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Preface 

Any type of statistical inquiry in business, government, or academics in 
which principles from some body of knowledge enter seriously into the 
analysis is likely to lead to a nonlinear statistical model. For instance, a 
model obtained as the solution of a differential equation arising in engineer- 
ing, chemistry, or physics is usually nonlinear. Other examples are eco- 
nomic models of consumer demand or of intertemporal consumption and 
investment. 

Much applied work using linear models represents a distortion of the 
underlying subject matter. In the past there was little else that one could do, 
given the restrictions imposed by the cost of computing equipment and the 
lack of an adequate statistical theory. But the availability of computing 
resources is no longer a problem, and advances in statistical and probability 
theory have occurred over the last fifteen years that effectively remove the 
restriction of inadequate theory. 

In this book, I have attempted to bring these advances together in one 
place, organize them, and relate them to applications, for the use of 
students as a text and for the use of those engaged in research as a 
reference. My hopes and goals in writing it will be achieved if i t  becomes 
possible for the reader to bring subject matter considerations directly to 
bear on data without distortion. 

The coverage is comprehensive. The three major categories of statistical 
models relating dependent variables to explanatory variables are covered: 
univariate regression models, multivariate regression models, and simulta- 
neous equations models. These models can have the classical regression 
structure where the independent variables are ancillary and the errors 
independent, or they can be dynamic, with lagged dependent variables 
permitted as explanatory variables and with serially correlated errors. The 
coverage is also comprehensive in the sense that the subject is treated at all 
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viii PREFACE 

levels: methods, theory, and computations. However, only material that I 
think is of practical value in making a statistical inference using a model 
that derives from subject matter considerations is included. 

The statistical methods are accessible to anyone with a good working 
knowledge of the theory and methods of linear statistical models as found 
in a text such as Searle’s Linear Models. It is important that Chapter 1 be 
read first. It lays the intuitive foundation. There the subject of univariate 
nonlinear regression is presented by relying on analogy with the theory and 
methods of linear models, on examples, and on Monte Car10 simulations. 
The topic lends itself to this treatment, as the role of the theory is to justify 
some intuitively obvious linear approximations derived from Taylor’s ex- 
pansions. One can get the main ideas across and save the theory for later. 
Generalized least squares can be applied in nonlinear regression just as in 
linear regression. Using this as a vehicle, the ideas, intuition, and statistical 
methods developed in Chapter 1 are extended to other situations, notably 
multivariate nonlinear regression in Chapter 5 and nonlinear simultaneous 
equations models in Chapter 6. These chapters include many numerical 
examples. 

Chapter 3 is a unified theory of statistical inference for nonlinear models 
with regression structure, and Chapter 7 is the same for dynamic models. 
Some useful specialization of the general theory is possible in the case of 
the univariate nonlinear regression model, and this is done in Chapter 4. 
Notation, assumptions, and theorems are isolated and clearly identified in 
the theoretical chapters so that the results can be reliably applied to new 
situations without need for a detailed reading of the mathematics. These 
results should be usable by anyone who is comfortable thinking of a 
random variable as a function defined on an abstract probability space and 
understands the notion of almost sure convergence. Aside from that, 
application of the theory does not rise above an advanced calculus level 
probability course. There are examples in these chapters to provide tem- 
plates. 

Reading the proofs requires a good understanding of measure theoretic 
probability theory, as would be imparted by a course out of Tucker’s 
Graduate Course in Probability, and a working knowledge of analysis, as in 
Royden’s Real Analysis. For the reader‘s convenience, references are con- 
fined to these two books as much as possible, but this material is standard 
and any similar textbook will serve. 

The material in Chapter 7 is at the frontier. This is the first time some of 
it will appear in print. As with anything new, much improvement is still 
possible. Regularity conditions are more onerous than need be, and there is 
a paucity of worked examples to determine which of them most need 
relaxing. I have included full details in the proofs, and have supplied the 
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details of proofs that seemed too terse in the original source, in hopes that 
readers can learn the ideas and methods of proof quickly and will move the 
field forward. 

As to computations, one must either use a programming language, with 
or without the aid of a scientific subroutine library, or use a statistical 
package. Hand calculator computations are out of the question. Using a 
programming language to present the ideas seems ill advised. Discussion 
bogs down in detail that is just tedious accounting and has nothing to do 
with the subject proper. For pedagogical purposes, a statistical package is 
the better choice. Its code should be concise and readable, even to the 
uninitiated. I chose SASQD, and it seems to have served well. Computational 
examples consist of figures displaying a few lines of SAS code and the 
resulting output. For those who would rather use a programming language 
in applications, the algorithms are in the text, and anyone accustomed to 
using a programming language should have no trouble implementing them; 
the examples will be helpful in debugging. 

I have debts to acknowledge. The biggest is to my family. Hours-no, 
years-were spent writing that ought to have been spent with them. I owe a 
debt to my students Gerald0 S o w  and Jose Francisco Burguete. The 
theory for models with regression structure is their dissertation research. 
The theory for dynamic models was worked out while Halbert White and 
Jeffrey Wooldridge visited Raleigh in the summer of 1984, and much of it is 
theirs. I owe a special debt to my secretary, Janice Gaddy. She typed the 
manuscript cheerfully, promptly, and accurately. More importantly, she 
held every annoyance at bay. 

Support while writing this book was provided by National Science 
Foundation Grants SES 82-07362 and SES 85-07829, North Carolina 
Agricultural Experiment Station Projects NC03641, NC03879, and 
NC05593, and the PAMS Foundation. SAS Institute Inc. let me use its 
computing equipment and a prerelease version of PROC SYSNLIN for the 
computations in Chapter 6 and has, over the years, provided generous 
support to the Triangle Econometrics Workshop. Many ideas in this book 
have come from that workshop. 

A. RONALD GALLANT 
k-, I986 
Raleigh, North Carolina 
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C H A P T E R 1  

Univariate Nonhear 
Regression 

The nonlinear regression model with a univariate dependent variable is 
more frequently used in applications than any of the other methods 
discussed in this book. Moreover, these other methods are for the most part 
fairly straightforward extensions of the ideas of univariate nonlinear regres- 
sion. Accordingly, we shall take up this topic first and consider it in some 
detail. 

In this chapter, we shall present the theory and methods of univariate 
nonlinear regression by relying on analogy with the theory and methods of 
linear regression, on examples, and on Monte Carlo illustrations. The 
formal mathematical verifications are presented in subsequent chapters. The 
topic lends itself to this treatment because the role of the theory is to justify 
some intuitively obvious linear approximations derived from Taylor's ex- 
pansions. Thus one can get the main ideas across first and save the 
theoretical details until later. This is not to say that the theory is unim- 
portant. Intuition is not entirely reliable, and some surprises are uncovered 
by careful attention to regularity conditions and mathematical detail. 

1. INTRODUCTION 

One of the most common situations in statistical analysis is that of data 
which consist of observed, univariate responses y, known to be dependent 
on corresponding k-dimensional inputs x,. This situation may be repre- 
sented by the regression equations 

y , = / ( x , , e o )  + e, r = 1 ,2  ,..., n 

1 
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2 UNIVARIATE NONLINEAR REGRESSION 

where f( x, 6 )  is the known response function, 6' is a p-dimensional vector 
of unknown parameters, and the e, represent unobservable observational or 
experimental errors. We write O0 to emphasize that it is the true, but 
unknown, value of the parameter vector 6 that is meant; 6 itself is used to 
denote instances when the parameter vector is treated as a variable-as, for 
instance, in differentiation. The errors are assumed to be independently and 
identically distributed with mean zero and unknown variance u2. The 
sequence of independent variables {x,}  is treated as a fixed known se- 
quence of constants, not random variables. If some components of the 
independent vectors were generated by a random process, then the analysis 
is conditional on that realization ( x , }  which obtained for the data at hand. 
See Section 2 of Chapter 3 for additional details on this point, and Section 
8 of Chapter 3 for a device that allows one to consider the random regressor 
setup as a special case in a fixed regressor theory. 

Frequently, the effect of the independent variable x ,  on the dependent 
variable y, is adequately approximated by a response function which is 
linear in the parameters 

P 

i -  1 
f(x, e) = = C .pi. 

By exploiting various transformations of the independent and dependent 
variables, viz. 

the scope of models that are linear in the parameters can be extended 
considerably. But there is a limit to what can be adequately approximated 
by a linear model. At times a plot of the data or other data analytic 
considerations will indicate that a model which is not linear in its parame- 
ters will better represent the data. More frequently, nonlinear models arise 
in instances where a specific scientific discipline specifies the form that the 
data ought to follow, and this form is nonlinear. For example, a response 
function which arises from the solution of a differential equation might 
assume the form 

f ( x ,  6 )  = 6, + 8,eXe3. 

Another example is a set of responses that is known to be periodic in time 
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but with an unknown period. A response function for such data is 

f ( r ,  6 )  = 8, + 6 p s  e4t + 6,sin 641. 

A univariate linear regression model, for our purposes, is a model that 
can be put in the form 

P 
C P ~ ~ Y , )  = C q)itx,)di + 

i - 1  

A univariate nonlinear regression model is of the form 

but since the transformation rpo can be absorbed into the definition of the 
dependent variable, the model 

is sufficiently general. Under these definitions a linear model is a special 
case of the nonlinear model in the same sense that a central chi-square 
distribution is a special case of the noncentral chi-square distribution. This 
is somewhat an abuse of language, as one ought to say regression model 
and linear regression model rather than nonlinear regression model and 
(linear) regression model to refer to these two categories. But this usage is 
long established and it is senseless to seek change now. 

EXAMPLE 1. The example that we shall use most frequently in illustra- 
tion has the response function 

The vector-valued input or independent variable is 

and the vector-valued parameter is 
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TIlbk 1. Data Values for Example 1. 

t Y X l  x2 x3 
- 

1 
2 
3 
4 
6 
6 
7 
8 
9 

10 
11 
12 
13 
14 
16 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
20 
29 
30 

0.98610 
1.03648 
0.96482 
1 .04184 
1.02324 

0.96263 
1.01026 
0.98861 
1 . O m 7  
0.96982 
1.01214 
0.66768 
0.65107 
0.98822 
0.98623 
0.69759 
0.99418 
1.01962 
0.691 63 
1.04256 
1.04343 
0.97628 
1.04969 
0.80219 
1.01046 
0.96196 
0 .ST656 
0.60811 
0.91840 

0 . 9 ~ 1 ~ 6  

1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
I 
1 

6.28 
9.86 
9.11 
8.43 
8.11 
1.82 
6.58 
6.02 
6.52 
3.76 
9.66 
1.31 
0.47 

4.07 
0.07 

4.61 
0.17 
6.99 
4.39 
0.39 
4.73 
9.42 
8.80 
3.02 

3.31 
4.51 
2.66 
0.00 
6.11 

0 . 7 1  

Source: Gallant (1975d). 

so that for this response function k = 3 and p -5 4. A set of observed 
responses and inputs for this model which will be used to illustrate the 
computations is given in Table 1. The inputs correspond to a one way 
" treatment-control" design that uses experimental material whose age 
(=I x3) affects the response exponentially. That is, the first observation 

x I  = (1,1,6.28)' 

represents experimental material with attained age x j  = 6.28 months that 
was (randomly) allocated to the treatment group and has expected response 
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Similarly, the second observation 

5 

xz = (0,1,9.86)' 

represents an allocation of material with attained age x 3  = 9.86 to the 
control group, with expected response 

f(x,, 8 ' )  = 6: + 6,0e9.@je5 

and so on. The parameter 0; is the treatment effect. The data of Table 1 are 
simulated. a 

EXAMPLE 2. Quite often, nonlinear models arise as solutions of a system 
of differentia1 equations. The following linear system has been used so often 
in the nonlinear regression literature (Box and Lucus, 1959; Guttman and 
Meter,  1965; Gallant, 1980) that it might be called the standard pedagogi- 
cal example. 

Linear System 

Boundary Conditions 

~ ( x )  = 1 B(x) = C(x)  = 0 at time x = 0 

Parameter Space 

e, >- e2 2 o 
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Systems such as this arise in compartment analysis where the rate of flow 
of a substance from compartment A into compartment B is a constant 
proportion 6, of the amount A(%)  present in compartment A at time x .  
Similarly, the rate of flow from B to C is a constant proportion 8, of the 
amount B ( x )  present in compartment B at time x. The rate of change of 
the quantities within each compartment is described by the system of linear 
differential equations. In chemical kinetics, this model describes a reaction 
where substance A decomposes at a reaction rate of 8, to form substance 
B, which in turn decomposes at a rate 8, to form substance C. There are a 
great number of other instances where linear systems of differential equa- 
tions such as this arise. 
Following Guttman and Meeter (1%5), we shall use the solutions for 

B ( x )  and C ( x )  to construct two nonlinear models (see Table 2) which they 
assert “represent fairly well the extremes of near linearity and extreme 
nonlinearity.” These two models are set forth immediately below. The 
design points and parameter settings are those of Guttman and Meeter 
(1965). 

Model B 

8 0  = (1.4, .4)’ 

{ x , )  = {.25,.5,1,1.5,2,4,.25,.5,1,1.5,2,4) 

n = 12 

o 2  = (.025)’ 
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Model C 

n = 12 

u2 = ( .025)2 

TaMe2. Datavalues 
for Example 2. 

t Y X 

1 
2 
3 
4 
6 
6 
7 
8 
9 

10 
11 
12 

1 
2 
3 
4 
5 
6 
1 
8 
9 

10 
11 
12 

IlOd.18 

0.316122 
0.421291 
0.601986 
0.673076 
0.546661 
0.281609 
0.273234 
0,416292 
0.603(141 
0.621614 
0.615790 
0.276507 

l lokt  c 

0.137790 
0.409262 
0. 6 3 ~ 0 1 4  
0.736366 
0.786320 
0.693237 
0.163209 
0.372145 
0.699166 
0.749201 
0 .  a 6 1 6 6  
0 .  gosea 

0.26 
0.60 
1 .oo 
1.60 
2.00 
4.00 
0.26 
0.60 
1.00 
1 .so 
2.00 
4 .00  

1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
6 
6 

7 
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A word regarding notation. All vectors, such as 8, are column vectors 
unless the contrary is indicated by 6’, which is a row vector. Strict 
adherence to this convention in notation leads to clutter, such as 

d = ( a ’ ,  b’, c‘)’. 

We shall usually let the primes be understood in these cases and write 

d = ( a ,  6 ,  c )  

instead. Transposition will be carefully indicated at instances where clarity 
seems to demand it. 

2. TAYLOR’S THEOREM AND MATI’ERS OF NOTATION 

In what follows, a matrix notation for certain concepts in differential 
calculus leads to a more compact and readable exposition. Suppose that 
s( 6 )  is a real valued function of a p-dimensional argument 8. The notation 
(a /a8 )s (8 )  denotes the gradient of s(8), 

1 

a p by 1 (column) vector with typical element ( a/aflj)s(8). Its transpose is 
denoted by 

Suppose that all second order derivatives of s(8) exist. They can be 
arranged in a p by p matrix, known as the Hessian matrix of the function 
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S(@), 

9 

If the second order derivatives of s(6) are continuous functions in 8, then 
the Hessian matrix is symmetric (Young's theorem). 

Let f ( S )  be an n by 1 (column) vector valued function of a p-dimen- 
sional argument 6. The Jacobian of 

is the n by p matrix 

a 
mf(9) = 

n P 

Let h'(6) be a 1 by n (row) vector valued function 

h v )  = [ h , ( e ) ,  h 2 ( e ) ,  . . ., h , ( 8 ) ] .  
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In this notation, the following rule governs matrix transposition: 

And the Hessian matrix of s(6) can be obtained by successive differentia- 
tion variously as 

a a  
* -aar;( -s(e)) (if symmetric) 

= & ( g s ( 8 ) ) '  (if symmetric). 

One has a product rule and a chain rule. They read as follows. If f ( 8 )  and 
h'(t9) are as above, then (Problem 1) 

Let g ( p )  be a p by 1 (column) vector valued function of an r-dimensional 
argument p. and let f(e) be as above: Then (Problem 2) 
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The set of nonlinear regression equations 

y , = f ( x , , e O ) + e ,  t = 1 , 2  ,..., n 

may be written in a convenient vector form 

y = f ( O 0 )  + e 

by adopting conventions analogous to those employed in linear regression; 
namely 

1 

The sum of squared deviations 

n 

of the observed y, from the predicted value j( x, ,  8) corresponding to a trial 
value of the parameter 8 becomes 

in this vector notation. 
The estimators employed in nonlinear regression can be characterized as 

linear and quadratic forms in the vector e which are similar in appearance 
to those that appear in linear regression to within an error of approximation 
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that becomes negligible in large samples. Let 

that is, F(B) is the matrix with typical element ( a / a f $ ) f ( x , ,  8),  where t is 
the row index and j is the column index. The matrix F(Oo) plays the same 
role in these linear and quadratic forms as the design matrix X in the linear 
regression: 

“ y  ” = X ,  + e. 

The appropriate analogy is obtained by setting “y” = y - f ( 6 ’ )  + F(8’)e’ 
and setting X = F((eo). Malinvaud (1970% Chapter 9) terms this equation 
the “linear pseudo-model.” For simplicity we shall write F for the matrix 
F(B) when it is evaluated at 6 = 8’: 

Let us illustrate this notation with Example 1. 

EXAMPLE 1 (Continued). Direct application of the definitions of y 
and f ( e )  yields 

Y =  

u: 

f ( 6 )  = 

30 

0.98610 
1.03848 
0.95482 
1.04184 

0.50811 
0.91840 1 

1 
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Since 

a a -/(x, e) = w ( ~ l ~ ,  + e,x, + e4e+3) = X~ a 4  

-f( X, 6 )  = -( B,X, + e,x, + 84ee~x3) = x 2  as, 

a% 

wf( X, e) = 

a a 

- - - f ( x ,  a 6 )  = ;i8;(b,x, a + B,x, + 64ee3x3) = 64~3ee3xl 

a a ( elx, + eZx, + e4eB3x3) = ee3x3 
4 

the Jacobian of f ( 6 )  is 

1 1  
0 1  
1 1  
0 1  
. .  . .  . .  
1 1  

0 1  

13 

0 

4 

Taylor's theorem, as we shall use it, reads as follows: 

TAYLOR'S THEOREM. Let s(0) be a real valued function defined over 
8. Let 0 be an open, convex subset of p-dimensional Euclidean space W j'. 

Let B 0  be some point in €3. 
If s ( 6 )  is once continuously differentiable on 8, then 

or, in vector notation, 
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If s(8) is twice continuously differentiable on 8, then 

or, in vector notation, 

s(e)  = S ( e 0 )  + ( % S ( e o ) ) ’ ( e  d - e o )  

+ t ( 8  - W’( r n ” ( B ) j ( O  d Z  - 8O) 

for some 8= XB0 + (1 - h)8 where 0 s h s 1. 

Applying Taylor’s theorem to f ( x ,  O ) ,  we have 

0 

implicitly assuming that f(x, 8) is twice continuously differentiable on 
some open, convex set 8. Note that e’ is a function of both x and 8, 
6 = 6 ( x ,  8). Applying this formula row by row to the vector f ( O ) ,  we have 
the approximation 

where a typical row of A is 

alternatively 

f( 8 )  = f( e o )  + F( eo)( 8 - 8 O )  + R (  8 - 8 O ) .  
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Using the previous formulas, 

15 

The least squares estimator is the value 8 that minimizes SSE(6) over the 
parameter space 8. If S S E ( B )  is once continuously differentiable on some 
open set €9' with B E 8' c 8, then 6 satisfies the "normal equations" 

This is because (a/aB)SSE(d) = 0 at any local optimum. In linear regres- 
sion, 

y = X f l + e  

least squares residuals ê  computed as 

are orthogonal to the columns of X, viz., 

X V  = 0. 

In nonlinear regression, least squares residuals are orthogonal to the col- 
umns of the Jacobian of f(8) evaluated at 8 = d, viz., 

" [ u  - /<41 = 0. 

PROBLEMS 

1. (Product rule.) Show that 
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by computing ( a/aei)E;,,h,(e)/k(~) for i = 1,2,. . . , p to obtain 

Note that ( a/ae')fk(e) is the k th row of (d /ae ' ) f ( e ) .  
2. (Chain rule.) Show that 

3. STATISTICAL PROPERTIES OF LEAST SQUARES 
ESTIMATORS 

The least squares estimator of the unknown parameter f?O in the nonlinear 
model 

y = f ( B O )  + e 

is the p by 1 vector 8 that minimizes 

SSE(8) - Iv - f (e ) l"v  - f(@)I = IlY - f (e )  11'. 
The estimate of the variance of the errors e ,  corresponding to the least 
squares estimator B is 

SSE( 8)  
" - P  

$ 2 ,  -* 

In Chapter 4 we shall show that 

($1 8 = 8 O  + (F'F)-'F'e + op 

where, recall, F - F(6O) - ( d / d e ' ) / ( e o )  is the matrix with typical row 
( a / a 6 ' ) / ( x f ,  eo). The notation op(a,) denotes a (possibly) matrix valued 
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random variable Xn = o,,(a,) with the property that each element XI,, 
satisfies 

for any z > 0; {a,) is some uence of real numbers, the most frequent 
choices being u, = 1, u,  = 1/ ?- n ,  and Q ,  = I / n .  

These equations suggest that a good approximation to the joint distribu- 
tion of (8, s2)  can be obtained by simply ignoring the terms op(l/ 6) and 
op( l /n ) .  Noting the similarity of the equations 

with the equations that arise in linear models theory and assuming normal 
errors, we have approximately that b has the p-dimensional multivari- 
ate normal distribution with mean 6 O  and variance-covariance matrix 
a2( F ' F )  - 1. 

B - NJ 8 0 ,  a 2 ( ~ ~ ~ ) - 1 ]  ; 

(n - p)r2/u2 has the chi-square distribution with n - p degrees of free- 
dom, 

and s 2  and b are independent, so that the joint distribution of (4. s 2 )  is the 
product of the marginal distributions. In applications, ( F ' F ) - '  must be 
approximated by the matrix 

c = [ F ' ( g ) F ( B ) ] - ' .  

The alternative to this method of obtaining an approximation to the 
distribution of &-characterization coupled with a normality assump- 
tion-is to use conventional asymptotic arguments. One finds that 8 
converges almost surely to eo, s 2  converges dmost surely to u 2 ,  
( l / n ) F ' ( b ) F ( b )  converges almost surely to a matrix Q, and fi(8 - 6 ' )  is 
asymptotically distributed as the p-variate normal with mean zero and 
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variancecovariance matrix (I 'Q - ', 
6(1 - e o )  ~ ~ ( 0 ,  u z ~ - l ) .  

The normality assumption is not needed. Let 

1 Q = - - F ~ ( @ F ( ~ ) .  n 

Following the characterization-normality approach it is natural to write 

I A i v p ( e o ,  SzcI) (= Np[eo, S2(l/n)&']) 

Following the asymptotic normality approach, it is natural to write 

J;;(& - 8 0 )  N,(o, s2Q-1) (= N,(o, s*ncI)) 

-natural perhaps even to drop the degrees of freedom correction and use 

d 2  5 -SSE(I) n 
1 

to estimate u 2  instead of s2. The practical difficulty with this is that one 
can never be sure of the scaling factors in computer output. Natural 
combinations to report are: 

and so on. The documentation usually leaves some doubt in the reader's 
mind as to what is actually printed. Probably, the best strategy is to run the 
program using Example 1 and resolve the issue by comparison with the 
results reported in the next section. 

As in linear regression, the practical importance of these distributional 
properties is their use to set confidence intervals on the unknown parame- 
ters 8: (i = 1,2, .. ., p) and to t e t  hypotheses. For example, a 95% 
confidence interval may be found for 6: from the .025 critical value t,025 of 
the r-distribution with n - p degrees of freedom as 
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Similarly, the hypothesis H: 8; = 8: may be tested against the alternative 
A : 8; # 8i. at the 5% level of significance by comparing 

with CI,, denotes the ith diagonal 
element of the matrix C?. The next few paragraphs are an attempt to convey 
an intuitive feel for the nature of the regularity conditions used to obtain 
these results; the reader is reminded once again that they are presented with 
complete rigor in Chapter 4. 

The sequence of input vectors (x,) must behave properly as n tends to 
infinity. Proper behavior is obtained when the components x,, of x, are 
chosen either by random sampling from some distribution or (possibly 
disproportionate) replication of a fixed set of points. In the latter case, some 
set of points a,, u,, . . . , uT-l  is chosen and the inputs assigned according 
to x,, = u,  mod T’ Disproportionality is accomplished by allowing some of 
the a, to be equal. More general schemes than these are permitted-see 
Section 2 of Chapter 3 for full details-but this is enough to gain a feel for 
the sort of stability that (x,} ought to exhibit. Consider, for instance, the 
data generating scheme of Example 1. 

and rejecting H when IF,[ > 

EXAMPLE 1 (Continued). The first two coordinates xi,, x2, of x, = 
(x~ , ,  x2,, xj,)’ consist of replication of a fixed set of design points de- 
termined by the design structure: 

(xl, x2) ,  = (1 , l )  if r isodd 
(xl, x2), = (0,l) if t is even 

That is, 

with 

4 0  = to, 1) 
a, = ( 1 , l ) .  
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The covariate x3, is the age of the experimental material and is conceptu- 
ally a random sample from the age distribution of the population due to the 
random allocation of experimental units to treatments. In the simulated 
data of Table 1, x3, was generated by random selection from the uniform 
distribution on the interval [0,10]. In a practical application one would 
probably not know the age distribution of the experimental material but 
would be prepared to assume that x3 was distributed according to a 
continuous distribution function that has a density p 3 ( x )  which is positive 
everywhere on some known interval [0, b], there being some doubt as to 

0 how much probability mass was to the right of b. 

The response function f ( x , 8 )  must be continuous in the argument 
(x, 8); that is, if limi_,oo(x,, 6,)  = (x* ,  8 * )  (in Euclidean norm on R k " p )  
then Lim,,,f(x,, 8,) = f ( x * ,  8*). The first partial derivatives (6'/6'8,) 
f ( x , 8 )  must be continuous in (x,6), and the second partial derivatives 
( az/a8,  af?,)f(x, 0) must be continuous in (x, 6) .  These smoothness re- 
quirements are due to the heavy use of Taylor's theorem in Chapter 3. Some 
relaxation of the second derivative requirement is possible (Gallant, 1973). 
Quite probably, further relaxation is possible (Huber, 1982). 

There remain two further restrictions on the limiting behavior of the 
response function and its derivatives which roughly correspond to estima- 
bility considerations in linear models. The first is that 

has a unique minimum at 8 = d o ,  and the second is that the matrix 

1 Q =  lirn ,Fr(eo)F(eo)  
n - o o  

be non-singular. We term these the identlfcation condition and the rank 
quolijication respectively. When random sampling is involved, Kolmogorov's 
strong law of large numbers is used to obtain the limit, as we illustrate with 
Example 1 below. These two conditions are tedious to verify in applica- 
tions, and few would bother to do so. However, these conditions indirectly 
impose restrictions on the inputs x, and parameter 8' that are often easy to 
spot by inspection. Although d o  is unknown in an estimation situation, 
when testing hypotheses one should check whether the null hypothesis 
violates these assumptions. If this happens, methods to circumvent the 
difficulty are given in the next chapter. For Example 1, either H : 8: = 0 or 
H : 6," = 0 will violate the rank qualification and the identification condi- 
tion, as we next show. 
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EXAMPLE 1 (Continued). We shall first consider how the problems 
with H:  8: = 0 and H: 8$ = 0 can be detected by inspection, next con- 
sider how limits are to be computed, and last how one verifies that 
s ( 6 )  = l i rnn+m( l /n )~ - J f (x l ,  8) - f(xl, 8')]' has a unique minimum at 
8 = 8 O .  

Consider the case H : 8; = 0, leaving the case H : e,," = 0 to Problem 1. 
If 8: = 0 then 

1' 
1 
1 
1 .  

i 
1, 

F ( # )  has two columns of ones and is thus singular. Now this fact can be 
noted at sight in applications; there is no need for any analysis. It is t h ~ s  
kind of easily checked violation of the regularity conditions that one should 
guard against. Let us verify that the singularity carries over to the limit. Let 

The regularity conditions of Chapter 4 guarantee that limn ,Qn(f?) exists, 
and we shall show it directly below. Put A' =i (0,1,0, - 1). Then 

Since it is zero for every n, X'[lim,,,,Q,(8)~el~o]h = 0 by continuity of 
A'AX in A.  

Recall that { xj,) is independently and identically distributed according 
to the density p3(x3). Since it is an age distribution, there is some (possibly 
unknown) maximum attained age c that is biologically possible. Then for 
any continuous function g ( x )  we must have l:}g(x)lp3(x) dx < 00, so that 
by Kolmogorov's strong law of large numbers (Tucker, 1967) 
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Applying these facts to the treatment group, we have 

Applying them to the control group, we have 

Then 

Suppose we let Fiz(x, ,  x,) be the distribution function corresponding to 
the discrete density 

and we let F3(x,)  be the distribution function corresponding to p 3 ( x ) .  Let 
1 4 x 1  = F12(x1, x2)4(x3). Then 
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where the integral on the left is a Lebesgue-Stieltjes integral (Royden, 1968, 
Chapter 12; Tucker, 1967, Section 2.2). In this notation the limit can be 
given an integral representation 

These are the ideas behind Section 2 of Chapter 3. The advantage of the 
integral representation is that familiar results from integration theory can 
be used to deduce properties of Limits. As an example: What is required of 
f(x, 6) such that 

We find later that the existence of b ( x )  with K8/ae)/(x, e)l I; b ( x )  and 
/b(  x ) d p ( x )  < a0 is enough, given continuity of ( a / M ) f (  x, e). 

Our last task is to verify that 

has a unique minimum. Since s(8) 2 0 in general and s(eo) = 0, the 
question is: Does s(0) = 0 imply that 0 = O0? One first notes that 8: = 0 
or 8: 5 0 must be  led out, as in the former case any 8 with 8, = 0 and 
t9, + 84 = 8: + 02 will have s(e) = 0, and in the latter case any B with 
8, = 8:. 0, = 02, 0, = 0 will have s(B) = 0. Then assume that 8: + 0 and 
62 # 0, and recall that p , ( x )  > 0 on [0, c]. Now s(8) = 0 implies 

Differentiating, we have 
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Putting x = 0, we have 6364 = 6,08,", whence 

which implies 6, = 6:. We now have that 

s(e) = 0, 6,0+0,  8,"+ o a 83 = 63", 8,= 8,". 

But if 8, = 6:, 64 = 840, and 4 6 )  = 0, then 

which implies 6, = 6; and 6, = 6;. In summary 

As seen from Example 1, checking the identification condition and rank 
qualification is a tedious chore to be put to whenever one uses nonlinear 
methods. Uniqueness depends on the interaction of f ( x ,  6 )  and p ( x ) ,  and 
verification is ad hoc. Similarly for the rank qualification (Problem 2). As a 
practical matter, one should be on guard against obvious problems and can 
usually trust that numerical difficulties in computing 8 will serve as a 
sufficient warning against subtle problems, as seen in the next section. 

An appropriate question is how accurate are probability statements 
based on the asymptotic properties of nonlinear least squares estimators in 
applications. Specifically one might ask: How accurate are probability 
statements obtained by using the critical points of the r-distribution with 
n - p degrees of freedom to approximate the sampling distribution of 

Monte Carlo evidence on this point is presented below using Example 1. 
We shall accumulate such information as we progress. 

EXAMPLE I (Continued). Table 3 shows the empirical distribution of f, 
computed from 5000 Monte Carlo trials evaluated at the critical points of 
the r-distribution. The responses were generated using the inputs of Table 1 
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Tab& 3. Empirical DisMMon of 6 Compared with the I-Distribution. 
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Tabular Values Empirical Distribution 
Std. 

C P ( t  s c )  P(i, s c )  P(?, s c )  P(r3 s c )  P(?, 5 c )  Error 

- 3.707 .OOO5 
-2.779 ,0050 
-2.056 .0250 
- 1.706 .0500 
-1.315 .loo0 
-1.058 .1500 
-0.856 .2000 
-0.684 ,2500 
0.0 . so00 
0.684 .7500 
0.856 .8OOO 
1.058 ,8500 
1.315 .9OOO 
1.706 ,9500 
2.056 .9750 
2.779 .9950 
3.707 .9995 

Source: Gallant (197Sd). 

.0010 
,0048 
0270 
.0522 
.lo26 
3 5 2  
.20% 
.2586 
S152 
.7558 
.8072 
.8548 
,9038 
,9552 
.!TI72 
.9950 
,9998 

.0010 

.0052 

.0280 

.05# 
,1030 
.1420 
,1900 
,2372 
.4800 
.7270 
,7818 
.8362 
.8914 
.9498 
.9780 
.9940 
.9996 

.oooo 

.0018 

.0140 

.0358 

.0866 

.la8 

.1896 
,2470 
.4974 
.7430 
.7872 
.8346 
,8776 
.9314 
.9584 
.9852 
.9962 

.oO02 
,0050 
.(I270 
,0494 
.0998 
.1584 
.2092 
.2638 
.5196 
,7670 
.8068 
,8536 
.9004 
.9486 
.9728 
.9936 
.9994 

.0003 

.0010 

.0022 

.003 1 

.0042 
,0050 
,0057 
.0061 
.0071 
.0061 
.0057 
.0050 
.0w2 
,0031 
.0022 
.0010 
.0003 
- 

with the parameters of the model set at 

o o =  (0,1,-1,-.5)'  

u 2  = .001. 

The standard errors shown in the table are the standard errors of an 
estimate of the probability P ( t ' <  c )  computed from 5000 Monte Carlo 
trials assuming that f follows the r-distribution. If that assumption is 
correct, the Monte Carlo estimate of P [ f  < c ]  follows the binomial distribu- 
tion and has variance P(r c c ) P ( r  > c)/SOOO. 

Table 3 indicates that the critical points of the r-distribution describe the 
sampling behavior of ( reasonably well. For example, the Monte Carlo 
estimate of the Type I error for a two tailed test of H:  02 = -1 using the 
tabular values f 2.056 is .0556 with a standard error of .0031. Thus it seems 
that the actual level of the test is close enough to its nominal level of .05 for 
any practical purpose. However, in the next chapter we shall encounter 

D instances where this is definitely not the case. 
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PROBLEMS 

1. Show that H: 8: = 0 will violate the rank qualification in Example 1. 
2 Show that Q = l imm-m(l /n)F'(8)F(8)  has full rank in Example 1 if 

0: # 0 and 82 # 0. 

4. METHODS OF COMPUTING LEAST SQUARES ESTIMATES 

The more widely used methods of computing nonlinear least squares 
estimators are Hartley's (1961) modified Gauss-Newton method and the 
Levenberg-Marquardt algorithm (Levenberg, 1W; Marquardt, 1963). 

The Gauss-Newton method is based on the substitution of a first order 
Taylor series approximation to f ( 8 )  about a trial parameter value 8, in the 
formula for the residual sum of squares SSE(8). The approximating sum of 
squares surface thus obtained is 

SSE,(O) = Ilv - f (W - F(O,)V - 8,) It'. 
The value of the parameter minimizing the approximating sum of squares 
surface is (Problem 1) 

9, = 8 ,  + [F'(QW,)I -lF'(@," - f ( 8 T ) I .  

It would seem that 8, should be a better approximation to the least 
squares estimator 6 than 6, in the sense that SSE(BM) < SSE(8,). These 
ideas are displayed graphically in Figure 1 in the case that 8 is univariate 

As suggested by Figure 1, SSE,(6) is tangent to the curve SSE(8) at the 
point 8,. The approximation is first order in the sense that one can show 
that (Problem 2) 

( P  = 1). 

ISSE(8) - SSET(8)l 
= O  11' - eTll 

lim 
118 -@dl--. 0 

but not second order, since the best one can show in general is that 
(Problem 2) 

ISSE(d) - SSET(8)I 
lim sup < 00. 
6 -+O 118 - e,ll< 6 lie - eT112 

It is not necessarily true that 8, is closer to ŝ  than 8, in the sense that 
SSE(d,)  5 SSE(6,). This situation is depicted in Figure 2. 
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Figure 1. The linearized approximation to the residual sum of squares surface, an adequate 
approximation. 

But as suggested by Figure 2, points on the line segment joining 8,  to 6, 
that are sufficiently close to 8 ,  ought to lead to improvement. This is the 
case, and one can show (Problem 3) that there is a A* such that all points 
with 

e = 8, + ~ ( 8 ,  - e,) o < x < A* 

S S E  

1 I I  
I I 1  

8 6, 
t 

8, 

Figure 2. The linearized approximation to the residual sum of squares surface, a p r  
approximation. 
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satisfy 

SSE( 0)  < SSE( &). 

These are the ideas that motivate the modified Gauss-Newton algorithm 
which is as follows: 

0. Choose a starting estimate 8,. Compute 

Find a A, between 0 and 1 such that 

SSE( 8, + A@,) < SSE( 0,) .  

1. Let 8, = e, + A,D,. Compute 

Find a A, between 0 and 1 such that 

SSE( 6,  + A I D , )  c SSE( el). 
2. Let e, = e, + A,D, ,  . . . . 

There are several methods for choosing the step length A ,  at each 
iteration, of which the simplest is to accept the first A in the sequence 

1,.9,.8,.7,.6, t ,  i . 4 ,  .. 
for which 

SSE(8, f AD,) < SSE(0,) 

as the step length A,. This simple approach is nearly always adequate in 
applications. Hartley (1961) suggests two alternative methods in h s  article. 
Gill, Murray, and Wright (1981, Section 4.3.2.1) discuss the problem in 
general from a practical point of view and follow the discussion with an 
annotated bibliography of recent literature. Whatever rule is used, it is 
essential that the computer program verify that SSE(8, + A,D,) is smaller 
than SSE(8,) before taking the next iterative step. This caveat is necessary 
when, for example, Hartley's quadratic interpolation formula is used to 
find A,.  
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The iterations are continued until terminated by a stopping rule such as 

and 

where e > 0 and T > 0 are preset tolerances. Common choices are c = 
and T = lo-'. A more conservative (and costly) approach is to allow the 
iterations to continue until the requisite step sue A, is so small that 
the fixed word length of the machine prevents differentiation between the 
values of SSE(@, + AIDi) and SSE(6,). This happens sooner than one might 
expect and, unfortunately, sometimes before the correct answer is obtained. 
Gill, Murray, and Wright (1981, Section 8.2.3) discuss termination criteria 
in general and follow the discussion with an annotated bibliography of 
recent literature. 

Much more difficult than deciding when to stop the iterations is de- 
termining where to start them. The choice of starting values is pretty much 
an ad hoc process. They may be obtained from prior knowledge of the 
situation, inspection of the data, grid search, or trial and error. A general 
method of finding starting values is given by Hartley and Booker (1965). 
Their idea is to cluster the independent variables { x,} into p groups 

x i j  j - 1 , 2  ,..., ni  i = 1 , 2  ,..., p 

and fit the model 

yi = A( 6 )  + Z1 

where 

Yl = - c Yl, 

"I 1-1 

for i = 1 ,2 , .  . . , p. The hope is that one can find a value e, that solves the 
equations 

v , - f ; ( 6 )  i = 1.2 ,,.., p 
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exactly. The only reason for this hope is that one has a system of p 
equations in p unknowns; but as the system is not a linear system, there is 
no guarantee. If an exact solution cannot be found, it is hard to see why 
one is better off with this new problem than with the original least squares 
problem 

. n  
1 

minimize SSE(6) = ; [ yf - f(x,, (?>I2. .. 
r - 1  

A simpler variant of their idea, and one that is much easier to use with a 
statistical package, is to select p representative inputs xf, with Corre- 
sponding responses yf, and then solve the system of nonlinear equations 

i = 1,2, . . . , p  

for 8. The solution is used as the starting value. Even if iterative methods 
must be employed to obtain the solution, it is still a viable technique, since 
the correct answer can be recognized when found. This is not the case in an 
attempt to minimize S S 4 6 )  directly. As with Hartley and Booker, the 
method fails when there is no solution to the system of nonlinear equations. 
There is also a risk that this technique can place the starting value near a 
slight depression in the surface S S 4 8 )  and cause Convergence to a local 
minimum that is not the global minimum. It is sound practice to try a few 
perturbations of So as starting values and see if convergence to the same 
point occurs each time. We illustrate these techniques with Example 1. 

EXAMPLE 1 (Continued). We begin by plotting the data as shown in 
Figure 3. A “1” indicates the observation is in the treatment group, and a 
“0” that it is in the control group. Looking at the plot, the treatment effect 
appears to be negligible; a starting value of zero for 6, seems reasonable. 
The overall impression is that the cufve is concave and increasing. That is, 
it appears that 

and 

Since 
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SAS St.t.wnt¶r 
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OATA WOIIKO1. SET E W L E 1 ;  
PXl-'O's 16 Xl -1  THEN P X l m ' l ' ;  
PROC PLOr DATAIwo(KO1i 
PLOT W S - P X l  / HAXIS - 0 TO 10 BY 2 VPOS = 34: 

Output: 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  

PLOT OF y+X3 S W O L  IS VALUE OF PXl 

" I  

i 
' * O  i 
0.8 O'' t i 1 

0 

0 
0 0  1 0 0 0  

0 0 1 1  1 1 

0 1  0 1 
0 

1 1  1 t 

0 

and 

we see that both 8, and 8, must be negative. Experience with exponential 
models suggests that what is important is to get the algebraic signs of the 
starting values of t$ and 8, correct and that, within reason, getting 
the correct magnitudes is not that important. Accordingly, take - 1  as the 
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starting value of both e, and 0,. Again, experience indicates that the 
starting values for parameters that enter the model linearly such as 8, and 
8, are almost irrelevant, within reason, so take zero as the starting value of 
S,. In summary, inspection of a plot of the data suggests that 

6 = (o,o, -1, -1)’ 

is a reasonable starting value. 
Let us use the idea of solving the equations 

for some representative set of inputs 

x,, i = 1 , 2  ,..., p 

to refine these visual impressions and get better starting values. We can 
solve the equations by minimizing 

using the modified Gauss-Newton method. If the equations have a solution, 
then the starting value we seek will produce a residual sum of squares of 
zero. The equation for observations in the control group (xl = 0) is 

If we take two extreme values of x3 and one where the curve is bending, we 
should get a good fix on values for 8,,8,, 8,. Inspecting Table 1, let us select 

xI4 = (0, 1,0.07)’ 

x6 = (0,l .  1.82)’ 
x 2  = (0,1,9.86)’. 

The equatic for an observation in the treatmen group (x, = 1) is 

f(x, e )  = 8, + e, + 8.,&3. 

If we can find an observation in the treatment group with an x3 near one of 
the x3’s that we have already chosen, then we should get a good fix on 8, 
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as S C 8 t . W n t S :  

DATA wbRK011 SET E W L C 1 ;  
I f  1-2 OR 1-6 OR 1-11 OR 7-14 THEN OUTPUT; DELETE; 
PROC MLIN OATA-01 )IETMOOdAVSS ITEA-60 CONVEROEIICE=l.OE-5; 
PARm 11-0 12-0 130-1 T4--lj 
I O E L  Y I T I * X ~ X ( T ~ * X ~ * T ~ * E X P ( T ~ * X ~ ) ;  
D€R.Tl=Xl; DER.12-XZ; DER.T3-fl*X3*EXP(f3*XJ); DER.T4=EXP(T3*X3); 
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output: 

S ~ A T I S T I C A L  A N A L Y S I S  S Y S T E ~  

HON-LIMEAR LEAST W M E S  ITERATIVE PHASE 

DEPENDENT VARIABLEr Y 

ITERATION 11 12 
1 4  

0 O.ODMK)OE*OO 0.000000€*00 
-1 .o0000000 

1 -0.04866000 1.038696B9 
-0.610?4141 

2 -0.04866000 1.0387(1674 
-0.6132B103 

3 -0.04066000 1.03883446 
-0.61361959 

4 -0.04866000 1.03883511 
-0.6136226B 

6 -0.04066000 1.03883544 
-0.61362209 

METHM): OAUS!5-NEWTOR 

13 

-1 * 00000000 

- 0 . e z 6 ~ 5 i  

-0.72976636 

-0.73186416 

-0.13791851 

-0.13191862 

1 

RESIDUAL SS 

6.39101160 

O.OO044694 

0.00000396 

o.Oo0ooooo 

0.00000000 

0.00000000 

NOTE: COWVERQEME CRITERION M T .  

Figure 4. Computation of starting values for Example 1 .  

that is independent of whatever blunders we make in guessing 8,, 8,, and 
8,. The eleventh observation is ideal: 

x , ~  = (1,1,9.86)’. 

Figure 4 displays SAS code for selecting the subsample x2, x6, xl lr  x , ~  
from the original data set and solving the equations 

y ,  = f(x,, e) I = 2 , 6 , i i ,  14 

by minimizing 
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using the modified Gauss-Newton method from a starting value of 

6 = (O,O, -1, -1)'. 

The solution is 

SAS code using this as the starting value for computing the least squares 
estimator with the modified Gauss-Newton method is shown in Figure 5a 
together with the resulting output. The least squares estimator is 

- 0.02588970 
1.01567967 

- 0.50490286 
The residual sum of squares is 

SSE( 8 )  = 0.03049554 

and the variance estimate is 

s2 = = 0.00117291. 
n - p  

As seen from Figure 5 4  SAS prints estimated standard errors di and 
correlations b,,. To recover the matrix s2c" one uses the formula 

1 1 1  ~ ~ 6 , ~  5 aiajpij. 

For example, 

s 'cI2 = (0.01262384)(0.00993793)( - 0.627443) 
= -0.oooO78716. 

The matrices s 'c^ and c" are shown in Figure 56. 0 

The obvious approach to finding starting values is grid search. When 
looking for starting values by a grid search, it is only necessary to search 
with respect to those parameters which enter the model nonlinearly. The 



SAS Stat(I(IMts: 

POW MLIN OATA~WAIIPLEl RITMOOrOAUSS ITER-60 COMVEROfl(CE.l.OE-13; 
PAWS T1--0.01~6 12-1.03084 13=-0.73792 T4~-0.61362; 
(IODEL Y=Tl*XltT2*X2tT4*EXP T3*X3 
OER.Tl=Xl; OER.TZ-X2; DER.I3.14*~~*EXP113*XJ); OER.T4IFXP(T3*X3); 
Output: 

S T A T I S T I C A L  A N A L Y S ~ S  S Y S T E ~  

MOM-LINEAR L W T  sQuu1ES ITERATIVE PHASE 

DEPENDENT VARIABLE: Y W E T r n r  o*uss-NEwToIJ 

ITERATION 11 12 13 R E S I W U  SS 
14 

0 -0.041166000 1.03804000 -0.73792000 0.06077631 

1 -0.02432899 1.00966922 -1.OlS71093 0.03236162 

2 -0.02673470 1.01S31S00 -1.llS10448 0.03049761 

3 -0.02S80979 1.01667999 -1.11668229 O.WO49664 

1669767 0.03049684 

-0. 61362OOO 

-0.49140162 

-0.60467486 

-0.60490 168 

4 -0.02688W9 1.01667966 -1. 

6 -0.02W8970 1.01667987 -1. 

6 -0.02188970 1.01617WT -1. 

-0.5O49O291 

-0.600190286 

-0. ~400216 

NOTE: CONVLRCENCE CRITERION M T .  

1669712 0.03049664 

IS69714 0.O3049S64 

1 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  2 
MOM-LINEAR LEAST SQUMES M Y  STATISTICS DEPENDENT VARIMLE Y 

SOVRCE DF SunoFSQuARES MAN SOCMRE 
REOR€SSIION 4 26.34694211 
RESIWAL 26 0.03049661 
WICaRECTEO TOTAL 30 26.37643764 

6.686466S3 
0.00117291 

(CORRECTED TOTAL) 29 0.718%291 

P-TER CSTInATE ASmPTOTIC ASYMPTOTIC 96 % 
STD. ERROR CONFIDENCE INTERVAL 

L W R  WF?R 

12 1.01S61917 0.00993793 0.99626213 1.03610721 

t4 -0.60490206 0.02666721 -0.567641S9 -0.46216113 

11 -0.02w~a970 0.01262384 -0.05183818 0.00006a7i 

73 -1.115669714 0.16364199 -1.46186906 -0.7r95344z 

ASVWTOTIC CORRELATtW MATRIX W THE PARMETERS 

11 12 13 14  

11 l.OOOOOO -0.827443 -0.08S786 -0.136140 
12 -0.827443 1.000000 0.373492 -0.007261 
13 -0.086786 0.373492 1.000000 0.661633 
14 -0.136140 -0.007261 0.661633 1.000000 

Figwe So. Example 1 fitted by the modified CawNewton method. 

35 
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S2C 

COL 1 COL 2 c o L 3  COL 4 

ROW 1 0.00015936 -7.07160-05 -0.00017711 -4.40950-01 
ROW 2 -7.8716D-05 9.8762D-OS 0.00060702 -1.05110-06 
ROW 3 -0.00017711 0.00060702 0.026746 0.00236621 
ROW 4 -4.40950-06 -1.85140-06 0.00235621 0.00066029 

c 

COL 1 m . 2  COL 3 C M  4 

ROW 1 0.13687 -0.057112 -0.15100 -0.037594 
R W  2 -0.067112 0.004203 0.61764 -0.00167848 
ROW 3 -0.15100 0.61751 22.8032 2.ooee7 
ROW 4 -0.037594 -o.oois~a~a 2.00887 0.~6125 

Figure Sb. The matrices s2C and C for Example 1. 

parameters which enter the model linearly can be estimated by ordinary 
multiple regression methods once the nonlinear parameters are specified. 
For example, once 6, is specified, the model 

is linear in the remaining parameters 6,, O,, O,, and these can be estimated 
by linear least squares. The surface to be inspected for a minimum with 
respect to grid values of the parameters entering nonlinearly is the residual 
sum of squares after fitting for the parameters entering linearly. The trial 
value of the nonlinear parameters producing the -minimum over the grid 
together with the corresponding least squares estimates of the parameters 
entering the model linearly is the starting value. Some examples of plots of 
this sort are found toward the end of this section. 

The surface to be examined for a minimum is usually locally convex. 
This fact can be exploited in the search to eliminate the necessity of 
evaluating the residual sum of squares at every point in the grid. Often, a 
direct search with respect to the parameters entering the model nonlinearly 
which exploits convexity is competitive in cost and convenience with either 
Hartley’s or Marquardt’s methods. The only reason to use the latter 
methods in such situations would be to obtain the matrix [ F ’ ( d ) F ( 8 ) ] - ’ ,  
which is printed by most implementations of either algorithm. 
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Of course, these same ideas can be exploited in designing an algorithm. 
Suppose that the model is of the form 

f ( P *  a) = A ( f  )B  

where p denotes the parameters entering nonlinearly, A ( p )  is an n by K 
matrix, and /I is a K-vector denoting the parameters entering linearly. 
Given p, the minimizing value of /3 is 

To soive ths minimization problem one can simply view 

as a nonlinear model to be fitted to y and use, say, the modified Gauss- 
Newton method. Of course, computing 

is not a trivial task, but it is possible. Golub and Pereyra (1973) obtain an 
analytic expression for ( a / a p ’ ) / ( p )  and present an algorithm exploiting it  
that is probably the best of its genre. 

Marquardt’s algorithm is similar to the Gauss-Newton method in the use 
of the sum of squares SSE,(8) to approximate SSE(0). The difference 
between the two methods is that Marquardt’s algorithm uses a ridge 
regression improvement of the approximating surface 

instead of the minimizing value 6,. For all 6 sufficiently large 19, is an 
improvement over 8, [SSQ8B,)  is smaller than SSE(fl,)] under appropriate 
conditions (Marquardt, 1963). This fact forms the basis for Marquardt’s 
algorithm. 
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The algorithm actually recommended by Marquardt differs from that 
suggested by this theoretical result in that a diagonal matrix S with the 
same diagonal elements as F’(B,)F(B,) is substituted for the identity 
matrix in the expression for 0,. Marquardt gives the justification for this 
deviation in his article and also a set of rules for choosing S at each 
iterative step. See Osborne (1972) for additional comments on these points. 

Newton’s method (Gill, Murray, and Wright, 1981, Section 4.4) is based 
on a second order Taylor series approximation to SSE(8) at the point 8,: 

a SSE( 0 )  SSE( 0,) + ( mSSE(  8,))( 8 - 0 , )  

The value of 8 that minimizes this expression is 

As with the modified Gauss-Newton method, one finds A, with 

S S E [ B ,  + hT(BM - e,)]  < SSE(8,) 

and takes 8 = 8 ,  + A,(O, - 8,) as the next point in the iterative sequence. 
Now 

where 

From this expression one can see that the modified Gauss-Newton method 
can be viewed as an approximation to the Newton method if the term 

is negltgible relative to the term Ft(8,)F(8,)  for 8, near 4-say, as a rule 
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of thumb, when 
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P P  2 1/2 [ r -1  i i -1 / -1  c c ( 4 & f t X A ) ]  

is less then the smallest eigenvalue of F‘($ )F( l ) ,  where 8, = yt - f ( x , ,  6). 
if this is not the case, then one has what is known as the “large residual 
problem.” In this instance it is considered sound practice to use the Newton 
method, or some other second order method, to compute the least squares 
estimator, rather than the modified Gauss-Newton method. in most in- 
stances analytic computation of ( a 2 / a W e ’ ) f ( x ,  0) is quite tedious and 
there is a considerable incentive to try and find some method to approxi- 
mate 

without being put to this bother. The best method for doing this is probably 
the algorithm by Dennis, Gay, and Welxh (1977). 

Success, in terms of convergence to 6 from a given starting value, is not 
guaranteed with any of these methods. Experience indicates that failure of 
the iterations to converge to the correct answer depends both on the 
distance of the starting value from the correct answer and on the extent of 
overparametrization in the response function relative to the data. These 
problems are interrelated in that more appropriate response functions lead 
to greater radii of convergence. When convergence fails, one should try to 
find better starting values or use a similar response function with fewer 
parameters. A good check on the accuracy of the numerical solution is to 
try several reasonable starting values and see if the iterations converge to 
the same answer for each starting value. It is also a good idea to plot actual 
responses yI against predicted responses 9, = f ( x I ,  8); if a 45’ line does not 
obtain then the answer is probably wrong. The following example illustrates 
these points. 

EXAMPLE 1 (Continued). Conditional on p = O,, the model 

f( x, e) = elx,  + eZx2 + 8 4 ~ e 3 x 3  

has three parameters /3 = (el, 82, e4)’ that enter the model linearly. Then as 
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Table 4. Perlonuance of the Modified Gauss-Nenton Method. 

Least squares estimate Modified Gauss-Newton 
True value iterations from a 
of 6,. 6, d2 6 3  44 2 start of 6, - .1 

- .5 -.0259 1.02 -1.12 -505 .00117 4 
- .3  -.Om 1.02 -1.20 -.305 .00117 5 
- .1 -.0265 1.02 -1.71 -.lo8 .00118 6 
-.05 -.0272 1.02 -3.16 -.W1 .00117 7 
-.01 -.0272 1.01 -0.0452 ,00758 .00120 
-.005 -.0268 1.01 -0.0971 ,0106 .00119 
-.001 -.0266 1.01 -0,134 .0132 ,00119 202 
0 -.0266 1.01 -0.142 ,0139 .00119 69 

b 

b 

Source: Gallant (1977a). 
“Parameters other than 0, fixed at 8, 
bNgoritb.m failed to converge after 500 iterations. 

0, 19, - 1, 8, - -1, o2  - ,001. 

remarked earlier, we may write 

where a typical row of A ( p )  is 

and treat this situation as a problem of fitting / ( p )  to y by minimizing 

As p is univariate, 6 can easily be found simply by plotting S S E ( p )  against 
p and inspecting the plot for the minimum. Once fi is found, 

gives the values of the remaining parameters. 
Figure 6 shows the plots for data generated according to 

y, 3: 4 x l ,  + Bzxz, + 84e83x3i + e, 

with normally distributed errors, input variables as in Table 1, and parame- 
ter settings as in Table 4. As #, is the only parameter that is varying, it 



SSE SSE 

634 = - .3  

SSE SSE 

M4= -.l f .04 

-c I 

.. a - 20 "3 - 0 -20 

z+05 1:' ,, @4 = 0 1; 
.03 * @, -20 0 ($3 -20 0 

Figure 6. Residual sum of squares plotted against trial values for 8, for various true values 
of 8,. 

41 
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serves to label the plots. The 30 errors were not regenerated for each plot: 
the same 30 were used each time, so that 0, is truly all that varies in these 
plots. 

As one sees from the various plots, the fitting of the model becomes 
increasingly dubious as le,l decreases. Plots such as those in Figure 3 do not 
give any visual impression of an exponential trend in x j  for l6,l smaller 
than 0.1. 

Table 4 shows the deterioration in the performance of the modified 
Gauss-Newton method as the model becomes increasingly implausible-as 
le,l decreases. The table was constructed by Anding the local minimum 
nearest p = 0 (8 = 0)  by grid search over the plots in Figure 6 and setting 
8, = j3 and (61, d2, 14) = 1. From the starting value 

,Oi = tf - 0.1 i = 1,2,3,4 

an attempt was made to recompute this local minimum using the modified 
Gauss-Newton method and the following stopping rule: Stop when two 
successive iterations, and (,+$, do not differ in the fifth significant 
digit (properly rounded) of any component. As noted, performance de- 
teriorates for small le41. 

One learns from this that problems in computing the least squares 
estimators will usually accompany attempts to fit models witb superfluous 
parameters. Unfortunately one can sometimes be forced into this situation 
when attempting to formally test the hypothesis H : 64 - 0. We shall return 

0 to this problem in the next chapter. 

PROBLEMS 

1. Show &hat 

is a quadratic function of 6 with minimum at 

One can see these results at sight by applying standard linear least 
squares theory to the linear model “ y ”  = XP + e with “y” = y - 
f ( e , )  + F(e,)e,, x = w,), a d  B = 8. 



METHODS OF COMPUTING LMST SQUARES ESTIMATES 

2. Set forth regularity conditions (Taylor's theorem) such that 

SSE( 8) = SSE( 8,) + [ 3 SSE( 8,)]'( 8 - 8,) 

43 

a 

Show that 

ssE(8) - SSE,(B) = ( e  - 8 , ) 2 ( 8  - 8, )  + o(lle - eTl13) 
where A is a symmetric matrix. Show that l(8 - @,) 'A(@ - 6,) I/ll8 - 
&I{' is less than the largest eigenvalue of A in absolute value, 
maxlh,(A)I. Use these facts to show that 

= o  (SSE( d )  - SSE,( 8 )  1 
I t e  - eTll 

lim 
II#-@rtId 0 

and 

3. Assume that 8, is not a stationary point of SSE(8); that is, 
( d / a 8 ) S S E ( 8 , )  # 0. Set forth regularity conditions (Taylor's theorem) 
such that 

SSE(B,+ h(8 ,  - @,>I 
a 

= SSE(8,) + h [ a S S E (  @,)]'( 8,  - 6,) -k o( A'). 

Let F, = F( d,) ,  8, = y - f ( B , ) ,  and show that this equation reduces 
to 

There must be a A* such that 
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for all X with 0 < X < A* (why?). Thus 

s s ~ [  8,  + A (  8,  - e,)]  i SSE( 8,) 

for all X with 0 < X c A*. 
(Convergence of the modified Gauss-Newton method.) Supply the 
missing details in the proof of the following result. 

4. 

THEOREM. Let 

Conditions: There is a convex, bounded subset S of RP and 8, interior 
to S such that: 

1. ( a / a @ ) f ( x , .  8 )  exists and is continuous over Sfor t = 1,2 , .  . . , n; 
2. 8 E S implies the rank of F ( 8 )  is p; 
3. Q(8,) < 0 = inf(Q(8): 8 a boundary point of S) ;  
4. there does not exist 8’, 8” in S such that 

a a aQ(8’) = 3Q(8”)  = 0 and Q ( 8 ’ )  = Q ( 8 ” ) .  

Construction : Construct a sequence { 0, ) r- , as follows: 

0. Compute D, = [F’(8 , )F(8 , ) ] - ’F’(8 , ) [y  - f ( 8 , ) ] .  Find A, which 
minimizes Q( 8, + X Do) over 

A. = { X : O  5 X 5 1,0, + ADo E S } .  

1. Set 8, = 8, + X,D,. Compute D, = ( ~ ’ ( e , ) ~ ( e , ) ]  l F ’ ( e , ) ( y  - 
j ( 8 , ) ] .  Find A, which minimizes Q(8,  + AD,)  over 

A, = { h : O  ~r; X 5 1,8, + AD, E S) 

2. Set 0, = 8, + X,D, . .  . . 
Conclusions. Then for the sequence ( 8 , ) ~ ~ ,  it follows that: 

1. 8, is an interior point of S for a = 1,2 , .  . . . 
2. The sequence (@=} converges to a limit 8* which is interior to S. 
3. ( a / a o ) Q ( e * )  = 0. 
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h f .  We establish conclusion 1. The conclusion will follow by induction 
if we show that 8, interior to S and Q(8,) < Q imply that A, minimizing 
Q(8, + AD,) over A, exists and em+, is an interior point of S. Let 8, E S o  
and consider the set 

s^= { e E  S: 8 = e, + A D , , O  I;A s 1 ) .  

ŝ  is a closed, bounded line segment contained in S(why?). There is a 8’ in 
ŝ  minimizing Q over ŝ  (why?). Hence, there is a A, (8’  = 8, + A,D,l  
minimizing Q(8, + XDd over A,. Now 8‘ is either an interior point of S 
or a boundary eoint of S. By Lemma 2.2.1 of Blackwell and Girshick (1954, 
p. 32) S and S have the same interior points and boundary points. In 8‘ 
were a boundary point of S,  we would have 

Q s QV’) Q@,) c 
which is not possible. Then 8‘ is an interior point of S. Since 8,+, = 8’, we 
have established conclusion 1. 

We establish conclusions 2, 3. By construction 0 5 Q ( 8 , + , )  5 Q(8,); 
hence Q(8,) -+ Q* as a + 00. The sevence { 8,) must have a convergent 
subsequence { 8,,}&!”-1 with limit 8* E S (why?). Q(BB) -+ Q(8*)  so Q ( 8 * )  
= Q* (why?). 8* is either an interior point of For a boundary point. The 
same holds for S, as we saw above. If 8* were a boundary point of S,  then 
0 5 Q ( e * )  5 Q(eo) ,  which is impossible because Q(8,) < Q. So 8* is an 
interior point of S.  

The function 

is continuous over S (why?). Thus 

lim D,, = lim D(8 , )  = D ( 8 * )  = D* 
8 4 -  8 -  m 

Suppose D* # 0, and consider the function q ( A )  = Q(8* + AD*) for 
A E [ - q, q], where 0 < q s 1 and 8* f qD * are interior points of S. Then 

q’(0) = ;28;Q(8* a + AD*)D*  
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(why?). Choose c > 0 so that c < -q’(O). By the definition of derivative, 
there is a A* E (0, iq) such that 

Q(8*  + X*D*) - Q ( e * )  = q ( A * )  - q(0) 

< [ q ’ ( O )  + CIA*. 
Since Q is continuous for 6 E S, we may choose y > 0 such that - y  > 
[ q’(0) + €]A* and there is 8 > 0 such that 

implies 

Q(8,  + A*D) - Q(6*  + A*D*) < y .  

Then for all B sufficiently large we have 

Q(BB + A*DB) - Q ( e * )  < [ q ’ ( O )  + €]A* + Y = -c‘. 

Now for /? large enough 8, + A*DB is interior to S, so that A* E Aa and we 
obtain 

Q(@p+r) - Q ( e * )  < - c 2 -  

This contradicts the fact that acea) -+ Q ( e * )  = Q* as j3 + 00; thus D* 
must be the zero vector. Then it follows that 

Given any subsequence of { e n } ,  we have by the above that there is a 
convergent subsequence with limit point 6’ E S such that 

and 

Q ( 8 ‘ )  = Q* = Q ( S * ) .  

BY hypothesis 4, 8’ = e*, SO that en -+ 8’ as u -+ o?. 
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Assuming that the data follow the model 

y -f(eo) + e e - N , , ( o , o ~ I )  

consider testing the hypothesis 

H: h(6O)  = o against A :  h ( e o )  # o 
where h ( 6 )  is a once continuously differentiable function mapping R P  into 
R Q  with Jacobian 

of order q by p. When H ( 8 )  is evaluated at 8 = 8 we shall write fi, 
fi = H ( 8 )  

and at 6 = 8’ write H, 

H = H (  6’) 

In  Chapter 4 we shall show that h ( 4 )  may be characterized as 

h ( 8 )  =E h(6’)  + N ( F ’ F ) - - ’ F ’ e  + op 

where, recall, F = ( 6’/a6’)f(6°). Ignoring the remainder term, we have 

h ( 8 )  A N , [ h ( B O ) , u 2 H ( F ’ F ) - ’ H ’ ]  

whence 

h ’ ( B ) [ H ( F ’ F ) - l H q  -‘A(&) 
U 2  

is (approximately) distributed as the noncentral chi-square distribution 
(Section 7) with q degrees of freedom and noncentrality parameter 

h q e o ) [  H ( F ‘ F )  - ‘ H I ]  - ‘ h ( e o )  
h -  

20 
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Recalling that to within the order of approximation op(l/n), ( n  - p)s2/a2 
is distributed independently of 6 as the chi-square distribution with n - p 
degrees of freedom, we have (approximately) that the ratio 

follows the noncentral &distribution (see Appendix, Section 7 of this 
chapter) with q numerator degrees of freedom, n - p denominator degrees 
of freedom, and noncentrality parameter A; denoted as F’(q ,  n - p, A). 
Canceling ldce terms in the numerator and denominator, we have 

h #( 8)  1 H( F ’F ) - ‘H # ] - lh ( 6) - F ’ ( q ,  n - p ,  A )  
(P2) 

In applications, estimates B and c  ̂ must be substituted for H and (F’F) . . ’ ,  
where, recall, c = [F’(&)F(I)]-’.The resulting statistic 

h’( C)( B2&) - ‘h  ( I )  W -  
4s 

is usually called the Wald test statistic. 
To summarize this discussion, the Wald test rejects the hypothesis 

when the statistic 

h’(&)( BCB’) - ‘ h  (6) W =  
4s 

exceeds the upper a x 100% critical point of the F-distribution with q 
numerator degrees of freedom and n - p denominator degrees of freedom, 
denoted as F 1 ( 1  - a; q, n - p). We illustrate. 

EXAMPLE I (Continued). Recalling that 

consider testing the hypothesis of no treatment effect, 

H :  8, = 0 against A : 6, f; 0.  
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For this case 
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h ( 8 )  = 8, 
a 

H ( 8 )  = mh(8) = (1,0,0,0) 

A = mh(8) = (1,0,0,0) 

h (6) = - 0.02588970 (from Fig. 5 0 )  

a 

H&’ = cIll = 0.13587 

s 2  = 0.00117291 
q - 1  

(from Fig. 56) 

(from Fig. 5 4 )  

h’( 8)(  Hell t )  - h ( 8 )  
PZ 

W =  

- ( -0.02588970)(0.13587) -’( - 0.02588970) 

= 4.2060. 
1 x 0.00117291 

- 

The upper 5 %  critical point of the F-distribution with 1 numerator degree 
of freedom and 26 5 30 - 4 denominator degrees of freedom is 

F--’ (  .95; 1,26) = 4.22 

so one fails to reject the null hypothesis. 

from the output shown in Figure 5 a  as 
Of course, in this simple instance one can compute a t-statistic directly 

- 0.025881970 
0.01262384 t =  

= - 2.0509 

and compare the absolute value with 

t.”(.975; 26) = 2.0555. 0 

In simple examples such as the proceeding, one can work directly from 
printed output such as Figure 5a. But anything qofe,complicated requires 
some programming effort to compute and invert HCH’. There are a variety 
of ways to do this; we shall describe a method that is useful pedagogically, 
as it builds on the ideas of the previous section and is easy to use with a 
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statistical package. It also has the advantage of saving the bother of looking 
up the critical values of the F-distribution. 

Suppose that one fits the model 

e . = @ + u  

by least squares and tests the hypothesis 

H: g/3 = h ( d )  against A :  fi/3 ;+ h ( 8 ) .  

The computed F-statistic will be 

but since 

a 
0 = a S S E ( B )  = -222 

we have 

0 = ( $ I $ )  -12s = /j 

and the computed F-statistic reduces to 

h@)(kefiy1h(@ W =  
qs 

Thus, any statistical package that can compute a linear regression and test a 
linear hypothesis becomes a convenient tool for computing the Wald test 
statistic. We illustrate these ideas in the next example. 

EXAMPLE 1 (Continued). Recalling that the response function is 

f (x ,  e)  = e,xl + e2x2 + @4ee~x3 

consider testing 

or equivalently 

H : 6,B4ee3 = 4 against A : 8,6,eB3 # 4. 
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We have 
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h ( 6 )  = ( -  1.11569714)( -0.504W286)e-'."56W'4 - 0.2 
= - 0.0154079303 (from Fig. 5a) 

A (a /ae / ) i r ( t f )  
= (O,O, 0.0191420895, -0.365599176) 

(from Fig. 5a)  

(from Fig. 7) 

(from Fig. 5a or 7) 

(from Fig. 7 or 

by division). 

''( ')( ' - ( '1 = 0.0042964 1 
s2  = 0.001172905 
W = 3.6631 

Since F'f .95;  1,26) - 4.22, one fails to reject at the 5 %  level. The p-value 
is 0.0667 as shown in Figure 7; that is 1 - F(3.661; 1,26) = 0.0667. 

Also shown in Figure 7 are the computations for the previous example as 
well as computations for the joint hypothesis 

H : 8, = 0 and B304eb3 = f against A : 8, # 0 or 6384eei f 4 

The joint hypothesis is included to illustrate the computations for the case 
q > 1. One rejects the joint hypothesis at the 5% level; the p-value is 0.0210. 

ci 

We have noted in the somewhat heuristic derivation of the Wald test that 
W is distributed as the noncentral F-distribution. What can be shown 
rigorously (Chapter 4) is that 
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sas st.taMntr: 

UNIVARIATE NONLINEAR REGRESSION 

DATA WORKOl; S€T E W L E 1 ;  
T1--0.02608970; 12-1.01667967; 13--1.11569714; 14--0.60490206; 
E=Y-(Tl*Xl+T2*X2+T4YXP(T3*X3)); 
DER-TI-Xl; D E R - T ~ s X ~ :  DER-T3-TI*XJYXP(TJ*XJ); DER_TlrfXP(T3*X3); 
PROC RE0 OATAIwoRyOl; HODEL E 
FIRST: E S T  MR-11-0.02608970; 
S€COM):T€ST 0.0191420006*OEA~T3-0.365699176*MR_TII-079303; 
JOINT: TEST DER-Tl=O.O26L)O970, 

0.0191420095*OER~T3-0.366599176~R~T4~-0.0164079303~ 

DER-TI DER-12 MR-13 MR-14 / W I N T ;  

Output: 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  

DEP VARIABLE: E 

SUnoF MEAN 
SDURCE OF SQUMES - F VALUE PROB>F 

-EL 4 3.29697E-17 6.23994E-18 0.060 1 .  woo 
ERROR 26 0.030496 0.001172906 
U TOTAL 30 0.0304% 

ROOT HSE 0.034240 R-SQUARE o.oOo0 
DEP &AN 4.13616E-11 M J  R-SQ -0.1164 
C.V. O2OOO64211O 

NOTE: W INTERCEPT TERM IS USED. R - W M R E  I S  REOEFIHED. 

1 

PARAMETER STANDARD T FOR no: 
VARIABLE OF ESTIMATE ERROR PARAllETER-0 PRO9 > IT1 

DER-TI 1 1.9163%-09 0.012624 0.000 1 .oom 
DER-12 1 -6.79166E-10 0.009937929 -0.000 1 .oow 
DER-13 1 1.62491E-10 0.163642 0.000 1 .oow 
DER-14 1 -1.60709E-09 0.026667 -0.000 1 .OoOo 

TEST: FIRST NUMERATOR: .0049333 DF: 1 F VALUE: 4.2060 
OENOI(1NATOR: .0011729 O f :  26 PROB >F : 0.0106 

E S T :  SECOND NUMERATOR: .OW2964 OF: 1 F VALUE: 3.6631 
DENOWNATOR: ,0011729 W :  26 PROB DF : 0.0867 

TEST: JOINT WUWERATOR: .WS2743 DF: 2 F VALUE: 4.4960 
MNOIIIWTOR: .0011729 DF: 26 PROB >F : 0.0210 

Figure 7. Illustration of Wald test computations with Example I .  

That is, Y is distributed as the noncentral Fdistribution with q-numerator 
degrees of freedom, n - p denominator degrees of freedom, and non- 
centrality parameter h (Section 7). The computation of power requires 
computation of X and use of charts (Pearson and Hartley, 1951; Fox, 1956) 
of the noncentral F-distribution. One convenient source for the charts is 
Scheff6 (1959). The computation of X is very little different from the 
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computation of W itself, and one can use exactly the same strategy used in 
the previous example to obtain 

and then multiply by q/(2o2)  to obtain A. Alternatively one can write code 
in some programming language to compute A. To add variety to the 
discussion, we shall illustrate the latter approach using PROC MATRIX in 
SAS. 

EXAMPLE 1 (Continued). Recalling that 

f ( x ,  6 )  = e,x,  + e,~,  + e4e6~s3 

let us approximate the probability that the Wald test rejects the following 
three hypotheses at the 5% level when the true values of the parameters are 

e o  = (.03,1, - 1.4, - .5y 

o 2  = .oo1. 

The three null hypotheses are 

PROC MATRIX code to compute 

for each of the three cases is shown in Figure 8. We obtain 

A, = 3.3343 
A 2  = 5.63508 

A, = 9.881% 

(from Fig. 8) 
(from Fig. 8) 

(from Fig. 8). 

Then From the Pearson-Hartley charts of the noncentral F-distribution in 



S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  

L m  COL 1 

RCMl a. 3349 

L l Y e D I  COLl 

ROUl 6.65600 

L#BDA Coll 

ROW1 9.881 96 

Figure 8 Illustration of Wald test power computations with Example 1. 

Scheffd (1959) we obtain 

1 - F'(4.22; 1,26,3.3343) p .70 

1 - F'(4.22; 1,26,5.65508) = .90 

1 - F'(3.37; 2,26,9.881%) = .97. 

For the first hypothesis one approximates P(W > Fa) by P(U > F,) = .70, 
where Fa = F-'(.95; 1,26) = 4.22, and so on for the other two cases. 

The natural question is: How accurate are these approximations? In this 
instance the Monte Carlo simulations reported in Table 5 indicate that the 
approximation is accurate enough for practical purposes, but later on we 
shall see examples showing fairly poor approximations to P(W > Fa) by 
P( Y > F,). Table 5 was constructed by generating 5000 responses using the 
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Table 5. Monte C.rl0 Poncr Estimates for tBc Wdd Test. 

H,: el - ownst H ~ :  e, + o H , : B , -  -lagainS1H1:8,+ - 1  

Parameters" Monte Carlo Monte Carlo 

Std. Ski. 
e, e, A p l y >  F.I p i w >  FJ ~ r r .  A P [ Y >  FJ P I W >  F.I Err. 

0.0 - 1.0 0.0 .om ,050 ,003 0.0 .oso ,056 ,003 
0.008 -1.1 0.2353 ,101 .ow ,004 0.2220 ,098 ,082 ,004 
0.015 -1.2 0.8309 ,237 .231 .006 0.7332 ,215 .183 ,006 
0.030 -1.4 3.3343 ,700 .687 .006 2.1302 ,511 .S13 ,007 

response function 

J ( ~ , S )  = eIx, + e , ~ ,  + 8 p  

and the inputs shown in Table 1. The parameters used were 8, = I,  
6, = - .5, and uz = .001 excepting 8, and 8,. which were vaned as shown 
in Table 5. The power for a test of H : 8, = 0 and H : 8, = - 1 is computed 
for P(Y > Fa) and compared with P(W > Fa) estimated from the Monte 
Carlo trials. The standard errors in the table refer to the fact that the Monte 
Carlo estimate of P(W < F,) is binomially distributed with n = SO00 and 
p = P ( Y  > F,). Thus, P(W > F,) is estimated with a standard of error of 
( P( Y > F,)[1 - P( Y > F,)]/S000}'/2. These simulations are described in 

5 somewhat more detail in Gallant (1975b). 

One of the most familiar methods of testing a linear hypothesis 

H :  RB = r against A : RP #= r 

for the linear model 

y = X B + e  

is: First, fit the full model by least squares, obtaining 
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Second, refit the model subject to the null hypothesis that R/3 = r ,  obtain- 
ing 

SSE,,, = ( y - Xg)’( y - XI) 
B = B + (X ’X ) - *R ’ (  R( X ’ X ) - ’ R ’ ]  - ‘ ( r  - Rb). 

Third, compute the F-statistic 

where q is the number of restrictions on /3 (number of rows in R), p the 
number of columns in X,  and n the number of observations-full rank 
matrices being assumed throughout. One rejects for large values of F. If one 
assumes normal errors in the nonlinear model 

y = j ( e )  + e e - N,(O, a21) 
and derives the likelihood ratio test statistic for the hypothesis 

H: h ( e )  = o against A :  h ( 8 )  # o 

one obtains exactly the same test as just described (Problem 1). The statistic 
is computed as follows. 

First, compute 

4 minimizing SSE(@) = [ Y  - I(4)l’IY - ml 
using the methods of the previous section, and let 

SSEfd, = SSE(8). 

Second, refit under the null hypothesis by computing 

6 minimizing SSE(6) subject to h ( 8 )  = 0 

using methods discussed immediately below, and let 

SSE,, = SSE(8). 

Third, compute the statistic 
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Recall that h( 8) maps R P into R 4, so that q is, in a sense, the number of 
restrictions on 6. One rejects H: h(6') = 0 when L exceeds the a x 100% 
critical point F' of the Fdistribution with q numerator degrees of freedom 
and n - p denominator degrees of freedom; Fa = F-'( l  - a; q, n - p). 
Later on, we shall verify that L is distributed according to the F-distribu- 
tion if h(8') = 0. For now, let us consider computational aspects. 

General methods for minimizing SSE(8) subject to h(B)  = 0 are given in 
Giil, Murray, and Wright (1981). But it is almost always the case in practice 
that a hypothesis written as a parametric restriction 

H: h ( B 0 )  = 0 against A :  h(8')  # 0 

can w i l y  be rewritten as a functional dependence 

H ;  B0 = g ( p )  for some po against A : Bo f; g( p )  for any p .  

Here p is an r-vector with r = p - q. In general one obtains g(p) by 
augmenting the equations 

h ( B )  = T 

by the equations 

d o )  = P 

which are chosen such that the system of equations 

h ( 8 )  = T 

(PW = P 

is a one to one transformation with inverse 

Then imposing the condition 

is equivalent (Problem 2) to imposing the condition 

h ( B )  = 0 

so that the desired functional dependence is obtained by putting 

6 =I g ( p )  = C l ( P , O ) .  
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But usually g(p) can be constructed at sight on an ad huc basis without 
resorting to these f o d t i e s ,  as secn in the later examples. 

The null hypothesis is that the data follow the model 

Y, -f(x,, d o )  f e, 

h ( e 0 )  = 0. 

and that 8' satisfies 

Equivalently, the null hypothesis is that the data follow the model 

Y, =k, e O )  + e, 

and 

e o =  g(p) forsome po. 

But the latter statement can be expressed more simply as: The null 
hypothesis is that the data follow the model 

Y, = / [ X I ,  gbO)l  + e,. 

Y - /Ig(p0)1 + e. 

In vector notation, 

This is, of course, merely a nonlinear model that can be fitted by the 
methods described previously. One computes 

B SSE[g(p)l - { Y  - f [g(P) l ) '{Y-f [g(p) l )  

SSE,", = SSE[g(B)l 

by, say, the modified Gauss-Newton method. Them 

because 6 = g ( 6 )  (Problem 3). 

structure that can be exploited in computations. Let 
The fact that f[x, g(p)] is a composite function gives derivatives some 

that is, G ( p )  is the Jacobian of g ( p ) ,  which has p rows and r columns. 
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Then using the differentiation rules of Section 2, 
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or 

These facts can be used as a labor saving device when writing code for 
nonlinear optimization, as seen in the examples. 

EXAMPLE I (Continued). Recalling that the response function is 

reconsider the first hypothesis 

H: sp = 0. 

This is an assertion that the data follow the model 

y, = e , ~ , ~  + t34e*3x3f + e I ‘  

Fitting this model to the data of Table 1 by the modified Gauss-Newton 
method, we have 

SSE,,, = 0.03543298 (from Fig. 9a). 

Previously we computed 

SSE, = 0.03049554 (from Fig. 5a). 

The likelihood ratio statistic is 

(0.03543298 - 0.03049554)[1 
0.03049554/26 

I 

= 4.210. 
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S t 8 t m t S :  

PROC NLIN DATA-EXUlPLEl W E T W W S S  ITER-60 COMIERQEIICE=l.M-13; 
PhWS T2=1.01MTW7 T3*-1.11669714 T4~-0.60196216i T1-0; 
moEL Y.Tl*Xl*T2*XZ*T4*WP(T1*X3 
Ilw .T2=X2; DER .13=14W3*mP[T3Wbi ; DER.T4*EXP(T3*X3 1 ; 
Output: 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E R  

NW-LIUEIR LEAST SQLIARES ITERATIVE W S €  

DEPENDENT VAAIABLE: r METHOD: oA(filS-IKNTo(1 

ITERATION T2 13 1 4  RESIDUAL SS 

1.01667967 -1.11669714 -0.60490206 0.04064968 ! 1.00189118 -1.1AA46980 -6.11206647 0.03543349 . - . . . . - _ - - - . - . -. - . . . . . . . . . . . 
1.00297335 -1.14012057 -0.61170607 0.03643299 

0.03643298 
2 

A 1.00296804 -1.14122778 -0.61182219 0.0364mte 
3 1.00296493 -1.14128672 -0.61112738 

5 1 OOZGS& -1,14121524 -0.61 112286 0.03641298 

7 1.00296692 -1.14123442 -0.61102277 0.09543296 
6 1.00296692 -1.14123430 -0.61182276 0 . 0 3 6 4 m e  

NOE: CONVERDEMX CRITERION WET. 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  

WN-LINEAR LEAST SQU*RES SUCMRY STATISTICS DEPENDENT VARIMLE Y 

SOURCE DF sun OF SQUARES WAN SQUARE 

1 

2 

R€WESsiO)II 3 26.34100467 
RESIDUAL 21 0.03643298 
UNCORRECTED TOTAL 30 26.37643764 

(CWMCTED TOTAL) 29 0.71896291 

P M E T E R  ESTIMATE ASYMPTOTIC ASWTOTIC 96 % 

LOWER UPPER 
T2 1.00296692 O.OM13063 0.90628369 1.01964626 
T3 -1.14123442 0,174469oO -1.49921246 -0.78326638 
14 -0.61102217 0.02710622 - 0 . ~ 6 7 ~ 0 ~ e ~  -0.46604189 

STO. ERROR CONFZDENCE INTERVAL 

ASYMPTOTIC CORRELATION MATRIX OF THE PARAllETERS 

12 13 14 

1 2  1.O00000 0.400991 -0.120866 
13 0.400991 1.000oOO 0.666235 
14  -0.120666 0.666236 1.000000 

F w e  9a. Illustration of likelihood ratio test computations with Example 1 .  

Comparing with the critical point 

F-' ( .95;  1.26) = 4.22 

one fails to reject the null hypothesis at the 95% level. 
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Reconsider the second hypothesis 

g ( p ) = =  
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P2 

p3 

1 
Sp3eP3 

which can be rewritten as 

H : 6' = g( p )  for some po. 

One can fit the null model in one of two ways. The b.st is to fit directly the 
model 

y, = pix,, + p2x2,  + ( ~ p ~ ) - ' e ~ 3 ( ~ 3 r - ~ )  + e,. 

The second is as follows: 

1. Given p, set 8 = g(p).  
2. Use the code written previously (Figure 5 0 )  to compute f ( x ,  8 )  and 

( a / a & ) f ( x ,  4 )  given 6. 
3. Use 

to compute the partial derivatives with respect to p; recall that 
G(P) = (a /a#)g(P) .  

We use this sccond method to fit the reduced model in Figure 9b. We 
have 

G ( P )  = 



INCE-i .=-ar 

S T A T I S T I C A L  A M A L Y S I S  S Y S T E R  

MLY-LINEAR LEAST SQUARES ITERATIVE P W E  

1 

ITERAlXO(( 

0 
1 
2 
3 
4 
6 
6 
1 
8 
9 

10 

DEPENOENT VARIABLE: Y 

R l  R2 

-0.02M8970 1.01667967 
-0.02286308 1.01860306 

-0.02291862 1.01903284 
-0.02309964 3.02003662 

-0.02307276 1.01992190 

-0.02306606 1.01984017 

-0.023141a4 1.0201~391 

- 0 . 0 2 2 9 ~ 2 ~  i.oi92637a 

- 0 . 0 2 2 ~ i ~ 2 1  i.oi940109 

-0.02298a1a i.ois4ea77 
-0.02304322 i.oi9ia214 

- 1 . i a i 6 ~ 6 6  

-1.14e3i66e 

-1.166sia29 

-1.14220267 
-1.11466123 

-1.17003031 
-1.16230734 

-1.16496732 

RESIDUAL SS 

0.03644046 
0.03602362 
0.03600414 
0.03491ias 
0.03496229 
0.O3495011 
0.03494636 
0.03494040 

0.03493191 
0.03493a013 

0.  oa493406 

20 -0.02301940 1.01966026 -1.16023896 0.03493222 
29 -0.0230iwa i.oi%s320 - ~ . ~ ( U H I Z O ~ ~  0 .OW93222 
30 -0.02aoi917 i .o iws i~o i  -1.1~290sa 0.03493222 
31 -0.02aoia2a 1.0196~423 -1.1601069s 0.03493222 

NOTE: COtlVERUEWCE CRIlERION IET.  

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  2 

WN-LIN€AR L U S T  SQUARES W Y  STATISTICS DCPEMENT VAAIABLE Y 

80WCE DF sunOFSQuARES MEAN S Q t M E  

RLSIDUAL 2 1  0.03493222 0.00129379 
UIIcORRECT€O TOTAL 30 26.31643764 

RMAESSION 3 26.34160643 a. 7eosoia I 

w w t m x o  TOTALS) 29 o . m ~ s 2 9 i  

PARAJEER ESTIMATE A S W T O T I C  A S W T O T I C  QS 8 sm. ERAOR C W I D E W E  INTERVAL 
LOYER UPPER 

R1 -0.0230ia20 0.01316496 -0. WW0981 O.OO391326 
0.01OO96?6 0.99a93766 1.04037092 R2 1.01966423 

R3 -1.16048699 0.16302087 -1.49497669 -0.a2~~9t130 

ASYMPTOTIC CQIRELATIW MATRIX OF THE PARA#TER5 

R l  R2 R 3  

R2 -0.611463 1.000000 0.392338 
R 1  i.oooo00 -0.671463 - 0 . 0 6 6 2 ~  

R 3  -0.0662a3 0 .392~38 i.woooo 

Figure 96. Illustration of likelihood ratio test compu~tions with Example 1. 
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If 
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a - a 6 , f ( x , 6 )  = (DER-T l ,  DER-T2, DER-T3, DER-T4) 

then to compute 
a 

- f [ ~ ,  g ( p ) ]  = ( D E R . R l ,  DER.R2, DER.R3)  a P’ 

one codes 

DER.Rl  = D E R - I 1  
DER-RZ = DER-T2 
DER.R3 = DER_TJ+DER-T4  * ( - T 4 * * 2 )  * ( 5 * E X P ( R 3 ) +  

S*R3*EXP(R3))  

where 
1 T4 = - 5p,e p’ 

as shown in Figure 9b. 
We have 

SSE,,, = 0.03493222 
SSE,, = 0.03049554 

(from Fig. 96) 
(from Fig. 5a) 

(0.03493222 - 0.3049554)/1 
0.03049554/26 L -  

= 3.783. 
As F-‘(.95; 1,26) = 4.22 one fails to reject the null hypothesis at the 5% 
level. 

Reconsidering the third hypothesis 

H : 6, = 0 and 6364ee3 = $ 
which may be rewritten 8s 

H:6°=g(p)forsomepo 
with 

d P )  = 

0 
P2 

P3 

1 
5p3eP3 



S T A T I S T I C A L  A N A L Y S I S  S Y S T E N  

NQI-LINEAR LEAST SpuWKs ITERATIM PHASE 

DEPEMMWT VAR 1 M L E  I 

ITERATION A2 

0 1.01966423 
1 l.OO179498 
2 1.OOBa7441 
3 1.00784846 
4 1 .ool)03164 
6 1.00180362 
6 1 . o m 1  199 
I 1.0019O702 
8 1.00799423 
9 1.00792211 
10 I .001962OO 

19 1. W196019 
20 l.WlM944 
21 1.00796231 
22 1. 00lM819 
23 1.007SS334 
24 1 .OOIS6136 

mlTEr COIIVEAQEWCE CRITERION MET. 

-1.itme6ee 0.042aiea3 
-1.11638061 0.03890362 
-1.16332660 0.03890234 
-1.17411690 0.0~90121 
-1.16623711 o.03a9006~ 
-1.112s1212 o . 0 1 n p ~ ) i a  
-1.16663160 0.03889969 
-1.17161081 0.03889967 
-1.1614oeos 0. 03089964 - 1.1'1060393 0.03889944 
-1.18800508 0.03W9937 

-1.16949660 0.03889e24 
-1.16908716 0.03889923 
-1.16942608 0.03809923 
-1.18914663 0.03869823 
-1.16931636 0.03869923 
-1.16918683 0,03809923 

1 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  2 

NOU-LI"I LEAST !WARES 3 u I I w I Y  STATISTICS OEPENDENT VARIABLE Y 

soumx M sw( OF sqUARES MEAM SQUARE 

REQRESSIIM 2 26.33163841 13.16816911 
AESIWML 28 0.03889923 0.00138926 
-TEO TOTAL 30 26.31643764 

(CORRECTED TOTAL) 29 0.11896291 

PARaTER ESTIIUTE ASWTOTIC ASYMPTOT1C 96 8 

LOWER UPPER 
R2 1.00196736 0.00769931 0. Do21 861 3 1.02312861 
R3 -1.1691E683 0.11039162 -1.61821669 -0.82016808 

STD. ERROR CWFIMNCE INTERVAL 

AWWTOTIC C(IRAELATI0N I u l R I X  OF THE PARAMETERS 
R2 R3 

R2 1.000000 0.467169 
R3 0.467169 1.000oDo 

Figure 9c. Illustration of likelihood ratio computations with Example 1. 
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we have 
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SSE,,, 5 0.03889923 

SSE, = 0.03049554 

(from Fig. 9c) 

(from Fig. 5a)  

- - (0.03889923 - 0.03049554)/(4 - 2) 

5 3.582. 

(0.03049554)/(30 - 4) 

Since F-’(.95; 2,26) = 3.37, one rejects the null hypothesis at the 5% level. 
I3 

It is not always easy to convert a parametric restriction h ( 6 )  = 0 to a 
functional dependence 8 = g(p) analytically. However, all that is needed is 
the value of 0 for given p and the value of ( i ? / a # ) g ( p )  for given p. This 
allows substitution of numerical methods for analytical methods in the 
determination of g(p) .  We illustrate with the next example. 

EXAMPLE 2 (Continued). Recall that the amount of substance in 
compartment B at time x is given by the response function 

By differentiating with respect to x and setting the derivative to zero one 
has that the time at which the maximum amount of substance present in 
compartment B is 

The unconstrained fit of this model is shown in Figure 10a. Suppose that 
we want to test 

H : . f = l  against A : $ # l .  

This requires that 



SAS St.t.rntS2 

PROC WIN MTAIEOZB )IElHOO=OAUSS I T C R 4 O  COWVeROfNCb1.E-10; 
PARUS 11-1.4 T2r.4; 
lloDEL Y~Tl*(EXP(-T2.X)-€XP(-T1*X))/(Tl-T2); 
WR. 11 - -TZ* (uP(  -12.X) +XP( -11.X) ) /  (11 -T2 )**2+Tl*X*TXP f -Tl*X) / (11 -12) ; 
DUI.T~IT~*(U(P( -T2*X)-EXP( -Tl*X) ) / ( T l - T Z ) ~ - T l * X * E X P ( - T Z * X ) / ( T I - T 2 )  ; 

output: 

S T A T I S T I C A L  A N A L Y S I S  S Y S T C H  

"-LIneAA LEAST SQUARES ITERATIVE PHASE 

1 

DEPEmENl VNtIABLEr Y 

IreRATIoll 11 

0 1.10000000 
1 1.373739113 

3 1.373969116 
2 i.315m994 

NOTE8 c0)NERQEWct. CRITERIDN BET. 

#lrmol oIu8s-" 

12 R P S I O W  ss 
0.4M)00000 O.OO667248 
0.40266670 0.00646776 
0.40266618 0.00646771 
0.40266618 0.00646774 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  2 

MON-LIMAA LEAST SQUrvrES su*(AAY STATISTICS DEPENWNT VARIABLE Y 

SOURCE DF sum OF SQJARES SOWRE 

REWESSION 2 2.681 29496 1.34064740 

WORRECTEO TOTAL 12 2.606762~0 
RLSIOUAL 10 0,00646774 O.OOO646~T 

fCORRECTE0 TOTAL ) 11 0.21369486 

PUUerTER ESTIMTE A S W T O T I C  *syIIpTOTIC 96 % 
sm. ERROR CONFIDIEW INTERVAL 

LONER UPPER 
1.37396966 0.04864622 1.26667644 1.48236086 TI 

12 0.40266616 0.01324190 0.37314674 0.43216461 

ASWTOTIC CaRRELATIW MATRIX of THE PARMETEAS 

11 1 2  

11 l.WOOO0 0.236174 
12 0.236174 1.000000 

Figure IOU. Illustration of likelihood ratio lest computations with Example 2. 
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be converted to a functional dependence if one is to be able to use 
unconstrained optimization methods. To do this numerically, set 8, = p. 
Then the problem is to solve the equation 

el = Inel + - h p  

for 8,. Stated differently, we are trying to find a fixed point of the equation 

z = In z + const. 

But In z + const is a contraction mapping for z > 1-the derivative with 
respect to z is less than one-so that a fixed point can be found by 
successive substitution: 

z, = In zo + const 
z2 = In z1 + const 

z , + ~  = In zi + const 

This sequence { zi + will converge to the fixed point. 
To compute ( d / 3 p ) g ( p )  we apply the implicit function theorem to 

8 A P )  - W l ( P ) l  = P - 1nP. 

We have 

or 

Then the Jacobian of 8 = g ( p )  is 
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UNIVARIAm NONLINEAR REGRESSION 

0 
1 
2 
3 
4 
6 
6 

1 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  2 

Wow-LIWAR LEAST sqruRES suI(IuRy STATISTICS OEP€wDu(T VARIABLE Y 

SOURCE OF su( OF SQIJARES WAN SQUARE 

REBfflESSIO)( 1 
RESIDUAL 11 
UWCaRRECTEO TOTAL 12 

2.64014214 
0.00420096 

(CORRECTED TOTAL) 11 0.21369406 

ESTItalE ASYMPTOTIC ASYMPTOTIC 96 8 
cowFIOE.cIcf IllTERVAL 

L m  UPPER 

P W T E R  
8To. ERROR 

RW 0.47164289 0.03274044 0.40648130 O.SIQOO~~S 

ASYMPTOTIC CUIRELATION MTRXX OF THE PARMETERS 

Rno 
RHO 1 . o m 0 0  

Figure lob. Illustration of liLclihood ratio test compu~ntioas with Example 2. 
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These ideas are illustrated in Figure lob. We have 

SSE, - 0.00545774 
SSE,,, 5 0.04621055 

(from Fig. 10n) 
(from Fig. lob) 

I= 74.670. 
As F-*(.95; 1,lO) = 4.96, one rejects H. 

69 

0 

Now let us turn our attention to the computation of the power of the 
Likelihood ratio test. That is, for the data that follow the model 

Yc =I(+ eO)  + e, 

e, iid N ( O , o z )  
t = l , 2 ,  ..., n 

we should like to compute 

P( L > Fa It?', a', n) 

the probability that the likelihood ratio test rejects at level a given do,  u2,  
and n, where Fa = F1(1 - a; 4, n - p). To do this, note that the test that 
rejects when 

is equivalent to the test that rejects when 

where 

4Fa c a = l + -  " - P  

In Chapter 4 we shall show that 
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where 

P; = I - F( F ~ F ) - ‘ F # ;  

recall that F = ( a/ai9’)/(e0). Then it remains to obtain an approximation 
to (SSE,,)/n in order to approximate (SSE,,,)/(SSE,). To this 
end, let 

8,. - i d P j l )  

where 

Recall that g ( p )  is the mapping from R‘ into RP that describes the null 
hypothesis--H : 6 O  = g ( p )  for some po; r = p - q. The point 8: may be 
interpreted as that point which is being estimated by the constrained 
estimator em in the sense that c/;;(tf, - 8:) converges in distribution to the 
multivariate normal distribution; see Chapter 3 for details. Under this 
interpretation, 

6 = f ( d O )  - f (W 
may be interpreted as the prediction bias. We shall show later (Chapter 4) 
that what one’s intuition would suggest is true: 

( e  + 6)’PiG(e  + 6) 
+ OP( f )  S~%dwcd = 

n n 

where 

It follows from the characterizations of the residual sum of squares for the 
full and reduced models that 
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where 

71 

(e + 8)’P,&(e + 6 )  
e’P,I e 

X -  

The idea, then, is to approximate the probability P ( L  > Fa I 6 O ,  u2,  n) by 
the probability P(  X > c, I 6’, u2 ,  n) .  The distribution function of the ran- 
dom variable X is for x > 1 (Problem 4) 

H ( x :  q, 1 2 ,  A,, A , )  

where g(r; v ,  A )  denotes the noncentral chi-square density function with Y 
degrees of freedom and noncentrality parameter A, and G(t ;  Y ,  A )  denotes 
the corresponding distribution function (Section 7). The two degrees of 
freedom entries are 

v ,  = q = p - r 
u 2 = n - p  

and the noncentrality parameters are 

”( ‘F - ‘FG)’ A, = 
20 

8’P,lS 
20 

A , =  - 

Whme P F =  F(F’F)-’F’,  P F c  - FG(G’F’FG)-’G’F‘, and P; - I - P F .  

This distribution is partly tabulated in Table 6. Let us illustrate the 
computations necessary to use these tables and check the accuracy of the 
approximation of P ( L  > F,) by P ( X  > ca)  by Monte Car10 simulation 
using Example 1. 

EXAMPLE I (Continued). Recalling that 

let us approximate the probability that the likelihood ratio test rejects the 
following three hypotheses at the 5% level when the true values of the 
parameters are 

B o a  (.03,1, -1.4, -S) ’  

o 2  5 .001. 



A, A , - O  .5 1 2 3 4 5 6 8 10 12 

( a )  P1 - 1, v2 = 10 
.440 .599 .722 .813 .876 
.440 399 .722 .813 .876 
.440 .599 .723 .813 .876 
.442 .601 .724 314 .877 
.462 .617 .735 .821 .882 

(6) 11 - 1, ~2 20 
A78 .645 .768 353 .909 
.478 .645 ,768 ,853 .909 
.478 .645 .768 .853 .909 
.480 .647 .769 .853 .909 
SO1 .663 .780 .860 .913 

(c) P( - 1, v2 - 30 
.490 .659 .781 .864 .917 
.4W .659 .781 ,864 .917 
.491 .659 .781 .864 .917 
.493 .661 .782 .864 .918 
S14 .676 .792 .871 .921 

( d )  PI - 2, Y2 - 10 
.318 .454 S75 .677 .759 
.318 .454 .575 .677 .759 
.318 ,454 .575 .677 .759 
.3M .456 .576 .678 .760 
.334 .469 .588 .688 .?67 

(e) - 2, v2 = 20 
.364 .517 .647 .749 .827 
.364 ,517 .647 .749 327 
.364 .517 .647 .750 ,827 
.365 .519 .648 .750 .828 
,382 .534 .660 .759 .834 

( f )  11 - 2.12 5 30 
.381 .539 .671 .773 .847 
.381 ,539 .671 .773 .847 
.381 .539 .671 .773 .&I7 
,382 .541 .672 .774 .848 
.400 3 6  .684 .782 .854 

0.0 
.OOO1 
.001 
.01 
.1 

.050 

.050 

.OW 

.051 

.063 

.148 249 

.148 .249 

.148 .249 

.lM .251 

.168 .272 

.w9 

.949 
,949 
.949 
.951 

.980 

.980 

.980 

.980 

.980 

.992 

.992 

.992 

.992 
,992 

.159 .271 

.159 .27l 

.159 .271 

.161 .273 

.181 .2% 

.%7 

.%7 

.%7 

.%7 

.%8 

0.0 
.ooo1 
.001 
.01 
.1 

.OM 

.050 

.OM 

.051 

.065 

.989 
,989 
* 989 
.989 
.989 

.996 

.9% 

.996 

.9% 

.9% 

0.0 
.OOO1 
.001 
.01 
.I 

.050 

.050 

.050 

.051 

.065 

.163 .278 

.163 .278 

.163 .278 

.165 .280 

.185 ,303 

.972 

.972 

.972 

.972 

.973 

.991 
,991 
.991 
,991 
.991 

.997 

.997 

.997 
,997 
.997 

0.0 
.OOO1 
.001 
.01 
.1 

.050 

.OM 

.OM 

.051 

.058 

.111 .178 

.111 .178 

.111 .178 
,112 .179 
.122 .192 

273 
373 
.873 
.873 
377 

.936 

.936 
936 
.936 
.938 

.%9 
,969 
.%9 
.%9 
.970 

0.0 
.OOO1 
.001 
.Ol 

.OM 

. O N  

.050 

.051 

.060 

.121 .199 

.121 .199 

.121 .200 
,122 .201 
.135 ,216 

.922 

.922 

.922 

.923 

. !a5  

,968 
.%8 
.%8 
,968 
.969 

.987 

.987 
,987 
.987 
.987 . I  

0.0 
.OOO1 
.001 
.01 
.1 

.050 

.050 

.OH) 

.051 

.060 

.124 .208 

.124 ,208 

.125 .208 

.126 .210 

.139 .226 

.936 

.936 

.936 
,936 
.938 

,975 
.975 
.975 
.975 
.976 

,991 
.991 
,991 
.991 
.991 

n 
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Tabk6. (Codbred) 

~~ 

A 2  A, - 0  .5 1 2 3 4 5 6 8 10 12 

0.0 
.OOOl 
.001 
.01 
.1 

0.0 
.OOO1 
.001 
.01 
.1 

0.0 
.OOO1 
.(XI1 
.01 
.1 

.050 

. O N  

. O M  

.051 

.056 

.050 

.050 

.050 
,051 
.057 

,050 
.050 
.@SO 
.051 
.058 

.094 .145 

.094 .145 

.095 .145 

.095 .146 

.lo3 .155 

.lo4 ,165 

.lo4 ,165 

.lo4 .165 

.lo5 .166 

.114 .178 

.lo7 .173 

.lo7 .173 

.lo7 .173 

.lo8 .175 

.119 .187 

(g) V I  - 3. vz - 10 
.255 368 A77 S76 
.255 .368 A77 S76 
.255 .368 .477 .576 
.256 .369 .478 .577 
.267 .381 .489 S86 

( h )  Y ,  = 3, Yz = 20 
.300 .436 .561 .668 
,300 ,436 .561 ,668 
,300 .437 S61 .668 
,302 ,438 .562 ,669 
316 ,452 ,574 .679 

( i )  Y, - 3, v2 = 30 
.318 .462 S91 .699 
.318 .462 S91 .699 
.318 ,462 .592 ,699 
.320 ,464 ,593 .700 
.335 .478 .605 .710 

,662 .794 381 .933 
.662 ,794 .881 .933 
.662 ,794 .881 ,933 
.662 ,795 381 .934 
.670 .800 .884 .935 

.'I55 374 ,990 .973 
,755 ,874 .940 .973 
. I55 374 .940 ,973 
.755 375 .940 .973 
.763 278 .942 .973 

,785 397 .954 .981 
,785 397 .954 .981 
,785 ,897 .954 .981 
.785 397 .954 .981 
.I92 .900 ,956 .981 

Source: Gallant (1975a). 

The three null hypotheses are 

H,: 8, = 0 

H~ : 8, = o and 8,@,ee3 = f 

H2 : 8,84ee~ = f 

The computational chore is to compute lor each hypothesis 
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With these, the noncentrality parameters 

8’6 - S‘Pf8 
20 A 2  = 

are easily computed. As usual, there are a variety of strategies that one 
might employ. 
To compute 6, the easiest approach is to notice that minimizing 

is no different than minimizing 

One simply replaces y, by l ( x , ,  6’)  and uses the modified Gauss-Newton 
method, the Levenberg-Marquardt method, or whatever. 
To compute &‘P$ one can either proceed directly using a programming 

language such as PROX MATRIX or make the following observation. If one 
regresses 6 on F with no intercept term using a linear regression procedure, 
then the analysis of variance table printed by the program will have the 
following entries: 

Source d.f. Sum of Squares 

Regression P S’F( F ‘ F )  - I F ’ &  
Error n - p 6’8 - & ‘ F ( F ~ F ) - ~ F %  
Total n 6 ’6 

One can just read off 

from the analysis of variance table. Similarly for a regression of 6 on FG. 
Figures l la,  l lb ,  and l l c  illustrate these ideas for the hypotheses H,, 

H,,  and H,. 
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For the first hypothesis we have 

75 

8'6 = 0.006668583 
S'PF8 = 0.006668583 

(from Fig. l l a )  
(from Fig. l la )  

(from Fig. 110) 8'PFG6 = 3.25 x 

whence 

0.006668583 - 3.25 X 
2 x 0.001 p. 

= 3.3343 
6'6 - &'PF8 

A ,  = 
202 

0.006668583 - 0.006668583 
2 x 0.001 E 

- 0  
qFa c , = l + -  " - P  

Computing 1 - H(1.1623; 1,26, A,, A , )  by interpolating from Table 6, we 
obtain 

P (  x > CJ = .700 

as an approximation to P ( L  > Fa). Later we shall show that tables of the 
noncentral F wil l  usually be accurate enough that there is no need for 
special tables. 

For the second hypothesis we have 

&'& = 0.01321589 (from Fig. l l b )  
(from Fig. l l b )  
(from Fig. l l b )  
(from Fig. l l b )  

&'PF& = 0.013215 
8'6 - &'P,8 = 0.00000116542 

6'PFG& = 0.0001894405 



SAS Statewntsr 
OATA WORKOl; SET E W L E I :  T11.03: 72-1: T3~-1 .4:  14=-.6: 
YOUtUY-Tl*XltTmZtT4*EXP T3*X3 
FlmXl i FlrX2; F3.T4*X3~XP(T3~ki)  ; F4=EXP(TJ*X3) i 
I'kRtW T I  19 T3 Tlr 
FRk NiIN'OAfA;i;6AKOl IETHOOIQAUSS ITER-60 CONVERGEt4CE=l .OE-13r 
PARlls T Z - l  13-1 4 T4=-.6 T l * O i  
MODEL YMUm.Tl*~l+T2*1(2+f4*EXP(T3*X3 
MR.T20X2; DER.T9-T4+1(3*EXP(T3+X3): &.14*€XP(T3*X3); 

output: 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  

IIDN-LIWEAR LUST SQUARES ITERATIVE PHASE 

OEPEMKNT VARIABLE: Vwmm METWO: OAUSS-NEWTON 

ITERATIOI I  T2 T3 14 RESIMUL SS 

0 1.00000000 -1.40OOOOO0 -0.60000060 0.0136oooO 
1 1.01422090 -1.39717672 -0.49393689 O.OO666869 
2 1.01422436 -1.3%83401 -0.49391057 0.00666868 
3 1.01422416 -1.39619631 -0.49390747 0.00888868 
4 1.01422481 -1.59679223 -0.49390113 0. o(M66868 
6 1.01422481 -1.39879171 -0.49390709 0.00866868 
6 1.01422481 -1.39679173 -0.49390700 0.00666868 

MOTE: cowvEROENC.€ CRXTUIION MET. 

M T A  W 0 2 ;  SET WORKOl; 
11-0- 12-1.01422481: T3--1.3@6?9173; 14.1-0.49390700; 
O E L T ~ = Y O l W Y ~ l l ~ l  t t Z * X 2 t T 4 ~ X P  T3*X3 ) ; 
FOl-FZr F02 3; FQ3mF4; DAOP f l  TZ 
PROC RE0 DAlAIWDRKOZ* MOOEL DELTlGFl F2 F3 F4 / HOIWTr 
POOC REQ DATlGWRKO2; nacWL DELTA-FO1 F02 FQ3 / NOIMT; 

14: 

Dutput: 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  

M P  VMIIBLE: DELTA 

SUlloF MEAN 
SWRC€ OF SQUARES sOuurE F VMUE PROWF 

MOOEL 4 0.008668683 0.0011)67146 999999.990 0.0001 
(EWIDA 26 2.89364E-13 1.11294E-14 
U TOTAL 30 0.006668683 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  

OEP VARIABLE: OELTA 

Waf IIW 
SOUICE OF SQUARES sQqu*Rf F VALUE pROB>F 

llloEL 3 3.26099E-09 1.08366E-09 0.000 1 .oooo 
ERROR 27 0.00666868 0.0002469644 
U TOTAL 30 0.0011068683 

Figure 11s. Illustration of likelihood ratio test power computations with Example 1. 

1 

1 

2 
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0 0.03000000 1.OOOOOOOO -1.40060000 
1 0.03363136 1.01OWTW -1.12633963 
2 0.03440842 1.00892167 -1.28648666 

0.0106'1l56 
0.01688646 
0.01344947 

14 0.034339'14 1.00978876 -1.27330943 0.01321689 

SAS S t a t t m n t m :  

OM. . . . - . - . . 
PROC REO O I T A - d K O Z r  MOOllL DELTA-Fl F2 F3 F4 / NOINT: 
PROC RE0 OATAlmYIK02; )IooEL OELTA-FOI F02 FW / WINT:  

Output: 
S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  

DEP VARIABLE: OELTA 

SOURCE w sQWRES SWARE F VALUE PROBSF 
Wn OF HEAN 

rmlEL 4 0.013216 0.003303601 73703.561 0.0001 
ERROR 26 .OooOo116642 4.1823%-08 
U TOTAL 90 0.013216 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  

M P  VM1II)LLt OELTA 

WOEL 3 0.0001894406 .00006314682 0.131 0.9409 
ERROR 27 0.013026 0.0604824611 
U TOTAL 30 0.013216 

1 

1 

2 

Figure Ilb.  Illustration of likelihood ratio test power computations with Ewample 1. 
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SAS St.taYnt.1 

Output: 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  

"-LI)IEAR LEAST SQUARES ITERATIVE PHASE 

DEPEWENT VARIABLE: YWWY UETHOD: GIUSS-NEUTON 
ITERATIOW R2 R3 RESIDUAL SS 

0 1.00040000 -1.40000000 
1 1.02698331 -1.10041642 
2 1.023e3iw -1.26e40si i  

0.04431091 
0.02639361 
0.02236664 

13 1.02109006 -1.26246439 0.02204711 

NOTE: CONVEROENCE CRITiERIOll MET. 

SAS Stetaunt.: 

PROC R E 0  MT*ryytK02;  I O E L  DIELTA-FQl F02 / WINTt  

Output I 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  

DEP VARIAELE: DELTA 

M U E l  4 0.022046 0 .0066 i i s i s  e6s47.129 0.0001 
ERAOA 26 .00000164811 6.33ME-00 
U TOTAL 30 O.OaPO48 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  

DEP VARIABLE: DELTA 

SOURCE OF M E S  spu%: F VALUE PROlbP 
SUI  OF 

M X L  2 0.0001262636 .oooO6262617 0.080 0.9233 
EWIQl 28 0.021922 0.0001829449 
U TOTAL 30 0.022048 

Figure l le .  Illustration of likelihood ratio test power computations with Example 1. 
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whence 

- 0.013215 - 0.0001894405 - 
(2 x .Wl) 

= 6.5128 
8’8 - 8’PF6 

A, = 
20, 

0.000001 16542 
2 x .001 = 

= 0.0005827 

9Fu c,-l+- 
“ - P  

= 1.1623. 

Computing 1 - H(1.1623; 1.26, A,, A,) as above, we obtain 

P( x > CJ = .935 

as an approximation to P(L > Fu). 
For the third hypothesis we have 

8’8 5 0.02204771 (from Fig. llc) 
(from Fig. llc) 
(from Fig. llc) 
(from Fig. llc) 

&’pF8 = 0 -022046 
8’8 - 8’PF8 = 0.00000164811 

8’PFG8 = 0.0001252535 

whence 

8 ’ P 4  - 8’F&3 
20 

0.022046 - 0.0001252535 
2 x .001 

A, = 

= 

= 10.9604 
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8‘8 - S‘PFS 
2a 

0.00000164811 

A, = 

= 2x.001 

1 + qFa 

= 0.0008241 

c, = - 
n - p  

= 1.2592. 

Computing 1 - H(1.2592; 2,26, A,, A,) as above, we obtain 

P( X > ca)  = .983. 

Once again we ask: How accurate are these approximations? Table 7 
indicates that the approximations are quite good, and later we shall see 
several more examples where this is the case. In general, Monte Car10 
evidence suggests that the approximation P( L > F’) P( X > c,) is very 
accurate over a wide range of circumstan~. Table 7 was constructed 
exactly as Table 5. 0 

In most applications A, wilI be quite small relative to A,, as in the three 
cases in the last example. This being the case, one sees by scanning the 
entries in Table 6 that the value of P( X > c,) computed with A, = 0 
would be adequate to approximate P( L > Fa). If A, = 0 then (Problem 5 )  

with 

Recall that F’(x;  v, ,  v,, A )  denotes the noncentral F-distribution with vt  
numerator degrees of freedom, v1 denominator degrees of freedom, and 
noncentrality parameter A (Section 7). Stated differently, the first rows of 
parts u through i of Table 6 are a tabulation of the power of the F-test. 
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Thus, in most applications, an adequate approximation to the power of the 
likelihood ratio test is 

The next example explores the adequacy of this approximation. 

EXAMPLE 3. Table 8 compares the probability P ( X  > c,) with Monte 
Carlo estimates of the probability of P(L > Fa) for the model 

y, = 8 1 e g ~ x ~  + e,. 

Thirty inputs {x,}:, were chosen by replicating the points 0(.1).7 three 
times and the points .8(.1)1 twice. The null hypothesis is H:  8' = (f, f). 
For the null hypothesis and selected departures from the null hypothesis, 
5000 random samples of size 30 from the normal distribution were gener- 
ated according to the model with o 2  taken as .04. The point estimate a of 
P ( L  > Fa) is, of course, the ratio of the number of times L exceeded 
Fa to 5000. The variance of f i  was estimated by Var( a )  = P( X > c,)P( X 
I; c,)/SCn>o. For complete details see Gallant (1975a). 

To comment on the choice of the values of 8' # (4, f) shown in Table 8, 
the ratio X J X ,  is minimized (= 0) for 8' # (i, t )  of the form (8, .  4) and is 

for 8' of the form (4, f) f r(cos(5n/8), sin(5n/8)). Three maxllIltzed 
points were chosen to be of the first form, and two of the latter form. 
Further, two sets of points were paired with respect to A,. This was done to 
evaluate the variation in power when A, changes while A,  is held fixed. 

. .  

Table 8. Monte Cario Power Estimates for an Exponential Model. 

.5 .5 0 0 .050 ,0532 .00308 
S398 .5 0.9854 0 ,204 .2058 :00570 
.4237 .6849 0.9853 0.00034 .204 ,2114 .00570 
3 5 6  .5 4.556 0 .I27 ,7140 .00630 
.3473 .8697 4.556 0.00537 .728 .7312 .00629 
.62 .5 8.958 0 ,957 .9530 .00287 

Source: Gallant (19750). 
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These simulations indicate that the approximation of P(L > Fa) by 
P ( X  > c,,) is quite accurate, as is the approximation P(X > c,) 
1 - F'(F,; q, - P, h). 0 

EXAMPLE 2 (Continued). As mentioned at the beginning of the 
chapter, the model 

el( e-81zt - e-e lx , )  
B :  y,  = + el 4 - 4 2  

was chosen by Guttman and Meeter (1965) to represent a nearly linear 
model as measured by measures of nonlinearity introduced by Beale (1960). 
The model 

e l e - h X ,  - flZe-@ix, 
C : y , - l -  + e ,  6, - 4 

is highly nonlinear by this same criterion. The simulations reported in Table 
9 were designed to determine how the approximations 

P ( W >  Fa) P ( Y  > Fa) 

P( L > F,) A P( x > c a )  

hold up as we move from a nearly linear situation to more nonlinear 
situations. As we have hinted at all along, the approximation 

P( w > Fa) P( Y > F,) 

deteriorates badly, while the approximation 

P( L > F,) P( x > c*) 

holds up quite well. The details of the simulation are as follows. 
The probabilities P( W > Fa) and P( L > Fa) that the hypothesis H : 8' 

= (1.4*.4) is rejected shown in Table 9 were computed from 4OOO Monte 
Car10 trials using the control variate method of variance reduction 
(Hammersley and Handscomb, 1964). The independent variables were the 
same as those listed in Table 2, and the simulated errors were normally 
distributed with mean zero and variance u2 = (.025)'. The sample size in 
each of the 4OOO trials was n - 12 as one sees from Table 2. An asterisk 
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Table 9. Monte Carlo Eslimates of Power. 

Wald Test Likelihood Ratio 

( a )  Model Bb 
.9835 .0017* 
.7158 .0027+ 
.2738 .0023+ 
.2539 .0018+ 

- 4.5 1 .o 
- 3.0 0.5 
-1.5 -1.5 

1.5 -0.5 

,9725 
.6W1 
.2943 
2479 

.9889 

.7528 

.3051 

.2379 

.9893 

.7523 

.3048 

.2319 

.0020 
,0035 
.#17 
.0016 

3.0 -4.0 
2.0 3.0 

- 1.5 1 .o 
0.5 -0.5 

.993a 

.7127 

.3295 

.0885 

.!EM8 .0008 

.7122 -0017 

.3223 .0022* 

.0890 .0016 

,9955 
.6829 
.3381 
.08a5 

.9948 

.6800 

.3368 

.Of492 

.0006 

.0028 
,0015 
.0009 

0.0 0.0 .0500 .0525 .0012* 

(b)  Model C' 
.9540 .oO09+ 
.4522 .0074* 
.4583 ,0062' 
,2047 .0056+ 

. O N 0  .0501 .0008 

- 2.5 0.5 
- 1.0 0.0 

2.0 -1.5 
0.5 -1.0 

.9!w 

.5984 

.4013 

.2210 

1.oooO 
-7738 
.2807 
.2871 

1 .oooo 
,7737 
.2782 
.2892 

.oooo 

.0060 

.0071 

.w1 

4.5 - 3.0 
0.0 1 .o 

- 2.0 3.5 
- 0.5 1 .o 

.9945 
,5984 
,9795 
.2210 

.8950 .0012* 
,7127 .0054* 
.I645 .0022* 
.3710 .0055* 

.9736 

.5585 
,4207 
.1641 

.9752 
5564 
.4192 
.1560 

,0025 
.#32 
.0078 
.o040* 

0.0 0.0 .Om .1345 .0034* .0500 .0502 .0012 

"Asterisk indicates difference significaat at 5% level. 
'Model B: uI - 0.052957, a, - 0.014005. 
'Model C: u, = 0.27395, u2 - 0.029216. 
indicates that P( W > F,) is significantly different from P( Y > F,) at the 
5% level; similarly for the likelihood ratio test. For complete details see 
GaUant (1976). 0 

If the null hypothesis is written as a parametric restriction 

H: h(6' )  = 0 
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and it is not convenient to rewrite it as a functional dependence 8 = g(p), 
the following alternative formula (Section 6 of Chapter 3) may be used to 
compute PFG: 

n 

8: minimizes C [ ~ ( x , ,  eo)  - f ( x , , e ) ] '  subject to h ( ~ )  = o 
1-1 

We have discussed the Wald test and the likelihood test of 

H: h ( e o )  = o against A : h ( e o )  z o 

equivalently, 

H : ~ O -  g(p)forsomep* against A:8°+g(p)foranyp.  

There is one other test in common use, the Lagrange multiplier (Problem 6 )  
or efficient score test. In view of the foregoing, the following motivation is 
likely to have the strongest intuitive appeal. Let 

e' mini& SSE(8) subjectto h ( 8 ) = 0  

or equivalently, 

e' = g( i )  where fi  minimizes SSE[ g( p ) ]  . 
Suppose that e' is used as a starting value; the Gauss-Newton step away 
from 8 (presumably) toward 6 is 

where @ = F(6)  = (a/ae')f(8).  Intuitively, if the hypothesis h(8') = 0 is 
false, then minimization of SSYt?) subject to h ( 8 )  = 0 will cause a large 
displacement away from b and D will be large. Conversely, if h(Oo) is true 
then fi should be small. It remains to find some measure of the distance of 
6 from zero that will yield a convenient test statistic. 
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and that 

8 =m0) - f ( t 9  
P, = F( F ~ F ) - * F ~  

PFG = FG(G~F~FG)-’G~F~ 

where G = ( a/ap’)g( pt j. Equivalently, 

PFG = PF - F( F IF) - lP [ H( F IF ) - 3 J - lH( F ’F ) - ’ F  I 

where K- ( a / M t j h ( 8 , + ) .  We shall show in Chapter 4 that 

SSE( 8) ( e  + a)’( 1 - PFG)( e + 13) 
+ %( -= 

n n 

These characterizations suggest two test statistics 

and 

The second statistic R ,  is the customary form of the Lagrange multiplier 
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test and has the advantage that it can be computed from knowledge of 8 
alone. The first requires two minimizations, one to compute 6 and another 
to compute 8. Much is gained by going to this extra bother. The distribu- 
tion theory is simpler and the test has better power, as we shall see later on. 

The two test statistics can be characterized as 

R ,  = 2, + q l )  
R, = 2, + op(l) 

where 

n ( e  + a)‘( PF - pFG)( e + 6) 
( e  + a)’( I - pFG)( e + 6 ) .  2, = 

The distribution function of 2, is (Problem 7) 

F ’ ( z ;  q. n - p ,  A,) 

where 

That is, the random variable 2, is distributed as the noncentral F-distribu- 
tion (Section 7) with q numerator degrees of freedom, n - p denominator 
degrees of freedom, and noncentrality parameter A,. Thus R ,  is approxi- 
mately distributed as the (central) F-distribution under the null, and the 
test is: Reject H when R ,  exceeds Fa = F-’(l - a; q, n - p ) .  

The distribution function of 2, is (Problem 8) for L < n 

1 ( n  - ; q,  n - p ,  A,, A, 
.It( q ( n  - z )  

where 

6’( I - P,)S 
2a2 

A, = 
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and F”(r; q, n - p ,  A,, A,) denotes the doubly noncentral F-distribution 
(Section 7) with q numerator degrees of freedom, n - p denominator 
degrees of freedom, numerator noncentrality parameter A,, and denomina- 
tor noncentrality parameter A, (Section 7). If we approximate 

P(R, > d )  P(2, > d )  

then under the null hypothesis that h ( e o )  - 0 we have 6 = 0, A, = 0, and 
A ,  = 0, whence 

Letting F, denote the a X 100% critical point of the Fdistribution, that is, 

a = 1 - F(F,; q,  n - p )  

then that value d, of d for which 

P ( R ,  > d ,  ( A ,  = A ,  = 0) = u 

is 

or 

The test is then: Reject H: h ( S o )  = 0 if R, > d,. With this computation 
of d,, 

P( R, > Fa) P( Z,  > Fa) - 1 - F’(F,; 4, n - p ,  A,) 

s 1 - F”(F,; q,  n - p ,  A , ,  A,) 

L P( R, > d, )  
= P(Z2 ’ d,)  

and we see that to within the accuracy of these approximations, the first 
version of the Lagrange multiplier test always has better power than the 
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second. Of course, as we noted earlier, in most instances A 2  will be small 
relative to A, and the difference in power will be neghgible. 

In the Same vein, judging from the entries in Table 6, we have (see 
Problem 10) 

whence 

Thus the Likelihood ratio test has better power than either of the two 
versions of the Lagrange multiplier test. But again, A, is usually smal l  and 
the difference in power neghgible. 
To summarize this discussion, the first version of the Lagrange multiplier 

test rejects the hypothesis 

H: h(6') = 0 

when the statistic 

R1 = + SSE( ) ( n  - p )  

exceeds Fa = F-'(l - a; q, n - p ) .  The second version rejects when the 
statistic 

nlY( m ) b  R, = 
SSE( 6) 

exceeds 

As usual, there are various strategies one might employ to compute the 
statistics R, and R,. In connection with the Likelihood ratio test, we have 
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already discussed and illustrated how one can compute 6 by computing the 
unconstrained minimum 4 of the composite function S S g g ( p ) ]  and setting 
6 = g(j). Now suppose that one creates a data set with observations 

, 

or in vector notation 

Z-Y - f ( 4  

f = 1 , 2 ,  ..., n 

r = 1,2, ..., n 

Note that F'is an n by p matrix; k" .., not the n by r mah.i (a /ap ' ) / [g (p ) ] .  
rf one regrases on P with no intercept term using a linear regression 
procedure, then the analysis of variance table printed by the program will 
have the following entries: 

SOUrCe d.f. Sum of Squares 

One can just read off 

from the analysis of variance table. Let us illustrate these ideas. 

EXAMPLE 1 (Continued). Recalling that the response function is 

reconsider the first hypothesis 

H :  = 0. 
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8As st.t.I(Mt¶: 

DATA WOI(KO1; SET EXAMPLEI; 
Tl=O.O; 12=1.00296692j 13~-1.14123442; T4=-0.51 
E I V - ( T ~ * X ~ * T ~ * X ~ + T ~ * Z X P ( T ~ ~ X ~ J ) ;  
Fl-XI; F29X2; F 3 = 1 4 * X J 9 X P ( T 3 ~ 3 ) ;  F4=EXP(73W3 
DROP 11 12 13 T I ;  
PROC R€O DATA=WQRKOl; )IoML E=Fl F2 F3 F4 / NOIWT: 

OUtWt: 

B2277t 

S T A T I S T I C A L  A N A L Y S I S  S V S T E M  

M P  VARlMLE: E 

Sun OF IRA)I 
S O U R C E D ( :  SQuYIES SQUARE F VALUE PRoB>F 

NODEL 4 0.004930302 0.001234696 1.063 0.39% 
ERRQ) 26 0.030495 0.001172869 
U TOTAL 30 0.036433 

ROOT USE 0.034247 R-SQUARE 0.1394 
OEP MAN -6.60727E-09 ADJ R-SQ 0.0401 
C.V. -621064209 

NDTE: NO INTERCEPT TERM IS VSEO. R - W E  IS REDEFIMO. 

PARUETEA STANOAR0 T FOR Ho: 
VARIABLE ff ESTIMATE ERROR PARACYTER=O PRO8 > ( T I  

Fl 1 -0.025880 0.012616 -2.062 0.0604 
F2 1 0.01271s 0.009e74ioi 1.288 0.2091 
F3 1 0.026417 0.166440 0.160 0.6144 
F4 1 0.00TO33215 0.026929 0.271 0.703 

Figwe l t o .  Illustration of Lagrange multiplier test computations with Example 1. 

Previously we computed 

6 = 1 1.00296592 I (from Fig. 9a) - 1.14123442 
\ -0.51182277 

SSE( 8)  = 0.03543298 

SSE( 8) = 0.03049554 

(from Fig. 9a or Fig. 12a) 

(from Fig. 5 a ) .  

1 

We implement the scheme of regressing P on F' in Figure 12a (note the 
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similarity with Fig. 110) and obtain 

fit( p’F)fi  = 0.004938382 (from Fig. 12a). 

The first Lagrange multiplier test statistic is 

81( FI’#)B/q 
R1 a SSE( 8)/(  n - p )  

=.$%%!%# 
= 4.210. 

Comparing with the critical point 

F-’(.95; 1,26) = 4.22 

one fails to reject the null hypothesis at the 95% level. 
The second Lagrange multiplier test statistic is 

(30)(0 .oO4938382) 
E: 0.03543298 
= 4.1812. 

Comparing with the critical point 

one fails to reject the null hypothesis at the 95% level. 
Reconsider the second hypothesis 
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which can be represented equivalently as 

H: B0 = g ( p )  for some po 

with 

Previously we computed 

-0.02301828 

-1.16048699 
p = ( 1.01965423) (from Fig. 96) 

SSE( 6) 5 0.03493222 

SSE( 8 )  = 0.03049554 

(from Fig. 96 or Fig. 126) 

(from Fig. 5a).  

Regressing e" on I', we obtain 

6'( $#I')fi = 0.004439308 (from Fig. 12b).  

The first Lagrange multiplier test statistic is 

R1 F SSE( ) ( n  - p )  

0.004439308/1 
= 0.03049554/26 

= 3.7849. 

Comparing with 

Ft.95; 1,26) = 4.22 

we fail to reject the null hypothesis at the 95% level. 



94 UNIVARIATE NONLINEAR REGRESSION 

SAS St.teDentr: 

OATA WOAKOl; SET EXAMPLEI; 
Rl~-O.02301826;  R2.1.01966423; R3=-1.16046699: 
1 1 4 1 :  T21R2; T 3 d 3 ;  T4*1/(5*R3*EXP(R3)); 
E=Y-(T lWltT2fX2+T4*EXP(T3W3)) ;  
F l=X l ;  FZnX2; F3=TI*XJ*EXP(T3*X3): F4=EXP(T3*X3)i 

PAW RE5 DATA-WORKO1; naOEL E-Fl F2 F3 F4 / NOINT; 
mop TI 12 13 1 4 ;  

Output: 

S T A T I S T I C A L  A N A L Y S I S  

M P  VARIABLE: E 

sun OF =AN 
SOURCE OF SQUARCS SQUAiRE f VALUE 

moEL 4 0.004439308 0.001109827 0.946 
ERROR 26 0.030493 0.001172804 
U TOTAL 30 0.034932 

ROOT M E  0.034246 R - W A R E  0.1271 
DtP WAN 7.69999e-09 ADJ R-SQ 0.0284 
C.V. 460609070 

MOTE: NO INTERCEPT TERM I S  USED. R-SQUARE IS REOEFINEO. 

S Y S T E M  

PROB>F 

0.4631 

PIRAWTER STuID*Ro T FOR mt: 
VARIABLE OF ESTIMATE ERROR PARA#TER=O PROB % IT1 

F1 1 -0.00286742 0.012611 -0.227 0.0226 
F2 1 -0.oos9e64~ 0 .0098m62 -0.406 0. aees 
F3 1 0.043603 0.166802 0.277 0.7(136 
F4 1 0.046362 0.026129 1.736 0.0944 

F i p  126. Illustration of Lagrange multiplier test compulations with Example 1 

The second Lagrange multiplier test statistic is 

1 

(3O)(O.O04439308) 
a 0.0349322 

= 3.8125. 
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Comparing with 

- ( 30)( 4.22) - 
(26/1) + 4.22 

= 4.19 

we fail to reject at the 95% level. 
We reconsider the third hypothesis 

which may be rewritten as 

H : eo = g ( p )  for some po 

with 

Previously we computed 

.00795735 ) (from Fig. 9c) - 1.16918683 

SSE( @) = 0.03S89923 

SSE( 8)  = 0.03049554 

(from Fig. 9c or Fig. 12c) 

(from Fig. 5 n ) .  

Regressing e' on F, we obtain 

95 

D( f'F)B = 0.008407271 (from Fig. 12c). 
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SAS S t a t m n t s :  

0111 wmaoi: SET EXANPLEI; 
R1-0; R2-1.00796736; R3--1.16916683; 
ATlaRl ; T2mR2; 1 3 4 3  : T4ml/ (S*AS%XP(RS I ) ; 
E=Y-( Tl*Xl+T?*XP*T4*EXP( TWX3)) 8 
Fl-Xl; F2lX21 FJ-T4~3YXP(T3*X3); FI-EXP(T3*X3); 
OROP 11 12 13 T4i 
PROC R E 0  OATA-UORKOl; MOOEL Emf1 F2 F3 F4 / NOINT; 

Output: 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  

MOOEL 4 0.008407271 0.002101818 1 .T9Z 0.1601 
ERROR 26 0.030492 0,0011727S8 
0 M T M  30 0.038899 

ROOT US€ 0.034246 R-SQUAM 0.1161 
DEP MAN -2.83174€-09 AOJ R-SQ 0.1257 
C.V. -1209360370 

MOTE: NO INTERCEPT TERN I S  WED. R-SQUARE I S  REOEFXEO. 

PAAAMER STIWMW) TFORHO: 
VARIMLE ff ESTIMATE ERROR PARAClETER-0 PROB > I l l  

F1 1 -0.026868 0.012608 -2.062 0.0604 
F2 1 0,007699193 0.00980899 0.786 0.4396 
F3 1 0.062092 0.161889 0.330 0.7441 
F4 1 0.046107 0.026218 1.769 0.0904 

Fw 12r. Illustration of Lagrange multiplier test computations with Example 1. 

The first Lagrange multiplier test statistic is 

0.008407271/2 
L1 0.03049554/26 
= 3.5840. 

Comparing with 

we reject the null hypothesis at the 5% level. 
F1( .95; 2,26) = 3.37 

1 
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The second Lagrange multiplier test statistic is 

n f i ) (  P # P ) B  

(3O)(O.O084O7271) 
R2 SSE(8) 

= 0.03889923 - 6.4839. 
Comparing with 

97 

nFa 
n - P)/4 + Fa 
(30) (3.37) 

d a -  ( 

,= (26/2) + 3.37 
= 6.1759 

we reject at the 95% level. 0 

As the example suggests, the approximation 

dl( F'F) f i  L SSE(6) - SSE(d) 

is quite good, so that 

R ,  L 

in most applications. Thus, in most instances, the likelihood ratio test and 
the first version of the Lagrange multiplier test will accept and reject 
together. 
To compute power, one uses the approximations 

P( R, > Fa) A P (  2, > Fa) 

and 

P (  R, > d , )  1 P( 2, > d a ) .  

The noncentrality parameters A, and A, appearing in the distributions of 
Z, and Z, are the same as those in the distribution of X. Their computa- 
tion was discussed in detail during the discussion of power computations 
for the likelihood ratio test. We illustrate 

EXAMPLE 1 (Continued). Recalling that 
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let us approximate the probabilities that the two versions of the Lagrange 
multiplier test reject the following three hypotheses at the 5% level when the 
true values of the parameters are 

e o  = (.03,i,  -1.4, - .5)/ 
u2 = ,001. 

The three hypotheses are the same as those we have used for the illustration 
throughout: 

H~ : 6, = o 

H~ : 6, = o and 364ee3 = +. 
H , :  t9364e8~ = 4 

In connection with the illustration of power computations for the likelihood 
ratio test we obtained 

Hl : A, = 3.3343, A,  = 0 
H2 : A, = 6.5128, A ,  = 0.0005827 
H3 : A, = 10.9604, A,  = 0.0008241. 

For the first hypothesis 

P (  R ,  > Fa) A P( 2, > F,) 
= 1 - F’(F,; q, n - p ,  A , )  
= 1 - F‘(4.22; 1,26,3.3343) 
= .700 

= 1 - F”( F,; (I, n - p ,  A,, A , )  
= 1 - F“(4.22; 1,26,3.3343,0) 
= ,700; 

P( R, > d , )  i P( 2, > d, )  

for the second 

P(R, > F,) A P ( 2 ,  > Fa) 
= 1 - F’( F,; q, n - p ,  A,)  
=s 1 - F’(4.22; 1,26,6.5128) 
= .935 

= 1 - F“( F,; q, n - p .  A, ,  A , )  
= 1 - F”(4.22; 1,26,6.5128,0.0005827) 
= .935; 

P (  R ,  > d, )  P( 2, > d,)  
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and for the third 
P ( R ,  > Fa) P ( Z ,  > Fa) 

1 - F'( Fa; 4, n - P, A,) 
p 1 - F'(3.37; 2,26,10.9604) 
= .983 

= 1 - F"(Fa; 4, n - P, A,, A,) 

= .983. 

P(R, > d,) A P ( 2 ,  > d, )  

= 1 - F"(3.37; 2,26,10.9604,0.0008241) 

Again one questions the accuracy of these approximations. Tables 10a 
and lob indicate that the approximations are quite good. Also, by compar- 
ing Tables 7, IOU, and 10b one can see the beginnings of the spread 

P( L > Fa) > P( R, > Fa) > P( R, > d, )  

as A ,  increases which was predicted by the theory. Tables 10a and 10b 
were constructed exactly the same as Tables 5 and 7. 0 

PROBLEMS 

1. Assuming that the density of y is p ( y ;  8, a) = ( 2 m ~ ' ) - " / ~  exp( - t [ y  
- /(@l'[y - /(@)I/u2}, show that 

m u e ,  , p ( y ;  8 ,  u )  = [2nSSE(d)/n]-"/'e-"fl 

maxb(e),,, . p ( y ;  8, u )  = [2wSSE(d')/n] -n/2e-n/2 

presuming, of course, that f ( 8 )  is such that the maximum exists. The 
likelihood ratio test rejects when the ratio 

maxb,#l -O.aP(Y;  8 , u )  
m e , . P ( y ;  8 , ~ )  

is small. Put this statistic in the form: Reject when 

is large. 
2. If the system of equations defined over 8 

h ( @ )  = T 

d8) - P 



HYPOTHBSIS TESTING 

has an inverse 

6 = # ( P ,  4 
show that 

( 6  E 8 :  h ( B )  = O} - ( 6 :  B -  Jl(p,O)forsomepin R }  
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where R = {p :  p = + ( B )  for some 8 in 8 with h ( 8 )  5 0). 
3. Referring to the previous problem, show that 

max(SSE(6):h(B) - 0 a n d B i n 0 )  = rnax(SSE[+(p,O)]:pinR) 

if either maximum exists. 

4. [Derivation of H ( x ;  q, Y,, A,, A2).] Define H ( x ;  Y,, u2, A,, A,) to be 
the distribution function given by 

0, 
x s l  A 2 = 0  

x = l  A 2 > 0  

x > 1. 

where g(t;  Y, A )  denotes the noncentral chi-square density function 
with v degrees of freedom and noncentrality parameter A, and 
G(r; v, A) denotes the corresponding distribution function (Soction 7). 
Fill in the missing steps. Set z - (I/u)e, Y = (l/u)a0, and R - PF - 
PFG. The random variables (zl,zZ, ..., z,,) are independent with 
density n( t ;  0,l). For an arbitrary constant b, the random variable 
(z + by)’R(z + b y )  is a noncentral chi-square with q degrees of 
freedom and noncentrality bZy’Ry/2, since R is idempotent with rank 
q. Similarly, (I + by)’PA(z  + b y )  is a nonantral chi-square with 
n - p degrees of freedom and noncentrality b2y’P y /2 .  These two 
random variables are independent because RP* = 0 (Section 7). Let 



By substituting x = a - 1, A, = y ' R y / 2 ,  and A ,  = y'P - y / 2  one 
obtains the form of the distribution function for x > 1. The deriva- 
tions for the remaining cases are analogous. 
Show that if A, = 0, then 5. 

Refemng to Problem 4, why does this fact imply that 

H(c,;  ~ 1 9  ~ 2 ,  A1,O) = F'(F,; 111, ~ 2 ,  A,)? 
6. (Alternative motivation of the Lagrange multiplier test.) Suppose that 

we change the sign conventions on the components of the vector 
valued function h ( 6 )  in a neighborhood of 6 so that the problem 

minimize sSE(6) 

subject to h ( 6 )  5 0 

is equivalent to the problem 
minimize SSE(6) 

subject to h ( 6 )  = 0 
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on that ne@borhood. The vector inequality means inequality compo- 
nent by component. 

Now consider the problem 

minimize sswe) 
subject to h ( 8 )  = x 

and view the solution 8 as depending on x .  Under suitable regularity 
conditions there is a vector X of Lagrange multipliers such that 

aSSE( aef 6 )  = kH( 8) 

and ( a / a x f ) 6 ( x )  exists. nen 

h [ 6 ( x ) ]  = x 

a 
H ( 6 ) & 4 X )  = 1 

a a a 

implies 

whence 

- a x ,  ssE[ J( x )I = W S E I  &( x )I =& x 

a 
= WWl vw 
= k. 

The intuitive interpretation of this equation is that if one had one 
more unit of the constraint h, ,  then SSE(B) would decrease by the 
amount A,. Then one should be willing to pay lhil (in units of SSE) for 
one more unit of h,. Stated differently, the absolute values of the 
components of X can be viewed as the prices of the constraints. With 
this interpretation any reasonable measure d ( X )  of the distance of the 
vector 

H: h ( 8 )  = 0 against A : h ( e )  + 0. 
from zero could be used to test 

One would reject for large values of d(x) .  Show that if 

d ( X )  = + ~ z l ( F f z y d f i  

d (  X) = fY( F f F ) l j  

is chosen as the measure of distance where d and ;F' denote evaluation 
at 8 - 6 then 

where, recall, b = (FfF)- 'Ff[y - j(6)].  



9. (Relaxation of the normality assumption.) The distribution of e is 
spherical if the distribution of Qe is the same as the distribution of e 
for every n by n orthogonal matrix Q. Perhaps the most useful 
distribution of this sort other than the normal is the multivariate 
Student f (Zellner, 1976). Show that the null distributions of X,  Z, ,  
and 2, do not change if any spherical distribution is substituted for 
the normal distribution. Hint: Jensen (1981). 

10. Prove that P(X > c.) 2 P(2, > Fa). Warning: This is an open ques- 
tion. 

6. CONFIDENCEINTERVALS 

A confidence interval on any (twice continuously differentiable) parametric 
function y ( 8 )  can be obtained by inverting any of the tests of 

H: h ( e o )  = o against A : h(6O)  + 0 

described in the previous section. That is, to construct a 100 X (1 - a)% 
confidence interval for y ( 6 )  one lets 

h ( @ )  = Y ( 6 )  - Y O  

and puts in the interval all those y o  for which the hypothesis H: h ( e 0 )  = 0 
is accepted at the a level of significance (Problem 1). The same is true for 
confidence regions, the only difference being that y ( 0 )  and y o  will be 
q-vectors instead of being univariate. 

The Wald test is easy to invert. In the univariate case ( q  = l), the Wald 
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where 

105 

and f u / z  = f-’(l - a/2; n - p); that is, tUl2 denotes the upper a/2 criti- 
cal point of the z-distribution with n - p degrees of freedom. Those points 
yo that satisfy the inequality are in the interval 

The most common situation is when one wishes to set a confidence interval 
on one of the components ei of the parameter vector 8. In this case the 
interval is 

e, * tu,2 \ls2ti, 

where cli, is the ith diagonal element of c^ = [ F ’ ( d ) F ( l ) ] - ’ .  We illustrate 
with Example 1. 

EXAMPLE 1 (Continued). Recahg  that 

f( x ,  8 )  = 8 , ~ ,  + e2x2 -t 8.,ee3x~ 

let us set a confidence interval on 8, by inverting the Wald test. One can 
read off the confidence interval directly from the SAS output of Figure 5a 
as 

[ - 0.05183816,0.oooO5877] 

or compute it as 

8, Q -0.02588970 
t , ,  = .13587 

s 2  = 0.00117291 

r-’( .975; 26) = 2.0555 

(from Fig. 5a) 

(from Fig. 56)  

(from Fig. 5b) 

6, f f U / *  = -0.02588970 f ( 2 . 0 5 5 5 ) ~ ( 0 . 0 0 1 1 7 2 9 1 ) ( . 1 ~  
= -0.02588970 f 0.0259484615 

whence 

[ - 0.05 1 838,O .OW5 88 J . 
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st8t-t¶: 

moc MATRIX; 
C = 0.13607 -0,061112 -0.16100 -0.037594/ 

-0.067112 0.084203 0.51764 -0.00167048/ 
-0.1(1100 0.61764 22.8032 2.0088T/ 

-0.037694 -0.00167848 2.00067 0.6612S; 
H = o o o.oisi~20ess -0 .~6sswi7e;  
HCH - n*c*n@; PRINT w; 

Output: 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  1 

HCH COC 1 

ROW1 0.0652663 

Figure 13. Wald test confidence interval construction illustrated with Example 1 

To put a confidence interval on 

we have 

a 
H(B) = = [ o , ~ ,  e,(i + 0,)e83, e3ee3] 

y ( B )  = ( -1.11569714)(-0.50490286)e-1~11’69714 (from Fig. 5a) 

(from Fig. 5a) 

(from Fig. 56 and 13) 

(from Fig. 5.). 

= 0.1845920697 
B = (O,O, 0.0191420895, - 0.365599176) 

f i t H ’  = 0.0552562 

s 2  = 0.00117291. 

Then the confidence interval is 

y ( l )  f ‘*/*(s~f12fl~)1~z 
= 0.184592 f (2.0555)[(0.00117291)(0.0552563)] *”  
= 0.1845921 f 0.0165478 

or 

[ 0.1680~,0.201140]. 
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In the case that y(t9) is a g-vector, the Wald test accepts when 

2 Fa. 
[ y (  0 )  - YO]'( fief?') -" y (  I )  - y o ]  

4s 

The confidence region obtained by invy\$g this test is an ellipsoid with 
center at y(t9) and the eigenvectors of HCH' as axes. 
To construct a confidence interval for y ( 6 )  by inverting the likelihood 

ratio test, put 

W )  = Y(0) - Y O  

with y o  a q-vector, and let 

SSEIo= min(SSE(0): y ( t 9 )  = y o } .  

The likelihood ratio test accepts when 

where, recall, Fa = F-'(l - a; 4, n - p) and SSErull = SSE(4) = 
minSSQ0). Thus, a likelihood ratio confidence region consists of those 
points y o  with L ( y o )  s Fa. Although it is not a frequent occurrence in 
applications, the likelihood ratio test can have unusual structural character- 
istics. It is possible that L ( y o )  does not rise above Fa as llyoll increases in 
some direction, so that the confidence region can be unbounded. Also it is 
possible that L ( y o )  has local minima which can lead to confidence regions 
consisting of disjoint islands. But as we said, this does not happen often. 

In the univariate case, the easiest way to invert the likelihood ratio test is 
by quadratic interpolation as follows. Take three trial values yf, y:, y; 
around the lower limit of the Wald test confidence interval, and compute 
the corresponding values of L(yp) ,  L(y:), L(y!) .  Fit the quadratic equa- 
tion 

L ( y p )  = a(?:) '+ b ( y p )  t c i = 1 ,2 ,3  

to these three points, and let 2 solve the equation 

Fa = ax2 + bx + c. 

One can take i? as the lower limit or refine the estimates by taking three 
trial values yp, yf, y: around 2 and repeating the process. The upper 
confidence limit can be computed similarly. We illustrate with Example 1. 
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EXAMPLE 1 (Continued). Recalling that 

I (  X ,  e) = el%, + eZx2 + 04ee3*3 

let us set a confidence interval on 8,. We have 

SSE, 0.03049554 (from Fig. 5a). 

By simply reusing the SAS code from Figure 9a and embedding it in a 
MACRO whose argument y o  is assigned to the parameter el, we can easily 
construct the folIowing table from Figure 14a: 

~ 

- .052 0.03551086 4.275980 

- .050 0.03477221 3.646219 
- .001 0.03505883 3.890587 

.0oO 0.03543298 4.209581 

.001 0.03582188 4.541151 

- .05i 0.0351~19 3.95437 

Then either by hand calculator or by using PROC MATRIX as in Figure 14b, 
one can interpolate from this table to obtain the confidence interval 

[ - 0.0518,0.oooO320]. 
Next let us set a confidence interval on the parametric function 

As we have secn previously, the hypothesis 

H: 8&,eeJ = y o  

can be rewritten as 
- 1  H : 0 4 - ( 7 )  e,e e3 . 

Again, as we have seen previously, to compute SSE,o let 
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!%s S t 8 t m t S :  

SIIACRO SSE(WM4); 
PAW HLIN DATA-€XACIPLEl NETHDD~OAUSS I T E R 4 O  CONVEROENCE~l.OE-131 
PMUS 12-1.01667967 T3~-1.11669714 T1--0.60490286; Tl-LOA)BIAr 
mwKL Y=Tl+](l+T2*1(2+T4*U(P(T3~X~)1 
MR.f2*X2; DER.TJ-T4*XJ*EXP(TJ*XJ)i Df!R.T4=EXP(TJ*X3); 
%#€No SSE; 
tssE(-.O621 IrSsE(-.OSl) UesE(-.OSO) GSM(-.OOl) %sSE(.000) tss€(.ool) 

109 

output: 

NW-LINEAR LEAST SQUARES ITERATIVE PHASE 

DEPENDENT VARIABLE: Y I(ETHo0: GAUSS-NEWTON 

ITERATION 

6 

6 

6 

7 

7 

7 

12 T3 14 RESIDUAL SS 

1.02862742 -1.08499107 -0.49767910 0.03561086 

1.0281286s -1.08627326 -0.497866e6 0.03613419 

1.02763014 -1.01764637 -0.49816400 0.03477221 

1.06346614 -1.14032673 -0.61166098 0.03506883 

1.00296692 -1.14123442 -0.61182277 0.03643296 

1.60247682 -1.14213734 -0.61206416 0.03682188 

Figure 140. Likelihood ratio test confldcnce interval construction illustrated with Example 1. 

and SSE,o can be computed as the unconstrained minimum of sSQg,~((p)]. 
Using the SAS code from Figure 96 and embedding it in a MACRO whose 
argument y o  replaces the value 3 in the previous code, the following table 
can be constructed from Figure 14c: 

YO SSE,o 

.166 0.03591352 4.619281 

.167 0.03540285 4.183892 

.168 0.03491101 3.764558 

.200 0.03493222 3.782641 

.201 0.03553200 4.294004 

.202 0.03617013 4.838063 

Quadratic interpolation from this table as shown in Figure 14d yields 

[0.1669,0.2009]. 0 
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Output: 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  1 

ROOT COLl 

Row1 0.000108776 

ROOT COL 1 

ROW1 -0.06is~es 

ROOT coc 1 
ROW1 .0000320109 

ROOT COL 1 

ROW1 -0.0617626 

Figure 14Q. LiLelihood ratio test confidence intemal construction illustrated with Example 1. 

To construct a confidence interval for y ( B )  by inverting the Lagrange 
multiplier tests, let 

h ( @ )  = Y ( 6 )  - YO 
8 minimize SSE( B )  subject to h ( 8 )  = 0 
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The first version of the Lagrange multiplier test accepts when 

and the second when 

mtputr 

)(on-LINfAR LEAST SQUARES ITERATIVE PHASE 

MPENDENT VARIMLE: Y METHOD: OUSS-NEWTOM 

1 TERAT ION R 1  R2 R3 RESIWAL SS 

8 -0.03062338 1.01672014 -0.91766608 0.03691352 

0 -0.02970174 1.01642383 -0.93080113 0.03640286 

8 -0.62964071 1.01014305 -0.94112676 0.03491101 

31 - 0 . o ~ a o i 8 ~ 1  i . 0 1 ~ 6 4 2 3  -1.16048699 0.03493222 

43 -0.02283731 1.01994671 -1.16201916 0.03563200 

-0.02266798 1.02024776 -1.16319266 0.03617013 13 

Figure 14c. Likelibood ratio test confidence interval constnrction illustrated with Example 1. 
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SAS st.t-trr 

PROC lUTRIX; 
A- 1 . la6 .021666 

1 .167 .027889 
1 .168 .026224 

/ 
/ 

TEST- 4.619181 / 4.163892 / 3.764S68 ; B-IW(A)*TEST: 
ROO~~( -~ (2 ,1 )+~T(B(2 ,1 )1%(2 ,1 ) -41 (1 (9 .1 )8 (8 (1 ,1 ) -4 .22 ) ) )8 / (21b(5 .1 ) ) ;  
PRINT ROOT; 
ROOT- ( -I( 2.1 ) -ml( E( 2 , l  )UB( 2 , l  )-W( 3 I 1 )8 (8( 1,1)-4.22 ) ) ) U / (  2#8( 3 , l )  ) ; 
PRINT ROOTI 
A- 1 .200 .040000 / 

1 .201 .040401 / 
1 .202 .04DM)4 I 

TEST- 3.712641 / 4.294004 / 4.658063 ; I -INV(A)*TEST# 
ROOT~(4(2 ,1  ) + ~ T ( 6 ( 2 , 1 ) 8 6 ( 2 , 1 ) 4 ~ ( 3 , 1  )8(8(1,1) -4*22))  )8 / (286(3#1 ) ) I  
P R I M 1  ROOT: 
ROOT-(-I(2, 1 )-spAT(B(2.1)1%(2,1)-48~(3,1 IU(E( 1,1)-4.22)) )8/(286(3,1)); 
PRIM7 ROOT; 

Output: 

S T A T I S T I C A L  A N A L Y S K S  S Y S T E M  

ROOT COLl 

ROW 0.220322 

ROO1 COL 1 

ROWl 0.166916 

awr COLl 

ROWl 0.200869 

ROOT COLl 

ROW1 0.168861 

Flgurc 14d. Likelihood ratio test confadencx interval constnrction illustrated with Example 1. 

where Fa = F-'(l - a; q, n - P), da = nF'J[(n - P ) / q  + Fa], and 4 is 
the dimension of yo. Confidence regions consist of those points yo for 
which the tests accept. These confidence regions have the same structural 
characteristics as likelihood ratio confidence regions except that disjoint 
islands are much more likely with Lagrange multiplier regions (Problem 2). 

In the univariate case, Lagrange multiplier tests are inverted the same as 
the likelihood ratio test. One constructs a table with Rl(yo) and R 2 ( y o )  
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evaluated at three points around each of the Wald test confidence limits 
and then uses quadratic interpolation to find the limits. We illustrate with 
Example 1. 

EXAMPLE 1 (Continued). Recalling that 

f ( ~ ,  e) = B,X, + 62x2 + 64ee3x3 

let us set Lagrange multiplier confidence intervals on 8,. We have 

SSE(8) = 0.03049554 (from Fig. 5a) .  

Taking 6 and 3346) from Figure 14a and embedding the SAS code from 
Figure 12a in a MACRO as shown in Figure 15u, we obtain the following 
table from the entries in Figure 15a: 

- .052 0.005017024 4.277433 4.238442 
- .051 0.004640212 3.956169 3,962134 
- .050 0.004278098 3.647437 3.690963 
- .01 0.004564169 3.891336 3.905580 

.OOO 0.004938382 4.210384 4.181174 

.001 0.005327344 4.542001 4.461528 

Interpolating as shown in Figure 15b, we obtain 

R, : [ - 0.0518,0.oooO345 J 
R ,  : [ - 0.0518,0.oooO317]. 

In exactly the same way we construct the following table for 

y( 8 )  = 4B4e83 

from the entries of Figures 14c and 15c: 

.166 0.005507692 4.695768 4.600795 

.167 0.004986108 4.251074 4.225175 

.168 0.004483469 3.822533 3.852770 

.200 0.004439308 3.784882 3.812504 

.201 0.005039249 4.296382 4.254685 

.202 0.005677511 4.840553 4.709005 
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SAS St.t-tm: 

trUcR0 OFFD(T~TAl,THETA2,THETAJ,THETU,bSER)t 
DATA YDRKOl; SET EXAIPLEli 
T1-6TMETAl; T2IcITHETA2i T3-iTnLTM; T 4 4 T M € T M ;  
E ~ Y - ( T l * X ~ t T 2 * X 2 t l 4 s E X P ( T 3 r l ( 3 ) ) j  
F l -X l j  F21X24 F1=14*X3*EXP(TJ*X3); FI*EXP(T3*X3): 
MOP 11 12 13 141 
PROC RE0 OATA4dORKOlj NODEL Emf1 F2 F3 F4 / NOINT; 
8REm DFFOi 
3ocFD(-.062. 1.02862742, -1.08499107, -0.49767910, 0.03SSl086) 
tlWFO(-.061, 1.02812MS. -1.08827326, -0.49786686, 0.03613419) 

tDFFO(-.DOl, 1.00346614. -1.14032673, -0.61166098, 0.036OS843) 
~DFFO(-.OSO, i . 0 2 m o i ~ .  -1.087~4637. -0.4seis400, 0 . 0 3 4 ~ 2 2 1 )  

SL)FFD( .mo, i . 0 0 2 ~ 6 ~ 9 2 ,  -1.14123442. - 0 . r i i e m 7 .  0.03~43290) 
WFO( .MI, i . 0 0 2 m e 2 ,  -1 .14213~34,  - 0 . 6 i 2 o e ~ i s .  o . o ~ s ~ ~ i s s )  

output t 

SOURCE 

lloDEL 
ERROR 
U TOTAL 

)(M#L 
ERROR 
U TOTAL 

Iy)[#L 
ERRW 
U TOTAL 

WOEL 
ERRDR 
U TOTAL 

IWOEL 
ERROR 
U TOTAL 

mXILL 
ERROR 
U TOTAL 

DF 

4 
26 
30 

4 
26 
30 

4 
26 
30 

4 
26 
30 

4 
26 
30 

4 
26 
30 

suI(DF 
sWIAES 

0.00601?024 
0.030404 
0.03661 1 

0.004640212 

0.036134 
0.0304e4 

0.00427e096 
0.030494 
0.034772 

0.004564169 
0.030496 
0.035069 

0.004930362 
0.030496 
0.036433 

O.OQ6327344 
0.030496 
0.036022 

WAN 
SOUARE 

0.001264266 
0.00117264 

0.001069624 
0.001172861 

0.001141042 
0.0011T2871 

O.OO1234696 
0.001 172e69 

0.001331836 
0.001172867 

F VALUE PROB>C 

1 .06B 0.3916 

0.989 0.1309 

0.912 0.4917 

0.973 0.4392 

1.063 0.39% 

1,136 0.3611 

Figure 1511. Lagrange multiplier test confidence interval construction illustrated with 
Example 1. 

Quadratic interpolation from this table as shown in Figure 15d yields 
R, : [0.1671.0.2009] 
R ,  : [0.1671,0.2oO9]. 0 

There is some risk in using quadratic interpolation around Wald test 
confidence limits to tind likelihood ratio or Lagrange multiplier confidence 
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output : 
S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  I 

ROOT1 COL 1 
ROW1 .0000960422 

ROOT2 COL 1 
RWl -0.0618241 

ROOT3 COL 1 
ROW1 0.0664016 

ROOT4 COL 1 
ROW1 -0.061826 

umr 1 COL 1 
R W l  .0000344662 

ROOT2 COL 1 
ROW1 0.00'120637 

ROOT3 em 1 
ROWl .0000317426 

ROOT4 cot 1 
ROWl -0.ii68ze 

Figure I S h  Lagrange multiplier test confidence interval construction illustrated with 
Example 1. 

intervals. If the confidence region is a union of disjoint intervals then the 
method will compute the wrong answer. To be completely safe one would 
have to plot L ( y o ) ,  Rl(yo), or R 2 ( y o )  and inspect for local minima. 

The usual criterion for judging the quality of a confidence procedure is 
the expected length, area, or volume, depending on the dimension q of 
~ ( 8 ) .  Let us use volume as the generic term, If two confidence procedures 
have the same probability of covering y ( d o ) ,  then the one with the smallest 
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SAS Sto temntr :  

VUCRO WFO( OAMIA, RWl , RH02, R M 3 ,  SSER ) ; 
DATA W K O l ;  SET EXAWLEl; 
Tl*&RHOl; T2rCRH02; TJ=@HO3; t4=l/(LRHOJ*EXP(LRH03)/CGAIII(A); 

FlSXl; F2=X2; F ~ M T ~ * X ~ * E X P ( T ~ * X ~ ) ;  FhEXP(T3*X3); 
DROP 1 1  12 T3 14; 
PROC RE0 OATAIWORKOl; W E L  E-Fl F2 F3 F4 / WOlNT; 
%H€wO DFFD; 
W F O (  .166, -0.03002338. 1.01612014, -0.91766608, 0.03691362) 
W F O (  .167, -0.02918114. 1.01642383. -0.93080113. 0.03640286) 
W F O (  ,166. -0.02954071, 1.01614386, -0.94412615, 0.03491101) 
W F O (  .200, -0,02301828. 1.01966423. -1.16048699, 0.03493222) 
W F O (  .201, -0.02283734. 1.01994611, -1.16201915. 0.03663200) 

E = Y - ( T ~ * x ~ + T z * x z + T ~ T x P ( T ~ * x J ) ) ;  

UWFO( .202, -0.02265199. i.o202411a, -1 .1631~266,  0.03611013) 

output: 

SOURCE 

MODEL 
ERROR 
U TOTAL 

MOOE L 
ERROR 
U TOTAL 

MODEL 
ERROR 
U TOTAL 

W E L  
ERROR 
U TOTAL 

WDEL 
ERROR 
U TOTAL 

W E L  
ERROR 
U TOTAL 

sun OF MAN 
OF SQUARES WNE F VALUE PROB>F 

4 0.006601692 0.001316923 1 * 171 0.3438 
26 0.030406 0.001169455 
30 0.036914 

4 0.004986108 0.001246521 1.066 0.3936 
26 0.030411 0.00ll69816 
30 0.056403 

4 0.004483469 0.001120867 0.968 0.4471 
26 0.030428 0.00111029 
30 0.034911 

4 0.004439308 0.001109821 0.946 0.4631 
26 0.030483 0.001172804 
30 0.034932 

4 0.006039249 0.001269812 1.074 0.3894 
26 0.030493 0.001112198 
30 0.035632 

4 0.006617611 0.0014t9378 1.210 0.3303 
26 0.030493 0.001112793 
30 0.036110 

Figure 15c. Lagrange multiplier test confidence interval construction illustrated with 
Example 1 .  

expected volume is preferred. But expected volume is really just an attribute 
of the power curve of the test to which the confidence procedure corre- 
sponds. To see this, let a test be described by its critical function 

I reject I-Z : y( e )  = yo 

o accept H: y ( e )  = yo. 
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As Pratt (1961) shows by interchanging the order of integration, 

The integrand is the probability of covering y, 

and is analogous to the operating characteristic curve of a test. The essential 
difference between the coverage function c+( y ) and the operating character- 
istic function lies in the treatment of the hypothesized value y and the true 
value of the parameter 8'. For the coverage function, 8' is held fixed and y 
varies; the converse is true for the operating characteristic function. If a test 
+ ( y ,  y )  has better power against H: y ( 6 )  = y o  than the test $ ( y ,  y o )  for 
all yo,  then we have that 

= C + ( Y O )  

which implies 

Expected volume( c p )  5 Expected volume( +). 

In this case a confidence procedure based on 9 is to be preferred to a 
confidence interval based on +. 

If one accepts the approximations of the previous section as giving useful 
guidance in applications, then the confidence procedure obtained by invert- 
ing the lielihood ratio test is to be preferred to either of the Lagrange 
multiplier procedures. However, both the likelihood ratio and Lagrange 
procedures can have infinite expected volume; Example 2 is an instance 
(Problem 3). But for y # y ( 8 ' )  the coverage function gives the probability 
that the confidence procedure covers false values of y. Thus, even in the 
case of infinite expected volume, the inequality c + ( y )  s c + ( y )  implies that 
the procedure obtained by inverting cp is preferred to that obtained by 
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inverting 4. Thus the likelihood ratio procedure remains preferable to the 
Lagrange multiplier procedures even in the case of infinite expected volume. 

Again, if one accepts the approximations of the previous section, the 
confidence procedure obtained by inverting the Wald test has better struc- 
tural characteristics than either the likelihood ratio procedure or the 
Lagrange multiplier procedures. Wald test confidence regions are always 
intervals, ellipses, or ellipsoids according to the dimension of y(6), and 
they are much easier to compute than likelihood ratio or Lagrange multi- 
plier regions. The expected volume is always finite (Problem 4). It is a pity 
that the approximation to the probability P (  W > F,) by P( Y > Fa) of the 
previous section is often inaccurate. This makes the use of Wald confidence 
regions risky, as one cannot be sure that the actual coverage probability is 
accurately approximated by the nominal probability of 1 - a short of 
Monte Carlo simulation in each instance. Measures of nonlinearity are 
intended to help remedy this defect; they are discussed in the next chapter. 

PROBLEMS 

1. In the notation of the last few paragraphs of this section, show that 

2. (Disconnected confidence regions.) Fill in the missing details in the 
following argument. Consider setting a confidence region on the entire 
parameter vector 8. Islands in likelihood ratio confidence regions muy 
occur because SSE(8) has a local minimum at 8* causing L(8*)  to fall 
below F,. But if 8* is a local minimum, then R , ( f l * )  = I?,(@*) = 0 
and a neighborhood of 8+ must be included in a Lagrange multiplier 
confidence region. 
Referring to Model B of Example 2 and the hypothesis H :  8' = yo, 
show that because 0 < f ( x ,  y) < 1, we have P (  X > c,) < 1 - c for 
s o m e c > O a n d a l l y i n A  " ( y : O ~ y , 5 y , } , w h e r e X a n d c , a r e a s  
defined in the previous section. Show also that there is an open set E 
such that for all e in E we have 

3. 

where 6(y) = f(8') - f(y).  Show that this implies that P ( L  > F,) -= 
1 - c for some c > 0 and all y in A. Show that these facts imply that 
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Table 1 1. List of Distributions 

Random Density Distribution Quantile 
Variable Function Function Function 

Generic: X P(*) P ( x )  - j l , P ( O d f  P- ’ ( a )  - x 
that solves 
P ( x )  - a 

Univariate normal with mean p n ( x ;  p .  02)  N ( x ;  p,  a 2 )  N - ‘ ( a ;  p ,  0 ’ )  

and variance a 2 ;  n ( x ;  p ,  0 ’ )  - 
( 2 ~ r a ~ ~ - ’ / ~ e x p { -  i [ (x - p ) / o 1 2 )  

dimension p ,  mean p .  and 
variance-covariance matrix 2; 
n, (x ;  p .  Z) - [det(ZaP)] 
exp((-- f)(x - p ) ’ Z - ’ ( x  - p))  

or ~ ( p ,  a’ )  

Multivariate normal with n, (x;  P, Z) N,(x; p,  Z) ” ’ ( a ;  p .  Z) 
or N& 2) 

x 

Chi-square with 9 degrees of - x v x ;  4) ( x 2 ) - ’ ( a ;  9) 
freedom; X - x:-, Z f ,  where 0‘ xZ( 4) 
the Z, are independent, 
z, - N ( 0 , l ) .  

degrees of freedom and non- 
centrality parameter A; 
X = cl-, Zf, where the 2, are 
independent, Z, - N ( p ,  1)’ 

NoncentraJ chi-square with q - X’*(x; 9,A) ( x ’ z )  . l ( a ;  9, A) 
or x”(q,  A )  

A = L E I  $ 
2 , - I  

F-distribution with q, - F ( x ;  41.92) 
numerator degrces of freedom and 
92 denominator degrees of 
freedom; F - ( XI /qr )/( X Z / ~ Z  1, 
where the X, are independent, 

or F ( q , .  92) 

x, - x 2 ( q , ) .  

the expected volume of the likelihood ratio confidence region is infinite 
both when the approximating random variable X is used in the 
computation and when L itself is used. 
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Table 11. (Cminrpd) 

Random Density Distribution Quantilr 
Function Variable Function Function 

Nonccntral F-distribution - F'(x: 91, 92. A )  F' '(a; yI .  q ? .  A 1  
with 91 numerator degrees of 
freedom, y2 denominator degrees 
of freedom. and noncentrality 
parameter A: F - ( X1/q )A XJ4, ), 
whcre thc X, are independent. 

or f ' ( q , .  91. A )  

xi - X''(91. A). x, - x2(9z).  

Doubly noncentral F- - F " ( x :  4,.91.h,.A2) f " ' ~  ' ( a ;  91.q?,A,.A? 
distribution with 9, numerator 
degrees of freedom. 92 
denominator degrees of freedom, 
and noncentrality parameters A, 
and A 2 ;  F * ( Xl/ql 
where the X, are independent. 
X, - ~ " ( 9 , .  A;). 

or P " ( q , .  y2. A , .  A 2 )  

X d 4 ,  ). 

r-distribution with 9 degrees - r ( n :  q )  r-lta: q i  

of freedom; r = X / J Y x .  where 

X - N(O.1). Y - x"9). 

or f ( (0  
X and Y are independent. 

( 0 :  y. c )  ,,- I Noncentral r-distribution - t"x: y. p) 
with 9 degrees of freedom o r f ' ( 9 . p )  
and noncentralily parameter 
p :  f = X / m .  where X and Y 
are independent. X - N( u.  I ) ,  
Y - x L ( q ) .  

-_L_ 

7. APPENDIX DISTRIBUTIONS 

Table 11 lists the conventions used to denote various distributions that arise 
in linear regression analysis together with the few facts regarding them that 
we shall use. More details are in Section 2.4 of Searle (1971). 

We shall assume familiarity with the salient facts regarding linear and 
quadratic forms in normally distributed random variables. In terms of the 
notation of the table, they are: 

1. If X - Np(p,E) and A is a symmetric matrix, then &X = p, 
" ( X ,  X ' )  = & ( X  - p ) ( X  - p)' = C, and QX'AX = trace(AZ) + 
P%- 
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2. If  X - N ( p , Z )  and H is a q by p matrix, then H X  - 
3. If X - N,(p ,C)  and A is a symmetric matrix, then X'AX - 
4. If X - N,,(p,E) and A is a symmetric matrix, then X'AX and HX 

5. If X - N p ( p , Z )  and A, B are symmetric matrices, then X'AX and 

N,( H P ,  HE H 1. 

x"[rank(A), p',4p/2] if and only if AC is idempotent. 

are distributed independently if and only if H Z A  = 0. 

X'BX are distributed independently if and only if BCA = 0. 

For proofs and additional details see Section 2.5 of Searle (1971). 



C H A P T E R 2  

Univariate Nonlinear 
Regression : 
Special Situations 

In this chapter, we shall consider some special situations that are often 
encountered in the analysis of univariate nonlinear models but lie outside 
the scope of the standard least squares methods that were discussed in the 
previous chapter. 

The first situation considered is the problem of heteroscedastic errors. 
Two solutions are proposed: Either deduce the pattern of the heteroscedas- 
ticity, transform the model, and then apply standard nonlinear methods, or 
use least squares and substitute heteroscedastic invariant variance estimates 
and test statistics. The former offers efficiency gains if a suitable transfor- 
mation can be found. 

The second situation is the problem of serially correlated errors. The 
solution is much as above. If the errors appear to be covariance stationary, 
then a suitable transformation will reduce the model to the standard case. If 
the errors appear to be both serially correlated and heteroscedastic, then 
least squares estimators can be used with invariant variance estimates and 
test statistics. 

The third is a testing problem involving model choice which arises quite 
often in applications but violates the regularity conditions needed to apply 
standard methods. A variant of the lack-of-fit test is proposed as a solution. 

The last topic is a brief discussion of nonlinearity measures. They can be 
used to find transformations that will improve the performance of optimiza- 
tion routines and, perhaps, the accuracy of probability statements. The 
latter is an open question, as the measures relate to sufficient conditions, 
not necessary conditions, and little Monte Carlo evidence is available. 

123 

Nonlinear Statistical Models 
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Copyright 0 1987 by John Wiley & Sons, Inc, 
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1. HETEROSCEDASTIC ERRORS 

If the variance a: of the errors in the nonlinear model 

y , - f ( x , , d o )  + e, t = 1 , 2  ,..., n 

is known to depend on x,, viz. 

then the situation can be remedied using weighted least squares-see Judge 
et al. (1980, Section 4.3) for various tests for heteroscedasticity. Put 

and apply the methods of the previous chapter with “y,” and L ‘ f ’ ’ ( ~ f ,  d )  
replacing yf and f ( x , ,  8) throughout. The justification for this approach is 
straightforward. If the errors e, are independent, then the errors 

will be independent and have constant variance a 2  as required. 
If the transformation 

depends on an unknown parameter 7 ,  there are a variety of approaches that 
one might use. If one is willing to take the trouble, the best approach is to 
write the model as 

and estimate the parameters A = (6 ,  T ,  a2)  jointly using maximum likeli- 
hood as discussed in Section 5 of Chapter 6. If not, and the parameters T do 
not depend functionally on @-or one is willing to forgo efficiency gains if 
they do-then a two step approach can be used. It is as follows. 
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Let 6 denote the least squares estimator computed by minimizing 

i [ Y ,  - fb,. O N 2 .  
1-1 

Put 

I&,l = IY, - f ( X f 9  4 I 
and estimate T O  by .i where ( t ,  e) minimizes 

2 will be a consistent estimator of {2aZ/r if the errors are normally 
distributed. The methods discussed in Section 4 of Chapter 1 can be used to 
compute this minimum. Put 

“Yt” = $b,, +)Yf 

**,mf, 8 )  = +(XI, w x , ,  el 
and apply the methods of the previous chapter with “y,” and “ f  ” ( x t ,  0) 
replacing y, and f ( x l ,  8) throughout. Section 3 of Chapter 3 provides the 
theoretical justification for this approach. 

If one suspects that heteroscedasticity is present but cannot deduce an 
acceptable form for $ ( x , ,  T), another approach is to use least squares 
estimators and correct the variance estimate. As above, let 6 denote the 
least squares estimator, the value that minimizes 

1 “  
s n ( e )  = C [v,  - f ( x , *  e>12 

1-1 

and let 8, denote residuals 

h , = y ,  - - f ( X , J )  I = 1.2 ,...) n. 

Upon application of the results of Section 3 of Chapter 3, 

with 
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4 and ,.,f can be estimated using 
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and 

For testing 

H :  h ( 8 O )  = 0 against A : h(6')  # 0 

where h : R P -+ W4, the Wald test statistic is (Theorem 11, Chapter 3) 

w = n h ' ( t f ) [ A 9 i t ] - ' h ( t f )  

where fi = ( a / 8 8 ' ) h ( C )  and P =$-*$/-'. The null hypothesis H:  h ( d o )  
= 0 is rejected in favor of the alternative hypothesis A : h ( d o )  # 0 when 
the test statistic exceeds the upper a x 100 percentage point x: of a 
chi-square random variable with q degrees of freedom, x:  = ( x 2 ) - '  
(1 - a; 4). 

As a consequence of this result, a 95% confidence interval on the ith 
element of 8 O  is computed as 

where 
Let 6 denote the minimizer of s,(8), subject to the restriction that 

h( 8) = 0. Let I?, j ,  and d denote the formulas for g, 9, and / above, 
but with 6 replacing 6 throughout; put 

= - {m = N-'(.025; 0.1). 

9 = /- 133- 1 

The Lagrange multiplier test statistic is (Theorem 14, Chapter 3) 

Again, the null hypothesis H : h(Oo) = 0 is rejected in favor of the altema- 



SERIALLY CORRELATED ERRORS 127 

tive hypothesis A : h(Oo)  # 0 when the test statistic exceeds the upper 
a x 100 percentage point x: of a chi-square random variable with q 
degrees of freedom, x: = (x*)-'(l - a, 4). 

The likelihood ratio test cannot be used, because Y#df; see Theorem 15 
of Chapter 3. Formulas for computing the power of the Wald and Lagrange 
multiplier tests are given in Theorems 11 and 14 of Chapter 3, respectively. 

2. SERIALLY CORRELATED ERRORS 

In this section we shall consider estimation and inference regarding the 
parameter 8' in the univariate nonlinear model 

Y, = ~ ( ~ , , e ~ )  + U, t = 1 , 2  ,..., tt 

when the errors are serially correlated. In most application-methods for 
handling exceptions are considered at the end of the section-an assump- 
tion that the process ( u ,  1: - m  generating the realized disturbances { u,} : - ,  
is covariance stationary is plausible. This is to say that the covariances 
cov(u,, u,,,,) of the time series depend only on the gap h and not on the 
position t in time. in consequence, the variance-covariance matrix r, of the 
disturbance vector 

u = ( u l ,  u2 , .  . . , u,)' ( n  x 1) 

will have a banded structure with typical element yi, = y ( i  - J ) ,  where 
y ( h )  is the autocovariance function of the process, viz. 

y ( h )  = cov(u,, u , + h )  h = 0, *1, f2, .... 

The appropriate estimator, were I',, known, would be the generalized 
nonlinear least square estimator. Specifically, one would estimate 8' by the 
value of t9 that minimizes 

where 

and 
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The generalized nonlinear least squares estimator is seen to be ap- 
propriate from the following considerations. Suppose that r,- can be 
factored as 

If we put 

then the model 

satisfies the assumptions--B(“e”) = 0, %‘(‘re”,l‘e’’’) = a21-that justify 
the use of the least squares estimator and associated inference procedures. 
However, the least squares estimator computed from the model 

~4~ 9, = “ j  y e )  + “e ” 

is the same as the generalized least squares estimator above. This justifies 
the approach. More importantly, it provides computational and inference 
procedures-one need only transform the model using P and then apply 
the methods of Chapter 1 forthwith. For this approach to be practical, the 
matrix P must be easy to obtain, must be representable using far fewer 
than n 2  storage locations, and the multiplication Pw must be convenient 
relative to the coding requirements of standard, nonlinear least squares 
statistical packages. As we shall see below, if an autoregressive assumption 
is justified, then P is easy to obtain, can be stored using very few storage 
locations, and the multiplication Pw is particularly convenient. 

When r,, is not known, as we assume here, the obvious approach is to 
substitute an estimator f,, in the formulas above. Section 4 of Chapter 7 
furnishes the theoretical justification for this approach provided that f, 
depends on a finite length vector +,, of random variables with 6( fn  - 7 ’ )  

bounded in probability for some 7’. A proof that f’, computed as described 
below satisfies this restriction is given by Gallant and Goebel (1975). 

An autoregressive process is a time series that can be reduced to a white 
noise process by using a short linear filter. Specifically, the time series 
{ u l ) z  - oO is assumed to satisfy the equations 

where { e l } $  __ oO is a sequence of independently and identically distributed 



SERIALLY CORRELATED ERRORS 129 

random variables each with mean zero and variance u’. In addition, we 
assume that the roots of the characteristic polynomial 

are less than one in absolute value. The necessity for this assumption is 
discussed in Fuller (1976, Chapter 2); Pantula (1985) describes a testing 
strategy for determining the validity of ths assumption. A time series 
{ u,}: oc which satisfies this assumption is called an autoregressive pro- 
cess of order q. 

EXAMPLE I (Wholesale prices). The Wholesale Price Index for the 
years 1720 through 1973 provides an illustration. The data are listed Table 
1 and plotted as Figure 1. Using least squares, an exponential growth model 

y,  = Bleelr + u,  i = 1 ,2 , .  . . , n = 254 

was fitted to the data to obtain residuals { ij,}:?l. From these residuals, the 
autocovariances have been estimated using 

n - h  
?(!I)=; Xt2,1?,+~ h = 0 , 1 ,  ..., 60 

1 - 1  

and plotted as “autocovariance” in Figure 2. Using the methads discussed 
below, a second order autoregression 

u, + ~ , u , - ~  + u,u,-, = el 

was fitted to the residuals { ij,}f2“, to obtain 

( 61, a*,, d 2 )  = ( -  1.048,0.1287,34.09). 

Estimates of the autocovariances can be calculated from these estim t s 
using the Yule-Walker equations as discussed in Anderson (1971, p. 174). 
Doing so yields the estimates plotted “autoregressive” in Figure 2. The two 
plots in Figure 2-autocovariance (unrestricted estimates requiring that 60 
population quantities be estimated) and autoregressive (restricted estimates 
requiring that only three population quantities be estimated)-are in rea- 
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Table 1. U.S. whdesale Prices. 

1720 
1721 
1722 
1723 
1724 
1125 
1726 
1727 
1728 
1729 
1730 
1131 
1732 
1733 
1734 
1736 
1736 
1137 
1138 
1739 
1740 
1741 
1742 
1143 
1744 
1746 
1746 
1747 
1748 
1749 
1160 
1751 
1752 
1763 
1764 
1766 
1766 
1767 
1768 
1769 
1160 

16.98 
16.48 
16.07 
16.60 
17.61 
19.03 
19.89 
19.22 
18.28 
18.22 
19.30 
17.16 
16.47 
11.73 
17.18 
17.29 
16.41 
17.94 
17.94 
16.19 
17.20 
22.18 
21.33 
18.83 
17.90 
18.26 
19.64 
21.78 
24.56 
23.93 
21.69 
22.57 
22.65 
22.28 
22.20 
22.19 
22.43 
22.00 
23.10 
26.21 
26.28 

1161 
1762 
1783 
1764 
1766 
1766 
1761 
1768 
1769 
1770 
1771 
1772 
1773 
1774 
1776 
1776 
1777 
1718 
1779 
1780 
1181 
1782 
1783 
1784 
1785 
1786 
1781 
1788 
1789 
1790 
1791 
1792 
1793 
1794 
1795 
1796 
1797 
1798 
1799 
1800 
1801 

26.48 
28.42 
27.43 
24.85 
24.41 
26.23 
26.82 
24.90 
26.01 
26.63 
26.60 
29.67 
28.07 
26.08 
26.74 
29.61 
42.21 
48.04 
17.66 
77.21 
74.12 
57.44 
44.52 
34.60 
31.68 
29.94 
28.99 
25.73 
21.45 
31.48 
29.51 
30.96 
34.80 
36.63 
44.43 
50.25 
45.20 
42.09 
43.47 
44.51 
48.99 

1802 
1803 
1804 
1806 
1 0 6  
1807 
1808 
1809 
1810 
1811 
1812 
1813 
1814 
1816 
,1816 
1817 
1818 
1819 
1820 
1821 
1822 
1823 
1824 
1825 
1826 
1821 
1828 
1829 
1830 
1831 
1832 
1833 
1834 
1835 
1836 
1837 
1838 
1839 
1840 
1841 
1842 

39.04 
39.29 
43.30 
47.84 
43.94 
41 .86 
37.01 
42.44 
45.03 
46.12 
46.77 
63.76 
66.06 
59.92 
53.12 
63.96 
60.48 
41.86 
34. I0 
32.07 
35.02 
34.14 
31 -76 
32.82 
31.67 
31.62 
31.84 
32.35 
29.43 
31.38 
31.69 
32.12 
30,60 
33.97 
39.69 
41.33 
38.45 
38.11 
31.63 
29.87 
26.62 

1843 
1844 
1846 
1846 
1841 
1848 
1849 
1860 
1861 
1862 
1863 
1864 
1865 
1856 
1867 
1858 
1859 
1860 
1861 
1862 
1863 
1864 
1866 
1866 
1861 
1868 
1869 
1870 
1671 
1872 
1873 
1874 
1876 
1816 
1811 
1878 
1879 
1880 
1881 
1882 
1883 

26.06 
25.20 
27.47 
27.62 
31.99 
28 * 02 
27.19 
28.17 
27.71 
29.31 
32.71 
38.34 
40.81 
36.38 
37.77 
31.66 
32.97 
31.48 
31.11 
36.36 
46.49 
61.41 
64.67 
60.82 
66.63 
55.23 
52.78 
47.19 
46.44 
47.64 
46.49 
44.04 
41.26 
38.45 
31.05 
31.81 
31.46 
34.96 
36.00 
31.15 
36.31 

sonable agreement, and the autoregressive assumption seems to yield an 
adequate approximation to the autocovariance. Indeed, it must for large 

0 
The transformation matrix P based on the autoregressive ussumption is 

enough q if the process { u,}: ;oo is, in fact, stationary (Berk, 1974). 

computed as follows. Write the model in vector form 

y 5 f (  6 0 )  + u;  
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Tablel. (Continued). 
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Yew Index Yeor Indox Vow Indox Yoor Indax 

1884 

1887 

1886 
1886 

1888 
1889 
1890 
1891 
1892 
1093 
1894 
1895 
1890 
1897 
1898 
1899 
1960 
1901 
1902 
1903 
1904 
1905 
1900 
1907 

32.61 1966 
29.71 1909 
28.66 1910 
29.11 191 1 
30.06 1912 
28.31 1913 
28.60 1914 
28.40 1915 
20.02 1916 
21.24 1917 
24.43 1918 
24.89 1919 
23.72 1920 
23.77 1921 
24.74 1922 
26.62 1923 
28.61 1924 
28.20 1925 
30.04 1926 
30.40 1927 
30.45 1928 
30.66 1929 
31.62 1930 
33.26 1931 

32.08 1932 
34.48 1933 
36.91 1934 
33.10 1936 
36.24 1930 
36.60 1937 
34.73 1938 
36.46 1939 
43.01 1940 
59.93 1941 
66.97 1942 
T0.69 1943 
78. 75 1944 
49.78 1946 
49.32 1946 
61.31 1947 
50.03 1948 
52.19 1949 
51 .OO 1960 
48.00 1951 
49.32 1952 
48.60 1953 
44.11 1954 
37.23 1955 

33.16 
33.63 
38.21 
40.84 
41.24 
44.03 
40.09 
39.36 
40.09 
44.59 
50.39 
52.67 
63.06 
64.01 
01.12 
76.66 
83.08 
78.48 
81.68 
91.10 
88.60 
81.40 
87.60 
87.80 

1966 
1967 
1968 
1969 
1960 
1901 
1962 
1963 
1964 
1965 
1966 
1961 
1968 
1969 
1910 
1971 
1912 
1973 

90.70 
93.30 
94.60 
94.80 
94.90 
94.60 
94.80 
94. 60 
94. I 0  
96.60 
99.80 

100.00 
102.60 
106.60 
110.40 
113.90 
119.10 
136.60 

Source: Composite derived from: Wholesale Prices for Philadelphia, 1720 to 1861, Series 
E82, U.S. Bureau of the Census (1960); Wholesale Prices, All Commodities. 1749 to 1890, 
Series El ,  U.S. Bureau of the Census (1960); Wholesale Prices, All Commodities. 1890 to 
1951, Series E13, U.S. B w a u  of the Census (1960); Wholesale Prices, All Commodities, 
1929 to 1971, Office of the Fresidcnt (1972); Wholesale Prim. All Commodities. 1929 to 
1973, Office of the President (1974). 

compute the least squares estimator 4, which minimizes 

SSE(6) = [ Y  - f<@>l"r - f (@)l ;  

compute the residuals 

d " Y  -!(Oh 

from these, estimate the autocovariances up to lag (I using 

n - h  

? ( A )  = ; c drat+* h = 0,1, . . . )  4; 
r - 1  



172017401760178018001820 1840 1860188019001920194019601980 
Year 

Figure 1. U.S. wholesale prices. 

0 
-25 
- ::: 50 0 10 20 30 40 50 60 

Autocovartance 

k g  

Figure 2. Autocovariances and autoregressive approximation 
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Put 
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and compute d using the Yule-Walker equations 

ri = - r ; l y q  

a‘2 = y(0) + a’?, 
(Q x 1) 

(1 x 1); 

factor 

p; = P;F9 

using, for example, Cholesky’s method, and set 

As discussed above, 13 is used to transform the model y = j ( 0 )  + u to 
the model “y ” = “f”(0) + “e” using 

“y ” P py “f ”( 0)  = if(@) “e ” = 9 ~ .  

Thereafter the methods discussed in Chapter 1 are applied to “ y ”  and 
“f ”( 0 ) .  This includes computation of the estimator and methods for testing 
hypotheses and for setting confidence intervals. The value b left over from 
the least squares estimation usually is an excellent starting value for the 
iterations to minimize 

- S S E ” ( ~ )  = [ * c y * * -  - j * ~ ( ~ ) ] ’ [ ~ ~ y ” -  “f*ye)] .  
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Note that after the first q observations, 

which is particularly easy to code. We illustrate with the example. 

EXAMPLE 1 (Continued). Code to compute 6 for the model 

y, = 8,eezf + U, 

U, + a,tlf-, + U , U ~ - . ~  = e, 

t = 1,2,  ..., n = 254 
t = 0, il, f 2 ,  ... 

using the data of Table 1 as shown in Figure 3. 
Most of the code has to do with the organization of data sets. First, the 

least squares estimator 6 is computed with PROC NLIN, and the residuals 
from the fit are stored in UORKOl . The purpose of the code which follows is 
to arrange these residuals so that the data set UORK03 has the form 

“Y ’) “X” - 
li 0 0 
0 ii 0 
0 0 ii 

so that standard regression formulas can be used to compute 

1 p, = ,X’X 

252.32 234.35 
234.35 252.32 

6 = -( x7f)-1x> 

a^2 5 y’y - 6’X‘Xa’ 
= (:::::!) 
= 34.0916 

using PROC MATRIX. Note that the columns of “X” have been permuted to 



SAS Stmtaments: 

PROC NLIN DATA=EOOl METWO=WSS ITER=LO IXNVEROENCE=l.E-lO: 
OUTPUT OUT=MWU(Ol RESIDUAL.1)HAT; 
PAWS 11-1 121.003; 
WDML V*Tl*EXP(T2*X); OER.Tl-EXP(T2*X); DER.T~=TI*XTXP(T~*X)I 

M T A  MOW021 SET UORKOI: KEEP UHAT: OUTPUT; 
I F  -N-=264 THEN 00; UHAT=O; OUTPUT; OUTPUT; END; 
DATA wM(K03; SET .m)RK02; 
UHAT-I)IUHAT; UHAT-l=LAOl(UHAT)I UHAT-2=lA02(UHAT); 
I f  -N--l THEN DO; UHAT_l*O; UMT_2=D; END; I F  -N-*2 THEN UHAT-2-0; 

PROC MATRIX; 
FETCH V DATA-WORK03(KEEP=UHAT-O); FETCH X DATAIWORK031KEEP=UHAT-2 UHAT-1); 
00*X'*XU/264; 0=X'*YU/264; A--INV(OO)*O; SS=V'*VU/254-A'*00*A; 
SPQ-WF(sstINV(W3)); 
ZEROmO/Oi O))E=lr PISPQlIZERO; W = A ' I I D N E ;  DO 1-1 TO 252; P=P//ROW; END; 
OUTPUT P OUT=woRK04; 

DATA woAK06; SET €001; 
V3=Y; V2-LMl (V ) ;  Vl=LAOZ(Y); X3-X; X2=LAOl(X); Xl=LA02(X); 
I F  -N-=3 THEN DO; OUTPUT; WTPUT; END; I F  -N->2 THEN OUTPUT; 
M T A  -06; MERW WORK04 WOAKo6; DROP ROW V X; 

PROC NLIN DATA=WCWKOB METHOD=OAUSS ITER=6O CONVERQEHCE=l.E-lO: 
PAwls 11-1 T2=.003; 
Y = COLl*Vl + COL2*Y2 + COL3-3; 
F M L l * T l ~ X P ( f 2 * X l )  + COL2*Tl*€XP(T2*X2) +COL3*11*EXP(T2*X3); 
D l  - CDLl*EKP(T2*Xl) + CDl2WXP(T2*X2) *CDLS*EXP(T2*X3); 
0 2  - COLl*lI*Xl*EXP(T2*XI) + cOc2rfl*X2WXP(T2*X2) *COL3*Tl*X3YW(T2*X3); 
IIIDEL Y - F: DER.11 = 01; DER.12 02; 

Output I 

sw 
NON-LINEAR LEAS1 SQUbRES SUMMARY STATISTICS MP€II#(IT VARIABLE V 

SOOURCE OF SUM OF SQUARES M€w SpuaRE 

RECRESSION 2 4428.02183644 2214.01091922 
RESIWAL 262 6660.66602716 22.44668662 
UWCORRLCTED TOTAL 264 10064.58686659 

6 

PARAMETER ESTIMATE ASYCIPTOTIC ASWIOTIC  9s 8 
STD. ERROR COllFIOENCE INTERVAL 

LOWER UPPER 
11 12.19756397 3.46800524 5.30662777 19.00950018 
1 2  0.00821720 0.00133383 O.OO669029 0.01004410 

Figure 3. Example 1 estimated using ~JI autoregressive transformation. 

135 



136 UNIVARIATE NONLINEAR REGRESSION: SPECIAL SITUATIONS 

permute the columns of â  in this code. The transformation fi is put in the 
data set YORK04, whose first two rows contains (@hq 10) and remaining 
rows contain ( d 2 ,  d , ,  1). The transformation is merged with the data, and 
lagged values of the data, and stored in the data set WORK06. The 
appearance of the data set YORK06 is as follows: 

00s COLl COL2 COL3 Y l  Y2 Y3 X I  x2 x3 

1 0.991682 -0.9210 0 16.98 15.48 16.07 1 2 3  
2 0.000000 0.3676 0 16.98 15.48 16.07 1 2 3  
3 0.128712 -1.0483 1 16.98 15.48 16.07 1 2 3  
4 0.128712 -1.0483 1 15.48 16.07 16.60 2 3 1  

254 0.128712 -1.0483 1 113.90 119.10 135.50 522 253 254 

Using PROC NLIN one obtains 

d = (12.1975,0.00821720)’ 

as shown in Figure 3. 
A word of caution. This example is intended to illustrate the computa- 

tions, not to give statistical guidance. Specifically, putting x, =I r violates 
the regularity conditions of the asymptotic theory, and visual inspection of 
Figure 1 suggests a lack of stationarity, as the variance seems to be growing 
with time. 0 

Monte Carlo simulations reported in Gallant and Goebel(l976) suggest 
that the efficiency gains, relative to least squares, using this procedure can 
be substantial. They also suggest that the probability statements associated 
to hypothesis and confidence intervals are not as accurate as one might 
hope, but they are certainly an improvement over least squares probability 
statements. These statements hold true whether the series ( u,}T- - cD that 
generates the data is actually an autoregressive process of order q or some 
other covariance stationary process such as a moving average process that 
can be approximated by an autoregression. 

The order q of the autoregressive process which best approximates the 
error process { u , }  is unknown in applications. One approach is to attempt 
to determine q from the least squares residuals ( ii,}. 

This problem is very much analogous to the problem of determining the 
appropriate degree of polynomial to use in polynomial regression analysis. 
The correct analogy is obtained by viewing f,a = -9, as the normal 
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equations with solution vector â  = -pqTq and residual mean square s 2  = 
(T(0) + a^’f,]/(n - q).  The hypotheses H :  a, = 0 against A : u, # 0, 
i = 1,2, .  . . , q, may be tested using I ,  = JSZP”r where ?‘I is the ith 
diagonal element of ti’, by entering tables of I with n - q degrees of 
freedom. Standard techniques of degree determination in polynomial re- 
gression analysis may be employed, of which two are to test sequentially 
upward, or to start from a very high order and test downward (Anderson, 
1971, Section 3.2.2). 

Akaike’s (1969) method is a variant on the familiar procedure of plotting 
the residual mean square against the degree of the fitted polynomial and 
terminating when the curve Battens. Akaike plots 

against q for all q less than an apriuri upper bound; in this computation 
put ii,, G.- . . , a, - q  = 0. That q at which the minimum obtains is selected 
as the order of the approximating autoregressive process. 

The methods discussed above are appropriate if the error process { u,) is 
covariance stationary. If there is some evidence to the contrary, and a 
transformation such as discussed in the previous section will not induce 
stationarity, then an alternative approach is called for. The easiest is to 
make no attempt at efficiency gain as above, but simply correct the 
standard errors of least squares estimators and let it go at that. The method 
is as follows. 

As above, let d denote the least squares estimator, the value that 
minimizes 

and let G, denote residuals 

G, = y , - f ( ~ , . f J )  t i =  1 , 2  ,..., t i .  

Upon application of the results of Section 4 of Chapter 7, approxi- 
mately-see Theorem 6 of Chapter 7 for an exact statement- 

h(B- eo) - N,(o, v) 

I/ E y- lyy- 1 

with 
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9 and fl  can be estimated using 

and 

where I ( n )  is the integer nearest n1I5, 

and 

For testing 

H :  h ( e o )  = o against A : h ( B o )  z o 

where h : R P --* IR4, the Wald test statistic is (Theorem 12, Chapter 7) 

w = nhf(l)[fi?fi']-'h(') 

where H = ( a / a & ) h ( d )  and ? =f'.f$--'. The null hypothesis H:  h ( S O )  
= 0 is rejected in favor of the alternative hypothesis A : h ( e o )  f 0 when 
the test statistic exceeds the upper a X 100 percentage point x :  of a 
chi-square random variable with q degrees of freedom, x t  = ( x 2 ) - '  

As a consequence of this result, a 95% confidence interval on the ith 
(1 - a; 4) .  

element of eo is computed as 

where z,025 = - /( x2)-l(  .95; 1) = N-'(.025; 0,l). 
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Let 8 denote the minimizer of s,(O), subject to the restriction that 
h ( 8 )  = 0. Let d, j ,  and above 
but with 8 replacing 8 throughout; put 

denote the formulas for A, d, and 

The Lagrange multiplier test statistic is (Theorem 16, Chapter 7) 

Again, the null hypothesis H: h ( S o )  = 0 is rejected in favor of the alterna- 
tive hypothesis A : h(8' )  # 0 when the test statistic exceeds the upper 
u x 100 percentage point xt of a chi-square random variable with q 
degrees of freedom xf = (x*)-'(l - a; q).  

The likelihood ratio test cannot be used, because 9#%; see Theorem 17 
of Chapter 7. Formulas for computing the power of the Wald and Lagrange 
multiplier tests are given in Theorems 14 and 16 of Chapter 7, respectively. 

3. " I N G  A N0-R SPECIFICATION 

Often, it is helpful to be able to choose between two model specifications: 

H :  Y, = d x , ,  44 + e, 

A : Y, = A x , ,  4 )  + T h ( X , ,  0) + e,. 

and 

The unknown parameters are + , 7 ,  and w of dimension u,  1, and u, 
respectively. The functional forms g(x, 4 )  and h ( x ,  w )  are known. The 
errors e, are normally and independently distributed with mean zero and 
unknown variance u2. Parametrically, the situation is equivalent to testing 

H : 7 = 0  against A : T # O  

regarding +, w,  and u2 as nuisance parameters. 
It would be natural to employ one of the tests discussed in Section 5 of 

the previous chapter. In the formal sense, the Lagrange multiplier test is 
undefined because w cannot be estimated if r = 0. The likelihood ratio test 
is defined in the sense that the residual sum of squares from the model 
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can be computed and used as SSE(6). But one must also compute the 
unconstrained estimate of 

to obtain S S 4 8 )  in order to compute the likelihood ratio test statistic; the 
Wald test statistic also requires computation of 6. When H is true, this 
dependence on 8 causes two difficulties: 

1. It is likely that the attempt to fit the full model will fail or, at best, 
converge very slowly, as seen in Figure 6 and Table 4 of Chapter 1. 

2. The regularity conditions used to obtain the asymptotic properties of 
the unconstrained least squares estimator &-and also of test statistics 
that depend on 8-are violated, as neither the identification condition 
or the rank condition discussed in Section 3 of the previous chapter is 
satisfied. 

It is useful to consider when the situation of testing H against A using 
data which support H is likely to arise. It is improbable that one will 
attempt to fit a nonlinear model which is not supported by the data if one is 
merely attempting to represent data parametrically without reference to a 
substantive problem. For example, in the cases considered in Table 4 of 
Chapter 1, plots of the observed response y ,  against the input x3, failed to 
give any visual impression of exponential growth for values of l8,l less than 
.l. Consequently, substantive rather than data analytic considerations will 
likely have suggested A. As we shall see, it will be helpful if these same 
substantive considerations also imply probable values for a. 

The lack-of-fit test has been discussed by several authors (Beale, 1960; 
Halperin, 1963; Hartiey, 1964; Turner, MONW, and Lucas, 1961; Williams, 
1962) in the context of finding exact tests or confidence regions in nonlinear 
regression analysis. Here the same idea is employed, but an asymptotic 
theory is substituted for an exact small sample theory. The basic idea is 
straightforward: If T O  = 0, then the least squares estimator of the parame- 
ter 6 in the model 

A: y ,  = g ( x , ,  4 )  + z;6 + e, 

where the w-vector I, does not depend on any unknown parameters, is 
estimating the zero vector. Thus any (asymptotically) level a test of 
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is an (asymptotically) level a test of 

H: y ,  - g ( x , ,  +) + e, against A : yc = g(x,. +) + T ~ ( x , . w )  + e,. 

Note that since z ,  does not depend on any unknown parameters, the 
computational proble? that arise when trying to fit A by least squares will 
not arise when fitting A ,  

When H is true, any of the tests considered in Section 5 of Chapter 1 are 
asymptotically level a. Regularity conditions sych that the Wald and 
likelihood ratio test statistics for H against A follow the noncentral 
F-distribution plus an asymptotically neghgible remainder term when A is 
true are in Gallant (1977a). Simulations reported in Gallant (1977a) suggest 
that the problem of inaccurate probability statements associated with the 
Wald test statistic are exacerbated in the present circumstance. The simula- 
tions support the use of the likelihood ratio test; the Lagrange multiplier 
test was not considered. The likelihood ratio test is computed a,s follows. 

Let ( $ , 8 )  denote the least squares estimator for the model A, and define 

n 

SSE($,t)= c [ ~ , - g ( x , . $ )  + z ; f I 2  
I -  1 

a 
a+ G (  +) = the n by u matrix with tth row y g (  x,, +) 

2 = the n by w matrix with t th row z ;  

Let denote the least squares estimator for the model H, and define 

The likelihood ratio test for H against a rejects when 

exceeds F,, the upper a x 100 percentage point of an F-random variable 
with w numerator degrees of freedom and n - u - w denominator degrees 
of freedom; Fa = F 1 ( 1  - a; w ,  n - u - w ) .  

The objective governing the choice of the vector z ,  of additional regres- 
sors is to find those which will maximize the power of the test of H against 
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A when A is true. The asymptotic power of the likelihood ratio test is given 
by the probability that a doubly noncentral F-statistic exceeds F' (Gallant, 
1977a). The noncentrality parameters of this statistic are 

for the numerator, and 

h'Q h 
2a 

A, = (To)2+ - A, 

for the denominator, where 

h - [ h ( x , , w O ) ,  h ( x , , o O )  ,... * h ( X , , W O ) ] ' .  

Thus one should attempt to find those z, which best approximate h in the 
sense of maximizing the ratio 

while attempting, simultaneously, to keep the number of columns of Z as 
small  as possible. We consider, next, how this might be done in applica- 
tions. 

In a situation where substantive considerations or previous experimental 
evidence suggest a single point estimate & for wo, the natural choice is 
2,  = h(x , ,  4). 

If, instead of a point estimate, ranges of plausible values for the 
components of w are available then a representative selection of values 
of 0, 

{ G j : j =  1 ,2  *..., K }  

whose components fall within these ranges can be chosen-either determin- 
istically or by random sampling from a distribution defined on the plausible 
values-and the vectors h(d,) made the columns of Z. If, following this 
procedure, the number of columns of Z is unreasonably large, it may be 
reduced as follows. Decompose the matrix 

B = [Wdl * *  IhtdK)] 

into its principal component vectors, and choose the first few of these to 
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1 .o 

0.9 

0.5 

0.4 

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 
Age (months) 

Flgrn 4. Preschool boys' weightfieight ratio. 

make up Z; equivalently, obtain the singular value decomposition 
(Bussinger and Golub, 1969) B = USV' where U'U = V'V = VV' - I, 
and S is diagonal with nonnegative entries, and choose the first few 
columns of U to make up 2. We illustrate with an example. 

EXAMPLE 2 (Preschool boys' weightheight ratio). The data shown in 
Figure 4 are preschool boys' weight/height ratios plotted against age and 
were obtained from Eppright et al. (1972); the tabular values are shown in 
Table 2. The question is whether the data support the choice of a three 
segment quadratic-quadratic-linear polynomial response function as op- 
posed to a two segment quadratic-linear response function. In both cases, 
the response function is required to be continuous in x (age) and to have a 
continuous first derivative in x. Formally, 

H : y, = 8, + 8+, + B,T,( 8., - x,) + el 

and 

A : y, = 8, + 6,x, + 4T2(8, - x,) + 8,T2(6, - x,) + e, 

where 

when z I; 0 ;  
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Table 2. Boys’ Weight / Height Verws Age. 
- 

w n  w win AS. w/n *g. 
~- 

0.46 
0.47 
0.66 
0.6? 
0.61 
0.61 
0.68 
0.18 
0.69 
0.14 
0.71 
0.78 
0.75 
0.80 
0.78 
0.82 
0.17 
0.00 
0.61 
0.78 
0.87 
0.80 
0.83 
0.81 

0.6 0.86 
1 .I 0.81 

3.6 0.82 
4.6 0.82 
6.6 0.86 
6.6 0.82 
7.6 0.86 
8.6 0.88 
9.6 0.86 

10.6 0.91 
11.5 0.87 
12.6 0.81 
13.5 0.87 
14.5 0.86 
16.6 0.90 
16.6 0.81 
17.6 0.91 
18.6 0.90 
19.6 0.93 
20.6 0.80 
21.6 0.89 
22.5 0.92 
23.6 0.89 

2.6 0.83 

24.6 0.92 
26.6 0.96 
26.6 0.92 
27.6 0.91 
28.6 0.95 
29.6 0.93 
30.6 0.93 
31 - 6  0.98 
32.6 0.0s 
33.6 0.97 
34.6 0.97 
36.6 0.96 
36.6 0.97 
37.6 0.94 
38.6 0.98 
39.6 1.03 
40.6 0.99 
41.6 1.01 
42.6 0.99 
43.6 0.99 
44.6 0.97 
46.5 1.01 
46.6 0.99 
47.6 1.04 

48.5 
49.6 
60.6 
61 .6 
52.6 
63.6 
64.6 
66.6 
66.6 
61.6 
68.6 
59.6 
60.6 
81.6 
62.6 
03.6 
64.6 
66.6 
66.6 
61.6 
68.6 
69.6 
70.6 
71.6 

Source: Gallant (1977a). 

see Gallant and Fuller (1973) for a discussion of the derivation and fitting 
of grafted polynomial models. 

The correspondence with the notation above is 

+ = (e,, 82, 4, e,)’ 
r = e, 

= e, 
g ( x ,  $1 = $1 + $9 + $3?2($* - .) 
h ( x , w )  = T2(o  - x ) .  

The parameter o is the join point associated with the quadratic term whose 
omission is proposed. 

Suppose plausible values for o are dl = 4, d2 = 8, and Li3 = 12. The 
matrix B, described above, has typicaf row 

B, = [ ~ 2 ( 4  - x,), ~ ~ ( 8  - x,)? ~ ~ ( 1 2  - x,)]. 

The first principal component vector of B, with elements 

L, = [(2.08)T2(4 - x,) + (14.07)T2(8 - x,) + (39.9)T2(12 - x , ) ]  x 
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SAS Stetementr: 

DATA E; SET EW2; 
ZII(~-AOC>O)*(I-AOE)*~~; Z2=(8-AQE>0)*(0-AOC)~2; Z3=112-M1E,O)*Il2-AOE)*s2i 
PROC MATRIX; FETCH E DATA=B(KEEP-Zl Z2 Z3); S M  U Q V 8: OUTPUT U OUTmWRKO1; 
DATA HORKOZi WRdE €002 W K O I ;  KEEP M E  WH 2 ;  2-COLI; 

PROC NLIM DATAaWRK02 METHOO=OAUSS ITER*SO COWEROENCEI1.E-10; 
PARMS 11-1 T2m.004 T3--.002 T4-121 X-(T4-ABF>O)*(T4-AOE); 
HODEL W = lltT2*MK+T3*xt*21 
DER.Tl=l; OER.T24QE: OER.TJ=X*Z; OER.T1=2*13*X; 

PROC MLIN DATAmWORKO2 MEmQllDAUSS ITER=50 CONVERMWCE-1.E-10: 
PAWS Tlm.73 121.004 Tam-6.E-6 14-21.161 D=-.1; X-(TI-AOE>O)*(TI-AOE); 
m x K L  UM lltT2*AOE+T3*X*s2+Z+; 
D€R.Tl=l; D€R.T2=AOE: DER.f3=X*s2; DER.T1=2*T3*X; DER.0-Z; 

Output: 

SAS 

WN-LINEAR LEAST SQUARES suI( IwIY STATISTICS OEPENMMT VARIIBLE UM 

SOURCE DF SUI OF SQUARES WAN SQUARE 

REORESSION 4 63.67760136 13.41937534 
RESIWL 66 0.03709866 0.00056733 
UNCORRECTED TOTAL 72 63.7164OOOO 

us 
MOM-LINEAR LEAST SQUARES S U W Y  STATISTICS DEPENDENT VARIABLE WH 

SOURCE w SUM OF W A R E S  MAN SQUARE 

REORESSIOW 5 63.67770W9 10.73554194 
RESIDUAL 6T 0.037S9031 0.00011264 
UNCORRECTEO T O l M  72 53.71510000 

Figure 5. Lack-of-fit test illustrated using Example 2. 

was chosen as the additional regressor. This choice yields 

SSE( 6) = 0.03789865 

SSE($, 8 )  = 0.03769031 

(from Fig. 5 )  

(from Fig. 5 )  

(0.03789865 - 0.03769031)/1 
0.03769031/(72 - 4 - 1) L -  

= 0.370 
P [ F(1,67) > 0.3701 I .485. 

3 

5 

These data give little support to A .  
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Simulations reported by Gallant (1977a) indicate that the best choice for 
z ,  in this example is to take as Z the first principal component of B. For 
practical purposes, the power of the test is as good as if the true value uo 
were known. 

4. MEASURES OF NONLINEARIW 

Consider the nonlinear model 

y = j ( e 0 )  + e 

with normality distributed errors. The lack-of-fit test statistic for H : 8' = 8* 
against A : 8' + e+, 

is distributed exactly as an F with p numerator degrees of freedom and 
n - p denominator degrees of freedom when H is true. Beale (1960) 
studied the extent to which confidence contours constructed using the 
lack-of-fit test statistic coincide with contours constructed using the likeli- 
hood ratio test statistic 

On the basis of this study, he constructed measures of nonlinearity that 
measure the extent of the coincidence and suaested corrections to critical 
points based on these measures to improve the accuracy of confidence 
statements. Coincidence is a sufficient condition for accurate probability 
statements, not a necessary condition. Thus a large value of Beale's nonlin- 
earity measure does not imply inaccurate probability statements, and it is 
possible for Beale's corrections actually to be counterproductive. Simula- 
tions reported by Gallant (1976) indicate that there are such instances. 

Bates and Watts (1980) take a geometric approach in deriving their 
measures of nonlinearity, an approach somewhat related in spirit to Efron's 
(1975); Ratkowsky (1983) summarizes their work and contains FORTRAN 
code to compute these measures. The most interesting aspect of their work 
is that they break their measure into two pieces, one a measure of intrinsic 
curvature and the other a measure of parameter effects curvature. The latter 
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can be reduced by reparametrization; the former cannot. In their examples, 
which are rather extensive, they fmd the parameter effects curvature is more 
important than the intrinsic in each case. 

What is interesting about this decomposition is that it sheds some 
intuitive light on the question of why the likelihood ratio statistic leads to 
more accurate probability statements regarding the size of tests and level of 
confidence regions than the Wald statistic. We have seen that the Wald test 
is not invariant to nonlinear transformation, which means that there may 
exist a transformation that would make the total nonlinearity nearly equal 
to the intrinsic nonlinearity and so improve accuracy. The Bates-Watts 
measure provides some guidance in finding it; see Bates and Watts (1981). 
The likelihood ratio test is invariant to reparametrization, which means that 
it can be regarded as a statistic where this transformation has been found 
automatically, so that it is only the intrinsic nonlinearity that is operative. 
This is, of course, rather intuitive and speculative, and suffers from the 
same defect that was noted above: the measures, like Beale’s, represent 
sufficient conditions, not necessary conditions; see Cook and Witmer (1985) 
in this regard. 

The advice given in Chapter 1 was to avoid the whole issue as regards 
inference and simply use the l ike l ihd  ratio statistic in preference to the 
Wald statistic. A reparametrization will usually destroy the principal ad- 
vantage of the Waki statistic, which is that it provides ellipsoidal confidence 
regions on model parameters. After a reparametrization, the ellipsoid will 
correspond to new parameters that will not necessarily be naturally associ- 
ated to the problem, and one is no better off in th is  regard than with the 
likelihood ratio statistic. As regards computations, reparametrization can be 
helpful; see Ross (1970). 



C H A P T E R 3  

A Unified Asymptotic Theory 
of Nonlinear Models 
with Regression Structure 

Models have a regression structure if the predictor or explanatory variables 
either are design variables, (variables subject to experimental control) or are 
ancillary (variables that have a joint marginal distribution that does not 
depend on model parameters). With this t p  of structure, the analysis can 
be made conditional on the explanatory variables, and it is customary to do 
so. Models with lagged dependent variables as explanatory variables are 
excluded by this definition, and as a matter of convenience we shall also 
exclude models with serially correlated errors. Models with either lagged 
dependent variables or serially correlated errors, or both, are classified as 
dynamic models. An asymptotic theory for them is developed in Chapter 7. 

The estimators customarily employed with models having a regression 
structure are defined as solutions of an optimization problem. For instance, 
the least squares estimator is defined as the parameter value that minimizes 
the residual sum of squares. This fact provides the unifying concept. In this 
chapter, an asymptotic theory is obtained by borrowing from the classical 
theory of maximum likelihood estimation, treating the objective function of 
the optimization problem as the analog of the log-likelihood. A theory of 
inference is obtained in the same way. The objective function is treated as if 
it were the log-likelihood to derive a Wald test statistic, a “likelihood ratio” 
test statistic, and a Lagrange multiplier test statistic. Their asymptotic null 
and nonnull distributions are found using arguments fairly similar to the 
classical maximum likelihood arguments. The differences from the classical 
theory are caused by conditioning the analysis on the explanatory variables. 
Observations are independently distributed, as in the classical theory, but 
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they are not identically distributed, since, at the minimum, location param- 
eters are being shifted about by the explanatory variables. 

The model that actually generates the data need not be the same as the 
model that was presumed to generate the data when the optimization 
problem was set forth. Thus, the results of this chapter can be used to 
obtain the asymptotic behavior of estimation and inference procedures 
under specification error. For example, it is not necessary to resort to 
Monte Car10 simulation to determine if inferences based on an exponential 
fit would be much aflected if some other plausible growth model were to 
generate the data. The asymptotic approximations we give here will provide 
an analytical answer to the question that is sufficiently accurate for most 
purposes. An analytical solution also provides a qualitative understanding 
of the effect of misspecification that cannot be obtained otherwise. 

An early version of this chapter appeared as Burguete, Gallant, and 
Souza (1982) together with comment by Huber (1982), Phillips (1982a), and 
White (1982). This chapter differs from the earlier work in that the Pitman 
drift assumption is isolated from the results on estimation. See especially 
Phillips's Comment and the Reply in this regard. 

1. INTRODUCI'ION 

An estimator is the solution of an optimization problem. It is convenient to 
divide these optimization problems into two groups and study these groups 
separately. Afterwards, one can ignore this classification and study in- 
ference in unified fashion. These two groups are least mean distance 
estimators and method of moments estimators. We shall define these in 
turn. 

Multivariate nonlinear least squares is an example of a least mean 
distance estimator. The estimator for the model 

y , = f ( x l , e )  + e l  t = 1,2  ,..., n 
where y, is an M-vector, is computed as follows. Least squares residuals gi, 
are obtained by fitting the univariate models 

y , , = f , ( x , , 8 ) + e , ,  i - 1 , 2  ,..., M t = 1 , 2  ,..., n 

and put individually by least squares. Let e^, 5 (g,,, G,,, . . . , 

The multivariate nonlinear least squares estimator is that value d which 



150 A UNIFIED ASYMPTOTIC THEORY: REGRESSION SRU- 

minimizes 

A general description of estimators of this type is: A least mean distance 
estimator is that value f in  which minimizes an objective function of the 
form 

. n  

The literature subsumed by this definition is: 

Single equation nonlinear least squares- Jennrich (1969), Malinvaud 
(1970b), Gallant (1973, 1975% 1975b). 
Multivariate nonlinear least squares-Malinvaud (1970a), Gallant 
(1975c), Holly (1978). 
Single equation and multiv&ate maximum likelihood-Malinvaud 
(1970a), Barnett (1976), Holly (1978). 
Maximum likelihood for simultaneous systems- Amemiya (1977), 
Gallant and Holly (1980). 
M-estimators-Balet-Lawrence (19751, Grossman (1976). Ruskin (1978). 
Iteratively rescaled M-estimators-Souza (1979). 

Two stage nonlinear least squares is an example of a method of moments 
estimator. The estimator for the ath equation, 

qa(y,,x,,8) = e,,, = 1,2, .... n 

of a simultaneous system of M such equations-y, is an M-vector-is 
computed as follows. One chooses instrumental variables z1 as functions of 
the exogenous variables x,. Theoretical discussions of this choice consume 
much of the literature, but the most frequent choice in applications is low 
order monomials in x,, viz. 

2 
2, = ( X I ,  x:, x 2 ,  x2, XlXZ, x3, * * .);. 

The moment equations are 

1 "  
m n ( e )  = C ~ 1 4 a ( ~ t ,  xt ,  8 )  

I-1 
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and the true value of 0 is presumed to satisfy 8m,(B0) = 0. [Note that 
qa(y,, x,, 6 )  is a scalar and z ,  is a vector.] The two stage least squares 
estimator is defined as the value 8 which minimizes 

A general description of estimators of this type is as follows. Define 
moment equations 

and a notion of distance 

where we permit a dependence on a random variable +, via the argument T 

in m ( y ,  x ,  r, A )  and d ( m ,  T) so as to allow preliminary estimates of 
nuisance parameters as in three stage least squares. The estimator is that f i n  
which minimizes 

Estimators which are properly thought of as method of moment estima- 
tors, in the sense that they can be posed no other way, are: 

The Hartley-Booker estimator-Hartley and Booker (1965). 
Scale invariate M-estimators-Ruskin (1978). 
Two stage nonlinear least squares estimators- Amemiya (1974). 
Three stage nonlinear least squares estimators-Jorgenson and Laffont 
(1974), Gallant (1977b). Amemiya (1977), Gallant and Jorgenson (1979). 

In both least mean distance estimation and method of moments estima- 
tion, one is led to regard an estimator as the value f i n  which minimizes an 
objective function s,(A). This objective function depends on the sample 
{ (y, ,  x , )  : r = 1,2,. . . , n) and possibly on a preliminary estimator 6, of 
some nuisance parameters. Now the negative of $,(A) may be treated as if 
it were a likelihood function, and the Wald test statistic W,, the “likelihood 
ratio” test statistic L,, and the Lagrange multiplier test statistic R n  may be 
derived for a null hypothesis H: h ( X )  = 0 against its alternative A : h ( h )  
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# 0. Almost all of the inference procedures used in the analysis of nonlin- 
ear statistical models can be derived in this way. It is only a matter of 
finding the appropriate objective function s,( A). 

We emerge from this discussion with an interest in four statistics-A,,, 
W,, L,, R,-all of which depend on s,(A). We should like to find their 
asymptotic distribution in three cases: the null case where the model is 
correctly specified and the null hypothesis h ( A )  = 0 holds, the nonnull case 
where the model is correctly specified and the null hypothesis is violated, 
and in the case where the model is misspecified. By misspecification, one 
has in mind the following. The definition of an objective function s,( A )  
which defines the four statistics of interest is motivated by a model and 
assumptions on the error distribution. For example, the multivariate nonlin- 
ear least squares estimator is predicated on the assumption that the data 
follow the model 

yl - f ( x l , 6 )  + el t = 1 ,2  ,..., n 

and that the errors have mean zero. Misspecification means that either the 
model assumption or the error assumption or both are violated. We find 
that we can obtain an asymptotic theory for all three cases at once by 
presuming that the data actually follow the multivariate implicit model 

where y, q, and e are M-vectors and the parameter y may be infinite 
dimensional. That is, we obtain our results with misspecification and 
violation of the null hypothesis presumed throughout, and then specialize to 
consider correctly specified null and nonnull situations. The following 
results are obtained. 

The least mean distance estimator A,,, the estimator which minimizes 

is shown to be asymptotically normally distributed with a limiting 
variance-covariance matrix of the form f -9 , f - l .  Consistent estimators 4", 
and /, are set forth. Two examples-an M-estimator and an iteratively 
rescaled M-estimator-are carried throughout the development to illustrate 
the regularity conditions and results as they are introduced. 

Next, method of moments estimation is taken up. The method of 
moments estimator A,, the estimator that minimizes 
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is shown to be asymptotically normally distributed with a Limiting 
variance-covariance matrix of the form #-*Yf-'. Again, consistent estima- 
tors 4: and are set forth. The example carried throughout the discus- 
sion is a scale invariant M-estimator. 

Both analyses-least mean distance estimation and method of moments 
estimation-terminate with the same conclusion: f i n  minimizing s,(A) is 
asymptotically normally distributed with a limiting variance-covariance 
matrix that may be estimated consistently by using A and 4 as inter- 
mediate statistics. As a result, an asymptotic theory for the test statistics 
W,, L,, and R, can be developed in a single section, Section 5 ,  without 
regard to whether the source of the objective function s,( A )  was least mean 
distance estimation or method of moments estimation. The discussion is 
illustrated with a misspecified nonlinear regression model fitted by least 
squares. 

Observe that a least mean distance estimator may be cast into the form 
of a method of moments estimator by putting 

and d ( m ,  T) = m'm, because which minimizes 

solves 

If one's only interest is the asymptotic dlstribution of A,, then posing the 
problem as a method of moments estimator is the more convenient ap- 
proach, as algebraic simplifications of the equations m,(A) = 0 prior to 
analysis can materially simplify the computation of the parameters of the 
asymptotic distribution. However, one pays two penalties for this conve- 
nience: The problem is no longer posed in a way that permits the use of the 
statistic L,, and consistency results are weaker. 

2. THE DATA GENERATING MODEL AND LIMITS OF 
CESARO SUMS 

The objective is to find asymptotic approximations in situations such as the 
following. An analysis is predicted on the assumption that the data were 
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generated according to the model 

y ,  = f ( x , , A )  + el f = 1 , 2  ,..., n 

when actually they were generated according to 

y , = g ( x , ) + e ,  t - 1 , 2  ,..., n 

where the errors have mean zero and variance u2. One estimates X by f in  
that minimizes 

and tests H :  A = A* by rejecting when the test statistic 

exceeds some critical value. Later we shall show that f i n  is estimating Ao 
that minimizes 

Thus, one is actually testing the null hypothesis H : Ao 5 A*. Depending on 
the context, a test of H: A' = A* when the data are generated according to 

y , - g ( x , ) + e ,  t = 1 , 2  ...., n 

and not according to 

y , - f ( x , , A ) + e ,  t = 1 , 2  ,..., n 

may or may not make sense. In order to make a judgement as to whether 
the inference procedure is sensible, it is necessary to have the (a..ymptotic 
approximation to the) sampling distribution of W,. 

A problem in deriving asymptotic approximations to the sampling 
distribution of W, is that if Ao # A*, then W, will reject the null hypothesis 
with probability one as n tends to infinity, whence its limiting distribution 
is degenerate. The classical solution to this problem is to index the parame- 
ter as A t  and let it drift at a rate such that &(A\ - A") converges to a 
finite limit, called a Pitman drift. Thus, we need some mechanism for 
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subjecting the true model g(x) to drift so as to induce the requisite drift on 

One possible drift mechanism is the following. Suppose that the indepen- 
dent variable x is univariate, that %= [0, 11, and that f(x, A*) is continu- 
ous on S. Then j ( x ,  A*) has a polynomial expansion 

A\. 

00 

f(x, A*) = c Y,*X' 
1-0 

by the Stone-Weierstrass theorem. If the data are generated according to 
the sequence of models 

g A x )  = Yo' + Y:x n = l  

n = 2  

n = 3 
= Yo' + Yl*X + YZ*X2 

g3(x) = yo' + yl*x + y:x2 + ytx3 

then A\ will converge to that A* specified by H :  X = A* (Problem 2). 
Convergence can be accelerated so that lim fi( A\ - A*) is finite by chang- 
ing a few details (Problem 2). The natural representation of this scheme is 
to put 

yp = ( Y o ' , Y : , o  *... ) 
v: = (Yo', Yl ' l  YZ*.O*. . . ) 
Y: = (v:, Y:, Yz*. Y?. 0,. . . ) 

and let 
03 

g,b) = g ( x .  Yn") = c Y3'. 
1-0 

We see from this discussion that the theory should at least be general 
enough to accommodate data generating models with an infinite dimen- 
sional parameter space. Rather than working directly with an infinite 
dimensional parameter space, it is easier to let the parameter space be an 
abstract metric space (r, p) .  To specialize to the infinite dimensional case, 
let r be the collection of infinite dimensional vectors and put p ( y ,  y o )  = 
CpO,,,ly1 - ypI or some other convenient metric (Problem 2). To specialize 
further to the finite dimensional case, let I' = Ips and put p(y,  y o )  = 

0 2 1/2 ( C - * I Y 1  - Yl I 1 
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Moving on to the formal assumptions, we assume that the observed data 

(Yl. 4, (Y2r XZ)t (Y3r 4.. . . 

are generated according to the model 

with x, E 5, y, E CY, el E 8, and y," E I'. The dimensions are: x ,  is a 
k-vector, y,  and el are M-vectors, and (r, p)  is an abstract metric space 
with y," some point in r. The observed values of y, are actually doubly 
indexed and form a triangular array 

Y11 n = l  

Y12Y22 n = 2  

Y 13Y23 Y33 n - 3  

due to the dependence of y," on the sample size n.  This second index will 
simply be understood throughout. 

ASSUMPTION 1. The errors are independently and identically distrib- 
uted with common distribution P ( e ) .  

Obviously, for the model to make sense, some measure of central 
tendency of P ( e )  ought to be zero, but no formal use is made of such an 
assumption. If P ( e )  is indexed by parameters, they cannot drift with the 
sample size as y," may. 

The assumption appears to rule out heteroscedastic errors. Actually it 
does not if one is willing to presume that the error variance-covariance 
matrix depends on the independent variable x , ,  

Factor Z-'(x,) as R ' ( x , ) R ( x , )  and write 

Then R ( x , ) e ,  is homoscedastic. If one is willing to assume a common 
distribution for R(x, )e ,  as well, then Assumption 1 is satisfied. Note that 
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the actual construction of R(x,) is not required in applications, as the 
estimation is based only on the known function s,(X). Similarly, many 
other apparent departures from Assumption 1 can be accommodated by 
presuming the existence of a transformation $ [ q ( y ,  x, ycl,), x, y(2) ]  that will 
yield residuals that satisfy Assumption 1. 

The model is supposed to describe the behavior of some physical, 
biological, economic, or social system. If so, to each value of (e, x .  y o )  there 
should correspond one, and only one, outcome y .  This condition and 
continuity are imposed. 

ASSUMPTION 2. For each (x, y )  E T X  r the equation q ( y ,  x, y )  = e 
defines a one to one mapping of d onto 9, denoted as Y ( e ,  x , y ) .  
Moreover, Y(e ,  x, y) is continuous on d x %X I' and r is compact. 

It should be emphasized that it is not necessary to have a closed form 
expression for Y(e ,  x, y), or even to be able to compute it using numerical 
methods, in order to use the statistical methods set forth here. Inference is 
based only on the known function s,(A). The existence of Y(e ,  x ,  y )  is 
needed, but its construction is not required. This point is largely irrelevant 
to standard regression models, but it is essential to nonlinear simultaneous 
equation models, where Y(e ,  x ,  y )  is often difficult to compute. Since r 
may be taken as {y * ,  yl, y 2 , . .  . }  if desired, no generality is lost by 
assuming that r is compact. 

Repeatedly in the analysis of nonlinear models a Cesaro sum such as 

must converge uniformly in ( y o ;  A )  to obtain a desired result. If the results 
are to be useful in applications, the conditions imposed to insure this 
uniform convergence should be plausible and easily recognized as obtaining 
or not obtaining in an application. The conditions imposed here have 
evolved in Jennrich (1969), Malinvaud (1970b). Gallant (1977b), Gallant 
and Holly (1980), and Burguete, Gallant, and Soua (1982). 

As motivation for these conditions, consider the sequence of indepen- 
dent variables resulting from a treatment-control experiment where the 
response depends on the age of the experimental material. Suppose subjects 
are randomly selected from a population whose age distribution is F A ( . )  
and then subjected to either the treatment or the control. The observed 
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sequence of independent variables is 

x1 =(I,  a , )  treatment 

x2 =(O, a * )  control 

x3 =(I, as) treatment 

x4 =(O, a4) control 

Let F,( - )  denote the point binomial distribution with p = $, and set 

Then for any continuous function f(x) whose expectation exists, 

for almost every realization of { x,), by the strong law of large numbers. 
The null set depends on the function / ( x ) ,  which would be an annoyance, 
as the discussion flows more naturally if one has the freedom to hold a 
realization of ( x , )  fixed while permitting /(x) to vary over a possibly 
uncountable collection of functions. Fortunately, the collection of functions 
considered later is dominated, and we can take advantage of that fact now 
to eliminate this dependence of the null set on f( x). Consider the following 
consequence of the generalized Glivenko-Cantelli theorem. 

PROPOSITION 1 (Gallant and Holly, 1980). Let V,, I = 1,2,. . . , be a 
sequence of independent and identically distributed s-dimensionai random 
variables defined on a complete probability space (P, do, Po) with common 
distribution Y. Let Y be absolutely continuous with respect to some product 
measure on R', and let b be a nonnegative function with l b d u  < CQ. Then 
there exists E with P o ( E )  = 0 such that if w B E, 

for every continuous function with I / ( u ) l  5 b(0). 

The conclusion of this proposition describes the behavior that is required 
of a sequence u, = x, or u, = (e,, x,). As terminology for it, such a sequence 
is called a Cesaro sum generator. 
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DEFINITION (Cesaro sum generator: Gallant and Holly, 1980). A se- 
quence (0,) of points from a Borel set Y is said to be a Cesaro s u m  
generator with respect to a probability measure Y defined on the Borel 
subsets of Y and a dominating function 3 ( u )  with j b d v  < 00 if 

for every real valued, continuous function f with If( u)l s b( 0). 

We have seen that independent variables generated according to an 
experimental design or by random sampling satisfy this definition. Many 
other situations such as stratified or cluster sampling will satisfy the 
definition as well. We shall assume, below, that the sequence ( x t )  upon 
which the results are conditioned is a Cesaro sum generator as is almost 
every joint realization {(e,, x,)). Then we derive the uniform strong law of 
large numbers. 

ASSUMPTION 3 (Gallant and Holly, 1980). Almost every realization 
of { 0,) with u, = (e,, x,) is a Cesaro sum generator with respect to the 
product measure 

and dominating function b(e,  x). The sequence (x,) is a Cesaro sum 
generator with respect to p and b ( x )  = /,b(e, x)  d P ( e ) .  For each x E 5 
there is a neighborhood N, such that j,supN,b(e, x) d P ( e )  < 00. [f,(e, x) 
= 1 if (e, x) E A, 0 otherwise.] 

THEOREM 1 (Uniform strong law of large numbers). Let Assumptions 
1 through 3 hold. Let (B, u) and (r, p )  be compact metric spaces, and let 
f( y, x, 8 )  be continuous on I X 3 X B. Let 

or equivalently 

for all ( y ,  x) E IX 3 and all (8,  y )  E B X r, where b(e, x) is given by 
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Assumption 3. Then both 

and 

converge uniformly to 

over B X r except on the event E with Po(E) = 0 given by Assumption 3. 

Recall that the uniform limit of continuous functions is continuous. 

Proof. (Jennrich, 1%9). Let u = (e, x )  denote a typical element of V= 
6 X S, let a = (8, y )  denote a typical element of A = B X A, and let { u,) 
be a Cesaro sum generator. The idea of the proof is to use the dominated 
convergence theorem and Cesaro summability to show that 

where 

h b ,  a)  = f [ Y ( e ,  x ,  Y), x ,  P I  
is an equicontinuous sequence on A. An equicontinuous sequence that has 
a pointwise limit on a compact set converges uniformly; see, for example, 
Chapter 9 of Royden (1968). 

In order to apply Cesaro summability, we show that sup, oh( u, a )  and 
inf,, oh( u, a )  are continuous for any 0 C A ;  they are obviously dominated 
by b(e ,  x). Put T ( a ,  a') = [02(/3, 8') + p * ( y ,  y0)ji/', whence ( A ,  7 )  is a 
compact metric space. Let uo in -Y and c > 0 be given. Let v be a compact 
neighborhood of 0'. and let 0 be the closure of 0 in ( A , 7 ) ,  whence 
(G, T )  is compact. By assumption, h ( u ,  a)  is continuous on V X  A, so it is 
uniformly continuous on 7 x 8 Then there is a S > 0 such that for all 
Iu - uoi < 6 and a E 3 

h ( u 0 , a )  - c < h ( u , a )  < h ( u 0 , a )  + c .  

This establishes continuity (Problem 4). 
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A sequence is equicontinuous if for each L > 0 and a' in A there is a 
6 > 0 such that T ( a ,  a') < 6 implies sup,,lh,,(a) - h,(aO)l < c. When each 
h,(a)  is continuous over A ,  it suffices to show that SUP,,, .Ih,,(a) - h,,(ao)l 
< L for some finite N. Let c > 0 and 6 > 0 be given and let 0, = 
{a : T(Q, a') < 6 ) .  By the dominated convergence theorem and continuity 

= lim suph(u, a) - h ( u ,  a') d v (  u )  
L + O  4 

= 0. 

Then there is a S > 0 such that 7(a, a*) < 6 implies 

By Cesaro summability, there is an N such that n > N implies 

suph,( a) - h,(a') - suph( u ,  a) - h (  0, a0) dY( u )  < f. 2 
4 jy 4 

whence 

h , ( a )  - h,(a')  s suph,(a) - h,(aO) i t: 
0, 

for all n > N and all ?(a, a') < 6. A similar argument applied to infoah,( a) 
yields 

- - c  < h , ( a )  - h,,(a') < E 

for all n > N and all ~ ( a ,  a') c 6. This establishes equicontinuity. 
To show that 

1 
i , ( a )  = - c i ( x , , a )  

, - I  

where 

i ( x , a )  = / f [ Y ( e , x , ~ ) , x , P ]  d P ( e )  

is an equicontinuous sequence, the same argument can be applied. It is only 

8 
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necessary to show that &(x, a) is continuous on 9 - X  A and dominated by 
b ( x ) .  Now 

which establishes domination. By continuity on "YX A and the dominated 
convergence theorem with supNs$( e, x) of Assumption 3 as the dominating 
function, 

This establishes continuity. 

In typical applications, an error density p ( e )  and a Jacobian 

a 
J ( y 1  x ,  Y O )  = WdY, x ,  YO) 

are available. With these in hand, the conditional density 

P ( Y  I X , Y 0 )  "(detJ(yIx,Y')(P[q(y, X.Y0)1 

may be used for computing limits of Cesaro sums, since 

The choice of integration formulas is dictated by convenience. 

argument: 
The main use of the uniform strong law is in the following type of 

Lim X,, = A* 

lim sup Is&) - s* (  A )  I = 0 

tf --t oc 

A - W  A 

s * ( A ) continuous 
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implies 

lim s n ( A n )  = s*(A*) 
n-m 

163 

because 

We could get by with a weaker result that merely stated 

for any sequence with 

lim A, = A*. 
n -  w 

For the central limit theorem, we shall make do with this weaker notion of 
convergence, called continuous convergence. 

THEOREM 2 (Central limit theorem). Let Assumptions 1 through 3 
hold. Let (r, p }  be a compact metric space; let T be a closed ball in a 
Euclidean space centered at T* with finite, nonzero radius; and let A be a 
compact subset of a Euclidean space. Let { y,"} be a sequence from r that 
converges to y * ;  let { +"} be a sequence of random variables with range in T 
that converges almost surely to T * ;  let { T:} be a sequence from T with 
6(+, - T,") bounded in probability; let (At) be a sequence from A 
that converges to A*. Let f(y, x, T ,  A )  be a vector valued function such 
that each element of f(y, x, T, A), f(y, x, T, A ) / ' ( y ,  x, T ,  A), and 
( J / ~ T ' ) / ( Y ,  x, T, A )  is continuous on J X  T X  T X A and dominated by 
b [ q ( y ,  x ,  7 ) .  x] for all ( y ,  x )  E I x  5 and all ( y ,  T, A )  E r x T x A; 
b(e ,  x) is given by Assumption 3. If 

then 
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where 

I * may be singular. 

Proof. Let 

Given 1 with 11111 = 1, consider the triangular array of random variables 

z,, = ,'z( e,, x , ,  7:. T,", A:) t = I ,  2, .  . . , n n = 1,2 , .  . . . 

Each Z,, has mean zero and variance 

Putting V, = E;-p,;, by Theorem 1 and the assumption that 
lim,-,(y,O, T,", A;) = ( y * ,  T * ,  A*) it follows that l imn+m(l/n)Vn = I'I*I 
(Problem 5) .  Now (l/n)V, is the variance of (l,/fi)E~-IZ,n, and if 
1'1 *I = 0, then (1/ &)E:-lZ,,, converges in distribution to N ( 0 ,  I'I *I) by 
Chebyshev's inequality. Suppose, then, that I'I "1 > 0. If it is shown that for 
every E > 0 one has limn Bn = 0, where 

x [ l ' z ( e ,  x,, y:, T:, h ~ , ) ] *  d P ( e )  

then limn m( n/Vn)E, = 0. This is the Lindeberg-Feller condition (Chung, 
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1974); it implies that (I/ fi)Z;-,Zt,, converges in distribution to 

Let q > 0 and c > 0 be given. Choose a > 0 such that @ ( y * ,  7 * ,  A*) < 
N(0,  I'I * l ) .  

q/2, where 

where 5, lies on the line segment joining 5, to 7,"; thus 7, converges almost 
surely to r*. The almost sure convergence of (y,", +", A:) to (y*, 7* ,  A*) and 
the uniform almost sure convergence of 
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over r X T x A given by Theorem 1 imply that 

converges almost surely to 

Since &( +,, - 7,") is bounded in probability, we have that 

This holds for every I with l l f i l  = 1, whence the desired result obtains. 0 

In the main, small sample regression analysis is conditional. With a 
model such as 

y , = f ( x , , e ) + e ,  r = 1 , 2  ,..., n 

the independent variables are held fixed and the sampling variation enters 
via the errors el, e2,. . . , e,. The principal of ancillarity seems to provide 
the strongest theoretical support for a conditional analysis of regression 
situations (Cox and Hinkley, 1974, Section 2.2.viii). It seems appropriate to 
maintain this conditioning when passing to the limit. This is what we shall 
do in the sequel, excepting dynamic models. In a conditional analysis, one 
fixes an infinite sequence 

x, = (xpq,...) 

that satisfies the Cesaro summability property, and all sampling variation 
enters via the random variables ( e , ) z l .  To give an unambiguous descrip- 
tion of this conditioning, it is necessary to spell out the probability 
structure in detail. The reader who has no patience with details of this sort 
is invited to skip to the fourth from the last paragraph of this section at this 
point. 
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We begin with an abstract probability space (a, .do, Po) on which are 
defined random variables { E , } Z ,  and { X,}zl which represent the errors 
and independent variables respectively. Nonrandom independent variables 
are represented in this scheme by random variables that take on a single 
value with probability one. A realization of the errors can be denoted by an 
infinite dimensional sequence 

where e, = E l ( @ )  for some w in 9. Similarly for the independent variables 

x, = (XI, x2 ,... ). 

Let 8, = X ,“,8 and !Em = X :,% so that all joint realizations of the 
errors and independent variables take their values in 4, x S, and all 
realizations of the independent variables take their values in Tm. 

Using the Daniell-Kolmogorov construction (Tucker, 1967, Section 2.31, 
this is enough to define a joint probability space 

such that if a random variable is a function of (em, x,), one can perform 
all computations with respect to the more structured space (&= x 
Zm, vm), and one is spared the trouble of tracing preimages back to 
the space (a, do, Po). Similarly one can construct the marginal probability 
space 

Assumption 3 imposes structure on both of these probability spaces. The 
set on which Cesaro summability fails jointly, 

C > O  J - o  n-j \ 

has u,-measure zero. And the set on which Cesaro summability fails 
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marginally, 

has pm-measure zero. 
By virtue of the construction of (8, X %,, de,,, v,) from countable 

families of random variables, there exists (Loeve, 1963, Section 27.2, 
Regularity Theorem) a regular conditional probability P( A 1 x,) connecting 
the joint and the marginal spaces by 

Recall that a regular conditional probability is a mapping of de,x x 5, 
into [0,1] such that P( A 1 x,) is a probability measure on (8- x %,, de, x )  

for each fixed x,, such that P ( A l x , )  is a measurable function over 
(S,, d,) for each fixed A, and such that / , P ( A  I x,)dp,(x,) = v,[A n 
(&, X B ) ]  for every B in dx. The simplest example that comes to mind is 
to assume that { E,}ZO, ,  and { X,}:, are independent families of random 
variables, to construct (ef", dC, Pe), and to put 

Define the marginal conditional distribution on (Jw, aft) by 

e , X ( E I X , )  = P ( E  x SW P,). 

All probability statements in the sequel are with respect to P, , , (E  1 x,). 
Assumption 1 puts additional structure on P, , , (E  jx,). It  states that 
P., J E I xm) is a product measure corresponding to a sequence of indepen- 
dent random variables each having common distribution P( e) defined over 
measurable subsets of 4. This distribution can depend on x,. For example, 
{er}EJO,, could be a sequence of independently and normally distributed 
random variables each with mean zero and variance-covariance matrix 
limn -. , ( l /n)Zz"- , (x , )T'(x,) .  But as indicated by the discussion following 
Assumption 1, this dependence on x ,  is very restricted. So restricted, in 



THE DATA GENERATING MODEL AND LJMXTS OF CESARO SUMS 169 

fact, that we do not bother to reflect it in our notation; we do not index P 
of Assumption 1 by x,. 

If all probability statements are with respect to P,, ,(E I x m ) ,  then the 
critical question becomes: Does the set where Cesaro summability fails 
conditionally at x, = xz,  

have conditional measure zero? The following computation shows that the 

(marginal I x o )  

(marginal I x o )  

(joint I x o )  

(joint 

(joint 

~ r n ( F e , x )  / P ( F , ~  9r IXL) dpm(x:) 0 

we have 

P r , x (  ~ A x l x z )  P 0 a*e* (Too, d - 9  pa)* 

Since the parameter y: is subject to drift, it is as well to spell out a few 
additional details. For each n, the conditional distribution of the dependent 
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for each measurable subset A of X :-!q. A statement such as f i ,  converges 
almost surely to A* means that A, is a random variable with argument 
(yl ,..., yn, x1 ,..., x"), and that P , , , ( E I x m )  = 0 where 

( 2 0  1-1 n-J 

A statement that fi(fi, - A*) converges in distribution to a multivariate 
normal distribution Np(.l 8,  V )  means that for A of the form 

A = ( - c x , , A , ]  x ( - M , A ~ ]  x * * *  x ( - a ~ , A , ]  

it is true that 

There is very little qualitative difference between an analysis that condi- 
tions on { x , }  and an analysis that takes {x,}  to be a nonstationary, 
random process, as can be seen by a comparison of the results of this 
chapter with the results of Chapter 7. However, one can be seriously misled 
if one assumes that { x, } is a stationary process, particularly if one assumes 
that { x, ) is a sequence of independently and identically distributed random 
variables. The details are spelled out in Section 8. 

We shall assume that the estimation space A is compact. Our defense of 
this assumption is that it does not cause problems in applications as a 
general rule and it can be circumvented on an ad hoc basis as necessary 
without affecting the results. We explain. 

One does not wander haphazardly into nonlinear estimation. As a rule, 
one has need of a considerable knowledge of the situation in order to 
construct the model. In the computations, a fairly complete knowledge of 
admissible values of A is required in order to be able to fmd starting values 
for nonlinear optimization algorithms. Thus, a statistical theory which 
presumes this same knowledge is not limited in its scope of applications. 
Most authors apparently take this position, as the assumption of a compact 
estimation space is more often encountered than not. 
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One may be reluctant to impose bounds on scale parameters and 
parameters that enter the model linearly. Frequently these are regarded as 
nuisance parameters in an application, and one has little feel for what 
values they ought to have. Scale parameter estimates are often computed 
from residuals, so start values are UMIZUSSZI~~, and, at least for least 
squares, linear parameters need no start values either (Golub and Pereyra, 
1973). Here, then, a compact parameter space is an annoyance. 

These situations can be accommodated without disturbing the results 
obtained here as follows. Our results are asymptotic, so if there is a 
compact set A’ such that for each realization of { e l )  there is an N where 
n > N implies 

then the asymptotic properties of f i n  are the same whether the estimation 
space is A or A’. For examples using this device to accommodate parame- 
ters entering linearly, see Gallant (1973). See Gallant and Holly (1980) for 
application to scale parameters. Other devices, such as the use of an initial 
consistent estimator as the start value for an algorithm which is guaranteed 
to converge to a local minimum of $,(A), are effective as well. 

PROBLEMS 

1. Referring to the discussion following Theorem 2, show that if { XI ] and 
{ El } are independent sequences of random variables, then P,, x (  E I x m )  
does not depend on x,. 
(Construction of a Pitman drift.) Consider the example of the first few 
paragraphs of this section where the fitted model is 

2. 

but the data actually follow 

where 

The equality is with respect to uniform convergence. That is, one 
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restricts attention to the set r* of y = (yo.  yl,. . .) with 

lim sup 
J-.m x€{O,l] 

and g ( x ,  y )  denotes that continuous function on [0,1] with 

J 

g ( x , y )  - c y,xJ = 0.  
J'O 

p(y,  y o )  = iim sup 

Show that (r*, p )  is a metric space on these equivalence classes 
(Royden, 1968, Section 7.1). If the model is fitted by least squares, if 
f(x, A )  is continuous over [0,1] X A, and if the estimation space A is 
compact, we shall show later that 

Assume that f ( x ,  A )  and {x?)  are such that s;(A) has a unique 
minimum for n larger than some N. By the Stone-Weierstrass theorem 
(Royden, 1968, Section 9.7) we can find a y o  in I'* with 

That is, lim,,,s~p,,,~,~~~j-~y~x~ - f ( x ,  A* + A/ 6) l  = 0. Show 
that it is possible to truncate y o  at some point m, such that if 

then 
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for n > N. Hint: See the proof of Theorem 3. Show that 

Let r = { y,">F-,-,. Show that (r, p) is a compact metric space. 
3. (Construction of a Pitman drift.) Let g(x) be once continuously 

differentiable on a bounded, open, convex set in W k  containing 3. By 
rescaling the data, we may assume that %C X ;-JO, 2n)  without loss 
of generality. Then g(x) can be expanded in a multivariate Fourier 
series. Letting r denote a muitiindex-that is, a vector with integer 
(positive, negative, or m o )  components-and letting Irl = E!'mllr,l, a 
multivariate Fourier series of order R is written C!,,SRyp'r'x with 
e l r 'x  = cos(r'x) + isin(r'x) and i = n. The restnction y, = y- , ,  
where the overbar denotes complex conjugation, will cause the Fourier 
series to be real valued. We have (Edmunds and Moscatelli, 1977) 

- 

lim sup g(x) - c y + ~ X l =  0. 
R - m  I I IrlsR 

Construct a Pitman drift using a multivariate Fourier series expansion 
along the same Lines as in Problem 2. 

4. Show that if for any z > 0 there is a 6 > 0 such that Iu - ool < 6 
implies that 

h ( u o , a ) - r < h ( o , a )  < h ( o o , a ) + r  

for all a in 0, then supaE &(u, a) and inf,, &(u, a) are continuous. 
Referring to the proof of Theorem 2, show that 5. 

{ l ~ [ y ( e , x . ~ ) . x , ~ , ~ J } ~  s b ( e , x )  

implies that 

I, 1 { l Y [ Y ( e ,  x, u ) ,  x, 7, XIj2dP(e) 5 b ( x ) .  
4 

Show that limn-m (l/n)V, = f ' I*f .  
6. Show that if +,, converges almost surely to T *  and fi(?,, - T:) is 

bounded in probability, then limn - ,T," = T*. 
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3. LEAST MEAN DISTANCE ESTIMATORS 

Recall that a least mean distance estimator A, is defined as the solution of 
the optimization problem 

1 "  
minimize s,(A) = ; ~ s ( y f , x t , ~ , , ~ )  

r - 1  

where +,, is a random variable which corresponds conceptually to estimators 
of nuisance parameters. A constrained least mean distance estimator x,, is 
the solution of the optimization problem 

minimize $ , (A)  subject to h ( h )  = 0 

where h ( h )  maps IPP into W4. 
The objective of this section is to find the almost sure limit and the 

asymptotic distribution of the unconstrained estimator i, under regularity 
conditions that do not rule out specification error. Some ancillary facts 
regarding the asymptotic distribution of the constrained estimator A, under 
a Pitman drift are also derived for use in later sections on hypothesis 
testing. In order to permit this Pitman drift, and to allow generality that 
may be useful in other contexts, the parameter y," of the data generating 
model is permitted to depend on the sample size n throughout. A more 
conventional asymptotic theory regarding the unconstrained estimator in  is 
obtained by applying these results with y," held fixed at a point y *  for all n. 
These results are due to Souza (1979) in the main, with some refinements 
made here to center A, about a point so as to isolate results regarding 
A, from the Pitman drift assumption. 

An example, a correctly specified iteratively rescaled M-estimator, is 
carried throughout the discussion to serve as a template in applications. 

EXAMPLE 1 (Iteratively rescaled M-estimator). The data generating 
model is 

y , = f ( x , , y , O ) + e ,  t = 1 , 2  ,..., n. 

An estimate of scale is obtained by first minimizing 

with respect to 8 to obtain 6,, where 

p(u)=lncosh - ( 2  
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and then solving 

175 

with respect to 7 to obtain 4,,, where 

and Q is the standard normal distribution function. The parameters of the 
model are estimated by minimizing 

whence 

s ( y ,  x ,  T, A )  = p (  -f(x' 7 "). 
The error distribution P ( e )  is symmetric, puts positive probability on every 
open interval of the real line, and has finite first and second moments. See 
Huber (1964) for the motivation. 0 

The first question one must address is: What is A,, to be regarded as 
estimating in a finite sample? Ordinarily, in an asymptotic estimation 
theory, the parameter y o  of the data generating model is held fixed, and in 
would be regarded as estimating the almost sure limit A+ of f i n  in each 
finite sample. But we are in a conditional setting and have both misspecifi- 
cation and a parameter y," that is subject to drift. In a conditional setting, 
either of these situations is enough to make that answer unsatisfactory, 
since if we regarded A,, as centered about its almost sure limit A* (Theorem 
3), we would find it necessary to impose a Pitman drift, accelerate the rate 
of convergence of Cesaro sums generated from (x , } ;" - , ,  or impose other 
regularity conditions to show that fi(A,, - A') is asymptotically normally 
distributed. Such conditions are unnatural in an estimation setting. A more 
satisfactory answer to the question is obtained if one regards f i n  as 
estimating A$ that is the solution to 

1 "  minimize S,O(A) = ;; c / s [ ~ ( e ,  x , ,  y:), x,, 7:. A ]  d P ( e ) ;  

7," is defined later (Assumption 4). With this choice, one can show that 
&(A,, - A t )  is asymptotically normally distributed without unusual regu- 
larity conditions. Moreover, in analytically tractable situations such as a 
linear model fitted by least squares to data that actually follow a nonlinear 
model, it turns out that A$ is indeed the mean of A,, in finite samples. 

r - 1  B 
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We call the reader's attention to some heavily used notation and then 
state the identification condition: 

NOTATION 1. 

s * ( ~ )  = / / s [ y ( e ,  x, Y*), 1, T * ,  AIdP(e) d p ( x )  

in  minimizes s,(A) subject to h ( A )  = 0 

A: minimizes s,(A) subject to h ( A )  = 0 
A* minimizes s *( A). 

ASSUMPTION 4 (Identification). The parameter y o  is indexed by n, 
and the sequence { y:) converges to a point y *. The sequence of nuisance 
parameter estimators is centered at T," in the sense that &(+, - T,") is 
bounded in probability; the sequence { T! }  converges to a point T * ,  and 
{en} converges almost surely to T*. The function s*(A) has a unique 
minimum over the estimation space A* at A*. 

I 8  
E;, minimizes s,(A) 

A; minimizes $(A) 

The critical condition imposed by Assumption 4 is that s*( A )  must have 
a unique minimum over A*. In a correctly specified situation, the usual 
approach to verification is to commence with an obviously minimal identifi- 
cation condition. Then known results for the simple location problem that 
motivated the choice of distance function s(y ,  x, T, A )  are exploited to 
verify a unique association of A* to y* over A*. We illustrate with the 
example: 

EXAMPLE 1 (Continued). We are trapped in a bit of circularity in that 
we need the results of this section and the next in order to compute the 
center 7." of the nuisance parameter estimator +,, and show that &( ?, - T.") 

is bounded in probability. So we must defer verification until the end of 
Section 4. At that time we shall find that T," > 0 and T *  > 0, which facts 
we shall use now. 
To verify that $*(A) has a unique minimum one first notes that it will be 

impossible to determine A by observing ( y,, x,) if q(x, A )  = f ( x ,  y )  for 
A # y at each x in S that is given weight by the measure p. Then a 
minimal identification condition is 

A + r  * c ( { x : f t x , ~ ) + f t x , Y ) }  '0.  
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This is a condition on both the function f ( x ,  A )  and the infinite sequence 

is known (Problem 9) to have a unique minimum at 6 = 0 when P ( e )  is 
symmetric about zero, has finite first moment, and assigns positive probabil- 
ity to every nonempty, open interval. Let 

w = !(X# Y )  -i(& A ) .  
If h # y then cp[b(x)] 2 q(0) for every x .  Again, if X f y the identification 
Condition implies that cp[S(x)] > cp(0) on some set A of positive p measure. 
Consequently, if h # y,  

s*(r, 7 ,  A )  = j cp[WI~Cr(x)  ' j j ( 0 )  dCr(X) = cp(0). 
9 

Now s* (h)  = s * ( y * ,  7 * ,  A), so that s*(X) > q(0) if X # y* and $*(A)  = 
cp(0) if h = y * ,  which shows that s* (h)  has a unique minimum at X = y* .  

A similar argument can be used to compute A t .  It runs as follows. Let 

1 "  1 "  

Since s,O(X) = s,"(y,", 7.". A), $,"(A) has a minimum at X 5 y,". It is not 
necessary to the theory which follows that AD, be unique. Existence is all 

0 

S,O(Y, 7 ,  A )  = n c &Wl 2 ; c d o )  = d o ) .  
r - 1  r - 1  

that is required. Similarly for 7.". 

We shall adjoin some technical conditions. To comment, note that the 
almost sure convergence of +,, imposed in Assumption 4 implies that there 
is a sequence which takes its values in a neighborhood of 7* and is tail 
equivalent (Lemma 2) to 4,. Consequently, without loss of generality, it 
may be assumed that +" takes its values in a compact ball T for which 7*  is 
an interior point. Thus, the effective conditions of the next assumption are 
domination of the objective function and a compact estimation space A*. 
As noted in the previous section, a compace estimation space is not a 
serious restriction in applications. 

ASSUMPTION 5. The estimation space A* is compact; { +"} and { 7,"} 

are contained in T, which is a closed ball centered at 7* with finite, 
nonzero radius. The distance function s(y ,  x ,  7 ,  A )  is continuous on +Yx I 
X T x A*, and Is(y, x ,  7 ,  A))  s b[q (y ,  x , y ) ,  x]  on Y x  9 x  T x A* x r; 
b(e,  x )  is that of Assumption 3. 
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The exhibition of the requisite dominating function b(e, x) is an ad huc 
process, and one exploits the special characteristics of an application. We 
illustrate with Example 1: 

EXAMPLE 1 (Continued). Now p ( u )  s $ 1 ~ 1  (Problem 9), so that 

Suppose that r = A* and that Supr If(x, y)l is p-integrable. Then 

will serve to dominate s ( y ,  x, 7,  A). If S is compact, then b,(e ,  x) is 
integrable for any p. To see this observe that f(x, y )  must be continuous 
over 9 " X  r to satisfy Assumption 2. A continuous function over a compact 
set is bounded, so sup,f(x, y) is a bounded function. 

Later (Assumption 6) we shall need to dominate 

since ['4"(w)} = K1/2)tanh(u/2)1 5 1/2. Thus 

serves as a dominating function. 
One continues the construction of suitable b,( e, x), b2( e, x), . . . to 

dominate each of the functions listed in Assumptions 4 and 6. Then the 
overall dominating function of Assumption 3 is 

b(e, x)  = Cbi(e ,  x ) .  
i 
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This construction will satisfy the formal logical requirements of the theory. 
In many applications 9- can be taken as compact and P ( e )  to possess 
enough moments, so that the domination requirements of the general theory 
obtain trivially. 0 

We can now prove that irn is a strongly consistent estimator of A*. First 
a lemma, then the proof: 

LEMMA 1. Let Assumptions 1 through 5 hold. Then sn(A) converges 
almost surely to s * ( h )  uniformly on A*, and s,O(A) converges to s* (h)  
uniformly on A*. 

Proof. We shall prove the result for s,(A). The argument for $:(A) is 
much the same (Problem 1). Now 
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Since r x T x A* is compact, and s( y, x, 7,  A )  is continuous on 9 x S x 
T X A* with } s ( y , x , 7 ,  A)l s b [ q ( y , x , y ) , x ]  for all ( y , x )  in ~ x S  
and all ( y ,  7 ,  A )  in r x T x A*, we have, by Theorem 1, that 
suprx fXh . fn (y ,  7, A )  converges almost surely to zero. Given any sequence 
( (y , ,  T,, A,,)} that converges to, say, ( y o ,  7', A') we have, by the dominated 
convergence theorem with 2b(e, x) as the dominating function, that 
lim,,-mg(y,, T,,, A,) = &yo,  T O ,  AO). This shows that g(y ,  7 ,  A )  is continu- 
ous in ( y ,  7 ,  A). Moreover, sup,,.g(y, 7,  A )  is continuous in ( y ,  7 ) ;  see the 
proof of Theorem 1 for details. Then, since (y,", 4,) converges almost surely 

0 to ( y * ,  7 * ) ,  sup,,.g(y:, 4:, A )  converges almost surely to zero. 

THEOREM 3 (Strong consistency). Let Assumptions 1 through 5 hold. 
Then A,, converges almost surely to A*, and A\ converges to A*. 

Roof. If a realization (e, } of the errors is held fixed, then ( A,} becomes 
a fixed, vector valued sequence and (s,(A)} becomes a fixed sequence of 
functions. We shall hold fixed a realization ( e , }  with the attribute that 
s,(A) converges uniformly to s*(A) on A*; almost every realization is such 
by Lemma 1. If we can show that the corresponding sequence (A,}  
converges to A*, then we have the first result. This is the plan. 
Now A, lies in the compact set A*. Thus the sequence { A } has at least 

one limit point and one subsequence ( A , , }  with lim,,,d,$,,m = A. Now, 
by uniform convergence (see Problem 2), 

s*( A*) 

where the inequality is due to the fact that s,(x,,) s s,(A*) for every n as 
A, is a minimizing value. The assumption of a unique minimum, A S S U ~ ~ -  
tion 4, implies 

An analogous argument implies that A: converges to A* (Problem 3). 0 
= A*. Then (A,)  has only the one limit point A*. 

The following notation defines the parameters of the asymptotic distribu- 
tion of A,. 
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NOTATION 2. 
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If this were rnaximum likelihood estimation with s(y, x, 7 ,  A )  - 
-In p (  y I x ,  A), then Y *  would be the information matrix and 8' the 
expectation of the Hessian of the log-likelihood. Under correct specification 
one would have 9* = 0 and Y *  5#* (Section 7). 

We illustrate the computations with the example. 

EXAMPLE 1 (Continued). The first and second derivatives of 
s ( y ,  x, 7 ,  A)  are 

Evaluating the first derivative at y = f ( x ,  y)  + e, T = T*, and A = y ,  we 
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because \k (e /7)  is an odd function [i.e., * ( u )  = * ( - u ) ] ,  and an odd 
function integrates to zero against a symmetric error distribution. Thus, 
42, = 0. In fact, 4* is always zero in a correctly specified situation when 
using a sensible estimation procedure. To continue, writing dY2(e /T*)  for 
j#S’2(e /P)  dP(e )  and B*’(e/P)  for {,(d/du)9(~)1~-~,,. dP(e) ,  we have 

and 

Thus, 

and 
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In Section 5, the distributions of test statistics are characterized in terms 
of the following quantities: 

NOTATION 3. 

We illustrate their computation with Example 1: 

EXAMPLE 1 (Continued). Let 

Note that if one evaluates at X = A:, then p,(AD,) = 0, a:(hO,) = 
1Q*2(e/?:), and @,(A\) = BW(e/7;), which eliminates the variation with 
I ;  but if one evaluates at h = A*,, then the variation with I remains. We 



Example 1. 

EXAMPLE1 ( a n t  

Then 

ued). Let 
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Alternatives that are similar to the forms used in least squares are 

with 

Bn = ; c +;. 
r - 1  

The former are heteroscedastic invariant, the latter are not. 0 

Some additional, technical restrictions needed to prove asymptotic nor- 
mality are: 

ASSUMPTION 6 The estimation space A* contains a closed ball A 
centered at A* with finite, nonzero radius such that the elements of 
( a / a A ) s ( y ,  x, 7 ,  A), (d2/aA aX')s(y, x, 7,  A), (a2/a7aA')s (y ,  x, 7, A), 
and [ ( d / a A ) s ( y ,  x, T ,  A)][(i?/aA)s(y, x, T ,  A)Y are continuous and 
dominated by b[q (y ,  x, y)* x] on 9 x  YX r x T x A. Moreover, $* is 
nonsingular and 

The integral condition is sometimes encountered in the theory of maxi- 
mum likelihood estimation; see Durbin (1970) for a detailed discussion. It 
validates the application of maximum likelihood theory to a subset of the 
parameters when the remainder are treated as if known in the derivations 
but are subsequently estimated. The assumption plays the same role here. It 
can be avoided in maximum likelihood estimation at a cost of additional 
complexity in the results; see Gallant and Holly (1980) for details. It can be 
avoided here as well, but there is no reason to further complicate the results 
in view of the intended applications. In an application where the condition 
is not satisfied, the simplest solution is to estimate X and T jointly and not 
use a two step estimator. We illustrate with the example: 
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EXAMPLE 1 (Continued). 

Both q ( e / T )  and ( J I ' ( e / T ) ( e / T )  are odd functions and will integrate to zero 
for symmetric P ( e ) .  a 

The derivative of the distance function plays the same role here as does 
the derivative of the log density function or score in maximum likelihood 
estimation. Hence, we use the same terminology here. As with the scores in 
maximum likelihood estimation, their normalized sum is asymptotically 
normally distributed: 

THEOREM 4 (Asymptotic normality of the scores). Under Assump- 
tions 1 through 6 

9* may be singular. 

Proof. By Theorem 2 

Domination permits the interchange of differentiation and integration 
(Problem ll), and A\ is defined as a minimizing value, whence 
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We can now show that f i n  is asymptotically normally distributed. First 
we prove two lemmas: 

LEMMA 2 (Tail equivalence). Let ( A , )  be a sequence of vector valued 
random variables that take their values in A* c RP and that converge 
almost surely to a point A* in A*. Let (s,(A)} be a sequence of real valued 
random functions defined on A*. Let g(A) be a vector valued function 
defined on A*. Let A' be an open subset of R P with A* E A' c A*. Then 
there is a sequence { x,} of random variables that take their values in A', 
that satisfy 

d A n )  = g ( i n )  + os(n-.) 

for every a > 0, and such that: 

1. If (a/aA)s,(A) is continuous on A', and A, minimizes sn(A) over 
A*, then 

for every a > 0. 
2. If ( a / d A ) s , ( h )  and ( a / a A ' ) h ( A )  are continuous on A', if 

(a /aA')h(A)  has full rank at X = A*, and if A, minimizes $,(A) over 
A* subject to h ( A )  = 0, then there is a vector 6 of (random) 
Lagrange multipliers such that 

h ( X , )  = o,(n-")  

for e w y  a > 0. 

Rod. The idea of the proof is that eventually A, is in A' and itself has 
the desired properties, due to the almost sure convergence of A, to A*. 
Stating that the residual random variables are of ahnost sure order o,(n-") 
is a way of expressing the fact that the requisite large n depends on the 
realization { e,) that obtains; that is, the convergence is not uniform in 

We shall prove part 2. By Problem 5 ,  ( d / a A ' ) h ( A )  has full rank on some 
(ell .  

open set B with A* E B c A'. Define 
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Fix a realization { e , )  for which lim,,,, An = A*; almost every realization 
is such. There is an N such that n > N implies A ,  E 0 for all n > N. Since 
0 is open and A,, is the constrained optimum, we have that tf, exists and 
that 

Ti, = A ,  

m [ " n ( A n )  + &h(A,)] 0 

h( A,)  = 0 

a 

(Bartle, 1964, Section 21). Then, trivially, 

0 

LEMMA 3. Under Assumptions 1 though 6, interchange of differentiation 
and integration is permitted in these instances: 

Moreover, 

unifonnlyon A 

uniformly on A 

almost surely, uniformly on A 

almost surely, uniformly on A ,  

a a 
lim ns,O(A) = ;iXs*(A) 

a 2  a 2  
tim . m s ; . " (  A )  = m , ~ * ( h )  

a a 
n-ce lim n S n ( A )  a ~ s * ( X )  

a2  a 2  
lim ~ m s n (  A )  = nmP( A )  

n-o3 

n*oo 

n-w 
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Rod. Interchange: We shall prove the result for (a/aX)s*(A), the argu- 
ment for the other three cases being much the same. Let X be in A, and 
( h , }  be any sequence with lim,,,-.mhm = 0 and X - h,& in A ,  where €, is 
the i th elementary vector. By the mean value theorem. 

s(Y(e7x,y* ) ,x ,7* ,A]  - s ( Y ( e , x , ~ * ) , x , 7 * , h  - hm&]  
him 

where I$,,,(e, x)l 5 h,. [One can show that i , ( e ,  x )  is measurable, but it is 
not necessary for the validity of the proof, as the composite function on the 
right hand side is measurable by virtue of being equal to the left.] Thus 

s+( A )  - s*( h - h m t i )  
hm 

By the dominated convergence theorem, with b(e,  x )  as the dominating 
function, and continuity, 

a 
---S*(X) = 
ah, 

Ic 

E 

Uniform convergence: The argument is the same as that used in the proof 
of Lemma 1. 0 

THEOREM 5 (Asymptotic normality). Let Assumptions 1 through 6 
hold. Then: 

ŝ  converges h o s t  surely to P + **, 
3: converges to 3*, 
3 converges almost surely to p, 
fl: converges to fl'. 
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Prod. By Lemma 2, we may assume without loss of generality that 

~ ( n - ' ' ~ ) :  see Problem 6. 
By Taylor's theorem 

f i n ,  A$ E A a d  that (a/ax)s,,(f i,,) = ~, (n+") ,  (a/ax)s,O(hO,) - 

where / has rows 

and x,,, lies on the line segment joining A\ to f i n .  Now both A\ and f i n  
converge almost surely to A* by Theorem 3, so that i,,, converges almost 
surely to A*. Also, (a/ah')(a/JA,)s, , (A) converges almost surely to 
(d/aA')(d/aA,)s*(A) uniformly on A by Lemma 3. Taking these two facts 
together (Problem 2), /converges almost surely to ( a ' / d A  dA')s+(A*). By 
interchangng integration and differentiation as permitted by Lemma 3, 
f *  - (a2/aA dA')s*(A*). Thus we may write j=/' + o,(l) and, as 
(a/ax)s,&) = ~ , ( n - ' / ~ ) ,  we may write 

d 
[f* + O$(l)]fi(fi" - A\) = -Gasn(A\) + O A 1 ) .  

The first result follows at once from Slutsky's theorem (SeAing, 1980, 
Section 1.5.4, or Rao, 1973, Section 2c.4). 

By Theorem 1, with Assumption 6 providing the dominating function, 
and the almost sure convergence of (y,", t, A,,) to (y*, T*, A*)  it follows 
that limn+JYn(in), Yn(fi,)] = (f* + I*, p) almost surely (Problem 

0 7). Similar arguments apply to 9: and /:. 

As illustrated by Example 1, the usual consequence of a correctly 
specified model and a sensible estimation procedure is: 

y," = y* for all n implies AO, = A* for all n. 

If A\ = A* for all n, then we have 

&(in - A*) ~ N , [ 0 , ( 8 * ) - ' P * ( 8 * ) . . ' ] .  

But, in general, even if y," = y* for all n, it is not true that 



L U S T  MEAN DISTANCE ESTIMATORS 191 

for some finite A. To reach the conclusion that . / ; ; ( f i n  - A*) is asymptoti- 
cally normally distributed, one must append additional regularity condi- 
tions. There are three options. 

The first is to impose a Pitman drift. Estimation methods of the usual 
sort are designed with some class of models in mind. The idea is to embed 
this intended class in a larger class Y ( e ,  x, y) so that any member of the 
intended class is given by Y(e,  x, y*) for some choice of y*. For this choice 
one has 

y," = y* for all n implies A\ = A* for all n .  

A misspecified model would correspond to some yo such that Y ( e ,  x ,  y " )  
is outside the intended class of models. Starting with yp = yb, one chooses 
a sequence y:, y:, . . . that converges to y* fast enough that lim,, ,,fi(AO, 
- A*) = A for some finite A; the most natural choice would seem to be 
A = 0. See Problem 14 for the details of this construction. Since y can be 
infinite dimensional, one has considerable latitude in the choice of 
Y ( e ,  x, y*). 

The second is to hold y," = y* and speed up the rate of convergence of 
Cesaro sums. If the sequence { x, )El is chosen such that 

where K ( h )  is some finite valued function, then (Problem 15) 

lim &(A\ - A') = A 

for some finite A. For example, suppose that 7," = T*  and the sequence 
{ x , } z ,  consists of replicates of T points-that is, one puts x ,  = a,,,, 
for some set of points ao, a,, . . . , 

n-rm 

Then for i = 1,2,. . . , p 

whence K ( X )  = 0. See Berger and Naftali (1984) for additional discussion 
of this technique and applications to experimental design. 

The third is to hold y," ss y* for all n and assume that the x, are iid 
random variables. This has the effect of imposing A$ 3 A+ for all n.  See 
Section 8 for details. 
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Next we establish some ancilIary facts regarding the constrained estima- 
tor for use in Section 5 under the assumption of a Pitman drift. Due to the 
Pitman drift, these results are not to be taken as an adequate theory of 
constrained estimation. See Section 7 for that. 

ASSUMPTION 7 (Pitman drift). The sequence (7: )  is chosen such 
that lirnndwfi(A: - A',) = A. Moreover, h(A*)  = 0. 

THEOREM 6. Let Assumptions 1 through 7 hold. Then: 

x,, converges almost surely to A*, 
A*, converges to A*, 
Jconverges almost surely to I* + Q*, 
#: converges to J*, 
,$converges almost surely to /*, 
#: converges to p, 

&( a/aA)s:(A:) converges to - P A .  
G(a/ax)s,(A+,) - f i ( a / a ~ ) ~ , ~ ( ~ + , )  5 NJO, .PI, 

Proof. The proof that in converges almost surely to A* is nearly word for 
word the same as the proof of Theorem 3. The critical inequality 

obtains by realizing that both h ( i , _ )  = 0 and h(A*) = 0 under the Pitman 
drift assumption. 

The convergence properties of j ,  3:. ,f, #,' follow directly from the 
convergence of in  and A: using the argument of the proof of Theorem 5 .  

Since domination implies that (Problem 11) 

We have from Theorem 2 that 

Note that convergence of {A;} to A* is all that is needed here; the rate 
limn - ,fi(A\ - A+,) is not required up to this point in the proof. 

By Taylor's theorem, recalling that (a/aA)s:(At) = o ( n - ' P ) ,  
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where f is similar to / in the proof of Theorem 5 and converges to f *  for 
similar reasons. Since fi( A: - A t )  converges to - A  by Assumption 7, the 
last result follows. 0 

- 

1. 
2. 

3. 
4. 
5. 

6. 

7. 

8. 

9. 

PROBLEMS 

Prove that s:(h) converges uniformly to s*(h) on A*. 
Hold an { e,} fixed for which lim,,,,su ,.l[g,,(X) - g*(X)(( = 0 and 

tinuous. 
Prove that A\ converges to A*. 
Prove Part 1 of Lemma 2. 
Let ( a / a A ' ) h ( A )  be a matrix of order q X p with q < p such that 
each element of ( a / d X ' ) h ( X )  is continuous on an open set Ao contain- 
ing A*. Let ( a / a x l ) h ( X )  have rank q at X = A*. Prove that there is an 
open set containing A* such that raN(d/aX')h(X)] = q for every X 
in 8. Hint: There is a matrix K' of order ( p  - q )  x p and of rank 
p - q such that 

h,,.+mi,, - A*. Show that lim,,,+mg,,( R. J - g*(X*) if g*(X) is con- 

has rank A(h*) = p (why?). Also, det A ( X )  is continuous and 0 = 

{ X : vet A(X)I  > 0) is the requisite set (why?). 
Verify the claim of the first line of the proof of Theorem 5.  The 
essence of the argumenkis that one could prove Theorem 5 for a set of 
random variables A,,, x,, and so on given by Lemma 5 and then 

and so on. Make this argument rigorous. 
Use Theorem 1 to prove that [Yn(X), #,,(A)] converges almost surely, 
uniformly on A, and compute the uniform limit. Why does (y,", en, A,,) 
converge almost surely to ( y * ,  T * ,  A')? Show that [9fl(i,,), 3,,(fi,,)] 
converges almost surely to (P, #*). 
Show that Assumption 6 suffices to dominate the elements of 

Gin = m,, + o,(l), J; ; (a /ax ) s , (Q  = 6 ( d / a A ) s n ( i J  + o3(1), 

by b ( x ) .  Then apply Theorem 1 to show that 4Y: converges to Q*. 
Show that if p(u) = Incosh(u/2) and P ( e )  is symmetric, has finite 
first moment, and assigns positive probability to every nonempty, 
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open interval, then cp(6) = \,p(e + 6) d P ( e )  exists and has a unique 
minimum at 6 = 0. Hint: Rewrite p ( u )  in terms of exponentids and 
show that p (  u )  s ilul. Use the mean value theorem and thc dominated 
convergence theorem to show that ~ ’ ( 6 )  = / ,9(e + 6 )  dP(e). Then 
show that q~’(0) = 0, ~ ‘ ( 8 )  < 0 if 8 < 0, and ~ ’ ( 6 )  > 0 if 6 > 0. 

10. Suppose that A,, is computed by minimizing 

where T* > 0 is known, but that the data are actually generated 
according to 

Y, = &,* Y.”) + e,. 

Assuming that s:(A) has a unique minimum A t  which converges to 
some point A+, compute a:, 4’. and g:. 

11. Prove that under Assumptions 1 through 6, 

Hint: See the proof of Lemma 3. 
Suppose that C, is a matrix with (a/dA’)h(A*,)G, = 0 and lim,-,m C, 
= G. Show that under Assumptions 1 through 6 

12. 

Assumption 7 is not needed. Hint: There are Lagrange multipliers 6, 

Suppose that there is a function p(A) such that 
such that (a/aA‘)[s,,(At,) + e,lh(A*,)] = 0. 

13. 

T = h ( h )  

P = 94x1 
is a once continuously differentiable mapping with a once continu- 
ously differentiable inverse 

h = * ( 7 , p ) .  
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Show that Gn is the matrix required in Problem 12. Show also that 

rank( 2) = p .  

14. (Construction of a Pitman drift.) Fill in the missing steps and supply 
the necessary regularity conditions. Let 

AO,(y) minimize 

and let 

A*( y ) minimize 

Suppose that there is a point y* in r such that 

y," = y* for all n implies P, , (y*)  = h*(y*j for ail n. 

Suppose also that r is a linear space and that ( a / d a ) Y ( e ,  x, y* + 
uy") exists for 0 s a s 1 and for some point y* in r. Note that r 
can be an infinite dimensional space; a directional derivative of this 
sort on a normed, linear space is called a Gateau derivative (Luen- 
berger, 1969, Section 7.2, or Wouk, 1979, Section 12.1). Let 

y (  u) = y' + a y e  

A",<.) = XO.(Y* + a p ]  
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and 

A*(a) = ~ * [ y *  + "7" ) .  

Under appropriate regularity conditions, (a/aa)At( a )  exists and can 
be computed from 

Again under appropriate regularity conditions, 

Then by Taylor's theorem, for i = 1,2 , .  . . , p ,  

where 0 5 it I; a. Let be any sequence such that 
l im, , - ,m6am = S with 6 finite. Since Xt(0) = A*(O) for all n and 
(a /aa)Xt(a)  converges uniformly to (a/aa)A*(a), we have 

If the parameters of the data generating model are set to y," = y* + 
any#, then 

for some finite A as required. Note that a,, can be chosen so that 
A = 0. 

Suppose that the parametric constraint h ( X )  = 0 can be equiv- 
alently represented as a functional dependence X = g ( p ) ;  see Problem 
13 or Section 6 for the construction. What is required of g ( p )  so that 
l imn+m6(p:  - *) = 61 Put A*, = g(p2).  What is re uired of g(p)  
so that lima4a8(X; - A*) = A*? Note that limn4,,,$(A: - A:) = 
A - A* in this case. 
Use Taylor's theorem twice to write 15. 



METHOD OF MOMENTS ESTIMATORS 197 

recall that (a/JA)s+(A*) = (c?/JX)s:(X\) = 0. Referring to the com- 
ments following Theorem 5, verify that speeding up the rate at which 
Cesaro sums converge will cause h(in - A*) to be asymptotically 
normally distributed. 

4. METHOD OF MOMENTS ESTIMATORS 

Recall that a method of moments estimator f i n  is defined as the solution of 
the optimization problem 

minimize sn( A )  = d [ m,( A),  f n ]  

where d [ m ,  71 is a measure of the distance of m from zero, qrn is an 
estimator of nuisance parameters, and 

The constrained method of moments estimator i n  is the solution of the 
optimization problem 

minimize s , ( h )  subject to h ( X )  = 0. 

The objective of this section is to find the almost sure Limit and the 
asymptotic distribution of the unconstrained estimator A, under regularity 
conditions that do not rule out specification error. Some ancillary facts 
regarding the asymptotic distribution of the constrained estimator x n  under 
a Pitman drift are also derived for use in the later sections on hypothesis 
testing. This section differs from the previous section in detail, but the 
general pattern is much the same. Accordingly the comments on motiva- 
tions, regularity conditions, and results will be abbreviated. These results 
are due to Burguete (1980) in the main, with some refinements made here to 
isolate the Pitman drift assumption. 

As before, an example-a correctly specified scale invariant M-estimator 
-is carried throughout the discussion to illustrate how the regularity 
conditions may be satisfied in applications. 

EXAMPLE 2 (Scale invariant M-estimator). The data generating model 
is 
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Proposal 2 of Huber (1964) leads to the moment equations 

with A = (0', a)'. For specificity let 

a bounded odd function with bounded even derivative. and let 

where CP is the standard normal distribution function. There is no pre- 
liminary estimator t,, with this example, so the argument T of m ( y ,  x ,  T ,  A )  
is suppressed to obtain 

The distance function is 

d ( m )  = fm'm, 

again suppressing the argument 7,  whence the estimator !I,, is defined as 
that value of A which minimizes 

% ( A '  = $m;(A)m"(x>. 

The error distribution P ( e )  is symmetric and puts positive probability on 
El every open interval of the real line. 

We call the reader's attention to some heavily used notation and then 
state the identification condition. 

NOTATION 5. 
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= d ( m n ( h ) ,  '"1 
s,o(h) = d [ m W ) ,  el 
s*( A )  = d [ m * ( h ) ,  7.1 

A, minimizes s, ( A )  

x,, 
XO, minimizes s,"( A) 
A t  
A* minimizes s*(h) .  

minimizes $,(A) subject to h ( h )  = 0 

minimizes s,"(X) subject to h ( X )  = 0 

ASSUMPTlON 8 (Identification). The parameter y o  is indexed by n ,  
and the sequence { y,"} converges to a point y * .  The sequence of nuisance 
parameter estimators is centered at a point T," in the sense that 6( +, - T,") 

is bounded in probability; the sequence { T,,!] converges to a point T * ,  and 
{ f,,) converges almost surely to T*. Either the solution A* of the equations 
rn*(h) = 0 is unique or there is one solution A* that can be regarded as 
being naturally associated to y* .  Further, (LJ/dX')m*( A*) has full column 
rank (= p). 

The assumption that m*(h*) = 0 is somewhat implausible in those 
misspecified situations where the range of m,,(h) is in a higher dimension 
than the domain. As a sensible estimation procedure will have m*( A*) = 0 
if Yfe, x, y * )  falls into the class of models for which it was designed, one 
could have both m*(X*) = 0 and mispecification with a Pitman drift: 
Problem 14 of Section 3 spells out the details; see also Problems 2 and 3 of 
Section 2. But this is not really satisfactory. One would rather have the 
freedom to hold y," = y +  for all n at some point y* for which m*(X*) f 0. 
Such a theory is not beyond reach, but it is more complicated than for the 
case rn*(h*) 5 0. As we have no need of the case m*(X*) f 0 in the sequel. 
we shall spare the reader these complications in the text; the more general 
result is given in Problem 6. 

For the example, m*(h*) = 0: 

EXAMPLE 2 (Continued). Let u* solve \,,*'(e/a)dP(e) = B; a soh- 
tion exists, since G(a) = /d\k2(e/u) dP(e)  is a continuous, decreasing 
function with G(0)  = 1 and G(o0) = 0. Consider putting h = ( y ' ,  a*)'. 
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With this choice 

As the integral is zero for every x, it follows that m*(A*) = 0 at 
( y * ' ,  o*)I. Similarly m:(A\) = o at A\ = (y,"', u*)'. 

The following notation defines the parameters of the asymptotic distri- 
bution of f i n .  The notation is not as formidable as it looks; it merely 
consists of breaking a variance computation down into its component parts. 

NOTATION 6. 
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We illustrate the computations with the example: 
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EXAMPLE 2 (Continued). For X = (y', 0')' we have 

- 
Thus K(X*) = 0, whence 4* = 0. Further computation yields 

o=( A') = I 

where 

As will be seenlater, it is only V* = (/*).-?f*(#*)-' that is needed. 
Observing that G(A) is invertible, we have 

0 
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In Section 5 ,  the distributions of test statistics are characterized in terms 
of the following quantities: 

NOTATION 7. 

We illustrate the computations with the example: 

EXAMPLE 2 (Continued). Computations similar to those for 9* and 
/* yield 
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where 

s, = 

Some estimators of 4+ and ,f' are: 

0 
U 

t - 1  

0' I [+) - P I 2  
I-1 

NOTATION 8. 

For Example 2, there are alternative choices: 

EXAMPLE 2 (Continued). Reasoning by analogy with the forms that 
obtain from Notation 6, most would probably substitute the following 
estimators for those given by Notation 8: 
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We shall adjoin some technical assumptions. As before, one may assume 
that tn takes its values in a compact ball T for which 7* is an interior point 
without loss of generality. Similarly for the parameter space I?. This leaves 
domination as the essential condition. We have commented previously 
(Section 2) on the implications of a compact estimation space A*. In the 
previous section we commented on the construction of the requisite 
dominating function b(e, x). 

ASSUMPTION 9. There are closed balls A* and T centered at A* and r* 
respectively with finite, nonzero radii for which the elements of 
m ( y ,  x, 7, A) , (a /aAi)m,(y,  x, 7,  h ) , ( a 2 / d h ,  aAj)m,(y ,  x, 7, A )  are con- 
tinuous and dominated by b[g (y ,  x ,  y ) ,  x]  on X a x  T X A* X 1'; 
b(e ,  x) is that of Assumption 3. The distance function d(m, 7 )  and 
derivatives ( a / a m )  d ( m ,  T ) , ( a 2 / a m  87') d(m,  7 ) , ( a 2 / a m  am') d(m, T )  

are continuous on 9 X  T where 9 is some closed ball centered at the zero 
vector with finite, nonzero radius. 

The only distance functions that we shall ever consider have the form 

d ( m ,  7 )  = m''k(7)m 

with 'k( 7 )  positive definite over T. There seems to be no reason to abstract 
beyond the essential properties of distance functions of this form, so we 
impose: 

ASSUMPTION 10. The distance function satisfies: ( a / a m )  d(0, T )  = 0 
for all 7 in T [which implies ( a 2 / 8 m  a ~ ' )  d ( 0 , ~ )  = 0 for all T in T ] ,  and 
( a  * / a m  am') d(O,7) is positive definite for all r in T. 

If the point A* that satisfies m*(A)  = 0 is unique over A*, then s*(h)  
will have a unique minimum over A* for any distance function that 
increases with Ilmfl. In this case the same argument used to prove Theorem 
3 can be used to conclude that f i n  converges almost surely to A*. But in 
many applications, the moment equations are the first order conditions of 
an optimization problem. In these applicdtions it is unreasonable to expect 
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m*(A) to have a unique root over some natural estimation space A*. To 
illustrate, consider posing Example 1 as a method of moments problem: 

EXAMPLE I (Continued). The optimization problem 

has first order conditions m , ( ~ , )  = 0 with 

m,( A )  = "( '' - ) & j ( ~ ,  A). 
I -  1 Tn 

We have seen that it is quite reasonable to expect that the almost sure limit 
$*(A) of s,(A) will have a unique minimum A *  over A*. But, depending on 
the choice of f (  x ,  0). s*( A )  can have local minima and saddle points over 
A* as well. In this case m*(A) will have a root at A*, but m*(A) will also 
have roots at each local minimum and each saddle point. Thus, if Example 
1 is recast as the problem 

Minimize $,(A) = hm;(X)m, (A)  

we cannot reasonably assume that s*(X) will have a unique minimum. u 

Without the assumption that m*(A) has a unique root, the best con- 
sistency result that vie can obtain is that s,(A) will eventually have a local 
minimum near A*. We collect together a list of facts needed throughout this 
section as a lemma and then prove the result: 

LEMMA 4. 
change of differentiation and integration is permitted in these instances: 

Under Assumptions 1 through 3 and 8 through 10, inter- 
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There is a closed ball A centered at A* with finite nonzero radius such 
that 

uniformly on A 

uniformly on A 

uniformlyon A 

almost surely, uniformly on A 

almost surely, uniformly on A 

almost surely, uniformly on A 

uniformly on A 

uniformly on A 

uniformly on A 

almost surely, uniformly on A 

almost surely, uniformly on A 

almost surely, uniformly on A 

and 

Proof. The arguments used in the proof of Lemma 3 may be repeated to 
show that interchange of differentiation and integration is permitted on A* 
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and that the sequences involving m:(A)  and m,(X)  converge uniformly on 
A*. So let us turn our attention to $,,(A) = d [ m , ( A ) ,  +,,I. 

Differentiating, we have for m,(A) E 9 that 

and 

Fix a sequence { e,} for which +,, converges to T* and for which m,( A )  
converges uniformly to m*(A) on A*; almost every { e,} is such. Now 
r n * ( X * )  = 0 by assumption, and m*(A)  is continuous on the compact set 
A*, as it is the uniform limit of continuous functions. Thus there is a 6 > 0 
such that 

where 1) is the radius of the closed ball 9 given by Assumption 9. Then 
there is an N such that 

Set A = { A  : IlA - A*ll s 8 ) .  
Now (a /am, )  d ( m ,  7 )  is a continuous function on the compact set 

. F X  2'. so it is u n i f o d y  continuous on F X  T: see Problem 1. Then since 
m,(A) converges uniformly to m*(A) and f n  converges to T*, it follows that 
( i3/amu)d[mn(A),  +,,I converges uniformly to ( a / a m , ) d [ m * ( X ) ,  T*]; simi- 
larly for d[m,,(A),  in] and ( a 2 / a m a  am,) d [m, (A) ,  +,,,I. The uniform con- 
vergence of $,,(A),( a/aA,)s,,(A), and ( a2/aX, aX,)s,(h) follows at once. 
Since the convergence is uniform for almost every { e,}, it is uniform almost 
surely. Similar arguments apply to s,"( A). 
By the interchange result M* = (a /ah ' )m*(X* ) .  Differentiating, 
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As m*(A*) = 0 and (a/am)d(O, T*) = 0, we have (a/aA)s*(A*) = 0. Dif- 
ferentiating once more, 

The second term is zero as ( J / h ) d ( O ,  T*) = 0 whence 

- (M*)'D+M* =/*. cl 

THEOREM 7 (Existence of consistent local minima). Let Assumptions 
1 through 3 and 8 through 10 hold. Then there is a closed ball A centered at 
A* with finite, nonzero radius such that the sequence ( k , )  of k, that 
minimize s,(A) over A converges almost surely to A* and the sequence 
( A t }  of A\ that minimize s,"( A )  over A converges to A*. 

prod. By Lemma 4 and by assumption, (a/dA)s*(A*) = 0 and 
(a2/aA aA')s*(A*) is positive definite. Them there is a closed ball A' 
centered at A* with finite, nonzero radius on which s*(A) has a unique 
minimum at A = A* (Bade, 1964, Section 21). Let A" be the set given by 
Lemma 4, and put A = A' n A". Then s*(A) has a unique minimum on A, 
and both s,,( A )  and s:( A )  converge almost surely to s*( A )  uniformly on A. 
The argument used to prove Theorem 3 may be repeated here word for 
word to obtain the conclusions of the theorem. D 

The following additional regularity conditions are needed to obtain 
asymptotic normality. The integral condition is similar to that in Assump- 
tion 6; the comments following Assumption 6 apply here as well. 

ASSUMPTION 11. The elements of m ( y ,  x, 7,  A)m'(y, x, T ,  A )  and 
(d /aT ' )m(y ,  x, T, A )  are continuous and dominated by b[q(y ,  x ,  y ) ,  x1 on 
9 X  X x  T x A* x r; b(e,  x) is that of Assumption 3. The elements of 
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( a2 /aram’ )  d(m, T) are continuous on 9 x  T, and 
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Next we show that the “scores” (a/aA)s,,( A t )  are asymptotically nor- 
mally distributed. As noted earlier, we rely heavily on the assumption that 
m*(A*) = 0. To remove it, see Problem 6. 

THEOREM 8 (Asymptotic normality of the scores). Under Assump- 
tions 1 through 3 and 8 through 11 

#* may be singular. 

Proof. By Lemma 2, we may assume without loss of generality that A, 
and A\ lie in the smallest of the closed balls given by Assumptions 9 and 
11, Lemma 4, and Theorem 7 and that ( a / i I A ) s , ( f i , , )  = o,(n I /* )  and 
(a/aA)s,O(A\) = o ( n - ’ f l ) .  

A typical element of the vector &( a//am)d(m,(A\), +,I can be ex- 
panded about [ m:( A”,, .,”) to obtain 

where (%, 7 )  is on the line segment joining [m, , (Al ) ,  f,] to [m;(A“,, .,“I. 
Thus (Z, F) converges almost surely to (me ,  T * )  where M* = &(A*). 
Noting that 6(+, - T,“) is bounded in probability by Assumption 8 and 
that 
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by Theorem 2, we may write (Problem 3) 

Note that by Theorem 2, h[M,,(A\) - g n ( A \ ) ]  is also bounded in prob- 
ability, so that we have (Problem 3) the critical equation of the proof: 

We assumed that m* = 0, so that the first two terms on the right hand side 
drop out by Assumption 10. Inspecting the third term, we can conclude at 
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once that 

21 1 

in  general the first two terms must be taken into account (Problem 6). 0 

Asymptotic normality of the unconstrained method of moments estima- 
tor follows at once: 

THEOREM 9. Let Assumptions 1 through 3 and 8 through 11 hold. 
Then : 

&(in - A'!,) z Np[0,(6*)-'9*(/*)-'l, 
3 converges almost surely to Y* + &*, 
#: converges to Y+, 
j' converges almost surely to p, 
/: converges to p. 

f* may be singular. 

Proof. By Lemma 2, we may assume without loss of generality that f i ,  
and A\ lie in the smallest of the closed balls given by Assumptions 9 and 
11, Lemma 4, and Theorem 7 and that ( a / a A ) s , ( f i , )  = o,(n-' /*) ,  
(a /aA)s,o(Ao,)  = o(n- ' f l ) .  

By Taylor's theorem and arguments similar to the previous proof, 

Then by Slutsky's theorem (Serfling, 1980, Section 1.5.4, or Rao, 1973, 
Section 2c.4) 

This establishes the first result. 

ments for 4'. /, and #: are similar. Now 9 is defined as 
We shall show that 3 converges almost surely to 9* + O*. The argu- 
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Since the Cesaro sum 

uniformly on r x T x A by Theorem 1, with Assumption 11 providing the 
dominating function, and since (y,", tn, A,) converges almost surely to 
( y * ,  T * ,  A*), we have that 

xrn'[Y(e,  x ,  y*), x, T * ,  A*)  d P ( e )  d p ( x )  
= S* + K* 

almost surely. A similar argument shows that Mn( iM)  converges almost 
surely to M*. Since ( d 2 / a m  c?m')d(m, T) is continuous in (m, T) by 
Assumption 9 and [ m M ( i m ) ,  t,,] converges almost surely to (0, T*) by 
Lemma 4, Theorem 7, and Assumption 8, we have that D,,(fi,, converges 
almost surely to D*. Thus 

lim 3- (M*)'D*(s* + K*)D*M* 
n+m 

=9* + 9* 
almost surely. 

The variance formula 
0 

y- 9y-1 = ( M'DM ) - I (  M'DSDM)( M'DM ) - * 
is the same as that which would result if the generalized least squares 
estimator 

B = ( M ' D M )  -'MY$ 

were employed for the linear model 

y = MB + e, e - (0, S). 

Thus, the greatest efficiency for given moment equations results when 
D* = ( S y .  
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A construction of T," for Example 1 was promised: 

EXAMPLE 1 (Continued). Assume that f, p ,  and P are such that 
Assum tions 1 through 6 are satisfied for the preliminary estimator dA. 
Then has a center 8," such that fi(8, - 6;) is bounded in probability 
and lim,,,,B,O = y+. Let 

and 

The almost sure limit of m , ( ~ )  is 

Since 0 .c j q 2 ( e )  d @ ( e )  < 1 and G(T) = j 8 q 2 ( e / T )  d P ( e )  is a continu- 
ous, decreasing function with G(0) = 1 and G(m) = 0, there is a T*  with 
m * ( ~ * )  = 0. Assume that f, p, and P are such that Assumption 8 through 
11 are satisfied for s,(T) = i m t ( T ) .  Then by Theorem 7 and 9, qn has a 
center T," such that fi( +,, - T,") is bounded in probability and lim, - ,T: = 
7*. D 

The argument used in the example is a fairly general approach for 
verifying the regularity conditions regarding nuisance parameter estimators. 
Typically, a nuisance parameter estimator solves an equation of the form 

where 4, minimizes an ~ ~ ( 6 )  that is free of nuisance parameters. Thus 8" 
comes equipped with a center 6: as defined in either Section 3 or 4. Let 

and let d ( m )  = m'm/2; then the appropriate center 

7, 0 I l l h l h i Z e S  S:( T )  = d [ m:( T ) ]  . 
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Next we establish some ancillary facts regarding the constrained estima- 
tor under a Pitman drift for use in Section 5 .  As noted previously, these 
results are not to be taken as an adequate theory of constrained estimation; 
that is found in Section 7. 

ASSUMPTION 12 (Pitman drift). The sequence ( y : )  is chosen such 
that l imn .+m6(At  - A',) = A. Moreover, h(A* )  = 0. 

THEOREM 10. Let Assumptions 1 through 3 and 8 through 12 hold. 
Then there is a closed ball A centered at A* with finite, nonzero radius such 
that the constrained estimator in converges almost surely to A* and A*, 
converges to A*. Moreover: 

Jconverges almost surely to I* + %*, 
3: converges to I*, 
j' converges almost surely to /*, 
3; converges to p, 

&( a/a  A)s:( A',) converges to -/*A. 
~ ; ; ( a / a x ) s , , ( x * , )  - J;;(a/ax)s:(x:) 5 NJO, I*), 

prod. The argument showing the convergence of { i n }  and {A:} is the 
same as the proof of Theorem 7 with the argument modified as per the 
proof of Theorem 6. The argument showing the convergence of j ,  I:, /, 
and j: is the same as in the proof of Theorem 9. The same argument used 
in the proof of Theorem 8 may be used to derive the equation 

+(M*) 'D*&[m,,(A+,)  - mt(A',)] + o p ( l ) .  

We assumed that m+ = 0 so that the first two terms on the right hand 
side drop out. By Theorem 2, 
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whence 
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and the first result follows. 
The argument that &( a/dA)s:(Al,) converges to -Y*A is the same as 

0 in the proof of Theorem 6. 

PROBLEMS 

1. 

2. 

3. 

4. 

5. 
6. 

A vector valued function f ( x )  is said to be uniformly continuous on X 
if given c > 0 there is a 6 > 0 such that for all x, x' in X with 
Ilx - x'll < 6 we have I l f ( x )  - / (x ' ) l l  < c. Suppose f ( x )  is a continu- 
ous function and X is compact; f ( x )  is uniformly continuous on X 
(Royden, 1968, Chapter 9). Let g, ( r )  take its values in X, and let 
{ g,(r )}  converge uniformly to g ( t )  on T. Show that { f[g,(r)]) con- 
verges uniformly to /[ g( t ) ]  on T. 
Prove that lim,,4mm:(A) = m*(X)  uniformly on A*. Prove that 
lim,, ~ ,s:(A) = s*( A )  uniformly on A*. 
A (vector valued) random variable Y, is bounded in probability if given 
any c > 0 and 6 > 0 there is an M and an N such that P(llY,,ll > M )  
-z 6 for all n > N. Show that if Y,, -+ N . ( p ,  V )  then Y, is bounded in 
probability. Show that if X,, is a random matrix each element of which 
converges in probability to zero and Y,, is bounded in probability, then 
X,,Y,, converges in probability to the zero vector. Hint: See Rao (1973, 
Section 2c.4). 
Prove that 4' converges to f* and that /converges almost surely to 

%*a 

Compute g,(A), g,(A), and %(A)  for Example 2 in the case X # A t .  
Let Assumptions 1 through 3 and 8 through 11 hold except that 
m*(A*) # 0; also, (a/am)d(O,  7 )  and ( aa/arn aX')d(O, T )  can be non- 
zero. Suppose that the nuisance parameter estimator can be written as 

9 

where = 8*, limn -.-A,, = A* almost surely, and f ( y +  x, 8 )  
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satisfies the hypotheses of Theorem 2. Let m* = m*(A*), and defme 

& ( A "  - 

Hint: Recall that if 
[ a ,  ; a 2 :  - a -  in,], then . .  

A t )  5 Np [o, (8') -'9*( p) -11. 

A of order r by c is partitioned as A = 

and vec A B  = (B' 8 I,)vecA, where @ denotes the Kronecker product 
of two matrices. See the proofs of Theorems 8 and 9. 
Under the same assumptions as in Problem 6, show that 7. 

where #* is defined as in Problem 6. 
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5. TESTS OF HYPOTHESES 
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One arrives at the same destination following either the least mean distance 
or the method of moments path. The starting point, which is the description 
of the data generating process given in Assumptions 1 through 3, is the 
same. Then the road forks. One can follow the least mean distance path 
with Notations 1 through 4 defining the quantities: 

Or one can follow the method of moments path with Notations 5 through 8 
defining these quantities. In either case the results are the same and may be 
summarized as follows: 

SUMMARY. Let Assumptions 1 through 3 hold, and let either Assump- 
tions 4 through 7 or 8 through 12 hold. Then on a closed ball A centered at 
A *  with finite. nonzero radius: 

s,(X) and sf(X) converge almost surely and uniformly on A to s*(A); 

(a/aX)s,,(A) and (d/aA)s:(A) converge almost surely and uniformly 
on A to ( a / d h ) s * ( X ) ;  

( d2/aX ah’)s,(A) and ( a * / d h  aA’)s:(X) converge almost surely and 
uniformly on A to ( a 2 / d h  dA’)s*(A), and (a2/t9X aX’)s*(A*) =f+; 

& ( A t  - A t )  converges to A, and fi( a/aA)s,O(A’,) converges to -/*A; 

A, and x,  converge almost surely to A* and h(h*) = 0; 

j and yeonverge almost surely to #* + Q*, and 4’ and 4: converge 
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to 3*; 

1 and %converge almost surely to #*, and #: and 9; converge to 
%'; 

4Yt and @: converge to a*. 
Taking the Summary as the point of departure, consider testing 

H :  ~(xO,) = o against A :  ~ ( A O , )  + 0. 

Three tests for this hypothesis will be studied: the Wald test, the Lagrange 
multiplier test (Rao's efficient score test), and an analog of the likelihood 
ratio test. The test statistics to be studied are defined in terms of the 
following notation. 

NOTATION 9. 

In Theorem 11. 

In Theorems 12, 13, 14, and 15 

V =  y, S=Y:, /=/,*, 4=4V:, H = H , *  

In some applications it is more convenient to take 

in Theorems 12, 13, 14, and 15. The asymptotics remain valid with these 
substitutions. 

The following assumption imposes full rank on the matrices H and V.  
This assumption is not strictly necessary, but the less than full rank case 
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does not appear to be of any practical importance, and a full rank 
assumption does eliminate much clutter from the theorems and proofs. 

ASSUMPTION 13. The function h(h)  that defines the null hypothesis 
H : h( A;) = 0 is a once continuously differentiable mapping of the estima- 
tion space into RP. Its Jacobian H ( A )  = ( a / a h ' ) h ( X )  has full rank ( 5  q )  
at h = A'. The matrix V==f-13/-1 has full rank. The statement "the 
null hypothesis is true" means that h(AO,) = 0 for all n or, equivalently, 
that AO, = A: for all n sufficiently large. 

The first statistic considered is the Wald test statistic 

which is the same idea as division of an estimator by its standard error or 
studentization. The statistic is simple to compute and may be computed 
solely from the results of an unconstrained optimization of s , (h) .  It has 
two disadvantages. First, its asymptotic distribution is a poorer approxima- 
tion to its small sample distribution than for the next two statistics if Monte 
Carlo simulations are any guide (Chapter 1). Second, it is not invariant to 
reparametrization. With the same data and an equivalent model and 
hypothesis, two investigators could obtain different values of the test 
statistic (Problem 6). 

The second statistic considered is the Lagrange multiplier test statistic 

Since (~/6JA)[sn(~,,) + t f 3 ( X n ) ]  = 0 for large n,  an alternative form is 

R P n#ifi$-lfit( fiVfi)-'fi/-lfi'& 

which gives rise to the term Lagrange multiplier test. Quite often V = I'' 

resulting in a material simplification. The statistic may be computed solely 
from a constrained optimization of s,(X). Often, the minimization of s,(X) 
subject to h ( X )  = 0 is considerably easier than an unconstrained minimiza- 
tion; H: A\ = 0 for example. In these cases R is easier to compute than W. 
There are several motivations for the statistic R, of which the simplest is 
probably the following. Suppose that the quadratic surface 

- - f -  1 so that 3' could be substituted for V and 3-l in these formulas 
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is an accurate approximation to the surface s , (h )  over a region that 
includes f i n .  The quadratic surface is minimized at 

so that 

Thus, j - ' ( 6 ' / a A ) s n ( X n )  is the difference between x, and A,, induced by 
the constraint h ( h )  - 0, and R is a measure of the squared length of this 
difference. Stated differently, f '( d / a h ) s , , ( x , )  is a full Newton iterative 
step from x,, (presumably) toward A,, and R is a measure of the step 
length. 

The third test statistic considered is an analog of the likelihood ratio test 

The statistic measures the increase in the objective function due to the 
constraint h ( x , )  = 0; one rejects for large values of L. The statistic is 
derived by treating s,( A )  as if it were the negative of the log-likelihood and 
applying the definition of the likelihood ratio test. 

Our plan is to derive approximations to the sampling distributions of 
these three statistics that are reasonably accurate in applications. To 
illustrate the ideas as we progress, we shall carry along a misspecified model 
as an example: 

EXAMPLE 3. One fits the nonlinear model 

y,  = / ( x , ,  A )  + u, t - 1 . 2  ,..., n 

by least squares to data that actually follow the model 

y , = g ( x , , y , O )  + e, t =  1 , 2 ,  ..., n 

where the errors e, are independently distributed with mean zero and 
variance uz. The hypothesis of interest is 

H :  r," = I* against A : r," # T *  

where 

h = (p', 7')' 
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p is an r-vector, and 7 is a q-vector with p = r + q. As in Chapter 1, we 
can put the model in a vector form: 

We shall presume throughout that this model satisfies Assumptions 1 
through 7, and 13. Direct computation yields 

. 1. 

where I4 is the identity matrix of order q. 



222 A UNIFIED ASYMPTOTIC THEORY: REGRESSION STRUCTURE 

The estimator 

P = ( j ) - V ( f ) - '  
obtained according to the general theory is not that customarily used in 
nonlinear regression analysis as we have seen in Chapter 1. I t  has an 
interesting property in that if the model is correctly specified_that is, y 
and X have the same dimension and g(x ,  y )  = f ( x ,  y)-then V will yield 
the correct standard errors for A, even if Var(e,) = u2(x,). For this reason, 
White (1980) terms P the heteroscedastic invariant estimator of the vari- 
ance-covariance matrix of A,. 

The estimator customarily employed is 

with 

We shall substitute fi for P in what follows, mainly to illustrate how the 
0 general theory is to be modified to accommodate special situations. 

The limiting distributions that have been derived thus far have teen 
stated in terms of the parameters f*, #*. and 9*. To use these results, it 
is necessary to compute f*, /*, and 9* and to compute them it is 
necessary to specify the limit of A, and -?n and to specify the limiting 
measure p on S. Most would prefer to avoid the arbitrariness resulting 
from having to specify what is effectively unknowable in any finite sample. 
More appealing is to center fin at A\ rather than at A*, center f,, at T,", and 
'use the empirical distribution function computed from { . x , ) y - ,  to ap- 
proximate p. What results is -f:, f:, and 9Y: as approximations to f*, 
I*, and 9*. The next theorem uses a Skorokhod representation to lend 
some formality to this approach in approximating the finite sample distri- 
bution of W. For the example we need an approximation to the limit of h: 

EXAMPLE 3 (Continued). The almost sure limit of 0 is 

Following the same logic that leads to the approximation of 9*, #*, and 
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where F," = F(A\). 0 

THEOREM 11. Let Assumptions 1 through 3 hold, and let either As- 
sumptions 4 through 7 or 8 through 12 hold. Let 

Under Assumption 13, 

w - Y + O J l )  

Y = z q H p ( . f +  *)y.-W] - 'z 

2 - Nq[J;;h(A\), H V H ' ] .  

where 

and 

Recall: V = V,", 91 4:, /==#no, 9 5 9:, and H = H,". If 9 = 0, then 
Y has the noncentral, chi-square distribution with 4 degrees of freedom and 
noncentrality parameter a = nh'(A$)(HVH')- 'h( A",/2. Under the null 
hypothesis a = 0. 

Proof. By Lemma 2, we may assume without loss of generality that A,,, 
A$ E A and that ( a / a h ) s , ( i , )  = o,(n 'I*), ( d / d A ) s t ( h \ )  = o(n ' I2 ) .  By 
Taylor's theorem 

a 
JF; [h , ( f i , , )  - h,(XO,)] 5 ~ h I ( X i , , ) J ; ; ( f i , ,  - A\) i = 1 , 2 , . . . , q  

where 1 1 ~ 1 , ,  - A",l 5; l i f i ,  - A",/. - By the almost sure convergence of A: 
and A,, to A*, l i m , , 4 ~ l ~ A l , ,  - A*ll = 0 almost surely, whence 
1irnfl,,(a/aA)h,(X,,,) = ( a / a ~ ) h , ( ~ * )  almost surely. nus we may write 

JF;[h(fu , )  - h(A\)] 5 [ H *  + oS(1)]J;;(fu,, - A t ) .  
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9 
Since fi(i - A\) -+ N,(O, V * ) ,  we have 

J;;[h(i,) - h ( X t ) ]  4 N , ( O ,  H*V*H*'  ). 

By Problem 3, lim,,-,mhh(A\) = HA so that &h(i , , )  is bounded in 
probability. Now HVH' converges almost surely to H *( f * ) - I  

(3  * + Q * )( f *) - 'H *' which is nonsingular, whence 

Then 

w = nh'(f,)",y-'(.f+ 4 ) , y - - ' H ' ]  -'h( i") + o,(I). 

By the Skorokhod representation theorem (Serfiing, 1980, Section 1.6). there 
are random variables Y, with the same distribution as & h ( i , )  such that 
Y, - f i h ( A \ )  = Y + og(l), where Y - NJO, H * V * H * ' ) .  Factor 
H*V*H*' as H*V*H*' = P*P*', and for large n factor H V H '  = QQ' 
(Problem 1). Then 

Y, =I f i h (  A t )  + Q( P + ) - ' Y  + [ I  - Q( P*)-'] Y + os(l). 

Since Y is bounded in probability and I - Q(P*)- '  = o,(l) (Problem l), 
we have 

Y, = J;;h(A\) + Q ( P * ) - ' Y  + o,(l) 

where Q(P*) - 'Y  - NJO, HVH'). Let 2 = Gtr(X\) + Q ( P * ) - '  Y and 
the result follows. 0 

Occasionally in the literature one sees an alternative form of the Wald 
test statistic 

w = .(in - X,,)'k'( fic&)-lfi(i, - XJ. 
The alternative form is obtained from the approximation h A &A, - k,), 
which is derived as follows. By Taylor's theorem 

h G " )  - h ( L )  + W" - X,) 
where K has rows (a /aA' )h , (X)  and X is on the line segment joining A, to 
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A,. By noting that h(X,,)  = 0 and approximating @ by fi, one has that 
h - x,). Any solution of h ( X )  = 0 with ( a / d A ' ) H ( h )  H would 
serve as well as in  by this logic, and one sees other choices at times. 

As seen from Theorem 11, an asymptotically level a test in a correctly 
specified situation is to reject H: h(A\) = 0 when W exceeds the upper 
a x 100% critical point of a chi-square random variable with q degrees of 
freedom. In a conditional analysis of an incorrectly specified situation, 4?, 
h(A\), and a will usually be nonzero, so nothing can be said in general. 
One has a quadratic form in normally distributed random variables. Direct 
computation for a specified q(y ,  n, 7,") is required. We illustrate with the 
example. 

EXAMPLE 3 (Continued). The hypothesis of interest is 

H :  r," = r +  against A : 7," f T *  

where 
h = (@, 7 ' ) ' .  

Substituting b for 9 the Wald statistic is 

(.f, - 7 * ) ' [ H ( P ' $ ) - ' I  ' ] -I(+" - r +  

S2 
W =  

where H = [0: ZJ. Thus H($'#)-'H' is the sujmatrix of (P'P)-' formed 
by deleting the first r rows and columns of ( F ' F ) - ' .  W is distributed as 

w - Y + O,( l )  

where 

If the model is correctly specified, then g(x , ,  y,") = f ( x , ,  A t )  and these 
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equations simplify to 

whence Y is distributbd as a noncentral chi-square random variable with q 
degrees of freedom and noncentrality parameter 

(7," - 7 * ) ' [ H ( F ' F ) - ' H ' ] - ' ( 7 , 0  - 7 * )  
a =  0 

az  

The statistic R is a quadratic form in (a/iJA)s,(i,),-and for n large 
enough that #,(A) can be inverted in a neighborhood of A,, the statistic L 
is also a quadratic form in (a / iJA)s , ( ) ; , )  (Problem 8). Thus, a characteriza- 
tion of the distribution of (a/dA)s,(i,) is needed. We shall divide this 
derivation into two steps. First (Theorem 12), a characterization of 
(a/aA)s,(Al,) is obtained. Second (Theorem 13), (a/aA)s,(i,) is char- 
acterized as a projection of (d/dA)s,(A*,) into the column space of H:'. 

THEOREM 12. 
sumptions 4 through 7 or 8 through 12 hold. Then 

Let Assumptions 1 through 3 hold, and let either As- 

where 

Proof. By either Theorem 6 or Theorem 10, 

By the Skorokhod representation theorem (Serfling, 1980, Section 1.6), there 
are random variables Y, with the same distribution as fi(a/aA)s,(A+,) 
such that Y, - fi(a/i?A)sf(A*,) = Y + oJl), where Y - NJO, 3*). Then 
factor 9* as 9* = P * ( P * ) '  and for large n factor 3,* as S,* = QQ' 
(Problem 1). Then 

Y, = 6&sf(A:)  + Q(P+)-'Y+ [ I  - Q ( P * )  '1Y f q ( 1 ) .  
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Let X = 6(8/aA)s:(A+,) + Q ( P * ) - ' Y ,  whence 
227 

x - N,[fi(a/ax)s:(A:), 4*] 

and, since limn+& = P* (Problem I), ( I  - Q(P*)- 'JY = o,,(l). 0 

In Theorem 12, any matrix that is equal to .fn* to within o(1) can be 
substituted for 9,' and the result wi l l  be corrected. In most applications, 
3," is a far more convenient choice because it is much easier to compute 
and its use in derivations permits many helpful algebraic simplifications; 
the derivations in Chapter 4 provide an illustration. Nonetheless, I,* 
seems the more natural choice, because it is the exact small sample variance 
of 6(8/dA)sn(A:) when $,,(A) does not depend on any estimators of 
nuisance parameters. Moreover, in the nonstationary case where one has 
rather less flexibility, Nn* arises naturally from the theory; see Theorem 13 
of Chapter 7. The same remarks apply to #,,* and a/: in the theorems that 
follow. Yn* and q: arise naturally, but the theorems remain true if #: 
and are substituted, and these choices are more convenient in applica- 
tions. Actually, these matrices will only differ by 0(1/  6) in most applica- 
tions, as in the example: 

EXAMPLE 3 (Continued). In a correctly specified situation we have 
g(x, 7,") = f ( x ,  At), and from previous computations we have 

4aZ 
= y F ' ( A ) F ( A )  

A verification that <(A+,), A( A:), and gn( A+,) difi+er from x(  A",, A( A",, 
and @"(At) by terms of order 0(1/ 6) is a fairly straightforward applica- 
tion of Taylor's theorem. Using &(A+,) to illustrate, an application of 
Taylor's theorem, with x, denoting a point on the line joining A: to A+,, 



228 A UNIFIED ASYMPTOTIC THEORY: REGRESSION STRUCTURE 

together with Theorems 1, 3, 6 yields 

whence 

THEOREM 13. Let Assumptions 1 through 3 hold, and let either 
Assumptions 4 through 7 or 8 through 12 hold. Under Assumption 13, 

a a h-$pn(Xn) = H ' ( H p H ' ) - l H # - '  f i - g p n ( A + , )  + O,( l )  

Proof. 
A,,, x,, A:, A: E A. By Taylor's theorem 

By Lemma 2, we may assume without loss of generality that 

a a 
G;?xsn(n,) = J;;;i5;sn(A*,) + j . ( X "  - A+,) 

6 h ( X n )  = vGh(A:) + iZ-G(Xn - A+,) 
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where / has rows 
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and has rows 

i = 1,2, ..., p 

j =  1,2, . . . , q  

with xi, and x,, on the line segment joining x, to A',. By Lemma 2, 
6 h ( x , , )  = os(l). Recalling that fih(A*,) = 0, we have g&(xn - A:) = 
oJ1). Since x, and A', converge almost surely to A*, each x,,, converges 
almost surely to A*, whence /converges almost surely to 3'' by the 
uniform almost sure convergence of ( a z / a x  ax)s,(A);  if converges al- 
most surely to H *  by the continuity of H(X). Thus /=/+ o,(l) and 
8- H + o,(l). Moreover, there is an N corresponding to almost every 
realization of {e,) such that d e t ( j )  > 0 for all n > N. Defining f '  
arbitrarily when det(/) = 0, we have 

j-yfi(i,, - A:) = 6 ( X n  - A',) 

for all n > N. Thus, /-yfi(i,, - A',) = v%(x,, - A:) + oJ1). Combin- 
ing these observations, we may write 

whence 

Since fi( a/aA)s,(A+,) converges in distribution, it is bounded in probabil- 
ity, whence 

By Lemma 2, there is a sequence of Lagrange multipliers 4 such that 
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Substituting into the previous equation, we have 

By Slutsky’s theorem (Serfling, 1980, Section 1.5.4, or Rao, 1973, Section 
2c.4), 66, converges in distribution. In consequence, both 64 and 
6( 6’/ah)s,(X,,) are bounded in probability and we have 

H ’( fly- %r ’ ) - ‘Hy- 6 s, ( A t )  

A characterization of the distribution of the statistic R follows im- 
mediately from Theorem 13: 

THEOREM 14. 
Assumptions 4 through 7 or 8 through 12 hold. Let 

Let Assumptions 1 through 3 hold and let either 

Under Assumption 13 

R - Y + ~ ~ ( 1 )  

where 

and 

Recall: V = Vw*, 9- f,*, Y=jn*,  4Y = 4:, and H = H,*. Alternatively, 
V = V,”, 9- Y,“, y-y,”, and 4 - 42:. If 4Y = 0, then Y has the non- 
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central chi-square distribution with q degrees of freedom and noncentrality 
parameter 

Under the null hypothesis, a = 0. 

Proof. By Lemma 2, we may assume without loss of generality that 
K, E A. By the Summary, 

$- 'fi '(fiW)-'lip = p H ' [  H#-'(.f+ a ) p H ' ]  -'Hp + 03(l). 

By Theorem 13, & ( a / d A ) s n ( L , , )  is bounded in probability, whence we 
have 

The distributional result follows by Theorem 13, The matrix 
/-'H'[ Hf-'##-lH']-lH,,f-l# is idempotent, so Y follows the noncentral 

0 chi-square distribution of @ = 0. 

The remarks following Theorem 11 apply here as well. In a correctly 
specified situation one tcjects H: h ( A t )  = 0 when R exceeds the upper 
a X 100% critical point of a chi-square random variable with q degrees of 
freedom. Under correct specification and A : h(A\) # 0 one approximates 
the distribution of R with the noncentral chi-square distribution. Under 
misspecification one must approximate with a quadratic form in normally 
distributed random variables. 

In many applications f- ' = uP for some scalar multiple u. In this event 
the statistic R can be put in a simpler form as follows. Since rank(@) = 4 
and I? is q by p, one can always find a matrix c of order p by r with 
rank(6) = r = p - q and I?(? = 0. For such 6 we shall show in the next 
section that 
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Recalling that there are Lagrange multipliers 4 such that 

a 
n s n  ( ' n ) fi fk 

we have 

a w-p 7 J p n ( X n )  = U C V P B ,  = 0. 

Consequently we may substitute P-' for fi#(Hvfi')-'fi in the formula for 
R to obtain the simpler form 

We illustrate with Example 3: 

EXAMPLE 3 (Continued). Substituting 

a = , p ( p p ) - '  

z2 = ( n  - P + d- ' l lv  - f('J II' 
with 

for r?, and substituting 

.i= - - (FfF)  2 

for 1, we have 

f - 1  = (2f')-lG 

whence 

1 R = ~ [ y  -f(Xn)]'F(FpF)-'F'[~ - f ( X , , ) ] .  
9 

Putting 

FR = F(h:) Fn* = F( A*,) 

R is distributed as 

R - Y + O J l )  
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where 
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When the model is correctly specified, these equations reduce to 

Y is distributed as a noncentral chi-square random variable with q degrees 
of freedom and noncentrality parameter 

The noncentrality parameter may be put in the form (Problem 9) 

THEOREM 15. 
Assumptions 4 through 7 or 8 through 12 hold. Let 

Let Assumptions 1 through 3 hold, and let either 

L = 2 n [ s N ( i n )  - ~ n ( f i a , > l *  

L - Y + O J l )  

Under Assumption 13, 
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Y - Z p H q  H # - l H ' ) - ' H p Z  

and 

Recall: V = V:, 3 = fa+, #==#,*, 4 = 4:, and H = H,'. Alternatively: 
v = v:, 9- Y:, J=#:, and 4 = a:. If HVH' = H f - l H ' ,  then Y has 
the noncentral chi-square distribution with q degrees of freedom and 
noncentrality parameter 

Under the null hypothesis, a = 0. 

Proof. BY Lemma 2 we may assume without loss of generality that I,, x,, E A. By Taylor's theorem 

where IIx, - s IIx, - &J. By the Summary, (x,, f i n )  converges al- 
most surely to (A*, A*), and (i3'/i3A aA')s,(A) converges almost surely 
uniformly to (a2/aA aA')s*(A) uniformly on A which implies 

-#+ OJI). BY I..emma 2, 2n[(a/aA)~,(A,)]yA, - 
os(l), whence 

Again by Taylor's theorem 

Then by Slutsky's theorem (Serfling, 1980, Section 1.5.4, or Rao. 1973, 
Section 2c.4), h(X, - A,) converges in distribution and is therefore 
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bounded. Thus 
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whence 

and the distributional result follows at once from Theorem 13, To see that 
Y is distributed as the noncentral chi-square when HVH’ = H/- ’H’  note 

0 that f ‘ H ’ (  H f - ’ H ’ ) - ’ H f 9  is idempotent under this condition. 

The remarks immediately following Theorems 11 and 14 apply here as 
well. One rejects when L exceeds the upper a X 100% critical point of a 
chi-square with q degrees of freedom, and so on. 

In the event that %- n 9 +  4 1 )  for some scalar multiple a, the “likeli- 
hood ratio test statistic’’ can be modified as follows. Let 4, be a random 
variable that converges either almost surely or in probability to a. Then 

anL - UY + o,(i) 

where 

Since X I H ’ ( H . F I H ’ ) H F I Y  is an idempotent matrix, aY is distributed 
as the noncentral chi-square distribution with q degrees of freedom and 
noncentrality parameter 

n ( a /a  h’ ) s.“( A’. ) 9- ‘H ’( H.9- ‘H ’ ) - ’ Hs’ I( a/a  A )  s,o( A:) 
2 a -  

We illustrate with the example: 

EXAMPLE 3 (Continued). Assuming that the model is correctly 
S p e c i f i e d ,  
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Thus we have 

#= (2a2)- ’ f .  

sz = (n - P ) - ~ I I Y - ~ ( ~ ~ ) I I ~ *  
An estimator of u2 is 

The modified “likelihood ratio test statistic” is 

A further division by q would convert (2s2)-”L to the F-statistic of 
Chapter 1. Assuming correct specification, (2s2)-’L is distributed to within 
o,(l) as the noncentral chi-square distribution with q degrees of freedom 
and noncentrality parameter (Problem 9) 

Under specification error 

( 2 S y L  - U Y  + o,(l) 

where 

PROBLEMS 

1. (Cholesky factorization.) The validity of the argument in the proof of 
Theorems 11 and 12 depends on the fact that it is possible to factor a 
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symmetric, positive definite matrix A as A = R'R in such a way that 
R is a continuous function of the elements of the matrix A. To see 
that this is so, observe that 

where 

k = 2, . . . , p  
r lk  = J;;I; 

The rlk are the continuous elements of A and D ,  is a symmetric, 
positive definite matrix whose elements are continuous functions of 
the elements of A, why? This same argument can be applied to D, to 
obtain 

A -  

) ;  

with continuity preserved. Supply the missing steps. This argument 
can be repeated a finite number of times to obtain the result. The 
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recursion formula for the Cholesky square root method is 

r l k  = - 
I1 1 

k - 1 , 2 , 3  ,..., p ' 1 k  

Observe that on a computer A can be factored in place, using only the 
upper triangle of A with th is  recursion. 

2, Suppose that 8," converges to 8*, and 8" converges almost surely to 
8*. Let g(6 )  be defined on an open set 8, and let g(8) be continuous 
at 8* E 8. Define g(6 )  arbitrarily off 8. Show that 

Let 8 be a square matrix and g(8)  a matrix valued function giving the 
inverse of 8 when it exists. If 8* is nonsingular, show that there is an 
open neighborhood F) about 8 +  where each 8 E €3 is nonsingular and 
show that g(8) is continuous at 6*. Hint: Use the facts that Il8(l= 
[Z,j8;]'/2, llgll = [cijg$1/2, the determinant of a matrix is continu- 
ous, and an inverse is the product of the adjoint matrix and the 
reciprocal of the determinant. Show that if fi( d/dA)s,(A+,) con- 
verges in distribution, then &(lI/dA)s,,(AZ) is bounded in prob- 
ability. Show that 

3. Expand &h(A\) in a Taylor's series and show that l im, , , f ih(A:)  
= HA. 

4. Verify that if the hear model 

is estimated by least squares from data that actually follow 

Y l =  g(x,, Y:) + e, 

with e, independently and normally distributed, and if one tests the 
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linear hypothesis 
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5. 
6. 

1. 

8. 

H : R B = r  against A : R B . P r  

then 

Verify that a = 0 when the null hypothesis is true in Theorem 14. 
(Invariance.) Consider a least mean distance estimator 

. n  

and the hypothesis 

H: A\ = A* against A : A\ f A*. 

Let g ( p )  be a twice differentiable function with twice differentiable 
inverw p = ?(A). Then an equivalent formulation of the problem is 

with the hypothesis 

H :  p: = cp(A*) against A : p! z tp(A*).  

Show that the computed value of the Wald test statistic can be 
different for these two equivalent problems. Show that the computed 
value of the Lagrange multiplier and “likelihood ratio” test statistics 
are invariant to this reparametrization. 
(Equivalent local power.) Suppose that 9* =/*  and that %* = 0, 
so that each of the three test statistics- W, R, L-is distributed as a 
noncentral chi-square with noncentrality parameter a,. Show that 
l i m , , ~ m a n  = A‘H’(HVH’)- ’HA/2  in each case, with H = 
(a/aA’)h(A*) and V = (/*)-‘9*(f*)--’. 
Fix a realization of the errors. For large enough n, f in  and x n  must be 
in an open neighborhood of A* on which (a2/aA aA’)s,(A) is invert- 
ible. (Why?) Use Taylor’s theorem to show that for large enough n,  L 
is exactly given as a quadratic form in ( r3/aA)s,(x,). 
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9. Using the identity derived in Section 6, verify the alternative form for 
a given in the examples following Theorems 14 and 15. 

10. Verify the claim in Assumption 13 that h(A0,) = 0 for all n implies 
that there is an N with = A’, for all n > N. 

6. ALTERNATlVE REPRESENTATION OF A HYPOTHJ3SIS 

The results of the previous section presume that the hypothesis is stated as 
a parametric restriction 

H: h(AO,) = 0 against A :  h(XO,) # 0. 

As we have seen, at times it is much more natural to express a hypothesis as 
a functional dependence 

H :  = g ( p : )  for some p: in w 
against A : A t  + g( p )  for any p in $Z. 

We assume that these hypotheses are equivalent in the sense that 

( A :  h ( A )  = 0, X in A*) = ( A :  X = g ( p ) ,  p i n  a }  
where A* is the set over which s,(A) is to be minimized when computing 
f i n ,  and append the following regularity conditions: h : R P + R 4, g : R 4 

RP, p = r + q, H(X) - (a /aA’ )h (A)  is continuous and has rank q on A*, 
G( p )  - (a/ag)g( p) is continuous and has rank r on W, and H[ g( p) ]G(  p )  
= 0. 

Given a once continuously differentiable function h ( X )  mapping A* c 
RP into Rq, a construction of the function g ( p )  and domain 9 can be 
obtained as follows. Suppose that there is a once differentiable function 
v(X) defined on A* such that the transformation 

r = h ( A )  

P = 9 0 )  

has a once differentiable inverse 

Put 
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and 
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9?= ( p :  p = ? ( A ) ,  h ( X )  = 0, X in A*}. 

We have immediately that 

{ A :  h ( A )  = 0, X in A*) = ( A :  X - g ( p ) ,  p in  9} 

and by differentiating the equations 

we have 

which implies that the rank of G(p)  is r .  
Let us now consider how g( p) can be used instead of h( A )  in implement- 

ing Theorems 14 and 15. x,, can be computed by minimizing the composite 
function s,[g(p)J over 9 to obtain and putting x,, = g(j,,). Similarly, 
A: can be computed by minimizing s;[g(p)J over 9 to obtain p: and 
putting A’, - g(&. The statistics R and L, the vector (a/aA)s,O(A*,), and 
the matrices 9, f ,  1, and Vcan now be computed directly. What remains 
is to compute matrices of the form H’(HAH’)- ’H where A is a comput- 
able, positive definite, symmetric matrix and H = ( a/d A’)h (A:). Let 

We shall show that 

for any positive definite symmetric A. Factor A as A = PP’ (Problem 1 of 
Section 5) .  Trivially HPP-lG = 0, which implies that there is a nonsingular 
matrix B of order q and there is nonsingular matrix C of order r such that 
0, = P’H’B has orthonormal columns, 0, = P-’GC has orthonormal col- 
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urns, and the matrix 8 - (0, 0,) is orthogonal. Then 

whence 

To illustrate, suppose that 3==/ in Theorem 15. Then the noncentrality 
parameter is 

7. CONSTRAINED ESTIMATION 

Throughout this section we shall assume that the constraint has two 
equivalent representations: 

parametric restriction: h ( X )  = 0, X in A*, 
functional dependence: X - g(p),  p in i@, 

where h : R P  + R4, g : A ' - - ,  RP, and t +  q = p .  They are equivalent in 
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the sense that the null space of h( A) is the range space of g( p) :  

A , =  { A : h ( X )  = O ,  X in A*} = { h : A  = g ( p ) ,  p i n  9). 

We also assume that both g( p )  and h( A )  are twice continuously differentia- 
ble. From 

h M P ) l  = 0 

we have 

If rank(H'f GI = p, we have from Section 6 that for any symmetric, 
positive definite matrix 2' 

Section 6 gives a construction which lends plausibility to these assumptions. 
Let the data generating model satisfy Assumptions 1 through 3. Let the 

objective function sn[g(p) ]  satisfy either Assumptions 4 through 6 or 
Assumptions 8 through 11. Let 

Then from either Theorem 3 or Theorem 7 we have that 

lim = p* almost surely 

lim p," = p* almost surely 
n d w  

n- w 

and from either Theorem 5 or Theorem 9 that 

The matrices fp* and &* are of order r by r and can be computed by 
direct application of Notation 2 or Notation 6. In these Computations one is 
working in an r-dimensional space, not in a pdimensional space. We 
emphasize this point with the subscript p: jP*, yP*, and 4Y:. To illustrate, 
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computing according to Notation 2, one has 

Estimators of fp* and fP* are computed according to Notation 4 or 
Notation 9. To illustrate, computing according to Notation 4, one has 

As to testing hypotheses, the theory of Section 5 applies directly. The 
computations according to Notation 3 or Notation 8 are similar to those 
illustrated above. 

Often results reported in terms of 

d f i n )  

are more meaningful than results reported in terms of fin. As an instance, 
one wants to show the effect of a restriction by presenting A, and its 
(estimated) standard errors together with in and its (estimated) standard 
errors in a tabular display. To do this, let 

lim in  = A# almost surely 
n--.m 

lim A’, = A*. 
n--.m 
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Note that A* is not equal to A* of either Section 3 or Section 4 unless the 
Pitman drift assumption is imposed. From the Taylor series expansion 

g ( r i , )  - g ( P 9  = [G* + os(1)14&% - P:)  

where G* = ( a / a p ’ ) g ( p * ) ,  we have that 

The variance-covariance matrix is estimated by 

where G  ̂ = (d/ad)g(j?,,). 
To use these results given the parametric restriction h ( X )  = 0, one 

would actually have to construct the equivalent functional dependence 
X - g ( p ) .  This construction can be avoided as follows. 

Let 6, be the Lagrange multiplier for the minimization of $,(A) subject 
to h ( A )  = 0, and let 

One can show that (Problem 1) 

= &PĈ  
and using the chain rule with either Notation 4 or Notation 9, one finds 
that 

4?p= 63% 

G^(gp, ) - ’ jp(  A)-%’ = &( 6526) -1C^$6( 6 9 6 )  -w. 
where 3- S,(x,). Thus 

Using the identity given earlier on, one has 

GI( 4) ?J$( 4) -’& 
Li p- 1 [ - At( @- 12’) - 1 & p  ‘1 j [  I - p- ’&( Hp- I&) fi] p- 1 

where fi = (a/aA’)h(A,,) .  The right hand side of this expression can be 
computed from knowledge of s,(h) and h ( h )  alone. 
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Similarly, if 

A* minimizes s* (X)  subjectto h ( h )  = O  

with Lagrange multipliers 8' 

~ * ( ~ ) - ' - r , + ( d r p * ) - l ~ * ~  

= P[ z - H'( HF'H')  - l H F q  9 [ I  - S l H ' (  H S ' H ' ) H ]  2 - 1  

where 

Under a Pitman drift, 6* = 0, and the expression that one might expect 
from the proof of Theorem 13 obtains. 

PROBLEM 

1. Show that the equation h [ g ( p ) ]  = 0 implies 

Suppose that x = g ( 6 )  minimizes $(A) subject to h ( X )  = 0 and that # 
is the corresponding vector of Lagrange multipliers. Show that 

Compute ( 8 z /dp ,  &I,)$[ g( b)] ,  and substitute the expression above to 
obtain 
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8. INDEPENDENTLY AND IDENTICALLY DISTRIBUTED 
REGRESSORS 

As noted earlier, the standard assumption in regression analysis is that the 
observed independent variables {x , ]yml  are fixed. With a model such as 

y t = = g ( x , , y : )  + e ,  1 -  L L . . . , ~  

the independent variables { x,]:-~ are held fixed and the sampling variation 
enters via sampling variation in the errors {e,}y-l. If the independent 
variables are random variables, then the analysis is conditional on that 
realization { x , ] ; - ~  that obtains. Stated differently, the model 

defines the conditional distribution of { ~ , } y - ~  given {x,}Yml, and the 
analysis is based on the conditional distribution. 

An alternative approach is to assume that the independent variables 
{ x , ] : - ~  arc random and to allow sampling variation to enter both through 
the errors { e,}:-, and the independent variables { x , } : - ~ .  We shall see that 
the theory developed thus far is general enough to accommodate an 
assumption of independently and identically distributed (iid) regressors and 
that the results are little changed save in one instance, namely the mis- 
specified model. Therefore we shall focus the discussion on this case. 

We have seen that under the fixed regressor setup the principal conse- 
quence of misspecification is the inability to estimate the matrix 9* from 
sample information because the obvious estimator 3 converges almost 
surely to f* + Q *  rather than to 9*. As a result, test statistics are 
distributed asymptotically as general quadratic forms in normal random 
variables rather than as noncentral chi-square random variables. In con- 
trast, a consequence of the assumption of iid regressors is that @+ = 0. 
With iid regressors test statistics are distributed asymptotically as the 
noncentral chi-square. Considering least mean difference estimators, let us 
trace through the details as to why this is so. Throughout, 9= S:, #==/:, 
and 9- @:. 

With least mean distance estimators, the problem of nonzero @* 
originates with the variables 

that appear in the proof of Theorem 4. In a correctly specified situation, 
sensible estimation procedures will have the property that at each x the 
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Thus, the random variables 

have mean zero and their normalized sum 
* n  

has varianct-cov~ance matrix 

which can be estimated by 3. In an incorrectly specified situation the mean 
of Z,(e , )  is 

with, as a rule, 
misspecification, 

p r  .+ 0, so that p, varies systematically 
the nonnaLizdd sum 

1 "  
J;; c z ,  

r - 1  

has variance-covarianw matrix 

with x, .  Under 
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as before, but j is, in essence, estimating 
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Short of assuming replicates at each point x,, there seems to be no way to 
form an estimate of 

1 "  
@ =  - c w;. 

1-1 

Without being able to estimate 9, one cannot estimate 3. 
The effect of an assumption of iid regressors is to convert the determinis- 

tic variation in p ,  to random variation. The p ,  become independently 
distributed, each having mean zero. From the point of view of the fixed 
regressors theory, one could argue that the independent variables have all 
been set to a constant value so that each observation is now a replicate. We 
illustrate with Example 3 and then return to the general discussion. 

EXAMPLE 3 (Continued). To put the model into the form of an iid 
regressors model within the framework of the general theory, let the data be 
generated according to the model 

Y(1)l = 8 t Y ( l , f .  Y.") + e(1)I 

Y(2)I = P(2, + e(2)r 

which we presume satisfies Assumptions 3 through 3 with x, = 1 and p the 
measure putting al l  its mass at x = 1; in other words, x ,  enters the model 
trivially. The yo), are the random regressors. Convention has it, in this type 
of analysis, that y(z,f and e,,,, are independent, whence P ( e )  is a product 
measure 

m e )  = %)(e(l)) x @&(ZJ. 

The fitted model is 

and X is estimated by A, that minimizes 
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Let v be the measure defined by 

where g(2) is the set of admissible values for the random variable yC2,. We 
have 

S ( Y ,  x ,  A )  = [ Y(1) - f(Y(2)Y A l l 2  

The critical change from the bed regressor case occurs in the computa- 
tion of 

Let us decompose the computation into two steps. First compute the 
conditional mean of Z,(e) given that y(2t = Y ( ~ ) , :  

z, (e(1) * e(2) ) q 1 ,  1 

Second, compute the mean of p,: 
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and 9 = 4 * = 0. One can see that in the k e d  regressor case the condi- 
tional mean p, of (d /aA)s [Y(e ,  x ,  y,"), x,  A t ]  given the regressor is treated 
as a deterministic quantity, whereas in the iid regressor case the conditional 
mean p, is treated as a random variable having mean zero. 

Further computations yield 

Returning to the general case, use the same strategy employed in the 
example to write 

y(2, is the iid regressor. The reduced form can be written as 

Let Y be the measure such that 

where tV(?) is the set of admissible values of the iid regressor yc2?. 

form 
The distance function for the least mean distance estimator wll have the 

S(Y(l,l Y(2), 7 , A ) .  
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Since the distance function depends trivially on x,, we have 

Since (a/aA)st(A\) = 0 and the regularity conditions permit interchange 
of differentiation and integration, we have 

whence 'iV = V* = 0. Other computations assume a similar form, for 
example 

Sample quantities retain their previous form, for example 

For a method of moments estimator, in typical cases one can exploit the 
structure of the problem and show directly that 

This implies that K = K * = 0 whence V = Q* = 0. The remaining com- 
putations are modified similarly to the foregoing. 

The critical operative in the above discussion is the word identically. A 
sequence of fixed regressors { x ,  ] is a sequence of independent random 
variables, but not a sequence of identically distributed random variables 
except in the trivial case x, = const. Thus, a theory that is general enough 
to permit nonidentically distributed errors would be general enough to 
include the f u r 4  regressors model as a special case, and the inability to 
estimate 9 * under specification error ought to be a characteristic of such a 
theory. We shall see that this is indeed the case in Chapter 7. 



C H A P T E R 4  

Univariate Nonlinear 
Regression : 
Asymptotic Theory 

In this chapter, the results of Chapter 3 are specialized to the case of a 
correctfy specified univariate nonlinear regression model estimated by least 
squares. The specialization is basically a matter of restating Assumptions 1 
through 7 of Chapter 3 in context. This done, the asymptotic theory follows 
immediately. The characterizations used in Chapter 1 are established using 
probability bounds that follow from the asymptotic theory. 

1. INTRODUCllON 

Let us review some notation. The univariate nonlinear model is writter. as 

~ , = f ( ~ , , e ~ )  + e ,  r = 1,2 ,  . . . , t ~  

with 8' known to lie in some compact set 0*. The functional form of 
l (x ,  6 )  is known, x is &-dimensional, 6 is pdimensional, and the model is 
assumed to be correctly specified. Following the conventions of Chapter 1, 
the model can be written in a vector notation as 

Y - f (eo)  + f? 

with the Jacobian of f ( 8 )  written as F ( 8 )  = (d/ae')f(@). The parameter 6 
is estimated by 6 that minimizes 

We are interested in testing the hypothesis 

H :  A(@') = 0 against A : h(6')  # 0 
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which we assume can be given the equivalent representation 

H : 8 O  = g( po) for some po against A : 8' z g( p )  for any p 

where h : R P  3 R4, g : R ' d  RP, and p = r + q. Thecorrespondencewith 
the notation of Chapter 3 is given in Notation 1. 

NOTATION 1. 

General (Chapter 3) Specific (Chapter 4) 

, minimizes s,,( A )  
subject to h ( X )  = 0 

xo, minimizes S,O(X) 8," minimizes s,"( e) 

x., minimizes s,o(A) 
subject to h ( A )  = 0 

8: = g(& minimizes s,O(e) 
subject to h(t9) = 0 
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2. REGULARITY CONDITIONS 
295 

Application of the general theory to a correctly specilied univariate nonlin- 
ear regression is just a matter of restating Assumptions 1 through 7 of 
Chapter 3 in terms of Notation 1. As the data are presumed to be generated 
according to 

y, = r ( x , , e : )  + e, 

Assumptions 1 through 5 of Chapter 3 read as follows. 

t = 1 , 2  ,..., n 

ASSUMPTION 1'. The errors are independently and identically distrib- 
uted with common distribution P( e). 

ASSUMPTION 2'. f(x, 0) is continuous on SX 6*, and 8* is compact. 

ASSUMPTION 3' (Gallant and Holly, 1980). Almost every realization 
of { u , )  with u, - (el, x,) is a Cesaro sum generator with respect to the 
product measure 

and dominating function b(e,  x) .  The sequence { x,) is a Cesaro sum 
generator with respect to p and b ( x )  = j,b(e, x)  d P ( e ) .  For each x E 5 
there is a neighborhood N, such that /,sup,:b(e, x) dP(e)  < do. 

ASSUMPTION 4' (Identification). The parameter 8' is indexed by n,  
and the sequence { e,"} converges to 8*. 

has a unique minimum over 0 * at 8 *. 

ASSUMPTION 5'. €9" is compact, [e  + f(x, 0') - f(x, e)I2 is dominated 
by b(e ,  x); b(e ,  x) is that of Assumption 3. 

The sample objective function is 

with expectation 
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By Lemma 1 of Chapter 3, both s,(e) and st(e) have uniform, almost sure 
limit 

Note that the true value 8; of the unknown parameter is also a minimizer 
of 3349, so that our use of 6," to denote them both is not ambiguous. We 
may apply Theorem 3 of Chapter 3 and conclude that 

Assumption 6 of Chapter 3 may be restated as follows. 

ASSUMPTION 6'. 8* contains a closed ball 8 centered at 8* with 
finite, nonzero radius such that 

are continuous and dominated by b(e ,  x) on bx TX 8* x 0 for i ,  j = 
1,2,. .., p. Moreover, 

is nonsingular. 



REGULARITY CONDITIONS 

Define 

NOTATION 2 

Direct computation according to Notations 2 and 3 of Chapter 3 yields 
(Problem 1). 

Noting that 

we have from Theorem 4 of Chapter 3 that 
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and from Theorem 5 that 

The Pitman drift assumption is restated as follows. 

ASSUMPTION 7' (Pitman drift). The sequence 8: is chosen such that 
limn,,fi(8,0 - 8;) = A. Moreover, h(B*)  = 0. 

Noting that 

we have from Theorem 6 that 

1 lim --Fi(e,+)[j(e.") - j ( ~ : ) ]  = QA. 
n-rm J;; 

Assumption 13 of Chapter 3 is restated as follows. 

ASSUMPTION 13'. The function h( 8 )  is a once continuously differentia- 
ble mapping of 0 into I24 Its Jacobian H ( B )  = ( d / a 6 ' ) h ( 8 )  has full rank 
(= 4) at B = 8*. 

PROBLEM 
- - 

1. Use the derivatives given in Assumption 6' to compute j ( B ) ,  3 ( 6 ) ,  
@ ( B )  and j ( 6 ) ,  #(8), @ ( B )  as defined in Notations 2 and 3 of 
Chapter 3. 
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3. CHARACTERIZATIONS OF LEAST SQUAW ESTIMATORS 
AND TEST STATISTlCS 

The first of the characterizations appearing in Chapter 1 is 

It is derived using the same sort of arguments as used in the proof of 
Theorem 5 of Chapter 3, so we shall be brief here; one can look at Theorem 
5 for details. By Lemma 2 of Chapter 3 we may assume without loss of 
generality that dn and 8," are in 43 and that ( a/a6)sn(6fl)  = op( l /  6). 
Recall that Q," = Q + o(l), whence f: =#* + o(1). By Taylor's theorem 

where j = y  * + oJ1). Then 

which can be rewritten as 

There is an N such that for n > N the iaverse of f,: exists, whence 

or 
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Finally, - ( , f3- ' ( i9 / i9@)sn(6, ,")  - [F'(e,O)F(e,O)]-'F'(e~)e, which com- 
pletes the argument. 

The next characterization that needs justification is 

The derivation is similar to the arguments used in the proof of Theorem 15 
of Chapter 3; again we shall be brief, and one can look at the proof of 
Theorem 15 for details. By Taylor's theorem 

From the proceeding result we have 

whence 

This equation reduces to 

which completes the argument. 
Next we show that 
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A straigh iforward argument using Taylor's theorem yields 

J;;h(Jn) = J;;h(e:) + ZTJ;;(~~ - 8:) 
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We next show that 

where 

PF = F( O,O)[ F'( 6,O)F( 6 3 1  -IF'(  8;). 

Fix a realization of the errors (e,) for which lim,,,s2 = o 2  and 
limn ~ , e ' ( Z  - PF)e/(n - p) = 0'; almost every realization is such (Prob- 
lem 2). Choose N so that if n > N then s2 > 0 and e'(Z - P,)e > 0. Using 

and Taylor's theorem, we have 

The term [(n - p ) / e ' ( l  - PF)el2 is bounded for n > N because 
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lim,,,[(n - p ) / e ’ ( l -  PF)eI2 = l/u4. One concludes that l/s2 = ( n  - 
p ) / e ’ ( l  - P,)e + op( l /n) ,  which completes the argument. 

The next task is to show that if the errors are normally distributed, then 

w E C  Y + o J l )  

where 

y - F ’ ( q ,  n - p ,  A )  

Now 

-1 
h’( C)( A [ ( l / n ) F ’ (  dn)F( bn)J -’&] h( 6”) W = n  

qs 

whence 

- Y +  O J l ) .  

Assuming n o d  errors, then 

u - NJO, U Z A )  
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which implies that (Appendix to Chapter 1) 
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( p +  U ) ' A - ' ( p +  U )  
6' 

- X21% A )  

with 

w( e: ( H( e: [(I/. ) F' ( e: ) F( e: >I - H '( 8: ) ] - ' h  ( e: ) 
= n  

2a2 

Since A ( I  - P F )  = 0, U and ( I  - P,)e are independently distributed, 
whence(p + U)'A-'(p + U)ande'(Z - P,)e = e'(Z - PF) ' ( I  - P F ) e  are 
independently distributed. This implies that Y - F'(q, n - p ,  A),  which 
completes the argument. 

Simply by rescaling s' in the foregoing we have that 

SSE, e 'P/e  
-=-  

n n 

where 

recall that 

The claim that 
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comes fairly close to being a restatement of a few lines of the proof of 
Theorem 13 of Chapter 3. In that proof we find the equations 

PG(4 - e:) = o,(I) 
hi(&, - 8:) =f1,GZ~,,(&) a -,pGaS,,(e:) a + o,(i) 

which, using arguments that have become repetitive at this point, can be 
rewritten as 

with /-/: and H = H(@,+). Using the conclusion of Theorem 13 of 
Chapter 3, one can substitute for h( a / a e ) s , , ( t )  to obtain 

Using the identity obtained in Section 6 of Chapter 3, we have 

whence 

ns,(8,) = ns,(8,‘) - $( &sn(O,“))’G(G~G)-lG’( as,,(@:)) a + o,(I). 

Using Taylor’s theorem, the uniform strong law, and the Pitman drift 
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assumption, we have 
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Substitution and algebraic reduction yields (Problem 3) 

mn(tfm) = (e + 6)'(e + 6) - ( e  + 6)'PFG(e + 6 )  + o p ( l )  

which proves the claim. 

yet been verified: 
The following are the characterizations used in Chapter 1 that have not 

Except for the second, these are obvious at sight. Let us sketch the 
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verification of the second characterization: 

PROBLEMS 

1. Give a detailed derivation of the four characterizations listed in the 
preceding paragraph. 

2. Cite the theorem which permits one to claim that limn,,s2 = o 2  
almost surely, and prove directly that limn - =el( Z - P,)e/(n - p )  = 
o almost surely. 

3. Show in detail that (a /JB)s, (B,* )  = ( - 2 / n ) F ' ( B ; ) ( e  + 6 )  + 
',,(I/ 6)  suffices to reduce 

to (e + 6)'P,,(e + 6) .  
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Multivariate Nonlinear 
Regression 

All that separates multivariate regression from univariate regression is a 
linear transformation. Accordingly, the main thrust of this chapter is to 
identify the transformation, to estimate it, and then to apply the ideas of 
Chapter 1. 

1. INTRODUCIION 

In Chapter 1 we considered the univariate nonlinear model 

y, = / ( x t , e O )  + e, t - 1.2 ,...,PI. 

Here we consider the case where there are M such regressions 

y,, =f,(x,,O:PO) + e,, r = 1,2 ,..., n a = 1 ,2  ,..., M 

that are related in one of two ways. The first arises most naturally when 

ya, a = 1 , 2  ,..., M 

represent repeated measures on the same subject-height and weight meas- 
urements on the same individual for instance. In this case one would expect 
the observations with the same r index to be correlated. viz. 
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often called contemporaneous correlation. The second way these regressions 
can be related is through shared parameters. Stacking the parameter vectors 
and writing 

one can have 

where p has smaller dimension than 8. If either or both of these relation- 
ships obtain (contemporaneous correlation or shared parameters), estima- 
tors with improved efficiency can be obtained-improved in the sense of 
better efficiency than that which obtains by applying the methods of 
Chapter 1 M times (Problem 12, Section 3). An example that exhibits these 
characteristics that we shall use heavily for illustration is the following. 

EXAMPLE 1 (Cowumer demand). The data shown in Tables l a  and l b  
is to be transformed as follows: 

y, = ln(peak expenditure share) - In(base expenditure share) 

y, = ln(intermediate expenditure share) - ln(base expenditure share) 

x, = ln(peak price/expenditure) 

x2 = ln(intermediate price/expenditure) 

x = In( base price/expenditure) . 

As notation. set 

Y, = (;::) x, = (:::I t = 1,2, ..., 224 
X 3 r  
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These data are presumed to follow the model 

269 

where 

and 6&) denotes the ith row of B, viz. 

The errors 

= (:::) 
are assumed to be independently and identically distributed, each with 
mean zero and VariancGcovariance matrix 2. 

There are various hypotheses that one might impose on the model. Two 
are of the nature of maintained hypotheses that follow directly from the 
theory of demand and ought to be satisfied. These are: 

H, : a3 and b,,, are the same in both equations, as the notation suggests. 
H2 : B is a symmetric matrix. 

There is a third hypothesis that would be a considerable convenience if it 
were true: 

3 3 
H 3 :  z u , =  -1, x 6 , , - O f o r i = 1 , 2 , 3 .  

i -  1 j -  1 

The theory supporting this model specification follows; the reader who 
has no interest in the theory can skip over the rest of the example. 
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The theory of consumer demand is fairly straightforward. Given an 
income Y which can be spent on N different goods which sell at prices 
p l ,  p z ,  . . . , p N ,  the consumer’s problem is to decide what quantities 
ql ,  q2 , .  . . , qN of each good to purchase. One assumes that the consumer has 
the ability to rank various bundles of goods in order of preference. 
Denoting a bundle by the vector 

4 = (4 ,942 , .  . * 9 4 N ) ’  

the assumption of an ability to rank bundles is equivalent to the assumption 
that there is a (utility) function u ( 9 )  such that u(4O) > u ( q * )  means 
bundle qo is preferred to bundle 4+. Since a bundle costs p’q with 
p’ = ( p l ,  p 2 , .  . . , pN), the consumer’s problem is 

maximize u ( q )  
subject to p’q = Y. 

This is the same problem as 

maximize u ( q )  
subject to ( p / Y ) ’ q  = 1 

which means that the solution must be of the form 

4 = d u )  
with u = p / Y .  The function q( u )  mapping the positive orthant of R into 
the positive orthant of R N  is called the COLIsurner’s demand system. It is 
usually assumed in applied work that all prices are positive and that a 
bundle with some q, = 0 is never chosen. 

If one substitutes the demand system q ( u )  back into the utility function, 
one obtains the function 

g ( u )  - u[q(o)I 

which gives the maximum utility that a consumer can achieve at the 
price/income point u. The function g(u)  is called the indirect utility 
function. A property of the indirect utility function that makes it extremely 
useful in applied work is that the demand system is proportional to the 
gradient of the indirect utility function (Deaton and Muellbauer, 1980), viz. 
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This relationship is called Roy's identity. Thus, to implement the theory of 
consumer demand one need only specify a parametric form g( u p )  and then 
fit the system 

4" 

to observed values of (4, u )  in order to estimate 8. The theory asserts that 
the fitted function g(ul6) should be decreasing in each argument, 
(a /au,)g(u(B)  < 0, and should be quasiconvex, u'( 212/au du')g( 016)~ > 0 
for every u with u'(a/au)g(ulB) = 0 (Deaton and Muellbauer, 1980). If 
g(u(6 )  has these properties, then there exists a corresponding u(q). Thus, in 
applied work, there is no need to bother with u(4 ) ;  g(ul8) is enough. 

It is easier to arrive at a stochastic model if we reexpress the demand 
system in terms of expenditure shares. Accordingly let diag(u) denote a 
diagonal matrix with the components of the vector u along the diagonal, 
and set 

s = diag( u )  q 

Observe that 

Pi4i s, - uiqi = - Y 

so that s, denotes that proportion of total expenditure Y spent on the ith 
good. As such, 1's = C,",,si =I 1 and l's(ul8) = 1. 

The deterministic model suggests that the distribution of the shares has a 
location parameter that depends on s(ul8) in a simple way. What seems to 
be the case with this sort of data (Rossi, 1983) is that observed shares 
follow the logistic-normal distribution (Aitchison and Shen, 1980) with 
location parameter 

where In s ( u ( 8 )  denotes the N-vector with components In si( 016) for i = 
1'2,. . . , N. The logistic-normal distribution is characterized as follows. Let 
w be normally distributed with mean vector p and a variancecovariance 
matrix U ( w ,  w ' )  that satisfies l'%'(w, w')l = 0. Then s has the logistic- 
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normal distribution if 

where e w  denotes the vector with components e w f  for i = 1,2, .  . . , N. A 
logarithmic transform yields 

whence 

Ins; - hs, = w i  - w N  i = 1 ,2  ,..., N - 1.  

Writing w ,  - w ,  = p i  - p N  + e, for i = 1,2 ,..., N - 1, we have equa- 
tions that can be fitted to data 

The last step in implementing this model is the specification of a 
functional form for g(o18). Theory implies a strong preference for a low 
order multivariate Fourier series expansion (Gallant, 1981,1982; Elbadawi, 
Gallant, and Souza, 1983) but since our purpose is illustrative, the choice 
will be governed by simplicity and manipulative convenience. Accordingly, 
let g(uj8) be specified as the translog (Christensen, Jorgenson, and Lay 
1975) 

N , N N  

or 

with x = lno and 



INTRODUCTION 

Differentiation yields 

m 

One can see from this expression that B can be taken to be symmetric 
without loss of generality. With this assumption we have 

a x g ( u l 8 )  = [diag(u)] - ’ (u + B x ) .  

Recall that in general shares are computed as 

which reduces to 

u + Bx 
s ( u l e )  = l‘(a + B x )  

in this instance. The difi’erenced logarithmic shares are 

The model set forth in the beginning paragraphs of this discussion follows 
from the above equation. The origins of hypotheses H, and H2 are 
apparent as well. 

One notes, however, that we applied this model not to all goods 
ql,  q2,...,qN and income Y but rather to three categories of electricity 
expenditure-peak = ql,  intermediate c- q2,  base = q3-and to the total 
electricity expenditure E. A (necessary and sufficient) condition that per- 
m i t s  one to apply the theory of demand essentially intact to the electricity 
subsystem, as we have done, is that the utility function is of the form 
(Blackorby, Primont, and Russell, 1978, Chapter 5 )  

If the utility function is of this form and E is known, it is fairly easy to see 



Table IU. €EomeWd Flecbidty Expoanrtitures by Time of Use, 
North COIDlina, Average over Weekdays in July 1978. 

____-c--_ 

Expsndituro Sharo 
Expondi t w o  

t Tro~tmsnt 8.80 Intormedi8to Po& (t por day) 

1 
2 
3 
4 
6 
6 
I 
8 
9 

10 
11 
12 
13 
14 
16 
16 
11 
18 
19 
20 
21 
22 
23 
24 
26 
26 
21 
28 
29 
30 
31 
32 
33 
34 
36 
36 
31 
38 
39 
40 
41 
42 
43 
44 
46 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 

0.066131 
0.103444 

0.108016 
0.083921 
0.112166 
0.011214 

0.0661 13 
0.094836 
0.018601 
0.069630 
0.208982 

0 .  1683sa 

0.0713610 

0.0133702 
0.131310~ 
0 .  I i 13713 
0.092919 
0.0393S3 
0.066611 
0.102844 
0.126486 
0.164316 
0.166114 
0.146310 
0.184461 
0,162269 

0.228863 
0.118028 
0.137761 
0.019116 
0.185022 
0.144624 
0.201 134 
0.094890 
0.102843 
0.101160 
0.166652 
0.088431 
0.146236 
0.080802 
0.10011 1 
0.013483 
O.OS9465 
0.076196 

0.1120113 

0.280382 
0 * 262128 
0.210069 
0.306012 
0.21 1666 
0.290632 
0.240618 
0.210603 
0.202899 
0.210281 
0.293963 
0.228762 
0.328063 
0.291212 
0.368329 
0.322564 
0.269633 
0.168205 
0.249464 
0.244336 
0.230306 
0.236136 
0.216980 
0.1731 12 
0.266866 
0.280939 
0.220850 
0.261833 
0,219830 
0.346111 
0.26131 9 

0.216133 
0.241966 
0.227651 
0.264615 
0.214232 
0.236422 
0.222746 
0.301884 
0.199006 
0.381168 
0.336280 
0.269823 
0.318311 

0.2136061 

0.662688 
0.644421 
0.67 1668 
0.686863 
0.104423 
0.591302 
0.6882(M 
0.112981 
0.130828 
0.634883 
0.621646 
0.11 1118 
0,462966 
0.619027 
0.602966 
0.666068 
0.641448 
0.802442 
0.686910 
0.662821 
0.644210 
0.610649 
0.667306 
0.681618 
0.646668 
0 .  566792 
0.6611 33 
0.5 16304 
0.662142 
0.51 71 22 

0.549928 
0.519343 
0.556300 
0.871469 
0.632642 
0.678009 
0.607026 
0.688822 
0.66 1880 
0.120192 
0.611631 
0.591 231 
0.680122 
0.545434 

0.6636136 

0.46931 
0.79639 
0.46156 
0.94713 
1.22064 
0.93 181 
1.79162 
0.61442 
0. I8401 
1 .On64 
0.83864 
1.63967 
i 013694 
0.132431 
0.8011 2 
0.63169 
0.86439 
1.93328 
1.37160 
0.92766 
1.80934 
2.41501 
0.84668 
1 .601(M 
0.13638 
0.81116 
2.01603 
2.32036 
2.40112 
0.67141 
0.94474 
1.63118 
0.16816 
1.00136 
1.11384 
1.07186 
1 .63669 
0.24099 
0.68066 
2.62983 
1.14141 
0.91934 
1.09361 
2.19466 
1.98221 



Table lo. (Continued). 

t%pondlturo Shore 
Expendl ture 

t Treatrwmt Mu I n t r d i o t a  Pedc ($ per dmy) 

46 
47 
48  
49 
60 
61 
62 
63 
64 
66 
56 
57 
58 
69 
60 
61 
62 
63 
64 
66 
66 
61 
68 
69 
70 
71 
72 
73 
74 
75 
16 
77 
78 
19 
80 
81 
82 
83 
84 
86 
86 
81 
88 
89 
90 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
5 
5 
5 
5 
6 
6 
5 
6 
6 
6 
5 
5 
6 
5 
6 
6 
6 
5 

0.016926 
0.086052 
0.069369 
0.071 2S5 
0.100562 
0. os0203 
0.069627 
0.081 433 
0.076762 
0.042910 
0.08046 
0.102637 
0.068766 
0.068406 
0.056227 
0.107436 
0.106968 
0.132278 
0.0941W 
0.116269 
0.150229 
0.168780 
0.118222 
0.103394 
0.124007 
0 * 197887 
0.108063 
0.088798 
O.lOO6W 
0.12P303 
0.109718 
0.130080 
0.148662 
0.106306 
O.OW877 
0.081810 
0.131 149 
0.069180 
0,078620 
0.090220 
0.086916 
0.132383 
0.086680 
0.07 1368 
0.061196 

0.325032 
0.339863 
0.278369 
0.273WS 
0.306247 
0.29428S 
0.31 1932 
0.328604 
0.286972 
0.372337 
0.340184 
0.336535 
0.310782 
0.3071 1 1 
0.3oo039 
0.273937 
0.291205 
0.219429 
0.328866 
0.40 1079 
0.3 17866 
0.30'1669 
0.318080 
0.307671 
0.3621 1 6 
0.280130 
0.337004 
0.232666 
0.212139 
0.298519 
0.228172 
0.231031 
0.323679 
0.2521 37 
0.214112 
0.136666 
0.218338 
0.264633 
0.267262 
0.29383 1 
0.193917 
0.230489 
0.262321 
0.276238 
0.246026 

0.698042 

0.662272 
0.6S4069 
0.593 191 
0.66661 3 
0.628442 
0.689W2 
0.638266 
0.684764 
0.6729?0 
0.661 928 
0.620462 
0.634485 
0.643934 
0.618628 
0.602837 
0.688293 
0.616940 
0.483663 
0.631906 
0.623561 
0.663696 
0.588936 
0.613819 
0.521884 
0.664913 
0.678631 
0.627363 
0.674178 
0.682109 
0.638883 
0.627869 
0.641666 
0. 70495 1 
0.782626 
0,58991 3 
0.S86287 
0.8641 28 
0.616949 
0 . ~ 1 9 1 1 ~  
0.637127 
0.662120 
0.662393 
0.693180 

0.6142a6 
1 .?a194 
3.24274 
0.47593 
1,38369 
1.67831 
2.16900 
2.11676 
0.35681 
1.65276 
1.06305 
4.02013 
0.6071 2 
1.15334 
2.43197 
0.10082 
0.69302 
1,12592 
1 .a4426 
1.67972 
1.27034 
0.66330 
3.43139 
1.00979 
2.06468 
1.30410 
3.48146 
0.53206 
3.28987 
0.32678 
0.52452 
0.36622 
0.63788 
1.42239 
0.936S6 
1.26243 
1.61412 
2.07868 
1.60681 
1.54706 
2.61 162 
2.96416 
0.26912 
0.42564 
1.01926 
1.63807 

275 



Tablets. (Continued). -- 
Expuujiture Shore 

Exponditura 
t l n e t m t  Baw Interadlets Peak ( 8  p w  day)  

91 
92 
93 
94 
96 
96 
91 
90 
99 

100 
101 
102 
103 
104 
106 
106 
101 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
126 
126 
121 
128 
129 
130 
131 
132 
133 
134 
136 

6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
5 
6 
6 
6 
6 
6 
5 
6 
6 
5 
6 
6 
6 
6 
6 
6 
6 
5 
5 
6 
6 
5 
5 
6 
6 
5 
5 
6 
6 
6 
6 
6 

0 . 0 ~ W  
0.106628 
0.0781 68 
0.048632 
0,094621 
0.092009 
0.0367S1 
0.065206 
0.092661 
0.063119 
0.091 186 
0.041291 
0.081616 
0.1881 66 
0,019634 
0.084828 
0.063747 
0.011108 
0. WW42 
0.04611 7 
0.114925 
0.11MI56 
0.001611 
0.109668 
0.114263 
0.116089 
0.040622 
0.073245 
0.001964 
0.091961 
0.142146 
0.111972 
0.071573 
0.073628 
0.121016 
0.077336 
0.074766 
0.206680 
0.0801 96 
0.066156 
0.112282 
0.041310 
0.102616 
0.102902 
0.118932 

0.233981 
0.305471 
0.202636 
0.216007 
0.224344 
0.2091S4 
0.166231 
0 . 2 0 S O ~  
0.193040 
0.234114 
0.224480 
0.262623 
0.206400 
0.243660 
0.320450 
0.241109 
0.210343 
0.249960 
0.206601 
0.224164 
0.212279 
0.264416 
0.223810 
0.343593 
0.304161 
0.22641 2 
0.198986 
0.231522 
0.287450 
0.206131 
0.302939 
0.26381 1 
0.240324 
0.290666 
0.360181 
0.339358 
0.167202 
0.33 1363 
0.210619 
0.2041 18 
0.262838 
0.093106 
0.297009 
0.270832 
0.260104 

0.619411 
0.688901 
0.119301 
0.134560 
0.681 128 
0.898037 
0.108018 
0,129736 
0.113691 
0.102761 
0.814326 
0.690080 
0.112026 
0.641)106 
0 . 0 1 1  
0.681984 
0.726910 
0.660932 
0.103467 
0.728499 
0.61 2796 
0.620530 
0.694618 
0.646760 
0.680976 
0.668499 
0.160392 
0.688234 
0.624696 
0.101 902 
0.6643t6 
0.62821 I 
0.680103 
0.635706 
0.6281 46 
0.583301 
O.lS0032 
0.160068 
0.709186 
0.129126 
0.636080 
0.966664 
0.600316 
0.626266 
0.630964 

0.16111 
0.03647 
1.92096 
1.67196 
0.83216 
1.39364 
1 .T2697 
2.04120 
2.04108 
3.43%9 
2.80910 
2.71072 
3.36003 

0.96623 
0.61441 
1 .a6034 
2.11274 
1.64120 
3.L4351 
2.61169 
3.00236 
1.14166 
1.17640 
0.74566 
1.30392 
2.13339 
2.83039 
1.62119 
2.18634 
0.26603 
O.OS082 
0.42740 
0.47979 
0.69661 
0.47606 
2.11807 
1. 13621 
2.61 204 
1.46221 
0.79071 
1.30691 
0.93691 
0.90718 
1.40085 

0 .  66682 
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TsMelo. (Continued). 

E~qmnditura mar. 
EJqmdl t u n  

t T r o a t m t  b.u I n t w r d l a t ~  Pmk ( 8  por day) 

136 
137 

139 
140 
141 
142 
143 
144 
146 
146 
147 
148 
149 
160 
161 
162 
163 
154 
166 
166 
167 

169 
160 
161 
162 
163 
164 
166 
166 
167 
168 
169 
170 
171 
172 
173 
174 
1 I6 
176 
177 
178 
179 
180 

130 

1 64 

6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
I 
7 
7 
7 

0.139780 
0.121616 
0.066701 

0.074476 
0.06WW 

0.076622 

0.0$633 1 

0.034629 
0.026971 
0.046211 
0.087700 
0.079336 
0.022703 
0.043063 
0.067 161 
0.063229 
0.076873 
0.027363 
0.067823 
0.066308 
0.036841 
0.069160 
0.061980 
0.027300 
0.014190 
0.047866 
0.11S629 
0.104970 
0.119254 
0,042664 
0.006766 
0.06301 3 
0.080060 
0.097493 
0.102626 
0.086638 
0.068733 
0.09491 5 
0.076163 
0.099943 
0.081494 

0.0~029 

0 .oia120 

o .067009 

0.120024 

0.322394 
0.214626 
0.20301 8 
0.1761ei 
0.194144 
0.229706 
0.295846 
0.213622 
0.196720 
0.301692 
0.260280 
0.193466 

0.14l894 
0.219302 
0.230693 

0.167142 
0.246931 
0.1361 92 
0.21 4209 

0.146994 
0.189181 
0.194994 

0.216700 
0.146072 
0.179619 
0.167661 
0.231381 
0.147526 
0.181409 
0.1 12839 

0.166422 
0.141934 
0.173391 
0.220954 

o.ieo048 

0.i70090 

0.124494 

0.13aoei 

0 .  1~0114 

0.196606 
0 .  166214 

0 .  170885 
0.175002 

0.140119 
0.132046 

0.637444 

o .070401 
0,663768 

0.790790 
0.730700 
0.710127 
0.616326 
0. 710856 
0.747190 
0.601977 
0.628896 
0.772016 
0.792181 

0.712990 

0.7W401 

0.69691 2 

0.012035 

0.6e9972 

0.799406 

0. eoosig 
0.700918 

0.7~3~103 

0 .  802150 

0.841763 

0.764428 
0.168166 

0.732320 
0.627628 
0.806591 
0.784674 
0.6629oO 
0.747506 
0.693331 
0.844696 
0.763068 
0.768666 
0,776006 
0.7291 16 
0.676520 

0.166019 
0.764966 
0.791 792 
0.7231 72 
0.743426 

0.7ie716 

1.78710 
8.46237 
1.68863 
2.62636 
4.29430 
0.66404 
0.41292 
2.02370 
1 .7699e 
0 .  gee91 
0.27942 
0.91673 
1.16617 
1.61107 
1.24616 
1.70748 
1.79959 
4.61666 
0.69604 
1.42499 
1.34371 
2.74908 
1 .84620 
3.82472 
1.18199 

0.80376 
1.62316 
3.17626 
1.30794 
0.72456 
0.50274 
1.22671 
2.13534 
5.6601 1 
3.1 1726 
0.99796 
0.67859 
0.79021 
2.24498 
2.01993 
4.07330 
3.66432 

1 a 09066 

2.07330 

0.40764 
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Expenditure Share 
Expand1 turo 

t Troatmont Bass Intorwdfato Peok (S  per day) 
-- 

iai 
103 
la4 
1 as 
1 a6 
1 a7 

182 

1 8 8  
1 89 
190 
191 
192 
193 
194 
195 
196 
197 

199 
200 
201 
202 
203 
204 
206 
206 
207 

209 
210 
21 1 
212 
213 
214 
216 
216 
217 

219 
220 
221 
222 
223 
224 

i oa 

200 

218 

7 
I 
I 
7 
7 
7 

8 
6 
8 
8 

8 

8 
8 
8 

a 

a 

a 

a 
a 
a 
a 
a 
a 
a 
6 

9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 

0.196026 
0.093113 
0.172293 

0.102033 
0.067977 
0.071073 
0.049463 

0.032376 
0.00M)66 

0.020102 
0.021917 
0.047690 
0.063446 
0.034119 

0.061)074 
0.060T19 
0.046681 
0.040161 
0.072230 
0.064366 
0.036993 

0.012171 

0.696808 

0.142920 
0.087323 
0.064617 
0.086682 
0.067463 
0.1M610 

0.081364 
0.114535 
0.069940 
0.073 137 
0.096326 

0.179133 

o.001736 

0.00274a 

0.037a29 

0.06~420 

0.09163a 

0.06eia~ 

0.069a09 

0 .  i3a992 

0 .  0a3214 

0.299348 
0.236816 
0.173032 
0.159600 
0.171697 
0.161109 
0.23a981 
0.206788 
0.265129 
0.1649W 
0.226296 
0.179061 
0.172396 
0.149092 
0.174736 
0.236823 
0.16939a 
0.2004aa 
0.2144123 
0.209763 
0.2061 77 
0.2631 61 
o .2a1460 
0.269ai 6 
0.191422 
0,216290 
0.236666 
0.196346 

0.219668 
0.223801 
0.196401 
0.21871 1 

0.229sa6 

0 .  i9477a 
0.21922a 

0.2031 23 

0.2a0622 

0.230661 

0.186961 
0.221761 

0.143219 
0.243241 
0.202961 
0.299403 

0 .  604626 
0.67 101 1 
0.654676 
0.772663 
0.126271 
0.780914 

0.663769 

0.812719 

0.7831 20 
0.807602 
0.828992 
0.777676 
0.700731 
0.806883 

o .6a9942 
0.6a2123 

0.71964a 

0.7440a4 
0 . w  103 
0.72961 a 
0.74a142 

0.  ~6131 9 
0 .  7726~5 

0.74a46a 

0.696688 
0.646310 

0.693073 
0.691 17 1 

0.674626 
0.710633 
0 633219 
0.716276 
0.7 16772 

0.7 13309 
0.663730 

0.131670 
0.663714 
0.649438 

0.660434 
0.713765 
0.621466 

0.7 14334 1 

0 .  s77aos 

0 .  7a3643 

1.3sooe 
i.0613a 
0.9921 9 
3.69199 
2.36676 
1.84663 

2.23986 

7.26136 

1.13804 
1.40694 
3.47472 

0 .  it1316 

3.4a084 

i.6aai4 

3.316a9 
3.141~0 
3.21710 
1.13941 
2.66414 
0.29071 
1.21336 
1.02370 
1.40080 
0.97704 
2.09000 
1.03619 
2.36180 
3.45901 

2.66a87 
3.63796 

2.00319 
2.40644 
2.68662 

3.76276 

1.62649 
2.31678 
1.77709 

3.46442 
1.746% 
1.20((13 

a. 94023 

0.34002 

1. 3a76ir 

I. i~a97 

Source: Courtesy of the authors, Gallant and K d e r  (1984). 
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that optimd allocation of E to ql, q2, and q3 can be computed by solving 

m-ze ~ & l .  42, 43)  

subject to 2 piqr = E .  
i - 1  

Since this problem has exactly the same structure as the original problem, 
one just applies the previous theory with N = 3 and Y = E. 

There is a problem in passing from the deterministic version of the 
subsystem to the stochastic specification. One usually prefers to regard 
prices and income as independent variables and condition the analysis on p 
and Y. Expenditure in the subsystem, from this point of view, is to be 
regarded as stochastic with a location parameter depending on p, on Y, and 
possibly on demographic characteristics, viz 

E = f( p, Y, etc.) + error. 

For now, we shall ignore this problem, implicitly treating it as an errors in 
variables problem of negllgible consequence. That is, we assume that in 
observing E we are actually observing f( p, Y, etc.) with negligible error, so 
that an analysis conditioned on E will be adequate. In Chapter 6 we shall 
present methods that take formal account of this problem. 

Table 16. Ex- Rates in E W  on a Weekdry in July 1976. - 
Prlw (cmtc p r  kwh) 

Treatment Base Interlad4ate Po& 

1 1.06  2.86 

1.78 2.86 

1.06 3.90 

1.78 3.90 

1.37 3.34 

1.06 2.86 

1.79 2.86 

1 . 0 6  3.90 

1.78 3.90 

3.90 

3.90 

3.90 

3.90 

6.06 

6.66 

6.66 

6.56 

6.66 



Table lc. CoaRsoer DeoogrriphicChPrrcterisrics 
-- 

Residence 
A i r  Condition. 

Heat E1.c. 
F r i l y  Incan Slta Loas Range Wnha Dryer Central Window 

t Size ($  per yr) (SqFt) (Btuh) (1-yes) (Iryes) (l=yos) (l=y.r) (9tuh) 
- 

1 
2 
3 
4 
6 
6 
7 
8 
9 
10 
11 
12 
13 
14 
16 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
26 
29 
30 
31 
32 
33 
34 
36 
36 
37 
38 
39 
40 
41 
42 
43 
44 
46 

2 
6 
2 
3 
4 
3 
4 
7 
3 
1 
6 
5 
3 
2 
4 
7 
2 
2 
3 
4 
2 
4 
3 
5 
3 
2 
4 
4 
6 
2 
4 
4 
2 
3 
2 
2 
3 
2 
6 
4 
2 
3 
11 
6 
6 

17000 
13600 
7000 

1 1000 
21600 
13800 
22600 
3060 
lo00 
6793 
11000 
17000 
6600 
13600 
22500 
1 TOO0 
11000 
13600 
6670 
0000 
11000 
13600 
40000 
7000 
13600 
13600 
17000 
27500 
16797 
11000 

W O O  
17062 
14612 
27600 
4662 
7000 
0000 
471 1 
11662 
70711 
lo00 
22600 
4500 
11000 
22600 

600 

1246 

2900 
2000 
3600 
216 
1000 
1200 
1000 
TO4 
2100 
1400 
1262 
916 
1800 
?a0 
900 
768 
1200 
900 
2200 
1000 
7 20 
660 
1600 
2300 
1000 
860 
1200 
2200 
1 OM) 
670 
600 
1200 
900 
1600 
1600 
2162 
832 
1700 
1240 
1808 
1800 

mo 

1787 

4306 
993 1 
18878 
17377 
24894 
22626 
17336 
4498 
6792 
14663 
1440 
3192 
663 1 
19120 
738$ 
7194 
17967 
4641 
11396 
8196 
781 2 
8878 
1SOpB 
7041 
6130 
7632 
9674 
13706 
10372 
7477 
14013 
15230 
13170 
10843 
9393 
11396 
6115 
11666 
1191s 
16662 
4316 
9209 
9607 
19400 
19981 

0 
1 
1 
1 
1 
1 
1 
1 
0 
0 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
0 
1 
1 
0 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 

0 
0 
0 
0 
0 
1 
1 
0 
1 
0 
0 
1 
0 
1 
1 
0 
1 
0 
0 
1 
1 
1 
1 
0 
1 
0 
1 
0 
1 
1 
1 
0 
0 
1 
1 
0 
0 
0 
1 
1 
1 
1 
0 
1 
1 

0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
0 
0 
1 

13000 
0 
0 
0 

6000 
24000 

0 
0 

1 8000 

0 
24000 

0 
19000 
24000 

0 
0 
0 

24000 
0 

10000 
0 
0 

10000 
0 

12000 
0 
0 

10000 
19000 

0 
0 
0 

18600 
sow 

0 
23000 

0 
0 
0 
0 
0 
0 

28000 
0 



Tlblelc. (continued). 

46 
47 
48 
49 
60 
61 
62 
63 
54 
66 
66 
61 
68 
69 
60 
61 
62 
63 
64 
66 
66 
67 
68 
69 
70 
I1 
12 
13 
1 4  
I 6  
16 
11 
78 
19 
80 
81 
82 
83 
84 
86 
86 
81 
88 
89 
90 

4 
3 
2 
2 
6 
3 
1 
2 
3 
1 
4 
1 
3 
3 
1 
1 
I 
4 
2 
3 
6 
4 
2 
2 
4 
2 
2 
4 
2 
3 
1 
5 
3 
2 
4 
2 
2 

1 1  
6 
4 
6 
3 
3 
3 
2 

22600 
MOW 

OOOO 
13600 
17000 
1 1000 
4600 
11267 
2600 
1430 
17000 
22600 
22600 

1000 
2600 
13600 
11000 
14381 
9000 
11000 
6600 

40000 
3600 
17000 
11000 
40000 
2600 
17000 
1600 
9000 
9000 
6600 
13600 
13690 
11OOo 
9681 

1 7000 
4600 
13600 
40000 
22600 
3600 
12100 
3600 
7000 

1800 
1200 
1400 
2600 
1300 
100 

1000 
960 
lo00 
1110 
2900 
1000 
1250 
1400 
836 
1300 
640 
1100 
900 
120 
780 
1460 
1100 
3000 
1634 
2000 
1400 
1400 
666 
112 
600 
600 
1200 
1300 
1046 
768 
1100 
480 
1916 
2600 
2100 
1196 
960 
1080 
1400 

16673 
16264 
10841 
29231 

6806 
6894 
13714 
7063 
12913 
9361 
12203 
10131 
12773 
11011 
12130 
1196 
I198 
8700 
6126 
3864 
6236 
8160 
10102 
36124 
16711 
11260 
16040 
13644 
7383 
13228 
4036 
6110 
11097 
12869 
11224 
7666 
9169 
6099 
12498 
23213 
12314 
14126 
1 1  174 
12186 
1 OM0 

0 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
0 
0 
1 
1 

0 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 
1 
0 
0 
0 
0 
1 
0 
1 
0 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
1 

0 
1 
1 
0 
1 
1 
0 
0 
0 
1 
1 
0 
1 
1 
0 
0 
0 
1 
0 
1 
0 
1 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
1 
0 
0 
1 
1 
0 
1 
1 
1 
0 
0 
0 
0 

1 
1 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
1 
0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 

0 
0 

2u)00 
18000 
2 ~ O O Q  

0 
6000 

0 
0 
0 
0 
0 

12000 
20000 

0 
32000 

0 
30000 
12000 

0 
0 

28000 
12000 

0 
0 
0 

6000 
0 
0 

1800 
0 
0 

10000 
24000 

0 
1 0000 
10000 

0 
0 

0 
0 
0 
0 

28000 
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Table lc. (Coatinucd). 

91 
92 
93 
94 
95 
96 
97 
B6 
99 

1 0 0  
101 
102 
103 
104 
106 
106 
107 
106 
109 
I10 
11 1  
112 
113 
114 
116 
116 
119 
118 
119 
120 
121 
122 
123 
124 
126 
126 
127 
126 
129 
130 
131 
132 
133 
134 
135 

2 
2 
4 
2 
4 
1 
4 
4 
2 
6 
3 
2 
4 
2 
2 
2 
2 
2 
3 
6 
3 
1 
3 
4 
2 
3 
6 
4 
5 
3 
1 
1 
2 
2 
3 
2 
1 
4 
2 
1 
2 
1 
3 
4 
3 

3600 
7000 
0000 
3600 
9694 
22600 
13600 
1 1000 
17000 
21600 
13500 
27600 
24910 
3600 
llOO0 
13600 
13600 
11000 
17000 
6600 

1 7Qoo 
70711 
7000 
22600 
13600 
4600 
17000 
13600 
1 7Ooo 
23067 
1 TOO0 
2600 
7266 
10416 
6600 
4600 
22600 
40000 
4600 
22500 

6500 
3689 
16356 
llOO0 
5500 

1800 
1456 
1100 
1600 
720 
1600 
1600 
1900 
1100 
2300 
1500 
3000 
2280 
870 
1169 
1800 
128 
1600 
1600 
900 
1600 
2600 
780 
1600 
Mu) 
1200 
ooo 
1600 
2000 
1740 
696 
900 
970 
1600 
760 
824 
1900 
2600 
840 
1800 
1200 
616 
1600 
1360 
600 

16493 
17469 
61 77 
21669 
6133 
7962 
10769 
10116 
10869 
16610 
11304 
23727 
18602 
10065 
10610 
20614 
464 1 
11236 
9774 
12086 
17869 
16661 
6692 
6191 
6066 
14118 
8966 
11142 
19666 
10183 
6974 
10111 
20437 
9619 
16956 
11641 
ll40I 
I6 206 
6984 
18012 
8447 
12207 
16227 
11046 
4644 

1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
t 
1 
0 
1 
1 
1 
1 
1 
1 
0 
0 
1 
0 

1 
1 
1 
1 
1 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
0 
0 
1 
0 
1 
1 
1 
1 
0 
1 
1 
1 

1 
0 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
0 
0 
1 
1 
1 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
1 
0 
1 
1 
1 
1 
0 
0 
1 
0 
0 

0 
0 
0 
0 
0 
1 
1 
1 
0 
1 
1 
1 
1 
0 
0 
0 
1 
1 
1 
0 
1 
1 
0 
1 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 

2000 
1~000 
23000 
1 a000 
6000 

0 
0 
0 

23000 
0 
0 
0 
0 
0 

30000 
0 
0 
0 
0 

23000 
0 
0 

20000 
0 

2000 
1000 
16000 

0 
0 

42000 
0 
0 
0 
0 

18000 
0 
0 
0 
0 
0 

1000 
0 

2as00 
0 

woo 

282 



136 
137 
138 
139 
140 
141 
142 
143 
144 
146 
146 
147 
148 
149 
1 60 
161 
162 
163 
154 
156 
156 
157 
166 
169 
160 
161 
162 
163 
164 
166 
166 
167 
166 
169 
1 I 0  
171 
172 
173 
174 
176 
176 
177 
176 
119 
180 

3 
2 
2 
4 
4 
2 
1 
3 
6 
6 
1 
2 
1 
1 
1 
5 
3 
7 
6 
3 
8 
3 
5 
3 
2 
3 
2 
3 
2 
2 
2 
2 
3 
4 

3 

; 
6 
5 
2 
6 
4 
3 
3 

17000 
32070 
21600 
17000 
21500 
11000 

3691 9 
9000 

21400 
1600 
6063 
3500 
9488 

27500 
17000 
1 1000 
22600 
3600 
9273 

1 1000 
11469 
1 lo00 
9 w o  

1 1000 
12068 
I W O  

22600 
6500 

12619 
29391 
DO00 
4664 

11000 

16126 

9000 
6600 

14085 
woo 

?70W 
27500 
7000 

13500 

2000 
6000 
1260 
840 
3300 
1200 
lo00 
1200 
720 

1300 
315 

1000 
1660 
860 

1200 
1000 
2000 
1226 
1200 
600 

1100 
980 

1200 
1600 
899 

1360 
67 2 

1200 
1300 
1000 
1406 
400 

1235 
720 

2300 

120 
1000 
1400 
120 

1470 
1900 
460 

1300 

16731 
61131 

1397 
6426 

11023 
106M) 
5446 
8860 
6662 
6273 
6727 
7196 

13164 
9830 
8469 
8006 

12608 
llS06 
16682 
6078 

17912 
7984 

14113 
21529 
6731 

16331 
6816 

10424 
8636 

24210 
12037 
4519 

14274 
6393 

16926 

6439 
1366 1 
14663 
6540 
8439 

12345 
3196 
7362 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
0 
1 
0 
1 
1 
1 
1 
1 
0 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
0 

1 

1 
1 
1 
0 
1 
1 
0 
1 

1 
1 
1 
1 
1 
0 
0 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
0 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 

1 

1 
1 
1 
1 
1 
1 
0 
1 

1 
1 
1 
1 
1 
0 
0 
1 
1 
1 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 
1 
0 
0 
1 
1 
1 
0 
0 
1 

0 

; 
0 
0 
1 
1 
1 
0 
0 

1 
1 
1 
1 
1 
0 
0 
1 
0 
0 
0 
0 
1 
0 
1 
0 
1 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
I 
0 
1 
0 
0 
0 

1 

0 
0 
0 
1 
1 
1 
0 
0 

2300 
0 
0 
0 
0 

16w0 
0 
0 

10000 
0 
0 
0 
0 

10w0 
0 

16000 
0 
0 
0 

15000 
0 
0 

16000 
6000 

28000 
6000 

0 
23000 

0 
37000 

0 
0 

6000 
23000 

0 
0 
0 

1 sow 
0 
0 

18600 
10000 
23000 



TaMe lc. (coatioued). 

181 
182 
183 
184 
166 
186 
187 
188 
189 
190 
191 
192 
193 
194 
196 
196 
197 
198 
1 99 
200 
20 1 
202 
203 
204 
206 
206 
207 
208 
209 
210 
21 1 
212 
213 
214 
216 
216 
217 
218 
219 
220 
22 1 
222 
223 
224 

3 
3 
1 
4 
2 
1 
1 
4 
4 
6 
1 
7 

; 
6 
2 
2 
4 
4 
1 
2 
2 
4 
2 
4 
7 
4 
3 
4 
4 
2 
5 
3 
6 
3 
5 
2 
6 
5 
0 
3 
2 
2 
1 

13437 
14160 
7000 
21600 
32441 
4274 
3600 
21600 
40000 
17000 
2600 
80Do 

13500 
13600 
13600 
40000 
27600 
21600 
3449 
3600 
27600 
1000 
3600 
11000 
9000 
14071 
13600 
17000 
3600 
11000 

OOOO 
6600 
27600 
20144 
3500 
22600 
22600 
6758 
11000 
17000 
9000 
16100 
7000 

1200 
ls00 
1200 
1360 
2900 
400 
600 

2000 
2900 
6000 
1400 
1400 

I80 
1000 
1109 
2400 
1320 
1260 
1200 
426 
1400 
1300 
1 0  
720 
680 
180 
2200 
7342 
621 
920 
1300 
1400 
2300 
1700 
1080 
1000 
1 900 
1200 
2200 
1600 
000 
1932 
979 

9602 
8334 
11941 
1686 
16168 
7859 
14441 
15402 
13478 
24132 
17016 
13293 

6629 
7281 
11213 
13616 
9665 
6169 
18368 
4664 
13496 
11666 
23271 
5679 
11528 
4829 
22223 
12050 
6389 
6690 
11610 
18684 
16480 
11212 
13867 
17688 
161 16 
168611 
21881 
11604 
6826 
16760 
11700 

1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
0 
0 
1 
1 
0 
1 
1 
0 
1 
1 
1 
1 
1 
1 
0 
0 
0 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
0 
1 
1 
0 
1 
1 

1 
0 
0 
1 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
1 
0 
0 
1 
1 
0 
0 
0 
1 
0 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
1 
0 
1 
1 
1 
1 
1 

1 
0 
0 
1 
1 
0 
0 
1 
1 
1 
0 
0 

1 
1 
0 
1 
0 
1 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
1 
0 
0 
1 
1 
0 
0 
0 
0 
1 
1 
1 
0 
0 

0 
0 

21000 
0 
0 
0 
0 
0 
0 
0 

2 m  
0 
0 
0 
0 

12000 
0 

28000 
0 
0 

0 
14000 

0 
16000 

0 
10000 
24000 

0 
24000 

0 
19000 
23000 

0 
0 
0 

23000 
22000 

0 
0 
0 
0 
0 

1000 



Table lc. (coatlnued). 

1 
2 
3 
4 
6 
8 
7 

9 
10 
1 1  
12 
13 
14 
16 
16 
17 
18 
19 
20 
21 
22 
23 
24 
26 
26 
27 
28 
29 
30 
31 
32 
33 
34 
36 
38 
37 
31 
39 
40 
41 
42 
43 
44 
46 

e 

0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
0 
1 
0 
1 
1 
1 
1 
1 
0 
0 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
0 
1 
1 
0 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0 
1.320 
1.320 
1.320 
1.320 

0 
0 

1.320 
1.320 
1.986 
2.640 
1.316 
1.320 
1.320 
1.320 

0 
1.916 

0 
1.320 

0 
1.320 
1.320 
3.305 

0 
1.320 

1.320 
1.320 

0 
0 

1 . N O  
0 

1.320 
0 

1.320 
1.320 
1.320 

0 
0 

1.320 

2.640 
1.320 
3.970 

I .  sas 

i .9es 

1.915 

0.700 
0.700 
0.700 
2.496 
3.590 
1.796 
1.796 
0.700 
0.700 
1.796 
0.700 
1.796 
1 .I96 
1.796 
1.795 
1.795 
1.796 
0.700 
1.796 
1.796 
0.700 
0.700 
1 .I96 
0.100 
0.700 
0.160 
1.7% 
1 .I95 
1.196 
0.100 
0.100 
1.196 
3.590 
1.796 
1 .I95 
0.100 
1.795 
0.700 
1 .I95 
1.400 
1 . I96 
0.100 
1.196 
1.1% 
1.196 



_- -- - --_ TnMe le. (Coatimrea). 

Typo of Residence 
E l = .  

Duplex or Mobile Hot# 
0ut.ch.d Apar twt  Har* h a t e r  Freozer Refrigerator 

t (llyes) (,=yes) (1=yn) (1-yes) (kw) lkwt 

46 
47 
48 
49 
so 
51 
52 
63 
54 
66 
w 
S7 
18 
s9 
60 
61 
62 
63 
64 
6S 
66 
67 
68 
69 
70 
71 
72 
73 
74 
76 
76 
77 
78 
79 
80 
81 
82 
83 
84 
86 
66 
87 
88 
89 
90 

1 
1 
1 
1 
1 
0 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
7 
1 
0 
1 
1 
1 
1 
1 
? 
1 
1 
1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
1 
0 
1 
0 
1 
1 
I 
7 
1 
1 
1 
0 
0 
1 
1 

0 
0 
0 
0 

1.985 
1.965 
1.320 

0 
1.320 
1.320 
1.320 
1.320 
1.320 
1.320 

0 
1.320 
1.320 
1.320 

0 
0 
0 

1.320 
1.320 

0 
1.320 
1.985 
1.320 

0 
0 

1.320 
0 

1.320 
0 

1.320 
1.320 
1.320 
1.986 
7.320 
1.98s 

0 
1 .a20 

0 
3.305 
1.966 
1.985 

1.796 
1. 796 
0.700 
2.496 
1.796 
0.700 
1.795 
0.700 
1.795 
1.796 
1.795 
1.796 
1.795 
1.796 
0.700 
0.700 
0.700 
0.700 
1.796 
0.700 
1.796 
1.796 
0.700 
1.400 
1.796 
1.7% 
1.796 
1.796 
0.700 
0.700 
0.100 
0.700 
1.795 
1.796 
1.795 
2.496 
1.795 
0. TOO 
1.795 
1.796 
2.495 
1.795 
0.100 
0.700 
1.795 



91 
92 
93 
94 
95 
96 
91 
98 
99 
100 
101 
102 
103 
104 
106 
106 
101 
108 
109 
110 
11 1  
112 
113 
114 
116 
116 
111 
118 
119 
120 
121 
122 
123 
124 
126 
126 
121 
128 
129 
130 
131 
132 
133 
134 
136 

1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
0 
1 
1 
1 
1 
0 
0 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 

1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
0 
1 
1 
1 
1 
0 
1 
1 
1 

0 
1.986 
1.320 

0 
0 

1.985 
1.320 
1.320 
2.640 
1.320 
1.320 

0 
1.320 
1.320 
1.320 

0 
1.320 
1.320 

0 
1.320 
1.320 
3.910 

0 
1.320 

0 
0 

1.320 
1.986 

0 
1.320 

0 
0 
0 
0 

1.320 
0 

1.320 
0 

1.320 
0 
0 

1.320 
1.320 
1.320 

0 

1 .I96 
1 .I96 
1 .I95 
1 .I96 
1 .I96 
0.100 
0.700 
0.100 
1 .?96 
1 .I96 
1.196 
2.496 
1 .I96 
0. I00 
0.1w 
1 .I95 
0.706 
0.706 
1 ,796 
0.700 
1.195 
1 ,195 
1 .I96 
1 .I96 
0.700 
1 .I96 
1 .I% 
0.700 
0.700 
1.195 
1.795 
0.100 
0. I00 
1.195 
1 .I95 
0.100 
1 .I95 
2.496 
1.196 
1.796 
0. I00 
1.796 
0. I00 
0.700 
0.100 



136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
161 
152 
153 
154 
166 
156 
167 
156 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
176 
176 
117 
178 
179 
180 

1 
1 
0 
0 
0 
1 
0 
0 
0 
0 
1 
1 
1 
1 
0 
1 
1 
1 
1 
0 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
0 

1 

0 
1 
1 
0 
1 
1 
0 
1 

0 
0 
1 
0 
1 
0 
1 
1 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 

0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
1 
0 
0 
0 
0 
1 
I 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

0 

1 
0 
0 
1 
0 
0 
1 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 

1 
1 
1 
1 
1 
1 
0 
1 

1.986 
1.986 

0 
0 

7.266 
1.320 

0 
0 
0 
0 
0 
0 
0 

0 
2.640 

0 
1.320 
1.320 

0 
1.320 
1.320 
3.970 

0 
1.320 
1.320 
1.320 

0 
0 

2.640 
1.320 

0 
2 a 640 

0 

1.320 

1.320 
1.320 
1.985 

0 
3.970 
1.986 

0 
1.320 

1 .a20 

1.795 
1.400 
1.796 
0.700 
I .  796 
0.700 
1.796 
0.700 
0.700 
1.795 
1.795 
0.700 
1.796 
1.796 
1 .?96 
1.7% 
1.796 
1.796 
0.700 
0.700 
0.700 
1.795 
2.495 
0.700 
1.796 
1.796 
0.700 
1.796 
1.795 
3.690 
0.700 
0.700 
0.700 
1.796 

1.796 

0.700 
0.700 
1.706 
0.700 
1.795 
1.796 
0.700 
1.195 



Table lc. (Continued). 

161 
162 
163 
164 
165 
166 
181 
166 
189 
190 
191 
192 
193 
194 
1 95 
196 
191 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
206 
209 
210 
21 1 
212 
213 
214 
215 
216 
217 

219 
220 
22 1 
222 
223 
224 

218 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
1 
1 
1 
0 
1 
1 
0 
0 
1 
1 
0 
1 
0 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
t 
1 
1 
0 
1 
1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 
0 
1 
1 
0 
1 
1 
0 
1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
0 
1 
1 
1 
1 
1 

1.906 
1. 985 
1.320 
1.320 

0 
0 

1.320 
1.320 

0 
1.986 

0 
0 
0 

1.320 
1.320 
1.966 
1.985 

0 
1.320 

0 
1.966 

0 
1.320 

0 
1.320 
1.320 

0 
1.320 
1.320 

0 
0 
0 

1.320 

1.320 
0 

1.320 
1.986 

0 
1.320 
1.320 

0 
1.320 

0 

i .985 

0.700 
1.15 
1.195 
1.195 
2.496 
1 * I95 

0 
1.796 
1 .I95 
2.496 
1.796 
1.795 

0 
1.795 
0.700 
1 .IS6 
1 .I95 
1 .I95 
1.195 
0.100 

0 
1.195 
0.100 
0.100 
0. I00 
0.100 
0.700 
2.495 
1.795 
0. I00 
0. I00 
1.795 
1.795 
1.796 
1.795 
0.100 
1.795 
1.195 
0 f 100 
1.795 
1 .I95 
1.195 
1 .I95 
1.795 

Source: Courtesy of the authors, Gallant and Koenker (1984) 



290 MULTIVARIATE NONLINEAR REGRESSION 

In this connection, hypothesis H!, implies that g( u p )  is homogeneous of 
degree one in u,  which in turn implies that the first stage allocation function 
has the form 

j ( p ,  ~ , e t c . )  = j [ n ( p l , p 2 , ~ 3 ) ,  ~ 4 , . . . , ~ N , ~ , e t c . ]  

where II(p, ,  p z ,  p 3 )  is a price index for electricity which must itself be 
homogeneous of degree one in p l ,  p z ,  p3 (Blackorby, Primont, and Russell, 
1978, Chapter 5). This leads to major simplifications in the interpretation of 
results, for which see Caves and Christensen (1980). 

One word of warning regarding Table lc, all data are constructed 
following the protocol described in Gallant and Koenker (1984) except 
income. Some income values have been imputed by prediction from a 
regression equation. These values can be identified as those not equal to one 
of the values 500, 1500,2500, 3500,4500, 5500,7000, 9ooo,11,OOO, 13,500, 
17,00,22,500,27,500,40,000,70,711. The listed values are the midpoints of 
the questionnaire's class boundaries except the last, which is the mean of an 
open ended interval assuming that income follows the Pareto distribution. 
The prediction equation includes variables not shown in Table lc, namely 
age and years of education of a member of the household-the respondent 
or head in most instances. 0 

2. LEAST SQUARES ESTIMATORS AND MATIXRS OF 
NOTATION 

Univariate responses y,, for r - 1,2,. . . , n and a = 1,2,. . . , M are pre- 
sumed to be related to k-dimensional input vectors x ,  as follows: 

y,, = f a ( x , , 6 , 0 )  + e,, a = 1 , 2  ,..., M I = I , & .  ... n 

where each f , ( x ,  8,) is a known function, each 8," is a pa-dimensional 
vector of unknown parameters, and the ear represent unobservable observa- 
tional or experimental errors. As previously, we write 0: to emphasize that 
it is the true, but unknown, value of the parameter vector 8, that is meant; 
8, itself is used to denote instances when the parameter vector is treated as 
a variable. Writing 

e, * 1;:: 1 
eM, 

the error vectors e, are assumed to be independently and identically 
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distributed with mean zero and unknown variance-covariance matrix 2, 

291 

L'=Fg(e,,e:) 1 - 1 . 2  ,..., n 

whence 

with uaa denoting the elements of X. 
In the literature one finds two conventions for writing this model in a 

vector form. One emphasizes the fact that the model consists of M separate 
univariate nonlinear regression equations 

y,, - j ,(e:) + e, a = 1,2 ,  ..., M 

with y,, an n-vector as described below, and the other emphasizes the fact 
that the data consists of repeated observations on the same subject 

with y, an M-vector. To have labels to distinguish the two, we shall refer to 
the first arrangement of the data as grouped by equation, and the second as 
grouped by subject. 

The grouped by equation arrangement follows the same notational 
convention used in Chapter 1. Write 
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In this notation, each regression is written as 

with (Problem 1) 

of order n by n. Denote the Jacobian of fa(@,,) by 

which is of order n by pa. Illustrating with Example 1, we have: 

EXAMPLE 1 (Continued). The independent variables are the loga- 
r i thms of expenditure normalized prices. From Tables la and l b  we obtain 
a few instances 

(3.90,2.86,1.061 ’ 
x1 .( 0.46931 ) = (2.11747,1.80731,0.81476)’ 

(3.90,2.86,1.78) 
x20 == In( 0.92766 

(3.90,2.86,1.78) 
2.52983 x a  = In( 

(3.90,3.90,1.06) 
1.14741 x,, = In( 

(6.56,3.90,1.78) 
x224 In( 1.15897 

= (1.43607,1.12591,0.65170)’ 

= (0.43282,0.12267, - 0.35154)’ 

=, (1.22347,1.22347, -0.079238)’ 

= (1.73346,1.21344,0.42908)’ 
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The vectors of dependent variables are for a = 1 

Ya - 

I In(0.644427/0.103444) 
Ya 

h(0.252128/0.103444) 

and for u = 2 

Recall that 

With b(., denoting the ath row of 

1.59783 

= I O Y 9 1  

293 

1 

I 

and with a' = (a,. a2, a3).  Note that if both a and B are multiplied by 
some common factor 8 to obtain 5 = 8a and B -- BE, we shall have 

Thus the parameters of the model can only be determined to within a scalar 
multiple. In order to estimate the model it is necessary to impose a 
normalization nrle. Our choice is to set a3  = - 1. With this choice we write 
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the model as 

MULTIVARIATE NONLINEAR REGRESSION 

with 

Recognizing that what we have is M instances of the univariate nonlin- 
ear regression model of Chapter 1, we can apply our previous results and 
estimate the parameters t?: of each model by computing dz to minimize 

for a = 1,2 , .  . . , M. This done, the elements uap of Z can be estimated by 

Let 2 denote the M by M matrix with typical element SdS. Equivalently, if 
we write 

then 

We illustrate with Example 1. 

EXAMPLE 1 (Continued). Fitting 

Y1 =A(@,)  + el 



8As stmt.r).ots: 

PROC NLIN DATA=EWLEl llETHoD~dluss ITER-60 COWVEROENCC=l.E-13; 
PAR6 811~0 812.0 813~0 B31.O 832.0 833.0 Al=-9; A3.-1; 
PEAK+Al~ll+xltB12*X2+813+x3: BASE=A3t83l*Xl*832*X2t833*X3; 
WOOEL Yl=LW PEAKMAS€); 
PLR.Al -l/PEki 
DER.81l=l/PEAK*XIj DER.B3l=-l/MSE*Xl; 
DER.B12=1/PLAK*XZ; MR.B32=-l/BAS€*X2; 
OUI 813-1 PEAKW3. WR.B33--1/81SE*X3; wikt  O~C-KO**RES~WAL=Ei ; 

Output: 

S T A T I S T I C A L  A N A L Y S I S  S V S T E M  

NON-LINEAR LEAST SQUARES IT€RATIVE P M E  

DEPENDENT VARIABLE: Yl METHM): QAUSS-NEWTON 

ITERATION 81 1 
831 

A1 

812 
B32 

813 
B33 

RESIOUAL SS 

0 0.000000E+00 0.000000E*00 0.OWOOOE+00 72.21326991 
o.ooooooE+oo o.w00ooE*oo 0.0oo000Et00 
-9.00000000 

16 -0.03862700 -1.44241316 2.01636661 36.~007iern 
0.46865734 -0.19468166 -0.38299626 
-1.90264683 

NOTE: CMROENCE CRITERION WT. 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  

NOWLINEAR LEAST SQUMES SUIIWARY STATISTICS OEPENDEMT VARIABLE Yl 

1 

3 

SOURCE OF S M  O f  SQUARES 

REQRESSION 7 1019.72335616 145.67476626 
RESIDUAL 217 36.600718W 0.16820606 
UNCCORRECEO TOTAL 224 1056.22407572 

(CORRECTED TOTAL) 223 70.01946061 

PARAMETER ESTIMATE ASYUPTOT IC 
STO. ERROR 

ASYWTOTIC 95 8 
CONFIMWCE INTERW'PP 

i CUFP 
811 
812 

1.37166782 -3.6415 

613 
83 1 
832 
833 
A1 

84114 -0.62 . 
-0.30299626 0.09376286 -0.567B009B -0.19819163 
-1.98264683 1.03138456 -4.01538421 0.05029260 

Figure la. First equation of Example A fitted by the modikd Gauss-Newton method. 
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SAS s t a t m t s :  

PROC NLIN OATkEXANPLE1 M!€WOO-OAUSS 1l€R-60 COI(VEROENCE-l.f-13i 
PARWS 821-0 8224 (1234 831.0 83210 83310 A2--3; A3-1; 
IWTER-A2+%21*Xlt82m(2+B23*X3i ~=A3+831+Xl i832*X2+833*X3r 
IK)OEL Y2ICOO INTER/BASE)i 
DER.A2 -l/IdERr 
DER.821~1/INTER*Xl: DER.831--l/IMM*Xl* 
DER .BZ2-'I/XNT€R*X2; DER .832=-1/BAsL*X2; 
DER .823=1/INTER*X3 * M R .  S33=- 1 /WE*X3; 
OufPuT ovTIwooK03 ~ESXDUAL-E~I 

Output: 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E ~  
MOM-LINEAR LEAST M E 3  ITERATIVE PMASE 

DePEND€NT VARIABLE: Y2 IIETHOO: OAuSs-~ELITffl 

4 

ITERATIW 821 
83 1 

A2 

822 
832 

823 RESIDUAL SS 
033 

0 0.000M)M+00 0 .oooooM+oo 0. oo00ooE+oo 37.16988980 
O . o o ~ + O O  0 . 0 0 0 0 ~ ~ 0 0  o.ooooooE+oo 
-3.00000000 

16 0.41684196 -1.30961752 0.73966410 19.70439406 
0.24777391 0.07676306 -0.39614717 
-1.11401781 

NOTE: COIIMROEtlCE CRITERION MET. 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  6 

NOW-LINEAR LEAST SQUARES su+uRY STATISTICS DEPEWOEWT VARIWLE Y2 
bowIcE OF sum OF SQUMES WEAN SQUARE 

REQRESIEION 7 266.36866902 37.90000843 
RESIDUAL 217 19.70439406 0.09O80366 
UWCORRLCTEO TOTAL 224 286.07306301 

(CWRECTEO TOTAL) 223 36.70369496 

PARAMTUI ESTIMATE AsYllpTOTXC ASWTOTIC 96 8 
L O M R  UPPER 

0.41681196 0.443%622 -0.46820663 1.29189066 82 I 
-1.30961762 0 .  W89T020 -2.60978667 -0.10924930 

823 0.13%6410 0.64937638 -0.34324682 1.82237401 
022 
B31 0.24717391 0.130677OO -0.02636860 0.6209(1642 
832 0.07616306 0.18207332 -0.28210983 0.43661S96 
033 -0.39611717 0.08932410 -0.67120320 -0.21909114 
A2 -1.11401781 0.34304923 -1.79016103 -0.43787460 

SfD.  ERROR CONFIDENCE INTERVAL 

F W  1). Second equation of Example 1 fitted by the modified Gauss-Newton method. 
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by the methods of Chapter 1 we have from Figure la that 

6: = 

and from Figure lb that 

6: = 

- 1.9825483 - 0.83862780 
- 1.44241315 
2.01535561 
0.46865734 

- 0.19468166 
-0.38299626 

- 1.11401781 
0.41684196 

- 1.30951752 
0.73956410 
0.24777391 
0.07675306 

- 0.39514717 
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Some aspects of these computations deserve comment. In this instance, 
the convergence of the modieed Gauss-Newton method is fairly robust to 
the choice of starting values so we have taken the simple expcdlent of 
starting with a value &, with f u ( x ,  ,$Iu) A Fu. The Erst full step away from 
8 U T  

1 4  = 04 + ~ ~ ~ ~ ~ U ) C ( ~ U ) l  -lcl%r@u) I Ya - r u < o s , ~ l  

is such that 

is negative for some of the x,; this results in an error condition when taking 
logarithms. Obviously one need only take care to choose a step length ,Xu 
small enough that 
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SAS st.t.Yntr: 

DATA WWK04; WROE WORK02 MORK03; KEEP T El €21 
PROC MATRIX FW-20; FETCH E DATAl)l(#IKO4(KELP-€l L2)i 
SIQ(UIE'*E1/224; PRINT S I W ;  P-HALF(INV(SIO(IA)); PRINT P; 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  

COL 1 coC2 

0.16294SSM2006 0.0901M33203941 
0.09016433203941 0.06796604406026 

Figwe lr .  Ccmtemporaaeous variance-covariance matrix of Example 1 estimated from single 
equation residuals. 

is in range to avoid this difiiculty. Thus, this situation is not a problem for 
properly written code. Other than cluttering up the output (suppressed in 
the figures), the SAS code seems to behave reasonably well. See Problem 7 
for another approach to this problem. 

Lastly, we compute 

0.1629496382006 0.09015433203941 
0.09015433203941 0.08796604486025 

as shown in Figure lc. For later use we compute 

3.764814163903 - 3.85846955764 
j- ( 0  3 371659857133 

The set of M regressions can be arranged in a single regression 
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by writing 

299 

with p = Cz..lp,p,. In order to work out the variance-covariance matrix of e,  
let us review Kronecker product notation. 

If A is a k by I matrix and B is m by n, then their Kronecker product, 
denoted as A Qb B, is the km by In matrix 

A Q D B - 1  1121B I a,B - - -  

The operations of matrix transposition and Kronecker product formation 
commute; viz. 

( A  8 B)’ = A’ @ E ’ .  

If A and C arc conformable for multiplication, that is, C has as many rows 
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as A has columns, and B and D are conformable as well, then 

( A  QD B ) ( C  0 D )  = AC QD BD. 

( A  QD B ) - l =  A - ’  QD B-’ 

It follows immediately that if both A and B are square and invertible, then 

that is, inversion and Kronecker product formation commute. 
In this notation, the variancecovariance matrix of the errors is 

- 2 Q D Z I ;  

the identity is n by n, while 2 is M by M, so the resultant Z Qp I is nM by 
nM. 

Factor Z-’ as Z - ’  = P’P, and consider the rotated model 

(P 8 I ) y  = (P QD I ) f ( 6 )  + (P ~p I ) .  

or 

Since 

the model 
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is simply a univariate nonlinear model, and 6’ can be estimated by 
-g 

Of course Z is unknown, so one adopts the obvious expedient (Problem 4) 
of replacing X by 9 and estimating 6 O  by 

cminimizing S ( 6 , 2 ) .  

These ideas are easier to implement if we adopt the grouped by subject 
data arrangement rather than the grouped by equation arrangement. 
Accordingly, let 

1 

whence the model may be written as the multivariate nonlinear regression 

y , = f ( x f , 6 ’ ) + e ,  r = = l , 2  ,..., n. 
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In this scheme, 
n w, 2) = c [ Y ,  - fb,, e)l’Z-”y, -f(x,, e>l.  

,-1 

To see that this is so, let ua@ denote the elements of 2-’ and write 

a-1 @ - I  

= [ Y  -ml’(~-l Qp NY -m1. 
In writing code, the grouped by subject arrangement coupled with a 

summation notation is mme convenient because it is natural to group 
observations (y,,  x , )  on the same subject together and process them serially 
for t = 1.2,. . . , n. With S(B, Z) written as 

n w, = c [v, -fk, ~ > I ’ W r t  - f(X,, e>l 
t - 1  

one can see at sight that it suffices to fetch (y,,  x,),  compute [ y ,  - 
f ( x , ,  e)] ’C- ’ [y ,  - f ( x , ,  a)], add the result to an accumulator, and continue. 

The notation is also suggestive of a transformation that permits the use 
of univariate nonlinear regression programs for multivariate computations. 
Observe that if 2-l factors as C-’ = P’P then 

One now has S(0,Z) expressed as the sum of squares of univariate entities; 
what remains is to find a notational scheme to remove the double summa- 
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tion. To this end, put 

s = M(r - 1) + a 
“y,” = P;u)Yt 

“xs” = ( p i ,  x ; ) ’  

‘ c ~ ’ r ( “ ” ’ ’ r  0) = p ~ u ) f ( x , ,  8 )  

303 

for a = 1 , 2 , .  . . , M and t = 1,2,. . . , n,  whence 

We illustrate these ideas with the example. 

EXAMPLE 1 (Continued). Recall that the model is 

with 

As the model is written, the notation suggests that b(3) is the same for both 
a = 1 and u = 2, which up to now has not been the case. To have a 
notation that reflects this fact, write 

to emphasize the fact that the equality constraint is not imposed. The 
multivariate model is then 
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with 

MULTIVARIATE NONLINEAR REGRESSION 

8 -  

and 

a1 

b u  
b12 

b13 

b13, 

b132 

b133 
a2 

b2l 

b22 

b23 

b232 

b131 

b233 

x I  as before. To illustrate, from Table la  for f = 1 we have 

" ( In(o.zso382/a.Os6731)) ( 1.59783) 
In(0.662888/0.056731) 2.95829 

and for t = 2 

ln(0.644427/0.103444) 
Y t a  ( ln(0.252128/0.013444) 

as previously, from Tables l a  and l b  we have ( 2.11747), 
~ 2 s  ( 1 1.27974 - 5 8 m )  * 

0.81476 0.28719 
X I  1.80731 



LEAST SQUARES ESIMATORS AND MATTERS OF NOTATION 

nonlinear program, recall that 

305 

To illustrate the scheme for minimizing S(8,e) using a univariate 

-3.8585) 3.3716 (from Figure l c )  

whence 

“yl” = (3.7648, - 3.8585)( ;:ti;;;) = 3.08980 

“y;’ = (0 , 3.3716)( = 5.38733 

“y,” = (3.7648, - 3.8585)( :::$;) - 3.44956 

“y,” = (0 , 3.3716)( :::$:) = 3.00382 

“ x ~ ”  =i (3.7648, - 3.8585,2.11747,1.80731,0.81476)’ 

66 x2” = (0 , 3.3716,2.1l747,1.80731,0.81476)’ 

Lb x3” = (3.7648, - 3.8585,1.58990,1.27974,0.28719)‘ 

“x,” = (0 , 3.3716,1.58990,1.27974,0.28719)‘ 



SAS Statements: 

DATA UWIUOl; SET U(AIPLE1; 
Pl-3.764814163903: P2~-S.O6646956784; Y I p l Y l + P 2 Y 2 :  OUTPUT; 
P1-0: P2-3 a 3T1649067133; Y lp l  W 1  OUTPUT; DELETE ; 
PRDC NLIN MTAIWoRI [Ol  HETm)oloAU3S ITER-60 C(MROENCE=l.E-O: 
PIRI(s 011=-.8 612-1.4 613-2 B131..6 B1321-.2 6133--.4 

8211.4 822r-1.3 8231.7 8231-.2 62321.1 6233=-.4 
Al=-2 A2--1: MI-1; 

PEAM -A1+811*Xlt812*X2*813*X3; ~ElIAJ*8131*Xlt8132rX1+01j)*)(JI 
INTE~~A2*821*l(lt822*X2*823*X31 8*SE2-A3~231*Xlt6232*X2t823~*X3: 
mwWL Y=PI*LOa(PUK/B*SEl)*P2*LOa(IWIER/BM1E2); 
DER.Al -Pl/PEAK: DER.A2 -P2/1NTER; 
DER.811-Pl/PEAM*Xl; DER.82lIP2/IWER*Xl; 
MR.B12=Pl/PEAK*X2; O€R.822-P2/INTFR+X2; 
OER.B11=Pl/PW*X3; MR.823=P?/lNTER*XS; 
DER.813lr-Pl/BIS€l*XI; MR.B231~-P2/BASE1*Xl; 
MR.B132=-Pl/BASEl*X2; OER.B232--P2/MSE2*X2; 
OER.B133~-Pl /MS€l~3;  MR.B233~-P2/MS€2*X3; 
OUTPUT OUT-WKOZ RESIDUIL-EMAT; 
PRM: UNIVARIATE DATA-WORK02 PLOT IyoI(IuL; VAR €HAT: ID 1; 

hrtWt : 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  

NOW-LINEAR LEAST SQUARES ITERATIVE PHASE 

OEPENOENT VARIABLEz Y METHaOr O A U S S - ~ o l l  

I TEERATION 811 812 813 RLSZOUM SS 
6131 8132 8133 
821 822 823 

8231 8232 8233 
A1 A2 

0 -o.aooowoo -i.~w00000 2.00000000 
0.60000000 -0.20000000 -0.40000000 
0.40000000 -1.30000000 0.70000000 
0.200W000 0.10000WO -0.40ood000 

-2.00000000 -1.OOOOOOQO 

6 -2.98669766 0.90158633 1.66163998 
0.26718366 0.07113302 -0.47013242 
0.20048926 -1.33081849 0.06048364 
0.18931302 0.10756260 -0.40639911 

-1.62673841 -0.96432128 

631.16222217 

442.66919896 

Figwe 2u. Example 1 fitted by multivariate least squares, unconstrained. 
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S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  2 

W-LXIRAR LEAST SQUARES suI(ARY STATISTICS DEPENDENT VARIABLE Y 

SOURCE 

AEORIESSIOW 
RESIDUAL 
UllCORRECTED TOTAL 

(CORRECTED TOTAL ) 

PARAlKTER ESTIMATE 

B11 
B12 
613 
B131 
6132 
Bl33 
821 
822 
623 
6231 
6232 
8233 
A 1  
A2 

-2.98669766 
0.001 68633 
1.66363998 
0.26718366 
0.07113302 

-0.47013242 
0.20848826 

-1.33001849 
0.86048364 
0.18931302 
0.10766268 

-0.406399l1 
-1.62673841 
-0.96432120 

DF sun O f  SQUARES MEAM SQUARE 

14 6640.63880956 467.18846640 
434 442.669198% 1.01991207 
448 6W3.29600861 

441 811.79801949 

AsYCpTOTlC 
STD. ERA00 

1.21777790 
1.41306196 
1.31692369 
O.l(w64198 
0.1Y061332 
0.01443326 
0,41968687 
0.48066615 
0.64642139 
0.12899074 
0.14261811 
0.09932163 
0.88861033 
0.34907493 

Figure 20. (Continued). 

ASSYWPTOTIC 96 % 
C W I D E K E  INTERVAL 

LWER UPPER 
-5.49613789 -0.41626724 
-1.67676226 3.67892291 
-0.92404026 4.26192022 
0.0636604~ 0.48071663 

-0,26432109 0.40668712 
-0.61642910 -0.32383674 
-0.61639469 1.03331319 
-2.27633760 -0.38629949 
-0.22162641 1.92249660 
-0.06421601 0.44284106 
-0.17215306 0.38767642 
-0.66130367 -0.24949465 
-3.46863048 0.41716366 
-1.66041924 -0.27822332 

SAS code to implement this scheme is shown in Figure 2 a  together with the 
resulting output. 

Least squares methods lean rather heavily on normality for their validity. 
Accordingly, it is a sensible precaution to check residuals for evidence of 
severe departures from normality. Figure 2a includes a residual analysis of 
the unconstrained fit. There does not appear to be a gross departure from 
normality. Notably, the Kolmogorov-Smirnov test does not reject normal- 
ity. 

Consider, now, fitting the model subject to the restriction that b(3) is the 
same in both equations, viz 

As we have seen before, &ere are two approaches. The first is to leave the 



S T A T I S T I C A L  A N A L Y S I S  S Y 6 T L M  4 

WIVARIATE 

VMIABLE=EHAT 

440 
0.03 10603 

o.iiwsi 
>o. 1s 

LQ(ES7 ID 
-3.31481 181 

-2.44643 -I..IOU[ 

120 111 -2.21311) 
-2.00762 

4.62364 
0.640624 

-0.061296 
-0.666601 

-3.31407 

1.9SW6 
1.31402 

-3.31467 

BAR CHART 
4 . 7 6 0  .* 

.W 

.m 

.*mm** 

-m 0.16++ 
.--*+nmtmmrm 

.-m 

.mn 

9ot 

3 
18 

2.66414 
1 .63032 
1.1OZ6 

-1.6009s 
-2.16196 

-1.1601) 
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model as written and impose the constraint using the functional depen- 
dence 

8 -  

One fits the model 

01 

bl 1 

612 

b13 

'131 

'132 

h 3 3  

b21 

b22 

a2 

'23 

b231 

b232 

b233 

P1 

P2 

P3 

P4 

P5 

P l  
PS 
P9 

PIC 
PI1 

Ps 

P7 

p6 

P6 

A =+,I g(pO)l + e, 

by minimizing S[ g( p),  $1; derivatives are computed using the chain rule 

These ideas were illustrated in Figure 9b of Chapter 1 and will be seen 
again in Figure 2d below. 

The second approach is to simply rewrite the model with the constraint 
imposed. We adopt the second alternative, viz. 



Output: 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  

NDN-LINEAR LEAST SQUARES ITERATIVE PHAS 

DEPENOENT VMIABLE; Y METHOD: UJSS-NEYTON 

I3 l3=-. 4 

1 

I TERAlION 811 
621 
831 
A1 

81 2 
822 
832 
A2 

813 RESIOUAL SS 
623 
833 

0 -0.8OOO0000 -1.40000000 2.OOO00000 641.48045300 
0.40600000 -1.30000000 0.10000000 
0.50000000 -0.20000000 -0.40000000 

-2.00000000 -1.00000000 

8 -3.27643190 1.30486361 1.66661680 447.31829119 
0.40160449 -1.11931853 0,41068766 
0.23944183 0.10626164 -0.459e2238 

-1.68236912 -1.20266406 

MOTE: CONWROENCE CRITERION e T .  

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  2 

NON-LlM!iAR LEAST SQUARES SulCuRY STATISTICS OEPEIIMNT VARIAELE Y 

SOURCE DF sun OF SQUARES MEAN SQUARE 

REQRESSION 11 6636.97971731 694.17991430 
RES IDUAL 431 447.31829119 1.02361161 
UNCORRECTED TOTAL 448 69e3.2se00861 

(CORRECTEO TOTAL) 447 aii.79801949 

PARAMETER 

81 1 
812 
613 
821 
622 
823 
63 1 
832 
633 
A1 
A2 

ESTIMATE 

-3.27643190 
1.30488351 
1.66661680 
0.40180449 

-1.11931853 
0.41058786 
0.23944183 
0.10626164 

-0.45982238 
-1.58236942 
-1.20261408 

ASYMPTOTIC 
STD. ERRdR 

1.27198669 
0.96321400 
1.01449061 
0.29689462 
0.36SO176 1 
0.33112431 
0.09393101 
0.11105620 
0.064W266 
0.86869333 
0.23172071 

ASWTOl 
CONPIMNCE 

LOUER 
-5.10643960 
-0.66869860 
-0.32830042 
-0.10172319 
-1.83870310 

0.05402636 
-0.12183961 
-0.56613790 

-1.65809655 

-0.24139ssa 

- 3 . 2 6 9 1 ~ 0 ~ 6  

- . -.. 
-0.71842431 
3.17836662 
3.66953403 
0.98633217 

-0.39993396 
1.06257090 
0.42406730 
0.33436270 

-0.36360687 
0.10614171 

Figure f b .  Example 1 fitred by multivariate least squares, H1 imposed. 

310 
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Following these, same ideas we impose the additional constraint of 
symmetry, 

e =  

SAS code is shown in Figure 2c. 

homogeneity restriction 
The last restriction to be imposed, in addition to H, and H2, is the 

' a1 ' 
'11 

'12 

b22 

- '13 

a 2  

b23 

3 3 
x u , =  -1  z b , , - O  for i = 1 , 2 , 3 .  

- - 

1-1 1'1 

As we have noted, the scaling convention is irrelevant as far as the data are 
concerned. The restriction a1 + u2 + u3  = - 1 is just a scaling convention, 
and, other than asthetics, there is no reason to prefer it to the convention 
u3  = - 1 that we have imposed thus far.* Retaining a3 = - 1, the hypothe- 
sis of homogeneity can be rewritten as the parametric restriction 

3 
H3: x b , , - O f o r j -  1 ,2 ,3 .  

i -1  

Equivalently, H3 CM be written as the functional dependence 

P I  
- P 2  - P3 

P2 

P3 

P4 

-P5  - P2 

P5 

a1 
- '12 - b13 

'12 

'13 

0 2  

- '23 - 'I2 

'23 

- '23 - '13 

*In economic parlance, it is impossible to tell the difiereace between a linear homogeneous 
and a homothetic indircct utility function by looking at a demand system. 



SAS St.t.(Wntsr 

I 

-P2) /arse*x2 ; 

Output: 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E U  
"-LINEAR LEIST SQUmas ITUUTIVE p(uBE 

MPEWDENT VARIABLE: Y W T m r  ~ - M w T o w  

1 

ITERATION 81 1 81 2 813 RESIWAL SS 
822 023 833 

A1 A2 

0 0.000000€+00 0. ooMNKK+oo o.o4ooooEtoo 6983.29a008si 
0.000000E+00 o.o5oooM+oo 0.000000€+00 

-1.00000000 -1.00000000 

11 -1.28362479 0.81889299 0.36106769 460.95423403 
-1.04636691 0.03049767 -0.48735947 
-2.92727122 -1.63786463 

IJOTE: CONVERDENCE CRITERION MET. 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E l l  

NOW-LINEAR LEAST SQUARES W A R Y  STATISTICS OEPENOENT VARIABLE Y 

SOUflCE w surOFsQuARES EAN SQUARE 

REORESSION 8 6632.34377448 816.84291181 
RESIDUAL 440 460.96423403 1.02489659 
UWCORRECTEO TOTAL 448 69BJ.29800851 

(CORRECTED TOTAL) 417 871.79801949 

3 

PARAmTER ESTIMATE ASYWTOTIC 
STD. ERROR 

ASYMPTOTIC 96 8 
COMFIDENCE INIERy.Ea 

1 l Y I D  

81 1 
812 
813 

!i%: 

---.. -. . -.. 
-1.2a362479 0.22879431 -1.72936637 -0.83788321 
0.81889299 0.08096691 0.66976063 0.97802635 
0.36106769 0.03024703 0.30162008 0.42051510 

-1.04836691 0.08369301 -1.11264961 -0.88406221 
0.03049111 0 .  O36M943 -0.04013244 0.10142783 --- 

033 
A1 
A2 

-0.46736oi7 0 .  o i i l i i s i  -0.6061 6601 -0.42966093 
-2.92727122 0.27T7M)tS -3.47322147 -2.38132098 
-1.63T86483 0.09167461 -1.71804189 -1.36768737 

Figure ZC. Example 1 fitted by multivariate least squares, Hk and H2 imposed 
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SAS Stmtarnt8: 

IT : 

833=-RS-R3; 

‘1 -PZ)/BASE*X2: 

811tOER-B13-DER. 133; 

Output: 
S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  1 

NDN-LINEAR LEAST SQUARES ITERATIVE PHASE 

DEPENDENT VARIMLE: V METHOD: QAUSS-NEWON 

ITERATION R1 R2 R3 RESIDUAL SS 

-3,ooM)0000 0.60000000 0.40000000 660.96969664 0 

-2.70479642 0.86601996 0.31705186 476.62186396 1 

2 -2.72429979 0.86764215 0.37433283 478.79661266 

3 -2.72617893 0.65717097 0.374t3074 178.79654696 

4 -2.72623601 0.05766494 0.37411703 476.79664666 

R4 R5 

-1.500QDoOO 0.03MMOoO 

-1.69019135 0.06440110 

-1.69216076 0.05770645 

-1.69211417 0.06794017 

-1.69210976 0.06796637 

NOTE: CONVERQ€WE CRITERION WET. 

S T A T I S T I C A L  A N A L Y S I S  S Y S T E M  2 

NON-LINE- LEAST SQUARES UlWARV STATISTICS MPEWOENT VARIMLE V 

SOUICE IF WII OF S q W E S  MEAN SQUARE 

REORESSION 6 6604.60146165 1300.90029237 

443 6963.298OO651 
RESIDUAL 
UNCORRECTED TOTAL 446 
(CORRECTED TOTAL) 447 871.79001949 

47e.mti4666 i.oeoeo4es 

PARAMETER E s l I k 4 n  AsY?wTOTIC ASWTOTIC 96 t 
LOWER UPPER 

R l  -2.72623507 0.177iW072 -3.07606146 -2.37641667 
R2 0.66756494 0 .M716212 0.72662766 0.98960220 

0.37411703 0.02109673 0.32086618 0.42737687 
-1.44039676 R3 

RS 0.06796637 0.03403316 -0.00893116 0.12484390 
R4 

Figure 2d. Example 1 Atced by multivariate least squarcs. H1. H2, and H3 imposed. 

SlD. ERROR CONFIDENCE INTERVAL 

-1.59210976 0.0771 9366 -1.74382376 
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with Jacobian 

MULTIVARIATE NONLINEAR REGRESSION 

1 0  0 0  0 
0 -1  -1  0 0 
0 1 0 0  0 
0 0 1 0  0 
0 0 0 1  0 
0 -1 0 0 - 1  
0 0 0 0  1 
0 0 - 1  0 -1 

SAS code implementing this restriction is shown in Figure 2d. 
The results of Figures 2a through 2b are summarized in Table 2. 
As was seen in Chapter I,  these regressions can be assessed using the 

likelihood ratio test statistic 

As with linear regression, when one has a number of such tests to perform, 
it is best to organize them into an analysis of variance table as shown in 
Table 3. For each hypothesis listed under source in Table 3, the entry listed 
under d.f. is 4, as above, and that listed under Sum of Squares is (SSE,,, 
- SSE,), as above. As an instance, to test H1, H2, and H3 jointly one 
has 

SSE,,, = 478.79654666 

SSE, = 442.659198% 

(from Fig. 2 d )  

(from Fig. 2.) 

with 443 and 434 degrees of freedom respectively, which yields 

SSE,,, - SSE, = 36.1374 

q-443 - 434 = 9 

as shown in Table 3. In general, the mean sum of squares cannot be split 
from the total regression s u m  of squares, but in this instance it would be 
possible to fit a mean to the data as a special case of the nonlinear model by 
setting B = 0 and choosing 



Tab& 2. Puuntter Estimates and Standard Emus' for Exnmpk 1. 

Subject to 

Parameter Unconstrained H1 H1& H2 H1, H2 & H3 

- 1.5257 
(0.9885) 

(1.2778) 

0.9016 
(1.4131) 

1.6635 
(1.3169) 

(0.3491) 

0.2085 
(0.4197) 

(0.4806) 

0.8505 

- 2.9867 

-0.9643 

- 1.3308 

(0.5454) 

(0.0) 
- 1.0 

0.2672 
(0.1086) 

0.0711 
(0.1707) 

- 0.4701 
(0.0744) 

0.1893 
(0.1290) 

0.1076 
(0.1425) 

- 0.4054 
(0.0793) 

- 1.5824 
(0.8586) 

(1.2720) 

1.3049 
(0.9532) 

1.6656 
(1.0145) 

(0.2317) 

0.4018 
(0.2969) 

(0.3660) 

0.4106 
(0.3 3 17) 

(0.01 

0.2394 
(0.0939) 

0.1063 
(0.1161) 

(0.0541) 

- 3.2764 

- 1.2027 

- 1.1193 

- 1.0 

- 0.4598 

- 2.9273 
(0.2778) 

- 1.2836 
(0.2268) 

0.8189 
(0.0810) 

0.361 1 
(0.0302) 

(0.0917) 

0.8189 

- 1.5379 

- 1.0484 
(0.0836) 

0.0305 
(0.0361) 

- 1.0 
(0.0) 
0.3611 

0.0305 

- 0.4674 
(0.0192) 

- 2.7252 
(0.1780) 

- 1.2317 

0.8576 
(0.0672) 

0.3741 
(0.0271) 

(0.0772) 

0.8576 

- 1.5921 

- 0.9155 

0.0580 
(0.0340) 

(0.0) 
- 1.0 

0.3741 

0.0580 

- 0.4321 

'Standard errors shown in parentheses. 
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T a b  3. A d y s l s  of Vlrrl.ace. 

soutce d.f. Sumofsquares MeanSquare F P > F  

Mean 1 
Regression 4 
Hl,  H2, H3 9 

m 3 
H 2  after H1 3 
H3 aHQi 3 
H1, H 2  

Error 434 
Total 448 

6111.5000 6111.5000 
393.0015 98.2504 96.324 0.00000 
36.1374 4.0153 3.937 o.Ooo1 
4.6591 1.5530 1.523 0.206 
3.6360 1.2120 1.188 0.313 
27.8423 9.2808 9.099 0 . m 1  

442.6592 1.0200 
6983.2980 

The existence of a parametric restriction that will produce the model 

justifies the split. The sum of squares for the mean is computed from 

SSE,, = 6983.29800851 (from Fig. 2d) 
SSE, = 871.798001999 (from Fig. 2d) 

with 448 and 447 degrees of freedom respectively, yielding 

SSE- - SSE, 6111.5000 
q-448 - 447 = 1 

which is subtracted from 

SSE- = 6504.50146185 (from Fig. 2d) 

with 5 degrees of freedom to yield the entry shown in Table 3. 
From Table 3 one sees that the model of Figure 2c is reasonably well 

supported by the data and the model of Figure 2d is not. Accordingly, we 
shall accept it as adequate throughout most of the rest of the book, realizing 
that there are potential specification errors of at least two sorts. The first are 
omitted variables of which those listed in Table l c  are prime candidates 
and the second is an erroneous specification of functional form. But our 
purpose is illustrative and we shall not dwell on the matter. The model of 
Figure 2c wil l  serve. 0 
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As suggested by the p d n g  analysis, in the sequel we shall accept the 
information provided by 2-l = Elf; regarding the rotation P that will 
reduce the multivariate model to a univariate model, as we must to make 
any progress, but we shall disregard the scale information and shall handle 
scaling in accordance with standard practice for univariate models. To state 
this differently, in using Table 3 we could have entered a table of the 
chi-square distribution using 27.8423 with 3 degrees of freedom, but instead 
we entered a table of the F-distribution using 9.099 with 3 and 434 degrees 
of freedom. 

The idea of rewriting the multivariate model 

y, = f ( x , , 6 )  + e l  t = 1 , 2  ,..., n 

in the form 

s = 1,2,  ..., nM “)),” ~ “f **( L & x b * * ,  0) + 66e,” 

using the transformation 

in order to be able to use univariate nonlinear regression methods is useful 
pedagogically and is even convenient for small values of M. In general, 
however, one needs to be able to minimize S( 6, zl) directly. To do this note 
that the Gauss-Newton correction vector is, from Section 4 of Chapter 1, 
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The modified Gauss-Newton algorithm for minimizing S(8, 2 )  is then: 

0. Choose a starting estimate 8,. Compute Do = D(9,, Z), and find a A, 
between zero and one such that 

1. Let 8, = 8, + AoDo. Compute D, = D(B,, Z), and find a A,  between 
zero and one such that 

2. Let d2 = 8, + AID,. ... 

The comments in Section 4 of Chapter 1 regarding starting rules, stopping 
rules, and alternative algorithms apply directly. 

PROBLEMS 

1. 

2. 

3. 

4. 

5. 

Show that if e, is an n-vector with typical element e,, for r = 1,2, . . . , n 
and a = 1,2 , .  . . , M, and %'(ear, eas) = uaa if r = s and is zero other- 
wise, then 

Reestimate Example 1 (in unconstrained form, subject to H,, subject to 
Hl and H,, and subject to H,, H2, and H 3 )  using the normalizing 
convention uI + u2 + u3 = - 1 (instead of u 3  = - 1 as used in Figs. 
2a, 26, 2c, 2d).  
Using the grouped by equation data arrangement, show that the 
Gauss-Newton correction vector can be written as 

~ ( e ,  z) = [Ff(e)(z-l Q I ) F ( ~ ) ]  - ' F ~ O ) ( Z - ~  QP I ) [ Y  -f(s)l 
where F ( 8 )  = ( ~ 9 / 8 9 ' ) / ( 9 )  5 diae[F,(B,), ~. . , F,,,(eM)]. 
Show that S(8, Z) satisfies the integral condition of Assumption 6 of 
Chapter 3, which justifies the expedient of replacing 2 by 2 and 
subsequently acting as if 2 were the true value of 2. 
If the model used in Example 1 is misspecified as to choice of 
functional form, then theory suggests (Gallant, 1981, 1982; Elbadawi, 
Gallant, and Sow, 1983) that the misspecification must take the form 
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of omission of additive terms of the form 

uajcos( jk ix)  - b,,,sin( jk ix)  

from the indirect utility function 

g(xlS) = a’x -I- t x ’ B x ;  

recall that x = l n ( p / E ) .  Test for the joint omission of these terms for 

and j = 1,2, a total of 24 additional parameters. 
Instead of splitting out one degree of freedom for the model 6. 

from the five degree of freedom regression sum of squares of Figure 2d,  
as was done in Table 3, split out two degrees of freedom for the model 

7. (Out of range argument.) Show that the constants r , ,  1,, u,  b, c,  a, p 
can be chosen so that the function 

is continuous with continuous first derivative 

Verify that slog(x) is once continuously differentiable if the constants 
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are chosen as 

t ,  = 10-7 
r ,  = o 
a = -299.999999999999886 
B = 5667638086.9808321 
a = -299,999999999999886 
b = 5667638086.9808321 
c - - 28288190434904165. 

Use slog(x) in place of h(x) in Figures la through 2d, and observe 
that the same numerical results obtain. 

3. HypoTHEsIS TESTING 

We shall derive our results on hypothesis testing in a summation notation 
using the grouped by subject data arrangement. We do so mainly for 
pedagogical reasons, although, as remarked earlier, this form is more 
natural for translating results to machine code. 

The prevalent form in the literature is a vector notation using the 
grouped by equation data arrangement. To provide convenient access to the 
literature, the results are restated in this notation at the end of the section. 
There are no new ideas or merent results involved in this restatement, just 
an algebraic rearrangement of terms. 

The data follow the model 

y, Pf(X,,eo) + el r = 1,2 ,..., n 

with the functional form f ( x ,  0) known, x, a hector,  8 a p-vector, y, an 
M-vector, and e, an M-vector. Assume that the errors ( e l )  are indepen- 
dently and normally distributed, eacb with mean zero and variance-covari- 
ance matrix Z. The unknown parameters are 8' and Z. 

Consider testing a hypothesis that can be expressed either as a paramet- 
ric restriction 

H: h ( e o )  - o against A : h ( e o )  + o 

or as a functional dependence 

~ : e ~ = g ( p ~ ) f o r s o m e p '  against ~ : @ ' + g ( p ) f o r a n y p .  
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Here, h ( 6 )  maps R P  into R4 with Jacobian 

321 

which we assume is continuous and has rank q over the parameter space; 
g( p )  maps R into R P and has Jacobian 

The Jacobians are of order q by p for H ( 8 )  and p by r for G(p) ;  we 
assume that p = r + q, and from h [ g ( p ) ]  = 0 we have H[g(p) ]G(p)  = 0. 
For complete details see Section 6 of Chapter 3. Let us illustrate with the 
example. 

EXAMPm 1 (Continued). Recall that the model 

~ , = = f ( x , , 6 ~ ) + e ,  f = 1 , 2  ,..., 224 

with 

was chosen as a reasonable representation of the data of Table 1 on the 
basis of the computations reported in Table 3. Since we have settled on a 
model specification, let us henceforth adopt the simpler subscripting scheme 

In this notation, the hypothesis of homogeneity may be written as the 
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/ P1 

- p 2 -  P3 

P2 

P3 
P4 

- P5 - P2 

P5 

with Jacobian 

0 0 1 0  0 

0 - 1  0 0 - 1  
0 0 0 0  1 

G ( p ) s  0 0 0 1 0 

i i 0 0 0 1 0 0 1 1  

0 1 1 1 0 0 0 0  
H ( e ) =  o o 1 o o 1 1 0 .  

The hypothesis may also be written as a functional dependence 

with Jacobian 

4 
-e, - e., 

03 
e, 
f% 

-9, - e, 
4 

-e4 - 8, 

1 0  0 0  0 
0 -1 -1 0 0 i 0 1 0 0  0 

which is, of course, the same as was obtained in Section 2. In passing, 

Throughout this section we shall take 3 to be any random variable that 
converges almost surely to Z and has G(e - Z) bounded in probability. 
To obtain a level a test this condition on 2 need only hold when 
H : h( e o )  = 0 is true; but in order to use the approximations to power 
derived below, the condition must hold when A : h ( e o )  # 0 as well. 

observe that H [ g ( p ) ] G ( p )  = 0. 
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There are two commonly used estimators of Z that satisfy the condition 

under both the null and alternative hypotheses. We illustrated one of them 
in Section 2. There one fitted each equation in the model separately in the 
style of Chapter 1 and then estimated Z from single equation residuals. 
RecaiIing that 

R 

w. 2) = c [Y,  - fb,, @ ) l ’ ~ - ” . Y t  - A x , .  @ > I  
r - i  

an alternative approach is to put 2 = I, minimize S(8, I) with respect to 8 
to obtain dx, and estimate 2 by 

t -1 

1 “  
= - c ê ,z;. * 1-1 

If there are no across equation restrictions on the model, these two 
estimators will be the same. When there are across equation restrictions, 
there is a tendency to incorporate them directly into the model specification 
when using the grouped by subject data arrangement as we have just done 
with the example. (The restrictions that 8,, 0,, 0,. and 0, must be the same 
in both equations are the across equation restrictions, a total of four. The 
restriction that 0, must be the same in the numerator and denominator of 
the first equation is called a within equation restriction.) This tendency to 
incorporate across equation restrictions in the model specification causes 
the two estimators of L: to be different in most instances. Simply for 
variety’s sake, we shall use the estimator computed from the fit that 
minimizes S(0, I) in this section. 

We illustrate these ideas with the example. In reading what follows, 
recall the ideas used to write a multivariate model in a univariate notation. 
Factor 2-* as 2-l = ? I F ,  let denote a typical row of ?, and put 

s = M ( f  - 1) + a 
“Y,” = li; a) Y 
“XS” = ( x ; ) ’  

TYT, 0 )  =p;,,)j(xf, 8 ) .  

s(e, 2) = 2 f-Yd-- -f rr(L.xt .* ,  e ) ] ’ .  

In this notation 
nM 

s- 1 
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% s t e t m t 8 :  

OATA WRKOli S I T  EXAlQLEli 
P1-1.0: PZ=O.Or Y=Pl*Yl*P2Y2: OUTPUT; 
Pl-0.0; P2-1.01 Y -P lY l tP2WZ;  OUTPWi DELETE; 
PROC &IN DITAIYORI(O1 WETmX)rOM)ZLS IlER=SO COIIVUIW%COl.E-l3r 
PAR= 110-2.9 121-1.3 131.62 l b . 3 6  16=-1.5 161-1. T7--.03 T8=-.41 
P U I T ~ + T ~ . X ~ + T ~ + X ~ + T ~ * X ~ :  IN~R=T6+T3*Xl+T6*X1+T7*X3; 
B~~-1+11+X1+17tX2+T8 .X3:  
)1ooEL Y ~ P ~ ~ ~ ~ ( P U K / I ) ~ ) * P ~ Y O O ( I W T E R / I M G ~ ) I  
WR.fl-Pl/PEAKt ~ . 1 2 9 l / P E A K * X l :  D€R.T3IPl/PEW+X2+P2/INTER*XI 
DER.T4~Pl /PU*X3+( -P t -P2) /BA~*X I :  D€R.T~IPZ/XNTERI 
W R . T 6 I P 2 / f N T ~ * X 2 i  OER.l7=P2/IN~R*X3+(-Pl-P2)/BISE*X2; 
DER.T8=(-Pl-P2)/BASE*X3: 
OUTPUT OUTIyy1K02 RESIDUAL-E: 

Output: 

ITERATIOH 

SAS 

NW-LIMEAR LEAST SQUARES ITERATIVE P)(AsL 

DEPEWOENT VARIABLE: Y mTm)Or OMISS-MKTW 

T t  
14  
17  

12  
16 
18 

T3 RESIDUAL SS 
16 

0 -2.90000000 -1.30000000 0.82000000 6 a . 3 ~ 7 7 9 ~ 2 6  
0.36oooO00 -1.60000000 -1  .WOO0000 

-0.03OOWM) -0.470000W 

14 -2.98026942 -1.16088896 0.78892676 67.02306699 
0.36309087 -1.tio8043ao - O . Q Q Q O S ~ O ~  
0.06407441 -0.47436347 

Figwe 3e. Example 1 fitted by least squpres. across equation mswaiats imposed. 

EXAMPLE I (Continued). SAS code to minimize S(6, I )  for 

1 

6, + e2x, + e,x, + 84x3 

In -1 + o , ~ ,  + e7x2 + e8x3 
e, + e3x1 + e6x2 + 67x3 

In -1  + + e7x2 + esxj 
is shown in Figure 3a. A detailed discussion of the ideas is found in 
connection with Figure 2a, briefly they are as follows. 

Trivially the identity factors as I = P‘P with P = I .  The multivariate 
observations y, ,  x, for t = 1.2,. . .,224 = n are transformed to the uni- 
variate entities 

LL 
“Y,” = P[+Y, xs” = (P;*,, 4)‘ 
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s15 S t . t O m n t I I  

OATA woRK03: SET WRK02; €1-E; I F  CIOD(-N-,2)=0 THEN DELETE; 
MlA mWKO4t SET woRK02; E2.E; tF HW(_N-,2)=1 THEN OPLETE; 
DATA woAK05; MEROE -KO3 MWIKO4; KEEP E l  €2; 
PROC M T R I X  FWI2O; FETCH E DAlAIWORKOI(KEEP=El € 2 ) :  
SI01U=Ei*Et/224; PRINT SIQUA: P=HALF(IW(SIOIu)): PRINT P; 

Output: 

SAS 

S I W  COL 1 coL2 
ROW1 0.1649246288351 0.09200672942276 
Row2 0.09200672942276 0.08964264342294 

P COL 1 COL2 

ROW1 3.76639099219 -3.866677609 
ROW2 0 3.339970820624 

FfRlBe 36. Contemporaneous variance-covariance matrix of Example 1 estimated from least 
squares residuals, across quation constraints imposed. 

for s = 1,2, .  . .,448 = nM, which are then stored in the data set WORK01 as 
shown in Figure 3a. The univafiate nonlinear model 

with 

s = M ( t  - 1) + a 

is fitted to these data using PROC NLIN, and the residuals “t!,” for s = 
1,2, .  . . ,448 = nM are stored in the data set named UORK62. 

In Figure 36 the univariate residuals stored in WORK02 are regrouped 
into the residuals 2, for t = 1,2, .  . .,224 = n and stored in a data set 
named UORK05; here we are expl?iting the fact that P = I. From the 
residuals stored in WORK65, 2 and P with 2-l = ?’? are computed using 
PRX MATRIX. Compare this estimate of I: With the one obtained in Figure 
lc. Imposing the across equation restrictions results in a slight difference 
between the two estimates. 
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Using fi as computed in Figure 36, S(B, 2) is minimized to obtain 

- 2.92458126 
- 1.28674630 I 0.81 856986 1 

(from Fig. 3c) - 1.53758854 
- 1.04895916 

as shown in Figure 3c; the ideas are the same as for Figure 3a. The 
difference between 2 in Figures l c  and 3b results in a slight difference 

0 between the estimate of B computed in Figure 2c and tf above. 

The theory in Section 6 would lead one to test H: h(B)  = 0 by com- 
puting, for instance, 

t’ = S(B,  2) - S ( 8 , e )  

and rejecting if L’ exceeds the a-level critical point of the X2-distribution 
with q degrees of freedom, recall that 6 minimizes S ( 8 , e )  subject to 
h ( 8 )  = 0 and that 8 is the unconstrained minimum of S(B,e) .  This is what 
one usually encounters in the applied literature. We shall not use that 
approach here. In this instance we shall compute 

and reject if L exceeds the a-level critical point of the F-distribution with q 
numerator degrees of freedom and nM - p denominator degrees of free- 
dom. There are two reasons for doing so. One is pedagogical: we wish to 
transfer the ideas in Chapter 1 intact to the mdtivariate setting. The other 
is to make some attempt to compensate for the sampling variation due to 
having to estimate X. We might note that S(6;*, 2) = nM (Problem l), so 
that in typical instances S ( t f , e )  nM. If nM is larger than 100, the 
difference between what we recommend here and what one usually encoun- 
ters in the applied literature is slight. 

In notation used here, the matrix & of Chapter 1 is written as (Prob- 
lem 2) 



MOOEL Y-Pl*LOO(PEAK AS€ +P2*LOQ(INlER/BA!X)- 
DER.Tl=Pl/PEAK: &T2lbl/PEAK*Xl f DER.T31bl/PE~+n2+e2/1111ER*Xl: 
O E R . T 4 = P l / P E * K ~ X 3 * ( - P l ~ P 2 ) / ~ ~ * X l  &R.TS-P2/1NTER; 
DER.T6=P2/1NTER*XZ; OER.T7+P2/IIITER*X3*(-Pl-P21/811SL*X2; 
OLR.T6-(-Pl-P2)/WE*X3: 

Output: 

SAS 

W-LINEAR LEAST W A R E S  ITERATIVE PHASE 

OZPEWMNT VARIABLE: Y METMOD: (UUSS-NEWON 

IlERATIoN 

NOTE: 

0 

11  12 
14 1 6  
TI i e  

RESIDUAL SS 

- 2 . 9 0 0 0 o ~ ) o  - ~ . ~ O O O O O O O  0.e2000000 643.55768176 

-0.03W0000 -0.47000600 
0.36000000 -1.60000000 -1.00000000 

14 -2.92468126 - 1 . 2 ~ 7 4 6 3 0  o.ei8569e6 446.85695247 
0.361157e4 - 1 . 5 ~ s e 8 5 4  -1.04895916 
0.03006670 -0.46742014 

COWVERQENCE CRITERION Wl. 
SAS 

MOM-LINEAR LEAST SQUARES SUmARY STATISTICS DEPENDENT VARIABLE Y 

SOURCE OF SUI OF SQUARES MEAN SQUARE 

RLORESSION 6 wia .e4819992  e o e . 6 0 ~ 2 ~ ~ 9  
RESlWIL 440 446.86695247 i . o i i i e 3 9 8  
UMCORRECTED TOTAL 4443 6915.70516239 

(CORRECTED TOTAL) 447 866.32697266 

6 

I 

PARMETER ESTIMATE ASYWPTOTIC A S W T O T I C  95 % 
610. ERROR CDNFIMNCE INTERVkL 

LOWER UPPER 

13 o.eie6eoee 0.000ee226 0.66960389 0.97753684 
14 0.3ei is7e4 0.03029067 0.30162474 0.42WW93 
15 -1.63768864 0.00192966 - 1 . 7 1 8 2 ~ e s 2  -1.35691016 

17 0.03bo8670 0.03614145 -0.04094610 0.101 1 1909 
T8 -0.46742014 0.01926170 -0.60627706 -0.42966320 

11 -2.92458126 0.27790948 -3.4707e461 -2 .3 ie3 ieo i  
12 -1.28674630 0.22671234 -1.73232670 -0.a41itme9 

Tb -1.04e~s916 0.08367724 -1.21311839 -0.ee449993 

F i g w  3e. Example 1 fitted by multivariate least squares, across equation constraints imposed. 
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and 

Writing fi  = h(8)  and fi = H(B), the Wald test statistic is 

W -  &’( A M ‘ )  - ‘fi 
qs 

One rejects the hypothesis 

H :  h ( P )  = 0 

when W exceeds the upper a X 100% critical point of the F-distribution 
with q numerator degrees of freedom and n M  - p denominator degrees of 
freedom that is, when W > F1(1 - a; q, n - p). 
Recall from Chapter 1 that a convenient method for computing W is to 

compute a vector of residuals ê  with typical element 

6, * 64ys”- ‘‘1 9 p ( b 4 ~ , v * ,  I) = ~ ~ a , y ,  - x,, 6) 
compute a design matrix f with typical row 

fit the linear model 

by least squares, and test the hypothesis 

We illustrate. 

EXAMPLE 1 (Continued). We wish to test the hypothesis of homogene- 
ity, 

H: h ( B o )  = o against A : h ( B o )  + o 
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in the model with bivariate response h c t i o n  

In -1 + edX, + B , ~ ,  + eaX, 
e, + e+, + e6x, + e,X, f ( X ,  6) = 

329 

which are then stored in the data set named WORKgl as shown in Figure 4. 
Using parameter values taken from Figure 3c, the entities 

&$ = ‘Cy,” - “f ”(C‘X,”, 6) k = a “f ”( ‘cx$”, 6) 

are computed and stored in the data set named WORK02. We are now in a 
position to compute 

hJ( A&?) - ‘ h  
qs * W -  

by fitting the model 

using least squares and testing 

H : J @ - ~  against A : @ + $ .  

We have 

0.81856986 - 1.04895916 + 0.03008670 
- 1.28674630 + 0.81856986 + 0.36115784 

0.36115784 + 0.03008670 - 0.46742014 
(from Fig. 3c) 

- 0.10701860 

- 0.07617560 
0 1 1 1 0 0 0 0  

= (-0.20030260) 

i 0 0 0 1 0 0 1 1  
A =  0 0 1 0  0 1 1  0 



SAS 

M P  VOIMLE: E 

suI( OF WAN 
SOURCE OF SQOwrES SQUARE F V A L E  

MOOEL 8 4.320106-12 5.100128-13 0.000 
ERROR 440 446.657 l.Ot5584 
U TOTAL 446 446.867 

ROOT MSE 1.007762 R-SqUUIE o.Ooo0 
DCP WAN 0,001628366 ADJ R-SQ -0.0150 
C . V .  61888.34 

NOTE: WO INTERCEPT TERM IS WED. R-SQUARE IS REOEFINED. 

PRtSl>F 

1.0000 

PARAMETER ST*)(OARO TFOR MO: 
VARIABLE OF ESTINATE ERROA PAJIMETER-0 PROB > IT1 

-2.3702M-07 
3.17717E-07 
5.36973E-08 
1.64816E-08 

-6.10689E-08 
7.8122oE-00 
6.66637E-10 
2.78288E-08 

0.277909 
0.226712 
0.080862 
0.030291 
0.091930 
0.06367'1 
0.0361 4 1 
0.019262 

-0.OOO 
0.000 
0.000 
0.000 

-0.000 
0.000 
0.000 
0.W 

1 . m o  
1.m0 
1 .oaw 
1.0000 
1.0000 
1 .ow0 
1.oOoo 
1 .om0 

TEST: HOKlOENE NURERATOR: 7.31206 Ofr  3 F VALUE: 1.1098 
OENONINATOR: 1.01668 O F 1  440 MOB >F : 0.0001 

Figum 4. illustration of Wdd t a t  computatiom with Example 1 
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k(l?&?')-'h/3 = 7.31205 (from Fig. 4) 

(from Fig. 3c or 4) 
(from Fig. 4 or by division). 

s * = 1.015584 
W = 7.1998 

Since F-'(.95; 3,440) = 2.61, one rejects at the 5% level. The p-value is 
0 smaller than 0.001, as shown in Figure 4. 

\ 

Again following the ideas in Chapter 1, the Wald test statistic is 
approximately distributed as the noncentral F-distribution, with q numer- 
ator degrees of freedom, nM - p denominator degrees of freedom, and 
noncentrality parameter 

, 

written more compactly as W A F'(q, nM - p, A). As noted in Chapter 1, 
the computation of h is little different from the computation of W itself; 
we illustrate. 

EXAMPLE 1 (Continued). Consider finding the probability that a 5 %  
level Wald test rejects the hypothesis of homogeneity 

at the parameter settings 

' - 2.82625314 
- 1.25765338 

0.36759231 
- 1 S6498719 
- 0.98193861 

0.04422702 
, - 0.44971643 

0.83822896 

0.09200572942276 0.08964264342294 
.=( 0.16492462883510 0.09200572942276 

n = 224 
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SA8 st8teRmts: 

DATA wORI(O1; SET E W L E 1 ;  
P1=3.76639099219; P2=-3.0666776091 VIPl+YV+P2*V2; OUTPUT; 
P110.0; P2=3.339970820624; YIPlYl+Pl*Y2; OUTPUT; = L E E ;  
DATA wHIK02; 8ET MRKOl; 
11- -2.82626314; T2= -1.26766331); 13- 0.03622896; 141 0.367159231; 
16- -1.66498719; 16. -0.08193081; TI= 0.04422702; 18- -0~44971643; 
PE*K=TltT~X1+T3*X1+T4.X3; INTER-T6+TS*1( l+T6*2+T~~;  
BISE=-l*T4*Xl*T7*X2~T1).X3; 
DER-T 1 rP1 /PEAK ; OER-T2*P 1 /PEW*Xl ; 
MR_f4=Pl/PEAK*X3+(-P1-P2)~SIE*Xl; MR-TS.P2/INTER; 
DER-T6nP2/INIER*X2; DER-T7=P2/INTER*X3+(-Pl-P2)/BASE*Xt; 
DER-l8*(-Pl-P2)/B15E*X3; 
PROC MATRIX; FETCH F OATA310RK02(KEEPIOER-Tl-OER-l1)); C=INV(F'*F); FREE F; 
CETCH T 1 OATA~K02(~EEP=Tl-T8); 
H = 0 1 1 1 0  0 0 0 / 0 0 1 0  0 1 1 D / 0 0 0 1 0  0 1 1 J HO=H*T'; 
LAlt)DA=m)'*INV(H~')*nM/2; PRINT L-A; 

DER-T3.;Pl /PEAK*XZ*P2/IWTER*Xl; 

Output: 

In -1 + 64x1 + B , ~ ,  + e8x,  
4 + e,x, + ebX, + e,x, f ( x .  0 )  = 

SAS 1 

L M D A  col 1 

ROW1 3.29908 

Figw 5. illustration of Waki test power computations with Example 1 

3.76639099219 - 3.865677509 
p =  (0 

Exactly as in Figure 4, the multivariate model is transformed in Figure 5 to 
a univariate model, and the Jacobian of the univariate model evaluated at 
6O-denote it as F-is stored in the data set named WORK82. Next 

= 3.29906 (Fig. 5)  2 A =  
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with h = h(So) ,  H = ( a/a8’)h(B0),  and 

333 

is computed using straightforward matrix algebra. From the Pearson- 
Hartley charts of the noncentral F-distribution in Scheffe (1959) we obtain 

1 - F‘(2.61; 3,440.3.29906) = .55 

as the approximation to the probability that a 5 %  level Wald test rejects the 
hypothesis of homogeneity if the true values of 8’ and Z are as above. 0 

A derivation of the “liLelihood ratio” test of the hypothesis 

H: h ( 8 O )  = 0 against A :  h(Bo)  # 0 

using the ideas of Chapter 1 is straightforward. Recall that 0 is the 
unconstrained minimum of S(0, e), that 6 minimizes S ( 0 , e )  subject to 
h(B)  - 0, and that h ( 8  maps IPP into Rq. As we have seen, an alternative 
method of computing t? makes use of the equivalent form of the hypothesis 

H: eo = gf po) for some po against A : eo # g( p) for any p.  

One computes the unconstrained minimum 6 of S[g(p ) ,  $1 and puts 
6 = g(8). Using the formula given in Chapter 1, 

and using 

one obtains the statistic 

One rejects H: h ( e 0 )  = 0 when L exceeds the a X 100% critical point F, 
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of the F-distribution with q numerator degrees of freedom and nM - p 
denominator degrees of freedom, Fa = F-‘(l - a; q, nM - p ) .  

We illustrate the computations with the example. In reading it, recall 
from Chapter 1 that one can exploit the structure of a composite function 
in writing code as follows. Suppose code is at hand to compute f ( x ,  8 )  and 
F(x,  8 )  = ( a / W ) f ( x ,  e). Given the value jj, compute e’ = g(6) and d = 
( a/iIp’)g( 6). Obtain the value f[x, g( J)] from the function evaluation 
f ( x , 6 ) .  Obtain ( a / a p ’ ) f [ x ,  (jj)] by evaluating F ( x ,  8) and performing the 
matrix multiplication ~ ( x ,  B )C. 

EXAMPLE 1 (Continued). Consider retesting the hypothesis of homo- 
geneity, expressed as the functional dependence 

H : B0 = g( p”) for some p” against A : 8’ f g( p) for any p 

with 

P2 
P3 
P4 d P )  = 

in the model with response function 

using the “likelihood ratio” test; B has length p = 8 and p has length 
r = 5,  whence q = p - r = 3. The model is bivariate, so M = 2, and there 
are n = 224 observations. We adopt the expedient discussed immediately 
above, reusing the code of Figure 3c; the Jacob- of g ( p )  was displayed 
earlier on in this section. The result is the SAS code shown in Figure 6. We 
obtain 

SSE( 8 . 2 )  = 474.68221082 (from Fig. 6). 



DATA WRKOl; SET EXAHPLEI; 
Plm3.76639099219; P2m-3.865677500; YrPlYl+P2*Y2; OUTPUT; 
Pl-0.0; P2=3.339970820524; Y=Pl*Yl+P2Y2; OUTPUT; DELETE; 
PROC WLIW DATAmMWU(O1 wETm)olol4USS ITER-50 CONVEROEWCE*l.E-l3: 
PARMS R1--3 R21.0 R31.4 R4m-1.6 R51.03; 
T l d l .  T2=-R2-R3* 1 3 4 2 ~  T4mR3; T6mR4; TI*-RI-R2; 1 7 4 6 ;  T8=-R5-R3; 
P E ~ ~ ~ l + T 2 * X l * T 3 ~ X X t ;  INTER=T6+13*Xl+T6~2+T7*X3; 
B A 8 E ~ - l + T 4 * X l + T 1 * X 2 + T 8 ~ 3 *  
WWtL Y=Pl*Loo(PEAlt/eAM);PZILOO( INTER/BASE ) i 
DER T l l p l / P E M *  DER 12=Pl/PEAK*)o* OER_T3=Pl/PEU(*X2*PZ/INTER*XI; 
OER~T4IPl/ffAK~X3*(-$l-P2 /MS€*Xl OER TSmP2/INER. 
DEA-T61P2/INTER*X2 I DEA-&bPZ/~NTER*X3*~-Pl -P2 1 /BA&*X2 ; 
OR1 T8=(-Pl-P2)/BAM*XS* 
DERTRldER 11 : D E R . R 2 = - ~ _ 1 2 ~ R - T 3 - D E R - T 6 :  
DER .R4dER~T6:  DER .R5=-MR_T6+MR_T7-DER_tO; 

Output i 

SAS 

NON-LINEAR LEAST SQUARES 

DEPENDENT VARIABLE: Y 

ITERATION R 1  
n4 

R2 
R6 

0 -3.00000000 0.80000000 
-1.60000000 0.03000000 

1 

ITERATIVE PHISE 

ETHOO: BAUSS-NEWTON 

R3 RESIDUAL SS 

0.40OO0000 656.82802354 

NOTE: CMROEWCE CRITERION MET. 

U S  

NO#-LINEAR LEAST SQUARES W A R Y  STATISTICS OEPENOENT VARIABLE Y 

SOURCE OF sum OF SQUARES MEAN SQUARE 

2 

REORESSION 6 6441.02294156 i2ea .204508~ i  
RESIDUAL 443 414.6a221082 1.01161141 
U~~CORRECTEO TOTAL 440 6915.70616239 

(CORRECTED TOTAL ) 447 e66.3zti97266 

PARMETER ESTINATE ASYWTOTIC ASYNPTOTIC 95 S 

LOMR UPPER 
R1 -2.72482606 0.17837791 -3.07640344 -2.37424861 
R2 0.86773951 0.06707067 0.72692147 0.98955766 
R3 0.37430609 0.02713134 0.32098316 0.42762902 
R4 -1.69239423 0.07748W8 -1.74468762 -1.41010083 
R6 0.05768361 0.03407531 -0.0092a668 0.12466402 

STD. ERROR CO)(FIDEKf INTERVAL 

Pigwe 6. Example 1 fitted by multivariate least squares, across equation constraints imposed, 
homogeneity imposed. 
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Previously we computed 

SSE(6,e) = 446.85695247 (from Fig. 3c) .  

The “likelihood ratio” test statistic is 

- (474.68221082 - 446.85695247)/3 - 
446.85695247/(448 - 8) 

= 9.133. 

Comparing with the critical point 

F-’(.95; 3,440) = 2.61 

one rejects the hypothesis of homogeneity at the 5% level. This is, by and 
large, a repetition of the computation displayed in Table 3; the slight 

0 change in 2 has made little difference. 

In order to approximate the power of the “likelihood ratio” test we 
proceed as before. We formally treat the transformed model 

s = 1,2, ..., nM u y , 7 p  pli 6 . f  w(6ax,s*, e) + 66 9% 

e, 

as if it were a univariate nonlinear regression model and apply the results of 
Chapter 1. In a power computation, one is given an expression for the 
response function i (x,  0) (with range in RM), values for the parameters 6’ 
and 2, a sequence of independent variables { x,};-~, and the hypothesis 

H : 6’ = g( p o )  for some po against A : 8’ # g( p) for any p.  

Recall that the univariate response function is computed by factoring 2-l 
as Z-’ = P’P and putting 

6.f *w,’*, e) = p; , , , f (x , ,  e) 
for 

s = M ( t - ] ) + a  a = 1 , 2  ,..., M t - I , 2  ,..., n. 

Applying the ideas of Chapter 1, the null hypothesis induces the location 
parameter 

0,. = &:) 



337 

Let 

similar algebra results in the following expressions for the noncentrality 
parameters of Section 5 of Chapter 1: 

B'PF8 - &'PFG6 
A1 = 2 

A 2  = 2 

8'6 = C 8;Z-%, 

6'6 - 8'PF6 

n 

1 - 1  

One approximates the probability that the "likelihood ratio" rejects H by 

where 

c, = 1 + -* n M - p '  
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H ( x ;  ul, u,, A,, A,) is the distribution defined and partially tabled in Sec- 
tion 5 of Chapter 1. Recall that if A, is small, the approximation 

P( L > Fa) 1 - F‘( Fa; q ,  nM - p ,  A,) 

is adequate, where F ’ ( x ;  u,, u2, A )  denotes the noncentral F-distribution. 
We illustrate with the example. 

EXAMPLE 1 (Continued). Consider finding the probability that a 5% 
level “likelihood ratio” test rejects the hypothesis of homogeneity 

H: B0 = g( Po)  for some po against A : eo + g( p )  for any p 

with 

g ( P )  = 

I P1 
-Pz - P3 

P2 
P3 
P4 

-P5 - P2 
P5 

at the parameter settings 

-2.82625314 
- 1.25765338 

0.838228% 
0.36759231 

- 1 S6498719 
-0.98193861 

0.04422702 
- 0.44971643 

0.09200572942276 0.08964264342294 
0.164924628835 10 0 .O92OO572942276 

n = 224 

for data with bivariate response function 

8, + e2x1 + e 3 x 2  + e4x3  
-1  + e,x, + 67x2 + 4 x 3  

e5 + e3x1 + ebX, + e,x,  
- 1 + e.,x, + o 7 X ,  + e8x3  

The value of Bo chosen is midway on the line segment joining the last two 
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SAS stmtwmlts: 

339 

DATA Y R K O 1 ;  SET LWUlPLEl; 
Plr3.16630090219; P2=-3.866677609; YIpl*r l tP2*Y2; OUTPUT; 
P1-0.0; P2=3.359970820624: Y=Pl*rl+P2*Y2; OUTPUT; DeLElE; 
DATA NORKO2; SET YRKO1; 
T l -  -2.82626314; 12- -1.26766338~ T3- 0.030226961 T4- 0.36769231; 
T I =  -1.56490719; T I =  -0.981S3661; 17- 0.04422702; TO- -0.41011643; 
PEAK-TltT2*XltTS*X2tT4*X3: I)(TER-T6+lS*Xl+T6*XZtT7*X3; 
W f - - l t T 4 * X l t T 1 + ) ( 2 t T ~ * X 3 :  
Fl-Pl/PEAK; F2IPl/PEAK+Xl; F3IPl/PEAK*X2*P2/INTER*XI; 
F4~PI/PEAK*X3t(-Pl-P2)/6AB*Xl; FS=PZ/XNTER; 
FB=P2/INTER*X2; F7=P2/ IMtER+X3+(-Pl-P2J~A~*X2;  FB-(-Pl-PZ)/B*SE*XS; 
~ ~ I P P r r ~ ( ~ / B A S E ) t P 2 * L O O ( X N ~ R / B A S E ) ;  OROP Tl-Ta; 
PROC NLIN OATA=woRKO2 lllTH00=BIUSS ITER-60 COmEROENCE=l.E-13; 
PARE4 R l l - 3  R21.8 R 3 r . 4  R4r-1.6 R6-.03; 
1 1 4 1 ;  T2m-RZ-W; 1 3 6 2 ;  1 4 4 3 ;  T6rR4; 16r-RC-RZ; T 7 6 6 ;  T6=46-R3: 
CEAK=TltT2*XltT3*XZtT4*X3; INTER-16tT3*XltT6*X2+TM(3; 
B ~ E = - 1 ~ T 4 * X 1 ~ T 7 * x 2 ~ T o ~ x 3 ;  
MXXL vWmY=P1*LoO(PEAK/IusE J+P2YW(INTLR/MSE); 
DER-Tl-Pl/PEIK: OER-T2-Pl/PEAK*Xl; OER-T3*Pl/PEAK*XZ+P2/1NTEWXl; 
D E A _ T 4 ~ ~ / P E A K * X 3 t ( - P I - P 2 ) / B I S E * ~ l ;  OEA-TbP2/INTCR; 
OER-T6=P2/lNTER*X2: OER_T7-P2/INTER*X3~(-Pl-P2J/BAS€*X2: 
~R_TO=( -P l -P2) / ;BA~*WJr  
OER.Rl=OER-Tl: DER.R2--MR_T2+OER_T3-DER-T6; 
OER.R4IMR_T6: OER.RI=-MR_T6+0ER_T7-MR_TB: 

Output: 

ITERATION 

SAS 

NON-LINEAR LEMT SQUARES 

OEPENOENT VARIABLEr Y 

R 1  
R4 

R2 
R6 

0 -3.00000000 0.80000000 
-1.60000000 0.OMOWOO 

4 -2.13217460 0.86019876 
-1.69899262 0.06540598 

1 

ITERATIVE PHASE 

METHOOI OAUSS-NEWON 

R3 RESIWAL SS 

0.40000OO0 9 0 . 7 4 2 a i ~ s  

Figure 7. Illustration of likelihood ratio test power computatiws with Example 1 

columns of Table 2. Recall (Fig. 36) that X-’ factors as 2-’ = P’P with 

3.339970820524 
3.76639099219 - 3.865677509 

Refemng to Figure 7, the multivariate model is converted to a univariate 
model, and the entities “ j” (“xS” ,  8’) and ( a/a8’>.‘f”(“xs”, 6 )  are com- 
puted and stored in the data set named WORK02. Reusing the code of 
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SAS St.t.rmtr: 

M T A  M#K03; SET blOUK02; 
R1*-2.73217460~ R24.86819076~ R3~0.37461@06~ R4=-1.69899262; RS~O.066lOSOd; 
1 1 4 1 ~  12.42-RJ; 1 3 6 2 ;  1 4 4 3 ;  1 6 4 4 1  16m-RI-R21 1 7 4 6 ~  18146-R3; 
PEAKmTltlm(l~T3*X2tT4S)(s~ X ~ E R = ~ t T 3 * X l ~ T 6 * X 2 t T ? * X 3 ;  
~ = - l * f 4 * X l t f 7 * X 2 * T 0 * X 3 ;  
OELTA-PlW.00(PEAK/BASE )tfPz*Lo(I( f N l E R / M S E  ) -yOuI+(v; 
F01mFl; FOt=-F2tF3-F6; FO3--F2*F4-F8;FO4-F6; FOb=-F6*f?-FB; 
PROC REQ DATA#ORKOJ; MODEL DELTA Fl-F8 / MOIMT; 
PROC RE0 MTAIWOAKOS; HOWL DELTA * FQl-FQ6 / WOIWT; 

Output: 

DEP VIRIMLE: DELTA 

Slmw 
S o U l c E  0): Spwvles 

HOOEL 8 7.401094 
ERROR 440 0.030472 
u TOTAL 448 7.431667 

M P  VARIWKE: OELTA 

sun OF 
SOURCE OF W W S  

mJML 6 0.134961 
ERROA 443 T.296616 
U TOTAL 448 T.43lS6T 

SAS 

=AN 
SPuARlE F VALUE 

0.926137 13366.4S6 
.OOOO692S4?? 

SAS 

MEAN 
M E  F VALUE 

0.026990 1.639 
0.016471 

F-7. (Continued). 

pR<#>F 

0.0001 

PROWF 

0.1472 

3 

4 

Figure 6, p: to minimize 

is computed using PROC NLXN. From this value and setting d: = g(&, the 
entities 

are computed, adjoined to the data in UORK02, and stored in the data set 
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named WORK03. Then, as explained in connection with Figure lla of 
Chapter 1, one can regress “4” on ( d / a O ’ )  “f”(“xs”, So) to obtain 6’6 and 
6‘PF6 from the analysis of variance table and can regress “6s’* on 
(8/86”)”f ”(“x~”, Oo)(8 /ap’ )g(p t )  to obtain 6FFG6. We have 

6’6 - 7.431567 
&PF6 = 7.401094 
6‘PFG6 - 0.134951 

(from Fig. 7) 
(from Fig. 7) 
(from Fig. 7) 

whence 

6’PF8 - 8’PFG6 
7.401094 - 0.134951 

2 

A, = 2 

= 

= 3.63307 

2 
6‘6 - 6’PF6 

A ,  = 

7.431567 - 7.401094 
2 P - 0.01524 

ca=l+- 4Fa 
n M - p  
2.61 -1+3- 448 - 8 

= 1.01780. 

Direct computation (Gallant, 1975b) yields 

P( L > 2.61) 1 - H(1.01780; 3,440,3.63307,0.01524) 
= 0.610. 

From the Pearson-Hartley charts of the noncentral F-distribution (Schefft, 
1959) one has 

P(L > 2h1) 1 - F’(2.61;3,440,3.63307) 
= 0.60. 0 

In Chapter 1 we noted that the Lagrange multiplier test had rather 
bizarre structural characteristics. Take the simple case of testing H : Bo = 6* 
against A : 8’ # 6+. If B+ is near a local minimum or a Iwal maximum of 
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the sum of squares surface, then the test will accept H no matter how large 
is the distance between 6 and 8+. Also we saw some indications that the 
Lagrange multiplier test had poorer power than the likelihood ratio test. 
Thus, it would seem that one would not use the Lagrange multiplier test 
unless the computation of the unconstrained estimator 6 is inordinately 
burdensome for some reason. We shall assume that this is the case. 

If 6 is inordinately burdensome to compute, then 6* will be as well. 
Thus, it is unreasonable to assume that one has available an estimator f: 
with 6 ( e  - 2) bounded in probability when h(8O) = 0 is false, since 
such an estimator will almost always have to be computed from residuals 
from an unconstrained fit. The exception is when one has replicates at some 
settings of the independent variable. Accordingly, we shall base the Lagrange 
multiplier statistic on an estimator 2, computed as foUows. 

If the hypothesis is written as a parametric restriction 

H :  h ( e o )  = o against A :  h ( e o )  z o 
then let 8" minimize S(B, I) subject to h ( 8 )  = 0, and put 

If the hypothesis is written as a functional dependence 

H : 8 O  = g( po)  for some po against A : 8' # g ( p )  for any p 

then let 6" minimize S[g(p) ,  I] and put 

- 
The constrained estimator corresponding to this estimator of scale is 8' that 
minimizes S(8, e) subject to h ( 8 )  = 0. Equivalently, let 6 minimize 

Factoring 2-l as 2-l = P'F, denoting a typical row of r? by jY [a l  and 
S[g(p) ,  21, whence 8 = g m ,  

formally treating the transformed model 

s = 1,2, ..., nM u y , w  = a f  w( 6 ' x I w ,  8 )  + &6e,s% 

with s = M(r - 1) + a 
" y, " = jY; yr 

"x," = (&, x;)'  

Y "("G 8 )  = p;..,,f(X,, e) 
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as a univariate model, one obtains as the second version of the Lagrange 
multiplier test given in Chapter I the statistic 

One rejects H : It(&') = 0 if 1? > d,, where 

nMFa 

4 

and Fa demotes the a X (100%) critical point of the F-distribution with q 
numerator degrees of freedom and nM - p denominator degrees of free- 
dom that is, a = 1 - F( Fa; q, nM - p). 

One can use the same approach used in Chapter 1 to compute I?. Create 
a data set with observations 

d a 5  n M - p  
+ Fa 

6'- e, *? 
''y,*'- ''f **( "x,**, 4 )  = pla)yf - p ( ~ ( x ~ ,  8 )  

Let P be the nM-vector with "Za" as elements, and let g 
matrix with f;l as a typical row. A linear regression of 
intercept term yields the analysis of variance table 

be the nM by p 
e' on fi with no 

From this table I? is computed as 

Let us illustrate. 
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EXAMPLE 1 (Continued). Consider retesting the hypothesis of homo- 
geneity, expressed as the functional dependence 

H : 80 =L: g( Po)  for some PO 

with 
gainst A : B0 # g ( p )  for a n y p  

P1 
-Pz - P3 

PZ 
P3 
P4 

-P5 - P2 
P5 

-P3 - P3 

ITERATION 

0 

!as 

WON-LINEAR LEAST SQUARES ITERATIVE PMSE 

MPENENT VAftIABLEt Y M E T W r  OAWS-NEWTON 

Rl R2 R3 
R4 R6 

-3.00000W0 0.80006000 0.40000000 
-1.60000000 0.03000000 

1 

RESIDUAL SS 

63.33812691 

6 -2.71996278 0.808TMi62 0.36226861 60.26116542 
-1.63399610 0.08112412 

Flgrpce 8u. Example 1 fitted by l a s t  squares. across equation constraints imposed, hornogene- 
ity imposed. 
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s148 St.t.wntSI 

OATA KRKO3: SETUORK02~ E1-E; IF rmO(-M-,2)-0 THEN DELETE; 
DATA WORK04; SET WORK02; E2mE: IF HOD(-N-.2)-1 WEN DELETE: 
OATA MIRK05; MEROE WORK03 wDR((04; KEEP El €2; 
PROC WTRIX FU920; FETCH E OATAIYRIKO6(KEEP=E1 €2); 
SIONA-E'*81/224; PRINT SIOMA; P-WF(INV(SIWA)); PRINT P; 

output: 

sw 
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3 

SIOM COL 1 coL2 

ROW1 0.118738689442 0.09503630224405 
A W 2  0.09603630224406 0.09023972T61352 

P COL 1 COL 2 

ROW1 3.565728486712 -3.15626011819 
ROW2 0 3.328902782166 

plevc 86. Contemporaneous ~ a r i a o c e - c ~ ~ a r i ~ ~ e  matrix of Ehmple 1 estimaled from least 
squares residuals, across equation awstraints imposed, homogeneity imposed. 

in the model with response function 

using the Lagrange multiplier test. Note that 6 is a p-vector with p - 8, p 
is an r-vector with r I= 5 ,  q = p - r = 3, and there are M equations with 
M = 2 and n observations with n = 224. 

Before computing the Lagrange multiplier statistic k one must first 
compute 6r* as shown in Figure 8a, 2 as shown in Figure 8b, and 8 as 
shown in Figure 8c. The SAS code shown in Figures 8a through 8c is 
simply the same code shown in Figures 3a through 3c modified by 
substitutions from Figure 6 so that S [ g ( p ) ,  Z] is minimized instead of 
S(6,X). This substitution is so obvious that the discussion associpted with 
Figures 3 4  3b, 3c, and 6 ought to suffice as a discussion of Figures 8a, 86, 
8c. 
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We have 

0.85800567 
0.37332245 

- 1.59315750 

MULTIVARIATE NONLINEAR REGRESSION 

3.565728486712 -3.75526011819 ) (from Fig. 86) 
3.328902782166 

8 -  

l f =  g(6) = 

and 

(from Fig. 8c) 

‘ - 2.7300179 
- 1.2313281 
0.8580057 
0.3733224 

- 1 S931575 
- 0.9166373 
0.058631 7 

- 0.4319541 

S($, 2) = 447.09568448 (from Fig. 8c). 

As shown in Figure 9, from these values the entities 

“f **( ‘rXs*’ ,  8) = jj&).Yf - &)f ( X I ,  8) ,IZ, 79 & I y ,  99 - 

and 
- a a t = &f*7(1sxs*7, 8) = 6 ; . , ; i B ; / ( X f ,  8) 

are computed and stored in the data set named WORK02 as 

“Z,’’= ETXLDE 

= (DER-Tl ,DER_TZ, .  . ., DER-TI) .  



SAS ststamntsr 
OATA MORKOlr SET EXUPLEIS 
P1=3.6667204W?12: P2~-3.?6S28011019r V I P l Y l + P 2 Y 2 ;  OUTPUT; 
P1.O.O; P243.3260027021Wr Y~PlYl+PpZtY2; OUTWTI DCLETLr 
PROC m I N  OATA.WOW(O1 IIETHOO4WSS IT€R=SO CO(NLR1IEWCE-1.e-13; 
PARUS Rl r -3  R21.8 R 3 m . 4  R4r-1.6 RSi.03: 
T l r A l ~  T2r-R2-R3 1 3 4 2 ;  T4&3 1 6 4 4 1  16=-RSd?r 1 1 6 5 ;  TO*-M-R5; 
PEAU=Tl tTZ*Xl+T3~X2t l4*XSr  I~ER=TS+T3+Xl tT8*XZtTT*)W;  
BAISE=- l+T4*Xl tT7+X2tT8~3~ 
MODEL Y=Pluoa(pr*rc/EASE);PP*LOB( INTERMAS€); 
DER Tl=Pl/P€AU; DER T2mPl/PEU(*Xlz MA T3.Pl/PEAK*XZ*e2/1NT~*Xl:  
DIER-TI=Pl/PEAU*XJ*(-Pl-PZ /EASE*Xl DER'T6rP2/IWTER* 
OER-T6-P2/XNlER*X2. M R _ h l P 2 / 1 W r k * W s t T - P l - P 2 ) / ~ * X 2 ,  
DER_T~. ( -P~-P~) /EASE*X~I  

Output: 

s19 

NOWLINEAR LEAST SQUMES ITERATIVE PWSE 

A 

OEPENOENT VARIABLE: Y ETHOD: GAUSS-NEWTON 

ITERATION R1 R2 R3 RESIOUAL SS 

0 -3.OOOOOOOO 0.8OWOOOO 0.40000000 622.76679656 

R4 R5 

-1.50000000 0.03000000 

6 -2.73001766 0.66800667 0.37332245 447.09668448 
-1.69315760 0.06863167 

w 6 

WON-LINEAR LEAST SQUARES !3UHMARY STATISTICS DEPENDENT V M I M L E  Y 

SOURCE of SUI OF SQUARES MAN SgUARE 

REQRESSION 5 6699.23816229 1179.a4763246 
RESIOUAL 443 447.095S8448 1.00924531 
UWCORRECTED TOTAL 4 l d  6346.33304677 

(CORRECTED TOTAL) 447 W.6S977ASO 

PARAMETER ESTINATE ASYMPTOTIC ASWTOTIC 95 t 
LOMR UPPER 

R1 -2.73001786 0.17961271 -3.oe30220a -2.37701364 
R2 0 .  8600066? 0.06701664 0.72S29669 0.96911574 
R3  0.31332246 0.02732102 0.31912671 0.42101016 
R4 -1.693167110 0.01660672 -1.74175216 -1.44466284 
R6 0.068S3167 0.033%211 -0.00811621 0.12637966 

STD. ERROR CONFIDENCE INTERVAL 

Figure 8r. Example 1 fitted by multivariate least squnws, across equation constraints imposed, 
homogeneity imposed. 
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348 MULTIVARIATE NONLINEAR REGRESSION 

S M  St.t...nt.r 

DATA MwII(O1; SET E W L E l ;  
Plr3.6667204db712: P2=-3.T6626011019; V IPlYl tPZWZ;  OUTPUT; 
Pl-0.0; P2=3.328902702166; V=Plr(ltP2Y2; OUTPUT; DELETE; 
DATA WORKO~I SET M#KOl ;  
R1=-2.73001706; R210.06600667~ R3=0.37332246; A&-1.69316760; R6=0.06868167; 
11418 T2042-R3; 1 3 4 2 ~  1 4 4 3 :  16-84; T6=46-R2; 1 7 4 6 ;  TOm-RS-R3; 
P L ~ ~ T l t f ~ l + T 3 * X 2 t T 4 * X 3 ;  IllTER=T6*T3*XltTO*X2+TT*X3; 

~XLMIP l *LOO(PM/BAM)*P1*LW( IN~R/ IUSE)r  ETILDSrY-VTILDE; 
D€R-TlIPl/PUI(; DER-T2-Pl/PW*Xl; DER~T3rPl/PU*l(2tP2/INTER*Xl; 
O E R _ T 4 4 l ~ * X 3 t ( - P l - P 2 ) / I ) A S E * X l a  DER_TS=P2/IHTER; 
DER-T6IP2/INTER*X2; OER_T71PZ/INTER*X3t(-Pl-P2)/B~*X2: 
DER-TO=(-Pl-PZ)/~SE*X3r 
PROC RE0 OATA.YYIK02: 

Output: 

I I ~ S E = - ~ + T ~ ~ ~ ( ~ ~ T T * X Z ~ T ~ * X ~ ;  

W E L  ETILOEIOER-Tl-OER-TO / WQINT; 

w 

DEP VARIABLE: ETILOE 

SUM OF M A N  
SoWlcE w SQUARES M E  F VALUE PRObF 

l o M L  0 24.696068 3.007007 3.216 0.0016 
ERROR 440 422.400 0.969999 
U TOTAL 440 447.096 

ROOT mE 0.979795 R-WARE 0.0662 
DEP HEAN 0.001616266 ADJ R-SQ 0.0402 
C.V. 64661.62 

NOTE: K) INTERCEPT TERM IS USED. R-SQUARE IS REDEFINED. 

PARANETER STANDARO T FOR HO: 
VARIABLE OF ESTIMTE ERROR PARAllETER=O pRo(I > IT1 

-0.102493 
-0.046933 
-0.029071) 
-0.01 2700 
0.065 1 17 

-0.126929 
-0.019402 
-0.039163 

0.284464 

0.076294 
0.02TSTO 
0.091T64 
0.076230 
0.033683 
0.021008 

0 . 2 2 e m  
-0.642 
-0.201 
-0.306 
-0.462 
0.601 

-1.662 
-0.670 
-1 .a64 

0.6216 
0.8411 
0.6996 
0.6443 
0.6484 
0.0993 
0.6637 
0.0630 

Illustration of Lagrange multipler test computations with Erampk 1. 

From the regression of C, on fi we obtain 

,?F(F/fi)-'$V = 24.696058 (from Fig. 9). 

1 

Recall that the par-wter estimates shown in Figure 9 are a full Gauss- 
Newton step from 4 to (hopefully) the minimizer of S(6, %). It is interest- 
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ing to note that if these parameter estimates are added to the last column of 
Table 2, then the adjacent column is nearly reproduced, as one might 
expect; replacing 9 by 2 is apparently only a small perturbation. 

From the computations above, we can compute 
z,F( pF) - 1 fo 

s( i ,  9 2 - n M  

24.6%058 
447.09568448 

= 24.746 

which we compare with 

Fa 
da = nM nM - p  

+ Fa 4 
2.61 

= 448 440 
- + 2.61 3 

= 7.83. 
The null hypothesis of homogeneity is rejected. 0 

Power computations for the Lagrange multiplier test are rather onerous, 
as seen from formulas given at the end of Section 6. The worst of it is the 
annoyance of having to evaluate the distribution function of a general 
quadratic form in normal variates rather than being able to use readily 
available tables. If one does not want to go to this bother, then the power of 
the likelihood ratio test can be used as an approximation to the power of 
the Lagrange multiplier test. 

We saw in Chapter 1 that, for univariate models, inferences based on the 
asymptotic theory of Chapter 3 are reasonably reliable in samples of 
moderate size, save in the case of the Wald test statistic, provided one takes 
the precaution of making degree of freedom corrections and using tables of 
the F-distribution. This observation would carry over to the present situa- 
tion if the matrix P with P’P = Z-’ used to rotate the model were known. 
It is the fact that one must use random instead of known P that gives 
one pause in asserting that what is true in the univariate case is true in the 
multivariate case as well. 

Below we report some simulations that confirm what intuition would 
lead one to expect. Dividing the Wald and “likelihood ratio” statistics by 
S(8, e ) / ( n N  - p) and using tables of F instead of tables of the x2-distri- 
bution does improve accuracy. The Waid test is unreliable. The sampling 
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Tab& 4. Accllrncy of NuB Cpse Robability Stnteraents. 

6’ 5 

Monte Car10 
Sample Asymptotic 

Variable Size Approxlmation Estimate Standard Error 

P(W > F) 46 .05 .OM .#5 1 
P ( L  > F )  46 .05 .067 .0046 
P ( R  > d )  46 .05 ,047 .0039 
P( W‘ > x 2 )  46 .05 .094 .0092 
P(L‘ > x 2 )  46 .05 .072 .0082 

P ( L  > F )  224 .05 .045 .0046 
R(R > d )  224 .05 ,045 .0046 

a s 2 )  46 1.00 1.063 .00083 
P ( W >  F )  224 .05 ,067 ,0056 

- 1.23204560 
0.85773951 
0.37430609 

- 1.59239423 
-0.91542318 

0.05768347 

variation in @ is deleterious and leads to the need for iarger sample sizes 
before results can be trusted in the multivariate case than in the univariate 
case. Since has less sampling variation than i, the null case Lagrange 
test probability statements are more reliable than “likelihood ratio” test 
probability statements. These interpretations of the simulations are subject 
to all the usual caveats associated with inductive inference. The details are 
as follows. 
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independent, normally distributed errors e, each with mean zero and 
variance-covariance matrix Z were generated and used to compute JJ, 

according to 

y, 5 f ( x I , 6 ' )  + e, r = 1,2 ,..., n 

In -1 + tI4x1 + 6,x, + e,x, 

e, + e3+ + e6x, + e,x, ') = 

with 

. 

This process was replicated N times. The Monte Carlo estimate of, say, 
P( L > F) is 3 equal to the number of times L exceeded F in the N Monte 
Carlo replicates divided by N; the reported standard error is /-. 
The value of F is computed as .95 = F(l? 3, nM - p). d'(s*) is the average 
of s: = S(6, e ) / ( n M  - p) over the N Monte Carlo trials with standard 
error computed as 

The formulas which follow for test statistics that result from a vector 
notation using the grouped by equation data arrangement are aesthetically 
more appealing than the formulas presented thus far as noted earlier. Aside 
from aesthetics, they also serve nicely as mnemonics to the foregoing, 
because in appearance they are just the obvious modifications of the 
formulas of Chapter 1 to account for the correlation structure of the errors. 
Verification that these formulas are correct is left as an exercise. 
Recall that in the grouped by equation data arrangement we have M 

separate regressions of the sort studied in Chapter 1: 

y, =/,(/I:) + e, a = 1,2, ..., M 
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with ya, fa(@,), and e, being n-vectors. These are “stacked” into a single 
regression 

1 

with 

We have available some estimator 9 of Z, typically that obtained by 
finding 4* to minimize 

with L‘ - I and taking as the estimate the matrix E with typical element 

The estimator 6 minimizes S(e, 2). Recall that the task at hand is to test a 
hypothesis that can be expressed either as a parametric restriction 

H: h ( e o )  = 0 against A :  h ( e O )  z o 
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or as a functional dependence 

H :  6' = g ( p o )  for some po against A : eo + g ( p )  for anyp 

353 

where p is an r-vector, h ( 6 )  is a q-vector, and p = r + q. The various 
Jacobians required are 

being 4 by p ,  p by r ,  and nM by p respectively. 
The Wald test statistic is 

with 

c = [ F ' ( & ) ( P  0 f ) F ( & ) ]  -' 
S ( & Q  

i; = h ( & ) ,  

s 2 z  n M - p  
fi = H($). 

One rejects H: h(flo)  = 0 when W exceeds F-'(l  - a, q, nM - p ) .  
The form of the "likelihood ratio" test is unaltered 

where & = g(b)  and 3 minimizes S[g(p ) ,  21. One rejects when L exceeds 
F -'(l - a; q, nM - p ) .  

As noted above, one is unlikely to use the Lagrange multiplier test unless 
S(8 .  I:) is difficult to minimize while minimization of S [ g ( _ p ) ,  21 is rela- 
tively easy. In this instance one is apt to use the estimate I: with typical 
element 



3 s  MULTIVARIATE NONLINEAR REGRESSON 

where tf* = g ( P )  and minimizes S [ g ( p ) ,  I]. Let jag(;), where fi  
minimizes S[ g( p ) ,  21. The Gauss-Newton step away from 6 (presumably) 
toward d is 

B = p ( e - 1  QP r ) F p ( 2 4  8 r ) [ y  -[] 

where P = F(tf), and f -  f(i). The Lagrange multiplier test statistic is 

One rejects when exceeds 

nMF, 

with Fa = F - * ( l  - a; q,  n M  - p ) .  

PROBLEMS 

1. Show that if 4” minimizes S(8, I) and 2 = (l/n)Zy-Jy, - 

2. 
A X , ,  WILY, - f ( x , ,  6*)1’, then ~ ( 4 %  = n ~ .  
Show that the matrix c^ of Chapter 1 can be written as 

3. Show that the equation s = M(f - 1) + a uniquely defines f and a as 
a function of s provided that 1 r; a s M and s, f ,  a are positive 
integers. 

4. Verify that the formulas given for W and 4 at the end of this section 
agree with the formulas that precede them. 
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4. CONFIDENCE IN'lERVALS 

355 

As discussed in Section 6 of Chapter 1, a confidence interval on any (twice 
continuously differentiable) parametric function y( e) can be obtained by 
inverting any one of the tests of 

H: h ( e O )  = o against A :  h ( e O )  z 0 

that were discussed in the previous section. Letting 

W )  = Y(6) - Y O  
one puts in the interval all those yo for which the hypothesis H : h( 6J0) = 0 
is accepted at the a level of significance. The same approach applies to 
confidence regions, the only difference is that y ( e )  and y o  will be q-vectors 
instead of being univariate. 

There is really nothing to add to the discussion in Section 6 of Chapter 3. 
The methods discussed there transfer directly to multivariate nonlinear 
regression. The only difference is that the test statistics W, L, and are 
computed according to the formulas of the previous section. The rest is the 
same. 

5. MAXIMUM LlKELIHOOD ESTIMATION 

Given some estimator of scale 2,. the corresponding least squares estima- 
tor do minimizes S(8, e,), where (recall) 

n 

S(@, 2 )  = c [v, - f h  e)l '2-1[Y, - f ( x , ,  @ > I .  
r - 1  

A natural tendency is to iterate by putting 

and 

4+1 = wgminS(8, gi+l)  
e 

where argmin&(f?, 2 )  means that value of 8 which minimizes S(6,Z). 
Continuing this process generates a sequence of estimators 

!to+60+21 + t f , + e 2 - d 2 +  * * - .  
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If the sequence is terminated at any finite step I, then 2, is a consistent 
estimator of scale with &(e, - 2:) bounded in probability under the 
regularity conditions Listed in Section 6 (Problem 1). Thus, 8, is just a least 
squares estimator, and the theory and methods discussed in Sections 1 
through 4 apply. If one iterates until the sequence ((4, 2,)>:-1 converges, 
then the limits 

2,=  Lime, 

&,= lim6, 

will be a local maximum of a normal errors likelihood surface provided that 
regularity conditions similar to those listed in Problem 4, Section 4, Chapter 
1 are imposed. To see intuitively that this claim is correct, observe that 
under a normality assumption the random variables ( Y , } & ~  are indepen- 
dent each with density 

1 ' 0 0  

I - r O O  

n M [ y , l f ( X , ,  e), z) = ( 2 ~ ) - ~ ~ ( d e t  X)-''*e-f[Y, f(xt*011'x ' [ Y t - f ( X , . @ ) l ,  

The log-likelihood is 

n 

= const - C t { f n d e t z  + [ ~ , - f ( x , , ~ ) ] ' ~ - ' [ y ,  - f ( x f , e ) ] )  
f P 1  

so the maximum likelihood estimator can be characterized as that value of 
(e, Z) which minimizes 

1 1 
= r(Indet 2 + i s ( &  Z)). 

Further, sn(8, 2) will have a local minimum at each local maximum of the 
likelihood surface, and conversely. By Problem 11 of Section 6 we have that 

sn('6, ',ti) < s n ( 4 ,  2,) 
provided that e l+ ,  # 2,. By definition S(d,+1,2,ti) s S(f f , ,  e,,,). Pro- 
vided f? ,+ i  # 4, arguments similar to those of Problem 4, Section 4, 
Chapter 1 can be employed to strengthen the weak inequality to a strict 
inequality. Thus we have 

4 4 + l *  % + l )  < . f n ( f ? , v  2,) 
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unless (dt+l, e,,,) = (d,, e,), and can conclude that (di+l, ei+,) is down- 
hill from (d., ei). By attending to a few extra details, one can conclude that 
the limit (&, 2,) must exist and be a local minimum of sn(8, 2). 

One can set forth regularity conditions such that the uniform almost sure 
limit of sJ8, X) exists and has a unique minimum (8*, Z*) (Gallant and 
Holly, 1980). This fact coupled with the fact that (6,,e,,) has almost sure 
limit (P, Z*) under the regularity conditions listed in Section 6 is enough 
to conclude that <6,, 2,) is tail equivalent to the maximum likelihood 
estimator and thus for any theoretical purpose can be regarded as if it were 
the maximum likelihood estimator. As a practical matter one may prefer 
some other algorithm to iterated least squares as a means to compute the 
maximum likelihood estimator. In a direct computation, the number of 
arguments of the objective function that must be minimized can be reduced 
by "concentrating" the likelihood as follows. Let 

and observe that by Problems 8 and 11 of Section 6 

mins,,(t?,Z) =s,,[8,%(8)] = $[lndete(8) +MI. 
I: 

Thus it  suffices to compute 

6- = argmin,lndet e ( 8 )  

and put 

2, = w m , )  

to have the minimizer ( lW, 2,) of s,,( 8, Z). As before, the reader is referred 
to Gill, Munay, and Wright (1981) for guidance in the choice of algorithms 
for minimizing In det e ( 8 ) .  

If Assumptions 1 through 7 of Chapter 3 are specialized to the multi- 
variate regression model with normally distributed errors and sample 
objective function 

1 "  
sn(8 ,  z) = C s(Y,, x,, 8, z) 

r -1  

s ( Y , x , ~ , ~ )  = t ( inde t2  + [ Y  - f ( ~ , 8 ) ] ' 2 - ' [ y  - f ( x , @ ) ] )  

one obtains a list of regularity conditions that do not differ in any essential 
respect from the list given in Section 6; see Gallant and Holly (1980). 
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Under these regularity conditions the following facts hold: 2, is consistent 
for Z*, 6 ( e ,  - 2:) is bounded in probability, and 8- minimizes 
S(6,ew). It follows that is a least squares estimator, so that one can 
apply the theory and methods of Section 3 to have a methodology for 
inference regarding 6 using maximum likelihood estimates. We shall have 
more to say on this later. However, for joint inference regarding (6,Z or 
marginal inference regarding Z one needs the joint asymptotics of (Jm, d-1. 
This is provided by specializing the results of Chapter 3 to the present 
instance. 

In order to develop an asymptotic theory suited to inference regarding Z 
it is necessary to subject 2: to a Pitman drift. For this, we need some 
additional notation. Let u7 a vector of length M(M + 1)/2, denote the 
upper triangle of I: arranged as follows: 

The mapping of o into the elements of Z is denoted as Z(a). Let vecZ 
denote the M2-vector obtained by stacking the columns of Z = 
P(,,, Z,,, * * - 9 q,,1 a m r a g  to 

The mapping of o into vec C(o) is a linear map and can be written as 

where K is an M 2  by M(M + 1)/2 matrix of zeros and ones. Perhaps it is 
best to illustrate these notations with a 3 by 3 example: 
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('11' 

'12 

'13 
'12 

"22 
"23 
"13 

'23 
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I1 0 0 0 0 0' 
0 1 0 0 0 0 'q*\ 
o o o 1 0 0 " , 2  
0 1 0 0 0 0 , , 2  

= 0 0 1 0  0 0 ' J 1 3 .  
o o o o 1 0 u 2 3  

0 0 0 0 1 0 " 3 3 1  
0 0 0 1 0 0  

with 6: known to lie in some compact set 0* and u," known to lie in some 
compact set Y *  over which Z(a) is a positive definite matrix; see Section 
6 for a construction of such an Y*. The functional form of f ( x ,  8) is 
known, x is k-dimensional, 8 is p-dimensional, and f ( x ,  0 )  takes its values 
in RM; y, and e, are M-vectors. The errors e, are independently and 
identically distributed each with mean zero and vanance-covariance matrix 
the identity matrix of order M. Note that normality is not assumed in 
deriving the asymptotics. The parameter to be estimated is 

x0, = (e,", ","). 

Drift is imposed, so that 

lim A; aa (e* ,"* )  E 8* x Y *  
R - r W  

The correspondences with the notations of Chapter 3 are given in Nota- 
tion 1. 
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NOTATION 1. 

General (Chapter 3) Specific (Chapter 6) 

+m E T No preliminary estimator 

f i n  minimizes SJA) 

in  minimizes s,(A) 

A: minimizes $:(A) 

f i ,  minimizes $,(A) 

X" = g(&) minimizes s , (h )  

A: minimizes $:(A) 

subject to h ( X )  = 0 subject to h ( X )  - 0 

A; minimizes $:(A) A., = g( pfl) minimizRs s,"( A )  
subject to h ( A )  = 0 subject to h ( X )  - 0 

A* minimizes s *( A )  A* minimizes s*( A )  
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In order to use the formulas for the parameters of the asymptotic 
distributions set forth in Chapter 3 it is necessary to compute 
( a / a A ) s ( Y ( e ,  x, y o ) ,  x ,  A]  and (a2/dA aA’)s[Y(e, x, yo), x, A]. To this 
end, write 

where u = C’/ ’ (uo)e and 6 ( x ,  6 )  = f ( x ,  6’)  - j ( x ,  6). Note that u has 
mean zero and variance-covariance matrix X:. Letting 4, denote a vector 
with a one in the ith position and zeros elsewhere, we have (Problem 2) 
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In order to write (a /aa)s[  Y( e, x,  yo) ,  x ,  X J as a vector we use the fact 
(Problem 3) that for comfonnable matrices A, B, C 

vec( A B C )  = (C’  QD A)vec B 
tr(ABC) = (vecA’)’( I QD B)vec C 

where (recall) vecA denotes the columns of A stacked into a column vector 
as defined and illustrated a few paragraphs earlier, and A 8 B denotes the 
matrix with typical block a .B as defined as illustrated in Section 2 of this 
chapter. Recalling that vec j ( u )  = Ka,  we have 

a s [ y ( e ,  x ,  yo), x, A ]  
aa, 

= ftr(z-’(u)z(€,)I:-’(u){ z(u) - [ U  - &(x, e ) J b  - 6 ( x ,  e)l’) 
= Qvec’[z(€,)z-’(o)J[I 8 Z-yo) ]  

= tvec‘z(€,)[z-’(a) 8 I ] [ Z Q D  z - y a ) ]  

= * t ; K ” z - ’ ( o )  Q 2-’(a)] 

xvec(Z(o) - [ U  - 6 ( x , e ) ] [ ~  - &(x,B)]’} 

x v e ~ ( X ( a )  - [ ~ - 8 ( x , e ) ] [ ~ - 6 ( x , e ) ] ’ }  

xVw{ ~ ( ~ 1  - - q x ,  e ) ~  - 6 ( x ,  e)]’). 
From this expression we deduce that 

( - I)(  a / a ~  1s [ Y( e, x, v,O), x ,  A?,] 

We now define 

NOTATION 2. 



0 = ;& 
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The form of b ( a ’ / d u d a ’ ) s [ Y ( e ,  x, y:), x, A t ]  can be deduced as fol- 
lows: 

Normality plays no role in the form of 82. 
In summary we have 

NOTATION 3a (In general). 

NOTATION 3b (Under normality). 
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The expressions for I *, f *, and 9+ have the same form as above with 
z*) replacing (Q:, EO, 22:) throughout. 

Let A,, 5 (t&, 2,) denote the minimum of ~ " ( 8 ,  2). and let i, = 
(8,, 2,) denote the minimum of sJB, 2) subject to h ( h )  = 0. Define: 

NOTATION 4. 

f i t  = yr - f ( x t *  lea). 
The expressions for 0, $, and ii, are the same with (ff.,, 2,) replacing 
(J,,e,) throughout. 

We propose the following as estimators of 9* and 3'. 

NOTATION 5a (In general). 

NOTATION 5b (Under normality). 

The expressions for s' and d have the same form with (fi,e, $) replacing 
(a,%, $) throughout. 

A test of the marginal hypothesis 

H: h(8O)  = 0 against A : h(8O)  ;P 0 
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where h ( 0 )  maps R P  into R4 is most often of interest in applications. As 
mentioned earlier, maximum likelihood estimators are least squares estima- 
tors, so that, as regards the Wald and the Lagrange multiplier tests, the 
theory and methods set forth in Section 3 can be applied directly with the 
maximum likelihood estimators 

&, e m ,  Jm, 2, 

0, 2, i?, e 
replacing, respectively, the estimators 

in the formulas for the Wald and Lagrange multiplier test statistics. The 
likelihood ratio test needs modification due to the following considerations. 

Direct application of Theorem 15 of Chapter 3 would give 

2n[s , (&,  3,) -  boo, e m ) ]  - n(Indet 2, - Indet 2,) 
as the likelihood ratio test statistic, whereas application of the results in 
Section 3 would give 

where 8 minimizes S(8,2,) subject to h(B)  = 0. These two formulas can 
be reconciled using the equation 

d Indet2: = t r ( Z - ' d Z )  

or 

lndet(I: + A) - IndetZ = tr(Z-'A) + o(A) 

derived in Problem 4. To within a differential approximation 

~(6 ,2 , )  - s(&,, 2,) = n t r [ 2 , 9 ( B ) ]  - n tr(2;12m) 
= n tr !2;l[ 2(B) - !2,] - n tr 2;'( 2, - 2,) + n tr 2,'[ 2( 6) - 3,] 
i LI + n tr 2,1(2(#) - 2-1 

~ 1 +  [ ~ ( & v  2,) - s(&, em)] .  
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Thus one can expect that there wil l  be a neghgible difference between an 
inference based on either L1 or L2 in most applications. Our recommenda- 
tion is to use L1 = n(lndet 2, - Indet 2,) to avoid the confusion that 
would result from the use of something other than the classical likelihood 
ratio test in connection with maximum likelihood estimators. But we do 
recommend the use of degree of freedom corrections to improve the 
accuracy of probability statements. 
To summarize this discussion, the likelihood ratio test rejects the hy- 

pothesis 

H :  h ( e 0 )  o 
where h( 8) maps R C into R Q, when the statistic 

L = n(lndet 8, - lndet 2,) 
exceeds qF,, where Fm denotes the upper a X 100% critical point of the 
F-distnbution with q numerator degrees of freedom and nM - p de- 
nominator degrees of freedom; F, = Fd1(1 - a; q, nM - p ) .  

We Illustrate. 

g ( P )  = 

EXAMPLE 1 (Continued). Consider retesting the hypothesis of horno- 
geneity, expressed as the functional dependence 

H : eo = g( P O )  for some po against A : eo IP g( p )  for any p 

with 

P2 
P3 

p4 
-Ps - P2 

P5 

in the model with response function 

e, + 63x1 + e6x2 + e,x3 In -1 + 84x1 + e,x, + eSx, 

using the likelihood ratio test; 8 has length p = 8 and p has length I = 5, 
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SAS Stateaents: 

MULTIVARIATE NONLINEAR REGRESSION 

PROC llOOEL OU~-HODELOli 
EIOOOEWOUS Y1 Y2; 
EXO(KN0US x1 x2 X3; 
PAR= 11 -2.98 1 2  -1.16 13 0.161 14  0.363 16 -1.61 16 -1.00 

17 0.064 16 -0.474; 
PEAK=Tl+T2*Xl+T3*X2tT4*X3; INTER~T6+TJ*XltT6*X2+TI*X3; 
BASE~-ltT4+)(1+T7*X2+T8+)(3; 
Yl=LOQ(FEAK/B&SE); V2=LOa( INTER/BASE); 
PAW SWWLIN DATA=EXAWPLEl ~ L = H O D € L O l  ITSUR NESTIT )(ElHOO=GAvSS WTS=SHAT; 

Output: 

!as 6 

MONLIHEAR ITSUR PARMETER ESTICUTES 

APPROX . APPROX . 
PARAMETER ESTIMATE STO ERROR '1' RATIO PROB>JTI 

-2.92346 - 1 .26626 
0.61 84883 
0.3612072 

-1.63769 
-1.04926 

0.02086769 
-0.46141 1 

0.2781988 
0.226682 

0.08079816 
0.03033416 
0.09204266 
0.08366677 
0.03617161 
0.01927763 

-10.61 
-6.68 
10.13 
11.91 

-16.71 
-12.64 
0.83 

-24.26 

0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.4099 
0.0001 

SYSTEM STATISTICS: SSE = 447.9999 llsE = 2 OBSm 224 

COVARIANCE OF RESIOUALS 

Y1 Y2 
Y1 0.166141 0.0926046 
Y2 0.092S046 0.0896862 

Figure 100. Example 1 fitted by maximum likelihood, across equation constraints imposed. 

whence q = p - r = 3. The model is bivariate, so M - 2 and there are 
n = 224 observations. 

In Figure 10a the maximum likelihood estimators are computed by 
iterating the least squares estimator to convergence, obtaining 

- 2.92345 
- 1.28826 i 0.81 849 

- 1.04926 

- 0.46741 
0.02987 

0.165141 
0.092505 

(from Fig. 10a) 

0.08989 0'92505) (from Fig. 100). 
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SAS S t m t m t s :  

369 

PROC m E L  OUT=C#X)EL02; 
EHOOGENMlS Y1 Y2; 
EXWENOUS x1 x2 x3:  
PARK3 R l  -2.72 R2 0.868 R 3  0.374 R4 -1.69 R5 0.067: 
1 1 4 1 ;  T2=-R2-R3: T3mR2: 7 4 6 3 ;  T5rR4; T&-R5-R2; T7sR51 T8=-R5-R3; 
PEAK=Tl*TZ*Xl+T3*XZ+T4*X3; I W T E R * T 5 t T 3 * X l + T 6 * X 2 + 1 ~ ~ 3 ;  
B A S E I - ~ + T ~ * X ~ + T ~ * X ~ + T ~ * X ~ ;  
Yl=LOO(PEAK/BASE): Y2=LOO(INTER/BASE); 
PRM: SYSNLIN OATAmEXARPLEl MWELtCWOEL02 ITSUR NESTIT METXOD-GAUSS OUTS-STILOE: 

output: 

SAS 10 

NONLINEAR ITSUR PARAMETER ESTIHAATES 

APPROX . APPROX. 
PARACETER ESTIMATE STO ERROR '1' RATIO PROB>IT(  

R l  -2.7303 o.ieooi8e -15.17 o.oooi 
R2 0.8581672 0.06691972 12.02 o.oooi 
R3 0.3733482 0.02736511 13.64 0.0001 
A 4  -1.59345 0.07560367 -21.08 0.0001 
R5 0.05854239 0.0339787 1.72 0.0863 

SYSTEH STATISTICS: SSE 448 WE = 2 08s. 224 

COVARIANCE O f  RESIOUALS 

Y1 YZ 
Y1 0.179194 0.0953651 
Y2 0.0953651 0.0901989 

Figure 106. Fxampk 1 fitted by maximum likelihood, across equation constraints imposed, 
homogeneity imposed. 

Compare these values with those shown in Figures 36 and 3c; the difference 
is slight. 

In Figure 106 the estimator b,,, minimizing In det Z[ g( p ) ]  is obtained by 
iterated least squares; put 6m = g(&) to obtain 

' -2.7303 
- 1.2315 

0.8582 
0.3733 

- 1.5935 
- 0.9167 

0.0585 
i -0.4319 

(from Fig. 106) 

0.179194 0.095365) (from ~ i ~ .  106). 
(0.095365 0.090199 
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6As St.teR.ntr: 

PROC U T A I X ;  
FETCH SHAT DATA-SI(AT(K€EP*Yl Y2);  
FETCH STILDE DATA=STILDE(KEEP-Yl YZ) ;  
M-224; L l c r r ( L o C ( D E T ( S T l L D E ) ) - L ~ ( O f T ( ~ T ) ) ) ;  PRINT L; 

Output: 

SAS 

L COL 1 

awl 26.2673 

F I y n  lor. Illustration of likelihood ratio test computations with Example 1. 

Compare these values with those shown in Figure 6; again, the difference is 
slight. 

In Figure lOc, the likelihood ratio test statistic is computed as 

L = n(1ndet 2, - lndet 2,) 
= 26.2573 (from Fig. 1Oc). 

Fa = F-'(.95; 3,440) = 2.61, SO that 

qFa = (3)(2.61) = 7.83. 

One rejects 

~ :8~=g(pO) fo r somepO 

at the 5% level. With this many denominator degrees of freedom, the 
difference between qFa and the three degree of freedom chi-square critical 
value of 7.81 is ne-ble. In smaller s u e d  samples this will not be the case. 

It is of interest to compare 

n(lndet 2, - lndet 2,) = 26.2573 (from Fig. 1Oc) 

with 

S ( t f , e )  - S(tf, 2) = 474.6822 - 446.8570 (from Figs. 6 and 3c)  
= 27.8252. 

The differential approximation d In det Z - tr Z-' d Z  seems to be rea- 
0 sonably accurate in this instance. 
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A marginal hypothesis of the form 

4- i - p ( 8  - 1)/2 + a 4 

371 

r 

W 1  

w2 

w i  

W M ( M +  1)/2 - 1 

M( M +  1)/2 

H: h ( u o )  = O against A : h(a")  # O 

is sometimes of interest in applications. We shall proceed under the 
assumption that the computation of (&, 6 . )  is fairly straightforward but 
that the minimization of sJQ, a) subject to h ( a )  = 0 is inordinately 
burdensome, as is quite often the case. This assumption compels the use of 
the Wald test statistic. We shall also assume that the errors are normally 
distributed. 

Under normality, the Wald test statistic for the hypothesis 

H: h ( u o )  = O against A :  h ( a o )  z O 

where h(a) maps R M ( M + 1 ) / 2  into R4, has the form 

w = nht(&%)-'h 
where 

= h ( 4 . d  
a 8- - an' W,) 

P- [fK'(%, 63 e,)-lK]-l. 
The test rejects when W exceeds the upper a X 100% critical point of a 
chi-square random variable with q degrees of freedom. 

In performing the computations, explicit construction of the matrix K 
can be avoided as follows. Consider w defined by 

vec uu' = Z ( W )  = Kw 

where u is an M-vector. The subscripts are related as follows: 
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If u - N,,,(O, X), then for 

we have (Anderson, 1984, p. 49) that 

V( w,,  w, )  i=: B( u,uB - a,))( ue,uB, - a,tB8’) 
- aaa.aBB. + aapaga.. 

Thus, the variance-covariance matrix W ( w ,  w ’ )  of the random variable w 
can be computed easily. Now consider the asymptotics for the model 
y, = u ,  = 2?”e, with e, independent N,(O, I). The previous asymptotic 
results imply 

- 

but in this case 8, = (l/n)~~-~w, and the central limit theorem implies 
that 

9 
4 4 %  - 0) hrM(M+1),2[0, w w ,  W 9 l .  

V =  [ + K ( E  @ X ) - I K ’ ] - ’  = U ( w ,  w ’ )  

We conclude that 

and have the following algorithm for computing the elements c,, of Y: 

DO f O r B  = 1 to hf; 
DO for a = 1 top; 
i = B(/3 - 1)/2 + a; 

DO forp‘ = 1 to M; 
DO for a’ = 1 to /3’; 
j = /3’(B’ - 1)/2 + a’; 

END; 
END; 

u,, = uaa8uflB. + aaBtuBa,; 

END; 
END; 

We illustrate with an example. 

EXAMPLE 2 (Split plot design). The split plot experimental design can 
be viewed as a two way design with multivariate observations in each cell, 
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which is written as 
yij - u + p ,  + T, + ei, 

where y,,, u. etc. are M-vectors and 

i = 1 ,2 , .  . . , Z = no. of blocks 
j = 1 ,2 , .  . . , J - no. of treatments 

W(e,,, e i j )  = 2.  

373 

In the corresponding univariate split plot analysis, the data are assumed to 
follow the model 

where k = 1,2, .  . . , M, Latin letters denote parameters, and Greek letters 
denote random variables, Var(qij) = ui, v a r ( < k , j )  = u:, and random vari- 
ables with different subscripts are assumed independent. It is not difficult to 
show (Problem 5 )  that the only difference between the two models is that 

Table 5. Yields of Thrpe Varieties of AlfalIa (Tons Per Acre) 
in 1946 Following Four Dates of Find Cutting in 1943. 

Dats 

t Varlety B l o c k  A B C 0 

1 
2 
3 

4 
5 
6 

I 
8 
9 

10 
1 1  
12 

13 
14 
15 

16 
17 
18 

L8d.k 
msuc 
Ranger 

Lad& 
C O S S K  
Ranger 

Ladak 
cossac 
R.og.r  

Ladak 
costac 
Ronger 

Ladak 
C0rs.c 
R . n W  

L8d.k 
cossac 
RanOar 

1 2.17 1.5b 2.29 2.23 
1 2.33 1.38 1.66 2.27 
1 1.16 1.62 1.66 1.66 

2 1.88 1.26 1.60 2.01 
2 2.01 1.30 1.10 1.81 
2 1.95 1.47 1.61 1.12 

3 1.62 1.22 1.67 1.82 
3 1.10 1.85 1.81 2.01 
3 2.13 1.80 1.82 1.99 

4 2.34 1.59 1.91 2.10 
4 1.78 1.09 1.54 1.40 
1 1.16 1.37 1.56 1.55 

5 1.58 1.26 1.39 1.66 
5 1.42 1.13 1.61 1.31 
5 1.31 1.01 1.23 1.51 

6 1.66 0.94 1.12 1.10 

6 1.30 1.31 1.13 1.33 
6 1.38 1.06 0 . m  1.06 

Source: Snedecor and Cochran (1980, Table 16.15.1). 
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the univariate analysis imposes the restriction 

2 - u:I + o:J 
on the variance-covariance matrix of the multivariate analysis; Z is the 
identity matrix of order M, and J is an M by M matrix whose entries are 
all ones. Such an assumption is somewhat suspect when the observations 

vi: = (Yl , , ,  YZ,,, . * * 9 Y M J  

represent successive observations on the same plot at different points in 
time (Gill and Hafs, 1971). An instance is the data shown in Table 5. For 
these data, M = 4, n = 18, and the hypothesis to be tested is H: h ( a o )  = 0, 
where 

SAS Stotemwnta: 

PRDC AWOVA D A T A - W L E Z ;  
cL195Ls VYIXETY BLOU(r 
)(MEL A 6 C 0 - VARIETY B L W r  
WUYWI / PRIMTE; 

Output: 

SAbi 

ANALYSIS OF VARIAllCE PROCEMIIe 

E - ERROR S S C P  MATRIX 

6 

OF-10 A 6 C 0 

A 0.66965666 0.23726111 0.26468889 0.s667eee9 
B 0.23726111 0.46912222 0.26341111 0,31137770 

0.2646B889 0.26341111 0.42196666 0.26678869 C 
0 0.36~7em9 0.31137778 0.26670069 0.60702222 

Figure 11. Maximum wcelihood estimation of the variancccavMaacc matrix of Example 2. 
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The maximum likelihood estimate of I: is computed in Figure 11 as 

0.0131812 0.0260623 0.0146340 0.0172988 
0.0316475 0.0131812 0.0141494 0.0203216 

ID 0.0141494 0.0146340 0.0236086 0.014260 
0.0203216 0.0172988 0.0142660 0.0337235 

whence 

' 0 .OO558519 
0.00803889 

- 0 .(MI207593 
- 0 .ooO96821 
- 0.00145278 
- 0.00714043 
-0.00411759 

, - 0.00108488 

as St.t.Wnts: 

PRM: MATRIX; 
SSCP 0.56961556 0.23726111 0.26468889 0.36676889/ 

0.23126111 0.46912222 0.26341111 0.31131748/ 
0.2S468(uI9 0.26341111 0.424966S6 0.26SP(uI80/ 
O.~SSTIW~ 0.31137i70 0.2567e~eg 0.60702222: 

8 - (0.66966666 0.23726111 0.46912222 0.25466889 0.26341111 
0.42496166 0.36670689 0.31137778 0.26678889 0.60702222)'; 

nn - 1 0 - 1  o o o o o o o /  
1 0  0 0 0 - 1 0 0 0 0 /  
t o  0 0 0 0 0 0 0 - 1 /  
0 1  0 - 1 0 0 0 0 0 0 /  
0 1  0 0 - 1 0 0 0 0 0 /  
0 1  0 0 0 0 - 1 0 0 0 /  
0 1  0 0 0 0 0 - l o o /  
0 1  0 0 0 0 0 0 - 1 0 :  

W-10; SZGW4SCP8/N;  H+HH*SI/N: 
14.4; ~-(0*(i:n*(rcr1~1)/2)~~*(0*~1:~~n~1~1/2~~; 
00 B 1 TO n; DO A 1 TO 8 :  I - e*( e-iw2t 
Do BE 1 TO I#; DO M - 1 TO 88: J W*(BB-l)1/2tM; 
V( I, J ) ~ I ~ ( A . M ) * s X ~ ( S , 8 8 ) * S I Q M A ( A , ~ ) ~ I ~ ( S . M )  ; 
END8 Em; Em; END; 
WALD-N*(H'*INV(HWVWf')W): PRINT W D ;  

Output: 

!as 

UM.0 COL 1 

R W l  2.26972 

Figwe 12. Wold test of a restriction on the varinnce-covariance matrix of Example 2.  
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SAS statements: 

MULTIVARIATE NONLINEAR REGRESSION 

PROC VARCollp DATA-EXWLE2 HETHOO-PIL; 
CLASSES VARIETY OAT€ MOCK; 
I(0ML 
YIELD = BLOCK VARIETY DATE DATE*BLDCK DATEWARIETY BLOCK*VMIIETY / 
FIXED = 6 ;  

Output: 

SAS 2 

MAXIHUH LIKELImWIO VARIANCE COMPONENT ESTIMATIOW PROCEWRE 

DFPEWYT VARIABLE: YIELD 

ITERATION OBJECTIVE VAR(VARIETY*BLOCK) VAR ( ERROR 

0 -280.48173606 0.01664182 0.01 3 1 1 SW 
1 -280.48173608 0.01664182 0.0131 1867 

Figure 13. Maximum lielihood'estimatiw of the variance-covariance matrix of Example 2 
under the ANOVA reslriclion. 

Figure 12 illustrates the algorithm for computing Pdiscussed above, and we 
obtain 

W = 2.26972 (from Fig. 12). 

Entering a table of the chi-square distribution at 8 degrees of freedom, one 
finds that 

p = P( W > 2.26972) L 0.97 

A univariate analysis of the data seems reasonable. 

likelihood estimate subject to h(a)  = 0. From Figure 13 we obtain 
This happens to be an instance where it is easy to compute the maximum 

0.0156418 0.0156418 0.0287605 0.0156418 

0.0287605 0.0156418 0.0156418 0.0156418 
0.0156418 0.0287605 0.0156418 0.0156418 

0.0156418 0.015641 8 0.015641 8 0.0287605 
p.- j 

For a linear model of this form we have (Problem 6) 

L = 2n[SI(Bm, 2J - sn(&.  em)] 
= n Ilndet 2, + tr 2;'em - In det 2, - M ]  
= 2.61168 (from Fig. 14) 
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sw statmlmnts: 

PAW M T R I X ;  
SSCP I 0.66965556 0.23126111 0.26468889 0.36518889/ 

0.23126111 0.46912222 0.26341111 0.31131718/ 
0.25468889 0.26341111 0.42496566 0.26678889/ 
0.36518889 0.31131718 0.25878889 0.60102222; 

N-18; M-4; SMATnSSCPI/N: S T I L D E - O . O 1 3 1 1 8 6 7 # I ( ~ ) + J ( ~ , M , O . ~ 1 5 6 4 1 8 2 ) ;  
L ~ H I ( L 0 Q ( M T ( S l I L O E ) ) * T R A C E ( I N V ( S T I L O E ) * S n A T ) - L f f i ( O E T ( S ~ T ) ) - M ) ;  PRINT L; 

Output: 

377 

SAS 1 

L COL 1 

ROW1 2.61168 

Figure 14. Likelihood ratio test of a restriction on the variancecovariance matrix of 
Example 2. 

which agrees well with the Wald test statistic. D 

A test of joint hypothesis 

H :  h(OO, Xo) = 0 against A : h(Bo ,  2') # 0 

is not encountered very often in applications. In the event that it is, 
application of Theorem 11, 14, or IS of Section 5 ,  Chapter 3 is reasonably 
straightforward. 

PROBLEMS 

1. 

2. 

3. 

Show that h(2, - 2; )  is bounded in probability. Hint: See Problem 
1, Section 6. 
Show that (d/du,)X(u) = X ( t , ) .  In Problem 4 the expressions 
( d / d a , ) Z - ' ( a )  = - ~ - l ( o ) [ ( d / d u , ) ~ ( ~ ) ~ ~ - l ( u )  and 
(d/au,)Indet X(a) = tr[~-'(a)(d/au,)X(u)] are derived. Use them to 
derive the first and second partial derivatives of s[ Y( e, x, yo), x, A]  
given in the text. 
Denote the j th  column of a matrix A by A ( , )  and a typical element by 
u,,. Show that 

= [ (CCj,) '  0 AIvecB. 
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Then stack the columns (ABC) , , ,  to obtain 

vec( ABC) = (C' 0 A)VM B.  

Show that 

t r ( A B )  = xa ikbk i  = vec'(A')vecB 
i k  

whence 

tr( ABC) = VM'( A')vec( BCZ) = vet'( A')( Z Qp B)vec C. 

4. Show that (a/aa,)Z(u) = 2(&). Use Z = Z-'(u)Z(o) to obtain 0 = 
[ (a/aa,)Z- ' (o)]Z(o) + ~ - ' ( o ) [ ( ~ / a a , ) Z ( a ) ] ,  whence ( i?/au,)z- ' (a)  
= - ~ - ' ( a ~ ( ~ / ~ a , ) ~ ( a ) ] ~ - ' ( u ) .  Let a square matrix A have ele- 
ments a,,, let c,, denote the cofactors of A, and let a" denote the 
elements of A - ' .  From det A = Eka,gIIL show that (a/aa,,)det A = 
ci, 5 d'det A. This implies that 

det A = det A vec'( A -I)'. a 
a VtX'A 

Use this fact and the previous problem to show 

a det Z ( a )  = det Z(a)vec'[Z-'(a)]vec F 
X - ' ( o ) x X ( u ) ) .  a 

Show that (d/aa,)lndet X(a) = tr[X-'(a)(~/~a,)Z(a)]. 
Referring to Example 2, a two way multivariate design has fixed part 5. 

whereas the split plot ANOVA has fixed part 

8yljk = rn + ri + Z, + sk + ( r s ) k l  + ( t s )k , .  

Use the following correspondences to show that the fixed part of the 
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Y =  Y i  . 

y M. Write 
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and show that 

tr Zdl[ Y - P,Y]'[  Y - P,Y J 
n 2 s , ( B ,  Z) = lndetZ + 

trI:-'[P,Y - XB]'[P,Y - X E ]  
n + 

where P, = X( X'X)-'X'. One observes from this equation that b will 
be computed as 6 = ( X ' X ) - ' X ' Y  no matter what value is assigned to 
Z. Thus, if (&, 2,) minimizes sn(B, Z) subject to 2 = Z(a), h ( a )  = 
0, and (f&,, 2,) is the unconstrained minimizer, then 

2sn(t?, ,  5,) = lndet 2, + tr %&'em + 0. 

6. ASYMPTOTICTHEORY 

As in Chapter 4, an asymptotic theory for least squares estimators of the 
parameters of a multivariate nonlinear regression model obtains by restat- 
ing Assumptions 1 through 6 of Chapter 3 in context and then applying 
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Theorems 3 and 5 of Chapter 3. Similarly, the asymptotic distribution of 
test statistics based on least squares estimators obtains by appending 
restatements of Assumptions 7 and 13 to the list and applying Theorems 11, 
14, and 15. That is what we shall do here. 

Recall that, using the grouped by subject data arrangement, the multi- 
variate nonlinear regression model is written as 

y,  - f ( x , , e O )  + e,  t = 1 , 2  ,..., n 

with 8' known to lie in some compact set 9*. The functional form of 
f ( x ,  6 )  is known, x is k-dimensional, 6 is p-dimensional, and f(x, 6 )  takes 
its values in R M; y, and e, are M-vectors. The errors e, are independently 
and identically distributed, each with mean zero and nonsingular variance- 
covariance matrix 2; viz. 

Z t = s  
0 t # s .  

&e, = 0, V(e,, e;) = { 
The parameter 6' is estimated by 6, that minimizes 

1 "  
4 4  2,) = ; c [ A  - f(x,7 e>I '%l[Y, - f b , 9  611. 

I - 1  

Here we shall let 2, by any random variable that converges almost surely 
to 2 and has G(e, - 2) bounded in probability; that is, given 6 > 0, 
there is a bound b and a sample size N such that 

P(61dapn - uapl < b )  > 1 - 6 

for all n > N, uas being a typical element of Z. Verification that the 
estimator of Z proposed in Section 2 satisfies this requirement is left to 
Problem 1. 

Construction of the set T which is presumed to contain 2, requires a 
little care. Denote the upper triangle of Z by 

7 = (ql, q2, azzI at3. O23, 0 3 3 , .  . . . atM, O2M9.. -, uMM)' 

which is a column vector of length M(M + 1)/2. Let 2 ( ~ )  denote the 
mapping of T into the elements of Z, and set Z(+,,) = 2,. X ( T * )  = 
a( e,, e;) .  Now det Z( 7 )  is a polynomial of degree M in T and is therefore 
continuous; moreover, for some 6 > 0 we have det Z ( T * )  - S > 0 by 
assumption. Therefore the set 

( ~ : d e t Z ( ~ )  > detX(T*) - 8 )  
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is an open set containing r*. Then this set must contain a bounded open 
ball with center T * ,  and the closure of this ball can be taken as T. The 
assumption that 6 ( e n  - 2) is bounded in probability means that we have 
implicitly taken 7," = 7* E T, and without loss of generality (Problem 2) we 
can assume that 4,, is in T for all n. Note that det Z(T) 2 det Z ( P )  - S 
for all T in T, which implies that Z - ' ( T )  is continuous and differentiable 
over T (Problem 3). Put 

B = SUP{ uUB( T )  : 7 E T ,  a, B = 1 , 2 , .  . . , M }  

where ~ " ~ ( 7 )  denotes a typical element of Z - ' ( T ) .  Since Z - ' ( T )  is 
continuous over the compact set T, we must have B < 00. 

We are interested in testing the hypothesis 

H :  h ( B o )  = o against A : h ( e o )  + 0 

which we assume can be given the equivalent representation 

H :  8 O  = g( p") for some po against A : eo + g( p )  for any p 

where h : R P 4 R 9, g : R + R P, and p = r + q. The correspondence with 
the notation of Chapter 3 is given in Notation 6. 

NOTATION 6. 

General (Chapter 3) Specific (Chapter 6) 

4,, E T 

X E A* 

e E Q*  

f,, E T, T," 7 *  
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General (Chapter 3) Specific (Chapter 6)  

x,, minimizess,(h) 
subject to h ( X )  - 0 

A*, minimizes s,O(X) e: = g(pjl) minimizes s;(e) 
subject to h ( h )  = 0 subject to h ( B )  = 0 

A+ minimizes s* (h)  e* minimizes q e )  

Assumptions 1 through 6 of Chapter 3 read as follows in the present 
case. 

ASSUMPTION 1'. The errors are independently and identically distrib- 
uted with common distribution P ( e ) .  

ASSUMPTION 2'. j(x,  8 )  is continuous on IX  Q*, and 8* is compact. 

ASSUMPTION 3' (Gallant and Holly, 1980). Almost every realization 
of { 0,) with u, = (e,, x,) is a Cesaro sum generator with respect to the 
product measure 

and dominating function b ( e , x ) .  The sequence ( x , )  is a Cesaro sum 
generator with respect to p and b ( x )  - j,b(e, x) dP(e). For each x E I 
there is a neighborhood N, such that j,supNxb(e, x )  dP(e)  < 00. 
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ASSUMPTION 4' (Identification). The parameter 8' is indexed by n, 
and the sequence (6;) converges to 8*; 7," = T*, 6(+,, - 7 ' )  is bounded 
in probability, and 3- converges almost surely to 7* .  

has a unique minimum over 8* at e* 

ASSUMPTION 5'. 8* is compact; { +,,I, T, and B are as described in 
the first few paragraphs of this section. The functions 

are dominated by b(e,  x ) / M 2 B  over & X  %X 8* X 8*; b(e ,  x) is that of 
Assumption 3'. 

This is enough to satisfy Assumption 5 of Chapter 3, since 

BM26( e, x) 
M ~ B  s 

b( e, x). 

The sample objective function is 
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Replacing in by T," = T * ,  its expectation is 

. n  

the last equality obtains from 
+ n  

= M. 

By Lemma 1 of Chapter 3, both sn( 6) and s,"( 6) have uniform almost sure 
limit 

~ " ( 6 )  = M + I I f ( x ,  6.) - f(x, @)I'  
I 

X Z - l ( T * ) [ f ( % ,  6 . )  - f ( x ,  O ) ]  & ( x ) .  

Note that the true value 6," of the unknown parameter is also a minimizer 
of s,O(6), so that the use of e," to denote them both is not ambiguous. By 
Theorem 3 of Chapter 3 we have 

lim = 6+  almost surely. 

Continuing, we have one last assumption in order to be able to claim 
asymptotic normality. 

n - w  



is nonsingular. 
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to within a multiplicative constant. Since (Problem 4, Section 5) 

- 0  

because J,edP(e) - 0. Thus, Assumption 6’ is enough to imply Assump- 
tion 6 of Chapter 3. 

The parameters of the asymptotic distribution of 8n and various test 
statistics are defined in terms of the following. 

NOTATION 7. 

NOTATION 8. 
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f'," = 2ng 

(e,o = 0 
3"' = 4i-l: 
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One can see from Notation 8 that it would be enough to have an 
estimator of Q to be able to estimate 3* and JF *. Accordingly we propose 
the following. 

NOTATION 9. 

Since (#*)-'#*(/*)-' = Q-', we have from Theorem 5 of Chapter 3 
that 

b converges almost surely to Q .  

Assumptions 7 and 13 of Chapter 3, restated in context, read as follows. 

ASSUMPTION 7' (Pitman drift). The sequence 8: is chosen such that 
lirnn+m&(t?t - 8;) = A. Moreover, h ( 8 * )  = 0. 

ASSUMPTION 13'. The function h ( 8 )  is a once continuously differentia- 
ble mapping of 8 into R4. Its Jacobian H(8) = ( d / a ? ' ) h ( f ? )  has full rank 
(= q )  at 8 = 8*. 
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From these last two assumptions we obtain a variety of ancillary facts, 
notably that tf, converges almost surely to 6*,  that h converges almost 
surely to Q,  and that (Problem 6)  

The next task is to apply Theorems 11,14, and 15 of Chapter 3 to obtain 
Wald, “likelihood ratio,” and Lagrange multiplier test statistics as well as 
noncentral chi-square approximations to their distributions. With some 
extra effort, we could derive characterizations theorems as in Chapter 4 to 
formally justify the degrees of freedom corrections used in Section 3. But 
we shall not, letting the analogy with univariate nonlinear regression 
developed in Sections 2 and 3 and the simulations reported in Table 4 serve 
as justification. 

Consider testing 

H :  h(6,O) = o against A :  h(6,O) + o 
where (recall) h ( 6 )  is a q-vector with Jacobian H ( 8 )  = (b’ /dO’)h(6) ,  H ( 6 )  
being a q by p matrix. Writing = h(dn) and fi = H(dn)  and applying 
Theorem 11 of Chapter 3, we have that the Wald test statistic is 

W’ = nh’(&l-lgt)-’h,  
and that the distribution of W’ can be approximated by the noncentral 
chi-square distribution with q degrees of freedom and noncentrality param- 
eter 

Multivariate nonlinear least squares is an instance where 3”’’’ #fn* 
but fn* = (1/2)Jb,* + 0(1/ 6) (Problem 6), whence the likelihood ratio 
test statistic is 

L’ = n M 4 J  - s n ( 4 ) l .  

In the notation of Section 3, 

L‘ = s(<, 2“) - s(&, 2”). 
It is critical that 2, be the same in both terms on the right hand side of this 
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equation. If they differ, then the distributional resuits that follow are invalid 
(Problem 8). This seems a bit strange, because it is usually the case in 
asymptotic theory that any 6-consistent estimator of a nuisance parameter 
can be substituted in an expression without changing the result. The source 
of the difficulty is that the first equation in the proof of Theorem 15 is not 
true if 2, is not the same in both terms. 

Applying Theorem 15 of Chapter 3 and the remarks that follow it. we 
have that the distribution of L' can be approximated by the noncentral 
chi-square with q degrees of freedom and noncentrality parameter (Prob- 
lem 7) 

Up to this point, we have assumed that a correctly centered estimator of 
the variance-covariance matrix of the errors is available. That is, we have 
assumed that the estimator 2, has fi(2, - Z) bounded in probability 
whether h ( 6 3  = 0 is true or not. This assumption is unrealistic with 
respect to the Lagrange multiplier test. Accordingly, we base the Lagrange 
multiplier test on an estimate of scale en, for which we assume 

h ( e ,  - 2:) bounded in probability 

lim 2: = z. 
n-m 

Of such estimators, that which is mostly likely to be used in applications is 
obtained by computing 6: to minimize sJ6, I)  subject to h ( 6 )  - 0, where 

and then putting 

The center is found (Problem 10) by computing 6," to minimize $ 3 6 ,  I )  
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and putting 

Using the estimaJor en, the formulas for the constrained estimators are 
revised 10 read: 8" minimizes s,( 8,$ , , )  subject to h( 8) = 0 and 

The form of the efficient score or Lagrange multiplier test depend? on 
how one goes about estimating V *  and f *  having the estimator 4 in 
hand. In view of the remarks following Theorem 14 of Chapter 3, the 
choices 

d E & l  J L 2 f i  

lead to considerable simplifications in the computations, because it is not 
necessary to obtain second derivatives of s,( 0) to estimate # * and one is 
in the situation where f '  = u v  for a = f. With these choices, the 
Lagrange multiplier test becomes (Problem 9) 

Let 0:. minimize so(@, 2:) subject to h ( 0 )  = 0, and put 
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Then the distribution of k' can be characterized as (Problem 9) 

8' = P+ O J l )  

where 

and 

a 
H,** = mh (0:. 1. 

The random variable f is a general quadratic form in the multivariate 
normal random variable 2, and one can use the methods discussed in 
Imhof (1961) to compute its distribution. Comparing with the result derived 
in Problem 5.  one sees that the unfortunate consequence of the use of 2, 
instead of 2, to compute I?' is that one can not use tables of the 
noncentral chi-square to approximate its nonnull distribution. The null 
distribution of P is a chi-square with q degrees of freedom, since if the null 
is true, 6,** = 6; and Z,* = Z. 

PROBLEMS 

1. Show that the regularity conditions listed in this section are sufficient 
to imply the regularity conditions listed in Section 2 of Chapter 4 for 
each of the models 

y,,-f,(@,)+e, a = 1 , 2  ,..., M. 

Show that this implies that 8," converges almost surely to 0,. and that 
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&(d$ - S:,,) is bounded in probability, where @: and 8:,, are 
defined by Assumption 4' using 

e' = (ei, 0; ,... , e;, . . . , eb). 
Let 

Show that oa,(d*) converges almost surely to ua,(O*) and that 
&[oaB(8*) - u,,(e;)] is bounded in probability. Hint: Use Taylor's 
theorem to write 

2. Apply Lemma 2 of Chapter 3 to conclude that one can assume that fn 

is in T without loss of generality. 
3. Use Z - '( 7 )  = adjoint Z( 7)/det Z( 7 )  to show that Z- l( 7 )  is continu- 

ous and differentiable over T. 
4. Verify the computations of Notation 8. 
5. (Lagrange multiplier test with a correctly centered estimator of scale.) 

Assume that an estimator 2 is available with h"(e,, - Z) bounded in 
probability. Apply Theorem 14, with modifications as necessary to 
reflect the choices P = 0-l and #= 26, to conclude that the Lagrange 
multiplier test statistic is 

where I? = H(&,,) with a distribution that can be characterized as 

R'= Y + o,,(l) 
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and 

with HE = H(B,+). Show that the random variable Y has the non- 
central chi-square distribution with q degrees of freedom and non- 
centrality parameter 

x Q : - l H * f  H*Q#-1H+' 
n I n n n 1 - 1 ~ : ~ : - 1  

Now use the fact that ? = (1 /2 ) j - '  to obtain the simpler form 

Use the same sort of argument to show that 

Hint: See the remarks and the example which follow the proof of 
Theorem 14 of Chapter 3. 

6. Verify that Yn* = (1/2)4* + O(l/fi) .  Hint: See the example fol- 
lowing Theorem 12 of Chapter 3. 
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8. Suppose that 2, is computed as 

and that 2, is computed as 

Take it as given that both 2, and 2, converge almost surely to X and 
that both h ( 2 ,  - Z) and &(en - Z) are bounded in probability. 
Show that both S(&", 2,) = M and S(4,8,) = M, so that 

S(4 ,2" )  - S ( 4 , 2 " )  = 0 

and cannot be asymptotically distributed as a chi-square random 
variable. However, both 

L S(B,, 2,) - M 
and 

L = M - S(61,", 2") 
are asymptotically distributed as a chi-square random variable by the 
results of this section. 

9. (Lagrange multiplier test with a miscentered estimator of scale.) 
Suppose that one uses an estimator of scale 2, with fi(e,, - 2:) 
bounded in probability and lim,,+mX; = X, as in the text. Usefhe 
same argulflent as in Problem 5 to show that the choices = 8-' 
and /== 2G allow the Lagrange multiplier test to be written as 
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Show that the distribution of A' can be characterized as R' = + 
o (1) with f as given in the text. Hint: Let H = H:*, J= Yn**, 
/= (a2/a6a6')s,0(8,", X;), and S2 = ha:*. Note that #= 2D:* + 
o(1). Use Theorems 12 and 13 of Chapter 3 to show that 

where 

X 
2 
- -  

' 4  "1 
10. (Computation of the value Z: that centers 2,,.) Assume that h ( 6 )  = 0 

can be written equivalently as 8 = g( p) for some p. Use Theorem 5 of 
Chapter 3 to show that if one computes 6, to minimize 

1 "  
sn(p) = C { Y , - / I . , ' ~ ( P ) I ~ ' ( Y ~ - ~ [ X , , ~ ( ~ ) I J  

r-1 

then the appropriate centering value is computed by finding pf to 
minimize 
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1 "  2" = ; c { Yl - I [ X I  9 g( i n  11 ) { Yf - f [ XI9  &)I } ' 
1-1 

is the solution of the following minimization problem (Problem 11): 

minimize 

1 "  
s,(K 8") = ; c hdet(V) 

r - 1  

+ ( Y ,  - r [ X l , d i n ) l ) ' V - l { Y t  - r I . I J c m  
subject to 

V positive definite, symmetric. 

Use Theorem 5 of Chapter 3 to show that the value 2:: that centers 2, 
is computed as the solution of the problem 

minimize 

snO(v, P,") 

subject to 

V positive definite, symmetric 

where 

s,"( V ,  p )  - In det( V )  

+ L  i i { e  + f ( x l , 8 f )  - ~ [ ~ l , g ( P ) ~ ~ p ~ - l  

x { e  + I ( X I , e )  - / [x , ,g (p) l )  m e )  

1 - 1  

= Indet( V )  + tr( V-'Z) 

x { f ( X V  0,") - IbI, d P ) I ) .  

The solution of this minimization problem is (Problem 11) 
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11. Let 

/(V) - lndetV+ tr(V-'A) 
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where A is an M by M positive definite symmetric matrix. Show that 
the minimum of f ( V )  over the (open) set of all positive definite 
matrices V is attained at the value V = A. Hint: 

f ( V )  - j ( A )  = -lndet(V"A) + tr(V 54) - M. 

Let A ,  be the eigenvalues of V I A .  Then 
M 

f ( V )  - f ( 4  = c ( A ,  - In A 1  - 1). 
1 - 1  

Since the line y = x plots above the line y = In x + 1, one has 

/(V) -f(A) > 0 ifany hi # 1 

/ ( V )  - f ( A )  = 0 if all A,  = 1. 

12. (Etficiency of least s~uares estimators). Define I* as the m i n i e e r  of 
s,(6, ?,) where &( V, - V) is bounded in probability, lim, ~ ,V, = V 
almost surely, and V is positive definite. Show that under Assumptions 
1' through 7' 

f i ( ~  - e:) 5 NJO, ,y;'s,y;i) 

with 

Show that u ~ ; ~ ~ , & ' u  is minimized when V = Z. Note that the 
equation by equation estimator has V = I. 

7. AN ILLUSTRATION OF THE BIAS IN INFERENCE CAUSED 
BY MISSPECIFICATION 

The asymptotic theory in Chapter 3 was developed in sufficient generality 
to permit the analysis of inference procedures under conditions where the 
data generating model and the model fitted to the data are not the same. 
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The following example is an instance where a second order polynomial 
approximation can lead to considerable error. The underlying ideas are 
similar to those of Example 1. 

EXAMPLE 3 (Power curve of a translog test of additivity). The theory 
of demand states that of the bundles of goods and services that the 
consumer can afford, he or she will choose that bundle which pleases him or 
her the most. Mathematically this proposition is stated as follows: Let there 
be N different goods and services in a bundle, let q = (4,. q2, .  . . , qN)’  be 
an N-vector giving the quantities of each in a bundle, let p = 
( p l ,  p 2 , .  . . , pN)’ be the N-vector of corresponding prices, let u * ( q )  be the 
pleasure or utility derived from the bundle q, and let Y be the consumer’s 
total income. The consumer’s problem is 

maximize u * ( q )  subject to p‘q 5 Y .  

The solution has the form q ( x ) ,  where x = p / Y .  If one sets 

g*(x) = u*[q(x)l 

then the demand system q ( x )  can be recovered by differentiation: 

The recovery formula is called Roy’s identity, and the function g * ( x )  is 
called the consumer’s indirect utility function. See Varian (1978) for regu- 
larity conditions and details. 

These ideas may be adapted to empirical work by setting forth an 
indirect utility function g(x, A )  which is thought to approximate g*(x) 
adequately over a region of interest X .  Then Roy’s identity is applied to 
obtain an approximating demand system. Usually one fits to consumer 
expenditure share data q,p, /Y,  i = 1,2,. . . I N, although, as we have seen 

is preferable. The result is the expenditure system 
from Example 1. fitting W q , p , / Y )  - W 4 N P N / Y )  to M x , q ( x ) / x , q ( x ) l  

4i Pi y = f i ( x , h )  + e, i s  1 , 2  ,..., N -  1 

with 
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The index i ranges to N - 1 rather than N because expenditure shares sum 
to one for each consumer and the last may be obtained by subtracting the 
rest. Converting to a vector notation, write 

where y ,  f ( x ,  A), and e are (N - 1)-vectors. Measurements on n con- 
sumers yield the regression equations 

y , - f ( x , , A ) + e ,  t = l , 2  ,..., n. 

Multivariate nonlinear least squares is often used to fit the data, whence, 
referring to Notation 1, Chapter 3, the sample objective function is 

and 

S ( Y ,  x, s, A) = H Y  - f(x, A)I'S-l[y - f(x. 

where $ is a preliminary estimator of W(e, el). 
Suppose that the consumer's true indirect utility function is additive: 

Christensen, Jorgenson, and Lau (1975) have proposed that this supposition 
be tested by using a translog indirect utility function 

to obtain the approximating expenditure system 

with 
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and 

then testing 

H: j3,j = 0 for all i # j  against A : /IiJ # 0 for some i # j .  

This is a linear hypothesis of the form 

h ( A )  = H A  = 0 

with 

as a possible test statistic where 1, minimizes $,(A) and is as defined in 
Section 5 ,  Chapter 3. 

The validity of this inference depends on whether a quadratic in loga- 
rithms is an adequate approximation to the consumer’s true indirect utility 
function. For plausible alternative specifications of g * ( x ) ,  it should be true 
that 

P (  W > c )  A a 

P (  W > c )  > a 

if g* is additive 

if g* is not additive 

if the translog specification is to be accepted as adequate. In this section we 
shall obtain an asymptotic approximation to P( W > c )  in order to shed 
some light on the quality of the approximation. 

For an appropriately chosen sequence of N-vectors k,, a = 1 ,2 ,3 , .  . . , 
the consumer’s indirect utility function must be of the Fourier form 

g( x ,  y )  = uo + b’x + I,x’Cx 

a-1 j -  I 

where y is a vector of infinite length whose entries are b and some 
triangular arrangement of the uJa and oja; C = -E~- - luopk&: .  In conse- 
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quence, the consumer's expenditure system f( x ,  y ) is that which results by 
applying Roy's identity to g(x ,  y ) .  The indirect utility function is additive if 
and only if the elementary N-vectors are the only vectors k, which enter 
g(x, y )  with nonzero coefficients-that is, if and only if 

See Gallant (1981) for regularity conditions and details. 
The situation is, then, as follows. The data are generated according to 

The fitted model is 

y, = f ( x , , A )  + e, t = 1 ,2  ,..., n 

with A estimated by f i  minimizing 

where 

The probability P ( W  > c) is to be approximated for plausible settings of 
the parameter y o  where 

For simplicity, we shall compute the power assuming that (y,, x , )  are 
independently and identically distributed. Thus, Q+ and Qo of Notations 
2 and 3, Chapter 3, are zero, and the asymptotic distribution of W is the 
noncentral chi-square. We assume that d'e) = 0, U(ee') = 2, that & 
converges almost surely to Z, and that h ( S n  - Z) is bounded in probabil- 
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ity. Direct computation using Notations 1 and 3 of Chapter 3 yields 

where 

6( x , ,  AO, Y )  = f( x,, Y O )  - j ( x , ,  AO) 

and Z'J denotes the elements of Z-'. 

vector of bite length by using only the multiindices 
Values of yo were chosen as follows. The parameter y o  was truncated to 

and discarding the rest of the infinite sequence { k,,);-,. Let K denote the 
root sum of squares of the parameters of g(x ,  y )  which are not associated 
with k, = k,, k2, or k,. For specified values of K, the parameters yu were 
obtained by fitting f ( x , y o ) ,  subject Lo specified K, to the data used by 
Christensen, Jorgenson, and Lau (1975), which arc shown in Table 6. This 
provides a sequence of indirect utility functions g(x ,  y o )  which increase in 
the degree of departure from additivity. When K = 0, g ( x ,  y o )  is additive, 
and when K is unconstrained, the parameter y o  is free to adjust to the data 
as best it can. 



Table 6. Data d Cbristensen, Jorgemm, and Lau (1975). 

Oureblos ~ * l . s  S H V l N .  

Year Q u m t l t y  Pr ico Quantity Prim Quantity Pr ice  

1929 
1930 
1931 
1932 
1933 
1934 
1936 
1936 
1931 
1938 
1939 
1940 
1941 
1942 
1943 
1944 
1946 
1946 
1941 
1948 
1949 
1960 
1951 
1962 
1963 
1964 
1956 
1966 
1961 
1968 
1969 
1960 
1961 
1962 
1963 
1964 
1966 
1966 
1961 
1968 
1969 
1910 
1911 
1912 

28.9646 
29.8164 
28.9646 
26.8821 
26.3616 
24.6104 
22.3381 
24.1311 
24.1311 
26.6928 

27.011 4 
28 A91 2 
29.6326 
28.6806 
26.8699 
28.3966 
26.6928 
28.3-6 
31.6149 
36.8144 
38 * 9980 
43.6414 
48.0849 
49.8833 
53.1016 
56.4680 
68.8166 
61.6206 
66.3122 
66. 1864 
66.8251 
10.6129 
T1.6694 
13.5412 
11.2307 
81.9116 
87.4616 
93.8981 
99.5114 
106.1110 

1 16.2900 
122.2000 

26. ioaa 

109. 1380 

33.9 
32.2 
31.4 
23.9 
31.3 
27.1 
28.8 
32.9 
29.0 
28.4 
30.6 
29.4 
28.9 
31 .I 
38.0 
31.1 
39.0 
44.0 
66.3 
60.4 
60.4 
69.2 
60.0 
64.2 
61.6 
68.3 
63.6 
62.2 
56.6 
86.1 
63.3 
73.1 
72.1 
12.4 
12.6 
76.3 
82.3 
84.3 
81 .o 
81 .o 
94.4 
86.0 
86.6 
100.0 

98.1 
93.6 
93.1 
86.9 
82.9 
88.6 
93.2 
103.8 
101.1 
109.3 
116.1 
119.9 
121.6 
129.9 
134.0 
139.4 
160.3 
158.9 
154.8 
166.0 
161.4 
101 .8 
166.3 
111.2 
(16.7 
111.0 
185.4 
191.5 
194.8 
196.8 
205.0 
208.2 
211.9 
218.6 
223.0 
233.3 
244.0 
266.6 
259.6 
210.2 
216.4 
282.1 
281.6 
299.3 

38.4 
36.4 
31.1 
26.6 

30.2 
31.6 
31 .6 
32.1 
31.1 
30.6 
30.9 
33.6 
39.1 
43.T 
46.2 
41.8 
52.1 
58.1 
62.3 
60.3 
60.7 
66.8 
66.6 
66.3 
66.6 
06.3 
61.3 
69.4 
71 .O 
11.4 
12.6 
13.3 
13.9 
14.9 
75.8 
11.3 
80.1 
81 .9 
86.3 
89.4 
93.6 
96.6 
100.0 

26.8 

96.1 
89.6 
84.3 
11.1 
16.8 
16.3 
79.6 
83.8 
86.6 
83.1 
06.1 
88.1 
91 .8 
96.6 
loo. 1 
102.1 
106.3 
116.T 
120.8 
124.6 
126.4 
132.8 
131.1 
140.8 
146.6 
160.4 
151.5 
164.8 
110.3 
176.8 
184.1 
192.3 
200.0 
208. I 
211.6 
229.1 
240.7 
261.6 
204.0 
215.0 
281.2 
291.3 
306.3 
322.4 

31 .S 
32.1 
30.9 
28.8 
26.1 
26.8 
26.8 
27.2 
28.3 
29.1 
29.2 
29.6 
30.8 
32.4 
34.2 
36.1 
31.3 
38.9 
41 .I 
44.4 
46.1 
47.4 
49.9 
52.6 
56.4 
51.2 
68.6 
60.2 
62.2 
64.2 
66.0 
68.0 
69.1 
10.4 
I1 .I 
12.8 
14.3 
16.6 
18.8 
82.0 
86.1 
90.6 
95.8 
100.0 

- 

Source: Gallant (1981). 
403 
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Table 7. Tests for an Additive Indirect Utility Function. 

Fourier Translog 

K Noncenudity Power Noncentrality Power 

0.0 
O.OOO46 
0.0021 
0.0091 
0.033 
0.059 
0.084 

Unconstrained 

0.0 
0.0011935 
0.029616 
0.63795 
4.6689 
7.8947 

a2.875 
328.61 

0.010 
0.010 
0.011 
0.023 
0.260 
0.552 
1 .OOo 
1 .Ooo 

8.9439 
8.9919 
9.2014 

10.287 
14.268 
15.710 
13.875 
10.230 

0.872 
0.874 
0.884 
0.924 
0.987 
0.993 
0.984 
0.922 

~~ ~~ 

Source: Gallant (1981). 

The asymptotic approximation to P(W 2 c )  with c chosen to give a 
nominal .01 level test are shown in Table 7. For comparison, the power 
curve for W computed from the correct model-the Fourier expenditure 
system-is included in the table. 

We see from Table 7 that the translog of explicit additivity is seriously 
flawed. The actual size of the test is much larger than the nominal 
signrficance level of .01, and the power curve is relatively flat. The power 
does increase near the null hypothesis, as one might expect, but it falls off 
again as departures from additivity become more extreme. 



C H A P T E R 6  

Nonlinear Simultaneous 
Equations Models 

In this chapter, we shall consider nonlinear, simultaneous equations models. 
These are multivariate models which cannot be written with the dependent 
variables equal to a vector valued function of the explanatory variables plus 
an additive error, because it is either impossible or unnatural to do so; in 
short, the model is expressed in an implicit form e = q ( y ,  x, 8) where e 
and y are vector valued. This is as much generality as is needed in 
applications. The model q(e, y, x, 8 )  = 0 offers no more generality, since 
the sort of regularity conditions that permit an asymptotic theory of 
inference also permit application of the implicit function theorem so that 
the form e = 4 ( y ,  x, 8 )  must exist; the application where it cannot actually 
be produced is rare. In this rare instance, one substitutes numerical meth- 
ods for the computation of e and its derivatives in the formulas that we 
shall derive. 

There are two basic sets of statistical methods customarily employed 
with these models, those based on a method of moments approach with 
instrumental variables used to form the moment equations and those based 
on a maximum likelihood approach with some specific distribution specified 
for e. We shall discuss both approaches. 

Frequently, these models are applied in situations where time indexes the 
observations and the vector of explanatory variables x, has lagged values 
Y , . - ~ ,  Y , - ~ ,  etc. of the dependent variable y, as elements: models with a 
dynamic structure. In these situations, statistical methods cannot be derived 
from the asymptotic theory set forth in Chapter 3. But it is fairly easy to see 
intuitively, working by analogy with the statistical methods developed thus 
far from the asymptotic theory of Chapter 3, what the correct statistical 
procedures ought to be in dynamic models. Accordingly, we shall lay down 
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this intuitive base and develop the statistical methods for dynamic models 
in this chapter, deferring consideration of an asymptotic theory that will 
justify them to the next. 

1. INTRODUCTION 

In this chapter, the multivariate nonlinear regression model (Chapter 5 )  will 
be generalized in two ways. 

First, we shall not insist that the model be written in explicit form where 
the dependent variables y,, are solved out in terms of the independent 
variables x,, the parameters 8,, and the errors eul. Rather, the model may 
be expressed in implicit form 

qo(y , ,x , ,e : )  = e,, t = 1,2,  ..., n 01 = 1 , 2  ,..., M 

where each q,(y, x ,  8,) is a real valued function, y, is an L-vector, x, is a 
k-vector, each t9: is a p,-dimensional vector of unknown parameters, and 
the e,, represent unobservable observational or experimental errors. Note 
specifically that the number of equations (M) is not of necessity equal to 
the number of dependent variables ( L ) ,  although in many applications this 
will be the case. 

Secondly, the model can be dynamic, which is to say that t indexes 
observations that are ordered in time and that the vector of independent 
variables x, can include lagged values of the dependent variable ( y, - y, - *, 
etc.) as elements. There is nothing in the theory (Chapter 7) that would 
preclude consideration of models of the form 

q,,,(y, ,..., y o , x ,  ,..., xo,e:) = e,, t = 1 , 2 , , . . ,  n (I = 1 ,2  .... , M 

or similar schemes where the number of arguments of q,,(*) depends on t ,  
but they do not seem to arise in applications, so we shall not consider them. 
If such a model is encountered, simply replace q,(y,, x , ,  8,) by 
qa,(y,,. . . , yo, x,, . . . , xo, 8,) at every occurrence in Section 3 and there- 
after. Dynamic models frequently will have serially correlated errors 
[‘%(em, e@,) # 0 for s # t ] ,  and this fact will need to be taken into account 
in the analysis. 

Two examples follow. The first has the classical regression structure (no 
lagged dependent variables or serially correlated errors); the second is 
dynamic. 
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EXAMPLE 1 (Consumer demand). This is a reformulation of Example 
1 of Chapter 5 .  In Chapter 5 ,  the analysis was conditional on prices and 
observed electricity expenditure, whereas in theory it is preferable to 
condition on prices, income, and consumer demographic characteristics; 
that is, it is preferable to condition on the data in Table l b  and Table lc of 
Chapter 5 rather than condition on Table l b  alone. In practice it is not 
clear that this is the case, because the data of Tables la and 16 are of much 
higher quality than the data of Table lc; there are several obvious errors in 
Table lc, such as a household with a dryer and no washer or a freezer and 
no refrigerator. Thus, it is not clear that we are not merely trading an errors 
in variables problem that arises from theory for a worse one that arises in 
practice. 

To obtain the reformulated model, the data of Tables la, lb, and l c  of 
Chapter 5 are transformed as follows: 

y ,  = ln(peak expenditure share) - h(base expenditure share) 
y ,  = ln(intermediate expenditure share) - In(base expenditure share) 
y3 = In(expenditure) 
rl = In(peak price) 
r, = In(intermediate price) 
r3 = ln(base price) 

do = 1 

d, = In 

d, = ln(income) 
d ,  - ln(residence size in sq ft) 

10 X peak price + 6 X intermediate price + 8 x base price 
24 

1 if the residence is a duplex or apartment 
0 otherwise 
1 if the residence is a mobile home 

d 5 -  { 0 otherwise 
ln(heat loss in Btuh) 

4 -  { central air conditioning 
0 otherwise 

In(window air Btuh) 

0 otherwise 

d , =  ( 

if the residence has 

if the residence has 
window air conditioning 
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ln(number of household members + 1) 
if the residence has an 
electric water heater 

0 otherwise 

d ,  = 

1 

0 otherwise 

ln(number of household members + 1) 

0 otherwise 

ln(refrigerator kW) 

In( freaer kW) 

1 
0 otherwise. 

if the residence has both an 
electric water heater and a washing machine 

d10= ( if residence has an electric dryer 

4,  = { otherwise 
if the residence has a refrigerator 

if the residence has a freezer 
otherwise 

if the residence has an electric range 

dl2 = ( 
d n  = ( 

do, ‘ 
4, 

,dl% t 

x, = ( :f). . 

As notation, set 

These data are presumed to follow the model 
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where 1 denotes a vector of ones and 

409 

The matrix B is symmetric and u3  = -1. With these conventions, the 
nonredundant parameters are 

The errors 

are taken to be independently and identically distributed each with zero 
mean. 

The theory supporting this model was given in Chapter 5.  The functional 
form of the third equation 

and the variables entering into the equation were determined empirically 
from a data set of which Table 1 of Chapter 5 is a small subset; see Gallant 
and Koenker (1984). 0 

EXAMPLE 2 (Intertemporal consumption and investment). The data 
shown in Table la below are transformed as follows: 

(consumption at time )/(population at time r ) 
= (consumption at time r - l)/(population at time f - 1) 

deflator at time t - 1 
x ,  = (1 + stock returns at time I )  at time , . 

These data are presumed to follow the model 

Po( yf )aox,  - 1 = el f = 1,2, .  . . ,239. 
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Put 

2, = (1, Y , - l ,  x,-1)’- 

What should be true of these data in theory is that 

B(e, 63 z , )  = 0 

B(e, 63 t , ) ( e ,  63 2,)’ = I: 
8(e, @ z,)(e, ~0 2,)’ = 0 

t = 2,3, ..., 239 

f - 2,3,  ..., 239 

t z s. 

Even though e, is a scalar, we use the Kronecker product notation to keep 
the notation consistent with the later sections. 

The theory supporting this model specification follows; the reader who 
has no interest in the theory can skip ova the rest of the example. 

The consumer’s problem is to allocate consumption and investment over 
time, given a stream F0, El, E2,. . . of incomes; W, is the income that the 
consumer receives at time t .  We suppose that the various consumption 
bundles available at time t can be mapped into a scalar quantity index c, 
and that the consumer ranks various consumption streams c,,, cl, c2,. . . 
according to the utility indicator 

m 

where /3 is a discount factor, 0 < B < 1, and u(c )  is a strictly concave 
increasing function. We suppose that there is a corresponding price index 
For. so that expenditure on consumption in each period can be computed 
according to jjofc,. Above, we took c, to be an index of consumption per 
capita on nondurables plus SeNices and Po, to be the corresponding 
implicit price deflator. 

Further, suppose that the consumer has the choice of investing in a 
collection of N assets with maturities m,, j = 1,2, .  . . , N; asset j bought 
at time r cannot be sold until time t + mj, or equivalently, asset j bought 
at time - mj cannot be sold until time 1. Let q,, denote the quantity of 
asset j held at time t ,  p,, the price per unit of that asset at time f; and let 
5, denote the payotf at time t of asset j bought at time t - m,. If, for 
example, the jth asset is a default free., zero coupon bond with term to 
maturity m, then is the par value of the bond at time t + mJ; if the 
j t h  asset is a common stock, then by definition m, - 1 and 5, = ji + qI, 
where 4, is the dividend per share of the stock paid at time t,J\f any. 
Above, we took the first asset to be NYSE stocks weighted by value. 
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In Tables la  and 16, r is interpreted as the instant of time at the end of 
the month in which recorded. Nondurables and services, population, and 
the implicit deflator are assumed to be measured at the end of the month in 
which recorded, and assets are assumed to be purchased at the beginning of 
the month in which recorded. Thus, for a given row, nondurables and 
services divided by population is interpreted as c,, the implicit price deflator 
as j jot ,  the return on stock j as ( FJ, + d;, - p/, I -  ,)/r?,. I -  and the return 

= ? , / ~ o t  and p,, = pJl/jj0,, if a three month 
bill is bought February 1 and sold April 30, its return is recorded in the row 
for February. If r refers to midnight April 30, then the value of t is 
recorded in the row for April and 

On i Bs ( F J , l + m , - l  - @ j , f - 1 ) / p J , f - 1 ‘  
As an example, putting 

C, 

Ct - m, 

(April nondurables and services)/(April population) 
(January nondurables and services)/( January population) 

- =  

As another, if a one month bill is bought April 1 and sold April 30, it is 
recorded in the row for April. If r refers to midnight April 30, then 

(April nondurables and services)/(April population) 
(March nondurables and services)/(March population) 

- -  c, 
C,- m, 

- 

With these assumptions, the feasible consumption and investment plans 
must satisfy the sequence of budget constraints 

N N 

jsotc, + c P J t 4 j f  s GI + c r J l @ / * l - m ,  
1-1 1- 1 

0 s 4,t. 

The consumer seeks to maximize utility, so the budget constraint is e f k -  
tively 

N N 
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where w, - Wl/jio,, 5, = det pol, and pi, = jijl/ji0,, or, in an obvious vector 
notation, 

CI = w, + r / q r - m  - PJ4r 
0 41. 

The sequences ( w, }, { r, }, and { pr } are taken to be outside the consumer's 
control, or exogenously determined. Therefore the sequence {c,} is de- 
termined by the budget constraint once ( q, ) is chosen. Thus, the only 
sequence that the consumer can control in attempting to maximize utility is 
the sequence { qr }. The utility associated to some sequence { q, } is 

W q , ) )  = W W I  + t q 1 - m  - PJ41)) 
m 

= c B ' U ( W I  .t r;q,-rn - P:d. 
I -0  

We shall take the sequences { w , } ,  { r I } ,  and { p,) to be stochastic 
processes and shall assume that the consumer solves his optimization 
problem by choosing a sequence of functions Q, of the form 

Q,( ~ 0 , .  . - 9 ~ 1 .  ro.. . I  PO,. . . P,) 2 0 
which maximizes 

where 

It may be that the consumer can achieve a higher expected utility by 
having regard to some sequence of vector valued variables { u, )  in addition 
to ( w , ) ,  { r l } ,  and { p , } ,  in which case the argument list of Q and B above 
is replaced by the augmented argument list 

(wo ,.... w,, ro, ..., r,, po ,..., p , ,  uo, .  . ., v,). 

Conceptually, u, can be infinite dimensional, because anything that is 
observable or knowable is admissible as additional information in im- 
proving the optimum. If one wishes to accommodate this possibility, let g, 
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be the smallest a-algebra such that the random variables 

{ w s ,  r,, psl  us, : s = 0,1, .  . . , I ,  j = 1 , 2 , .  1 . } 

413 

are measurable, let Q, be A?,-measurable, and let d,( X )  = b( X I B,). Either 
the augmented argument list or the a-algebra 9?, is called the consumer's 
information set, depending on which approach is adopted. For our pur- 
poses, the augmented argument list provides enough generality. 

Let Qo, denote the solution to the consumer's optimization problem, and 
consider the related problem 

subject to Q, = Q,(wo ,..., w, ,  ro ,..., r,, pol ..., p,,  uo ,..., u,) 2 0 

with solution Q,,. Suppose we piece the two solutions together: 

O j t s s - 1  0, = ( Qot 
Q,, s s t s o o .  

Then 
m 

J o ~ ( { r z , ) )  = 8 0  c P ' 4 W f  + ~ ; Q f - r n -  P;QJ 
t-0 
s- 1 

,= 80 C B'u(wt  + rt'Q0t-m - d Q o t )  
1-0 

W 

+Jogs C B ' u ( w ,  + rt'Qst-m - P:Qsr) 
I -r  

I- 1 

2 80 C B ' U ( W t  + rt'Qo,-, - PIQot) 
1-0 

W 

+go4 C B'u(wt + Tt'QOt-m - P:Qo,) 
I -s  

W 

= 40 C B ' u ( w ,  + rt'Q0,-m - P I Q O O  
r - 0  

= &ov( { Qot 1 ). 
This inequality shows that Qo, cannot be a solution to the consumer's 
optimization problem unless it is also a solution to the related problem for 
each s. 
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If we mechanically apply the Kuhn-Tucker theorem (Fiacco and Mc- 
Cormick, 1968) to the related problem 

00 

maximize gsJ'({ Q i  1:s) = 8 s  C B'u(w, + rt'Qt- m - 
I 'S  

subject to Q, 2 0 

we obtain the first order conditions 

a -1 @'( Qi 1 ) + AJsQJ'] = 0 

A j s Q j s  a= 0 
' J S  ' 

where the A,! are Lagrange multipliers. If a positive quantity of asset j is 
observed at tune s-if Q,, > O-then we must have A,, = 0 and 

for t = 0,1,2,. . . and j = 1,2,. . . , N. See Lucas (1978) for a more rigorous 
derivation of these first order conditions. 

Suppose that the consumer's preferences are given by some parametric 
function u(c, a) with u ( c )  = u(c, a'). Let y = (a, f l ) ,  and denote the true 
but unknown value of y by yo.  Let z ,  be any vector valued random 
variable whose value is known at time 1,  and let the index j correspond to 
some sequence of securities (q,,) whose observed values are positive. Put 

If we could compute the moments of the sequence of random variables 
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{ ~ , ( y o ) ) ,  we could put 

415 

and estimate y o  by setting m , ( y )  = d'm,,(y') and solving for y .  
To this point, the operator 8(*)  has represented expectations computed 

according to the consumer's subjective probability distribution. We shall 
now impose the rational expectations hypothesis, which states that the 
consumer's subjective probability distribution is the same distribution as 
the probability law governing the random variables { w , } ,  ( r ,} ,  { p r } ,  and 
{ u,}.  Under this assumption, the random variable m,(y ' )  will have first 
moment 

= 8 [ 0  QD Z,] = 0. 

For s + m, 5 t the random variables m,(y' )  and m,(y' )  are uncorrelated, 
since 

I m ,  ( Y O )  m: (YO) 

= B[O 09 z,) 

= 0 .  



Tabie 1s. Corrnunptioa and Stock Returns 

Nondurabl8s VIIW Uoighted Irpllcit 
t roof month and Sorvicos PopuIatlon W6f Roturns ooflator 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
16 
16 
17 
18 
19 
20 
21 
22 
23 
24 
26 
26 
27 
28 
29 
30 
31 
32 
33 
34 
3s 
38 
37 
38 
39 
40 
41 
42 

44 
46 
46 
47 

4a 

1969 

1960 

1961 

1962 

1 
2 
3 
4 
6 
8 
7 
8 
9 

10 
11 
12 

1 
2 
3 
4 
6 
6 
7 
8 
8 

10 
1 1  
12 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I 1  
12 

381.9 
383.7 
388.3 
385.5 
389.7 
390.0 
369.2 
380.7 
393.6 
394.2 
394.1 
396.5 
396.8 
396.4 
389.1 
404.2 
399.8 
401.3 
402.0 
400.4 
400.2 
402.9 
403.8 
401.6 
404.0 
405.7 
409.4 
410.1 
412.1 
412.4 
410.4 
411.5 
413.7 
416.9 
419.0 
420.6 
420.8 
420.6 
423.4 

427.0 
425.2 
427.0 
428.5 
431 .8 
431 .O 
433.6 
434.1 

~ 4 . a  

176.6MO 
178,9060 
171. I460 
177.3660 
177.6910 
177.8300 
176. 1010 
178 J760 
178.6670 
178. 8210 
179.1630 
1 19.3860 
179.5970 
179.1860 
180.0070 
180.2220 
180.4440 
180.67 10 
180.9450 
181.2380 
187.5280 
161.7960 
182.0420 
182.2870 
162 S200 
182.7420 
182. 8920 
183.21 70 
183.4620 
183.6910 
183.9680 
184.2430 
184 A240 
164.7830 
186.01 60 
185.2420 
186.4520 
186.6500 
186.8740 
186.0870 
186.3140 
186.5360 
186.7900 
187 .0680 
187.3230 
187 S740 
187.7960 
188.01 30 

0.0093696102 
0.0093310997 
O.W)49904601 
0.0383739890 
0.0204169890 
0.0007165600 
0 . 0 3 7 l 9 2 2 Z ~  

-0.01 13433900 
-0.0472779090 
0.0164727200 
0.0194594210 
0.0296911900 

-0.0664901060 
0.0114439100 

-0.0114419700 
-0.0163223000 
0.0328373610 
0.0231378990 

-0.0210754290 
0.0296860300 

-0.0668203400 
-0.0045937100 
0.0412566590 
0.0418186380 
0.0654136870 
0.0364446900 
0.0318623910 
0.0068811302 
0.0261120610 

-0.0296279510 
0.0303546690 
0.0251584690 

-0.0189105600 
0.0266103900 
0.0470347110 
0.000668S300 

-0.0358958100 
0.0197926490 

-0.0055647301 
-0.0615112410 
-0.0834698080 
-0.0809235670 
0.  IM69O98830 
O.OZZ6466Mo 

-0.0687761200 
0.0039394898 
0.1114562000 
0.0139081300 

0.6018639 
0.6823039 
0.681431 8 
0.6830091 
0.6846292 
0.6676923 
0.6893621) 
0.6910673 
0.6930894 
0.6946713 
0.6S6OO13 
0.6958386 
0.6960686 
0.8081628 
0.6983212 
0.7013856 
0.7016008 
0.7024670 
0.7034826 
0.7047962 
0.7061 469 
0.7078880 
0.7100049 
0.7 109064 
0.7106436 
0.7108701 
0.7105620 
0.71OO707 
0.71002 18 
0 . 7  109602 
0.11 27193 
0.7132442 
0.7138023 
0.7 13633 1 
0.71 36038 
0.71 43876 
0.7166418 
0,117184 1 
0.7191781 
0.7203390 
0.7206089 
0.7208373 
0.7203147 
0.7218203 
0.7284838 
0.7282181 
0.7269373 
0.727021 4 
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Table lo. (Continued). ---- __ -- 
Nondur.blos Valw Wcighted Implicft 

t Yew lknth and Servicac Population NYSE Returns Deflator ------ 
48 
49 
50 
51 
62 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
18 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 

90 
91 
92 
93 
94 
95 

a9 

1963 

1964 

1965 

1966 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 

434.7 
433.7 
436.2 
437.0 
436.9 
440.2 
442.1 
446.6 
443.8 
444.2 
445.8 
449.6 
450.1 
453.7 
466.5 
456.7 
462.1 
453.8 
465.0 
468.5 
468.0 
470.0 
468.0 
474.4 
474.5 
477.4 
474 * 5 
479.6 
481.2 
479.5 
484.3 
485.3 
488.7 
497.2 
497.1 
499.0 
800.1 
501 .S 
502.9 
505.8 
504.8 
507.5 
510.9 
506.3 
510.2 
509.8 
512.1 
513.5 

1 88.21 30 
188.3870 
1 88.6800 
188.7900 
189.0180 
189.2420 
189.4960 
189.7610 
190.0280 
190.2660 
190.4720 
190.6580 
190 .a580 
191.0470 
191.2450 
191.4470 
191.6560 
191 .BE90 
192.1310 
192.3760 
192.6310 
192.8470 
193.0390 
193.2230 
193,3930 
193.5400 
193.7090 
193.6860 
194 .08TO 
194.3030 
194.5280 
194.7610 
194.9070 
195.1950 
195.3720 
195.6390 
195.6800 
196.831 0 
195.9990 
196.1780 
196.3720 
196.5600 
196.7620 
1%. 9840 
197.2070 
197.3980 
197.5720 
1 91.7360 

0.0508059190 
-0.0226500000 
0.0347222910 
0.0479895860 
0.0206833590 
-0.0176168900 
-0.0018435300 
0.0635292610 
-0.0126571200 
0.0286585090 
-0.0047020698 
0.0221940800 
0.0256042290 
0.0181333610 
0.0173466290 
0.0051271599 
0.0166149310 
0.0158939310 
0.0202899800 
-0.0109551800 
0.0315313120 
0.0100951200 
0.001 3465700 
0.0034312201 
0.0377800500 
0.0066147698 
-0.0107356600 
0.0346496910 
-0.0047443998 
-0.0505878400 
0.0169978100 
0.0299301090 
0.0323472920 
0.0293272190 
0.0008636100 
0.0121703600 
0.0100357400 
-0.0102875900 
-0,0216729900 
0.0233628400 
-0.0509349700 
-0.0109703900 
-0.0110703500 
-0.0748946070 
-0.0066132201 
0.0464060400 
0.0138342800 
0.0047225100 

0.7292386 
0.7299977 
0.72971 1 1  
0.7295 194 
0. 7308308 
0.7319400 
0.7335444 
0.7349641 
0.7347905 
0.7361 549 
0.7375505 
0.7385984 
0.7398356 
0.7399162 
0.7402540 
0.7407488 
0.7405324 
0.7416990 
0.7429185 
0.7432231 
0.7448718 
0.7457447 
0.7465812 
0.7476813 
0.7481560 
0.7488479 
0.7506849 
0.7525021 
0.7564032 
0.7593326 
0.7602726 
0.7601484 

0.7626710 
0.7648361 
0.7671343 
0.7696461 
0.7730808 
0.7757009 
0.7765686 
0.7793185 
0.7812808 
0.7827363 
0.7867401 

0.7910945 
0.7922281 
0.7933788 

0.7605a93 

0.7a94913 
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Table la. (C-. 

Nondurabl.8 V O I W  W.l*ted IRpllCit 
t Y.rr h t h  md k r V l C O 8  Populrtion NYSE R8tWnS Ootlrtor 

96 
97 
98 
99 

100 
101 
102 
103 
104 
106 
106 
107 
108 
109 
110 
111 
112 
113 
114 
116 
116 
117 
118 
119 
120 
121 
122 
123 
124 
126 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
138 
137 
138 
139 
140 
141 
142 
t 43 

1967 

196s 

1969 

1970 

1 
2 
3 
I 
6 
6 
7 
8 
9 

10 
11 
12 

1 
2 
3 
4 
6 
6 
7 
8 
9 

10 
I1 
12 
1 
2 
3 
4 
6 
6 
7 
8 
9 

10 
11 
12 

t 
2 
3 
4 
6 

7 

9 
10 
11 
12 

e 

e 

616.0 
617.7 
619.0 
621.1 
621 .O 
623.1 
622.1 
625.6 
628.2 
S24.9 
627.9 
631 .9 
633.0 
533.9 
639.8 
640.0 
541.2 
647.8 
660.9 
662.4 
661 .O 
662.1 
666.7 
664.1 
657.0 
561 .2 
S60.6 
561 .9 
666.5 
563.9 
566.9 
669.4 
568.2 
673.1 
572.5 
572.4 
617.2 
678.1 
677.7 
679.1 
680.3 
662.0 
682. B 
684.7 
688.6 
601.3 
687.6 
692. e 

197.8920 
198.0370 
190.206a 
198.3630 
198.6370 
198.71 20 
190.9110 
199.1 130 
199.31 10 
199.4900 
199.6670 
199.8080 
199.9200 
200.0660 
200.2000 
200.3610 
200.6360 
200. TWO 
200.8980 
201.0950 
201.29M) 
201.4660 
201.6210 
201 .?600 
201. 8810 
202.0230 
202.1610 
202.3310 
202.5070 
202.6170 
202.8770 

203.3020 
203.6000 
203.6760 

204. WOO 
204.1660 
204.3360 
204.6060 
204.6920 
204.8780 
206 .On60 
206.1940 
206.6070 
206.7070 
206.8040 
206.0760 

203. orno 

203.8490 

0.0838221310 
0.0090126497 
0.0433M3100 
0.0420966220 

-0.0416207000 
0.0232013710 
0.0482668600 

-0.0066681302 
0.03361219W 

-0.0216739710 
0.007W06102 
0.0307226010 

-0.0389630290 
-0.0311605910 

0.0890963210 
0.0230161700 
0.0118628200 

-0.0211607900 
0.0163246690 
0.0422968400 
0.0111637600 
0.0662853114 

-0.0372401690 
-0.0072337699 
-0.0502119700 
0.0314719300 
0.0213763300 
0.0029276999 

-0.0623450020 
-0.0630706430 
0.0504970810 

-0.0220447110 
0.0647974710 

-0.0314689110 
-0.0180748090 
-0.0763489600 

0.0697186420 
-0.00234861)99 
-0.0996834470 
-0.0611347710 
-0.0602832790 
0.0746088620 
0.O6O2OlOWO 
0.0426676610 

-0.0160901810 
0.0521828200 

0 . 0 0 ~ 6 ~ ~ o ~ e  

0.06179es200 

0. T 9 4 l M l  
0.194861 9 
0.7969638 
0.1966842 
0.7988464 
0.8016676 
0.8038690 
0. 8068991 
0.8076466 
0.8094876 
0.8124646 
0.8166668 
0.6200760 
0.8231879 
0.8262319 
0.8286186 
0.8318661 
0.8336169 
0. 8369O49 
0.8388849 
0.8421053 
0.8462236 
0.8492906 
0.8621 928 
0.8660144 
0.8678047 
0.8619336 
0.8867023 
0.8104326 
0.8751552 
0.  8784238 
0.8816298 
0.8856037 
0.8888501 
0.8939738 
0.8961481 
0.9019404 
0.9068986 
0.9077316 
0.9123202 
0.9166609 
0.91 76976 
0.9208991 
0.9236606 
0.92761 26 
0.9324026 
0.936181 1 
0.9399268 
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144 
1 45 
146 
141 

149 
160 
161 
152 
153 
154 
156 
156 
1 67 

1 59 
160 
161 
162 
163 
164 
166 
166 
161 

169 
1 I0 
111 
112 
113 
114 
115 
116 
1 I1 

119 
1 0  

1443 

1 sa 

168 

1 ia 

iai 
102 

184 

i a6 
i a1 
1 @a 

183 

186 

189 
190 
191 

1911 

1912 

1913 

1914 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
1 
2 
3 
4 
6 
6 
I 

9 
10 
1 1  
12 
1 
2 
3 
4 
6 
6 
I 

9 
10 
1 1  
12 
1 
2 
3 
4 
5 
6 
I 

9 
10 
1 1  
12 

a 

e 

a 

692.2 
694.6 
692.4 
696.1 
696.3 
5919.5 
591.3 
699.1 
601.1 
601.1 
604.9 

807.9 
610.3 

820.6 
622.3 
623. I 
621.6 
629.1 
631 . I  

$011. a 

6ia.9 

638. 2 
639.8 
640.1 
643.4 
646.3 
643.3 
642.1 
643.2 
646.0 
661.9 
643.4 
651.3 
649.5 
651.3 
641. I 

646.2 
645.9 

649.3 
650.3 
653.5 
664.6 
652.7 
664.6 
661.2 
650.3 

648.4 

6413.6 

206.2420 
206,3930 
206.6670 
206.1260 
208.8010 
201.0630 
207.2310 
207.4330 
201.6270 

201.9490 

208.1960 

zoi . aooo 
208. oeao 
201.31 00 
200.44~0 
206.5690 
208.1120 
208.8460 
206,9880 
209.1530 
209.3170 
209.4610 

209. 7110 
209.8090 
209.9060 
210.0340 
210.1540 
210.2860 
210.4100 
210.5560 
210.1150 

209.6840 

210.a630 
210.9a40 
21 1.0910 
21 1.2010 
211.3110 
211.4110 
211.5220 
21 1.6310 
21 1.1120 
211.9010 
212.0610 
21 2.2160 

212.6180 
21 2.6310 

21 2.3~330 

212.14130 

0.04921406ao 
o.oi~%a6(ioo 
0.0441647210 
0.0341992900 
-0.0366111110 

-0,0398038400 
0.0409011600 
-0.0066930101 
-0.0396211310 
-0.0000956400 
0.0907427090 
0.0241166400 

0.0091922091 
0.0066161102 

-0.0221355410 

0.00~3a9i50i 

o.o~oa8oaiio 

o.oiia14is90 

-0.ooiai99200 
0.0382015e90 

0.0099~9~39a 
-0.0064313002 

0.0491901590 
0.0116306100 
-0.0253111100 

-0.0064660399 
-0.0464694100 
-0.0183661910 

0.Q521348010 
-0.0302029100 
0.0522540810 

-0.1165516000 
0.0153318600 
-0.0013036400 

-0.0243075400 
-0.0433935180 

-0.0193944290 
-0.0130256170 

-0.039ai46990 

-0.ooea413004 

-o.ooiaaa~ioo 

0.003a4~~~00 

-0.03~26ioaoo 

-0.08~2as3130 
-0.io9a341000 
0.1611694000 
-0.0391416390 
-0.0234328400 

0.9414049 

0.9469963 
0.9606194 

0.9691321 
0.9630002 
0.9619519 

0.9129101 
0.9152026 
0.9191963 
0.9826629 
0.9816411 

0.991 1316 
0.9942150 
0.9961520 
0.99966 1 3 
1.0031 160 
1.0019150 
1.0111520 
1.0151610 
1.0190420 
1.0241120 
1 .0309930 
1.03996OO 
1.0418120 
1.0641040 
1.0603120 
1 .0632000 
1 ,0192660 
1.0816290 
1 .0896010 
1 .0993400 
1 .lo93100 
1.1216300 
1.1363360 
1.1469390 
1 ,1558140 
1.1661950 
1.1131660 

1.1926660 

1.2122230 
1.2206160 

0.9434aig 

0.9548aa6 

0.969a8a5 

0.9agiiu 

I. teo2soo 

i.2043e20 

1.22113950 
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Table la. (Continued). 

Nondurobler Valw WIightod I q l l c i t  
t War Nonth 8nd GM.vlcn Population Return. Dotlator 

192 
193 
194 
196 
196 
197 
198 
199 
200 
20 1 
202 
203 
204 
206 
206 
207 
208 
209 
210 
21 1 
212 
213 
211 
216 
216 
217 
218 
219 
220 
221 
222 
223 
224 
226 
226 
227 
228 
229 
230 
23 1 
232 
233 
234 
236 
236 
237 
238 
239 

1976 

1976 

1977 

1978 

1 
2 
3 
4 
6 
6 
7 
8 
9 
10 
11 
12 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
1 
2 
3 
4 
5 
6 
7 
6 
9 
10 
11 
12 

663.7 
657.4 
669.4 
669.7 
870.4 
669.7 
668.3 
670.1 
670.2 
670.8 
674.1 
677.4 
664.3 
682.9 
607.1 
690.6 
688.7 
696.0 
896.8 
699.6 
702.5 
705.6 
709.7 
715.8 
717.6 
719.3 
716.6 
719.1 
722.6 
721.5 
728.3 
727.0 
729.1 
735.7 
739.4 
740.1 
738.0 
744.8 
160.5 
760.4 
760.3 
753.1 
765.6 
761.1 
766.4 
765.2 
768.0 
774.1 

212.8440 
212.93W 
213.0660 
213.1870 
213.3930 
213.6690 
213.7410 
213.9000 
214.0660 
2 14.2000 
21 4.32 10 
21 4.4460 
214.6610 
21 4.6660 
214.1620 
2 14.88 10 
21 6.01 80 
216.1620 
216.3110 
21 6.4780 
216.6420 
216.1920 
216.9240 
216.0670 
216.1860 
216.3000 
216.4360 
216.6860 
216.7120 
216.8630 
21 7.0300 
217.2070 
217.3740 
27 7.5230 
2 17.6550 
2 17.7860 
21 7.8810 
217.9870 
218.1310 
218.2610 
2 1 8.4040 

218.1200 
2 18.9090 
219.0760 
219.2360 
219.3840 
219.6300 

zie.6480 

0.1368016000 
0.0601064380 
0.0293416310 
0.0410072290 
0.0646782990 
0.0617648310 
-0.0631501400 
-0.0203062710 
-0.0366309680 
0.0609996690 
0.0314961600 
-0.0106694800 
0.1261743000 
0.0012426600 
0.0300192200 
-0.0108726300 
-0.0088088603 
0.0472606990 
-0.0073168499 
0 .00067989OO 
0.0261333100 
-0.0214380810 
0.0046162698 
0.0686772800 
-0.0398427810 
-0.0162227190 
-0.0106609200 
0.0038967901 
-0.0126387400 
0.0509454310 
-0.0166951100 
-0.0140849800 
0.0006794800 
-0.0394544790 
0.0419719890 
0.0052549900 
-0.0668409600 

0.0318689010 
0.0833722430 
0.0186666390 
-0.0129163600 
0.0664879100 
0.0372171690 
-0.0063229799 
-0.1017461000 
0.0313147900 
0.0166718100 

-0.01 21 0d9600 

1.2337460 
1.2378030 
1.2406730 
1.2457160 
1.2602980 
1,2693700 
1.2721830 
1.2766160 
1.2821660 
1.2904OOO 
1.2W6920 
1.3039660 
1.3081 980 
1.3069260 
1.3092710 
1.3132080 
1.3208040 
1.3266120 
1.3307980 
1.3381930 
1.3449110 
1.3520410 
1.3587430 
1.3667460 
1.3720140 
1.3831600 
1.3884160 
1.3963650 
1.4014670 
1.4105340 
1.4 169000 
1.4244840 
1.4295710 
1,4360980 
1.4442790 
1.4508860 
1.4681300 
1.4663000 
1.4743600 
1.4862740 
1 .SO33990 
1.5146730 
1.61 99840 
1.6284460 
1.6412660 
1.6541030 
1 .6640620 
1.5694360 

- -I_ 

Source: Courtesy of the authors, Hansen and Singleton (1982, 1984). 
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Table lb.  TFersmy Bill Returns. -- 
Holding Perlod 

t Y e w  Month 1 nonth 3 Months 6 Months 

0 
1 
2 
3 
4 
6 
6 
1 
8 
9 

10 
11 
12 
13 
14 
16 
16 
11 
18 
19 
20 
21 
22 
23 
24 
26 
26 
27 
28 
29 
30 
31 
32 
33 
34 
36 
38 
37 
38 
39 
40 
41 
42 
45 
44 
46 
46 
47 

1969 

1860 

1961 

1 %2 

1 
2 
3 
4 
6 
6 
7 
8 
9 

10 
11 
12 
1 
2 
3 
4 
6 
6 
7 
8 
9 

10 
11 
12 

1 
2 
3 
4 
6 
8 
7 
8 
9 

10 
11 
12 

1 
2 
5 
4 
6 
8 
7 
0 
9 

10 
11 
12 

0.0021 
0.0019 
0.0022 
0.0020 
0.0022 
0.0024 
0.0026 
0.0010 
0.0031 
0.0030 
0.0026 
0.0034 
0.0063 
0.0029 
0.0056 
0.0019 
0.0027 
0.0024 
0.0013 
0.0017 
0.0016 
0.0022 
0.0013 
0.0016 
0.0010 
0.0014 
0.0020 
0.0017 
0.0018 
0.0020 
0.0018 
0.0014 
0.0017 
0.0019 
0.0016 
0.0019 
0.0024 
0 * 0020 
0.0020 
0.0022 
0.0024 
0.0020 
0.0021 
0.0023 
0.0021 
0.0026 
0.0020 
0.0023 

0.0067620277 
0.0067064033 
0.0069413186 
0.0011977377 
0.0072308779 
0.0076633692 
0.6060889463 
0.0076789690 
0.0097180606 
0.0103986260 
0.0101703410 
0.0112402440 
0.0111309290 
0.0101217030 
0.0106238130 
0.0076928947 
0.0076863037 
0.0079686178 
0.0066410862 
0.0065702926 
0.0067606606 
0.0068846282 
0.0063361816 
O.OoM)379606 
0.006S921078 
O.OW0113537 
0.006S611426 
0.0060663667 
0.0067236956 
O.OW9211264 
0.0061186623 
0.0066213140 
0.0069602126 
0.0066616068 
0.0057960020 
0.0064492228 
0.0067474842 
0.0060224669 
0,0066804l)16 
0.0069818497 
o.m896Io(wI 
0.0068554311 
0.0073841711 
0.0072803497 
0.00711011dS 
0.0069708824 
0.0080765160 
0.0072676943 

0.0149484610 
0.0153665490 
0.0166810010 
0.01643661YO 
0.0162872080 
0.0176679920 
0.0106058960 
0.0191299920 
0.023016T180 
0.0247714620 
0.0219679940 
0.0246732230 
0.0263483060 
0.0230160220 
0.0226163700 
0.0172802210 
0.0114299480 
0.0112200070 
0.0131897930 
0.0127488370 
0.0142772200 
0.0143819660 
0.0121041600 
0.0138481690 
0.0121918920 
0.01274168SO 
0.014199131)o 
0.0131639240 
0.0120002060 
0.015086oa10 
0.0123114690 
0.0128748420 
0.01 36632620 
0.0136462460 
0.01321 93610 
0.0142288210 
0.014W99280 
0.0140422720 
0.0148669360 
0.0147231820 
0.0146040760 
0.014160(1680 
0.014so926~0 
0.0166196190 
0.0161846220 
0.0140064360 
0.0143131390 
0.0160618170 
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Table lb.  (Continued). 

Molding Porlod 

t Year  M t h  1 Month 3 M t h S  6 M t h S  

48 1963 
49 
60 
61 
62 
53 
64 
66 
56 
61 
68 
69 
60 1964 
61 
62 
63 
64 
65 
66 
61 
68 
69 
10 
I1 
12 1966 
13 
14 
16 
16 
11 
I8 
I9 
80 
81 
82 
83 
84 1966 
86 
86 
87 
88 
89 
90 
91 
92 
93 
94 
96 

1 0.0026 
2 0.0023 
3 0.0023 
4 0.0026 
6 0.0024 
6 0.0023 
I 0.0027 
8 0.0026 
9 0.0027 
10 0.0029 
1 1  0.0021 
12 0.0029 
1 0.0030 
2 0.0026 
3 0.0031 
4 0.0029 
6 0.0026 
8 0.0030 
I 0.0030 
8 0.0028 
9 0.0028 
10 0.0029 
1 1  0.0029 
12 0.0031 
1 0.0028 
2 0.0030 
3 0.0036 
4 0.0031 
5 0.0631 
6 0.0036 
I 0.0031 
8 0.0033 
9 0.0031 
10 0.0031 
1 1  0.0036 
12 0.0033 
1 0.0038 
2 0.0036 
3 0.0038 
4 0.0034 
6 0.0041 
6 0.0038 
I 0.0036 
8 0.0041 
9 0.0040 
10 0.0046 
11 0.0040 
12 0.0040 

0.0073993206 
0.0014236201 
O.OOT33006OO 
0.0079134622 
0.0073615609 
0.0016371992 
0.0075826463 
0.0083107948 
0.0086041649 
0.0086899630 
0. 00800 18994 
0.0080896669 
0.0089656097 
0.0088821660 
0. 0091063916 
0. W8%48%2 
0.0087860094 
O.OOM362694 
0.0081610483 
0.0088040829 
0.0081461412 
0.0090366602 
0.0089949369 
0.0096219383 
0.0091314916 
0.0097603662 
0.0101663930 
0.0098274946 
0.0099694129 
0.0098633630 
0.00968060% 
O.OOS6129994 
O.OO96981486 
0.01 02213230 
0.0102949140 
0.0104292630 
0.01 14099880 
0.0111148980 
0.0116140410 
0.0116190140 
0.0118019190 
0.0116363030 
0.0116611720 
0.0120624110 
0.0126416330 
0.0136061180 
0.0133193360 
0.0131639240 --- 

0.0151628120 
0.0163222080 
0.0160811240 
0.0162206230 
0,0163010690 
0.0168174040 
0.0161121790 
0.0114001460 
0.011S933140 
0.0119922580 
0.0184688430 
0.0181247990 
0.0187361240 
0.0186148120 
0.0192459820 
0.0188622340 
0.0184600430 
0.0184062120 
0.0160916190 
0.0182619160 
0.0181269650 
0.0189046860 
0.0189611380 
0.0203164440 
0.0201922660 
0.0203632120 
0.0201239390 
0.0206006600 
0.0204563600 
0.0202448370 
0.0191617610 
0.0199424030 
0.0202448370 
0.0216141900 
0.0214S61170 
0.0217161660 
0.0241213640 
0.0236883000 
0.0246182140 
0.0244190690 
0.0243124660 
0.0239623660 
0.0240418620 
0.0255184110 
0.0282398480 
0.0266009310 
0.0218192360 
0.0211854400 
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t Year Month 1 M n t h  3 Honthr 6 Months 

96 1967 
97 
98 
99 
106  
101 
102 
103 
104 
105 
106 
107 
108 1968 
109 
110 
111 
112 
113 
114 
116 
116 
117 
118 
119 
120 1969 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 1910 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 

1 
2 
3 
4 
6 
6 
7 

9 
10 
1 1  
12 
1 
2 
3 
4 
6 
6 
I 
8 
9 
10 
1 1  
12 
1 
2 
3 
4 
6 
6 
7 
8 
9 
10 
1 1  
12 
1 
2 
3 
4 
6 
6 
7 
8 
9 
10 
1 1  
12 

a 

0.0043 
0.0036 
0,0039 
0.0032 
0.0033 
0.0027 
0.0031 
0.0031 
0.0032 
0.0039 
0.0036 
0.0033 
0.0040 
0.0039 
0.0038 
0.0043 
0.0046 
0.0043 

0.0042 
0.0043 
0.0044 
0.0042 
0.0043 
0.0063 
0.0046 
0.0046 
0.0063 
0.0048 
0.0051 
0.0053 
0.0060 
0.0062 
0.0060 
0.0062 
0.0064 
0.0060 
0.0062 
0 .006l 
0.0060 
0.0063 
0.0068 
0.0062 
0.0053 
0.0064 
0.0046 
0.0046 
0.0042 

0.004~1 

0.0122823120 
0.0114994060 
0.0116102530 
0.0102146670 
0.0094606141 
0.00%1846518 
0.0100209710 
0.0106757710 
0.0111052990 
0.0111955400 
0.0116144260 
0.0126461260 
0.0121922300 
0.0123600960 
0.0128250120 
0.0130600930 
0.0138T14310 
0.0146449800 
0.0136078430 
0.0131379310 
0.0132676360 
0.0130808360 
0.0140209200 
0.0139169690 
0.0156394240 

0.0159218310 
0.0152308940 
0.0150020120 
0.0166967940 
0.0159739260 
0.0181180240 
0.0177776620 
0.0182124380 
0.0178167820 
0.0192187560 
0.0201628070 
0.02018411170 
0.0176420060 
0.0160622460 
0.0176727170 
0.6116465610 
0.0163348910 
0.0161306670 
0.0161260890 
0.0148160460 
0.0148633680 
0.0126138380 

o.oi~a~720~0 

0.0254547600 
0.0231827600 
0.0232960460 
0.0208603010 
0.0197293760 
0.0192024710 
0.0223804110 
0.0241363050 

0.0269139950 
0.0258800980 
0.0286339620 
0.0286719800 
0.0252686560 
0.0269453530 
0.0273704400 
0.0293196440 
0.0308106610 
0.0283122060 
0.0273113260 
0.0269986390 
0.0272664290 
0.0285412870 
0.0287613870 
0.0327801660 
0.0329064690 
0.0330774760 
0.0315673350 
0.0310289860 
0.0331374410 
0.0361030830 
0.0373669860 
0.0368173940 
0.0373669860 
0.0382032390 
0.0406687260 
0.0416466100 
0.0399676230 
0.0353578330 
0.0327900650 
0.0313940470 
0.0366872660 
0.0338231330 
0.0333294870 
0.0328800680 
0.0328919490 
0.0316511230 
0.0254547600 

0.024a436740 
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T d k  lb .  (contrpuea). 

Holdfng Porlod 

t Yoor nonth 1 Month 3 Months 6 Months 

144 
146 
146 
147 
148 
149 
160 
161 
162 
163 
164 
166 
166 
167 
168 
169 
1 0  
161 
162 
163 
164 
166 
166 
161 
168 
169 
1 I0 
171 
112 
113 
174 
176 
116 
117 

1 I9 
160 
181 
162 
183 
184 
186 
188 
181 
188 
189 
1 90 
191 

1 ia 

1971 

1912 

1913 

1914 

1 
2 
3 
4 
6 
6 
7 
8 
9 
10 
1 1  
12 
1 
2 
3 
4 
6 
6 
I 
8 
9 
10 
1 1  
12 
1 
2 
3 
4 
6 
6 
1 
8 
9 
10 
11 
12 
1 
2 
3 
4 
6 
6 
I 
8 
9 
10 
1 1  
12 

0.003e 
0.0033 
0.0050 
0.0026 
0.0029 
0.0037 
0,0040 
0.0047 
0.0037 
0.0037 
0.0057 
0.0031 
0 * 0029 
0.0026 
0.0027 
0.0029 
0.0030 
0. 0029 
0.0031 
0.0029 
0.0034 
0.0040 
0.0031 
0.0031 
0.0044 
0.0041 
0.0046 
0.0052 
0.0061 
0.0061 
0.0064 
0.0070 
0.0068 
0.0066 
0.0056 
0.0064 
0.0063 

0.0066 
0.0016 
0.0076 
0.0060 
0.0070 
0.0060 
0.Wl 
0.0051 
0.0064 
0.0010 

o.oosa 

0.0123342260 
0.0104124170 
0.0066697038 
0.06600187 
0.0100(154640 
0.01098(Lo520 
0.0131714340 
0.0134460200 
0.0101M88320 
0.01 16611T20 
0.01095020M) 
0.0108697280 
0.0091836462 
0.0081762673 
0.00864063O3 
0.00W129994 
0.0091843333 
0.0096213818 
0.0102016730 
0.0093638897 
0.0116311110 
0.01 14913780 
0.0118292610 
0.0123860840 
0.0129822480 

0.0148830410 
0.0163263080 
0.0169218310 
0.0116127110 
0.0192812290 
0.0212606190 
0.0221603970 
0.0179196600 
0.0188183180 
0.0187247990 
0.0191034080 
0.0192469820 
0.0191277210 
0.0216361640 
0.0226162940 
0.0207901060 
0.0189310310 
0.0196649890 
0.02321%610 
0.0167641040 
0.0199811420 
0.01903%310 

0.01442a3770 

0.0249784920 
0.0216226220 
0.0180971620 
0.0190066960 
0.0216620990 
0.0232196670 
0.0277613400 
0.0293101070 
0.0238093140 
0.0262420900 
0.0227604970 
0.0224062100 
0.0203764410 
0.0186686320 
0.0192197660 
0.0224862100 
0.0206164770 
0.0212192640 
0.0230324270 
0.0218169690 
0.0261206960 
0.0261322060 
0.0260763630 
0.0266780010 
0.0277190210 
0.0300337080 
0.0311741790 
0.0363616330 
0.0386923390 
0.0363070%0 
0.0396482080 
0.0439169410 
0.0466687840 
0.0393601620 
0.0306221240 
0.0404496680 
0.0378948460 
0.0317206610 
0.0383199460 
0.0431109670 
0.0460462610 
0.0436338190 
0.0416712690 
0.0430126000 
0.0491123820 
0.0382281600 
0.0401182190 
0.0393673180 
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Table 16. ( C o n t i d ) .  
--- 

Holdina Period 

192 
193 
194 
196 
196 
197 
198 
199 
200 
20 I 
202 
203 
204 
206 
2 w  
207 
208 
209 
210 
21 1 
212 
213 
214 
216 
216 
217 
218 
219 
220 
221 
222 
223 
224 
226 
226 
227 
228 
229 
230 
23 1 
232 
233 
234 
236 
236 
237 
238 
239 

1976 

1976 

1977 

1978 

1 
2 
3 
4 
6 
6 
7 
8 
9 

10 
11 
12 
1 
2 
3 
4 
6 
6 
7 
8 
9 

10 
11 
12 

1 
2 
3 
4 
6 
6 
7 
8 
9 

10 
11 
12 

1 
2 
3 
4 
6 
6 
7 
8 
9 

10 
11 
12 

0.0066 
0.0043 
0.0041 
0.0044 
0.0044 
0.0041 
0.0048 
0.0048 
0.0063 
0.0066 
0.0041 
0.0048 
0.0047 
0.0034 
0.0040 
0.0042 
0.0637 
0.0043 
0.0047 
0.0042 
0.0044 
0.0041 
0.0040 
0.0040 
0.0036 
0.0036 
0.0038 
0.0038 
0.0037 
O . O O I 0  
0.0042 
0.0044 
0.0043 
0.0049 
0 . ~ 0  
0.0649 
0.0049 
0.0046 
0.0063 
0.0064 
0.0061 
0.0064 
0.0066 
0.0066 
0.0062 
0.0068 
0.0070 
0.0678 

0.0180316360 
0.0144213440 
0.0137766410 
0.0141247610 

0.0132120860 
0.0161026060 
0.0169218310 
0.0162349940 
0.0166866690 
0.0141117570 
0.0141112410 
0.01 31 934680 
0.0120286940 
0.0127364660 
0.0126932690 
0.0125379660 
0.0140367020 
0.0136423110 
0.0132082700 
0.0129737860 
0.0129662620 
0.0124713180 
0.0112667660 
0.0110260710 
0.0120649340 
0.0119923360 
0.0115835670 
0.0119640830 
0.01 21894880 
0.0127229690 
0.0137610440 
0.0142168270 
0.0160877240 
0.0169218310 
0.0164412980 
0.0166871080 
0.0164700760 
0.0164960620 
0.0166230200 
O.Ol63068040 
0.0170661080 
0.0180666910 
0.0176942180 
0.0193772320 
0.0206396680 
0.0223728420 
0.0232632020 

0.0130268930 

0.0361442670 
0.0303163990 
0.0290288930 
0.0309060810 
0.0306682420 
0.0280662780 
0.0319100620 
0.0347890860 
0.0366686460 
0.0402698620 
0.0294467210 
0.0310940740 
0.0284404760 
0.0266940130 
0.0284404760 
0.0277762410 
0.0276914610 
0.0306911470 
0.02904M990 
0.0286162930 
0.0276066140 
0.0273720030 
0.0261669020 
0.0236443120 
0.02327968TO 
0.0268269310 
0.0266673100 
0.0248678460 
0.0254743100 
0.0269988390 
0.0268921860 
0.0296736790 
0.0304161770 
0.0321971180 
0.0339660610 
0.0331106400 
0.0336634980 
0.0949206920 
0.0349899630 
0.0351681710 
0.0369042660 
0.03747S7060 
0.0388967990 
0.0384663810 
0.0403403040 
0.0438641 170 
0.0483363140 
0.0490026280 

--- 
sow~~:  courtesy of the authors, H a n s ~ ~  and Singleton (1982, 1984). 
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426 NONLINEAR SIMULTANEOUS EQUATIONS MODELS 

If we specialize these results to the utility function u(c, a) = c a / a  for 
a < 1 and take q,, to be common stocks, we shall have d ( c ,  a) = c‘ and 
m j  = 1, which gives the equations listed at the beginning of this discussion. 

A final point: in the derivations we treated { w , } .  { r,), and { p,) as 
exogenous to each individual; each individual takes account of the actions 
of others through the conditional expectation 8,. This determines the 
consumer’s demand schedule. Aggregation over individuals-hold ( w ,  ), 
(r,}, and {p,} fixed and add up the { q , }  and (c,}-determines the 
demand schedule for the economy. This demand schedule interacts with the 
aggregate supply schedule (or whatever) to determine (the distribution of) 
{ w,), { r,}, and { p,). Thus, when the model is applied to aggregate data, as 

0 here, { w ,  ), { r ,} ,  and ( p,} are to be regarded as endogenous. 

2. THREE STAGE LEAST SQUARES 

Multivariate responses y,, Lvectors, are assumed to be determined by 
k-dimensional independent variables x ,  according to the system of simulta- 
neous equations 

q , ( y , , x , , e ~ ) = e , , ,  ~ ~ 1 . 2  ,..., L t - 1 , 2  ,..., n 

where each q,(y, x ,  8,) is a real valued function, each 8: is a pa-dimen- 
sional vector of unknown parameters, and the e,, represent unobservable 
observational or experimental errors. The analysis is conditional on the 
sequence of independent variables {x,) as described in Section 2 of 
Chapter 3, and the x ,  do not contain lagged values of the y, as elements. 
See the next section for the case when they do. 

For any set of values el, e,, . . . , eL of the errors, any admissible value for 
the vector x of independent variables, and any admissible value of the 
parameters el, O,, . . . , O,, the system of equations 

is assumed to determine y uniquely; if the equations have multiple roots, 
there is some rule for determining which solution is meant. Moreover, the 
solution must be a continuous function of the errors, the parameters, and 
the independent variables. However, one is not obligated to actually be able 
to compute y given these variables, or even to have complete knowledge of 
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the system, in order to use the methods described below: it is just that the 
theory (Chapter 3) on which the methods are based relies on this assump- 
tion for its validity. 

There is one feature of implicit models that one should be aware of. If an 
equation of the system 

is transformed using some one to one function #(e) to obtain 

where 

the result is still a nonlinear equation in implicit form, which is equivalent 
to the original equation for the purpose of determining y from knowledge 
of the independent variables, parameters, and errors. Setting aside the 
identity transformation, the distribution of the random variable u, will 
differ from that of e,. Thus one has complete freedom to use transforma- 
tions of this sort in applications in an attempt to make the error distribu- 
tion more nearly normally distributed. 

However, one must realize that transformations of this sort can either 
destroy consistency or redefine the population quantity 8:, depending on 
one's point of view. If one takes the view that the model q,(y,  x, 8,") = e is 
correct, then nonlinear transformations will destroy consistency in typical 
cases. If, as is often true, the equations qu(y, x ,  0,") = 0 obtain from a 
deterministic theory and are interpreted to mean that some measure of 
central tendency of the random variables q,(y,, x,, 6,"), r = 1,2,. . . , n, is 
zero, then it would seem that one model q,(y, x, 6,") = 0 has as much 
standing as the next +[q,,(y, x ,  @,")I = 0 provided that +(O) = 0. The 
choice of various +(*) is roughly equivalent to the choice of mean, median, 
or mode as the measure of central tendency to be employed in the analysis. 
See Section 4 of Chapter 3 for the theoretical considerations behind these 
remarks; in particular see Theorem 7 and Problem 6 of that section. 

In an application it may be the case that not all the equations of the 
system are known, or it may be that one is simply not interested in some of 
them. Reorder the equations as necessary so that it is the first M of the L 
equations above that are of interest, let 8 be a p-vector that consists of the 
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nonredundant parameters in the set 8,, e,, . . . , OM, and let 

We assume that the error vectors e, are independently and identically 
distributed with mean zero and unknown variance-covariance matrix 2, 

Z = %‘(e,,e;) t = 1 , 2  ,..., n .  

Independence implies a lack of correlation, viz. 

% ( e , ,  e l )  = 0 r =+ s. 

This is the grouped by subject or multivariate arrangement of the data 
with the equation index u thought of as the fastest-moving index and the 
observation index r the slowest. The alternative arrangement is the grouped 
by equation ordering with t the fastest-moving index and a the slowest, As 
we saw in Chapter 5, the multivariate scheme has two advantages: it 
facilitates writing code, and it meshes better with the underlying theory 
(Chapter 3). However, the grouped by equation formulation is more preva- 
lent in the literature because it was the dominant form in the linear 
simultaneous equations literature and got carried over when the nonlinear 
literature developed. We shall develop the ideas using the multivariate 
scheme and then conclude with a summary in the alternative notation. Let 
us illustrate with the first example. 

EXAMPLE 1 (Continued). Recall that the model is 

Y3r = d;c + e31 
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where 1 denotes a vector of ones, 

and 

C =  

429 

Taking values from Table 1 of Chapter 5, we have 

x1 = ( 4  14)’ - (1.36098,1.05082,0.058269 I 
1,0.99078,9.7410,6.3%93,0,1,0.oooO, 
9.4727,1.09861,1,0.00000, - 0.35667,0.00000,0)’ 

x2 = (1.36098,1.05082,0.058269 I 
1,0.99078,9.5104,6.80239,0,0,0.oooO, 
O.ooOo,1.94591,1,0.00000, -0.35667,0.27763,1)’ 

xlP - (1.36098,1.05082,0.058269 I 
1,0.99078,8.7903,6.86693,0,0,0.oooO, 
10.0858,1.38629,1,0.00000,0.58501,0.27763,1)’ 
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xu)  = (1.36098,1.05082,0.576613 I 

1,1.07614,9.1050,6.64379,0,0,0.oooO, 
0.oooO,1.60944,1,1.60944,0.58501,0.00000,1)' 

xa = (1.36098,1.05082,0.576613 I 
1,1.07614,11.1664,7.67415,0,0,9.7143, 
0.oooO,1.60944,1,1.60944,0.33647,0.27763,1)' 

xdl * (1.36098,1.36098,0.058269 I 
1, 1.08293,8.8537,6.72383,0,0,8.3701, 
O.oooO,l.O986l, 1,1.09861,0.58501,0.68562,1)' 

x m  - (1.88099,1.36098,0.576613 I 
1,1.45900,8.8537,6.88653,0,0,0.oooO, 
9.2103,0.69315,1,0.69315,0.58501,0.00000,1)' 

for the independent or exogenous variables, and we have 

y, = (2.45829,1.59783, -0.7565)' 
y2 = (1 .82933,0.89091, - 0.2289)' 

y19 = (2.33247,1.31287,0.3160)' 
J J ~  = (1.84809,0.86533, -0.0751)' 

Y40 = (1.32811,0.72482,0.9282)' 
Y , ~  - (2.18752,0.90133,0.1375)' 

y,, = (1.06851,0.51366,0.1475)' 

for the dependent or endogenous variables. 
One might ask why we are handling the model in this way rather than 

simply substituting d'c for y3 above and then applying the methods of 
Chapter 5. After all, the theory on which we rely is nonstochastic, and we 
just tacked on an error term at a convenient moment in the discussion. As 
to the theory, it would have been just as defensible to substitute d'c for y3 
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in the nonstochastic phase of the analysis and then tack on the error term. 
By way of reply, the approach we are taking seems to follow the natural 
progression of ideas. Throughout Chapter 5, the variable y ,  was regarded as 
being a potentially error ridden proxy for what we really had in mind. Now, 
a direct remedy seems more in order than a complete reformulation of the 
model. Moreover, the specification Q, = d'c was data determined and is 
rather ad hoc. It is probably best just to rely on it for the purpose of 
suggesting instrumental variables and not to risk the specification error a 

0 substitution of d'c for y3 might entail. 

Three stage least squares is a method of moments type estimator where 
instrumental variables are used to form the moment equations. That is, 
letting z, denote some K-vector of random variables, one fonns sample 
moments 

where 

equates them to population moments 

and uses the solution d as the estimate of 8'. If, as is usually the case, the 
dimension N K  of m n ( 8 )  exceeds the dimension p of 8, these equations 
will not have a solution. In this case, one applies the generalized least 
squares heuristic and estimates 6' by that value 8 that minimizes 

with 

To apply these ideas, one must compute 8[mn(8 ' ) ]  and W[m,(eo) ,  
m',(8')]. Obviously there is an incentive to make this computation as easy 
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as possible. Since 

I m , ( e 0 )  = - C e, 8 L, 
t -1  

we shall have d'[m,(eO)] = 0 if z ,  is uncorrelated with e,, and 

r - 1  t -  1 

if { z , ]  is independent of { e,]. These conditions will obtain (Problem 1) if 
we impose the requirement that 

2, = a x , )  

where Z(x) is some (possibly nonlinear) function of the independent 
variables. 

We shall also want Z, to be correlated with q(y,, x,, 8) for values of 8 
other than 8', or the method wi l l  be vacuous (Problem 2). This last 
condition is made plausible by the requirement that z, = Z(x,), but, strictly 
speaking, direct verification of the identification condition (Chapter 3, 
Section 4) 

lim m , ( e ) - o  - e o = e  
R 4 c c  

is required. This is an almost sure limit. Its computation is discussed in 
Section 2 of Chapter 3, but it usually suffices to check that 

4 m , ( ~ )  - 0  =, e o =  e. 
As we remarked in Chapter 1, few are going to take the trouble to verify 
this condition in an application, but it is prudent to be on guard (or 
violations that are easily detected (Problem 3). 

The matrix V is unknown, so we adopt the same strategy that was used 
in multivariate least squares: Form a preliminary estimate 6" of do ,  and 
then estimate V from residuals. Let 

and put 
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There are two alternative estimators of V in the literature. The first of 
these affords some protection against heteroscedasticity: 

n 

1-1 
P= c [ 4 ( Y f ,  x,9 8 9  QD z 1 I [ 4 ( v r ,  x,, 6") QD 211'. 

The second uses two stage least squares residuals to estimate 2. The two 
stage least squares estimate of the parameters of the single equation 

q,(y, ,x , ,d, )  = e,, = 1 , 2 , . . . , ~  
is 

Two stage least squares is vestigial terminology left over from the linear 
case (Problem 4). Letting 

the estimate of Z is the matrix E with typical element Cap, Viz. 

E = [Cap] 

P- z QD c 2,z;. 

and the estimate of V is 
n 

t-1 

Suppose that one worked by analogy with the generalized least squares 
approach used in Chapter 5 and viewed 

n 

Y - /(@ = c d Y I 9  X I ,  e)  QD 21 
r-1 

as a nonlinear regression in vector form, and 

s(4 8 )  = [ Y  -f(e)l'f-ltY -f(@)l 

c d Y I .  X I ,  8 )  QD 2,  4tYV x, ,  8 )  QD 2, 
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as the objective function for the generalized least squares estimator of 8. 
One would conclude that the estimated variance-covariance matrix of 4 was 

This intuitive approach does lead to the c o m t  answer (Problem 5). 

(Problem 6): 
The Gauss-Newton correction vector can be deduced in this way as well 

The modified Gauss-Newton algorithm for minimizing S(8, V) is: 

0. Choose a starting estimate 0,. Compute Do = D(d0, V), and find a A, 

1. Let 8, = 8, + AoD,. Compute D ,  = D(8,, V ) ,  and find a A, between 

2. Let 8, = 8, + AID1. . . . 

between zero and one such that S(8, + A,D,, V )  < S(8,,, V). 

zero and one such that S(8, + AID,, V )  < S(B,, V ) .  

The comments in Section 4 of Chapter 1 regarding starting rules, stopping 
rules, and alternative algorithms apply directly. 

In summary, the three stage least squares estimator is computed as 
follows. The set of equations of interest are 

I =  1 ,2 ,  ..., n 
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and instrumental variables of the form 

z ,  = z(x,) 
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are selected. The objective function that defines the estimator is 

One minimizes s(e, 1 a C:,lz,e;) to obtain a preliminary estimate 6*, viz. 

and puts 

The estimate of e o  is the minimizer d of S(B, PI, viz. 

The estimated variance-covariance matrix of d is 

where 

We illustrate with the example. 

EXAMPLE 1 (Continued). A three stage least squares fit of the model 

to the data of Table 1, Chapter 5, is shown as Figure 1. 



SAS S t 8 t m n t s :  

PAX ml. 01cilK)o01; 
EI*W)aENOUS Y1 Y2 Y3; 
EXOOEWOUZi Rl R2 R3 DO D l  DZ 03 01 D5 06 01 M 09 DlO D l l  012 D l3 ;  

PEAK= fl+T2*Rl+T3*R2+T4*ll3-(12tT3iT4)~3; 
INTER=TS+T3rA 1 tT6*A2+TI*R3-( T3 tT6tT I  1-3; 
BASE- - l tT4.Rl+T7*R2iTO*R3-(T4tT7+TO)Y3; 
Yl-L00( PEAK/B*sE) ; 
Y3=M)*cO*D1*c1tD2*c2tD3*c3+D4*c4+D6*C6i~*c6~~l~~OtD~~~l~ClO~ll*c11 

PROC SYSNLIN DATA*OOl W L - 1  N3SLS MElMOD-O#SS MAXIT-60 CONMRGE-1.E-8 

INSTRWNTS Rl RZ R3 DO D l  D2 03 D4 D6 D6 DT DO DO 010 011 D12 013 / NOIWT; 
F I T  Y1  Y2 SlART-(Tl -2.98 12  -1.16 13 0.707 1 4  0.363 16 -1.51 16 -1.00 

PROC SYSNLIN DATAmE001 W M L . 0 1  N3SLS ~llfHQ)IoAuSS MAXIT=SO CDNVERGE=l.E-B 

INSTRUMENTS R l  R2 R3 DO Dl 02 03 D4 DS 66 D7 08 DO D10 D l l  Dl2 D13 / NOIWT; 

PARHS TI TZ 13 t i  TS 16 TI re co c i  c2 c3 c4 c5 cs c7 ca CQ cio c i i  c12 cia; 

Y2mLW( IMTER/BASE) ; 

tD12rC12+Dl3*C13; 

SDATA-IWMTITY OUTS-WAT OUTCST=TWT; 

11 0.054 TO -0.474); 

SDATAmSHIT ESTDATA-THAT; 

output: 

PARAMETER 

11  
12 
13 
14  
16 
16 
T I  
18 

SAS 

SYSNLIN PROCEOURE 

NONLINEAR J U S  PARMTER ESTIWTES 

APPROX . '1' *ppRox. 
ESTIMATE Slll ERROR RATIO PROB>!Tt 

-2.13~08 o . 6 0 ~  -3.63 0.0004 
-1.96939 0.75921 -2.62 0.0094 
0.70939 0.16667 4.53 0.0001 
0.33663 0.01096 6.61 0.0001 

-1.40200 0.15226 -9.21 0.0001 
-1.13190 0.18429 -6.18 0.0001 
0.0291 3 0.04660 0.64 0.6236 

-0.60050 0.04517 -11.06 0.0001 

I 

I S 1  S T M E  
R-SQUARE 

0.6274 
0.6473 
0.O406 
0.1127 
0.7006 
0.6226 
0.5468 
0.4646 

N U l K R  O f  DBSERVATIONS siAixsixcs FDR smen 
US€D 220 OBJECTIVE 0.16883 
MIs91wb 4 WJ€CTIM*W 34.96403 

COVARIANCE OF RESIDUALS WTRIX USED FOR ESTIMTION 

S Y l  YZ 
Y1 0.17169 0.09675 
Y2 0.09676 0.09645 

P i  1. Example 1 fittad by nonlinear lbrec stage least squares. 

436 
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We obtain 

if= 

1 - 2.13788 
- 1.98939 

0.70939 
= 0.33663 

- 1.40200 
- 1.13890 

0.02913 
\ -0.50050 

(from Fig. 1) 

S( 6,e)  = 34.96403 (from Fig. 1). 

These estimates are little changed from the multivariate least squares 
estimates 

0- 

- 2.92458 
- 1 .a675 

0.81857 
0.36116 

- 1.53759 
- 1.04896 

0.03009 
- 0 .a742 

(from Fig. 3c, Chapter 5 ) .  

The main effect of the use of three stage least squares has been to hilate the 
estimated standard errors. 13 

The alternative notational convention is obtained by combining all the 
observations pertaining to a single equation into an n-vector 

(a = 1,2, ..., M )  

1 
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and then stacking these vectors equation by equation to obtain 

with 

If desired, one can impose across equations restrictions by deleting the 
redundant envies of 8. Arrange the instrumental variables into a matrix 2 
as follows: 

and put 

Pz = z(z'z)-'z'. 

With these conventions the three stage least squares objective function is 

s[e,(z o zlz)] = 4 f ( o ) ( r i  69 P , ) q ( e ) .  

An estimate of X can be obtained by computing either 

8* = argminS[B,(I 8 Z Z ) ]  
6 

or 
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and letting 2 be the matrix with typical element 
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The estimate of eo is 

0 -  argminS[8,(2 €3 Z 2 ) 3  
# 

with estimated variancecovariance matrix 

These expressions are svelte by comparison with the summation notation 
used above. But the price of beauty is an obligation to assume that the 
errors e, each have the same variance Z and are uncorrelated with the 
sequence { z,]. Neither the correction for heteroscedasticity suggested above 
nor the correction for autocorrelation discussed in the next section can be 
accommodated within this notational framework. 

Amemiya (1977) considered the question of the optimal choice of 
instrumental variables and found that the optimal choice is obtained if the 
columns of Z span the same space as the union of the spaces spanned by 
the columns of dP(d/aB;)q(8,0). This can necessitate a large number of 
columns of Z, which adds to the small sample bias of the estimator and 
reduces the small sample variance, leading to very misleading confidence 
intervals. The intuition is: As instruments are added, three stage least 
squares estimates approach least squares estimates because Pz approaches 
the identity matrix. Least squares estimates have small variance but are 
biased (Tauchen, 1986). Amemiya (1977) proposes some alternative three 
stage least squares type estimators obtained by replacing Z-' 63 Pz with a 
matrix that has smaller rank but achieves the same asymptotic variance. He 
also shows that the three stage least squares is not as efficient asymptoti- 
cally as the maximum likelihood estimator, discussed in Section 5.  

The most disturbing aspect of three stage least squares estimators is that 
they are not invariant to the choice of instrumental variables. Various sets 
of instrumental variables can lead to quite different parameter estimates 
even though the model specification and data remain the same. A dramatic 
illustration of this point can be had by looking at the estimates published 
by Hansen and Singleton (1982,1984). Bear in mind when looking at their 
results that their maximum likelihood estimator is obtained by assuming a 
distribution for the data and then imposing parametric restrictions implied 
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by the model rather than deriving the likelihood implied by the model and 
an assumed error distribution; Section 5 takes the latter approach, as does 
Amemiya’s comparison. 

One would look to results on the optimal choice of instrumental vari- 
ables for some guidance that would lead to a resolution of this lack of 
invariance problem. But they do not provide it. Leaving aside the issue of 
having either to know the parameter values or to estimate them, one would 
have to specify the error distribution in order to compute a( d/dO;)q(O:). 
But if the error distribution is known, maximum likelihood is the method of 
choice. 

In practice, the most cummon approach is to use the independent 
variables xil  and low order monomials in xl I  such as (x,,)* or xi lx j ,  as 
instrumental variables, making no attempt to find the most efficient set 
using the results on eiilciency. We shall return to this issue at the end of the 
next section. 

PROBLEMS 

1. Consider the system of nonlinear equations 

a: + a f h  ylr + a!x ,  = e,, 

b,o + b!Y’y,I + Yzr + bzox, - ez, 

r = 1,2, ... 
where the errors el = (el,, ez,) are normally distributed and the inde- 
pendent variable x ,  follows the replication pattern 

x , = O , 1 , 2 , 3 , 0 , 1 , 2 , 3  ,... . 
Put 
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2. 

3. 

4. 

Show that 

lim m,, (e0)  = ~ ? m , , ( 6 ~ )  = 0 ,  

lim m, , (e )  = 
n - r m  

almost surely, where c = (1/4)exp[Var(e1)/Z - ug]. 
Referring to Problem 1, show that if u 2  # 0 then 

lim m,,(@) -0 * 6'18. 

Refemng to Problem 1, show that the model is not identified if either 
u 2  = 0 or I, = (1, x l ) .  
Consider the linear system 

n+ m 

y ; r = x : B + e :  t =  1,2,  ..., n 

where I' is a square, nonsingular matrix. We shall presume that the 
elements of y,  and x, are ordered so that the first column of r has 
L' + 1 leading nonzero entries and the first column of B has k' leading 
nonzero entries; we shall also presume that yll = 1. With these conven- 
tions the first equation of the system may be written as 

= w ; 6  -t el,. 

The linear two stage least squares estimator is obtained by putting 
z, = x I ;  that is, the linear two stage least squares estimator is the 
minimizer 6 of 
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Let +, denote the predicted values from a regression of w ,  on x, ,  viz. 

- 1  n 

*; = x ; (  x,xJ c x,w; t = 1,2 ,..., n. 

Show that a regression of y l f  on 4, yields 6; that is, show that 

It is from this fact that the name two stage least squares derives; the 
first stage is the regression of w ,  on x , ,  and the second is the regression 
of y l ,  on *,. 
Use Notation 8 and Theorem 9 of Chapter 3 to deduce the estimated 
variance-covariance matrix of the three stage least squares estimator. 
Use the form of the Gauss-Newton correction vector given in Section 2 
of Chapter 5 to deduce the correction vector of the three stage least 
squares estimator. 

5. 

6. 

3. THE DYNAMIC CASE GENERALIZED METHOD 
OF MOMENTS 

Although there is a substantial difference in theory between the dynamic 
case, where errors may be serially correlated and lagged dependent vari- 
ables may be used as explanatory variables, and the regression case, where 
errors are independent and lagged dependent variables are disallowed, there 
is little difference in applications. All that changes is that the variance V of 
nrn,(6') is estimated difTerently. 

The underlying system is 

where t indexes observations that are ordered in time, q,(y ,  x, 6,) is a real 
valued function, y, is an Lvector, x, is a k-vector, 6: is a p,-vector of 
unknown parameters, and e,, is an unobservable observational or experi- 
mental error. The vector x ,  can include lagged values of the dependent 
variable ( Y ( - ~ ,  y,-, etc.) as elements. Because of these lagged values, x ,  is 
called the vector of predetermined variables rather than the independent 
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variables. The errors e,, will usually be serially correlated: 
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%‘(ear, e,,,) = u,,~,, # 0 a, fl  = 1 ,2 , .  .., M s, t = 1 , 2  ,... . 

We do not assume that the errors are stationary, which accounts for the 
indices sr; if the errors were stationary, we would have uaB. 

Attention is restricted to the first M equations and a sample of size n: 

q a ( y , , x l , 8 : ) = e , ,  z = 1 , 2  ,..., n a = 1 , 2  ,..., M. 

As in the regression case, let 8 be a p-vector containing the nonredundant 
parameters in the set 6,, 6,, . . . , a,, and let 

e =  

1 e l -  

The analysis is unconditional; indeed, the presence of lagged values of yf 
as components of x ,  precludes a conditional analysis. The theory on which 
the analysis is based (Chapter 7) does not rely explicitly on the existence of 
a smooth reduced form as was the case in the previous section. Let rf 
denote those components of x, that are ancillary; lagged dependent vari- 
ables are excluded. What is required is the existence of measurable func- 
tions Wl( =) that depend on the doubly infinite sequence 

where of = (el, r f )  such that 

and mixing conditions that limit the dependence between us and u, for 
t # s. The details are spelled out in Sections 3 and 5 of Chapter 7. 
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The estimation strategy is the same as nonlinear three stage least squares 
(Section 2). One chooses a K-vector of instrumental variables z, of the form 

(recall that x ,  can contain lagged exogeneous and endogenous variables), 
one forms sample moments 

1 “  
m,(e) - - c 4 Y I 9  X I ,  

1 -1  

where 

In this case, the random variables 

m ( y f ,  x I , e o )  = el 8 I ,  r = 1,2 ,... * n 

are correlated and we have 

n n  

= n C s:, 

= ns,” 
T -  -(n-1) 
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where 
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I N 

To estimat? V, we shall need a consistent estimator of S:, that is, an 
estimator S,, with 

lim P(IS,q4 - 3N,a@l > c )  = 0 a , p  = 1 , 2  ,..., M 
n-oo 

for any c > 0. This is basically a matter of guaranteeing that 

see Theorem 3 in Section 2 of Chapter 7. 

putting 
A consistent estimate gN7 of S:T can be obtained in the obvious way by 

c [ q ( Y f , x f * " )  @ ' f ] [ ( q ( Y , - T V  ' f - T * ' * )  @ ' , - T I '  

1 -1 -67  

7 2 0  

r < o  

where 

1 e i f:l 

9" = argmins 8 , 1 @  z z t z i  . 

However, one cannot simply add the gHT for T ranging from - ( n  - 1) to 
n - 1 as suggested by the definition of S: and obtain a consistent estima- 
tor, because Var($) will not decrease with increasing n. The variance will 
decrease if a smaller number of summands is used, namely the sum for T 
ranging from - I( n )  to I (  n) ,  where I( n )  is the integer nearest r i l l 5 .  

Consistency will obtain with this modification, but the unweighted sum 
will not be positive definite in general. As we propose to minimize S(8,P) 
in order to compute 6, the matrix = ng,, must be positive definite. The 
weighted sum 
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constructed from Parzen weights 

is consistent and positive definite (Theorem 3, Section 2, Chapter 7). The 
motivation for this particular choice of weights derives from the observa- 
tion that if { e, Q z, } were a stationary time series then S: would be the 
spectral density of the process evaluated at zero; the estimator with Panen 
weights is the best estimator of the spectral density in M asymptotic mean 
square error sense (Anderson, 1971, Chapter 9, or Bloomfield, 1976, Chapter 
7)- 

The generalized method of moments estimator differs from the three 
stage least squares estimator only in the computation of I? The rest is the 
same: the estimate of 8’ is the minimizer I of S(@, f ) ,  viz. 

I =i argminS(8, P); 
e 

the estimated variancecovariance of 8 is 

where 

and the GaussNewton correction vector is 

We illustrate. 

EXAMPLE 2 (Continued). Recall that 
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where, taking values from Table I n ,  

(consumption at time I )/(population at time I )  
= (consumption at time I - l)/(population at time t - 1) 
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deflator at time r - 1 
deflator at time x ,  = (1 + stock returns at time r )  

The instrumental variables employed in the estimation are 

z, = (1, Yr-1 ,  X J .  

For instance, we have 

y,, = 1.01061 x2 = 1.00628 tZ = (1,1.00346,1.008677)'. 

Recall also that, in theory, 

B(e, Qp z I )  = 0 

d'( e, 8 z , ) ( e ,  QO 2,)' = I: 
B( e, o t,)( e,  o z,)' = 0 

t = 2 , 3 , . .  .,239 
t = 2.3, .  . . ,239 
t z s. 

Because the variance estimator has the form 

where 

/ ( n )  = n'", 

and 

whereas PROC SYSNLIN can only compute a variance estimate of the form 

we are on our own as far as writing code is concerned. Our strategy will be 
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to U S e  PROC MATRIX 8s follows: 

DATA WRKO1; SET EOO2; 

NDSP€R=NDS/PEOPLE; Y~MDSPER/LA6(MOSPER); X = < l t S T O C K S ) ~ L A 6 ( D E F L A T O R ) /  

DEFLATOR; 

DATA YORUOZ; SET YORKOl; 2 0 1 1 ;  21=LA6(Y);  22=LA6(X);  IF -*-=I THEN 

DELETE; 

PROC MATRIX; FETCH Y DATA -YORKOZ(KEEP = Y ) #  

FETCH 2 DATA=YORKOZ<KEEP=tO 2 1  22); 2(1,)=0 0 0; 

FETCH X DATA YORUOZ(KEEP~X); 

A--.4; B m . 9 ;  V=2'*2;  XQAUSS W W I L E  ( S > O B J U ( l t l . E - S ) ) ;  %BUSS END; 

TSHARP-A / I  B; PRINT TSHARP; 

%VARIANCE V-VHAT; %6AUSS DO YHXLE ( S W J I ( l t 1 . E - 5 ) ) ;  XQMISS END; 

THAT=A 11 8; PRINT VHAT THAT CHAT 0; 

where %GAUSS is a MACRO which computes a modified (he searched) 
Gauss-Newton iterative step: 

%MACRO CAUSS; 

M = O / O / O ;  DELM-0  0 1 0  010 0; ON€= l ;  

DO 112 TO 239; 

01 = B#Y( 1,l )IWA#X(T, 1 ) -ONE; 

OELQTA B ILOG(  Y (1.1 ) )#I (1.1 )##A#)(( 1, 'I ); 

MT=PT 0 Z(T,)XSTR(X'); DELRT-(DELPTA 1 1  DELPTB) 0 Z(T,)%STR(%'); 

M = M + MT; 

DELPTB = Y (T,l )##A#X( T,1); 

DELM = DELM DELIIT; 

END; 

CHAT=INV(DELRXSTR<X')~INV(V)rDELI);  O=-CHAT*OELR%STR(X')*INV(V)~N; 

S=IIXSTR(%')*INV<V)+rr; 0BJ.S; LIZ; COUNT-0; AO-A;  8O=B; 

DO W I L E  (OBJ>=S I COUWT<=40); 

COUNT = COUNT + ONE; L = L1.S; A = A 0  LID(1,f ); B 180 t LID(2,l); M 0; 

00 T = 2 TO 239; 

08J'MXSTR(%')* lWI(V)*( I ;  

M M t (811 (1,l ) I I A I X ( T , l )  -ONE )OZ(T, )XSTR(X' ); END; 

END; 

XlKHD 6AUSS; 

and %VARIANCE is a MACRO which computes a variance estimate: 

XRACRO VARIANCE; 

so-0 0 o / o  0 010 0 0; 

W E  = 1; 
w 1 - 2  TO 239; 

s1-0 0 0 1 0  0 o / o  0 0; s 2 = 0  0 0 1 0  0 o / a  0 0; 

I T 0  = (B#Y(T,l )YIA#X( T,1) - ONE) 0 Z(T, )XSTR(X' ); SO SO t RTO+HTO%STR(X' 1; 

IF T>3 THEN Wp 
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NTI  (B#Y(T - 1,l )U#A#X(T- I,?) -0NE)OZCT - 1, )%STR(%' I; S l  = S 1 +  
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The code is fairly transparent if one takes a one by one matrix to be a 
scalar and reads ' for XSTR(X '  1. * for #, * * for ##, / for # 1 ,  and Qp 

for 8. 

SAS Statomants: 

WACRO WSS: 
c(IO/O/O; DELM-0 0/0 0/0 0 :  W E = l ;  
DO 712 TO 239; 

QT a BUY (1, 1 )#UAUX(l, 1 )-ONE i 
OELQTA B#L~(Y(T,l))#Y(T,l)U8A#X(T,l); DELQTB E Y(T , l )#UA#X(T , l ) ;  

Md4*UT; OELWIOELR+OELNT; 
WT = QT e Z ( T ,  )%STR(%*);  DELMT = (OELQTA 1 I DELQTB) e Z ( T ,  ) ~ s T R ( % ' ) ;  

END: 
C H I T - I N V ( O E L n r S T R ( ~ ' ] * I N V ( V ) * M L M ) ;  D=-CHAT*OELn$STRlt')*IIW(V)*M; 
S=H%SlR(t')*INV(V)*M; OBJsS: L-2: CWNT=O; AO-A; 80-8; 
DO W I L E  (oBJ>=S C COUNT<-40); 

COU11T~CWNTiOIIE: L-L#.6; A=AOtLUO( l , l ) ;  B=BO+L.D(Z,l); M-0; 
DO T-2 TO 239; M ~ x * ( B U Y ( T , t ) U # A # X ( l , l ) - O N E ) O Z ( T . ) ~ T R ( % ' ) ;  €)ID; 

O B J = W l R ( t ' ) * I N V ( V ) * n i  
END; 

SODO 0 o/o 0 o/o 0 0: S1;rO 0 o/o 0 o/o 0 0 :  s z m o  0 o/o 0 o/o 0 0 ;  WE- 

MTO=(B#Y (1.1 ) N # M X (  T. 1 )-ONE i 6 Z (T, )tSTR(t' ) ; SO=SO*HTO*MTOWTR(t' : 
IF T>3 THEN W; 
M l l ~ ( ~ Y ( T - l , l ) # 8 n t X ( T - 1 , l ) - O N E ) 6 Z ( T - l , ) ~ T R ( ~ ' ) ;  Sl=S l *~ lO*nT l%STR(%'  
IF T>4 THEN DO; 

%ME)*) GAUSS: 
%MACRO VAR IAWCE : 

00 7.2 TO 239: 

; END; 

U T 2 ~ ( ~ Y ( T - Z , l ) U # A 8 X ( T - 2 , l ) - ~ E ) ~ Z ( T - 2 , ) % S ~ ( % ' ) ;  SZ-S2+MTWMT2%STR(%'); Em; 
Em); 
WO-1; W1-0: WZ-0: W3-0; 
V H A T ~ ( W O U S O + W l 8 S l + W l ~ l ~ T R ( % ' ) + W Z N S 2 + W 2 M 2 ~ T R ( ~ ' ) ) ;  

WEND VARIANCE; 
DATA WORKO1; SET €002; 
NDSPER=NDS/PEOPlE; Y-NOSPER/LAG(M)SPER); X~(1+STOCKS)*LM(OEFLATDR)/OEFLATOR; 
DATA WORKOZ; SET WORKOl; 20.1; Z l=LAG(Y) :  ZZ;.LAO(X): I F  -N-al THEN DELETE; 
PRW MATRIX; FETCH Y OATA~WORKOZ(KEEP=YJ; FETCH X DA lA4DRKOZ(UEEP~X) :  

A-- .4;  81.9: V=2'*2; $GAUSS DO W I L E  (S>OBJ#( l * l .E -S) ) ;  %GAUSS END: 
TSHARP-A // B: PRINT TSHARP; 
%VARIANCE V=VHAT: %MUSS DO M I L E  ( S > O B J l ( l + l . E - S ) ) i  W U S S  END; 
T H A T 4  // 8 ;  PRINT VHAT THAT CHAT S: 

FETCH 2 DATA*WRKOZ(KEEP=ZO 21 2 2 ) ;  2(1,)-0 0 0; 

Figure 2. The generalized method of moments estimator for Example 2. 
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output: 

T W P  

R W l  
ROW2 

VHAf COL 1 

ROC11 0.406822 
ROW2 0.406434 
ROW3 0.398731 

THAT 

Ron1 
RW2 

CHAT 

ROY1 

NONLINEAR SIMULTANEOUS EQUATIONS MODELS 

SAS 

COL 1 

-0.846862 
0.998929 

coL2 

0.406434 
0.401066 
0.399363 

COL 1 

- 1.03362 
0.998256 

COL 1 

c013 

0.398131 
0.399363 
0.392723 

c012 

3.58009 -0.00’121267 

1 

ROW2 -0.00721267 .0000206032 

S COL 1 

ROW1 1.06692 

Figure 2. (Continued). 

While in general this code is correct, for this particular problem 

&( e, Q z , ) (  e, Q zs)’ = 0 r # s 

so we shall replace the line 

in %VARIANCE, which computes the weights w [ ~ / f ( n ) ] ,  with the line 

The computations are shown in Figure 2. 0 

Tauchen (1986) considers the question of how instruments ought to be 
chosen for generalized method of moments estimators in the case where the 
errors are uncorrelated. In this case the optimal choice of instrumental 
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variables is (Hansen, 1985) 
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where &'f(*) denotes the conditional expectation with respect to all variables 
(information) relevant to the problem from the present time I to as far into 
the past as is relevant; see the discussion of this point in Example 2 of 
Section 2. Tauchen, using the same sort of model as Example 2, obtains the 
small sample bias and variance for various choices of instrumental vari- 
ables, which he compares with the optimal choice. He finds that, when short 
lag lengths are used in forming instrumental variables, nearly asymptoti- 
cally optimal parameter estimates obtain, and that as the lag length 
increases, estimates become increasingly concentrated around biased values 
and confidence intervals become increasingly inaccurate. He also finds that 
the test of overidentifymg restrictions (Section 4) performs reasonably well 
in finite samples. 

The more interesting aspect of Tauchen's work is that he obtains a 
computational strategy for generating data that follow a nonlinear, dynamic 
model-one that can be used to formulate a bootstrap strategy to find the 
optimal instrumental variables in a given application. 

PROBLEMS 

1. 

2. 

Use the data of Tables la and l b  of Section 1 to reproduce the results 
of Hansen and Singleton (1984). 
Verify that if one uses the first order conditions for three month 
treasury bills, z, = (1, y,-.$, x,-$) with s chosen as the smallest value 
that will insure that b(q(y, ,  x,, 6'') Qp z f )  = 0, and Parzen weights, 
then one obtains 

YHAT 

ROYl  

ROY2 

ROY3 

TSHARP 

ROYl 

ROY2 

COLl 

0.24656 

0.240259 

0.2&6906 

COLl 

- 4.38322 

1.02499 

COL2 COL3 

0.240259 0.246906 

0 . 2 0 ~ 7 6  0 . 2 4 ~ 6 0 9  

0.240609 0.247256 
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THAT COLl 

ROYl - 4.37803 
RW2 1.02505 

CHAT COLl COL2 

ROYl 22.8898 - 0.140163 

ROY2 -0.140163 0.00086282 

Should Parzen weights be used in this instance? 

4. HYPOTHESIS TESTING 

As seen in the last two sections, the effect of various assumptions regarding 
lagged dependent variables, heteroscedasticity, or autocorrelated errors is to 
alter the form of the variance estimator 9 without affecting the form of the 
estimator 6, Thus, each estimator can be regarded as, at most, a simplified 
version of the general estimator proposed in Section 5 of Chapter 7, and in 
consequence the theory of hypothesis testing presented in Section 6 of 
Chapter 7 applies to all of them. This being the case, here we can lump the 
preceding estimation procedures together and accept the following as the 
generic description of the hypothesis testing problem. 

Attention is restricted to the first M equations 

q a , ( y , , . x , . ~ ~ ) = = e , ,  r = 1 , 2  ,..., n a = 1 , 2  ,..., M 

of some system. Let 6 be a p-vector containing the nonredundant parame- 
ters in the set 8,,  8,, . . . ,6,, and let 

To estimate 6', one chooses a K-vector of instrumental variables t, of the 
form 
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(recall that x, can include lagged endogenous and exogenous variables), one 
constructs the sample moments 

1 "  
m n ( 6 )  = C m(Yr, xr,6) 

r-1 

where P is some consistent estimate of 

where 

The Gauss-Newton correction vector is 

With this as a backdrop, interest centers in testing a hypothesis that can 
be expressed either as a parametric restriction 

H: h ( 6 " )  = o against A : h(6O)  +: o 



454 NONUNEAR SIMULTANEOUS EQUATIONS MODELS 

or as a functional dependence 

H: O 0 =  g ( p o )  for somep' against A :  8 O #  g ( p )  foranyp. 

Here, h ( 8 )  maps RP into R @  with Jacobian 

which is assumed to be continuous with rank q; g(p)  maps R' into W P and 
has Jacobian 

The Jacobians are of order q by p for H(8) and p by r for G(p) ;  we 
assume that p = r + q, and from h [ g ( p ) ]  = 0 we have H ( g ( p ) ] G ( p )  = 0. 
For complete details, see Section 6 of Chapter 3. Let us illustrate with the 
example. 

EXAMPLE 1 (Continued). Recall that 

with 

The hypothesis of homogeneity (see Section 4 of Chapter 5 )  may be written 
as the parametric restriction 

h ( e ) =  s,+e,+e, = o  (:::::) 
with Jacobian 

0 1 1 1 0 0 0 0  
o o 1 o o 1 I o 
0 0 0 1 0 0 1 1  
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or, equivalently, as the functional dependence 

6 =  

with Jacobian 

E 

1 0  
0 - 1  
0 1  
0 0  
0 0  
0 - 1  
0 0  
0 0  

P I  

-P2 - P3 

P2 

P3 

P4 

-Ps - P2 
P5 

-P5 - 0 3  

0 0  0 
- 1  0 0 
0 0  0 
1 0  0 
0 1  0 
0 0 -1 
0 0  1 

-1 0 - 1  
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0 

The WaId test statistic for the hypothesis 

H :  h(6O) = o against A :  h ( e o )  + o 
is 

where 4 = h(tf) ,  H(B)  = (i3/&9')h(e), and fi = H ( 8 ) .  One rejects the 
hypothesis 

H: h ( e 0 )  = o 
when W exceeds the upper a X 100% critical point xf of the chi-square 
distribution with q degrees of freedom; x :  = (xZ)-'(l - a, 4). 

Under the alternative A : h ( e o )  # 0, the Wald test statistic is approxi- 
mately distributed as the noncentral chi-square with q degrees of freedom 
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and noncentrality parameter 

M( eo) [ H( e O )  c( e 01 H J (  e o 1) - ' h  ( e 
2 x -  

where 

Note, in the formulas above, that if x, is random, then the expectation is 
d'[Q(y,, x,, 0') 8 Z(X,) ] ,  not 6 [ Q ( y , ,  x, ,  e0)]  8 Z(x,). If there are no 
lagged dependent variables (and the analysis is conditional), these two 
expectations will be the same. 

EXAMPLE 1 (Continued). Code to compute the Wdd test statistic 

w = hf( d&H) - I 4  
for the hypothesis of homogeneity 

is shorn in Figure 3. The nonlinear three stage least squares estimators d 
and C are computed using the same code as in Figure 1 of Section 3. The 
computed values are passed to PROC MATRIX, where the value 

W = 3.01278 (from Fig 3) 

is computed using straightforward algebra. Since (x2) - l ( .95 ,  3) = 7.815, the 
hypothesis is accepted at the 5 %  level. 
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SAS Stotemnts: 

PROC MODEL 0UT-CIoM)l; 
ENWOENWS Y 1  Y2 Y3; 
EXOMNOUS R l  R2 R3 DO D1 0 2  03  04 05 06 D7 08 D9 010 D l 1  012 D l3 ;  
PAR- 1 1  1 2  T3 1 4  TS 16 TT TO CO C l  C2 C3 C4 CS C6 C7 C8 C9 ClO C11 C12 C13; 
PEAK= 11+1Z*R1*T3*R2~14*R3-(T2~13+T4)*V3; 
I N T E R ~ T 6 + T 3 ~ 1 t T 6 * R 2 + T 7 ~ 3 - ( T 3 t l 6 t l 7 ) * Y 3 ;  
BASE- -1 t14*R1~17*R2~16*( I3 - (T4~T7*16)*Y3;  
Yl=LOO(PEAK/OASE); Y2=LOa(INTER/MusE); 
Y3tW*CO*Dl+C1*OZ*C2+D3*C3+O4~4~5*C6tO6*C6+O7~7#8*C8tD9~9+DlO*ClO+Dll*Cll 

+012*c12*013*c13: 

PROC SYSNLIN DATA=EOl RDOEL-CIODOl N3SLS MElHOO=QMLSS llAXITd50 CONWRdE-1.E-6 

INSTRUMENTS R1 R Z  R3 DO 01 02 03 04 D5 06 07 08 09 010 011 012 013 / NOINT; 
F I T  V 1  Y2 STAR1 (11  -2.96 T2 -1.16 T3 0.767 14 0.353 TS -1.61 16 -1.00 

PROC SYWLIN DATA=EOOl I I o D E L ~ O 1  N39CS METW=QAUSS ) (U( I l=KO CONVEROE-1.E-8 

INSTRMENTS R I  R2 R3 DO D l  0 2  0 3  04 06 06 07 08 09 D l 0  011 012 013 / NOINT: 
F I T  Y 1  Y2: 

PROC I IATRIX; FETCH W OATA.ICK#IKOl(KEEP - 11 1 2  13  14 16 16 77 T8);  
lHATIW(1,)’; CHAl=W(2:9,); 
* 0 1 1 1 0 0 0 0 / 0 0 1 0 0 1 1 0 / 0 0 0 1 0 0 1 1 ;  
W=mAl‘+H’*INV(H*CHAT*H’)*H*THAT; PRINT Y; 

SOATA=IOENfIlY GUTSISHAT WTEST-TSMRPi 

TT 0.054 TO -0.411); 

SD*lA-SHAl ESTOATA~TSHIRP OtnEST=UORKOl COYOUT; 

output: 

SAS 8 

W COL 1 

ROW1 3.01 218 

F@m 3. Illustration of Wald test computations with Example 1. 

In Section 4 of Chapter 5 ,  using the multivariate least squares estimator, 
the hypothesis was rejected. The conflicting results are due to the larger 
estimated variance with which the three stage least squares estimator is 
computed with these data, as one would expect from Tauchen’s (1986) 
work. As remarked earlier, the multivariate least squares estimator is 
computed from higher quality data than the three stage least squares 
estimator in this instance, so that the multivariate least squares results are 
more credible. 0 

Let &denote the value of 6 that minimizes S(8, ?) subject to h ( 8 )  = 0. 
Equivalently, let 6 denote the value of p that achieves the unconstrained 
minimum of S [ g ( p ) ,  p], and put 8 = g(6). The “likelihood ratio” test 
statistic for the hypothesis 

H: h ( 6 0 )  = 0 against A :  h ( 6 0 )  # 0 
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is 

L = S( 6, t‘) - S( I, P). 
It is essential that P be the same matrix in both terms on the right hand 
side; they must be exactly the same, not just “asymptotically equivalent.” 

One rejects H: h(8’) = 0 when L exceeds the upper a x 100% critical 
poi111 x: of the chi-square distribution with q degrees of freedom; x t  = 
(x2)-’(1 - a1 4). 

Let 8’ denote the value of 8 that minimizes 

so(@, v )  = [nrm,(8)]’v-’[bm,(8)] 

subject to 

h ( 8 )  = 0. 

Equivalently, let pa denote the value of p that achieves the unconstrained 
minimum of So[  g( p ) ,  V], and put 8’ = g( PO). 

Under the alternative, A : h(Bo)  # 0, the “likelihood ratio” test statistic 
L is approximately distributed as the noncenval chi-square with q degrees 
of freedom and noncentrality parameter 

A = +( 1-1 B [ q ( y , ,  x,, 8’) Qp Z(x,>]  S[Q(vf9  X I ,  8.1 @ z(x.)1) 

x J-’H’( HJ-1H‘)HJ-l 

r - 1  

where 
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Alternative expressions for X can be obtained using Taylor's theorem and 
the relationship H'(HJ-'H?-'H = J - JG(G'JG)-'G'J from Section 6 of 
Chapter 3; see Gallant and Jorgenson (1979). 

- P 2  - P3 

P2 

p3 
P4 

-P5 - P2 
P5 

- P 5  - P 3 i  

EXAMPLE 1 (Continued). The hypothesis of homogeneity in the model 

= d P ) .  

6, 
-9, - e, 

83 
04 

85 
-8, - e, 

8 7  
-e4 - e, 

Minimization of S[ g( p) ,  31 as shown in Figure 4 gives 

S(6,  3 )  = 38.34820 (from Fig. 4) 

and we have 

S( I , ? )  = 34.96403 (from Fig. 1) 

from Figure 1 of Section 2. Thus 

L = s(B, P) - s(0, P) 
=z 38.34820 - 34.96403 
= 3.38417. 

Since (x2)-'(.95; 3) = 7.815, the hypothesis is accepted at the 5 %  level. 
Notes in Figures 1 and 4 that is computed the same. As mentioned 
several times, the test is invalid if care is not taken to be certain that this is 
so. 



460 NONLINEAR SIMULTANEOUS EQUATIONS MODELS 

5*S Statements: 

PAW mxKL WTII)oO2: 
E r n € -  Y1 Y2 Y3: 
EXOOENOUS R1 R2 R3 W 01 02 03 04 06 06 07 08 09 Dl0 011 012 013; 
PARIS RO1 RO2 R03 R04 ROS CO C1 C2 C3 C4 CS C6 C7 C8 CS C10 C11 C12 C131 
Tl~RO1; T2=-R02-R03; T3mR021 T44031 T S ~ R M ;  T~I-ROS-RO~; T7406;  T&-ROS-R03: 
PEAK= TltT2*RltT3*RZ+T4*R3-(T2tT3tT4)yJ; 
I N T E R . I T S ~ T ~ * R ~ ~ T ~ * R ~ + T ~ * R ~ - ( T ~ ~ T ~ ~ T ? ) ~ ~ :  
6AS€= -1tT4*Al+TP*R2tT8*R3-(T4tT7+18)*Y3; 
Yl=LoO(PEIJ(/6ASE): Y2=LOQ(INTER/8AS€); 
Y3~O*co*o1*c1*o2*C2tO3~3*o4*C4~5~5tD6~6tO7*C7~~~8*oS*c9+DlO*ClO~ll*c11 

tO12*c12+013*C13; 
PRDC SMNLIN DATA=EOOl mXlELrMWO2 N3SLS MTHOIOMISS MXIT=SO CONVER@E=l .E-8 

INSTRUMENTS R1 R2 R3 DO D1 02 03 04 05 06 07 D8 09 010 Dl1 012 013 / NOINT; 
FIT Yl Y2 START (R01 -3 R02 .8 R03 .4 R04 -1.5 R05 .03); 

SOATA=SHAT; 

Output: 

SAS 

NMINEAR 3SLS PARMETER ESTIMATES 

APPROX . '1' APPROX. 
PUIAHETER ESTIMATE STO ERROR RATIO P R O b I T I  

R01 -2.66673 0.17608 -15.14 0.0001 
RO2 0.84963 0.06641 12.79 0.0001 
R03 0.37591 0.02686 13.99 0.0001 
R04 -1.66636 0.07770 -20.16 0.0001 
R05 0.06129 0.03408 1.80 0.0736 

8 

NWBER OF OBSERVATIONS STATISTICS FOR SYSTEM 
USED 220 OeJECTIVE 0.17431 
MISSING 4 OBJECTIVE*N 38.34820 

CWMIMICE OF RESIDUALS MATRIX USED FOR ESTIMATION 

S Y1 Y2 

Y1 0.17169 0.09615 
Y2 0.09676 0.09646 

Figw 4. Example 1 fitted by nonlinear b e c  stagc Icas: squarcs, homogeneity imposed. 

The Lagrange multiplier test is most apt to be used when the constrained 
estimator 8 is much easier to compute than the unconstrained estimator 
so it is somewhat unreasonable to expect that a variance estimate Y 
computed from unconstrained residuals will be available. Accordingly, let 

n \  
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if the model is a pure regression situation, put 

461 

if the model is the regression situation with heteroscedastic errors, put 

or if the model is dynamic, put 

P =  nsl, 

where, letting I (n )  denote the integer nearest n1I5, 

Let 
- a= argminS(6, +'). 

h(B)-0 

The Gauss-Newton step away from d (presumably) toward 8 is 

6 = D ( d ,  v). 
The Lagrange multiplier test statistic for the hypothesis 

H: h(8O) = 0 against A : h ( d O )  # 0 
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is 

where 
R 5 6'Jb 

One rejects H: h(8') = 0 when R exceeds the upper a X 100% critical 
point x:  of the chi-square distribution with q degrees of freedom; x i  = 

The approximate nonnull distribution of the Lagrange multiplier test 
statistic is the same as the nonnuU distribution of the "likelihood ratio" test 
statistic. 

( x 2 ) - V  - a, 4). 

EXAMPLE 1 (Continued). The computations for the Lagrange muiti- 
plier test of homogeneity are shown in Figure 5. As in Figure 4, PROC 
MODEL defines the model q [ y ,  x, g ( p ) ] .  In Figure 5, the first use of PROC 
SYSNLIN WmpUteS 

g ( p ) ,  I QD C z , z ;  
P 1-1 

where 

8" = g($") ,  

= argminS[g(p), V ] .  
The second  US^ Of PROC SYSNLIN COmpUteS 

P 

The subsequence DATA UO1 statement computes 

where 

B = &). 
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SAS Stot-ntr: 
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PROC UDDEL D u T ~ 0 2 ;  
EM#)(ILIIOU(I Yl Y2 Y3; 
EXOWNOW 
PARUS R01 RO2 R03 R04 ROS CO Cl C2 C3 C4 C5 C6 C7 CO C 9  C10 Cl1 C12 C13; 
Tl=ROli TZ=-R02-R03; 13402; T4=R03; 1 6 4 0 4 1  T+-R06-R02; T71ROS; TL)--ROS-R03; 
PEAK. ~ l * T Z * R l * T 3 * ( 1 2 * T 1 * R 3 - ( T 2 * ~ 3 + T 4 ) ~ Y 3 ;  
INTER~TC~T3cf f l+~6*R2*T7*R3- (T3+T6+T~)*Y3;  
BASE= -1+T4*R1*T7sR2*18*R3-(T4*T7+T6)~Y3: 
Yl=LOQ(PEAK/BWC); Y2=LOQ(INTER/BAS€); 
Y S = D O * C O ~ l * C l * D 2 * C 2 * D 3 ~ 3 ~ 4 ~ 4 + D 5 ~ C S * D l O + D l l * C l l  

A1 R2 A3 DO Dl 02 03 04 D5 06 07 DO DO D10 D11 Dl2 013; 

*012*C12*D13*C13; 

PROC SYSNLIM DATA-€001 UWEL3K)002 N3SLS UETHOD4AUSS MAXIT=LO CONVEROE=l.E-8 

INSTRUIENTS R1 R2 R3 DO D1 D2 0.9 04 DL 06 D7 DO DO DlO Dll D12 D13 / NOINT; 
F I T  Yl Y2 START = (RO1 -3 R02 .O A03 .4 A 0 4  -1.5 R05 .03); 
PROC SYSWLIN DATA-EGOl M1oEL-MOOO2 MSLS UETliOD=OAUSS UAXIT=IO CONVFAOE=l.E-7 

INSTRWENTS Rl R2 R3 DO D1 02 03 D4 05 06 07 M) 09 D10 Dll 012 D13 / MINT; 
FIT Yl Y2; 

DATA Wol; IF -M-=1 THEN SET RHOHAT; SET E W l ;  RETAIN RO1-ROS; 
T1401; TZ=-RO2-R03: 13402; 14403; fSmR04;  T6=-R05-R02; T7.ROS; 78=-ROS-R03; 
PEAK= T l + T 2 * R l * T 3 ~ 2 * T 4 * R 3 - ( T 2 * T 3 * ~ 4 ) * Y 3 ;  
INTER~TL*T3*Rl*T6*R2+T?~3- (T3+T6+T?)Y3;  
OASE= -1+14*Rl+T7*R2*Tll*R3-(14+17+18)*Y3; 
Ql=Yl-LOO(PEAK/[MSE): Q2=Y2-LOO( INTER/BASE); 

SOATA-IDENTITY WTS=STILDE OUTCST=TU(ARP; 

SDAlA=STILM ESTOATA=TSCURP OUTEST=RnOHAT; 

DQlTl=-l/PEAK; oq2ll =o ; 
OQlT2=-(Rl -Y3 )/PEAK; 53212=0; 
DQIT~--(R~-Y~)/PEAKI W2T3--(Rl-Y3)/1NTER; 
DQlT4=-(R3-Y3)/PEAK*(Rl-Y3)/8ASE: OQZT4=(Rl-Y3)/8AsE: 
DQlTS=Oi DQ2Tli=-l/IUTER; 
DQlT6=0; OQ2T6=-(R2-Y3)/INTER; 
OQlT7=(R2-Y3)/iMS.E; ~21?=-(R3-Y3)/1NTER+(R2-Y3)/BASE: 
DQlTO=(R3-Y3)/WE; DQ2Tll=(R3-Y3)/8AS€; 
IF NUISS(0F DO-013) > 0 THEN DELETE; 
KEEP 91 Q2 DQlTl-cQlTO OQ2Tl-OQ2TO R1-R3 00-013; 

Figure 5. Illustration of Lagrange multiplier test computations with Example 1 

Finally  roc MATRIX is used to compute 

J- ( i Q, QD 21)’v-( t 0, QD 2. )  
1-1 1-1 

J- ( i Q, QD 21)’v-( t 0, QD 2. )  
1-1 1-1 

and 
R = iYm 

= 3.36375 (from Fig. 5 ) .  
Since (x2)- I ( .95,  3) = 7.815, the hypothesis is accepted at the 5% level. 0 
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PROC HATRIX; 
FETCH Ql OATAlwol(KEEP-QQ0; FETCH 001 OATA~1(KEEP~W1Tl -OP1TO) ;  
FElCH Q2 OATAJIOl(KEEP-Q2); FETCH OQ2 OATAIWOl(K€EP=DQZTl-DQ2TB); 
FETCH 2 MTArWOl(KEEPIAl-R9 00-013) ;  FETCH STILOE tMTA-STILDE(KEEP-Vl V2);  
I - J f 3 4 , l . O ) ;  OELM=J(34,8,0); V*J(34 ,31 ,0) ;  
Do 1.1 TO 220: 

Q T l p l ( T , ) / / W ( T , ) i  M L Q T l o q l ( T e ) / l W 2 ( T a ) ;  
MT = QT a z ( T , ) * ;  OELMT = ~ E L O T  0 z ( T , ) * ;  
n-mnr; OELW=OELM+OELMT; V-V+STJLM 0 ( z ( T , ) * * z ~ T , ) ) ;  
Em; 
C H A T ~ I ~ ( O E L n ' * I N V ( V ) ~ L M ) ;  O--CI(AT*DELM'*INV(V)*M: 
R4 ' * INV(CHAT)rD;  PRINT R; 

Output: 

R COL 1 

ROW1 3.36375 

Figure 5. (Continued). 

There is one other test that is commonly used in connection with three 
stage least squares and generalized method of moments estimation, called 
the test of the overidentifying restrictions. The terminology is a holdover 
from the linear case; the test is a model specification test. The idea is that 
certain linear combinations of the rows of f im,,(tf)  are asymptotically 
normally distributed with zero mean if the model is correctly specified. The 
estimator 6 is the n$nimkx of s(8, Q), so it must satisfy the restriction 
that [( i3/i38)rnm(8)l,V-'m,,(8) = 0. This is equivalent to a statement that 

[fi.1"(6)]' - ?A = 0 

for some full rank matrix l? of order MK - p by MK that has rows which 
are orthogonal to the rows of [( i3/a6+)mn(6+)l'P-'. This fact and arguments 
similar to either Theorem 13 of Chapter 3 or Theorem 14 of Chapter 7 lead 
to the conclusion that &m,,(&) is asymptotically distributed as the singular 
normal with a rank MK - p variancecovariance matrix. This fact and 
arguments similar to the proof of Theorem 14 o,f Chapter 3 or Theorem 16 
of Chapter 7 lead to the conclusion that S(8, V )  is asymptotically distrib- 
uted as a chi-square random variable with MK - p  degrees of freedom 
under the hypothesis that the model is correctly specified. 

One rejects the hypothesis that the model is correctly specified when 
s(&,P) exceeds the upper a x 100% critical point xf of the chi-square 
distribution with MK - p degrees of freedom; x:  = (x2)-'(l - a, 
MK - p ) .  
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EXAMPLES l , Z  (Continued). In Example 1 we have 

S( 8, P) = 34.96403 
MK - p - 2 x 17 - 8 = 26 

(from Fig. 1) 
(from Fig. 1) 

(x2)-l(.95,26) = 38.885 

and the model specification is accepted. In Example 2 we have 

(from Fig. 2) 
(from Fig. 2) 

S ( 8 , q )  = 1.05692 
MK - p - 1 X 3 - 2 = 1 

( x  2 ) -1  (.95,1) = 3.841 

and the model specification is accepted. 
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0 

PROBLEMS 

1. Use Theorem 12 of Chapter 7 and the expressions given in the example 
of Section 5 of Chapter 7 to derive the Wald test statistic. 

2. Use Theorem 15 of Chapter 7 and the expressions given in the example 
of Section 5 of Chapter 7 to derive the "likelihood ratio" test statistic. 

3. Use Theorem 16 of Chapter 7 and the expressions given in the example 
of *tion 5 of Chapter 7 to derive the Lagrange multiplier test statistic 
in the form 

R = fit&(~J-1&)-'fib. 

USe 

&(fp&)-lg J -  Jqc"'J@-'c"'j 
a a { S( 6, g) + ~h ( 8 ) ]  - o for some Lagrange multiplier p 

and fig = 0 to put the statistic in the form 

R = diJ'ii. 
5. MAXIMUM LJKELIHOOD ESTIMATION 

The simplest case, and the one that we consider first, is the regression case 
where the errors are independently distributed, no lagged dependent vari- 
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ables are used as explanatory variables, and the analysis is conditional on 
the explanatory variables. 

The setup is the same as in Section 2. Multivariate responses y,, 
L-vectors, are assumed to be d e t d e d  by k-dimensional independent 
variables x, according to the system of simultaneous equations 

q a ( y , , ~ , , e : ) = e a ,  u - I , ~  ,..., L r = 1 , 2  ,..., n 

where each 4,(y,  x, 0,) is a real valued function, each 0," is a p,-dimen- 
sional vector of unknown parameters, and the e,, represent unobservable 
observational or experimental errors. 
All the equations of the system are used in estimation, so that, according 

to the notational conventions adopted in Section 2, M = L and 

e =  

e, = 

where 8 is a p-vector containing the nonredundant elements of the parame- 
ter vectors 0,, a = 1,2,. . . , M. The error vectors e, are independently and 
identically distributed with common density p ( e  Iuo), where u is an 
r-vector. The functional form p(e I u )  of the error distribution is assumed 
to be known. In the event that something such as Q(yl, x,, /I) = u, with 
pl( u I )  = p (  u, I x I ,  T ,  a )  is envisaged, one often can find a transformation 
#(Q, x , ,  7 )  which will put the model 

into a form that has p, (e , )  = p ( e ,  I (I) where 8 = ( f i ,  7 ) .  

writing n ( e  I a) for p ( e  I u),  where u denotes the unique elements of 
Usually normality is assumed in applications, which we indicate by 

Z = %'(e,, e;) 
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viz. 

Let Z = Z(u) denote the mapping of this vector back to the original matrix 
Z. With these conventions, the functional form of n(e  I a) is 

n ( e  I u )  = (2 v ) - M/zdet [ Z ( u ) ]  - '/*exp { - f e'[ 2( u )) - 'e } . 

The assumption that the functional form of p ( e  I u )  must be known is 
the main impediment to the use of maximum likelihood methods. Unlike 
the multivariate least squares case, where a normality assumption does not 
upset the robustness of validity of the asymptotics, with an implicit model 
as considered here an error in specifying p ( e  I a)  can induce serious bias. 
The formula for computing the bias is given below, and the issue is 
discussed in some detail in the papers by Amemiya (1977, 1982) and 
Phillips (1982b). 

Given any value of the error vector e from the set of admissible values 
d c R *, any value of the vector of independent variables x from the set of 
admissible values IC R', and any vdue of the parameter vector 8 from 
the set of admissible values 8 E RP, the m d e l  

is assumed to determine y uniquely; if the equations have multiple roots, 
there is some rule for determining which solution is meant. "h i5  is the same 
as stating the model determines a reduced form 

mapping d X %X €3 onto I E RM; for each (x, 8) in I X  6 the mapping 

is assumed to be one to one, onto. It is to be emphasized that while a 
reduced form must exist, it is not necessary to find it analytically or even to 
be able to compute it numerically in applications. 

These assumptions imply the existence of a conditional density on ?V 
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A conditional expectation is computed as either 

or 

whichever is the more convenient. 

EXAMPLE 3. Consider the model 

The reduced form is 

Under normality, the conditional density defined on ?Y = ( 0 , ~ )  x ( - 00, a) 
has the form 

where 2 = 2(u). 0 

The normalized, negative log-likelihood is 

1 "  
%(@, 4 = - c ( -  1)ln P ( Y  I X ,  O,.) 

r - 1  

and the maximum likelihood estimator is the value (6,6) that minimizes 
sJ8, a); that is, 

(46) = argminS,,(e, U )  
( 8 %  0 )  

Asymptotically, 
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Put X = ( 8 , ~ ) .  Either the inverse of 

469 

or the inverse of 

w i ~  estimate v consistently. suppose that P = 3’ is USXI to estimate V.  
With these normalization conventions, a 95% confidence interval on the ith 
element of 8 is computed as 

and a 95% confidence interval on the i th element of o is computed as 

where f ‘ l  denotes the ijth element of the inverse of a matrix f, and 
z , ~ ~  = N- ‘(.025; 0,l). 

Under normality 

Define 

Using the relations (Problem 4, Section 5, Chapter 5 )  
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where t i  is the i th elementary M( M + l)/Zvector, and using 

we have 

Interest usually centers in the parameter 8, with a regarded as a nuisance 
parameter. If 

~ ( 8 )  argminsfi(8, a) 
a 

is easy to compute and the "concentrated likelihood" 

s f i ( 8 )  = sn I@* @(@)I 
has a tractable analytic form, then alternative formulas may be used. They 
are as follows. 

The maximum likelihood estimators are computed as 

t f=  argminS,,(e) 

â  - *(I) 
B 

and these will, of course, be the same numerical values that would obtain 
from a direct minimization of s,(8, a). Partition 9 as 

92 (;: "a) P m  

4 a  T r o w s  

P r  
WL cds 
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Partition V similarly, With these partitionings, the following relationship 
holds (Rao, 1973, p. 33): 

We have from above that, asymptotically, 

One can show (Problem 6) that either 

or 

will estimate 

fre - 4 a 4 s x r  

consistently. Thus, either 3’ or .&l may be used to estimate Vee. Note 
that it is necessary to compute a total derivative in the formulas above; for 
example, 

Suppose that Vg, = 3’ is used to estimate With these normalization 
convexitions, a 95% confidence interval on the ith element of 8 is computed 
as 
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where Xij  denotes the uth element of the inverse of the matrix X ,  and 
z,-,~~ = N- '(.025; 0,l). 

Under normality, 

s,(B, u) - const - n 1 "  ~ l l n l d e t ~ q ( ~ f .  d xr, e ) /  + $Indet Z(u) 
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where 

473 

In summary, there are four ways that one might corn Ute an estimate cfffl- 
of Ve6, the asymptotic variance-covariance matrix of P n ( 8  - 6') .  Either f 
or ,$ may be inverted and then partitioned to obtain f##, or either 9 or .5? 
may be inverted to obtain I?##. 

As to computations, the full Newton downhill direction is obtained by 
expanding ~ ~ ( 8 ,  a )  in a Taylor's expansion about some trial value of the 
parameter A, - (8$,  u;)': 

The minimum of this quadratic equation in X is 

whence a full Newton step away from the point (8, u )  and, hopefully, 
toward the point f i  5 (6',6')' is 

A minimization algorithm incorporating partial step lengths is constructed 
along the same lines as the modified Gauss-Newton algorithm, which is 
discussed in Section 4 of Chapter 1. Often, 

can be accepted as an adequate approximation to f(a2/aA a X ' ) s , ( d ,  a)]; 
see Problem 5 .  
To minimize the concentrated likelihood, the same approach leads to 
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as the correction vector and 

as an approximation to ( 8  */8888’)s,(t?). 
As remarked earlier, the three stage least squares estimator only relies on 

moment assumptions for consistent estimation of the model parameters, 
whereas maximum lilrelihood relies on a correct specification of the error 
density. To be precise, the maximum likelihood estimator estimates the 
minimum of 

where p ( y  I x, y o )  is the conditional density function of the true data 
generating process by Themem 5 of Chapter 3. When the error density 
p ( e  lo) is correctly specified, the model parameters 8 and the variance u are 
estimated consistently by the information inequality (Problem 3). If not, the 
model parameters may be estimated consistently in some circumstances 
(Phillips, 1982b), but in general they will not be. 

Consider testing the hypothesis 

H: h ( e 0 )  = 0 against A :  h(8O)  z 0 

where h(B) maps R JJ into Rq with Jacobian 

of order q by p ,  which is assumed to have rank q. The Wald test statistic is 

where Qe8 denotes any of the estimators of Vee described above. 
Let 8 denote the minimizer of sJ8 ,  u )  or s,,(B) = sJ8 ,  a(#)] subject to 

the restriction that h ( 8 )  = 0, whichever is the easier to compute. Let Vee 
denote any one of the four formulas for estimating V,, described above, but 
with 8 replacing tf throughout. The Lagrange multiplier test statistic is 
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The likelihood ratio test statistic is 
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In each case, the null hypothesis H : h( e 0 )  5 0 is rejected in favor of the 
alternative hypothesis A : h(fIo) ?p 0 when the test statistic exceeds the 
upper u X 100 percentage point xt  of a chi-square random variable with q 
degrees of freedom; xfi = (x')-'(l - a; 4) .  Under the alternative hypothe- 
sis, each test statistic is approximately distributed as a noncentral chi-square 
random variable with q degrees of freedom and noncentrality parameter 

where Ve, is computed by inverting and partitioning the matrix 

The results of Chapter 3 justify these statistical methods. The algebraic 
relationships needed to reduce the general results of Chapter 3 to the 
formulas above are given in the problems. A set of specific regularity 
conditions that imply the assumptions of Chapter 3, and a detailed verifica- 
tion that this is so, are in Gallant and Holly (1980). 

In the dynamic case, the structural model has the same form as above: 

q ( y , , x , , e o )  = e, ( t  = 1,2, .... n) 
with q(y,  x , 6 )  mapping I x  Z x  8 c R M  x R k  x IRP onto Ic R M  and 
determining the one to one mapping y = Y(e ,  x, 8) of 8 onto 6. Unlike 
the regression case, lagged endogenous variables 

Yf-1, Y f - 2 , . * - *  Yf - /  

may be included as components of x,, and the errors e, may be correlated. 
When lagged values are included, we shall assume that the data 

Yo1 Y - l , . . . ,  Y1- /  

are available, so that q(yf ,  x I ,  0 )  can be evaluated for t = I, 2,.  . . , 1. Let r, 
denote the elements of x, other than lagged endogenous variables. 



476 NONLINEAR SIMULTANEOUS EQUATIONS MODELS 

The leading special case is that of independently and identically distrib- 
uted errors where the joint density function of the errors and exogenous 
variables, 

has the form 

In this case the likelihood is (Problem 1) 

and the conditional likelihood is 

One would rather avoid conditioning on the variables yo, yV1,. . . , y l - /  
because they are not ancillary-their distribution involves 8. However, in 
most applications it will not be possible to obtain the density 
p( yo, . . . , y1 -,). Taking logarithms, changing sign, and normalizing leads to 
the same sample objective function as above: 

1 "  db)  = ;; c ( - l ) l n [ P ( Y f I X f , 8 ) 1  
/ -1 

An application of the results of Sections 4 and 6 of Chapter 7 yields the 
same statistical methods as above. The algebraic relationships required in 
their derivation are sketched out in Problems 3 through 6. 

Sometimes models can be transformed to have identically and indepen- 
dently distributed errors. One example was given above. As another, if the 
errors from u, = Q(y,, r,, /3) appear to be serially correlated, a plausible 
model might be 
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As noted, these statistical methods obtain from an application of the 
results listed in Sections 4 and 6 of Chapter 7. Of the assumptions listed in 
Chapter 7 that need to be satisfied by a dynamic model, the most suspect is 
the assumption of near epoch dependence. Some results in this direction are 
given in Problem 2. A detailed discussion of regularity conditions for the 
case when q(y ,  x, #) = y - f ( x ,  6 )  and the errors are normally distributed 
is given in Section 4 of Chapter 7. The general flavor of the regularity 
conditions is that in addition to the sort of conditions that are required in 
the regression case, the model must damp lagged y’s in the sense that for 
given r, and 8 one should have lly,.-lll > IIY(0, yf-l.. . . , yf-/, rf. @Ill. 

with x, = (Y,-1* r,, r,-l) and 8 = ( A T ) .  

In the general dynamic case, the joint density function 

can be factored as (Problem 1) 

n 

Letting x ,  contain r, and as many lagged values of y,  as necessary, put 

Thus, the conditional likelihood is 

the sample objective function is 
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and the maximum likelihood estimator is 

( 8 , s )  - argminsn(6, 0 ) .  

(@. 0 )  

A formal application of the results of Section 4 of Chapter 7 yields that 
approximately (see Theorem 6 of Chapter 7 for an exact statement) 

with 

V my- 19-f- 1. 

4 and ,f can be estimated using 

and 

where I ( n )  denotes the integer nearest n1/5, and 

If the model is correctly specified, one can usually show that the 
conditional expectation of ( a / a h ) l n  p(Y,lx,,  . . . XI, YO, .  . . , Y1-rl,B0, d,') 
given (y , -  T, x,- ,, . . . , x l ,  yo,. . . , y ,  -,) is zero whence one can take f = Yno; 
see Problem ?. Also, usin an argument similar to Problem 5, one can 
usually take v = 4; or J1 if the model is correctly specified. 

For testing 

H :  h(ho)  = 0 against A : h(ho)  # 0 
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where X = (6,  a), the Wald test statistic is (Theorem 12, Chapter 7) 

with fi = ( a / a X ' ) h ( f i ) .  The null hypothesis H: h(Ao) = 0 is rejected in 
favor of the alternative hypothesis A : h(Ao) # 0 when the test statistic 
exceeds the upper a x 100 percentage point x t  of a chi-square random 
variable with q degrees of freedom; x i  = (x2)-l(1 - a; 4). 

As a consequence of this result, a 95% confidence interval on the ith 
element of 6 is computed as 

and a 95% confidence interval on the ith element of u is computed as 

where z , ~ ~  = - /( x 2 ) - * (  .95; 1) = N-'(.025; 0,l). 

that h ( h )  = 0. Let d, J, and /denote the formulas for A, 1, and / 
above, but with & replacing fi  throughout; put 

Let x = (8, a') denote the minimizer of $,(A), subject to the restriction 

The Lagrange multiplier test statistic is (Theorem 16, Chapter 7) 

Again, the null hypothesis H: h(ho) = 0 is rejected in favor of the alterna- 
tive hypothesis A : h(Ao) # 0 when the test statistic exceeds the upper 
a x 100 percentage point x Z ,  of a chi-square random variable with 4 
degrees of freedom; x; = (x2)-'(1 - a; 4). 

The likelihood ratio test cannot be used, unless one can show that 
4-8; see Theorem 17 of Chapter 7. Formulas for computing the power of 
the Wald and Lagrange multiplier tests are given in Theorems 14 and 16 of 
Chapter 7, respectively. 
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PROBLEMS 

This problem set requires a reading of Sections 1 through 3 of Chapter 7 
before the problems can be worked. 

1. (Derivation of the likelihood in the dynamic case.) Consider the model 

q ( Y , , X l ,  e o )  = e ,  t = 1 ,2  ,..., n 
where 

x, = (Y,- l ,  Yf -2 ,  * - - , Y f - , ,  4.  
Define the (n + f)M-vectors f and e(f) by 

en ' 
en-1 

el 
e0 

el-,, 

- 
Y1-r I 

Yn 

Yn- 1 

Y1 

Yo 

Y 1 - r  

Show that (a/af')e(f) has a block upper triangular form, so that 

Show that the joint density function 

can be factored as 
n 

and hence that the conditional density 

can be put in the form 
" 
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2. (Near epoch dependence.) Consider data generated according to the 
nonlinear, implicit model 

q(y,, y f - l ,  rf,8O) = e, t = 1 , ~  ... 
y , = o  t s o  

where y, and e ,  are univariate. If such a model is well posed, then it 
must define y, as a function of y+,, rf,  e0, and e,. That is, there must 
exist a reduced form 

y, = y(ef? Yf-1, r,, eO). 
Assume that Y(e, y ,  r, 6) has a bounded derivative in its first argu- 
ment: 

and is a contraction mapping in its second: 

Let the errors { e,) be independently and identically distributed, and 
set e, = 0 for t 5 0. With this structure, the underlying data generating 
sequence (V, )  described in Section 2 of Chapter 7 is V ,  = (0.0) for 
r I 0 and V,  = (e , ,  r,) for f = 1,2. .  . . Suppose that 8' is estimated by 
maximum likelihood; that is, 4 minimizes 

.. 
r - 1  

where p ( e )  is the density of the errors. We have impticitly absorbed the 
location and scale parameters of the error density into the definition of 
d Y f ,  Yf-19 r,, 6 ) .  

Let 

2, = 

R f  
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where the supremum is taken over the set 

Assume that for some p > 4 

Show that this situation satisfies the hypothesis of Proposition 1 of 
Chapter 7 by supplying the missing details in the following argument. 

Define a predictor of y, of the form 

Y : m = j J ( 4 *  c-l,***s K - m )  

as follows: 

By Taylor’s theorem, there are intermediate points such that for z- 0 



dmlyr-m - jr',.imI 

E d " 1 Y i - m  - Yi-ml  
r -m-1  

= Adm dJIe,-,,,-,l 
J'O 

where the last inquality obtains by substituting the bound for Iy, - Yfl 
obtained previously. For r - rn < 0 we have 

Iv, -.i?,J = dm-'lYO - Yo1 = 0. 

In either event, 

Letting 

we have 

with 

For r 2 1 
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L e t t h g q = p / ( p + l ) < p ,  r = p / 2 > 4 , a n d  

B ( % ,  q!,,,) = R, 

we have 

B2BAd" < oo ' l - d  

The rate at which qm falls off with m is exponential, since d < I, 
whence r), is of size -q ( r  - l)/(r - 2).  Thus all the conditions of 
Proposition 1 are satisfied. 
(Information inequality.) Consider the case where the joint density 
function of the errors and exogenous variables 

3. 

p(  e n ,  en- . . , e l ,  yo. Y - ? .  . . Y ~ - I ,  rn. m -  1 ,. . . r l )  

has the form 

and let 

Assume that p ( y  I x ,  A )  is strictly positive and continuous on CV. Put 

and supply the missing details in the following argument. By Jensen's 
inequality 
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The inequality is strict unless u( y, x) = 0 for every y. This implies that 

I,' - 1 P ( Y I x ,  A ) P ( Y I x I dv 

' 1- - 1 P ( Y I x, A01 P ( Y I x, ) dY 

for every X for which p ( y  I x, A )  f p (  y I x, Ao) for some y. 
4. (Expectation of the score.) Use Problem 3 to show that if 

(a@)/( - 1)ln p ( y  I x, A ) p ( y  I x, A') dy exists, then it is zero at X = 
Ao. Show that if Assumptions 1 though 6 of Chapter 7 are satisfied, then 

5. (Equality of 9 and #.) Under the same setup as Problem 3, derive the 
identity 

Let 6, denote the ith elementary vector. Justify the following steps: 
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This implies that 

6. (Derivation of X and 9.) Under the same setup as Problem 3, obtain 
the identity 

and use it to show that 

~e - A, ( - ' A e  
Obtain the identity 

Approximate 3 8 ,  and So, by ye,, and yo,,, and use the resulting 
expression to show that 



C H A P T E R 7  

A Unified Asymptotic Theory 
for Dynamic Nonlinear Models 

The statistical analysis of dynamic nonlinear models, for instance a model 
such as 

with serially correlated errors, is tittle different from the analysis of models 
with regression structure (Chapter 3) as far as applications are concerned. 
Effectively all that changes is the formula for estimating the variance 3: of 
an average of scores. Thus, as far as applications are concerned, the 
previous intuition and methodology carry over directly to the dynamic 
situation. 

The main theoretical difficulty is to establish regularity conditions that 
permit a uniform strong law and a continuously convergent central limit 
theorem that are both plausible (reasonably easy to verify) and resilient to 
nonlinear transformation. The time series literature is heavily oriented 
toward linear models and thus is not of much use. The more recent 
martingale central limit theorems and strong laws are not of much use 
either, because martingales are essentially a linear concept-a nonlinear 
transformation of a martingale is not a martingale of necessity. In a series 
of four papers McLeish (1974, 1975a, 1975b, 1977) developed a notion of 
asymptotic martingales which he termed mixingaies. This is a concept that 
does extend to nonlinear situations, and the bulk of this chapter is a 
verification of this claim. The flavor of the extension is this: Conceptually y,  
in the model above is a function of all previous errors e,, e,- . . . But if y, 
can be approximated by Jf that is a function of e,, . . , et-m and if the error 
of approximation Ily, - j,ll falls off at a polynomial rate in m, then smooth 
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transformations of the form g(y,, . . . , y ,-,, x , ,  . . . , x ,-,, y )  follow a uni- 
form strong law and a continuously convergent central limit theorem 
provided that the error process is strong mixing. The rest of the analysis 
follows along the lines laid down in Chapter 3 with a reverification made 
necessary by a weaker form of the uniform strong law: an average of 
random variables becomes close to the average of the expectations, but the 
average of the expectations does not necessarily converge. These results 
were obtained in collaborative research with Halbert White and Jeffrey M. 
Wooldridge while they visited Raleigh in the summer of 1984. Benedikt M. 
P6tscher provided helpful comments. National Science Foundation and 
North Carolina Agricultural Experiment Station support for this work is 
gratefully acknowledged. 

The reader who is applications oriented is invited to scan the regularity- 
conditions to become aware of various pitfalls, isolate the formula for 9 
relevant to the application, and then apply the methods of the previous 
chapters forthwith. A detailed reading of this chapter is not essential to 
applications. 

The material in this chapter is intended to be accessible to readers 
familiar with an introductory, measure theoretic probability text such as 
Ash (1972), Billingsley (1979), Chung (1974), or Tucker (1967). In those 
instances where the proof in an original source was too terse to be read at 
that level, proofs with the missing details are supplied here. Proofs of new 
results or significant modifications to existing results are, of course, given as 
well. Proofs by citation OCCUT only in those instances when the argument in 
the original source was reasonably self-contained and readable at the 
intended level. 

1. INTRODUCX’ION 

This chapter is concerned with models which have lagged dependent 
variables as explanatory variables and (possibly) serially correlated errors. 
Something such as 

0 
4(Yf,  Yf-11 X f , Y l  ) = u, 

u ,  = e, + 
t = 0, fl, f2, ... 

might be envisaged as the data generating process. with ( e, } a sequence of, 
say, independently and identically distributed random variables. As in 
Chapter 3, one presumes that the model is well posed, so that in principle, 
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given Y , - ~ ,  x f ,  yp, uI,  one could solve for yl. Thus an equivalent representa- 
tion of the model is 

Yf  = Y( U l l  Y f - 1 ,  X I .  VP) 
u ,  = el + Y2ef-1 0 

I = 0, fl, k2, ... 1 

Substitution yields 

and if this substitution process is continued indefinitely, the data generating 
process is seen to be of the form 

with 

Throughout, we shall accommodate models with a finite past by setting 
y f ,  x,, ef equal to zero for negative r ;  the values of yo, xo, and e, are the 
initial conditions in this case. 

If one has this sort of data generating process in mind, then a least mean 
distance estimator could assume the form 

A, = argmins,(X) 
h 

with sample objective function 

or 

-the distinction between the two being that one distance function has a 
finite number of arguments and the number of arguments in the other 
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grows with t .  Writing 

with I ,  depending on t accommodates either situation. Similarly, a method 
of moments estimator can assume the form 

f i n  = argminsn( A )  = d [ m,( A ) ,  4.1 
A 

with moment equations 

In the literature, the analysis of dynamic models is unconditional for the 
most part, and we shall follow that tradition here. Fixed (nonrandom) 
variables amongst the components of x ,  are accommodated by viewing 
them as random variables that take on a single value with probability one. 
Under these conventions there is no mathematical distinction between the 
error process {e l } :  - and the process { x,]: - describing the indepen- 
dent variables. The conceptual distinction is that the independent variables 
{ x, 1: __ are viewed as being determined externally to the model and 
independently of the error process { e,]: that is, the process { x,} is 
ancillary. In Chapter 6 we permitted x, to contain lagged dependent 
variables and used r, to denote the ancillary components. Here all compo- 
nents of x ,  are ancillary unless specifically stated otherwise. Usually, we 
shall account explicitly for lagged dependent variables as a separate argu- 
ment of the function they enter. In an unconditional analysis of a dynamic 
setting, we must permit the process { x f } :  -m to be dependent, and, since 
fixed (nonrandom) variables are permitted, we must rule out stationarity. 
We shall also permit the error process to be dependent and 
nonstationary, primarily because nothing is gained by assuming the con- 
trary. Since there is no mathematical distinction between the errors and the 
independent variables, we can economize on notation by collecting them 
into the process { u,}: - 

0, = ( e l ,  x , ) ;  

with 

denote a realization of the process by 
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Recall that if the process has a finite past, then we set of = 0 for t c 0 and 
take the value of uo as the initial condition. 

Previously, we induced a Pitman drift by considering data generating 
processes of the form 

and letting y: tend to a point y * .  In the present context it is very difficult 
technically to handle drift in this way, so instead of moving the data 
generating model to the hypothesis as in Chapter 3, we shall move the 
hypothesis to the model by considering 

H: h(X:) 5 h: against A :  h ( A ; )  .p h; 

and letting h ( A t )  - h: drift toward zero at the rate 0(1/ 6). This 
method of inducing drift is less traditional, but in some respects is philo- 
sophically more palatable. It makes more sense to assume that an investiga- 
tor slowly discovers the truth as more data become available than to assume 
that nature slowly accommodates to the investigator's pigheadedness. But 
withal, the drift is only a technical artifice to obtain approximations to the 
sampling distributions of test statistics that are reasonably accurate in 
applications, so that philosophical nitpicking of this sort is irrelevant. 

If the data generating model is not going to be subject to drift, there is 
no reason to put up with the cumbersome notation 

y1 = y( I ,  em, xm, Y O )  
+ n  

Much simpler is to stack the variables entering the distance function into a 
single vector 

and view w ,  as obtained from the doubly infinite sequence 

urn = (..., o - l , U 0 . u ,  ,...) 
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by a mapping of the form 

Let w ,  be kf-dimensional. Estimators then take the form 

A,= argminsn(A) 
A 

in the case of least mean distance estimators, and 

in the case of method of moments estimators. We are led then to consider 
limit theorems for composite functions of the form 

which is the subject of 
parameter which could 
dimensional vector. 

the next section. There y is treated as a generic 
be variously yo, ( 7 ,  A), or an arbitrary infinite 

Two norms that are used repeatedly in the sequel are defined as follows: 
If X is a vector valued random variable mapping a probability space 
( S t ,  d, P) into R k ,  then 
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2. A UNIFORM STRONG LAW AND A CENTRAL LIMIT 
THEOREM FOR DEPENDENT, NONSTATIONARY 
RANDOM VARLABLES 

Consider a sequence of vector valued random variables 

v , ( w )  t = 0, *l, f2, ... 

defined on a complete probability space (a, d,  P) with range in, say, W! 
Let 

om = (..., U - l . U 0 , U 1  I . . . )  

where each of is in R', and consider vector valued, Bore1 measurable 
functions of the form W,(u,) with range in R k t  for r = 0,1,. . . . The 
subscript t serves three functions. It indicates that time may enter as a 
variable. It indicates that the focus of the function W, is the component u, 
of um and that other components u, enter the computation, as a rule, 
according as the distance of the index s from the index r ;  for instance 

And it indicates that the dimension k, of the vector w ,  = W,(u,) may 
depend on t. Put 

vm(o) = ( - . * ,  v - ~ ( ~ ) , v , ( w ) *  ~ 1 ( @ ) , - - * ) -  

Then W;[ V,( o)] is a kf-dimensional random variable depending (possibly) 
on infinitely many of the random variables V,(w) .  This notation is rather 
cumbersome, and we shall often write W,( w )  or W, instead. Let (I-, p )  be a 
compact metric space, and let 

{ g,,( W ( ,  7 )  : n = 1 . 2 , .  . . ; t = 0,1,. . . 
( g r ( W , , Y ) : t  = OJ,...} 

be sequences of real valued functions defined over Rkr x r. In this section 
we shall set forth plausible reguIarity conditions such that 
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almost surely (Sa, at, P) and such that 

for any sequence { y,") from I?, convergent or not. We have seen in Chapter 
3 that these are the basic tools with which one constructs an asymptotic 
theory for nonlinear models. As mentioned earlier, these results represent 
adaptations and extensions of dependent strong laws and central limit 
theorems obtained in a series of articles by McLeish (1974, 1975a, 1975b, 
1977). Additional details and some of the historical development of the 
ideas may be had by consulting that series of articles. 

We begin with a few definitions. The first defines a quantitative measure 
of the dependence amongst the random variables { V,): - m. 

STRONG MIXING. A measure of dependence between two a-algebras 9 
and 9 is 

a ( S , 9 )  - sup } P ( F G )  - P ( F ) P ( G ) I .  
F E F ~ G E S  

The measure will be zero if the two o-algebras are independent and positive 
otherwise. Let { y}: - be the sequence of random variables defined on 
the complete probability space (0, d,  P) described above, and let 

denote the smallest complete (with respect to P) sub-o-algebra such that the 
random variables V ,  for t = rn, m + 1,. . . , n are measurable. Define 

Observe that the faster a,,, converges to zero, the less dependence the 
sequence { c}: --Q) exhibits. An independent sequence has a,,, > 0 for 
m = O a n d  a m = O f o r m > O .  

Following McLeish (1975b), we shall express the rate at which such a 
sequence of nonnegative real numbers approaches zero in terms of size. 

SIZE. A sequence { t ~ , , , } ~ ~ ~  of nonnegative real numbers is said to be of 
size -4 if a,,, = ~(m') for some 8 c -4. 
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This definition is stronger than that of McLeish. However, the slight 
sacrifice in generality is irrevelant to our purposes, and the above definition 
of size is much easier to work with. Recall that u, = O(me) means that 
there is a bound B with IaJ I; Bme for all m larger than some M. 

Withers (1981, Corollary 4.a) proves the following. Let ( E , :  f = 
0, f 1, f 2, , . . be a sequence of independent and identically distributed 
random variables each with mean zero, variance one, and a density p , ( t )  
which satisfies j ? J p J f )  - p,(t  + h ) l d  s lhlB for some finite bound B. 
If each c, is normally distributed, then this condition is satisfied. Let 

where d, = O( j - " )  for some v > 3/2 and C,",od,zJ # 0 for complex 
valued z with 121 I; 1. Suppose that Ilc,lla I; const < 00 for some 6 with 
2 / ( v  - 1) < 8 < v f 1/2. Then { e,) is strong mixing with { a,) of size 
- [ S ( v  - 1) - 2]/(8 + 1). For normally distributed (c,} there will always 
be such a 8 for any v. These conditions are not the weakest possible for a 
linear process to be strong mixing; see Withers (1981) and his references for 
weaker conditions. 

The most frequently used time series models are stationary autoregres- 
sive moving average models, often denoted ARMA( p, q),  

with the roots of the characteristic polynomials 

less than one in absolute value. Such processes can be put in the form 

where the d, fall off exponentially and E ~ - o d j z ~  # 0 for complex valued I 
with lz l  s 1 (Fuller, 1976, Theorem 2.7.1 and Section 2.4), whence d j  = 
O ( j - " )  for any v > 0. Thus, a normal ARMA( p, q )  process is strong 
mixing of size - q  for q arbitrarily large; the same is true for any 
innovation process { c,)  that satisfies Withers's conditions for arbitrary 6. 
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It would seem from these remarks that an assumption made repeatedly 
in the sequel, " { F}: - is strong mixing of size - r / ( r  - 2) for some 
r > 2," is not unreasonable in applications. If the issue is in doubt, it is 
probably easier to take { V , )  to be a sequence of independent random 
variables or a finite moving average of independent random variables, 
which will certainly be strong mixing of arbitrary size, and then show that 
the dependence of observed data W, on far distant V ,  is limited in a sense 
we make precise below. This will provide access to our results without the 
need to verify strong mixing. We shall see an example of this approach 
when we verify that our results apply to a nonlinear autoregression (Exam- 
ple 1). 

We shall not make use of the related concept of uniform mixing, because 
it requires the innovations (c , )  in the process 

W 

e, = djc,-j 
j - 0  

to be bounded (Athreya and Pantula, 1986). 

(possibly) on infinitely many of the coordinates of the vector 
Consider the vector valued function W,(V,), which, we recall, depends 

v, = (..., v-,,v,,v, ,... ). 
If the dependence of W,(V,,) on coordinates V,  far removed From the 
position occupied by V, is too strong, the sequence of random variables 

w, = W,(V,) t = O , l ,  ... 
will not inherit any limits on dependence from limits placed on { V,): -m.  

In order to insure that limits placed on the dependence exhibited by 
( K}: - m  carry over to { JV,)~,,, we shall limit the influence of V ,  on the 
values taken on by W,(Vw) for values of s far removed from the current 
epoch 1. A quantative measure of this notion is as follows. 

NEAR EPOCH DEPENDENCE. be a sequence of vector 
valued random variables defined on the complete probability space 
(a,  d, P), and let 9; denote the smallest complete sub-a-algebra such 
that the random variables V,  for t = m, m + 1,. . . , n are measurable. Let 
W, = W,( V,) for r = 0, 1, . . . denote a sequence of Bore1 measurable func- 
tions with range in R'. that depends (possibly) on infinitely many of the 
coordinates of the vector 

Let { y}: - 

v, = (...'I v-,,v,,v, ,... ). 
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Let { gn,( w , ) }  for n = 1,2,. . . and I = 0,1,2,. . . be a doubly indexed 
sequence of real valued, Borel measurable functions each of which is 
defined over R 'f. The doubly indexed sequence { gn,( W,)} is said to be near 
epoch dependent of size - 4  if 

is of size -4. 
Let (I-, p)  be a separable metric space, and let { gnf( w,, y ) )  be a doubly 

indexed family of real valued functions each of which is continuous in y for 
each fixed w ,  and Borel measurable in w ,  E Rkf  for fixed y .  The family 
{ gnf( W,, y ) )  is said to be near epoch dependent of size - q if: 

1. The sequence (g:,(W,) = gn,(W,, y,")} is near epoch dependent of 

2. The sequence 
size -4 for every sequence y: from r. 

{ g n t ( w )  = SUP g n t ( w ,  Y)) 
P(Yn YO)<& 

arid 

are near epoch dependent of size - q for each y o  in I' and all positive 
6 less than some 6" which can depend on yo .  

The above definition is intended to include singly indexed sequences 
( g f ( W f ) } z l  as a special case with 

in this instance. For singly indexed families { g,(W,, Y)}??~ ,  the definition 
retains its doubly indexed flavor, as (g;,(W,) = g,(W,, y,")} is doubly 
indexed even if { g,(W,, y ) )  is not. 

Note that if W, depends on only finitely many of the V,, for instance 
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then any sequence { gn,( w , ) )  or any family { gmf( w, ,  y ) )  will be near epoch 
dependent, because 

Ilg,,(W,) - & r ( W , ) 1 S F l : m n ' ]  11, = 0 

for m largm than I; similarly for {g; , (w, ) ) ,  {&, (w, ) ) ,  and {g, , (w,)} .  

at k, = k for all r ,  and g, , (w)  or g,Jw, y )  will be smooth, so that 
The situations of most interest here will have the dimensionof W ,  fixed 

a 
g, , (w,  Y) - g,,(% Y) = W g n f ( %  Y N W  - $1 

using @,yJ s 1x1 Iyl. For functions g, , (w)  or g,,(w, y )  that are smooth 
enough to satisfy this inequality, the following lemma and proposition aid 
in showing near epoch dependence. 

PROPOSITION 1. Let {V,)lm_-m, {K)E0, and {g , , (w,  Y) : t = 
0,1,2,. . . ; n = 1,2,. . . ) be as in the definition of near epoch dependence, 
but with k, = k for all 1. Let 

I g n f ( w ,  V )  - g n f ( $ ,  Y) 1 5 B,,(W, $ $ 7 ) l W  - $1 

where Iw - $1 = [c f - l (w,  - &,)2]1fl or anxother convenient norm on Wk. 
Suppose that there exist random variables W,L++,m of the form 

*?+,m = bt(y-m ,..., v, ,..., K,,) 
such that for some r > 2 and some pair p, q with 1 I; p ,  q S 00, l / p  + 
l/q = 1, we have: 

1. { B,,,(W,, @-+$, y ) )  dominated by random variables d,,, with 

2. (B,,(W,,  RL+$, 7)lK - qt+z{) dominated by random variables d,,, 
IldnimIIq 5 A < 

with il~,,mll, A < 00. 



A UNIFORM STRONG LAW AND A CENTRAL LIMIT THEOREM 

If 
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is of size -2q ( r  - l)/(r - Z), then (g,,(W,, y)) is near epoch dependent 
of size -4. 

First, we prove the following lemma. 

LEMMA 1. 
( g , , ( w ) )  be a sequence of functions defined over R k  with 

Let { V,}: --oo and { W,}zo be as in Proposition 1, and let 

For (@-.+;], r ,  a?d q as in Proposition 1 let IIB,,(q, e?,,!J")\lq 5 A < 00 

and let l IBn, (v ,  Yl_+mm)(W - *!:I 11, 5 A < 00. Then { g , , ( W , ) )  is near 
epoch dependent of size -4. 

Proof. Let g ( w )  = grr (w) ,  W = W,, W = @_Cmm, and .F= %Liz. For 

let 

and let B2( W ,  @) = B( W ,  W )  - B,( W ,  W).  Then 

[because &(gWl.F) is the best Smeasurable approximation to gW in 
L,-norm and $' is Smeasurable] 
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[by the triangle inequality]] 

[by the HGlder inequality] 

after substituting the above expressio? for c and some algebra. If 
IIB(W, @)(I, I; A and IIB(W, @)(W - Wl 11, s A, then we have 

( I /ZXr-  W ( r  - 1) llgw - a8wIs )  112 2’/’AlllW - filll, 
whence 
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Proof of Proposition 1. Now 

implies 

whence, using sup( - x }  - - inf( x } ,  one has 

A similar argument applied to 

yields 

We also have 

All three inequalities have the form 
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with l lBn t (w ,  * ! ; ) } I q  s A .c 00 and llB,JW, w!:)lw - @,:+;I 11, I; A 
< 00, whence Lemma 1 applies to all three. Thus part 1 of the definition of 
near epoch dependence obtains for any sequence ( y : } ,  and part 2 obtains 
for all positive 6. 0 



502 A UNIFIED ASYMPTOTIC THEORY: DYNAMJC MODELS 

The foliowing example illustrates how Proposition 1 may be used in 
applications. 

EXAMPLE 1 (Nonlinear autoregression). Consider data generated 
according to the model 

Assume that f(y, x, e) is a contraction mapping in y ;  viz. 

Let the errors (e,} be strong mixing with Ile,llp I, K < M for some p > 4; 
set e, = 0 for t s 0. As an instance, let 

with I finite. With t h i s  structure, V ,  = (0,O) for t s 0 and V,  = (e,: x,) for 
r = 1,2, .  . . , Suppose that 8' is estimated by least squares-d# mnimizes 

We shall show that this situation satisfies the hypotheses of Proposition 1. 
To this end, define a predictor of y, of the form 

as follows: 
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For r L 0 there is a J ,  on the line segment joining y, to V ,  such that 

503 

For m > 0 and r - M > 0 the same argument yields 

where the last inequality obtains by substituting the bound for Iy, - jjJ 
obtained previously. For t - m < 0 we have 

In either event, 

This construction is due to Bierens (1981, Chapter 5). 
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Letting 

we have 

with 

For f z 1 

where we take as a convenient norm 
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We have at once 
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Using the Holder inequality, we have for r = p / 2  that 

/~B(w,* *!-~)Iw, - % t m I l l r  

s l l ~ ( ~ *  %'-rn)Il~JI~ - %kmI/ IZ,  

I; A2. 

Note that B( W,, @-,,,) is not indexed by 8,  so the above serve as dominat- 
ing random variables. Put q = p / (  p + 1) < p ,  whence 

Thus, the example satisfies conditions 1 and 2 of Proposition 1. Lastly, note 
that 

The rate at which qm falls off with increasing m is exponential, since d < I ,  
whence qm is of size -q ( r  - l ) / ( r  - 2) for any r > 2. Thus all conditions 
of Proposition 1 are satisfied. 

If the starting point of the autoregression is random with yo = Y where 
llYll, I; K, the same conclusion obtains. One can see that this is so as 
follows. In the case of random initial conditions, the sequence [ V,} is taken 
as V ,  = (0.0) for i < 0, Vo = (Y,O), and V, = (e,, x,) for f > 0. For z - m 
> 0 the predictor 9: has prediction error (Problem 2) 

For f - m < 0 one is permitted knowledge of Y and the errors up to time 1. 
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so that y, can be predicted perfectly for t - m < 0. Thus, it is possible to 
devise a predictor jJ: with 

f - m - I  

I Y ~  - J l m I  5 ~ " I Y I  + d m  C "tet-m-jI* 
j - 0  

The remaining details to verify the conditions of Proposition 1 for random 
initial conditions are as above. 

McLeish (1975b) introduced the concept of mixingales-asymptotic 
martingales-on which we rely heavily in our treatment of the subject of 
dynamic nonlinear models. The definition is as follows 

MIXINGALE. Let 

{ X n , : n  = 1 , 2  ,...; t = 1,2 ,... } 

be a doubly indexed sequence of real valued random variables in 
L,(P, d, P), and let 3FJw be an increasing sequence of sub-a-algebras. 
Then (Xnt ,  92,) is a mixingale if for sequences of nonnegative constants 
{ c n t }  and { +,,,} with lh~,,,+~$,,, = 0 we have for all f 2 1, n z 1, and 
M 2 0 that 

The intention is to include singly indexed sequences { X ,  }El as a special 
case of the definition. Thus (X, ,  SLm) is a mixingale if for nonnegative +,,, 
and c, with limm-.m+m = 0 we have 

There are some indirect consequences of the definition. We must have 
(Problem 3) 

Thus, +, appearing in the definition could be replaced by Pm = min, ,+,, 
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so that one can assume that JI, satisfies Jim+* s JIm without loss of 
generality. Letting SF_-," = t77- - ,gF.-', and letting 4r-", denote the 
smallest complete sub-a-algebra such that all the V, are measurable, we 
have from 

and limm-.,JIm = 0 that ~ ~ d ' ( X , J 9 - - ~ ) ~ ~ 2  = 0 whence &"<X,,,ISt:,") = 0 
almost surely. Consequently, B( X,,,) = 0 for all n ,  I z 1. By the same sort 
of argument X,,, - B( Xn,19Cmm) = 0 almost surely. 

Every example that we consider will have X,,, a function of the past, not 
the future, so that X,,, will perforce be .F?,-measurable. This being the 
case, condition 2 in the definition of mixingale will be satisfied trivially and 
is just excess baggage. Nonetheless, we shall carry it along through Theorem 
2 because it is not that much trouble and it keeps us in conformity with the 
literature. 

The concept of a mixingale and the concepts of strong mixing and near 
epoch dependence are related by the following two propositions. Recall that 
if X is a random variable with range in Wk, then 

PROPOSITION 2. Suppose that a random variable X defined over the 
probability space ( Q ,  a?, P) is measurable with respect to the sub-o-algebra 
9 and has range in R k .  Let g(x) be a real valued, Bore1 measurable 
function defined over R k  with @ ( X )  = 0 and I lg(X)l l ,  < do for some 
r 2. Then 

for any suba-algebra F. 

Proof. (Hall and Heyde, 1980, Theorem AS; McLeish, 1975b, Lemma 
2.1.) Suppose that U and V are univariate random variables, each bounded 
in absolute value by one, and measurable with respect to 9 and 9 
respectively. Let Y = s g a & ( V I S )  - BV] ,  which is 9 measurable. We 
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have 
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The argument is symmetric, so that for p = sgn[B"(UIY) - S V ]  we have 

But Y is just a particular instance of an Smeasurable function that is 
bounded by one, so we have from this inequality that 

(dVV - QPQVl I; s ( p )  - 4pSv.  

Combining this inequality with the first, we have 

put F - ,  = { w :  P = -l}, Fl = { w :  v = l}, G - ,  = {a: p = -1}, and G ,  
= ( w : p =  l ) . T h m  

We have 

of which the second inequality will be used below and the first is of some 
interest in its own right (Hall and Heyde, 1980, p. 277). 

The rest of the proof is much the same as the proof of Lemma 1. Put 
a = a ( 9 ,  Y), c = a - l ' r ~ ~ g X ~ ~ r ,  X,  = I ( ) g X I  s c), X, = gX - X,, where 
Z()gX( 5 c) = 1 if lgXf s c and zero otherwise. If 9 and 9 are indepen- 
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dent, we have a = 0 and B ” ( g X ( 9 )  = 0. For a > 0 

Il%xl~)IIp = I lW, l~ t )  + S(X2l.V - 8x1 + ~ ~ l l l p  
4 I ~ ( X l l ~ )  - ~x,Ilp + I l W 2 1 ~ ) l l p  + ll@XlIlp 

[by the triangle inequality] 

~ I l a x l l m  - gx,Ilp + liX2llp + Hx2llp 
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[by the conditional Jensen’s inequality (Problem 4) and the fact that 
1x21 -2 c 2 8x11 

[because X, s c s X 2 ]  

= (2c)‘P-l)/++#yx1lgt) - BX,  I]’” 
+ 2 c ( p - r ) / p ( I x 2 p  

5 ( 2 ~ ) ( ~ - ~ ) / ~ ( 4 c a ) ~ ’ ~  + 2c(f’-‘)/Pl/gXII:/P 

(by the inequality derived above the fact that IgXl 2 IX21] 

s 2 ( 2 ’ / p  + l)al’p-l~r~~gX~~, 

after substituting the above expression for c and some algebra. 0 

PROPOSITION 3. Let { v): -, be a sequence of vector valued random 
variables that is strong mixing of size - 2 q r / ( r  - 2) for some r > 2 and 
q > 0. Let W, - W,(V,) denote a sequence of functions with range in Rki 
that depends (possibly) on infinitely many of the coordinates of the vector 

v, = (..., v-l,vo, v, ,... ). 
Let (g, , (w,) )  for n = 1 ,2 , .  . . and f = O , l ,  2 , .  . . be a sequence of real 
valued functions with &go,( W,) = 0 and llg,,,( K)llr < 00 that is near epoch 
dependent of size -9. Let K’’- denote the smallest complete sub-a-alge- 
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bra such that the random variables V, for t = n, n - 1,. . . are measurable. 
Then 
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whence 

51 1 

11 g n ,  - &( gnrWl IF !Lrn+ l )  11, I l g n r  - a( gniYIs:Lm) 11, 
[because B(g,,,W,~$F_'&"'+') is the best L, approximation to g,,W, by an 
.F?Z'"+ measurable function and B( g , , , W J 9 ~ ~ " ' )  is S-'+,m+l measurable 
(Problem 5)) 

I I g n t W ,  - &(gniWI%LY)  112 

[by the Same best L, approximation argument] 

Vm 

[by the definition of near epoch dependence] 

5 +In+ ,  

[by the best L, approximation argument]. We have (part 2)  

11 gn,W - 8( gmtW,IsJLm) 112 5 + m +  1cnt 

for all m 2 0. 0 

A mixingale ( Xn,, S2,J with { +,,,) of size - 1/2 will obey a strong law 
of large numbers and a central limit theorem provided that additional 
regularity conditions are imposed on the sequence { c , , ) .  An inequality that 
is critical in showing both the strong law and the central limit theorem is 
the following. 

L E M W  2 (McLeish's inequality). Let (X, , ,  Ef,) be a mixingale. and 
put Snj = C{l,Xn,. Let { u k ) T -  - m  be a sequence of constants with uk  = 
a_,  and E7-l+ilu;1 - aL.!J c 00. Then 

Proof. (McLeish, 1975a.) We have from Doob (1953, Theorem 4.3) that 

almost surely. It follows that 
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almost surely, since 
m c [ Q( X"f I .F :~k)  - B( xnfl.F!;k-*)] 

= &( x m , l F - r ; m )  - B( xnf19:&l-1). 

k m - l  

Put 

whence SmJ = zr- - m q k  almost surely. By the Cauchy-Schwartz inequality 

whence 

By the monotone convergence theorem 

For fixed k, {(TI., 9 ! G k )  : 1 s j s I }  is a martingale (a definition precedes 
Lemma 4), since 

8( ~ j g / ~ ? ~ ' - ' )  = q - 1 . k  f &I&( xnJl$?2') - &( ~ n J / 4 F _ / ~ ' - 1 ) I ~ ? ~ J - - ' ]  
- - 5 - 1 . k '  

A martingale with a last element I ,  such as the above, satisfies bob's  
inequality 

.p( rnax 5:) 5 4 4 Y 3  
J S /  

(Hall and Heyde, 1980, Theorem 2.2, or Doob, 1953, Theorem 3.4), whence 
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Now (Problem 6) 
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(Problem 7) 
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A consequence of Lemma 2 is the following inequality, from which the 
strong law of large numbers obtains directly. 

LEMMA 3. Let ( Xnr, ..9Tm) be a mixingale with ( 4,) of size - 1/2, and 
let S,,, = Ei-lXnl.  Then there is a finite constant K that depends only on 
{ G,) such that 

If 4, > 0 for all m, then 

-1/2 2 

K -  16[ f ( #i2) ] . 
k - 0  m-0  

Proof. (McLeish, 1977.) By Lemma 2 the result is trivially true if #m = 0 
for some m, since +,,, 2 Then assume that #, > 0 for all m, put 

a k  is positive and solves 
a0 = +bo, and put a& = [ + k ( + i  + 4 a k - 1 ) ” ~  - + i ] / a k - ,  for k 2 1, whence 

Then 

so that 
k 

a;% c $J;2 
m-0  

a ,s  ( i # ; Z i ” ’ .  
k - 0  k - 0  m-0 

Now +, s Eme for some B < - 1/2, and using an integral approximation 
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we have C:,,I),~ s B’k-2e+1 for some B’. Thus 0 c Zr-,$i(uil - 
a i l l )  = Er-lak I; E:Lto,1(Ck,oI);2)-1/2 s (B’)-’rzCr-,ke-1/2 c 00. Fur- 
ther, (+; + $:) /ao  s 2a0 because $ m  is a decreasing sequence and a: = 
$:. Putting = uk and substituting into the inequality given by Lemma 
2 yields the result. 0 

A strong law of large numbers for mixingales follows directly using the 
same argument used to deduce the classical strong law of large numbers 
from Kolmogorov’s inequality, for details see Theorem 2, Section 5.1, and 
Theorem 1, Section 5.3, of Tucker (1967). 

PROPOSITION 4. Let ( X I ,  P,) be a mixingale with $ m  of size - 1/2. 

We are now in a position to state and prove a uniform strong law of 
large numbers. The approach follows Andrews (1986). First we define a 
smoothness condition, due to Andrews, and then state and prove the 
uniform strong law. 

A-SMOOTH. Let { W,)zo be a sequence of random variables defined on 
the probability space (0, at’, P), each with range in Rkr. A sequence of 
functions { gr(Wf, y)} defined over a metric space (r, p)  is A-smooth if for 
each y in I‘ there is a constaut 6 > 0 such that p ( y ,  y o )  5 6 implies 

excep tonsomeEcQwi th  P ( E ) = O w h e r e B l : R k * + R +  and h : I R + 4  
R * are nonrandom functions such that B,( w r )  is Bore1 measurable, 

1 “  - 4BI( W , )  s A < oo for all n 
1 - 1  

and h ( x ) &  h(0)  = 0 as x -+ 0; 6, Bl( . ) ,  and h ( - )  may depend on yo. 

THEOREM 1. (Uniform strong law.) Let { v ] Z - -  be a sequence of 
vector-valued random variables defined on the complete probability space 
(0, a?, P) that is strong mixing of size - r / ( r  - 2) for some r > 2. Let 
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(r, p )  be a compact metric space and let W, = W,(V,) = W,(o) be a Borel 
measurable function of 

with range in Rki. Let ( gf( w, ,  y)}E0 be a sequence of real-valued func- 
tions, each Borel measurable for fixed y. Suppose: 

1. {g,(W,, y ) ) z o  is a near epoch dependent family of size - 4. 
2. (g , (  W,, y ) ) E o  is A-smooth. 
3. There is a sequence ( d , }  of random variables with 

for I = 0,1,2 ,... . 

Then 

almost surely and 

is an equicontinuous family. 

Proof. (Andrews, 1986). A compact metric space is separable (Problem 
8). Let 

The continuity of gf(w, ,  y )  in y implied by the A-smooth condition and the 
separability of (r, p) insure measurability. 
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Using the A-smooth condition, 
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s Alimh(i3) = 0 
d - 0  

A similar argument applies to br(W, ,  yo, 8 ) .  Then given L > 0 and yo in I', 
6' can be chosen small enough that for all n 2 1 and all y in Op = 

IY: P(Yl Y O )  < a0)  
1 "  E 
- c Q"d w,, YO) - 2 

r - 1  

1 "  
5 ; c Q!!,(K YO, 6 O )  

r - 1  

whence 
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The third inequality establishes the second conclusion of Theorem 1; we 
will use the first and second inequalities below. 

The collection ( O,O},O ,. is an open covering of the compact set I' so 
there is a finite subcovering { 07~)T-1. For every y in OY; we have 

Every y in r must be in some OY,o so we have 

for all y in r. A similar argument gives 

1 "  1 "  
n - c g,(w, ,  v >  - - c &h(W,, Y )  

1 - 1  r - 1  

for all y in I', whence 

In consequence of the definition of near epoch dependence, the sequence 
( K f (  4, UP, 6:) - bz,( W,, yp, Sf)] satisfies the hypotheses of Proposi- 
tion 3 whence the sequence is a mixingale with of size - t and 
C,  max[l, lIiA%, up, 6:) - BL,(Wl, Y;, S:)ll,] i; 1 + 2A < 00. Now 
C:-1cf/t2 < 00 and Proposition 4 applies, whence 

1 "  
lh ; c i f (  w,, up, 6:) - &6,( w,, yi", 6:) = 0 

1-1 n-. m 
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almost surely for i = 1,2,. . . , K which implies F, converges almost surely 
to zero. Similarly, for -X, whence 

Now c is arbitrary, which establishes the first conclusion of Theorem I. 0 

As seen in Chapter 3, there are two constituents to an asymptotic theory 
of inference for nonlinear models: a uniform strong law of large numbers 
and a continuously convergent central limit theorem. 

THEOREM 2 (Central limit theorem). Let { c)y- - 'x, be a sequence of 
vector valued random variables that is strong mixing of size - r / (  r - 2) for 
some r > 2. Let (I-, p )  be a separable metric space, and let W, = W,( V,) be 
a function of 

with range in Rki.  Let 

{ gn,( w,, y ) : n = 1,2,. . . ; t = 0,1 ,2 ,  . . . } 

be a sequence of real valued functions that is near epoch dependent of size 
- f. Given a sequence (y:}r-l from r, put 

where [ ns] denotes the integer part of ns- the largest integer that does not 
exceed ns-and w,(O) = 0. Suppose that: 

Then w J - )  converges weakly in D[O, 11 to a standard Wiener process. In 
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particular, 

The terminology appearing in the conclusion of Theorem 2 is defined as 
follows. D[O, 11 is the space of functions x or x( a )  on [0,1] that are right 
continuous and have left hand limits; that is, for 0 s t < 1, x(r + ) = 
iimhhox(r + h )  exists and x ( t  + ) = x(r), and for 0 < r s 1, x(r - ) = 
lim,,,x(t - h )  exists. A metric d ( x ,  y )  on D[O,l] may be defined as 
follows. Let A denote the class of strictly increasing, continuous mappings 
X of [0,1] onto itself; such a X will have X(0) =I 0 and X(1) = 1 of necessity. 
For x and y in D[O, 11 define d(x, y )  to be the infinum of those positive L 
for which there is A in A with sup,)X(t) - rI < c and sup,lx[X(r)] - y(r ) l  
< c. The idea is that one is permitted to shift points on the time axis by an 
amount c in an attempt to make x and y coincide to within c; note that the 
points 0 and 1 cannot be so shifted. A verification that d( x, y )  is a metric is 
given by Billingsley (1968, Section 14). If 9 denotes the smallest a-algebra 
containing the open sets-sets of the form 0 = ( y : d ( x ,  y )  < 6}-then 
( D ,  9) is a measurable space. 9 is called the Bore1 subsets of D[O, 1). The 
random variables w,,(.) have range in D[O, 11 and, perforce, induce a 
probability measure on (D, 9) defined by P,,( A) = Pw;'( A )  = P( o : wn(  .) 
in A }  for each A in 9. A standard Wiener process w(-) has two 
determining properties. For each r, the (real valued) random variable w(t) 
is normally distributed with mean zero and variance t .  For each partition 
0 s r, s r1 5 . - . 5; t k  s 1, the (red valued) random variables 

w ( r l )  - w(rO), w(rZ) - w ( f l ) , - * * ,  w ( t k )  - W ( f k - l )  

are independent; this property is known as independent increments. Let W 
be the probability measure on (D, 9) induced by this process; W ( A )  = 
P w - ' ( A )  = P { w :  w ( - )  in A}. It exists and puts mass one on the space 
C[O, 11 of continuous functions defined on [0,1] (Billingsley, 1968, Section 
9). Weak convergence of w,,(.) to a standard Wiener process means that 

lim I fdP,, = I f d W  
n-00 D D 

for every bounded, continuous function j defined over D(O,l]. The term 
weak convergence derives from the fact that the collection of finite, signed, 
regular, and finitely additive set functions is the dual (Royden, 1968, 
Chapter 10) of the space of bounded, continuous functions defined on 
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D[O, 11, and limn , ,jfdP,, = lfdW for every such f is weak* convergence 
(pointwise convergence) in this dual space (Dunford and Schwartz, 1957, 
Theorem IV.6.2.2, p. 262). If h is a continuous mapping from D(0, l ]  into 
R', then weak convergence implies lim,,,,l,ghdP,, = /,ghdW for all g 
bounded and continuous on W', whence by the change of variable formula 
lim,,,,j,gdP,, h-' = jRgdWh-'. Thus the probability measures P,,h-' 
defined on the Bore1 subsets of R' converge weakly to Wh-'. On R' 
convergence in distribution and weak convergence are equivalent 
(Billingsley, 1968, Section 3), so that the distribution of hw, ( . ) ,  

F , (x )  = P [ h w , ( * )  s x ]  = P , h - ' ( - c o , x )  

converges at every continuity point to the distribution of h w ( - ) .  In particu- 
lar the mapping nix(.) = x(1) is continuous because limn4,d(y,,, x)  = 0 
implies lim,,-.,y,,(l) = x(1); recall that one cannot shift the point 1 by 
choice of A in A. Thus we have that the random variable w, , ( l )  converges 
in distribution to the random variable w(l) ,  which is normally distributed 
with mean zero and unit variance. 

The proof of Theorem 2 is due to Wooldridge (1986) and is an adapta- 
tion of the methods of proof used by McLeish (1975b, 1977). We shall need 
some preliminary definitions and lemmas. 

Recall that { V,(u)}z - m  is the underlying stochastic process on 
(a ,  d ,  P); that 9: denotes the smallest complete suba-algebra such 
that V,,,, V,,,+lr.. . , V, are measurable, F:: = fly- -ocFLao,  F-PO, = 
u(U; .. ,S:,); that Wf( V,) is a function of possibly infinitely many of the 
V, with range in Rki for f = 0,1,. . .; and that gnf (wf ,  y:) maps Rkl into 
the real line for n = 1,2, .  . . and t = 0.1,. . . . Set 

for t 2 0, and X,, = 0 for r c 0, whence 

1-1  w , ( s )  = -. 
0,' 

By Proposition 4, ( X m f r  F.,) for n = 1,2,. . . and r = 1 , 2 , .  . . is a mixingale 
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with { +,} of size -1/2 and c,, = max(1, llX,,il,}. That is, 

for n 2 1, t z 1, m 2 0. We also have from the definition of near epoch 
dependence that 

is of size - 1/2. Define 

r -1  

and 

Take S,(O) = S,, = 0. 

MARTINGALE. Note that K O w ,  E",, . . . is an increasing sequence of 
sub-a-algebras. Relative to these o-algebras, a doubly indexed process 

{(Zn,, .Pm): n = 1 ,2  ,... ; t = 0,1,  ... } 

is said to be a martingale if 

1. Z,, is measurable with respect to SJm, 

3. b(Zn,($r_.oo) = Zn, for s < 1. 

2. ~IZ", l  < 00, 

The sequence 

{ ( Y,,, , F-) : n = 1,2, . . . ; r = 1,2 ,  . . . } 

with Y,, - Zno, Y,, = Z,,, - Z,,, .1 for t = 1,2,. . . , and (Znf ,  .Frm) as 
above is called a martingale difference sequence. 
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UNIFORMLY INTEGRABLE. A collection ( X, : X E A } of integrable 
random variables is uniformly integrable if 

LEMMA 4. Let (&,, .FfW) be a mixingale, and put 

Then for any y > 1 and nonnegative sequence { a , )  we have 

Roof. (McLeish, 1975b, Lemma 6.2.) 

LEMMA 5. Let (Y,,, F!,) €or n = 1,2,. .. and t = l p 2 , . .  . be a 
martingale difference sequence [so 8(Y,,IF~-') = 0 almost surely for all 
t z 11, and assume that lY,J 5 Kc,, almost surely for some sequence of 
positive constants { c n r } .  Then 

Proof. (McLeish, 1977, Lemma 3.1.) 

LEMMA 6. 
c,, = max{l, l{Xn,llr) for r > 2. If 

Let ( X n , ,  Flm) be a mixingale with { # m }  of size - 1/2 and 

{ xi, : I = 1 ,2 , .  . . , n ;  n = 1 ,2 , .  . . } 

is uniformly integrable, then 

is uniformly integrable. 
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Proof. (McLeish, 1977.) For c 2 1 and m to be determined later, put 

X i ,  = X n t J ( I X n t I  cent) 
Y,, = c( X,J.F::q - &( x.E,lsr-',m) 
u,, = x,,, - 8( xn, lsb_ ' ;m)  + Q( x",I.8t_';m) 

Z", = &( x,, - X;,lsF_'&m) - 8( X", - x,c,19::m) 
- 

and note that X,, = Y,, + Z,,, + U,,. Let E,X = jtx2,~XdPI ynJ = 
C;,,Y,,, ZnJ = E;-l~n, ,  q, = Z;-lUn,, E,2, = E ~ - l ~ ~ r .  Jensen's inequaW 
implies that ( E ~ , x , ) ~  s Cp,xf for any positive p ,  with Cp, - 1, whence 

s:, 5 3( q + q + q,) 
by taking p ,  = 1 / 3 .  In general 

whence 

( x +  Y + z ) I ( x +  Y + Z > a )  

s 3XI (  X > ;) + 3YI( Y > ;) + 32I(  Z > p) 
and 

E,( X + Y + 2 )  S 3Ea,3 X + 3Ea,9Y + 3Ea,3Z- 

It follows that 

where 
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For some 0 < -1/2 we have 
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0 5 +k = O ( k e )  = o[k-'fl(ln k) -2] .  

Note that for k s m 

and for m > k 

Similarly ll&'(Un,/S-f;k)/lz is less than c,,,\ti for k I m and is less than 
for k 2 m. Therefore (wnI, .F/-) is a mixingale with J k  = 4mar(m,k) 

of size -1/2 and # k  s B/[k1/21n2(k)] for all k > m. By Lemma 2 with 
uk  = m ln2m for lkl 5 m and ak = l / (k  In%) for lkl 2 m we have 

Now j,"x-'(ln x) - l  dr = jp2u-' du < M implies that 0 s < CQ. 
Further, by Taylor's theorem 0 s k ln2k - (k - l)ln2(k - 1) 4 k[ln*k - 
In2( k - l)] s 2 In & for k - 1 s E s k, whence 0 I, Xp-2+i( a;  - a;! 1) 

s 2EF-",,(ln k ) / ( k  ln'k) < 00. Thus, for arbitrary t > 0 we may choose 
and fix m sufficiently large that u s r/27. Note the choice of m depends 
only on the sequence { + k ) ,  not on n.  Also note that if some of the leading 
Un, were set to zero, Urn, would be a mixingale with the same J k ,  but the 
leading cnf would be zero. Thus the choice of m does not depend on where 
the sum starts. 

Similarly, for k 1; m, ~ ~ Z n I  - d'(ZnllFJ&k)l12 and l{&(ZnflF~;k)l12 are 
less than ~~Znf~12 and 

- 

For k > m, llZmf - d(Znf(9t_'&*)((z = lld'(ZnIlF..~k)l~2 = 0. By Lemma 2, 
with ak = ak- ,  = 1 for k 1; m + 1 and 
have 

= ak = k 2  for k > m + 1 we 

z s 4(2m + 4)( rnaxQ,X:,). 
t s n  
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For our now fixed value of m we may choose c large enough that z < r/27, 
since { Xn: ) is a uniformly integrable set. Note again that c depends neither 
on n nor on where the sum starts. 

With c and m thus fixed, apply lemma 4 to the sequence { Ynt) with 
y 5 4 and a = 1 for lil 5 m and oi = i z  for li{ > m to obtain 

where 

For fixed m and c as chosen previously, one sees from this inequality that 
there is an a large enough that y < c/27. Thus 

Note once again that the choice of a depends neither on n nor on where the 
sum starts; thus 

is a uniformly integrable set. 0 

TIGHTNESS. A family of probability measures (P,,} defined on the 
Bore1 subsets of D[O, I] is tight if for every positive c there exists a compact 
set K such that P , ( K )  > 1 - c for all n. The importance of tightness 
derives from the fact that it implies relative compactness: every sequence 
from { P,, } contains a weakly convergent subsequence. 
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LEMMA 7. Let w ,  be a sequence of random variables with range in 
D[O, 11, and suppose that 

is a uniformly integrable set, where N ( r ,  6) is some nonrandom finite 
valued function. It is understood that if t + 6 > 1, then the maximum 
above is taken over [ I ,  I]. Then ( P , , }  with 

P,,(A) = P { w :  W J . )  € A }  

is tight, and if P’ is the weak limit of a subsequence from P,,, then P’ puts 
mass one on the space C[O, 11. 

Proof. The proof consists in verifying the conditions of Theorem 15.5 of 
Billingsly (1968). These are: 

1. For each positive rl there exists an a such that P {  w : Iw,(O)( > a )  I; q 

2. For each positive c and 1, there exists a 6 , 0  < 6 < 1, and an integer 
for n 2 1. 

no, such that 

Is - f l <  8 

for ail n L no. 

Because w,(O) = 0 for all n, condition 1 is trivialfy satisfied. To show 
condition 2, let positive c and 9 be given. As in the proof of Lemma 6, let 
E,X denote the integral of X over the set { w : X 2 a ] .  Note that 

By hypothesis A can be chosen so large that both c2/Az < 1 and the left 
hand side of the inequality is less than q c 2  for members of Q. Set 
8 = cz/A2, and set no equal to the largest of the N ( i 6 , 6 )  for i = 
0, 1, . . . ,[l/8]. If 1s - 11 < 8, then either both f and s lie in an interval of 
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the form [ iS,( i  + 1)6] or they lie in abutting intervals of that form, whence 

and if n > no this is 

5 21 .  R 

CONTINUITY SET. Let Y be a (possibly) vector valued random vari- 
able. A Y-continuity set is a Borel set B whose boundary JB has P( Y E 8s) 
= 0. The boundary 8B of B consists of those limit points of B that are also 
limit points of some sequence of points not in B. If Y, + Y, Pi( B) = P( Y, 
E B),  P'( B) = P( Y E B), and B is a Y-cuntinuity set, then iim, +-P;(B) 
= P'( B) (Billingsley, 1968, Theorem 2.1). 

9 

LEMMA 8. Let Yni, Y,,, 
on a probability space (0, ,ad, P) such that 

1. V,,- Y,,-+Ofor i = 1,2 ,..., k, 

2. Y , , 4  Y, for i = 1,2 ,..., k ,  

for i = 1,2,. . . , k be random variables defined 

P 

44 

3. lim,,,p[n,k,,(v,, E A , ) ]  - I " IL t~(~ ,  E A , ) )  = 0. 

Condition 3 is called asymptotic independence; the condition must hold for 
all possible choices of Borel subsets A,  of the real line. Then for all 
&-continuity sets B, 
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Roof. Conditions 1 and 2 imply that V,, + 5, whence for Y,-continuity 
sets B, we have 

A? 

since X:-,B, is a Y-continuity set of the random variable Y = 
(Y,, Y,, . . . , Y,)' with boundary X f-laB, (Problem 9). Condition 3 implies 
the result. 0 

Proof of Theorem 2. Recall that we have set 

and th t we h ve the following conditions in force: 

1. 1/u: = O(l/n). 
2. limm,,Var[wn(s)~ = s, 0 5 s s 1. 
3. ~ ~ X , , , ~ ~ ,  5 A < do, r > 2, 1 s r s n ,  n = 1,2,. . . . 
4. ( X , , ,  Fa) is a &gale with { 4,) of size -1/2 and cnI = 

5. vm = sup,suprllX,, - 8(Xfl,}~L~m)l12 is of size - 1/2. 
6. a, = ~up,a(.F-'~, S,?,,,) is of siZe -r/(r - 2). 

m a w *  II~flIII,h 

Condition 3 implies that 

( X ; , : t = 1 , 2 , . . . , n ; n = 1 , 2  , . . . )  

is a uniformly integrable set (Billingsley, 1968, p. 32). This taken together 
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with condition 4 implies that 

is a uniformly integrable set by Lemma 6. Condition 1 implies that for any 
I ,  0 s t I; 1, and any 6,O c 6 s 1, if t I; s I; t + 6 then 

for n larger than some no. For each f and 6 put N ( t ,  6) = no, whence 

is dominated by BA2 times some member of Y for n > N ( r ,  6). Thus 
Lemma 7 applies whence { P,,} is tight, and if P' is the weak limit of a 
sequence from (P,,}, then P' puts mass one on C[O, 11; recall that P, is 
defined by P,,(A) = P { w  : w , , ( - )  in A )  for every Bore1 subset A of DfO, 1). 

Theorem 19.2 of Billingsly (1968) states that if 

i. w ,,( s) has asymptotically independent increments, 
ii. { W : ( S ) } ; - ~  is uniformly integrable for each s, 
iii. b w , , ( s )  --., 0 and BW;(S) -, s as n .+ 00, 

iv. for each positive c and q there is a positive 6, 0 c 6 < 1, and an 
integer no such that P{ w : S U ~ , ~ - ~ , < ~ J W , ( S )  - w, ( r ) l  2 c }  I; q for 
all n > no,  

then w ,  converges weakly in D[O, 11 to a standard Wiener process. We shall 
verify these four conditions. 
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We have condition iii at once from the definition of X,, and condition 2. 
We have just shown that for given t and 6 the set 

is uniformly integrable, so put 6 = 1 and r = 0 and condition ii obtains. 
We verified condition iv as an intermediate step in the proof of Lemma 7. It  
remains to verify condition i. 

Consider two intervals (0, a) and ( b ,  c) with 0 < a c 6 < c 5 1. Define 

Thus 

By Minkowski's inequality and condition 5 

Since ( v m }  is of size -1/2, C ~ - o v m m - 1 / 2  < ao. By Kronecker's lemma 
(Hall and Heyde, 1980, Section 2.6) 

m - 1  m-1  



532 A UNIFIED ASYMPTOTIC THEORY: DYNAMIC MODELS 

converges to zero as n tends to infinity. Since u,-' is O(n-' /2) ,  we have 
that I lw, (a )  - U,llz -+ 0 as m -+ 0, whence w , ( a )  - Urn + 0. A similar 

argument shows that [ w , ( c )  - w, (b ) ]  - V ,  + 0. For any Bore1 sets A and 
B, &-'(A) E F>zi and V,-'(B) E $4TbI; thus 

P 

P 

p(u, E A )  n (v, E B )  - P(U,  E A)P(v, ,  E B ) I  s U ( E ! = ~ ,  F[:J 

which tends to zero as n tends to infinity by condition 6. We have now 
verified conditions 1 and 3 of Lemma 8. Given an arbitrary sequence from 
{ P,}, there is a w d y  convergent subsequence { P,.) with limit P' by 
relative compactness. Since, by Lemma 7, P' puts mass one on C[O, 11, the 
finite dimensional distributions of w ,  converge to the corresponding finite 
dimensional distributions of P' by Theorem 5.1 of Billingsley (1968). This 
implies that condition 2 of Lemma 8 holds for the subsequence, whence the 
conclusion of Lemma 8 obtains for the subsequence. Since the limit given 
by Lemma 8 is the single value zero and the choice of a sequence from ( P,,) 
was arbitrary, we have that condition i, asymptotically independent incre- 
ments, holds for the three points 0 < a < b < c. The same argument can be 
repeated for more points. 0 

Theorem 2 provides a central limit theorem for the sequence of random 
variables 

{ g , , ( ~ , , y : ) :  n = 1,2 ,...; r = 0,1, ... }. 

To make practical use of it, we need some means to estimate the variance of 
a sum, in particular 

r n  1 

Putting 

this variance is 
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with 

n 

R,, = c 8(x",x",t-l?J 7 = 0, *I, f2, ..., *(n - 1). 
f - l + l T l  

The natural estimator of u," is 

l ( n )  

T- - I ( n )  
6: - c W r R n T  

with 
n 

k"? = c Xn,Xn,r-,TI 
f-lclrl 

where w r  is some set of weights chosen so that 6; is guaranteed to be 
positive. Any sequence of weights of the form (Problem 10) 

4 n )  

j - l + l ~ l  
w T  = c 'i'i-IT1 

will guarantee positivity; the simplest such sequence is the modified Bartlett 
sequence 

The truncation estimator 6," = X t ( t ) - , ( n # n ,  does not have weights that 
satisfy the positivity condition and can thus assume negative values. We 
shall not consider it for that reason. 

If { Xnl} were a stationary time series, then estimating the variance of a 
sum would be the same problem as estimating the value of the spectral 
density at zero. There is an extensive literature on the optimal choice of 
weights for the purpose of estimating a spectral density; see for instance 
Anderson (1971, Chapter 9) or Bloomfield (1976, Chapter 7). In the 
theoretical discussion we shall use Bartlett weights because of their ana- 
lytical tractability, but in applications we recommend Panen weights 
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with I ( n )  taken as that integer nearest nl/'. See Anderson (1971, Chapter 9) 
for a verification of the positivity of Panen weights and for a verification 
that the choice f ( n )  An"' minimizes the mean squared error of the 
estimator. 

At this point we must assume that W, is a function of past values of V,, 
so that W, is measurable with respect to X!,. This is an innocuous 
assumption in view of the intended applications, while proceeding without 
it would entail inordinately burdensome regularity conditions. The follow- 
ing describes the properties of &,,! subject to this restriction for Bartlett 
weights; see Problem 12 for Parzen weights. 

THEOREM 3. Let { V, ): - oo be a sequence of vector valued random 
variables that is strong mwng of size - 24r/( r - 2) with 9 = 2( r - 2)/( r 
- 4) for some r > 4. Let (r, p) be a separable metric space, and let 
W, = W,(V,) be a function of the past with range in Rkr; that is, W, is a 
function of only 

(... . 5 - 2 1  V,-i ,  4). 
Let 

{ g , , ( w , y ) :  n = 1.2 ,...; r = 0,1, ... } 
be a sequence of random variables that is near epcoh dependent of size - q. 
Given a sequence { y:)F--l from r, put 

Xn/ =i g n t ( W , ,  Y:) - ' g n t ( W , *  7:) 

and suppose that ~ ~ X , , , ~ ~ ,  s A c 00 for 1 5 t i; n; n ,  t = 1,2,. . . . Define 

2 

u," = Q  c x,, n = 1,2, ... 1 
~ n 7  i: x n r ~ n , r - l r l  7 = 0, fl, f2 ,..., *(n - 1) 

r-1+171 

Then there is a bound B that does not depend on n such that 

1u; - &#{ 5 Bnl- ' (n)  

P ( } q  - 8Cyl > c )  5 ,n l4(n) .  
B 
E 
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which establishes the first inequality. 
To establish the second inequality note that 
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so that 

Suppress the subscript R ,  and put XI = 0 for I s 0. By applying in 
succession a change of variable formula, the law of iterated expectations, 
and H6lder's inequality, we have 

n n 

m n 

m n 

Write if-+ = 8( Xf-TIT!>hg) and it + 8( XfI.8F;t+hh/22). By applying the 
triangle inequality twice, and the conditional Jensen's inequality (Problem 
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4), we obtain 

537 

where the constant does not depend on n, h, or r .  By the definition of near 
epoch dependence we have 

provided that T I; h/2. Thus we have 

and by the same argument 
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where the constant does not depend on n, h ,  or T. Using Proposition 2, we 
have 

Combining the various inequalities, we have 

r -  - / ( n )  

Thus we have 

which establishes the second inequality. 
Using the same argument as above, 
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Now 

539 

PROBLEMS 

1. (Nonlinear ARMA.) Consider data generated according to the model 

~ , , ~ ~ ) + g ( e ~ , e , - ~  ,... r e r - q , ~ O )  i = 1 , 2  ,... 
t S 0  

yf I { ;(Yt+ 

where { e l )  is a sequence of independent random variables. Let 
\\supB g(e,, e,-,, . . . , @)I\,, s K < 00 for some p > 4, and put 

g,(K 6 )  = [Y ,  - f ( h 9  x,. 0)l'. 
Show that (g,(W,,  6)) is near epoch dependent. Hint: Show tbat 
g ,  = g(e,. e,-,, . . . , el-,,  B o )  is strong mixing of size -4 for all posi- 
tive q. 

2. Referring to Example 1 ,  show that if V, = (Y,O) then y,'m has 
prediction error Iy, - j , ' , , ls ~ ' I Y I  + dmEf . ;~- ld ' (e f - , - , I  for r - rn. 
Use this to show that [y, - f ( ~ , - ~ ,  x,, @)I i is near epoch dependent. 
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3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Show that the definition of a mixingale implies that one can assume 
that s #, without loss of generality. Hint: See the proof of 
Proposition 3. 
The conditional Jensen's inequality is g[ 8( X I S)] I; %( gX I 9s) for 
convex g. Show that this implies &[Q( X I 9 ) ) 1 P  s / X p ,  whence 

Show that if X and Y are in Lz(Q,  a?, P) and Y is Smeasurable with 
FC d,  then ( IX - S ( X  I S)l12 I; IlX - Yl12. Hint: Consider [X - 
6 ( X  IS) + 6 ( X  19s) - Y]* and show that 6 ( [ X  - 

Show that the random variables 

IlS(X I S)ll, 1s IIXllp for P 2 1- 

B ( X I S ) ] [ e f ( X ( g r ) -  Y]) = o .  

1111, = &( x,, I .%-I:') - /( x,, I s;Lk-')  
appearing in the proof of Lemma 2 form a two dimensional array with 
uncorrelated rows and columns where 1 is the row index and k is the 
column index. Show that 

I 

var c Q& = c &P( X,, I s ! & k )  - &eF( x,, 1 S y ) .  L 1 f - 1  

Show that the hypothesis C$;l4;' - ai!l I < 00 permits the reorder- 
ing of terms in the proof of Lemma 2. 
Show that a compact metric space ( X ,  p )  is separable. Hint: Center a 
ball of radius l / n  at each point in X. Thus, there are points 
x,,,.. ., x,, within p ( x ,  x,,,) < l / n  for each x in X. Show that the 
triangular array that results by taking n = 1,2,.. . is a countable 
dense subset of X. 
Show that the boundary of x k  is X,k_,aB,, where dB, is the 
boundary of B, c R1. 
Write 

1-  

... 

. . .  

... 

. . .  

... 

. . .  
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and show that 19; = u‘X’Xu, where 

541 

and hence that 62 z 0 if w ,  = Xi(2\+,7,uju,-,,j. Show that the trunca- 
tion estimator 19: = z ~ ( ~ ) - , ~ ~ ~ I ~ , , ~  can te negative. 
Prove Theorem 3 for Parten weights assuming that q 2 3. Hint: 
Verification of the second inequality only requires that the weights be 
less than one. As to the first, Panen weights differ from one by a 
homogeneous polynomial of degree three for f(n)/n s 1/2 and are 
smaller than one for I ( n ) / n  L 1/2. 

11. 

3. DATA GENERATING PROCESS 

In this section we shall give a formal description of a data generating 
mechanism that is general enough to accept the intended applications yet 
sufficiently restrictive to permit application of the results of the previous 
section, notably the uniform strong law of large numbers and the central 
limit theorem. As the motivation behind our conventions was set forth in 
Section 1, we can be brief here. 

The independent variables { x ~ ) ~ - ~  and the errors { e f } E - m  are 
grouped together into a single process { o , ) ~ - - ~  with of = (ef, x f ) ,  each of 
having range in R‘. In instances where we wish to indicate clearly that of is 
being regarded as a random variable mapping the underlying (complete) 
probability space (51, d,  P) into R’, we shall write V,(o) or V, and write 
{ V,( w)}:  .- for the process itself. But for the most part we 
shall follow the usual convention in statistical writings and let 
denote either a realization of the process or the process itself as determined 
by context. 

Recall that 92 is the smallest sub-a-algebra of d,  complete with 
respect to (0, d, P), such that V,, V , ,  . , V, are measurable; .9Tz = 
fl: - m.9Tm. Situations with a finite past are accommodated by putting 
V, = 0 for t < 0 and letting V, represent initial conditions, fixed or random, 
if any. Note that if ( V , )  has a finite past, then st-’, will be the trivial 
a-algebra { @, a )  plus its completion for r c 0. 

or { V,}: - 

ASSUMPTION 1. is a sequence of random variables each 
defined over a complete probability space (51, d,  P) and each with range in 
R ’. 

{ V,( w));“- - 
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Let 

urn = (.... U - 1 , U , , U I  ,...) 

denote a doubly infinite sequence, a point in x,"- -,R'. Recall (Section 1) 
that the dependent variables { y, }: - , are viewed as obtaining from urn via 
a reduced form such as 

yf = Y(r ,  U m , Y O )  t = 0, fl, f2, ... 

but, since we shall be studying the limiting behavior of functions of the 
form 

it is more convenient to group observations into a vector 

dispense with consideration of Y ( t ,  urn, yo) ,  and put conditions directly on 
the mapping 

W I  = W,) 
with range in R'd, k ,  = I, + I:. The most common choices for k, are 
k ,  = const, fixed for all I ,  and k ,  = const z. Recall that the subscript I 
associated to W,( V,) serves three functions. It indicates that time may enter 
as a variable, it indicates that W,( om) depends primarily on the component 
of of urn and to a lesser extent on components of v, of urn with Iz - s} > 0, 
and it indicates that the dimension k, of the vector w ,  = W,( 0,) may 
depend on 1. As W,(u,) represents data, it need only be defined for 
f = 0, 1,. . . , with W, representing initial conditions, fixed or random, if 
any. We must also require that W, depend only on the past to invoke 
Theorem 3. 

ASSUMPTION 2. Each function Wf( 0,) in the sequence { W,):, is a 
Bore1 measurable mapping of R?- = X: --R/ into R'l. That is, if B is a 



DATA GENERATING PROCESS 543 

Borel subset of Rkc, then the preimage %-'(B) is an element of the 
smallest u-algebra containing all cylinder sets of the form 

* * =  X R ' X  BmX B,,, X * * *  XB, ,  X R ' X  a * *  

where each B, is a Borel subset of R'. Each function W,(u,) depends only 
on the past; that is, it depends only on ( . . . , u,-,, u,-~, u,). 

The concern in the previous section was to find conditions such that a 
sequence of real valued random variables of the form 

{ g , ( N : , Y ) :  Y E r, I = o, i  ,... 1 
will obey a uniform strong law and such that a sequence of the form 

{ g , , , ( ~ ,  7,"): y," E r; t = o , i  ,...; = i , 2  ...} 

will follow a central limit theorem. Aside from some technical conditions, 
the inquiry produced three conditions. 

The first condition limits the dependence that { 51; - oo can exhibit. 

ASSUMITION 3. { y}: - 
some r > 4. 

is strong mixing of size - 4r/(r - 4) for 

The second is a bound lld,ll, I: A e 00 on the rth moment of the 
dominating functions d ,  2 Ig,(W,, y) l  in the case of the strong law and a 
similar r th  moment condition llgn,(N:, v,") - 8g,,,(w, y,!')Il, s A .C f ~ )  in 
the case of the central limit theorem; r above is that of Assumption 3. 
There is a trade off: the larger the moment r can be so bounded, the more 
dependence ( K ]  is allowed to exhibit. 

The tbird condition is a requirement that g,(W,, y) or g,,(W,, y )  be 
nearly a function of the current epoch. In perhaps the majority of applica- 
tions the condition of near epoch dependence will obtain trivially, because 
W,(V,) will be of the form 

w,&,) = w,(v,-m,.  . ., 5 )  
for some finite value of m that does not depend on t. In other applications, 
notably the nonlinear autoregression, the dimension of W, does not depend 
on r ,  g , (w,  y )  or g,,(w, y)  is smooth in the argument w ,  and W, is nearly a 
function of the current epoch in the sense that qm = IlW, - 8(W, I S,,'-"ml12 
falls off at a geometric rate in m, in which case the near epoch dependence 
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condition obtains by Proposition 1. For applications not falling into these 
two categories, the near epoch dependence condition must be verified 
directly. 

4. LEAST MEAN DISTANCE ESTIMATORS 

Recall that a least mean distance estimator A n  is defined as the solution of 
the optimization problem 

1 "  

* r - 1  
minimize s,(A) = - s , ( w , ,  to, A ) .  

As with (u,}: -@, we shall let (w,}: . , ,  denote either a realization of the 
process-that is, data-or the process itself, as determined by context. For 
emphasis, we shall write % ( u r n )  when considering it as a function defined 
on Rm-,, and write W,(V,), W,, W,[V,(w)], or W,(w)  when considering it 
as a random variable. The random variable 4" corresponds conceptually to a 
preliminary estimator of nuisance parameters; A is a p-vector, and each 
s,(w,, 7 ,  A )  is a real valued, Bore1 measureable function defined on some 
subset of W ' 1  X R " X R p. A constrained least mean distance estimator k, 
is the solution of the optimization problem 

minimize $ , (A)  subjectto h ( A )  - h :  

where h ( A )  maps RP into R4. 

The objective of this section is to find the asymptotic distribution of the 
estimator f in  under regularity conditions that do not rule out specification 
error. Some ancillary facts regarding the asymptotic distribution of the 
constrained estimator A m  under a Pitman drift are also derived for use in 
later sections on hypothesis testing. We shall leave the data generating 
mechanism fixed and impose drift by moving h:; this is the exact converse 
of the approach taken in Chapter 3. Example 1, least squares estimation of 
the parameters of a nonlinear autoregression, will be used for illustration 
throughout this section. 

EXAMPLE 1 (Continued). The data generating model is 

with K a / d y ) / (  y, x, y)l 5 d < 1 for all relevant x and y ,  
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The process 

545 

v, = 1 , 2 , . .  
1 4 0  

generates the underlying sub-a-algebras F-", that appear in the definition 
of strong mixing and near epoch dependence. The data consist of 

w, = (Y , ,  Y,-1,  X I )  = 0,1,2,. . . - 
As we saw in Section 2, Ile,llp s A < 00 for some p > 4 is enough to 

guarantee that for the least squares sample objective function 

1 "  
%(A) = ; c [ Y l  - j ( Y I - 1 9  xt* Ul' 

I -  1 

the family 

is near epoch dependent of size -4 for any q > 0. The same is true of the 
family of scores 

assuming suitable smoothness (Problem 2). 
If we take llV,ll, s A < 00 for some r > 4 and assume that { V , }  is strong 

mixing of size - r / ( r  - 2), then Theorems 1 and 2 can be applied to the 
sample objective function and the scores respectively. If { V,) is strong 
mixing of size - 4r/( r - 4), then Theorem 3 may be applied to the scores. 

As we shall see later, if the parameter A is to be identified by least 
squares, it is convenient if the orthogonality condition 

holds for all square integrable g( yI- ,, x,). The easiest way to guarantee that 
the orthogonality condition holds is to assume that { e l )  is a sequence of 
independent random variables and that the process fe,} is independent of 

0 

In contrast to Chapter 3, $,,(A) and, hence, A, do not, of necessity, 
possess almost sure limits. To some extent this is a simplification, as the 

{ x ,  }, whence e, and ( y,- x,) are independent. 
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ambiguity as to whether some fixed point A* or a point A\ that varies with 
R ought to be regarded as the location parameter of f i n  is removed. Here, 
A\ is the only possibility. This situation obtains due to the use of a weaker 
strong law, Theorem 1 of this chapter, instead of Theorem 1 of Chapter 3. 
The estimator fn is centered at T," defined in Assumption 4. 

NOTATION 1. 

In the above, the expectation is computed as 

Identification does not require that the minimum of s;(A) become stable 
as in Chapter 3, but does require that the curvature near each A: become 
stable for large n. 

ASSUMPTION 4 (Identification). The nuisance parameter estimator 4" 
is centered at 7," in the sense that limn+J4n - 7,") = 0 almost surely and 
h(4, - 7,") is bounded in probability. The estimation space A* is corn- 
pact, and for each c > 0 there is an N such that 

In the above, IA - AoI = pr-l(A, - Ay)2]1fl or any other convenient 
norm and it is understood that the infimum is taken over A in A* with 
IX - Aol > C. 

For the example, sufficient conditions such that the identification condi- 
tion obtains are as follows. 
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EXAMPLE 1 (Continued). We have 

1 "  2 
s,O(h) = n c r[e, + f ( Y f - l ,  x,,  YO) - fh-1 ,  X f ,  x>l 

r - 1  

547 

Using Taylor's theorem and the fact that y o  minimizes $:(A), 

s q o )  - S,0tY0)  

A sufficient condition for identification is that the smallest eigenvalue of 

is bounded from below for all h in A* and all n larger than some N. We 
0 are obliged to impose this same condition later in Assumption 6. 

We append some additional conditions to the identification condition to 
permit application of the uniform strong law. 

ASSUMPTION 5. The sequences ( f w f  and { 7:> are contained in T, 
which is a closed ball with finite, nonzero radius. On T X A*, the family 
{ s f [  H((o), 7 ,  A])%.,, is near epoch dependent of size - 1/2, it is A-smooth 
in (7, A )  (Problem l), and there is a sequence of random variables { d , }  
with S U ~ ~ , ~ . ~ S , [ H ( ( W ) ,  T ,  A l l  s d,(w) and l{d,/l, I; A < 00 for all t ,  where 
r is that of Assumption 3. 

LEMMA 9. Let Assumptions 1 through 5 hold. Then 

lim suplsn(X) - s:(X)I = 0 
n+w A* 

almost surely, and (S:(A)),"-~ is an equicontinuous family. 
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Proof. Writing dps,(H$6,, A )  to mean &s,(W,, 7,  A)I,-+" we have 

SUP Is,( A )  - I 
A* 

Except on an event that occurs with probability zero, we have that the first 
term on the right hand side of the last inequality converges to zero as n 
tends to infinity by Theorem 1, and the same for the second term by the 
equicontinuity of the average guaranteed by Theorem 1 and the almost sure 

0 convergence of f, - 7," to zero guaranteed by Assumption 4. 

THEOREM 4 (Consistency). Let Assumptions 1 through 5 hold. Then 

lim (A,  - A:) = 0 
n 4 w  

almost surely. 

Proof. Fix o not in the exceptional set given by Lemma 9, and let c > 0 
be given. For N given by Assumption 4 put 

Applying Lemma 9, there is an N' such that sup,,.(s,(A) - si(A)( < 6/2 
for all n > N'. Since s,(An) s s,(A\), we have for all n > N' that 

6 6 
' : ( f i n )  - z 5 s n ( f i n )  sn(A:o,) 5 s~O(AO,) + 2 

or ls:(f i , )  - s,o(A:)( < 6. Then for all n > max(N,  N ' )  we must have 
17 IA, - At1 < E. 
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The asymptotic distribution of f i n  is characterized in terms of the 

following notation. 

NOTATION 2. 

I (  n) = the integer nearest n1I5 

We illustrate their computation with the example. 

EXAMPLE 1 (Continued). The first and second partial derivatives of 
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are 
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Evaluating the first derivative at h = yo and yt = f(y,-,, x,, yo)  + e l ,  
we have, recalling that e, and ( Y , - ~ ,  x , )  are independent, 

whence = 0. 
Put 

a 
F, = n f ( Y , - l ,  x , ,  A ) l  A-7'  

u: = &e,2. 

Then 

and 

In summary, 
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General purpose estimators of (4", /',o) and (9,*, #,*)-(4',, A) and (4, A) respectiveiy-my be defined as follows. 

NOTATION 3. 

I (  n) = the integer nearest n1I5 

The special structure of specific applications will suggest alternative 
estimators. For instance, with Example 1 one would prefer to take Yn7(A) 
= 0 for 7 # 0. 

The normalized sum of the scores is asymptotically normally distributed 
under the following regularity conditions, as we show in Theorem 4 below. 

ASSUMPTION 6. The estimation space A* contains a closed ball A with 
finite, nonzero radius. The points { k:) are contained in a concentric ball of 
smaller radius. Let gI(W,, T ,  A )  be a generic term that denotes an element 

or [ ( a / a A ) s , ( & ,  7 ,  A)][(d/aA)s,(W,, 7 ,  A)]'. On T x A, the family 
{ g,[W,(o), 7 ,  A]} is near epoch dependent of size - q  with q = 2(r - 2 ) / ( r  
- 4), where r is that of Assumption 3, g,[W,(w), T, A]  is A-smooth in 

( T ,  A), and there is a sequence of random variables { d , }  with 
supTxA~g,[W,(o), r, A l l  s d, (o)  and lld,ll, s A < 00 for all 1. There is an 

of (a/aus,(v, 7, A), ( W J X  w S , ( w , ,  7 ,  A), ( a 2 / a r a v s , ( w , .  ?, A), 
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N and constants co > 0, c1 .c 00 such that for all 8 in RP we have 

cg'8 s S ~ ( X ) S s c , S ' 8  all n > N, all X E  A 

c$'8 s &Y:8 s c,8'8 all n > N  

~08'8 5 8Vn*6 s ~18'8 all n > N 

Also, 

Recall that [ns ]  denotes the integer part of ns, that denotes a 
matrix with P1=(F1fl)'(F1fl) and #ll2 a matrix with f- 
(31/2)(Y*/2)', and that factorizations are always taken to be compatible so 
that "flf-'/2 = I .  
As mentioned in Chapter 3, the condition 

permits two step (first 7,  then A )  estimation. If it is not satisfied, the easiest 
approach is to estimate 7 and h jointly. 

The requirement that 

is particularly unfortunate because it is nearly the same as requiring that 

as in Chapter 3. This has the effect of either restricting the amount of 
heteroscedasticity that (a /ah)s , (  W,, T,", A t )  can exhibit or requiring the 
use of a variance stabilizing transformation (see Section 2 of Chapter 3). 
But the restriction is dictated by the regularity conditions of the central 
limit theorem and there is no way to get around it, because asymptotic 
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normality cannot obtain if the condition is violated (Ibragimov, 1962). We 
verify that the condition holds for the example. 

EXAMPLE 1 (Continued). For the example, 

with K a / a y ) f ( y ,  x, y o ) /  s d < 1, we shall verify that 

satisfies the condition 

To do so, define 

s s max(t - m,o)  
' ; m =  j ( g ; ; 1 , x X I , y o )  +e,  m a x ( t - m , ~ )  < s s t  

I -  1 

i" 
r, c +,-,I 

j - 0  

g( y ,  x) = a typical element of G (  y ,  x )  

and assume that { e, } and { x,) are sequences of identically distributed 
random variables, and that IYJ and Ka/ay )g (y ,  x)l are bounded by some 
A < 00. As in Section 2, for m 2 0 and t z 0 there is a jj, on the line 
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segment joining y, to jj, such that 

For r - rn > 0 the same argument yields 

The assumption that the sequences of random variables { e l >  and { x,) 
are identically distributed causes the sequence of random variables 
{ G( f,'::, ,,,, x,)} to be identically distributed. Thus 

d'e~dG(j,?~,,,, x , )  = V all r .  

But 
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where the constant does not depend on n or 1. Thus 
555 

= B ' [ V +  O(d") ] - . ' /ZIV+ O ( d " ) ] [ V +  O ( d " ) ] - " ~ S .  

Now m is arbitrary, so we must have 

With Assumption 6 one has access to Theorems 1 through 3, and 
asymptotic normality of the scores and the estimator f i n  follows directly 
using basically the same methods of proof as in Chapter 3. The details are 
as follows. 

LEMMA 10. Under Assumptions 1 through 6, interchange of differeotia- 
tion and integration is permitted in these instances: 

Moreover, 

and the families 

are equicontinuous on A. 

Proof. The proof that interchange is permitted is the same as in Lemma 3 
of Chapter 3. Almost sure convergence and equicontinuity follow directly 

0 from Theorem 1 using the same argument as in Lemma 9. 
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THEOREM 5 (Asymptotic normality of the scores). Under Assurnp- 
tions 1 through 6, 

lim (4' + (4/: - 3 )  - 0 in probability. 
n A m  

Proof. For each i where i = 1,2,. . . , p we have 

where 7; is on the line segment joining +" to r,". By Assumption 4, 
limn - =fw - T," = 0 almost surely and 6( fw - T,") = Op (I), whence 

almost surely. By Assumption 6 we have 

almost surely. As the elements of ( f ,O) - 'D  must be bounded (Problem 3), 
we have, recalling that (a/dA)s;(A:) = 0, 

where the interchange of integration and differentiation is permitted by 
Lemma 10. Let S be a nonzero p-vector, and put 
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Assumption 3 guarantees that { K}: - is strong mixing of size - 4 r / (  r - 
4) with r > 4, so (K}: - m  is strong mixing of size - f as required by 
Theorem 2, and Assumption 6 guarantees that { g,,(W,, y:)} is near epoch 
dependent of size -4 with q = 2(r - 2)/(r - 4) > $ (Problem 4). We 
have 

which, by Assumption 6, satisfies 

1. 1/02 = l / O t n l  = O(l/n), 
2. Iimn-,mo~ns/u2 2 = s. 

Further, Assumption 6 and Problem 3 implies 

Thus, 

by Theorem 2. This proves the first assertion. 
To prove the second, put 
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Referring to Theorem 3, note that 

where w ( x )  denotes Parzen weights. By Assumption 3, { V , )  is strong 
mixing of size -4r/(r - 4) for r > 4, as required by Theorem 3; by 
Assumption 2, W, depends only on the past; by Assumption 6, { X,,,} 
is near epoch dependent of size - q with q = 2( r - 2)/(r - 4); so we 
have from Theorem 3 that 

whence 

lim 6 ' ( 4 O  - P+ q : ) S  = 0 in probability 
n - 8  

for every 6 .C 0. 
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THEOREM 6 (Asymptotic normality). Let Assumptions 1 through 6 
hold. Then 

lim ( 8 ,  -/) = o almost surely. 
n - r m  

Prod. By Lemma 2 of Chapter 3 we ma assume without loss of gener- 
ality that A,,, A\ E A and that (i3/ah)sn( x ,,) = o , ( R - ' / ~ ) ,  (a/ah)$(A\) 
= o( R -q. 

By Taylor's theorem 

where f has rows (a/aXXa/aAi)sn(~,,) with I/&,, - A\ii 1. I l f i , ,  - A",l. 
Lemma 10 permits interchange of differentiation and integration, we have 
lirnn+,J~, - AO,11 = 0 almost surely by Theorem 4, so that application of 
Theorem 1 yieIds I i n ~ , , * ~ f :  - j=  0 almost surely (Problem 5) .  Thus, we 
may write 

recalling that (a/aA)s,(i,) = o,(n-' l2)  and that (>;)-l'' = O(1) by 
Assumption 6 (Problem 3). The right hand side is 0,(1) by Theorem 5 ,  and 
(S;)'/' and (j;)-' are 0(1) by Assumption 6, so that h(fi, - A\) = 
0,(1) and we can write 

which proves the first result. 
The same argument used to show limn + -I= 0 almost surely can 

U 

Next we shall establish some ancillary facts concerning the estimator i n  
that minimizes s,,(A) subject to H: h ( A )  = h: under the assumption that 
the elements of the q-vector h [ h ( A ; )  - h:]  are bounded. Here h: is a 
variable quantity chosen to adjust to A t  so that the elements of the vector 
are bounded, which contrasts with Chapter 3, where A: was taken as the 
variable quantity and h; was held fixed at zero. As in Chapter 3, these 

be used to show that l imn.+rnf~ -I= 0 almost surely. 
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results are for use in deriving asymptotic distributions of test statistics and 
are not meant to be used as a theory of constrained estimation. See Section 
7 of Chapter 3 for a discussion of how a general asymptotic theory of 
estimation can be adapted to estimation subject to constraints. 

ASSUMPTION 7 (Pitman drift). The function h ( A )  that defines the 
null hypothesis H: h(A0,) 5 h: is a twice continuously differentiable map- 
ping of A as defined by Assumption 6 into R4 with Jacobian denoted as 
H(A) = (a/aA')h(X).  The eigenvalues of H(X)H' (A)  are bounded below 
over A by ci  > 0 and above by c: < ao. In the case where p = q, h ( A )  is 
assumed to be a one to one mapping with a continuous inverse. In the case 
q < p, there is a continuous function + ( A )  such that the mapping 

has a continuous inverse 

defined over S = { ( p ,  I )  : p = +(A),  T = h(A),  X E A}. Moreover, + ( p ,  T )  

has a continuous extension to the set 

The sequence { h : }  is chosen such that 

There is an N such that for all 6 in RP 

The purpose of the functions +(A) and # ( p ,  T )  in Assumption 7 is to 
insure the existence of a sequence { A t }  that satisfies h(Xz)  = 0 but has 
limn-,oo(Az - A:) - 0. This is the same as assuming that the distance 
between A\ and the projection of A t  onto A+, = { h : h ( X )  = h,Z ) decreases 
as lh; - h(A\)1 decreases. The existence of the sequence (A:} and the 
identification condition (Assumption 4) is enough to guarantee that !A\ - 
A+,( decreases as lh(A\) - h:l decreases (Problem 7). The bounds on the 
eigenvalues of H( A)H'( A )  (Assumption 7) and jn( A )  (Assumption 6) 
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guarantee that 1x0, - X:l decreases as fast as Ih(A\) - h*l decreases, as we 
show in the next two lemmas. 

LEMMA 11. Let fl  be a symmetric p by p matrix, and let H be a matrix 
of order q by p with q < p. Suppose that the eigenvalues of f are bounded 
below by co > 0 and above by c1 < 00, and that those of HH' are bounded 
below by ci and above by c:. Then there is a matrix G of order p by p - q 
with orthonormal columns such that HG = 0, the elements of 

are bounded above by pcl, and @et A[ 2 (C,,)~P. 

Proof. Let 
H = VSqi, 

be the singular value decomposition (Lawson and Hanson, 1974, Chapter 4) 
of H, where S is a diagonal matrix of order q with positive entries on the 
diagonal, and V$, is of order q by p and U'U = UU' = 5;)ql, = I of 
order q. From HH' = US2U' we see that c i  I; s: s c:. Choose q;) of 
order p - q by p such that 

Put G' = yt;,, note that HG = 0, and consider 
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The elements of B and D are bounded by one, so we must have that each 
element of BCD is bounded above by pc,. Then each element of AA' is 
bounded above by p'c;. Since a diagonal element of AA' has the form 
C,u:,, we must have 

det AA' = det(US2U')det[ V&A!fq21 - V&%q,,SU' 

5 pel. Now (Mood and Graybill, 1963, p. 206) 

x (us2u') - 'us I$,/ b2, 1 
= det s 2 4  q;,/%q2) - y$)/ql)yil&fq2J 
= det S2det(b~,Ib2,6$,&fb,,) 

2 ( co)2Pdet2( 6i)b vn) 1. 
But 

(c,,)" s det A'A = det2A. 0 

LEMMA 12. Under Assumptions 1 through 7 there is a bound B that 
does not depend on n such that 1x0, - A',ls Blh(A0,) - hzl, where \ A t =  
(Cf- &)1'2. 

Proof. The proof for the case q = p is immediate, as the one to one 
mapping T = h ( h )  has a Jacobian whose inverse has bounded elements. 
Consider the case q < p. 

Let c > 0 be given. For No given by Assumption 4 put 

6 -  inf i5f ls,O(~) -st(~:)I. 
n>No IX-X,lzr 

Let + ( p ,  T )  be the continuous function defined on R X T given by As- 
sumption 7. Now h: = h(A*,) by definition, and put p,* = +(A*,), h: = 
h(A;), and p: = +(A:). The image of a compact set is compact, and the 
Cartesian product of two compact sets is compact, so R X T is compact. A 
continuous function on a compact set is uniformly continuous so 
m?+oa ~ h :  - hi1 - o implies that 
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In particular, putting A: = +(& h;) ,  we have 

lim IAt - A\! = 0. 
n-rm 

By Assumption 6 the points (A:} are in a concentric ball of radius strictly 
smaller than the radius of A, so we must have A: in A for all n greater 
than some N,. By Lemma 9, the family (s:(X)) is equicontinuous, so that 
there is an N, such that IA  - A\! < q implies that 

Is,OO) - s.o(vl) I < 6 

for all n > N2. Choose N3 large enough that - A;J < q for all n > N3. 
The point A t  satisfies the constraint h(A:) = h:, so we must have s,O(A',) 
I s,O(A:) for n > Nl. For n > mu(&, N, ,  N,, N,)  we have 

s,o( A:) 5 sZ( A t )  < s,O( A\) + 6 

whence Is:(A+,) - s:(A\)1 < 6 and we must have {A', - A\/ < c. We have 
shown that A\ - A', = o(1) as lh: - h:l tends to zero. 

The first order conditions for the problem 

minimize s t ( X )  subjectto h ( A )  = h :  

are 

-&:(A:) + 6'H(X',) = 0 

Xs:(A:) = & s W  + IA* + O ( l ) l ( A \  - A*,) 

h ( q )  = h,*. 

By Taylor's theorem we have 

a 

h(XO,) - h;  = h(A+,) - h: + [H,' + o ( I > ] ( A ~  - A*,). 

Using (a/aA)s:(A\) - 0 for large n and h(A+,) - h: = 0, we have upon 
substitution into the first order conditions that 

[#"* + o(l)](AO, - A+,) = -H,"@ 

[H,,? + o(l)](AO, - A',) L= h(A\) - h:. 

Let G,' be the matrix given by Lemma 11 with orthonormal columns, 
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H,+G,' = 0, 0 < ( c ~ ) ~ '  s det A:, and maxijla&,l 5 pcl < 00, where 

Let u , ~  denote the elements of matrix A, and consider the region 

( a , / : O  < (c0)" - c s det A ,  I c z i j (  Spc1 + c } .  

On this region we must have lu'Jl s B < 00, where u'J denotes an element 
of A - For large n the matrix A: is in this region by Lemma 11, as is the 
matrix 

since the elements of G,' are bounded by one. In consequence we have 

0 
(5: - A+.) = A,' 0 h(AO,) - hz 

where the elements of A;' are bounded above by B for all n larger than 
0 some N. Thus we have 1x0. - A',\ 1; B(h(A\) - h;{ for large n.  

THEOREM 7. Let Assumptions 1 through 7 hold. Then 

./;;(A\ - A;) = o(1) 
lim X,, - A+, = o almost surely, 

n+ao 

lim (-C,* + 4t: - J )  5 0 

lim yn* -#== o 

Proof. The Arst result obtains from Lemma 12, since &[h(A\) - h,*] = 
O(1) by Assumption 7. 

The proof of the second is nearly word for word same as the first part of 
the proof of Lemma 12. One puts 

in probability 

almost surely. 
n-m 

n-roo 

6 = inf 'af IS:( A )  - s:( A\) I 
n >y lA-Aml>c 
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and for fixed o has from Lemma 9 that Ih - A t (  < q implies 

for all n larger than N,. For n larger than Nz one has 

as in the proof of Lemma 12. The critical inequality becomes, for the same 
fixed 0, 

whence sf(i,,) - sf(A\) < 6 and we must have (A,  - A(!,( .c c. Combining 
this with the first result gives the second. 

The proof of the third and fourth results is the same as the proof of 
Theorem 5, recalling that (a/aA)s;(A:) is the mean of (a/dX)s,,(A+,) by 
Lemma 10. 

The fifth result is an immediate consequence of Lemma 10 and the 
second result. 0 

PROBLEMS 

1. 

2. 

3. 

4. 

Suppose that w ,  has fixed dimension k, = k for all 1, that the depen- 
dence of s,(w,, r, A )  on 1 is trivial, s , (w ,  T ,  A )  = s ( w ,  T ,  A), and that 
the partial derivatives of s(w,  T ,  A )  with respect to T and A are 
dominated by integrable { d , } .  Show that sI (  W ; ( w ) ,  T ,  A )  is A-smooth. 
Refemng to Example 1, show that the family { ( a / a A , ) [ y ,  - 
f ( ~ , - - ~ ,  x,,  A ) I 2 )  is near epoch dependent of size -4 for any q > 0. 
List the regularity conditions used. 
Let con be the smallest eigenvalue of S,", and cl" the largest. Prove that 
Assumption 6 implies that co 1s con s q,, s c, all n 2 N. Prove that 
det 4° 2 (co)J' for all n z N and that S'(4°)-1S s (l/c,)6'6 for all 
n 2 N. Show that (Ao)-'can always be factored in such a way that the 
elements of ( 4 O ) - ' / '  are bounded. 
Show that if the elements of ( d / d A ) s , ( y ,  T,", A t )  are near epoch 
dependent of size -4, then so are the elements of S%,,(a/aA) 
s,(W,, T,", A:) if A, has bounded elements. 



566 A UNIFIED ASYMPTOTIC THEORY: DYNAMIC MODELS 

5. Let limn,,sup,,, K~/~ I )C: , ,~ , (T ,  A )  - &'f,(r, A)(  = 0 almost surely, 
let ((l/n)C:,,Bh(~, A)};-p,, be an equicontinuous family on T X A, 
and let lim,,,mK4m, A,) - (r,", A t ) /  = 0 almost surely. Show that 
lim,,,,Kl/n)C~,,f,(~,, A,) - d'f,(?f, A\)\ = 0 almost surely. 

6. Prove Lemma 11 with fl  not necessarily symmetric but with the 
singular values of # bounded below by c,, > 0 and above by c1 < 00. 

7. The purpose of the function + ( p ,  7 )  in Assumption 7 is to guarantee 
the existence of a sequence {A:} that satisfies h(A:)  = 0 and 
limn,eaA: - A\ = 0. Prove Lemma 12 using this condition instead of 
the exlstence of 9 ( p ,  7). 

5. METHOD OF MOMENTS ESTIMATORS 

Recall that a method of moments estimator A,, is defined as the solution of 
the optimization problen 

minimize s,(A) = d [ m , ( X ) , . i , ]  

where d ( m ,  7 )  is a measure of the distance of m to zero, 4,, is an estimator 
of nuisance parameters, and m,(A) is a vector of sample moments, 

The dimensions involved are as follows: w ,  is a k,-vector, r is a u-vector, A 
is a p-vector, and each m,(w, ,  7 ,  A )  is a Bore1 measurable function defined 
on some subset of R kt x R x R P and with range in R ". Note that u is a 
constant; specifically, it does not depend on r .  As previously, we use 
lowercase w ,  to mean either a random variable or data as determined by 
context. For emphasis, we shall write W,( 0,) when considered as a function 
on RE,, and write W,(V,), W,, W,[V,(w)], or W,(o) when considered as a 
random variable depending on the underlying probability space (Q ,  d ,  P) 
through function composition with the process { y(u)}E - ,. A con- 
strained method of moments estimator x,, is the solution of the optimiza- 
tion problem 

minimize s,(A) subject to h ( A )  = h; 

where h ( A )  maps R P  into R 4  
As in the previous section, the objective is to find the asymptotic 

distribution of the estimator f i n  under regularity conditions that do not rule 
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out specification error. Some ancillary facts regarding x,, under a Pitman 
drift are also derived for use in the next section. As in the previous section, 
drift is imposed by moving h,Z. 

As the example, we shall consider the estimation procedure that is most 
commonly used to analyze data that are presumed to follow a nonlinear 
dynamic model. The estimator is called nonlinear three stage least squares 
by some authors (Jorgenson and Laffont, 1974; Gallant, 1977b; Amemiya, 
1977; Gallant and Jorgenson, 1979) and generalized method of moments by 
others (Hansen, 1982). Usually, the term three stage least squares refers to a 
model with regression structure, and generalized method of moments to 
dynamic models. 

EXAMPLE 2 (Generalized method of moments). Data are presumed to 
follow the model 

q,( y,, x,, y o )  = e, = 0,1, . . . 

where y ,  is an L-vector of endogenous variables, x, is a k,-vector with 
exogenous variables and (possibly) lagged values of y, as elements (the 
elements of x, are collectively termed predetermined variables rather than 
exogenous variables due to the presence of lagged values of y,). y o  is a 
p-vector, and q,( y ,  x, y )  maps R X R k: x R P into W with M I L. Note 
that M, L, and p do not depend on t .  Instrumental variables-a sequence 
of K-vectors { 2,)-are assumed available for estimation. These variables 
have the form z, = Z,(x,), where Z,(x)  is some (possibly) nonlinear, vector 
valued function of the predetermined variables that are presumed to satisfy 

& ‘ e , @ z , = O  r = O , l ,  ... 

where, recall (Chapter 5 ,  Section 2), 

More generally, t, may be any K-vector that has d‘e, bD t r  = 0, but since a 
trivial dependence of q,(y, ,  x,, y)  on elements of x, is permitted, the form 
t ,  = ZI(x,) is not very restrictive. Also, z, may depend on some pre- 
h n a r y  estimator +,, and be of the form 

E ,  = z,(x,, 6) with ge, 8 z,(x,, 7:) = o 
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or depend on the parameter yo (Hansen, 1982a) with 

&e, QD Z, ( x , ,  y o )  - 0. 
The moment equations are 

with w:  = (y ; ,  x;) and 

m t ( w i ,  fnl ' )  =i q t (Y t*  x t ,  A )  Q z,(xi) 
m , ( w , ,  f n .  A )  = q r ( y t ,  x,. A )  Q Zr(X, ,  +,,I 

m , ( w , ,  en, A )  = q r ( y f ,  x , .  A )  @ Z, (x , ,  A ) .  

Hereafter, we shall consider the case z, = Z,(x,) because it occurs most 
frequently in practice. Our theory covers the other cases, but application is 
more tedious because the partial derivatives of m,(w , ,  7, A )  with respect to 
T and X become more complicated. 

If u = M X K = p, one can use method of moments in the classical 
sense by putting sample moments equal lo population moments, viz. 
mn(A)  = 0, and solving for h to get A,,. But in most applications M x K > p 
and the equations cannot be solved. However, one can view the equation 

or 

1 "  
mn(yo)  = - C et 0 2, 

r - 1  

as a nonlinear regression with p parameters and M X K observations, and 
apply the principle of generalized least squares to estimate yo.  Let T," 

denote the upper triangle of [(l/n)&(C:,,e, 0 z,)(Z:,,e, 63 zS) ' ] - ' ,  and 
Put 

Using the generalized least squares heuristic, one estimates y o  by in that 
minimizes 

1 
d I mn ( A )  +n] = 2 m i  ( A D ( ;I, )mn ( A * 

We shall assume that the estimator fn satisfies - T," = 0 al- 
most surely and that &(f, - 7,") is bounded in probability. The obvious 
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approach to obtain such an estimate is to find the minimum A* of 
m',(X)(l Q ( l /n)~~-lzlz;]- lmn(A),  and put 

where 

- 

s;, - 7 0 )  

[ q t ( Y t t  x,, A )  Q z t J [ q , - v ( ~ , - v *  x t - v ?  A )  8 zt-71' 

f - 1 + 2  

7 2 0 '  (I 7 < 0  

S " 7 0 )  = 

If el 8 z, and e, 8 I, are uncorrelated for all time gaps 1s - r(  larger than 
some I, as in many applications to financial data (Hansen and Singleton, 
1982), then we can obtain the conditions lim +,, - 7," = 0 and fi( +,, - T,") 
bounded in probability using Tayior's expansions and Theorems 1 and 2 
with I ( n )  = I and w ( x )  = 1. But if e, @ z f  and e, 8 z ,  are correlated for 
every s, pair, then t h i s  sort of approach will fail for any I ( n )  with 
limn4ml(n) = 00, because Theorem 3 is not enough to imply the critical 
result that &Sr[D-*(4,,) - D-'(T;)JS is bounded in probability. But as 
noted in the discussion preceding Theorem 3, 6'D-'( +,)S is an estimate of 
a spectral density at zero, so that if { e l  QD z,} were stationary we should 
have the critical result with w ( x )  taken as Parzen weights and I(n) = [n''']. 
It is an open question as to whether hS' [D- ' (+ , , )  - 0- ' (7 ,0 ) ]S  is bounded 
in probability under the sort of heteroscedasticity permitted by Theorem 2, 

0 or if stationarity is essential. 

We call the reader's attention to some heavily used notation and then 
state the identification condition. 

NOTATION 4. 
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ASSUMPTION 8 (Identification). The nuisance parameter estimator +,, 
is centered at T," in the sense that Em,,,,+,, - T: = 0 almost surely and 
&(+,, - 7,") is bounded in probability. Either the solution A\ of the 
moment equations rnjf(h) = 0 is unique for each n, or there is one solution 
that can be regarded as being naturally associated to the data generating 
process. Put M," = (il/aA')rnjf(A\) and M,* = (a/aA')m:(h*,); there is an 
N and constants co > 0, c1 < 00 such that for all S in R P  we have 

As mentioned in Section 4 of Chapter 3, the assumption that rnjf(h$) = 0 
is implausible in mispecified models when the range of m,(X)  is in a 
higher dimension than the domain. As the case rnl(X(!,) # 0 is much more 
complicated than the case rnjj(A0,) = 0 and we have no need of it in the 
body of the text, consideration of it is deferred to Problem 1. The example 
has m:(At) = 0 with A$ 

The following notation defines the parameters of the asymptotic distri- 
bution of A,. 

y o  for all n by construction. 

NOTATION 5. 

i (  n) = the integer nearest n*/' 



EXAMPLE 2 (Continued). Recall that the data follow the model 

q f ( y f , x I , y o ) = e ,  t =  1,2 ,  ..., n 

m , ( w , ,  A )  = 4AYfF X I 1  A )  Q a x , )  

with 

= clf(Yf* x,, A )  QP 2 ,  

mn(x) = C mt(wt, A ) .  

and 

l n  

r-1 

SinCe 

1 "  
m t ( y " )  = 8;  C e, QP I, = o 

we have A\ = y o  for all n, and since, for each f, 6 r n , ( w , ,  A t )  = 8 e ,  0 zI = 
0, we have K:T = 0. Further, 

1 - 1  
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We have 
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Recall that 

with 

= (s:)-l. 
Thus, 

and 

An important special case is the one where the x, are taken as fixed 
(random variables with zero variance) and the errors (e,} are taken as 
independently and identically distributed with d'e,e: = X. In this case 
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EXAMPLE 2 (Continued). Recall that by assumption limn -. mD( fn) - 
(S,")-' = 0 almost surely and 6 [ D ( f , , )  - (St)-'] is bounded in prob- 
ability. Thus, for the case 

m t ( w , ,  A )  = qr(Y, ,  xt* A )  QD zt 

we have 

where, recall, 

In the special case where {e,) is a sequence of independent and 
identically distributed random variables with &e,ei = X and z, taken as 
fixed, we have 

and 

=/. 0 

The following conditions permit application of the uniform strong law 
for dependent observations to the moment equations, the Jacobian, and the 
Hessian of the moment equations. 

ASSUMPTION 9. The sequences ( f , }  and ( T,"} are contained in T, 
which is a closed ball with finite, nonzero radius. The sequence { A t )  is 
contained in A*, which is a closed ball with finite, nonzero radius. Let 



METHOD OF MOMENTS ESTIMATORS 

g,( W,, T ,  A )  be a generic term that denotes, variously, 

57s 

or 

for i , j = l , 2  ,..., p, l = l , 2  ,..., u,and a = l , 2  ,..., v . O n T x A * , t h e  
family { g,[Wr(o), T ,  A]} is near epoch dependent of size -4 with 9 = 
2(r - 2) / ( r  - 4), where r is that of Assumption 3, g, [W,(w) ,  T ,  A ]  is 
A-smooth in ( 7 ,  A )  and there is a sequence of random variables { d , }  with 
supTXA.g,[W,(w), T ,  A] s d , ( w )  and lld,ll, s A < co for all 1. 

Observe that the domination condition in Assumption 9 guarantees that 
rng(A) takes its range in some compact ball, because 

We shall need to restrict the behavior of tbe distance function d(  m,  T )  on a 
slightly larger ball M. The only distance functions used in the text are 
quadratic: 

d ( m , T )  = rn ‘D(T)m 

with D ( T )  continuous and positive definite on T. Thus, we shall abstract 
minimally beyond the properties of quadratic functions. See Problem 1 for 
the more general case. 

ASSUMPTION 10. Let A be a closed ball with a concentric ball of 
smaller radius that contains Uz-l{ m = m:( A )  : A E A*). The distance 
function d ( m ,  r )  and derivatives ( a / a m ) d ( m ,  T ) ,  ( a 2 / a m  am’)d(m, r), 
(8 2 / a m  a ~ ’ ) d ( m ,  T )  are continuous on -4 X T. Moreover, ( d / d m ) d ( O ,  I )  - 0 for all T in T [which implies ( a 2 / a m  W ) d ( O ,  T )  = 0 for all 7 in TI, 
and ( a 2 / a m  am’)d(m, r )  is positive definite over A x T. 
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Before proving consistency, we shall collect together a number of facts 
needed throughout this section as a lemma: 

LEMMA 13. Under Assumptions 1 through 3 and 8 through 10, inter- 
change of differentiation and integration is permitted in these instances: 

Moreover, 

lim SUp{mon(A) - m:,(X) I = 0 almost surely 
n - r m  A* 

tim sup Is,,( A )  - s,"( A )  I = o almost surely 
n - + w  A *  

and the families (m9,,(A)), {(a/aAi)rn9,,(A)], {(a2/ax, a x , ) m 9 x ) ) ,  
{.,"(A)), {( a/aA,)s : (h) ) ,  and {( a2/aX, aA,)s;(h)) are equicontinuous; 
indices range over i ,  j - 1,2 ,..., p ,  a = 1,2 ,..., u, and n = 1,2,. .., OQ in 
the above. 

Proof. The proof for the claims involving m,(A) and r n : ( X )  is the same 
as the proof of Lemma 10. 

For m n ( A )  in we have 

$,(A) = d [ m n ( X ) ,  +n1 
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and 

Consider the second equation. A continuous function on a compact set is 
uniformly continuous; thus (a /am,)d(m, T )  is uniformly continuous on 
JV X T. Given c > 0, choose 6 small enough that 1m - mO1 c 6 and1.i - 71 

c 6 imply Ka/dm,)[d(m,  +) - d(rno, 7*)]1 < c. Fix a realization of (K}:, 
for which lim,,-ml?m - .,"I = 0 and lim,,,sup,,lrn,,(A) - mf(A)I = 0; 
almost every realization is such, by Assumption 9 and Theorem 1. 
Choose N large enough that n > N implies sup,.[m,,(A) - m:(X)I < 6 
and It,, - < 6. This implies uniform convergence, since we have 
supA.K a/i3m,)( d imn(  A), +,,I - dim:( A), T:]} 1 .c c for n > N. By equicon- 
tinuity, we can choose r) such that ( A  - AoI c r) implies Im:(A) - m:(Ao)I 
-= S. For Ih - AoI < r) we have 

which implies that (( d/am,)dn[mH( A), T,"]} is an equicontinuous family. 

tinuous functions, it has the same properties. 
As (i3/ah,)sn(A) is a sum of products of uniformly convergent, equicon- 

0 The argument for s,(A) and (a2/aA, dA,)s,(A) is the same. 

As we have noted earlier, in many applications it is implausible to 
assume that mf(A) has only one root over A*. Thus, the best consistency 
result that we can show is that s,( A )  will eventually have a local minimum 
near A: and that all other local minima of s n ( A )  must be some fixed 
distance 6 away from A t ,  where 6 does not depend on A\ itself. Hereafter, 
we shall take x,, to mean the root given by Theorem 8. 

THEOREM 8 (Existence of consistent local minima). Let Assumptions 
1 though 3 and 8 through 10 hold. Then there is a 6 > 0 such that the value 
of f i n  which minimizes s,,(X) over IX - At1 I, 6 satisfies 

almost surely. 
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Proof. By Lemma 13 the family {Mn(X) = (a/aA’)mz(A)} is equicon- 
tinuous over A*. Then there is a 6 small enough that Ix - At( s 6 implies 

where c: is the eigenvalue defined in Assumption 8. Let yo be the smallest 
eigenvalue of ( d 2 / d m  dm’)d(m, 7 )  over X T; it is positive by Assump- 
tion 10 and continuity over a compact set. Recalling that m z ( A t )  = 0, 
d(0, 7 )  = 0, and (d/am)d(O, 7 )  = 0, we have by Taylor’s theorem that for 
N given by Assumption 8 

inf inf IS:(X) - s:( ~0,) I 
n > N  cs{A-A:lsa 

where iii is on the line segment joining the zero vector to m,  and x is on the 
line segment joining X to A’. 

Fix o not in the exceptional set given by Lemma 13. Choose IV’ large 
enough that n > N’ implies that sup,,.is,(A) - s:(X)( < -Y,C,$~/~ for all 
n > N’. Since s n ( i n )  s s,(X\), we have for all n > N that 

We append some additional conditions needed to prove the asymptotic 
normality of the score function (d/aA)s,(A~).  
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ASSUMPTION 11. The points { A t  1 are contained in a closed ball A that 
is concentric with A* but with smaller radius. There is an N and constants 
co > 0, c1 < a0 such that for 6 in W p  we have 

c,6'6 s 6'jn(h)6 s c,6'6 all n > N all h E A 

all n > N  

all n > N  

= 6'6 all o < s s 1 

~ 0 8 ' 6  5 S'SpS s CI 6'8 
co6'6 5 S'.qS I, c, 6'8 

lim s'(s,o) - 1 / 2  S ~ ~ ~ ~ ( S : ) - " ' ~  0 
n d m  

Also, 

THEOREM 9 (Asymptotic normality of the scores). Under Assump- 
tions 1 through 3 and 8 through 11, 

Proof. By the same argument used to prove Theorem 5 we have 

A typical element of the vector fi( d/am)d[m,(A$) ,  f,] can be ex- 
panded about [mt(h\), .,"] to obtain 
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where (E, f) is on the line segment joining [m,(A:), .i,] to [m:(hO,), T,"]. 
We have that t/;;[m,,(A\) - mz(h\)] converges in distribution and so is 
bounded in probability; we have assumed that fi(?,, - 7,") is bounded in 
probability. Them using the uniform convergence of m,(A) - rn:(A) to 
zero given by Lemma 13, the convergence of .in - 7," to zero, and the 
continuity of d ( m ,  T) and its derivatives, we can write 

Since A\ is an interior point of A* by Assumption 11, we have 
6( a/aA)s,O(A;) = 0(1), whence 

We have assumed that m:(A;) = 0, whence (8/arn)d[m;(A\), 7 3  = 0 
and ( a 2 / a m  aT')d[rn:(A\), T:] = 0, and this equation simplies to 
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In general this simplification will not obtain, and tbe asymptotic distri- 
bution of 6 ( d / d A ) s , ( A t )  will be more complicated than the distribution 
that we shall obtain here (hoblem 1). 

Now 

(.Q)+2 = (SnO)-*/Z(DnO)-*(MAO~)-l. 

Assumptions 8, 10, and 11 assure the existence of the various inverses and 
the existence of a uniform (in n) bound on their elements. Then 

and the first result obtains. Lemma 13 and Theorem 8 guarantee that 
l i n ~ ~ - , J M :  - &) = 0 almost surely, Assumption 10 and Theorem 8 
guarantee that lim,,-,,,(D;- b,,) = 0 almost surely, and we have already 
that lim, .J S," + K: - S,) = 0 almost surely, whence the second result 
obtains. 0 

Asymptotic normality of the unconstrained estimator follows at once. 

THEOREM 10 (Asymptotic normality). Let Assumptions 1 through 3 
and 8 through 11 hold. Then 

lim (/: -/) = o almost surely. 
n d a o  

Proof. The proof is much the same as the proof of Theorem 6. 0 

Next we establish some ancillary facts regarding the constrained estima- 
tor subject to a Pitman drift for use in the next section. 

ASSUMPTION 12 (Pitman drift). The function h ( A )  that defines the 
null hypothesis H: h(A;)  5 h: is a twice continuously differentiable map- 
ping of A as defined by Assumption 11 into Re with Jacobian denoted as 
H ( A )  = ( i l /dA' )h(A) .  The eigenvalues of H(A)H'(h) are bounded below 
over A by c i  > 0, and above by c: < QO. In the case where p = q,  h ( X )  is 
assumed to be a one to one mapping with a continuous inverse. In the case 
p < q, there is a continuous function +(A) such that the mapping 
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has a continuous inverse 

defined over S = { ( p ,  T )  : p = #(A), 7 = h ( h ) ,  X E A}. Moreover, $ ( p ,  T )  

has a continuous extension to the set 

The sequence { h+, )  is chosen such that 

There is an N such that for all 6 in RP 

THEOREM 11. Let Assumptions 1 thou@ 3 and 8 through 12 hold. 
Then there is a S > 0 such that the value of A, which minimizes s,(h) over 
[ A  - hl,( < & subject to h ( h )  = h: satisfies 

lim (X, - A:) = o almost surely. 
n-rm 

Moreover, 

lim (4; + 42: - .?) = 0 in probability 
n- m 

l i m f l - # = o  almost surely. 
n-+m 

Proof. The proof is much the same as the proof of Theorem 7. 0 

PROBLEMS 

1. Let Assumptions 1 through 3 and 8 through 11 hold except that 
m:( A t )  Z 0; also (a/am)d(O,  T )  and ( a  Z / a m  am’)d(O, 7 )  need not be 
zero. Presume that the estimator of the nuisance parameter T,” can be 
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put in the form 
583 

where ( f , (W,) )  satisfies the hypotheses of Theorem 2 and c,&6 I 
S'(A:>'(Ag)S s c,6'6 for finite, nonzero co, c, and all n larger than 
some N. Define 

T- -(n-1) 

Show that 
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6. HYPOTHESISTESTING 

The results obtained thus far may be summarizsd as follows: 

SUMMARY. Let Assumptions 1 through 3 hold, and let either Assump- 
tions 4 through 7 or 8 through 12 hold. Then on a closed ball A with finite, 
nonzero radius 

a0 a ( =S,O(X I} is equicontinuous 
n-1 
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0 
are interior to A for large n. ~ h u s ,  in the sequel we may take A,, in, A",, 
and hl, interior to A without loss of generality. 

Taking the Summary as the point of departure, consider testing 

where h ( X )  maps A c R P  into R4. As in Chapter 3, we shall study three 
test statistics for this problem: the Wald test, the "likelihood ratio" test, 
and the Lagrange multiplier test. Each statistic, say T as a generic term, is 
decomposed into a sum of two random variables 

T, = X,, + a, 

where a, converges in probability to zero and X,, has a known, finite 
sample distribution. Such a decomposition permits the statement 

Because we allow specification error and nonstationarity, we shall not 
necessarily have T, converging in distribution to a random variable X. 
However, the practical utility of convergence in distribution in applications 
derives from the statement 

because P ( X  < f )  is computable and so can be used to approximate 
P ( T ,  > r). Since the value P( X,, > t )  that we shall provide is computable, 
we shall capture the fun benefits of a classical asymptotic theory. 

We introduce some additional notation. 

NOTATION 7. 
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In Theorem 12, 

In Theorems 13, 14, 15, and 16, 

V =  c, #=j:, #-#,*, 4- @:, H -  H,'. 

The first test statistic considered is the Wald test statistic 

As shown below, one rejects the hypothesis H :  h(A;) = h*, when W 
exceeds the upper a x 100% critical point of a chi-square random variable 
with q degrees of freedom to achieve an asymptotically level a test in a 
correctly specified situation. As noted earlier, the principal advantage of the 
Wald test is that it requires only one unconstrained optimization to 
compute it. The principal disadvantages are that it is not invariant to 
reparametrization and its sampling distribution is not as well approximated 
by our characterizations as are the "likeiihood ratio" and Lagrange multi- 
plier tests. 

THEOREM 12. Let Assumptions 1 through 3 hold, and let either As- 
sumptions 4 through 7 or 8 through 12 hold. Let 

Then 

w - Y f O J l )  

where 

Y = z/( H T 1 (  9+ Q ) f ' H ' ]  -'z 
and 

(Recall that V = V , ,  f= 32, #=#:, Q = "11,". and H = H:.) If  1 = 0, 
then Y has the noncentral chi-square distribution with q degrees of 
freedom and noncentrality parameter u = n[h(X\)  - h*, f (HVH')- '  
[h(A;) - 4 / 2 .  Under the null hypothesis a = 0. 
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Proof. We may assume without loss of generality that A,, A: E A and 
that ( a / a A ) s , ( f i , )  = o,(n-'/ ') ,  (d/aA)s:(A\) = o ( n - ' / ' ) .  By Taylor's 
theorem 

where IT;,,, - A".! 1s I l f i r n  - A0.11. By the almost sure convergence of 
HA\ - l,,l{ to m?, Limn-oollxjn - A\ll = 0 almost surely, whence 
limn ~ ,I( d / a A ) h i (  A,,,) - ( a / a  X)h,( A",] = 0 almost surely. Thus we may 
write 

Again by Taylor's theorem 

By the Summa , the left hand side is Op(l), and Y1l2  and r' are both 
0(1), whence ? n ( f i ,  - A:) = OJl) and 

Combining these two equations, we have 

because all terms are OJ1) save the o,(l) and op(l) terms. The equicontinu- 
ity of { A(A)}, the almost sure convergence of Ili, - A",/ to zero, and 
det /(A) z A > 0 imply that 
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and all terms on the right are bounded in probability, we have that 

By the Skorokhod representation theorem (Seding, 1980, Section 1.6), there 
are random variables X,, with the same distribution as 3 - 1 / 2 ~ ( J / J A )  
s,,(At) such that X,, - X + o,(l) where X - N'(0, I). Then 

h [ h ( A , , )  - h: ]  - &[h(AO,) - h: ]  + H/-?ff'%+ OJl) 

because H, #-', 9 l f l  are bounded. Let Z = &[h(XO,) - h:] + 
Hfl- '3*/ 'X,  and the result follows. I3 

In order to characterize the distribution of the Lagrange multiplier and 
"likelihood ratio" test statistics we shall need the following characterization 
of the distribution of the score vector evaluated at the constrained value A+,. 

THEOREM 13. Let Assumptions 1 through 3 hold and let either Assump- 
tions 4 through 7 or 8 through 12 hold. Then 

a 
J;;xs,(A+) - x + o,(l) 

where 

Proof. By either Theorem 7 or Theorem 11 

By the Skorokhod representation theorem (Seding, 1980, Section 1.6) there 
are random variables Y, with the same distribution as fi(9n+)-*/2( d / d A )  
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$,(A’,) such that Y,, - 6 ( c ) - ’ / 2 ( a / a X ) ~ , 0 ( A : )  - Y + os(l), where Y - 
N,(O, I). Let 

whence 

Since (S,+)’I2 is bounded, (*P,’)’/zo,(l) = o,(l) and the result follows. 

Both the “likelihood ratio” and Lagrange multiplier test statistics are 
effectively functions of the score vector evaluated at x,. The following 
result gives an essential representation. 

THEOREM 14. Let Assumptions 1 through 3 hold, and let either As- 
sumptions 4 through 7 or 8 through 12 hold. Then 

where %-f: and H = H,‘ 

Proof. By Taylor’s theorem 

where / has rows 

and fi has rows 
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with i,,, and x j ,  on the line segment joining in to A:. Now h ( h ( K , )  - 
h+,] = o,(l). Recalling that G[h(A:) - h',] 5 0, we have g@(xw - A;) = 
%(l). Since llx,, - Azii converges almost surely to zero, A,, - A: and 
A,, - A: converge almost surely to zero and /-I+ o,(l) by the equicon- 
tinuity of { jn (A) )z - l ;  continuity of H ( A )  on A compact implies equicon- 
tinuity, whence #= H + o,(l). Moreover, there is an N corresponding to 
almost every realization of ( V , }  such that det(f) > 0 for all n > N. 
Defining arbitrarily when det(f) = 0 we have 

for all n > N. Thus, fyfi ( i , ,  - A:) = 6 ( x ,  - A:) + o,(l). Combin- 
ing these observations, we may write 

whence 

Now ~ % i g - ~ / ~ [ (  a/aA)s,(X',) - (t3/aA)s:(A;)] converges in distribution, 
and by Taylor's theorem 

so we have that fi.F1/*(a/t3A>s,O(A+,) is bounded. Since F l f l  is 
bounded, G( d/aA)s,(A+,) is bounded in probability. By Lemma 2 of 
Chapter 3, there is a sequence of Lagrange multipliers 8, such that 

a 
J;; ns,( K,) + I?*J;;S;, = o,(l). 

By continuity of H ( A )  and the almost sure convergence of A:!} to 
zero we have I? = H + oJ1). Defining (%f1fi)-l similarly to3- l  above 
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and recalling that 6( a/aA)s,(At) is bounded in probability, 

The second test statistic considered is the “likelihood ratio” test statistic 

L = 2 n [ s , ( i i , )  - S , ( i ” ) ] .  

As shown below, one rejects the hypothesis H:  h(A0,) = h: when L ex- 
cesds the upper a X 100% critical point of a chi-square random variable 
with q degrees of freedom to achieve an asymptotically level a test in a 
correctly specified situation. The principal disadvantages of the “likelihood 
ratio” test are that it takes two minimizations to compute it and it requires 
that 

( H,* )( 27 1 - I (  3: 1 ( dT 1 - I t  H,‘ Y = ( H,* /: 1 ’( H: + 0 ( 1 ) 

to achieve its null case asymptotic distribution. As seen earlier, when ths 
condition holds, there is Monte Carlo evidence that indicates that the 
asymptotic approximation is quite accurate if degree of freedom corrections 
are applied. 

THEOREM 15. Let Assumptions 1 through 3 hold, and let either As- 
sumptions 4 through 7 or 8 through 12 hold. Let 

L = 2n[s,(K,) - S n ( i n ) J .  

L - Y + OJl )  

Then 

where 

Y = Z‘f 1H’( Hy- W) - ‘H#- ‘z 
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and 

2 - N , ( f i & s , O ( A t ) ,  3) .  

Recall that Y = v, f = S;, #-#,', 4v = @:, and H = H:. 

with q degrees of freedom and noncentrality parameter 
If HVH' = H f ' H ' ,  then Y has the noncentral chi-square distribution 

Under the null hypothesis, a = 0. 

Proof. By Taylor's theorem 
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whence 

and the distributional result follows at once from Theorem 13 and 14. To 
see that Y is distributed as the noncentral chi-square when H V H ’ =  
H/-’H’, note that #-‘H’( H#-’H’)-’H#-’Jr is idempotent under this 
condition. 0 

The last statistic considered is the Lagrange multiplier test statistic 

As shown below, one rejects the hypothesis H :  h(X:) = h: when R ex- 
ceeds the upper a X 100% critical point of a chi-square random variable 
with 4 degrees of freedom to achieve an asymptotically level a test in a 
correctly specified situation. Using the first order condition 

for the problem 

minimize $,,(A) subject to h ( X )  = h*, 

one can replace (a/aA)s,,(X) by 8’(6’/ah)h(A,) in the expression for 
R-whence the term Lagrange multiplier test; it is also called the efficient 
score test. Its principal advantage is that it requires only one constrained 
optimization for its computation. If the constraint h ( X )  = h: completely 
specifies X,, or results in a linear model, this can be an overwhelming 
advantage. The test can have rather bizaare structural characteristics. 
Suppose that h ( X )  = hz completely specifies n,,. Then the test .will accept 
any hz for which Ti,, is a local minimum, maximum, or saddle point of 
$,(A), regardless of how large is Ilh(fi) - h:ll. As we have seen, Monte 
Carlo evidence suggests that the asymptotic approximation is reasonably 
accurate. 

THEOREM 16. Let Assumptions 1 through 3 hold, and let either As- 
sumptions 4 through 7 or 8 through 12 hold. Let 
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where 

and 

R - Y + 0,(1) 

Recall that V Q c, 9- #:, ,f5/n+, 4- %,Z, and H = H,'. 
If @ =  0, then Y has the noncentral chi-square distribution with q 

degrees of freedom and noncentrality parameter a = n[( a/aA)s:( X*,)r 
/ - ' E l ' (  HVH')-'HY-'[( a/aA)~,O(h*,)]/2. Under the null hypothesis, a = 0. 

Proof. By the summary, 

y- l*( f i J Q j t )  - '&f- 1 

=y-'H'[H$-'(Jf+ 'dl)/-W] - ' H p  + O $ ( l ) .  

By Theorem 14, ~ ( i ? / B h ) s , ( ~ , )  is bounded in probability, whence we 
have 

The distributional result follows by Theorem 13. The matrix 
f - ' H ' [  Hf-'9$-*H']-'H,f-'9 is idempotent, so Y follows the noncentral 

c7 chi-square distribution if '32 = 0. 
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asymptotic normality, 243,245 
consistency, 243, 244 
variance formulas, 243, 245 

Constraint, equivalent representations, 240, 

Consumer demand, 268, 407 
Contemporaneous correlation. 268 

242, 560 
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Continuous convergence, 163, 519 
Convergence in distribution, regression 

structure, defined. 170 
Covariance stationary, 123, 127 
Coverage function, 118 
Critical function, 116 

Data generating model: 
dynamic models: 

defined, 541 
introductory discussion, 488 

regression structure. defined, 156 

chain rule, 10. 16 
composite function rule, 10, I6 
gradient, 8 
Jacobian, 9 
Hessian, 8 
matrix derivative, 8 
vector derivative, 8 

Differentiation: 

Disconnected confidence regions, 119 
Distance function: 

dynamic models: 
least mean distance estimators, 544 
method of moments estimators, 566 

least mean distance estimators, 176 
method of moments estimators, 197, 

regression structure: 

204 

defined, 148. 406 
estimation by generalized method of 

estimation by maximum likelihood, 

Dynamic models: 

moments, 442 

465 

Efficiency of method of moments 
estimators, 212 

Efficient score test, see Lagrange multiplier 
test 

Elcctricity expenditure, 268, 407 
Equicontinuity, defined, 161 
Equivalent local power of Wald, likelihood 

ratio, and effxient swre tests. 
239 

Estimated parameter: 
dynamic models, 546 
regression structure, 175 

Estimated variancc-convariance of method 
Continuity set, 528 of moments estimators, 453 
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Estimation space, regression structure, 

Explicit form, 4M 

F-distribution: 
central. 120 
doubly noncentral, 121 
nonwntral, 121 

Fixed regressors, 247 
Fourier form, 318,400 
Functional dependence, 57,240,242,320, 

454 

defined, 154, 176 

605 

defined, 291,299, 351 
test statistics, 353, 354 

simultaneous equations models, 428, 437 

multivariate models: 
Grouped by subject data arrangement: 

defined, 291 
test statistics, 326, 333, 342, 388. 389. 

390 
simultaneous equations models, 428 

Hartley-Booker estimator, 29, 151 
Hartley’s method, see Gauss-Newton 

Hessian, 8 
Heteroscedastic errors, 123. 124, 156 
Heteroscedastic invariant: 

dependence invariant: 

method 

Lagrange multiplier test, 123, 139 
variance estimator, 123, 138 
Wald test, 123, 138 

Lagrange multiplier test, 123. 126 
variance estimator, 123, 125, 433, 438, 

Wald test, 123, 125 
452 

Gauss-Newton method: 
generalized method of moments, 446, 

multivariate least squares, 317 
three stage least squares. 434 
univariate least squares: 

algorithm, 28 
algorithm failure, 39 
convergence proof, 44 
informal discussion, 26 
starting values, 29 
step length determination, 28 
stopping rules, 29 

453 

General inference prohlem, introductory 

Generalized method of moments estimator: 
discussion, 154 

bias of, 451 
choice of instrumental variables, 451 
confidence intervals, 451 
consistency of variance estimates, 

defined, 442,446,567 
estimated variance-covariance of, 446 
Gauss-Newton correction vector, 446 
insuring positive definite variance 

overidentifying restrictions, 451, 464 
sample objective function, 444, 567 
see alto Three stage least squares 

446 

estimate, 446 

estimators 

I 2 8  
Generalized nonlinear least squares, 127, 

Gradient, 8 
Grid search, 36 
Grouped by equation data arrangement: 

covariance matrix for, 300,318 
multivariate models: 

Identification condition: 
dynamic models: 

defined, 546 
example, 546 

defined, 570 
discussed, 570 

regression structure: 

defined, 176 
example, 176 

defined, 199 
discussed, 199 
example, 199 

least mean distance estimators: 

method of moments estimators: 

least mean distance estimators: 

method of moments estimators: 

univariate least squares, 20 
Implicit form, 406 
Independent and identically distributed 

regressors, consequence of in 
misspecified situations. 191,247 

Infinite dimensional parameter space, 
examples, 171, 172 

Information inequality, 474, 484 
Information set, 412 



606 
Instrumental variables, 150, 431, 435, 439, 

Intertemporal consumption and investment, 

Intrinsic curvature, 146 
Iterated least squares estimators, 355 

Jacobian. Y 
Join point, 143 

444. 446, 452 

409 

SUBJECT INDEX 

corresponding confidence region, 

defined, 89 
with heteroscedastic errors, 126 
informal discussion, 85, 102 
Monte Carlo simulations, 100 
with nonstationary, serially correlated 

power computations, 97 
testing spccification, 139 

110 

errors, 139 

Iarge residual problem, 39 
Least mean distance estimator: 

dynamic models: 
consistency, 548 
constrained, 544 
defined, 544 
identification, 546 
introductory discussion, 489 
summary of results, 584 

regression structure: 
constrained, 176 
defined. 148. 174, 176 
introductory discussion, 148 
summary of results, 217 

Least squares cstimator: 
multivariate models: 

asymptotic normality, 3 M  
consistency, 384 
defined, 301, 380 
efficiency, 397 
identification, 383 
iterated least squares estimators, 355 
Pitman drift, 387 
sample objective function, 383 

asymptotic normality. 258 
characterized as linear function of 

errors, 16, 259 
computation, see Gauss-Newton 

method 
consistency, 256 
data generating model, 255 
defined, I ,  3. 253 
distribution of, 17, 18 
first order conditions, 15 
identification, 255 
informal discussion of regularity 

conditions, 19 
Pitman drift, 258 
sample objective function, 253, 256 
score function, 258 

univariate models: 

Kronecker product: 
defined, 299 
manipulative facts, 299, 362, 377 
relation to vec operator, 362, 377 

Kuhn-Tucker theorem. 414 

Lack-of-fit test, 140, 146 
choice of regressors, 141 
noncentrality parameters. 141 

Lagged dependent variables. 442, 452 
Lagrange multiplier test: 

dynamic models: 
asymptotic distribution, 593 
defined. 5Y3 
discussed, 593 

multivariate models: 
least squares: 

computation. 343 
with correctly centered estimator of 

defined. 390, 342, 353 
with miscentered estimator of scale. 

Montc Carlo simulations, 349 
power computations, 349 

scalc, 392 

394 

maximum likelihood, 366 

asymptotic distribution, 230 
defined, 219 
discussed, 219 

generalized mcthod of moments 

maximum likelihood estimators: 
dynamic models, 474,479 
regression structure, 474 

regrcssion structure: 

simultaneous equations models: 

estimators, 460 

three stage least squares estimators, 
460 

univariate models: 
asymptotic distribution, 87 
computation, Yo 
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Likelihood ratio test: 
dynamic models: 

asymptotic distribution, 591 
defined, 591 
discussed, 591 

least squares estimators: 
multivariate modelc: 

computation, 333 
defined with degrees of freedom 

defined without degrees of freedom 

importance of identical estimators of 

Monte Carlo simulations, 349 
power computations, 336 

maximum likelihood estimators: 
relationship to least squares 

“likelihood ratio” test, 366 
for test of location, 366 

corrections, 333, 353 

corrections, 388 

scale, 394 

regression structure: 
alternate form, 235 
asymptotic distribution, 233 
defined, 220 
discussed, 220 

gcneralized method of moments 

maximum likelihood estimators: 

simultaneous equations models: 

estimators, 457 

dynamic models, 479 
regression structure, 474 

three stage least squares estimators, 
457 

univariate models: 
asymptotic distribution. 70 
computation. 57 
corresponding confidence region, 107 
defined, 56 
with hetetoscedastic crron, 127 
informal discwssion, 55 
Monte Carlo simulations, 81, 82, 84 
with nonstationary, serially correlated 

power computations, 69 
testing specification. 139, 141 

Linear regression model, see Univariate 

Logistic-normal distribution, 271 

McLeish’s inequality, 51  1 
Martingale, 522 

errors, 139 

nonlinear regression model 

607 
Martingale difference sequence, 522 
Matrix derivatives, 8 
Maximum likelihood estimators: 

nlultivariate models: 
computed by iterated least squarcs, 

concentrated likelihood, 357 
considered as lcast squares estimator, 

358 
data generating modcl, 359 
defined, 356 
derivatives of distance function, 361, 

377 
likelihood, 356 
Pitman drift, 358 
sample objective function, 361 
score function, 362 

asymptotic variancecovariance matrix 

bias, 467 
concentrated likelihood, 470, 473 
conditional likelihood, 467, 475, 477 
defined: 

355 

simultaneous equations models: 

of, 473 

for dynamic models with 
independent errors, 475 

for general dynamic models, 477 
for regression structures, 468 

derivation of likelihood in dynamic 

expectation of score, 485 
information inequality, 474. 484 
near epoch dependence, 477,481 
Newton downhill direction, 473 
normally distributed errors, 4.66 
sample objective function, 468,476, 

transformations, 466 
Measures of nonlinearity, 146 
M-estimator: 

case, 480 

477 

iteratively rescaled M-estimator, 
example, 174, 176. 178, 181, 183, 
184,186,205 

198,199,201 
Method of  moments estimator: 

scale invariant M-e-stimator, example, 

dynamic models: 
consistency, 577 
constrained, 566 
defined, 566 
identification, 570 
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Method of moments estimator (Continued) 

introductory discussion, 489 
summary of results, 584 
under mispecification, 570, 582 

regression smcture: 
constrained, 197 
defined, 151, 197 
introductory discussion, 150 
summary of results, 217 

simultaneous equations models, 
431 

Mispecification: 
defined. 149 
example, 220, 222, 225, 233, 235 

defined, 506 
sufficient conditions for, 509 

Mixingale: 

Mixing conditions, 443 
Modified Gauss-Newton method, see 

Gauss-Newton method 
Multivariate nonlinear regression model: 

defined, 290 
identification, 383 
Pitman drift, 387 
rotation to univariatc model, 317 

SUBJECT INDEX 

Parameter effect curvatures, 146 
Parameter space, defined, 155 
Parametric restriction, 57, 240, 242, 320, 

453 
Parzen weights, 446, 533 
Pitman drift: 

dynamic models: 
introductory discussion, 490 
least mean distance estimators, 560 
method of moments estimators, 581 

consequence: 
regression structure: 

in constrained estimation. 191, 214 
in misspecified situations. 191 

examples, 171, 172, 195 
introductory discussion, 154 

Population moments, 431 
Predetermined variables, 442 
Principal component vectors, 142 

Quadratic forms, 121 
Quadratic-linear response function, 143 

Near epoch dependence: 
defined, 4% 
examples of, 477, 481,502 
sufficient conditions for, 498 

Newton downhill direction. 473 
Nonlinear ARMA. 539 
Nonlinear autoregression, 502, 544, 546, 

Nonlinear least squares under specification 
549,553 

error, example, 220, 222. 225, 
233, 235 

nonlinear regression model 
Nonlinear regression model, see Univsriate 

Normal distribution: 
multivariate, 120 
univariate, 120 

dynamic models, defined, 585 
regression structure, defined, 218 

Null hypothesis: 

Optimal choice of instrumental variables, 
439, 451 

bootstrap strategy, 451 
Overidentifying restrictions, 451, 464 

Rank qualification, 20 
Rao’s efficient score test, see Lagrange 

multiplier test 
Rational expectations hypothesis, 415 
Reduced form. 157, 443, 467, 542 
Regression structure, 148, 166, 167, 404, 

Regular conditional probability: 
442,465 

defined, 168 
example, 168 

Reparametrization, 147 
Robustness of validity, 467 

Sample moments, 431, 444, 453 
Sample objective function: 

dynamic models: 
least mean distance estimators, 544 
method of moment estimators, 566 

least mean distance estimators: 
regression structure: 

almost sure limit, 176 
defined. 176 
expectation, 176 

almost sure limit, 198 
defined. I97 

method of moment estimators: 
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Scale estimator: 

M-estimators, 174. 198. 213 
multivariate models: 

least squares estimators: 
defined, 294,323 
factorization, 300, 323, 359 

maximum likelihood: 
algorithm for mmputing variance, 

defined, 356 
372 

simultaneous equations models: 
generalized method of moments, 444 
maximum likelihood, 469 
three stage least squares, 432 

Score, see Asymptotic normality of scores 
Selecting order of autoregressive process, 

Serially correlated errors, 123, 127, 406, 

Shared parameters, 268 
Singular value decomposition. 143. 561 
Size, 494 
Slog. 319 
Specification error, see Misspecification 
Split plot design, 372, 378 
Stationary, 127, 443,446 
Strong law of large numbers, 515 
Strong mixing: 

defined, 494 
sufficient conditions for, 495 

136 

442 

Tail equivalence, 187 
Taylor’s theorem, 13 
1-distribution: 

central, 121 
noncentral, 121 

Test of overidentifying restrictions, 451, 

Three stage least squares estimators: 
dynamic models, 567, 570, 574 
simultaneous equations models: 

464 

choice of instrumental variables, 431, 

considered as generalized least squares 

correction for autocorrelation, 438 
defined, 426 
estimated variance-covariance matrix 

Gauss-Newton algorithm, 434 

439 

estimator, 433 

of, 434, 435, 438 

heteroscedasticity correction, 433, 438 
identification condition, 432 
sample objective function, 431, 438 
transformations, 427 

see also Generalized method of moments 
estimators 

Tightness, 527 
Translog form, Z72, 398 
Two stage least squares estimator, 433, 441 

Underlying probability space, formal 
description: 

dynamic models, 493 
regression structure, 167 

Uniformly integrable, 523 
Uniform mixing. 496 
Uniform Strong Law of Large Numbers: 

dynamic models, 515 
regression structure, 159 

Univariate linear regression model, 2 
Univariate nonlinear regression model: 

defined, 1, 3, 253 
identification. 255 
Pitman drift, 258 
vector representation, 1 I 

Variance of sum, 532 
Vec operator, 358 
Vector derivatives, 8 

Wald test: 
dynamic models: 

asymptotic distribution, 586 
defined, 586 
discussed, 586 

multivariate models: 
least squares estimators: 

behavior under misspecificahon, 

computation, 328 
defined with degrees of freedom 

defined without degrees of freedom 

Monte Carlo simulations, 349 
power computations. 331 

maximum likelihood estimators: 
for test of location, 36fi 
for test of scale, 371 

397 

corrections, 328, 353 

corrections, 388 
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Wald test (Continued) 
regression structure: 

alternative forms, 224 
asymptotic distribution, 223 
defined, 219 
discussed, 219 
lack of invariance of, 219, 239 

generalized method of moments 

maximum likelihood of estimators: 

simultaneous equations models: 

estimators, 455 

dynamic models, 474. 479 
regression structure, 474 

three stage least squares estimators, 
455 

univariate models: 
asymptotic distribution, 51 
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corresponding confidence region, 
104 

defiqed, 48 
with heteroscedastic errors, 125 
informal discussion, 47 
measures of nonlinearity, 146 
Monte Carlo simulations, 25, 54, 

with nonstationary, serially correlated 

power computations, 52 
testing specification, 139 

Weighted least squares, 124 
Wholesale prices, 129 
Within equation restrictions, 323 

Yule-Walker equations, 129, 133 

84 

errors, 139 




