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Preface

The design of structures in general, and prestressed concrete structures in particular, requires
considerably more information than is contained in building codes. A sound understanding of
structural behaviour at all stages of loading is essential. The aim of this book is to present a
detailed description and explanation of the behaviour of prestressed concrete members and
structures both at service loads and at ultimate loads and, in doing so, provide a
comprehensive guide to design. The design criteria and procedures contained in several major
building codes, including ACI 318–83, BS 8110:1985, and AS 3600–1988, are also presented.

Each aspect of the analysis and design of fully prestressed and partially prestressed
concrete members is approached from first principles and illustrated by numerous worked
examples. The text is written for senior undergraduate and postgraduate students of civil and
structural engineering, and also for practising structural engineers.

The book began as notes for a series of lectures to structural engineers in a short course on
prestressed concrete design conducted in Sydney in 1985 and has been further developed over
the past 5 years as part of the authors’ involvement in research and the teaching of prestressed
concrete to graduate students at the University of New South Wales. The work has also
gained much from the membership of Professor Gilbert on committees of the Standards
Association of Australia and his involvement in the development of the Australian Standard
for Concrete Structures, AS 3600–1988.

The scope of the work ranges from an introduction to the fundamentals of prestressed
concrete to in-depth treatments of more advanced topics. Chapter 1 introduces the basic
concepts of prestressed concrete and the limit states design philosophies used in North
American, British, European, and Australian practice. Material properties relevant to design
are discussed in Chapter 2. A comprehensive treatment of the design of prestressed concrete
beams for serviceability is presented in Chapter 3. The instantaneous and time-dependent
behaviour of cross-sections under service loads are discussed in considerable detail. Both
uncracked and cracked cross-sections are considered. Techniques for determining the section
size, the magnitude and eccentricity of prestress, the losses of prestress and the deflection of
members are outlined. Each aspect of design is illustrated by numerical examples.

Chapters 4 and 5 deal with the design of members for strength in bending, shear, and
torsion, and Chapter 6 covers the design of the anchorage zones
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in both pretensioned and post-tensioned members. A guide to the design of composite
prestressed concrete beams is provided in Chapter 7, and includes a detailed worked example
of the analysis of a composite trough girder footbridge. Chapter 8 discusses design procedures
for statically determinate beams. Comprehensive self-contained design examples are provided
for fully prestressed and partially prestressed, post-tensioned, and pretensioned concrete
members.

The analysis and design of statically indeterminate beams and frames is covered in Chapter
9, and provides guidance on the treatment of secondary effects at all stages of loading.
Chapters 10 and 11 provide a detailed discussion of the analysis and design of two-way slab
systems. Chapter 10 is concerned with the behaviour and strength of slabs, whilst Chapter 11
deals with serviceability. Complete design examples are provided for panels of an edge-
supported slab and a flat slab. The behaviour of axially loaded members is dealt with in
Chapter 12. Compression members, members subjected to combined bending and
compression, and prestressed concrete tension members are discussed and design aspects are
illustrated by examples.

A special feature of the book is the treatment of serviceability aspects of design. Concrete
structures are prestressed to improve behaviour at service loads and thereby increase the
economical range of concrete as a construction material. In conventional prestressed
structures, the level of prestress and the position of the tendons are usually based on
considerations of serviceability. Practical methods for accounting for the non-linear and time-
dependent effects of cracking, creep, shrinkage, and relaxation are presented in a clear and
easy-to-follow format.

The authors hope that Design of Prestressed Concrete will be a valuable source of
information and a useful guide to design.

R.I.Gilbert & N.C.Mickleborough
Sydney, 1990
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Notation

All symbols are defined in the text where they first appear. The more frequently used symbols
and those that appear throughout the book are listed below. Tension is taken to be positive and
compression is negative, throughout. Positive bending about a horizontal axis causes tension
in the bottom fibres of a cross-section.

A area

Ac area of concrete

Ag area of gross cross-section

Amin minimum required area of a cross-section

Apc area of the precast element of a composite cross-section

Apt area of prestressed steel in the tensile zone

As, Ap areas of the non-prestressed and prestressed steel, respectively

Asi, Api areas of non-prestressed and prestressed steel at the ith steel level, respectively

Asb, Ass area of the transverse non-prestressed reinforcement required for bursting and spalling,
respectively, in an anchorage zone (Eqns 6.11 and 6.12)

Ast, Asc areas of the non-prestressed tensile and compressive reinforcement, respectively

Asυ area of shear reinforcement at each stirrup location

Asw area of bar used for closed torsional stirrup

(As)min minimum area of non-prestressed reinforcement

A' area of concrete under idealized rectangular compressive stress block

A1 bearing area

A2 largest area of the concrete surface geometrically similar to A1

a width of the torsion strip

B first moment of area of the transformed cross-section about the top fibre

property B of the concrete part of the cross-section and of the age-adjusted transformed
section, respectively

b width of the compressive zone of the cross-section of a beam or slab

bef effective width of the flange of a flanged cross-section

bf width of the contact surface between the precast and in situ parts of a composite cross-section
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bo width of an opening adjacent to the critical shear perimeter (Fig. 5.12)

btr width of the transformed flange of a composite cross-section (Eqn 7.1)

bυ effective width of the web for shear calculations (bw–0.5dd)

bw width of the web of a flanged cross-section

C resultant compressive force carry over factor

Cb transverse compressive force behind an anchorage plate caused by bursting

Cc compressive force carried by the concrete

Cm factor to account for the effect of the magnitude and direction of end moments on the moment
magnification factor for a slender column

Cs compressive force in the non-prestressed steel

c1, c2 side dimensions of a column

D overall depth of a cross-section

Db overall depth of the beam in a beam and slab system

De depth of the symmetrical prism within an anchorage zone

Dmin minimum overall depth

Ds depth of a slab

d effective depth from the extreme compressive fibre to the resultant tensile force at the ultimate
strength in bending

db bar diameter

dc depth to the top layer of non-prestressed steel

dd diameter of a prestressing duct

dn depth from the extreme compressive fibre to the neutral axis

do depth to the bottom layer of tensile reinforcement

ds, dp depths to the non-prestressed and prestressed steel, respectively

dsi, dpi depths to the ith level of non-prestressed and prestressed steel, respectively

dz depth to the compressive force in the concrete

Ec, Es,
Ep

elastic moduli of concrete, non-prestressed steel, and prestressed steel, respectively

Eci initial elastic modulus of concrete

Ec,28 static elastic modulus at 28 days (Eqn 2.17)

Ec1, Ec2 elastic moduli of concrete in precast and in situ elements, respectively, of a composite cross-
section

Ee, Ēe effective modulus of concrete (Eqn 2.12) and age-adjusted effective modulus of concrete (Eqn
2.14), respectively

e eccentricity of prestress eccentricity of load in a compression member

e base of the natural logarithm
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e* eccentricity of the pressure line from the centroidal axis

emax maximum possible eccentricity of prestress

emin minimum acceptable eccentricity of prestress

eo initial eccentricity of load in a slender column

epc eccentricity of prestress measured from the centroidal axis of the precast part of a
composite cross-section

functions of x (Eqn 9.4)

Fb design strength of concrete in bearing

Fc, Fci compressive stress limits for concrete under full load and immediately after transfer,
respectively

Fep force caused by earth pressure

Feq force caused by earthquake

Flp force caused by liquid pressure

Fs force caused by snow loads

Ft, Fti tensile stress limits for concrete under full load and immediately after transfer,
respectively

absolute value of the design force in the compressive zone due to bending

fB flexibility coefficient associated with a release at point B

fc(t) mean compressive strength of concrete at time t

fcυ permissible concrete shear stress on the critical shear perimeter

characteristic compressive strength of concrete at 28 days

characteristic compressive strength of concrete at time t

characteristic compressive strength of concrete at transfer

fcu cube strength of concrete

fp ultimate strength of the prestressing steel

fpy 0.2% proof stress for prestressing steel

flexural tensile strength of concrete (Eqn 2.3)

direct tensile strength of concrete (Eqn 2.4)

fy yield stress of non-prestressed steel

G dead load

g dead load per unit area

h dimension of anchorage plate

drape of tendon

hx, hy drape of the tendons running in the x and y directions, respectively

I second moment of area (moment of inertia) about centroidal axis

Iaυ average second moment of area after cracking

Ic1, Ic2 second moments of area of precast and in situ elements on a composite cross-section

Icr second moment of area of a cracked cross-section



Ie effective second moment of area after cracking

Ig second moment of area of the gross cross-section
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Ī second moment of area of the transformed section about the top fibre of the section

Īc, Īe property Īof the concrete part of the cross-section and of the age-adjusted transformed section,
respectively

i, j, k integers

Jt torsional constant

klu effective length of a column

kAB stiffness coefficient for member AB

ku ratio of the depth to the neutral axis to the effective depth at the ultimate bending moment

k1, k2 factors used for the determination of stress in the prestressing steel at ultimate (Eqn 4.18)

k1, k2,
k3

material multiplication constants

K slab system factor

L span

La length of anchorage zone measured from the loaded face (Fig. 6.3b)

Lb, Lc length of a beam and a column, respectively

Ldi length of tendon associated with draw-in losses (Eqn 3.61)

Le effective span, i.e. the lesser of the centre to centre distance between the supports and the clear
span plus depth (Ln+D)

Lo distance between points of zero bending moment in a beam

Ln clear span

Lpa distance along a tendon from the jack

Lt transverse span

Lx , Ly shorter and longer orthogonal span lengths, respectively, in two-way slabs

l internal level arm

lb, ls lever arms associated with bursting and spalling moment, respectively

lc , ls lever arm distance of compressive forces in the concrete and in the steel, respectively, above
the non-prestressed tensile steel (Fig. 4.6)

ld development length for a pretensioned tendon (Eqn 6.2)

lt transmission length for a pretensioned tendon (Eqn 6.2)

additional length required to develop (σpu−σpe) in a pretensioned tendon (Eqn 6.2)

lu unsupported length of a column

ln natural logarithm

M bending moment

virtual bending moment

Mb bursting moment
moment transferred to front face of a column

Mcr cracking moment

MF fixed-end moment
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MG, MQ moment caused by the dead and live loads, respectively

M i initial moment about top fibre of the transformed cross-section

Mo moment at a cross-section at transfer total static moment in a two-way flat slab
decompression moment

Mpt, Mps total and secondary moments due to prestress in a continuous member

Ms spalling moment
moment transferred to side face of a column

Msus moment caused by the sustained loads

Msw moment caused by self-weight

MT moment caused by total service loads

Mu ultimate flexural strength

Mub unbalanced moment

M* factored design moment for the strength limit state

magnified design moment

design moment transferred to a column through the critical shear perimeter

ultimate moment of resistance per unit length along a positive and a negative yield line,
respectively

N axial force

virtual axial force

Nc critical buckling load

Ncr tensile axial force at cracking

N i initial axial force on the transformed cross-section

Nu ultimate axial strength

Nub ultimate axial force at the balanced failure point

N* factored design axial force for the strength limit state

ΔN i,
ΔM i

increments of axial force and moment about the top fibre of the cross-section, respectively

δN, δM restraining actions which develop during a time interval due to restrained creep, shrinkage
and relaxation (Eqns 3.41–3.48)

n, ns modular ratio for non-prestressed steel (Es/Ec)

n, np modular ratio for prestressed steel (Ep/Ec)

age-adjusted modular ratio (Es/Ēe or Ep/Ēe)

nc modular ratio for the in situ concrete on a composite cross-section (Ec2/Ec1)

P prestressing force

Pe effective prestressing force after time-dependent losses

Pi prestressing force immediately after transfer

Pj prestressing force at the jack before transfer

Pυ vertical component of prestress

Q live load



first moment of an area about the centroidal axis
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q live load per unit area

qp, qs reinforcement indices for prestressed and non-prestressed steel

R relaxation force in the prestressing steel
relaxation of prestress (in percent)
time-dependent loss parameter (Pe/Pi)
reaction force
ratio of cube and cylinder strengths
radius of curvature

Ru ultimate strength

R* factored design action for the strength limit state

R1000, R∞ relaxation of prestressing steel (in percent) after 1000 h and at time infinity, respectively

r radius of gyration

s spacing between stirrups or ties

T resultant tensile force
twisting moment or torque temperature

Tb tension resulting from bursting

Tcr twisting moment at first cracking

Tp tension in the prestressed steel

Ts tension in the non-prestressed steel
twisting moment transferred to side face of column

Tu ultimate strength in torsion

Tuc torsional strength of a beam without torsional reinforcement (Eqn 5.28)

Tus torsional strength of a beam containing torsional reinforcement (Eqn 5.29)

Tu,max maximum torsional strength of a cross-section

T1 twisting moment carried by the torsion strip

T* factored design torsion for the strength limit state

ΔT restraining force at level of non-prestressed steel

ΔTc tensile force increment imposed on concrete

ΔTp restraining force at level of prestressed steel

t time

U internal work

u perimeter of the critical section for punching shear

V shear force

Vb, Vs shear transferred to the front and side faces of a column, respectively

Vcr shear force acting with torque Tcr at first cracking

Vo shear force corresponding to the decompression moment Mo

Vt shear force required to produce a web-shear crack

Vu ultimate shear strength

Vuc contribution of concrete to the shear strength
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Vuo shear strength of the critical shear perimeter with no moment transferred

Vus contribution of transverse steel to the shear strength

Vu,max maximum shear strength of a beam (Eqn 5.7)

Vu,min shear strength of a beam containing the minimum shear reinforcement (Eqn 5.6)

V1 shear carried by the torsion strip

V* factored design shear force for the strength limit state

design horizontal shear force and nominal shear stress; respectively

υ deflection

υC deflection at midspan

υcr deflection due to creep

υcx,υmx deflection of the column strip and the middle strip in the x-direction

υcy, υmy deflection of the column strip and the middle strip in the y-direction

υi deflection immediately after transfer

υLT time-dependent part of the total deflection

υmax maximum permissible total deflection
maximum deflection of a flat plate (Eqn 11.11)

υsh deflection due to shrinkage

υsus short-term deflection caused by the sustained loads

υtot total deflection

υυ, υvar deflection due to variable loads

W wind load
external work

w uniformly distributed load

wb the balanced load

wG, wQ uniformly distributed dead and live loads, respectively

wp uniformly distributed transverse load exerted on a member by a parabolic tendon profile

wpx, wpy transverse loads exerted by tendons in the x- and y-directions, respectively (Eqn 10.3)

wsw self-weight

w t total equivalent long-term load (Eqn 8.4)

wub, wu unbalanced load

wus sustained part of the unbalanced load

wυ variable or transient part of the uniform load

w* factored design load for the strength limit state

x direction of member axis

x, y shorter and longer overall dimensions of the rectangular parts of a solid section

x1, y1 shorter and larger dimension of a closed rectangular tie
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y direction perpendicular to the member axis depth below reference level (either centroidal axis
or top fibre)

yb, yt distance from centroidal axis to bottom and top fibre, respectively

Z section modulus

Zb, Zt bottom and top fibre section moduli (I/yb, I/yt) respectively

Zb,pc,
Zt,pc

bottom and top fibre section moduli of the precast part of a composite cross-section

Zb,comp bottom fibre section modulus of a composite cross-section

(Zb)min minimum bottom fibre section modulus (Eqn 3.9)

α a parameter to account for the effect of cracking and reinforcement quantity on the restraint to
creep (Eqn 3.76)
twice the slope of the prestress line (Fig. 3.21b)
constant associated with the development of concrete strength with time (Eqn 2.2)
factor that depends on the support conditions of a two-way edge-supported slab

αb,αt section properties relating to bottom and top fibres (A/Zb and A/Zt, respectively)

αn factor to define the shape of a biaxial bending contour (Eqn 12.18)

αt sum of the successive angular deviations of a tendon (Eqn 3.60)

αυ angle between shear reinforcement and longitudinal tensile steel

β deflection coefficient
shrinkage deflection coefficient
constant associated with the development of concrete strength with time (Eqn 2.2)

βc ratio of long side to short side of the loaded area (in punching shear calculations)

βh ratio of the longest overall dimension of the effective loaded area to the overall dimension
measured in the perpendicular direction (Eqn 5.52)

βp angular deviation term (Eqn 3.60)

βx,βy moment coefficients in a two-way slab (Eqn 10.8)

β1, β2 tension stiffening constants (Eqn 3.74)

β4, β5 coefficients related to the surface of the shear plane (Eqn 7.29)

γ ratio of the depth of the idealized rectangular compressive stress block to the depth of the
neutral axis at the ultimate strength in bending or combined bending and compression

γc, γs partial safety factor for concrete and steel, respectively

γm partial material safety factor

γυ fraction of unbalanced moment transferred to a column by eccentricity of shear (Eqn 5.49)
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Δ an increment or a change
lateral displacement (sway) at the top of a column
slip or draw-in (in mm) at the anchorage of a tendon

δb,δs moment magnification factor for a braced and for an unbraced column, respectively

δi, Δδ initial and time-dependent lateral displacement, respectively, of a slender column

ε strain

εc,εc(t) creep strain of concrete at time t

creep strain at time t due to a stress first applied at

final creep strain at time infinity

εce strain in the concrete at the level of the prestressed steel due to the effective prestress

εcu extreme concrete fibre compressive strain at the ultimate limit state

εe,εe(t) instantaneous or elastic component of concrete strain at time t

εoi initial strain in the top concrete fibre

εp, εs strain in the prestressed and non-prestressed steel, respectively

εpe strain in the prestressed steel due to the effective prestress (Eqn 3.31)

εpt tensile strain in the concrete at the level of the prestressed steel in the post-cracking range
and at the ultimate moment

εpu strain in the prestressed steel at ultimate

εs strain in the non-prestressed steel

εsc,εst strain in the non-prestressed compressive and tensile steel, respectively

εsh,εsh(t) shrinkage strain at time t

final shrinkage strain at time infinity

εsh(28) shrinkage strain after 28 days of drying

εy yield strain

Δε change in strain with time t

Δεo change in top fibre strain with time

θ slope

θp angle between the direction of the prestressing tendon and the horizontal

θυ, θt angles of the inclined crack caused by shear (Eqn 5.4) and by torsion (Eqn 5.30) respectively

x curvature

xi initial curvature

xp curvature of prestressing tendon

xsh curvature induced by shrinkage

xsus curvature caused by the sustained loads

xu curvature at ultimate

(xu)min minimum curvature at ultimate for a ductile cross-section (Eqn 4.6)
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Δx change in curvature with time

λ long-term deflection multiplication factor

µ friction curvature coefficient (Eqn 3.60)
friction coefficient on the surface of a crack (Eqn 7.33)

ν Poisson’s ratio for concrete

π 3.141593

ρ reinforcement ratio, Ast/Ac

density of concrete

Σ sum of

σ stress in the concrete

σb bearing stress

σcp stress in the concrete at the level of the prestressing steel

σcu maximum compressive concrete stress
cube strength of concrete

σi initial stress in the concrete

σo stress at the time of first loading

σoi initial concrete stress in the top fibre

σp, σs stress in the prestressed and non-prestressed steel, respectively

σpe stress in the prestressed steel due to the effective prestressing force

σpi stress in the prestressed steel immediately after transfer

σpu stress in the prestressed steel at ultimate

σs permissible steel stress

σsc,σst stress in the non-prestressed compressive and tensile steel, respectively

σt,σb top and bottom fibre concrete stresses, respectively

σx,σy longitudinal and transverse stress in the anchorage zone
average stress imposed by the longitudinal prestress in each direction of a two-way slab

σ1, σ2 principal stresses in the concrete

age of concrete at first loading

strength reduction factor
creep coefficient

creep coefficient at time t due to stress first applied at

a reference creep coefficient (Eqn 2.20)

final creep coefficient at time infinity

increment of the creep coefficient associated with a particular time interval

ageing coefficient at time t for concrete first loaded at

χ* final ageing coefficient at time infinity

serviceability load factor

short-term serviceability load factor

long-term serviceability load factor



ζ coefficient associated with the effective moment of inertia (Eqn 3.74).
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1
Basic concepts

1.1 Introduction

Reinforced concrete is the most widely used structural material of the 20th century. Because
the tensile strength of concrete is low, steel bars are embedded in the concrete to carry all
internal tensile forces. Tensile forces may be caused by imposed loads or deformations, or by
load-independent effects such as temperature changes or shrinkage.

Consider the simple reinforced concrete beam shown in Figure 1.1. The external loads
cause tension in the bottom fibres which may lead to cracking, as shown. Practical reinforced
concrete beams are usually cracked under the day-to-day service loads. On a cracked cross-
section, the applied moment is resisted by compression in the concrete above the crack and
tension in the bonded reinforcing steel. Although the steel reinforcement provides the cracked
concrete beam with flexural strength, it does not prevent cracking and does not prevent the
loss of stiffness caused by cracking. Crack widths are approximately proportional to the strain,
and hence stress, in the reinforcement. Steel stresses must therefore be limited to some
appropriately low value in order to avoid excessively wide cracks. Similarly, large steel strain
is the result of large curvature, which in turn is associated with large deflection. There is little
benefit to be gained, therefore, by using higher strength steel or concrete, since in order to
satisfy serviceability requirements, the increased strain capacity afforded by higher strength
steel cannot be utilized.

Prestressed concrete is a particular form of reinforced concrete. Prestressing involves the
application of an initial compressive load on a structure to reduce or eliminate the internal
tensile forces and thereby control or eliminate cracking. The initial compressive load is
imposed and sustained by highly tensioned steel reinforcement reacting on the concrete. With
cracking reduced or eliminated, a prestressed section is considerably stiffer than the
equivalent (usually cracked) reinforced section. Prestressing may also impose internal forces
which are of opposite sign to the external loads and may therefore significantly reduce or even
eliminate deflection.
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Figure 1.1 A reinforced concrete beam.

With service load behaviour improved, the use of high-strength steel reinforcement and high-
strength concrete becomes both economical and structurally efficient. As will be seen
subsequently, only steel which can be tensioned with large initial elastic strains is suitable for
prestressing concrete. The use of high-strength steel is therefore not only an advantage to
prestressed concrete, it is a necessity. Prestressing results in lighter members, longer spans,
and an increase in the economical range of application of reinforced concrete.

1.2 Methods of prestressing

As mentioned in the previous section, prestress is usually imparted to a concrete member by
highly tensioned steel reinforcement (wire, strand, or bar) reacting on the concrete. The high-
strength prestressing steel is most often tensioned using hydraulic jacks. The tensioning
operation may occur before or after the concrete is cast and, accordingly, prestressed members
are classified as either pretensioned or post-tensioned.

1.2.1 Pretensioned concrete

Figure 1.2 illustrates the procedures for pretensioning a concrete member. The prestressing
tendons are initially tensioned between fixed abutments and anchored. With the formwork in
place, the concrete is cast around the highly stressed steel tendons and cured. When the
concrete has reached its required strength, the wires are cut or otherwise released from the
abutments. As the highly stressed steel attempts to contract, the concrete is compressed.
Prestress is imparted via bond between the steel and the concrete.

Pretensioned concrete members are often precast in pretensioning beds long enough to
accommodate many identical units simultaneously. To decrease the construction cycle time,
steam curing may be employed to
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Figure 1.2 Pretensioning procedure.

facilitate rapid concrete strength gain and the concrete is often stressed within 24 hours of
casting. Because the concrete is usually stressed at such an early age, elastic shortening of the
concrete and subsequent creep strains tend to be high. This relatively high time-dependent
shortening of the concrete causes a significant reduction in the tensile strain in the bonded,
prestressing steel and a relatively high loss of prestress.

1.2.2 Post-tensioned concrete

The procedures for post-tensioning a concrete member are shown in Figure 1.3. With the
formwork in position, the concrete is cast around hollow ducts which are fixed to any desired
profile. The steel tendons are usually in place, unstressed in the ducts during the concrete pour,
or alternatively may be threaded through the ducts at some later time. When the concrete has
reached its required strength, the tendons are tensioned. Tendons may be stressed from one
end with the other end anchored or may be stressed from both ends, as shown in Figure 1.3b.
The tendons are then anchored at each stressing end.

The concrete is compressed during the stressing operation and the prestress is maintained
after the tendons are anchored by bearing of the end anchorage plates onto the concrete. The
post-tensioned tendons also impose a transverse force to the member wherever the direction
of the cable changes.

After the tendons have been anchored and no further stressing is
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Figure 1.3 Post-tensioning procedure.

required, the ducts containing the tendons are often filled with grout under pressure. In this
way, the tendons are bonded to the concrete and are more efficient in controlling cracks and
providing ultimate strength. Bonded tendons are also less likely to corrode or lead to safety
problems if a tendon is subsequently lost or damaged. In some situations, however,
particularly in North America and Europe, tendons are not grouted for reasons of economy
and remain permanently unbonded.

Most in situ prestressed concrete is post-tensioned. Relatively light and portable hydraulic
jacks make on-site post-tensioning an attractive proposition. Post-tensioning is also used for
segmental construction of large-span bridge girders.

Prestress may also be imposed on new or existing members using external tendons or such
devices as flat jacks. These systems are useful for temporary prestressing operations but may
be subject to high time-dependent losses.

1.3 Introductory example

Consider an unreinforced concrete beam of rectangular section, simply supported over a span
L, and carrying a uniform load w, as shown in Figure 1.4a. When the tensile strength of
concrete is reached in the bottom fibre
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Figure 1.4 Introductory example.

at mid-span, cracking and a sudden brittle failure occur. If it is assumed that the concrete
possesses zero tensile strength, then no load can be carried and at failure w=0.

An axial compressive force P applied to the beam, as shown in Figure 1.4b, induces a
uniform compressive stress of intensity P/A. For failure to extreme fibre tensile stress at mid-
span equal to P/A. If linear-elastic occur, the moment caused by the external load w must now
induce an material behaviour is assumed, simple beam theory gives

and therefore
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If the prestressing force P is applied at an eccentricity of D/6, as shown in Figure 1.4c, the
compressive stress caused by P in the bottom fibre at mid-span is equal to

and the external load at failure w must now produce a tensile stress of 2P/A in the bottom
fibre. That is

and therefore

By locating the prestress at an eccentricity of D/6, the load-carrying capacity is effectively
doubled.

The eccentric prestress induces an internal bending moment Pe which is opposite in sign to
the moment caused by the external load. An improvement in behaviour is obtained by using a
variable eccentricity of prestress along the member. This may be achieved using a draped
cable profile.

If the prestress countermoment Pe is equal and opposite to the load-induced moment all
along the span, each cross-section is subjected only to axial compression, i.e. each section
suffers a uniform compressive stress of P/A. No cracking can occur and, since the curvature
on each section is zero, the beam does not deflect. This is the balanced load stage.

1.4 Transverse forces caused by draped tendons

In addition to the longitudinal force P exerted on a prestressed member at the anchorages,
transverse forces are also exerted on the member wherever curvature exists in the tendons.
Consider the simply supported beam in Figure 1.5a which is prestressed by a cable with a kink
at mid-span. The eccentricity of the cable is zero at each end and e at mid-span. The slope of
the two straight segments of cable is θ, and becauseθis small

(1.1)
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Figure 1.5 Beam with centrally depressed tendon.

In Figure 1.5b, the forces exerted by the tendon on the concrete are shown. At mid-span, the
cable exerts an upward force R on the concrete. From statics, R equals the sum of the vertical
component of the prestressing force in the tendon on both sides of the kink:

(1.2)

At each anchorage, the cable has a horizontal component of P cos θ(≈P for small θ) and a
vertical component of P sin θ=2Pe/L.

The beam is said to be self-stressed. No external reactions are induced at the supports.
However, the beam suffers curvature and deflects upward owing to the internal bending
moment caused by prestress. As illustrated in Figure 1.5c, the internal bending moment at any
section can be calculated from statics and equals the product of the prestressing force P and
the eccentricity.

If the prestressing cable has a curved profile, the cable exerts transverse forces on the
concrete throughout its length. Consider the prestressed beam with the parabolic cable profile
shown in Figure 1.6. The shape of the parabolic cable is

(1.3)
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Figure 1.6 Simple beam with parabolic tendon profile.

and its slope and curvature are, respectively,

(1.4)

and

(1.5)

From Equation 1.4, the slope of the cable at each anchorage when x=0 and x=L is

(1.6)

and therefore the horizontal and vertical components of the prestressing force at each
anchorage are P and 4Pe/L, respectively.

Equation 1.5 indicates that the curvature of the parabolic cable is constant along its length.
The curvature xp is the angular change in direction of the cable per unit length, as illustrated in
Figure 1.7a.

From the freebody diagram in Figure 1.7b, the cable exerts an upward transverse force
wp=Pxp per unit length. This upward force is an equivalent distributed load along the member
and, for a parabolic cable with the

Figure 1.7 Forces on a curved cable of unit length.
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Figure 1.8 Forces exerted on a concrete beam by a parabolic tendon.

constant curvature given in Equation 1.5, wp is given by

(1.7)

If P is constant, which is never quite the case in practice, wp is uniformly distributed.
A freebody diagram of the concrete beam showing the forces exerted by the cable is

illustrated in Figure 1.8. Once again, the beam is self-stressed. No external reactions are
induced by the prestress. With the maximum eccentricity usually known, Equation 1.7 may be
used to calculate the value of P required to cause an upward force wp which exactly balances a
selected portion of the external load. Under this balanced load, the beam suffers no curvature
and is subjected only to the longitudinal compressive force P. This is the basis of a useful
design approach sensibly known as load balancing.

1.5 Calculation of elastic stresses

The components of stress on a prestressed cross-section caused by the prestress, the self-
weight, and the external loads are usually calculated using simple beam theory and assuming
linear-elastic material behaviour. In addition, the properties of the gross concrete section are
usually used in the calculations, provided the section is not cracked. Indeed, these
assumptions have already been made in the calculations for the introductory example in
Section 1.3.

Concrete, however, does not behave in a linear-elastic manner. Linear-elastic calculations
provide, at best, only an approximation of the state of stress on a concrete section immediately
after the application of the load. Inelastic creep and shrinkage strains may cause a substantial
redistribution of stresses with time, particularly on a section containing significant amounts of
bonded reinforcement.

Elastic calculations are useful, however, in determining, for example, if
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tensile stresses occur at service loads, and therefore if cracking is likely, or if compressive
stresses are excessive and large time-dependent shortening may be expected. Elastic stress
calculations may therefore be used to indicate potential serviceability problems.

If an elastic calculation indicates that cracking may occur at service loads, the cracked
section analysis presented in Section 3.5 should be used to determine appropriate section
properties for all serviceability calculations. A more comprehensive picture of the variation of
concrete stresses with time can be obtained using the time analysis described in Section 3.6.

In the following sub-sections, several different approaches to the calculation of elastic
concrete stresses on an uncracked cross-section are described.

1.5.1 Combined load approach

The stress distributions on a cross-section caused by prestress, self-weight, and the applied
loads may be calculated separately and summed to obtain the combined stress distribution at
any particular load stage. Consider first the stresses caused by prestress and ignore all other
loads. On a section, such as that shown in Figure 1.9, equilibrium requires that the resultant of
the concrete stresses is a compressive force which is equal and opposite to the tensile force in
the steel tendon and located at the level of the steel, i.e. at an eccentricity e below the
centroidal axis. This is statically equivalent to an axial compressive force P and a moment Pe
located at the centroidal axis, as shown.

Figure 1.9 Concrete stress resultants and stresses caused by prestress.
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The stresses caused by the compressive force P and the hogging (−ve) moment Pe are also
shown in Figure 1.9. The resultant stress induced by the prestress is given by

(1.8)

where A and I are the area and second moment of area about the centroidal axis of the cross-
section, respectively, and y is the distance from the centroidal axis (positive downward). It is
common in elastic stress calculations to ignore the stiffening effect of the reinforcement and
to use the properties of the gross cross-section. For cross-sections containing significant
amounts of bonded steel reinforcement, however, the steel should be included in the
determination of the section properties.

The elastic stresses caused by an applied positive moment M on the uncracked section are

(1.9)

and the combined stress distribution due to prestress plus applied moment is shown in Figure
1.10 and given by

(1.10)

Figure 1.10 Combined stresses.

1.5.2 Internal couple concept

The resultant of the combined stress distribution shown in Figure 1.10 is a compressive force
of magnitude P located at a distance l above the level of the steel tendon, as shown in Figure
1.11. The compressive force in the concrete and the tension force in the steel form a couple
with magnitude equal to the applied bending moment, i.e.

(1.11)
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Figure 1.11 Internal couple.

When M=0, the lever arm l is zero and the resultant concrete compressive force is located at
the steel level. As M increases and compressive stresses in the top fibres increase and those in
the bottom fibres decrease, the location of the resultant compressive force moves upward.

It is noted that provided the section is uncracked, the magnitude of P does not change
appreciably as the applied moment increases. The lever arm l is therefore almost directly
proportional to the applied moment. If the magnitude and position of the resultant of the
concrete stresses are known, the stress distribution can be readily calculated.

1.5.3 Load balancing approach

In Figure 1.8, the forces exerted on a prestressed beam by a parabolic cable were shown and
the uniformly distributed transverse load wp may be calculated from Equation 1.7. In Figure
1.12, all the loads acting on the beam, including the external gravity loads w, are shown.

If w=wp, the bending moment and shear force caused by the gravity load on every cross-
section are balanced by the equal and opposite values caused by wp . With the transverse loads
balanced, the beam is subjected only to the longitudinal prestress P applied at the anchorage.
If the anchorage is located at the centroid of the section, a uniform stress distribution of
intensity P/A occurs on each section and the beam does not deflect.

If w≠wp, the bending moment Mub caused by the unbalanced load (w−wp) must be
calculated and the resultant stress distribution (given by Equation 1.9) must be added to the
stresses, caused by the axial prestress (P/A).

Figure 1.12 Forces imposed on a concrete beam with a parabolic tendon.
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1.5.4 Example 1.1

The elastic stress distribution at mid-span of the simply supported beam shown in Figure 1.13
is to be calculated. Each of the procedures discussed in Sections 1.5.1–3 are illustrated in the
following calculations.

Figure 1.13 Beam of Example 1.1.

Combined load approach

The extreme fibre stresses at mid-span (σt, σb) due to P, Pe and M are calculated separately
and summed.

Due to P:

Due to Pe:



Page 14

Figure 1.14 Component stress distributions in Example 1.1.

Due to M:

The corresponding concrete stress distributions are shown in Figures 1.14a, b and d,
respectively, and the combined elastic stress distribution on the concrete section at mid-span
is shown in Figure 1.14e.

Internal couple concept

An alternative approach for the calculation of elastic stresses is based on the internal couple
concept of Section 1.5.2. From Equation 1.11,

The resultant compressive force on the concrete section is 1760 kN and is located
306.8−250=56.8 mm above the centroidal axis. This is statically equivalent to an axial
compressive force of 1760 kN (applied at the centroid) plus a moment
Mub=1760×56.8×10−3=100 kNm.

The extreme fibre concrete stresses are therefore

as shown in Figure 1.14e.
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Load balancing approach

The elastic concrete stresses can also be determined using the load balancing procedure
outlined in Section 1.5.3. The transverse force imposed on the concrete by the parabolic cable
is obtained using Equation 1.7. That is,

The unbalanced load is therefore

and the resultant unbalanced moment at mid-span is

which, of course, is identical to the moment Mub calculated using the internal couple concept.
Once again, the elastic stresses at mid-span are obtained by adding the P/A stresses to those
caused by Mub:

1.6 Flexural behaviour—from initial to ultimate loads

The choice between reinforced and prestressed concrete for a particular structure is one of
economics. For relatively short-span beams and slabs, reinforced concrete is usually the most
economical alternative. As the span increases, however, reinforced concrete design is more
and more controlled by the serviceability requirements. Strength and ductility can still be
economicalIy achieved but, in order to prevent excessive deflection, cross-sectional
dimensions become uneconomically large. Excessive deflection is usually the governing limit
state.

For medium- to long-span beams and slabs, the introduction of prestress improves both
serviceability and economy. The optimum level of prestress depends on the span, the load
history, and the serviceability requirements. Until recently, the level of prestress was usually
selected so that cracking at service loads did not occur. Frequently, this resulted in
unnecessarily high initial prestressing forces and, consequently, uneconomical designs. The
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high initial prestress also often led to excessively large camber and/or axial shortening.
Members designed to remain uncracked at service loads are termed fully prestressed.

In building structures, there are relatively few situations in which it is necessary to avoid
cracking at service loads. In fact, the most economic design often results in significantly less
prestress than is required for a fully prestressed member. Frequently, such members are
designed to remain uncracked under the sustained or permanent load, with cracks opening and
closing as the variable live load is applied and removed. Prestressed concrete members
behave well in the post-cracking load range, provided they contain sufficient bonded
reinforcement to control the cracks. A cracked prestressed concrete section under service
loads is significantly stiffer than a cracked reinforced concrete section of similar size and
containing similar quantities of bonded reinforcement. Members that are designed to crack at
the full service load are called partially prestressed.

The elastic stress calculations presented in the previous section are applicable only if
material behaviour is linear-elastic and the principle of superposition is valid. These
conditions may be assumed to apply on a prestressed section prior to cracking, but only
immediately after the loads are applied. As was mentioned in the introduction to Section 1.5,
the gradual development of inelastic creep and shrinkage strains in the concrete can cause a
marked redistribution of stress between the bonded steel and the concrete on the cross-section.
The greater the quantity of bonded reinforcement, the greater is the time-dependent
redistribution of stress. For the determination of the long-term stress and strain distributions,
elastic stress calculations are not meaningful and may be misleading.

If the external loads are sufficient to cause cracking (i.e. the extreme fibre stress exceeds
the tensile strength of concrete), the short-term behaviour also becomes non-linear and the
principle of superposition is no longer applicable. As the applied moment on a cracked,
prestressed section increases, the crack depth gradually increases from the tension surface
towards the compression zone and the size of the uncracked part of the cross-section in
compression above the crack decreases. This is different to the post-cracking behaviour of a
conventionally reinforced concrete section. At first cracking on a reinforced section, the crack
suddenly propagates deep into the beam and the crack height and the depth of the concrete
compression zone remains approximately constant as the applied moment is subsequently
varied.

As the moment increases further into the overload region, the material behaviour becomes
increasingly non-linear, Permanent deformation occurs in the bonded prestressing tendons as
the stress approaches its ultimate value, the non-prestressed conventional reinforcement yields,
and the compressive concrete in the ever decreasing region above the crack enters the non-
linear range. The external moment is resisted by an internal couple,
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with tension in the reinforcement crossing the crack and compression in the concrete and in
any reinforcement in the compressive zone. At the ultimate load stage, the prestressed section
behaves in the same way as a reinforced concrete section, except that the stress in the high-
strength steel reinforcement is very much higher. A significant portion of the very high steel
stress and strain is due to the initial prestress or, more precisely, the initial prestrain. If the
same higher strength steel were to be used without being initially prestrained, excessive
deformation and unacceptably wide cracks would result at only a small fraction of the
ultimate load (well below normal service loads).

The ultimate strength of a prestressed section depends on the quantity and strength of the
steel reinforcement. The level of prestress, however, and therefore the quantity of prestressing
steel are determined from serviceability considerations. In order to provide a suitable factor of
safety for strength, additional conventional reinforcement may be required to supplement the
prestressing steel in the tension zone. This is particularly so in the case of partially prestressed
members and may even apply for fully prestressed construction. The avoidance of cracking at
service loads and the satisfaction of selected elastic stress limits do not ensure adequate
strength. Strength must be determined from a rational analysis which accounts for the non-
linear material behaviour of both steel and concrete. Flexural strength analysis is described
and illustrated in Chapter 4, and analyses for shear and torsional strength are contained in
Chapter 5.

1.7 Design procedures

1.7.1 Limit states requirements

A structure and its components must simultaneously satisfy a number of different limit states
or design requirements. It must possess adequate strength, be stable, and perform
satisfactorily under service loads. Further, it must be durable, have adequate fire protection,
resist fatigue loading, and satisfy any special requirements which are related to its intended
use. Codes of practice specify design criteria which provide a suitable margin of safety
against a structure becoming unfit for service in any of these ways.

If a structure becomes unfit for service in any way, it is said to have entered a limit state.
Limit states are the undesirable consequences associated with each possible mode of failure.
In order to satisfy the design criteria set down in codes of practice, methods of design and
analysis should be used which are appropriate to the limit state being considered. For example,
if the strength of a cross-section is to be calculated, ultimate strength analysis and design
procedures are usually adopted. Collapse load methods of analysis and design (plastic
methods) may be suitable for calculating the
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strength of ductile, indeterminate structures. If the serviceability limit states of excessive
deflection (or camber) or excessive cracking are considered, an analysis which accounts for
the non-linear and inelastic nature of concrete is usually required. The sources of this concrete
material non-linearity include cracking, tension stiffening, creep, and shrinkage. In addition,
creep of the high-strength prestressing steel (more commonly referred to as relaxation) may
affect in-service behaviour.

Each limit state must be considered and designed for separately. Satisfaction of one does
not ensure satisfaction of others. All undesirable consequences should be avoided. For each
limit state, the designer must compare the structure’s capacity with the appropriate external
loads. In the following sections, the design requirements for prestressed concrete are
discussed, including the specified loads and load combinations and the treatments of structural
safety contained in several major codes of practice.

1.7.2 Loads on structures

In the design of a concrete structure, the internal actions arising from the following loads
should be considered if applicable. The notation used here is based, where possible, on the
recommendations of ISO 3898:

Dead load (G); Live load (Q); Wind load (W); Prestress (P); Earthquake (Feq); Earth pressure
(Fep); Liquid pressure (Flp); and Snow load (Fs).

In addition, possible accidental loading and construction loads should be considered where
they may adversely affect the limit states requirements. Other actions which may cause either
stability, strength or serviceability failures include, creep of concrete, shrinkage (or
expansion) of concrete, temperature changes and gradients, foundation movements, and
dynamic effects.

Dead loads are usually defined as loads imposed by both the structural and non-structural
components of a structure. Dead loads include the self-weight of the structure and the forces
imposed by all walls, floors, roofs, ceilings, permanent partitions, service machinery, and
other permanent construction. Dead loads are usually permanent, fixed in position, and can be
estimated reasonably accurately from the mass of the relevant material or type of construction.
Normal weight prestressed (or reinforced) concrete, for example, weighs about 24 kN/m3.
Lightweight reinforced concrete weighs between 15 and 20 kN/m3.

Live loads are the loads which are assumed to arise from the intended use or purpose of the
structure and are generally specified by regional or national codes and specifications. A
number of these references are listed at the end of this chapter. Specified live loads depend on
the expected use
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or occupancy of the structure and usually include allowances for impact and inertia loads
(where applicable) and for possible overload. In general, both uniformly distributed and
concentrated live loads are specified. At the design stage, the magnitude of the maximum live
load is never accurately known, and there is a small, but significant, probability that the
specified live load will be exceeded at some stage during the life of the structure. Live loads
may or may not be present at any particular time; they are not constant and their position can
vary. Although part of the live load is transient, some portion may be permanently applied to
the structure and have effects similar to dead loads. Live loads also occur during construction
due to stacking of building materials, the use of equipment, or the construction procedure
(such as the loads induced by floor-to-floor propping in multistorey construction).

Specified wind, earthquake, snow and temperature loads depend on the geographical
location and the relative importance of the structure (the mean return period). Wind loads also
depend on the surrounding terrain, the degree of shielding, and the height of the structure
above the ground. These environmental loads are also usually specified by regional or
national codes and specifications.

1.7.3 Load combinations for the strength limit states

The loads used in the design for strength are the specified values discussed above multiplied
by minimum load factors contained in the various codes of practice. With the built-in
allowance for overloads in most loading specifications, the specified loads will not often be
exceeded in the life of a structure. The load factors applied to each load type ensure that the
probability of strength failure is extremely low. Load factors provide only part of the overall
factor of safety against strength failure and are referred to in Europe as partial safety factors
for load. As will subsequently be seen, partial safety factors, in one form or another, are also
applied to the calculated strength of the structure.

The load factors depend on the type of load and the load combination under consideration.
For example, the load factors associated with dead loads are less than those for live or wind
loads, because the dead load is known more reliably and therefore less likely to be exceeded.

The load factors specified in several widely used concrete codes for particular load
combinations are summarized below. The most severe factored load combination should be
used in the design for strength.

ACI 318–83 (1983)

Dead+Live: 1.4G+1.7Q

0.75(1.4G+1.7Q+1.7W) orWind:

0.9G+1.3W
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Earthquake: As for wind, except that 1.1Feq is substituted for W

1.4G+1.7Q+1.7Fep orEarth pressure:

0.9G+1.7Fep

BS 8110: Part 1 (1985)

Dead+Live: 1.4G+1.6Q

1.2G+1.2Q+1.2W or

1.4G+1.4W or

Wind:

1.0G+1.4W

1.4G+1.6Q+1.4Fep orEarth pressure:

1.0G+1.4Fep

Liquid pressure: As for earth pressure

CEB–FIP Model Code (1978)

Dead+Live: 1.35G+1.5Q

Wind:

1.0G+1.5W

For earthquake, earth pressure, or liquid pressure, the same two load combinations as for wind
are used except that W is replaced by Feq, Fep or Flp, respectively. is a combination factor
which depends on the type of structure and accounts for the reduced probability that the
specified live load will be acting when the design wind (or earthquake) occurs. For example,

for dwellings and highway bridges and for offices, retail stores, and parking
areas.

CAN3–A23.3–M84 (1984)

Dead+Live: 1.25G+1.5Q

1.25G+1.5W or

0.85G+1.5W or

Wind:

1.25G +0.7(1.5Q+1.5W)

Earthquake loads are treated similarly to wind loads. Earth and liquid pressures are taken as
live loads and factored accordingly.

AS 3600 (1988)

1.25G+1.5Q orDead+Live:

0.8G+1.5Q



Wind:

0.8G+1.5W

Earthquake:

0.8G+1.6Feq

1.25G+1.5Q+1.5Fep orEarth pressure:

0.8G+1.5Fep
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Liquid pressure is factored similarly to earth pressure. depends on the type of occupancy:
for domestic, office, and parking areas, 0.5 for retail stores, and 0.6 for storage areas.

In addition to the above load combinations, AS 3600−1988 specifies the following factored
combination of prestressed and dead load when considering compressive failure at transfer:
1.15G+1.15P or 0.8G+1.15P.

1.7.4 Load combinations for the stability limit states

All structures should be designed such that the factor of safety against instability due to
overturning, uplift, or sliding is suitably high. In general, most codes require that the structure
remains stable under the most severe of the load combinations for the strength limit states (see
Section 1.7.3). The Australian Standard for Concrete Structures AS 3600−1988 suggests that
the loads causing instability should be separated from those tending to resist it. The design
action effect is then calculated from the most severe of the load combinations for the strength
limit state. The design resistance effect is calculated from 0.8 times the loads and other forces
tending to resist instability. The structure should be so proportioned that its design resistance
effect is not less than the design action effect.

Consider, for example, the case of a standard cantilever retaining wall. When checking for
overturning in accordance with AS 3600–1988, the overturning moment caused by both the
lateral earth pressure and the lateral thrust of any dead and live load surcharge would be
calculated using the worst factored load combination of Section 1.7.3. To provide a suitable
margin of safety against stability failure, the overturning moment should not be greater than
0.8 times the restoring moment caused by the wall self-weight and the weight Of the backfill
and other permanent surcharge above the wall.

1.7.5 Load combinations for the serviceability limit states

The design loads to be used in serviceability calculations are the day-to-day service loads
which may be considerably less than the specified loads. The specified live load Q, for
example, has a built-in allowance for overload and impact, and there is a relatively low
probability that this value will be exceeded. It is usually not necessary, therefore, to ensure
acceptable deflections and crack widths under the full specified live loads. The day-to-day
load combinations that exist under normal conditions of service are more appropriate.

ACI 318–83 (1983) does not make specific recommendations regarding load combinations
for serviceability calculations, except that adequate stiffness is required to limit the
deformation of a structure at service loads to a specified maximum value. Where the long-
term deformation is calculated,
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only the dead load and the permanent portion of the live load need be considered.
BS 8110: Part 2 (1985) differentiates between the characteristic (or specified) loads and the

expected loads. Depending on the type of structure, the expected loads may be significantly
less than the characteristic loads. If the aim of the serviceability calculation is to produce a
best estimate of the likely behaviour, then expected loads should be used. The actual values of
these expected live loads are not specified and are deemed to be a matter for engineering
judgement. If the aim is to satisfy a particular serviceability limit state, and the consequences
of failure to do so are high, then the specified or characteristic service loads may be more
appropriate. Once again, the decision should be based on engineering judgement and
experience. BS 8110 specifies that for dead load the expected and the characteristic values are
the same and, therefore, the characteristic dead load should be used in all serviceability
calculations. For normal domestic or office occupancy, BS 8110 specifies that 25% of the live
load should be considered as permanent or sustained and the remainder may be assumed to be
transitory in nature. For storage areas, when an upper limit to the final long-term deflection is
required, 75% of the live load should be considered to be permanent.

The CEB–FIP Model Code (1978) specifies live load factors, and for serviceability
calculations. The following service load combinations should be considered:

The quasi-permanent loads:

The frequent (day-to-day) loads:

The infrequent (one-off) loads: G+P+Q

P is the mean prestressing force. is the short-term service load factor and equals 0.4 for
dwellings, 0.6 for offices and retail stores, 0.7 for parking areas, and for highway bridges may
be linearly interpolated between 0.7 for spans of 10 m and 0.5 for spans of 100 m. is the
long-term service load factor and equals 0.2 for dwellings, 0.3 for offices and retail stores, 0.6
for parking areas, and zero for highway bridges. For wind and snow loads, lies between 0.2
and 0.5 and

The Canadian code CAN3–A23.3–M84 (1984) suggests that the specified loads should be
used in serviceability calculations, except that for the estimate of long-term deflections, the
sustained loads only are to be considered. A load combination factor is introduced when
combinations of dead load and each of the following loads are considered: (a) live load, Q; (b)
wind or earthquake load, W; and (c) the cumulative effects of temperature, creep, shrinkage,
and differential settlement, T. The load combination for serviceability is therefore
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where when only one of Q, W, or T is acting, 0.7 when two of Q, W, or T are acting,
and 0.6 when all three are acting.

The Australian code AS 3600–1988 adopts a similar approach to the CEB–FIP model code.
Live load factors, and are used in the following service load combinations:

Short-term loads:

Long-term loads:

is the minimum fraction of Q which is considered to be appropriate for short-term
serviceability calculations and is equal to 0.7 for dwellings, 0.5 for offices and parking areas,
0.6 for retail stores, 1.0 for storage areas, and for bridges varies linearly from 0.7 for spans of
10 m to 0.5 for spans of 100 m. is the minimum fraction of Q which may reasonably be
expected to be sustained or permanent in nature and is equal to 0.3 for dwellings and retail
stores, 0.25 for parking areas, 0.2 for offices, between 0.5 and 0.8 for storage areas, and zero
for bridges.

1.7.6 Design for the strength limit states

The design strength of a member or connection must always be greater than the design action
produced by the most severe factored load combination (as outlined in Section 1.7.3). On a
particular cross-section, the design action may be the axial load N*, shear force V*, the
bending moment M*, or the twisting moment T*, or combinations thereof.

The design strength of a cross-section is a conservative estimate of the actual strength. In
modern concrete codes, one of two alternative design philosophies is used to determine the
design strength. The first involves the use of strength (or capacity) reduction factors and the
second approach involves the use of partial safety factors for material strengths.

Design strength using strength reduction factors

The design strength of a cross-section is taken as the product of the ultimate strength, Ru, and
a strength reduction factor, . The strength reduction factor is a factor of safety introduced to
account for the variability of the material properties controlling strength and the likelihood of
underperformance; also accounts for possible variations in steel positions and concrete
dimensions, inaccuracies in design procedures and workmanship, and the degree of ductility
of the member.

Both ACI 318–83 (1983) and AS 3600 (1988) adopt this approach and the strength
reduction factors contained therein are summarized in Table 1.1. varies between 0.7 and 0.9
in ACI 318–83 (and 0.6 and 0.8 in AS 3600–1988), the lower end of the range being
applicable when concrete directly controls the strength and the upper end of the range when
strength depends primarily on the properties of the steel.
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Table 1.1 Strength reduction factors (ACI 318–83 and AS 3600–1988).

Type of Action ACI 318–83 AS 3600–1988
(a) Flexure (with or without axial tension) and Axial tension 0.9 0.8

(b) Axial Compression and Axial Compression with Flexure

(i) Spiral reinforcement 0.75 0.6

(ii) Tied reinforcement 0.70 0.6

For small axial compression, may be increased linearly from the value given in (b) to the value given
in (a) as the axial compression tends to zero.

(c) Shear and torsion 0.85 0.7

(d) Bearing on Concrete 0.7 0.6

The determination of the ultimate strength Ru of a prestressed concrete section is based on the
characteristic strengths of the materials and their idealized constitutive relationships, the
principles of ultimate strength theory, and the fundamental concepts of mechanics. Procedures
for calculating the ultimate bending strength Mu are discussed in Chapter 4, the ultimate shear
strength Vu and torsional strength Tu in Chapter 5, and the ultimate strength of members in
axial compression and tension Nu in Chapter 12.

The design requirement for the strength limit state on each cross-section and at each
connection throughout the structure is

(1.12)

The design strength must be greater than or equal to the most severe design action.

Design strength using partial safety factors

The strength reduction factor is a safety factor which is applied to the ultimate strength of a
section, the ultimate strength being calculated from the characteristic or specified material
strengths. An alternative approach to
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the determination of the design strength of a section is to apply the safety factors directly to
the material strengths.

For concrete, reinforcement bars, and prestressing tendons, the design strength of the
material is obtained from the characteristic strength divided by the appropriate partial safety
factor, γm. These reduced material strengths are then used to determine the design strength of
the section directly (using similar procedures to those used for calculating the ultimate
strength, Ru).

The partial safety factors for the constituent materials, γm, take account of the variability of
the material, the differences between actual material properties and laboratory-measured
values, local weaknesses, and inaccuracies in the methods of assessment of the resistance of
cross-sections. They serve the same function as strength reduction factors, but do so in,
arguably, a more rational way and provide a more consistent level of safety.

BS 8110: Part 1 (1985), the CEB–FIP Model Code (1978) and CAN3–A23.3–M84 (1984)
all use this approach. The partial safety factors for materials specified in each code are
summarized below:

BS 8110: Part 1 (1985)

For reinforcement (all types): γm=1.15

Concrete in flexure or axial load: γc=1.5

Shear strength without shear reinforcement: γc=1.25

Bond strength: γc=1.4

Others (e.g. bearing stress):

CEB–FIP Model Code (1978)

For concrete: γc=1.5

For steel: γs=1.15

CAN3–A23.3–M84 (1984)

For concrete: γc=1/0.6

For prestressing tendons (and structural steel): γs=1/0.9

For conventional reinforcing bar: γs=1/0.85

1.7.7 Design for the serviceability limit states

When designing for serviceability, the designer must ensure that the structure behaves
satisfactorily and can perform its intended function at service loads. Deflection (or camber)
must not be excessive, cracks must be adequately controlled, and no portion of the structure
should suffer excessive vibration.

The design for serviceability is possibly the most difficult and least well understood aspect
of the design of concrete structures. Service load behaviour depends primarily on the
properties of the concrete which are
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often not known reliably. Moreover, concrete behaves in a non-linear and inelastic manner at
service loads. The non-linear behaviour of concrete which complicates serviceability
calculations is caused by cracking, tension stiffening, creep, and shrinkage.

In Chapter 3, design procedures for determining the in-service behaviour of beams are
presented, and Chapter 11 deals with serviceability aspects of the design of prestressed
concrete slabs. The level of prestress in beams and slabs is generally selected to satisfy the
serviceability requirements.

The control of cracking in a prestressed concrete structure is usually achieved by limiting
the stress increment in the bonded reinforcement to some appropriately low value and
ensuring that the bonded reinforcement is suitably distributed. Many codes of practice specify
maximum steel stress increments after cracking and maximum spacing requirements for the
bonded reinforcement. For example, for the control of flexural cracking in partially
prestressed concrete beams, AS 3600 (1988) requires that the increment of stress in the steel
near the tension face is limited to 200 MPa as the load is increased from its value when the
extreme concrete tensile fibre is at zero stress to the full short-term service load. In addition,
the centre to centre spacing of reinforcement (including bonded tendons) must not exceed 200
mm.

For deflection control, the structural designer should select maximum deflection limits
which are appropriate to the structure and its intended use. The calculated deflection (or
camber) must not exceed these limits. Codes of practice give general guidance for both the
selection of the maximum deflection limits and the calculation of deflection. However, the
simplified procedures for calculating deflection in most codes were developed from tests on
simply supported reinforced concrete beams and often produce grossly inaccurate predictions
when applied to more complex structures. Reliable procedures for calculating deflections of
partially prestressed concrete beams are presented in some detail in Chapter 3.

Deflection problems which may affect the serviceability of prestressed concrete structures
can be classified into three main types:

(a) Where excessive deflection causes either aesthetic or functional problems.
(b) Where excessive deflection results in damage to either structural or non-structural

elements attached to the member.
(c) Where dynamic effects due to insufficient stiffness cause discomfort to occupants.

Examples of deflection problems of type (a) include objectionable visual sagging (or hogging),
and ponding of water on roofs. In fact, any deflection which prevents a member fulfilling its
intended function causes a problem of this type. Type (a) problems are generally overcome by
limiting the total
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deflection to some appropriately low value. The total deflection is the sum of the short-term
and time-dependent deflection caused by the dead load (including self-weight), the prestress,
the expected in-service live load, and the load-independent effects of shrinkage and
temperature changes.

Some codes (including ACI 318–83, BS 8110 1985, and CAN3–A23.3– M84) place no
maximum limit on the total deflection. However, when the total deflection exceeds about
span/200 below the horizontal, it may become visually unacceptable. Total deflection limits
which are appropriate for the particular member and its intended function must be decided by
the designer. A total deflection limit of span/200, for example, may be appropriate for the
floor of a carpark, but is inadequate for a gymnasium floor which may be required to remain
essentially plane under service conditions.

Examples of type (b) problems include deflections which result in cracking of masonry or
other partitions, damage to ceiling or floor finishes, and improper functioning of sliding
windows and doors. To avoid these problems, a limit must be placed on that part of the total
deflection that occurs after the attachment of such elements. This incremental deflection is
usually the sum of the long-term deflection due to all the sustained loads and shrinkage, the
short-term deflection due to the transitory live load, and any temperature-induced deflection.

For roof or floor construction supporting or attached to non-structural elements that are
unlikely to be damaged by large deflection, ACI 318–83 (1983) limits the incremental
deflection to span/240. Where such elements are likely to be damaged by large deflection, the
incremental deflection limit is reduced to span/480. Incremental deflections of span/480 can
cause cracking of supported masonry walls, particularly when doorways or corners prevent
arching and no provisions are made to minimize the effect of movement. AS 3600 (1988)
limits the incremental deflection for members supporting masonry partitions to between
span/500 and span/1000, depending on the provisions made to minimize the effect of
movement.

Type (c) deflection problems include the perceptible springy vertical motion of floor
systems and other vibration-related problems. Very little quantitative information for
controlling this type of deflection problem is available in codes of practice. ACI 318–83
(1983) places a limit of span/360 on the short-term deflection of a floor due to live load (and
span/180 for a flat roof). This limit provides a minimum requirement on the stiffness of
members which may, in some cases, be sufficient to avoid problems of type (c). For
prestressed concrete floors, type (c) problems are potentially the most common. Load
balancing is often employed to produce a nearly horizontal floor under the sustained load.
Such structures are generally uncracked at service loads, total deflection is small, and types
(a) and (b) deflection problems are easily avoided.

Where a structure supports vibrating machinery (or any other significant dynamic load) or
where a structure may be subjected to ground motion
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caused by earthquake, blasting, or adjacent road or rail traffic, vibration control becomes an
important design requirement. This is particularly so for slender structures, such as tall
buildings or long-span beams and slabs.

Vibration is best controlled by isolating the structure from the source of vibration. Where
this is not possible, vibration may be controlled by limiting the frequency of the fundamental
mode of vibration of the structure to a value which is significantly different from the
frequency of the source of vibration. When a structure is subjected only to pedestrian traffic, 5
Hz is often taken as the minimum frequency of the fundamental mode of vibration of a beam
or slab (Irwin 1978, Mickleborough & Gilbert 1986).
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2
Design properties of materials

2.1 Introduction

The behaviour of a prestressed concrete member throughout the full range of loading depends
on the properties and behaviour of the constituent materials. In order to satisfy the design
objective of adequate structural strength, the ultimate strengths of both concrete and steel
need to be known. In addition, factors affecting material strength and the non-linear behaviour
of each material in the overload range must be considered. In order to check for serviceability,
the instantaneous and time-dependent properties of concrete and steel at typical in-service
stress levels are required.

As was mentioned in Chapter 1, the prestressing force in a prestressed member gradually
decreases with time. This loss of prestress, which is usually 10–25% of the initial value, is
mainly caused by inelastic creep and shrinkage strains which develop with time in the
concrete at the level of the bonded steel. Reasonable estimates of the creep and shrinkage
characteristics of concrete and procedures for the time analysis of prestressed structures are
essential for an accurate prediction and a clear understanding of in-service behaviour.
Relaxation of the prestressing steel also causes a time-dependent loss of prestress. With the
current trend towards the use of low relaxation steels, however, this component of prestress
loss is usually small (less than 5%).

The intention in this chapter is to present a broad outline of material behaviour and to
provide sufficient quantitative information on material properties to complete most design
tasks.

CONCRETE

A more comprehensive treatment of the properties of concrete and the factors affecting them
was given by Neville (1981).
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2.2 Composition of concrete

Concrete is a mixture of cement, water, and aggregates. It may also contain one or more
chemical admixtures. Within hours of mixing and placing, concrete sets and begins to develop
strength and stiff ness as a result of chemical reactions between the cement and water. These
reactions are known as hydration. Calcium silicates in the cement react with water to produce
calcium silicate hydrate and calcium hydroxide. The resultant alkalinity of the concrete helps
to provide corrosion protection for the reinforcement.

The relative proportions of cement, water, and aggregates may vary considerably
depending on the chemical properties of each component and the desired properties of the
concrete. A typical mix used for prestressed concrete by weight might be coarse aggregate
44%, fine aggregate 31%, cement 18%, and water 7%.

In most countries, several different types of Portland cement are available, including
normal cements, high early strength cements, low heat of hydration cements, and various
cements which provide enhanced sulphate resistance. In order to alter and improve the
properties of concrete, other cementitious materials may be used to replace part of the
Portland cement, e.g. fly ash, natural pozzolans, blast furnace slag, and condensed silica fume.

The ratio of water to cement by weight that is required to hydrate the cement completely is
about 0.25, although larger quantities of water are required in practice in order to produce a
workable mix. For the concrete typically used in prestressed structures, the water-to-cement
ratio is about 0.4. It is desirable to use as little water as possible, since water not used in the
hydration reaction causes voids in the cement paste that reduce the strength and increase the
permeability of the concrete.

The use of chemical admixtures to improve one or more properties of the concrete is now
commonplace. In recent years, high-strength concretes with low water-to-cement ratios have
been made more workable by the inclusion of superplasticizers in the mix. These polymers
greatly improve the flow of the wet concrete and allow very high-strength, low-permeability
concrete to be used with conventional construction techniques.

The rock and sand aggregates used in concrete should be properly graded and inert.
Expansive and porous aggregates should not be used and aggregates containing organic
matter or other deleterious substances, such as salts or sulphates, should also be avoided.

2.3 Strength of concrete

In structural design, the quality of concrete is usually controlled by the specification of a
minimum characteristic compressive strength at 28 days,
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. The characteristic strength is the stress which is exceeded by 95% of the uniaxial
compressive strength measurements taken from standard compression tests. Such tests are
most often performed on 150 mm concrete cubes (in Europe and the UK) and on 150 mm
diameter by 300 mm long concrete cylinders (in North America and Australia). Because the
restraining effect at the loading surfaces is greater for the cube than for the longer cylinder,
strength measurements taken from cubes are higher than those taken from cylinders. The ratio
between cylinder and cube strength, R, is about 0.8 for low-strength concrete (i.e. cylinder
strengths of 20–30 MPa) and increases as the strength increases. The following expression for
R is often used (Neville 1981):

(2.1)

where σcu is the cube strength in MPa (psi) and c=19.6 (2480). Throughout this book, refers
to the characteristic compressive strength obtained from cylinder tests.

In practice, the concrete used in prestressed construction is usually of better quality and
higher strength than that required for ordinary reinforced concrete. Values of in the range
30–40 MPa are most often used, but strengths as high as 60 MPa are not uncommon. In some
recent structures in North America, concrete strengths of over 100 MPa have been used
successfully. The forces imposed on a prestressed concrete section are relatively large and the
use of high-strength concrete keeps section dimensions to a minimum. High-strength concrete
also has obvious advantages in the anchorage zone of post-tensioned members where bearing
stresses are large, and in pretensioned members where a higher bond strength better facilitates
the transfer of prestress. As the compressive strength of concrete increases, so too does the
tensile strength. The use of higher strength concrete may therefore delay (or even prevent) the
onset of cracking in a member.

High-strength concrete is considerably stiffer than low-strength concrete. The elastic
modulus is higher and elastic deformations due to both the prestress and the external loads are
lower. In addition, high-strength concrete generally creeps less than low-strength concrete.
This results in smaller losses of prestress and smaller long-term deformations.

The effect of concrete strength on the shape of the stress-strain curve for concrete in
uniaxial compression is shown in Figure 2.1. The modulus of elasticity (the slope of the
ascending portion of each curve) increases with increasing strength and each curve reaches its
maximum stress at a strain of about 0.002.

The shape of the unloading portion of each curve (after the peak stress has been reached)
depends on, among other things, the characteristics of the testing machine. By applying
deformation to a specimen, instead of load,
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Figure 2.1 Effect of strength on the compressive stress-strain curve.

in a testing machine which is stiff enough to absorb all the energy of a failing specimen, an
extensive unloading branch of the stress-strain curve can be obtained. Concrete can undergo
very large compressive strains and still carry load. This deformability of concrete tends to
decrease with increasing strength.

The strength of properly placed and well compacted concrete depends primarily on the
water-to-cement ratio, the size of the specimen, the size, strength, and stiffness of the
aggregate, the cement type, the curing conditions, and the age of the concrete. As mentioned
in Section 2.2, the strength of concrete increases as the water-to-cement ratio decreases.

The compressive strength of concrete increases with time, a rapid initial strength gain (in
the first day or so after casting) and a much slower, gradually decreasing rate thereafter. The
rate of development of strength with time depends on the type of curing and the type of
cement. In prestressed concrete construction, a rapid initial gain in strength is usually
desirable in order to apply the prestress as early as possible. This is particularly so in the case
of precast, pretensioned production. Steam curing and high early strength cement are often
used to this end.

The following expression is recommended by ACI–209 (1978) for predicting the strength
at any time from the measured or specified 28 day value:

(2.2)
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where is the strength of the concrete at age t in days, is the concrete strength at
age 28 days, and αand βare constants:

For normal Portland cement:

For moist cured concrete: α=4.0 β=0.85

For steam cured concrete: α=1.0 β=0.95

For high early strength cement:

For moist cured concrete: α=2.3 β=0.92

For steam cured concrete: α=0.7 β=0.98

The strength of concrete in tension is an order of magnitude less than the compressive
strength and is far less reliably known. A reasonable estimate is required, however, in order to
predict service-load behaviour in the post-cracking range. The flexural tensile strengths of
concrete (or modulus of rupture, ) is the extreme fibre stress calculated from the results of
standard flexural strength tests on plain concrete prisms and usually lies within the range

(in MPa). Because of the relatively large scatter of measured tensile strengths,
the lower end of this range is usually specified in building codes [such as ACI 318–83 (1983)
and AS 3600 (1988)]. For design purposes, the flexural tensile strength of normal weight
concrete may be taken as

(2.3)

In direct tension, where the tensile stress is uniform (or nearly so) over the section, the tensile
strength of concrete, , is lower and may be taken as

(2.4)

For lightweight aggregate concrete, these tensile strengths should be reduced by a factor of
about 0.67.

In practice, concrete is often subjected to multi-axial states of stress. For example, a state of
biaxial stress exists in the web of a beam, or in a shear wall, or a deep beam. Triaxial stress
states exist within connections, in confined columns, in two-way slabs, and other parts of a
structure. A number of experimental studies of the behaviour of concrete under multi-axial
states of stress (particularly biaxial stress) have been undertaken, including those by Kupfer et
al. (1975) and Tasuji et al. (1978). The results of such studies have been particularly useful in
the formulation of material modelling laws for use in finite element studies of concrete
structures, such as by Darwin & Pecknold (1977), Gilbert (1979), and many more. A typical
biaxial strength envelope is shown in Figure 2.2. The strength of concrete under biaxial
compression is greater than for uniaxial compression. Transverse compression improves the
longitudinal compressive strength by confining
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Figure 2.2 Typical biaxial strength envelope for concrete.

the concrete, thereby delaying (or preventing) the propagation of internal microcracks. Figure
2.2 also shows that transverse compression reduces the tensile strength of concrete, due
mainly to the Poisson’s ratio effect. Similarly, transverse tension reduces the compressive
strength. In triaxial compression, both the strength of concrete and the strain at which the peak
stress is reached are greatly increased and even small confining pressures can increase
strength significantly. Correctly detailed transverse reinforcement provides confinement to
produce a triaxial stress state in the compressive zone of columns and beams, thereby
improving both strength and ductility.

2.4 Deformation of concrete

2.4.1 Discussion

The deformation of a loaded concrete specimen is both instantaneous and time dependent. If
the load is sustained, the deformation of the specimen gradually increases with time and may
eventually be several times larger than the instantaneous value.

The gradual development of strain with time is caused by creep and shrinkage. Creep strain
is produced by sustained stress. Shrinkage is independent of stress and results primarily from
the loss of water as the concrete dries. Creep and shrinkage cause increases in axial
deformation and curvature on reinforced and prestressed concrete cross-sections, losses of
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prestress, local redistribution of stress between the concrete and the steel reinforcement, and
redistribution of internal actions in statically indeterminate members. Creep and shrinkage are
often responsible for excessive deflection (or camber) and excessive shortening of prestressed
members. In addition, shrinkage may cause unsightly cracking which could lead to
serviceability or durability problems. On a more positive note, creep relieves concrete of
stress concentrations and imparts a measure of deformability to concrete. A comprehensive
treatment of the effects of creep and shrinkage on the behaviour of concrete structures is
available elsewhere (Gilbert 1988).

Researchers have been investigating the time-dependent deformation of concrete ever since
it was first observed and reported almost a century ago, and an enormous volume of literature
has been written on the topic. Detailed summaries of the time-dependent properties of
concrete and the factors which affect them are contained in the books by Neville (1970, 1981)
and Neville et al. (1983).

The time-varying deformation of concrete may be illustrated by considering a uniaxially
loaded concrete specimen subjected to a constant sustained stress σo first applied at time .
The total strain at any time may be assumed to be the sum of the instantaneous, creep,
and shrinkage components, as represented by the equation

(2.5)

The components of strain are illustrated diagramatically in Figure 2.3.

Figure 2.3 Strain vs time for specimen under constant compressive stress.
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Shrinkage strains begin to develop as soon as drying commences at time (immediately
after setting or at the end of moist curing). Shrinkage continues to increase with time at a
gradually decreasing rate, as shown. When the stress is first applied at , the instantaneous
strain component causes a sudden jump in the strain diagram, which is followed by a further
increase in strain due to creep. Creep also increases with time at a gradually decreasing rate.

To predict accurately the time-varying behaviour of concrete, a knowledge of the
magnitude and rate of development of each of these strain components is required. In a
concrete structure, prediction of time-dependent deformation is complicated by the restraint to
creep and shrinkage provided by both the reinforcement and the external supports, and the
continuously varying concrete stress history that inevitably results. In Sections 2.4.2–4, the
material properties that influence each of the strain components in Figure 2.3 are summarized.
Methods for predicting the time-dependent behaviour of prestressed concrete cross-sections
and members are discussed in detail in Section 3.6.

2.4.2 Instantaneous strain

The magnitude of the instantaneous strain εe(t) caused by either compressive or tensile stress
depends on the magnitude of the applied stress, the rate at which the stress is applied, the age
and the properties of the concrete and the proportions of its constituent materials. Consider the
uniaxial instantaneous strain versus compressive stress curve shown in Figure 2.4. When the
applied stress is less than about half of the compressive strength, the curve is essentially linear,
and the instantaneous strain is usually con-s sidered to be elastic (fully recoverable). In this
low-stress range, the secant

Figure 2.4 Typical stress vs instantaneous strain curve for concrete in compression.
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modulus Ec does not vary significantly with stress and is only slightly smaller than the initial
tangent modulus. At higher stress levels, the curve is decidedly non-linear and a significant
proportion of the instantaneous strain is irrecoverable.

In concrete structures, compressive concrete stresses caused by the day-to-day service loads
rarely exceed half of the compressive strength. It is therefore reasonable to assume that the
instantaneous behaviour of concrete at service loads is linear-elastic and that instantaneous
strain is given by

(2.6)

The value of the elastic modulus Ec increases with time as the concrete gains strength and
stiffness. Ec also depends on the rate of application of the stress and increases as the loading
rate increases. For most practical purposes, these variations are usually ignored and it is
common practice to assume that Ec is constant with time and equal to its initial value
calculated at the time of first loading, . For stress levels less than about , and for
stresses applied over a relatively short period (say up to 5 min), a numerical estimate of the
elastic modulus may be obtained from Pauw’s well known expression (Pauw 1960):

(2.7)

where ρis the density of concrete (about 2400 kg/m3 for normal weight concrete) and is
the average compressive strength in MPa at the time of first loading. Equation 2.7 is specified
in both ACI 318–83 (1983) and AS 3600 (1988).

When the stress is applied more slowly, say over a period of 1 day, significant additional
deformation occurs owing to the rapid early development of creep. For the estimation of
short-term deformation in such a case, it is recommended that the elastic modulus given by
Equation 2.7 be reduced by about 20% (Gilbert 1988).

The in-service performance of a concrete structure is very much affected by concrete’s
ability (or lack of it) to carry tension. It is therefore necessary to consider the instantaneous
behaviour of concrete in tension, as well as in compression. Prior to cracking, the
instantaneous strain of concrete in tension consists of both elastic and inelastic components.
In design, however, concrete is usually taken to be elastic-brittle in tension, i.e. at stress levels
less than the tensile strength of concrete the instantaneous strain versus stress relationship is
assumed to be linear. Although the initial elastic modulus in tension is a little higher than that
in compression, it is usual to assume that both values are equal and given by Equation 2.7.
Prior to
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cracking, therefore, the instantaneous strain in tension may be calculated using Equation 2.6.
When the tensile strength is reached, cracking occurs and the concrete stress perpendicular to
the crack is usually asssumed to be zero. In reality, if the rate of tensile deformation is
controlled, and crack widths are small, concrete can carry some tension across a crack owing
to friction on the rough, mating surfaces.

Poisson’s ratio for concrete, ν, lies within the range 0.15–0.22 and for most practical
purposes may be taken equal to 0.2.

2.4.3 Creep strain

For concrete subjected to a constant sustained stress, the gradual development of creep strain
was illustrated in Figure 2.3. In the period immediately after first loading, creep develops
rapidly, but the rate of increase slows appreciably with time. Creep is generally thought to
approach a limiting value as the time after first loading approaches infinity. Approximately
50% of the final creep develops in the first 2–3 months and about 90% after 2–3 years. After
several years under load, the rate of change of creep with time is very small. Creep of
concrete has its origins in the hardened cement paste and is caused by a number of different
mechanisms. A comprehensive treatment of creep in plain concrete was given by Neville et al.
(1983).

Many factors influence the magnitude and rate of development of creep, including the
properties of the concrete mix and its constituent materials. In general, as the concrete quality
increases, the capacity of concrete to creep decreases. At a particular stress level, creep in
higher-strength concrete is less than that in lower-strength concrete. An increase in either the
aggregate content or the maximum aggregate size reduces creep, as does the use of a stiffer
aggregate type. Creep also decreases as the water-to-cement ratio is reduced.

Creep depends on the environment, and increases as the relative humidity decreases. Creep
is therefore greater when accompanied by shrinkage (drying). Creep is also greater in thin
members with large surface area to volume ratios, such as slabs. Near the surface of a member,
creep takes place in a drying environment and is therefore greater than in regions remote from
a drying surface. In addition to the relative humidity, creep is dependent on the ambient
temperature. A temperature rise increases the deformability of the cement paste and
accelerates drying, and thus increases creep. At 40°C, creep in concrete is about 25% higher
than that at 20°C. The dependence of creep on temperature is much more significant at more
elevated temperatures.

In addition to the environment and the characteristics of the concrete mix, creep depends on
the loading history, in particular the magnitude of the stress and the age of the concrete when
the stress was first applied. When the sustained concrete stress is less than about (and
this is usually the
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case in real structures at service loads), creep is proportional to stress and is sensibly known
as linear creep. At higher sustained stress levels, creep increases at a faster rate and becomes
non-linear with respect to stress. From a structural design point of view, non-linear creep is of
little interest and only the effects of linear creep are considered here. The age of the concrete
when the stress is first applied has a marked influence on the magnitude of creep. Concrete
loaded at an early age creeps more than concrete loaded at a later age.

Creep strain is made up of a recoverable component [called the delayed elastic strain,εd(t)]
and an irrecoverable component [called flow, εf(t)]. These components are illustrated by the
creep strain versus time curve in Figure 2.5a, which is caused by the stress history shown in
Figure 2.5b. The delayed elastic strain develops rapidly and is of the order of 40% of the
elastic strain. The flow component is sometimes further sub-divided into basic flow and
drying flow components; however, in structural analysis, it is not usually necessary to
distinguish between these components.

The capacity of concrete to creep is usually measured in terms of the creep coefficient
In a concrete specimen subjected to a constant sustained compressive stress σo first

applied at age , the creep coefficient at time t is the ratio of creep strain to instantaneous
strain and is represented by

(2.8)

and therefore

(2.9)

Figure 2.5 Recoverable and irrecoverable creep components.
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For stress levels less than about , the creep coefficient is a pure time function,
independent of the applied stress, and has the same shape as the creep-time curve in Figure
2.3. As time approaches infinity, the creep coefficient is assumed to approach a final value

which usually falls within the range 1.5–4.0. A number of the well known
methods for predicting the creep coefficient were described and compared by Gilbert (1988).
Two of the simpler (and, therefore, more useful) approaches for making numerical estimates
of are presented in Section 2.5.

The effect of ageing is illustrated in Figure 2.6. The magnitude of the final creep coefficient
decreases as the age at first loading increases. That is,

(2.10)

This time-hardening or ageing of concrete complicates the calculation of creep strain caused
by a time-varying stress history.

The load-dependent strain at time t caused by a constant sustained stressσo is the sum of
the elastic and creep components and, using Equation 2.9, is given by

(2.11)

where is known as the effective modulus and is given by

(2.12)

If the stress is gradually applied to the concrete, rather than suddenly applied, the subsequent
creep strain is reduced significantly, since the concrete ages during the period of application
of the stress. This can be accom-

Figure 2.6 Effect of age at first loading on the creep coefficient (Gilbert 1988).
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modated analytically by the use of a reduced or adjusted creep coefficient. For an increment
of stress, Δσ, applied gradually to the concrete, the load-dependent strain may be obtained by
modifying Equation 2.11 as follows:

(2.13)

where

(2.14)

is often called the age-adjusted effective modulus, and χis an ageing coefficient first
introduced by Trost (1967) and later used by Bazant (1972). Like the creep coefficient, the
ageing coefficient depends on the duration of loading and the age at first loading and varies
between 0.6 and 1.0. For most practical purposes, χcan be taken as 0.8. More accurate
estimates of χbased on the creep predictive models of ACI 209 (1978) and the CEB Model
Code (1978) have been made by Bazant (1972) and Neville et al. (1983), respectively.

The above discussion is concerned with compressive creep. In many practical situations,
however, creep of concrete in tension is also of interest. Tensile creep, for example, plays an
important part in delaying the onset of cracking caused by restrained shrinkage. The
mechanisms of tensile creep are thought to be different from those of compressive creep, but
at the same stress levels the magnitudes are similar. In design, it is usual to assume that the
creep coefficients in tension and in compression are identical. Although not strictly correct,
this assumption simplifies calculations and does not usually introduce serious inaccuracies. A
comprehensive comparison between tensile and compressive creep was made by Neville et al
(1983).

2.4.4 Shrinkage strain
Shrinkage is the time-dependent strain measured in an unloaded and unrestrained specimen at
constant temperature. Concrete begins shrinking when drying commences and continues to
increase with time at a decreasing rate, as illustrated in Figure 2.3. Shrinkage is assumed to
approach a final value as time approaches infinity and is dependent on all the factors which
affect the drying of concrete, including the relative humidity, the mix characteristics (in
particular, the water content and water-to-cement ratio), and the size and shape of the member.

Shrinkage increases as the relative humidity of the surrounding air decreases. The drier the
atmosphere, the more rapid is the rate of drying
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of the concrete and the larger are both the magnitude and rate of development of shrinkage
strain. A temperature rise accelerates drying and therefore increases the rate of shrinkage.

The amount of drying depends on the initial water content. A concrete specimen with a
high initial water-to-cement ratio will shrink more than a similar specimen made from
concrete with a lower water-to-cement ratio and kept under the same atmospheric conditions.
In addition, the volume and type of aggregate also affect shrinkage. Aggregate provides
restraint to deformation of the cement paste, so that shrinkage tends to decrease if the volume
of aggregate is increased or if a stiffer aggregate is used. Shrinkage in lightweight concrete is
therefore considerably greater (up to 50%) than in normal weight concrete.

The size and shape of the concrete member have a major influence on the magnitude and
rate of development of shrinkage. For a thin member with a large drying surface to volume
ratio, such as a suspended slab or wall, drying takes place rapidly and may be essentially
complete after several years. For the concrete in the interior of thicker members, such as
beams or columns, drying takes place more slowly and may continue throughout the lifetime
of the member. Shrinkage strain therefore varies across the depth (and width) of structural
members and is highest at the surfaces exposed to the atmosphere. In fact, for more massive
members, there is no significant drying (shrinkage) except in the concrete located within
about 300 mm of a drying surface.

Procedures for estimating the mean shrinkage on a cross-section are contained in many
building codes and other technical specifications. Two of the more simple approaches for
making rough estimates of shrinkage strain are presented in Section 2.5.

2.5 Predictions of the creep coefficient and shrinkage

2.5.1 Discussion

Great accuracy in the prediction of the creep coefficient and shrinkage strain is not possible.
The variability of these material characteristics is high. Reasonable estimates can be made,
however, by extrapolation from short-term test results, using one of a number of mathematical
expressions which have been proposed to model the shape of the creep-time and shrinkage-
time curves. Creep strain is measured over a relatively short time period in laboratory
specimens subjected to constant stress. Shrinkage is also measured during the same period in
identical unloaded specimens. The longer the initial period of measurement, the better are the
long-term predictions.
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Based on 28 day measurements , the ACI Committee 209 (1978) suggests
the following expressions for the creep coefficient at any time t after first loading and the
shrinkage strain in moist cured concrete at any time T after the commencement of drying:

(2.15)

and

(2.16)

In practice, structural designers seldom have the time or resources to commission laboratory
testing to determine material properties. Design predictions are more often made using one of
many numerical methods which are available for predicting the creep coefficient and
shrinkage strain. These methods vary in complexity, ranging from relatively complicated
methods, involving the determination of numerous coefficients that account for the many
factors affecting creep and shrinkage, to much simpler procedures. Comparisons between
predictions made using several of the more well known procedures were made by Gilbert
(1988) and Neville et al. (1983). Although the properties of concrete vary from country to
country as the mix characteristics and environmental conditions vary, the agreement between
the procedures for estimating both creep and shrinkage is still remarkably poor, particularly
for shrinkage. In addition, the comparisons between predictive models show that the accuracy
of a particular model is not directly proportional to its complexity, and predictions made using
several of the best known methods differ widely.

In the following sections, two simple methods for the estimation of the creep and shrinkage
characteristics of concrete are outlined. The first is that recommended in BS 8110 (1985) and
the second is similar to that recommended in AS 3600 (1988). In Appendix I, two of the most
widely used (and considerably more complex) alternative procedures are presented, namely
the recommendations of ACI 209 (1978) and CEB–FIP (1978). The variability of the time-
dependent properties of concrete is highlighted by the large differences in the predictions
made by each of these methods. From the point of view of the structural designer, there is
much to recommend a simple, approximate method which will provide a rough estimate of the
creep coefficient and shrinkage strain. After all, a rough estimate is all that is possible.
Predictions made using the following procedures will, in general, lead to estimates of
structural behaviour which are satisfactory for most practical purposes.
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2.5.2 British standard—structural use of concrete, BS 8110: Part 2 (1985)

British Standard BS 8110 (1985) specifies a simple method for estimating the final (30 year)
creep and shrinkage.

Creep

The procedure outlined in BS 8110 is similar to an earlier proposal by the British Concrete
Society (1978) and is in fact based on the CEB–FIP (1970) recommendations. The static
modulus of elasticity of normal weight concrete at 28 days is specified as

(2.17)

where Ko is a constant that depends on the stiffness of the aggregate and may be taken as 20
GPa for normal weight concrete, and fcu(28) is the 28 day cube strength in MPa. For
lightweight concrete of density ρ(in kg/m3), the right-hand side of Equation 2.17 should be
multiplied by (ρ/2400)2. The elastic modulus at any time t may be derived from Ec,28 using the
equation

(2.18)

Figure 2.7 Final creep coefficient (BS 8110 1985).
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The Standard suggests that the final creep strain may be predicted from

(2.19)

where is the elastic modulus at the time of loading and is the final creep coefficient.
Numerical estimates of may be obtained from Figure 2.7 [which is based on the CEB–FIP
(1970) recommendations]. Equation 2.19 implies that the final creep strain depends only on
the current concrete stress σand not on the previous stress history, which of course is wrong.
If reliable estimates of long-term deformation are required, Equation 2.19 should not be used.
A more reliable procedure for predicting creep strain, which better accounts for the previous
stress history, is presented in Section 3.6. The Standard points out that 40%, 60%, and 80% of
the final creep may be assumed to develop during 1, 6, and 30 months, respectively, under
load.

Shrinkage

Shrinkage strains after 6 months and after 30 years may be estimated from Figure 2.8 for
concrete of normal workability, without water reducing admixtures. Figure 2.8 was proposed
originally by Parrott (1979) and applies to concrete with a water content of about 190 l/m3.
For concrete

Figure 2.8 Shrinkage for normal weight concrete (BS 8110 1985).
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with a different water content, shrinkage may be regarded as proportional to water content
within the range 150–230 l/m3.

2.5.3 Australian standard AS 3600–1988

Creep

The creep coefficient at time t due to a sustained stress first applied at age is expressed as

(2.20)

In the absence of more reliable test data, the reference creep coefficient may be taken as
follows:

(MPa) 20 25 32 40 50

5.2 4.2 3.4 2.5 2.0

The constant k2 depends on the hypothetical thickness th, the environment, and the duration of
load and can be determined from Figure 2.9. The hypothetical thickness of a member is
the ratio of its cross-sectional area to half of that part of the perimeter of the section which is
exposed to the atmosphere (the drying perimeter). k3 depends on the age of the concrete at the
time of loading and is obtained from the strength ratio using Figure 2.10.

Figure 2.9 Creep coefficient, k2 (AS 3600–1988).
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Figure 2.10 Creep coefficient, k3 (AS 3600–1988).

Shrinkage

The shrinkage strain at any time after the commencement of drying is given by

(2.21)

where k1 is obtained from Figure 2.11 and depends on the environment and the hypothetical
thickness.

Figure 2.11 Shrinkage coefficient, k1 (AS 3600–1988).

2.6 Thermal expansion

The coefficient of thermal expansion of concrete depends on the coefficient of thermal
expansion of the coarse aggregate and on the mix proportions in general. For most types of
coarse aggregate, the coefficient lies within the
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range 5×10−6−13×10−6 per °C (Neville, 1981). For design purposes and in the absence of more
detailed information, a coefficient of thermal expansion for concrete of 10×10−6 per °C is
often recommended (AS 3600–1988).

STEEL

2.7 Steel used for prestressing

The shortening of the concrete caused by creep and shrinkage in a prestressed member causes
a corresponding shortening of the prestressing steel which is physically attached to the
concrete either by bond or by anchorages at the ends of the tendon. This shortening can be
significant and usually results in a loss of stress in the steel of between 150 and 350 MPa.
Significant additional losses of prestress can result from other sources, such as friction along a
post-tensioned tendon or draw-in at an anchorage at the time of prestressing.

For an efficient and practical design, the total loss of prestress should be a relatively small
portion of the initial prestressing force. The steel used to prestress concrete must therefore be
capable of carrying a very high initial stress. A tensile strength of between 1000 and 1900
MPa is typical for modern prestressing steels. The early attempts to prestress concrete with
low-strength steels failed because the entire prestressing force was rapidly lost owing to the
time-dependent deformations of the poor-quality concrete in use at that time.

There are three basic types of high-strength steel commonly used as tendons in modern
prestressed concrete construction:

(a) cold-drawn, stress-relieved round wire;
(b) stress-relieved strand; and
(c) high-strength alloy steel bars.

2.7.1 Wires

Cold-drawn wires are manufactured to conform to the requirements of the relevant local code
or specification (such as ASTM A421 in the USA and AS 1310 in Australia). These
specifications outline the minimum required mechanical properties (such as ultimate tensile
strength, yield stress, and elongation at rupture) and dimensional tolerances. Wires are
produced by drawing hot-rolled steel rods through dies to produce wires of the required
diameter. The drawing process cold works the steel, thereby altering its mechanical properties
and increasing its strength. The wires are then
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stress-relieved by a process of continuous heat treatment and straightening to produce the
required material properties. Wires are sometimes indented or crimped to improve their bond
characteristics.

Available sizes of wires vary from country to country, with diameters of 5–7 mm being the
most often used. Data for some commonly used wires in Australia are given in Table 2.1 and
a typical stress-strain curve is shown in Figure 2.12. The curve is typical of stress-strain
curves for high-strength prestressing steel, with no distinct yield point. Nevertheless, the so-
called yield stress is often referred to in codes and specifications and, unfortunately, is often
defined differently. Frequently, yield stress is defined as the stress at the 0.2% offset (AS
1310), as shown in Figure 2.12. The ASTM specification A421 specifies minimum yield
strengths for wire at 1% extension. For design purposes, the yield strength of stress-relieved
wires may be taken as 0.85 times the minimum tensile strength (i.e. 0.85fp) and the modulus
of elasticity of the wires may be taken as Ep=200×103 MPa.

Table 2.1 Tensile strengths of Australian prestressing steels (AS 3600–1988).

Material type and
Standard

Nominal
diameter mm

Area
mm2

Minimum breaking
load kN

Minimum tensile
strength (fp) MPa

5 19.6 30.4 1550

5 19.6 33.3 1700

Wire

7 38.5 65.5 1700

9.3 54.7 102 1860

12.7 100 184 1840

7-wire strand super
grade

15.2 143 250 1750

7-wire strand regular
grade

12.7 94.3 165 1750

23 415 450 1080

26 530 570 1080

29 660 710 1080

32 804 870 1080

Bars (super grade)

38 1140 1230 1080
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Figure 2.12 Typical stress-strain curve for stress-relieved wire.

In recent years, the use of wires in prestressed concrete construction has declined, with 7-wire
strand being preferred in most applications. Where wires are used in post-tensioned
applications, tendons consisting of many individual wires are generally employed.

2.7.2 Strands

Stress-relieved strand is the most commonly used prestressing steel. Strand must comply with
the requirements of the relevant local specifications (such as ASTM A416 and AS 1311–
1312). Strand is fabricated from a number of prestressing wires, usually seven (although 19-
wire strand is also available in some countries). Seven-wire strand consists of six wires tightly
wound around a seventh, slightly larger diameter, central wire. The pitch of the six spirally
wound wires is between 12 and 16 times the nominal diameter of the strand. After stranding,
the tendon is further stress-relieved. Low-relaxation (or stabilized) strand is most often used
by today’s prestressing industry.

Seven-wire strand is generally available in two grades, normal and super grade (Grades 250
and 270 in the USA). Diameters ranging from 7.9 to 15.2 mm are typical. Data for some
commonly used Australian strand are given in Table 2.1 and a typical stress-strain curve for a
12.7 mm diameter, super grade, 7-wire strand is shown in Figure 2.13.

The mechanical properties of the strand are slightly different from those of the wire from
which it is made. This is because the stranded wires tend



Page 51

Figure 2.13 Typical stress-strain curve for 7-wire strand.

to straighten slightly when subjected to tension. For design purposes, the yield stress of stress-
relieved strand may be taken to be 0.85fp and the elastic modulus to be Ep=195×103 MPa.

Strand may be compacted by being drawn through a die, thereby compressing the outer six
wires more tightly around the central one. The cross-sectional area is therefore maintained but
the strand diameter is significantly reduced.

2.7.3 Bars

The high strength of alloy steel bars is obtained by the introduction of alloying elements in the
manufacture of the steel and by cold working (stretching) the bars. The bars are then stress-
relieved to obtain properties which meet the requirements of the relevant local specification
(e.g. ASTM A722 and AS 1313).

In the USA, both plain and deformed bars are available in two grades (fp=1000 and 1100
MPa) with diameters which range from 12.7 mm to 35 mm Some sizes and
properties of bars commonly used in Australia are presented in Tabie 2.1 and a typical stress-
strain curve is shown in Figure 2.14.

The elastic modulus for bars is generally lower than those for strand and wire. For design
purposes Ep may be taken to be 170×103 MPa and the yield stress (0.2% offset) may be taken
to be 0.85fp.
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Figure 2.14 Typical stress-strain curve for alloy steel bars.

The stress-strain curves shown in Figures 2.12–2.14 exhibit similar characteristics. There is
no well defined yield point (as exists for lower strength reinforcing steels). Each curve has a
relatively high proportional limit. When the curves become non-linear as loading continues,
the stress gradually increases monotonically until the steel fractures. The elongation at
fracture is usually about 5%. High-strength steel is therefore considerably less ductile than
conventional, non-prestress reinforcing steel. Nevertheless, the material is ductile enough to
permit the design of ductile prestressed concrete flexural members which suffer large
deformations prior to failure.

2.8 Steel relaxation

The initial stress level in prestressing steel after transfer is usually high, often in the range 60–
75% of the tensile strength of the material. At such stress levels, high-strength steel creeps. If
a tendon is stretched and held at a constant length (constant strain), the development of creep
strain in the steel is exhibited as a loss of elastic strain, and hence a loss of stress. This loss of
stress in a specimen subjected to constant strain is known as relaxation. Relaxation in steel is
highly dependent on the stress level and increases at an increasing rate as the stress level
increases. Relaxation (creep) in steel increases rapidly with temperature. Both normal-
relaxation and low-relaxation steels are available. In recent years, low-relaxation steel has
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Table 2.2 Basic Relaxation R1000 for Australian steel (AS 3600–1988).

Type of Steel R1000 (%) Low Relaxation R1000 (%) Normal Relaxation
Stress-relieved wire 2.0 6.5

Stress-relieved strand 2.5 7.0

Alloy steel bars 2.5 7.0

become the most popular because of the reduced time-dependent losses of prestress that result
from its use. Low relaxation steel has been stabilized by prestretching at an appropriate
temperature.

Relaxation measurements are often made over a test period of 1000 hours on a specimen
subjected to constant strain at a constant temperature of 20°C. The initial stress levels usually
vary from 60 to 80% of the ultimate tensile strength. For an initial stress of 0.7 times the
ultimate tensile strength (i.e. σpi=0.7fp), the relaxation of a tendon (i.e. the loss of stress due to
relaxation as a percentage of the initial stress) after 1000 h at 20°C is represented by R1000. For
Australian steels, R1000 may be taken from Table 2.2.

The design relaxation R (in percent) after a period of t days may be obtained from Equation
2.22 (AS 3600–1988):

(2.22)

The coefficient k1 depends on the initial stress level in the tendon and is obtained from Figure
2.15. The term k2 depends on the average annual temperature T and may be taken as T/20 but
not less than 1.0.

Very long-term relaxation values for prestressing steels were proposed by the CEB–FIP
(1978) and are given in Table 2.3.

Figure 2.15 Relaxation coefficient, k1 (AS 3600–1988).
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Table 2.3 Very long-term relaxation R∞(in percent) [CEB-FIP (1978)].

σpi/fp 0.6 0.7 0.8
Normal relaxation steel 6 12 25

Low relaxation steel 3 6 10

Ghali & Favre (1986) proposed an equation of the following form to approximate the data in
Table 2.3:

(2.23)

where η=150 for normal-relaxation steel and 67 for low-relaxation steel.
When elevated temperatures exist during steam curing or at other times, relaxation is

increased and occurs rapidly during the period of high temperature. For low-relaxation steel in
a concrete member subjected to an initial period of steam curing, it is recommended that the
design relaxation should be at least double the value given by Equation 2.22 (calculated with
T=20°C).

2.9 Non-prestressed reinforcement

Conventional, non-prestressed reinforcement in the form of bars, cold-drawn wires, or welded
wire mesh is used in prestressed concrete structures for the same reasons as it is used in
conventional reinforced concrete construction. These include the following:

(a) To provide additional tensile strength and ductility in regions of the structure where
sufficient tensile strength and ductility are not provided by the prestressing steel. Non-
prestressed, longitudinal bars, for example, are often included in the tension zone of beams
to supplement the prestressing steel and increase the flexural strength. Non-prestressed
reinforcement in the form of stirrups is most frequently used to carry the diagonal tension
caused by shear and torsion in the webs of prestressed concrete beams.

(b) To control flexural cracking at service loads in partially prestressed concrete beams and
slabs where some degree of cracking under full service loads is expected.

(c) To control shrinkage and temperature cracking in regions and directions of low (or no)
prestress.



Page 55

(d) To carry compressive forces in regions where the concrete alone may not be adequate,
such as in columns or in the compressive zone of heavily reinforced beams.

(e) Lateral ties or helices are used to provide restraint to bars in compression (i.e. to prevent
lateral buckling of compressive reinforcement prior to the attainment of full strength) and
to provide confinement for the compressive concrete in columns, beams, and connections,
thereby increasing both the strength and deformability of the concrete.

(f) To reduce long-term deflection and shortening due to creep and shrinkage by the inclusion
of longitudinal bars in the compression region of the member.

(g) To provide resistance to the transverse tension that develops in the anchorage zone of
post-tensioned members and to assist the concrete to carry the high bearing stresses
immediately behind the anchorage plates.

(h) To reinforce the overhanging flanges in T-, I-, or L-shaped cross-sections in both the
longitudinal and transverse directions.

Non-prestressed reinforcement is manufactured to meet the requirements of the relevant local
codes or specifications. Types and sizes vary from country to country. In Australia, for
example, reinforcing bars are available in two grades, Grade 230 and 410 (which correspond
to characteristic yield

Table 2.4 Types and sizes of non-prestressed reinforcing bar in Australia.

Steel Grade and Guaranteed
Minimum Yield Stress

Bar Size db
(mm)

Nominal Mass per
metre (kg/m)

Nominal Area As
(mm2)

R6 0.245 31Grade 230 (R-bars) fy=230 MPa

R10 0.632 80

12 0.910 110

16 1.618 200

20 2.528 310

24 3.640 450

28 4.955 620

32 6.471 800

Grade 410 fy=410 MPa Y-bars

36 8.190 1020
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Figure 2.16 Stress-strain curve for Grade 410 Y-bars (Broken Hill Proprietary Company 1983).

Table 2.5 Types and sizes of Australian welded wire mesh (Humes ARC 1985).

Mesh SpecificationCross-Sectional Area of Wires

Longitudinal Wire Cross Wire

Mesh Type (fy=450
MPa)

Longitud.
(mm2/m)

Cross
(mm2/m)

Size
(mm)

Pitch
(mm)

Size
(mm)

Pitch
(mm)

Rectangular

F1218 1227 251 12.5 100 8 200

F1118 985 251 11.2 100 8 200

F1018 785 251 10 100 8 200

F918 636 251 9 100 8 200

F818 503 251 8 100 8 200

F718 396 251 7.1 100 8 200

Square

F81 503 503 8 100 8 100

F102 393 393 10 200 10 200

F92 318 318 9 200 9 200

F82 251 251 8 200 8 200

F72 198 198 7.1 200 7.1 200

F62 156 156 6.3 200 6.3 200

F52 98 98 5 200 5 200

F42 63 63 4 200 4 200

Trench Mesh

F11TM 985 82 11.2 100 5.6 300

F8TM 503 42 8 100 4 300
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Figure 2.17 Stress-strain curve for non-prestressed steel usually assumed in design.

stresses of 230 and 410 MPa, respectively). Bars must comply with Australian Standard AS
1302, Steel reinforcing bars for concrete. Grade 230 bars are hot-rolled plain round bars 6 or
10 mm diameter (designated R6 and R10 bars) and are commonly used for fitments, such as
ties and stirrups. Grade 410 bars (known as tempcore or Y-bars) are hot-rolled deformed bars
with diameters ranging from 12 to 36 mm (in 4 mm increments). Available bar sizes and
properties are shown in Table 2.4. The regularly spaced, rib-shaped deformations on the
surface of a deformed bar provide a far better bond between the concrete and the steel and
greatly improve the anchorage potential of the bar. It is for this reason that deformed bars
rather than plain round bars are used as longitudinal reinforcement in most reinforced and
partially prestressed concrete members.

In reality, the actual yield stress of a reinforcing bar is usually significantly higher than the
guaranteed minimum indicated in Table 2.4. A typical stress-strain curve for Grade 410 steel
is shown in Figure 2.16. Note the distinct yield point and the large total elongation. Although
possessing less than one third of the strength of prestressing wire or strand, Grade 410 bars
are far more ductile.

Welded wire mesh is sometimes used in prestressed concrete slabs and is manufactured
from hard-drawn wire. In Australia, the characteristic yield strength of the wire is 450 MPa
and it is manufactured to comply with AS 1303, Hard-drawn reinforcing wire for concrete,
and AS 1304, Hard-drawn steel wire reinforcing fabric for concrete. The properties and
designations of available mesh sizes in Australia are given in Table 2.5.

In design calculations, non-prestressed steel is usually assumed to be elastic-plastic, that is
fy is taken to be the strength of the material. When fy is reached, the stress-strain curve is
assumed to be horizontal (perfectly plastic), as shown in Figure 2.17. The stress-strain curve
in compression is assumed to be similar to that in tension. The elastic modulus for non-
prestressed steel is taken to be Es=200×103 MPa.
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3
Design for serviceability

3.1 Introduction

The level of prestress and the layout of the tendons in a member are usually determined from
the serviceability requirements for that member. If a water-tight and crack-free slab is
required, for example, tension in the slab must be eliminated or limited to some appropriately
low value. If, on the other hand, the deflection under a particular service load is to be
minimized, a load-balancing approach may be used to determine the prestressing force and
cable drape (see Section 1.5.3).

For the serviceability requirements to be satisfied in each region of a member and at all
times after first loading, a reasonably accurate estimate of the magnitude of prestress is
needed in design. This requires reliable procedures for the determination of both the
instantaneous and the time-dependent losses of prestress. Instantaneous losses of prestress
occur during the stressing (and anchoring) operation and include elastic shortening of the
concrete, friction along a post-tensioned cable, and slip at the anchorages. As has been
mentioned in the previous chapters, the time-dependent losses of prestress are caused by creep
and shrinkage of the concrete and stress relaxation in the steel. Procedures for calculating both
the instantaneous and time-dependent losses of prestress are presented in Section 3.7.

There are two critical stages in the design of prestressed concrete for serviceability. The
first stage is immediately after the prestress is transferred to the concrete, i.e. when the
prestress is at a maximum and the external load is usually at a minimum. The instantaneous
losses have taken place but no time-dependent losses have yet occurred. At this stage, the
concrete is usually young and the concrete strength may be relatively low. The prestressing
force immediately after transfer at a particular section is designated Pi. The second critical
stage is after the time-dependent losses have taken place and the full-service load is applied,
i.e. when the prestress is at a minimum and the external service load is at a maximum. The
prestressing force at this stage is designated Pe.
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At each of these stages (and at all intermediate stages), it is necessary to ensure that the
serviceability requirements of the member are satisfied. It is even more important, of course,
to make sure that strength requirements at each stage are also satisfied. It is not strength,
however, that determines the level of prestress, but serviceability. When the prestressing force
and the amount and distribution of the prestressing steel have been determined, the flexural
strength may be readily increased, if necessary, by the addition of non-prestressed
conventional reinforcement. This is discussed in considerably more detail in Chapter 4. Shear
strength may be improved by the addition of transverse stirrups (as discussed in Chapter 5).
As will be seen throughout this chapter, the presence of bonded conventional reinforcement
also greatly influences both the short- and long-term behaviour at service loads, particularly
for partially prestressed members. The design for strength and serviceability therefore cannot
be performed independently, as the implications of one affect the other.

General design requirements for the serviceability limit states, including load combinations
for serviceability, were discussed in Section 1.7. It is necessary to ensure that the
instantaneous and time-dependent deflection and the axial shortening under service loads are
acceptably small and that any cracking is well controlled by suitably detailed, bonded
reinforcement. To determine the in-service behaviour of a member, it is therefore necessary to
establish the extent of cracking, if any, by checking the magnitude of elastic tensile stresses. If
a member remains uncracked (i.e. the maximum tensile stress at all stages is less than the
tensile strength of concrete), the properties of the gross section may be used in all deflection
and camber calculations. If cracking occurs, a cracked section analysis may be performed to
determine the properties of the cracked section and the post-cracking behaviour of the
member. Such an analysis is described in Section 3.5.2.

3.2 Stress limits

Depending on the serviceability requirements for a particular structure, a designer may set
limits on the tensile and compressive stresses in concrete both at transfer and under the full
service loads. For the design of fully prestressed members (i.e. members in which cracking is
not permitted), some codes of practice (e.g. ACI 318–83) set mandatory maximum limits on
the magnitude of the concrete stress, both tensile and compressive. For partially prestressed
members, where cracking is permitted under normal service loads and the tensile stress limits
(often called permissible stresses) are exceeded, a detailed non-linear analysis is required to
determine behaviour in the post-cracking range.

The concrete stress limits specified in ACI 318–83 (here converted to SI
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units) are as follows:
Immediately after transfer (before time-dependent losses):

In compression:

In tension:

(or at the ends of a simple member)

The quantity is the characteristic compressive strength of concrete at transfer. Where the
tensile stress exceeds these values, bonded reinforcement should be provided in the tensile
zone to resist the total tensile force in the concrete.

Under full service loads (after all losses):

In compression:

In tension:

When an analysis based on transformed cracked sections shows that both short- and long-term
deflections are acceptable, ACI 318–83 allows the tensile stress limit to be increased to

, provided the minimum concrete cover to the tendons is increased by 50% when the
cracked surface is exposed to earth, weather, or other corrosive environments.

Other codes (e.g. AS3600–1988) impose no mandatory concrete permissible stresses. The
choice of stress limit is left entirely to the designer and should be based on the appropriate
serviceability requirements. There is much to recommend this approach. Satisfaction of any
set of stress limits does not guarantee serviceability. Camber and deflection calculations are
still required. It is therefore appropriate to discuss the reasons for and the implications of
selecting particular stress limits.

Firstly, consider whether or not stress limits are required at transfer. There can be little
doubt that the magnitudes of both compressive and tensile concrete stresses at transfer need to
be carefully considered. It is important that the concrete compressive stress at the steel level at
transfer should not exceed about . At higher stress levels, large non-linear creep strains
develop with time, resulting in large creep deformation and high losses of prestress. Designers
must also check strength at transfer and the satisfaction of the above compressive stress limit
will usually, although not necessarily, lead to an adequate factor of safety against compressive
failure at transfer.

It is also advisable to limit the tensile stress at transfer, particularly in unreinforced regions.
The regions of a member which are subjected to tension at transfer are often those which are
later subjected to compression when the full service load is applied. If these regions are
unreinforced and uncontrolled cracking is permitted at transfer, an immediate serviceability
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problem exists. When the region is later compressed, cracks may not close completely, local
spalling may occur, and even a loss of shear strength could result. If cracking is permitted at
transfer, bonded reinforcement should be provided to carry all the tension and to ensure that
the cracks are fine and well behaved.

In some cases, stress limits may also be required under full service loads when all prestress
losses have taken place. If cracking is to be avoided, some tensile stress limit must be adopted.
A value in the range is appropriate. If the upper end of this range is adopted,
some cracking may occur under full loads, particularly if the load-independent tension
induced by restrained shrinkage or temperature effects has not been adequately assessed.
Provided bonded reinforcement or tendons are provided near the tensile face, however, the
cracks will be well controlled and the resulting loss of stiffness will not be significant.

For many prestressed concrete situations, there is no reason why tensile cracking should be
avoided at service loads and, therefore, no reason why a limit should be placed on the elastic
tensile stress. If cracking is permitted, the resulting loss of stiffness must be accounted for in
deflection calculations and crack widths must be acceptably small. Crack control may be
achieved by limiting both the spacing of and the change of stress in the bonded reinforcement.
Where the cracked surface is not exposed to a corrosive environment, crack control may be
achieved by limiting the increment of stress in the bonded reinforcement after cracking to
about 200 MPa, and by limiting the centre-to-centre spacing of bonded reinforcement to about
200 mm for beams and 500 mm for slabs (AS 3600–1988). In order to calculate the loss of
stiffness caused by cracking or the increment of steel stress after cracking, a cracked section
analysis is required.

Under full service loads, which occur infrequently, there is often no practical reason why
compressive stress limits should be imposed. Separate checks for flexural strength, ductility
and shear strength are obviously necessary. Excessive compressive stresses may, however,
occur under full service loads in some types of members, such as trough girders or inverted T-
beams, and in the design of these members care should be taken to limit the extreme fibre
compressive stress at service loads. If a large portion of the total service load is permanent,
compressive stress levels in excess of should be avoided.

The primary objective in selecting concrete stress limits is to obtain a serviceable structure.
As was discussed in Section 1.5, elastic stress calculations are not strictly applicable to
prestressed concrete. Creep and shrinkage cause a gradual transfer of compression from the
concrete to the bonded steel. Nevertheless, elastic stress calculations may indicate potential
serviceability problems and the satisfaction of concrete tensile stress limits is a useful
procedure to control the extent of cracking. It should be understood, however, that the
satisfaction of a set of elastic concrete stress limits does
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not, in itself, ensure serviceability and it certainly does not ensure adequate strength. The
designer must check separately both strength and serviceability, irrespective of the stress
limits selected. In the end, provided a structure is strong enough and is serviceable, the value
adopted for each stress limit is largely irrelevant.

Codes of practice also set mandatory limits on the tensile stress in the prestressing steel at
various stages of construction. ACI 318–83 specifies that the maximum stress applied to a
tendon during the jacking operation is 0.94fpy (but not greater than 0.85fp). The relationships
between fpy and fp for the various steel types were given in Section 2.7. ACI 318–83 also
requires that the steel stress immediately after transfer does not exceed 0.82fpy (but not greater
than 0.74fp) and, for post-tensioned tendons at anchorages and couplers, 0.70fp.

3.3 Determination of prestress and eccentricity in flexural members

There are a number of possible starting points for the determination of the prestressing force P
and eccentricity e required at a particular cross-section. The starting point depends on the
particular serviceability requirements for the member. The quantities P and e are often
determined to satisfy pre-selected stress limits. Cracking may or may not be permitted under
service loads. As was mentioned in the previous section, satisfaction of concrete stress limits
does not necessarily ensure that deflection, camber, and axial shortening are within acceptable
limits. Separate checks are required for each of these serviceability limit states. Alternatively,
the prestressing force and the cable layout may be selected to minimize deflection under some
portion of the applied load (i.e. a load-balancing approach to design). With such an approach,
cracking may occur when the applied load is substantially different from the selected balanced
load, such as at transfer or under the full service loads, and this needs to be checked and
accounted for in serviceability calculations.

3.3.1 Satisfaction of stress limits

Numerous design approaches have been proposed for the satisfaction of concrete stress limits,
including analytical and graphical techniques (e.g. Magnel 1954, Lin 1963, Warner & Faulkes
1979). A simple and convenient approach is described here.

If the member is required to remain uncracked throughout, suitable stress limits should be
selected for the tensile stress at transfer, Fti, and the tensile stress under full load, Ft. In
addition, limits should also be placed on the concrete compressive stress at transfer, Fci, and
under full loads, Fc. If
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Figure 3.1 Concrete stresses at transfer.

cracking under the full loads is permitted, the stress limit Ft is relaxed and the remaining three
limits are enforced.

Consider the uncracked cross-section of a beam at the critical moment location, as shown in
Figure 3.1. Also shown in Figure 3.1 are the concrete stresses at transfer caused by the
prestress Pi (located at an eccentricity e below the centroidal axis of the concrete section) and
by the external moment Mo resulting from the loads acting at transfer. Often self-weight is the
only load (other than prestress) acting at transfer.

At transfer, the concrete stress in the top fibre must not exceed the tensile stress limit. That
is,

and rearrangement gives

(3.1)

where A is the area of the section, I is the second moment of area of the section about the
centroidal axis, and Zt is the elastic section modulus, with respect to the top fibre (=I/yt).

Similarly, the concrete stress in the bottom fibre must be greater than the negative
compressive stress limit at transfer:

where Fci is a negative quantity. Rearrangement gives

(3.2)
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Figure 3.2 Concrete stresses under full loads (after all prestress losses).

Figure 3.2 shows the concrete stresses caused by the effective prestress after all losses have
taken place (Pe=RPi) and by the applied moment MT resulting from the full service load.

For a fully prestressed member, the concrete stress in the bottom fibre must be less than the
selected tensile stress limit Ft:

or

(3.3)

The compressive stress in the top fibre must also satisfy the appropriate stress limit. Therefore,

or

(3.4)

Equations 3.1–3.4 can be rearranged to express 1/Pi as a linear function of e. Rearrangement
of Equation 3.1 gives
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or

and if at=A/Zt, then

(3.5)

Similarly, from Equations 3.2, 3.3 and 3.4, the following equations are obtained:

(3.6)

(3.7)

and

(3.8)

where αb=A/Zb and Fci in Equation 3.6 and Fc in Equation 3.8 are negative numbers.
Each of the linear relationships in Equations 3.5–3.8 may be plotted on a graph of 1/Pi

versus e, as shown in Figure 3.3. The intercept of each straight line on the horizontal axis is
obtained by setting 1/Pi equal to zero in each equation. When 1/Pi=0, the eccentricity e equals
1/αt for Equations 3.5 and 3.8 and –1/αb for Equations 3.6 and 3.7. A graphical interpretation
of the stress conditions on a prestressed section similar to that shown in Figure 3.3 was first
proposed by Magnel (1954) and may be a useful aid in design.

On one side of each straight line in Figure 3.3, the relevant stress limit is satisfied. The
wedge-shaped area in which all four stress limits are satisfied represents suitable
combinations of Pi and e. In order to minimize prestressing costs, the smallest possible value
for Pi would generally be selected. This corresponds to the value at the intersection of
Equations 3.5 and 3.7. However, the corresponding value of e may not be practical. The
maximum eccentricity emax is governed by concrete cover and tendon spacing requirements.
As is seen in Figure 3.3, the smallest possible value for Pi is obtained by substituting the
appropriate maximum eccentricity into Equation 3.7.
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Figure 3.3 Magnel’s design diagram.

If a particular cross-section is too small, the plot of Equation 3.6 in Figure 3.3 will lie above
the plot of Equation 3.7 and no acceptable region exists. Similarly, if the line representing
Equation 3.5 is steeper than that of Equation 3.8, no acceptable region exists. It is therefore
not possible to satisfy all four stress limits and a larger section is clearly required. If, on the
other hand, the angle between the plots of Equations 3.6 and 3.7 in Figure 3.3 is large, a large
acceptable region exists and a smaller section may prove more economical.

When the minimum-sized cross-section is used, Equations 3.6 and 3.7 plot on the same line.
By equating Equations 3.2 and 3.3, the section modulus of this minimum-sized section (Zb)min
can be readily found. If the minimum-sized section is used, Equation 3.2 becomes

Similarly, from Equation 3.3,

By subtracting these two equations, an expression for the minimum permissible section
modulus is obtained:

(3.9)
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It must be remembered that Fci is always negative. Equation 3.9 is a useful starting point in
the selection of an initial cross-section.

In order to use Equation 3.9 and to be able to plot Equation 3.7 on Figure 3.3, some
estimate of the time-dependent losses must be made so that the loss parameter R can be
determined. As R is varied, the angle between the plots of Equations 3.6 and 3.7 varies and
hence the range of acceptable combinations of Pi and e also varies. Usually, a first estimate of
R within the range 0.75–0.85 is adopted when low-relaxation steel is used. The lower end of
this range (i.e. R≈0.75) is more appropriate for a heavily stressed girder with high sustained
compressive stresses in the concrete at the tendon level. In such a member, creep losses will
be relatively high. For lightly stressed members, such as slabs, and for members in which the
sustained compressive stress in the concrete at the tendon level is low, the upper end of the
range is more appropriate (i.e. R≈0.85). Any initial estimate of R must be checked after the
prestress, the eccentricity, and the quantity of bonded reinforcement have been determined.
Suitable procedures for determining the time-dependent losses are described in Sections 3.6
and 3.7.

For a limited amount of well controlled cracking, ACI 318–83 allows the tensile stress limit
Ft to be set as high as provided bonded reinforcement is placed near the tensile face. In
general, however, if cracking is permitted under full service loads, a tensile stress limit Ft is
not specified and Equation 3.7 does not apply. Tensile and compressive stress limits at
transfer are usually enforced and, therefore, Equations 3.5 and 3.6 are still applicable and
continue to provide an upper limit on the level of prestress. The only minimum limit on the
level of prestress is that imposed by Equation 3.8 and, for more practical cross-sections, this
does not influence the design. When there is no need to satisfy a tensile stress limit under full
loads, the plot of Equation 3.7 no longer appears on Figure 3.3. Any level of prestress which
satisfies Equations 3.5, 3.6, and 3.8 may be used, including Pi=0 (which corresponds to a
reinforced concrete member). In such a situation, Figure 3.3 is no longer of much use in
design.

Often partially prestressed members are designed such that cracking does not occur under
the sustained or permanent service loads. It is the variable live load that causes cracking.
Cracks therefore open and close as the variable load is applied and removed. The selection of
prestress in such a case can still be made conveniently using a figure similar to Figure 3.3. If
the maximum total service moment MT is replaced in Equation 3.7 by the sustained or
permanent moment Msus, Equation 3.7 becomes

(3.10)

The plot of Equation 3.10 now replaces the plot of Equation 3.7 in Figure 3.3. The line
representing Equation 3.10 crosses the horizontal axis at the
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same point (i.e. e=−1/αb), but is steeper and therefore the acceptable region shown in Figure
3.3 is larger. For a given eccentricity, the minimum prestress Pi is less. The tensile stress limit
Ft will not be exceeded under the sustained loads, but cracking may occur under peak live
loads. If after the variable load has been removed the cracks are required to close completely,
Ft in Equation 3.10 should be set to zero.

If less prestress is used and cracking occurs, the cross-section required for a partially
prestressed member may need to be larger than that required for a fully prestressed member
for a particular deflection limit. In addition, the quantity of non-prestressed reinforcement is
usually significantly greater. Often, however, the reduction in prestressing costs more than
compensates for the additional concrete and non-prestressed reinforcement costs and partially
prestressed members are the most economical structural solution in a wide range of
applications.

Example 3.1

A one-way slab is simply supported over a span of 12 m and is to be designed to carry a
service load of 7 kPa (kN/m2) in addition to its own self-weight. The slab is post-tensioned by
regularly spaced tendons with parabolic profiles. The material properties are:

The prestressing force and eccentricity are to be determined to satisfy the following concrete
stress limits:

At mid-span, the instantaneous and time-dependent losses are taken to be 8% and 16%,
respectively. In order to obtain an estimate of the slab self-weight (which is the only load
other than the prestress at transfer), a trial slab thickness of 300 mm (span/40) is assumed
initially. For a 1 m wide strip of slab, the self-weight is

and the moments at mid-span both at transfer and under the full service load are
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From Equation 3.9,

and the corresponding minimum slab depth is therefore

Select a slab thickness D=300 mm. The relevant section properties are:

Equation 3.5 becomes

Similarly, the following expressions are obtained from Equations 3.6, 3.7 and 3.8,
respectively:

and

Each of these four equations is plotted on Figure 3.4.
If 12.7 mm diameter strand is used with 30 mm minimum concrete cover, then
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Figure 3.4 Design diagram for Example 3.1.

and, from Figure 3.4 (or Equation 3.7), the corresponding minimum permissible value of Pi is
found to be

At the jacking point, the required prestressing force is

From Table 2.1, a 12.7 mm diameter 7-wire, low-relaxation strand has a cross-sectional area
of 100 mm2 and a minimum breaking load of 184 kN. A flat duct containing four 12.7 mm
strands can therefore be stressed with a maximum jacking force of

The minimum number of cables required in each metre width of slab is therefore
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and the maximum spacing between cables is

Use 1–4 strand tendon every 330 mm.
To check deflection, the properties of the gross section can be used in all calculations, since

cracking has been avoided both at transfer and under the full service loads. It is assumed that
of the 7 kPa service load, 3 kPa is sustained or permanent and 4 kPa is temporary.

At transfer:

The uniformly distributed upward load caused by the parabolic cables with drape equal to 114
mm is obtained from Equation 1.7 as

The resultant upward load is and the deflection (camber)
at transfer is

Under full loads:

After the time-dependent losses, the prestressing force has decreased by 16% and therefore

The sustained external load is and the short-term deflection due to
the permanent loads is

For this uncracked slab, the long-term deflection caused by creep and
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shrinkage is likely to be at least three times the short-term deflection due to all the sustained
loads. Therefore,

A far more accurate and reliable estimate of the effects of creep and shrinkage is outlined in
Section 3.6.

The instantaneous deflection caused by the variable portion of the service load, wυ=4.0
kN/m, is

and the maximum total deflection is therefore

This may or may not be acceptable depending on the deflection requirements for this
particular structure.

To complete this design, strength checks must be made, losses must be checked, and the
anchorage zones must be designed.

3.3.2 Load-balancing

Using the load-balancing approach, the effective prestress after losses Pe and the eccentricity
e are selected such that the transverse load imposed by the prestress wp balances a selected
portion of the external load. The effective prestress Pe in a parabolic cable of drape e required
to balance a uniformly distributed external load wb is obtained from Equation 1.7. That is,

(3.11)

Concrete stresses are checked under the remaining unbalanced service loads to identify
regions of possible cracking and regions of high compression. Deflection under the
unbalanced loads may need to be calculated and controlled. Losses are calculated and stresses
immediately after transfer are also checked. Having determined the amount and layout of the
prestressing steel (and the prestressing force) to satisfy serviceability requirements, the design
for adequate strength can then proceed.

Load balancing is widely used for the design of indeterminate members and also for simple
determinate beams and slabs. It is only strictly applicable, however, prior to cracking when
the member behaves linearly and the principle of superposition, on which load balancing
relies, is valid.
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Example 3.2

For the 300 mm thick, 12 m span one-way slab of Example 3.1, the prestress required to
balance the slab self-weight (7.2 kPa) is to be determined. The parabolic tendons have zero
eccentricity at each support and e=114 mm at mid-span.

With wb=7.2 kPa and e=0.114 m, Equation 3.11 gives

If at mid-span the time-dependent losses are 16% and the instantaneous losses are 8% (as was
stated in Example 3.1),

which corresponds to 1–4 strand flat ducted cable every 425 mm.
In Example 3.1, the tensile stress limit under full loads was Ft=1.41 MPa. In this example,

the prestress is lower and Ft will therefore be exceeded. The bottom fibre elastic stress at mid-
span after all losses and under the full service loads is

which would almost certainly cause cracking. The resulting loss of stiffness must be included
in subsequent deflection calculations using the procedures outlined in Sections 3.5 and 3.6. In
addition, the smaller quantity of prestressing steel required in this example, in comparison
with the slab in Example 3.1, results in reduced flexural strength. A layer of non-prestressed
bottom reinforcement may be required to satisfy strength requirements.

3.4 Cable profiles

When the prestressing force and eccentricity are determined for the critical sections, the
location of the cable at every section along the member must be specified. For a member
which has been designed to be uncracked throughout, the tendons must be located so that the
stress limits are observed on every section. At any section, Equations 3.1–3.4 may be used to
establish a range of values for eccentricity which satisfy the selected stress limits.

If Mo and MT are the moments caused by the external loads at transfer and under full
service loads, respectively, and Pi and Pe are the corresponding prestressing forces at the same
section, the extreme fibre stresses must
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satisfy the following:

(3.12)

(3.13)

(3.14)

(3.15)

Equations 3.12–3.15 can be rearranged to provide limits on the tendon eccentricity, as
follows:

(3.16)

(3.17)

(3.18)

(3.19)

It should be remembered that Fci and Fc are negative numbers.
After Pi and Pe have been determined at the critical sections, the friction losses along the

member are estimated (see Section 3.7.3) and the corresponding prestressing forces at
intermediate sections are calculated. At each intermediate section, the maximum eccentricity
that will satisfy both stress limits at transfer is obtained from either Equation 3.16 or 3.17. The
minimum eccentricity required to satisfy the tensile and compressive stress limits under full
loads is obtained from either Equation 3.18 or 3.19. A permissible zone is thus established in
which the line of action of the resulting prestressing force must be located. Such a permissible
zone is shown in Figure 3.5. Relatively few intermediate sections need to be considered to
determine an acceptable cable profile.

When the prestress and eccentricity at the critical sections are selected using the load-
balancing approach, the cable profile should match, as
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Figure 3.5 Typical permissible zone for location of cable profile.

closely as practicable, the bending moment diagram caused by the balanced load. In this way,
deflection will be minimized. For cracked, partially prestressed members, Equations 3.16 and
3.17 are usually applicable and fix the maximum eccentricity. The cable profile should then
be selected according to the loading type and moment diagram.

3.5 Short-term analysis of cross-sections

3.5.1 Uncracked cross-sections

The short-term behaviour of a prestressed concrete cross-section can be determined by
transforming the bonded reinforcement into equivalent areas of concrete and performing a
simple, elastic analysis on the equivalent concrete section. The following mathematical
formulation of the short-term analysis of an uncracked cross-section forms the basis of the
time-dependent analysis described in Section 3.6 and was described by Gilbert (1988).

Consider a prestressed concrete cross-section with a vertical axis of symmetry. For a
section containing both non-prestressed and prestressed reinforcement, the transformed
section may be similar to that shown in Figure 3.6. The top surface of the cross-section, rather
than the centroidal axis, is selected here as the reference surface. This is a convenient
selection, but not a necessary one. The position of the centroidal axis of a prestressed concrete
cross-section varies with time owing to the gradual development of creep and shrinkage in the
concrete. The centroidal axis also depends on the quantity of bonded reinforcement and may
change position when unbonded tendons are subsequently grouted. It is convenient, therefore,
to select a fixed reference point that can be used in all stages of the analysis and, for this
reason, reference to any point on the cross-section in Figure 3.6 is made in terms of its
distance y from the top surface.

In Figure 3.6, the non-prestressed reinforcement is transformed into equivalent areas of
concrete (=AsEs/Ec=nAs), i.e. an additional area of concrete equal to (n−1)As is added to the
section at each bonded steel
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Figure 3.6 Transformed section at transfer.

level, as shown; n is the short-term modular ratio (Es/Ec). If the prestressed steel in Figure 3.6
is bonded to the concrete at transfer, it too should be transformed into an equivalent area of
concrete. Also shown in Figure 3.6 is the strain distribution on the section immediately after
transfer. The strain at a depth y below the top of the cross-section is defined in terms of the
top fibre strain εoi and the initial curvature xi, as follows:

(3.20)

If the short-term behaviour of concrete is assumed to be linear-elastic, the initial concrete
stress at y below the top fibre is

(3.21)

The resultant axial force on the section Ni is obtained by integrating the stress block over the
depth of the section, as shown in Equation 3.22. For a prestressed section in pure bending, the
initial axial force on the transformed concrete section immediately after transfer is
compressive and equal in magnitude to the prestressing force, i.e. Ni=−Pi.

(3.22)

where A (=∫dA) is the area of the transformed section and B (=∫y dA) is the first moment of
the transformed area about the top surface of the section.

If the first moment of the stress block about the top fibre is integrated
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over the depth of the section, as shown in Equation 3.23, the resultant moment about the top
surface, Mi, is found. For a prestressed concrete beam section, Mi=Mo−Pidp, where Mo is the
external moment at the section at transfer and dp is the depth to the prestressing steel as shown
in Figure 3.6. Therefore,

(3.23)

where Ī(=∫y2 dA) is the second moment of the transformed area about the top surface of the
transformed section.

By rearranging Equations 3.22 and 3.23, expressions are obtained for the initial top fibre
strain and curvature in terms of Ni and Mi:

(3.24)

and

(3.25)

For any combination of external load and prestress, the corresponding values of Ni and Mi are
readily calculated and may be substituted into Equations 3.24 and 3.25 to obtain the strain
distribution immediately after transfer. Equations 3.24 and 3.25 may also be used to obtain the
increment of elastic strain due to the application of any subsequent load increment.

Example 3.3

The short-term behaviour of the post-tensioned cross-section shown in Figure 3.7a is to be
determined immediately after transfer. The section contains a single unbonded cable
containing 10–12.7 mm diameter strands (Ap=1000 mm2) located within a 60 mm diameter
duct, and two layers of non-prestressed reinforcement, as shown. The force in the prestressing
steel is Pi=1350 kN and the applied moment is Mo=100 kNm. The elastic moduli for concrete
and steel are Ec=30×103 MPa and Es=Ep=200×103 MPa, and therefore n=6.67.

The transformed section is shown in Figure 3.7b. Because the prestressing steel is not
bonded to the concrete, it does not form part of the transformed
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Figure 3.7 Post-tensioned cross-section of Example 3.3.

section. In addition, the hole created on the concrete section by the hollow duct must also be
taken into account. The properties of the transformed section with respect to the top reference
surface are

The axial force and moment about the top surface at transfer are

The top fibre strain and curvature immediately after transfer are obtained from Equations 3.24
and 3.25:
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Figure 3.8 Strains and stresses immediately after transfer (Example 3.3).

The concrete stresses are found using Equation 3.21. When y=0, the top fibre stress is
σoi=−0.76MPa, and when y=800 mm, the bottom fibre stress is σbi=−9.83 MPa. The stress in
the steel reinforcement is determined from the strain at the level of the steel. For the top layer
of non-prestressed reinforcement (at y=60 mm),

and for the bottom steel (at y=740 mm),

The distributions of strain and stress on the cross-section immediately after transfer are shown
in Figure 3.8.

3.5.2 Cracked cross-sections

When the tensile stress produced by the external moment at a particular section overcomes the
compression caused by prestress, and the extreme fibre stress reaches the tensile strength of
concrete, cracking occurs. The moment at which cracking first occurs is called the cracking
moment, Mcr. As the compressive force on the concrete gradually decreases with time due to
creep and shrinkage, the cracking moment also decreases with time. If the applied moment at
any time is greater than the cracking moment, cracking will occur and, at each crack, the
concrete below the neutral axis is ineffective. The short-term behaviour of the cracked cross-
section may be calculated approximately using a simple elastic analysis which is based on the
following assumptions:

(a) Plane sections remain plane and therefore the strain distribution is linear over the depth of
the section.
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(b) Perfect bond exists between the concrete and both the prestressed and non-prestressed
steel. At service loads, this is a reasonable assumption.

(c) Instantaneous material behaviour is linear-elastic. This includes the concrete in
compression, the conventional reinforcement and the prestressing steel. Once again, this is
a reasonable assumption at service loads.

(d) Short-term behaviour only is required, i.e. the analysis does not include the inelastic
effects of creep and shrinkage.

(e) Tensile stresses in the concrete are ignored. This is a conservative assumption. An
empirical adjustment to the second moment of area of the cracked section may be made to
account for the contribution of the tensile concrete to the stiffness of the cross-section. This
is the so-called tension stiffening effect.

The instantaneous strains and stresses on a cracked section are shown in Figure 3.9. For an
applied moment M greater than the cracking moment, there are two unknowns associated with
the strain diagram in Figure 3.9b: the depth to the neutral axis dn and the extreme fibre
instantaneous compressive strain εoi. When εoi and dn are known, the strain diagram is defined
and the concrete and steel stresses are readily determined. To find these two unknowns, there
are two equations of equilibrium. Horizontal equilibrium dictates that

(3.26)

and moment equilibrium requires that

(3.27)

where C, C s, Tp, and Ts may all be expressed as functions of dn andεoi.

Figure 3.9 Cracked section analysis.
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C is the volume of the triangular compressive stress block acting over the area A' above the
neutral axis. If A' is rectangular (b wide and dn deep), then

(3.28)

From similar triangles, the strains at the levels of the non-prestressed steel are

and therefore the forces in the conventional reinforcement are

(3.29)

(3.30)

The strain in the bonded prestressing steel is equal to the sum of three strain components. The
first component is the tensile strain caused by the effective prestress, εpe, i.e. the strain that
exists in the steel prior to the application of any external moment:

(3.31)

Before the external moment is applied, the instantaneous compressive strain in the concrete at
the level of the prestressing steel is

(3.32)

As the external moment increases, the strain in the concrete at the steel level increases from
compressive (εce) to tensile (εpt). If perfect bond exists between the tendon and the concrete,
the prestressing steel strain increases by this same amount, i.e. |εce|+εpt. From similar triangles,

(3.33)

The total strain in the prestressed steel is therefore given by

(3.34)
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and the force in the prestressing steel is

(3.35)

By substituting Equations 3.28, 3.29, 3.30, and 3.35 into Equations 3.26 and 3.27 and solving
the simultaneous equations, εoi and dn are found. For manual solution, the following trial and
error procedure may be used:

(a) Select a reasonable value for εoi (say ). This will correspond to one particular
value of applied moment.

(b) Select a value for dn.
(c) Calculate strains, stresses, and forces in the steel and concrete.
(d) Check horizontal equilibrium. Is Equation 3.26 satisfied?

If yes: dn is correct.
If no: adjust dn and go to (c).

(e) When the correct value of dn has been determined, calculate the moment corresponding to
the initial selection of εoi, using Equation 3.27.

The above procedure may be repeated for several values of εoi to determine the change in
elastic behaviour as a function of moment. Behaviour at intermediate values of M may be
determined by interpolation.

From such an analysis, variations in steel stresses after cracking can be found in order to
check for crack control. Estimates of the section stiffness can also be made for use in
deflection calculations. It is noted that after cracking the neutral axis gradually rises as the
applied moment increases. With the area of concrete above the crack becoming smaller, the
second moment of area of the cracked section decreases as the applied moment increases.
This is not the case for reinforced concrete sections where dn remains approximately constant
with increasing moment and the cracked moment of inertia of the section is constant in the
post-cracking range.

In Figure 3.10, a typical moment-curvature diagram for a prestressed concrete section is
shown. At any moment M>Mcr, the curvature is

(3.36)

where EcIaυis the secant stiffness and e is the depth of the prestressing steel below the
centroidal axis of the cross-section. From Equation 3.36,

(3.37)
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Figure 3.10 Typical moment-curvature diagram for a prestressed section.

A conservative estimate of deflection is obtained if the value of EcIaυfor the section of
maximum moment is taken as the flexural rigidity of the member.

The tangent stiffness EcIcr is also shown in Figure 3.10. Icr is the second moment of area of
the cracked section, which may be obtained from a transformed section analysis. For small
variations in applied moment, curvature increments should be calculated using Icr. In
reinforced concrete construction, Icr is constant and equal to Iaυ, but this is not so for
prestressed concrete.

Example 3.4

The cross-section analysed in Example 3.3 and shown in Figure 3.7 is to be re-analysed to
determine its post-cracking behaviour. It is assumed that the duct has been grouted, thereby
bonding the tendon to the surrounding concrete. The force in the prestressing steel at the time
of application of the external moment is Pe=1200 kN. Material properties are as follows:

Sample calculations are provided for the particular applied moment that produces a top fibre
stress σo=−20 MPa, as shown in Figure 3.11.

When σoi=−20 MPa, the instantaneous top fibre strain is
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Figure 3.11 Short-term strain and stress on the cracked section of Example 3.4.

The area of the transformed cross-section prior to cracking and the second moment of area
about the centroidal axis are A=261×103 mm2 and I=14760×106 mm4, respectively. The
various strain components in the prestressing steel are obtained from Equations 3.31–3.33:

and from Equation 3.35,

Similarly from Equations 3.29 and 3.30:

and

The compression in the concrete above the neutral axis is obtained from Equation 3.28:
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Trial values of dn are considered below:

dn Tp Ts ΣT C Cs ΣC ΣT+ΣC
(mm) (kN) (kN) (kN) (kN) (kN) (kN) (kN)
460 1291 146 1437 1380 104 1484 –47

440 1299 164 1463 1320 104 1424 +39

FROM LINEAR INTERPOLATION

449 1295 155 1450 1347 104 1451 –1

CLOSE ENOUGH

With dn=449 mm when εoi=−667×10−6, the moment and curvature on the section are obtained
from Equations 3.27 and 3.36, respectively.

and

The secant stiffness is obtained from Equation 3.37:

(cf. EcI=443×1012 N mm2 for the uncracked section). The stresses in the prestressed and the
non-prestressed tensile steel under this applied moment are

The change in stress in the prestressing steel and the tensile stress in the non-prestressed steel
caused by the applied moment are much less than the tensile stress limits usually specified in
codes of practice for crack control.
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Figure 3.12 Moment vs curvature for section of Example 3.4.

For example, AS 3600 (1988) specifies a maximum increment of tensile steel stress equal to
200 MPa between decomposition and the full in-service moment. With the closely spaced
bonded reinforcement near the tension face of the section analysed here, cracks should be well
controlled at this level of applied moment.

Similar calculations can be performed for other values of σoi. For example,
When σoi=−15 MPa:

When σoi=−25 MPa:

A plot of the moment-curvature relationship for the section is shown in Figure 3.12.
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3.6 Time-dependent analysis of cross-sections

3.6.1 Introduction

The time-dependent behaviour of a partially prestressed member is greatly affected by the
quantity and location of conventional, non-prestressed reinforcement. Bonded reinforcement
provides restraint to the time-dependent shortening of concrete caused by creep and shrinkage.
As the concrete creeps and shrinks, the reinforcement is gradually compressed. An equal and
opposite tensile force ΔT is applied to the concrete at the level of the bonded reinforcement,
thereby reducing the compression caused by prestress. It is the tensile forces that are applied
gradually at each level of bonded reinforcement which result in significant time-dependent
changes in curvature and deflection. An accurate estimate of these forces (ΔT) is essential if
reliable predictions of long-term behaviour are required.

Procedures specified in codes of practice for predicting losses of prestress due to creep and
shrinkage are usually too simplified to be reliable and often lead to significant error,
particularly for members containing non-prestressed reinforcement. In the following section, a
simple analytical technique is presented for estimating the time-dependent behaviour of a
general, partially prestressed cross-section. The procedure has been described in more detail
by Ghali and Favre (1986) and Gilbert (1988), and makes use of the age-adjusted effective
modulus method to model the effects of creep in concrete (see Equations 2.11–2.14 and the
associated discussion).

3.6.2 Uncracked cross-sections

During any time period, creep and shrinkage strains develop in the concrete and relaxation
occurs in the prestressing steel. The gradual change in strain in the concrete with time causes
changes of stress in the bonded reinforcement. The gradual change in force in the steel is
opposed by an equal and opposite force on the concrete (usually tensile) at each steel location,
as shown in Figure 3.13. These forces are induced in the concrete at each level of bonded
reinforcement and result in increments of axial force ΔN(t) and moment about the top
reference surface ΔM(t) given by

(3.38)

and

(3.39)
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Figure 3.13 Tinie-dependent actions and deformations.

where n is the number of layers of conventional, non-prestressed reinforcement and m is the
number of layers of bonded prestressed steel. Equal and opposite actions –ΔN(t) and –ΔM(t)
are applied to the bonded steel portions of the cross-section.

The time-dependent change of strain at any depth y below the top of the cross-section (Δε)
may be expressed in terms of the change in top fibre strain (Δεo) and the change of curvature
(Δx):

(3.40)

The magnitude of Δεis the sum of each of the following components:

(a) The free shrinkage strainεsh (which is usually considered to be uniform over the section).
(b) The creep strain caused by the initial concrete stress σi existing at the beginning of the

time period, i.e. (from Equation 2.9), where is the increment of the creep
coefficient associated with the time period under consideration.

(c) The creep and elastic strain caused by ΔN(t) and ΔM(t) gradually applied to the concrete
section. This term accounts for the internal restraint to creep and shrinkage provided by the
bonded reinforcement.

(d) The tensile creep strain in the high-strength prestressing steel (relaxation).

A convenient approach for the determination of the change of strain during any particular
time period (Δεo and Δx in Equation 3.40) involves a relaxation solution procedure first
proposed by Bresler and Selna (1964). During the time interval, the strain at any point on the
cross-section is initially assumed to remain unchanged, i.e. the change of strain due to creep
and shrinkage is artificially prevented. If the total strain is held constant and the creep and
shrinkage components change, then the instantaneous compo-
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nent of strain must also change by an equal and opposite amount. As the instantaneous strain
changes, so too does the concrete stress. The concrete stress on the cross-section is therefore
allowed to vary due to relaxation. As a result, the internal actions change and equilibrium is
not maintained. To restore equilibrium, an axial force δN and a bending moment δM must be
applied to the section.

The forces required to restrain the section, −δN and −δM, are easily determined. If creep of
the concrete was not restrained by bonded reinforcement and the concrete stress remained
constant throughout the time period, the top fibre strain and curvature would increase by

and , respectively. The restraining forces required to prevent this deformation are
determined using expressions similar to Equation 3.22 and 3.23:

(3.41)

(3.42)

where Ac, Bc, and Īc are the concrete area, the first moment of the concrete area and the second
moment of the concrete area about the top surface of the section, respectively. The properties
of the concrete section alone (without any contribution from the steel reinforcement) are used
in Equations 3.41 and 3.42 since only the concrete is subject to creep. The age-adjusted
effective modulus Ēe (as defined in Equation 2.14) is used in Equations 3.41 and 3.42 because
the restraining forces δN and δM are gradually applied throughout the time period.

If shrinkage is uniform over the depth of the section and completely unrestrained, the
shrinkage-induced top fibre strain which develops during the time interval is εsh and there is
no induced curvature. The restraining forces required to prevent this uniform deformation are
again obtained using expressions similar to Equations 3.22 and 3.23:

(3.43)

(3.44)

For a prestressed concrete section, restraining forces required to prevent the relaxation Rk in
each layer of tendons must also be included. The restraining forces required to prevent the
tensile creep (which causes relaxation) in the m layers of prestressing steel are

(3.45)
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and

(3.46)

The total restraining forces are the sum of the creep, shrinkage, and relaxation components:

(3.47)

(3.48)

For a reinforced concrete section, the relaxation forces Rk in the above equations obviously do
not exist.

The increments of top fibre strain (Δεo) and curvature (Δx) produced by the axial force δN
and the moment δM, gradually applied about the top reference level, may be obtained from
the following equations (which are similar to Equations 3.24 and 3.25):

(3.49)

(3.50)

where Āe is the area of the age-adjusted transformed section and and Īe are the first and
second moments of the area of the age-adjusted transformed section about the top surface. For
the determination of Āe, , andĪe, the age-adjusted effective modulus Ēe is used instead of
the elastic modulus for concrete Ec in the calculation of the transformed area of the bonded
reinforcement. Ēe is used in Equations 3.49 and 3.50 because δN and δM produce both elastic
and creep strains on the cross-section.

The loss of stress in the concrete at any distance y below the top fibre, which occurs while
the strain state is initially held constant (i.e. the initial stress relaxation), is given by

(3.51)

and the change of stress which occurs when δN and δM are applied to the section to restore
equilibrium is

(3.52)



Page 93

The actual change of concrete stress Δσthat occurs during the time interval due to the effects
of creep, shrinkage, and relaxation is obtained by adding Equations 3.51 and 3.52:

(3.53)

For non-prestressed steel, the change of stress in the jth layer is

(3.54)

and, for the kth layer of prestressed steel, the change of stress is

(3.55)

Example 3.5

The time-dependent behaviour of the cross-section shown in Figure 3.7 is to be determined.
The short-term behaviour of the section immediately after transfer was calculated in Example
3.3. The post-tensioned duct is filled with grout soon after transfer, thereby bonding the
tendon to the concrete and ensuring compatibility of concrete and steel strains throughout the
period of the time analysis. The material properties for the time period under consideration are

The strain and stress distributions immediately after transfer are shown in Figure 3.8, and for
Mo=100 kNm,

It is assumed in this example that the external moment remains constant and equals 100 kNm
throughout the period of the time analysis.

From Equation 2.14,

and with the post-tensioning duct fully grouted, the properties of the concrete section are
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The forces required to restrain the cross-section are determined using Equations 3.41–3.46:

The total restraining forces are obtained by summing the individual components using
Equations 3.47 and 3.48:

The age-adjusted modular ratio is and the age-adjusted transformed section
and its properties about the top reference surface are shown in Figure 3.14.

The increments of top fibre strain and curvature which develop during the

Figure 3.14 Age-adjusted transformed section and properties (Example 3.5).
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time interval are obtained from Equations 3.49 and 3.50:

The final top fibre strain and curvature are therefore

The time-dependent changes of the top and bottom fibre concrete stresses are calculated using
Equations 3.51–3.53:

and therefore the final concrete stresses are

From Equation 3.54, the change of stress in the non-prestressed steel is

and from Equation 3.55, the loss of stress in the prestressed steel is
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Figure 3.15 Initial and final strains and stresses for Example 3.5.

The final steel stresses in each layer at time t are therefore

The initial and final strains and stress on the cross-section are illustrated in Figure 3.15.

Discussion

The results of several time analyses on the cross-section shown in Figure 3.7 are presented in
Tables 3.1 and 3.2. The effects of varying the quantities of

Table 3.1 Effect of varying tensile steel As2 (As1=0).

Ms
(kNm)

As1
(mm2)

εoi
(×10−6)

κi (×10−6

mm−1)
ΔTc1
(kN)

ΔTc2
(kN)

ΔTcp1
(kN)

Δεo
(×10−6)

Δκ (×10−6

mm−1)
0 −8.8 −0.455 0 0 206 −505 −0.629

1800 −28.9 −0.372 0 233 160 −673 +0.035100

3600 −44.8 −0.306 0 337 135 −765 +0.402

0 −186 −0.008 0 0 174 −854 +0.221

1800 −198 +0.038 0 169 143 −970 +0.677270

3600 −206 +0.075 0 248 125 −1034 +0.932

0 −364 +0.438 0 0 142 −1204 +1.071

1800 −366 +0.448 0 105 125 −1267 +1.319440

3600 −368 +0.455 0 159 115 −1303 +1.463
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Table 3.2 Effect of varying compressive steel As1 (As2=1800 mm2).

Ms
(kNm)

As1
(mm2)

εoi
(×10−6)

κi (×10−6

mm−1)
ΔTc1
(kN)

ΔTc2
(kN)

ΔTcp1
(kN)

Δεo
(×10−6)

Δκ (×10−6

mm−1)

0 −28.9 −0.372 0 233 160 −673 +0.035

900 −25.4 −0.378 100 244 161 −544 −0.182100

1800 −22.3 −0.383 170 253 161 −450 −0.339

0 −198 +0.038 0 169 143 −970 +0.677

900 −184 +0.014 136 186 143 −776 +0.353270

1800 −172 −0.007 227 198 143 −639 +0.121

0 −366 +0.448 0 105 125 −1267 +1.319

900 −343 +0.407 172 127 125 −1009 +0.887440

1800 −322 +0.370 285 143 126 −827 +0.581

the compressive and tensile non-prestressed reinforcement (As1 and As2, respectively) on the
time-dependent deformation can be seen for three different values of sustained bending
moment. At M=100 kNm, the initial concrete stress distribution is approximately triangular
with higher compressive stresses in the bottom fibres (as determined in Examples 3.3 and 3.5).
At M=270 kNm, the initial concrete stress distribution is approximately uniform over the
depth of the section and the curvature is small. At M=440 kNm, the initial stress distribution
is again triangular with high compressive stresses in the top fibres.

From the results in Table 3.1, the effect of increasing the quantity of non-prestressed tensile
reinforcement, As2, is to increase the change in positive or sagging curvature with time. The
increase is most pronounced when the initial concrete compressive stress at the level of the
steel is high, i.e. when the sustained moment is low and the section is initially subjected to a
negative or hogging curvature. When As2=3600 mm2 and M=100 kNm in Table 3.1, Δx is
positive despite a large initial negative curvature. Table 3.1 indicates that the addition of non-
prestressed steel in the tensile zone will reduce the time-dependent camber which often causes
problems in precast members subjected to low sustained loads. For sections on which M is
sufficient to cause an initial positive curvature, an increase in As2 causes an increase in time-
dependent curvature and hence an increase in final deflection (e.g. when M=440 kNm in
Table 3.1).

The inclusion of non-prestressed steel in the compressive zone, As1, increases the change in
negative curvature with time, as indicated in Table 3.2. For sections where the initial
curvature is positive, such as when M=440 kNm, the inclusion of As1 reduces the time-
dependent change in curvature (and hence the deflection of the member). However, when x i is
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negative, As1 causes an increase in negative curvature and hence an increase in the camber of
the member with time.

The significant unloading of the concrete with time on the sections containing non-
prestressed reinforcement should be noted. In Table 3.2, when M=270 kNm and As1=1800
mm2, the concrete is subjected to a total gradually applied tensile force (ΔTc1+ΔTc2+ΔTcp1) of
568 kN. More than 42% of the initial compression in the concrete is shed into the bonded
reinforcement with time. The loss of prestress in the tendon, however, is only 143 kN (10.6%).
It is evident that an accurate picture of the time-dependent behaviour of a partially prestressed
section cannot be obtained unless the restraint provided to creep and shrinkage by the non-
prestressed steel is adequately accounted for. It is also evident that the presence of non-
prestressed reinforcement significantly reduces the cracking moment with time and may in
fact relieve the concrete of much of its initial prestress.

3.6.3 Cracked cross-sections

Under sustained loading, creep causes a change in position of the neutral axis on a cracked
cross-section. In general, the depth to the neutral axis increases with time and, hence, so too
does the area of concrete in compression. An iterative numerical solution procedure is
required to account accurately for this gradual change in the properties of the cracked section
with time. The time period is divided into small intervals and structural behaviour is
calculated at the end of each time increment. The properties of the cross-section are modified
or updated at the end of each time increment. Such a procedure is not suitable for manual
solution and is often too complex for routine use in structural analysis and design.

The procedure described in the previous section for the time analysis of uncracked cross-
sections can be extended to cracked sections, if it is assumed that the cross-sectional area of
the section remains constant with time, that is, if the depth of the concrete above the neutral
axis (dn in Figure 3.16a) is assumed to remain constant throughout the time analysis. This
assumption is in fact necessary if the short-term and time-dependent stress and strain
increments are to be calculated separately and added together to obtain final stresses and
deformations, i.e. if the principle of superposition is to be applied to fully cracked sections in
the same way as it has been applied to uncracked cross-sections. The assumption also greatly
simplifies the analysis and usually results in relatively little error.

Consider a fully cracked cross-section subjected to a sustained bending moment M, as
shown in Figure 3.16a. The short-term and time-dependent strain distributions are illustrated
in Figure 3.16b.

The restraining actions, −δN and −δM, that are required to prevent the free development of
creep and shrinkage in the concrete and relaxation in the bonded prestressing tendons are
calculated using Equations 3.47 and
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Figure 3.16 Time-dependent behaviour of a fully cracked cross-section.

3.48. For a fully cracked cross-section, the terms Ac, Bc, andĪc in these equations are the
properties of the uncracked part of the concrete cross-section with respect to the top fibre. The
depth of the uncracked concrete dn is calculated from the short-term analysis presented in
Section 3.5.2.

The change of the strain distribution with time is calculated using Equations 3.49 and 3.50
and Āe, , andĪe are now the properties of the fully cracked age-adjusted transformed
section, i.e. the properties of the cross-section consisting of the concrete compressive zone
and a transformed area of (or ) at each bonded steel level, where

.
The change of concrete stress with time at any depth may be determined using

Equations 3.51–3.53 and the change of stress in the jth layer of non-prestressed reinforcement
and in the kth layer of prestressing steel may be found from Equations 3.54 and 3.55,
respectively.

Example 3.6

The change of stress and strain with time on the cross-section shown in Figure 3.17a is to be
determined. The sustained bending moment is M=700 kNm and the initial prestressing force
is P=1350 kN.

The material properties for the time period under consideration are:

The depth of the neutral axis immediately after the application of the applied moment M is
calculated using the iterative short-term analysis outlined in Section 3.5.2. In this example,
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Figure 3.17 Cross-sectional details and initial strains (Example 3.6).

(as shown in Figure 3.17b). The initial top fibre strain and curvature are
εoi=−671×10−6 and x i=1.415×10−6 mm−1, respectively.
The cracked cross-section and the strain distribution immediately after the application of M

are shown in Figures 3.17b and c.
The age-adjusted effective modulus is obtained from Equation 2.14:

and the properties of the uncracked part of the concrete cross-section (i.e. the concrete
compressive zone) with respect to the top fibre are

From Equations 3.47 and 3.48,

With the areas of the bonded steel reinforcement transformed into equivalent areas of concrete
of modulus Ēe, the properties of the age-adjusted transformed section are
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The time-dependent increments of top fibre strain and curvature produced by δN and δM are
found using Equations 3.49 and 3.50:

The change of stress in the concrete compression zone is obtained from Equations 3.51–3.53:
At y=0:

At y=474 mm:

and from Equations 3.54 and 3.55, the change of stress in the steel is

The final stresses and strains are illustrated in Figure 3.18.
There is a relatively small time-dependent change of stress in the prestressing steel on this

cracked cross-section. If the concrete surrounding a bonded prestressing tendon is cracked
under the sustained load, the loss of steel stress due to creep and shrinkage of the concrete is
generally small. Most practical, partially prestressed concrete members are designed to
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Figure 3.18 Stresses and strains on cross-section of Example 3.6.

remain uncracked under the sustained or permanent in-service loads. Cracking occurs under
the application of the variable live loads. Cracks therefore open and close as the variable live
load is applied and removed. For most of the life of such members, the entire concrete cross-
section is in compression (uncracked) and the time analysis for a general uncracked cross-
section, as outlined in Section 3.6.2, is appropriate.

3.7 Losses of prestress

3.7.1 Definitions

The losses of prestress that occur in a prestressed member are illustrated in Figure 3.19. When
the prestress is transferred to the concrete, immediate losses of prestress occur. The difference
between the prestressing force imposed at the jack, Pj, and the force in the steel immediately
after transfer at a particular section, Pi, is the immediate loss:

(3.56)

The gradual loss of prestress that takes place with time is called the time-dependent or
deferred loss. If Pe is the force in the prestressing tendon after all losses, then

(3.57)

Both of these losses are made up of several components. The immediate losses are caused by
elastic deformation of the concrete as the prestress is
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Figure 3.19 Losses of prestress.

transferred, friction along the draped tendon in a post-tensioned member, and slip at the
anchorage. Other sources of immediate loss of prestress which may need to be accounted for
in some situations include deformation of the forms of precast members, temperature changes
between the time of stressing the tendons and casting the concrete, deformation in the joints
of precast members assembled in sections, and relaxation of the tendons prior to transfer. The
time-dependent losses are caused by the gradual shortening of the concrete at the steel level
due to creep and shrinkage, and by relaxation of the steel itself. Additional losses may occur
due to time-dependent deformation of the joints in segmental construction.

3.7.2 Elastic deformation losses

Pretensioned members

Immediately after transfer, the change in strain in the prestressing steel Δεp caused by elastic
shortening of the concrete is equal to the strain in the concrete at the steel level, εcp. The
compatibility equation can be expressed as follows:

The loss of stress in the steel, Δσp, is therefore

(3.58)

where σcp is the concrete stress at the steel level immediately after transfer.

Post-tensioned members

For post-tensioned members with one cable or with two or more cables stressed
simultaneously, the elastic deformation of the concrete occurs during the stressing operation
before the tendons are anchored. In this case, elastic shortening losses are zero. In a member
containing more than one tendon and where the tendons are stressed sequentially, the elastic
deformation losses vary from tendon to tendon and are a maximum in the tendon
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stressed first and a minimum (zero) in the tendon stressed last. It is relatively simple to
calculate the elastic deformation losses in any tendon provided the stressing sequence is
known. However, these losses are usually small and, for practical purposes, the average
elastic shortening loss is often taken as half the value obtained from Equation 3.58:

(3.59)

3.7.3 Friction along the tendon

Friction occurs in the jack and anchorage and depends on the type of jack and anchorage
system used. This loss is usually allowed for during stressing and need not unduly concern the
designer.

In post-tensioned members, friction losses occur along the tendon during the stressing
operation. Friction between the tendon and the duct causes a gradual reduction in prestress
with the distance along the tendon Lpa from the jacking end. The magnitude of the friction loss
depends on the total angular change of the tendon, the distance from the jacking point and the
size and type of the sheathing containing the tendons. A reliable estimate of friction losses
may be obtained from Equation 3.60. An equation of similar form is recommended by
numerous building codes, including ACI 318–83, BS 8110 (1985), and AS 3600–1988.

(3.60)

where

Pa is the force in the tendon at any point Lpa (in metres) from the jacking end.

Pj is the force in the tendon at the jacking end.

µ is a friction curvature coefficient which depends on the type of duct. For strand in bright and zinc-
coated metal ducts, µ≈0.2; for greased and wrapped wire or strand, µ≈0.15; and for strand in an
unlined concrete duct, µ≈0.50. Higher values should be used if either the tendon or the duct are
rusted.

at is the sum in radians of the absolute values of all successive angular deviations of the tendon over
the length Lpa.

βp is an angular deviation or wobble term and depends on the sheath (or duct) diameter:

For ducts containing strand and having an internal diameter as follows:

>50 and

>90 and
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For flat metal ducts:

For greased and wrapped bars: βp=0.008.

Example 3.7

The friction losses in the cable in the end-span of the post-tensioned girder of Figure 3.20 are
to be calculated. For this cable, µ=0.2 and βp=0.01.

From Equation 3.60:

Figure 3.20 Tendon profile for end span of Example 3.7.

3.7.4 Anchorage losses

In post-tensioned members, some slip or draw-in occurs when the prestressing force is
transferred from the jack to the anchorage. This causes an additional loss of prestress. The
amount of slip depends on the type of anchorage. For wedge-type anchorages for strand, the
slip Δ may be as high as 6 mm. The loss of prestress caused by Δ decreases with distance 
from the anchorage owing to friction and may be negligible at the critical design section.
However, for short tendons, this loss may be significant and should not be ignored in design.

The loss of tension in the tendon caused by slip is opposed by friction in the same way as
the initial prestressing force was opposed by friction, but in the opposite direction, i.e. µ and
βp are the same. The graph of variation in prestressing force along a member due to friction
(calculated using Equation 3.60) is modified in the vicinity of the anchorage by the mirror
image reduction shown in Figure 3.21. The slope of the draw-in line adjacent to the anchorage
has the same magnitude as the friction loss line but the opposite sign.
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Figure 3.21 Variation in prestress due to draw-in at the anchorage.

In order to calculate the draw-in loss at the anchorage δPdi, the length of the draw-in line Ldi
must be determined. By equating the anchorage slip Δ with the integral of the change in strain 
in the steel tendon over the length of the draw-in line, Ldi may be determined. From Figure
3.21b, the loss of prestress due to draw-in δP at distance x from point O is

where αis twice the slope of the prestress line as shown in Figure 3.21. Therefore,

Rearrangement gives

(3.61)

and

The magnitude of the slip that should be anticipated in design is usually supplied by the
anchorage manufacturer and should be checked on site. Cautious overstressing at the
anchorage is often an effective means of compensating for slip.

3.7.5 Time-dependent losses of prestress

In Section 3.6, a time analysis was presented for determining the effects of creep, shrinkage,
and relaxation on the behaviour of a prestressed concrete
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beam section of any shape and containing any layout of prestressed and non-prestressed
reinforcement. In this section, the approximate procedures which are often specified in codes
of practice for calculating time-dependent losses of prestress are outlined. These methods are
of limited value and often give misleading results because they do not adequately account for
the significant loss of precompression in the concrete that occurs when non-prestressed
reinforcement is present. For a realistic estimate of the time-dependent behaviour of a
prestressed section, the method described in Section 3.6 is recommended.

Shrinkage losses

The loss of stress in a tendon due to shrinkage of concrete may be approximated by

(3.62)

where εsh is the shrinkage strain at the time under consideration and may be estimated using
the procedures outlined in Section 2.5. When non-prestressed reinforcement is present and
offers restraint to shrinkage, the stress loss in the tendon will be smaller than that indicated by
Equation 3.62. However, the non-prestressed reinforcement also relieves the concrete of
compression, and the change in the resultant compression in the concrete may be much
greater than the change in tensile force in the tendon. As time increases, more and more of the
compression exerted on the beam by the tendon is carried by the non-prestressed steel and less
and less by the concrete.

Creep losses

Creep strain in the concrete at the level of the tendon depends on the stress in the concrete at
that level. Because the concrete stress varies with time, a reliable estimate of creep losses
requires a detailed time analysis (such as that presented in Section 3.6). An approximate and
conservative estimate can be made by assuming that the concrete stress at the tendon level
remains constant with time and equal to its initial (usually high) value, σc (caused by Pi and
the permanent part of the load). With this assumption, the creep strain at any time t after
transfer (at age ) may be calculated from an expression similar to Equation 2.9):

(3.63)

where is the creep coefficient, which may be estimated using the procedures outlined
in Section 2.5.

If the tendon is bonded to the surrounding concrete, the change of steel
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strain caused by creep is equal to εc(t) and the creep loss in the tendon may be approximated
by

(3.64)

Again, the presence of conventional steel will cause a decrease in the concrete compressive
stress at the steel level and a consequent decrease in creep. In this case, Equation 3.64 will
overestimate creep losses, often significantly.

Relaxation of steel

The loss of stress in a tendon due to relaxation depends on the sustained stress in the steel.
Owing to creep and shrinkage in the concrete, the stress in the tendon decreases with time at a
faster rate than would occur due to relaxation alone. This decrease in stress level in the tendon
affects (reduces) the magnitude of the relaxation losses. An equation similar to Equation 3.65
is often used to modify the design relaxation to include the effects of creep and shrinkage.
The loss of prestress due to relaxation (as a percentage of the initial prestress) may be
approximated by

(3.65)

where R is the design relaxation, which may be obtained from either Equation 2.22 or 2.23;
Δσp is the loss of stress in the tendon due to creep plus shrinkage (from Equations 3.62 and
3.64); and σpi is the stress in the tendon immediately after transfer.

3.8 Deflection calculations

3.8.1 Discussion

The slope θand deflection υat any point x along a member may be calculated by integrating
the curvature over the length of the member. Provided that deformations are small
compared with the beam dimensions, simple beam theory gives

(3.66)

(3.67)

These equations are general and apply for both elastic and inelastic material
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Figure 3.22 Deformation of a typical span and cantilever.

behaviour. For a prestressed concrete beam, the curvature at any point along the span at any
time after first loading can be calculated using the procedures outlined in Sections 3.5 and 3.6.

Consider the span shown in Figure 3.22a. If the curvature at each end of the span (xA and
xB) and at mid-span (xC) are known and the variation in curvature along the member is
parabolic, then the slope at each support (θA andθB) and the deflection at mid-span (υC) are
given by

(3.68a)

(3.68b)

(3.68c)

Similarly, if the variation of curvature along a fixed-end cantilever (such as shown in Figure
3.22b) is parabolic, the slope and deflection at the free end are given by

(3.69a)

(3.69b)

If only the curvatures at each end of the cantilever are known, then

(3.70a)

(3.70b)
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For practical members subjected to usual load configurations, deflection estimates made using
Equations 3.68–3.70 are accurate enough for most design purposes, even where the variation
of curvature along the member is not parabolic.

3.8.2 Short-term deflection

For any uncracked cross-section, the initial curvature may be calculated using Equation 3.25.
A typical numerical example was illustrated in Example 3.3. For a cracked cross-section, the
initial curvature may be found from Equation 3.36 using the procedure presented in Section
3.5.2 and illustrated in Example 3.4. If the initial curvature at each end of the span of a beam
or slab and at the mid-span are calculated, the short-term deflection can be estimated using
Equations 3.68c, 3.69b or 3.70b, whichever is appropriate.

For uncracked, prestressed concrete members, codes of practice generally suggest that the
gross moment of inertia Ig may be used in deflection calculations. The initial curvature at any
cross-section may therefore be approximated by

(3.71)

where Pi is the initial prestressing force and e is its eccentricity below the centroidal axis of
the section.

After cracking, the stiffness of the cracked cross-section calculated using Equation 3.37
may underestimate the stiffness of the member in the cracked region. The intact concrete
between adjacent cracks carries tensile force, mainly in the direction of the reinforcement, due
to the bond between the steel and the concrete. The average tensile stress in the concrete is
therefore not zero and may be a significant fraction of the tensile strength of concrete. The
stiffening effect of the uncracked tensile concrete is sensibly known as tension stiffening and
is usually accounted for in design by an empirical adjustment to the stiffness of the fully
cracked cross-section.

For conventionally reinforced members, tension stiffening contributes significantly to the
member stiffness, particularly when the maximum moment is not much greater than the
cracking moment. However, as the moment level increases, the tension stiffening effect
decreases owing to additional secondary cracking at the level of the bonded reinforcement.
Shrinkage-induced cracking and tensile creep cause a reduction of the tension stiffening effect
with time. Repeated or cyclic loading also causes a gradual breakdown of tension stiffening.

For a partially prestressed member (or a reinforced member subjected to significant axial
compression), the effect of tension stiffening is less pro-



Page 111

nounced because the loss of stiffness due to cracking is more gradual and significantly smaller.
In codes of practice, the simplified techniques specified for estimating the deflection of a

cracked concrete member usually involve the determination of an effective moment of inertia
Ie for the member. A number of empirical equations are available for Ie. Most have been
developed specifically for reinforced concrete, where for a cracked member Ie lies between
the gross moment of inertia of the critical section Ig and the moment of inertia of the cracked
transformed section Icr. For a prestressed concrete section, Icr varies with the applied moment
as the depth of the crack gradually changes. The value of Icr is usually considerably less than
Iav, as illustrated in Figure 3.10. The equations used for estimating Ie for a reinforced section
are not therefore directly applicable to prestressed concrete.

The following two well known procedures for modelling tension stiffening may be applied
to prestressed concrete provided Iav replaces Icr in the original formulations:

(a) The empirical equation for Ie proposed by Branson (1963) is perhaps the best known
method and has been adopted in many codes and specifications for reinforced concrete
members, including ACI 318–83 and AS 3600–1988. For a prestressed concrete section,
the following form of the equation can be used:

(3.72)

where Mc is the moment required to cause first cracking and M is the maximum in-
service moment at the section under consideration.

(b) The CEB (1983) has proposed an alternative approach for reinforced concrete which
accounts for the effect of the reinforcement type on tension stiffening and also accounts for
the breakdown of tension stiffening with time due to shrinkage induced tension, tensile
creep, and repeated loading. The CEB proposal may be modified for cracked, prestressed
sections as follows:

(3.73)

where

(3.74)
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and

=1.0 when deformed non-prestressed bars are present;

=0.5 when plain round bars or bonded tendons only are present;

β1

=0.0 when unbonded tendons only are present;

=1.0 for initial loading;β2

=0.5 for long-term sustained loads or cycles of load.

Numerous other approaches have been developed for modelling the tension stiffening
phenomenon. Of the two approaches outlined above, the CEB approach is recommended
because it best accounts for the breakdown of tension stiffening under long-term or cyclic
loading and allows for the reduction in tension stiffening when plain bars or bonded tendons
only are present and the steel-concrete bond might not be perfect.

For most practical prestressed or partially prestressed members, however, tension stiffening
is not very significant and a reasonable, conservative estimate of deflection can be obtained
by ignoring tension stiffening and using EcIav (from Equation 3.37) in the calculations.

Example 3.8

The short-term deflection of a uniformly loaded, simply supported, post-tensioned beam of
span 12m is to be calculated. An elevation of the member is shown in Figure 3.23, together
with details of the cross-section at mid-span (which is identical with that analysed in Example
3.3). The

Figure 3.23 Beam details for Example 3.8.
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prestressing cable is parabolic with the depth of the tendon below the top fibre at each support
dp=400 mm and at mid-span dp=600 mm, as shown. The non-prestressed reinforcement is
constant throughout the span. Owing to friction and draw-in losses, the prestressing force at
the left support is P=1300 kN, at mid-span P=1300 kN, and at the right support P=1250 kN,
as shown in Figure 3.23c. The tendon has previously been bonded to the surrounding concrete
by filling the duct with grout.

Two service load cases are to be considered:

(a) a uniformly distributed load of 6 kN/m (which is the self-weight of the member);
(b) a uniformly distributed load of 36 kN/m.

The material properties are

and the flexural tensile strength is taken to be MPa.
At support A The applied moment is zero for both load cases and the prestressing tendon

is located at the mid-depth of the section (dp=400 mm) with a prestressing force P=1300 kN.
Using the cross-sectional analysis described in Section 3.5.1, the initial top fibre strain and
curvature calculated using Equations 3.24 and 3.25 are

At support B The prestressing force is P=1250 kN at dp=400 mm and M=0. As calculated at
support A, the initial top fibre strain and curvature are

At mid-span C The prestressing force is P=1300 kN at a depth of dp=600 mm. For load case
(a),

The cross-section is uncracked and from Equations 3.24 and 3.25
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for load case (b),

The section at mid-span is cracked and, using the iterative procedure outlined in Section 3.5.2,
the depth to the neutral axis is dn=495 mm. The initial top fibre strain and curvature are

The value of Iav calculated from Equation 3.37 is

Deflection With the initial curvature calculated at each end of the member and at mid-span,
the short-term deflection for each load case is determined using Equation 3.68c. For load case
(a),

For load case (b),

For load case (b), tension stiffening in the cracked region of the member near mid-span was
ignored. To include tension stiffening, the moment required to cause first cracking (i.e. the
moment required to produce a bottom fibre tensile stress of 3.8 MPa) is required. From an
analysis of the uncracked transformed section, the cracking moment Mcr is 579 kN m. Using
the procedure specified by the CEB (1983) for calculating Ie, the βcoefficients areβ1=1.0 and
β2=0.5 (assuming the member is subjected to load repetitions) and from Equations 3.74 and
3.73, respectively,
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The revised curvature at mid-span for load case (b) is

and the revised mid-span deflection for load case (b) is

3.8.3 Long-term deflection

Long-term deflections due to concrete creep and shrinkage are affected by many variables,
including load intensity, mix proportions, member size, age at first loading, curing conditions,
total quantity of compressive and tensile steel, level of prestress, relative humidity, and
temperature. To account accurately for these parameters, a time analysis similar to that
described in Sections 3.6.2 and 3.6.3 is required. The change in curvature during any period
of sustained load may be calculated using Equation 3.50. Typical calculations are illustrated
in Example 3.5 for an uncracked cross-section and in Example 3.6 for a cracked cross-section.

When the final curvature has been determined at each end of the member and at mid-span,
the long-term deflection can be calculated using either Equations 3.68c, 3.69b, or 3.70b.

For reinforced concrete members, codes of practice offer simple approximate methods for
obtaining ball-park estimates of long-term deflection. The long-term deflection is often taken
to be equal to the short-term deflection due to the sustained or permanent loads times a
multiplication factor. For example, the long-term deflection multiplication factor specified in
ACI 318–83 for the long-term deflection after 5 years under load is

(3.75)

where ρ' is the non-prestressed compressive reinforcement ratio (Asc/bd) at the mid-span for
simple and continuous spans and at the support for cantilevers.

In prestressed concrete construction, a large proportion of the sustained external load is
often balanced by the transverse force exerted by the tendons. Under this balanced load, the
short-term deflection may be zero, but the long-term deflection is not. The restraint to creep
and shrinkage offered by non-symmetrically placed, bonded reinforcement on a section can
cause
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significant time-dependent curvature and, hence, significant deflection of the member. The
use of a simple deflection multiplier to calculate long-term deflection from the short-term
deflection is therefore not satisfactory.

In this section, approximate procedures are presented which allow a rough estimate of long-
term deflection. In some situations, this is all that is required. However, for most applications,
the procedures in Sections 3.6.2 and 3.6.3 are recommended.

The final creep induced deflection may be approximated by

(3.76)

where υsus is the short-term deflection produced by the sustained portion of the unbalanced
load and is the final creep coefficient. If a beam initially hogs upward under sustained
loads (i.e.υsus is upward), in general it will continue to hog upwards with time and υcr will
also be upward.

As seen in Section 2.5, the final creep coefficient varies from about 2.0 to 4.0, the upper
end of the range for low to medium strength concrete loaded at early ages and located in a
relatively dry environment. For prestressed concrete beams of average size, with Mpa,
exposed to the open air and initially loaded at ages greater than 7 days, is typically about
2.5.

The factor αin Equation 3.76 depends on the extent of cracking and the reinforcement
quantity (Gilbert 1983) and may vary from 1.0 to about 3.5. For uncracked, lightly reinforced
prestressed members, such as slabs, the increase in curvature due to creep is nearly
proportional to the increase in strain due to creep and αis little more than 1.0. For more
heavily reinforced, uncracked members αmay be taken as 1.5. For cracked, partially
prestressed members, αis usually about 2.5. For members containing compression steel, Asc,
the creep deflection, is significantly smaller. This may be taken into account by multiplying α
by the factor 1+Asc/As, where As is the total area of steel in the tension zone.

The deflection caused by shrinkage warping may be approximated by

(3.77)

where is the shrinkage induced curvature at mid-span (or at the support of a cantilever); L
is the beam span and βdepends on the support conditions:

β=0.50 for a cantilever;

β=0.125 for a simply supported member;

β=0.090 for an end span of a continuous beam;

β=0.065 for an interior span of a continuous beam.
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is greater than zero for a non-symmetric steel layout and varies along the span as the
eccentricity of the bonded tendon and the layout of non-prestressed steel varies. For
uncracked prestressed members with small quantities of tensile reinforcement, an approximate
estimate of the final shrinkage curvature is

(3.78)

For cracked, partially prestressed members, with significant quantities of conventional
reinforcement, the final shrinkage curvature is significantly higher and may be approximated
by

(3.79)

For members containing compressive reinforcement, shrinkage deflection is significantly
lower and may be accounted for by multiplying by 1−Asc/As.

Example 3.9

The final time-dependent deflection of the beam described in Example 3.8 and illustrated in
Figure 3.23 is to be calculated. As in Example 3.8, two load cases are to be considered:

(a) a uniformly distributed constant sustained load of 6 kN/m;
(b) a uniformly distributed constant sustained load of 36 kN/m.

For each load case, the time-dependent material properties are

All other material properties are as specified in Example 3.8.
At support A The sustained moment at A is zero for both load cases and the initial

prestress is P=1300 kN at dp 400 mm. The time-dependent changes of top fibre strain and
curvature calculated using Equations 3.49 and 3.50 are

The final top fibre strain and curvature are
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At support B As for support A, the sustained moment is zero, but the initial prestress is
P=1250 kN. Equations 3.49 and 3.50 give

and therefore

At mid-span For load case (a), M=108 kNm and P=1300 kN at dp=600 mm. For this
uncracked section,

and therefore

For load case (b), the sustained moment is M=648 kNm and for the cracked cross-section,
Equations 3.49 and 3.50 give

and therefore

Deflection With the final curvature calculated at each end of the member and at mid-span, the
long-term deflection at mid-span for each load case is found using Equation 3.68c. For load
case (a),

For load case (b),

Consider the more approximate predictions made using Equations 3.76–3.79. The creep
induced deflection is estimated using Equation 3.76. For load case (a), the member is
uncracked with significant quantities of
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non-prestressed steel. The factor αis taken to be

From Example 3.8, υsus=−4.6 mm and with , Equation 3.76 gives

For load case (b), the cross-section at mid-span is cracked and the factorαis taken as

From Example 3.8, υsus=18.5 mm and therefore

For load case (a), the shrinkage induced curvature is given by Equation 3.78:

and from Equation 3.77,

For load case (b), Equations 3.79 and 3.77 give, respectively,

and

The final long-term deflection for each load case is the sum of the initial deflection and the
creep and shrinkage deflection increments.
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For load case (a),

(cf. υc=−5.8 mm from the more accurate approach).
For load case (b),

which is almost 30% smaller than the estimate made using the more accurate procedure.
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4
Ultimate flexural strength

4.1 Introduction

The single most important design objective for a structure or a component of a structure is the
provision of adequate strength. The consequences and costs of strength failures are large and
therefore the probability of such failures must be very small.

The satisfaction of concrete and steel stress limits at service loads does not necessarily
ensure adequate strength and does not provide a reliable indication of either the actual
strength or the safety of a structural member. It is important to consider the non-linear
behaviour of the member in the over-loaded range to ensure that it has an adequate structural
capacity. Only by calculating the ultimate capacity of a member can a sufficient margin
between the service load and the ultimate load be guaranteed.

In the 1950s and 1960s, there was a gradual swing away from the use of elastic stress
calculations for the satisfaction of the design objective of adequate strength. The so-called
ultimate strength design approach emerged as the most appropriate procedure. The ultimate
strength of a cross-section in bending Mu is calculated from a rational and well established
flexural strength theory, which involves consideration of the strength of both the concrete and
the steel in the compressive and tensile parts of the cross-section. The prediction of ultimate
flexural strength is described and illustrated in this chapter. When Mu is determined, the
design requirements for the strength limit state (as discussed in Section 1.7.6) may be checked
and satisfied.

In addition to calculating the strength of a section, a measure of the ductility of each section
must also be established. Ductility is an important objective in structural design. Ductile
members undergo large deformations prior to failure, thereby providing warning of failure
and allowing indeterminate structures to establish alternative load paths. In fact, it is only with
adequate ductility that the predicted strength of indeterminate members and structures can be
achieved in practice.
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4.2 Flexural behaviour at overloads

The load at which collapse of a flexural member occurs is called the ultimate load. If the
member has sustained large deformations prior to collapse, it is said to have ductile behaviour.
If, on the other hand, it has only undergone small deformations prior to failure, the member is
said to have brittle behaviour. There is no defined deformation or curvature which
distinguishes ductile from brittle behaviour. Codes of practice, however, usually impose a
ductility requirement by limiting the curvature at ultimate to some minimum value, thereby
ensuring that significant deformation occurs in a flexural member prior to failure. Since beam
failures that result from a breakdown of bond between the concrete and the steel
reinforcement, or from excessive shear, or from failure of the anchorage zone tend to be
brittle in nature, every attempt should be made to ensure that the region of maximum moment
is the weakest link. The design philosophy should ensure therefore that a member does not fail
before the required design moment capacity of the section is attained.

Consider the prestressed concrete cross-section shown in Figure 4.1. The section contains
non-prestressed reinforcement in the compressive and tensile zones and bonded tensile
prestressing steel. Also shown in Figure 4.1 are typical strain and stress distributions for four
different values of applied

Figure 4.1 Stress and strain distributions caused by increasing moment.
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moment. As the applied moment M increases from typical in-service levels into the overload
range, the neutral axis gradually rises and eventually material behaviour becomes non-linear.
The non-prestressed steel may yield if the strainεst exceeds the yield strain (εy=fy/Es), the
prestressed steel may enter the non-linear part of its stress-strain curve asεp increases, and the
concrete compressive stress distribution becomes non-linear when the extreme fibre stress
exceeds about .

A flexural member which is designed to exhibit ductility at failure usually has failure of the
critical section preceded by yielding of the bonded tensile steel, i.e. by effectively exhausting
the capacity of the tensile steel to carry any additional force. Such a member is said to be
under-reinforced. Because the stress-strain curve for the prestressing steel has no distinct yield
point and the stress increases monotonically as the strain increases (see Figure 2.13), the
capacity of the prestressing steel to carry additional force is never entirely used up until the
steel actually fractures. However, when the steel strain εp exceeds about 0.01 (for wire or
strand), the stress–strain curve becomes relatively flat and the rate of increase of stress with
strain is small. After yielding, the resultant internal tensile force, T(=Ts+Tp) in Figure 4.1,
remains approximately constant (as does the resultant internal compressive force C, which is
equal and opposite to T). The moment capacity can be further increased by an increase in the
lever arm between C and T. Under increasing deformation, the neutral axis rises, the
compressive zone becomes smaller and smaller and the compressive concrete stress increases.
Eventually, perhaps after considerable deformation, a compressive failure of the concrete
above the neutral axis occurs and the section reaches its ultimate capacity. It is, however, the
strength of the prestressing tendons and the non-prestressed reinforcement in the tensile zone
that control the strength of a ductile section. In fact, the difference between the moment at
first yielding of the tensile steel and the ultimate moment is usually small.

A flexural member which is over-reinforced, on the other hand, does not have significant
ductility at failure and fails without the prestressed or non-prestressed tensile reinforcement
reaching any form of yield. At the ultimate load condition, both the tensile strain at the steel
level and the section curvature are relatively small and, consequently, there is little
deformation or warning of failure.

Because it is the deformation at failure that defines ductility, it is both usual and reasonable
in design to define a minimum ultimate curvature to ensure the ductility of a cross-section.
This is often achieved by placing a maximum limit on the depth to the neutral axis at the
ultimate load condition. Ductility can be increased by the inclusion of non-prestressed
reinforcing steel in the compression zone of the beam. With compressive steel included, the
internal compressive force C is shared between the concrete and the steel. The volume of the
concrete stress block above the neutral axis
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is therefore reduced and, consequently, the depth to the neutral axis is decreased. Some
compressive reinforcement is normally included in beams to provide anchorage for transverse
shear reinforcement.

Ductility is desirable in prestressed (and reinforced) concrete flexural members. In
continuous or statically indeterminate members, ductility is particularly necessary. Large
curvatures are required at the peak moment regions in order to permit the inelastic moment
redistribution that must occur if the moment diagram assumed in design is to be realized in
practice.

Consider the stress distribution caused by the ultimate moment on the section in Figure 4.1.
The resultant compressive force of magnitude C equals the resultant tensile force T and the
ultimate moment capacity is calculated from the internal couple,

(4.1)

The lever arm l between the internal compressive and tensile resultants (C and T) is usually
about 0.9d, where d is the effective depth of the section and may be defined as the distance
from the extreme compressive fibre to the position of the resultant tensile force in all the steel
on the tensile side of the neutral axis. To find the lever arm l more accurately, the location of
the resultant compressive force in the concrete Cc needs to be determined. The shape of the
actual stress-strain relationship for concrete in compression is required in order to determine
the position of its centroid.

4.3 Flexural strength theory

4.3.1 Assumptions

In the analysis of a cross-section to determine its ultimate bending strength Mu, the following
assumptions are usually made:

(a) The variation of strain on the cross-section is linear, i.e. strains in the concrete and the
bonded steel are calculated on the assumption that plane sections remain plane.

(b) Concrete carries no tensile stress, i.e. the tensile strength of the concrete is ignored.
(c) The stress in the compressive concrete and in the steel reinforcement (both prestressed and

non-prestressed) are obtained from actual or idealized stress–strain relationships for the
respective materials.

4.3.2 Idealized rectangular compressive stress blocks for concrete
In order to simplify numerical calculations for ultimate flexural strength, codes of practice
usually specify idealized rectangular stress blocks for the
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Figure 4.2 Ultimate moment conditions and rectangular stress blocks.

compressive concrete above the neutral axis. The dimensions of the stress block are calibrated
such that the volume of the stress block and the position of its centroid are approximately the
same as in the real curvilinear stress block.

In Figure 4.2a, an under-reinforced section at the ultimate moment is shown. The section
has a single layer of bonded prestressing steel. The strain diagram and the actual concrete
stress distribution at ultimate are illustrated in Figures 4.2b and c, respectively. The idealized
rectangular stress block for the compressive concrete at the ultimate flexural limit state
specified in both ACI 318–83 and AS 3600–1988 is shown in Figure 4.2d, and that specified
in BS 8110: Part 1 (1985) is illustrated in Figure 4.2e.

At the ultimate moment, the extreme fibre compressive strain εcu is taken in ACI 318–83
(and in AS 3600–1988) to be

while in BS 8110: Part 1 (1985), εcu is taken to be 0.0035. In fact, the actual extreme fibre
strain at ultimate may not be close to either of these values. However, for under-reinforced
members, with the flexural strength very much controlled by the strength of the tensile steel
(both prestressed and
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non-prestressed), variation in the assumed value ofεcu does not have a significant effect on Mu.
The depth of the ACI 318–83’s rectangular stress block (in Figure 4.2d) is γdn and the

uniform stress intensity is . The parameter γdepends on the concrete strength and may
be taken as

(4.2)

γis given in Table 4.1 for some standard concrete strength grades.
For the rectangular section of Figure 4.2a, the hatched area A '(=γdnb) is therefore assumed

to be subjected to a uniform stress of and the resultant compressive force Cc is the
volume of the rectangular stress block.

Therefore,

(4.3)

and the position of Cc is the centroid of the hatched area A', i.e. at a depth of γdn/2 below the
extreme compressive fibre (provided, of course, that A' is rectangular).

The ultimate moment is obtained from Equation 4.1:

(4.4)

where σpu is the stress in the bonded tendons and is determined from considerations of strain
compatibility and equilibrium.

In accordance with the design philosophy for the strength limit states outlined in Section
1.7.6, the design strength is obtained by multiplying Mu from Equation 4.4 by a capacity
reduction factor . In ACI 318–83, for flexure (and in AS 3600–1988).

The ultimate curvature is the slope of the strain diagram at failure and is therefore given by

(4.5)

Table 4.1 Variation of γwith f 'c.

f'c(MPa) 20 25 30 35 40 50

γ 0.85 0.85 0.836 0.80 0.766 0.696
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The ultimate curvature xu is an indicator of ductility. Large deformations at ultimate are
associated with ductile failures. To ensure ductility of a section at failure, codes of practice
specify minimum limits for xu. For example, ACI 318–83 limits curvature indirectly by
limiting the quantity of tensile reinforcement, thereby placing a maximum limit of 0.424d on
the depth to the neutral axis at failure. The Australian code AS 3600–1988 suggests that dn
should not exceed 0.4dp. This is equivalent to suggesting that xu should be greater than or
equal to

(4.6)

For the cross-section shown in Figure 4.2, the effective depth d equals the depth to the
prestressing steel, dp.

The rectangular stress block specified in BS 8110: Part 1 (1985) is shown in Figure 4.2e. It
has an overall depth of 0.9dn and a uniform stress intensity of The parameterγn is
the partial material safety factor for concrete and equals 1.5 (see Section 1.7.6). The stress in
the bonded prestressing steel is σpu/γm, where γm=1.15 for steel. The design strength of the
member [designated Mu in BS 8110: Part 1 (1985) but equivalent to in ACI 318–83] is
therefore given by

(4.7)

In the remainder of this chapter, the idealized rectangular stress block and the design
procedure specified in ACI 318–83 (and in AS 3600–1988) will be adopted for all numerical
examples.

4.3.3 Prestressed steel strain components

For reinforced concrete sections, the strain in the non-prestressed steel and in the concrete at
the steel level are the same at any stage of loading. For the prestressing tendons on a
prestressed concrete section, this is not so. The strain in the bonded prestressing steel at any
stage of loading is equal to the strain caused by the initial prestress plus the change in strain in
the concrete at the steel level.

To calculate accurately the ultimate flexural strength of a section, an accurate estimate of
the final strain in the prestressed and non-prestressed steel is required. The tensile strain in the
prestressing steel at ultimate εpu is very much larger than the tensile strain in the concrete at
the steel level, owing to the large initial prestress. For a bonded tendon, εpu is usually
considered to be the sum of several sub-components. Figure 4.3 indicates the strain
distributions on a prestressed section at three stages of loading.
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Figure 4.3 Strain distributions at three stages of loading.

Stage (a) shows the elastic concrete strain caused by the effective prestress when the
externally applied moment is zero. The strain in the concrete at the steel level is compressive,
with magnitude equal to

(4.8)

where A is the area of the section and I is the second moment of area of the section about its
centroidal axis. The stress and strain in the prestressing steel are

(4.9)

provided that the steel stress is within the elastic range.
Stage (b) is the concrete strain distribution when the applied moment is sufficient to

decompress the concrete at the steel level. Provided that there is bond between the steel and
the concrete, the change in strain in the prestressing steel is equal to the change in concrete
strain at the steel level. The strain in the prestressing steel at stage (b) is therefore equal to the
value at stage (a) plus a tensile increment of strain equal in magnitude to εce (from Equation
4.8).

Strain diagram (c) in Figure 4.3 corresponds to the ultimate load condition. The concrete
strain at the steel level εpt can be expressed in terms of the extreme compressive fibre strainεcu
and the depth to the neutral axis at failure dn as

(4.10)

From the requirements of strain compatibility, the change in strain in the
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prestressing steel between load stages (b) and (c) is also equal to εpt. Therefore, the strain in
the prestressing tendon at the ultimate load condition may be obtained from

(4.11)

εpu can therefore be determined in terms of the position of the neutral axis at failure dn and the
extreme compressive fibre strain εcu. Ifεpu is known, the stress in the prestressing steel at
ultimate σpu can be determined from the stress-strain diagram for the prestressing steel. With
the area of prestressing steel known, the tensile force at ultimate Tp can be calculated. In
general, however, the steel stress is not known at failure and it is necessary to equate the
tensile force in the steel tendon (plus the tensile force in any non-prestressed tensile steel)
with the concrete compressive force (plus the compressive force in any non-prestressed
compressive steel) in order to locate the neutral axis depth, and hence find εpu.

In general, the magnitude of εce in Equation 4.11 is very much less than eitherεpe or εpt, and
may usually be ignored without introducing serious errors.

4.3.4 Determination of Mu for a singly reinforced section with bonded tendons

Consider the section shown in Figure 4.2a and the idealized compressive stress block shown
in Figure 4.2d. In order to calculate the ultimate bending strength using Equation 4.4, the
depth to the neutral axis dn and the final stress in the prestressing steel σpu must first be
determined.

An iterative trial and error procedure is usually used to determine the value of dn for a given
section. The depth to the neutral axis is adjusted until horizontal equilibrium is satisfied, i.e.
C=T. Both C and T are functions of dn. For this singly reinforced cross-section, C is the
volume of the compressive stress block given by Equation 4.3 and T depends on the strain in
the prestressing steel, εpu. For any value of dn, the strain in the prestressing steel is calculated
using Equation 4.11 (and Equations 4.8–4.10). The steel stress at ultimate σpu, which
corresponds to the calculated value of strain εpu, can be obtained from the stress-strain curve
for the prestressing steel and the corresponding tensile force is T=σpuAp.

When the correct value of dn is found (i.e. when C=T), the ultimate flexural strength Mu

may be calculated from Equation 4.4.
A suitable iterative procedure is outlined below. About three iterations are usually required

to determine a good estimate of dn and hence Mu.

(1) Select an appropriate trial value of dn and determineεpu from Equation 4.11. By equating
the tensile force in the steel to the compressive



Page 130

force in the concrete, the stress in the tendon may be determined:

(2) Plot the point εpu andσpu on the graph containing the stress-strain curve for the
prestressing steel. If the point falls on the curve, then the value of dn selected in step 1 is the
correct one. If the point is not on the curve, then the stress–strain relationship for the
prestressing steel is not satisfied and the value of dn is not correct.

(3) If the point εpu and σpu obtained in step 2 is not sufficiently close to the stress–strain curve
for the steel, repeat steps 1 and 2 with a new estimate of dn. A larger value for dn is required
if the point plotted in step 2 is below the stress–strain curve and a smaller value is required
if the point is above the curve.

(4) Interpolate between the plots from steps 2 and 3 to obtain a close estimate for εpu andσpu
and the corresponding value for dn.

(5) With the correct values of σpu and dn determined in step 4, calculate the ultimate moment
Mu. If the area above the neutral axis is rectangular, Mu is obtained from Equation 4.4. Non-
rectangular-shaped cross-sections are discussed in more detail in Section 4.6.

Example 4.1

The ultimate flexural strength Mu of the rectangular section of Figure 4.4a is to be calculated.
The steel tendon consists of ten 12.7 mm diameter strands (Ap=1000 mm2) with an effective
prestress Pe=1200 kN. The

Figure 4.4 Section details and stress and strain distributions at ultimate (Example 4.1).
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stress–strain relationship for prestressing steel is as shown in Figure 4.5 and the elastic
modulus is Ep=195×103 MPa. The concrete properties are MPa, Ec=29800 MPa, and
from Equation 4.2, γ=0.801.

The initial strain in the tendons due to the effective prestress is given by Equation 4.9:

The strain in the concrete caused by the effective prestress at the level of the prestressing steel
(εce in Figure 4.4b) is calculated using Equation 4.8. Because εce is very small compared with
εpe, it is usually acceptable to use the properties of the gross cross-section for its determination.
Therefore,

The concrete strain at the prestressed steel level at failure is obtained from Equation 4.10:

and the final strain in the prestressing steel is given by Equation 4.11:

The magnitude of resultant compressive force C carried by the concrete on the rectangular
section is the volume of the idealized rectangular stress block in Figure 4.4d and is given by
Equation 4.3:

The resultant tensile force T is given by

Horizontal equilibrium requires that C=T and hence

Trial values of dn can now be selected and the corresponding values of εpu andσpu (calculated
from the above two equations) are plotted on the
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stress–strain curve for the steel, as shown in Figure 4.5:

Trial dn (mm) εpu σpu (MPa) Point plotted on Figure 4.5
230 0.0120 1918 (1)

210 0.0128 1751 (2)

220 0.0124 1835 (3)

Point 3 lies sufficiently close to the stress–strain curve for the tendon and therefore the correct
value for dn is close to 220 mm (0.34 dp).

Figure 4.5 Stress–strain curve for strand (Example 4.1).

From Equation 4.5, the curvature at ultimate is

which is greater than the minimum value required for ductility given by Equation 4.6,
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The ultimate moment is found using Equation 4.4:

The design strength of the section in flexure is , where the value of for bending can be
obtained from Table 1.1. In structural design, the moment M* caused by the most severe
factored load combination for strength (see Section 1.7.3) must be less than or equal to .

4.3.5 Sections containing non-prestressed reinforcement and bonded tendons

Frequently, in addition to the prestressing reinforcement, prestressed concrete beams contain
non-prestressed longitudinal reinforcement in both the compressive and tensile zones. This
reinforcement may be included for a variety of reasons. For example, non-prestressed
reinforcement is included in the tensile zone to provide additional flexural strength when the
strength provided by the prestressing steel is not adequate. Non-prestressed tensile steel is
also included to improve crack control when cracking is anticipated at service loads. Non-
prestressed compressive reinforcement may be used to strengthen the compressive zone in
beams that might otherwise be over-reinforced. In such beams, the inclusion of compression
reinforcement not only increases the ultimate strength, but also causes increased curvature at
failure and therefore improves ductility. The use of compressive reinforcement also reduces
long-term deflections caused by creep and shrinkage and therefore improves serviceability. If
for no other reason, compression reinforcement may be included to provide anchorage and
bearing for the transverse reinforcement (stirrups) in beams.

When compressive reinforcement is included, closely spaced transverse ties should be used
to brace laterally the highly stressed bars in compression and prevent them from buckling
outward. In general, the spacing of these ties should not exceed about 16 times the diameter of
the compressive bar.

Consider the doubly reinforced section shown in Figure 4.6a. The resultant compressive
force consists of a steel component Cs(=σscAsc) and a concrete component .
The stress in the compressive reinforcement is determined from the geometry of the linear
strain diagram shown in Figure 4.6b. The magnitude of strain in the compressive steel is

(4.12)

If εsc is less than or equal to the yield strain of the non-prestressed steel (εy=fy/Es), then
σsc=εscEs. If εsc exceeds the yield strain, then σsc=fy.
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Figure 4.6 Doubly reinforced section at ultimate.

The resultant tensile force in Figure 4.6d consists of a prestressed component Tp(=σpuAp) and
a non-prestressed component Ts(=σstAst). The stress in the non-prestressed steel is determined
from the strain at ultimate, εst, which is given by

(4.13)

If , then σst=εstEs. If εst>εy, then σst=fy.
In order to calculate the depth to the neutral axis at ultimate, dn, a trial and error procedure

similar to that outlined in Section 4.3.4 can be employed. Successive values of dn are tried
until the value which satisfies the horizontal equilibrium equation is determined:

(4.14)

Since one of the reasons for the inclusion of compressive reinforcement is to improve
ductility, most doubly reinforced beams are, or should be, under-reinforced, i.e. the non-
prestressed tensile steel is at yield at ultimate. Whether or not the compressive steel has
yielded depends on its quantity Asc and its depth from the top compressive surface of the
section, dc.

If it is assumed initially that both the compressive and the tensile non-prestressed steel are
at yield, then

From Equation 4.14:
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and therefore

(4.15)

When the value of σpu (calculated from Equation 4.15) and the value of εpu (calculated from
Equation 4.11) satisfy the stress–strain relationship of the prestressing steel, the correct value
of dn has been found. The non-prestressed steel strains should be checked to ensure that the
steel has, in fact, yielded. If the compressive steel is not at yield, then the compressive force
Cs has been overestimated and the correct value of dn is slightly greater than the calculated
value. The compressive steel stress in Equation 4.15 should be taken as εscEs, instead of fy.
Further iteration may be required to determine the correct value of dn and the corresponding
internal forces Cc, Cs, Tp and Ts.

With horizontal equilibrium satisfied, the ultimate moment of the section may be
determined by taking moments of the internal forces about any convenient point on the
section. Taking moments about the non-prestressed tensile reinforcement level gives

(4.16)

For the rectangular section shown in Figure 4.6a, the lever arms to each of the internal forces
are

In the above equations, Cs and Cc are the magnitudes of the compressive forces in the steel
and concrete, respectively, and are therefore considered to be positive.

The ultimate curvature is obtained from Equation 4.5 and the minimum curvature required
for ductility is given by Equation 4.17, which is the same as Equation 4.6 except that the
depth to the prestressing steel dp is replaced by d (the depth to the resultant tensile force T):

(4.17)

Example 4.2

To the cross-section analysed in Example 4.1 and shown in Figure 4.4, three 24 mm diameter
non-prestressed reinforcing bars (Ast=1350 mm2) are added in the tensile zone at a depth
do=690 mm. The ultimate moment Mu for the section is to be calculated. The yield stress of
the non-prestressed
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steel is fy=400 MPa and all other material properties and cross-sectional details are as
specified in Example 4.1.

The strain in the prestressing steel at ultimate is as calculated in Example 4.1:

and the magnitude of the compressive force Cc carried by the concrete above the neutral axis
is

From Equation 4.13, the non-prestressed steel is at yield (i.e. ), provided that
the depth to the neutral axis dn is less than or equal to 0.6do(=414 mm). If σst is assumed to
equal fy, the resultant tensile force T(=Tp+Ts) is given by

Horizontal equilibrium requires that Cc=T and hence

Trial values of dn can now be selected and the respective values of εpu andσpu plotted on the
stress–strain curve for the prestressing steel as shown in Figure 4.7:

Trial dn (mm) εpu σpu (MPa) Point Plotted on Figure 4.7
270 0.0108 1712 (4)

290 0.0103 1879 (5)

277 0.0106 1770 (6)

Since point 6 lies sufficiently close to the stress–strain curve for the tendon, the correct value
for dn is 277 mm.

From Equation 4.5, the ultimate curvature is
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Figure 4.7 Stress-strain curve for strand (Example 4.2).

dn is much less than 0.6do(=414 mm) and therefore the non-prestressed steel has yielded, as
was assumed. The depth from the top surface to the resultant force in the tensile steel at
ultimate is

The minimum curvature required to ensure some measure of ductility is obtained from
Equation 4.17:

which is greater than xu. The section is therefore non-ductile and, in design, it would be
prudent to insert some non-prestressed compressive reinforcement to increase the ultimate
curvature and improve ductility (at least to the level required by Equation 4.17).

At ultimate, the compressive force in the concrete is Cc=8340dn= 2310 kN and the tensile
force in the tendon is Tp=σpuAp=1770 kN. The ultimate moment is calculated from Equation
4.15:
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Figure 4.8 Section details and conditions at ultimate for Example 4.3.

Example 4.3

Consider the effect on both strength and ductility of the addition of two 24 mm diameter bars
in the compression zone of the section in Example 4.2. Details of the cross-section are shown
in Figure 4.8, together with the stress and strain distributions at ultimate. All data are as
specified in Examples 4.1 and 4.2.

From Example 4.2, the ultimate strain in the tendons is

and the strain in the non-prestressed tensile reinforcement is greater than εy. The magnitude of
the compression steel strain at ultimate is given by Equation 4.12:

The stress in the compression steel can be readily obtained from εsc for any value of dn. By
equating C=T, an expression for σpu similar to Equation 4.15 is obtained. If the compression
steel is assumed to be at yield, Equation 4.15 gives

Values of εpu and σpu for trial values of dn are tabulated below and plotted as points (7)–(9) in
Figure 4.9.
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Trial dn εpu εsc σpu (MPa) Point plotted on Figure 4.9
250 0.0114 >εy 1905 (7)

230 0.0120 >εy 1738 (8)

239 0.0117 >εy 1813 (9)

Figure 4.9 Stress–strain curve for strand (Example 4.3).

From Figure 4.9, the point corresponding to dn=239 mm lies on the actual stress–strain curve
and therefore represents the correct solution. It is also apparent in Figure 4.9 that the strain in
the prestressing steel at ultimate is increased by the introduction of compressive
reinforcement [from point (6) to point (9)] and the depth to the neutral axis is decreased. The
ultimate curvature is obtained from Equation 4.5:

which represents a 12% increase in final curvature caused by the introduction of the
compressive reinforcement.

The depth d to the resultant tensile force (T=Tp+Tst) remains at 659 mm and the magnitude
of the resultant forces on the cross-section are



Page 140

Cc=1993 kN, Cs=360 kN, Tst=540 kN, and Tp=1813 kN. The ultimate moment is calculated
using Equation 4.16:

which is a 5.6% increase in strength. In general, for non-ductile sections, the addition of
compressive reinforcement causes a significant increase in curvature at ultimate (i.e. a
significant increase in ductility) and a less significant but nevertheless appreciable increase in
strength.

4.4 Approximate code-oriented procedures

4.4.1 Bonded tendons

Approximate equations or procedures are specified in some codes of practice for the
estimation of stress in a bonded tendon at the ultimate moment. These are generally
conservative and may be used in lieu of the more accurate determination of σpu based on strain
compatibility (as outlined in the previous sections). For example, when the effective prestress
σpe (=Pe/Ap) is not less than 0.5 fp, AS 3600–1988 specifies that the stress in the bonded steel
at ultimate may be taken as

(4.18)

The same equation (with different notation) is also specified in ACI 318–83. The parameter γ
is defined in Equation 4.2. The term k1 depends on the particular type of prestressing steel and
may be taken as

where fpy is the specified yield strength of the prestressing tendon. The term k2 is given by

(4.19)
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where b is the width of the compressive face of the cross-section and dp is the distance from
the extreme compressive fibre to the centroid of the tendons. When compression
reinforcement is present, k2 should be taken not less than 0.17. In addition, if the depth to the
compressive steel dc exceeds 0.15 dp, then Asc should be set to zero in Equation 4.19. Other
more accurate procedures are available for calculating σpu based on mathematical expressions
for the shape of the stress-strain curve of the prestressing steel, such as that proposed recently
by Loov (1988).

Consider a rectangular section such as that shown in Figure 4.6 containing tensile
prestressing steel, and both tensile and compressive non-prestressed reinforcement (Ap, Ast,
and Asc, respectively). Assuming the non-prestressed tensile steel is at yield, the total tensile
force in the steel at ultimate is

The magnitude of the total compressive force C consists of a concrete component Cc (given
by Equation 4.3) and a steel component Cs=σscAsc. That is,

If the non-prestressed compressive steel is initially assumed to be at yield and the stress in the
prestressing steel σpu is obtained from Equation 4.18, the depth to the neutral axis at ultimate
may be obtained by equating C and T. Thus,

(4.20)

The calculated value of dn can be used to check that the compressive steel has in fact yielded.
If the steel has not yielded, a revised estimate of σsc (=Esεsc) may be made and used to
calculate a new value of dn. Relatively few iterations are required for convergence.

By taking moments about the level of the tensile steel, the ultimate moment Mu is given by

(4.21)

where do is the distance from the extreme compressive surface to the non-prestressed tensile
reinforcement.

BS 8110: Part 1 (1985) tabulates approximate values for the tensile stress in the tendons
and the depth to the neutral axis at the ultimate limit state.
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Table 4.2 Conditions at the ultimate limit state for rectangular beams with bonded tendons [BS 8110:
Part 1 (1985)].

λ

σpe σpe

0.4fp 0.5fp 0.6fp 0.4fp 0.5fp 0.6fp

0.05 1.00 1.00 1.00 0.11 0.11 0.11

0.10 1.00 1.00 1.00 0.22 0.22 0.22

0.15 0.95 0.97 0.99 0.31 0.32 0.32

0.20 0.88 0.90 0.92 0.38 0.39 0.40

0.25 0.84 0.86 0.88 0.46 0.47 0.48

0.30 0.80 0.83 0.85 0.52 0.54 0.55

0.35 0.76 0.80 0.83 0.58 0.60 0.63

0.40 0.72 0.77 0.81 0.62 0.67 0.70

0.45 0.68 0.74 0.79 0.66 0.72 0.77

0.50 0.64 0.71 0.77 0.69 0.77 0.83

The tabulated values are based on the idealized rectangular stress block shown in Figure 4.2e.
Using the notation adopted in this chapter (and not that of BS 8110), the tensile stress in a
bonded tendon may be taken as

(4.22)

where λmay be interpolated from Table 4.2 for any value of the effective prestress σpe; γm is
the partial material safety factor and equals 1.15. The depth to the neutral axis is also obtained
from Table 4.2. For a cross-section containing only bonded prestressing tendons at a depth dp,
BS 8110 specifies the design resistance moment (design strength) as

(4.23)

Example 4.4

A comparison of the solution calculated in Example 4.1 (using the actual stress–strain
relationship of the prestressing steel) can be made with the
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value obtained using the approximate estimate of σpu obtained from Equation 4.18. For this
example, fp=1910 MPa and fpy=1780 MPa (obtained from Figure 4.5) and the constants k1 and
k2 are

From Equation 4.18, the stress in the tendon at ultimate is

which is 4.6% less than the more accurate value obtained by trial and error in Example 4.1.
From Equation 4.20,

which compares with dn=220 mm in Example 4.1. The ultimate strength is calculated using
Equation 4.4 (or Equation 4.21):

This is about 4% more conservative than the value obtained in Example 4.1. As expected, the
simplified empirical procedure predicts a reasonable and conservative estimate of strength.
However, the ultimate curvature is less conservative because the depth to the neutral axis is
underestimated. The ultimate curvature is obtained from Equation 4.5:

and is 4.6% greater than the previously predicted value. Nevertheless, for practical purposes,
the simplified method is a useful design alternative.

The calculations are now repeated using the procedure specified in BS 8110: Part 1 (1985).
In Example 4.1,

and from Table 4.2, λ=0.89 and dn=0.47dp=305 mm.
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The stress in the bonded tendons is approximated using Equation 4.22:

and Equation 4.23 gives

and the ultimate curvature is

Direct comparison between the values for Mu predicted by the approach in AS 3600–1988
(and in ACI 318–83) and the BS 8110 approach is not possible, since the partial material
safety factors are included in the latter and not in the former.

Example 4.5

In this example, Example 4.3 is reworked using the approximate formula for σpu given in
Equation 4.18:

and

Assuming all non-prestressed steel is at yield, the depth to the neutral axis is obtained from
Equation 4.20:

The non-prestressed steel strains are in fact much greater than the yield strain (=0.002) and
the assumption to this effect is therefore correct. The resultant forces on the cross-section are
Cc=1915 kN, Cs=360 kN, Tst=540 kN, and Tp=1735 kN, and the ultimate moment is obtained
from Equation 4.6:



Page 145

This is about 3% less than the more accurate value calculated in Example 4.3.

4.4.2 Unbonded tendons

Where the prestressing steel is not bonded to the concrete, the stress in the tendon at ultimate,
σpu, is significantly less than that predicted by Equation 4.18 and accurate determination of the
ultimate flexural strength is more difficult than for a section containing bonded tendons. This
is because the final strain in the tendon is more difficult to determine accurately. The ultimate
strength of a section containing unbonded tendons may be as low as 75% of the strength of an
equivalent section containing bonded tendons. Hence, from a strength point of view, bonded
construction is to be preferred.

An unbonded tendon is not restrained by the concrete along its length and slip between the
tendon and the duct takes place as the external loads are applied. The steel strain is more
uniform along the length of the member and tends to be lower in regions of maximum
moment than would be the case for a bonded tendon. The ultimate strength of the section may
be reached before the stress in the unbonded tendon reaches the yield stress fpy. For members
not containing any bonded reinforcement, crack control may be a problem if cracking occurs
in the member for any reason. If flexural cracking occurs, the number of cracks in the tensile
zone is fewer than in a beam containing bonded reinforcement, but the cracks are wider and
less serviceable.

Approximate equations for the stress in an unbonded tendon at the ultimate limit state are
also specified in codes of practice. AS 3600–1988 (and ACI 318–83), for example, specify the
following equations for σpu:

(a) If the span to depth ratio of the member is 35 or less:

(4.24a)

butσpu should not be taken greater than fpy or (σpe+400).
(b) If the span to depth ratio of the member is greater than 35:

(4.24b)

but not greater than fpy or (σpe+200).

The approximate expressions specified in BS 8110: Part 1 (1985) for σpu and the depth to the
neutral axis dn for members containing unbonded
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tendons are

(4.25a)

and

(4.25b)

To ensure ductility and some measure of crack control, it is good practice to include non-
prestressed bonded tensile reinforcement in members with unbonded tendons. However, it is
usual practice in most post-tensioning applications to grout the tendons within the duct after
(or during) construction. Indeed, in Australia, for example, bonded construction is mandatory.

Example 4.6

The ultimate flexural strength of a simply supported post-tensioned beam is to be calculated.
The beam spans 12 m and contains a single unbonded cable. The cross-section of the beam at
mid-span is shown in Figure 4.4a. Material properties are as specified in Example 4.1.

The stress in the tendon caused by the effective prestressing force Pe=1200 kN is

With the span-to-depth ratio equal to 16, the stress in the unbonded tendon at ultimate,
according to AS 3600–1988 and ACI 318–83, is given by Equation 4.24a:

and therefore the tensile force in the steel is Tp=1350 kN (=Cc). The depth to the neutral axis
is calculated using Equation 4.20:

and Equation 4.4 gives
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Using the alternative approach outlined in BS 8110: Part 1 (1985), estimates of σpe and dn are
made using Equations 4.25a and b, respectively:

and

and from Equation 4.23,

4.5 Design calculations

4.5.1 Discussion

The magnitude of the prestressing force Pe and the quantity of the prestressing steel Ap are
usually selected to satisfy the serviceability requirements of the member, i.e. to control
deflection or to reduce or eliminate cracking. With serviceability satisfied, the member is then
checked for adequate strength. The ultimate moment Mu for the section containing the
prestressing steel (plus any non-prestressed steel added for crack control) is calculated and the
design strength is compared with the design action, in accordance with the design
requirements outlined in Section 1.7.6. For example, in ACI 318–83 and in AS 3600–1988,
the flexural strength is . The design action M* is the moment caused by the most severe
factored load combination specified for the strength limit state (see Section 1.7.3). The design
requirement is that .

The prestressing steel needed for the satisfaction of serviceability requirements may not be
enough to provide adequate strength. When this is the case, the ultimate moment capacity can
be increased by the inclusion of additional non-prestressed tensile reinforcement. Additional
compressive reinforcement may also be required to improve ductility.

4.5.2 Calculation of additional non-prestressed tensile reinforcement

Consider the singly reinforced cross-section shown in Figure 4.10a. It is assumed that the
effective prestress Pe, the area of the prestressing steel Ap, and the cross-sectional dimensions
have been designed to satisfy the serviceability requirements of the member. The idealized
strain and stress distributions specified by ACI 318–83 and AS 3600–1988 for the ultimate
limit
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Figure 4.10 Cross-sections containing tensile reinforcement at the ultimate limit state (AS 3600–1988
and ACI 318–83).

state are also shown in Figure 4.10a. The ultimate moment for the section is denoted Mu1,
where

(4.26)

The tendon stress at ultimate σpu1 may be calculated from the actual stress-strain curve for the
steel (as illustrated in Example 4.1) or from the approximation of Equation 4.18 (as illustrated
in Example 4.4).

If the design strength is greater than or equal to M*, then no additional steel is
necessary. The cross-section has adequate strength. If is less than M*, the section is not
adequate and additional tensile reinforcement is required.

In addition to providing adequate strength, it is important also to ensure that the section is
ductile. In order that the curvature at ultimate xu is large enough to impart ductility, an upper
limit for the depth to the neutral axis of about 0.4dp is usually specified. However, to ensure

ductility, a more satisfactory range for the depth to the neutral axis at failure is . If
the value of dn1 in Figure 4.10a is outside this range, some additional non-prestressed
compressive reinforcement is required to relieve the concrete compressive zone and reduce dn.
The design procedure outlined in
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Section 4.5.3 for doubly reinforced cross-sections is recommended in such a situation.
For the cross-section shown in Figure 4.10a, if is less than M* and if dn1 is small so

that ductility is not a problem, the aim in design is to calculate the minimum area of non-
prestressed tensile reinforcement Ast to be added to the section to satisfy strength requirements
(i.e. the value of Ast such that ). In Figure 4.10b, the new cross-section containing
Ast is shown, together with the revised strain and stress distributions at ultimate. With dn small
enough to ensure ductility, the steel strain is greater than the yield strain εy(=fy/Es), so that
σst=fy. The addition of Ast to the cross-section causes an increase in the resultant tension at
ultimate (Tp+Tst) and hence an increase in the resultant compression (Cc). To accommodate
this additional compression, the depth of the compressive stress block in Figure 4.10b must be
greater than the depth of the stress block in Figure 4.10a (i.e. γdn>γdn1). The increased value
of dn results in a reduction in the ultimate curvature (i.e. a decrease in ductility), a reduction in
the strain in the prestressing steel, and a consequent decrease in σpu. The decrease in σpu is
relatively small, however, provided that the section has adequate ductility (i.e. provided that
the value of dn remains less than about 0.3dp).

If σpu is assumed to remain constant, a first estimate of the magnitude of the area of non-
prestressed steel Ast required to increase the ultimate strength from Mu1 (the strength of the
section prior to the inclusion of the additional steel) to Mu (the required strength of the
section) may be obtained from

(4.27)

where l is the lever arm between the tension force in the additional steel Ts and the equal and
opposite compressive force Cc2 which results from the increase in the depth of the
compressive stress block. The lever arm l may be approximated initially as

where dn1 is the depth to the neutral axis corresponding to Mu1.

Example 4.7

The ultimate strength of the singly reinforced section shown in Figure 4.11 is Mu1=1120 kNm.
The stress and strain distributions corresponding to Mu1 are also shown in Figure 4.11 and the
material properties are MPa (γ=0.801) and fp=1860 MPa.

Calculate the additional amount of non-prestressed tensile reinforcement
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Figure 4.11 Singly reinforced cross-section at ultimate (Example 4.7).

(fy=400 MPa) required to increase the ultimate strength of the section to Mu=1450kNm.
For the section in Figure 4.11, dn1=172.4 mm=0.23dp and the section is ductile. If the

additional tensile steel is to be added at do=840 mm, then the lever arm l in Equation 4.27 may
be approximated by

and the required area of non-prestressed steel is estimated using Equation 4.27:

Choose three 24 mm diameter bars (Ast=1350 mm2) located at a depth do=840 mm.
A check of this section to verify that kN mand that the section is ductile can

next be made using the trial and error procedure illustrated in Example 4.2.

4.5.3 Design of a doubly reinforced cross-section

For a singly reinforced section (such as that shown in Figure 4.12a) in which dn1 is greater
than about 0.3dp, the inclusion of additional tensile reinforcement may cause ductility
problems. In such cases, the ultimate strength may be increased by the inclusion of suitable
quantities of both tensile and compressive non-prestressed steel without causing any reduction
in curvature, i.e. without increasing dn . If the depth to the neutral axis is held constant at dn1,
the values of both Cc (the compressive force carried by the concrete) and Tp (the tensile force
in the prestressing steel) in Figures 4.12a and b are the same. In each figure, Cc is equal to Tp.
With the strain diagram in
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Figure 4.12 Doubly reinforced section at ultimate (AS 3600–1988 and ACI 318–83).

Figure 4.12b known, the strains at the levels of the non-prestressed steel may be calculated
using Equations 4.12 and 4.13, and hence the non-prestressed steel stresses σst andσsc may be
determined. The equal and opposite forces which result from the inclusion of the non-
prestressed steel are

(4.28)

If Mu1 is the strength of the singly reinforced section in Figure 4.12a (calculated using
Equation 4.26) and Mu is the required strength of the doubly reinforced cross-section, the
minimum area of the tensile reinforcement is given is

(4.29)

For conventional non-prestressed steel,σst=fy provided that the depth to the neutral axis dn
satisfies the stated ductility requirements. For equilibrium, the forces in the top and bottom
non-prestressed steel are equal and opposite, i.e. Cs=Ts since Cc=Tp. From Equation 4.28,

(4.30)
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If the depth to the neutral axis in Figure 4.12a is greater than about 0.4dp, then the section is
non-ductile and the value of dn must be reduced. An appropriate value of dn may be selected
(say dn=0.3dp). For this value of dn, all the steel strains (εsc, εst, and εpt) and hence all the steel
stresses at ultimate (σsc, σst, andσpu) may be determined. With εpt calculated from the assumed
value for dn, the total strain in the prestressing steel can be calculated using Equation 4.11 and
the stress σpu can be read directly from the stress–strain curve. In this way, the magnitude of
the tensile force in the tendon (Tp=Apσpu) and the compressive force in the concrete

may be evaluated. If the required strength of the section is Mu, the
minimum area of compressive steel can be obtained by taking moments about the level of the
non-prestressed reinforcement. That is,

(4.31)

Horizontal equilibrium requires that Ts=Cc+Cs−Tp and therefore the area of non-prestressed
tensile steel is

(4.32)

Example 4.8

Additional non-prestressed steel is required to increase the ultimate flexural strength of the
section in Figure 4.4 (and analysed in Example 4.1) to Mu=1300 kNm.

From Example 4.1, Mu1=1030 kNm and dn1=220 mm. If only non-prestressed tensile steel
were to be added, the lever arm l in Equation 4.27 would be

and from Equation 4.27,

This corresponds to the addition of four 24 mm diameter bars in the bottom of the section
shown in Figure 4.4 at a depth do=690 mm.

A check of the section to verify that kN m can next be made using the trial and
error procedure illustrated in Example 4.1. In this example, however, the neutral axis depth
increases above 0.4d and the curvature at ultimate is less than the recommended minimum
value. For this section,
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it is appropriate to supply the additional moment capacity via both tensile and compressive
non-prestressed reinforcement.

If the depth to the neutral axis is held constant at the value determined in Example 4.1, i.e.
dn=220 mm, then the stress and strain in the prestressed steel remain as previously calculated,
i.e.

If the depth to the compressive reinforcement is dc=60 mm, then from Equation 4.12,

From Equation 4.13,

The area of additional tensile steel is obtained using Equation 4.29:

and from Equation 4.30,

Use three 24 mm diameter non-prestressed tensile bars at do=690 mm and three 24 mm
diameter bars in the top of the section at dc=60 mm.

4.6 Flanged sections

Flanged sections such as those shown in Figure 4.13a are commonly used in prestressed
concrete construction, where the bending efficiency of I-, T-, and box-shaped sections can be
effectively utilized. Frequently, in the construction of prestressed floor systems, beams or
wide bands are poured monolithically with the slabs. In such cases, a portion of slab acts as
either a top or a bottom flange of the beam, as shown in Figure 4.13b. Codes of practice
generally specify the width of the slab which may be assumed to be part of the beam cross-
section (i.e. the effective width of the flange, bef).

Both AS 3600–1988 and BS 8110: Part 1 (1985) contain the following
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Figure 4.13 Typical flanged sections.

simple recommendations:

(4.33)

except that the overhanging part of the effective flange should not exceed half the clear
distance to the next parallel beam. The term bw is the width of the web of the section. Lo is the
distance along the beam between the points of zero bending moment and may be taken as the
actual span for simply supported members and 0.7 times the actual span for a continuous
member.

ACI 318–83 suggests that the effective width of the flange of a T-beam should not exceed
one quarter of the span length of the beam, and the effective overhanging flange width on
each side of the web should not exceed either eight times the slab thickness or one half the
clear distance to the next web. For L-beams with a slab on one side only, the effective
overhanging flange width should not exceed either one twelfth of the span of the beam, or six
times the slab thickness, or half the clear distance to the next web.

The flexural strength theory discussed in Section 4.3 can also be used to calculate the
flexural strength of non-rectangular sections. The equations developed earlier for rectangular
sections are directly applicable provided the depth of the idealized, rectangular stress block is
less than the thickness



Page 155

of the flange, i.e. provided the portion of the section subjected to the uniform compressive
stress is rectangular (bef wide andγdn deep). The ultimate strength Mu is unaffected by the
shape of the section below the compressive stress block. If the compressive stress block acts
on a non-rectangular portion of the cross-section, some modifications to the formulae are
necessary to calculate the resulting concrete compressive force and its line of action.

Consider the T-sections shown in Figure 4.14 and the idealized rectangular stress block

defined in Figure 4.2d. If , the area of the concrete in compression A' is rectangular,
as shown in Figure 4.14a, and the strength of the section is identical with that of a rectangular
section of width bef containing the same tensile steel at the same effective depth. Equation
4.21 may therefore be used to calculate the strength of such a section. The depth of the neutral
axis dn may be calculated using Equation 4.20, except that bef replaces b in the denominator.

If γdn>t, the area of concrete in compression A' is T-shaped, as shown in Figure 4.14b.
Although not strictly applicable, the idealized stress block may still be used on this non-
rectangular compressive zone. A uniform stress of may therefore be considered to act
over the area A'.

It is convenient to separate the resultant compressive force in the concrete

Figure 4.14 Flanged section subjected to the ultimate moment.
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into a force in the flange Ccf and a force in the web Ccw, as shown:

(4.34)

By equating the tensile and compressive forces on the section, the depth to the neutral axis dn
can be determined by trial and error and the ultimate moment Mu can be obtained by taking
moments of the internal forces about any convenient point on the cross-section.

Example 4.9

The ultimate flexural strength of the standardized double tee section shown in Figure 4.15 is
to be calculated. The section contains a total of 22 12.7 mm diameter strands (11 in each
cable) placed at an eccentricity of 408 mm. The effective prestressing force Pe is 2640 kN.
The stress–strain relationship for the prestressing steel is shown in Figure 4.16 and the initial
elastic modulus is Ep=195000 MPa. The properties of the section and other relevant material
data are as follows:

Using the same procedure as was illustrated in Example 4.1, the strain components in the
prestressing steel are obtained from Equations 4.8–4.10:

Figure 4.15 Standard 2400×800 double tee (CPCI 1982).
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and therefore from Equation 4.11,

At this point, an assumption must be made regarding the depth of the equivalent stress block.
If γdn is less than the flange thickness, the calculation would proceed as in previous examples.
However, a simple check of horizontal equilibrium indicates that γdn is significantly greater
than 50 mm. From Equation 4.34:

In this example, the web is tapering and bw varies with the depth. The width of the web at a
depth of γdn is given by

The compressive force in the web is therefore

The resultant compression force is

and the resultant tension is

Equating C and T gives
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Trial values of dn may now be used to determine εpu andσpu from the above expressions and
the resulting points plotted on the stress–strain diagram of Figure 4.16:

Trial dn εpu σpu Point plotted on Figure 4.16
130 0.0199 1919 (1)

110 0.0228 1832 (2)

115 0.0220 1854 (3)

Figure 4.16 Stress-strain for strands in Example 4.9.

From Figure 4.16, the neutral axis is close enough to dn=115 mm. The depth of the stress
block is γdn=92.1 mm, which is greater than the flange thickness (as was earlier assumed).
The resultant forces on the cross-section are

For this section, dn=0.17d<0.4dp and therefore the failure is ductile. The compressive force in
the flange Ccf=3570 kN acts 25 mm below the top surface and the compressive force in the
web Ccw=509 kN acts at the centroid of the trapezoidal areas of the webs aboveγdn, i.e. 71.0
mm below the top surface.
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By taking moments of these internal compressive forces about the level of the tendons,
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5
Design for shear and torsional strength

5.1 Introduction

In Chapter 3, methods were presented for the determination of normal strains and stresses
caused by the longitudinal prestress and the bending moment at a cross-section. Procedures
for calculating the flexural strength of beams were discussed in Chapter 4. In structural design,
shear failure must also be guarded against. Shear failure is sudden and difficult to predict with
accuracy. It results from diagonal tension in the web of a concrete member produced by shear
stress in combination with the longitudinal normal stress. Torsion, or twisting of the member
about its longitudinal axis, also causes shear stresses which lead to diagonal tension in the
concrete and consequential inclined cracking.

Conventional reinforcement in the form of transverse stirrups is used to carry the tensile
forces in the webs of prestressed concrete beams after the formation of diagonal cracks. This
reinforcement should be provided in sufficient quantities to ensure that flexural failure, which
can be predicted accurately and is usually preceded by extensive cracking and large
deformation, will occur before diagonal tension failure.

In slabs and footings, a local shear failure at columns or under concentrated loads may also
occur. This so-called punching shear type of failure often controls the thickness of flat slabs
and plates in the regions above the supporting columns. In this chapter, the design for
adequate strength of prestressed concrete beams in shear and in combined shear and torsion is
described. Procedures for determining the punching shear strength of slabs and footings are
also presented.
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SHEAR IN BEAMS

5.2 Inclined cracking

Cracking in prestressed concrete beams subjected to overloads depends on the local
magnitudes of moment and shear, as shown in Figure 5.1. In regions where the moment is
large and the shear is small, vertical flexural cracks appear after the normal tensile stress in
the extreme concrete fibres exceeds the tensile strength of concrete. These are the cracks
referred to in Section 3.5.2 and are shown in Figure 5.1 as crack type A. Where both the
moment and shear force are relatively large, flexural cracks which are vertical at the extreme
fibres become inclined as they extend deeper into the beam owing to the presence of shear
stresses in the beam web. These inclined cracks, which are often quite flat in a prestressed
beam, are called flexure-shear cracks and are designated crack type B in Figure 5.1. If
adequate shear reinforcement is not provided, a flexure-shear crack may lead to a so-called
shear-compression failure, in which the area of concrete in compression above the advancing
inclined crack is so reduced as to be no longer adequate to carry the compression force
resulting from flexure.

A second type of inclined crack sometimes occurs in the web of a prestressed beam in the
regions where moment is small and shear is large, such as the cracks designated type C
adjacent to the discontinuous support and near the point of contraflexure in Figure 5.1. In such
locations, high principal tensile stress may cause inclined cracking in the mid-depth region of
the beam before flexural cracking occurs in the extreme fibres. These cracks are known as
web-shear cracks and occur most often in beams with relatively thin webs.

Figure 5.1 Types of cracking at overload.
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5.3 Effect of prestress

The longitudinal compression introduced by prestress delays the formation of each of the
crack types shown in Figure 5.1. The effect of prestress on the formation and direction of
inclined cracks can be seen by examining the stresses acting on a small element located at the
centroidal axis of the uncracked beam shown in Figure 5.2. Using a simple Mohr’s circle
construction, the principal stresses and their directions are readily found. When the principal
tensile stress σ1 reaches the tensile strength of concrete, cracking occurs and the cracks form
in the direction perpendicular to the direction of σ1 .

When the prestress is zero, σ1 is equal to the shear stress and acts at 45° to the beam axis,
as shown in Figure 5.2a. If diagonal cracking occurs, it will be perpendicular to the principal
tensile stress, i.e. at 45° to the beam axis. When the prestress is not zero, the normal
compressive stress σ(=P/A) reduces the principal tension σ1 , as illustrated in Figure 5.2b. The
angle between the principal stress direction and the beam axis increases, and consequently if
cracking occurs, the inclined crack is flatter. Prestress therefore improves the effectiveness of
any transverse reinforcement (stirrups) that may be used to increase the shear strength of a
beam. With prestress

Figure 5.2 Effect of prestress on principal stresses in a beam web.
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causing the inclined crack to be flatter, a larger number of the vertical stirrup legs are crossed
by the crack and consequently a larger tensile force can be carried across the crack.

In the case of I-beams the maximum principal tension may not occur at the centroidal axis
of the uncracked beam where the shear stress is greatest, but may occur at the flange–web
junction where shear stresses are still high and the longitudinal compression is reduced by
external bending.

If the prestressing tendon is inclined at an angle θp, the vertical component of prestress Pv

(=P sin θp≈Pθp) usually acts in the opposite direction to the load induced shear. The force Pv
may therefore be included as a significant part of the shear strength of the cross-section.
Alternatively, Pv may be treated as an applied load and the nett shear force, V, to be resisted
by the section may be taken as

(5.1)

In summary, the introduction of prestress increases the shear strength of reinforced concrete
beams. Nevertheless, prestressed sections often have thin webs, the thickness of which may
be governed by shear strength considerations.

5.4 Web reinforcement

In a beam containing no shear reinforcement, the shear strength is reached when inclined
cracking occurs. The inclusion of shear reinforcement, usually in the form of vertical stirrups,
increases the shear strength. After inclined cracking, the shear reinforcement carries tension
across the cracks and resists widening of the cracks. Adjacent inclined cracks form in a
regular pattern. The behaviour of the beam after cracking is explained conveniently in terms
of an analogous truss, first described by Ritter (1899) and shown in Figure 5.3b.

The web members of the analogous truss resist the applied shear and consist of vertical
tension members (which represent the vertical legs of the closely spaced steel stirrups) and
inclined compression members (which model the concrete segments between the inclined
cracks). In reality, there exists a continuous field of diagonal compression in the concrete
between the diagonal cracks. This is idealized in the analogous truss by the discrete diagonal
compression struts. In a similar manner, the vertical members of the analogous truss may
represent a number of more closely spaced vertical stirrups. The top compressive chord of the
analogous truss represents the concrete compressive zone plus any longitudinal compressive
reinforcement, and the bottom chord models the longitudinal prestressed and non-prestressed
reinforcement in the tensile zone. At each panel point along the
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Figure 5.3 Beam containing shear reinforcement.

bottom chord of the analogous truss, the vertical component of the compressive force in the
inclined concrete strut must equal the tension in the vertical steel member, and the horizontal
component must equal the change in the tensile force in the bottom chord (i.e. the change in
force in the prestressing tendon and any other longitudinal non-prestressed reinforcement).

The analogous truss can be used to visualize the flow of forces in a beam after inclined
cracking, but it is at best a simple model of a rather complex situation. The angle of the
inclined compressive strut θυhas traditionally been taken as 45°, although in practical beams
it is usually less. The stirrup stresses predicted by a 45° analogous truss are considerably
higher than those measured in real beams (Hognestad 1952), because the truss is based on the
assumption that the entire shear force is carried by the vertical stirrups. In fact, part of the
shear is carried by dowel action of the longitudinal tensile steel and part by friction on the
mating surfaces of the inclined cracks (known as aggregate interlock). Some shear may also
be carried by the uncracked concrete compression zone. In addition, the truss model neglects
the tension carried by the concrete between the inclined cracks. The stress in the vertical legs
of the stirrups in a real beam is therefore a maximum at the inclined crack and significantly
lower away from the crack.

At the ultimate limit state, shear failure may be initiated by yielding of the stirrups or, if
large amounts of web reinforcement are present, crushing of the concrete compressive strut.
The latter is known as web-crushing and is usually avoided by placing upper limits on the
quantity of web reinforcement. Not infrequently, premature shear failure occurs because of
inade-
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quately anchored stirrups. The truss analogy shows that the stirrup needs to be able to carry
the full tensile force from the bottom panel point (where the inclined compressive force is
resolved both vertically and horizontally) to the top panel point. To achieve this, care must be
taken to detail adequately the stirrup anchorages to ensure that the full tensile capacity of the
stirrup can be developed at any point along the vertical leg. After all, an inclined crack may
cross the vertical leg of the stirrup at any point.

Larger diameter longitudinal bars should be included in the corners of the stirrup to form a
rigid cage and to improve the resistance to pull-out of the hooks at the stirrup anchorage.
These longitudinal bars also disperse the concentrated force from the stirrup and reduce the
likelihood of splitting in the plane of the stirrup anchorage. Stirrup hooks should be located on
the compression side of the beam where anchorage conditions are most favourable and the
clamping action of the transverse compression greatly increases the resistance to pull-out. If
the stirrup hooks are located on the tensile side of the beam, anchorage may be lost if flexural
cracks form in the plane of the stirrup. In current practice, stirrup anchorages are most often
located at the top of a beam. In the negative moment regions of such beams, adjacent to the
internal supports for example where shear and moment are relatively large, the shear capacity
may be significantly reduced owing to loss of stirrup anchorages after flexural cracking.

5.5 Shear strength

5.5.1 Introductory remarks

From the point of view of structural design, the shear strength of a beam containing no shear
reinforcement, Vu, is the load required to cause the first inclined crack. In a beam containing
web reinforcement, the ultimate strength in shear is usually calculated as the sum of the
strength provided by the stirrups Vus and the strength provided by the concrete Vuc:

(5.2)

In Figure 5.4, the transfer of shear force across a diagonal crack is shown. The part of the
shear force carried by shear stresses in the uncracked concrete compression zone is Vc, the
part carried by bearing and friction between the two surfaces of the inclined crack is Va , and
the part carried by dowel action in the longitudinal steel crossing the crack is Vd. Because it is
difficult to determine the magnitude of the force associated with each of these load-carrying
mechanisms, they are usually lumped together and represented by a single empirical term for
the shear strength contributed by the concrete, Vuc.
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Figure 5.4 Transfer of shear at an inclined crack.

From much research and many laboratory tests, it appears that the contribution of the concrete
to the shear strength is not less than the shear force that initially caused the diagonal crack to
form. For this reason, Vuc is conventionally taken as the shear force required to produce either
flexure-shear or web-shear cracking, whichever is the smaller.

The contribution of stirrups to the shear strength of the beam, Vus, depends on the area of
the vertical legs of each stirrup, Asυ, the yield stress of the steel, fvy, and the number of stirrups
which cross the inclined crack. As has already been stated, the longitudinal prestress causes
the slope of the inclined crack, θυ. to be less than 45°. It is reasonable to take the length of the
horizontal projection of the inclined crack to be do cotθυ, where do is the distance from the
extreme compressive fibre to the centroid of the outermost layer of tensile steel but need not
be taken less than 0.8 times the overall depth of the member. The number of stirrups crossing
the diagonal crack is therefore do cot θυ/s, where s is the spacing of the stirrups in the direction
of the member axis.

The total contribution of the stirrups to the shear strength of the section is the capacity of a
stirrup times the number of stirrups crossing the inclined crack. An equation of the following
form is contained in most codes of practice for the contribution of vertical stirrups to shear
strength:

(5.3a)

If the shear reinforcement is inclined at an angle αυto the longitudinal tensile reinforcement
(i.e. at an angle other than αυ=90° for vertical stirrups), Vus may be calculated from

(5.3b)

In many building codes [including ACI 318–83 and BS 8110 (1985)], the angle of the
inclined crack θυis taken to be constant and equal to 45°
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(i.e. cot θυ=1 in Equation 5.3). However, in other codes (such as the CEB-FIP Model Code
1978 and AS 3600–1988), θυis not constant and may be varied between specified limits. It is
evident from Equations 5.3a and b that the contribution of stirrups to the shear strength of a
beam depends on θυ. The flatter the inclined crack (i.e. the smaller the value of θυ), the greater
is the number of effective stirrups and the greater is the value of Vus. In order to achieve the
desired shear strength in design, fewer stirrups are required as θυis reduced. However, if the
slope of the diagonal compression member in the analogous truss of Figure 5.3b is small, the
change in force in the longitudinal tensile steel is relatively large. More longitudinal steel is
required in the shear span near the support than would otherwise be the case and greater
demand is placed on the anchorage requirements of these bars.

The empirical estimates for the contribution of the concrete to shear strength Vuc vary from
code to code. In general, code expressions for Vuc are far more complicated than can be
justified by their accuracy. In the following section, the procedures contained in the
Australian code (AS 3600–1988) are discussed and compared with the provisions of ACI
318–83 and BS 8110 (1985). These provisions were selected because they represent a suitable
compromise between accuracy, simplicity, and the current state of knowledge. However,
other design approaches have been proposed and are used in practice. Some are based on
more rational models of structural behaviour, but are considerably more complex. Such a
method is the General Method contained in the Canadian Code (CSA Standard CAN3, 1984)
which is based on compression field theory (Mitchell & Collins 1974, Collins 1978).

5.5.2 The AS 3600–1988 approach

AS 3600–1988 adopts a limited variable angle truss model in which θυvaries between 30°
and 45°, depending on the magnitude of the factored design shear force V*. The shear strength
of a beam Vu is obtained from Equations 5.2 and 5.3.

In Equation 5.3, θυmay be assumed to vary linearly from 30°, when , to 45°,
when . That is,

(5.4)

Vu,min is the shear strength of the beam containing the minimum amount of shear
reinforcement, (Asυ)min, where

(5.5)
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The term bυis the effective width of the web for shear and may be taken as bυ=bw−0.5Σdd , bw

is the width of the web minus the diameter of any ungrouted ducts across the web, Σdd is the
sum of the diameter of the grouted ducts in a horizontal plane across the web, and is the
capacity reduction factor for shear (which is 0.7 in AS 3600–1988). Vu,min is obtained by
substituting Equation 5.5 into Equation 5.3a and incorporating the resulting expression into
Equation 5.2, as follows:

(5.6)

Vu,max is the maximum allowable shear strength for a section and is limited by web-crushing,
i.e. failure of the diagonal concrete compression strut in the analogous truss. The maximum
shear strength is given by

(5.7)

where Pυis the vertical component of the prestressing force at the section under consideration.
The vertical force Pυis also included in Equation 5.6 as part of the “concrete” contribution Vuc
(as indicated subsequently in Equations 5.8 and 5.10).

With θυlimited to a minimum value of 30°, the following requirements are imposed on the
longitudinal reinforcement. At a simple support, sufficient positive moment reinforcement
must be anchored past the face of the support, such that the anchored reinforcement can
develop a tensile force of 1.5V* at the face of the support (where V* is the design shear force
at a distance d from the support face). In addition, not less than 50% of the positive moment
reinforcement required at mid-span should extend past the face of a simple support for a
length of 12 bar diameters or an equivalent anchorage. At a support where the beam is
continuous (or flexurally restrained), not less than 25% of the total positive reinforcement
required at mid-span must continue past the near face of the support. AS 3600–1988 also
requires that the steel necessary for flexure at any particular section must be provided and
developed at a section a distance d along the beam in the direction of increasing shear.

Alternatively, θυmay be taken conservatively as constant and equal to 45° (as is the case in
ACI 318–83), but this could result in considerably more transverse steel than is, in fact,
necessary. The Canadian code (CAN3–A23.3–M84 1984) includes two alternative methods
for shear design, a simplified method (similar to the ACI 318–83 approach) and a general
method. In the general method, a variable-angle truss model based on compression field
theory is used in which θυmay be selected to have any
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value between 15° and 75°. The implications of selecting very low or very high values for θυ
need to be carefully considered.

The contribution of the concrete to the shear strength of a section, Vuc, is taken to be the
smaller of the shear forces required to produce either flexure-shear or web-shear cracking, as
outlined below. However, if the cross-section under consideration is already cracked in
flexure, only flexureshear cracking need be considered.

Flexure-shear cracking

The shear force required to produce an inclined flexure-shear crack may be taken as the sum
of the shear force that exists when the flexural crack first develops, the additional shear force
required to produce the inclined portion of the crack (which extends a distance of about do
along the beam in the direction of increasing moment), and the vertical component of the
prestressing force. The first and third of these shear force components are easily calculated.
The second is usually determined using empirical expressions developed from test data. AS
3600–1988 suggests that

(5.8)

and is a size effect factor;
β2 is a factor which accounts for the presence of any axial force N* and
β2=1 if no axial force is present;

for axial tension;
β2=1+(N*/14A) for axial compression;
where N* is the absolute value of the axial force. Ast and Apt are the areas of the fully

anchored longitudinal non-prestressed and prestressed steel, respectively, provided in the
tension zone at the cross-section under consideration.

Vo is the shear force (in Newtons) which exists at the section when the bending moment at
that section equals the decompression moment Mo (i.e. the moment which causes zero stress
in the extreme tensile fibre and may be taken as Zσcp.f, where Z is the section modulus andσcp.f
is the compressive stress caused by prestress at the extreme fibre where cracking occurs). If
M* and V* are the factored design moment and shear force at the section under consideration,
then for statically determinate members,
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Vo may be taken as

(5.9)

For statically indeterminate members, the shear and moment caused by the secondary effects
of prestress should be taken into account when determining Mo and Vo.

Web-shear cracking

If a cross-section is uncracked in flexure, the shear force required to produce web-shear
cracking is given by

(5.10)

Vt is the shear force which when combined with the normal stresses caused by the prestress

and the external loads would produce a principal tensile stress of at either the
centroidal axis, the level of a prestressing duct, or at the intersection of the flange (if any) and
the web, whichever is the more critical. Vt may be easily found analytically, or graphically

using a Mohr’s circle construction, by setting in Equation 5.11:

(5.11)

The normal stress σand the shear stress are given by

(5.12)

where b is the appropriate width of the web and is equal to bv at the level of any prestressing
duct and bw at points remote from the duct, and Q is the first moment about the centroidal axis
of that part of the area of the cross-section between the level under consideration and the
extreme fibre.

Summary of design requirements

The following design requirements for shear are contained in AS 3600–1988 and are typical
of those contained in most national building codes.

(1) The design shear strength of a section is , where Vu=Vuc+Vus as stated in Equation 5.2.
(2) The shear strength contributed by the concrete Vuc is the lesser of the values obtained from

Equations 5.8 and 5.10.
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(3) The contribution of the shear reinforcement to the ultimate shear strength, Vus, is given by
the equation

(5.3b)

where s is the centre-to-centre spacing of the shear reinforcement measured parallel to
the axis of the member;θυis the angle of the concrete compression strut to the
horizontal and may be conservatively taken as 45° or, more accurately, may be assumed
to vary linearly from 30°, when , to 45°, when , in
accordance with Equation 5.4; V* is the factored design shear force; Vu,min and Vu,max are
defined in Equations 5.6 and 5.7, respectively; andαυis the angle between the inclined
shear reinforcement and the longitudinal tensile steel.

(4) The critical section for maximum shear near to a support is at the distance d from the face
of the support, where d is the depth to the position of the resultant tensile force at the
ultimate strength condition in pure bending. Where diagonal cracking can take place at the
support or extend into it, such as occurs if the support is above the beam, the critical section
for shear is at the face of the support.

(5) Where the factored design shear force V* is less than , no shear reinforcement is
required, except that when the overall depth of the beam exceeds 750 mm, minimum shear
reinforcement should be provided. The minimum area of shear reinforcement is (Asυ)min=
0.35bυs/fυy.

Where minimum shear reinforcement shall be provided. If the
total beam depth does not exceed 250 mm or half the width of the web, whichever is

greater, and , no shear reinforcement is required.

Where , shear reinforcement should be provided in accordance with
Equation 5.3a (for vertical stirrups) or Equation 5.3b (for inclined stirrups).

(6) In no case should the ultimate shear strength Vu exceed Vu,max (as defined in Equation 5.7).
(7) The maximum spacing between stirrups measured in the direction of the beam axis should

not exceed the lesser of 0.5D or 300 mm, except that where , the spacing
may be increased to 0.75D or 500 mm, whichever is smaller. The maximum transverse
spacing between the vertical legs of a stirrup measured across the web of a beam should not
exceed the lesser of 600 mm and the overall depth of the cross-section, D.

(8) The quantity of shear reinforcement calculated as being necessary at any section should be
provided for a distance D from the section in the direction of decreasing shear.
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(9) Stirrups should be anchored on the compression side of the beam using standard hooks
bent through an angle of at least 135° around a larger diameter longitudinal bar. As
discussed in the last paragraph of Section 5.4, it is important that the stirrup anchorage be
located as close to the compression face of the beam as is permitted by concrete cover
requirements and the proximity of other reinforcement and tendons.

The design equation

The factored design shear force must be less than or equal to the design strength. That is,

(5.13)

The capacity reduction factor for shear is 0.7 in AS 3600–1988 (see Table 1.1). Substituting
Equation 5.3a into Equation 5.13 gives

and the design equation for vertical stirrups becomes

(5.14)

The use of Equation 5.14 for the design of web reinforcement is tedious

Figure 5.5 Web steel requirements for a uniformly loaded beam.
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even for straightforward or ordinary cases. The critical value for Vuc (controlled by the onset
of either flexure-shear or web-shear cracking) must be determined at each section along the
beam and varies from section to section. However, the process is repetitive and may be easily
performed using a small programmable calculator or desktop microcomputer.

The shear reinforcement requirements can be visualized by plotting the variation of both
the applied shear (V*) and the shear strength provided by the concrete along the span of
a uniformly loaded member, as shown in Figure 5.5. The hatched area represents the design
strength which must be supplied by the shear reinforcement .

Example 5.1

The shear reinforcement for the post-tensioned beam shown in Figure 5.6 is to be designed.
The beam is simply supported over a 30 m span and carries a uniformly distributed live load
of wQ=25 kN/m and dead load of wG=30 kN/m (which includes the beam self-weight). The
beam is prestressed by a bonded parabolic cable (Ap=3800 mm2 and the duct diameter is 120
mm) with an eccentricity of 700 mm at mid-span and zero at each support. The prestress at
each support is 4500 kN and at mid span 4200 kN and is assumed to vary linearly along the
beam length.

The load combinations specified in AS 3600–1988 for the strength limit state are outlined
in Section 1.7.3. For this case of dead plus live load, the

Figure 5.6 Beam details for Example 5.1.
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factored design load is

At x m from support A:

The distance of the parabolic prestressing cable below the centroidal axis of the section at x m
from A is obtained using Equation 1.3:

and its slope is found from Equation 1.4:

Assuming 30 mm concrete cover, 12 mm diameter stirrups, and 24 mm diameter longitudinal
bars in the corners of the stirrups, the depth do is

In Table 5.1, a summary of the calculations and reinforcement requirements at a number of
sections along the beam is presented. The following

Table 5.1 Summary of results—Example 5.1.

x
(m)

V*

(kN)
M*

(kNm)
Web Shear

(kNm)
Rexure

Shear
(kN)

(kN)
θv

(deg)
Spacing of 10 mm stirrups
Eqn 5.14 (specified) (mm)

0.6 1080 662 897 1510 1013 32.4 271 (270)

1.0 1050 1090 932 1175 1047 30.1 460 (300)

2.0 975 2100 959 895 1011 30 467 (300)

3.0 900 3040 – 774 889 30.3 428 (300)

4.0 825 3900 – 692 808 30.5 402 (300)

5.0 750 4690 – 627 743 30.2 442 (300)

6.0 675 5400 – 571 687 30 467 (300)

7.0 600 6040 – 519 635 30 467 (300)

8.0 525 6600 – 471 586 30 467 (300)

9.0 450 7090 – 424 540 30 467 (300)

10.0 375 7500 – 380 495 30 467 (300)
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sample calculations are provided for the sections at 0.6 m (0.5D) from the support and at 3 m
from the support:

At x=0.6 m From the above equations, V*=1080 kN, M*=662 kN m, y=0.0549 m, y'=0.0896
rad, Pe=4488 kN, and the vertical component of prestress is Pv=Pey'=402 kN.

Flexure-shear cracking The decompression moment is

and the corresponding shear force Vo is calculated using Equation 5.9:

Assuming a 24 mm diameter longitudinal bar in each bottom corner of the stirrups (Ast=900
mm2), the shear force required to produce a flexure-shear crack is therefore obtained from
Equation 5.8:

Web-shear cracking Since M* is less than the decompression moment Mo (which is less than
the cracking moment), web-shear cracking may be critical. Checks should be made at both the
centroidal axis and at the tendon level.

At the centroidal axis, the first moment of the area below the centroidal axis is

The effective width of the web at the centroidal axis is b=bw=300 mm, and from Equation
5.12,

Setting MPa in Equation 5.11 and solving gives Vt=969 kN.
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At the level of the prestressing tendon (i.e. 54.9 mm below the centroidal axis),

The effective width of the web for shear calculations at the level of the tendon is defined in
the text immediately after Equation 5.5 and is given by

The moment at the section when the shear is Vt is

and from Equation 5.12,

and

Solving Equation 5.11 with gives Vt=880 kN, which is less than the value
calculated at the centroidal axis. Therefore, from Equation 5.10,

Clearly, at this section, web-shear cracking occurs at a lower load than flexure-shear cracking
and is therefore critical. Thus,

which is less than the design shear force V*, and therefore shear reinforcement is required.
Stirrup design In this example, 10 mm diameter single stirrups (two vertical legs) with

Asυ=157 mm2 and fvy=250 MPa are to be used.
In order to find the inclination of the diagonal compressive strut, θυ, the
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maximum and minimum shear strengths, Vu,max and Vu,min, must first be calculated. From
Equation 5.7, the maximum shear strength (limited by web-crushing) is

The design shear V* is less than the maximum design strength and, therefore, the
cross-section is suitable. The shear strength of the section containing the minimum shear
reinforcement is obtained from Equation 5.6:

which is less than V*. For V*=1080 kN,θυis obtained from Equation 5.4:

From the design equation for vertical stirrups (Equation 5.14):

which satisfies both the minimum steel and maximum spacing requirements. At the critical
section 0.6 m from the support, adopt

10 mm stirrups (fvy=250 MPa) at 270 mm centres
At x=3 m From the equations given earlier,

Flexure-shear cracking The decompression moment is

and from Equation 5.9,
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From Equation 5.8, the shear force required to produce a flexure-shear crack is

Since M* is greater than the cracking moment at this section, web-shear cracking need not be
considered. Therefore, the contribution of the concrete to the design shear strength of the
section is

This is less than the design shear force V*, and therefore shear reinforcement is required.
Stirrup design The minimum and maximum shear strengths, Vu,min and Vu,max, are obtained

from Equations 5.6 and 5.7, respectively:

V* is only just greater than . Equation 5.4 gives

and the stirrup spacing is

This exceeds the maximum spacing requirement of 0.5D or 300 mm, whichever is greater.
Therefore, at the section 3 m from the support, adopt

10 mm stirrups (fvy=250 MPa) at 300 mm centres

For other cross-sections, results are shown in Table 5.1. When m, the design shear V* is
less than and the minimum amount of shear
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reinforcement is required. However, for much of the span, the maximum spacing requirement
of AS 3600–1988 governs the design.

5.5.3 The ACI 318–83 approach

The ultimate shear strength specified in ACI 318–83 is given by Equation 5.2 and the design
requirement is

(5.15)

The notation used here is consistent with that used elsewhere in this book and not necessarily
with that used in ACI 318–83. The strength contributed by the stirrups Vus is given by either
Equation 5.3a or b, except that θυ=45° and cotθυ=1. Therefore, for vertical stirrups,

(5.16a)

and for inclined stirrups,

(5.16b)

where dp is the depth from the extreme compressive fibre to the centroid of the prestressing
steel, but should not be taken to be less than 0.8 times the overall depth of the member.

To avoid web crushing, the strength Vus should not be taken greater than . In

addition, the code requires that whenever V* exceeds , minimum shear reinforcement
should be used. The minimum shear reinforcement is given by (Asυ)min=0.35bwdp/fυy.

The concrete contribution to shear strength Vuc is the lesser of the shear required to cause
web-shear or flexure-shear cracks. For web-shear cracking, Vuc is the shear force that results
in a principal tensile stress of (in MPa) at the centroidal axis or, when the centroidal
axis is in the flange, at the intersection of the flange and web. For web-shear cracking,
therefore, Vuc may be calculated in the same way as in the AS 3600 approach using Equation
5.10 and solving Equation 5.11. Alternatively, Vuc for web-shear cracking may be
approximated by

(5.17)

where σcp is the concrete compressive stress at the centroid (or at the junction of the web and
flange) after all prestress losses.

For flexure-shear cracking, Vuc is as shown in Equation 5.18 and is the sum of the shear
force which exists when a flexure crack first develops and
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an additional shear force required to produce inclined cracking:

(5.18)

where Mcr is the cracking moment which occurs when the extreme fibre tensile stress reaches

. However, Vuc for flexure-shear need not be taken less than .
For members with an effective prestressing force Pe greater than 40% of the tensile strength

of all the flexural reinforcement, ACI 318–83 specifies the following approximate alternative
expression for Vuc:

(5.19)

but Vuc need not be taken less than nor greater than . This
approximate expression should only be used when the critical section for shear does not occur
within the transfer length near the end of a pretensioned member.

The most significant difference between the ACI approach and the AS 3600 approach,
apart from the angle θυbeing fixed at 45°, is the omission of the vertical component of the
prestressing force in the equation for Vuc for flexure-shear (Equation 5.18). This may result in
significant differences in the required amount of shear reinforcement. For example, at 3 m
from the support of the beam shown in Figure 5.6 and analysed in Example 5.1, the AS 3600
approach predicted Vuc=1105 kN and the required spacing of 10 mm diameter stirrups (two
legs) was 428 mm. At the same section using the ACI approach, Vuc=691 kN and the required
stirrup spacing is only 75 mm. Using the ACI 318–83 load factors to calculate V* and with

, the force to be carried by the stirrups at this section is kN. The
corresponding force, calculated using the AS 3600 approach in Example 5.1, is only 180 kN.
This large difference is basically due to the omission of the vertical component of prestress
(Pυ=332 kN) in the estimate of Vuc using the ACI approach. An examination of Figure 5.4
indicates that Pυshould be included in the estimate of the shear strength of the cross-section,
provided the designer is confident that the slope of the tendon specified in design will in fact
be realized in the real beam.

5.5.4 The BS 8110 approach

The load combinations and design procedures for strength adopted in BS 8110 (1985) were
outlined in Sections 1.7.3 and 1.7.6, respectively, and involve the use of partial safety factors
for load and material strengths.
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Using the notation adopted elsewhere in this book, the design shear stress is defined as

(5.20)

where V* is the design shear force at the section under consideration, bw is the average web
width, and d is the distance from the extreme compression fibre to the centroid of the steel
area (Ap+Ast) in the tensile zone. In no case should υexceed or 5 MPa, whichever is the
smaller. Note that refers to the characteristic cube strength of the concrete.

The design ultimate shear resistance of the concrete alone, Vuc, is equal to Vco when the

design moment M* is less than Mo, and is the lesser of Vco and Vcr when . The
moment Mo produces zero stress in the concrete at the extreme tensile fibre. BS 8110 suggests
that only 80% of the prestress should be taken into account when calculating Mo.

The shear resistance Vco produces a maximum tensile stress at the centroidal axis of

. When calculating Vco, only 80% of the design compressive stress at the
centroidal axis σcp (taken as +ve) should be considered. Vco may be calculated from

(5.21)

where D is the overall depth of the member.
The design ultimate shear resistance when the section is cracked in flexure may be

calculated from

(5.22)

where σpe is the effective stress in the tendon after all losses have occurred (and should not be
taken to be greater than 0.6fp); υc is a design concrete shear stress given by

(5.23)

In this equation, the term 100(Ast+Ap)/bwd should not be taken as greater than 3, the term
400/d should not be taken as less than 1.0, should not be taken as greater than 40 MPa, and
γm is 1.25.

For sections cracked in flexure, the vertical component of the prestressing force (or the
vertical component of the force in an inclined compressive
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chord) should be combined with the external design load effects, wherever these effects are
increased.

When , the minimum quantity of shear reinforcement given by
Equation 5.24 should be provided:

(5.25)

When , then the required area of the stirrups is

(5.25)

where do is the depth to the centroid of the bottom layer of longitudinal steel in the corners of
the stirrups near the tensile face.

When , the spacing of stirrups along a member should not exceed 0.75do or
4bw (in the case of flanged members). When V*>1.8Vuc, the maximum spacing is reduced to
0.5do. The lateral spacing of individual stirrup legs across the width of a cross-section should
not exceed do.

Like the ACI approach, the BS 8110 approach ignores the vertical component of prestress
Pυwhenever the effect is beneficial.

TORSION IN BEAMS

5.6 Compatibility torsion and equilibrium torsion

In addition to bending and shear, some members are subjected to twisting about their
longitudinal axes. A common example is a spandrel beam supporting the edge of a monolithic
floor, as shown in Figure 5.7a. The floor loading causes torsion to be applied along the length
of the beam. A second example is a box girder bridge carrying a load in one eccentric traffic
lane, as shown in Figure 5.7b. Members which are curved in plan such as the beam in Figure
5.7c may also carry significant torsion.

For the design of spandrel beams, designers often disregard torsion and rely on
redistribution of internal forces to find an alternative load path. This may or may not lead to a
satisfactory design. When torsional cracking occurs in the spandrel, its torsional stiffness is
reduced and, therefore, the restraint provided to the slab edge is reduced. Additional rotation
of the slab edge occurs and the torsion in the spandrel decreases. Torsion such as this, which
may be reduced by redistribution, is often called compatibility torsion. Whereas indeterminate
structures generally tend to behave in
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Figure 5.7 Members subjected to torsion.

accordance with the design assumptions, full redistribution will occur only if the structure
possesses adequate ductility, and may be accompanied by excessive cracking and large local
deformations.

For some statically indeterminate members (and for statically determinate members)
twisted about their longitudinal axes, some torsion is required for equilibrium and cannot be
ignored. In the case of the box girder bridge of Figure 5.7b, for example, torsion cannot be
disregarded and will not be redistributed. There is no alternative load path. This is equilibrium
torsion and must be considered in design.

Despite much research, the behaviour of beams carrying combined bending, shear, and
torsion is not fully understood. Most current design recommendations rely heavily on gross
simplifications and empirical estimates derived from experimental observations.

5.7 Effects of torsion

Prior to cracking, the torsional stiffness of a member may be calculated using elastic theory.
The contribution of reinforcement to the torsional stif fness before cracking is insignificant
and may be ignored. When cracking occurs, the torsional stiffness decreases significantly and
is very dependent on the quantity of steel reinforcement. In addition to causing a large
reduction of stiffness and a consequential increase in deformation (twisting), torsional cracks
tend to propagate rapidly and are wider and more
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unsightly than flexure cracks. A prudent designer will therefore endeavour to avoid torsional
cracking at service loads.

Torsion causes additional longitudinal stresses in the concrete and the steel, and additional
transverse shear stresses. If torsion is large, a significant reduction in load-carrying capacity
results. To resist torsion after the formation of torsional cracks, additional longitudinal
reinforcement and closely spaced, closed ties (stirrups) are required. Cracks caused by pure
torsion form a spiral pattern around the beam (hence the need for closed ties). Many such
cracks usually develop at close centres and failure eventually occurs on a warped failure
surface owing to skew bending. The angles between the crack and the beam axis on each face
of the beam are approximately the same and are here denoted θt. After torsional cracking, the
contribution of concrete to the torsional resistance of a reinforced or prestressed concrete
member drops significantly. Any additional torque must be carried by the transverse
reinforcement. Tests show that prestress increases significantly the torsional stiffness of a
member, but does not greatly affect the strength. The introduction of prestress delays the
onset of torsional cracking, thereby improving the member stiffness and increasing the
cracking torque. The strength contribution of the concrete after cracking, however, is only
marginally increased by prestress and the contribution of the transverse reinforcement remains
unchanged.

For a beam in pure torsion, the behaviour after cracking can be described in terms of the
three-dimensional analogous truss shown in Figure 5.8. The closed stirrups act as transverse
tensile web members (both vertical and horizontal); the longitudinal reinforcement in each
corner of the stirrups act as the longitudinal chords of the truss; and the compressive web
members inclined at an angle θt on each face of the truss represent the concrete between the
inclined cracks on each face of the beam and carry the inclined compressive forces.

Figure 5.8 A three-dimensional truss analogy for a beam in pure torsion.
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The three-dimensional analogous truss ignores the contribution of the interior concrete to
the post-cracking torsional strength of the member. The diagonal compressive struts are
located on each face of the truss and, in the real beam, diagonal compressive stress is assumed
to be located close to each surface of the member. The beam is therefore assumed to behave
similarly to a hollow thin-walled section. Tests of members in pure torsion tend to support
these assumptions.

Design models for reinforced and prestressed concrete beams in torsion are usually based
on a simple model such as that described above.

5.8 Design provisions for torsion in AS 3600–1988

The provisions in the Australian Code (AS 3600–1988) for the design of beams subjected to
torsion, and to torsion combined with flexure and shear, are outlined in this section and
represent a simple and efficient design approach. Several conservative assumptions are
combined with a variable angle truss model and the design procedure for shear presented in
Section 5.5.2.

5.8.1 Compatibility torsion

For a member subjected to compatibility torsion (such as the spandrel beam shown in Figure
5.7a), where torsional strength is not required for the equilibrium of the structure, the torsional
stiffness of the member may be ignored in the analysis and torsion may be disregarded in
design. However, the minimum torsion reinforcement provisions given in (a) and (b) below
must be satisfied.

(a) The cross-sectional area Asw of the reinforcement bar used for the closed stirrup must be
greater than the minimum value given by

(5.26)

where s is the stirrup spacing measured parallel to the axis of the member and y1 is the
larger dimension of the closed rectangular stirrup.

(b) An area of longitudinal reinforcement in addition to that required for flexure As+ must also
be provided and must be greater than the minimum value given by

(5.27)

where ut is the perimeter of the polygon with vertices at the centres of
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the longitudinal bars at the corners of the closed stirrups and fy is the yield stress of the
additional non-prestressed reinforcement.

5.8.2 Equilibrium torsion

Where torsion is required for equilibrium, it must be considered in design and the ultimate
torsional strength of each cross-section Tu must be calculated.

For a beam without torsional reinforcement, Tu is taken as the torsional strength of the
concrete Tuc and is given by

(5.28)

In this equation, Tuc is an estimate of the pure torsion required to cause first cracking. The
torsional constant J t is taken as

Jt =0.4x2y for solid sections;

=0.4Σx2y for solid flanged sections;

=2Ambw for hollow sections.

x and y are the shorter and longer overall dimensions of the rectangular part(s) of the solid
section, respectively; Am is the area enclosed by the median lines of the walls of a hollow
section; bw is the minimum thickness of the walls of a hollow section; the term in

Equation 5.28 represents the tensile strength of concrete; the term is the
beneficial effect of the prestress; and σcp is the average effective prestress, Pe/A.

Torsional reinforcement is required in a member whenever the factored design twisting
moment T* exceeds .

For a beam with torsional reinforcement, the contribution of concrete to the torsional
strength of a member after cracking is conservatively taken as zero (i.e. Tuc=0). The torsional
strength is therefore provided entirely by the stirrups (Tu=Tus) and is given by

(5.29)

where At is the area of the polygon with vertices at the centres of the longitudinal bars at the
corners of the closed stirrups; θt is the angle between the axis of the concrete compressive
strut and the longitudinal axis of the member and may be taken conservatively as 45° or, more
accurately, to vary linearly from 30° when to 45° when . That is,

(5.30)
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where Tuc is given by Equation 5.28, , and Tu,max is the maximum ultimate torsional
strength specified by AS 3600–1988 to avoid webcrushing and is given by

(5.31)

With the design requirement for a beam containing torsional reinforcement being ,
Equation 5.29 can be rearranged to form a design equation for the required quantity of
transverse steel in a member subjected to pure torsion:

(5.32)

The torsional strength given by Equation 5.29 and the amount of transverse steel calculated
using Equation 5.32 are only applicable provided that an additional area of longitudinal
reinforcement (over and above that required for flexure) is included in the flexural tensile
zone. This additional area of longitudinal reinforcement is specified as

(5.33)

where fυy and fy are the characteristic strengths of the web steel and longitudinal steel,
respectively. An additional area of longitudinal reinforcement is also required in the
flexural compressive zone and is specified as

(5.34)

where is the absolute value of the design force in the compressive zone caused by bending.

5.8.3 Torsion combined with bending and shear

For the design of members subjected to bending, shear, and torsion, the strengths in torsion
and shear are determined separately, and the linear interaction equations presented below
must be satisfied.

Transverse reinforcement is not required for shear plus torsion if

(5.35)

except that for a beam with overall depth not exceeding the greater of
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250 mm or half the width of the web Equation 5.36 applies:

(5.36)

where T* and V* are the factored design torsion and shear, Tuc is determined from Equation
5.28, and Vuc is obtained from either Equation 5.8 or 5.10, whichever gives the smaller value.

When Equation 5.35 (or 5.36) is not satisfied and transverse reinforcement is required for
shear and torsion, the concrete contribution to strength is ignored and Equation 5.37 must be
satisfied:

(5.37)

provided that

(5.38)

Vus is determined using Equations 5.3a and b, and Tus is given by Equation 5.29 (provided that
the additional longitudinal steel indicated by Equations 5.33 and 5.34 is supplied). Equation
5.38 is aimed at preventing web-crushing under the combined effect of torsion and flexural
shear, and Vu,max and Tu,max are obtained from Equations 5.7 and 5.31, respectively,

In all beams in which transverse steel is required for torsion and shear, the quantity of
transverse and longitudinal reinforcement provided in the member should satisfy the
minimum requirements specified in Equations 5.26 and 5.27.

When detailing the torsional reinforcement, the closed stirrups must be continuous around
all sides of the section and be anchored so that the full strength of the bar can be developed at
any point. The maximum spacing of the stirrups measured parallel to the longitudinal axis of
the member is 0.12ut or 300 mm, whichever is smaller. The additional longitudinal
reinforcement must be enclosed within the stirrup and as close to the corners of the section as
possible. In all cases, at least one bar should be provided at each corner of the closed stirrup.

In Section 5.7, the desirability of avoiding torsional cracking at service loads was discussed.
Equation 5.28 provides an estimate of the pure torsion required to cause first cracking, Tuc.
When torsion is combined with shear, the torque required to cause first cracking is reduced.
An estimate of the torque necessary to cause torsional cracking at a section can be obtained
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from the interaction equation

(5.39)

where Tcr and Vcr are the actual twisting moment and shear force, respectively, acting together
at first cracking, and Vuc is the shear force required to cause inclined cracking when bending
and shear are acting alone (and is the lesser of the values calculated using Equations 5.8 and
5.10).

If Vcr is expressed as Tcr/e, then Equation 5.39 can be rearranged to give

(5.40)

where e is the ratio of actual torsion to actual shear. In design, it is often advisable to check
that the applied torque T, under in-service conditions, is less than Tcr.

5.8.4 Design equation

Equations 5.37 and 5.38 are useful for checking the adequacy of a trial cross-section. When
designing for combined torsion, bending, and shear, a more useful design equation is obtained
by substituting Equations 5.3a and 5.29 into Equation 5.37. If vertical stirrups are to be used,
Equation 5.37 becomes

(5.41)

For closed stirrups with two vertical legs, Asυ=2Asw, and Equation 5.41 may be rearranged to
give

(5.42)

The first term on the right-hand side of Equation 5.42 can be considered as the transverse steel
required for torsion (Asw/s)t and the second term is the additional steel required for shear
(Asw/s)υ. When calculating the additional longitudinal steel required to carry torsion on the
section, the quantity (Asw/s)t should be used in Equations 5.33 and 5.34.

Equation 5.42 and the theory outlined above were developed for the case of isolated beams
subjected to torsion combined with bending and shear. When the beam forms part of a floor
system and is integral with a slab, both its strength and stiffness are significantly greater than
that of an isolated
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beam of similar size and with similar reinforcement details. The slab prevents the longitudinal
expansion of the beam in torsion and provides compressive restraint. The torque required to
cause first cracking in such a beam is much greater than that predicted by Equation 5.28. The
beneficial influence of the slab is not easily quantified. However, the procedure developed for
an isolated beam provides a conservative and relatively simple design approach which can be
used for a beam forming an integral part of a floor or deck system.

In cases where T* and V* are relatively small and only small amounts of transverse steel are
required for torsion and shear, Equations 5.37 and 5.42 can lead to unduly conservative
designs. This is because the concrete contribution to strength is entirely ignored. Rangan
(1987b), in a commentary on AS 3600–1988’s shear and torsion provisions, suggested that a
less conservative and useful alternative in such cases is to adopt the following design
requirement:

(5.43)

where Tu may be calculated using Equation 5.44, which is based on the work of Zia & Hsu
(1978):

(5.44)

and where x1 and y1 are the shorter and longer dimensions of the closed stirrups, respectively,

J t is as defined in Equation 5.28, and . In Equation 5.44, the angle θt is
assumed to be 45°. By taking θυ=45°, Vu may be obtained from Equations 5.2 and 5.3b:

(5.45)

The contribution of the concrete to the shear strength Vuc is the lesser of the values obtained
using Equations 5.8 and 5.10 and, as before, the additional areas of longitudinal steel required
for torsion are calculated using Equations 5.33 and 5.34.

Example 5.2 —torsion, bending and shear

A prestressed concrete beam has a rectangular cross-section 400 mm wide and 550 mm deep.
At a particular cross-section, the beam must resist the following factored design actions:
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Figure 5.9 Cross-section details for Example 5.2.

An effective prestress of 700 kN is applied at a depth of 375 mm by a single cable consisting
of 7–12.5 mm diameter strands in a grouted duct of 60 mm diameter. The area of prestressing
steel is Ap=700 mm2 with an ultimate tensile strength of fp=1840 MPa. The vertical
component of the prestressing force at the section under consideration is 50 kN and the
concrete strength is MPa. The dimensions and properties of the section are shown in
Figure 5.9. The longitudinal and transverse non-prestressed reinforcement requirements are to
be determined.

(1) Initially, the cross-section should be checked for web-crushing. The effective width of the
web for shear is

and from Equation 5.7,

The torsional constant Jt is

and Equation 5.31 gives

The interaction equation for web-crushing (Equation 5.38) gives
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Therefore, web-crushing will not occur and the size of the cross-section is acceptable.
(2) The longitudinal reinforcement required for bending must next be calculated. From the

procedures outlined in Chapter 4, the seven prestressing strands provide adequate ultimate
flexural strength , where for bending as
indicated in Table 1.1). No non-prestressed steel is therefore required for flexural strength.

(3) To check whether torsional reinforcement is required, Vuc and Tuc must be calculated.
Because bending is significant on this section, flexure-shear cracking will control and Vuc is
obtained from Equation 5.8. The decompression moment Mo is given by

and the corresponding shear force is calculated using Equation 5.9:

From Equation 5.8,

The average effective prestress is σcp=Pe/A=3.18 MPa and from Equation 5.28,

The inequality of Equation 5.35 is not satisfied:

Therefore, closed stirrups are required.
(4) The shear strength of the section containing the minimum quantity of web reinforcement

is calculated using Equation 5.6:

Since , thenθυ=30°, and since T* is greater than
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, the angle θt is calculated from Equation 5.30:

With At=135×103 mm2 (see Figure 5.9) and fυy=400 MPa, the required amount of
transverse steel may be determined from Equation 5.42:

The steel required for torsion (Asw/s)t=0.464 is significantly more than the minimum
steel requirements of Equation 5.26:

With 12 mm diameter stirrups, Asw=110 mm2 and therefore

which is less than the maximum permitted spacing of 0.2ut=0.12×1500=180 mm
Use 12 mm diameter stirrups at 140 mm centres (fυy=400 MPa).

(5) Since the prestressing steel is required for flexural strength, the additional longitudinal
steel required in the tension zone is to be supplied by non-prestressed reinforcement (with
fy=400 MPa) and is calculated using Equation 5.33. With (Asw/s)t=0.464,

Use 4–20 mm diameter deformed longitudinal bars in the bottom of the section.
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The force in the compressive zone due to flexure, , is approximately

and from Equation 5.34,

Therefore, no additional longitudinal reinforcement is theoretically required in the
compressive zone.
Use two 20 mm diameter top bars, one in each top corner of the stirrup.

Checking this cross-section with the alternative procedure suggested by Rangan (1987b) (and
outlined in Equations 5.43–5.45), the term

and from Equation 5.44,

From Equation 5.45,

and the interaction equation (Equation 5.43) gives

For this example, the two procedures are in excellent agreement.
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SHEAR IN SLABS AND FOOTINGS

5.9 Punching shear

In the design of slabs and footings, strength in shear frequently controls the thickness of the
member, particularly in the vicinity of a concentrated load or a column. Consider the pad
footing shown in Figure 5.10. Shear failure may occur on one of two critical sections. The
footing may act essentially as a wide beam and shear failure may occur across the entire width
of the member, as illustrated in Figure 5.10a. This is beam-type shear (or one-way shear) and
the shear strength of the critical section is calculated as for a beam. The critical section for
this type of shear failure is usually assumed to be located at a distance d from the face of the
column or concentrated load. Beam-type shear is often critical for footings but will rarely
cause concern in the design of floor slabs.

An alternative type of shear failure may occur in the vicinity of a concentrated load or
column and is illustrated in Figure 5.10b. Failure may occur on a surface that forms a
truncated cone or pyramid around the loaded area, as shown. This is known as punching shear
failure (or two-way shear failure) and is often a critical consideration when determining the
thickness of pad footings and flat slabs at the slab-column intersection. The critical section for
punching shear is usually taken to be geometrically similar to the loaded area and located at a
distance d/2 from the face of the loaded area. The critical section (or surface) is assumed to be
perpendicular to the plane of the footing or slab. The remainder of this chapter is concerned
with this type of shear failure.

Figure 5.10 Shear failure surfaces in a footing or slab.
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In ACI 318–83, the punching shear strength of a slab or footing not containing shear
reinforcement, Vuc, is given by either Equation 5.46 or 5.47. For a non-prestressed slab or
footing,

(5.46)

where βc is the ratio of the long side to the short side of the loaded area and u is the perimeter
of the critical section. For a two-way prestressed slab, in which no portion of the column
cross-section is closer to a discontinuous edge than four times the slab thickness,

(5.47)

where σcp is the average value of effective prestress (P/A) for each direction and Vp is the
vertical component of all effective prestressing forces crossing the critical section. In
Equation 5.47, should not be taken greater than 35 MPa, andσcp in each direction should
not be less than 1 MPa or greater than 3.5 MPa. The vertical component of prestress, Vp, in
Equation 5.47 is generally small, since the tendons at the critical section are usually fairly flat
and may be taken conservatively as zero.

For a critical section containing no shear reinforcement and carrying a factored design
shear force V*, the ACI 318–83 design requirement is that where for shear.
When both shear V* and an unbalanced moment are transferred from a slab to a column,
ACI 318–83 suggests that the maximum shear stress on the critical section may be
calculated from

(5.48)

where A is the area of the critical section, J is a property of the critical section analogous to
the polar moment of inertia, is the fraction of the unbalanced moment transferred to the
column by eccentricity of shear about the centroid of the critical section (i.e. torsion), and y is
the distance from the centroid of the critical section to the point where acts. Shear stress
resulting from V* and is thus assumed to vary linearly about the centroid of the critical
section. The value of γυis given by the following empirical expression:

(5.49)
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where c1 is the side dimension of the column in the direction of the span for which moments
are determined and c2 is the side dimension of the column perpendicular to c1.

The ACI 318–83 design requirement for a slab containing no shear reinforcement is that
does not exceed a permissible shear stress υc carried by the concrete. For non-prestressed

slabs,

(5.50a)

and for two-way prestressed slabs that meet the requirements that apply for Equation 5.47,

(5.50b)

Although the ACI approach provides reasonable agreement with test results (Hawkins 1974),
it is essentially a linear working stress design method. Such approaches for the determination
of ultimate strength are not rational and have generally fallen from favour over the past 20
years. In addition, the approach is cumbersome and difficult to use, particularly in the case of
edge and corner columns both with or without spandrel beams.

The provisions for punching shear in the Australian Code AS 3600–1988 have been
developed from the results of a series of laboratory tests conducted by Rangan & Hall on
large-scale reinforced concrete edge column-slab specimens (Rangan & Hall 1983a,b, Rangan
1987a). The extension of Rangan & Hall’s proposals to cover prestressed concrete slabs is
both logical and simple. The design rules proposed in AS 3600–1988 are outlined in Section
5.10. The rules are based on a simple model of the slab-column connection. Rangan & Hall
suggested that in order to determine the punching shear strength of a slab at a slab–column
connection, the forces acting on the column and the capacity of the slab at each face of the
column should be evaluated. Ideally in design, the column support should be large enough for
the concrete to carry satisfactorily the moments and shears being transferred to the column
without the need for any shear reinforcement. However, if this is not possible, procedures for
the design of adequate, properly detailed reinforcement must be established.

In Figure 5.11, the way in which the moments and shears are transferred to an edge column
in a flat plate floor is illustrated. Some of these forces are transferred at the front face of the
column (Mb, Vb) and the remainder through the side faces as bending, torsion and shear (Ms,
Ts, Vs). The front face must be able to carry Mb and Vb and the side faces must have enough
strength to carry Ms, Ts, and Vs. A punching shear failure is initiated by the failure of a slab
strip at either of the side faces, in combined bending,
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Figure 5.11 Forces at an edge column of a flat plate floor (Rangan and Hall 1983a).

shear, and torsion, or at the front face (or back face, in the case of an interior column), in
combined bending and shear. If the concrete alone is unable to carry the imposed torsion and
shear in the side faces, then transverse reinforcement in the spandrels (or side strips) must be
designed. The provisions for the design of beam sections in combined torsion, bending and
shear (outlined in Section 5.8) may be used for the design of the spandrel strips. Account
should be taken, however, of the longitudinal restraint offered by the floor slab which
prevents longitudinal expansion of the strip and substantially increases torsional strength. In
laboratory tests, Rangan (1987a) observed that the longitudinal restraint provided by the floor
slab increased the torsional strength of the spandrels by a factor of between four and six.

5.10 Design procedures for punching shear in AS 3600–1988

5.10.1 Introduction and definitions

The critical shear perimeter is defined in AS 3600–1988 as being geometrically similar to the
boundary of the effective area of a support, or concentrated, load and located at a distance d/2
therefrom. The effective area of a support or concentrated load is the area totally enclosing the
actual support or load, for which the perimeter is a minimum. Both the critical shear perimeter
and the effective area of a support are illustrated in Figure 5.12. Also shown in Figure 5.12 is
the reduction of the shear perimeter caused by an opening through the thickness of the slab
and located
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Figure 5.12 The critical shear perimeter (from AS 3600–1988).

within a distance of 2.5bo from the critical perimeter. The term bo is the dimension of the
critical opening, as illustrated.

The punching shear strength Vu of a slab depends on the magnitude of the bending moment
being transferred from the slab to the support or loaded area. Accordingly, the design

procedures with and without moment transfer are here considered separately.

5.10.2 Shear strength with no moment transfer

When no moment is transferred from the slab or footing to the column support or when the
slab is subjected to a concentrated load, the punching shear strength of the slab is given by

(5.51)

where u is the length of the critical shear perimeter (with account taken of the ineffective
portions of the perimeter caused by adjacent openings), d is the average distance from the
extreme compressive fibre to the tensile flexural reinforcement in the slab in each orthogonal
direction, σcp is the average intensity of the effective prestress in the concrete (Pe/A) in each
direction, and fcυis a limiting concrete shear stress on the critical section and is given by

(5.52)

The term βh is the ratio of the longest overall dimension of the effective loaded area, Y, to the
overall dimension, X, measured perpendicular to Y, as illustrated in Figure 5.12. It is noted

that for all cases in which .
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If a properly designed, fabricated shear head is used to increase the shear strength, an upper
limit of

(5.53)

is specified.

5.10.3 Shear strength with moment transfer

In the following, reference is made to the torsion strips associated with a particular slab-
column connection. A torsion strip is a strip of slab of width a which frames into the side face
of a column, as shown in Figure 5.13 (and also in Figure 5.11). In addition to the strip of slab,
a torsion strip includes any beam that frames into the side face of the column. The
longitudinal axis of a torsion strip is perpendicular to the direction of the spans used to
calculate .

Three cases are considered for the determination of the punching shear strength of slab–
column connection where an unbalanced moment is transferred from the slab to the
column.

Figure 5.13 Torsion strips and spandrel beams (from AS 3600–1988).

(a) Where the torsion strip contains no beams and no closed ties

Consider a slab–column connection required to carry a factored design shear force V* and an
unbalanced moment . The shear and torsion
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carried by the torsional strip at each side face of a column may be conservatively taken to be
V1=(a/u)V* and (Rangan 1987a). The design shear strength of the torsion strip is
Vuc=(a/u)Vuo (where Vuo is given by Equation 5.51) and the torsional strength may be obtained
using Equation 5.28. If the width of the torsion strip a is greater than the overall slab depth Ds,
and if a factor αis included to account for the restraint provided by the slab, then Equation
5.28 gives

where . By substituting these expressions into Equation 5.36 and by taking
Ds=1.15d and kα=6 (as recommended by Rangan 1987a), the following expression can be
derived:

(5.54)

i.e. the strength of the unreinforced torsion strip is adequate provided the combination of V*

and satisfies the inequality of Equation 5.54. For design purposes, Equation 5.54 may be
rearranged to give , where in AS 3600–1988. Vu is the strength of the
critical section and is given by

(5.55)

According to AS 3600–1988, Equation 5.55 is applicable to both reinforced and prestressed
concrete slab-column connections, the only difference being the inclusion of the average
prestress, σcp, in the estimate of Vuo in Equation 5.51.

If V* is not less than , then the critical section must be either increased in size or
strengthened by the inclusion of closed stirrups in the torsion strips. In practice, it is prudent
to ensure that satisfies Equation 5.54 and hence that so that no shear
reinforcement is required. The introduction of a drop panel to increase the slab depth locally
over the column support or the introduction of a column capital to increase the effective
support, and hence the critical shear perimeter, are measures that can often be taken to
increase Vuo, and hence Vu, to its required value.

(b) Where the torsion strip contains the minimum quantity of closed stirrups

This section applies to slab–column connections that may or may not have a transverse
spandrel beam within the torsion strip. AS 3600–1988 specifies that, if required,
reinforcement for shear and torsion in the torsion strips
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shall be in the form of closed stirrups that extend for a distance not less than Lt/4 from the
face of the support or concentrated load, where Lt is defined in Figure 5.13. The minimum
cross-section area of the closed stirrup (Asw)min is given by Equation 5.26. The first stirrup
should be located at not more than s/2 from the face of the support and the stirrup spacing s
should not exceed the greater of 300 mm and Db or Ds, as applicable. At least one longitudinal
bar should be provided at each corner of the stirrup. Reinforcement details and dimensions are
illustrated in Figure 5.14.

Using a similar derivation to that described for Equation 5.54 and with several conservative
assumptions, Rangan (1987a) showed that, if a torsion strip contains the minimum quantity of
closed stirrups (as specified in Equation 5.26), the strength is adequate provided that

(5.56)

where bw and Db are the web width and overall depth of the beam in the torsion strip, as
shown in Figure 5.14. If the torsion strip contains no beam, then bw=a and Db=Ds (the slab
thickness).

When satisfies Equation 5.56, the shear strength of the critical section, with the
minimum quantity of closed stirrups in the torsion strips, is given by

(5.57)

In the case of a slab–column connection without any beams framing into

Figure 5.14 Shear reinforcement details and dimensions for slabs (from AS 3600–1988).
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the side face of the column, Equation 5.57 becomes

(5.58)

When does not satisfy Equation 5.56, i.e. when the critical section must be
increased in size or the side faces must be reinforced with more than the minimum quantity of
closed stirrups.

(c) Where the torsion strips contain more than the minimum closed stirrups

Frequently, architectural considerations prevent the introduction of spandrel beams, column
capitals, drop panels (or other slab thickenings), or the use of larger columns. In such cases,
when is greater than the limits specified in Equation 5.54 or 5.56 (as applicable), it is
necessary to design shear reinforcement to increase the shear strength of the critical section.
This may be the case for some edge or corner columns where the moment transferred from the
slab to the column is relatively large and restrictions are placed on the size of the spandrel
beams.

When closed stirrups are included in the torsion strips at the side faces of the critical

section, the punching shear strength is proportional to , and the shear strength of the
critical section containing more than the minimum amount of closed ties in the torsion strips
is therefore given by (Rangan 1987a):

or

(5.59)

To avoid web-crushing of the side faces of the critical section, AS 3600–1988 requires that
the maximum shear strength be limited to

(5.60)

where x and y are the smaller and larger dimensions, respectively, of the cross-section of the
torsion strip or spandrel beam. By rearranging Equation 5.59, it can be shown that the amount
of closed stirrups required in the torsion strip at the side face of the critical section must
satisfy

(5.61)
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It is emphasized that Equation 5.61 should only be used where size restrictions are such that
the slab thickness and support sizes are too small to satisfy Equation 5.54 or 5.56. In general,
it is more efficient and economical to provide column capitals and/or drop panels to overcome
punching shear than it is to try to design and detail stirrups within the slab thickness.

5.10.4 Worked examples—punching shear

Example 5.3 —interior column (Case 1)

The punching shear strength of a prestressed concrete flat plate at an interior column is to be
checked. The columns are 400 by 400 mm in section and are located on a regular rectangular
grid at 8 m centres in one direction and 6 m centres in the other. The slab thickness Ds is 200
mm and the average effective depth of the tension steel is d=160 mm. The following data are
applicable:

For a square interior column, βh=1, and from Equation 5.52,

If no moment is transferred from slab to column, the shear strength of the critical section is
calculated using Equation 5.51:

The critical shear perimeter u and the width of the torsion strip a are

Provided that satisfies Equation 5.54, the shear strength of the critical section is given by
Equation 5.55 and no shear reinforcement is necessary.

which is greater than and therefore the critical section is adequate without any shear
reinforcement. The shear strength of the slab is obtained from Equation 5.55:
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and

Punching shear strength is adequate

Example 5.4 —interior column (Case 2)

The slab–column connection analysed in Example 5.3 is to be rechecked for the case when
V*=720 kN and kN m As in Example 5.3,

which is less than V*, even without considering the unbalanced moment . The critical
shear perimeter is clearly not adequate. Shear and torsional reinforcement could be designed
to increase the shear strength. However, successfully anchoring and locating stirrups within a
200 mm thick slab is difficult. An alternative solution is to use a fabricated steel shear head to
improve resistance to punching shear. The most economical and structurally efficient solution,
however, is to increase the size of the critical section. The slab thickness can often be
increased locally by the introduction of a drop panel, or alternatively the critical shear
perimeter may be increased by introducing a column capital or simply by increasing the
column dimensions. In general, provided such dimensional changes are architecturally
acceptable, they represent the best structural solution.

Let the slab thickness be increased to 250 mm by the introduction of a 50 mm thick drop
panel over the column in question (i.e. d=210 mm).

Now,

From Equation 5.51,

and checking Equation 5.54 gives

Shear strength will be adequate and no shear reinforcement is required.
Using Equation 5.55, kN, which is greater than V*, as expected.
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Example 5.5 —edge column

Consider the edge column–slab connection with critical perimeter as shown in Figure 5.15.
The design shear and unbalanced moment are V*=280 kN and kN m. The slab
thickness is constant at 220 mm, with no spandrel beams along the free slab edge. The
average effective depth d to the flexural steel is 180 mm and MPa.

When designing a slab for punching shear at an edge (or corner) column, the average
prestress σcp perpendicular to the free edge across the critical section (i.e. across the width bt
in Figure 5.15) should be taken as zero, unless care is taken to ensure that the slab tendons are
positioned so that this part of the critical section is subjected to prestress. Often this is not
physically possible, as discussed in Section 10.2 and illustrated in Figure 10.4. In this
example, it is assumed that σcp=0 perpendicular to the free edge and σcp=2.5 MPa parallel to
the edge.

As in Example 5.3, fcv=1.86 MPa and using Equation 5.51,

Checking Equation 5.54 shows that

The unreinforced section is NOT adequate.
As mentioned in the previous examples, a local increase in the slab thickness or the

introduction of a spandrel beam or a column capital may prove to be the best solution. For the
purposes of this example, however, shear

Figure 5.15 Plan view of critical section for Example 5.5.
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and torsional reinforcement will be designed in the slab strip of width a=490 mm and depth
Ds=220 mm at the side faces of the critical section.

From Equation 5.58, the strength of the critical section when the side faces contain the
specified minimum quantity of closed stirrups is

is less than V*, and therefore the torsion strips require more than the minimum
quantity of closed stirrups. In this example, 10 mm diameter mild steel stirrups are to be used
with 16 mm longitudinal bars in each corner, as shown in Figure 5.16, and 25 mm clear
concrete cover to the stirrups is assumed.

From Equation 5.61,

and therefore

Use 10 mm stirrups at 90 mm centres in the torsion strips.
The minimum area of longitudinal steel within the closed stirrups is obtained from

Equation 5.27:

The 4–16 mm diameter longitudinal bars shown in Figure 5.16 are more than adequate.
The shear strength of the critical section is given by Equation 5.59:

Figure 5.16 Details of closed stirrups in the torsion strips of Example 5.5.
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and therefore

In addition, the shear strength Vu is less than the maximum strength controlled by web-
crushing and given by Equation 5.60:

The cross-section of the proposed torsion strip is therefore adequate.
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6
Anchorage zones

6.1 Introduction

In prestressed concrete structural members, the prestressing force is usually transferred from
the prestressing steel to the concrete in one of two different ways. In post-tensioned
construction, relatively small anchorage plates transfer the force from the tendon to the
concrete immediately behind the anchorage by bearing. For pretensioned members, the force
is transferred by bond between the steel and the concrete. In either case, the prestressing force
is transferred in a relatively concentrated fashion, usually at the end of the member, and
involves high local pressures and forces. A finite length of the member is required for the
concentrated forces to disperse to form the linear compressive stress distribution assumed in
design.

The length of member over which this dispersion of stress takes place is called the transfer
length (in the case of pretensioned members) and the anchorage length (for post-tensioned
members). Within these so-called anchorage zones, a complex stress condition exists.
Transverse tension is produced by the dispersion of the longitudinal compressive stress
trajectories and may lead to longitudinal cracking within the anchorage zone. Similar zones of
stress exist in the immediate vicinity of any concentrated force, including the concentrated
reaction forces at the supports of a member.

The anchorage length in a post-tensioned member and the magnitude of the transverse
forces (both tensile and compressive), that act perpendicular to the longitudinal prestressing
force, depend on the magnitude of the prestressing force and on the size and position of the
anchorage plate or plates. Both single and multiple anchorages are commonly used in post-
tensioned construction. A careful selection of the number, size, and location of the anchorage
plates can often minimize the transverse tension and hence minimize the transverse
reinforcement requirements within the anchorage zone.

The stress concentrations within the anchorage zone in a pretensioned
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member are not usually as severe as in a post-tensioned anchorage zone. There is a more
gradual transfer of prestress. The prestress is transmitted by bond over a significant length of
the tendon and there are usually numerous individual tendons that are well distributed
throughout the anchorage zone. In addition, the high concrete bearing stresses behind the
anchorage plates in post-tensioned members do not occur in pretensioned construction.

6.2 Pretensioned concrete—force transfer by bond

In pretensioned concrete, the tendons are usually tensioned within casting beds. The concrete
is cast around the tendons and, after the concrete has gained sufficient strength, the
pretensioning force is released. The subsequent behaviour of the member depends on the
quality of bond between the tendon and the concrete. The transfer of prestress usually occurs
only at the end of the member, with the steel stress varying from zero at the end of the tendon,
to the prescribed amount (full prestress) at some distance in from the end. As mentioned in the
previous section, the distance over which the transfer of force takes place is the transfer
length (or the transmission length) and it is within this region that bond stresses are high. The
better the quality of the steel–concrete bond, the more efficient is the force transfer and the
shorter is the transfer length. Outside the transfer length, bond stresses at transfer are small
and the prestressing force in the tendon is approximately constant. Bond stresses and localized
bond failures may occur outside the transfer length after the development of flexural cracks
and under overloads, but a bond failure of the entire member involves failure of the anchorage
zone at the ends of the tendons.

The main mechanisms that contribute to the strength of the steel–concrete bond are
chemical adhesion of steel to concrete, friction at the steel–concrete interface and mechanical
interlocking of concrete and steel, which is associated primarily with deformed or twisted
strands. When the tendon is released from its anchorage within the casting bed and the force is
transferred to the concrete, there is a small amount of tendon slip at the end of the member.
This slippage destroys the bond for a short distance into the member at the released end, after
which adhesion, friction, and mechanical interlock combine to transfer the tendon force to the
concrete.

During the stressing operation, there is a reduction in the diameter of the tendon due to the
Poisson’s ratio effect. The concrete is then cast around the highly tensioned tendon. When the
tendon is released, the unstressed portion of the tendon at the end of the member returns to its
original diameter, whilst at some distance into the member, where the tensile stress in the
tendon is still high, the tendon remains at its reduced diameter. Within the transfer length, the
tendon diameter varies as shown in Figure 6.1 and there
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Figure 6.1 The Hoyer effect (Hoyer 1939).

is a radial pressure exerted on the surrounding concrete. This pressure produces a frictional
component which assists in the transferring of force from the steel to the concrete. The
wedging action due to this radial strain is known as the Hoyer effect (after Hoyer 1939).

The transfer length and the rate of development of the steel stress along the tendon depend
on many factors, including the size of the strand (i.e. the surface area in contact with the
concrete), the surface conditions of the tendon, the type of tendon, the degree of concrete
compaction within the anchorage zone, the degree of cracking in the concrete within the
anchorage zone, the method of release of the prestressing force into the member, and, to a
minor degree, the compressive strength of the concrete.

The factors of size and surface condition of a tendon affect bond capacity in the same way
as they do for non-prestressed reinforcement. A light coating of rust on a tendon will provide
greater bond than for steel that is clean and bright. The surface profile has a marked effect on
transfer length. Stranded cables have a shorter transfer length than crimped or plain steel of
equal area owing to the interlocking between the helices forming the strand. The strength of
concrete, within the range of strengths used in prestressed concrete members, does not greatly
affect the transfer length. However, with increased concrete strength, there is greater shear
strength of the concrete embedded between the individual wires in the strand.

An important factor in force transfer is the quality and degree of concrete compaction. The
transfer length in poorly compacted concrete is significantly longer than that in well
compacted concrete. A prestressing tendon anchored at the top of a member generally has a
greater transfer length than a tendon located near the bottom of the member. This is because
the concrete at the top of a member is subject to increased sedimentation and is generally less
well compacted than at the bottom of a member. When the tendon is released suddenly and
the force is transferred to the concrete with impact, the transfer length is greater than for the
case when the force in the steel is gradually imparted to the concrete.

Depending on the above factors, transfer lengths are generally within the
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range 40–150 times the tendon diameter. The force transfer is not linear, with about 50% of
the force transferred in the first quarter of the transfer length and about 80% within the first
half of the length. For design purposes, however, it is reasonable and generally conservative
to assume a linear variation of steel stress over the entire transfer length.

BS 8110 (1985) specifies that provided the initial prestressing force is not greater than 75%
of the characteristic strength of the tendon and the concrete in the anchorage zone is well
compacted, the transfer (transmission) length of a tendon that is gradually released at transfer,
may be taken as

(6.1)

where db is the nominal diameter of the tendon and

K t =600 for plain or indented wire

=400 for crimped wire

=240 for 7-wire standard or super strands

A generally more conservative value of lt=60db for regular, super, or compact strand is
specified in AS 3600–1988.

Sudden release of the tendon at transfer may cause large increases in lt above the value
given by Equation 6.1. In addition, if the tendon is anchored in the top of a member, the value
given by Equation 6.1 should be increased by at least 50%. Owing to the breakdown of bond
at the end of a member and the consequent slip, a completely unstressed length of lt/10 should
be assumed to develop at the end of the member (AS 3600–1988).

The value of stress in the tendon, in regions outside the transmission length, remains
approximately constant under service loads or whilst the member remains uncracked, and
hence the transfer length remains approximately constant. After cracking in a flexural member,
however, the behaviour becomes more like that of a reinforced concrete member and the steel
stress increases with increasing moment. If the critical moment location occurs at or near the
end of a member, such as may occur in a short-span beam or a cantilever, the required
development length for the tendon is much greater than the transfer length. In such cases, the
bond capacity of the tendons needs to be carefully considered.

ACI 318–83 (1983) suggests that, at the ultimate load condition, in order to ensure the
development of the final stress σpu in the prestressing steel at a section near the end of a
member, a development length ld is required. This development length is the sum of the
transfer length lt, which is the length required to develop the effective prestress in the steel,σpe

(in MPa), and an additional length required to develop the additional steel stress σpu−σpe. For
7-wire strand, ACI 318–83 specifies the following empirical
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estimates of these lengths (here converted to SI units):

The total development length of is therefore given by

(6.2)

The ACI 318–83 requirements are based on tests of small diameter strands reported by
Hanson & Kaar 1959. Figure 6.2 illustrates the variation of steel stress with distance from the
free end of the tendon.

ACI 318–83 further suggests that in the case of members where bond is terminated before
the end of the member (i.e. a portion of the tendons at the member end is deliberately
debonded), and where the design permits tension at service load in the pre-compressed tensile
zone, the development length given by Equation 6.2 should be doubled.

From test results, Marshall and Mattock (1962) proposed the following simple equation for
determining the amount of transverse reinforcement As (in the form of stirrups) in the end
zone of a pretensioned member:

(6.3)

where D is the overall depth of the member, P is the prestressing force,

Figure 6.2 Variation of steel stress near the free end of a tendon (ACI 318–83).
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lt is the transfer length, and σs is the permissible steel stress which may be taken as 150 MPa.
The transverse steel As should be equally spaced within 0.2D from the end face of the member.

6.3 Post-tensioned concrete anchorage zones

6.3.1 Introduction

In post-tensioned concrete structures, failure of the anchorage zone is perhaps the most
common cause of problems arising during construction. Such failures are difficult and
expensive to repair and usually necessitate replacement of the entire structural member.
Anchorage zones may fail owing to uncontrolled cracking or splitting of the concrete resulting
from insufficient, well anchored, transverse reinforcement. Bearing failures immediately
behind the anchorage plate are also common and may be caused by inadequately dimensioned
bearing plates or poor quality concrete. Bearing failures are most often attributed to poor
design and/or poor workmanship resulting in poorly compacted concrete in the heavily
reinforced region behind the bearing plate. Great care should therefore be taken in both the
design and construction of post-tensioned anchorage zones.

Consider the case shown in Figure 6.3 of a single square anchorage plate centrally
positioned at the end of a prismatic member of depth D and width B. In the disturbed region
of length La immediately behind the anchorage plate (i.e. the anchorage zone), plane sections
do not remain plane and simple beam theory does not apply. High bearing stresses at the
anchorage plate disperse throughout the anchorage zone, creating high transverse stresses,
until at a distance La from the anchorage plate the linear stress and strain distributions
predicted by simple beam theory are produced. The dis-

Figure 6.3 Diagrammatic stress trajectories for a centrally placed anchorage.
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Figure 6.4 Distribution of transverse stress behind single central anchorage.

persion of stress that occurs within the anchorage zone is illustrated in Figure 6.3b. The stress
trajectories directly behind the anchorage are convex to the centre-line of the member, as
shown, and therefore produce a transverse component of compressive stress normal to the
member axis. Further from the anchorage, the compressive stress trajectories become concave
to the member axis and as a consequence produce transverse tensile stress components. The
stress trajectories are closely spaced directly behind the bearing plate where compressive
stress is high, and become more widely spaced as the distance from the anchorage plate
increases. St Venant’s principle suggests that the length of the disturbed region, for the single
centrally located anchorage shown in Figure 6.3, is approximately equal to the depth of the
member, D. The variation of the transverse stresses along the centre-line of the member, and
normal to it, are represented in Figure 6.4.

The degree of curvature of the stress trajectories is dependent on the size of the bearing
plate. The smaller the bearing plate, the larger are both the curvature and concentration of the
stress trajectories, and hence the larger are the transverse tensile and compressive forces in the
anchorage zone. The transverse tensile forces (often called bursting or splitting forces) need
to be estimated accurately so that transverse reinforcement within the anchorage zone can be
designed to resist them.

Elastic analysis can be used to analyse anchorage zones prior to the commencement of
cracking. Early studies using photo-elastic methods (Tesar 1932, Guyon 1953) demonstrated
the distribution of stresses within the anchorage zone. Analytical models were also proposed
by Iyengar (1962), Iyengar and Yogananda (1966), Sargious (1960), and others. The results of
these early elastic studies have been confirmed by more recent finite element investigations.
Figure 6.5a shows stress isobars of σy/σx in an anchorage zone with a single centrally placed
anchorage. These isobars are similar to those obtained in photo-elastic studies reported by
Guyon (1953). σy is the
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Figure 6.5 Transverse stress distribution for central anchorage (after Guyon 1953).

transverse stress and σx is the average longitudinal compressive stress (P/BD). The transverse
compressive stress region is shaded.

The effect of varying the size of the anchor plate on both the magnitude and position of the
transverse stress along the axis of the member can be also clearly seen in Figure 6.5b. As the
plate size increases, the magnitude of the maximum transverse tensile stress on the member
axis decreases and its position moves further along the member (i.e. away from the anchorage
plate). Tensile stresses also exist at the end surface of the anchorage zone in the corners
adjacent to the bearing plate. Although these stresses are relatively high, they act over a small
area and the resulting tensile force is small. Guyon (1953) suggested that a tensile force of
about 3% of the longitudinal prestressing force is located near the end surface of a centrally
loaded anchorage zone when h/D is greater than 0.10.

The position of the line of action of the prestressing force with respect to the member axis
has a considerable influence on the magnitude and distribution of stress within the anchorage
zone. As the distance of the applied force from the axis of the member increases, the tensile
stress at the loaded face adjacent to the anchorage also increases. Figure 6.6a illustrates the
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Figure 6.6 Diagrammatic stress trajectories and isobars for an eccentric anchorage (Guyon 1953).

stress trajectories in the anchorage zone of a prismatic member containing an eccentrically
positioned anchorage plate. At a length La from the loaded face, the concentrated bearing
stresses disperse to the asymmetric stress distribution shown. The stress trajectories, which
indicate the general flow of forces, are therefore unequally spaced, but will produce transverse
tension and compression along the anchorage axis in a manner similar to that for the single
centrally placed anchorage.

Isobars of σy/σo are shown in Figure 6.6b. High bursting forces exist along the axis of the
anchorage plate and, away from the axis of the anchorage, tensile stresses are induced on the
end surface. These end tensile stresses, or spalling stresses, are typical of an eccentrically
loaded anchorage zone.

Transverse stress isobars in the anchorage zones of members containing multiple anchorage
plates are shown in Figure 6.7. The length of the member over which significant transverse
stress exists (La) reduces with the number of symmetrically placed anchorages. The zone
directly behind each

Figure 6.7 Transverse stress isobars for end zones with multiple anchorages (Guyon 1953).
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anchorage contains bursting stresses and the stress isobars resemble those in a single
anchorage centrally placed in a much smaller end zone, as indicated. Tension also exists at the
end face between adjacent anchorage plates. Guyon (1953) suggested that the tensile force
near the end face between any two adjacent bearing plates is about 4% of the sum of the
longitudinal prestressing forces at the two anchorages.

The isobars presented in this section are intended only as a means of visualizing behaviour.
Concrete is not a linear-elastic material and a cracked prestressed concrete anchorage zone
does not behave exactly as depicted by the isobars in Figures 6.5–6.7. However, such linear-
elastic analyses indicate the areas of high tension, both behind each anchorage plate and on
the end face of the member, where cracking of the concrete can be expected during the
stressing operation. The formation of such cracks reduces the stiffness in the transverse
direction and leads to a significant redistribution of forces within the anchorage zone.

6.3.2 Methods of analysis

The design of the anchorage zone of a post-tensioned member involves both the arrangement
of the anchorage plates, to minimize transverse stresses, and the determination of the amount
and distribution of reinforcement to carry the transverse tension after cracking of the concrete.
Relatively large amounts of transverse reinforcement, usually in the form of stirrups, are often
required within the anchorage zone and careful detailing of the steel is essential to ensure the
satisfactory placement and compaction of the concrete. In thin-webbed members, the
anchorage zone is often enlarged to form an end-block which is sufficient to accommodate the
anchorage devices. This also facilitates the detailing and fixing of the reinforcement and the
subsequent placement of concrete.

The anchorages usually used in post-tensioned concrete are patented by the manufacturer
and prestressing companies for each of the types and arrangements of tendons. In general,
they are units which are recessed into the end of the member, and have bearing areas which
are sufficient to prevent bearing problems in well-compacted concrete. Often the anchorages
are manufactured with fins which are embedded in the concrete to assist in distributing the
large concentrated force. Spiral reinforcement often forms part of the anchorage system and is
located immediately behind the anchorage plate to confine the concrete and thus significantly
improve its bearing capacity.

As discussed in Section 6.3.1, the curvature of the stress trajectories determines the
magnitude of the transverse stresses. In general, the dispersal of the prestressing forces occurs
through both the depth and the width of the anchorage zone and therefore transverse
reinforcement must be provided within the end zone in two orthogonal directions (usually,
vertically
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Figure 6.8 Truss analogy of anchorage zone.

and horizontally on sections through the anchorage zone). The reinforcement quantities
required in each direction are obtained from separate two-dimensional analyses, i.e. the
vertical transverse tension is calculated by considering the vertical dispersion of forces and
the horizontal tension is obtained by considering the horizontal dispersion of forces.

The internal flow of forces in each direction can be visualized in several ways. A simple
model is to consider truss action within the anchorage zone. For the anchorage zone of the
beam of rectangular cross-section shown in Figure 6.8, the truss analogy shows that transverse
compression exists directly behind the bearing plate, with transverse tension, often called the
bursting force (Tb), at some distance along the member.

Consider the anchorage zone of the T-beam shown in Figure 6.9. The truss analogy is
recommended by the FIP (1984) for calculating both the vertical tension in the web and the
horizontal tension across the flange.

An alternative model for estimating the internal tensile forces is to consider the anchorage
zone as a deep beam loaded on one side by the bearing

Figure 6.9 Vertical and horizontal tension in the anchorage zone of a post-tensioned T-beam (FIP
1984).
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stresses immediately under the anchorage plate and resisted on the other side by the statically
equivalent, linearly distributed stresses in the beam. The depth of the deep beam is taken as
the anchorage length, La. This approach was proposed by Magnel (1954) and has been further
developed by Gergely & Sozen (1967) and Warner & Faulkes (1979).

A single central anchorage

The beam analogy model is illustrated in Figure 6.10 for a single central anchorage, together
with the bending moment diagram for the idealized beam. Since the maximum moment tends
to cause bursting along the axis of the anchorage, it is usually denoted by Mb and called the
bursting moment.

By considering one half of the end-block as a free-body diagram, as shown in Figure 6.11,
the bursting moment Mb required for rotational equilibrium is obtained from statics. Taking
moments about any point on the member axis gives

(6.4)

As has already been established, the position of the resulting transverse (vertical) tensile force
Tb in Figure 6.11 is located at some distance from the anchorage plate, as shown. For a linear-
elastic anchorage zone, the exact position of Tb is the centroid of the area under the
appropriate transverse tensile stress curve in Figure 6.5b. For the single, centrally placed
anchorage of Figures 6.5, 6.10 and 6.11, the lever arm between Cb and Tb is approximately
equal to D/2. This approximation also proves to be a reasonable one for a cracked concrete
anchorage zone. Therefore, using Equation 6.4,

(6.5)

Expressions for the bursting moment and the horizontal transverse tension

Figure 6.10 Beam analogy for a single centrally placed anchorage.
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Figure 6.11 Free-body diagram of top half of the anchorage zone shown in Figure 6.10.

resulting from the lateral dispersion of bearing stresses across the width B of the section are
obtained by replacing the depth D in Equations 6.4 and 6.5 with the width B.

Two symmetrically placed anchorages

Consider the anchorage zone shown in Figure 6.12a containing two anchorages each
positioned equidistant from the member axis. The beam analogy of Figure 6.12b indicates
bursting moments, Mb, on the axis of each anchorage and a spalling moment, Ms (of opposite
sign to Mb), on the member axis, as shown. Potential crack locations within the anchorage
zone are also shown in Figure 6.12a. The bursting moments behind each anchorage plate
produce tension at some distance into the member, while the spalling moments produce
transverse tension at the end face of the member. This simple analysis agrees with the stress
isobars for the linear-elastic end block of Figure 6.7c. Consider the free-body diagram shown
in Figure 6.12c. The

Figure 6.12 Beam analogy for an anchorage zone with two symmetric anchorages.
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maximum bursting moment behind the top anchorage occurs at the distance x below the top
fibre, where the shear force at the bottom edge of the free-body is zero. That is,

(6.6)

Summing moments about any point in Figure 6.12c gives

(6.7)

The maximum spalling moment Ms occurs at the member axis, where the shear is also zero,
and may be obtained by taking moments about any point on the member axis in the free-body
diagram of Figure 6.12d:

(6.8)

After the maximum bursting and spalling moments have been determined, the resultant
internal compressive and tensile forces can be estimated provided that the lever arm between
them is known. The internal tension Tb produced by the maximum bursting moment Mb
behind each anchorage may be calculated from

(6.9)

By examining the stress contours in Figure 6.7, the distance between the resultant transverse
tensile and compressive forces behind each anchorage lb depends on the size of the anchorage
plate and the distance between the plate and the nearest adjacent plate or free edge of the
section.

Guyon (1953) suggested an approximate method which involves the use of an idealized
symmetric prism for computing the transverse tension behind an eccentrically positioned
anchorage. The assumption is that the transverse stresses in the real anchorage zone are the
same as those in a concentrically loaded idealized end block consisting of a prism that is
symmetrical about the anchorage plate and with a depth De equal to twice the distance from
the axis of the anchorage plate to the nearest concrete edge. If the internal lever arm lb is
assumed to be half the depth of the symmetrical prism (i.e. De/2), then the resultant transverse
tension induced along the line of action of the anchorage is obtained from an equation that is
identical with Equation 6.5, except that the depth of the symmetric prism
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De replaces D. Thus

(6.10)

where h and De are, respectively, the dimensions of the anchorage plate and the symmetric
prism in the direction of the transverse tension Tb. For a single concentrically located
anchorage plate De=D (for vertical tension) and Equations 6.5 and 6.10 are identical.
Alternatively, the tension Tb can be calculated from the bursting moment obtained from the
statics of the real anchorage zone using a lever arm lb=De/2. Guyon’s symmetric prism
concept is now accepted as a useful design procedure and has been incorporated in a number
of building codes, including AS 3600–1988.

For anchorage zones containing multiple bearing plates, the bursting tension behind each
anchorage, for the case where all anchorages are stressed, may be calculated using Guyon’s
symmetric prisms. The depth of the symmetric prism De associated with a particular
anchorage may be taken as the smaller of

(a) the distance in the direction of the transverse tension from the centre of the anchorage to
the centre of the nearest adjacent anchorage; and

(b)twice the distance in the direction of the transverse tension from the centre of the
anchorage to the nearest edge of the anchorage zone.

For each symmetric prism, the lever arm lb between the resultant transverse tension and
compression is De/2.

The anchorage zone shown in Figure 6.13 contains two symmetrically placed anchorage
plates located close together near the axis of the member. The stress contours show the bulb
of tension immediately behind each anchorage plate. Also shown in Figure 6.13 is the
symmetric prism of depth

Figure 6.13 Two closely spaced symmetric anchorage plates.
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De to be used to calculate the resultant tension and the transverse reinforcement required in
this region. Tension also exists further along the axis of the member in a similar location to
that which occurs behind a single concentrically placed anchorage. AS 3600–1988 suggests
that where the distance between two anchorages is less than 0.3 times the total depth of a
member, consideration must also be given to the effects of the pair of anchorages acting in a
manner similar to a single anchorage subject to the combined forces.

Reinforcement requirements

In general, reinforcement should be provided to carry all the transverse tension in an
anchorage zone. It is unwise to assume that the concrete will be able to carry any tension or
that the concrete in the anchorage zone will not crack. The quantity of transverse
reinforcement Asb required to carry the transverse tension caused by bursting can be obtained
by dividing the appropriate tensile force, calculated using Equation 6.8 or 6.9, by the
permissible steel stress:

(6.11)

AS 3600–1988 suggests that, for crack control, a steel stress of no more than 150 MPa should
be used. Equation 6.11 may be used to calculate the quantity of bursting reinforcement in both
the vertical and horizontal directions. The transverse steel so determined must be distributed
over that portion of the anchorage zone in which the transverse tension associated with the
bursting moment is likely to cause cracking of the concrete. Therefore, the steel area Asb

should be uniformly distributed over the portion of beam located from 0.2De to 1.0De from
the loaded end face (AS 3600–1988). For the particular bursting moment being considered, De
is the depth of the symmetric prism in the direction of the transverse tension and equals D for
a single concentric anchorage. The stirrup size and spacing so determined should also be
provided in the portion of the beam from 0.2De to as near as practicable to the loaded face.

For spalling moments, the lever arm ls between the resultant transverse tension Ts and
compression Cs is usually larger than for bursting, as can be seen from the isobars in Figure
6.7. AS 3600–1988 suggests that for a single eccentric anchorage, the transverse tension at the
loaded face remote from the anchorage may be calculated by assuming that ls is half the
overall depth of the member. Between two widely spaced anchorages, the transverse tension
at the loaded face may be obtained by taking ls equal to 0.6 times the spacing of the
anchorages. The reinforcement required to resist the



Page 225

transverse tension at the loaded face Ass is therefore obtained from

(6.12)

and should be placed within 0.2D from the loaded face. In general, Ass should be located as
close to the loaded face as is permitted by concrete cover and compaction requirements.

6.3.3 Bearing stresses behind anchorages

Local concrete bearing failures can occur in post-tensioned members immediately behind the
anchorage plates if the bearing area is inadequate and the concrete strength is too low. The
design bearing strength for unconfined concrete may be taken as (ACI 318–83, AS 3600–
1988, CAN3 1984):

(6.13)

where is the compressive strength of the concrete at the time of first loading, A1 is the net
bearing area and A2 is the largest area of the concrete supporting surface that is geometrically
similar to and concentric with A1.

For post-tensioned anchorages, provided the concrete behind the anchorage is well
compacted, the bearing stress given by Equation 6.13 can usually be exceeded. The transverse
reinforcement which is normally included behind the anchorage plate confines the concrete
and generally improves the bearing capacity. Often spiral reinforcement, in addition to
transverse stirrups, is provided with commercial anchorages. In addition, the transverse
compression at the loaded face immediately behind the anchorage plate significantly improves
the bearing capacity of such anchorages. Commercial anchorages are typically designed for
bearing stresses of about 40 MPa and bearing strength is specified by the manufacturer and is
usually based on satisfactory test performance. For post-tensioned anchorage zones containing
transverse reinforcement, the design bearing stress given by Equation 6.13 can be increased
by at least 50%, but a maximum value of is recommended.

6.3.4 Example 6.1—A single concentric anchorage on a rectangular section

The anchorage zone of a flexural member with the dimensions shown in Figure 6.14 is to be
designed. The size of the bearing plate is 315 mm square with a duct diameter of 106 mm, as
shown. The jacking force is Pj=3000 kN and the concrete strength at transfer is 35 MPa.
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Figure 6.14 Anchorage zone arrangement in Example 6.1

Consider the bearing stress immediately behind the anchorage plate. For bearing strength
calculations, the strength load factors and capacity reduction factors contained in AS 3600–
1988 are adopted, i.e. the design load is 1.15Pj and (see Sections 1.7.3 and 1.7.6). The
nett bearing area A1 is the area of the plate minus the area of the hollow duct. That is,

and for this anchorage

The design bearing stress is therefore

In accordance with the discussion in Section 6.3.3, the design strength in bearing is taken as
50% greater than the value obtained using Equation 6.13. Therefore,

which is acceptable.

Consider moments in the vertical plane (i.e. vertical bursting tension)

The forces and bursting moments in the vertical plane are illustrated in Figure 6.15a. From
Equations 6.4 and 6.5,
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Figure 6.15 Force and moment diagrams for vertical and horizontal bursting.

and

The amount of vertical transverse reinforcement is calculated from Equation 6.11. Assuming
that σs=150 MPa:

This area of transverse steel must be provided within the length of beam located from 0.2D to
1.0D from the loaded end face, i.e. over a length of 0.8D=800 mm.

Two 12 mm diameter stirrups (four vertical legs) are required at 100 mm centres (i.e.
Asb=8×4×110=3520 mm2 within the 800 mm length). This size and spacing of stirrups must
be provided over the entire anchorage zone, i.e. for a distance of 1000 mm from the loaded
face.

Consider moments in the horizontal plane (i.e., horizontal bursting tension)

The forces and bursting moments in the horizontal plane are illustrated in Figure 6.15b. With
B=480 mm replacing D in Equations 6.4 and 6.5, the bursting moment and horizontal tension
are
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and

The amount of horizontal transverse steel is obtained from Equation 6.11 as

which is required within the length of beam located between 96 mm (0.2B) and 480 mm
(1.0B) from the loaded face.

Four pairs of closed 12 mm stirrups (i.e. four horizontal legs per pair of stirrups) at 100 mm
centres (Asb=1760 mm2) satisfies this requirement. To satisfy horizontal bursting requirements,
this size and spacing of stirrups should be provided from the loaded face for a length of at
least 480 mm.

To accommodate a tensile force at the loaded face of 0.03P=90 kN, an area of steel of
90×103/150=600 mm2 must be placed as close to the loaded face as possible. This is in
accordance with Guyon’s (1953) recommendation discussed in Section 6.3.1. The first stirrup
supplies 440 mm2 and, with two such stirrups located within 150 mm of the loaded face, the
existing reinforcement is considered to be adequate.

The transverse steel details shown in Figure 6.16 are adopted here. Within the first 480 mm,
where horizontal transverse steel is required, the stirrups are closed at the top, as indicated,
but for the remainder of the anchorage zone, between 480 and 1000 mm from the loaded face,
open stirrups may be used to facilitate placement of the concrete. The first stirrup is placed as
close as possible to the loaded face, as shown.

Figure 6.16 Reinforcement details, Example 6.1.
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6.3.5 Example 6.2—Twin eccentric anchorages on a rectangular section

The anchorage shown in Figure 6.17 is to be designed. The jacking force at each of the two
anchorages is Pj=2000 kN and the concrete strength is MPa.

Figure 6.17 Twin anchorage arrangement, Example 6.2.

Check on bearing stresses behind each anchorage

As in Example 6.1, the design strength in bearing Fb is taken to be 50% greater than the value
given by Equation 6.13. In this example,

and

Using a load factor of 1.15 for prestress (AS 3600–1988), the design bearing stress is

which is less than Fb and is therefore satisfactory.

Case (a) Consider the lower cable only stressed

It is necessary first to examine the anchorage zone after just one of the tendons has been
stressed. The stresses, forces, and corresponding moments acting on the eccentrically loaded
anchorage zone are shown in Figure 6.18.
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Figure 6.18 Actions on anchorage zone in Example 6.2 when the lower cable only is tensioned.

The maximum bursting moment Mb occurs at a distance x from the bottom surface at the point
of zero shear in the free-body diagram of Figure 6.18d:

and from statics

The maximum spalling moment Ms occurs at 394 mm below the top surface where the shear
is also zero, as shown in Figure 6.18e:

Design for Mb The symmetric prism which is concentric with and directly behind the lower
anchorage plate has a depth of De=450 mm and is shown
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Figure 6.19 Symmetric prism for one eccentric anchorage, Example 6.2.

in Figure 6.19. From Equation 6.9,

By contrast, Equation 6.10 gives

which is considerably less conservative in this case. Adopting the value of Tb obtained from
the actual bursting moment, Equation 6.11 gives

This area of steel must be distributed over a distance of 0.8De=360 mm.
For the steel arrangement illustrated in Figure 6.21, 16 mm diameter and 12 mm diameter

stirrups are used at the spacings indicated, i.e. a total of four vertical legs of area 620 mm2 per
stirrup location are used behind each anchorage. The number of such stirrups required in the
360 mm length of the anchorage zone is 1640/620=2.65 and therefore the maximum spacing
of the stirrups is 360/2.65=135 mm. This size and spacing of stirrups is required from the
loaded face to 450 mm therefrom. The spacing of the stirrups in Figure 6.21 is less than that
calculated here because the horizontal bursting moment and spalling moment requirements
are more severe. These are examined subsequently.

Design for Ms The lever arm ls between the resultant transverse compression and tension
forces which resist Ms is taken as 0.5D=500 mm. The area of transverse steel required within
0.2D=200 mm from the front face is
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given by Equation 6.12:

The equivalent of about four vertical 12 mm diameter steel legs is required close to the loaded
face of the member to carry the resultant tension caused by spalling. This requirement is
easily met by the three full depth 16 mm diameter stirrups (six vertical legs) shown in Figure
6.21 located within 0.2D of the loaded face.

Case (b) Consider both cables stressed

Figure 6.20 shows the force and moment distribution for the end block when both cables are
stressed.

Figure 6.20 Force and moment distribution when both cables are stressed.

Design for Mb The maximum bursting moment behind the anchorage occurs at the level of
zero shear, x mm below the top surface and x mm above the bottom surface. From Equation
6.6:

and Equation 6.7 gives

which is less than the value for Mb when only the single anchorage was stressed. Since the
same symmetric prism is applicable here, the reinforcement requirements for bursting
determined in case (a) are more than sufficient.
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Design for Ms The spalling moment at the mid-depth of the anchorage zone (on the
member axis) is obtained from Equation 6.8:

With ls taken as 0.6 times the spacing between the anchorages (see the discussion preceding
Equation 6.12), i.e. ls=330 mm, the area of transverse steel required within 200 mm of the
loaded face is found using Equation 6.12:

To avoid steel congestion, 16 mm diameter stirrups will be used close to the loaded face, as
shown in Figure 6.21. Use six vertical legs of 16 mm diameter (1200 mm2) across the member
axis within 200 mm of the loaded face, as shown.

Case (c) Consider horizontal bursting

Horizontal transverse steel must also be provided to carry the transverse tension caused by the
horizontal dispersion of the total prestressing force (P=400 kN) from a 265 mm wide
anchorage plate into a 480 mm wide section. With B=480 mm used instead of D, Equations
6.4 and 6.5 give

Figure 6.21 Reinforcement details for anchorage zone of Example 6.2.
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and the amount of horizontal steel is obtained from Equation 6.11:

With the steel arrangement shown in Figure 6.21, six horizontal bars exist at each stirrup
location (2–16mm diameter bars and 4–12 mm diameter bars, i.e. 840 mm2 at each stirrup
location). The required stirrup spacing within the length 0.8D(=384 mm) is 108 mm.
Therefore, within 480 mm from the end face of the beam, all available horizontal stirrup legs
are required and therefore all stirrups in this region must be closed.

The reinforcement details shown in Figure 6.21 are adopted.

6.3.6 Example 6.3—Single concentric anchorage in a T-beam

The anchorage zone of the T-beam shown in Figure 6.22a is to be designed. The member is
prestressed by a single cable with a 265 mm square anchorage plate located at the centroidal
axis of the cross-section. The jacking force is Pj=2000 kN and the concrete strength at transfer
is 35 MPa. The distribution of forces on the anchorage zone in elevation and in plan are
shown in Figures 6.22b and c, respectively.

The design bearing stress and the design strength in bearing are calculated

Figure 6.22 Details of the anchorage zone of the T-beam in Example 6.3.
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as for the previous examples:

Consider moments in the vertical plane

The maximum bursting moment occurs at the level of zero shear at x mm above the bottom of
the section. From Figure 6.22d,

and

As indicated in Figure 6.22b, the depth of the symmetric prism associated

Figure 6.23 Reinforcement details for anchorage zone of Example 6.3.
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with Mb is De=543 mm and the vertical tension is

The vertical transverse reinforcement required in the web is obtained from Equation 6.11:

This area of steel must be located within the length of the beam between 0.2De=109 mm and
De=543 mm from the loaded face.

By using 16 mm stirrups over the full depth of the web and 12 mm stirrups immediately
behind the anchorage, as shown in Figure 6.23 [i.e. Asb=(2×200)+(2×110)=620 mm2 per
stirrup location], the number of double stirrups required is 3010/620=4.85 and the required
spacing is (543−109)/4.85=90 mm, as shown.

Consider moments in the horizontal plane

Significant lateral dispersion of prestress in plan occurs in the anchorage zone as the
concentrated prestressing force finds its way out into the flange of the T-section. By taking
moments of the forces shown in Figure 6.22c about a point on the axis of the anchorage, the
horizontal bursting moment is

Much of this bursting moment must be resisted by horizontal transverse tension and
compression in the flange. Taking De equal to the flange width, the lever arm between the
transverse tension and compression is lb=De/2=500 mm and the transverse tension is
calculated using Equation 6.9:

The area of horizontal transverse reinforcement required in the flange is therefore
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This quantity of steel should be provided within the flange and located between 200 and 1000
mm from the loaded face. Adopt 16 mm bars across the flange at 130 mm centres from the
face of the support to 1000 mm therefrom, as shown in Figure 6.23.

The truss analogy

An alternative approach to the design of the anchorage zone in a flanged member, and
perhaps a more satisfactory approach, involves the truss analogy illustrated in Figure 6.9.

The vertical dispersion of the prestress in the anchorage zone of Example 6.3 may be
visualized using the simple truss illustrated in Figure 6.24a. The truss extends from the
bearing plate into the beam for a length of about half the depth of Guyon’s (1953) symmetric
prism (i.e. De/2=272 mm in this case). The total prestressing force carried in the flange is 876
kN and this

Figure 6.24 Truss analogy of the anchorage zone in Example 6.3.
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force is assumed to be applied to the analogous truss at A and at B, as shown. The total
prestressing force in the web of the beam is 1123 kN, which is assumed to be applied to the
analogous truss at the quarter points of the web depth, i.e. at D and F, as shown. From statics,
the tension force in the vertical tie DF is 405 kN, which is in reasonable agreement with the
bursting tension (451 kN) calculated previously using the deep beam analogy. The area of
steel required to carry the vertical tension in the analogous truss is

and this should be located between 0.2De and De from the loaded face. According to the truss
analogy, therefore, the vertical steel spacing of 90 mm in Figure 6.23 may be increased to 100
mm.

The horizontal dispersion of prestress into the flange is illustrated using the truss analogy of
Figure 6.24b. After the prestressing force has dispersed vertically to point B in Figure 6.24a
(i.e. at 272 mm from the anchorage plate), the flange force then disperses horizontally. The
total flange force (876 kN) is applied to the horizontal truss at the quarter points across the
web, i.e. at points H and K in Figure 6.24b. From statics, the horizontal tension in the tie HK
is 161 kN (which is in reasonable agreement with the bursting tension of 185 kN calculated
previously). The reinforcement required in the flange is

This quantity of reinforcement is required over a length of beam equal to about 0.8 times the
flange width and centred at the position of the tie HK in Figure 6.24b. Reinforcement at the
spacing thus calculated should be continued back to the free face of the anchorage zone. The
reinforcement indicated in Figure 6.23 meets these requirements.
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7
Composite members

7.1 Types and advantages of composite construction

Composite construction in prestressed concrete usually consists of precast, prestressed
members acting in combination with a cast in situ concrete component. The composite
member is formed in at least two separate stages with some or all of the prestressing normally
applied before the completion of the final stage. The precast and the cast in situ elements are
mechanically bonded to each other to ensure that the separate components act together as a
single composite member.

Composite members can take a variety of forms. In building construction, the precast
elements are often pretensioned slabs (which may be either solid or voided), or single or
double tee-beams. The cast in situ element is a thin, lightly reinforced topping slab placed on
top of the precast units after the units have been erected to their final position in the structure.
Singie or double tee precast units are used extensively in building structures in the USA and
elsewhere because of the economies afforded by this type of construction.

Composite prestressed concrete beams are widely used in the construction of highway
bridges. For short- and medium-span bridges, standardized I-shaped or trough-shaped girders
(which may be either pretensioned or post-tensioned) are erected between the piers and a
reinforced concrete slab is cast onto the top flange of the girders. The precast girders and the
in situ slab are bonded together to form a stiff and strong composite bridge deck.

The two concrete elements, which together form the composite structure, have different
concrete strengths, different elastic moduli, and different creep and shrinkage characteristics.
The concrete in the precast element is generally of better quality than the concrete in the cast
in situ element because usually it has a higher specified target strength and is subject to better
quality control and better curing conditions. With the concrete in the precast element being
older and of better quality than the in situ concrete, restraining actions will develop in the
composite structure with time owing
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to differential creep and shrinkage movements. These effects should be carefully considered
in design.

Prestressed concrete composite construction has many advantages over non-composite
construction. In many situations, a significant reduction in construction costs can be achieved.
The use of precast elements can greatly speed up construction time. When the precast
elements are standardized and factory produced, the cost of long-line pretensioning may be
considerably less than the cost of post-tensioning on site. Of course, the cost of transporting
precast elements to the site must be included in these comparisons and it is often
transportation difficulties that limit the size of the precast elements and the range of
application of this type of construction. In addition, it is easier and more economical to
manufacture concrete elements with high mechanical properties in a controlled prestressing
plant rather than on a building or bridge site.

Figure 7.1 Typical composite cross-sections.
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During construction, the precast elements can support the forms for the cast in situ concrete,
thereby reducing falsework and shoring costs. The elimination of scaffolding and falsework is
often a major advantage over other forms of construction, and permits the construction to
proceed without interruption to the work or traffic beneath.

Apart from providing significant increases to both the strength and stiffness of the precast
girders, the in situ concrete can perform other useful structural functions. It can provide
continuity at the ends of precast elements over adjacent spans (as illustrated in Figure 9.1d).
In addition, it provides lateral stability to the girders and also provides a means for carrying
lateral loads back to the supports. Stage stressing can be used to advantage in some composite
structures. A composite member consisting of a pretensioned, precast element and an in situ
slab may be subsequently post-tensioned to achieve additional economies of section. This
situation may arise, for example, when a relatively large load is to be applied at some time
after composite action has been achieved.

Cross-sections of some typical composite prestressed concrete members commonly used in
buildings and bridges are shown in Figure 7.1.

7.2 Behaviour of composite members

The essential requirement for a composite member is that the precast and cast in situ elements
act together as one unit. To achieve this, it is necessary to have a good bond between the two
elements.

When a composite member is subjected to bending, a horizontal shear force develops at the
interface between the precast and the in situ elements. This results in a tendency for horizontal
slip on the mating surfaces if the bond is inadequate. Resistance to slip is provided by the
naturally achieved adhesion and friction that occurs between the two elements. Often the top
surface of the precast element is deliberately roughened during manufacture to improve its
bonding characteristics and facilitate the transfer of horizontal shear through mechanical
interlock. Where the contact surface between the two elements is broad (such as in Figures
7.1b, c, and d), natural adhesion and friction are usually sufficient to resist the horizontal
shear. Where the contact area is small (such as between the slab and girders in Figures 7.1a
and e), other provisions are necessary. Frequently, the web reinforcement in the precast girder
is continued through the contact surface and anchored in the cast in situ slab. This
reinforcement resists horizontal shear primarily by dowel action, but assistance is also gained
by clamping the mating surfaces together and increasing the frictional resistance.

If the horizontal shear on the element interface is resisted without slip (or with small slip
only), the response of the composite member can be determined in a similar manner to that of
a monolithic member. Stresses and strains on the composite cross-section due to service loads
applied after the



Page 243

in situ slab has been placed (and has hardened) may be calculated using the properties of the
combined cross-section calculated using the transformed area method. If the elastic modulus
of the concrete in the in situ part of the cross-section, Ec2, is different to that in the precast
element, Ec1, it is convenient to transform the cross-sectional area of the in situ element to an
equivalent area of the precast concrete. This is achieved in much the same way as the areas of
the bonded reinforcement are transformed into equivalent concrete areas in the analysis of a
non-composite member. For a cross-section such as that shown in Figure 7.1a or e, for
example, if the in situ concrete slab has an effective width bef and depth Ds, it is transformed
into an equivalent area of precast concrete of depth Ds and width btr, where

(7.1)

If the bonded steel areas are also replaced by equivalent areas of precast concrete (by
multiplying by Es/Ec1 or Ep/Ec1), the properties of the composite cross-section can be
calculated by considering the fictitious transformed cross-section made up entirely of the
precast concrete.

The width of the in situ slab that can be considered to be an effective part of the composite
cross-section (bef) depends on the span of the member and the distance between the adjacent
precast elements. Maximum effective widths for flanged sections are generally specified in
building codes, with the ACI 318–83, BS 8110 (1985), and AS 3600–1988 requirements
previously outlined in Section 4.6. For composite members such as those shown in Figures
7.1a and e, the effective flange widths recommended by both BS 8110 and AS 3600 are given
in Equation 4.33, except that the term bw now refers to the width of the slab–girder interface.

The design of prestressed concrete composite members is essentially the same as that of
non-composite members, provided that certain behavioural differences are recognized and
taken into account. It is important to appreciate that part of the applied load is resisted by the
precast element(s) prior to the establishment of composite action. Care must be taken,
therefore, when designing for serviceability to ensure that behaviour of the cross-section and
its response to various load stages are accurately modelled. It is also necessary in design to
ensure adequate horizontal shear capacity at the element interface. The design for flexural,
shear, and torsional strength is similar to that of a non-composite member.

7.3 Stages of loading

As mentioned in the previous section, the precast part of a composite member is required to
carry loads prior to the establishment of composite action. When loads are applied during
construction, before the cast in situ
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slab has set, flexural stresses are produced about the centroidal axis of the precast element.
After the in situ concrete has been placed and cured, the properties of the cross-section are
substantially altered for all subsequent loadings. Flexural stresses due to service live loads, for
example, act about the centroidal axis of the composite section, thereby modifying the stress
distribution in the precast element and introducing stress into the cast in situ slab. Creep and
shrinkage of the concrete also cause a substantial redistribution of stress with time between
the precast and the in situ elements, and between the concrete and the bonded reinforcement
in each element.

In the design of a prestressed concrete composite member, most of the following load
stages will usually need to be considered:

(1) The initial prestress at transfer in the precast element. This normally involves calculation
of elastic stresses due to both the initial prestress Pi and the self-weight of the precast
member. This load stage frequently occurs off-site in a precasting plant.

(2) After the precast element has been erected prior to the application of any superimposed
load. This involves a time analysis to determine the stress redistribution and change in
curvature caused by creep and shrinkage of the concrete in the precast element between
transfer and the time of erection. The only loads acting are the prestress (Pe after losses)
and the self-weight of the precast element. A reasonably accurate time analysis can be
performed using the analysis described in Section 3.6.2. Concrete stresses at load stages 1
and 2 at the mid-span of the precast element are illustrated in Figure 7.2a.

(3) The effective prestress and the self-weight (determined in stage 2) plus any other
superimposed dead loads applied prior to the establishment of composite action. If the
precast element is unshored (i.e. not temporarily supported by props during construction),
the superimposed dead load mentioned here includes the weight of the wet in situ concrete.
This load stage involves a short-term analysis of the precast element to calculate the
instantaneous effects of the additional dead

Figure 7.2 Concrete stresses at the various load stages.
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loads prior to composite action. The additional increments of stress and instantaneous
strain in the precast element are added to the stresses and strains obtained at the end of
stage 2. Concrete stresses at the critical section of an unshored member at load stage 3
are shown in Figure 7.2b.
If the precast member is shored prior to placement of the cast in situ slab, the applied
loads do not produce internal actions or deformations in the member and the imposed
loads are carried by the shoring. Therefore, no additional stresses or strains occur in a
fully shored precast element at this load stage. When curing of the cast in situ
component has been completed, the shoring is removed and the self-weight of the cast
in situ concrete, together with any other loading applied at this time, produce
deformations and flexural stresses about the centroidal axis of the composite cross-
section. This action is considered in the following load stage.

(4) The instantaneous effect of any dead load or service live load and any additional
prestressing not previously considered (i.e. not applied previously to the non-composite
precast element). This involves a short-term analysis of the composite cross-section (see
Section 7.5.2) to determine the change of stresses and deformations on the composite cross-
section as all the remaining loads are applied. If cracking occurs, a cracked section analysis
is required. Additional prestress may be applied to the composite member by re-stressing
existing post-tensioned tendons or post-tensioning previously unstressed tendons. If the
composite section remains uncracked, the increments of stress and strain calculated at this
load stage on the precast part of the composite cross-section are added to the stresses and
strains calculated in stage 3 prior to the establishment of composite action. The concrete
stresses at the end of load stage 4 are shown in Figure 7.2c.

(5) The long-term effects of creep and shrinkage of concrete and relaxation of the prestressing
steel on the behaviour of the composite section subjected to the sustained service loads. A
time analysis of the composite cross-section is required (see Section 7.5.3) beginning at the
time the sustained load is first applied (usually soon after the in situ concrete is poured).

(6) The ultimate load condition for the composite section. Uitimate strength checks are
required for flexure, shear, and torsion (if applicable) to ensure an adequate factor of safety.
Under ultimate load conditions, the flexural strength of the composite section can be
assumed to equal the strength of a monolithic cross-section of the same shape, with the
same material properties, and containing the same amount and distribution of reinforcement,
provided that slip at the element interface is small and full shear transfer is obtained
(Hanson 1960, Saemann & Washa 1964). The stress discontinuity at the inter-
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face at service loads and the inelastic effects of creep and shrinkage have an insignificant
affect on the ultimate strength of the cross-section and can be ignored at the ultimate load
condition.

7.4 Determination of prestress

In practice, the initial prestress Pi and the eccentricity of prestress epc at the critical section in
the precast element are calculated to satisfy preselected stress limits at transfer. In general,
cracking is avoided at transfer by limiting the tensile stress to about . In addition,
it is prudent to limit the initial compressive stresses to about in order to avoid
unnecessarily large creep deformations. In the case of trough girders, as shown in Figure 7.1e,
the centroidal axis of the precast element is often not far above the bottom flange, so that
loads applied to the precast element prior to or during placement of the in situ slab may cause
unacceptably large compressive stresses in the top fibres of the precast girder.

Satisfaction of stress limits in the precast element at transfer and immediately prior to the
establishment of composite action (at the end of load stage 3) can be achieved using the
procedure discussed in Section 3.3.1 and a Magnel design diagram, similar to that shown in
Figure 3.3. For the case of a precast girder, Equations 3.5–3.8 (which form the four limit lines
on the Magnel diagram) become

(7.2)

(7.3)

(7.4)

and

(7.5)

where epc is the eccentricity of prestress from the centroidal axis of the precast section,
αt,pc=Apc/Zt,pc, αb,pc=Apc/Zb,pc, Apc is the cross-sectional area of the precast member, Zt,pc and
Zb,pc are the top and bottom section moduli of the precast element, respectively, M1 is the
moment applied at load stage 1 (usually resulting from the self-weight of the precast
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member), M3 is the maximum in-service moment applied to the precast element prior to
composite action (load stage 3), and R3Pi is the prestressing force at load stage 3. An estimate
of the losses of prestress between transfer and the placement of the in situ slab deck is
required for the determination of R3.

Equations 7.2 and 7.3 provide an upper limit to Pi and Equations 7.4 and 7.5 establish a
minimum level of prestress in the precast element.

After the in situ slab has set, the composite cross-section resists all subsequent loading.
There is a change both in the size and the properties of the cross-section and a stress
discontinuity exists at the element interface. If cracking is to be avoided under the service

loads, a limit Ft (say ) is placed on the magnitude of the extreme fibre tensile stress at
the end of load stage 5, i.e. after all prestress losses and under full service loads. This
requirement places another and more severe limit on the minimum amount of prestress than
that imposed by Equation 7.4. Alternatively, this requirement may suggest that an additional
prestressing force is required on the composite member, i.e. the member may need to be
further post-tensioned after the in situ slab has developed its target strength.

The bottom fibre tensile stress immediately before the establishment of composite action
may be approximated by

(7.6)

If the maximum additional moment applied to the composite cross-section in load stage 4 is
M4 and the prestressing force reduces to RPi with time, then the final maximum bottom fibre
stress at the end of load stage 5 may be approximated by

(7.7)

where Zb,comp is the section modulus for the bottom fibre of the composite cross-section. If σb5
is to remain less than the stress limit Ft, then Equation 7.7 can be rearranged to give

(7.8)

Equation 7.8 can be plotted on a Magnel diagram together with Equations 7.2, 7.3, and 7.5 to
establish a suitable combination of Pi and epc, as shown in Figure 7.3. In some cases, the
precast section may be proportioned
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Figure 7.3 The Magnel diagram for a composite cross-section.

so that the prestress and eccentricity satisfy all stress limits prior to composite action (i.e.
Equations 7.2–7.5 are all satisfied). However, when the additional requirement of Equation
7.8 is included, no combination of Pi and epc can be found to satisfy all the stress limits and no
acceptable region exists on the Magnel diagram. In such cases, additional prestress may be
applied to the composite member after the in situ slab is in place.

If cracking can be tolerated in the composite member under full service loads, a cracked
section analysis is required to check for crack control and to determine the reduction of
stiffness and its effect on deflection. Care must be taken in such an analysis to model
accurately stresses in the various parts of the cross-section and the stress discontinuity at the
slab-girder interface.

In many cases, cracking may be permitted under the full live load but not under the
permanent sustained load. In such a case, M4 in Equation 7.8 can be replaced by the sustained
part of the moment applied at load stage 4 (M4,sus). Therefore, Equation 7.8 becomes

(7.9)

and Equation 7.9 can be used to determine the minimum level of prestress on a partially
prestressed composite section.



Page 249

7.5 Methods of analysis at service loads

7.5.1 Introductory remarks

After the size of the concrete elements and the quantity and disposition of prestressing steel
have been determined, the behaviour of the composite member at service loads should be
investigated in order to check deflection (and shortening) at the various load stages (and
times), and also to check for the possibility of cracking. The short-term and time-dependent
analyses of uncracked composite cross-sections can be carried out conveniently using
procedures similar to those described in Sections 3.5.1 and 3.6.2 for non-composite cross-
sections. The approaches described here were also presented by Gilbert (1988).

Consider a cross-section made up of a precast, prestressed girder (element 1) and a cast in
situ reinforced concrete slab (element 2), as shown in Figure 7.4. The concrete in each
element has different deformation characteristics. This particular cross-section contains four
layers of non-prestressed reinforcement and two layers of prestressing steel, although any
number of steel layers can be handled without added difficulty. As was demonstrated in
Example 3.5, the presence of non-prestressed reinforcement may affect the time-dependent
deformation of the section significantly and cause a reduction of the compressive stresses in
the concrete. In the following analyses, no slip is assumed to occur between the two concrete
elements or between the steel reinforcement and the concrete.

Figure 7.4 Typical prestressed concrete composite cross-section.
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7.5.2 Short-term analysis

For the composite cross-section in Figure 7.4, the elastic modulus of the concrete in one of the
concrete elements is adopted as the modulus of the transformed section, say Ec1 of element 1
(the precast girder). The area of the in situ slab and the areas of the bonded steel
reinforcement are transformed into equivalent areas of the concrete of element 1. The
transformed cross-section equivalent to the composite section of Figure 7.4 is shown in Figure
7.5.

The properties of this transformed section about the top surface of the precast slab are

(7.10)

where ncj=Ecj/Ec1, nsk=Esk/Ec1, and npm=Epm/Ec1; A is the area of the transformed section, and B
and Īare the first and second moments of the transformed area about the top surface of the in
situ slab. If the prestressed steel were post-tensioned and unbonded, it would not form part of
the transformed section. By changing the summation limits, Equations 7.10 can be used no
matter how many steel or concrete elements make up the composite cross-section.

Figure 7.5 Transformed composite cross-section.
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As outlined in Section 3.5.1, the instantaneous change in the strain distribution caused by
an increment of axial force ΔNi and an increment of moment ΔMi applied about the top
surface of the in situ slab is obtained from Equations 3.20, 3.24 and 3.25, which are re-
expressed here as follows:

(7.11)

where

(7.12)

(7.13)

For a composite prestressed cross-section in pure bending, with no additional prestress
applied after the establishment of composite action, ΔNi is zero. If a prestressing force ΔPi is
applied through any unbonded tendons during load stage 4 (see Section 7.3), ΔNi is a
compressive force equal in magnitude to ΔPi. The moment ΔMi is the sum of the moment
caused by external loads applied to the composite section Mcomp (which could be, for example,
the total load applied in load stage 4 and designated M4 in Equation 7.7) and the moment
about the top fibre caused by any additional prestress. Therefore,

(7.14)

The force ΔPi is the prestress applied at load stage 4 after the in situ slab is in place. In many
cases, ΔPi=0 and Equation 7.14 reduces to ΔNi=0 and ΔMi=Mcomp. Thestressesand strains
caused by the initial prestress and other loads applied to the non-composite precast girder (in
load stages 1–3) are calculated using the short-term and time-dependent analyses of Sections
3.5.1 and 3.6.2. The strain distribution in the composite member at the end of load stage 4 are
obtained by adding the instantaneous strains obtained from Equations 7.12 and 7.13 to the
strains existing in the precast member at the end of load stage 3.

The change of concrete stress in the jth concrete element at y below the top fibre and the
changes of stress in the bonded steel reinforcement caused by ΔNi and ΔMi may be calculated
from

(7.15)

(7.16)



(7.17)
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7.5.3 Time analysis

The age-adjusted effective modulus for each reinforced concrete element is calculated using
Equation 2.14. In accordance with the analytical procedure outlined in Section 3.6.2 for non-
composite cross-sections, the restraining actions −δN and −δM required to prevent the
development of creep and shrinkage in each concrete element and stress relaxation in the
prestressing steel may be computed from expressions similar to Equations 3.47 and 3.48. For
a cross-section containing n1 concrete elements and n2 levels of prestressing steel, Equations
3.47 and 3.48 become

(7.18)

(7.19)

where Acj is the area of the jth concrete element and Bcj and Īcj are the first and second
moments, respectively, of the area of the jth concrete element about the top of the in situ slab.
In Equations 7.18 and 7.19, the terms εoi and xi are the top fibre instantaneous strain and
instantaneous curvature (i.e. the slope of the instantaneous strain diagram), respectively, at
the beginning of the current time interval caused by each previously applied load or time
increment.

The change of top fibre strain and curvature with time are calculated using Equations 3.49
and 3.50 by applying δM and δN to the age-adjusted transformed section. The age-adjusted
effective modulus of the precast element (Ēe1) is selected as the modulus of the age-adjusted
transformed section. The in situ slab is transformed into equivalent areas of the precast
concrete by multiplying by the age-adjusted modular ratio . The bonded steel

area is transformed by multiplying by or .
For the cross-section shown in Figure 7.4, the area of the age-adjusted transformed section

Āe and the first and second moments of the transformed area about the top surface andĪe,
respectively, are

(7.20)
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The time-dependent changes in top fibre strain and curvature are therefore

(7.21)

and

(7.22)

The change of stress at a point in the jth concrete element at a depth y below the top fibre is
calculated using Equations 3.51–3.53 and is given by

(7.23)

The change of stress with time in the kth layer of non-prestressed reinforcement is

(7.24)

and, in the mth layer of prestressed steel, it is

(7.25)

Example 7.1

The cross-section of a composite footbridge consists of a precast, pretensioned trough girder
and a cast in situ slab, as shown in Figure 7.6. The cross-section is subjected to the following
load history. The precast section is cast and moist cured for 4 days. At t=4 days, the total
prestressing force



Figure 7.6 Details of composite cross-section in Example 7.1.
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of 2000 kN is transferred to the girder. The centroid of all the pretensioned strands is located
100 mm above the bottom fibre of the precast girder, as shown. The moment on the section
caused by the self-weight of the girder M1=320 kNm is introduced at transfer. Shrinkage of
the concrete also begins to develop at this time. At t=40 days, the in situ slab deck is cast and
cured and the moment caused by the weight of the deck is applied to the precast section,
M3=300 kNm. At t=60 days, a wearing surface is placed and all other superimposed dead
loads are applied to the bridge, thereby introducing an additional moment M4=150 kNm.

Composite action gradually begins to develop as soon as the concrete in the deck sets. Full
composite action may not be achieved for several days. However, it is assumed here that the
in situ deck and the precast section act compositely at all times after t=40 days.

The stress and strain distributions on the composite cross-section are to be calculated
immediately after the application of the prestress at t=4 days, both before and after the slab
deck is cast at t=40 days, both before and after the road surface is placed at t=60 days, and at
time infinity.

For a precast section (element 1); MPa:

For the in-situ slab (element 2): MPa:

In the prestressing tendons, the relaxation R is equal to −24 kN at t=40 days, −32 kN at t=60
days, and −60kN at t=∞. Take Ep=Es=200000 MPa.

(a) At t=4 days The properties of the transformed precast section of
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modulus Ec1(4)=25000 MPa with respect to its top fibre are calculated as

The resultant initial axial force Ni and bending moment Mi applied at the top of the precast
section are given by

and the strain at the top of the precast section (level a in Figure 7.6) and the curvature are
obtained from Equations 3.24 and 3.25:

From Equation 3.21, the concrete stresses at the top and bottom of the precast section are

The stress and strain distributions at this time are shown in Figure 7.7b and the stress in the
tendons is

(b) At t=40 days. Prior to casting the in situ slab
The age-adjusted effective modulus at this time is (Equation 2.14)

and the properties of the concrete part of the precast section (with respect to level a) are

The restraining forces required to prevent creep and shrinkage of the concrete and relaxation
of the prestressing steel between t=4 and 40 days are determined using Equations 3.47 and
3.48. In this case, , εsh=εsh1(40−4)=−150×10−6, and R=−24 kN. Therefore,
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The properties of the age-adjusted transformed section are calculated as

and the time-dependent change in the strain diagram between t=4 and 40 days is found from
Equations 3.49 and 3.50:

The changes of concrete stress at the top and bottom fibres are calculated using Equations
3.51 to 3.53 and are

The change of the stress and strain distributions with time between t=4 and 40 days are
illustrated in Figure 7.7c. The change of concrete stress with time is not great in this case
because of the relatively small amount of bonded reinforcement and the small time interval
under consideration. The change of stress in the tendons is obtained from Equation 3.55:

(c) At t=40 days After casting the in situ slab
The increments of stress and strain caused by M3=300 kN m applied to the precast section

are calculated using the same procedure as was outlined in part (a) of this example. The
properties of the transformed precast section with Ec1(40)=31500 MPa are

With Ni=0 and Mi=M3=300 kNm, the short-term increments of top fibre strain (at level a) and
curvature are given by Equations 3.24 and 3.25 as

From Equation 3.21,

The increments of concrete stress and strain caused by M3 are shown in Figure 7.7d. The
extreme fibre concrete stresses in the precast girder
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immediately after placing the in situ slab are obtained by summing the stress increments
calculated in parts (a), (b), and (c):

Stress levels in the precast girder are satisfactory at all stages prior to and immediately after
placing the in situ slab. Cracking will not occur and compressive stress in the top fibre is not
excessive. However, with a sustained compressive stress of −13.61 MPa in the top fibre, a
large subsequent creep differential will exist between the precast and the in situ elements.

(d) At t=60 days Prior to placement of the wearing surface
The change of stress and strain during the time interval from t=40 to 60 days is to be

calculated here. During this period, the precast section and the in situ slab are assumed to act
compositely.

The concrete stress increments in the precast section, which were calculated in parts (a), (b),
and (c) above, are applied at different times and are therefore associated with different creep
coefficients. For the stresses applied at t=4 days [(part (a)], the creep coefficient for this time
interval is . The stress increment calculated in part (b), which is in
fact gradually applied between t=4 and 40 days, may be accounted for by assuming that it is
suddenly applied at t=4 days and using the reduced creep coefficient given by

For the stress increment calculated in part (c) (and caused by M3), the appropriate creep
coefficient is . The shrinkage strain which develops in the precast section
during this time interval is εsh1(60−4)−εsh1(40−4)=−50×10−6.

For the in situ slab, the creep coefficient used in this time interval is and the
shrinkage strain is εsh2=−120×10−6.

The loss of force in the prestressing tendons caused by relaxation is 8 kN.
The age-adjusted effective modulus for each concrete element is (Equation 2.14)



Page 258

The section properties of the concrete part of the precast girder (element 1) and the in situ slab
(element 2) with respect to the top surface of the composite section (level o of Figure 7.6) are

and the properties of the transformed composite section with modulus Ēe1=21720 MPa are
calculated using Equation 7.20:

To determine the internal actions required to restrain creep, shrinkage, and relaxation (using
Equations 7.18 and 7.19), the initial elastic strain distribution (Δεoi and Δxi) caused by each of
the previously calculated stress increments in each concrete element must be determined.

In the in situ slab:εoi=0 and x i=0 since the slab at t=40 days is unloaded.
In the precast section:

Owing to the stresses applied at 4 days [calculated in part (a)], εai=−220.2×10−6,
xi=0.0087×10−6 mm−1, and, therefore εoi=−221.5×10−6.

For the stress increment calculated in part (b) and assumed to be applied at 4 days,

Δεai=Δσa/Ec1(4)=−7.2×10−6, Δεbi=Δσb/Ec1(4)=24.0×10−6, and therefore
Δx i=(24+7.2)×10−6/750=0.0416×10−6 mm−1 and Δεoi=−13.4×10−6.

For the stresses applied at 40 days [part (c)], Δεai=−215.4×10−6, Δxi=0.512×10−6 mm−1 , and
therefore Δεoi=−328.2×10−6 .

Hence, from Equations 7.18 and 7.19,
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and the changes of top fibre strain and curvature between t=40 and 60 days are calculated
using Equations 7.21 and 7.22:

The changes of concrete stress in both the slab deck and the precast section are calculated
from Equation 7.23. In the in situ slab,

and in the precast section,

The changes in the concrete stress and strain distributions during this time period are shown in
Figure 7.7e. There is a complex interaction taking place between the two concrete elements.
The in situ slab is shrinking at a faster rate than the precast element and, if this were the only
effect, the in situ slab would suffer a tensile restraining force. Because of the high initial
compressive stresses in the top fibres of the precast section, however, the precast concrete at
the element interface is creeping more than the in situ concrete. A compressive restraining
force is therefore imposed on the in situ slab and a significant reduction in compressive stress
is observed in the top fibres of the precast element, even over this relatively short time period.
At this
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stage, the compressive restraining force in the in situ slab due to creep of the precast concrete
is greater than the tensile force resulting from shrinkage, and the in situ concrete stresses are
compressive.

The change of steel stresses are obtained from Equations 7.24 and 7.25 and are equal to

(e) At t=60 days After placement of the wearing surface
With Ec1(60)=33000 MPa selected as the elastic modulus of the transformed composite

section, the section properties are determined using expressions similar to Equations 7.10:

The initial top fibre strain and curvature caused by ΔMi=M4=150 kNm and ΔNi=0 are
obtained from Equations 7.12 and 7.13:

The increments of concrete stress at time caused by M4 at the top and bottom of the in situ
slab are obtained using Equation 7.15:

and at the top and bottom of the precast section,

From Equations 7.16 and 7.17, the increments of stress in the bonded steel are

The increments of concrete stress and instantaneous strain caused by the addition of the
sustained load at t=60 days are shown in Figure 7.7f.
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(f) At t=∞For the time period from t=60 days to t=∞, the relevant creep coefficients for
each of the previously calculated stress increments [determined in parts (a) to (e)] are as
follows:

For the precast section:

Part (a)

Part (b)

Part (c)

Part (d)

Part (e)

For the in situ slab:

Part (d)

Part (e)

Note that the stress change calculated in part (d) is assumed to be suddenly applied at t=40
days. The shrinkage strains which develop during this time period are, for the precast section,
εsh1(∞)−εsh1(60−4)= −300×10−6, and for the in situ slab, εsh2(∞)−εsh2(60−40)=−480× 10−6. The
relaxation loss in the prestressing tendons after t=60 days is 28 kN.

The age-adjusted effective moduli (from Equation 2.14) for the two elements are

and the properties of the concrete portions of each element and of the age-adjusted
transformed section (with modulus Ēe1=16840 MPa) are

The initial elastic strain distributions associated with each of the previously calculated stress
increments are determined as in part (d) and are as follows:

Part (a) Δεoi=−221.5×10−6 and Δxi=0.0087×10−6 mm−1

Part (b) Δεoi=−13.4×10−6 and Δxi=0.0416×10−6 mm−1

Part (c) Δεoi=−328.4×10−6 and Δxi=0.512×10−6 mm−1
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Part (d) In Element 1:

In Element 2:

Part (e) For both elements:

The actions −δN and −δM required to restrain creep and shrinkage are calculated using
Equations 7.18 and 7.19:



Page 263

Figure 7.7 Stress and strain increments in Example 7.1.
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and from Equations 7.21 and 7.22,

The changes of concrete stress during this time period in both the slab and the precast section
are obtained from Equation 7.23. In the in situ slab,

and, in the precast section,

The changes of stress and strain during this time interval are shown in Figure 7.7g and the
final stress and strain distributions at time infinity (the sum of all the previously calculated
increments) are shown in Figure 7.7h. Note that the compressive stresses at the top of the
precast member at the commencement of composite action are substantially reduced with time,
much of the compression finding its way into the non-prestressed reinforcement in the in situ
slab. The increments of steel stress from t=60 days to t=∞are calculated using Equations 7.24
and 7.25:
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7.6 Ultimate flexural strength

The ultimate flexural strength of a composite cross-section may be determined in accordance
with the flexural strength theory outlined in Chapter 4. If adequate provision is made to
transfer the horizontal shear forces that exist on the interface between the in situ and precast
components, the ultimate strength of a cross-section such as that shown in Figure 7.6 may be
calculated in the same way as for an identical monolithic cross-section with the same
reinforcement quantities and material properties (see Section 4.6). The calculations are based
on the full effective flange width and, in general, it is not necessary to account for variations
in concrete strengths between the two components. In practice, owing to the typically wide
effective compressive flange, the depth to the natural axis at ultimate is relatively small,
usually less than the thickness of the in situ slab. It is therefore appropriate to consider an
idealized rectangular stress block based on the properties of the in situ concrete rather than the
precast concrete. Even in situations where the depth of the compressive zone exceeds the
thickness of the slab, more complicated expressions for strength based on more accurate
modelling of concrete compressive stresses are not generally necessary. As seen in Chapter 4,
the flexural strength of any ductile section is primarily dependent on the quantity and strength
of the steel in the tensile zone and does not depend significantly on the concrete strength.

The strain discontinuity that exists at the element interface at service loads due to the
construction sequence becomes less and less significant as the moment level increases. This
discontinuity may be ignored in ultimate flexural strength calculations.

7.7 Horizontal shear transfer

7.7.1 Discussion

As has been emphasized in the previous section, the ability of the entire composite member to
resist load depends on the ability to carry horizontal shear at the interface between the precast
and in situ elements. If the two components are not effectively bonded together, slip occurs at
the interface, as shown in Figure 7.8a, and the two components act as separate beams each
carrying its share of the external loads by bending about its own centroidal axis. To ensure
full composite action, slip at the interface must be prevented. There must be an effective
means for transferring horizontal shear across the interface. If slip is prevented, full composite
action is assured (as shown in Figure 7.8b) and the advantages of composite construction are
realized.
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Figure 7.8 Composite and non-composite action.

In Section 7.2, various mechanisms for shear transfer were discussed. Natural adhesion and
friction are usually sufficient to prevent slip in composite members with a wide interface
between the components (such as the cross-sections shown in Figures 7.1b, c and d). The
contact surface of the precast member is often roughened during manufacture to improve
bond. Where the contact area is smaller (as on the cross-section of Figures 7.1a and e and 7.6),
web reinforcement in the precast girder is carried through the interface and anchored in the in
situ slab, thus providing increased frictional resistance (by clamping the contact surfaces
together) and additional shear resistance through dowel action.

The theorem of complementary shear stress indicates that on the cross-section of an
uncracked elastic composite member, the horizontal shear stress υh at the interface between
the two components is equal to the vertical shear stress at that point and is given by the well
known expression

(7.26)

where V is that part of the shear force caused by loads applied after the establishment of
composite action, Q is the first moment of the area of the in situ element about the centroidal
axis of the composite cross-section, I is the moment of inertia of the gross composite cross-
section, and bf is the width of the contact surface (usually equal to the width of the top surface
of the precast member). The distribution of shear stress and the direction of the horizontal
shear at the interface are shown in Figure 7.9.

At overloads, concrete members crack and material behaviour becomes non-linear and
inelastic. In design, a simpler average or nominal shear stress
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Figure 7.9 Shear stresses in an elastic, uncracked composite beam.

is usually used for ultimate strength calculations and is given by

(7.27)

where V* is the total shear force obtained using the appropriate factored load combination for
the strength limit state (see Section 1.7.3) and d is the effective depth to the tensile
reinforcement in the composite beam. Note that in Equation 7.27, V* is calculated from the
total loads and not just the loads applied after the in situ slab has hardened. At ultimate loads,
flexural cracking can actually cross the interface and horizontal shear resulting from all the
applied load must be carried.

7.7.2 Code provisions for horizontal shear

AS 3600–1988

The design horizontal shear force acting on the element interface depends on the position
of the interface on the cross-section. For a shear plane through the compressive flange,

(7.28)
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where A1/A2 is the ratio of the area of the flange outstanding beyond the shear plane to the
total area of the flange. If the shear plane is through the web, or at the intersection of the in
situ slab and a narrow flanged precast I-girder or trough girder, A1/A2 is taken as unity and

.
For adequate strength, must be less than the design strength, . The design strength

is made up of contributions from the concrete and from the steel reinforcement crossing the
shear plane (if any) and is specified as

(7.29)

where the strength reduction factor for shear is , β4 andβ5 are coefficients that depend
on the surface condition of the shear plane and are given in Table 7.1, As is the area of
reinforcement (with yield stress fy) anchored on each side of the shear plane, d is the effective
depth of the composite beam, s is the spacing of reinforcement crossing the shear plane, and bf
is the width of the shear interface.

If shear reinforcement (As in Equation 7.29) is required for strength (i.e. the concrete
component in Equation 7.29 is insufficient on its own), the

Table 7.1 Shear plane surface coefficients (AS 3600–1988).

CoefficientsSurface Conditions of the Shear Plane

β4 β5

A smooth surface, as obtained by casting against a form, or finished to a similar
standard.

0.6 0.1

A surface trowelled or tamped, so that the fines have been brought to the top, but where
some small ridges, indentations or undulations have been left; slip-formed and vibro-
beam screeded; or produced by some form or extrusion technique.

0.6 0.2

A surface deliberately roughened

(a) by texturing the concrete to give a pronounced profile;

(b) by compacting but leaving a rough surface with coarse aggregate protruding but
firmly fixed in the matrix;

(c) by spraying when wet, to expose the coarse aggregate without disturing it; or

(d) by providing mechanical shear keys

0.9 0.4

Monolithic construction 0.9 0.5
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minimum area of reinforcement crossing the shear plane is

(7.30)

ACI 318–83

The ACI 318–83 design requirements are satisfied provided that

(7.31)

where vuf is an ultimate shear stress related to the condition of the contact surfaces between
the precast and cast in situ components and is equal to:

0.55
MPa

when no reinforcement crosses the shear plane and the surface is clean, free from laitance, and
deliberately roughened.

0.55
MPa

when the surface is crossed by minimum reinforcement and the contact surface is clean, free
from laitance, but not deliberately roughened.

2.4
MPa

when the surface is crossed by minimum reinforcement and the contact surface is clean, free
from laitance, and deliberately roughened to 6 mm amplitude.

The minimum reinforcement passing through the shear plane is given by

(7.32)

and the spacing s should not exceed four times the in situ slab thickness or 600 mm,
whichever is less.

When the factored shear force V* exceeds (i.e. when ), the shear
friction method should be used to design for horizontal shear. In this method, a crack is
assumed to occur along the shear plane (the interface between the in situ and precast
components). As the jagged crack surfaces slide across each other, the crack opens and the
reinforcement crossing the shear plane (As) yields, thus inducing a clamping force across the
crack and increasing the frictional resistance. Resistance to sliding is deemed to be provided
by a friction force Vun, where

(7.33)

In this expression, Ac is the area of the concrete section resisting shear transfer and µ is an
artificially high friction coefficient calibrated to account for the combined effects of friction,
mechanical interlock, and dowel action. For normal-weight concrete, µ=1.4 for monolithic
construction,
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1.0 when the contact surface (i.e. the top of the precast element) is intentionally roughened,
0.6 when the contact surface is smooth concrete, and 0.7 when the contact is as rolled
structural steel and is anchored to the concrete using headed studs or welded reinforcement.
These values should be multiplied by 0.75 for lightweight concrete.

The design requirement when strength is provided by shear-friction is

(7.34)

where is the resultant horizontal shear force along the cracked interface over half the span
of a simply supported beam (or about 0.35 of the span of a continuous member). The
magnitude of can be calculated from Figure 7.10 and depends on the depth of the idealized
rectangular stress block at the region of maximum moment at mid-span. From Figure 7.10,

(7.35)

whichever is smaller, where a is the depth of the idealized rectangular stress block at the
section of maximum moment and Ds is the depth of the in situ slab. By rearranging Equation
7.34, the area of reinforcement required across the shear plane must satisfy

(7.36)

and must be uniformly distributed over the length of the beam associated with .

Figure 7.10 Total shear force on element interface.
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BS 8110 (1985)

According to the British Standard, the horizontal shear force caused by the factored design
loads at the element interface is calculated as for in Figure 7.10, except that the
rectangular compressive stress block is different from that specified by ACI 318. The average
horizontal shear stress at the interface is calculated by dividing by the area of the contact
surface, which is equal to bf times the length of the beam between the point of maximum
moment and the point of zero moment. The average calculated shear stress is then distributed
in proportion to the vertical shear force diagram to give the design horizontal shear stress
at any point along the beam. The design shear stress at every point must be less than the value
given in Table 7.2.

When nominal reinforcement is provided and the appropriate design ultimate shear stress is
taken from Table 7.2, its cross-sectional area should be at least 0.15% of the contact area and
it should be anchored on both sides of the interface. The spacing of the reinforcement should
not exceed the lesser of four times the minimum thickness of in situ concrete or 600 mm. In
regions where the design horizontal shear stress exceeds the value given in Table 7.2, the
total horizontal shear force must be carried by adequately anchored reinforcement with an
area given by the equation

(7.37)

Table 7.2 Design ultimate horizontal shear stresses at interface (MPa) [BS 8110 (1985)].

Grade of in-situ
concrete

Precast unit Surface type

25 30 40 and
over

As-cast or as-extruded 0.4 0.55 0.65

Brushed, screeded, or rough-tamped
(deliberately roughened)

0.6 0.65 0.75

Without links

Washed to remove laitance or treated with
retarder and cleaned

0.7 0.75 0.8

As-cast or as-extruded 1.2 1.8 2.0

Brush, screeded or rough-tamped
(deliberately roughened)

1.8 2.0 2.2

With nominal links projecting
into in-situ concrete

Washed to remove laitance or treated with
retarder and cleaned

2.1 2.2 2.5



Page 272

Example 7.2

The horizontal shear transfer requirements for the beam with cross-section shown in Figure
7.6 are to be determined. The beam is simply supported over a span of 17.2 m and is subjected
to the following loads:

Self-weight of precast trough-girder: 8.64 kN/m

Self-weight of in situ slab: 8.10 kN/m

Superimposed dead load: 4.05 kN/m

Transient live load: 9.60 kN/m

The behaviour of the cross-section at mid-span at service loads is calculated in Example 7.1.
The effective prestressing force calculated in Example 7.1 is 1670 kN and is assumed here to
be constant along the beam. Take fp=1840 MPa.

AS 3600–1988

The factored load combination for the strength limit state (see Section 1.7.3) is

The maximum shear force adjacent to each support is

and, from Equation 7.28,

The design strength is obtained from Equation 7.29. If the top surface of the precast
trough has been deliberately roughened to facilitate shear transfer, from Table 7.1, β4=0.9,
β5=0.4, and with MPa for the in situ slab, Equation 7.29 gives

Therefore,
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If 2–12 mm bars (fy=400 MPa) cross the shear perimeter, one in each web, As=220 mm2 , the
required spacing near each support is

The spacing can be increased further into the span, as the shear force V* decreases. It is
important to ensure adequate anchorage of these bars on each side of the shear plane.

If the contact surface were not deliberately roughened, but screeded and trowelled, β4=0.6,
β5=0.2, and Equation 7.29 gives

and with As=220 mm2,

At the quarter-span point, where kN, and mm.
The maximum spacing between the reinforcement crossing the shear plane (if As=220 mm2)

is obtained from Equation 7.30:

which is greater than the maximum recommended spacing of four times the slab thickness or
600 mm.

AS 318–83

The factored load combination for the strength limit state (see Section 1.7.3) is

The maximum shear force adjacent to each support is

With minimum reinforcement crossing the shear plane and a deliberately
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roughened contact surface, Equation 7.31 gives

According to ACI 318–83, minimum steel reinforcement given by Equation 7.32 (with a
maximum spacing of 600 mm) is all that is required here. If, however, the contact surface is
not deliberately roughened, Equation 7.31 gives

and additional reinforcement must be designed using the shear-friction concept. The
horizontal shear force along the cracked contact surface over half the span of the simply
supported beam is calculated using Equation 7.35. From an ultimate flexural strength analysis
at midspan, the depth of the idealized rectangular stress block at ultimate is a=53 mm and
Equation 7.35 gives

With the coefficient of friction µ=0.6, the total amount of shear reinforcement crossing the
shear plane is given by Equation 7.36:

which must be uniformly distributed across the contact surface over half the length of the
beam (8.6 m). This amounts to 2–12 mm reinforcing bars (one in each web) at 143 mm
centres throughout.

According to ACI 318–83, the difference between the steel requirements when the contact
surface is smooth and when it is rough is very large indeed.

BS 8110:1985

In this example, when the cross-section at midspan is subjected to the ultimate moment, the
shear plane between the two concrete elements is in the tension zone. The total horizontal
shear force at the interface, between mid-span and the support, is equal to the resultant
tension in the prestressing steel at mid-span. The magnitude of is equal to as calculated
previously for the ACI 318 shear-friction approach, i.e. kN. With a triangular shear
force diagram, the maximum horizontal shear stress on the shear plane occurs adjacent to the
support and is double the average value. Therefore,



Page 275

which exceeds the maximum allowable values given in Table 7.2 for a shear plane containing
nominal ties (i.e. 1.2 MPa if the contact surface is not deliberately roughened, and 1.8 MPa if
the contact surface is deliberately roughened). The total amount of steel required to cross the
shear plane in this region is given by Equation 7.37:

which corresponds to 2–12 mm bars at 122 mm centres. In regions where is less than the
limiting value given in Table 7.2, nominal ties only are required. The area of nominal ties is
0.15% of the contact area and is equal to

or 2–12 mm bars at 489 mm centres.

7.8 Ultimate shear strength

7.8.1 Introductory remarks

The design procedures for composite members in shear and torsion are similar to those
outlined in Chapter 5 for non-composite members. An additional complication arises,
however, in the estimation of the diagonal cracking load for a composite member, and hence
in the estimation of the contribution of the concrete to the shear strength, Vuc (in Equation 5.2).

Before cracking, part of the applied load is resisted exclusively by the precast element (i.e.
the load applied in load stages 1–3, as defined in Section 7.3) and part by the composite
section (in load stages 4 and 5). In theory, these loads need to be considered separately, using
the precast section properties and the composite section properties as appropriate, in order to
determine the shear force existing at the onset of diagonal cracking. As discussed in Section
5.5.1, the concrete contribution to shear strength, Vuc, is usually taken as the smaller of the
shear force required to produce a flexure-shear crack and the shear force required to cause a
web-shear crack.

The design approach described in Section 5.5.2 may be used for the determination of the
shear strength of a composite member, provided the stress conditions existing in the precast
element are taken into account in the determination of Vuc.
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7.8.2 Web-shear cracking

The shear force required to produce web-shear cracking at a section may be calculated from
the following modification to Equation 5.10:

(7.38)

where Vpc is the shear force applied to the precast member only, Pv is the vertical component
of prestress, and Vt,comp is the shear force applied to the composite section which, when
combined with the normal stresses caused by loads applied to the composite section and
normal and shear stresses caused by the prestress and the external loads applied to the precast
section, produces a principal tensile stress of at either the centroidal axis of the precast
section, the centroidal axis of the composite section, the level of the prestressing duct, or the
intersection of the flange and the web, whichever is critical.

At a particular point on the cross-section, Vt,comp is calculated by setting in
Equation 5.11. The normal stress, σin Equation 5.11, is the sum of the normal stresses on the
precast element (caused by the initial prestress and moments arising from loads applied
directly to the precast member in load stages 1 and 3, M1,3), and the bending stress due to
moments caused by the loads producing Vt,comp applied to the composite section (in load state
4, Mt,comp). Therefore,

(7.39)

The shear stress in Equation 5.11 is the sum of the shear stress existing on the precast
section (due to Vpc and Pv) and that arising from Vt,comp on the composite section. That is,

(7.40)

On the right-hand sides of Equations 7.39 and 7.40, the section properties used inside each
bracket are those relating to either the precast or the composite cross-sections as indicated.

7.8.3 Flexure-shear cracking

The shear force Vuc required to produce a flexure-shear crack is given by Equation 5.8 and is
made up of the shear force that exists at decompression of the extreme tensile fibre at the
section under consideration, Vo, an empirical term representing the additional shear force
required to produce an
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inclined crack, and the vertical component of prestress:

(5.8)

When applying Equation 5.8 to composite members, consideration must be given to the
loading sequence and the stresses existing in the precast element prior to composite action.
Decompression may occur with the addition of dead load to the precast section in load stage 3,
i.e. decompression occurs on the precast section even before the in situ slab is cast and
composite action begins. Alternatively, and more commonly, decompression occurs after the
composite section is formed in load stage 4 or under overloads.

If decompression occurs on the precast section, Vo must be calculated using the properties
of the precast section. Some portion of the additional shear force required to produce the
inclined crack (represented by the first term of Equation 5.8) will be acting on the precast
section, with the remaining shear acting on the composite section. Because this term is
empirical, it is not sensible to try to separate the precast and composite components. If
decompression occurs in the precast section prior to composite action with the cast in situ slab,
Vuc should be calculated using the properties of the precast section for the determination of
each term in Equation 5.8.

When decompression and cracking of the tension zone do not occur until after the section is
composite, Vo is the sum of the shear force caused by the loads on the precast section (at the
end of load stage 3) and the additional shear force added to the composite cross-section when
the extreme tensile fibre is decompressed. In this case, the empirical term in Equation 5.8
should be calculated using the properties of the full composite section (i.e. do in Equation 5.8
should be the depth of the tensile reinforcement from the top surface of the in situ slab).

Example 7.3

In this example, the beam described in Example 7.2, with cross-section shown in Figure 7.6,
is checked for shear at the cross-section 2 m from the support. In accordance with AS 3600–
1988, the factored design load for strength was determined in Example 7.2 as w*=40.4 kN/m.
At 2 m from the support

For this member with straight tendons, Pv=0.
Web-shear cracking The load applied to the precast member in load stages 1 and 3 is

8.64+8.10=16.74 kN/m and the corresponding shear force and
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bending moment at the section 2 m from the support are

The centroidal axis of the precast section is located 262.5 mm above the bottom fibre (as
shown in Figure 7.6) and the centroidal axis of the composite section is 543.8 mm from the
bottom fibre. The properties of both the precast and composite sections about their centroidal
axes are

I=18390×106 mm4; A=360000 mm2;

Q=35.65×106 mm3 at centroid of precast section;

Precast:

Q=23.78×106 mm3 at level of composite centroid.

I=76020×106 mm4;

Q=107.6×106 mm3 at centroid of composite section;

Composite:

Q=85.8×106 mm3 at level of precast centroid.

The moment caused by the loads producing Vt,comp is

The normal stresses at the centroid of the composite section, σcomp, and at the level of the
centroid of the precast section, σpc, are obtained from Equation 7.39:

and
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The shear stress at the level of both centroids are found using Equation 7.40,

and

By substituting the above expressions into Equation 5.11 and solving, with
MPa, the shear forces needed to be applied to the composite

section to produce web-shear cracking at each critical location are obtained:

At the centroid of the composite section: Vt,comp=679 kN.

At the centroid of the precast section: Vt,comp=434 kN.

The latter value clearly governs and the total shear force required to cause web-shear cracking
is obtained from Equation 7.38:

Flexure-shear cracking Decompression occurs when the moment applied to the composite
section Mo,comp just causes the bottom fibre stress to be zero. That is,

and
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The shear force at decompression is therefore

The shear force required to produce flexure-shear cracking is obtained from Equation 5.8:

Evidently, Vuc is governed by web-shear cracking at this cross-section and is equal to 544 kN.
The design strength is

which is greater than the design action V* and only minimum shear reinforcement is required.
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8
Design procedures for determinate beams

8.1 Introduction

The variables which must be established in the design of a statically determinate prestressed
concrete beam are the shape and size of the section, the amount and location of both the
prestressed steel and the non-prestressed reinforcement, and the magnitude of the prestressing
force. The designer is constrained by the various design requirements for the strength,
serviceability, stability, and durability limit states.

The optimal design is the particular combination of design variables which satisfies all the
design constraints at a minimum cost. The cost of a particular design depends on local
conditions at the time of construction, and variations in the costs of materials, formwork,
construction expertise, labour, plant hire, etc., can change the optimal design from one site to
another and also from one time to another.

It is difficult, therefore, to fix hard and fast rules to achieve the optimal design. It is
difficult even to determine confidently when prestressed concrete becomes more economic
than reinforced concrete or when partially prestressed concrete is the best solution. However,
it is possible to give some broad guidelines to achieve feasible design solutions for both fully
and partially prestressed members. In this chapter, such guidelines are presented and
illustrated by examples.

8.2 Types of section

Many types of cross-section are commonly used for prestressed girders. The choice depends
on the nature of the applied loads, the function of the member, the availability and cost of
formwork, aesthetic considerations, and ease of construction. Some commonly used cross-
sections are shown in Figure 8.1.
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Figure 8.1 Some common prestressed concrete beam cross-sections.

Most in situ prestressed concrete beam sections are rectangular (or slab and beam tee-sections
with rectangular webs). Rectangular sections are not particularly efficient in bending. The
self-weight of a rectangular section is larger than for an I- or T-section of equivalent stiffness,
and the prestress required to resist an external moment also tends to be larger. The formwork
costs for a rectangular section, however, are generally lower and steel fixing is usually easier.

For precast prestressed concrete, where re-usable formwork is available, the more efficient
flanged sections are commonly used. T-sections and double T-sections are ideal for simply
supported members in situations where the self-weight of the beam is a significant part of the
total load. If the moment at transfer due to self-weight (plus any other external load) is not
significant, excessive compressive stresses may occur in the bottom fibres at transfer in T-
shaped sections.

Inverted T-sections can accommodate large initial compressive forces in the lower fibres at
transfer and, whilst being unsuitable by themselves for resisting positive moment, they are
usually used with a cast in situ composite concrete deck. The resulting composite section is
very efficient in positive bending.
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For continuous members, where both positive and negative moments exist, I-sections and
closed box sections are appropriate. Box-shaped sections are laterally stable and have found
wide application as medium-and long-span bridge girders. In addition, box sections can carry
efficiently the torsional moments caused by eccentric traffic loading.

8.3 Initial trial section

8.3.1 Based on serviceability requirements

A reliable initial trial cross-section is required at the beginning of a design in order to estimate
accurately self-weight and to avoid too many design iterations.

For a fully prestressed member, Equation 3.9 provides an estimate of the minimum section
modulus required to satisfy the selected stress limits at the critical section both at transfer and
under the full service loads. If the time-dependent loss of prestress is assumed to be 25%,
Equation 3.9 may be simplified to

(8.1)

The compressive stress limit at transfer Fci in this expression is a negative number.
For a member containing a parabolic cable profile, a further guide to the selection of an

initial trial section may be obtained by considering the deflection requirements for the
member. The deflection of an uncracked prestressed beam under a uniformly distributed
unbalanced load wu may be expressed as

(8.2)

where wus is the sustained part of the unbalanced load, βis a deflection coefficient, L is the
span of the beam, Ec is the elastic modulus of concrete, I is the moment of inertia of the gross
cross-section, andλis a long-term deflection multiplication factor, which should not be taken
to be less than 3.0 for an uncracked prestressed member. The deflection coefficient βis equal
to 5/384 for a uniformly loaded simply supported member. For a continuous member, β
depends on the support conditions, the relative lengths of the adjacent spans, and the load
pattern. When the variable part of the unbalanced load is not greater than the sustained part,
the deflection coefficients for a continuous beam with equal adjacent spans may be taken as
β=2.75/384 for an end span and β=1.8/384 for an interior span.
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Equation 8.2 can be re-expressed as

(8.3)

where

(8.4)

If υmax is the maximum permissible total deflection, then from Equation 8.3 the initial gross
moment of inertia must satisfy the following:

(8.5)

All the terms in Equation 8.5 are generally known at the start of a design, except for an
estimate of λ(in Equation 8.4), which may be taken initially to equal 3 for an uncracked
member. Since self-weight is usually part of the load being balanced by prestress, it does not
form part of wt.

For a cracked partially prestressed member, λshould be taken as not more than 2, for the
reasons discussed in Section 3.8.3. After cracking the effective moment of inertia Ie depends
on the quantity of tensile steel and the level of maximum moment. If Ie is taken to be 0.5I,
which is usually conservative, an initial estimate of the gross moment of inertia of the
partially-prestressed section can be obtained from

(8.6)

8.3.2 Based on strength requirements

An estimate of the section size for a partially prestressed member can be obtained from the
flexural strength requirements of the critical section. The ultimate moment of a ductile
rectangular section containing both non-prestressed and prestressed tensile steel may be found
using Equation 4.21. By taking moments of the internal tensile forces in the steel about the
level of the resultant compressive force in the concrete, the ultimate moment may be
expressed as

(8.7)

For preliminary design purposes, this expression can be simplified if the stress in the
prestressing steel at ultimate σpu is assumed (sayσpu=0.9fp) and the internal lever arm between
the resultant tension and compression
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forces is estimated (say 0.85d, where d is the effective depth to the resultant tensile force at
the ultimate limit state). Equation 8.7 becomes

(8.8)

Dividing both sides by gives

and therefore

(8.9)

where

Knowing that the design strength must exceed the factored design moment M*, Equation
8.9 becomes

(8.10)

The quantity qp+qs is the combined steel index. A value of qp+qs of about 0.2 will usually
provide a ductile section and, with this approximation, Equation 8.10 may be simplified to

(8.11)

Equation 8.11 can be used to obtain preliminary dimensions for an initial trial section. M*

must include an initial estimate of self-weight.
With the cross-sectional dimensions so determined, the initial prestress and the area of

prestressing steel can then be selected based on serviceability requirements. Various criteria
can be adopted. For example, the prestress required to cause decompression (i.e. zero bottom
fibre stress) at the section of maximum moment under full dead load could be selected.
Alternatively, load balancing could be used to calculate the prestress required to produce zero
deflection under a selected portion of the external load. With the level of prestress determined
and the serviceability requirements for the member satisfied, the amount of non-prestressed
steel required for strength is calculated.
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The size of the web of a beam is frequently determined from shear strength calculations. In
arriving at a preliminary cross-section for a thin-webbed member, preliminary checks in
accordance with the procedures outlined in Chapter 5 should be carried out to ensure that
adequate shear strength can be provided. In addition, the arrangement of the tendon
anchorages at the ends of the beam often determines the shape of the section in these regions.
Consideration must be given therefore to the anchorage zone requirements (in accordance
with the principles discussed in Chapter 6) even in the initial stages of design.

8.4 Design procedures—fully prestressed beams

For the design of a fully prestressed member, stress limits both at transfer and under full loads
must be selected to ensure that cracking does not occur at any time. There are relatively few
situations that specifically require no cracking as a design requirement. Depending on the
span and load combinations, however, a fully prestressed design may well prove to be the
most economic solution.

For long-span members, where self-weight is a major part of the design load, relatively
large prestressing forces are required to produce an economic design and fully prestressed
members frequently result. Fully prestressed construction is also desirable if a crack-free or
water-tight structure is required or if the structure needs to possess high fatigue strength. In
building structures, however, where the spans are generally small to medium, full prestressing
may lead to excessive camber and partial prestressing is often a better solution.

When the critical sections have been proportioned so that the stress limits are satisfied at all
stages of loading, checks must be made on the magnitude of the losses of prestress, the
deflection, and the flexural, shear, and torsional strengths. In addition, the anchorage zone
must be designed.

8.4.1 Beams with varying eccentricity

The following steps will usually lead to the satisfactory design of a statically determinate,
fully prestressed beam with a draped tendon profile:

(1) Determine the loads on the beam both at transfer and under the most severe load
combination for the serviceability limit states. Hence determine the moments at the critical
section(s) both at transfer and under the full service loads (Mo and MT, respectively) (an
initial estimate of self-weight is required here).

(2) Using Equation 8.1, choose an initial trial cross-section,
(3) Select the maximum permissible total deflection υmax caused by the
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estimated unbalanced loads (this is a second serviceability requirement in addition to the no
cracking requirement that prompted the fully prestressed design) and use Equation 8.5 to
check that the gross moment of inertia of the section selected in step 2 is adequate.

(4) Estimate the time-dependent losses of prestress (see Section 3.7.5) and, using the
procedure outlined in Section 3.3.1, determine the prestressing force and eccentricity at the
critical section(s). With due consideration of the anchorage zone and other construction
requirements, select the size and number of prestressing tendons.

(5) Establish suitable cable profile(s) by assuming the friction losses and obtaining bounds to
the cable eccentricity using Equations 3.16–3.19.

(6) Calculate both the immediate and time-dependent losses of prestress. Ensure that the
calculated losses are less than those assumed in steps 4 and 5. Repeat steps 4 and 5, if
necessary.

(7) Check the deflection at transfer and the final long-term deflection under maximum and
minimum loads. If necessary, consider the inclusion of non-prestressed steel to reduce
time-dependent deformations (top steel to reduce downward deflection, bottom steel to
reduce time-dependent camber). Adjust the section size or the prestress level (or both), if
the calculated deflection is excessive.

(8) Check the ultimate strength in bending at each critical section. If necessary, additional
non-prestressed tensile reinforcement may be used to increase strength. Add compressive
reinforcement to improve ductility, as required.

(9) Check the shear strength of the beam (and torsional strength if applicable) in accordance
with the provisions outlined in Chapter 5. Design suitable shear reinforcement where
required.

(10) Design the anchorage zone using the procedures presented in Chapter 6.

Note: Durability and fire protection requirements are usually satisfied by an appropriate
choice of concrete quality and cover to the tendons in step 4.

8.4.2 Example 8.1—Fully-prestressed design (draped tendon)

A slab and beam floor system consists of post-tensioned, simply supported T-beams spanning
18.5 m and spaced at 4 m centres. A 140 mm thick, continuous, reinforced concrete, one-way
slab spans from beam to beam. An elevation and a cross-section of a typical T-beam are
shown in Figure 8.2. The beam is to be designed as a fully prestressed member. The floor
supports a superimposed permanent dead load of 2 kPa and a variable live load of 3 kPa.
Material properties are MPa, MPa, fp=1840 MPa, Ec=28600 MPa, and
Ep=195000 MPa.

For this fully prestressed design, the following stress limits have been
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Figure 8.2 Beam details for Example 8.1

selected:

(1) Mid-span moments

Due to self-weight:
To estimate the self-weight of the floor wsw, an initial trial depth D=1100 mm is assumed

(about span/17). If the concrete floor weighs 24 kN/m3,

Therefore,

Due to 2.0 kPa superimposed dead load:
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Due to the 3.0 kPa live load:

At transfer:

Under full loads:

(2) Triai section size

From Equation 8.1:

Choose the trial cross-section shown in Figure 8.3.
Notes:

(a) The revised estimate of self-weight is 20.7 kN/m and therefore the revised design
moments are Mo=886 kNm and MT=1741 kNm.

(b) This section just satisfies the requirement for the effective width of T-beam flanges in AS
3600–1988, namely that the flange width does not exceed the web width plus 0.2 times the
span. However, the section fails to satisfy the ACI 318–83 requirement that the
overhanging portion of the flange is less than eight times the flange thickness. The latter
requirement is unreasonable for both prestressed and reinforced concrete T-sections,
particularly for sections where the edge of the effective flange is continuously supported, as
is the case here.

Figure 8.3 Trial cross-section for Example 8.1.
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(3) Check deflection requirements

For this particular floor, the maximum deflection, υmax istaken to be span/500=37 mm. If it is
assumed that only the self-weight of the floor is balanced by prestress, the unbalanced load is

and therefore

With the long-term deflection multiplier λtaken as 3, Equation 8.4 gives

and from Equation 8.5:

The trial cross-section satisfies this requirement and deflection does not appear to be a critical
consideration in this T-beam.

(4) Determine the prestressing force and eccentricity at mid-span

The procedure outlined in Section 3.3.1 is used for the satisfaction of the selected stress limits.
The section properties αt andαb are given by

and Equations 3.5 and 3.6 provide upper limits on the magnitude of prestress at transfer:

(3.5)

(3.6)

Equations 3.7 and 3.8 provide lower limits on the prestress under full service loads. If the
time-dependent loss of prestress is assumed to be 20% (R=0.80), then

(3.7)
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(3.8)

Each of these equations is plotted on the design diagram in Figure 8.4.
Two cables are assumed with duct diameters of 80 mm and with 40 mm minimum cover to

the ducts. The position of the ducts at mid-span and the location of the resultant prestressing
force are illustrated in Figure 8.5. The maximum eccentricity to the resultant prestressing
force is therefore

The resultant force in each tendon is assumed to be located at one quarter

Figure 8.4 Magnel’s design diagram for Example 8.1.

Figure 8.5 Cable locations and relevant dimensions at mid-span.
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of the duct diameter below the top of the duct. From Figure 8.4, for e=723 mm the minimum
required prestressing force at mid-span is

If the immediate losses at mid-span are assumed to be 10%, then the required jacking force is

From Table 2.1, the cross-sectional area of a 12.7 mm diameter 7-wire super strand is Ap=100
mm2, the minimum breaking load is 184 kN, and therefore the maximum jacking force is
0.85×184=156.4 kN. The minimum number of 7-wire strands is therefore 2610/156.4=16.7.

Try two cables each containing 9 strands, i.e. Ap=900 mm2/cable.

(5) Establish cable profiles

Since the member is simply supported and uniformly loaded, and because the friction losses
are only small, parabolic cable profiles with a sufficiently small resultant eccentricity at each
end and an eccentricity of 723 mm at mid-span will satisfy the stress limits at every section
along the beam. In order to determine the zone in which the resultant prestressing force must
be located (see Figure 3.5), it is first necessary to estimate the prestress losses. The cables are
to be stressed from one end only. From preliminary calculations the friction losses between
the jack and mid-span are assumed to be 6% (i.e. 12% from jack to dead end anchorage), the
anchorage losses

Table 8.1 Bounds on the eccentricity of prestress in Example 8.1.

Distance from jack (mm) 0 4625 9250 13875 18500

Estimated short-term losses (%) 15 12.5 10 10.5 13

Pi (kN) 2220 2280 2350 2335 2270

Pe (kN) 1775 1830 1880 1870 1820

Mo (kN m) 0 664 886 664 0

MT (kN m) 0 1306 1741 1306 0

emax (mm) 467 743 811 722 454

emin (mm) −209 507 722 494 −207
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Figure 8.6 Parabolic cable profiles for Example 8.1.

resulting from slip at the anchorages are assumed to be 14% at the jack and 2% at mid-span,
and the elastic deformation losses are taken to be 1% at each end and 2% at mid-span. These
assumptions will be checked subsequently. If the time-dependent losses are assumed to be
20%, the prestressing forces Pi and Pe at the ends, quarter-span and mid-span are as shown in
Table 8.1. Also tabulated are the moments at each section at transfer and under full loads, the
maximum eccentricity (determined in this case from Equation 3.17), and the minimum
eccentricity (determined from Equation 3.18 in this example).

The permissible zone, in which the resultant force in the prestressing steel must be located,
is shown in Figure 8.6. The individual cable profiles are also shown. The cables are separated
sufficiently at the ends of the beam to accommodate easily the anchorages for the two cables.

(6) Check losses of prestress

Immediate losses
Elastic deformation At mid-span, the initial prestress in each cable is Pi=2350/2=1175
kN/cable. The upper cable is the first to be stressed and therefore suffers elastic deformation
losses when the second (lower) cable is subsequently stressed. The prestressing force in the
lower cable causes a concrete stress at the level of the upper tendon of

and the loss of steel stress in the upper cable is obtained from Equation 3.58:
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The loss of force in the upper cable, that occurs as the lower cable is stressed, is therefore
ΔσpAp=55×900=49 kN (about 1.9% of the total jacking force). The loss of force in the lower
cable due to elastic shortening is zero.

Friction losses The change in slope of the tendon between the support and midspan is
obtained using Equation 1.6. For the upper cable, the drape is 668 mm and therefore

With µ=0.2 and βp=0.013, the friction loss at mid-span is calculated using Equation 3.60:

Therefore, the friction loss at mid-span in the upper cable is 5.2%. In the lower cable, where
the drape is only 518 mm, the friction loss at mid-span is 4.6%. The average loss of the
prestressing force at mid-span due to friction is therefore 0.049×2610=128 kN. This loss is
slightly less than that assumed in step 5.

Anchorage losses The loss of prestress caused by a 6 mm slip at the wedges at the jacking
end is calculated in accordance with the discussion in Section 3.7.4. With the average friction
loss at midspan of 4.9%, the slope of the prestressing line is

The length of beam Ldi over which the anchorage slip affects the prestress is found using
Equation 3.61:

The loss of force at the jack due to slip at the anchorage is

and at mid-span
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Jacking force From step 4, the required prestress at mid-span immediately after transfer is
Pi=2350 kN. Adding the elastic shortening, friction, and anchorage losses, the force required
at the jack is

which is very close to the value assumed in steps 4 and 5. The tendon stress at the jack is

which is less than 0.85fp and is therefore acceptable.
Time-dependent losses An accurate time analysis of the cross-section at mid-span can be

carried out using the procedure outlined in Section 3.6.2 (and illustrated in Example 3.5). In
this example, the more approximate procedures discussed in Section 3.7.5 are used to check
time-dependent losses.

Shrinkage losses The hypothetical thickness of the web of this beam is defined in Section
2.5.3 and is taken as

(It would be conservative in this case to include the slender flange in the determination of the
hypothetical thickness.) Using the predictive model in AS 3600–1988 and assuming an air-
conditioned (arid) environment, the shrinkage coefficient k1=0.80 is obtained from Figure
2.11 and the final shrinkage strain may be estimated using Equation 2.21:

As mentioned in Section 2.5.1, shrinkage strain is difficult to predict accurately and a high
coefficient of variation must be expected. It is pointless to strive for undue accuracy here.
From Equation 3.62, the loss of steel stress due to shrinkage may be taken as

Creep losses The final creep coefficient is determined from Equation 2.20, taking ,
k2=0.8, and k3=1.2
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The concrete stress at the centroid of the prestressing steel at mid-span (e=723 mm)
immediately after the application of the full sustained load is

From Equations 3.63 and 3.64, a conservative estimate of the loss of steel stress at midspan
due to creep is

Relaxation losses For low relaxation strand, R1000=0.025 (see Table 2.2). From Equation 2.22,
the final relaxation (at t=10000 days) is

The stress in the tendons at mid-span immediately after transfer is σpi=Pi/Ap=1306
MPa=0.71fp. The loss of steel stress due to relaxation may be approximated using Equation
3.65:

Total time-dependent losses The total loss of steel stress with time at mid-span is
Δσp=109+145+31=285 MPa (which is 21.8% of the prestress immediately after transfer). This
is slightly higher than the time-dependent losses assumed in steps 3, 4 and 5 (20%). However,
the above procedures are conservative and the original estimate of Pi is considered
satisfactory. (A more accurate time analysis, in accordance with the procedure outlined in
Section 3.6.2, reveals that the total time-dependent loss at midspan is only 15.9%.)

(7) Deflection check

At transfer The average drape for the two cables is 593 mm and the transverse force exerted
on the beam by the draped tendons at transfer may be taken as

This overestimates the upward load on the member by a small amount, since the prestressing
force at mid-span is taken as an average for the span.
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The self-weight of the floor was calculated in step 2 and is wsw=20.7 kN/m↓. Immediately
after transfer, MPa and, from Equation 2.7, Ec=25 300 MPa. The mid-span deflection
at transfer is

which is clearly satisfactory.
Under full loads The effective prestress at mid-span after all losses is here assumed to be

Pe=0.841 Pi=1976 kN (15.9% losses). The transverse load exerted on the beam by the tendons
is therefore

The sustained gravity loads are w sw+wG=28.7 kN/m and the short-term deflection at mid-span
caused by all the sustained loads is

Under the sustained loads, the initial curvature is small on all sections and the short-term and
long-term deflections are also small. The creep induced deflection may be approximated using
Equation 3.76. Because the member is uncracked and contains only small quantities of
bonded reinforcement, the factor αin Equation 3.76 is taken as 1.1:

From Equation 3.78, an estimate of the average shrinkage induced curvature is

This positive load-independent curvature causes a downward deflection that may be
calculated using Equation 3.77:

The final deflection due to the sustained load and shrinkage is therefore
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The deflection that occurs on application of the variable live load (wQ=12 kN/m) is

It is evident that the beam performs satisfactorily at service loads with a maximum deflection
of 13.6+7.0=20.6 mm=span/900. This conclusion was foreshadowed in the preliminary
deflection check in step 3.

(8) Check ultimate strength in bending at mid-span

Strength checks in this example are undertaken using the load factors and capacity reduction
factors specified in AS 3600–1988 (see Sections 1.7.3 and 1.7.6). The design load is

and the design moment at mid-span is

The cross-section at mid-span contains a total area of prestressing steel Ap=1800 mm2 at an
effective depth dp=995 mm. The ultimate moment is calculated using the approximate
procedure outlined in Section 4.4.1. With MPa, Equation 4.2 gives γ=0.822. From
Equation 4.19, k1=0.28 and

The steel stress at ultimate is given by Equation 4.18:

The resultant tensile force is T=σpuAp=3280 kN and, assuming the neutral axis lies within the
slab flange, the depth to the neutral axis is given by Equation 4.20:

which is in fact within the flange. For this section, the quantity of tensile steel is only small
and the member will be very ductile (dn=
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0.04dp<<0.4d). By taking moments of the internal forces about any point on the cross-section
(for example, the level of the resultant compressive force γdn/2 below the top surface), the
ultimate moment is found:

With the capacity reduction factor for bending , the design strength is

and, therefore, the cross-section at mid-span has adequate flexural strength and no non-
prestressed longitudinal steel is required. At least two non-prestressed longitudinal
reinforcement bars will be located in the top and bottom of the web of the beam in the corners
of the transverse stirrups that are required for shear.

(9) Check shear strength

As in step 8, w*=53.9 kNm. Shear strength is here checked at the section 1 m from the support,
where V*=445 kN and M*=472 kN m. At this section, the average depth of the prestressing
steel below the centroidal axis of the cross-section is y=e=251 mm and its slope is y'=0.114
rad. The effective prestress is Pe=1790 kN and the vertical component of prestress is
Pv=Pey'=204 kN.

Flexure-shear cracking:
The decompression moment at this section is

and the corresponding shear force is found using Equation 5.9:

If two 20 mm diameter reinforcing bars are located in each bottom corner of the stirrups
(Ast=620 mm2), then from Equation 5.8
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in which the effective width for shear (defined after Equation 5.5) is taken as
bυ=300−(0.5×80)=260 mm and the depth to the centroid of Ast is do=1100 mm.

Web-shear cracking:
At the centroidal axis, Q=0.5×300×878.12=116×106 mm3, σ=−Pe/A=−2.07 MPa and

. With MPa, solving Equation 5.11
gives Vt=645 kN and, therefore, from Equation 5.10, Vuc=645+204=849 kN.

At this section, the concrete contribution to the design strength of the section in shear is
governed by web-shear cracking and is equal to

This is greater than the design shear force V* and minimum shear reinforcement only is
required. Checks at other sections along the span indicate that the minimum reinforcement
requirements are sufficient throughout the length of the member. If 10 mm closed stirrups are
used (two vertical legs with Asυ=157 mm2 and fυy=250 MPa), then the required spacing of
stirrups is found using Equation 5.5:

Use 10 mm closed stirrups at 430 mm maximum centres throughout.

(10) Design anchorage zone

The bearing plates at the end of each cable are 220 mm square as shown in Figure 8.7. The
centroid of each plate lies on the vertical axis of symmetry, the upper plate being located on
the centroidal axis of the cross-section and the lower plate centred 260 mm below the
centroidal axis, as shown.

Figure 8.7 End elevation showing size and location of bearing plates.
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Figure 8.8 Forces and moments in anchorage zone.

The distribution of forces on the anchorage zone after the upper cable is stressed is shown in
Figure 8.8a, together with the bursting moments induced within the anchorage zone. The
depth of the symmetrical prism behind the upper anchorage plate is 544 mm as shown. The
transverse tension within the symmetrical prism caused by the bursting moment behind the
anchorage plate (Mb=145 kNm) is

and the area of transverse steel required within a length of beam equal to
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0.8De=435 mm is

Using 4–16mm diameter vertical stirrup legs at each stirrup location (800 mm2), the required
spacing is (435×800)/3550=98 mm.

The distribution of forces on the anchorage zone when both cables are stressed is shown in
Figure 8.8b. The maximum bursting moment is 289 kN m and the depth of the symmetrical
prism behind the combined anchorage plates is 804 mm. The vertical tension and the required
area of transverse steel (needed within a length of beam equal to 0.8De=643 mm) are

The maximum spacing of the vertical stirrups (800 mm2/stirrup location) is
(643×800)/4800=107 mm. Use two 16 mm diameter stirrups every 100 mm from the end face
of the beam to 800 mm therefrom.

The horizontal dispersion of prestress into the slab flange creates transverse tension in the
slab, as indicated in the plan in Figure 8.9. From the truss analogy shown, the transverse
tension is 319 kN and the required area of steel is As=(319×103)/150=2130 mm2. This steel
must be placed horizontally in the slab within a length of 0.8×4000=3200 mm. Use

Figure 8.9 Idealized horizontal truss within slab flange.
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Figure 8.10 Reinforcement details in anchorage zone.

16 mm diameter bars at (3200×200/2130)=300 mm centres within 4 m of the free edge of the
slab.

The reinforcement details within the anchorage zone are shown in the elevation and cross-
section in Figure 8.10.

8.4.3 Beams with constant eccentricity

The graphical procedure described in Section 3.3.1 is a convenient technique for the
satisfaction of concrete stress limits at any section at any stage of loading. However, the
satisfaction of stress limits at one section does not guarantee satisfaction at other sections. If
Pi and e are determined at the section of maximum moment Mo, and if e is constant over the
full length of the beam, the stress limits Fci and Fti may be exceeded in regions where the
moment is less than the maximum value.

In pretensioned construction, where it is most convenient to use straight tendons at a
constant eccentricity throughout the length of the member, the maximum constant eccentricity
is usually determined from conditions at the support of a simply supported member where the
moment is zero. In a simple pretensioned beam of constant cross-section, the stress
distributions at the support and at the section of maximum moment (Mo at transfer and MT

under the maximum in-service loads) are shown in Figure 8.11.
At transfer, the maximum concrete tensile and compressive stresses both occur at the

support. The tensile top fibre stress must be less than the tensile stress limit Fti and the
compressive bottom fibre stress must be numerically less than the compressive stress limit
Fci:

(8.12)
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Figure 8.11 Concrete stresses in member with constant eccentricity.

and

(8.13)

By rearranging Equations 8.12 and 8.13 to express 1/Pi as a linear function of e, the following
design equations similar to Equations 3.5 and 3.6 (with Mo=0) are obtained:

(8.14)

(8.15)

where αt=A/Zt, αb=A/Zb, and the compressive stress limit Fci is a negative quantity.
After all the time-dependent losses have taken place, the maximum tensile stress occurs in

the bottom concrete fibre at mid-span (σbe in Figure 8.11) and must be less than the tensile
stress limit Ft:

(8.16)

This is identical with Equation 3.3 and may be rearranged to give the design
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Equation 3.7:

(3.7)

Equations 8.14, 8.15, and 3.7 may be plotted on a graph of 1/Pi versus e (similar to Figure
3.3) and a design diagram constructed that ensures satisfaction of the selected stress limits
both at the support at transfer and at the critical section of maximum moment under the full
service loads. If required, Equation 3.8 may also be plotted on the design diagram, but the
compressive stress limit Fc at the critical section is rarely of concern in a pretensioned
member of constant cross-section.

To find the minimum sized section required to satisfy the selected stress limits both at the
support and at mid-span at all stages of loading, Equation 8.13 may be substituted into
Equation 8.16 to give

and therefore

(8.17)

Equation 8.17 can be used to select an initial trial, and then the required prestressing force and
the maximum permissible eccentricity can be determined using Equations 8.14, 8.15, and 3.7.

Note the difference between Equation 8.1 (where R=0.75) and Equation 8.17. The
minimum section modulus obtained from Equation 8.1 is controlled by the incremental
moment (MT−RMo) since the satisfaction of stress limits are considered only at the critical
section. The stress limits on all other sections are automatically satisfied by suitably varying
the eccentricity along the span. If the eccentricity varies such that Pie is numerically equal to
the moment at transfer Mo at all sections, then only the change in moment MT−RMo places
demands on the flexural rigidity of the member. RMo is balanced by the eccentricity of
prestress. However, for a beam with constant eccentricity, e is controlled by the stress limits
at the support (where Mo is zero). It is therefore the total moment at the critical section MT

which controls the minimum section modulus, as indicated in Equation 8.17.
In order to avoid excessive concrete stresses at the supports at transfer, tendons are often

debonded near the ends of pretensioned members. In this way, a constant eccentricity greater
than that given by Equations 8.14 and 8.15 is possible.
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For a simply supported member containing straight tendons at a constant eccentricity, the
following design steps are appropriate:

(1) Determine the loads on the beam both at transfer and under the most severe load
combination for the serviceability limit states. Hence determine the moments Mo and MT at
the critical section (an initial estimate of self-weight is required here).

(2) Using Equation 8.17, choose an initial trial cross-section.
(3) Estimate the time-dependent losses and use Equations 8.14, 8.15, and 3.7 to determine the

prestressing force and eccentricity at the critical section.
(4) Calculate both the immediate and time-dependent losses. Ensure that the calculated losses

are less than those assumed in step 3. Repeat step 3, if necessary.
(5) Check the deflection at transfer and the final long-term deflection under maximum and

minimum loads. Consider the inclusion of non-prestressed steel to reduce the long-term
deformation, if necessary. Adjust section size and/or prestress level, if necessary.

(6) Check the ultimate flexural strength at the critical sections. Calculate the quantities of non-
prestressed reinforcement required for strength and ductility.

(7) Check shear strength of beam (and torsional strength if applicable) in accordance with the
provisions outlined in Chapter 5. Design suitable stirrups where required.

(8) Design the anchorage zone using the procedures presented in Chapter 6.

8.4.4. Example 8.2—Fully prestressed design (straight tendons)

Simply supported fully prestressed planks, with a typical cross-section shown in Figure 8.12,
are to be designed to span 6.5 m. The planks are to be placed side by side to form a precast
floor and are to be pretensioned with straight tendons at a constant eccentricity. The planks
are assumed to be long enough for the full prestress to develop at each support (although this
is frequently not the case in practice). The floor is to be subjected to a superimposed dead
load of 1.2 kPa and a live load of 3.0 kPa (of which

Figure 8.12 Cross-section of typical pretensioned plank (Example 8.2).
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0.7 kPa may be considered to be permanent and the remainder transitory). As in Example 8.1,
material properties are MPa, MPa, fp=1840 MPa, Ec=28600 MPa, and
Ep=195000 MPa and the selected stress limits are Fti=1.25 MPa, Fci=−12.5 MPa, Ft=1.5 MPa,
and Fc=−16.0 MPa.

(1) Mid-span moments

Due to self-weight:
If the initial depth of the plank is assumed to be D≈span/40≈160 mm, and the plank is

assumed to weigh 24 kN/m3, then wsw=24×0.16×1.05 =4.03 kN/m and at mid-span

Due to the superimposed dead and live loads:
wG=1.2×1.05=1.26kN/m and wQ=3.0×1.05=3.15 kN/m. Therefore,

At transfer, Mo=Msw=21.3 kNm and under the full loads MT=21.3+6.7+1616=44.6 kNm.

(2) Trial section size

From Equation 8.17,

and therefore

Try D=160 mm as originally assumed.

(3) Determine the prestressing force and eccentricity

With D=160 mm, the section properties are A=168×103 mm2, I=358.4×106 mm4 ,
Zt=Zb=4.48×106 mm3, and αt=αb=0.0375. Substituting into Equations 8.14 and 8.15 gives
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Figure 8.13 Design diagram for Example 8.2.

respectively. If R is assumed to be 0.75, Equation 3.7 becomes

The plot of these three straight lines is shown in Figure 8.13.
The maximum eccentricity occurs at the intersection of Equations 8.14 and 3.7 and is e=33

mm. The corresponding minimum prestress Pi is obtained from Equation 3.7:

Assuming 5% immediate losses at mid-span, the minimum jacking force is Pj=Pi/0.95=891
kN. The minimum number of 12.7 mm diameter 7-wire super strand (each with breaking
load=184 kN) is 891/ (0.85×184)=5.7.

Use six 12.7 mm diameter strands at e=33 mm
i.e. Ap=600 mm2 at dp=113 mm.

(4) Calculate losses of prestress at mid-span

Immediate losses For this pretensioned member, the immediate losses of prestress are due to
elastic shortening. The concrete stress at the steel level
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immediately after transfer is

and from Equation 3.58,

The loss of prestress at mid-span due to elastic shortening is ΔσpAp=38.5×600=23.1 kN
(≈2.7% of Pi).

Time-dependent losses
Shrinkage losses The hypothetical thickness of the plank is th=160 mm and from Figure 2.11,
for an arid environment, k1=1.00 and . From Equation 3.62,
Δσp=0.0007×195000= 137 MPa.

Creep losses In Equation 2.20, , k2=0.9, and k3=1.3, and therefore
. The sustained load is wsus=6.03 kN/m and the sustained moment

at mid-span is therefore Msus=31.8 kNm. The concrete stress at the centroid of the prestressing
steel at mid-span (e=33 mm) immediately after the application of the full sustained load is

and from Equations 3.63 and 3.64,

Relaxation losses The stress in the steel immediately after transfer is σpi=Pi/Ap=1411
MPa(=0.77fp) and from Equation 2.22, for low-relaxation strand, the final relaxation (t=10000
days) is R=1.4×1.0× 0.025×1.4=0.049. Equation 3.65 gives
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Total time-dependent losses At mid-span, Δσp=137+128+43=308 MPa, which is less than the
assumed value of 0.25σpi=353 MPa and is therefore acceptable.

(5) Deflection check

At transfer The curvature immediately after transfer at each support is

and at mid-span

The corresponding deflection at mid-span may be calculated using Equation 3.68c:

which is satisfactory.
Under full loads If the effective prestress after all losses is taken to be Pe=0.8Pi=678 kN,

the final load-dependent curvature at the supports may be approximated by

With andαtaken to be 1.5 for this uncracked section (in accordance with the
discussion in Section 3.8.3), then,

The moment at mid-span caused by the sustained loads is Msus=Msw+ MG+(0.7/3.0)MQ=31.9
kNm and the final curvature caused by Msus is
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The moment at mid-span due to the variable part of the live load is (2.3/3.0)MQ=12.7 kNm
and the corresponding curvature at mid-span is xvar,m=1.24×10−6mm−1.

The shrinkage-induced curvature is constant along the span (since the bonded steel is at a
constant eccentricity) and may be approximated by Equation 3.78:

The final curvatures at each end and at mid-span are the sum of the load-dependent and
shrinkage curvatures:

and

From Equation 3.68c, the final maximum mid-span deflection is

which is probably satisfactory, provided that the floor does not support brittle partitions or
finishes.

(6) Check ultimate strength in bending at midspan

Using the same procedure as outlined in step 8 of Example 8.1, the design strength in bending
of the cross-section containing Ap=600 mm2 at dp=113 mm is

which is greater than the design moment M*=59.9 kN m. Flexural strength and ductility are
therefore adequate.

(7) Check shear strength

For this wide shallow plank, the design shear force V* is much less than the design strength
on each cross-section and no transverse steel is required.
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8.5 Design procedures—partially prestressed beams

8.5.1 Discussion

In the design of a partially prestressed member, concrete stresses at transfer must satisfy the
selected stress limits, but cracking is permitted under full service loads. It is often convenient
to approach the design from an ultimate strength point of view in much the same way as for a
conventionally reinforced member. Equations 8.6 and 8.11 can both be used to select an initial
section size in which tensile reinforcement (both prestressed and non-prestressed) may be
added to provide adequate strength and ductility. The various serviceability requirements can
then be used to determine the level of prestress. The designer may choose to limit tension
under the sustained load or some portion of it. Alternatively, the designer may select a part of
the total load that is balanced by the prestress, under which the deflection is zero. Losses are
calculated and the area of prestressing steel is determined.

It should be remembered that the cross-section obtained using Equation 8.11 is a trial
section only. Serviceability requirements may indicate that a larger section is needed or that a
smaller section would be satisfactory. If the latter is the case, the strength and ductility
requirements can usually still be met by the inclusion of either compressive or tensile non-
prestressed reinforcement, or both.

After consideration of the serviceability design requirements, and after the magnitude of the
prestressing force and the size and location of prestressed steel has been determined, the non-
prestressed steel required to provide the necessary additional strength and ductility is
calculated. Checks for serviceability are performed and the shear reinforcement and
anchorage zones are designed.

The following steps usually lead to a satisfactory design:

(1) Determine the loads on the beam including an initial estimate of self-weight. Hence
determine the in-service moments at the critical section, both at transfer Mo and under the
full loads MT. Also calculate the design ultimate moment M* at the critical section.

(2) Using Equation 8.11, determine suitable section dimensions. (Care should be taken when
using Equation 8.11 if the neutral axis at ultimate is likely to be outside the flange in a T-
beam or I-beam and the approximation of a rectangular compression zone is not
acceptable.) For long-span, lightly loaded members, deflection and not strength will usually
control the size of the section.

(3) By selecting a suitable load to be balanced, the unbalanced load can be calculated and
Equation 8.6 can be used to check the initial trial section selected in step 2. Adjust section
dimensions, if necessary.
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(4) Determine the prestressing force and cable profile to suit the serviceability requirements.
For example, no tension may be required under a portion of the service load, such as the
dead load. Alternatively, the load at which deflection is zero may be the design criterion.

(5) Calculate the immediate and time-dependent losses of prestress and ensure that the
serviceability requirements adopted in step 4 and the stress limits at transfer are satisfied.

(6) Calculate the non-prestressed reinforcement (if any) required in addition to the
prestressing steel to provide adequate flexural strength.

(7) Check crack control and deflections both at transfer and under full loads. A cracked
section analysis is usually required to determine Ie and to check the increment of steel stress
after cracking.

(8) Design for shear (and torsion) at the critical sections in accordance with the design
provisions in Chapter 5.

(9) Design the anchorage zone using the procedures outlined in Chapter 6.

8.5.2 Example 8.3—Partially prestressed beam (draped tendon)

The fully-prestressed T-beam designed in Example 8.1 is redesigned as a partially prestressed
beam. A section and an elevation of the beam are shown in Figure 8.2 and the material
properties and floor loadings are as described in Section 8.4.2. At transfer, the stress limits are
Fti=1.25 MPa and Fci=−12.5 MPa.

(1) Midspan moments

As in Step 1 of Example 8.1, wG=8.0 kN/m, wQ=12 kN/m, MG=342 kNm, and MQ=513 kN m.
Since the deflection of the fully prestressed beam designed in Example 8.1 is only small, a

section of similar size may be acceptable even after cracking. The same section will be
assumed here in the estimate of self-weight. Therefore, wsw=20.7 kN/m, Msw=886 kNm, and
the moments at mid-span at transfer and under full loads are as calculated previously:

The design ultimate moment at mid-span is calculated as in step 8 of Example 8.1, i.e.
M*=2310 kNm.

(2) Trial section size based on strength considerations

From Equation 8.11,

For b=4000 mm, the required effective depth is d>364 mm.
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Clearly, strength and ductility are easily satisfied (as is evident in step 8 of Example 8.1).
Deflection requirements will control the beam depth.

(3) Choose trial section based on acceptable deflection

In Example 8.1, the balanced load was wb=27.4 kN/m (see step 7). For this cracked, partially
prestressed member, it is initially assumed that wb=20 kN/m. Therefore, the maximum
unbalanced load is wu=wsw+ wG+wQ−20=20.7 kN/m and the sustained unbalanced load is
wus=wu−wQ=8.7 kN/m. From Equation 8.4,

If a total deflection limit of span/400=46 mm is assumed, then from Equation 8.6,

Choose the same trial section as was used for the fully prestressed design (as shown in Figure
8.3).

(4) Determine the prestressing force and cable profile

A single prestressing cable is to be used, with sufficient prestress to balance a load of 20
kN/m. The cable is to have a parabolic profile with zero eccentricity at each support and
e=778 mm at mid-span (i.e. the cable is to be located in the same position at mid-span as the
lower cable shown in Figure 8.5). The duct diameter is therefore taken to be 80 mm with 40
mm concrete cover to the duct.

The effective prestress required at mid-span to balance wb=20 kN/m may be calculated
using Equation 1.7:

Since the initial stress in the concrete at the steel level is lower than that in Example 8.1, the
creep losses will be lower. The time-dependent losses are here assumed to be 15%. Therefore,

If the immediate losses at mid-span (friction plus anchorage draw-in) are
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assumed to be 10%, the required jacking force is

and the number of 12.7 mm diameter strands n is

Try ten 12.7 mm diameter super grade 7-wire strands (Ap=1000 mm2).

(5) Calculate losses of prestress

Immediate losses With only one prestressing cable, elastic deformation losses are zero. Using
the same procedures as demonstrated in Example 8.1, the friction loss between the jack and
mid-span is 5.6% and the anchorage (draw-in) loss at mid-span is 2.8%. The total immediate
loss is therefore 8.4%.

Time-dependent losses As in Example 8.1, the loss of prestress due to shrinkage is 109
MPa. Under the action of Pi and the sustained load, the concrete stress at the steel level is
σc=0.4 MPa (tensile), and therefore tensile creep will cause a small (insignificant) gain in
stress in the steel. In this beam, it is conservative to ignore creep in the estimation of losses.
With σpi=1294 MPa and with R=0.0385 (from Example 8.1), the relaxation loss is 41 MPa.
The total time-dependent loss is therefore Δσp=150 MPa=0.116σpi (11.6%).

With Pe=1100 kN as calculated in step 5, the revised estimates of Pi and Pj are

and the required minimum number of strands is

Use nine 12.7 mm diameter super grade 7-wire strands (Ap=900 mm2).
By comparison with the beam in Equation 8.1 with almost double the jacking force, the

concrete stress limits at transfer are clearly satisfied.
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(6) Design for flexural strength

As given in Step 1, the design moment at mid-span is M*=2310 kNm and the minimum
required ultimate strength is kN m ( as specified in AS 3600–
1988). Using the approximate procedure described in Section 4.4.1, the ultimate strength of
the cross-section containing Ap=900 mm2 at dp=1050 mm is Mu1=1710 kNm (with dn=23 mm).
Clearly, additional non-prestressed tensile steel is required to ensure adequate strength. If the
depth of the non-prestressed tensile reinforcement is do=1080 mm, then the required steel area
may be obtained from Equation 4.27:

Try four 32 mm diameter bottom reinforcing bars in two layers, as shown in Figure 8.14.
Checking the strength of this proposed cross-section gives Tp=1640 kN, Ts=1280 kN, dn=33

mm, and Mu=3020 kN m, and therefore . The proposed section at
mid-span has adequate strength and ductility.

Figure 8.14 Proposed steel layout at mid-span (Example 8.3).

(7) Check for deflection and crack control

The maximum moment at mid-span due to the full service load is MT=1741 kNm and the
moment at mid-span caused by the sustained load is Msus=1228 kNm. With Pe=1100 kN and
the tensile strength of concrete taken to be MPa, the cracking moment can be
approximated by
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Cracking occurs at mid-span when the full variable live load is applied. However, the moment
caused by the sustained load is less than the cracking moment.

Using the cracked section analysis described in Section 3.5.2, the response of the cracked
section at mid-span to the full service moment (1741 kNm) is as follows:

The extreme fibre stress and strain:

The depth to the neutral axis:

The stress in the non-prestressed steel:

The stress in the prestressed steel:

The average moment of inertia:

The effective moment of inertia (using Equation 3.72 to account for tension stiffening):

Since the maximum stress in the non-prestressed steel is less than 200 MPa, flexural crack
control should not be a problem. Side-face reinforcement as shown in Figure 8.14 should be
included to control flexural cracking in the web of the beam above the bottom steel.

The upward transverse force exerted by the prestress on the member is

and the maximum gravity load is 40.7 kN/m. An estimate of the maximum short-term
deflection υi caused by the full service load is

Under the sustained loads, the loss of stiffness due to cracking will not be as great. The cracks
will partially close and the depth of the compression zone will increase as the variable live
load is removed. For the calculation of the short-term deflection due to the sustained loads
(28.7 kN/m), the magnitude of Ie is higher than that used above. However, using
Ie=62500×106 mm4 will result in a conservative overestimate of deflection:
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The creep-induced deflection is estimated using Equation 3.76. If two 24 mm diameter bars
are included in the compression zone (Asc=900 mm2), the coefficient αis taken to be 3.0 and

From Equation 3.79,

and Equation 3.77 gives

The maximum final deflection is therefore

Deflections of this order may be acceptable for most floor types and occupancies.
The design for shear strength and the design of the anchorage zone for this beam are similar

to the procedures illustrated in steps 9 and 10 of Example 8.1.
It should be noted that the same cross-sectional dimensions are required for both the

partially prestressed and the fully prestressed solutions in Examples 8.1 and 8.3. Both satisfy
strength and serviceability requirements. In Australia, at present, the partially prestressed
beam would be the more economic solution.
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9
Statically indeterminate members

9.1 Introduction

The previous chapters have been concerned with the behaviour of individual cross-sections
and the analysis and design of statically determinate members. In such members, the
deformation of individual cross-sections can take place without restraint being introduced at
the supports, and internal actions can be determined using only the principles of statics. In this
chapter, attention is turned towards the analysis and design of statically indeterminate or
continuous members. The internal actions in a continuous member depend on the relative
stiffness of the individual regions and, in structural analysis, consideration must be given to
geometric compatibility in addition to equilibrium. Imposed deformations cause internal
actions in statically indeterminate members and methods for determining the internal actions
caused by both imposed loads and imposed deformations must be established.

By comparison with simply-supported members, continuous members enjoy certain
structural and aesthetic advantages. Maximum bending moments are significantly smaller and
deflections are substantially reduced. The reduced demand on strength and the increase in
overall stiffness permit a shallower member cross-section for any given serviceability
requirement, and this leads to greater flexibility in sizing members for aesthetic considerations.

In reinforced concrete structures, these advantages are often achieved without an additional
cost premium, since continuity is an easily achieved consequence of in situ construction.
Prestressed concrete, on the other hand, is very often not cast in situ, but is precast, and
continuity is not a naturally achieved consequence. In precast construction, continuity is
obtained with extra expense and care in construction. When prestressed concrete is cast in situ,
or when continuity can be achieved by stressing
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precast units together over several supports, continuity can result in significant cost savings.
By using each cable for several spans, a significant reduction in the number of anchorages and
in the labour involved in the stressing operation can be achieved.

Continuity provides increased resistance to transient loads and also to progressive collapse
resulting from wind, explosion, or earthquake. In continuous structures, failure of one
member or cross-section does not necessarily jeopardize the entire structure, and a
redistribution of internal actions may occur. When overload of the structure or member in one
area occurs, a redistribution of forces may take place, provided that the structure is
sufficiently ductile and an alternative load path is available.

In addition to the obvious advantages of continuous construction, there are several notable
disadvantages. Some of the disadvantages are common to all continuous structures, and others
are specific to the characteristics of prestressed concrete. Among the disadvantages common
to all continuous structures are the occurrence of regions of both high shear and high moment
adjacent to the internal supports, the high localized moment peaks over the internal supports
of continuous beams, and the possibility of high moments and shears resulting from imposed
deformations caused by foundation or support settlement, temperature changes, and restrained
shrinkage.

In continuous beams of prestressed concrete, the quantity of prestressed reinforcement can
often be determined from conditions at mid-span, with additional non-prestressed
reinforcement included at each interior support to provide the additional strength required in
these regions. The length of beam associated with the high local moment at each interior
support is relatively small, so that only short lengths of non-prestressed reinforcement are
usually required. In this way, economical partially prestressed concrete continuous structures
can be proportioned.

When cables are stressed over several spans in a continuous member, the loss of prestress
caused by friction along the duct may be large. The tendon profile usually follows the
moment diagram and relatively large angular changes occur as the sign of the moment
changes along the member from span to span and the distance from the jacking end of the
tendon increases. In the design of long continuous members, the loss of prestress that occurs
during the stressing operation must therefore be carefully checked. Attention must also be
given to the accommodation of the axial deformation that takes place as the member is
stressed. Prestressed concrete members shorten as a result of the longitudinal prestress and
this can require special structural details at the supports of continuous members in order to
allow for this movement.

There are other disadvantages or potential problems that may arise as a result of continuous
construction. Often beams are built into columns or walls in order to obtain continuity,
thereby introducing large additional lateral forces and moments in these supporting elements.
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Perhaps the most significant difference between the behaviour of statically indeterminate
and statically determinate prestressed concrete structures is the restraining actions that
develop in continuous structures as a result of imposed deformations. As a statically
indeterminate structure is prestressed, reactions are usually introduced at the supports. The
supports provide restraint to the deformations caused by prestress (both axial shortening and
curvature). The supports also provide restraint to volume changes of the concrete caused by
temperature variations and shrinkage. The reactions induced at the supports during the
prestressing operation cause so-called secondary moments and shears in a continuous member,
and these actions may or may not be significant in design. Methods for determining the
magnitudes of the secondary effects and their implications in the design for both strength and
serviceability are discussed in this chapter.

9.2 Tendon profiles

The tendon profile used in a continuous structure is selected primarily to maximize the
beneficial effects of prestress and to minimize the disadvantages discussed in Section 9.1. The
shape of the profile may be influenced by the techniques adopted for construction.
Construction techniques for prestressed concrete structures have changed considerably over
the past 40 years with many outstanding and innovative developments. Continuity can be
achieved in many ways. Some of the more common construction techniques and the
associated tendon profiles are briefly discussed here. The methods presented later in the
chapter for the analysis of continuous structures are not dependent, however, on the method of
construction.

Figure 9.1a represents the most basic tendon configuration for continuous members and is
used extensively in slabs and relatively short, lightly loaded beams. Because of the straight
soffit, simplicity of formwork is the main advantage of this type of construction. The main
disadvantage is the high immediate loss of prestress caused by friction between the tendon
and the duct. With the tendon profile following the shape of the moment diagram, the tendon
undergoes large angular changes over the length of the member. Tensioning from both ends
can be used to reduce the maximum friction loss in long continuous members.

Figure 9.1b indicates an arrangement that has considerable use in longer span structures
subjected to heavy applied loads. By haunching the beam as shown, large eccentricities of
prestress can be obtained in the regions of high negative moment. This arrangement permits
the use of shallower cross-sections in the mid-span region and the reduced cable drape can
lead to smaller friction losses.

Techniques for overlapping tendons or providing cap cables are numerous. Figure 9.1c
shows a tendon layout where the regions of high negative
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moment are provided with extra prestressing. Continuity of the structure is maintained even
though there may be considerable variation of prestress along the member. This general
technique can eliminate some of the disadvantages associated with the profiles shown in
Figures 9.1a and b where the prestressing force is essentially constant throughout the structure.
However, any structural benefits are gained at the expense of extra prestressing and additional
anchorages.

Many types of segmental construction are available and a typical case is

Figure 9.1 Representative tendon profiles.
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represented in Figure 9.1d. Precast or cast in situ segments are stressed together using
prestress couplers to achieve continuity. The couplers and hydraulic jacks are accommodated
during the stressing operation within cavities located in the end surface of the individual
segments. The cavities can later be filled with concrete, cement grout, or other suitable
compounds, as necessary.

In large-span structures, such as bridges spanning highways, rivers, and valleys,
construction techniques are required where falsework is restricted to a minimum. The
cantilever construction method permits the erection of prestressed concrete segments without
the need for major falsework systems. Figure 9.1e illustrates diagrammatically the tendon
profiles for a method of construction where precast elements are positioned alternatively on
either side of the pier and stressed against the previously placed elements, as shown. The
structure is designed initially to sustain the erection forces and construction loads as simple
balanced cantilevers on each side of the pier. When the structure is completed and the
cantilevers from adjacent piers are joined, the design service loads are resisted by the resulting
continuous haunched girders. Construction and erection techniques, such as cantilevered
construction, are continually evolving and considerable ingenuity is evident in the
development of these applications.

Figure 9.1f shows a typical tendon profile for a prestressed concrete portal frame.
Prestressed concrete portal frames have generally not had widespread use. With the sudden
change of direction of the member axis at each corner of the frame, it is difficult to prestress
the columns and beams in a continuous fashion. The horizontal beam and vertical columns are
therefore usually stressed separately, with the beam and column tendons crossing at the frame
corners and the anchorages positioned on the end and top outside faces of the frame, as shown.

9.3 Continuous beams

9.3.1 The effects of prestress

As mentioned in Section 9.1, the deformation caused by prestress in a statically determinate
member is free to take place without any restraint from the supports. In statically
indeterminate members, however, this is not necessarily the case. The redundant supports
impose additional geometric constraints, such as zero deflection at intermediate supports (or
some prescribed non-zero settlement) or zero slope at a built-in end. During the stressing
operation, the geometric constraints may cause additional reactions to develop at the supports,
which in turn change the distribution and magnitude of the moments and shears in the
member. The magnitudes of these additional reactions (usually called hyperstatic reactions)
depend
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on the magnitude of the prestressing force, the support configuration, and the tendon profile.
For a particular structure, a prestressing tendon with a profile that does not cause hyperstatic
reactions is called a concordant tendon. Concordant tendons are discussed further in Section
9.3.2.

The moment induced by prestress on a particular cross-section in a statically indeterminate
structure may be considered to be made up of two components:

(a) The first component is the product of the prestressing force P, and its eccentricity from the
centroidal axis, e. This is the moment that acts on the concrete part of the cross-section
when the geometric constraints imposed by the redundant supports are removed. The
moment Pe is known as the primary moment.

(b) The second component is the moment caused by the hyperstatic reactions, i.e. the
additional moment required to achieve deformations that are compatible with the support
conditions of the indeterminate structure. The moments caused by the hyperstatic reactions
are the secondary moments.

In a similar way, the shear force caused by prestress on a cross-section in a statically
indeterminate member can be divided into primary and secondary components. The primary
shear force in the concrete is equal to the prestressing force, P, times the slope θ, of the
tendon at the cross-section under consideration. For a member containing only horizontal
tendons (θ=0), the primary shear force on each cross-section is zero. The secondary shear
force at cross-section is caused by the hyperstatic reactions.

The resultant internal actions at any section caused by prestress are the algebraic sums of
the primary and secondary effects.

Since the secondary effects are caused by hyperstatic reactions at each support, it follows
that the secondary moments always vary linearly between the supports in a continuous
prestressed concrete member and the secondary shear forces are constant in each span.

9.3.2 Determination of secondary effects using virtual work

In the design and analysis of continuous prestressed concrete members, it is usual to make the
following simplifying assumptions (none of which introduce significant errors for normal
applications):

(a) The concrete behaves in a linear elastic manner within the range of stresses considered.
(b) Plane sections remain plane throughout the range of loading considered.
(c) The effects of external loading and prestress on the member can be
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calculated separately and added to obtain the final conditions, i.e. the principle of
superposition is valid.

(d) The magnitude of the eccentricity of prestress is small in comparison with the member
length, and hence the horizontal component of the prestressing force is assumed to be equal
to the prestressing force at every cross-section.

Consider the two-span beam shown in Figure 9.2a with straight prestressing tendons at a
constant eccentricity e below the centroidal axis. Prior to prestressing, the beam rests on the
three supports at A, B, and C. On each cross-section, prestress causes an axial force P on the
concrete and a negative primary moment, Pe. If the support at B were removed, the hogging
curvature associated with the primary moment would cause the beam to deflect upward at B,
as shown in Figure 9.2b. In the real beam, the deflection at B is zero, as indicated in Figure
9.2c. To satisfy this geometric constraint, a downward reaction is induced at support B,
together with equilibrating upward reactions at supports A and C.

To determine the magnitude of these hyperstatic reactions, one of a number of different
methods of structural analysis can be used. For one or two-fold indeterminate structures, the
force method (or flexibility method) is a convenient approach. For multiply redundant
structures, a displacement method (such as moment distribution, for example) is more
appropriate.

Figure 9.2 Two-span prestressed beam with constant eccentricity.
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Moment–area methods can be used for estimating the deflection of beams from known
curvatures. The principle of virtual work can also be used and is often more convenient. The
principle is briefly outlined below. For a more comprehensive discussion of virtual work, the
reader is referred to a structural analysis text, such as Hall & Kabaila (1977) or Ghali &
Neville (1978).

The principle of virtual work states that if a structure is subjected to an equilibrium force
field (i.e. a force field in which the external forces are in equilibrium with the internal actions)
and a geometrically consistent displacement field (i.e. a displacement field in which the
external displacements are compatible with the internal deformations), then the external work
product, W, of the two fields is equal to the internal work product of the two fields, U. The
force field may be entirely independent of the compatible displacement field.

In the applications discussed here, the compatible displacement field is the actual strain and
curvature on each cross-section caused by the external loads and prestress, together with the
corresponding external displacements. The equilibrium force field consists of a unit external
force (or couple) applied to the structure at the point and in the direction of the displacement
being determined, together with any convenient set of internal actions that are in equilibrium
with this unit force (or couple). The unit force is called a virtual force and is introduced at a
particular point in the structure to enable the rapid determination of the real displacement at
that point. The bending moments caused by the virtual force are designated .

To illustrate the principle of virtual work, consider again the beam of Figure 9.2. In order to
determine the hyperstatic reaction at B, it is first necessary to determine the upward deflection
υB caused by the primary moment when the support at B is removed (as illustrated in Figure
9.3a). If the prestress is assumed constant throughout the length of the beam, the curvature
caused by the primary moment is as shown in Figure 9.3b. A unit virtual force is introduced at
B in the direction of υB, as indicated in Figure 9.3c, and the corresponding virtual moments
are illustrated in Figure 9.3d.

The external work is the product of the virtual forces and their corresponding
displacements:

(9.1)

In this example, the internal work is the integral over the length of the beam of the product of
the virtual moments, , and the real deformations, (−Pe/EI). That is,

(9.2)
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Figure 9.3 The principle of virtual work applied to a two-span beam.

If the virtual force applied to a structure produces virtual axial forces , in addition to virtual
bending, then internal work is also done by the virtual axial forces and the real axial
deformation. For any length of beam, ΔL, a more general expression for internal work is

(9.3)

where M/EI and N/EA are the real curvature and axial strain, respectively, and and are
the virtual internal actions.

An integral of the form

(9.4)

may be considered as the volume of a solid of length ΔL whose plan is the function F(x) and
whose elevation is the function . Consider the two functions F(x) and illustrated in
Figure 9.4 and the notation also shown. The volume integral (Equation 9.4) can be evaluated
exactly using Simpson’s rule if the shape of the function F(x) is linear or parabolic and
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Figure 9.4 Notation for volume integration.

the shape of is linear. Thus,

(9.5)

In the example considered here, the function F(x) is constant and equal to−Pe/EI (i.e.
FL=FM=FR=−Pe/EI) and the function is the virtual moment diagram , which is also
negative and varies linearly from A to B and from B to C, as shown in Figure 9.3d. Evaluating
the internal work in the spans AB and BC, Equation 9.2 gives

Therefore,

(9.6a)

With , and , Equation 9.5 gives

(9.6b)

The principle of virtual work states that

(9.7)

and substituting Equations 9.1 and 9.6b into Equation 9.7 gives

(9.8)

It is next necessary to calculate the magnitude of the redundant reaction, RB, required to
restore compatibility at B, i.e. the value of RB required to produce a downward deflection at B
equal in magnitude to the upward
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deflection given in Equation 9.8. It is convenient to calculate the flexibility coefficient, fB,
associated with the released structure. The flexibility coefficient fB is the deflection at B
caused by a unit value of the redundant reaction at B. The curvature diagram caused by a unit
vertical force at B has the same shape as the moment diagram shown in Figure 9.3d. That is,
the curvature diagram caused by a unit force at B, (M/EI), and the virtual moment diagram,

, have the same shape and the same sign. Using the principle of virtual work and Equation
9.5 to evaluate the volume integral,

(9.9)

Compatibility requires that the deflection of the real beam at B is zero, i.e.

(9.10)

and therefore

(9.11)

The negative sign indicates that the hyperstatic reaction is downward (or opposite in direction
to the unit virtual force at B). With the hyperstatic reactions thus calculated, the secondary
moments and shears are determined readily. The effects of prestress on the two-span beam
under consideration are shown in Figure 9.5.

In a statically determinate beam under the action of prestress only, the resultant force on the
concrete at a particular cross-section is a compressive force C equal in magnitude to the
prestressing force and located at the position of the tendon. The distance of the force C from
the centroidal axis is therefore equal to the primary moment divided by the prestressing force,
Pe/P=e. In a statically indeterminate member, if secondary moments exist at a section, the
location of C does not coincide with the position of the tendon. The distance of C from the
centroidal axis is the total moment due to prestress (primary plus secondary) divided by the
prestressing force.

For the beam shown in Figure 9.5a, the total moment due to prestress is illustrated in Figure
9.5e. The position of the stress resultant C varies as the total moment varies along the beam.
At the two exterior supports (ends A and C), C is located at the tendon level (i.e. a distance e
below the centroidal axis), since the secondary moment at each end is zero. At the interior
support B, the secondary moment is 3Pe/2, and C is located at e/2 above the centroidal axis
(or 3e/2 above the tendon level). In general, at any section of a continuous beam, the distance
of C from the level of the
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Figure 9.5 Effects of prestress.

tendon is equal to the secondary moment divided by the prestressing force.
If the position of C at each section is plotted along the beam, a line known as the pressure

line is obtained. The pressure line for the beam of Figure 9.5a is shown in Figure 9.5f.
If the prestressing force produces hyperstatic reactions, and hence secondary moments, the

pressure line does not coincide with the tendon profile. If, however, the pressure line and the
tendon profile do coincide at every section along a beam, there are no secondary moments and
the tendon profile is said to be concordant. In a statically determinate member, of course, the
pressure line and the tendon profile always coincide.

Linear transformation of a tendon profile

The two-span beam shown in Figure 9.6 is similar to the beam in Figure 9.2a (and Figure
9.5a), except the eccentricity of the tendon is not constant but varies linearly in each span. At
the exterior supports, the eccentricity is e (as in the previous examples) and at the interior
support the eccentricity is ke, where k is arbitrary. If the tendon is above the centroidal axis at
B, as shown, k is negative.

The primary moment at a section is the product of the prestressing force
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Figure 9.6 Moments induced by prestress in a two-span beam with a linearly-varying tendon profile.

and the tendon eccentricity and is shown in Figure 9.6b. If the support at B is removed, the
deflection at B (υB) caused by the primary moment may be calculated using the principle of
virtual work. The virtual moment diagram, , is shown in Figure 9.3d. Using Equation 9.5 to
perform the required volume integration.

(9.12)

The flexibility coefficient associated with a release at support B is given by Equation 9.9 and
the compatibility condition of zero deflection at the interior support is expressed by Equation
9.10. Substituting Equations 9.9 and 9.12 into Equation 9.10 gives the hyperstatic reaction at
B:

(9.13)

The secondary moments produced by this downward reaction at B are shown in Figure 9.6c.
The secondary moment at the interior support is (RB×2L)/4=Pe(1+2k)/2. Adding the primary
and secondary moment
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diagrams gives the total moment diagram produced by prestress and is shown in Figure 9.6d.
This is identical with the total moment diagram shown in Figure 9.5e for the beam with a
constant eccentricity e throughout.

The total moments induced by prestress are unaffected by variations in the eccentricity at
the interior support. The moments due to prestress are produced entirely by the eccentricity of
the prestress at each end of the beam. If the tendon profile remains straight, variation of the
eccentricity at the interior support does not impose transverse loads on the beam (except
directly over the supports) and therefore does not change the moments caused by prestress. It
does change the magnitudes of both the primary and secondary moments, however, but not
their sum. If the value of k in Figure 9.6 is −0.5 (i.e. the eccentricity of the tendon at support
B is e/2 above the centroidal axis), the secondary moments in Figure 9.6c disappear. The
tendon profile is concordant and follows the pressure line shown in Figure 9.5f.

A change in the tendon profile in any beam that does not involve a change in the
eccentricities at the free ends and does not change the tendon curvature within each span will
not affect the total moments due to prestress. Such a change in the tendon profile is known as
linear transformation, since it involves a change in the tendon eccentricity at each cross-
section by an amount that is linearly proportional to the distance of the cross-section from the
end of each span.

Linear transformation can be used in any beam to reduce or eliminate secondary moments.
For any statically indeterminate beam, the tendon profile in each span can be made
concordant by linearly transforming the profile so that the total moment diagram and the
primary moment diagram are the same. The tendon profile and the pressure line for the beam
will then coincide.

The calculation of stresses at any section in an uncracked structure due to the prestressing
force can be made using the following equation:

(9.14)

The term e* is the eccentricity of the pressure line from the centroidal axis of the member, and
not the actual eccentricity of the tendon (unless the tendon is concordant and the pressure line
and tendon profile coincide). The significance of the pressure line is now apparent. It is the
location of the concrete stress resultant caused by the axial prestress, the moment caused by
the tendon eccentricity, and the moment caused by the hyperstatic support reactions.
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9.3.3 Analysis using equivalent loads

In the previous section, the force method was used to determine the hyperstatic reaction in a
one-fold indeterminate structure. This method is useful for simple structures, but is not
practical for manual solution when the number of redundants becomes large (more than about
three).

A procedure more suited to determining the effects of prestress in highly indeterminate
structures is the equivalent load method. In this method, the forces imposed on the concrete
by the prestressing tendons are considered as externally applied loads. The structure is then
analysed under the action of these equivalent loads using moment distribution or an
equivalent method of structural analysis. The equivalent loads include the loads imposed on
the concrete at the tendon anchorage (which may include the axial prestress, the shear force
resulting from a sloping tendon, and moment due to an eccentrically placed anchorage) and
the transverse forces exerted on the member wherever the tendon changes direction.
Commonly occurring tendon profiles and their equivalent loads are illustrated in Figure 9.7.

Figure 9.7 Tendon profiles and equivalent loads.
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The total moment caused by prestress at any cross-section is obtained by analysing the
structure under the action of the equivalent loads in each span. The moment due to prestress is
caused only by moments applied at each end of a member (due to an eccentrically located
tendon anchorage) and by transverse loads resulting from changes in the direction of the
tendon anywhere between the supports. Changes in tendon direction at a support (such as at
support B in Figure 9.6a) do not affect the moment caused by prestress, since the transverse
load passes directly into the support. This is why the total moments caused by prestress in the
beams of Figures 9.5 and 9.6 are identical.

The primary moment at any section is the product of the prestress and its eccentricity, Pe.
The secondary moment may therefore be calculated by subtracting the primary moment from
the total moment caused by the equivalent loads.

Moment distribution

Moment distribution is a relaxation procedure developed by Hardy Cross (1930) for the
analysis of statically indeterminate beams and frames. It is a displacement method of analysis
that is ideally suited to manual calculation. Although the method has been replaced in many
applications by more computer-oriented displacement methods, it remains a valuable tool for
practising engineers because it is simple, easy to use, and provides an insight into the physical
behaviour of the structure.

Initially, the rotational stiffness of each member framing into each joint in the structure is
calculated. Joints in the structure are then locked against rotation by the introduction of
imaginary restraints. With the joints locked, fixed-end moments (F.E.M.) develop at the ends
of each loaded member. At a locked joint, the imaginary restraint exerts a moment on the
structure equal to the unbalanced moment, which is the resultant of all the fixed-end moments
at the joint. The joints are then released, one at a time, by applying a moment to the joint
equal and opposite to the unbalanced moment. This balancing moment is distributed to the
members framing into the joint in proportion to their rotational stiffnesses. After the
unbalanced moment at a joint has been balanced, the joint is relocked. The moment
distributed to each member at a released joint induces a carry-over moment at the far end of
the member. These carry-over moments are the source of new unbalanced moments at
adjacent locked joints. Each joint is unlocked, balanced, and then relocked, in turn, and the
process is repeated until the unbalanced moments at every joint are insignificant. The final
moment in a particular member at a joint is obtained by summing the initial fixed-end
moment and all the increments of distributed and carryover moments. With the moment at
each end of a member thus calculated, the moments and shears at any point along the member
can be obtained from statics.
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Consider the member AB shown in Figure 9.8a. When the couple MAB is applied to the
rotationally released end at A, the member deforms as shown and a moment MBA is induced at
the fixed support B at the far end of the member. The relationships between the applied
couple MAB and the rotation at A (θA) and between the couples at A and B may be expressed
as

(9.15)

where kAB is the stiffness coefficient for the member AB and the term C is the carry-over
factor. For a prismatic member, it is a simple matter (using

Figure 9.8 Stiffness coefficients, carry-over factors and fixed-end moments for prismatic members.
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virtual work) to show that for the beam in Figure 9.8a,

(9.16)

Expressions for the stiffness coefficient and carry-over factor for members with other support
conditions are shown in Figures 9.8b–d. Fixed-end moments for members carrying distributed
and concentrated loads are shown in Figures 9.8e–i.

The stiffness coefficient for each member framing into a joint in a continuous beam or
frame is calculated and summed to obtain the total rotational stiffness of the joint, Σk. The
distribution factor for a member at the joint is the fraction of the total balancing moment
distributed to that particular member each time the joint is released. Since each member
meeting at a joint rotates by the same amount, the distribution factor for member AB is kAB/Σk.
The sum of the distribution factors for each member at a joint is therefore unity.

An example of moment distribution applied to a continuous beam is given in the following
example. For a more detailed description of moment distribution, the reader is referred to Hall
& Kabaila (1977) or Ghali & Neville (1978), or other standard texts on structural analysis.

Example 9.1 —Continuous beam

The continuous beam shown in Figure 9.9a has a rectangular cross-section 400 mm wide and
900 mm deep. The prestressing force is assumed to be constant along the length of the beam
and equal to 1800 kN. The tendon profile shown in Figure 9.9a is adopted for illustrative
purposes only. In practice, a post-tensioned tendon profile with sharp kinks or sudden changes
in direction would not be used. Relatively short lengths of more gradually curved tendons
would be used instead of the kinks shown at B, C, and D. The results of an analysis using the
idealized tendon profile do, however, provide a reasonable approximation of the behaviour of
a more practical beam with continuous curved profiles at B, C, and D.

In span AB, the shape of the parabolic tendon is y=−0.00575x2+ 0.1025x−0.1 and its slope
is dy/dx=0.1025−0.01025x, where x is the distance (in metres) along the beam from support A
and y is the depth (in metres) of the tendon below the centroidal axis. At support A (x=0), the
tendon is 100 mm above the centroidal axis (y=−0.1) and the corresponding moment applied
at the support is 180 kNm, as shown in Figure 9.9b. The slope of the tendon at A is
dy/dx=0.1025 rads and the vertical component of prestress is therefore 1800×0.1025=184.5
kN. The parabolic tendon exerts an upward uniformly distributed load on span AB. With the
cable drape being h=350+[(100+350)/2]=575 mm=0.575 m, the



Page 337

Figure 9.9 Equivalent loads and actions induced by prestress in Example 9.1.

equivalent load wp is

The slope of the parabolic tendon at B is θBA=dy/dx=−0.1275 rad and, in span BD, the slope of
the straight tendon at B is θBC=(0.35+0.35)/
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9=0.0778 rad. The change of slope at B is thereforeθBC−θBA=0.205 rad, and therefore the
vertical downward force at B is 1800×0.205=369.5 kN.

The angular change at C is θC=2×0.0778=0.1556 rad and the upward equivalent point load
at C is therefore 1800×0.1556=280 kN. The slope of the tendon in CD is θDC=−0.0778 rad,
and in DE, θDE=0.3/8=0.0375 rad. The change in tendon direction at D is therefore
θDE−θDC=0.115 rad and the transverse equivalent point load at D is 207.5 kN (downward). At
the free end E, the equivalent couple is 1800×0.05=90 kNm and the vertical component of the
prestressing force is upward and equal to PθED=1800×0.0375=67.5 kN.

All these equivalent loads are shown in Figure 9.9b. Note that the equivalent loads are self-
equilibrating. The vertical equivalent loads at A, B, and D pass directly into the supports and
do not affect the moment induced in the member by prestress.

The continuous beam is analysed under the action of the equivalent loads using moment
distribution as outlined in Table 9.1.

The total moment diagram caused by prestress (as calculated in Table 9.1) and the primary
moments are illustrated in Figures 9.9c and d, respectively. The secondary moment diagram
in Figure 9.9e is obtained by subtracting the primary moments from the total moments and the
hyperstatic reactions shown in Figure 9.9f are deduced from the secondary moment diagram.

The secondary shear force diagram corresponding to the hyperstatic

Table 9.1 Moment distribution table for Example 9.1.
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Figure 9.10 Shear force components caused by prestress in Example 9.1.

reactions is illustrated in Figure 9.10a. The total shear force diagram is obtained from statics
using the total moments calculated by moment distribution and is given in Figure 9.10b. By
subtracting the secondary shear force from the total shear force at each section, the primary
shear force diagram shown in Figure 9.10c is obtained. Note that the primary shear force at
any section is the vertical component of prestress, Pθ. The reader may verify the results given
in Figures 9.9 and 9.10 by calculating the hyperstatic reactions at B using the force method
and the principle of virtual work.

Example 9.2 —Fixed-end beams

The beams shown in Figures 9.11a, 9.12, and 9.13a are rotationally restrained at each end but
are not restrained axially. The moments induced by prestress in each member are required.
Assume that the prestressing force is constant throughout and the member has a constant EI.

Case (a) The beam shown in Figure 9.11a is prestressed with a parabolic tendon profile
with unequal end eccentricities. The equivalent loads on the structure are illustrated in Figure
9.11b, with end moments of PeA and PeB, as shown, and an equivalent uniformly distributed
upward load of wp=8Ph/L2.

If the rotational restraints at each end of the beam are released, the curvature is due entirely
to the primary moment and is directly proportional to the tendon eccentricity, as shown in
Figure 9.11c. The final curvature diagram is obtained by adding the curvature caused by the
primary moments to the curvature caused by the restraining secondary moments at
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Figure 9.11 Moments induced by a parabolic tendon in a fixed-end member.

each end of the beam, and , respectively. The secondary curvature caused by these
secondary moments varies linearly over the length of the beam, so that the final curvature
involves a linear shift in the base line of the primary curvature diagram (see Figure 9.11c).

It is straightforward, using virtual work, to calculate the restraining moments and
required to produce zero slope at each end of the beam, i.e. θA=θB=0. However, because the
beam is fixed-ended, the moment-area theorems reduce the problem to one that can be solved
by inspection. Since the slopes at each end are identical, the net area under the total curvature
diagram must be zero, i.e. the base line in Figure 9.11c must be translated and rotated until the
area under the curvature diagram is zero. In addition, because support A lies on the tangent to
the beam axis at B, the first moment of the final curvature diagram about support A must also
be zero. With these two requirements, the total curvature diagram is as shown in Figure 9.11d.

Note that this is the only solution in which the net area under the curv-
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ature diagram is zero and the centroids of the areas above and below the base line are the
same distance from A. It should also be noted that the fixed-end moment at each end of the
beam is , which is independent of the initial eccentricities at each end, eA and
eB. Evidently, the moment induced by prestress depends only on the prestressing force and the
cable drape, and not on the end eccentricities. This conclusion was foreshadowed in the
discussion of linear transformation in Section 9.3.2. The secondary moment diagram is
obtained by subtracting the primary moment diagram from the total moment diagram. From
Figures 9.11c and d, it can be seen that

(9.17)

The secondary curvature diagram caused by the linearly varying secondary moments is shown
in Figure 9.11e.

Case (b) The beam in Figure 9.12 is prestressed with a single straight tendon with arbitrary
end eccentricities. This beam is essentially the same as that in the previous example, except
that the tendon drape is zero. To satisfy the moment–area theorems in this case, the base line
of the total curvature diagram coincides with the primary curvature diagram, i.e. the total
moment induced by prestress is everywhere zero, and the primary and secondary moments at
each cross-section are equal in magnitude and opposite in sign. By substituting h=0 in
Equations 9.17, the secondary moments at each end of the beam of Figure 9.12 are

Figure 9.12 Fixed-end beam with straight tendon.

Case (c) The beam in Figure 9.13a is prestressed with the harped tendon shown. The primary
curvature diagram is shown in Figure 9.13b and the total curvature diagram, established by
satisfaction of the moment–area theorems, is illustrated in Figure 9.13c. As for the previous
case, the total curvature (moment) induced by prestress is independent of the end
eccentricities eA and eB. The curvature induced by the secondary moments is
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Figure 9.13 Moments induced by a harped tendon in a fixed-end beam.

given in Figure 9.13d, and the secondary moments at each support are

9.3.4 Practical tendon profiles

In a span of a continuous beam, it is rarely possible to use a tendon profile that consists of a
single parabola, as shown in Figure 9.11a. A more realistic tendon profile consists of a series
of segments each with a different shape. Frequently, the tendon profile is a series of parabolic
segments, concave in the spans and convex over the interior supports, as illustrated in Figure
9.1a. The convex segments are required to avoid sharp kinks in the tendon at the supports.

Consider the span shown in Figure 9.14, with a tendon profile consisting of three parabolic
segments. Adjacent segments are said to be compatible at the points of intersection if the
slope of each segment is the same. Compatible segments are desirable to avoid kinks in the
tendon profile.

In Figure 9.14, B is the point of maximum eccentricity, e1, and is located a distance ofα1L
from the interior support. Both parabolas 1 and 2 have
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Figure 9.14 Tendon profile with parabolic segments.

zero slope at B. The point of inflection at C between the concave parabola 2 and the convex
parabola 3 is located a distance α2L from the interior support. Parabolas 2 and 3 have the same
slope at C. Over the internal support at D, the eccentricity is e2 and the slope of parabola 3 is
zero. By equating the slopes of parabolas 2 and 3 at C, it is simple, using geometry, to show
that

(9.18)

and the point C lies on the straight line joining the points of maximum eccentricity, B and D.
The slope of parabolas 2 and 3 at C is

(9.19)

The curvature of each of the three parabolic segments (xp1, xp2, and xp3, respectively) are given
by

(9.20a)

(9.20b)

(9.20c)

where R1, R2, and R3 are the radius of curvature of parabolas 1, 2 and 3, respectively.
The length of the convex parabola, α2L, should be selected so that the
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radius of curvature of the tendon is not less than the minimum value recommended by the
appropriate building code. For a multi-strand system, R should be greater than about 75 dd,
where dd is the inside diameter of the duct.

Equations 9.18 and 9.20 are useful for the calculation of the equivalent loads imposed by a
realistic draped tendon profile and the determination of the effects of these loads on the
behaviour of a continuous structure.

Example 9.3

The fixed-end beam shown in Figure 9.15a is to be analysed. The tendon profile ACDEB
consists of three parabolic segments and the prestressing force is 2500 kN throughout the 16
m span. The convex segments of the tendon at each end of the beam are identical, with zero
slope at A and B and a radius of curvature R3=8 m. The tendon eccentricity at mid-span and at
each support is 300 mm, i.e. e1=e2=0.3 m, andα1 (as defined in

Figure 9.15 Fixed-end beam with a realistic tendon profile (Example 9.3).
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Figure 9.14) equals 0.5. From Equation 9.20c,

The convex parabolic segments therefore extend for a distance α2L=1.2 m at each end of the
span, as shown.

The depth of the points of inflection (points C and E) below the tendon level at each
support is obtained using Equation 9.18:

The curvature of the concave parabolic segment CDE extending over the middle
16−(2×1.2)=13.6 m of the span is given by Equation 9.20b:

and the equivalent uniformly distributed upward load exerted by the concrete tendon is

The equivalent load wp2 acts over the middle 13.6 m of the span. The equivalent downward
uniformly distributed load imposed at each end of the beam by the convex tendons AC and
EB is

The equivalent loads on the beam imposed by the tendon are shown in Figure 9.15b. For this
beam, the vertical component of prestress at each support is zero (since the slope of the
tendon is zero) and the uniformly distributed loads are self-equilibrating.

The total moment diagram caused by prestress for this prismatic beam may be obtained by
using the moment-area principles discussed in Equation 9.2, i.e. by translating the base line of
the primary moment diagram (Pe) so that the net area under the moment diagram is zero.
Alternatively, the total moment diagram may be obtained by calculating the fixed-end
moments caused by the equivalent distributed loads in Figure 9.15b. The total moment
diagram caused by prestress is shown in Figure 9.15c. By subtracting the primary moments
from the total moments, the linear secondary moment diagram shown in Figure 9.15d is
obtained.
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If an idealized tendon such as that shown in Figure 9.11a was used to model this more
realistic profile (with eA=eB=0.3 m and h=0.6 m), the total moment at each end (see Figure
9.11d) is

which is about 8% higher than the value shown in Figure 9.15c.

9.3.5 Members with varying cross-sectional properties

The techniques presented for the analysis of continuous structures hold equally well for
members with non-uniform section properties. Section properties may vary owing to
haunching or changes in member depth (as illustrated in Figures 9.1b, c, and e), from varying
web and flange thicknesses, or simply from cracking in regions of high moment.

Increasing the member depth by haunching is frequently used to increase

Figure 9.16 Moments induced by prestress in haunched members.
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the tendon eccentricity in the peak moment regions at the interior supports. In such members,
the position of the centroidal axis varies along the member. If the tendon profile is a smooth
curve, and the centroidal axis suffers sharp changes in direction or abrupt steps (where the
member depth changes suddenly), the total moment diagram caused by prestress also exhibits
corresponding kinks or steps, as shown in Figure 9.16.

To determine the fixed-end moments and carry-over factors for members with varying
section properties and to calculate the member displacements, the principle of virtual work
may be used. The internal work is readily calculated using Equation 9.3 by expressing the
section properties (EI and EA) as functions of position x. By dividing the structure into small
segments, Equation 9.5 can be used in many practical problems to provide a close
approximation of the volume integral for internal work in a non-prismatic member.

9.3.6 Effects of creep

When a statically indeterminate member is subjected to an imposed deformation, the resulting
internal actions are proportional to the member stiffness. Since creep gradually reduces
stiffness, the internal actions caused by an imposed deformation in a concrete structure
decrease with time. Imposed deformations are caused by volume changes, such as shrinkage
and temperature changes, and by support settlements or rotations. Under these deformations,
the time-dependent restraining actions can be estimated using a reduced or effective modulus
for concrete. The age-adjusted effective modulus defined in Equation 2.14 may be used to
model adequately the effects of creep.

Provided the creep characteristics are uniform throughout a structure, creep does not cause
redistribution of internal actions caused by imposed loads. The effect of creep in this case is
similar to a gradual and uniform change in the elastic modulus. Deformations increase
significantly, but internal actions are unaffected. When the creep characteristics are not
uniform, redistribution of internal actions does occur with time. In real structures, the creep
characteristics are rarely uniform throughout. Portions of a structure may be made of different
materials or of concrete with different composition or age. The rate of change of curvature
due to creep is dependent on the extent of cracking and the size and position of the bonded
reinforcement. The creep characteristics are therefore not uniform if part of the structure has
cracked or when the bonded reinforcement layout varies along the member. In general,
internal actions are redistributed from the regions with the higher creep rate to the regions
with the lower creep rate. Nevertheless, the creep induced redistribution of internal actions in
indeterminate structures is generally relatively small.

Since prestress imposes equivalent loads on structures rather than fixed
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Figure 9.17 Providing continuity at an internal support.

deformations, the internal actions caused by prestress are not significantly affected by creep.
The internal actions are affected in so far as creep causes a reduction of the prestressing force
of the order of 5–15%. Hyperstatic reactions induced by prestress in indeterminate structures
are not therefore significantly relieved by creep.

If the structural system changes after the application of some of the prestress, creep may
cause a change in the hyperstatic reactions. For example, the two-span beam shown in Figure
9.17 is fabricated as two precast units of length L and joined together at the interior support by
a cast in situ joint. Creep causes the gradual development of hyperstatic reactions with time
and the resulting secondary moments and shears. After the in situ joint is constructed, the
structure is essentially the same as that shown in Figure 9.5a.

Before the joint in Figure 9.17 is cast, the two precast units are simply supported, with zero
deflection but some non-zero slope at the interior support. Immediately after the joint is made
and continuity is established, the primary moment in the structure is the same as that shown in
Figure 9.5b, but the secondary moment at B (and elsewhere) is zero. With time, creep causes
a gradual change in the curvature on each cross-section. If the support at B was released, the
member would gradually deflect upward due to the creep induced hogging curvature
associated with the primary moment, Pe. If it is assumed that the creep characteristics are
uniform and that the prestressing force is constant throughout, the time-dependent upward
deflection caused by prestress is obtained by multiplying the deflection given in Equation 9.8
by the creep coefficient:

(9.21)

It is assumed here that the restraint offered to creep by the bonded reinforcement is
insignificant (i.e. the parameter αused in Equation 3.76 and defined in Section 3.8.3 is taken
as unity).

The short-term deflection at B caused by a unit value of the redundant force applied at the
release B is given in Equation 9.9. Owing to creep, however, the redundant at B is gradually
applied to the structure. It is therefore appropriate to use the age-adjusted effective modulus
(Ēe given
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in Equation 2.14) to determine the corresponding time-dependent deformations (elastic plus
creep). Substituting Ēe for E in Equation 9.9 gives

(9.22)

To enforce the compatibility condition that the deflection at B is zero, Equation 9.10 gives

(9.23)

where RB(t) is the creep induced hyperstatic reaction at B, and RB is the hyperstatic reaction
that would have developed at B if the structure was initially continuous and later prestressed
with a straight tendon. The reaction RB is shown in Figure 9.5 and given in Equation 9.11. For
typical long-term values of the creep and aging coefficient, say and χ=0.8,
Equation 9.23 gives

In general, if R is any hyperstatic reaction or the restrained internal action that would occur at
a point due to prestress in a continuous member, and R(t) is the corresponding creep induced
value if the member is made continuous only after the application of the prestress, then

(9.24)

If the creep characteristics are uniform throughout the structure, then Equation 9.24 may be
applied to systems with any number of redundants.

Providing continuity at the interior supports of a series of simple precast beams not only
restrains the time-dependent deformation caused by prestress, but also restrains the
deformation due to the external loads. For all external loads applied after continuity has been
established, the effects can be calculated by moment distribution or an equivalent method of
analysis. Under the loads applied prior to casting the joints when the precast units are simply
supported (such as self-weight), the moments at each interior support are initially zero.
However, after the joint has been cast, the creep-induced deformation resulting from the self-
weight moments in the spans is restrained and moments develop at the supports. For the beam
shown in Figure 9.5a, the moment at B due to self-weight is MB=wswL2/8. For the segmental
beam shown in Figure 9.17, it can be easily shown that the
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restraining moment that develops at support B due to creep and self-weight is

9.4 Statically indeterminate frames

The procedures discussed for the analysis of continuous beams can be applied equally well to
indeterminate frames. The equivalent load method is a convenient approach for the
determination of primary and secondary moments in framed structures. In the treatment of
continuous beams in the previous section, it was assumed that all members were free to
undergo axial shortening. This is often not the case in real structures. When the horizontal
member of a portal frame, for example, is prestressed, significant restraint to axial shortening
may be provided by the flexural stiffness of the vertical columns. Moment distribution can be
used to determine the internal actions that develop in the structure as a result of the axial
restraint.

Consider the single-bay portal frame shown in Figure 9.18a. Owing to the axial shortening
of the girder BC, the top of each column moves laterally by an amount Δ. The fixed-end
moments induced in the structure are shown in Figure 9.18b. If the girder BC was free to
shorten (i.e. was unrestrained by the columns), the displacement Δ that would occur 
immediately after the application of a prestressing force P to the girder is

(9.25)

This value of Δ is usually used as a starting point in the analysis. The fixed-end moments in
the supporting columns due to a relative lateral end

Figure 9.18 Fixed-end moments in a fixed-base frame due to axial shortening of the girder.
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displacement of Δ are given by

(9.26)

and a moment distribution is performed to calculate the restraining actions produced by the
fixed-end moments. If the base of the frame at A was pinned rather than fixed, the fixed end
moment at B due to the displacement Δ would be (3EcIc/Lc

2) Δ. In addition to bending in the
beam and in the columns, an outward horizontal reaction is induced at the base of each
column and the girder BC is therefore subjected to tension. The tension in BC will reduce the
assumed axial shortening, usually by a small amount. If the reduction in Δ is significant, a 
second iteration could be performed using the reduced value for Δ to obtain a revised estimate 
of the fixed-end moments and, hence, a more accurate estimate of the axial restraint.

The magnitude of the axial restraining actions depends on the relative stiffness of the
columns and girder. The stiffer the columns, the greater is the restraint to axial shortening of
the girder, and hence the larger is the reduction in prestress in the girder. On the other hand,
slender columns offer less resistance to deformation and less restraint to the girder.

Axial shortening of the girder BC can also occur due to creep and shrinkage. A time
analysis to include these effects can be made by using the age-adjusted effective modulus for
concrete, instead of the elastic modulus, to model the gradually applied restraining actions
caused by creep and shrinkage.

The internal actions that arise in a prestressed structure as a result of the restraint of axial
deformation are sometimes called tertiary effects. These effects are added to the primary and
secondary effects (calculated using the equivalent load method) to obtain the total effect of
prestress in a framed structure.

Example 9.4

Consider the single bay, fixed-base portal frame shown in Figure 9.19a. The vertical columns
AB and ED are prestressed with a straight tendon profile, while the horizontal girder BD is
post-tensioned with a parabolic profile, as shown. The girder BD has a rectangular cross-
section 1200 mm by 450 mm and the column dimensions are 900 mm by 450 mm. The girder
carries a uniformly distributed live load of 10 kN/m, a superimposed dead load of 5 kN/m,
and the self-weight of the girder is 13 kN/m. If Ec=30 000 MPa, the moments caused by the
total uniformly distributed load on the girder (live load+dead load+self-weight=28 kN/m) are
calculated using moment distribution and are shown in Figure 9.19b.

By satisfying the serviceability requirements (as discussed in Chapter 3),
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Figure 9.19 Actions in fixed-base portal frame of Example 9.4.

an estimate of the prestressing force and the tendon profile can be made for both the girder
BD and the columns. For the girder, the tendon profile shown in Figure 9.19a is selected and
the effective prestress Pe,BD required to balance the self-weight plus dead load is determined:
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If the time-dependent losses are taken as 25%, the average prestressing force in the girder
immediately after transfer is Pi,BD=3000 kN.

To determine the effective prestress in the columns, the primary moments in the girder and
in the columns at the corner connections B and D are taken to be the same. If the eccentricity
in the column at B (at the centroidal axis of the girder) is 400 mm, as shown in Figure 9.19a,
then

Therefore

The time-dependent losses in the columns are also taken as 25% and the prestressing force
immediately after transfer is therefore Pi,AB=3375 kN.

The equivalent load method and moment distribution are used here to calculate the primary
and secondary moments caused by prestress. The equivalent loads imposed by the tendon on
the concrete members immediately after prestressing are shown in Figure 9.19c. The fixed-
end moment caused by prestress at each end of span BD is obtained using the results of the
fixed-end beam analysed in Example 9.2, case (a) (and illustrated in Figure 9.11) and is given
by

The fixed-end moments in the vertical columns due to the straight tendon profile are zero, as
was determined for the fixed-end beam analysed in Example 9.2, case (b). From a moment
distribution, the primary and secondary moments caused by prestress are calculated and are
illustrated in Figure 9.19d.

To calculate the tertiary effect of axial restraint, the axial shortening of BD immediately
after prestressing is estimated using Equation 9.25:

The fixed-end moment in the columns is obtained from Equation 9.26 and is given by

Moment distribution produces the tertiary moments shown in Figure 9.19e. The restraining
tensile axial force induced in the girder BD is only 12.6 kN and, compared with the initial
prestress, is insignificant in this case.
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9.5 Design of continuous beams

9.5.1 General

The design procedures outlined in Chapter 8 for statically determinate beams can be extended
readily to cover the design of indeterminate beams. The selection of tendon profile and
magnitude of prestress in a continuous beam is based on serviceability considerations, as is
the case for determinate beams. Load balancing is a commonly used technique for making an
initial estimate of the level of prestress required to control deflections. The design of
individual cross-sections for bending and shear strength, the estimation of losses of prestress,
and the design of the anchorage zones are the same for all types of beams, irrespective of the
number of redundants.

In continuous beams, the satisfaction of concrete stress limits for crack control must
involve consideration of both the primary and secondary moments caused by prestress.
Concrete stresses resulting from prestress should be calculated using the pressure line, rather
than the tendon profile, as the position of the resultant prestress in the concrete.

Because of the relatively large number of dependent and related variables, the design of
continuous beams tends to be more iterative than the design of simple beams, and more
dependent on the experience and engineering judgement of the designer. A thorough
understanding of the behaviour of continuous prestressed beams and a knowledge of the
implications of each design decision is of great benefit.

9.5.2 The service load range—before cracking

Prior to cracking, the behaviour of a continuous beam is essentially linear and the principle of
superposition can be used in the analysis. This means that the internal actions and
deformations caused by prestress and those caused by the external loads can be calculated
separately using linear analyses and the combined effects obtained by simple summation.

Just as for simple beams, a designer must ensure that a continuous beam is serviceable at
the two critical loading stages, immediately after transfer (when the prestress is at its
maximum and the applied service loads are small) and under the full loads after all losses
have taken place (when the prestress is at a minimum and the applied loads are at a
maximum).

In order to obtain a good estimate of the in-service behaviour, the prestressing force must
be accurately known at each cross-section. This involves a reliable estimate of losses, both
short and long-term. It is also important to know the load at which flexural cracking is likely
to occur. In Section 3.6.2, it was observed that creep and shrinkage gradually relieve the
concrete of prestress and transfer the resultant compression from the concrete to the bonded
reinforcement. To make reliable estimates of the
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cracking moment at a particular cross-section, therefore, involves consideration of the time-
dependent effects of creep and shrinkage.

Prior to cracking, load balancing can be used in design to establish a suitable effective
prestressing force and tendon profile. The concept of load balancing was introduced in
Section 1.5.3 and involves balancing a preselected portion of the applied load (and self-
weight) with the transverse equivalent load imposed on the beam by the draped tendons.
Under the balanced load, wb, the curvature on each cross-section is zero, the beam does not
therefore deflect, and each cross-section is subjected only to the longitudinal axial prestress
applied at the anchorages.

By selecting a parabolic tendon profile with the drape, h, as large as cover requirements
permit, the minimum prestressing force required to balance wb is calculated from

(9.27)

This equation is a rearrangement of Equation 1.7. In order to control the final deflection of a
continuous beam, the balanced load wb is often taken to be the sustained or permanent load (or
some large percentage of it).

Because of its simplicity, load balancing is probably the most popular approach for
determining the prestressing force in a continuous member. Control of deflection is an
obvious attraction. However, load balancing does not guard against cracking caused by the
unbalanced loads and it does not ensure that individual cross-sections possess adequate
strength. If the balanced load is small, and hence the prestressing force and prestressing steel
quantities are also small, significant quantities of non-prestressed steel may be required to
increase the strength of the critical cross-sections and to limit crack widths under the full
service loads.

At service loads prior to cracking, the concrete stresses on any cross-section of a
continuous beam can be calculated easily by considering only the unbalanced load and the
longitudinal prestress. The transverse loads imposed on the beam by the draped tendons have
been effectively cancelled by wb. The total moment diagram due to prestress
(primary+secondary moments) is equal and opposite to the moment diagram caused by wb.
The primary and secondary moments induced by prestress need not, therefore, enter into the
calculations and there is no need to calculate the hyperstatic reactions at this stage (at least for
the determination of concrete stresses). In Example 9.5, the load balancing approach is
applied to a two-span continuous member.

In the discussion to this point, the prestressing force has been assumed to be constant
throughout the member. In long members, friction losses may be significant and the
assumption of constant prestress may lead to serious errors. To account for variations in the
prestressing force with
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distance from the anchorage, a continuous member may be divided into segments. Within
each segment, the prestressing force may be assumed constant and equal to its value at the
mid-point of the segment. In many cases, it may be acceptable to adopt each individual span
as a segment of constant prestress. In other cases, it may be necessary to choose smaller
segments to model the effects of prestress more accurately.

It is possible, although rarely necessary, to calculate the equivalent loads due to a
continuously varying prestressing force. With the shape of the tendon profile throughout the
member and the variation of prestress due to friction and draw-in determined previously, the
transverse equivalent load at any point is equal to the curvature of the tendon (obtained by
differentiating the equation for the tendon shape twice) times the prestressing force at that
point. The effect of prestress due to these non-uniform equivalent transverse loads can then be
determined using the same procedures as for uniform loads.

Example 9.5 —Load balancing

The idealized parabolic tendons in the two-span beam shown in Figure 9.20 are required to
balance a uniformly distributed gravity load of 20 kN/m. The beam cross-section is
rectangular, 800 mm deep and 300 mm wide. The concrete stress distribution on the cross-
section at B over the interior support when the total uniformly distributed gravity load is 25
kN/m is required. Assume that the prestressing force is constant throughout.

In span AB, the tendon sag is hAB=325+(0.5×325)=487.5 mm and the required prestressing
force is obtained from Equation 9.27:

If P is constant throughout, the required sag in BC may also be obtained from Equation 9.27:

Figure 9.20 Two-span beam of Example 9.5.
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and the eccentricity of the tendon at the mid-point of the span BC is equal to
373−(0.5×325)=210.5 mm (below the centroidal axis).

Under the balanced load of 20 kN/m, the beam is subjected only to the axial prestress
applied at each anchorage. The concrete stress on every cross-section is uniform and equal to

Owing to the uniformly distributed unbalanced load of 5 kN/m, the moment at B is −142.5
kNm (obtained by moment distribution or an equivalent method of analysis). The extreme
fibre concrete stresses at B caused by the unbalanced moment are

The resultant extreme fibre stresses at B caused by prestress and the applied load of 25 kN/m
are therefore:

in the top: σt=−5.47+4.45=−1.02 MPa

in the bottom: σb=−5.47–4.45=−9.92 MPa

The reader may wish to check that the same result is obtained if the total stresses caused by
the equivalent loads (longitudinal plus transverse forces imposed by prestress) are added to
the stresses caused by a uniformly distributed gravity load of 25 kN/m.

9.5.3 The service load range—after cracking

When the balanced load is relatively small, the unbalanced load may cause cracking in the
peak moment regions over the interior supports and at mid-span. When cracking occurs, the
stiffness of the member is reduced in the vicinity of the cracks. The change in relative
stiffness between the positive and negative moment regions causes a redistribution of bending
moments. In prestressed members, the reduction of stiffness caused by cracking in a particular
region is not as great as in an equivalent reinforced concrete member and the redistribution of
bending moments at service loads can usually be ignored. It is therefore usual to calculate
beam moments using a linear analysis both before and after cracking.

The effect of cracking should not be ignored, however, when calculating the deflection of
the member. A cracked section analysis (see Section 3.5.2) can be used to determine the
effective moment of inertia of the cracked
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section (see Section 3.8.2) and the corresponding initial curvature. After calculating the initial
curvature at each end and at the mid-point of a span, the short-term deflection may be
obtained using Equation 3.68c.

Under the sustained loads, the extent of cracking is usually not great. In many partially
prestressed members, the cracks over the interior supports (caused by the peak loads) are
completely closed for most of the life of the member. The time-dependent change in curvature
caused by creep, shrinkage, and relaxation at each support and at mid-span can be calculated
using the time analysis of Section 3.6.2 (or Section 3.6.3 if the cracks remain open under the
permanent loads). With the final curvature determined at the critical sections, the long-term
deflection can also be calculated using Equation 3.68c.

Alternatively, long-term deflections may be estimated from the short-term deflections using
the approximate expressions outlined in Section 3.8.3.

The control of flexural cracking in partially prestressed beams is easily achieved by
suitably detailing the bonded reinforcement in the cracked region. According to AS 3600–
1988, crack widths may be considered to be satisfactory for interior exposure conditions
provided the change in stress in the bonded tensile steel is less than 200 MPa as the load is
increased from its value when the extreme concrete tensile fibre is at zero stress to the full
service load. The change in tensile steel stress may be calculated in a cracked section analysis.
In addition, the centre-to-centre spacing of the bonded steel should be less than 200 mm.

9.5.4 The overload range and ultimate strength in bending

Behaviour

The behaviour of a continuous beam in the overload range depends on the ductility of the
cross-sections in the regions of maximum moment. If the cross-sections are ductile, the
moment curvature relationships are similar to that shown in Figure 9.21.

Consider the propped cantilever shown in Figure 9.22a. Each cross-section is assumed to
possess a ductile moment–curvature relationship. At service loads, bending moments in the
beam, even in the post-cracking range, may be approximated reasonably using elastic analysis.
The negative elastic moment at A caused by the uniformly distributed load w is wL2/8. When
the load w causes yielding of the reinforcement on the cross-section at A, a sudden loss of
stiffness occurs (as illustrated by the kinks in the moment–curvature relationship in Figure
9.21). Any further increase in load will cause large increases in curvature at A, but only small
increases in moment. A constant-moment (plastic) hinge develops at A as the moment
capacity is all but exhausted and the curvature becomes large. In
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Figure 9.21 Moment-curvature relationship for a ductile partially prestressed cross-section.

reality, the moment at the hinge is not constant, but the rate of increase in moment with
curvature in the post-yield range is very small. As loading increases and the moment at the
support A remains constant or nearly so, the moment at mid-span increases until it too reaches
its ultimate value, Mu, and a second plastic hinge develops. The formation of two constant-
moment hinges reduces a one-fold indeterminate structure to a mechanism and collapse
occurs. If an elastic–perfectly plastic moment–curvature relationship is assumed with the
same moment capacity Mu at both hinge locations, the moment diagrams associated with the
formation of the first and second hinges are as shown in Figure 9.22b. The ductility at A
results in an increase in load-carrying capacity of 46% above the load required to cause the
first hinge to form.

Plastic analysis techniques can therefore be used to estimate the collapse

Figure 9.22 Moment redistribution in a propped cantilever.
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load of a continuous prestressed beam, provided the critical cross-sections are ductile, i.e.
provided the moment–curvature relationships can be assumed to be elastic–plastic and the
critical cross-sections possess the necessary rotational capacity.

By subdividing a member into small segments and calculating the moment–curvature
relationship for each segment, an incremental analysis may be used to calculate the collapse
load more accurately.

Permissible moment redistribution at ultimate

For the design of prestressed concrete continuous structures, collapse load methods are either
not recommended or not mentioned in many building codes. In general, a lower bound
ultimate strength approach is specified in which the design moment, M*, on every cross-
section must be less than the design strength, . Design moments are calculated using
elastic analysis and gross member stiffnesses (and are therefore very approximate). To
account for the beneficial effects of moment redistribution, building codes generally permit
the peak elastic moments at the supports of a continuous beam to be reduced provided the
cross-section is ductile. A reduction in the magnitudes of the negative moments at the ends of
a span must be associated with an increase in the positive span moment in order to maintain
equilibrium. AS 3600–1988, for example, allows the negative moment at an interior support
to be modified by a maximum amount (λm, in percent) which depends on the neutral axis
parameter ku=dn/d:

λm=30 when

λm=75(0.4−ku) when

λm=0 when ku>0.4

With a different rectangular compressive stress block at ultimate, BS 8110 (1985) permits

λm=20 when

λm=50−100ku when

The redistribution permitted by ACI 318–83 depends on the reinforcement index, q, where

As q increases, the ductility of the cross-section decreases. According to
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ACI 318–83,

where γis defined in Equation 4.2 (and given the symbol β1 in ACI 318–83).

Secondary effects at ultimate

Both AS 3600–1988 and ACI 318–83 require that the design moment, M*, be calculated as the
sum of the moments caused by the factored design load combination (dead, live, etc., as
outlined in Section 1.7.3) and the moments resulting from the hyperstatic reactions caused by
prestress (with a load factor of 1.0).

Earlier in this chapter, the hyperstatic reactions and the resulting secondary moments were
calculated using linear-elastic analysis. Primary moments, secondary moments, and the
moments caused by the applied loads were calculated separately and summed to obtain the
combined effect. Superposition is only applicable, however, when the member behaviour is
linear. At overloads, behaviour is highly non-linear and it is not possible to distinguish
between the moments caused by the applied loads and those caused by the hyperstatic
reactions. Consider the ductile propped cantilever in Figure 9.22. After the formation of the
first plastic hinge at A, the beam becomes determinate for all subsequent load increments.
With no rotational restraint at A, the magnitude of the secondary moment is not at all clear.
The total moment and shears can only be determined using a refined analysis that accurately
takes into account the various sources of material non-linearity. It is meaningless to try to
subdivide the total moments into individual components. The treatment of secondary
moments at ultimate has been studied by Lin & Thornton (1972), Mattock (1972), Nilson
(1978), Warner & Faulkes (1983), and others.

Provided that the structure is ductile and moment redistribution occurs as the collapse load
is approached, secondary moments can be ignored in ultimate strength calculations. After all,
the inclusion of an uncertain estimate of the secondary moment generally amounts to nothing
more than an increase in the support moments and a decrease in the span moment or vice
versa, i.e. a redistribution of moments. Since the moments due to the factored loads at
ultimate are calculated using elastic analysis, there is no guarantee that the inclusion of the
secondary moments (also calculated using gross stiffnesses) will provide better agreement
with the actual moments in the structure after moment redistribution (as may be calculated
using a refined non-linear analysis).

On the other hand, if the critical section at an interior support is non-ductile, the situation is
not so cut and dried. It is usually possible to avoid



Page 362

non-ductile sections by the inclusion of sufficient quantities of compressive reinforcement. If
non-ductile sections cannot be avoided, it is recommended that secondary moments
(calculated using linear elastic analysis and gross stiffnesses) be considered at ultimate.
Where the secondary moment at an interior support has the same sign as the moment caused
by the applied loads, it is conservative to include the secondary moment (with a load factor of
1.0) in the calculation of the design moment M*. Where the secondary moment is of opposite
sign to the moment caused by the applied loads, it is conservative to ignore its effect.

9.5.5 Steps in design

A suitable design sequence for a continuous prestressed concrete member is as follows:

(1) Determine the loads on the beam both at transfer and under the most severe load
combination for the serviceability limit states. Using approximate analysis techniques,
estimate the maximum design moments at the critical sections in order to make an initial
selection of cross-section size and self-weight. The moment and deflection coefficients
given in Figure 9.23 may prove useful.

Figure 9.23 Moment and deflection coefficients for equal span elastic beams.



Page 363

Determine appropriate cross-section sizes at the critical sections. The discussion in
Section 8.3 is relevant here. Equation 8.11 may be used to obtain cross-sectional
dimensions that are suitable from the point of view of flexural strength and ductility. By
estimating the maximum unbalanced load, the sustained part of the unbalanced load and
by specifying a maximum deflection limit for the structure, a minimum moment of
inertia may be selected from Equation 8.5 (if the member is to be crack free) or
Equation 8.6 (if cracking is permitted). If a fully prestressed beam is required, Equation
8.1 can be used to determine the minimum section modulus at each critical section.
For continuous beams in normal situations, the span to depth ratio is usually in the
range 24–30, but this depends on the load level and the type of cross-section.

(2) Determine the bending moment and shear force envelopes both at transfer and under the
full service loads. These envelopes should include the effects of self-weight, superimposed
permanent dead and live loads, and the maximum and minimum values caused by transient
loads. Where they are significant, pattern loadings such as those shown in Figure 9.23
should be considered. For example, the minimum moment at the mid-point of a particular
span may not be due to dead load only, but may result when the transient live load occurs
only on adjacent spans. Consideration of pattern loading is most important in structures
supporting large transient live loads.

(3) Determine trial values for the prestressing force and tendon profile. Use idealized tendon
profiles that follow the shape of the bending moment diagram caused by the anticipated
balanced loads (or as near to it as is practical). In each span, make the tendon drape as large
as possible in order to minimize the required prestress.

If a fully prestressed beam is required, the trial prestress and eccentricity at each critical
section can be determined using a Magnel diagram and the procedure outlined in
Section 3.3.1. At this stage, it is necessary to assume that the tendon profile is
concordant. If load balancing is used, the maximum available eccentricity is generally
selected at mid-span and over each interior support and the prestress required to balance
a selected portion of the applied load (wb) is calculated using Equation 9.27. The
balanced load selected in the initial stages of design may need to be adjusted later when
serviceability and strength checks are made.
Determine the number and size of tendons and the appropriate duct diameter(s).

(4) Replace the kink in the idealized tendon profile at each interior support with a short
convex parabolic segment as discussed in Section 9.3.4. Determine the equivalent loads due
to prestress and using
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moment distribution (or an equivalent method of analysis) determine the total moment
caused by prestress at transfer and after the assumed time-dependent losses. By subtracting
the primary moments from the total moments, calculate the secondary moment diagram and,
from statics, determine the hyperstatic reactions at each support.

(5) Concrete stresses at any cross-section caused by prestress (including both primary and
secondary effects) and the applied loads may now be checked at transfer and after all losses.
If the beam is fully prestressed, the trial estimate of prestress made in step 3 was based on
the assumption of a concordant tendon profile and secondary moments were ignored. If
secondary moments are significant, stresses calculated here may not be within acceptable
limits and a variation of either the prestressing force or the eccentricity may be required.

(6) Calculate the losses of prestress and check the assumptions made earlier.
(7) Check the ultimate strength in bending at each critical section. If necessary, additional

non-prestressed tensile reinforcement may be used to increase strength. Add compressive
reinforcement to improve ductility, if required. Some moment redistribution at ultimate
may be permissible to reduce peak negative moments at interior supports, provided that the
cross-sections at the supports have adequate ductility.

(8) Check the deflection at transfer and the final long-term deflection. For partially
prestressed designs, check crack control in regions of peak moment. Consider the inclusion
of non-prestressed steel to reduce time-dependent deformations, if necessary. Adjust the
section size or the prestress level (or both), if the calculated deflection is excessive.

(9) Check shear strength of beam (and torsional strength if applicable) in accordance with the
provisions outlined in Chapter 5. Design suitable shear reinforcement where required.

(10) Design the anchorage zone using the procedures presented in Chapter 6.

Note: Durability and fire protection requirements are usually satisfied by an appropriate
choice of concrete strength and cover to the tendons in step 3.

Example 9.6

The four-span beam shown in Figure 9.24 is to be designed. The beam has a uniform I-shaped
cross-section and carries a uniformly distributed dead load of 25 kN/m (not including self-
weight) and a transient live load
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Figure 9.24 Elevation of beam of Example 9.6.

of 20 kN/m. Controlled cracking is to be permitted at peak loads. The beam is prestressed by
jacking simultaneously from each end, thereby maintaining symmetry of the prestressing
force about the central support C and avoiding excessive friction losses. Take MPa
and MPa.

(1) (and 2) The bending moments caused by the applied loads must first be determined.
Because the beam is symmetrical about the central support at C, the bending moment
envelopes can be constructed from the moment diagrams shown in Figure 9.25 caused by
the distributed load patterns shown. These moment diagrams were calculated for a unit
distributed load (1 kN/m) using moment distribution.

If the self-weight is estimated at 15 kN/m, the total dead load is 40 kN/m, and the AS
3600–1988 load factors for the strength limit state (Section 1.7.3) are adopted, the
factored design loads are

The maximum design moment M* occurs over the support C, when the transient live
load is on only the adjacent spans BC and CB' Therefore, using the moment coefficients
in Figure 9.25,

The overall dimensions of the cross-section are estimated using Equation 8.11 (which is
valid provided the compressive stress block at ultimate is within the flange of the I-
section):

Try b=750 mm, d=1290 mm and D=1400 mm.
The span-to-depth ratio for the interior span is 21.4 which should prove acceptable from
a serviceability point of view.
To obtain a trial flange thickness, find the depth of the compressive stress block at
ultimate. If the volume of the stress block is and the lever arm between
C and the resultant tension
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Figure 9.25 Bending moment diagrams due to unit distributed loads (Example 9.6).

is taken to be 0.85d, then

Adopt a taping flange 250 mm thick at the tip and 350 mm thick at the web.
To ensure that the web width is adequate for shear, it is necessary to ensure that web
crushing does not occur. If the vertical component of the prestressing force, Pυ, is
ignored, then Equation 5.7 gives
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and therefore

The maximum shear force V* also occurs adjacent to support C when live load is
applied to span BC and CB' and is equal to 1180 kN. Therefore,

It is advisable to select a web width significantly greater than this minimum value in
order to avoid unnecessarily large quantities of transverse steel and the resulting steel
congestion. Duct widths of about 100 mm are anticipated, with only one duct in any
horizontal plane through the web. With these considerations, the web width is taken to
be

The trial cross-section and section properties are shown in Figure 9.26. The self-weight
is actually 24×0.69=16.6 kN/m, which is 10% higher than originally assumed. The
revised value of M* is 6985 kNm.

(3) If 100 mm ducts are assumed (side by side in the flanges) and 40 mm cover to the
reinforcement, the maximum eccentricity over an interior

Figure 9.26 Trial section dimensions and properties.
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support and at mid-span is

The maximum drape in the spans BC and CB' is therefore

The balanced load is taken to be 32 kN/m (which is equal to self-weight plus about 60%
of the additional dead load). From Equation 9.27, the required average effective
prestress in span BC is

If the friction loss between the mid-point of span BC and the mid-point of AB is
guessed at 15%, then

and the required drape in span AB is

The required eccentricity at mid-span is therefore

The idealized tendon profiles for spans AB and BC are shown in Figure 9.27, together
with the corresponding tendon slopes and friction losses (calculated from Equation 3.60,
with µ=0.2 and βp=0.01). The friction losses at the midspan of BC are 17.3%, and if the
time-dependent losses in BC are assumed to be 20%, then the required jacking force is

The maximum jacking force for a 12.7 mm diameter strand is 0.85×184=156.4 kN (see
Table 2.1). The minimum number of strands is therefore 4690/156.4=30.
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Figure 9.27 Friction losses and tendon forces.

Try two cables each containing 15 strands (Ap=1500 mm2/strand).
The two cables are to be positioned so that they are located side by side in the top
flange over the interior supports and in the bottom flange at mid-span of BC, but are
located one above the other in the web. The position of the resultant tension in the
tendons should follow the desired tendon profile.
The loss of prestress due to a 6 mm draw-in at the anchorage is calculated as outlined in
Section 3.7.2. The slope of the prestress line adjacent to the anchorage at A is

and, from Equation 3.61, the length of beam associated with the draw-in losses is

The loss of force at the jack due to slip at the anchorage is

and at mid-span



Page 370

The initial prestressing force Pi (after friction and anchorage losses) is shown in Figure
9.27, together with the effective prestress assuming 20% time-dependent losses.
The average effective prestress in span AB is 3434 kN (and not 3650 kN as previously
assumed). The revised drape in AB and eccentricity at mid-span are

This minor adjustment to the tendon profile will not cause significant changes in the
friction losses.

(4) The beam is next analysed under the equivalent transverse loads caused by the effective
prestress. The sharp kinks in the tendons over the supports B and C are replaced by short
lengths with a convex parabolic shape, as illustrated and analysed in Example 9.3. In this
example, it is assumed that the idealized tendons provide a close enough estimate of
moments due to prestress.

The equivalent uniformly distributed transverse load due to the effective prestress is
approximately 32 kN/m (upward). Using the moment diagram in Figure 9.25a, the total
moments due to prestress at B and C are

The secondary moments at B and C are obtained by subtracting the primary moments
corresponding to the average prestress in each span (as was used for the calculation of
total moments):

The total and secondary moment diagrams are shown in Figure 9.28, together with the
corresponding hyperstatic reactions. It should be noted that, in fact, the equivalent
transverse load varies along the beam as the prestressing force varies and the moment
diagrams shown in Figure 9.28 are only approximate. A more accurate estimate of the
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Figure 9.28 Moments and reactions caused by the average effective prestress.

moments due to prestress and the hyperstatic reactions can be made by dividing each
span into smaller segments (say four per span) and assuming constant prestress in each
of these segments.

(5) It is prudent to check the concrete stresses at transfer. The equivalent transverse load at
transfer is 32/0.8=40 kN/m ↑and the self-weight is 16.6 kN/m ↓. Therefore, the unbalanced
load is 23.4 kN/m ↑. At support C, the moment caused by the uniformly distributed
unbalanced load is (see Figure 9.25a)

and the initial prestressing force at C is 3536 kN. The extreme fibre concrete stresses
immediately after transfer are

and

The flexural tensile strength at transfer is MPa and, therefore, cracking at
support C is likely to occur at transfer. Bonded reinforcement should therefore be
provided in the bottom of the member over support C to control cracking at transfer.
For this level
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of tension, it is reasonable to calculate the resultant tensile force on the concrete
(assuming no cracking) and supply enough non-prestressed steel to carry this tension
with a steel stress of 150 MPa. In this case, the resultant tension near the bottom of the
cross-section (determined from the calculated stress distribution) is 390 kN and
therefore

Use four 28 mm diameter reinforcing bars or equivalent.
As an alternative to the inclusion of this non-prestressed reinforcement, the member
might be stage stressed. Only part of the prestress is transferred under self-weight
conditions (perhaps just one of the cables is fully stressed) and the remaining prestress
applied when the sustained dead load (or part of it) is in place.
Similar calculations are required to check for cracking at other sections at transfer. At
support B, (Mub)B=63.2×23.4=1479 kN m; Pi=4235 kN and σb=+0.67 MPa. Cracking
will not occur at B at transfer. Evidently, support C is the only location where cracking
is likely to occur at transfer.
For this partially prestressed beam, before conditions under full loads can be checked
(using cracked section analyses in the cracked regions), it is necessary to determine the
amount of non-prestressed steel required for strength.

(6) In this example, the time-dependent losses estimated earlier are assumed to be satisfactory.
In practice, of course, losses should be calculated.

(7) The strength of each cross-section should now be checked. For the purpose of this
example, calculations are provided for the critical section at support C only. From steps 1
and 2, M*=−6985 kNm (due to the factored dead plus live loads). The secondary moment
can be included with a load factor of 1.0. Therefore,

The inclusion of the secondary moment here is equivalent to a redistribution of moment
at C of 11.3%. The secondary moment will cause a corresponding increase in the
positive moments in the adjacent spans. If the cross-section at C is ductile, a further
redistribution of moment is permissible (as outlined in Section 9.5.4). The design
moment at C is here redistributed by an additional 3.2% to M*=6000 kN m. When
checking the strength in positive bending in
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the adjacent spans, the design moment must be increased above the elastically
determined value in order to maintain equilibrium.
The minimum required ultimate strength at C is kN m. Using the
procedure outlined in Section 4.4.1, the strength of a cross-section with flange width
b=750 mm and containing Ap=3000 mm2 at dp=1280 mm is

Additional non-prestressed tensile reinforcement Ast is required in the top of the cross-
section at C. If the depth from the tensile steel to the compressive face is do=1330 mm,
then Ast can be calculated using Equation 4.27:

Use six 28 mm diameter bars in the top over support C. This is in addition to the four
28 mm bars required for crack control at transfer in the bottom of the section. The
bottom bars in the compressive zone at the ultimate limit state will improve ductility.
From an ultimate strength analysis of the proposed cross-section, with reinforcement
details shown in Figure 9.29, the section satisfies strength requirements (Mu=7940 kN
m) and with dn=292 mm=0.23d the section is ductile enough to justify the moment
redistribution assumed at C.
Similar calculations show that four 28 mm diameter bars are required in the negative
moment region over the first interior support

Figure 9.29 Reinforcement details on section over support C in Example 9.6.
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at B and B', but at the mid-span regions the prestressing steel provides adequate
moment capacity.

(8) It is necessary to check crack control under full service loads. Results are provided for the
cross-section at support C. With the effective prestress balancing 32 kN/m, the unbalanced
sustained load is wus=25+16.6−32=9.6 kN/m and the unbalanced transient load is 20 kN/m.
The maximum unbalanced moment at support C is

and the corresponding extreme fibre stresses are

The effective prestress at C is Pe=2629 kN and the average stress is

The tensile stress in the top fibre is

and, with the tensile strength taken as MPa, cracking will occur under the
full unbalanced moment. The error associated with estimates of the cracking moment
based on elastic stress calculation may be significantly large. As seen in Section 3.6.2
and Example 3.5, creep and shrinkage cause large redistributions of stress on the cross-
section with time, particularly in this case where the cross-section contains significant
quantities of non-prestressed reinforcement. If a more accurate estimate of stresses is
required, a time analysis is recommended (see Section 3.6.2).
A cracked section analysis, similar to that outlined in Section 3.5.2, is required to
calculate the loss of stiffness due to cracking and the increment of tensile steel stress, in
order to check crack control. The maximum in-service moment at C is equal to the sum
of the moment caused by the full external service loads and the secondary moment.
Owing to the external loads,
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and adding the secondary moment gives

A cracked section analysis reveals that the tensile stress in the non-prestressed top steel
at this moment is only 110 MPa, which is much less than the increment of 200 MPa
permitted in AS 3600–1988. Crack widths should therefore be acceptably small.
This design example is taken no further here. Deflections are unlikely to be excessive,
but should be checked using the procedures outlined in Section 3.8. The design for
shear and the design of the anchorage zones are in accordance with the discussions in
Chapters 5 and 6, respectively, and follow the same steps as outlined in the examples of
Chapter 8.
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10
Two-way slabs–behaviour and design

10.1 Introduction

Post-tensioned concrete floors form a large proportion of all prestressed concrete construction
and are economically competitive with reinforced concrete slabs in most practical medium- to
long-span situations.

Prestressing overcomes many of the disadvantages associated with reinforced concrete
slabs. Deflection, which is almost always the governing design consideration, is better
controlled in post-tension slabs. A designer is better able to reduce or even eliminate
deflection by a careful choice of prestress. More slender slab systems are therefore possible,
and this may result in increased head room or reduced floor to floor heights. Prestress also
inhibits cracking and may be used to produce crack-free and watertight floors. Prestressed
slabs generally have simple, uncluttered steel layouts. Steel fixing and concrete placing are
therefore quicker and easier. In addition, prestress improves punching shear (see Chapter 5)
and reduces formwork stripping times and formwork costs. On the other hand, prestressing
often produces significant axial shortening of slabs and careful attention to the detailing of
movement joints is frequently necessary.

In this chapter, the analysis and design of the following common types of prestressed
concrete slab systems are discussed. Each type is illustrated in Figure 10.1.

(a) One-way slabs.
(b) Edge-supported two-way slabs: rectangular slab panels supported on all four edges by

either walls or beams. Each panel edge may be either continuous or discontinuous.
(c) Flat plate slabs: continuous slab of constant thickness supported by a rectangular grid of

columns.
(d) Flat slab with drop panels: as for a flat plate but with a local increase in slab thickness

(drop panel) over each supporting column.
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Figure 10.1 Types of slab systems.

(e) Band-beam and slab system: wide, shallow, continuous, prestressed beams in one direction
(the longer span) with one-way prestressed or reinforced slabs in the transverse direction
(the shorter span).

Almost all prestressed slabs are post-tensioned using draped tendons. In Australia and
elsewhere, use is made of flat-ducted tendons, consisting of five or less super-grade strands in
a flat sheath, and fan-shaped anchorages, as shown in Figure 10.2. Individual strands are
usually stressed one at a time using light hydraulic jacks. The flat ducts are structurally
efficient and allow maximum tendon eccentricity and drape. These ducts are almost always
grouted after stressing to provide bond between the steel and the concrete.

In North America, unbonded construction is often used for slabs. Single, plastic-coated,
greased tendons are generally used, resulting in slightly lower costs, small increases in
available tendon drape, the elimination of the grouting operation (therefore reducing cycle
times), and reduced
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Figure 10.2 Details of typical flat-ducted tendons.

friction losses. However, unbonded construction also leads to reduced flexural strength,
reduced crack control (additional bonded reinforcement is often required), possible safety
problems if a tendon is lost or damaged (by corrosion, fire, accident), and increased
demolition problems. Single strands are also more difficult to fix to profile.

10.2 Effects of prestress

As discussed previously, the prestressing operation results in the imposition of both
longitudinal and transverse forces on post-tensioned members. The concentrated longitudinal
prestress P produces a complex stress distribution immediately behind the anchorage and the
design of this anchorage zone requires careful attention (see Chapter 6). At sections further
away from the anchorage, the longitudinal prestress applied at the anchorage causes a linearly
varying compressive stress over the depth of the slab. If the longitudinal prestress is applied at
the centroidal axis (which is generally the slab mid-depth), this compressive stress is uniform
over the slab thickness and equal to P/A.

It has been shown that wherever a change in direction of the prestressing tendon occurs, a
transverse force is imposed on the member. For a parabolic tendon profile such as that shown
in Figure 10.3a, the curvature is
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Figure 10.3 Idealized and actual tendon profiles in a continuous slab.

constant along the tendon and hence the transverse force imposed on the member is uniform
along its length. From Equation 1.7, the uniformally distributed transverse force caused by the
prestress is

(10.1)

where h is the sag of the parabolic tendon and L is the span. If the cable spacing is uniform
across the width of a slab and P is the prestressing force per unit width of slab, then wp is the
uniform upward load per unit area.

The cable profile shown in Figure 10.3a, with the sharp kink located over the internal
support, is an approximation of the more realistic and practical profile shown in Figure 10.3b.
The difference between the effects of the idealized and practical profiles was discussed in
Section 9.3.4 for continuous beams. The idealized profile is more convenient for the analysis
and design of continuous slabs and the error introduced by the idealization is usually not great.

The transverse load wp causes moments and shear which usually tend to be opposite in sign
to those produced by the external loads. In Figure 10.4, the elevation of a prestressing tendon
in a continuous slab is shown. The transverse load imposed on the slab by the tendon in each
span is indicated. If the slab is a two-way slab, with prestressing tendons placed in two
orthogonal directions, the total transverse load caused by the prestress is the sum of wp for the
tendons in each direction.

The longitudinal prestress applied at the anchorage may also induce moments and shears in
a slab. At changes of slab thickness, such as occur in a flat slab with drop panels, the
anchorage force P becomes eccentric with respect to the centroidal axis of the section, as
shown in Figure 10.5a.
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Figure 10.4 Transeverse loads imposed by tendons in one direction.

Figure 10.5 Effect of changes in slab thickness.

The moments caused by this eccentricity are indicated in Figure 10.5b and should also be
considered in analysis. However, the moments produced by relatively small changes in slab
thickness tend to be small compared with those caused by cable curvature and, if the
thickening is below the slab, it is conservative to ignore them.

At some distance from the slab edge, the concentrated anchorage forces have dispersed and
the slab is uniformly stressed. The so-called angle of dispersion, θ, as shown in Figure 10.6,
determines the extent of slab in which the prestress is not effective. Specifications for θvary
considerably. It is claimed in some trade literature (VSL 1988) that tests have shown θto be
120º. In AS 3600–1988, θis taken as low as 60°. A value of θ=90° is usually satisfactory for
design purposes.

Care must be taken in the design of the hatched areas of slab shown in Figure 10.6, where
the prestress in one or both directions is not effective. It is good practice to include a small
quantity of bonded non-prestressed reinforcement in the bottom of the slab perpendicular to
the free edge in all exterior spans. An area of non-prestressed steel of about 0.0015bdo is
usually sufficient, where do is the effective depth to the non-prestressed steel. In addition,
when checking the punching shear strength at the corner column in Figure 10.6, the beneficial
effect of prestress is not available. At



Page 381

Figure 10.6 Areas of ineffective prestressing at slab edges.

sections remote from the slab edge, the average P/A stresses are uniform across the entire slab
width and do not depend on changes of θand variations of cable spacing from one region of
the slab to another.

10.3 Design approach—general

The first step in the design of a post-tensioned slab is the selection of an initial slab thickness.
Guidelines for this selection are discussed in Chapter 11. Serviceability considerations usually
dictate the required slab thickness, and in Section 11.3.2, an approach for the sizing of slabs is
presented which should ensure satisfactory service-load behaviour.

The second step in slab design is to determine the amount and distribution of prestress.
Load balancing is generally used to this end. A portion of the load on a slab is balanced by the
transverse forces imposed by the draped tendons in each direction. To minimize serviceability
problems, a substantial portion of the sustained load should usually be balanced. Under the
balanced load, the slab remains plane (without curvature) and is subjected only to the resultant,
longitudinal, compressive, P/A stresses. It is the remaining unbalanced load that enters into
the calculation of service-load behaviour, particularly for the estimation of load-dependent
deflections and for checking the extent of cracking and crack control. Calculations of
deflection and checks for crack control are discussed in detail in Chapter 11.



Page 382

At ultimate conditions, when the slab behaviour is non-linear and superposition is no longer
valid, the full factored design load must be considered. No part of the external load is
balanced by the prestress and the transverse force exerted by the cable should not enter into
the calculations. The factored design moments and shears at each critical section must be
calculated and compared with the design strength of the section, as discussed in Chapters 4
(for flexure) and 5 (for shear). Slabs are usually very ductile and redistribution of moment
occurs as the collapse load of the slab is approached. In these conditions, secondary moments
can usually be ignored.

In the following sections, procedures for the calculation of design moments and shears at
the critical sections in the various slab types are presented. In addition, techniques and
recommendations are also presented for the determination of the magnitude of the
prestressing force required in each direction to balance the desired load.

10.4 One-way slabs

A one-way slab is generally designed as a beam with cables running in the direction of the
span at uniform centres. A slab strip of unit width is analysed using simple beam theory. In
any span, the maximum cable sag h depends on the concrete cover requirements and the
tendon dimensions. When h is determined, the prestressing force required to balance an
external load wb is calculated from Equation 9.27, which for convenience is restated and
renumbered here:

(10.2)

In the transverse direction, conventional reinforcement may be used to control shrinkage and
temperature cracking and to distribute local load concentrations. Minimum quantities of
conventional steel for the control of shrinkage and temperature induced cracking in a variety
of situations are outlined in Section 11.5.2. Not infrequently, the slab is prestressed in the
transverse direction to eliminate the possibility of shrinkage cracking parallel to the span and
to ensure a watertight and crack-free slab.

10.5 Two-way edge-supported slabs

10.5.1 Load balancing

Consider the interior panel of the two-way edge-supported slab shown in Figure 10.7. The
panel is supported on all sides by walls or beams and
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Figure 10.7 Edge-supported slab panel.

contains parabolic tendons in both the x and y directions. If the cables in each direction are
uniformly spaced, then the upward forces per unit area exerted by the tendons are

(10.3)

where Px and Py are the prestressing forces per unit width in each direction and hx and hy are
the cable drapes in each direction.

If wb is the uniformly distributed downward load to be balanced, then

(10.4)

In practice, perfect load balancing is not possible, since external loads are rarely perfectly
uniformly distributed. However, for practical purposes, adequate load balancing can be
achieved.

Any combination of wpx and wpy that satisfies Equation 10.4 can be used to make up the
balanced load. The smallest quantity of prestressing steel will result if all the load is balanced
by cables in the short span direction, i.e. wpx=wb. However, under unbalanced loads,
serviceability problems and unsatisfactory behaviour would almost certainly result. It is often
preferable to distribute the prestress in much the same way as the load is distributed to the
supports, i.e. more prestress in the short-span direction than in the long-span direction. The
balanced load resisted by tendons in the short direction may be approximated by

(10.5)
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where αdepends on the support conditions and is given by

=1.0 for 4 edges continuous or discontinuous

=1.0 for 2 adjacent edges discontinuous

=2.0 for 1 long edge discontinuous

=0.5 for 1 short edge discontinuous

=2.5 for 2 long and 1 short edges discontinuous

=0.4 for 2 short and 1 long edges discontinuous

=5.0 for 2 long edges discontinuous

α

=0.2 for 2 short edges discontinuous

Equation 10.5 is the expression obtained for that portion of any external load which is carried
in the short-span direction if twisting moments are ignored and the mid-span deflections of
the two orthogonal unit wide strips through the slab centre are equated.

With wpx and wpy selected, the prestressing force per unit width in each direction is
calculated from Equation 10.3:

(10.6)

Equilibrium dictates that the downward forces per unit length exerted over each edge support
by the reversal of cable curvature (as shown in Figure 10.7) are

wpyLy (kN/m) carried by the short span supporting beams or walls per unit length
and
wpxLx (kN/m) carried by the long span supporting beams or walls per unit length.
The total force imposed by the slab tendons that must be carried by the edge beams is

which is equal to the total upward force exerted by the slab cables. Therefore, for this two-
way slab system, in order to carry the balanced load to the supporting columns, resistance
must be provided for twice the total load to be balanced (i.e. in both the slab and in the beams).
This requirement is true for all two-way slab systems irrespective of construction type or
material.
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At the balanced load condition, when the transverse forces imposed by the cables exactly
balance the applied external loads, the slab is subjected only to the compressive stresses
imposed by the longitudinal prestress in each direction:

where t is the slab thickness.

10.5.2 Methods of analysis

For any service load above (or below) the balanced load, moments are induced in the slab
which may lead to cracking or excessive deflection. A reliable technique for estimating slab
moments is therefore required in order to check in-service behaviour under the unbalanced
loads. In addition, reliable estimates of the maximum moments and shears caused by the full
factored dead and live loads must be made in order to check the flexural and shear strength of
a slab.

In AS 3600–1988, a simplified method is proposed for the analysis of reinforced, two-way,
edge-supported slabs subjected to uniformly distributed design ultimate loads. Moment
coefficients derived from yield line theory a2re specified. Despite inherent difficulties in
applying yield line analysis to prestressed edge-supported slabs, the collapse load moment
coefficients specified in the code may be used reliably to calculate design ultimate moments.

The positive design moments per unit width at the mid-span of the slab in each direction
are

(10.7)

where w* is the factored design load per unit area, Lx is the short span, and βx and βy are
moment coefficients which depend on the support conditions and the aspect ratio of the panel
(i.e. Ly/Lx). Values for βx andβy are given in Table 10.1 or may be obtained from the
following equations:

(10.8a)

(10.8b)
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Table 10.1 Ultimate moment coefficients for rectangular edge-supported slabs (AS 3600–1988).

Short-Span Coefficient βx

Aspect Ratio, Ly/Lx

Support Conditions

1.0 1.1 1.2 1.3 1.4 1.5 1.75 2.0

Long span
Coefficient βy for
all values of Ly/Lx

1 Four edges continuous 0.024 0.028 0.032 0.035 0.037 0.040 0.044 0.048 0.024

2 One short edge
discontinuous

0.028 0.032 0.036 0.038 0.041 0.043 0.047 0.050 0.028

3 One long edge
discontinuous

0.028 0.035 0.041 0.046 0.050 0.054 0.061 0.066 0.028

4 Two adjacent edges
discontinuous

0.035 0.041 0.046 0.051 0.055 0.058 0.065 0.070 0.035

5 Two short edges
discontinuous

0.034 0.038 0.040 0.043 0.045 0.047 0.050 0.053 0.034

6 Two long edges
discontinuous

0.034 0.046 0.056 0.065 0.072 0.079 0.091 0.100 0.034

7 Three edges
discontinuous (one long
edge continuous)

0.043 0.049 0.053 0.057 0.061 0.064 0.069 0.074 0.043

8 Three edges
discontinuous (one short
edge continuous)

0.043 0.054 0.064 0.072 0.078 0.084 0.096 0.105 0.043

9 Four edges
discontinuous

0.056 0.066 0.074 0.081 0.087 0.093 0.103 0.111 0.056

where

=2 if both short edges are discontinuous

=2.5 if one short edge is discontinuous

γx

=3.0 if both short edges are continuous

and γy is as for γx applied to the long edges.
The negative design moments at a continuous edge are taken to be 1.33 times the mid-span

value in the direction considered and, at a discontinuous edge, the negative design moment is
taken as 0.5 times the mid-span value.

For the purposes of calculating the shear forces in a slab or the forces applied to the
supporting walls or beams, AS 3600–1988 suggests that the uniformly distributed load on the
slab is allocated to the supports as shown in Figure 10.8.

It is recommended that the moment coefficients given by Equations 10.8a and b and shown
in Table 10.1 are used for ultimate strength calculations. However, for service load
calculations, moment coefficients based on elastic behaviour are perhaps more appropriate. It
is therefore suggested that the moment coefficients reproduced in Table 10.2 be used for
serviceability calculations. These coefficients are based on the study of elastic slabs by
Westergaard & Slater (1921) and are contained in a number of building codes. The
coefficients in Table 10.2 may be used to predict both the
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Table 10.2 Service-load moment coefficients for rectangular edge-supported slabs (AS1480 1982).

Short-Span Coefficient βx

Aspect Ratio, Ly/Lx

Type of Slab and
Moment Considered

1.0 1.1 1.2 1.3 1.4 1.5 1.75 2.0

Long span Coefficient
βy for all values of

Ly/Lx

1. Interior Panel

−ve Moment at
continuous edge

0.033 0.040 0.045 0.050 0.054 0.059 0.071 0.083 0.033

+ve Moment at
midspan

0.025 0.030 0.034 0.038 0.041 0.045 0.053 0.062 0.025

2. One Edge
discontinuous

−ve Moment at
continuous edge

0.041 0.047 0.053 0.057 0.061 0.065 0.075 0.085 0.041

−ve Moment at
discontinuous edge

0.021 0.024 0.026 0.028 0.030 0.032 0.037 0.042 0.021

+ve Moment at
midspan

0.031 0.035 0.040 0.043 0.046 0.049 0.056 0.064 0.031

3. Two adjacent edges
discontinuous

−ve Moment at
continuous edge

0.049 0.056 0.062 0.066 0.070 0.073 0.082 0.090 0.049

−ve Moment at
discontinuous edge

0.025 0.028 0.031 0.033 0.035 0.037 0.040 0.045 0.025

+ve Moment at
midspan

0.037 0.042 0.047 0.050 0.053 0.055 0.062 0.068 0.037

4. Two shan edges
discontinuous

−ve Moment at
continuous edge

0.056 0.061 0.065 0.069 0.071 0.073 0.077 0.080 –

−ve Moment at
discontinuous edge

– – – – – – – – 0.025

+ve Moment at
midspan

0.044 0.046 0.049 0.051 0.053 0.055 0.058 0.060 0.044

5. Two long edges
discontinuous

−ve Moment at
continuous edge

– – – – – – – – 0.056

−ve Moment at
discontinuous edge

0.025 0.028 0.031 0.033 0.035 0.037 0.040 0.045 –

+ve Moment at
midspan

0.044 0.053 0.060 0.065 0.068 0.071 0.077 0.080 0.044

6. Three edges
discontinuous



−ve Moment at
continuous edge

0.058 0.065 0.071 0.077 0.081 0.085 0.092 0.098 0.058

−ve Moment at
discontinuous edge

0.029 0.033 0.036 0.038 0.040 0.042 0.046 0.049 0.029

+ve Moment at
midspan

0.044 0.049 0.054 0.058 0.061 0.064 0.069 0.074 0.044

7. Four edges
discontinuous

−ve Moment at
discontinuous edge

0.033 0.038 0.041 0.044 0.046 0.049 0.053 0.055 0.033

+ve Moment at
midspan

0.050 0.057 0.062 0.067 0.071 0.075 0.081 0.083 0.050
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Figure 10.8 Distribution of shear forces in an edge-supported slab.

positive and negative moments at the critical sections using

(10.9)

where w is the unbalanced service load andβx and βy are obtained from Table 10.2.

10.5.3 Example 10.1

An exterior panel of a 180 mm thick two-way floor slab for a retail store is to be designed.
The rectangular panel is supported on four edges by stiff beams and is discontinuous on one
long edge as shown in Figure 10.9a. The slab is post-tensioned in both directions using the
draped parabolic cable profiles shown in Figures 10.9c and d. The slab supports a dead load
of 1.5 kPa in addition to its own self-weight and the live load is 5.0 kPa. The level of prestress
required to balance a uniformly distributed load of 5.0 kPa is required. Relevant material
properties are as follows:

Concrete compressive strength:

Concrete tensile strength:

Elastic modulus of concrete: Ec=30000 MPa

Characteristic strength of steel: fp=1840 MPa

Elastic modulus of prestressing steel: Ep=195000 MPa

Load balancing

Flat ducted tendons containing four 12.5 mm strands are to be used with duct size 75 mm×19
mm, as shown in Figure 10.9b. With 25 mm concrete cover to the duct, the maximum depth to
the centre of gravity of the short-span tendons is
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Figure 10.9 Details of edge-supported slab of Example 10.1.

The cable drape in the short-span direction is therefore

The depth dy of the long-span tendons at mid-span is less than dx by the thickness of the duct
running in the short-direction, i.e. dy=143−19= 124 mm. The cable drape in the long-span
direction is shown in
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Figure 10.9d and is given by

The self-weight of the slab is 24×0.18=4.3 kPa and if 30% of the live load is assumed to be
sustained, then the total sustained load is

In this example, the effective prestress in the tendons in both directions balances an external
load of wb=5.0kPa. From Equation 10.5, the transverse load exerted by the tendons in the
short-span direction is

and the transverse load imposed by the tendons in the long-span direction is calculated using
Equation 10.4:

The effective prestress in each direction is obtained from Equation 10.6:

To determine the jacking forces and cable spacing in each direction, both the deferred losses
and friction losses must be calculated. For the purpose of this example, it is assumed that the
time-dependent losses in each direction are 15% and the immediate losses (friction, anchorage,
etc.) in the x-direction are 8% and in the y-direction are 12%. Immediately after transfer,
before the time-dependent losses have taken place, the prestressing forces at mid-span in each
direction are

and, at the jack,
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Using four 12.7 mm strands/tendon, Ap=400 mm2/tendon and the breaking load per tendon is
4×184=736 kN (see Table 2.1).

If a limit of 0.85fpAp is placed on the maximum force to be applied to a stress-relieved post-
tensioned tendon during the stressing operation, the maximum jacking force/tendon is
0.85fpAp=0.85×736=626kN and the required tendon spacing in each direction is therefore

Select a tendon spacing of 1200 mm in each direction
With each tendon stressed to 626 kN, the revised prestressing forces at the jack per metre

width are

and at mid-span, after all losses,

The load to be balanced is revised using Equation 10.3:

and

and therefore

In Example 11.3, the service-load behaviour of this slab is calculated. Checks are made for
cracking using moment coefficients from Table 10.2 and deflections are calculated. No
cracking is detected and total deflections are acceptable.

Flexural strength check

It is necessary to check the ultimate strength of the slab. As previously calculated, the dead
load is 1.5+4.3=5.8 kPa and the live load is 5.0 kPa.
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The factored design load (using the load factors specified in AS 3600–1988 and outlined in
Section 1.7.3) is

The design moments at mid-span in each direction are obtained from Equation 10.7 with
values of βx=0.047 and βy=0.028 taken from Table 10.1:

The maximum design moment occurs over the beam support CD (the long continuous edge)
and is

A safe, lower bound solution to the problem of adequate ultimate strength will be obtained if
the design strength of the slab at this section exceeds the design moment.

The ultimate strength per metre width of the 180 mm thick slab containing tendons at 1200
mm centres (i.e. Ap=400/1.2=333 mm2/m) at an effective depth of 143 mm is obtained using
the procedures discussed in Chapter 4. Such an analysis indicates that the cross-section is
ductile, with the depth to the neutral axis at ultimate equal to 24.5 mm (or 0.17d), which is
much less than the maximum limiting value of 0.4d. The tensile force in the steel is 583 kN/m
(σpu=1750 MPa) and the strength is

Conventional reinforcement is required to supplement the prestressed steel over the beam
support CD. From Equation 4.27, with the internal lever arm l taken to be 0.9d, the required
area of additional non-prestressed steel is approximated by

Try 12 mm diameter bars (fy=400 MPa) at 300 mm centres as additional steel in the top of the
slab over beam support CD. With this additional steel
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in place, an ultimate strength analysis of the cross-section indicates that the depth to the
neutral axis increases to 30.7 mm (0.21d) and Mu=95.4 kN m/m. Therefore,

which is acceptable.
Checking strength at other critical sections indicates that:

(a) at mid-span in the x-direction:

No additional reinforcement is required at mid-span in the x-direction.
(b) At mid-span in the y-direction:

No additional reinforcement required at mid-span in the y-direction.
(c) At the short continuous supports:

No additional reinforcement is required at the short continuous support.

Summary of reinforcement requirements

Tendons consisting of four 12.7 mm strands at 1200 mm centres in each direction are used
with the profiles shown in Figures 10.9c and d. In addition, 12mm diameter non-prestressed
reinforcing bars in the x-direction at 300 mm centres are also placed in the top of the slab over
the long support CD.

Check shear strength

In accordance with Figure 10.8, the maximum shear in the slab occurs at the face of the long
support near its mid-length:

The contribution of the concrete to the shear strength in the region of low moment at the face
of the discontinuous support is given by Equation 5.10
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as follows:

where Vt is the shear force required to cause web-shear cracking. From Equation 5.12,

and solving Equation 5.11 gives

Clearly, V* is much less than and the shear strength is ample here. Shear strengths at all
other sections are also satisfactory. Shear is rarely a problem in edge-supported slabs.

10.6 Flat plate slabs

10.6.1 Load balancing

Flat plates behave in a similar manner to edge-supported slabs except that the edge beams are
strips of slab located on the column lines, as shown in Figure 10.10. The edge beams have the
same depth as the remainder of the slab panel and therefore the system tends to be less stiff
and more prone to serviceability problems. The load paths for both the flat plate and the edge-
supported slab are, however, essentially the same (compare Figures 10.7 and 10.10).

In the flat plate panel of Figure 10.10, the total load to be balanced is wbLxLy. The upward
forces per unit area exerted by the slab tendons in each direction are given by Equation 10.3
and the slab tendons impose a total upward force of

Just as for edge-supported slabs, the slab tendons may be distributed arbitrarily between the x-
and y-directions provided that adequate additional tendons are placed in the slab strips to
balance the line loads wpyLy and wpxLx shown on the column lines in Figure 10.10. These
additional column line tendons correspond to the beam tendons in an edge-supported slab
system. For perfect load balancing, the column line tendons would have to be placed within
the width of slab in which the slab tendons exert down-
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Figure 10.10 Flat plate panel.

ward load due to reverse curvature. However, this is not a strict requirement and considerable
variation in tendon spacing can occur without noticeably affecting slab behaviour. Column
line tendons are frequently spread out over a width of slab as large as one half the shorter span,
as indicated in Figure 10.11c.

The total upward force which must be provided in the slab along the column lines is

Therefore, prestressing tendons (slab tendons plus column line tendons) must be provided in
each panel to give a total upward force of 2wbLxLy. The slab tendons and column line tendons
in each direction must provide between them an upward force equal to the load to be balanced,
wbLxLy. For example, in the slab system shown in Figure 10.11a, the entire load to be
balanced is carried by slab tendons in the x-direction, i.e. wpx=wb and wpy=0. This entire load
is deposited as a line load on the column lines in the y-direction and must be balanced by
column line tendons in this vicinity. This slab is in effect treated as a one-way slab spanning
in the x-direction and being supported by shallow, heavily stressed, slab strips on the y-
direction column lines. The two-way system shown in Figure 10.11b is more likely to perform
better under unbalanced loads, particularly when the orthogonal spans Lx and Ly are similar
and the panel is roughly square. In practice, steel congestion over the supporting columns and
minimum spacing requirements (often determined by the size of the anchorages)
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Figure 10.11 Alternative tendon layouts.

make the concentration of tendons on the column lines impossible. Figure 10.11c shows a
more practical and generally acceptable layout. Approximately 75% of the tendons in each
direction are located in the column strips, as shown, the remainder being uniformly spread
across the middle strip regions.

If the tendon layout is such that the upward force on the slab is approximately uniform,
then at the balanced load the slab has zero deflection and is subjected only to uniform
compression caused by the longitudinal prestress in each direction applied at the anchorages.
Under unbalanced loads, moments and shears are induced in the slab. To calculate the
moments and stresses due to unbalanced service loads and to calculate the factored design
moments and shears in the slab (in order to check ultimate strength), one of the methods
described in the following sections may be adopted.

10.6.2 Behaviour under unbalanced load

Figure 10.12 illustrates the distribution of moments caused by an unbalanced uniformly
distributed load w on an internal panel of a flat plate. The moment diagram in the direction of
span Ly is shown in Figure 10.12b.
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Figure 10.12 Moment distribution in flat plates.

The slab in this direction is considered as a wide, shallow beam of width Lx, span Ly, and
carrying a load wLx per unit length. The relative magnitudes of the negative moments (M1–2
and M3–4) and positive moment M5–6 are found by elastic frame analysis (see Section 10.6.3)
or by more approximate recommendations (see Section 10.6.4). Whichever method is used,
the total static moment Mo is fixed by statics and is given by

(10.10)

In Figures 10.12c and d, variations in elastic moments across the panel at the column lines
and at mid-span are shown. At the column lines, where curvature is a maximum, the moment
is also a maximum. On panel centreline where curvature is a minimum, so too is moment. In
design, it is convenient to divide the panel into column and middle strips and to assume that
the moment is constant in each strip as shown. The column strips in the Ly direction are
defined as strips of width 0.25Lx, but not greater than 0.25Ly, on each side of the column
centreline. The middle strips are the slab strips between the column strips.
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It may appear from the moment diagrams that at ultimate loads, the best distribution of
tendons (and hence strength) is one in which tendons are widely spaced in the middle strips
and closer together in the column strips, as shown in Figure 10.11c. However, at ultimate
loads, provided that the slab is ductile, redistribution of moments takes place as the ultimate
condition is approached and the final distribution of moments depends very much on the
layout of the bonded steel.

After the slab cracks and throughout the overload range, superposition is no longer
applicable and the concepts of balanced and unbalanced loads are not meaningful. As
discussed in Section 9.5.4, at ultimate conditions, when the load factors are applied to the
dead and live load moments, codes of practice usually insist that secondary moments are
considered with a load factor of 1.0. However, provided that the slab is ductile, and slabs most
often are very ductile, secondary moments may be ignored in ultimate strength calculations.
The difficulty in accurately estimating slab moments, particularly in the overload range, is
rendered relatively unimportant by the ductile nature of slabs.

10.6.3 Frame analysis

Perhaps the most commonly used technique for the analysis of flat plates is the equivalent
frame method. The structure is idealized into a set of parallel two-dimensional frames running
in two orthogonal directions through the building. Each frame consists of a series of vertical
columns spanned by horizontal beams. These beams are an idealization of the strip of slab of
width on each side of the column line equal to half the distance to the adjacent parallel row of
columns and includes any floor beams forming part of the floor system. The member
stiffnesses are determined and the frames are analysed under any desired gravity loading
using a linear-elastic frame analysis. For a flat plate building in which shear walls or some
other bracing system is provided to resist all lateral loads, it is usually permissible to analyse
each floor of the building separately with the columns above and below the slab assumed to
be fixed at their remote ends.

In the equivalent frame method, as specified in ACI 318–83, the stiffness of each
supporting column is modified to account for the twisting of the slab spandrel strips. These
so-called spandrel strips are transverse to the frame and adjacent to each supporting column,
and are similar to the torsion strips discussed in Section 5.10.3 and illustrated in Figure 5.13.
For a flat slab structure, the torsional stiffness of a spandrel strip is relatively low and this
causes a reduction of the stiffness of the equivalent column in the idealized frame. The
modification of the stiffness of the columns to account for twisting of the spandrel strips
complicates the analysis and may not necessarily improve the accuracy. The equivalent frame
method provides at best a crude model of structural behaviour, with inaccuracies being associ-
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ated with each of the following assumptions: (a) a two-way plate is idealized by orthogonal
one-way strips; (b) the stiffness of a cracked slab is usually based on gross section properties;
and (c) a linear-elastic analysis is applied to a structure that is non-linear and inelastic both at
service loads and at overloads. A simpler estimate of member stiffness, based for example on
gross section properties only, will lead to an estimate of frame moments which is no less valid.

AS 3600–1988 suggests that the stiffness of the frame members should be chosen “to
represent conditions at the limit state under consideration. All such assumptions shall be
applied consistently throughout the analysis.” If an idealized frame analysis is adopted, a
procedure based on gross member stiffnesses is recommended here and will usually provide
an acceptable solution that is as accurate as is possible using an approximate frame analysis.
When such a frame analysis is used to check bending strength, an equilibrium load path is
established that will prove to be a satisfactory basis for design, provided that the slab is
ductile and the moment distribution in the real slab can redistribute towards that established in
the analysis.

The following live loading patterns are usually considered for the determination of the
design moments at each critical section of the frame (ACI 318–83, AS 3600–1988):

(a) Where the loading pattern is known, the frame should be analysed under that loading.
(b) Where the live load Q is not greater than three quarters of the dead load G, or when the

nature of the loading is such that all panels will be loaded simultaneously, the frame should
be analysed with the full factored live load on all spans.

(c) Where loads are other than specified in (b) (e.g. when ), the maximum factored
positive moment near mid-span of a panel may be assumed to occur with three quarters of
the full factored live load on the panel and on alternate panels. The maximum factored
negative moment at a support may be assumed to occur with three quarters of the full
factored live load on adjacent panels only.

The frame moments calculated at the critical sections of the idealized horizontal members are
distributed across the floor slab into the column and middle strips (as defined in the previous
Section). In ACI 318–83, the fraction of the total frame moment to be carried by the column
strip at each critical section is specified. The fraction depends on the aspect ratio of the slab
panel and the relative stiffnesses of the various frame elements (beams, slabs, and columns) in
both the longitudinal and transverse directions. Studies have shown that the performance of
reinforced concrete flat slabs both at service loads and at overloads is little affected by
variations in the fraction of the total frame moment that is assigned to the column
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Table 10.3 Fraction of frame moment distributed to column strip (AS 3600–1988).

Bending Moment Under Consideration Column Strip Moment Factor
Negative Moment at an Interior Support 0.60 to 1.00

Negative Moment at an Exterior Support 0.75 to 1.00

Positive Moment at all Spans 0.50 to 0.70

strip (Gilbert 1984), provided that the slab is ductile and capable of the necessary moment
redistribution.

AS 3600–1988 specifies that the column strip shall be designed to resist the total negative
or positive frame bending moment at each section multiplied by a column strip moment factor
taken within the ranges given in Table 10.3.

An idealized frame analysis may be used to examine the serviceability of a floor slab. With
the in-service moments caused by the unbalanced loads determined at all critical regions,
checks for cracking and crack control and calculations of deflection may be undertaken in
accordance with the procedures outlined in Chapter 11.

When the ultimate strengths of the column and middle strips are being checked, it is
advisable to ensure that the depth to the neutral axis at ultimate at any section does not exceed
0.25d. This will ensure sufficient ductility for the slab to establish the moment distribution
assumed in design (i.e. the moment pattern predicted by the idealized frame analysis) and also
allows the designer safely to ignore the secondary moments. There are obvious advantages in
allocating a large fraction of the negative moment at the supports to the column strip. The
increased steel quantities that result stiffen and strengthen this critical region thereby
improving punching shear and crack control. In prestressed flat slabs, it is usually only the
column strip region over the interior columns that is likely to experience significant cracking.
In Australia, in recent years, the use of uniform steel in the bottom of the slab (i.e. 50% of the
positive frame moments assigned to the column strip) with all the top steel confined to the
column strip (i.e. 100% of the negative frame moments assigned to the column strip) has
become fairly common for reinforced concrete slabs which are not exposed to the weather.
The in-service performance of such slabs is at least as good as that of the more traditionally
reinforced slabs and significant cost savings usually result. Steel fixing is greatly simplified
and, with large portions of the slab free from top steel, concrete placing is much easier.
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10.6.4 Direct design method

A simple, semi-empirical approach for the analysis of flat plates is the direct design method.
The method is outlined specifically for reinforced concrete slabs in a number of codes,
including ACI 318–83 and AS 3600–1988. Within certain limitations, the direct design
method can be applied equally well to prestressed slabs and the results obtained are just as
reliable as those obtained from a frame analysis.

Limitations are usually imposed on the use of the direct design method, such as the
following requirements imposed by AS 3600–1988. A similar set of requirements is contained
in ACI 318–83.

(a) There are at least two continuous spans in each direction (ACI 318–83 requires at least
three continuous spans in each direction).

(b) The support grid is rectangular, or nearly so.
(c) The ratio of the longer to shorter span measured centre-to-centre of supports within any

panel is not greater than 2.0.
(d) In each direction, successive span lengths do not differ by more than one third of the

longer span and in no case should an end span be longer than the adjacent interior span.
(e) Gravity loads are essentially uniformly distributed. Lateral loads are resisted by shear

walls or braced vertical elements and do not enter into the analysis.
(f) The live load Q does not exceed twice the dead load G (in ACI 318–83, Q must not exceed

3G).

The slab is analysed one panel at a time. The total static moment, Mo, in each direction in each
panel is calculated. For a particular span,

(10.11)

where w is the design load per unit area, Lt is the width, measured transverse to the direction
of bending, equal to the average of the centre-to-centre distance between the supports of the
adjacent transverse spans, Le is the effective span, which is the lesser of the centre-to-centre
distance between supports and (Ln+D), Ln is the clear span, and D is the overall slab thickness.

The static moment Mo is shared between the supports (negative moments) and the mid-span
(positive moment). At any critical section, the design moment is determined by multiplying
Mo by the relevant factor given in either Table 10.4 or 10.5. It is permissible to modify these
design moments by up to 10% provided that the total static design moment Mo for the span is
not reduced. At any interior support, the floor slab should
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Table 10.4 Design moment factors for an end span (AS 3600–1988).

Type of Slab System Negative Moment at
Exterior Support

Positive
Moment

Negative Moment at
Interior Support

Flat Slabs

Exterior edge unrestrained 0.0 0.60 0.80

Exterior edges restrained by
columns only

0.25 0.50 0.75

Exterior edges restrained by
spandrel beams & columns

0.30 0.50 0.70

Exterior edge fully restrained 0.65 0.35 0.60

Beam and Slab 0.15 0.55 0.75

Table 10.5 Design moment factor for an interior span (AS 3600–1988).

Type of Slab System Negative Moment at Support Posirive Moment

ALL 0.65 0.35

be designed to resist the larger of the two negative design moments determined for the two
adjacent spans unless the unbalanced moment is distributed to the adjoining members in
accordance with their relative stiffnesses.

The positive and negative design moments are next distributed to the column and middle
strips using the column strip moment factor from Table 10.3.

10.6.5 Shear strength

Punching shear strength requirements often control the thickness of a flat slab at the
supporting columns and must always be checked. The shear strength of the slabs was
discussed in Chapter 5 (Sections 5.9 and 5.10) and methods for designing the slab–column
intersection were presented.

If frame analyses are performed in order to check the flexural strength of a slab, the design
moment transferred from the slab to a column and the design shear V* are obtained from
the relevant analyses. If the
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direct design method is used for the slab design, and V* must be calculated separately.
The shear force crossing the critical shear perimeter around a column support may be taken as
the product of the factored design load w* and the plan area of slab supported by the column
and located outside the critical section. Equations for determining minimum values of are
specified in some codes of practice. AS 3600–1988 suggests that at an interior support,
should not be taken to be less than the value given by

(10.12)

where Le and are, respectively, the longer and shorter of the two adjacent effective spans
on either side of the column and Lt is the transverse width of slab defined in the text under
Equation 10.11. The terms g and q are the dead and live loads on the slab per unit area,
respectively. For an edge column, is equal to the design moment at the exterior edge of
the slab and may be taken as 0.25Mo (where Mo is the static moment for the end span of the
slab calculated using Equation 10.11).

When detailing the slab–column connection, it is advisable to have at least two prestressing
tendons crossing the critical shear perimeter in each direction. Additional well anchored non-
prestressed reinforcement crossing the critical perimeter will also prove beneficial (both in
terms of crack control and ductility) in the advent of unexpected overloads.

10.6.6 Example 10.2

The tendons required in the 220 mm thick flat plate shown in Figure 10.13 are to be
calculated. The live load on the slab is 3.0 kPa and the dead load is 1.0 kPa plus the slab self-
weight. All columns are 600 mm by 600 mm and are 4 m long above and below the slab. At
the top of each column, a 300 mm column capital is used to increase the supported area, as
shown. In this example, the dead load g is to be effectively balanced by prestress and is given
by

1 Checking punching shear

Before proceeding too far into the design, it is prudent to make a preliminary check of
punching shear at typical interior and exterior columns. Consider the interior column B in
Figure 10.13. The area of slab supported by the column is 10×(8.5+10)/2=92.5 m2. Using the
strength load factors specified in AS 3600–1988 (see Section 1.7.3), the factored design load
is
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Figure 10.13 Plan and section of flat plate in Example 10.2.

and therefore the shear force crossing the critical section may be approximated by

From Equation 10.12, the design moment transferred to the column may be taken as

In this case, the effective spans Le and are equal to the clear span on either side of the
column capital plus the slab thickness. The average effective depth is taken to be
d=220−50=170 mm and the critical shear



Page 405

perimeter is therefore

The average prestress in the concrete is assumed to be σcp=2.75 MPa and the concrete shear
stress fcυis given by Equation 5.52:

From Equation 5.51,

The critical section possesses adequate shear strength if the design shear V* is less than ,
where Vu is given by Equation 5.55:

which is close enough to V* to be considered acceptable at this preliminary stage. Punching
shear at typical exterior columns should similarly be checked.

2 Establish cable profiles

Using four 12.7 mm strands in a flat duct and with 25 mm concrete cover to the duct (as
shown in Figure 10.9b), the maximum depth to the centre of gravity of the strand is

and the corresponding eccentricity is e=73 mm. The maximum cable drape in an exterior span
is therefore

and in an interior span is

Consider the trial cable profile shown in Figure 10.14. For the purposes of this example, it is
assumed that jacking occurs simultaneously from both
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Figure 10.14 Friction loss details in Example 10.2

ends of a tendon, so that the prestressing force in a tendon is symmetrical with respect to the
centreline of the structure shown in Figure 10.13. The friction losses are calculated from the
exponential expression

(3.60)

and the results are also shown in Figure 10.14. In this case, µ=0.2 and β=0.016 for flat ducts.
The loss of prestress due to a 6 mm draw-in at the anchorage and the length of tendon

affected should also be calculated. If the jacking force in a strand is assumed to be
0.85fpAp=0.85×1840×100×10−3=156.4 kN, the slope of the prestressing line in the exterior
span is

The length of beam affected by draw-in is given by Equation 3.61:

and the loss of force at the jack due to slip at the anchorage is

The corresponding draw-in losses at B (the mid-point of the exterior
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span) and at C (the first interior support) are

The ratio of the prestressing force after all short-term losses to the jacking force Pi/Pj is also
shown in Figure 10.14.

3 Calculate tendon layout

It is assumed here that the average time-dependent loss of prestress in each low relaxation
tendon is 15%. Of course, this assumption should be subsequently checked.

The effective prestress per metre width required to balance 6.3 kPa using the full available
drape is found using Equation 10.2:

and

and the corresponding forces required at the jack prior to the time-dependent and the short-
term losses are

The jacking force is therefore governed by the requirements for the interior span.
For the 8.5 m wide panel, the total jacking force required is 701×8.5=5960 kN. If the

maximum stress in the tendon is 0.85fp, the total area of prestressing steel is therefore

At least ten flat ducted cables are required in each 8.5 m wide panel (Ap=400 mm2/cable) with
an initial jacking force of 5960/10=596 kN per cable (σpj=0.81fp).

The required jacking force in the 10 m wide panel is 701×10=7010 kN
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Figure 10.15 Cable profile and effective prestress in Example 10.2.

and therefore

At least twelve flat ducted cables are needed in each 10 m wide panel (Ap=4800 mm2) with an
initial jacking force of 7010/12=584 kN per cable (σpj=0.794fp).

In the interests of uniformity, all tendons will be initially stressed with a jacking force of
600 kN (σpj=0.82fp). This means that a slightly higher load than 6.3 kPa will be balanced in
each span. The average prestress at the jack is (22×600)/(8.5+10)=714 kN/m and the revised
drape in the

Figure 10.16 Tendon layout in Example 10.2.
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exterior span is

The final cable profile and effective prestress per panel after all losses are shown in Figure
10.15.

The maximum average stress in the concrete due to the longitudinal anchorage force after
the deferred losses is

which is within the recommended range for serviceability (see Section 11.2).
The cable layout for the slab is shown on the plan in Figure 10.16. For effective load

balancing, about 75% of the cables are located in the column strips. The minimum spacing of
tendons is usually governed by the size of the anchorage and is taken here as 300 mm, while a
maximum spacing of 1600 mm has also been adopted.

4 Serviceability considerations

In practice, the deferred losses should now be checked and the slab analysed under the
unbalanced loads to determine the extent of cracking and to calculate the slab deflections.
Such serviceability considerations are examined in detail in Chapter 11. A mat of
conventional steel is often required over the columns to improve both crack control and
strength. In addition, bonded non-prestressed steel of area 0.0015bdo=0.0015× 1000×195=293
mm2/m (12 mm diameter bars at 375 mm centres) is to be placed in the bottom of the slab
perpendicular to the free edge in all exterior panels (in accordance with the discussion in the
last paragraph of Section 10.2).

5 Check shear and flexural strength

With the level of prestress determined, punching shear should also be checked at both exterior
and interior columns in accordance with the procedure outlined in Chapter 5 (see Sections 5.9
and 5.10). The dimensions of the column capitals may need to be modified and shear
reinforcement may be required in the spandrel strips along each free edge.

The ultimate flexural strength of the slab must also be checked. For the purposes of this
example, the flexural strength of the interior panel will be compared with the design moments
determined from the direct design method. As calculated in step 1, w*=12.4 kPa, the panel
width is Lt=10m and the effective span of an interior panel is Le=Ln+D=
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10−1.2+0.22=9.02 m. From Equation 10.11, the total static moment is

From Table 10.5, the negative support moment is

Because both the positive and negative moment capacities are similar (each having the same
quantity of prestressed steel at the same effective depth), it is appropriate to take advantage of
the 10% permissible redistribution (reduction) in the negative support moment (as discussed
in Section 10.6.4). The negative support moment is therefore taken as 0.9×820=738 kNm and
therefore the positive design moment at mid-span is 1261–738=523 kNm. From Table 10.3,
the design negative moment in the column strip at the support is taken as

The 5 m wide column strip contains eight cables (Ap=3200 mm2) at an effective depth of 183
mm. The following results are obtained for the column strip at the column support in
accordance with the ultimate strength procedures outlined in Chapter 4:

which is substantially greater than M* and therefore the slab possesses adequate strength at
this location. The strength is also adequate at all other regions in the slab. With the maximum
value of dn/d=0.257, ductility is also acceptable.

10.6.7 Yield line analysis of flat plates

Yield line analysis is a convenient tool for calculating the collapse load required to cause
flexural failure in reinforced concrete slabs. The procedure was described in detail by
Johansen (1962, 1972) and is, in effect, a plastic method for the analysis of a two-way slab,
with yield lines (or plastic hinge lines) developing in the slab and reducing the slab to a
mechanism.
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Figure 10.17 Typical yield line patterns.

Typical yield line patterns for a variety of slab types subjected to uniformly distributed loads
are shown in Figure 10.17. The yield lines divide the slab into rigid segments. At collapse,
each segment rotates about an axis of rotation that is either a fully supported edge or a straight
line through one or more point supports, as shown. All deformation is assumed to take place
on the yield lines between the rigid segments or on the axes of rotation. The yield line pattern
(or the collapse mechanism) for a particular slab must be compatible with the support
conditions.

The principle of virtual work is used to determine the collapse load corresponding to any
possible yield line pattern. For a particular layout of yield lines, a compatible virtual
displacement system is postulated. Symmetry in the slab and yield line pattern should be
reflected in the virtual displacement system. The external work, Ue done by all the external
forces as the slab undergoes its virtual displacement is equal to the internal work, Ui. The
internal work associated with a particular yield line is the product of the total bending moment
on the yield line and the angular rotation that takes place at the line. Since all internal
deformation takes place on the yield lines, the internal work Ui is the sum of the work done on
all yield lines.
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In reinforced concrete slabs with isotropic reinforcement, the ultimate moment of resistance
or plastic moment mu (per unit length) is constant along any yield line and the internal work
associated with any of the collapse mechanisms shown in Figure 10.17 is easily calculated. In
prestressed concrete slabs, the depth of the orthogonal prestressing tendons may vary from
point to point along a particular yield line and the calculation of Ui is more difficult.

For flat plate structures, however, with the yield line patterns shown in Figures 10.17e and
10.18, the prestressing tendons crossing a particular yield line do so at the same effective
depth, the plastic moment per unit length of the yield line is constant and the collapse load is
readily calculated.

Consider the interior span of Figure 10.18a. It is assumed conservatively that the columns
are point supports and that the negative yield lines pass through the support centrelines. The
slab strip shown is given a unit vertical displacement at the position of the positive yield line.
The work done by the collapse loads wu (in kN/m2) acting on the slab strip in the span under
consideration is the total load on the strip times its average virtual displacement (which in this
case is 0.5). That is,

(10.13)

The internal work done at the negative yield line at each end of the span is the total moment
times the angular change at the yield line θ(=1/(L/2)=2/L). At the positive yield line, the

angular change is 2θ

Figure 10.18 Yield line analysis of a flat plate.
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(=4/L) and the internal work is muLt×4/L. The total internal work on all yield lines is

(10.14)

The principle of virtual forces states that Ue=Ui and therefore

(10.15)

where mu and are the ultimate moments of resistance per unit length along the positive and
negative yield lines, respectively.

When calculating mu and , it is reasonable to assume that the total quantity of
prestressed and non-prestressed steel crossing the yield line is uniformly distributed across the
slab strip, even though this is unlikely to be the case.

The amount of non-prestressed steel and the depth of the prestressed tendons may be
different at each end of an interior span, and hence the value of at each negative yield line
may be different. When this is the case, the positive yield line will not be located at mid-span.
The correct position is the one that corresponds to the smallest collapse load wu.

Consider the exterior span in Figure 10.18b. If the positive yield line is assumed to occur at
mid-span, the collapse load is given by an expression similar to Equation 10.15, except that
only one negative yield line contributes to the internal work and therefore

(10.16)

For the case when mu and have the same magnitude, the value of wu given by Equation
10.16 is

(10.17)

However, a smaller collapse load can be obtained by moving the position of the positive yield
line a little closer to the exterior edge of the slab strip. The minimum collapse load for the
mechanism shown in Figure 10.18b occurs when a=0.414L, and the internal work is
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The external work is still given by Equation 10.13. Equating the internal and external work
gives

(10.18)

The collapse loads predicted by both Equations 10.17 and 10.18 are close enough to suggest
that, for practical purposes, the positive yield line in this mechanism may be assumed to be at
mid-span.

Yield line analysis is therefore an upper bound approach and predicts a collapse load that is
equal to or greater than the theoretically correct value. It is important to check that another
yield line pattern corresponding to a lower collapse load does not exist. In flat plates, a fan-
shaped yield line pattern may occur locally in the slab around a column (or in the vicinity of
any concentrated load), as shown in Figure 10.19.

The concentrated load Pu at which the fan mode shown in Figure 10.19c occurs is

(10.19)

The loads required to cause the fan mechanisms around the columns in Figures 10.19a and b
increase as the column dimensions increase. Fan mechanisms may be critical in cases where
the column dimensions are both less than about 6% of the span in each direction (see Ritz et
al. 1981).

Although yield analysis theoretically provides an upper bound to the collapse load, slabs
tested to failure frequently (almost invariably) carry very much more load than that predicted.
When slab deflections become large, in-plane forces develop in the slab and the applied load
is resisted by membrane action in addition to bending. The collapse load predicted by yield
line analysis is therefore usually rendered conservative by membrane action.

Although yield line analysis provides a useful measure of flexural strength, it does not
provide any information regarding serviceability. Service-load behaviour must be examined
separately.

Figure 10.19 Fan mechanisms at columns or under concentrated loads.
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10.7 Flat slabs with drop panels

Flat slabs with drop panels behave and are analysed similarly to flat plates. The addition of
drop panels improves the structural behaviour both at service loads and at overloads. Drop
panels stiffen the slab, thereby reducing deflection. Drop panels also increase the flexural and
shear strength of the slab by providing additional depth at the slab-column intersection. The
extent of cracking in the negative moment region over the column is also reduced. The slab
thickness outside the drop panel may be significantly reduced from that required for a flat
plate. Drop panels, however, interrupt ceiling lines and are often undesirable from an
architectural point of view.

Drop panels increase the slab stiffness in the regions over the columns and therefore affect
the distribution of slab moments caused by unbalanced loads. The negative or hogging
moments over the columns tend to be larger and the span moments tend to be smaller than the
corresponding moments in a flat plate.

Building codes usually place minimum limits on the dimensions of drop panels. For
example, on each side of the column centreline, drop panels should extend a distance equal to
at least one sixth of the span in that direction (measured centre to centre of supports) (ACI
318–83). The projection of the drop below the slab should be at least one quarter of the slab
thickness beyond the drop (ACI 318–83).

In Figure 10.5, the moments introduced into a slab by the change in eccentricity of the
horizontal prestressing force at the drop panels were illustrated. These may be readily
included in the slab analysis. The fixed

Figure 10.20 Bending moments due to eccentricity of longitudinal prestress.



Page 416

end moment at each support of the span shown in Figure 10.20a is given by

(10.20)

and the resultant bending moment diagram is shown in Figure 10.20b. The moments of inertia
of the various slab regions I1 and I2 are defined in Figure 10.20a. The moments in the drop
panel due to this effect are positive and those in the span are negative, as shown, and although
usually relatively small, tend to reduce the moments caused by the unbalanced loads.

10.8 Band-beam and slab systems

Band-beam floors have become an increasingly popular form of prestressed concrete
construction over the past decade or so. A one-way prestressed or reinforced concrete slab is
supported by wide, shallow beams (slab-bands or band-beams) spanning in the transverse
direction. The system is particularly appropriate when the spans in one direction are
significantly larger than those in the other direction.

The slab-bands, which usually span in the long direction, have a depth commonly about
two to three times the slab thickness and a width that may be as wide as the drop panels in a
flat slab. A section through a typical band-beam floor is shown in Figure 10.21. The one-way
slab is normally considered to have an effective span equal to the clear span (from band edge
to band edge) plus the slab depth. If the slab is prestressed, the tendons are usually designed
using a load balancing approach and have a constant eccentricity over the slab bands with a
parabolic drape through the effective span as shown in Figure 10.21. The depth and width of
the band beams should be carefully checked to ensure that the reaction from the slab,
deposited near the edge of the band, can be safely carried back to the column line.

The prestressing forces at the slab tendon anchorages will also induce moments at the
change of depth from slab to slab-band in the same way as was discussed for drop panels.

Figure 10.21 Band-beam and slab floor system.
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The slab-band is normally designed to carry the full load in the transverse direction (usually
the long-span direction). The prestressing tendons in this direction are concentrated in the
slab-bands and are also designed by load balancing. Because the prestress disperses out into
the slab over the full panel width, the prestress anchorage should be located at the centroid of
the T-section comprising the slab-band and a slab flange equal in width to the full panel.

When checking serviceability and strength of the slab-band, the effective flange width of
the T-section is usually assumed to be equal to the width of the column strip as defined for a
flat plate in Section 10.6.2.
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11
Two-way slabs—serviceability

11.1 Introduction

Prestressed concrete slabs are typically thin in relation to their spans and, although possessing
adequate strength, may not possess adequate stiffness. If a slab is too thin, it may suffer
excessively large deflections when fully loaded or exhibit excessive camber after transfer.

The initial selection of the thickness of a slab is usually governed by the serviceability
requirements for the member. The selection is often based on personal experience or on
recommended maximum span to depth ratios. Whilst providing a useful starting point in
design, such a selection of slab thickness does not necessarily ensure serviceability.
Deflections at all critical stages in the slab’s history must be calculated and limited to
acceptable design values. Failure to predict deflections adequately has frequently resulted in
serviceability problems. In slab design, excessive deflection is a relatively common type of
failure. This is particularly true for slabs supporting relatively large transitory live loads or for
slabs not subjected to their full service loads until some considerable time after transfer.
Codes of practice require that the camber, deflection, and vibration frequency and amplitude
of slabs must be within acceptable limits at service loads. In general, however, little guidance
is given as to how this is to be done and methods for computing camber or deflection are not
prescribed.

The service load behaviour of a concrete structure is far less reliably known than its
strength. Strength depends primarily on the properties of the reinforcing steel, whilst
serviceability is most affected by the properties of concrete. The non-linear and inelastic
nature of concrete complicates the calculation of deflection, even for line members such as
beams. For two-way slab systems, the three-dimensional nature of the structure, the less well
defined influence of cracking and tension stiffening, and the development of biaxial creep and
shrinkage strains create additional difficulties. A more general discussion of the design of
prestressed struc-
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tures for serviceability, including types of deflection problems and criteria for deflection
control, was given in Section 1.7.7. Methods for determining the instantaneous and time-
dependent behaviour of cross-sections at service loads were outlined in Sections 3.5 and 3.6,
and techniques for calculating beam deflections were presented in Section 3.8.

Classical methods for calculating the deflection of elastic plates with ideal boundary
conditions are of limited use in the design of practical concrete slabs. The edges of a concrete
slab panel are never fully fixed or perfectly hinged, but have some intermediate degree of
fixity which depends on the relative stiffnesses of the slab panel, the adjacent slab panels, and
the supporting columns, beams, or walls. Numerical techniques, such as finite elements, are
capable of closely modelling the non-linear and inelastic behaviour of slabs. However, for
most slabs, the expense of such an analysis cannot be justified.

Nevertheless, various approximate methods are available which may be used economically
and reliably to predict ball-park estimates of the deflection of two-way slabs. Several of these
approximate methods are reviewed in Section 11.4 and design recommendations are also
made.

11.2 The balanced load stage

Under transverse loads, two-way panels deform into dish-shaped surfaces, as shown in Figure
11.1. The slab is curved in both principal directions and therefore bending moments exist in
both directions. In addition, part of the applied load is resisted by twisting moments which
develop in the slab at all locations except the lines of symmetry.

As has already been discussed in Chapter 10, prestressing tendons are usually placed in two
directions parallel to the panel edges, each tendon providing resistance for its share of the
applied load. The transverse load on the slab produced by the tendons in one direction adds to
(or subtracts from) the transverse load imparted by the tendons in the perpendicular direction.
For edge-supported slabs, the portion of the load to be carried

Figure 11.1 Deformation of two-way slabs.
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by tendons in each direction is more or less arbitrary, the only strict requirement is the
satisfaction of statics (i.e. the satisfaction of Equation 10.4). For flat slabs the total load must
be carried by tendons in each direction from column line to column line.

The concept of utilizing the transverse forces, resulting from the curvature of the draped
tendons, to balance a selected portion of the applied load is useful from the point of view of
controlling deflections. In addition to providing the basis for establishing a suitable tendon
profile, load balancing allows the determination of the prestressing force required to produce
zero deflection in a slab panel under the selected balanced load.

At the balanced load, the slab is essentially flat (no curvature) and is subjected only to the
effects of the prestressing forces applied at the anchorages. A slab of uniform thickness is
subjected only to uniform compression (P/A) in the directions of the orthogonal tendons. With
the state of the slab under the balanced load confidently known, the deflection due to the
unbalanced portion of the load may be calculated by one of the approximate techniques
discussed in Section 11.4. The techniques are usually more reliable for prestressed slabs than
for conventionally reinforced slabs, because only a portion of the total service load needs to
be considered (the unbalanced portion) and, unlike reinforced concrete slabs, prestressed slabs
are often uncracked at service loads.

To minimize deflection problems, the external load to be balanced is usually a significant
portion of the sustained or permanent service load. If all the permanent load is balanced, the
sustained concrete stress (P/A) is uniform over the slab depth. A uniform compressive stress
distribution produces uniform creep strain and, hence, little long-term load-dependent
curvature or deflection. Bonded reinforcement does, of course, provide restraint to both creep
and shrinkage and causes a change of curvature with time if the steel is eccentric to the slab
centroid. However, the quantity of bonded steel in prestressed slabs is generally small and the
time-dependent curvature caused by this restraint does not usually cause significant deflection.

Problems can arise if a relatively heavy dead load is to be applied at some time after
stressing. Excessive camber after transfer, which will continue to increase with time owing to
creep, may cause problems prior to the application of the full balanced load. In such a case,
the designer may consider stage stressing as a viable solution.

The magnitude of the average concrete compressive stress after all losses can indicate
potential serviceability problems. If P/A is too low, the prestress may not be sufficient to
prevent or control cracking due to shrinkage, temperature changes, and the unbalanced loads.
Some codes of practice specify minimum limits on the average concrete compressive stress
after all losses. ACI 318–83 requires that P/A is greater than 125 psi (0.9 MPa). In Australia,
where flat-ducted tendons containing four or more strands are
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used, considerably more prestress is usually specified, with average compressive stress evels
typically within the range 2.0–3.0 MPa in each direction of a two-way slab.

If the average prestress is high, axial deformation of the slab may be large and may result in
distress in the supporting structure. The remainder of the structure must be capable of
withstanding and accommodating the shortening of the slab, irrespective of the average
concrete stress, but when P/A is large, the problem is exacerbated. Movement joints may be
necessary to isolate the slab from stiff supports.

The FIP (1980) recommendation for the maximum spacing of tendons is six times the slab
thickness. However, provided that cracking is unlikely (e.g. in the middle strips of a flat slab),
a tendon spacing of eight times the slab thickness should prove acceptable (ACI 318–83).

11.3 Initial sizing of slabs

11.3.1 Existing guidelines

At the beginning of the design of a post-tensioned floor, the designer must select an
appropriate floor thickness. The floor must be stiff enough to avoid excessive deflection or
camber, and it must have adequate fire resistance and durability.

In its recommendations for the design of post-tensioned slabs, the Post-Tensioning Institute
(1977) suggested typical span-to-depth ratios that had proved acceptable, in terms of both
performance and economy, for a variety of slab types. These recommendations are
summarized in Table 11.1. Note that for flat plates and flat slabs with drop panels, the longer
of the two orthogonal spans is used in the determination of the span-to-depth ratio, while for
edge-supported slabs, the shorter span is used.

For flat slabs continuous over two or more spans in each direction, the

Table 11.1 Span-to-depth ratios (Post-Tensioning Institute 1977).

Floor System Span-to-Depth Ratio
Flat plate 45

Flat slab with drop panels 50

One-way slab 48

Edge-supported slab 55

Waffleslab 35

Band-beams (b≈3D) 30



Page 422

Table 11.2 Minimum slab thickness for insulation (AS 3600–1988).

Fire resistance period (minutes) Minimum effective Minimum effective slab thickness (mm)
30 60

60 80

90 100

120 120

180 150

240 170

FIP (1980) recommends that the span-to-depth ratio should not generally exceed 42 for floors
and 48 for roofs. These limits may be increased to 48 and 52, respectively, if the calculated
deflections, camber and vibration frequency and amplitude are acceptable. Of course, strength
requirements, such as punching shear, and fire resistance and durability requirements must
also be considered.

A slab exposed to fire must retain its structural adequacy and its integrity for a particular
fire resistance period. It must also be sufficiently thick to limit the temperature on one side
when exposed to fire on the other side, i.e. it must provide a suitable fire resistance period for
insulation. The fire resistance period required for a particular structure is generally specified
by the local building authority and depends on the type of structure and its occupancy. The
Australian code AS 3600–1988 specifies the minimum effective thickness of a slab required
to provide a particular fire resistance

Table 11.3 Minimum concrete cover for fire resistance of slabs (AS 3600–1988).

Minimum concrete cover to bottom reinforcement (mm)

For simply-supported slabs For continuous slabs

Fire resistance period (minutes)

reinforcement tendons reinforcement tendons

30 15 20 10 15

60 20 25 15 20

90 25 35 15 25

120 30 40 15 25

180 45 55 25 35

240 55 65 35 45
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period for insulation and the minimum concrete cover to the bottom reinforcement in a slab in
order to maintain structural adequacy. These requirements are given in Tables 11.2 and 11.3.

The span-to-depth ratios recommended by both the Post-Tensioning Institute and the FIP
are usually conservative, but do not always guarantee serviceability. No consideration is made
of the magnitude of the applied load, the level of prestress or the material properties, all of
which greatly affect in-service behaviour. At best, these limits provide a useful starting point
for design.

11.3.2 A serviceability approach for the calculation of slab thickness

For uniformly loaded slabs, a better initial estimate of slab thickness which should ensure
adequate stiffness and satisfactory service load behaviour can be made using a procedure
originally developed for reinforced concrete slabs (Gilbert 1985) and recently extended to
cover post-tensioned floor systems (Gilbert 1989). By rearranging the expression for the
deflection of a span, a simple equation is developed for the span-to-depth ratio that is required
to satisfy any specified deflection limit. The method forms the basis of the deemed to comply
span-to-depth ratios for reinforced concrete slabs in the Australian code (AS 3600–1988).

If it is assumed that a prestressed concrete slab is essentially uncracked at service loads,
which is most often the case, the procedure for estimating the overall depth of the slab is
relatively simple. Figure 11.2 shows a typical interior panel of a one-way slab, a flat-slab, and
an edge-supported slab. Equivalent one-way slab strips are also defined for each slab type.
For a one-way slab, the mid-span deflection is found by analysing a strip of unit width as
shown in Figure 11.2a. For the flat slab, the deflection at the midpoint of the long-span on the
column line is found by analysing a unit wide strip located on the column line, as shown in
Figure 11.2b. For the edge-supported slab, the deflection at the centre of the panel may be
calculated from an equivalent slab strip through the centre of the panel in the short direction,
as shown in Figure 11.2c.

By rearranging the equation for the mid-span deflection of the equivalent strip, an
expression can be obtained for the minimum slab thickness required to satisfy any specified
deflection limit. The stiffness of the equivalent strip must be adjusted for each slab type, so
that the deflection of the strip is similar to the deflection of the two-way slab. For a flat slab,
for example, the stiffness of the slab strip must be reduced significantly, if the maximum
deflection at the centre of the panel is to be controlled rather than the deflection on the column
line. This stiffness adjustment has been made in the following procedure by means of a slab
system factor, K, which was originally calibrated using a non-linear, finite element model
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Figure 11.2 Slab types and equivalent slab strips.

(Gilbert 1979a,b). A brief description of the finite element model is presented in Section
11.4.7.

The maximum deflection caused by the unbalanced uniformly distributed service loads on
an uncracked prestressed slab strip may be estimated using Equation 8.2, which is reproduced
and renumbered here:

(11.1)

where wu is the unbalanced service load per unit length and wus is the sustained portion of the
unbalanced load per unit length. In the design of a slab, wus should not be taken less than 25%
of the self-weight of the member. This is to ensure that at least a small long-term deflection is
predicted by Equation 11.1. A small long-term deflection is inevitable, even
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for the case when an attempt is made to balance the entire sustained load by prestress. The
term βis a deflection coefficient that depends on the support conditions and the type of load.
The effective span of the slab strip Le may be taken to be the centre to centre distance between
supports or the clear span plus the depth of the member, whichever is the smaller (AS 3600–
1988). Ec is the elastic modulus of concrete and I is the gross moment of inertia of the cross-
section. As discussed in Section 8.3.1, the long-term deflection multiplierλfor an uncracked
prestressed member is significantly higher than for a cracked reinforced concrete member.
The ratio of the time-dependent creep-induced curvature and the initial curvature on an
uncracked cross-section containing only small amounts of bonded reinforcement is similar in
magnitude to the creep coefficient, and is therefore significantly greater than the
corresponding ratio for a cracked cross-section. For uncracked, prestressed members, the
value of λin Equation 11.1 should not be less than 3.

By substituting bD3/12 for I and rearranging Equation 11.1, the following expression may
be obtained for an uncracked beam of rectangular section (with width b and overall depth D):

(11.2)

If υis the deflection limit selected in design, the maximum span to depth ratio for the beam is
obtained from Equation 11.2.

To avoid dynamic problems, a maximum limit should be placed on the span-to-depth ratio.
For concrete floors subjected to normal in-service loading conditions and not possessing any
special vibration requirements, a lower limit to the frequency of the fundamental mode of the
slab of about 5 cycles per second is sufficient to avoid excessive vertical acceleration which
may cause discomfort to occupants. In a previous investigation, upper limits of the span-to-
depth ratio for slabs were recommended to avoid vibration problems due to pedestrian traffic
(Mickleborough & Gilbert 1986). This work forms the basis of the upper limits on L/D
specified below in Equation 11.3.

For prestressed concrete slabs, an estimate of the minimum slab thickness may be obtained
by applying Equation 11.2 to the slab strips in Figure 11.2. Equation 11.2 can be re-expressed
as follows:

(11.3)
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The width of the equivalent slab strip b and the long-term deflection multiplierλare taken as
1000 mm and 3, respectively. The loads wu and wus are in kPa and Ec is in MPa. The term K is
the slab system factor, which acounts for the support conditions of the slab panel, the aspect
ratio of the panel, the load dispersion, and the torsional stiffness of the slab. For each slab
type, values for K are presented and discussed below.

The slab system factor, K

One-way slabs For a one-way slab, K depends only on the support conditions and the most
critical pattern of unbalanced load. From Equation 11.2,

(11.4)

For a continuous slab, βshould be determined for the distribution of unbalanced load which
causes the largest deflection in each span. For most slabs, a large percentage of the sustained
load (including self-weight) is balanced by the prestress and much of the unbalanced load is
transitory. Pattern loading must therefore be considered in the determination of β.

For a simply supported span, β=5/384 and from Equation 11.4, K=1.85. For a fully-loaded
end span of a one-way slab that is continuous over three or more equal spans and with the
adjacent interior span unloaded, βmay be determined from an elastic analysis and taken to be
3.5/384 and therefore K=2.1. For an interior span of a continuous member, with adjacent
spans unloaded, βmay be taken to be 2.6/384 and K=2.3.

Flat slabs For flat slabs, the values of K given above must be modified to account for the
variation of curvature across the panel width. The moments, and hence curvatures, in the
uncracked slab are greater close to the column line than near the mid-panel of the slab in the
middle strip region. For this reason, the deflection of the slab on the column line will be
greater than the deflection of a one-way slab of similar span and continuity. If the deflection
of the equivalent slab strip in Figure 11.2b is to represent accurately the deflection of the real
slab on the column-line, a greater than average share of the total load on the slab must be
assigned to the column strip (of which the equivalent strip forms a part). If it is assumed that
65% of the total load on the slab is carried by the column strips, then the value for K for a flat
slab becomes

(11.5)

For an end span, with β=3.5/384, Equation 11.5 gives K=1.90. For an interior span with
β=2.6/384, the slab system factor K=2.1.
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For a slab containing drop panels that extend at least L/6 in each direction on each side of
the support centreline and that have an overall depth not less than 1.3 times the slab thickness
beyond the drops, the above values for K may be increased by 10%. If the maximum
deflection at the centre of the panel is to be limited (rather than the deflection on the long-
span column line), the values of K for an end span and for an interior span should be reduced
to 1.75 and 1.90, respectively.

Edge-supported two-way slabs For an edge-supported slab, values for K must be
modified to account for the fact that only a portion of the total load is carried in the short span
direction and the fact that torsional stiffness and even compressive membrane action increase
the overall slab stiffness. In a previous investigation of span-to-depth limits for reinforced
concrete slabs, a non-linear finite element model was used to quantify these effects (Gilbert
1985). Values of K depend on the aspect ratio of the rectangular edge-supported panel and the
support conditions of all edges, and are given in Table 11.4.

Table 11.4 Values of K for an uncracked two-way edge-supported slab (Gilbert 1989).

Values of K

Ratio of Long Span to Short Span

1.0 1.25 1.5 2.0
4 edges continuous 3.0 2.6 2.4 2.3

1 short edge discontinuous 2.8 2.5 2.4 2.3

1 long edge discontinuous 2.8 2.4 2.3 2.2

2 short edge discontinuous 2.6 2.4 2.3 2.3

2 long edge discontinuous 2.6 2.2 2.0 1.9

2 adjacent edges discontinuous 2.5 2.3 2.2 2.1

2 short+1 long edge discontinuous 2.4 2.3 2.2 2.1

2 long+1 short edge discontinuous 2.4 2.2 2.1 1.9

4 edges discontinuous 2.3 2.1 2.0 1.9

11.3.3 Discussion

Equation 11.3 forms the basis of a useful approach to the design of prestressed concrete slabs.
When the load to be balanced and the deflection limit have been selected, an estimate of slab
depth can readily be made. All parameters required for input into Equation 11.3 are usually
known at the beginning of the design. No estimate of self-weight is needed since, almost
always, self-weight is part of the balanced load.



Page 428

Deflections at various stages in the slab history may still have to be calculated, particularly
if the unbalanced load causes significant cracking or if an unusual load history is expected.
Serviceability problems, however, can be minimized by a careful choice of slab depth D using
Equation 11.3. This involves an understanding of the derivation of the equation and its
limitations. If, for example, a designer decides to minimize deflection by balancing the entire
sustained load, it would be unwise to set the sustained part of the unbalanced load wus to zero
in Equation 11.3. In the real slab, of course, the magnitude of the sustained unbalanced load
varies as the prestressing force varies with time and cannot remain zero. Restraint to creep
and shrinkage caused by the eccentric bonded steel will inevitably cause some time-dependent
deflection (or camber). In such cases, selection of a slab depth greater than that indicated by
Equation 11.3 would be prudent. It is suggested that in no case should wus be taken as less
than 0.25 times the self-weight of the slab. As with the rest of the design process, sound
engineering judgement is required.

Example 11.1

A preliminary estimate is required of the thickness of a post-tensioned, flat slab floor for an
office building. The supporting columns are 400 mm by 400 mm in section and are regularly
spaced at 9.8 m centres in one direction and 7.8 m centres in the orthogonal direction. Drop
panels extending span/6 in each direction are located over each interior column. The slab
supports a dead load of 1 kPa (in addition to self-weight) and a service live load of 2.5 kPa (of
which 0.75 kPa is sustained or permanent). The self-weight of the slab only is to be balanced
by prestress. Therefore, the unbalanced loads are

In this example, the longer effective span is calculated as clear span+D. If D is initially
assumed to be about 200 mm, then

The elastic modulus for concrete is Ec=28000 MPa.
Case (a) The maximum deflection on the column line in the long-span direction is to be

limited to span/250.
The deflection in an exterior or edge panel of the slab will control the thickness. From

Equation 11.5, K=1.90 for an end span and may be increased by 10% to account for the
stiffening effect of the drop panels.
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Equation 11.3 gives

Case (b) If the slab supports brittle partitions and the deflection limit is taken to be span/500,
Equation 11.3 gives

Example 11.2

The slab thickness is required for an edge-panel of a two-way slab with short and long
effective spans of 8.5 and 11 m, respectively. The slab is continuously supported on all four
edges by stiff beams and is discontinuous on one long edge only. The slab must carry a dead
load of 1.25 kPa (plus self-weight) and a service live load of 3 kPa (of which 1 kPa is
sustained). As in the previous example, only the self-weight is to be balanced by prestress,
and therefore,

The maximum midpanel deflection is limited to υ=25 mm. Take Ec=28 000 MPa.
With an aspect ratio of 11.0/8.5=1.29, the slab system factor is obtained from Table 11.4,

i.e. K=2.4. From Equation 11.3,

11.4 A review of simplified slab deflection models

11.4.1 Introduction

In view of the complexities and uncertainties involved in the calculation of the service load
behaviour of two-way slab systems, great accuracy in the calculation of deflection is neither
possible nor warranted. The procedures
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briefly reviewed here for calculating initial and time-dependent slab deflections vary from
simple estimates to reasonably sophisticated research models. A review of many of these
approaches has been presented in a state-of-the-art report by ACI Committee 435 (1974).

11.4.2 Classical methods

Small deflection theory of elastic plates can be used to predict slab deflections. Deflection
coefficients for elastic slabs with ideal boundary conditions and subjected to full panel
loading have been presented by Timoshenko & Woinowsky-Krieger (1959). The deflection of
an elastic uniformly loaded slab panel may be expressed as

(11.6)

where βis the slab deflection coefficient, w is the uniformly distributed load, L is the longer
span; C is the flexural rigidity, which is given by

(11.7)

D is the slab thickness; andνis Poisson’s ratio for concrete (usually taken as about 0.2). For
an uncracked concrete slab, the Poisson’s ratio effect is small and Equation 11.6 can be
approximated by

(11.8)

Table 11.5 Slab deflection coefficients, β(for ν=0.2).

Flat plate, βfor mid-span
deflection in Equation 11.8

Simply-supportcd on
four edges

βfor maximumνin
Equation 11.8

Fully fixed on four
edges

βfor maximumνin
Equation 11.8

Single Isolated
Panel

Interior Panel

1.0 0.00406 0.00126 0.0263 0.00581

1.2 0.00279 0.00085 0.0189 0.00428

1.4 0.00184 0.00059 0.0162 0.00358

1.6 0.00127 0.00035 0.0150 0.00321

1.8 0.00089 0.00023 0.0144 0.00302

2.0 0.00063 0.00016 0.0140 0.00292
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where Ie is the moment of inertia per unit width, and may be taken as the gross moment of
inertia for an uncracked slab.

Theoretical slab deflection coefficients (β) for some uniformly loaded slab panels with
ideal boundary conditions are given in Table 11.5.

11.4.3 Crossing beam analogy

The crossing beam analogy for two-way edge-supported slabs involves the consideration of a
pair of orthogonal beams through the centre of the panel. By equating the deflection of each
beam (calculated using gross stiffnesses), the fraction of the unbalanced load carried in each
direction is readily determined. If Ly is the long span and Lx is the short span, the fraction of
the unbalanced load carried in the short-span direction may be calculated using an expression
similar to Equation 10.5, i.e.

(11.9)

where αdepends on the support conditions of each orthogonal beam, with numerical values
given under Equation 10.5. The slab deflection is calculated as the deflection of the shorter
span beam strip subjected to the uniformly distributed load, wux. This method was first
proposed by Marsh (1904) and is recommended for deflection calculation for two-way slabs
in AS 3600–1988. The method ignores the torsional stiffness of the slab (which is a
conservative assumption) and also assumes that the supports are unyielding (which may be an
unconservative assumption).

The method has been modified by a number of investigators to account for the torsional
moments in the slab. In fact, the approach described in Section 11.3.2 for estimating the depth
of a two-way edge-supported prestressed slab is based on the crossing beam analogy with the
slab system factor K in Table 11.4 calibrated to account for torsional moments.

For estimating the deflection at the centre of a uniformly loaded interior panel of a flat slab,
the Portland Cement Association (1965) proposed the analysis of a fixed ended beam of unit
width having a span equal to the diagonal length of the panel. The beam carries a load per unit
length equal to the load per unit area of the slab. Although simple, this method has little to
recommend it.

11.4.4 Analogous gridwork and statics ratio methods

The analogous gridwork method (Ewell et al. 1952) is similar to the crossing beam method
except that the effects of torsional moments are included. The slab is modelled by a set of
orthogonal intersecting beams (say three or four in each direction) having the same flexural
and torsional stiffness
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as the slab. A stiffness analysis is then performed to obtain the deflection of the grid system.
The number of calculations required is considerable and the number of simultaneous
equations usually is too large for manual solution. However, the procedure is suitable for use
with a small microcomputer or programmable calculator.

The statics ratio method (Furr 1959) is another variation on the crossing beam analogy. The
slab is again divided into strips in each direction. The distributed slab load is replaced by
statically equivalent concentrated loads acting at the beam strip intersections. An initial grid
deflection is assumed and the vertical shears at each joint are found. The assumed grid
deflection is successively modified until the vertical shear at each joint balances the applied
load and the requirements of statics are met. Once again, the solution procedure is laborious.
Since the advent of more accurate numerical techniques, such as finite difference and finite
element methods, both the analogous gridwork method and the statics ratio method have
fallen from favour.

11.4.5 The Illinois method

The method proposed for the calculation of the mid-panel deflection of a flat slab by
Vanderbilt et al. (1963) at the University of Illinois is well known. In Figure 11.3, an interior
panel of a flat slab is shown. Lines of contraflexure are assumed at one fifth of the span from
the centrelines of the supporting columns, as indicated.

The deflection at the centre of the panel υE is assumed to be the sum of three components:

(11.10)

where υ1 is the deflection at the mid-point C of the slab strip AB located on the column line in
the longer span direction and bounded by the points of contraflexure (see Figure 11.3). The
load assumed to act on the slab strip is the unbalanced load applied directly onto its surface
plus the reaction off the central portion of the slab which may be treated as a two-way slab
simply supported at the lines of contraflexure. In general, υ1 is usually about three quarters of
the value of υE. The deflection increment υ2 is the relative deflection between points D and C
and is calculated by treating DC as a uniformly loaded, fixed ended cantilever with a
concentrated load at the tip (the reaction from the central panel). υ3 is the relative deflection
between D and E and is found by treating the central portion of the slab as a simply supported
two-way slab.

In general, good agreement has been found between results obtained by this method and
those obtained by finite difference and finite element
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Figure 11.3 The Illinois model for flat slab deflection (Vanderbilt et al. 1963).

analysis. However, the method involves many calculations and is not as convenient for
manual solution as the following alternative approach.

11.4.6 The wide beam method

The deflection of a uniformly loaded flat slab may be estimated using a wide beam method
(often called the equivalent frame method) which was formalized by Nilson & Walters (1975).
Originally developed for reinforced concrete slabs, the method is particularly appropriate for
prestressed flat slabs which are usually uncracked at service loads (Nawy & Chakrabarti
1976). The basis of the method is illustrated in Figure 11.4. Deflections of the two-way slab
are calculated by considering separately the slab deformations in each direction. The
contributions in each direction are then added to obtain the total deflection.

In Figure 11.4a, the slab is considered to act as a wide, shallow beam of width equal to the
panel dimension Ly and span equal to Lx. This wide beam is assumed to est on unyielding
supports. Because of variations in the unbalanced moments and flexural rigidity across the
width of the slab, all unit strips in the x-direction will not deform identically. Unbalanced
moments and hence curvatures in the regions near the column lines (the column strip) are
greater than in the middle strips. This is particularly so for
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Figure 11.4 The basis of the wide beam method (Nilson & Walters 1975).

uncracked prestressed concrete slabs or in prestressed slabs that are cracked only in the
column strips. The deflection on the column line is therefore greater than that at the panel
centre. The slab is next considered to act as a wide shallow beam in the y-direction, as shown
in Figure 11.4b. Once again, the effect of variation of moment across the wide beam is shown.

The mid-panel deflection is the sum of the mid-span deflection of the column strip in the
long direction and that of the middle strip in the short



Page 435

direction, as shown in Figure 11.4c:

(11.11)

The method can be used irrespective of whether the moments in each direction are determined
by the equivalent frame method, frame analysis based on gross stiffnesses, or the direct design
method (see Sections 10.6.3 and 10.6.4). The definition of column and middle strips, the
longitudinal moments in the slab, the lateral moment distribution coefficients, and other
details are the same as for the moment analysis, so that most of the information required for
the calculation of deflection is already available.

The actual deflection calculations are more easily performed for strips of floor in either
direction bounded by the panel centrelines, as is used for the moment analysis. In each
direction, an average deflection υavge at mid-span of the wide beam is calculated from the
previously determined moment diagram and the moment of inertia of the entire wide beam,
Ibeam. This may be accomplished using the deflection calculation procedures outlined in
Section 3.8. The effect of the moment variation across the wide beam, as well as possible
differences in column and middle strip sizes and rigidities, is accounted for by multiplying the
average deflection by the ratio of the curvature of the relevant strip to the curvature of the
beam. For example, for the wide beam in the x-direction, the column strip deflection is

(11.12)

and the middle strip deflection is

(11.13)

It is usual to assume Mcol/Mbeam tobeabout 0.7 and therefore Mmid/Mbeam is about 0.3. If
cracking is detected in the column strip, the effective moment of inertia of the cracked cross-
section can be calculated using the analysis described in Section 3.5.2. The average moment
of inertia of the column strip is obtained by averaging the effective moments of inertia at each
support and at mid-span. The moment of inertia of the wide beam is, of course, always the
sum of Icol and Imid. Long-term deflections due to sustained unbalanced loads can also be
calculated in each direction using the procedure outlined in Section 3.8.3.

Nilson & Walters (1975) originally proposed to analyse a fixed ended beam and then
calculate the deflection produced by rotation at the supports. This does not significantly
improve the accuracy of the model and the additional complication is not warranted.
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11.4.7 Finite element methods

The finite element method is a powerful tool for the analysis of concrete slabs. The basic
method is now well established and has been described in many text books. In this section, a
brief description only is presented of a non-linear plate bending finite element model that was
developed for the service-load analysis of both reinforced and prestressed concrete slabs.

Since the early 1970s, many investigators have developed finite element models to study
the short-term service load behaviour of reinforced con-crete slabs. A number of researchers
have extended their models to handle the time-dependent effects of creep and shrinkage,
including Scanlon & Murray (1974) and Gilbert (1979a,b). However, elatively few attempts
have been made to model prestressed concrete slabs using finite elements.

The model briefly described here is presented in detail elsewhere (Gilbert 1979a). The
elements used are rectangular, compatible, 16 degrees of freedom, plate-bending elements
having four generalized displacements at each corner node of each element, namely the
deflection, the slope about each orthogonal axis, and the twist. Each element is sub-divided
into horizontal layers, as shown in Figure 11.5, and idealized biaxial constitutive relation-

Figure 11.5 Finite element discretization (Gilbert 1979a).
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ships are used to model the various stages of material behaviour in each layer. Non-linearities
due to progressive cracking, tension stiffening, creep, and shrinkage are considered. Steel
reinforcement is represented by an equivalent composite steel–concrete layer, in which the
steel area is considered to be uniformly distributed throughout the layer and to contribute to
the layer stiffness only in the direction of the bars. A draped post-tensioned tendon can be
modelled by locating the tendon in different layers from element to element as required.

By layering each element, changes in material behaviour through the thickness of a slab can
be accounted for, as either the external load or the time after first loading is increased, while
retaining the limited number of degrees of freedom of a two-dimensional plate analysis. A
close study of the internal state of stress and strain in the various regions of a slab is possible
and an accurate model of the behaviour of slabs under service loads is obtained.

An incremental, piece-wise linear calculation procedure, involving geometric, load, and
temporal discretization, is used. Structural response is calculated only at discrete instants
along the time scale. At the first time instant (time zero), the initial prestress is transferred
from the steel into the concrete using an initial-stress approach. The transverse external
service load is then applied in small increments. Material non-linearity is also treated using a
tangent stiffness, initial-stress procedure. At each subsequent time instant, the vectors of creep
and shrinkage strain, which develop during the previous time increment in each concrete layer,
are calculated. A direct relaxation approach is used to convert the time-dependent strain
increments into stress decrements. Equilibrium is restored using a stress transfer procedure
and structural response is calculated.

The model has been shown to predict accurately both the instantaneous and time-dependent
behaviour of a variety of reinforced and prestressed concrete slabs and beams. However, the
model places heavy demands on the computer, in terms of both storage requirements and
solution times, and is entirely unsuitable for routine use in design. However, as a research tool
the model is extremely useful. The effect of various parameters on slab behaviour can be
examined. Factors which in practice are coupled and confounded may be uncoupled and
examined separately in order to gain a better qualitative understanding of the mechanism of
structural behaviour. Such parametric studies have been reported elsewhere (Gilbert 1979a).

The model also provides a rapid and relatively inexpensive means of generating the
extensive test data which are required for deriving and calibrating simplified, design-oriented
methods for estimating slab behaviour. In fact, the finite element model was used for the
calibration of the values of K (in Table 11.4) which are used for the initial estimate of slab
depth as discussed in Section 11.3.2.
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11.4.8 Recommendations

It can be seen that for estimating the deflection of prestressed concrete slab panels the
designer has a reasonably wide choice of options. Considering both accuracy and ease of
solution, it is recommended that for two-way edge-supported slabs, either the deflection
coefficients based on classical methods (Section 11.4.2) or the crossing beam analogy
(Section 11.4.3) is used. For flat slabs and plates, the wide beam method (Section 11.4.6) is
recommended. These approaches have, in fact, been used in the calibration of the coefficients
used in Equation 11.3. For uncracked slabs, Equation 11.3 may also be used to obtain a ball-
park estimate of deflection.

11.5 Cracking in prestressed slabs

11.5.1 Loss of stiffness

The effect of cracking in slabs is to reduce the flexural stiffness of the highly stressed regions
and thus to increase the deflection. Prior to cracking, deflection calculations are usually based
on the moment of inertia of the gross concrete section, Ig, neglecting the contributions of the
reinforcement. After cracking, an effective moment of inertia, Ie, which is less than Ig is used.
In Chapter 3, the analysis of a cracked prestressed section was presented and procedures for
calculating the cracked moment of inertia and for including the tension stiffening effect were
discussed. Using these procedures, the effective moment of inertia of a cracked region of the
slab can be calculated.

For edge-supported prestressed concrete slabs, cracking is unlikely at service loads. Even
reinforced concrete slabs continuously supported on all edges are often uncracked at service
loads. However, if cracking is detected, then an average effective moment of inertia, Ie,
should be used for the analysis of the equivalent slab strip or when using the slab deflection
coefficients in Table 11.5. Branson (1977) recommended that the value used for Ie should be
the average of the moments of inertia of the positive and negative moment regions in the
shorter span analogous beam. If a particular region is uncracked, Ie for this region should be
taken to be equal to the gross moment of inertia Ig.

For prestressed concrete flat slabs, cracking at service loads is usually confined to the
negative moment column strip region above the supports. A mat of non-prestressed
reinforcement is often placed in the top of the slab over the column supports for crack control
and to increase both the stiffness and the strength of this highly stressed region (see Table
11.6).

In the wide beam method, the effective moment of inertia of the column strip Icol is
calculated as the average of Ie at the negative moment region
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Table 11.6 Minimum amount of non-prestressed reinforcement in slabs (CAN3 1984).

Tendon TypeType of Member

bonded unbonded
Beams and one-way slabs 0.003 A 0.005 A

Flat slabs

−ve moment regions 0.00045 h Ln 0.00075 h Ln

+ve moment regions 0.003 A 0.005 A

Note: A=area of cross-section between tensile face and centroid;
h=slab thickness;
Ln=clear span in direction of reinforcement; and
λ=1.0 for normal-weight concrete
= 0.7 for light-weight concrete.
at each end of the strip, which may include the loss of stiffness due to cracking and/or the

stiffening effect of a drop panel, and the positive moment region, which is usually uncracked.
Icol is then added to the moment of inertia of the middle strip Imid (which is also usually
uncracked and therefore based on gross section properties) to form the moment of inertia of
the wide beam, Ibeam. These quantities are then used in the calculation of the column and
middle strip deflections in each direction using Equations 11.12 and 11.13. The Commentary
to ACI 318–83 recommends that the weighted average effective moment of inertia of an
interior span of a continuous member is taken as 0.7 times the value at mid-span plus 0.3
times the average of the values at each end of the span. For an exterior span, the weighted
average is 0.85 times the mid-span value plus 0.15 times the value at the continuous end. This
recommendation may be used for the calculation of Icol for a cracked column strip.

11.5.2 Crack control

The mechanism of flexural cracking in a statically indeterminate two-way concrete slab is
complex. The direction of flexural cracking is affected to some extent by the spacing and type
of bonded reinforcement, the level of prestress in each direction, the support conditions, and
the level and distribution of the applied loads. However, for slabs containing conventionally
tied, bonded reinforcement at practical spacings in both directions,
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flexural cracks occur in the direction perpendicular to the direction of principal tension.
If the level of prestress in a slab is sufficient to overcome the tension induced by bending,

flexural cracking will not occur. If the level of prestress is not sufficient, cracking occurs and
bonded reinforcement at reasonable centres is necessary to control the cracks adequately.
Because slabs tend to be very lightly reinforced, the maximum moments at service loads are
rarely very much larger than the cracking moment. However, when cracking occurs, the stress
in the bonded reinforcement increases suddenly and crack widths may become excessive if
too little bonded steel is present or the steel spacing is too wide. If the maximum flexural
tensile stress in normal-weight concrete (calculated assuming linear-elastic material
behaviour) does not exceed about (in MPa), flexural cracking will not be a problem in
prestressed slabs containing bonded tendons (AS 3600–1988). If the calculated maximum
tensile stress exceeds about , then cracking is likely to occur. To ensure crack control
in such a region, the calculated increment of tensile steel stress, which occurs as the load is
increased from its value when the extreme fibre concrete stress is zero up to the maximum
service load, should be less than about 150 MPa (AS 3600–1988). In addition, the centre-to-
centre spacing of bonded reinforcement should not exceed twice the slab thickness or 500 mm,
whichever is smaller. Compare this with the requirements for beams, viz. a maximum tensile
steel stress increment of 200 MPa and a maximum steel spacing of only 200 mm. In the
Canadian code (CAN3 1984), the minimum amount of bonded non-prestressed reinforcement
required for crack control in prestressed slabs in regions where the maximum calculated

tensile stress exceeds is given in Table 11.6.
As has already been mentioned, flexural cracking in practical prestressed slabs containing

the minimum quantities of bonded reinforcement is rarely a problem. In contrast, direct
tension cracking due to restrained shrinkage and temperature changes frequently leads to
serviceability problems. This is particularly so for slabs that are prestressed in one direction
only and slabs that are very lightly stressed in one or both directions. Shrinkage and
temperature induced cracks in regions of low moment or, in the case of one-way slabs, in the
direction of no moment, usually extend completely through the slab and tend to be more
parallel sided than flexural cracks. To control such cracks, several options are available to the
designer. Sufficient prestress may be introduced to overcome the load-independent tension,
adequate quantities of non-prestressed steel may be included to limit the crack width to some
acceptably small value, or a sufficient number of control joints (contraction joints) may be
specified to ensure that all cracking is confined to predefined weakened planes across the slab.
If direct tension cracks are uncontrolled and become excessively wide, waterproofing and
corrosion problems may result, in addition to the obvious aesthetic problems.
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Evidence of direct tension cracking is common in both reinforced and prestressed concrete
slab systems. As an example, consider a one-way slab system with prestress only in the
direction of the span. The applied load is carried across the span to the supporting beams or
walls, while in the orthogonal direction the bending moment in the slab is small. Shrinkage
occurs in both directions and restraint to shrinkage usually exists in both directions. In the
span direction, shrinkage-induced tension may not be sufficient to overcome the prestress. If
cracking does occur, it will be caused by tension induced by both shrinkage and flexure. Such
cracks usually do not extend completely through the slab, but behave like flexural cracks and
are controlled by the bonded flexural reinforcement. In summary, shrinkage in the direction of
the span causes small increases in the widths of the existing flexural cracks and may cause
additional flexure-type cracks in the previously uncracked regions. In the direction at right-
angles to the span, there is no prestress and little moment. Restraint to shrinkage may cause
tension over the entire slab thickness and result in a few widely spaced cracks which penetrate
completely through the slab. If it is decided not to prestress in this direction or not to
introduce control joints, a significant quantity of non-prestressed reinforcement is required to
ensure that the cracks do not become unserviceable.

If the amount of reinforcement which crosses a direct tension crack is too small, yielding of
the steel will occur and a wide, unserviceable crack will result. AS 3600–1988 specifies the
minimum quantity of non-prestressed steel required to control cracking in a direct tension
situation, i.e. when shrinkage and temperature effects are unaccompanied by bending. These
requirements are summarized below.

Where the ends of a slab are unrestrained and the slab is free to expand or contract in the
secondary direction (i.e. little or no induced tension), the minimum area of non-prestressed
reinforcement in this direction is

(11.14)

where σcp is the average prestress (P/A) in the direction under consideration. For a slab that is
not prestressed in this direction (i.e. σcp=0) and with reinforcement of yield stress fy=400 MPa,
Equation 11.14 indicates a minimum reinforcement ratio (As/bD) of 0.0018.

Where the ends of a slab are restrained and the slab is not free to expand or contract (as is
usually the case in most practical situations), the minimum area of reinforcement in the
restrained direction depends on the exposure conditions. For severe exposure conditions (such
as a marine or aggressive industrial environment),

(11.15)
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which corresponds to a reinforcement ratio of 0.0063 for 400 MPa steel, when the prestress is
zero. For moderate exposure conditions, in situations where a strong degree of control over
cracking is required, (As)min is given by Equation 11.15. This would apply for example in the
case of an exposed roof slab (not located in a marine or industrial environment), where water
tightness is a design requirement, or any other slab in which visible cracking must be avoided.
For moderate exposure conditions, where a moderate degree of control over cracking is
required,

(11.16)

which corresponds to a reinforcement ratio of 0.0035 for 400 MPa steel whenσcp=0. This
would apply for example in the case of an interior slab in which visible cracking could be
tolerated or an interior slab which was later to be covered by a floor covering or ceiling.

11.6 Long-term deflections

As discussed in Chapter 3, long-term deflections due to creep and shrinkage are influenced by
many variables, including load intensity, mix proportions, slab thickness, age of slab at first
loading, curing conditions, quantity of compressive steel, relative humidity, and temperature.

In most prestressed slabs, the majority of the sustained load is balanced by the transverse
force exerted by the tendons on the slab. Under this balanced load, the time-dependent
deflection will not be zero because of the restraint to both creep and shrinkage offered by
eccentrically located bonded reinforcement. The use of a simple deflection multiplier to
calculate long-term deflection is not, therefore, always satisfactory.

In Section 2.5, guidelines for determining both the final creep coefficient for concrete, ,
and the final shrinkage strain, , were presented and a procedure for the determination of the
long-term behaviour of a partially prestressed section in bending was outlined in Section 3.6.3.
Alternative and more approximate expressions for estimating the creep and shrinkage
components of the long-term deflection of beams were given in Section 3.8.3. Similar
equations for slab deflection are presented below.

For uncracked, prestressed concrete slabs, which usually have low quantities of steel, the
increase in curvature due to creep is nearly proportional to the increase in strain due to creep.
This is in contrast with the behaviour of a cracked, reinforced section. The final creep induced
deflection υcr may therefore be approximated by setting α=1.0 in Equation 3.76. That is,

(11.17)
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where υsus is the short-term deflection produced by the sustained portion of the unbalanced
load. Typical values for the final creep coefficient for concrete in post-tensioned slabs are

.
The average deflection due to shrinkage of an equivalent slab strip (in the case of edge-

supported slabs) or the wide beam (as discussed in Section 11.4.6 for the case of flat slabs)
may be obtained from Equation 3.77 as

(11.18)

where is the average shrinkage-induced curvature, Le is the effective span of the slab strip
under consideration, and βdepends on the support conditions and equals 0.125 for a simply
supported span, 0.090 for an end span of a continuous member, and 0.065 for an interior span
of a continuous member.

The shrinkage curvature is non-zero wherever the eccentricity of the steel area is non-
zero and varies along the span as the eccentricity of the draped tendons varies. A simple and
very approximate estimate of the average shrinkage curvature for a fully prestressed slab,
which will usually produce reasonable results is

(11.19)

For a cracked partially prestressed slab, with significant quantities of conventional
reinforcement, the value of is usually at least 100% higher than that indicated above.

11.7 Worked examples

11.7.1 Example 11.3—edge-supported slab

The deflection at the mid-span of the exterior panel of the 180 mm thick floor slab shown in
Figure 10.9 and analysed in Example 10.1 is to be calculated. The slab forms the floor of a
retail store and is post-tensioned in both directions using the draped parabolic cable profiles
shown in Figure 10.9c and 10.9d. For the purpose of this example, the average effective
prestress after losses in each direction is assumed to be 400 kN/m. The slab supports a dead
load of 1.5 kPa in addition to its own self-weight and the live load Q is 5.0 kPa. As in
Example 10.1, MPa, Ec=30000 MPa, , , and Ep=195 000
MPa.

Calculate slab loads
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In accordance with the discussion in Section 1.7.5 concerning load combinations for the
serviceability limit states, the fraction of the live load which is considered to be appropriate
for short-term service load calculations for a retail store is taken to be

. The fraction of the live load which is considered to be sustained or
permanent is taken to be .

Calculate the balanced load

In the x-direction, the tendon drape is hx=79.5 mm (as calculated in Example 10.1), and the
transverse force exerted by the x-direction tendons on the slab is obtained from Equation 10.3:

In the y-direction, the drape is hy=87 mm and the associated transverse force is

The total transverse force due to the curvature of the tendons in each direction (the balanced
load) is therefore

Estimate maximum moment due to unbalanced load

The maximum unbalanced transverse load to be considered for short-term serviceability
calculations is

Under this unbalanced load, the maximum moment occurs over the beam support CD. Using
the moment coefficients for edge-supported slabs in Table 10.2, the maximum moment is

Check for cracking

In the x-direction over support CD, the concrete stresses in the top and bottom fibres are
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where A is the area of the gross cross-section per metre width (=180×103 mm2/m) and Z is the
section modulus per metre width (=5.4×106 mm3/m).

As can be seen, both tensile and compressive stresses are low. Even though the moment
used in these calculations is an average and not a peak moment, cracking is unlikely and
deflection calculations may be based on the gross moment of inertia, Ig:

Estimate maximum total deflection

Using the crossing beam analogy of Section 11.4.3, the unbalanced load carried by the
analogous beam in the x-direction is obtained from Equation 11.9:

and the corresponding short-term deflection at mid-span of this 1 m wide propped cantilever
is approximated by

The sustained portion of the unbalanced load on the analogous beam is
kN/m and the corresponding short-

term deflection is

Assuming a creep coefficient of , the creep-induced deflection may be estimated
using Equation 11.17:

If the final shrinkage strain is assumed to be , the average shrinkage-induced
curvature is estimated using Equation 11.19:
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and the shrinkage-induced deflection is approximated using Equation 11.18:

The maximum total deflection of the analogous beam is therefore

The deflection at the centre of the slab panel will be approximately 30% less than this owing
to the torsional stiffness of the slab which has been ignored in the above analysis. The
maximum panel deflection is therefore approximated by

It is of value to examine the slab thickness predicted by Equation 11.3 if the limiting
deflection is taken to be 14.7 mm. For this edge-supported slab panel, the slab system factor is
obtained from Table 11.4 as K=3.07, the unbalanced load wu=3.7 kPa, and the sustained part
of the unbalanced load is wus=0.7+1.5=2.2 kPa. The minimum slab thickness required to limit
the total deflection to 14.7 mm is obtained from Equation 11.3:

In this example, Equation 11.3 is slightly unconservative because the unbalanced sustained
load is small and the creep and shrinkage deflections are not completely accounted for by the
assumed deflection multiplier. Nevertheless, it can be seen that a very useful initial estimate
of slab thickness can be obtained by using Equation 11.3 and heeding the discussion in
Section 11.3.3.

11.7.2 Example 11.4—flat slab

The deflection of an interior panel of a 200 mm thick flat slab in a library is to be checked. A
plan of the slab panel is shown in Figure 11.6. Drop panels 3400×2700×100 mm thick are
located above each column support, as shown. All columns are 400×400 mm in plan. The slab
supports a dead load of 0.5 kPa, in addition to self-weight, and a live load of 8.0 kPa. The
average effective prestress in the y-direction is 640 kN/m and in the
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Figure 11.6 Plan of flat slab of Example 11.4.

x-direction 410 kN/m. The post-tensioned tendons in each direction are bonded to the
surrounding concrete and have been designed to balance a total load of 6.0 kPa. The concrete
and steel properties are as for Example 11.3.

Calculate slab loads

The dead load is

For a library, the service load factors specified in AS 3600–1988 are and ,
and live loads for short- and long-term serviceability calculations are therefore kPa
and kPa, respectively.

Estimate unbalanced load

The maximum short-term transverse load to be considered is

The wide beam method (Section 11.4.6) is used here to calculate slab deflection. The wide
beams in each direction are bounded by the panel centreline and the centreline of the adjacent
panel. Under the unbalanced load, the moment diagrams for the wide beams in each direction
were calculated using the direct design method (see Section 10.6.4) and are shown in
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Figure 11.7 Moment diagrams for flat slab panel of Example 11.4.

Figures 11.7a and b. The effective spans in the short and long directions are 7.9 and 9.9 m,
respectively (i.e. clear span plus depth).

Check for cracking

(a) Negative moment in column strip in y-direction The cross-section of the column strip in
the y-direction is shown in Figure 11.8a, together with the section properties. The longitudinal
prestress in the column strip is Py= 4×640=2560 kN. Taking 75% of negative moment in
column strip gives

and the tensile stress in the top fibre is

(b) Negative moment in column strip in x-direction The longitudinal prestress in the
column strip shown in Figure 11.8b is Px=4×410=1640 kN. The
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Figure 11.8 Cross-sectional properties of column strips in Example 11.4.

column strip moment is

and the top fibre tensile stress is given by

Although the average tensile stresses in the column strips are less than the tensile strength of
concrete, some local cracking over the column support is likely since peak moments are much
higher than average values. A mesh of non-prestressed reinforcement should be provided over
the drop panel to ensure crack control. However, the calculated top fibre tensile stresses
indicate that cracking will not be extensive and is not likely to reduce the stiffness of the
column strip significantly. The area of non-prestressed steel in each direction may be obtained
from Table 11.6:
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(c) Positive moment in column strip in y-direction If 60% of the positive moment in the y-
direction is assigned to the column strip, then

and the tensile stress in the bottom fibre of the cross-section shown in Figure 11.8c is

By inspection, the maximum tensile stress at mid-span in the column strip in the x-direction is
also small. Cracking is therefore unlikely to reduce the slab stiffness significantly and
deflections may be calculated using gross section properties.

Short-term deflections

The small upward deflection caused by eccentricity of prestress at the drops is not included in
the following calculations. Consider a wide beam in the y-direction (similar to that described
in Section 11.4.6). The average moment of inertia of the column strip Icol is taken as the
weighted average of I at the supports (7.43×109 mm4) and at mid-span (2.67×109 mm4). In
accordance with the weighting procedure outlined in the Commentary to ACI 318–83,

The middle strip is 4000 mm wide and 200 mm deep, and therefore Imid=2.67×109 mm4. The
moment of inertia of the wide beam is thus

The maximum average deflection υavge at mid-span of the wide beam occurs when adjacent
spans are unloaded. In accordance with the discussion in Section 11.3.2 concerning pattern
loading, the appropriate deflection coefficient is β=2.6/384 and the average deflection of the
wide beam may be taken as

Taking 70% of moment in the column strip, the def lection of the column
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strip is obtained from Equation 11.12:

From Equation 11.13, the middle strip deflection in the y-direction is

Similarly, considerations of the wide beam in the x-direction give Icol=4.37×109 mm4,
Imid=4.00×109 mm4, Ibeam=8.37×109 mm4, and

The maximum short-term deflection at the mid-point of the panel due to the unbalanced load
is obtained by adding the y-direction column strip deflection to the x-direction middle strip
deflection (Equation 11.11):

Long-term deflections

The sustained portion of the unbalanced load is

The short-term mid-panel deflection produced by the sustained unbalanced load is therefore

With a creep factor of , the creep-induced deflection is obtained from Equation
11.17:

If the final shrinkage strain is , then from Equation 11.19, the shrinkage curvature
in each direction is



Page 452

and using Equation 11.18, the shrinkage-induced deflection at mid-panel is the sum of the
shrinkage deflection in each direction:

Therefore, the maximum total deflection at the mid-panel is given by

which is probably unserviceable for this relatively heavily loaded floor system.
If the total deflection limit for this slab was taken to be 58.7 mm, the slab thickness

predicted by Equation 11.3 is

which gives

For this case, the prediction made by Equation 11.3 is slightly conservative in comparison
with the deflection calculation procedure.
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12
Compression and tension members

12.1 Types of compression members

Many structural members are subjected to longitudinal compression, including columns and
walls in buildings, bridge piers, foundation piles, poles, towers, shafts, and web and chord
members in trusses. The idea of applying prestress to a compression member may at first
seem unnecessary or even unwise. In addition to axial compression, however, these members
are often subjected to significant bending moments. Bending in compression members can
result from a variety of load types. Gravity loads on floor systems induce moments in
columns by frame action. Lateral loads on buildings and bridges cause bending in columns
and piers and lateral earth pressures bend foundation piles. Even members that are intended to
be axially loaded may be subjected to unintentional bending caused by eccentric external
loading or by initial crookedness of the member itself. Most codes of practice specify a
minimum eccentricity for use in design. All compression members must therefore be designed
for combined bending and compression.

Prestress can be used to overcome the tension caused by bending and therefore reduce or
eliminate cracking at service loads. By eliminating cracking, prestress can be used to reduce
the lateral deflection of columns and piles and greatly improve the durability of these
elements. Prestress also improves the handling of slender precast members and is used to
overcome the tension due to rebound in driven piles. The strength of compression members is
dependent on the strength of the concrete and considerable advantage can be gained by using
concrete with high mechanical properties. Prestressed columns and piles are therefore
commonly precast, in an environment where quality control and supervision are of a high
standard.

If a structural member is subjected primarily to axial compression, with little or no bending,
prestress causes a small reduction in the load-carrying capacity. For most prestressed concrete
columns, the level of prestress is
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usually between 1.5 and 5 MPa, which is low enough not to cause significant reductions in
strength. When the eccentricity of the applied load is large and bending is significant,
however, prestress results in an increase in the moment capacity, in addition to improved
behaviour at service loads.

12.2 Classification and behaviour of compression members

Consider the pin-ended column shown in Figure 12.1. The column is subjected to an external
compressive force P applied at an initial eccentricity eo. When P is first applied, the column
shortens and deflects laterally by an amount δi. The bending moment at each end of the
column is Peo, but at the column mid-length the moment is P(eo+δi). The moment at any
section away from the column ends depends on the lateral deflection of the column, which in
turn depends on the column’s length and flexural stiffness. The initial moment Peo is called
the primary moment and the moment caused by the lateral displacement of the column Pδi is
the secondary moment. As the applied load P increases, so too does the lateral displacement δi.
The rate of increase of the secondary moment Pδi is therefore faster than the rate of increase
of P. This non-linear increase in the internal actions is brought about by the change in
geometry of the column and is referred to as geometric non-linearity.

For a reinforced or prestressed concrete column under sustained loads,

Figure 12.1 Deformation and moments in a slender, pin-ended column.
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the member suffers additional lateral deflection due to creep. This time-dependent
deformation leads to additional bending in the member, which in turn causes the column to
deflect still further. During a period of sustained loading, an additional deflection Δδdevelops
and the resulting gradual increase in secondary moment with time P(δi+Δδ) reduces the factor
of safety.

Columns are usually classified in two categories according to their length or slenderness.
Short (or stocky) columns are compression members in which the secondary moments are
insignificant, i.e. columns that are geometrically linear. Long (or slender) columns are
geometrically nonlinear and the secondary moment is significant, i.e. the lateral deflection of
the column is enough to cause a significant increase in the bending moment at the critical
section and, hence, a reduction in strength. For given cross-section and material properties,
the magnitude of the secondary moment depends on the length of the column and its support
conditions. The secondary moment in a long column may be as great as or greater than the
primary moment, and the load-carrying capacity is much less than that of a short column with
the same cross-section.

The strength of a stocky column is equal to the strength of its cross-section when a
compressive load is applied at an eccentricity eo. Strength depends only on the cross-sectional
dimensions, the quantity and distribution of the steel reinforcement (both prestressed and non-
prestressed), and the compressive strengths of the concrete and the steel. Many practical
concrete columns in buildings are, in fact, stocky columns. Ultimate strength analysis of a
prestressed concrete column cross-section is presented in Section 12.3.

The strength of a slender column is also determined from the strength of the critical cross-
section subjected to an applied compressive load at an eccentricty (eo+δ). The calculation of
secondary moments (Pδ) at the ultimate limit state and the treatment of slenderness effects in
design are discussed in Section 12.4. Many precast, prestressed compression members, as
well as some in situ columns and piers, fall into the category of slender columns.

For very long columns, an instability or buckling failure may take place before the strength
of any cross-section is reached. The strength of a very slender member is not dependent on the
cross-sectional strength and must be determined from a non-linear stability analysis (which is
outside the scope of this book). A very slender member may buckle under a relatively small
applied load, either when the load is first applied or after a period of sustained loading. The
latter type of instability is caused by excessive lateral deformation due to creep and is known
as creep buckling. Upper limits on the slenderness of columns are usually specified by codes
of practice in order to avoid buckling failures.
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12.3 Cross-sectional analysis—compression and bending

12.3.1 The strength interaction diagram

The ultimate strength of a prestressed concrete column cross-section in combined bending and
uniaxial compression is calculated as for a conventionally reinforced concrete cross-section.
Strength is conveniently represented by a plot of the axial load capacity Nu versus the moment
on the section at ultimate. This plot is called the strength interaction curve.

A typical strength interaction curve is shown in Figure 12.2 and represents the failure line
or strength line. Any combination of axial force and bending moment applied to the column
cross-section that falls inside the

Figure 12.2 A typical strength interaction curve.
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interaction curve is safe and can be carried by the cross-section. Any point outside the curve
represents a combination of axial force and moment that exceeds the strength of the cross-
section. Depending on the properties of the cross-section and the relative magnitudes of the
axial force and bending moment, the type of failure can range from compressive, when the
moment is small, to tensile or flexural, when the axial force is small and bending
predominates.

Several critical points are identified on the strength interaction curve in Figure 12.2. Point 1,
on the vertical axis, is the point of axial compression (zero bending), and the strength is Nu1.
The cross-section is subjected to a uniform compressive strain, as shown. Point 2 represents
the zero tension point. The combination of axial force Nu2 and moment Nu2e2 at point 2 (when
combined with the prestrain caused by prestress) produces zero strain in the extreme concrete
fibre. The extreme fibre compressive strain at failure is εcu. Between points 1 and 2 on the
curve the entire cross-section is in compression.

When the eccentricity of the applied load is greater than e2, bending causes tension over
part of the cross-section. Point 3 is known as the balanced failure point. The strain in the
extreme compressive fibre is εcu and the strain in the tensile steel is the yield strainεy(=0.2%
offset). The eccentricity of the applied load at the balanced failure point is e3(=eb). When a
cross-section contains both non-prestressed and prestressed tensile steel with different yield
strains and located at different positions on the cross-section, the balanced failure point is not
well defined. Point 3 is usually taken as the point corresponding to a strain of εy in the steel
closest to the tensile face of the cross-section and is usually at or near the point of maximum
moment capacity. At any point on the interaction curve between points 1 and 3, the tensile
steel has not yielded at ultimate and failure is essentially compressive. Failures that occur
between points 1 and 3 (when the eccentricity is less than eb) are sensibly known as primary
compressive failures.

Point 4 is the pure bending point, where the axial force is zero, and point 5 is the point
corresponding to direct axial tension. At any point on the interaction curve between points 3
and 5, the capacity of the tensile steel (or part of the tensile steel) is exhausted, with strains
exceeding the yield strain, and the section suffers a primary tensile failure.

Any straight line through the origin represents a line of constant eccentricity called a
loading line. Two such lines, corresponding to points 2 and 3, are drawn on Figure 12.2. The
slope of each loading line is 1/e. When a monotionically increasing compressive force N is
applied to the cross-section at a particular eccentricity, ei, the plot of N versus M(=N ei)
follows the loading line of slope 1/ei until the strength of the cross-section is reached at the
point where the loading line and the interaction curve intersect. If the eccentricity of the
applied load is increased, the loading line
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becomes flatter, and the strength of the cross-section at ultimate Nu is reduced.
The general shape of the interaction curve shown in Figure 12.2 is typical for any cross-

section that is under-reinforced in pure bending (i.e. any cross-section in which the tensile
steel strain at point 4 exceeds the yield strain). A small increase in axial compression
increases the internal compressive stress resultant on the section but does not appreciably
reduce the internal tension, thus increasing the moment capacity, as is indicated by the part of
the interaction curve between points 4 and 3.

12.3.2 Ultimate strength analysis

Individual points on the strength interaction curve can be calculated using an ultimate strength
theory, similar to that outlined for pure bending in Section 4.3. The analysis described below
is based on the assumptions listed in Section 4.3.1 and the idealized rectangular stress block
specified in AS 3600–1988 (and in ACI 318–83) which were presented in Section 4.3.2. At
any point on the interaction curve between points 2 and 4, the extreme fibre concrete
compressive strain at failure is taken to be εcu=0.003, in accordance with the above two codes.
For axial compression at point 1, ACI 318–83 specifies εcu1=0.003, whilst AS 3600 suggests
that the maximum uniform strain should be taken as only 0.002, since this is closer to the
strain at failure of plain concrete subjected to monotonically increasing compressive load.

Calculation of the ultimate moment Mu in pure bending (point 4 on the interaction curve)
was discussed in Chapter 4. Other points in the strength interaction curve (between points 4
and 2) may be obtained by successively increasing the depth to the neutral axis and analysing
the cross-section. With the extreme fibre strain equal to 0.003, each neutral axis position
defines a particular strain distribution which corresponds to a point on the strength interaction
diagram. The strain diagrams associated with points 2, 3, and 4 are also shown in Figure 12.2.

To define the interaction curve accurately, relatively few points are needed. In fact, if only
points 1, 2, 3, and 4 are determined, a close approximation can be made by passing a smooth
curve through each point, or even by linking successive points together by straight lines. Such
an approximation is often all that is required in design.

Consider the rectangular cross-section shown in Figure 12.3a, with overall dimensions D
and b. The section contains two layers of non-prestressed reinforcement of areas As1 and As2
and two layers of bonded prestressing steel Ap1 and Ap2, as shown. A typical ultimate strain
diagram and the corresponding idealized stresses and stress resultants are illustrated in
Figures 12.3b and c, respectively. These strains and stresses correspond to a resultant axial
force Nu at an eccentricity e measured from the plastic centroid
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Figure 12.3 Ultimate stresses and strains on a cross-section in combined compression and uniaxial
bending.

of the cross-section (as shown in Figure 12.3d). Longitudinal equilibrium requires that

(12.1)

and moment equilibrium gives

(12.2)

Each of the internal forces can be calculated readily from the strain diagram. The magnitude
of the compressive force in the concrete Cc is the volume of the rectangular stress block, and
is given by

(12.3)
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The magnitude of the strain in the compressive non-prestressed steel As1 is

(12.4)

and the compressive force in As1 is

(12.5)

The strain in the tensile non-prestressed steel As2 is

(12.6)

and the force in As2 is

(12.7)

To determine the strain in the prestressing steel at ultimate, account must be taken of the large
initial tensile strain in the steel εpe caused by the effective prestress. For each area of
prestressing steel,

(12.8)

In Figure 12.3b, it is assumed that the prestressing forces in Ap1 and Ap2 are such that the
effective prestress is axial, producing uniform compressive strain, εce, as shown. If Pe is the
total effective prestressing force acting at the centroidal axis, then the magnitude of εce is

(12.9)

where n is the modular ratio Es/Ec and Ac and Ag are the concrete area and gross cross-
sectional area, respectively.

The changes in strain in the bonded prestressing tendons due to the application of Nu at an
eccentricity e may be obtained from the strain
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diagram and are given by

(12.10)

(12.11)

The final strain in each prestressing tendon is therefore

(12.12)

The final stress in the prestressing tendons σpu1 and σpu2 may be obtained from a stress–strain
curve for the prestressing steel, such as the curve shown in Figure 2.13. If the strain in the
prestressing steel remains in the elastic range (and on the compressive side of the cross-
section it does), then

(12.13)

The forces in the tendons at ultimate are

(12.14)

With the internal forces determined from Equations 12.3, 12.5, 12.7, and 12.14, the ultimate
compressive force Nu is obtained from Equation 12.1 and the eccentricity e is calculated using
Equation 12.2. The resulting point Nu, M(=Nue) represents the point on the strength
interaction curve corresponding to the assumed strain distribution.

When the cross-section is subjected to pure compression (point 1 on the interaction curve),
the eccentricity is zero and the strength is given by

(12.15)

where , As is the total area of non-prestressed steel, and σpu1 andσpu2 are
obtained from the final strain in each prestressing tendon, which is in the elastic range.
Therefore,

(12.16)

Example 12.1



The critical points on the strength interaction curve of the prestressed concrete column cross-
section shown in Figure 12.4a are to be calculated. Steel quantities, prestressing details and
material properties are as follows: As1=As2=2250 mm2; Ap1=Ap2=1000 mm2; Es=200×103

MPa;
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Figure 12.4 Cross-sectional details and idealised stress-strain curve for tendons.

fy=400 MPa; MPa; Ec=32000 MPa; and from Equation 4.2, γ=0.766. The properties of
the prestressing steel are taken from the idealized stress–strain relationship shown in Figure
12.4b. The total effec tive prestress is Pe=2400 kN and the effective strain in the prestressing
steel is

The magnitude of the average initial strain in the concrete due to Pe is calculated using
Equation 12.9:

Point 1: Pure Compression (e=0)
The compressive force carried by the concrete in uniform compression is

and, from Equation 12.16, the stress in the prestressing steel is

Note that the value of εcu specified in AS 3600–1988 for pure compression is used here. The
strength of the cross-section in axial compression is given by Equation 12.15:
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Point 2: Zero tension
For the case of zero tension, dn=D=800 mm and Equation 12.3 gives

From Equation 12.4,

The compressive non-prestressed steel has yielded, and from Equation 12.5,

The strain in the bottom layer of non-prestressed steel is given by Equation 12.6,

and, from Equation 12.7,

The change in strain at each level of prestressing steel is compressive and given by Equations
12.10 and 12.11:

and the final strains in the prestressing tendons are obtained from Equations 12.12:

Both strains are in the elastic range and the forces in the tendons are
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(Equations 12.15 and 12.16)

The resultant compressive force at ultimate is obtained from Equation 12.1:

The ultimate moment capacity for the case of zero tension is calculated using Equation 12.2:

Therefore, the eccentricity corresponding to point 2 is

Point 3: The balanced failure point
Point 3 corresponds to first yielding in the non-prestressed tensile steel, i.e. εs2=0.002 and,

therefore, the force in the tensile non-prestressed steel is

The depth to the neutral axis at point 3 is therefore

and the compressive force in the concrete is (Equation 12.3)

With dn=438 mm, the strain in the non-prestressed compressive reinforcement is
εs1=0.0025>εy and therefore,
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From Equations 12.10, 12.12, 12.13, and 12.14, the force in the top prestressing steel is

Equations 12.11 and 12.12 give

which is just greater than the proportional limit. From Figure 12.4b,

and Equation 12.14 gives

The ultimate strength corresponding to point 3 is obtained from Equations 12.1 and 12.2:

and

The eccentricity at point 3 is

Point 4: Pure bending
For equilibrium of the section in pure bending the magnitude of the resultant compression

is equal to the magnitude of the resultant tension, i.e. C=T. A trial and error approach to
determine the depth to the neutral axis
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indicates that

The forces in the concrete and the steel are

and

From Equations 12.11 and 12.12:

and Figure 12.4b indicates that σpu2=1800 MPa. Therefore,

Equation 12.1 confirms that

and the ultimate moment is

Point 5 Axial tension
The capacity of the section in tension is dependent only on the steel strength. Therefore,

taking fy=400 MPa and fp=1800 MPa, as indicated in Figure 12.4b, the axial tensile strength is
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Figure 12.5 Strength interaction curve for Example 12.1.

Figure 12.5 shows the strength interaction curve for the cross-section. The design interaction
curve is also shown in accordance with the provisions of AS 3600–1988, as discussed in
Section 12.3.3. In addition, Figure 12.5 illustrates the interaction curve for a cross-section
with the same dimensions, material properties, and steel quantities (both non-prestressed and
prestressed), but without any effective prestress, i.e. Pe=0. A comparison between the two
curves indicates the effect of prestress. In Example 12.1, the prestressing steel induced an
effective prestress of 5 MPa over the column cross-section. Evidently, the prestress reduces
the axial load carrying capacity by about 15% (at point 1), but increases the bending strength
of the cross-section in the primary tension region (points 3 to 4).

12.3.3 Design interaction curves

For structural design in accordance with either AS 3600–1988 or ACI 318–83, the design
actions N* and M* (obtained using the appropriate factored load combination for strength as
presented in Section 1.7.3) must lie on or inside the design interaction curve. This design
curve is obtained
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by multiplying each point on the strength interaction curve by the strength reduction factor, .

AS 3600–1988

The strength reduction factor in the primary compression region where (i.e.
between points 1 and 3) is . When Nu<Nub (in the primary tension region), the strength
reduction factor is

(12.17)

and at point 4 (pure bending). A minimum eccentricity for the applied load of 0.05D
is specified, where D is the depth of the column in the plane of the bending moment. The AS
3600 design interaction curve for the cross-section analysed in Example 12.1 is drawn in
Figure 12.5.

ACI 318–83

The ACI 318–83 strength reduction factor for members in combined compression and
bending is for members with spiral reinforcement and for members with
transverse ties. When the axial load is low, however, may be increased linearly to 0.9 as

decreases from or Nub, whichever is smaller, to zero. To ensure a minimum
eccentricity for axially loaded members, the top of the interaction curve is truncated so that
the design strength does not exceed for spirally reinforced

Figure 12.6 Design interaction curve (ACI 318–83).
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members or for members containing conventional ties. A typical design interaction
curve, in accordance with ACI 318–83, is illustrated in Figure 12.6.

12.3.4 Biaxial bending and compression

When a cross-section is subjected to axial compression and bending about both principal axes,
such as the section shown in Figure 12.7a, the strength interaction diagram can be represented
by the three-dimensional surface shown in Figure 12.7b. The shape of this surface may be
defined by a set of contours obtained by taking horizontal slices through the surface. A typical
contour is shown in Figure 12.7b. Each contour is associated with a particular axial force, N.
The equation of the contour represents the relationship between Mx and My at that particular
value of axial force. In AS 3600–1988, the design expression given in Equation 12.18 is
specified to model the shape of these contours. The form of Equation 12.18 was originally
proposed by Bresler (1960) and design charts based on the equation have been calibrated by
Pannell (1963).

Figure 12.7 Biaxial bending and compression.
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If the factored design actions N*, , and fall inside the design interaction surface (i.e.
the strength interaction surface multiplied by the strength reduction factor, ), then the cross-
section is adequate. According to AS 3600–1988, a cross-section subjected to biaxial bending
should satisfy the following equation,

(12.18)

where and are the design strength in bending calculated separately about the
major and minor axis, respectively, under the design axial force N*, the factored design
moments and are magnified to account for slenderness if applicable (see Section 12.4),
and αn is a factor which depends on the axial force and defines the shape of the contour, and is
given by

Biaxial bending is not a rare phenomenon. Most columns are subjected to simultaneous
bending about both principal axes. AS 3600–1988 suggests that biaxial bending need not be
considered when the eccentricity about both axes is less than the minimum value (i.e. less
than 0.05 times the column dimension in the direction of the eccentricity), or when the ratio of
the eccentricities ex/ey falls outside the range 0.2–5.0. In each of the above situations, the code
concedes that the cross-section can be designed for the axial force with each bending moment
considered separately, i.e. in uniaxial bending and compression.

12.4 Slenderness effects

12.4.1 Background

The strength of a short column is equivalent to the strength of the most heavily loaded cross-
section and, for a given eccentricity, may be determined from the strength interaction curve
(or surface). The strength of a long column (or slender column), however, depends not only
on the strength of the cross-section, but also on the length of the member and its support
conditions. A discussion of the behaviour of a slender pin-ended column was presented in
Section 12.2 and the increase in secondary moments due to slenderness effects was illustrated
in Figure 12.1. In general, as the length of a compression member increases, strength
decreases.
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To predict accurately the second-order effects in structures as they deform under load
requires an iterative non-linear computer analysis, which generally involves considerable
computational effort. For the design of concrete compression members, simplified procedures
are available to account for slenderness effects and one such procedure is presented here. A
more detailed study of geometric non-linearity and instability in structures is outside the scope
of this book.

The critical buckling load, Nc, of an axially loaded, perfectly straight, pin-ended, elastic
column was determined by Euler and is given by

(12.19)

where L is the length of the Euler column between the hinges. In practice, concrete columns
are rarely, if ever, pin-ended. A degree of rotational restraint is usually provided at each end
of a column by the supporting beams and slabs, or by a footing. In some columns, translation
of one end of the column with respect to the other may also occur in addition to rotation.
Some columns are completely unsupported at one end, such as a

Figure 12.8 Effective length factors, k (AS 3600–1988).
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Figure 12.9 Effective lengths in a braced and an unbraced portal frame.

cantilevered column. The buckling load of these columns may differ considerably from that
given by Equation 12.19.

In general, codes of practice express the critical buckling load of real columns in terms of
the effective length, klu. ACI 318–83 defines lu as the unsupported length of a compression
member (and equals L for an Euler column), and k is an effective length factor which depends
on the support conditions of the column. The critical load of a concrete column is therefore

(12.20)

In structures that are laterally braced, the ends of the columns are not able to translate
appreciably relative to each other, i.e. sidesway is prevented. Most concrete structures are
braced, with stiff vertical elements such as shear walls, elevator shafts, and stairwalls
providing bracing for the more flexible columns. If the attached elements at each end of a
braced column provide some form of rotational restraint, the critical buckling load will be
greater than that of a pin-ended column (given in Equation 12.19), and therefore the effective
length factor in Equation 12.20 is less than 1.0. Effective length factors specified in AS 3600–
1988 for braced columns are shown in Figure 12.8a. The effective length of any column is the
length associated with single curvature buckling, i.e. the distance between the points of
inflection in the column, as shown in Figures 12.8a and 12.9a. For the column shown in
Figure 12.8a(ii), the supports are neither pinned nor fixed. The effective length depends on the
relative flexural stiffness of the column and the beams and other supporting elements at each
end of the column, and may be calculated readily using end restraint coefficients and effective
length graphs or alignment charts contained in codes of practice (such as ACI 318–83R or AS
3600–1988).
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For columns in unbraced structures, where one end of the column can translate relative to
the other (i.e. sidesway is not prevented), the effective length factor is greater than 1.0,
sometimes much greater, as shown in Figure 12.9b. The critical buckling load of an unbraced
column is therefore significantly less than that of a braced column. Values of k specified in
AS 3600–1988 for unbraced columns with various support conditions are shown in Figure
12.8b.

To distinguish between a braced and an unbraced column, ACI 318R-83 suggests that a
braced column is a compression member located within a storey of a building in which
horizontal displacements do not significantly affect the moments in the structure. It is further
suggested that a compression member may be assumed to be braced, if it is located in a storey
in which the bracing elements (shear walls, elevator shafts, bracing trusses, and other types of
bracing) have a total stiffness, resisting lateral movement of the storey, at least six times the
sum of the stiffnesses of all the columns within the storey.

In the case of slender prestressed concrete columns, the question arises as to whether the
longitudinal prestressing force P reduces the critical buckling load. In general, a concrete
column prestressed with internally bonded strands or post-tensioned with tendons inside ducts
within the member is no more prone to buckling than a reinforced concrete column of the
same size and stiffness, and with the same support conditions. As a slender, prestressed
concrete column displaces laterally, the tendons do not change position within the cross-
section and the eccentricity of the line of action of the prestressing force does not change. The
prestressing force cannot, therefore, generate secondary moments. However, if a member is
externally prestressed, so that the line of action of the prestressing force remains constant,
then prestress can induce secondary moments and hence reduce the buckling load. Such a
situation could exist, for example, when a member is prestressed by jacking through an
abutment.

12.4.2 Moment magnification methods

In lieu of a detailed second-order analysis to determine the effects of short-term and time-
dependent deformation on the magnitude of moment and forces in slender structures, codes of
practice specify approximate procedures to account for slenderness effects. Both AS 3600–
1988 and ACI 318–83 use a moment magnifier method to account for slenderness effects in
columns. BS 8110 (1985) utilizes a similar approach to account for the additional moment
induced in a column due to lateral deflection. In this discussion, the method contained in ACI
318–83 is outlined, although the notation is changed somewhat to conform with the notation
used elsewhere in the book.

The idea behind moment magnification is described in ACI 318R–1983
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and is based on the concept of using a factor to magnify the column moments to account for
the change in geometry of the structure and the resulting secondary actions. The axial load
and magnified moment are then used m the design of the column cross-section. The effect of
the secondary moments on the strength of a slender column is shown on the strength teration
curve in Figure 12.10. Line OA is the loading line corresponding to an initial eccentricity e on
a particular cross-section. If the column is hort, secondary moments are insignificant, the
loading line is straight, and the strength of the column corresponds to the axial force at A. If
the column is slender, the secondary moments increase at a faster rate than the applied axial
force and the loading line becomes curved, as shown. The strength of the slender column is
the axial force corresponding to point B, where the curved loading line meets the strength
interaction curve. The loss of strength due to secondary moments is indicated in Figure 12.10.

The total moment at failure is the sum of the primary moment Ne and the secondary
moment NΔ and may be expressed by a factor δtimes the primary moment. That is,

and

The factor δmay be used to magnify the primary moment in order to

Figure 12.10 Strength interaction curve for a cross-section in a slender column.
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account for slenderness effects. This magnification factor depends on the ratio of the axial
force on the column N* to the critical buckling load Nc, the ratio of the design moments at

each end of the column and the deflected shape of the column, which in turn
depends on whether the column is braced or unbraced and the rotational restraint at each end
of the column.

To determine whether a particular column is slender, and therefore whether moment
magnification is required, ACI 318–83 specifies critical values of the slenderness ratio to
mark the transition between short and slender columns. The slenderness ratio of a column is
defined as the effective length of the column divided by its radius of gyration (taken about the
axis of bending), klu/r. For a rectangular cross-section, the radius of gyration may be
approximated as 0.3 times the overall column dimension in the direction in which stability is
being considered or 0.25 times the diameter of a circular cross-section. For a braced column,
the slenderness effect may be ignored when

(12.21)

where the subscript b for the end moments refers to a braced column; is the smaller of the
two end moments and is taken as positive, if the column is bent in single curvature, and
negative, if bent in double curvature; is the larger of the two end moments and is always
taken to be positive.

An unbraced column is slender if

(12.22)

If the slenderness ratio exceeds 100, the code suggests that the approximate moment
magnifier method should not be used and that a second-order stability analysis be undertaken.
Recent studies, however, have shown that for columns with slenderness ratios between 100
and 120, the moment magnifier method provides a very conservative estimate of strength
(Gilbert 1989).

The magnified design moment may be calculated from

(12.23)

The moment is the larger factored end moment caused by loads that result in no
appreciable sidesway (such as uniformly distributed gravity loads on a symmetrical building
structure). is the larger factored end moment caused by loads that result in appreciable
sidesway (such as lateral
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loads on the structure or non-uniform gravity loads). Both and may be calculated
using a conventional elastic frame analysis.

The magnification factor δb applies to the moments in a braced situation. It accounts for
secondary moments arising from displacements due to curvature between the ends of the
member (such as the secondary moments illustrated in the pin-ended column of Figure 12.1)
and is given by

(12.24)

The term Cm depends on the ratio of the end moments and whether the column is bent in
single or double curvature. For members braced against sidesway and with no transverse
loads applied to the column between the supports, Cm is given by

(12.25)

For all other cases, Cm=1.0. Note that the ratio of the end moments in Equation 12.25 is
positive if the column is in single curvature and negative if in double curvature.

The critical buckling load Nc is given by Equation 12.20. An estimate of EI for the column
at the ultimate limit state is required in order to determine Nc. This estimate should account, at
least approximately, for the change of stiffness caused by material non-linearities, such as
cracking, the non-linear stress-strain relationship for concrete in compression, yielding of the
steel, and the time-dependent effects of creep. In lieu of more accurate analysis, ACI 318–83
suggests that EI may be taken as either

(12.26a)

or

(12.26b)

where Is is the moment of inertia of the steel area about the centroidal axis of the cross-section,
βd is a factor to account for the effects of creep and is the ratio of the maximum factored dead
load moment to the maximum factored total load moment (and is always positive). AS 3600–
1988 defines EI as the ratio of moment to curvature at the point on the interaction curve
corresponding to a depth to the neutral axis of 0.6d (the bal-
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anced failure point for a column containing non-prestressed tensile reinforcement with fy=400
MPa) and is therefore given by

(12.26c)

The magnification factor δs only applies to unbraced or sway structures, and models the
primary plus secondary moments associated with the lateral drift of the column. This factor
magnifies the moments caused by any loads that result in appreciable lateral drift (i.e. a drift
exceeding about lu/1500) and is given by

(12.27)

where ΣN* and ΣNc are the summations of the design actions and the critical loads,
respectively, for all the columns in the storey.

For a column in a braced structure, the second term in Equation 12.23 (the sway term) is
zero, since no loads result in appreciable sidesway. ACI 318–83 specifies that for a pin-ended
member in a braced structure or a member with end eccentricities less than (15+0.03D) mm,
the term in Equation 12.23 should be calculated using a minimum eccentricity of
(15+0.03D) mm about each principal axis. In addition, the ratio should be taken as
1.0. The same minimum eccentricities are specified for the determination of the minimum
value of in an unbraced structure.

For slender members in biaxial bending, the moment about each axis should be magnified
using Equation 12.23 with the restraint conditions applicable to each plane of bending.

Example 12.2

Consider a 10 m long, pin-ended column in a braced structure. The column cross-section is
shown in Figure 12.4a and the material properties and steel quantities are as outlined in
Example 12.1. The strength interaction curve for the cross-section was calculated in Example
12.1 and is illustrated in Figure 12.5. The column is laterally supported at close centres to
prevent displacement perpendicular to the weak axis of the section, but is unsupported
between its ends in the direction perpendicular to the strong axis. The column is loaded by a
compressive force N at a constant eccentricity e to produce compression and uniaxial bending
about the strong axis. In this example, two loading lines for the column are traced
(corresponding to initial eccentricities of e=100 mm and e=400 mm) and the strength of the
slender column in each case is established.

Since the column is braced and pinned at each end, k=1 [from Figure 12.8a(iii)],
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and therefore klu=10 m, with respect to the strong axis. The effective length about the weak
axis is small due to the specified closely spaced lateral supports. For bending about the strong
axis, the slenderness ratio is

which is greater than the transition limit of 22 (specified in Equation 12.21) and, therefore, the
column is slender. For a braced column, Equation 12.23 reduces to

The member is subjected to single curvature bending with equal end moments, and from
Equation 2.25, Cm=1.0. To determine EI using Equation 12.26a, the gross moment of inertia
of the cross-section and the moment of inertia of the steel about the centroidal axis are
required. For the cross-section shown in Figure 12.4a, Ig=25600×106 mm4 and the moments of
inertia of the prestressed and non-prestressed steel are, respectively,

and

The corresponding rigidities are

and

If the ratio of dead load to total load is βd=0.7, then from Equation 12.26a,
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and the critical buckling load is calculated using Equation 12.20:

The loading line for each initial eccentricity is obtained by calculating the magnification
factor δb from Equation 12.24 for a series of values of axial force N* and plotting the points
(N*, δbN*e) on a graph of axial force and moment.

Sample calculations are provided for the points on the loading lines corresponding to an
axial force N*=5000 kN, using the strength reduction factor specified in ACI 318–83 for a
conventionally tied column, i.e. . From Equation 12.24, when N*=5000 kN,

When e=100 mm, the magnified moment is

and when e=400 mm,

Other points on the loading line are as follows:

e=100 mm e=400 mmN* (kN) δb

(kNm) (kNm)
2000 1.21 241 965

3000 1.34 403 1610

4000 1.52 607 2430

5000 1.74 872 3490

6000 2.05 1230 4920

7000 2.48 1740 –-

8000 3.15 2520 –
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Figure 12.11 Loading lines and strength of the slender columns of Example 12.2.

The loading lines are plotted on Figure 12.11, together with the strength interaction curve
reproduced from Figure 12.5 and the design interaction curve in accordance with ACI 318–83.
The strength of each column is the axial load corresponding to the intersection of the loading
line and the strength interaction curve. The maximum factored design load N* that can be
applied to the slender column (and meet the strength design requirements of ACI 318–83) is
obtained from the point where the loading line crosses the design interaction curve. Note the
significant reduction of strength in both columns due to slenderness, but particularly in the
column with the smaller initial eccentricity. Slenderness causes a far greater relative reduction
in strength when the initial eccentricity is small, in the primary compression region, than
when eccentricity is large and bending predominates. Note also that for very slender columns,
the curved loading line crosses the strength interaction curve in the primary tension region,
and this is the same region in which prestress provides additional strength (see Figure 12.5).
There is some advantage in prestressing slender columns.

12.5 Reinforcement requirements in compression members

The behaviour of a short column loaded to failure depends on the nature of the transverse
reinforcement. When the strength of the cross-section is
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reached, failure will be brittle and sudden if the column contains no transverse reinforcement
in the form of closed ties or spirals (helical reinforcement). Transverse reinforcement imparts
a measure of ductility to reinforced and prestressed concrete columns by providing restraint to
the highly stressed longitudinal steel and by confining the inner core of compressive concrete.
Spirally reinforced columns, in particular, exhibit considerable ductility at failure. Ductility is
a critical design requirement for columns in buildings located in earthquake prone regions,
where the ability to absorb large amounts of energy without failure is needed.

Codes of practice specify design requirements related to the quantity and disposition of
transverse reinforcement in columns. The requirements in ACI 318–83 are summarized below.

For prestressed compression members other than walls, with an average prestress greater
than or equal to 1.55 MPa, all longitudinal steel should be enclosed by standard spirals or
lateral ties. Lateral ties should be at least 10 mm in diameter or an equivalent area of welded
wire fabric (and 12 mm diameter when longitudinal bar diameters exceed 32 mm). The
longitudinal spacing between ties should not exceed the smaller of 48 tie bar diameters, 16
longitudinal bar diameters, and the least dimension of the column. The first tie should be
located no further than one half the tie spacing above the top of the footing or slab at the
bottom end of the member and the last tie should be no further than 75 mm below the lowest
reinforcement in any beams framing into the top of the column. Ties should be arranged so
that every corner bar is restrained in two directions by the corner of a tie and every other bar
(or every alternate bar if bars are spaced closer together than 150 mm) is also restrained by a
tie corner.

For spirally reinforced columns, the ratio of spiral reinforcement ρs (defined as the ratio of
the volume of spiral reinforcement to the total volume of the core) should satisfy

(12.28)

where Ac is the cross-sectional area of the core of the member obtained using the outside
diameter of the spiral, dcore. It can be shown that (Naaman 1982)

where As is the cross-sectional area of the spiral steel and s is the pitch of the spiral measured
centre to centre. For cast in situ construction, the diameter of the spiral bar should be at least
10 mm and the clear spacing between spirals should not be outside the range 25–75 mm.
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Compression members with an average prestress of less than 1.55 MPa should have a
minimum area of longitudinal non-prestressed reinforcement of 0.01Ag, with a minimum of
four bars within rectangular or circular ties and six bars within spirals. The transverse
reinforcement requirements should also satisfy the minimum requirements specified for
reinforced concrete columns.

12.6 Tension members

12.6.1 Advantages and applications

Prestressed concrete tension members are simple elements used in a wide variety of situations.
They are frequently used as tie-backs in cantilevered construction, anchors for walls and
footings, tie and chord members in trusses, hangers and stays in suspension bridges, walls of
tanks and containment vessels, and many other applications.

The use of reinforced concrete members in direct tension has obvious drawbacks. Cracking
causes a large and sudden loss of stiffness, and crack control is difficult. Cracks occur over
the entire cross-section and corrosion protection of the steel must be carefully considered, in
addition to the aesthetic difficulties. By prestressing the concrete, however, a tension member
is given strength and rigidity otherwise unobtainable from either the concrete or the steel
acting alone. Provided that cracking does not occur in the concrete, the prestressing steel is
protected from the environment and the tension member is suitable for its many uses.
Compared with compression members, tension members usually have a high initial level of
prestress.

The deformation of a prestressed concrete tension member can be carefully controlled. In
situations where excessive elongation of a tension member may cause strength or
serviceability problems, prestressed concrete is a design solution worthy of consideration.

12.6.2 Behaviour

The analysis of a prestressed concrete direct tension member is straightforward. Both the
prestressing force and the external tensile loads are generally concentric with the longitudinal
axis of the member, and hence bending stresses are minimized.

Prior to cracking of the concrete, the prestressing steel and the concrete act in a composite
manner and behaviour may be determined by considering a transformed cross-section. If
required, a transformed section obtained using the effective modulus for concrete (Equation
2.12) may be used to include the time-dependent effects of creep and shrinkage.



Page 484

Consider a tension member concentrically prestressed with an effective prestressing force
Pe. The cross-section is symmetrically reinforced with an area of bonded prestressing steel Ap.
The transformed area of the tie is therefore

(12.29)

where np is the modular ratio given by Ep/Ec. The uniform stress in the concrete σdue to the
prestressing force and the applied external load N is

(12.30)

and the stress in the prestressing steel is

(12.31)

For most applications, it is necessary to ensure that cracking does not occur at service loads.
To provide a suitable margin against cracking under the day to day loads, and to ensure that
cracks resulting from an unexpected overload close completely when the overload is removed,
it is common in design to insist that the concrete stress remains compressive under normal in-
service conditions. By setting σ=0 in Equation 12.30 and rearranging, an upper limit to the
external tensile force is established, and is given by

(12.32)

When a tensile member is stressed beyond the service load range, cracking occurs when the
concrete stress reaches the direct tensile strength, which is usually taken as (see
Equation 2.4). If the tensile force at cracking is Ncr, then from Equation 12.30,

(12.33)

The steel stress at the crack, just after cracking, is

(12.34)

and this must be less than the ultimate stress of the steel, fp, if failure of the member is to be
avoided at first cracking. The steel stress in Equation
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12.34 is usually limited to a maximum of about fp/1.2 in order to obtain a minimum
acceptable margin of safety between cracking and ultimate strength. Equation 12.34 can,
therefore, be rearranged to obtain an expression for the minimum amount of prestressing steel
in a tension member, and is given by

(12.35)

The ultimate strength of the member is equal to the tensile strength of the steel, and is given
by

(12.36)

and in design, the factored design tensile force must satisfy the design equation,

(12.37)

where the strength reduction factor for direct tension is the same as for bending( in
ACI 318–83 and iu AS 3600–1988).

The axial deformation of a prestressed tension member at service loads depends on the load
history [i.e. the times at which the prestressing force(s) and the external loads are applied],
and the deformation characteristics of the concrete. Stage stressing can be used to carefully
control longitudinal deformation. The shortening of a tension member at any time t caused by
an initial prestress Pi applied to the concrete at a particular time may be approximated by

(12.38)

where L is the length of the member and Ee,o is the effective modulus of the concrete obtained
from Equation 2.12 using the creep coefficient associated with the age of the concrete at first
loading, . The elongation at any time caused by an external tensile force N applied at time
may be estimated by

(12.39)

where Āis the area of the transformed section calculated using the effective modular ratio,
Ep/Ee,1. In addition to deformation caused by loads, shrinkage will cause an additional
shortening. A detailed analysis of the time-
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dependent deformation of a tension member subjected to any load history can be made using
the procedures outlined by Gilbert (1988).

A satisfactory preliminary design of a tension member usually results if the prestressing
force is initially selected so that, after losses, the effective prestress is between 10 and 20%
higher than the maximum in-service tension. If the compressive stress in the concrete at
transfer is limited to about , the area of the cross-section Ag can be determined. The area
of steel required to impart the necessary prestress is next calculated. The resulting member
can be checked for strength and serviceability, and details may be modified, if necessary.

Example 7.3

Consider the vertical post-tensioned tension member acting as a tie-back for the cantilevered
roof of the grandstand shown in Figure 12.12. In the critical loading case, the tension member
must transfer a design working dead load of 800 kN and live load of 200 kN to the footing
which is anchored to rock.

The material properties are MPa; Ec=32000 MPa; MPa; Eci=27 500 MPa;
fp=1840 MPa; Ep=195000 MPa; and np=6.09.

In accordance with the preceding discussion, an effective prestress 10% higher than the
maximum applied tension is assumed. Therefore,

Owing to the small residual compression existing under sustained loads, the time-dependent
loss of prestress is usually relatively small. In this short member, draw-in losses at transfer are
likely to be significant. For the purposes of this example, the time-dependent losses are
assumed to be 12% and the short-term losses are taken as 15%. The force immediately after
transfer and the required jacking force are therefore

Figure 12.12 Tie-back member analysed in Example 12.3.



Page 487

If the maximum steel stress at jacking is 0.85fp, then the area of steel is

Try ten 12.7 mm diameter strands (Ap=1000 mm2) post-tensioned within a 60 mm diameter
duct located at the centroid of the cross-section.

The ultimate strength of the member is calculated using Equation 12.36 (using the strength
reduction factor and load factors specified in AS 3600–1988):

The design axial force is

which is less than the design strength and is therefore satisfactory. If additional strength had
been necessary, non-prestressed steel could be included to increase Nu to the required level.

If the concrete stress at transfer is limited to MPa, the required area of concrete
is

Try a 350 mm by 350 mm square cross-section with a centrally located 60 mm duct.
Therefore, before the duct is grouted,

Under the effective prestress, after all losses and after the duct is fully grouted, the area of the
transformed section is obtained using Equation 12.29:

and

The uniform stress in the concrete under the full service load is given by
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Equation 12.30:

and the steel stress is given by Equation 12.31:

Both stresses are satisfactory and cracking will not occur at service loads, even if the losses of
prestress have been slightly understimated.

The minimum area of steel to ensure a factor of safety of 1.2 at cracking is checked using
Equation 12.35:

and the area of steel Ap=1000 mm2 adopted here is just sufficient.
If the final creep coefficients associated with the age at transfer, , and the age when the

external load is first applied, , are and , then Equation 2.12 gives
the appropriate effective moduli:

The shortening caused by prestress is obtained using Equation 12.38:

and the elongation caused by N is given by Equation 12.39. In this Equation,

and therefore,
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The net effect is a shortening of the member by

Shrinkage will cause a further shortening of several mm.
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Appendix I
Alternative models for creep and shrinkage

A.1 Introduction

In Sections 2.5.2 and 2.5.3, two relatively simple procedures for determining the magnitude
and rate of development of the creep coefficient and shrinkage strain were presented. Many
more complex procedures have been developed and are recommended by the various concrete
authorities. A description and comparison of some of the better known techniques has been
presented by Gilbert (1986,1988). In this Appendix, two well known and widely used
procedures are outlined.

A.2 The ACI Committee 209 method (1978)

Creep
The ACI Committee 209 (1978) adopts a hyperbolic function to represent the relationship
between creep and age at first loading:

(A.1)

where is the age of the concrete at first loading (in days), is the duration of loading (in
days), and is the final creep coefficient for concrete first loaded at age and is
expressed as

(A.2)

where γ1 to γ6 are correction factors which account for many of the parameters that affect the
magnitude of creep.
γ1 depends on the age of concrete at the time of first loading, , and is



Page 491

given by

(A.3)

γ2 is a function of the relative humidity, λ (in percent):

(A.4)

γ3 accounts for the size and shape of the member and depends on the dimension ho given by
4V/S, where V/S is the volume to surface ratio.

When , γ3 is obtained from

ho (mm) 50 75 100 125 150

γ3 1.30 1.17 1.11 1.04 1.00

When 150 mm<ho<380 mm:

(A.5)

and when

(A.6)

γ4 toγ6 account for parameters associated with the composition of the concrete; specifically, γ4
depends on the slump of the fresh concrete, s (in mm);γ5 is a function of the ratio of the fine
aggregate to total aggregate by weight, (in percent); and γ6 accounts for the air content, a (in
percent):

(A.7)

(A.8)

and

(A.9)

Under a constant stress σo first applied at age , the load-dependent strain
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at time t is

(A.10)

where is obtained from Equation 2.6. The concrete strength at age may be obtained
from the 28 day strength using Equation 2.2.

Shrinkage
The shrinkage strain at time t, measured from the start of drying, is given by

(A.11)

where is the final shrinkage and may be calculated from

(A.12)

The factors to in Equation A.12 depend on the same parameters as the corresponding
factors for creep (γ2 toγ6), and are given by

(A.13)

When is given by

(A.14)

When

(A.15)
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and when ho>380 mm:

(A.16)

(A.17)

(A.18)

(A.19)

The term γ7 depends on the cement content, c (in kg/m3) and is determined from

(A.20)

Finally, γ8 is a function of the period of initial moist curing Tc (in days) and is given by

(A.21)

For concrete which is steam cured for a period of between one and three days, γ8=1.0.

A.3 The CEB–FIP method (1978)

The method for predicting creep and shrinkage contained in the CEB-FIP Model Code (1978)
is based on the method proposed by Rüsch and Jungwirth (1976).

Creep
The creep strain at time t caused by a constant sustained stress σo applied at time is assumed
to be

(A.22)



Page 494

where Ec28 is the longitudinal modulus of deformation at 28 days and may be taken as

(A.23)

The creep coefficient is therefore defined as the ratio of creep strain at time t to the
instantaneous elastic strain at age 28 days. The total stress produced strain (instantaneous plus
creep) at time t is given by

(A.24)

The creep coefficient is assumed to consist of a reversible delayed elastic component and an
irreversible flow component, and is given in Equation A.25. The flow component is further
sub-divided into an initial flow component (which occurs within the first 24 hours under load)
and a subsequent flow component:

(A.25)

where is the final delayed elastic creep coefficient (i.e. the ratio of the final delayed elastic
strain and the instantaneous strain at 28 days) and is taken to be 0.4. The delayed elastic creep
coefficient is associated with the recoverable part of creep. The term is a function
describing the development of the delayed elastic strain with time and may be calculated from

(A.26)

is the rapid initial flow and is given by

(A.27)

The strength ratio is obtained from

(A.28)
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The flow coefficient in Equation A.25 is the sum of two components:

(A.29)

where depends on the relative humidityλ(in percent) and is given by

(A.30)

depends on the size of the member and may be obtained from Equation A.31 using the
notional thickness ho (mm):

(A.31)

where

(A.32)

Ac is the cross-sectional area of the member (in mm2), u is the perimeter exposed to drying (in
mm), and γis a humidity coefficient obtained from

(A.33)

The development of the subsequent (or delayed) flow component with time depends on the
notional thickness ho and is described by the function βf(t). When the
function βf(t) may be calculated from the following expression:

(A.34)

where α=0.8+0.55 exp(−0.003ho) andβ=770+210 exp(−0.0043ho).
The elastic modulus at the age of first loading to be used in Equation A.24 is

(A.35)

and is obtained from Equation A.28.

Shrinkage



The mean shrinkage strain which occurs within the time interval to to t is
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given by

(A.36)

where εsho is a basic shrinkage coefficient obtained from the product of two functions and is
given by

(A.37)

The function εsh1 depends on the relative humidityλand is obtained from

(A38)

The term εsh2 depends on the notional thickness ho and may be expressed as

(A.39)

The development of shrinkage with time is described by βsh(t) and this also depends on the
notional thickness:

(A.40)

Temperature effects
When the ambient temperature during curing is significantly different from 20 °C, the age of
the concrete should be adjusted according to the following:

(A.41)

where T is the mean daily temperature of the concrete occuring during the period Δtm days. α
depends on the cement type and equals 1 for normal and slow-hardening cements, 2 for rapid-
hardening cements and 3 for rapid-hardening, high-strength cements. The adjusted effective
age te is used for t in Equations A.25 and A.34.
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