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Preface

The design of structuresin general, and prestressed concrete structuresin particular, requires
considerably more information than is contained in building codes. A sound understanding of
structural behaviour at all stages of loading is essential. The aim of this book isto present a
detailed description and explanation of the behaviour of prestressed concrete members and
structures both at service loads and at ultimate loads and, in doing so, provide a
comprehensive guide to design. The design criteria and procedures contained in several major
building codes, including ACI 318-83, BS 8110:1985, and AS 3600-1988, are al so presented.

Each aspect of the analysis and design of fully prestressed and partialy prestressed
concrete members is approached from first principles and illustrated by numerous worked
examples. The text iswritten for senior undergraduate and postgraduate students of civil and
structural engineering, and also for practising structural engineers.

The book began as notes for a series of lectures to structural engineersin a short course on
prestressed concrete design conducted in Sydney in 1985 and has been further developed over
the past 5 years as part of the authors' involvement in research and the teaching of prestressed
concrete to graduate students at the University of New South Wales. The work has aso
gained much from the membership of Professor Gilbert on committees of the Standards
Association of Australiaand his involvement in the development of the Australian Standard
for Concrete Structures, AS 3600—1988.

The scope of the work ranges from an introduction to the fundamentals of prestressed
concrete to in-depth treatments of more advanced topics. Chapter 1 introduces the basic
concepts of prestressed concrete and the limit states design philosophies used in North
American, British, European, and Australian practice. Material properties relevant to design
are discussed in Chapter 2. A comprehensive treatment of the design of prestressed concrete
beams for serviceability is presented in Chapter 3. The instantaneous and time-dependent
behaviour of cross-sections under service loads are discussed in considerable detail. Both
uncracked and cracked cross-sections are considered. Techniques for determining the section
size, the magnitude and eccentricity of prestress, the losses of prestress and the deflection of
members are outlined. Each aspect of design isillustrated by numerical examples.

Chapters 4 and 5 deal with the design of members for strength in bending, shear, and
torsion, and Chapter 6 covers the design of the anchorage zones
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in both pretensioned and post-tensioned members. A guide to the design of composite
prestressed concrete beams is provided in Chapter 7, and includes a detailed worked example
of the analysis of a composite trough girder footbridge. Chapter 8 discusses design procedures
for statically determinate beams. Comprehensive self-contained design examples are provided
for fully prestressed and partially prestressed, post-tensioned, and pretensioned concrete
members.

The analysis and design of statically indeterminate beams and frames is covered in Chapter
9, and provides guidance on the treatment of secondary effects at al stages of loading.
Chapters 10 and 11 provide a detailed discussion of the analysis and design of two-way slab
systems. Chapter 10 is concerned with the behaviour and strength of slabs, whilst Chapter 11
deals with serviceability. Complete design examples are provided for panels of an edge-
supported slab and aflat slab. The behaviour of axially loaded membersis dealt with in
Chapter 12. Compression members, members subjected to combined bending and
compression, and prestressed concrete tension members are discussed and design aspects are
illustrated by examples.

A special feature of the book is the treatment of serviceability aspects of design. Concrete
structures are prestressed to improve behaviour at service loads and thereby increase the
economical range of concrete as a construction material. In conventional prestressed
structures, the level of prestress and the position of the tendons are usually based on
considerations of serviceability. Practical methods for accounting for the non-linear and time-
dependent effects of cracking, creep, shrinkage, and relaxation are presented in a clear and
easy-to-follow format.

The authors hope that Design of Prestressed Concrete will be avaluable source of
information and a useful guide to design.

R.1.Gilbert & N.C.Mickleborough
Sydney, 1990
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Notation

All symbols are defined in the text where they first appear. The more frequently used symbols
and those that appear throughout the book are listed below. Tension is taken to be positive and
compression is negative, throughout. Positive bending about a horizontal axis causestension
in the bottom fibres of a cross-section.

(A min
4

Ay

A

a

B
-Hfl Eﬂ

b ef

area
area of concrete

area of gross cross section

minimum required area of a cross-section

area of the precast element of a composite cross-section

area of prestressed stedl in the tensile zone

areas of the non-prestressed and prestressed stedl, respectively

; areas of non-prestressed and prestressed stedl at the ith steel level, respectively

area of the transverse non-prestressed reinforcement required for bursting and spalling,
respectively, in an anchorage zone (Eqns 6.11 and 6.12)

areas of the non-prestressed tensile and compressive reinforcement, respectively
area of shear reinforcement at each stirrup location

area of bar used for closed torsiona stirrup

minimum area of non-prestressed reinforcement

area of concrete under idealized rectangular compressive stress block

bearing area

largest area of the concrete surface geometrically similar to 4,

width of the torsion strip

first moment of area of the transformed cross-section about the top fibre

property B of the concrete part of the cross-section and of the age-adjusted transformed
section, respectively

width of the compressive zone of the cross-section of a beam or slab
effective width of the flange of aflanged cross-section
width of the contact surface between the precast and in situ parts of a composite cross-section
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width of an opening adjacent to the critical shear perimeter (Fig. 5.12)
width of the transformed flange of a composite cross-section (Eqn 7.1)
effective width of the web for shear calculations (5,-0.5d,)

width of the web of aflanged cross-section

resultant compressive force carry over factor

transverse compressive force behind an anchorage plate caused by bursting
compressive force carried by the concrete

factor to account for the effect of the magnitude and direction of end moments on the moment
magnification factor for aslender column

compressive force in the non-prestressed steel

side dimensions of a column

overall depth of a cross-section

overall depth of the beam in abeam and slab system
depth of the symmetrical prism within an anchorage zone
minimum overall depth

depth of aslab

effective depth from the extreme compressive fibre to the resultant tensile force at the ultimate
strength in bending

bar diameter

depth to the top layer of non-prestressed steel

diameter of a prestressing duct

depth from the extreme compressive fibre to the neutral axis

depth to the bottom layer of tensile reinforcement

depths to the non-prestressed and prestressed stedl, respectively

depths to the ith level of non-prestressed and prestressed stedl, respectively

depth to the compressive force in the concrete

elastic moduli of concrete, non-prestressed stedl, and prestressed stedl, respectively

initial elastic modulus of concrete
static elastic modulus at 28 days (Egn 2.17)

., €lastic moduli of concrete in precast and in situ € ements, respectively, of acomposite cross-

section

effective modulus of concrete (Eqn 2.12) and age-adjusted effective modulus of concrete (Egn
2.14), respectively

eccentricity of prestress eccentricity of load in a compression member
base of the natural logarithm



€max
€min
€o

epc

F(x), F(x)
Fy
Fw Fci

F

ep

av

Icl, 102
Icr

Page xv

eccentricity of the pressure line from the centroidal axis
maximum possible eccentricity of prestress

minimum acceptabl e eccentricity of prestress

initial eccentricity of load in aslender column

eccentricity of prestress measured from the centroidal axis of the precast part of a
composite cross-section

functions of x (Eqn 9.4)

design strength of concrete in bearing

compressive stress limits for concrete under full load and immediately after transfer,
respectively

force caused by earth pressure
force caused by earthquake
force caused by liquid pressure
force caused by snow loads

tensile stress limits for concrete under full load and immediately after transfer,
respectively

absolute value of the design force in the compressive zone due to bending
flexibility coefficient associated with arelease at point B

mean compressive strength of concrete at time ¢

permissible concrete shear stress on the critical shear perimeter
characteristic compressive strength of concrete at 28 days
characteristic compressive strength of concrete at time
characteristic compressive strength of concrete at transfer

cube strength of concrete

ultimate strength of the prestressing steel

0.2% proof stressfor prestressing steel

flexural tensile strength of concrete (Egn 2.3)

direct tensile strength of concrete (Eqn 2.4)

yield stress of non-prestressed steel

dead |oad

dead load per unit area

dimension of anchorage plate

drape of tendon

drape of the tendons running in thex and y directions, respectively
second moment of area (moment of inertia) about centroidal axis
average second moment of area after cracking

second moments of area of precast and in situ elements on a composite cross-section
second moment of area of acracked cross-section



effective second moment of area after cracking
second moment of area of the gross cross-section
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second moment of area of the transformed section about the top fibre of the section

property I of the concrete part of the cross-section and of the age-adjusted transformed section,
respectively

integers

torsional constant

effective length of a column

stiffness coefficient for member AB

ratio of the depth to the neutral axisto the effective depth at the ultimate bending moment
factors used for the determination of stressin the prestressing sted at ultimate (Eqn 4.18)
material multiplication constants

slab system factor

span
length of anchorage zone measured from the loaded face (Fig. 6.3b)

. length of abeam and a column, respectively

length of tendon associated with draw-in losses (Eqn 3.61)

effective span, i.e. the lesser of the centre to centre distance between the supports and the clear
span plus depth (L, +D)

distance between points of zero bending moment in abeam

clear span

distance aong atendon from the jack

transverse span

shorter and longer orthogonal span lengths, respectively, in two-way slabs
internal level arm

lever arms associated with bursting and spalling moment, respectively

lever arm distance of compressive forces in the concrete and in the stedl, respectively, above
the non-prestressed tensile steel (Fig. 4.6)

development length for a pretensioned tendon (Egn 6.2)

transmission length for a pretensioned tendon (Egn 6.2)

additional length required to develop (g, —g,.) in apretensioned tendon (Eqn 6.2)
unsupported length of a column

natural logarithm

bending moment

virtual bending moment

bursting moment
moment transferred to front face of a column

cracking moment
fixed-end moment
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Mg, M, moment caused by the dead and live loads, respectively
M, initial moment about top fibre of the transformed cross-section

M, moment at a cross-section at transfer total static moment in atwo-way flat slab
decompression moment

M, total and secondary moments due to prestress in a continuous member

p spalling moment
moment transferred to side face of acolumn

M, moment caused by the sustained loads
My, moment caused by self-weight

My moment caused by total service loads
M, ultimate flexural strength
M unbalanced moment
M* factored design moment for the strength limit state
o magnified design moment
My design moment transferred to a column through the critical shear perimeter
m,, m; ultimate moment of resistance per unit length along a positive and a negative yield line,
respectively
N axial force
N virtual axial force
N. critical buckling load
N, tensile axial force at cracking
N; initial axial force on the transformed cross-section
Nu ultimate axial strength
Nup ultimate axial force at the balanced failure point
N* factored design axial force for the strength limit state
AN, increments of axial force and moment about the top fibre of the cross-section, respectively

SN, M restraining actions which develop during atime interval due to restrained creep, shrinkage
and relaxation (Eqns 3.41-3.48)

n, ns modular ratio for non-prestressed stedl (EJ/E.)

n,n modular ratio for prestressed steel (£,/E,)

fi age-adjusted modular ratio (E/E, or E JE,)

n, modular ratio for the in situ concrete on a composite cross-section (E/E ;)
P prestressing force

P. effective prestressing force after time-dependent losses

P; prestressing force immediately after transfer

P; prestressing force at the jack before transfer

P, vertical component of prestress

live load

(@)



first moment of an area about the centroidal axis
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q live load per unit area
9y qs reinforcement indices for prestressed and non-prestressed steel
R relaxation force in the prestressing steel

relaxation of prestress (in percent)
time-dependent loss parameter (P./P;)
reaction force

ratio of cube and cylinder strengths
radius of curvature

R, ultimate strength

R* factored design action for the strength limit state

Riooo R, relaxation of prestressing steel (in percent) after 1000 h and at time infinity, respectively
r radius of gyration

s spacing between gtirrups or ties

T resultant tensile force
twisting moment or torque temperature

T, tension resulting from bursting
T twisting moment at first cracking
7, tension in the prestressed steel
T, tension in the non-prestressed steel
twisting moment transferred to side face of column
T, ultimate strength in torsion
Tuc torsional strength of a beam without torsional reinforcement (Egn 5.28)
Tus torsional strength of a beam containing torsional reinforcement (Eqn 5.29)
Ty maximum torsiona strength of a cross-section
T, twisting moment carried by the torsion strip
T* factored design torsion for the strength limit state
AT restraining force at level of non-prestressed stedl
AT, tensile force increment imposed on concrete
AT, restraining force at level of prestressed steel
t time
U internal work
u perimeter of the critical section for punching shear
14 shear force
Vs, Vi shear transferred to the front and side faces of a column, respectively
Ver shear force acting with torque T, at first cracking
V, shear force corresponding to the decompression moment A4,
v, shear force required to produce a web-shear crack
v, ultimate shear strength
Ve contribution of concrete to the shear strength
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shear strength of the critical shear perimeter with no moment transferred
contribution of transverse stedl to the shear strength

maximum shear strength of abeam (Eqn 5.7)

shear strength of a beam containing the minimum shear reinforcement (Eqn 5.6)
shear carried by the torsion strip

factored design shear force for the strength limit state

design horizontal shear force and nominal shear stress; respectively

deflection

deflection at midspan

deflection due to creep

deflection of the column strip and the middle strip in the x-direction
deflection of the column strip and the middle strip in the y-direction
deflection immediately after transfer

time-dependent part of the total deflection

maximum permissible total deflection
maximum deflection of aflat plate (Egn 11.11)

deflection due to shrinkage

short-term deflection caused by the sustained loads
total deflection

deflection due to variable loads

wind load
external work

uniformly distributed load

the balanced load

uniformly distributed dead and live loads, respectively

uniformly distributed transverse load exerted on a member by a parabolic tendon profile
transverse |oads exerted by tendons in the x- and y-directions, respectively (Eqn 10.3)
self-weight

total equivalent long-term load (Eqn 8.4)

unbalanced |oad

sustained part of the unba anced load

variable or transient part of the uniform load

factored design load for the strength limit state

direction of member axis

shorter and longer overall dimensions of the rectangular parts of asolid section
shorter and larger dimension of aclosed rectangular tie



By

B By
By P
Ba Ps

Yo Vs
Ym
Yo

Page xx

direction perpendicul ar to the member axis depth below reference level (either centroida axis
or top fibre)

distance from centroidal axis to bottom and top fibre, respectively

section modulus

bottom and top fibre section moduli (7/y,, 1/v,) respectively

bottom and top fibre section moduli of the precast part of a composite cross-section

bottom fibre section modulus of a composite cross-section
minimum bottom fibre section modulus (Egn 3.9)

a parameter to account for the effect of cracking and reinforcement quantity on the restraint to
creep (Egn 3.76)

twice the slope of the prestressline (Fig. 3.21b)

constant associated with the development of concrete strength with time (Eqn 2.2)

factor that depends on the support conditions of a two-way edge-supported slab

section properties relating to bottom and top fibres (4/Z, and A/Z, respectively)
factor to define the shape of abiaxia bending contour (Eqn 12.18)

sum of the successive angular deviations of atendon (Egn 3.60)

angle between shear reinforcement and longitudinal tensile stedl

deflection coefficient
shrinkage deflection coefficient
constant associated with the development of concrete strength with time (Egn 2.2)

ratio of long side to short side of the loaded area (in punching shear calculations)

ratio of the longest overall dimension of the effective loaded area to the overall dimension
measured in the perpendicular direction (Egn 5.52)

angular deviation term (Egn 3.60)

moment coefficientsin atwo-way slab (Eqn 10.8)

tension stiffening constants (Eqn 3.74)

coefficients related to the surface of the shear plane (Eqn 7.29)

ratio of the depth of the idealized rectangular compressive stress block to the depth of the
neutral axis at the ultimate strength in bending or combined bending and compression

partial safety factor for concrete and stedl, respectively
partia materia safety factor
fraction of unbalanced moment transferred to a column by eccentricity of shear (Egn 5.49)
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an increment or a change
lateral displacement (sway) at the top of acolumn
dip or draw-in (in mm) at the anchorage of atendon

moment magnification factor for a braced and for an unbraced column, respectively
initial and time-dependent lateral displacement, respectively, of a dender column
strain

creep strain of concrete at timet¢

creep strain at time ¢ due to astress first applied at 7o

final creep strain at time infinity

strain in the concrete at the level of the prestressed steel due to the effective prestress
extreme concrete fibre compressive strain at the ultimate limit state

instantaneous or elastic component of concrete strain at time ¢

initial strain in the top concrete fibre

strain in the prestressed and non-prestressed sted, respectively

strain in the prestressed steel due to the effective prestress (Egn 3.31)

tensile strain in the concrete at the level of the prestressed sted in the post-cracking range
and at the ultimate moment

strain in the prestressed steel at ultimate

strain in the non-prestressed steel

strain in the non-prestressed compressive and tensile stel, respectively
shrinkage strain at time ¢

final shrinkage strain at time infinity

shrinkage strain after 28 days of drying

yield strain

change in strain with time ¢

changein top fibre strain with time

dope

angle between the direction of the prestressing tendon and the horizontal
angles of the inclined crack caused by shear (Eqn 5.4) and by torsion (Egn 5.30) respectively
curvature

initial curvature

curvature of prestressing tendon

curvature induced by shrinkage

curvature caused by the sustained loads

curvature at ultimate

minimum curvature at ultimate for a ductile cross-section (Egn 4.6)
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change in curvature with time
long-term deflection multiplication factor

friction curvature coefficient (Egn 3.60)
friction coefficient on the surface of acrack (Egn 7.33)

Poisson’ sratio for concrete
3.141593

reinforcement ratio, A,/A,
density of concrete

sum of

stressin the concrete

bearing stress

stress in the concrete at the level of the prestressing steel

maximum compressive concrete stress
cube strength of concrete

initial stressin the concrete

stress at the time of first loading

initial concrete stressin the top fibre

stressin the prestressed and non-prestressed stedl, respectively

stress in the prestressed steel due to the effective prestressing force
stress in the prestressed steel immediately after transfer

stress in the prestressed steel at ultimate

permissible steel stress

stress in the non-prestressed compressive and tensile stedl, respectively
top and bottom fibre concrete stresses, respectively

longitudina and transverse stress in the anchorage zone
average stress imposed by the longitudinal prestressin each direction of atwo-way slab

principal stressesin the concrete
age of concrete at first loading

strength reduction factor
creep coefficient

creep coefficient at timet due to stressfirst applied at Te

areference creep coefficient (Eqn 2.20)

final creep coefficient at time infinity

increment of the creep coefficient associated with a particular time interval
ageing coefficient at time ¢ for concrete first loaded at Te

final ageing coefficient at time infinity

serviceability load factor

short-term serviceability load factor

long-term serviceability |oad factor



coefficient associated with the effective moment of inertia (Egn 3.74).
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1
Basic concepts

1.1 Introduction

Reinforced concrete is the most widely used structural materia of the 20th century. Because
the tensile strength of concreteis low, steel bars are embedded in the concrete to carry all
internal tensile forces. Tensile forces may be caused by imposed loads or deformations, or by
load-independent effects such as temperature changes or shrinkage.

Consider the simple reinforced concrete beam shown in Eigure 1.1. The external loads
cause tension in the bottom fibres which may lead to cracking, as shown. Practical reinforced
concrete beams are usually cracked under the day-to-day service loads. On a cracked cross-
section, the applied moment is resisted by compression in the concrete above the crack and
tension in the bonded reinforcing steel. Although the steel reinforcement provides the cracked
concrete beam with flexural strength, it does not prevent cracking and does not prevent the
loss of stiffness caused by cracking. Crack widths are approximately proportional to the strain,
and hence stress, in the reinforcement. Steel stresses must therefore be limited to some
appropriately low value in order to avoid excessively wide cracks. Similarly, large stedl strain
istheresult of large curvature, which in turn is associated with large deflection. Thereislittle
benefit to be gained, therefore, by using higher strength steel or concrete, since in order to
satisfy serviceability requirements, the increased strain capacity afforded by higher strength
steel cannot be utilized.

Prestressed concrete is a particular form of reinforced concrete. Prestressing involves the
application of aninitial compressive |oad on a structure to reduce or eliminate the internal
tensile forces and thereby control or eliminate cracking. The initial compressive load is
imposed and sustained by highly tensioned steel reinforcement reacting on the concrete. With
cracking reduced or eliminated, a prestressed section is considerably stiffer than the
equivalent (usually cracked) reinforced section. Prestressing may also impose internal forces
which are of opposite sign to the external loads and may therefore significantly reduce or even
eliminate deflection.
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Figure 1.1 A reinforced concrete beam.

With service load behaviour improved, the use of high-strength steel reinforcement and high-
strength concrete becomes both economical and structurally efficient. Aswill be seen
subsequently, only steel which can be tensioned with large initial elastic strainsis suitable for
prestressing concrete. The use of high-strength steel is therefore not only an advantage to
prestressed concrete, it is anecessity. Prestressing results in lighter members, longer spans,
and an increase in the economical range of application of reinforced concrete.

1.2 Methods of prestressing

As mentioned in the previous section, prestress is usually imparted to a concrete member by
highly tensioned steel reinforcement (wire, strand, or bar) reacting on the concrete. The high-
strength prestressing steel is most often tensioned using hydraulic jacks. The tensioning
operation may occur before or after the concrete is cast and, accordingly, prestressed members
are classified as either pretensioned or post-tensioned.

1.2.1 Pretensioned concrete

Figure 1.2 illustrates the procedures for pretensioning a concrete member. The prestressing
tendons are initialy tensioned between fixed abutments and anchored. With the formwork in
place, the concrete is cast around the highly stressed steel tendons and cured. When the
concrete has reached its required strength, the wires are cut or otherwise released from the
abutments. Asthe highly stressed steel attempts to contract, the concrete is compressed.
Prestress is imparted via bond between the steel and the concrete.

Pretensioned concrete members are often precast in pretensioning beds long enough to
accommodate many identical units simultaneously. To decrease the construction cycle time,
steam curing may be employed to
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(2) Tendons siressed between abuiments

{b) Concrete cast and cured
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(¢) Tendons released and prestress transferred

Figure 1.2 Pretensioning procedure.

facilitate rapid concrete strength gain and the concrete is often stressed within 24 hours of
casting. Because the concrete is usually stressed at such an early age, elastic shortening of the
concrete and subsequent creep strains tend to be high. Thisrelatively high time-dependent
shortening of the concrete causes a significant reduction in the tensile strain in the bonded,
prestressing steel and arelatively high loss of prestress.

1.2.2 Post-tensioned concrete

The procedures for post-tensioning a concrete member are shown in Figure 1.3. With the
formwork in position, the concrete is cast around hollow ducts which are fixed to any desired
profile. The steel tendons are usualy in place, unstressed in the ducts during the concrete pour,
or aternatively may be threaded through the ducts at some later time. When the concrete has
reached its required strength, the tendons are tensioned. Tendons may be stressed from one

end with the other end anchored or may be stressed from both ends, as shown in Eigure 1.3b.
The tendons are then anchored at each stressing end.

The concrete is compressed during the stressing operation and the prestress is maintained
after the tendons are anchored by bearing of the end anchorage plates onto the concrete. The
post-tensioned tendons al so impose a transverse force to the member wherever the direction
of the cable changes.

After the tendons have been anchored and no further stressing is
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(c) Tendons anchored and subsequently grouted

Figure 1.3 Post-tensioning procedure.

required, the ducts containing the tendons are often filled with grout under pressure. In this
way, the tendons are bonded to the concrete and are more efficient in controlling cracks and
providing ultimate strength. Bonded tendons are also less likely to corrode or lead to safety
problemsif atendon is subsequently lost or damaged. In some situations, however,
particularly in North America and Europe, tendons are not grouted for reasons of economy
and remain permanently unbonded.

Most in situ prestressed concrete is post-tensioned. Relatively light and portable hydraulic
jacks make on-site post-tensioning an attractive proposition. Post-tensioning is aso used for
segmental construction of large-span bridge girders.

Prestress may also be imposed on new or existing members using external tendons or such
devices as flat jacks. These systems are useful for temporary prestressing operations but may
be subject to high time-dependent | osses.

1.3 Introductory example

Consider an unreinforced concrete beam of rectangular section, simply supported over a span
L, and carrying auniform load w, as shown in Figure 1.4a When the tensile strength of
concrete is reached in the bottom fibre
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Figure 1.4 Introductory example.

at mid-span, cracking and a sudden brittle failure occur. If it is assumed that the concrete
possesses zero tensile strength, then no load can be carried and at failure w=0.

An axial compressive force P applied to the beam, as shown in Figure 1.4b, induces a
uniform compressive stress of intensity P/A. For failure to extreme fibre tensile stress at mid-
span equal to P/A. If linear-elastic occur, the moment caused by the external load w must now
induce an materia behaviour is assumed, simple beam theory gives

M_wL® P
Z B8Z A
and therefore
W=BZ£
L1 4
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If the prestressing force P is applied at an eccentricity of D/6, as shown in Figure 1.4c, the
compressive stress caused by P in the bottom fibre at mid-span is equal to

P Pe_P PDJ6
A Z A BDY6

2P
A

and the external load at failure w must now produce atensile stress of 2P/4 in the bottom
fibre. That is

and therefore

By locating the prestress at an eccentricity of D/6, the load-carrying capacity is effectively
doubled.

The eccentric prestress induces an internal bending moment Pe which is opposite in sign to
the moment caused by the external load. An improvement in behaviour is obtained by using a
variable eccentricity of prestress along the member. This may be achieved using adraped
cable profile.

If the prestress countermoment Pe is equal and opposite to the load-induced moment all
along the span, each cross-section is subjected only to axial compression, i.e. each section
suffers a uniform compressive stress of P/4. No cracking can occur and, since the curvature
on each section is zero, the beam does not deflect. Thisisthe balanced load stage.

1.4 Transverse forces caused by draped tendons

In addition to the longitudinal force P exerted on a prestressed member at the anchorages,
transverse forces are also exerted on the member wherever curvature exists in the tendons.
Consider the simply supported beam in Figure 1.5awhich is prestressed by a cable with a kink
at mid-span. The eccentricity of the cableis zero at each end and e at mid-span. The slope of
the two straight segments of cableis ¢, and because 8 is small

ﬂ#sinﬂ#tanﬂ:i

L2 (1.2)



Page 7

C
A — =
I e L2 7
[ J |
(a) Elevation
. R =2P szinb
PcoosB P c PoosB =P H
T Sy s
P sin8 4 P sind 5
1
A R=2Psing B

(b) Forces imposed by prestress on concrele,

///_\ IF;I"EM:PC

{c) Bending moment diagram due to prestress,

Figure 1.5 Beam with centrally depressed tendon.

In Figure 1.5b, the forces exerted by the tendon on the concrete are shown. At mid-span, the
cable exerts an upward force R on the concrete. From statics, R equals the sum of the vertical
component of the prestressing force in the tendon on both sides of the kink:

: 4Pe
R=2P s5in 0= T (12)

At each anchorage, the cable has a horizontal component of P cos 6 (=P for small §) and a
vertical component of P sin §=2Pe¢/ L.

The beam is said to be self-stressed. No external reactions are induced at the supports.
However, the beam suffers curvature and deflects upward owing to the internal bending
moment caused by prestress. Asillustrated in Figure 1.5¢, the internal bending moment at any
section can be calcul ated from statics and equal s the product of the prestressing force P and

the eccentricity.
If the prestressing cable has a curved profile, the cable exerts transverse forces on the

concrete throughout its length. Consider the prestressed beam with the parabolic cable profile
shown in Figure 1.6. The shape of the parabolic cableis

y= “‘"[f - (f)] (13)
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Figure 1.6 Simple beam with parabolic tendon profile.
and its slope and curvature are, respectively,
dx L L (1.4)
and
d’y  8e
P el (15)
From Equation 1.4, the slope of the cable at each anchorage when x=0 and x=L is
4y _ . de
Tl (16)

and therefore the horizontal and vertical components of the prestressing force at each
anchorage are P and 4Pe/ L, respectively.

Equation 1.5 indicates that the curvature of the parabolic cable is constant along its length.
The curvature x, isthe angular change in direction of the cable per unit length, asillustrated in
Figure 1.7a.

From the freebody diagram in Figure 1.7b, the cable exerts an upward transverse force
w,=Px,, per unit length. This upward force is an equivaent distributed load a ong the member
and, for aparabolic cable with the

F - '_’.P p
gi Xp <E¢ R=Psin%,
‘ \ P =F%
unit lengm
(a) Cable segment of unit length (b) Freebody diagram

Figure 1.7 Forces on a curved cable of unit length.
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Figure 1.8 Forces exerted on a concrete beam by a parabolic tendon.

constant curvature given in Equation 1.5, w, is given by

Wp= Pxp= E—Pf
L 1.7

If P isconstant, which is never quite the case in practice, w, is uniformly distributed.

A freebody diagram of the concrete beam showing the forces exerted by the cableis
illustrated in Figure 1.8. Once again, the beam is self-stressed. No externa reactions are
induced by the prestress. With the maximum eccentricity usually known, Equation 1.7 may be
used to calculate the value of P required to cause an upward force w, which exactly balances a
sel ected portion of the external load. Under this balanced load, the beam suffers no curvature
and is subjected only to the longitudinal compressive force P. Thisisthe basis of a useful
design approach sensibly known as load balancing.

1.5 Calculation of elastic stresses

The components of stress on a prestressed cross-section caused by the prestress, the self-
weight, and the external |oads are usually calculated using simple beam theory and assuming
linear-elastic material behaviour. In addition, the properties of the gross concrete section are
usually used in the calculations, provided the section is not cracked. Indeed, these
assumptions have already been made in the calculations for the introductory example in
Section 1.3.

Concrete, however, does not behave in alinear-elastic manner. Linear-elastic calcul ations
provide, at best, only an approximation of the state of stress on a concrete section immediately
after the application of the load. Inelastic creep and shrinkage strains may cause a substantial
redistribution of stresses with time, particularly on a section containing significant amounts of
bonded reinforcement.

Elastic calculations are useful, however, in determining, for example, if
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tensile stresses occur at service loads, and thereforeif crackingislikely, or if compressive
stresses are excessive and large time-dependent shortening may be expected. Elastic stress
calculations may therefore be used to indicate potential serviceability problems.

If an elastic calculation indicates that cracking may occur at service loads, the cracked
section analysis presented in Section 3.5 should be used to determine appropriate section
properties for al serviceability calculations. A more comprehensive picture of the variation of
concrete stresses with time can be obtained using the time analysis described in Section 3.6.

In the following sub-sections, several different approaches to the calculation of elastic
concrete stresses on an uncracked cross-section are described.

1.5.1 Combined load approach

The stress distributions on a cross-section caused by prestress, self-weight, and the applied
loads may be calculated separately and summed to obtain the combined stress distribution at
any particular load stage. Consider first the stresses caused by prestress and ignore al other
loads. On a section, such as that shown in Eigure 1.9, equilibrium requires that the resultant of
the concrete stresses is a compressive force which is equal and opposite to the tensile forcein
the steel tendon and located at the level of the stedl, i.e. at an eccentricity e below the
centroidal axis. Thisis statically equivalent to an axial compressive force P and a moment Pe
located at the centroidal axis, as shown.

,_._.._.__.j‘;-_._. ..9..F
[4

i € 1

] ___-‘_';3' [T T W

Elevations

Pey
I

= v
~[8

Duewo P Due w Fe Resultant
Section Stresses due to prestress

Figure 1.9 Concrete stress resultants and stresses caused by prestress.
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The stresses caused by the compressive force P and the hogging (—ve) moment Pe are also
shown in Figure 1.9. The resultant stress induced by the prestressis given by

A I (1.8)

where 4 and / are the area and second moment of area about the centroidal axis of the cross-
section, respectively, and y is the distance from the centroidal axis (positive downward). It is
common in elastic stress calculations to ignore the stiffening effect of the reinforcement and
to use the properties of the gross cross-section. For cross-sections containing significant
amounts of bonded steel reinforcement, however, the steel should be included in the
determination of the section properties.

The elastic stresses caused by an applied positive moment M on the uncracked section are

My

J=—

I (1.9)

and the combined stress distribution due to prestress plus applied moment is shown in Figure
1.10 and given by

__P_Pey My
TTATTT I (1.10)
% + é :
Due io prestress Due to moment Combined

Figure 1.10 Combined stresses.

1.5.2 Internal couple concept

The resultant of the combined stress distribution shown in Figure 1.10 is a compressive force
of magnitude P located at a distance / above the level of the steel tendon, as shown in Figure
1.11. The compressive force in the concrete and the tension force in the steel form a couple
with magnitude equal to the applied bending moment, i.e.

M= Pl
(1.11)
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Figure 1.11 Interna couple.

When M=0, the lever arm [ is zero and the resultant concrete compressive force islocated at
the stedl level. As M increases and compressive stresses in the top fibres increase and those in
the bottom fibres decrease, the location of the resultant compressive force moves upward.

It is noted that provided the section is uncracked, the magnitude of P does not change
appreciably as the applied moment increases. The lever arm [/ is therefore aimost directly
proportional to the applied moment. If the magnitude and position of the resultant of the
concrete stresses are known, the stress distribution can be readily calculated.

1.5.3 Load balancing approach

In Figure 1.8, the forces exerted on a prestressed beam by a parabolic cable were shown and
the uniformly distributed transverse load w, may be calculated from Equation 1.7. In Figure
1.12, dl the loads acting on the beam, including the external gravity loads w, are shown.

If w=w,, the bending moment and shear force caused by the gravity load on every cross-
section are balanced by the equal and opposite values caused by w,. With the transverse loads
balanced, the beam is subjected only to the longitudinal prestress P applied at the anchorage.
If the anchorage islocated at the centroid of the section, a uniform stress distribution of
intensity P/A4 occurs on each section and the beam does not deflect.

If w#w,, the bending moment A4, caused by the unbalanced load (w—w,) must be
calculated and the resultant stress distribution (given by Equation 1.9) must be added to the
stresses, caused by the axial prestress (P/A).

ity e MR
2 ﬁ___ 2

L
e L =
t

Figure 1.12 Forces imposed on a concrete beam with a parabolic tendon.
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1.5.4 Example 1.1

The elastic stress distribution at mid-span of the simply supported beam shown in Figure 1.13
isto be calculated. Each of the procedures discussed in Sections 1.5.1-3 are illustrated in the
following calculations.

30 kNjm (includes self-weight)

| S DK N B B N TR T |
£ . e €=250mm | a
W
6000 ! 6000 !
as0 | Elevation
Section A=220x 10" mm® P =1760kN

I = 20000 x 10° mm*
(P is assumed to be uniform along the beam)

Figure 1.13 Beam of Example 1.1.

Combined load approach

The extreme fibre stresses at mid-span (o;, o) dueto P, Pe and M are calculated separately
and summed.

P=1760 kN: Pe=1760250%x 10" =440 kN m:

2 2
M:WL =3ﬂx12 = 540 KNm
B B
Dueto P:
P 1760 x 103
= R el = =, P
NS AT T moxaer T T HOMPR
Dueto Pe:

Pey, _ 440 x 10° x 485
I~ 20000 x 10°

o= + = + 10.67 MPa

Peyy, 440x10°x 415 _
7 =2 <10° - 9.13 MPa

Op =
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Figure 1.14 Component stress distributionsin Example 1.1.

Dueto M:
_ My, 540x10°x485 _
Gi= - = - e ToF = ~ 1310 MPa
6
op= + M 340X10° X413 _ ) 51 MPa

I~ 20000x10°

The corresponding concrete stress distributions are shown in Figures 1.14a, b and d,
respectively, and the combined el astic stress distribution on the concrete section at mid-span
isshown in Figure 1.14e.

Internal couple concept

An alternative approach for the calculation of elastic stressesis based on the internal couple
concept of Section 1.5.2. From Equation 1.11,

M 540x10%
I= B = 1760 x 107 ~ S06-8 mm

The resultant compressive force on the concrete section is 1760 kN and is located
306.8—-250=56.8 mm above the centroidal axis. Thisis statically equivaent to an axial
compressive force of 1760 kN (applied at the centroid) plus a moment
M,,=1760%56.8x103=100 kNm.

The extreme fibre concrete stresses are therefore

P _ Muwy:_ _1760x10° 100 x 10° x 485

= - —

- = -10.43 MP
A1 220 x 10° 20000 X 10° 2

opm — By Muye_ _ 1760 x 10° | 100 x 10° X 415

+ = =2 P
AT T 220% 10° 20000 x 10° 5.92 MPa

as shown in Figure 1.14e.
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Load balancing approach

The elastic concrete stresses can also be determined using the load balancing procedure
outlined in Section 1.5.3. The transverse force imposed on the concrete by the parabolic cable
isobtained using Equation 1.7. That is,

_8Pe _8x1760 % 10° x 250
=TT 12000°

=24.4 kN/m

The unbalanced load is therefore
wep=300-244=555kN/m |
and the resultant unbalanced moment at mid-span is

_wal? 5.55x12?
8 8

My = 100 kNm

which, of course, isidentical to the moment M, calculated using the internal couple concept.
Once again, the elastic stresses at mid-span are obtained by adding the P/ A stresses to those
caused by M,

1.6 Flexural behaviour—from initial to ultimate loads

The choice between reinforced and prestressed concrete for a particular structure is one of
economics. For relatively short-span beams and slabs, reinforced concrete is usually the most
economical alternative. Asthe span increases, however, reinforced concrete design is more
and more controlled by the serviceability requirements. Strength and ductility can still be
economically achieved but, in order to prevent excessive deflection, cross-sectiond
dimensions become uneconomically large. Excessive deflection is usually the governing limit
State.

For medium- to long-span beams and slabs, the introduction of prestress improves both
serviceability and economy. The optimum level of prestress depends on the span, the load
history, and the serviceability requirements. Until recently, the level of prestress was usually
selected so that cracking at service loads did not occur. Frequently, thisresulted in
unnecessarily high initial prestressing forces and, consequently, uneconomical designs. The
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high initial prestress also often led to excessively large camber and/or axial shortening.
Members designed to remain uncracked at service loads are termed fully prestressed.

In building structures, there are relatively few situations in which it is necessary to avoid
cracking at service loads. In fact, the most economic design often results in significantly less
prestress than is required for afully prestressed member. Frequently, such members are
designed to remain uncracked under the sustained or permanent load, with cracks opening and
closing asthe variable live load is applied and removed. Prestressed concrete members
behave well in the post-cracking load range, provided they contain sufficient bonded
reinforcement to control the cracks. A cracked prestressed concrete section under service
loads is significantly stiffer than a cracked reinforced concrete section of similar size and
containing similar quantities of bonded reinforcement. Members that are designed to crack at
the full serviceload are called partially prestressed.

The elastic stress cal culations presented in the previous section are applicable only if
material behaviour is linear-elastic and the principle of superposition isvalid. These
conditions may be assumed to apply on a prestressed section prior to cracking, but only
immediately after the loads are applied. As was mentioned in the introduction to Section 1.5,
the gradual development of inelastic creep and shrinkage strains in the concrete can cause a
marked redistribution of stress between the bonded steel and the concrete on the cross-section.
The greater the quantity of bonded reinforcement, the greater is the time-dependent
redistribution of stress. For the determination of the long-term stress and strain distributions,
elastic stress cal culations are not meaningful and may be misleading.

If the external loads are sufficient to cause cracking (i.e. the extreme fibre stress exceeds
the tensile strength of concrete), the short-term behaviour also becomes non-linear and the
principle of superposition is no longer applicable. As the applied moment on a cracked,
prestressed section increases, the crack depth gradually increases from the tension surface
towards the compression zone and the size of the uncracked part of the cross-section in
compression above the crack decreases. Thisis different to the post-cracking behaviour of a
conventionally reinforced concrete section. At first cracking on areinforced section, the crack
suddenly propagates deep into the beam and the crack height and the depth of the concrete
compression zone remains approximately constant as the applied moment is subsequently
varied.

As the moment increases further into the overload region, the material behaviour becomes
increasingly non-linear, Permanent deformation occurs in the bonded prestressing tendons as
the stress approaches its ultimate value, the non-prestressed conventional reinforcement yields,
and the compressive concrete in the ever decreasing region above the crack enters the non-
linear range. The external moment is resisted by an internal couple,
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with tension in the reinforcement crossing the crack and compression in the concrete and in
any reinforcement in the compressive zone. At the ultimate load stage, the prestressed section
behaves in the same way as areinforced concrete section, except that the stress in the high-
strength stedl reinforcement is very much higher. A significant portion of the very high steel
stress and strain is due to the initial prestress or, more precisely, theinitial prestrain. If the
same higher strength steel were to be used without being initially prestrained, excessive
deformation and unacceptably wide cracks would result at only a small fraction of the
ultimate load (well below normal service loads).

The ultimate strength of a prestressed section depends on the quantity and strength of the
steel reinforcement. The level of prestress, however, and therefore the quantity of prestressing
steel are determined from serviceability considerations. In order to provide a suitable factor of
safety for strength, additional conventional reinforcement may be required to supplement the
prestressing steel in the tension zone. Thisis particularly so in the case of partialy prestressed
members and may even apply for fully prestressed construction. The avoidance of cracking at
service loads and the satisfaction of selected elastic stress limits do not ensure adequate
strength. Strength must be determined from arational analysis which accounts for the non-
linear material behaviour of both steel and concrete. Flexural strength analysisis described
and illustrated in Chapter 4, and analyses for shear and torsional strength are contained in
Chapter 5.

1.7 Design procedures

1.7.1 Limit states requirements

A structure and its components must simultaneously satisfy a number of different limit states
or design requirements. It must possess adequate strength, be stable, and perform
satisfactorily under service loads. Further, it must be durable, have adequate fire protection,
resist fatigue loading, and satisfy any special requirements which are related to its intended
use. Codes of practice specify design criteriawhich provide a suitable margin of safety
against a structure becoming unfit for service in any of these ways.

If astructure becomes unfit for servicein any way, it is said to have entered alimit state.
Limit states are the undesirable consequences associated with each possible mode of failure.
In order to satisfy the design criteria set down in codes of practice, methods of design and
analysis should be used which are appropriate to the limit state being considered. For example,
if the strength of a cross-section isto be calculated, ultimate strength anaysis and design
procedures are usually adopted. Collapse |oad methods of analysis and design (plastic
methods) may be suitable for calculating the
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strength of ductile, indeterminate structures. If the serviceability limit states of excessive
deflection (or camber) or excessive cracking are considered, an analysis which accounts for
the non-linear and inelastic nature of concrete is usually required. The sources of this concrete
material non-linearity include cracking, tension stiffening, creep, and shrinkage. In addition,
creep of the high-strength prestressing steel (more commonly referred to as relaxation) may
affect in-service behaviour.

Each limit state must be considered and designed for separately. Satisfaction of one does
not ensure satisfaction of others. All undesirable consequences should be avoided. For each
limit state, the designer must compare the structure’ s capacity with the appropriate external
loads. In the following sections, the design requirements for prestressed concrete are
discussed, including the specified loads and load combinations and the treatments of structural
safety contained in several major codes of practice.

1.7.2 Loads on structures

In the design of a concrete structure, the internal actions arising from the following loads
should be considered if applicable. The notation used here is based, where possible, on the
recommendations of 1SO 3898:

Dead load (G); Live load (Q); Wind load (W); Prestress (P); Earthquake (Feq); Earth pressure
(Fep); Liquid pressure (Fip); and Snow load (Fs).

In addition, possible accidental |oading and construction loads should be considered where
they may adversely affect the limit states requirements. Other actions which may cause either
stability, strength or serviceability failuresinclude, creep of concrete, shrinkage (or
expansion) of concrete, temperature changes and gradients, foundation movements, and
dynamic effects.

Dead loads are usually defined as loads imposed by both the structural and non-structural
components of a structure. Dead |oads include the self-weight of the structure and the forces
imposed by all walls, floors, roofs, ceilings, permanent partitions, service machinery, and
other permanent construction. Dead |oads are usually permanent, fixed in position, and can be
estimated reasonably accurately from the mass of the relevant material or type of construction.
Normal weight prestressed (or reinforced) concrete, for example, weighs about 24 kN/m?®.
Lightweight reinforced concrete weighs between 15 and 20 kN/m?®.

Live loads are the loads which are assumed to arise from the intended use or purpose of the
structure and are generally specified by regional or national codes and specifications. A
number of these references are listed at the end of this chapter. Specified live loads depend on
the expected use
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or occupancy of the structure and usually include allowances for impact and inertialoads
(where applicable) and for possible overload. In general, both uniformly distributed and
concentrated live loads are specified. At the design stage, the magnitude of the maximum live
load is never accurately known, and thereis asmall, but significant, probability that the
specified live load will be exceeded at some stage during the life of the structure. Live loads
may or may not be present at any particular time; they are not constant and their position can
vary. Although part of the live load is transient, some portion may be permanently applied to
the structure and have effects similar to dead loads. Live loads also occur during construction
due to stacking of building materials, the use of equipment, or the construction procedure
(such as the loads induced by floor-to-floor propping in multistorey construction).

Specified wind, earthquake, snow and temperature |oads depend on the geographical
location and the relative importance of the structure (the mean return period). Wind loads aso
depend on the surrounding terrain, the degree of shielding, and the height of the structure
above the ground. These environmental 10ads are also usually specified by regional or
national codes and specifications.

1.7.3 Load combinations for the strength limit states

The loads used in the design for strength are the specified values discussed above multiplied
by minimum load factors contained in the various codes of practice. With the built-in
allowance for overloads in most |oading specifications, the specified loads will not often be
exceeded in the life of astructure. The load factors applied to each load type ensure that the
probability of strength failure is extremely low. Load factors provide only part of the overall
factor of safety against strength failure and are referred to in Europe as partial safety factors
for load. Aswill subsequently be seen, partial safety factors, in one form or another, are also
applied to the calculated strength of the structure.

The load factors depend on the type of load and the load combination under consideration.
For example, the load factors associated with dead |oads are less than those for live or wind
loads, because the dead load is known more reliably and therefore less likely to be exceeded.

The load factors specified in several widely used concrete codes for particular load
combinations are summarized below. The most severe factored load combination should be
used in the design for strength.

ACI 318-83 (1983)

Dead+Live: 1.4G+1.70
Wind: 0.75(1.4G+1.70+1.7W) or
0.9G+1.3W



Earthquake: Asfor wind, except that 1.1F,, is substituted for W
Earth pressure; LAG+1.7Q0+1.7F,, or
0.9G+1.7F,,

BS 8110: Part 1 (1985)

Dead+Live: 1.4G+1.60

Wind: 1.2G+1.20+1.2W or
1.4G+1.4W or
1.0G+1.4w

Earth pressure: 14G+1.60+14F,, or
1.0G+1.4F,,

Liquid pressure: Asfor earth pressure

CEB-FIP Model Code (1978)

Dead+Live: 1.35G+1.50
Wind: 1.35G + 1.5y, 0+ 1.5W or
1.0G+1.5W
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For earthquake, earth pressure, or liquid pressure, the same two load combinations as for wind
are used except that W isreplaced by F,,, F,, or F, respectively. Veis a combination factor
which depends on the type of structure and accounts for the reduced probability that the
specified live load will be acting when the design wind (or earthquake) occurs. For example,
Vo = 0.3tor dwellings and highway bridges and ¥e = 0-6for offices, retail stores, and parking

areas.

CAN3-A23.3-M84 (1984)

Dead+Live: 1.25G+1.50

Wind: 1.25G+1.5W or
0.85G+1.5W or
1.25G +0.7(1.50+1.5W)

Earthquake loads are treated similarly to wind loads. Earth and liquid pressures are taken as

live loads and factored accordingly.

AS 3600 (1988)

Dead+Live: 1.25G+1.50 or
0.8G+1.50



Wind:

Earthquake:

Earth pressure;

1.25G + .0+ 1.5W or
0.8G+1.5Ww

1.25G + 1.6F¢y + 40 or
0.8G+16F,,
1.25G+1.50+1.5F,, or

0.8G+1.5F,,
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Liquid pressure is factored similarly to earth pressure. ¥edepends on the type of occupancy:

¥e = 0-4for domestic, office, and parking areas, 0.5 for retail stores, and 0.6 for storage areas.
In addition to the above load combinations, AS 3600—1988 specifies the following factored
combination of prestressed and dead |oad when considering compressive failure at transfer:
1.15G+1.15P or 0.8G+1.15P.

1.7.4 Load combinations for the stability limit states

All structures should be designed such that the factor of safety against instability dueto
overturning, uplift, or sliding is suitably high. In general, most codes require that the structure
remains stable under the most severe of the load combinations for the strength limit states (see
Section 1.7.3). The Australian Standard for Concrete Structures AS 3600—1988 suggests that
the loads causing instability should be separated from those tending to resist it. The design
action effect is then calculated from the most severe of the load combinations for the strength
limit state. The design resistance effect is calculated from 0.8 times the loads and other forces
tending to resist instability. The structure should be so proportioned that its design resistance
effect is not less than the design action effect.

Consider, for example, the case of a standard cantilever retaining wall. When checking for
overturning in accordance with AS 3600-1988, the overturning moment caused by both the
lateral earth pressure and the lateral thrust of any dead and live load surcharge would be
calculated using the worst factored load combination of Section 1.7.3. To provide a suitable
margin of safety against stability failure, the overturning moment should not be greater than
0.8 times the restoring moment caused by the wall self-weight and the weight Of the backfill
and other permanent surcharge above the wall.

1.7.5 Load combinations for the serviceability limit states

The design loads to be used in serviceability calculations are the day-to-day service loads
which may be considerably less than the specified loads. The specified live load Q, for
example, has abuilt-in allowance for overload and impact, and thereis arelatively low
probability that this value will be exceeded. It is usually not necessary, therefore, to ensure
acceptable deflections and crack widths under the full specified live loads. The day-to-day
load combinations that exist under normal conditions of service are more appropriate.

ACI 318-83 (1983) does not make specific recommendations regarding |load combinations
for serviceahility calculations, except that adequate stiffnessis required to limit the
deformation of a structure at service loads to a specified maximum vaue. Where the long-
term deformation is cal cul ated,
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only the dead load and the permanent portion of the live load need be considered.

BS 8110: Part 2 (1985) differentiates between the characteristic (or specified) loads and the
expected 10ads. Depending on the type of structure, the expected loads may be significantly
less than the characteristic loads. If the aim of the serviceability calculation is to produce a
best estimate of the likely behaviour, then expected |oads should be used. The actual values of
these expected live loads are not specified and are deemed to be a matter for engineering
judgement. If the aim isto satisfy a particular serviceability limit state, and the consequences
of failure to do so are high, then the specified or characteristic service loads may be more
appropriate. Once again, the decision should be based on engineering judgement and
experience. BS 8110 specifies that for dead load the expected and the characteristic values are
the same and, therefore, the characteristic dead |load should be used in all serviceability
calculations. For normal domestic or office occupancy, BS 8110 specifies that 25% of the live
load should be considered as permanent or sustained and the remainder may be assumed to be
transitory in nature. For storage areas, when an upper limit to the final long-term deflection is
required, 75% of the live load should be considered to be permanent.

The CEB—IP Model Code (1978) specifies live load factors, ¥and ¥for serviceabil ity
calculations. The following service load combinations should be considered:

The quasi -permanent loads: G+ P+yaQ
The frequent (day-to-day) loads: G+ P+yQ
The infrequent (one-off) loads: G+P+Q

P isthe mean prestressing force. ¥1is the short-term service load factor and equals0.4 for
dwellings, 0.6 for offices and retail stores, 0.7 for parking areas, and for highway bridges may
be linearly interpolated between 0.7 for spans of 10 m and 0.5 for spans of 100 m. V2isthe
long-term service load factor and equals 0.2 for dwellings, 0.3 for offices and retail stores, 0.6
for parking areas, and zero for highway bridges. For wind and snow loads, ¥i1lies between 0.2
and 0.5 and ¥2 =0

The Canadian code CAN3-A23.3—-M 84 (1984) suggests that the specified |oads should be
used in serviceability calculations, except that for the estimate of long-term deflections, the
sustained loads only are to be considered. A load combination factor ¥is introduced when
combinations of dead |oad and each of the following loads are considered: (a) live load, O, (b)
wind or earthquake load, 7; and (c) the cumulative effects of temperature, creep, shrinkage,
and differential settlement, 7. The load combination for serviceability istherefore

G+ y(Q+W+T)
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where ¥ = 1.0when only one of O, W, or T isacting, 0.7 when two of O, W, or T are acting,
and 0.6 when all three are acting.

The Australian code AS 3600—1988 adopts a similar approach to the CEB—FIP model code.
Live load factors, ¥sand ¥!are used in the following service load combinations:

Short-term loads: G+ P+ysQ or G+ P+yQ+05W
Long-term loads: G+ P+ yQ

¥sis the minimum fraction of O which is considered to be appropriate for short-term
serviceability calculations and is equal to 0.7 for dwellings, 0.5 for offices and parking areas,
0.6 for retail stores, 1.0 for storage areas, and for bridges varies linearly from 0.7 for spans of
10 mto 0.5 for spans of 100 m. Wiis the minimum fraction of O which may reasonably be
expected to be sustained or permanent in nature and is equal to 0.3 for dwellings and retail
stores, 0.25 for parking areas, 0.2 for offices, between 0.5 and 0.8 for storage areas, and zero
for bridges.

1.7.6 Design for the strength limit states

The design strength of amember or connection must always be greater than the design action
produced by the most severe factored load combination (as outlined in Section 1.7.3). On a
particular cross-section, the design action may be the axial load N, shear force V/, the
bending moment A4, or the twisting moment 7", or combinations thereof.

The design strength of a cross-section is a conservative estimate of the actual strength. In
modern concrete codes, one of two alternative design philosophiesis used to determine the
design strength. Thefirst involves the use of strength (or capacity) reduction factors and the
second approach involves the use of partial safety factors for material strengths.

Design strength using strength reduction factors

The design strength of a cross-section is taken as the product of the ultimate strength, R,, and
astrength reduction factor, ®. The strength reduction factor is a factor of safety introduced to
account for the variability of the material properties controlling strength and the likelihood of
underperformance; ®aso accounts for possible variations in steel positions and concrete
dimensions, inaccuracies in design procedures and workmanship, and the degree of ductility
of the member.

Both ACI 318-83 (1983) and AS 3600 (1988) adopt this approach and the strength
reduction factors contained therein are summarized in Table 1.1. ®varies between 0.7 and 0.9
in ACI 318-83 (and 0.6 and 0.8 in AS 3600—1988), the lower end of the range being
applicable when concrete directly controls the strength and the upper end of the range when
strength depends primarily on the properties of the stedl.
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Table 1.1 Strength reduction factors (ACI 318-83 and AS 3600-1988).

Type of Action ACI 31883 | AS3600-1988
(a) Flexure (with or without axial tension) and Axial tension 0.9 0.8
(b) Axial Compression and Axial Compression with Flexure

(i) Spira reinforcement 0.75 0.6

(i) Tied reinforcement 0.70 0.6

For small axial compression, ¢may be increased linearly from the value given in (b) to the value given
in (@) asthe axia compression tends to zero.

(c) Shear and torsion 0.85 0.7
0.7 0.6

| |

The determination of the ultimate strength R, of a prestressed concrete section is based on the
characteristic strengths of the materials and their idealized constitutive relationships, the
principles of ultimate strength theory, and the fundamental concepts of mechanics. Procedures
for calculating the ultimate bending strength M,, are discussed in Chapter 4, the ultimate shear
strength 7, and torsional strength 7, in Chapter 5, and the ultimate strength of membersin
axial compression and tension N, in Chapter 12.

The design requirement for the strength limit state on each cross-section and at each
connection throughout the structureis

(d) Bearing on Concrete

@R, = R*
(1.12)

The design strength must be greater than or equal to the most severe design action.

Design strength using partial safety factors

The strength reduction factor is a safety factor which is applied to the ultimate strength of a
section, the ultimate strength being cal culated from the characteristic or specified material
strengths. An alternative approach to
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the determination of the design strength of a section isto apply the safety factors directly to
the material strengths.

For concrete, reinforcement bars, and prestressing tendons, the design strength of the
material is obtained from the characteristic strength divided by the appropriate partial safety
factor, y,,. These reduced material strengths are then used to determine the design strength of
the section directly (using similar procedures to those used for calculating the ultimate
strength, R,).

The partial safety factors for the constituent materias, y.,, take account of the variability of
the material, the differences between actual material properties and laboratory-measured
values, local weaknesses, and inaccuracies in the methods of assessment of the resistance of
cross-sections. They serve the same function as strength reduction factors, but do so in,
arguably, amore rational way and provide a more consistent level of safety.

BS 8110: Part 1 (1985), the CEB—FIP Mode Code (1978) and CAN3-A23.3-M 84 (1984)
all use this approach. The partial safety factors for materials specified in each code are
summarized below:

BS 8110: Part 1 (1985)

For reinforcement (al types): ym=1.15
Concretein flexure or axial load: y~=15
Shear strength without shear reinforcement: y.=1.25
Bond strength: y.=1.4
Others (e.g. bearing stress): Ye 2 1.5

CEB-FIP Model Code (1978)

For concrete: y.=15
For stedl: 7,=1.15

CAN3-A23.3-M84 (1984)

For concrete: 7.=1/0.6
For prestressing tendons (and structural steel): 7,=1/0.9
For conventional reinforcing bar: 7,=1/0.85

1.7.7 Design for the serviceability limit states

When designing for serviceability, the designer must ensure that the structure behaves
satisfactorily and can perform its intended function at service loads. Deflection (or camber)
must not be excessive, cracks must be adequately controlled, and no portion of the structure
should suffer excessive vibration.

The design for serviceability is possibly the most difficult and least well understood aspect
of the design of concrete structures. Service load behaviour depends primarily on the
properties of the concrete which are
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often not known reliably. Moreover, concrete behavesin anon-linear and inelastic manner at
service loads. The non-linear behaviour of concrete which complicates serviceability
calculationsis caused by cracking, tension stiffening, creep, and shrinkage.

In Chapter 3, design procedures for determining the in-service behaviour of beams are
presented, and Chapter 11 deals with serviceability aspects of the design of prestressed
concrete slabs. The level of prestressin beams and slabsis generally selected to satisfy the
serviceability requirements.

The control of cracking in a prestressed concrete structure is usually achieved by limiting
the stress increment in the bonded reinforcement to some appropriately low value and
ensuring that the bonded reinforcement is suitably distributed. Many codes of practice specify
maximum steel stress increments after cracking and maximum spacing requirements for the
bonded reinforcement. For example, for the control of flexural cracking in partially
prestressed concrete beams, AS 3600 (1988) requires that the increment of stressin the steel
near the tension faceis limited to 200 M Pa as the load is increased from its value when the
extreme concrete tensile fibreis at zero stress to the full short-term service load. In addition,
the centre to centre spacing of reinforcement (including bonded tendons) must not exceed 200
mm.

For deflection control, the structural designer should select maximum deflection limits
which are appropriate to the structure and its intended use. The calculated deflection (or
camber) must not exceed these limits. Codes of practice give general guidance for both the
selection of the maximum deflection limits and the calculation of deflection. However, the
simplified procedures for calculating deflection in most codes were devel oped from tests on
simply supported reinforced concrete beams and often produce grossly inaccurate predictions
when applied to more complex structures. Reliable procedures for cal culating deflections of
partialy prestressed concrete beams are presented in some detail in Chapter 3.

Deflection problems which may affect the serviceability of prestressed concrete structures
can be classified into three main types:

(a) Where excessive deflection causes either aesthetic or functional problems.

(b) Where excessive deflection results in damage to either structura or non-structura
elements attached to the member.

(c) Where dynamic effects due to insufficient stiffness cause discomfort to occupants.

Examples of deflection problems of type (a) include objectionable visua sagging (or hogging),
and ponding of water on roofs. In fact, any deflection which prevents a member fulfilling its
intended function causes a problem of this type. Type (a) problems are generally overcome by
limiting the total
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deflection to some appropriately low value. The total deflection is the sum of the short-term
and time-dependent deflection caused by the dead load (including self-weight), the prestress,
the expected in-service live load, and the load-independent effects of shrinkage and
temperature changes.

Some codes (including ACI 318-83, BS 8110 1985, and CAN3-A23.3— M 84) place no
maximum limit on the total deflection. However, when the total deflection exceeds about
span/200 below the horizontal, it may become visually unacceptable. Total deflection limits
which are appropriate for the particular member and its intended function must be decided by
the designer. A total deflection limit of span/200, for example, may be appropriate for the
floor of a carpark, but isinadequate for a gymnasium floor which may be required to remain
essentialy plane under service conditions.

Examples of type (b) problems include deflections which result in cracking of masonry or
other partitions, damage to ceiling or floor finishes, and improper functioning of sliding
windows and doors. To avoid these problems, alimit must be placed on that part of the total
deflection that occurs after the attachment of such elements. This incremental deflection is
usually the sum of the long-term deflection due to al the sustained loads and shrinkage, the
short-term deflection due to the transitory live load, and any temperature-induced deflection.

For roof or floor construction supporting or attached to non-structural elements that are
unlikely to be damaged by large deflection, ACI 318-83 (1983) limits the incremental
deflection to span/240. Where such elements are likely to be damaged by large deflection, the
incremental deflection limit is reduced to span/480. Incremental deflections of span/480 can
cause cracking of supported masonry walls, particularly when doorways or corners prevent
arching and no provisions are made to minimize the effect of movement. AS 3600 (1988)
limits the incremental deflection for members supporting masonry partitions to between
span/500 and span/1000, depending on the provisions made to minimize the effect of
movement.

Type (c) deflection problems include the perceptible springy vertical motion of floor
systems and other vibration-related problems. Very little quantitative information for
controlling this type of deflection problem is available in codes of practice. ACI 318-83
(1983) places alimit of span/360 on the short-term deflection of afloor due to live load (and
span/180 for aflat roof). Thislimit provides a minimum requirement on the stiffness of
members which may, in some cases, be sufficient to avoid problems of type (c). For
prestressed concrete floors, type (¢) problems are potentially the most common. Load
balancing is often employed to produce a nearly horizontal floor under the sustained load.
Such structures are generally uncracked at service loads, total deflection is small, and types
(a) and (b) deflection problems are easily avoided.

Where a structure supports vibrating machinery (or any other significant dynamic load) or
where a structure may be subjected to ground motion
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caused by earthquake, blasting, or adjacent road or rail traffic, vibration control becomes an
important design requirement. Thisis particularly so for slender structures, such astall
buildings or long-span beams and slabs.

Vibration is best controlled by isolating the structure from the source of vibration. Where
thisis not possible, vibration may be controlled by limiting the frequency of the fundamental
mode of vibration of the structure to avalue which is significantly different from the
frequency of the source of vibration. When a structure is subjected only to pedestrian traffic, 5
Hz is often taken as the minimum frequency of the fundamental mode of vibration of a beam
or dab (Irwin 1978, Mickleborough & Gilbert 1986).
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2
Design properties of materials

2.1 Introduction

The behaviour of a prestressed concrete member throughout the full range of loading depends
on the properties and behaviour of the constituent materials. In order to satisfy the design
objective of adequate structural strength, the ultimate strengths of both concrete and steel

need to be known. In addition, factors affecting material strength and the non-linear behaviour
of each materia in the overload range must be considered. In order to check for serviceability,
the instantaneous and time-dependent properties of concrete and steel at typical in-service
stress levels are required.

Aswas mentioned in Chapter 1, the prestressing force in a prestressed member gradually
decreases with time. This loss of prestress, which is usually 10-25% of theinitial value, is
mainly caused by inelastic creep and shrinkage strains which develop with timein the
concrete at the level of the bonded steel. Reasonable estimates of the creep and shrinkage
characteristics of concrete and procedures for the time analysis of prestressed structures are
essential for an accurate prediction and a clear understanding of in-service behaviour.
Relaxation of the prestressing steel also causes atime-dependent loss of prestress. With the
current trend towards the use of low relaxation steels, however, this component of prestress
lossisusualy small (less than 5%).

The intention in this chapter isto present a broad outline of material behaviour and to
provide sufficient quantitative information on material properties to complete most design
tasks.

CONCRETE

A more comprehensive treatment of the properties of concrete and the factors affecting them
was given by Neville (1981).
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2.2 Composition of concrete

Concrete is amixture of cement, water, and aggregates. It may also contain one or more
chemical admixtures. Within hours of mixing and placing, concrete sets and begins to develop
strength and stiff ness as aresult of chemical reactions between the cement and water. These
reactions are known as hydration. Calcium silicates in the cement react with water to produce
calcium silicate hydrate and calcium hydroxide. The resultant alkalinity of the concrete helps
to provide corrosion protection for the reinforcement.

The relative proportions of cement, water, and aggregates may vary considerably
depending on the chemical properties of each component and the desired properties of the
concrete. A typical mix used for prestressed concrete by weight might be coarse aggregate
44%, fine aggregate 31%, cement 18%, and water 7%.

In most countries, several different types of Portland cement are available, including
normal cements, high early strength cements, low heat of hydration cements, and various
cements which provide enhanced sulphate resistance. In order to alter and improve the
properties of concrete, other cementitious materials may be used to replace part of the
Portland cement, e.g. fly ash, natural pozzolans, blast furnace slag, and condensed silicafume.

Theratio of water to cement by weight that is required to hydrate the cement completely is
about 0.25, although larger quantities of water are required in practice in order to produce a
workable mix. For the concrete typically used in prestressed structures, the water-to-cement
ratio is about 0.4. It isdesirable to use as little water as possible, since water not used in the
hydration reaction causes voids in the cement paste that reduce the strength and increase the
permeability of the concrete.

The use of chemical admixtures to improve one or more properties of the concrete is now
commonplace. In recent years, high-strength concretes with low water-to-cement ratios have
been made more workabl e by the inclusion of superplasticizersin the mix. These polymers
greatly improve the flow of the wet concrete and allow very high-strength, |ow-permeability
concrete to be used with conventional construction techniques.

The rock and sand aggregates used in concrete should be properly graded and inert.
Expansive and porous aggregates should not be used and aggregates containing organic
matter or other deleterious substances, such as salts or sulphates, should also be avoided.

2.3 Strength of concrete

In structural design, the quality of concrete is usually controlled by the specification of a
Minimum characteristic compressive strength a 28 days,
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Je. The characteristic strength is the stress which is exceeded by 95% of the uniaxial
compressive strength measurements taken from standard compression tests. Such tests are
most often performed on 150 mm concrete cubes (in Europe and the UK) and on 150 mm
diameter by 300 mm long concrete cylinders (in North Americaand Australia). Because the
restraining effect at the loading surfacesis greater for the cube than for the longer cylinder,
strength measurements taken from cubes are higher than those taken from cylinders. Theratio
between cylinder and cube strength, R, is about 0.8 for low-strength concrete (i.e. cylinder
strengths of 20-30 MPa) and increases as the strength increases. The following expression for
R isoften used (Neville 1981):

_ Oeu
R=0.76+0.2 lﬂgm( . ) (2.1)

where g, is the cube strength in MPa (psi) and ¢=19.6 (2480). Throughout this book, Jerefers
to the characteristic compressive strength obtained from cylinder tests.

In practice, the concrete used in prestressed construction is usually of better quality and
higher strength than that required for ordinary reinforced concrete. Values of J<in the range
3040 MPaare most often used, but strengths as high as 60 MPa are not uncommon. In some
recent structuresin North America, concrete strengths of over 100 M Pa have been used
successfully. The forces imposed on a prestressed concrete section are relatively large and the
use of high-strength concrete keeps section dimensions to a minimum. High-strength concrete
also has obvious advantages in the anchorage zone of post-tensioned members where bearing
stresses are large, and in pretensioned members where a higher bond strength better facilitates
the transfer of prestress. Asthe compressive strength of concrete increases, so too does the
tensile strength. The use of higher strength concrete may therefore delay (or even prevent) the
onset of cracking in amember.

High-strength concrete is considerably stiffer than low-strength concrete. The elastic
modulusis higher and el astic deformations due to both the prestress and the external loads are
lower. In addition, high-strength concrete generally creeps less than low-strength concrete.
Thisresultsin smaller losses of prestress and smaller long-term deformations.

The effect of concrete strength on the shape of the stress-strain curve for concrete in
uniaxial compression is shown in Figure 2.1. The modulus of elasticity (the slope of the
ascending portion of each curve) increases with increasing strength and each curve reaches its
maximum stress at a strain of about 0.002.

The shape of the unloading portion of each curve (after the peak stress has been reached)
depends on, among other things, the characteristics of the testing machine. By applying
deformation to a specimen, instead of load,
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Figure 2.1 Effect of strength on the compressive stress-strain curve.

in atesting machine which is stiff enough to absorb al the energy of afailing specimen, an
extensive unloading branch of the stress-strain curve can be obtained. Concrete can undergo
very large compressive strains and still carry load. This deformability of concrete tendsto
decrease with increasing strength.

The strength of properly placed and well compacted concrete depends primarily on the
water-to-cement ratio, the size of the specimen, the size, strength, and stiffness of the
aggregate, the cement type, the curing conditions, and the age of the concrete. As mentioned
in Section 2.2, the strength of concrete increases as the water-to-cement ratio decreases.

The compressive strength of concrete increases with time, arapid initial strength gain (in
thefirst day or so after casting) and a much slower, gradually decreasing rate thereafter. The
rate of development of strength with time depends on the type of curing and the type of
cement. In prestressed concrete construction, arapid initial gain in strength isusually
desirable in order to apply the prestress as early as possible. Thisis particularly so in the case
of precast, pretensioned production. Steam curing and high early strength cement are often
used to thisend.

The following expression is recommended by ACI—209 (1978) for predicting the strength
at any time from the measured or specified 28 day value:

!
e + St

Je(t) = fe(28)

(2.2)



Page 33

where Je(?)is the strength of the concrete at age ¢ in days, J<(28)is the concrete strength at
age 28 days, and o and S are constants:

For normal Portland cement:

For moist cured concrete: a=4.0 £=0.85
For steam cured concrete: 0=1.0 £=0.95
For high early strength cement:

For moist cured concrete: a=2.3 £=0.92
For steam cured concrete: 0=0.7 £=0.98

The strength of concrete in tension is an order of magnitude | ess than the compressive
strength and is far less reliably known. A reasonable estimate is required, however, in order to
predict service-load behaviour in the post-cracking range. The flexura tensile strengths of
concrete (or modulus of rupture, Jur ) isthe extreme fibre stress calculated from the results of
standard flexural strength tests on plain concrete prisms and usually lies within the range

0.6,fi=1.0JFin MPa). Because of the relatively large scatter of measured tensile strengths,
the lower end of thisrangeis usually specified in building codes [such as ACI 318-83 (1983)
and AS 3600 (1988)]. For design purposes, the flexural tensile strength of normal weight
concrete may be taken as

r=0.6f
Jir S 23

In direct tension, where the tensile stress is uniform (or nearly so) over the section, the tensile
strength of concrete, ﬁf—", islower and may be taken as

fia=0.4[f:
(2.4)

For lightweight aggregate concrete, these tensile strengths should be reduced by afactor of
about 0.67.

In practice, concrete is often subjected to multi-axial states of stress. For example, a state of
biaxia stress existsin the web of abeam, or in ashear wall, or adeep beam. Triaxial stress
states exist within connections, in confined columns, in two-way slabs, and other parts of a
structure. A number of experimental studies of the behaviour of concrete under multi-axial
states of stress (particularly biaxial stress) have been undertaken, including those by Kupfer et
al. (1975) and Tasuji et al. (1978). The results of such studies have been particularly useful in
the formulation of material modelling laws for use in finite element studies of concrete
structures, such as by Darwin & Pecknold (1977), Gilbert (1979), and many more. A typical
biaxia strength envelope is shown in Figure 2.2. The strength of concrete under biaxial
compression is greater than for uniaxial compression. Transverse compression improves the
longitudinal compressive strength by confining
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Figure 2.2 Typical biaxid strength envelope for concrete.

the concrete, thereby delaying (or preventing) the propagation of internal microcracks. Figure
2.2 aso shows that transverse compression reduces the tensile strength of concrete, due
mainly to the Poisson’ sratio effect. Similarly, transverse tension reduces the compressive
strength. In triaxial compression, both the strength of concrete and the strain at which the peak
stressisreached are greatly increased and even small confining pressures can increase
strength significantly. Correctly detailed transverse reinforcement provides confinement to
produce atriaxia stress state in the compressive zone of columns and beams, thereby
improving both strength and ductility.

2.4 Deformation of concrete

2.4.1 Discussion

The deformation of aloaded concrete specimen is both instantaneous and time dependent. If
the load is sustained, the deformation of the specimen gradually increases with time and may
eventually be severa times larger than the instantaneous val ue.

The gradual development of strain with timeis caused by creep and shrinkage. Creep strain
is produced by sustained stress. Shrinkage is independent of stress and results primarily from
the loss of water as the concrete dries. Creep and shrinkage cause increases in axial
deformation and curvature on reinforced and prestressed concrete cross-sections, |osses of
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prestress, local redistribution of stress between the concrete and the steel reinforcement, and
redistribution of internal actionsin statically indeterminate members. Creep and shrinkage are
often responsible for excessive deflection (or camber) and excessive shortening of prestressed
members. In addition, shrinkage may cause unsightly cracking which could lead to
serviceability or durability problems. On a more positive note, creep relieves concrete of
stress concentrations and imparts a measure of deformability to concrete. A comprehensive
treatment of the effects of creep and shrinkage on the behaviour of concrete structuresis

available elsewhere (Gilbert 1988).
Researchers have been investigating the time-dependent deformation of concrete ever since

it was first observed and reported almost a century ago, and an enormous volume of literature
has been written on the topic. Detailed summaries of the time-dependent properties of
concrete and the factors which affect them are contained in the books by Neville (1970, 1981)
and Neville et al. (1983).

The time-varying deformation of concrete may be illustrated by considering a uniaxially
loaded concrete specimen subjected to a constant sustained stress o, first applied at time 7e.
Thetotal strain at any time ? = Temay be assumed to be the sum of the instantaneous, creep,
and shrinkage components, as represented by the equation

e(t) = &.(t) + (1) + ea(2)
(2.5)

The components of strain areillustrated diagramatically in Figure 2.3.

|
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Figure 2.3 Strain vstime for specimen under constant compressive stress.
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Shrinkage strains begin to develop as soon as drying commences at time Td(immediately
after setting or at the end of moist curing). Shrinkage continues to increase with time at a
gradually decreasing rate, as shown. When the stressisfirst applied at e, the instantaneous
strain component causes a sudden jump in the strain diagram, which is followed by a further
increase in strain due to creep. Creep aso increases with time at a gradually decreasing rate.

To predict accurately the time-varying behaviour of concrete, a knowledge of the
magnitude and rate of development of each of these strain componentsis required. In a
concrete structure, prediction of time-dependent deformation is complicated by the restraint to
creep and shrinkage provided by both the reinforcement and the external supports, and the
continuously varying concrete stress history that inevitably results. In Sections 2.4.2—4, the
material properties that influence each of the strain componentsin Figure 2.3 are summarized.
Methods for predicting the time-dependent behaviour of prestressed concrete cross-sections
and members are discussed in detail in Section 3.6.

2.4.2 Instantaneous strain

The magnitude of the instantaneous strain ¢,(¢) caused by either compressive or tensile stress
depends on the magnitude of the applied stress, the rate at which the stressis applied, the age
and the properties of the concrete and the proportions of its constituent materials. Consider the
uniaxial instantaneous strain versus compressive stress curve shown in Figure 2.4. When the
applied stressis less than about half of the compressive strength, the curve is essentialy linear,
and the instantaneous strain is usually con-s sidered to be elastic (fully recoverable). In this
low-stress range, the secant

ﬁﬁ de e = — initial tangent modulus
$
| L
/

=]
N f secant modulus, E,

/

/

1

Instamtaneocus strain, £.(1)

Figure 2.4 Typical stress vsinstantaneous strain curve for concrete in compression.
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modulus E. does not vary significantly with stress and is only slightly smaller than theinitial
tangent modulus. At higher stress levels, the curve is decidedly non-linear and a significant
proportion of the instantaneous strain isirrecoverable.

In concrete structures, compressive concrete stresses caused by the day-to-day service loads
rarely exceed half of the compressive strength. It is therefore reasonabl e to assume that the
instantaneous behaviour of concrete at service loads is linear-elastic and that instantaneous
strain is given by

o(t)

Eell) = E. (2.6)

The value of the elastic modulus E. increases with time as the concrete gains strength and
stiffness. E. aso depends on the rate of application of the stress and increases as the loading
rate increases. For most practical purposes, these variations are usualy ignored and it is
common practice to assume that £, is constant with time and equal to itsinitial value
calculated at the time of first loading, Te. For stress levels less than about 0.4f¢ and for
stresses applied over arelatively short period (say up to 5 min), anumerical estimate of the
elastic modulus may be obtained from Pauw’s well known expression (Pauw 1960):

E. =p"*0.043fc (7o) (MPa)
(2.7

wherep is the density of concrete (about 2400 kg/m?® for normal weight concrete) and Jf<(7e)is
the average compressive strength in MPa at the time of first loading. Equation 2.7 is specified
in both ACI 318-83 (1983) and AS 3600 (1988).

When the stressis applied more slowly, say over aperiod of 1 day, significant additional
deformation occurs owing to the rapid early development of creep. For the estimation of
short-term deformation in such a case, it is recommended that the elastic modulus given by
Equation 2.7 be reduced by about 20% (Gilbert 1988).

The in-service performance of a concrete structure is very much affected by concrete's
ability (or lack of it) to carry tension. It is therefore necessary to consider the instantaneous
behaviour of concrete in tension, aswell asin compression. Prior to cracking, the
instantaneous strain of concrete in tension consists of both elastic and inelastic components.

In design, however, concrete is usually taken to be elastic-brittlein tension, i.e. at stress levels
less than the tensile strength of concrete the instantaneous strain versus stress relationship is
assumed to be linear. Although theinitial elastic modulusin tension is alittle higher than that
in compression, it is usual to assume that both values are equal and given by Equation 2.7.
Prior to
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cracking, therefore, the instantaneous strain in tension may be calculated using Equation 2.6.
When the tensile strength is reached, cracking occurs and the concrete stress perpendicular to
the crack is usually asssumed to be zero. In redlity, if the rate of tensile deformation is
controlled, and crack widths are small, concrete can carry some tension across a crack owing
to friction on the rough, mating surfaces.

Poisson’ sratio for concrete, v, lies within the range 0.15-0.22 and for most practical
purposes may be taken equal to 0.2.

2.4.3 Creep strain

For concrete subjected to a constant sustained stress, the gradual development of creep strain
was illustrated in Figure 2.3. In the period immediately after first loading, creep develops
rapidly, but the rate of increase slows appreciably with time. Creep is generally thought to
approach alimiting value as the time after first loading approaches infinity. Approximately
50% of the final creep developsin the first 2—3 months and about 90% after 2—3 years. After
several years under load, the rate of change of creep with timeisvery small. Creep of
concrete hasits origins in the hardened cement paste and is caused by a number of different
mechanisms. A comprehensive treatment of creep in plain concrete was given by Neville et al.
(1983).

Many factors influence the magnitude and rate of development of creep, including the
properties of the concrete mix and its constituent materials. In general, as the concrete quality
increases, the capacity of concrete to creep decreases. At a particular stress level, creep in
higher-strength concrete is less than that in lower-strength concrete. An increase in either the
aggregate content or the maximum aggregate size reduces creep, as does the use of a stiffer
aggregate type. Creep also decreases as the water-to-cement ratio is reduced.

Creep depends on the environment, and increases as the relative humidity decreases. Creep
istherefore greater when accompanied by shrinkage (drying). Creep is aso greater in thin
members with large surface area to volume ratios, such as slabs. Near the surface of a member,
creep takes place in adrying environment and is therefore greater than in regions remote from
adrying surface. In addition to the relative humidity, creep is dependent on the ambient
temperature. A temperature rise increases the deformability of the cement paste and
accelerates drying, and thus increases creep. At 40°C, creep in concrete is about 25% higher
than that at 20°C. The dependence of creep on temperature is much more significant at more
elevated temperatures.

In addition to the environment and the characteristics of the concrete mix, creep depends on
the loading history, in particular the magnitude of the stress and the age of the concrete when
the stress was first applied. When the sustained concrete stress is less than about 0.5/ (and
thisisusually the
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case in real structures at service loads), creep is proportional to stress and is sensibly known
as linear creep. At higher sustained stress levels, creep increases at afaster rate and becomes
non-linear with respect to stress. From a structural design point of view, non-linear creep is of
little interest and only the effects of linear creep are considered here. The age of the concrete
when the stressisfirst applied Tehas a marked influence on the magnitude of creep. Concrete
loaded at an early age creeps more than concrete loaded at alater age.

Creep strain is made up of arecoverable component [called the delayed elastic strain, e4(t)]
and an irrecoverable component [called flow, e4t)]. These components areillustrated by the
creep strain versus time curve in Figure 2.5a which is caused by the stress history shown in
Figure 2.5b. The delayed elastic strain develops rapidly and is of the order of 40% of the
elastic strain. The flow component is sometimes further sub-divided into basic flow and
drying flow components; however, in structural analysis, it is not usually necessary to
distinguish between these components.

The capacity of concrete to creep is usually measured in terms of the creep coefficient
¢ 7)In aconcrete specimen subjected to a constant sustained compressive stress o, first
applied at age T, the creep coefficient at time ¢ istheratio of creep strain to instantaneous
strain and is represented by

R = f._-(r. T}
(1, 7) ._Ee (28)

and therefore

e(t, 1) = 29 (t,7) = 22 $(0,7) 2.9)

Creep strain

Stress
a
I
I
I

(b) To Time

Figure 2.5 Recoverable and irrecoverable creep components.
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For stress levels less than about -3/ , the creep coefficient is a pure time function,
independent of the applied stress, and has the same shape as the creep-time curve in Figure
2.3. Astime approaches infinity, the creep coefficient is assumed to approach afinal value

¢*(7) = &(, T)yhich usually falls within the range 1.5-4.0. A number of the well known
methods for predicting the creep coefficient were described and compared by Gilbert (1988).
Two of the smpler (and, therefore, more useful) approaches for making numerical estimates
of @ Tare presented in Section 2.5.

The effect of ageing isillustrated in Figure 2.6. The magnitude of the final creep coefficient

" (7)decreases as the age at first loading Tincreases. That is,

¢ (1) > 3% (7)) for Ti < T
(2.10)

This time-hardening or ageing of concrete complicates the calculation of creep strain caused
by atime-varying stress history.

The load-dependent strain at time ¢ caused by a constant sustained stress oo 1S the sum of
the elastic and creep components and, using Equation 2.9, is given by

£elt) + sr(:}—— [1+e(7)] = Eﬂ{f (2.11)

where £¢(% 7)is known as the effective modulus and is given by

E;

B =@ (2.12)

If the stressis gradually applied to the concrete, rather than suddenly applied, the subsequent
creep strain is reduced significantly, since the concrete ages during the period of application
of the stress. This can be accom-

u Mn 1}

Figure 2.6 Effect of age at first loading on the creep coefficient (Gilbert 1988).
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modated anal ytically by the use of areduced or adjusted creep coefficient. For an increment
of stress, Ao, applied gradually to the concrete, the |oad-dependent strain may be obtained by
modifying Equation 2.11 as follows:

Ag Ao
E(t) + &c(t) = £ [1+ xe(t,7)] = EaD (2.13)
where
()= — Ec
E(nn=17 0.7 (2.14)

E.(t, 7)is often called the age-adjusted effective modulus, and y is an ageing coefficient first
introduced by Trost (1967) and later used by Bazant (1972). Like the creep coefficient, the
ageing coefficient depends on the duration of loading and the age at first loading and varies
between 0.6 and 1.0. For most practical purposes, y can be taken as 0.8. More accurate
estimates of y based on the creep predictive models of ACI 209 (1978) and the CEB Model
Code (1978) have been made by Bazant (1972) and Neville et al. (1983), respectively.

The above discussion is concerned with compressive creep. In many practical situations,
however, creep of concretein tension is also of interest. Tensile creep, for example, plays an
important part in delaying the onset of cracking caused by restrained shrinkage. The
mechanisms of tensile creep are thought to be different from those of compressive creep, but
at the same stress levels the magnitudes are similar. In design, it is usual to assume that the
creep coefficientsin tension and in compression are identical. Although not strictly correct,
this assumption simplifies cal culations and does not usually introduce serious inaccuracies. A
comprehensive comparison between tensile and compressive creep was made by Neville et al
(1983).

2.4.4 Shrinkage strain

Shrinkage is the time-dependent strain measured in an unloaded and unrestrained specimen at
constant temperature. Concrete begins shrinking when drying commences and continues to
increase with time at a decreasing rate, asillustrated in Figure 2.3. Shrinkage is assumed to

approach afina value Ehastime approaches infinity and is dependent on al the factors which
affect the drying of concrete, including the relative humidity, the mix characteristics (in
particular, the water content and water-to-cement ratio), and the size and shape of the member.

Shrinkage increases as the relative humidity of the surrounding air decreases. The drier the
atmosphere, the more rapid is the rate of drying
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of the concrete and the larger are both the magnitude and rate of development of shrinkage
strain. A temperature rise accelerates drying and therefore increases the rate of shrinkage.
The amount of drying depends on theinitial water content. A concrete specimen with a
high initial water-to-cement ratio will shrink more than a similar specimen made from
concrete with alower water-to-cement ratio and kept under the same atmospheric conditions.
In addition, the volume and type of aggregate al so affect shrinkage. Aggregate provides
restraint to deformation of the cement paste, so that shrinkage tends to decrease if the volume

of aggregate isincreased or if astiffer aggregate is used. Shrinkage in lightweight concreteis
therefore considerably greater (up to 50%) than in normal weight concrete.

The size and shape of the concrete member have a major influence on the magnitude and
rate of development of shrinkage. For athin member with alarge drying surface to volume
ratio, such as a suspended slab or wall, drying takes place rapidly and may be essentially
complete after several years. For the concrete in the interior of thicker members, such as
beams or columns, drying takes place more slowly and may continue throughout the lifetime
of the member. Shrinkage strain therefore varies across the depth (and width) of structural
members and is highest at the surfaces exposed to the atmosphere. In fact, for more massive
members, there is no significant drying (shrinkage) except in the concrete located within
about 300 mm of adrying surface.

Procedures for estimating the mean shrinkage on a cross-section are contained in many
building codes and other technical specifications. Two of the more simple approaches for
making rough estimates of shrinkage strain are presented in Section 2.5.

2.5 Predictions of the creep coefficient and shrinkage

2.5.1 Discussion

Great accuracy in the prediction of the creep coefficient and shrinkage strain is not possible.
The variability of these materia characteristics is high. Reasonable estimates can be made,
however, by extrapolation from short-term test results, using one of anumber of mathematical
expressions which have been proposed to model the shape of the creep-time and shrinkage-
time curves. Creep strain is measured over arelatively short time period in laboratory
specimens subjected to constant stress. Shrinkage is also measured during the same period in
identical unloaded specimens. The longer the initial period of measurement, the better are the
long-term predictions.
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Based on 28 day measurements [#(28), £:4(28)], the ACI Committee 209 (1978) suggests
the following expressions for the creep coefficient at any time ¢ after first loading and the
shrinkage strain in moist cured concrete at any time 7 after the commencement of drying:

_ 2.35:%¢
#0=10 5o 2D (215)
and
2.25T
Esk{r} = 35 + TEJ.'I(H] (216)

In practice, structural designers seldom have the time or resources to commission laboratory
testing to determine materia properties. Design predictions are more often made using one of
many numerical methods which are available for predicting the creep coefficient and
shrinkage strain. These methods vary in complexity, ranging from relatively complicated
methods, involving the determination of numerous coefficients that account for the many
factors affecting creep and shrinkage, to much simpler procedures. Comparisons between
predictions made using severa of the more well known procedures were made by Gilbert
(1988) and Neville et al. (1983). Although the properties of concrete vary from country to
country as the mix characteristics and environmental conditions vary, the agreement between
the procedures for estimating both creep and shrinkage is still remarkably poor, particularly
for shrinkage. In addition, the comparisons between predictive models show that the accuracy
of aparticular model is not directly proportional to its complexity, and predictions made using
several of the best known methods differ widely.

In the following sections, two simple methods for the estimation of the creep and shrinkage
characteristics of concrete are outlined. The first is that recommended in BS 8110 (1985) and
the second is similar to that recommended in AS 3600 (1988). In Appendix I, two of the most
widely used (and considerably more complex) aternative procedures are presented, namely
the recommendations of ACI 209 (1978) and CEB—FIP (1978). The variability of the time-
dependent properties of concrete is highlighted by the large differences in the predictions
made by each of these methods. From the point of view of the structural designer, thereis
much to recommend a simple, approximate method which will provide arough estimate of the
creep coefficient and shrinkage strain. After all, arough estimateis all that is possible.
Predictions made using the following procedures will, in general, lead to estimates of
structural behaviour which are satisfactory for most practical purposes.
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2.5.2 British standard—structural use of concrete, BS 8110 Part 2 (1985)

British Standard BS 8110 (1985) specifies asimple method for estimating the final (30 year)
creep and shrinkage.

Creep

The procedure outlined in BS 8110 is similar to an earlier proposal by the British Concrete
Society (1978) and isin fact based on the CEB—FIP (1970) recommendations. The static
modulus of elasticity of normal weight concrete at 28 days is specified as

E-L'..ZE = Hﬂ + ﬂ+2fcn{2$}
2.17)

where K is a constant that depends on the stiffness of the aggregate and may be taken as 20
GPafor normal weight concrete, and f..(28) is the 28 day cube strength in MPa. For
lightweight concrete of density p (in kg/m3), the right-hand side of Equation 2.17 should be
multiplied by (p/2400)2. The elastic modulus at any time  may be derived from E .., using the

eguation

Seu(?)
EAt)=E 0.4 +0.6 —=
(1) t.la[ fea(28) (2.18)
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Figure 2.7 Final creep coefficient (BS 8110 1985).
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The Standard suggests that the final creep strain may be predicted from
a . %
(]
E.(7) (2.19)

Eee =

where E<(Tisthe eastic modulus at the time of loading and ¢"isthe final creep coefficient.

Numerical estimates of ‘f‘*may be obtained from Figure 2.7 [which is based on the CEB-FIP
(1970) recommendations]. Equation 2.19 implies that the final creep strain depends only on
the current concrete stress ¢ and not on the previous stress history, which of course is wrong.
If reliable estimates of long-term deformation are required, Equation 2.19 should not be used.
A more reliable procedure for predicting creep strain, which better accounts for the previous
stress history, is presented in Section 3.6. The Standard points out that 40%, 60%, and 80% of

the final creep may be assumed to develop during 1, 6, and 30 months, respectively, under
load.

Shrinkage

Shrinkage strains after 6 months and after 30 years may be estimated from Figure 2.8 for
concrete of normal workability, without water reducing admixtures. Figure 2.8 was proposed

originally by Parrott (1979) and applies to concrete with awater content of about 190 /m?.
For concrete
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Figure 2.8 Shrinkage for normal weight concrete (BS 8110 1985).
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with a different water content, shrinkage may be regarded as proportional to water content
within the range 150-230 1/m?.

2.5.3 Australian standard AS 3600—1988

Creep
The creep coefficient at time ¢ due to a sustained stressfirst applied at age 7is expressed as

&(1, 1) = kaksdee.s
(2.20)

In the absence of more reliable test data, the reference creep coefficient ®ec.bmay be taken as
follows:

Je(mPa) 20 25 32 40 50
$ee.b 5.2 4.2 34 25 20

The constant k> depends on the hypothetical thickness ¢5, the environment, and the duration of
load ¢ = 7)and can be determined from Eigure 2.9. The hypothetical thickness of amember is
the ratio of its cross-sectional areato half of that part of the perimeter of the section which is
exposed to the atmosphere (the drying perimeter). ks depends on the age of the concrete at the

time of loading and is obtained from the strength ratio Se(r)] 1 28) ng Figure 2.10.
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Figure 2.9 Creep coefficient, k, (AS 3600-1988).
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Figure 2.10 Creep coefficient, k3 (AS 3600-1988).
Shrinkage
The shrinkage strain at any time after the commencement of drying is given by
en(?) = 0.0007k,
(2.21)

where k1 is obtained from Figure 2.11 and depends on the environment and the hypothetical
thickness.

16 arid I ! i.m:riurmvi.m;mim temperate infamd tropical o near-coastal
L4 ,*.J S
12 mﬂ - N f=50
" oA L -
- Y | 200 'y A 11
< s A LA Iy, / =50
e [T ' o
06 /f; /Iﬁ A4 fam {f“ 7
400
N ) 7Y/ /* iy V940 %=
0.2 rzf .rjf }'i 7 yry 7 / :;i i’fﬂ!
A i
5274 2244 e zzedalll
1} oM 3w P3O I00L 3 10 131000 3 0w 13 W31 3 e
days yes days ¥13 days ¥rs days yrs

Time from commencement of drying

Figure 2.11 Shrinkage coefficient, k; (AS 3600-1988).

2.6 Thermal expansion

The coefficient of thermal expansion of concrete depends on the coefficient of thermal
expansion of the coarse aggregate and on the mix proportionsin general. For most types of
coarse aggregate, the coefficient lies within the
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range 5x 10 ®-13x10° per °C (Neville, 1981). For design purposes and in the absence of more
detailed information, a coefficient of thermal expansion for concrete of 10x 10°® per °Cis
often recommended (AS 3600-1988).

STEEL

2.7 Steel used for prestressing

The shortening of the concrete caused by creep and shrinkage in a prestressed member causes
a corresponding shortening of the prestressing steel which is physically attached to the
concrete either by bond or by anchorages at the ends of the tendon. This shortening can be
significant and usually resultsin aloss of stressin the steel of between 150 and 350 MPa.
Significant additional losses of prestress can result from other sources, such asfriction dong a
post-tensioned tendon or draw-in at an anchorage at the time of prestressing.

For an efficient and practical design, the total loss of prestress should be arelatively small
portion of theinitial prestressing force. The steel used to prestress concrete must therefore be
capable of carrying avery high initia stress. A tensile strength of between 1000 and 1900
MPaistypica for modern prestressing steels. The early attempts to prestress concrete with
low-strength steels failed because the entire prestressing force was rapidly lost owing to the
time-dependent deformations of the poor-quality concrete in use at that time.

There are three basic types of high-strength steel commonly used as tendons in modern
prestressed concrete construction:

(@) cold-drawn, stress-relieved round wire;
(b) stress-relieved strand; and
(c) high-strength alloy steel bars.

2.7.1 Wires

Cold-drawn wires are manufactured to conform to the requirements of the relevant local code
or specification (such as ASTM A421 inthe USA and AS 1310 in Austraia). These
specifications outline the minimum required mechanical properties (such as ultimate tensile
strength, yield stress, and elongation at rupture) and dimensional tolerances. Wires are
produced by drawing hot-rolled steel rods through dies to produce wires of the required
diameter. The drawing process cold works the steel, thereby atering its mechanical properties
and increasing its strength. The wires are then
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stress-relieved by a process of continuous heat treatment and straightening to produce the
required material properties. Wires are sometimes indented or crimped to improve their bond
characteristics.

Available sizes of wires vary from country to country, with diameters of 5—7 mm being the
most often used. Data for some commonly used wiresin Australiaare given in Table 2.1 and
atypical stress-strain curveisshown in Figure 2.12. The curveistypical of stress-strain
curves for high-strength prestressing steel, with no distinct yield point. Nevertheless, the so-
caled yield stress is often referred to in codes and specifications and, unfortunately, is often
defined differently. Frequently, yield stress is defined as the stress at the 0.2% offset (AS
1310), asshown in Figure 2.12. The ASTM specification A421 specifies minimum yield
strengths for wire at 1% extension. For design purposes, the yield strength of stress-relieved
wires may be taken as 0.85 times the minimum tensile strength (i.e. 0.85f,) and the modulus
of elasticity of the wires may be taken as E,=200x 10° MPa.

Table 2.1 Tensile strengths of Australian prestressing steels (AS 3600-1988).

Materia type and Nominal Area | Minimum breaking Minimum tensile
Standard diameter mm | mn?’ load kN strength (f;) MPa
Wire 5 19.6 304 1550
5 19.6 333 1700
7 38.5 65.5 1700
7-wire strand super 9.3 54.7 102 1860
grade 12.7 100 184 1840
15.2 143 250 1750
7-wire strand regular 12.7 94.3 165 1750
grade
Bars (super grade) 23 415 450 1080
26 530 570 1080
29 660 710 1080
32 804 870 1080
38 1140 1230 1080
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Figure 2.12 Typical stress-strain curve for stress-relieved wire.

In recent years, the use of wiresin prestressed concrete construction has declined, with 7-wire
strand being preferred in most applications. Where wires are used in post-tensioned
applications, tendons consisting of many individual wires are generally employed.

2.7.2 Strands

Stress-relieved strand is the most commonly used prestressing steel. Strand must comply with
the requirements of the relevant local specifications (such as ASTM A416 and AS 1311—-
1312). Strand is fabricated from a number of prestressing wires, usually seven (although 19-
wire strand is al'so available in some countries). Seven-wire strand consists of six wirestightly
wound around a seventh, dlightly larger diameter, central wire. The pitch of the six spiraly
wound wires is between 12 and 16 times the nominal diameter of the strand. After stranding,
the tendon is further stress-relieved. Low-relaxation (or stabilized) strand is most often used
by today’ s prestressing industry.

Seven-wire strand is generally available in two grades, normal and super grade (Grades 250
and 270 in the USA). Diameters ranging from 7.9 to 15.2 mm are typical. Datafor some
commonly used Australian strand are given in Table 2.1 and atypical stress-strain curve for a
12.7 mm diameter, super grade, 7-wire strand is shown in Figure 2.13.

The mechanical properties of the strand are slightly different from those of the wire from
which it ismade. Thisis because the stranded wires tend
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Figure 2.13 Typica stress-strain curve for 7-wire strand.

to straighten slightly when subjected to tension. For design purposes, the yield stress of stress-
relieved strand may be taken to be 0.85f, and the elastic modulus to be £,=195x10° MPa.

Strand may be compacted by being drawn through a die, thereby compressing the outer six
wires more tightly around the central one. The cross-sectional areais therefore maintained but
the strand diameter is significantly reduced.

2.7.3 Bars

The high strength of aloy steel barsis obtained by the introduction of aloying elementsin the
manufacture of the steel and by cold working (stretching) the bars. The bars are then stress-
relieved to obtain properties which meet the requirements of the relevant local specification
(e.g. ASTM A722 and AS 1313).

In the USA, both plain and deformed bars are available in two grades (f,=1000 and 1100

MPa) with diameters which range from 12.7 mm (3 in)to 35 mm (13 0).Some sizes and
properties of bars commonly used in Australia are presented in Tabie 2.1 and atypical stress-
strain curveis shown in Figure 2.14.

The elastic modulus for barsis generally lower than those for strand and wire. For design
purposes £, may be taken to be 170x10° MPaand the yield stress (0.2% offset) may be taken
to be 0.85f,.



Page 52

-

g

g

/g |
| alloy steel bars: (super grade) -

ultimate stress, f, = 1120 MPa
0.2% proof stress = 980 MFPa |

Siress (MPa)
g g
‘---n-.__h|

002 1 2 3
Strain (%)

Figure 2.14 Typica stress-strain curve for aloy steel bars.

The stress-strain curves shown in Eigures 2.12-2.14 exhibit similar characteristics. Thereis
no well defined yield point (as exists for lower strength reinforcing steels). Each curve has a
relatively high proportional limit. When the curves become non-linear as |oading continues,
the stress gradually increases monotonically until the steel fractures. The elongation at
fracture is usually about 5%. High-strength steel is therefore considerably less ductile than
conventional, non-prestress reinforcing steel. Nevertheless, the material is ductile enough to
permit the design of ductile prestressed concrete flexural members which suffer large
deformations prior to failure.

2.8 Steel relaxation

Theinitia stresslevel in prestressing stedl after transfer is usually high, often in the range 60—
75% of the tensile strength of the material. At such stress levels, high-strength steel creeps. If
atendon is stretched and held at a constant length (constant strain), the development of creep
strain in the steel is exhibited as aloss of elastic strain, and hence aloss of stress. This|oss of
stress in a specimen subjected to constant strain is known as relaxation. Relaxation in stedl is
highly dependent on the stress level and increases at an increasing rate as the stress level
increases. Relaxation (creep) in steel increases rapidly with temperature. Both normal-
relaxation and low-relaxation steels are available. In recent years, low-relaxation steel has
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Table 2.2 Basic Rdlaxation R1000 for Australian steel (AS 3600-1988).

Type of Stedl Rio00 (%) Low Relaxation Ri1000 (%) Normal Relaxation
Stress-relieved wire 2.0 6.5
Stressrelieved strand 25 7.0

Alloy steel bars 25 7.0

become the most popular because of the reduced time-dependent losses of prestress that result
from its use. Low relaxation steel has been stabilized by prestretching at an appropriate
temperature.

Relaxation measurements are often made over atest period of 1000 hours on a specimen
subjected to constant strain at a constant temperature of 20°C. Theinitial stress levels usually
vary from 60 to 80% of the ultimate tensile strength. For an initial stress of 0.7 times the
ultimate tensile strength (i.e. 6,=0.7f,), the relaxation of atendon (i.e. the loss of stress dueto
relaxation as a percentage of the initial stress) after 1000 h at 20°C is represented by Riqp0. FOr
Australian steels, Riooo may be taken from Table 2.2.

The design relaxation R (in percent) after aperiod of ¢ days may be obtained from Equation
2.22 (AS 3600-1988):

R = k1kaR 000 [10g(5.38:%1%7))
(2.22)

The coefficient k1 depends on theinitial stress level in the tendon and is obtained from Figure
2.15. The term k, depends on the average annual temperature 7 and may be taken as 7720 but
not less than 1.0.

Very long-term relaxation values for prestressing steels were proposed by the CEB-FIP
(1978) and are given in Table 2.3.

z 1 7
alloy steel bars 1—_ | A
ky A
low-relaxation —__| ]
| wire and strand ="

04 .05 0.6 0.7 08
Stress in tendon divided by f;

Figure 2.15 Relaxation coefficient, &, (AS 3600-1988).



Table 2.3 Very long-term relaxation R, (in percent) [CEB-FIP (1978)].

olfy | o6 | 07 | os
Normal relaxation steel 6 12 25
Low relaxation stedl

Ghali & Favre (1986) proposed an equation of the following form to approximate the datain
Table2.3:

Re= “(Tr_p - 9,4)2 (2.23)

o

where =150 for normal -relaxation steel and 67 for low-relaxation stedl.

When elevated temperatures exist during steam curing or at other times, relaxation is
increased and occurs rapidly during the period of high temperature. For low-relaxation steel in
a concrete member subjected to an initial period of steam curing, it is recommended that the

design relaxation should be at least double the value given by Equation 2.22 (calculated with
7=20°C).

2.9 Non-prestressed reinforcement

Conventional, non-prestressed reinforcement in the form of bars, cold-drawn wires, or welded
wire mesh is used in prestressed concrete structures for the same reasons asit isused in
conventional reinforced concrete construction. These include the following:

(a) To provide additional tensile strength and ductility in regions of the structure where
sufficient tensile strength and ductility are not provided by the prestressing steel. Non-
prestressed, longitudinal bars, for example, are often included in the tension zone of beams
to supplement the prestressing steel and increase the flexural strength. Non-prestressed
reinforcement in the form of stirrupsis most frequently used to carry the diagonal tension
caused by shear and torsion in the webs of prestressed concrete beams.

(b) To control flexura cracking at service loads in partialy prestressed concrete beams and
slabs where some degree of cracking under full service loads is expected.

(c) To control shrinkage and temperature cracking in regions and directions of low (or no)
prestress.
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(d) To carry compressive forces in regions where the concrete alone may not be adequate,
such asin columns or in the compressive zone of heavily reinforced beams.

(e) Lateral tiesor helices are used to provide restraint to barsin compression (i.e. to prevent
lateral buckling of compressive reinforcement prior to the attainment of full strength) and
to provide confinement for the compressive concrete in columns, beams, and connections,
thereby increasing both the strength and deformability of the concrete.

(f) To reduce long-term deflection and shortening due to creep and shrinkage by the inclusion
of longitudinal barsin the compression region of the member.

(g) To provide resistance to the transverse tension that devel ops in the anchorage zone of
post-tensioned members and to assist the concrete to carry the high bearing stresses
immediately behind the anchorage plates.

(h) To reinforce the overhanging flangesin T-, I-, or L-shaped cross-sections in both the
longitudinal and transverse directions.

Non-prestressed reinforcement is manufactured to meet the requirements of the relevant local
codes or specifications. Types and sizes vary from country to country. In Australia, for
example, reinforcing bars are available in two grades, Grade 230 and 410 (which correspond

to characteristic yield

Table 2.4 Types and sizes of non-prestressed reinforcing bar in Australia.

Stedl Grade and Guaranteed Bar Sized, | Nominal Massper | Nominal AreaA,
Minimum Yield Stress (mm) metre (kg/m) (mm?)
Grade 230 (R-bars) £,=230 MPa R6 0.245 31
R10 0.632 80
12 0.910 110
16 1.618 200
20 2.528 310
Grade 410 £,=410 MPa -bars 24 3.640 450
28 4,955 620
32 6.471 800
36 8.190 1020
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Figure 2.16 Stress-strain curve for Grade 410 Y -bars (Broken Hill Proprietary Company 1983).

Table 2.5 Types and sizes of Australian welded wire mesh (Humes ARC 1985).

Mesh Type (fy=450

Cross-Sectional Areaof Wires

Mesh Specification

MPa) Longitudinal Wire|  CrossWire
Longitud. Cross Size Pitch Size Pitch
(mné/m) (mm?m) | (mm)  (mm) | (mm)  (mm)
Rectangular

F1218 1227 251 125 100 8 200

F1118 985 251 11.2 100 8 200

F1018 785 251 10 100 8 200
Fo18 636 251 9 100 8 200
F818 503 251 8 100 8 200
F718 396 251 7.1 100 8 200

Square
F81 503 503 8 100 8 100
F102 393 393 10 200 10 200
F92 318 318 9 200 9 200
F82 251 251 8 200 8 200
F72 198 198 7.1 200 7.1 200
F62 156 156 6.3 200 6.3 200
F52 98 98 5 200 5 200
F42 63 63 4 200 4 200

Trench Mesh
F11TM 985 82 11.2 100 5.6 300
F8TM 503 42 8 100 4 300
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Figure 2.17 Stress-strain curve for non-prestressed steel usually assumed in design.

stresses of 230 and 410 MPa, respectively). Bars must comply with Australian Standard AS
1302, Steel reinforcing bars for concrete. Grade 230 bars are hot-rolled plain round bars 6 or
10 mm diameter (designated R6 and R10 bars) and are commonly used for fitments, such as
ties and stirrups. Grade 410 bars (known as tempcore or Y -bars) are hot-rolled deformed bars
with diameters ranging from 12 to 36 mm (in 4 mm increments). Available bar sizes and
properties are shown in Table 2.4. The regularly spaced, rib-shaped deformations on the
surface of adeformed bar provide afar better bond between the concrete and the steel and
greatly improve the anchorage potential of the bar. It isfor this reason that deformed bars
rather than plain round bars are used as longitudinal reinforcement in most reinforced and
partially prestressed concrete members.

In redlity, the actual yield stress of areinforcing bar is usually significantly higher than the
guaranteed minimum indicated in Table 2.4. A typical stress-strain curve for Grade 410 steel
isshown in Figure 2.16. Note the distinct yield point and the large total elongation. Although
possessing less than one third of the strength of prestressing wire or strand, Grade 410 bars
arefar more ductile.

Welded wire mesh is sometimes used in prestressed concrete slabs and is manufactured
from hard-drawn wire. In Australia, the characteristic yield strength of the wire is 450 MPa
and it is manufactured to comply with AS 1303, Hard-drawn reinforcing wire for concrete,
and AS 1304, Hard-drawn steel wire reinforcing fabric for concrete. The properties and
designations of available mesh sizesin Australiaare given in Table 2.5.

In design calculations, non-prestressed steel is usually assumed to be elastic-plastic, that is

fvistaken to be the strength of the material. When f; is reached, the stress-strain curveis
assumed to be horizontal (perfectly plastic), as shown in Figure 2.17. The stress-strain curve
in compression is assumed to be similar to that in tension. The elastic modulus for non-
prestressed steel is taken to be £,=200x10° M Pa.
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3
Design for serviceability

3.1 Introduction

The level of prestress and the layout of the tendonsin a member are usually determined from
the serviceability requirements for that member. If awater-tight and crack-freedlab is
required, for example, tension in the slab must be eliminated or limited to some appropriately
low value. If, on the other hand, the deflection under a particular service load isto be
minimized, aload-balancing approach may be used to determine the prestressing force and
cable drape (see Section 1.5.3).

For the serviceability requirements to be satisfied in each region of amember and at all
times after first loading, a reasonably accurate estimate of the magnitude of prestressis
needed in design. This requires reliable procedures for the determination of both the
instantaneous and the time-dependent losses of prestress. Instantaneous losses of prestress
occur during the stressing (and anchoring) operation and include el astic shortening of the
concrete, friction along a post-tensioned cable, and slip at the anchorages. As has been
mentioned in the previous chapters, the time-dependent |osses of prestress are caused by creep
and shrinkage of the concrete and stress relaxation in the steel. Procedures for cal culating both
the instantaneous and time-dependent |osses of prestress are presented in Section 3.7.

There are two critical stagesin the design of prestressed concrete for serviceability. The
first stageisimmediately after the prestressis transferred to the concrete, i.e. when the
prestress is at a maximum and the external load is usually at a minimum. The instantaneous
losses have taken place but no time-dependent losses have yet occurred. At this stage, the
concrete is usually young and the concrete strength may be relatively low. The prestressing
force immediately after transfer at a particular section is designated P;. The second critical
stage is after the time-dependent |osses have taken place and the full-service load is applied,
i.e. when the prestress is at a minimum and the external service load is at a maximum. The
prestressing force at this stage is designated P..
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At each of these stages (and at all intermediate stages), it is necessary to ensure that the
serviceability requirements of the member are satisfied. It is even more important, of course,
to make sure that strength requirements at each stage are also satisfied. It is not strength,
however, that determines the level of prestress, but serviceability. When the prestressing force
and the amount and distribution of the prestressing steel have been determined, the flexural
strength may be readily increased, if necessary, by the addition of non-prestressed
conventional reinforcement. Thisis discussed in considerably more detail in Chapter 4. Shear
strength may be improved by the addition of transverse stirrups (as discussed in Chapter 5).
Aswill be seen throughout this chapter, the presence of bonded conventional reinforcement
also greatly influences both the short- and long-term behaviour at service loads, particularly
for partially prestressed members. The design for strength and serviceability therefore cannot
be performed independently, as the implications of one affect the other.

General design requirements for the serviceability limit states, including load combinations
for serviceability, were discussed in Section 1.7. It is necessary to ensure that the
i nstantaneous and time-dependent deflection and the axial shortening under service loads are
acceptably small and that any cracking iswell controlled by suitably detailed, bonded
reinforcement. To determine the in-service behaviour of amember, it is therefore necessary to
establish the extent of cracking, if any, by checking the magnitude of elastic tensile stresses. If
amember remains uncracked (i.e. the maximum tensile stress at all stages is less than the
tensile strength of concrete), the properties of the gross section may be used in al deflection
and camber calculations. If cracking occurs, a cracked section analysis may be performed to
determine the properties of the cracked section and the post-cracking behaviour of the
member. Such an analysisis described in Section 3.5.2.

3.2 Stress limits

Depending on the serviceability requirements for a particular structure, a designer may set
limits on the tensile and compressive stresses in concrete both at transfer and under the full
service loads. For the design of fully prestressed members (i.e. membersin which cracking is
not permitted), some codes of practice (e.g. ACI 318-83) set mandatory maximum limits on
the magnitude of the concrete stress, both tensile and compressive. For partially prestressed
members, where cracking is permitted under normal service loads and the tensile stress limits
(often called permissible stresses) are exceeded, a detailed non-linear analysisis required to
determine behaviour in the post-cracking range.

The concrete stress limits specified in ACI 318-83 (here converted to S
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units) are asfollows:
Immediately after transfer (before time-dependent |osses):

In compression: 0.6
In tension: 0.25.f2

(or 0.5fe at the ends of a simple member)

The quantity Jeijs the characteristic compressive strength of concrete at transfer. Where the
tensile stress exceeds these values, bonded reinforcement should be provided in the tensile
zoneto resist the total tensile force in the concrete.

Under full service loads (after all losses):

In compression: 0.45 ¢
In tension: 0.5

When an analysis based on transformed cracked sections shows that both short- and long-term
deflections are acceptable, ACI 318-83 alows the tensile stress limit to be increased to

1.00Jf , provided the minimum concrete cover to the tendons is increased by 50% when the
cracked surface is exposed to earth, weather, or other corrosive environments.

Other codes (e.g. AS3600—-1988) impose no mandatory concrete permissible stresses. The
choice of stresslimit isleft entirely to the designer and should be based on the appropriate
serviceability requirements. There is much to recommend this approach. Satisfaction of any
set of stress limits does not guarantee serviceability. Camber and deflection calculations are
still required. It is therefore appropriate to discuss the reasons for and the implications of
selecting particular stress limits.

Firstly, consider whether or not stress limits are required at transfer. There can belittle
doubt that the magnitudes of both compressive and tensile concrete stresses at transfer need to
be carefully considered. It isimportant that the concrete compressive stress at the stedl level at

transfer should not exceed about 93¢ At hi gher stress levels, large non-linear creep strains
develop with time, resulting in large creep deformation and high losses of prestress. Designers
must also check strength at transfer and the satisfaction of the above compressive stress limit
will usually, although not necessarily, lead to an adequate factor of safety against compressive
failure at transfer.

It isaso advisable to limit the tensile stress at transfer, particularly in unreinforced regions.
The regions of a member which are subjected to tension at transfer are often those which are
later subjected to compression when the full service load is applied. If these regions are
unreinforced and uncontrolled cracking is permitted at transfer, an immediate serviceability
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problem exists. When the region is later compressed, cracks may not close completely, local
spalling may occur, and even aloss of shear strength could result. If cracking is permitted at
transfer, bonded reinforcement should be provided to carry al the tension and to ensure that
the cracks are fine and well behaved.

In some cases, stress limits may also be required under full service loads when all prestress
losses have taken place. If cracking isto be avoided, some tensile stress limit must be adopted.

A vauein therange D.ZSE—G,SEiS appropriate. If the upper end of thisrange is adopted,
some cracking may occur under full loads, particularly if the load-independent tension
induced by restrained shrinkage or temperature effects has not been adequately assessed.
Provided bonded reinforcement or tendons are provided near the tensile face, however, the
cracks will be well controlled and the resulting loss of stiffness will not be significant.

For many prestressed concrete situations, there is no reason why tensile cracking should be
avoided at service loads and, therefore, no reason why alimit should be placed on the elastic
tensile stress. If cracking is permitted, the resulting loss of stiffness must be accounted for in
deflection calculations and crack widths must be acceptably small. Crack control may be
achieved by limiting both the spacing of and the change of stress in the bonded reinforcement.
Where the cracked surface is not exposed to a corrosive environment, crack control may be
achieved by limiting the increment of stress in the bonded reinforcement after cracking to
about 200 M Pa, and by limiting the centre-to-centre spacing of bonded reinforcement to about
200 mm for beams and 500 mm for slabs (AS 3600-1988). In order to calculate the loss of
stiffness caused by cracking or the increment of steel stress after cracking, a cracked section
analysisisrequired.

Under full service loads, which occur infrequently, there is often no practical reason why
compressive stress limits should be imposed. Separate checks for flexural strength, ductility
and shear strength are obviously necessary. Excessive compressive stresses may, however,
occur under full service loads in some types of members, such as trough girders or inverted T-
beams, and in the design of these members care should be taken to limit the extreme fibre
compressive stress at service loads. If alarge portion of the total service load is permanent,
compressive stress levelsin excess of 0-3f¢should be avoided.

The primary objective in selecting concrete stress limitsis to obtain a serviceable structure.
Aswas discussed in Section 1.5, elastic stress calculations are not strictly applicable to
prestressed concrete. Creep and shrinkage cause a gradual transfer of compression from the
concrete to the bonded steel. Nevertheless, e astic stress cal culations may indicate potential
serviceability problems and the satisfaction of concrete tensile stress limitsis a useful
procedure to control the extent of cracking. It should be understood, however, that the
satisfaction of a set of elastic concrete stress limits does
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not, in itself, ensure serviceability and it certainly does not ensure adequate strength. The
designer must check separately both strength and serviceability, irrespective of the stress
limits selected. In the end, provided a structure is strong enough and is serviceable, the value
adopted for each stresslimit islargely irrelevant.

Codes of practice also set mandatory limits on the tensile stress in the prestressing steel at
various stages of construction. ACI 318-83 specifies that the maximum stress applied to a
tendon during the jacking operation is 0.94f,, (but not greater than 0.85f,). The relationships
between f,, and f,, for the various steel types were given in Section 2.7. ACI 318-83 aso
requires that the steel stressimmediately after transfer does not exceed 0.82f,, (but not greater
than 0.74f,) and, for post-tensioned tendons at anchorages and couplers, 0.70f,.

3.3 Determination of prestress and eccentricity in flexural members

There are anumber of possible starting points for the determination of the prestressing force P
and eccentricity e required at a particular cross-section. The starting point depends on the
particular serviceability requirements for the member. The quantities P and e are often
determined to satisfy pre-selected stress limits. Cracking may or may not be permitted under
service loads. As was mentioned in the previous section, satisfaction of concrete stress limits
does not necessarily ensure that deflection, camber, and axial shortening are within acceptable
limits. Separate checks are required for each of these serviceability limit states. Alternatively,
the prestressing force and the cable layout may be selected to minimize deflection under some
portion of the applied load (i.e. aload-balancing approach to design). With such an approach,
cracking may occur when the applied load is substantially different from the selected balanced
load, such as at transfer or under the full service loads, and this needs to be checked and
accounted for in serviceability calculations.

3.3.1 Satisfaction of stress limits

Numerous design approaches have been proposed for the satisfaction of concrete stress limits,
including analytical and graphical techniques (e.g. Magnel 1954, Lin 1963, Warner & Faulkes
1979). A simple and convenient approach is described here.

If the member is required to remain uncracked throughout, suitable stress limits should be
selected for the tensile stress at transfer, F;, and the tensile stress under full load, 7. In
addition, limits should aso be placed on the concrete compressive stress at transfer, F.;, and
under full loads, F.. If
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Figure 3.1 Concrete stresses at transfer.

cracking under the full loads is permitted, the stresslimit F; isrelaxed and the remaining three
limits are enfor ced.

Consider the uncracked cross-section of abeam at the critical moment location, as shown in
Figure 3.1. Also shown in Figure 3.1 are the concrete stresses at transfer caused by the
prestress P; (located at an eccentricity e below the centroidal axis of the concrete section) and
by the externa moment A, resulting from the loads acting at transfer. Often self-weight isthe
only load (other than prestress) acting at transfer.

At transfer, the concrete stress in the top fibre must not exceed the tensile stress limit. That
is,

- ﬂ Piey, _ Moy: _ ﬂ (Pie = M,) )
o = A+_._I _'__! ﬂFﬂ or A+_—E, ﬁFH
and rearrangement gives
P; Aey M,
Fig=——\|l=—=0 ] -—=
“Z -2 ( z;) Z (31)

where 4 isthe area of the section, 7 is the second moment of area of the section about the
centroidal axis, and Z, is the elastic section modulus, with respect to the top fibre (=1/y,).

Similarly, the concrete stress in the bottom fibre must be greater than the negative
compressive stress limit at transfer:

. . Mn
Ub=-———+'z—b3Fci

where F'; iS a negative quantity. Rearrangement gives

Ae) . M,

P;
Fas - A (1 * Zp Zy (32
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Figure 3.2 Concrete stresses under full loads (after all prestress |osses).

Figure 3.2 shows the concrete stresses caused by the effective prestress after all losses have
taken place (P.=RP;) and by the applied moment M7 resulting from the full service load.
For afully prestressed member, the concrete stress in the bottom fibre must be less than the

selected tensile stress limit F:

or

Frz-—— Z + Zs (3.3

RP; Ae Mr
4+ =
y (’ )

The compressive stress in the top fibre must also satisfy the appropriate stress limit. Therefore,

RP; RPie Mr

== _"-'-____.r"'Fl'
o Az, Z
or
RP: _AE MT
F‘Q'T(l 2;) Z, (34)

Equations 3.1-3.4 can be rearranged to express 1/P; as alinear function of e. Rearrangement
of Equation 3.1 gives

A(F;; + fg") = - P.i(t —?)
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or

l > -1+ AE‘}I Zy
Pim A(Fu+ Mofzr}

and if az:A/Zt, then

1, we—-1
P; AFi+ oM, (35)

Similarly, from Equations 3.2, 3.3 and 3.4, the following equations are obtained:

__]_ > ape + 1
P~ —AFi+ apM, (3.6)
1 < Rlape+ 1)
P; - AF; + l:t‘bMT (37)
and
1 < Roce—1)
P; = AF. + a: Mt (3.8)

where a,=A/7Z, and F.; in Equation 3.6 and F. in Equation 3.8 are negative numbers.

Each of the linear relationships in Equations 3.5-3.8 may be plotted on a graph of 1/P;
Versus e, as shown in Figure 3.3. Theintercept of each straight li ne on the horizontal axisis
obtained by setting 1/P; equal to zero in each equation. When 1/P =0, the eccentricity e equals
1/a, for Equations 3.5 and 3.8 and —1/a, for Equations 3.6 and 3.7. A graphical interpretation
of the stress conditions on a prestressed section similar to that shown in Figure 3.3 was first
proposed by Magnel (1954) and may be a useful aid in design.

On one side of each straight line in Figure 3.3, the relevant stress limit is satisfied. The
wedge-shaped areain which all four stress limits are satisfied represents suitable
combinations of P; and e. In order to minimize prestressing costs, the smallest possible value
for P; would generally be selected. This corresponds to the value at the intersection of
Equations 3.5 and 3.7. However, the corresponding value of e may not be practical. The
maximum eccentricity e, IS governed by concrete cover and tendon spacing reguirements.
Asisseenin Figure 3.3, the smallest possible value for P; is obtained by substituting the
appropriate maximum eccentricity into Equation 3.7.
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Figure 3.3 Magnel’s design diagram.

If aparticular cross-section istoo small, the plot of Equation 3.6 in Figure 3.3 will lie above
the plot of Equation 3.7 and no acceptable region exists. Similarly, if the line representing
Equation 3.5 is steeper than that of Equation 3.8, no acceptable region exists. It istherefore
not possible to satisfy all four stress limits and alarger section is clearly required. If, on the
other hand, the angle between the plots of Equations 3.6 and 3.7 in Figure 3.3 islarge, alarge
acceptable region exists and a smaller section may prove more economical.

When the minimum-sized cross-section is used, Equations 3.6 and 3.7 plot on the same line.
By equating Equations 3.2 and 3.3, the section modulus of this minimum-sized section (Z,),,..,
can be readily found. If the minimum-sized section is used, Equation 3.2 becomes

M, P; Amine
F. i = = = 1
(-zb}m'in Amiﬂ ( * {zb]min)

Similarly, from Equation 3.3,

1 Mt P; Amin€
-— | Fy = = - 14—
R [ d {zb}mr'n] Amin [ (zb:lm'fﬂ:l

By subtracting these two equations, an expression for the minimum permissible section
modulus is obtai ned:

Mr— RM,

z n =
(Zo)m F— RF,; (3.9)
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It must be remembered that F.; is aways negative. Equation 3.9 is a useful starting point in
the selection of aninitial cross-section.

In order to use Equation 3.9 and to be able to plot Equation 3.7 on Eigure 3.3, some
estimate of the time-dependent |osses must be made so that the |oss parameter R can be
determined. As R is varied, the angle between the plots of Equations 3.6 and 3.7 varies and
hence the range of acceptable combinations of P; and e also varies. Usually, afirst estimate of
R within the range 0.75-0.85 is adopted when low-relaxation stedl is used. The lower end of
thisrange (i.e. R=0.75) is more appropriate for a heavily stressed girder with high sustained
compressive stresses in the concrete at the tendon level. In such amember, creep losses will
be relatively high. For lightly stressed members, such as slabs, and for members in which the
sustained compressive stress in the concrete at the tendon level islow, the upper end of the
range is more appropriate (i.e. R~0.85). Any initial estimate of R must be checked after the
prestress, the eccentricity, and the quantity of bonded reinforcement have been determined.
Suitable procedures for determining the time-dependent |osses are described in Sections 3.6
and 3.7.

For alimited amount of well controlled cracking, ACI 318-83 allows the tensile stress limit

F,tobeset ashighas 1-“:‘*-"a‘?'-fprovided bonded reinforcement is placed near the tensile face. In
general, however, if cracking is permitted under full service loads, atensile stresslimit F; is
not specified and Equation 3.7 does not apply. Tensile and compressive stress limits at
transfer are usually enforced and, therefore, Equations 3.5 and 3.6 are still applicable and
continue to provide an upper limit on the level of prestress. The only minimum limit on the
level of prestressisthat imposed by Equation 3.8 and, for more practical cross-sections, this
does not influence the design. When there is no need to satisfy atensile stress limit under full
loads, the plot of Equation 3.7 no longer appears on Figure 3.3. Any level of prestress which
satisfies Equations 3.5, 3.6, and 3.8 may be used, including P,=0 (which correspondsto a
reinforced concrete member). In such a situation, Figure 3.3 is no longer of much usein
design.

Often partially prestressed members are designed such that cracking does not occur under
the sustained or permanent service loads. It isthe variable live load that causes cracking.
Cracks therefore open and close as the variable load is applied and removed. The selection of
prestress in such a case can still be made conveniently using afigure similar to Figure 3.3. If
the maximum total service moment M isreplaced in Equation 3.7 by the sustained or
permanent moment A,,,, Equation 3.7 becomes

1 o _Rlue+))
PF "'AF[ + CIbM:us (310)

The plot of Equation 3.10 now replaces the plot of Equation 3.7 in Figure 3.3. Theline
representing Equation 3.10 crosses the horizontal axis at the
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same point (i.e. e=—1/ay), but is steeper and therefore the acceptable region shown in Figure
3.3 islarger. For a given eccentricity, the minimum prestress P; isless. The tensile stress limit
F:will not be exceeded under the sustained loads, but cracking may occur under peak live
loads. If after the variable load has been removed the cracks are required to close completely,
F,in Equation 3.10 should be set to zero.

If less prestressis used and cracking occurs, the cross-section required for a partially
prestressed member may need to be larger than that required for afully prestressed member
for a particular deflection limit. In addition, the quantity of non-prestressed reinforcement is
usually significantly greater. Often, however, the reduction in prestressing costs more than
compensates for the additional concrete and non-prestressed reinforcement costs and partially
prestressed members are the most economical structural solution in awide range of
applications.

Example 3.1

A one-way dlab is ssimply supported over a span of 12 m and is to be designed to carry a
service load of 7 kPa (kN/m?) in addition to its own self-weight. The slab is post-tensioned by
regularly spaced tendons with parabolic profiles. The material properties are:

fei =25 MPa; f{ =32 MPa; E. = 25300 MPa; E. = 28600 MPa;
and f,= 1840 MPa.

The prestressing force and eccentricity are to be determined to satisfy the following concrete
stress limits:

Fi=0.25]25=1.25 MPa
F.i=—0.5%25= -12.5 MPa
F,=0.25[32 = 1.41 MPa
Fe= —0.5%32= —16.0 MPa

At mid-span, the instantaneous and time-dependent |osses are taken to be 8% and 16%,
respectively. In order to obtain an estimate of the slab self-weight (which isthe only load
other than the prestress at transfer), atrial slab thickness of 300 mm (span/40) is assumed
initially. For a1 m wide strip of slab, the self-weight is

Wone =24 x0.3=7.2 kN/m
and the moments at mid-span both at transfer and under the full service load are

_71.2x122

M, 3

=129.6 kNm/m and
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M

- (1.0+7.2)x 127

3 = 255.6 kNm/m

From Equation 3.9,

. [255.6 - (0.84 X 129.6)] x 105 _ 6, 3
[Zb}mm 141—(&343'( _]25] =12.3 x 10° mm fl'.ﬂ

and the corresponding minimum slab depth is therefore
-Dmin = ,|6[Eh }mﬂr} 1000 = 272 mm
Select a dab thickness D=300 mm. The relevant section properties are:

A =300x%10° mm?*m; I=2250x 10° mm*/m;
Z=2,=Zp=15%10°mm>3/m;

ar=ap=A[Z=0.02; and 1{e; = 1]cep = 50 mm.

Equation 3.5 becomes

l; 0.02¢ - 1 _ 0.02e-1
P: T (300 x 10% x 1.25) + (0.02 x 129.6 x 10%) 2967 x 10°

Similarly, the following expressions are obtained from Equations 3.6, 3.7 and 3.8,
respectively:

l; 0.02e+ 1 _ 0.02e+1
P;T (-300x10°x —12.5) + (0.02 % 129.6 x 10%) ~ 6342 % 10°

lg 0.84(0.02¢ + 1) _0.02e+1
P; " (=300x10% x 1.41) +(0.02 x 255.6 x 10®) 5582 x 10°

and

l,; 0.84(0.02e - 1) _ _0.02e-1
P; (300 % 10° x — 16.0) + (0.02 x 255.6 x 10%)  371.4x 10°

Each of these four equationsis plotted on Figure 3.4.
If 12.7 mm diameter strand is used with 30 mm minimum concrete cover, then

C€mar = 150 = 36= 114 mm



Page 72

50 0 50 100 gy 150
Eccentricity, & (mm)

Figure 3.4 Design diagram for Example 3.1.

and, from Figure 3.4 (or Equation 3.7), the corresponding minimum permissible value of P; is
found to be

1 _0588x10* and . Pi=1700 KN/m

1
At the jacking point, the required prestressing forceis

Pi= :;—gg = 1850 kN/m (8% instantaneous losses)

From Table 2.1, a12.7 mm diameter 7-wire, low-relaxation strand has a cross-sectional area

of 100 mm? and a minimum breaki ng load of 184 kN. A flat duct containing four 12.7 mm
strands can therefore be stressed with a maximum jacking force of

0.85x4x184=626kN

The minimum number of cables required in each metre width of slab istherefore
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and the maximum spacing between cablesis

&m=333 mm

2.96

Use 14 strand tendon every 330 mm.

To check deflection, the properties of the gross section can be used in al calculations, since
cracking has been avoided both at transfer and under the full serviceloads. It is assumed that
of the 7 kPa service load, 3 kPais sustained or permanent and 4 kPais temporary.

At transfer:

i=25300 MPa and [=2250% 10° mm*/m

The uniformly distributed upward load caused by the parabolic cables with drape equal to 114
mm is obtained from Equation 1.7 as

1700 x 0.114 x 8
WP= 122

=10.8 kN/m1

The resultant upward load is We — Wsw=10.8 = 7.2 = 3.6 KN/m T the deflection (camber)
at transfer is

5 3.6 x 12000°

_35 ~17.0 mm * 700
384 25300 % 2250 x 10° mm T (span/700)

Ui

Under full loads:
E. = 28600 MPa
After the time-dependent losses, the prestressing force has decreased by 16% and therefore

wp=0.84x%10.8=9.1 kNfm 1

The sustained external load is (7-2 + 3.0) = 10.2 kN/m 1and the short-term deflection due to
the permanent loadsis

5 (10.2-9.1) x 12000*

Usus = 307 X 38600 x 2250 x 10° — -8 mm

For this uncracked slab, the long-term deflection caused by creep and
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shrinkageis likely to be at |east three times the short-term deflection due to al the sustained
loads. Therefore,

vir=3XAg:=14.4dmmi

A far more accurate and reliable estimate of the effects of creep and shrinkageis outlined in
Section 3.6.

The instantaneous deflection caused by the variable portion of the serviceload, w,=4.0
KN/m, is

_5 4.0 x 12000*
U= 384 X 28600 x 2250 105 10-8 mm!

and the maximum total deflection is therefore
Utor = Usus + Uo7+ U= 36,0 mm | (span/333)

This may or may not be acceptable depending on the deflection requirements for this
particular structure.

To complete this design, strength checks must be made, 1osses must be checked, and the
anchorage zones must be designed.

3.3.2 Load-balancing

Using the load-balancing approach, the effective prestress after losses P, and the eccentricity
e are selected such that the transverse load imposed by the prestress w,, balances a sel ected
portion of the external load. The effective prestress P. in a parabolic cable of drape e required
to balance auniformly distributed external load w,, is obtained from Equation 1.7. That is,

_wl?

Fe="%e (3.11)

Concrete stresses are checked under the remaining unbalanced service loads to identify
regions of possible cracking and regions of high compression. Deflection under the
unbalanced |oads may need to be cal culated and controlled. Losses are calculated and stresses
immediately after transfer are also checked. Having determined the amount and layout of the
prestressing steel (and the prestressing force) to satisfy serviceability requirements, the design
for adequate strength can then proceed.

Load balancing is widely used for the design of indeterminate members and also for smple
determinate beams and slabs. It isonly strictly applicable, however, prior to cracking when
the member behaves linearly and the principle of superposition, on which load balancing
relies, isvalid.
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Example 3.2

For the 300 mm thick, 12 m span one-way slab of Example 3.1, the prestress required to
bal ance the dab self-weight (7.2 kPa) is to be determined. The parabolic tendons have zero
eccentricity at each support and e=114 mm at mid-span.

With w;,=7.2 kPaand ¢=0.114 m, Equation 3.11 gives

~ 7.2x 122

P'_Sx 0.114

= 1140 kN/m

If at mid-span the time-dependent losses are 16% and the instantaneous | osses are 8% (as was
stated in Example 3.1),

1140 1350

Pi=——=1350 kN/m and Pj=n—g—2= 1470 kN/m

which corresponds to 14 strand flat ducted cable every 425 mm.

In Example 3.1, the tensile stress limit under full loads was F=1.41 MPa. In this example,
the prestressislower and F, will therefore be exceeded. The bottom fibre elastic stress at mid-
span after all losses and under the full serviceloadsis

1140 % 10° 1140 x 103 x 114 255.6 x 10°

T 300x107 . 15x10°5 T 1sx10° 461 MPa

Op =

which would almost certainly cause cracking. The resulting loss of stiffness must be included
in subsequent deflection calculations using the procedures outlined in Sections 3.5 and 3.6. In
addition, the smaller quantity of prestressing steel required in this example, in comparison
with the slab in Example 3.1, resultsin reduced flexural strength. A layer of non-prestressed
bottom reinforcement may be required to satisfy strength requirements.

3.4 Cable profiles

When the prestressing force and eccentricity are determined for the critical sections, the
location of the cable at every section along the member must be specified. For a member
which has been designed to be uncracked throughout, the tendons must be located so that the
stress limits are observed on every section. At any section, Equations 3.1-3.4 may be used to
establish arange of values for eccentricity which satisfy the selected stress limits.

If Mo and My are the moments caused by the external loads at transfer and under full
service loads, respectively, and P; and P. are the corresponding prestressing forces at the same
section, the extreme fibre stresses must
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satisfy the following:

P, + (Pie — M)

z,  <fu (312)
Pi_(Pie—M,)
-b_(Re-M) .,
A Zy ¢ (3.13)

_ P. (P.e- Mr)
A Zy <F (3.14)

_ P (P.e—My)
Atz #F (3.15)

Equations 3.12—3.15 can be rearranged to provide limits on the tendon eccentricity, as
follows:

reéMu"" z: Fh"'

x|

) (3.16)

Pr'eéMn b(.F

:Li"':l
o

(3.17)
ezMr=Zy|Fi+ Pe
P, T -4 A (318)
P Mr+ Z L
€ = T 1| Fe+ ) (319)

It should be remembered that F.; and F'. are negative numbers.

After P; and P. have been determined at the critical sections, the friction losses aong the
member are estimated (see Section 3.7.3) and the corresponding prestressing forces at
intermediate sections are calculated. At each intermediate section, the maximum eccentricity
that will satisfy both stress limits at transfer is obtained from either Equation 3.16 or 3.17. The
minimum eccentricity required to satisfy the tensile and compressive stress limits under full
loads is obtained from either Equation 3.18 or 3.19. A permissible zoneis thus established in
which the line of action of the resulting prestressing force must be located. Such a permissible
zoneis shown in Figure 3.5. Relatively few intermediate sections need to be considered to
determine an acceptable cable profile.

When the prestress and eccentricity at the critical sections are selected using the |oad-
balancing approach, the cable profile should match, as
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permissible zone

Equarions 3.18 or 3.19

r :
41Equaﬁ:m ll6orily ;%

A

Figure 3.5 Typical permissible zone for location of cable profile.

closely as practicable, the bending moment diagram caused by the balanced load. In this way,
deflection will be minimized. For cracked, partially prestressed members, Equations 3.16 and
3.17 are usually applicable and fix the maximum eccentricity. The cable profile should then
be selected according to the loading type and moment diagram.

3.5 Short-term analysis of cross-sections

3.5.1 Uncracked cross-sections

The short-term behaviour of a prestressed concrete cross-section can be determined by
transforming the bonded reinforcement into equivalent areas of concrete and performing a
simple, elastic analysis on the equivalent concrete section. The following mathematical
formulation of the short-term analysis of an uncracked cross-section forms the basis of the
time-dependent analysis described in Section 3.6 and was described by Gilbert (1988).
Consider a prestressed concrete cross-section with avertical axis of symmetry. For a
section containing both non-prestressed and prestressed reinforcement, the transformed
section may be similar to that shown in Figure 3.6. The top surface of the cross-section, rather
than the centroidal axis, is selected here as the reference surface. Thisis a convenient
selection, but not a necessary one. The position of the centroidal axis of a prestressed concrete
cross-section varies with time owing to the gradual development of creep and shrinkage in the

concrete. The centroidal axis aso depends on the quantity of bonded reinforcement and may
change position when unbonded tendons are subsequently grouted. It is convenient, therefore,
to select afixed reference point that can be used in all stages of the analysis and, for this
reason, reference to any point on the cross-section in Figure 3.6 is made in terms of its
distance y from the top surface.

In Figure 3.6, the non-prestressed reinforcement is transformed into equivalent areas of
concrete (=A,E/E.=nA), i.e. an additional area of concrete equal to (n—1)4, is added to the
section at each bonded steel
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Figure 3.6 Transformed section at transfer.

level, as shown; n is the short-term modular ratio (Ey/E.). If the prestressed steel in Figure 3.6
is bonded to the concrete at transfer, it too should be transformed into an equivalent area of
concrete. Also shown in Figure 3.6 is the strain distribution on the section immediately after
transfer. The strain at a depth y below the top of the cross-section is defined in terms of the
top fibre strain ¢,; and the initia curvature x;, asfollows:

Ej = -E(u' + }’xi
(3.20)

If the short-term behaviour of concrete is assumed to be linear-elastic, the initial concrete
stress at y below the top fibreis

oi=E.ei= Ef{rﬂl- + ,J"'xl}
(3.21)

The resultant axial force on the section A, is obtained by integrating the stress block over the
depth of the section, as shown in Equation 3.22. For a prestressed section in pure bending, the
initial axial force on the transformed concrete section immediately after transfer is
compressive and equal in magnitude to the prestressing force, i.e. N;=—P..

Ni= E oidA (3.22)

= E.t, j'd,q + Eex; EydA

= -EC‘EDIA + E:'?HH

where 4 (=] d4) is the area of the transformed section and B (=] y d4) is the first moment of
the transformed area about the top surface of the section.
If the first moment of the stress block about the top fibre is integrated
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over the depth of the section, as shown in Equation 3.23, the resultant moment about the top
surface, M,, isfound. For a prestressed concrete beam section, M;=Mo—Pd,, where M, isthe

external moment at the section at transfer and d, is the depth to the prestressing steel as shown
in Figure 3.6. Therefore,

M= § oy dA 323

= E.ey §yd.4 + Eoxi [y* dA

= Ec£oiB + Ecxil

where 7 (= 17 d4) is the second moment of the transformed area about the top surface of the
transformed section.

By rearranging Equations 3.22 and 3.23, expressions are obtained for the initial top fibre
strain and curvature in terms of N; and M;:

BM; — IN;
E.(B* - AD) (3.24)

Eai =

and

oo BNi= AM,
‘T E(B® - Al) (3.25)

For any combination of external load and prestress, the corresponding values of N; and M; are
readily calculated and may be substituted into Equations 3.24 and 3.25 to obtain the strain
distribution immediately after transfer. Equations 3.24 and 3.25 may also be used to obtain the
increment of elastic strain due to the application of any subsequent load increment.

Example 3.3

The short-term behaviour of the post-tensioned cross-section shown in Figure 3.7aisto be
determined immediately after transfer. The section contains a single unbonded cable
containing 10-12.7 mm diameter strands (4,=1000 mm?) located within a 60 mm diameter
duct, and two layers of non-prestressed reinforcement, as shown. The force in the prestressing
steel is P,=1350 kN and the applied moment is M,=100 kNm. The elastic moduli for concrete
and steel are £=30x10° MPaand E,=E,=200x10° MPa, and therefore n=6.67.

The transformed section is shown in Figure 3.7b. Because the prestressing steel is not
bonded to the concrete, it does not form part of the transformed
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Figure 3.7 Post-tensioned cross section of Example 3.3.

section. In addition, the hole created on the concrete section by the hollow duct must also be
taken into account. The properties of the transformed section with respect to the top reference

surface are
A = (300 x 800) + 5100 + 10200 — 2830 = 252.5 % 10° mm?*
B = (300 x 800 x 400) + (5100 x 60) + (10200 x 740) — (2830 x 600)

=102.2 x 10* mm?

_ 3
p- X0 ?Bm + (5100 x 60%) + (10200 x 740%) ~ (2830 x 600%)

=55.79 x 10° mm*
The axia force and moment about the top surface at transfer are

Ni= =Pi=-1350kN and M= M,- Pido=—-710kNm

Thetop fibre strain and curvature immediately after transfer are obtained from Equations 3.24
and 3.25:

oo —(102.2% 10% % 710 % 10%) + (55.79 x 10° % 1350 % 10%)
* 7 730 x 107[(102.2 x 10%)7 — (252.5 x 10% x 55.79 x 10°))

=-254%10"%

o= —(102.2 x 10° % 1350 % 10%) + (252.5 x 10° % 710 x 10°)
*T30x 10%[(102.2 x 10%)* - (252.5x 107 X 55.79x 107)]

-0.378% 10" mm™!
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Figure 3.8 Strains and stresses immediately after transfer (Example 3.3).

The concrete stresses are found using Equation 3.21. When y=0, the top fibre stressis
o0i=—0.76MPa, and when y=800 mm, the bottom fibre stressis 6,=—9.83 MPa. The stressin
the stedl reinforcement is determined from the strain at the level of the steel. For the top layer
of non-prestressed reinforcement (at y=60 mm),

Os1i = E:{on + Eﬂx;} = —9.62 MPa
and for the bottom steel (at y=740 mm),
oszi = Es(€0i + 740x;) = — 61.0 MPa.

The distributions of strain and stress on the cross-section immediately after transfer are shown
in Figure 3.8.

3.5.2 Cracked cross-sections

When the tensile stress produced by the external moment at a particular section overcomes the
compression caused by prestress, and the extreme fibre stress reaches the tensile strength of
concrete, cracking occurs. The moment at which cracking first occursis called the cracking
moment, M.,. ASthe compressive force on the concrete gradually decreases with time due to
creep and shrinkage, the cracking moment also decreases with time. If the applied moment at
any timeis greater than the cracking moment, cracking will occur and, at each crack, the
concrete below the neutral axisisineffective. The short-term behaviour of the cracked cross
section may be cal culated approximately using a simple elastic analysis which is based on the
following assumptions:

(a) Plane sections remain plane and therefore the strain distribution is linear over the depth of
the section.
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(b) Perfect bond exists between the concrete and both the prestressed and non-prestressed
steel. At service loads, thisis areasonable assumption.

(c) Instantaneous material behaviour is linear-elastic. Thisincludes the concrete in
compression, the conventional reinforcement and the prestressing steel. Once again, thisis
areasonable assumption at service loads.

(d) Short-term behaviour only isrequired, i.e. the analysis does not include the inelastic
effects of creep and shrinkage.

(e) Tensile stresses in the concrete are ignored. Thisis a conservative assumption. An
empirical adjustment to the second moment of area of the cracked section may be made to
account for the contribution of the tensile concrete to the stiffness of the cross-section. This
isthe so-called tension stiffening effect.

The instantaneous strains and stresses on a cracked section are shown in Figure 3.9. For an
applied moment M greater than the cracking moment, there are two unknowns associated with
the strain diagram in Figure 3.9b: the depth to the neutral axisd, and the extreme fibre
Instantaneous compressive strain eo.. When ¢ and d, are known, the strain diagram is defined
and the concrete and steel stresses are readily determined. To find these two unknowns, there
are two equations of equilibrium. Horizontal equilibrium dictates that

Tp+Te+C+Ci=0

(3.26)
and moment equilibrium requires that
M = Tpdp + T;d;z -+ Cd; -+ C;d;[
(3.27)
where C, C,, T,, and T, may all be expressed as functions of 4, and &.
I b |
fﬂT &, el g
T 51 5] -——
Q’Wﬂ el
M
IR D
A~ —ﬁ— —‘l— —1— ‘l_ ——g, —= T,
A=+ +++ —_— —gy —= T
(a) Section {b) Strain {c) Stresses (d) Forces

Figure 3.9 Cracked section analysis.
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C isthe volume of the triangul ar compressive stress block acting over the area 4’ above the
neutral axis. If A’isrectangular (b wide and d, deep), then

C = %U@jbdﬂ = %chﬂflﬁdﬂ'

(3.28)
From similar triangles, the strains at the levels of the non-prestressed steel are
£ = Em'(!::;: —dr) 4 e = Em'(dnd: ds1)
and therefore the forces in the conventional reinforcement are
To=00An=EaEAn=EAn — Ed{j;’: — Gn) (3.29)
a=mmﬂ=&£mn=&aﬂ'“m1'¢” 330

The strain in the bonded prestressing steel is equal to the sum of three strain components. The
first component is the tensile strain caused by the effective prestress, ¢, i.e. the strain that
existsin the steel prior to the application of any external moment:

P,
“pe = 4,E, (3.31)

Before the external moment is applied, the instantaneous compressive strain in the concrete at
the level of the prestressing stedl is

P: _ P.ez)

]
%-E(“; 7 (3.32)

Asthe external moment increases, the strain in the concrete at the steel level increases from
compressive (g..) totensile (g,,). If perfect bond exists between the tendon and the concrete,
the prestressing steel strain increases by this same amount, i.e. |e.[+¢,,. From similar triangles,

P —E'ui(d;_i— dn)
Pt d, (3.33)

Thetotal strain in the prestressed steel is therefore given by

Ep = Epe + | Ece | + Epr
(3.34)
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and the force in the prestressing steel is

_ - B }{d - dn:l
T, = .E,Ap(cp; + | Ece| + %) (3.35)

By substituting Equations 3.28, 3.29, 3.30, and 3.35 into Equations 3.26 and 3.27 and solving
the simultaneous equations, ¢o; and d,, are found. For manual solution, the following trial and
error procedure may be used:

(a) Select areasonable value for &, (say ~ 0.57f Ef). Thiswill correspond to one particular
value of applied moment.
(b) Select avauefor d,.
(c) Calculate strains, stresses, and forces in the steel and concrete.
(d) Check horizontal equilibrium. Is Equation 3.26 satisfied?
If yes: d, is correct.
If no: adjust d,, and go to (c).
(e) When the correct value of d, has been determined, cal culate the moment corresponding to
theinitial selection of &, using Equation 3.27.

The above procedure may be repeated for severa values of ¢, to determine the changein
elastic behaviour as afunction of moment. Behaviour at intermediate values of M may be
determined by interpolation.

From such an analysis, variations in steel stresses after cracking can be found in order to
check for crack control. Estimates of the section stiffness can also be made for usein
deflection calculations. It is noted that after cracking the neutral axis gradually rises as the
applied moment increases. With the area of concrete above the crack becoming smaller, the
second moment of area of the cracked section decreases as the applied moment increases.
Thisis not the case for reinforced concrete sections where d, remains approximately constant
with increasing moment and the cracked moment of inertia of the section is constant in the
post-cracking range.

In Figure 3.10, a typica moment-curvature diagram for a prestressed concrete section is
shown. At any moment M>M,,, the curvatureis

_&i_M-P.e
dn Ecla (3.36)

Hi=

where El,,, is the secant stiffness and e is the depth of the prestressing steel below the
centroidal axis of the cross-section. From Equation 3.36,

_ (M= P.e)d,
Eeloy="— (3.37)
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(M —P.e)
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Figure 3.10 Typica moment-curvature diagram for a prestressed section.

A conservative estimate of deflection is obtained if the value of E.I,, for the section of
maximum moment is taken as the flexura rigidity of the member.

The tangent stiffness E..1,,. is aso shown in Figure 3.10. /. is the second moment of area of
the cracked section, which may be obtained from atransformed section analysis. For small
variations in applied moment, curvature increments should be calculated using /.. In
reinforced concrete construction, /., is constant and equal to 7, but thisisnot so for
prestressed concrete.

Example 3.4

The cross-section analysed in Example 3.3 and shown in Figure 3.7 is to be re-analysed to
determine its post-cracking behaviour. It is assumed that the duct has been grouted, thereby
bonding the tendon to the surrounding concrete. The force in the prestressing steel at the time
of application of the external moment is P,=1200 kN. Materia properties are as follows:

E.=30%10° MPa; Ep = E,; = 200 x 10? MPg;
fi =40 MPa; f, = 400 MPa; f, = 1840 MPa.

Sample calculations are provided for the particular applied moment that produces atop fibre
stress 60=—20 MPa, as shown in Figure 3.11.
When o0=—20 MPa, the instantaneous top fibre strain is
aqj'

i=— = 667 % 107
= E
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300
mJ,I'_ _'l €0 =T, | E, O, = -20 MPa
— e —— c,
T + =4 —o00 mm? £ Ty ——
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Figure 3.11 Short-term strain and stress on the cracked section of Example 3.4.

The area of the transformed cross-section prior to cracking and the second moment of area
about the centroidal axis are 4=261x10°> mm? and /=14760x10° mm®*, respectively. The
various strain components in the prestressing steel are obtained from Equations 3.31-3.33:

1200 x 10° -6 667 x 10~%(600 — dy)
= = 6000 x 1078; g = ;
€pe = 1000 x 200 000 1077 & d

E‘:“_"

1 (_ 1200 x 10° 1200 x 10° x 189*
0% 10° 261 % 10° 14760 x 10°

) = -250x10"°¢

and from Equation 3.35,

T, = 200 x 10° mm[amm 250 +55_W‘£'P‘_“H] % 10~

Similarly from Equations 3.29 and 3.30:

7, =200 000 x 1800 x 0= n) 16 24“’”“&574” i)
L3 n

and

~667(dy ~ 60) _ — 120 x 10°(d» — 60)

C; =200 000 x 200 x
dﬂ d.l'l

The compression in the concrete above the neutral axisis obtained from Equation 3.28:

C=}x -20x300x d, = —3000d,
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Trial values of d, are considered below:

d, T, T, ST C C xC STHEC
(mm) (kN)  (kN)  (kN)  (kN)  (kKN)  (kN) (kN)
460 1201 146 1437 1380 104 1484 —47
440 1299 164 1463 1320 104 1424 +39
FROM LINEAR INTERPOLATION
449 1295 155 1450 1347 104 1451 -1
CLOSE ENOUGH

With d,=449 mm when &,,=667x%10 ®, the moment and curvature on the section are obtained
from Equations 3.27 and 3.36, respectively.

M = (1295 % 0.6) + (155 X 0.74) — (1341 % f'gﬂ) - (104 X 0.06)

= 684 kNm

and

The secant stiffness is obtained from Equation 3.37:

_ [(684 x 10°) — (1200 x 10* x 189)] x 449

— 12 .
Eclsy= 667 % 10-° =308x 10° Nmm

(cf. EJ=443x10% N mm? for the uncracked section). The stresses in the prestressed and the
non-prestressed tensile steel under this applied moment are

up=££= 1295 MPa and op= :—’ = §6.1 MPa
P 52

The change in stressin the prestressing steel and the tensile stress in the non-prestressed steel
caused by the applied moment are much less than the tensile stress limits usually specified in
codes of practice for crack control.



L.l

i

BOO =
600
400 -

E.J-= 443 x 10" Nmm?

AL M =684 kNm:

E.l, = 308 x 10'*Nmm?
2004 E.l., = 184 x 10"*Nmm?

Curvature x 1078 (mm™)

T P

.05

0 0.5 10 1.5 20

Figure 3.12 Moment vs curvature for section of Example 3.4.
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For example, AS 3600 (1988) specifies a maximum increment of tensile steel stress equal to
200 MPa between decomposition and the full in-service moment. With the closely spaced
bonded reinforcement near the tension face of the section analysed here, cracks should be well
controlled at thislevel of applied moment.

Similar calculations can be performed for other values of o,;. For example,

When ¢,=—15 MPa:

d, =555 mm; M =568 kNm; x; =0.902 x 10~®* mm ™!

When go=—25 MPa:

ds=395mm; M=798 kNm; x;=2.11x 10" mm ™!

A plot of the moment-curvature relationship for the section is shown in Figure 3.12.
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3.6 Time-dependent analysis of cross-sections

3.6.1 Introduction

The time-dependent behaviour of a partially prestressed member is greatly affected by the
quantity and location of conventional, non-prestressed reinforcement. Bonded reinforcement
provides restraint to the time-dependent shortening of concrete caused by creep and shrinkage.
As the concrete creeps and shrinks, the reinforcement is gradually compressed. An equal and
opposite tensile force AT'is applied to the concrete at the level of the bonded reinforcement,
thereby reducing the compression caused by prestress. It is the tensile forces that are applied
gradually at each level of bonded reinforcement which result in significant time-dependent
changes in curvature and deflection. An accurate estimate of these forces (AT) is essential if
reliable predictions of long-term behaviour are required.

Procedures specified in codes of practice for predicting losses of prestress due to creep and
shrinkage are usually too simplified to be reliable and often lead to significant error,
particularly for members containing non-prestressed reinforcement. In the following section, a
simple analytical techniqueis presented for estimating the time-dependent behaviour of a
genera, partialy prestressed cross-section. The procedure has been described in more detail
by Ghali and Favre (1986) and Gilbert (1988), and makes use of the age-adjusted effective
modulus method to model the effects of creep in concrete (see Equations 2.11-2.14 and the
associated discussion).

3.6.2 Uncracked cross-sections

During any time period, creep and shrinkage strains develop in the concrete and rel axation
occurs in the prestressing steel. The gradual change in strain in the concrete with time causes
changes of stressin the bonded reinforcement. The gradual change in forcein the steel is
opposed by an equal and opposite force on the concrete (usualy tensile) at each steel location,
as shown in Eigure 3.13. These forces are induced in the concrete at each level of bonded
reinforcement and result in increments of axial force AN(?) and moment about the top
reference surface AM(z) given by

AN =D, AT+ 2, ATwx
k=1

j=

(3.39)

and

AM(t)= E A I:Fdf + k§1 A Tpkdpx (3.39)

j=1
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..... —= ATy,
=== —e= AT,
L e [ MZ
Elevation  Forces induced Strain
an concrete

Figure 3.13 Tinie-dependent actions and deformations.

where n isthe number of layers of conventional, non-prestressed reinforcement and m isthe
number of layers of bonded prestressed steel. Equal and opposite actions —AN(t) and —AM(t)
are applied to the bonded steel portions of the cross-section.

The time-dependent change of strain at any depth y below the top of the cross-section (Ag)
may be expressed in terms of the change in top fibre strain (Ae,) and the change of curvature
(Ax):

Ae=Ag,+ ) Ax
(3.40)

The magnitude of Ae isthe sum of each of the following components:

(a) The free shrinkage strain e, (which is usually considered to be uniform over the section).

(b) The creep strain caused by theinitial concrete stress o; existing at the beginning of the
time period, i.e. € = &80 Ec(from Equation 2.9), where A¢isthe increment of the creep
coefficient associated with the time period under consideration.

(¢c) The creep and elastic strain caused by AN(z) and AM(t) gradually applied to the concrete
section. Thisterm accounts for the internal restraint to creep and shrinkage provided by the
bonded reinforcement.

(d) Thetensile creep strain in the high-strength prestressing steel (relaxation).

A convenient approach for the determination of the change of strain during any particular
time period (Ago and Ax in Equation 3.40) involves arelaxation solution procedure first
proposed by Bresler and Selna (1964). During the time interval, the strain at any point on the
cross-section isinitially assumed to remain unchanged, i.e. the change of strain due to creep
and shrinkage is artificialy prevented. If the total strain is held constant and the creep and
shrinkage components change, then the instantaneous compo-
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nent of strain must also change by an equal and opposite amount. As the instantaneous strain
changes, so too does the concrete stress. The concrete stress on the cross-section is therefore
allowed to vary dueto relaxation. As aresult, the internal actions change and equilibriumis
not maintained. To restore equilibrium, an axia force 6N and a bending moment M must be
applied to the section.

The forces required to restrain the section, —o/N and —oM, are easily determined. If creep of
the concrete was not restrained by bonded reinforcement and the concrete stress remained
constant throughout the time period, the top fibre strain and curvature would increase by

Adoiand A¥Xi  respectively. The restraining forces required to prevent this deformation are
determined using expressions similar to Equation 3.22 and 3.23:

—5N¢rup = "Ee A (AcEoi + Bexi) (3 41)

—dMereep = ~E, Ap(Betgi + Icxi) (3.42)

where 4., B, and I. are the concrete area, the first moment of the concrete area and the second
moment of the concrete area about the top surface of the section, respectively. The properties
of the concrete section alone (without any contribution from the steel reinforcement) are used
in Equations 3.41 and 3.42 since only the concrete is subject to creep. The age-adjusted
effective modulus £, (as defined in Equation 2.14) is used in Equations 3.41 and 3.42 because
the restraining forces 6V and 6M are gradually applied throughout the time period.

If shrinkage is uniform over the depth of the section and completely unrestrained, the
shrinkage-induced top fibre strain which develops during the timeinterva is ¢, and thereis
no induced curvature. The restraining forces required to prevent this uniform deformation are
again obtained using expressions similar to Equations 3.22 and 3.23:

= & Nihrinkage = — E;Em.ﬂi ¢
(3.43)

= 8 Minrinkage = — E.e0B. (3.44)

For a prestressed concrete section, restraining forces required to prevent the relaxation Ry in

each layer of tendons must also be included. The restraining forces required to prevent the
tensile creep (which causes relaxation) in the m layers of prestressing steel are

~ ONeusnion = 2 R (3.45
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and

— & Mrelaxation = .I'E:i Ry dFk (3.46)

The total restraining forces are the sum of the creep, shrinkage, and relaxation components:

m

—-oN= "'E A (AL E: i £
f[ i[ £y + x]+EmA]+k§1 Rk (347)

— M= — E.[Ad(Beto: + dioxi 3+ 3
e [Ad (Betoi + Lex;) + E“H}+fr§| Rydps (3.48)

For areinforced concrete section, the relaxation forces Ry in the above equations obviously do
not exist.

The increments of top fibre strain (Ago) and curvature (Ax) produced by the axia force sN
and the moment 6, gradually applied about the top reference level, may be obtained from
the following equations (which are similar to Equations 3.24 and 3.25):

_Be M -1, 6N
At = BT A.l) (3.49)
Ax =E: 6N - A. oM
E.(BZ - A.l.) (3.50)

where 4, isthe area of the age-adjusted transformed section and Beand I, are the first and
second moments of the area of the age-adjusted transformed section about the top surface. For
the determination of 4, Be, and 1., the age-adjusted effective modulus E, is used instead of
the elastic modulus for concrete E.. in the calculation of the transformed area of the bonded
reinforcement. £, is used in Equations 3.49 and 3.50 because 6N and M produce both elastic
and creep strains on the cross-section.

The loss of stressin the concrete at any distance y below the top fibre, which occurs while
the strain state isinitialy held constant (i.e. theinitial stress relaxation), is given by

AGreian = — E. (Ad (€oi + Fxi) + Ea)
(3.51)

and the change of stress which occurs when 6N and M are applied to the section to restore
equilibriumis

AOresrore = Ee':ﬁﬂo + ¥ Ax)
(352)
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The actual change of concrete stress Ao that occurs during the time interval due to the effects
of creep, shrinkage, and relaxation is obtained by adding Equations 3.51 and 3.52:

Ag= ﬁﬂ'ula; + ﬁﬂf:smr:

(3.53)

For non-prestressed stedl, the change of stressin the jth layer is

Aasj= E(Aes + dy Ax)

(3.54)

and, for the kth layer of prestressed steel, the change of stressis

Aok = Ep(Aeo + dp Ax) + R
pk = Zplafot Gp A (3.55)
Example 3.5

The time-dependent behaviour of the cross-section shown in Figure 3.7 is to be determined.
The short-term behaviour of the section immediately after transfer was calculated in Example
3.3. The post-tensioned duct isfilled with grout soon after transfer, thereby bonding the
tendon to the concrete and ensuring compatibility of concrete and steel strains throughout the
period of the time analysis. The material properties for the time period under consideration are

E.=30x 10> MPa; E, = E, =200 x 10* MPa; a¢ = 2.0; x =0.8;
en= —450% 10°% and R = —30 kN.

The strain and stress distributions immediately after transfer are shown in Figure 3.8, and for
M,=100 kKNm,

Coi= —25.4%10"% and x;=-0.378x 10" *mm""
It isassumed in this example that the external moment remains constant and equals 100 KNm
throughout the period of the time analysis.

From Equation 2.14,

— 30 % 10°?

= 30x10° ) s40mpP
=1+ 0.8x2.0) 2

and with the post-tensioning duct fully grouted, the properties of the concrete section are

Ae = 236 500 mmZ; B, = 94.01 x 10° mm?*; [, = 49 850 x 10° mm"*
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The forces required to restrain the cross-section are determined using Equations 3.41-3.46:

— B Nereep = — 11 540 % 2,0[(236 300 x —25.4 x 107%)
+(94.01 X 10%% —0.378 x 107%)] x 10™* = 959 kN

—6Mreep = — 11 540 % 2.0[(94.01 x 10% x —25.4 x 10™%)
+(49 850 x 10° x —0.378 x 107%)) x 10~% =490 kNm

— 8 Nsnrinkage = — 11 540 % —450 % 107°x 236 300 x 1073
= 1227 kN

— 5Mnsinkage = — 11 540 x —450 x 107 % 94.01 x 10® x 10~
= 488 kNm

-a‘-IF"'rrl'I:.:tati-::n_‘= _3{] kN
— 8 Mielaxation = — 30 000 % 600 % 10~ %= —18.0 kNm

Thetotal restraining forces are obtained by summing the individual components using
Equations 3.47 and 3.48:

6N==959-1227+30= —=2156 kN
6M= —490— 488 + 18 = — 960 kNm

The age-adjusted modular ratio is A=EJE. = 17.335nd the age-adjusted transformed section

and its properties about the top reference surface are shown in Figure 3.14.
The increments of top fibre strain and curvature which develop during the

m* l.._'s’m__i (r = 1) Agp = 14700 mm?
A; = 300400 mm®
_ 600
B, = 128.4x 10° mm® 740
- ) ) .
I, = 73230x 10® mm* ) ;{E 1) Ap = 16300 mm
|

o T '\=-<E—1:-,a,1=25ummﬂ

Figure 3.14 Age-adjusted transformed section and properties (Example 3.5).
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timeinterval are obtained from Equations 3.49 and 3.50:

_(128.4 % 10% x — 960 x 10°) — (73 230 % 10 % - 2156 x 10%)

At 11 540((128.4 X 10°)% — (300 400 x 73 230 x 10°)]

= —544 % 10"¢

_ (128.4 x 10° x_ 2156 x 10°) —~ (300 400 x_— 960 x 10°)

X = T S401(128.4 x 10%)7 — (300 400 % 73 230  109)]

= —0.182x 10"  mm ™!
Thefina top fibre strain and curvature are therefore
Eo=Eoi+ Abo= —569% 10°% and

x=xi+ax=—0561 x10"*mm™!

The time-dependent changes of the top and bottom fibre concrete stresses are calculated using
Equations 3.51-3.53:

Age = — 11 540((2.0 X —25.4) — 450 + 544] X 10~% = —0.50 MPa

Agp = —11 540[2.0[ — 25.4 + (800 x — 0.378)] — 450
~ [=544 + (800 x —0.182)] } x 10~ * = 4.80 MPa

and therefore the final concrete stresses are
0o = Opi + A0p= —1.26 MPa and op =ap + Agp= - 5.03 MPa
From Equation 3.54, the change of stress in the non-prestressed steel is
Aasy =200 x 10°[— 544 + (60 x —0.182)] x 10~ = — 111 MPa
Agsy =200 x 103[— 544 + (740 X ~0.182)) x 10™%= — 136 MPa
and from Equation 3.55, the loss of stressin the prestressed stedl is

- 30 000

Ao, =200 x 10°[— 544 + (600 x —0.182)] x 10™°+ 1000

= - 161 MPa



Figure 3.15 Initial and final strains and stresses for Example 3.5.
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The final steel stressesin each layer at time ¢ are therefore
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ﬂ,‘ = 1350
o, =1189

- Gsu=-6l

':rl - - 191

Steel Stress
{MPa)

Oe1 = g1 + Aggy = — 121 MPa; o5 = 053 + Aoz = — 197 MPa;

and gp=op + Adgp = 1189 MPa
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Theinitial and final strains and stress on the cross-section areillustrated in Figure 3.15.

Discussion

The results of several time analyses on the cross-section shown in Figure 3.7 are presented in
Tables 3.1 and 3.2. The effects of varying the quantities of

Table 3.1 Effect of varying tensile stedl 4,, (4,,=0).

M, | Ag | ew | % (x10° | ATy | AT, | AT,1 | As, | Ax(x10°
(kNm) | (mn?) | (x10°) | mm™) (kN) | (kN) | (kN) | (x1079) mm)
0 -8.8 —0.455 0 0 206 -505 —0.629
100 1800 -28.9 -0.372 0 233 160 —-673 +0.035
3600 —44.8 —0.306 0 337 135 —765 +0.402
0 -186 —0.008 0 0 174 —854 +0.221
270 1800 —198 +0.038 0 169 143 -970 +0.677
3600 —-206 +0.075 0 248 125 —-1034 +0.932
0 -364 +0.438 0 0 142 —-1204 +1.071
440 1800 —366 +0.448 0 105 125 —-1267 +1.319
3600 —368 +0.455 0 159 115 —-1303 +1.463
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Table 3.2 Effect of varying compressive steel 4,1 (4,2=1800 mm?).

M A Eoi K (x10° | ATe1 | ATz | ATop Ao Ak (x10°°
(kNm) | (mm?) | (x10°) | mm™?) (kN) | (kN) | (kN) | (x10°®) mm1)
0 -28.9 ~0.372 0 233 160 673 +0.035
100 900 —-25.4 -0.378 100 244 161 -544 -0.182
1800 | —22.3 -0.383 170 | 253 161 ~450 -0.339
0 ~198 +0.038 0 169 143 ~970 +0.677
270 900 ~184 +0.014 136 | 186 143 ~776 +0.353
1800 | 172 ~0.007 227 | 198 143 ~639 +0.121
0 ~366 +0.448 0 105 125 ~1267 +1.319
440 900 -343 +0.407 172 | 127 125 ~1009 +0.887
1800 | -322 +0.370 285 | 143 126 -827 +0.581

the compressive and tensile non-prestressed reinforcement (451 and A2, respectively) on the
time-dependent deformation can be seen for three different values of sustained bending
moment. At /=100 KNm, the initial concrete stress distribution is approximately triangular
with higher compressive stresses in the bottom fibres (as determined in Examples 3.3 and 3.5).
At M=270 kNm, the initial concrete stress distribution is approximately uniform over the
depth of the section and the curvature is small. At A=440 kNm, theinitial stress distribution
isagain triangular with high compressive stresses in the top fibres.

From the resultsin Table 3.1, the effect of increasing the quantity of non-prestressed tensile
reinforcement, A,,, isto increase the change in positive or sagging curvature with time. The
increase is most pronounced when the initial concrete compressive stress at the level of the
steel is high, i.e. when the sustained moment islow and the section isinitially subjected to a
negative or hogging curvature. When 4,,=3600 mm’ and /=100 kNm in Table 3.1, Ax is
positive despite alargeinitial negative curvature. Table 3.1 indicates that the addition of non-
prestressed steel in the tensile zone will reduce the time-dependent camber which often causes
problems in precast members subjected to low sustained loads. For sections on which A is
sufficient to cause an initial positive curvature, an increase in A2 causes an increase in time-
dependent curvature and hence an increase in final deflection (e.g. when A7/=440 kKNm in
Table 3.1).

The inclusion of non-prestressed steel in the compressive zone, Ay, increases the changein
negative curvature with time, asindicated in Table 3.2. For sections where the initia
curvature is positive, such as when M=440 kNm, the inclusion of 4,1 reduces the time-
dependent change in curvature (and hence the deflection of the member). However, when x; is
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negative, 4,1 causes an increase in negative curvature and hence an increase in the camber of
the member with time.

The significant unloading of the concrete with time on the sections containing non-
prestressed reinforcement should be noted. In Table 3.2, when /=270 kNm and 4 ;,;=1800
mm?, the concrete is subjected to a total gradually applied tensile force (AT,4+A T.7+AT,,,) of
568 KN. More than 42% of the initial compression in the concrete is shed into the bonded
reinforcement with time. The loss of prestress in the tendon, however, is only 143 kN (10.6%).
It isevident that an accurate picture of the time-dependent behaviour of a partially prestressed
section cannot be obtained unless the restraint provided to creep and shrinkage by the non-
prestressed steel is adequately accounted for. It is also evident that the presence of non-
prestressed reinforcement significantly reduces the cracking moment with time and may in
fact relieve the concrete of much of itsinitial prestress.

3.6.3 Cracked cross-sections

Under sustained loading, creep causes a change in position of the neutral axis on a cracked
cross-section. In general, the depth to the neutral axis increases with time and, hence, so too
does the area of concrete in compression. An iterative numerical solution procedureis
required to account accurately for this gradual change in the properties of the cracked section
with time. The time period is divided into small intervals and structural behaviour is
calculated at the end of each time increment. The properties of the cross-section are modified
or updated at the end of each time increment. Such a procedure is not suitable for manual
solution and is often too complex for routine use in structural analysis and design.

The procedure described in the previous section for the time analysis of uncracked cross-
sections can be extended to cracked sections, if it is assumed that the cross-sectional area of
the section remains constant with time, that is, if the depth of the concrete above the neutral
axis (d, in Figure 3.16a) is assumed to remain constant throughout the time analysis. This
assumption isin fact necessary if the short-term and time-dependent stress and strain
increments are to be calculated separately and added together to obtain final stresses and
deformations, i.e. if the principle of superposition isto be applied to fully cracked sectionsin
the same way as it has been applied to uncracked cross-sections. The assumption aso greatly
simplifies the analysis and usually resultsin relatively little error.

Consider afully cracked cross-section subjected to a sustained bending moment M, as
shown in Figure 3.16a The short-term and time-dependent strain distributions are illustrated
in Figure 3.16b.

Therestraining actions, —3N and —oM, that are required to prevent the free devel opment of
creep and shrinkage in the concrete and relaxation in the bonded prestressing tendons are
calculated using Equations 3.47 and
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(a) Cross-section (b} Strain

Figure 3.16 Time-dependent behaviour of afully cracked cross-section.

3.48. For afully cracked cross-section, theterms 4, B,, and /.. in these equations are the
properties of the uncracked part of the concrete cross-section with respect to the top fibre. The

depth of the uncracked concrete d, is calculated from the short-term analysis presented in
Section 3.5.2.

The change of the strain distribution with time is calculated using Equations 3.49 and 3.50
and de, Be, and I, are now the properties of the fully cracked age-adjusted transformed
section, i.e. the properties of the cross-section consisting of the concrete compressive zone
and atransformed area of 4s(or "’Aﬂ) at each bonded steel level, where
i = E,|E, (or EpfE.)

The change of concrete stress with time at any depth ¥ € dﬂmay be determined using
Equations 3.51-3.53 and the change of stressin the jth layer of non-prestressed reinforcement
and in the ith layer of prestressing steel may be found from Equations 3.54 and 3.55,
respectively.

Example 3.6

The change of stress and strain with time on the cross-section shown in Figure 3.17aisto be
determined. The sustained bending moment is A/=700 kNm and the initial prestressing force
is P=1350 kN.

The materia properties for the time period under consideration are:

E. = 30 000 MPa; E, = E, = 200 000 MPa; A¢ =2.0; x = 0.8;
esn= —450% 10°% R = —30 kN; and f!= 40 MPa.

The depth of the neutral axisimmediately after the application of the applied moment M is
calculated using the iterative short-term analysis outlined in Section 3.5.2. In this example,

dx = 474 mm
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Figure 3.17 Cross-sectional details and initial strains (Example 3.6).

(asshown in Figure 3.17b). The initial top fibre strain and curvature are

£=—671x10 ° and x;=1.415x10 ® mm?, respectively.

The cracked cross-section and the strain distribution immediately after the application of A/
areshown in Figures 3.17band c.

The age-adjusted effective modulus is obtained from Equation 2.14:

= 30 000
E.= 1+ (08x2.0) 11 540 MPa

and the properties of the uncracked part of the concrete cross-section (i.e. the concrete
compressive zone) with respect to the top fibre are

A= 141 300 mm?; B, = 33.66 x 10° mm?; and I, = 10 650 % 10° mm*
From Equations 3.47 and 3.48,

—-8N=—11540{2.0((141 300 x — 671) + (33.66 x 10° x 1.415))
— (450 x 141 300)} x 107% - 30 = 1793 kN

~8M= = =11 540{2.0[(33.66 x 10% x —671) + (10 650 x 10% x 1.415)]
— (450 x 33.66 x 10%)} % 10~% — (30 000 x 600) X 10~ %= 330 kNm

With the areas of the bonded steel reinforcement transformed into equivalent areas of concrete
of modulus E., the properties of the age-adjusted transformed section are

A, =205 450 mm?; B, = 68.08 x 10° mm?: and I, = 34 030 x 10 mm*.



Page 101

The time-dependent increments of top fibre strain and curvature produced by 6N and oM are
found using Equations 3.49 and 3.50:

_(68.08 X 10° x ~330 x 10°) - (34 030 X 10° x — 1793 x 10%)

Ato 11 540[(68.08 x 10%)* — (205 450 x 34 030 % 10%)]
= —1417% 10°°
Ax = (68.08 % 10° x — 1793 x 10%) — (205 450 x — 330 x 10%)

11 540[(68.08 x 10%)% — (205 450 x 34 030 x 10%))
=1.995% 10" mm™!

The change of stress in the concrete compression zone is obtained from Equations 3.51-3.53:
At y=0:

Ado = — 11 540[2.0(—671) — 450 + 1417) x 10~°
=4.33 MPa
At y=474 mm:
Ags = — 11 540{2.0[ - 671 + (474 x 1.415)] — 450
— [~ 1417 + (474 x 1.995)] x 10~°
= —(.24 MPa
and from Equations 3.54 and 3.55, the change of stressin the steel is
Aoy =200 x 10°[— 1417 + (60 % 1.995)] x 10™° = —259 MPa
Aoy =200 % 10°[- 1417 + (740 x 1.995)] x 10" °= + 12 MPa

30 000

Adp = 200 x 10°[— 1417 + (600 x 1.995)] x 10'5-m= — 74 MPa

Thefinal stresses and strains are illustrated in Figure 3.18.

Thereisarelatively small time-dependent change of stress in the prestressing steel on this
cracked cross-section. If the concrete surrounding a bonded prestressing tendon is cracked
under the sustained load, the loss of steel stress due to creep and shrinkage of the concreteis
generally small. Most practical, partially prestressed concrete members are designed to
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Figure 3.18 Stresses and strains on cross-section of Example 3.6.

remain uncracked under the sustained or permanent in-service loads. Cracking occurs under
the application of the variable live loads. Cracks therefore open and close as the variable live
load is applied and removed. For most of the life of such members, the entire concrete cross-
section isin compression (uncracked) and the time analysis for a general uncracked cross-
section, as outlined in Section 3.6.2, is appropriate.

3.7 Losses of prestress

3.7.1 Definitions

The losses of prestress that occur in aprestressed member areillustrated in Figure 3.19. When
the prestress is transferred to the concrete, immediate losses of prestress occur. The difference
between the prestressing force imposed at the jack, P, and the force in the steel immediately
after transfer at a particular section, P, isthe immediate |oss:

Immediate loss = P; — P;

(3.56)
The gradual loss of prestress that takes place with timeis called the time-dependent or
deferred loss. If P.istheforcein the prestressing tendon after all losses, then
Time-dependent loss = P; - P,
(3.57)

Both of these losses are made up of several components. The immediate |osses are caused by
elastic deformation of the concrete as the prestressis
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Figure 3.19 Losses of prestress.

transferred, friction along the draped tendon in a post-tensioned member, and dlip at the
anchorage. Other sources of immediate loss of prestress which may need to be accounted for
in some situations include deformation of the forms of precast members, temperature changes
between the time of stressing the tendons and casting the concrete, deformation in the joints
of precast members assembled in sections, and relaxation of the tendons prior to transfer. The
time-dependent |osses are caused by the gradual shortening of the concrete at the steel level
due to creep and shrinkage, and by relaxation of the stedl itself. Additional osses may occur
due to time-dependent deformation of the joints in segmental construction.

3.7.2 Elastic deformation losses

Pretensioned members
Immediately after transfer, the change in strain in the prestressing steel As, caused by elastic
shortening of the concrete is equal to the strain in the concrete at the steel level, ¢,,. The
compatibility equation can be expressed as follows:

Erp=up=ﬂﬂ\p =%£
P

E.
The loss of stress in the steel, Aoy, iStherefore

_Er
Adp = F" Gep (3.58)

where g, is the concrete stress at the steel level immediately after transfer.

Post-tensioned members

For post-tensioned members with one cable or with two or more cabl es stressed
simultaneously, the elastic deformation of the concrete occurs during the stressing operation
before the tendons are anchored. In this case, € astic shortening losses are zero. In a member
containing more than one tendon and where the tendons are stressed sequentially, the elastic
deformation losses vary from tendon to tendon and are a maximum in the tendon
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stressed first and a minimum (zero) in the tendon stressed last. It isrelatively simple to
calculate the elastic deformation losses in any tendon provided the stressing sequence is
known. However, these losses are usually small and, for practical purposes, the average
elastic shortening loss is often taken as half the value obtained from Equation 3.58:

—os5Ee
ﬁﬂ'p'- 0.5 EI. Tep (359)

3.7.3 Friction along the tendon

Friction occurs in the jack and anchorage and depends on the type of jack and anchorage
system used. Thislossis usually allowed for during stressing and need not unduly concern the
designer.

In post-tensioned members, friction losses occur along the tendon during the stressing
operation. Friction between the tendon and the duct causes a gradual reduction in prestress
with the distance along the tendon L,,, from the jacking end. The magnitude of the friction loss
depends on the total angular change of the tendon, the distance from the jacking point and the
size and type of the sheathing containing the tendons. A reliable estimate of friction losses
may be obtained from Equation 3.60. An equation of similar form is recommended by
numerous building codes, including ACI 318-83, BS 8110 (1985), and AS 3600-1988.

Pp= Py e~*(e*Btn)
(3.60)

where

P, istheforcein the tendon at any point L,, (in metres) from the jacking end.
P; istheforcein the tendon at the jacking end.

u isafriction curvature coefficient which depends on the type of duct. For strand in bright and zinc-
coated metal ducts, 1~0.2; for greased and wrapped wire or strand, x~0.15; and for strand in an
unlined concrete duct, 4~0.50. Higher values should be used if either the tendon or the duct are
rusted.

a, isthesumin radians of the absolute values of all successive angular deviations of the tendon over
the length L.

B, isan angular deviation or wobble term and depends on the sheath (or duct) diameter:
For ducts containing strand and having an internal diameter as follows:

<50 mm 0.016 < B, < 0.024
>50 and €90 mm 0.012 £ 8, £ 0.016
>90 and < 140 mm 0.008 < 3, < 0.012
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For flat metal ducts: 0.016 < 3, < 0.024
For greased and wrapped bars: /,=0.008.

Example 3.7

Thefriction losses in the cable in the end-span of the post-tensioned girder of Figure 3.20 are
to be calculated. For this cable, x=0.2 and $,=0.01.
From Equation 3.60:

At B: P.=P; & ~0.2(0.105+0.01x9)
=0.962 P i.e. 3.8% losses.

At C: P, = P_;' E—IZI.Z{D.IID-PH.D:I:-!IS:I
=0.925P; i.e. 7.5% losses.

At D: .Pu - Pj e—ﬂ-.![ﬂ.ili*ﬂ.ﬂlx!j}l
=0.893P; i.e. 10.7% losses.

A C L
B
s

; 9m I om i 7m y

| LI ML 1

Slope @ : 0.105 0 0,105 0
[ A a0 0.105 0.210 0.315
L Q 9m 18m 25m

Figure 3.20 Tendon profile for end span of Example 3.7.

3.7.4 Anchorage losses

In post-tensioned members, some slip or draw-in occurs when the prestressing force is
transferred from the jack to the anchorage. This causes an additional 1oss of prestress. The
amount of dlip depends on the type of anchorage. For wedge-type anchorages for strand, the
slip A may be as high as 6 mm. The loss of prestress caused by A decreases with distance
from the anchorage owing to friction and may be negligible at the critical design section.
However, for short tendons, thisloss may be significant and should not be ignored in design.

Theloss of tension in the tendon caused by slip is opposed by friction in the same way as
theinitial prestressing force was opposed by friction, but in the opposite direction, i.e. 4 and
p, are the same. The graph of variation in prestressing force along a member due to friction
(calculated using Equation 3.60) is modified in the vicinity of the anchorage by the mirror
image reduction shown in Figure 3.21. The slope of the draw-in line adjacent to the anchorage
has the same magnitude as the friction loss line but the opposite sign.
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Figure 3.21 Variation in prestress due to draw-in at the anchorage.

In order to calculate the draw-in loss at the anchorage 6P ; the length of the draw-in line L;
must be determined. By equating the anchorage slip A with the integral of the change in strain
in the steel tendon over the length of the draw-in line, L, may be determined. From FHgure
3.21Db, the loss of prestress dueto draw-in 6P at distancex from point Ois

dP=ax

where a istwice the dlope of the prestress line as shown in Figure 3.21. Therefore,

B =
o EpAp 2E,Ap

A= jj'" ox _ L‘:Lﬂz

Rearrangement gives

Lai= /E":—’ﬁ (3.61)

Py =ala

and

The magnitude of the dlip that should be anticipated in design is usually supplied by the
anchorage manufacturer and should be checked on site. Cautious overstressing at the
anchorage is often an effective means of compensating for dlip.

3.7.5 Time-dependent losses of prestress

In Section 3.6, atime analysis was presented for determining the effects of creep, shrinkage,
and relaxation on the behaviour of a prestressed concrete
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beam section of any shape and containing any layout of prestressed and non-prestressed
reinforcement. In this section, the approximate procedures which are often specified in codes
of practice for calculating time-dependent losses of prestress are outlined. These methods are
of limited value and often give misleading results because they do not adequately account for
the significant loss of precompression in the concrete that occurs when non-prestressed
reinforcement is present. For arealistic estimate of the time-dependent behaviour of a
prestressed section, the method described in Section 3.6 is recommended.

Shrinkage losses

The loss of stressin atendon due to shrinkage of concrete may be approximated by

where g, is the shrinkage strain at the time under consideration and may be estimated using
the procedures outlined in Section 2.5. When non-prestressed reinforcement is present and
offers restraint to shrinkage, the stress loss in the tendon will be smaller than that indicated by
Equation 3.62. However, the non-prestressed reinforcement also relieves the concrete of
compression, and the change in the resultant compression in the concrete may be much

greater than the change in tensile force in the tendon. As time increases, more and more of the
compression exerted on the beam by the tendon is carried by the non-prestressed steel and less
and less by the concrete.

Creep losses

Creep strain in the concrete at the level of the tendon depends on the stress in the concrete at
that level. Because the concrete stress varies with time, areliable estimate of creep losses
requires adetailed time analysis (such as that presented in Section 3.6). An approximate and
conservative estimate can be made by assuming that the concrete stress at the tendon level
remains constant with time and equal to itsinitial (usually high) value, . (caused by P; and
the permanent part of the load). With this assumption, the creep strain at any time ¢ after
transfer (at age Te) may be calculated from an expression similar to Equation 2.9):

Oc
(1) = E ®(t, 7o) (3.63)

where ¢ To)is the creep coefficient, which may be estimated using the procedures outlined
in Section 2.5.
If the tendon is bonded to the surrounding concrete, the change of steel
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strain caused by creep is equal to .?) and the creep loss in the tendon may be approximated
by

Adp = &c(1)Ep (3,64

Again, the presence of conventional steel will cause a decrease in the concrete compressive
stress at the stedl level and a consequent decrease in creep. In this case, Equation 3.64 will
overestimate creep losses, often significantly.

Relaxation of steel

Theloss of stressin atendon due to relaxation depends on the sustained stressin the steel.
Owing to creep and shrinkage in the concrete, the stress in the tendon decreases with time at a
faster rate than would occur due to relaxation alone. This decrease in stress level in the tendon
affects (reduces) the magnitude of the relaxation losses. An equation similar to Equation 3.65
is often used to modify the design relaxation to include the effects of creep and shrinkage.
The loss of prestress due to relaxation (as a percentage of theinitial prestress) may be
approximated by

R (1 -2 %) (3.65)

UP:

where R is the design relaxation, which may be obtained from either Equation 2.22 or 2.23;
Aoy istheloss of stressin the tendon due to creep plus shrinkage (from Equations 3.62 and
3.64); and g,; isthe stress in the tendon immediately after transfer.

3.8 Deflection calculations

3.8.1 Discussion

The slope 0 and deflection v at any point x along a member may be calculated by integrating

the curvature * (X)over the length of the member. Provided that deformations are small
compared with the beam dimensions, simple beam theory gives

6= 5 x(x) dx 366

v= “ x(x)dxdx (3.67)

These equations are general and apply for both elastic and inelastic material
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Figure 3.22 Deformation of atypical span and cantilever.

behaviour. For a prestressed concrete beam, the curvature at any point along the span at any
time after first loading can be calculated using the procedures outlined in Sections 3.5 and 3.6.

Consider the span shown in Figure 3.22a. If the curvature at each end of the span (x, and
xg) and at mid-span (xc) are known and the variation in curvature along the member is
parabolic, then the slope at each support (64 and 63) and the deflection at mid-span (v¢) are
given by

=% (xa+ 2x0)

(3.683)
fg= — L (2xc+ x8)
B 6 CT X8 (3.68Db)
LZ
ve =3¢ (x4 + 10xc + x5) (3.68¢)

Similarly, if the variation of curvature along a fixed-end cantilever (such as shown in Figure
3.22D) is parabolic, the slope and deflection at the free end are given by

L
b= — E (x4 +4xs+ xc) (3.698)

F]

L
ve= = T (xa+2xs) (3.69b)

If only the curvatures at each end of the cantilever are known, then

L
HC - = 3' (x-l + ENC} (3.70a)

Ll
ve= == (xa+xc) (3.70b)
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For practical members subjected to usual load configurations, deflection estimates made using
Equations 3.68-3.70 are accurate enough for most design purposes, even where the variation
of curvature along the member is not parabolic.

3.8.2 Short-term deflection

For any uncracked cross-section, the initial curvature may be calculated using Equation 3.25.
A typical numerical example wasillustrated in Example 3.3. For a cracked cross-section, the
initial curvature may be found from Equation 3.36 using the procedure presented in Section
3.5.2 and illustrated in Example 3.4. If the initial curvature at each end of the span of abeam
or slab and at the mid-span are calcul ated, the short-term deflection can be estimated using
Equations 3.68c, 3.69b or 3.70b, whichever is appropriate.

For uncracked, prestressed concrete members, codes of practice generally suggest that the
gross moment of inertia 7, may be used in deflection calculations. The initial curvature at any
cross-section may therefore be approximated by

M- Pe
E.l, (3.72)

Xi=

where P;istheinitial prestressing force and e isits eccentricity below the centroidal axis of
the section.

After cracking, the stiffness of the cracked cross-section calculated using Equation 3.37
may underestimate the stiffness of the member in the cracked region. The intact concrete
between adjacent cracks carries tensile force, mainly in the direction of the reinforcement, due
to the bond between the steel and the concrete. The average tensile stress in the concrete is
therefore not zero and may be a significant fraction of the tensile strength of concrete. The
stiffening effect of the uncracked tensile concrete is sensibly known as tension stiffening and
is usually accounted for in design by an empirical adjustment to the stiffness of the fully
cracked cross-section.

For conventionally reinforced members, tension stiffening contributes significantly to the
member stiffness, particularly when the maximum moment is not much greater than the
cracking moment. However, as the moment level increases, the tension stiffening effect
decreases owing to additional secondary cracking at the level of the bonded reinforcement.
Shrinkage-induced cracking and tensile creep cause areduction of the tension stiffening effect
with time. Repeated or cyclic loading also causes a gradual breakdown of tension stiffening.

For apartially prestressed member (or areinforced member subjected to significant axia
compression), the effect of tension stiffening is less pro-
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nounced because the loss of stiffness due to cracking is more gradual and significantly smaller.
In codes of practice, the simplified techniques specified for estimating the deflection of a
cracked concrete member usually involve the determination of an effective moment of inertia
1, for the member. A number of empirical equations are available for /,. Most have been
devel oped specifically for reinforced concrete, where for a cracked member 1, lies between
the gross moment of inertia of the critical section /, and the moment of inertia of the cracked
transformed section /... For a prestressed concrete section, /. varies with the applied moment
as the depth of the crack gradually changes. The value of I.-is usually considerably less than
1,,, asillustrated in Figure 3.10. The equations used for estimating /, for areinforced section
are not therefore directly applicable to prestressed concrete.
The following two well known procedures for modelling tension stiffening may be applied
to prestressed concrete provided /., replaces 1., in the original formulations:

(a) The empirical equation for 1, proposed by Branson (1963) is perhaps the best known
method and has been adopted in many codes and specifications for reinforced concrete
members, including ACI 318-83 and AS 3600-1988. For a prestressed concrete section,
the following form of the equation can be used:

M 3
If = fav + (Is - Iﬂ"}(-ﬁ) < "rl (372)

where M. isthe moment required to cause first cracking and M is the maximum in-
service moment at the section under consideration.

(b) The CEB (1983) has proposed an aternative approach for reinforced concrete which
accounts for the effect of the reinforcement type on tension stiffening and also accounts for
the breakdown of tension stiffening with time due to shrinkage induced tension, tensile
creep, and repeated loading. The CEB proposal may be modified for cracked, prestressed
sections as follows:

fe=(1=-0Mp+ than
(3.73)

where

£=1-B182 (M M)*
(3.74)

=0 for M<M



and

B =10
=0.5
=0.0

B, =1.0
=0.5

when deformed non-prestressed bars are present;

when plain round bars or bonded tendons only are present;
when unbonded tendons only are present;

for initial loading;

for long-term sustained loads or cycles of load.
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Numerous other approaches have been developed for modelling the tension stiffening
phenomenon. Of the two approaches outlined above, the CEB approach is recommended
because it best accounts for the breakdown of tension stiffening under long-term or cyclic
loading and alows for the reduction in tension stiffening when plain bars or bonded tendons
only are present and the steel -concrete bond might not be perfect.

For most practical prestressed or partialy prestressed members, however, tension stiffening
is not very significant and a reasonable, conservative estimate of deflection can be obtained
by ignoring tension stiffening and using E./., (from Equation 3.37) in the calculations.

Example 3.8

The short-term deflection of auniformly loaded, simply supported, post-tensioned beam of
span 12m is to be calculated. An elevation of the member is shown in Figure 3.23, together
with details of the cross-section at mid-span (which isidentical with that analysed in Example

3.3). The
A C B
_ 60 | [-—-300—-1
e ——— T oo mm?
= s -
12000 I[ 600
T40 T_Q_. —_—a
189
i 6—11000 mm?
1350
1300 - S—8——811 800 mm”*
1250 (b) Section at midspan
] L 12m

(c) Assumed prestressing force

Figure 3.23 Beam details for Example 3.8.
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prestressing cable is parabolic with the depth of the tendon below the top fibre at each support
d,=400 mm and at mid-span ¢,=600 mm, as shown. The non-prestressed reinforcement is
constant throughout the span. Owing to friction and draw-in losses, the prestressing force at
the left support is P=1300 kN, at mid-span P=1300 kN, and at the right support P=1250 kN,
as shown in Figure 3.23c. The tendon has previously been bonded to the surrounding concrete
by filling the duct with grout.

Two service load cases are to be considered:

(@) auniformly distributed load of 6 KN/m (which is the self-weight of the member);
(b) auniformly distributed load of 36 KN/m.

The materia properties are
E.=30x10° MPa; E, = E, = 200 x 10* MPa;

Jfe =40 MPa; f, = 400 MPa; f, = 1840 MPa;

and the flexural tensile strength is taken to be 0.6Jf = 3.8\ pa,

At support A The applied moment is zero for both load cases and the prestressing tendon
islocated at the mid-depth of the section (d,=400 mm) with a prestressing force P=1300 kN.
Using the cross-sectional analysis described in Section 3.5.1, the initial top fibre strain and
curvature calculated using Equations 3.24 and 3.25 are

foi= —174%x10°% and x;=0.020x 10" mm™"

At support B The prestressing forceis P=1250 kN at ¢,=400 mm and M=0. As calculated at
support A, theinitial top fibre strain and curvature are

Eoi= —167%107°% and x;=0.019%10"*mm™!

At mid-span C The prestressing force is P=1300 kN at a depth of 4,=600 mm. For load case
@,

6x12%

M=E

=108 kNm

The cross-section is uncracked and from Equations 3.24 and 3.25

£oi= —38% 107 and xi=-0.311%x10"*mm™!
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for load case (b),

2
M=-MTH=648 KNm

The section at mid-span is cracked and, using the iterative procedure outlined in Section 3.5.2,
the depth to the neutral axisis d,=495 mm. The initial top fibre strain and curvature are

Eoi=—608x10"° and x;=1.229x10"*mm™"
The vaue of 7,, calculated from Equation 3.37 is

_ (648 x 10°) — (1300 x 10° x 189)] x 495

30 000 X 608 x 10~ = 10920 10° mm*

I,

Deflection With theinitial curvature calculated at each end of the member and at mid-span,
the short-term deflection for each load case is determined using Equation 3.68c. For load case

@,

2
= 12;’“ [0.020 + (10 X —0.311) +0.019] x 10~ = —4.6 mm ()
For load case (b),
2
be = ”;‘f 0.020 + (10 X 1.229) + 0.019) x 10~ = 18.5 mm (})

For load case (b), tension stiffening in the cracked region of the member near mid-span was
ignored. To include tension stiffening, the moment required to cause first cracking (i.e. the
moment required to produce a bottom fibre tensile stress of 3.8 MPa) is required. From an
analysis of the uncracked transformed section, the cracking moment M., is 579 kN m. Using
the procedure specified by the CEB (1983) for calculating /,, the  coefficients are $,=1.0 and
2=0.5 (assuming the member is subjected to load repetitions) and from Equations 3.74 and
3.73, respectively,

579\
{=1-1.0x0.5x% (ﬁ) = 0.601
I.= [(1 - 0.601) x 14 760 x 10} + (0.601 x 10 920 x 10°)

=12 450 x 10°* mm*
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The revised curvature at mid-span for load case (b) is

= M~ Pe _ (648 x 10%) — (1300 x 10° x 189)
E.loy 30 000 x 12 450 % 10°

- =1.078x 10" mm™!
and the revised mid-span deflection for load case (b) is

_ 120007
96

Ve [0.020 + (10 x 1.078) + 0.019] x 10"% = 16.2 mm ({)

3.8.3 Long-term deflection

Long-term deflections due to concrete creep and shrinkage are affected by many variables,
including load intensity, mix proportions, member size, age at first loading, curing conditions,
total quantity of compressive and tensile steel, level of prestress, relative humidity, and
temperature. To account accurately for these parameters, atime analysis similar to that
described in Sections 3.6.2 and 3.6.3 isrequired. The change in curvature during any period
of sustained load may be calculated using Equation 3.50. Typical calculations areillustrated
in Example 3.5 for an uncracked cross-section and in Example 3.6 for a cracked cross-section.

When the final curvature has been determined at each end of the member and at mid-span,
the long-term deflection can be calculated using either Equations 3.68c, 3.69b, or 3.70b.

For reinforced concrete members, codes of practice offer ssmple approximate methods for
obtaining ball-park estimates of long-term deflection. The long-term deflection is often taken
to be equal to the short-term deflection due to the sustained or permanent loads times a
multiplication factor. For example, the long-term deflection multiplication factor specified in
ACI 318-83 for the long-term deflection after 5 years under load is

\ o 20
I + 500" (3.75)

wherep’ isthe non-prestressed compressive reinforcement ratio (4./bd) at the mid-span for
simple and continuous spans and at the support for cantilevers.

In prestressed concrete construction, alarge proportion of the sustained external load is
often balanced by the transverse force exerted by the tendons. Under this balanced load, the
short-term deflection may be zero, but the long-term deflection is not. The restraint to creep
and shrinkage offered by non-symmetrically placed, bonded reinforcement on a section can
cause
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significant time-dependent curvature and, hence, significant deflection of the member. The
use of a simple deflection multiplier to calculate long-term deflection from the short-term
deflection is therefore not satisfactory.

In this section, approximate procedures are presented which allow arough estimate of long-
term deflection. In some situations, thisis al that is required. However, for most applications,
the procedures in Sections 3.6.2 and 3.6.3 are recommended.

The final creep induced deflection may be approximated by

*

_
Uer = ? Vsus (376)

where vy, is the short-term deflection produced by the sustained portion of the unbalanced
L}

load and @ isthefinal creep coefficient. If abeam initially hogs upward under sustained

loads (i.e. vy, isupward), in general it will continue to hog upwards with time and v, will

also be upward.

Asseen in Section 2.5, the final creep coefficient ¢"varies from about 2.0 to 4.0, the upper
end of the range for low to medium strength concrete loaded at early ages and located in a
relatively dry environment. For prestressed concrete beams of average size, with Jf¢ = 40Mpa,

exposed to the open air and initially loaded at ages greater than 7 days, li’mistypi cally about
2.5.

The factor o in Equation 3.76 depends on the extent of cracking and the reinforcement
quantity (Gilbert 1983) and may vary from 1.0 to about 3.5. For uncracked, lightly reinforced
prestressed members, such as slabs, the increase in curvature due to creep is nearly
proportional to the increase in strain due to creep and « islittle more than 1.0. For more
heavily reinforced, uncracked members a may be taken as 1.5. For cracked, partially
prestressed members, « is usually about 2.5. For members containing compression stedl, 4.,
the creep deflection, is significantly smaller. This may be taken into account by multiplying o
by the factor 1+4,./4,, where 4, isthe total area of steel in the tension zone.

The deflection caused by shrinkage warping may be approximated by

o= Bl (3.77)

where Xsis the shri nkage induced curvature at mid-span (or at the support of a cantilever); L
is the beam span and 8 depends on the support conditions:

£=0.50 for acantilever;
£=0.125 for asimply supported member;
$=0.090 for an end span of a continuous beam;

$=0.065 for an interior span of a continuous beam.



Page 117

Xshis greater than zero for a non-symmetric steel layout and varies along the span as the
eccentricity of the bonded tendon and the layout of non-prestressed steel varies. For
uncracked prestressed members with small quantities of tensile reinforcement, an approximate
estimate of the final shrinkage curvatureis

T

0.5¢.
D (3.78)

*
Xsh =

For cracked, partialy prestressed members, with significant quantities of conventional
reinforcement, the final shrinkage curvature is significantly higher and may be approximated

by

x
&

= (3.79)

For members containing compressive reinforcement, shrinkage deflection is significantly
lower and may be accounted for by multiplying * ﬁaby 1-4,./4;.

Example 3.9

The final time-dependent deflection of the beam described in Example 3.8 and illustrated in
Figure 3.23 isto be calculated. Asin Example 3.8, two load cases are to be considered:

(a) auniformly distributed constant sustained load of 6 kN/m;
(b) auniformly distributed constant sustained load of 36 KN/m.

For each load case, the time-dependent material properties are
Ap=2.5,x=0.8; eg= —450x 107% and R = - 30 kN
All other material properties are as specified in Example 3.8.
At support A The sustained moment at 4 is zero for both load cases and theinitial

prestress is P=1300 kN at d,, 400 mm. The time-dependent changes of top fibre strain and
curvature calculated using Equations 3.49 and 3.50 are

Ago=—T754x10"% and Ax=0.250%10"*mm™'
Thefinal top fibre strain and curvature are

Coi+ AEe=—928x10"% and x+Ax=0270%10"*mm™!
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At support B Asfor support A, the sustained moment is zero, but the initial prestressis
P=1250 kN. Equations 3.49 and 3.50 give

Ago= —T740%10"° and Ax=0.245%10"%mm™!
and therefore
Eoi+ Afo=~-907x10"% and x;+Ax=0.264 x 10" mm™"

At mid-span For load case (a), M=108 kNm and P=1300 kN at d,=600 mm. For this
uncracked section,

Afo=-586x10"% and Ax=-0.129x 10" * mm™"
and therefore
Eoi+ AEo=—624x10"% and xi+Ax= —0.440x 10"  mm™"

For load case (b), the sustained moment is =648 kNm and for the cracked cross-section,
Equations 3.49 and 3.50 give

Ago=—1520%x10"% and Ax=2.13x10"°mm™"
and therefore
oi+ Afo=—2130%x10"% and »x;+Ax=3.36x10"* mm™’
Deflection With the final curvature calculated at each end of the member and at mid-span, the
long-term deflection at mid-span for each load case is found using Equation 3.68c. For load

case (@),

_ 12000?
96

Uc [0.270 + (10 X —0.440) + 0.264] x 107 = ~ 5.8 mm (1)

For load case (b),

12 0002
Ue =

[0.270 + (10 X 3.36) + 0.264] x 10~ =51.1 mm (})

Consider the more approximate predictions made using Equations 3.76-3.79. The creep
induced deflection is estimated using Equation 3.76. For load case (a), the member is
uncracked with significant quantities of
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non-prestressed steel. The factor « is taken to be

- As) _ 200 _
a—1.5(1+AI) 1,5(1+25m)-—2,{1

L
From Example 3.8, v,,,=—4.6 mm and with ¢ =23 , EqQuation 3.76 gives

2.5
2.0

Uer =

X —4.6=-=58mm (1)

For load case (b), the cross-section at mid-span is cracked and the factor « is taken as

_ As) _ 900 _
:::—2.5(1+A=) 2.5(l+13m)—3.3

From Example 3.8, v,,,=18.5 mm and therefore

2.5
Uer —ﬁx 18.5=14.0mm (1)

For load case (a), the shrinkage induced curvature is given by Equation 3.78:

0.5 % 450 % 10°° ( 900
Xsh =

1-——) =0.191 “*mm™!
300 28[:0) 0.191 x 10™° mm

and from Equation 3.77,
usm=0.125 x 0.191 X 10" % 12 000% = 3.4 mm (})

For load case (b), Equations 3.79 and 3.77 give, respectively,

_450% 10°°
800

Xsh

_ 9003 _ -5 -1
(1 zsm) =0.382 % 10" mm

and
vsh = 0,125 x 0.382x 10~%x 12000 = 6.9 mm ({)

Thefina long-term deflection for each load case is the sum of theinitial deflection and the
creep and shrinkage deflection increments.
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For load case (a),
ve=—4.6-58+34=~7.0mm (%)

(cf. v.=—5.8 mm from the more accurate approach).
For load case (b),

ve=18.5+14.0+6.9= 394 mm (i)

which isamost 30% smaller than the estimate made using the more accurate procedure.
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4
Ultimate flexural strength

4.1 Introduction

The single most important design objective for a structure or a component of a structure isthe
provision of adequate strength. The consequences and costs of strength failures are large and
therefore the probability of such failures must be very small.

The satisfaction of concrete and stedl stress limits at service loads does not necessarily
ensure adequate strength and does not provide areliable indication of either the actual
strength or the safety of a structural member. It isimportant to consider the non-linear
behaviour of the member in the over4oaded range to ensure that it has an adequate structural
capacity. Only by calculating the ultimate capacity of amember can a sufficient margin
between the service load and the ultimate load be guaranteed.

In the 1950s and 1960s, there was a gradual swing away from the use of elastic stress
calculations for the satisfaction of the design objective of adequate strength. The so-called
ultimate strength design approach emerged as the most appropriate procedure. The ultimate
strength of a cross-section in bending M,, is calculated from arational and well established

[flexural strength theory, which involves consideration of the strength of both the concrete and
the steel in the compressive and tensile parts of the cross-section. The prediction of ultimate
flexural strength is described and illustrated in this chapter. When M, is determined, the
design requirements for the strength limit state (as discussed in Section 1.7.6) may be checked
and satisfied.

In addition to calculating the strength of a section, a measure of the ductility of each section
must also be established. Ductility is an important objective in structural design. Ductile
members undergo large deformations prior to failure, thereby providing warning of failure
and allowing indeterminate structures to establish alternative load paths. In fact, it is only with
adequate ductility that the predicted strength of indeterminate members and structures can be
achieved in practice.



Page 122

4.2 Flexural behaviour at overloads

The load at which collapse of aflexural member occursis called the ultimate load. If the
member has sustained large deformations prior to collapse, it is said to have ductile behaviour.
If, on the other hand, it has only undergone small deformations prior to failure, the member is
said to have brittle behaviour. There is no defined deformation or curvature which
distinguishes ductile from brittle behaviour. Codes of practice, however, usually impose a
ductility requirement by limiting the curvature at ultimate to some minimum value, thereby
ensuring that significant deformation occurs in aflexural member prior to failure. Since beam
failuresthat result from a breakdown of bond between the concrete and the steel
reinforcement, or from excessive shear, or from failure of the anchorage zone tend to be
brittle in nature, every attempt should be made to ensure that the region of maximum moment
isthe weakest link. The design philosophy should ensure therefore that a member does not fail
before the required design moment capacity of the section is attained.

Consider the prestressed concrete cross-section shown in Figure 4.1. The section contains
non-prestressed reinforcement in the compressive and tensile zones and bonded tensile
prestressing steel. Also shown in Figure 4.1 aretypical strain and stress distributions for four
different values of applied

1 decompression moment, M,
2 cracking moment, M,
3 post-cracking moment, M.
4 yltimate moment, M,

—oae
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- Ta é-—ﬁﬁ —= Ou — Oz — T T
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e i Eesultant
Stress caused by increasing moment forces

Figure 4.1 Stress and strain distributions caused by increasing moment.
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moment. As the applied moment M increases from typical in-service levelsinto the overload
range, the neutral axis gradually rises and eventually material behaviour becomes non-linear.
The non-prestressed steel may yield if the strain ¢, exceeds the yield strain (¢,=f,/E,), the
prestressed steel may enter the non-linear part of its stress-strain curve as e, increases, and the
concrete compressive stress distribution becomes non-linear when the extreme fibre stress

exceeds about 0:3¢

A flexural member which is designed to exhibit ductility at failure usually has failure of the
critical section preceded by yielding of the bonded tensile stedl, i.e. by effectively exhausting
the capacity of the tensile steel to carry any additional force. Such amember is said to be
under-reinforced. Because the stress-strain curve for the prestressing steel has no distinct yield
point and the stress increases monotonically as the strain increases (see Figure 2.13), the
capacity of the prestressing steel to carry additional force is never entirely used up until the
steel actually fractures. However, when the steel strain ¢, exceeds about 0.01 (for wire or
strand), the stress—strain curve becomes relatively flat and the rate of increase of stress with
strainis small. After yielding, the resultant internal tensile force, 7(=T,+17,) in Eigure 4.1,
remains approximately constant (as does the resultant internal compressive force C, which is
equal and oppositeto 7). The moment capacity can be further increased by an increase in the
lever arm between C and 7. Under increasing deformation, the neutral axisrises, the
compressive zone becomes smaller and smaller and the compressive concrete stress increases.
Eventually, perhaps after considerable deformation, a compressive failure of the concrete
above the neutral axis occurs and the section reaches its ultimate capacity. It is, however, the
strength of the prestressing tendons and the non-prestressed reinforcement in the tensile zone
that control the strength of a ductile section. In fact, the difference between the moment at
first yielding of the tensile steel and the ultimate moment is usually small.

A flexural member which is over-reinforced, on the other hand, does not have significant
ductility at failure and fails without the prestressed or non-prestressed tensile reinforcement
reaching any form of yield. At the ultimate load condition, both the tensile strain at the steel
level and the section curvature are relatively small and, consequently, thereislittle
deformation or warning of failure.

Because it is the deformation at failure that defines ductility, it is both usual and reasonable
in design to define a minimum ultimate curvature to ensure the ductility of a cross-section.
Thisis often achieved by placing a maximum limit on the depth to the neutral axis at the
ultimate load condition. Ductility can be increased by the inclusion of non-prestressed
reinforcing steel in the compression zone of the beam. With compressive stedl included, the
internal compressive force C is shared between the concrete and the steel. The volume of the
concrete stress block above the neutral axis
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istherefore reduced and, consequently, the depth to the neutral axisis decreased. Some
compressive reinforcement is normally included in beams to provide anchorage for transverse
shear reinforcement.

Ductility is desirable in prestressed (and reinforced) concrete flexura members. In
continuous or statically indeterminate members, ductility is particularly necessary. Large
curvatures are required at the peak moment regions in order to permit the inelastic moment
redistribution that must occur if the moment diagram assumed in design isto berealized in
practice.

Consider the stress distribution caused by the ultimate moment on the section in Figure 4.1.
The resultant compressive force of magnitude C equals the resultant tensile force 7" and the
ultimate moment capacity is calculated from the internal couple,

M,=Ci=TI]
4.1)

The lever arm [ between the internal compressive and tensile resultants (C and 7) is usualy
about 0.94, where d isthe effective depth of the section and may be defined as the distance
from the extreme compressive fibre to the position of the resultant tensile force in al the steel
on the tensile side of the neutral axis. To find the lever arm / more accurately, the location of
the resultant compressive force in the concrete C.. needs to be determined. The shape of the
actual stress-strain relationship for concrete in compression is required in order to determine
the position of its centroid.

4.3 Flexural strength theory

4.3.1 Assumptions

In the analysis of a cross-section to determine its ultimate bending strength M., the following
assumptions are usually made:

(a) The variation of strain on the cross-section islinear, i.e. strainsin the concrete and the
bonded steel are calculated on the assumption that plane sections remain plane.

(b) Concrete carries no tensile stress, i.e. the tensile strength of the concrete isignored.

(c) The stress in the compressive concrete and in the steel reinforcement (both prestressed and
non-prestressed) are obtained from actual or idealized stress—strain relationships for the
respective materials.

4.3.2 ldealized rectangular compressive stress blocks for concrete

In order to simplify numerical calculations for ultimate flexural strength, codes of practice
usually specify idealized rectangular stress blocks for the
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Figure 4.2 Ultimate moment conditions and rectangular stress blocks.

compressive concrete above the neutral axis. The dimensions of the stress block are calibrated
such that the volume of the stress block and the position of its centroid are approximately the
same asin thereal curvilinear stress block.

In Figure 4.2a, an under-reinforced section at the ultimate moment is shown. The section
has asingle layer of bonded prestressing steel. The strain diagram and the actual concrete
stress distribution at ultimate are illustrated in Figures 4.2b and ¢, respectively. The idealized
rectangular stress block for the compressive concrete at the ultimate flexural limit state
specified in both ACI 318-83 and AS 36001988 is shown in Figure 4.2d, and that specified
in BS8110: Part 1 (1985) isillustrated in Figure 4.2e.

At the ultimate moment, the extreme fibre compressive strain ¢, istaken in ACI 318-83
(andin AS 3600-1988) to be

Ecp = 0.003

whilein BS 8110: Part 1 (1985), ¢, istaken to be 0.0035. In fact, the actual extreme fibre
strain at ultimate may not be close to either of these values. However, for under-reinforced
members, with the flexural strength very much controlled by the strength of the tensile steel
(both prestressed and
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non-prestressed), variation in the assumed value of ¢., does not have a significant effect on M,,.
The depth of the ACI 318-83's rectangular stress block (in Figure 4.2d) is yd, and the

uniform stressintensity is 0.85£ The parameter y depends on the concrete strength and may
be taken as

y =0.85 - 0.007(f — 28)

0.65 < v < 0.85 (4-2)
yisgivenin Table 4.1 for some standard concrete strength grades.
For the rectangular section of Figure 4.2, the hatched area 4'(=yd,b) is therefore assumed
to be subjected to a uniform stress of 0.85/2and the resultant compressive force C, isthe
volume of the rectangular stress block.
Therefore,

Ce = 0.85fcbydn
(4.3

and the position of C. isthe centroid of the hatched areaA4’, i.e. at a depth of yd,/2 below the
extreme compressive fibre (provided, of course, that 4'is rectangular).
The ultimate moment is obtained from Equation 4.1

M,=1TI= ﬁpu-’qp(dp - 1&)

2 (4.4)

where g, isthe stressin the bonded tendons and is determined from considerations of strain
compatibility and equilibrium.

In accordance with the design philosophy for the strength limit states outlined in Section
1.7.6, the design strength is obtained by multiplying M, from Equation 4.4 by a capacity
reduction factor ®. In ACI 318-83, ¢ = 0-%or flexure (and ¢ = 0-8in AS 3600-1988).

The ultimate curvature is the slope of the strain diagram at failure and is therefore given by

_ecu_ 0.003
““dyn  dn (4.5)
Table 4.1 Variation of y with f"..
savpy | 20 | 25 | 30 | s | a0 | w0

y | oss | o0& | o086 | 08 | 076 | 069%
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The ultimate curvature x, is an indicator of ductility. Large deformations at ultimate are
associated with ductile failures. To ensure ductility of a section at failure, codes of practice
specify minimum limits for x,.. For example, ACI 318-83 limits curvature indirectly by
limiting the quantity of tensile reinforcement, thereby placing a maximum limit of 0.424d on
the depth to the neutral axis at failure. The Australian code AS 3600—1988 suggests that d,,
should not exceed 0.44d,,. Thisis equivalent to suggesting that x, should be greater than or
equal to

0.003 _ 0.0075
0.4dp, d, (4.6)

{xil:]ﬂ'll-l'l =

For the cross-section shown in Figure 4.2, the effective depth ¢ equal s the depth to the
prestressing steel, d,.

The rectangular stress block specified in BS 8110: Part 1 (1985) is shown in Figure 4.2e. It
has an overall depth of 0.9d, and auniform stressintensity of 9-67/e/ym-The parameter y, is
the partial material safety factor for concrete and equals 1.5 (see Section 1.7.6). The stressin
the bonded prestressing stedl is gp./ym Where ,=1.15 for steel. The design strength of the
member [designated M, in BS 8110: Part 1 (1985) but equivalent to ®Muin ACI 318-83] is
therefore given by

M, = 2o A,(d,—

_ ﬂ.45d,,)
.15

2 (4.7)

In the remainder of this chapter, the idealized rectangular stress block and the design
procedure specified in ACI 318-83 (and in AS 3600-1988) will be adopted for all numerical
examples.

4.3.3 Prestressed steel strain components

For reinforced concrete sections, the strain in the non-prestressed steel and in the concrete at
the steel level are the same at any stage of loading. For the prestressing tendons on a
prestressed concrete section, thisis not so. The strain in the bonded prestressing steel at any
stage of loading is equal to the strain caused by the initial prestress plusthe changein strainin
the concrete at the stedl level.

To calculate accurately the ultimate flexural strength of a section, an accurate estimate of
thefinal strain in the prestressed and non-prestressed steel isrequired. Thetensile strain in the
prestressing steel at ultimate ¢, is very much larger than the tensile strain in the concrete at
the steel level, owing to the large initial prestress. For a bonded tendon, ¢, is usualy
considered to be the sum of several sub-components. Figure 4.3 indicates the strain
distributions on a prestressed section at three stages of loading.
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Figure 4.3 Strain distributions at three stages of loading.

Stage (@) shows the elastic concrete strain caused by the effective prestress when the
externally applied moment is zero. The strain in the concrete at the steel level is compressive,
with magnitude equal to

_1 (P, P
Ece = E.-\A4 T (4.8)

where 4 isthe area of the section and / is the second moment of area of the section about its
centroidal axis. The stress and strain in the prestressing steel are

P, a
Ope =—  and £

A, =, (4.9)

provided that the steel stressiswithin the elastic range.

Stage (b) is the concrete strain distribution when the applied moment is sufficient to
decompress the concrete at the steel level. Provided that there is bond between the steel and
the concrete, the change in strain in the prestressing steel is equal to the change in concrete
strain at the steel level. The strain in the prestressing steel at stage (b) is therefore equal to the
value at stage (a) plus atensile increment of strain equal in magnitude to &.. (from Equation
4.8).

Strain diagram (c) in Figure 4.3 corresponds to the ultimate load condition. The concrete
strain at the steel level ¢,, can be expressed in terms of the extreme compressive fibre straine,,,
and the depth to the neutral axis at failure d, as

dp — dn
€pr = rfn[ w3 ) (4.10)

From the requirements of strain compatibility, the change in strain in the
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prestressing steel between load stages (b) and (c) isalso equd to ¢,,. Therefore, the strain in
the prestressing tendon at the ultimate |oad condition may be obtained from

Epu = Epg + Eoe + Ep;
(4.11)

&,, can therefore be determined in terms of the position of the neutral axis at failure d, and the
extreme compressive fibre strain . If ¢, is known, the stressin the prestressing steel at
ultimate o,,, can be determined from the stress-strain diagram for the prestressing steel. With
the area of prestressing steel known, the tensile force at ultimate 7, can be calculated. In
general, however, the steel stressis not known at failure and it is necessary to equate the
tensile force in the steel tendon (plus the tensile force in any non-prestressed tensile steel)
with the concrete compressive force (plus the compressive force in any non-prestressed
compressive steel) in order to locate the neutral axis depth, and hence find ¢..

In general, the magnitude of .. in Equation 4.11 is very much less than either ¢,. or ¢,;, and
may usually be ignored without introducing serious errors.

4.3.4 Determination of M, for a singly reinforced section with bonded tendons

Consider the section shown in Figure 4.2a and the idealized compressive stress block shown
in Figure 4.2d. In order to calculate the ultimate bending strength using Equation 4.4, the
depth to the neutral axis d, and the final stressin the prestressing steel g,, must first be
determined.

Aniterativetrial and error procedure is usually used to determine the value of d, for agiven
section. The depth to the neutral axisis adjusted until horizontal equilibrium is satisfied, i.e.
C=T. Both C and T are functions of d,.. For thissingly reinforced cross-section, C isthe
volume of the compressive stress block given by Equation 4.3 and 7 depends on the strain in
the prestressing stedl, ¢,.. For any value of d,, the strain in the prestressing steel is cal cul ated
using Equation 4.11 (and Equations 4.8-4.10). The stedl stress at ultimate ,,,, which
corresponds to the calculated value of strain ¢,,, can be obtained from the stress-strain curve
for the prestressing steel and the corresponding tensile forceis 7=0,,,4,,.

When the correct value of d, isfound (i.e. when C=T), the ultimate flexural strength M,
may be calculated from Equation 4.4.

A suitable iterative procedure is outlined below. About three iterations are usually required
to determine a good estimate of d, and hence M,,.

(1) Select an appropriate trial value of d, and determine ¢, from Equation 4.11. By equating
thetensile force in the steel to the compressive
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force in the concrete, the stress in the tendon may be determined:

TE'-' ﬂpu.l‘qp = C = G.Bs‘féb'fdn

_ 0.85f1byd,

Tpu
AF

(2) Plot the point ¢, and 4,,, on the graph containing the stress-strain curve for the
prestressing stedl. If the point falls on the curve, then the value of d, selected in step 1 isthe
correct one. If the point is not on the curve, then the stress—strain relationship for the
prestressing steel is not satisfied and the value of d, is not correct.

(3) If the paint ¢,, and o, obtained in step 2 is not sufficiently close to the stress—strain curve
for the steel, repeat steps 1 and 2 with a new estimate of d,,. A larger value for d, isrequired
if the point plotted in step 2 is below the stress—strain curve and asmaller valueis required
if the point is above the curve.

(4) Interpolate between the plots from steps 2 and 3 to obtain a close estimate for ¢,, and o
and the corresponding value for d,.

(5) With the correct values of ¢, and d, determined in step 4, calculate the ultimate moment
M,,. If the area above the neutral axisisrectangular, M, is obtained from Equation 4.4. Non-
rectangular-shaped cross-sections are discussed in more detail in Section 4.6.

Example 4.1

The ultimate flexura strength M, of the rectangular section of Figure 4.4ais to be calculated.
The steel tendon consists of ten 12.7 mm diameter strands (4,=1000 mm?) with an effective
prestress P~1200 kN. The

b—a31s0

— €. =0003  085f

W - ) T

I I
AT

(a) Section (b} Strain () Strain (d) Concrete stress
due to P, at ultimate block at ultimate

Figure 4.4 Section details and stress and strain distributions at ultimate (Example 4.1).
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stress—strain relationship for prestressing steel is as shown in Figure 4.5 and the elastic
modulus is £,=195x10° MPa. The concrete properties are J< = 35MPa, £,=29800 MPa, and
from Equation 4.2, y=0.801.

Theinitial strain in the tendons due to the effective prestressis given by Equation 4.9:

P, 1200 x 103

e T E A, 195x 10° x 1000 =0.00615

The strain in the concrete caused by the effective prestress at the level of the prestressing steel
(ece In Figure 4.4b) is calculated using Equation 4.8. Because &.. is very small compared with
&pe, 1t IS UsUAly acceptable to use the properties of the gross cross-section for its determination.
Therefore,

Ece =

1 (uﬂﬂ x 107 1200 x 10° x 2752

= 0.00040
29800 \750x 350  750° x 350]12 )

The concrete strain at the prestressed steel level at failure is obtained from Equation 4.10:

ﬁﬁﬂ - dﬂ'
Ep]' = ﬂ.m3 ( d" )

and the final strain in the prestressing steel is given by Equation 4.11:

Epu = 0.00655 + 0.003 (‘55':' d_ ""”)

The magnitude of resultant compressive force C carried by the concrete on the rectangular
section is the volume of the idealized rectangular stress block in Figure 4.4d and is given by
Equation 4.3:

C=0.85x35x 350 x 0.801 x d, = 83404,
The resultant tensile force T is given by
T= Apopu = 10000,
Horizontal equilibrium requiresthat C=7 and hence
O = 8.34d,

Trial vaues of d, can now be selected and the corresponding values of ¢,, and o, (calculated
from the above two equations) are plotted on the
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stress—strain curve for the steel, as shown in Figure 4.5:

Tria d, (mm) Epu opu (MPa) Point plotted on Figure 4.5
230 0.0120 1918 (1)
210 0.0128 1751 2
220 0.0124 1835 (©))

Point 3 lies sufficiently close to the stress—strain curve for the tendon and therefore the correct
valuefor d, is close to 220 mm (0.34 d,).

1I.
]
2000 ' N __ f,=1910MPa
oy = 1780 MPa
2
1500 /£
o
z
= 1000 /
S
/ : |
w0 |/ |
0 [ .
0 D05 Kil} 015 02
Strain

Figure 4.5 Stress—strain curve for strand (Example 4.1).
From Equation 4.5, the curvature at ultimate is

x,=%= 13.6x 10" mm ™!

which is greater than the minimum value required for ductility given by Equation 4.6,

~_0.0075 _ 6
(xu}mm = —651} 11.5 x 107" mm
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The ultimate moment is found using Equation 4.4:

x 107 %= 1030 kN m

L = 1835 % IDDD(ESE! - M}

The design strength of the section in flexureis M, where the value of ®for bending can be
obtained from Table 1.1. In structural design, the moment M caused by the most severe
factored load combination for strength (see Section 1.7.3) must be less than or equal to ¢ Mu,

4.3.5 Sections containing non-prestressed reinforcement and bonded tendons

Frequently, in addition to the prestressing reinforcement, prestressed concrete beams contain
non-prestressed longitudinal reinforcement in both the compressive and tensile zones. This
reinforcement may be included for a variety of reasons. For example, non-prestressed
reinforcement isincluded in the tensile zone to provide additional flexural strength when the
strength provided by the prestressing stedl is not adequate. Non-prestressed tensile stedl is
also included to improve crack control when cracking is anticipated at service loads. Non-
prestressed compressive reinforcement may be used to strengthen the compressive zone in
beams that might otherwise be over-reinforced. In such beams, the inclusion of compression
reinforcement not only increases the ultimate strength, but also causes increased curvature at
failure and therefore improves ductility. The use of compressive reinforcement also reduces
long-term deflections caused by creep and shrinkage and therefore improves serviceability. If
for no other reason, compression reinforcement may be included to provide anchorage and
bearing for the transverse reinforcement (stirrups) in beams.

When compressive reinforcement is included, closely spaced transverse ties should be used
to brace lateraly the highly stressed bars in compression and prevent them from buckling
outward. In general, the spacing of these ties should not exceed about 16 times the diameter of
the compressive bar.

Consider the doubly reinforced section shown in Figure 4.6a The resultant compressive
force consists of a steel component Cs(=a545) and a concrete component Ce (=0.85/cbydn),

The stress in the compressive reinforcement is determined from the geometry of the linear
strain diagram shown in Figure 4.6b. The magnitude of strain in the compressive stedl is

_0.003(d, — d.)
b = d, (4.12)

If &5 islessthan or equal to the yield strain of the non-prestressed stedl (¢,=f,/E), then
o.=&E;. If &, exceedstheyield strain, then o, ~f,.
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Figure 4.6 Doubly reinforced section at ultimate.

The resultant tensile force in Figure 4.6d consists of a prestressed component 7,(=o,,4,) and
anon-prestressed component 7(=o,A4,,). The stressin the non-prestressed stedl is determined
from the strain at ultimate, ¢, which is given by

ﬂ-ma(du - d.lr]

Est = d. (4.13)

If &S & then g,=e,E,. If &>z, then o,~,.

In order to calculate the depth to the neutral axis at ultimate, d,, atrial and error procedure
similar to that outlined in Section 4.3.4 can be employed. Successive values of d, are tried
until the value which satisfies the horizontal equilibrium equation is determined:

Tp+Ti=Cc+ G
(4.14)

Since one of the reasons for the inclusion of compressive reinforcement is to improve
ductility, most doubly reinforced beams are, or should be, under-reinforced, i.e. the non-
prestressed tensile stedl is at yield at ultimate. Whether or not the compressive stedl has
yielded depends on its quantity 4. and its depth from the top compressive surface of the
section, d..

If it isassumed initially that both the compressive and the tensile non-prestressed stedl are
at yield, then

C; = Jf}.r"‘tx and T‘ = .JG"AN
From Equation 4.14:

Cf = Tp + T; - C;
0.85fchbydn = 0puAp + fi(Au = Asx)
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and therefore

_0.85/byds — fy(As— Ase)
Opu = Alp (415)

When the value of g,, (calculated from Equation 4.15) and the value of ¢,, (calculated from
Equation 4.11) satisfy the stress—strain relationship of the prestressing stedl, the correct value
of d, has been found. The non-prestressed steel strains should be checked to ensure that the
steel has, in fact, yielded. If the compressive steel is not at yield, then the compressive force
C, has been overestimated and the correct value of d, is slightly greater than the cal culated
value. The compressive stedl stress in Equation 4.15 should be taken as ¢, E,, instead of f,.
Further iteration may be required to determine the correct value of d, and the corresponding
internal forces C., Cs, T, and T.

With horizonta equilibrium satisfied, the ultimate moment of the section may be
determined by taking moments of the internal forces about any convenient point on the
section. Taking moments about the non-prestressed tensile reinforcement level gives

Mu = C;.Ir; + C;l’: - Tpl’_p
(4.16)

For the rectangular section shown in Figure 4.6a, the lever arms to each of the internal forces
are

.f=dc.-“";”, l,=dy~d., and I,=do—dp

In the above equations, Cs and C. are the magnitudes of the compressive forcesin the steel
and concrete, respectively, and are therefore considered to be positive.

The ultimate curvature is obtained from Equation 4.5 and the minimum curvature required
for ductility is given by Equation 4.17, which is the same as Equation 4.6 except that the
depth to the prestressing steel d, isreplaced by d (the depth to the resultant tensile force 7):

() = 2075
Xulmin =4 (4.17)

Example 4.2

To the cross-section analysed in Example 4.1 and shown in Figure 4.4, three 24 mm diameter
non-prestressed reinforcing bars (4,,=1350 mmz) are added in the tensile zone at a depth
d,=690 mm. The ultimate moment M, for the section isto be calculated. The yield stress of
the non-prestressed
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steel is £,=400 MPaand al other material properties and cross-sectional details are as

specified in Example 4.1.
The strain in the prestressing steel at ultimateis as calculated in Example 4.1.

£pu = 0.00655 + 0.003 (65':' - d“)

dn

and the magnitude of the compressive force C, carried by the concrete above the neutral axis
is

Ce = 0.85f¢byd, = 8340d,

From Equation 4.13, the non-prestressed steel is at yield (i.e. €« = & = 0.002) provided that
the depth to the neutral axisd, islessthan or equal to 0.6do(=414 mm). If oy iS assumed to
equal f,, the resultant tensile force 7(=T,+T;) is given by

T=o0puAp+ fyAsg= 10000z, + (400 x 1350) = 1000(0p + 540)
Horizontal equilibrium requiresthat C.=T and hence
opr = 8.34d, — 540

Trial values of d, can now be selected and the respective values of ¢,, and ,,, plotted on the
stress—strain curve for the prestressing steel as shown in Figure 4.7:

Tria d, (mm) Epu apu (MPa) Point Plotted on Figure 4.7
270 0.0108 1712 (4)
290 0.0103 1879 5)
277 0.0106 1770 (6)

Since point 6 lies sufficiently close to the stress—strain curve for the tendon, the correct value
for d, is277 mm.
From Equation 4.5, the ultimate curvatureis

. < 0:003
“Tam

=10.8x 10" mm™?
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Figure 4.7 Stress-strain curve for strand (Example 4.2).

d, ismuch less than 0.6d,(=414 mm) and therefore the non-prestressed steel has yielded, as
was assumed. The depth from the top surface to the resultant force in the tensile steel at
ultimateis

Apd, +f14;rdu
d = Iulple =y = 659 mm
GPHAF""'I;IA;!

The minimum curvature required to ensure some measure of ductility is obtained from
Equation 4.17:

0.0075
659

=11.4% 10" *mm™!

':xu}min =

which is greater than x,. The section is therefore non-ductile and, in design, it would be
prudent to insert some non-prestressed compressive reinforcement to increase the ultimate
curvature and improve ductility (at least to the level required by Equation 4.17).

At ultimate, the compressive force in the concrete is C,=8340d4,= 2310 kN and the tensile
forcein thetendon is 7,=0,,4,=1770 KN. The ultimate moment is cal culated from Equation

4.15:

M, = 2310 X (ﬁm—w) — 1770(690 — 650) = 1267 kN m



Page 138

e gL 900 mm? - } -t C
NIy T ;11,. Y 0801d,| ——t— c:‘
23 _L ; f
650
690

¢ 1000 mm? Epr — T,
| 44| 1350mm?’ By —_ T,

(a) Section {b} Strain () Stress block and
resultant forces

Figure 4.8 Section details and conditions at ultimate for Example 4.3,

Example 4.3

Consider the effect on both strength and ductility of the addition of two 24 mm diameter bars
in the compression zone of the section in Example 4.2. Details of the cross-section are shown
in Figure 4.8, together with the stress and strain distributions at ultimate. All data are as
specified in Examples 4.1 and 4.2.

From Example 4.2, the ultimate strain in the tendons is

£pu = 0.00655 + n,ms(ﬁjﬂ — d")

dn

and the strain in the non-prestressed tensile reinforcement is greater than &,. The magnitude of
the compression stedl strain at ultimate is given by Equation 4.12:

0.003(d, — 60)
fgfg=—m—————
dn
The stress in the compression steel can be readily obtained from &, for any value of d,.. By
equating C=T, an expression for o, Similar to Equation 4.15 is obtained. If the compression
steel isassumed to be at yield, Equation 4.15 gives

(0.85 x 35 % 350 x 0,801 d») — [400 x (1350 — 900)]
pu = 1000

= 8.34d, - 180

Values of ¢, and g, for trial values of d, are tabulated below and plotted as points (7)+9) in
Figure 4.9.
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Tria d, Epu Esc au (MPa) Point plotted on Figure 4.9
250 00114 | >, 1905 7
230 00120 | >, 1738 (8)
239 00117 | >, 1813 9)
i
2000

|
 fpy = 1780 MPa j;}__i’._._ - Jp= 1910 MPa
(6) "(8)
1500 /|

£ / |
ﬁ lm /r
]
500 |
1] =
0 005 0 015 Q2
Strain

Figure 4.9 Stress—strain curve for strand (Example 4.3).

From Eigure 4.9, the point corresponding to ¢,=239 mm lies on the actual stress-strain curve
and therefore represents the correct solution. It is also apparent in Figure 4.9 that the strain in
the prestressing steel at ultimate isincreased by the introduction of compressive
reinforcement [from point (6) to point (9)] and the depth to the neutral axisis decreased. The
ultimate curvature is obtained from Equation 4.5:

_0.003
239

Xu =126 x 10" *mm™!

which represents a 12% increase in final curvature caused by the introduction of the
compressive reinforcement.

The depth d to the resultant tensile force (T=T7,+T,,) remains at 659 mm and the magnitude
of the resultant forces on the cross-section are
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C.=1993 kN, C;=360 kN, T=540 kN, and 7,=1813 kN. The ultimate moment is cal cul ated
using Equation 4.16:

+ 360(690 — 60)

M. = 1993(59{1 _ Mm; 239)

— 1813(650 - 650) = 1339 kNm

which is a5.6% increase in strength. In general, for non-ductile sections, the addition of
compressive reinforcement causes a significant increase in curvature at ultimate (i.e. a
significant increase in ductility) and aless significant but nevertheless appreciable increase in
strength.

4.4 Approximate code-oriented procedures

4.4.1 Bonded tendons

Approximate equations or procedures are specified in some codes of practice for the
estimation of stressin abonded tendon at the ultimate moment. These are generaly
conservative and may be used in lieu of the more accurate determination of o, based on strain
compatibility (as outlined in the previous sections). For example, when the effective prestress
0y (=P./A4,) isnot lessthan 0.5, AS 3600-1988 specifies that the stress in the bonded steel
at ultimate may be taken as

qu=fp(l -%t—z) (4.18)

The same equation (with different notation) is also specified in ACI 318-83. The parameter y
isdefined in Equation 4.2. The term k1 depends on the particul ar type of prestressing steel and
may be taken as

k=040 if 085<2<09
Je

—028 it 2009
e

wheref,, isthe specified yield strength of the prestressing tendon. The term k2 is given by

.l:z = Apfp + {A;! = A_u'}j:y
bdpf: (4.19)
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where b isthe width of the compressive face of the cross-section and d, is the distance from
the extreme compressive fibre to the centroid of the tendons. When compression
reinforcement is present, k> should be taken not less than 0.17. In addition, if the depth to the
compressive steel d. exceeds 0.15 d,, then 4. should be set to zero in Equation 4.19. Other
more accurate procedures are available for calculating o, based on mathematical expressions
for the shape of the stress-strain curve of the prestressing steel, such as that proposed recently
by Loov (1988).

Consider arectangular section such as that shown in Figure 4.6 containing tensile
prestressing steel, and both tensile and compressive non-prestressed reinforcement (4,, A,
and A4, respectively). Assuming the non-prestressed tensile steel is at yield, the total tensile
forcein the steel at ultimateis

T= Tp + Tg = A_p-ﬂ'p” + Aﬂf;-

The magnitude of the total compressive force C consists of a concrete component C. (given
by Equation 4.3) and a steel component Cs=o,.A4s.. That is,

C=Ce+ Cy= 085/ bydn + AscOs

If the non-prestressed compressive stedl isinitially assumed to be at yield and the stressin the
prestressing steel g, is obtained from Equation 4.18, the depth to the neutral axis at ultimate
may be obtained by equating C and 7. Thus,

d. = Apﬂpu + Aruﬂ.- - As:ﬁ-
g 0.85fiby (4.20)

The calculated value of d, can be used to check that the compressive seel hasin fact yielded.
If the steel has not yielded, arevised estimate of o, (=E,¢,.) may be made and used to
calculate anew value of d,. Relatively few iterations are required for convergence.

By taking moments about the level of the tensile steel, the ultimate moment A4, is given by

dn
M. = c,(d., L ) + Culdo = de) = 0pudly(do — dy) 4.21)

where d,, is the distance from the extreme compressive surface to the non-prestressed tensile
reinforcement.

BS 8110: Part 1 (1985) tabul ates approximate values for the tensile stress in the tendons
and the depth to the neutral axis at the ultimate limit state.
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Table 4.2 Conditions at the ultimate limit state for rectangular beams with bonded tendons [BS 8110:

Part 1 (1985)].

S A Y Gy

febd dp

Ope Ope
0.4, 0.5/ 0.6/; 0.4, 0.5/ 0.6/,
0.05 1.00 1.00 1.00 0.11 0.11 0.11
0.10 1.00 1.00 1.00 0.22 0.22 0.22
0.15 0.95 0.97 0.99 0.31 0.32 0.32
0.20 0.88 0.90 0.92 0.38 0.39 0.40
0.25 0.84 0.86 0.88 0.46 0.47 0.48
0.30 0.80 0.83 0.85 0.52 0.54 0.55
0.35 0.76 0.80 0.83 0.58 0.60 0.63
0.40 0.72 0.77 0.81 0.62 0.67 0.70
0.45 0.68 0.74 0.79 0.66 0.72 0.77
0.50 0.64 0.71 0.77 0.69 0.77 0.83

The tabulated values are based on the idealized rectangular stress block shown in Figure 4.2e.
Using the notation adopted in this chapter (and not that of BS 8110), the tensile stressin a

bonded tendon may be taken as

u_p,=hir£

(4.22)

where / may be interpolated from Table 4.2 for any vaue of the effective prestress g, y,, is
the partial material safety factor and equals 1.15. The depth to the neutral axisis also obtained
from Table 4.2. For a cross-section containing only bonded prestressing tendons at a depth d,

BS 8110 specifies the design resistance moment (design strength) as

Mhr = ﬂ"_puA_p(dp - ﬂ+45dﬂ)

Example 4.4

(4.23)

A comparison of the solution calculated in Example 4.1 (using the actual stress—strain

relationship of the prestressing steel) can be made with the
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value obtained using the approximate estimate of o, obtained from Equation 4.18. For this
example, /,=1910 MPaand f,,=1780 M Pa (obtained from Figure 4.5) and the constants 41 and
ko are

1000 x 1910

k=028 and k= 50 % 35

=0.24

From Equation 4.18, the stressin the tendon at ultimate is

0.28 x 0.24

=1910{1 - =17
Opu =19 (] 0.301 ) 1750 MPa

which is 4.6% less than the more accurate value obtained by trial and error in Example 4.1.
From Equation 4.20,

_ 1000 > 1750
0.85 x 35 x 350 = 0.801

dn =210 mm

which compares with ¢,=220 mm in Example 4.1. The ultimate strength is cal culated using
Equation 4.4 (or Equation 4.21):

0.801 x 210

M,.=1?sc:><1m0(ﬁsu- 5 )xm-“zﬂm kN m

Thisis about 4% more conservative than the value obtained in Example 4.1. As expected, the
simplified empirical procedure predicts areasonable and conservative estimate of strength.
However, the ultimate curvature is less conservative because the depth to the neutral axisis
underestimated. The ultimate curvature is obtained from Equation 4.5:

_0.003
~ 210

Xu =14.3%x 10" mm™!

and is 4.6% greater than the previously predicted value. Nevertheless, for practical purposes,
the ssimplified method is a useful design aternative.
The calcul ations are now repeated using the procedure specified in BS 8110: Part 1 (1985).

In Example 4.1,

10 x 1000
ope=1200MPa=0.63 f, and ZeAe_ 1910X1000 _,,,

and from Table 4.2, 1=0.89 and d,=0.47d,=305 mm.
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The stress in the bonded tendons is approximated using Equation 4.22:

_0.89% 1910 1700

= = 147
- BE 1478 MPa

Opu

and Equation 4.23 gives
M, = 1478 x 1000[650 — (0.45 % 305)] x 10" =758 kN m

and the ultimate curvatureis
ap=—=——-=11.5%x10"mm™!

Direct comparison between the values for M, predicted by the approach in AS 3600-1988
(and in ACI 318-83) and the BS 8110 approach is not possible, since the partia materia
safety factors are included in the latter and not in the former.

Example 4.5

In this example, Example 4.3 is reworked using the approximate formulafor ¢, givenin
Equation 4.18:

, — (1000 X 1910) + [(1350 ~ 900) x 400]

ki =0.28 d -0
1=0 an 350 x 650 X 35 0.262
and
0.28 x 0.262
L=1910(1 - 2:28%0.262} _ \..¢,
oo = 191 ( S50 ) 1735 MPa

Assuming all non-prestressed stedl is at yield, the depth to the neutral axisis obtained from
Equation 4.20:

_ (1000 x 1735) + [(1350 — 900) x 400]

dn 0.85 % 35 x 350 % 0.801

= 230 mm
The non-prestressed steel strains are in fact much greater than the yield srain (=0.002) and
the assumption to this effect is therefore correct. The resultant forces on the cross-section are

C.=1915 kN, C;=360 kN, T=540 kN, and 7,=1735 kN, and the ultimate moment is obtained
from Equation 4.6:

0.801 x 230

M, = 1915(69{1— : ) + 360(690 — 60)

= 1735(690 — 650) = 1302 kN m
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Thisis about 3% less than the more accurate value calculated in Example 4.3.

4.4.2 Unbonded tendons

Where the prestressing steel is not bonded to the concrete, the stressin the tendon at ultimate,
opu, 1S Significantly less than that predicted by Equation 4.18 and accurate determination of the
ultimate flexural strength is more difficult than for a section containing bonded tendons. This
is because the fina strain in the tendon is more difficult to determine accurately. The ultimate
strength of a section containing unbonded tendons may be as low as 75% of the strength of an
equivalent section containing bonded tendons. Hence, from a strength point of view, bonded
construction isto be preferred.

An unbonded tendon is not restrained by the concrete aong its length and slip between the
tendon and the duct takes place as the external loads are applied. The steel strain is more
uniform along the length of the member and tends to be lower in regions of maximum
moment than would be the case for a bonded tendon. The ultimate strength of the section may
be reached before the stress in the unbonded tendon reaches the yield stress £,,,. For members
not containing any bonded reinforcement, crack control may be a problem if cracking occurs
in the member for any reason. If flexural cracking occurs, the number of cracksin thetensile
zone is fewer than in a beam containing bonded reinforcement, but the cracks are wider and
less serviceable.

Approximate equations for the stress in an unbonded tendon at the ultimate limit state are
also specified in codes of practice. AS 3600-1988 (and ACI 318-83), for example, specify the
following equations for o,,,,:

(@) If the span to depth ratio of the member is 35 or less:

- Jebd)p
Tpu = 0pe + 10 + 100 A, (MPa) (4.242)
but ¢, should not be taken greater than f,,, or (¢, +400).
(b) If the span to depth ratio of the member is greater than 35:
Opu = Ope + 70 + _'_.LZ’:D{] 4, (MPa) (4.24b)

but not greater than f,, or (g,.+200).

The approximate expressions specified in BS 8110: Part 1 (1985) for o, and the depth to the
neutral axis d, for members containing unbonded
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tendons are
_ 7000 /. JeoAp
and
d. = 247 Ap0p
7 (4.25b)

To ensure ductility and some measure of crack control, it is good practice to include non-
prestressed bonded tensile reinforcement in members with unbonded tendons. However, it is
usual practice in most post-tensioning applications to grout the tendons within the duct after
(or during) construction. Indeed, in Australia, for example, bonded construction is mandatory.

Example 4.6

The ultimate flexural strength of asimply supported post-tensioned beam is to be cal cul ated.
The beam spans 12 m and contains a single unbonded cable. The cross-section of the beam at
mid-span is shown in Figure 4.4a Material properties are as specified in Example 4.1.

The stress in the tendon caused by the effective prestressing force P.=1200 kN is

JF=%=]2{HMPH

iy

With the span-to-depth ratio equal to 16, the stress in the unbonded tendon at ultimate,
according to AS 3600-1988 and ACI 318-83, is given by Equation 4.24a:

35 % 350 x 650
u=1 + 70+ =
ap 200+ 70 100 % 100G 1350 MPa

and therefore the tensile force in the steel is 7,=1350 kN (=C,). The depth to the neutral axis
is calculated using Equation 4.20:

1350 % 10°

n = 5785 % 35 x 350 x 0.801

= [62 mm

and Equation 4.4 gives

0.801 x 162

u=1350><lﬂﬂﬂ(l55ﬂ-— 5 )xl{}"i:?'}ﬂkﬂm
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Using the aternative approach outlined in BS 8110: Part 1 (1985), estimates of ¢,. and d, are
made using Equations 4.25a and b, respectively:

U'p|.r= lzm +F —

7??1 (1—1? 1910 X 1000

: m) = 1459 MPa

and

2.47 x 1000 x 1459
d.n— 35 % 350 = 294 mm

and from Equation 4.23,

M, = 1459 % 1000650 — (0.45 x 294)] x 10" =755 kN m

4.5 Design calculations

4.5.1 Discussion

The magnitude of the prestressing force P. and the quantity of the prestressing steel 4, are
usually selected to satisfy the serviceability requirements of the member, i.e. to control
deflection or to reduce or eliminate cracking. With serviceability satisfied, the member is then
checked for adequate strength. The ultimate moment M, for the section containing the
prestressing steel (plus any non-prestressed steel added for crack control) is calculated and the
design strength is compared with the design action, in accordance with the design
requirements outlined in Section 1.7.6. For example, in ACI 318-83 and in AS 36001988,
the flexural strength is M. The design action M is the moment caused by the most severe
factored load combination specified for the strength limit state (see Section 1.7.3). The design
requirement isthat ®Mu = M™,

The prestressing steel needed for the satisfaction of serviceability requirements may not be
enough to provide adequate strength. When thisis the case, the ultimate moment capacity can
be increased by the inclusion of additional non-prestressed tensile reinforcement. Additional
compressive reinforcement may also be required to improve ductility.

4.5.2 Calculation of additional non-prestressed tensile reinforcement

Consider the singly reinforced cross-section shown in Figure 4.10a. It is assumed that the
effective prestress P,, the area of the prestressing steel 4,, and the cross-sectional dimensions
have been designed to satisfy the serviceability requirements of the member. The idealized
strain and stress distributions specified by ACI 318-83 and AS 36001988 for the ultimate
limit
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(b) Section containing both prestressed and non-prestressed tensile steel.

Figure 4.10 Cross-sections containing tensile reinforcement at the ultimate limit state (AS 3600-1988
and ACI 318-83).

state are a'so shown in Figure 4.10a. The ultimate moment for the section is denoted M,1,
where

dn
Mnl. = UpﬂlAp(dp - TE 1) (426)

The tendon stress at ultimate ¢,,,; may be calculated from the actual stress-strain curve for the
steel (asillustrated in Example 4.1) or from the approximation of Equation 4.18 (as illustrated
in Example 4.4).

If the design strength ®Miuis greater than or equal to M, then no additional steel is
necessary. The cross-section has adequate strength. If $Mujs |essthan M, the section is not
adequate and additional tensile reinforcement is required.

In addition to providing adequate strength, it is important also to ensure that the section is
ductile. In order that the curvature at ultimate x,, is large enough to impart ductility, an upper
limit for the depth to the neutral axis of about 0.4d,, is usually specified. However, to ensure

ductility, a more satisfactory range for the depth to the neutral axis at failureis dn < 03dp |
thevalue of d,; in Figure 4.10a is outside this range, some additional non-prestressed
compressive reinforcement is required to relieve the concrete compressive zone and reduce d,,.
The design procedure outlined in
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Section 4.5.3 for doubly reinforced cross-sections is recommended in such a situation.

For the cross-section shown in Figure 4.10a, if #Muiislessthan A/ and if d1 is small so
that ductility is not a problem, the aim in design is to calculate the minimum area of non-
prestressed tensile reinforcement A, to be added to the section to satisfy strength requirements

(i.e thevalue of A such that ®Mu=M") | Figure 4.10b, the new cross-section containing
A, 1s shown, together with the revised strain and stress distributions at ultimate. With d, small
enough to ensure ductility, the steel strain is greater than the yield strain e,(=f,/E,), S0 that
o=f,- The addition of 4, to the cross-section causes an increase in the resultant tension at
ultimate (7,+T;) and hence an increase in the resultant compression (C.). To accommodate
this additional compression, the depth of the compressive stress block in Figure 4.10b must be
greater than the depth of the stress block in Figure 4.10a(i.e. yd,>yd,;1). The increased value
of d, resultsin areduction in the ultimate curvature (i.e. adecrease in ductility), areductionin
the strain in the prestressing steel, and a consequent decreasein o,,. The decreaseing,,, is
relatively small, however, provided that the section has adequate ductility (i.e. provided that
the value of d, remains less than about 0.3d,).

If 0, is assumed to remain constant, afirst estimate of the magnitude of the area of non-
prestressed steel A4, required to increase the ultimate strength from M,,; (the strength of the
section prior to the inclusion of the additional stedl) to M, (the required strength of the
section) may be obtained from

Mu - erj

A== (4.27)

where [ isthe lever arm between the tension force in the additional steel 7', and the equal and
opposite compressive force C 2 which results from the increase in the depth of the
compressive stress block. The lever arm / may be approximated initially as

I=0.%dy — vdm)

where d,1 isthe depth to the neutral axis corresponding to M, 1.

Example 4.7
The ultimate strength of the singly reinforced section shown in Figure 4.11 is M,;=1120 kNm.
The stress and strain distributions corresponding to M,,;, are aso shown in Figure 4.11 and the
material properties are fe=35\Mpa (y=0.801) and #,=1860 MPa.
Calculate the additional amount of non-prestressed tensile reinforcement
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Figure 4.11 Singly reinforced cross-section at ultimate (Example 4.7).

(f,=400 MPa) required to increase the ultimate strength of the section to M, =1450kNm.

For the section in Figure 4.11, d,,=172.4 mm=0.23d,, and the section is ductile. If the
additional tensile steel isto be added at d,=840 mm, then the lever arm [ in Equation 4.27 may
be approximated by

[=0.9(de = ydn )= 0.9(840 - 138.1) = 632 mm
and the required area of non-prestressed stedl is estimated using Equation 4.27:

_ (1450 - 1120) x 10°

— 2
00x632 1305 mm

Ast

Choose three 24 mm diameter bars (4,,=1350 mmz) located at a depth do=840 mm.
A check of this section to verify that M« 2 1450kN mand that the section is ductile can
next be made using the trial and error procedure illustrated in Example 4.2.

4.5.3 Design of a doubly reinforced cross-section

For asingly reinforced section (such as that shown in Figure 4.128) in which d,1 is greater
than about 0.3d,, the inclusion of additional tensile reinforcement may cause ductility
problems. In such cases, the ultimate strength may be increased by the inclusion of suitable
quantities of both tensile and compressive non-prestressed steel without causing any reduction
in curvature, i.e. without increasing d,. If the depth to the neutral axisis held constant at d,1,
the values of both C. (the compressive force carried by the concrete) and 7, (the tensile force
in the prestressing steel) in Figures 4.12a and b are the same. In each figure, C. is equa to 7).
With the strain diagram in
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{b) Section containing top and bottom non-prestressed steel
Figure 4.12 Doubly reinforced section at ultimate (AS 3600-1988 and ACI 318-83).

Figure 4.12b known, the strains at the levels of the non-prestressed steel may be calculated
using Equations 4.12 and 4.13, and hence the non-prestressed steel stresses g, and o, may be
determined. The equal and opposite forces which result from the inclusion of the non-
prestressed steel are

Ti= Autsu and Cs= Asctse
(4.28)

If M, isthe strength of the singly reinforced section in Figure 4.12a (cal culated using
Equation 4.26) and M,, isthe required strength of the doubly reinforced cross-section, the
minimum area of the tensile reinforcement isgiven is

- Mu = Mu'l
Au= 'Fﬂ'{da"‘ dc:'

(4.29)

For conventional non-prestressed steel, o=/, provided that the depth to the neutral axisd,
satisfies the stated ductility requirements. For equilibrium, the forces in the top and bottom
non-prestressed steel are equal and opposite, i.e. C=T, since C.=T,. From Equation 4.28,

= Asilsr

As se (4.30)
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If the depth to the neutral axisin Figure 4.12ais greater than about 0.4d,, then the section is
non-ductile and the value of d, must be reduced. An appropriate value of d, may be selected
(say d,=0.3d,). For thisvaue of d,, all the steel strains (e &5, and g,;) and hence all the steel
stresses at ultimate (o, oy, and g,,,) may be determined. With ¢,, calculated from the assumed
valuefor d,, thetotal strain in the prestressing steel can be calculated using Equation 4.11 and
the stress g, can be read directly from the stress-strain curve. In this way, the magnitude of
the tensile force in the tendon (7,=A4,0,.) and the compressive force in the concrete

(Ce=0. BSJ"fr'ﬁ'"-"‘ﬂ'“)may be evaluated. If the required strength of the section is M, the

minimum area of compressive steel can be obtained by taking moments about the level of the
non-prestressed reinforcement. That is,

My + Tpldo = dp) = Ce (ﬂrﬂ - T:") (4.31)
-O'n-':dn = dc]

Ase =
Horizontal equilibrium requires that 7,=C.+Cs—T), and therefore the area of non-prestressed
tensile stedl is

0.85fcbydn + Asetse = Aptpu
Car (4.32)

Ag=

Example 4.8

Additional non-prestressed stedl is required to increase the ultimate flexural strength of the
section in Figure 4.4 (and analysed in Example 4.1) to M,=1300 KNm.

From Example 4.1, M,,;=1030 kNm and d,,;=220 mm. If only non-prestressed tensile steel
were to be added, the lever arm / in Equation 4.27 would be

1= 0.9(ds — ydur) = 0.9[690 — (0.801 x 220)] = 462 mm
and from Equation 4.27,

_, (1300 — 1030) x 108

_ 3
200 x 462 1461 mm

A:H‘

This corresponds to the addition of four 24 mm diameter bars in the bottom of the section
shown in Figure 4.4 at a depth do=690 mm.

A check of the section to verify that M« 2 1300kN m can next be made using the trial and
error procedureillustrated in Example 4.1. In this example, however, the neutral axis depth
increases above 0.44 and the curvature at ultimate is less than the recommended minimum
value. For this section,
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it is appropriate to supply the additional moment capacity via both tensile and compressive
non-prestressed reinforcement.

If the depth to the neutral axisis held constant at the value determined in Example 4.1, i.e.
d,=220 mm, then the stress and strain in the prestressed steel remain as previously calcul ated,
i.e

eu=00124 and g, = 1835 MPa

If the depth to the compressive reinforcement is ¢, =60 mm, then from Equation 4.12,

sc = G.UUS[;;S —%0_ 0.00218 > ¢  and S 05 = fy =400 MFa
From Equation 4.13,
Ex= D,Uﬂ3[ﬁ;?]—- 220) =0.00641 = ¢ and S g = f, =400 MPa

The area of additional tensile steel is obtained using Equation 4.29:

_ (1300 - 1030) x 10°

— 2
A= 400(690 — 60) = 1070 mm

and from Equation 4.30,
Asc = A = 1070 mm?

Use three 24 mm diameter non-prestressed tensile bars at do=690 mm and three 24 mm
diameter barsin the top of the section at d,=60 mm.

4.6 Flanged sections

Flanged sections such as those shown in Figure 4.13aare commonly used in prestressed
concrete construction, where the bending efficiency of |-, T-, and box-shaped sections can be
effectively utilized. Freguently, in the construction of prestressed floor systems, beams or
wide bands are poured monolithically with the slabs. In such cases, a portion of slab acts as
either atop or abottom flange of the beam, as shown in Eigure 4.13b. Codes of practice
generally specify the width of the slab which may be assumed to be part of the beam cross-
section (i.e. the effective width of the flange, b,).

Both AS 3600-1988 and BS 8110: Part 1 (1985) contain the following
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Figure 4.13 Typical flanged sections.

simple recommendations:

For T-sections: ber= b+ 0.2L,

For L-sections: bes= bw + 0.1Lo (4.33)

except that the overhanging part of the effective flange should not exceed half the clear
distance to the next parallel beam. Theterm b,, is the width of the web of the section. Lo isthe
distance along the beam between the points of zero bending moment and may be taken as the
actual span for simply supported members and 0.7 times the actual span for a continuous
member.

ACI 318-83 suggests that the effective width of the flange of a T-beam should not exceed
one quarter of the span length of the beam, and the effective overhanging flange width on
each side of the web should not exceed either eight times the slab thickness or one half the
clear distance to the next web. For L -beams with a slab on one side only, the effective
overhanging flange width should not exceed either one twelfth of the span of the beam, or six
times the slab thickness, or half the clear distance to the next web.

The flexural strength theory discussed in Section 4.3 can aso be used to calculate the
flexural strength of non-rectangular sections. The equations developed earlier for rectangular
sections are directly applicable provided the depth of the idealized, rectangular stress block is
less than the thickness
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of the flange, i.e. provided the portion of the section subjected to the uniform compressive
stressis rectangular (b.r wide and yd, deep). The ultimate strength M, is unaffected by the
shape of the section below the compressive stress block. If the compressive stress block acts
on anon-rectangular portion of the cross-section, some modifications to the formulae are
necessary to calcul ate the resulting concrete compressive force and its line of action.
Consider the T-sections shown in Figure 4.14 and the idealized rectangular stress block

defined in Figure 4.2d. If RLLRS ! the area of the concretein compression A’ is rectangular,
as shown in Figure 4.14a, and the strength of the section isidentical with that of arectangular
section of width b.rcontaining the same tensile steel at the same effective depth. Equation
4.21 may therefore be used to calculate the strength of such a section. The depth of the neutral
axis d, may be calculated using Equation 4.20, except that b, replaces b in the denominator.

If yd,>t, the area of concrete in compression 4'is T-shaped, as shown in Figure 4.14b.
Although not strictly applicable, the idealized stress block may still be used on this non-
rectangular compressive zone. A uniform stress of 0-85/¢may therefore be considered to act
over thearea 4'.

It is convenient to separate the resultant compressive force in the concrete

L—-—-—-—bﬂr-—-—-—-l_[*rd-e 0003_fyds 085f% ¢, = 0.85f by
T T B Con st

,. T >

_ A, N Opu T =0ud,
_— . —i—
+ | = A, B . T, =Gy
) I
-
Section Strains Stresses Forces

{a) Stress block in Aange.

085f% ¢ = 085f byt

l h .
IR E <

Epd — Opu e Tp = Tl
| — Oy — T = 0uAy
Strains Stresses Forces

{b) Stress block in web

Figure 4.14 Flanged section subjected to the ultimate moment.
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into aforce in the flange C.rand aforce in the web C.,, as shown:

C‘:‘f= ﬂ- Esﬁrbgf aﬂ.d Ccu-' = Gvssf(:{-rrdﬂ - r}bh‘
(4.34)

By equating the tensile and compressive forces on the section, the depth to the neutral axis d,
can be determined by trial and error and the ultimate moment M, can be obtained by taking
moments of the internal forces about any convenient point on the cross-section.

Example 4.9

The ultimate flexural strength of the standardized double tee section shown in Figure 4.15 is
to be calculated. The section contains atotal of 22 12.7 mm diameter strands (11 in each
cable) placed at an eccentricity of 408 mm. The effective prestressing force P. is 2640 kN.
The stress—strain relationship for the prestressing steel is shown in Figure 4.16 and the initial
elastic modulusis £,=195000 MPa. The properties of the section and other relevant material
data are asfollows:

A=371%x10° mm? I=22.8x10°mm?* A4,=22x100= 2200 mm?;
fp=1880 MPa; Z,=43.7x 10°mm?; Z =82.5x10° mm?;
E. =27800 MPa; f!= 35 MPa; y=0.801.

Using the same procedure as was illustrated in Example 4.1, the strain componentsin the
prestressing steel are obtained from Equations 4.8—4.10:

2640 x 10°

= = 0.00615
€r¢ = 195 000 » 2200 -~ 0006

e "™ l
L P, R -—t @ E-_ -|| ¢ >
217 Y" J - I h T
Tk I}
l —

Figure 4.15 Standard 2400x800 double tee (CPCI 1982).
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_ 1 [2640x10° 2640 x 10® x 4082 9009
Fee = 27800 (3?1 x10° T 228x10° ) = 0-000%
3= 0,003 (685m a‘,,)

and therefore from Equation 4.11,

£pu = 0.0071 + 0.003 ('535 _ d“)

At this point, an assumption must be made regarding the depth of the equivalent stress block.
If yd, isless than the flange thickness, the cal culation would proceed as in previous examples.
However, asimple check of horizontal equilibrium indicates that yd, is significantly greater
than 50 mm. From Equation 4.34:

Cer=0.85 x 35 x 50 x 2400 = 3570 kN

In this example, the web is tapering and b,, varies with the depth. The width of the web at a
depth of yd, is given by

=210 Y%
b1 =210 T

The compressive force in the web is therefore

Cow= GESﬂ{Tdﬂ - 53} (g—ﬂ'—j'*%'b—ul*) ®2

= 10000d, — 1.909d,* - 617 300
The resultant compression forceis
C=Cy+ Cenw=2953000 + 10000dn - 1.909d,*
and the resultant tension is
T = 22000,
Equating C and T gives

opu = 1342 + 4.549d,, — 0.000868d,.*
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Trial values of d, may now be used to determine ¢, and o,,, from the above expressions and
the resulting points plotted on the stress—strain diagram of Figure 4.16:

Trid d, Epu Opu Point plotted on Figure 4.16
130 0.0199 1919 (1)
110 0.0228 1832 2
115 0.0220 1854 ©)
[
2000 _
(IN__)
- T™2)

1500 /

Stress (MPa)

0 005 m D15 02 025
Strain

Figure 4.16 Stress-strain for strands in Example 4.9.

From Figure 4.16, the neutral axisis close enough to d,=115 mm. The depth of the stress
block is yd,=92.1 mm, which is greater than the flange thickness (as was earlier assumed).
The resultant forces on the cross-section are

T=1854x2200=4079 kN=C

For this section, d,=0.17d<0.4d,, and therefore the failure is ductile. The compressive forcein
the flange C.,=3570 kN acts 25 mm below the top surface and the compressive force in the
web C,.,,=509 kN acts at the centroid of the trapezoidal areas of the webs aboveyd,, i.e. 71.0
mm below the top surface.
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By taking moments of these internal compressive forces about the level of the tendons,

M, = 3570(685 — 25) + 509(685 — 71) = 2670 kNm
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S
Design for shear and torsional strength

5.1 Introduction

In Chapter 3, methods were presented for the determination of normal strains and stresses
caused by the longitudinal prestress and the bending moment at a cross-section. Procedures
for calculating the flexural strength of beams were discussed in Chapter 4. In structural design,
shear failure must also be guarded against. Shear failure is sudden and difficult to predict with
accuracy. It results from diagonal tension in the web of a concrete member produced by shear
stress in combination with the longitudinal normal stress. Torsion, or twisting of the member
about itslongitudinal axis, also causes shear stresses which lead to diagonal tension in the
concrete and consequential inclined cracking.

Conventional reinforcement in the form of transverse stirrupsis used to carry the tensile
forces in the webs of prestressed concrete beams after the formation of diagonal cracks. This
reinforcement should be provided in sufficient quantities to ensure that flexural failure, which
can be predicted accurately and is usually preceded by extensive cracking and large
deformation, will occur before diagonal tension failure.

In slabs and footings, alocal shear failure at columns or under concentrated loads may also
occur. This so-called punching shear type of failure often controls the thickness of flat slabs
and plates in the regions above the supporting columns. In this chapter, the design for
adequate strength of prestressed concrete beams in shear and in combined shear and torsion is
described. Procedures for determining the punching shear strength of slabs and footings are
also presented.
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SHEAR IN BEAMS

5.2 Inclined cracking

Cracking in prestressed concrete beams subjected to overloads depends on the local
magnitudes of moment and shear, as shown in Figure 5.1. In regions where the moment is
large and the shear is small, vertical flexural cracks appear after the normal tensile stressin
the extreme concrete fibres exceeds the tensile strength of concrete. These are the cracks
referred to in Section 3.5.2 and are shown in Figure 5.1 as crack type A. Where both the
moment and shear force arerelatively large, flexural cracks which are vertical at the extreme
fibres become inclined as they extend deeper into the beam owing to the presence of shear
stresses in the beam web. These inclined cracks, which are often quite flat in a prestressed
beam, are called flexure-shear cracks and are designated crack type B in Eigure 5.1. If
adequate shear reinforcement is not provided, a flexure-shear crack may lead to a so-called
shear-compression failure, in which the area of concrete in compression above the advancing
inclined crack is so reduced as to be no longer adequate to carry the compression force
resulting from flexure.

A second type of inclined crack sometimes occurs in the web of a prestressed beam in the
regions where moment is small and shear islarge, such as the cracks designated type C
adjacent to the discontinuous support and near the point of contraflexurein Figure 5.1. In such
locations, high principa tensile stress may cause inclined cracking in the mid-depth region of
the beam before flexural cracking occursin the extreme fibres. These cracks are known as
web-shear cracks and occur most often in beams with relatively thin webs.

I

P
. .

®

Region A - Flexural cracks { M/V is high)
RegionB - Flexure-shear cracks { M /V is moderate)
Begion C - Web-shear cracks ( MV is low)

Figure 5.1 Types of cracking at overload.
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5.3 Effect of prestress

The longitudinal compression introduced by prestress delays the formation of each of the
crack types shown in Figure 5.1. The effect of prestress on the formation and direction of
inclined cracks can be seen by examining the stresses acting on a small element located at the
centroidal axis of the uncracked beam shown in Figure 5.2. Using asimple Mohr’scircle
construction, the principal stresses and their directions are readily found. When the principal
tensile stress o, reaches the tensile strength of concrete, cracking occurs and the cracks form
in the direction perpendicular to the direction of o71.

When the prestressis zero, o1 is equal to the shear stress 7and acts at 45° to the beam axis,
as shown in Figure 5.2a. If diagona cracking occurs, it will be perpendicular to the principal
tensile stress, i.e. at 45° to the beam axis. When the prestressis not zero, the normal
compressive stress o (=P/A4) reduces the principal tension o1, asillustrated in Figure 5.2b. The
angle between the principal stress direction and the beam axis increases, and consequently if
cracking occurs, theinclined crack isflatter. Prestress therefore improves the effectiveness of
any transverse reinforcement (stirrups) that may be used to increase the shear strength of a
beam. With prestress

LY ’..r"
AR ] j . i
— Y -— T
P ~ = °
i Yo
A o = arud ==
AL o=y =TI
|- Shear
(a)If P=0: (0,+1) - o
- 90 oA
T 1 Mormal
— 1l a l._. — oo R
% 0 (90 —-8,)= 45"
e /
0,~t) R %
MIfF=>0: Shear
(-0, +1) T
I - \ P
__Tt A I_g_ MNormal
o T o oy o
3 Gy (¥ =8,)> 45"
-1 g,

Figure 5.2 Effect of prestress on principal stressesin abeam web.
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causing theinclined crack to be flatter, alarger number of the vertical stirrup legs are crossed
by the crack and consequently alarger tensile force can be carried across the crack.

In the case of 1-beams the maximum principal tension may not occur at the centroidal axis
of the uncracked beam where the shear stressis greatest, but may occur at the flange-web
junction where shear stresses are till high and the longitudinal compression is reduced by
external bending.

If the prestressing tendon isinclined at an angle 6, the vertical component of prestress P,
(=P sin ,~P6,) usually acts in the opposite direction to the load induced shear. The force P,
may therefore be included as a significant part of the shear strength of the cross-section.
Alternatively, P, may be treated as an applied load and the nett shear force, V, to be resisted
by the section may be taken as

V= V]uad-s - Pu
(5.1)

In summary, the introduction of prestress increases the shear strength of reinforced concrete
beams. Nevertheless, prestressed sections often have thin webs, the thickness of which may
be governed by shear strength considerations.

5.4 Web reinforcement

In abeam containing no shear reinforcement, the shear strength is reached when inclined
cracking occurs. Theinclusion of shear reinforcement, usually in the form of vertical stirrups,
increases the shear strength. After inclined cracking, the shear reinforcement carries tension
across the cracks and resists widening of the cracks. Adjacent inclined cracksformin a
regular pattern. The behaviour of the beam after cracking is explained conveniently in terms
of an analogous truss, first described by Ritter (1899) and shown in Figure 5.3b.

The web members of the analogous truss resist the applied shear and consist of vertical
tension members (which represent the vertical legs of the closely spaced sted stirrups) and
inclined compression members (which model the concrete segments between the inclined
cracks). In reality, there exists a continuous field of diagonal compression in the concrete
between the diagonal cracks. Thisisidealized in the analogous truss by the discrete diagonal
compression struts. In asimilar manner, the vertical members of the anal ogous truss may
represent a number of more closely spaced vertical stirrups. The top compressive chord of the
anal ogous truss represents the concrete compressive zone plus any longitudinal compressive
reinforcement, and the bottom chord models the longitudinal prestressed and non-prestressed
reinforcement in the tensile zone. At each panel point along the
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Figure 5.3 Beam containing shear reinforcement.

bottom chord of the analogous truss, the vertical component of the compressive forcein the

inclined concrete strut must equal the tension in the vertical steel member, and the horizontal
component must equal the change in the tensile force in the bottom chord (i.e. the change in

force in the prestressing tendon and any other longitudinal non-prestressed reinforcement).

The analogous truss can be used to visualize the flow of forcesin a beam after inclined
cracking, but it is at best a simple model of arather complex situation. The angle of the
inclined compressive strut 6, has traditionally been taken as 45°, although in practical beams
itisusualy less. The stirrup stresses predicted by a 45° analogous truss are considerably
higher than those measured in real beams (Hognestad 1952), because the truss is based on the
assumption that the entire shear forceis carried by the vertical stirrups. In fact, part of the
shear is carried by dowel action of the longitudinal tensile steel and part by friction on the
mating surfaces of the inclined cracks (known as aggregate interlock). Some shear may also
be carried by the uncracked concrete compression zone. In addition, the truss model neglects
the tension carried by the concrete between the inclined cracks. The stressin the vertical legs
of the stirrupsin area beam is therefore a maximum at the inclined crack and significantly
lower away from the crack.

At the ultimate limit state, shear failure may beinitiated by yielding of the stirrups or, if
large amounts of web reinforcement are present, crushing of the concrete compressive strut.
The latter is known as web-crushing and is usually avoided by placing upper limits on the
guantity of web reinforcement. Not infrequently, premature shear failure occurs because of
inade-



Page 165

quately anchored stirrups. The truss analogy shows that the stirrup needsto be able to carry
the full tensile force from the bottom panel point (where the inclined compressive forceis
resolved both vertically and horizontally) to the top panel point. To achieve this, care must be
taken to detail adequately the stirrup anchorages to ensure that the full tensile capacity of the
stirrup can be developed at any point along the vertical leg. After all, an inclined crack may
cross the vertical leg of the stirrup at any point.

Larger diameter longitudinal bars should be included in the corners of the stirrup to form a
rigid cage and to improve the resistance to pull-out of the hooks at the stirrup anchorage.
These longitudinal bars also disperse the concentrated force from the stirrup and reduce the
likelihood of splitting in the plane of the stirrup anchorage. Stirrup hooks should be located on
the compression side of the beam where anchorage conditions are most favourable and the
clamping action of the transverse compression greatly increases the resistance to pull-out. If
the stirrup hooks are located on the tensile side of the beam, anchorage may be lost if flexural
cracks form in the plane of the stirrup. In current practice, stirrup anchorages are most often
located at the top of abeam. In the negative moment regions of such beams, adjacent to the
internal supports for example where shear and moment are relatively large, the shear capacity
may be significantly reduced owing to loss of stirrup anchorages after flexural cracking.

5.5 Shear strength

5.5.1 Introductory remarks

From the point of view of structural design, the shear strength of a beam containing no shear
reinforcement, V,, istheload required to cause the first inclined crack. In a beam containing
web reinforcement, the ultimate strength in shear is usually calculated as the sum of the
strength provided by the stirrups V., and the strength provided by the concrete V..

Vi= Ve + Vus
(5.2

In Figure 5.4, the transfer of shear force across adiagonal crack is shown. The part of the
shear force carried by shear stresses in the uncracked concrete compression zoneis ¥, the
part carried by bearing and friction between the two surfaces of the inclined crack is V., and
the part carried by dowel action in the longitudinal steel crossing the crack is V,. Becauseit is
difficult to determine the magnitude of the force associated with each of these load-carrying
mechanisms, they are usually lumped together and represented by a single empirical term for
the shear strength contributed by the concrete, V..
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*V

Figure 5.4 Transfer of shear at an inclined crack.

From much research and many laboratory tests, it appears that the contribution of the concrete
to the shear strength is not |ess than the shear force that initially caused the diagonal crack to
form. For thisreason, V,,. is conventionally taken as the shear force required to produce either
flexure-shear or web-shear cracking, whichever isthe smaller.

The contribution of stirrups to the shear strength of the beam, 7,5, depends on the area of
the vertical legs of each stirrup, 4y, the yield stress of the stedl, £,, and the number of stirrups
which cross the inclined crack. As has already been stated, the longitudinal prestress causes
the slope of the inclined crack, 6,. to be less than 45°. It is reasonable to take the length of the
horizontal projection of the inclined crack to be d, cot 8,, where d, is the distance from the
extreme compressive fibre to the centroid of the outermost layer of tensile steel but need not
be taken less than 0.8 times the overall depth of the member. The number of stirrups crossing
the diagonal crack istherefore d,cot 6,/s, where sisthe spacing of the stirrups in the direction
of the member axis.

Thetotal contribution of the stirrups to the shear strength of the section is the capacity of a
stirrup times the number of stirrups crossing the inclined crack. An equation of the following
form is contained in most codes of practice for the contribution of vertical stirrupsto shear
strength:

- Asufuydo cot By

Vis s (5.33)

If the shear reinforcement isinclined at an angle a,, to the longitudinal tensile reinforcement
(i.e. a an angle other than a,=90° for vertical stirrups), V,, may be calculated from

= Asofuydo .
Vi = p (sin ey cot 8, + cos o) (5.3b)

In many building codes [including ACI 318-83 and BS 8110 (1985)], the angle of the
inclined crack 6, is taken to be constant and equal to 45°
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(i.e. cot 6,=1in Equation 5.3). However, in other codes (such as the CEB-FIP Model Code
1978 and AS 3600-1988), 6, is not constant and may be varied between specified limits. It is
evident from Equations 5.3a and b that the contribution of stirrups to the shear strength of a
beam depends on 6,. The flatter the inclined crack (i.e. the smaller the value of 6,), the greater
isthe number of effective stirrups and the greater is the value of V. In order to achieve the
desired shear strength in design, fewer stirrups are required as 6, is reduced. However, if the
slope of the diagonal compression member in the analogous truss of Figure 5.3b issmall, the
changein forcein the longitudinal tensile steel isrelatively large. More longitudinal steel is
required in the shear span near the support than would otherwise be the case and greater
demand is placed on the anchorage requirements of these bars.

The empirical estimates for the contribution of the concrete to shear strength V.. vary from
code to code. In general, code expressions for ¥, are far more complicated than can be
justified by their accuracy. In the following section, the procedures contained in the
Australian code (AS 3600-1988) are discussed and compared with the provisions of ACI
318-83 and BS 8110 (1985). These provisions were selected because they represent a suitable
compromise between accuracy, simplicity, and the current state of knowledge. However,
other design approaches have been proposed and are used in practice. Some are based on
more rational models of structural behaviour, but are considerably more complex. Such a
method is the General Method contained in the Canadian Code (CSA Standard CAN3, 1984)
which is based on compression field theory (Mitchell & Collins 1974, Collins 1978).

5.5.2 The AS 3600—-1988 approach

AS 36001988 adopts alimited variable angle truss model inwhich 6, varies between 30°
and 45°, depending on the magnitude of the factored design shear force V' . The shear strength
of abeam ¥, is obtained from Equations 5.2 and 5.3.

In Equation 5.3, 6, may be assumed to vary linearly from 30°, when V" = @Vumin to 45°,
when V" =9Vumar Thatis,

15{ V‘ - ¢V|.r,mil]
¢' Vu,m: = 'ﬁ Vu.miu (54)

6.,=30+

V..min 1S the shear strength of the beam containing the minimum amount of shear
reinforcement, (As,)min, Where

0.35b,s

{A:u}lﬂ'n = fuy (55)
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Theterm b, isthe effective width of the web for shear and may be taken as b,=b,,—0.5%d,, b
is the width of the web minus the diameter of any ungrouted ducts across the web, 2d, isthe
sum of the diameter of the grouted ductsin a horizontal plane across the web, and ®is the
capacity reduction factor for shear (whichis0.7 in AS 3600-1988). V,, ... is obtained by
substituting Equation 5.5 into Equation 5.3a and incorporating the resulting expression into
Equation 5.2, asfollows:

Vu.min = Vu: + (ﬂ-i(sbvs)fl'}‘(-jg) cot 30 (56)

vy
= Vy + 0.6b,d,

Vi, max 1S the maximum allowabl e shear strength for a section and is limited by web-crushing,
i.e. failure of the diagonal concrete compression strut in the analogous truss. The maximum
shear strength is given by

Vu,mr = i}-:fébudq + Pp_r
(5.7)

where P, isthe vertical component of the prestressing force at the section under consideration.
The vertical force P, isaso included in Equation 5.6 as part of the “concrete” contribution V.
(asindicated subsequently in Equations 5.8 and 5.10).

With 6, limited to a minimum value of 30°, the following requirements are imposed on the
longitudinal reinforcement. At a simple support, sufficient positive moment reinforcement
must be anchored past the face of the support, such that the anchored reinforcement can
develop atensileforce of 1.5/ at the face of the support (where V" is the design shear force
at adistance d from the support face). In addition, not less than 50% of the positive moment
reinforcement required at mid-span should extend past the face of a simple support for a
length of 12 bar diameters or an equivaent anchorage. At a support where the beamis
continuous (or flexurally restrained), not less than 25% of the total positive reinforcement
required at mid-span must continue past the near face of the support. AS 3600-1988 a so
requires that the steel necessary for flexure at any particular section must be provided and
developed at a section a distance d along the beam in the direction of increasing shear.

Alternatively, 6, may be taken conservatively as constant and equal to 45° (asisthe casein
ACI 318-83), but this could result in considerably more transverse stedl than is, in fact,
necessary. The Canadian code (CAN3-A23.3-M84 1984) includes two alternative methods
for shear design, asimplified method (Smilar to the ACI 318-83 approach) and ageneral
method. In the general method, a variable-angle truss model based on compression field
theory is used in which 6, may be selected to have any
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value between 15° and 75°. The implications of selecting very low or very high values for 6,
need to be carefully considered.

The contribution of the concrete to the shear strength of a section, Vuc, istaken to be the
smaller of the shear forces required to produce either flexure-shear or web-shear cracking, as
outlined below. However, if the cross-section under consideration is already cracked in
flexure, only flexureshear cracking need be considered.

Flexure-shear cracking

The shear force required to produce an inclined flexure-shear crack may be taken as the sum
of the shear force that exists when the flexural crack first devel ops, the additional shear force
required to produce the inclined portion of the crack (which extends a distance of about d,
along the beam in the direction of increasing moment), and the vertical component of the
prestressing force. The first and third of these shear force components are easily calculated.
The second is usually determined using empirical expressions developed from test data. AS
3600-1988 suggests that

A“ -+ Apr

Vie = ;
& .Blﬁzbudo( bpdﬂ f

34 Yy 4 Py
(5.8)

B1= (1.4 - do/2000) 2 1.1and is a size effect factor:

B is afactor which accounts for the presence of any axia force N' and

p>=1if no axia forceis present;

B2=1-(N"[3.54) 2 Ofor axial tension:

Bo=1+(N'1144) for axia compression;

where N” is the absolute value of the axial force. 4,, and A, arethe areas of the fully
anchored longitudinal non-prestressed and prestressed steel, respectively, provided in the
tension zone at the cross-section under consideration.

V, isthe shear force (in Newtons) which exists at the section when the bending moment at
that section equals the decompression moment M, (i.e. the moment which causes zero stress
in the extreme tensile fibre and may be taken as Zo,, ; where Z is the section modulus and o,.,, s
is the compressive stress caused by prestress at the extreme fibre where cracking occurs). If
M and V' are the factored design moment and shear force at the section under consideration,
then for statically determinate members,
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Vo may be taken as

y*
Vo= Mo 1 (5.9)

For statically indeterminate members, the shear and moment caused by the secondary effects
of prestress should be taken into account when determining Mo and 7%.

Web-shear cracking
If across-section is uncracked in flexure, the shear force required to produce web-shear
cracking is given by

Vu; = V; + Pl.r
(5.10)

V', isthe shear force which when combined with the normal stresses caused by the prestress

and the external loads would produce a principal tensile stress of II:"33~|'ﬁat either the
centroidal axis, the level of a prestressing duct, or at the intersection of the flange (if any) and
the web, whichever isthe more critical. 7, may be easily found analytically, or graphically

using aMohr’ s circle construction, by setting 71 = 0.330f5;, Equation 5.11:

2
= 1{e 2 0
o= (5) +7 +3 (5.11)

The normal stress ¢ and the shear stress Tare given by

__Pe_Pey, My _vQ
oS- aTp vt @ad = (5.12)

where b is the appropriate width of the web and is equal to b, at the level of any prestressing
duct and b, a points remote from the duct, and Q is the first moment about the centroidal axis
of that part of the area of the cross-section between the level under consideration and the

extreme fibre.

Summary of design requirements

The following design requirements for shear are contained in AS 3600-1988 and are typical
of those contained in most national building codes.

(1) The design shear strength of a sectionis ¢V , Where V=V, .tV as stated in Equation 5.2.
(2) The shear strength contributed by the concrete V.. isthe lesser of the values obtained from
Equations 5.8 and 5.10.
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(3) The contribution of the shear reinforcement to the ultimate shear strength, V., is given by
the equation

Ve = @ (sin oy cot B + cos ) (5.30)

where s is the centre-to-centre spacing of the shear reinforcement measured parallel to
the axis of the member; 6, is the angle of the concrete compression strut to the

horizontal and may be conservatively taken as 45° or, more accurately, may be assumed
to vary linearly from 30°, when V*= ¢ Vumin to45° when V" =®Vam in
accordance with Equation 5.4; V' isthe factored desi gn shear force; Vi,min @A Vi max &€
defined in Equations 5.6 and 5.7, respectively; and «, is the angle between the inclined
shear reinforcement and the longitudinal tensile steel.

(4) The critical section for maximum shear near to a support is at the distance d from the face
of the support, where d is the depth to the position of the resultant tensile force at the
ultimate strength condition in pure bending. Where diagonal cracking can take place at the
support or extend into it, such as occurs if the support is above the beam, the critical section
for shear is at the face of the support.

(5) Where the factored design shear force V' islessthan 0-5 Fuc, no shear reinforcement is
required, except that when the overall depth of the beam exceeds 750 mm, minimum shear
reinforcement should be provided. The minimum area of shear reinforcement is (4y,),,in=
0.35b,51fsy-

Where 0-5¢Vue < V™ < ¢Vuminpminimum shear reinforcement shall be provided. If the
total beam depth does not exceed 250 mm or half the width of the web, whichever is

greater, and ¥ € $¥ue 1o shear reinforcement is required.

Where VE> 'i’V“"""", shear reinforcement should be provided in accordance with
Equation 5.3a (for vertical stirrups) or Equation 5.3b (for inclined stirrups).
(6) In no case should the ultimate shear strength 1, exceed V, ... (as defined in Equation 5.7).
(7) The maximum spacing between stirrups measured in the direction of the beam axis should

not exceed the lesser of 0.5D or 300 mm, except that where V' d'V“-’“‘”, the spacing
may be increased to 0.75D or 500 mm, whichever is smaller. The maximum transverse
spacing between the vertical legs of a stirrup measured across the web of abeam should not
exceed the lesser of 600 mm and the overall depth of the cross-section, D.

(8) The quantity of shear reinforcement calculated as being necessary at any section should be
provided for adistance D from the section in the direction of decreasing shear.
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(9) Stirrups should be anchored on the compression side of the beam using standard hooks
bent through an angle of at least 135° around alarger diameter longitudinal bar. As
discussed in the last paragraph of Section 5.4, it isimportant that the stirrup anchorage be
located as close to the compression face of the beam as is permitted by concrete cover
requirements and the proximity of other reinforcement and tendons.

The design equation
The factored design shear force must be less than or equal to the design strength. That is,

V‘ SoVu=d(Vi + Vm:l
(5.13)

The capacity reduction factor ®for shear is0.7 in AS 3600-1988 (see Table 1.1). Substituting
Equation 5.3ainto Equation 5.13 gives

¢ Ay fipyd, cot B,

V*ﬂ d Vi +
5

and the design equation for vertical stirrups becomes

_;.._

Aw_ 1 (V' =V,
5 ¢ \fi,d,coth,

(5.14)

The use of Equation 5.14 for the design of web reinforcement is tedious

Shear force

Stirmups required
for excess shear
(shown hatched)

L/4 L
Distance from suppen

Figure 5.5 Web stedl requirements for a uniformly loaded beam.
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even for straightforward or ordinary cases. The critical valuefor V. (controlled by the onset
of either flexure-shear or web-shear cracking) must be determined at each section along the
beam and varies from section to section. However, the process is repetitive and may be easily
performed using a small programmable calculator or desktop microcomputer.

The shear reinforcement requirements can be visualized by plotting the variation of both
the applied shear (7') and the shear strength provided by the concrete (@ ¥ue)along the span of
auniformly loaded member, as shown in Figure 5.5. The hatched area represents the design

strength which must be supplied by the shear reinforcement (@ ¥us),

Example 5.1

The shear reinforcement for the post-tensioned beam shown in Figure 5.6 isto be designed.
The beam is simply supported over a 30 m span and carries auniformly distributed live load
of wp=25 kN/m and dead load of ws=30 kN/m (which includes the beam self-weight). The
beam is prestressed by a bonded parabolic cable (4,=3800 mm’ and the duct diameter is 120
mm) with an eccentricity of 700 mm at mid-span and zero at each support. The prestress at
each support is 4500 kN and at mid span 4200 kN and is assumed to vary linearly along the
beam length.

The load combinations specified in AS 3600-1988 for the strength limit state are outlined
in Section 1.7.3. For this case of dead plusliveload, the

Wiz = 30 kNfm and wo =25 kNfm
t 4 4 ¢ ¢ ¢ ¢ ¢ 4 ¢ ¢ ¢ ¢ 4 4 4 4

1:_\.\“ £ _._--—“‘"’J
s
B,

¥ [

LA \ parabolic cable profile
f 0 m
Elevation
200} ;L— 1g 1' Properties of gross section:
2R A = 660000 mm?®
:[ [ = 81.7x 10° mm*

1200 ¥ = 3841 mm
¥p= B159 mm
Concrete strength:

A, = 3800 mm?
Seclion

f.= 3MPa

Figure 5.6 Beam details for Example 5.1.
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factored design load is
w*=(1.25x 30) + (1.5 x 25) = 75 kN/m
At x m from support A:

V*=1125-75x and M*=1125x-37.5x%

The distance of the parabolic prestressing cable below the centroidal axis of the section at x m
from A is obtained using Equation 1.3:

- )

and its slope is found from Equation 1.4:

308
Y =30 15

Assuming 30 mm concrete cover, 12 mm diameter stirrups, and 24 mm diameter longitudinal
barsin the corners of the stirrups, the depth d,is

do=1200-30-12~-12= 1146 mm

In Table 5.1, asummary of the calculations and reinforcement requirements at a number of
sections aong the beam is presented. The following

Table 5.1 Summary of results—Example 5.1.

x | V| M |WebShear | Rexure | ®¥ums | 6, |Spacingof 10 mm stirrups
(m) | (kN) | (kNm) | ®¥we(kNm) | Shear ®¥« | (kN) | (deg) |Eqn 5.14 (specified) (mm)
(kN)
0.6 | 1080 662 897 1510 1013 324 271 (270)
1.0 | 1050 | 1090 932 1175 1047 30.1 460 (300)
2.0 | 975 2100 959 895 1011 30 467 (300)
3.0 | 900 3040 - 774 889 30.3 428 (300)
40 | 825 3900 - 692 808 30.5 402 (300)
50 | 750 4690 - 627 743 30.2 442 (300)
6.0 | 675 5400 - 571 687 30 467 (300)
7.0 | 600 6040 - 519 635 30 467 (300)
8.0 | 525 6600 - 471 586 30 467 (300)
9.0 | 450 7090 - 424 540 30 467 (300)
10.0| 375 7500 - 380 495 30 467 (300)
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sample calculations are provided for the sections at 0.6 m (0.5D) from the support and at 3 m
from the support:

At x=0.6 m From the above equations, ' =1080 kN, A =662 kN m, y=0.0549 m, '=0.0896
rad, P,=4488 kN, and the vertical component of prestressis P ,=P,y'=402 kN.

Flexure-shear cracking The decompression moment is

A Zp
=927TkNm

M. = 7, (P, Pe€) _8L7x10° (44ss><1ﬂ3+44as><11}3x54.9><315.9
°T e 8159 \660x10° 81.7% 10°

and the corresponding shear force V, is calculated using Equation 5.9:

1080
V,=927 x — = 151
927 % 662 1512 kN

Assuming a 24 mm diameter longitudinal bar in each bottom corner of the stirrups (4,,=900
mm?), the shear force required to produce a flexure-shear crack is therefore obtained from
Equation 5.8:

Ve =1.1 % 1.0 x 240 X t146(35m"' 300

1/3
———x30) x107% 415124402
240 % 1146 )

= 2156 kN

Web-shear cracking Since M isless than the decompression moment M, (which is less than
the cracking moment), web-shear cracking may be critical. Checks should be made at both the
centroidal axis and at the tendon level.

At the centroidal axis, the first moment of the area below the centroidal axisis

Q=0.5x%300x815.97=99.9 x 10°* mm?

The effective width of the web at the centroidal axisis 6=b,,=300 mm, and from Equation
5.12,

.= _%= -6.80MPa  and T:%?::me 10~¢ ¥, MPa

Setting 71 = 0.33ff¢ = 181y pain Equation 5.11 and solving gives V=969 kN.
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At thelevel of the prestressing tendon (i.e. 54.9 mm below the centroidal axis),
O =0.5x%300x(815.9-54.9)? =86.9 x 10* mm

The effective width of the web for shear calculations at the level of the tendon isdefined in
the text immediately after Equation 5.5 and is given by

by=bw—0.5Eds =300 - (0.5 x 120) = 240 mm
The moment at the section when the shear is V; is

M;= Ji;'/f¢ Vr=ﬁl3 Vr

and from Equation 5.12,

_ _4488x10° 4488 x 10° x 54.97 613 V; x 54.9

+
660 % 10° 81.7 x 10° 81.7x 10°

=—-6.97+0.412x10"° ¥,

and

86.9 % 10% I,

= =44 a7
TSl Ix 107 %240 FB X0V

Solving Equation 5.11 with 91 = 0-33Jf gives 77,2880 kN, which is less than the value
calculated at the centroidal axis. Therefore, from Equation 5.10,

Vye = BBO + 402 = 1282 kN

Clearly, at this section, web-shear cracking occurs at alower load than flexure-shear cracking
and istherefore critical. Thus,

@ Vie =0.7 x 1282 = 897 kN

which is less than the design shear force V', and therefore shear reinforcement is required.
Stirrup design In this example, 10 mm diameter single stirrups (two vertical legs) with
A4,=157 mm? and f,,=250 MPaare to be used.
In order to find the inclination of the diagonal compressive strut, 6,, the
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maximum and minimum shear strengths, Vi, max and Vi, min, must first be calculated. From
Equation 5.7, the maximum shear strength (limited by web-crushing) is
Vieumaz = (0.2 % 30 x 240 x 1146) x 10~* + 402 = 2052 kN and

The design shear V' isless than the maximum desi gn strength ®Vumaxgng, therefore, the
cross-section is suitable. The shear strength of the section containing the minimum shear

reinforcement is obtained from Equation 5.6:

Vimin = 1282 + (0.6 % 240 > 1146) x 10~ = 1447 kN and
ﬂb‘l‘{u,min‘; 1013 kN

whichislessthan 7". For ¥ =1080 kN, 6, is obtained from Equation 5.4:

15(1080 ~ 1013) _ ., 4o

00 =30+ 1013

From the design equation for vertical stirrups (Equation 5.14):

@ Asufiyds cot 6, 0.7 X 157 % 250 x 1146 x cot 32.4
V*— ¢ Ve (1080 - 897) x 10°

5L =271 mm

which satisfies both the minimum steel and maximum spacing requirements. At the critical
section 0.6 m from the support, adopt
10 mm stirrups (f,,=250 MPa) at 270 mm centres
At x=3 m From the equations given earlier,
V*=900 kN, M*=3040 kNm, y=0.252m, y' =0.0747 rad,

Pe=MkN, and P;.-I Fp_}'r=332 kN.

Flexure-shear cracking The decompression moment is

P, P.e
= 425} =1793 kN
M, Zb(A+Z¢) 1793 kNm
and from Equation 5.9,
Vo=1793 x—EEU = 531 kN

3040
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From Equation 5.8, the shear force required to produce a flexure-shear crack is

Ve = 1.1 % 1.0 x 240 “45(3am+9m

173
——— 10-3
24['!)(]145){3“) x + 331 + 332

= 1105 kN

Since M is greater than the cracking moment at this section, web-shear cracking need not be
considered. Therefore, the contribution of the concrete to the design shear strength of the
sectionis

¢ Vue=0.7x1105=774 kN

Thisis less than the design shear force 7*, and therefore shear reinforcement is required.
Stirrup design The minimum and maximum shear strengths, 7, .., and V,, ..., are obtained
from Equations 5.6 and 5.7, respectively:

V.min = 1105 + (0.6 x 240 % 1146) % 10~ * = 1270 kN and
¢Vu.min = Eﬂg k.N

Vi,max = (0.2 x 30 x 240 x 1146) x 107? + 332 = 1982 kN and
&V, max = 1388 kKN

* . . Vu min . .
V' isonly just greater than ¢V, . Equation 5.4 gives
_ 15(900 — 889) _ °
Bp= 30+ 1388 — 889 =30.3

and the stirrup spacing is

0.7 =157 x 250 % 1146 > cot 30.3
(900 - 774) x 10°

L =428 mm

This exceeds the maximum spacing requirement of 0.5D or 300 mm, whichever is greater.
Therefore, at the section 3 m from the support, adopt

10 mm stirrups (f,,=250 MPa) at 300 mm centres

For other cross-sections, results are shown in Table 5.1. When ¥ 2 6m, the desi gn shear V' is
less than ! @ Ve.minand the minimum amount of shear
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reinforcement is required. However, for much of the span, the maximum spacing requirement
of AS 36001988 governs the design.

5.5.3 The ACI 318-83 approach

The ultimate shear strength specified in ACI 318-83 is given by Equation 5.2 and the design
requirement is

V-£'¢VH=¢(VIH'+ Vus] (5 15)

The notation used hereis consistent with that used elsewhere in this book and not necessarily
with that used in ACI 318-83. The strength contributed by the stirrups 7, is given by either
Equation 5.3a or b, except that §,=45° and cot #,=1. Therefore, for vertical stirrups,

V EAW.'&TdF
e (5.16a)

and for inclined stirrups,

_ Asfwdy .
Vs = ==2=E (sin av + cos a) (5.16b)

where d, isthe depth from the extreme compressive fibre to the centroid of the prestressing
steel, but should not be taken to be less than 0.8 times the overall depth of the member.

To avoid web crushing, the strength ¥, should not be taken greater than ”-ﬁﬁJﬁ. In

addition, the code requires that whenever 1~ exceeds 0.5¢ V"“, minimum shear reinforcement
should be used. The minimum shear reinforcement is given by (4,,),,,=0.35b,,d,/f, .

The concrete contribution to shear strength V.. is the lesser of the shear required to cause
web-shear or flexure-shear cracks. For web-shear cracking, V. isthe shear force that results

inaprincipal tensile stress of 0-334'?50 n MPa) at the centroidal axis or, when the centroidal
axisisintheflange, at the intersection of the flange and web. For web-shear cracking,
therefore, V,. may be calculated in the same way asin the AS 3600 approach using Equation
5.10 and solving Equation 5.11. Alternatively, V.. for web-shear cracking may be
approximated by

Ve = (0.29[f2 + 0.30cp)budp + Vi 517
5.17

where o, is the concrete compressive stress at the centroid (or at the junction of the web and
flange) after all prestress |osses.

For flexure-shear cracking, V. is as shown in Equation 5.18 and is the sum of the shear
force which exists when aflexure crack first devel ops and
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an additional shear force required to produce inclined cracking:

Ve = 005/ budp + 3 Mer (5.18)

where M., is the cracking moment which occurs when the extreme fibre tensile stress reaches

0.5.7 However, V,. for flexure-shear need not be taken less than 0.141[fibudp,

For members with an effective prestressing force P, greater than 40% of the tensile strength
of al the flexural reinforcement, ACl 318-83 specifies the following approximate alternative
expression for Vy.:

- y*
Vm._ = ({]DS\I ¢ 433 F dp)bwdp (519)

but ¥/, need not be taken less than 0-166/f2bwdonor greater than 0-415//ibwdp This
approximate expression should only be used when the critical section for shear does not occur
within the transfer length near the end of a pretensioned member.

The most significant difference between the ACI approach and the AS 3600 approach,
apart from the angle 6, being fixed at 45°, is the omission of the vertical component of the
prestressing force in the equation for V. for flexure-shear (Equation 5.18). This may result in
significant differences in the required amount of shear reinforcement. For example, at 3 m
from the support of the beam shown in Figure 5.6 and analysed in Example 5.1, the AS 3600
approach predicted 7,,=1105 kN and the required spacing of 10 mm diameter stirrups (two
legs) was 428 mm. At the same section using the ACI approach, 7,691 kN and the required
stirrup spacing is only 75 mm. Using the ACI 318-83 |oad factors to calculate ¥ and with

¢ =0.85 theforceto be carried by the stirrups at this section is (V* = ¢ Vue)|db = 502N The
corresponding force, calculated using the AS 3600 approach in Example 5.1, isonly 180 kN.
Thislarge differenceis basically due to the omission of the vertical component of prestress
(P,=332 kN) in the estimate of V. using the ACI approach. An examination of Figure 5.4
indicates that P, should be included in the estimate of the shear strength of the cross-section,
provided the designer is confident that the slope of the tendon specified in design will in fact
be realized in the real beam.

5.5.4 The BS 8110 approach

The load combinations and design procedures for strength adopted in BS 8110 (1985) were
outlined in Sections 1.7.3 and 1.7.6, respectively, and involve the use of partial safety factors
for load and material strengths.
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Using the notation adopted elsewhere in this book, the design shear stressis defined as

V*
V=3.d (5.20)

where I isthe design shear force at the section under consideration, b,, is the average web
width, and d is the distance from the extreme compression fibre to the centroid of the steel

area (A,+As) in the tensile zone. In no case should » exceed I:"EJEor 5 MPa, whichever isthe

smaller. Notethat ferefersto the characteristic cube strength of the concrete.
The design ultimate shear resistance of the concrete aone, V.., is equa to V.o when the

design moment M islessthan M,, and isthe lesser of V., and V,, when M* 2 Mo The
moment M, produces zero stress in the concrete at the extreme tensile fibre. BS 8110 suggests
that only 80% of the prestress should be taken into account when cal culating M,

The shear resistance Vo, produces a maximum tensile stress at the centroidal axis of

or=024)/¢ \When calculati ng V., only 80% of the design compressive stress at the
centroidal axis o, (taken as +ve) should be considered. V.o may be cal culated from

Veo = 0.67bwD jo i + 0.80cp0;

(5.22)
where D isthe overall depth of the member.
The design ultimate shear resistance when the section is cracked in flexure may be
calculated from
Ver= (1 ~0.55 ff-') vebud + Mo
A M (5.22)

2 0.1/fib.d

where g, is the effective stress in the tendon after all losses have occurred (and should not be
taken to be greater than 0.6/,); v, is adesign concrete shear stress given by

0.79 [IW(AH+ Ap) (_fi)} 173 (@)”‘
Ym bwd d

Ve =

25 (5.23)

In this equation, the term 100(4,,+4,,)/b,.d should not be taken as greater than 3, the term
400/d should not be taken as less than 1.0, fshould not be taken as greater than 40 MPa, and
v 1S 1.25.

For sections cracked in flexure, the vertical component of the prestressing force (or the
vertical component of the force in an inclined compressive
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chord) should be combined with the external design load effects, wherever these effects are
increased.

]
When V" < Vue + ﬂ“"b*d, the minimum quantity of shear reinforcement given by
Equation 5.24 should be provided:

0.4bus

(Am]rrrin = m (5-25)

When ¥* 2 Vuc + 0.4bud. then the required area of the stirrupsis

w = m (525)

where d,, is the depth to the centroid of the bottom layer of longitudinal steel in the corners of
the stirrups near the tensile face.

When Vt<1.8 Vue, the spacing of stirrups along a member should not exceed 0.75d, or
4b,, (in the case of flanged members). When ¥ >1.8V,., the maximum spacing is reduced to
0.5d,. Thelateral spacing of individual stirrup legs across the width of a cross-section should
not exceed d,

Like the ACI approach, the BS 8110 approach ignores the vertical component of prestress
P, whenever the effect is beneficial.

TORSION IN BEAMS

5.6 Compatibility torsion and equilibrium torsion

In addition to bending and shear, some members are subjected to twisting about their
longitudinal axes. A common example is a spandrel beam supporting the edge of a monolithic
floor, as shown in Figure 5.7a. The floor loading causes torsion to be applied along the length
of the beam. A second exampleisabox girder bridge carrying aload in one eccentric traffic
lane, as shown in Figure 5.7b. Members which are curved in plan such as the beam in Figure
5.7c may also carry significant torsion.

For the design of spandrel beams, designers often disregard torsion and rely on
redistribution of internal forcesto find an aternative load path. This may or may not lead to a
satisfactory design. When torsional cracking occurs in the spandrel, itstorsional stiffnessis
reduced and, therefore, the restraint provided to the slab edge is reduced. Additional rotation
of the slab edge occurs and the torsion in the spandrel decreases. Torsion such as this, which
may be reduced by redistribution, is often called compatibility torsion. Whereas indeterminate
structures generally tend to behave in



(a) Compatibility torsion (b} Equilibrium torsion

(<} Equilibrium and compatibility torsion
Figure 5.7 Members subjected to torsion.

accordance with the design assumptions, full redistribution will occur only if the structure
possesses adequate ductility, and may be accompanied by excessive cracking and large local
deformations.

For some statically indeterminate members (and for statically determinate members)
twisted about their longitudinal axes, some torsion is required for equilibrium and cannot be
ignored. In the case of the box girder bridge of Figure 5.7b, for example, torsion cannot be
disregarded and will not be redistributed. There is no alternative load path. Thisis equilibrium
torsion and must be considered in design.

Despite much research, the behaviour of beams carrying combined bending, shear, and
torsion is not fully understood. Most current design recommendations rely heavily on gross
simplifications and empirical estimates derived from experimental observations.

5.7 Effects of torsion

Prior to cracking, the torsiona stiffness of a member may be calculated using elastic theory.
The contribution of reinforcement to the torsional stif fness before cracking isinsignificant
and may be ignored. When cracking occurs, the torsional stiffness decreases significantly and
is very dependent on the quantity of steel reinforcement. In addition to causing alarge
reduction of stiffness and a consequential increase in deformation (twisting), torsional cracks
tend to propagate rapidly and are wider and more
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unsightly than flexure cracks. A prudent designer will therefore endeavour to avoid torsional
cracking at service loads.

Torsion causes additional longitudinal stresses in the concrete and the steel, and additional
transverse shear stresses. If torsion islarge, asignificant reduction in load-carrying capacity
results. To resist torsion after the formation of torsional cracks, additional longitudinal
reinforcement and closely spaced, closed ties (stirrups) are required. Cracks caused by pure
torsion form a spira pattern around the beam (hence the need for closed ties). Many such
cracks usually develop at close centres and failure eventually occurs on awarped failure
surface owing to skew bending. The angles between the crack and the beam axis on each face
of the beam are approximately the same and are here denoted 6,. After torsional cracking, the
contribution of concrete to the torsional resistance of areinforced or prestressed concrete
member drops significantly. Any additional torque must be carried by the transverse
reinforcement. Tests show that prestress increases significantly the torsional stiffness of a
member, but does not greatly affect the strength. The introduction of prestress delays the
onset of torsional cracking, thereby improving the member stiffness and increasing the
cracking torque. The strength contribution of the concrete after cracking, however, is only
marginally increased by prestress and the contribution of the transverse reinforcement remains
unchanged.

For abeam in pure torsion, the behaviour after cracking can be described in terms of the
three-dimensional analogous truss shown in Figure 5.8. The closed stirrups act as transverse
tensile web members (both vertical and horizontal); the longitudinal reinforcement in each
corner of the stirrups act as the longitudinal chords of the truss; and the compressive web
members inclined at an angle 4; on each face of the truss represent the concrete between the
inclined cracks on each face of the beam and carry the inclined compressive forces.

concrete web sthuts

steel web
ties {stimups)

(b) Analogous {russ

Figure 5.8 A three-dimensional truss analogy for a beam in pure torsion.
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The three-dimensional analogous truss ignores the contribution of the interior concrete to
the post-cracking torsional strength of the member. The diagonal compressive struts are
located on each face of the truss and, in the real beam, diagonal compressive stressis assumed
to be located close to each surface of the member. The beam is therefore assumed to behave
similarly to ahollow thin-walled section. Tests of members in pure torsion tend to support
these assumptions.

Design models for reinforced and prestressed concrete beams in torsion are usually based
on asimple model such as that described above.

5.8 Design provisions for torsion in AS 3600-1988

The provisionsin the Australian Code (AS 3600—-1988) for the design of beams subjected to
torsion, and to torsion combined with flexure and shear, are outlined in this section and
represent a simple and efficient design approach. Several conservative assumptions are
combined with avariable angle truss model and the design procedure for shear presented in
Section 5.5.2.

5.8.1 Compatibility torsion

For amember subjected to compatibility torsion (such as the spandrel beam shown in Figure
5.7a), where torsional strength is not required for the equilibrium of the structure, the torsional
stiffness of the member may be ignored in the analysis and torsion may be disregarded in
design. However, the minimum torsion reinforcement provisions given in (a) and (b) below
must be satisfied.

(a) The cross-sectional area4,,, of the reinforcement bar used for the closed stirrup must be
greater than the minimum value given by

(A;w}mr’n = ﬂvzylsfﬁ?
(5.26)

where s isthe stirrup spacing measured parallel to the axis of the member and y; isthe
larger dimension of the closed rectangular stirrup.
(b) An areaof longitudinal reinforcement in addition to that required for flexure 4+ must also
be provided and must be greater than the minimum value given by

(As + dmin = 0.20ud fy
(5.27)

where u, is the perimeter of the polygon with vertices at the centres of
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the longitudinal bars at the corners of the closed stirrups and £, isthe yield stress of the
additional non-prestressed reinforcement.

5.8.2 Equilibrium torsion

Where torsion is required for equilibrium, it must be considered in design and the ultimate
torsiona strength of each cross-section 7, must be calculated.

For a beam without torsional reinforcement, T, istaken asthe torsiona strength of the
concrete T, and is given by

Tue = J(0.3[fH(/1 + 1000,/ 1)
(5.28)

In this equation, 7. is an estimate of the pure torsion required to cause first cracking. The
torsional constant J, istaken as

J, =04x% for solid sections;
=0.4Zx% for solid flanged sections;
=2A4,,by for hollow sections.

x and y are the shorter and longer overall dimensions of the rectangular part(s) of the solid
section, respectively; 4, isthe area enclosed by the median lines of the walls of ahollow

section:; b, isthe minimum thickness of the walls of a hollow section: the term 0-3J7in

Equation 5.28 represents the tensile strength of concrete; the term 1+ 100cp/ fejg the
beneficial effect of the prestress; and o, is the average effective prestress, P./A.

Torsional reinforcement is required in amember whenever the factored design twisting
moment 7" exceeds 9-3¢Tuc,

For a beam with torsional reinforcement, the contribution of concrete to the torsional
strength of amember after cracking is conservatively taken as zero (i.e. 7,,.=0). Thetorsiona
strength is therefore provided entirely by the stirrups (7,=7,,) and is given by

Tus - AI*
5

X 2Afiy cot 6; (5.29)

where 4, is the area of the polygon with vertices at the centres of the longitudinal bars at the
corners of the closed stirrups; 6, is the angle between the axis of the concrete compressive
strut and the longitudinal axis of the member and may be taken conservatively as 45° or, more

accurately, to vary linearly from 30° when T*= 6Tueto 45° when T~ = #Twmar, That is,

15(?“ - "’Tu:}

E; = 30 + (lII Tg_mr — quw} (530)
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where T, is given by Equation 5.28, ¢ = 0.7 and T, max 1S the maximum ultimate torsional
strength specified by AS 3600—1988 to avoid webcrushing and is given by

Tomax = 0.2f2J;
(5.31)

With the design requirement for a beam containing torsional reinforcement being T" < ¢ Tus,
Equation 5.29 can be rearranged to form a design equation for the required quantity of
transverse steel in amember subjected to pure torsion:

Agw S T*
s T ofyx2A.cos 8 (5.32)

The torsional strength given by Equation 5.29 and the amount of transverse steel calculated
using Equation 5.32 are only applicable provided that an additional area of longitudinal
reinforcement A:T(over and above that required for flexure) isincluded in the flexural tensile
zone. This additional area of longitudinal reinforcement is specified as

s _ .5 A 2g Jo

where f,, and f, are the characteristic strengths of the web steel and longitudinal steel,
respectively. An additional area of longitudinal reinforcement Ais also required in the
flexural compressive zone and is specified as

A fo Fe
Ar=0.5 ; u:cotzﬁ;f—?;{;ﬂ} (5.34)

where Feisthe absolute value of the desi gn force in the compressive zone caused by bending.

5.8.3 Torsion combined with bending and shear

For the design of members subjected to bending, shear, and torsion, the strengths in torsion
and shear are determined separately, and the linear interaction equations presented below
must be satisfied.

Transverse reinforcement is not required for shear plustorsion if

T y*
oo T oV <03 (5.35)

except that for abeam with overall depth not exceeding the greater of
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250 mm or half the width of the web Equation 5.36 applies:

Tli V.
¢'Tuc ¥ {#‘VHC i 1'{} (536)

where 7" and V" are the factored design torsion and shear, 7. is determined from Equation
5.28, and V.. is obtained from either Equation 5.8 or 5.10, whichever gives the smaller value.

When Equation 5.35 (or 5.36) is not satisfied and transverse reinforcement is required for
shear and torsion, the concrete contribution to strength isignored and Equation 5.37 must be
satisfied:

™. v

oTw oV 510 (5.37)
provided that
T* ™
T oo S0 (5.38)

V. is determined using Equations 5.3aand b, and 7, is given by Equation 5.29 (provided that
the additional longitudinal steel indicated by Equations 5.33 and 5.34 is supplied). Equation
5.38 isaimed at preventing web-crushing under the combined effect of torsion and flexural
shear, and Vy,max @nd Ty, max are obtained from Equations 5.7 and 5.31, respectively,

In all beamsin which transverse stedl isrequired for torsion and shear, the quantity of
transverse and longitudina reinforcement provided in the member should satisfy the
minimum requirements specified in Equations 5.26 and 5.27.

When detailing the torsional reinforcement, the closed stirrups must be continuous around
all sides of the section and be anchored so that the full strength of the bar can be developed at
any point. The maximum spacing of the stirrups measured parallel to the longitudinal axis of
the member is 0.12u, or 300 mm, whichever is smaller. The additional longitudinal
reinforcement must be enclosed within the stirrup and as close to the corners of the section as
possible. In al cases, at |east one bar should be provided at each corner of the closed stirrup.

In Section 5.7, the desirability of avoiding torsional cracking at service loads was discussed.
Equation 5.28 provides an estimate of the pure torsion required to cause first cracking, Tie.
When torsion is combined with shear, the torque required to cause first cracking is reduced.
An estimate of the torque necessary to cause torsional cracking at a section can be obtained
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from the interaction equation

_TE + E =1
Tue Ve (5.39)
where T, and V., are the actual twisting moment and shear force, respectively, acting together
at first cracking, and V. isthe shear force required to cause inclined cracking when bending
and shear are acting alone (and is the lesser of the values calculated using Equations 5.8 and
5.10).

If V..isexpressed as T,,/e, then Equation 5.39 can be rearranged to give

Tuc + €Vae (5.40)

where e istheratio of actual torsion to actual shear. In design, it is often advisable to check
that the applied torque 7, under in-service conditions, islessthan T.,.

5.8.4 Design equation

Equations 5.37 and 5.38 are useful for checking the adequacy of atrial cross-section. When
designing for combined torsion, bending, and shear, a more useful design equation is obtained
by substituting Equations 5.3a and 5.29 into Equation 5.37. If vertical stirrups are to be used,
Equation 5.37 becomes

™ T
S(An]S)2A Sy COL: T D (A5 fodacot by < 10 (5.41)

For closed stirrups with two vertical legs, 4,,=24,,, and Equation 5.41 may be rearranged to
give

Aje > T . v*
5 7 20fwAicot b 2¢fipds cot by (5.42)

Thefirst term on the right-hand side of Equation 5.42 can be considered as the transverse steel
required for torsion (4,,/s), and the second term is the additional steel required for shear
(Asw/s),. When calculating the additional longitudinal steel required to carry torsion on the
section, the quantity (4./s); should be used in Equations 5.33 and 5.34.

Equation 5.42 and the theory outlined above were developed for the case of isolated beams
subjected to torsion combined with bending and shear. When the beam forms part of afloor
system and isintegral with a dlab, both its strength and stiffness are significantly greater than
that of an isolated



Page 190

beam of similar size and with similar reinforcement details. The slab prevents the longitudinal
expansion of the beam in torsion and provides compressive restraint. The torque required to
cause first cracking in such a beam is much greater than that predicted by Equation 5.28. The
beneficial influence of the slab is not easily quantified. However, the procedure devel oped for
an isolated beam provides a conservative and relatively simple design approach which can be
used for abeam forming an integral part of afloor or deck system.

In caseswhere T and V' are relatively small and only small amounts of transverse steel are
required for torsion and shear, Equations 5.37 and 5.42 can lead to unduly conservative
designs. Thisis because the concrete contribution to strength is entirely ignored. Rangan
(1987Db), in acommentary on AS 3600-1988’ s shear and torsion provisions, suggested that a
less conservative and useful aternative in such casesis to adopt the following design
reguirement:

™ Vv

o, T 10 (5.43)

where 7., may be calculated using Equation 5.44, which is based on the work of Zia& Hsu
(1978):

Tu = Ji{0.167[fD)(2.5k = 1.5) + fup (Asw/5)1.5x1 01
(5.44)

and where x1 and y1 are the shorter and longer dimensions of the closed stirrups, respectively,
Jiisas defined in Equation 5.28, and k=J1+ m"'ipjff!. In Equation 5.44, theangle 6, is
assumed to be 45°. By taking 6,=45°, V,, may be obtained from Equations 5.2 and 5.3b:

_ Sy Aswdo
V= Vue + == (5.45)

The contribution of the concrete to the shear strength V. isthe lesser of the values obtained
using Equations 5.8 and 5.10 and, as before, the additional areas of longitudinal steel required
for torsion are calculated using Equations 5.33 and 5.34.

Example 5.2 —torsion, bending and shear

A prestressed concrete beam has a rectangular cross-section 400 mm wide and 550 mm deep.
At aparticular cross-section, the beam must resist the following factored design actions:

M*=300 kNm; FV*=150kN: and T*=60kNm
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m—'j o= 300 ==t =5

A =220x10° mm®

! = 5546 x 10° mm* [ 5 HCEG —%0
Z=202x10° mm’ 1%‘- ﬂ
¥1 = 490 mm 2
xy = 340 mm 375

d, = 500 mm

o 490 450
d = 375 mm .._] l_a_u_
A, = 450x 300 = 135x 10° mm? 1 o

, = 2{450+300) = 1500 mm { 1
P, = 700 kN n = D

ﬁ,=?ﬂﬂm1

0]

Figure 5.9 Cross-section details for Example 5.2.

An effective prestress of 700 kN is applied at a depth of 375 mm by a single cable consisting
of 7-12.5 mm diameter strands in a grouted duct of 60 mm diameter. The area of prestressing
stedl is4,=700 mm? with an ultimate tensile strength of £,=1840 MPa. The vertical
component of the prestressing force at the section under consideration is 50 kN and the
concrete strength is /¢ = 30MPa. The dimensions and properties of the section are shown in

Figure 5.9. The longitudinal and transverse non-prestressed reinforcement requirements are to
be determined.

(2) Initialy, the cross-section should be checked for web-crushing. The effective width of the
web for shear is

by = by — 0.5ds = 400 — (0.5 X 60) = 370 mm

and from Equation 5.7,

Vimas=(0.2x30x 370 x 500 % 107?) + 50 = 1160 kN

Thetorsional constant J; is

J;=0.4 % 400% x 550 =35.2 x 10°* mm?

and Equation 5.31 gives
Tumer=(0.2x30%x352x10%) x107%=211 kNm
The interaction equation for web-crushing (Equation 5.38) gives

&0 N 150
0.7x211 0.7%1160

=0.59 < 1.0
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Therefore, web-crushing will not occur and the size of the cross-section is acceptable.
(2) The longitudinal reinforcement required for bending must next be calculated. From the
procedures outlined in Chapter 4, the seven prestressing strands provide adequate ultimate
flexural strength ®Mu =309 kNm > M" =300 kNm \here ¢ = 0.8f0r bending as
indicated in Table 1.1). No non-prestressed stedl is therefore required for flexural strength.
(3) To check whether torsional reinforcement isrequired, V. and 7,,. must be calcul ated.
Because bending is significant on this section, flexure-shear cracking will control and V.. is
obtained from Equation 5.8. The decompression moment M, is given by

Mn= Zb[(Pt]FA}+(P¢f]|IZb]] =134 kINm

and the corresponding shear forceis calculated using Equation 5.9:

150
Vo=134 x — =67 kN
300

From Equation 5.8,

Ve = |1 7 700 Y 1073
w—[.lixlﬂxi ﬂxm(mXED) x 10 ]

+ 67 + 50 =220 kN

The average effective prestressis o,,=P /4=3.18 MPaand from Equation 5.28,

Tue=35.2 % 10%(0.330)[ /1 + (10 x 3.18/30)] x 10" ® =83 kNm

The inequality of Equation 5.35 is not satisfied:

60 x 10° . 150 % 103
0.7x83x10° 0.7x220x 10

53 0.5

Therefore, closed stirrups are required.
(4) The shear strength of the section containing the minimum quantity of web reinforcement
is calculated using Equation 5.6:

Vi min = 220 + (0.6 x 370 x 500 x 10~%) = 331 kN

Since Vi<e Vu.min_then 0,=30°, and since T is greater than
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¢Tuc (=0.7x83=58.1kNm) theangle 6, is calculated from Equation 5.30:

15(60 — 58.1) °
6, =30 = 30.
=30+ G- ssa 03
With 4,=135x10° mm? (see Eigure 5.9) and f,,=400 M P4, the required amount of
transverse steel may be determined from Equation 5.42:

A 60 x 10°

s ED,?XI{XWK 135 % 10* x cot 30.3

150 % 102

= {}.4 N = {77
0.7 x 2 x 400 x 500 x cot 30 0.464+0.309=0.773

The steel required for torsion (4,,,/s)=0.464 is significantly more than the minimum
steel requirements of Equation 5.26:

(Aswdmin _ 0.2 % 490

s a00 - 024

With 12 mm diameter stirrups, 4,,=110 mm? and therefore

110

m= 142 mm

LS

which is less than the maximum permitted spacing of 0.24,=0.12x1500=180 mm
Use 12 mm diameter stirrups at 140 mm centres (f,,=400 MPa).
(5) Since the prestressing stedl isrequired for flexural strength, the additional longitudinal
steel required in the tension zone isto be supplied by non-prestressed reinforcement (with
£,=400 MPa) and is calculated using Equation 5.33. With (4./s)=0.464,

A = 0.5 x 0.464 X 1500 X cot? 30.3 x%= 1020 mm?

Use 4-20 mm diameter deformed longitudinal bars in the bottom of the section.
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The force in the compressive zone due to flexure, £ ¢ , IS approximately

M*  300x10?

*
Fe 0.9d, 0.9 x 375

=889 kN

and from Equation 5.34,

3
889 x 10 <

A =0.5 % 0.464 x 1500 x cot? 30.3 —
te co 400

0

Therefore, no additional longitudinal reinforcement is theoretically required in the
compressive zone.
Use two 20 mm diameter top bars, one in each top corner of the stirrup.

Checking this cross-section with the alternative procedure suggested by Rangan (1987b) (and
outlined in Equations 5.43-5.45), the term

k= |1+ 100,ffi=]1+(10x3.18/30) = 1.44
and from Equation 5.44,

Tu=1{35.2x 10%x 0.167J30[(2.5 x 1.44) = 1.5]
+ (400 x 0.773 X 1.5 X 490 X 340)} x 107%=67.6 + 77.3 =145 kNm

From Equation 5.45,

V.;=22D+4mx2?4!2m)(5m=53() KN

and the interaction equation (Equation 5.43) gives

60 150
0.7x145 T 0.7x 3530 0%

For this example, the two procedures are in excellent agreement.
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SHEAR IN SLABS AND FOOTINGS

5.9 Punching shear

In the design of dlabs and footings, strength in shear frequently controls the thickness of the
member, particularly in the vicinity of a concentrated load or a column. Consider the pad
footing shown in Figure 5.10. Shear failure may occur on one of two critical sections. The
footing may act essentially as a wide beam and shear failure may occur across the entire width
of the member, asillustrated in Figure 5.10a Thisis beam-type shear (or one-way shear) and
the shear strength of the critical section is calculated as for abeam. The critical section for
thistype of shear failure is usually assumed to be located at a distance d from the face of the
column or concentrated |oad. Beam-type shear is often critical for footings but will rarely
cause concern in the design of floor slabs.

An alternative type of shear failure may occur in the vicinity of a concentrated load or
column and isillustrated in Figure 5.10b. Failure may occur on a surface that forms a
truncated cone or pyramid around the | oaded area, as shown. Thisis known as punching shear
failure (or two-way shear failure) and is often acritical consideration when determining the
thickness of pad footings and flat slabs at the slab-column intersection. The critical section for
punching shear is usually taken to be geometrically similar to the loaded area and located at a
distance d/2 from the face of the loaded area. The critical section (or surface) is assumed to be
perpendicular to the plane of the footing or slab. The remainder of this chapter is concerned
with this type of shear failure.

dn

A
/A
L~
7

[ .4
l \cril:i.-:.:lse:tim
ik
EEEEEREREEN
{a)Beam-{ype shear (b) Punching shear

Figure 5.10 Shear failure surfacesin afooting or slab.
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In ACI 318-83, the punching shear strength of a slab or footing not containing shear
reinforcement, V.., is given by either Equation 5.46 or 5.47. For a non-prestressed slab or
footing,

0.33
Be

Ve = (u. 166 + )Jﬁm ( < 0.33fiud) (5.46)

where S, istheratio of the long side to the short side of the loaded area and u is the perimeter
of the critical section. For atwo-way prestressed slab, in which no portion of the column
cross-section is closer to a discontinuous edge than four times the slab thickness,

Vie = (0.29Jf% + 0.30.p)ud + V;
(5.47)

where ¢,, is the average value of effective prestress (P/4) for each direction and ¥, isthe
vertical component of all effective prestressing forces crossing the critical section. In
Equation 5.47, J¢should not be taken greater than 35 MPa, and o, in each direction should
not be less than 1 MPaor greater than 3.5 MPa. The vertical component of prestress, V), in
Equation 5.47 is generally small, since the tendons at the critical section are usually fairly flat
and may be taken conservatively as zero.

For a critical section containing no shear reinforcement and carrying afactored design
shear force ', the ACI 318-83 design requirement isthat ¥~ < ®Vuewhere ¢ = 0-85for shear.
When both shear ¥ and an unbalanced moment Mv are transferred from aslab to a col umn,
ACI 318-83 suggests that the maximum shear stress on the critical section il"-:':mrmay be
calculated from

V* -M*
* ¥ ey
e A (5.48)

where 4 isthe area of the critical section, J is aproperty of the critical section analogous to

3
the polar moment of inertia, ¥oMvis the fraction of the unbalanced moment transferred to the
column by eccentricity of shear about the centroid of the critical section (i.e. torsion), and y is

the distance from the centroid of the critical section to the point where Umexacts, Shear stress

resulting from 7" and Mis thus assumed to vary linearly about the centroid of the critical
section. The value of y, is given by the following empirical expression:

2ja+d (5.49)
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where c1 isthe side dimension of the column in the direction of the span for which moments
are determined and ¢ is the side dimension of the column perpendicular to cs.

The ACI 318-83 design requirement for a slab containing no shear reinforcement is that
Umaxdoes not exceed a permissible shear stress v, carried by the concrete. For non-prestressed
slabs,

”;3) 2 (< 60.330F0) 5509

c

ur=¢(ﬂ.lﬁﬁ+

and for two-way prestressed slabs that meet the requirements that apply for Equation 5.47,

- ' Ve
ve=¢ (01294?; +0.30.p + E) (5.50b)

Although the ACI approach provides reasonable agreement with test results (Hawkins 1974),
itisessentially alinear working stress design method. Such approaches for the determination
of ultimate strength are not rational and have generally fallen from favour over the past 20
years. In addition, the approach is cumbersome and difficult to use, particularly in the case of
edge and corner columns both with or without spandrel beams.

The provisions for punching shear in the Australian Code AS 3600-1988 have been
devel oped from the results of a series of laboratory tests conducted by Rangan & Hall on
large-scale reinforced concrete edge column-slab specimens (Rangan & Hall 1983a,b, Rangan
19874). The extension of Rangan & Hall’s proposals to cover prestressed concrete slabs is
both logical and simple. The design rules proposed in AS 3600—1988 are outlined in Section
5.10. Therules are based on a simple model of the slab-column connection. Rangan & Hall
suggested that in order to determine the punching shear strength of adlab at a slab—column
connection, the forces acting on the column and the capacity of the dlab at each face of the
column should be evaluated. Ideally in design, the column support should be large enough for
the concrete to carry satisfactorily the moments and shears being transferred to the column
without the need for any shear reinforcement. However, if thisis not possible, procedures for
the design of adequate, properly detailed reinforcement must be established.

In Figure 5.11, the way in which the moments and shears are transferred to an edge column
inaflat plate floor isillustrated. Some of these forces are transferred at the front face of the
column (Mp, V) and the remainder through the side faces as bending, torsion and shear (M,
T, V). Thefront face must be able to carry M, and V}, and the side faces must have enough
strength to carry M,, T, and V. A punching shear faillureisinitiated by the failure of aslab
strip at either of the side faces, in combined bending,
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Edge column

(M, V:- T::'

Figure 5.11 Forces at an edge column of aflat plate floor (Rangan and Hall 1983a).

shear, and torsion, or at the front face (or back face, in the case of an interior column), in
combined bending and shear. If the concrete aone is unable to carry the imposed torsion and
shear in the side faces, then transverse reinforcement in the spandrels (or side strips) must be
designed. The provisions for the design of beam sections in combined torsion, bending and
shear (outlined in Section 5.8) may be used for the design of the spandrel strips. Account
should be taken, however, of the longitudinal restraint offered by the floor slab which
prevents longitudinal expansion of the strip and substantially increasestorsional strength. In
laboratory tests, Rangan (1987a) observed that the longitudinal restraint provided by the floor
dlab increased the torsional strength of the spandrels by afactor of between four and six.

5.10 Design procedures for punching shear in AS 3600-1988

5.10.1 Introduction and definitions

The critical shear perimeter is defined in AS 3600—1988 as being geometrically similar to the
boundary of the effective area of a support, or concentrated, load and located at a distance d/2
therefrom. The effective area of a support or concentrated load is the areatotally enclosing the
actual support or load, for which the perimeter is a minimum. Both the critical shear perimeter
and the effective area of asupport areillustrated in Figure 5.12. Also shown inEigure 5.12is
the reduction of the shear perimeter caused by an opening through the thickness of the slab
and located
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by | /——Jnitim shear perimeter

boundary of effective suppon

Figure 5.12 The critical shear perimeter (from AS 3600-1988).

within a distance of 2.55, from the critical perimeter. Theterm b, is the dimension of the
critical opening, asillustrated.
The punching shear strength 7, of a slab depends on the magnitude of the bending moment
]
(M )being transferred from the slab to the support or loaded area. Accordingly, the design
procedures with and without moment transfer are here considered separately.

5.10.2 Shear strength with no moment transfer

When no moment is transferred from the slab or footing to the column support or when the
dlab is subjected to a concentrated load, the punching shear strength of the dlab is given by

Vgg = Lﬂfu -+ D 35;#]“‘.‘!
(5.51)

where u is the length of the critical shear perimeter (with account taken of the ineffective
portions of the perimeter caused by adjacent openings), d is the average distance from the
extreme compressive fibre to the tensile flexural reinforcement in the slab in each orthogonal
direction, o, is the average intensity of the effective prestress in the concrete (P,/4) in each
direction, and 1., is alimiting concrete shear stress on the critical section and is given by

2 ] r
Jeo= ﬂ.lT(l + E)UI < 0.34[f (552

Theterm g, istheratio of the longest overall dimension of the effective |loaded area, Y, to the
overal dimension, X, measured perpendicular to Y, asillustrated in Figure 5.12. It is noted

that f”“‘l“ff‘for all casesin which B« €2,
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If aproperly designed, fabricated shear head is used to increase the shear strength, an upper
limit of

Vo = (0.5[f¢ + 0.30cp)ud < 0.2fud
(5.53)

is specified.

5.10.3 Shear strength with moment transfer

In the following, reference is made to the torsion strips associated with a particular slab-
column connection. A torsion strip isastrip of slab of width a which framesinto the side face
of acolumn, as shown in Figure 5.13 (and also in Figure 5.11). In addition to the strip of slab,
atorsion strip includes any beam that frames into the side face of the column. The
longitudinal axis of atorsion strip is perpendicular to the direction of the spans used to
calculate Me.

Three cases are considered for the determination of the punching shear strength of slab—

column connection where an unbalanced moment M. M istransferred from the slab to the
column.

Critical shear perimeters
[ 4 d
/ i ~ |2
T T T T 1
e i g
) L
] ]
[ d T
' v 12
8 —
T Ftorsion mrips/’_ spancire] h-e:uu/
! - Lsz | e ||}
———— 2 = ===
:_ AT -E {, \"Il 2 r
N 3 I @ I I E
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T 174 e T
: E 2 : V2 bl 12

direction of bending moment M,

Figure 5.13 Torsion strips and spandrel beams (from AS 3600-1988).

(a) Where the torsion strip contains no beams and no closed ties

Consider a slab—column connection required to carry afactored design shear force ¥ and an
¥
unbalanced moment Mv . The shear and torsion
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carried by the torsional strip at each side face of a column may be conservatively taken to be

Vi=(alu)V and T1 = 0-4M."(Rangan 19874). The design shear strength of the torsion strip is
Vu=(alu)V.o (Where Vo is given by Equation 5.51) and the torsional strength may be obtained
using Equation 5.28. If the width of the torsion strip a is greater than the overall slab depth D,
and if afactor o isincluded to account for the restraint provided by the slab, then Equation
5.28 gives

Tue = 0.4aD? x 0.3.[ftka

where & =1+ (10055 f) By substituting these expressions into Equation 5.36 and by taking
D=1.15d and ka=6 (as recommended by Rangan 1987a), the following expression can be
derived:

* 2 (V- V*
M, <8476 ) (5.54)

i.e. the strength of the unreinforced torsion strip is adequate provided the combination of V
*®

and Mv satisfies the inequality of Equation 5.54. For design purposes, Equation 5.54 may be

rearranged to give ¥~ < ¥y where ® = 0.7in AS 3600-1988. V/, is the strength of the

critical section and is given by

V= et
T Mu (5.55)

14 8V ad

According to AS 3600-1988, Equation 5.55 is applicable to both reinforced and prestressed
concrete slab-column connections, the only difference being the inclusion of the average
prestress, o, in the estimate of V,, in Equation 5.51.

If V" isnot lessthan @V, then the critical section must be either increased in size or
strengthened by the inclusion of closed stirrupsin the torsion strips. In practice, it is prudent
to ensure that M@ satisfies Equation 5.54 and hence that V* < éVusp that no shear
reinforcement is required. The introduction of adrop panel to increase the slab depth locally
over the column support or the introduction of a column capital to increase the effective
support, and hence the critical shear perimeter, are measures that can often be taken to
increase V.o, and hence V,, to itsrequired value.

(b) Where the torsion strip contains the minimum quantity of closed stirrups

This section applies to slab—column connections that may or may not have atransverse
spandrel beam within the torsion strip. AS 3600-1988 specifies that, if required,
reinforcement for shear and torsion in the torsion strips
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shall bein the form of closed stirrups that extend for a distance not less than L /4 from the
face of the support or concentrated load, where L, is defined in Figure 5.13. The minimum
cross-section area of the closed stirrup (4sw)min 1S given by Equation 5.26. The first stirrup
should be located at not more than s/2 from the face of the support and the stirrup spacing s
should not exceed the greater of 300 mm and D, or D,, as applicable. At least one longitudinal
bar should be provided at each corner of the stirrup. Reinforcement details and dimensions are
illustrated in Figure 5.14.

Using asimilar derivation to that described for Equation 5.54 and with several conservative
assumptions, Rangan (1987a) showed that, if atorsion strip contains the minimum quantity of
closed stirrups (as specified in Equation 5.26), the strength is adequate provided that

. a Dy *
My < 2bw P [¢1 X 1-2(5:) Vie=V ] (5.56)

where b,, and D,, are the web width and overall depth of the beam in the torsion strip, as
shown in Figure 5.14. If the torsion strip contains no beam, then b,,=a and D,=D, (the slab
thickness).

When MV satisfies Equation 5.56, the shear strength of the critical section, with the
minimum quantity of closed stirrupsin the torsion strips, is given by

V = 1 -Z(Dbllr Ds } Vl.r_n.
i I+ Miu (5.57)
2V *ab.,

In the case of a slab—column connection without any beams framing into
’ -, .
¥y

J. (as large as possible within a)

| T

, —

— i

Figure 5.14 Shear reinforcement details and dimensions for dabs (from AS 3600-1988).
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the side face of the column, Equation 5.57 becomes

Miu (5.58)

When M2 does not satisfy Equation 5.56, i.e. when ¥~ 2 ®Vumisthe critical section must be
increased in size or the side faces must be reinforced with more than the minimum quantity of
closed stirrups.

(c) Where the torsion strips contain more than the minimum closed stirrups

Frequently, architectural considerations prevent the introduction of spandrel beams, column
capitals, drop panels (or other slab thickenings), or the use of larger columns. In such cases,

when Mzis greater than the limits specified in Equation 5.54 or 5.56 (as applicable), it is
necessary to design shear reinforcement to increase the shear strength of the critical section.
This may be the case for some edge or corner columns where the moment transferred from the
slab to the column is relatively large and restrictions are placed on the size of the spandrel
beams.

When closed stirrups are included in the torsion strips at the side faces of the critical

section, the punching shear strength is proportional to VA 5:, and the shear strength of the
critical section containing more than the minimum amount of closed ties in the torsion strips
istherefore given by (Rangan 1987a):

/ A
VH B Vu.mm [A;w]min
_ ) ’Amf g
Vl.r = Vu.mm ﬂ.l_y;s (559)

To avoid web-crushing of the side faces of the critical section, AS 3600—1988 requires that
the maximum shear strength be limited to

or

Vu.mu =3 Vu.min\@
(5.60)

where x and y are the smaller and larger dimensions, respectively, of the crosssection of the
torsion strip or spandrel beam. By rearranging Equation 5.59, it can be shown that the amount
of closed stirrups required in the torsion strip at the side face of the critical section must
satisfy

A;,.;n.zyl p* o)z
5 flr:F ‘i’ Vlr.min (561)
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It is emphasized that Equation 5.61 should only be used where size restrictions are such that
the slab thickness and support sizes are too small to satisfy Equation 5.54 or 5.56. In general,
it ismore efficient and economical to provide column capitals and/or drop panelsto overcome
punching shear than it isto try to design and detail stirrups within the slab thickness.

5.10.4 Worked examples—punching shear

Example 5.3 —interior column (Case 1)

The punching shear strength of a prestressed concrete flat plate at an interior columnisto be
checked. The columns are 400 by 400 mm in section and are located on aregular rectangul ar
grid at 8 m centresin one direction and 6 m centres in the other. The slab thickness Dy is 200
mm and the average effective depth of the tension steel is d=160 mm. The following data are
applicable:

0cp = 2.5 MPa; fi=30 MPa; ¥* =520 kN; and M, =40 kN m.
For asguare interior column, $,=1, and from Equation 5.52,
v =0.34/30 = 1.86 MPa

If no moment is transferred from slab to column, the shear strength of the critical sectionis
calculated using Equation 5.51:

Ve = 2240 x 160[1.86 + (0.3 % 2.5)] x 107% =936 kN
The critical shear perimeter » and the width of the torsion stripa are

u = 4400 + 160) = 2240 mm and g = 400 + 160 = 560 mm

Provided that M- satisfies Equation 5.54, the shear strength of the critical section is given by
Equation 5.55 and no shear reinforcement is necessary.

560

a .
8d - (Vuo = V") =8 X 160 x 270

[(0.7 % 936) — 520] x 10~ * =43 kNm

which is greater than M. and therefore the critical section is adequate without any shear
reinforcement. The shear strength of the slab is obtained from Equation 5.55:

936
V,= =755 kN
40 % 10° x 2240

* 8 X520 10° x 560 x 160
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and
¢Vu=528kN > V*

-.Punching shear strength is adequate

Example 5.4 —interior column (Case 2)

The slab—column connection analysed in Example 5.3 isto be rechecked for the case when
7'=720 kN and M¥ =80kN m Asin Example 5.3

Vﬂ'ﬂ =936 kN and ¢‘Vun = 655 kN

which isless than 7", even without considering the unbalanced moment M. Y. The critical
shear perimeter is clearly not adequate. Shear and torsional reinforcement could be designed
to increase the shear strength. However, successfully anchoring and locating stirrups within a
200 mm thick dlab is difficult. An alternative solution is to use a fabricated steel shear head to
improve resistance to punching shear. The most economical and structurally efficient solution,
however, isto increase the size of the critical section. The slab thickness can often be
increased locally by the introduction of a drop panel, or alternatively the critical shear
perimeter may be increased by introducing a column capital or simply by increasing the
column dimensions. In general, provided such dimensional changes are architecturally
acceptable, they represent the best structural solution.

Let the dlab thickness be increased to 250 mm by the introduction of a 50 mm thick drop
panel over the column in question (i.e. =210 mm).

Now,

u = 4400 + 210) = 2440 mm and a=400 + 210 = 610 mm
From Equation 5.51,
Vo = 2440 x 210{1.86 + (0.3 x 2.50)] x 107% = 1338 kN

and checking Equation 5.54 gives

ad§ (@Vio— V*)=91.1 kNm > M,

-.Shear strength will be adequate and no shear reinforcement is required.
Using Equation 5.55, ®¥«=74lkN, which is greater than 1, as expected.
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Example 5.5 —edge column

Consider the edge column—slab connection with critical perimeter as shown in Eigure 5.15.

The design shear and unbalanced moment are =280 kN and M. = 160kN m. The dab
thicknessis constant at 220 mm, with no spandrel beams along the free slab edge. The
average effective depth d to the flexural stedl is 180 mm and /< = 30MPa,

When designing a slab for punching shear at an edge (or corner) column, the average
prestress o, perpendicular to the free edge across the critical section (i.e. across the width b,
in Figure 5.15) should be taken as zero, unless care is taken to ensure that the slab tendons are
positioned so that this part of the critical section is subjected to prestress. Often thisis not
physically possible, as discussed in Section 10.2 and illustrated in Figure 10.4. In this
example, it is assumed that o.,=0 perpendicular to the free edge and o.,=2.5 MPa pardlel to
the edge.

Asin Example 5.3, £;,=1.86 MPaand using Equation 5.51,

Vo= {[1.86 + (0.3 x 2.5)] x 580 x 180
+ [1.86 x (1560 — 580) x 180] } % 10~* = 601 kN

Checking Equation 5.54 shows that

8 x 180 x-;% [(0.7 % 601) = 280) x 10~* = 63.7 kNm < M

."“The unreinforced section is NOT adequate.

As mentioned in the previous examples, alocal increase in the slab thickness or the
introduction of a spandrel beam or a column capital may prove to be the best solution. For the
purposes of this example, however, shear

400 ml

S -

%0 | I

U = 2{400+ 180/2 )+ (400 + 180 ) |

= j,Sllem ]
G = (400+180/2) = 490 mm 400 Lo

b = (400 + 180) = 580 mm |

o1 J

a

Figure 5.15 Plan view of critical section for Example 5.5.
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and torsional reinforcement will be designed in the slab strip of width a=490 mm and depth

D=220 mm at the side faces of the critical section.
From Equation 5.58, the strength of the critical section when the side faces contain the

specified minimum quantity of closed stirrupsis

1.2 % 601
Vi, min = =
wm . 160X 10°x 1560 253 kN
2 x 280 x 10° x 490 x 490

¢ Vuminjs |ess than 7, and therefore the torsion stri ps require more than the minimum
guantity of closed stirrups. In this example, 10 mm diameter mild steel stirrups are to be used

with 16 mm longitudinal barsin each corner, as shown in Figure 5.16, and 25 mm clear

concrete cover to the stirrups is assumed.
From Equation 5.61,

As'ur 0.2 x 430 280 2 _
s 2 250 (m X 253) =0.860

and therefore
5< 91 mm.

Use 10 mm stirrups at 90 mm centres in the torsion strips.
The minimum area of longitudinal steel within the closed stirrups is obtained from

Equation 5.27:
(Ass Imin = 0.2 % 430 x (1076/400) = 231 mm?

The 4-16 mm diameter longitudinal bars shown in Figure 5.16 are more than adequate.
The shear strength of the critical section is given by Equation 5.59:

78.5% 250
Vu= 253Jm- 403 kN

2 L %1 Jd

Ape=78.5mm2; f,, =250 MPa; f, =400 MPa = {
X =220 ~-2x25 - 10 = 160 mm ' )

¥y =490 = 2x25 = 10 = 430mm X Xy =126

by = 2[(430 - 26) + (160 - 26))

= 1076 mm : |
L ¥1 =26 |
| 1

Figure 5.16 Details of closed stirrups in the torsion strips of Example 5.5.
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and therefore
oV, =282 kN> V*

In addition, the shear strength 7, isless than the maximum strength controlled by web-
crushing and given by Equation 5.60:

||220
Vu |"H‘¢K=3 2 Frvde
) x 233 X e 508 kN

The cross-section of the proposed torsion strip is therefore adequate.
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6
Anchorage zones

6.1 Introduction

In prestressed concrete structural members, the prestressing force is usualy transferred from
the prestressing steel to the concrete in one of two different ways. In post-tensioned
construction, relatively small anchorage plates transfer the force from the tendon to the
concrete immediatel y behind the anchorage by bearing. For pretensioned members, the force
istransferred by bond between the steel and the concrete. In either case, the prestressing force
istransferred in arelatively concentrated fashion, usually at the end of the member, and
involves high local pressures and forces. A finite length of the member is required for the
concentrated forces to disperse to form the linear compressive stress distribution assumed in
design.

The length of member over which this dispersion of stress takes place is called the transfer
length (in the case of pretensioned members) and the anchorage length (for post-tensioned
members). Within these so-called anchorage zones, acomplex stress condition exists.
Transverse tension is produced by the dispersion of the longitudinal compressive stress
trajectories and may lead to longitudinal cracking within the anchorage zone. Similar zones of
stress exist in the immediate vicinity of any concentrated force, including the concentrated
reaction forces at the supports of a member.

The anchorage length in a post-tensioned member and the magnitude of the transverse
forces (both tensile and compressive), that act perpendicular to the longitudinal prestressing
force, depend on the magnitude of the prestressing force and on the size and position of the
anchorage plate or plates. Both single and multiple anchorages are commonly used in post-
tensioned construction. A careful selection of the number, size, and location of the anchorage
pl ates can often minimize the transverse tension and hence minimize the transverse
reinforcement requirements within the anchorage zone.

The stress concentrations within the anchorage zone in a pretensioned
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member are not usually as severe as in a post-tensioned anchorage zone. Thereisamore
gradual transfer of prestress. The prestress is transmitted by bond over a significant length of
the tendon and there are usually numerous individual tendons that are well distributed
throughout the anchorage zone. In addition, the high concrete bearing stresses behind the
anchorage plates in post-tensioned members do not occur in pretensioned construction.

6.2 Pretensioned concrete—force transfer by bond

In pretensioned concrete, the tendons are usually tensioned within casting beds. The concrete
is cast around the tendons and, after the concrete has gained sufficient strength, the
pretensioning force is released. The subsequent behaviour of the member depends on the
quality of bond between the tendon and the concrete. The transfer of prestress usually occurs
only at the end of the member, with the steel stress varying from zero at the end of the tendon,
to the prescribed amount (full prestress) at some distance in from the end. As mentioned in the
previous section, the distance over which the transfer of force takes place is the transfer
length (or the transmission length) and it is within this region that bond stresses are high. The
better the quality of the steel—concrete bond, the more efficient is the force transfer and the
shorter isthe transfer length. Outside the transfer length, bond stresses at transfer are small

and the prestressing force in the tendon is approximately constant. Bond stresses and localized
bond failures may occur outside the transfer length after the development of flexural cracks
and under overloads, but abond failure of the entire member involves failure of the anchorage
zone at the ends of the tendons.

The main mechanisms that contribute to the strength of the steel—concrete bond are
chemical adhesion of steel to concrete, friction at the steel—concrete interface and mechanical
interlocking of concrete and steel, which is associated primarily with deformed or twisted
strands. When the tendon is released from its anchorage within the casting bed and the forceis
transferred to the concrete, there is a small amount of tendon dlip at the end of the member.
This slippage destroys the bond for a short distance into the member at the released end, after
which adhesion, friction, and mechanical interlock combine to transfer the tendon force to the
concrete.

During the stressing operation, there is areduction in the diameter of the tendon due to the
Poisson’ s ratio effect. The concrete is then cast around the highly tensioned tendon. When the
tendon is released, the unstressed portion of the tendon at the end of the member returnsto its
original diameter, whilst a some distance into the member, where the tensile stressin the
tendon is still high, the tendon remains at its reduced diameter. Within the transfer length, the
tendon diameter varies as shown in Figure 6.1 and there
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g, =0 a — 0,

Figure 6.1 The Hoyer effect (Hoyer 1939).

isaradia pressure exerted on the surrounding concrete. This pressure produces a frictional
component which assists in the transferring of force from the steel to the concrete. The
wedging action due to thisradia strain is known as the Hoyer effect (after Hoyer 1939).

The transfer length and the rate of development of the stedl stress along the tendon depend
on many factors, including the size of the strand (i.e. the surface areain contact with the
concrete), the surface conditions of the tendon, the type of tendon, the degree of concrete
compaction within the anchorage zone, the degree of cracking in the concrete within the
anchorage zone, the method of release of the prestressing force into the member, and, to a
minor degree, the compressive strength of the concrete.

The factors of size and surface condition of atendon affect bond capacity in the same way
as they do for non-prestressed reinforcement. A light coating of rust on atendon will provide
greater bond than for steel that is clean and bright. The surface profile has a marked effect on
transfer length. Stranded cables have a shorter transfer length than crimped or plain steel of
equal area owing to the interlocking between the helices forming the strand. The strength of
concrete, within the range of strengths used in prestressed concrete members, does not greatly
affect the transfer length. However, with increased concrete strength, there is greater shear
strength of the concrete embedded between the individual wiresin the strand.

An important factor in force transfer is the quality and degree of concrete compaction. The
transfer length in poorly compacted concrete is significantly longer than that in well
compacted concrete. A prestressing tendon anchored at the top of a member generally has a
greater transfer length than atendon located near the bottom of the member. Thisis because
the concrete at the top of amember is subject to increased sedimentation and is generally less
well compacted than at the bottom of a member. When the tendon is rel eased suddenly and
the force is transferred to the concrete with impact, the transfer length is greater than for the
case when the force in the steel is gradually imparted to the concrete.

Depending on the above factors, transfer lengths are generally within the
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range 40-150 times the tendon diameter. The force transfer is not linear, with about 50% of
the force transferred in the first quarter of the transfer length and about 80% within the first
half of the length. For design purposes, however, it is reasonable and generally conservative
to assume alinear variation of steel stress over the entire transfer length.

BS 8110 (1985) specifies that provided theinitial prestressing forceis not greater than 75%
of the characteristic strength of the tendon and the concrete in the anchorage zone is well
compacted, the transfer (transmission) length of atendon that is gradually released at transfer,
may be taken as

_ K dp
- (6.1)

I

where d isthe nomina diameter of the tendon and

K, =600 for plain or indented wire
=400 for crimped wire
=240 for 7-wire standard or super strands

A generally more conservative value of [=60d, for regular, super, or compact strand is
specified in AS 3600-1988.

Sudden release of the tendon at transfer may cause large increases in /, above the value
given by Equation 6.1. In addition, if the tendon is anchored in the top of a member, the value
given by Equation 6.1 should be increased by at least 50%. Owing to the breakdown of bond
at the end of amember and the consequent slip, a completely unstressed length of /,/10 should
be assumed to develop at the end of the member (AS 3600—1988).

The value of stressin the tendon, in regions outside the transmission length, remains
approximately constant under service loads or whilst the member remains uncracked, and
hence the transfer length remains approximately constant. After cracking in aflexural member,
however, the behaviour becomes more like that of areinforced concrete member and the steel
stress increases with increasing moment. If the critical moment location occurs at or near the
end of amember, such as may occur in a short-span beam or a cantilever, the required
development length for the tendon is much greater than the transfer length. In such cases, the
bond capacity of the tendons needs to be carefully considered.

ACI 318-83 (1983) suggests that, at the ultimate |load condition, in order to ensure the
development of the fina stress g, in the prestressing steel at a section near the end of a
member, a development length /; is required. This development length is the sum of the
transfer length /;, which is the length required to develop the effective prestress in the steel, o
(in MPa), and an additional length Zirequired to develop the additional steel stress Opu—0pe- FOI
7-wire strand, ACI 318-83 specifies the following empirical
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estimates of these lengths (here converted to S units):

a . d
f= (ﬁ) db- and /= {Upr.r - ap!} -."F

Thetotal development length of %« = U+ )is therefore given by
— [Tpe Tpu — Tpe
fd' = (lﬂ)db + ( 3 )db (62)

The ACI 318-83 requirements are based on tests of small diameter strands reported by
Hanson & Kaar 1959. Figure 6.2 illustrates the variation of steel stress with distance from the
free end of the tendon.

ACI 318-83 further suggests that in the case of members where bond is terminated before
the end of the member (i.e. a portion of the tendons at the member end is deliberately
debonded), and where the design permits tension at service load in the pre-compressed tensile
zone, the devel opment length given by Equation 6.2 should be doubled.

From test results, Marshall and Mattock (1962) proposed the following simple equation for
determining the amount of transverse reinforcement A; (in the form of stirrups) in the end
zone of a pretensioned member:

D P
A =0021 ==
r ﬂ'; (63)

where D isthe overall depth of the member, P isthe prestressing force,

[

At nominal strength
of the member

Steel stress
k]
®

[

g

Figure 6.2 Variation of steel stress near the free end of atendon (ACI 318-83).
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[, isthe transfer length, and o; is the permissible steel stress which may be taken as 150 M Pa.
The transverse steel 4, should be equally spaced within 0.2D from the end face of the member.

6.3 Post-tensioned concrete anchorage zones

6.3.1 Introduction

In post-tensioned concrete structures, failure of the anchorage zone is perhaps the most
common cause of problems arising during construction. Such failures are difficult and
expensive to repair and usually necessitate replacement of the entire structural member.
Anchorage zones may fail owing to uncontrolled cracking or splitting of the concrete resulting
from insufficient, well anchored, transverse reinforcement. Bearing failures immediately
behind the anchorage plate are a'so common and may be caused by inadequately dimensioned
bearing plates or poor quality concrete. Bearing failures are most often attributed to poor
design and/or poor workmanship resulting in poorly compacted concrete in the heavily
reinforced region behind the bearing plate. Great care should therefore be taken in both the
design and construction of post-tensioned anchorage zones.

Consider the case shown in Figure 6.3 of a single square anchorage plate centrally
positioned at the end of a prismatic member of depth D and width B. In the disturbed region
of length L, immediately behind the anchorage plate (i.e. the anchorage zone), plane sections
do not remain plane and simple beam theory does not apply. High bearing stresses at the
anchorage plate disperse throughout the anchorage zone, creating high transverse stresses,
until at a distance L, from the anchorage plate the linear stress and strain distributions
predicted by simple beam theory are produced. The dis-

(m:ss wajectories
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Figure 6.3 Diagrammatic stress trgjectories for a centrally placed anchorage.
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Figure 6.4 Distribution of transverse stress behind single central anchorage.

persion of stressthat occurs within the anchorage zoneisillustrated in Figure 6.3b. The stress
trajectories directly behind the anchorage are convex to the centre-line of the member, as
shown, and therefore produce a transverse component of compressive stress normal to the
member axis. Further from the anchorage, the compressive stress trajectories become concave
to the member axis and as a consequence produce transverse tensile stress components. The
stress trgjectories are closely spaced directly behind the bearing plate where compressive
stress is high, and become more widely spaced as the distance from the anchorage plate
increases. St Venant’s principle suggests that the length of the di sturbed region, for the single
centrally located anchorage shown in Figure 6.3, is approximately equal to the depth of the
member, D. The variation of the transverse stresses along the centre-line of the member, and
normal toit, are represented in Figure 6.4.

The degree of curvature of the stress trgjectories is dependent on the size of the bearing
plate. The smaller the bearing plate, the larger are both the curvature and concentration of the
stress trgjectories, and hence the larger are the transverse tensile and compressive forces in the
anchorage zone. The transverse tensile forces (often called bursting or splitting forces) need
to be estimated accurately so that transverse reinforcement within the anchorage zone can be
designed to resist them.

Elastic analysis can be used to anal yse anchorage zones prior to the commencement of
cracking. Early studies using photo-elastic methods (Tesar 1932, Guyon 1953) demonstrated
the distribution of stresses within the anchorage zone. Analytical models were aso proposed
by lyengar (1962), lyengar and Y ogananda (1966), Sargious (1960), and others. The results of
these early elastic studies have been confirmed by more recent finite element investigations.
Figure 6.5a shows stress isobars of g,/c, in an anchorage zone with asingle centraly placed
anchorage. These isobars are similar to those obtained in photo-elastic studies reported by
Guyon (1953). g, isthe
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(b) Transverse stress along member axis for various anchorage plate sizes.

Figure 6.5 Transverse stress distribution for central anchorage (after Guyon 1953).

transverse stress and o, is the average longitudinal compressive stress (P/BD). The transverse
compressive Stress region is shaded.

The effect of varying the size of the anchor plate on both the magnitude and position of the
transverse stress along the axis of the member can be also clearly seen in Figure 6.5b. Asthe
plate size increases, the magnitude of the maximum transverse tensile stress on the member
axis decreases and its position moves further along the member (i.e. away from the anchorage
plate). Tensile stresses also exist at the end surface of the anchorage zone in the corners
adjacent to the bearing plate. Although these stresses are relatively high, they act over a small
area and the resulting tensile force is small. Guyon (1953) suggested that a tensile force of
about 3% of the longitudinal prestressing force islocated near the end surface of a centrally
loaded anchorage zone when 4/D is greater than 0.10.

The position of the line of action of the prestressing force with respect to the member axis
has a considerabl e influence on the magnitude and distribution of stress within the anchorage
zone. Asthe distance of the applied force from the axis of the member increases, the tensile
stress at the loaded face adjacent to the anchorage aso increases. Figure 6.6aillustrates the
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Figure 6.6 Diagrammatic stress trgjectories and isobars for an eccentric anchorage (Guyon 1953).

stress tragjectories in the anchorage zone of a prismatic member containing an eccentrically
positioned anchorage plate. At alength L, from the loaded face, the concentrated bearing
stresses disperse to the asymmetric stress distribution shown. The stress tragjectories, which
indicate the general flow of forces, are therefore unequally spaced, but will produce transverse
tension and compression along the anchorage axisin a manner similar to that for the single
centrally placed anchorage.

Isobars of a,/0, are shown in Eigure 6.6b. High bursting forces exist aong the axis of the
anchorage plate and, away from the axis of the anchorage, tensile stresses are induced on the
end surface. These end tensile stresses, or spalling stresses, are typical of an eccentrically
loaded anchorage zone.

Transverse stress isobars in the anchorage zones of members containing multiple anchorage
plates are shown in Figure 6.7. The length of the member over which significant transverse
stress exists (L) reduces with the number of symmetrically placed anchorages. The zone
directly behind each

g
D4

Di4
D4

D4
Dig

Drg

D4

{a) (b) {c)

Figure 6.7 Transverse stress isobars for end zones with multiple anchorages (Guyon 1953).
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anchorage contains bursting stresses and the stress isobars resemble those in asingle
anchorage centrally placed in amuch smaller end zone, asindicated. Tension also exists at the
end face between adjacent anchorage plates. Guyon (1953) suggested that the tensile force
near the end face between any two adjacent bearing plates is about 4% of the sum of the
longitudinal prestressing forces at the two anchorages.

The isobars presented in this section are intended only as a means of visualizing behaviour.
Concrete is not alinear-elastic material and a cracked prestressed concrete anchorage zone
does not behave exactly as depicted by the isobarsin Figures 6.5-6.7. However, such linear-
elastic analyses indicate the areas of high tension, both behind each anchorage plate and on
the end face of the member, where cracking of the concrete can be expected during the
stressing operation. The formation of such cracks reduces the stiffness in the transverse
direction and leads to a significant redistribution of forces within the anchorage zone.

6.3.2 Methods of analysis

The design of the anchorage zone of a post-tensioned member involves both the arrangement
of the anchorage plates, to minimize transverse stresses, and the determination of the amount
and distribution of reinforcement to carry the transverse tension after cracking of the concrete.
Relatively large amounts of transverse reinforcement, usually in the form of stirrups, are often
reguired within the anchorage zone and careful detailing of the steel is essential to ensure the
satisfactory placement and compaction of the concrete. In thin-webbed members, the
anchorage zone is often enlarged to form an end-block which is sufficient to accommodate the
anchorage devices. This also facilitates the detailing and fixing of the reinforcement and the
subsequent placement of concrete.

The anchorages usually used in post-tensioned concrete are patented by the manufacturer
and prestressing companies for each of the types and arrangements of tendons. In general,
they are units which are recessed into the end of the member, and have bearing areas which
are sufficient to prevent bearing problemsin well-compacted concrete. Often the anchorages
are manufactured with fins which are embedded in the concrete to assist in distributing the
large concentrated force. Spiral reinforcement often forms part of the anchorage system and is
located immediately behind the anchorage plate to confine the concrete and thus significantly
improve its bearing capacity.

Asdiscussed in Section 6.3.1, the curvature of the stress trgjectories determines the
magnitude of the transverse stresses. In general, the dispersal of the prestressing forces occurs
through both the depth and the width of the anchorage zone and therefore transverse
reinforcement must be provided within the end zone in two orthogonal directions (usually,
vertically
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Figure 6.8 Truss anaogy of anchorage zone.

and horizontally on sections through the anchorage zone). The reinforcement quantities
required in each direction are obtained from separate two-dimensional analyses, i.e. the
vertical transverse tension is calculated by considering the vertical dispersion of forces and
the horizontal tension is obtained by considering the horizontal dispersion of forces.

Theinternal flow of forcesin each direction can be visualized in several ways. A simple
model isto consider truss action within the anchorage zone. For the anchorage zone of the
beam of rectangular cross-section shown in Figure 6.8, the truss analogy shows that transverse
compression exists directly behind the bearing plate, with transverse tension, often called the
bursting force (7}), a some distance along the member.

Consider the anchorage zone of the T-beam shown in Figure 6.9. The truss analogy is
recommended by the FIP (1984) for calculating both the vertical tension in the web and the
horizontal tension across the flange.

An alternative model for estimating the internal tensile forcesis to consider the anchorage
zone as a deep beam loaded on one side by the bearing

=
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1 _—iﬂ';r_
! — . 1" +- . I
F—*[ ‘\T 4 D F"—u--[-——-----—Im___I\-\< ..-__-‘| b
-_—— | -
.
{a) web {b) Alange

Figure 6.9 Vertica and horizontal tension in the anchorage zone of a post-tensioned T-beam (FIP
1984).
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stresses immediately under the anchorage plate and resisted on the other side by the statically
equivalent, linearly distributed stresses in the beam. The depth of the deep beam istaken as
the anchorage length, L. This approach was proposed by Magnel (1954) and has been further
developed by Gergely & Sozen (1967) and Warner & Faulkes (1979).

A single central anchorage

The beam analogy model isillustrated in Figure 6.10 for a single central anchorage, together
with the bending moment diagram for the idealized beam. Since the maximum moment tends
to cause bursting along the axis of the anchorage, it is usually denoted by A, and called the
bursting moment.

By considering one half of the end-block as a free-body diagram, as shown in Figure 6.11,
the bursting moment A, required for rotational equilibrium is obtained from statics. Taking
moments about any point on the member axis gives

szf (E—.}—!) :f{D—ﬁ}

2\4 4/ 8 (6.4)

As has already been established, the position of the resulting transverse (vertical) tensile force
Ty in Eigure 6.11 islocated at some distance from the anchorage plate, as shown. For alinear-
elastic anchorage zone, the exact position of 7, isthe centroid of the area under the
appropriate transverse tensile stress curve in Figure 6.5b. For the single, centrally placed
anchorage of Figures 6.5, 6.10 and 6.11, the lever arm between C, and T}, is approximately
equal to D/2. This approximation also proves to be a reasonable one for a cracked concrete
anchorage zone. Therefore, using Equation 6.4,

re -2 (1-)

D2 a\ "D (6.5)

Expressions for the bursting moment and the horizontal transverse tension
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Figure 6.10 Beam analogy for asingle centrally placed anchorage.
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Figure 6.11 Free-body diagram of top half of the anchorage zone shown in Figure 6.10.

resulting from the lateral dispersion of bearing stresses across the width B of the section are
obtained by replacing the depth D in Equations 6.4 and 6.5 with the width B.

Two symmetrically placed anchorages

Consider the anchorage zone shown in Figure 6.12a containing two anchorages each
positioned equidistant from the member axis. The beam analogy of Figure 6.12b indicates
bursting moments, M, on the axis of each anchorage and a spalling moment, M; (of opposite
sign to Mp), on the member axis, as shown. Potential crack locations within the anchorage
zone are also shown in Figure 6.12a The bursting moments behind each anchorage plate
produce tension at some distance into the member, while the spalling moments produce
transverse tension at the end face of the member. This simple analysis agrees with the stress
isobars for the linear-elastic end block of Figure 6.7c. Consider the free-body diagram shown

in Figure 6.12c. The
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Figure 6.12 Beam analogy for an anchorage zone with two symmetric anchorages.
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maximum bursting moment behind the top anchorage occurs at the distance x below the top
fibre, where the shear force at the bottom edge of the free-body is zero. That is,

P P aD
—x=—(x—-a) or x=

D~ 2 D-2h (6.6)

Summing moments about any point in Figure 6.12c gives

Px?  P(x- a)’

My =35 ah (6.7)

The maximum spalling moment A, occurs at the member axis, where the shear is also zero,
and may be obtained by taking moments about any point on the member axisin the free-body

diagram of Figure 6.12d:
P D
M=3 ( N 'rI) (6.8)

After the maximum bursting and spalling moments have been determined, the resultant
internal compressive and tensile forces can be estimated provided that the lever arm between
them is known. The internal tension T, produced by the maximum bursting moment A,
behind each anchorage may be calculated from

Te==- 6.9)

By examining the stress contours in Figure 6.7, the distance between the resultant transverse
tensile and compressive forces behind each anchorage /, depends on the size of the anchorage
plate and the distance between the plate and the nearest adjacent plate or free edge of the

section.

Guyon (1953) suggested an approximate method which involves the use of an idealized
symmetric prism for computing the transverse tension behind an eccentrically positioned
anchorage. The assumption is that the transverse stresses in the real anchorage zone are the
same as those in a concentrically loaded idealized end block consisting of aprism that is
symmetrical about the anchorage plate and with a depth D, equal to twice the distance from
the axis of the anchorage plate to the nearest concrete edge. If theinternal lever aamIbis
assumed to be half the depth of the symmetrical prism (i.e. D./2), then the resultant transverse
tension induced along the line of action of the anchorage is obtained from an equation that is
identical with Equation 6.5, except that the depth of the symmetric prism
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D. replaces D. Thus

To =§ (‘ - IT,) (6.10)

where # and D, are, respectively, the dimensions of the anchorage plate and the symmetric
prism in the direction of the transverse tension 7. For asingle concentrically located
anchorage plate D.=D (for vertical tension) and Equations 6.5 and 6.10 are identical.
Alternatively, the tension T, can be calculated from the bursting moment obtained from the
statics of the real anchorage zone using alever arm /,=D /2. Guyon’'s Ssymmetric prism
concept is now accepted as a useful design procedure and has been incorporated in a number
of building codes, including AS 3600-1988.

For anchorage zones containing multiple bearing plates, the bursting tension behind each
anchorage, for the case where all anchorages are stressed, may be calculated using Guyon’'s
symmetric prisms. The depth of the symmetric prism D, associated with a particular
anchorage may be taken as the smaller of

(a) the distance in the direction of the transverse tension from the centre of the anchorage to
the centre of the nearest adjacent anchorage; and

(b)twice the distance in the direction of the transverse tension from the centre of the
anchorage to the nearest edge of the anchorage zone.

For each symmetric prism, the lever arm /, between the resultant transverse tension and
compression is DJ2.

The anchorage zone shown in Figure 6.13 contains two symmetrically placed anchorage
plates |ocated close together near the axis of the member. The stress contours show the bulb
of tension immediately behind each anchorage plate. Also shown in Figure 6.13 isthe
symmetric prism of depth

Figure 6.13 Two closely spaced symmetric anchorage plates.
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D. 10 be used to calculate the resultant tension and the transverse reinforcement required in
thisregion. Tension also exists further along the axis of the member in asimilar location to
that which occurs behind a single concentrically placed anchorage. AS 3600—1988 suggests
that where the distance between two anchoragesis less than 0.3 times the total depth of a
member, consideration must also be given to the effects of the pair of anchorages acting in a
manner similar to a single anchorage subject to the combined forces.

Reinforcement requirements

In general, reinforcement should be provided to carry all the transverse tension in an
anchorage zone. It is unwise to assume that the concrete will be able to carry any tension or
that the concrete in the anchorage zone will not crack. The quantity of transverse
reinforcement Ay, required to carry the transverse tension caused by bursting can be obtained
by dividing the appropriate tensile force, cal culated using Equation 6.8 or 6.9, by the
permissible stegl stress:

A= E

Ty (611)

AS 3600-1988 suggests that, for crack control, a stedl stress of no more than 150 M Pa should
be used. Equation 6.11 may be used to calculate the quantity of bursting reinforcement in both
the vertical and horizontal directions. The transverse steel so determined must be distributed
over that portion of the anchorage zone in which the transverse tension associated with the
bursting moment is likely to cause cracking of the concrete. Therefore, the steel area 4y,
should be uniformly distributed over the portion of beam located from 0.2D. to 1.0D. from
the loaded end face (AS 3600-1988). For the particular bursting moment being considered, D,
is the depth of the symmetric prism in the direction of the transverse tension and equals D for
a single concentric anchorage. The stirrup size and spacing so determined should also be
provided in the portion of the beam from 0.2D. to as near as practicable to the loaded face.

For spalling moments, the lever arm /,; between the resultant transverse tension 7, and
compression C; is usually larger than for bursting, as can be seen from the isobars in Figure
6.7. AS 3600—1988 suggests that for a single eccentric anchorage, the transverse tension at the
loaded face remote from the anchorage may be cal culated by assuming that /; is half the
overal depth of the member. Between two widely spaced anchorages, the transverse tension
at the loaded face may be obtained by taking /; equal to 0.6 times the spacing of the
anchorages. The reinforcement required to resist the
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transverse tension at the loaded face A,; is therefore obtained from

T: M,
Asgg=—=—
Os Osls (612)

and should be placed within 0.2D from the loaded face. In general, 4, should be located as
close to the loaded face as is permitted by concrete cover and compaction requirements.

6.3.3 Bearing stresses behind anchorages

Local concrete bearing failures can occur in post-tensioned members immediately behind the
anchorage platesif the bearing areais inadequate and the concrete strength istoo low. The
design bearing strength for unconfined concrete may be taken as (ACI 318-83, AS 3600—
1988, CAN3 1984):

Fr=¢x D-Ejﬂj& (s x1.7f4) (6.13)

where feiisthe compressive strength of the concrete at the time of first loading, A1 is the net
bearing area and A4, isthe largest area of the concrete supporting surface that is geometrically
similar to and concentric with A4;.

For post-tensioned anchorages, provided the concrete behind the anchorage is well
compacted, the bearing stress given by Equation 6.13 can usually be exceeded. The transverse
reinforcement which is normally included behind the anchorage plate confines the concrete
and generally improves the bearing capacity. Often spiral reinforcement, in addition to
transverse stirrups, is provided with commercial anchorages. In addition, the transverse
compression at the loaded face immediately behind the anchorage plate significantly improves
the bearing capacity of such anchorages. Commercial anchorages are typically designed for
bearing stresses of about 40 MPa and bearing strength is specified by the manufacturer and is
usually based on satisfactory test performance. For post-tensioned anchorage zones containing
transverse reinforcement, the design bearing stress given by Equation 6.13 can be increased

by at least 50%, but a maximum value of @ % 2.5Jeijs recommended.

6.3.4 Example 6.1—A single concentric anchorage on a rectangular section

The anchorage zone of aflexura member with the dimensions shown in Figure 6.14 isto be
designed. The size of the bearing plate is 315 mm square with aduct diameter of 106 mm, as
shown. The jacking force is P/=3000 kN and the concrete strength at transfer is 35 MPa



Page 226

450~
3425
[ s
315 . 1000 - i
i ~ 3000 kN D:D#
3415 35
Eod Elevation Side Elevation

Figure 6.14 Anchorage zone arrangement in Example 6.1

Consider the bearing stress immediately behind the anchorage plate. For bearing strength
calculations, the strength load factors and capacity reduction factors contained in AS 3600—
1988 are adopted, i.e. the design load is 1.15P; and ¢ = 0-6(see Sections 1.7.3 and 1.7.6). The
nett bearing area 4, isthe area of the plate minus the area of the hollow duct. That is,

2
Ay =315 X 315—“—11—9'5- =90.4 x 10° mm?2

and for this anchorage
Az = 480 x 480 = 230 x 10° mm?
The design bearing stress is therefore

1.15P; 1.15x 3000 x 10°
O = =

Al 04x10’ o 5-2MPa

In accordance with the discussion in Section 6.3.3, the design strength in bearing is taken as
50% greater than the value obtained using Equation 6.13. Therefore,

3
Fr=1.5x0.6x0.85x35 Mﬁj = 42.7 MPa

90.4 % 10

which is acceptable.

Consider moments in the vertical plane (i.e. vertica bursting tension)

The forces and bursting moments in the vertical plane areillustrated in Figure 6.15a From
Equations 6.4 and 6.5,

MF%E{IWG- 315) x 10~* = 257 KN'm
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Figure 6.15 Force and moment diagrams for vertical and horizontal bursting.
and

_257x10°

T,
®= 500

=514 kN

The amount of vertical transverse reinforcement is calculated from Equation 6.11. Assuming
that 6,=150 MPa:

_ 514 x 10°

- 2
150 3430 mm

Ajb

This area of transverse steel must be provided within the length of beam located from 0.2D to
1.0D from the loaded end face, i.e. over alength of 0.8D=800 mm.

Two 12 mm diameter stirrups (four vertical legs) are required at 100 mm centres (i.e.
A »=8%4x%110=3520 mm? within the 800 mm length). This size and spacing of stirrups must
be provided over the entire anchorage zone, i.e. for a distance of 2000 mm from the loaded
face.

Consider moments in the horizontal plane (i.e., horizontal bursting tension)

The forces and bursting moments in the horizontal plane areillustrated in Figure 6.15b. With
B=480 mm replacing D in Equations 6.4 and 6.5, the bursting moment and horizontal tension
are

Mp =1':;E' (480 — 315) x 10~ = 61.9 kNm
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and

261.9x1ﬂ3

T,
b 240

= 258 kN

The amount of horizontal transverse stedl is obtained from Equation 6.11 as

_258x10°

_ 2
Asp = 50 - 1720 mm

which is required within the length of beam located between 96 mm (0.2B) and 480 mm
(2.0B) from the loaded face.

Four pairs of closed 12 mm stirrups (i.e. four horizontal legs per pair of stirrups) at 100 mm
centres (4 ,,=1760 mn?) satisfies this requirement. To satisfy horizontal bursting requirements,
this size and spacing of stirrups should be provided from the |loaded face for alength of at
least 480 mm.

To accommodate atensile force at the loaded face of 0.03P=90 kN, an area of steel of
90x10%150=600 mm? must be placed as close to the loaded face as possible. Thisisin
accordance with Guyon’s (1953) recommendation discussed in Section 6.3.1. Thefirst stirrup
supplies 440 mm? and, with two such stirrups located within 150 mm of the loaded face, the
existing reinforcement is considered to be adequate.

The transverse stedl details shown in Figure 6.16 are adopted here. Within the first 480 mm,
where horizontal transverse steel isrequired, the stirrups are closed at the top, as indicated,
but for the remainder of the anchorage zone, between 480 and 1000 mm from the loaded face,
open stirrups may be used to facilitate placement of the concrete. Thefirst stirrup is placed as
close as possible to the loaded face, as shown.

11 - 12mm dia. stirraps at 12 mm stirmaps
2t 100 mm centres (4 legs) at 100 mm centres
40| clgmndtb_l cq:'umli_r ;(
LLA i
4 - 20mm longitudinal
[ bars 1op and bottem

Elevation Section

Figure 6.16 Reinforcement details, Example 6.1.
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6.3.5 Example 6.2—Twin eccentric anchorages on a rectangular section

The anchorage shown in Figure 6.17 isto be designed. The jacking force at each of the two
anchorages is P,=2000 kN and the concrete strength is J< = 35MPa.

—w—
lﬂﬂﬂkﬂ RSN | S — % -q"
[ ”: . -}-jﬁmm
| 1000 [ 265 [
275 +
-—-.-[ — L 255 ::r
2000 kN ; A

Figure 6.17 Twin anchorage arrangement, Example 6.2.

Check on bearing stresses behind each anchorage

Asin Example 6.1, the design strength in bearing F}, is taken to be 50% greater than the value
given by Equation 6.13. In this example,

2
A :Eﬁjl-ﬂu=ﬁ3.ﬁx 10° mm?; A4, =450%=202.5 x 10* mm?
and
202.5 % 10°
Fo=1.5x%0.6x0.85x%35 5365107 =47.8 MPa

Using aload factor of 1.15 for prestress (AS 3600-1988), the design bearing stressis

~ 1.15 % 2000 x 10°

_ - 36.2 MP
=T 3.6 x 107 a

whichislessthan F;, and is therefore satisfactory.

Case (a) Consider the lower cable only stressed

It is necessary first to examine the anchorage zone after just one of the tendons has been

stressed. The stresses, forces, and corresponding moments acting on the eccentrically loaded
anchorage zone are shown in Figure 6.18.
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2.71 MPa 1,30 kN/mm M, M,
642,
7.55 +*
. kN e
75 4
2000 kN 4 263 _ -
225 i
11.04 MPa [ 925 5.30 kN/mm
{n) Side elevation and stress {b) Forces () Moments
M, £.3 - 00066 1.3 EN/mm
~ T
g 394
7.55 -ﬂ X
EMN/mm
\ )
5.3 kN/mm M, l3kNfmm

) ()
Figure 6.18 Actions on anchorage zone in Example 6.2 when the lower cable only is tensioned.

The maximum bursting moment M, occurs at a distance x from the bottom surface at the point
of zero shear in the free-body diagram of Figure 6.18d:

5.3+ (5.3 - 0.0066x)

7.55(x — 92.5) = 5
x=231.8 mm
and from statics
2 2 2
M, = (5.3 23;'3 - 1.53%4.55 139.3 ) x 1077 = 55.5 kNm

The maximum spalling moment M, occurs at 394 mm below the top surface where the shear
isalso zero, as shown in Figure 6.18e:

2z
M;=1.3 %x 107*=33.6 kNm

Design for M, The symmetric prism which is concentric with and directly behind the lower
anchorage plate has a depth of D,=450 mm and is shown
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Figure 6.19 Symmetric prism for one eccentric anchorage, Example 6.2.
in Figure 6.19. From Equation 6.9,

_ M, 55.5x10°

By contrast, Equation 6.10 gives

Ts

2000 (1 _ 265
- 450

) )=2061<N

which is considerably less conservative in this case. Adopting the value of 7}, obtained from
the actual bursting moment, Equation 6.11 gives

246.5 x 10}

— 1
150 = 1640 mm

A;& =

This area of steel must be distributed over a distance of 0.8D,=360 mm.

For the steel arrangement illustrated in Figure 6.21, 16 mm diameter and 12 mm diameter
stirrups are used at the spacingsindicated, i.e. atotal of four vertical legs of area 620 mm? per
stirrup location are used behind each anchorage. The number of such stirrups required in the
360 mm length of the anchorage zone is 1640/620=2.65 and therefore the maximum spacing
of the stirrups is 360/2.65=135 mm. This size and spacing of stirrupsis required from the
loaded face to 450 mm therefrom. The spacing of the stirrupsin Eigure 6.21 is less than that
calculated here because the horizontal bursting moment and spalling moment requirements
are more severe. These are examined subsequently.

Design for M, The lever arm [, between the resultant transverse compression and tension
forces which resist M is taken as 0.5D0=500 mm. The area of transverse steel required within
0.2D=200 mm from the front face is
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given by Equation 6.12:

33.6 x 10°%

_ _ 2
=150 x 500 _ 48 mm

Ass

The equivalent of about four vertical 12 mm diameter steel legsis required close to the loaded
face of the member to carry the resultant tension caused by spalling. This requirement is
easily met by the three full depth 16 mm diameter stirrups (six vertical legs) shown in Eigure
6.21 located within 0.2D of the loaded face.

Case (b) Consider both cables stressed

Figure 6.20 shows the force and moment distribution for the end block when both cables are
stressed.

M,1Mj,

925 7.55 kN/mm 4.0 kMNmm j ;
SR |
£l

" __H
.

265 q
—]

92.5]

Figure 6.20 Force and moment distribution when both cables are stressed.

Design for M, The maximum bursting moment behind the anchorage occurs at the level of
zero shear, x mm below the top surface and x mm above the bottom surface. From Equation
6.6:

_ 92.5 x 1000
1000 - (2 X 265)

= 196.8 mm

and Equation 6.7 gives

o (400(]:-{ 196.82 _ 4000 x 104.3

z
._3_._
5% 1000 2% 265 )Xlﬂ =36.2kNm

which isless than the value for A, when only the single anchorage was stressed. Since the
same symmetric prism is applicable here, the reinforcement requirements for bursting
determined in case (a) are more than sufficient.
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Design for M, The spalling moment at the mid-depth of the anchorage zone (on the
member axis) is obtained from Equation 6.8:
M= _mznn (215 - E’:—”) % 107 =50 kNm

With [ taken as 0.6 times the spacing between the anchorages (see the discussion preceding
Equation 6.12), i.e. /=330 mm, the area of transverse stedl required within 200 mm of the
loaded face is found using Equation 6.12:

50 % 10°

o ee—— = 2
150 % 330 L0l0mm

AH

To avoid stedl congestion, 16 mm diameter stirrups will be used close to the loaded face, as
shown in Figure 6.21. Use six vertical legs of 16 mm diameter (1200 mmz) across the member
axis within 200 mm of the loaded face, as shown.

Case (¢) Consider horizontal bursting

Horizontal transverse steel must also be provided to carry the transverse tension caused by the
horizontal dispersion of the total prestressing force (P=400 kN) from a 265 mm wide
anchorage plate into a 480 mm wide section. With B=480 mm used instead of D, Equations
6.4 and 6.5 give

Mp=107.5kNm and T,=448 kN

16mm stirrups (full depth)
4 g At 105mm at 250mm .
TR L s 3

40 | &0 50

closed stirrops 1 open stimups

16mm i

e 1 ] =

6- 12mm — |
stirrups
&t 105mm Elevation Section

Figure 6.21 Reinforcement details for anchorage zone of Example 6.2.
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and the amount of horizontal stedl is obtained from Equation 6.11:
Asp=2990 mm*

With the stedl arrangement shown in Figure 6.21, six horizontal bars exist at each stirrup
location (2—16mm diameter bars and 4-12 mm diameter bars, i.e. 840 mm? at each stirrup
location). The required stirrup spacing within the length 0.8D(=384 mm) is 108 mm.
Therefore, within 480 mm from the end face of the beam, all available horizonta stirrup legs
arerequired and therefore al stirrupsin this region must be closed.

The reinforcement details shown in Figure 6.21 are adopted.

6.3.6 Example 6.3—Single concentric anchorage in a T-beam

The anchorage zone of the T-beam shown in Figure 6.22ais to be designed. The member is
prestressed by a single cable with a 265 mm sgquare anchorage plate located at the centroidal
axis of the cross-section. The jacking force is P,=2000 kN and the concrete strength at transfer
is 35 MPa. The distribution of forces on the anchorage zone in elevation and in plan are
shown in Figures 6.22b and c, respectively.

The design bearing stress and the design strength in bearing are calculated

1000 D, = 543
1 — A
150 | {212 139.2 N\ | l—f~s8¢ kNfmm
1
l ¥ — 288 \ [ :l
550 s —265-] TS47kNmm ___il M 2044 kNjmem
I p—3 5} o o
(a) End Elevation (b) Side Elevation
|
325 876 kN/mm
= = = _.' ——————— c& H’ T{.
350 4.088 {' 0 ‘
| __' ______ I* kN/mm
7547 325 .-0.876 7.547 x 2044
KN/mm i - kN/mm kNjmm ] KN/mm
{(c) Plan {d) Part Side Elevation

Figure 6.22 Details of the anchorage zone of the T-beam in Example 6.3.
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as for the previous examples:

op=36.2MPa and F,=37.2MPa

Consider moments in the vertical plane

The maximum bursting moment occurs at the level of zero shear at x mm above the bottom of
the section. From Eigure 6.22d,

2.044x=7.547(x—295.8) and .. x=405.7mm

and

My = (2.m4 X 405.7% 7.547(405.7 — 295.8)°

-3 _
5 > )xlﬂ =123 kNm

Asindicated in Figure 6.22Db, the depth of the symmetric prism associated

16mm bars at 130mm centres

U

-1l|.
Elevation
9 - 16mm bars —— .
ﬂlm o e o ] A == & = [ R
centres
e
I ~—FFa-F1-+4- - 1
Plan

Figure 6.23 Reinforcement details for anchorage zone of Example 6.3.
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with M} is D.=543 mm and the vertical tensionis

My

Tp=—b
T D2

=451 kN

The vertical transverse reinforcement required in the web is obtained from Equation 6.11:

_ 451 x10°

_ 2
Asp = 150 = 3010 mm

This area of steel must be located within the length of the beam between 0.2D.=109 mm and
D.=543 mm from the loaded face.

By using 16 mm stirrups over the full depth of the web and 12 mm stirrups immediately
behind the anchorage, as shown in Figure 6.23 [i.e. 4,,=(2%200)+(2x110)=620 mm? per
stirrup location], the number of double stirrups required is 3010/620=4.85 and the required
spacing is (543—109)/4.85=90 mm, as shown.

Consider moments in the horizontal plane

Significant lateral dispersion of prestressin plan occurs in the anchorage zone as the
concentrated prestressing force finds its way out into the flange of the T-section. By taking
moments of the forces shown in Figure 6.22c about a point on the axis of the anchorage, the
horizontal bursting moment is

My = [(0.876 x 325 x 337.5) + (4.088 x 175 x 87.5)
- (1000 x 66.25)] x 103
=02.4KkNm

Much of this bursting moment must be resisted by horizontal transverse tension and
compression in the flange. Taking D. equal to the flange width, the lever arm between the
transverse tension and compression is /,=D./2=500 mm and the transverse tension is
calculated using Equation 6.9:

_92.4x10°

Ty 500

=185 kN

The area of horizontal transverse reinforcement required in the flange is therefore

=135x1n~"

_ 2
50 - 1235 mm

Asp
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This quantity of steel should be provided within the flange and located between 200 and 1000
mm from the loaded face. Adopt 16 mm bars across the flange at 130 mm centres from the
face of the support to 1000 mm therefrom, as shown in Figure 6.23.

The truss analogy

An alternative approach to the design of the anchorage zone in a flanged member, and
perhaps a more satisfactory approach, involves the truss analogy illustrated in Figure 6.9.

The vertical dispersion of the prestress in the anchorage zone of Example 6.3 may be
visualized using the smpletrussillustrated in Figure 6.24a The truss extends from the
bearing plate into the beam for alength of about half the depth of Guyon’s (1953) symmetric
prism (i.e. D./2=272 mm in this case). The total prestressing force carried in the flange is 876
kN and this

|
B 75
1972 - B76 kN
A _-961
4 $764N kN IHEN 12.5
93 | se3un—Lt.C 563 ip 563 kN
T‘j"kﬁm e ™ 405 kN T lars
652
kM
3330 F 563 kN
1375
Elevation
(a) Yertical dispersion of presiress
Plan ’
250
H 438 kN
e -1
— e AT W
1325 N I6IEN oL 500
438 o1
6 EN
— .f\:"..ﬁ'.r N _ —
KN _r
KE  438kN
250
- 1 |
I | b2 = 500 '

{b) Horizontal dispersion of prestress

Figure 6.24 Truss analogy of the anchorage zone in Example 6.3.
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force is assumed to be applied to the analogous truss at A and at B, as shown. The total
prestressing force in the web of the beam is 1123 kN, which is assumed to be applied to the
analogous truss at the quarter points of the web depth, i.e. at D and F, as shown. From statics,
the tension force in the vertical tie DF is 405 kN, which is in reasonabl e agreement with the
bursting tension (451 kN) calculated previously using the deep beam analogy. The area of
steel required to carry the vertical tension in the analogous trussis

405 % 10° x
Ay = 150 = 2700 mm

and this should be located between 0.2D. and D. from the loaded face. According to the truss
analogy, therefore, the vertical steel spacing of 90 mm in Eigure 6.23 may be increased to 100
mm.

The horizontal dispersion of prestressinto the flange isillustrated using the truss analogy of
Figure 6.24b. After the prestressing force has dispersed vertically to point B in Figure 6.24a
(i.e. a 272 mm from the anchorage plate), the flange force then disperses horizontaly. The
total flange force (876 kN) is applied to the horizontal truss at the quarter points across the
web, i.e. at points H and K in Figure 6.24b. From statics, the horizontal tension in the tie HK
is 161 kN (which isin reasonable agreement with the bursting tension of 185 kN calculated
previoudy). The reinforcement required in the flangeis

_ 161 x 10° s
A= 50 - 1070 mm

This quantity of reinforcement is required over alength of beam equal to about 0.8 times the
flange width and centred at the position of the tie HK in Figure 6.24b. Reinforcement at the
spacing thus calcul ated should be continued back to the free face of the anchorage zone. The
reinforcement indicated in Figure 6.23 meets these requirements.
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7
Composite members

7.1 Types and advantages of composite construction

Composite construction in prestressed concrete usually consists of precast, prestressed
members acting in combination with acast in situ concrete component. The composite
member isformed in at least two separate stages with some or al of the prestressing normally
applied before the compl etion of the final stage. The precast and the cast in situ elements are
mechanically bonded to each other to ensure that the separate components act together as a
single composite member.

Composite members can take a variety of forms. In building construction, the precast
elements are often pretensioned slabs (which may be elther solid or voided), or single or
double tee-beams. The cast in situ element is athin, lightly reinforced topping slab placed on
top of the precast units after the units have been erected to their final position in the structure.
Singie or double tee precast units are used extensively in building structuresin the USA and
elsewhere because of the economies afforded by this type of construction.

Composite prestressed concrete beams are widely used in the construction of highway
bridges. For short- and medium-span bridges, standardized 1-shaped or trough-shaped girders
(which may be either pretensioned or post-tensioned) are erected between the piersand a
reinforced concrete slab is cast onto the top flange of the girders. The precast girders and the
in situ slab are bonded together to form a stiff and strong composite bridge deck.

The two concrete elements, which together form the composite structure, have different
concrete strengths, different elastic moduli, and different creep and shrinkage characteristics.
The concrete in the precast element is generally of better quality than the concrete in the cast
in situ element because usually it has a higher specified target strength and is subject to better
quality control and better curing conditions. With the concrete in the precast e ement being
older and of better quality than the in sifu concrete, restraining actions will develop in the
composite structure with time owing
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to differential creep and shrinkage movements. These effects should be carefully considered
in design.

Prestressed concrete composite construction has many advantages over non-composite
construction. In many situations, a significant reduction in construction costs can be achieved.
The use of precast elements can greatly speed up construction time. When the precast
elements are standardized and factory produced, the cost of long-line pretensioning may be
considerably less than the cost of post-tensioning on site. Of course, the cost of transporting
precast elements to the site must be included in these comparisons and it is often
transportation difficulties that limit the size of the precast elements and the range of
application of this type of construction. In addition, it is easier and more economical to
manufacture concrete el ements with high mechanical propertiesin a controlled prestressing
plant rather than on abuilding or bridge site.

t=in-situ slab cast-in-situ topping
_L TR AT r/‘.:ul AT AR D A T T O Do T 'I.-‘..-.-'.-.q'...f/':. AL TR R Sk A R R T |
* 10Y0 00 00 0Y01
precast pretensioned plank
precast
girder (b) Pretensioned plank plus topping
(a) Slab and girder

t-in-sita slab
/l:l.i

R o LA R Y T T T L i B

precast

(¢} Single T-sections (d) Double T-sections

— casl-in-situ flange

precast mough girder

(¢) Trough girder

Figure 7.1 Typical composite cross-sections.
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During construction, the precast el ements can support the forms for the cast in situ concrete,
thereby reducing falsework and shoring costs. The elimination of scaffolding and falsework is
often amajor advantage over other forms of construction, and permits the construction to
proceed without interruption to the work or traffic beneath.

Apart from providing significant increases to both the strength and stiffness of the precast
girders, the in situ concrete can perform other useful structural functions. It can provide
continuity at the ends of precast el ements over adjacent spans (asillustrated in Figure 9.1d).
In addition, it provides lateral stability to the girders and also provides a means for carrying
lateral loads back to the supports. Stage stressing can be used to advantage in some composite
structures. A composite member consisting of a pretensioned, precast element and an in situ
slab may be subsequently post-tensioned to achieve additional economies of section. This
situation may arise, for example, when arelatively large load isto be applied at some time
after composite action has been achieved.

Cross-sections of some typical composite prestressed concrete members commonly used in
buildings and bridges are shown in Figure 7.1.

7.2 Behaviour of composite members

The essential requirement for a composite member is that the precast and cast in situ elements
act together as one unit. To achieve this, it is necessary to have a good bond between the two
elements.

When a composite member is subjected to bending, a horizontal shear force develops at the
interface between the precast and the in sifu elements. This resultsin atendency for horizontal
dlip on the mating surfaces if the bond is inadequate. Resistance to dlip is provided by the
naturally achieved adhesion and friction that occurs between the two elements. Often the top
surface of the precast element is deliberately roughened during manufacture to improve its
bonding characteristics and facilitate the transfer of horizontal shear through mechanical
interlock. Where the contact surface between the two elementsis broad (such asin Figures
7.1b, ¢, and d), natural adhesion and friction are usually sufficient to resist the horizontal
shear. Where the contact areais small (such as between the slab and girdersin Figures 7.1a
and e), other provisions are necessary. Frequently, the web reinforcement in the precast girder
is continued through the contact surface and anchored in the cast in situ slab. This
reinforcement resists horizontal shear primarily by dowel action, but assistance is al'so gained
by clamping the mating surfaces together and increasing the frictional resistance.

If the horizontal shear on the element interface is resisted without slip (or with small slip
only), the response of the composite member can be determined in a similar manner to that of
amonolithic member. Stresses and strains on the composite cross-section due to service loads
applied after the
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in situ Slab has been placed (and has hardened) may be calculated using the properties of the
combined cross-section calculated using the transformed area method. If the elastic modulus
of the concrete in the in situ part of the cross-section, £, is different to that in the precast
dement, £, it isconvenient to transform the cross-sectional areaof the in situ element to an
equivalent area of the precast concrete. Thisis achieved in much the same way as the areas of
the bonded reinforcement are transformed into equivalent concrete areas in the analysis of a
non-composite member. For a cross-secti on such as that shown in Figure7.1a or g, for
example, if the in situ concrete lab has an effective width 4., and depth D, it is transformed
into an equivalent area of precast concrete of depth D, and width b,, where

- E —
O = DI e (71)

If the bonded steel areas are also replaced by equivalent areas of precast concrete (by
multiplying by EJ/E., or E,/E.,), the properties of the composite cross-section can be
calculated by considering the fictitious transformed cross-section made up entirely of the
precast concrete.

The width of the in situ dab that can be considered to be an effective part of the composite
cross-section (b, depends on the span of the member and the distance between the adjacent
precast e ements. Maximum effective widths for flanged sections are generally specified in
building codes, with the ACI 318-83, BS 8110 (1985), and AS 3600—1988 requirements
previoudly outlined in Section 4.6. For composite members such as those shown in Figures
7.1a and g, the effective flange widths recommended by both BS 8110 and AS 3600 are given
in Equation 4.33, except that the term b,, now refers to the width of the slab—girder interface.

The design of prestressed concrete composite membersis essentially the same as that of
non-composite members, provided that certain behavioural differences are recognized and
taken into account. It isimportant to appreciate that part of the applied load is resisted by the
precast element(s) prior to the establishment of composite action. Care must be taken,
therefore, when designing for serviceability to ensure that behaviour of the cross-section and
its response to various load stages are accurately modelled. It is also necessary in design to
ensure adequate horizontal shear capacity at the element interface. The design for flexural,
shear, and torsional strength is similar to that of a non-composite member.

7.3 Stages of loading

As mentioned in the previous section, the precast part of a composite member is required to
carry loads prior to the establishment of composite action. When loads are applied during
construction, before the cast in situ
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slab has set, flexural stresses are produced about the centroidal axis of the precast element.
After the in situ concrete has been placed and cured, the properties of the cross-section are
substantially altered for all subsequent loadings. Flexural stresses due to service live loads, for
example, act about the centroidal axis of the composite section, thereby modifying the stress
distribution in the precast element and introducing stress into the cast in situ slab. Creep and
shrinkage of the concrete also cause a substantial redistribution of stress with time between
the precast and the in situ elements, and between the concrete and the bonded reinforcement
in each element.

In the design of a prestressed concrete composite member, most of the following load
stages will usually need to be considered:

(1) Theinitial prestress at transfer in the precast el ement. This normally involves calculation
of elastic stresses due to both the initial prestress P; and the self-weight of the precast
member. Thisload stage frequently occurs off-site in a precasting plant.

(2) After the precast element has been erected prior to the application of any superimposed
load. Thisinvolves atime analysis to determine the stress redistribution and changein
curvature caused by creep and shrinkage of the concrete in the precast element between
transfer and the time of erection. The only loads acting are the prestress (P, after osses)
and the self-weight of the precast element. A reasonably accurate time analysis can be
performed using the analysis described in Section 3.6.2. Concrete stresses at load stages 1
and 2 at the mid-span of the precast element areillustrated in Figure 7.2a.

(3) The effective prestress and the self-weight (determined in stage 2) plus any other
superimposed dead |oads applied prior to the establishment of composite action. If the
precast element is unshored (i.e. not temporarily supported by props during construction),
the superimposed dead |oad mentioned here includes the weight of the wet in sifu concrete.
This load stage involves a short-term analysis of the precast element to calculate the
instantaneous effects of the additional dead

R
centroid of —— -k \ 3 T )
composite section & b
1 —]
cenwroid of
precast section 2 o 3
(a) land X {(b)2and 3 {(c)3and 4
Load Stages

Figure 7.2 Concrete stresses at the various |oad stages.
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loads prior to composite action. The additional increments of stress and instantaneous
strain in the precast element are added to the stresses and strains obtained at the end of
stage 2. Concrete stresses at the critical section of an unshored member at |oad stage 3
are shown in Figure 7.2b.

If the precast member is shored prior to placement of the cast in sifu slab, the applied
loads do not produce internal actions or deformations in the member and the imposed
loads are carried by the shoring. Therefore, no additional stresses or strains occur in a
fully shored precast element at this load stage. When curing of the cast in situ
component has been completed, the shoring is removed and the self-weight of the cast
in situ concrete, together with any other loading applied at this time, produce
deformations and flexural stresses about the centroidal axis of the composite cross-
section. This action is considered in the following load stage.

(4) Theinstantaneous effect of any dead load or service live load and any additional
prestressing not previously considered (i.e. not applied previously to the non-composite
precast element). Thisinvolves a short-term analysis of the composite cross-section (see
Section 7.5.2) to determine the change of stresses and deformations on the composite cross-
section as all the remaining loads are applied. If cracking occurs, a cracked section analysis
isrequired. Additional prestress may be applied to the composite member by re-stressing
existing post-tensioned tendons or post-tensioning previously unstressed tendons. If the
composite section remains uncracked, the increments of stress and strain calculated at this
load stage on the precast part of the composite cross-section are added to the stresses and
strains calculated in stage 3 prior to the establishment of composite action. The concrete
stresses at the end of load stage 4 are shown in Figure 7.2c.

(5) The long-term effects of creep and shrinkage of concrete and relaxation of the prestressing
steel on the behaviour of the composite section subjected to the sustained service loads. A
time analysis of the composite cross-section is required (see Section 7.5.3) beginning at the
time the sustained load is first applied (usually soon after the in situ concrete is poured).

(6) The ultimate load condition for the composite section. Uitimate strength checks are
required for flexure, shear, and torsion (if applicable) to ensure an adequate factor of safety.
Under ultimate load conditions, the flexural strength of the composite section can be
assumed to equal the strength of a monolithic cross-section of the same shape, with the
same materia properties, and containing the same amount and distribution of reinforcement,
provided that dlip at the element interface is small and full shear transfer is obtained
(Hanson 1960, Saemann & Washa 1964). The stress discontinuity at the inter-
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face at service loads and the inelastic effects of creep and shrinkage have an insignificant
affect on the ultimate strength of the cross-section and can be ignored at the ultimate load
condition.

7.4 Determination of prestress

In practice, the initial prestress P; and the eccentricity of prestresse,. at the critical section in
the precast element are calculated to satisfy preselected stress limits at transfer. In general,

cracking is avoided at transfer by limiting the tensile stress to about Fu=0.25[f . In addition,
it is prudent to limit the initial compressive stresses to about £ei = = 0-3Jciin order to avoid
unnecessarily large creep deformations. In the case of trough girders, as shown in Figure 7.1€,
the centroidal axis of the precast el ement is often not far above the bottom flange, so that
loads applied to the precast element prior to or during placement of the in sizu slab may cause
unacceptably large compressive stresses in the top fibres of the precast girder.

Satisfaction of stress limitsin the precast element at transfer and immediately prior to the
establishment of composite action (at the end of load stage 3) can be achieved using the
procedure discussed in Section 3.3.1 and aMagnel design diagram, similar to that shown in
Figure 3.3. For the case of a precast girder, Equations 3.5-3.8 (which form the four limit lines
on the Magnel diagram) become

_'_1_ ; &I‘.pcfpc =1
Pi AFFIE+Q;_P¢M] (7-2)
Pi™ —ApeFei + appe My (7.3)

1 < R (ap,pclpc + 1)
Pi = —ApeF:i + ay,pe Ms (7.4)

and

P; = ApcFe + aty,pc My (7.5)

where ¢, isthe eccentricity of prestress from the centroidal axis of the precast section,
Ospc=Apel Zi pe, b pe=Apd Zv pe, Ape 1Sthe cross-sectional area of the precast member, 7, and
Zy, ,. are the top and bottom section moduli of the precast element, respectively, M, isthe
moment applied at load stage 1 (usually resulting from the self-weight of the precast
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member), M5 is the maximum in-service moment applied to the precast element prior to
composite action (load stage 3), and R3P; isthe prestressing force at load stage 3. An estimate
of the losses of prestress between transfer and the placement of the in siru slab deck is
required for the determination of R3.

Equations 7.2 and 7.3 provide an upper limit to Pi and Equations 7.4 and 7.5 establish a
minimum level of prestressin the precast e ement.

After the in situ dlab has set, the composite cross-section resists all subsequent loading.
There is a change both in the size and the properties of the cross-section and a stress
discontinuity exists at the element interface. If cracking isto be avoided under the service

loads, alimit F; (say l:"ISJG'E-:}') is placed on the magnitude of the extreme fibre tensile stress at
the end of load stage 5, i.e. after all prestress losses and under full service loads. This
requirement places another and more severe limit on the minimum amount of prestress than
that imposed by Equation 7.4. Alternatively, this requirement may suggest that an additional
prestressing force is required on the composite member, i.e. the member may need to be
further post-tensioned after the in situ Slab has developed its target strength.

The bottom fibre tensile stressimmediately before the establishment of composite action
may be approximated by

Obs = _R;P; (] + AFEF) + M

Ape Zb,pe (7.6)

If the maximum additional moment applied to the composite cross-section in load stage 4 is
M, and the prestressing force reduces to RP; with time, then the final maximum bottom fibre
stress at the end of load stage 5 may be approximated by

Tps = —

RPE (1 +AFEPE)+ M} M.‘

+
Apr zﬂu pc zb.pe: zb, comg (7-7)

where Z,, .., IS the section modulus for the bottom fibre of the composite cross-section. If ;5
isto remain less than the stress limit F;, then Equation 7.7 can be rearranged to give

2 ( My , M _ F') (7.8)
"\Zope  Zp,comp

Equation 7.8 can be plotted on a Magnel diagram together with Equations 7.2, 7.3, and 7.5 to
establish a suitable combination of P; and e,., as shown in Eigure 7.3. In some cases, the
precast section may be proportioned
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o=

Equation 7.8 (or 7.4)
IIJF";'L,IH

-
Minimum P, —

Equation 7.2
(Fu)
Equation 7.3
/ -
T T T =
=1/ Oy pe Vg pe (8o ) Eccenrricity, e,

Figure 7.3 The Magnel diagram for a composite cross-section.

so that the prestress and eccentricity satisfy al stress limits prior to composite action (i.e.
Equations 7.2—7.5 are all satisfied). However, when the additional requirement of Equation
7.8 isincluded, no combination of P; and e, can be found to satisfy all the stress limits and no
acceptable region exists on the Magnel diagram. In such cases, additional prestress may be
applied to the composite member after the in situ slab isin place.

If cracking can be tolerated in the composite member under full service loads, a cracked
section analysisis required to check for crack control and to determine the reduction of
stiffness and its effect on deflection. Care must be taken in such an anaysis to model
accurately stresses in the various parts of the cross-section and the stress discontinuity at the
dlab-girder interface.

In many cases, cracking may be permitted under the full live load but not under the
permanent sustained load. In such acase, M4 in Equation 7.8 can be replaced by the sustained
part of the moment applied at |oad stage 4 (M,,,s). Therefore, Equation 7.8 becomes

P; Apc( M; + M4.:u: _ -Fr) (79)
Zb.pc zb.mm_n

and Equation 7.9 can be used to determine the minimum level of prestress on a partially
prestressed composite section.
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7.5 Methods of analysis at service loads

7.5.1 Introductory remarks

After the size of the concrete elements and the quantity and disposition of prestressing steel
have been determined, the behaviour of the composite member at service loads should be
investigated in order to check deflection (and shortening) at the various load stages (and
times), and also to check for the possibility of cracking. The short-term and time-dependent
analyses of uncracked composite cross-sections can be carried out conveniently using
procedures similar to those described in Sections 3.5.1 and 3.6.2 for non-composite cross-
sections. The approaches described here were a so presented by Gilbert (1988).

Consider a cross-section made up of a precast, prestressed girder (element 1) and acast in
situ reinforced concrete slab (element 2), as shown in Figure 7.4. The concrete in each
element has different deformation characteristics. This particular cross-section contains four
layers of non-prestressed reinforcement and two layers of prestressing steel, although any
number of steel layers can be handled without added difficulty. Aswas demonstrated in
Example 3.5, the presence of non-prestressed reinforcement may affect the time-dependent
deformation of the section significantly and cause a reduction of the compressive stressesin
the concrete. In the following analyses, no slip is assumed to occur between the two concrete
elements or between the steel reinforcement and the concrete.

Centroidal axis of in-situ slab
(element 2: A 3, [o2, Ec2)

| .
b
d;ﬂ_i },! of |_Ld_;| _Ed:'l
T T']. -+ +j e == "t' -+ _+ *: + _+ T"_-"l:]
Ty Ty o v -« + 3 4+ + % T Ag T
— —] A
dp]_ dEI
daz
dys Centroidal axis of precist girder
; / (element L1: Ay, Iy, Ecy)
s— € N An
c— & — Ap2

e | —A

Figure 7.4 Typical prestressed concrete composite cross-section.
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7.5.2 Short-term analysis

For the composite cross-section in Figure 7.4, the elastic modulus of the concrete in one of the
concrete elements is adopted as the modulus of the transformed section, say E.1 of element 1
(the precast girder). The area of the in situ Slab and the areas of the bonded steel
reinforcement are transformed into equivalent areas of the concrete of element 1. The
transformed cross-section equivalent to the composite section of Figure 7.4 is shown in Figure
7.5.

The properties of this transformed section about the top surface of the precast slab are

2 F )
A= E NeiAci + kgl R Ask + E MpmA pm (7.10)

j= m=1

2 4 2
B= Z’ an"‘dd:j"‘ kz Mk Asedsi + E npm-‘qpmdpm
=1 m=1

Ji=1

- 2 4 2
j= E (ﬂrj!cj‘i‘ H.;,‘A;-jdcjz}'h E ﬂs&!‘iskd;kz'b Enpqupmdpmz

J=1 k=1 m=]

where n=ElE.1, ng=E4lE 4, and n,,=E,,IE 4, 4 isthe area of the transformed section, and B
and / are the first and second moments of the transformed area about the top surface of thein
situ dab. If the prestressed steel were post-tensioned and unbonded, it would not form part of
the transformed section. By changing the summation limits, Equations 7.10 can be used no
matter how many steel or concrete elements make up the composite cross-section.

¢Centroidal axis element 1 (n.24.2, fe2lc2)

L b i
~ T dea — ! ’ L ﬂj]l'lll _ldr_l — dy3
R - Oledeid-a 0 0 0 0 00 i |
J'!, l 'ﬁ.% o o 8 & & 0 0 O O — — -

fy 2“:1

- =T =,

'.Iﬂ_l*" /
d;l n‘lr:I. \
ﬂp:
d;-‘
/Ctnm:nida.l axis of element 1 (A4, [.4)
I_J_ o o \-q-::--._ﬂ’lgﬂﬁrhndm]
- — e — Q == — = ﬂ,:ﬂpz (il bonded)

e ¢ — — ﬂﬁﬂﬂm:uﬂjl‘

Figure 7.5 Transformed composite cross-section.
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Asoutlined in Section 3.5.1, the instantaneous change in the strain distribution caused by
an increment of axial force AN; and an increment of moment AM; applied about the top
surface of the in siru dlab is obtained from Equations 3.20, 3.24 and 3.25, which arere-
expressed here as follows:

Agi=Aey+ ¥ Axj

(7.11)
where
Ae, = BAM - I AN;
= BT AD) (7.12)
Axi= —-AAM;+BAN,
T TEA(BT- AD (7.13)

For a composite prestressed cross-section in pure bending, with no additional prestress
applied after the establishment of composite action, AN; is zero. Ifa prestressing force AP; is
applied through any unbonded tendons during load stage 4 (see Section 7.3), AN;isa
compressive force equal in magnitude to AP;. The moment AM,; is the sum of the moment
caused by external |oads applied to the composite section Mc.., (Which could be, for example,
the total load applied in load stage 4 and designated M, in Equation 7.7) and the moment
about the top fibre caused by any additional prestress. Therefore,

(7.14)

The force AP; isthe prestress applied at |oad stage 4 after thein situ slab isin place. In many
cases, AP~=0 and Equation 7.14 reduces to AN~0 and AM;=M_,,,,,. Thestressesand strains
caused by the initial prestress and other loads applied to the non-composite precast girder (in
load stages 1-3) are calculated using the short-term and time-dependent analyses of Sections
3.5.1 and 3.6.2. The strain distribution in the composite member at the end of load stage 4 are
obtained by adding the instantaneous strains obtained from Equations 7.12 and 7.13 to the
strains existing in the precast member at the end of load stage 3.

The change of concrete stress in the jth concrete element at y below the top fibre and the
changes of stress in the bonded steel reinforcement caused by AN; and AM; may be calculated
from

Aoi = EcilAeei + ¥ Axi)
(7.15)

Adsie = Esp(Atoi + dsx Axy)
(7.16)



AGpim = + dpm Ax
!
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7.5.3 Time analysis

The age-adjusted effective modulus for each reinforced concrete element is calculated using
Equation 2.14. In accordance with the analytical procedure outlined in Section 3.6.2 for non-
composite cross-sections, the restraining actions —o/N and —0M required to prevent the
development of creep and shrinkage in each concrete element and stress relaxation in the
prestressing steel may be computed from expressions similar to Equations 3.47 and 3.48. For
a cross-section containing n1 concrete elements and n2 levels of prestressing steel, Equations
3.47 and 3.48 become

nl ni

—5N=— Z i [Ai(Aci€oi + Bejxi) + £snjAey] + A Rm (7.18)
nl _ nl

— M= - 2. Ej[ Adj(Beseoi + Ijni) + €saiBej) + El R pm (7.19)
J= m=

where 4., is the area of the jth concrete element and B.; and I; are the first and second
moments, respectively, of the area of the jth concrete element about the top of the in situ dab.
In Equations 7.18 and 7.19, the terms goi and x; are the top fibre instantaneous strain and
instantaneous curvature (i.e. the sope of the instantaneous strain diagram), respectively, at
the beginning of the current timeinterval caused by each previously applied load or time
increment.

The change of top fibre strain and curvature with time are calculated using Equations 3.49
and 3.50 by applying 6M and o\ to the age-adjusted transformed section. The age-adjusted
effective modulus of the precast element (£.1) is selected as the modulus of the age-adjusted
transformed section. The in situ dlab is transformed into equivalent areas of the precast

concrete by multiplying by the age-adjusted modular ratio ez = £e2/Eer. The bonded steel
areaistransformed by multiplying by sk = Esk[Eeigr fipm = Epm|Ee1
For the cross-section shown in Figure 7.4, the area of the age-adjusted transformed section

A, and the first and second moments of the transformed area about the top surface Beand I,
respectively, are

- 2
A= 5_][ AejAej + Z Ask Ask + E Aipm A pm (7.20)
Jl:
2
B, = E jAeide; + E Pk A sk ok + E Rpm A pm Gpm
=

E {nq;fq;+ﬂ:1r4c;dc;}+ Z H’kArkd;k+ E npmAMdpm

J=1 ms]
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The time-dependent changes in top fibre strain and curvature are therefore

Ag, = BedM I ON
E.(B. - Al) (7.21)
and
Ay —_ﬁ{ oM + iﬁ,‘m
E: [Et: "'-4:!:) (722)

The change of stress at a point in the jth concrete element at a depth y below the top fibreis
calculated using Equations 3.51-3.53 and is given by

Ao = —Eo;[Adi(€ai + ¥xi) + Eni— (Ao + ¥ Ax)]

(7.23)
The change of stress with timein the kth layer of non-prestressed reinforcement is
Agge = Eqp(Ags + da Ax)
(7.24)
and, in the mth layer of prestressed sted, it is
Adpm = Epm{Ae, + d ﬂx}+-ﬁi
pm = Zpm(8 €0+ Cpm Apm (7.25)

Example 7.1

The cross-section of a composite footbridge consists of a precast, pretensioned trough girder
and a cast in situ slab, as shown in Figure 7.6. The cross-section is subjected to the following
load history. The precast section is cast and moist cured for 4 days. At r=4 days, the total
prestressing force

- 2400 f
75} l
o n M " + e i e Mot
a _I""‘—'_b 'Al‘i = EW{} mz T T T T L] L} f‘.-_.':i'-:_-;i 1 50
631.5 ~ e [-150 150
600
ann'oid.nl axis of precast elr:m:nl (Agq = 358500 mm?
- T | 1.7= 184 % 10° mm*)
2623 A,=150ﬂm2‘-:;{;:::#1‘-#‘r%%#§— 150
b 1

¥

fis0 100

1200 ——————=




Figure 7.6 Details of composite cross-section in Example 7.1.
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of 2000 kN istransferred to the girder. The centroid of all the pretensioned strandsis located
100 mm above the bottom fibre of the precast girder, as shown. The moment on the section
caused by the self-weight of the girder A7/;=320 KNm is introduced at transfer. Shrinkage of
the concrete also beginsto develop at thistime. At =40 days, the in situ Slab deck is cast and
cured and the moment caused by the weight of the deck is applied to the precast section,
M3=300 kNm. At /=60 days, awearing surface is placed and all other superimposed dead
loads are applied to the bridge, thereby introducing an additional moment A4=150 kNm.

Composite action gradually begins to develop as soon as the concrete in the deck sets. Full
composite action may not be achieved for several days. However, it is assumed here that the
in situ deck and the precast section act compositely at all times after /=40 days.

The stress and strain distributions on the composite cross-section are to be calcul ated
immediately after the application of the prestress at 1=4 days, both before and after the slab
deck is cast at 1=40 days, both before and after the road surface is placed at /=60 days, and at
time infinity.

For a precast section (element 1); /¢ =40mpa;

E.(4) = 25000 MPa; E.(40) =31 500 MPa; E.,(60) = 33000 MPa;
En1 (40 —4) = =150 % 107 £, (60— 4) = —200 x 10™%;
Emi(=) = —500% 1075,
$1(40,4) = 0.9; ¢1(60,4) = 1.2; ¢1(0,4) =2.4;
$1(60, 40) = 0.5; ¢1(o0,40) = 1.6; ¢1(0, 60) = 1.2;
x1(40, 4) = 0.88; x1(60,4) =0.85; x1(=,4)=0.8;
x1(60,40) = 0.9; x1 (20, 40) = 0.8; x:1 (o0, 60) = 0.8.

For the in-situ Slab (element 2): Jfe =25MPa;

E2(40) = 18000 MPa; E.;(60) = 25000 MPa;
Esh2(60 — 40) = — 120 X 107 £a2(c0) = — 600 x 10™5;
¢2(60, 40) = 0.8; ¢2(o0, 40) = 3.0; ¢2(0, 60) = 2.0;
x2(60, 40) = 0.88; x2(e0, 40) = 0.8; x2(, 60) = 0.8.
In the prestressing tendons, the relaxation R is equal to —24 kN at 1=40 days, —32 kN at =60

days, and —60kN at /=0. Take E,=E=200000 M Pa.
(a) At =4 days The properties of the transformed precast section of
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modulus E.1(4)=25000 M Pawith respect to its top fibre are calcul ated as
A;=370500 mm?; B, = 182.3 x 10° mm*; and /; = 108.4 x 10 mm*

Theresultant initial axial force ; and bending moment M; applied at the top of the precast
section are given by

Ni= - Pi= -2000kN  and
M;= M, — Pid, =320 - (2000 % 0.65) = — 980 kN m

and the strain at the top of the precast section (level ain Figure 7.6) and the curvature are
obtained from Equations 3.24 and 3.25:

£i=—2202x10"% and  x;=0.0087x10"*mm™’
From Equation 3.21, the concrete stresses at the top and bottom of the precast section are
gai= —5.51 MPa and opi = = 5.34 MPa

The stress and strain distributions at this time are shown in Figure 7.7b and the stress in the
tendonsis

Op =%+ Epl£qi + dpx;) = 1290 MPa
P

(b) At =40 days. Prior to casting the in situ dlab
The age-adjusted effective modulus at thistimeis (Equation 2.14)

= 25000
E,1(40,4) = T+ (0.88%09) 13950 MPa

and the properties of the concrete part of the precast section (with respect to level a) are

Acy = 358500 mm?; By = 174.5% 10° mm?; and [y = 103.3 x 10° mm*
The restraining forces required to prevent creep and shrinkage of the concrete and relaxation
of the prestressing steel between =4 and 40 days are determined using Equations 3.47 and
3.48. Inthiscase, 4¢ = ¢1(40,4)=0.9 . —. . (40-4)=—150x10 ¢, and R=-24 kN. Therefore,

— 3N =1698 kN and -6M=820.8 kNm
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The properties of the age-adjusted transformed section are calculated as
A1 = 380000 mm?; B,y = 188.5 x 10°* mm?; and Jo = 112.4 % 10’ mm*

and the time-dependent change in the strain diagram between =4 and 40 days is found from
Equations 3.49 and 3.50:

= —361.0x10"% and Ax=0.082%10"°*mm™’

The changes of concrete stress at the top and bottom fibres are cal culated using Equations
3.51to 3.53and are

Aoy = —0.18 MPa and Aap = 0.60 MPa.

The change of the stress and strain distributions with time between =4 and 40 days are
illustrated in Figure 7.7c. The change of concrete stress with timeis not great in this case
because of the relatively small amount of bonded reinforcement and the small time interval
under consideration. The change of stressin the tendons is obtained from Equation 3.55:

24000

Agy =2 % 10°[ — 361 + (650 x 0.082 1078 ——
agp =2 % 107 [ — 361 + (650 x 0.082)] x 1500

= —77.5 MPa

(c) At =40 days After casting the in situ dab

The increments of stress and strain caused by M3=300 kN m applied to the precast section
are calculated using the same procedure as was outlined in part (a) of this example. The
properties of the transformed precast section with E.1(40)=31500 MPa are

Ay =1368020mm?; B, =180.7 x 10°* mm?*; and J, = 107.3 x 10° mm*

With N;=0 and M=M>=300 kNm, the short-term increments of top fibre strain (at level a) and
curvature are given by Equations 3.24 and 3.25 as

Atgi= —251.4x10°° and Axi=0.512x 10" mm™!
From Equation 3.21,

Age = —1.92 MPa; Aoy = 4.18 MPa; and Aoy = 16.3 MPa

The increments of concrete stress and strain caused by M3 are shown in Figure 7.7d. The
extreme fibre concrete stresses in the precast girder
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immediately after placing the in situ slab are obtained by summing the stress increments
calculated in parts (@), (b), and (c):

gg=—3.31-0.18-7.92= -13.61 MPa
op=—534+0.60+4.18 = - 0.56 MPa

Stress levelsin the precast girder are satisfactory at all stages prior to and immediately after
placing the in situ dlab. Cracking will not occur and compressive stress in the top fibre is not
excessive. However, with a sustained compressive stress of —13.61 MPain the top fibre, a
large subsequent creep differential will exist between the precast and the in situ elements.

(d) At =60 days Prior to placement of the wearing surface

The change of stress and strain during the time interval from =40 to 60 daysisto be
calculated here. During this period, the precast section and the in situ slab are assumed to act
compositely.

The concrete stress increments in the precast section, which were calculated in parts (a), (b),
and (c) above, are applied at different times and are therefore associated with different creep
coefficients. For the stresses applied at 1=4 days [(part (a)], the creep coefficient for thistime
interval is ®1(60,4) — ¢1(40,4) = 0.3 The stress increment calculated in part (b), whichisin
fact gradually applied between =4 and 40 days, may be accounted for by assuming that it is
suddenly applied at =4 days and using the reduced creep coefficient given by

x1(40, 4)[ ¢1(60, 4) — &1 (40, 4)] = 0.26.

For the stress increment calculated in part (¢) (and caused by M3), the appropriate creep
coefficient is $1(60,40) = 0.5 The shrinkage strain which develops in the precast section
during thistime interval is e,1(60—4)—¢,;,1(40—4)=—50x10 ®.

For the in situ Slab, the creep coefficient used in thistimeinterval is $2(60,40) = 0.8 3nq the
shrinkage strain is ¢,,,=—120x10°.

The loss of force in the prestressing tendons caused by relaxation is 8 kN.

The age-adjusted effective modulus for each concrete element is (Equation 2.14)

_ E.1(40)

E.1(60, 40) = = 21720 MP
1(60,40) = 1160, 40)91 (60, 40) a

E.»(60, 40) = £:2(40) — 10560 MPa

1 + x2(60, 40)¢2(60, 40)
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The section properties of the concrete part of the precast girder (element 1) and the in situ dlab
(element 2) with respect to the top surface of the composite section (level o of Figure 7.6) are
Ac = 358500 mm?; B =228.3 x 10 mm?; [, = 163.7 x 10° mm*
Acz = 357000 mm?; Be; = 26.78 X 10 mm?; [z = 2683 x 10° mm*

and the properties of the transformed composite section with modulus £,,=21720 MPa are
calculated using Equation 7.20:

A, =572000 mm?; B.=254.3x 10°mm?; I.=174.0 x 10° mm*

To determine the internal actions required to restrain creep, shrinkage, and relaxation (using
Equations 7.18 and 7.19), the initial elastic strain distribution (Agy and Ax;) caused by each of
the previoudly calculated stress increments in each concrete element must be determined.

In the in situ dab: £=0 and x;=0 since the slab at /=40 days is unloaded.

In the precast section:

Owing to the stresses applied at 4 days [calculated in part (8)], €,,=220.2x10 ®,
x=0.0087x10"° mm, and, therefore ¢,=—221.5x10"°.

For the stress increment calculated in part (b) and assumed to be applied at 4 days,

As,=A0IE.1(8)=-7.2x10"°, Ag,=Ac,/E.1(4)=24.0x10"°, and therefore
Ax=(24+7.2)x10 %/750=0.0416x10 ° mm " and Aco=—13.4x10 °.

For the stresses applied at 40 days [part (c)], Ae,=—215.4x10 %, Ax,=0.512x10 °mm ™, and
therefore Ag,=—328.2x10°.

Hence, from Equations 7.18 and 7.19,

—8N = —10560(— 120 x 10~ ® x 357000) — 21 720{0.3 [(358 500
X —221.5) + (228.3 x 10°® x 0.0087)] + 0.26[(358 500
X —13.4) + (228.3 3 10® % 0.0416)] + 0.5[(358 500 x —328.2)
+(228.3 X 10° % 0.512)) — (50 x 358 500)) x 10~% — 8000
= +1320x10°N
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—6M = —10560(— 120 x 107® x 26.78 x 10%) = 21 720{0.3[(228.3
x 10% x —221.5) + (163.7 x 10° x 0.0087)] + 0.26[(228.3 x 10°
X —13.4) +(163.7 x 10° x 0.0416)] + 0.5[(228.3 x 10°x ~ 328.2)
+(163.7 x 10% % 0.512)] — (50 x 228.3 x 10%)) x 10~¢
— 8000 x 800
=477.8 % 10° Nmm

and the changes of top fibre strain and curvature between =40 and 60 days are calculated
using Equations 7.21 and 7.22:

Ato=—-143.0%x10"%* and Ax=0.0825%10"°mm™"

The changes of concrete stress in both the slab deck and the precast section are calculated
from Equation 7.23. In the in situ Slab,
Adsz = — 10560( =120 + 143.0) x 10~ % = —=0.24 MPa
Agaz = —10560[ — 120 — [—143.0 + (150 x 0.0825)] ] x 10~ ¢
= —0.11 MPa

and in the precast section,

Adgy = ~21720{0.3[—221.5 + (150 x 0.0087)) + 0.26[ - 13.4 + (150
x 0.0416)] + 0.5[—328.2 + (150 x 0.512)] — 50 — [-143.0
+ (150 % 0.0825)] } x 10~ %=2.45 MPa
Aoy = —21720{0.3[—221.5 + (900 x 0.0087)] + 0.26[— 13.4 + (900
% 0.0416)] + 0.5[ - 328.2 + (900 x 0.512)] — 50 — [—143.0 + (900
x 0.0825)] } x 10~ = —0.59 MPa

The changes in the concrete stress and strain distributions during this time period are shown in
Figure 7.7e. There is a complex interaction taking place between the two concrete elements.
The in situ dab is shrinking at a faster rate than the precast element and, if this were the only
effect, the in situ slab would suffer atensile restraining force. Because of the high initial
compressive stresses in the top fibres of the precast section, however, the precast concrete at
the element interface is creeping more than the in situ concrete. A compressive restraining
forceistherefore imposed on the in situ Slab and a significant reduction in compressive stress
is observed in the top fibres of the precast element, even over thisrelatively short time period.
At this
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stage, the compressive restraining force in the in situ Slab due to creep of the precast concrete
is greater than the tensile force resulting from shrinkage, and the in situ concrete stresses are
compressive.

The change of steel stresses are obtained from Equations 7.24 and 7.25 and are equa to

Aoy = —27.4 MPa and Agp = —20.7T MPa

(e) At =60 days After placement of the wearing surface
With E 4(60)=33000 M Pa selected as the elastic modulus of the transformed composite
section, the section properties are determined using expressions similar to Equations 7.10:

A=655500mm?; B=257.2x10°mm?; and /=171.7 x 10° mm*

The initial top fibre strain and curvature caused by AM;=M4=150 kNm and AN;=0 are
obtained from Equations 7.12 and 7.13:

257.2 x 109 x 150 x 108

= - -6
33000[(257.2 x 10%)* — (655500 x 171.7 x 10%)] 25.2x10

Atoi

— 655 500 % 150 % 10°

Ax;=
= 33000([(257.2 % 10°)% — (655 500 x 171.7 x 10°)]

=0.0642 x 10~ * mm ~'

The increments of concrete stress at time Tecaused by M, at the top and bottom of the in situ
slab are obtained using Equation 7.15:

Adoz = 25000(—25.2 % 107%) = —0.63 MPa
Acaz = 25000[ - 25.2 + (150 X 0.0642)] X 10™% = —0.39 MPa

and at the top and bottom of the precast section,

Adar = 33000[—25.2 + (150 x 0.0642)] x 10~* = —0.51 MPa
Acp; = 33000[ —25.2 + (1300 x 0.0642)] x 107° = 1.08 MPa

From Equations 7.16 and 7.17, the increments of stressin the bonded steel are

Aoy = —4.12 MPa and Aop= +5.3 MPa

The increments of concrete stress and instantaneous strain caused by the addition of the
sustained load at /=60 days are shown in Figure 7.7f.
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(f) At =0 For the time period from /=60 days to =0, the relevant creep coefficients for
each of the previoudly calculated stress increments [determined in parts (a) to (e)] are as
follows:

For the precast section:
Part (a) d1(e0,4) — ¢1(60,4)=1.2
Part (b) xltm! 4}[¢'I['ﬂ'¢ 4.1_ d"l(m; 4}] = 1.06
Part (c) ¢1({o0, 40) — ¢1(60,40) = 1.1
Part (d) x1(60, 40) ¢, (e0, 40) — ¢, (60, 40)] = 0.99
Part (€) é1(c0, 60) = 1.2
For the in situ dab:
Part (d) x2(60, 40)[ ¢2 (o0, 40) — $2(60, 40)] = 1.94
Part (€) da(eo,60)=2.0

Note that the stress change calculated in part (d) is assumed to be suddenly applied at =40
days. The shrinkage strains which develop during thistime period are, for the precast section,
esh1(00)—€sn1(60—4)= ~300%10°°, and for thein situ slab, esn2(00) —&5n2(60—40)=—480x 10 °. The
relaxation loss in the prestressing tendons after /=60 daysis 28 kN.

The age-adjusted effective moduli (from Equation 2.14) for the two elements are

Ee(00,60)=16840 MPa  and  Eg (o, 60) = 9620 MPa

and the properties of the concrete portions of each element and of the age-adjusted
transformed section (with modulus E,,=16840 MPa) are
Ac1 = 358500 mm?2; B, =228.3 x 10® mm?; I, = 163.7 x 10° mm*
Acz = 357000 mm?; By = 26.78 x 10° mm?; I.; = 2683 x 10° mm*
A. = 614600 mm?; B, =260.4 x 10° mm?*; /. =176.9 x 10° mm*

Theinitial elastic strain distributions associated with each of the previously calculated stress
increments are determined as in part (d) and are as follows:

Part (a) Aea=—221.5%10° and Ax;=0.0087%10 ® mm™*
Part (b) Aea=—13.4x10 ° and Ax;=0.0416x10° mm*
Part (c) Aea=—328.4%10"° and Ax;=0.512x10°° mm*



Part (d) In Element 1:

Aggit = Adaitf Ec1(40) =77.8 % 107 % Agpin = —18.7x 1076
Agei1=97.1x10"% and Axii= —0.1287% 10" *mm ™!

In Element 2;

Atoiz = Ado2fEc2(40) = =13.3x 107 % Az = —6.1x 1075;
and therefore Ax;z = 0.0481 x 10" * mm ™!

Part (e) For both elements:

Atoi= —25.2% 1075 and Ax; =0.0642 % 10~  mm ™!
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The actions —dN and —OM required to restrain creep and shrinkage are cal culated using
Equations 7.18 and 7.19:

—§N=

—6M =

—-9620{1.94[(357000 x — 13.3) + (26.78 x 10° x 0.0481)]
+2.0[(357000 x —25.2) + (26.78 % 10° x 0.0642)] — (480

X 357000)) x 10™% — 16 840{ 1.2[(358 500 x — 221.5) + (228.3
x 10% x 0.0087)] + 1.06[(358 500 x - 13.4) + (228.3 x 10°

X 0.0416)] + 1.1[(358 500 x —328.2) + (228.3 x 10° % 0.512)]
+0.99[(358 500 x 97.1) + (228.3 x 10% x —0.1287)]

+ 1.2[(358 500 x —25.2) + (228.3 x 10° x 0.0642)] — (300

X 358 500)) x 10~ — 28000 = 4927 x 10° N
~9620{1.94[(26.78 x 10% x —13.3) + (2683 x 10 x 0.0481)]
+2.0[(26.78 x 10° x —25.2) + (2683 x 10° x 0.0642)] — (480

X 26.78 % 10%)) % 107% — 16 840{ 1.2[(228.3 x 10°

% —221.5) + (163.7 x 10° x 0.0087)] + 1.06((228.3 x 10°

X = 13.4) + (163.7 x 10° x 0.0416)] + 1.1[(228.3 x 10% x —328.2)
+(163.7 x 10% % 0.512)] + 0.99[(228.3 x 10° x 97.1) + (163.7
% 10° x =0.1287)) + 1.2[(228.3 x 10% x —25.2) +(163.7 x 10°
% 0.0642)] — (300 x 228.3 x 10%)} x 10~ — 28000 x 800

= 1919 x 10° Nmm
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and from Equations 7.21 and 7.22,
Ate=—-540%10"%* and Ax=0.151%x10""mm™*

The changes of concrete stress during this time period in both the slab and the precast section
are obtained from Equation 7.23. In the in situ dab,
Aoz = —9620[(1.94 x —13.3) + (2.0 x —25.2) — 480 + 540] x 10~ ¢
= 0.16 MPa
Aday = —9620[1.94[—13.3 + (150 x 0.0481)] + 2.0[—25.2 + (150
% 0.0642)] —480 — [— 540 + (150 % 0.151] } x 10~¢
= (.05 MPa

and, in the precast section,

Aogy = —16840{1.2[-221.5 + (150 x 0.0087)] + 1.06[ - 13.4 + (150
x 0.0416)] + 1.1[—=328.2 + (150 x 0.512)] + 0.99[97.1
+ (150 x —0,1287)] + 1.2[ = 25.2 + (150 x 0.0642)] - 300
— [—540 + (150 x 0.151)] } X 10~® = 4.59 MPa
Agpy = — 16840{1.20[ - 221.5 + (900 x 0.0087)] + 1.06[ — 13.4 + (900
x 0.0416)] + 1.1[—328.2 + (900 x 0.512)] + 0.99[97.1 + (900
x =0.1287)] + 1.2[ - 25.2 + (900 x 0.0642)] — 300 — [- 540
+(900 % 0.151)] } x 107%= —0.67 MPa
The changes of stress and strain during this time interval are shown in Figure 7.7g and the
final stress and strain distributions at time infinity (the sum of all the previously calculated
increments) are shown in Figure 7.7h. Note that the compressive stresses at the top of the
precast member at the commencement of composite action are substantially reduced with time,
much of the compression finding its way into the non-prestressed reinforcement in thein situ

slab. The increments of steel stress from /=60 days to /= are calculated using Equations 7.24
and 7.25:

Aoy = —105.7MPa and  Aop= —102.5 MPa
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7.6 Ultimate flexural strength

The ultimate flexural strength of a composite cross-section may be determined in accordance
with the flexura strength theory outlined in Chapter 4. If adequate provision is made to
transfer the horizontal shear forces that exist on the interface between the in situ and precast
components, the ultimate strength of a cross-section such as that shown in Figure 7.6 may be
calculated in the same way as for an identical monolithic cross-section with the same
reinforcement quantities and material properties (see Section 4.6). The calculations are based
on the full effective flange width and, in general, it is not necessary to account for variations
in concrete strengths between the two components. In practice, owing to the typically wide
effective compressive flange, the depth to the natural axis at ultimate is relatively small,
usually less than the thickness of the in situ slab. It istherefore appropriate to consider an
idealized rectangular stress block based on the properties of the in situ concrete rather than the
precast concrete. Even in situations where the depth of the compressive zone exceeds the
thickness of the slab, more complicated expressions for strength based on more accurate
modelling of concrete compressive stresses are not generally necessary. As seen in Chapter 4,
the flexural strength of any ductile section is primarily dependent on the quantity and strength
of the stedl in the tensile zone and does not depend signi ficantly on the concrete strength.

The strain discontinuity that exists at the element interface at service loads due to the
construction sequence becomes less and less significant as the moment level increases. This
discontinuity may be ignored in ultimate flexural strength calculations.

7.7 Horizontal shear transfer

7.7.1 Discussion

As has been emphasized in the previous section, the ability of the entire composite member to
resist |oad depends on the ability to carry horizontal shear at the interface between the precast
and in situ elements. If the two components are not effectively bonded together, slip occurs at

the interface, as shown in Figure 7.8a, and the two components act as separate beams each
carrying its share of the external loads by bending about its own centroidal axis. To ensure

full composite action, slip at the interface must be prevented. There must be an effective
means for transferring horizontal shear across the interface. If dlip is prevented, full composite
action is assured (as shown in Figure 7.8b) and the advantages of composite construction are
realized.
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in-situ slab
N F
precast girdur-/" strain
{(a) Non-composite action.
in-situ slab
N
no slip j
[
precast girder a strain

(b) Composite action.
Figure 7.8 Composite and non-composite action.

In Section 7.2, various mechanisms for shear transfer were discussed. Natural adhesion and
friction are usually sufficient to prevent slip in composite members with a wide interface
between the components (such as the cross-sections shown in Figures 7.1b, cand d). The
contact surface of the precast member is often roughened during manufacture to improve
bond. Where the contact areais smaller (as on the cross-section of Figures 7.1aand eand 7.6),
web reinforcement in the precast girder is carried through the interface and anchored in the in
situ Slab, thus providing increased frictional resistance (by clamping the contact surfaces
together) and additional shear resistance through dowel action.

The theorem of complementary shear stress indicates that on the cross-section of an
uncracked el astic composite member, the horizontal shear stress v, at the interface between
the two componentsis equal to the vertical shear stress at that point and is given by the well
known expression

Ve
"= Toy (7.26)

where V isthat part of the shear force caused by |oads applied after the establishment of
composite action, Q isthe first moment of the area of thein situ element about the centroidal
axis of the composite cross-section, 7 is the moment of inertia of the gross composite cross-
section, and byis the width of the contact surface (usually equal to the width of the top surface
of the precast member). The distribution of shear stress and the direction of the horizontal
shear at the interface are shown in Figure 7.9.

At overloads, concrete members crack and material behaviour becomes non-linear and
inelastic. In design, asimpler average or nominal shear stress
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Figure 7.9 Shear stresses in an elastic, uncracked composite beam.
isusually used for ultimate strength calculations and is given by

sV
vr = bed (7.27)

where J* isthe total shear force obtained using the appropriate factored load combination for
the strength limit state (see Section 1.7.3) and d is the effective depth to the tensile
reinforcement in the composite beam. Note that in Equation 7.27, V' is calculated from the
total loads and not just the loads applied after the in situ dlab has hardened. At ultimate loads,
flexural cracking can actually cross the interface and horizontal shear resulting from all the
applied load must be carried.

7.7.2 Code provisions for horizontal shear

AS 3600-1988

&
The design horizontal shear force Vi acti ng on the element interface depends on the position
of the interface on the cross-section. For a shear plane through the compressive flange,

*_ v Ay
Vi=V'2, (7.28)
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where 41/42 istheratio of the area of the flange outstanding beyond the shear plane to the
total area of the flange. If the shear plane is through the web, or at the intersection of the in
situ Slab and anarrow flanged precast I-girder or trough girder, A1/A4> is taken as unity and
vi=v"*

For adequate strength, Vi must be less than the design strength, Y The des gn strength
is made up of contributions from the concrete and from the stedl reinforcement crossing the
shear plane (if any) and is specified as

d ] .
o Vir= dBsAfy ; + @pfshed x ﬂ.4Jch < 0.2/:byd (7.29)

where the strength reduction factor for shear is ® = 0.7, 8, and s are coefficients that depend
on the surface condition of the shear plane and are given in Table 7.1, 4, isthe area of
reinforcement (with yield stress f,) anchored on each side of the shear plane, d isthe effective
depth of the composite beam, s is the spacing of reinforcement crossing the shear plane, and b,
is the width of the shear interface.

If shear reinforcement (4, in Equation 7.29) isrequired for strength (i.e. the concrete
component in Equation 7.29 isinsufficient on its own), the

Table 7.1 Shear plane surface coefficients (AS 3600-1988).

Surface Conditions of the Shear Plane Coefficients

Ba | Bs
A smooth surface, as obtained by casting against aform, or finished to asimilar 06 | 0.1
standard.

A surface trowelled or tamped, so that the fines have been brought to the top, but where | 0.6 | 0.2
some small ridges, indentations or undul ations have been left; dip-formed and vibro-
beam screeded; or produced by some form or extrusion technique.

A surface deliberately roughened 09 | 04
(@) by texturing the concrete to give a pronounced profile;

(b) by compacting but leaving a rough surface with coarse aggregate protruding but
firmly fixed in the matrix;

(c) by spraying when wet, to expose the coarse aggregate without disturing it; or
(d) by providing mechanical shear keys
Monolithic construction 09 | 05
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minimum area of reinforcement crossing the shear planeis

0.35bys
% (7.30)

':As :lmin =

ACI 318-83
The ACI 318-83 design requirements are satisfied provided that

V* ¢ Vu,l"= ';’qub d
! (7.31)

where v,ris an ultimate shear stress related to the condition of the contact surfaces between
the precast and cast in situ components and is equal to:

0.55  when no reinforcement crosses the shear plane and the surfaceis clean, free from laitance, and
MPa  deliberately roughened.

0.55  whenthe surfaceis crossed by minimum reinforcement and the contact surfaceis clean, free
MPa  from laitance, but not deliberately roughened.

2.4 when the surfaceis crossed by minimum reinforcement and the contact surfaceis clean, free
MPa  from laitance, and deliberately roughened to 6 mm amplitude.

The minimum reinforcement passing through the shear planeis given by

0.34bys

{A L1 :I'J'JHH = Jﬂr (7'32)

and the spacing s should not exceed four times the in situ slab thickness or 600 mm,
whichever isless.

When the factored shear force I exceeds @Y/ (i.e. when V" > ¢ X 2.4b/d) the shear
friction method should be used to design for horizontal shear. In this method, acrack is
assumed to occur along the shear plane (the interface between the in situ and precast
components). As the jagged crack surfaces slide across each other, the crack opens and the
reinforcement crossing the shear plane (4,) yields, thusinducing a clamping force across the
crack and increasing the frictional resistance. Resistance to dliding is deemed to be provided
by afriction force V., where

Vun = A;}_’y# g ﬂ'.zf.;:Ac
(7.33)

In this expression, A. isthe area of the concrete section resisting shear transfer and x isan
artificially high friction coefficient calibrated to account for the combined effects of friction,
mechanical interlock, and dowel action. For normal-weight concrete, 4=1.4 for monolithic
construction,
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1.0 when the contact surface (i.e. the top of the precast element) is intentionally roughened,
0.6 when the contact surface is smooth concrete, and 0.7 when the contact isasrolled
structural steel and is anchored to the concrete using headed studs or welded reinforcement.
These values should be multiplied by 0.75 for lightweight concrete.

The design requirement when strength is provided by shear-frictionis

Vi € Vun
(7.34)

where ¥nis the resultant horizontal shear force al ong the cracked interface over half the span
of asimply supported beam (or about 0.35 of the span of a continuous member). The

magnitude of ¥ can be calculated from Fi gure 7.10 and depends on the depth of the idealized
rectangular stress block at the region of maximum moment at mid-span. From Figure 7.10,

Vn=0.85flaby or Vi =0.85fD.b.s
(7.35)

whichever is smaller, where a is the depth of the idealized rectangular stress block at the
section of maximum moment and D is the depth of the in situ Slab. By rearranging Equation
7.34, the area of reinforcement required across the shear plane must satisfy

V:l:
Az L
Y (7.36)

and must be uniformly distributed over the length of the beam associated with Va.

¢
i

! _L 0851
DFI-I J. ‘__Cnlr ﬂ":'fdn‘
= —— .
Ve )M‘.
T Tpu
Elevation ] Stresses al midspan

at ultimate moment
Ve = C; =085, aby if a £ D,
= 085f.D;by if @a > D,

Figure 7.10 Tota shear force on element interface.
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BS 8110 (1985)

According to the British Standard, the horizontal shear force caused by the factored design

loads at the element interface ¥* is calculated as for ¥ in Figure 7.10, except that the
rectangular compressive stress block is different from that specified by ACI 318. The average

horizontal shear stress at the interface is calculated by dividing Vi by the area of the contact
surface, which is equal to b,times the length of the beam between the point of maximum
moment and the point of zero moment. The average calcul ated shear stress is then distributed

in proportion to the vertical shear force diagram to give the design horizontal shear stress vh
at any point along the beam. The design shear stress at every point must be less than the value
givenin Table7.2.

When nominal reinforcement is provided and the appropriate design ultimate shear stressis
taken from Table 7.2, its cross-sectional area should be at least 0.15% of the contact area and
it should be anchored on both sides of the interface. The spacing of the reinforcement should
not exceed the lesser of four times the minimum thickness of in situ concrete or 600 mm. In

regions where the design horizontal shear stress UK exceeds the value givenin Table 7.2, the
total horizontal shear force must be carried by adequately anchored reinforcement with an
area given by the equation

~ 1000bws

2
A= Togry, mmim (7.37)

Table 7.2 Design ultimate horizontal shear stresses at interface (MPa) [BS 8110 (1985)].

Precast unit Surface type Grade of in-situ
concrete
25 30 40 and
over
Without links As-cast or as-extruded 0.4 0.55 0.65
Brushed, screeded, or rough-tamped 0.6 0.65 0.75

(deliberately roughened)

Washed to remove laitance or treated with | 0.7 0.75 0.8
retarder and cleaned

With nominal links projecting As-cast or as-extruded 12 18 20

Into In-situ concrete Brush, screeded or rough-tamped 1.8 20 2.2
(deliberately roughened)

Washed to remove laitance or treated with | 2.1 2.2 25
retarder and cleaned
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Example 7.2

The horizontal shear transfer requirements for the beam with cross-section shown in Figure
7.6 are to be determined. The beam is simply supported over a span of 17.2 m and is subjected
to the following loads:

Self-weight of precast trough-girder: 8.64 KN/m
Self-weight of in situ slab: 8.10 kN/m
Superimposed dead load: 4.05 kN/m
Transient live load: 9.60 KN/m

The behaviour of the cross-section at mid-span at service loadsis calculated in Example 7.1
The effective prestressing force calculated in Example 7.1 is 1670 kN and is assumed here to
be constant along the beam. Take £,=1840 MPa.

AS 3600-1988
The factored load combination for the strength limit state (see Section 1.7.3) is

w®=1.25(8.64 + 8.10 + 4.05) + (1.5 x 9.60) = 40.4 kN/m

The maximum shear force adjacent to each support is

_40.4x17.2

Tad
2

= 347 kN

and, from Equation 7.28,
Vi=V"=34TkN

The design strength éV¥uris obtained from Equation 7.29. If the top surface of the precast
trough has been deliberately roughened to facilitate shear transfer, from Table 7.1, £4=0.9,
B==0.4, and with ¢ =25MPafor thein situ slab, Equation 7.29 gives

V= (D.T % 0.9 x% % 400 % sm) + (0.7 x 0.4 x 300 x 800 x 0.4.25)

= (201.6 —*j—) +134.4 (kN) = VI

Therefore,

As 3471344 .,
s;mml,ﬁ = 1.05 mm“/mm



Page 273

If 2-12 mm bars (f,=400 MPa) cross the shear perimeter, one in each web, 4,=220 mm’, the
required spacing near each support is
220

Sim'a!ﬁmm

The spacing can be increased further into the span, as the shear force V' decreases. It is
important to ensure adequate anchorage of these bars on each side of the shear plane.

If the contact surface were not deliberately roughened, but screeded and trowelled, £,=0.6,
S5=0.2, and Equation 7.29 gives

V= (:34.4 ‘%) +67.2 (kN)

and with 4,=220 mm?,

-‘%‘ =2.08 and 5 < 106 mm

At the quarter-span point, where ¥7 = 174N, Asfs 2 0.794 s € 277mm
The maximum spacing between the reinforcement crossing the shear plane (if 4,=220 mm?)
is obtained from Equation 7.30:

Ay _ 220 x 400

- = 838
0.35b;  0.35 x 300 mm

Smazr =

which is greater than the maximum recommended spacing of four times the slab thickness or
600 mm.

AS 318-83
The factored load combination for the strength limit state (see Section 1.7.3) is

w* =1.4(8.64 + 8.10 + 4.05) + (1.7 X 9.60) = 45.4 kN/m

The maximum shear force adjacent to each support is

_45.4x17.2

Tad
2

=391 kN

With minimum reinforcement crossing the shear plane and a deliberately
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roughened contact surface, Equation 7.31 gives
¢ Viur=0.85x2.4x 300 x 800 = 490 kN > V*

According to ACI 318-83, minimum steel reinforcement given by Equation 7.32 (with a
maximum spacing of 600 mm) is all that isrequired here. If, however, the contact surfaceis
not deliberately roughened, Equation 7.31 gives

¢ Vir=0.85x0.55x300x 800=112kN < V*

and additional reinforcement must be designed using the shear-friction concept. The
horizontal shear force aong the cracked contact surface over half the span of the smply
supported beam is calculated using Equation 7.35. From an ultimate flexural strength analysis
at midspan, the depth of the idealized rectangular stress block at ultimate is e=53 mm and
Equation 7.35 gives

VI =0.85x25x 53 x 2400 = 2703 kN

With the coefficient of friction x=0.6, the total amount of shear reinforcement crossing the
shear planeis given by Equation 7.36:

3
A, 3203 X107 13550 mm?

0.85x 400 x 0.6

which must be uniformly distributed across the contact surface over half the length of the
beam (8.6 m). This amounts to 2—-12 mm reinforcing bars (one in each web) at 143 mm
centres throughout.

According to ACI 318-83, the difference between the steel requirements when the contact
surface is smooth and when it isrough is very large indeed.

BS 8110:1985
In this example, when the cross-section at midspan is subjected to the ultimate moment, the
shear plane between the two concrete elementsisin the tension zone. The total horizontal
shear force Vi at the interface, between mid-span and the support, is equal to the resultant
tension in the prestressing steel a mid-span. The magnitude of ¥'#is equal to ¥ as calculated

previously for the ACI 318 shear-friction approach, i.e. V& = 2703kN. With atriangular shear
force diagram, the maximum horizontal shear stress on the shear plane occurs adjacent to the
support and is double the average value. Therefore,

. 2% 2703 x 103
(O dmex = =350 % 8600 0 MPa
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which exceeds the maximum allowable values given in Table 7.2 for a shear plane containing
nominal ties (i.e. 1.2 MPaif the contact surface is not deliberately roughened, and 1.8 MPaif

the contact surface is deliberately roughened). The total amount of steel required to cross the

shear plane in thisregion is given by Equation 7.37:

4. = 1000 % 300 % 2.10
: 0.87 x 400

= 1810 mm?*/m

which corresponds to 2—12 mm bars at 122 mm centres. In regions where Uhislessthan the
limiting value given in Table 7.2, nominal ties only are required. The area of nominal tiesis
0.15% of the contact area and is equal to

As =0.0015 x 300 x 1000 = 450 mm?*/m

or 2-12 mm bars at 489 mm centres.

7.8 Ultimate shear strength

7.8.1 Introductory remarks

The design procedures for composite members in shear and torsion are similar to those
outlined in Chapter 5 for non-composite members. An additional complication arises,
however, in the estimation of the diagonal cracking load for a composite member, and hence
in the estimation of the contribution of the concrete to the shear strength, V.. (in Equation 5.2).

Before cracking, part of the applied load isresisted exclusively by the precast element (i.e.
the load applied in load stages 1-3, as defined in Section 7.3) and part by the composite
section (in load stages 4 and 5). In theory, these |oads need to be considered separately, using
the precast section properties and the composite section properties as appropriate, in order to
determine the shear force existing at the onset of diagonal cracking. As discussed in Section
5.5.1, the concrete contribution to shear strength, V.., isusually taken as the smaller of the
shear force required to produce a flexure-shear crack and the shear force required to cause a
web-shear crack.

The design approach described in Section 5.5.2 may be used for the determination of the
shear strength of a composite member, provided the stress conditions existing in the precast
element are taken into account in the determination of V.



Page 276

7.8.2 Web-shear cracking

The shear force required to produce web-shear cracking at a section may be calculated from
the following modification to Equation 5.10:

Vic= Vicomp + Vpc + Py

(7.38)

where V. is the shear force applied to the precast member only, P, isthe vertical component
of prestress, and V;.comp iS the shear force applied to the composite section which, when
combined with the normal stresses caused by loads applied to the composite section and
normal and shear stresses caused by the prestress and the external 1oads applied to the precast

section, produces a principal tensile stress of 0.33]f: at either the centroidal axis of the precast
section, the centroidal axis of the composite section, the level of the prestressing duct, or the
intersection of the flange and the web, whichever is critical.

At aparticular point on the cross-section, V; .omp is calculated by setting 71 = l:"33w1r£in
Equation 5.11. The normal stress, ¢ in Equation 5.11, is the sum of the normal stresses on the
precast element (caused by the initial prestress and moments arising from loads applied
directly to the precast member in load stages 1 and 3, M, 3), and the bending stress due to
moments caused by the loads producing V;.c.m, applied to the composite section (in load state
4, Mt,comp)- Thaefore,

= (..E.,E{fz+ My + (Mr.mmpy
AT T/ precas T ) composite (7.39)

The shear stress 7in Equation 5.11 is the sum of the shear stress existing on the precast
section (dueto V,. and P,) and that arising from V', compy ON the composite section. That is,

5= [( Vpc - PU}Q + (Vr.mpg)
fbh' precast ‘I"b“ composite (740)

On the right-hand sides of Equations 7.39 and 7.40, the section properties used inside each
bracket are those relating to either the precast or the composite cross-sections as indicated.

7.8.3 Flexure-shear cracking

The shear force V. required to produce a flexure-shear crack is given by Equation 5.8 and is
made up of the shear force that exists at decompression of the extreme tensile fibre at the
section under consideration, Vo, an empirical term representing the additional shear force
required to produce an
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inclined crack, and the vertical component of prestress:

.-4 . 4 A ¢ o 143
Vue = ﬁlﬁlbudn(ﬁi ft) + Vn + -Pll' (58)

When applying Equation 5.8 to composite members, consideration must be given to the
loading sequence and the stresses existing in the precast el ement prior to composite action.
Decompression may occur with the addition of dead load to the precast section in load stage 3,
i.e. decompression occurs on the precast section even before the in siru dlab is cast and
composite action begins. Alternatively, and more commonly, decompression occurs after the
composite section isformed in load stage 4 or under overloads.

If decompression occurs on the precast section, Vo must be calculated using the properties
of the precast section. Some portion of the additional shear force required to produce the
inclined crack (represented by the first term of Equation 5.8) will be acting on the precast
section, with the remaining shear acting on the composite section. Because thisterm is
empirical, it isnot sensible to try to separate the precast and composite components. If
decompression occurs in the precast section prior to composite action with the cast in situ slab,
Ve should be calculated using the properties of the precast section for the determination of
each term in Equation 5.8.

When decompression and cracking of the tension zone do not occur until after the section is
composite, V, isthe sum of the shear force caused by the loads on the precast section (at the
end of load stage 3) and the additional shear force added to the composite cross-section when
the extreme tensile fibre is decompressed. In this case, the empirical term in Equation 5.8
should be calculated using the properties of the full composite section (i.e. d, in Equation 5.8
should be the depth of the tensile reinforcement from the top surface of the in situ slab).

Example 7.3

In this example, the beam described in Example 7.2, with cross-section shown in Figure 7.6,

is checked for shear at the cross-section 2 m from the support. In accordance wi }h AS 3600~

1988, the factored design load for strength was determined in Example 7.2 asw =40.4 KN/m.
At 2 m from the support

V*=267kN  and M*=6l4kNm

For this member with straight tendons, P,=0.
Web-shear cracking The load applied to the precast member in load stages 1 and 3 is
8.64+8.10=16.74 kN/m and the corresponding shear force and
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bending moment at the section 2 m from the support are

16.74 16.74
VF—mXZET—“{]kN and MI.}—m.4

x614=255kNm

The centroidal axis of the precast section islocated 262.5 mm above the bottom fibre (as
shown in Figure 7.6) and the centroidal axis of the composite section is 543.8 mm from the
bottom fibre. The properties of both the precast and composite sections about their centroidal
axesare

Precast: 1=18390x10° mm* 4=360000 mm’;
0=35.65x10° mm?® at centroid of precast section;
0=23.78x10° mm? at |evel of composite centroid.
Composite: 1=76020x10° mm®*:
0=107.6x10° mm?® at centroid of composite section;
0=85.8x10° mm? at level of precast centroid.

The moment caused by the loads producing V, com, is

M‘.
M comp = E7ad Vi.comp = 2300V, comp

The normal stresses at the centroid of the composite section, o.,,,,, and at the level of the
centroid of the precast section, o,., are obtained from Equation 7.39:

1670 X 10° | 1670 X 10° x 162.5 X 281.3 _ 255 x 10° x 281.3
360000 18390 x 10° 18390 x 10®

Tromp = —

= —4.39 MPa

and

oo = — 1670 % 10° 2300V comp X 10° X 281.3
P 360 000 76020 % 10°

= —4.64 +8.51 x 10>V, comp



The shear stress at the level of both centroids are found using Equation 7.40,

. 110x10°x 23.78 H:r‘+ Vi.comp % 102 x 107.6 x 10°
comp 18390 x 10° x 300 76020 x 10° x 300

=0.474 + 4.72 X 10 *V, comp
and

L = 110X 10% x 35.65 x u:n"‘+ Vi.comp % 10% x 95.8 x 10°
e 18390 x 10° x 300 76020 x 10° x 300

=0.711 4+ 4.20 X 107 *V,, comp

By substituting the above expressions into Equation 5.11 and solving, with

Page 279

01 = 0.33f=0.33/40 = 2.09) Pa, the shear forces needed to be applied to the composite

section to produce web-shear cracking at each critical location are obtained:

At the centroid of the composite section: Vi comp=B7T9 KN.
At the centroid of the precast section: Vicomp=434 KN.

The latter value clearly governs and the total shear force required to cause web-shear cracking

IS obtained from Equation 7.38:

Vee=434+ 110 =544 kN

Flexure-shear cracking Decompression occurs when the moment applied to the composite

section M, ., just causes the bottom fibre stress to be zero. That is,

(_.‘ E _ Peeyy + MI.JJ".I!) + (Mo.rmpyb) =0

A i I precast I composite
and

M _ (. 1670 % 10° , 1670x 102 x 162.5 x 262.5
owcomp = 360 000 18390 x 10°
255 x 109 x 262.5\ 76020
- =681 kNm
18390 x 10° ) 543.8
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The shear force at decompression is therefore

: 3
V, = V,._-+%Muom= 110 + 296 = 406 kN

The shear force required to produce flexure-shear cracking is obtained from Equation 5.8:

1/3
Ve = 1.1 xsm::-:am(”’m“{’) X 10~% + 406 = 572 kN

300 x 800

Evidently, V. is governed by web-shear cracking at this cross-section and is equal to 544 kN.
The design strength is

¢Vur=ﬂ'-?>‘:544= 3‘81 kN

which is greater than the design action 7" and only minimum shear reinforcement is required.
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8
Design procedures for determinate beams

8.1 Introduction

The variables which must be established in the design of a statically determinate prestressed
concrete beam are the shape and size of the section, the amount and location of both the
prestressed steel and the non-prestressed reinforcement, and the magnitude of the prestressing
force. The designer is constrained by the various design requirements for the strength,
serviceability, stability, and durability limit states.

The optimal design is the particular combination of design variables which satisfies all the
design constraints at a minimum cost. The cost of a particular design depends on local
conditions at the time of construction, and variations in the costs of materials, formwork,
construction expertise, labour, plant hire, etc., can change the optimal design from one siteto
another and also from one time to another.

It isdifficult, therefore, to fix hard and fast rules to achieve the optimal design. Itis
difficult even to determine confidently when prestressed concrete becomes more economic
than reinforced concrete or when partially prestressed concrete is the best solution. However,
it is possible to give some broad guidelines to achieve feasible design solutions for both fully
and partially prestressed members. In this chapter, such guidelines are presented and
illustrated by examples.

8.2 Types of section

Many types of cross-section are commonly used for prestressed girders. The choice depends
on the nature of the applied loads, the function of the member, the availability and cost of
formwork, aesthetic considerations, and ease of construction. Some commonly used cross-
sections are shown in Eigure 8.1.
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solid plank
0000000}
rectangular hollow plank
single tees double tee

Figure 8.1 Some common prestressed concrete beam cross-sections.

Most in situ prestressed concrete beam sections are rectangular (or slab and beam tee-sections
with rectangular webs). Rectangular sections are not particularly efficient in bending. The
self-weight of arectangular section is larger than for an I- or T-section of equivalent stiffness,
and the prestress required to resist an external moment also tends to be larger. The formwork
costs for arectangular section, however, are generally lower and steel fixing is usually easier.

For precast prestressed concrete, where re-usable formwork is available, the more efficient
flanged sections are commonly used. T-sections and double T-sections are ideal for simply
supported members in situations where the self-weight of the beam isa significant part of the
total load. If the moment at transfer due to self-weight (plus any other external load) is not
significant, excessive compressive stresses may occur in the bottom fibres at transfer in T-
shaped sections.

Inverted T-sections can accommodate large initial compressive forcesin the lower fibres at
transfer and, whilst being unsuitable by themselves for resisting positive moment, they are
usually used with a cast in situ composite concrete deck. The resulting composite section is
very efficient in positive bending.
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For continuous members, where both positive and negative moments exist, |-sections and
closed box sections are appropriate. Box-shaped sections are laterally stable and have found
wide application as medium-and long-span bridge girders. In addition, box sections can carry
efficiently the torsional moments caused by eccentric traffic loading.

8.3 Initial trial section

8.3.1 Based on serviceability requirements

A reliableinitial trial cross-section isrequired at the beginning of adesign in order to estimate
accurately self-weight and to avoid too many design iterations.

For afully prestressed member, Equation 3.9 provides an estimate of the minimum section
modulus required to satisfy the selected stress limits at the critical section both at transfer and
under the full service loads. If the time-dependent loss of prestressis assumed to be 25%,
Equation 3.9 may be smplified to

Mr_ G.TSMQ

z - ="
2 " F 0.75Fy (8.1)

The compressive stress limit at transfer F; in this expression is a negative number.

For amember containing a parabolic cable profile, afurther guide to the selection of an
initial trial section may be obtained by considering the deflection requirements for the
member. The deflection of an uncracked prestressed beam under a uniformly distributed
unbalanced load w, may be expressed as

wuL? Y wysL?

v=B8F7 Ecl (82)

where w, is the sustained part of the unbalanced load, f is a deflection coefficient, L isthe
span of the beam, E, isthe elastic modulus of concrete, 7 isthe moment of inertia of the gross
cross-section, and 4 is along-term deflection multiplication factor, which should not be taken
to be less than 3.0 for an uncracked prestressed member. The deflection coefficient /5 is equal
to 5/384 for auniformly loaded simply supported member. For a continuous member, j
depends on the support conditions, the relative lengths of the adjacent spans, and the load
pattern. When the variable part of the unbalanced load is not greater than the sustained part,
the deflection coefficients for a continuous beam with equal adjacent spans may be taken as
S=2.75/384 for an end span and $=1.8/384 for an interior span.
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Equation 8.2 can be re-expressed as

v=PE7 (8.3)

where

Wy = Wy + AWy

(8.4)

If v, 1S the maximum permissible total deflection, then from Equation 8.3 the initial gross
moment of inertia must satisfy the following:

wL*

! z ﬁ E:'Umn'x (85)

All the termsin Equation 8.5 are generally known at the start of adesign, except for an
estimate of 4 (in Equation 8.4), which may be taken initially to equal 3 for an uncracked
member. Since self-weight is usually part of the load being balanced by prestress, it does not
form part of w,.

For a cracked partially prestressed member, A should be taken as not more than 2, for the
reasons discussed in Section 3.8.3. After cracking the effective moment of inertia /, depends
on the quantity of tensile steel and the level of maximum moment. If /. istaken to be 0.5/,
which isusually conservative, an initial estimate of the gross moment of inertia of the
partially-prestressed section can be obtained from

wL*
1228 ¢ — (8.6)

8.3.2 Based on strength requirements

An estimate of the section size for a partially prestressed member can be obtained from the
flexural strength requirements of the critical section. The ultimate moment of aductile
rectangular section containing both non-prestressed and prestressed tensile steel may be found
using Equation 4.21. By taking moments of the internal tensile forces in the steel about the

level of the resultant compressive force in the concrete, the ultimate moment may be
expressed as

dn s
M= UNAP(dP_TZ ) + j:}'AH(dD_ "-"2 ) (8.7)

For preliminary design purposes, this expression can be simplified if the stressin the
prestressing steel at ultimate g, is assumed (say 0,,=0.9f,) and the internal lever arm between
the resultant tension and compression
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forcesis estimated (say 0.854, where d is the effective depth to the resultant tensile force at
the ultimate limit state). Equation 8.7 becomes

M,= I}de[ﬂgprp + I,.A_;;}

(8.8)
Dividing both sides by /#b@” gjves
fomonl (8- ()
fibd* fo bd]  \fi bd
and therefore
2 = ﬂ,f“
0.85f:(gp + qs) (8.9
where
_ 0.9/ A4, _ S A
dp % bd and q,mﬂbd

Knowing that the design strength ®Mumust exceed the factored design moment A", Equation
8.9 becomes
2, M*
~ 0.856fi(gp + g5) (8.10)

The quantity g,+q, isthe combined steel index. A value of ¢,+¢, of about 0.2 will usualy
provide a ductile section and, with this approximation, Equation 8.10 may be simplified to

2, .._‘M_*_..
Z0.170f; (8.11)

Equation 8.11 can be used to obtain preliminary dimensions for an initial trial section. M
must include an initial estimate of self-weight.

With the cross-sectional dimensions so determined, the initial prestress and the area of
prestressing steel can then be selected based on serviceability requirements. Various criteria
can be adopted. For example, the prestress required to cause decompression (i.e. zero bottom
fibre stress) at the section of maximum moment under full dead load could be selected.
Alternatively, load balancing could be used to calculate the prestress required to produce zero
deflection under a selected portion of the external load. With the level of prestress determined
and the serviceability requirements for the member satisfied, the amount of non-prestressed
steel required for strength is calcul ated.
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The size of the web of a beam is frequently determined from shear strength calculations. In
arriving at a preliminary cross-section for a thin-webbed member, preliminary checksin
accordance with the procedures outlined in Chapter 5 should be carried out to ensure that
adequate shear strength can be provided. In addition, the arrangement of the tendon
anchorages at the ends of the beam often determines the shape of the section in these regions.
Consideration must be given therefore to the anchorage zone requirements (in accordance
with the principles discussed in Chapter 6) even in theinitial stages of design.

8.4 Design procedures—fully prestressed beams

For the design of afully prestressed member, stress limits both at transfer and under full loads
must be selected to ensure that cracking does not occur at any time. There are relatively few
situations that specifically require no cracking as adesign requirement. Depending on the
span and load combinations, however, afully prestressed design may well proveto be the
most economic solution.

For long-span members, where self-weight isamajor part of the design load, relatively
large prestressing forces are required to produce an economic design and fully prestressed
members frequently result. Fully prestressed construction is also desirableif a crack-free or
water-tight structure is required or if the structure needs to possess high fatigue strength. In
building structures, however, where the spans are generally small to medium, full prestressing
may lead to excessive camber and partial prestressing is often a better solution.

When the critical sections have been proportioned so that the stress limits are satisfied at all
stages of loading, checks must be made on the magnitude of the losses of prestress, the
deflection, and the flexural, shear, and torsional strengths. In addition, the anchorage zone
must be designed.

8.4.1 Beams with varying eccentricity

The following steps will usually lead to the satisfactory design of a statically determinate,
fully prestressed beam with a draped tendon profile:

(1) Determine the loads on the beam both at transfer and under the most severe load
combination for the serviceability limit states. Hence determine the moments at the critical
section(s) both at transfer and under the full service loads (M, and M7, respectively) (an
initial estimate of self-weight isrequired here).

(2) Using Equation 8.1, choose an initial trial cross-section,

(3) Select the maximum permissible total deflection v, caused by the
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estimated unbalanced loads (this is a second serviceability requirement in addition to the no
cracking requirement that prompted the fully prestressed design) and use Equation 8.5 to
check that the gross moment of inertia of the section selected in step 2 is adequate.

(4) Estimate the time-dependent losses of prestress (see Section 3.7.5) and, using the
procedure outlined in Section 3.3.1, determine the prestressing force and eccentricity at the
critical section(s). With due consideration of the anchorage zone and other construction
requirements, select the size and number of prestressing tendons.

(5) Establish suitable cable profile(s) by assuming the friction losses and obtaining bounds to
the cable eccentricity using Equations 3.16-3.19.

(6) Calculate both the immediate and time-dependent losses of prestress. Ensure that the
calculated losses are less than those assumed in steps 4 and 5. Repeat steps 4 and 5, if
necessary.

(7) Check the deflection at transfer and the final long-term deflection under maximum and
minimum loads. If necessary, consider the inclusion of non-prestressed steel to reduce
time-dependent deformations (top steel to reduce downward deflection, bottom steel to
reduce time-dependent camber). Adjust the section size or the prestress level (or both), if
the calculated deflection is excessive.

(8) Check the ultimate strength in bending at each critical section. If necessary, additiond
non-prestressed tensile reinforcement may be used to increase strength. Add compressive
reinforcement to improve ductility, as required.

(9) Check the shear strength of the beam (and torsional strength if applicable) in accordance
with the provisions outlined in Chapter 5. Design suitable shear reinforcement where
required.

(10) Design the anchorage zone using the procedures presented in Chapter 6.

Note: Durability and fire protection requirements are usually satisfied by an appropriate
choice of concrete quality and cover to the tendons in step 4.

8.4.2 Example 8. 1—Fully-prestressed design (draped tendon)

A slab and beam floor system consists of post-tensioned, simply supported T-beams spanning
18.5 m and spaced at 4 m centres. A 140 mm thick, continuous, reinforced concrete, one-way
slab spans from beam to beam. An elevation and a cross-section of atypicd T-beam are
shown in Figure 8.2. The beam is to be designed as afully prestressed member. The floor
supports a superimposed permanent dead load of 2 kPa and avariable live load of 3 kPa.
Material properties are Je = 32MpPa, fii = 25MPa, £,=1840 MPa, E,~28600 MPa, and
E,=195000 MPa.

For this fully prestressed design, the following stress limits have been
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185m

Elevation

4000 mm

|
4
; ]
140 [

F-300-4
Cross-section
Figure 8.2 Beam details for Example 8.1

selected:

Fi=125MPa; F,=-125MPa; F,=1.5MPa; F.= -16.0MPa.

(1) Mid-span moments
Due to self-weight:
To estimate the self-weight of the floor wy,,, aninitia trial depth D=1100 mm is assumed
(about span/17). If the concrete floor weighs 24 kN/m?®,

wow=24[4x0.14 + 0.3(1.1 = 0.14)] = 20.4 kN/m

Therefore,

2z
Mm=3{’—"513—13'3—=s?1kmm

Due to 2.0 kPa superimposed dead |oad:

2
wo=2x4=8kN/m and Ma=%=342 kN m
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Dueto the 3.0 kPalive load:

H
wp=3x4=12kN/m and MQ:H_x_ﬁﬁ_=513 kNm

8
At transfer:
M= M;,=871 kNm
Under full loads:

(2) Triai section size
From Equation 8.1:

[1726 = (0.75 x 871)] x 10°

V4
®2 T 5075 % — 12.5)

=98.6 x 105 mm?

Choose the trial cross-section shown in Figure 8.3.
Notes:

(@) The revised estimate of self-weight is 20.7 kN/m and therefore the revised design
moments are Mo=886 kNm and M7=1741 kNm.

(b) This section just satisfies the requirement for the effective width of T-beam flangesin AS
3600-1988, namely that the flange width does not exceed the web width plus 0.2 times the
span. However, the section failsto satisfy the ACI 318-83 requirement that the
overhanging portion of the flange is less than eight times the flange thickness. The latter
requirement is unreasonable for both prestressed and reinforced concrete T-sections,
particularly for sections where the edge of the effective flange is continuously supported, as
isthe case here.

! 4000 —
A = 863000 mm? : 1 i
7= 8781 mm Ul T i N !
I = 91680 10° men’* | ' 3 I
Z, = 1044 x 10° mm? Lid
Z, = 3372 x 10° mm’®
— =300

Figure 8.3 Tria cross-section for Example 8.1.
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(3) Check deflection requirements

For this particular floor, the maximum deflection, v ... istaken to be span/500=37 mm. If itis
assumed that only the self-weight of the floor is balanced by prestress, the unbalanced load is

wy = wg + wp = 20 kN/m
and therefore
wus = wg = 8 kN/m
With the long-term deflection multiplier 1 taken as 3, Equation 8.4 gives
wy =20+ (3 x 8) =44 kN/m
and from Equation 8.5:

5 44 x 18 500* ‘ i
;_. ———
I 334){28 3 63 400 x 10° mm

Thetrial cross-section satisfies this requirement and deflection does not appear to be acritical
consideration in this T-beam.

(4) Determine the prestressing force and eccentricity at mid-span
The procedure outlined in Section 3.3.1 is used for the satisfaction of the selected stress limits.
The section properties o, and «;, are given by

-:n=~§=ﬂ.ﬂﬂ2515 and o:b=-§*=ﬂ.[}ﬂ82?

I b

and Equations 3.5 and 3.6 provide upper limits on the magnitude of prestress at transfer:

0.00256¢ — | 0.00256e — 1
(smx 10% x 1.25) + (0.00256 x 886 x 10°)  3.35x 10° (3.5)

1 ; 0.00827¢ + 1 _0.00827e + 1
(—863 x 10° x —12.5) + (0.00827 x 886 x 10%)  18.11 x 10° (3.6)

Equations 3.7 and 3.8 provide lower limits on the prestress under full service loads. If the
time-dependent |oss of prestress is assumed to be 20% (R=0.80), then

i 0.80{(0.00827¢e + 1) _0.00827e + 1
[—-863 % 10% % 1.5) + (0.00827 x 1741 % lﬂ"} 16.38 % 10° (3.7)
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1 < 0.80{(0.00256e - 1) _ 0.00256e -1
P; ™ (863 x 10° x —16.0) + (0.00256 x 1741 x 10%)  —11.69 x 10% (3.8)

Each of these equations is plotted on the design diagram in Figure 8.4.

Two cables are assumed with duct diameters of 80 mm and with 40 mm minimum cover to
the ducts. The position of the ducts at mid-span and the location of the resultant prestressing
force areillustrated in Figure 8.5. The maximum eccentricity to the resultant prestressing
forceistherefore

Bmexr = 878 — 155 =723 mm

The resultant force in each tendon is assumed to be located at one quarter

[
0.7
0.6
2 os
=
w04
._.| g
0.3
02 |
T
200 0 200 400 60 800 1000 1200
Eccentricity (mm)
Figure 8.4 Magnel’s design diagram for Example 8.1.
A
it
:.'- r-.
Piz2
L T ® -
155 5. ] 80
| Pi2 100 40

Figure 8.5 Cable |ocations and relevant dimensions at mid-span.
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of the duct diameter below the top of the duct. From Eigure 8.4, for =723 mm the minimum
required prestressing force at mid-spanis

P;=2350 kN

If theimmediate losses at mid-span are assumed to be 10%, then the required jacking force is

P;
Pj=—L=2610kN
7 0.9

From Table 2.1, the cross-sectional areaof a12.7 mm diameter 7-wire super strand is 4,=100

mm?, the minimum breaking load is 184 kN, and therefore the maximum jacking force is

0.85%x184=156.4 kN. The minimum number of 7-wire strandsis therefore 2610/156.4=16.7.
Try two cables each containing 9 strands, i.e. 4,900 mm?/cable.

(5) Establish cable profiles

Since the member is simply supported and uniformly loaded, and because the friction losses
are only small, parabolic cable profiles with a sufficiently small resultant eccentricity at each
end and an eccentricity of 723 mm at mid-span will satisfy the stress limits at every section
along the beam. In order to determine the zone in which the resultant prestressing force must
be located (see Figure 3.5), it isfirst necessary to estimate the prestress |osses. The cables are
to be stressed from one end only. From preliminary calcul ations the friction losses between
the jack and mid-span are assumed to be 6% (i.e. 12% from jack to dead end anchorage), the
anchorage losses

Table 8.1 Bounds on the eccentricity of prestressin Example 8.1.

Distance from jack (mm) 0 4625 9250 13875 18500
Estimated short-term losses (%) 15 125 10 10.5 13
P; (kN) 2220 2280 2350 2335 2270
P. (kN) 1775 1830 1880 1870 1820
M, (KN m) 0 664 886 664 0
M7 (KN m) 0 1306 1741 1306 0
Emax (MM) 467 743 811 722 454
emin (MM) —209 507 722 494 —207
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Figure 8.6 Parabolic cable profilesfor Example 8.1.

resulting from dlip at the anchorages are assumed to be 14% at the jack and 2% at mid-span,
and the elastic deformation losses are taken to be 1% at each end and 2% at mid-span. These
assumptions will be checked subsequently. If the time-dependent losses are assumed to be
20%, the prestressing forces P; and P, at the ends, quarter-span and mid-span are as shown in
Table 8.1. Also tabulated are the moments at each section at transfer and under full loads, the
maximum eccentricity (determined in this case from Equation 3.17), and the minimum
eccentricity (determined from Equation 3.18 in this example).

The permissible zone, in which the resultant force in the prestressing steel must be located,
isshown in Figure 8.6. The individua cable profiles are also shown. The cables are separated
sufficiently at the ends of the beam to accommodate easily the anchorages for the two cables.

(6) Check losses of prestress

Immediate losses

Elastic deformation At mid-span, theinitial prestressin each cableis P;=2350/2=1175
kN/cable. The upper cableisthefirst to be stressed and therefore suffers el astic deformation
losses when the second (lower) cable is subsequently stressed. The prestressing force in the
lower cable causes a concrete stress at the level of the upper tendon of

_1175x10% 1175 x 10° x 778 x 668
863 107 91 680 x 10°

= - 8.02 MPa

Oep =

and the loss of stedl stressin the upper cable is obtained from Equation 3.58:

_ 195000
28 600

Aap X —B.02= -55 MPa
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The loss of force in the upper cable, that occurs as the lower cable is stressed, is therefore
AopA,=55%x900=49 kN (about 1.9% of the total jacking force). The loss of force in the lower
cable due to elastic shortening is zero.

Friction losses The change in slope of the tendon between the support and midspan is
obtained using Equation 1.6. For the upper cable, the drape is 668 mm and therefore

4 » 668

18500 =0.144

Cror =

With ¢=0.2 and $3,=0.013, the friction loss at mid-span is cal culated using Equation 3.60:

P, = Pj e~ 0-200.144+0.013x9.25) _ 0.948 P;

Therefore, the friction loss at mid-span in the upper cable is 5.2%. In the lower cable, where
the drape is only 518 mm, the friction loss at mid-span is 4.6%. The average loss of the
prestressing force at mid-span dueto friction is therefore 0.049%2610=128 kN. Thislossis
dlightly less than that assumed in step 5.

Anchorage losses The loss of prestress caused by a6 mm dlip at the wedges at the jacking
end is calculated in accordance with the discussion in Section 3.7.4. With the average friction
loss at midspan of 4.9%, the slope of the prestressing lineis

0.049P; _ 0.049 x 2610 x 10°
LJ2 9250

§= = 13.8 N/mm

The length of beam L.; over which the anchorage slip affects the prestressis found using
Equation 3.61:

=12 340 mm

L __JIQS{)I)leﬂmxﬁ
“ 13.8

Theloss of force at the jack due to dlip at the anchorage is
SP=aLsi=2x%x13.8%12340% 1077 =341 kN (=13%)
and at mid-span

SP=a(Lagi— L{2)=2x13.8x(12340—-9250)x 107> =85 kN (=3.3%)
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Jacking force From step 4, the required prestress at mid-span immediately after transfer is
P=2350 kN. Adding the elastic shortening, friction, and anchorage | osses, the force required
at thejack is

P;=2350+ 49 + 128 + 85 = 2612 kN = 1306 kN/cable

which is very close to the value assumed in steps 4 and 5. The tendon stress at thejack is

_ 1306 % 103

Op; %00 - 1451 MPa =0.79f;

which islessthan 0.85f, and is therefore acceptable.

Time-dependent losses An accurate time analysis of the cross-section at mid-span can be
carried out using the procedure outlined in Section 3.6.2 (and illustrated in Example 3.5). In
this example, the more approximate procedures discussed in Section 3.7.5 are used to check
time-dependent |osses.

Shrinkage losses The hypothetical thickness of the web of this beam is defined in Section
2.5.3 and istaken as

2> 300 x 1150

- =238
2 % (300 + 1150) mm

Iy

(It would be conservative in this case to include the slender flange in the determination of the
hypothetical thickness.) Using the predictive model in AS 3600-1988 and assuming an air-
conditioned (arid) environment, the shrinkage coefficient £1=0.80 is obtained from Figure
2.11 and the final shrinkage strain may be estimated using Equation 2.21.:

£ = 0.0007 x 0.80 = 0.00056

As mentioned in Section 2.5.1, shrinkage strain is difficult to predict accurately and ahigh
coefficient of variation must be expected. It is pointlessto strive for undue accuracy here.
From Equation 3.62, the loss of stedl stress due to shrinkage may be taken as

Aa, = 0.00056 x 195 000 = 109 MPa

Creep losses Thefinal creep coefficient is determined from Equation 2.20, taking ®ec-6 = 3.4
k»=0.8, and k3=1.2

¢*=080x12%x34=33
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The concrete stress at the centroid of the prestressing steel at mid-span (e=723 mm)
immediately after the application of the full sustained load is

Pi le':'z + Msl.r:f

Oe= ———

y 7 T - —6.44 MPa

From Equations 3.63 and 3.64, a conservative estimate of the loss of steel stress at midspan
dueto creepis

dapv—-ig%x 3.3 x 195000 =145 MPa

Relaxation losses For low relaxation strand, R;9p0=0.025 (see Table 2.2). From Equation 2.22,
the final relaxation (at r=10000 days) is

R=11x1.0x0.025x1.4=0.0385

The stress in the tendons at mid-span immediately after transfer is ,~P/4,=1306
MPa=0.71f,. The loss of steel stress due to relaxation may be approximated using Equation
3.65:

2Aco

Opi

2109+ 145)] _
T ] =31 MPa

(A0p)retar = aij(l - ) = 1306 x u.naas[l

Total time-dependent losses Thetotal loss of steel stress with time at mid-spanis
Acp=109+145+31=285 MPa (which is 21.8% of the prestressimmediately after transfer). This
isslightly higher than the time-dependent losses assumed in steps 3, 4 and 5 (20%). However,
the above procedures are conservative and the original estimate of P; is considered
satisfactory. (A more accurate time anaysis, in accordance with the procedure outlined in
Section 3.6.2, reveals that the total time-dependent loss at midspan is only 15.9%.)

(7) Deflection check

At transfer The average drape for the two cables is 593 mm and the transverse force exerted
on the beam by the draped tendons at transfer may be taken as

_Piex8_2350x0.593 x 8
L = 18.5°

=32.6kN/m1

Wi

This overestimates the upward load on the member by a small amount, since the prestressing
force at mid-span is taken as an average for the span.
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The self-weight of the floor was calculated in step 2 and is wy,,=20.7 KN/m| . Immediately
after transfer, Jfer =25MPaand, from Equation 2.7, E,=25 300 MPa. The mid-span deflection
at transfer is

o3 (32.6-207)x18500% o . span
7384 25300x 91680x10° 2360

which is clearly satisfactory.

Under full loads The effective prestress at mid-span after all lossesis here assumed to be
P~0.841 P;=1976 kN (15.9% losses). The transverse |oad exerted on the beam by the tendons
istherefore

_Peex8_1976x0.593% 8

= =27.4kN/m?t
L* 18.52 fm

Wh

The sustained gravity |oads are w,,+ws=28.7 kN/m and the short-term deflection at mid-span
caused by all the sustained loadsis

5 (28.7 - 27.4) x 18 500*

ug = T =0.8 1
Vsus = 384 28 600 x 91 680 x 10° mm

Under the sustained loads, the initia curvatureis small on al sections and the short-term and
long-term deflections are al'so small. The creep induced deflection may be approximated using
Equation 3.76. Because the member is uncracked and contains only small quantities of

bonded reinforcement, the factor o in Equation 3.76 is taken as 1.1:

Ll

¢

Uep=— Ugus = -
o 1.

3 *0.8=24mmi

From Equation 3.78, an estimate of the average shrinkage induced curvatureis

0.5z _ 0.5 x 0.00056

= =0.243 % 107 *mm™"
D 1150 m

L]
Xsh =

This positive load-independent curvature causes a downward deflection that may be
calculated using Equation 3.77:

v =0.125%0.243 % 10" % x 18 500% = 10.4 mm |

The final deflection due to the sustained load and shrinkage is therefore

U= Usys + Ver + Uy = 136 mm |
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The deflection that occurs on application of the variable live load (wp=12 kN/m) is

5 12 % 18 500

var = T o= =-"|,
Vv = 352 28 600 x 91 680 105~ 0 ™™

It is evident that the beam performs satisfactorily at service loads with a maximum deflection
of 13.6+7.0=20.6 mm=span/900. This conclusion was foreshadowed in the preliminary
deflection check in step 3.

(8) Check ultimate strength in bending at mid-span

Strength checks in this example are undertaken using the load factors and capacity reduction
factors specified in AS 3600—1988 (see Sections 1.7.3 and 1.7.6). Thedesignload is

w* = 1.25(Wsw + wg) + 1.5wp = 53.9 kN/m
and the design moment at mid-span is

_53.9%x18.5%

*
M 8

= 2310 kNm

The cross-section at mid-span contains atotal area of prestressing steel 4,=1800 mm? at an
effective depth d,=995 mm. The ultimate moment is calculated using the approximate
procedure outlined in Section 4.4.1. With f¢ = 32MPa, Equation 4.2 gives y=0.822. From
Equation 4.19, 4,=0.28 and

_ 1800 » 1840
4000 = 995 » 32

k2 = 0.026

The steel stress at ultimate is given by Equation 4.18:

~0.28 x 0.026

= 1840(1
Oom ( 0.822

) = 1824 MPa

The resultant tensile force is 7=¢,,4,=3280 kN and, assuming the neutral axis lies within the
slab flange, the depth to the neutral axisis given by Equation 4.20:

_ 3280 x 10°
0.85 x 32 x 4000 x 0.822

d, = 36.7 mm

which isin fact within the flange. For this section, the quantity of tensile steel is only small
and the member will be very ductile (d,=
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0.044,<<0.4d). By taking moments of the internal forces about any point on the cross-section
(for example, the level of the resultant compressive force yd,/2 below the top surface), the
ultimate moment is found:

M= amrﬁl,( [ =

T;’ﬁ) _ 3280(9’95 3 U.SZIXSG.?) % 103

2
=3210 kNm

With the capacity reduction factor for bending ® = 0.8, the design strength is
oM, =2570kNm > M*

and, therefore, the cross-section at mid-span has adequate flexural strength and no non-
prestressed longitudinal steel isrequired. At least two non-prestressed longitudinal
reinforcement bars will be located in the top and bottom of the web of the beam in the corners
of the transverse stirrups that are required for shear.

(9) Check shear strength

Asinstep 8, w =53.9 kNm. Shear strength is here checked at the section 1 m from the support,
where V7 =445 kN and M =472 kN m. At this section, the average depth of the prestressing
steel below the centroidal axis of the cross-section isy=e=251 mm and its slopeis y'=0.114
rad. The effective prestressis P,=1790 kN and the vertical component of prestressis
P =P,y'=204 kN.

Flexure-shear cracking:

The decompression moment at this section is

P.e

M‘,—Zg.( - )zﬁﬁﬁmm
Zb

and the corresponding shear forceis found using Equation 5.9:

445
V, = 666 x 222 _ 628 kN
X a2

If two 20 mm diameter reinforcing bars are located in each bottom corner of the stirrups
(4,=620 mm?), then from Equation 5.8

(620 x 1800) % 32

Vw-ilxl{lxzﬁﬂxllm[ <1100 ] x 1072 + 628 + 204

= 1036 kN
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in which the effective width for shear (defined after Equation 5.5) istaken as
b,=300—(0.5x80)=260 mm and the depth to the centroid of A4 is do=1100 mm.

Web-shear cracking:

At the centroidal axis, 0=0.5x300x878.1°=116x10° mn?, 6=—P,/A=—2.07 MPaand
7= ViQI(Ib)=4.21 X 10~ °V; it 01 =0.33/f¢ = 1.87 MPay b, o5lving Equation 5.11
gives V=645 kN and, therefore, from Equation 5.10, V,.=645+204=849 kN.

At this section, the concrete contribution to the design strength of the section in shear is
governed by web-shear cracking and is equal to

@Vuc=0.7 x 849 =594 kN

Thisis greater than the design shear force ¥ and minimum shear reinforcement only is
required. Checks at other sections along the span indicate that the minimum reinforcement
requirements are sufficient throughout the length of the member. If 10 mm closed stirrups are
used (two vertical legs with 4,,=157 mm? and /,,=250 MPa), then the required spacing of
stirrupsis found using Equation 5.5:

157 % 250
5% 0.35 % 260 431 mm

Use 10 mm closed stirrups at 430 mm maximum centres throughout.

(10) Design anchorage zone

The bearing plates at the end of each cable are 220 mm square as shown in Figure 8.7. The
centroid of each plate lies on the vertical axis of symmetry, the upper plate being located on
the centroidal axis of the cross-section and the lower plate centred 260 mm below the
centroidal axis, as shown.

— 80 mm duct
rov f
S I
S - 162 ~ 4_21'2
A & — m - :": - f . L

40 260

220 et

| M
40 |"220"[ 40

Figure 8.7 End elevation showing size and |ocation of bearing plates.
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_Z/'D' = 5‘"‘- mm
162 i /' I
—+ 1306 kN ;r/ | 334
200 — —p [ - - 6.053
[ i_ ! a ] kM/mm b 145 kNm
+ O
I T
768 L™0.454 kN/mm
Side Elevation Barsting Moments
(a) Upper cable only is stressed
D, = 804 mm
; [.lf r 8.079 kN/mm
162
= 1306 kN j.r ] ~10.153
220 / N
aF s [l e/
1306 kN |
mJ ‘-[ | 289.5 kNm
i ! ! 469.3
1)
508
“1.884 kN/mm
Side Elevation Bursting moment
(b) Both cables stressed

Figure 8.8 Forces and moments in anchorage zone.

The distribution of forces on the anchorage zone after the upper cableis stressed is shown in
Figure 8.8a, together with the bursting moments induced within the anchorage zone. The
depth of the symmetrical prism behind the upper anchorage plate is 544 mm as shown. The
transverse tension within the symmetrical prism caused by the bursting moment behind the
anchorage plate (M»=145 kNm) is

My 145

=22 =533 kN
D.j2 0.544]2

T

and the area of transverse steel required within alength of beam equal to
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0.8D.=435mm s

533x10°

= 2
150 3550 mm*.

A;b =

Using 4—16mm diameter vertical stirrup legs at each stirrup location (800 mmz), the required
spacing is (435x%800)/3550=98 mm.

The distribution of forces on the anchorage zone when both cables are stressed is shown in
Figure 8.8b. The maximum bursting moment is 289 kN m and the depth of the symmetrical
prism behind the combined anchorage plates is 804 mm. The vertical tension and the required
area of transverse steel (needed within alength of beam equal to 0.8D,=643 mm) are

289.5 720 x 10°
=" —720kN and Ap=—-— =4 z
0.8043  (20KN and Ag =g = 4300 mm

b
The maximum spacing of the vertical stirrups (800 mm?stirrup location) is
(643%x800)/4800=107 mm. Use two 16 mm diameter stirrups every 100 mm from the end face
of the beam to 800 mm therefrom.

The horizontal dispersion of prestress into the slab flange creates transverse tension in the
dab, asindicated in the plan in Figure 8.9. From the truss analogy shown, the transverse
tension is 319 kN and the required area of steel is 4,=(319x10%)/150=2130 mm?. This steel
must be placed horizontally in the slab within alength of 0.8x4000=3200 mm. Use

8042 2000 I
- — GIB KN
‘/ldt.ﬂ | 1
1276 kN —q;"\_\_ B LT 2000
~7TI4KN | i
- 4— G638 kN
Plan View

Figure 8.9 |dealized horizonta trusswithin slab flange.
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Figure 8.10 Reinforcement details in anchorage zone.

16 mm diameter bars at (3200x200/2130)=300 mm centres within 4 m of the free edge of the
dab.

The reinforcement details within the anchorage zone are shown in the elevation and cross-
section in Figure 8.10.

8.4.3 Beams with constant eccentricity

The graphical procedure described in Section 3.3.1 is a convenient technique for the
satisfaction of concrete stress limits at any section at any stage of loading. However, the
satisfaction of stress limits at one section does not guarantee satisfaction at other sections. If
P; and e are determined at the section of maximum moment A4, and if e is constant over the
full length of the beam, the stress limits F.; and F;; may be exceeded in regions where the
moment is less than the maximum value.

In pretensioned construction, where it is most convenient to use straight tendons at a
constant eccentricity throughout the length of the member, the maximum constant eccentricity
is usually determined from conditions at the support of asimply supported member where the
moment is zero. In asimple pretensioned beam of constant cross-section, the stress
distributions at the support and at the section of maximum moment (M, at transfer and Mr

under the maximum in-service loads) are shown in Figure 8.11.
At transfer, the maximum concrete tensile and compressive stresses both occur at the

support. The tensile top fibre stress must be less than the tensile stress limit F,; and the
compressive bottom fibre stress must be numerically less than the compressive stress limit
Fci.’

=gt < h (812)
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=P iA FPielZ, g, = =P 1A + PelZ
: +
+ r =
=P, rA =Peldy Oy = =P A = Piei g,

(a) At the support immediately after transfer.

=P A Feel L, =My Z, .

Y& +4/= *

~F A ~PeiZ, MriZ Op = =P, JA = PoelZy + MpiZ,

(b) At midspan after all losses and under full loads (P, = & P,).
Figure 8.11 Concrete stresses in member with constant eccentricity.

and
A Zy ' (8.13)

By rearranging Equations 8.12 and 8.13 to express 1/ P; as alinear function of e, the following
design equations similar to Equations 3.5 and 3.6 (with A,=0) are obtained:

_1_ ; Q€ = 1
P~ AF, (8.14)
l > cpe + 1
P;© —AF, (8.15)

where o=A17, ay=AlZ;, and the compressive stress limit F'; is a negative quantity.

After all the time-dependent losses have taken place, the maximum tensile stress occursin
the bottom concrete fibre at mid-span (o, in Figure 8.11) and must be less than the tensile
stresslimit F:

_ _RPi_RPe Mr
e = T Tz, zt,“":ﬁ (8.16)

Thisisidentical with Equation 3.3 and may be rearranged to give the design
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Equation 3.7:

1 o _Rwe+1)
Pt' —AF; + Q'trMT (37)

Equations 8.14, 8.15, and 3.7 may be plotted on a graph of 1/P; versus e (similar to Figure
3.3) and adesign diagram constructed that ensures satisfaction of the selected stress limits
both at the support at transfer and at the critical section of maximum moment under the full
service loads. If required, Equation 3.8 may also be plotted on the design diagram, but the
compressive stress limit F, at the critical sectionisrarely of concern in a pretensioned
member of constant cross-section.

To find the minimum sized section required to satisfy the selected stress limits both at the
support and at mid-span at all stages of loading, Equation 8.13 may be substituted into
Equation 8.16 to give

RF+ M1
Zp

and therefore

Mr

Zp = ——r.
*Z F - RF.; (8.17)

Equation 8.17 can be used to select an initia trial, and then the required prestressing force and
the maximum permissible eccentricity can be determined using Equations 8.14, 8.15, and 3.7.

Note the difference between Equation 8.1 (where R=0.75) and Equation 8.17. The
minimum section modulus obtained from Equation 8.1 is controlled by the incremental
moment (M7—RM,) since the satisfaction of stress limits are considered only at the critical
section. The stress limits on all other sections are automatically satisfied by suitably varying
the eccentricity along the span. If the eccentricity varies such that P.e is numerically equal to
the moment at transfer M, at al sections, then only the change in moment M;—RM,, places
demands on the flexural rigidity of the member. RM, is balanced by the eccentricity of
prestress. However, for a beam with constant eccentricity, e is controlled by the stress limits
at the support (where Mo is zero). It is therefore the total moment at the critical section Mr
which controls the minimum section modulus, asindicated in Equation 8.17.

In order to avoid excessive concrete stresses at the supports at transfer, tendons are often
debonded near the ends of pretensioned members. In this way, a constant eccentricity greater
than that given by Equations 8.14 and 8.15 is possible.
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For asimply supported member containing straight tendons at a constant eccentricity, the
following design steps are appropriate:

(1) Determine the loads on the beam both at transfer and under the most severe load
combination for the serviceability limit states. Hence determine the moments M, and M7 at
the critical section (aninitial estimate of self-weight is required here).

(2) Using Equation 8.17, choose an initial trial cross-section.

(3) Estimate the time-dependent losses and use Equations 8.14, 8.15, and 3.7 to determine the
prestressing force and eccentricity at the critical section.

(4) Calculate both the immediate and time-dependent |osses. Ensure that the calcul ated |osses
are less than those assumed in step 3. Repeat step 3, if necessary.

(5) Check the deflection at transfer and the final 1ong-term deflection under maximum and
minimum loads. Consider the inclusion of non-prestressed steel to reduce the long-term
deformation, if necessary. Adjust section size and/or prestress level, if necessary.

(6) Check the ultimate flexural strength at the critical sections. Calculate the quantities of non-
prestressed reinforcement required for strength and ductility.

(7) Check shear strength of beam (and torsional strength if applicable) in accordance with the
provisions outlined in Chapter 5. Design suitable stirrups where required.

(8) Design the anchorage zone using the procedures presented in Chapter 6.

8.4.4. Example 8.2—Fully prestressed design (straight tendons)

Simply supported fully prestressed planks, with atypical cross-section shown in Figure 8.12,
are to be designed to span 6.5 m. The planks are to be placed side by side to form a precast
floor and are to be pretensioned with straight tendons at a constant eccentricity. The planks
are assumed to be long enough for the full prestress to develop at each support (although this
is frequently not the case in practice). The floor is to be subjected to a superimposed dead
load of 1.2 kPaand alive load of 3.0 kPa (of which

| |
! 1050 |

D lﬁ‘ —— 3,
e ——
12 mm diameter super strands

Figure 8.12 Cross-section of typical pretensioned plank (Example 8.2).
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0.7 kPamay be considered to be permanent and the remainder transitory). Asin Example 8.1,
material propertiesare J¢ = 32MPa, fii = 25MPa, £,=1840 MPa, E,=28600 MPa, and
E,=195000 MPaand the selected stress limits are F,=1.25 MPa, F,=—12.5 MPa, F;,=1.5 MPa,
and F.=—16.0 MPa

(1) Mid-span moments

Due to self-weight:
If theinitial depth of the plank is assumed to be D~span/40~160 mm, and the plank is
assumed to weigh 24 kN/m?, then w,,,=24x0.16x1.05 =4.03 kN/m and at mid-span

_ 4.03 % 6.5°

M 3

=21.3kNm

Due to the superimposed dead and live loads:
w=1.2x1.05=1.26kN/m and w,=3.0x1.05=3.15 kN/m. Therefore,

_1.26x6.5? 3.15%6.5¢

Mg 5 =6.7kNm  and MQ=—-—-E——-= 16.6 kNm

At transfer, Mo=M,,—=21.3 KNm and under the full loads M7=21.3+6.7+1616=44.6 KNm.

(2) Trial section size

From Equation 8.17,

44.6 x 10
= 4. [+] i
5215 075 —12.5) +10x 107 mm

4.10 X 10°x 6 _
D=z 1050 =153 mm

Try D=160 mm as originally assumed.

and therefore

(3) Determine the prestressing force and eccentricity
With D=160 mm, the section properties are A=168x10° mn?, 1=358.4x10° mn",
Z=7y=4.48x10° mm?®, and a,=»=0.0375. Substituting into Equations 8.14 and 8.15 gives

1,00375e-1 . 1 _00375e+]
57 210% 10° P~ 2100 % 10°
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a0
Figure 8.13 Design diagram for Example 8.2.
respectively. If R isassumed to be 0.75, Equation 3.7 becomes

1 < 0.0375e+ 1
P~ 1894 x 10°

The plot of these three straight linesis shown in Figure 8.13.
The maximum eccentricity occurs at the intersection of Equations 8.14 and 3.7 and is =33
mm. The corresponding minimum prestress P; is obtained from Equation 3.7:

1894 x 10°

= = 846,
{0.0375x33) + 1 846.5 kN

P

Assuming 5% immediate losses at mid-span, the minimum jacking force is P=P;/0.95=891
KN. The minimum number of 12.7 mm diameter 7-wire super strand (each with breaking
load=184 kN) is 891/ (0.85x184)=5.7.

Use six 12.7 mm diameter strands at e=33 mm

i.e. 4,600 mm? at d,=113 mm.

(4) Calculate losses of prestress at mid-span

Immediate losses For this pretensioned member, the immediate losses of prestress are due to
elastic shortening. The concrete stress at the steel level
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immediately after transfer is

o = _ 846.5x10° 846.5x10°x33x33 21.3x10°x33
* 168 x 10° 358.4x10° 358.4x10°

= —5.65 MPa
and from Equation 3.58,

195 000

[ ——— — = -
28 600 ® —5.65 38.5 MPa

Adp

Theloss of prestress at mid-span due to elastic shortening is Ag,4,=38.5%x600=23.1 KN
(=2.7% of P)).

Time-dependent losses
Shrinkage losses The hypothetical thickness of the plank is#,=160 mm and from Figure 2.11,

for an arid environment, &;=1.00 and €k = 0.0007 % 1.0 = 0.0007. From Equation 3.62,
Ac,=0.0007x195000= 137 M Pa.
Creep losses In Equation 2.20, $ecc.6 = 3.4 £,=0.9, and k3=1.3, and therefore

$"=0.90x 1.3 x 3.4 =4.0, The sustained load is w,,,=6.03 kN/m and the sustained moment
at mid-span is therefore M,,,=31.8 KNm. The concrete stress at the centroid of the prestressing
steel at mid-span (e=33 mm) immediately after the application of the full sustained load is

4
Pi_Piet  Muse_ _ 4 o8 MPa

o= ——=—

A I I
and from Equations 3.63 and 3.64,

Ao, =388+ 4.0x 195000 = 128 MPa

28 600

Relaxation losses The stressin the steel immediately after transfer is o, =P/4,=1411
MPa(=0.77f,) and from Equation 2.22, for low-relaxation strand, the final relaxation (~=10000
days) is R=1.4x1.0x 0.025x%1.4=0.049. Equation 3.65 gives

2(137 + 128)

- - = 43 MP
Ao, = 1411 xu.mg[l T ] a
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Total time-dependent losses At mid-span, Ag,=137+128+43=308 MPa, which is less than the
assumed value of 0.254,,=353 MPaand is therefore acceptable.

(5) Deflection check
At transfer The curvature immediately after transfer at each support is

- Pe —846.5x10°x 33

—-2.73x 10" mm"!

5= TET T 28600 x 358.4 x 10°
and at mid-span
wim=Mo— Pie_(21.3 10%) — (846.5 x 10° x 33)
' Ec T 28 600 x 358.4 x 10°
=-0.65x%x10"*mm™"

The corresponding deflection at mid-span may be calculated using Equation 3.68c:

_ 65007

Vim = =52 [-2.73+ (10X —0.65)-2,73] x 10" *=53mm1

which is satisfactory.
Under full loads If the effective prestress after al lossesis taken to be P,=0.8P,=678 kN,
the final load-dependent curvature at the supports may be approximated by

__Peef ¢
Xsus,s = Epf (1 + o )+

With ¢* = 4.0and « taken to be 1.5 for this uncracked section (in accordance with the
discussion in Section 3.8.3), then,

Maugs =

678 x 10° x 33 ( 4.0

_ 4 _ -6 -1
28 600 X 358.4 x 10° ”1,5) 8.00% 107" mm

The moment at mid-span caused by the sustained loads is Mus=M,,+ Mg+(0.7/3.0)Mp=31.9
kNm and the final curvature caused by M, is

_ Mnri - Prf
Msusm ===

¢ - -6 -1
El (1+E;) 3.41 % 107" mm



Page 311

The moment at mid-span due to the variable part of the live load is (2.3/3.0)Mp=12.7 KNm
and the corresponding curvature at mid-span iS Xvarn=1.24%10 °mm .

The shrinkage-induced curvature is constant aong the span (since the bonded stedl isat a
constant eccentricity) and may be approximated by Equation 3.78:

. =’D.5 X 0.0007 -6 -1
X sh —-——-———]m =2.19% 107 mm

Thefina curvatures at each end and at mid-span are the sum of the load-dependent and
shrinkage curvatures:

Xs = MNsus.s + x:ﬁ = _5,8] x I.{]_E:ﬂrﬂ_J

and

* - -
Kmi = Msusm T Nvgrm + Xgh = 6.84 x 10 ¢ mm 1

From Equation 3.68c, the final maximum mid-span deflection is

o, = 95007
i 96

[~5.81 + (10 X 6.84) — 5.81] x 10~%=25.0 mm | (= s;:;)

which is probably satisfactory, provided that the floor does not support brittle partitions or
finishes.

(6) Check ultimate strength in bending at midspan

Using the same procedure as outlined in steg) 8 of Example 8.1, the design strength in bending
of the cross-section containing 4,=600 mm" at d,=113 mm s

M, =76.1 kNm (with dn, = 42.4 mm = 0.37dp)

which is greater than the design moment A/ =59.9 kN m. Flexural strength and ductility are
therefore adequate.

(7) Check shear strength

For this wide shallow plank, the design shear force ¥ is much less than the design strength
#Vuon each cross-section and no transverse steel is required.
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8.5 Design procedures—partially prestressed beams

8.5.1 Discussion

In the design of a partially prestressed member, concrete stresses at transfer must satisfy the
selected stress limits, but cracking is permitted under full service loads. It is often convenient
to approach the design from an ultimate strength point of view in much the same way asfor a
conventionally reinforced member. Equations 8.6 and 8.11 can both be used to select an initial
section size in which tensile reinforcement (both prestressed and non-prestressed) may be
added to provide adequate strength and ductility. The various serviceability requirements can
then be used to determine the level of prestress. The designer may choose to limit tension
under the sustained load or some portion of it. Alternatively, the designer may select a part of
the total load that is balanced by the prestress, under which the deflection is zero. Losses are
calculated and the area of prestressing steel is determined.

It should be remembered that the cross-section obtained using Equation 8.11 isatrial
section only. Serviceability requirements may indicate that alarger section is needed or that a
smaller section would be satisfactory. If the latter is the case, the strength and ductility
requirements can usually still be met by the inclusion of either compressive or tensile non-
prestressed reinforcement, or both.

After consideration of the serviceability design requirements, and after the magnitude of the
prestressing force and the size and location of prestressed steel has been determined, the non-
prestressed steel required to provide the necessary additional strength and ductility is
calculated. Checks for serviceability are performed and the shear reinforcement and
anchorage zones are designed.

The following steps usually lead to a satisfactory design:

(1) Determine the loads on the beam including an initial estimate of self-weight. Hence
determine the in-service moments at the critical section, both at transfer M, and under the
full loads M. Also calculate the design ultimate moment M~ at the critical section.

(2) Using Equation 8.11, determine suitable section dimensions. (Care should be taken when
using Equation 8.11 if the neutral axis at ultimate islikely to be outside the flangeinaT-
beam or I-beam and the approximation of arectangular compression zone is not
acceptable.) For long-span, lightly loaded members, deflection and not strength will usually
control the size of the section.

(3) By sdlecting a suitable load to be balanced, the unbalanced load can be calculated and
Equation 8.6 can be used to check theinitial trial section selected in step 2. Adjust section
dimensions, if necessary.
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(4) Determine the prestressing force and cable profile to suit the serviceability requirements.
For example, no tension may be required under a portion of the service load, such asthe
dead load. Alternatively, the load at which deflection is zero may be the design criterion.

(5) Calculate the immediate and time-dependent |osses of prestress and ensure that the
serviceability requirements adopted in step 4 and the stress limits at transfer are satisfied.

(6) Calculate the non-prestressed reinforcement (if any) required in addition to the
prestressing steel to provide adequate flexural strength.

(7) Check crack control and deflections both at transfer and under full loads. A cracked
section analysisis usualy required to determine /, and to check the increment of steel stress
after cracking.

(8) Design for shear (and torsion) at the critical sections in accordance with the design
provisionsin Chapter 5.

(9) Design the anchorage zone using the procedures outlined in Chapter 6.

8.5.2 Example 8.3—Partially prestressed beam (draped tendon)

The fully- prestressed T-beam designed in Example 8.1 isredesigned as a partially prestressed
beam. A section and an elevation of the beam are shown in Figure 8.2 and the material
properties and floor loadings are as described in Section 8.4.2. At transfer, the stress limits are

F,=1.25 MPaand F,=—12.5 MPa

(1) Midspan moments

Asin Step 1 of Example 8.1, wg=8.0 KN/m, wp=12 KN/m, M=342 KNm, and Mp=513 kN m.

Since the deflection of the fully prestressed beam designed in Example 8.1 isonly small, a
section of similar size may be acceptable even after cracking. The same section will be
assumed here in the estimate of self-weight. Therefore, w,,,=20.7 KN/m, M,,,=886 kNm, and
the moments at mid-span at transfer and under full loads are as calculated previoudly:

My=886kNm and Mr=1741kNm

The design ultimate moment at mid-span is calculated asin step 8 of Example 8.1, i.e.
M =2310 KNm.

(2) Trial section size based on strength considerations
From Equation 8.11,

2310 x 10°

=531 x 10
017x08x32 o1X

bd? =

For 5=4000 mm, the required effective depth is d>364 mm.
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Clearly, strength and ductility are easily satisfied (asis evident in step 8 of Example 8.1).
Deflection requirements will control the beam depth.

(3) Choose trial section based on acceptable deflection

In Example 8.1, the balanced load was w;,=27.4 kN/m (see step 7). For this cracked, partialy
prestressed member, it isinitially assumed that w,=20 kN/m. Therefore, the maximum
unbalanced load is w,=wg,+ wetwo—20=20.7 KN/m and the sustained unbalanced load is
wus=w—wo=8.7 KN/m. From Equation 8.4,

w, =207+ (2% 8.7) = 38.1 kN/m
If atotal deflection limit of span/400=46 mm is assumed, then from Equation 8.6,

5 . 38.1x18500% 6§ 4
J’;Z)-:Sﬂdx 38 600 x 46 =88 300 x 10° mm

Choose the same trial section as was used for the fully prestressed design (as shown in Figure
8.3).

(4) Determine the prestressing force and cable profile

A single prestressing cable is to be used, with sufficient prestress to balance aload of 20
kN/m. The cable isto have a parabolic profile with zero eccentricity at each support and
e=778 mm at mid-span (i.e. the cable is to be located in the same position at mid-span as the
lower cable shown in Figure 8.5). The duct diameter is therefore taken to be 80 mm with 40
mm concrete cover to the duct.

The effective prestress required at mid-span to balance w,=20 kN/m may be calculated
using Equation 1.7:

p_wl’ 20x185°

‘T Be Exﬂ.7?8=”mkN

Sincetheinitia stressin the concrete at the steel level islower than that in Example 8.1, the
creep losses will be lower. The time-dependent losses are here assumed to be 15%. Therefore,

P.

Pi=5ss

= 1294 kN

If theimmediate losses at mid-span (friction plus anchorage draw-in) are
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assumed to be 10%, the required jacking forceis

FPi
i=55= 1438 kN

and the number of 12.7 mm diameter strands# is

1438
mE B x 184 2

Try ten 12.7 mm diameter super grade 7-wire strands (4,=1000 mm2).

(5) Calculate losses of prestress

Immediate losses With only one prestressing cable, elastic deformation losses are zero. Using
the same procedures as demonstrated in Example 8.1, the friction loss between the jack and
mid-span is 5.6% and the anchorage (draw-in) loss at mid-span is 2.8%. The total immediate
loss is therefore 8.4%.

Time-dependent losses Asin Example 8.1, the loss of prestress due to shrinkage is 109
MPa. Under the action of P; and the sustained |oad, the concrete stress at the stedl level is
0.=0.4 MPa (tensile), and therefore tensile creep will cause asmall (insignificant) gainin
stressin the stedl. In this beam, it is conservative to ignore creep in the estimation of osses.
With 6,,=1294 M Pa and with R=0.0385 (from Example 8.1), the relaxation lossis 41 MPa.
The total time-dependent loss is therefore Ag,=150 MPa=0.1160,, (11.6%).

With P,=1100 kN as calculated in step 5, the revised estimates of P; and P; are

_ 1100 _ 1244
P'_ﬂ_,ssd_ 1244 kN and P”"U.Sllﬁ' 1358 kN
and the required minimum number of strandsis
1358
"= ossxied

Use nine 12.7 mm diameter super grade 7-wire strands (4,=900 mm).
By comparison with the beam in Equation 8.1 with amost double the jacking force, the
concrete stress limits at transfer are clearly satisfied.
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(6) Design for flexural strength

Asgivenin Step 1, the design moment at mid-span is M =2310 kNm and the minimum
required ultimate strength is Mu = M"[¢ = 2890 m (¢ = 0.8 as specified in AS 3600
1988). Using the approximate procedure described in Section 4.4.1, the ultimate strength of
the cross-section containing 4,=900 mm? at dp,=1050 mm is M,1=1710 KNm (with d,=23 mm).
Clearly, additional non-prestressed tensile stedl is required to ensure adequate strength. If the
depth of the non-prestressed tensile reinforcement is d,=1080 mm, then the required steel area
may be obtained from Equation 4.27:

M, - M. (2890 — 1710) x 10°®

= = 2
71 400x 0.5 (1080 0.822 x23) 00 mm

A:e-"

Try four 32 mm diameter bottom reinforcing bars in two layers, as shown in Figure 8.14.
Checking the strength of this proposed cross-section gives 7,=1640 kN, 7,=1280 kN, d,=33

mm, and M,=3020 kN m, and therefore M. = 2420 KNm > M™. The proposed section at
mid-span has adequate strength and ductility.

—_ | {4 _ _
'{r'-' i } —(:;ﬁﬂ'—-—r—- 2 - 24 mm dia. bars r
140 b
.\"""-j.., 10 mm stirups
\\lﬁmmdin.sid:- 1150
d . face reinforcement
9-12.7 mm dia. —_|
super strnds m:"——ai-ﬂmmdia.bm

I 300

Figure 8.14 Proposed steel layout at mid-span (Example 8.3).

(7) Check for deflection and crack control

The maximum moment at mid-span due to the full serviceload is M;=1741 kNm and the
moment at mid-span caused by the sustained load is M,,,=1228 kKNm. With P,=1100 kN and

the tensile strength of concrete taken to be 0.6Jf¢ = 3-4MPa, the cracking moment can be
approximated by

M= z,,(ﬂ ¢ P2 u.ﬁjﬁ) = 1340 kN m
A Ly
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Cracking occurs at mid-span when the full variable live load is applied. However, the moment
caused by the sustained load is less than the cracking moment.

Using the cracked section analysis described in Section 3.5.2, the response of the cracked
section at mid-span to the full service moment (1741 kNm) is as follows:

The extreme fibre stress and strain:

00i=4.81 MPa and £, = 168 x 107°,
The depth to the neutral axis:
d, = 198 mm.
The stress in the non-prestressed sted!:
oy = 147 MPa.
The stress in the prestressed sted!:
gp = 1422 MPa.
The average moment of inertia:
Iy =37 700 x 10° mm*
The effective moment of inertia (using Equation 3.72 to account for tension stiffening):
I = 62 500 x 10° mm*.

Since the maximum stress in the non-prestressed stedl isless than 200 M Pa, flexural crack
control should not be a problem. Side-face reinforcement as shown in Figure 8.14 should be
included to control flexural cracking in the web of the beam above the bottom steel.

The upward transverse force exerted by the prestress on the member is

_BP.e
= 2

W = 20.0 kN/m

and the maximum gravity load is 40.7 kN/m. An estimate of the maximum short-term
deflection v; caused by the full serviceload is

5 _ (40.7 — 20) x 18 500*

= =17.7mmi
384 28 600 % 62 500 x 10°

[

Under the sustained loads, the loss of stiffness due to cracking will not be as great. The cracks
will partially close and the depth of the compression zone will increase as the variable live
load is removed. For the calculation of the short-term deflection due to the sustained |oads
(28.7 kN/m), the magnitude of /. is higher than that used above. However, using
1,=62500%10° mm®* will result in a conservative overestimate of deflection:



5 (28.7-20)x 18 500"

L 172 Sl =17. +
Uous = 353 % 38 600 X 62 500 X 10° 1+ ™
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The creep-induced deflection is estimated using Equation 3.76. If two 24 mm diameter bars
are included in the compression zone (A4;,.=900 mmz), the coefficient o is taken to be 3.0 and

L
Uer = d:.‘_ Vs = 3—3 ®x 7.4 =8.1 mm.
o 3

From Equation 3.79,

. _Eh (]_ﬁ)zn.::mss (]_ 900

k=D A, 1150

_ -6 =1
D )—DJBx]U mm

4100
and Equation 3.77 gives
v =0.125%0.38 x 10" % x 18 500% = 16.2 mm

The maximum final deflection is therefore

span

Uingr = U + Uer + U =42 mm = 430

Deflections of this order may be acceptable for most floor types and occupancies.

The design for shear strength and the design of the anchorage zone for this beam are similar
to the procedures illustrated in steps 9 and 10 of Example 8.1.

It should be noted that the same cross-sectional dimensions are required for both the
partialy prestressed and the fully prestressed solutions in Examples 8.1 and 8.3. Both satisfy
strength and serviceability requirements. In Australia, at present, the partially prestressed
beam would be the more economic solution.
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9
Statically indeterminate members

9.1 Introduction

The previous chapters have been concerned with the behaviour of individual cross-sections
and the analysis and design of statically determinate members. In such members, the
deformation of individual cross-sections can take place without restraint being introduced at
the supports, and internal actions can be determined using only the principles of statics. In this
chapter, attention is turned towards the analysis and design of statically indeterminate or
continuous members. Theinternal actionsin a continuous member depend on the relative
stiffness of the individual regions and, in structural analysis, consideration must be given to
geometric compatibility in addition to equilibrium. Imposed deformations cause internal
actionsin statically indeterminate members and methods for determining the internal actions
caused by both imposed |oads and imposed deformations must be established.

By comparison with simply-supported members, continuous members enjoy certain
structural and aesthetic advantages. Maximum bending moments are significantly smaller and
deflections are substantially reduced. The reduced demand on strength and the increase in
overal stiffness permit a shallower member cross-section for any given serviceability
requirement, and this leads to greater flexibility in sizing members for aesthetic considerations.

In reinforced concrete structures, these advantages are often achieved without an additional
cost premium, since continuity is an easily achieved consequence of in situ construction.
Prestressed concrete, on the other hand, is very often not cast in situ, but is precast, and
continuity is not anaturally achieved consequence. In precast construction, continuity is
obtained with extra expense and care in construction. When prestressed concrete is cast in situ,
or when continuity can be achieved by stressing
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precast units together over several supports, continuity can result in significant cost savings.
By using each cable for severa spans, a significant reduction in the number of anchorages and
in the labour involved in the stressing operation can be achieved.

Continuity provides increased resistance to transient loads and also to progressive collapse
resulting from wind, explosion, or earthquake. In continuous structures, failure of one
member or cross-section does not necessarily jeopardize the entire structure, and a
redistribution of internal actions may occur. When overload of the structure or member in one
area occurs, aredistribution of forces may take place, provided that the structureis
sufficiently ductile and an alternative load path is available.

In addition to the obvious advantages of continuous construction, there are several notable
disadvantages. Some of the disadvantages are common to all continuous structures, and others
are specific to the characteristics of prestressed concrete. Among the disadvantages common
to al continuous structures are the occurrence of regions of both high shear and high moment
adjacent to the internal supports, the high localized moment peaks over the internal supports
of continuous beams, and the possibility of high moments and shears resulting from imposed
deformations caused by foundation or support settlement, temperature changes, and restrained
shrinkage.

In continuous beams of prestressed concrete, the quantity of prestressed reinforcement can
often be determined from conditions at mid-span, with additional non-prestressed
reinforcement included at each interior support to provide the additional strength required in
these regions. The length of beam associated with the high local moment at each interior
support isrelatively small, so that only short lengths of non-prestressed reinforcement are
usually required. In this way, economical partially prestressed concrete continuous structures
can be proportioned.

When cables are stressed over several spansin a continuous member, the loss of prestress
caused by friction along the duct may be large. The tendon profile usually follows the
moment diagram and relatively large angular changes occur as the sign of the moment
changes aong the member from span to span and the distance from the jacking end of the
tendon increases. In the design of long continuous members, the loss of prestress that occurs
during the stressing operation must therefore be carefully checked. Attention must also be
given to the accommodation of the axial deformation that takes place as the member is
stressed. Prestressed concrete members shorten as aresult of the longitudinal prestress and
this can require specia structura details at the supports of continuous membersin order to
alow for this movement.

There are other disadvantages or potential problems that may arise as aresult of continuous
construction. Often beams are built into columns or walls in order to obtain continuity,
thereby introducing large additional lateral forces and moments in these supporting elements.
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Perhaps the most significant difference between the behaviour of statically indeterminate
and statically determinate prestressed concrete structures is the restraining actions that
develop in continuous structures as aresult of imposed deformations. As a statically
indeterminate structure is prestressed, reactions are usually introduced at the supports. The
supports provide restraint to the deformations caused by prestress (both axial shortening and
curvature). The supports aso provide restraint to volume changes of the concrete caused by
temperature variations and shrinkage. The reactions induced at the supports during the
prestressing operation cause so-caled secondary moments and shears in a continuous member,
and these actions may or may not be significant in design. Methods for determining the
magnitudes of the secondary effects and their implications in the design for both strength and
serviceability are discussed in this chapter.

9.2 Tendon profiles

The tendon profile used in a continuous structure is selected primarily to maximize the
beneficial effects of prestress and to minimize the disadvantages discussed in Section 9.1. The
shape of the profile may be influenced by the techniques adopted for construction.
Construction techniques for prestressed concrete structures have changed considerably over
the past 40 years with many outstanding and innovative devel opments. Continuity can be
achieved in many ways. Some of the more common construction techniques and the
associated tendon profiles are briefly discussed here. The methods presented later in the
chapter for the analysis of continuous structures are not dependent, however, on the method of
construction.

Figure 9.1a represents the most basic tendon configuration for continuous members and is
used extensively in slabs and relatively short, lightly loaded beams. Because of the straight
soffit, ssimplicity of formwork is the main advantage of thistype of construction. The main
disadvantage is the high immediate loss of prestress caused by friction between the tendon
and the duct. With the tendon profile following the shape of the moment diagram, the tendon
undergoes large angular changes over the length of the member. Tensioning from both ends
can be used to reduce the maximum friction loss in long continuous members.

Figure 9.1b indicates an arrangement that has considerable use in longer span structures
subjected to heavy applied loads. By haunching the beam as shown, large eccentricities of
prestress can be obtained in the regions of high negative moment. This arrangement permits
the use of shallower cross-sections in the mid-span region and the reduced cable drape can
lead to smaller friction losses.

Techniques for overlapping tendons or providing cap cables are numerous. Figure 9.1c
shows atendon layout where the regions of high negative
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moment are provided with extra prestressing. Continuity of the structure is maintained even
though there may be considerable variation of prestress along the member. This general
technigue can eliminate some of the disadvantages associ ated with the profiles shown in
Figures 9.1a and b where the prestressing force is essentially constant throughout the structure.
However, any structural benefits are gained at the expense of extra prestressing and additional

anchorages.
Many types of segmental construction are available and atypical caseis
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Figure 9.1 Representative tendon profiles.
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represented in Figure 9.1d. Precast or cast in situ segments are stressed together using
prestress couplers to achieve continuity. The couplers and hydraulic jacks are accommodated
during the stressing operation within cavities located in the end surface of the individual
segments. The cavities can later be filled with concrete, cement grout, or other suitable
compounds, as necessary.

In large-span structures, such as bridges spanning highways, rivers, and valleys,
construction techniques are required where falsework is restricted to a minimum. The
cantilever construction method permits the erection of prestressed concrete segments without
the need for major falsework systems. Figure 9.1e illustrates diagrammatically the tendon
profiles for amethod of construction where precast elements are positioned aternatively on
either side of the pier and stressed against the previously placed elements, as shown. The
structure is designed initially to sustain the erection forces and construction loads as simple
balanced cantilevers on each side of the pier. When the structure is completed and the
cantilevers from adjacent piers are joined, the design service loads are resisted by the resulting
continuous haunched girders. Construction and erection techniques, such as cantilevered
construction, are continually evolving and considerable ingenuity is evident in the
development of these applications.

Figure 9.1f shows atypical tendon profile for a prestressed concrete portal frame.
Prestressed concrete portal frames have generally not had widespread use. With the sudden
change of direction of the member axis at each corner of the frame, it is difficult to prestress
the columns and beams in a continuous fashion. The horizontal beam and vertical columns are
therefore usually stressed separately, with the beam and column tendons crossing at the frame
corners and the anchorages positioned on the end and top outside faces of the frame, as shown.

9.3 Continuous beams

9.3.1 The effects of prestress

As mentioned in Section 9.1, the deformation caused by prestressin a statically determinate
member is free to take place without any restraint from the supports. In statically
indeterminate members, however, thisis not necessarily the case. The redundant supports
impose additional geometric constraints, such as zero deflection at intermediate supports (or
some prescribed non-zero settlement) or zero slope at a built-in end. During the stressing
operation, the geometric constraints may cause additional reactions to develop at the supports,
which in turn change the distribution and magnitude of the moments and shearsin the
member. The magnitudes of these additional reactions (usually called hyperstatic reactions)
depend
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on the magnitude of the prestressing force, the support configuration, and the tendon profile.
For aparticular structure, a prestressing tendon with a profile that does not cause hyperstatic
reactionsis called a concordant tendon. Concordant tendons are discussed further in Section
9.3.2.

The moment induced by prestress on a particular cross-section in a statically indeterminate
structure may be considered to be made up of two components:

(&) Thefirst component is the product of the prestressing force P, and its eccentricity from the
centroidal axis, e. Thisisthe moment that acts on the concrete part of the cross-section
when the geometric constraints imposed by the redundant supports are removed. The
moment Pe is known as the primary moment.

(b) The second component is the moment caused by the hyperstatic reactions, i.e. the
additional moment required to achieve deformations that are compatible with the support
conditions of the indeterminate structure. The moments caused by the hyperstatic reactions
arethe secondary moments.

In asimilar way, the shear force caused by prestress on a cross-section in a statically
indeterminate member can be divided into primary and secondary components. The primary
shear force in the concrete is equal to the prestressing force, P, timesthe slope 6, of the
tendon at the cross-section under consideration. For amember containing only horizontal
tendons (6=0), the primary shear force on each cross-section is zero. The secondary shear
force at cross-section is caused by the hyperstatic reactions.

The resultant internal actions at any section caused by prestress are the algebraic sums of
the primary and secondary effects.

Since the secondary effects are caused by hyperstatic reactions at each support, it follows
that the secondary moments always vary linearly between the supports in a continuous
prestressed concrete member and the secondary shear forces are constant in each span.

9.3.2 Determination of secondary effects using virtual work

In the design and analysis of continuous prestressed concrete members, it is usua to make the
following ssmplifying assumptions (none of which introduce significant errors for normal
applications):

(&) The concrete behavesin alinear elastic manner within the range of stresses considered.
(b) Plane sections remain plane throughout the range of loading considered.
(c) The effects of external loading and prestress on the member can be
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calcul ated separately and added to obtain the final conditions, i.e. the principle of
superposition isvalid.

(d) The magnitude of the eccentricity of prestressis small in comparison with the member
length, and hence the horizontal component of the prestressing force is assumed to be equal
to the prestressing force at every cross-section.

Consider the two-span beam shown in Figure 9.2a with straight prestressing tendons at a
constant eccentricity e below the centroidal axis. Prior to prestressing, the beam rests on the
three supports at A, B, and C. On each cross-section, prestress causes an axia force P on the
concrete and a negative primary moment, Pe. If the support at B were removed, the hogging
curvature associated with the primary moment would cause the beam to deflect upward at B,
as shown in Figure 9.2b. In the real beam, the deflection at B is zero, asindicated in Figure
9.2c. To satisfy this geometric constraint, a downward reaction is induced at support B,
together with equilibrating upward reactions at supports A and C.

To determine the magnitude of these hyperstatic reactions, one of a number of different
methods of structural analysis can be used. For one or two-fold indeterminate structures, the
force method (or flexibility method) is a convenient approach. For multiply redundant
structures, a displacement method (such as moment distribution, for example) is more

appropriate.

centroidal axis prestressing t=ndon
- = €

A 4 B C
L L ]
™ 1

(a) Beam elevation.

r_ ]

P pis —

(b) Unrestrained deflection due to primary moment.

t v R }

(c) Restrained deflection.

Figure 9.2 Two-span prestressed beam with constant eccentricity.
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Moment—area methods can be used for estimating the deflection of beams from known
curvatures. The principle of virtual work can also be used and is often more convenient. The
principleis briefly outlined below. For amore comprehensive discussion of virtual work, the
reader isreferred to a structural analysis text, such asHall & Kabaila (1977) or Ghali &
Neville (1978).

The principle of virtual work states that if a structure is subjected to an equilibrium force
field (i.e. aforcefield in which the external forces are in equilibrium with the internal actions)
and a geometrically consistent displacement field (i.e. adisplacement field in which the
external displacements are compatible with the internal deformations), then the external work
product, ¥, of the two fields is equal to the internal work product of the two fields, U. The
force field may be entirely independent of the compatible displacement field.

In the applications discussed here, the compatible displacement field is the actual strain and
curvature on each cross-section caused by the external 1oads and prestress, together with the
corresponding external displacements. The equilibrium force field consists of a unit external
force (or couple) applied to the structure at the point and in the direction of the displacement
being determined, together with any convenient set of internal actionsthat arein equilibrium
with this unit force (or couple). The unit force is called a virtual force and isintroduced at a
particular point in the structure to enable the rapid determination of the real displacement at
that point. The bending moments caused by the virtual force are designated M

To illustrate the principle of virtual work, consider again the beam of Figure 9.2. In order to
determine the hyperstatic reaction at B, it isfirst necessary to determine the upward deflection
v caused by the primary moment when the support at B isremoved (asillustrated in Figure
9.3a). If the prestress is assumed constant throughout the length of the beam, the curvature
caused by the primary moment is as shown in Figure 9.3b. A unit virtual forceisintroduced at
B inthe direction of vz, asindicated in Figure 9.3c, and the corresponding virtual moments
areillustrated in Figure 9.3d.

The external work is the product of the virtual forces and their corresponding
displacements:

W=1xvg=vp ©.)

In this example, theinternal work isthe integral over the length of the beam of the product of
the virtual moments, M, and the real deformations, (—Pe/El). That is,

U=

i Pe
L. M —r 9% (9.2)
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(a} Unrestrained deflection due to primary moment.
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(k) Curvature due to primary moment.
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(d) Virtual moment diagram, M.

Figure 9.3 The principle of virtual work applied to a two-span beam.

If the virtual force applied to a structure produces virtual axial forces N , in addition to virtual
bending, then internal work is also done by the virtual axia forces and the real axial
deformation. For any length of beam, AL, amore general expression for internal work is

B al —M AL _ N
U= Iu Mg dx+ L Nga ¥ (9.3)

where M/EI and N/EA are thereal curvature and axial strain, respectivdy, and Mand Nare
the virtual internal actions.
Anintegral of the form

aL _
U= L F(x)F(x) dx (9.4)

may be considered as the volume of a solid of length AL whose plan is the function F(x) and

whose elevation isthe function F(X). Consider the two functions F(x) and F(®)illustrated in
Figure 9.4 and the notation aso shown. The volume integral (Equation 9.4) can be evaluated
exactly using Simpson’srule if the shape of the function F(x) islinear or parabolic and
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Figure 9.4 Notation for volume integration.

the shape of F(x)js linear. Thus,

al _ ﬁL - — -
[ F(x)F(x) dx == (FFy+ 4FyFu + Fa Fr) (9.5)

In the example considered here, the function F(x) is constant and equal to—Pe/EI (i.e.

F,=F\=Fy=—PelEI) and the function F(X)is the virtual moment diagram #, which isalso
negative and varies linearly from A to B and from B to C, as shown in Figure 9.3d. Evaluating
the internal work in the spans AB and BC, Equation 9.2 gives

b — - Pe
= [ -— M .
Uag= Usc L 77 dx
Therefore,
L — - pe
u=2 | 0 %7 ax (9.68)

With FL=0, Far= = L{4 anq Fr= = L|2 Equation 9.5 gives

- F]
U=2xL {(ﬂx Pf)+(4x£xﬂ')+(Lfo)]—PEL

6 EJ 4" El 2 T EIN| T 2ET (9.6b)

The principle of virtual work states that

W=U
(9.7)
and substituting Equations 9.1 and 9.6b into Equation 9.7 gives
vn = Pel?
*T2EI (9.8)

It is next necessary to calculate the magnitude of the redundant reaction, R, required to
restore compatibility at B, i.e. the value of Ry required to produce a downward deflection at B
equal in magnitude to the upward
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deflection given in Equation 9.8. It is convenient to calculate the flexibility coefficient, f3,
associated with the released structure. The flexibility coefficient f; is the deflection at B
caused by a unit value of the redundant reaction at B. The curvature diagram caused by a unit
vertical force at B has the same shape as the moment diagram shown in Figure 9.3d. That is,
the curvature diagram caused by a unit force at B, (M/EI), and the virtual moment diagram,
M have the same shape and the same sign. Using the principle of virtual work and Equation
9.5 to evaluate the volume integral,

=M L L L\ (L_L\]_ L?
fB-En Mﬁdx—lx@ (41;){:)‘?‘(—2')(&')]-—6—5} (99)

Compatibility requires that the deflection of the real beam at B is zero, i.e.

vg+ feRg=10
(9.10)
and therefore
Ro— _Us_ _ Pel® 6EI__3Pe
T e 2E1 © L L (9.11)

The negative sign indicates that the hyperstatic reaction is downward (or opposite in direction
to the unit virtual force at B). With the hyperstatic reactions thus cal cul ated, the secondary
moments and shears are determined readily. The effects of prestress on the two-span beam
under consideration are shown in Figure 9.5.

In a statically determinate beam under the action of prestress only, the resultant force on the
concrete at a particular cross-section is a compressive force C equal in magnitude to the
prestressing force and located at the position of the tendon. The distance of the force C from
the centroidal axisistherefore equal to the primary moment divided by the prestressing force,
PelP=e. In astatically indeterminate member, if secondary moments exist at a section, the
location of C does not coincide with the position of the tendon. The distance of C from the
centroidal axisisthe total moment due to prestress (primary plus secondary) divided by the
prestressing force.

For the beam shown in Figure 9.5a, the total moment due to prestressisillustrated in Figure
9.5e. The position of the stress resultant C varies as the total moment varies along the beam.
At the two exterior supports (ends A and C), C islocated at the tendon level (i.e. adistance e
below the centroidal axis), since the secondary moment at each end is zero. At theinterior
support B, the secondary moment is 3Pe/2, and C islocated at e/2 above the centroidal axis
(or 3e/2 above the tendon level). In general, at any section of a continuous beam, the distance
of C fromthelevel of the
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{f) The pressure line.
Figure 9.5 Effects of prestress.

tendon is equal to the secondary moment divided by the prestressing force.

If the position of C at each section is plotted along the beam, aline known as the pressure
line is obtained. The pressure line for the beam of Figure 9.5ais shown in Figure 9.5f.

If the prestressing force produces hyperstatic reactions, and hence secondary moments, the
pressure line does not coincide with the tendon profile. If, however, the pressure line and the
tendon profile do coincide at every section aong a beam, there are no secondary moments and
the tendon profile is said to be concordant. In astatically determinate member, of course, the
pressure line and the tendon profile aways coincide.

Linear transformation of a tendon profile

The two-span beam shown in Figure 9.6 is similar to the beam in Figure 9.2a(and Figure
9.5a), except the eccentricity of the tendon is not constant but varies linearly in each span. At
the exterior supports, the eccentricity ise (asin the previous examples) and at the interior
support the eccentricity is ke, where kis arbitrary. If the tendon is above the centroidal axis at
B, as shown, & is negative.

The primary moment at a section is the product of the prestressing force
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{a) Linear variation of tendon eccentricity.
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(d) Total moment due to prestress,

Figure 9.6 Moments induced by prestress in atwo-span beam with alinearly-varying tendon profile.

and the tendon eccentricity and is shown in Figure 9.6Db. If the support at B isremoved, the
deflection at B (vg) caused by the primary moment may be cal culated using the principle of
virtual work. The virtual moment diagram, M isshownin Figure 9.3d. Using Equation 9.5 to
perform the required volume integration.

L L [Pe+ Pke\ L Pel? [1+ 2k

The flexibility coefficient associated with arelease at support B is given by Equation 9.9 and
the compatibility condition of zero deflection at the interior support is expressed by Equation
9.10. Substituting Equations 9.9 and 9.12 into Equation 9.10 gives the hyperstatic reaction at
B:

Pe
Re= -7 (+26) (9.13)

The secondary moments produced by this downward reaction at B are shown in Figure 9.6c.
The secondary moment at the interior support is (Rpx2L)/4=Pe(1+2k)/2. Adding the primary
and secondary moment
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diagrams gives the total moment diagram produced by prestress and is shown in Figure 9.6d.
Thisisidentical with the total moment diagram shown in Figure 9.5efor the beam with a
constant eccentricity e throughout.

The total moments induced by prestress are unaffected by variations in the eccentricity at
the interior support. The moments due to prestress are produced entirely by the eccentricity of
the prestress at each end of the beam. If the tendon profile remains straight, variation of the
eccentricity at the interior support does not impose transverse loads on the beam (except
directly over the supports) and therefore does not change the moments caused by prestress. It
does change the magnitudes of both the primary and secondary moments, however, but not
their sum. If the value of k£ in Figure 9.6 is—0.5 (i.e. the eccentricity of the tendon at support
B is e/2 above the centroidal axis), the secondary momentsin Figure 9.6c¢ disappear. The
tendon profileis concordant and follows the pressure line shown in Figure 9.5f.

A changein the tendon profile in any beam that does not involve a change in the
eccentricities at the free ends and does not change the tendon curvature within each span will
not affect the total moments due to prestress. Such a change in the tendon profile is known as
linear transformation, Since it involves a change in the tendon eccentricity at each cross-
section by an amount that is linearly proportional to the distance of the cross-section from the
end of each span.

Linear transformation can be used in any beam to reduce or eliminate secondary moments.
For any statically indeterminate beam, the tendon profile in each span can be made
concordant by linearly transforming the profile so that the total moment diagram and the
primary moment diagram are the same. The tendon profile and the pressure line for the beam
will then coincide.

The calculation of stresses at any section in an uncracked structure due to the prestressing
force can be made using the following equation:

Pe'y
1 (9.14)

N

g=——2=2x

Theterm ¢ isthe eccentricity of the pressure line from the centroidal axis of the member, and
not the actual eccentricity of the tendon (unless the tendon is concordant and the pressure line
and tendon profile coincide). The significance of the pressure line is now apparent. It isthe
location of the concrete stress resultant caused by the axial prestress, the moment caused by
the tendon eccentricity, and the moment caused by the hyperstatic support reactions.
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9.3.3 Analysis using equivalent loads

In the previous section, the force method was used to determine the hyperstatic reaction in a
one-fold indeterminate structure. This method is useful for simple structures, but is not
practical for manual solution when the number of redundants becomes large (more than about
three).

A procedure more suited to determining the effects of prestressin highly indeterminate
structures is the equivalent load method. In this method, the forces imposed on the concrete
by the prestressing tendons are considered as externally applied loads. The structure is then
analysed under the action of these equivalent loads using moment distribution or an
equivalent method of structural analysis. The equivaent loads include the loads imposed on
the concrete at the tendon anchorage (which may include the axial prestress, the shear force
resulting from a sloping tendon, and moment due to an eccentrically placed anchorage) and
the transverse forces exerted on the member wherever the tendon changes direction.
Commonly occurring tendon profiles and their equivalent loads areillustrated in Figure 9.7.

Tendon Profile Equivalent Loads
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Figure 9.7 Tendon profiles and equivalent loads.
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The total moment caused by prestress at any cross-section is obtained by analysing the
structure under the action of the equivalent loads in each span. The moment due to prestressis
caused only by moments applied at each end of a member (due to an eccentrically located
tendon anchorage) and by transverse loads resulting from changes in the direction of the
tendon anywhere between the supports. Changes in tendon direction at a support (such as at
support B in Figure 9.6a) do not affect the moment caused by prestress, since the transverse
load passes directly into the support. Thisiswhy the total moments caused by prestressin the
beams of Figures 9.5 and 9.6 areidentical.

The primary moment at any section is the product of the prestress and its eccentricity, Pe.
The secondary moment may therefore be calculated by subtracting the primary moment from
the total moment caused by the equivalent loads.

Moment distribution

Moment distribution is arelaxation procedure developed by Hardy Cross (1930) for the
analysis of statically indeterminate beams and frames. It is a displacement method of analysis
that isideally suited to manual calculation. Although the method has been replaced in many
applications by more computer-oriented displacement methods, it remains a valuable tool for
practising engineers because it is simple, easy to use, and provides an insight into the physical
behaviour of the structure.

Initially, the rotational stiffness of each member framing into each joint in the structureis
calculated. Joints in the structure are then locked against rotation by the introduction of
imaginary restraints. With the joints locked, fixed-end moments (F.E.M.) develop at the ends
of each loaded member. At alocked joint, the imaginary restraint exerts a moment on the
structure equal to the unbalanced moment, which is the resultant of al the fixed-end moments
at the joint. Thejoints are then released, one at atime, by applying a moment to the joint
equal and opposite to the unbalanced moment. This balancing moment is distributed to the
members framing into the joint in proportion to their rotational stiffnesses. After the
unbalanced moment at a joint has been balanced, the joint is relocked. The moment
distributed to each member at areleased joint induces a carry-over moment a the far end of
the member. These carry-over moments are the source of new unbal anced moments at
adjacent locked joints. Each joint is unlocked, balanced, and then relocked, in turn, and the
process is repeated until the unbalanced moments at every joint are insignificant. The final
moment in a particular member at ajoint is obtained by summing the initial fixed-end
moment and al the increments of distributed and carryover moments. With the moment at
each end of amember thus calculated, the moments and shears at any point along the member
can be obtained from statics.
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Consider the member AB shown in Figure 9.8a When the couple M3 is applied to the
rotationally released end at A, the member deforms as shown and a moment Mz isinduced at
the fixed support B at the far end of the member. The relationships between the applied
couple M,z and the rotation at A (¢,) and between the couples at A and B may be expressed
as

Mag=kapfs and Mpzgi=CMup
(9.15)

where k,p isthestiffness coefficient for the member AB and theterm C isthecarry-over
factor. For aprismatic member, it isasimple matter (using
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Figure 9.8 Stiffness coefficients, carry-over factors and fixed-end moments for prismatic members.
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virtual work) to show that for the beam in Figure 9.8a,

4E]
k,,.q,,ﬂ = —L' and C=0.5 (916)

Expressions for the stiffness coefficient and carry-over factor for members with other support
conditions are shown in Figures 9.8b—d. Fixed-end moments for members carrying distributed
and concentrated |oads are shown in Figures 9.8e-i.

The stiffness coefficient for each member framing into ajoint in a continuous beam or
frameis calculated and summed to obtain the total rotational stiffness of thejoint, £k. The
distribution factor for amember at the joint is the fraction of the total balancing moment
distributed to that particular member each time the joint is released. Since each member
meeting at ajoint rotates by the same amount, the distribution factor for member AB is k4s/Zk.
The sum of the distribution factors for each member at ajoint is therefore unity.

An example of moment distribution applied to a continuous beam is given in the following
example. For amore detailed description of moment distribution, the reader is referred to Hall
& Kabaila (1977) or Ghali & Neville (1978), or other standard texts on structural analysis.

Example 9.1 —Continuous beam

The continuous beam shown in Figure 9.9a has a rectangular cross-section 400 mm wide and
900 mm deep. The prestressing force is assumed to be constant along the length of the beam
and equal to 1800 kN. The tendon profile shown in Figure 9.9ais adopted for illustrative
purposes only. In practice, a post-tensioned tendon profile with sharp kinks or sudden changes
in direction would not be used. Relatively short lengths of more gradually curved tendons
would be used instead of the kinks shown at B, C, and D. The results of an analysis using the
idealized tendon profile do, however, provide a reasonabl e approximation of the behaviour of
amore practical beam with continuous curved profilesat B, C, and D.

In span AB, the shape of the parabolic tendonis y=—0.00575x2+ 0.1025x—0.1 and its slope
is dy/dx=0.1025-0.01025x, where x isthe distance (in metres) aong the beam from support A
and y is the depth (in metres) of the tendon below the centroidal axis. At support A (x=0), the
tendon is 100 mm above the centroidal axis (y=—0.1) and the corresponding moment applied
at the support is 180 kNm, as shown in Figure 9.9b. The slope of thetendon at A is
dy/dx=0.1025 rads and the vertica component of prestressis therefore 1800x0.1025=184.5
kN. The parabolic tendon exerts an upward uniformly distributed load on span AB. With the
cable drape being #=350+[(100+350)/2]=575 mm=0.575 m, the
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Figure 9.9 Equivalent loads and actionsinduced by prestressin Example 9.1.

equivalent load w, is

wﬁsg::: 8 x mc;?; 0.575 _ 20 7 kN/m

The slope of the parabolic tendon at B is #z4=dy/dx=—0.1275 rad and, in span BD, the slope of
the straight tendon at B is #pc=(0.35+0.35)/
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9=0.0778 rad. The change of slope at B istherefore 6zc—6054=0.205 rad, and therefore the
vertical downward force at B is 1800%0.205=369.5 kN.

The angular change at C is 6c=2x0.0778=0.1556 rad and the upward equivaent point load
at Cistherefore 1800%0.1556=280 kN. The slope of the tendon in CD is 8,=—0.0778 rad,
and in DE, 6,=0.3/8=0.0375 rad. The change in tendon direction at D istherefore
Ope—6pc=0.115 rad and the transverse equivalent point load at D is 207.5 kN (downward). At
the free end E, the equivalent couple is 1800x0.05=90 kNm and the vertical component of the
prestressing force is upward and equal to P9zp=1800%0.0375=67.5 kN.

All these equivalent loads are shown in Figure 9.9b. Note that the equivalent |oads are self-
equilibrating. The vertical equivalent loads at A, B, and D pass directly into the supports and
do not affect the moment induced in the member by prestress.

The continuous beam is analysed under the action of the equivaent loads using moment
distribution as outlined in Table 9.1.

The total moment diagram caused by prestress (as calculated in Table 9.1) and the primary
moments are illustrated in Figures 9.9c and d, respectively. The secondary moment diagram
in Figure 9.9eis obtained by subtracting the primary moments from the total moments and the
hyperstatic reactions shown in Eigure 9.9f are deduced from the secondary moment diagram.

The secondary shear force diagram corresponding to the hyperstatic

Table 9.1 Moment distribution table for Example 9.1.

.y i iy
A B D E
AB BA | BD DB | DE ED
. . 3EI| 4E] 4E]
Stiffness Coefficien el o SEs
ess ' 20 | 18 T
Carry-over factor 0.5 0 0.5 0.5 0 -10
Distribution factor 0 0.403 | 0.597 1.0 [} 0
FEM. (kN m) 180 .._‘__‘__‘;1035 630 630 | 630 90
90
127 | 188 —» o4
47 -— 04
19| 88 —e 14
7 -— .14
3 4
Final moments (kN m) | 180 796 | 796 -630 | 630 - 90
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Figure 9.10 Shear force components caused by prestressin Example 9.1.

reactionsisillustrated in Figure 9.10a. The total shear force diagram is obtained from statics
using the total moments cal culated by moment distribution and is given in Figure 9.10b. By
subtracting the secondary shear force from the total shear force at each section, the primary
shear force diagram shown in Figure 9.10c is obtained. Note that the primary shear force at
any section is the vertical component of prestress, P6. The reader may verify the results given
in Figures 9.9 and 9.10 by calculating the hyperstatic reactions at B using the force method
and the principle of virtual work.

Example 9.2 —Fixed-end beams

The beams shown in Figures 9.11a, 9.12, and 9.13aare rotationally restrained at each end but
are not restrained axially. The moments induced by prestressin each member are required.
Assume that the prestressing force is constant throughout and the member has a constant EL.

Case (a) The beam shown in Figure 9.11a is prestressed with a parabolic tendon profile
with unegual end eccentricities. The equivalent loads on the structure are illustrated in Figure
9.11Db, with end moments of Pe,and Peg, as shown, and an equivalent uniformly distributed
upward load of w,=8Ph/L?,

If the rotational restraints at each end of the beam are released, the curvature is due entirely
to the primary moment and is directly proportional to the tendon eccentricity, as shown in
Figure 9.11c. Thefinal curvature diagram is obtained by adding the curvature caused by the
primary moments to the curvature caused by the restraining secondary moments at
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Figure 9.11 Moments induced by a parabolic tendon in a fixed-end member.

each end of the beam, Maand Ms, respectively. The secondary curvature caused by these
secondary moments varies linearly over the length of the beam, so that the final curvature
involves alinear shift in the base line of the primary curvature diagram (see Figure 9.11¢).

It is straightforward, using virtual work, to calculate the restraining moments Maand Mk
required to produce zero slope at each end of the beam, i.e. 84=65=0. However, because the
beam is fixed-ended, the moment-area theorems reduce the problem to one that can be solved
by inspection. Since the slopes at each end are identical, the net area under the total curvature
diagram must be zero, i.e. the base line in Figure 9.11c must be translated and rotated until the
area under the curvature diagram is zero. In addition, because support A lies on the tangent to
the beam axis at B, the first moment of the final curvature diagram about support A must also
be zero. With these two requirements, the total curvature diagram is as shown in Figure 9.11d.

Note that thisis the only solution in which the net area under the curv-
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ature diagram is zero and the centroids of the areas above and below the base line are the
same distance from A. It should also be noted that the fixed-end moment at each end of the

beam is § P = ""PLEHZ, which isindependent of theinitia eccentricities at each end, e, and
ep. Evidently, the moment induced by prestress depends only on the prestressing force and the
cable drape, and not on the end eccentricities. This conclusion was foreshadowed in the
discussion of linear transformation in Section 9.3.2. The secondary moment diagram is
obtained by subtracting the primary moment diagram from the total moment diagram. From
Figures 9.11c and d, it can be seen that

Mi=P(ih-e4) and Mi= P(1h- ep)
(9.17)

The secondary curvature diagram caused by the linearly varying secondary momentsis shown
in Figure9.11e.

Case (b) The beam in Figure 9.12 is prestressed with a single straight tendon with arbitrary
end eccentricities. This beam is essentially the same as that in the previous example, except
that the tendon drape is zero. To satisfy the moment—area theoremsin this case, the base line
of the total curvature diagram coincides with the primary curvature diagram, i.e. the total
moment induced by prestress is everywhere zero, and the primary and secondary moments at
each cross-section are equal in magnitude and opposite in sign. By substituting #2=0in
Equations 9.17, the secondary moments at each end of the beam of Figure 9.12 are

Mi=~-Pey and Mz= - ME= - Pes.

A g
L |
p— " - %fx
A B BE

i_ L
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Figure 9.12 Fixed-end beam with straight tendon.

Case (¢) Thebeam in Figure 9.13a is prestressed with the harped tendon shown. The primary
curvature diagram is shown in Figure 9.13b and the total curvature diagram, established by
satisfaction of the moment—area theorems, isillustrated in Eigure 9.13c. Asfor the previous
case, the total curvature (moment) induced by prestress is independent of the end
eccentricities e, and ez. The curvature induced by the secondary momentsis



Page 342

- b -

4 - A
% I e J-—_—° — ¢ Ie
7 ;

I A hi’ B it
™ L —
(a) Elevation

——

(€) Total curvature diagram

— 5 =e) | H

{d) Secondary curvature diagram
Figure 9.13 Moments induced by a harped tendon in a fixed-end beam.
given in Figure 9.13d, and the secondary moments at each support are

b
M = P(I h— eA) and M= P(% h— eﬂ)

9.3.4 Practical tendon profiles

In aspan of acontinuous beam, it israrely possible to use atendon profile that consists of a
single parabola, as shown in Figure 9.11a. A more realistic tendon profile consists of a series
of segments each with a different shape. Frequently, the tendon profileis a series of parabolic
segments, concave in the spans and convex over the interior supports, asillustrated in Figure
9.1a. The convex segments are required to avoid sharp kinksin the tendon at the supports.

Consider the span shown in Figure 9.14, with atendon profile consisting of three parabolic
segments. Adjacent segments are said to be compatible at the points of intersection if the
slope of each segment is the same. Compatible segments are desirable to avoid kinks in the
tendon profile.

In Figure 9.14, B isthe point of maximum eccentricity, e;, and islocated a distance of a4L
from the interior support. Both parabolas 1 and 2 have
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Figure 9.14 Tendon profile with parabolic segments.

zero slope at B. The point of inflection at C between the concave parabola 2 and the convex
parabola 3 islocated a distance a2L from the interior support. Parabolas 2 and 3 have the same
slope at C. Over theinterna support at D, the eccentricity is e, and the slope of parabola3is
zero. By equating the slopes of parabolas 2 and 3 at C, it is simple, using geometry, to show
that

h;= atd (&1 + ez}
@ (9.18)

and the point C lies on the straight line joining the points of maximum eccentricity, B and D.
The slope of parabolas2 and 3 at Cis

_2(e1 + e2)

be="0l (9.19)

The curvature of each of the three parabolic segments (x,1, x,, and x,,3 respectively) are given
by

U S (concave)
"R T o209

_ 1 _2e+ex—hi)
R Lai-oa) (concave) (9.20b)
Xp3 =— = ——3" (convex) (9.200)

where R4, Ry, and R3 are the radius of curvature of parabolas 1, 2 and 3, respectively.
The length of the convex parabola, a2L, should be selected so that the
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radius of curvature of the tendon is not less than the minimum value recommended by the
appropriate building code. For a multi-strand system, R should be greater than about 75 dj,
where d; isthe inside diameter of the duct.

Equations 9.18 and 9.20 are useful for the calculation of the equivalent loads imposed by a
realistic draped tendon profile and the determination of the effects of these loads on the
behaviour of a continuous structure.

Example 9.3

The fixed-end beam shown in Figure 9.15ais to be analysed. The tendon profile ACDEB
consists of three parabolic segments and the prestressing force is 2500 kN throughout the 16
m span. The convex segments of the tendon at each end of the beam are identical, with zero
slope at A and B and aradius of curvature R:=8 m. The tendon eccentricity at mid-span and at
each support is300 mm, i.e. e1=e2=0.3 m, and a1 (as defined in

convex parabola
/ - concave parabola

g 4
A /B—r
Wﬂl e (300
= = 900
7 ¥
- -
o
1.2m 1.2 m—
16m |
(a) Elevation.
—Wp3 =312.5 kN/m W3 = 3125 kKN/m
750 ENm f“’pzwﬁil&m}'m 750 kMm

¥ ] 1 ¥ L] 1 i i i
ﬁ.mﬁ C D E B 00 kN

{b) Equivalent loads.

. 7 . |
= L/ 575 \J_Igﬁ

(¢} Total moment cansed by prestress (KNm).

[ = ]
175

(d) Secondary moments (kNm).

Figure 9.15 Fixed-end beam with arealistic tendon profile (Example 9.3).
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Figure 9.14) equals 0.5. From Equation 9.20c,

s = 2Ra(e, + e3) _ 2x8x{0.3+0.3

=0.07
o L? 0.5 x 162 0.075

The convex parabolic segments therefore extend for a distance a,L=1.2 m at each end of the
span, as shown.

The depth of the points of inflection (points C and E) below the tendon level at each
support is obtained using Equation 9.18:

hi= E[%E (0.3+0.3)=0.09m

The curvature of the concave parabolic segment CDE extending over the middle
16—(2x%1.2)=13.6 m of the span is given by Equation 9.20b:

_2x(0.3+0.3-0.09)

_ -1
XP 16T % (0.5 - 0.075)° 0.022m

and the equivaent uniformly distributed upward |oad exerted by the concrete tendon is
Wpz = Pxpz = 55.15 kN/m 1

The equivalent load w > acts over the middle 13.6 m of the span. The equivaent downward
uniformly distributed load imposed at each end of the beam by the convex tendons AC and
EBis

P 2500

Wp3 = Pxps =F3= T= 312.5 kNjIITIi

The equivalent loads on the beam imposed by the tendon are shown in Figure 9.15b. For this
beam, the vertical component of prestress at each support is zero (since the slope of the
tendon is zero) and the uniformly distributed loads are self-equilibrating.

The total moment diagram caused by prestress for this prismatic beam may be obtained by
using the moment-area principles discussed in Equation 9.2, i.e. by translating the base line of
the primary moment diagram (Pe) so that the net area under the moment diagram is zero.
Alternatively, the total moment diagram may be obtained by cal culating the fixed-end
moments caused by the equivalent distributed loadsin Figure 9.15b. The total moment
diagram caused by prestressis shown in Figure 9.15c. By subtracting the primary moments
from the total moments, the linear secondary moment diagram shown in Figure 9.15d is
obtained.
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If an idealized tendon such as that shown in Figure 9.11a was used to model this more
realistic profile (with e4=e5=0.3 m and #=0.6 m), the total moment at each end (see Figure
9.11d) is

2Ph  2x2500x0.6

3 3 = 1000 kNm

which is about 8% higher than the value shown in Figure 9.15c.

9.3.5 Members with varying cross-sectional properties

The techniques presented for the analysis of continuous structures hold equally well for
members with non-uniform section properties. Section properties may vary owing to
haunching or changes in member depth (asillustrated in Figures 9.1b, ¢, and e), from varying
web and flange thicknesses, or simply from cracking in regions of high moment.

Increasing the member depth by haunching is frequently used to increase
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Figure 9.16 Moments induced by prestress in haunched members.
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the tendon eccentricity in the peak moment regions at the interior supports. In such members,
the position of the centroidal axis varies aong the member. If the tendon profile is a smooth
curve, and the centroidal axis suffers sharp changesin direction or abrupt steps (where the
member depth changes suddenly), the total moment diagram caused by prestress also exhibits
corresponding kinks or steps, as shown in Figure 9.16.

To determine the fixed-end moments and carry-over factors for members with varying
section properties and to calculate the member displacements, the principle of virtual work
may be used. The internal work is readily calculated using Equation 9.3 by expressing the
section properties (EI and EA) as functions of position x. By dividing the structure into small
segments, Equation 9.5 can be used in many practical problems to provide aclose
approximation of the volume integral for internal work in a non-prismatic member.

9.3.6 Effects of creep

When a statically indeterminate member is subjected to an imposed deformation, the resulting
internal actions are proportional to the member stiffness. Since creep gradually reduces
stiffness, the internal actions caused by an imposed deformation in a concrete structure
decrease with time. Imposed deformations are caused by volume changes, such as shrinkage
and temperature changes, and by support settlements or rotations. Under these deformations,
the time-dependent restraining actions can be estimated using a reduced or effective modulus
for concrete. The age-adjusted effective modulus defined in Equation 2.14 may be used to
model adequately the effects of creep.

Provided the creep characteristics are uniform throughout a structure, creep does not cause
redistribution of internal actions caused by imposed |oads. The effect of creep in thiscaseis
similar to agradua and uniform change in the e astic modulus. Deformations increase
significantly, but internal actions are unaffected. When the creep characteristics are not
uniform, redistribution of internal actions does occur with time. In real structures, the creep
characteristics are rarely uniform throughout. Portions of a structure may be made of different
materials or of concrete with different composition or age. The rate of change of curvature
due to creep is dependent on the extent of cracking and the size and position of the bonded
reinforcement. The creep characteristics are therefore not uniform if part of the structure has
cracked or when the bonded reinforcement layout varies along the member. In general,
internal actions are redistributed from the regions with the higher creep rate to the regions
with the lower creep rate. Neverthel ess, the creep induced redistribution of internal actionsin
indeterminate structuresis generaly relatively small.

Since prestress imposes equivalent |oads on structures rather than fixed
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deformations, the internal actions caused by prestress are not significantly affected by creep.
Theinternal actions are affected in so far as creep causes areduction of the prestressing force
of the order of 5-15%. Hyperstatic reactions induced by prestress in indeterminate structures
are not therefore significantly relieved by creep.

If the structural system changes after the application of some of the prestress, creep may
cause a change in the hyperstatic reactions. For example, the two-span beam shown in Figure
9.17 isfabricated as two precast units of length L and joined together at the interior support by
acast in situ joint. Creep causes the gradual development of hyperstatic reactions with time
and the resulting secondary moments and shears. After the in situ joint is constructed, the
structure is essentially the same as that shown in Figure 9.5a.

Beforethejoint in Figure 9.17 is cast, the two precast units are simply supported, with zero
deflection but some non-zero slope at the interior support. Immediately after the joint is made
and continuity is established, the primary moment in the structure is the same as that shown in
Figure 9.5b, but the secondary moment at B (and elsewhere) is zero. With time, creep causes
agradual change in the curvature on each cross-section. If the support at B was released, the
member would gradually deflect upward due to the creep induced hogging curvature
associated with the primary moment, Pe. If it is assumed that the creep characteristics are
uniform and that the prestressing force is constant throughout, the time-dependent upward
deflection caused by prestress is obtained by multiplying the deflection given in Equation 9.8
by the creep coefficient:

Pel?
2£.7 °@ ") (9.21)

vs(t) =

It is assumed here that the restraint offered to creep by the bonded reinforcement is
insignificant (i.e. the parameter « used in Equation 3.76 and defined in Section 3.8.3 istaken
as unity).

The short-term deflection at B caused by a unit value of the redundant force applied at the
release B is given in Equation 9.9. Owing to creep, however, the redundant at B is gradually
applied to the structure. It is therefore appropriate to use the age-adjusted effective modulus
(E, given
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in Equation 2.14) to determine the corresponding time-dependent deformations (elastic plus
creep). Substituting £, for £ in Equation 9.9 gives

L1+ xo(t, 7]

Se(1) = 6E.] (9.22)

To enforce the compatibility condition that the deflection at B is zero, Equation 9.10 gives

vsl) _ _3Pe olt7) _ o _o(,7)

Re@==207 "I Texotrn e Toxe) (9.23)

where Rp(?) is the creep induced hyperstatic reaction at B, and R is the hyperstatic reaction
that would have developed at B if the structure was initially continuous and later prestressed
with a straight tendon. The reaction Rz is shown in Eigure 9.5 and given in Equation 9.11. For
typical long-term values of the creep and aging coefficient, say ¢ (1, 7)=2.55nd x=0.8,
Equation 9.23 gives

2.5
Rg(t)= m =0.833Rs

In generdl, if R isany hyperstatic reaction or the restrained internal action that would occur at
apoint due to prestress in a continuous member, and R(?) is the corresponding creep induced
valueif the member is made continuous only after the application of the prestress, then

o, 7)

RO=1T et (9.24)

If the creep characteristics are uniform throughout the structure, then Equation 9.24 may be
applied to systems with any number of redundants.

Providing continuity at the interior supports of a series of simple precast beams not only
restrains the time-dependent deformation caused by prestress, but aso restrains the
deformation due to the external loads. For all external loads applied after continuity has been
established, the effects can be calculated by moment distribution or an equivalent method of
analysis. Under the loads applied prior to casting the joints when the precast units are simply
supported (such as self-weight), the moments at each interior support are initially zero.
However, after the joint has been cast, the creep-induced deformation resulting from the self-
weight moments in the spansiis restrained and moments develop at the supports. For the beam
shown in Figure 9.5a the moment at B due to self-weight is Mz=w,,.L%/8. For the segmental
beam shown in Figure 9.17, it can be easily shown that the
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restraining moment that develops at support B due to creep and self-weight is

e, 7)

Mo =10t

9.4 Statically indeterminate frames

The procedures discussed for the analysis of continuous beams can be applied equally well to
indeterminate frames. The equivalent load method is a convenient approach for the
determination of primary and secondary momentsin framed structures. In the treatment of
continuous beams in the previous section, it was assumed that all members were free to
undergo axia shortening. Thisis often not the case in real structures. When the horizontal
member of a portal frame, for example, is prestressed, significant restraint to axial shortening
may be provided by the flexura stiffness of the vertical columns. Moment distribution can be
used to determine the internal actions that develop in the structure as aresult of the axial
restraint.

Consider the single-bay portal frame shown in Figure 9.18a. Owing to the axial shortening
of the girder BC, the top of each column moves laterally by an amount A. The fixed-end
moments induced in the structure are shown in Figure 9.18b. If the girder BC was free to
shorten (i.e. was unrestrained by the columns), the displacement A that would occur
immediately after the application of a prestressing force P to the girder is

L L
EcAp 2 (9.25)

This value of A is usually used as a starting point in the analysis. The fixed-end momentsin
the supporting columns due to arelative lateral end
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{a) Single-bay frame, (b) Fixed-end moments

Figure 9.18 Fixed-end moments in a fixed-base frame due to axial shortening of the girder.
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displacement of A are given by

M’F - ﬁEcI; &

L2 (9.26)

and amoment distribution is performed to cal cul ate the restraining actions produced by the
fixed-end moments. If the base of the frame at A was pinned rather than fixed, the fixed end
moment at B due to the displacement A would be (3ECICIL02) A. In addition to bending in the
beam and in the columns, an outward horizontal reaction isinduced at the base of each
column and the girder BC is therefore subjected to tension. The tension in BC will reduce the
assumed axia shortening, usually by a small amount. If the reduction in A is significant, a
second iteration could be performed using the reduced value for A to obtain a revised estimate
of the fixed-end moments and, hence, a more accurate estimate of the axial restraint.

The magnitude of the axial restraining actions depends on the relative stiffness of the
columns and girder. The stiffer the columns, the greater is the restraint to axial shortening of
the girder, and hence the larger is the reduction in prestress in the girder. On the other hand,
slender columns offer less resistance to deformation and less restraint to the girder.

Axia shortening of the girder BC can also occur due to creep and shrinkage. A time
analysis to include these effects can be made by using the age-adjusted effective modulus for
concrete, instead of the elastic modulus, to model the gradually applied restraining actions
caused by creep and shrinkage.

The internal actions that arise in a prestressed structure as aresult of the restraint of axia
deformation are sometimes called rertiary effects. These effects are added to the primary and
secondary effects (calculated using the equivalent |oad method) to obtain the total effect of
prestress in aframed structure.

Example 9.4

Consider the single bay, fixed-base portal frame shown in Figure 9.19a. The vertical columns
AB and ED are prestressed with a straight tendon profile, while the horizontal girder BD is
post-tensioned with a parabolic profile, as shown. The girder BD has arectangular cross-
section 1200 mm by 450 mm and the column dimensions are 900 mm by 450 mm. The girder
carriesauniformly distributed live load of 10 kN/m, a superimposed dead load of 5 kN/m,
and the self-weight of the girder is 13 kN/m. If £.=30 000 MPa, the moments caused by the
total uniformly distributed load on the girder (live load+dead | oad+self-weight=28 kKN/m) are
calculated using moment distribution and are shown in Figure 9.19b.

By satisfying the serviceability requirements (as discussed in Chapter 3),
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Figure 9.19 Actionsin fixed-base portal frame of Example 9.4.

an estimate of the prestressing force and the tendon profile can be made for both the girder
BD and the columns. For the girder, the tendon profile shown in Figure 9.19ais selected and
the effective prestress P, 3 required to balance the self-weight plus dead |oad is determined:

18 x 30°

P sp=
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If the time-dependent losses are taken as 25%, the average prestressing force in the girder
immediately after transfer is P; 5p=3000 kN.

To determine the effective prestress in the columns, the primary momentsin the girder and
in the columns at the corner connections B and D are taken to be the same. If the eccentricity
in the column at B (at the centroidal axis of the girder) is 400 mm, as shown in Figure 9.19a,
then

ﬂ.4P.r..1.F = ﬂ.45PhBﬂ

Therefore

2250 % 0.45

Peag= =
AB 0.4 2531 kN

The time-dependent losses in the columns are also taken as 25% and the prestressing force
immediately after transfer is therefore P; ,3=3375 kN.

The equivalent load method and moment distribution are used here to calcul ate the primary
and secondary moments caused by prestress. The equivalent loads imposed by the tendon on
the concrete members immediately after prestressing are shown in Figure 9.19c. The fixed-
end moment caused by prestress at each end of span BD is obtained using the results of the
fixed-end beam analysed in Example 9.2, case (a) (and illustrated in Figure 9.11) and is given

by
M%Ep=3%P; sphsp=1%x 3000 x 0.9 = 1800 kN

The fixed-end momentsin the vertical columns due to the straight tendon profile are zero, as
was determined for the fixed-end beam analysed in Example 9.2, case (b). From a moment
distribution, the primary and secondary moments caused by prestress are calculated and are
illustrated in Figure 9.19d.

To calculate thetertiary effect of axial restraint, the axia shortening of BD immediately
after prestressing is estimated using Equation 9.25:

3000 x 10° 30 000

A= =2.78
30 000 x 1200 x 450 . 2 mm

The fixed-end moment in the columns is obtained from Equation 9.26 and is given by

Myzﬁx 30 000 x 9007 x 450

278 % 107%=137kN
100002 x 12 =8 % m

Moment distribution produces the tertiary moments shown in Figure 9.19e. The restraining
tensile axial forceinduced in the girder BD isonly 12.6 kN and, compared with the initial
prestress, isinsignificant in this case.
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9.5 Design of continuous beams

9.5.1 General

The design procedures outlined in Chapter 8 for statically determinate beams can be extended
readily to cover the design of indeterminate beams. The selection of tendon profile and
magnitude of prestressin a continuous beam is based on serviceability considerations, asis
the case for determinate beams. Load balancing is a commonly used technique for making an
initial estimate of the level of prestress required to control deflections. The design of
individual cross-sections for bending and shear strength, the estimation of losses of prestress,
and the design of the anchorage zones are the same for all types of beams, irrespective of the
number of redundants.

In continuous beams, the satisfaction of concrete stress limits for crack control must
involve consideration of both the primary and secondary moments caused by prestress.
Concrete stresses resulting from prestress should be calcul ated using the pressure line, rather
than the tendon profile, as the position of the resultant prestress in the concrete.

Because of the relatively large number of dependent and related variables, the design of
continuous beams tends to be more iterative than the design of simple beams, and more
dependent on the experience and engineering judgement of the designer. A thorough
understanding of the behaviour of continuous prestressed beams and a knowledge of the
implications of each design decision is of great benefit.

9.5.2 The service load range—before cracking

Prior to cracking, the behaviour of a continuous beam is essentially linear and the principle of
superposition can be used in the analysis. This means that the internal actions and
deformations caused by prestress and those caused by the external loads can be calcul ated
separately using linear analyses and the combined effects obtained by simple summation.

Just as for simple beams, a designer must ensure that a continuous beam is serviceabl e at
the two critical loading stages, immediately after transfer (when the prestressis at its
maximum and the applied service loads are small) and under the full loads after all losses
have taken place (when the prestressis at aminimum and the applied loads are at a
maximum).

In order to obtain a good estimate of the in-service behaviour, the prestressing force must
be accurately known at each cross-section. Thisinvolves areliable estimate of |osses, both
short and long-term. It is also important to know the load at which flexura cracking islikely
to occur. In Section 3.6.2, it was observed that creep and shrinkage gradually relieve the
concrete of prestress and transfer the resultant compression from the concrete to the bonded
reinforcement. To make reliable estimates of the
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cracking moment at a particular cross-section, therefore, involves consideration of the time-
dependent effects of creep and shrinkage.

Prior to cracking, load balancing can be used in design to establish a suitable effective
prestressing force and tendon profile. The concept of load balancing was introduced in
Section 1.5.3 and involves balancing a presel ected portion of the applied load (and self-
weight) with the transverse equivaent load imposed on the beam by the draped tendons.
Under the balanced load, ws, the curvature on each cross-section is zero, the beam does not
therefore deflect, and each cross-section is subjected only to the longitudinal axial prestress
applied at the anchorages.

By selecting a parabolic tendon profile with the drape, 4, as large as cover requirements
permit, the minimum prestressing force required to balance wy, is calculated from

_ wy L2
" 8h (9.27)

P

This equation is arearrangement of Equation 1.7. In order to control the final deflection of a
continuous beam, the balanced load w;, is often taken to be the sustained or permanent load (or
some large percentage of it).

Because of its simplicity, load balancing is probably the most popular approach for
determining the prestressing force in a continuous member. Control of deflection isan
obvious attraction. However, load balancing does not guard against cracking caused by the
unbalanced loads and it does not ensure that individual cross-sections possess adequate
strength. If the balanced load is small, and hence the prestressing force and prestressing steel
quantities are also small, significant quantities of non-prestressed steel may be required to
increase the strength of the critical cross-sections and to limit crack widths under the full
service loads.

At service loads prior to cracking, the concrete stresses on any cross-section of a
continuous beam can be calculated easily by considering only the unbalanced load and the
longitudinal prestress. The transverse |oads imposed on the beam by the draped tendons have
been effectively cancelled by w;. The total moment diagram due to prestress
(primary+secondary moments) is equal and opposite to the moment diagram caused by w;,.
The primary and secondary moments induced by prestress need not, therefore, enter into the
calculations and there is no need to cal culate the hyperstatic reactions at this stage (at least for
the determination of concrete stresses). In Example 9.5, the load balancing approach is
applied to atwo-span continuous member.

In the discussion to this point, the prestressing force has been assumed to be constant
throughout the member. In long members, friction losses may be significant and the
assumption of constant prestress may lead to serious errors. To account for variationsin the
prestressing force with
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distance from the anchorage, a continuous member may be divided into segments. Within
each segment, the prestressing force may be assumed constant and equal to its value at the
mid-point of the segment. In many cases, it may be acceptable to adopt each individual span
as asegment of constant prestress. In other cases, it may be necessary to choose smaller
segments to model the effects of prestress more accurately.

It is possible, although rarely necessary, to calculate the equivalent loads due to a
continuously varying prestressing force. With the shape of the tendon profile throughout the
member and the variation of prestress due to friction and draw-in determined previously, the
transverse equivalent load at any point is equal to the curvature of the tendon (obtained by
differentiating the equation for the tendon shape twice) times the prestressing force at that
point. The effect of prestress due to these non-uniform equivalent transverse loads can then be
determined using the same procedures as for uniform loads.

Example 9.5 —Load balancing

The idealized parabolic tendons in the two-span beam shown in Figure 9.20 are required to
balance a uniformly distributed gravity load of 20 kN/m. The beam cross-section is
rectangular, 800 mm deep and 300 mm wide. The concrete stress distribution on the cross-
section at B over the interior support when the total uniformly distributed gravity load is 25
kN/m isrequired. Assume that the prestressing force is constant throughout.

In span AB, the tendon sag is /,3=325+(0.5x325)=487.5 mm and the required prestressing
forceis obtained from Equation 9.27:

_ 20x 16°

T 8x0.4875 1313 kN

If P isconstant throughout, the required sag in BC may a so be obtained from Equation 9.27:

20 x 142
= =0.37 =37
Ex 1313 0.373m =373 mm
325
/EI\_
- T .
FAY
A B C
~ 16m ! 14m -l

Figure 9.20 Two-span beam of Example 9.5.
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and the eccentricity of the tendon at the mid-point of the span BC is equal to
373—(0.5x325)=210.5 mm (below the centroidal axis).

Under the balanced load of 20 kN/m, the beam is subjected only to the axial prestress
applied at each anchorage. The concrete stress on every cross-section is uniform and equal to

P 1313 x 10° _

o= —;{= - m— - 547 MPa

Owing to the uniformly distributed unbalanced load of 5 kN/m, the moment at B is—142.5
kNm (obtained by moment distribution or an equivalent method of analysis). The extreme
fibre concrete stresses at B caused by the unbalanced moment are

M 142.5% 10°% 6

o="F=1%

Z 8007 x 300

= *445MPa

The resultant extreme fibre stresses at B caused by prestress and the applied load of 25 kN/m
aretherefore:

in the top: 0~=—5.47+4.45=-1.02 MPa
in the bottom: 0,=5.47-4.45=-9.92 MPa

The reader may wish to check that the same result is obtained if the total stresses caused by
the equivaent loads (longitudinal plus transverse forces imposed by prestress) are added to
the stresses caused by a uniformly distributed gravity load of 25 kN/m.

9.5.3 The service load range—after cracking

When the balanced load is relatively small, the unbalanced load may cause cracking in the
peak moment regions over the interior supports and at mid-span. When cracking occurs, the
stiffness of the member isreduced in the vicinity of the cracks. The changein relative
stiffness between the positive and negative moment regions causes a redistribution of bending
moments. In prestressed members, the reduction of stiffness caused by cracking in a particular
region is not as great asin an equivalent reinforced concrete member and the redistribution of
bending moments at service loads can usually be ignored. It is therefore usual to calculate
beam moments using a linear analysis both before and after cracking.

The effect of cracking should not be ignored, however, when cal culating the deflection of
the member. A cracked section analysis (see Section 3.5.2) can be used to determine the
effective moment of inertia of the cracked
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section (see Section 3.8.2) and the corresponding initial curvature. After calculating the initial
curvature at each end and at the mid-point of a span, the short-term deflection may be
obtained using Equation 3.68c.

Under the sustained loads, the extent of cracking is usually not great. In many partialy
prestressed members, the cracks over the interior supports (caused by the peak loads) are
completely closed for most of the life of the member. The time-dependent change in curvature
caused by creep, shrinkage, and relaxation at each support and at mid-span can be calculated
using the time analysis of Section 3.6.2 (or Section 3.6.3 if the cracks remain open under the
permanent loads). With the final curvature determined at the critical sections, the long-term
deflection can also be calculated using Equation 3.68c.

Alternatively, long-term deflections may be estimated from the short-term deflections using
the approximate expressions outlined in Section 3.8.3.

The control of flexural cracking in partialy prestressed beamsis easily achieved by
suitably detailing the bonded reinforcement in the cracked region. According to AS 3600—
1988, crack widths may be considered to be satisfactory for interior exposure conditions
provided the change in stress in the bonded tensile steel islessthan 200 MPa astheload is
increased from its value when the extreme concrete tensile fibre is a zero stressto the full
service load. The change in tensile steel stress may be calculated in a cracked section analysis.
In addition, the centre-to-centre spacing of the bonded steel should be Iess than 200 mm.

9.5.4 The overload range and ultimate strength in bending

Behaviour

The behaviour of a continuous beam in the overload range depends on the ductility of the
cross-sections in the regions of maximum moment. If the cross-sections are ductile, the
moment curvature relationships are similar to that shown in Figure 9.21.

Consider the propped cantilever shown in Figure 9.22a Each cross-section is assumed to
possess a ductile moment—curvature relationship. At service loads, bending moments in the
beam, even in the post- cracking range, may be approximated reasonably using elastic analysis.
The negative elastic moment at A caused by the uniformly distributed load w is wL%/8. When
the load w causes yielding of the reinforcement on the cross-section at A, a sudden loss of
stiffness occurs (asillustrated by the kinks in the moment—curvature relationship in Figure
9.21). Any further increase in load will cause large increasesin curvature at A, but only small
increases in moment. A constant-moment (plastic) hinge develops at A as the moment
capacity is all but exhausted and the curvature becomeslarge. In
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Curvature

Figure 9.21 Moment-curvature relationship for aductile partially prestressed cross-section.

reality, the moment at the hinge is not constant, but the rate of increase in moment with
curvature in the post-yield range is very small. Asloading increases and the moment at the
support A remains constant or nearly so, the moment at mid-span increases until it too reaches
its ultimate value, M,, and a second plastic hinge develops. The formation of two constant-
moment hinges reduces a one-fold indeterminate structure to a mechanism and collapse
occurs. If an elastic—perfectly plastic moment—curvature relationship is assumed with the
same moment capacity M, at both hinge locations, the moment diagrams associated with the
formation of the first and second hinges are as shown in Figure 9.22b. The ductility at A
resultsin an increase in load-carrying capacity of 46% above the load required to cause the
first hinge to form.

Plastic analysis techniques can therefore be used to estimate the collapse

_H. S.Hh
H"] = Lz
w

2 A B
L [
[ L |

+M,

| esm,

(@ (b) w2 X

Figure 9.22 Moment redistribution in a propped cantilever.
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load of a continuous prestressed beam, provided the critical cross-sections are ductile, i.e.
provided the moment—curvature relationships can be assumed to be el astic—plastic and the
critical cross-sections possess the necessary rotationa capacity.

By subdividing a member into small segments and cal culati ng the moment—curvature
relationship for each segment, an incremental analysis may be used to cal cul ate the collapse
load more accurately.

Permissible moment redistribution at ultimate

For the design of prestressed concrete continuous structures, collapse load methods are either
not recommended or not mentioned in many building codes. In general, alower bound
ultimate strength approach is specified in which the design moment, A1, on every cross-
section must be less than the design strength, ®Mu. Design moments are calculated using
elastic analysis and gross member stiffnesses (and are therefore very approximate). To
account for the beneficial effects of moment redistribution, building codes generally permit
the peak elastic moments at the supports of a continuous beam to be reduced provided the
cross-section isductile. A reduction in the magnitudes of the negative moments at the ends of
a span must be associated with an increase in the positive span moment in order to maintain
equilibrium. AS 3600-1988, for example, allows the negative moment at an interior support
to be modified by a maxi mum amount (1,, in percent) which depends on the neutral axis
parameter k,=d,/d:

2,=30 when ke < 0.2
An=15(0.4-k,) when 0.2<k.<04
Am=0 when k>0.4

With a different rectangular compressive stress block at ultimate, BS 8110 (1985) permits

1,=20 when k. < 0.3
1, =50 100k, when 0.3<k,<0.5

The redistribution permitted by ACI 318-83 depends on the reinforcement index, ¢, where

_Apfp " Aufy _Ascly
bdpfé  bdfe bdf:

q

As g increases, the ductility of the cross-section decreases. According to
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ACI 318-83,
= __4 :
- Zﬂ(l &3&3«) provided g < 0.24y
where y is defined in Equation 4.2 (and given the symbol f1in ACI 318-83).

Secondary effects at ultimate

Both AS 3600-1988 and ACI 318-83 require that the design moment, A", be calculated as the
sum of the moments caused by the factored design load combination (dead, live, etc., as
outlined in Section 1.7.3) and the moments resulting from the hyperstatic reactions caused by
prestress (with aload factor of 1.0).

Earlier in this chapter, the hyperstatic reactions and the resulting secondary moments were
calculated using linear-elastic analysis. Primary moments, secondary moments, and the
moments caused by the applied |oads were calcul ated separatel y and summed to obtain the
combined effect. Superposition is only applicable, however, when the member behaviour is
linear. At overloads, behaviour is highly non-linear and it is not possible to distinguish
between the moments caused by the applied loads and those caused by the hyperstatic
reactions. Consider the ductile propped cantilever in Figure 9.22. After the formation of the
first plastic hinge at A, the beam becomes determinate for al subsequent load increments.
With no rotational restraint at A, the magnitude of the secondary moment isnot at al clear.
The total moment and shears can only be determined using arefined analysis that accurately
takes into account the various sources of material non-linearity. It is meaninglessto try to
subdivide the total moments into individual components. The treatment of secondary
moments at ultimate has been studied by Lin & Thornton (1972), Mattock (1972), Nilson
(1978), Warner & Faulkes (1983), and others.

Provided that the structure is ductile and moment redistribution occurs as the collapse oad
is approached, secondary moments can be ignored in ultimate strength calculations. After all,
the inclusion of an uncertain estimate of the secondary moment generally amounts to nothing
more than an increase in the support moments and a decrease in the span moment or vice
versa, i.e. aredistribution of moments. Since the moments due to the factored loads at
ultimate are calculated using elastic analysis, there is no guarantee that the inclusion of the
secondary moments (also calculated using gross stiffnesses) will provide better agreement
with the actual moments in the structure after moment redistribution (as may be calcul ated
using arefined non-linear analysis).

On the other hand, if the critical section at an interior support is non-ductile, the situation is
not so cut and dried. It is usually possible to avoid
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non-ductile sections by the inclusion of sufficient quantities of compressive reinforcement. If
non-ductile sections cannot be avoided, it is recommended that secondary moments
(calculated using linear elastic analysis and gross stiffnesses) be considered at ultimate.
Where the secondary moment at an interior support has the same sign as the moment caused
by the applied loads, it is conservative to include the secondary moment (with aload factor of
1.0) in the calculation of the design moment M . Wherethe secondary moment is of opposite
sign to the moment caused by the applied loads, it is conservative to ignore its effect.

9.5.5 Steps in design
A suitable design sequence for a continuous prestressed concrete member is as follows:

(1) Determine the loads on the beam both at transfer and under the most severe load
combination for the serviceability limit states. Using approximate analysis techniques,
estimate the maximum design moments at the critical sectionsin order to make an initial
selection of cross-section size and self-weight. The moment and deflection coefficients
given in Figure 9.23 may prove useful.

L-‘
M=awl? and v = p—
B ErI
j é"" § o, = -00833
A . B . A Bg = 17384
= L -
f:maﬁaaa?ﬂaaﬁn:aa ar = =0.125
A B C B A Bp = 27384
p———L = L {
W W g ar = =010
escocansecpennorennenproconenens,
A B ¢ D c B " Be = 2.65/384
; L : L } L | Bp = 0.20/384
w w ar = -005
jpococorves,  eoceooooon
Y B c D c B A Be = 3.80/384
D S S JU - A— J— Bp = ~1.0/160
w ar = =005
i’ B % D AC B A,& Bs ==-1.0/320
—_—r— ey } L—] Bp = 2.60/384

Figure 9.23 Moment and deflection coefficients for equal span elastic beams.
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Determine appropriate cross-section sizes at the critical sections. The discussion in
Section 8.3 isrelevant here. Equation 8.11 may be used to obtain cross-sectional
dimensions that are suitable from the point of view of flexural strength and ductility. By
estimating the maximum unbalanced load, the sustained part of the unbalanced load and
by specifying a maximum deflection limit for the structure, a minimum moment of
inertia may be selected from Equation 8.5 (if the member isto be crack free) or
Equation 8.6 (if cracking is permitted). If afully prestressed beam is required, Equation
8.1 can be used to determine the minimum section modulus at each critical section.

For continuous beams in normal situations, the span to depth ratio is usually in the
range 24—30, but this depends on the load level and the type of cross-section.

(2) Determine the bending moment and shear force envelopes both at transfer and under the
full service loads. These envelopes should include the effects of self-weight, superimposed
permanent dead and live loads, and the maximum and minimum values caused by transient
loads. Where they are significant, pattern loadings such as those shown in Figure 9.23
should be considered. For example, the minimum moment at the mid-point of a particular
span may not be due to dead load only, but may result when the transient live load occurs
only on adjacent spans. Consideration of pattern loading is most important in structures
supporting large transient live loads.

(3) Determine trial values for the prestressing force and tendon profile. Use idealized tendon
profiles that follow the shape of the bending moment diagram caused by the anticipated
balanced loads (or as near to it asis practical). In each span, make the tendon drape as large
as possible in order to minimize the required prestress.

If afully prestressed beam isrequired, thetrial prestress and eccentricity at each critica
section can be determined using aMagnel diagram and the procedure outlined in
Section 3.3.1. At this stage, it is necessary to assume that the tendon profileis
concordant. If load balancing is used, the maximum available eccentricity is generaly
selected at mid-span and over each interior support and the prestress required to balance
a selected portion of the applied load (w;) is calculated using Equation 9.27. The
balanced load selected in the initial stages of design may need to be adjusted later when
serviceability and strength checks are made.

Determine the number and size of tendons and the appropriate duct diameter(s).

(4) Replace the kink in the idealized tendon profile at each interior support with a short
convex parabolic segment as discussed in Section 9.3.4. Determine the equivaent loads due
to prestress and using
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moment distribution (or an equivalent method of analysis) determine the total moment
caused by prestress at transfer and after the assumed time-dependent losses. By subtracting
the primary moments from the total moments, cal cul ate the secondary moment diagram and,
from statics, determine the hyperstatic reactions at each support.

(5) Concrete stresses at any cross-section caused by prestress (including both primary and
secondary effects) and the applied |oads may now be checked at transfer and after all losses.
If the beam isfully prestressed, the trial estimate of prestress made in step 3 was based on
the assumption of a concordant tendon profile and secondary moments were ignored. If
secondary moments are significant, stresses cal culated here may not be within acceptable
limits and a variation of either the prestressing force or the eccentricity may be required.

(6) Calculate the losses of prestress and check the assumptions made earlier.

(7) Check the ultimate strength in bending at each critical section. If necessary, additional
non-prestressed tensile reinforcement may be used to increase strength. Add compressive
reinforcement to improve ductility, if required. Some moment redistribution at ultimate
may be permissible to reduce peak negative moments at interior supports, provided that the
cross-sections at the supports have adequate ductility.

(8) Check the deflection at transfer and the final 1ong-term deflection. For partially
prestressed designs, check crack control in regions of peak moment. Consider the inclusion
of non-prestressed stedl to reduce time-dependent deformations, if necessary. Adjust the
section size or the prestress level (or both), if the calculated deflection is excessive.

(9) Check shear strength of beam (and torsional strength if applicable) in accordance with the
provisions outlined in Chapter 5. Design suitable shear reinforcement where required.

(10) Design the anchorage zone using the procedures presented in Chapter 6.

Note: Durability and fire protection requirements are usually satisfied by an appropriate
choice of concrete strength and cover to the tendonsin step 3.

Example 9.6

The four-span beam shown in Figure 9.24 is to be designed. The beam has a uniform I-shaped
cross-section and carries a uniformly distributed dead load of 25 kN/m (not including self-
weight) and atransient live load
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Figure 9.24 Elevation of beam of Example 9.6.

of 20 kN/m. Controlled cracking isto be permitted at peak loads. The beam is prestressed by
jacking simultaneously from each end, thereby maintaining symmetry of the prestressing
force about the central support C and avoiding excessive friction losses. Take Je=40\ pg
and Jei=30MPa,

(1) (and 2) The bending moments caused by the applied loads must first be determined.
Because the beam is symmetrical about the central support at C, the bending moment
envel opes can be constructed from the moment diagrams shown in Figure 9.25 caused by
the distributed load patterns shown. These moment diagrams were calculated for a unit
distributed load (1 kN/m) using moment distribution.

If the self-weight is estimated at 15 kN/m, the total dead load is 40 kN/m, and the AS
36001988 load factors for the strength limit state (Section 1.7.3) are adopted, the
factored design loads are

we=1.25x40=50kN/m and wg=1.5x%20=30kN/m

The maximum design moment M occurs over the support C, when the transient live
load is on only the adjacent spans BC and CB' Therefore, using the moment coefficients

in Figure 9.25,

M"*=80.9% 50+ [(46.3 + 46.3) x 30] = 6823 kNm

The overal dimensions of the cross-section are estimated using Equation 8.11 (whichis
valid provided the compressive stress block at ultimate is within the flange of the |-
section):

6823 x 10°

e - 1254x10° :
017 x0.8x40 (24107 mm

bd* >
Try b=750 mm, d=1290 mm and D=1400 mm.
The span-to-depth ratio for the interior span is 21.4 which should prove acceptable from
aserviceability point of view.
To obtain atrial flange thickness, find the depth of the compressive stress block at

ultimate. If the volume of the stress block is € = 9-85/evdnb anq the |ever arm between
C and the resultant tension
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{c) Load Case 3 (1 kN/m on span BC only)

Figure 9.25 Bending moment diagrams due to unit distributed loads (Example 9.6).
istaken to be 0.854, then

4= M* _ 6823 % 10°
T T x085x dx0.85x fzb 0.8 x 0.85 X 1290 X 0.85 x 40 X 750

= 305 mm

Adopt ataping flange 250 mm thick at the tip and 350 mm thick at the web.
To ensure that the web width is adequate for shear, it is necessary to ensure that web

crushing does not occur. If the vertical component of the prestressing force, P,, is
ignored, then Equation 5.7 gives

V* < ¢Vumar =0 X 0.2f2byds
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and therefore
7.2v"
by =2 ——
Sfeds

The maximum shear force IV also occurs adjacent to support C when liveload is
applied to span BC and CB' and is equal to 1180 kN. Therefore,

7.2 % 1180 x 10°

be 2 =5 1340

= 158 mm

It is advisable to select aweb width significantly greater than this minimum value in
order to avoid unnecessarily large quantities of transverse steel and the resulting steel
congestion. Duct widths of about 100 mm are anticipated, with only one duct in any

horizontal plane through the web. With these considerations, the web width is taken to
be

by = by + dg = 300 mm

Thetrial cross-section and section properties are shown in Figure 9.26. The self-weight
isactually 24x0.69=16.6 KN/m, which is 10% higher than originally assumed. The
revised value of M is 6985 kNm.
(3) If 200 mm ducts are assumed (side by side in the flanges) and 40 mm cover to the
reinforcement, the maximum eccentricity over an interior

— [ 250
S
;“."--,_‘_‘ 100
A = 690x 10° mm®
300 I = 152 x 10° mm*
1400 700 Z = 217x10° mm’
100
250

Figure 9.26 Tria section dimensions and properties.
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support and at mid-span is

€max = 700 — 40 — 12 — (3 x 100) = 580 mm

The maximum drape in the spans BC and CB' istherefore

[hﬂﬂ‘}mﬂ = 2€mgr = 1160 mm

The balanced load is taken to be 32 kN/m (which is equal to self-weight plus about 60%
of the additional dead load). From Equation 9.27, the required average effective
prestressin span BC is

32 x 304

= 31
8x1.16 2103 kN

(Pe)ac =

If the friction loss between the mid-point of span BC and the mid-point of AB is
guessed at 15%, then

3103
P, == 3650 kN
(Pe)as 0.85

and the required drapein span AB is

_32x20°

4B = S_ﬂ'_ﬁ?dz 0.438 m =438 mm

The required eccentricity at mid-span is therefore

ms=433—5—g~g= 148 mm

Theidealized tendon profiles for spans AB and BC are shown in Figure 9.27, together
with the corresponding tendon slopes and friction losses (calculated from Equation 3.60,
with 4=0.2 and /5,=0.01). The friction losses at the midspan of BC are 17.3%, and if the
time-dependent lossesin BC are assumed to be 20%, then the required jacking forceis

3103

Fi=587x0s8

= 4690 kN

The maximum jacking force for a 12.7 mm diameter strand is 0.85x184=156.4 kN (see
Table 2.1). The minimum number of strands is therefore 4690/156.4=30.



Page 369

380 580
T w0
i — ¥ T
Fa? L
A ] # .- C
I f
Sope.6 0085 009 01166 i 0.1547 0 0.1547 | 0.1547
1
Geox 0 0.0876  0.1752 | 04465 0.6012 07559 | 1.0653
] | (Avge=03109) ; (Avge =0.9106)
Lpa 0 10 20 35 50
J i i
PalP; 10 0963 0903 0.827 0.754
I I |
PitP; 0895 0932 0503 0.827 0.754
1 1 |
Pi (kN) 419 4370 4235 3879 3536
| | b ! 1
Pe (N) 35T 349 3388 3103 2829

Figure 9.27 Friction losses and tendon forces.

Try two cables each containing 15 strands (4,=1500 mm?/strand).

The two cables are to be positioned so that they are located side by side in the top
flange over the interior supports and in the bottom flange at mid-span of BC, but are
located one above the other in the web. The position of the resultant tension in the

tendons should follow the desired tendon profile.
The loss of prestress due to a6 mm draw-in at the anchorage is calculated as outlined in
Section 3.7.2. The slope of the prestress line adjacent to the anchorage at A is

0.037 X P; _ 0.037 X 4690
Las|2 20/2

gz =17.35 N/mm

and, from Equation 3.61, the length of beam associated with the draw-in lossesis

= 14 220 mm

;. - [195000x 3000 x 6
4= 17.35

Theloss of force at the jack due to dlip at the anchorage is
bP=algy=2%17.35%14220% 10”7 =494 kN (=0.105F;)
and at mid-span

5P =a(Lgi— Las|2) =2 % 17.35 x (14 220 — 10 000) x 1073

= 146 kN (=0.031P))
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Theinitia prestressing force P; (after friction and anchorage losses) is shown in Figure
9.27, together with the effective prestress assuming 20% time-dependent |osses.

The average effective prestressin span AB is 3434 kN (and not 3650 kN as previously
assumed). The revised drape in AB and eccentricity at mid-span are

32 x 202

= 3= —
~3x3434xlﬂ 466 mm and e4p=176mm

hap

This minor adjustment to the tendon profile will not cause significant changesin the
friction losses.

(4) The beam is next analysed under the equivalent transverse loads caused by the effective
prestress. The sharp kinks in the tendons over the supports B and C are replaced by short
lengths with a convex parabolic shape, asillustrated and analysed in Example 9.3. In this
example, it is assumed that the idealized tendons provide a close enough estimate of
moments due to prestress.

The equivalent uniformly distributed transverse load due to the effective prestressis

approximately 32 kN/m (upward). Using the moment diagram in Eigure 9.25a, the total
moments due to prestress at B and C are

(Mp)a= +63.2x32=2022 kNm and
(Mpi)c= +80.9 % 32 =2589 kNm.
The secondary moments at B and C are obtained by subtracting the primary moments

corresponding to the average prestress in each span (as was used for the calculation of
total moments):

(Mps)s = (Mp)p — (Pee)s = 2022 — [(3103 + 3434)/2] < 0.58
=126 kNm
(Mp:)c = (Mpe)c — (Pee)e = 2589 — (3103 x 0.58)
=789 kNm
Thetotal and secondary moment diagrams are shown in Eigure 9.28, together with the
corresponding hyperstatic reactions. It should be noted that, in fact, the equivalent

transverse load varies along the beam as the prestressing force varies and the moment
diagrams shown in Figure 9.28 are only approximate. A more accurate estimate of the
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Figure 9.28 Moments and reactions caused by the average effective prestress.

moments due to prestress and the hyperstatic reactions can be made by dividing each
span into smaller segments (say four per span) and assuming constant prestressin each
of these segments.

(5) Itis prudent to check the concrete stresses at transfer. The equivalent transverse load at
transfer is 32/0.8=40 kN/m 1 and the self-weight is 16.6 kN/m |. Therefore, the unbalanced
load is 23.4 kN/m 1. At support C, the moment caused by the uniformly distributed
unbalanced load is (see Figure 9.25a)

(Mup)c=80.9x23.4 = 1893 kNm

and theinitial prestressing force at C is 3536 kN. The extreme fibre concrete stresses
immediately after transfer are

_ 3536 10° 1893 x 10°

- = —-51-87=-13.
§90x10°  217x105 = 178 13.8 MPa

'=
and

3536 x 10° 1893 x 108
- =—-51487=+3.6 MPa
690 x 10° © 217 x 10°

Op=

The flexural tensile strength at transfer is 064 = 3.3MPa and, therefore, cracking at
support C islikely to occur at transfer. Bonded reinforcement should therefore be
provided in the bottom of the member over support C to control cracking at transfer.
For this level
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of tension, it is reasonabl e to cal culate the resultant tensile force on the concrete
(assuming no cracking) and supply enough non-prestressed stedl to carry thistension
with asted stress of 150 MPa. In this case, the resultant tension near the bottom of the
cross-section (determined from the cal cul ated stress distribution) is 390 kN and
therefore

_390x10° _ 2
Ag= ‘_"__"__‘150 = 2600 mm

Use four 28 mm diameter reinforcing bars or equivalent.

As an dternative to the inclusion of this non-prestressed reinforcement, the member
might be stage stressed. Only part of the prestressis transferred under self-weight
conditions (perhaps just one of the cablesis fully stressed) and the remaining prestress
applied when the sustained dead load (or part of it) isin place.

Similar calculations are required to check for cracking at other sections at transfer. At
support B, (M) 3=63.2%23.4=1479 kN m; P=4235 kN and ¢,=+0.67 MPa. Cracking

will not occur at B at transfer. Evidently, support C is the only location where cracking
islikely to occur at transfer.

For this partially prestressed beam, before conditions under full loads can be checked
(using cracked section analyses in the cracked regions), it is necessary to determine the
amount of non-prestressed steel required for strength.

(6) In this example, the time-dependent losses estimated earlier are assumed to be satisfactory.
In practice, of course, losses should be cal culated.

(7) The strength of each cross-section should now be checked. For the purpose of this
example, calculations are provided for the critical section at support C only. From steps 1
and 2, M =6985 kNm (due to the factored dead plus live loads). The secondary moment
can be included with aload factor of 1.0. Therefore,

M¥= —6985+ 789 = — 6196 kNm

The inclusion of the secondary moment here is equivalent to aredistribution of moment
at C of 11.3%. The secondary moment will cause a corresponding increase in the
positive moments in the adjacent spans. If the cross-section at C is ductile, afurther
redistribution of moment is permissible (as outlined in Section 9.5.4). The design
moment at C is here redistributed by an additional 3.2% to M =6000 kN m. When
checking the strength in positive bending in
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the adjacent spans, the design moment must be increased above the elastically
determined value in order to maintain equilibrium.

The minimum required ultimate strength at C is M. = M"[$ =7500kN m. Us ng the
procedure outlined in Section 4.4.1, the strength of a cross-section with flange width
»=750 mm and containing 4,=3000 mm" at d,=1280 mm is

M, =6156 kNm (with d,= 268 mm)

Additional non-prestressed tensile reinforcement A4, is required in the top of the cross-
section at C. If the depth from the tensile steel to the compressive face is do=1330 mm,
then A4, can be calculated using Equation 4.27:

M, — Ma _ (7500 — 6156) x 10°

_ 2
77 400 0.9(1280 - (0.766 < 268)] -+ 4 mm

As =

Use six 28 mm diameter bars in the top over support C. Thisisin addition to the four
28 mm bars required for crack control at transfer in the bottom of the section. The
bottom bars in the compressive zone at the ultimate limit state will improve ductility.
From an ultimate strength analysis of the proposed cross-section, with reinforcement
details shown in Figure 9.29, the section satisfies strength requirements (14,=7940 kN
m) and with ¢,=292 mm=0.234 the section is ductile enough to justify the moment
redistribution assumed at C.

Similar calculations show that four 28 mm diameter bars are required in the negative
moment region over the first interior support

750
_ﬂﬂ 4120 :
A T4
— - A, = 3000 mm?
{ 1400 Ay = 3720 mm?
Ay = 2480 mm?
=
Aed | b

o

Figure 9.29 Reinforcement details on section over support Cin Example 9.6.
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at B and B, but at the mid-span regions the prestressing steel provides adequate
moment capacity.

(8) It is necessary to check crack control under full service loads. Results are provided for the
cross-section at support C. With the effective prestress balancing 32 kN/m, the unbalanced
sustained load is w,,=25+16.6—32=9.6 kN/m and the unbalanced transient load is 20 kN/m.
The maximum unbalanced moment at support C is

(Mus)e = (9.6 X —80.9) + (20 X —92.6) = — 2629 kNm

and the corresponding extreme fibre stresses are

2629 % 10°
=+ = +
Tt % 10° +12.1 MPa

The effective prestress at C is P.=2629 kN and the average stressis

P.  2629%x10°
TTTAT Temxaor - HIMEe

Thetensile stressin the top fibreis
o=—-4.1+12.1=8.0 MPa

and, with the tensile strength taken as 0.6/40 = 3.8\ pq, cracki ng will occur under the
full unbalanced moment. The error associated with estimates of the cracking moment
based on elastic stress calculation may be significantly large. As seen in Section 3.6.2
and Example 3.5, creep and shrinkage cause large redistributions of stress on the cross-
section with time, particularly in this case where the cross-section contains significant
quantities of non-prestressed reinforcement. If a more accurate estimate of stressesis
required, atime analysis is recommended (see Section 3.6.2).

A cracked section analysis, similar to that outlined in Section 3.5.2, isrequired to
calculate the loss of stiffness due to cracking and the increment of tensile stedl stress, in
order to check crack control. The maximum in-service moment at C is equal to the sum
of the moment caused by the full external service loads and the secondary moment.
Owing to the external loads,

Mé= —[80.9%(25+16.6)] —(92.6 x 20)= — 5217 kNm
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and adding the secondary moment gives

Me==5217T+T789=4428 kNm

A cracked section analysis reveals that the tensile stress in the non-prestressed top steel
at thismoment is only 110 MPa, which is much less than the increment of 200 MPa
permitted in AS 3600-1988. Crack widths should therefore be acceptably small.

This design exampleis taken no further here. Deflections are unlikely to be excessive,
but should be checked using the procedures outlined in Section 3.8. The design for
shear and the design of the anchorage zones are in accordance with the discussions in
Chapters 5 and 6, respectively, and follow the same steps as outlined in the examples of
Chapter 8.
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10
Two-way slabs—behaviour and design

10.1 Introduction

Post-tensioned concrete floors form alarge proportion of all prestressed concrete construction
and are economically competitive with reinforced concrete slabs in most practical medium- to
long-span situations.

Prestressing overcomes many of the disadvantages associated with reinforced concrete
slabs. Deflection, which is almost always the governing design consideration, is better
controlled in post-tension slabs. A designer is better able to reduce or even eliminate
deflection by a careful choice of prestress. More slender slab systems are therefore possible,
and this may result in increased head room or reduced floor to floor heights. Prestress also
inhibits cracking and may be used to produce crack-free and watertight floors. Prestressed
slabs generally have ssmple, uncluttered steel layouts. Steel fixing and concrete placing are
therefore quicker and easier. In addition, prestress improves punching shear (see Chapter 5)
and reduces formwork stripping times and formwork costs. On the other hand, prestressing
often produces significant axial shortening of slabs and careful attention to the detailing of
movement jointsis frequently necessary.

In this chapter, the analysis and design of the following common types of prestressed
concrete slab systems are discussed. Each typeisillustrated in Figure 10.1.

(@) One-way dabs.

(b) Edge-supported two-way slabs: rectangular slab panels supported on all four edges by
either walls or beams. Each panel edge may be either continuous or discontinuous.

(c) Flat plate slabs: continuous slab of constant thickness supported by a rectangular grid of
columns.,

(d) Flat slab with drop panels. asfor aflat plate but with alocal increase in slab thickness
(drop panel) over each supporting column.



Page 377

oS- === ::H::::::::H::{
I 1
- + 1 - I
L I T I [ ‘I‘
1] I
—E=—= === = m=czoz=z=kK=3
; Fr===so==g
{a)} One-way slab (b) Edge-supported two-way slab
4 ' 4
. . M e .
| I | I
- + e -,
] !
i kel F==n
| ] ) B [
; [ [T—— P | I—
¥ I r
{c) Flat plate {d) Flat slab with drop panels
"‘r
—c oo - .
-|L I -
B ikt o
‘F
(¢) Band beam and slab

Figure 10.1 Types of dab systems.

(e) Band-beam and dlab system: wide, shallow, continuous, prestressed beams in one direction
(the longer span) with one-way prestressed or reinforced slabs in the transverse direction
(the shorter span).

Almost all prestressed slabs are post-tensioned using draped tendons. In Australiaand
elsewhere, use is made of flat-ducted tendons, consisting of five or less super-grade strandsin
aflat sheath, and fan-shaped anchorages, as shown in Figure 10.2. Individual strands are
usually stressed one at atime using light hydraulic jacks. The flat ducts are structurally
efficient and alow maximum tendon eccentricity and drape. These ducts are almost always
grouted after stressing to provide bond between the steel and the concrete.

In North America, unbonded construction is often used for slabs. Single, plastic-coated,
greased tendons are generally used, resulting in slightly lower costs, small increasesin
available tendon drape, the elimination of the grouting operation (therefore reducing cycle
times), and reduced
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Figure 10.2 Details of typical flat-ducted tendons.

friction losses. However, unbonded construction also leads to reduced flexura strength,
reduced crack control (additional bonded reinforcement is often required), possible safety
problemsif atendon islost or damaged (by corrosion, fire, accident), and increased
demolition problems. Single strands are also more difficult to fix to profile.

10.2 Effects of prestress

As discussed previoudly, the prestressing operation results in the imposition of both
longitudinal and transverse forces on post-tensioned members. The concentrated longitudinal
prestress P produces a complex stress distribution immediately behind the anchorage and the
design of this anchorage zone requires careful attention (see Chapter 6). At sections further
away from the anchorage, the longitudinal prestress applied at the anchorage causes alinearly
varying compressive stress over the depth of the slab. If the longitudinal prestressis applied at
the centroidal axis (which is generally the slab mid-depth), this compressive stress is uniform
over the slab thickness and equal to P/A.

It has been shown that wherever a change in direction of the prestressing tendon occurs, a
transverse force isimposed on the member. For a parabolic tendon profile such as that shown
in Figure 10.3a, the curvatureis
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(b} Actual tendon profile
Figure 10.3 Idealized and actual tendon profilesin a continuous slab.

constant along the tendon and hence the transverse force imposed on the member is uniform
along its length. From Equation 1.7, the uniformally distributed transverse force caused by the
prestressis

_ 8Ph
wPETIT (10.1)

where /1 isthe sag of the parabolic tendon and L is the span. If the cable spacing is uniform
across the width of aslab and P isthe prestressing force per unit width of slab, thenw), isthe
uniform upward load per unit area.

The cable profile shown in Figure 10.3a, with the sharp kink located over the interna
support, is an approximation of the more realistic and practical profile shown in Figure 10.3b.
The difference between the effects of the idealized and practical profiles was discussed in
Section 9.3.4 for continuous beams. The idealized profile is more convenient for the analysis
and design of continuous slabs and the error introduced by the idealization is usually not great.

The transverse load w, causes moments and shear which usually tend to be oppositein sign
to those produced by the external loads. In Figure 10.4, the elevation of a prestressing tendon
in a continuous slab is shown. The transverse load imposed on the slab by the tendon in each
span isindicated. If the slab is atwo-way slab, with prestressing tendons placed in two
orthogonal directions, the total transverse load caused by the prestressis the sum of w, for the
tendons in each direction.

The longitudinal prestress applied at the anchorage may also induce moments and shearsin
aslab. At changes of slab thickness, such as occur in aflat slab with drop panels, the
anchorage force P becomes eccentric with respect to the centroidal axis of the section, as
shown in Figure 10.5a
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Figure 10.5 Effect of changesin slab thickness.

The moments caused by this eccentricity are indicated in Figure 10.5b and should also be
considered in analysis. However, the moments produced by relatively small changesin slab
thickness tend to be small compared with those caused by cable curvature and, if the
thickening is below the slab, it is conservative to ignore them.

At some distance from the slab edge, the concentrated anchorage forces have dispersed and
the dlab is uniformly stressed. The so-called angle of dispersion, 6, as shown in Eigure 10.6,
determines the extent of slab in which the prestressis not effective. Specifications for 6 vary
considerably. It is claimed in some trade literature (V SL 1988) that tests have shown 6 to be
120°. In AS 3600-1988, 4 istaken aslow as 60°. A value of #=90° is usually satisfactory for
design purposes.

Care must be taken in the design of the hatched areas of slab shown in Figure 10.6, where
the prestress in one or both directionsis not effective. It is good practice to include a small
guantity of bonded non-prestressed reinforcement in the bottom of the slab perpendicular to
the free edge in all exterior spans. An area of non-prestressed steel of about 0.0015bd, is
usually sufficient, where ds is the effective depth to the non-prestressed steel. In addition,
when checking the punching shear strength at the corner column in Figure 10.6, the beneficial
effect of prestressis not available. At
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Figure 10.6 Areas of ineffective prestressing at dab edges.

sections remote from the slab edge, the average P/ A stresses are uniform across the entire slab
width and do not depend on changes of # and variations of cable spacing from one region of
the slab to another.

10.3 Design approach—general

Thefirst step in the design of a post-tensioned slab is the selection of aninitial slab thickness.
Guidelines for this selection are discussed in Chapter 11. Serviceability considerations usually
dictate the required slab thickness, and in Section 11.3.2, an approach for the sizing of dabsis
presented which should ensure satisfactory service-load behaviour.

The second step in dab design is to determine the amount and distribution of prestress.
Load balancing is generally used to this end. A portion of the load on aslab is balanced by the
transverse forces imposed by the draped tendons in each direction. To minimize serviceability
problems, a substantial portion of the sustained load should usually be balanced. Under the
balanced load, the slab remains plane (without curvature) and is subjected only to the resultant,
longitudinal, compressive, P/A4 stresses. It is the remaining unbalanced load that entersinto
the calculation of service-load behaviour, particularly for the estimation of |oad-dependent
deflections and for checking the extent of cracking and crack control. Calculations of
deflection and checks for crack control are discussed in detail in Chapter 11.
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At ultimate conditions, when the slab behaviour is non-linear and superposition is no longer
valid, the full factored design load must be considered. No part of the external load is
balanced by the prestress and the transverse force exerted by the cable should not enter into
the calculations. The factored design moments and shears at each critical section must be
calculated and compared with the design strength of the section, as discussed in Chapters 4
(for flexure) and 5 (for shear). Slabs are usually very ductile and redistribution of moment
occurs as the collapse load of the slab is approached. In these conditions, secondary moments
can usually be ignored.

In the following sections, procedures for the calculation of design moments and shears at
the critical sectionsin the various slab types are presented. In addition, techniques and
recommendations are also presented for the determination of the magnitude of the
prestressing force required in each direction to balance the desired load.

10.4 One-way slabs

A one-way dab is generally designed as a beam with cables running in the direction of the
span at uniform centres. A slab strip of unit width is analysed using simple beam theory. In
any span, the maximum cable sag / depends on the concrete cover requirements and the
tendon dimensions. When / is determined, the prestressing force required to balance an
external load w; is calculated from Equation 9.27, which for convenienceis restated and
renumbered here:

2
_wlL

P="gh (10.2)

In the transverse direction, conventional reinforcement may be used to control shrinkage and
temperature cracking and to distribute local 1oad concentrations. Minimum quantities of
conventional steel for the control of shrinkage and temperature induced cracking in avariety
of situations are outlined in Section 11.5.2. Not infrequently, the slab is prestressed in the
transverse direction to eliminate the possibility of shrinkage cracking paralel to the span and
to ensure awatertight and crack-free dab.

10.5 Two-way edge-supported slabs

10.5.1 Load balancing

Consider the interior panel of the two-way edge-supported slab shown in Eigure 10.7. The
panel is supported on all sides by walls or beams and
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Figure 10.7 Edge-supported slab panel.

contains parabolic tendons in both the x and y directions. If the cables in each direction are
uniformly spaced, then the upward forces per unit area exerted by the tendons are

_8P.h, 8 Pk,
2

Wpr = 7 and Woy = L (10.3)

where P, and P, are the prestressing forces per unit width in each direction and 4, and %, are
the cable drapes in each direction.
If w, isthe uniformly distributed downward load to be balanced, then

Wp = Wax + Wpy.

(10.4)

In practice, perfect load balancing is not possible, since external loads are rarely perfectly
uniformly distributed. However, for practical purposes, adequate load balancing can be
achieved.

Any combination of w,, and w,, that satisfies Equation 10.4 can be used to make up the
balanced load. The smallest quantity of prestressing steel will result if al the load is balanced
by cablesin the short span direction, i.e. w,,=w,. However, under unbalanced loads,
serviceability problems and unsatisfactory behaviour would amost certainly result. It is often
preferable to distribute the prestress in much the same way as the load is distributed to the
supports, i.e. more prestress in the short-span direction than in the long-span direction. The
balanced load resisted by tendons in the short direction may be approximated by

W =;J?4___ W
P aLet + Ly* (10.5)
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where o depends on the support conditions and is given by

a =10 for 4 edges continuous or discontinuous
=1.0 for 2 adjacent edges discontinuous
=2.0 for 1 long edge discontinuous
=0.5 for 1 short edge discontinuous
=25 for 2 long and 1 short edges discontinuous
=0.4 for 2 short and 1 long edges discontinuous
=5.0 for 2 long edges discontinuous
=0.2 for 2 short edges discontinuous

Equation 10.5 is the expression obtained for that portion of any external load which is carried
in the short-span direction if twisting moments are ignored and the mid-span deflections of
the two orthogonal unit wide strips through the slab centre are equated.

With w,, and w,, selected, the prestressing force per unit width in each direction is
calculated from Equation 10.3:

2
_ WprLx

P
Pz"' =PJ".P
8h,

and Fy _-_B.hy (106)

Equilibrium dictates that the downward forces per unit length exerted over each edge support
by the reversal of cable curvature (as shown in Figure 10.7) are

w,,L,, (KN/m) carried by the short span supporting beams or walls per unit length

and

wpxLx (KN/m) carried by the long span supporting beams or walls per unit length.

Thetotal force imposed by the slab tendons that must be carried by the edge beamsis

WPILIL)-' + H’WLJ,-L; = WbeLy

which isequal to the total upward force exerted by the slab cables. Therefore, for this two-
way slab system, in order to carry the balanced |oad to the supporting columns, resistance
must be provided for twice the total 1oad to be balanced (i.e. in both the slab and in the beams).
Thisrequirement is true for all two-way sab systems irrespective of construction type or
material.



Page 385

At the balanced load condition, when the transverse forces imposed by the cables exactly
bal ance the applied external loads, the slab is subjected only to the compressive stresses
imposed by the longitudinal prestressin each direction:

5x=fj and dy:‘--Pl

t i

wheret is the slab thickness.

10.5.2 Methods of analysis

For any service load above (or below) the balanced load, moments are induced in the slab
which may lead to cracking or excessive deflection. A reliable technique for estimating slab
moments is therefore required in order to check in-service behaviour under the unbalanced
loads. In addition, reliable estimates of the maximum moments and shears caused by the full
factored dead and live loads must be made in order to check the flexural and shear strength of
adlab.

In AS 3600-1988, a simplified method is proposed for the analysis of reinforced, two-way,
edge-supported slabs subjected to uniformly distributed design ultimate |oads. Moment
coefficients derived from yield line theory a2re specified. Despite inherent difficultiesin
applying yield line analysis to prestressed edge-supported slabs, the collapse load moment
coefficients specified in the code may be used reliably to calculate design ultimate moments.

The positive design moments per unit width at the mid-span of the slab in each direction
are

M:= ﬁxW.er and M;'-—ﬁyW.Lta
(10.7)

where w” is the factored design load per unit area, L, is the short span, and 4, and p,are
moment coefficients which depend on the support conditions and the aspect ratio of the panel
(i.e. L,/L,). Valuesfor g, and 8, are given in Table 10.1 or may be obtained from the
following equations:

2(J3 — v ]’
_2l +(TJ;::1 Yol 1) (1084

By

201 = (L L,))
B = (Lal L)y + = = > (10.8b)



Page 386

Table 10.1 Ultimate moment coefficients for rectangular edge-supported slabs (AS 3600—1988).

Support Conditions

Short-Span Coefficient f

Aspect Ratio, L,/L,

10 11 12 13 14 15 175 20

Long span
Coefficient g, for
al valuesof L /L,

1 Four edges continuous |0.024|0.028(0.032|0.035(0.037|0.040|0.044|0.048 0.024
2 One short edge 0.028{0.032{0.036|0.038(0.041|0.043|0.047(0.050 0.028
discontinuous
3 Onelong edge 0.028{0.035{0.041|0.046{0.050|0.054|0.061 {0.066 0.028
discontinuous
4 Two adjacent edges  |0.035|0.041|0.046{0.051|0.055|0.058|0.065|0.070 0.035
discontinuous
5 Two short edges 0.034|0.038|0.040{0.043{0.045{0.047|0.050|0.053 0.034
discontinuous
6 Two long edges 0.034|0.046|0.056|0.065{0.072{0.079(0.091|0.100 0.034
discontinuous
7 Three edges 0.043|0.049|0.053|0.057|0.061{0.064 |0.069(0.074 0.043
discontinuous (one long
edge continuous)
8 Three edges 0.043|0.054|0.064|0.072{0.078{0.084|0.096|0.105 0.043
discontinuous (one short
edge continuous)
9 Four edges 0.056{0.066|0.074|0.081{0.087|0.093|0.103(0.111 0.056
discontinuous
where
Y, =2 if both short edges are discontinuous

=25 if one short edge is discontinuous

=3.0 if both short edges are continuous

and y, isasfor y, applied to the long edges.
The negative design moments at a continuous edge are taken to be 1.33 times the mid-span
value in the direction considered and, at a discontinuous edge, the negative design moment is
taken as 0.5 times the mid-span value.
For the purposes of calculating the shear forcesin a slab or the forces applied to the
supporting walls or beams, AS 3600—1988 suggests that the uniformly distributed load on the
slab is allocated to the supports as shown in Figure 10.8.
It is recommended that the moment coefficients given by Equations 10.8aand b and shown
in Table 10.1 are used for ultimate strength cal culations. However, for service load
calculations, moment coefficients based on elastic behaviour are perhaps more appropriate. It
is therefore suggested that the moment coefficients reproduced in Table 10.2 be used for
serviceability calculations. These coefficients are based on the study of elastic slabs by
Westergaard & Slater (1921) and are contained in a number of building codes. The
coefficientsin Table 10.2 may be used to predict both the
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Table 10.2 Service-load moment coefficients for rectangular edge-supported dabs (AS1480 1982).

Type of Slab and
Moment Considered

Short-Span Coefficient B«

Aspect Ratio, L,/L,

1.0

11

12 (13|14 |15

1.75

2.0

Long span Coefficient
B, for al vaues of

Ly/L,

1. Interior Panel

—ve Moment at
continuous edge

+ve Moment at
midspan

0.033

0.025

0.040

0.030

0.045|0.050|0.054|0.059

0.034]0.038|0.041|0.045

0.071

0.053

0.083

0.062

0.033

0.025

2. One Edge
discontinuous

—ve Moment at
continuous edge

—ve Moment at
discontinuous edge

+ve Moment at
midspan

0.041

0.021

0.031

0.047

0.024

0.035

0.053]0.057|0.061|0.065

0.026|0.028|0.030|0.032

0.040|0.043|0.046|0.049

0.075

0.037

0.056

0.085

0.042

0.064

0.041

0.021

0.031

3. Two adjacent edges
discontinuous

—ve Moment at
continuous edge

—ve Moment at
discontinuous edge

+ve Moment at
midspan

0.049

0.025

0.037

0.056

0.028

0.042

0.062|0.066|0.070|0.073

0.031]0.033|0.035|0.037

0.047]0.050|0.053|0.055

0.082

0.040

0.062

0.090

0.045

0.068

0.049

0.025

0.037

4. Two shan edges
discontinuous

—ve Moment at
continuous edge

—ve Moment at
discontinuous edge

+ve Moment at
midspan

0.056

0.044

0.061

0.046

0.065|0.069|0.071|0.073

0.049|0.051|0.053|0.055

0.077

0.058

0.080

0.060

0.025

0.044

5. Two long edges
discontinuous

—ve Moment at
continuous edge

—ve Moment at
discontinuous edge

+ve Moment at
midspan

0.025

0.044

0.028

0.053

0.031]0.033|0.035|0.037

0.060|0.065|0.068|0.071

0.040

0.077

0.045

0.080

0.056

0.044

6. Three edges
discontinuous




—ve Moment at 0.058(0.065|0.071|0.077(0.081|0.085|0.092|0.098 0.058
continuous edge

—ve Moment at 0.029(0.033|0.036|0.038(0.040|0.042|0.046|0.049 0.029
discontinuous edge

+ve Moment at 0.044(0.049|0.054|0.058(0.061|0.064|0.069(0.074 0.044
midspan

7. Four edges

discontinuous

—ve Moment at 0.033]0.038|0.041|0.044{0.046(0.049|0.053|0.055 0.033
discontinuous edge

+ve Moment at 0.050{0.057{0.062|0.067(0.071|0.075|0.081|0.083 0.050

midspan
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Figure 10.8 Distribution of shear forcesin an edge-supported sab.

positive and negative moments at the critical sections using

M, = gwL:? and M, = B,wL,*
(10.9)

where w is the unbalanced service load and f, and f, are obtained from Table 10.2.

10.5.3 Example 10.1

An exterior panel of a 180 mm thick two-way floor slab for aretail storeisto be designed.
The rectangular panel is supported on four edges by stiff beams and is discontinuous on one
long edge as shown in Eigure 10.9a The dlab is post-tensioned in both directions using the
draped parabolic cable profiles shown in Figures 10.9c and d. The slab supports a dead |oad

of 1.5 kPain addition to its own self-weight and the live load is 5.0 kPa. The level of prestress
required to balance auniformly distributed load of 5.0 kPais required. Relevant materia
properties are as follows:

Concrete compressive strength: Je=35MPa
Concrete tensile strength: JSi=3.5MPa
Elastic modulus of concrete: E_,=30000 MPa
Characteristic strength of steel: /,=1840 MPa
Elastic modulus of prestressing steel: E,=195000 MPa

Load balancing

Flat ducted tendons containing four 12.5 mm strands are to be used with duct size 75 mmx19
mm, as shown in Figure 10.9b. With 25 mm concrete cover to the duct, the maximum depth to
the centre of gravity of the short-span tendonsis

dy=180-25- (19— 7)= 143 mm (as indicated in Figure 10.9¢)
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Beam AC
(d) Tendon profile in y-direction (Section 2-2)

Beam BD

Figure 10.9 Details of edge-supported slab of Example 10.1.

The cable drape in the short-span direction is therefore

By = 53+ 0

+53=79.5mm

The depth d, of the long-span tendons at mid-span is less than dx by the thickness of the duct
running in the short-direction, i.e. d,=143-19= 124 mm. The cable drape in the long-span

direction isshownin
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Figure 10.9d and is given by

53453

hy = + 34 =87 mm

The self-weight of the slab is 24x0.18=4.3 kPa.and if 30% of thelive load is assumed to be
sustained, then the total sustained load is

Wes = 4.3+ 1.5+ (0.3 x 5.0)=7.3 kPa

In this example, the effective prestress in the tendons in both directions balances an external
load of w,=5.0kPa. From Equation 10.5, the transverse load exerted by the tendonsin the
short-span direction is

12*
Wor = m ®» 5.0=3.06kPa

and the transverse load imposed by the tendons in the long-span direction is cal culated using
Equation 10.4:

Wpy = 5.0—3.06 = 1.94 kPa
The effective prestress in each direction is obtained from Equation 10.6:

_3.06 x 9000° 1.94 x 12000*

==~ =390KN/m and Py =~ =401 kN/m

To determine the jacking forces and cable spacing in each direction, both the deferred losses
and friction losses must be calculated. For the purpose of this example, it is assumed that the
time-dependent losses in each direction are 15% and the immediate |osses (friction, anchorage,
etc.) in the x-direction are 8% and in the y-direction are 12%. Immediately after transfer,
before the time-dependent losses have taken place, the prestressing forces at mid-span in each
direction are

390 401
Py=525=49kN/m  and  Py=;r=472kN/m

and, at thejack,

459 472
Py=555=499kN/m  and  Py=522=536 kN/m
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Using four 12.7 mm strands/tendon, 4,=400 mm?“/tendon and the breaking load per tendon is
4x184=736 kN (see Table 2.1).

If alimit of 0.85/,4, is placed on the maximum force to be applied to a stress+relieved post-
tensioned tendon during the stressing operation, the maximum jacking force/tendon is
0.85f,4,=0.85x736=626kN and the required tendon spacing in each direction is therefore

1000 x 626 1000 x 626
r=T=1250mm and sy=*—~53——5—-—=]1:‘iﬂmm

Select atendon spacing of 1200 mm in each direction
With each tendon stressed to 626 kN, the revised prestressing forces at the jack per metre
width are

ij‘_— P!JI% = 522 kNIm

and at mid-span, after all losses,
P.=085x092x522=408 kN and P, =0.85x0.88 x 522 =390 kN

The load to be balanced is revised using Equation 10.3:

_8x408x10°x79.5

W 50001 =3.2kPa
and

wm,=ﬁ"391‘“2$§:“ 8 1.9kPa
and therefore

wp=3.2+19=5.1kPa

In Example 11.3, the service-load behaviour of thisslab is calculated. Checks are made for
cracking using moment coefficients from Table 10.2 and deflections are calculated. No
cracking is detected and total deflections are acceptable.

Flexural strength check

It is necessary to check the ultimate strength of the slab. As previoudly calculated, the dead
load is 1.5+4.3=5.8 kPa and the live load is 5.0 kPa.
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The factored design load (using the load factors specified in AS 3600-1988 and outlined in
Section 1.7.3) is

w* =(1.25x 5.8) + (1.5 x 5.0) = 14.75 kPa

The design moments at mid-span in each direction are obtained from Equation 10.7 with
values of £,=0.047 and f3,=0.028 taken from Table 10.1:

M7T=0.047 x 14.75 x 9% = 56.5 kN m/m
M, =0.028 x 14.75 x 9> = 33.8 kNm/m

The maximum design moment occurs over the beam support CD (the long continuous edge)
andis

My =1.33%x56.5=75.1 kNm/m

A safe, lower bound solution to the problem of adequate ultimate strength will be obtained if
the design strength of the dlab at this section exceeds the design moment.

The ultimate strength per metre width of the 180 mm thick slab containing tendons at 1200
mm centres (i.e. 4,=400/1.2=333 mm?/m) at an effective depth of 143 mm is obtained using
the procedures discussed in Chapter 4. Such an analysis indicates that the cross-section is
ductile, with the depth to the neutral axis at ultimate equal to 24.5 mm (or 0.17d), which is
much less than the maximum limiting value of 0.44. The tensile force in the steel is 583 kN/m
(0,,=1750 MPa) and the strength is

0.8 x24.5

Mu=533(143— 3 ) =77.7TkNm/m

$M, =62.2 kNm/m < M;

Conventional reinforcement is required to supplement the prestressed steel over the beam
support CD. From Equation 4.27, with the internal lever arm [/ taken to be 0.9d, the required
area of additional non-prestressed steel is approximated by

M -¢M, _ (75.1-62.2) x 10°
o.f, x0.9d 0.8 %400 x 0.9 x 143

Ay =313 mm?/m

Try 12 mm diameter bars (f,=400 MPa) at 300 mm centres as additional steel in the top of the
dlab over beam support CD. With this additional steel
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in place, an ultimate strength analysis of the cross-section indicates that the depth to the
neutral axisincreasesto 30.7 mm (0.21d) and M,=95.4 KN m/m. Therefore,

¢M, =763 kNm/m > M)

which is acceptable.
Checking strength at other critical sections indicates that:

(@) at mid-span in the x-direction:

M7 =56.5 kNm/m; ¢ M, = 62.2 kNm/m (d = 143 mm)

..No additional reinforcement is required at mid-span in the x-direction.
(b) At mid-span in the y-direction:

M, =33.8 kNm/m; ¢ M, =53.3 kNm/m (d = 124 mm)

-~No additional reinforcement required at mid-span in the y-direction.
(c) At the short continuous supports:

M, =33.8x 1,33 =450 kKNm/m; ¢ M, =62.2 kKNm/m
(d = 143 mm)

-“No additional reinforcement isrequired at the short continuous support.

Summary of reinforcement requirements

Tendons consisting of four 12.7 mm strands at 1200 mm centres in each direction are used
with the profiles shown in Figures 10.9c and d. In addition, 12mm diameter non-prestressed
reinforcing barsin the x-direction at 300 mm centres are also placed in the top of the slab over
the long support CD.

Check shear strength

In accordance with Figure 10.8, the maximum shear in the slab occurs at the face of the long
support near its mid-length:

e = % w*=4.5x 14.75 = 66 kN/m

The contribution of the concrete to the shear strength in the region of low moment at the face
of the discontinuous support is given by Equation 5.10
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asfollows:
Fee= Vi+ Py
where V; is the shear force required to cause web-shear cracking. From Equation 5.12,

_408x10° _ ViQ -5
=~ lsox10l- ~>27MPa  and r=—7==(@33Xx107)V

and solving Equation 5.11 gives

Ve= 344 ]'ZN,]IIL'I

Clearly, V" ismuch less than ¢ ¥ecand the shear strength is ample here. Shear strengths at all
other sections are also satisfactory. Shear israrely a problem in edge-supported slabs.

10.6 Flat plate slabs

10.6.1 Load balancing

Flat plates behave in a similar manner to edge-supported slabs except that the edge beams are
strips of slab located on the column lines, as shown in Figure 10.10. The edge beams have the
same depth as the remainder of the slab panel and therefore the system tends to be less stiff
and more prone to serviceability problems. The load paths for both the flat plate and the edge-
supported slab are, however, essentially the same (compare Figures 10.7 and 10.10).

In the flat plate panel of Figure 10.10, the total load to be balanced is w,L.L,. The upward
forces per unit area exerted by the slab tendons in each direction are given by Equation 10.3
and the slab tendons impose a total upward force of

wpr;Ly =+ wp}-Lny = waxLy

Just as for edge-supported slabs, the slab tendons may be distributed arbitrarily between the x-
and y-directions provided that adequate additional tendons are placed in the slab strips to
balance the line loads w,,L, and w,,L, shown on the column linesin Figure 10.10. These
additional column line tendons correspond to the beam tendonsin an edge-supported slab
system. For perfect load balancing, the column line tendons would have to be placed within
the width of slab in which the slab tendons exert down-
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the hatched sirip of
slab must carry the
line load weeL;.

Figure 10.10 Flat plate panel.

ward load due to reverse curvature. However, thisis not a strict requirement and considerable
variation in tendon spacing can occur without noticeably affecting slab behaviour. Column
line tendons are frequently spread out over awidth of slab as large as one half the shorter span,
asindicated in Figure 10.11c.

Thetotal upward force which must be provided in the slab along the column linesis

Wp:L;Ly + WP_-,-L,-L; = W[.L;L}-

Therefore, prestressing tendons (slab tendons plus column line tendons) must be provided in
each panel to give atotal upward force of 2w,L,L,. The slab tendons and column line tendons
in each direction must provide between them an upward force equal to the load to be balanced,
waLxL,. FOr example, in the slab system shown in Eigure 10.11a, the entire load to be
balanced is carried by slab tendons in the x-direction, i.e. w,,=w, and w,,=0. This entire load
is deposited as aline load on the column lines in the y-direction and must be balanced by
column line tendonsin thisvicinity. Thisslab isin effect treated as a one-way slab spanning
in the x-direction and being supported by shallow, heavily stressed, slab strips on the y-
direction column lines. The two-way system shown in Eigure 10.11b is more likely to perform
better under unba anced loads, particularly when the orthogonal spans L, and L, are similar
and the panel isroughly square. In practice, steel congestion over the supporting columns and
minimum spacing requirements (often determined by the size of the anchorages)
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make the concentration of tendons on the column lines impossible. Figure 10.11c shows a
more practical and generally acceptable layout. Approximately 75% of the tendons in each
direction are located in the column strips, as shown, the remainder being uniformly spread
across the middle strip regions.

If the tendon layout is such that the upward force on the dab is approximately uniform,
then at the balanced |oad the slab has zero deflection and is subjected only to uniform
compression caused by the longitudinal prestress in each direction applied at the anchorages.
Under unbalanced |oads, moments and shears are induced in the slab. To calcul ate the
moments and stresses due to unbalanced service loads and to calcul ate the factored design
moments and shears in the slab (in order to check ultimate strength), one of the methods
described in the following sections may be adopted.

10.6.2 Behaviour under unbalanced load

Figure 10.12 illustrates the distribution of moments caused by an unbalanced uniformly
distributed load w on an internal panel of aflat plate. The moment diagram in the direction of
span L, isshown in Figure 10.12b.
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Figure 10.12 Moment distribution in flat plates.

The dab in thisdirection is considered as awide, shallow beam of width L,, span L,, and
carrying aload wL, per unit length. The relative magnitudes of the negative moments (M1
and M;_4) and positive moment Ms ¢ are found by elastic frame analysis (see Section 10.6.3)
or by more approximate recommendations (see Section 10.6.4). Whichever method is used,
the total static moment A, isfixed by statics and is given by

_wL,L,*

Mo=—3 (10.10)

In Figures 10.12c and d, variationsin elastic moments across the panel at the column lines
and at mid-span are shown. At the column lines, where curvature is a maximum, the moment
isalso amaximum. On panel centreline where curvature is a minimum, so too is moment. In
design, it is convenient to divide the panel into column and middle strips and to assume that
the moment is constant in each strip as shown. The column stripsin the L, direction are
defined as strips of width 0.25L,, but not greater than 0.25L,, on each side of the column
centreline. The middle strips are the slab strips between the column strips.
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It may appear from the moment diagrams that at ultimate loads, the best distribution of
tendons (and hence strength) is one in which tendons are widely spaced in the middle strips
and closer together in the column strips, as shown in Figure 10.11c. However, at ultimate
loads, provided that the slab is ductile, redistribution of moments takes place as the ultimate
condition is approached and the final distribution of moments depends very much on the
layout of the bonded steel.

After the slab cracks and throughout the overload range, superposition is no longer
applicable and the concepts of balanced and unbalanced loads are not meaningful. As
discussed in Section 9.5.4, at ultimate conditions, when the load factors are applied to the
dead and live load moments, codes of practice usualy insist that secondary moments are
considered with aload factor of 1.0. However, provided that the slab is ductile, and slabs most
often are very ductile, secondary moments may be ignored in ultimate strength calculations.
The difficulty in accurately estimating slab moments, particularly in the overload range, is
rendered relatively unimportant by the ductile nature of slabs.

10.6.3 Frame analysis

Perhaps the most commonly used technique for the analysis of flat platesisthe equivalent
frame method. The structure is idealized into a set of parallel two-dimensional frames running
in two orthogonal directions through the building. Each frame consists of a series of vertical
columns spanned by horizontal beams. These beams are an idealization of the strip of slab of
width on each side of the column line equal to half the distance to the adjacent parallel row of
columns and includes any floor beams forming part of the floor system. The member
stiffnesses are determined and the frames are analysed under any desired gravity loading
using alinear-elastic frame analysis. For aflat plate building in which shear walls or some
other bracing system is provided to resist all lateral loads, it is usually permissible to analyse
each floor of the building separately with the columns above and below the slab assumed to
be fixed at their remote ends.

In the equivalent frame method, as specified in ACI 318-83, the stiffness of each
supporting column is modified to account for the twisting of the slab spandrel strips. These
so-called spandrel strips are transverse to the frame and adjacent to each supporting column,
and are similar to the torsion strips discussed in Section 5.10.3 and illustrated in Figure 5.13.
For aflat dab structure, the torsional stiffness of a spandrel strip isrelatively low and this
causes a reduction of the stiffness of the equivalent column in the idealized frame. The
modification of the stiffness of the columns to account for twisting of the spandrel strips
complicates the analysis and may not necessarily improve the accuracy. The equivaent frame
method provides at best a crude model of structural behaviour, with inaccuracies being associ-
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ated with each of the following assumptions: (a) atwo-way plateisidealized by orthogonal
one-way strips; (b) the stiffness of acracked slab is usually based on gross section properties,
and (c) alinear-elastic analysisis applied to a structure that is non-linear and inelastic both at
service loads and at overloads. A simpler estimate of member stiffness, based for example on
gross section properties only, will lead to an estimate of frame moments which isno lessvalid.

AS 3600-1988 suggests that the stiffness of the frame members should be chosen “to
represent conditions at the limit state under consideration. All such assumptions shall be
applied consistently throughout the analysis.” If an idealized frame analysisis adopted, a
procedure based on gross member stiffnesses is recommended here and will usually provide
an acceptable solution that is as accurate as is possible using an approximate frame analysis.
When such aframe analysisis used to check bending strength, an equilibrium load path is
established that will prove to be a satisfactory basis for design, provided that thedab is
ductile and the moment distribution in the real slab can redistribute towards that established in
the analysis.

The following live loading patterns are usually considered for the determination of the
design moments at each critical section of the frame (ACI 318-83, AS 3600-1988):

(a) Where the loading pattern is known, the frame should be analysed under that loading.

(b) Wheretheliveload Q is not greater than three quarters of the dead load G, or when the
nature of the loading is such that al panelswill be loaded simultaneoudly, the frame should
be analysed with the full factored live load on al spans.

(c) Where loads are other than specified in (b) (e.g. when @ > ¥G), the maximum factored
positive moment near mid-span of a panel may be assumed to occur with three quarters of
the full factored live load on the panel and on aternate panels. The maximum factored
negative moment at a support may be assumed to occur with three quarters of the full
factored live load on adjacent panels only.

The frame moments cal culated at the critical sections of the idealized horizontal members are
distributed across the floor slab into the column and middle strips (as defined in the previous
Section). In ACI 318-83, the fraction of the total frame moment to be carried by the column
strip at each critical section is specified. The fraction depends on the aspect ratio of the slab
panel and the relative stiffnesses of the various frame elements (beams, slabs, and columns) in
both the longitudinal and transverse directions. Studies have shown that the performance of
reinforced concrete flat slabs both at service loads and at overloadsislittle affected by
variations in the fraction of the total frame moment that is assigned to the column
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Table 10.3 Fraction of frame moment distributed to column strip (AS 3600-1988).

Bending Moment Under Consideration Column Strip Moment Factor
Negative Moment at an Interior Support 0.60to 1.00
Negative Moment at an Exterior Support 0.75t0 1.00
Positive Moment at all Spans 0.50t00.70

strip (Gilbert 1984), provided that the slab is ductile and capable of the necessary moment
redistribution.

AS 3600-1988 specifies that the column strip shall be designed to resist the total negative
or positive frame bending moment at each section multiplied by acolumn strip moment factor
taken within the ranges given in Table 10.3.

Anidedlized frame analysis may be used to examine the serviceability of afloor slab. With
the in-service moments caused by the unbalanced loads determined at all critical regions,
checks for cracking and crack control and calculations of deflection may be undertaken in
accordance with the procedures outlined in Chapter 11.

When the ultimate strengths of the column and middle strips are being checked, it is
advisable to ensure that the depth to the neutral axis at ultimate at any section does not exceed
0.254. Thiswill ensure sufficient ductility for the slab to establish the moment distribution
assumed in design (i.e. the moment pattern predicted by the idealized frame analysis) and also
allows the designer safely to ignore the secondary moments. There are obvious advantagesin
allocating alarge fraction of the negative moment at the supports to the column strip. The
increased steel quantities that result stiffen and strengthen this critical region thereby
improving punching shear and crack control. In prestressed flat slabs, it isusualy only the
column strip region over the interior columnsthat islikely to experience significant cracking.
In Australia, in recent years, the use of uniform steel in the bottom of the slab (i.e. 50% of the
positive frame moments assigned to the column strip) with all the top steel confined to the
column strip (i.e. 100% of the negative frame moments assigned to the column strip) has
become fairly common for reinforced concrete slabs which are not exposed to the weather.
The in-service performance of such slabsis at least as good as that of the more traditionally
reinforced slabs and significant cost savings usually result. Steel fixing is greatly smplified
and, with large portions of the slab free from top steel, concrete placing is much easier.
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10.6.4 Direct design method

A simple, semi-empirical approach for the analysis of flat platesisthe direct design method.
The method is outlined specifically for reinforced concrete slabs in a number of codes,
including ACI 318-83 and AS 3600-1988. Within certain limitations, the direct design
method can be applied equally well to prestressed slabs and the results obtained are just as
reliable as those obtained from a frame analysis.

Limitations are usually imposed on the use of the direct design method, such as the
following requirements imposed by AS 3600—1988. A similar set of requirementsis contained
in ACI 318-83.

(@) There are at least two continuous spans in each direction (ACI 318-83 requires at |east
three continuous spansin each direction).

(b) The support grid is rectangular, or nearly so.

(c) Theratio of the longer to shorter span measured centre-to-centre of supports within any
panel is not greater than 2.0.

(d) In each direction, successive span lengths do not differ by more than one third of the
longer span and in no case should an end span be longer than the adjacent interior span.

(e) Gravity loads are essentially uniformly distributed. Lateral loads are resisted by shear
walls or braced vertical elements and do not enter into the analysis.

(f) Theliveload QO does not exceed twice the dead load G (in ACI 318-83, O must not exceed
3G).

The dlab isanalysed one panel at atime. The total static moment, Mo, in each direction in each
panel is calculated. For a particular span,

_wlL,L.*

Mo =—¢ (10.11)

where w isthe design load per unit area, L, is the width, measured transverse to the direction
of bending, equal to the average of the centre-to-centre distance between the supports of the
adjacent transverse spans, L, is the effective span, which isthe lesser of the centre-to-centre
distance between supports and (L,+D), L, isthe clear span, and D is the overall slab thickness.
The static moment M, is shared between the supports (negative moments) and the mid-span
(positive moment). At any critical section, the design moment is determined by multiplying
M, by the rel evant factor given in either Table 10.4 or 10.5. It is permissible to modify these
design moments by up to 10% provided that the total static design moment M, for the spanis
not reduced. At any interior support, the floor slab should
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Table 10.4 Design moment factors for an end span (AS 3600-1988).

Type of Slab System Negative Moment at Positive Negative Moment at
Exterior Support Moment Interior Support

Flat Slabs

Exterior edge unrestrained 0.0 0.60 0.80

Exterior edges restrained by 0.25 0.50 0.75

columns only

Exterior edges restrained by 0.30 0.50 0.70

spandrel beams & columns

Exterior edge fully restrained 0.65 0.35 0.60

Beam and Slab 0.15 0.55 0.75

Table 10.5 Design moment factor for an interior span (AS 3600-1988).

Type of Sab System | Negative Moment at Support | Posirive Moment

ALL | 0.65 | 0.35
| |
be designed to resist the larger of the two negative design moments determined for the two
adjacent spans unless the unbalanced moment is distributed to the adjoining membersin
accordance with their rel ative stiffnesses.
The positive and negative design moments are next distributed to the column and middle
strips using the column strip moment factor from Table 10.3.

10.6.5 Shear strength

Punching shear strength requirements often control the thickness of aflat slab at the
supporting columns and must always be checked. The shear strength of the slabs was
discussed in Chapter 5 (Sections 5.9 and 5.10) and methods for designing the slab—column
intersection were presented.

If frame analyses are performed in order to check the flexural strength of a slab, the design

moment M transferred from the dlab to a column and the des gn shear J* are obtained from
the relevant analyses. If the
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direct design method is used for the slab design, M7 and V' must be calculated Separately.
The shear force crossing the critical shear perimeter around a column support may be taken as
the product of the factored design load w" and the plan area of slab supported by the column
and located outside the critical section. Equations for determining minimum values of M, v are

specified in some codes of practice. AS 3600—1988 suggests that at an interior support, M
should not be taken to be less than the value given by

My =0.06[(1.25g + 0.75q) Li(L.)* = 1.25gL,(L{)?]
(10.12)

where L, and Leare, respectively, the longer and shorter of the two adjacent effective spans
on either side of the column and L, is the transverse width of slab defined in the text under
Equation 10.11. The terms g and ¢ are the dead and live loads on the slab per unit area,
respectively. For an edge column, Mis equal to the design moment at the exterior edge of
the slab and may be taken as 0.25M, (where M, is the static moment for the end span of the
slab calculated using Equation 10.11).

When detailing the slab—column connection, it is advisable to have at least two prestressing
tendons crossing the critical shear perimeter in each direction. Additional well anchored non-
prestressed reinforcement crossing the critical perimeter will also prove beneficia (both in
terms of crack control and ductility) in the advent of unexpected overloads.

10.6.6 Example 10.2

The tendons required in the 220 mm thick flat plate shown in Figure 10.13 are to be
calculated. Thelive load on the lab is 3.0 kPa and the dead load is 1.0 kPa plus the slab self-
weight. All columns are 600 mm by 600 mm and are 4 m long above and below the dlab. At
the top of each column, a 300 mm column capital is used to increase the supported area, as
shown. In this example, the dead load g isto be effectively balanced by prestress and is given

by
g =1 kPa + self-weight = 1 + (24 ¥ 0.22) = 6.3 kPa

1 Checking punching shear

Before proceeding too far into the design, it is prudent to make a preliminary check of
punching shear at typical interior and exterior columns. Consider the interior column B in
Figure 10.13. The area of dlab supported by the column is 10x(8.5+10)/2=92.5 m?. Usi ng the
strength load factors specified in AS 3600-1988 (see Section 1.7.3), the factored design load
IS

w*=1.25g + 1.5¢ = (1.25 X 6.3) + (1.5 x 3.0) = 12.4 kN/m?
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Figure 10.13 Plan and section of flat platein Example 10.2.

and therefore the shear force crossing the critical section may be approximated by
V*=12.4%92.5=1140kN

From Equation 10.12, the design moment transferred to the column may be taken as

MY =0.06] [(1.25 X 6.3) + (0.75 X 3.0)] x (10 x 9.02%)
~{1.25%6.3% 10x 7.52%)}=227kNm

In this case, the effective spans L, and Legre equal to the clear span on either side of the
column capital plus the slab thickness. The average effective depth is taken to be
d=220-50=170 mm and the critica shear
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perimeter is therefore
u =4(1200 + 170) = 5480 mm

The average prestress in the concrete is assumed to be ¢,,=2.75 MPa and the concrete shear
stress £, is given by Equation 5.52:

Seo=0.34/35 = 2.01 MPa

From Equation 5.51,

Vio = [2.01 + (0.3 x 2.75)] x 5480 x 170 x 10~3 = 2640 kN

The critical section possesses adequate shear strength if the design shear 7 islessthan @V«
where V,, is given by Equation 5.55:

0.7 = 2640
227 % 10° x 5480
8 x 1140 x 10° x 1200 x 170

oVu= = 1104 kN

1+

which is close enough to V" to be considered acceptable at this preliminary stage. Punching
shear at typical exterior columns should similarly be checked.

2 Establish cable profiles

Using four 12.7 mm strands in aflat duct and with 25 mm concrete cover to the duct (as
shown in Figure 10.9b), the maximum depth to the centre of gravity of the strand is

d=220-(25+19-7)= 183 mm

and the corresponding eccentricity is e=73 mm. The maximum cable drape in an exterior span
istherefore

13

h = > +73=109.5 mm

and in aninterior span is

73+ 73
h=
2

+ 73 =146 mm

Consider thetrial cable profile shown in Eigure 10.14. For the purposes of this example, itis
assumed that jacking occurs simultaneously from both
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Figure 10.14 Friction loss detailsin Example 10.2

ends of atendon, so that the prestressing force in atendon is symmetrical with respect to the
centreline of the structure shown in Figure 10.13. The friction losses are calculated from the
exponential expression

FPa_
5= exp [ —ulor + BpLpa)] (3.60)

and the results are aso shown in Figure 10.14. In this case, 4=0.2 and £=0.016 for flat ducts.

The loss of prestress due to a6 mm draw-in at the anchorage and the length of tendon
affected should aso be calculated. If the jacking forcein a strand is assumed to be
0.85/,4,=0.85x1840x100x103=156.4 kN, the slope of the prestressing line in the exterior
spanis

af2 = (0.058 x 156.4)/8.5 = 1.07 N/mm

The length of beam affected by draw-in is given by Equation 3.61:

1. 1950001006
a7 1.07

= 10470 mm

and the loss of force at the jack due to dlip at the anchorageis

dP=als=2x1.07x10470x 107% = 22.4 kN = 0.143 P,

The corresponding draw-in losses at B (the mid-point of the exterior
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span) and at C (the first interior support) are

(6P)s=133kN=0.0852, and (5P)c=4.4 kN =0.027P;

Theratio of the prestressing force after al short-term losses to the jacking force P;/P; isalso
shown in Figure 10.14.

3 Calculate tendon layout

It is assumed here that the average time-dependent loss of prestressin each low relaxation
tendon is 15%. Of course, this assumption should be subsequently checked.

The effective prestress per metre width required to balance 6.3 kPa using the full available
drape is found using Equation 10.2:

_ 6.3x8.5?

F=—= N L .
8 x0.10095 520 kN/m in an exterior span

and

_6.3x10?

= =540 k : : .
Sx0 146 10 N/m in an interior span

r

and the corresponding forces required at the jack prior to the time-dependent and the short-
term losses are

520

Pi= 535 % 0.891

= 687 kN/m (exterior span)

540

Pi= SRS X OB0E = 701 kN/m (interior span)

The jacking force is therefore governed by the requirements for the interior span.
For the 8.5 m wide panel, the total jacking force required is 701x8.5=5960 kN. If the
maximum stress in the tendon is 0.85f,, the total area of prestressing stedl is therefore

5960 x 10°

3960 x10_ _ 3610 mm?
0.85 % 1840 _ ~o10mm

Ap 2

At least ten flat ducted cables are required in each 8.5 m wide panel (4,=400 mm’/cabl €) with
aninitial jacking force of 5960/10=596 kN per cable (,=0.81f,).
The required jacking force in the 10 m wide panel is 701x10=7010 kN
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Figure 10.15 Cable profile and effective prestressin Example 10.2.
and therefore

7010 x 10*

————— = 4482 mm?
0.85 x 1840 mm

Ap 2

At least twelve flat ducted cables are needed in each 10 m wide panel (4,=4800 mm?) with an
initial jacking force of 7010/12=584 kN per cable (g,,=0.794f,).

In the interests of uniformity, al tendons will be initially stressed with ajacking force of
600 kN (0,,=0.82f,). Thismeans that a slightly higher load than 6.3 kPawill be balanced in
each span. The average prestress at the jack is (22x600)/(8.5+10)=714 kN/m and the revised

drapein the
| ||
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Figure 10.16 Tendon layout in Example 10.2.
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exterior span is

_ 6.3 % 8.52
Bx 714 x0.89] % 0,85

= 105 mm

The final cable profile and effective prestress per panel after all losses are shown in Figure
10.15.

The maximum average stress in the concrete due to the longitudinal anchorage force after
the deferred losses is

P 5600 x 10°

A 10000220 20> MPa

which iswithin the recommended range for serviceability (see Section 11.2).

The cable layout for the slab is shown on the plan in Figure 10.16. For effective load
balancing, about 75% of the cables are located in the column strips. The minimum spacing of
tendons is usually governed by the size of the anchorage and is taken here as 300 mm, while a
maximum spacing of 1600 mm has also been adopted.

4 Serviceability considerations

In practice, the deferred losses should now be checked and the slab analysed under the
unbalanced |oads to determine the extent of cracking and to calculate the slab deflections.
Such serviceability considerations are examined in detail in Chapter 11. A mat of
conventional steel is often required over the columnsto improve both crack control and
strength. In addition, bonded non-prestressed steel of area 0.0015hd,=0.0015% 1000x195=293
mm?%m (12 mm diameter bars at 375 mm centres) is to be placed in the bottom of the slab
perpendicular to the free edgein all exterior panels (in accordance with the discussion in the
last paragraph of Section 10.2).

5 Check shear and flexural strength

With the level of prestress determined, punching shear should aso be checked at both exterior
and interior columns in accordance with the procedure outlined in Chapter 5 (see Sections5.9
and 5.10). The dimensions of the column capitals may need to be modified and shear
reinforcement may be required in the spandrel strips along each free edge.

The ultimate flexural strength of the slab must also be checked. For the purposes of this
example, the flexural strength of the interior panel will be compared with the design moments
determined from the direct design method. As calculated in step 1, w'=12.4 kPa, the panel
width is £,=10m and the effective span of an interior panel isL=L,+D=
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10-1.2+0.22=9.02 m. From Equation 10.11, the total static moment is

2
M, = 124X ’g"‘ 202 _ 1261 kNm

From Table 10.5, the negative support moment is
0.65M, =820 kNm

Because both the positive and negative moment capacities are similar (each having the same
quantity of prestressed steel at the same effective depth), it is appropriate to take advantage of
the 10% permissible redistribution (reduction) in the negative support moment (as discussed
in Section 10.6.4). The negative support moment is therefore taken as 0.9x820=738 kNm and
therefore the positive design moment at mid-span is 1261-738=523 kNm. From Table 10.3,
the design negative moment in the column strip at the support is taken as

M*=0.75%x738=554kNm

The 5 m wide column strip contains eight cables (4,=3200 mm?) at an effective depth of 183
mm. The following results are obtained for the column strip at the column support in
accordance with the ultimate strength procedures outlined in Chapter 4:

ooy = 1750 MPa; T, = 5600 kN; d,=47.0 mm =0.257d;

0.801 x 47.0

M, = 5600 x 103(133 ~ 3 ) % 10~ =919 kN m; and

¢M,=T36 kKNm

which is substantially greater than A" and therefore the slab possesses adequate strength at
thislocation. The strength is also adequate at all other regions in the slab. With the maximum
value of d,/d=0.257, ductility is also acceptable.

10.6.7 Yield line analysis of flat plates

Yield line analysisis a convenient tool for calculating the collapse load required to cause
flexural failurein reinforced concrete dabs. The procedure was described in detail by
Johansen (1962, 1972) and is, in effect, a plastic method for the analysis of atwo-way slab,
with yield lines (or plastic hinge lines) developing in the slab and reducing the slab to a
mechanism.
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Figure 10.17 Typica yield line patterns.

Typical yield line patterns for a variety of slab types subjected to uniformly distributed loads
are shown in Figure 10.17. The yidd lines divide the slab into rigid segments. At collapse,
each segment rotates about an axis of rotation that is either afully supported edge or a straight
line through one or more point supports, as shown. All deformation is assumed to take place
on the yield lines between the rigid segments or on the axes of rotation. The yield line pattern
(or the collapse mechanism) for a particular slab must be compatible with the support
conditions.

The principle of virtual work is used to determine the collapse load corresponding to any
possible yield line pattern. For a particular layout of yield lines, a compatible virtual
displacement system is postulated. Symmetry in the slab and yield line pattern should be
reflected in the virtual displacement system. The external work, U. done by all the external
forces as the slab undergoesiits virtua displacement is equal to the internal work, U;. The
internal work associated with a particular yield line is the product of the total bending moment
on the yield line and the angul ar rotation that takes place at the line. Since all internal
deformation takes place on the yield lines, the internal work U; is the sum of the work done on
al yield lines.



Page 412

In reinforced concrete slabs with isotropic reinforcement, the ultimate moment of resistance
or plastic moment m,, (per unit length) is constant along any yield line and the internal work
associated with any of the collapse mechanisms shown in Figure 10.17 iseasily calculated. In
prestressed concrete slabs, the depth of the orthogonal prestressing tendons may vary from
point to point along a particular yield line and the calculation of U; is more difficult.

For flat plate structures, however, with the yield line patterns shown in Figures 10.17e and
10.18, the prestressing tendons crossing a particular yield line do so at the same effective
depth, the plastic moment per unit length of the yield line is constant and the collapse load is
readily calculated.

Consider the interior span of Figure 10.18a It is assumed conservatively that the columns
are point supports and that the negative yield lines pass through the support centrelines. The
dlab strip shown is given a unit vertical displacement at the position of the positive yield line.
The work done by the collapse loadsw, (in kN/m2) acting on the slab strip in the span under
consideration is the total load on the strip timesits average virtual displacement (whichinthis
caseis0.5). That is,

_ H"uL.r.L
Ve=—3 (10.13)

The internal work done at the negative yield line at each end of the span is the total moment
mMu Letimes the angular change at the yield line 6 (=1/(L/2)=2/L). At the positive yield line, the
angular changeis 26
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Figure 10.18 Yield line analysis of aflat plate.
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(=4/L) and the internal work ism,LX4/L. Thetotal internal work on al yield linesis

- 4 oy 2 _4Lidmy+ my)
Ui—"HuLa L+2m"L; L-—"—L-'_ (1014)

The principle of virtual forces statesthat U,=U; and therefore

W =£{m + my)
WEpE VT (10.15)

where m, and Muare the ultimate moments of resistance per unit length along the positive and
negative yield lines, respectively.

When calculating m, and M, it is reasonable to assume that the total quantity of
prestressed and non-prestressed steel crossing the yield lineis uniformly distributed across the
dlab strip, even though thisis unlikely to be the case.

The amount of non-prestressed steel and the depth of the prestressed tendons may be
different at each end of an interior span, and hence the value of Muat each negative yield line
may be different. When thisisthe case, the positive yield line will not be located at mid-span.
The correct position is the one that corresponds to the smallest collapse load w,,.

Consider the exterior span in Figure 10.18b. If the positive yield line is assumed to occur at
mid-span, the collapse load is given by an expression similar to Equation 10.15, except that
only one negative yield line contributes to the internal work and therefore

Wy = EB;; (my + 0.5my)

(10.16)

For the case when m,, and Mx=have the same magnitude, the value of w, given by Equation
10.161is

12m,
MR (10.17)

However, asmaller collapse load can be obtained by moving the position of the positive yield
line alittle closer to the exterior edge of the slab strip. The minimum collapse load for the
mechanism shown in Figure 10.18b occurs when ¢=0.414L, and the internal work is

1 _3.83Lim.
0.586L L

) + Lg’m;:-

1 I
Ue= Lamy (0,4141: ¥ 0.586L
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The external work is still given by Equation 10.13. Equating the internal and external work
gives

L _ 11.66m,
=TI (10.18)

The collapse loads predicted by both Equations 10.17 and 10.18 are close enough to suggest
that, for practical purposes, the positive yield line in this mechanism may be assumed to be at
mid-span.

Yield line analysisis therefore an upper bound approach and predicts a collapse load that is
equal to or greater than the theoretically correct value. It isimportant to check that another
yield line pattern corresponding to alower collapse load does not exist. In flat plates, afan-
shaped yield line pattern may occur locally in the slab around a column (or in the vicinity of
any concentrated load), as shown in Figure 10.19.

The concentrated load P, at which the fan mode shown in Figure 10.19c occursis

Pu=.2-'l'{mu+m;r} ( )
10.19

The loads required to cause the fan mechanisms around the columnsin Figures 10.19a and b
increase as the column dimensions increase. Fan mechanisms may be critical in cases where
the column dimensions are both less than about 6% of the span in each direction (see Ritz et
al. 1981).

Although yield analysis theoretically provides an upper bound to the collapse load, slabs
tested to failure frequently (almost invariably) carry very much more load than that predicted.
When dlab deflections become large, in-plane forces develop in the slab and the applied load
isresisted by membrane action in addition to bending. The collapse load predicted by yield
line analysisis therefore usually rendered conservative by membrane action.

Although yield line analysis provides a useful measure of flexural strength, it does not
provide any information regarding serviceability. Service-load behaviour must be examined

separately.

(a) Rectangular column {b) Circular Column (¢) Concentrated load

Figure 10.19 Fan mechanisms at columns or under concentrated |oads.
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10.7 Flat slabs with drop panels

Flat slabs with drop panels behave and are analysed similarly to flat plates. The addition of
drop panels improves the structural behaviour both at service loads and at overloads. Drop
panels stiffen the slab, thereby reducing deflection. Drop panels also increase the flexural and
shear strength of the slab by providing additional depth at the slab-column intersection. The
extent of cracking in the negative moment region over the column is aso reduced. The slab
thickness outside the drop panel may be significantly reduced from that required for aflat
plate. Drop panels, however, interrupt ceiling lines and are often undesirable from an
architectural point of view.

Drop panels increase the s ab stiffness in the regions over the columns and therefore affect
the distribution of slab moments caused by unbalanced loads. The negative or hogging
moments over the columns tend to be larger and the span moments tend to be smaller than the
corresponding moments in aflat plate.

Building codes usually place minimum limits on the dimensions of drop panels. For
example, on each side of the column centreline, drop panels should extend a distance equal to
at least one sixth of the span in that direction (measured centre to centre of supports) (ACI
318-83). The projection of the drop below the slab should be at |east one quarter of the slab
thickness beyond the drop (ACI 318-83).

In Eigure 10.5, the moments introduced into a slab by the change in eccentricity of the
horizontal prestressing force at the drop panels were illustrated. These may be readily
included in the slab analysis. The fixed
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Figure 10.20 Bending moments due to eccentricity of longitudinal prestress.
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end moment at each support of the span shown in Figure 10.20a is given by

2P,
M= <2 (10.20)

and the resultant bending moment diagram is shown in Figure 10.20b. The moments of inertia
of the various slab regions /1 and /> are defined in Figure 10.20a. The moments in the drop
panel due to this effect are positive and those in the span are negative, as shown, and although
usually relatively small, tend to reduce the moments caused by the unbalanced loads.

10.8 Band-beam and slab systems

Band-beam floors have become an increasingly popular form of prestressed concrete
construction over the past decade or so. A one-way prestressed or reinforced concrete slab is
supported by wide, shallow beams (slab-bands or band-beams) spanning in the transverse
direction. The system is particularly appropriate when the spansin one direction are
significantly larger than those in the other direction.

The slab-bands, which usually span in the long direction, have a depth commonly about
two to three times the slab thickness and a width that may be as wide as the drop panelsin a
flat slab. A section through atypical band-beam floor is shown in Figure 10.21. The one-way
dlab is normally considered to have an effective span equal to the clear span (from band edge
to band edge) plus the slab depth. If the dlab is prestressed, the tendons are usually designed
using aload balancing approach and have a constant eccentricity over the slab bands with a
parabolic drape through the effective span as shown in Figure 10.21. The depth and width of
the band beams should be carefully checked to ensure that the reaction from the slab,
deposited near the edge of the band, can be safely carried back to the column line.

The prestressing forces at the slab tendon anchorages will also induce moments at the
change of depth from slab to slab-band in the same way as was discussed for drop panels.

l
P A Y N — }

/ L

_..1,... J.'_

Figure 10.21 Band-beam and slab floor system.
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The slab-band is normally designed to carry the full load in the transverse direction (usually
the long-span direction). The prestressing tendons in this direction are concentrated in the
slab-bands and are also designed by load balancing. Because the prestress disperses out into
the slab over the full panel width, the prestress anchorage should be located at the centroid of
the T-section comprising the slab-band and a dlab flange equal in width to the full panel.

When checking serviceability and strength of the slab-band, the effective flange width of
the T-section is usually assumed to be equal to the width of the column strip as defined for a
flat platein Section 10.6.2.
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11
Two-way slabs—serviceability

11.1 Introduction

Prestressed concrete slabs are typically thin in relation to their spans and, although possessing
adequate strength, may not possess adequate stiffness. If aslab istoo thin, it may suffer
excessively large deflections when fully loaded or exhibit excessive camber after transfer.

Theinitial selection of the thickness of aslab is usually governed by the serviceability
requirements for the member. The selection is often based on personal experience or on
recommended maximum span to depth ratios. Whilst providing a useful starting point in
design, such a selection of slab thickness does not necessarily ensure serviceability.
Deflections at all critical stages in the slab’ s history must be calculated and limited to
acceptable design values. Failure to predict deflections adequately has frequently resulted in
serviceability problems. In slab design, excessive deflection is arelatively common type of
failure. Thisis particularly true for slabs supporting relatively large transitory live loads or for
slabs not subjected to their full service loads until some considerable time after transfer.
Codes of practice require that the camber, deflection, and vibration frequency and amplitude
of sdlabs must be within acceptable limits at service loads. In general, however, little guidance
isgiven as to how thisisto be done and methods for computing camber or deflection are not
prescribed.

The service load behaviour of aconcrete structureis far less reliably known than its
strength. Strength depends primarily on the properties of the reinforcing steel, whilst
serviceability is most affected by the properties of concrete. The non-linear and inelastic
nature of concrete complicates the calculation of deflection, even for line members such as
beams. For two-way dlab systems, the three-dimensional nature of the structure, the less well
defined influence of cracking and tension stiffening, and the development of biaxial creep and
shrinkage strains create additional difficulties. A more general discussion of the design of
prestressed struc-
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tures for serviceahility, including types of deflection problems and criteriafor deflection
control, was given in Section 1.7.7. Methods for determining the instantaneous and time-
dependent behaviour of cross-sections at service loads were outlined in Sections 3.5 and 3.6,
and techniques for cal culating beam deflections were presented in Section 3.8.

Classical methods for cal culating the deflection of elastic plates with ideal boundary
conditions are of limited use in the design of practical concrete dabs. The edges of a concrete
slab panel are never fully fixed or perfectly hinged, but have some intermediate degree of
fixity which depends on the relative stiffnesses of the slab panel, the adjacent slab panels, and
the supporting columns, beams, or walls. Numerical techniques, such as finite elements, are
capable of closely modelling the non-linear and inelastic behaviour of slabs. However, for
most slabs, the expense of such an analysis cannot be justified.

Neverthel ess, various approximate methods are available which may be used economically
and reliably to predict ball-park estimates of the deflection of two-way dabs. Severa of these
approximate methods are reviewed in Section 11.4 and design recommendations are also
made.

11.2 The balanced load stage

Under transverse loads, two-way panels deform into dish-shaped surfaces, as shown in Figure
11.1. Thedabiscurved in both principal directions and therefore bending moments exist in
both directions. In addition, part of the applied load is resisted by twisting moments which
develop in the slab at all locations except the lines of symmetry.

As has already been discussed in Chapter 10, prestressing tendons are usually placed in two
directions parallel to the panel edges, each tendon providing resistance for its share of the
applied load. The transverse load on the slab produced by the tendons in one direction adds to
(or subtracts from) the transverse load imparted by the tendons in the perpendicular direction.
For edge-supported sl abs, the portion of the load to be carried

{a) Edge-supported siab (b) Flat slab

Figure 11.1 Deformation of two-way slabs.
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by tendons in each direction is more or less arbitrary, the only strict requirement is the
satisfaction of statics (i.e. the satisfaction of Equation 10.4). For flat slabs the total load must
be carried by tendons in each direction from column line to column line.

The concept of utilizing the transverse forces, resulting from the curvature of the draped
tendons, to balance a selected portion of the applied load is useful from the point of view of
controlling deflections. In addition to providing the basis for establishing a suitable tendon
profile, load balancing allows the determination of the prestressing force required to produce
zero deflection in a slab panel under the selected balanced |oad.

At the balanced load, the dlab is essentially flat (no curvature) and is subjected only to the
effects of the prestressing forces applied at the anchorages. A dlab of uniform thicknessis
subjected only to uniform compression (P/A) in the directions of the orthogonal tendons. With
the state of the slab under the balanced load confidently known, the deflection due to the
unbalanced portion of the load may be calculated by one of the approximate techniques
discussed in Section 11.4. The techniques are usually more reliable for prestressed slabs than
for conventionally reinforced slabs, because only a portion of the total service load needs to
be considered (the unbalanced portion) and, unlike reinforced concrete slabs, prestressed slabs
are often uncracked at service loads.

To minimize deflection problems, the external load to be balanced is usually a significant
portion of the sustained or permanent service load. If al the permanent load is balanced, the
sustained concrete stress (P/A4) is uniform over the slab depth. A uniform compressive stress
distribution produces uniform creep strain and, hence, little long-term load-dependent
curvature or deflection. Bonded reinforcement does, of course, provide restraint to both creep
and shrinkage and causes a change of curvature with timeif the steel is eccentric to the lab
centroid. However, the quantity of bonded steel in prestressed slabs is generaly small and the
time-dependent curvature caused by this restraint does not usually cause significant deflection.

Problems can arise if arelatively heavy dead load isto be applied at some time after
stressing. Excessive camber after transfer, which will continue to increase with time owing to
creep, may cause problems prior to the application of the full balanced load. In such acase,
the designer may consider stage stressing as aviable solution.

The magnitude of the average concrete compressive stress after al losses can indicate
potential serviceability problems. If P/4 istoo low, the prestress may not be sufficient to
prevent or control cracking due to shrinkage, temperature changes, and the unbalanced loads.
Some codes of practice specify minimum limits on the average concrete compressive stress
after all losses. ACI 318-83 requires that P/ A is greater than 125 psi (0.9 MPa). In Australia,
where flat-ducted tendons containing four or more strands are
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used, considerably more prestressis usually specified, with average compressive stress evels
typically within the range 2.0-3.0 MPain each direction of atwo-way dab.

If the average prestressis high, axial deformation of the slab may be large and may result in
distress in the supporting structure. The remainder of the structure must be capable of
withstanding and accommodating the shortening of the slab, irrespective of the average
concrete stress, but when P/ A islarge, the problem is exacerbated. Movement joints may be
necessary to isolate the slab from stiff supports.

The FIP (1980) recommendation for the maximum spacing of tendonsis six times the slab
thickness. However, provided that cracking is unlikely (e.g. in the middle strips of aflat dab),
atendon spacing of eight times the slab thickness should prove acceptable (ACI 318-83).

11.3 Initial sizing of slabs

11.3.1 Existing guidelines

At the beginning of the design of a post-tensioned floor, the designer must select an
appropriate floor thickness. The floor must be stiff enough to avoid excessive deflection or
camber, and it must have adequate fire resistance and durability.

In its recommendations for the design of post-tensioned slabs, the Post-Tensioning Institute
(1977) suggested typical span-to-depth ratios that had proved acceptable, in terms of both
performance and economy, for avariety of dab types. These recommendations are
summarized in Table 11.1. Note that for flat plates and flat slabs with drop panels, the longer

of the two orthogonal spansis used in the determination of the span-to-depth ratio, while for
edge-supported sl abs, the shorter span is used.

For flat slabs continuous over two or more spans in each direction, the

Table 11.1 Span-to-depth ratios (Post-Tensioning Institute 1977).

Floor System Span-to-Depth Ratio
Flat plate 45
Flat slab with drop panels 50
One-way slab 48
Edge-supported slab 55
Waffleslab 35
Band-beams (»~3D) 30
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Table 11.2 Minimum slab thickness for insulation (AS 3600—1988).

Fire resistance period (minutes) | Minimum effective Minimum effective slab thickness (mm)
30 60
60 80
90 100
120 120
180 150
240 170

FIP (1980) recommends that the span-to-depth ratio should not generally exceed 42 for floors
and 48 for roofs. These limits may be increased to 48 and 52, respectively, if the calculated
deflections, camber and vibration frequency and amplitude are acceptable. Of course, strength
requirements, such as punching shear, and fire resistance and durability requirements must
also be considered.

A slab exposed to fire must retain its structural adequacy and its integrity for a particular
fire resistance period. It must also be sufficiently thick to limit the temperature on one side
when exposed to fire on the other side, i.e. it must provide a suitable fire resistance period for
insulation. The fire resistance period required for a particular structure is generally specified
by the local building authority and depends on the type of structure and its occupancy. The
Australian code AS 3600-1988 specifies the minimum effective thickness of a slab required
to provide a particular fire resistance

Table 11.3 Minimum concrete cover for fire resistance of dabs (AS 3600-1988).

Fire resistance period (minutes) | Minimum concrete cover to bottom reinforcement (mm)

For simply-supported slabs For continuous slabs

reinforcement | tendons | reinforcement | tendons
30 15 20 10 15
60 20 25 15 20
90 25 35 15 25
120 30 40 15 25
180 45 55 25 35
240 55 65 35 45
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period for insulation and the minimum concrete cover to the bottom reinforcement inadlab in
order to maintain structural adequacy. These requirements are givenin Tables11.2 and 11.3.

The span-to-depth ratios recommended by both the Post-Tensioning Institute and the FIP
are usually conservative, but do not always guarantee serviceability. No consideration is made
of the magnitude of the applied load, the level of prestress or the material properties, al of
which greatly affect in-service behaviour. At best, these limits provide a useful starting point
for design.

11.3.2 A serviceability approach for the calculation of slab thickness

For uniformly loaded dlabs, a better initial estimate of slab thickness which should ensure
adequate stiffness and satisfactory service load behaviour can be made using a procedure
originally developed for reinforced concrete slabs (Gilbert 1985) and recently extended to
cover post-tensioned floor systems (Gilbert 1989). By rearranging the expression for the
deflection of a span, asimple equation is devel oped for the span-to-depth ratio that is required
to satisfy any specified deflection limit. The method forms the basis of the deemed to comply
span-to-depth ratios for reinforced concrete slabs in the Australian code (AS 3600-1988).

If it is assumed that a prestressed concrete slab is essentially uncracked at service loads,
which is most often the case, the procedure for estimating the overall depth of the slab is
relatively smple. Figure 11.2 shows atypical interior panel of a one-way slab, aflat-slab, and
an edge-supported slab. Equivalent one-way slab strips are also defined for each slab type.
For a one-way slab, the mid-span deflection is found by analysing a strip of unit width as
shown in Figure 11.2a For the flat slab, the deflection at the midpoint of the long-span on the
column lineis found by analysing a unit wide strip located on the column line, as shown in
Figure 11.2b. For the edge-supported slab, the deflection at the centre of the panel may be
calculated from an equivalent slab strip through the centre of the panel in the short direction,
as shown in Figure 11.2c.

By rearranging the equation for the mid-span deflection of the equivalent strip, an
expression can be obtained for the minimum slab thickness required to satisfy any specified
deflection limit. The stiffness of the equivalent strip must be adjusted for each slab type, so
that the deflection of the strip is similar to the deflection of the two-way slab. For aflat slab,
for example, the stiffness of the slab strip must be reduced significantly, if the maximum
deflection at the centre of the panel isto be controlled rather than the deflection on the column
line. This stiffness adjustment has been made in the following procedure by means of aslab
system factor, K, which was originally calibrated using a non-linear, finite element model



Page 424

T 17
o’

L : i :.[ : /f/ equivalent )
TR g w |
- | : 1 : : - - //

T I #.._

| 1 equivalent strip I 1_-/

| Vi m

P' H [ ? |

w_,u Z

(a) Ome-way slab (b) Flat slab

- — et i
I I |_~equivalent strip

i
P

S 1
YL

|
1y |l

(]
L B

(c) Edge-supported slab
Figure 11.2 Sab types and equivalent slab strips.

(Gilbert 1979a,b). A brief description of the finite element model is presented in Section
114.7.

The maximum deflection caused by the unbalanced uniformly distributed service loads on
an uncracked prestressed dab strip may be estimated using Equation 8.2, which is reproduced
and renumbered here:

4
wﬂ Lt

E. I

AWysLe 4

v=p B =E1 (11.1)

where w,, is the unbalanced service load per unit length and w,, is the sustained portion of the
unbalanced load per unit length. In the design of adab, w,, should not be taken less than 25%
of the self-weight of the member. Thisisto ensure that at |east a small long-term deflection is
predicted by Equation 11.1. A small long-term deflection isinevitable, even
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for the case when an attempt is made to balance the entire sustained load by prestress. The
term £ is adeflection coefficient that depends on the support conditions and the type of load.
The effective span of the slab strip L. may be taken to be the centre to centre distance between
supports or the clear span plus the depth of the member, whichever isthe smaller (AS 3600—
1988). E.. isthe elastic modulus of concrete and 7 is the gross moment of inertia of the cross-
section. Asdiscussed in Section 8.3.1, the long-term deflection multiplier A for an uncracked
prestressed member is significantly higher than for a cracked reinforced concrete member.
Theratio of the time-dependent creep-induced curvature and the initial curvature on an
uncracked cross-section containing only small amounts of bonded reinforcement issimilar in
magnitude to the creep coefficient, and is therefore significantly greater than the
corresponding ratio for a cracked cross-section. For uncracked, prestressed members, the
value of 1 in Equation 11.1 should not be less than 3.

By substituting bD%12 for I and rearranging Equation 11.1, the following expression may
be obtained for an uncracked beam of rectangular section (with width » and overall depth D):

Le [ (v]Le)bE: ]“3
D )

128(We + Mg (11.2)

If v isthe deflection limit selected in design, the maximum span to depth ratio for the beam is
obtained from Equation 11.2.

To avoid dynamic problems, a maximum limit should be placed on the span-to-depth ratio.
For concrete floors subjected to normal in-service loading conditions and not possessing any
special vibration requirements, alower limit to the frequency of the fundamental mode of the
slab of about 5 cycles per second is sufficient to avoid excessive vertical acceleration which
may cause discomfort to occupants. In aprevious investigation, upper limits of the span-to-
depth ratio for slabs were recommended to avoid vibration problems due to pedestrian traffic
(Mickleborough & Gilbert 1986). Thiswork forms the basis of the upper limitson L/D
specified below in Equation 11.3.

For prestressed concrete slabs, an estimate of the minimum slab thickness may be obtained
by applying Equation 11.2 to the slab stripsin Figure 11.2. Equation 11.2 can be re-expressed
asfollows:

% < X[{.{L,)mﬂﬂﬂ.} 143

Wa + 3Wus (11.3)

< 50 for one-way slabs and flat slabs

< 55 for two-way edge-supported slabs
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The width of the equivalent slab strip » and the long-term deflection multiplier 4 are taken as
1000 mm and 3, respectively. The loads w, and w,s arein kPaand E. isin MPa. Theterm K is
the slab system factor, which acounts for the support conditions of the slab panel, the aspect
ratio of the panel, the load dispersion, and the torsiona stiffness of the slab. For each slab
type, valuesfor K are presented and discussed below.

The slab system factor, K

One-way slabs For aone-way slab, K depends only on the support conditions and the most
critical pattern of unbalanced load. From Equation 11.2,

K=(]128)"3
(11.4)

For a continuous slab, $ should be determined for the distribution of unbalanced load which
causes the largest deflection in each span. For most slabs, alarge percentage of the sustained
load (including self-weight) is balanced by the prestress and much of the unbalanced load is
transitory. Pattern loading must therefore be considered in the determination of /.

For asimply supported span, f=5/384 and from Equation 11.4, K=1.85. For afully-loaded
end span of aone-way slab that is continuous over three or more equal spans and with the
adjacent interior span unloaded,  may be determined from an elastic analysis and taken to be
3.5/384 and therefore K=2.1. For an interior span of a continuous member, with adjacent
spans unloaded, # may be taken to be 2.6/384 and K=2.3.

Flat slabs For flat slabs, the values of K given above must be modified to account for the
variation of curvature across the panel width. The moments, and hence curvatures, in the
uncracked slab are greater close to the column line than near the mid-panel of the dlab in the
middle strip region. For this reason, the deflection of the slab on the column line will be
greater than the deflection of aone-way slab of similar span and continuity. If the deflection
of the equivalent slab strip in Figure 11.2b is to represent accurately the deflection of the real
slab on the column-line, a greater than average share of the total load on the slab must be
assigned to the column strip (of which the equivalent strip forms a part). If it is assumed that
65% of the total load on the slab is carried by the column strips, then the value for K for aflat
slab becomes

K =(1{15.68)'"
(11.5)

For an end span, with f=3.5/384, Equation 11.5 gives K=1.90. For an interior span with
S=2.6/384, the slab system factor K=2.1.
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For aslab containing drop panels that extend at least /6 in each direction on each side of
the support centreline and that have an overall depth not less than 1.3 times the slab thickness
beyond the drops, the above values for K may be increased by 10%. If the maximum
deflection at the centre of the panel isto be limited (rather than the deflection on the long-
span column line), the values of K for an end span and for an interior span should be reduced
to 1.75 and 1.90, respectively.

Edge-supported two-way slabs For an edge-supported slab, values for K must be
modified to account for the fact that only a portion of the total load is carried in the short span
direction and the fact that torsional stiffness and even compressive membrane action increase
the overall dab stiffness. In aprevious investigation of span-to-depth limits for reinforced
concrete slabs, a non-linear finite element model was used to quantify these effects (Gilbert
1985). Values of K depend on the aspect ratio of the rectangular edge-supported panel and the
support conditions of al edges, and are givenin Table 11.4.

Table 11.4 Values of K for an uncracked two-way edge-supported slab (Gilbert 1989).

Vauesof K
Ratio of Long Span to Short Span

1.0 125 15 2.0
4 edges continuous 3.0 2.6 24 23
1 short edge discontinuous 28 25 24 23
1 long edge discontinuous 28 24 23 22
2 short edge discontinuous 2.6 24 2.3 2.3
2 long edge discontinuous 2.6 2.2 20 19
2 adjacent edges discontinuous 25 2.3 2.2 21
2 short+1 long edge discontinuous 24 2.3 2.2 21
2 long+1 short edge discontinuous 24 2.2 21 19
4 edges discontinuous 23 2.1 20 19

11.3.3 Discussion

Equation 11.3 forms the basis of a useful approach to the design of prestressed concrete slabs.
When the load to be balanced and the deflection limit have been selected, an estimate of sab
depth can readily be made. All parameters required for input into Equation 11.3 are usually
known at the beginning of the design. No estimate of self-weight is needed since, amost
always, self-weight is part of the balanced load.
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Deflections at various stages in the slab history may still have to be calculated, particularly
if the unbalanced load causes significant cracking or if an unusual load history is expected.
Serviceahility problems, however, can be minimized by a careful choice of slab depth D using
Equation 11.3. Thisinvolves an understanding of the derivation of the equation and its
limitations. If, for example, a designer decides to minimize deflection by balancing the entire
sustained load, it would be unwise to set the sustained part of the unbalanced load w, to zero
in Equation 11.3. In the real slab, of course, the magnitude of the sustained unbalanced load
varies as the prestressing force varies with time and cannot remain zero. Restraint to creep
and shrinkage caused by the eccentric bonded steel will inevitably cause some time-dependent
deflection (or camber). In such cases, selection of adlab depth greater than that indicated by
Equation 11.3 would be prudent. It is suggested that in no case should w,, be taken as less
than 0.25 times the self-weight of the slab. Aswith the rest of the design process, sound
engineering judgement is required.

Example 11.1

A preliminary estimate is required of the thickness of a post-tensioned, flat slab floor for an
office building. The supporting columns are 400 mm by 400 mm in section and are regularly
spaced at 9.8 m centres in one direction and 7.8 m centresin the orthogonal direction. Drop
panels extending span/6 in each direction are located over each interior column. The slab
supports a dead load of 1 kPa (in addition to self-weight) and a service live load of 2.5 kPa (of
which 0.75 kPais sustained or permanent). The self-weight of the slab only isto be balanced
by prestress. Therefore, the unbalanced loads are

wy=35kPa and w.,=1.75kPa

In this example, the longer effective span is calculated as clear span+D. If D isinitialy
assumed to be about 200 mm, then

L, = 9800 - 400 + 200 = 9600 mm

The elastic modulus for concrete is £,~28000 M Pa.

Case (a) The maximum deflection on the column line in the long-span direction is to be
[imited to span/250.

The deflection in an exterior or edge panel of the slab will control the thickness. From
Equation 11.5, K=1.90 for an end span and may be increased by 10% to account for the
stiffening effect of the drop panels.
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Equation 11.3 gives

Ir3
%600 _ 1 9y 1.1 x {uzsu;mmﬁxzsﬂm] 489

D 3IS5+(Ix175)
D = 196 mm plus drop panels

Case (b) If the lab supports brittle partitions and the deflection limit is taken to be span/500,
Equation 11.3 gives

9600 [msmyxu}mmsmﬂ}”’_mg

2600 1 9x1.1x
D S 3.5+ G x 1.75)

D = 247 mm plus drop panels

Example 11.2

The dlab thicknessis required for an edge-panel of atwo-way slab with short and long
effective spans of 8.5 and 11 m, respectively. The slab is continuously supported on al four
edges by stiff beams and is discontinuous on one long edge only. The slab must carry a dead
load of 1.25 kPa (plus self-weight) and a service live load of 3 kPa (of which 1 kPais
sustained). Asin the previous example, only the self-weight is to be balanced by prestress,
and therefore,

wy=4.25kPa and w,;=2.25kPa

The maximum midpanel deflection islimited to v=25 mm. Take E =28 000 M Pa.
With an aspect ratio of 11.0/8.5=1.29, the slab system factor is obtained from Table 11.4,
i.e. K=2.4. From Equation 11.3,

173
8500 5 4x [{zsfssun}x 1000 x 28 {}ﬂi}} _ 470
D 4.25 + (3 X 2.25)

D = 18] mm

11.4 A review of simplified slab deflection models

11.4.1 Introduction

In view of the complexities and uncertainties involved in the calculation of the service load
behaviour of two-way slab systems, great accuracy in the calculation of deflection is neither
possible nor warranted. The procedures
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briefly reviewed here for calculating initial and time-dependent slab deflections vary from
simpl e estimates to reasonably sophisticated research models. A review of many of these
approaches has been presented in a state-of -the-art report by AClI Committee 435 (1974).

11.4.2 Classical methods

Small deflection theory of elastic plates can be used to predict slab deflections. Deflection
coefficients for elastic slabs with ideal boundary conditions and subjected to full panel
loading have been presented by Timoshenko & Woinowsky-Krieger (1959). The deflection of
an elastic uniformly loaded slab panel may be expressed as

v=~8-"F (11.6)
where f is the dab deflection coefficient, w isthe uniformly distributed load, L is the longer
span; Cistheflexura rigidity, which is given by

E.D?

C=a-,9 (11.7)

D isthe dlab thickness; and v is Poisson’s ratio for concrete (usually taken as about 0.2). For
an uncracked concrete slab, the Poisson’ s ratio effect is small and Equation 11.6 can be
approximated by

wi?
E.l. (11.8)

v=F

Table 11.5 Slab deflection coefficients, g (for v=0.2).

Simply-supportcd on | Fully fixed on four Flat plate, p for mid-span
'S‘Lﬁ:—i% Iofgur ggg&e _ ’ edges _ ddlegion iﬁ EquationSF.?Ll.S
s | P f(ljzqu:t?(l)rr?liT é’ In | p fgqu?:t?(')rr?‘irf é’ n Singls Isolated | Interior Panel
anel
1.0 0.00406 0.00126 0.0263 0.00581
12 0.00279 0.00085 0.0189 0.00428
14 0.00184 0.00059 0.0162 0.00358
16 0.00127 0.00035 0.0150 0.00321
18 0.00089 0.00023 0.0144 0.00302
2.0 0.00063 0.00016 0.0140 0.00292
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where I, is the moment of inertia per unit width, and may be taken as the gross moment of
inertiafor an uncracked slab.

Theoretical slab deflection coefficients (f) for some uniformly loaded slab panels with
ideal boundary conditions are givenin Table 11.5.

11.4.3 Crossing beam analogy

The crossing beam analogy for two-way edge-supported slabs involves the consideration of a
pair of orthogonal beams through the centre of the panel. By equating the deflection of each
beam (calculated using gross stiffnesses), the fraction of the unbalanced load carried in each
direction isreadily determined. If L, isthe long span and L, is the short span, the fraction of
the unbalanced load carried in the short-span direction may be calculated using an expression
similar to Equation 10.5, i.e.

L'
TaL 4L (11.9)

Wiy

where o depends on the support conditions of each orthogonal beam, with numerical values
given under Equation 10.5. The slab deflection is calculated as the deflection of the shorter
span beam strip subjected to the uniformly distributed load, w... This method was first
proposed by Marsh (1904) and is recommended for deflection calculation for two-way slabs
in AS 3600-1988. The method ignores the torsional stiffness of the lab (whichisa
conservative assumption) and also assumes that the supports are unyielding (which may be an
unconservative assumption).

The method has been modified by a number of investigators to account for the torsional
moments in the dlab. In fact, the approach described in Section 11.3.2 for estimating the depth
of atwo-way edge-supported prestressed slab is based on the crossing beam analogy with the
slab system factor K in Table 11.4 calibrated to account for torsional moments.

For estimating the deflection at the centre of a uniformly loaded interior panel of aflat dab,
the Portland Cement Association (1965) proposed the analysis of afixed ended beam of unit
width having a span equal to the diagonal length of the panel. The beam carries aload per unit
length equal to the load per unit area of the slab. Although simple, this method has little to
recommend it.

11.4.4 Analogous gridwork and statics ratio methods

The analogous gridwork method (Ewell et al. 1952) is similar to the crossing beam method
except that the effects of torsional moments are included. The slab is modelled by a set of
orthogonal intersecting beams (say three or four in each direction) having the same flexural
and torsional stiffness
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asthe dab. A stiffness analysisis then performed to obtain the deflection of the grid system.
The number of calculations required is considerable and the number of simultaneous
equations usually istoo large for manual solution. However, the procedure is suitable for use
with a small microcomputer or programmable cal cul ator.

The statics ratio method (Furr 1959) is another variation on the crossing beam analogy. The
slab isagain divided into strips in each direction. The distributed slab load is replaced by
statically equivalent concentrated |oads acting at the beam strip intersections. An initial grid
deflection is assumed and the vertical shears at each joint are found. The assumed grid
deflection is successively modified until the vertical shear at each joint balances the applied
load and the requirements of statics are met. Once again, the solution procedure is laborious.
Since the advent of more accurate numerical techniques, such as finite difference and finite
element methods, both the analogous gridwork method and the statics ratio method have
fallen from favour.

11.4.5 The Illinois method

The method proposed for the calculation of the mid-panel deflection of aflat slab by
Vanderbilt et al. (1963) at the University of Illinoisiswell known. In Figure 11.3, an interior
panel of aflat slab is shown. Lines of contraflexure are assumed at one fifth of the span from
the centrelines of the supporting columns, as indicated.

The deflection at the centre of the panel v is assumed to be the sum of three components

Ve=th+ha+1ls
(11.10)

where o1 is the deflection at the mid-point C of the slab strip AB located on the column linein
the longer span direction and bounded by the points of contraflexure (see Figure 11.3). The
load assumed to act on the slab strip is the unbalanced load applied directly onto its surface
plus the reaction off the central portion of the slab which may be treated as a two-way slab
simply supported at the lines of contraflexure. In general, v1 is usually about three quarters of
the value of vg. The deflection increment v is the relative deflection between points D and C
and is calculated by treating DC as a uniformly loaded, fixed ended cantilever with a
concentrated load at the tip (the reaction from the central panel). v is the relative deflection
between D and E and is found by treating the central portion of the slab as a ssmply supported
two-way dlab.

In general, good agreement has been found between results obtained by this method and
those obtained by finite difference and finite element
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Figure 11.3 The lllinois model for flat slab deflection (Vanderbilt ez al. 1963).

analysis. However, the method involves many calculations and is not as convenient for
manual solution as the following alternative approach.

11.4.6 The wide beam method

The deflection of auniformly loaded flat slab may be estimated using a wide beam method
(often called the equivalent frame method) which was formalized by Nilson & Walters (1975).
Originally developed for reinforced concrete slabs, the method is particularly appropriate for
prestressed flat slabs which are usually uncracked at service loads (Nawy & Chakrabarti
1976). The basis of the method isillustrated in Figure 11.4. Deflections of the two-way slab
are calculated by considering separately the slab deformations in each direction. The
contributions in each direction are then added to obtain the total deflection.

In Figure 11.4a, the slab is considered to act as a wide, shallow beam of width equal to the
panel dimension L, and span equal to L,. This wide beam is assumed to est on unyielding
supports. Because of variations in the unbalanced moments and flexural rigidity across the
width of the slab, all unit stripsin thex-direction will not deform identically. Unbalanced
moments and hence curvatures in the regions near the column lines (the column strip) are
greater than in the middle strips. Thisis particularly so for
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Figure 11.4 The basis of the wide beam method (Nilson & Walters 1975).

uncracked prestressed concrete slabs or in prestressed slabs that are cracked only in the
column strips. The deflection on the column line is therefore greater than that at the panel
centre. The dab is next considered to act as awide shallow beam in the y-direction, as shown
in Figure 11.4b. Once again, the effect of variation of moment across the wide beam is shown.

The mid-panel deflection isthe sum of the mid-span deflection of the column strip in the
long direction and that of the middle strip in the short
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direction, as shown in Figure 11.4c.

Umar = U'—T + Umy

(11.11)

The method can be used irrespective of whether the moments in each direction are determined
by the equivalent frame method, frame analysis based on gross stiffnesses, or the direct design
method (see Sections 10.6.3 and 10.6.4). The definition of column and middle strips, the
longitudinal momentsin the slab, the lateral moment distribution coefficients, and other
details are the same as for the moment analysis, so that most of the information required for
the calculation of deflection is aready available.

The actual deflection calculations are more easily performed for strips of floor in either
direction bounded by the panel centrelines, asis used for the moment analysis. In each
direction, an average deflection v,,,. at mid-span of the wide beam is calculated from the
previoudy determined moment diagram and the moment of inertia of the entire wide beam,
Leam- This may be accomplished using the deflection calculation procedures outlined in
Section 3.8. The effect of the moment variation across the wide beam, as well as possible
differences in column and middle strip sizes and rigidities, is accounted for by multiplying the
average deflection by the ratio of the curvature of the relevant strip to the curvature of the
beam. For example, for the wide beam in the x-direction, the column strip deflection is

v =y Mtgi' .Er Ibfa.m
x aVEE. X M-bﬂ-m E;Icpf (1112)
and the middle strip deflection is
_ Mmia Eclveam
Vs = Vet  eam Eelmid (11.13)

It isusual to assume M.,/ M., tobeabout 0.7 and therefore M,,; /M., 1S about 0.3. If
cracking is detected in the column strip, the effective moment of inertia of the cracked cross-
section can be calculated using the analysis described in Section 3.5.2. The average moment
of inertia of the column strip is obtained by averaging the effective moments of inertia at each
support and at mid-span. The moment of inertia of the wide beam is, of course, always the
sum of /,,; and 1,,;. Long-term deflections due to sustained unbalanced loads can also be
calculated in each direction using the procedure outlined in Section 3.8.3.

Nilson & Walters (1975) originally proposed to analyse a fixed ended beam and then
calculate the deflection produced by rotation at the supports. This does not significantly
improve the accuracy of the model and the additional complication is not warranted.



Page 436

11.4.7 Finite element methods

The finite element method is a powerful tool for the analysis of concrete slabs. The basic
method is now well established and has been described in many text books. In this section, a
brief description only is presented of a non-linear plate bending finite element model that was
devel oped for the service-load analysis of both reinforced and prestressed concrete slabs.

Since the early 1970s, many investigators have devel oped finite element models to study
the short-term service load behaviour of reinforced con-crete slabs. A number of researchers
have extended their models to handle the time-dependent effects of creep and shrinkage,
including Scanlon & Murray (1974) and Gilbert (1979a,b). However, eatively few attempts
have been made to model prestressed concrete slabs using finite el ements.

The model briefly described hereis presented in detail elsewhere (Gilbert 1979a). The
elements used are rectangular, compatible, 16 degrees of freedom, plate-bending elements
having four generalized displacements at each corner node of each element, namely the
deflection, the slope about each orthogonal axis, and the twist. Each element is sub-divided
into horizontal layers, as shown in Figure 11.5, and idealized biaxia constitutive relation-

element

steel-concrete
layer

= x
concTeie T O
1a =
yer
ﬂ)‘

(b) Element (c) Layer

Figure 11.5 Finite element discretization (Gilbert 1979a).
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ships are used to model the various stages of material behaviour in each layer. Non-linearities
due to progressive cracking, tension stiffening, creep, and shrinkage are considered. Steel
reinforcement is represented by an equivalent composite steel—concrete layer, in which the
steel areais considered to be uniformly distributed throughout the layer and to contribute to
the layer stiffness only in the direction of the bars. A draped post-tensioned tendon can be
modelled by locating the tendon in different layers from element to element as required.

By layering each element, changes in material behaviour through the thickness of a slab can
be accounted for, as either the external l1oad or the time after first loading is increased, while
retaining the limited number of degrees of freedom of atwo-dimensional plate anaysis. A
close study of theinternal state of stress and strain in the various regions of aslab is possible
and an accurate model of the behaviour of slabs under service loads is obtained.

Anincremental, piece-wise linear calculation procedure, involving geometric, load, and
temporal discretization, is used. Structural response is calculated only at discrete instants
along the time scale. At the first time instant (time zero), the initial prestressis transferred
from the steel into the concrete using an initial -stress approach. The transverse external
service load is then applied in small increments. Material non-linearity is also treated using a
tangent stiffness, initial -stress procedure. At each subsequent time instant, the vectors of creep
and shrinkage strain, which devel op during the previous time increment in each concrete layer,
are calculated. A direct relaxation approach is used to convert the time-dependent strain
increments into stress decrements. Equilibrium is restored using a stress transfer procedure
and structural response is calculated.

The model has been shown to predict accurately both the instantaneous and time-dependent
behaviour of avariety of reinforced and prestressed concrete slabs and beams. However, the
model places heavy demands on the computer, in terms of both storage requirements and
solution times, and is entirely unsuitable for routine use in design. However, as a research tool
the model is extremely useful. The effect of various parameters on slab behaviour can be
examined. Factors which in practice are coupled and confounded may be uncoupled and
examined separately in order to gain abetter qualitative understanding of the mechanism of
structural behaviour. Such parametric studies have been reported elsewhere (Gilbert 1979a).

The model aso provides arapid and relatively inexpensive means of generating the
extensive test data which are required for deriving and calibrating simplified, design-oriented
methods for estimating slab behaviour. In fact, the finite element model was used for the
calibration of the values of K (in Table 11.4) which are used for theinitial estimate of slab
depth as discussed in Section 11.3.2.
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11.4.8 Recommendations

It can be seen that for estimating the deflection of prestressed concrete slab panels the
designer has a reasonably wide choice of options. Considering both accuracy and ease of
solution, it is recommended that for two-way edge-supported slabs, either the deflection
coefficients based on classical methods (Section 11.4.2) or the crossing beam anal ogy
(Section 11.4.3) is used. For flat slabs and plates, the wide beam method (Section 11.4.6) is
recommended. These approaches have, in fact, been used in the calibration of the coefficients
used in Equation 11.3. For uncracked slabs, Equation 11.3 may also be used to obtain a ball-
park estimate of deflection.

11.5 Cracking in prestressed slabs

11.5.1 Loss of stiffness

The effect of cracking in slabs is to reduce the flexural stiffness of the highly stressed regions
and thusto increase the deflection. Prior to cracking, deflection calculations are usually based
on the moment of inertia of the gross concrete section, /,, neglecting the contributions of the
reinforcement. After cracking, an effective moment of inertia, 7., which islessthan /, is used.
In Chapter 3, the analysis of a cracked prestressed section was presented and procedures for
calculating the cracked moment of inertia and for including the tension stiffening effect were
discussed. Using these procedures, the effective moment of inertia of a cracked region of the
slab can be calculated.

For edge-supported prestressed concrete slabs, cracking is unlikely at service loads. Even
reinforced concrete slabs continuously supported on all edges are often uncracked at service
loads. However, if cracking is detected, then an average effective moment of inertia, 7,
should be used for the analysis of the equivalent slab strip or when using the slab deflection
coefficientsin Table 11.5. Branson (1977) recommended that the value used for 7, should be
the average of the moments of inertia of the positive and negative moment regionsin the
shorter span analogous beam. If a particular region is uncracked, Z, for this region should be
taken to be equal to the gross moment of inertia 7.

For prestressed concrete flat slabs, cracking at service loads is usually confined to the
negative moment column strip region above the supports. A mat of non-prestressed
reinforcement is often placed in the top of the slab over the column supports for crack control
and to increase both the stiffness and the strength of this highly stressed region (see Table
11.6).

In the wide beam method, the effective moment of inertia of the column strip 7., is
calculated as the average of /. at the negative moment region
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Table 11.6 Minimum amount of non-prestressed reinforcement in dabs (CAN3 1984).

Type of Member Tendon Type

bonded unbonded
Beams and one-way slabs 0.003 4 0.005 4
Flat slabs
—Vve moment regions 0.000454 L, 0.00075 A L,
+ve moment regions 0.003 4 0.005 4

Note: 4=area of cross-section between tensile face and centroid;

h=d ab thickness;

L,=clear span in direction of reinforcement; and

A=1.0 for normal-weight concrete

= 0.7 for light-weight concrete.

at each end of the strip, which may include the loss of stiffness due to cracking and/or the
stiffening effect of adrop panel, and the positive moment region, which is usually uncracked.
1., isthen added to the moment of inertia of the middle strip 7,,;; (which isaso usualy
uncracked and therefore based on gross section properties) to form the moment of inertia of
the wide beam, Ir..». These quantities are then used in the cal culation of the column and
middle strip deflections in each direction using Equations 11.12 and 11.13. The Commentary
to ACI 318-83 recommends that the weighted average effective moment of inertia of an
interior span of a continuous member istaken as 0.7 times the value at mid-span plus 0.3
times the average of the values at each end of the span. For an exterior span, the weighted
average is 0.85 times the mid-span value plus 0.15 times the value at the continuous end. This
recommendation may be used for the calculation of 7., for a cracked column strip.

11.5.2 Crack control

The mechanism of flexural cracking in astatically indeterminate two-way concrete slab is
complex. The direction of flexural cracking is affected to some extent by the spacing and type
of bonded reinforcement, the level of prestressin each direction, the support conditions, and
the level and distribution of the applied loads. However, for slabs containing conventionally
tied, bonded reinforcement at practical spacingsin both directions,
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flexural cracks occur in the direction perpendicular to the direction of principal tension.

If the level of prestressin adlab is sufficient to overcome the tension induced by bending,
flexural cracking will not occur. If the level of prestressis not sufficient, cracking occurs and
bonded reinforcement at reasonabl e centres is necessary to control the cracks adequately.
Because slabs tend to be very lightly reinforced, the maximum moments at service loads are
rarely very much larger than the cracking moment. However, when cracking occurs, the stress
in the bonded reinforcement increases suddenly and crack widths may become excessive if
too little bonded stedl is present or the steel spacing istoo wide. If the maximum flexural
tensile stress in normal -weight concrete (cal culated assuming linear-elastic material

behaviour) does not exceed about 0.5 4’-ﬁ(in MPa), flexural cracking will not be a problem in
prestressed slabs containing bonded tendons (AS 3600-1988). If the cal culated maximum

tensile stress exceeds about 0-3 I , then cracking is likely to occur. To ensure crack control

in such aregion, the calculated increment of tensile steel stress, which occurs asthe load is
increased from its value when the extreme fibre concrete stress is zero up to the maximum
service load, should be less than about 150 MPa (AS 3600-1988). In addition, the centre-to-
centre spacing of bonded reinforcement should not exceed twice the slab thickness or 500 mm,
whichever is smaller. Compare this with the requirements for beams, viz. amaximum tensile
steel stressincrement of 200 MPaand a maximum steel spacing of only 200 mm. In the
Canadian code (CAN3 1984), the minimum amount of bonded non-prestressed reinforcement
required for crack control in prestressed slabs in regions where the maximum cal culated

tensile stress exceeds 0-3» Jﬁis givenin Table 11.6.

As has aready been mentioned, flexural cracking in practical prestressed slabs containing
the minimum quantities of bonded reinforcement israrely a problem. In contrast, direct
tension cracking dueto restrained shrinkage and temperature changes frequently leads to
serviceability problems. Thisis particularly so for slabs that are prestressed in one direction
only and slabs that are very lightly stressed in one or both directions. Shrinkage and
temperature induced cracks in regions of low moment or, in the case of one-way slabs, in the
direction of no moment, usually extend completely through the slab and tend to be more
parallel sided than flexural cracks. To control such cracks, several options are available to the
designer. Sufficient prestress may be introduced to overcome the load-independent tension,
adequate quantities of non-prestressed steel may be included to limit the crack width to some
acceptably small value, or a sufficient number of control joints (contraction joints) may be
specified to ensure that al cracking is confined to predefined weakened planes across the slab.
If direct tension cracks are uncontrolled and become excessively wide, waterproofing and
corrosion problems may result, in addition to the obvious aesthetic problems.
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Evidence of direct tension cracking is common in both reinforced and prestressed concrete
dab systems. As an example, consider a one-way slab system with prestress only in the
direction of the span. The applied load is carried across the span to the supporting beams or
walls, while in the orthogonal direction the bending moment in the slab is small. Shrinkage
occurs in both directions and restraint to shrinkage usually existsin both directions. In the
span direction, shrinkage-induced tension may not be sufficient to overcome the prestress. If
cracking does occur, it will be caused by tension induced by both shrinkage and flexure. Such
cracks usually do not extend completely through the slab, but behave like flexural cracks and
are controlled by the bonded flexural reinforcement. In summary, shrinkage in the direction of
the span causes small increases in the widths of the existing flexural cracks and may cause
additional flexure-type cracksin the previously uncracked regions. In the direction at right-
angles to the span, there is no prestress and little moment. Restraint to shrinkage may cause
tension over the entire slab thickness and result in afew widely spaced cracks which penetrate
completely through the slab. If it is decided not to prestress in this direction or not to
introduce control joints, a significant quantity of non-prestressed reinforcement is required to
ensure that the cracks do not become unserviceable.

If the amount of reinforcement which crosses a direct tension crack is too small, yielding of
the steel will occur and awide, unserviceable crack will result. AS 3600—-1988 specifies the
minimum quantity of non-prestressed steel required to control cracking in adirect tension
situation, i.e. when shrinkage and temperature effects are unaccompanied by bending. These
requirements are summarized below.

Where the ends of adlab are unrestrained and the slab is free to expand or contract in the
secondary direction (i.e. little or no induced tension), the minimum area of non-prestressed
reinforcement in this direction is

_ (0.7 = 0cp)bD
(Ashmin = =5 (11.14)

where ¢, is the average prestress (P/A) in the direction under consideration. For aslab that is
not prestressed in this direction (i.e. ¢.,=0) and with reinforcement of yield stress f,=400 MPa,
Equation 11.14 indicates a minimum reinforcement ratio (4,/bD) of 0.0018.

Where the ends of aslab arerestrained and the dab is not free to expand or contract (asis
usually the case in most practical situations), the minimum area of reinforcement in the
restrained direction depends on the exposure conditions. For severe exposure conditions (such
asamarine or aggressive industrial environment),

(2.5 —0cp)bD
{A:}mfn = f}' (1115)
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which corresponds to areinforcement ratio of 0.0063 for 400 MPa steel, when the prestressis
zero. For moderate exposure conditions, in situations where a strong degree of control over
cracking isrequired, (A4s)min IS given by Equation 11.15. This would apply for examplein the
case of an exposed roof slab (not located in amarine or industrial environment), where water
tightness is a design requirement, or any other slab in which visible cracking must be avoided.
For moderate exposure conditions, where a moderate degree of control over cracking is
required,

- [1 A = Urn]bﬂ
(Ashmin === (11.16)

which corresponds to areinforcement ratio of 0.0035 for 400 M Pa steel when 6.,=0. This
would apply for example in the case of an interior slab in which visible cracking could be
tolerated or an interior slab which was later to be covered by afloor covering or ceiling.

11.6 Long-term deflections

Asdiscussed in Chapter 3, long-term deflections due to creep and shrinkage are influenced by
many variables, including load intensity, mix proportions, slab thickness, age of dlab at first
loading, curing conditions, quantity of compressive stedl, relative humidity, and temperature.

In most prestressed slabs, the majority of the sustained load is balanced by the transverse
force exerted by the tendons on the slab. Under this balanced load, the time-dependent
deflection will not be zero because of the restraint to both creep and shrinkage offered by
eccentrically located bonded reinforcement. The use of a simple deflection multiplier to
calculate long-term deflection is not, therefore, always satisfactory.

In Section 2.5, guidelines for determining both the final creep coefficient for concrete, ¢'*,

and the final shrinkage strain, f;i, were presented and a procedure for the determination of the
long-term behaviour of a partially prestressed section in bending was outlined in Section 3.6.3.
Alternative and more approximate expressions for estimating the creep and shrinkage
components of the long-term deflection of beams were given in Section 3.8.3. Similar
equations for slab deflection are presented below.

For uncracked, prestressed concrete slabs, which usually have low quantities of steel, the
increase in curvature due to creep is nearly proportional to the increase in strain due to creep.
Thisisin contrast with the behaviour of acracked, reinforced section. The final creep induced
deflection v, may therefore be approximated by setting 0=1.0 in Equation 3.76. That is,

"
Uer =@ Usus

(11.17)
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where vy iS the short-term deflection produced by the sustained portion of the unbalanced
load. Typical valuesfor the final creep coefficient for concrete in post-tensioned slabs are
¢*=2.5-3.0

The average deflection due to shrinkage of an equivalent slab strip (in the case of edge-
supported slabs) or the wide beam (as discussed in Section 11.4.6 for the case of flat slabs)
may be obtained from Equation 3.77 as

"
Ush = Bxsh Lez

(11.18)

where Xshis the average shrinkage-induced curvature, L, is the effective span of the slab strip
under consideration, and /5 depends on the support conditions and equals 0.125 for asimply
supported span, 0.090 for an end span of a continuous member, and 0.065 for an interior span
of a continuous member.

The shrinkage curvature * shi's non-zero wherever the eccentrici ty of the steel areais non-
zero and varies aong the span as the eccentricity of the draped tendons varies. A simple and
very approximate estimate of the average shrinkage curvature for afully prestressed slab,
which will usually produce reasonable resultsis

L

0.3¢&;
D (11.19)

"
MNih =

For a cracked partially prestressed slab, with significant quantities of conventional
reinforcement, the value of Xshis usual ly at least 100% higher than that indicated above.

11.7 Worked examples

11.7.1 Example 11.3—edge-supported slab

The deflection at the mid-span of the exterior panel of the 180 mm thick floor slab shown in

Figure 10.9 and analysed in Example 10.1 isto be calculated. The slab forms the floor of a
retail store and is post-tensioned in both directions using the draped parabolic cable profiles

shown in Figure 10.9¢c and 10.9d. For the purpose of this example, the average effective
prestress after losses in each direction is assumed to be 400 kN/m. The slab supports a dead
load of 1.5 kPain addition to its own self-weight and the liveload Qis5.0 kPa. Asin

] »
Example 10.1, J¢=35MPaypy £ =30000MPa, ¢*=2.5, &k =0.0005 and £,=195 000
MPa.

Calculate slab loads

Dead load, G=(24x0.18) + 1.5=5.8 kPa
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In accordance with the discussion in Section 1.7.5 concerning load combinations for the
serviceability limit states, the fraction of the live load which is considered to be appropriate
for short-term service load calculations for aretail storeistaken to be

Vs = 0.6 (AS 3600-1988) The fraction of the live load which is considered to be sustained or
permanent is taken to be ¥ = 0.3 (AS 3600-1988)

Calculate the balanced load
In thex-direction, the tendon drapeis 4,=79.5 mm (as calculated in Example 10.1), and the
transverse force exerted by the x-direction tendons on the slab is obtained from Equation 10.3:

8k Py _ 8 % 0.0795 x 400
Lr " 97

=3.14 kN/m?

Wpx =

In the y-direction, the drape is #,=87 mm and the associated transverse force is

Wep = 8hy Py _ & x 0.087 x 400

_ i
2 2 = 1.93 kN/m

Thetotal transverse force due to the curvature of the tendons in each direction (the balanced
load) istherefore

Wp= Wy + wpy=5.1 kPa

Estimate maximum moment due to unbalanced load

The maximum unbalanced transverse |oad to be considered for short-term serviceability
caculationsis

Wy =G+ Wp+ YsQ = 5.8 — 5.1 + (0.6 X 5.0) = 3.7 kPa

Under this unbalanced |oad, the maximum moment occurs over the beam support CD. Using
the moment coefficients for edge-supported slabs in Table 10.2, the maximum moment is

Mcep= —0.058x3.7%x9%= —17.4 kNm/m

Check for cracking
In the x-direction over support CD, the concrete stresses in the top and bottom fibres are

or= — %wnﬁ%= -2.22+4+3.22= +1.00 MPa (tension)
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P, M
o= = —f+ f =-222-3.22= -544MPa (compression)

where 4 isthe area of the gross cross-section per metre width (=180x 10° mm2/m) andZ isthe
section modulus per metre width (=5.4x10° mm?m).
As can be seen, both tensile and compressive stresses are low. Even though the moment

used in these calculationsis an average and not a peak moment, cracking is unlikely and
deflection calculations may be based on the gross moment of inertia, 7,

_ 180% x 1000

I
¥ 12

=486 % 10° mm*/m

Estimate maximum total deflection

Using the crossing beam analogy of Section 11.4.3, the unbalanced load carried by the
analogous beam in the x-direction is obtained from Equation 11.9:

124

M= % 9% + 12°

x3.7=0.61 x 3.7 = 2.27 kN/m

and the corresponding short-term deflection at mid-span of this 1 m wide propped cantilever
is approximated by

2w Lt 2 2.27 x 9000°

= = =5.3 mm
V= 384E.1, 384 30000 x 486 x 10°

The sustained portion of the unbalanced load on the analogous beam is
term deflectionis

Vsus = ;_T:';_:x 5.3=3.1 mm
Assuming a creep coefficient of @ f= 2.5 the creep-induced deflection may be estimated
using Equation 11.17:

Uer = 25x31=77mm

If the final shrinkage strain is assumed to be & = 0.0005, the average shrinkage-induced
curvature is estimated using Equation 11.19:

0.3 x 0.0005

=0.83x 10" mm™"
180

-
Myh =
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and the shrinkage-induced deflection is approximated using Equation 11.18:
vsh =0.090 % 0.83 x 107° x 9000 = 6.1 mm
The maximum total deflection of the analogous beam is therefore
Utor = U+ Ugr + Uspy = 19.1 mm

The deflection at the centre of the slab panel will be approximately 30% |ess than this owing
to the torsional stiffness of the slab which has been ignored in the above analysis. The
maximum panel deflection is therefore approximated by

19.1
Viar = -]‘3' = 14.7 mm

It is of value to examine the slab thickness predicted by Equation 11.3 if the limiting
deflection is taken to be 14.7 mm. For this edge-supported slab panel, the slab system factor is
obtained from Table 11.4 as K=3.07, the unbalanced load w,=3.7 kPa, and the sustained part
of the unbalanced load is w,;=0.7+1.5=2.2 kPa. The minimum slab thickness required to limit
the total deflection to 14.7 mm is obtained from Equation 11.3:

9000 (14.7/9000) x 1000 x 30 0007 _
D S 3'{”[ 37+ (%22 s1.6
D =174 mm

In this example, Equation 11.3 is dightly unconservative because the unbalanced sustained
load is small and the creep and shrinkage deflections are not completely accounted for by the
assumed deflection multiplier. Nevertheless, it can be seen that avery useful initial estimate
of dlab thickness can be obtained by using Equation 11.3 and heeding the discussion in
Section 11.3.3.

11.7.2 Example 11.4—flat slab

The deflection of an interior panel of a 200 mm thick flat slab in alibrary isto be checked. A
plan of the slab panel is shown in Figure 11.6. Drop panels 3400x2700x100 mm thick are
located above each column support, as shown. All columns are 400x400 mm in plan. The slab
supports a dead load of 0.5 kPa, in addition to self-weight, and alive load of 8.0 kPa. The
average effective prestressin the y-direction is 640 kN/m and in the
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adjacent panel I
centrelines

:"""__l m===7 X
. mc mblL

Figure 11.6 Plan of flat slab of Example 11.4.

x-direction 410 kN/m. The post-tensioned tendons in each direction are bonded to the
surrounding concrete and have been designed to balance atotal load of 6.0 kPa. The concrete
and steel properties are as for Example 11.3.

Calculate slab loads
The dead load is

G=(24x02)+05=53kPa

For alibrary, the service load factors specified in AS 3600-1988 are ¥s = 0-8and ¥i=10.5
and live loads for short- and long-term serviceability calculations are therefore ¥:@ = 6-4ipg
and V@ =4.0kpy respectively.

Estimate unbalanced load

The maximum short-term transverse load to be considered is
we=G + Wy + ;0 =5.3—-6.0+(0.8x8.0)=5.7 kPa

The wide beam method (Section 11.4.6) is used here to calculate slab deflection. The wide
beams in each direction are bounded by the panel centreline and the centreline of the adjacent
panel. Under the unbalanced load, the moment diagrams for the wide beams in each direction
were calculated using the direct design method (see Section 10.6.4) and are shown in
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363 kNm — (L65 M, = 363 kNm
M. = 57x8x099

- - L g

=559 kNm

N

0.35M, =196 kNm

(a) Moments in wide beam in y-direction (8m wide)
centred on column line AB.

289 kNm (.65 M, =289 kNm
_ 57x10x79%
8

=445 kNm

_UESMd -lﬁﬁﬂh’m

(b) Moments in wide beam in x-direction (10m wide)
centred on column line AC.

Figure 11.7 Moment diagrams for flat slab panel of Example 11.4.

Figures 11.7a and b. The effective spansin the short and long directions are 7.9 and 9.9 m,
respectively (i.e. clear span plus depth).

Check for cracking

(a) Negative moment in column strip in y-direction The cross-section of the column strip in
the y-direction is shown in Eigure 11.8a, together with the section properties. The longitudinal
prestress in the column strip is P,= 4x640=2560 kN. Taking 75% of negative moment in
column strip gives

My=-075%363= -272kNm
and thetensile stress in the top fibreis

oo Pr_Maz_  2560x10° -272x10°x137.9

A I, 1070x10°° ~  7.43x10°

= +2.66 MPa < 0.5[f;

(b) Negative moment in column strip in x-direction The longitudinal prestressin the
column strip shown in Figure 11.8b is P,=4x410=1640 kN. The
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(a) Y-direction column strip: -ve moment region.
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(b) X.direction column strip: -ve moment region.
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b — T A =800 x 10° mm?
e 4000 - Iy =2,67%10° mm*

(¢) Y-direction column strip: +ve moment region.
Figure 11.8 Cross-sectional properties of column stripsin Example 11.4.
column strip moment is
My=-075x280=~<21TkNm
and the top fibre tensile stressis given by

o= — Dx_Maz_1640x10° ~217x10°x 144.7
! Iy  1140x% 10° 8.32% 10°

= +2.33 MPa < 0.5[f/
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Although the average tensile stresses in the column strips are less than the tensile strength of
concrete, some local cracking over the column support is likely since peak moments are much
higher than average values. A mesh of non-prestressed reinforcement should be provided over
the drop panel to ensure crack control. However, the calcul ated top fibre tensile stresses
indicate that cracking will not be extensive and is not likely to reduce the stiffness of the
column strip significantly. The area of non-prestressed steel in each direction may be obtained

from Table 11.6:

Agp = 0.00045 x 300 x 9600 = 1296 mm*
Asex = 0.00045 x 300 x 7600 = 1026 mm?
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(c) Positive moment in column strip in y-direction If 60% of the positive moment in the y-
direction is assigned to the column strip, then

My,=06x196=118kNm

and the tensile stress in the bottom fibre of the cross-section shown in Figure 11.8cis

Py Myz_ _2560x10° 118 x 10°X 100
A I 800 x 10° 2.67 % 10°

Op = —

= +1.22 MPa < 0.5

By inspection, the maximum tensile stress at mid-span in the column strip in the x-directionis
also small. Cracking is therefore unlikely to reduce the dlab stiffness significantly and
deflections may be cal cul ated using gross section properties.

Short-term deflections

The small upward deflection caused by eccentricity of prestress at the drops is not included in
the following calculations. Consider a wide beam in the y-direction (similar to that described
in Section 11.4.6). The average moment of inertia of the column strip /.., is taken asthe
weighted average of 7at the supports (7.43x10° mm?) and at mid-span (2.67x10° mm). In
accordance with the weighting procedure outlined in the Commentary to ACI 318-83,

Teor = (0.7 x 2.67 x 10%) + (0.3 x 7.43 x 10°) = 4.10 % 10° mm*

The middle strip is 4000 mm wide and 200 mm deep, and therefore 7,,,,=2.67x10° mm*. The
moment of inertia of the wide beam is thus

Tveam = Lot + fmig = 6.77 x 10° mm*

The maximum average deflection v,,,. a mid-span of the wide beam occurs when adjacent
spans are unloaded. In accordance with the discussion in Section 11.3.2 concerning pattern
loading, the appropriate deflection coefficient is f=2.6/384 and the average deflection of the
wide beam may be taken as

v :E){WHL"*: 2.6 x 8 % 5.7 % 9900* - 14.6 mm
Y 3847 Eclpeam 384 % 30000 x6.77 x 10°

Taking 70% of moment in the column strip, the def lection of the column
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strip is obtained from Equation 11.12:

6.77
=0.7x 14.6 x — = 16.
colf x 410 16 2 mm

-lrMm

Uy = D+-'rt.l'q|._-‘f_}r

From Equation 11.13, the middle strip deflection in the y-directionis

umyzﬂ.3><14.6xﬂ=ll.l mm

2.67

Similarly, considerations of the wide beam in the x-direction give 1.,,=4.37x10° mm?*,
1,,,;=4.00x10° mm?*, ,.,,,,,=8.37x10° mm?, and

Ver=8.0mm and va:=3.8mm

The maximum short-term deflection at the mid-point of the panel due to the unbalanced |oad
is obtained by adding the y-direction column strip deflection to the x-direction middle strip
deflection (Equation 11.11):

Umgy = U;}l + Uz = Ié.g + 3.3 = 20.? mim

Long-term deflections
The sustained portion of the unbalanced load is

Wys = = 0.7+ (0.5 x 8) =3.3 kPa

The short-term mid-panel deflection produced by the sustained unbalanced load is therefore

s

3. _

U:ﬂ; - 5?‘ b4 2{]-? — 12.0 mm

With a creep factor of ¢* = 2.5, the creep-induced deflection is obtained from Equation
11.17:

Ver=2.5% 12.0= 30.0 mm

If the final shrinkage strain is &sk = 0.0005 then from Equation 11.19, the shrinkage curvature
in each directionis

2= 23X00003_ 6 55 10-¢ mm !
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and using Equation 11.18, the shrinkage-induced deflection at mid-panel is the sum of the
shrinkage deflection in each direction:

ven = 0.065 % 0.75 x 107¢ x (10 000* + 8000?) = 8.0 mm
Therefore, the maximum total deflection at the mid-panel is given by
Utor = Umax + Uer + Usy = 20.7 X 30.0 + 8.0 = 58.7 mm
which is probably unserviceable for thisrelatively heavily loaded floor system.

If the total deflection limit for this slab was taken to be 58.7 mm, the slab thickness
predicted by Equation 11.3is

— < 11xL.9 =47.0

9900 (58.7/9900) % 1000 x 30 mﬂ] 13
D 57+(3x3.3)

which gives
D2z210mm

For this case, the prediction made by Equation 11.3 is slightly conservative in comparison
with the deflection calculation procedure.
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12
Compression and tension members

12.1 Types of compression members

Many structural members are subjected to longitudinal compression, including columns and
wallsin buildings, bridge piers, foundation piles, poles, towers, shafts, and web and chord
members in trusses. The idea of applying prestress to a compression member may at first
seem unnecessary or even unwise. In addition to axial compression, however, these members
are often subjected to significant bending moments. Bending in compression members can
result from avariety of load types. Gravity loads on floor systems induce momentsin
columns by frame action. Lateral oads on buildings and bridges cause bending in columns
and piers and lateral earth pressures bend foundation piles. Even members that are intended to
be axially loaded may be subjected to unintentional bending caused by eccentric external
loading or by initial crookedness of the member itself. Most codes of practice specify a
minimum eccentricity for use in design. All compression members must therefore be designed
for combined bending and compression.

Prestress can be used to overcome the tension caused by bending and therefore reduce or
eliminate cracking at service loads. By eliminating cracking, prestress can be used to reduce
the lateral deflection of columns and piles and greatly improve the durability of these
elements. Prestress also improves the handling of slender precast members and is used to
overcome the tension due to rebound in driven piles. The strength of compression membersis
dependent on the strength of the concrete and considerable advantage can be gained by using
concrete with high mechanical properties. Prestressed columns and piles are therefore
commonly precast, in an environment where quality control and supervision are of ahigh
standard.

If astructural member is subjected primarily to axial compression, with little or no bending,
prestress causes a small reduction in the load-carrying capacity. For most prestressed concrete
columns, the level of prestressis
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usually between 1.5 and 5 MPa, which islow enough not to cause significant reductions in
strength. When the eccentricity of the applied load is large and bending is significant,

however, prestress results in an increase in the moment capacity, in addition to improved
behaviour at service loads.

12.2 Classification and behaviour of compression members

Consider the pin-ended column shown in Figure 12.1. The column is subjected to an external
compressive force P applied at an initial eccentricity e,. When P isfirst applied, the column
shortens and deflects laterally by an amount ;. The bending moment at each end of the
column is Peo, but at the column mid-length the moment is P(eo+9;). The moment at any
section away from the column ends depends on the lateral deflection of the column, whichin
turn depends on the column’s length and flexura stiffness. Theinitial moment Pe, is called
the primary moment and the moment caused by the lateral displacement of the column PJ; is
the secondary moment. Asthe applied load P increases, so too does the lateral displacement o..
Therate of increase of the secondary moment Po; is therefore faster than the rate of increase
of P. Thisnon-linear increase in the interna actionsis brought about by the change in
geometry of the column and isreferred to as geometric non-linearity.

For areinforced or prestressed concrete column under sustained loads,

P P P
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Figure 12.1 Deformation and moments in a slender, pin-ended column.
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the member suffers additional lateral deflection due to creep. This time-dependent
deformation leads to additional bending in the member, which in turn causes the column to
deflect still further. During a period of sustained loading, an additional deflection A develops
and the resulting gradual increase in secondary moment with time P(o,+A0d) reduces the factor
of safety.

Columns are usualy classified in two categories according to their length or slenderness.
Short (or stocky) columns are compression membersin which the secondary moments are
insignificant, i.e. columns that are geometrically linear. Long (or slender) columns are
geometrically nonlinear and the secondary moment is significant, i.e. the lateral deflection of
the column is enough to cause a significant increase in the bending moment at the critical
section and, hence, areduction in strength. For given cross-section and material properties,
the magnitude of the secondary moment depends on the length of the column and its support
conditions. The secondary moment in along column may be as great as or greater than the
primary moment, and the load-carrying capacity is much less than that of a short column with
the same cross-section.

The strength of a stocky column is equal to the strength of its cross-section when a
compressive load is applied at an eccentricity eo Strength depends only on the cross-sectional
dimensions, the quantity and distribution of the steel reinforcement (both prestressed and non-
prestressed), and the compressive strengths of the concrete and the steel. Many practical
concrete columns in buildings are, in fact, stocky columns. Ultimate strength analysis of a
prestressed concrete column cross-section is presented in Section 12.3.

The strength of aslender column is also determined from the strength of the critical cross-
section subjected to an applied compressive load at an eccentricty (eo+d). The calculation of
secondary moments (Pd) at the ultimate limit state and the treatment of slenderness effectsin
design are discussed in Section 12.4. Many precast, prestressed compression members, as
well as some in situ columns and piers, fall into the category of slender columns.

For very long columns, an instability or buckling failure may take place before the strength
of any cross-section is reached. The strength of avery slender member is not dependent on the
cross-sectional strength and must be determined from a non-linear stability analysis (whichis
outside the scope of this book). A very slender member may buckle under arelatively small
applied load, either when the load isfirst applied or after a period of sustained loading. The
latter type of instability is caused by excessive lateral deformation due to creep and is known
as creep buckling. Upper limits on the slenderness of columns are usually specified by codes
of practice in order to avoid buckling failures.



12.3 Cross-sectional analysis—compression and bending

12.3.1 The strength interaction diagram
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The ultimate strength of a prestressed concrete column cross-section in combined bending and
uniaxial compression is calculated as for a conventionally reinforced concrete cross-section.
Strength is conveniently represented by a plot of the axial load capacity N, versus the moment
on the section at ultimate. This plot is caled the strength interaction curve.
A typical strength interaction curveis shown in Figure 12.2 and represents the failure line
or strength line. Any combination of axial force and bending moment applied to the column

cross-section that falls inside the
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Figure 12.2 A typical strength interaction curve.
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interaction curve is safe and can be carried by the cross-section. Any point outside the curve
represents a combination of axial force and moment that exceeds the strength of the cross-
section. Depending on the properties of the cross-section and the relative magnitudes of the
axial force and bending moment, the type of failure can range from compressive, when the
moment is small, to tensile or flexural, when the axial forceis small and bending
predominates.

Severa critical points are identified on the strength interaction curve in Figure 12.2. Point 1,
on the vertical axis, isthe point of axial compression (zero bending), and the strength is Nui.
The cross-section is subjected to a uniform compressive strain, as shown. Point 2 represents
the zero tension point. The combination of axial force Nu, and moment Nuoe, a point 2 (when
combined with the prestrain caused by prestress) produces zero strain in the extreme concrete
fibre. The extreme fibre compressive strain at failureis ¢... Between points 1 and 2 on the
curve the entire cross-section isin compression.

When the eccentricity of the applied load is greater than e,, bending causes tension over
part of the cross-section. Point 3 is known as the balanced failure point. The strain in the
extreme compressive fibreis ¢, and the strain in the tensile steel isthe yield strain ¢,(=0.2%
offset). The eccentricity of the applied load at the balanced failure point is e3(=e»). When a
cross-section contains both non-prestressed and prestressed tensile steel with different yield
strains and located at different positions on the cross-section, the balanced failure point is not
well defined. Point 3 is usually taken as the point corresponding to astrain of ¢, in the steel
closest to the tensile face of the cross-section and is usually at or near the point of maximum
moment capacity. At any point on the interaction curve between points 1 and 3, the tensile
steel has not yielded at ultimate and failure is essentially compressive. Failures that occur
between points 1 and 3 (when the eccentricity isless than ¢;) are sensibly known as primary
compressive failures.

Point 4 is the pure bending point, where the axial forceis zero, and point 5 is the point
corresponding to direct axial tension. At any point on the interaction curve between points 3
and 5, the capacity of the tensile steel (or part of the tensile steel) is exhausted, with strains
exceeding the yield strain, and the section suffers aprimary tensile failure.

Any straight line through the origin represents aline of constant eccentricity called a
loading line. Two such lines, corresponding to points 2 and 3, are drawn on Figure 12.2. The
slope of each loading lineis 1/e. When amonotionically increasing compressive force N is
applied to the cross-section at a particular eccentricity, e;, the plot of N versus M(=N e)
follows the loading line of slope Le; until the strength of the cross-section is reached at the
point where the loading line and the interaction curve intersect. If the eccentricity of the
applied load isincreased, the loading line
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becomes flatter, and the strength of the cross-section at ultimate N, is reduced.

The general shape of the interaction curve shown in Figure 12.2 istypical for any cross-
section that is under-reinforced in pure bending (i.e. any cross-section in which the tensile
steel strain at point 4 exceedsthe yield strain). A small increase in axial compression
increases the internal compressive stress resultant on the section but does not appreciably
reduce the internal tension, thus increasing the moment capacity, asis indicated by the part of
the interaction curve between points 4 and 3.

12.3.2 Ultimate strength analysis

Individual points on the strength interaction curve can be calculated using an ultimate strength
theory, similar to that outlined for pure bending in Section 4.3. The analysis described below
is based on the assumptions listed in Section 4.3.1 and the idealized rectangular stress block
specified in AS 3600-1988 (and in ACI 318-83) which were presented in Section 4.3.2. At
any point on the interaction curve between points 2 and 4, the extreme fibre concrete
compressive strain at failureis taken to be &,=0.003, in accordance with the above two codes.
For axial compression at point 1, ACI 318-83 specifies ¢.,,=0.003, whilst AS 3600 suggests
that the maximum uniform strain should be taken as only 0.002, since thisis closer to the
strain at failure of plain concrete subjected to monotonically increasing compressive |oad.

Calculation of the ultimate moment M, in pure bending (point 4 on the interaction curve)
was discussed in Chapter 4. Other points in the strength interaction curve (between points 4
and 2) may be obtained by successively increasing the depth to the neutral axis and analysing
the cross-section. With the extreme fibre strain equal to 0.003, each neutral axis position
defines aparticular strain distribution which corresponds to a point on the strength interaction
diagram. The strain diagrams associated with points 2, 3, and 4 are also shown in Figure 12.2.

To define the interaction curve accurately, relatively few points are needed. In fact, if only
points 1, 2, 3, and 4 are determined, a close approximation can be made by passing a smooth
curve through each point, or even by linking successive points together by straight lines. Such
an approximation is often all that is required in design.

Consider the rectangular cross-section shown in Figure 12.3a, with overall dimensions D
and b. The section contains two layers of non-prestressed reinforcement of areas 4, and 4,
and two layers of bonded prestressing steel 4,,; and 4,,,, as shown. A typical ultimate strain
diagram and the corresponding idealized stresses and stress resultants are illustrated in
Figures 12.3b and ¢, respectively. These strains and stresses correspond to a resultant axia
force N, at an eccentricity e measured from the plastic centroid
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Figure 12.3 Ultimate stresses and strains on a cross-section in combined compression and uniaxial
bending.

of the cross-section (as shown in Figure 12.3d). Longitudinal equilibrium requires that

Nu=Cc+Cy - Tpl - sz ~Ta
(12.1)

and moment equilibrium gives

M=N, e= Cf@- "*’,f") + -::,1@- dﬂ) - Tpl@- dp.)

+ Tpl(dp = %?) + T2 (ﬁ‘si"‘ %}

Each of the internal forces can be calculated readily from the strain diagram. The magnitude

of the compressive force in the concrete C. is the volume of the rectangular stress block, and
isgiven by

(12.2)

Ce=0.85 fiv dnb.
(12.3)
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The magnitude of the strain in the compressive non-prestressed steel 4,1 is

.. _ 0:003 (d, - di)
= d (12.4)

and the compressive forcein A, is

C“=A:IE'::]E: if £ < & {zf_,.f.E—,}

(12.5)

=AJ|...|G' if Eil..-}-ay

The strain in the tensile non-prestressed steel 4, is

6, = 0:003 (ds2 = dn)
' dy (12.6)
and theforcein A, is
Ts... =z A:ZE]_IE; ]-f €52 = Ey

(12.7)

:ASZI}' if f!lgfy

To determine the strain in the prestressing steel at ultimate, account must be taken of the large
initial tensile strain in the steel ¢, caused by the effective prestress. For each area of
prestressing stedl,

{Pe}pl [-P:.]EZ
= aie d =
EPCI Ap]Ep an EPCI AFZEP (128)

In Figure 12.3Db, it is assumed that the prestressing forcesin 4,,; and 4,,, are such that the
effective prestressis axial, producing uniform compressive strain, ¢, as shown. If P, isthe
total effective prestressing force acting at the centroidal axis, then the magnitude of & is

Pf' Ff
(A + 1Az + AJE. . [(n—- 1)A; + Aj)Ec (12.9)

E":

where n isthe modular ratio E/E. and 4. and A, are the concrete area and gross cross-
sectional area, respectively.

The changesin strain in the bonded prestressing tendons due to the application of N, at an
eccentricity e may be obtained from the strain
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diagram and are given by

_ 0.003(ds = dp1)
Ao =g et (12.10)

0.003(dpz — da)
d, T &ee2 (12.11)

Agp: =

The final strain in each prestressing tendon is therefore

Eput = Epe1 — ﬁ.l‘:}ﬂ and Epuz = Eper + .ﬁapz
(12.12)

Thefina stressin the prestressing tendons o,,.1 and g,,2 may be obtained from a stress-strain
curve for the prestressing steel, such as the curve shown in Figure 2.13. If the strain in the
prestressing steel remainsin the elastic range (and on the compressive side of the cross
section it does), then

Opu = Epubp ( £ Opy) ( )
12.13

Theforcesin the tendons at ultimate are

Tpl = Epn|!‘qp1 and sz = ﬂﬂzApz
(12.14)

With the internal forces determined from Equations 12.3, 12.5, 12.7, and 12.14, the ultimate
compressive force N, is obtained from Equation 12.1 and the eccentricity e is calculated using
Equation 12.2. The resulting point N,, M(=N,e) represents the point on the strength
interaction curve corresponding to the assumed strain distribution.

When the cross-section is subjected to pure compression (point 1 on the interaction curve),
the eccentricity is zero and the strength is given by

Nui = Ce + Asfy — Ap10put — Ap20pu2
(12.15)

where Cc=0.85:Db 4 isthetotal areaof non-prestressed steel, and 0,1 and o,,,, are
obtained from the final strain in each prestressing tendon, which isin the elastic range.
Therefore,

Opu = Ep(Epe — Ecu + Ece) (12.16)

Example 12.1



The critical points on the strength interaction curve of the prestressed concrete column cross-
section shown in Figure 12.4a are to be calculated. Stedl quantities, prestressing details and

material properties are as follows: 4ua=4,2=2250 mm?, 4,1=Ap>=1000 mnv*; E,=200x10°
MPg;
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Figure 12.4 Cross-sectional details and idealised stress-strain curve for tendons.

1,=400 MPg; Je=40MPa; E,=32000 MPa; and from Equation 4.2, y=0.766. The properties of
the prestressing steel are taken from the idealized stress—strain relationship shown in Figure

12.4b. Thetotal effec tive prestressis P.~2400 kN and the effective strain in the prestressing
steel is

1200
e = 195 % 10°

The magnitude of the averageinitia strain in the concrete dueto P, is calculated using
Equation 12.9:

_ 2400 % 10°
~ [(5.25 x 4500) + (600 x 800)] x 32000

o = 0.000149

Point 1: Pure Compression (e=0)
The compressive force carried by the concrete in uniform compression is

C. = 0.85£.Db = 0.85 x 40 x 800 x 600 x 10™* = 16320 kN
and, from Equation 12.16, the stress in the prestressing steel is

Opw = 195 x 10°(0.00615 — 0.002 + 0.000149) = 838 MPa

Note that the value of ¢, specified in AS 3600—1988 for pure compression is used here. The
strength of the cross-section in axial compression is given by Equation 12.15:

N1 = 16320 + (4500 x 400 x 10~ )
—~ (838(1000 + 1000) x 10~°] = 16440 kN
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Point 2: Zero tension
For the case of zero tension, d,=D=800 mm and Equation 12.3 gives

Ce=0.85 x40 x 0.766 x 800 x 600 x 10™> = 12501 kN
From Equation 12.4,

_ 0.003(800 - 70)
800

=0.0028 > & (=0.002)

gy

The compressive non-prestressed steel has yielded, and from Equation 12.5,
Ci1 = 2250 x 400 x 107 * = 900 kN

The strain in the bottom layer of non-prestressed stedl is given by Equation 12.6,

0.003(730 — 80O)
€2 = = —0.000263
: 800
and, from Equation 12.7,
Ti2 = 2250 % —0.000263 x 195000 x 10™* = ~ 115 kN (compressive)

The changein strain at each level of prestressing steel is compressive and given by Equations
12.10 and 12.11:

0.003(800 — 140)

—0.000149 = 0.
800 00149 = 0.00233

.&Ep] =

0.003(660 — 800)
800

+ 0.000149 = ~0.000376

AEp: =

and the final strainsin the prestressing tendons are obtained from Equations 12.12:

epuy = 0.00615 — 0.00233 = 0.00382

Both strains are in the elastic range and the forces in the tendons are
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(Equations 12.15 and 12.16)
Tp) = 0.00382 x 195000 x 1000 x 10™% = 745 kN
Tpz = 0.00577 x 195000 x 1000 x 10™* = 1126 kN
The resultant compressive force at ultimate is obtained from Equation 12.1:
Niz=12501 +900+ 115 - 745 - 1126=11 645 kN
The ultimate moment capacity for the case of zero tension is calculated using Equation 12.2:

_ 0.766 x 800

M;=Ngae: = [125&1(4{1{1 > )+900{400~7m-745{4m-14m

+ 1126(660 — 400) — 115(730 — 4[}[}}] x 107>= 1528 kNm
Therefore, the eccentricity corresponding to point 2 is

M
= 2

=131.2 mm
wd

Point 3: The balanced failure point
Point 3 corresponds to first yielding in the non-prestressed tensile stedl, i.e. £,,=0.002 and,
therefore, the force in the tensile non-prestressed steel is

Tz = 2250 % 400 x 107" = 900 kN

The depth to the neutral axis at point 3 istherefore

0.003

dn = 57003 + 0.002

ﬂ!’;z = 438 mm

and the compressive force in the concrete is (Equation 12.3)
Ce = 0.85 x 40 x 0.766 x 438 x 600 x 107 = 6844 kN

With d,=438 mm, the strain in the non-prestressed compressive reinforcement is
£,1=0.0025>¢, and therefore,

Cﬁ =9ﬂﬂ kN
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From Equations 12.10, 12.12, 12.13, and 12.14, the force in the top prestressing steel is

Tpr = Ap [fpr - 0.003(dy — dp:) + Frf]Ep

dn

0.003(438 — 140)
438

= 1mn[e.nnﬁ15 - + u.mnma] 195000 % 10~ % = 830 kN

Equations 12.11 and 12.12 give

0.003(dpz — dn)

dﬂ + Eee = ﬂﬂﬂ?ﬁl

Epu2 = Epe +

which isjust greater than the proportional limit. From Figure 12.4b,

(ﬂ.ﬂﬂTEE - 0.00769
Tpuz =

and Equation 12.14 gives
Tpz = 1508 x 1000 x 10™% = 1508 kN
The ultimate strength corresponding to point 3 is obtained from Equations 12.1 and 12.2:
Ny = 6844 + 900 — 830 — 1508 — 900 = 4506 kN
and

0.766 x 438

Mi= Nugaes= [6344(4{1']— 5

) + 900(400 — 70) — 830(400 — 140)
+ 1508(660 — 400) + 900(730 — m:.] x 1073 =2360 kNm

The eccentricity at point 3is

o o 2360%10° o
>~ 4506 x 10°

Point 4: Pure bending

For equilibrium of the section in pure bending the magnitude of the resultant compression
isequal to the magnitude of the resultant tension, i.e. C=T. A trial and error approach to
determine the depth to the neutral axis



indicates that
d,= 1877 mm
The forces in the concrete and the steel are
Ce=0.85 x 40 x 0.766 x 187.7 x 600 x 10~? = 2933 kN

0.003(187.7 - 70)

Cs1 = 2250 x Tk —= % 200 000 x 107% = 847 kN; T = 900 kN;
and
Ty = lDDﬂ[ﬂ.DDﬁlS - ﬂ-m3(1183';-1— 140) u.om149] x 195 000 x 10~

= 1080 kN
From Equations 12.11 and 12.12:

0.003(660 — 187.7)
187.7

Ep2 = [Ehmﬁli + + Dﬂﬂﬂl-ﬁ] =0.01385

and Figure 12.4b indicates that ¢,,2=1800 MPa. Therefore,
Tp: = 1800 kN
Equation 12.1 confirms that
Nus =2933 + 847 — 1080 — 1800 - 900=0
and the ultimate moment is

0.766 x 187.7

M, = [2933 (400 - > ) + 847(400 — 70) — 1080(400 — 140)

+ 1800(660 — 400) + 900730 - 4(.‘!0}] % 1073 = 1726 kNm.

Point 5 Axial tension
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The capacity of the section in tension is dependent only on the steel strength. Therefore,
taking f,=400 MPaand f,=1800 MPa, as indicated in Figure 12.4b, the axial tensile strength is

Nus = A, + Apf, = [(4500 x 400) + (2000 x 1800)] x 10~? = 5400 kN
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Figure 12.5 Strength interaction curve for Example 12.1.

Figure 12.5 shows the strength interaction curve for the cross-section. The design interaction
curve is also shown in accordance with the provisions of AS 3600-1988, as discussed in
Section 12.3.3. In addition, Figure 12.5 illustrates the interaction curve for a cross-section
with the same dimensions, material properties, and steel quantities (both non-prestressed and
prestressed), but without any effective prestress, i.e. P,=0. A comparison between the two
curves indicates the effect of prestress. In Example 12.1, the prestressing steel induced an
effective prestress of 5 MPa over the column cross-section. Evidently, the prestress reduces

the axial load carrying capacity by about 15% (at point 1), but increases the bending strength
of the cross-section in the primary tension region (points 3 to 4).

12.3.3 Design interaction curves

For structural design in accordance with either AS 36001988 or ACI 31883, the design
actions N and M (obtained using the appropriate factored |oad combination for strength as

presented in Section 1.7.3) must lie on or inside the design interaction curve. Thisdesign
curve is obtained



Page 469

by multiplying each point on the strength interaction curve by the strength reduction factor, @.

AS 3600-1988

The strength reduction factor in the primary compression region where N« 2 Nus (j e,
between points 1 and 3) is @ = 0-6_ \When N, <N, (in the primary tension region), the strength
reduction factor is

Ny
=06+ ﬂ.l(l - Nub) (12.17)

and ¢ =0.84 point 4 (pure bending). A minimum eccentricity for the applied load of 0.05D
is specified, where D is the depth of the column in the plane of the bending moment. The AS
3600 design interaction curve for the cross-section analysed in Example 12.1 isdrawn in

Figure 12.5.

ACI 318-83

The ACI 318-83 strength reduction factor for membersin combined compression and
bending is ¢ = 0-75for members with spiral reinforcement and ¢ = 0-7for members with
transverse ties. When the axial load islow, however, ®may be increased linearly to 0.9 as
¢ Nudecreases from &1 Agor N, whichever is smaller, to zero. To ensure aminimum
eccentricity for axially loaded members, the top of the interaction curveis truncated so that
the design strength ¢Mudoes not exceed 9-85¢Nusfor spirally reinforced

[ |
Nﬂ: .
strength interaction curve
= ~
3 b T )
B OSSON, = = spirals ¢ =0.75
i S ties
= 0.800N,, 1 &=0.70
-
< design interaction curves
(N, vs 0 M)
Ny FT—=———————————= N~ ——="
01f Ay {==—=— === ===
09M, M, Moment, M

Figure 12.6 Design interaction curve (ACI 318-83).
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members or 0-80@ Nuifor members containing conventional ties. A typical design interaction
curve, in accordance with ACI 318-83, isillustrated in Figure 12.6.

12.3.4 Biaxial bending and compression

When a cross-section is subjected to axial compression and bending about both principal axes,
such as the section shown in Figure 12.7a, the strength interaction diagram can be represented
by the three-dimensional surface shown in Figure 12.7b. The shape of this surface may be
defined by a set of contours obtained by taking horizontal slices through the surface. A typical
contour is shown in Figure 12.7b. Each contour is associated with a particular axial force, N.
The equation of the contour represents the relationship between M, and M,, at that particular
value of axial force. In AS 3600—1988, the design expression given in Equation 12.18 is
specified to model the shape of these contours. The form of Equation 12.18 was originally
proposed by Bresler (1960) and design charts based on the equation have been calibrated by
Pannell (1963).

|fx I
F A

‘@ |F v
£ +'T':‘?/
—
L {: 4+
¥
(2} Cross-section

{b) Strength interaction surface

Figure 12.7 Biaxia bending and compression.
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If the factored design actions N, M M cand M ;fall inside the design interaction surface (i.e.
the strength interaction surface multiplied by the strength reduction factor, ), then the cross-
section is adequate. According to AS 3600—1988, a cross-section subjected to biaxial bending
should satisfy the following equation,

: G M* Ctn
(tilMux) +(¢Mw) S0 (12.18)

where $Muxand ®Muw gre the design strength in bending cal culated separately about the
major and minor axis, respectively, under the design axial force N, the factored design

moments M+ and My are magnified to account for slenderness if applicable (see Section 12.4),
and «, is afactor which depends on the axial force and defines the shape of the contour, and is
given by

1.TN*

. .. <2,
06N but within the limits 1 € a. <

ap= 0.7+

Biaxia bending is not arare phenomenon. Most columns are subjected to simultaneous
bending about both principal axes. AS 3600-1988 suggests that biaxial bending need not be
considered when the eccentricity about both axesis less than the minimum value (i.e. less
than 0.05 times the column dimension in the direction of the eccentricity), or when the ratio of
the eccentricities e./e, falls outside the range 0.2-5.0. In each of the above situations, the code
concedes that the cross-section can be designed for the axial force with each bending moment
considered separately, i.e. in uniaxial bending and compression.

12.4 Slenderness effects

12.4.1 Background

The strength of a short column is equivalent to the strength of the most heavily loaded cross-
section and, for a given eccentricity, may be determined from the strength interaction curve
(or surface). The strength of along column (or slender column), however, depends not only
on the strength of the cross-section, but also on the length of the member and its support
conditions. A discussion of the behaviour of a slender pin-ended column was presented in
Section 12.2 and the increase in secondary moments due to slenderness effects was illustrated
in Figure 12.1. In general, as the length of a compression member increases, strength
decreases.
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To predict accurately the second-order effects in structures as they deform under load
requires an iterative non-linear computer analysis, which generally involves considerable
computational effort. For the design of concrete compression members, ssimplified procedures
are available to account for slenderness effects and one such procedure is presented here. A
more detailed study of geometric non-linearity and instability in structures is outside the scope
of this book.

The critical buckling load, N., of an axialy loaded, perfectly straight, pin-ended, elastic
column was determined by Euler and is given by

7 El
Ne=—7F7 (12.19)

where L isthe length of the Euler column between the hinges. In practice, concrete columns
arerarely, if ever, pin-ended. A degree of rotational restraint is usually provided at each end
of a column by the supporting beams and slabs, or by afooting. In some columns, translation
of one end of the column with respect to the other may also occur in addition to rotation.
Some columns are compl etely unsupported at one end, such asa

; } :
-—=m‘ B T
- ——
ki, ki, ki,
e
(k=07 (i) 0.T<k< 1.0 ({ii)k=10

{(a) Braced columns

ko 'llllr‘l'
() k=12 (i) k=22 (i) k=22
(b) Unbraced columns

Figure 12.8 Effective length factors, £ (AS 3600—-1988).
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Figure 12.9 Effective lengthsin a braced and an unbraced portal frame.

cantilevered column. The buckling load of these columns may differ considerably from that
given by Equation 12.19.

In general, codes of practice express the critical buckling load of real columnsin terms of
the effective length, kl,. ACl 318-83 defines /, as the unsupported length of a compression
member (and equals L for an Euler column), and & is an effective length factor which depends
on the support conditions of the column. The critical load of a concrete column is therefore

x2EI
Ne= {k‘ru}z (1220)

In structures that are laterally braced, the ends of the columns are not able to trandlate

appreci ably relative to each other, i.e. sidesway is prevented. Most concrete structures are
braced, with stiff vertical elements such as shear walls, elevator shafts, and stairwalls
providing bracing for the more flexible columns. If the attached elements at each end of a
braced column provide some form of rotational restraint, the critical buckling load will be
greater than that of a pin-ended column (given in Equation 12.19), and therefore the effective
length factor in Equation 12.20 isless than 1.0. Effective length factors specified in AS 3600—
1988 for braced columns are shown in Figure 12.8a. The effective length of any column isthe
length associated with single curvature buckling, i.e. the distance between the points of
inflection in the column, as shown in Figures 12.8aand 12.9a. For the column shown in
Figure 12.8a(ii), the supports are neither pinned nor fixed. The effective length depends on the
relative flexural stiffness of the column and the beams and other supporting elements at each
end of the column, and may be calculated readily using end restraint coefficients and effective
length graphs or alignment charts contained in codes of practice (such as ACI 318-83R or AS
3600-1988).
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For columns in unbraced structures, where one end of the column can translate relative to
the other (i.e. sidesway is not prevented), the effective length factor is greater than 1.0,
sometimes much greater, as shown in Eigure 12.9b. The critical buckling load of an unbraced
column is therefore significantly less than that of abraced column. Vaues of & specifiedin
AS 3600-1988 for unbraced columns with various support conditions are shown in Figure
12.8b.

To distinguish between a braced and an unbraced column, ACI 318R-83 suggests that a
braced column is a compression member |ocated within astorey of a building in which
horizontal displacements do not significantly affect the moments in the structure. It is further
suggested that a compression member may be assumed to be braced, if it islocated in a storey
in which the bracing elements (shear walls, elevator shafts, bracing trusses, and other types of
bracing) have atotal stiffness, resisting lateral movement of the storey, at least six times the
sum of the stiffnesses of all the columns within the storey.

In the case of slender prestressed concrete columns, the question arises as to whether the
longitudinal prestressing force P reduces the critical buckling load. In general, a concrete
column prestressed with internally bonded strands or post-tensioned with tendons inside ducts
within the member is no more prone to buckling than areinforced concrete column of the
same size and stiffness, and with the same support conditions. As a slender, prestressed
concrete column displaces laterally, the tendons do not change position within the cross
section and the eccentricity of the line of action of the prestressing force does not change. The
prestressing force cannot, therefore, generate secondary moments. However, if amember is
externally prestressed, so that the line of action of the prestressing force remains constant,
then prestress can induce secondary moments and hence reduce the buckling load. Such a
situation could exist, for example, when amember is prestressed by jacking through an
abutment.

12.4.2 Moment magnification methods

In lieu of adetailed second-order analysisto determine the effects of short-term and time-
dependent deformation on the magnitude of moment and forces in slender structures, codes of
practice specify approximate procedures to account for slenderness effects. Both AS 3600—
1988 and ACI 318-83 use a moment magnifier method to account for slenderness effectsin
columns. BS 8110 (1985) utilizes a similar approach to account for the additional moment
induced in a column due to lateral deflection. In this discussion, the method contained in ACI

318-83 is outlined, athough the notation is changed somewhat to conform with the notation
used elsewhere in the book.

The idea behind moment magnification is described in ACI 318R-1983
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and is based on the concept of using a factor to magnify the column moments to account for
the change in geometry of the structure and the resulting secondary actions. The axial load
and magnified moment are then used m the design of the column cross-section. The effect of
the secondary moments on the strength of a slender column is shown on the strength teration
curvein Figure 12.10. Line OA isthe loading line corresponding to an initial eccentricity e on
aparticular cross-section. If the column is hort, secondary moments are insignificant, the
loading line is straight, and the strength of the column corresponds to the axial force at A. If
the column is slender, the secondary momentsincrease at afaster rate than the applied axia
force and the loading line becomes curved, as shown. The strength of the slender column is
the axial force corresponding to point B, where the curved loading line meets the strength
interaction curve. The loss of strength due to secondary momentsisindicated in Figure 12.10.

The total moment at failure is the sum of the primary moment N. and the secondary
moment NA and may be expressed by a factor ¢ times the primary moment. That is,

diNe=Ne+ NA =Ne(€':r‘1)

and

The factor 6 may be used to magnify the primary moment in order to

N, |
A
N, Thiri o = e o —— —
“ logs of strength
due 1o slenderness
B
§ Nestmter | — — — £ o - o = = = -
:E — NA
secondary
moment
primary
moment
Q Moment

Figure 12.10 Strength interaction curve for a cross-section in a slender column.
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account for slenderness effects. This magnification factor depends on the ratio of the axial
force on the column N to the critical buckling load N,, theratio of the design moments at

each end of the column M i M ;=and the deflected shape of the column, which in turn
depends on whether the column is braced or unbraced and the rotational restraint at each end
of the column.

To determine whether a particular column is slender, and therefore whether moment
magnification is required, ACI 318-83 specifies critical values of the slendernessratio to
mark the transition between short and slender columns. The slenderness ratio of acolumnis
defined as the effective length of the column divided by its radius of gyration (taken about the
axis of bending), k/,/r. For arectangular cross-section, the radius of gyration may be
approximated as 0.3 times the overall column dimension in the direction in which stability is
being considered or 0.25 times the diameter of a circular cross-section. For abraced column,
the slenderness effect may be ignored when

; <34-12 M;b (12.21)

where the subscript b for the end moments refers to a braced column; Misis the smaller of the
two end moments and is taken as positive, if the column is bent in single curvature, and
negative, if bent in double curvature; M2sis the larger of the two end moments and is aways
taken to be positive.

An unbraced column is slender if

ki,
kb (12.22)

If the dlenderness ratio exceeds 100, the code suggests that the approximate moment
magnifier method should not be used and that a second-order stability analysis be undertaken.
Recent studies, however, have shown that for columns with slenderness ratios between 100
and 120, the moment magnifier method provides avery conservative estimate of strength
(Gilbert 1989).

The magnified design moment M r:may be calculated from

M= b Mzy + 6 M35
(12.23)

The moment M3bisthe larger factored end moment caused by loads that result in no
appreciable sidesway (such as uniformly distributed gravity loads on a symmetrical building
structure). Misisthe larger factored end moment caused by loads that result in appreciable
sidesway (such aslateral
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loads on the structure or non-uniform gravity loads). Both Miband Mz may be calculated
using a conventional elastic frame anaysis.

The magnification factor ¢, applies to the momentsin a braced situation. It accounts for
secondary moments arising from displacements due to curvature between the ends of the
member (such as the secondary momentsiillustrated in the pin-ended column of Figure 12.1)
and is given by

Cis
bo=——x =10 (12.24)

Yo

Theterm C,, depends on the ratio of the end moments and whether the column is bent in
single or double curvature. For members braced against sidesway and with no transverse
loads applied to the column between the supports, C,, is given by

My
M, (209 (12.25)

Cm=0.6+04

For all other cases, C,,=1.0. Note that the ratio of the end momentsin Equation 12.25is
positive if the column isin single curvature and negative if in double curvature.

The critical buckling load N, is given by Equation 12.20. An estimate of £/ for the column
at the ultimate limit state is required in order to determine N,. This estimate should account, at
least approximately, for the change of stiffness caused by material non-linearities, such as
cracking, the non-linear stress-strain relationship for concrete in compression, yielding of the
steel, and the time-dependent effects of creep. In lieu of more accurate analysis, ACI 318-83
suggests that £7 may be taken as either

_02E L + Eily

El 1+ Ba (12.26a)
or
_0.4E.],
M= (12.26b)

where [, is the moment of inertia of the steel area about the centroidal axis of the cross-section,
Paisafactor to account for the effects of creep and is the ratio of the maximum factored dead
load moment to the maximum factored total load moment (and is aways positive). AS 3600—
1988 defines EI as the ratio of moment to curvature at the point on the interaction curve
corresponding to a depth to the neutral axis of 0.6d (the bal-
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anced failure point for a column containing non-prestressed tensile reinforcement with £=400
MPa) and is therefore given by

_ 200dMo.ea

Er==s (12.26¢)

The magnification factor o, only applies to unbraced or sway structures, and models the
primary plus secondary moments associated with the lateral drift of the column. This factor
magnifies the moments caused by any loads that result in appreciable lateral drift (i.e. adrift
exceeding about /,/1500) and is given by

1

5 = N 210 (12.27)
pL N,

where TN and EN. are the summations of the desi gn actions and the critical loads,
respectively, for all the columnsin the storey.

For acolumn in abraced structure, the second term in Equation 12.23 (the sway term) is
zero, since no loads result in appreciable sidesway. ACl 318-83 specifies that for a pin-ended
member in a braced structure or a member with end eccentricities less than (15+0.03D) mm,

theterm Masin Equation 12.23 should be calculated using a minimum eccentricity of

& L
(15+0.03D) mm about each principal axis. In addition, the ratio Mip| Mabghould be taken as
1.0. The same minimum eccentricities are specified for the determination of the minimum

value of MZsin an unbraced structure.
For slender membersin biaxial bending, the moment about each axis should be magnified
using Equation 12.23 with the restraint conditions applicable to each plane of bending.

Example 12.2

Consider a 10 m long, pin-ended column in abraced structure. The column cross-section is
shown in Figure 12.4a and the material properties and steel quantities are as outlined in
Example 12.1. The strength interaction curve for the cross-section was calculated in Example
12.1 andisillustrated in Figure 12.5. The column is laterally supported at close centres to
prevent displacement perpendicular to the weak axis of the section, but is unsupported
between its ends in the direction perpendicular to the strong axis. The column isloaded by a
compressive force N at a constant eccentricity e to produce compression and uniaxial bending
about the strong axis. In this example, two loading lines for the column are traced
(corresponding to initial eccentricities of =100 mm and ¢=400 mm) and the strength of the
slender column in each case is established.

Since the column is braced and pinned at each end, k=1 [from Eigure 12.8a(iii)],
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and therefore k,=10 m, with respect to the strong axis. The effective length about the weak
axisis small due to the specified closely spaced lateral supports. For bending about the strong
axis, the slendernessratio is

kl, 10000

r ~03xs00 ‘L7

which is greater than the transition limit of 22 (specified in Equation 12.21) and, therefore, the
column is slender. For a braced column, Equation 12.23 reduces to

Mg = 8, M3}

The member is subjected to single curvature bending with equal end moments, and from
Equation 2.25, C,=1.0. To determine E/ using Equation 12.26a, the gross moment of inertia
of the cross-section and the moment of inertia of the steel about the centroidal axis are
required. For the cross-section shown in Eigure 12.4a, ,=25600x 10° mm* and the moments of
inertia of the prestressed and non-prestressed steel are, respectively,

Ip =2 % 1000 x 260 = 135 x 10° mm*
and

I, = 2% 2250 x 330% = 490 x 10° mm*
The corresponding rigidities are

E.I; = 32000 X 25 600 x 10% =819 » 10'* Nmm’?

and

El; + Epl, = (200 x 10 x 490 x 10°)
+ (195 % 10% X 135 % 10%) = 124 x 10'* Nmm?

If the ratio of dead load to total load is £,=0.7, then from Equation 12.26a,

gr= 0:2%819% 10'2) + (124 x 10'%)

=170 x 10'2 N mm?
1+0.7
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and the critical buckling load is calculated using Equation 12.20:

zwlxlmxlu”

N, 100001 % 1073 = 16 740 kN

The loading line for each initial eccentricity is obtained by cal culating the magnification
factor J, from Equation 12.24 for a series of values of axial force N and plotting the points
(N", 5»N e) on agraph of axial force and moment.

Sample calculations are provided for the points on the loading lines corresponding to an
axia force N'=5000 kN, using the strength reduction factor specified in ACI 318-83 for a

conventionally tied column, i.e. ¢=0.7 From Equation 12.24, when N =5000 kN,

1
bp = o=

0.7x 16740

When ¢=100 mm, the magnified moment is
Mpn=38,N"=1.74x5000x 100X 107*=872kNm
and when e=400 mm,
My =1.74 x 5000 x 400 x 107 = 3490 kN m

Other points on the loading line are as follows:

N (kN) S e=100 mm e=400 mm
Mo (KNm) Mm(KNm)
2000 1.21 241 965
3000 1.34 403 1610
4000 1.52 607 2430
5000 1.74 872 3490
6000 2.05 1230 4920
7000 2.48 1740 —
8000 3.15 2520 -




Page 481

:

strength inteTaction curve

Axial Load (kN)

= = design interaction curve (ACI 318)

:

0 500 1000 1500 2000 2500
Moment, M (kNm)

Figure 12.11 Loading lines and strength of the slender columns of Example 12.2.

The loading lines are plotted on Figure 12.11, together with the strength interaction curve
reproduced from Figure 12.5 and the design interaction curve in accordance with ACI 318-83.
The strength of each column isthe axia load corresponding to the intersection of the loading
line and the strength interaction curve. The maximum factored design load N that can be
applied to the slender column (and meet the strength design requirements of ACI 318-83) is
obtained from the point where the loading line crosses the design interaction curve. Note the
significant reduction of strength in both columns due to slenderness, but particularly in the
column with the smaller initial eccentricity. Slenderness causes afar greater relative reduction
in strength when the initial eccentricity issmall, in the primary compression region, than
when eccentricity islarge and bending predominates. Note also that for very slender columns,
the curved loading line crosses the strength interaction curve in the primary tension region,
and thisis the same region in which prestress provides additional strength (see Figure 12.5).
There is some advantage in prestressing slender columns.

12.5 Reinforcement requirements in compression members

The behaviour of a short column loaded to failure depends on the nature of the transverse
reinforcement. When the strength of the cross-section is
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reached, failure will be brittle and sudden if the column contains no transverse reinforcement
in the form of closed ties or spirals (helical reinforcement). Transverse reinforcement imparts
ameasure of ductility to reinforced and prestressed concrete columns by providing restraint to
the highly stressed longitudinal steel and by confining the inner core of compressive concrete.
Spirally reinforced columns, in particular, exhibit considerable ductility at failure. Ductility is
acritical design requirement for columnsin buildings located in earthquake prone regions,
where the ability to absorb large amounts of energy without failure is needed.
Codes of practice specify design requirements related to the quantity and disposition of
transverse reinforcement in columns. The requirements in ACI 318-83 are summarized below.
For prestressed compression members other than walls, with an average prestress greater
than or equal to 1.55 MPa, all longitudinal steel should be enclosed by standard spirals or
lateral ties. Lateral ties should be at least 10 mm in diameter or an equivalent area of welded
wire fabric (and 12 mm diameter when longitudinal bar diameters exceed 32 mm). The
longitudinal spacing between ties should not exceed the smaller of 48 tie bar diameters, 16
longitudinal bar diameters, and the least dimension of the column. The first tie should be
located no further than one half the tie spacing above the top of the footing or dlab at the
bottom end of the member and the last tie should be no further than 75 mm below the lowest
reinforcement in any beams framing into the top of the column. Ties should be arranged so
that every corner bar isrestrained in two directions by the corner of atie and every other bar
(or every dlternate bar if bars are spaced closer together than 150 mm) is also restrained by a
tie corner.

For spiraly reinforced columns, the ratio of spira reinforcement p, (defined as the ratio of
the volume of spira reinforcement to the total volume of the core) should satisfy

A c

where 4. is the cross-sectional area of the core of the member obtained using the outside
diameter of the spird, d.,,.. It can be shown that (Naaman 1982)

~ x Qi
O A.

dt-ﬂ ré

where 4 is the cross-sectional area of the spiral steel and s is the pitch of the spiral measured
centre to centre. For cast in situ construction, the diameter of the spiral bar should be at least
10 mm and the clear spacing between spirals should not be outside the range 2575 mm.
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Compression members with an average prestress of less than 1.55 MPa should have a
minimum area of longitudinal non-prestressed reinforcement of 0.014,, with a minimum of
four bars within rectangular or circular ties and six bars within spirals. The transverse
reinforcement requirements should al so satisfy the minimum requirements specified for
reinforced concrete columns,

12.6 Tension members

12.6.1 Advantages and applications

Prestressed concrete tension members are simple elements used in awide variety of situations.
They are frequently used as tie-backs in cantilevered construction, anchors for walls and
footings, tie and chord members in trusses, hangers and stays in suspension bridges, walls of
tanks and containment vessels, and many other applications.

The use of reinforced concrete membersin direct tension has obvious drawbacks. Cracking
causes alarge and sudden loss of stiffness, and crack control is difficult. Cracks occur over
the entire cross-section and corrosion protection of the steel must be carefully considered, in
addition to the aesthetic difficulties. By prestressing the concrete, however, a tension member
is given strength and rigidity otherwise unobtainable from either the concrete or the steel
acting alone. Provided that cracking does not occur in the concrete, the prestressing stedl is
protected from the environment and the tension member is suitable for its many uses.
Compared with compression members, tension members usually have ahigh initial level of
prestress.

The deformation of a prestressed concrete tension member can be carefully controlled. In
Situations where excessive elongation of a tension member may cause strength or
serviceability problems, prestressed concrete is a design solution worthy of consideration.

12.6.2 Behaviour

The analysis of a prestressed concrete direct tension member is straightforward. Both the
prestressing force and the external tensile loads are generally concentric with the longitudinal
axis of the member, and hence bending stresses are minimized.

Prior to cracking of the concrete, the prestressing steel and the concrete act in a composite
manner and behaviour may be determined by considering a transformed cross-section. If
required, atransformed section obtained using the effective modulus for concrete (Equation
2.12) may be used to include the time-dependent effects of creep and shrinkage.
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Consider atension member concentrically prestressed with an effective prestressing force
P.. The cross-section is symmetrically reinforced with an area of bonded prestressing steel 4,.
The transformed area of thetie is therefore

A=A +npA,= Ag+ (ny~ 1A,
(12.29)

where n, isthe modular ratio given by E,/E.. The uniform stress in the concrete ¢ due to the
prestressing force and the applied external load N is

o= —Le N
A A (12.30)
and the stress in the prestressing steel is
_ P nmpN
%=a,""a (12.31)

For most applications, it is necessary to ensure that cracking does not occur at service loads.
To provide a suitable margin against cracking under the day to day loads, and to ensure that
cracks resulting from an unexpected overload close completely when the overload is removed,
it iscommon in design to insist that the concrete stress remains compressive under normal in-
service conditions. By setting 0=0 in Equation 12.30 and rearranging, an upper limit to the
externa tensile forceis established, and is given by

A _ Ap
N% Pe:q_—Pa(l'b'ﬂpA_c) (1232)

e

When atensile member is stressed beyond the service load range, cracking occurs when the

concrete stress reaches the direct tensile strength, which is usually taken as D'4m(see
Equation 2.4). If the tensile force at cracking is N., then from Equation 12.30,

Pr ]

14

The stedl stress at the crack, just after cracking, is
Nee (P, A

and this must be |ess than the ultimate stress of the stedl, £, if failure of the member isto be
avoided at first cracking. The steel stressin Equation
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12.34 isusualy limited to a maximum of about f,/1.2 in order to obtain a minimum
acceptable margin of safety between cracking and ultimate strength. Equation 12.34 can,
therefore, be rearranged to obtain an expression for the minimum amount of prestressing steel
in atension member, and is given by

1.2 Ner (f .—) 12 4
Ap> = (= +0.4]F;
pZ—F L TOAE) (12.35)

The ultimate strength of the member is equal to the tensile strength of the steel, and is given
by

N.; = Amﬂp
(12.36)
and in design, the factored design tensile force must satisfy the design equation,
N* < 6N,
(12.37)

where the strength reduction factor for direct tension is the same as for bending(® = 0-2 in
ACI 318-83 and ¢ = 0-8ju AS 3600-1988).

The axial deformation of a prestressed tension member at service |oads depends on the load
history [i.e. the times at which the prestressing force(s) and the external |oads are applied],
and the deformation characteristics of the concrete. Stage stressing can be used to carefully
control longitudinal deformation. The shortening of atension member at any time ¢ caused by
aninitia prestress P; applied to the concrete at a particular time Temay be approximated by

Ap = P;L
B Ao (12.38)

where L isthe length of the member and E., is the effective modulus of the concrete obtained
from Equation 2.12 using the creep coefficient associated with the age of the concrete at first
loading, 7. The elongation at any time caused by an external tensile force N applied at time ™1
may be estimated by

NL

AV=TE. (12.39)

where 4 isthe area of the transformed section calculated using the effective modular ratio,
EIE, 1. In addition to deformation caused by loads, shrinkage will cause an additional
shortening. A detailed analysis of the time-
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dependent deformation of atension member subjected to any load history can be made using
the procedures outlined by Gilbert (1988).

A satisfactory preliminary design of atension member usually resultsif the prestressing
forceisinitially selected so that, after losses, the effective prestress is between 10 and 20%
higher than the maximum in-service tension. If the compressive stress in the concrete at
trangfer islimited to about 0-4/¢i, the area of the cross-section 4,, can be determined. The area
of steel required to impart the necessary prestress is next calculated. The resulting member
can be checked for strength and serviceability, and details may be modified, if necessary.

Example 7.3

Consider the vertical post-tensioned tension member acting as atie-back for the cantilevered
roof of the grandstand shown in Figure 12.12. In the critical loading case, the tension member
must transfer a design working dead load of 800 kN and live load of 200 kN to the footing
which is anchored to rock.

The material properties are f¢ = 40Mpa; £,=32000 MPg; fei = 30Mpg; E,=27 500 MPa;
/»,=1840 MPa; E,=195000 MPa; and 1,=6.09.

In accordance with the preceding discussion, an effective prestress 10% higher than the
maximum applied tension is assumed. Therefore,

Pe=1.1x% (800 + 200) = 1100 kN

Owing to the small residual compression existing under sustained loads, the time-dependent
loss of prestressis usualy relatively small. In this short member, draw-in losses at transfer are
likely to be significant. For the purposes of this example, the time-dependent losses are
assumed to be 12% and the short-term losses are taken as 15%. The force immediately after
transfer and the required jacking force are therefore

1100 1250
Pi= 0.88 1250 kN and P;= 085 - 1470 kN
'! ——— __.-—-—'—'-_'__-__--_-J
10m I.-ﬁ"'" mr

e

Figure 12.12 Tie-back member analysed in Example 12.3.
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If the maximum stedl stress at jacking is 0.85f,, then the area of steel is

1470 % 103

e 04 2
0.85 x 1840 ~ S0 mm

Ap 2
Try ten 12.7 mm diameter strands (4,=1000 mmz) post-tensioned within a 60 mm diameter
duct located at the centroid of the cross-section.

The ultimate strength of the member is calculated using Equation 12.36 (using the strength
reduction factor and load factors specified in AS 3600-1988):

N, = 0.8 X 1000 x 1840 x 107> = 1470 kN m

The design axial forceis

N* = (1.25 % 800) + (1.5 x 200) = 1300 kN

which is less than the design strength and is therefore satisfactory. If additiona strength had
been necessary, non-prestressed steel could be included to increase N, to the required level.

If the concrete stress at transfer is limited to 0-4f¢i = 12\ Pg, the required area of concrete
is

Pi _1250x10°

= = 104 200 mm*
0.4f; 12

A 2

Try a350 mm by 350 mm square cross-section with a centrally located 60 mm duct.
Therefore, before the duct is grouted,

Ac=350% = (0.257 x 60%) = 119700 mm*

Under the effective prestress, after all losses and after the duct isfully grouted, the area of the
transformed section is obtained using Equation 12.29:

A =350%+ (6.09 = 1)1000 = 127 590 mm
and
J‘Ic = ]21 Sm mmz

The uniform stress in the concrete under the full service load is given by
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Equation 12.30:

_ _1100x10° 1000 x 10°

121 500 127560 ~ 121 MPa
and the steel stressis given by Equation 12.31:
3 3
_1100x 10 ﬁ,ﬂgxlmﬂxlﬁznﬁmpa

+
% =" 1000 127 590

Both stresses are satisfactory and cracking will not occur at service loads, even if the losses of
prestress have been dlightly understimated.

The minimum area of steel to ensure afactor of safety of 1.2 at cracking is checked using
Equation 12.35:

3 —
Ap= (———] 1102':;;? + u.w-w) L.2x 121590 :';s’f; 320 _ 964 mm?

and the area of steel 4,=1000 mny adopted hereisjust sufficient.

If the final creep coefficients associated with the age at transfer, 7e, and the age when the
external load isfirst applied, 71, are @ (7o) = 2.5and ¢ (71) = 2.0 then Equation 2.12 gives
the appropriate effective moduli:

27 500 32000
S =T860MPa  and  Eea=——

Eeo= = 10670 MPa

The shortening caused by prestressis obtained using Equation 12.38:

1250 x 10° x 10000

AP ="isc0x7860 -0 mm

and the elongation caused by N is given by Equation 12.39. In this Equation,

195000

= 1397 2
10670 39780 mm

A = 121500+ 1000 %

and therefore,

A 1000 x 10% x 10000
Y= 7139780 x 10670

= 6.7 mm
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The net effect is a shortening of the member by

A=131-6T=64mm

Shrinkage will cause afurther shortening of several mm.
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Appendix I
Alternative models for creep and shrinkage

A.1 Introduction

In Sections 2.5.2 and 2.5.3, two relatively simple procedures for determining the magnitude
and rate of development of the creep coefficient and shrinkage strain were presented. Many
more complex procedures have been developed and are recommended by the various concrete
authorities. A description and comparison of some of the better known techniques has been
presented by Gilbert (1986,1988). In this Appendix, two well known and widely used
procedures are outlined.

A.2 The ACI Committee 209 method (1978)

Creep
The ACI Committee 209 (1978) adopts a hyperbolic function to represent the relationship
between creep and age at first loading:

306
$(t,)=—8=T 4% (A1)

10 + (£ = 7)

where Tisthe age of the concrete at first loading (in days), ¥ = Tisthe duration of loading (in

days), and “"(T}isthefinal creep coefficient for concrete first loaded at age Tand is
expressed as

¢ (1) = 2.35viv2v3 147576
(A.2)

where y, to yg are correction factors which account for many of the parameters that affect the
magnitude of creep.
y1 depends on the age of concrete at the time of first loading, , and is
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given by
For moist-cured concrete: v, = 1.25:"%"®  for 7 > 7 days
(A.3)
For steam-cured concrete: v, =1.1377%%* for 7 > 3 days
7, is a function of the relative humidity, A (in percent):
72=1.27-0.0067Tx for A > 40
(A9

y3 accounts for the size and shape of the member and depends on the dimension %, given by
4V1S, where VIS is the volume to surface ratio.

When #e S 150mm . i optained from

ho (MM) 50 75 100 125 150
V3 1.30 1.17 1.11 1.04 1.00
When 150 mm</0<380 mm:
y1=1.14 — 0.00092h, when (— 7 < 365 days
(A.5)
v3=1.10-0.0006Th, when - 7> 365 days
and when fo = 380 mm:
v3=%[1+1.13 exp(—0.0213V¥]8))
(A.6)

4 10 yg account for parameters associated with the composition of the concrete; specifically, y,
depends on the slump of the fresh concrete, s (in mm); ys isafunction of the ratio of the fine
aggregate to total aggregate by weight, ¥(in percent); and y¢ accounts for the air content, a (in
percent):

v4 = 0.82 + 0.00264s

(A.7)
vs = 0.88 + 0.0024¢
(A.8)
and
v6=0.46+0.09a < 1.0
(A.9)

Under a constant stress o, first applied at age 7, the load-dependent strain
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atimeris

% 11+ ¢(t,7)]

‘D=5 m (A.10)

where £¢(7)is obtained from Equation 2.6. The concrete strength at age may be obtained
from the 28 day strength using Equation 2.2.

Shrinkage
The shrinkage strain at time, measured from the start of drying, is given by
. ! %
Fi t- d : = "
or moist-cured concrete: £(f) 35+ 1 Esh (A.11)
) _ 1 »
For steam-cured concrete: &ult)= Y Egh

where Eshisthe final shri nkage and may be calculated from

Eoh = 1805y iyivysyeyrys X 10°°
(A.12)

The factors Y2to Yéin Equation A.12 depend on the same parameters as the corresponding
factorsfor creep (y, to ye), and are given by

v2=1.40-0.01x for 40 < h < 80

(A.13)
¥2=3.00-0.03x for 80 < A <100

When 30 mm < Ao < 150 mm, v3is given by

hs (mm) 50 75 100 125 150 (A.14)

T3 1.35 1.25 1.17 1.08 1.00
When 150 mm < ho < 380 mm:

v3=1.23-0.0015h, for t < 365 days
(A.15)

v3=1.17=0.0011k, for t > 365 days
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and when 40>380 mm:

v = 1.2 exp(—0.00472V/S)

(A.16)
v4 = 0.89 + 0.00161s
(A.17)
15=0.30+0.014¢ for y < 50%
(A.18)
v5=0.90+ 0.002¢y for ¢ > 50%
v6=10.95 + 0.008a
(A.19)
The term y7 depends on the cement content, ¢ (in kg/m3) and is determined from
+7=0.75 + 0.00061¢
(A.20)

Finally, ys isafunction of the period of initial moist curing 7. (in days) and is given by

7. 1.0 3.0 7.0 14.0 28.0 90.0 (A.21)

Y8 1.2 1.1 1.0 093 0.8 075

For concrete which is steam cured for a period of between one and three days, yg=1.0.

A.3 The CEB-FIP method (1978)

The method for predicting creep and shrinkage contained in the CEB-FIP Model Code (1978)
is based on the method proposed by Risch and Jungwirth (1976).

Creep
The creep strain at time ¢ caused by a constant sustained stress o, applied at time 7is assumed

to be

aﬂ Ir
Eczs #(1) (A.22)

E(t,7)=
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where E g is the longitudinal modulus of deformation at 28 days and may be taken as

Je (MPa) 20 25 30 35 40 45 50 (A.23)

Ee2n (GPa) 29 30.5 32 33.5 35 36 37

The creep coefficient ® (¢, 7)is therefore defined as the ratio of creep strain at time ¢ to the
instantaneous elastic strain a age 28 days. The total stress produced strain (instantaneous plus
creep) at time ¢ isgiven by

= oo | —— 4 27D
E‘{f,f}-—-ﬂu[ﬁ}(rlﬁ' E;za} (A24)

The creep coefficient is assumed to consist of areversible delayed el astic component and an
irreversible flow component, and is given in Equation A.25. The flow component is further
sub-divided into an initial flow component (which occurs within the first 24 hours under |oad)
and a subsequent flow component:

& (t, 7) = Pafa(t — 1) + Ba(r) + Sr[Br(1) — Br(7))
(A.25)

where ®¢isthe final delayed elastic creep coefficient (i.e. theratio of the final delayed elastic
strain and the instantaneous strain at 28 days) and istaken to be 0.4. The delayed elastic creep
coefficient is associated with the recoverable part of creep. Theterm Ba{f = T)isafunction

describing the development of the delayed elastic strain with time and may be calculated from

Ba(t— 1) =0.73{1 —exp[—-0.01(s — 7)] } + 0.27
(A.26)

Ba(7)is the rapid initial flow and is given by

(1)
Ba(7)=0.8 1-%-]} 27

The strength ratio Je(m)}/fe(2)is obtained from

.fc[T} _ 7073
fe(o0)  5.27 4 7%7 (A.28)
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The flow coefficient #fin Equation A.25 is the sum of two components:

¢r=on +on
(A.29)
where #n depends on the relative humidity 4 (in percent) and is given by
¢n = 0.111(0,00023% — 0.0431% + 2.57)) - 2.2
(A.30)

'i’ﬂdepends on the size of the member and may be obtained from Equation A.31 using the
notional thickness /o, (mm):

¢ = 1.12[1 + exp( = 0.044k 3-*%)]
(A.31)
where
he=v =y (A32)
A isthe cross-sectional area of the member (in mmz), u isthe perimeter exposed to drying (in
mm), and y is a humidity coefficient obtained from
v = 1.0 + 0.00049 exp(0.1)) when » < 98
(A.33)

The development of the subsequent (or delayed) flow component with time depends on the

notional thickness 4, and is described by the function ,(z). When 30 mm < o < 1600 mm,the
function f(¢) may be cal culated from the following expression:

Br(t) = (;;E-—;ﬁ)m (A.34)

where =0.8+0.55 exp(—0.003%0) and f=770+210 exp(—0.0043%o).
The elastic modulus at the age of first loading £:(7)to be used in Equation A.24 is

E.(1)=9.50f(r)) *
(A.35)

and J<(7)is obtained from Equation A.28.

Shrinkage



The mean shrinkage strain which occurs within thetimeinterval 7, tozis
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given by

Esn(l, lo) = Esno [Ban{t) = Bsnl(to)]
(A.36)

where g, is a basic shrinkage coefficient obtained from the product of two functionsand is
given by

Esho = Esk1 Exh2

(A.37)
The function &,,1 depends on the relative humidity A and is obtained from
et = 0.333(0.417\% - 37.11 - 372) X 10™® when X\ < 98
(A38)
= +100x107¢ when X = 100
The term &42 depends on the notional thickness 4, and may be expressed as
esnz = 0.7 + 1.42 exp(—~0.1843%)
(A.39)

The development of shrinkage with time is described by Sqx(2) and thisaso depends on the
notional thickness:

rﬂ‘.!
When 50 < A, £ 600 mm: Bsn(t) = 710250 (A.40)

1.25
When 600 < A, < 1600 mm: Ban(1) =—n§—
1 + Bhg

Temperature effects
When the ambient temperature during curing is significantly different from 20 °C, the age of
the concrete should be adjusted according to the following:

o 4=
fe=135 %} [[T(tm) + 10]Atm} (A.41)

where T is the mean daily temperature of the concrete occuring during the period Az, days. a
depends on the cement type and equals 1 for normal and slow-hardening cements, 2 for rapid-
hardening cements and 3 for rapid-hardening, high-strength cements. The adjusted effective
age t. isused for ¢ in Equations A.25 and A.34.
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balanced 9
characteristic (or specified) 18-19, 21-2
dead 18
factored 19-23
live 18-19
service 21-3
snow 18-19
wind 18-19
Long-line pretensioning 241
Loov, R.E. 141
Losses of prestress: 29, 102-8
anchorage dip 1056
creep 107-8
elastic deformation 1034
friction 104-5
immediate 102
relaxation 108
shrinkage 107
time-dependent 102-3, 106-8

Magnel design diagram 67-8, 72, 246-8
Magnel, G. 64, 67, 220
Marsh, C.F. 431
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Marshall, W.T. 213

Mattock, A.H. 213, 361

Membrane action 414
Mickleborough, N.C. 28, 425
Middle strip 396-8, 433-5

Mitchell, D. 167

Modular ratio 78

Moment-area methods 326, 340, 345
Moment distribution 333, 3346, 338
Moment-curvature relationship 84-5, 358-9
Moment magnifier method 474-81
Mohr’'scircle 162, 170

Murray, D.W. 436

Naaman, A.E. 482

Nawy, E.G. 433

Neville, A.M. 29, 31, 35, 38, 41, 43, 48, 326,336
Nilson, A.H. 361, 433-5

One-way dabs, see Slabs (post-tensioned)
Over-reinforced beams 123

Pannell, F.N. 470
Parrott, L.J. 45

Partial safety factors 19, 23
Pauw, A. 37
Pecknoid, D.A. 33
Permissible stresses, see Stress limits
Plastic analysis 17, 359, 410
Plastic hinge, (constant moment hinge) 358-9
Plate theory 430
Poisson’ sratio for concrete 38 430
Portland Cement Association 431
Post-tensioning:

anchorage zones 214-38

friction 104-5

methods 34

profiles 7, 757, 321-3, 3424
Post-Tensioning I nstitute 421
Precast elements 240-2
Precast pretensioned trough girder 253
Pressure line 330
Prestressed concrete:

basic concepts 1

benefits 1-2

introductory example 4-6

methods 24
Prestressing force, transverse component 6-9
Prestressing steel:

relaxation 524

strain components 127-9

types 48-52
Pretensioning:

anchorage zones 210-14

method 2-3

losses, 3-103



Principal tensile stress 162
Principle of virtual work 324-32, 411,413
Profile of tendons 7, 75—7, 3213, 3424
Punching shear strength:

ACI 318-83 approach 1967

AS 3600 approach 198-204

critical shear perimeter 1989

edge column 206-8

genera 195

interior column 204-5

minimum moment transferred to column 403

torsion strips 200-1

with moment transfer 2004

with NO moment transfer 199-200

Rangan, B.V. 190, 194, 197-8, 201-3
Reinforced concrete 1, 2
Reinforcemem, non-prestressed 54—7
Relaxation of steel 52—4, 108

Ritter, W. 163

Ritz, P. 414

Rusch, H. 493

Saemann, J.C. 245
Sargious, M. 215
Scanlon, A, 436
Secondary moments and shears 321, 324-32, 337, 339, 3612, 398
Section modulus, minimum required 68, 283
Selng, L. 90
Serviceahility:
design for 25-8, 60-120
load combinations 21-3
Sign convention, see Notation
Shear-compression failure 161
Shear-friction 269-70
Shear strength of beams:
ACI 318-83 approach 179-80
anchorage of longitudinal reinforcement 168
anchorage of stirrups 165, 172
AS 3600 approach 167—73
BS 8110 approach 180-2
concrete contribution 165, 169-70
critical section 171
design equation 172
design requirements 170-3
maximum and minimum strength 168
maximum spacing of stirrups 171
minimum transverse steel 167, 171, 182
steel contribution 166, 171
ultimate strength 165




web steel requirements 172-3
Shrinkage:
factors affecting 412
loss dueto 107
prediction of 42-3, 457, 492-3, 4956
strain 35, 41-2
Simpson’srule 327
Singly-reinforced section 129-33
Skew bending 184
Slabs (post-tensioned):
balanced load stage 419-21
band-beam and dlab systems 377, 416-17
bonded versus unbonded tendons 377-8
calculation of dlab thickness 423-9
cracking in slabs 43842
deflection coefficients 430-1
deflection models 429-38

edge-supported two-way slabs 3767, 382-94, 427, 431, 4436

effects of prestress 378-81

finite element models 4367

fire resistance 4223

flat plate slabs 3767, 394-414, 4267

flat dabs with drop panels 3767, 415-16, 4267, 446-52

frame analysis 398400
live load patterns 399
long-term deflections 442-3

non-prestressed reinforcement requirements 380, 439-40

one-way slabs 376—7, 382, 426

shear strength, see Punching shear strength 402—-3

span-to-depth ratios 4212, 423-8
yield line analysis of flat slabs 410-14
Slab system factor 423, 4267
Slater, W.A. 386
Slender columns 455, 471-81
Slenderness ratio 476
Slope 108-9
Sozen, M.A. 220
Spalling moment 221
Span-to-depth ratio:
edge-supported slabs 421, 425, 427
flat abs 4212, 4257
one-way slabs421, 4256
Spandrel beam 2001
Spandrel strip 198, 200, 398
Spiral reinforcement in columns 482
Stage stressing 242, 372, 420, 485
Static moment 397, 401
Statically indeterminate members:
advantages and disadvantages 319-21
concordant tendons 324, 330
design of continuous beams 354-75
design steps 3624
effects of creep 347-50
equivalent load method 3334, 337, 344
frames 350-3
hyperstatic reactions 323, 330-1
linear transformation 3302
moment distribution 333-6, 338
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moment redistribution at ultimate 3601
non-prismatic members 3467
pressure line 330, 332
primary moments and shears 324-5, 330-1
secondary effects at ultimate 3612
secondary moments and shears 321, 324-32, 361-2, 398
tendon profiles 3213, 3426
tertiary effects 351
virtual work 324-32
Statics ratio method 432
Stesl:
aloy bar 51-2
low relaxation 50, 524
reinforcing bar 54—7
relaxation 52—4
strand 50-1
welded wire fabric 567
wire 48-50
Stiffness coefficient 3356
Stirrups 1637, 171-2
Strand 50-1
Strength of concrete:
biaxial 334
characteristic compressive 30—1
cylinder versus cube 31
gain with age 32—-3
uniaxial 31-2
tensile 33
Strength, see Flexural strength, Shear strength, Torsiona strength
Strength reduction factor, see Capacity reduction factor
Stress block, rectangular 1246
Stress limits:
concrete 614
steel 64
satisfaction of 6474
Stress-strain relationships:
concrete 31-2, 367
prestressing steel 49-52
reinforcing bars 567
Stress isobars 215-18, 223
Stress trgjectories 214-15, 217
St. Venant's principle 215
Superposition principle 16, 74, 98, 325, 354
Symmetric prism 222, 230-1

Tasuji, M.E. 33
Tendon profile, see Cable profile and location
Temperature effects on creep and shrinkage 496



Tension members,
advantages and applications 483
axial deformation 485
behaviour 483-6
design example 4869
Tension stiffening effect 82, 110-12
Tesar, M. 215
Theorem of complementary shear stress 266
Thornton, K. 361
Time-dependent behaviour 89-102
Timoshenko, S. 430
Torsional cracking 184, 188-9
Torsional strength:
additional longitudinal steel 185, 187
AS 3600 provisions 185-94
beam with transverse reinforcement 1867
beam without transverse reinforcement 186
combined torsion, bending and shear 187-9
design equation 187, 189
detailing of stirrups 188
effect of prestress 184
maximum strength 187
minimum closed hoops 185
truss analogy (3-D) 184-5
Transfer length 209-14
Transfer of prestress 60
Transformed sections 77-8, 92, 94
Transmission length, (see transfer length)
Transverse reinforcement in columns 481-3
Transverse tendon forces 6-9
Trost, H. 41
Trough girder 253

Ultimate curvature 1267

Ultimate load stage 17, 1224

Ultimate strength design 121, 124

Ultimate flexural strength:
code-oriented procedures 1407
genera 23, 121-47

Under-reinforced beams 123

Upper bound approach 414

Vanderbili, M.D. 432

Variable angle truss model 167

Vibration in buildings 27-8

Virtua force 326

Virtual work, see Principle of virtual work
VSL 380

Volume integration 327-8

Walters, D.B. 433-5

Warner, R.F. 64, 220, 361

Washa, G.W. 245

Web-crushing 164, 168

Web-shear cracking 161, 170, 276
Westergaard, H.M. 386

Wide beam method for slab deflection 433-5
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Wire mesh, welded 567

Wires 48-50

Woinowsky-Krieger, S. 430

Work products, external and internal 326, 41113

Yield line theory, 385, 410-14
Yield lines 41011

Yield stress 49, 51, 557
Yogananda, C.V. 215

Zia, P. 190



