—1:0],f[1: p—1]] = (—=1)5-2°-f.

Each type of conversion is easy but none is completely trivial. In the
following, we specify the six conversions in detail. Section 8.6.2 then
describes the implementation of the conversions.

8.6.1 Specification of the Conversions

The two parameter sets (n, p) = (11,53) and (r, p') = (8,24) denote the
width of the exponent and significand for double and single precision, re-
spectively. Aswe are dealing with two floating point precisions, we aso
have to deal with two rounding functionsone for single and one for double
precision. The sameistrue for functions like the IEEE normalization shift
n and the overflow check OV F. If necessary, the indices ‘s and ‘d’ are
used to distinguish between the two versions (e.g., rd; denotes the single
precision rounding function). Since the rounding functions are only de-
fined for afinite, representable operand, the special operands NaN, infinity
and zero have to be considered separately.

Double to Single Precision Conversion
Converting a packed, double precision floating point number a with repre-
sentation

Nda(@) = (sa,ea[n—1:0], fa[l: p—1])

to single precision gives a packed representation ($,ep[n —1: 0], fp[1:
p’ — 1]) which satisfies the following conditions:

e |f aisafinite, non-zero number, then
(sp,ep[n’ —1:0], fp[1: p' —1]) = rds(X),
where

a-2% if UNFR(a) \UNFen

a-2—¢ if OVFR(a)AOVFen
X =
a otherwise.

Section 8.6

FORMAT
CONVERSION

419

Chapter 8

FLOATING POINT
ALGORITHMS AND

420

DATA PATHS

e If aisazero, infinity or NaN, then

(sa,07,0P-1) if a=(-1)%.0
(se,ep, fp) = ¢ (88, 17,0°°1) if a=(-1)%
(sp, 17,107 2) if a=NaN

According to section 7.4.6, the conversion signals an invalid operation ex-
ception INV = 1iff aisasignaling NaN.

Single to Double Conversion
Converting a packed, single precision floating point number a with repre-
sentation

Ns(a) = (sa,ea[n’ —1:0], fa[1: p' —1])

to double precision gives a representation ($,ep[n—1:0], fp[1: p—1])
which satisfies the following conditions

e If aisafinite, non-zero number, then
(sp,ep[n—1:0],fp[1: p—1]) = nq(rdg(a)).

Due to the larger range of representable numbers, a never overflows
nor underflows, i.e.,, OV Ry(a) = 0 and UNFRy(a) = 0. In addition,
the rounded result is always exact (INX = 0).

e If xisazero, infinity or NaN, then

(50,0",071) if x=(—1)%.0
(sp.ep, fp) = ¢ (8a,17,0P° 1) if x=(-1)%-o
(sa,17,10P-2) if x=NaN

Although each single precision number is representable in double preci-
sion, rounding cannot be avoided because all denormal single precision
numbers are normal in double precision. An invalid operation exception
INV = lissignaed iff aisasignaling NaN.

Integer to Floating Point Conversion

Let x € Tsp be an non-zero integer coded as 32-bit two’s complement num-
ber x[31: 0. Its absolute value |x|, which liesin the set {1,... 2!}, can
be represented as 32-bit binary number y[31 : O] which usually has some
leading zeros:

IX| = (y[31:0]) = (0.y[31:0Q])-2% = (f[0].f[1:32])-2%

with f[0: 31] = 0y[31: 0]. The value of the binary fraction f liesin thein-
terval [0,1). Rounding the factoring (x[31],32, f) gives the desired result.
The exceptions overflow, underflow and inexact result cannot occur.

Thus, in case of single precision, the conversion delivers

[ne(rds([X[31],32, f[0: 32]])) if x#£0
(5,80, Tp) = { (0,07,0° 1) if x=0.

In case of adouble precision result, the rounding can be omitted due to the
p = 53 hit significand. However, a normalization is till required. Thus,
converting a two’s complement integer x into a double precision floating
point number provides the packed factoring

[na([[x[31],32,f[1:32]]) if x#0
(5,6, Tp) = { (8,0”,0"‘1) if x=0.

Floating Point to Integer Conversion

Let (n,p) € {(8,23),(11,53)} be the length of the exponent and signifi-
cand in single or double precision format, respectively. When converting
arepresentable number a = [s, e, f] into an integer one has to perform the
following three steps:

1. The value a is rounded to an integer value x = (—1-y; every one
of the four rounding modes is possible.

2. Itischecked whether thevalue x liesin the representable range &, of
integers. In the comparison we have to consider the sign bit, because
the set T3 is not symmetric around zero.

3. If x isrepresentable, its representation is converted from sign mag-
nitude to two’'s complement, and otherwise, an invalid operation is
signaled.

Rounding Let 7 be the set of al binary numbers representable with at
Most €max+ 1 bits:

F = {{ylemax: O]) | y[i] € {0,1}, for all i}.
For every representable a, there exists an integer z<€ F with
z=max{ye Fly<|a} and z<|a <z+1

The rounding of the floating point number a to an integer x is then defined
in complete analogy to the significand rounding of afloating point number.

Section 8.6

FORMAT
CONVERSION

421

Chapter 8

FLOATING POINT
ALGORITHMS AND

422

DATA PATHS

For round to nearest-even, for example, one obtains the rule
(s,bin(z)) if |a<z+0.5
or |aj=z+05A70=0

(s,bin(z+1)) if |aj>z+05
or |aj=z+05A70/=1

rdim (a) =

Of course, one can obtain this rule by substituting in equation 7.2 (page
332) the number a for f and setting p = 1. It follows that

rdinc(a) =rdine([@J1) and rdir(a) =a <« rdine([a]1) =a

The same argument can be made for all four rounding modes.

Range Check Let x = (—1)%-y be an integer obtained by rounding a
floating point number as described above. Its absolute value |x| =y can be
aslarge as

2. 08max — 2.92%1 _ 2°

and thus, an implementation of function rd,; would have to provide an
1025-bit binary number y. However,

la>2%2 = y>22 4 xgTap,

and in this case, the conversion only needs to signal an invalid operation,
but the rounding itself can be omitted. Such an overflow is signaled by
lovf;.

In case of lovf, = 0, the absolute value y is at most 22. Thus, y can
be represented as 33-bit binary number y[32 : 0] and —y as 33-bit two’'s
complement number

-y = [Z32:0]] = [y[32:0]]+1.
Let

X32: 0]] = { Ezyg’zzf(%]f t =Y~ y2i0ests

if the integer x lies in the set T, it then has the two’'s complement repre-
sentation x[31: O]:

X = (—=1)%y = [x[31:0].

The conversion overflows if x cannot be represented as a 32-bit two's
complement number, i.e.,

lovf = lovfy vV lovihb =1

where due to sign extension
lovihb=1 <« [X[32:0]]¢ T2 <« (X[32] #x[31)).

Aninvalid operation exception INV issignaled if aisnot afinite number
orif lovf =1

INV=1 <« ae{NaN,+ow,—wo} Vv lovf=1

8.6.2 Implementation of the Conversions

One could provide a separate circuit for each type of conversion. However,
the arithmetic operations already require a general floating point unpacker
and afloating point rounder which convert from a packed floating format to
an internal floating format and vice versa. In order to reuse this hardware,
every conversion is performed in two steps:

e An unpacker converts the input FA2[63:0] into an internal floating
point format. Depending on the type of the conversion, the input
FA2 isinterpreted as 32-bit two’'s complement integer

x = [X[31:0]] with x[31:0] = FA2[63:32],

or as single of double precision floating point number with packed
factoring

(sn.en,) — | (FA2I63],FA2(62: 52, FA251:0] if dbs=1
B TA) T (FA2[63],FA2]62 1 55],FA2[54: 32] if dbs=0.

e A rounder then converts the number (s, €, f;, fl;) represented in an
internal floating point format into a32-bit two’'s complement integer
Fx[31:0] or into a packed floating point representation (%, ep, fp).
In case of double precision (dbr = 1), the floating point output is
obtained as

Fp[63:0] = (sp,ep[10: 0], fp[1: 53)),
whereas for single precision (dbr = 0), output Fp is obtained as
Fp[63:32] = Fp[31:0] = (sp,ep[7:0], fp[1:24]).
In addition to the unpacker FPUNP and the rounder FPRND, the conver-
sions then require a fixed point unpacker FXUNP, a fixed point rounder

FXRND, and acircuit CvT which adapts the output of FPUNP to the input
format of FPRND (figure 8.2).

Section 8.6

FORMAT
CONVERSION

423

Chapter 8

The conversion is controlled by the following signals:
FLOATING POINT

ALGORITHMS AND e signalsdbsand dbr indicate a double precision floating point source
DATA PATHS operand and result,

e signa normal which is only active in case of afloating point to in-
teger conversion requests the normalization of the source operand,
and

¢ thetwo enable signal s which select between the results of the circuits
CvT and FXUNP.

Floating Point Format Conversions
Unpacking The floating point unpacker FPUNP (section 8.1) gets the
operand FA2 and provides as output a factoring (s, €,[10 : O], f4[0 : 52])
and the flags fl;. The exponent e, is a two's complement number. The
flags fl5 comprising the bits ZEROa, INFa, NANaand SNANasignal that
FA2 is a specia operand.

For a non-zero, finite operand a, the output factoring satisfies

a = [sa,en, fa] = (—1)%. 21000 (£.10].f,[1:52)).

Since normal = 0, the output factoring is IEEE-normal, i.e., f;,[0] = 0im-
plies |a| < 2%min,

Circuit CvT Circuit CvT gets the factoring (s, €a, fa) and the flags fl,
from the unpacker. It checks for an invalid conversion operation and ex-
tends the exponent and significand by some bits:

S €2[10]%e4[9: 0], 0f4[1 : 52]0°)
ZEROalNFa,NANav SNANa
SNANa0)

Shan, fnan[1:52]) = (Sa,10°%).

(s,&[12:0], fy[-1:55]) =
(ZERQINF,NAN) =
(INV,DBZ) =

nan =

A~~~ T~~~

For afinite, non-zero operand a, we obviously have

a = (—1)%- 2100 (f,[0].f,1:52))

= (cD%-2020) (10l f108s), Ot

and the factoring is still IEEE-normal. The implementation of CvT is
straightforward and just requires asingle OR gate:

CCVT = C0I‘a DCVt = Dor-
424

Rounding Theoutput (s, ey, fy, fly) of circuit CvT isfed to the floating
point rounder FPRND. In order to meet the input specification of FPRND,
fy € [0,1) must imply that OV F = 0. Since the factoring is |EEE-normal,
that is obviously the case:

f[-1:0/=00 <« f[0]=0 <« |3 <2%n.
Let

a-2% if UNF(a) AUNFen

a-27¢ if OVF(a)AOVFen
y e
a otherwise.

Depending on the flags fly, circuit FPRND (section 8.4) then provides the
packed factoring

(sy,0", 0P 1) if ZERQ
(S\,,ln,opil) |f INFV
fp) = i
(sp.ep, fp) (Shans 1", fran[1: p—1]) if a=NaN,
n(rd(y)) otherwise

In case of dbr = 1, the factoring is given in double precision and otherwise,
it is given in single precision. The correctness of the conversion follows
immediately from the definition of the flags fl,.

Integer to Floating Point Conversions

These conversions are also performed in two steps. First, the fixed point
unpacker FXUNP converts the two’'s complement integer x[31 : 0] into the
internal floating point format. The floating point rounder FPRND then con-
verts this factoring (s, ey, fu, fly) into the packed floating point format.
Depending on the control signal dbr, the output factoring ($,ep, fp) has
either single or double precision.

Unpacking The unpacker FXUNP converts the two’'s complement inte-
ger x[31: Q] into the internal floating point format. This representation
consists of the flags fl, and the factoring (s, ey[13: 0], fu[—1: 55]) which
is determined according to the specification from page 420.

Theflags fl, indicate aspecial operand (i.e., zero, infinity and NaN) and
signal the exceptions INV and DBZ. Since the two’s complement integer
x[31: 0] is dways afinite number, azero input is the only possible special
case:

ZEROu=1 <« [x[31:0]=0 <« x[31:0]=0%

Section 8.6

FORMAT
CONVERSION

425

Chapter 8

X[31:0]
FLOATING POINT e
ALGORITHMS AND 1 1
inc(32) nan
DATA PATHS v
x[31] 010° 00 X[31] @ 0% ZEROu
su eu[12:0] fu[-1:0] fu[1:32] fu[33:55] flu

Figure 8.41 Circuit FXUNP converting a 32-bit integer x[31 : O] into the internal
floating point format; flagsdenotesthe bits INFu, NANu, INVand DBZ

The remaining flags are inactive and nan can be chosen arbitrarily:

nan = (San fran[1:52]) = (O, 1051).

Since |x| € {0,...,2%}, the absolute value of x can be represented as
32-bit binary number y[31: 0]

(x[31:0]) if x31]=0

X = {y[3L:0) = { (31:0]) +1 mod 2% if x31]=1

Thus, the factoring

1 if x<0
= X[Sl]:{o if x>0

e13:0 = 0710°
fu[-1:55] = 0%y[31:0]0%.

with a 13-bit two’'s complement exponent satisfies

x = (=1)%.2%2.(0y[31:0])
(—1)%. 21800 (£ 11 0] f,[1:55]).

The circuit of figure 8.41 implements the fixed point unpacker FXUNP in
astraightforward manner at the following cost and delay:

CFXunp = Cinv(32) +Cinc(32) + Czero(32) + Cmux(32)
Dexunp = mMax{Diny + Dinc(32) + Dmux(32), Dzero(32) }.

426

Rounding Since an integer to floating point conversion never overflows,
the representation (s, €y, fu, fly) meets the requirements of the rounder
FPRND. Thus, the correctness of the floating point rounder FPRND implies
the correctness of this integer to floating point converter.

Floating Point to Integer Conversions

Like any other conversion, this conversion is split into an unpacking and
rounding step. The unpacking is performed by the floating point unpacker
FPUNP which delivers the flags fl, indicating a special operand. In case
that ais anon-zero, finite number, circuit FPUNP also provides afactoring
(Sa, €, fa) Of &

a = (—1)%. 2%001-(1z[50) . (£ 10].f,[1:52)) = (—1)%-2%-f,

Due to normal = 1, the significand f, is normal, and for any |a| > 28nin,
the number 1z is zero.

This representation is provided to the fixed point rounder FXRND which
generates the data Fx[63 : 32] = Fx[31: 0] and the floating point exception
flag INV. For afinite number a, let rdiy () = (Sa,Y) and

X = (~D%.y = (—1)%. 2y,

For x € Tsp, the conversion isvalid (INV = 0) and x has the two’s comple-
ment representation Fx[31:0]. If aisnot finite or if X ¢ T, the conversion
isinvalid, i.e, INV = 1, and Fx[31:0] is chosen arbitrarily.

Fixed Point Rounder FXRD

In section 8.4, the floating point rounder FPRND is described in detail.
Instead of developing the fixed point rounder FXRND from scratch, we
rather derive it from circuit FPRND.

Implementation Concept Note that the result of rounder FXRND al-
ways has a fixed exponent. For the floating point rounder, that is only the
case if the result is denormal. Let (s, g, f;) be a denormal floating point
operand, the floating point rounder FPRND then provides the output fac-
toring (S, eut, fout) such that

(S, eout; fout) = n(rd(s, &, fr)) = (s, exprds, post(e,sigrd(s, fr)))).

If the result is denormal, the post-normalization and the exponent rounding
can be omitted:

(s €ut, four) = n(rd(s,&, fr)) = (s &,sigrd(s, f;)).

Section 8.6

FORMAT
CONVERSION

427

Chapter 8

FLOATING POINT
ALGORITHMS AND

428

DATA PATHS

The major differences between this denormal floating point rounding
rdgn and the rounding rdiy; is the rounding position and the width of the
significand. In case of rdqn, the rounding position is p bits to the right of
the binary point, whereas in case of rdy, the significand is rounded at the
binary point (p = 1). However, thisis not aproblem; let € = e; —1z,,

a = (—1)%.2%.f,
(—1)%. 2D (%P1 £) = (—1)%. 2P f,

The equation suggests to make the exponent 1 and shift the significand
€, positions left, then shift p— 1 positions right; this moves the bit with
weight 1 into the position p— 1 right of the binary point.

The significand foy; provided by rdg, has at most two bits to the left of
the binary point, whereas y has up to 32 bits to the left of the binary point.
However, the rounding rdiy; isonly applied if f, € [0,2) and €, < 23, For
p = 32 it then follows that

fp = 2% (P-1).f < 281-8l ¢ ~ o

Thus, the significand sigrnd(s,, f;) has at most 2 bits to the left to the
binary point. The significand y can then be obtained by shifting the output
significand foyt €nin positions to the left:

y[32:0] = y[p:0] = fow[-1:p—1].

Circuit FXRND Figure 8.42 depicts the top level schematics of the fixed
point rounder FXRND. Circuits NORMSHIFTX, REPPX, and SIGRNDX
from the floating point rounder are adapted as follows:

¢ only denormal results are considered (i.e., UNF A /UNFen),
e only one precision p = 32 is supported,
e andeypissetto—(p—1) = —31.

Circuit SPECFX is new, it performs the range check, signals exceptions
and implements the special case a= 0. All the inputs of the rounders have
zero delay, thus

Crxrnd = Cnormshiftx+ Creppx+ Ct(40) 4+ Csigrndx+ CspecFx
Texrmd = DnNormshiftx+ Dreppx+A4A
AFXrnd = ASiandX+ DS peck X

Section 8.6

fla €d[10:0] 1za[5:0] fa[0:52] sa
FORMAT
: CONVERSION
4 NormshiftX REPpX
e -{Fe]
b fla lovfl f1[0:33] s | RM

\—\L SIGinx ¢ \L

SpecFX = SigRndX

£3[-1:31]
IEEEx Fx[63:0]

Figure 8.42 Schematics of the fixed point rounder FXRND; IEEEx denote the
floating point exceptions flags.

fa[0:52] J | ea[10:0], 1ze[5:0]
| sniftistFX_ | [Fxflags |
¢ sh[12:0]
‘ SigNormshift ‘
¢ fn[0:127] lovfl

Figure 8.43 Normalization shifter NORMSHIFTX

Circuit NORMSHIFTX The circuit depicted in figure 8.43 performs the
normalization shift. In analogy to the floating point rounder, its outputs
satisfy

lovfy, = 2%.f,>2%
& = €min= —31
fn :p f — 2%_%“1‘ fa.

Circuit SIGNORM SHIFT which performs the normalization shift isiden-
tical to that of the floating point rounder. Sincethe significand £ isnormal,
and since for large operands 1z, = 0, we have

0. £, >2% & di=e—12a>32 ¢ [e10:0)] > 32
Thus, circuit FXFLAGS signals the overflow lovf; by

lovh, = e[10] A \/ edlil.
i=5,.9

429

Chapter 8

e[10, 9:0] 1za[5:0]
FLOATING POINT 7. 5
7 0’10
ALGORITHMS AND 11 ‘
DATA PATHS
| 3/2add(13) |
13 13 0

sh[12:0]

Figure 8.44 Circuit SHIFTDISTFX of the fixed point rounder

Circuit SHIFTDISTFX (figure 8.44) provides the distance o of the nor-
malization shift as 13-bit two’s complement number. Since f is defined as
2%—emin. f_ the shift distance equals

o = [sh12:0]] = €, —énin
= [€a[10:0]] = (1za[5: O]) — (—31)
= [ea[10]%€[9: O]] +[17124[5: O]] + 32 mod 22,

The cost and delay of the normalization shifter NORMSHIFTX and of its
modified subcircuits can be expressed as

Cnormshiftx = Crx flags Cshiftpistx+ CsigNormshift
CFXfIags = CORtre&5) +Cand+Cinv
Cshitbistx = Cinv(6) +Cg/2add(13) + Cadd(13)
DNormshiftx = Max{Dgx flags, Dshiftbistx+ DsigNormshif}

Dexflags = Dortred5) + Dand
Dshiftpistx = Dinv+ D3/2add(13) 4 Dadd(13).

Circuit REPPX The circuit of figure 8.45 performs the sticky bit com-
putation in order to provide a p-representative of f,:

fo = [falp . f1f0:33] = f3[0:32)st , st = \/ fy[i]

i>p

Since we now have only a single precision, this circuit becomes almost
trivial:

Creppx = Cortred 95), Dreppx = Dortred 95).

430

fn[0:32] fn[33:127]

st
£1[0:32] f1[33]

Figure 8.45 Circuit REPPX

0, f1[0:31] s RM[LO] f1[31:33]

l,r, st
Rounding Decision

inc

f3[-1:31] SIGinx

Figure 8.46 Circuit SIGRNDX of the fixed point rounder

Circuit SIGRNDX Circuit SIGRNDX (figure 8.46) performs the signifi-
cand rounding and converts the rounded significand £[—1: 31] into atwo'’s
complement fraction f3[—1: 31]. Given that the range is not exceeded, we
have

fa[—1: 31] sigrnd(s,, f1[0: 33])
[f3[—1:0].f3[1:31]] = (—1)%-(fy[—1:0].fy[1:31]).

As in the rounder FPRND, the binary fraction f; is either chopped or in-
cremented at position p— 1, depending on the rounding decision:

f, = <f1[0].f1[12p—l]>+inc.2*(p*1)

—fy = [1RIO.f[1: p—1]]+ (1—inc).2 (P~Y
fs = [sa(f1]0].f1[1: p—1]) ®]+ (incdss) -2 P,

The rounded significand isinexact (SIGinx= 1) iff f[32: 33] # 00.

Like in the floating point rounder, the rounding decision flag inc is gen-
erated by the circuit of figure 8.34. Circuit SIGRNDX therefore has cost
and delay

Csigrndx = Cmux(33) + Cinc(33) +Cor + 2 Cyor

Section 8.6

FORMAT
CONVERSION

431

Chapter 8

FLOATING POINT
ALGORITHMS AND
DATA PATHS

432

+Crmux+ 3 Cand+ 2 Cor + Cxor

Asigrndx = maX{Dinc(33), ArM + Dyor + Dand + Dmux}
“+Dmux+ Dxor-

Circuit SPECFX Thiscircuit supports the special cases and signals float-
ing point exceptions. If the rounded result X is representable as a 32-bit
two’s complement number, we have

x = 273 f3[-1:0].f3[1:31]] and x[32:0] = f3[—1:31].

In case of a zero operand a = 0, which is signaled by the flag ZEROr, the
result Fx must be pulled to zero. Thus:

. 0% if ZEROr=1 .
Fx31:0] = { X31:0] if ZEROr=0 ~ X[31:0]® ZEROr
Fx63:32] = Fx[31:0].

According to the specifications from page 422, the overflow of the conver-
sion and the invalid operation exception can be detected as

lovf = lovfy V X[32]® s V X3l & sy
INV = lovf Vv NANrV INFr.

The conversion isinexact, if the rounded significand isinexact SIGinx= 1
and if aiis afinite non-zero number:

INX = SIGinx A NANr Vv INFr v ZEROr.

Further floating point exceptions cannot occur. Circuit SPECFX imple-
ments thisin a straightforward way at

CSpecFX = Cxor(32) +2- Cxor + Cand+ Cnor +5- Cor
Dspeckx = Max{Dxor+ Dor, Dand+ Dor} + Dor-

8.7 Evaluation of the FPU Design

IN THE previous subsections, we have designed an | EEE-compliant float-
ing point unit. We now analyze the cost and the delay of the FPU and
the accumulated delay of its outputs. We assume that the rounding mode
RM and the flags UNFenand OV Fenhave zero delay.

Table 8.9 Accumulated delay of the units feeding bus FR and cycle time of the
FPU and of its units

accumulated delay
bus FR | ADD/Sus | MuL/Div | FXUNP | FPUNP/ICVT
| 93 | 9 | 64 | 3B | 45 |
cycletime
FPU || BusFR | Abpp/SuB | MUL/DIV | FPRND | FXRND
98 || 9 | 63 | 69 | 9 | 76 |

Cycle Time of the FPU

In the top level schematics of the FPU (figure 8.2), there are two register
stages. The output of the unpacker FPUNP and the intermediate result on
bus FR are clocked into registers. Result FR is provided by the unpacker
FXUNP, the converter Cv T, the add/subtract unit or by the multiply/divide
unit, thus,

Arpu(Fr) = max{Arpunp+ Dcvt: AFxunp AMulDivs Aaddsuld + Dadriv
TFpu(FI') = Appu(Fr)—i-A.

According to table 8.9, these results have an accumulated delay of at most
93, and therefore require aminimal cycle time of 98 gate delays. Thistime
is dominated by the add/subtract unit.

In addition, some units of the FPU have an internal register stage and
therefore impose a bound on the cycle time of the FPU, as well. These
units are the two rounders FPRND and FXRND, the add/subtract unit, and
the multiply/divide unit:

Tepy = max{Tmuibiv, TAddsub TEPrd, TExrd, Tepu (Fr)}.

These units require aminimal cycle time of 98 gate delays like the update
of register FR. The floating point rounder FPRND is 30% slower than the
other three units.

Accumulated Delay of the Outputs
The outputs of the floating point unit are provided by the two rounders
FPRND and FXRND and by unit FCoON:

Arpy = max{Arcon, Arxrnd, AFpPrnd}-

Section 8.7

EVALUATION OF
THE FPU DESIGN

433

Chapter 8

FLOATING POINT
ALGORITHMS AND

434

DATA PATHS

Table 8.10 Accumulated delay of the outputs of the FPU. Circuit SIGRND of
rounder FPRND uses a standard incrementer (1) or afast CSI incrementer (2).

| version | FPU | FCoN FXRND FPRND | SIGRND |

D) | o1 50 44 o1 58
2 | 50 50 44 49 16

According to table 8.10, they have an accumulated delay of 91. Compared
to the cycle time of the FPU, a delay of 91 just leaves enough time to
select the result and to clock it into a register. However, in a pipelined
design (chapter 9), the outputs of the FPU become time critical due to
result forwarding.

The floating point rounder FPRND is about 50% slower than the other
two units. Its delay is largely due to the 53-bit incrementer of the signif-
icand round circuit SIGRND. The delay of a standard n-bit incrementer
is linear in n. However, when applying the conditional sum principle re-
cursively, its delay becomes logarithmic in n (see exercise 2.1 of chapter
2). Using such aCSlincrementer speeds up the rounder significantly. The
outputs of the FPU then have an accumulated delay of 50 gate delays. That
now leaves plenty of time for result forwarding.

The FPU receives the underflow enable bit UNFen the overflow enable
bit OV Fenand the rounding mode at an accumulated delay of AynF/ovFen
The FPU design can tolerate an accumulated delay of Ajnr/ovren= 40
before the input signal UNFenand OV Fendominate the cycle time Tepy.

The accumulated delay of the rounding mode RM is more time critical.
Already for Arm = 9, the rounding mode dominates the delay Arpy, i.€., it
slows down the computation of the FPU outputs.

Cost of the FPU
Table8.11 liststhe cost of the floating point unit FPU and of its major com-
ponents. Circuit SIGRND of the floating point rounder FPRND either uses
a standard 53-bit incrementer or afast 53-bit CSlincrementer. Switching
to the fast incrementer increases the cost of the rounder FPRND by 3%,
but it has virtually no impact on the total cost (0.2%). On the other hand,
the CSI incrementer improves the accumulated delay of the FPU consid-
erably. Therefore, we later on only use the FPU design version with CS
incrementer.

The multiply/divide unit is by far the most expensive part of the float-
ing point unit, it accounts for 70% of the total cost. According to table
8.12, the cost of the multiply/divide unit are amost solely caused by cir-

Table 8.11 Cost of the FPU and its sub-units. Circuit SIGRND of rounder FPRND
either uses a standard incrementer or afast CS| incrementer.

ADD/SuUB 5975
MuL/Div 73303
FCoON 1982
FPUNP 6411
FXUNP 420
FPRND 7224 | 7422
FXRND 3605
Cvt 2
rest 4902

total: FPU | 103824 / 104022 |

Table 8.12 Cost of the significand multiply/dividecircuit SIGFM D with a256 x 8
lookup ROM. The last column lists the cost relative to the cost of the multi-
ply/divide unit MUL/D1v.

| SIGFMD || SELECTFD | 42mulTree | ROM | CLA(116) | rest |

71941 5712 55448 647 2711 8785
98% 7.8% 75.6% 0.9% 3.7% 12%

cuit SIGFM D which processes the significands. Its 58 x 58-bit multiplier
tree accounts for 76% of the cost of the multiply/divide unit and for 53%
of the cost of the whole FPU. The table lookup ROM has only a minor
impact on the cost.

8.8 Selected References and Further Reading

MORE OR less complete designs of floating point units can be found
in [AEGP67] and [WF82]. The designs presented here are based on
constructions from [Spa91, EP97, Lei99, Sei00]. Our analysis of the divi-
sion algorithm uses techniques from [FS89]. A formal correctness proof
of IEEE-compliant algorithms for multiplication, division and sguare root
with normal operands and a normal result can be found in [Rus].

Section 8.8

SELECTED
REFERENCES AND
FURTHER READING

435

Chapter 8

FLOATING POINT
ALGORITHMS AND

436

DATA PATHS

8.9 Exercises

Exercise 8.1 A trivial (n,i)-right shifterisacircuit with ninputsan—1:
0], select input s € {0,1} and n+i outputsr[n— 1 : —i] satisfying

C_ Oa if s+1
] a0 otherwise.

Thus, in trivia (n,i)-right shifters, the i bits which are shifted out are the
last i bits of the result.

One can realize the alignment shift and sticky bit computation of the float-
ing point adder by a stack of trivial shifters. The sticky bit is computed by
simply ORing together bits, which are shifted out.

1. Determine the cost and the delay of this construction.

2. Inthe stack of trivial shifters, perform large shifts first. Then care-
fully arrange the OR-tree which computes the sticky bit. How much
does this improve the delay?

Exercise 8.2 Insection 8.3, we have designed amultiply/divide unit which
performs a division based on the the Newton-Raphson method. The iter-
ation starts out with an initial approximation » which is obtained from a
2Y x y lookup table. The intermediate results are truncated after o = 57
bits. The number i of iterations necessary to reach p+ 2 bits of precision
(i.e., & < 27P~2) isthen bounded by

1 if p=24ANy=16
2 if p=24Any=8 o p=53Ay=16
3 if p=24Ay=5 o p=53Ay=8
4 if p=53Ay=5

For y = 8, this bound was aready shown in section 8.3.4. Repest the argu-
ments for the remaining cases.

Determine the cost of the FPU for y= 16 and y = 5.

Exercise 8.3 The next three exercises dea with the normalization shifter
NORMSHIFT used by the floating point rounder FPRND. The functionality
of the shifter is specified by Equation 8.6 (page 393); its implementation
is described in section 8.4.2.

The shifter NORMSHIFT gets asinput afactoring (s, g, f;); the significand
fi[—1: 55] has two bits to the right of the binary point. The final rounded
result may be anormal or denormal number, and . may haveleading zeros
or not.

e Determine the maximal shift distance |o| for each of these four cases.
e Which of these cases require aright shift?

Exercise 8.4 The normalization shifter NORMSHIFT (figure 8.25, page
395) computes a shift distance o, and its subcircuit SIGNORMSHIFT then
shifts the significand f'. However, in case of aright shift, the represen-
tation of f’'-29 can be very long. Circuit SIGNORMSHIFT therefore only
provides a p-representative f,:

[fa[0: 63]] = fn =p '-2°.

e Determine the maximal length of the representation of f - 29.
e Givean example (i.e., f’ and o) for which f, £ f'-2°.

Exercise 8.5 The exponent normalization circuit ExPNORM of the float-
ing point rounder FPRND computes the following sums sumand sum+ 1

sum = & +1+[11z5:0]]+9d

where & is a constant.

The implementation of EXPNORM depicted in figure 8.27 (page 400) uses
a 3/2-adder and a compound adder ADD2 to perform thistask. Like in the
computation of flag TINY, the value [Iz[5 : O]] can be included in the con-
stant &, and then, the 3/2-adder in the circuit EXPNORM can be dropped.

e Derive the new constant J.

e How does this modification impact the cost and the delay of the float-
ing point rounder?

Section 8.9

EXERCISES

437

Pipelined DLX Machine with
Floating Point Core

N THIS chapter, the floating point unit from the previous chapter isin-

tegrated into the pipelined DLX machine with precise interrupts con-
structed in chapter 5. Obviously, the existing design has to be modified in
several places, but most of the changes are quite straightforward.

In section 9.1, the instruction set is extended by floating point instruc-
tions. For the greatest part the extension is straightforward, but two new
concepts are introduced.

1. Thefloating point register file consists of 32 registers for single pre-
cision numbers, which can aso be addressed as 16 registers for dou-
ble precision floating point numbers. Thisaliasing of addressing will
mildly complicate both the address computation and the forwarding
engine.

2. The IEEE standard requires interrupt event signals to be accumu-
lated in a special purpose register. This will lead to a simple extra
construction in the special purpose register environment.

In section 9.2 we construct the data path of a (prepared sequential or
pipelined) DLX machine with a floating point unit integrated into the ex-
ecute environment and a floating point register file integrated into the reg-
ister file environment. This has some completely obvious and simple con-
sequences. e.g., some parts of the data paths are now 64 bits wide and
addresses for the floating point register file must now be buffered as well.
There are two more notable consequences:

Chapter 9

PIPELINED DLX Table 9.1 Latency of the IEEE floating point instructions; fc denotes a compare
MACHINE WITH and cvt aformat conversion.

FLOATING POINT
CORE

| precision || fneg | fabs | fc | cvt | fadd [fmul | fdiv |
single 1 1 1| 3 5 5 17
double 1 1 1| 3 5 5 21

1. We have to obey throughout the machine an embedding convention
which regulates how 32-bit data share 64-bit data paths.

2. Except during divisions, the execute stage can be fully pipelined, but
it has variable latency (table 9.1). This makesthe use of so called re-
sult shift registersin the CA-pipe and in the buffers-pipe necessary.

In section 9.3, we construct the control of a prepared sequential machine
FDLX;s. The difficulties arise obvioudy in the execute stage:

1. For instructions which can be fully pipelined, i.e., for al instruc-
tions except divisions, two result shift registers in the precomputed
control and in the stall engine take care of the variable latencies of
instructions.

2. In section 8.3.6, we controlled the 17 or 21 cycles of divisions by a
finite state diagram. This FSD has to be combined with the precom-
puted control. We extend the result shift register of the stall engine
(and only this result shift register) to length 21. The full bits of this
result shift register then code the state of the FSD.

For the prepared machine FDLXs constructed in this way we are able to
prove the counter part of the (dateline) lemma 5.9.

In section 9.4, the machine isfinally pipelined. Asin previous construc-
tions, pipelining is achieved by the introduction of a forwarding engine
and by modification of the stall engine alone. Because single precision
values are embedded in double precision data paths, one has to forward
the 32 low order bits and the 32 high order bits separately. Stalls have to
be introduced in two new situations:

1. if aninstruction with short latency threatens to overtake an instruc-
tion with long latency in the pipeline (see table 9.2); and

2. if pipelining of the execute stage isimpossible because adivision is
- inone of itsfirst 13 or 17 cycles, respectively.
440

Table 9.2 Scheduling of the two data independent instructions fadd and cvt. In
thefirst case, cvt overtakesfadd; the second case depicts an in-order execution.

| instruction || cycles of the execution |

fadd Fl D]_ El El El E1 El M 1 Wl

cvt F, D Eo E, Eo My W,

fadd Fl Dl El El El El El M 1 Wl

cvt F, Do stall E, E Eo My W>

A simple lemmawill show for this FDLXn design, that the execution of
instructions stays in order, and that no two instructions are ever simultane-
oudly in the same substage of the execute stage.

9.1 Extended Instruction Set Architecture

EFORE GOING into the details of the implementation, wefirst describe

the extension of the DLX instruction set architecture. That includes
the register set, the exception causes, the instruction format and the in-
struction set.

9.1.1 FPU Register Set

The FPU provides 32 floating point general purpose registers FPRs each
of which is 32 bitswide. In order to store double precision values, the reg-
isters can be addressed as 64-bit floating point registers FDRs Each of the
16 FDRs s formed by concatenating two adjacent FPRs (table 9.3). Only
even numbers (0,2,...,30) are used to address the floating point registers
FPR; the least significant address bit isignored.

Embedding Convention

In the design, it is sometimes necessary to store asingle precision value x.s
in a 64-bit register, i.e., the 32-bit representation must be extended to 64
bits. This embedding will be done according to the convention illustrated
infigure 9.1, i.e., the data is duplicated.

FPU Control Registers
In addition, the FPU core al so provides some special purpose registers. The
floating point control registers FCBomprise the registers FCC, RM, and

Section 9.1

EXTENDED
INSTRUCTION SET
ARCHITECTURE

441

Chapter 9

PIPELINED DLX
MACHINE WITH

FLOATING POINT
CORE

442

Table 9.3 Register map of the general purpose floating point registers

floating point . . .
general purpose regisiers floating point registers
single precision (32-bit) double precision (64-hit)
FPR31[31: Q] FDR30[63 : 32])
FPR30[31 : FDR30[31:0] [DR30[63:0)
FPR3[31: O] FDR2[63: 32])
FPR2[31: O] FDR2[31:0 | TORA63:0)
FPR1[31: O] FDRO[63 : 32])
FPRO[3L: O] FDRO[31: 0] J TOROG3:0)
63 3231 0
| X.S \ X.S |

Figure 9.1 Embedding convention of single precision floating point data

|EEEf. The registers can be read and written by special move instructions.
Register FCCis one bit wide and holds the floating point condition code.
FCC is set on a floating point comparison, and it is tested on a floating
point branch instruction. Register RM specifies which of the four |IEEE
rounding modes is used (table 9.4).

Register IEEEf(table 9.5) holds the IEEE interrupt flags, which are over-
flow OVF, underflow UNF, inexact result INX, division by zero DBZ, and
invalid operation INV. These flags are sticky, i.e., they can only be reset at
the user’s request. Such aflag is set whenever the corresponding exception
is triggered.The |EEE floating point standard 754 only requires that such
an interrupt flag is set whenever the corresponding exception is triggered

Table 9.4 Coding of the rounding mode RM

| RM[1:0] || rounding mode

00 r, | round to zero

01 rme | round to next even
10 ry | round up

11 rq | round down

Section 9.1

Table 9.5 Coding of the interrupt flags | EEEF EXTENDED

‘ INSTRUCTION SET

‘ H symbol ‘ meaning ARCHITECTURE

|EEEF[O] OVF | overflow
IEEEf[1] || UNF | underflow
IEEEf[2] || INX | inexact result
|EEEf[3] DBz | division by zero
|EEEf[4] INV | invalid operation

Table 9.6 Coding of the special purpose registers SPR

fXSPR FCR
SR [ESR [ECA [EPC [EDPC |Edata | RM | EEEf | FCC
(Sed[O] 1] 2] 3] 4 |5 [6[7]38]

while being masked (disabled). If the exception is enabled (not masked),
the value of the corresponding |EEE interrupt flag is left to the implemen-
tation/interrupt handler.

The specia purpose registers SPR now comprise the original six spe-
cia purpose registers fxSPRof the fixed point core and the FPU control
registers FCR. Table 9.6 lists the coding of the registers SPR.

9.1.2 Interrupt Causes

The FPU adds six internal interrupts, namely the five interrupts requested
by the |IEEE Standard 754 plus the unimplemented floating point operation
interrupt uFOP (table 9.7). In case that the FPU only implements a sub-
set of the DLX floating point operations in hardware, the uFOP interrupt
causes the software emulation of an unimplemented floating point opera-
tion. The uFOP interrupt is non-maskable and of type continue.

The |IEEE Standard 754 strongly recommends that users are allowed to
specify an interrupt handler for any of the five standard floating point ex-
ceptions overflow, underflow, inexact result, division by zero, and invalid
operation. Such a handler can generate a substitute for the result of the
exceptional floating point instruction. Thus, the |EEE floating point inter-
rupts are maskable and of type continue. However, in the absence of such
an user specific interrupt handler, the execution is usually aborting.

443

Chapter 9

PIPELINED DLX Table 9.7 Interrupts handled by the DLX architecture with FPU
FEAOAA\\CTT;JZEPV;:L: | interrupt | symbol || priority | resume | mask | externa |
CORE reset reset 0 abort no yes
illegal instruction ill 1 abort no no
misaligned access mal 2
page fault IM | pf 3 repest
page fault DM Dpf 4
trap trap 5 continue
FXU overflow ovf 6 abort yes
FPU overflow fOVF 7 abort/
FPU underflow fUNF 8 continue
FPU inexact result fINX 9
FPU division by zero | fDBZ 10
FPU invalid operation | fINV 11
FPU unimplemented | uFOP 12 continue| no
external 1/0 e 12+ j | continue| yes yes
6 5 5 16
Fl-type ‘ Opcode ‘ Rx ‘ FD ‘ Immediate
6 5 5 5 3 6

FRtype | Opcode | Fst |Fs2/Rx| FD | oo[Fmi| Function |

Figure 9.2 Floating point instruction formats of the DL X. Depending on the pre-
cision, FS1, FS2 and FD specify 32-bit or 64-bit floating point registers. Rx
specifies a general purpose register of the FXU. Function is an additiona 6-bit
opcode. Fmt specifies a number format.

9.1.3 FPU Instruction Set

The DLX machine uses two formats (figure 9.2) for the floating point in-
structions; one corresponds to the I-type and the other to the R-type of the
fixed point core FXU.

TheFI-format is used for moving data between the FPU and the memory.
Register Rx of the FXU together with the 16-bit immediate specify the
memory address. Thisformat is aso used for conditional branches on the
condition code flag FCC of the FPU. The immediate then specifies the
branch distance. The coding of these instructions is given in table 9.8.

444

Table 9.8 FI-type instruction layout. All instructions except the branches also
increment the PC by four. The effective address of memory accesses equals ea=
(GPRRX) + (sxt(imm)), where sxt(imm) denotes the sign extended version of
the 16-bit immediate imm The width of the memory access in bytes is indicated
by d. Thus, the memory operand equals m= M[ea+d— 1],---,M[ed.

[IR[31: 26] || mnemonic | d | effect |

Load, Store
hx31 loads | 4| FD[31:0]=m
hx35 load.d 8| FD[63:0] =m
hx39 stores | 4| m=FD[31:0]
hx3d stored | 8| m=FDI[63: 0]
Control Operation
hx06 fbeqz PC=PC+4+ (FCC=0 ? imm: 0)
hx07 fbnez PC=PC+4+(FCC#0 ? imm: 0)

The FR-format is used for the remaining FPU instructions (table 9.9). It
specifies aprimary and a secondary opcode (Opcode, Function), anumber
format Fmt, and up to three floating point registers. For instructions which
move data between the FPU and the fixed point unit FXU, thefield FS2/Rx
specifies the address of ageneral purpose register Rx in the FXU.

Since the FPU of the DLX machine can handle floating point numbers
with single or double precision, all floating point operations come in two
version; the field Fmt in the instruction word specifies the precision used
(table 9.10). In the mnemonics, we identify the precision by adding the
corresponding suffix, e.g., suffix ‘.s" indicates a single precision floating
point number.

9.2 Data Paths without Forwarding

N THIS section we extend the pipelined data paths of the DLX machine

by an IEEE floating point unit. The extensions mainly occur within
the environments. The top level schematics of the data paths (figure 9.3)
remain virtually the same, except for some additional staging registers and
the environment FPembwhich aligns the floating point operands.

The register file environment RFenv now also provides two 64-bit float-
ing point operands FA and FB, and it gets a 64-bit result FC and three
additional addresses. The registers Ffl.3 and Ffl.4 buffer the five IEEE ex-

Section 9.2

DATA PATHS
WITHOUT
FORWARDING

445

Chapter 9

PIPELINED DLX
MACHINE WITH

FLOATING POINT
CORE

446

Table 9.9 FR-type instruction layout. All instructions also increment the PC by
four. The functions sgrt(), abs() and rem() dencte the square root, the absolute
value and the remainder of a division according to the IEEE 754 standard. The
opcode bits c[3 : O] specify the floating point test condition conaccording to table
8.7. Function cvt() convertsfrom one format into another. In our implementation,
instructions fsqt and frem are only supported in software.

| IR[31:26] | IR[5:0] | Fmt || mnemonic | effect |
Arithmetic and compare operations

hx11 hx00 fadd[.s,.d] | FD=FSl +FS2

hx11 hx01 fsub[.s,.d] | FD=FSl1-FS2

hx11 hx02 fmul [.s,.d] | FD =FS1* FS2

hx11 hx03 fdiv[.s,.d] | FD=FSl/FS2

hx11 hx04 freg[.s,.d] | FD=-FSl

hx11 hx05 fabs[.s, .d] | FD = abs(FS1)

hx11 hx06 fsgt[.s, .d] | FD = sgrt(FSL)

hx11 hx07 frem[.s, .d] | FD =rem(FS1, FS2)

hx11 11c[3:0] fc.con[.s, .d] | FCC = (FS1 conFS2)
Data transfer

hx11 hx08 | 000 fmov.s FD[31:0] = FS1[31.0]
hx11 hx08 | 001 fmov.d FD[63:0] = FS1[63:0]
hx11 hx09 mf2i Rx = FS1[31:0]
hx11 hxOa mi 2f FD[31:0] = Rx

Format conversion
hx11 hx20 | 001 cvt.sd FD = cvt(FS1, s, d)

hx11 hx20 100 cvt.si FD =cvt(FSL, s, i)
hx11 hx21 000 cvt.d.s FD =cvt(FSL, d, s)
hx11 hx21 100 cvt.d.i FD = cvt(FS1, d, i)

hx11 hx24 | 000 cvt.i.s FD = cvt(FSL, i, 9)
hx11 hx24 | 001 cvt.i.d FD = cvt(FSL, i, d)

Table 9.10 Coding of the number format Fmt.

| Fmt[2:0] || suffix | number format \

000 .S | single precision floating point
001 .d | double precision floating point
100 A 32-bit fixed point

Section 9.2

B R, Menv [DATA PATHS
EPCs WITHOUT
IRenv Daddr FORWARDING
FPemb PCenv Tv I
PFA,.FB| S[A.B] [plink PCs| | peo | | _
l .
N 3
=— |4 +|- - - —
g fl D EXenv R [~ E
=
R PFL3 | D MAR| MDRw C
= %)
o
= At H-- - - - - - - - -- - DMenv S
o
v
PFla | Pca | DPMDR| PFC4 | S
L] J y 3
SHaLenwv [|
FiI’ c| |Fc
RFenv

Figure 9.3 Data paths of the DLX design with afloating point core

ception flags. In order to support double precision loads and stores, the
data registers MDRw and M DRr associated with the data memory are now
64 bits wide. Thus, the cost of the enhanced DLX data paths can be ex-
pressed as

CDF’ = CI Menv+ CPCenv+ CI Renvt CDalddr + CFPemb+ CEXenv
+CDMenv+ CSH4Lenv+ CRFenv+ CCAenv+ Cbuf fer
+6-Ct(32) +5-Cs1(64) + 2 Cy1(5).

The extended instruction set architecture has no impact on the instruc-
tion fetch. Thus, the instruction memory environment IMenv remains
the same. The other four pipeline stages undergo more or less extensive
changes which are now described stage by stage. -

447

Chapter 9

PIPELINED DL X
MACHINE WITH
FLOATING POINT

448

CORE

9.2.1 Instruction Decode

The data paths of the decode stage ID comprise the environments |Renv,
PCenv, and FPemb and the circuit Daddr which selects the address of the
destination register.

Environment IRenv

So far, the environment IRenv of the instruction register selects the im-
mediate operand imm being passed to the PC environment and the 32-bit
immediate operand co. In addition, IRenv provides the addresses of the
register operands and two opcodes.

The extension of the instruction set has no impact on the immediate
operands or on the source addresses of the register file GPR. However, en-
vironment |Renv now also has to provide the addresses of the two floating
point operands FA and FB. These source addresses FS1 and FS2 can di-
rectly be read off the instruction word and equal the source addresses Aad
and Bad of the fixed point register file GPR:

FSI = Aad = IR[25:2]]
F2 = Bad = IR[20:17].

Thus, the cost and delay of environment |Renv remain unchanged.

Circuit Daddr
Circuit Daddr generates the destination addresses Cad and Fad of the gen-
era purpose register files GPR and FPR. In addition, it provides the source
address Sasand the destination address Sadof the special purpose register
file SPR.

Address Cad of the fixed point destination is generated by circuit Caddr
as before. The selection of the floating destination Fad is controlled by a
signal FRtypewhich indicates an FR-type instruction:

IR[15:11] if FRtype=1
IR[20:16] if FRtype=0.

The SPR source address Sasis generated as in the DLX design. It is
usually specified by the bits SA= IR[10 : 6], but on an RFE instruction
it equals the address of register ESR. Except for an RFE instruction or a
floating point condition test (fc = 1), the SPR destination address Sadis
specified by SA On RFE, ESR is copied into the status register SPR[0],
and on fc = 1, the condition flag fccis saved into register SPR[8]. Thus,

00000 if rfel=1
Sad =

Fad4:0] = {

01000 if fc.l=1

{ SA if rfel=0
Sas—=
SA otherwise.

00001 if rfel=1

IR[15:11] IR[10:6] 00000 IR[10:6]

IR[20:11
PO rp20) rfe.l 01000 00001
Jink —
Rt Caddr FRtype fc.l rfe.l
ype 1
\L Cad Fad Sas Sad

Figure 9.4 Circuit Daddrwhich selects the destination addresses

The circuit of figure 9.4 provides these four addresses at the following
cost and delay:

CDaddr = CCaddr+4‘Cmux(5)
Dpaddr = mMax{Dcaddr,2-Dmux(5)}-

PC Environment
Dueto the extended I1SA, the PC environment has to support two additional
control instructions, namely the floating point branches fbeqz and fbnez.
However, except for the value PC}, the environment PCenv still has the
functionality described in chapter 5.

Let signa bjtaken as before, indicate a jump or taken branch. On in-
struction [;, the PC environment now computes the value

EPG_; if lj=rfe
PC_,+imm if bjtaken A I; € {beqz,bnez,j,jal}
PC{'={ PC ,+imm if bjtaken A I; € {fbeqz,fbnez}
RS, if bjtaken A I; € {jr,jalr}
PG ,+4 otherwise
This extension has adirect impact on the glue logic PCglue, which gen-
erates signal b jtaken but the data paths of PCenv including circuit nextPC
remain unchanged.
Signal bjtakenmust now also be activated in case of a taken floating

point branch. Let the additional control signal fbranch denote a floating
point branch. According to table 9.11, signal b jtakenis now generated as

bjtaken = branch A (bzero xNOR AEQ2Z)
v fbranch A (bzero xor FCC)
vV jump

Thisincreases the cost of the glue logic by an OR, AND, and XOR gate:

CF’Cglue = 2 Cor + Cand + anor + Czero(32)
+Cor + Camd + Cxor-

Section 9.2

DATA PATHS
WITHOUT
FORWARDING

449

Chapter 9

PIPELINED DL X
MACHINE WITH
FLOATING POINT

450

CORE

Table 9.11 Value of signal b jtakenfor the different branch instructions

| instruction || bzero | AEQZ | FCC || bjtaken |

beqz 1 2 * cl)
bnez 0 (l) * é
fbeqz 1 * é (1)
fbnez 0 * é (1)

Both operands A’ and FCC are provided by the register file environment,
but A’ is passed through a zero tester in order to obtain signal AEQZ Thus,
FCC has amuch shorter delay than AEQZ and the delay of signal b jtaken
remains unchanged.

Environment FPemb

Environment FPemb of figure 9.5 selects the two floating point source
operands and implements the embedding convention of figure 9.1. It is
controlled by three signals,

¢ theflag dbs1 requesting double precision source operands,
e theleast significant address bit FS1[0] of operand FA, and

e theleast significant address bit FS2[0] of operand FB.

Circuit FPemb reads the two double words fA[63: 0] and fB[63: O] and
provides the two operands FA1 and FB1, each of which is 64 hits wide.

Since the selection and data extension of the two source operands go
along the same lines, we just focus on operand FA1. Let the high order
word and the low order word of input fA be denoted by

fAh=fA[63:32] and fAl=fA[31:0].

On adouble precision access (dbs1 = 1), the high and the low order word
are just concatenated, i.e., FA1 = fAh, fAl. On a single precision access,
one of the two words is selected and duplicated; the word fAl is chosen on
an even address and the word fAh on an odd address. Thus,

fAh fAl if dbsl=1
FAL[63:0] = { fAh fAh if dbs1=0 A FSI[0]=1
fAl, fAlif dbs1=0 A FSI[0] =0.

Section 9.2

a) b)
FSOl fA dosl fB FS2o] @db fth fl fth fl & dp DATAPATHS
WITHOUT
L e Bl
FORWARDING
a fhfl db do fhfl a
Fsdl Fed
| FAL[63.01 | Fa1r630] [63:32]

Figure 9.5 Schematics of environment FPemb(a) and of circuit Fsel (b).

Circuit FSd (figure 9.5) implements this selection in a straightforward
manner. Environment FPemb comprises two of these circuits. Since the
data inputs have a much longer delay than the three control signals, the
cost and delay of environment FPemb can be expressed as

CFPemb = 2‘CFseI = 2'(2‘C0r+cinv+2'cmux(32))
DFPemb = Dmux(32)-

9.2.2 Memory Stage

In every cycle, the memory stage passes the address MAR, the 64-bit data
MDRw and the floating point flags Ffl.3 to the write back stage:

C4 = MAR
FC.4 = MDRw
Ffl.4 = Ffl.3.

In case of aload or store instruction, the environment DMenv of the data
memory and the memory control perform the datamemory access. In order
to load and store double precision floating point numbers, the memory
access can now be up to 64 bits wide.

Memory Organization
Asbefore, the datamemory DM is byte addressable, but in addition to byte,
half word and word accesses, it now also supports double word accesses.
Therefore, the data memory is organized in 8 memory banks.

In the memory DM, 8-bit, 16-bit and 32-bit data are alignedin the same
way as before (section 3.1.3). Whereas 64-bit data are aligned at double
word boundariesi.e., their byte addresses are divisible by eight. For a

451

Chapter 9

PIPELINED DL X
MACHINE WITH
FLOATING POINT

452

CORE

double word boundary e we define the memory double wordf memory
DM with address e as

DMdword(e) = DM[e+7: €.

The bytes within the double word w[63 : 0] are numbered in little endian
order:

bytg(w) = w[8j+7:8j]
byte;.jj(w) = byte(w)...bytg(w)

On a read access with address a[31 : O], the data memory DM pro-
vides the requested double word, assuming that the memory is not busy
and that the access causes no page fault. In any other case, the mem-
ory DM provides a default value. Thus, for the double word boundary
e= (a[31: 3]000), we get

.~ _ | DMdword(e) if Dmr3 A /dbusyA /dpf
DMout63: 0] = { DMdefault otherwise.
A write access only updates the data memory, if the access is perfectly
aligned (dmal = 0), and if the access causes no page fault (dpf = 0). On
such an d-byte write access with byte address a = (a[31 : 0]) and offset
0= (a[2: 0]), the data memory performs the update

DM[a+d—1:a] := byt€,y_1.¢(MDin[63:0]).

Memory Environment DMenv

Figure 9.6 depicts the new data memory environment DMenv. Like in the
pipelined DLX design of section 6.5, the core of DMenv is the data cache
interface D$if with a sectored cache. A cache sector is still S= 8 bytes
wide.

The cache is connected to the data paths through a 32-bit address port
a and the two 64-bit data ports MDin and DMout. The memory interface
Mif connects the data cache to the off-chip memory. Even without FPU,
the cache and the off-chip memory already operate on 8-byte data. Thus,
the interface Mif and D$if remain unchanged.

Without the FPU, the 64-bit data ports of the cache and memory inter-
face had to be patched to the 32-bit ports of the data paths. On the input
port MDin, the 32-bit data MDRw was duplicated. On the output port, a
multiplexer selected the requested word within the double word.

Since the registers MDRw and MDRYr are now 64 bits wide, the patches
become obsolete. That saves a 32-bit multiplexer and reduces the cache

doc MAR MDRw[63.0]

| .

Dlinv 1 e o Mif
32 r—————— MDin

a Din

reset —| clear D$if (Dcache) |

M
hit Dout[63:0] N,

Dhit ¢ ¢ DMout

Figure 9.6 Data memory environment of the DL X design with FPU

read time Tg;,q DY the delay Drmyuxand possibly the burst read time Tvrburst
as well. However, these two cycle times were not time critical.

Tsread = Agit (Dout) +Dyg
TMrburst = I:)driv + dbus+ o
+ maX{D$if (MDat, $| f), D$if (MDat, DOU'[) + fo}
Comenv = Cpgit +Crmux(32).

Data Memory Control

As in the pipelined design of section 6.5, the date cache interface D$if
and the interface Mif to the off-chip memory are governed by the mem-
ory interface control MifC. Even without FPU, the interfaces D$if and
Mif already supported 8-byte accesses. Thus, the new floating point load
instructions (Is, Id, ss, sd) have no impact on the control MifC.

In addition to control MifC, the data memory environment DMenv is
governed by the data memory control DMC. As before, circuit DMC gen-
erates the bank write signals DMbw][7:0], which on a cache read access
D$rd = 1 are clocked into register DMBw. Circuit DMC aso checks for a
misaligned access, signaled by dmal= 1, and masks the memory read and
write signal with the flag dmal. Since the bank write signals and flag dmal
depend on the width of the access, circuit DMC must also account for the
new load and store instructions.

The bank write signals DMbw[7:0] are generated along the same lines
as before (pages 81 and 201): Feeding address MAR2: O] into a 3-decoder
gives 8 signals B[7 : 0] satisfying for al j

Bjl=1 ¢ (MAR2:0)=]j.

From the the primary opcode IR.3, the width of the current access is de-
coded according to table 9.12 by

B = (IR3[30] NOR IR.3[27]) AIR3[26]

Section 9.2

DATA PATHS
WITHOUT
FORWARDING

453

Chapter 9

PIPELINED DL X
MACHINE WITH
FLOATING POINT

454

CORE

Table 9.12 Coding the width of a data memory access

| width | | d]IR3[30,28:26] | instructions |
byte B |1 0*00 Ib, Ibu, sb
half word H |2 0*01 Ih, Thu, sh
word W |4 0*11 Iw, sw
1001 load.s, store.s
doubleword || D | 8 1101 load.d, store.d

H = (IR.3[30] NOR IR.3[27]) AIR.3[26]
W = IR3[30]A(IR.3[27] AIR.3[26]) V IR.3[30] ATR.3[28]
D = IR3[30]AIR3[28).

According to table 9.13, the bank write signals are then generated in a
brute force way by

DMbw{0] = Dmw3A BJ[0]

DMbw{l] = Dmw3A ((DAB[0] Vv WAB[0]
DMbw{2] = Dmw3A ((DAB[O] Vv WAB[0]
DMbw{3] = Dmw3A ((DAB[0] V W ABI0]

[[H AB[0] V BAB[1]

[[

[[
DMbw{4] = Dmw3A ((DABI[O] V W AB[4]

[[

[[

[[

[

HAB[2] Vv BAB[2]

HAB[2] v BABI[3]

H AB[4] v BAB[4]
DMbw{5] = Dmw3A ((DAB[0] V W AB[4] [
DMbw{6] = Dmw3A ((DAB[0] V W AB[4] [
DMbw{7] = Dmw3A ((DAB[0] V W AB[4] [

HAB[4] v BAB[S]
HAB[6] v BAB[6]
(HAB[6] v BAB[7))

~ N~ /N~~~
A~ N~~~

))
))
))
))
))
))
))

The memory control DMC aso checks for a misaligned access. A byte
access is always properly aligned. A double word access is only aligned
if it starts at byte 0, i.e., if B[O] = 1. A word access is digned if it starts
at byte 0 or 4, and ahalf word accessis aligned if it starts at an even byte.
Thus, the misalignment can be detected by

malAc = DABI[0] V WA (B[O] NOR B[4]) V HAMARQO].

Circuit DMC checks for a misaligned access (signaled by dmal) on every
load and store instruction. In order to protect the data memory, it masks
the memory read and write signal Dmr and Dmwwith flag dmal. Thus

dmal = (Dmr3vDmw3) A malAc
Dmra = Dmr3AmalAc= Dmr3 NOR malAc
Dmwa = Dmw3AmalAc = Dmw3 NOR malAc

Table 9.13 Memory bank write signal DMbw{7 : 0] as a function of the address
MAR[2:0] and the width (B, H, W, D) of the access

address width of the access
MAR[2:0] D | W | H | B
000 1111 1111 | 0000 1111 | 0000 0011 | 0000 0001
001 0000 0000 | 0000 0000 | 0000 0000 | 0000 0010
010 0000 0000 | 0000 0000 | 0000 1100 | 0000 0100
011 0000 0000 | 0000 0000 | 0000 0000 | 0000 1000
100 0000 0000 | 1111 0000 | 0011 0000 | 0001 0000
101 0000 0000 | 0000 0000 | 0000 0000 | 0010 0000
110 0000 0000 | 0000 0000 | 1100 0000 | 0100 0000
111 0000 0000 | 0000 0000 | 0000 0000 | 1000 0000

When reusing common subexpressions, the memory control DMC has
the cost

Comc = Cded3)+6-Ciny+32:Cand+20-Cor + 4 Cpor +Ci1(8).

This includes the 8-bit register DMBw which buffers the bank write sig-
nals. Signals DMBw are still provided at zero delay. The accumulated
delay Apmc of the remaining outputs and the cycle time of circuit DMC
run at

Apmc = max{Acon(Dmr,Dmw) + Dor + Dang,
maX{Dgec(3), Dor +2-Dand} + 2 Dand+ 2 Dor }
Tomc = Apmc+A.

9.2.3 Write Back Stage

The DLX architecture now comprises three register files, one for the fixed
point registers GPR, one for the special purpose registers SPR, and one for
the floating point registers FPR. These three register files form the envi-
ronment RFenv

Crrenv = Cgprenvt Csprenvt CrpRrenv

The data paths of the write back stage consist of the environment RFenv
and of the shifter environment SH4Lenv. Environment GPRenv isthe only
environment which remains unchanged.

Section 9.2

DATA PATHS
WITHOUT
FORWARDING

455

Chapter 9

PIPELINED DL X
MACHINE WITH
FLOATING POINT

456

CORE

MDRr MDRr[63:32, 31.0]
FC.4 C4[2] cA4[L0]

3%2 MDs
64 shifter SHAL

1 0) dbrd R ca
0 1) load4 (1 0) load.4
FC c

Figure 9.7 Shift for load environment SH4Lenv

Environment SH4Lenv

In addition to the fixed point result C, the environment SH4L env now also
provides a 64-bit floating point result FC. The environment is controlled
by two signals,

e signal load.4 indicating aload instructions and

e signal dbr.4 indicating a double precision result.

The fixed point result C' is aimost computed as before, but the memory
now provides adouble word MDRYr. The shifter SH4AL still requires a32-bit
input data MDs. Depending on the address bit C.4[2], MDs either equals
the high or low order word of MDRY:

MDs — MDRr[63:32] if C.4[2]=1 (high order word)
~ | MDRr[31:0] if C.4[2]=0 (low order word)

Let skl (a, dist) denote the function computed by the shifter SH4L. The
fixed point result C' isthen selected as

o _ | SMI(MDs C.4[1:0J000) if load4=1
1 C4 if load.4=0.

Depending on the type of the instruction, the output FC' is selected
among the two 64-bit inputs FC.4 and MDRr and the 32-bit word MDs
which is extended according to the embedding convention. On aload in-
struction, the environment passes the memory operand, which in case of
double precision equals MDRr and MDs, otherwise. On any other instruc-
tion, the environment forwards the FPU result FC.4 to the output FC'.
Thus,

MDRr if load4d=1Adbrd=1
FC'[63:0] = (MDs,MDs) if load4=1A dbr4=0
FC.4 otherwise

SR PC4 DDPC4 Ffl.4[4:0]
MCA DPC.4 c4
l l l | |EEEf[4:0] Ses.1
repeat — 'FCRsdl o | C4 | Sad4
JSR —= fxSPRsel \ }
= ! 032 27 032 : l
Di[0] Di[1] Di[2] Di[3] Di[4] Di[5] Di[6] Di[7] Di[8] Din adr adw g
SPRw .)))
— w[8:0] (9 x 32) special register file wir —
Do[0] Do[1] Do[2] Do[3] Do[4] Do[5] Do[6] Do[7] Do[8] Dout

R

SR ESR ECA EPC EDPC Edaa RM IEEEf FCC Sout

Figure 9.8 Environment SPRenv of the special purpose register file

The circuit of figure 9.7 implements environment SH4L env in the obvi-
ous way. Its cost and delay can be expressed as

Cstareny = CspaL +2-Crux(32) +2- Crux(64)
Dstutenv = Max{Dspar, Dmux} + 2 Dmux

Environment of the Special Purpose Registers

Figure 9.8 depicts the environment SPRenv of the special purpose register
file. Due to the FPU, the register file SPR comprises the original six spe-
cia purpose registers fxSPRof the fixed point core and the FPU control
registers FCR (table 9.6).

The core of SPRenv is a special register file of size 9 x 32. The cir-
cuits fxSPRsebnd FCRselprovide the inputs Di[s] of the distinct write
ports. As before, circuit SPRcorgenerates the write signals SPRV8 : 0]
and signal selwhich is used by fxSPRsel The environment is controlled

by
e theinterrupt signals JISRand repeat
e thewrite signa SPRwand

e signal fop.4 denoting an arithmetic floating point instruction, acon-
version cvt, or atest fc.

As before, the special purpose registers are held in aregister file with an
extended access mode. Any register SPRs| can be accessed through the
regular read/write port and through a distinct read port and a distinct write
port. In case of a conflict, a special write takes precedence over the write

Section 9.2

DATA PATHS
WITHOUT
FORWARDING

457

Chapter 9

PIPELINED DL X
MACHINE WITH
FLOATING POINT

458

CORE

access specified by address Sad Thus, for any s=0, ..., 8, register SPRs|
is updated as

[Di[§ if SPRvg=1
SPRY = { C4 if SPRyg =0A SPRw=1A s=Sad

The distinct read port of register SPRs| provides the data
Do[s] = SPRs,
and the standard data output of the register file equals

Sout = SPRSaj.

Registers fxSPR The registers fxSPR still have the original functional-
ity. The write signals of their distinct write ports and signal sel are gener-
ated as before:

sel = TrepeatA SPRwA ((Sad4) =0)
SPRvils] = JISR

Circuit fxSPRselhich selects the inputs Di[g] of these write ports can be
taken from the DL X design of section 5 (figure 5.6).

RegistersFCR Although the rounding mode RM, the |EEE flags and the
condition flag FCC only require afew bits, they are held in 32-bit registers.
The data are padded with leading zeros.

The condition flag FCC can be updated by a special move movi2s or by
afloating point condition test. Since in either case, the result is provided
by register C.4, the distinct write port of register FCC is not used. Thus,

Di[8] = 0 and SPRJg| = 0.

The rounding mode RM can only be updated by a movi2s instruction.
Thus,
Di[6] = 0 and SPRv6] = 0.

Except for the data transfers, any floating point instruction provides flags
which signal the five floating point exceptions (overflow, underflow, inex-
act result, division by zero, and invalid operation). The |IEEE standard
requires that these exception flags are accumulated, i.e., that the new flags
F fl1.4 are ored to the corresponding bits of register | EEETF:

Di[7] = 0*'(Ffl.4[4:0] vV IEEEf[4:0]) and SPRW7] = fop4.

Cost and Delay The new select circuit FCRsel just requires a 5-bit OR
gate. Due to the 4-bit address Sad circuit SPRcon now uses a 4-bit zero
tester; SPRcon can provide the additional write signals SPRV8: 6] at no
cost. Thus, the cost of the extended environment SPRenv run at

Csprenv = Csr(9,32) + Ctxsprsett Crcrsel+ CsPRreon
Csprcon = 2-Cand+ Cinv + Czerd4)
CFCRseI = b Cor-

Except for the width of address Sad the formulae which express the de-
lay of the outputs and the cycle time of environment SPRenv remain un-
changed.

Environment of the Floating Point Register File

The extended DLX instruction set requires 32 single precision floating
point registers and 16 double precision registers. These two sets of floating
point registers have to be mapped into the same register file FPR (section
9.1). In each cycle, the environment FPRenv of the floating point register
file performs two double precision read accesses and one write access.

Read Access The register file environment FPRenv provides the two

source operands fA and fB. Since both operands have double precision,

they can be specified by 4-bit addresses FS1[4: 1] and FS2[4 : 1]:
fA63:00 = (FPRFS1[4:1],1], FPRFSL[4:1],0])
fB[63:0] = (FPRFS2[4:1],1], FPRFS2[4:1],0]).

For the high order word the least significant address hit is set to 1 and for

the low order word it is set to O.

Write Access The 64-bit input FC' or its low order word FC'[31: Q] is
written into the register file. The write access is governed by the write
signal FPRwand the flag dbr.4 which specifies the width of the access.

In case of single precision, the single precision result is kept in the high
andthe low order word of FC', due to the embedding convention. Thus,
on FPRw= 1 and dbr.4 = 0, the register with address Fad4 is updated to

FPRFad4[4:0]] := FC'[63:32] = FC'[31:0].
On FPRw= 1 and dbr.4 = 1, the environment FPRenv performs a double
precision write access updating two consecutive registers:
FPRFad4[4:1]1] := FC[63:32]
FPRFad4[4:0]0] := FC/[31:0].

Section 9.2

DATA PATHS
WITHOUT
FORWARDING

459

Chapter 9

PIPELINED DL X
MACHINE WITH
FLOATING POINT

460

CORE

FS1[4:1]
FS2[4:1]
Fad4[4:1] . .
adA adB adC Fad“r[gt]) FRRW 3dA adB adC
r.4
FC'[63:32] 3-port RAM i | l 3-port RAM FC'[31:0]
| _|p (16x32) (16x32) .| |
Di w w Di
Do oDD Wog | FPRCON W, EVEN De,
Da Db Da Db
fA[63:32] fB[63:32] fA[31:0] fB[31:0]

Figure 9.9 Environment FPRenv of the floating point register file

Implementation In order to support single as well as double precision
accesses, the floating point register fileis split in two banks, each of which
provides 16 single precision registers (figure 9.9). One bank holds the
registers with even addresses, the other bank holds the registers with odd
addresses.

The high order word of a double precision result is written into the odd
bank of the register file and its low order word is written into the even
bank. In case of single precision, the high and low order word of input FC
areidentical. Thus, FC'[63:32] aways serves as the input Dyg of the odd
bank, and FC'[31:0] always serves as the input D, of the even bank (table
9.14).

Each bank of the register file FPR is implemented as a 3-port RAM of
Size (16 x 32) addressed by FS1[4:1], FS2[4:1] and Fad4[4:1]. Including
circuit FPRcon which generates the two bank write signals we, and Wog,
the cost and delay of the register file environment FPRenv run at

CFPRenv = 2‘CramS(l67 32) +CFPRcon
DFPRread = Drarr13(16a 32)
Drprwite = Drpreont Dram3(16,32).

In case of adouble precision write access (dbr.4 = 1), both banks of the
register file are updated. Whereas on a single precision access, only one
of the banks is updated, namely the one specified by the least significant
address bit Fad4[0] (table 9.14). Of course, the register file FPR is only
updated if requested by an active write signal FPRw= 1. Thus, the two
bank write signals are

Wod = FPRwA (dbr4 v Fad4[0])
Wey = FPRwA (dbr4 v /Fad4[0])

Table 9.14 The input data Dey and Dog Of the two FPR banks and their write
signals Wey and Wog.

| FPRw dbr4 Fad4[0] | Wog Wey | Dod Dev |
1 0 0 0o 1 * FC'[31:0]
1 0 1 1 0 | FC'[63:32] *
1 1 * 1 1 | FC[63:32] FC'[31:0]
0 * * O O * *

The control FPRcon of the FPR register file can generate these two write
signals at the following cost and delay:

CFPR(:on = 2‘Camd‘f‘2'Cor‘f‘Cinv
DFPRcon = Dinv+ Dor + Dand-

9.2.4 Execute Stage

The execute environment EXenv is the core of the execute stage (figure
9.10). Partsof the buffer environment and of the cause environment CAenv
also belong to the execute stage. The buffers pass the PCs, the destination
addresses and the instruction opcodes down the pipeline. Environment
CAenv collectstheinterrupt causes and then processes them in the memory

stage.

Execute Environment

Environment EXenv comprises the 32-bit fixed point unit FXU, the 64-bit
floating point unit FPU of chapter 8, and the exchange unit FPXtr. It gets
the same fixed point operands as before (A, B, S, co, link) and the two
floating point operands FA2 and FB2.

Fixed Point Unit FXU The FXU equals the execute environment of the
DL X architecture from section 5.5.4. The functionality, the cost and delay
of this environment remain unchanged. The FXU still provides the two
fixed point results D and shand is controlled by the same signals:

e bmuxseland & muxselwhich select the operands,

e AluDdoe SHDdoeg linkDdoe ADdoe SDdoe and coDdoewhich
select output D,

Section 9.2

DATA PATHS
WITHOUT
FORWARDING

461

Chapter 9

PIPELINED DLX

RSR

CA21

CA.22

CA.23

CA.24

CA3

MACHINE WITH
FLOATING POINT

CORE

| |

| EXenv ”

| FA FB link S co A |

| b

B e v Fr T S I By |

| ”7me:c; 7ﬂvc:c7] i ” FPXtr FXU

| | ovt | |[Fcon|l |tp tix sh |

L F F : |

) <LN ,_Fc - &N AN D’ |

v V- ” fcc I

.] | |

L M/D1 AlS1 ” |

| | | |
::,:; ““““““] i 2 e e e el T

' M/D2 AIS2 ” !

! m _HQAV Aw_nw ” ”
e S =R SRR T et IS e

o ” ”

- FPrdl| |FXrdl | |
]1,1; ““““““ — B S T '

FPU Teprd2 | xrd2 m

! F F !

el e le

” 4 R ”
e 5 MIDRW, LG [+ oo AR o

| |

Figure 9.10 Data paths of the execute stage

buffers
buf2.0

RSR

buf.2.1

buf.2.2

buf.2.3

buf.2.4

buf.3

462

Section 9.2

FA[63:0] B[31:0] sh[31 0] FB[63:0]
(31:0] DATA PATHS
fmov.2 fstore2 WITHOUT
o° FORWARDING
o 1) store.2 ¢
tfx[31:0] tfp[63:0] tfp[68:64]

Figure 9.11 Exchange unit FPXtr

¢ Rtype addand testwhich govern the ALU, and

¢ shiftds which governs the shifter SH.

Exchange Unit FPXtr The FPXtr unit transfers data between the fixed
point and the floating point core or within the floating point core. It is
controlled by

e signal store2 indicating any store instruction,
e signa fstore2 indicating afloating point store instruction, and
e signa fmov2 indicating afloating point move fmov.

The operands B[31:0], FA[63:0] and FB[63:0] are directly taken from reg-
isters, operand sh31 : 0] is provided by the shifter of the fixed point unit.
Circuit FPXtr selects a 69-bit result t f p and a 32-bit result t fx. The bits
tfp[63:0] either code a floating point or fixed point value, whereas the bits
tfp[68:64] hold the floating point exception flags.

According to the |IEEE floating point standard [Ins85], data move in-
structions never cause a floating point exception. This applies to stores
and the special moves mf2i and mi2f. Thus, the exchange unit selects the
results as

tfx[31:0] = FA[31:(]
FB[63: O] if fstore2
_ B shi31:0]sh31:0] if store2 A /fstore2
tTpe3:0] = 3 Fae3:q it fmov2

B[31:0]B[31: 0] otherwise
tfp[68:64] = 00000.

The circuit of figure 9.11 implements the exchange unit in the obvious
way. Assuming that the control signals of the execute stage are precom-

463

Chapter 9

PIPELINED DL X
MACHINE WITH
FLOATING POINT

464

CORE

puted, cost and accumulated delay of environment FPXtr run at

Crpxtr = 3-Chmux(64)
Arpxtr = Arxu(Sh) +2:-Dmux(64).

Functionality of EXenv Environment EXenv generates two results, the
fixed point value D’ and the 69-bit result R. R[63:0] iseither afixed point or
afloating point value; the bits R[68:64] provide the floating point exception
flags. Circuit EXenv selects output D' among the result D of the FXU, the
result t fx of the exchange unit, and the condition flag fcc of the FPU. This
selection is governed by the signals mf2i and fc which denote a special
move instruction mf2i or afloating point compare instruction, respectively:

D[31:0] if mf2i=0A fc=0
D'[31:0] = tfx31:0] if mf2i=1A fc=0

03! fcc if mf2i=0A fc=1

The selection of result Ris controlled by the four enable signals FcRdoe
F pRdoeFxRdoeand t f pRdoe At most one of these signalsisactive at a
time. Thus,

Fc[68:0] if FcRdoe=1
Fp68:0] if FpRdoe=1
Fx68:0] if FxRdoe=1
tfp[68:0] if tfpRdoe=1.

R68:0] =

Cost and Cycle Time Adding an FPU has no impact on the accumu-
lated delay Arxy of the results of the fixed point core FXU. The FPU itself
comprises five pipeline stages. Its cycle timeis modeled by Tepy and the
accumulated delay of its outputs is modeled by A-py (chapter 8). Thus,
cost and cycle time of the whole execute environment EXenv can be esti-
mated as

Cexenv = Crxu+Crpu + Crpxtr + 2- Cariv(32) + 4 Cyriv(69)
Aexenv = max{Arxu, max{Arpxtr,Arpu } + Ddriv}
Texenv = maX{TFPUa Aexent A}-

Scheduling of the Execute Stage

In the previous designs, the execute stage always had asingle cycle latency,
but now, its latency is not even fixed. The FXU and the exchange unit still
generate their results within a single cycle. However, the latency of the
FPU depends on the operation and precision (table 9.1); it varies between
1to 21 cycles.

Table 9.15 Cycles required for the actual execution depending on the type of the

instruction (i.e., stages EX and M)

fadd fc fmov

stage fdiv.d | fdiv.s | fmul f cvt | fabs | mi2f | rest
sub .

fneg | mf2i

2.0 unpack FCon| FPXtr| FXU

20.1 lookup

2.0.2 || newtonl

2.0.3 || newton2

2.0.4 || newton3

2.0.5 | newton4 | lookup

2.0.6 newtonl

2.0.7 newton2

2.0.8 newton3

2.09 newton4

2.0.10 newtonl

2.011 newton2

2.0.12 newton3

2.0.13 newton4

2.0.14 guotientl

2.0.15 guotient2

2.0.16 guotient3

21 guotient4 mull | addl

2.2 select fd mul2 | add2

2.3 round 1

24 round 2

3 stage M

Dueto the iterative nature of the Newton-Raphson algorithm, adivision
passes the multiply/divide unit of the FPU severa times. All the other
instructions pass the units of the execute stage just once. Since divisions
complicate the scheduling of the execute stage considerably, they are han-

dled separately.

Execution Scheme

Except on divisions, the execute stage has alatency of 1 to 5 cycles. Thus,
the data paths of environment EXenv are divided into 5 substages, num-
bered by 2.0 to 2.4. The DLX instructions have different latencies and use

these stages as indicated in table 9.15.

Section 9.2

DATA PATHS
WITHOUT
FORWARDING

465

Chapter 9

Every instruction starts its execution in stage 2.0. Except for divisions,
the instructions leave stage 2.0 after asingle cycle. They may bypass some
of the substages:

PIPELINED DL X
MACHINE WITH

FLOATING POINT
CORE e Floating point additions, subtractions and multiplications continue

in stage 2.1 and are then processed in stages 2.2 to 3.
e Format conversions cvt continue in stages 2.3, 2.4 and 3.

e All the remaining instructions leave the execute after substage 2.0
and continue in the memory stage 3.

After the unpacking, adivision is kept in stage 2.0 for another 12 or 16
cycles, depending on the precision. During these cycles, it is processed
in the multiply/divide unit, which is assigned to stages 2.1 and 2.2. Once
the division left stage 2.0, it passes through stages 2.1 to 4 amost like a
multiplication.

An instruction and its precomputed data must pass through the pipeline
stages at the same speed. Thus, a mechanism is needed which lets the
interrupt causes, the buffered data and the precomputed control signals fall
through some stages, as well. The Result Shift Register RSR such a
mechanism.

Result Shift Register

An n-bit shift register RSRisakind of queue with f entriesR,,...R¢, each
of which is n bits wide. In order to account for the different latency, the
RSR can be entered at any stage, not just at the first stage. The RSR (figure
9.12) is controlled by

e adigtinct clock signal ce for each of the f registers R,
e acommon clear signa clr, and

e adistinct write signal w; for each of the f registers R.

The whole RSR is cleared on an active clear signal. Let Tand T+ 1
denote successive clock cycles. Forany 1<i < f, anactivesignal clr’ =1
implies

R]T-i—l - 0.
On an inactive clear signal clr™ = 0, the entries of the RSR are shifted
one stage ahead, and the input Din is written into the stage i with w = 1,
provided the corresponding register is clocked:

Din if cd=1AwW =1
RSF,I“{RSF,Il if cd =1AW =0Ai>1

o" if cd=1AwW =0Ai=1
466

Din
ij n
cr
ce[Lf] — =
W]_ & n
Wf Rf n

Figure 9.12 Schematics of an n-bit result shift register RSR with f entries

rf

Din —¢ *
wig AT i Ce[zd];‘;r wif]
on 1 ' rl 1 ' r2
0 R1 0 R2
dr =>o—-s \L hd \L

ceff] clr

g

Rf

Figure 9.13 Realization of an n-bit result shift register RSR with f entries

The following lemma states that data Din which are clocked into stagei in
cycle T are passed down the RSR provided the clear signal stays inactive,
the corresponding registers are clocked at the right time and they are not

overwritten.

Section 9.2

DATA PATHS
WITHOUT
FORWARDING

Let Din enter register Rat cycle T,i.e., W=1,ce =1andcl’ =0. < Lemma 9.1

Forallt € {1,...f—i} let

wt=cg=1 and clf*' =0,

then

DinT = RT+! — RI+t+1

+t

The result shift register can be operated in a particularly simple way, if
al clock enable signals ce are tied to a common clock enable signal ce. If
the RSRis operated in thisway, and if ce-cycles T are considered, then the

hypothesis cq”t = lisautomatically fulfilled.

Figure 9.13 depicts an obvious realization of an n-bit RSR with f entries.

Its cost can be expressed as

CRSF(f7 n) = f (Cff (n) +Cand(n) +Cmux(n) +Cor) +Cinv.

_ RIH_'—H.

467

Chapter 9

PIPELINED DLX
MACHINE WITH

FLOATING POINT
CORE

468

IR1[31:26,5:0] Cadl Fadl Sadl

uel IR2 Cad2 Fad2 Sad.2 | ch D)PC DIIDPC
l
[[but 2.0
RSR Din
buf.2.1
reset — clr buf.2.2
ue.2.[0:4] — ce[1:5] Eugj
ur. 2.
RSRW = w{LS) buf.3
T % T 9%

ue3> IR4 Cad4 Fad4 Sad4 [PC4 DPC4 DDPCA4|

Figure 9.14 Buffer environment of the design with FPU

The outputs R of the RSR have zero delay; the inputs r of its registers are
delayed by a multiplexer and an AND gate:

DrsHr) = Dand+ Dmux
Drs{R) = O.

The Buffer Environment
The buffer environment (figure 9.14) buffers the opcodes, the PCs, and the
destination addresses of the instructions processed in the stages 2.0 to 4.
Due to the FPU, the environment now buffers an additional destination
address, namely the address Fad for the floating point register file. In order
to account for the different latencies of the FPU, a 5-stage RSR is added
between the execute substage 2.0 and the write back stage in the obvious
way. The RSR is cleared on resetand clocked with the update enable
signals ue2.[0 : 4] provided by the stall engine.
The buffer environment still provides its outputs at zero delay. The cost
and cycle time now run at

Couffers = Crsi5,123) 4 Cs(123) +Cy1(27)
Toutfers = mMax{Apaddr, Acon(ue RSRW+ Drsr)} +A.

The Cause Environment
Asdescribed in section 5.5.5, the cause environment of figure 9.15 consists
of two subcircuits. Circuit CAcolcollects the interrupt causes, and circuit

|
|
|
:
|
RSR Din R[68:64] ovf !
|
|
|
|
|

|

|

|

|

|

:

3 CA21 fop? ovf?
} reset— clr : trap, il
'Ue.2[0:4]— ce [CA2.4 w w

|

|

|

|

|

CA.3 CA.3[11:5, 3] 4» ue.2
ev[31:7] dmal dpf reset |
S I | - B R J[ﬂ, [0
CA4 $

cause processing CApro
ue3 > MCA, jisr.4, repeat

Figure 9.15 Schematics of the cause environment CAenv

CApro processes them. Adding an FPU impacts the cause environment in
two ways:

e Due to the different latencies of the execute environment, a 5-stage
RSR is added in the collection circuit.

e The floating point unit adds 6 new internal interrupts, which are as-
signed to the interrupt levels 7 to 12 (table 9.7).

Cause Collection The interrupt events of the fetch and decode stage are
collected in the registers CA.1 and CA.2, as before. These data are then
passed through a 5-stage RSR.

Anillegal instruction, atrap and afixed point overflow are still detected
in the execute stage and clocked into register CA.3. Since these events
cannot be triggered by alegal floating point instruction, the corresponding
instruction always passes from stage 2.0 directly to stage 3.

The floating point exceptions are also detected in the execute stage.
These events can only be triggered by a floating point instruction which
issignaled by fop? = 1. Circuit CAcol therefore masks the events with
flag fop?. The ‘unimplemented floating point operation’ interrupt uF OP

Section 9.2

DATA PATHS
WITHOUT
FORWARDING

469

Chapter 9

PIPELINED DL X
MACHINE WITH
FLOATING POINT

470

CORE

issignaled by the control in stage ID. The remaining floating point events
correspond to the IEEE flags provided by the FPU. Environment CAcol
gets these flags from the result bus R[68 : 64].

Let T a0 denote the cycle time of circuit CAcol used in the design
without FPU. Cost and cycle time of the extended cause collection circuit
can then be expressed as

Ccacol = 6-Cang+Cor +13-Css + CRSF(Sa 3)
Teacol = Max{Téacor Acon(UFOP) + A, Agpy + Dgriy + A}

CauseProcessing Without FPU, the interrupt levels 7 to 12 are assigned
to external interrupts which are maskable. Now, these interrupt levels are
used for the FPU interrupts. Except for the interrupt uF OP, which is as-
signed to level 12, these interrupts are maskable. Compared to the origi-
nal circuit of figure 5.10, one just saves the AND gate for masking event
CA 4[12]. Thus,

Ccapro = Cand(25) + Ciree(32) - Cor 4+ Ct£(34) + Ceatype

9.3 Control of the Prepared Sequential Design

LIKE IN previous DLX designs (chapters 4 and 5), the control of the
prepared sequential data paths is derived in two steps. We start out
with asequential control automaton which isthen turned into precomputed
control.

Figures 9.16 to 9.18 depict the FSD underlying the sequential control
automaton. To a large extent, specifying the RTL instructions and active
control signals for each state of the FSD is routine. The complete specifi-
cation can be found in appendix B.

The portion of the FSD modeling the execution of the fixed point in-
structions remains the same. Thus, it can be copied from the design of
chapter 5 (figure 5.12). In section 8.3.6, we have specified an automaton
which controls the multiply/divide unit. Depending on the precision, the
underlying FSD is unrolled two to three times and is then integrated in the
FSD of the sequential DLX control automaton.

Beyond the decode stage, the FSD has an outdegree of one. Thus, the
control signals of the execute, memory and write back stage can be pre-
computed. However, the nonuniform latency of the floating point instruc-
tions complicates the precomputed control in two respects.

e The execute stage consists of 5 substages. Fast instructions bypass
some of these substages.

Section 9.3

CONTROL OF THE
PREPARED
SEQUENTIAL
DESIGN

'8T°6 PUe LT'6 ‘2T'G S2Inf1j Ul peioidep ae dswuyie julod Buireo|)ayy jo pue
suononJisul Juiod paxiyay) Jo uonnexe syl bulppow suoiiod ay L ‘Ndd YHmainiosiydke X 1d syl Jo j04uod syl bulAjepun asSH 91 6 24nSi4

...... SEEFEEE 9 I N % 9

[— = o] (e [owe] [we] e [pomen)
|] | i | | ! |

m E @ ” i_ﬂch \?_\,E_\,;/ [speor | [ppeol | [woy | [sunen | [Punen|

1| afiers W N ! | 4\ J 9, -
! ! NN

I
| " innaninni
| ! " !
1 | , 1
1 | 1
| [" !
1 | , 1
" " ! ynsal "
! | RIS ape | 1
| | I I
: " [ew] | [sobuy] | [snowy] =3 [svepe | [pip | ! |
| abess x3 I | !
" " E_E @ s'sgey p-Bouy prAowy pay| s , "
! ! | | ! ! | I ! o
| asdwiod poxy | ! onewuI e Juiod Bupeoly |
||||||||||||| 9P0BP -ttt TTTT T T T s T T T
4w}

471

Chapter 9

PIPELINED DL X ‘
MACHINE WITH

FLOATING POINT
CORE

fdivd | [fmuld| |fedd.d| [fsubd]| [ovtid] [ovtsd]

lookup.d

netwonl.d

ond.d

netwonl.d

netwonl.d

g g -g =] =] > =] =] =] =] > =]
2 2 8118 S S S S S S S =
25 B &) &) B SRR 28

[quotient4.d| [MuiLd] [AddLd] [subLd]

[slectfdd | [Mu2d] [SgAddd]

‘

| rdld |

Figure 9.17 FSD modeling the execution of arithmetical floating point operations
with double precision results

472

Section 9.3

‘ CONTROL OF THE

! ! o P ! } PREPARED
‘ fdiv.s ‘ ‘fmul.s‘ ‘ fadd.s‘ ‘ fsub.s ‘ ‘ cvt.i.s‘ ‘cvt.d.s‘ ‘ CVt.si ‘ ‘ cvt.d.i ‘ SEQUENTIAL
DESIGN

lookup.s

netwonl.s

s

bl

n3.s

newton4.s

netwonl.s

n2.s

n3.s

<

LIRS

n4.s
quotientl.s
quotient2.s

quotient3.s

|quotient4s| [MulLs| [AddLs| [subLs]

| sdectfds| [Mu2s] [Sigadds|

I T
]]

rd2.i

Figure 9.18 FSD modeling the execution of arithmetical floating point operations
with single precision results

473

Chapter 9

PIPELINED DLX
MACHINE WITH

FLOATING POINT
CORE

474

~N

[x0 = con20

RSR

7]

[x1 = con21

—= Con.2.2

5

RSRw —— W +—= Con.2.3

ue2.[0:4] — ce x4 Con.2.4
reset | cr

Con.3

i M
N |[<
<
< <
<
<
x
&
x
iy

Con.4

Figure 9.19 Precomputed control of the FDLX design without divider

¢ Dueto theiterative nature of the division algorithm, the execution of
divisionsisnot fully pipelined. A division passes the multiply/divide
unit several times. That requires a patch of the precomputed control
(section 9.3.2).

Thus, we first construct a precomputed control ignoring divisions.

9.3.1 Precomputed Control without Division

Like in previous designs (e.g., chapter 4), the control signals for the ex-
ecute, memory and write back stages are precomputed during ID. The
signals are then passed down the pipeline together with the instruction.
However, fast instructions bypass some of the execute stages. In order to
keep up with the instruction, the precomputed control signals are, like the
interrupt causes, passed through a 5-stage RSR (figure 9.19).

Controlling the RSR

Depending on the type of the instruction, the latency of the execute stage
varies between 1 and 5 cycles. However, the latency is already known in
the states of stage 2.0:

e Floating point multiplication, addition and subtraction all have a 5-
cycle latency. Thisis signaled by an active flag lat5 = 1. The cor-
responding states of stage 2.0 are fmul.d, fmul.s, fadd.d, fadd.s,
fsub.d and fsub.s.

Table 9.16 Classification of the precomputed control signals

type X0 | x1|Xx2|x3|x4|y|z
number | 31 | 7 31 0] 3|3|6

e Format conversions have a 3-cycle latency (lat3 = 1). Their execu-
tion starts in the states cvt.i.d, cvt.s.d, cvt.i.s, cvt.d.s, cvt.s.i and
cvt.d.i.

e The remaining instructions have a single cycle latency, signaled by
latl = 1.

When leaving stage 2.0, an instruction with single cycle latency contin-
uesin stage 3. Instructions with alatency of 3 or 5 cycles continue in stage
2.3 or 2.1, respectively. The write signals of the RSRs can therefore be
generated as

10000 if lat5=1
RSRWL: 5 = { 00100 if lat3=1 = (lat5,0,lat3, 0, latl).
00001 if latl=1
(9.1)

Structure of the RSR
Without an FPU, there are three types of precomputed control signals:

e typexsignalsjust control the stage EX,
e typey signals control stages EX and M, and
e type zsignals control the stages EX, M and WB.

The execute stage how consists of five substages. Thus, the signals of type
x are split into five groups x.0, . .. ,x.4 with the obvious meaning.

Tables B.12 and B.14 (appendix B) list all the precomputed control sig-
nals sorted according to their type. The signals x.0 comprise all the x-type
signals of the DLX design without FPU. In addition, this type includes the
signals specifying the latency of the instruction and the signals controlling
the exchange unit FPXtr and the first stage of the FPU.

The stages 2.1 up to 4 are governed by 22 control signals (table 9.16).
These signals could be passed through a standard 5-stage RSR which is 22
bits wide. However, signals for type x.i are only needed up to stage 2.i.

Section 9.3

CONTROL OF THE

PREPARED
SEQUENTIAL
DESIGN

475

Chapter 9

PIPELINED DL X
MACHINE WITH
FLOATING POINT

476

CORE

We therefore reduce the width of the RSR registers accordingly. The cost
of the RSR and of the precomputed control can then be estimated as

CConRSR = Cinv+ 5>kCor + (22+ 15+2-12+ 9) ' (Cand+Cmux+ Cff)
Cprecon = CconrsrtCi£(53) +Ct1(6).

Thus, the RSR only buffers atotal of 70 bitsinstead of 110 bits. Compared
to astandard 22-bit RSR, that cuts the cost by one third.

Stall Engine
The stages k of the pipeline are ordered lexicographicaly, i.e.,

1<20<21<22<23<24<3.

Except for the execute stage, the scheduling functions of the designs DLX

and FDLX;s areaike. One cycle after reset, the execution startsin the write
back stage with a jump to the ISR. For k € {0, 1,3}, instruction | passes
from stage k to k+ 1:

Is(kT)=i — Isk+LT+1)=i.

Once |; reaches stage k = 4, the execution continues in stage 0 with the
next instruction:

|z(4,T) =i — |z(O,T+1):i+1.

In the FDLXs design, the execute stage comprises 5 substages. Fast in-
structions bypass some of these substages, that complicates the scheduling.
For any execute stage 2.k with k > O, the instruction is just passed to the
next stage, thus

s2kT)=i — i= { 15(3,T+1) if k=4

T ls(2(k+1),T+1) if k<3

Whereas in case of stage k = 2.0, it depends on the latency of instruction
li whether the execution continues in stage 2.1, 2.3 or 3:

I5(3,T+1) if latl=1
520,T)=i — i=2{ 1523 T+1) if lat3=1
I5(21,T+1) if lat5=1.

The stall engine of figure 9.20 implements the new schedule in an obvi-
ous way. Asin the sequential design of section 5.5.6, there is one central
clock CE for the whole FDLX; design. During reset, all the update enable
flags uek are inactive, and the full vector isinitialized. In order to let an

ue.0

ue.2.0

il
= full.2.1
*D% ue2.1
ri:i P Re 22)= w22
-
-

€
RSRw —| w S ul23

P R4 H=ful.24
|

ue2.3

ue24

reset ue.3

Figure 9.20 Stall engine of the FDLXs design without support for divisions

instruction bypass some execute stages, the full flags of stages 2.1 to 2.4
and of the memory stage 3 are held in an RSR. ThisRSR is, like any other
RSR of the sequential DLX design, controlled by the write signals RSRw
of equation 9.1. The RSRof the stall engine is operated in a particularly
simple way, because al its clock enable signals are all tied to the common
clock enable CE.

Figure 9.21 illustrates how the precomputed controal, the stall engine and
the data paths of the execute environment fit together. As before, the pre-
computed control provides the clock request signals RCewhich are com-
bined (AND) with the appropriate update enable flags to obtain to the actual
clock signal RCé.

However, specia attention must be payed to the clock signals of the
registers MDRw and Ffl.3. According to the specification in appendix B,
these two registers are clocked simultaneously. They either get their data
input from stage 2.0 or from stage 2.4, depending on the latency of the
instruction. Thus, the clock signal is obtained as

MDRwcé = ue2.4 A (MDRwce2.0Alatl1.2.0 Vv MDRwce2.4).

Section 9.3

CONTROL OF THE
PREPARED
SEQUENTIAL
DESIGN

477

Chapter 9

PIPELINED DLX

MACHINE WITH
FLOATING POINT

—

stall engine

full.2.0

e

RSR

ue2.3
full2.4

ue2.0

e
ue2.1

2z | e

ue2.2 J
full2.3

ue2.4
full.3 H

precomputed

| |
' EXenv ”
| FA FB S link S 0 A control
| L C b o
| [Fxunp| [FPunp| i] FPXtr FXU AWW\\\\\\A
| Fu | ot | | Foon | tp thx sh fec | AR
” Fv Fe| [= LN AN . |
” \v2 fcc D ”
] ARRRAR ;Lm ‘‘‘ RN Con.2.1
7
” M/D1 A/S1 |
” “““““““) S N ! OO) AN ” “““ Con.2.2
| MD2| | A/s2 <
| Fq AN AN Fs |
| |
 RISINRI D L L R e Con2.3
| I B
\gmvm FPrdl| | Fxrdl |
e A B VA A A Con.2.4
| FPrd2 | | Fxrd2 r
| Fp LN! LN! Fx 64+5 0 !
| W R | !
| Con.3

Figure 9.21 Integration of the precomputed control, of the stall engine and of the execute environment

CORE

478

The remaining registers of the FDLX data paths receive their data inputs
just from one stage. Register MAR, for example, is only updated by in-
structions with an 1-cycle execute latency; therefore

MARcé = ue2.4 A MARce2.0.

Correctness of the Design

Along the lines of section 3.4 it can be shown that this FDLX design
interprets the extended DL X instruction set of section 9.1 with delayed PC
semantics but without floating point divisions. The crucial part is to show
that the instruction and its data pass through the pipeline stages at the same
speed. More formally:

Section 9.3

CONTROL OF THE

PREPARED
SEQUENTIAL
DESIGN

Letl5(2.0,T) =i, and let X be a register whose content is passed throsghemma 9.2

one of the RSRs, i.e.,X{IR,Cad, Fad, Sad PC,DPC,CA3: 2]}. For any
stage ke {2.1,...,3} with Iz(k,T") =i, we have

X.2.0" = Xk and fullk" = 1.

Thisfollows from the definition of the write signals RSRw(equation 9.1)
and from lemma 9.1. Observe that the hypothesis of lemma 9.1 about the
clock enable signalsistrivialy fulfilled for the RSRn the stall engine. The
construction of the stall engine ensures, that the hypothesis about the clock
enable signalsisalso fulfilled for the remaining RSRsin the data paths and
in the control.

Outside the stall engine we update the registers of result shift registers
with separate update enable signals. Thus, during the sequential execution
of asingle instruction it is till the case, that no stage k € {0,1,3,4} or
substage 2. is clocked twice. Not all instructions enter all substages, but
the dateline lemma 5.9 stays literally the same

9.3.2 Supporting Divisions

The execution of a division takes 17 or 21 cycles, depending on the pre-
cision. During the unpacking and the four final cycles, a division is pro-
cessed like any other arithmetical floating point operation. However, in
the remaining 12 to 16 cycles, it iterates in circuit SIGFMD of the mul-
tiply/divide unit. These steps are numbered with 2.0.1,...,2.0.16 (table
9.15). We use the following strategy for handling divisions:

e In the first cycle (stage 2.0), the operands of the division are un-
packed. Thisis governed by the standard precomputed control.

479

Chapter 9

b Con2.0 [x.0] b full.2.0
PIPELINED DLX L~
fdiv.2.0
MACHINE WITH . RSR e20 8
FLOATING POINT R ’ 201 | [] @
CORE divhaz out : - %% i
(2.0.1-2.0.16) ' _ ;-v §
f.2.0.15 : ¥log
£20.16 Sl <
T le2016 =1 o g
f21 3| =
ue21 = &
f.2.2 0o — §
- ue.2.
BN |~ con2.2
b x3) 2 e2s
| Con2.3
b [x4] f24
| Con2.4 ue2.4
.3

Figure 9.22 Main control for the stages 2.0 to 3 of the full FDLXs design

e During the steps lookup to quotient3, the division iterates in the
multiply/divide unit. The execution is controlled by the FSD spec-
ified in section 8.3.6 (figure 8.22). The data, the cause bits and the
precomputed control signals of the division are frozen in the RSRs
of stage 2.0.

e Inthefinal four steps (quotient4, select fd, round1, round?2), the di-
vision passes through the stages 2.1, ..., 2.4. Thisisagain controlled
by the precomputed control.

Thus, the main control (figure 9.22) of the floating point DL X design con-
sists of the stall engine, the precomputed control with its 5-stage RSR, and
the *division automaton’. Except for circuit SIGFMD, the data paths are
governed by the precomputed control, whereas the stall engine controls the
update of the registers and RAMS.

Precomputed Control

The precomputed control of section 9.3.1 is just extended by two signals
lat21 and lat17 of type x.0. These signals indicate that the instruction has
alatency of 21 or 17 cycles, respectively. They correspond to the states
fdiv.d and fdiv.s of the FSD of figure 9.16.

480

Extended Stall Engine
In order to account for a double precision division, which has a 21-cycle
execute latency, the RSR of the stall engine is extended to length 21. Ex-
cept for the longer RSR, the stall engine remains unchanged. The RSR
provides the full flags full.k and the update enable flags uek for the stages
ke {20.1,...,2.0.16,2.1, ...,2.4,3}. These 21 full bits code the state of
the division FSD in unary as specified in table 9.15.

An instruction, depending on its execute latency, enters the RSR of the
stall engine either in stage 2.0.1, 2.0.5, 2.1, 2.3 or 3. The write signals of
the RSR are therefore generated as

Stallw[1:21] = (lat21, 0%, lat17, O', lat5, O, lat3, 0, latl). (9.2)

For the scheduling function Is, thisimplies

5(3,T +1) if latl=1
I5(23,T+1) if lat3=1
15(20,T)=i — i=2¢ 152LT+1) if lat5=1
15205 T+1) if latl7=1
15(20.1,T+1) if lat2l=1,

and for every substage 2.0.j with j > 1 we have

{|z(2.o.(j+1),T+1) if 0<j<16

2205 T) =1 = 1= J21T+1) it j—16.

In the remaining pipeline stages, the division is processed like any instruc-
tion with a 5-cycle execute latency. Thus, the scheduling function requires
no further modification.

Unlike the stall engine, the cause environment, the buffer environment
and the precomputed control still use a 5-stage RSR. Up to step 2.0.16, a
division isfrozen in stage 2.0 and then enters the first stage of these RSRs.
Thus, the write signals RSRWA : 5] of the RSRsin the data paths and in the
precomputed control are generated as

RSRVd] = lat5 Vv (full.2.0.16 A fdiv.2.0)
RSRV8 = lat3
RSRV5] = latl

RSR2] = RSRW = 0.

Controlling Circuit SIGFMD

Clock Request Signals Theregisters A, E, Eb, Da, Db and x of circuit
SIGFMD (figure 8.20) are only used by divisions. Thus, they are updated
solely under the control of the division automaton.

Section 9.3

CONTROL OF THE
PREPARED
SEQUENTIAL
DESIGN

481

Chapter 9

PIPELINED DLX
MACHINE WITH

FLOATING POINT
CORE

482

Table 9.17 Clock request signals of the multiply/divide unit

| clocks || stages of the stall engine |

xce 2.0.1,2.0.5,2.0.9,2.0.13

sce, cce || 2.0.2,2.0.4, 2.0.6,2.0.8, 2.0.10, 2.0.12, 2.0.14, 2.0.16, 2.1
Ace 2.03,2.0.7,2.0.11

Dce, Ece || 2.0.15

Ebce 2.1

The output registers s and ¢ of the multiplication tree are also used by
multiplications (stage 2.1). A division uses these registers up to stage 2.1.
Thus, the registers s and ¢ can be updated at the end of step 2.1 without
any harm, even in case of adivision.

Table 9.17 lists for each register the stages in which its clock signal must
be active. A particular clock request signal is then obtained by oRring the
update enable flags of the listed stages, e.g.:

cce = ue2.0.2 Vv ue204 Vv ue20.6 Vv ue2.0.8 Vv ue2.0.10
vue2.0.12 v ue2.0.14 v ue2.0.16 v ue?2.1.

Control Signals The multiply/divide unit is governed by the following
signals

¢ flag dbwhich signals a double precision operation,
e flag fdiv which distinguishes between division and multiplication
e flag tlu which activates a table lookup, and

¢ the enable signals for the operand busses opaand opb

opaog3:0] = (faadoeEadoeAadoexadog
opbogl:0] = (fbbdoexbdog.

Thesignals fdivand db are fixed for the whole execution of an instruction.
Therefore, they can directly be taken from the RSR of the precomputed
control.

Theflag tlu selects the input of register x. Since thisregister isonly used
by divisions, the flag tlu has no impact on a multiplication or addition.
Thus, flag tlu is directly provided by the division automaton.

The operand busses opa and opb are controlled by both, the precom-
puted control and the division automaton. Both control units precompute
their control signals. The flag divhazselects between the two sets of con-
trol signals before they are clocked into the register Con2.1. Let opaok
and opboé denote the set of enable signals generated by the division au-
tomaton; this set is selected on divhaz= 1. The operand busses are then
controlled by

(0paoeopbod = (opaoe2.0, opboe2.0) if divhaz=0
paoeop " | (opaoé, opboé) if divhaz=1.

An active signal divhazgrants the division automaton access to the operand

busses during stages 2.0.1 to 2.0.16. Since the enable signals are precom-

puted, signal divhazmust also be given one cycle ahead:

15
divhaz = \/ full.2.0.k v (full.2.0 A fdiv.2.0).
k=1

The Division Automaton controls the multiply/divide unit according to
the FSD of figure 8.22. The full bits provided by the RSR of the stall
engine codes the states of the division FSD in unary. Based on these flags,
the automaton precomputes the signa tlu and the enable signals for the
operand busses opa and oph. For each of these signals, table 9.18 lists
the states in which the signal is active and the index of the preceding state.
Like in a standard Moore automaton (section 2.6), each control signal is
generated by an OR tree which combines the corresponding full flags, e.g.:

xbdoé = \/ full.2.0.k
ke{3,7,11,13}

The 5 clock request signals and the 7 enable signals together have an
accumulated frequency of vsym= 30 and amaximal frequency of Vmax= 9.
Thus, the control for circuit SIGFM D requires the following cost and cycle
time:

CDivCon = Cff (7) +Cmux(6) ‘f’cand‘f‘CORtre&lG) + C0r ' (Vsum_ 11)
TDivCon = Dand+ DORtree(16) + Dmux+ A.

The division automaton delays the clock signals of circuit SIGFMD by the
following amount

Dpivcon(€€) = DoRrtred Vmax)-

Section 9.3

CONTROL OF THE

PREPARED
SEQUENTIAL
DESIGN

483

Chapter 9

PIPELINED DLX
MACHINE WITH

FLOATING POINT
CORE

Lemma 9.3 »

484

Table 9.18 Control signalsfor the steps 2.0.1 to 2.0.16 of adivision.

FSD stall engine L

: active signals
state previous stage
lookup 2.0.0 tlu, fbbdoe

newtonl | 2.0.1, 2.0.5, 2.0.9 xadoe, fbbdoe
newton3 | 2.0.3,2.0.7, 2.0.11 || Aadoe, xbdoe

quotientl | 2.0.13 faadoe, xbdoe
quotient2 | 2.0.14 faadoe, fbbdoe
quotient3 | 2.0.15 Eadoe, fbbdoe

Dateline Lemma
With respect to the dateline lemmawe are facing two additional problems:

e Some registers are updated by more than one stage. Registers ¢ and
s of the circuit SigfMD for instance are updated after stage 2.0.16
during divisions and after stage 2.1 during multiplications. Thus,
classifying the registers by the stage, which updates them, is not
possible any more.

e During the iterations of the division algorithm, some registers are
clocked several times. Thus, the dateline lemma cannot possibly
hold while the registers have intermediate values.

We coarsely classy the stages into two classes. The class of stages PP
which are operated in a pipelined fashion and the class of stages SQwhich
are operated in a sequential manner:

PP = {0,1,20,21,...,2.4,3,4}
SQ = {20x|1<x< 16}

Different stagesin PP update different registers. Thus, for every register
R we have R € out(t) for at most one t € PP, and every stage in PP is
updated at most once during the sequential execution of an instruction.
The dateline lemma still holds while instructions are in stages PP and for
registers R which are output registers of stages PP.

Letkt € PP and let } 1) =i. For every register and memory cell®
out(t) the statements of lemma 5.9 apply.

Section 9.4

The value of the output registers of stage 2.0.16 at the end of the it-
erations for a division operation depend only on the value of the output ~'PELINED DLX
registers of stage 2.0 before the iterations: DESIGN wiTH FPU

Let |; be a division operation, let < Lemma 9.4
15(2.0,U") = 15(21,T") =i,

and let V be an output register of stage 2.0.16. Th&ndépends only on
the values & *1 of the output registers Q of stage 2.0 which were updated
after cycle U.

9.4 Pipelined DLX Design with FPU

S BEFORE, transforming the prepared sequential design into a pipe-

lined design requires extensive forwarding and interlock hardware
and modifications in the PC environment and in the stall engine. Figure
9.23 depicts the data paths of the pipelined design FDLX;. Compared to
the sequential data paths, its top level schematics just got extended by the
forwarding hardware:

Cop = Cimenv+Cpcenvt Cirenvt Cpaddr + Crpembt Cexenv

+CDMenv+ CSH4Lenv+ CRFenv+ CCAenV'f‘ Cbu ffer
+5-C+1(32) +5-Cs¢(64) + 2- Ct£(5) + Crorw-

9.4.1 PC Environment

According to section 5.6.1, switching from the prepared sequential design
to the pipelined design has only a minor impact on the PC environment.
Theinstruction memory IM is addressed by the input d pcof register DPC
and not by its output. The circuit nextPCwhich computes the new values
of the program counters however remains unchanged.

On the other hand, adding support for floating point impacts the glue
logic PCglue but not the data paths of environment PCenv Thus, the
FDLXp design uses the PC environment of the pipelined DLX; design
(figure 5.13) but with the glue logic of the sequential FDLXs design.

485

Chapter 9

PIPELINED DLX
MACHINE WITH

FLOATING POINT
CORE

486

I P IMenv
EPCs bIR1
=
PCenv |Renv Daddr
1
B| |Dlink, PCs| P co |
| —
o] ?
EXen =]
3 o Bev [§
z 3
e PR3 | D MAR >MDRw ey
SR| & g
< — Ué) < DMenv E“
c I -~
he} 9]
o o
| S bEfla] DPca | DMmDR] PFC4] £
o o)
L
SH4L env
Ffl’ CW \LFC’
RFenv

Figure 9.23 Data paths of the pipelined FDLX design with result forwarding

9.4.2 Forwarding and Interlocking

Likein the pipelined designs DLX;; and DLXp, the register files GPR, SPR
and FPR are updated in the write back stage. Since they are read by ear-
lier stages, the pipelined floating point design FDLX5 aso requires result
forwarding and interlocking. For the largest part, the extension of the for-
warding and interlock engine is straightforward, but there are two notable
complications:

e The execute stage has a variable depth, which depending on the in-
struction varies between one and five stages. Thus, the forwarding
and interlock engine has to inspect up to four additional stages.

e Since the floating point operands and results have single or double
precision, a 64-bit register of the FPR register file either serves as
one double precision register or as two single precision registers.
The forwarding hardware has to account for this address aliasing.

General Purpose Registers

The move instruction mf2i is the only floating point instruction which up-
dates the fixed point register file GPR. The move mf2i is processed in the
exchange unit FPXtr, which has a single cycle latency like the fixed point
unit.

Thus, any instruction which updates the GPR enters the execute stage
in stage 2.0 and then directly proceeds to the memory stage 3. Since the
additional stages 2.1 to 2.4 never provide afixed point result, the operands
A and B can still be forwarded by circuit Forw(3) of figure 4.16. However,
the extended instruction set has an impact on the computation of the valid
flags v[4 : 2] and of the data hazard flag.

Valid Flags The flag v[]j] indicates that the result to be written into the
GPR register file is already available in the circuitry of stage j, given that
the instruction updates the GPR at al. The result of the new move in-
struction mf2i is already valid after stage 2.0 and can always be forwarded.
Thus, the valid flags of instruction |; are generated as before:

v[4=1; v[3]=vV[2]=/Dmr

DataHazard Detection TheflagsdhazAand dhazBsignal that the oper-
and specified by the instruction bits RSL and RS cause a data hazard, i.e.,
that the forwarding engine cannot deliver the requested operands on time.
These flags are generated as before.

In the fixed point DLX design, every instruction | is checked for a data
hazard even if | requires no fixed point operands:

dhazF X = dhazAvVv dhazB

This can cause unnecessary stalls. However, since in the fixed point de-
sign amost every instruction requires at least one register operand, thereis
virtually no performance degradation.

Inthe FDL X design, thisisno longer the case. Except for the move mi2f,
the floating point instructions have no fixed point operands and should not
signal afixed point data hazard dhazF X The flags opAand opBtherefore
indicate whether an instruction requires the fixed point operands A and B.
The FDLX design uses these flags to enable the data hazard check

dhazFX = (dhazAA opA) Vv (dhazBA opB).

The data hazard signals dhazAand dhazBare generated along the same
lines. Thus, the cost and delay of signal dhazF Xcan be expressed as

thazFX = 2'thazA+2‘Cand+Cor
AdhazFX = AdhazA+ Dand+ Dor-

Section 9.4

PIPELINED DL X
DESIGN wWITH FPU

487

Chapter 9

Special Purpose Registers
Dueto the FPU, the specia purpose registers SPR are updated in five situ-
ations:

PIPELINED DL X
MACHINE WITH
FLOATING POINT
CORE 1. All specia purpose registers are updated by JISR Asin the DLXq

design, there is no need to forward these values. All instructions

which could use forwarded versions of values forced into SPR by

JISRget evicted from the pipe by the very same occurrence of JISR

2. Onamovi2s instruction, value C.4 iswritten into register SPRSad.

3. Register SRis updated by rfe. In stages 2 to 4, this update is imple-
mented like aregular write into SPR with address Sad= 0.

4. Register FCCisupdated by fc. In stages 2 to 4, this update isimple-
mented like aregular write into SPR with address Sad= 8.

5. On an arithmetical floating point instruction, which is signaled by
fop= 1, the floating point exception flags Ffl.4 are ored into the
Register IEEEf.

In case 5, which only applies to register |IEEES, the result is passed down
the pipeline in the Ffl.k registers. During write back, the flags Ffl.4 are
then ored to the old value of IEEEf. In the uninterrupted execution of |,
we have

IEEEf = IEEEf 1 V Ffl.

That complicates the result forwarding considerably (see exercise 9.9.1).
In order to keep the design simple, we omit the forwarding of the flags
Ffl. Instead, we generate in appropriate situations a data hazard signal
dhazIEEE f) and stall the instruction decode until the hazard is resolved.

In case 1, the forwarding does not matter. In the remaining cases 2 to 4,
the instruction has a 1-cycle latency. Thus, one only needs to forward data
from the stages 2.0, 3 and 4, and theresult is already available in stage 2.0.
With respect to the update of the SPR register file, the instructions movs2i,
rfe and fc are treated alike. Thus, the SPR operands can be forwarded
by the standard SFor circuit used in the DLXq design, and except for an
operand | EEEf, no additional data hazard isintroduced.

In the FDL X design, data from the SPR registers are used in the follow-
ing seven places, each of which is treated separately:

1. on amovs2i instruction, register SPRSag is read into S during de-
code,

- 2. on an rfe instruction, the two exception PCs are read during decode,
488

3. the cause environment reads the interrupt masks SR in the memory
stage,

4. the rounders of the FPU read SR in the execute stage 2.3,

5. the rounding mode RM is read in stage 2.2 by the floating point
adder and in stage 2.3 by the two rounders,

6. on a floating point branch, the condition flag FCC is read during
decode,

7. and on an arithmetical floating point operation (fop= 1), the IEEE
exception flags |EEEf are read during write back.

Forwarding of the Exception PCs Since the new floating point instruc-
tions do not access the two exceptions PCs, the forwarding hardware of
EPC and EDPC remains unchanged. EPC is forwarded by the circuit
SFor(3) depicted in figure 5.17. The forwarding of EDPC is still omit-
ted, and the data hazard signal dhaZ EDPC) is generated as before.

Forwarding of Operand S On a specia move instruction movs2i, the
operand Sisfetched during decode. Likeinthe DLXq design, operand Sis
forwarded by the circuit SFor(3) depicted in figure 5.15. However, in case
of an operand IEEEf, one has to check for a data hazard due to the update
of an arithmetical floating point instruction (case 5). Such a hazard occurs
if

¢ the decode stage processes a movs2i instruction (ms2i.1 = 1),
¢ the source address Sasl equals 7,

e astagek > 2.0 processes an arithmetical FPU instruction (i.e., full .k
= fopk=1), and

e No stage j between 1 and k processes a movi2s which updates | EEEf
(i.e, hit.j = 0).
If a specia move is in stage 2.0, the remaining execute stages must be
empty, dueto its single cycle execute latency. Thus,
dhaglEEEf) = mi.1 A ((Sasl) =7) A

\/ (fopkA full.k) v (hit.2A fop.3A full.3)
20<k<2.4

v ((hit.2 NOR hit.3) A fop4 A fu||.4)).

Section 9.4

PIPELINED DL X
DESIGN wWITH FPU

489

Chapter 9

PIPELINED DL X

F

490

MACHINE WITH
LOATING POINT
CORE

Sas.l 0111 fop.2.[0:4] full.2[0:4] hit.2 fop.4 full.4 hit.2 hit3 fop.4 full.4

dhaz(| EEEF)

Figure 9.24 Computation of data hazard signal dhaZIEEE f).

The circuit of figure 9.24 generates the flag in the obvious way. The hit
signals are provided by circuit SFor(3). Thus,

thaz(I EEE f) = CEQ(4) +C0Rtree(5) +11. Cand+ 2- Cor + Cnor + Cinv
Dahad|[EEEf) = max{Dgq(4), Dor + Dortred 5),
Dstor(hit) +2-Cor +Chor} + 2 Dang.

Forwarding of Register IEEEf The arithmetical floating point instruc-
tions generate |EEE exception flags F fl which are accumulated in register
I[EEEf. Such an instruction |; updates register IEEEf by a read-modify-
write access; these special read and write accesses are performed during
write. For the uninterrupted execution of I; with I7(4,T) =i we have

IEEEf] ™t = IEEEf_1 v Ffl.4.
Since the instructions are processed in program order,
IEEEfT = IEEEf_1,

and no result forwarding is required.

Forwarding of Register FCC On afloating point branch, the condition
flag FCC isrequested by the PC environment during decode. The flag FCC
is updated by a special move movi2s and by a floating point compare in-
struction. Both instructions have asingle cycle execute latency and bypass
the substages 2.1 to 2.4. Thus, the value of FCC can be forwarded by the
3-stage forwarding circuit SFor of figure 5.16 with Din = SPR8] = FCC
and ad = 1000.

The specia move and the test instruction update register FCC via the
standard write port. Since there result is already available in stage 2.0, the
forwarding is always possible and register FCC never causes a data hazard.

Forwarding of Register RM The rounding mode RM is needed in stage
2.2 by the floating point adder and in stage 2.4 by the rounders FPRND
and FXRND. Register RM can only be updated by a special move movi2s
which has a single cycle execute latency. Since the result of the special
move is aready valid in stage 2.0, forwarding is always possible; no data
hazard is introduced.

A standard 2-stage forwarding circuit SFor(2) can forward RM from
stages 3 and 4 to the execute stages. However, the following lemma states
that the forwarding of register RM can be omitted if the instructions always
remain in program order. The scheduler of the pipelined design FDLX
ensures such an in-order execution (section 9.4.3). Thus, the SPR regis-
ter file can directly provide the rounding mode RM to the adder and the
rounders at zero delay.

Section 9.4

PIPELINED DL X
DESIGN wWITH FPU

Let instruction || read the rounding mode RM in stage 2.2 or 2.4. Fus-Lemma 9.5

thermore, let | be an instruction preceding Wwhich updates register RM.

Assuming that the instructions pass the pipeline stages strictly in program

order, |j updates register RM beforgreads RM.
Let the execution of instruction |; be started in cycle T,
In(2.0,T) = i.

1) Any instruction which passes the rounder FPRND or FXRND has an ex-
ecute latency of at least 3 cycles. Thus, the rounder of stage 2.4 processes
liincycleT + 2, at the earliest:

In(24,T') =i with T > T+2

2) If I; isafloating point addition or subtraction, it already reads the round-
ing mode RM in stage 2.2. Instruction |; has a 5-cycle execute latency, thus

i = In(2LT+1) = In(22,T+2).

In either case, |; reads the rounding mode in cycle T + 2 at the earliest.
The rounding mode RM is only updated by special moves movi2s which
have a single cycle execute latency. For such a move instruction |j this
implies
j = In(20,t) = In(3,t+1) = In(4,t+2).
Since the instructions remain in program order, Ij must pass stage 2.0 be-
foreinstruction li. Thus,

t<T & t4+2<T+2
and |j updates register RM at least one cycle before | reads RM.

PROOF

QED

491

Chapter 9

PIPELINED DL X
MACHINE WITH
FLOATING POINT

492

CORE

Lemma 9.6 »

Forwarding of Register SR The status register SRis updated by special

moves and by rfe instructions. In either case, register SR is updated by a
regular write to SPR with address 0. Since the result is aready available in
stage 2.0, the forwarding of SR is always feasible.

The cause environment CAenv uses SR for masking the interrupt events
in stage 3. As before, a 1-stage forwarding circuit SFor(1) provides the
masks SR to the cause environment.

In the FDLX design, register SR aso holds the masks for the |EEE float-
ing point exceptions. Therounders FPRND and FXRND require these mask
bits during stage 2.3. In analogy to lemma 9.5, one shows

Let the instructions pass the pipeline of the FRldésign strictly in pro-
gram order. Letinstruction fead the status register SR in stage 2.3 during
cycle T. Any precedingfe or movi2s instruction | then updates register
SRincycle T or earlier.

Thus, it suffices to forward the masks SR from the write back stage to the
rounders. This forwarding can be performed by the circuit SFor(1) which
already provides SR to the cause environment. Like in the DLX design,
the masks SR never cause a data hazard.

Forwarding Circuit SFOR Altogether, the forwarding of the SPR oper-
ands can be performed by one circuit SFor(1) for operand SRand by three
circuits SFor(3) for the operands EPC, Sand FCC. Thus, the forwarding
engine SFORhas the cost

Csror = 3-Csror(3) +Csror(1).

The operands S, EPC and SRtill have the same accumulated delay asin
the DLXp design. The accumulated delay of the FCC flag equals that of
the Soperand
AsrorRFCC) = AsroRS).

The remaining SPR operands are provided at zero delay.

The flag dhazSsignals that a specia purpose register causes a data haz-
ard. EDPC and |IEEEf are the only SPR register which can cause such a
data hazard. Thus, signal dhazScan be obtained as

dhazS= dhazIEEE f) v dhaEDPC).

The selection of the source address Sasand the forwarding are both gov-
erned by control signals of stage ID, therefore

Cahazs = Cdhad|EEE) +Cdnad EDPC) + Cor

Adhazs = Acon(CsID) 4 Dpaddr

a) b)
dbs ad Do fhaz FS1 fA fhazA FS2 fB fhazB
|)1 sty }
FPRw.k —= dbs ad Do fhaz dbs ad Do fhaz
dbr.k —=
Fad.k Ffor Ffor Ffor
FC .k —= Din Din Din
4\ 4\ fa[63:0] 4\ fb[63:0]

Figure 9.25 Block diagrams of circuit F for and forwarding engine FFOR

Floating Point Registers

While an instruction (division) is processed in the stages 2.0.0 to 2.0.15,
the signal divhazis active. Since the fetch and decode stage are stalled on
divhaz= 1, it suffices to forward the floating point results from the stages
k € PPwith k > 2.0. In the following, stage 2.0 is considered to be full, if
one of its 17 substages 2.0.0t0 2.0.16 isfull, i.e,,

full.2.0 = \/ full.2.0.j.
0<j<16

Depending on the flag dbs the floating point operands either have single
or double precision. Nevertheless, the floating point register file always
delivers 64-bit values fa and fb. Circuit FPembof stage ID then selects
the requested data and aligns them according to the embedding convention.
However, the forwarding engine, which now feeds circuit FPemb takesthe
width of the operands into account. That avoids unnecessary interlocks.

The floating point forwarding hardware FFOR (figure 9.25) consists of
two circuits F for. Oneforwards operand FA, the other operand FB. In ad-
dition, circuit F for signals by fhaz= 1 that the requested operand cannot
be provided in the current cycle. Circuit F for gets the following inputs

¢ the source address ad and the precision dbs
¢ the 64-bit data Din from a data port of register file FPR, and

¢ for each stage k € PPwith k> 2.0 the destination address Fad.k, the
precision dbr, the write signal FPRwk and an appropriately defined
intermediate result FC' k.

Like in the fixed point core, the forwarding is controlled by valid flags
fv which indicate whether afloating point result is already availablein one

Section 9.4

PIPELINED DL X
DESIGN wWITH FPU

493

Chapter 9

PIPELINED DL X
MACHINE WITH
FLOATING POINT

494

CORE

of the stages 2.0, 2.1 to 4. After defining the valid flags fv, we specify the
forwarding circuit F for and give asimple realization.

The flags opFA and opF B indicate whether an instruction requires the
floating point operands FA and FB. These flags are used to enable the
check for afloating point data hazard:

dhazFP= (fhazAA opFA) Vv (fhazBA opFB).

Forwarding engine FF ORprovides thisflag at the following cost and delay

Crror = 2-Cgfor
thazFP = 2 Cand‘f‘cor
AdhazFrp = Acon(CsID) + Detor(fhaz) + Dang+ Dor.

Valid Flags Like for the results of the GPR and SPR register files, we
introduce valid flags fv for the floating point result FC. Flag fv[K] in-
dicates that the result FC is already available in the circuitry of stage k.
The control precomputes these valid flags for the five execute substages
2.0,2.1,...,2.4 and for the stages 3 and 4.

In case of aload instruction (Dmr = 1), the result only becomes avail-
able during write back. For any other floating point operation with 1-cycle
execute latency, the result is already available in stage 2.0. For the re-
maining floating point operations, the result becomes available in stage 2.4
independent of their latency. The floating point valid flags therefore equal

fv20] = latl A /Dmr
fvj21l] = fv[22] = fv[23] =0
fv[24] = fv[3] = /Dmr

fv4 = 1

Sincetheflags fvik] for stagek € {2.1,...,2.3,4} have afixed value, there
is no need to buffer them. The remaining three valid flags are passed
through the RSR of the precomputed control together with the write signal
FPRw

In any stage k > 2.0, the write signal FPRwk, the valid flag fv[k].k and
the floating point destination address Fad.k are available. For some of
these stages, the result FC .k is available as well:

e FC'.4istheresult to be written into register file FPR,
e FC'.3istheinput of the staging register FC.4, and

e FC'.2 istheresult R to be written into register MDRw. Depending
on the latency, Ris either provided by stage 2.0 or by stage 2.4.

Section 9.4

Lemma 4.8, which deals with the forwarding of the fixed point result,
can aso be applied to the floating point result. However, some modifica-
tions are necessary since the result either has single or double precision.
Note that in case of single precision, the high and low order word of the
results FC'.k are identical, due to the embedding convention (figure 9.1).
Thus, we have:

PIPELINED DL X
DESIGN wWITH FPU

For any instructionl, address r= (r[4: Q]), stage ke PP with k> 2.0, < Lemma 9.7
and for any cycle T withs[k, T) =i we have:

1. I; writes the register FPR][r] iff after the sequential execution; of |
the address r[4:1] is kept in the register Fad.k[4:1] and the write
signal FPRw.k is turned on. In case of a single precision access, the
bit Fad.k[0] must equal r[0]. Thus; Wwrites register FPR]r] iff

FPRwk; = 1 A Fadk[4:1] =r[4:1] A (Fad.k[0] =r[0] V dbrk = 1)

2. If I; writes a register, and if after its sequential execution the valid
flag f\k] is turned on, then the value of signal HCduring cycle T
equals the value written by Thus, { writes FPR[r] and fyk]j =1
imply

[FC'K'[31:0] if r[0=0

FPRIi = { FC'K'[63:32] if r[0 =1

Floating Point Forwarding Circuit Ffor Circuit Ffor forwards 64-bit

floating point data. In order to account for 32-bit operands and resuilts, the

high order word Do[63 : 32] and the low order word Do[31 : 0] are handled
separately.

For any stage k > 2.0, circuit Ffor provides two hit signals hitH .k and
hitL.k and an auxiliary flag matchk. Flag hitH .k indicates that the instruc-
tion | of stage 1 requests the high order word, and that the instruction of
stage k is going to update that data. Flag hitL.k corresponds to the low
order word and has a similar meaning. The auxiliary flag matchk signals
that the instruction of stage k generates a floating point result, and that its
destination address matches the source address ad possibly except for bit
0:

matchk = full.k A FPRwk A (Fad.k[4:1] =ad[4:1]).

Lemma9.7 implies that instruction | requests the high (low) order word
if the operand has double precision or an odd (even) address. Due to the
embedding convention (figure 9.1), asingle precision result is aways du-
plicated, i.e., the high and low order word of aresult FC.k are the same. -

495

Chapter 9

PIPELINED DLX
MACHINE WITH

FLOATING POINT
CORE

496

Table 9.19 Floating point hit signalsfor stagek € {2.0,...,3}, assuming that the
instruction in stage k produces a floating point result (FPRw= full.k = 1) and
that the high order address bits match, Fad.k[4: 1] = ad[4: 1].

destination source . .
dbrk FadkO] | dbsi adfo] || "HK hitbk
0 0 0 1
0 0 0 1 0 0
1+ 0 1
0 0 0 0
0 1 0 1 1 0
1+ 1 0
0 0 0 1
1 * 0 1 1 0
1+ 1 1

Thetwo hit signals of stage k therefore have the values listed in table 9.19;
they can be expressed as

hitH.k =
hitL.k =

matchk A (dbrk v Fad.k[0]) A (dbsl Vv ad[0])
matchk A (dbrk v /Fad.k[0]) A (dbsl Vv /ad[0])

Moreover, flag topH.k signals for the high order word that there occurs
ahit in stage k but not in the stages above:

topHk = hitH.k A N

2.0<x<k,xePP

/hitH .x.

The flags topLk of the low order word have a similar meaning. In case
of topH.k =1 and topL.j = 1, the instructions in stages k and j generate
data to be forwarded to output Do. If these data are not valid, adata hazard
fhazissignaled. Since fv.4 =1, we have

fhaz = \/

ke{2.0,2.1,...,3}

(topH.k v topLk) A /fvk

While an instruction is in the stages 2.1 to 2.3 its result is not valid
yet. Furthermore, the execute stages 2.0 and 2.4 share the result bus R
which provides value FC'.2. Thus, circuit F for only has to consider three
results for forwarding. The high order word of output Do, for example,

D0[63:32]

hitH.2.0
hitH.2.4

hitH.3

hitH.4

Din[63:32] FC .4[63:32]

Section 9.4

Do[31:0]

PIPELINED DL X

hitL.2.0
hitL.2.4

hitL.3

hitL.4

DIn[31:0] FC’.4[31:0]

Figure 9.26 A redlization of the selection circuit F forSel

can therefore be selected as

FC'.2 if topH.2.0 v topH.2.4
oy _) FC.3 if topH.3
Dol63:32] =3 rcia it topH.a
Din otherwise

Realization of Circuit Ffor Circuit F for consists of two subcircuits;

F forC controls the forwarding and F f orSelselects operand Do.

In the circuit F forSel of figure 9.26, the high and low order word of
the operand Do require three multiplexers each. Like in the fixed point
forwarding circuit Forw, the multiplexers are controlled by the hit signals.
Since the stages 2.0 and 2.4 share the result FC.2, the hit signals of the
two stages are combined by an OR gate. Thus,

CFforSeI = 2'(3‘Cmux(32)+cor)
DFforSeI = 3'Dmux

The control circuit F forC generates the 14 hit and top signals as outlined
above and checks for a data hazard fhaz The hit signals can be generated
at the following cost and delay:

CFforHit = 2 Cor +Cinv+ 7- (CEQ(4) +6- Cand+ 2. Cor + Cinv)
Drfornit = mMax{Deq(4), Dinv+ Dor} +2- Dand

After inverting the hit signals, the signals topH.k and topL.k can be ob-
tained by two parallel prefix AND circuits and some additional AND gates.
These signals are then combined using an OR tree. Thus,

CFforC = CFforHit +2- (7' Cand+ 6'Cinv+CPP(6) ‘Cand)
+6- (Cor + Cinv + Cand) + Cortred 6)

CFfor = CFforSel‘f‘CFforC-

DESIGN wiITH FPU

497

Chapter 9

PIPELINED DL X
MACHINE WITH
FLOATING POINT

498

CORE

The forwarding circuit F for provides the output Do and the flag fhazat
the following delays

Drtor(DO) = DertorHit + Deforsel
Drior(fha = Defornit + Dinv+ (Dpp(6) + 2) - Dand
+Dor + Dortred 6)

The delay of Do is largely due to the address check. The actual data Din
and FC'. | are delayed by no more than

Drfor(Data) = Drforsel

The datato be forwarded by circuit FFor have the following accumul ated
delay
A(FC',Din) = max{Aexeny AstuLenw DFpRread}-

All the address and control inputs of circuit FFOR are directly taken from
registers. FFOR therefore provides the operands FAL and FB1 with an
accumulated delay of

Arror(FAL FB1) = max{A(FC',Din) + Dg ;o (Data), Detor(DO)}.

Before the operands are clocked into the registers FA and FB, circuit
FPembaligns them according to the embedding convention. Thus, fetch-
ing the two floating point operands requires aminimal cycle time of

Trread = Arror(FAL,FB1) 4+ Drpemb+A.

9.4.3 Stall Engine

Since the divider is only partialy pipelined, the division complicates the
scheduling considerably. Like for the sequential design, we therefore first
ignore divisions. In a second step, we then extend the simplified scheduler
in order to support divisions.

Simplified Scheduling
The execute stage still has a nonuniform latency which varies between 1
and 5 cycles. The intermediate results, the precomputed control signals
and the full flags must keep up with the instruction. Like in the sequential
FDLX; design, these data are therefore passed through 5-stage RSRs.

In the pipelined design FDLXq, several instructions are processed at a
time. The nonuniform latency cause two additional problems, which are
illustrated in table 9.20. When processed at full speed,

Table 9.20 Pipelined schedule for instruction sequence 11, I2, I3, ignoring struc-
tural and data hazards

| instruction || cycles of the execution |

I1: fadd IF ID EX.0 EX.1 EX.2 EX.3 EX4 M WB
I2: load IF ID EXO M WB
I3: cvt IF ID EX.O0 EX3 EX4 M WB

1. several instructions can reach a stage k at the same time like the
instructions |; and I3 do, and

2. instructions can pass one another like the instructions i and 1.

Every pipeline stage of the FDLXy design is only capable of processing
one instruction at atime. Thus, in the scenario of case 1 the instructions
compete for the hardware resources. The scheduler must avoid such a
structural hazard, i.e., for any stage k and cycle T it must be guaranteed
that

Ink, T)=i and InkT)=i" — i=i (9.3)

Hardware schedulers like the Tomasulo scheduler [Tom67, KMPO9b]
and the Scoreboard [Tho70, MP96] allow instructions to overtake one an-
other, but such an out-of-orderexecution complicates the precise process-
ing of interrupts [Lei99, SP88]. In the pipelined execution, instructions are
therefore processed strictly in program order (in-order execution Thus,
for any two instructions I; and I with i > i’ and any stage k which is re-
quested by both instructions, the scheduler must ensure that | is processed
after ly:

i>i" and InkT)=i ad InkT)=i" — T>T. (94
Notation So far, the registers of the RSR are numbered like the pipeline
stages, e.g., for entry Rwe have R.2.0,...,R.2.4,R.3. The execute |atency
| of an instruction specifies how long the instruction remains in the RSR.
Therefore, it is useful to number the entries also according to their height
i.e., according to their distance from the write back stage (table 9.21). An
instruction with latency | then enters the RSR at height .

In the following, we denote by full’(d) the full flag of the stage with
height d, e.g.:

full21=full'(5) full.23=full'(3) full.3= full'(1).

Section 9.4

PIPELINED DL X
DESIGN wWITH FPU

499

Chapter 9

PIPELINED DL X
MACHINE WITH
FLOATING POINT

500

CORE

Table 9.21 Height of the pipeline stages

Stage || 20| 2122232434
height | 6 | 5 | 4 | 3 | 2 |1

o

Structural Hazards According to lemma9.1, the entries of the RSR are
passed down the pipeline one stage per cycle, if the RSR is not cleared
and if the data are not overwritten. Thus, for any stage with height d €
{2,...,5} wehave,

full'dT=1 — ful/(d-—1)T=1.

This means that an instruction once it has entered the RSR proceeds at full
speed. On the other hand, let instruction | with latency |; be processed in
stage 2.0 during cycle T. The scheduler then tries to assign | to height
l; for cycle T + 1. However, this would cause a structural hazard, if the
stage with height I; + 1 is occupied during cycle T. In such asituation, the
scheduler signals an RSR structural hazard

RSRstt = full'(li+1)7 = 1,

and it stalls instruction |; in stage 2.0. Thus, structural hazards within the
RSR are resolved.

In-order Execution Let instruction l; and cycle T be chosen as in the
previous case. Theinstructionswhichincycle T are processed in the stages
2.1 to 4 precede ;. This especially holds for an instruction I; processed
during cycle T at height d > I; + 1. Since structural hazards are resolved,
lemma 9.1 implies that |; reaches height |; in cycle T 4- d —I; with

T+d—1l; > T+1.

Since j < i, the instructions would be not executed in-order (i.e., the con-
dition of equation 9.4 isviolated), if I; leaves stage 2.0 at the end of cycle
T.

Ford <l wehave T +d—1; <T,i.e, instruction |; reaches height |;
before instruction ;. Thus, in order to ensure in-order execution, | must
be stalled in stage 2.0 if

5
RSRordel = \/ full’(d)" = 1.
d=Ilj+2

The flag RSRhazignals a structural hazard or a potential out-of-order
execution:

5
RSRhaz= RSRstrv RSRorder=\/ full’(d)".
d=li+1

Notethat aninstruction with alatency of | > 5 never causes an RSR hazard.
Thus, depending on the latency of the instruction, the structural hazard
RSRhazan be detected as

4 2
RSRhaz = (lat1.2.0 A \/ full.2.j) v (1at3.2.0 A \/ full.2.j).
j=1 j=1

at the following cost and delay

CRSRhaz = 2'Cand‘f“]"cor
Arsrhaz = Dand+ 3 Dor.

The stall engine of the FDLXn design stalls the instruction in stage 2.0 if
RSRhaz 1. Of course, the preceding stages 0 and 1 are stalled as well.

Hardware Realization Figure 9.27 depicts the stall engine of the design
FDLXp. Itis an obvious extension of the stall engine from the DLXq
design (figure 5.19). Like in the sequential design with FPU, the full flags
of the stages 2.0 to 3 are kept in a 5-stage RSR.

A more notable modification is the fact that we now use 3 instead of 2
clocks. Thisisdueto the RSR hazards. Asbefore, clock CE1 controls the
stages fetch and decode. The new clock CE2 just controls stage 2.0. Clock
CES3 controls the remaining stages; it is still generated as

CE3 = /busyV (/JISRNOR Ibusy) V reset

Clock CE2 is the same as clock CE3 except that it is also disabled on an
RSR hazard:

CE2 = (/RSRhaz /busy Vv (/JISRNOR lbusy) V reset
Clock CEL1 is generated as before, except that it is now disabled in three
situations, namely if the memories are busy, on a data hazard and on an

RSR hazard:

CEl = (/RSRhaa /busyA /dha Vv (/JISRNOR lbusy).

Section 9.4

PIPELINED DL X
DESIGN wWITH FPU

501

Chapter 9

PIPELINED DLX
MACHINE WITH

FLOATING POINT
CORE

502

CE1 ue.0
CE1l L
ue.
IASR CE2 —pfull.2.0
CE2
S ﬂ» ue.2.0
b RL U= ful21
2!
JSR — dr P R2 = fy1.22 % e
CE3] ce 3! ue.2.2
RSRw — W P R3 H= full.2.3 %
r4
ue.2.3
P R4 L= fu1.24 %
5!
RSR) Rs CE3 —*D% He24
CE ‘
G @ full.3
ue.3
reset ‘.,

CE3
P full.4 CE3 [-

Figure 9.27 Stall engine of the FDLXp design without support for divisions

Scheduling Function Except for the execute stages, the FPU has no im-
pact on the scheduling function of the pipelined DLX design. The instruc-
tions are still fetched in program order and pass the stages 0 and 1 in lock
step mode:

[if ued" =0

n(©T) =i = I”(O’T+1):{i+l it ued =1

In(L,T)=i — In(0,T)=i+1

Except for stage 2.0, an instruction makes a progress of at most one stage
per cycle, given that no jump to the ISR occurs. Thus, In(k,T) =i with
k+#2.0and JISR =0implies

In(k, T+1) if uek™=0

i In(k+1,T+1) if uek'=1Ake{0,1,3}

) In2(j+1),T+1) if uekl=1Ak=2j€{21,2223}
In(3,T+1) if uek' =1Ak=24

With respect to stage 2.0, the pipelined and the sequential scheduling func-
tion are alike, except that the instruction remains in stage 2.0 in case of an
RSR hazard. In case of JISR= 0, an active flag RSRhaalisables the up-
date of stage 2.0, i.e,, signal ue2.0 isinactive. Thus, for I5(2.0,T) =i and

JISR =0, we have

I7(2.0,T+1) if ue20" =0

- In(2L,T+1) if ue20" =1A1;=5
) In(23,T+1) if ue20"=1A1=3

In(3,T+1) if ue20"=1Al=1
Integration of Divisions
Thedivision isintegrated in the same way asin the FDLX: design (section
9.3.2). The RSR of the stall engine is extended to length 21. While a
division I; passes the stages 2.0.1 to 2.0.16 of the stall engine, the data of
li held in the remaining RSRs are locked in stage 2.0.

During such a division hazard, stage 2.0 is controlled by the division
automaton, and otherwise it is controlled by the precomputed control. The
division hazard is signaled by flag divhazone cycle ahead of time. While
divhaz= 1, the stages 0 and 1 are stalled, whereas the instructions in the
stages k > 2.2 do proceed. Thus, only the clock CE1 of stages 0 and 1
must be modified to

CE1l = (/divhazA /RSRhaa /busyA /dhaz Vv (/JISRNOR Ibusy).

Like in the sequentia design, the support for divisions only impacts
the scheduling function of the execute substages. For I(2.0,T) =i and
JISR =0, we have

p

In(2.0,T+1) if ue20" =0

In(20.L,T+1) if ue20"=1Al=21
In(2.0.5T+1) if ue20" =1A ;=17
In(21,T+1) if ue20"=1A1=5
In(2.3,T+1) if ue20"=1A;=3
In(3,T+1) if ue20"=1A1l=1

\
and for every substage 2.0.j, I(2.0.j,T) =i and JISR = 0imply

i [InO(j+1),T+1) if ue2.jT=1A1<j<16
“ In(24,T+Y) if ue2jT=1Aj=16.

9.4.4 Cost and Delay of the Control

Like in the pipelined design without FPU, the control comprises the mem-
ory controllers IMC and DMC, the memory interface control MifC, a cir-
cuit CE which generates the global clock signals, the stall engine, the pre-
computed control, a Mealy automaton for stage ID, and a Moore automa-
ton for the stages EX to WB. The parameters of these two automata are

Section 9.4

PIPELINED DL X
DESIGN wWITH FPU

503

Chapter 9

PIPELINED DL X
MACHINE WITH
FLOATING POINT

504

CORE

Table 9.22 Classification of the precomputed control signals

| type [x0]x1]|x2|x3[x4]y]|z]
control signals || 31| 7 | 3| O | 3 |3|6
valid flags 2 2|2

listed in table B.16. Thus, the cost of the whole FDLX control can be
expressed as

Ccon = Cimc +Cpwmc +Cuitc +Cce + Cstall
+Cprecont Ccon(mealy + Ccon(moors.

Precomputed Control

The control signals which govern the stages 2.0 to 4 are precomupted in
stage ID. Like in the sequential design FDLXs, they are then passed down
the pipeline using a five stage RSR and some registers (figure 9.19). In
addition, the control of the pipelined design FDLXq aso buffers some
valid flags namely

e theflagsv(4: 2] for the fixed point result and
e theflags fv[2.0], fv[2.4] and fVv[3] for the floating point result.

The valid flags increase the signals of type x.0, y and z by two signals
each (table 9.22). The RSR of the precomputed control now starts with
26 signals in stage 2.1 and ends with 13 signals in stage 3. The control
signals are precomputed by a Moore automaton which aready provides
the buffering for stage 2.0. This does not include the valid flags; they
require 6 buffersin stage 2.0. In addition, an inverter and an AND gate are
used to generate the valid flags.

Since divisions iterate in the multiply divide circuit SIGFMD, the pre-
computed control is extended by circuit DivCon like in the sequential de-
sign (figure 9.22). The cost and delay of control DivConremain the same.

Without the automaton, the cost of the RSR and of the (extended) pre-
computed control can then be expressed as

CConRSR == Cinv+ SCor + (26+ 19+ 2 16+ 13) . (C‘and‘f‘cmux‘i‘ Cff)
CpreCon = CConRSR‘l‘ Cff (8) +Cff (6) +Cinv +Cand+ CDivCon-

Section 9.4

Computation of the Clocks
The pipelined FDLX design uses three clock signals CE1 to CE3. These F!PELINED DLX
clocks depend on flags /JISR on the hazard flags /dhazand RSRhazand ~ DESIGN WITH FPU
on the busy flags /busyand Ibusy.

CE1 = (/RSRhaa /busyA /dhaz Vv (/JISRNOR Ibusy)
CE2 = (/RSRhaa /busy V (/JISRNOR lbusy V reset
CE3 = /busyV (/JISRNOR lbusy V reset

The forwarding circuitry provides three data hazard flags. flag dhazF X
for the GPR operands, flag dhazSfor the SPR operands and flag dhazFP
for the FPR operands. A data hazard occurs if at least one of these hazard
flagsis active, thus

/dhaz = (dhazF XV dhaz$ NOR dhazFP
Flag /dhazcan be obtained at the following cost and accumulated delay:

thaz = thazFX+ thazS+ thazFP+ Cor +Cnor
Adhaz = mMax{AdhazrFx Adhazs Adhazrp} + Dor + Dnor.
The FPU has no impact on the busy flags. They are generated like in the

pipelined design DLXn, at cost Cyysyand with delay Ayysy The JISR flags
are obtained as

JISR= jisr.4 A full.4 /JISR= jisr.4 NAND full.4.
The three clock signals are then generated at the following cost and delay

CCE = thaz+ CRSRhaﬂ‘ Cbusy
+4- Cor + Cnor + Cinv + Cnamd +3- Camd

Ace = max{Adhas ARsRhazAbusy} + Dinv + 2 Dand+ Dor-

Stall Engine
The core of the stall engine is the circuit depicted in figure 9.27 but with
an 21-stage RSR. In addition, the stall engine enables the update of the
registers and memories based on the update enable vector ue

According to equation 9.2, the write signals Stallwof the 21-stage RSR
are directly taken from the precomputed control of stage 2.0. The core of
the stall engine therefore provides the update enable flags at the following
cost and delay

Csta”(COI’E) = CRSF(Z:L, 1) + (21+4) -Cand+ Cor +2-Cs+

Astai(ue) = Acg+ DrsHr) + Dang. -
505

Chapter 9

PIPELINED DL X
MACHINE WITH
FLOATING POINT

506

CORE

The write signals of the register files are generated as before, except that
there is now one additional register file.
GPRW = GPRwA ue4 A (JISRNAND repea
FPRW = FPRwA ue4 A (JISRNAND repeal
SPRW = SPRwA ue4 A (JISRNAND repeal
SPRW[5:0] = SPRW5:0] A ue4.
The read and write signals of the data memory aso remain unchanged. In

stage 2.0, the write request signal is disabled in case of page fault during
instruction fetch.

Dmw3 := Dmw2 A CA2[2]
Dmw.3 = Dmw3 A full.3 A (JISRNOR rese
Dmr.3 = Dmr3 A full.3.

The sameistrue for the clock signals of stage ID and of the cause environ-
ment.

CAdce = wue3dV reset

DPCcé = PCcé = uelV JISR
However, the output registers of the stages EX and M of the data paths are
clocked differently. In the design without FPU, all these registers have a
trivial clock request signal which equals one. That is no longer the case.
For the registers R € {MDRr,C4,FC4} and for register MAR, the clocks
are now obtained as

Rcé = ue3 A Rce3

MARcé = ue2.4 A MARce2.0.

For register MDRw the clocking is a bit more complicated. As aready

mentioned earlier, MDRw either gets its data from stage 2.0 or from stage
2.4, depending on the latency of the instruction. Thus,

MDRwceé = ue2.4 A (MDRwce2.0Alatl.2.0 v MDRwce2.4).

The write signals of the RSRs of the data paths are directly taken from the
precomputed control CON2.0 except for the write signal of the first entry

RSRV1] = lat5.2.0 v (full.2.0.16 A fdiv.2.0).
The cost and cycle time of the stall engine can then be expressed as
Cstal = Cstan(core) + 14-Cang+ 4 Cor + Cinv + Chand+ Chor

Tstat = mMaxX{DrsKr) + Dand+ Dor + A, Astain(u€) + 8+ 2- Dang
+ max{Dramg(BZ, 32), DSF(VV, ce 9, 32) + fo, DFPRwrite}}

Section 9.4

9.4.5 Simulation Theorem
PIPELINED DL X

It suffices to show the simulation theorem for cycles, when instructions are DESIGN wiTH FPU

in stagesk € PP.

Like theorem 5.11 but with hypothesis < Theorem 9.8
In(k,T) =15k, T)=i and uek' =1

for k € PP and statements 1 (a) and (b) for signals S and output registers
R of stages k PP.

The arguments from the induction step of theorems 4.5, 4.7 and 4.11 have =~ PROOF
to be extended for the execute environment. Two new situations must be
treated:

1. jumping over substages by means of the result shift registers and

2. inputs to stage 2.1 produced by the sequential portion of the division
algorithm.

For the first case, let |; be an instruction which jumps from stage 2.0 to
stage x withx € {2.1,...,2.4,3}, and let

[||'|(X,T) = |z(X,TI)
= In(20,T—1) = I15(20,T'—1).

Let Q € out(2.0) be an output register of stage 2.0 which was updated
during cycle T — 1. Theinduction hypothesis and the dateline lemmaimply

h=Q =0Qf.

Let Sbeasigna in stage x, which is an input to an output register of stage
x which is updated at the end of cycle T. By construction of the machine,
the value S’ then depends only on

e thevalues Q; of registers Q considered above and
e the values of the special purpose registers RM_1 and SR_;.

Asin the proof of theorem 4.7, one argues that valuesRM_1 and SR_; are
forwarded to stage x of machine DLXn incycle T. It follows that

g -9 -
507

Chapter 9

PIPELINED DL X
MACHINE WITH
FLOATING POINT

508

CORE

QED

For the second case, et |; be adivision instruction and let

i = Ip2LT) = 152171
= I5(20.16,T-1) = 15(2.0.16,T'—1)
= Ip20,U) = I15(2.0,U").

By induction hypothesis we have for all output registers Q of stage 2.0,
which were updated after cycleU:

U+1 U’'+1
QI'I+ :QZ+'

DuringthecyclesU’+1,..., T’ — 1 of machine DLXs and during the cycles
U+1,...,T —1 of machine DLXn both machines work sequentially. The
outputs clocked into the output registers of stage 2.0.16 after cycles T —1
and T — 1, respectively, depend by lemma 9.4 only on the values of the
registers Q considered above. For output registers V of stage 2.0.16 it
follows that

Vi = V4 = V.

From this one concludes for al inputs S of output registers of stage 2.1
which are clocked after cycle T:

Si=s

exactly asin thefirst case.

9.5 Evaluation

IN THIS section, we analyze the impact of the floating point unit on the
cost and the performance of the pipelined DLX design. We aso analyze
how the FPU impacts the optimal cache size (section 9.5.2).

9.5.1 Hardware Cost and Cycle Time

In the following, we compare the cost and the cycle time of the designs
DLXn and FDLXp. Both designs use a split 4KB cache. The Icache and
the Dcache are of equal size, i.e.,, 2KB each. They are two way set as-
sociative with LRU replacement and implement the write alocate, write
through policy. With respect to the timing, we assume that the memory
interface has abus delay of d,ys= 15 and a handshake delay of dynhsh= 10
gate delays.

Table 9.23 Cost of the pipelined DLX data paths. DP\M denotes the data paths
without the memory environments.

| environment | IR| PC | DAddr | EX| SH4L| RF|
DLXn 301 | 2610 60| 3795 380 7257
FDLXn 301 | 2618 90 | 110093 860 | 11532
[increase || | 03% | 50% | 2800% | 126% | 59% |
| environment || CA [buffer | FORW | IM, DM | DP\M | DP |
DLXn 471] 2064 | 1624] 96088 | 20610 | 116698
FDLXn 717 | 9206 | 3904 | 95992 | 143635 | 239627
[increase [52% | 346% | 140% | -0.1% [597% | 105% |

Cost of the Data Paths

Except for the environments IRenv and IMenv, all parts of the data paths
and of the control had to be adapted to the floating point instruction set.
Significant changes occurred in the execute stage, in the register file envi-
ronment, in the forwarding hardware, and in the control (table 9.23).

The floating point unit itself is very expensive, its cost run at 104 kilo
gates (section 8.7). Compared to the FPU, the FXU is fairly inexpensive.
Thus, in the FDLX design, the execute environment is 28 times more ex-
pensive than in the DLX design. The FPU accounts for about 95% of the
cost of EXenv.

There is also a significant cost increase in the forwarding hardware, in
the buffers and in the register file environment. This increase is due to
the deeper pipeline and due to the additional floating point operands. The
remaining environments contribute at most 1kG (kilo gate) to the cost in-
crease. The memory environments become even dlightly cheaper, due to
the ssimpler data memory interface. The data ports of the Dcache and of
environment DMenv have now the same width (64 bits); the patch of the
data ports therefore becomes obsol ete.

Inthe DLX design, the 4KB split cache is by far the single most expen-
sive unit; it accounts for 82% of cost. The FPU isabout 9% more expensive
than the 4K B cache. Thus, in the FDLXn design, the 4KB cache only con-
tributes 40% to the cost of the data paths; environment EXenv contributes
another 46%. Adding the FPU roughly doubles the cost of the pipelined
data paths (factor 2.05). Without the caches, the FPU has even a stronger
cost impact, it increases the cost of the data paths roughly by afactor of 6.

Section 9.5

EVALUATION

509

Chapter 9

PIPELINED DL X

MACHINE WITH

FLOATING POINT

510

CORE

Table 9.24 Cost of the control of the pipelined DLX designs and with FPU.

\ | MifC | stall, CE | preCon | automata | CON | DLX |

DLXn 943 165 202 952 | 2262 | 118960
FDLXn || 1106 623 1440 2829 | 5898 | 245514

[increase | 6.7% | 278% | 613% | 197%] 161%] 106% |

Cost of the Control

Table 9.24 lists the cost of the different control environments and of the
whole DLX designs. Adding the FPU increases the cost of the control
by 160%. The cost of the memory interface control remains virtualy the
same. Due to the deeper pipeline, the stall engine becomes about 4 times
as expensive.

The control automata become about three times as expensive. This is
largely due to the M oore automaton which precomputes the control signals
of the stages EX to WB. It now requires 44 instead of 17 states, and it
generates 48 instead of 16 control signals. The Moore control signals have
a7 times higher accumulated frequency Vsym (342 instead of 48).

The larger number of control signals also impacts the cost of the pre-
computed control, which passes these signals down the pipeline. Since
the pipeline is aso much deeper, the precomputed control is 7 times as
expensive as before.

Cycle Time

Table 9.25 lists the cycle time for each stage of the data paths. The cycle
time of the write back stage remains the same, despite of the additional
register file. The FPR register file consists of two RAM banks, each of
which only has half the size of the RAM used in the GPR register file.
Thus, time Ty g is still dominated by the delay of the shifter SH4L and the
GPR register file.

Due to the aliasing of single and double precision registers, each word
of a floating point operand must be forwarded separately. Since all the
operands are fetched and forwarded in paralel, the floating point extension
has only aminor impact on the operand fetch time. The cycle time of stage
ID is till dominated by the PC environment.

The FPU is much more complex than the FXU. Thus, the cycle time of
the execute stage is increased by about 50%; the execute stage becomes
time critical. The cycle time of the control is aso increased significantly
(16%). Thisis due to the non-uniform latency of the execute stage, which
requires the use of an RSR.

Section 9.5

Table 9.25 Cycle times of the data paths of the designs DLXn and FDLXn with Eyal UATION
2K B, 2-way Icache and Dcache.

ID CON/ stall
operands | PC EX | WB | DP max(,)
DLXn 72 89| 66| 33 | 89 [79| 46+ duus
FDLXn 74 89| 98 | 33 | 98 || 92 | 48+ Chys

Table 9.26 Memory cycletimes of the DLX designs with 2KB, 2-way |cache and
Dcache, assuming a bus and handshake delay of d,s= 15 and dynsh = 10.

Maccess
a=4|a=8
DLXn 55 | 47| 42 51 379 707
FDLXp 53 | 47| 42 51 379 707

$read | $if | Mreq | Mrburst

The memory system remains virtually the same, except for one multi-
plexer which is saved in the Dcache interface and a modification of the
bank write signals. The latter has no impact on the delay of the memory
control. Thus, except for the cache read time Tg;o,q, the two DLX designs
with and without FPU have identical memory cycle times (table 9.26).

9.5.2 Variation of the Cache Size

Like in sections 6.4.2 and 6.5.3, we now optimize the cache size of the
FDLXn design for performance and for a good performance cost ratio.
The optimization is based on a floating point workload.

Cost and Delay

Table 9.27 lists the cost, the cycle time Tepx of the CPU, and the memory
access times for the pipelined FDLX design. The total cache size varies
between OKB and 32KB. The 64MB main memory uses DRAMs which
are 4 (8) times slower and denser than SRAM.

As before, doubling the cache size roughly doubles the cost of the mem-
ory environment. However, due to the expensive floating point unit, a
cache system of 1KB to 4KB only causes a moderate (25 - 65%) increase
of the total hardware cost. In combination with small caches, the FPU -

511

Chapter 9

PIPELINED DL X

MACHINE WITH

FLOATING POINT

512

CORE

Table 9.27 Cost, CPU cycle time and memory access time of the FDLXp design

total CM CFDLX T
cache || TkG] | [kG] [[%] | "°%*
OKB 0] 149 | 100 98] 355| 683
KB || 30| 179 | 120 98| 359| 687
2KB || 52| 201 135 98| 367| 695
AKB || 96 | 246 | 165 98| 379 707
8KB || 184 | 334 | 224 98| 382 710
16KB | 360 | 510 | 342 | 104| 385| 713
32KB || 711 | 861|578 | 107| 388| 716

Tm(4) | Tm(8)

dominates the CPU cycle time. Beyond a total cache size of 16KB, the
detection of a cache hit becomes time critical.

The memory access time grows with the cache size; it is significantly
larger than the CPU cycle time. As before, the actual memory access is
therefore performed in W cycles with a cycle time of

v = [Tm/W].
The cycle time of the FDL X design then equals
T = max{TM, TFDLX}-

Up to W = Ty /TepLx, increasing the number W of memory cycles re-
duces the cycle time T, but it aso increases the cycle count. Thus, there is
atrade-off between cycle time and cycle count. The optimal parameter W
strongly depends on the memory system and on the workload.

Performance

In addition to the integer benchmarks of table 4.20, the SPEC92 suite also
comprises 14 floating point benchmarks (for details see [Sta, HP96]). On
average, this floating point workload SPECfp92 uses the instruction mix
listed in table 9.28; this table is derived from [Del97].

The non-uniform latency of the execute stage makes it very difficult (or
even impossible) to derive the CPI ratio of the pipelined FDLX design
in an analytic manner. In [Del97], the CPI ratio is therefore determined
by a trace based simulation. Assuming an ideal memory which performs
every accessin asingle cycle, the FDLX design achieves on the SPECfp92
workload a CPI ratio of

CPIidea|(fp) = 1.759.

Table 9.28 Instruction mix of the average SPECfp92 floating point workload

instruction || FXU | load | store | jump | branch
frequency [%] || 39.12 | 20.88 | 10.22 | 2.32| 10.42

instruction || fadd | fmul | fdiv cvt | 1cycle
frequency [%0] 524 | 578 | 117 | 213 272

Table 9.29 Memory access time of the FDLX design with cache memory (given
in CPU cycles)

read hit | read miss | write hit write miss
1 1+S+W | 2+W | 2+W+S+W

The split cache system of the FDLX design has a non-uniform access
time which depends on the type of the access (table 9.29). Thus, a read
misstakes 1+ S+W cycles. Inthe FDL X design each cache line has S= 4
sectors. The parameter W depends on the speed of the memory system; in
this framework, it varies between 3 and 16 cycles.

The whole pipeline is stalled in case of a slow data memory access.
On an instruction fetch miss, only the fetch and decode stage are stalled,
the remaining stages still proceed. However, these stages get eventually
drained since the decode stage provides no new instructions. Thus, an
instruction fetch miss will also cause a CPI penalty.

In order to keep the performance model simple, we assume that the
whole pipeline is stalled on every slow memory access. That gives us a
lower bound for the performance of the pipelined FDLX design. In anal-
ogy to equation 6.5 (page 312), the CPI ratio of the FDLXy design with
cache memory can then be modeled as

+(Vtetch: Pim + Vioad,store* Pom) -W-S
= 1.861+0.102-W+ (pm+0.311: ppm) -W- S

where pim and ppm denote the miss ratios of the instruction cache and data
cache, respectively. Table 9.30 lists the miss ratios of the instruction and
data cache. In addition, it lists the optimal cycle time, CPl and TPI (time
per instruction) ratio for the different memory systems.

Doubling the total cache size cuts the miss ratio of the Icache roughly
by half, whereas up to 16K B, the miss ratio of the Dcache is only reduced

Section 9.5

EVALUATION

513

Chapter 9

PIPELINED DL X
MACHINE WITH
FLOATING POINT

514

CORE

Table 9.30 Missratio, cycletime CPl and TPl ratio of the FDLXp design. For
o =4 (8), amemory accessis performedin W = 4 (7) cycles.

total || missratio [%] DRAM a =4 DRAM a =4
cache | 1$ | D$ 1| CPl| TP 1| CPI| TP

1KB || 540 | 10.7 98 | 297 | 290.8 || 99| 354 | 350.1
2KB || 1.98 | 7.69 98 | 2.62 | 256.7 || 100 | 3.06 | 305.6
4KB || 1.04 | 6.08 98 | 250 | 245.3 || 101 | 2.90 | 292.6
8KB || 0.70 | 531 98 | 246 | 2408 || 102 | 2.83 | 289.1
16KB || 046 | 456 | 104 | 242 | 2516 | 104 | 2.78 | 289.3
32KB || 0.23 | 233 | 107 | 235 | 250.9 || 107 | 2.68 | 286.7

by about 30%. This suggests that the data accesses require a larger work-
ing set than the instruction fetches, and that the instruction fetches have a
better locality. A larger cache improves the CPI ratio but with diminishing
returns. Since alarger cache also increases the cycle time, the 16KB cache
system even yields a worse performance than the 8KB system. Thus, with
respect to performance, atotal of 8KB cache is optimal.

Without caches, every memory access takes 1+ W cycles, and the pipe-
lined FDL X design then has a CPl ratio of

CPl,g = 1L759+W-1.311.

In combination with fast DRAM (a = 4), the design runswithW = 3 at a
cycletimeof T =119 and achieves a TPl ratio of 677.4. According to table
9.31, the split cache gains a speedup of 2.3 to 2.8 over the design without
caches. In combination with slower DRAM (a = 8), the FDLX design
without caches run withW =7 at T = 98 and has a TPl ratio of 1071.7.
The split cache system then causes even a speedup of 3.1 to 3.7.

Even for the 8KB cache system, the speedup is in either case signifi-
cantly larger than the cost increase. Thus, the cache is definitely worth-
while.

The diagrams of figure 9.28 depict the quality ratio of the FDLX de-
signs with split cache over that without cache. Note that the quality is the
weighted geometric mean of the cost and the TPI ratio: Q=C 9. TPI9-1,
For areadlistic quality measure, the parameter g liesin the range [0.2, 0.5].
Within this range, the design with atotal cache size of 4KB is best. The
8KB system only wins, if much more emphasis is put on the performance
than on the cost.

Table 9.31 Speedup and cost increase of the FDLXn with a split 2-way cache

over the design without cache

Section 9.6

| total cachesize || 1KB | 2KB | 4KB | 8KB |
speedup: a =4 233 | 264 | 276 | 281
a=28 3.06 | 351 | 3.66 | 3.71
cost increase factor || 1.24 | 1.39 | 1.71 | 2.32
3 T T T T T
1KB split
2.8 |, 2KB split -——--
T 26k BKB Split
© 2.4L U no cache --- -
= 2.2
S 2
Z 1.8
©
- 1.6
>
Z 1.4
g 1.2
1-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, R
08 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6
quality paranter: g
4 T T T T T T
1KB split
2KB split -------
& 35 [4KB split -
i o 8KB split
«© 3 no cache --- -
=
G
~ 25_
o
© 2 +
>
- 15
T
=S
05 1 1 1 1 1 1

0 0.1 0.2 0.3 0.4
quality paranter: q

Figure 9.28 Quality ratio of the design with a split 2-way cache relative to the

design without cache for two types of off-chip memory.

EVALUATION

515

Chapter 9

PIPELINED DL X
MACHINE WITH
FLOATING POINT

516

CORE

9.6 Exercises

Exercise 9.1 An arithmetical FPU instruction |; updates the SPR register
|EEEf by aread-modify-write access:

IEEEf = IEEEf_1 V Ffl.

Unlike any other instruction updating the SPR register file, the input of
this write access is provided via the specia write port Di[6] and not via
the standard write port Din. That complicates the forwarding of the SPR
operand S. In order to keep the engine forwarding engine (section 9.4.2)
lean, the forwarding of the IEEEf flags generated by an arithmetical FPU
operation was omitted.

1. The result to be written onto register IEEEf is aways available in
the circuitry of stage WB. Extend the forwarding engine (and the
interlock engine) such that |EEES is forwarded from stage WB even
in case of an arithmetical FPU instruction.

2. FlagsF fl provided by the FPU become available in stage 2.4. When
combined with the forwarded |EEEf value from stages 3 and 4, reg-
ister IEEEf can also be forwarded from the stages 2.4, 3 and 4. Con-
struct aforwarding engine which supports this type of forwarding.

3. How do the modifications of 1) and 2) impact the cost and cycle time?

Exercise 9.2 Construct a sequence of k instructions, such that data from
the first k — 1 instructions have to be forwarded to the k’th instruction.
How large can k be?

Exercise 9.3 In many contemporary machines (year 2000) a change of the
rounding mode slows programs down much more than an additional float-
ing point instruction (This make interval arithmetic extremely slow). What
part of the hardware of the machine constructed here has to be deleted in
order to produce this behavior?

Exercise 9.4 Suppose in the division agorithm we use an initial lookup
tablewithy=5or y= 16?.
1. Which parts of the machine have to be changed? Specify the changes.
2. How isthe cost of the machine affected?
Exercise 9.5 Sketch the changes of the design required if we want to make

division fully pipelined (Conceptually, this makes the machine much sim-
pler). Estimate the extra cost.

Section 9.6

Exercise 9.6 Evaluate the quality of the machines from exercises 9.4 and
9.5. Assume, that the cycle time is not affected. For the machine from
exercise 9.5 use your estimate for the cost. Compare with the machine
constructed in the text.

EXERCISES

517

DLX Instruction Set
Architecture

T HE DL X isa32-bit RISC architecture which manages with only three
instruction formats. The core of the architecture is the fixed point unit
FXU, but there also exists afloating point extension.

A.1 DLX Fixed-Point Core: FXU

HE DL X fixed point unit uses 32 general purpose registers RO to R31,

each of which is 32 bits wide. Register RO aways has the value
0. The FXU aso has a few 32-bit specia purpose registers mainly used
for handling interrupts. Table A.1 lists these registers as well as a brief
description of their usage. For more details see chapter 5. Specia move
instructions transfer data between general and special purpose registers.

Load and store operations move data between the general purpose reg-
isters and the memory. There is a single addressing mode: the effective
memory address eais the sum of a register and an immediate constant.
Except for shifts, immediate constants are alwayssign-extended to 32-hits.

The memory is byte addressable and performs byte, half-word or word
accesses. All instructions are coded in four bytes. In memory, data and
instructions must be aligned in the following way: Half words must start
a even byte addresses. Words and instructions must start at addresses
divisible by 4. These addresses are called word boundaries.

Appendix A

DLX INSTRUCTION Table A.1 Special purpose registers of the DLX fixed point core
SET | register | usage |
ARCHITECTURE - : :
PC program counter || points to the next instruction
SR status register holds interrupt masks (among others)
CA cause register records pending interrupts
EPC, exception registers || on ajump to the interrupt service rou-
ESR, tine they backup the current value of
ECA, PC, SR, CA respectively the current
EMAR memory address
6 5 5 16
I-type ‘ opcode ‘ RS1 ‘ RD ‘ immediate ‘
6 5 5 5 5 6

Riyoe | opcode | RST | RS2 | RD | SA | functon |

6 26
J-type ‘ opcode ‘ PC offset ‘

Figure A.1 Thethreeinstruction formats of the DLX design. The fields RS1 and
RS2 specify the source registers, and the field RD specifies the destination regis-
ter. Field SA specifies a special purpose register or an immediate shift amount.
Function field is an additional 6-bit opcode.

A.1.1 Instruction Formats

All three instruction formats (figure A.1) have a 6-bit primary opcode and
specify up to three explicit operands. The I-type (Immediate) format spec-
ifies two registers and a 16-bit constant. That is the standard layout for
instructions with an immediate operand. The J-type (Jump) format is used
for control instructions. They require no explicit register operand and profit
fromthe larger 26-bit immediate operand. Thethird format, R-type (Regis-
ter) format, provides an additional 6-bit opcode (functior). The remaining
20 hits specify three general purpose registers and afield SAwhich spec-
ifies a 5-bit constant or a specia purpose register. A 5-bit constant, for
- example, is sufficient as shift amount.

520

Appendix A

Table A.2 Jtypeinstruction layout; sxt(imm)is the sign-extended version of the | oaATING-POINT
26-bit immediate called PC Offset. EXTENSION

| IR[31:26] || mnemonic | effect |

Control Operation
hx02 j PC = PC + 4 + sxt(imm)
hx03 ja R31 =PC + 4; PC = PC + 4 + sxt(imm)
hx3e trap trap = 1; Edata= sxt(imm)
hx3f rfe SR=ESR; PC=EPC; DPC=EDPC

A.1.2 Instruction Set Coding

Since the DLX description in [HP90] does not specify the coding of the
instruction set, we adapt the coding of the MIPS R2000 machine ([PH94,
KH92]) to the DLX instruction set. Tables A.2 through A.4 specify the
instruction set and list the coding; the prefix “hx” indicates that the number
isrepresented as hexadecimal. The effects of the instructions are specified
in aregister transfer language.

A.2 Floating-Point Extension

ESIDES THE fixed point unit, the DLX architecture also comprises a

floating point unit FPU, which can handle floating point numbers in
single precision (32-bits) or in double precision (64-bits). For both preci-
sions, the FPU fully conforms the requirements of the ANSI/IEEE standard
754 [Ins85].

A.2.1 FPU Register Set

The FPU provides 32 floating point general purpose registers FRIRach
of which is 32 bits wide. In order to store double precision values, the
registers can be addressed as 64-bit floating point registers FDR<ach of
the 16 FDRs is formed by concatenating two adjacent FPRs (table A.5).
Only even numbers (0,2, ...,30) are used to address the floating point reg-
isters FPR; the least significant address bit isignored. In addition, the FPU
provides three floating point control registersa 1-bit register FCC for the
floating point condition codea 5-bit register IEEEffor the IEEE exception
flagsand a 2-bit register RM specifying the |IEEE rounding mode -

521

Appendix A

DLX INSTRUCTION Table A.3 R-typeinstruction layout. All instructions increment the PC by four.
SeT SAisashorthand for the special purpose register SPRSA); sa denotes the 5-bit
ARCHITECTURE immediate shift amount specified by the bits IR[10:6].

| IR[31:26] | IR[5:0] || mnemonic | effect

Shift Operation
hx00 hx00 dli RD =dI(RS1, sa)
hx00 hx02 srli RD = srl(RS1, sq)
hx00 hx03 srai RD = sra(RS1, sa)
hx00 hx04 dl RD = dlI(RS1, RS2[4:Q])
hx00 hx06 s RD = srl(RS1, RS2[4:0])
hx00 hx07 sra RD = sra(RS1, RS2[4:0])
Arithmetic, Logical Operation
hx00 hx20 addo RD = RS1 + RS2; ov f signaled
hx00 hx21 add RD = RS1 + RS2; no ovf signaled
hx00 hx22 subo RD = RS1 - RS2; ovf signaled
hx00 hx23 sub RD =RS1 - RS2; no ovf signaled
hx00 hx24 and RD = RS1 A RS2
hx00 hx25 or RD =RS1V RS2
hx00 hx26 Xor RD = RS1 @ RS2
hx00 hx27 Ihg RD = RS2[15:0] 06
Test Set Operation
hx00 hx28 clr RD=(fdse ? 1:0);
hx00 hx29 sgr RD=(RS1>RS2 ? 1:0);
hx00 hx2a Seq RD=(RS1=RS2 ? 1: 0);
hx00 hx2b sge RD=(RS1>RS2 ? 1:0);
hx00 hx2c ds RD=(RS1 <RS2 ? 1:0);
hx00 hx2d sne RD=(RS1#RS2 ? 1:0);
hx00 hx2e de RD=(RS1<RS2 ? 1:0);
hx00 hx2f Set RD = (true ? 1: 0);
Special Move Instructions
hx00 hx10 movs2i RD =SA
hx00 hx11 movi2s | SA =RS1

A.2.2 FPU Instruction Set

The DLX machine uses two formats (figure A.2) for the floating point
instructions; one corresponds to the I-type and the other to the R-type of
- the fixed point core. The FI-format is used for loading data from memory

522

Table A.4 I-typeinstruction layout. All instructions except the control instruc-
tions aso increment the PC by four; sxt(a) is the sign-extended version of a.
The effective address of memory accesses equals ea= (GPRRSL]) + (sxt(imm)),
whereimmisthe 16-bit intermediate. The width of the memory accessin bytesis
indicated by d. Thus, the memory operand equals m= M[ea+d—1],---,M[ed.

| IR[31:26] || mnemonic | d | effect

Appendix A

Data Transfer
hx20 Ib 1| RD = sxt(m)
hx21 Ih 2 | RD = sxt(m)
hx23 Iw 4| RD=m
hx24 Ibu 1| RD=0"m
hx25 Ihu 2 | RD =0%m
hx28 sb 1| m=RDI[7:0]
hx29 sh 2 | m=RD[15:0]
hx2b sw 4| m=RD

Arithmetic, Logical Operation
hx08 addio RD =RS1 +imm; ovf signaled
hx09 addi RD = RS1 + imm; no ovf signaled
hxOa subio RD =RS1 - imm; ovf signaled
hxOb subi RD = RS1 - imm; no ov f signaled
hxOc andi RD = RS1 A sxt(imm)
hx0d ori RD = RS1 Vv sxt(imm)
hx0e XOri RD = RS1 & sxt(imm)
hxOf Ihgi RD = imm 0'6

Test Set Operation
hx18 clri RD =(fase ? 1: 0);
hx19 sgri RD =(RS1 >imm ? 1: 0);
hxla seqi RD=(RS1=imm ? 1: 0);
hx1b sgei RD=(RS1>imm ? 1:0);
hx1c dsi RD=(RS1<imm ? 1:0);
hx1d snei RD=(RS1#imm ? 1:0);
hxle dei RD=(RS1<imm ? 1:0);
hx 1f Seti RD = (true ? 1: 0);

Control Operation
hx04 beqgz PC=PC+4+(RS1=0 ? imm: 0)
hx05 bnez PC=PC+4+(RS1#0 ? imm: 0)
hx16 ir PC = RS1
hx17 jar R31=PC+4; PC=RS1

FLOATING-POINT

EXTENSION

523

Appendix A

DLX INSTRUCTION
SET
ARCHITECTURE

524

Table A.5 Register map of the general purpose floating point registers

floating point . . .
general purpose regisiers floating point registers
single precision (32-bit) double precision (64-hit)
FPR31[31: O] FDR30[63: 32])
FPR30[31 : FDR30[31:0] [DR30[63:0)
FPR3[31: Q] FDR2[63: 32])
FPR2[31: O] FDR2[31:0 | TORA63:0)
FPR1[31: Q] FDRO[63: 32])
FPRO[3L: O] FDRO[31: 0] J TOROG3:0)
6 5 5 16
Fl-type ‘ Opcode ‘ Rx ‘ FD ‘ Immediate ‘
6 5 5 5 3 6

FRtype | Opcode | Fst |Fs2/Rx| FD | oo[Fmi| Function |

Figure A.2 Floating point instruction formats of the DLX. Depending on the pre-
cision, FS1, FS2 and FD specify 32-bit or 64-bit floating point registers. RS
specifies a general purpose register of the FXU. Function is an additional 6-bit
opcode. Fmt specifies a number format.

into the FPU respectively for storing data from the FPU into memory. This
format is aso used for conditional branches on the condition code flag
FCC of the FPU. The coding of those instructions is given in table A.6.

The FR-format is used for the remaining FPU instructions (table A.8). It
specifies a primary and a secondary opcode (Opcode, Function), a number
format Fmt, and up to three floating point (general purpose) registers. For
instructions which move data between the floating point unit FPU and the
fixed point unit FXU, field FS2 specifies the address of a general purpose
register RSin the FXU.

Since the FPU of the DLX machine can handle floating point numbers
with single or double precision, all floating point operations come in two
version; the field Fmt in the instruction word specifies the precision used.
In the mnemonics, we identify the precision by adding the suffix *.s' (sin-
gle) or ‘.d’" (double).

Table A.6 Fl-type instruction layout. All instructions except the branches also
increment the PC, PC += 4; sxt(a)is the sign extended version of a. The effective
address of memory accesses equals ea = RS + sxt(imm)where immis the 16-hit
offset. The width of the memory access in bytes is indicated by d. Thus, the

memory operand equalsm= M[ea+d —1],---,M[ed.

| IR[31:26] | mnemonic| d | effect

Load, Store
hx31 load.s | 4| FD[31:0] =m
hx35 load.d | 8 | FD[63:0] =m
hx39 stores | 4 | m=FD[31:0]
hx3d stored | 8 | m=FD[63:0]

Control Operation

hx06 fbegz
hx07 fbnez

PC=PC+ 4+ (FCC= 0 ? sxt(imm): 0)
PC=PC+4+ (FCC+# 0 ? sxt(imm): 0)

Table A.7 Floating-Point Relational Operators. The value 1 (0) denotes that the

relation istrue (false).

Appendix A

condition relations invalid
code mnemonic greater | less | equal | unordered if
true | fase > < = ? unordered
0| F T 0 0 0 0
1 | UN OR 0 0 0 1
2 | EQ NEQ 0 0 1 0
3 | UEQ | OGL 0 0 1 1 no
4 | OLT UGE 0 1 0 0
5 | ULT OGE 0 1 0 1
6 | OLE | UGT 0 1 1 0
7 | ULE OGT 0 1 1 1
8 | SF ST 0 0 0 0
9 | NGLE | GLE 0 0 0 1
10 | SEQ SNE 0 0 1 0
11 | NGL | GL 0 0 1 1 yes
12 | LT NLT 0 1 0 0
13 | NGE | GE 0 1 0 1
14 | LE NLE 0 1 1 0
15 | NGT | GT 0 1 1 1

FLOATING-POINT

EXTENSION

525

Appendix A

DLX INSTRUCTION
SET
ARCHITECTURE

526

Table A.8 FR-typeinstruction layout. All instructions execute PC += 4. Thefor-
mat bits Fmt = IR[8:6] specify the number format used. Fmt = 000 denotes single
precision and corresponds to the suffix ‘.S’ in the mnemonics; Fmt = 001 denotes
double precision and correspondsto the suffix *.d". FCC denotes the 1-bit register
for the floating point condition code. The functions sgrt(), abs() and rem() denote
the square root, the absolute value and the remainder of a division according to
the IEEE 754 standard. Instructions marked with x will not be implemented in
our FPU design. The opcode bits c[3: O] specify a relation “con” according to
table A.7. Function cvt() converts the value of a register from one format into
another. For that purpose, FMT = 100 (i) denotes fixed point format (integer) and
correspondsto suffix ‘.i" .

| IR[31:26] | IR[8:0] | Fmt | mnemonic | effect |

Arithmetic and Compare Operations
hx11 hx00 fadd[.s,.d] | FD =FSl + FS2
hx11 hx01 fsub[.s,.d] | FD=FSl-FS2
hx11 hx02 fmul [.s,.d] | FD=FS1* FS2
hx11 hx03 fdiv[.s,.d | FD=FSl/FS2
hx11 hx04 fneg[.s,.d] | FD=-FSl
hx11 hx05 fabs[.s, .d] | FD = abs(FS1)
hx11 hx06 fsgt [.s, .d]* | FD = sort(FS1)
hx11 hx07 frem[.s, .d* | FD = rem(FSL, FS2)
hx11 11c[3: Q] fc.con[.s, .d] | FCC = (FS1 conFS2)
Data Transfer
hx11 hx08 000 fmov.s FD[31:0] = FS1[31:0]
hx11 hx08 001 fmov.d FD[63:0] = FS1[63:0]
hx11 hx09 mf2i RS = FS1[31:0]
hx11 hx0Oa mi 2f FD[31:0] = RS
Conversion
hx11 hx20 001 cvt.sd FD = cvt(FS1, s, d)
hx11 hx20 100 cvt.si FD =cvt(FSL, s, i)
hx11 hx21 000 cvt.d.s FD =cvt(FSL, d, 9)
hx11 hx21 100 cvt.d.i FD = cvt(FS1, d, i)
hx11 hx24 000 cvt.i.s FD =cvt(FSL, i, 9)
hx11 hx24 001 cvt.i.d FD = cvt(FSL, i, d)

Specification of the FDLX
Design

IGURES 9.16, 9.17 and 9.18 depict the FSD of the FDLX design. In

section B.1, we specify for each state of the FSD the RTL instructions
and their active control signals. In section B.2 we then specify the control
automata of the FDL X design.

B.1 RTL Instructions of the FDLX
B.1.1 Stage IF

In stage IF, the FDL X design fetches the next instruction | into the instruc-
tion register (table B.1). Thisis done under the control of flag fetchand
of clock request signal IRce Both signals are always active.

B.1.2 Stage ID

The actions which the FDLX design performs during instruction decode
depend on theinstruction | held in register IR (table B.2). Asfor stage IF,
the clock request signals are active in every clock cycle. The remaining
control signals of stage ID are generated by a Mealy control automaton.

Appendix B

SPECIFICATION OF
THE FDLX DESIGN

Table B.1 RTL instructions of the stage IF

| RTL instruction | control signals |

[TR.L=IM(DPC) | fetch, IRce

Table B.2 RTL instructions of stage ID; farith.d denotes any arithmetical floating

point instruction with double precision.

| RTL instruction | typeof | | control signals |
A=A =RSl, AEQZ= zerqA'), Ace,
B=R2, PC = (reset?4 : pc), Bce, PC'ce,
DPC = (reset?0 : dpo), DPCce,
link = PC + 4, DDPC = DPC, PCce
IR.2=1R.1, Sad2 = Sad
(FA,FB) = FPemlifa, fb) farith.d, fc.d, | dbsl
cvt.d, load.d
otherwise
co= constanfIR.1) j, jal, trap Jimm
slli, srli, srai shiftl
otherwise
(pc,dpo = rfe rfe.l
nextPGPC',A’,co,EPC9 jr, jalr jumpR, jump
beqz branch, bzero
bnez branch
fbeqz fbranch, bzero
fbnez fbranch
otherwise
Cad=CAddr(IR 1) jalr, jal Jink
R-type Rtype
otherwise
(SasSad Fad) = DAddr(IR.1) rfe rfe.l
fc fc.1, FRtype
FR-type (no fc) | FRtype
otherwise
CA212| =1 fsqt, frem uFoOP

528

Appendix B

B.1.3 Stage EX
RTL INSTRUCTIONS

The execute stage has a hon-uniform latency which varies between 1 and OF THE FDLX

21 cycles. The execute stage consists of the five substages 2.0, 2.1 to 2.4.
For the iterative execution of divisions stage 2.0 itself consists of 17 sub-
stages 2.0.0 to 2.0.16. In the following, we describe the RTL instructions
for each substage of the execute stage.

Update of the Buffers
In stage 2.0, the update of the buffers depends on the latency of theinstruc-
tion|. Let

2.3 if | haslatency of | =3

3 if lhaslaencyof| =1
k =
2.1 if | haslatency of | > 5,

stage 2.0 then updates the buffers as

(IRk, Cadk, Sadk, Fad.k) = (IR.2,Cad.2, Sad2, Fad.2)
(PC.k, DPC.k,DDPCKk) := (PC',DPC, DDPC).

If | isadivision, this update is postponed to stage 2.0.16.
For any stagek € {2.1,...,2.4}, let K be defined as

¢l 3 if k=24
T 2(j+1) if k=2j<24.

In stage k the buffers are then updated as

(IRK,Cadk, SadK, Fadk') = (IRk, Cadk, Sadk, Fad.k)
(PC.K,DPCK,DDPCK) := (PCk, DPC.k, DDPCK).

Substage 2.0
Tables B.3 and B.4 list the RTL instructions for the fixed point instructions
and for the floating point instructions with 1-cycle execute latency. From
stage 2.0, these instructions directly proceed to stage 3.

The operand FB isonly needed in case of a floating point test operation
fc. By fccand Fc we denote the results of the floating point condition test
circuit FCON as defined in section 8.5

(fce, Fc[68:0]) = FCon(FA, FB)

Tables B.5 and B.6 list the RTL instructions which stage 2.0 performs
for instructions with an execute latency of more than one cycle.

529

Appendix B

SPECIFICATION OF
THE FDLX DESIGN

530

Table B.3 RTL instructions of the execute stages for the fixed point instructions.

state || RTL instruction

control signals \

au MAR=AopB ALUDdoe, Rtype, bmuxsel
OpA, opB, MARCce, latl

aluo MAR= A op B, overflow? | like alu, ovf?

alul MAR= A op co ALUDdoe, opA, MARKce, latl

alulo MAR= A op co, overflow?| like alul, ovf?

testl MAR= (Arel co?1:0) ALUDdoe, test, opA, MARCce,
latl

test MAR= (Arel B?1:0) like testl Rtype, bmuxsel, opB

shiftl MAR = shift(A,co[4:0]) SHDdoe, shiftl, Rtype,
opA, MARce, latl

shift MAR = shift(A, B[4:0]) like shiftl, bmuxsel, opB

savePC | MAR= link linkDdoe, MARKce, latl

trap MAR=co,trap=1 coDdoe, trap, MARCce, latl

" MAR=Aill =1 ADdoe, ill, opA, MARCce, latl

ms2i MAR=S SDdoe, MARce, latl

rfe

mi2s MAR= A ADdoe, opA, MARce, latl

noEX

addrL MAR= A+ co ALUDdoe, add, opA, MARCce,

latl

addrS MAR= A+co, Ffl.3=0, | ALUDdoe, add, amuxsel, opA,

MDRw= opB, store.2, MARce, MDRce,

cls(B, MAR[1:0]000) Ffl3ce, latl, tfpRdoe

Substages 2.1 and 2.2

The execute substages 2.1 and 2.2 are only used by the arithmetic instruc-
tions fadd, fsub, fmul and fdiv. The RTL instructions for the divisions are
listed in table B.6 and for the other three types of operations they are listed
intable B.7.

Substages 2.3 and 2.4

In these two stages the FPU performs the rounding and packing of the
result (table B.8). In order to keep the description simple, we introduce
the following abbreviations. By FPrdR and FXrdR, we denote the out-
put registers of the first stage of the rounders FPRD and FXRD, respec-
tively. The two stages of the floating point rounder FPRD compute the

Table B.4 RTL instructions of the execute stages for floating point instructions
with asingle cycle latency.

| state || RTL instruction | control signals |
addrL.s || MAR= A+ co, ALUDdoe, add, opA, MARCce, latl
addrL .d
addrSf MAR= A+ co, ALUDdoe, add, opA, MARce,
MDRw= FB, store.2, fstore.2, tfpRdoe,
Ffl.3=0 MDRwce, Ffl3ce, latl, (amuxsel)
mf2i MAR= FA[31: 0] opFA, tfxDdoe, MARce, latl
mi 2f MDRw= (B, B), opB, tfpRdoe, MDRwce,
Ffl.3=0 Ffl3ce, latl
fmov.s MDRw= FA, OpFA, fmov, tfpRdoe,
fmovd || Ff1.3=0 MDRwce, Ffl3ce, latl
fneg.s MDRw= Fc[63: 0], | opFA, FcRdoe, MDRwce,
fneg.d Ffl.3=Fc[68: 64] Ffl3ce, latl
fabs.s MDRw= Fc[63:0], | opFA, FcRdoe, MDRwce, abs
fabs.d Ffl.3=Fc[68: 64] Ffl3ce, latl
fc.s, MAR= 0°! fcc, OpFA, opFB, ftest, fccDdoe, MARce
fc.d (Ff1.3, MDRw) = Fc | FcRdoe, MDRwce, Ffl3ce, latl

Table B.5 RTL instructions of the execute substage 2.0 for instructions with a
latency of at least 3 cycles.

| state || RTL instruction | control signals
fdivs | (Fa2.1,Fb2.1,nar2.1) | latl7, normal
fdiv.d =FPunpgFA,FB) | lat21, normal, dbs
fmul.s |at5, normal
fmul.d lat5, normal, dbs
fadd.s lat5
fadd.d lat5, dbs
fsub.s lath, sub
fsub.d lat5, sub, dbs
cvtsd || Fr= lat3, FvFrdoe, Frce
cvt.si Cvt(FPunpFA,FB)) | lat3, FvFrdoe, Frce, normal
cvt.d.s lat3, FvFrdoe, Frce, dbs
cvt.d.i |at3, FvFrdoe, Frce, dbs, normal
cvti.s || Fr = FXunpFAFB) | lat3, FuFrdoe, Frce
cvt.i.d lat3, FuFrdoe, Frce

Appendix B

RTL INSTRUCTIONS
OF THE FDLX

531

Appendix B

SPECIFICATION OF
THE FDLX DESIGN

532

Table B.6 RTL instructions of the iterative division for stages 2.0.1to 2.2 (single
precision). In case of double precision (suffix ‘.d"), an additiona control signal
dbrisrequiredin each state. A multiplication always takes two cycles. Since the
intermediate result isalways held in registerssand ¢, we only list the effect of the
multiplication as awhole.

| state | RTL instruction | control signals |

lookup x = table(fp) xce, tlu, fbbdoe

newtonl.s | A= appr(2—x-b,57) xadoe, fbbdoe

newton2.s Ace

newton3.s | X= |A-X|s7 Aadoe, xbdoe,
sce, cce

newton4.s xce

quotientl.s | E = [a-X|pt1 faadoe, xbdoe,
sce, cce

quotient2.s | Dy = fa, Dp= fp Dce, faadoe,
fbbdoe, Ece

quotient3.s | E,=E- f Eadoe, fbbdoe,
sce, cce

quotientd.s | (s5,€q) = SigExpMOFa2.1,Fb2.1), | sqce, eqce,
flg = SpecMOFa2.1,Fb2.1,nar2.1) | ebce, flqce
select fd.s E E+2—<p+1>

= fa—Ep—2 (PT1. f,
E+2 (P+2) 1if B<O
{ Jif =0 fdiv,
E'+2 (P2 :if >0
= (flg, %, €, fa) FgFrdoe, Frce

functions FPrd1() and FPrd2() as specified in section 8.4. The the fixed
point rounder FXRD (page 427) aso consists of two stages. They compute
the functions denoted by FXrd1() and FXrd2().

B.1.4 Stage M

Table B.9 lists the RTL instructions which the FDLX design performs in
stage M. In addition, stage M updates the buffers as follows:

(IR.4,Cad4, Sad4, Fad.4) := (IR.3,Cad3, Sad3, Fad.3)
(PC.4, DPC.4,DDPC.4) := (PC.3,DPC.3, DDPC.3)

Table B.7 RTL instructions of the substages 2.1 and 2.2, except for the divisions.

Appendix B

RTL INSTRUCTIONS

OF THE FDL X
| state | RTL instruction | control signals |

Mull.s (sqeq = SigExpMOFa2.1,Fb2.1), | sgce, eqce,
Mull.d flg = SpecMBFa2.1,Fb2.1,nam2.1), | flqce, sce, cce,

(s,c) = mull(Fa2.1,Fb2.1) faadoe, fbbdoe
Addl.s ASr= ASl(Fa2.1,Fb2.1,nar2.1) ASrce
Addl.d
Subl.s ASr= ASl(Fa2.1,Fb2.1,nar2.1) ASrce, sub
Subl.d
Mul2.s fq=mul2(s,c),
Mul2.d Fr=(flg,sqeq fq) FgFrdoe, Frce
SigAdd.s || Fr = AR2(AS) FsFrdoe, Frce
SigAdd.d

Table B.8 RTL instructions of the substages 2.3 and 2.4

state || RTL instruction \

control signals

rdl.s | FPrdR= FPrd1(Fr) FPrdRce

rdl.d FPrdRce, dbr

rdl.i || FXrdR=FXrd1(Fr) FXrdRce

rd2.s || (F fl.3, MDRw) = FRrd2(FPrdR) | FpRdoe, MDRwce, Ffl3ce
rd2.d like rd2.s dbr

rd2.i || (Ffl.3, MDRw) = FXrd2(FXrdR) | FxRdoe, MDRwce, Ffl3ce

Table B.9 RTL instructions of the memory stage M.

| state | RTL instruction | control signals|
load, load.s MDRr = DMdword[{MAR[31:3]000)] | Dmr, DMRrce
load.d C.4=MAR C4ce
store m= byte§MDRw), C.4 = MAR Dmw, C4ce
ms2iM, noM, || C.4= MAR C4ce
mi2iM, passC
Marith.[s, d], || FC.4 = MDRw FC4ce,
Mmv.[s, d] Ffl.4A=Ffl.3 Ffl4ce
fcM FC.4=MDRwC.4 =MAR FC4ce, C4ce,

Ffl.4A=Ffl.3 Ffl4ce

533

Appendix B

SPECIFICATION OF
THE FDLX DESIGN

534

Table B.10 RTL instructions of the write back stage WB

| state | RTL instruction | control signals \
shdl GPRCad4] = GPRw, load.4
shAl (MDs, MAR[1: 0]000)

shdls || FPRFad.4] = MDs FPRw, load.4

shdl.d FDR[Fad.4] = MDRr FPRw, load.4, dbr.4
wb GPRCad4]=C.4 GPRw

mi2swW SPRSad4] =C.4 SPRw

fcwB like mi2sW, SPRw,

IEEEf=IEEEfVFfl.4 | fop.4
WBs FPR(Fad.4) = FC'[31: 0] | FPRw

flagwBs || like WBs, FPRw,
IEEEf=IEEEfVFfl.4 | fop.4

WBd FDR(Fad.4) = FC' FPRw, dbr.4

flagwBd || like WBd, FPRw,

IEEEf=IEEEfVFfl.4 | fop.4
nowB (no update)

B.1.5 Stage WB

Table B.10 lists the RTL instructions which the FDL X design processes in
stage WB, given that no unmasked interrupt occurred. In case of a JSR,
the FDL X design performs the same actions as the the DLX; design (chap-
ter 5).

B.2 Control Automata of the FDLX Design

THE CONTROL automaton is constructed as in the fixed point DLX de-
signs. The control is modeled by an FSD which is then turned into
precomputed control.

e The control signals of stage |F are always active.

e The control signals of stage ID are generated in every cycle, they
only depend on the current instruction word.

e The control signals of the remaining stages are precomputed during
ID by a Moore automaton.

Table B.11 Digjunctive normal forms of the Mealy automaton of stage ID

| signd || IR[31:26] | IR[5:0] | Fmt | length || comment |

Rtype 000000 | ****xx | *kk 6

shiftl 000000 | 0000*Q | *** 11
000000 | 00001* | *** 11

Jink 010111 | ***kxx | ok 6
000011 *kkkkk*k * k% 6

JumpR 01011* *kkkk*%x * k% 5

Jump 00001* *kkkk*x * k% 5
01011* *kkkkk*k * k% 5

rfe.l 111177 | ****xx | kxx 6

Jimm 00001* FRkkAK | kkk 5
111110 *kkkkk*k * k% 6

branch 00010* Fhkkkk | kkk 5

bzero *****O *kkkkk*%k * k% 1

fbranch 00011* FhrkAK | kxk 5

fc 010001 N b el 8

FRtype 010001 11**** | 001 11 fcd
010001 | 00O*** | 001 12 farith.d
010001 | 001000 | 001 15 fmov.d
010001 100001 | *** 12 cvt.d
111101 | ***xxx | xxx 6 store.d

uFOP 010001 | 00011* | *** 11 fsgt, frem

accumulated length of the monomials 147

B.2.1 Automaton Controlling Stage ID

According to table B.2, the clock request signals of stage ID are indepen-
dent of the instruction. Like in stage IF, they are always active. Thus,
the control automaton of stage ID only needs to generate the remaining
13 control signals. Since they depend on the current instruction word, a

Mealy automaton is used.

Table B.11 lists the disunctive normal form for each of these signals.
The parameters of the ID control automaton are listed in table B.16 on

page 539.

Appendix B

CONTROL

AUTOMATA OF THE

FDLX DESIGN

535

Appendix B

SPECIFICATION OF
THE FDLX DESIGN

536

Table B.12 Type x.0 control signals to be precomputed during stage ID (part 1)

| signals || states of stage 2.0 \

latl alu, aluo, alul, alulo, test, testl, shift, shiftl, savePC,
trap, mi2s, noEX, ill, ms2i, rfe, addrL, addrS, addrL .s,
addrL.d, addrSf, mf2i, mi2f, fmov.s, fmov.d, fneg.s,
fneg.d, fabs.s, fabs.d, fc.s, fc.d

lat3 cvt.s.d, cvt.si, cvt.d.s, cvt.d.i, cvt.i.s, cvt.i.d
lath5 fmul.s, fmul.d, fadd.s, fadd.d, fsub.s, fsub.d
lat1l7 fdiv.s
lat21 fdiv.d

OpA au, aluo, aul, aulo, test, testl, shift, shiftl, mi2s,
noEX, ill, addrL, addrS, addrL .s, addrL .d, addrSf
opB alu, auo, test, shift, addrS, mi2f

OpFA fmov.s, fmov.d, fneg.s, fneg.d, fabs.s, fabs.d, fc.s,
fc.d, cvt.sd, cvt.si, cvt.d.s, cvt.d.i, cvt.i.s, cvt.i.d,
fmul.s, fmul.d, fadd.s, fadd.d, fsub.s, fsub.d, fdiv.s,
fdiv.d

opFB addrSf, fe.s, fe.d, fmul.s, fmul.d, fadd.s, fadd.d,
fsub.s, fsub.d, fdiv.s, fdiv.d

B.2.2 Precomputed Control

As in the previous designs, only state decode has an outdegree greater
than one. Thus, the control signals of al the stages that follow can be
precomputed during decode using a M oore control automaton. The signals
are then buffered in an RSR; the RSR passes the signals down the pipeline
together with the instruction. Each stage consumes some of these control
signals. Therefore, the signals are classified according to the last stage in
which they are used. A signal of type x.3, for example, is only used up to
stage 2.3, whereas asignal of type zis needed up to stage 4.

The tables B.12 to B.14 list for each control signal the states of stage
2.0 in which the signal must be active. There are some signals which are
always activated together, e.g., the signals Dmw, amuxseland store The
automaton only needs to generate one signal for each such group of signals.
According to table B.15, the mgjority of the precomputed control signals
isof type x.0.

In circuit SIGFMD of the multiply divide unit, there is a total of six
tristate drivers connected to the operand busses opaand oph The access

Table B.13 Type x.0 control signalsto be precomputed during stage ID (part 2)

| signals | states of stage 2.0 |

ALUDdoe alu, aluo, alul, aulo, test, testl, addrL, addrS, addrL .s,
addrL .d, addrSf

ADdoe mi2s, noEX, ill

SDdoe ms2i, rfe

SHDdoe shift, shiftl

linkDdoe savePC

coDdoe, trap || trap

ftest, fccDdoe || fc.s, c.d

tfxDdoe mf2i

FcRdoe fabs.s, fabs.d, fneg.s, fneg.d, fc.s, fc.d

FuFrdoe cvt.si, cvt.s.d, cvt.d.s, cvt.sii

FvFrdoe cvt.i.s, cvtid

test test, testl

ovf? auo, dulo

add addrL, addrS, addrL.s, addrL.d, addrSf

bmuxsel alu, auo, test, shift

Rtype au, auo, test, shift, shiftl

" ill

fstore addrSf

fmov fmov.s, fmov.d

abs fabs.s, fabs.d

normal fmul.s, fmul.d, fdiv.s, fdiv.d, cvt.s.i, cvt.d.i

dbs fmov.d, fneg.d, fabs.d, fc.d, cvt.d.s, cvt.d.i, fmul.d,
fadd.d, fsub.d, fdiv.d

to these busses is granted by the control signals

opaog3:0] = (faadoe EadoeAadoexadog
opbogl:0] = (fbbdoexbdog.

Although multiplications only use two of these tristate drivers, the precom-

puted control provides six enable signals

faadoe= fbbdoe = {

Eadoe= Aadoe

1 ifl €{fmuls, fmul.d}
0 otherwise

xadoe = xbdoe= 0.

Appendix B

CONTROL

AUTOMATA OF THE

FDLX DESIGN

537

Appendix B

SPECIFICATION OF
THE FDLX DESIGN

538

Table B.14 Control signals of type x.1 to z to be precomputed during stage 1D

\ | signals || states of stage 2.0
x.1 | sub fsub.s, fsub.d
faadoe, fmul.s, fmul.d
fbbdoe
x.2 | fdiv fdiv.s, fdiv.d
FgFrdoe fmul.s, fmul.d, fdiv.s, fdiv.d
FsFrdoe fadd.s, fadd.d, fsub.s, fsub.d
x.4 | Ffl3ce, addrS, addrSf, mi2f, fmov.s, fmov.d, fneg.s, fneg.d,
MDRwece || fabss, fabsd, fc.s, fc.d, cvt.s.d, cvt.si, cvt.d.s,
cvt.d.i, cvt.i.s, cvt.i.d, fmul.s, fmul.d, fadd.s, fadd.d,
fsub.s, fsub.d, fdiv.s, fdiv.d
FpRdoe cvt.d.s, cvt.i.s, cvt.sd, cvt.i.d, fadd.s, fadd.d, fsub.s,
fsub.d, fmul.s, fmul.d, fdiv.s, fdiv.d
FxRdoe cvt.s.i, cvt.d.i
y | amuxsel, addrS, addrSf
Dmw,
store
MARCce, alu, aluo, alul, alulo, test, testl, shift, shiftl, savePC,
C4ce trap, mi2s, noEX, ill, ms2i, rfe, addrL, addrS, ad-
drL.s, addrL.d, addrSf, mf2i
FC4ce, mi2f, fmov.s, fmov.d, fneg.s, fneg.d, fabs.s, fabs.d,
Ffl4ce fc.s, fc.d, cvt.sd, cvtsi, cvt.d.s, cvt.d.i, cvti.s,
cvt.i.d, fmul.s, fmul.d, fadd.s, fadd.d, fsub.s, fsub.d,
fdiv.s, fdiv.d
z | DMRrce, || addrL, addrL.s, addrL.d
Dmr, load
fop fc.s, fc.d, cvt.s.d, cvt.si, cvt.d.s, cvt.d.i, cvt.i.s,
cvt.i.d, fmul.s, fmul.d, fadd.s, fadd.d, fsub.s, fsub.d,
fdiv.s, fdiv.d
dbr fmov.d, fneg.d, fabsd, cvtsd, cvti.d, fmul.d,
fadd.d, fsub.d, fdiv.d
SPRw mi2s, rfe, fc.s, fc.d
GPRw au, aluo, dlul, dulo, test, testl, shift, shiftl, savePC,
ms2i, addrL, addrL.s, addrL.d, mf2i
FPRw addrL.s, addrL.d, mi2f, fmov.s, fmov.d, fneg.s,
fneg.d, fabs.s, fabs.d, cvt.s.d, cvt.si, cvt.d.s, cvt.d.i,
cvt.i.s, cvt.i.d, fmul.s, fmul.d, fadd.s, fadd.d, fsub.s,
fsub.d, fdiv.s, fdiv.d

Table B.15 Types of the precomputed control signals

type X0 | x1|Xx2|x3|x4|y|z
number | 31 | 7 31 0] 3|3|6

Table B.16 Parameters of the two control automata which govern the FDLXp
design. Automaton id generates the Mealy signas for stage ID; automaton ex
precomputes the Moore signals of the stages EX to WB.

states | #inputs | # and frequency of outputs
k o Y ‘ Vsum ‘ Vmax
id 1 15 13| 21 5
ex 44 15 48 | 342 30

fanin of the states | # and length of monomials

fansum ‘ fanmax | #M ‘ lsum ‘ Imax
id - - 21 | 147 15
ex 53 3 53 | 374 15

Except on divisions, the busses opa and opb are only used in stage 2.1.
Thus, together with signal sub (floating point subtraction), the FDLX de-
sign requires 7 type x.1 control signals.

Tables B.17 and B.18 lists the disjunctive normal forms for the automa-
ton which controls the stages EX to WB. The parameters of this Moore
automaton are summarized in table B.16.

Appendix B

CONTROL
AUTOMATA OF THE
FDLX DESIGN

539

Appendix B

SPECIFICATION OF
THE FDLX DESIGN

Table B.17 Digjunctive normal forms of the precomputed control which governs
stages EX to WB (part 1)

state || IR[3L:26] | IR[5:0] | Fmt | length |

au 000000 | 1001** | *** [10
000000 | 100%*1 | *** | 10
auo 000000 | 100070 | *** | 11
a|u| 0011** *kkkkx * k% 4
Ool**l *kkkk*k *k* 4
aulo 00100 | ****** | %+ | 5
shift 000000 | 00010 | *** | 11
000000 | 00011* | *** | 11
shiftl 000000 | 00000 | *** | 11
000000 | 00001* | *** | 11
test 000000 | 101%** | *** [9
tal 011*** *kkkk%x * k% 3
swePC || 010111 | ****=* | == [§
000011 *kkkk*k *k* 6
addrs 10100* *khkkkkk * k% 5
1010*1 *kkkk*k * k% 5
ader 100*0* *kkkk%x **%x 4
1000*1 *kkkk*k *k*x 5
10000* *kkkk*k * k% 5
mi2s 000000 | 010001 | *** | 12
ms2i 000000 | 010000 | *** | 12
trap 111110 | **%*x [+ [6
rfe 11111 | #v%x [[g
noEX 0001** kkkkk*k *k* 4
000010 *kkkk*k * k% 6
010110 *kkkk*k *k*x 6

accumulated length of the monomials | 178 |

540

Table B.18 Digjunctive normal forms used by the precomputed control (part 2)

| state | IR[31:26] | IR[5:0] | Fmt || length |
addrL.s 110001 FREEEK | kkx 6
addrL.d 110101 FRk kKK | kkk 6
addrsf 111*01 *kkkkk * k% 5
fcs 010001 11**** | 000 11
fcd 010001 11**** | 001 11
mf2i 010001 001001 | *** 12
mi 2f 010001 001010 | *** 12
fmov.s 010001 001000 | 000 15
fmov.d 010001 001000 | 001 15
fadd.s 010001 000000 | 000 15
fadd.d 010001 000000 | 001 15
fsub.s 010001 000001 | 000 15
fsub.d 010001 000001 | 001 15
fmul.s 010001 000010 | 000 15
fmul.d 010001 000010 | 001 15
fdiv.s 010001 000011 | 000 15
fdiv.d 010001 000011 | 001 15
fneg.s 010001 000100 | 000 15
fneg.d 010001 000100 | 001 15
fabs.s 010001 000101 | 00O 15
fabs.d 010001 000101 | o01 15
cvt.sd 010001 010000 | 001 15
cvt.si 010001 010000 | 100 15
cvt.d.s 010001 010001 | 000 15
cvt.d.i 010001 010001 | 100 15
cvt.i.s 010001 010100 | 000 15
cvt.id 010001 010100 | 001 15
| accumulated length of the monomials || 196 |

Appendix B

CONTROL
AUTOMATA OF THE
FDLX DESIGN

541

Bibliography

[AA93]

D. Alpert and D. Avnon. Architecture of the Pentium microarchitecture.
IEEE Micro, 13(3):11-21, 1993.

[AEGP67] S.F. Anderson, J.G. Earle, R.E. Goldschmitt, and D.M. Powers. The

[ATO7]

[BDY4]

[BM96]

[BS90]

[COT6]

IBM system 360 model 91: Floating-point unit. IBM Journal of Re-
search and Developemefifi:34-53, January 1967.

H. Al-Twaijry. Area and Performance Optimized CMOS Multipliers
PhD thesis, Stanford University, August 1997.

J.R. Burchand D.L. Dill. Automatic verification of pipelined micropro-
cessor control. In Proc. International Conference on Computer Aided
Verification 1994.

E. Borger and S. Mazzanti. A practical method for rigorously con-
trollable hardware design. In J.P. Bowen, Hinchey M.B., and D. Till,
editors, ZUM'97: The Z Formal Specification Notatipmolume 1212
of LNCS pages 151-187. Springer, 1996.

M. Bickford and M. Srivas. Verification of a pipelined microproces-

sor using Clio. In M. Leeser and G. Brown, editors, Proc. Mathemat-
ical Sciences Institute Workshop on Hardware Specification, Verifica-
tion and Synthesis: Mathematical Aspeotdume 408 of LNCS pages
307-332. Springer, 1990.

W. Chu and H. Opderbeck. Program behaviour and the page-fault-
frequency replacement algorithm. Computer9, 1976.

[CRSS94] D. Cyrluk, S. Rgjan, N. Shankar, and M. K. Srivas. Effectivetheorem

proving for hardware verification. In 2nd International Conference on
Theorem Provers in Circuit Desigt994.

Bibliography

544

[Del97]

[Den6s]

[Denso]

[EP97]

[ERPOS5]

[FS89]

P. Dell. Runtime simulation of aDLX processor with stall engine. Lab-
oratory Project, University of Saarland, Computer Science Department,
Germany, 1997.

P.J. Denning. The working set model for program behavior. Communi-
cations of the ACM11(5):323-333, 1968.

P.J. Denning. Working sets past and present. IEEE Transactions on
Software Engineering(1):64-84, 1980.

G. Even and W.J. Paul. On the design of IEEE compliant floating point
units. In Proc. 13th IEEE Symposium on Computer Arithmetages
54-63. IEEE Computer Society, 1997.

J.H. Edmondson, P. Rubinfeld, and R. Preston. Superscalar instruction
execution in the 21164 Alpha microprocessor. |IEEE Micro, 15(2):33—
43, 1995.

D.L. Fowler and J.E. Smith. An accurate, high speed implementation
of division by reciprocal approximation. In Proc. 9th Symposium on
Computer Arithmeticpages 6067, 19809.

[GHPS93] J.D. Gee, M.D. Hill, D.N Pnevmatikatos, and A.J. Smith. Cache per-

formance of the SPEC92 benchmark suite. MICRO, 13(4):17-27,1993.

[Han93] J. Handy. The Cache Memory BooR cademic Press, Inc., 1993.

[Hew94]
[Hi187]

[Hil95]

[HPO]

[HP96]

Hewlett Packard. PA-RISC 1.1 Architecture Reference Manuap4.

M.D. Hill. Aspects of Cache Memory and Instruction Buffer Perfor-
mance PhD thesis, Computer Science Devision (EECS), UC Berkeley,
CA 94720, 1987.

M. Hill. SPEC92 Traces for MIPS R2000/30QMiversity of Wiscon-
sin, ftp://ftp.cs.newcastle.edu.au/pub/r3000-traces/din, 1995.

J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quanti-
tative Approach Morgan Kaufmann Publishers, INC., San Mateo, CA,
1990.

J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quanti-
tative ApproachMorgan Kaufmann Publishers, INC., San Mateo, CA,
2nd edition, 1996.

[HQR98] T.A.Henzinger, S. Qadeer, and S.K. Rgjamani. You assume, we guar-

[Ins85]

[Int95]

antee: Methodology and case studies. In Proc. 10th International Con-
ference on Computer-aided Verification (CA¥Q98.

Institute of Electrical and Electronics Engineers. ANSI/IEEE standard
754-1985, IEEE Standard for Binary Floating-Point Arithmefié85.
for a readable account see the article by W.J. Cody et a. in the IEEE
MICRO Journal, Aug. 1984, 84-100.

Intel Corporation. Pentium Processor Family Developer’'s Manual, Vol.
1-3, 1995.

Bibliography

[Int96] Integrated Device Technology, Inc. IDT71B74: BiCMOS Static RAM
64K (8K x 8-Bit) Cache-Tag RAM, Data She&tigust 1996.

[KH92] G.KaneandJ. Heinrich. MIPS RISC ArchitecturePrentice Hall, 1992.

[KMP99a] D. Kroening, S.M. Mueller, and W.J. Paul. Proving the correctness of
processors with delayed branch using delayed PC. In Numbers, Infor-
mation and ComplexityKluwer, 1999.

[KMP99b] D. Kroening, SM. Mueller, and W.J. Paul. A rigorous correctness
proof of the tomasulo scheduling algorithm with precise interrupts. In
Proc. SCI'99/ISAS’99 International Conferend999.

[Knu9e] R. Knuth. Quantitative Analysis of Pipelined DLX Architectures (in
German) PhD thesis, University of Saarland, Computer Science De-
partment, Germany, 1996.

[Kor93] I. Koren. Computer Arithmetic Algorithm$rentice-Hall International,
1993.

[KP95] J. Keller and W.J. Paul. Hardware Designvolume 15 of Teubner-Texte
zur Informatik Teubner, 1995.

[KPMOQ] Daniel Kroening, Wolfgang J. Paul, and Silvia M. Mueller. Prov-
ing the correctness of pipelined micro-architectures. In ITG/GI/GMM-
Workshop Methoden und Beschreibungssprachen zur Modellierung und
Verifikation von Schaltungen und Systemen, to ap(28a0.

[Kro97] D. Kroening. Cache simulation for a 32-bit DLX processor on a SPEC
workload. Laboratory Project, University of Saarland, Computer Sci-
ence Department, Germany, 1997.

[Lei99] H. Leister. Quantitative Analysis of Precise Interrupt Mechnisms for
Processors with Out-Of-Order ExecutiorPhD thesis, University of
Saarland, Computer Science Department, Germany, 1999.

[LMW86] J. Loeckx, K. Mehlhorn, and R. Wilhelm. Grundlagen der Program-
miersprachenTeubner Verlag, 1986.

[LO96] J. Levitt and K. Olukotun. A scalable formal verification methodol-
ogy for pipelined microprocessors. In 33rd Design Automation Confer-
ence (DAC’96)pages 558-563. Association for Computing Machinery,
1996.

[MP95] S.M. Mueller and W.J. Paul. The Complexity of Simple Computer Ar-
chitectures Lecture Notes in Computer Science 995. Springer, 1995.

[MP96] S.M.Mueller and W.J. Paul. Making the original scoreboard mechanism
deadlock free. In Proc. 4th Israel Symposium on Theory of Computing
and Systems (ISTC$pges 92-99. |IEEE Computer Society, 1996.

[Ng92] R. Ng. Fast computer memories. |IEEE Spectrumpages 36-39, Oct
1992.

545

Bibliography

[Omo94] A.R. Omondi. Computer Arithmetic Systems; Algorithms, Architec-
ture and ImplementationsSeries in Computer Science. Prentice-Hall
International, 1994.

[PH94] D.A. Patterson and J.L. Hennessy. The Hardware/Software Interface
Morgan Kaufmann Publishers, INC., San Mateo, CA, 1994.

[Prz90] S.A. Przbylski. Cache and Memory Hierarchy Desigiviorgan Kauf-
man Publishers, Inc., 1990.

[PS98] W.J. Paul and P-M. Seidel. On the complexity of Booth recoding. In
Proc. 3rd Conference on Real Numbers and Computers (RN@&$s
199-218, 1998.

[Rus] D. Russinoff. A mechanicaly checked proof of IEEE com-
pliance of a register-transfer-level specification of the AMD K7
floating-point division and square root instructions. Available at
http://www.onr.com/user/russ/david/k7-div-sgrt.html.

[Sei00] P-M. Seidel. The Design of IEEE Compliant Floating-point Units and
their Quantitative AnalysisPhD thesis, University of Saarland, Com-
puter Science Department, Germany, 2000.

[SGGH91] J.B. Saxe, S.J. Garland, J.V. Guttag, and J.J. Horning. Using trans-
formations and verification in circuit design. Technica report, Digital
Systems Research Center, 1991.

[SP88] J.E. Smith and A.R. Pleszkun. Implementing precise interrupts in
pipelined processors. IEEE Transactions on Computer37(5):562—
573, 1988.

[Spar6] 0. Spaniol. Arithmetik in Rechenanlageiteubner, 1976.

[Spa91] U. Sparmann. Structure Based Test Methods for Arithmetic Circuits
(in German) PhD thesis, University of Saarland, Computer Science
Department, 1991.

[SPA92] SPARC Internationa Inc. The SPARC Architecture ManuaPrentice
Hall, 1992.

[Sta] Standard Performance Evaluation Corporation. SPEC Benchmark
Suite. http://www.specbench.org/.

[Sun92] Sun Microsystems Computer Corporation, Mountain View, CA. The
SuperSPARC Microprocessor: Technical White Pap@92.

[Tho70] J.E. Thornton. Design of a Computer: The Control Data 6608cott
Foresman, Glenview, I, 1970.

[Tom67] R.M. Tomasulo. An efficient algorithm for exploiting multiple arith-
metic units. In IBM Journal of Research and Developementume 11
(1), pages 25-33. IBM, 1967.

[Weg87] 1. Wegener. The Complexity of Boolean Functiordehn Wiley & Sons,
- 1987.

546

Bibliography

[WF82] S.Waser and M.J. Flynn. Introduction to Arithmetic for Digital Systems
Designers CBS College Publishing, 1982.

[Win93] G. Winskel. The Formal Semantics of Programming Languages; An
Introduction Foundations of Computing Series. MIT Press, 1993.

[Wind5] PJ. Windley. Formal modeling and verification of microprocessors.
IEEE Transactions on Computer&l(1):54—72, 1995.

[WS94] S. Weiss and J.E. Smith. Power and PowerPC Morgan Kaufmann
Publishers, Inc., 1994.

547

Index

a-equivalence, 327
computation rules, 327
o-representative, 327

aborting execution, 182
absolute value, 369, 370, 417
adder, 22-30, 99, 360-372
4/2-adder, 37
carry chain, 22
carry lookahead, 28
carry save, 35
compound, 26
conditional sum, 24
floating point, 360-372
full adder, 9, 22
half adder, 23
addition
binary, 13
floating point, 343, 359
two’'s complement, 16
addition tree, 36, 62
4/2-tree, 3742
addressing mode, 63
alignment shift, 359, 362
ALU, 75, 77
arithmetic unit, 30
automaton, 50-60
frequency, 52, 57
Mealy, 50, 56
Moore, 50, 54
next state, 52
outputs, 51
parameter, 54, 61, 95-97, 127,
213, 249, 285, 307, 539

precomputed output, 55
state, 51
transition function, 50

bank
cache, 265, 267, 277
memory, 69, 80, 117, 240, 451
register file, 460, 461
writesignal, 80, 81, 117, 245,
265, 267, 276278, 282,
304, 453, 454, 461
bias, 319
binary fraction, 317
binary number, 12
Booth
decoder, 47
digit, 43, 44
multiplier, 43
recoding, 42
boundary
memory double word, 451
memory word, 68
bracket structure, 181
burst transfer, 242
bus, 241-245
arbitration, 299, 308
back to back, 244
burst, 242
convention, 242
handshake, 241
protocol, 241
status flag, 241
word, 242
byte addressable, 68

550

cache, 253, 511
block, 255
direct mapped, 256, 266
directory, 256
effective missratio, 312
fully associative, 259
history, 261, 271
hit, 253
interface, 276, 281, 452
ling, 255
linefill, 264
lineinvalidation, 263
miss, 254
missratio, 288, 513
sector, 257
set, 256
set associative, 258, 268, 293
split, 299
tag, 256
unified, 299
way, 258
cache policy
alocation, 254, 261
placement, 254
read allocation, 261
replacement, 254, 260
write, 254, 262
write allocation, 261
write back, 262, 314
writeinvalidation, 261
write through, 262
canceled instruction, 227
cause register, 175
clock
enable signal, 17, 58, 70, 98, 113,
477, 506
request signal, 98, 114, 477, 481,
506
signal, 60, 139, 151, 153, 205,
221, 501, 505
comparator, 76
floating point, 412
comparison
floating point, 345
configuration, 229
control
automaton, 50-60, 534-539
division, 479
DLX, 88-99, 120, 122, 204, 470
interface, 58
operation, 108

precomputed, 122, 207, 474, 480,
504
control signal
admissible, 59
frequency, 52, 57
precomputed, 55
CPI, 161-166, 251, 252, 287, 288, 292,
296, 297, 311, 512-514
cycle count, 161
cycletime, 9, 11, 100, 141, 160, 226,
249, 510
FPU, 433

data paths
DLX, 69, 70, 113, 114, 147, 191,
215, 300, 445, 447, 486
interface, 281
dateline lemma, 129, 213, 479, 484
deadlock free, 156
decoder, 19
delay
accumulated, 10
formula, 10
dot, 108, 162
delayed branch, 107, 108
delayed PC, 107, 109
denormalization loss, 337
disiunctive normal form, 52
divider, 381-390
division, 344, 372
automaton, 384, 483
lookup table, 379
DNF, seedisunctive normal form
DRAM, 239, 253
dummy instruction, 152

embedding convention, 440442, 450,
459
environment, 69, 71-87
ALU, 75, 77, 120
buffering, 199, 468
CAenv, 202, 468
EXenv, 119, 199, 461, 464
FPemb, 450
FPR register file, 459
GPRregister file, 71, 115
IRenv, 73, 114, 448
memory, 78, 116, 200, 281, 300,
452
PCenv, 74, 117, 131, 191, 214,
449, 485
RFenv, 194, 455

shift for load, 85, 456
shifter, 81-87, 120
SPR register file, 196, 457
equality tester, 19
equivalence class, 327
event signal, seeinterrupt
exception, seeinterrupt
division by zero, 345, 388, 389
floating point, 335-347, 418, 442,
458
handler, 171
inexact result, 341, 411
invalid address, 236
invalid operation, 342344, 347,
348, 357, 370, 388, 389,
414, 418, 420, 421, 432
misaligned access, 453, 454
overflow, 336, 411
underflow, 336, 411
exception handling register, 178
execution scheme, 465
exponent
adjustment, 408
normalization, 398
rounding, 409
wrapping, 339

factoring, 325
denormal, 326
exponent, 326
|EEE-normal, 326
normal, 326
sign hit, 325
significand, 326
special, 326
value, 326
finite state diagram
division, 384, 385
DLX, 88, 90, 106, 120, 121, 209,
470473
memory control, 247, 263, 284,
306
finite state transducer, 50
fixed point unit, 461
flipflop, 7
floating point, 317-349, 351437,
439-517
addition, 343, 359
comparison, 345
division, 344, 372
embedding convention, 351, 352

Index

exception, seeexception
factoring, seefactoring
format conversion, 347, 418-432
inexact result, 337, 341
loss of accuracy, 337
multiplication, 344, 372
precision, 320, 351
result, 338
rounder, 390412
special cases, 341-347, 370
subtraction, 360
tininess, 337
unit, seeFPU
wrapped exponent, 338
floating point number
denormal, 320
even, 322
exponent, 320
gradual underflow, 322
hidden bit, 320
normal, 320
odd, 322
properties, 322
representable, 321
sign bit, 320
significand, 320
unordered, 346, 415
flushing, 300
format conversion, 347, 418-432
forwarding, 143, 145, 216, 486
engine, 146
floating point register, 490
FPU, 351437, 439
fraction
binary, 317
two’'s complement, 318
frequency, 52, 57
FSD, seefinite state diagram
full flag, 123, 152, 205, 220

gate, 7
gradual underflow, 322

half decoder, 20
hardware cost, 99, 140, 159, 225, 509
FPU, 434
memory system, 248
hardware interlock, 151, 164, 216, 486
hardware model, 7-12
hazard
data, 151, 487, 492, 494
structural, 105, 500

551

Index

552

|EEE standard

floating point, 317-349
in-order execution, 500
incrementer, 24

carry chain, 24

conditional sum, 26, 61
inexact result, 337
instruction format, 64, 444, 520, 524
instruction set architecture, seel SA
interrupt, 171-237, 439

admissible ISR, 180

completeness, 189

convention, 174

event signal, 171, 443

external, 172, 227

hardware, 190, 214, 468

internal, 172

level, 176

mask, 175

maskable, 172

nested, 177, 183

priority, 172

properties, 182

receive service, 174

service routine, 173

stack, 177
ISA, 6368, 174, 441445, 519-524
ISR, seeinterrupt service routine

JSR, 176
jump-and-link, 109

leading zero counter, 21

little endian, 69, 452

locality of reference, 254, 290
spatial, 255
temporal, 255

lookup table, 379

loss of accuracy, 337

LRU replacement, 261, 269

memory
alignment, 68, 451
consistency, 261, 300
control, 80, 201, 247, 282, 304,

453

double word, 451
hierarchy, 253
interface, 246, 281, 303, 452
monolithic, 239
multi-cycle access, 98
off-chip, 245, 246

on-chip, 240

organization, 68, 451

system design, 239-315

timing, 249, 283, 309

transaction, 263-265

word, 68
multiplication, seemultiplier

array, 36

floating point, 344, 372
multiplier, 34-49, 62

Booth, 4249

floating point, 381-390

school method, 34

naming convention, 70
NaN, 320, 342, 354, 370
quiet, 342
signaling, 342
Newton-Raphson iteration, 373, 377
normalization shift, 326, 394
|EEE, 326
unbounded, 326
number format, 12-17, 317-323
carry save, 35
biased integer, 318
binary, 12
binary fraction, 317
floating point, 320
two’'s complement, 14
two’'s complement fraction, 318

overflow, 31, 336, 392

parallel prefix, 27
performance model, 160
pipeline, 105-170
basic, 105
stage, 105, 106, 465
post normalization, 331, 407
precision, 411, 445, 470
precomputed control, 122
prepared sequential machine, 111, 112
protected mode, 236

quality
DLX, 167, 287, 311, 515
metric, 167, 290
parameter, 167, 290

RAM, 7
multi-port, 9
random replacement, 261

register
FPU control, 441, 458
genera purpose, 63
invisible, 132
special purpose, 64, 443
visible, 132
register file
aliasing, 439
specia RF, 194
register transfer language, seeRTL
representative, 327, 405
restore status, 179
result forwarding, seeforwarding
result shift register, seeRSR
ROM, 7
rounder
fixed point, 427-432
floating point, 390412
rounding, 323
algebra, 326-335
algorithm, 335
decomposition, 330
exponent round, 331
mode, 323
normalization shift, 331
post normalization, 331
significand round, 331
RSR, 440, 466, 467
control, 474
RTL, 88

save status, 178
scheduling function, 106, 129, 154,
223, 498, 502
shift
alignment, 362
normalization, 326, 394
shifter, 31-33, 83
correction, 83
cyclic left, 31
cyclicright, 33
distance, 82, 83
fill bit, 82, 84
logic right, 33
mask, 85
sign extension, 14
significand
normalization, 401
rounding, 406
simulation theorem, 134, 143, 157, 229,
234, 507

Index

SISR, 173

SPEC benchmark suite, 159, 163, 512

special purpose register, 175

SRAM, 239, 253

stall engine, 97, 123, 131, 139, 153,
205, 220, 221, 476, 477,
481, 498, 502, 505

hardware interlock, 151, 164, 216,

486

stalling, seestall engine

status register, 175

sticky bit, 329, 365, 366, 405

subtraction, 15, seeaddition

thrashing, 293

tininess, 337

TPI, 252, 287, 297, 514

transition function, 50

tree, 17

tristate driver, 7

two’s complement
fraction, 318
number, 14
properties, 14

underflow, 336
unordered, 346
unpacker
fixed point, 425
floating point, 351, 354
update enable signal, 97, 99, 113, 123,
132, 139, 205, 220

valid flag, 144
variable latency, 440

word boundary, 68

wrapped exponent, 339

write enable signal, 7, 58, 98, 506
write request signal, 98, 506

zero counter, 21
zero tester, 19, 170

	Preface
	Contents
	1 - Introduction
	2 - Basics
	3 - A Sequential DLX Design
	4 - Basic Pipelining
	5 - Interrupt Handling
	6 - Memory System Design
	7 - IEEE Floating Point Standard and Theory of Rounding
	8 - Floating Point Algorithms and Data Paths
	9 - Pipelined DLX Machine with Floating Point Core
	A - DLX Instruction Set Architecture
	B - Specification of the FDLX Design
	Bibliography
	Index

