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Foreword

It is a privilege to be asked to write a prefatory note for this monograph reflecting
the latest advance in the field of vibration of hydraulic machinery. Working on this
book with Prof. Yulin Wu, a good friend and colleague for decades, and his
outstanding team members was an enjoyable experience.

A jointly authored book like this has a root back to the last century. It began in
the early 1980s when for the first time I heard about Yulin, a fast-rising scholar
from Prof. Zuyan Mei. Indeed in the late 1960s, with Prof. Mei and scholars from
the Beijing Institute of Hydropower, a monograph Transient Process of Hydraulic
Turbine (in Chinese) initiated by me was written but cancelled for publication in
1969. Nevertheless, it inspired the Book Series on Hydraulic Machinery in 1986.
Yulin and Prof. Mei were actively participating in the writing of this book series
meanwhile they extended their work into the new field of numerical simulations
for turbines including pump-storage turbines. After Prof. Mei deceased in 2003,
Prof. Wu continues leading and developing this team at Tsinghua, producing
remarkable numerical works. The excellence of their work on vibration simula-
tions made him an ideal candidate for writing a continuous volume of the title
Vibration and Oscillation of Hydraulic Machinery published two decades ago,
emphasizing on numerical predictions. Being thus invited, he discussed the scope
and set up the framework with me in late 2003. Then he started preparing the
manuscripts together with Prof. Shuhong Liu who joined later. During the summer
of 2008, while Yulin and Shuhong visiting me at Warwick, the first draft manu-
script was proposed by Yulin with my contributions mainly to Chaps. 1, 6 and 7.
Later on Profs. Zhongdong Qian and Hua-Shu Dou, both former team members of
Yulin at Tsinghua, joined in 2011 and 2012 respectively.

Now I am pleased to witness the completion of this book reflecting such a
collective willingness and effort across decades.

Personally, I would like to thank all the supports received to my research
programmes and involvement in this book. These are the UK ESRC/EPSRC
grants, the 10-year support from the UK EPSRC WIMRC grants and the generous
support from the UK Royal Academy of Engineering; and the Open Fund of
Tsinghua University (State Key Laboratory of Hydroscience and Engineering) and
the financial and technical support from the Three Gorges authority.
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In particular, it is a great honour to receive the award of Chinese Global Recruit
Programme of Peking University that enables me to work in Beijing closely with
authors during the final stage of the book writing. The support from Prof. Cunbiao
Lee of Peking University is thus highly appreciated.

20 October 2012 Shengcai Li
Zhong-guan Xin-yuan

Peking University
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Preface

The present book Vibration of Hydraulic Machinery deals with the vibration
problem which has significant influence on the safety and reliable operation of
hydraulic machinery. It provides with the new achievements and the latest
development in these areas in the community including those by the authors, even
in the basic areas of this subject.

The prediction for vibration of hydraulic machinery is currently an important
subject since vibration has a major effect on the performance of hydraulic
machinery. In the last 10 years, progress has been achieved in theory, modeling,
and mathematical analysis, as well as monitoring of vibration of hydraulic
machinery. With hydraulic turbine capacities getting increasingly larger and pump
speeds ever higher, there have been many research achievements in these areas
published in symposiums, journals, and books.

This book covers the fundamentals of mechanical vibration and rotordynamics
as well as their main numerical models and analysis methods for the vibration
prediction. The mechanical and hydraulic excitations to the vibration are analyzed,
and the pressure fluctuation induced by the unsteady turbulent flow is predicted in
order to obtain the unsteady loads. This book also discusses the loads, constraint
conditions, and the elastic and damping characters of the mechanical system, the
structure dynamic analysis, the rotor dynamic analysis, and the instability of
system of hydraulic machines, including the illustration of monitoring system for
the instability, and the vibration in hydraulic units. Solutions of all the problems
are necessary for vibration prediction of hydraulic machinery.

The authors of the present book are as follows: Chap. 1: Shengcai Li, Chap. 2:
Shuhong Liu, Chap. 3: Zhongdong Qian, Chap. 4: Leqing Wang and Dazhuan Wu,
Chap. 5: Shuhong Liu, Chap. 6: Shengcai Li, Chap. 7: Shengcai Li, Chap. 8:
Dazhuan Wu and Yulin Wu, Chap. 9: Zhongdong Qian, Chap. 10: Hua-Shu Dou,
and Chap. 11: Lei Jiao and Yulin Wu. Professor Hua-Shu Dou made final
reviewing and compiling of the whole contents of the book.

The authors would like to thank the National Natural Science Foundation of
China (NSFC) for main key project grants (contracts No. 59493700) on the key
technology of hydraulic turbine generator unit of three gorges projects
(1994–1999), and for key project grants (contracts No. 90410019, 2004–2007 and
10532010, 2006–2009), as well as other five projects, i. e., China Yangtze Three
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Gorges Project Development Cooperation (CTGPC) for project grants (contracts
No. CT-02-04-04 and CT-03-04-01); China Longtan Hydropower Development
Company Ltd. for project grants (2001–2002); Harbin Institute of Large Electric
Machinery & Hydraulic Turbine for project grants (contracts No. 2002158 and
2006429).

Many thanks to Fujian Electric Power Test & Research Institute, Beijing Huake
Tongan Monitoring Technology Co. Ltd., Tianjin Tianfa Heavy Machinery &
Hydro Power Equipment Manufacture Co. Ltd. for their supporting to the coop-
erative research on hydraulic machinery.

Sincere thanks to Hitachi Ltd including both Hitachi Industries Co. Ltd. and
Hitachi Works, Mitsubishi Heavy Industries Co. Ltd., the Institute of Fluid Sci-
ences of Tohoku University, and Kyushu Institute of Technology, for long time of
cooperation.

The authors would highly appreciate the help of Profs. Naixiang Chen, Hon-
gyuan Xu, Zhenwei Wang, Shuliang Cao, Yangjun Zhang, Jing Ren, Xianwu Luo,
Baoshan Zhu (Tsinghua University), Profs. Jianzhong Xu (Academician), Jiezhi
Wu, Cunbiao Lee, Qingdong Cai (Peking University), and Professors from China
and other universities Sheng Zhou, Xingqi Luo, Shouqi Yuan, Zhenyue Ma, Fujun
Wang, Guoyu Wang, Qingguang Chen, Lingjiu Zhou, Xuelin Tang, Jiandong
Yang, Fengqin Han and Chao Yan. Drs. Jiang Dai, Zixiang Sun,Weizhang Wu,
Jianming Yang, Wei Zhang, Zhaohui Xu, Liang Zhang, Yu Xu, Yuzhen Wu, Yong
Li, Hongfen Tang, Shangfeng Wu, Penghui Xia, Xiaojing Wu, Jie Shao, Daqing
Zhou, Wei Yang, Fan Yang, Guangjun Cao, Gang Chen, Zhaofeng Xu, Zhiping Li,
and Jinwei Li have been long cooperated with the authors, their supports are
gratefully acknowledged.
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Part I
Fundamental



Chapter 1
Introduction

In this book, a hydraulic machine is referred to a hydraulic turbine or a pump.
Rotation of the turbine runner or the pump impeller is transmitted through a shaft
supported on bearings to a generator or a motor that is connected with the electric
grid. This whole assembly is called a hydraulic unit.

It is necessary to take vibration prediction into consideration since the vibration
has a major influence on the performance of hydraulic machinery (Ohashi 1991).
In this chapter, the main content of the vibration prediction of hydraulic machines
will be briefly introduced. In the following chapters, detailed information will be
given. First, the fundamentals on the prediction of mechanical vibration and ro-
tordynamics will be briefly emphasized on their basic concepts, model, and
essential equations in Chaps. 2 and 4. Chapter 3 introduces the main numerical
methods used in structure and rotor dynamic analysis aspects, which are necessary
for numerical simulation on the vibration prediction. Then mechanical excitations
and hydraulic excitations as the source forces of forced vibration in hydraulic
machinery will be analyzed in Chaps. 5 and 6 respectively. In Chap. 7, topics
about pressure fluctuations induced by unsteady turbulent flow in turbine and
pump will be presented in order to get the unsteady loads. Once information about
the loads, the constrain conditions and the elastic and damping characters of the
mechanical system is known, the structure and rotor dynamic analysis of hydraulic
machines can be predicted as demonstrated in Chaps. 8 and 9 respectively.
Chapter 10 focuses on the instability of hydraulic turbine system. Finally,
Chap. 11 illustrates monitoring system of the instability and the vibration for
hydraulic turbine units and pumps, including the sensor selection and system
design. Some examples of large hydropower plants are also given in this chapter.
This monitoring system is also used for checking the prediction results in hydraulic
machinery.

Y. Wu et al., Vibration of Hydraulic Machinery,
Mechanisms and Machine Science 11, DOI: 10.1007/978-94-007-6422-4_1,
� Springer Science+Business Media Dordrecht 2013
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1.1 Hydraulic Machinery System

In this section, we introduce the concept of the mechanical systems of hydraulic
turbines and pumps which is quite essential.

1.1.1 Hydraulic Turbine Structures

Most hydroelectric power comes from the potential energy of dammed water. The
amount of energy stored in water depends on the volume and the difference in
height between the source and the water’s outflow. This height difference is called
the head. The amount of potential energy in water is proportional to the head.

Hydroelectric plants with no reservoir capacity are called run-of-the-river
plants, since it is not possible to store water.

With the increasing capacity and size of hydraulic turbines, vibration of the
turbine structure and rotating system strongly influences the safety of the power
house where turbines are installed. The dynamic analysis of the components, the
rotor and its rotating system is therefore essential to design and operation.

The hydraulic turbine is a machine that converts the energy of an elevated water
supply into the mechanical energy of a rotating shaft. All modern hydraulic tur-
bines are fluid dynamic machinery of the jet and vane type that operates on the
impulse or reaction principle and involves the conversion of pressure energy to
kinetic energy. The shaft drives an electric generator, and the speed must be of an
acceptable synchronous value. Efficiency of hydraulic turbine installations is
always high, more than 85 % after allowances of hydraulic, shock, bearing, fric-
tion, generator, and mechanical losses. Material selection is not only a problem of
machine design and stress loading from running speeds along with hydraulic
surges, but also a matter of fabrication, maintenance, and resistance to erosion and
corrosion, as well as cavitation pitting (Akahane and Suzuki 1996).

Storage hydro plants have employed various types of equipment to pump water
to an elevated storage reservoir during off-peak periods and to generate power
during on-peak periods when the water runs from the reservoir through hydraulic
turbines. The principal equipment of the station is the pumping-generating unit. In
most practices, the machinery is reversible and is used both for pumping and
generating; it is designed to function as a motor and pump in one direction of
rotation and as a turbine and generator in the opposite direction of rotation.

There are different types of turbines, such as, the Francis, Kaplan, bulb (or
tubular) and impulse turbines, and their physical models need to be established for
dynamic analysis of mechanical systems. There are three main categories of
reaction hydraulic turbines: the Francis turbine (Fig. 1.1) and Kaplan turbine
(Fig. 1.2), and bulb (or tubular) turbine.

In reaction turbines, pressure from working fluid changes as it flows through the
turbine and thus the working fluid transfers energy to the turbine. A casement is
needed to contain the water flow.
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The Francis turbine is located between the high pressure water source and the
low pressure water exit, usually at the base of a dam. The inlet is spiral shaped.
Guide vanes direct the water tangentially to the runner entrance. This radial flow
acts on the runner vanes, propelling the runner to spin. The guide vanes (or wicket
gate) may be adjustable to allow efficient turbine operation depending on the range
of water-flow conditions (Fig. 1.3).

Fig. 1.1 Francis turbine
(http://www.en.wikipedia.
org/wiki/Kaplan_turbine)

Fig. 1.2 Kaplan turbine
(http://www.en.wikipedia.
org/wiki/Kaplan_turbine)
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Large Francis turbines are individually designed for each site to optimize its
operational efficiency, typically over 90 %. Francis type units cover a wide head
range, from 20 to 700 m and their output varies from a few kilowatts to
1,000 megawatts. Apart from electrical production, they may also be used for
pumped water storage.

The Kaplan turbine is another type of reaction turbine, i.e., pressure of working
fluid changes as the fluid moves through the turbine losing energy. The inlet is a
scroll-shaped tube that wraps around the turbine’s wicket gate. Water is directed,
through the spiral, on to the wicket gate, and then is turned from radial to axial
direction before entering a propeller shaped runner. Different from the Francis tur-
bine, the water is axially directed to the runner in the Kaplan turbine. The outlet is a
specially shaped draft tube that helps decelerate the water and recover kinetic energy.

Variable Pitch angles of the wicket gate and turbine blades (often referred as
‘‘on cam’’ operation) allows efficient operation for a range of flow conditions.
Kaplan turbine efficiencies are typically over 90 %, but may be lower in very low
head applications. Kaplan turbines are widely used throughout the world for
electrical power production. They cover the lowest head hydro-sites and are
especially suitable for large flow rate conditions.

Propeller turbines have non-adjustable propeller vanes. They are used in situa-
tions where the range of water head is not large.

1 Turbine runner 8 Dischargering
1a Runner cone 9 Turbine shaft
1b Runner crown 10 Turbine guide bearing
1c Runner band 11 GV servomotor
1d Runner bucket 12 Servomotor rod
2 Wearing rings 13 GV opening ring 
3 Facing plates 14 GV link
4 Spiral casing (SC) 15 GV arm
5 Stay vanes 16 Pacing box or stuffing box 
6 Guide vanes (GV) 17 Head cover
7 Draft tube

Fig. 1.3 Francis turbine structure components (from Wikipedia 2008a)
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Bulb or Tubular turbines are designed to allow the water flow directly into the
draft tube. A large bulb is centered in the water pipe which holds the generator,
wicket gate and runner. Tubular turbines are a fully axial design, whereas Kaplan
turbines have a radial wicket gate.

The Pelton wheel is among the most efficient types of water turbines, and is an
impulse machine which is designed to utilize the energy from a fluid jet (Fig. 1.4).

The water flows along the tangent to runner path. Nozzles direct forceful
streams of water against a series of spoon-shaped buckets mounted around the
edge of a wheel. As water flows into the bucket, the direction of the water velocity
changes to follow the bucket contour. When the water-jet contacts the bucket, the
decelerated water exerts pressure on the bucket as it flows out of the other side of
the bucket at lower velocity. In the process, the water’s momentum is transferred
to the turbine. For maximum output and efficiency, the turbine system is designed
so that the water-jet velocity is twice the velocity of the bucket. Often two buckets
are mounted side-by-side, thus splitting the water jet in half. This balances the
side-load forces on the wheel, and helps to ensure smooth, efficient momentum
transfer from the fluid jet to the turbine wheel.

For detailed knowledge offluid dynamics about these turbines, readers are referred
to the volume titled ‘Hydraulic Design of Hydraulic Machinery’ (Krishna 1997).

1.1.2 Pump Mechanical Systems

A pump is a machine that draws fluid into itself through an entrance port and forces
the fluid out through an exhaust port (see Figs. 1.5, 1.6, 1.7 and 1.8). A pump may

Fig. 1.4 Pelton turbine
(http://www.en.wikipedia.
org/wiki/Pelton_turbine)
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serve to move liquid, as in a cross-country pipeline; to lift liquid, from a well or to
the top of a tall building; or to put fluid under pressure, as in a hydraulic brake.

A displacement pump is one that develops its action through the alternate filling
and emptying of an enclosed volume. There are two basic types: reciprocating
(Fig. 1.5) and rotary (Fig. 1.6).

Positive-displacement reciprocating pumps have cylinders and pistons with an
inlet valve that opens the cylinder to the inlet pipe during suction stroke, and an
outlet valve that opens to the discharge pipe during discharge stroke. Except for
special designs with continuously variable strokes, reciprocating power pumps
deliver an essentially constant capacity over their entire pressure range when
driven at constant speed.

The purpose of a centrifugal pump is to move fluid by accelerating it radically
outward. More fluid is transferred by centrifugal pumps than by all the other types
combined (Fig. 1.7). As shown in Fig. 1.8, a centrifugal pump basically consists of
one or more rotating impellers in a stationary casing which guides the fluid from
one impeller to the next in the case of multistage pumps. Impellers may be single
suction or double suction. Other essential parts of all centrifugal pumps are (1)
wearing surfaces or rings, which make a close-clearance running joint between the
impeller and the casing to minimize the backflow of fluid from the discharge to the
suction; (2) the shaft, which supports and drives the impeller; and (3) the stuffing
box or seal, which prevents leakage between shaft and casing.

Fig. 1.5 Multi-cylinder
reciprocating pump

Fig. 1.6 Rotary pump
(sliding type)
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1.2 Physical Model of Hydraulic Machinery as Mechanical
System

Modern mechanical systems are often very complex and consist of many com-
ponents interconnected by joints and force elements. These systems are referred to
as multibody systems or continuous mass distributed systems. The dynamics of
such systems are often governed by complicated relationships resulting from the
relative motion and joint forces between components of the system. Figure 1.1
shows a Francis turbine generator unit, which can be considered as an example of a
multibody system that consists of many components.

Fig. 1.7 Multi-stage centrifugal pump (http://www.architettisenzatetto.net/wp2/?cat=24)

Fig. 1.8 Centrifugal pump
assembly (http://www.
pumpfundamentals.com/
centrifugal_pump.htm)
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While most structures are stationary with respect to an inertial frame of ref-
erence, many machines contain rotating elements that may vibrate owing to their
elasticity and inertia. Rotating bodies and structures are usually defined as rotors.

The dynamic analysis of vibration in hydraulic turbines has two aspects in
engineering: (1) Dynamic analysis of the stationary structure’s components
(Structure dynamics analysis), which is performed for each component, such as a
runner (even for a single runner-blade), a spiral casing and a draft tube, etc. The
component is treated as a continuous mass object in the analysis. (2) Dynamic
analysis of the rotating shaft system (shaft rotordynamics in hydraulic turbines),
where the system is simplified as the lumped multibody system.

In each type of dynamic analysis, the following steps should be included:

(1) The first step is to establish the physical model of an analysis object.
(2) Secondly, it is important to determine which analytical approach should be used

in the work. For example, in rotordynamics the Riccati transfer matrix (Garnett
1997), Newmark numerical integral method (Newmark 1959), or others should
be adopted to calculate and analyze instantaneous non-linear response of the
rotor system of hydroelectric units. In structure analysis, the finite element
method (FEM) is usually applied to study the turbine components. The main
analytical approaches from principle to their application in hydraulic machin-
ery will be illustrated in following chapters, especially in Chaps. 8 and 9.

(3) The third step is to set up a grid system or other geometrical system of the
analytical object. This process is determined according to the analytical
approach and introduced in each calculation.

(4) The fourth step is to study the action forces and excitations which have impact
on the analyzed objects, such as excitation induced by mechanical aspects,
fluid flow (pressure distribution and pressure fluctuation) and by electric–
magnetic effluences. Excitation will be covered in Chaps. 5, 6 and 7.

(5) The fifth step is to select the boundary and restrict conditions to each ana-
lytical object for numerical simulation.

(6) Afterwards, the numerical computation is carried out with different mathe-
matical algorithms, and the computer resource and computation time is taken
into consideration.

(7) The final step is to analyze the calculation results in order to apply them to an
engineering design for enhance the performance of the machines.

The analytical procedure on pump dynamics is similar to that of turbines.

1.2.1 Physical Model of a Hydraulic Turbine Unit Shaft
System

The hydraulic turbine unit is essential equipment to hydroelectric power genera-
tion, and shafts are an important component of these machines. Its dynamic
characteristic is bound with the hydroelectric reliability, life-span, and economic
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index of the entire machine. Therefore, it is necessary to analyze the large
hydroelectric machines from this aspect.

The first step in rotor dynamic analysis of hydraulic turbines is to obtain the
physical model from a real hydraulic turbine unit as shown in Fig. 1.9. The model
is a simplified umbrella-type shaft system of a Francis turbine unit (http://www.
rise.org.au/info/Tech/hydro/large.html).

The umbrella-type shaft system consists of a shaft, an upper guide bearing
(UGB), a generator rotor, a thrust bearing, a low guide bearing (LGB), a coupling,
a water guide bearing (WGB) and a runner (see Fig. 1.9b).

The shaft system of a real hydraulic turbine unit is a continuously distributed
mass system with infinite degrees of freedom. Figure 1.10a and b show the
mechanical models used for the analysis of shaft system. Figure 1.10a is a sim-
plification of the shaft system that contains two-disc rotor system with

UGB

generator
rotor

thrust

LGB
shaft

WGB

runner

(a) (b) (c)

Fig. 1.9 Diagram of the umbrella-type shaft system of a Francis turbine unit. a Three
dimensional diagram. b Meridional plane diagram. c Generator shaft

(a) (b) 

Fig. 1.10 Mechanics models of the shafts of the hydraulic turbine unit. a Simplified model.
b Complex model
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multibearing supports; and Fig. 1.10b shows the rotor system with such effects,
shear deformation, rotary inertia, gyroscopic moment, additional mass acting in
the hydraulic turbine, and electromagnetic induction of instantaneous response in
the rotor system. This model is necessitated because the diameter of the shaft is
thick compared to its length (Fig. 1.9b). A non-linear oil film force on the bearing
is identified and accounted by a factor in the calculation (Feng and Chu 2001).

Figure 1.11 shows a schematic drawing of the lumped mass method in a shaft
using the Riccati transfer matrix method. In the model, the lumped parameters are
set up from discrete treatment of the main assemblies contacting with the shaft
(Feng and Chu 2001).

1.2.2 Physical Model of a Multi-Stage Pump Shaft System

A more effective approach to generate high pressure with a single centrifugal
pump is to install multiple impellers on a common shaft within the same pump
casing. Internal channels in the pump casing route the discharge of one impeller to
the suction of another impeller. The illustration below shows a diagram of the
impeller arrangement of a multistage pump. Water enters the pump from the top
left and passes through each of the four impellers in a series, going from left to
right. It goes from the volute surrounding the discharge of one impeller to the
suction of the next impeller.

Fig. 1.11 Schematic
drawing of a concentrated
mass method in the shaft
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Now and then, centrifugal pumps are developed with larger capacity and higher
head. The one shown in Fig. 1.12 has the head up to 3,000 m with power up to
3,000 KW, for the transportation of high pressure liquid in an industrial plant. For
designing large rotating machinery, the values of critical speeds related to the
desired operating range should be chosen carefully. For the rotor dynamic analysis
of centrifugal pumps, the concepts of ‘‘dry’’ and ‘‘wet’’ critical speeds are intro-
duced. The ‘‘dry’’ critical speed is one without consideration of the dynamic
characteristics of seal as shown in Fig. 1.12b; The ‘‘wet’’ critical speed is when the
pump is working in the power station with consideration of the dynamic charac-
teristics of seal as shown in Fig. 1.12c (Chen et al. 2008).

1.2.3 Physical Model of Hydro-Turbine Structure Analysis

The physical model of hydro-turbine structure components for dynamic analysis is
usually an exact geometric model of the components analyzed. For example,
hydraulic excitation forces on Francis turbine runners (Fig. 1.13a and b) would
increase due to higher heads and fluid velocities. A complete dynamic analysis of
runner behavior is necessary for the prevention of vibration damage in a turbine.

(a) 

(b) 

(c) 

Fig. 1.12 a Model of multi-stage centrifugal pump. b Model of shaft operation in the air.
c Model of shaft operation in the water
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Since runners are submerged in water inside the casing, the effects caused by the
presence of this heavy fluid inside a rigid wall must be considered in dynamic
analysis (From Wikipedia 2008b).

Owing to the cyclic symmetrical nature of the runner structure (total 17 blades),
a blade covering an angle of 360/17 degrees can be used in simulation for dynamic
analysis. Then the model is expanded to cover the whole runner (shown in
Fig. 1.14) and the analysis on mechanical vibration is performed. The complete
model will also be used in the water simulation, that is, the physical model of the
runner is surrounded by a cylindrical fluid domain shown in Fig. 1.15 (Liang et al.
2006). The fluid mesh should be generated using extension from the structure mesh
so the same set of nodes is shared between both domains on the interface.

Fig. 1.13 a Runner for three-gorges project. b Blade in machining of runner (http://www.
xsrb.xsnet.cn/xsdaily/gb/content/2005-07/11/content_468089.htm, http://www.slsdge.com.cn)

Fig. 1.14 Geometric model
of a runner
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Physical models of other components in a hydraulic turbine or pump are built in
the same manner for dynamic analysis.

1.3 Mechanical Vibration of Hydraulic Machinery

The power density of hydraulic turbine is constantly increasing with new machines
developed or existing ones upgraded. Consequently, hydraulic excitation forces
acting upon runners rise. Moreover, hydroelectric power plants are subject to off-
design operation in order to meet variable demand. In this context, Francis turbines
operating at partial load may present instabilities in terms of pressure, discharge,
rotational speed and torque. The operation under off-design conditions would result
in greater forces combined with a reduced thickness/weight ratio in turbine structure,
provoking even higher level of vibration. This dynamic excitation contributes to
fatigue damage. A complete dynamic behavior analysis for the hydraulic turbine (or
the high speed pump) is essential to prevent this type of damage (Egusquiza 2007).

1.3.1 Dynamic Analysis of Hydraulic Machinery

As mentioned above, since some working components are submerged in water
inside the casing, the effects caused by the presence of this heavy fluid within the
rigid wall must be considered. Therefore, analysis should focus on the fluid and
wall effects on the modal behavior of hydraulic turbine or pump (BS ISO 10816-5
2001; Xiao et al. 2008).

Although both experimental and numerical modal analyses have been used to
study the dynamic response of structures, most of them are limited to simple
geometries. Furthermore, few works have been done with the consideration of the
effects of surrounding fluid. For hydraulic turbines, it is very difficult (if not

Fig. 1.15 Fluid domain
around the runner (Liang
et al. 2006)
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impossible) to test the real operation conditions through experiments. From the
viewpoint of numerical study, the main challenges lie in the complexity of
the geometry, especially the mesh compatibility between the fluid and structure on
the interfaces. In fact, the dynamic study of turbine components submerged in
water is essential for developing better theoretical model.

1.3.2 Analysis of Vibration Generation of Hydraulic
Turbines

The machine is a rotating structure supported by the fluid film of bearings. Conse-
quently, the vibrations generated are determined by characteristics of excitation
forces and the structural response. Perturbation forces responsible for vibration
increase in a hydro turbine may be mechanical, hydraulic, or electrical (Swain 2008).

1. Mechanical excitations
a. Centrifugal forces due to imbalance of the rotating mass i.e., runner, shaft, and

generator rotor.
b. Elastic force of the shaft due to incorrect shaft alignment.
c. Frictional forces.
d. Oil-film instability in bearing.
2. Hydraulic excitations
a. Flow through waterways: Nonuniform velocity distributions in various

waterways of the turbine cause hydraulic unbalance.
b. Draft-tube flow instabilities: These occur in Francis turbines even during

steady-state operation outside the optimum efficiency ranges.
c. Cavitation: This is caused by incorrect flow conditions around the runner or

impeller blade profiles and occurs mostly within the higher load ranges.
d. Hydroelastic vibration: This is due to an incorrectly shaped discharge edge of

hydraulic profiles (blades, wicket gates, and stay vanes etc.)
e. Self-excited vibration: This occurs in places where the movement of

mechanical parts (seals and clearances, etc.) can influence the flow around or
through them.

f. Pressure fluctuations in the penstock.
3. Electrical excitations
a. Magnetic forces between stator and rotor.
b. Forces due to non-uniform air gap between stator and rotor.
c. Forces created by the partial or total short-circuiting of the pole winding of

rotor.

In most cases, the generated vibrations that do not affect the fluid excitations/
forces are forced vibrations. In some circumstances the structural motion in turn
can affect fluid forces that, in this case, depend on the structural displacement. This
would happen when there is, in the absence of structural motion, some periodic
excitation in the flow, and its resultant frequency coincides with a natural
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frequency of the system. Then a resonance occurs, and if the response amplitude
becomes sufficiently large, structural displacement will take control of the fluid
excitation. Sometimes, the periodicity in flow is determined by the structural
motion. This is the case of self-excited vibrations.

1.3.3 Structure Response of Hydraulic Turbines
and Hydroelectric Units

The hydraulic forces generate vibrations on the runner and the shaft which are also
transmitted to the bearings. For each type of hydraulic machine the main hydraulic
forces have to be estimated and applied to a runner model to determine resultant
vibrations and stresses.

Any uncertainty in the runner response depends not only on the mechanical
structure but also on the added mass and damping generated by water, seals and on
the mechanical constraints (shaft coupling). Simulation and experiment are needed
for establishment of a consistent model. The evaluation of the rotor response is
difficult in a power plant that is up and running. Therefore theoretical models may
be applied to calculate the natural frequencies even though certain parameters
required for an exact calculation are unavailable, such as the overall stiffness of the
bearings and the excitation effect of oil film, etc.

Vibration analysis of hydroelectric units by nature is difficult because the
complexity of the excitation forces that change with the operating conditions and
the complexity of structural response are affected by fluid-structure interaction and
rotor dynamics.

1.4 Structure Dynamics of Hydraulic Machinery

Structural dynamics is a subset of structural analysis that covers the behavior of
structures subjected to dynamic loading. Any structure can be subjected to
dynamic loading. Dynamic analysis could be used to find dynamic displacements,
time history, and characteristics about vibration mode etc.

1.4.1 Basic Structure Dynamics

Apart from the vibratory motion studied in structural dynamics, structures are
usually stationary with respect to an inertial frame of reference. A static load does
not vary. A dynamic load is one that changes with time. If it changes slowly, the
structure’s response may be determined with static analysis, but if it varies quickly
(relative to the structure’s ability to respond), the response must be obtained with a
dynamic analysis.
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A dynamic load may have a more significant impact than a static load of the
same magnitude due to the structure’s inability to respond quickly enough to the
loading (by deflecting). The impact of a dynamic load is given by the dynamic
amplification factor (DAF):

DAF ¼ umax=ustatic

where u is the deflection of the structure against the load.
In the time history analysis, a full time history would exhibit the response of a

structure over time during and after the application of a load. To find the full time
history of a structure’s response one must solve the structure’s equation of motion.

A modal analysis calculates the frequency modes or natural frequencies of a
given system. The natural frequency of a system depends only on the stiffness and
the mass of the structure, but not on the load function.

It is useful to know the modal frequencies of a structure to ensure that any
applied periodic loading frequency does not overlap thereby causing resonance
that leads to large oscillations.

The modal analysis approach is:

a. Find the natural modes and natural frequencies.
b. Calculate the response of each mode.

1.4.2 Structure Dynamic Analysis of Hydraulic Turbine
Components

In this section, the dynamic analysis for a turbine runner is used as an example for
illustration purpose.

1.4.2.1 Simulation Model

For the dynamic analysis of a turbine runner, firstly the physical model and the
mesh configuration of runner calculation must be set up. In order to determine the
final mesh configuration, the influence of element shape and mesh density must be
checked. Usually two types of elements, hexahedral and tetrahedral, can be
considered.

The next step is to add the load on the calculated grid model. Loads acting on
the runner model include the loads caused by restricting boundary, sustaining
conditions, as well as the excitation loads, etc. According to their nature, the loads
can be classified as freedom restricts, concentrated loads, surface loads, body
loads, inertial loads, and coupling loads. As far as the solid–fluid coupling inter-
action is concerned, the water pressure acting on runner surfaces must be included
in computation apart from the force of gravity and the centrifugal force.

Many researchers have recently engaged in improving calculation methods for
the analysis of static and dynamic stresses caused by hydraulic forces in runner
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blades. The static stresses in Francis turbine runners at various operating points
may be computed using the sequential fluid–structure interaction (FSI) analysis
method. The dynamic stress variations during load changing may be calculated
with the sequential FSI analysis method as well (Xiao et al. 2008).

1.4.2.2 Static Stress Analysis

Once the simulation model of a runner is set for the finite element analysis (FEM),
the static analysis should be carried out with FEM. There are two strategies for
solving fluid–structure interaction. One is the fully coupled method, in which the
fluid and structure are solved using the same code and same grid. However, this
calculation is CPU-expensive, especially for large Francis turbine runners, owing
to intensive iterations between the fluid and structure system. The other method is
a sequentially coupled fluid-structure interaction that assumes the influence of the
runner deformation in flow field is negligible in calculation. That is to say, there is
no feedback of the runner blade motion on the flow.

The steady-state flow and static stresses are calculated for analyzing static stress
characteristics of a Francis turbine runner. The results may indicate that the max-
imum stresses locate around the area between the blade leading edge and the runner
band as well as around the trailing edge close to the runner crown. For certain
operating points, especially near low heads and low loads, the pressure distribution
on the runner blade has a considerable influence on the stress distribution.

1.4.2.3 Structure Modal Analysis

The objective of modal analysis in structural mechanics is to determine the natural
mode shapes and frequencies of the structure during free vibration. The structure
modal analysis of a hydraulic turbine can be conducted with FEM based on the
free-vibration governing equations with or without damping effects of a compo-
nent of the machine (Egusquiza 2007).

The FEM equations which arise from modal analysis are those seen in eigen-
systems. The physical interpretation of eigenvalues and eigenvectors obtained
from solving this system is that they represent the frequencies and the corre-
sponding mode shapes. Sometimes, the only desired modes are the lowest fre-
quencies because they can be the most prominent modes at which the object would
vibrate, dominating all other higher frequency modes.

1.4.2.4 Dynamic Stress Analysis

In order to conduct the dynamic stress analysis in a turbine runner, one should
perform an unsteady turbulent flow simulation though the flow passage to predict
the pressure fluctuation acting on the runner surfaces. The output data from the
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unsteady flow computation should be saved at each time step. However, in order to
reduce the computational complexity for a runner stress analysis, only the results
for the last several rotations might be used.

The dynamic stresses for the runner of a Francis turbine can then be analyzed.
Since stress concentrations often occur at the blade root, the fillet of a runner blade
with a runner crown and a runner band should be modeled accurately. These
sensitive areas should be accurately meshed to truly reveal those stress concen-
trations. Constraint for the stress calculation is the fixed joint between the runner
crown and the main shaft. The loads on a runner consist of inertia force and surface
forces. The inertia force includes the runner’s own weight and rotational inertia
force. The surface force is from water pressure and pressure pulsation on the fluid–
solid interface.

This analysis should include the characteristics of the excitation forces and the
runner response in order to avoid resonances.

The runner is a component of the whole rotor system that is composed of a
runner, shaft and electrical generator. This system has its own natural lateral, axial,
and torsional frequencies. An analysis of the system would involve rotor dynamics
which is particularly important in machines that might experience critical (rotating)
speed during the start up. However, hydraulic turbines have rather rigid shafts and
the first natural frequency of the rotor would be far above their rotating frequency.
In fact, the runner and the generator also have their own natural frequencies.

The runner is submerged in water and the effect of added mass on the runner
response cannot be neglected. The quantification of this effect is one of the main
problems concerning determination of the runner response. The added mass may
only affect the rotor’s lateral frequencies, because it increases the effective mass of
the runner.

Recently, there are some studies on the modal analysis of hydraulic runners but
with measurements conducted in air. A few publications provide some general
data, but no publications provide detail information about the influence of the
water on the modal characteristics of runners. Some studies have only performed
numerical simulations without validations with experiments.

The added mass effects can also be modified through nearby structures.
Although there is no structure close to blades in an actual turbine, the casing is
close to the runner’s band where the seals are equipped. That would modify the
added mass effects on the runner vibration modes with deflection against the
nearby structure. Therefore, the significance of this effect depends on the
dimension of band and seal; that is, the longer the seals the more severe the effect.
This effect was tested on a Francis runner of a low head (small pressure difference)
and with small seals.

For all the reasons above, investigation of the added mass effects on a runner of
Francis turbines is based on experimental modal analysis of a runner as a free body
in air and in still water. Such conditions appear to be appropriate to approximately
simulate the main mode-shapes of interest in an actual Francis turbine runner in
operation. These modes correspond to those responsible for fatigue failure, and
they are the modes with high deformation in the blades.
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1.5 Rotordynamics of Hydraulic Machinery

Rotordynamics is a specialized branch of applied mechanics concerned with the
behavior and diagnosis of rotating structures.

1.5.1 Basic Principles of Rotordynamics

At the most basic level, rotordynamics is concerned with one or more mechanical
structures (rotors) supported by bearings and influenced by internal phenomena
that rotate around a single axis. The supporting structure is called stator. As the
speed of rotation increases, the amplitude of vibration often arrives at a maximum
that is termed as critical speed. This amplitude is usually excited by an imbalance
of the rotating structure. If the amplitude of vibration at these critical speeds is
excessive, catastrophic failure would occur.

Rotordynamic studies are related to technological applications date back to the
second half of the nineteenth century, when the increase of rotational speed made
it necessary to add rotation into the analysis of their dynamic behavior top had
been successfully dealt with by several mathematicians and experts in theoretical
mechanics.

The first turbine rotor was very simple and could be studied with the help of
simple models, the type now widely known as the Jeffcott rotor (Jeffcott 1919).
Actually, the Jeffcott rotor can provide qualitative explanations for many impor-
tant features of real-life rotors, the most important being self-centering in super-
critical conditions. Yet it fails to explain other features such as the dependence of
natural frequencies on the rotational speed. Above all, the simple Jeffcott rotor
does not guarantee a precise quantitative analysis of the dynamic behavior of
complex systems.

To cope with the increasing complexity of rotating systems, graphical com-
putation schemes were devised (Nelson 2011). They can be found in books and
papers from the first quarter of the last century and were the basic instrument for
the dynamic analysis of turbine rotors. A large number of papers dealing with the
flexural vibration of rotors, rotating shafts, and torsional vibration in reciprocating
machinery appeared in the years after World War I. This trend lasted for many
years, by the increase of the size of power-generating machinery.

The availability of electromechanical calculators made it possible to develop
computational procedures, mainly based on the transfer matrices approach. In
particular, Holzer’s method (Holzer 1921) for the torsional vibration of shafts and
the Myklestadt-Prohl method (Myklestad 1994) for computation of the critical
speed of turbine rotor were, and still are, widely used. These methods were
immediately automatized when digital computers became available.

The application of the finite element method (FEM) greatly influenced the
research of rotordynamics. Strictly speaking, FEM codes with general purposes
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cannot be used for rotordynamic analysis owing to the lack of consideration for
gyroscopic effects. It is true that a gyroscopic matrix can be forced into the
conventional formulation and several manufacturers have already used commer-
cial FEM codes to perform rotordynamic analysis. However, purposely written,
specialized FEM codes are still desired within the field of rotordynamics because
of their capability.

Through FEM modeling, it is possible to study the dynamic behavior of
machines containing high-speed rotors with greater detail consequently obtaining
quantitative predictions with an unprecedented degree of accuracy. Correct
quantitative prediction is of great importance, as the trend of technology devel-
opment toward higher power density, lower weight, and faster machines tend to
see a deterioration of problems linked with the dynamic behavior of rotating
machinery.

Higher speed is often a desirable feature just like machine tools or production
machines in which faster spinning directly relates to increasing productivity. In
applications involving power generation or utilization, a faster machine can
develop or convert more power out of the same torque. As torque is usually the
critical factor in dimensioning machine elements, increasing speed requires a
lighter power device. The use of materials capable of withstanding higher stress
allows for a reduction of the mass and size of machinery, but stronger materials
(e.g., high strength steels or light alloys) are mostly weak in stiffness. As a result
these lighter machines are more compliant and more prone to vibration. Another
trend of machine development is toward higher operating temperature, for
increasing both the thermodynamic efficiency and power density. A higher power
density implies that the same amount of heat is generated in a smaller space, with
less material, and hence lower thermal capacity. Higher temperature leads to
higher thermal stress, lower damping, and often lower stiffness, which makes
strength and vibration problems more severe.

Rotordynamic analysis is not restricted to the design stage. It can function as a
tool that is essential during testing and actual operation of machinery for gaining
the insight of the machine status and performing preventive maintenance. The
study of mechanical signature, i.e., the vibration spectrum, of a rotating machine
enables identification of operating problems before they become dangerous or
precipitate failure or damage to other parts of the machine. Any deviation of the
signature from its usual pattern provides a symptom (easily interpreted in many
cases) of a developing problem that allows corresponding countermeasures to be
taken in time.

Interesting features of the rotor dynamic system of equations are the off-diag-
onal terms of stiffness, damping, and mass. These terms are named cross-coupled
stiffness, cross-coupled damping, and cross-coupled mass. When positive cross-
coupled stiffness exists, a reaction force caused by a deflection offsets the load
with a counter deflection, as well as a reaction force in the direction of positive
whirl. If this force is comparable with the available direct damping and stiffness,
the rotor would be unstable. When a rotor is unstable, an immediate shutdown of
the machine is expected to avoid catastrophic failure.
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1.5.2 Rotordynamics Analysis of Hydro Turbine Units

For the analysis of rotor dynamic characteristics of the hydro turbine unit, with
consideration of the lateral forces acting on turbine runner, many modeling
methods have been developed. Also, many numerical integration methods (such as
the Runge–Kutta method, the Newmark-b method (Newmark 1959), and the
Wilson h method (Wilson 1968), etc.) have been proposed. They are often needed
in combination for the simulation of dynamic response of the shaft bearing system
in a hydro turbine unit.

More and more field engineers and researchers emphasize the start-up and
shutdown processes of hydro turbine units because faults frequently happen at
these transient stages. At the same time, some nonlinear characteristics are
exhibited in the vibration signals of the hydro turbine, such as nonlinear charac-
teristics of the guide bearing, thrust bearing, and the magnetic forces. Studies on
effects of these nonlinear characteristics on the vibration of the shaft will be very
significant.

The method designated as the transient Riccati transfer matrix method
(TRTMM) (Garnett 1997) should be utilized to compute the dynamic response of
shaft system under random excitation, and this model considers all the nonlinear
components.

For numerical analysis, the shaft system was simplified to an equivalent shaft
system inclusive of several lumped masses and shaft spans. In the physical model
used for computation, equivalent springs and dampers for the calculation of natural
characteristics of the shaft replaced guide bearings. While analyzing the dynamic
responses caused by external excitations, one should add reaction force of the
bearing to the equivalent system.

For the concentrated mass method, the Riccati transfer matrix and the Newmark
numerical integral method can be adopted to calculate and analyze instantaneous
non-linear responses of the rotor system in hydraulic turbine units. The effects of
shear deformation, rotary inertia and gyroscopic movement are taken into account.
The effects of the added mass of water in the hydraulic turbine and the electro-
magnetic induction of instantaneous response of the rotor system under arbitrary
forces are obtained.

The concept of a non-linear oil film force of the bearing is further identified,
and its influencing factors are summed up. The effect of non-linear oil film force is
considered during calculation. The resultant critical speeds and vibration modes of
the shaft system can be obtained. The elasticity of the bearings, the unbalanced
condition of the shaft and the magnetic pull of the generator would greatly
influence the conclusions of rotor dynamic analysis.

Rotordynamics study should include the analyses on critical speed, whirl speed
and stability, steady state synchronous response (unbalance, disk skew, and rotor
bow), nonlinear transient behaviour with acceleration, blade loss, rotor drop, bird
impact, rub, and balancing in mechanical rotating system.
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1.6 Vibration of Pumps

Vibration of pumps needs to be studied since it has a major impact on the per-
formance of the device. At least six components of pumps are seriously affected by
vibration (MCNally 2009).

The lifespan of a mechanical seal is directly related to shaft movement.
Vibration may induce carbon face chipping and seal face opening. Drive lugs
would wear, and metal bellows seals would fatigue. On occasion, shaft movement
can cause the rotating seal components to contact the inside of the stuffing box or
some other stationary objects, giving rise to leakage on the seal faces which allows
solid particles to be dragged in between the lapped faces. Vibration is also a major
cause for loosing set-screws and slipping on the shaft that leads to the lapped seal
faces to open.

Packing is sensitive to radial movement of the shaft. Once something goes
wrong with it, one would not only experience excessive leakage, but also more
abrasion on the sleeve and shaft.

Bearings are designed to handle both radial and axial loads. They are not
designed in consideration of vibration which may cause a brinneling (denting) of
the bearing races.

Critical dimensions and tolerances such as wear ring clearance and impeller
setting would be affected by vibration. Internal clearance of a bearing is measured
in order of one tenth centimeter.

Pump components may be damaged by vibration. Wear rings, bushings and
impellers are all vulnerable to vibration.

Bearing seals are very sensitive to radial movement of the shaft. Shaft damage
would increase the chance of over-early failing in seals. Labyrinth seals operate
within a very limited tolerance. Thus, excessive displacement could damage these
tolerances as well.

The vibration in pumps comes from a number of sources that include
mechanical problems, hydraulic causes and others.

Currently the monitoring systems for pumps are not as good as those for large
turbines. The vibration readings almost always indicate that the equipment has
started to destroy itself. Most companies are now trying to collect enough data to
more accurately predict the remaining life before total destruction.

The obvious solution to all of these is to adopt good maintenance practice that
could eliminate most vibrations.

In reality, one cannot prevent all of the vibrations that induce problems on seal,
packing, bearing, and critical clearance. The only solution is to live with it.

24 1 Introduction



References

Akahane, K., & Suzuki, R. (1996). Recent analysis technologies for hydropower equipment.
FUJI Electric Journal, 69(9).

BS ISO 10816-5. (2001). Mechanical vibration: Evaluation of machine vibration by measure-
ments on non-rotating parts—Part 5: Machine sets in hydraulic power generating and
pumping plants.

Chen, C.X., Wu, D.Z., Tan, S.G., & Wang, L.Q. (2008). Computing critical speeds for multiple-
stage centrifugal pumps with speed dependent support properties. Fluid Machinery and Fluid
Mechanics (pp. 306–309). Berlin: Springer.

Egusquiza, E. (2007). Vibration behavior of hydraulic turbines, application to condition
monitoring. Proceedings of 2ND IAHR International Meeting of the WG on Cavitation and
Dynamic Problems in Hydraulic Machinery and Systems.

Feng, F. Z., & Chu, F. L. (2001). Dynamic analysis of a hydraulic turbine unit. Mechanics of
Structures and Machines, 29(4), 505–531.

Garnett, C. H. (1997). The Riccati transfer matrix method. University of Virginia, 1975.
Holzer, (1921). Die Berechnung der Drehschwingugen, Springer-Verlag, Berlin.
Jeffcott, H. H. (1919). The lateral vibration loaded shafts in the neighborhood of a whirling

speed.—the effect of want of balance. Philosophical Magazine. 6 37
Krishna, H. R. (1997). Hydraulic design of hydraulic machinery, Book Series on Hydraulic

Machinery. Avebury, London: Ashgate Publishing Ltd.
Liang, Q.W., Egusquiza, E., Escaler, X, & Avellan, F. (2006). Modal analysis on a Francis

turbine runner considering the fluid added mass effect. Proceedings of IAHR International
Meeting of WG on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems.

MCNally. (2009). http://www.mcnallyinstitute.com/02-htm.
Ohashi, H. (1991). Vibration and Oscillation of hydraulic machinery, Book Series on Hydraulic

Machinery. Avebury, London: Ashgate Publishing Ltd.
Swain, M. (2008).Vibrations in a Francis turbine: A case study. Electrical India, 48(5).
Wikipedia, the free encyclopedia. (2008a). Hydropower. http://www.en.wikipedia.org/wiki/

Hydropower.
Wikipedia, the free encyclopedia. (2008b). Modal analysis. http://www.en.wikipedia.org/wiki//

wiki/Modal_analysis.
Wilson, E. L. (1968). A computer program for the dynamic stress analysis of underground

structures. SESM Report, 68-1. University of California, Berkeley.
Xiao, R. F., Wang, Z. W., & Luo, Y. Y. (2008). Dynamic stresses in a Francis turbine runner

based on fluid-structure interaction analysis. Tsinghua Science and Technology, 13(5),
587–592.

References 25

http://www.mcnallyinstitute.com/02-htm
http://www.en.wikipedia.org/wiki/Hydropower
http://www.en.wikipedia.org/wiki/Hydropower
http://www.en.wikipedia.org/wiki//wiki/Modal_analysis
http://www.en.wikipedia.org/wiki//wiki/Modal_analysis


Chapter 2
Foundamental of Mechanical Vibration

The purpose of this chapter is to provide a theoretical background of vibration in
mechanical systems. The theories and mathematical structures presented in this
chapter are classical and based on the book by Krodkiewski (2008). In fact, vibration
study is rooted in Newton’s Law of Motion. The last four hundred years saw an
increased interest in this subject as engineers began to reevaluate earlier formula-
tions and designs in an effort to maximize stability of their particular creation.

2.1 Introduction

There are many situations where vibrations are permitted or even encouraged within
the system. Some key terms are defined here, for they will be used often later:

Vibration is a reciprocating or periodic motion of an elastic body, rigid body,
or virtually any medium forced from a state of equilibrium.

Oscillation is a repetitive variation of some measure about a centralized point
in elapsed time. Vibration undergoes deformation, while an oscillating structure
does not.

Structures ranges from small scale: beams and rods; to large scale: rotors and
engine assemblies.

Systems are more general and abstract. It may be defined as a group of inte-
grated parts which are behaving as a single entity, either man-made or naturally
occurring. All structures are systems, not vice versa.

Environments are external to the system but have the ability to interact and
even invoke the system’s behavior.

Modeling is the overall goal of representing physical properties of mechanisms
by means of mathematical formulations.

Inertia is defined as the property of a mass (or system) which acts to resist itself
from a change in motion.

Stiffness describes the systems ability to store strain energy; typically repre-
sented by a spring and modeled by the properties of Hooke’s Law.

Y. Wu et al., Vibration of Hydraulic Machinery,
Mechanisms and Machine Science 11, DOI: 10.1007/978-94-007-6422-4_2,
� Springer Science+Business Media Dordrecht 2013
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Damping describes the systems ability to dissipate energy.
Frequency of a vibrating body is the number of cycles of motion within a unit

time.
Period of a wave is the time elapsed until the motion repeats itself. It is the

reciprocal of the frequency.
Amplitude of a wave is the shortest distance between two particles along the

wave which differ in phase by one cycle.
Mechanical Vibration is occasionally ‘‘desirable’’. But more often, it is

undesirable because it wastes energy and creates unwanted sound or noise. For
example, the vibration motions of a turbine, electric generator, or any mechanical
device in operation are typically unwanted. Such vibrations can be brought along
about by imbalances in the rotating parts or uneven friction. A careful design
usually minimizes undesired vibrations.

It is standard to begin by establishing a behaviorally correct but simplified
model from a relatively complex and seemingly disordered system. These simpler
systems are called idealized systems. Only with a deeply sophisticated under-
standing of the actual system can one develop an idealized model for study. When
working within an idealized system, insight into the limitations of the actual
system is eventually realized; it is with this in mind that one always works from
the ground up in all engineering and physical applications. Figure 2.1 shows a few
examples of increasingly complex idealistic modular representations of an actual
cantilever beam system; the below models are shown with one degree of freedom,
four degrees of freedom or infinite degrees of freedom.

This chapter contains four parts:

(1) Mechanical vibration of one-degree-of-freedom (ODOF) linear system;
(2) Multi-degree-of-freedom (MDOF) models;
(3) Vibration of continuous systems;
(4) Approximation of the continuous systems by discrete models. The Rigid

Element Method (REM) and the Final Element Method (FEM) are explained
and utilized to produce the inertia and stiffness matrices.

(a) (b)

(c) (d)

Fig. 2.1 The actual system
and its idealized systems.
a Actual system (cantilever
beam). b One degree of
freedom. c Four degrees of
freedom. d Infinite degrees of
freedom
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2.2 Mechanical Vibration of One-Degree-of-Freedom
Linear Systems

Modeling and analysis on mechanical vibration of ODOF linear system will be
presented in this section. This part and following parts in this chapter reference the
book by Krodkiewski (2008) as well as the following works: Burton (1994); Inman
(2001); Thornton and Marion (2004).

2.2.1 Modeling of ODOF System

The mathematical description of mechanical vibration of ODOF linear system is
considered.

2.2.1.1 Physical Model

As an example of vibration, let us consider the vertical motion of body 1 sus-
pended on rod 2 shown in Fig. 2.2a. If the body is forced away from its equi-
librium position and then released, each point of the body performs an independent
oscillatory motion, like a body suspended at the end of a spring in Fig. 2.2b.
Therefore, one generally has to introduce an infinite number of independent
coordinates xi to determine uniquely the body’s motion.

The number of independent coordinates one has to use to determine the position
of a mechanical system is called number of degrees of freedom.

It is assumed that rod 2 is without mass and body 1 is rigid, so only one
coordinate is necessary to uniquely identify the whole system, the displacement

(a) (b)Fig. 2.2 Vertical motion of
the body. a Physical model.
b Body suspended at spring
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x of the rigid body 1 (see Fig. 2.3). In order to get the equation of the vibration of
body 1, one has to produce its free body diagram, which is shown in Fig. 2.4.

In Fig. 2.4, G ({G}) represents the gravity force, whereas the force R ({R})
represents so-called the restoring force. In a general case, the restoring force is a
non-linear function of the displacement x and the velocity _x of the body 1
ðR¼Rðx; _xÞÞ.

Confining the vibration within a small vicinity of the system equilibrium
position, would allow the non-linear relationship to be linearized:

R ¼ Rðx; _xÞ � kxþ c _x ð2:1Þ

where k is called stiffness and c is the coefficient of damping. Such cases are often
referred to as linear vibration and the system is named linear system. The physical
model that reflects all the above assumptions is labeled the ODOF linear system.

xxxxxxgggg

xxxx

x

t

i

2

1

Fig. 2.3 One coordinate
used in the system in Fig. 2.2

1

R

G

t

xFig. 2.4 Free body diagram
of Fig. 2.2 system
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2.2.1.2 Mathematical Model

The mathematical model can be obtained through application of the laws of
physics to the adopted physical model. In this section, the principle of setting up a
mathematical model for the ODOF system is shown in Fig. 2.5.

Assume that the system is in an equilibrium status. The origin of absolute
coordinates coincides with the centre of the body’s gravity as the body stays at its
equilibrium position shown in Fig. 2.5. The summation of all static force vectors
(in the example considered gravity force mg and interaction force due to the static
elongation of spring kxs) is equal to zero. If the system is away from equilibrium
position by a distance x, there is an increment in the interaction force between the
spring and the block. This increment is called the restoring force, which can be
represented in the equation of motion by term:

Fk ¼ �kx: ð2:2Þ

The interaction force is called the damping force, which can be expressed in the
equation of motion in the following way:

FD ¼ �c _x: ð2:3Þ

The assumption that the system is linear allows for the application of the
superposition principle to integrate these forces into the external force FexðtÞ.
Hence, the equation of motion of the block of mass m is

m€x ¼ �kx� c _xþ FexðtÞ: ð2:4Þ

Transformation of the above equation into the standard form yields

€xþ 21xn _xþ x2
nx ¼ f ðtÞ ð2:5Þ

where

xn ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

; 21xn ¼ c=m; f ðtÞ ¼ FexðtÞ=m ð2:6Þ

m

k c
x

k xs

mg

Fig. 2.5 Mathematical
model for the ODOF system
in Fig. 2.2
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where, xn is called natural frequency of the undamped system; 1 is the damping
factor or damping ratio; f (t) is the unit of external excitation. Equation (2.5) is
known as the mathematical model of linear vibration for the ODOF system.

2.2.2 Analysis of ODOF System

Free vibration occurs when a mechanical system is set off by an initial input and
then vibrates freely. The mechanical system will then vibrate at one or more of its
‘‘natural frequencies’’ and damp down to zero. In a general case, motion of a
vibrating system is due to both the initial conditions and the exciting force. This
motion is referred to as the forced vibration.

2.2.2.1 Free Vibration

According to the above definition, it is assumed that summation of all external
forces f(t) is equal to zero. Thus, the mathematical model analyzed in this section
takes form:

€xþ 21xn _xþ x2
nx ¼ 0: ð2:7Þ

If the damping ratio 1 is assumed to be zero, Eq. 2.7 governs the free motion of
the undamped system.

€xþ x2
nx ¼ 0 ð2:8Þ

(1) Free vibration of an undamped system. The general solution of homogeneous
Eq. 2.8 is a linear combination of its two specific linearly independent solu-
tions. These solutions can be obtained by means of the following procedure.
The particular solution can be predicted in the form of Eq. 2.9:

x ¼ ekt ð2:9Þ

Introduction of solution 2.9 into Eq. 2.8 yields the characteristic equation:

k2 þ x2
n ¼ 0 ð2:10Þ

This characteristic equation has two roots:

k1 ¼ þixn; k2 ¼ �ixn: ð2:11Þ

Hence, in this case, the independent particular solutions are

x1 ¼ sin xnt and x2 ¼ cos xnt: ð2:12Þ
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Their linear combination is the wanted general solution that approximates free
vibration of the undamped system, i.e.,

x ¼ Cs sin xnt þ Cc cos xnt ð2:13Þ

where

Cs ¼ x0; Cc ¼ v0: ð2:14Þ

And x0 is the position of the system at instant t = 0; v0 is its initial velocity. The
particular solution that represents the free vibration of the system is

x ¼ v0

xn
sin xnt þ x0 cos xnt ¼ C sin xnt þ að Þ ð2:15Þ

where

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0ð Þ2þ
v0

xn

� �2
s

; a = arctan
v0=xn

x0

� �

: ð2:16Þ

In this context, the period of undamped free vibrations is

Tn ¼ 2p=xn: ð2:17Þ

(2) Free vibration of a damped system. If the damping ratio is not equal to zero,
the equation of the free motion is written as

€xþ 21xn _xþ x2
n ¼ 0: ð2:18Þ

The characteristic equation of free vibration in a damped system is

k2 þ 21xnkþ x2
n ¼ 0: ð2:19Þ

The characteristic equation has two roots:

k1;2 ¼ �1xn � xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi

12 � 1
p

: ð2:20Þ

The particular solution rests on a category of the above roots. Three cases are
possible as discussed below.

(2–1) Underdamped vibration. If 1\ 1, the characteristic equation has two
complex conjugated roots and it is often referred to as an underdamped vibration.
The free motion solution of an underdamped vibration is in the form:

x ¼ Ce�1xnt sin xdt þ að Þ ð2:21Þ

where

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0ð Þ2þ
v0 þ 1xnx0

xd

� �2
s

; a = arctan
x0xd

v0 þ 1xnx0

� �

; xd ¼ xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 12
p

:

ð2:22Þ
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In this case, the motion is not periodic but the time Td between each second
zero-point is constant and it is termed as a period of the dumped vibration, i.e.,

Td ¼
2p
xd

: ð2:23Þ

The natural logarithm ratio of two displacements x(t) and x(t ? Td) that are one
period apart is called the logarithmic decrement of damping and will be denoted by
d. It will be shown that the logarithmic decrement is constant.

d ¼ ln
xðtÞ

xðt þ TdÞ
¼ 2p1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 12
p : ð2:24Þ

This formula is frequently used for the experimental determination of the
damping ratio 1, i.e.,

1 ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p2 � d2
p : ð2:25Þ

The other parameter xn can be identified by measuring the period of the free
motion Td.

xn ¼
xd
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 12
p ¼ 2p

Td

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 12
p : ð2:26Þ

(2–2) Critically damped vibration. If 1 = 1, the characteristic equation has two
real and equivalent roots, k1,2 and this case is often referred to as the critically
damped vibration.

k1;2 ¼ �1xn: ð2:27Þ

The expression for free motion of the critically damped vibration system is this
form:

x ¼ e�1xnt x0 þ t v0 þ x0xnð Þð Þ: ð2:28Þ

(2–3) Overdamped vibration. If 1[ 1, the characteristic equation has two real
roots and this case is often referred to as the overdamped vibration.

k1;2 ¼ xn �1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

12 � 1
p

� �

: ð2:29Þ

The solution of free motion of the overdamped vibration system is as follows:

x ¼ e�1xnt Cse
xn

ffiffiffiffiffiffiffiffiffiffi

12�1ð Þ
p

t þ Cce�xn

ffiffiffiffiffiffiffiffiffiffi

12�1ð Þ
p

t
� �

: ð2:30Þ

The two constants Cs and Cc are expressed as follows:

Cs ¼
þ v0

xn
þ x0 þ1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

12 � 1
p

� �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

12 � 1
p ;Cc ¼

� v0
xn
þ x0 �1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

12 � 1
p

� �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

12 � 1
p : ð2:31Þ

34 2 Foundamental of Mechanical Vibration



2.2.2.2 Forced Vibration

For the forced vibration, the mathematical model is a linear non-homogeneous
differential equation of the second order:

€xþ 21xn _xþ x2
nx ¼ f ðtÞ ð2:32Þ

where

xn ¼
ffiffiffiffi

k

m

r

; 21xn ¼
c

m
; f ðtÞ ¼ FexðtÞ

m
: ð2:33Þ

The general solution of the homogeneous equation for underdamped vibration
is

xg ¼ Ce�1xnt sin xdt þ að Þ ð2:34Þ

where

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0ð Þ2þ
v0 þ 1xnx0

xd

� �2
s

; a = arctan
x0xd

v0 þ 1xnx0

� �

; xd ¼ xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 12
p

:

ð2:35Þ

To get the particular solution of the non-homogeneous equation, the assumption
is made that the excitation can be approximated by a harmonic function, as
follows:

f ðtÞ ¼ q sin xt ð2:36Þ

where q represents the amplitude of the unit excitation and x is the excitation
frequency. Introduction of Eq. (2.36) into Eq. (2.32) yields

€xþ 21xn _xþ x2
nx ¼ q sin xt: ð2:37Þ

One can obtain a general solution to the equation of motion that describes
forced vibration of a system in the following form:

x ¼ C0e�1xnt sinðxdt þ a0Þ þ A sinðxt þ uÞ ð2:38Þ

where

A ¼
q
�

x2
n

� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x=xnð Þ2
� �2

þ412 x=xnð Þ2
r ; u¼� arctan

21 x=xnð Þ
1� x=xnð Þ2

: ð2:39Þ

Based on the initial conditions, one can get the following set of algebraic
equations for determination of the parameters C0 and a0.
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x0 ¼ C0 sin a0 þ A sin u

v0 ¼ �C01xn sin a0 þ C0xd cos a0 þ Ax sin u:
ð2:40Þ

The solution (2.38) consists of two terms. The first term represents an vibration
with a frequency equal to the natural frequency of the damped system xd. Motion
represented by this term, because of the existing damping, decays to zero and
determines time of the transient state of the forced vibrations. Therefore, after a
short time, the transient state changes into a steady state designated by the second
term in Eq. (2.38), i.e.,

x ¼ A sinðxt þ uÞ: ð2:41Þ

This harmonic term has amplitude A determined by Eq. (2.39). It is called the
amplitude of forced vibration. Motion approximated by Eq. (2.41) is usually
known as the system of forced vibration.

2.3 Mechanical Vibration of Linear Systems with MDOF

Since massless or rigid elements do not exist in reality, infinite numbers of coor-
dinates have to be introduced to determine the element position. But in many cases,
the real elements can be represented by a limited number of rigid elements con-
nected to each other with massless elements of elastic and damping properties. This
process is called discretization by which one arrives at a MDOF system. In this
section, it is supposed that forces produced by these massless elements (springs and
dampers) are linear functions of displacements and velocities respectively.

2.3.1 Two-Degrees-of-Freedom Model

The mass-spring-damper model is called an ODOF model because the mass is only
considered to be moving up and down. In a more complex system of suspension,
the system should be discretized into masses that move in more than one direction,
which adds degrees of freedom. A two-degree-of-freedom model (2DOF) shown in
the Fig. 2.6 would help to illustrate the major concepts of MDOF.

Equations of motion of the 2DOF system are found to be

m1€x1 þ c1 þ c2ð Þ _x1 � c2 _x2 þ k1 þ k2ð Þx1 � k2x2 ¼ f1

m2€x2 � c2 _x1 þ c2 þ c3ð Þ _x2 � c3 _x3 � k2x1 þ k2 þ k3ð Þx2 � k3x3 ¼ f2:

Because -c3 _x3 - k3 x3 = 0 (see Krodkiewski 2008), these equations could be
written in matrix format, i.e.,
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m1 0
0 m2


 �

€x1

€x2

� 


þ c1 þ c2 �c2

�c2 c2 þ c3


 �

_x1

_x2

� 


þ k1 þ k2 �k2

�k2 k2 þ k3


 �

x1

x2

� 


¼ f1
f2

� 


:

ð2:42Þ

A more compact form of this matrix equation can be written as

M½ � €xf g þ C½ � _xf g þ K½ � xf g ¼ ff g ð2:43Þ

where [M], [C], and [K] are symmetric matrices of the mass, damping, and stiff-
ness matrices. The matrices are N � N square matrices where N is the number of
degrees of freedom of the system.

2.3.2 Free Vibration and Eigenvalues of the MDOF Model

In the following analysis, the case without damping and applied forces (i.e., free
vibration) would be studied. The solution of a viscously damped system is
somewhat more complicated.

M½ � €xf g þ K½ � _xf g ¼ 0: ð2:44Þ

This differential equation can be solved by assuming the following type of
solution:

xf g ¼ Xf geixt: ð2:45Þ

The equation then becomes

�x2 M½ � þ K½ �
� �

Xf geixt ¼ 0: ð2:46Þ

Since eixt cannot equal zero, the equation reduces to

�x2 M½ � þ K½ �
� �

Xf g ¼ 0: ð2:47Þ

This is an eigenvalue problem in mathematics and can be put in the standard
format by pre-multiplying the equation by [M]-1.

x1 x2

c3c2c1

k2k1 k3

m1 m2

 

Fig. 2.6 Two degree of
freedom model
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M½ ��1 K½ � � x2 M½ ��1 M½ �
h i

Xf g ¼ 0;

and if M½ ��1 K½ � ¼ A½ � and k¼x2, then

A½ � � k I½ �½ � Xf g ¼ 0: ð2:48Þ

The solution results in N eigenvalues ðx2
1;x

2
2;x

2
3; . . . x2

NÞ, where N corresponds
to the number of degrees of freedom. The eigenvalues provide the natural fre-
quencies of the system. When these eigenvalues are substituted back into the
original set of equations, values of {X} that correspond to each eigenvalue are
called the eigenvectors. These eigenvectors reflect the mode shapes of the system.

Figure 2.7 shows the mode shapes of a cantilevered I-beam. A finite element
model was used to generate the mass and stiffness matrices and solve the eigen-
value problem. Even this relatively simple model has a degree-of-freedom of over
100 and hence as many natural frequencies and mode shapes. Generally speaking,
only the first few modes are important.

2.3.3 MDOF Problem Converted to a ODOF Problem

The eigenvectors have very important properties called orthogonality. These
properties can be used to simplify the solution of multi-degree of freedom models.
These properties are

Mr½ � ¼ W½ �T M½ � W½ � ð2:49Þ

kr½ � ¼ W½ �T K½ � W½ � ð2:50Þ

(a.2) (b.2) (c.2) 

(a.1) (b.1) (c.1) 

Fig. 2.7 Modes of a cantilevered I-beam. a.1 1st lateral bending b.1 1st torsional c.1 1st vertical
bending a.2 2nd lateral bending b.2 2nd torsional c.2 2nd vertical bending (http://
en.wikipedia.org/wiki/Vibration)
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where [Mr] and [kr] are diagonal matrices that contain the modal mass and stiff-
ness values for each mode. The solution is simplified with these properties through
coordinate transformation, i.e.,

xf g ¼ W½ � qf g: ð2:51Þ

When applied into the original free vibration equation, the equation is

M½ � W½ � €qf g þ K½ � W½ � qf g ¼ 0: ð2:52Þ

One takes advantage of the orthogonality properties by multiplying this equa-
tion by [W]T as

W½ �T M½ � W½ � €qf g þ W½ �T K½ � W½ � qf g ¼ 0: ð2:53Þ

The orthogonality properties then simplify this equation to

Mr½ � þ €qf g þ kr½ � þ qf g ¼ 0: ð2:54Þ

This equation is the foundation of vibration analysis for MDOF systems. A
similar result can be derived for damped systems. The key is that the modal and
stiffness matrices are diagonal so that the equations could be ‘‘decoupled’’. In other
words, the unwieldy MDOF problem is transformed into several ODOF problems
that can be solved using the same methods outlined above.

The modal coordinates or modal participation factors q are the solving target
instead of x. It may be clearer if one writes {x} = [W] {q} as

xf g ¼ q1 Wf g1þq2 Wf g2þq3 Wf g3þ � � � þqN Wf gN : ð2:55Þ

As can be seen above, the vibration at each degree of freedom is just a linear
sum of the mode shapes with the modal participation factor q.

2.3.4 Forced Vibrations-Transfer Functions

The response to external excitation {F(t)} of a MDOF system is obtained with the
particular solution to the mathematical model expressed as

M½ � €xf g ¼ � K½ � xf g � C½ � _xf g þ FðtÞf g: ð2:56Þ

Let us assume that the excitation force {F(t)} is a sum of k addends. For further
analysis, each of them has the following form:

Fk ¼ Fk
0 cos xt þ uk

0

� 	

ð2:57Þ

To facilitate the process of looking for the particular solution of Eq. (2.56), the
complex excitation force is introduced by adding to expression (2.57) the imagi-
nary part:
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f k ¼ Fk
0 cos xt þ uk

0

� 	

þ iFk
0 sin xt þ uk

0

� 	

: ð2:58Þ

The complex excitation may be written as follows:

f k ¼ f k
0 eixt: ð2:59Þ

Here, f0
k is a complex number that depends on the amplitude and phase of

external excitation. Substitute Eq. (2.59) into Eq. (2.56) to yield

M½ � €xf g þ C½ � _xf g þ K½ � xf g ¼ f 0f geixt: ð2:60Þ

Now, the particular solution of Eq. (2.60) can be predicted in the complex form
Eq. (2.61), i.e.,

xcf g ¼ af geixt: ð2:61Þ

Substitution of Eq. (2.61) into Eq. (2.60) produces a set of the algebraic
equations which are linear with respect to the unknown vector:

�x2 M½ � þ ix C½ � þ K½ �
� 	

af g ¼ ff g0: ð2:62Þ

Its solution is

af g ¼ �x2 M½ � þ ix C½ � þ K½ �
� 	�1

ff g0: ð2:63Þ

According to Eq. (2.61), the response of the system {xc} to complex force {f} is

xcf g ¼ Re af g þ iIm af gð Þ cos xt þ i sin xtð Þ: ð2:64Þ

Response of the system {x} to real excitation {F} is represented by the real part
of the solution (2.64), i.e.,

xf g ¼ Re af g cos xt � Im af g cos xt: ð2:65Þ

According to Eq. (2.65), motion of the system along {xc} is

xk ¼ xk
0 cos xt þ bk� 	

ð2:66Þ

where

xk
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ReðakÞ2 þ ImðakÞ2
q

; bk ¼ arctan
ImðakÞ
ReðakÞ : ð2:67Þ

The amplitude of forced vibration x0
k is equal to the absolute value of complex

amplitude ak and its phase bk is equal to the phase between the complex ampli-
tudes ak and the vector eixt. The complex matrix

�x2 M½ � þ ix C½ � þ K½ �
� 	�1 ð2:68Þ

is denoted by [Rpq(ix)] and is called the matrix of transfer functions.
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Based on Eq. 2.63, it transfers the vector of complex excitation {f0}eixt into the
vector of complex displacement {xe} = {a}eixt.

xcf g ¼ RpqðixÞ
� �

f 0f geixt: ð2:69Þ

It is easy to notice that the element Rpq(ix) of the matrix of transfer functions
represents complex displacement (amplitude and phase) of the system along the
coordinates {xp} in response to unit excitation {1eixt} along the coordinate {xq}.

2.4 Vibration of Continuous System

The logical extension of a discrete mass system is one with an infinite number of
masses. At the end of the limit, it becomes a continuous system. This section is
about the vibration associated with one-dimensional continuous systems such as
shafts and beams. The natural frequencies and natural modes are used for exact
solutions of free and forced vibrations.

2.4.1 Modeling of Continuous System

The mathematical description of mechanical vibration of shafts and beams is
considered in this part.

2.4.1.1 Modeling of Shaft System

Shafts are elastic elements that are subjected to torques. Suppose that the torque
sðz; tÞ is distributed along the axis z and is a function of time t (see Fig. 2.8). The
shaft has the shear modulus GðzÞ, the density qðzÞ, the cross-section area AðzÞ and
the second moment of area JðzÞ. Because of its moment sðz; tÞ, the shaft performs
torsional vibrations and the instantaneous angular position of the cross-section at z
is uðz; tÞ. The angular position at the distance zþ dz is expressed by the total
differential ouðz; tÞ=ozdz. In consideration of the element dz in the shaft, its
moment of inertia is

dI ¼
Z

A
r2dAqðzÞdz ¼ qðzÞdz

Z

A
r2dA ¼ JðzÞqðzÞdz: ð2:70Þ

Based on the generalized Newton’s law, one can write the following equation:

J zð Þq zð Þ o
2u z; tð Þ
ot2

� oT z; tð Þ
oz

¼ s z; tð Þ: ð2:71Þ

Once the relationship between the torque on a section Tðz; tÞ and the angular
deflection of uðz; tÞ is established, i.e.,

2.3 Mechanical Vibration of Linear Systems with MDOF 41



ouðz; tÞ
oz

dz ¼ Tðz; tÞ
JðzÞGðzÞ dz: ð2:72Þ

And substituted into Eq. (2.71), one has

JðzÞqðzÞ o
2uðz; tÞ
ot2

� o

oz
GðzÞJðzÞ ouðz; tÞ

oz


 �

¼ sðz; tÞ: ð2:73Þ

If JðzÞ, qðzÞ and GðzÞ are constant, the equation of motion takes form:

o2uðz; tÞ
ot2

� k2 o2uðz; tÞ
oz2

¼ qðz; tÞ ð2:74Þ

where

k2 ¼ G

q
; qðz; tÞ ¼ sðz; tÞ

Jq
: ð2:75Þ

2.4.1.2 Modeling of Beams

Beams are elastic elements that are subjected to lateral loads—forces or moments
that have their vectors perpendicular to the centre line of a beam (Krodkiewski
2008). One considers a beam of the second moment of area J(z), cross-section
A(z), density qðzÞ and the Young’s modulus E(z). The beam performs vibrations in
response to external distributed unit load f(z, t). The instantaneous position of
element dz is highlighted in Fig. 2.9.

Fig. 2.8 Modeling of shaft
(Krodkiewski 2008)
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The beam’s equation of motion in the z direction is

dm
o2yðz; tÞ

ot2
dz ¼ � oVðz; tÞ

oz
þ f ðz; tÞdz: ð2:76Þ

If one neglects the inertia moment associated with rotation of the element dz,
the terms of order higher than one with respect to dz, sums the moments about the
point G to be equal to zero, yields the relationship between bending moment M and
shearing force V, i.e.,

Vðz; tÞ ¼ oMðz; tÞ
oz

: ð2:77Þ

Since mass of the element dz is

dm ¼ AðzÞqðzÞdz: ð2:78Þ

Substituting into Eq. (2.76), one can get the beam’s equation of motion, i.e.,

o2yðz; tÞ
ot2

þ k2 o4yðz; tÞ
ot4

¼ qðz; tÞ ð2:79Þ

where

k2 ¼ EJ

Aq
; qðz; tÞ ¼ f ðz; tÞ

Aq
: ð2:80Þ

2.4.2 Analysis of Continuous System

The solution of free vibration of shafts and beams is discussed in this part.

Fig. 2.9 Instantaneous
position of the element
dz (Krodkiewski 2008)
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2.4.2.1 Free Vibration of Shafts

If parameters of the system considered are constant, the free vibration (natural
vibration) of the shaft is governed by the homogeneous Eq. (2.81):

o2uðz; tÞ
ot2

þ k2 o2uðz; tÞ
oz2

¼ 0 ð2:81Þ

where

k2 ¼ G=q: ð2:82Þ

The goal is to get the particular solution of the above equation in a form that is
the product of two functions. One of them is a function of position z and the other
one is a function of time t.

uðz; tÞ ¼ UðzÞ sin xnt: ð2:83Þ

Introduction of the predicted solution into (2.83) into Eq. (2.81) comes to the
following ordinary differential equation:

�x2
nUðzÞ � k2UIIðzÞ ¼ 0 ð2:84Þ

or

UIIðzÞ þ b2
nUðzÞ ¼ 0 ð2:85Þ

where

bn ¼ xn=k: ð2:86Þ

The general solution of this equation is

UnðzÞ ¼ Sn sin bnzþ Cn cos bnz ð2:87Þ

where bn ¼ xn

ffiffiffiffiffiffiffiffiffiffi

q=G:
p

The values for parameter bn as well as the constants Sn and Cn should be chosen
to fulfill boundary conditions. According to Eq. (2.87), the general solution of Eq.
(2.81) may be adopted in the following form:

uðz; tÞ ¼
X

1

n¼1

WnðzÞ Sn sin xnt þ Cn cos xntð Þ: ð2:88Þ

This solution has to meet the requirement of the initial conditions. The con-
ditions determine the initial position W0(z) and initial velocity X0(z) of the system
considered for the time t which equals to zero, i.e.,

uðz; 0Þ ¼ W0ðzÞ
o

ot
uðz; 0Þ ¼ X0ðzÞ: ð2:89Þ
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Taking advantage of the orthogonality conditions, one derives the wanted
constants Sn and Cn as

Cn ¼
R l

0 W0ðzÞWnðzÞdz
R l

0 W2
nðzÞdz

; Sn ¼
1
xn

R l
0 X0ðzÞWnðzÞdz
R l

0 W2
nðzÞdz

: ð2:90Þ

2.4.2.2 Free Vibrations of Beams

For a uniform beam, the equation of motion (2.79) can be classified as a linear
partial differential equation of two variables (z and t) with constant coefficients
(k2). Its order with respect to time is 2, and 4 with respect to z. The general
solution, a function of two variables, is the sum of the general solution of
homogeneous equation and the particular solution of non-homogeneous equation.
If external excitation q(z, t) = 0, Eq. (2.79) is one that describes free vibration of
the beam with a non-zero initial condition. The free vibrations (natural vibrations)
are governed by the homogeneous Eq. (2.79), i.e.,

o2yðz; tÞ
ot2

þ k2 o4yðz; tÞ
oz4

¼ 0: ð2:91Þ

Similarly to the analysis of shafts, the solution of Eq. (2.91) is in the form of a
product of two functions. One of them is a function of position z and the other is
the function of time t, i.e.,

yðz; tÞ ¼ YðzÞ sin xnt: ð2:92Þ

Substituting the predicted solution (2.92) into Eq. (2.91), one arrives at the
following ordinary differential equation:

�x2
nYðzÞ þ k2YIVðzÞ ¼ 0 ð2:93Þ

YIVðzÞ � b4
nYðzÞ ¼ 0 ð2:94Þ

where

b4
n ¼

x2
n

k2 ¼
Aq
EJ

x2
n: ð2:95Þ

The standard form of its particular solution is

yðzÞ ¼ erz: ð2:96Þ

Introduction of this solution into the Eq. (2.94) yields the characteristic
equation:

r4 ¼ b4
n: ð2:97Þ
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Its roots

r1 ¼ bn; r2 ¼ �bn; r3 ¼ ibn; r4 ¼ �ibn ð2:98Þ

determines the set of the linearly independent particular solution.

Y1 ¼ ebnz; Y2 ¼ e�bnz; Y3 ¼ eibnz; Y4 ¼ e�ibnz: ð2:99Þ

Alternatively, one can choose their combinations to be the set of the inde-
pendent solutions, i.e.,

Y1ðzÞ ¼ ebnz � e�bnz
� 	�

2 ¼ sinh bnz ð2:100Þ

Y2ðzÞ ¼ ebnz þ e�bnz
� 	�

2 ¼ cosh bnz ð2:101Þ

Y3ðzÞ ¼ eibnz � e�ibnz
� 	�

2 ¼ sin bnz ð2:102Þ

Y4ðzÞ ¼ eibnz þ e�ibnz
� 	�

2 ¼ conbnz: ð2:103Þ

The general solution for Eq. (2.93), as a linear combination of these particular
solutions is

YnðzÞ ¼ Ansinhbnzþ Bncoshbnzþ Cnsinbnzþ Dncosbnz: ð2:104Þ

Values for the parameter bn as well as for the constants An, Bn, Cn and Dn

should be chosen to fulfill boundary conditions. Since this equation is of the fourth
order, one has to set four boundary conditions reflecting the conditions at both
ends of the beam. They would involve the function Y(z) and its first three deriv-
atives with respect to z. Boundary conditions are applied to the beam for deter-
mination of the natural frequencies and the natural modes.

2.5 Conservative Discrete Vibrating Systems

The equations of motion for both ODOF and MDOF undamped vibrating systems
are obtained through the dynamic equilibrium equations in Lagrange equations.
The vibrating system is constrained to either an inertial reference frame or a
moving one with respect to an inertial frame.

The dynamic equilibrium equations of a system comprised of a number of
masses connected with each other to a supporting frame by linear springs can be
written in the compact form:

M½ � €xf gþ K½ � xf g¼ f ðtÞf g ð2:105Þ

where [M] is the mass matrix of the system. It is diagonal if all coordinates xi are
related to translational degrees of freedom in an inertial reference frame. [K] is the
stiffness matrix, which generally is not a diagonal matrix. {x} is a vector of the
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generalized coordinates. {f(t)} is a time-dependent vector containing forcing
functions.

2.5.1 Lagrange Equations

The generalized coordinates in Eq. (2.105) are the coordinates x, y, and z at various
point masses. The number of degrees-of-freedom of the system has been assumed
to coincide with the number of coordinates of points Pi.

Under the condition that some constraints are located between the point masses,
the number of degrees-of-freedom of the system is smaller than the number of
coordinates, and the displacement vectors {ri} can be expressed as functions of a
number n of parameters xi, i.e.,

rif g¼ rif gðx1; x2; :::; xnÞ: ð2:106Þ

Some of the xi can be real displacements or rotations, but they can also bear a
less direct meaning, as in the case where they are coefficients of a series expansion.
Correspondingly, the generalized forces are real forces, moments, or just mathe-
matical expressions linked with the forces and moments acting on the system in a
less direct way.

To acquire the equations of motion, one can write the dynamic equilibrium
equations for each of the masses mi, i.e., impose that the sum of all forces acting on
each mass is equal to zero. If the number of degrees-of-freedom is high or if some
of the generalized coordinates are not easily linked with the displacements and
rotations of masses, it is convenient to apply the methods of analytical mechanics,
like the principle of virtual works, Hamilton’s principle, or Lagrange equations, to
get the equations of motion as follows:

d
dt

o~T

o _xi

� �

� o~T

oxi
þ o~U

oxi
¼ Qi ð2:107Þ

where ~T is the kinetic energy; ~U is the potential energy and {Qi} is ith generalized
force. In the equation, the first two terms are functions of kinetic energy ~T , and the
third term represents conservative forces obtainable from the potential energy ~U,
and the right-hand side is a generic expression of forces that cannot be obtained
from the potential energy. They can be derived from the virtual work dL performed
by the forces acting on the system when the virtual displacement dx is given.

Qif g ¼
od~L

odxi
: ð2:108Þ

In the case of linear systems, the potential energy is a quadratic form in the
displacements and, apart from constant terms which do not affect the equation of
motion, can be expressed as
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~U ¼ 1
2

xf gT K½ � xf gþ xf gT f 0f g ð2:109Þ

where [K] is a symmetric matrix.
Even in the case of nonlinear systems, the potential energy does not depend on

the generalized velocities _xi, and Eq. (2.107) may thus be written by the
Lagrangian function ~T � ~U

� 	

:

d
dt

o ~T � ~U
� 	

o _xi

 !

�
o ~T � ~U
� 	

oxi
¼ Qif g: ð2:110Þ

The kinetic energy is usually assumed to be a quadratic function of the gen-
eralized velocities:

~T ¼ ~T0 þ ~T1 þ ~T2 ð2:111Þ

where ~T0 does not depend on the generalized velocities, ~T1 is linear, and ~T2 is
quadratic. In the case of linear systems, the kinetic energy must contain terms in
which no power greater than two of the displacements and velocities is present. As
a consequence, ~T2 cannot contain the displacements, i.e.,

~T2 ¼
1
2

X

n

i¼1

X

n

i¼1

mij _xi _xj ¼
1
2

_xf gT M½ � _xf g ð2:112Þ

where [M] is a symmetric matrix whose elements mij do not depend on either {x}
or { _x}. In this section, only the systems with constant parameters will be con-
sidered, hence [M] will be constant.

~T1 is linear in velocities and then can contain powers no greater than the first
one in the generalized displacements:

~T1 ¼
1
2

_xf gT M1½ � _xf g þ f 1f gð Þ ð2:113Þ

where matrix [M1] and vector {f1} do not contain the generalized coordinates,
although {f1} may be a function of time.

~T0 does not have the generalized velocities but only terms with order no higher
than two in the displacements:

~T0 ¼
1
2

xf gT Mg

� �

xf g þ xf gT f 2f g þ e ð2:114Þ

where matrix [Mg], vector {f2}, and the scalar e are constant. ~T0 has a structure
similar to that of the potential energy: The term ~U � ~T0 is usually referred to as
dynamic potential.

By performing the derivatives appearing in the Lagrange equations, one can
obtain
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o ~T � ~U
� 	

o _xi
¼ M½ � _xf g þ 1

2
M1½ � xf g þ f 1f gð Þ ð2:115Þ

d
dt

o T � Uð Þ
o _xi


 �

¼ M½ � €xf g þ 1
2

M1½ � _xf g þ _f 1

� �

ð2:116Þ

o ~T � ~U
� 	

oxi
¼ 1

2
M1

� �T
_xf gTþ Mg

� �

xf g � K½ � xf g þ f 2f g � f 0f g: ð2:117Þ

The equation of motion can thus be written in the form:

M½ � €xf g þ 1
2

M1½ � � M1½ �T
� 	

_xf g þ K½ � � Mg

� �� 	

xf g
¼ � _f 1

� �

þ f 2f g � f 0f g þ Qf g: ð2:118Þ

Matrix [M1] is usually skew-symmetric. However, even if it is not so, it can be
considered as the sum of a symmetric and a skew-symmetric part, i.e.,

M1½ � ¼ M1sy

� �

þ M1sk½ �: ð2:119Þ

When it is introduced into Eq. (2.118), only the skew-symmetric part of [M1]
appears in the equation of motion. Let [M1sk] be indicated as [G] and vectors {f0},

{ _f 1} and {f2} be included into the external forces vector Qf g. The equation of
motion then becomes

M½ � €xf g þ G½ � _xf g þ K½ � � Mg

� �� 	

xf g ¼ Qf g: ð2:120Þ

The skew-symmetric matrix [G] is usually referred to as the gyroscopic matrix
and the symmetric matrix [Mg] is usually called the geometric stiffness matrix.

A system in which ~T1 vanishes is called a natural system and no gyroscopic
matrix is present. In many cases, ~T0 is also not present and the kinetic energy is
expressed by Eq. (2.112); such is the case for an example of linear non-rotating
structures. While in the case of linear systems, the Lagrangian is a quadratic form
in the generalized coordinates and their derivatives, for general nonlinear systems
it may have a different expression.

2.5.2 State Space

Any set of n numbers may be interpreted as a vector in an n-dimensional space.
This space containing vector {x} is usually known as the configuration space,
since any point in this space can be associated to a configuration of the system.

Positions and velocities, taken together, are thus the state variables of the
system, even if this choice is not unique and other pairs of variables correlated
with them can be used (e.g., positions and moments). A state vector
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zf g ¼ _x xf gT

containing the displacements and velocities can thus be defined. It has 2n com-
ponents and defines a point in a space with 2n dimensions, the state space,
determined by a reference frame whose coordinates are the state variables of the
system. In the case of systems with an ODOF, the state space has only two
dimensions and is called the state plane. With reference to the state space, the
equation of motion (2.120) of a linear system can be transformed into a set of
2n first-order linear differential equations, the state equations of the system, i.e.,

M½ � _vf g þ G½ � vf g þ K½ � � Mg

� �� 	

xf g ¼ Qf g and _xf g ¼ vf g: ð2:121Þ

The state equations are usually written in the form:

_zðtÞf g ¼ ~A
� �

zðtÞf g þ ~B
� �

uðtÞf g ð2:122Þ

where

~A
� �

¼ �M�1G �M�1 K �Mg

� 	

I 0


 �

is the dynamic matrix of the system. It is neither symmetrical nor positively
defined. Vector {u(t)}, whose size need not be equal to the number of degrees of
freedom of the system, is the vector in which inputs affecting behavior of the
system are listed. [~B] is the input-gain matrix; if the number of inputs is r, it has
2n rows and r columns.If the inputs {u(t)} are linked with the generalized forces
{Q(t)} acting on the various degrees of freedom by the relationship:

QðtÞf g ¼ T½ � uðtÞf g ð2:123Þ

then the expression of the input gain matrix is

~B
� �

¼ M�1T 0
� �T

: ð2:124Þ

If the output of the system consists of a linear combination of state variables, to
which a linear combination of the inputs can be added, a second equation can be
added to Eq. (2.122):

yðtÞf g ¼ ~C
� �

zðtÞf g þ ~D
� �

uðtÞf g ð2:125Þ

where {y(t)} is the output vector, i.e., a vector in which the m outputs of the system
are listed. [~C] is a matrix with m rows and n columns, often named as the output
gain matrix. If all generalized displacements are taken as outputs of the system,
matrix [~C] is simply [~C] = [0 I]. [~D] is a matrix with m rows and r columns,
describing direct influence of the inputs on the outputs; it is therefore referred to as
the direct-link matrix. The set of four matrices [~A], [~B], [~C] and [~D] is usually
referred to as the quadruple of the dynamic system. In summary, equations that
define the dynamic behavior of the system, from input to output, are
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_zðtÞf g ¼ ~A
� �

zðtÞf g þ ~B
� �

uðtÞf g
yðtÞf g ¼ ~C

� �

zðtÞf g þ ~D
� �

uðtÞf g

(

: ð2:126Þ

A point in the state space which fulfills

~A
� �

zðtÞf g þ ~B
� �

uðtÞf g ¼ 0

for any value of time is an equilibrium point. Since it is a static solution, it can be
defined only if the input vector {u(t)} is constant in time. All generalized veloc-
ities are identically equal to zero and thus the equilibrium point lies in the con-
figuration space, thought as a subspace of the state space. Although a nonlinear
system can contain a number of equilibrium points, a single equilibrium point
exists if the system is linear. If {u(t)} equals zero, the equilibrium point is the
solution of the homogeneous algebraic equation:

~A
� �

zðtÞf g ¼ 0

that is to say, the trivial solution {z(t)} = 0, except when the dynamic matrix is
singular. In the case of nonlinear systems, equations of motion can often be
linearized about any given equilibrium points. The motion of the linearized system
about an equilibrium point is usually referred to as motion in the small.

Consider the system described in Eq. (2.120) and assume that matrices [G] and
[Mg] are zero (the system is natural). Moreover, assume that matrix [M] is diagonal.

The degrees of freedom can be subdivided into two sets: a vector {x1}, to which
a non-vanishing inertia is associated, and a vector {x2}, containing all the other
ones. All matrices and forces may be split:

M½ � ¼ M11 M12

M21 M22


 �

; K½ � ¼ K11 K12

K21 K22


 �

;
Q1ðtÞ
Q2ðtÞ

( )

:

The mass matrix [M22] vanishes and, since the mass matrix is diagonal, also
[M12] and [M21] are cancelled.

The equations of motion can be written in the form:

M11½ � €x1f g þ ½K11� x1f g þ ½K12� x2f g ¼ Q1ðtÞf g
K21½ � x1f g þ ½K22� x2f g ¼ Q2ðtÞf g

(

ð2:127Þ

The second set of equations can be readily solved in {x2}:

x2f g ¼ � K22½ ��1 K21½ � x1f g þ K22½ ��1 Q2ðtÞf g: ð2:128Þ

It is possible to find an equation of motion containing generalized coordinates
{x1} and the mass matrix without singularity:

M11½ � €x1f g þ K11½ � � K22½ ��1 K21½ �
� �

x1f g ¼ Q1ðtÞf g þ K22½ ��1 Q2ðtÞf g ð2:129Þ
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Chapter 3
Numerical Model of Dynamics

A numerical model describes a scientific system in language of numbers. There are
two kinds of models in mathematics: the lumped parameter model and the dis-
tributed parameter model. If the model is homogeneous, or represents a consistent
state throughout the entire system, the parameters are distributed, and the model
may be referred to as a continuum. If the model is heterogeneous, or represents a
varying state throughout the system, then the parameters are lumped. Distributed
parameters are typically represented with partial differential equations.

3.1 Discretization Techniques

A number of discretization techniques have been developed for solving the partial
differential equations (PDEs) related to continuum models. They are particularly
useful when shape and boundary conditions of the continuous system are complex.
The aim is to replace the continuous model with a discrete one, i.e., to replace the
continuous model made of PDEs with a model of ordinary differential equations
(ODEs).

3.1.1 Introduction of Discretization Techniques

Over the last two centuries, many discretization techniques have been created. It is
possible to group these techniques into four classes.

3.1.1.1 The Assumed Modes Method

Here, the deformed shape of the system is assumed to be a linear combination of
n known functions of the space coordinates, defined in the whole space occupied
by the body.

Y. Wu et al., Vibration of Hydraulic Machinery,
Mechanisms and Machine Science 11, DOI: 10.1007/978-94-007-6422-4_3,
� Springer Science+Business Media Dordrecht 2013
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3.1.1.2 The Lumped-Parameters Method

In this method, the mass of a deformed body is lumped into a certain number of
stations in the body (sometimes a number of point masses). These lumped masses
are then connected by massless fields that possess elastic and damping properties
often assumed to be uniform in space. Because the degree of freedom of the lumped
masses describes system motion, the model intuitively leads to a discrete system.

3.1.1.3 The Transfer Matrices

Instead of dealing with the system as a whole, the study can start at a certain place
and proceed station by station using the so-called transfer matrices. The methods
based on transfer matrices have been used recently because they can be imple-
mented on very small computers. Yet their evident limitations lead many to use the
FEM instead.

3.1.1.4 The Finite Element Method (FEM)

In the FEM, the body is divided into regions. The deformed shape of each finite
element is assumed to be a linear combination of space coordinate functions
through a certain number of parameters. Usually such functions of space coordi-
nates (called shape functions) are quite simple. Then a set of differential equations
of the same type can be written as those obtained for discrete systems.

3.1.2 The Assumed-Modes Methods

The displacement field {uðx; y; z; tÞ} of a general undamped continuous elastic
body can be approximated by a linear combination of n arbitrarily assumed
functions {qiðx; y; zÞ}, often referred to as assumed modes:

uðx; y; z; tÞf g ¼
X

n

i¼1

aiðtÞ qiðx; y; zÞf g: ð3:1Þ

Equation (3.1) would yield exact results if the assumed functions {qiðx; y; zÞ}
were the system eigenfunctions with infinite numbers. In this case, functions
ai(t)—considered to be the generalized coordinates expressing deformation of the
system—are the modal coordinates. Expressions of kinetic and potential energies
of the system can be easily obtained from Eq. (3.1):

~T ¼ 1
2

_af gT M½ � _af g; ~U ¼ 1
2

af gT K½ � af g ð3:2Þ
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where {a} is a vector containing the n generalized coordinates ai(t), [M] and
[K] are square matrices of order n that depend on the inertial and elastic properties
of the system, respectively, also on the assumed functions {qiðx; y; zÞ}.

In the same way, virtual work performed by a given force distribution {f(x, y, z,
t)} for the virtual displacement is given by

d uðx; y; zÞf g ¼
X

n

i¼1

da1 qiðx; y; zÞf g ð3:3Þ

corresponding to a virtual change of the generalized coordinates dai is

d~L ¼
X

n

i¼1

dai fðx; y; z; tÞf g � qiðx; y; zÞf gdV : ð3:4Þ

Equations expressing motion of the system can thus be computed through
Lagrange equations, i.e.,

M½ � €af g þ M½ � af g ¼ f ðtÞf g ð3:5Þ

where the generalized forces fi are

fi ¼
Z

V
f iðx; y; z; tÞf g� qiðx; y; z; tÞf gdV:

3.1.3 Lumped-Parameters Methods

Lumped-parameters methods are based on the idea of discretizing continuous sys-
tems in their physical structure. The inertial properties are concentrated into a
number of rigid bodies or point masses, located at chosen points that are called
stations or nodes. They are connected by fields within which the elastic properties of
the structure are ascribed and damping properties are also considered. External force
distributions are substituted by concentrated forces acting at the stations. General-
ized displacements at the nodes are generalized coordinates (Wikipedia 2008c).

Construction of the stiffness matrix is usually a difficulty in computation.
Traditionally, a compliance matrix [B] is obtained through computation of the
influence coefficients rather than the stiffness matrix [K]. It must be noted that
compliance matrix can be obtained only if the stiffness matrix is non-singular.

3.1.4 Transfer-Matrices Methods

The lumped-parameters methods involve a lot of computation, mainly in two
phases: the construction of the stiffness matrix (or of the compliance matrix) and
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the solution of the eigenproblem. To avoid such difficulties, a different approach,
the transfer-matrices method was evolved (see Rodney 1982).

In physics and mathematics, the transfer-matrix method is a general technique
for solving problems in statistical mechanics. The basic idea is to write the par-
tition function in this form:

Z ¼ V0f g �
Y

N

k¼1

Wk½ �
 !

� VNþ1f g

where {V0} and {VN ? 1} are vectors of dimension p and the p � p matrices, [Wk]
are the so-called transfer matrices.

Two applications of this approach are well known and were widely used,
particularly when no automatic computing machines were in use: Holzer’s method
for torsional vibrations of shafts and Myklestadt’s method for flexural vibrations of
beam-like structures. Their main limitation lies in the very principle of the
transfer-matrices method, which is only suitable for in-line systems, i.e., systems
where every station is linked to only two other stations, a leading station and a
following station (see Genta 2009).

The method is based on the definition of state vectors and transfer matrices. A
state vector is one that contains the generalized displacements and forces related to
the degrees of freedom that characterize the ends of each field, considered as
isolated from the rest of the structure. Consequently, each field would have two
state vectors, one at its left end and one at its right end. State vectors at the ends of
a field are linked by the transfer matrix of the field:

SRif g ¼ Tfi

� �

SLif g ð3:6Þ

where subscript i refers to the ith field, and R and L designate the right and left
ends respectively. [Tft] is the transfer matrix of the ith field.

The left end of the ith field and the right end of the (i - 1)th field are located at
the ith station, and between them there is the ith lumped mass. The corresponding
state vectors are not coincident because the mass exerts generalized inertia forces
on the node. They are linked by the transfer matrix of the ith station:

SLif g ¼ Tni½ � SRði�1Þ
� �

: ð3:7Þ

The station transfer matrix contains inertia forces from lumped mass that, in
harmonic free vibrations, are functions of the square of vibration frequency. The
field is massless and the field transfer matrix is independent of the frequency.

If there is a linear elastic constraint at the ith node, its stiffness can be intro-
duced into the expression of the station transfer matrix. In this way it is possible to
apply the transfer-matrix method for systems where the constraints are exerted to
nodes other than the first and last ones. Rigid constraints are represented by elastic
constraints with very high stiffness.

State vector in the left of the first station {S0} and that in the right of the last
station {Sn} can be linked together by the equation:
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Snf g ¼ Tnn½ � Tfn�1

� �

Tnn�1½ � Tfn�2

� �

� � � Tn2½ � Tf1

� �

Tn1½ � S0f g ¼ TG½ � S0f g: ð3:8Þ

The overall transfer matrix:

TG½ � ¼
Y

1

i¼n

Ti½ � ð3:9Þ

is the product of all transfer matrices of all nodes and fields from the last to the first
in correct order. Matrix products depend on the order in which they are performed,
so the overall transfer matrix must be computed by following the aforementioned
rule. The overall transfer matrix is a function of system vibration frequency x or,
better, of x2.

3.2 The Finite Element Method

The FEM is a numerical technique for finding approximate solutions of PDEs as
well as of integral equations. The solution approach is based either on eliminating
the differential equation completely (steady state problems), or rendering the PDE
into an approximating system of ODEs.

3.2.1 Introduction of FEM

In general, the FEM is characterized by the following processes (see Funnell 2008;
Grandin 1986; Wikipedia 2008a).

1. Choose a grid for the computational domain. In the preceding treatment, the
grid consisted of triangles, but one can also use squares or curvilinear polygons.

2. Choose basis functions (shape functions). One can use piecewise linear basis
functions, but it is also common to use piecewise polynomial basis functions.

A significant concern is the smoothness of the basis functions. For second order
elliptic boundary value problems, piecewise polynomial basis function that are
merely continuous would suffice. For higher order PDEs, one must use smoother
basis functions.

3. Element analysis. The behavior of a particular element type is analyzed in
terms of loads and responses at discrete nodes of the element. This analysis is
often based on the Ritz-Rayleigh procedure that originated from the theorem of
minimum potential energy in mechanics. That is, the function is the system
solution when it minimizes the potential energy.
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The Ritz-Rayleigh procedure restricts the search to a space of linear combi-
nations of n independent admissible basis functions wi({x}), I = 1,2,…n. The wi

represent, for example, displacement fields for a mechanical problem, and are
functions of the spatial coordinates {x}. The linear combinations can be expressed
as

w xf gð Þ ¼
X

n

i¼1

ciwi xf gð Þ

where the cj are n constants defining w({x}).
Now that each basis function is admissible, every function in the space of linear

combinations will also be admissible. The aim is to find the w({x}) which mini-
mizes the energy functional F(w). F is now a function of ci. Since ci is the
determinant, one could take the partial derivative of F with respect to each ci in
turn and set it to zero.

The result would be a set of n algebraic equations in ci:

o

oci

X

n

j¼1

cjwj

 !

¼ 0; i ¼ 1; 2; � � � n:

Thus, the boundary-value problem for a single element has been reduced to the
solution of n linear algebraic equations in n unknowns.

4. Assembly of system equation.

The behavior of each element has been described in terms of its edge behaviors
and at certain discrete nodes along its edges.

Based on the assumption that the elements can only interact at these discrete
nodes, the assembly of element matrices into a system matrix is an expression of
the fact that a node shared by two elements must have the same displacement when
considered as part of either element.

Once the element matrices have been calculated, they are all combined together
into one large matrix representing the whole complex system.

Any extra forces applied to individual nodes can also be added into the right-
hand side. The equation representing the entire boundary-value problem is then
solved using one of a variety of techniques, such as Gauss-Jordan elimination.

3.2.2 FEM in Galerkin Discretization for Poisson Problem

The Galerkin discretization for the Poisson problem in FEM was introduced briefly
by Scholz (2003).
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3.2.2.1 Poisson Problem

The true solution u of the Poisson (boundary value) problem ðPÞ is approximated
by a numerical one in the solution domain V � R

3 with closed bounder U. The
Dirichlet boundary conditions apply on CD �C and Neumann boundary conditions
apply on CN :¼C \CD. The problem is at f 2 L2ðVÞ, uD 2 H1ðVÞ and g 2 L2ðCNÞ,
to search for the solution u 2 H1ðVÞ, which satisfies the Poisson equation, i.e.,

�Du ¼ f in V ð3:10Þ

with Dirichlet boundary conditions:

u ¼ uD in CD ð3:11Þ

and Neumann boundary conditions:

ou

on
¼ g in CN ð3:12Þ

where Du is Laplace operator to variable u.

3.2.2.2 The Weak Formulation

The weak formulation of boundary value problem ðPÞ is gained by multiplication
of Eq. (3.10) with

w 2 H1
DðVÞ :¼ w 2 H1ðVÞjw ¼ 0 on CD

� �

and integration over V:

�
Z

V
Du � wdV ¼

Z

V
f � wdV:

After integration by parts and substitution of the boundary conditions, the
rearrangement leads to

Z

V
ru � rwdV ¼

Z

V
f � wdV þ

Z

CN

g � wdC:

Then, it is incorporated with the Dirichlet boundary conditions:
Z

V
ru � rwdV �

Z

V
D � rwdV ¼

Z

V
f dV þ

Z

CN

g � wdC �
Z

V
ruD � rwdV:

and substituted with the homogeneous solution y 2 H1
D Vð Þ which is given by

y = u - uD and satisfies y ¼ 0 on CD. This gives the weak formulation of the
Poisson problem which reads: Find y 2 H1

D Vð Þ such that
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Z

V
ry � rwdV ¼

Z

V
f dV þ

Z

CN

g � wdC �
Z

V
ruD � rwdV: ð3:13Þ

3.2.2.3 Galerkin Discretization

In order to solve the Poisson problem numerically, one has to discretize the weak
formulation of the Poisson equation and restrict the solution space of the numerical
solution U to a finite dimensional subspace S of H1ðVÞ. Accordingly, UD 2 SD :

¼ S \ H1
X approximates uD in CD. The discretized problem PS can then be written

as: Find Y [ SD such that
Z

V
rY � rWdV ¼

Z

V
f �WdV þ

Z

CN

g�WdC �
Z

V
rUD�dV ð3:14Þ

with W [ SD.
One sets (g1, g2, � � �, gN) as a basis of the N-dimensional space S and

SD :¼ S \ H1
X, a M-dimensional subspace, then the last equation is given by

Z

V
rY � rgjdV ¼

Z

V
f � gjdV þ

Z

CN

g � gjdC �
Z

V
rUD � rgjdVðgj 2 SDÞ:

ð3:15Þ

If one makes a series expansion of Y and UD in terms of gk:

Y ¼
X

M

k¼1

xkgkðgk 2 SDÞ and UD ¼
X

N

k¼1

Ukgkðgk 2 SÞ; ð3:16Þ

then:

Z

V
r
X

k

xkgk�rgjdV ¼
Z

V
f �gjdV þ

Z

CN

g�gjdC �
Z

V
r
X

N

k¼1

Ukgk�rgjdV

can be rewritten as

X

k

xk

Z

V
rgk�rgjdV ¼

Z

V
f �gjdV þ

Z

CN

g�gjdC�
X

N

k¼1

Uk

Z

V
rgk � rgjdV :

ð3:17Þ

and simplified to a system of linear equations:

A½ � Xf g ¼ Bf g ð3:18Þ

where the ‘‘stiffness matrix’’ is given by

Ajk ¼
Z

V
rgk�rgjdV
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and the ‘‘right hand side’’ by

Bj ¼
R

V f �gjdV þ
R

CN
g�gjdC�

P

N

k¼1
Uk

R

V rgk � rgjdV .

The stiffness matrix is sparse, symmetric, and positive. Thus, Eq. (3.17) has
exactly one solution {X} 2 R

M, which gives the Galerkin solution:

U ¼ UD þ Y ¼
X

N

j¼1

Ujgj þ
X

M

k¼1

xkgk ð3:19Þ

where gj and gk are shape functions of elements.

3.2.3 FEM for Structure Analysis

The FEM originated from the need to solve complex elasticity and structural
analysis problems. Integrated FEM is commonly used in the design phase of a
variety of mechanical structure.

3.2.3.1 Virtual Work Principle

Virtual work on a system results from either virtual forces acting through real
displacement or real forces acting through virtual displacement. Here the term
‘‘displacement’’ may refer to a translation or a rotation, and the term ‘‘force’’ to a
force or a moment. Virtual quantities are independent and arbitary variables. For
example, when a rigid body that is in equilibrium is subject to virtual compatible
displacements, the total virtual work of all external forces is zero (Reddy 2002;
Wikipedia 2008b).

1. Principle of virtual work for applied forces in static equilibrium.

If a system of particles, i, is in static equilibrium. The total force on each
particle is zero, i.e.,

F
ðtÞ
i

n o

¼ 0: ð3:20Þ

Summing up the work exerted by force on each particle that acts through an
arbitrary virtual displacement {dui} leads to the virtual work equivalent to zero:

d~L ¼
X

i

F
ðtÞ
i

n oT
duif g ¼ 0 ð3:21Þ

where the expression must hold for arbitrary displacements. Dividing the forces
into applied forces, {Fi}, and constraint forces, {Ci}, yields
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d~L ¼
X

i

Fif gT duif g þ
X

i

Cif gT duif g ¼ 0: ð3:22Þ

No work is done when virtual displacements are orthogonal to the direction of
constraint force. Such displacements should be consistent with the constraints.
And it leads to the principle of virtual work for applied forces, which states that
forces applied to a static system do no virtual work:

d~L ¼
X

i

Fif gT duif g ¼ 0: ð3:23Þ

Also, there is a corresponding principle for accelerating systems called D’Al-
embert’s principle, which forms a theoretical basis for Lagrangian mechanics
along with finite element analysis.

2. Virtual work principle for a deformable body.

It is assumed that a free body diagram of a deformable body is composed of an
infinite number of differential cubes shown in Fig. 3.1. Two unrelated states for the
body are defined as follows:

The {r}-State (Fig. 3.1a) shows external surface forces {T}, body forces {f},
and {r} internal stresses in equilibrium. The {e}-State (Fig. 3.1b) shows contin-
uous displacements {u*} and consistent strains {e*}. The superscript (*) empha-
sizes that the two states are unrelated. There is no need to specify whether any of
the states are real or virtual.

Imagine that the forces and stresses in {r}-State undergo the displacements and
deformations in {e}-State. Total virtual (imaginary) work is done by all forces acting
on the faces of all cubes, for example, one dimension case is shown in Fig. 3.1c.

Then the equation of the total external virtual work done by {T} and {f} in
whole deformable body can be written as

σ
ε

f
A B

T

St

u

(a) (b)

(c)

A A B

fdV

dx

dy

F dydz=A F =B

F =B

dx
x
u*

u*u*u*

( (dx dydz+ x
σ σσ

Fig. 3.1 Stress and strain
states. a r-State: External
forces and stress in
equilibrium. b e�-State:
Consistent deformations e�

and displacements u�.
c Adjacent differential
elements
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Z

C
u�f gT Tf gdCþ

Z

V
u�f gT ff gdV ¼

Z

V
e�f gT

rf gdV : ð3:24Þ

The right-hand-side is often called the internal virtual work. The principle of
virtual work states that external virtual work is equal to internal virtual work when
equilibrated forces and stresses undergo unrelated but consistent displacements
and strains. In order to impose equilibrium on real stresses and forces in practical
applications, use consistent virtual displacements and strains in the virtual work
equation. In cases of consistent displacements and strains, equilibrated virtual
stresses and forces should be used.

These general scenarios give rise to two frequently stated variational principles.
They are valid irrespective of material behavior.

3. Principle of virtual displacements.

In order to derive the principle of virtual displacements in variational notations
for supported bodies, the following conditions should be specified: Virtual dis-
placements and strains as variations for real displacements and strains use varia-
tional notation such as du � u� and de � e�.

Virtual displacements are zero on the part of the surface that has prescribed
displacements, and thus work done by the reactions is zero. The only remaining
external surface forces on the part C can do work. The virtual work equation then
becomes the principle of virtual displacements:

Z

C
duf gT Tf gdC þ

Z

V
duf gT ff gdV ¼

Z

V
def gT

rf gdV : ð3:25Þ

This relation is equivalent to a set of equilibrium equations for a differential
element in the deformable body as well as of stress boundary conditions on the
part C of the surface. Conversely, Eq. (3.25) can be reached, albeit in a non-trivial
manner, by starting with the differential equilibrium equations and stress boundary
conditions on C, proceeding in the manner similar to (a) and (b).

Since virtual displacements are automatically compatible when expressed in
terms of continuous, single-valued functions, only the need for consistency
between strains and displacements has to be stated.

4. Principle of virtual forces.

Virtual forces and stresses as variations of the real forces and stresses are
specified. Virtual forces are zero on part C of the surface that has prescribed
forces, and only surface (reaction) forces on Cu (where displacements are pre-
scribed) would do work. The virtual work equation becomes the principle of
virtual forces, i.e.,

Z

Cu

uf gT dTf gdC þ
Z

V
uf gT dff gdV ¼

Z

V
ef gT drf gdV: ð3:26Þ
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This relation is equivalent to a set of strain-compatibility equations and to
displacement boundary conditions on the part Su. It is also named as the principle
of complementary virtual work.

3.2.3.2 Element Analysis

The displacement is written as a vector in three-dimensional space (sometimes of
higher order, if rotations are considered). Expression of the point displacement
inside each element is (see Genta 2009)

uðx; y; z; tÞf g ¼ Nðx; y; zÞ½ � qðtÞf g; ð3:27Þ

where {q(t)} is a vector indicating n generalized coordinates of the element and
[N] is the matrix containing the shape functions. Numbers of rows in [N] and in
{u(x, y, z, t)} are equivalent, and number of columns in [N] equals the number n of
degrees of freedom.

The strains can be expressed as functions of derivatives of displacements with
respect to space coordinates:

eðx; y; z; tÞf g ¼ Bðx; y; zÞ½ � qðtÞf g ð3:28Þ

where {e(x, y, z, t)} is a column matrix in which elements of the strain tensor are
listed and [B(x, y, z)] is a matrix containing appropriate derivatives of the shape
functions. [B(x, y, z)] has the same number of rows as that of components in strain
vector and the same number of columns as that of the element’s degrees of
freedom.

If the element is free from initial stresses and strains and the behavior of the
material are linear, the stresses are obtained from the strains as

rðx; y; z; tÞf g ¼ E½ � eðx; y; z; tÞf g ¼ Eðx; y; zÞ½ � Bðx; y; zÞ½ � qðtÞf g ð3:29Þ

where [E] is the stiffness matrix of material. It is a symmetric square matrix, and
theoretically its elements can be functions of the space coordinates but they are
usually constant within the element. Potential energy of the element can be
expressed as

~U ¼ 1
2

Z

V
ef gT

rf gdV ¼ 1
2

qf gT
Z

V
Bf gT E½ � Bf gdV

� �

qf g: ð3:30Þ

The integral in Eq. (3.30) is the stiffness matrix of the element, i.e.,

K½ � ¼
Z

V
Bf gT E½ � Bf gdV : ð3:31Þ

Because shape functions are not affected by time, the generalized velocities can
be expressed as
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_uðx; y; z; tÞf g ¼ Nðx; y; zÞ½ � _qðtÞf g: ð3:32Þ

In the case where all generalized coordinates are related to displacements,
kinetic energy and mass matrix of the element have the form as

~T ¼ 1
2

Z

V
q _uf gT _uf gdV ¼ 1

2
_qf gT

Z

V
q N½ �T N½ �dV

� �

_qf g ð3:33Þ

and M½ � ¼
R

V q N½ �T N½ �dV .
If a force distribution {f(x, y, z, t)} acts on the body, the virtual work is linked

with the virtual displacement by

duðx; y; z; tÞf g ¼ Nðx; y; zÞ½ � dqðtÞf g

and the nodal force vector can be expressed in the form:

d~L ¼
Z

V
duf gT fðx; y; z; tÞf gdV ¼

Z

V
dqf gT N½ �T fðx; y; z; tÞf gdV

f ðx; y; z; tÞf g ¼
Z

V
N½ �T f ðx; y; z; tÞf gdV ð3:34Þ

The equation of motion of the element is then the usual one for discrete
undamped systems:

M½ � €qf g þ K½ � qf g ¼ f ðx; y; z; tÞf g: ð3:35Þ

3.2.3.3 Assembling the Structure

The element equations of motion are written with reference to a local or element
reference frame. To describe behavior of the structure as a whole, one should
define the global or structural reference frame.

With reference to orientation of the global frame, the orientation of any local
frame in space can be expressed by a suitable rotation matrix, i.e.,

R½ � ¼
lx mx nx

ly my ny

lz mz nz

2

4

3

5 ð3:36Þ

where li, mi and ni are direction cosines of the axes of the former in global frame.
{qil} and {qig} of displacement vector {qi} of the ith node in local and global
reference frames are linked by common coordinate transformation:

qilf g ¼ R½ � qig

� �

: ð3:37Þ

The generalized coordinates in the displacement vector of the element can be
transformed from a local reference frame to a global one wherein an expanded
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rotation matrix [R] is used to deal with all the relevant generalized coordinates. It
is essentially made up by some matrices of the type as in Eq. (3.36) suitably
assembled together to form [R0], the assembled rotating matrix.

The force vectors also can be rotated if multiplied with [R], and the element
equation of motion can thus be written with reference to the global frame and pre-
multiplied by the inverse of matrix [R0]:

R0½ ��1
M½ � R0½ � €g

� �

þ R0½ ��1
K½ � R0½ � qg

� �

¼ f g

� �

: ð3:38Þ

Given that the inverse of a rotation matrix is coincident with its transpose,
expressions of mass and stiffness matrices of the element rotated from local to
global frame are

Mg

� �

¼ R0½ �T M½ � R0½ � ð3:39Þ

and

Kg

� �

¼ R0½ �T K½ � R0½ �: ð3:40Þ

Likewise, the nodal load vector can be rotated according to the obvious
relationship:

f g

� �

¼ R0½ �T f lf g: ð3:41Þ

Once the mass and the stiffness matrices of the various elements are computed
with reference to the global frame, matrices of the whole structure may be found.
The n generalized coordinates of structure can be ordered in a single vector {qg}.

Matrices of the various elements can be rewritten in matrices of order n 9 n,
containing all elements equal to zero except those in rows and columns corre-
sponding to generalized coordinates of the relevant element.

Because kinetic and potential energies of the structure can be obtained simply
by adding energies of the various elements, one has

~T ¼ 1
2

X

8i

_qg

� �T
Mi½ � _qg

� �

¼ 1
2

_qg

� �T
M½ � _qg

� �

~U ¼ 1
2

X

8i

qg

� �T
Ki½ � qg

� �

¼ 1
2

qg

� �T
K½ � qg

� �

: ð3:42Þ

Matrices [M] and [K] are mass and stiffness matrices of the whole structure
including all the mass and stiffness matrices of the elements. In practice, matrices
of all elements with size n 9 n are just added into the global mass and stiffness
matrices in the correct place.

In a similar way the nodal force vector can be easily assembled:

ff g ¼
X

8i

f if g: ð3:43Þ
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3.2.3.4 Constraining the Structure

One of the advantages in the FEM is easy definition of constraints. If the ith degree
of freedom is rigidly constrained, the corresponding generalized displacement
vanishes and, as a consequence, the ith column of stiffness and mass matrices can
be neglected.

To avoid restructuring the whole model and all the matrices, rigid constraints
can be transformed into very stiff elastic constraints. If the ith degree of freedom is
constrained through a linear spring with stiffness ki, potential energy of the
structure corresponds to potential energy of the spring:

~U ¼ 1
2

kiq
2
i : ð3:44Þ

It is sufficient to add the stiffness ki to the element in the ith row and ith column
of the global stiffness matrix, considering the constraint. In fact, an elastic con-
straint with rather high stiffness is added instead of canceling a degree of freedom
in the case of rigid constraints, thanks to its simplicity. An additional advantage is
that the constraint reaction can be obtained simply through multiplying the large
generalized stiffness ki by the small generalized displacement qi.

3.3 Solution for Fluid–Structure Interaction

Fluid structure interaction (FSI) occurs when a fluid interacts with a solid struc-
ture, exerting pressure that may cause deformation to the structure and alter the
fluid flow itself (see Tezduyar et al. 2006).

3.3.1 Governing Equations

Governing equations of the FSI solution include the equations both on fluid
mechanics and structure mechanics (see Wall et al. 2006).

3.3.1.1 Fluid Mechanics

Let Xt,IRnsd be the spatial domain with boundary Ct at time t[(0, T). The sub-
script t indicates time-dependence of the domain. The Navier–Stokes equations of
incompressible flows are written on Xt and Vt [ (0, bT) as

q
o vf g
ot
þ vf g � r vf g � ff g

� �

�r � r½ � ¼ 0 ð3:45Þ
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r � vf g ¼ 0 ð3:46Þ

where q, {v} and {f} are the density, velocity and the external force, respectively.
The stress tensor r is defined as

rðp; vÞ½ � ¼ �p I½ � þ 2l eðvÞ½ �;

with eðvÞ½ � ¼ r vf gð Þ þ r vf gð ÞT
� ��

2.
Here p is the pressure, [I] is the identity tensor, l = q m is the viscosity, l is the

dynamic viscosity, and [e(v)] is the strain-rate tensor. The essential and natural
boundary conditions for Eq. (3.45) are represented as {v} = {g} on (Ct)g and {n}
[r] = {h} on (Ct)h, where (Ct)g and (Ct)h are complementary subsets of boundary
Ct, {n} is the unit normal vector, and {g} and {h} are given functions. A diver-
gence-free velocity field {v0(x)} is specified as the initial condition.

3.3.1.2 Structural Mechanics

Let Xst,IRnxd be spatial domain with boundary Ct
s, where nxd = 2 for membranes

and nxd = 1 for cables. Parts of Ct
s corresponding to the essential and natural

boundary conditions are represented by (Ct
s)g and (Ct

s)h. The superscript ‘‘s’’
indicates the structure. The equations of motion are written as

qS €uf g þ g _uf g � f S
� �	 


�r � rS
� �

¼ 0 ð3:47Þ

where qs, {u}, {fS} and [rS] are the material density, structural displacement,
external force, and the Cauchy stress tensor respectively. Here g is the mass-
proportional damping coefficient. The damping provides additional stability and
can be used where time-accuracy is not required, such as in determining deformed
shape of the structure for specified fluid mechanics forces imposed on it. The
stresses are expressed in terms of the second Piola–Kirchoff stress tensor [S], which
is related to the Cauchy stress tensor through a kinematic transformation. With the
assumption of large displacements and rotations, small strains, and no material
damping, the membranes and cables are treated as Hookean materials with linear
elastic properties. Membranes are viewed with plane stress, and S½ � becomes

Sij ¼ �km þ GijGkl þ lm GilGjk þ GikGjl
	 
� �

Ekl ð3:48Þ

for the case of isotropic plane stress. Here Ekl are components of the Cauchy–Green
strain tensor, Gij are components of the contravariant metric tensor in original
configuration, and km and lm are Lam’e constants. For cables, on the assumption of
uniaxial tension, [S] becomes S11 = EcG

11G11E11, where Ec is Young’s modulus
for the cable. To account for stiffness-proportional material damping, Hookean
stress–strain relationships defined by Eq. (3.48) and its version for cables are
modified, and Ekl is replaced by Êkl, where Êkl = Ekl ? f _Ekl. Here f is the stiffness-
proportional damping coefficient and _Ekl is the time derivative of Ekl.

68 3 Numerical Model of Dynamics



3.3.2 Fluid–Solid Coupling Mechanism

Fluid–Structure Interaction occurs in a physics simulation when the flow invokes
deformation of a solid structure. This deformation of a solid structure, in turn,
changes the boundary condition of the fluid problem. The coupled fluid–solid
problems, characterized by interaction of fluid forces and structural deformations
are commonly seen in many industrial and scientific applications. Hence, algo-
rithmic realization of the coupling mechanisms is crucial in numerical simulation
of such problems (Löhner et al. 2006; Schäfer et al. 2006).

3.3.2.1 Coupling Schemes

Two approaches for coupling between Computational Soil Dynamics (CSD) and
Computational Fluid Dynamics (CFD) have been pursued: strong (or tight) cou-
pling and loose (or weak) coupling.

1. The strong coupling

The strong coupling technique solves discrete systems of coupled, nonlinear
equations resulting from the CFD, CSD and interface conditions in a single step. In
an extreme example of tight coupling approach, even discretization on the surfaces
was set to be the same. At each time step, the resulting matrix system is of the form
(see Löhner et al. 2006):

Kss Ksf

Kfs Kff

� �

Dus

Duf


 �

¼ rs

rf


 �

ð3:49Þ

where the subscripts s, f stand for structure and fluid fields, {u} are the unknown
vectors, {r} the right-hand sides (vectors of sum of internal and external forces/
fluxes). Diagonal sub-matrices are usually obtained for each sub-discipline,
whereas the off-diagonal sub-matrices represent the coupling between disciplines.
The predictor–corrector scheme is also known as a Jacobi iteration. If one con-
siders the linearized implicit scheme for a complete fluid–structure system, a
Jacobi iteration can be written as

Kss½ � Dui
s

� �

¼ rsf g � Ksf

� �

Dui�1
f

n o

ð3:50aÞ

Kff

� �

Dui
f

n o

¼ rf

� �

� Kfs

� �

Dui�1
s

� �

: ð3:50bÞ

The steps taken in each iteration may also be summarized as follows:

Obtain loads from fluid and apply to structure [Ksf]{Dus
i - 1};

Obtain new displacements {Dus
i};

Obtain mesh velocities for fluid boundary from the structure
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[Kfs]{Dus
i - 1};

Obtain new flow variables {Dus
i}.

The illustration is only precise for explicit time stepping schemes since the
mesh motion of the flow solver and the displacement field of the structure are
linked beyond the nearest neighbors in [Ksf], [Kfs].

2. The loose coupling

The loose coupling technique solves the complete FSI system with an iterative
strategy of repeated a ‘‘CFD solution followed by a CSD solution’’ until conver-
gence is achieved (see Fig. 3.2). In this case, coupling matrices in Eqs. (3.50a and
3.50b) contain only the direct load and displacement transfer terms (Löhner et al.
2006).

3. Combination scheme of weak and strong couplings

An implicit partitioned solution approach tries to combine the advantages of
weakly and strongly coupled schemes in a complementary way (Schäfer et al.
2006).

A schematic view of the iteration process in the implicit partitioned approach is
shown in Fig. 3.3, which is performed for each time step. After initializations the
flow field is determined in actual flow geometry, friction and pressure forces on the
interacting walls are computed. The under the action of the forces, the structural
solver calculates the deformations with which fluid mesh is modified before the
flow solver is started again. For mesh deformation, algebraic and elliptic
approaches are employed.

3.3.2.2 Coupling of Implicit Time-Marching codes

The loose coupling of explicit CFD and CSD codes are used extensively. For some
problems, explicit time-marching is required to capture all the transient phe-
nomena. On the other hand, if the relevant physical phenomena are not linked to
the system’s highest eigenmodes, explicit time-marching can be a prohibitively
expensive proposition. For problems such as a method including low frequency

Fig. 3.2 Loose coupling for
fluid/structure simulations
(Löhner et al. 2006)
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aeroelasticity, and subsonic parachute unfolding, implicit time-marching is
required. The question falls onto whether the loose coupling approach can be
extended to solve multidisciplinary problems with codes that employ implicit
time-marching schemes (see Löhner et al. 2006).

1. An under-relaxed predictor–corrector scheme.

An under-relaxed predictor–corrector scheme could offer a good compromise
between simplicity and stability. By denoting i the iteration step, a the under-
relaxation factor, {xs} the position of the surface of the structure wetted by the
fluid, {rf} the stresses exerted by the fluid on the structure, {f(rf)} the surface
deformation due to fluid loads, and {g(xs)} the change of fluid stresses due to
surface deformation, the predictor–corrector scheme for each time step takes the
following form.

If not converged, update the structure with fluid load:

xi
s

� �

¼ ð1� aÞ xi�1
s

� �

þ a f ri
f

� �n o

:

And to update the fluid with structure position/velocity:

ri
f

n o

¼ ð1� aÞ ri�1
f

n o

þ a g xi
s

	 
� �

:

Typical under-relaxation factors are in the range of 0.5 B a B 0.9.

Fig. 3.3 Flow chart of coupled solution procedure (Schäfer et al. 2006)
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2. Calculation of displacements.

A loose coupling between CFD and CSD codes implies that ending times of
respective codes can be different.

The fluid surface (boundary) is imposed by a CSD surface, which is moving
according to fluid forces. If time of CFD code tf at the end of a time step lies
beyond time of CSD code ts, the CSD surface is extrapolated. This can be done in a
variety of ways but the assumed position of the CSD surface and the one calcu-
lated by CSD code in the next time step will not coincide.

As a result, correction will be required at the beginning of the next CFD time
step. An exaggerated situation is sketched in Fig. 3.4. Notice that the jump exists
in surface positions at the beginning of the next CFD time step. An alternative is to
ignore the new surface velocities at the end of one CSD time step, and to compute
velocities directly from positions.

Surface velocity of a CFD domain is then continued from the previous position
in such a way that the CSD surface seen by CFD code is in coincidence with the
CSD surface position by CSD code at t = ts.

Though simple as it is, the method is unstable if the ending time of fluid is
larger than that of the structure by half the time step taken. This behavior is shown
in Fig. 3.5. For optimal stability, the ending time of fluid should be limited within
a small scope beyond the ending time of the structure, i.e.,

ts ¼ tf þ e:

3.4 Large Deformation Fluid–Structure Interaction

When the effects of fluid-structure interaction are essential, it comes along with
large structural deformations. So it is of great relevance of being able to adequately
deal with this case.

x

ts sf f

jump

CFD Surface
CSD path

Fig. 3.4 Loose coupling:
surface matching (Löhner
et al. 2006)
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3.4.1 General Fluid Structure Interaction Problem

A general fluid structure interaction problem consists of a description of the fluid
and solid fields, appropriate fluid structure conditions at the conjoined interface,
and conditions for the remaining boundaries. Here, discussion is confined to
incompressible flows, which is a reasonable choice for many engineering
applications.

In the following sections, fields and interface conditions are introduced. Fur-
thermore, a brief sketch of the solution procedure for each field is presented (Wallh
et al. 2006).

3.4.1.1 Fluid

Without consideration of a specific reference system, the conservation of
momentum is stated as

qf D vf g
Dt
�r � r½ � ¼ qf bf g: ð3:51Þ

Here, the material time derivative of the velocity vector {v} multiplied by the
fluid density qf is balanced by the gradient of the Cauchy stress tensor [r] and the
external, velocity independent volumetric forces {b}. Mass conservation for an
incompressible fluid is stated as

r � vf g ¼ 0: ð3:52Þ

The Newtonian material law defines internal stress tensor [r] as

r½ � ¼ �p I½ � þ 2l eð vf gÞ½ � ð3:53Þ

with strain rate tensor [e] as

tttsfs fsf fs fs

xx x

f

CFD Surface
CSD Path

CFD Surtace
CSD Path

CFD Surtace
CSD PathΘ =0.25 Θ =0.5 Θ =0.75

sf s f s f s f sf sf sf sf sf s

Fig. 3.5 Loose coupling: Mesh velocity instability (Löhner et al. 2006)
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eðvÞ½ � ¼ r vf g þ r vf gð ÞT ð3:54Þ

where p is the pressure and l dynamic viscosity.
A material time derivative depends on the choice of the reference system. There

are basically three alternative reference systems: the Eulerian, the Lagrangian and
the Arbitrary Lagrangian–Eulerian formulation. Traditionally, for flows without
moving boundaries, the Eulerian system is used where the momentum equation
reads as

o vf g
ot
�r � vf g 	 vf gð Þ þ rp� 2

l
q
r � e½ � ¼ bf g in Xf � 0; Tð Þ: ð3:55Þ

Fluid structure interaction problems require consideration of moving bound-
aries for fluid domain. The most commonly used description, namely the ALE
description, will be discussed in Sect. 3.4.3.

If the moving boundary is described on a fixed grid, the Eulerian description
from Eq. (3.55) can be used, albeit additional effort goes to depicting the interface
on the fixed grid. Finally, even Lagrangian flow descriptions are applied, e.g. to
depict the flow of fluid particles, which allows one to track the interface in a simple
way.

3.4.1.2 Structure

The structure is described with a Lagrangian description where the material
derivative becomes a partial derivative with respect to time, i.e.,

qs o2 uf g
ot2

¼ r � r½ � þ qs ff g ð3:56Þ

with displacement {u} defined as the difference of the current position {x} and
initial position {X}.

In a large deformation case, the constitutive equation is commonly described
according to the stress-strain relation based on the Green-Lagrangian strain tensor
[E] and the two Piola-Kirchhoff stress tensor [S(E)] as a function of [E]. The two
Piola-Kirchhoff stressors can be obtained from the Cauchy stress [r] as

S½ � ¼ J F½ ��1
r½ � F½ ��T ð3:57Þ

and the Green-Lagrangian strain tensor [E] as

E½ � ¼ 1
2

F½ �T F½ � � I½ �
	 


: ð3:58Þ

J denotes the determinant of the deformation gradient tensor [F], which itself is
defined as
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F½ � ¼ o xf g
o Xf g : ð3:59Þ

Different structural models, mainly 3D shells and solid-shell models are
engaged along with sophisticated element technology.

3.4.1.3 Interface Conditions

The main conditions at the interface are dynamic- and kinematic coupling con-
ditions. The force equilibrium requires

rf
� �

� nf g ¼ rS
� �

� nf g 8 xf gð Þ 2 Cfsi: ð3:60Þ

For abbreviation, fluid surface forces at the interface are also referred to as

fhf
Cg ¼ frf g � nf g. When viscous fluids are considered, ‘no slip’ boundary con-

ditions have to be fulfilled, i.e.,

vf g ¼ o uf g
ot
8 xf gð Þ 2 Cfsi: ð3:61Þ

3.4.1.4 Partitioned Analysis

In general, one can describe the whole coupled system in a monolithic way and
solve all fields together, or separate the fields and couple them in a partitioned
analysis.

In the latter case either sequential (staggered) or iterative algorithms can be
applied. The monolithic approach is straight forward and enables solving the
resulting system of equations with a complete tangent stiffness matrix (if—in an
ALE setting—fluid, structure and mesh degrees of freedom are included). Nev-
ertheless, it does have several drawbacks such as loss of software modularity,
limitations with respect to the application of different sophisticated solvers in
different fields, and challenges with respect to problem size and conditioning of the
overall system matrix. Consequently they are generally considered ill-suited for
practical applications where not only specific solution approaches but also specific
codes should be used in the single fields.

3.4.2 Coupling of Partitioned Fields

The algorithmic implementation of a coupled problem of fluid-structure interaction
is based on a field-wise partitioned solution approach. This modular software
concept allows for complex and specifically designed approaches for single fields
of the structure, the fluid and, for the ALE approach, and the mesh.
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A wet structural surface is the natural interface of a coupling surface Cfsi. For
brevity, Cfsi will be simply termed as C. Complete kinematic and dynamic con-
tinuity at C would ensure conservation of mass, momentum, and energy at the
interface. The forces generated from fluid pressure and viscous friction are exerted
on structural interface as Neumann boundary conditions.

Structural displacement at C is transferred into velocities and used as a Dirichlet
condition for fluid field to update the mesh position in the ALE approach. The fluid
mesh velocity ug is used to describe the fluid mesh movement, which will be
discussed in next section.

The following developments are made via a partitioned ALE approach for FSI.
However, since fundamental properties of the partitioned approach are indepen-
dent of fluid or structural discretization and interface description, the results also
serve as a foundation for partitioned fixed-grid schemes and can directly be applied
in this case too.

3.4.3 ALE Based Formulation for Fluid Structure
Interaction

ALE-based methods are frequently used for issues with moving surfaces (see Wall
et al. 2006). The following discussion is important when dealing with large
deformations of fluid boundary.

3.4.3.1 ALE and Geometric Conservation Revisited

The ALE equation of motion can be derived from a Eulerian formulation of the
balance of linear momentum in Eq. (3.55) through the introduction of a deforming
reference system {v} that follows the respective boundaries of motion and
deforms, e.g. according to a mesh smoothing, in the remaining domain.

The reference system deformation is described with the unique mapping
{x} = {u({v}, t)} depicted in Fig. 3.6. According to Reynolds transport theorem,
Eq. (3.55) can be reformulated on moving grids as

physical space

xx

x

x

x
x

reference space

2

1 2

1

2

1 Ω

ϕ

t

(x t)

Fig. 3.6 Sketch of ALE
system of reference
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o vf gJtð Þ
ot

�

�

�

�

v

þ r � vf g 	 vf g � vgf gð Þð Þ � 2
l
qf
r � e vf gð Þ½ � þ rp


 �

Jt ¼ bf gJt

ð3:62Þ

where Jt = det(q{x}/q{v}) designates the time-dependent Jacobian of the map-
ping, and {vg} = q{x}/qt|v represents velocity of the reference system to be
identified with grid velocity after discretization. Together with Eqs. (3.55), (3.62)
is in a divergent form and thus the point of departure for a finite volume dis-
cretization in space. However, in the weak form the first term in Eq. (3.62) yields
an integral over a temporally changing domain and if improperly represented in a
discrete scheme, stability problems may emerge.

Geometric conservation demands a correct expression of mass term in a
deforming domain, that is, a temporally and spatially constant solution should be
represented with the discrete scheme.

Thus geometric conservation in conjunction with a discretized Eq. (3.62) result
in the need for temporal averaging of either geometries or fluxes within a time
step. Variation of the temporal discretization scheme would lead to different
versions of the geometric conservation law, i.e., Discrete Geometric Conservation
Laws (DGCL), and thus averaging schemes to be employed. In a strong form the
geometric conservation equation is given by

oJt

ot
¼ Jtr � vgf g ð3:63Þ

which bridges temporal change of the domain and the domain velocity. Equation
(3.63) can be incorporated into Eq. (3.62):

o vf g
ot

�

�

�

�

v

þ vf g � vgf gð Þ � r vf g � 2
l
qf
r � e vf gð Þ½ � þ rp ¼ bf g ð3:64Þ

yielding an ALE form of the momentum balance that eliminates integrals over
temporally deforming domains.

Discretization of Eq. (3.64) in time and space is straightforward, while stability
and accuracy properties of the discretization scheme can be directly transferred to
deforming domain formulation.

3.4.3.2 Distorted Meshes

Severe deformations of the moving fluid mesh are originated from large defor-
mations. Consequently, ALE methods are in need of formulations that yield reli-
able results on significantly distorted meshes to solve the above problem.
Additionally, boundary adapted fluid meshes may result in highly stretched ele-
ments or complicated geometries, and it needs unfavorably shaped elements to be
adequately represented. In the context of fluid structure interaction, accurate
coupling information, even on distorted meshes, is of particular interest.
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Numerical investigations show that stabilized ALE formulation can be designed
so that the scheme is reliable and insensitive to mesh distortion.

3.4.3.3 ALE Mesh Motion Schemes

Even though ALE schemes are developed to reduce element distortion caused by
pure Lagrangian formulations, a certain portion of distortion is unavoidable.
Hence, the mesh motion scheme is a key issue for robust simulations of general
complex systems.

A number of mesh motion techniques have been developed in an effort to
equally distribute elemental distortion for the best remaining element quality. Most
of these schemes are more or less based on a pseudo structural approach, given as

Kg½ � rf g ¼ Ff g ð3:65Þ

where the ‘mesh stiffness’ matrix [Kg] is designed for modes which could create
element failure to be stiffened compared with other distortion modes. Neverthe-
less, the best mesh moving algorithm, to some extent, cannot avoid an unac-
ceptable fluid mesh deformation and a partial or complete re-meshing of the fluid
domain becomes necessary. Such scenarios include problems with topology
changes, e.g. when a fluid penetrates an opening crack or when a valve closes, or
simply when the structure moves too far in the domain or rotates. An interpolation
between the old and new mesh in re-meshing always brings about errors, therefore
a fixed-grid method might be an attractive alternative on condition that frequent
re-meshing is needed.
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Chapter 4
Elementary Concept of Rotordynamics

Rotordynamics is a branch of system dynamics dealing with mechanical devices in
which at least one part, usually referred to as rotor, rotates with the angular momentum.

Rotors with bearings that constrain their rotating axis to a fixed position in
space are usually referred to as fixed rotors whereas those without bearings are
defined as free rotors. Spin speed in fixed rotors is usually considered as constant,
whereas the speed of free rotors is governed by conservation of angular momen-
tum. Parts of the machine that do not rotate are generally referred to as stators
(Chen and Gunter 2005).

4.1 Jeffcott Rotor

The Jeffcott rotor (also known as the De Laval rotor in Europe) is a simplified
lumped parameter model, consisting of a point mass located on a massless elastic
and damped shaft. Several features of rotor vibration, such as the unbalance
response, self-centering, and the roles of rotating and non-rotating damping can be
studied based on this model (Childs 1993; Krämer 1993).

4.1.1 Introduction of Vibrations of Jeffcott Rotor

Features of Jeffcott rotor without viscous damping is explained in this section.

4.1.1.1 Rotordynamics with Constant Angular Velocity

Figure 4.1 shows a disc rotating at a constant angular velocity (spin speed), X,
around the rotating disc axis. It is assumed that there is a simplified lumped mass at
point P, with no gyroscope, no cross-coupling between x and y, as well as no
damping.

Y. Wu et al., Vibration of Hydraulic Machinery,
Mechanisms and Machine Science 11, DOI: 10.1007/978-94-007-6422-4_4,
� Springer Science+Business Media Dordrecht 2013
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The system only has two degrees of freedom, that is, displacements along x and
y ordinates. Equations of motion in x and y directions of point P with mass m and
stiffness k is (see Bucher 2009)

m
d2x

dt2
þ kx ¼ fxðtÞ

m
d2y

dt2
þ ky ¼ fyðtÞ

8

>

>

<

>

>

:

: ð4:1Þ

All other forces except centrifugal force are neglected, Eq. (4.1) becomes

d2

dt2
mðxþ e cos XtÞ þ kx ¼ 0

d2

dt2
mðyþ e sin XtÞ þ ky ¼ 0

8

>

>

<

>

>

:

ð4:2Þ

where e is eccentricity of P point. Rearranging Eq. (4.2) one gets

m€xþ kx ¼ meX2 cos Xt ð4:3aÞ

m€yþ ky ¼ meX2 sin Xt ð4:3bÞ

where €x ¼ d2
x

dt2
, and €y ¼ d2

y
dt2

.

In rotor dynamics it is sometimes convenient to use complex coordinates in the
xy-plane. Define

z ¼ xþ iy; i ¼
ffiffiffiffiffiffiffi

�1
p

: ð4:4Þ

Add Eq. (4.3a) together with Eq. (4.3b) multiplied by i to Eq. (4.4), and one
obtains

m€zþ kz ¼ meX2eiXt: ð4:5Þ

x(t)

y(t)

m
ε

Ω

y

x

y
m

x

c

ma 2

PP ε

Ω

Ω

Fig. 4.1 External mass unbalance force, mass center different from rotating center
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4.1.1.2 Steady State Response of an Undamped Simple Rotor
to Unbalance

A solution (a particular integral) for response of undamped simple rotor to the
unbalance meX2eixt in Eq. (4.5) is assumed in the following form:

zðtÞ ¼ z0X
2eiXt: ð4:6Þ

Substitute it into Eq. (4.5)

ð�mX2 þ kÞz0eiXt ¼ meX2eiXt: ð4:7Þ

Relative amplitude of the steady-state response to unbalance meX2eiXt as a
function of a rotating circular frequency, X and the unbalance are defined as

z0

e
¼ mX2

�mX2 þ k
� � : ð4:8Þ

Define

xn ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

: ð4:9Þ

Then one gets the expression of relative amplitude z0/e by X2/xn
2 as follows:

z0

e
¼

X2
�

x2
n

1� X2
�

x2
n

� � ð4:10Þ

where xn is actually the critical speed defined (see next section). The value of the
amplitude z0 is real and it rotates with velocity X in a xy-plane. The value of X, one
that makes the denominator of the z0 expression in Eq. (4.10) vanish, i.e., the
amplitude reaches an infinite value, is coincident with the flexural critical speed of
the rotor (see next section, Fig. 4.2a).

The amplitude of the point motion due to the presence of the unbalance
response is indicated as a function of the speed in Fig. 4.2a. In subcritical range
(Fig. 4.2b), the amplitude grows from zero to a value tending to infinity at critical
speed (Fig. 4.2c), always remaining positive. In supercritical range (Fig. 4.2d),
however, the value of the amplitude z0 is negative, and its absolute value decreases
monotonically with speed. As the speed tends to infinity, amplitude would
approach -e.

The solution sign determines the equilibrium configurations shown in
Fig. 4.2b–c. In the supercritical field (Fig. 4.2d), when the speed tends to infinity,
the amplitude z0 tends to -e. This phenomenon is usually referred to as self
centering because the rotor rotates about its center of mass instead of its geo-
metrical center.

When rotor behavior is controlled by its stiffness, rotation takes place about a
point close to geometrical center. And when it is dominated by inertia it occurs
about a point close to the mass center.
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The motion of point P can thus be expressed as superimposition of a free

motion that can be circular, elliptical, or even rectilinear with frequency xn ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

and a circular motion with angular speed X.

4.1.1.3 Campbell Diagram

Rotors are subjected to forces that vary with time, and sometimes their variation
with respect to time is harmonic. For instance, forces due to the unbalance of rotor
itself are described as a vector rotating with the same angular speed, X, in the fixed
reference frame. Otherwise, if this variation is periodical, it can always be rep-
resented as the sum of harmonic components.

As for excitation from unbalance, for example, the force frequency can be
represented on (xX)-plane by a straight line x = X in the Campbell diagram. In
this case, the excitation is synchronous. The relationship linking the frequency of
the forcing function to spin speed is often of simple proportionality and can be
represented on the Campbell diagram by a straight line through the origin.

When one of the forcing functions has a frequency that coincides with one of
the system’s natural frequencies, the spin speeds are usually referred to as critical
speeds. They can be identified on the Campbell diagram by intersecting the curves

(a) 

(b) (c) (d)

Fig. 4.2 Unbalance response of an undamped Jeffcott rotor. a Dimensionless amplitude variation
with the dimensionless spin speed. b At the system in subcritical conditions X=xn � 1. c At the
synchronous condition X=xn ¼ 1. d At the system in supercritical conditions
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related to natural frequencies with those related to forcing frequencies. A case in
which natural frequencies are independent of speed and the forcing frequencies are
proportional to X as reported in Fig. 4.3.

Not all intersections on the Campbell diagram indicate equally dangerous
incidents. If the frequency of a forcing function coincides with the natural fre-
quency of a mode that is completely uncoupled with it, no resonance actually
occurs.

When a rotor operates at a critical speed, the vibration amplitude grows linearly
and only the damping of the stator and supports can prevent failure of rotor.
Actually, it is necessary to control the normal operating range either below or
above critical speeds and sustained operation at critical speed should be avoided.

Speeds ranging from zero to the first critical speed are usually referred to as the
subcritical range; above the first critical speed, the supercritical range starts.

If the Campbell diagram related to flexural vibrations is made by straight lines
that are parallel to X-axis, i.e., if natural frequencies are independent of the speed,
numerical values of the critical speeds coincide with those of the natural fre-
quencies at standstill, as can be seen from Fig. 4.2.

A rotor operating at a critical speed is not subject to vibration but is a source of
periodic excitation that can cause vibration, which can be very strong in nonro-
tating parts of the machine.

4.1.1.4 Free Whirling of the Simple Jeffcott Rotor

The Jeffcott rotor consists of a point mass m at point P attached to a massless shaft.
The only force on mass m is one due to shaft elasticity. The stiffness where the
elastic force is from can be considered as stiffness of the shaft, the supporting
structure, or a combination of both. The two schemes sketched in Fig. 4.4, a
flexible shaft on stiff supports and a stiff shaft on compliant supports, yield the
same results as long as the system is undamped and axisymmetrical.

The mass m with two degrees of freedom is always confined within a xy-plane.
This statement is justified by uncoupling axial and radial motions and relies on
small-displacement assumptions resting on linear structural analysis.

ω
n

ω 2

ω 1

Ω cr1 Ω cr2 Ω cd3 Ω
Ω

cr4

Fig. 4.3 Campbell diagram
of simple Jeffcott rotor
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The equations of motion of mass m are simply

m€xðtÞ þ kxðtÞ ¼ 0

m€yðtÞ þ kyðtÞ ¼ 0

(

ð4:11Þ

where x and y are the coordinates of point P at generic time t.
The equations of motion along each axis are in the same form as the equation of

the free motion of a system with a single degree of freedom and their solution is a
harmonic motion with frequency xn in Eq. (4.9).

The motion of point P can be viewed as a combination of two harmonic motions
taking place along axes x and y with the same frequency xn, coinciding with the
natural frequency of the nonrotating shaft. They can add to each other and give
way to a trajectory of point P that can be circular, elliptical, or straight in any
direction in a xy-plane depending on initial conditions.

The same result could be obtained with respect to complex coordinates in xy-
plane:

m€zþ kz ¼ 0: ð4:12Þ

The solution to this homogeneous differential equation is

z ¼ z0eixnt

where z0 ¼ x0 + iy0:
Introducing this solution into Eq. (4.12) yields a homogeneous algebraic

equation that has solutions other than the trivial solution z0 = 0 only if

xn ¼ �
ffiffiffiffiffiffiffiffiffi

k=m
p

:

Fig. 4.4 Sketch of a Jeffcott
rotor. The model is sketched
in its deformed configuration
at the time in which point P
crosses the xz-plane.
a Flexible shaft on stiff
supports. b Stiff shaft on
compliant supports (Bucher
2009)
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The general solution of Eq. (4.12) is thus

z ¼ Z1eixnt þ Z2e�ixnt: ð4:13Þ

The physical meaning of Eq. (4.13) is obvious: z is a vector {z} that rotates in a
xy-plane with angular velocity X = xn. If the amplitude z0 is real, point P crosses
the x-axis at time t = 0. The motion expressed by Eq. (4.13) is the superimposition
of a forward circular or direct motion (i.e., occurring in the same direction as the
spin speed) and a backward circular motion.

They both occur at an angular velocity, often called whirl speed, equal to the
natural frequency of a nonrotating system. In the following study, spin speed X
will always be considered positive: A forward motion will then be characterized by
a positive whirl speed xn, while a backward motion is characterized by a negative
value of xn. The resulting superimposition of the two motions depends on the
initial conditions, i.e., on values of complex constants Z1 and Z2. If, for example,
Z2 is equal to 0, circular forward whirling emerges, and if the two constants are
equal, the harmonic vibration along the x-axis would take place.

The rotating vector eixnt in the complex plane is used to express the motion in
the form

x ¼ x0eixnt; y ¼ y0eixnt

where only the real components of x ¼ x0eixnt and y ¼ y0eixnt have a physical
meaning.

Natural frequency of the rotor is not determined by spin speed X: The Campbell
diagram of a Jeffcott rotor is then made of straight lines, as shown in Fig. 4.3. The
flexural critical speed

Xcr ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

ð4:14Þ

is defined as the speed at which the natural frequency of the system is coincident
with the rotational frequency and the natural frequency of the nonrotational
system.

4.1.1.5 Reaction at Supports of the Simple Jeffcott Rotor

The reaction force from supports of the simple Jeffcott rotor can be obtained as

fb ¼ kzðtÞ ¼ kz0
X2
�

x2
n

� �

e

1� X2
�

x2
n

� � eiXt: ð4:15Þ
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4.1.1.6 Interaction Between Torsional Torque and Lateral Vibration

In Fig. 4.5, a disc rotates at its torsion around the central axis in the xy plan. The
system now has three degrees of freedom, i.e., displacements along x and y ordi-
nates, as well as the torsional angle h. The radius vector and its derivatives with
respect to the time of the lumped mass m are

r ¼ xðtÞ þ e cos hð Þex þ _yðtÞ þ e sin hð Þey ð4:16Þ

_r ¼ _xðtÞ � _he sin h
� �

ex þ _yðtÞ þ _he cos h
� �

ey ð4:17Þ

€r ¼ €xðtÞ � €he sin h� _h2e cos h
� �

ex þ €yðtÞ þ €he cos h� _h2e sin h
� �

ey ð4:18Þ

where ex and ey are the unit vectors along x and y axes.
Equations of motion along x, y and directions h of the disc with mass m and

stiffness k include linear motion along x and y, and angular motion on the x, y plan
are written as

€xðtÞ � €he sin h� _h2e cos hþ x2
nxx ¼ 0 ð4:19Þ

€yðtÞ þ €he cos h� _h2e sin hþ x2
nyy ¼ 0 ð4:20Þ

€hþ me
Jp

€he� €x sin h� _h _x cos hþ €y cos h� _h _y sin h
h i

¼ TðtÞ ð4:21Þ

where xnx
2 = kx/m and xny

2 = ky/m; TðtÞ is torsional torque around the disc center;
Jp is the torsional moment of inertia of the disc.

Equations (4.19) and (4.20) of motion in terms of complex coordinate z are as
follows

m€zþ kz ¼ me _h2 � i€h
� �

eih: ð4:22Þ

Equation (4.21) is transformed to

y (t)

x(t)

m  J

Ω
ε

Fig. 4.5 Disc with torsion
around the central axis in the
x–y plan
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1þ e2

2R2

� 	

€hþ e
2R2

€y cos h� €x sin h� _h _x cos hþ _y sin hð Þ
h i

¼ TðtÞ

where 2R2 = Jp/m.

If _h ¼ const ¼ X, one obtains Eqs. (4.3a, 4.3b). The torque to meet this demand
of constant speed is

TðtÞ ¼ �ek _xðtÞ sin Xt � yðtÞ cos Xtð Þ: ð4:23Þ

Otherwise Eqs. (4.19–4.21) are nonlinear coupled differential equations that
should be treated with numerical integration or perturbations (i.e., multiple scales).

4.1.1.7 Instability Range

A rotating machine is stable if its rotor performs a pure rotational motion around
an axis and the motion is not accompanied by other vibrations within admitted
amplitude values. A stable rotating machine can withstand external perturbing
forces, that is, any perturbation cannot drastically change its behavior.

In rotors, there is a source of energy that may cause an unbounded growth of
free vibration amplitude. The frequencies in which this growth occurs are usually
called instability ranges, and the speed at the beginning of these ranges is the
threshold of instability.

It is easy to predict the onset of unstable working conditions in a linear system.
Variation of amplitude vector of the vibration system with respect to time is
expressed in the form:

uf g ¼ u0f geixt: ð4:24Þ

Sign of decay rate, i.e., of imaginary part of the complex frequency x, implies a
stability condition: If it is positive the amplitude decays exponentially in time
indicating a stable condition; a negative imaginary part of the complex frequency
indicates an unstable operation. The plot of decay rate as a function of spin speed
must then be drawn with the Campbell diagram. At vanishing small speeds all
decay rates are positive because there is no external source of energy that can
excite vibration. With increasing speed, the decay rate of some modes would drop,
showing a deterioration of stability.

4.1.2 Jeffcott Rotor with Viscous Damping

In this section, features of Jeffcott rotor with viscous damping is discussed.
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4.1.2.1 Free Whirling

It is very important to distinguish between non-rotating and rotating damping in a
damped rotor. Non-rotating damping is associated with stationary parts and has a
stabilizing effect on the machine’s whole operation range. Rotating damping is
directly associated with the rotor and can reduce vibration amplitude in subcritical
conditions, and destabilize effects in supercritical range (see Genta 2008).

The model of Fig. 4.4 can be extended to the damped system with the gen-
eralized forces due to damping added to right-hand side of Eq. (4.3). Use a viscous
damping model and complex notation, and the force due to nonrotating damping is

Fn ¼ Fnx þ iFny ¼ �cn _x� icn _y ¼ �cn _z ð4:25Þ

where cn is the non-rotating damping coefficient.
A rotating reference frame Ongz (Fig. 4.6) must be introduced for study of

rotating damping. When rotational speed is constant, the angle between the two
reference frames is simply h = Xt. A complex coordinate 1 is defined in ng-plane
as

1 ¼ nþ ig ¼ ze�ih: ð4:26Þ

Expressions of the force due to a rotating viscous damping coefficient, cr, both
in n ? ig = z frame and Oxyz frame, are as follows:

Frng ¼ �cr _1 ¼ �cr _z� i _hz
� �

e�ih ð4:27Þ

Frxy ¼ Frngeih ¼ �cr _z� i _hz
� �

: ð4:28Þ

After the introduction of expressions (4.25) and (4.28) for the forces due to non-
rotating and rotating damping to the right-hand side of the equation of motion
(4.22), it follows that

m€zþ ðcr þ cnÞ_zþ ðk � icr
_hÞz ¼ með _h2 � i€hÞe�ih ð4:29Þ

Here, rotating damping is assumed to be synchronous with the rotor. If whirl

speed x is constant, Eq. (4.29) is easily modified by neglecting the term in €h.

z

x

y

η

ξ

O θ

Fig. 4.6 Reference frames
Oxyz and Ongz at time t
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Introduce the solution z = z0eixt with both the amplitude z0 and the frequency x in
complex numbers into Eq. (4.22), and the following characteristic equation is
obtained:

mx2 þ i(crþcnÞxþ k � iXcr ¼ 0: ð4:30Þ

The imaginary part is

cnxþcrðx� XÞ: ð4:31Þ

Non-rotating damping always produces stabilizing effects provided that cn is
positive.

Rotating damping multiplied by a term, (x - X), that may be either positive or
negative, would result in the following three cases:

Subcritical operation (X\ x). The rotating damping term is positive and has a
stabilizing effect.

Synchronous operation (X = x). The rotating damping term vanishes and has
no effect.

Supercritical operation (X[ x). The rotating damping term is negative and has
a destabilizing effect.

This is also true for other forms of damping, such as hysteretic damping: All
forms of rotating damping are stabilizing in subcritical operation and destabilizing
above critical speed. The roots of this quadratic equation with complex coefficients
are

x ¼ � 1
ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2 þ Xcr

m

� 	2
s

v

u

u

t þ i
cr þ cn

2m
� 1

ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2 þ Xcr

m

� 	2
s

v

u

u

t

2

6

4
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7

5

ð4:32Þ

where C = k/m - (cr ? cn)2/(4 m2).
Without loss of generality, because it is sufficient to assume that at time t = 0

point C crosses x-axis, the amplitude z0 is then real. Separating real part xR and
imaginary part xI of the complex frequency x, the time history can then be written
as

x ¼ z0e�xIt cosðxRtÞ
y ¼ z0e�xIt sinðxRtÞ

(

: ð4:33Þ

The real part of x indicates a true angular velocity: It is the angular velocity at
which deflected shape rotates about undeformed configuration. The imaginary part
is a decay rate: If it is positive the amplitude decays in time and point C tends to
point O. The rotor shows a stable behavior as whirl motion tends to reduce its
amplitude.

If xI is negative the amplitude grows exponentially in time. The motion is
unstable, as any small perturbation can trigger this self-excited whirling.
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4.1.2.2 Unbalance Response

If the rotor is not perfectly balanced, it is necessary to resort to the nonhomo-
geneous equation (4.29). If the angular acceleration is neglected, the comple-
mentary function and particular integral are, respectively,

z ¼ Z1eix1t þ Z2eix2t; z ¼ z0eiXt ð4:34Þ

The first allows description of rotor motion which is perfectly balanced, while
the second yields response to static unbalance m. It is a synchronous whirling, i.e.,
a whirling with x = X. Amplitude of the unbalance response is then obtained by
introducing the particular integral into the equation of motion:

z0 �mX2 þ iXcn þ k
� �

¼ meX2: ð4:35Þ

As can be seen, rotating damping is not included in Eq. (4.35). Unbalance
produces a synchronous excitation and the latter rotates in deflected configuration
but is not subject to deformations that change in time.

4.1.3 Equations of Motion with a Precession Rotation

The basic phenomenon and equations of motion of Jeffcott rotor with a precession
rotation are described below

4.1.3.1 Precession of Rotating Disc

In Fig. 4.7, the rotating disc is not at a midpoint on the shaft between two end
supports, A and B bearings. After deformation of the shaft, the axis of the disc
shaft has been inclined to form an angle h between it and line AB of the two
supporting points. The rotating angular speed of the disc is X, and its moment of
inertia around the disc centre is Jp. The moment of momentum of the rotating disc
around its mass centre O0 is {H} = Jp{X}, and the moment vector {H} direction
has a same inclined angle h with line AB. When the disc shaft vibrates freely,
frequency of this free vibration is f. Then the plane containing disc centre O0 and
axis AB performs a precession rotation with angular speed {xn}. Owing to the
precession, the direction of moment vector will change continuously, so there is a
moment of inertia force as follows:

Mg


 �

¼ � xnf g � Hf gð Þ ¼ Jp Xf g � xnf g: ð4:36Þ

The direction of {Mg} is perpendicular to plane O0AB, and its magnitude is as

Mg ¼ JpXxn sin h: ð4:37Þ
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This is the gyroscope moment acting on the shaft from the disc. Because angle
h is small, it follows that

Mg ¼ JpXxnh ð4:38Þ

which is equivalent to the elastic moment. When it is in positive precession, then
0 \ h\ p/2, and the moment will decrease. The shaft deformation means that it
increases elastic stiffness of shaft. i.e., increases the shaft critical speed. Of course,
when it is in negative precession, the shaft critical speed will drop.

4.1.3.2 Equation of Motion

The equation of motion, in generalized matrix form, for a rotor rotating at a
constant spin speed X is

M½ � €uðtÞf g þ C½ � þ G½ �ð Þ _uðtÞf g þ K½ � þ H½ �ð Þ uðtÞf g ¼ f ðtÞf g ð4:39Þ

where, [M] is the symmetric mass matrix; [C] is the symmetric damping matrix;
[G] is the skew-symmetric gyroscopic matrix; [H] is the skew-symmetric circu-
latory matrix with rotating damping; [K] is the symmetric bearing or seal stiffness
matrix; {u(t)} is the generalized coordinates of the rotor in inertial coordinates;
and {f(t)} is a forcing.

Equation (4.36) can be written with real coordinates x and y

M½ � €uðtÞf g þ C½ � _uðtÞf g þ K½ � þ H½ �ð Þ uðtÞf g ¼ f ðtÞf g ð4:40Þ

where M½ � ¼ m 0
0 m

� 


; C½ � ¼ cn þ cr 0
0 cn þ cr

� 


K½ � ¼ k 0
0 k

� 


; H½ � ¼
0 Xcr

�Xcr 0

� 


; uðtÞf g ¼ x
y

� �

; f ðtÞf g ¼ me
_h2 cos hþ €h sin h
_h2 sin h� €h cos h

� �� �

:

Skew-symmetric gyroscopic matrix [G] vanishes whereas skew-symmetric
circulatory matrix is presented and contains rotating damping. The presence of a
circulatory matrix is linked with destabilizing effects, like in the rotating damping.

A B

θ

Mg

O

ωn

H=J  
_ _

PΩ
Fig. 4.7 Disc precession
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4.2 Dynamics of Multi-Degrees-of-Freedom Rotors

Real rotors are much more complex than Jeffcott rotors and therefore more real-
istic models are needed. A rotor must be modeled as a rigid body at least with its
moment of inertia, which can produce gyroscopic effects. If it is flexible, multi-
degrees-of-freedom models should be used (see Genta 2005, 2008; Lalanne and
Ferraris 1998).

4.2.1 Model with 4 Degrees of Freedom

If a rotor is modeled as a rigid body without coupling between axial, flexural, and
torsional behaviors of inertia, the four-degrees-of-freedom model is needed.

4.2.1.1 Generalized Coordinates and Equations of Motion

In a Jeffcott model, the rotor is assumed to be a point mass with no moment of
inertia. This assumption excludes consideration of rotor dynamic behavior. The
simplest model to evaluate this behavior is shown in Fig. 4.8a or b: either a rigid
body attached to a compliant massless shaft or a rigid rotor spinning on compliant
bearings. A more complex system is plotted in Fig. 4.8c where bearings, a com-
pliant massless shaft, and rigid rotor are combined.

This model is a rigid body with moments of inertia locating at point C. One of
the principal axes of inertia lies along rotating z-axis. The body’s principal
moments of inertia will be referred to as polar moments of inertia Jp around the
rotation axis and the transversal moment of inertia Jt around any axis in rotation
plane.

Ω

O C

z

y

x

z

x

z

x

C

yy

ΩΩ

O
O

C

(c)(b)(a)

Fig. 4.8 Rotor models. a Rigid body on a massless compliant shaft. b Rigid rotor on compliant
bearings. c Rotor in which both the bearings and the shaft are compliant
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In Fig. 4.8a and c, the disc is rigid. If Jp [ Jt, the rigid body is usually called a
disc; one limiting case is that of an infinitely thin disc in which Jp = 2Jt. If
Jp = Jt, the inertia ellipsoid degenerates into a sphere and the model is similar to
Jeffcott rotor. If Jp \ 2Jt, the rotor is usually named as a long rotor.

In fact, the system has six degrees of freedom. Uncoupling between axial,
flexural, and torsional behaviors will be assumed to hold for elastic and inertial
part of the model, so a model with four degrees of freedom is sufficient for the
study of flexural behavior at a constant speed. The reference frames are shown in
Fig. 4.9a (see Genta 2008).

(1) The inertial frame OXYZ has its origin at point O and its Z-axis coincides with
the rotation axis.

(2) The rotating frame ONHZ has its origin at point O and its Z-axis coincides with
the rotation axis. Axes N and H rotate on XY -plane with angular velocity X.

(3) Frame CX0Y 0Z 0 has its origin at C. Its axes remain parallel with those of frame
OXYZ.

(4) Frame Cxyz has its origin at C: Its z-axis coincides with the rotation axis of the
body in a deformed position, and the x- and y-axes are defined according to
rotations.

(5) Frame CX0yz� is formed after one rotates axes of CX0Y 0Z 0 frame about X0axis
by an angle uX’0 until Y 0-axis enters the rotation plane of the rigid body in its
deformed configuration. The two axes will be y- and z�-axes.

(6) Frame Cngz has its origin at C: It is obtained from frame Cxyz if one rotates
the x- and y-axes in a xy-plane by an angle equal to rotation angle h of the rotor
corresponding to spin speed.

As stated above, the rotor is assumed to be slightly unbalanced. Since the rotor
position in Cngz -frame is immaterial, the principal axis of inertia corresponding to
the moment of inertia Jp will be considered parallel to the nz-plane. Because static
unbalance cannot lie in the same plane as coupled unbalance does, eccentricity
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Fig. 4.9 Generalized coordinates. a Reference frames. b unbalance conditions in the Cngz
reference frame
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must not be in the direction of n-axis, as in the case of the Jeffcott rotor. Conditions
of unbalance are summarized in Fig. 4.9b, where static unbalance is shown to lead
coupled unbalance by a phase angle a.

Take X-, Y -, and Z- as coordinates of point C and angles uX0, uy and h as
generalized coordinates of the rigid body. A small displacement assumption on
coordinates X, Y, Z, uX0 and uy will greatly simplify the problem. Coordinate h, on
the contrary, cannot be considered small.

Before the computation of kinetic energy of the rigid body, velocity of its center
of mass (point P) and its angular velocity expressed in principal system of inertia
must be calculated.

In the following discussion, all terms containing product of eccentricity or
angular error by a small quantity will be neglected to eliminate axial–flexural
coupling. The translational kinetic energy is thus

~Tt ¼
1
2

m _X2 þ _Y2 þ _Z2 þ e2 _h2 þ e _h � _X sinðhþ aÞ þ _Y cosðhþ aÞ
� �

n o

: ð4:41Þ

For computation of rotational kinetic energy, angular velocity must be
expressed with reference to a frame coinciding with principal axes of the rotor.
Three components of angular velocity can be viewed as vectors acting in different

directions: _u
X 0 along X0-axis, _uy along y-axis, anḋ _h along z-axis. Components of

angular velocity along principal axes of inertia of the rotor Xf g in form of relevant
rotation vectors are

Xf g ¼
_uX0 cos hþ _uy sin h� v _h
� _uX0 sin hþ _uy cos h

_uX0 v cos hþ uð Þ þ _uyv sin hþ _h

8

>

<

>

:

9

>

=

>

;

ð4:42Þ

where v is the angle between symmetrical axis of the disc and rotating axis of the
system.

Since components of {X} are referred to as the principal axes of inertia, after
neglecting small terms, one could write rotational kinetic energy as

~Tr ¼
1
2

Jt _u2
X0 þ _u2

y þ v2 _h2
� �

þ Jt
_h2 þ 2 _h _uX0uy

� ��

þ2 _hv Jp � Jt

� �

_uX0 cos hþ _uy sin h
h i�

:
ð4:43Þ

It is expedient to introduce into the Lagrange equations only the expression of
kinetic energy and then to add elastic reaction of the shaft directly, as external
generalized forces. Generalized forces Qi related to translational degrees of free-
dom are simply the forces FX, FY, and FZ in the direction of inertial frame axes.
The equations of motion can be obtained through the Lagrange equation:
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m€X ¼me €h sin hþ að Þ þ _h2 cos hþ að Þ
h i

þ FX

m€Y ¼me �€h cos hþ að Þ þ _h2 sin hþ að Þ
h i

þ FY

m€Z ¼FZ :

8

>

>

>

<

>

>

>

:

ð4:44Þ

The generalized forces to be introduced into the three equations of motion
related to rotational degrees of freedom are not exactly moments about axes of the
Cxyz frame because the first generalized coordinate for rotation is set on X0 axis, so

Q/X0 ¼ Mx cos uy þMz sin uy; Q/y
¼ My; Qh ¼ Mz: ð4:45Þ

According to expressions (4.45) for generalized forces, with all the relevant
derivatives and linearizing performed again, the following equations of motion for
rotational degrees of freedom can be obtained:

Jt €uX0 þ Jp
_h _uy ¼ v Jt � Jp

� �

€h cos h� _h2 sin h
h i

þMx

Jt €uy � Jp
_h _uX0 ¼ v Jt � Jp

� �

€h sin hþ _h2 cos h
h i

þMy

Jp þ Jtv
2 þ me2

� �

€hþ me €Y cos h� €X sin h
� �

þ
v Jp � Jt

� �

€uX0 cos hþ €uy sin h
� �

¼ Mz

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð4:46Þ

4.2.1.2 Behavior of the System at a Constant Speed

If angular velocity of the rotor is constant, the last equation could also be
uncoupled so flexural behavior can be studied separately. By stating that h = Xt,
one could reduce the four relevant equations of motion to

m€X ¼ meX2 cos Xt þ að Þ þ FX

m€Y ¼ meX2 sin Xt þ að Þ þ FY

Jt €uX0 þ JpX _uy ¼ �vX2 Jt � Jp

� �

sinþMx

Jt €uy � JpX _uX0 ¼ vX2 Jt � Jp

� �

cos Xt þMy:

8

>

>

>

>

<

>

>

>

>

:

ð4:47Þ

The equations can be transformed into the following form:

m€X þ K11X þ K12uy ¼meX2 cos Xt þ að Þ
m€Y þþK11Y � K12uX0 ¼meX2 sin Xt þ að Þ

Jt €uX0 þ JpX _uy � K12Y þ K22uX0 ¼ � vX2 Jt � Jp

� �

sin Xt

Jt €uy � JpX _uX0 þ K12Y þ K22uy ¼vX2 Jt � Jp

� �

cos Xt

by the usage of the following vectors transformation:
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FX

My

( )

¼ � K11 K12

K12 K22

� 


X

uy

( )

;
FY

Mx

( )

¼ � K11 �K12

�K12 K22

� 


Y

uX0

( )

: ð4:48Þ

If -uX0 is used instead of uX0 as a generalized coordinate for rotations about the
X-axis, it is possible to define a set of complex coordinates, i.e.,

z ¼X þ iY

/ ¼uy � iuX0

(

ð4:49Þ

The equations of motion can be transformed to a compact form:

M½ � €qf g � iX G½ � _qf g þ K½ � qf g ¼ X2 ff geiXt ð4:50Þ

where vectors of complex coordinates and of unbalances and the mass, gyroscopic,
and stiffness matrices are

qf g ¼
z

/

( )

; M½ � ¼ m 0
0 Jt

� 


; G½ � ¼ 0 0
0 Jp

� 


; K½ � ¼ K11 K12

K12 K22

� 


; ff g

¼ meeia

vðJt � JpÞ

� �

:

All matrices are symmetric when a complex coordinate notation is used
whereas the gyroscopic matrix is skew symmetric in real coordinates. If viscous or
hysteretic damping models can be used, it is possible to distinguish between non-
rotating and rotating damping and to separate the two damping matrices. In vis-
cous damping, the equation of motion of the damped system is

M½ � €qf g þ Cn½ � þ Cr½ � � iX G½ �ð Þ _qf gþ
K½ � � iX Cr½ �ð Þ qf g ¼ X2 ff geiXt:

ð4:51Þ

where the structure of matrices [Cn] and [Cr] is similar to that of the stiffness
matrix.

4.2.1.3 Free Whirling of the Undamped System

Free whirling of the undamped system can be studied through the homogeneous
equation associated with Eq. (4.50). Introduce a solution of the type:

z ¼ z0eixt; / ¼ /0eixt

into the equation of motion, and one could get the following linear equations:

z0 �mx2 þ K11
� �

þ /0K12 ¼ 0

z0K12 þ /0 �Jtx
2 þ JpxXþ K22

� �

¼ 0:

(

ð4:52Þ
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The characteristic equation allowing computation of the whirl frequency is

x4 � Xx3 Jp

Jt
� x2 K11

m
� K22

Jt

� 	

þ Xx
K11

m

Jp

Jt
þ K11K22 � K2

12

mJt
¼ 0: ð4:53Þ

Equation (4.53) has four real roots among which two are positive. The system’s
Campbell diagram can be referred to Genta (2008): At each speed X, four whirl
modes occurring at different frequencies are possible. Two of them are in forward
direction and two are in backward direction.

Since all solutions of Eq. (4.53) are real, the corresponding eigenvectors qi are
also real.

Neglecting the negative solutions, one could define the following values of
critical speed:

Xcr ¼
1
ffiffiffiffiffiffi

2m
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K11 �
K22

d
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K11 þ
K22

d

� 	2

�4
K2

12

d

s

v

u

u

t ð4:54Þ

where

d ¼ Jp � Jt

� ��

m: ð4:55Þ

If Jp \ Jr or d\ 0, as happens in the case of long rotors, there are two real
solutions and, as a consequence, two values for critical speed.

If, on the contrary, Jp [ Jr or d[ 0, as happens in the case of discs, one of the
solutions is imaginary and only one critical speed exists.

If K12 = 0, i.e., if translational and rotational degrees of freedom are uncou-
pled, the solution would be the same as in the case of Jeffcott rotors.

Values of critical speed are

XcrI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

K11=m
p

; XcrII ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�K22= mdð Þ
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�K22
�

Jp � Jt

� �

q

: ð4:56Þ

The first one is real only if d\ 0, i.e., Jp \ Jr. Consider a rotor made up of a
rigid gyroscopic body attached to a flexible uniform shaft running on rigid bear-
ings. The stiffness matrix of the system is

K½ � ¼ 3EJl

aðl� aÞ

l2�3alþ3a2

a2ðl�aÞ2
2a�l

aðl�aÞ
2a�l

aðl�aÞ 1

" #

ð4:57Þ

where a is the distance between the upper bearing and the disc mass centre in
Fig. 4.8.

If a/l = 0.5, gyroscopic moment has no effect on the critical speed in a disc
rotor but it would cause a second critical speed in the long rotors.

In all other cases, an increase in critical speed will take place in the disc-type
rotor, sometimes explained by a stiffening of the system due to gyroscopic
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moment. However, it is only a phenomenological explanation because there is no
actual stiffening.

In the case of a long rotor, critical speed decreases and a second critical speed,
usually quite higher than the first, is present.

4.2.1.4 Unbalance Response of the Undamped System

The unbalance response can be expressed in the form:

z ¼ z0eiXt; / ¼ /0eiXt

where the amplitudes zo and uo tend to be complex numbers because the phase
angle a of static and couple unbalances is usually not equal to zero. Effects of the
two types of unbalance can be studied separately with relevant solutions added to
each other. In the case of a static unbalance with vanishing phase angle a,
amplitude of the response is

z0 ¼ meX2 Jp � Jt

� �

X2 þ K22
� ��

D ð4:58Þ

/0 ¼ �meX2K12=D ð4:59Þ

where

D ¼ �m Jp � Jt

� �

X4 þ K11 Jp � Jt

� �

þ mK22
� �

X2 þ K11K22 � K2
12:

In couple unbalance, the response is

z0 ¼vX2 Jp � Jt

� �

K12=D

/0 ¼vX2 Jp � Jt

� �

mX2 � K11
� ��

D:

(

ð4:60Þ

4.2.2 Rotors with Multi-Degree-of-Freedom

This section will focus on rotor model with multi-degrees of freedom of lateral
displacements and rotations of its cross sections.

4.2.2.1 Lumped-Parameters Models

Among lumped-parameters methods, the transfer matrix approach, namely, the
Myklestadt method was, and still is, widely used in rotor dynamics, mainly for
critical speed prediction. As it can be easily obtained from the second Eq. (4.52),
gyroscopic moment created by the ith rigid body located in the ith node can be

100 4 Elementary Concept of Rotordynamics



accounted for if -Jtx
2 ? JpxX is replaced by -Jtx

2. If the aim is to evaluate
critical speeds only, it is possible to introduce x = X = Xcr into node transfer
matrix, which becomes

Tin½ � ¼

1 0 0 0
0 1 0 0

�miX
2
cr þ kc 0 1 0
0 � Jti � Jpi

� �

X2
cr þ vc 0 1

2

6

6

4

3

7

7

5

: ð4:61Þ

The whole structure is modeled as a non-rotating system in the stiffness or
compliance approach. If complex coordinates are applied, the relevant equations
are either Eq. (4.50) or (4.51), depending on whether or not damping is neglected.
The size of all matrices and vectors is equal to the number of complex degrees of
freedom, which coincides with the number of degrees of freedom related to
bending behavior in xz- and yz-planes. Mass, stiffness, and damping matrices, i.e.,
[M], [K], and [C] are those linked to the flexural behavior of the non-rotating
system in the xz plane.

If complex coordinates are ordered as follows:

qf g ¼ z1 /1 z2 /2 	 	 	 	 		 zn /nf gT ð4:62Þ

where matrices [M] and [G] and vector {f} of unbalances are, respectively,

M½ � ¼ diag m1 Jt1 m2 Jt2 	 	 	 	 		 mn Jtn½ � ð4:63aÞ

G½ � ¼ diag 0 Jp1 0 Jp2 	 	 	 	 		 0 Jpn

� �

ð4:63bÞ

ff g ¼ m1e1eia1 Jt1 � Jp1
� �

v1eib1 m2e2eia2 Jt2 � Jp2
� �

v2eib2 !
mneneian Jtn � Jpn

� �

vneibn

� �T

:

The phases ai and bi should reflect different orientations in the space of vectors
expressing static and couple unbalances. The rotating damping matrix [Cr] can be
built in the same way as general damping matrices.

4.2.2.2 Models with Consistent Inertial Properties

It is not difficult to add a rotation to kinetic energy of any element into the FEM.
The mass matrix in this approach is coincident with that related to a non-rotating
model. Also, stiffness and damping matrices are not affected by rotation apart from
a possible geometrical effect due to the stiffening of the element that can be
ascribed to centrifugal stressing. This effect, usually neglected in a formulation of
beam elements that models rotating shafts, must be considered when one deals
with beam elements aligned in a direction perpendicular to the rotational axis, such
as turbine blades, propellers, and similar structural members. Centrifugal stiffening
generally can be taken into account by adding a term of the type X2[KX] to the
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stiffness matrix, where [KX] is a matrix of constants that can be computed at the
element level and then assembled.

As in the case of an axi-symmetrical beam Jz = 2Jy, the gyroscopic contri-
bution is twice the rotational one to the mass matrix. If there is damping in system,
damping matrices of non-rotating and rotating elements can be assembled sepa-
rately, yielding two matrices [Cn] and [Cr] to be introduced into the equations of
motion. Then one can study the consistent unbalance vectors for a linear distri-
bution of static and couple unbalance.

4.2.3 Dynamic Equation in Real Coordinates

Equation (4.51) can be written after separation of real part of each equation from
imaginary part:

M½ � €uf g þ C½ � þ X G½ �ð Þ _uf g þ K½ � þ X Cr½ �ð Þ uf g ¼ X2 Ff g ð4:64Þ

where

uf g ¼ Re qf gT; Im qf gT

 �T

; Ff g ¼ Re feiXt

 �T

; Im feiXt

 �T

n oT

;

M½ � ¼
M 0

0 M

� 


; G½ � ¼
0 G

�G 0

� 


; C½ � ¼
C 0

0 C

� 


; K½ � ¼
K 0

0 K

� 


;

Cr½ � ¼
0 Cr

�Cr 0

� 


and [C] is the total damping matrix, [C] = [Cn] ? [Cr].
The real coordinates {u} differ from standard real coordinates used in study of

non-rotating systems because sign of rotational degrees of freedom are related to
rotation movement.

The damped system’s equation of motion is thus

M½ � €u�f g þ C½ � þ X G½ �ð Þ _u�f g þ K½ � þ X Cr½ �ð Þ u�f g ¼ X2 Ff g ð4:65Þ

where

uf g ¼ Re qf gT; Im qf gT

 �T

; Ff g ¼
fx cos Xtð Þ � fy sin Xtð Þ
fx sin Xtð Þ þ fycos Xtð Þ

� �

M½ � ¼
Mx 0

0 My

� 


; G½ � ¼
0 Gxy

�Gyx 0

� 


; C½ � ¼
Cx 0

0 Cy

� 


;

K½ � ¼
Kx 0

0 Ky

� 


; Cr½ � ¼
0 Crxy

�Cryx 0

� 


:

where matrices with subscripts x and y are the same as complex coordinates,
except for when the sign of elements with subscripts made up of two numbers
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whose sum is odd. Matrices with subscripts xy and yx have signs that differ from
those of the corresponding matrices in Eq. (4.65), so global gyroscopic and
rotating damping matrices are skew-symmetrical. {u*} = {X, uX0, Y, uy}

T is the
generalized coordinates [see Eq. (4.48)].

4.2.4 Dynamic Equation in Rotating Coordinates

A set of complex coordinates {r}, related to coordinates {q}, can be obtained
through the relationship

rf g ¼ qf geiXt ð4:66Þ

and the equation of motion (4.51) transforms into the following equation in
rotating coordinates:

M½ � €rf g þ Cn½ � þ Cr½ � + iX 2 M½ � � G½ �ð Þð Þ _rf gþ
K½ � � X2 M½ � � G½ �ð Þ + iX Cn½ �
� �

rf g ¼ X2 ff g
: ð4:67Þ

In rotating coordinates, the relevant equation can be easily derived after sep-
arating the real and imaginary parts of Eq. (3.35). The gyroscopic, Coriolis, and
non-rotating damping terms give way to skew-symmetrical matrices. Use of
rotating coordinates, which is not very convenient in axi-symmetrical systems,
becomes advisable when one is dealing with machines including an anisotropic
rotor.

4.3 Anisotropic Rotordynamics

Rotors studied in previous sections are axisymmetrical. In this section the
assumptions will be replaced by more general models in order that the effects of
axial symmetry in the rotor could be studied (see Genta 2005).

4.3.1 Jeffcott Rotor on Anisotropic Supports

Consider the rotor in Fig. 4.4b and suppose that the stiffness of its supports is not
isotropic on the xy-plane. All other assumptions of the linear rotor system remain
the same. The motion on the xy-plane will be studied where the polar diagram of
support-stiffness is an ellipse. Axes x and y are the principal axes of stiffness
ellipse of supports elasticity. This elasticity along the x-direction is lower than that
along y-direction. Elastic reaction of the shaft is
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Fx ¼ �kxx ; Fy ¼ �kyy: ð4:68Þ

Two different values of stiffness could be introduced into the equation of
motion, and the latter transforms into

m€xþ kxx ¼me _h2 cos hþ €h2 sin h
h i

m€yþ kyy ¼me _h2 sin h� €h2 cos h
h i

8

>

<

>

:

: ð4:69Þ

Consider that spin speed is constant, i.e., _h ¼ X; and €h ¼ 0: From the homo-
geneous equation, it is clear that there are two natural frequencies, the lower one is
related to motion in the xz-plane and the other related to motion in the yz-plane:

Xn1 ¼
ffiffiffiffiffiffiffiffiffiffi

kx=m
p

; Xn2 ¼
ffiffiffiffiffiffiffiffiffiffiffi

ky

�

m
q

: ð4:70Þ

Neither one is influenced by spin speed. At the first critical speed the motion
reduces to a straight vibration along x-axis, and at the other critical speed a straight
motion along y-axis.

Unbalance response can be obtained directly from Eq. (4.70) with €h ¼ 0:
Response in each plane equals that of the Jeffcott rotor

x0 ¼
meX2

kx � mX2 ; y0 ¼
meX2

ky � mX2 : ð4:71Þ

The unbalance response can be subdivided into three speed ranges (Fig. 4.10).
Responses in the two planes are in same sign and are out of phase from each

other by 90�, as shown in Eq. (4.70). Orbit grows mainly along x axis and exhibits
the shape of an elongated ellipse. Approaching the first critical speed, axis of
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Fig. 4.10 Unbalance response of a Jeffcott rotor on anisotropic supports Amplitude of the
motion along the x- and y-axes as a function of the speed
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the orbit along the x-axis tends to infinity. One can get the same situation along the
y-axis.

The mean and the deviatory stiffness are

km ¼ 0:5 kx þ ky

� �

; kd ¼ 0:5 kx � ky

� �

: ð4:72Þ

Thus, the equation for unbalance response in terms of complex coordinates is

m€zþ kmzþ kd�z ¼ meX2eiXt ð4:73Þ

where �z is the conjugate of the complex number z. The solution of the homoge-
neous equation is in the form:

z ¼ z1eixt þ z2ei�xt

which gives way to elliptical orbits. It can be introduced into the homogeneous
equation of motion, yielding values of whirl frequencies. The unbalance response
of Eq. (4.74) is obtained as follows:

z ¼ meX2

kx � mX2
� �

ky � mX2
� � km � mX2

� �

eiXt � kde�iXt
� �

: ð4:74Þ

The possibility of backward whirling to be excited by unbalance is, however,
more obvious when complex coordinates are used. At the speed

Xb ¼
ffiffiffiffiffiffiffiffiffiffiffi

km=m
p

the amplitude of the forward component vanishes, and the orbit is a circular
backward whirl with amplitude

z0b ¼ ekd=km:

If the system is damped, the field in which backward whirling occurs is either
reduced or cut out if damping is large enough. In the proximity of first critical
speed, amplitude of elliptical orbits remains limited while the axis of the ellipse is
not exactly aligned with one of the axes of support elasticity.

4.3.2 Anisotropic Jeffcott Rotor

Consider a Jeffcott rotor shown in Fig. 4.4a, whose stiffness is anisotropic. The
polar diagram of stiffness is an ellipse lying along n and g-axes. An equation
similar to Eq. (4.69) referred to Ongz frame could be written as

Fn ¼ �knn; Fg ¼ �kgg:

When dealing with rotating asymmetry, one could write the equation of motion
with reference to the rotating Ongz-frame by introducing mean and deviatory
stiffness and by neglecting damping, i.e.,
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m€1þ 2imX _1� mX21þ km1þ kd�1 ¼ meX2eia ð4:75Þ

where a is the angle between the n-axis and the direction of unbalance vector in the
ng-plane. The unbalance response is easily obtained as a steady-state solution of
the equation:

n ¼ meX2 cos a

kn � mX2 ; g ¼ meX2 sin a

kg � mX2 : ð4:76Þ

Critical speeds of the system are

Xcr1 ¼
ffiffiffiffiffiffiffiffiffiffi

kn=m
p

; Xcr2 ¼
ffiffiffiffiffiffiffiffiffiffiffi

kg
�

m
q

: ð4:77Þ

A free whirling solution of the homogeneous equation (4.76) is

n ¼ n0eix0t; g ¼ g0eix0t

where x0 is a complex whirl speed in ng-plane which does not coincide with the
whirl speed x in xy-plane. If stiffness ratio a* is greater than unity (i.e., kn \ kg),
its first real dimensionless solutions can be expressed from the characteristic
equation:

x0�2 ¼ X�2 þ 1þ a�

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X�2 1þ a�ð Þ þ 1þ a�ð Þ2

4

s

ð4:78Þ

where

x0� ¼ x0

XcrI
; x� ¼ x

XcrI
X� ¼ X

XcrI
a� ¼ kg

kn
:

As a* is assumed to be greater than unity, i.e.,

X�\1; a�\X�; i.e. X\
ffiffiffiffiffiffiffiffiffiffi

kn=m
p

;
ffiffiffiffiffiffiffiffiffiffiffi

kg

�

m
q

\X: ð4:79Þ

The characteristic equation owns four real roots—two positive and two nega-
tive. The system behavior is stable. If, however, value of spin speed X lies between
two critical speeds of the system, shown in Eq. (4.80), two imaginary roots are
found. Because the equation of motion has real coefficients, the solutions are
conjugate numbers. Yet, if the real parts vanish, the solutions have opposite signs
which leads to a negative imaginary solution that corresponds to an unstable
behavior of the system and an amplitude that grows indefinitely with exponential
law. The presence of an elastic anisotropy of the system’s rotating parts gives rise
to an instability range that spans from the lowest to the highest critical speed.

The Campbell diagram x(X) for a system with a� ¼ 2 obtained from Eq. (4.79)
is plotted in Fig. 4.11. All four quadrants of the xX-plane have been reported,
even if just two of them, i.e., the first and fourth render a complete picture of the
situation.
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Rotating damping, which invokes instability of the system at high speed, also
could cut the instability range between critical speeds. A similar effect is due to
non-rotating damping, which is stabilizing at any speed. The higher the damping
is, the smaller the instability range gets. The damped system’s homogeneous
equation of motion in the rotating frame is

m 0
0 m

� 
 €n

€g

( )

þ cn þ cr �2mX
2mX cn þ cr

� 
 _n

_g

( )

þ kn � mX2 �Xcn

Xcn kg � mX2

� 


n

g

( )

¼ 0:

ð4:80Þ

The solution for free whirling could be introduced to get characteristic
equation.

4.3.3 Secondary Critical Speeds Due to Rotor Weight

Speed will be referred to as secondary critical speed when the resonance frequency
is between one of the system’s natural frequencies and an exciting force that is
different from the rotating force due to unbalance. When constant bending forces,
such as inherent weight of a horizontal axis rotor, act on the rotor, the critical
speed is not influenced. Whirling takes place about the deflected configuration of
the rotor, yet, thanks to linearity, the two effects, namely, static bending and
whirling do not interact. Rotor weight can cause the occurrence of secondary
critical speeds, whose values are about half of those of primary critical speeds, or
those located at intersections on the Campbell diagram of curves for free whirling
with straight line x = 2X. These secondary critical speeds are linked to deviations
from a perfect axial symmetry of the rotor.
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Fig. 4.11 Campbell diagram
for an anisotropic Jeffcott
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In a previously studied Jeffcott rotor, these secondary critical speeds are easily
deduced from Fig. 4.11. The value of secondary critical speeds for the Jeffcott
rotor in Fig. 4.11 can be computed as follows:

X� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

knkg
�

2 kn þ kg
� �� �

q

: ð4:81Þ

If kn and kg tend to a single value k 	 a� ! 1; the value of secondary critical
speed becomes

Xcrs ¼
1
2

ffiffiffiffiffiffiffiffiffi

k=m
p

¼ 1
2
Xcr ð4:82Þ

4.3.4 Equation of Motion for an Anisotropic System

In this section, equations of motion of systems with both anisotropic stator and rotor,
with only anisotropic stator, as well as with only anisotropic rotor are discussed.

4.3.4.1 Equation of the System with Anisotropic Stator and Rotor

Consider a beam element of the type shown in Fig. 4.12, for which all the
assumptions of uncoupling among flexural, torsional, and axial behavior would
hold. If the principal axes of inertia and elasticity exist in xz- and yz-planes
(hereafter designated by subscripts x and y), the mass and stiffness matrices for
flexural behavior is written in the form:

M½ � ¼ Mx 0
0 My

� 


; K½ � ¼ Kx 0
0 Ky

� 


ð4:83Þ

where the matrices are related to the two bending planes. In the following ana-
lytical development, generalized coordinates for rotation in the yz -plane will be -

ux instead of ux so that matrices related to xz - and yz -planes are equal if an
element is axisymmetrical.

When assembling the structure, one assumes that the global reference frame
possesses the same z-axis as those of each element, but the x-axes of the elements
are twisted by an angle a with respect to the global reference frame.

After introduction of mean and deviatory stiffness matrices of the elements, the
stiffness matrix in the global reference frame is

Kg

� �

¼ Km þ Kd cos 2a Kd sin 2a
Kd sin 2a Km � Kd cos 2a

� 


ð4:84Þ

where

Km½ � ¼ Kx½ � þ Ky

� �� ��

2; Kd½ � ¼ Kx½ � � Ky

� �� ��

2:
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If the element belongs to the rotor, angle a must be substituted by a ? h, or,
and in the case of constant spin speed X, by a ? Xt. All the aforementioned
considerations hold for mass and damping matrices and for elements other than
beam elements. In general, rotating elements must be assembled separately from
non-rotating elements.

Due to the presence of deviatory matrices, the structure of the assembled
matrices is more complex than that of Eq. (4.84). For the assembled stiffness
matrix it follows that

K½ � ¼ Kx Kxy

Kyx Ky

� 


: ð4:85Þ

Due to the coupling terms of the xy and yx subscripts, a definition of mean and
deviatory matrices for the whole structure is needed, i.e.,

Km½ � ¼ 1
2

Kx½ � þ Ky

� �� �

þ i
1
2

Kyx

� �

� Kxy

� �� �

Kd½ � ¼
1
2

Kx½ � � Ky

� �� �

þ i
1
2

Kyx

� �

þ Kxy

� �� �

8

>

<

>

:

: ð4:86Þ

Except in the above-mentioned case of elements used for linearized modeling
of hydrodynamic bearings, matrices with subscripts xy and yx are equivalent and
the mean matrices are real, whereas deviatory matrices are complex. With the help
of the complex coordinate approach and definitions of mean and deviatory
matrices given by Eq. (4.87), one could write the equation of motion describing
flexural behavior of a general system containing stationary elements and elements
rotating at constant spin speed X as

Mm½ � €qf g þ Cm½ � � iX G½ �ð Þ _qf g þ Km½ � � iX Crm½ �ð Þ qf g
þ Mnd½ � €�q


 �

þ Mrd½ �e2iXt €�qþ 2iX _�q

 �

þ Cnd½ � _�q

 �

þ Crd½ � e2iXt _�q

 �

þ Knd½ � �qf g þ Krd½ � � iX Crd½ �ð Þe2iXt �qf g ¼ Fnf g þ X2 Frf geiXt

ð4:87Þ
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Fig. 4.12 Beam element: geometrical definitions and reference frame
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Matrices and vectors with subscript r refer to rotating elements, and those with
subscript n refer to stator ones. Mean matrices without r or n subscripts are related
to the whole system. A non-rotating force vector is designated to static forces, while
rotating vector forces that are stationary in a reference frame rotate at spin speed X.

If neither the stator nor the rotor is axisymmetrical, and the coefficients are
periodic functions of time with period p/X, solution of the homogeneous equation
associated with Eq. (4.88) is of the type:

qf g¼ q1jðtÞ

 �

eixtþ q2jðtÞ

 �

e�i�xt:

The general solution is then a sum of the number of those terms, each with its
value of x, plus a solution of the complete equation. Unknown functions {q1(t)}
and {q2(t)} can be expressed with trigonometric series:

qf g¼
X

1

j¼�1
q1jðtÞ

 �

ei xþ2jXð Þtþ q2jðtÞ

 �

e�i �xþ2jXð Þt: ð4:88Þ

Equation (4.90) is then introduced into the homogeneous equation associated
with Eq. (4.88), and the following equation is obtained:

X

1

j¼�1
Aj

� �

q1j


 �

ei xþ2jXð Þtþ �Bj

� �

q2j


 �

e�i �xþ2jXð Þt þ �Cj

� �

�q1j


 �

e�i �xþ2jXð Þtþ

Dj

� �

�q2j


 �

ei xþ2jXð Þtþ �Ej

� �

�q1j


 �

e�i �xþ2 j�1ð ÞXð Þt þ Fj

� �

�q2j


 �

ei xþ2 jþ1ð ÞXð Þt ¼ 0

:

ð4:89Þ

where

Aj

� �

¼� xþ 2jXð Þ2 Mm½ � þ X xþ 2jXð Þ G½ � þ i xþ 2jXð Þ Cm½ � þ Km½ � � iX Crm½ �
Cj

� �

¼� xþ 2jXð Þ2 �Mnd½ � þ i xþ 2jXð Þ �Cnd½ � þ �Knd½ �
Dj

� �

¼� xþ 2jXð Þ2 Mnd½ � þ i xþ 2jXð Þ Cnd½ � þ Knd½ �

Ej

� �

¼� x2 � 2xXð2j� 1Þ � 4jX2ðj� 1Þ
� �2 �Mnd½ � þ i xþ 2jXð Þ �Crd½ � þ �Krd½ � � iX �Crd½ �

Fj

� �

¼� x2 � 2xXð2jþ 1Þ � 4jX2ðjþ 1Þ
� �2

Mnd½ � þ i xþ 2jXð Þ Crd½ � þ Krd½ � + iX Crd½ �

:

4.3.4.2 Equations of a System with Anisotropic Stator

Consider a system described by Eq. (4.88), but with an isotropic rotor. The sim-
plest system of this type is the Jeffcott rotor on anisotropic supports. With all
deviatory matrices related to the rotor vanishing, Eq. (4.88) reduces to the fol-
lowing differential equation with constant coefficients in complex coordinates:

Mm½ � €qf g þ Cm½ � � iX G½ �ð Þ _qf g þ Km½ � � iX Crm½ �ð Þ qf g
þ Mnd½ � €�q


 �

þ Cnd½ � _�q

 �

þ Knd½ � �qf g ¼ Fnf g þ X2 Frf geiXt:
ð4:90Þ
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The solution for static loading, {fn}, is similar to the corresponding solution for
axisymmetrical systems, i.e., a solution vector {q} = {q0}, leading to

Km½ � � iX Crm½ �ð Þ q0f g þ Knd½ � �q0f g ¼ f nf g: ð4:91Þ

The unbalance response is a synchronous elliptical whirling. The solution to the
equation of motion can be expressed as

q ¼ q1eiXt þ q2e�iXt

i.e., as the sum of two circular whirling motions emerging at speed X in opposite
directions. Both q1 and q2 are complex vectors, that physically correspond to
elliptical orbits without axes x and y as symmetrical axes.

Orbits of the system are elliptical in free whirling. The relevant solution of the
homogeneous equation of motion is in the form of q = q1eiXt ? q2eiXt which give
rise to the following algebraic equation:

�x2 Mm Mnd

�Mnd Mm

� 


þ xX
G 0

0 G

� 


þ ix
Cm Cnd

�Cnd
�Cm

� 
�

þ

Km Knd

�Knd
�Km

� 


� iX
Cr 0

0 �Cr

� 
	

q1

�q2

( )

¼ 0:

ð4:92Þ

Generally speaking, Eq. (4.93) yields a set of 2n equations.

4.3.4.3 Equations of a System with Anisotropic Rotor

Consider a system modeled in Eq. (4.88), only the stator is isotropic. The simplest
system of this type is the anisotropic Jeffcott rotor. With all deviatory matrices
related to the stator vanishing, Eq. (4.88) reduces to

Mm½ � €qf g þ Cm½ � � iX G½ �ð Þ _qf g þ Km½ � � iX Crm½ �ð Þ qf gþ
Mrd½ �e2iXt €�qþ 2iX _�q


 �

þ Crd½ � e2iXt _�q

 �

þ Krd½ � � iX Crd½ �ð Þe2iXt �qf g
¼ Fnf g þ X2 Frf geiXt:

ð4:93Þ

Equation (4.94) can be transformed into an equation with constant coefficients
by resorting to rotating coordinates:

Mm½ � €rf g þ Cm½ � + iX 2 Mm½ � � G½ �ð Þð Þ _rf g
þ �X2 Mm½ � � G½ �ð Þ þ Km½ � + iX Cn½ �
� �

rf g þ Mrd½ � €�r

 �

þ Crd½ � _�r

 �

þ X2 Mrd½ � þ Krd½ �
� �

�rf g ¼ Fnf ge�iXt þ X2 Frf g:
ð4:94Þ

The unbalance response solution can be written with reference to the fixed
frame as

qf g ¼ r1f g þ r2f ge2iXt:
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The obvious meaning of {r1} is mean-inflected shape, which is fixed in space,
and {r2} is a component of deflected shape, which rotates at a speed of 2X. Static
loading then triggers the onset of vibrations, which take place on the stator with a
frequency 2X and the rotor with a frequency X.

By equating the matrix of the coefficient to zero, one arrives at an exigent
problem in X with secondary critical speeds due to a constant load distribution.
The unbalance response solution, {q} = {r0}eiXt, at a given unbalance distribution
can be derived from the following equation of motion in fixed reference frame if
{r} is constant, i.e., {r} = {r0}:

�X2 Mm½ � � G½ �ð Þ þ Km½ � þ iX Cn½ �
� �

r0f g þ X2 Mrd½ � þ Krd½ �
� �

�r0f g ¼ X2 f rf g:
ð4:95Þ

The response to unbalance is a pure circular synchronous whirling, and rotating
damping has no impact on system behavior since the rotor does not vibrate but
merely rotates in deflected configuration.

The solution for an elliptical whirling with respect to the rotating frame ngz is
in the term:

rf g ¼ r1f geix0t þ r2f geix0t

which is from the algebraic equation as follows:

�x02
Mm Md

�Md
�Mm

� 


þ x0X
2Mm þ G 0

0 2Mm þ G

� 


þ
�

ix0
Cm þ Crm Crd

�Crd
�Cn þ �Crm

� 


+ iX
Cn 0

0 ��Cn

� 


þ
�Mm þ G Md

�Md �Mm þ G

� 


þ
Km Knd

�Knd
�Km

� 
	

r1

r2

� �

¼ 0:

ð4:96Þ

The same solution in fixed frame is

qf g ¼ r1f geixt þ r2f gei 2X��xð Þt

The equation of motion could be written directly in terms of fixed coordinates,
where whirl speed x is present instead of x0.

4.4 Nonlinear Rotordynamics

When rotors contain nonlinear elements or work outside their linearity range,
typical nonlinear phenomena, may emerge, such as jump, or even deterministic
chaos. Behavior of both lubricated journal bearings and rolling-element bearings is
strongly nonlinear to affect the rotor. In the meantime, many other mechanisms
may have similar effects, including nonlinear elasticity or dry friction (see Genta
2005; Yamamoto and Ishida 2001).
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4.4.1 Equations of the Nonlinear Jeffcott Rotor

Consider a Jeffcott rotor with elastic and damping forces that are nonlinear
functions of displacement and velocity, respectively. Axial symmetry of the sys-
tem, decides elastic force in the same direction as displacement and damping force
parallel to velocity. Using complex coordinate z ¼ xþ iy; one can express elastic
force and the forces due to non-rotating and rotating damping as

Fe ¼ �kz 1þ f zj jð Þ½ � ð4:97aÞ

Fdn ¼ �cn _z 1þ bn _zj jð Þ½ � ð4:97bÞ

Fdr ¼ �cr _z� iXzð Þ 1þ br _z� iXzj jð Þ½ � ð4:97cÞ

Substituting expressions of nonlinear forces into the equation of the Jeffcott
rotor written with constant spin speed, one has

m€zþ ðcn þ crÞ_zþ ðk � iXcrÞzþ cnbn _zj jð Þ þ crbr _z� iXzj jð Þ½ �_zþ
kf zj jð Þz� iXcrbr _z� iXzj jð Þz ¼ meX2eiXt þ Fn:

ð4:98Þ

Equation (4.101) can be utilized to study the free behavior of the system (free
circular whirling), the effect of a static load Fn or that of an eccentricity of mass m.

4.4.2 Unbalance Response

Consider an undamped system whose model can be obtained from Eq. (4.101)
when all terms connected with damping, linear and nonlinear, as well as nonro-
tating forces are neglected. A possible solution for response to static unbalance
m is

Z ¼ Z0eiXt:

This solution could be introduced into the equation of motion, and the following
algebraic equation is readily obtained:

k � mX2 þ kf z0j jð Þ
� �

z0 ¼ meX2 ð4:99Þ

where f(|z0|) = l|z0|2 and l is the coefficient of the nonlinear term of stiffness.
The backbone of the response can be acquired on condition that the unbalance

is vanishingly small, i.e., through the homogeneous equation associated with Eq.
(4.102).

Since whirling is circular, the nonlinear element rotates, maintaining a given
deformation. Algebraic equation of static unbalance is

1� m

k
X2 þ f z0j jð Þ þ iX

cn

k
þ iX

cn

k
bn Xz0j j

h i

z0 ¼
m

k
eX2: ð4:100Þ
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The rotating damping does not have a great influence on synchronous whirling.
One can separate the real and imaginary parts of Eq. (4.103), and amplitude and
phase U of state unbalance vector response are thus

1� m

k
X2 þ f z0j jð Þ

h i2
þ X

cn

k

� �2
1þ bn Xz0j jð Þ2

� 


z0j j2¼
m

k
e

� �2
X4

U ¼ � arctan Xcn
1þ bn Xz0j j

k � mX2 þ kf z0j jð Þ

� 
 ð4:101Þ

where U is the phase of the unbalance vector along n-axis.
If phase U is -90�, the equation of the limit envelope of the response becomes

z0cn 1þ bn Xz0j jð Þ ¼ meX: ð4:102Þ

The limit envelope of linear damping is just a straight line as

z0cn ¼ meX:

4.4.3 Free Circular Whirling

A possible solution of homogeneous equation associated with Eq. (4.101), i.e., of
the model for a perfectly balanced Jeffcott rotor, is

z ¼ z0eixt:

Suppose the damping is linear, and one could introduce a solution for circular
free whirling into the homogeneous equation of motion to get:

1� m

k
x2 þ f z0j jð Þ þ i xX

cn

k
þ ðx� XÞ cr

k

h in o

z0 ¼ 0: ð4:103Þ

The solution of x is obtained as

x�R ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C� þ X�212
r

q

r

x�I ¼1n þ 1r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�C� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C� þ X�212
r

q

r

8

>

>

>

<

>

>

>

:

ð4:104Þ

where dimensionless speeds X* and x*, and damping ratios fn and fr are defined
with reference to the linearized system, and

C� ¼ 1þ f ð z0j jÞ � ð1n þ 1nÞ2

2
:

Equation (4.107) is close in form to the corresponding expression for the linear
case, and the only difference is that in the current case whirl speed is a function of
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motion amplitude. A three-dimensional plot where amplitude |z0| is a function of X
and xR can be drawn in Fig. 4.13. X, xR-plane of the three-dimensional plot is the
Campbell diagram of linearized system. The first Eq. (4.107) defines a surface
depicting all the possible conditions of free whirling, and it can be considered as
the backbone of the system at varying spin-speed X. Intersection of the surface
with |z0|, xR-plane could shed light on the relationship linking the natural fre-
quency with amplitude at a standstill: It is then the backbone of non-rotating
system for a whirling mode in the xy-plane.

One of the mentioned plots has been reported in dimensionless form in
Fig. 4.13, which is for a system with fn = fr = 0.3. The stability threshold of the
linearized system is X* = 2.

Intersection of the surface with plane x = X gives the conditions for free
synchronous whirling. It then coincides with the backbone of the unbalance
response shown in Fig. 4.13. From the second Eq. (4.107) condition for stability is
confined to

X\
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f z0j jð Þ
p ffiffiffiffiffiffiffiffiffi

k=m
p

1þ cn=crð Þ: ð4:105Þ

Threshold of stability depends on the amplitude, as shown in Fig. 4.13, where
the unstable part of the surface is dashed. If spin speed X is lower than the
instability threshold of the linearized system, the motion is always stable because
amplitude of free whirling decays to zero.

4.4.4 Stability of the Equilibrium Position

Stability of the equilibrium position for an unbalance system response can be
derived in the same way as with linear systems. Consider a damped nonlinear
Jeffcott rotor without any non-rotating force, whose elastic and damping forces
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have a cubic and linear characteristic, respectively, and neglect non-rotating for-
ces. The equation of motion in rotating the ng reference frame can be obtained:

m€nþ ðcn þ crÞ _n� 2mX _gþ k � mX2 þ klðn2 þ g2Þ
� �

n� cnXg ¼meX2

m€gþ ðcn þ crÞ _gþ 2mX _nþ k � mX2 þ klðn2 þ g2Þ
� �

gþ cnXn ¼ 0
:

ð4:106Þ

The system behavior can be observed according to three dimensionless
parameters: the damping ratios fn and fr and the nonlinear parameter 2l. Equation
(4.111) can also be used to study system motion under non-stationary conditions
with reference to the rotating frame. The unbalance response can be immediately
computed on the basis of a stationary solution in ng-plane. In a small proximity of
equilibrium position, the equation of motion can be linearized, obtaining, in
dimensionless terms,
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00
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00
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<

:
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=
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þ
2 fn þ frð Þ �2X�
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1

g�
0

1
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<

:

9

=

;

þ

1� X�2 þ l� 3n�20 þ g�20

� �

2 �X�fn þ l�n�0g
�
0

� �

2 X�fn þ l�n�0g
�
0

� �

1� X�2 þ l� 3n�20 þ g�20

� �

" #

n�1

g�1

( )

¼ 0

ð4:107Þ

where, apart from damping ratios and the usual dimensionless speed, other
dimensionless quantities are defined as

n� ¼ n=e; g� ¼ g=e; s ¼ t
ffiffiffiffiffiffiffiffiffi

k=m
p

; l� ¼ le2

and prime denotes differentiation with respect to s.
Stability of the motion in the vicinity of an equilibrium position can be assessed

with the sign of decay rate of small vibrations. Because the solution of a simple
fourth-degree algebraic equation is required, the study can be carried on in closed
form.

A very general mathematical model of a nonlinear rotor can be established from
Eq. (4.111) as long as a generic vector function { f ð _qi; qi; h; tÞ} is added to include
behavior of the nonlinear part of the system. Introducing the term (X2 - ia)
instead of X2 to take into account angular accelerations:

Mm½ � €qf g þ Cm½ � � iX G½ �ð Þ _qf g þ Km½ � � iX Crm½ �ð Þ qf g þ Mmd½ � €�q

 �

þ Mrd½ �ei2h €�q

 �

þ Knd½ � �qf g þ Cnd½ � _�q

 �

þ Crd½ � + i2X Mrd½ �ð Þei2h _�q

 �

þ Krd½ � þ iX Crd½ �ð Þei2h �qf g þ f ð _qi; qi; h; tÞf g ¼ X2 � ia
� �

f rf geih þ f nf g:
ð4:108Þ
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Equation (4.113) can be gotten only with uncoupling among flexural, axial,
and torsional behavior and neglecting centrifugal stiffening. The latter can be
brought into scope simply via appropriate introduction of stiffness matrices
proportional to X2.

In general, it is reasonable to expect that time history of the accelerating system
has a simpler expression in a rotating frame. As a result, one could apply rotating
coordinates in Eq. (4.113), and it yields

Mm½ � €rf g þ Cm½ � þ i2x Mm½ � � iX G½ �ð Þ €rf g þ Km½ ��ð X2 Mm½ �þ
X2 G½ � þ ia Mm½ �þiX Crm½ �Þ rf g þ Crd½ � þ i2X Mnd½ �ð Þe�i2h _�r


 �

þ Mnd½ �e�i2h €�r

 �

þ Knd½ � � x2 Mnd½ � � ia Mnd½ � � iX Cnd½ �
� �

e�i2h �rf g
þ Mrd½ � €�r


 �

þ Crd½ � _�r

 �

þ Krd½ � þ X2 Mrd½ � � ia Mrd½ �
� �

�rf gþ
f 0ðrj; _rj; h; tÞ

 �

e�ih ¼ X2 � ja
� �

f rf g þ f nf ge�ih:

ð4:109Þ

If angular acceleration is not small enough, Eq. (4.114) must be integrated
numerically in time, and as a consequence there is no conceptual difficulty taking
into account both nonlinearities and asymmetry.
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Part II
Excitation



Chapter 5
Mechanical and Magnetic Excitations in
Hydraulic Machinery

Mechanical analysis of hydraulic machinery includes two fields, structural
dynamics and rotor dynamics. Structural dynamics is a subset that covers areas of
structural behavior subjected to dynamic loading. Rotordynamics is a specialized
branch of applied mechanics concerned with the behavior and diagnosis of rotating
structures (Ohashi 1991).

Generally, governing equations of a rotating mechanical system can be
expressed as:

M½ � €uf g þ C½ � þ X G½ �ð Þ _uf g þ K½ � þ X Cr½ �ð Þ uf g ¼ X2 ff g ð5:1Þ

where [M] is the mass matrix, [C] is the the damping matrix, [G] is the gyroscopic
skew symmetric matrix, [K] is the stiffness matrix, [Cr] (or [H]/X) is the asym-
metric part of rotating damping matrix, {u} is the displacement vector (including
axial displacement as well) and {f} is the force of the unbalances—all expressed in
real coordinates [see Eq. (4.64)].

If all matrices are expressed in complex coordinates, they are symmetric in a
complex coordinate notation, whereas in real coordinates the gyroscopic matrix is
a skew symmetric notation [see Eqs. (4.50), (4.51)].

Mechanical components of machine can produce excitation to vibration of both
static structures and rotating structures, especially to the latter. The finite element
method (FEM) is widely used in structural dynamic analysis, but in rotordynamic
analysis, aside from the FEM, the Riccati transfer matrix method (RTMM) has
been developed. There are three types of vibration in rotordynamics to be solved:
flexural, torsional and axial. Considering the interaction between the first two
types, the analysis model will be a nonlinear complex, as shown in Eq. (5.1). The
alternating electro-magnetic force will act on the generator stator, which causes
unbalance excitation on the torsional vibration of the shaft system during processes
of unit start up, stop and load regulation.

Mechanical excitations inducing hydraulic machinery vibration are as follows
(Swain 2008):

Y. Wu et al., Vibration of Hydraulic Machinery,
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1. Centrifugal forces due to imbalance of the rotating mass i.e., runner, shaft and
generator rotor.

2. Elastic force of the shaft due to incorrect shaft alignment.
3. Frictional forces.
4. Oil-film instability in bearing.

Electrical excitations covered in this chapter are:

1. Magnetic forces between stator and rotor.
2. Forces due to non-uniform air gap between stator and rotor.
3. Forces created by partial or total short-circuiting of the pole winding of rotor.

Of course for different hydraulic machinery, mechanical excitation to vibration
may include other factors.

5.1 Mechanical System of Hydraulic Machinery

In this section, the mechanical systems of hydraulic turbine generator units and
pumps will be introduced, especially their shaft systems.

5.1.1 Mechanical System of Hydraulic Turbine Generator
Unit

Figure 5.1 shows the structure of Francis turbine generator units, similar to other
types. The main structural components to be examined include the runner, spiral
casing, stay vanes and guide vanes, draft tube, shaft and flange connected to
generator shaft (Wikipedia 2008).

Fig. 5.1 Structure of the
Francis turbine-generator
units

122 5 Mechanical and Magnetic Excitations in Hydraulic Machinery



5.1.1.1 The Turbine-Generator Shaft System

The main components of the turbine-generator shaft system consist of an upper
guide bearing, generator rotor, thrust bearing, lower guide bearing, turbine guide
bearing, and runner, etc. The left side of Fig. 5.2 illustrates the arrangement of a
general hydraulic unit; it has an upper guide bearing (UGB) above the generator, a
lower guide bearing (LGB) below the generator, a thrust bearing, and a turbine
guide bearing (TGB) on the turbine head cover. The upper and lower guide
bearings are center-pivoted with tilting-pads (they are journal bearings); and the
turbine guide bearing is a circular bearing consisting of arcs. The thrust bearing is
also a center-pivoted, tilting-pad bearing with several pads.

The shaft system has been simplified to resemble an equivalent shaft system for
numerical analysis that contains several lumped masses with shaft spans shown on
the right side of Fig. 5.2 in the transfer matrix method of a lumped-mass model
(Feng and Chu 2001; Ma 2007).

In dynamic analysis, any structural system of hydraulic machinery must be
simplified into a mechanical model. And different modeling would lead to distinct
results in dynamical analysis. In RSMM, the runner can be modeled as a cylinder
and the generator rotor as a rigid disc. Diverse models with dissimilar sustained
conditions also exist in bearings.

In RTMM, as shown in Fig. 5.3, the disc rotor and a section of shaft can be
jointed as a combined element of lumped mass and distributed shaft length. The
coordinates and combined force acting on its end sections, shear Q and torque
M are shown in Fig. 5.4 where moment of inertia must be considered.

5.1.1.2 Constrain Conditions of Supporting Points

For the shaft system, guide bearings and thrust bearings at supporting positions
provide several constraint conditions to stabilize system rotation, as shown on the
right side of Fig. 5.3. In numerical simulation, the following constraint conditions
should be chosen (Wu 2002; Zhang 2006, 2008).

1. Complete rigid constraint. This type of constraint applies to sliding guide
bearings as well as certain thrust bearings which are fixed on their brackets and

Fig. 5.2 Shaft system of
turbine-generator units
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foundations with infinite stiffness. In those circumstances, only stiffness k and
damping c of oil film in the bearings need to be considered as shown in Fig. 5.5
(see Kumar and Sankar 1986; Wu 2002).

2. Elastic constraint. If elastic constraint of brackets and foundations of bear-
ings are considered, their stiffness kb and damping cb should be added as shown in
Fig. 5.6.

The motion equation of lumped mass at the brackets of bearings is expressed as:
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Fig. 5.3 Schematic drawing
of the concentrated mass
method of the shaft
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Mb½ � €ubf g ¼ � Kb½ � ubf g � Cb½ � _ubf g þ K½ � u� ubf g þ C½ � _u� _ubf g ð5:2Þ

where [K] is the stiffness matrix of oil film; [C] the damping matrix of oil film; and
[Mb], [Kb], and [Cb] are the mass, stiffness, and damping matrices of the bearing
brackets, respectively.

If {ub} only describes displacement, then

K½ � ¼
kxx kxy

kyx kyy

� �

; C½ � ¼
cxx cxy

cyx cyy

� �

; Kb½ � ¼
kbxx kbxy

kbyx kbyy

� �

;

Cb½ � ¼
cbxx cbxy

cbyx cbyy

� �

; Mb½ � ¼
mb 0

0 mb

� �

; uf g ¼
x

y

� �

and ubf g ¼
xb

yb

� �

:

In practical simulations, brackets of bearings are usually elastic, and damping
of oil film may not be considered. The first order of critical speed is affected by
bracket elasticity, especially by that of the upper guide bearing. Sometimes, both
bracket elasticity and oil film damping may be included in the simulation.
Damping effects mainly come from oil film, seal water, and water in the runner.

5.1.1.3 Torsional Vibration Model of a Turbine-Generator Unit

When torsion takes place in a unit’s shaft system, an extra electro-magnetic force
acts on the generator stator, one that is not generated by torsional interaction
between the stator and its supports. The stator can be simplified as a rigid disc
within the torsional model of the shaft system shown in Fig. 5.7, where J1 and J2

are the moment of inertia of the magnetic exciter (modern exciter is static type)
and of the generator respectively; J3 is the moment of inertia of the runner with
water. M is the mass of yolks and the magnetic poles of the rotor. The rotor’s
supporting arms are modeled as beams without gravity. In fact, their gravity will
be distributed to the rotor. The shaft’s torsional angle and tangential displacement
will be considered in simulation. Obviously, the rotor’s momentum of inertia will
greatly influence the torsional performance of the shaft system (see Jiang 2008).
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5.1.1.4 FEM Model of the Shaft System of Turbine-Generator Units

Figure 5.8 shows the FEM model of the shaft system with three man components:
shaft, rotor, and runner (Ma 2007).

Governing equations of a rotating mechanical system, Eq. (5.1) can be used to
predict torsional, flexural, and axial vibrations interactively. In the non-rotating
mode of a shaft system simulation, the Eigen frequency is determined by geom-
etry, materials, and the constraints of the system which result in free vibration
modes. Otherwise, the rotating mode will take into account centrifugal force and
other unbalanced forces.

Similar simulations may also be carried out in static structures or individual
components. In general, vibration modes would vary in the following sequence
beginning from first order to high order, namely, from a simple mode to a complex
one.

For the shaft system: torsional–swing–axial drawing–bending–radial drawing plus
torsion.
For the rotor: torsional–swing–axial drawing–bending–radial drawing–torsion.
For the runner: torsional–swing–bending–twisting–drawing–swing torsion.
For the shaft itself: torsional(swing)–drawing–bidirectional bending–local bending–
combined drawing.
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Fig. 5.7 Unit shaft and its
torsional vibration system

Fig. 5.8 FEA model of the shaft system
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5.1.2 Mechanical System of Pumps

The rotor system of an ultra-high-pressure multi-stage centrifugal pump works at
high speeds with a long shaft and is featured in a complex structure shown in
Fig. 5.9 (Chen et al. 2008).

The analysis of centrifugal pumps introduces the concept of ‘‘dry’’ and ‘‘wet’’
critical speeds. A ‘‘dry’’ critical speed does not take into consideration the effects
of seal dynamic characteristics (Fig. 5.10), while a ‘‘wet’’ critical speed occurs
when the pump is in a working station and dynamic characteristics of seal need to
be considered (Fig. 5.11).

Table 5.1 lists calculation results of rotordynamics on two different rotor
models. The first and second modes of free flexural vibration are in the ‘‘wet’’
model (Fig. 5.12).

5.2 Excitation Forces of Hydraulic Turbine
Generator Unit

It is commonly known that large-scale and high-speed hydraulic machines can be
exposed to severe vibration and excited mechanically, hydraulically, and electri-
cally, particularly under transient operating conditions. To understand the dynamic
response of the shaft system to radial forces, excitation forces should be deter-
mined first, including both amplitudes and frequencies. External excitation forces
may be static, harmonic, or periodic; transient and stochastic; or any combination
of these forces. Static forces that stem from hydraulic forces at the runner or from
unbalanced magnetic forces at the generator, may result in static displacement of

Fig. 5.9 Rotor system of multi-stage centrifugal pumpcentrifugal pump

Fig. 5.10 Model of shaft operation in the air
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the shaft, that is, eccentricity. This eccentricity changes the bearing’s dynamic
characteristics. Additional static forces may occur with inaccurate alignment of the
bearings. A magnetic pull within the generator is a radial force rotating at a
frequency proportional to shaft deflection and comparable to the bearing’s nega-
tive stiffness. Additional radial forces with rotational frequency may result from
unbalanced mass, which mainly occurs at the generator and runner. Consideration
of all aforementioned forces acting on a shaft system requires extensive calcula-
tion, and the results may be very complex (see Feng and Chu 2001; Wu 2002).

5.2.1 Unbalanced Mechanical Force

Typically, when the mass eccentric distance equals e0; inertial forces can be cal-
culated as:

F1 ¼ me0X
2 ð5:3Þ

Fig. 5.11 Model of Shaft operation in the water

Table 5.1 The result of the calculation

Type of critical speed First order bending (rpm) Second order bending (rpm)

‘‘dry’’ critical speed 3,158 9,731
‘‘wet’’ critical speed 6,342 12,956

7.279e   002
6.672e   002
6.066e   002
5.553e   002
4.246e   002
3.639e   002
3.033e   002
2.426e   002
1.820e   002
1.213e   002
0.006e   003
0.000e   000

Z

Y

Fig. 5.12 First and second mode diagram
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where m is the unbalanced mass (kg), and X is the rotational speed (rad/s).
Generally speaking, the unbalanced mechanical forces in large turbine-generator
units appear mainly at the generator rotor and turbine runner.

The generator rotor can be simplified into a large thin disc with sizeable mass
that produces a large unbalanced centrifugal load, shown in Fig. 5.13. The two
components of centrifugal force are

Fx ¼Re m en þ ieg
� �

X2eiXt
� 	

Fy ¼ ssRe m eg � ien
� �

X2eiXt
� 	

(

where e = en ? ieg is the projection of an eccentric distance of the component in
reference frame (ong) rotating with the component.

For a node in the numerical grid system, displacement vector {u} and angular
vector {h} at balanced conditions can be expressed as:

M½ � €uf g ¼ K½ � uf g þ C½ � _uf g þ Qf g þ ff g ð5:4Þ

Jd½ � €h

 �

¼ �X Jp

� 	

_h

 �

þ Mxy


 �

þ lf g ð5:5Þ

where

M½ � ¼
m 0

0 m

� �

; K½ � ¼
kxx kxy

kyx kyy

� �

; C½ � ¼
cxx cxy

cyx cyy

� �

;

Mxy


 �

¼
MR

x �ML
x

MR
y �ML

y

( )

; Mxy


 �

¼
QR

x � QL
x

QR
y � QL

y

( )

; Jd½ � ¼
Jd 0

0 Jd

� �

;

Jp

� 	

¼
0 Jp

�Jp 0

� �

; uf g ¼
x

y

� �

; hf g ¼
a

b

� �

; ff g ¼
Fx

Fy

� �

; lf g ¼
Lx

Ly

� �

:

And Fig. 5.5 exhibits all physical parameters on both right and left sides of the
node.

For a vertically mounted rotor system, a rotating component may rotate around
its own axis or the geometrical axis of the bearings. The latter is called arching
rotation. Possible reasons for this rotation may be the misalignment of bearing
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Fig. 5.13 Centrifugal force
caused by eccentric error of
rotor centre
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centers or bending of the shaft. If the radius of the arch is r, unbalanced forces
caused by the bending of shaft can be written as:

F2 ¼ mrX2: ð5:6Þ

5.2.2 Nonlinear and Unbalanced Magnetic Force
of the Generator

Magnetic force of the generator is important for rotordynamic analysis of a
hydraulic turbine generator. Its nonlinear and unbalanced magnetic force is ana-
lyzed in this section.

5.2.2.1 Unbalanced Magnetic Force Caused by Eccentricity

Because the generator rotor and the stator may not be circular, resultant eccentricity
would lead to an unbalanced magnetic force. On the other hand, eccentricity of the
rotor center to the stator center, or other unknown factors such as a short circuit in
the pole winding or an unbalanced three-phase load, can also generate unbalanced
magnetic forces. If the eccentricity is notated as y, and k0 is the coefficient of
unbalanced magnetic forces, one could define the unbalanced magnetic force with a
linear approximate formula (see Feng and Chu 2001; Wu 2002; Zhang 2008):

F3 ¼ k0y: ð5:7Þ

The nonlinear formula for an unbalanced magnetic force is given as:

Fmag ¼
l0pLF2

0

k ln2 1=R0þb
1=R1þa

� 
 ð5:8Þ

where k ¼ 1
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
1 þ R2

0 � e2
� ��

2
� �2�R2

1R2
0

q

; a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
�

R2
1 þ 1

�

k2
q

,

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
�

R2
0 þ 1

�

k2
q

; F0 ¼ R1 � R0

� ��

l0 � B̂:

Parameter definitions are listed as follows: R1 is the inner radius of the stator;
R0 is the outlet radius of the generator rotor; L is the axial length of the radial
magnetic loop; B̂ is the average magnetic flux density; e is the eccentricity of rotor
to stator determined by the shaft runoff at the generator rotor; l0 is the magnetic
conductivity in the air space ðW=A�mÞ; R1 � R0 is radial clearance.

A similar expression for a nonlinear formula is:

Fmag ¼
l0pLF2

0

k ln2 E0 ln2 1=R0 þ bð Þ= 1=R1 þ að Þ½ �
ð5:9Þ

where E0 ¼ 1=R0 þ bð Þ= 1=R1 þ að Þ:
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5.2.2.2 Potential Energy in the Air Gap of the Generator

Figure 5.14 indicates the air gap eccentric of generator, where O is the centre of
stator circle, and O0 is that of rotor circle. If the relative air gap is �e ¼ e= kld0

� �

;
saturation is kl ¼ 1þ dFe= k1d0ð Þ :k1 is the mean gap coefficient; dFe is the
equivalent gap coefficient of ferromagnet; d0 is mean gap; Fsm is amplitude of
stator magnetic potential; and Fjm amplitude of rotor magnetic potential; then
potential energy in the air gap of generator is:

N12 ¼
R1L

2

Z 2p

0
K0

X

1

n¼0

�en cosn a� bð Þ Fsm cos Xf t � pa
� ��

þFjm cos Xf t � paþ hþ uþ p
2

� 
i2
da

where K0 = l0/(kld0) is the mean magnetic conductance and l0 is the air magnetic
conductance; the rotating speed of the generator is Xf = 2pf/p; f is the electric net
frequency; p is the pair number of generator poles; h is the inner power angle of
generator; and h ¼ �u; its inner power coefficient is as follows:

¼ arctan IXq þ Usinu= IRa þ Usinuð Þ
� 	

where U is its voltage, I is the phase current of generator; Xq is the reactance of
generator armature; and Ra is the resistance of generator armature. n is the order
number of Taylor series, usually n = 3 is adopted.

And N12 can be simplified in the matrix form:

N12 ¼
1
2

u1f gT K12½ � u1f g þ u1f gT �k

 �

ð5:10Þ

where K12½ � is the stiffness matrix of the air gap magnetic field, there are only
limited non-zero elements; �k


 �

is the rotor vibration eccentric vector; and u1f g is
the general coordinate vector of the generator, which contains flexural displace-
ment and torsional angle at the generator element nodes.
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Fig. 5.14 Air gap eccentric
of generator
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5.2.2.3 Moment Equation of Hydro Generator

In the transient process, the torque equation of the hydro generator, Eq. (5.11),
must be brought into the scope of the governing equation to predict the vibration,
especially the vibration of the shaft system, i.e.,

mg ¼ me þ mD ð5:11Þ

where mg is the generator load torque (whole damping torque); me is the electro-
magnetic torque of generator; and mD is the magnetic torque of the damping
winding in the generator.

Operation angle d is expressed as difference between the torsion angle of shaft,
h, and its initial value, h0, so

dd
dt
¼ dh

dt
¼ X: ð5:12Þ

And me ¼ Pe=X; then

Pe ¼
E0Vt

x0d
sin dþ 1

xq
� 1

x0d

� �

V2
t

2
sin 2d ð5:13Þ

where E0 is the transient electric potential of the generator; Vt is the voltage at the
generator output’s ends; xq is the generator shaft reactance; and x0d is the generator
shaft reactance during the transient process. Consider the damping coefficient D,
and the torque of the damping winding becomes

mD ¼ D
dd
dt
¼ DX: ð5:14Þ

5.2.3 Unbalanced Radial Hydraulic Force Acting
on the Turbine Runner

In general, unbalanced radial hydraulic force can be determined by means of a field
test or a calculation with known flow coefficient and measured flux. Chapter 7 will
focus on commutated force with the help of computational fluid dynamics (CFD).

5.3 Forces in Transient Oil Film of Bearings
in Hydraulic Unit

In a hydraulic turbine generator unit, lateral fluid forces at the runner may be split
into three parts: a constant component, a component with rotational frequency but
with constant magnitude (hydraulic unbalance), and the remaining lateral force.
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The first two can be calculated with design parameters of the turbine. The last one
can be calculated through the following steps: Calculation of the frequency
response function; assumptions regarding the spectrum of hydraulic lateral forces;
determination of vibrations; and calculation of hydraulic lateral force.

Water in the runner also has an impact on the stiffness and damping of a solid
runner, but it needs further study.

5.3.1 Transient Oil Film Forces and Parameters of Guide
Bearings

The dynamic oil-film forces and its parameters of guide bearings in a hydraulic
turbine generator unit are important for the unit rotordynamic analysis. Their
expressions and data must be given in the first place.

5.3.1.1 Transient Oil Film Forces

Tilting-pad journal bearings can be modeled with the generalized Reynolds
equation of lubrication (Feng and Chu 2001; Wu 2002):

o

ox
Gx

h3op

lox

� �

þ o

oy
Gy

h3op

loy

� �

¼ 6U
oh

ox
þ 6h

oU

ox
þ 12

oh

ot
ð5:15Þ

where Gy, Gx denote the turbulent factor of the oil that can be calculated in Eq.
(5.16); l represents dynamic viscosity of the lubricating oil; U indicates the linear
velocity of a certain point on the surface of the journal; p represents pressure
distribution of oil film; op=ox and op=oy represent the pressure gradients of the oil
film along circumferential and axial directions of the rotor, respectively; oh=ot is
the velocity of the journal center relative to the bearing center; and h the thickness
of oil film within oil wedge.

For pad a in Fig. 5.15, h can be defined as ha, solved with Eq. (5.17)

Gx ¼
1 Rh [ 977

12
.

0:0687 Uq=lð Þ0:75h0:75
h i

Rh [ 977

(

Gy ¼
1 Rh� 977

12
.

0:0392 Uq=lð Þ0:75h0:75
h i

Rh [ 2060

(

8

>

>

>

>

<

>

>

>

>

:

ð5:16Þ

where Rh ¼ Uhq=l represents the Reynolds number of a certain point in the oil
film; and

ha � c� ea0 cos /ka � uð Þ þ e cos u� hð Þ þ Rda sin /ka � uð Þ: ð5:17Þ
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In Eq. (5.17), da ¼ \OaSQ0a; h ¼ \AObB; and ba ¼ \SObD specify the
designed bearing clearance, the pad tilting angle, the angle of displacement, and
the position angle of the pad pivot, respectively; other parameters can be found in
Feng (2000).

Scaling Eq. (5.15) to dimensionless and expanding its right side, one could get a
differential equation for a specific point in time. The right side of the equation is
composed of the displacement and velocity of the journal center, pad tilting angle,
and pad tilting velocity at that specific moment. The equation can be used for
acquisition of pressure distribution over the surface of a bearing pad at that
moment. Of course, there are some general assumptions for oil film in a journal
bearing, listed as follows:

1. No outside field force acts on the lubricant.
2. Pressure distribution is constant throughout the thickness of oil film.
3. No slip is allowed at the lubricant boundaries.
4. The lubricant is Newtonian.

5.3.1.2 Parameters of a Multi-Tilting Pad Journal Bearing

The following stiffness and damping matrices are applied to express eight
parameters of the multi-tilting pad journal bearings in UGB, LGB and WGB, just
as in Eq. (5.2), which are

K½ � ¼ kxx kxy

kyx kyy

� �

; Kb½ � ¼
kbxx kbxy

kbyx kbyy

� �

; Cb½ � ¼
cbxx cbxy

cbyx cbyy

� �

where K½ �; Kb½ �; and Cb½ � are the mass, stiffness, and damping matrices of bearing
bracket respectively.

Figure 5.16 shows a rigid model of guide bearing, where the bearing brackets
and foundations are rigid with only stiffness and damping of oil film considered. In
contrast, Fig. 5.17 shows an elastic model. And it is assumed that equivalent
masses along the x- and y-directions of the bearing brackets are Mbx and Mby. The
elastic model can reflect boundary characters at the bearing, especially where
parameters vary with respect to time (Zhang 2006).

Ob
Oc

OaOj

A Bθ

C
D

S

a
Pad

_

Pivot

Fig. 5.15 Geometrical
relationship between the
journal and pad
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Active forces Rx and Ry from oil film to shaft journal can be gained with solu-
tions to the generalized Reynolds equation of lubrication (5.15). They are in the
term of nonlinear function with respect to journal bearing displacements, xj; yj and
their velocities, _xj; _yj; the bracket bearing displacements, xf ; yf and their velocities,
_xf ; _yf ; the pad swing angle, uT1; uT2; . . .; and its velocity, _uT1; _uT2; . . .; i.e.,

Rx ¼Rx xj � xf ; _xj � _xf ; yj � yf ; _yj � _yf ; uT1; uT2; . . .; _uT1; _uT2; . . .
� �

Ry ¼Ry xj � xf ; _xj � _xf ; yj � yf ; _yj � _yf ; uT1; uT2; . . .; _uT1; _uT2; . . .
� �

(

:

ð5:18Þ

When the journal shaft whirls around the balance point with small angler dis-
placement, Eq. (5.18) may evolve into a linear one:

Rx ¼ xj � xf

� �

P

NP

i¼1
kxxi þ yj � yf

� �

P

NP

i¼1
kxyi þ _xj � _xf

� �

P

NP

i¼1
cxxiþ

_yj � _yf

� �

P

NP

i¼1
cxyi þ

P

NP

i¼1
�bicxxi þ aicxyi

� �

_uTi þ
P

NP

i¼1
�bikxxi þ aikxyi

� �

uTi

Ry ¼ xj � xf

� �

P

NP

i¼1
kyxi þ yj � yf

� �

P

NP

i¼1
kyyi þ _xj � _xf

� �

P

NP

i¼1
cyxiþ

_yj � _yf

� �

P

NP

i¼1
cyyi þ

P

NP

i¼1
�bicyxi þ aicyyi

� �

_uTi þ
P

NP

i¼1
�bikyxi þ aikyyi

� �

uTi
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ð5:19Þ
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where kxxi; kxyi; kyxi; kyyi and cxxi; cxyi; cyxi; cyyi are stiffness and damping factors of
the ith pad’s fixed coordinates. ai ¼ R sin ci; bi ¼ �R cos ci; ci is the position
angle of the pad supporting point; and R is the inner radian of the pad. Usually, the
stiffness and lamping factors are constants.

Nonlinear active forces can be expressed in the simplified form:

Pr ¼
6lR3L

d2 X� 2 _uð ÞF1ðêÞ þ 2_eF2ðêÞ½ �

Pu ¼
6lR3L

d2 X� 2 _uð ÞF3ðêÞ þ 2_eF4ðêÞ½ �
ð5:20Þ

where ê ¼ e=d is the relative eccentricity; L is the length of bearing; d is mean
radius gap. And

F1 ¼ F4 ¼
2ê2

1� ê2ð Þ0:5 2þ ê2ð Þ
; F2 ¼ F3 ¼

1

1� ê2ð Þ0:5
p
2
� 8

p 2þ ê2ð Þ

� �

:

5.3.2 Transient Force of Oil Film and the Moment
of Thrust Bearing

In a similar manner, dynamic equations of each pad in the pivot tilting-pad thrust
bearing must be solved at each integration step. The generalized Reynolds equa-
tion for lubricant in thrust bearings takes the same form as that in guide bearings,
but in cylindrical coordinates, i.e.,

o

or
Gr

h3rop

lor

� �

þ 1
r

o

ou
Gu

h3op

lou

� �

¼ 6rX
oh

ou
þ 6r

oh

ot
ð5:21Þ

h ¼ hp þ cjr sinðhp � uÞ � bj r cosðhp � uÞ � rp

� 	

� hyjr cos u� hxjr sin u

ð5:22Þ

where cj and bj are tilting angles of the pad in circumferential and radial directions,
respectively; hp and rp are angular and radial coordinates of the pivot in the inertial
coordinates, respectively; u is the angular coordinate of any point on one pad; hp is
oil film thickness at the pad pivot; hyj and hxj are components of the tilting angle of
the thrust block hy and hx projected on the pivot coordinate, respectively. The
following relationship is also employed:

hyj ¼ hx sin aj þ hy cos aj; hxj ¼ hx cos aj � hy sin aj ð5:23Þ

where aj is the angle position of the line from pivot j to the bearing center in
inertial coordinate. Hence, oil film thickness can be written as:
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h ¼ hp þ cjr sinðhp � uÞ � bj r cosðhp � uÞ � rp

� 	

� hxr sin aj cos u: ð5:24Þ

Solving the above Reynolds equation, one would arrive at pressure distribution
of the oil film in an oil wedge. Oil film force and oil moment can be integrated.
Resultant forces and moments of the whole bearing can be calculated as:

Wz ¼
X

j

ZZ

prdrdh; Mx ¼
X

j

ZZ

pr r cos hp � /
� �

� rp

� �

drdh;

My ¼
X

j

ZZ

pr2 sin hp � /
� �

drdh
: ð5:25Þ

For a centrally pivoted pad, the balance equations are

Jbj
€bj ¼ Mxj; Jcj€cj ¼ Myj ð5:26Þ

where Jbj and Jcj are the pad’s moments of inertia around the pivot in circum-
ferential and axial directions, respectively. Thrust bearing holds the load of the
unit weight and the water thrust acting on the runner, and then passes the forces to
its bracket. Its lateral constraint is also important to rotordynamic computation,
although the constraint is not as obvious as that of guide bearings. So thrust
bearing may be regarded as an element with the combined actions both of torsional
spring and torsional damper expressed in Cartesian coordinates as:

Fx

Fy

� �

¼ 0 Kxb

Kya 0

� �

a
b

� �

ð5:27Þ

Lx

Ly

� �

¼ KMa 0
0 KMb

� �

a
b

� �

þ CMa 0
0 CMb

� �

_a
_b

� �

ð5:28Þ

where Kya; Kxb; KMa; KMb; CMa; CMb are the stiffness and the damping of the oil

film created by a thrust disc swing; a; b; _a and _b are torsional angle displacements
and velocities of a thrust disc on xoz and yoz planes respectively; and
Fx; Fy; Lx; Ly are forces and moments of oil film on the same planes as foregoing.

5.4 Unbalanced Force and Dynamic Parameters
of Water Seals

The gaps in the water seals of a turbine runner function as a prevention of water
leakage from runner flow passage to its exterior. They are identified as the sup-
porting points of water turbine shaft system. The unbalanced forces and the
dynamic parameters of the seals play an important role for the rotordynamic
analysis of the shaft system.
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5.4.1 Unbalanced Force of Water Seals

Figure 5.18a shows water seals on the outward surfaces of the crown and band of
the turbine runner. Labyrinthine type seal are formed between those surfaces and
the inner circular surfaces of stationery components, head cover in the upper seal
and bottom ring of turbine in low seal (Fig. 5.18b). The gap in those seals will not
be symmetrical when the turbine is running, which would result in an unbalanced
force acting on the shaft system. An eccentric gap in the water seal shown in
Fig. 5.19 will produce flow pressure fluctuation leading to the unbalance (Eide and
Dahlhuang 2002; Liao and Li 2002).

Flow pressure drop, Dp; in the sealing consists of three parts: initial dynamic
head of flow at the sealing flow inlet, v2

1

�

2gð Þ; intake of local energy loss (head

drop), 1v2
1

�

2gð Þ; and a friction head drop along the sealing flow passage,

kls= 2bð Þ � v2
1

�

2gð Þ; i.e.,

Dp ¼ qg 1þ 1þ kls
2b

� �

v2
1

2g
ð5:29Þ
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where v1 is the velocity at the sealing inlet; k is the friction loss coefficient; 1 is the
local loss coefficient; ls is the sealing passage length and b is the mean sealing gap
width, which is expressed as:

bðe; hÞ ¼ b0 1� d cos hð Þ

where d ¼ e=b.
If it is assumed that the energy-loss distribution along the sealing flow passage

is linear, then the pressure distribution along the sealing passage distance, x, can be
written as:

pðx; hÞ ¼ p2 þ p1 � p2ð Þ kx

2bðe; hÞð1þ 1Þ þ kls

where p1 and p2 are the inlet and outlet pressures of the sealing passage, which can
be determined by the inner pressure of the runner and the environmental pressure.
Resultant unbalanced force stemming from unsymmetrical sealing can be obtained
by integration within the sealing passage:

f dð Þ ¼
Z ls

0

Z 2p

0
pðx; hÞ cos hrdhdx

f dð Þ ¼ qkl
rpd
2b

l2s
v2

1

2
ð5:30Þ

where l ¼ 1þ 1þ kls=2bð Þ�1; for simplification, l ¼ 0:25: This prediction
method of unbalanced forces from water seal is based on Hydraulics. Those forces
can be evaluated by CFD simulation through the sealing and runner flow.

5.4.2 The Parameters of Water Seals in the Runner

The following stiffness and damping matrices are applied to describe dynamic
parameters of the water seal in the runner which would contribute to the rotor-
dynamic of the shaft and produce the unbalanced forces, F0sx and F0sy in a way as
follows:

� F0sx
F0sy

� �

¼ kxxs kxys

kyxs kyys

� �

x
y

� �

þ cxxs cxys

cyxs cyys

� �

_x
_y

� �

þ mxxs mxys

myxs myys

� �

€x
€y

� �

ð5:31Þ

where x; y; _x; _y; €x; €y are the displacements, their velocity components, and their
acceleration component along ordinates x and y respectively. And

K½ � ¼ kxxs kxys

kyxs kyys

� �

C½ � ¼ cxxs cxys

cyxs cyys

� �

M½ � ¼ mxxs mxys

myxs myys

� �
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are the mass, stiffness, and damping matrices of water seal in the runner
respectively.

5.5 Excitation of Bearings and Seals of Multiple-Stage
Pumps

The critical speeds of a rotor pump change with the bearing stiffness during
operation. Centrifugal pumps of lower magnitude-critical speeds are more easily
influenced by the bearing stiffness, whereas the higher ones are not. However, once
the higher orders are impacted, they become more sensitive. In this section, the
problems of modeling a steady rotor system with sliding bearings and a ring seal
are introduced. We discuss this problem in light of the film force and of the slide
bearings and the method of its application in modeling, as well as the method of
simulating film stiffness.

5.5.1 Bearing Stiffness of Multi-Stage Centrifugal Pumps

Radial stiffness and damping of the film are important factors of the dynamic
characteristics of rotor systems, whereas the impact of circumferential stiffness and
damping are both small and generally not considered. In this dynamic model,
incremental film force, together with the dynamic characteristic of film is calcu-
lated based on a static equilibrium position plus small disturbance of the film.

The main factors affecting rotor dynamic characteristics are the radial stiffness
and damping of oil film.

Figure 5.20 shows the dynamic model. Given small disturbances in the static
equilibrium position and calculating the increment of oil film force is calculated to
determine dynamic characteristics of the oil film. Use the small disturbances
Dx; Dy and the slow speed D _x; D _y; and suppose that force of oil film and dis-
turbance changed with the linear relationship, one has the following equations
(Ping et al. 2008; Hsu and Brennen 2002):

Fx ¼ Fxo þ
oFx

ox
j0Dxþ oFx

oy
j0Dyþ oFx

ox
j0D _xþ oFx

oy
j0D _y

Fy ¼ Fyo þ
oFy

ox
j0Dxþ oFy

oy
j0Dyþ oFy

ox
j0D _xþ oFy

oy
j0D _y

8

>

>

<

>

>

:

ð5:32Þ

In Eq. (5.32), Fx, Fy are components of oil film forces in the x, y-direction; Fx0,
Fy0 are components of oil film forces in the x, y-direction, when the journal is in
static equilibrium position.
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Film stiffness would be defined as the increment of oil film force caused by
displacement from the static equilibrium position, i.e.,

Kxx ¼
oFx

ox
j0; Kxy ¼

oFx

oy
j0; Kyx ¼

oFy

ox
j0; Kyy ¼

oFy

oy
j0: ð5:33Þ

Film damping is defined as the increment of oil film force caused by distur-
bance speeds, i.e.,

Cxx ¼
oFx

o _x
j0; Cxy ¼

oFx

o _y
j0; Cyx ¼

oFy

o _x
j0; Cyy ¼

oFy

o _y
j0: ð5:34Þ

So Eq. (5.32) could be transferred as

DFx

DFy

( )

¼ K½ �
Dx

Dy

( )

þ C½ �
D _x

D _y

( )

ð5:35Þ

where

DFx

DFy

( )

¼
Fx � Fx0

Fy � Fy0

( )

; K½ � ¼
Kxx Kxy

Kyx Kyy

" #

and C½ � ¼
Cxx Cxy

Cyx Cyy

" #

; ð5:36Þ

where Kxy, Kyx and Cxy, Cyx are cross-stiffness and cross-damping coefficients,
reflecting oil film force in two perpendicular directions to each other via coupling.
Suppose the origin of coordinates xoy is the equilibrium position of bearing
journal, x, y are displacement of journal, and fx, fy are dynamic force of the film.

fx

fy

( )

¼ K½ �
x

y

( )

þ C½ �
_x

_y

( )

ð5:37Þ

Equilibrium position of bearing journal e0; u0 is pictured in Fig. 5.21. The film
thickness is h0; the film pressure p0: So the Reynolds equation is described as:

1
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¼ 1
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ð5:38Þ
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where h0 ¼ B 1þ ê0 cos n� u0ð Þ½ �; ê0 ¼ e0=B is eccentricity; B is average radius
clearance of bearing; l is fluid viscosity. Give bearing journal a small distur-
bancesDx;Dy and slow speed D _x; D _y (Fig. 5.22):

h ¼ h0 þ Dx sin n� Dy cos n ð5:39Þ

p ¼ p0 þ Dp ¼ p0 þ
op

ox
j0Dxþ op

oy
j0Dxþ op

o _x
j0D _xþ op

o _y
j0D _y: ð5:40Þ

The Reynolds equation of oil film is expressed in Eq. (5.41) when the position
of shaft neck is random:
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op0

on
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þ o

oz

h3
0

12l
op0

oz

� �

¼ 1
2
X

oh

on
þ oh

ot
: ð5:41Þ

From Eqs. (5.38–5.41), Eq. (5.42) could be elicited.
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ð5:42Þ

By rewriting Eq. (5.42) in the form of differential equations and integrating them
into the region of an entire film and shaft neck length within the numerical, one could
get p0: Integrate again and then one could elicit dynamic coefficients of the oil film.
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5.5.2 Dynamic Model of a Ring Seal for a Multi-Stage
Centrifugal Pump

The equation for a seal fluid exciting force (see Fig. 5.23), stiffness, damping, and
the following additional qualities are described in Eq. (5.44) (see Ping et al. 2008
and Blanco et al. 2006):

�
Fr

Fs

( )

¼
kxx kxy

kyx kyy

" #

x tð Þ
y tð Þ

" #

þ
cxx cxy

cyx cyy

" #

_x tð Þ
_y tð Þ

" #

þ
mxx mxy

myx myy

" #

€x tð Þ
€y tð Þ

" #

ð5:44Þ

where kxx ¼ kyy ¼ K; kyx ¼ kxy ¼ k; cxx ¼ cyy ¼ C; and cyx ¼ cxy ¼ c; mxx ¼
myy ¼ M; myx ¼ �mxy ¼ 0; and Fr is radial force, Fs is circle force.

Ω

r0ω

Fr

Fr X
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Fig. 5.23 Dynamic model of
a ring seal
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When the flow is steady, choose t = 0 for the ease of analysis in rotational
coordinates. At this time,

X 0ð Þ ¼ r0;
:

So Eq. (5.44) could evolve into Eq. (5.45):

Fr

r0
¼K � cXþMX2

Fs

r0
¼k � DX

8

>

>

<

>

>

:

ð5:45Þ

where D is radius of the shaft, and r0 is amplitude of whirl. When Fr is more than
0, amplitude of whirl would increase. Because Fr is the factor that contributes to
the whirl, and its direction is the same as that of the whirl, it would accelerate
when the whirl exceeds 0 which soon lead to instability. According to Eq. (5.45),
three different whirl frequencies are needed to calculate the dynamic coefficients
of the ring seal, and that could result in three groups of equations.
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Chapter 6
Vibration Induced by Hydraulic
Excitation

6.1 Introduction

Generally, hydraulic excitations that induce vibrations in hydraulic machinery can
be categorized as follows:

(a) Flow through waterways: Non-uniform velocity distribution in various
waterways of the turbine can cause hydraulic unbalance.

(b) Flow instabilities in turbine draft tube or pump sump and pump intake: These
occur even during steady-state operation in machines working outside opti-
mum efficiency range.

(c) Cavitation: This occurs mostly around the runner or impeller blades. For
details, readers may refer to volume six on cavitation in this book series, Li
(2001).

(d) Hydroelastic vibration: This is mainly caused by incorrectly shaped hydraulic
profiles of discharge edge (such as on the blades, wicket gates, stay vanes etc.).

(e) Self-excited vibration: This occurs where the movements of mechanical parts
(seals, clearances, etc.) interact with the flows around or within (Alford 1965).

(f) Pressure fluctuations in the penstock.

6.2 General Hydraulic Excitation in Hydraulic Turbines

Hydraulic excitations in hydraulic turbines include the unstable flows in runner,
spiral case and guide vanes, the vortices in flow fields, the vortex rope in the draft
tube, the transient flows in the penstock of power stations, and the self-excitation
vibration in the hydraulic turbines.

Y. Wu et al., Vibration of Hydraulic Machinery,
Mechanisms and Machine Science 11, DOI: 10.1007/978-94-007-6422-4_6,
� Springer Science+Business Media Dordrecht 2013
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6.2.1 Forces and Frequencies of Hydraulic Excitation
in Turbines

1. Vibration caused by unstable flows in runner, spiral case, and guide vanes.

In front of the runner, the asymmetrical flow, which results from an unevenly
distributed flow of the spiral case or the opening of the guide vanes, will cause
pressure pulsation in the runner with the following frequencies. (These pulsations
with different frequencies may also present in the spiral case, guide vanes, or even
draft tube).

(a) Runner blade rotating frequency: The unevenly distributed flow enters the
blade; blade channels will generate vibrations at the blade passing frequency

fb ¼
nZ

60
Hzð Þ ð6:1Þ

where n is the rotating speed of runner (rpm) and Z is the blade number.

(b) Guide vane passing frequency: Periodic variation of the inlet flow of the
runner causes this frequency while passing the exits of the guide vanes

fg ¼
nZg

60
Hzð Þ ð6:2Þ

where Zg is guide vane number.

(c) Stay vane passing frequency: Periodic variation of the flow entering the runner
causes this frequency while passing through the separating exits of stay vanes.

fs ¼
nZs

60
Hzð Þ ð6:3Þ

where Zs is stay vane number.

2. Pressure pulsations induced by vortices. The following vortices may contribute
to a type of pulsation.

(a) The Karman vortex street from the trailing edge of runner blades or guide
vanes. For turbines, the frequency of the Karman vortex street can be deter-
mined by an empirical formula as follows:

fk ¼ Sh
W

d2 þ dv
Hzð Þ: ð6:4aÞ
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Here, Sh is the Strouhal number with values from 0.18 to 0.25 generally; W is the
mean velocity at the separation point of the hydrofoil trailing edge; dv is a virtual
boundary layer thickness to be added to the blade thickness, d2, which is obtained
by experiments on runner blades with circular trailing edge:

dv ¼ 0:0294
x

Rexð Þ1=5
: ð6:4bÞ

Here, x is the blade length and Rex, is the Reynolds number based on the blade
length. It is found that Sh = 0.19 is more appropriate if dv is added to the blade
thickness. Other empirical formulas and information of the Karman vortex
frequency will be introduced later.

(b) Vortices shedding from blades and vanes, as well as channel vortices. At part-
load conditions, inlet flow enters the runner blade passage with large and
positive attack angle, leading to flow separation on suction surfaces of the
blades. The separation will develop into the downstream of the passage and
finally form the channel vortex in the exit of runner. At overload conditions,
similar separation will occur at the leading edge area of the runner blade.
These vortices may induce pressure pulsation in the runner with a frequency
several times the rotating frequency of the turbine.

3. Pressure pulsation generated by the vortex rope in the draft tube of Francis
turbine.

The low frequency vortex rope emerges at part-load conditions of Francis turbine,
and it causes low frequency pressure pulsation on the walls of draft tube, a swing
power generation, as well as mechanical vibration and noise in the turbine unit.

In the case of part load, the circulation flow at the runner exit rotates in the
same direction as that of the runner rotation. It forms a low pressure region in the
central area of the runner’s exit section, producing a back-flow in the axial
direction. Any asymmetrical distribution of this back-flow would cause instability
in the vortex rope to develop into a helical vortex in the draft tube. There are some
models that can predict the frequency and amplitude of this pressure pulsation
which will be discussed in next section. For engineering applications the frequency
of this vortex-rope induced by pressure pulsation can be estimated using the
following empirical formula:

fv ¼
nl
60

Hzð Þ ð6:5Þ

where l ¼ 0:25� 0:34.
There is also another pulsation in the draft tube that exhibits a similar frequency

as the rotation frequency of the runner.
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4. Hydraulic vibration caused by transient flows in the penstock.

When the turbine’s load suddenly changes, pressure surges may emerge in the
penstock in the front of the turbine, leading to vibrations. These vibrations have
the following frequencies:

fwh ¼
am

2l
Hzð Þ: ð6:6Þ

Here, a is the sound speed in water; m is the number of resonance order (m = 1,
2,…, n); l is the length of the penstock.

5. Self-excitation vibration in hydraulic turbines.

The periodic motion of water and other fluids (such a lubricant oils) as well as
other mechanical components may lead to the resonances of turbine structure. For
example,

Oil film in the guide bearings may cause self-excitation vibration at the
frequency:

foil ¼
n

120
Hzð Þ: ð6:7Þ

Here, n is the rotating speed of turbine; the number of the pads in guide
bearings is assumed as 2.

The arcuate type of the gyroscopic rotation of shaft may occur when the turbine
is working at overload condition. Arcuate gyroscopic rotation of the unit shaft will
occur in the turbine, generating vibrations at frequencies equal to 2–4 times of the
rotating frequency of the shaft.

Apart from the categories above, vibrations may stem from other sources such as
the pressure fluctuations generated by the ‘guide-plate’ structure in the spiral case
as shown in Fig. 6.1a. A typical case is the Three Gorges turbines in the left power
house. Severe vibrations were generated by this structure and the structure itself

Fig. 6.1 a Guide plate (circled) in a model turbine (Li 2006). b Vortex cores in the entire flow
passage of turbine at guide vane opening of 16� (Chen and Li 2011)
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was also damaged (torn off) only after 103–104 h operation. All these guide plates
are removed or modified for newer designs following the analysis (Li 2006).

This structure is responsible for a gust-like, extremely low-frequency fluctua-
tion which is caused by an extremely long and complex vortex structure that starts
at the guide-plate, moves through the entire turbine passage, and connects with the
draft-tube vortices as shown by Fig. 6.1b. The frequency of this gust-like com-
ponent is even lower than the dominant frequency of the machine without the
guide-plate. It thus contributes to the triggering of the newly identified cavitation
damage on the guide vane of the Three Gorges turbines by promoting the turbulent
boundary-layer transition through the receptivity mechanism. For details, refer to
recent studies (e.g. Li 2006, 2008; Chen and Li 2011).

6.2.2 Pressure Pulsations with Respect to Loads in Francis
Turbines

Pressure pulsations are of great importance with regard to the reliable and smooth
operation of Francis turbines for the whole guaranteed range. This range normally
starts from at a very low part-load (in some cases no-load condition) and ends at
far over the best efficiency point (BEP).

6.2.2.1 Operation Range and Pressure Pulsation

For a prototype Francis turbine, the range in the operation performance curve is
divided into several zones according to flow features, as shown in Fig. 6.2a. These
features are non-vortex rope, full load, part load, channel vortex, flow separation
zone on the suction side of the blade’s leading edge (i.e. high head case), flow
separation zone on the pressure side of the blade’s leading edge (i.e. very low head
and large load case), and cavitation at the trailing edge of the blade (overload
case). Figure 6.2b is another type of performance curve for a prototype Francis
turbine proposed by Russian manufacturers. The abscissa is power ratio and the
ordinate is head ratio. Figure 6.3 shows the shape of draft-tube cavity-vortex under
different operation conditions.

Figure 6.2b shows four zones or regions:
Zone 1: The flow at the runner outlet has positive circulation. Vibration of the

turbine is usually small, with a very low efficiency. However, Francis turbines are
not recommended for operated at this zone except for spinning as a stand-by unit
(i.e. no-load). The flow pattern is shown in Fig. 6.3a. There is a dead flow region in
the draft tube.

Zone 2: The amplitude of pressure pulsation, especially in a draft tube, is high,
with low frequency. This results from the helical vortex rope in the draft tube, as
shown in Fig. 6.3b and c. The rotating frequency of this rope is 0.15–0.33 times
the runner’s rotating frequency. The turbine is usually not allowed to operate in
this region for a long time if a reliable device for air admission to the draft tube is
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available. If no air admission device is equipped, machines may be destroyed
within a few years of operation.

Zone 3: Stable operation at high efficiency is achieved since no obvious vortex
rope presents under the runner exit as shown in Fig. 6.3e.

Zone 4: Under the exit of runner there is a negative vortex rope (i.e. it rotates in
the opposite direction of runner rotation). The pressure pulsation increases, and
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Fig. 6.2 a Operation zones in prototype characteristics’ curves of Francis turbine Abscissa is
water head (unit: m) and ordinate is power (unit: W) (Tao and Liu 2004). b Performance zones of
prototype Francis turbine (From Leningrad Metallurgical Plant), (see Sotnikov and Pylev 2001)
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severe cavitation occurs. This is the second vibration zone of the turbine runner.
The vortex rope is shown in Fig. 6.3f as an onion-like shape.

Another operation zone named for higher part-load is possible where the vortex
shape is similar to Fig. 6.3d. This zone usually appears on Francis turbines of high
specific speed at the flow rate ranging from 75 to 90 % of the optimum. The
pressure pulsation frequency is 1–5 times of the runner rotating frequency fn.

6.2.2.2 Operation Range and Pressure Pulsation in Draft Tube

Figure 6.4 shows the operation ranges of Francis turbines with respect to the
pressure pulsation in draft tube by Jacob and Prenat (1996). According to
IEC60193, the stability of Francis turbine is strongly dependent upon the eigen
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Fig. 6.3 Shape of draft tube cavity-vortices a dead flow case in the draft tube. b helical vortex
rope in draft tube at very small flow case c helical vortex rope in draft tube at small flow rate
d straight rope at higher part-load case e no votex rope at high efficiency case f onion shape rope
at high flow rate case
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frequency, f0, of the water in the draft tube. When the frequency of pressure
pulsation is close to it, resonance would easily occur.

1. Classification of pressure pulsations against turbine operations.

The operating parameters describing the hydraulic performance are the unit
energy coefficient, EnD, and the unit flow-rate coefficient, QnD, with reference
values at the best efficiency point,

EnD ¼
E

n2D2
; QnD ¼

Q

nD3
: ð6:8Þ

Here, E is the specific hydraulic energy, n is the rotating speed (rpm); D is the
runner characteristic diameter; nQE is the unit speed coefficient; and r is the Tomas
coefficient of cavitation with reference head, NPSH.

nQE ¼
Q1=2

nD

E3=4
nD

; r ¼ NPSE

E
: ð6:9Þ

The graph on the left of Fig. 6.4 is the operation curve of a model turbine in
which the abscissa is the flow rate coefficient, and the ordinate indicates energy
coefficient. For a given rotating speed, the required efficiency contour and guide
vane opening contour curves can be deduced from the model characteristics chart
in this figure. Turbine characteristics are specified by the unit energy a and the unit
flow rate b at BOP. But the rated turbine characters of a hydro power project is
specified by unit energy c and unit flow rate at the rated point of the station, which
are usually different from those at BOP.

The continuous operation range of the turbine is restricted by the following
factors: the minimum of guide vane opening d, the maximum of guide vane
opening e, the maximum and minimum unit energy coefficients f and g of the
project and the maximum power of the generator used in the station.

The graph on the right of Fig. 6.4 shows variation of pressure pulsation
amplitudes in the draft tube from minimum to maximum of guide vane openings
under the rated energy unit c condition. In this figure, the dimensionless amplitude
is the function of dimensionless flow rate and frequency (obtained via the Fourier
transform). The turbine operation cases are � very low flow rate, ` part load, ´

high part load, ˆ high efficiency, and ˜ full load.

2. Descriptions of pressure pulsation in a draft tube

(a) Helical vortex rope precession at part load. In Fig. 6.4, ` indicates the pres-
sure pulsation zone with the precession of a helical vortex rope in draft tube.
The vortex rope rotates around its center with angular speed X. The precession
is a rotation movement of a rotating center of the vortex rope around another
fixed axis (central axis of the conical part) with another angular speed x. x is
called the precession angular speed as discussed in Chap. 4 . In the case of a
part load, the combined effect of the conical diffuser and the elbow causes the
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flow at the runner exit with a positive circulation to have a precession
movement around the axis of the conical part of draft-tube. Furthermore, the
Tomas cavitation number will be small enough to induce cavitation at the low
pressure centre of the vortex rope, referred to as the cavity vortex precession.

The precession will produce an asymmetric rotating velocity field in the draft
tube and pressure pulsation in the conical part. The pressure pulsation with the
precession frequency will mainly occur in the elbow.

Although precession frequency varies greatly from turbine to turbine, the
dimensionless precession frequency in most Francis turbines can be deduced
through similarly laws. Zt is the ratio of the precession frequency, fp, to the rated
frequency of turbine, fn, is

Zt ¼
fp

fn
� 0:26� 20 %: ð6:10Þ

The precession frequency of some improved designs of hydraulic turbines has
achieved that fp = 0.4 fn.

The amplitude of pressure pulsation caused by the precession in part load is
influenced by either the dynamic response of the prototype flow system or the testing
conduit of the model turbine. If this dynamic response is very weak, the dimen-
sionless pulsation amplitude at the ` position in Fig. 6.4, is approximately equal to

~PErms �
nQE

5
� 50 %: ð6:11Þ

Precession synchronic frequencies also appear in the spectrum, but contribute
little to the pulsation amplitude. The multiple precession sometimes emerges in
case � with very low flow rate and induces small amplitude pulsation.

(b) The natural vibration of water flow in draft tube. Due to the rudimentary
vortices and low pressure, cavitation bubbles accumulate in the middle of the
runner’s exit section. Elastic volume, Vvap, that enters the draft tube with the
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fluid flow from runner will invoke vibration of the water body. In the draft tube
system there exists the characteristic contents that are the water inertia I and the
‘‘cavitation compliance/stiffness (flexible capacitance)’’ (see notes) C. For such
a vibrating system, its natural vibration frequency, f0, is calculated as

f0 ¼
1

2p
ffiffiffiffiffi

IC
p ; I ¼

Z

dL

A
;C ¼ � oVvap

oNPSE
: ð6:12Þ

Here, L is the length of the draft tube from its inlet to outlet, and A is the cross-
section area of draft tube.

Notes: Apart from the passive model of ‘‘compliance’’, the cavitation cloud
itself can also behave as a (pressure fluctuation) exciter with its own characteristic
frequency and stimulate a particular low-frequency component in the whole tur-
bine system through a double-oscillator mechanism. This is often referred to as
cavitation resonance which was firstly identified in the Ventari flow by Li et al.
(1983, 1986). For a systematic description of this phenomenon, see Li et al.
(2008). Under Rudolf et al. (2006), this condition, the cavitation cloud is a
complete oscillating system rather than a simply lumped-capacitive element in an
oscillating system (e.g. the draft-tube). That is, apart from compliance, it pos-
sesses, at least, the inertia mass, elasticity, and viscous resistance. For some cases,
these parameters have a rather discrete nature than lumped parameters, subject to
the geometric shape and properties of the cloud.

The dashed line in Fig. 6.4 indicates the natural vibration frequency of the
draft-tube system. When the cavity bubble approaches its maximum volume, the
natural vibration frequency is close to the precession frequency of the vortex rope
under part load conditions, causing a resonance in the draft tube and thus a strong
pressure pulsation.

For a normally designed draft tube, it is assumed that rEnD = 1, where r is the
reference Tomas number and EnD is the optimum unit energy coefficient. From
these, the minimum natural vibration frequency f0min of the draft tube at a part load
case is close to the vortex precession frequency fp, i.e.,

r ¼ 1
EnD
! f0min � fp � 50 %: ð6:13Þ

As a first order approximation, the Tomas number and the unit energy coeffi-
cient have the following influences on the frequencies:

o f0=fnð Þ
or � 20� 35

ffiffiffiffiffiffiffiffiffi

nQE
p

� 50%
o f0=fnð Þ

o EnD=EnDefð Þ � 0:75� 50%

8

<

:

ð6:14Þ

In full load cases, the natural vibration frequency in the draft tube has a large
range of variation. Its partial derivatives with respect to Tomas number is almost
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the same as in the part load case. So far, statistical data of these partial derivatives
are still not available.

However, owing to various factors, such as the compressibility of water, geo-
metric discrepancy between the prototype and the turbine model for which case the
bubble cloud volume is small and the draft-tube is long (see notes), the prediction
of the natural vibration frequency by using this lumped model will show a large
warp. In the case of short draft tubes for part or full loads, the tested natural
vibration frequency of the model turbine does not change greatly even with
injected cavitation nucleus in an open type test.

Notes: That is, this model [often referred as ‘‘water plug’’ model, for a sys-
tematic review see Sect. 7.3.4. Draft Tube Free Vibration in Li (2001)] will deviate
from the nature of the draft-tube that has rather discrete parameters.

(c) Instability in ‘‘higher part load’’ case. In Fig. 6.4, ´ indicates the pressure
pulsation zone caused by higher part load instability in Francis turbine. This
zone is located at a flow rate between 70–90 % of the optimum. This insta-
bility will lead to strong pressure pulsation in the draft tube and spiral case.

(d) Self excitation. In Fig. 6.4, ˜ indicates the pressure pulsation zone at full load.
In the cases of a full load and a very small flow rate, the partial derivatives of
‘‘cavitation compliance/stiffness (flexible capacitance)’’ with respect to rela-
tive flow rate and unit energy coefficient, have the same sign (positive or
negative). The damping of natural vibration in the draft tube will be small and
consequently it may transmit to the turbine conduit and cause resonance. This
phenomenon will be covered in Sect. 6.3.

6.2.3 Higher Part Load Pressure Pulsation in Francis Model
Turbine

The higher part load pressure pulsations exist for middle and high specific speed
Francis turbine models within a relatively narrow part load zone near the optimum
(shown in Fig. 6.5) where there is usually a cavitating vortex rope of small size at
normal plant cavitation numbers. Therefore the amplitude of the vortex-rope basic
(precession) frequency component is not as high as for the case of a typical part
load. However, higher-frequency components with higher amplitudes will appear
to increase the overall level of pressure pulsations. This phenomenon has also been
observed in prototype turbines. However, this type of pressure pulsation has never
caused any problems on prototype.

6.2.3.1 Model Test of Higher Part Load Pressure Pulsation

In order to understand the behavior of the vortex rope during higher part load
operations, Koutnik et al. (2006) performed investigations on both model texts and
theories in order to develop a correct model-to-prototype transposition analysis.
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Pressure pulsations at higher part load can be categorized as forced vibrations,
self-excited vibrations, or parametric vibrations.

In order to understand the nature of these pressure pulsations, Koutnik et al.
(2006) tested the dependency of their amplitude and frequency on a model
machine.

6.2.3.2 Elliptical Instability Model

An analytical approach is employed to study the influence of individual parameters
on vortex rope behavior. For this purpose the Rayleigh-Plesset equation is derived
for a cavitating cylindrical rope (see Rudolf et al. 2007):

� 1
2 q _R2 � q ln R €RRþ _R2

� �

þ r
R� pðzÞ þ r

R0

h i

R0
R

� �2k þ 2gs
_R
R

þgs ln R o2

oz2
_RR
� �

¼ � p zð Þ þ pN z; tð Þ½ �:
ð6:15Þ

Here, R is vortex rope radius; R0 is initial vortex rope radius; _R and €R are the
first order and second order of derivatives respectively; z is the ordinates along the
central axis of draft tube; k is the polytrophic coefficient; gs is dynamic viscosity; r
is small unsteady change of pressure; pN(z, t) is pressure excitation.

In order to allow for a qualitative analysis of the vortex rope with, say elliptic
cross-section, or for description of particle motion along an elliptical trajectory and
precessional motion of elliptical rope, the Lagrange approach should be employed.

Thus the particle trajectory and pressure distribution must obey the following
equation of motion:

o2xiðaj; tÞ
ot2

oxi

ouj
þ op

ouj
¼ 0 ð6:16Þ

and continuity equation:

JðtÞ ¼ Jð0Þ: ð6:17Þ
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Here, xi(aj, t) denotes particle trajectory; uj is the curvilinear coordinate; p is
pressure; JðtÞis Jacobin in time t; and Jð0Þ is Jacobin initial condition at t = 0.
Influence of viscosity is neglected for simplicity. Equations (6.16) and (6.17) must
be supplemented by state equation of the gaseous phase and Laplace equation. The
following conditions have been studied:

1. Cavitating vortex rope of elliptical cross-section in which liquid is rotating
along the rope circumference, as shown in Fig. 6.6.

2. Cavitating vortex rope of elliptical cross-section with both rotational and pre-
cessional motions. There is a precessional motion of the cavitating vortex rope
with an elliptical cross-section, as shown in Fig. 6.7.

Investigation of many Francis turbine models has indicated that during higher
part load pressure vibrations, the cavitating vortex rope has an elliptical cross
section and the rope ends up before draft tube elbow. When the elliptical form
disappears, the high frequency components of the pressure pulsations disappear as
well. The main peak in frequency spectra (of the higher part load) bears a syn-
chronous character in the draft tube and the smaller peak on its right side has a
dominating rotating component. The higher part load frequency is not a multiple of
the vortex rope frequency.

Recently, with the development of Francis turbine design technology, optimi-
zation of circumferential velocity distribution on the exit section of turbine runner
could minimize or even eliminate the high part load pressure pulsation. Figure 6.8
illuminates such a process. The variation of relative pressure pulsation amplitude
against flow rate at different heads is shown, which is from the accepted model
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test, measuring at a distance of 0.3D1 below the runner exit. This Francis turbine is
now operating in the right hand power house of Three Gorges Project and a similar
design has also been employed for other hydro power projects (Liu and Ji 2004).

6.2.4 Vibration Induced by Karman Vortex Shedding

The Karman vortex street is caused by unsteady separation of a fluid flow over
bluff bodies. As shown in Fig. 6.9, a Karman vortex street develops under certain
conditions in the wake of bluff cylindrical bodies. This periodic shedding of eddies
first takes place alternatively from each side of the body though the oncoming flow
is perfectly steady. A vortex street will only be observed over a given range of
Reynolds numbers (Re), typically above a limit of Re & 90.

The range of Re values varies with size and shape of the eddies, as well as with
the kinematic viscosity of fluid. Over a large Re range (47 \ Re \ 107 for circular
cylinders) eddies shed continuously, forming rows of vortices in the wake.

When a single vortex is shed, an asymmetrical flow pattern forms around the
body, changing the pressure distribution. This indicates that the alternate shedding
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of vortices can create periodic lateral (sideways) forces on the body, causing it to
vibrate. If the vortex shedding frequency is close to the natural frequency of a body
or structure, resonance could occur.

In hydraulic machinery, the Karman vortex street shedding can be found in the
trailing edges of stay vanes, guide vanes and runner blades. This type of vibration
induced in a turbine structure contributes to cracks or ruptures of blades.

6.2.4.1 Karman Vortex Street in the Wake from Stay Vane
or Stationary Blade

In a long circular cylinder, the frequency of vortex shedding is given by the
empirical formula (Torbjørn et al. 2001):

fkd

V
¼ 0:198 1� 19:7

Re

� �

ð6:18Þ

where fk is the vortex shedding frequency. This formula will generally hold for the
range 250 \ Re \ 2 9 105. The dimensionless parameter fkd/V is known as the
Strouhal number. V is the velocity of the main stream outside of the wake.

Heskestad and Olberts (1960) have done experiments on other geometries of
outlet edge, leading to following formula:

fk ¼ 0:01StBV= d2 þ dvð Þ: ð6:19Þ

Here, B is a relative frequency that depends on the shapes of the trailing edge as
shown in Table 6.1 (Heskestad and olberts 1960); St is the Strouhal number,
St = fk (d2 ? dv)/V. Gongwer (1952) found St = 0.19 was more appropriate.

In reference to Fig. 6.9, the relative velocity v of the vortex row to the stream
speed V is

v ¼ V � fka: ð6:20aÞ

Table 6.1 Relative frequency B for different geometries (Heskestad and olberts 1960)

Plate Geometry B Plate Geometry B

1

b

100 5 45 117

2 45 112 6 30 159

3 90 96 7 149

4 60 93
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Here a is the space between two successive vortices, and v can be based on
potential flow as

v ¼ C= 2að Þth hp=að Þ: ð6:20bÞ

Here h is the distance between two rows of vortices and C is the velocity
circulation (i.e., the vortex intensity of each vortex in the vortex row):

C ¼ 2va=th hp=að Þ: ð6:21Þ

From experimental data, the following relations can be obtained:

h=a ¼ 0:29 ð6:22Þ

h ¼ k2d2 ð6:23Þ

C ¼ kd2V: ð6:24Þ

Here d2 is the thickness trailing edge from which the double-vortices are gen-
erated, and k and k2 are the coefficients determined by the shape of the trailing edge.

According to potential flow analysis, the force P acting on the stay vane or
stationary blade of L length from the Karman vortex is (Wei 1989)

P ¼ kqd2LV2 sin 2pfktð Þ: ð6:25Þ

6.2.4.2 Karman Vortex Street in the Wake from Rotating Blade

When water flows through the rotating runner blade under certain conditions, a
Karman vortex street will also shed in the wake of the blade for both the Francis
turbine blade and Kaplan the turbine blade, referring to Fig. 6.10a and b. The
shedding frequency fk is derived with a similar empirical formula as the stay vane:

fk ¼ k1W2=d2: ð6:26Þ

Here W2 is the velocity in the main stream outside of the wake that increases
from the crown to the band for Francis runner. This formula is generally true for

a b

c

L
W2

W2W2W

W2W2W

2δ

(a) (b) (c)

Fig. 6.10 Karman vortex street shedding from the blade of turbine. a Francis turbine blade.
b Kaplan turbine blade. c vortex street behind the blade (Wei 1989)
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the range 250 \ Re \ 2 9 105. The Reynolds and the Strouhal numbers are
defined as follows:

Re ¼ qW2d2=l and St ¼ fkd2=W2: ð6:27Þ

The value of W2 increases from crown to band. Consequently, the values of fk
vary. Any values of such frequency fk coincide with the eigenvalue of blade
structure vibration, and the resonance of blade structure will follow. This is often
referred as the excitation point. During resonance, the vortex shedding frequency
near the excitation point may not initially equal the eigenvalue, but it will
approach the value after resonance. The length of the trailing edge, within fre-
quencies between 0.93 and 1.09 of the eigenvalue, is named as the synchronous
length l as an estimation of the vortex force acting upon the blade.

The intensity of the Karman vortex behind the runner blade can be estimated in
a similar way to Eq. (6.24) with the empirical coefficient,

C ¼ 32:95k2d2 0:29W2 � fkk2d2ð Þ: ð6:28Þ

According to potential flow analysis, force P, acting upon the runner blade of
length l by the Karman vortex is (Wei 1989)

P ¼ kqd2lW2
2 sin 2pfktð Þ ð6:29aÞ

k ¼ 26:71k2ð0:29� k1k2Þ: ð6:29bÞ

Here, W2
2 is the mean value of W2

2 in the synchronous length l, and much
smaller than the entire length L of trailing edge. For engineering calculations
l = 0.1L, k1 = 0.19, and k2 = 1.

The vibration amplitude Y of the runner blade caused by force P can be esti-
mated as

Y ¼ Kqd2= Cfkð Þ 1� cos 2pxp

�

L
� �� �

l=Lð ÞW2
2 : ð6:30Þ

This is deduced from a model beam of length L at the blade’s trailing edge
under the load of vortex with damping. Here C is the damping factor; xp is the
coordinate of the acting force P along L (xp = 0.5L approximately); and
K ¼ 2k= 3pð Þð Þ is the factor of edge shape.

A calculation of the vibration amplitude excited by the vortex street on the
blade trailing edge in a Francis turbine is illustrated in Fig. 6.11. The abscissa is
the relative flow rate �Q ¼ Q=Qr Qr is ratedð Þ, and the ordinate is the relative
amplitude �A ¼ Y=YmaxðYma is Y at QrÞ of vibration. The excitation point is close to
the crown (i.e. xp equals zero approximately) at a very small flow rate. As flow rate
grows, xp moves towards the band to 0.5 (at �Q2) or more, and the amplitude also
increases. With an improved trailing edge, vibration from the vortex street is
mitigated.

The optimized trailing edge with l ¼ 3 d2; r ¼ 2 mm; a ¼ 20o and R � 4 d2 is
shown in Fig. 6.12.
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6.2.4.3 Karman Vortex Street Through CFD Simulation

In 2006 Lockey and Keller published their results of an unsteady CFD simulation of
a Karman vortex shedding at the stay vanes of a machine installed at a Canadian
hydropower station (Lockey et al. 2006). Before applying CFD to this complex case
Keller validated the CFD method for a NACA009 profile by comparing the CFD
prediction with the measurements of the Hydro Dyna project (Ausoni et al. 2006).
In a most recent study by Nennemann et al. (2007) they found that the shedding
frequency shifts when the transition from a laminar to turbulent boundary layer is
taken into account, leading to an improved accuracy of the prediction. Nenne-
mann’s finding was confirmed through varying the surface roughness on the blade
inlet. The shape of the trailing edge strongly influences the intensity of the vortex
shedding, and a major concern of the validation study is the effect of trailing edge
geometry. The trailing edge geometry determines the interaction of the counter
rotating vortices. A dovetail modification leads to a partial elimination of the
vortices, because it forces them to move a way upstream into the dovetail centre.

6.3 Surge in Draft Tube in Francis Turbine

In Sect. 6.2, the operation range of Francis turbines relating to pressure pulsation
in draft tube was discussed. In this section, their mechanics and similarities will be
further analyzed.
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Fig. 6.11 The relative
amplitude of vibration
excited by the vortex street on
blade trailing edge with
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Fig. 6.12 Optimized blade
trailing edge (Wei 1989)
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6.3.1 Classifications of Draft Tube Surge

The occurrence of draft tube surge in Francis turbines was established in the early
twentieth century. The first analytical study of this issue was conducted by
Rheingans (1940). He found that the frequency of pressure pulsations and power
swings could be determined by

f ¼ fn=3:6 ð6:31Þ

where fn is the rotational frequency of the turbine runner and shaft.
Subsequent investigations (Deriaz 1960) using transparent draft tube models

showed that the flow in surging regions contained a helical vortex that precessed
about the axis of the draft tube at approximately the frequency given by Eq. (6.31).
In a hydraulic turbine the vortex may be filled with water, air, or water vapor.

The undesirable effects of draft tube surge from the pressure field associated
with precessing a helical vortex are well known. The fluctuating pressures provide
an excitation that can interact with hydraulic, structural, mechanical, or electrical
components of the turbine and power plant. Pressure pulsations within the draft
tube tend to produce a fluctuating head on the turbine, which in turn gives rise to
pulsations in discharge, torque, and output power.

6.3.1.1 Asynchronous Surging

Two types of pressure pulsations in draft tube surges are identified in literature.
The first is an asynchronous pressure pulsation precession of the helical vortex
about the axis of the draft tube. Purely asynchronous pulsation is a local effect of
vortex motion which does not produce pulsations on the average pressure at a
given cross section along draft tube axis. Despite of that, a purely asynchronous
surge can cause excessive noise and vibrations.

6.3.1.2 Synchronous Surging

The second type of pulsation is synchronous pulsation where average pressure at a
given cross section along draft tube axis varies with time. With the greatest
potential for influence on the system’s other parts, this type of pulsation also
contributes to a change of net head across the runner that corresponds to changes
of average pressure within the draft tube. This leads to discharge and power
pulsations. Superposition of synchronous and asynchronous components is pos-
sible (Fanelli 1989).

Deriaz (1960) proposed that the interaction of a vortex with piers in the draft
tube foot could induce a synchronous pressure pulsation.

Fanelli (1989) asserted that the interaction between the helical vortex and draft
tube elbow produces synchronous pulsations. The cavitated vortex core was also
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considered as a requirement for synchronous surging. Nishi et al. (1980) conducted
a study in which the presence of a cavitated vortex core produced large syn-
chronous pressure pulsations.

6.3.1.3 Air Admission

The first solution to reduce draft tube surges usually involves the admission of air
into the draft tube. Air is commonly supplied just below the runner at the draft tube
inlet. On some units, provisions are made to admit air through the runner head
cover, the runner cone, or a snorkel attached to the runner cone. In some cases, air
can naturally flow into the draft tube during operation at low tail water. However,
at high tail water, or on units that are set quite low for cavitation protection,
compressed air must be injected into the draft tube.

6.3.1.4 Structural Modifications

The structural modification most commonly seen is to straighten the flow in the
draft tube that serves to break up the vortex. Typical devices include fins attached
to the draft tube wall or concentric cylinders mounted in the draft tube. Fins are
proven to be effective in many cases, but they introduce significant loss of effi-
ciency and are vulnerable to cavitation erosion and structural vibrations. Con-
centric cylinders do not normally reduce efficiency significantly.

Problems of mounting cylinders in draft tube are significant, among which are
cavitation erosion and vibration. One advantage of concentric cylinders is that the
supporting struts can also function as locations for air injection. This may help
reduce the surge further and prevent cavitation damage to the struts.

Another type of modification is an extension to the runner cone, sometimes
called a snorkel. These devices may be attached to the runner, or fixed within the
draft tube so they sit just beneath the runner cone. Some researchers suggest that
these devices break up the surge by filling a portion of the reverse flow region. Air
injection can also be combined with these structures.

6.3.1.5 Vortex Breakdown

The flow phenomenon associated with draft tube surging has been described in the
literatures of fluid mechanics as vortex breakdown. The vortex breakdown has
been found to coincide with a formation of a stalled or reversed flow region along
the flow axis (Nishi et al. 1982). As the swirl of flow increases, the axial velocity is
reduced at the tube’s centerline and increased near the walls. At the critical swirl
level, a sudden transition in the flow is observed. A region of stalled or reversed
flow is developed in the flow center, and a helical vortex forms around the reversed
flow.
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If the swirl is clockwise when observed from upstream, the helical vortex takes
the form of a left-handed screw. The precession of vortex is in the same direction
as the swirl. The helical vortex can be visualized as a rolling, shear layer that forms
at the boundary between the reverse flow region and the surrounding swirling flow.
This generates a vortex rope that orients perpendicular to the swirling flow sur-
rounding the reverse flow region (Nishi et al. 1982). Thus, as the swirl increases,
pitch of the vortex can be expected to rise. The most common flow structure
associated with the vortex breakdown is a single helical vortex.

6.3.2 Draft Tube Surge Mechanics

The precessing helical vortex rope in the draft tube causes a surge in part load and
the over load cases.

6.3.2.1 Causation of Draft Tube Surge of Francis Turbine

In the Francis turbine, point 1 is directly upstream of the runner as the flow exits
the guide vanes. Point 2 is on the downstream side of the runner as the flow enters
the draft tube. For the angular momentum at point 2, ~X2 equals the difference
between the angular momentum ~X1 at point 1 and the shaft toque, i.e.,

~X2 ¼ ~X1 � P=X ð6:32aÞ

where P is the turbine output power and X is the angular velocity. Multiplying
each term of the last equation by D/(qQ2) and rearranging them yields

~X2D
�

qQ2
� �

¼ ~X1D
�

qQ2
� �

� PD
�

XqQ2
� �

: ð6:32bÞ

The left side of Eq. (6.32b) is the parameter of draft tube swirl. The first term on
the right is the swirl parameter for the flow leaving the guide vanes and entering
the runner, with reference to the guide vane momentum parameter. The second
term is the swirl extracted from the flow by turbine runner. The guide vane
momentum is defined as

~X1 ¼ qQ2r sin a
�

abZg

� �

: ð6:33Þ

Here, D1 is the diameter of runner exit at the band (D is the runner diameter);
b is the height of guide vanes; Zg is the number of guide vanes; Q is the flow rate
through the turbine; a is the opening of guide vanes; r is the radius of the central
line of guide vanes; and a is the angle between the velocity vector and radius R, as
is shown in Fig. 6.13.

The unit power, unit flow rate, and angular speed as well as unit speed of the
turbine are as follows:
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P11 ¼
P

D2
1H3=2

; Q11 ¼
Q

D2
1H1=2

; X ¼ pD1n

60
ffiffiffiffiffiffiffiffiffi

2gH
p ; n11 ¼

nD1
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:

The inlet angular parameter of draft tube yields

~X2D

qQ2
¼ Dr sin a

abZ
� P11D

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gXQ2
11

p

D2
1

: ð6:34Þ

The right side of Eq. (6.34) expresses the relative flow circulation into draft
tube.

In the upcoming section, draft tube surge will be explained through vortex
movement. Euler’s equation for turbo machines and energy exchange has the
following form in a hydraulic turbine:

ghH ¼ U1V1 cos a1 � U2V2 cos a2ð Þ=g ð6:35Þ

where U1, U2 are the circumferential velocities at runner the inlet and outlet
respectively; V1, V2 are the absolute velocities at inlet and outlet; a1, a2 are the
angles between V1, V2 and U1, U2 at inlet and outlet respectively; H is the working
head of turbine; and gh is its hydraulic efficiency.

Figure 6.14 illustrates the velocity triangles at the runner blade inlet and outlet
for the optimum operation case (a) with a subscript ‘‘o’’ and off-design case (b)
respectively.

At the optimum operation, attack angle Db1 of the relative velocity W1o at inlet
is zero. And at outlet, absolute velocity V2o flows out from runner along the axial
direction, that is

Db1 ¼ b1o � b1A ¼ 0; a2o ¼ p=2: ð6:36Þ

Here, b1o is the relative angle at inlet for optimum case, and b1A is the geo-
metrical angle of blade at inlet. Incorporate Eq. (6.36) into Eq. (6.35) yields

gmaxH0 ¼ U10 U10 �W10 cos p� b1Að Þð Þ½ �=g: ð6:37Þ

a

V

R

α

Fig. 6.13 Guide vane outlet
flow
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6.3.2.2 Helical Vortex Rope for Part Load Cases

For off-design operations with head H [ H0 or flow rate Q \ Q0 or in part load
cases where the velocity triangles are shown in Fig. 6.14b, one may get an
equation similar to Eq. (6.37):

gH ¼ U1 U1 þW1 cos b1ð Þ � U2V2 cos a2½ �=g: ð6:38Þ

In this case, there is an attack angle Db1 = b1 - b1A [ 0. At the runner exit,
the absolute velocity V2 has a positive circumferential component V2 cos a2 caused
by a flow with a positive attack angle passing through the blade–blade channel to
the exit. That means Vu2 (=V2 cos a2) is in the same direction as U2 (the runner
rotation direction).

The existence of Vu2 results in the formation of a helical vortex rope in the draft
tube at part load. The precessional movement of helical vortex rope will induce
pressure pulsation in the draft tube.

The design of modern Francis turbines shows that regulation of blade-angle
distribution at the trailing edge a2 and modification of Vu2 distribution for different
operation conditions will eliminate pressure pulsations in the flow passage.

Figure 6.15 shows the amplitude variation of pressure pulsation with the
opening angle of the guide vane. The opening angle controls the flow rate in the
turbine as well as the circumferential component of absolute velocity Vu1 at the
runner inlet.

As the flow rate of the turbine decreases, positive Vu2 will increase; the positive
vortex area in draft tube vortex rope will also grow, and the pressure at the center
of helical vortex rope will lower.

This phenomenon will induce a forward axial velocity component near the side
wall in the conical part of draft tube. A cavitating vortex rope will appear, and the
inverse reverse axial velocity component will present in this centre of the cavi-
tation vortex rope, leading to vortex instability in the draft tube as indicated in
Figs. 6.3b, c and 6.16.

Fig. 6.14 Runner blade inlet and outlet velocity triangles, a at optimum operation case, b at off-
design case
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6.3.2.3 Helical Vortex Rope at Over Load Cases

Figure 6.17 shows velocity triangles at both the inlet and the outlet of runner for
different opening angles. During the off-design operation with head H \ H0, or
flow rate Q [ Q0, which is in over load cases, there is an attack angle,
Db1 = b1 - b1A \ 0. At the runner exit, the absolute velocity V2 has a negative
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Fig. 6.15 Relations between pressure fluctuation and guide vane opening angle (Yu 2006)

Fig. 6.16 Typical vortex ropes in the draft-tube cone of a Francis turbine model, (photos taken at
Harbin Electric Machinery Co. by Q. D. Cai) a helical vortex rope and b bubble-type vortex rope
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circumferential component V2 cos a2 caused by the flow and a negative attack
angle flowing through the blade–blade channel to the exit. That is, Vu2(=V2 cos a2)
is in the reverse direction as U2 (the runner rotation direction). The existence of
these negative Vu2 results in an onion-shaped vortex rope in the draft tube for over
load cases, as shown in Figs. 6.3f and 6.16b.

6.3.3 The Relation of Vu2 with the Unit Speed
and Unit Flow Rate

Since the circumferential component of absolute velocity at the runner exit has
great influence over the vortex rope, the relation of Vu2 with unit speed and unit
flow rate will be discussed for different operation cases.

From the inlet and the out let velocity triangles in Fig. 6.14, one has

Vu2 ¼ U2 � Vm2ctanb2 ð6:39Þ

where

U2 ¼ 2pr2n=60; and Vm2 ¼ Q=A2: ð6:40Þ

Here, r2 is the outlet radius of the runner; A2 is the cross-section area of the
runner exit. Substituting Eq. (6.39) into Eq. (6.40) yields

Vu2 ¼ Xr2 �
Q

A2tanb2
¼ p

60

� 	 D2

D1

� �

ffiffiffiffi

H
p

n11 �
240
p2

D1

D2

� �3 Q11

tanb2

" #

: ð6:41Þ
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Fig. 6.17 Runner blade inlet, outlet flow velocity triangles. a optimum condition. b small guide
vane angle. c big guide vane angle
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then

Vu2 ¼ k1

ffiffiffiffi

H
p

n11 � k2Q11ð Þ: ð6:42Þ

Partially differentiating the equation, one has

Vu2 ¼

oVu2

on11
¼ k1

ffiffiffiffi

H
p

[ 0

oVu2

oQ11
¼ k1k2

ffiffiffiffi

H
p

[ 0:
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>

<

>

>

:

ð6:43Þ

The absolute value of Vu2 is

Vu2j j ¼
k1

ffiffiffiffi

H
p

n11 � k2Q11ð Þ n11 [ k2Q11ð Þ
0 n11 ¼ k2Q11ð Þ
k1

ffiffiffiffi

H
p

k2Q11 � n11ð Þ n11 \ k2Q11ð Þ:

8

<

:

ð6:44Þ

The linear equation n11 = k2Q11 (the dashed line in Fig. 6.18) can divide the
operation area of Francis turbine in the hill chart of n11 * Q11 into three parts as
shown in Figs. 6.2a and 6.18. Around the line, there are no circulations at the
runner exit and in the vortex rope. The pressure pulsation is very weak.

On the left side of the line, i.e., n11 [ k2Q11, there is positive circulation at the
runner exit which causes a positively rotating helical vortex rope with strong
pressure pulsation at low frequency. On the right side of the line, i.e., n11 \ k2Q11,
there is negative circulation at the runner exit which generates a negatively
rotating vortex rope with rather strong pressure pulsation at low frequency.

Figure 6.15 also demonstrates that the cavitation number r has an effect on the
amplitude of pressure pulsation. When r decreases to a critical value rp a large
bubble will form in the center of the vortex rope, which causes the eccentric radius
of vortex rope to become larger, aggravating the pressure pulsation. Under critical
conditions, the amplitude will reach a value 2–3 times of its previous one.
Afterwards, when r further decreases, the amplitude will drop; although the
bubble in the cavity continues to grow, the eccentric radius decreases. The large
cavity volume with more air in vortex rope centre performs large damping and
stiffness effects to stabilize pressure pulsation.

6.3.4 Prediction of Pressure Pulsation Amplitude in Draft
Tube

The vortex rope frequency in the draft tube of the Francis turbine is predicted by a
theoretical analysis and a method based on the eccentric vortex model in this
section. This prediction can be given by the Computational Fluid Dynamics (CFD)
method for computation of the three dimensional flow through the whole flow
passage of the turbines.
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6.3.4.1 Prediction of Circulation at Runner Exit

According to Eq. (6.41), the prediction equation of Vu2 is

Vu2 ¼ Xr2 K � Q=Qoð ÞX0=Xð Þ: ð6:45Þ

And the circulation at radius r is

Cr ¼ 2pXr2 K � Q=Qoð ÞX0=Xð Þ: ð6:46Þ

Here, K is a factor(K [ 1)shown in Fig. 6.19; And K 0 is a factor of the ratio
measured flow rate Q to the optimum Qo.

After integrating the circulation in the range of r2 B r B R2 at the runner exit,
where r2 is the crown radius and R2 is the band radius, the mean value of circu-
lation at the runner exit is

C2 ¼
p2n

30
r2

2 þ R2
2

� �

K � Q

Qo

X0

X

� �

: ð6:47Þ

6.3.4.2 Prediction of Vortex Rope Frequency

1. Natural frequency of draft tube.

The natural frequency of the water body, f0 in the draft tube is related to the
vibration of cavity volume Vvap and caused by the water body in draft tube. If the
eigen frequency of the cavity volume vibration equals or is close to the pressure
pulsation frequency, resonance will occur.
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f0 ¼
1
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R dL
A
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r : ð6:48Þ

Here, the term -(dVvap/dNPSH) is called the cavitation compliance of the draft
tube; L is the length of draft tube measuring from its inlet to outlet; and A is the
cross-section area of draft tube.

2. Calculation of pressure pulsation frequency.

The main pressure pulsation frequency in the draft tube equals the precessional
frequency of the vortex rope, which is related to the inlet circulation at the draft
tube entrance.

The forced eddy Vu = Xr lies in the central core of the vortex rope and the free
eddy Vur = const lies at outside of the core. Thus,

Vu2ri ¼ VuRr2 ð6:49Þ

where Vu2ri is the mean velocity moment at draft tube entrance, and Vu2r2 is the
velocity moment near the wall of draft tube entrance. The frequency of vortex rope
is

frope ¼ VuR=pD2 ð6:50Þ

where D2 is the diameter of runner exit. Finally the dimensionless frequency is

frope ¼ KSr2
i n11 � Tr2

i Q11: ð6:51Þ

Here,

S ¼ 4
ffiffiffiffi
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1

ffiffiffiffi

H
p

:

The empirical formula of this frequency is listed in Sect. 6.2.

3. Amplitude and frequency of vortex-rope pressure-pulsation in the draft tube
based on eccentric vortex model.
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Fig. 6.19 Relation between K, K 0 and ns (Yu 2006)
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In reference to Fig. 6.20, the model of a draft-tube flow motion used to predict
pressure pulsation caused by a helical vortex rope is sketched. O1 is the rope
center; r is the vortex rope radius; and e is the eccentric distance between O1 and
O2 (the draft tube centre of inlet).

For two-dimensional potential flow, this eccentric vortex should be modeled as
the vorticity with circulation C at point B and another vorticity with circulation -

C at point A.
The governing equation in terms of complex potential W as a function of the

complex variable Z = x ? iy is

dW

dZ
¼ iC

2pðZ � cÞ �
iC

2pðZ þ cÞ ð6:52Þ

where c ¼ 1= R� eð Þ � 1= Rþ eð Þ. The fluctuating pressure caused by the eccen-
tric vortex on the plane can be deduced as

Px ¼ �cqC2
�

4pð Þ; Py ¼ 0:

The maximum amplitude of pressure pulsation can be estimated as

P ¼ 2pqr2V2
ure
�

R2 � e2
� �

; Amax ¼ Pmax= 2pf 1ð Þ: ð6:53Þ

Here, f is the pulsation frequency; 1 is the damping factor; Vur is the circum-
ferential velocity component at radius r.

The precession speed of the helical vortex rope can also be obtained as

xrope ¼ VB=BO1 ¼ C2

.

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ L2
p

� L
� 	h i

where VB is the velocity at point B. The rope frequency can be estimated as

frope ¼
xrope

2p
¼ C2

8p2R2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ L2
p

þ L
� 	

: ð6:54Þ
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Fig. 6.20 Draft tube flow
motion model (Yu 2006)
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6.3.5 Characteristics of the Draft Tube Vortex Flow at Part
Load in Francis Turbine

The two typical vortex ropes are shown in Fig. 6.16, i.e., the helical type occurring
in part load operating conditions and the bubble-type in over load conditions (Wu
et al. 2006). Susan-Resiga et al. (2004, 2006a, b) used an early theory of Benjamin
(1962) on vortex breakdown to analyze their experimentally measured mean
velocity profiles in the cone segment.

6.3.5.1 Formulation on Numerical Simulation

Since the upstream disturbances to flow in a draft-tube are on much smaller time
scales (higher frequencies), one may ignore these upstream disturbances and
investigate the simpler sole draft tube flow (SDTF) without any upstream com-
ponents. This approach was introduced by Zhang et al. (2007, 2009). The com-
putational domain is a draft-tube model connected to a ‘‘river’’ at the tube’s exit.
The cone inlet diameter D*, water density q, and volume flux Q* at full-load
condition are used to nondimensionalize all quantities.

The quantities of mean flow are denoted with capital letters. Velocity scale V0
*

and time scale T0
� are V0

� ¼ 4Q�= pD�2ð Þ and T0
� ¼ D�=V0

� ¼ pD�3= 4Q�ð Þ,
respectively. The pressure is nondimensionalized by qV0

*2/2, and the constant
pressure at exit center of the ‘‘river’’ is chosen as reference pressure P�ref .

A linear static pressure distribution is assumed at the ‘‘river’’ exit, which is far
bigger than the draft tube. The critical issue in formulating the SDTF computation
lies in the inflow condition. The RANS simulation of WTF by Zhang et al. (2005)
has shown that, with the exception of the near-wall shear layer, the average
velocity profiles in the draft tube’s cone center can be fitted with a Batchelor
vortex. Therefore, in SDTF simulation it is natural to directly define the inflow
condition with this vortex (see Zhang et al. 2009). In the cone segment, cylindrical
coordinates (r; h; z) are used, in terms of velocity and vorticity components which
are denoted by (u; v; w) and (xr; xh; xz), respectively. Dimensional radial,
azimuthal, and axial velocity components (U*; V*; W*) of a Batchelor vortex are
given by (Wu et al. 2005)

U�ðr�Þ ¼ 0

V�ðr�Þ ¼ X�cR�
�

r�=R�ð Þ 1� e� r�=R�ð Þ2
h i

W�ðr�Þ ¼ W�1 þ W�c �W�1
� �

e� r�=R�ð Þ2

8

>

>

>

<

>

>

>

:

ð6:55Þ

where W�1; Wc
�; Xc

� and R� are the free-stream axial velocity, the centre line axial
velocity, the angular velocity at the axis, and the measure of the core size,
respectively. Two Batchelor vortices have been chosen as inflow conditions, i.e.
Case I and Case II, for simulations of a part load flow and an over-load flow.
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6.3.5.2 Flow Characters and Instability in Conical Segment

1. Flow patterns for Cases I and II.

The SDTF simulation for Case I captures a strong helical vortex rope in the
cone, shown in Fig. 6.21. This vortex rope pattern is of a strongly non-axisym-
metrical shape described with the D-criterion as follows:

D ¼ C1=3ð Þ3þ C2=2ð Þ2 [ 0 ð6:56Þ

where C1 and C2 are coefficients of the characteristic equation for eigenvalues of
the velocity gradient tensor [r{v}], i.e.,

r3 þ C1r� C2¼ 0: ð6:57Þ

Associated with this helical vortex rope is a low-frequency and large-amplitude
pressure fluctuation, as plotted in Fig. 6.22a for three check points marked in
Fig. 6.21b. The corresponding frequency spectra are shown in Fig. 6.22b, from
which it could be found that the dominant dimensionless frequency of the vortex
rope is St = f* D*/V0

* = 0.279, where f * is the dimensional frequency.
Contrary to Case I, there is no helical vortex rope but simply a concentrated

vortex in Case II, because streamlines in the tube shown in Fig. 6.23b are very
smooth. The vortex is nearly steady.

The above results are in good qualitative agreement with those of RANS
simulation for WTF, as well as with actual measurements (Zhang et al. 2005). For
example, dominant frequency of the severe pressure fluctuations measured in

(a) (b)

Fig. 6.21 Vortex rope in case I by using iso-surfaces of D (D/Dmax = 6 9 106, where Dmax is the
maximum of D in the draft tube): a t = 11.52; b t = 13.39 (Zhang et al. 2009)
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prototype hydraulic turbines with Q* = 106 kg/s and D* = 10 m is about
0.31 Hz under two part-load conditions (Zhu 2006), and here result St = 0.279
implies f* = 0.355 Hz.

2. Analysis of absolute/convective instability (AI/CI)

If the undisturbed basic flow of a swirling vortex is in the AI status, one of the
azimuthal modes of eigen type (n = 0; ±1; 2; 3;…) will develop into a domi-
nating flow pattern. When mode n = 0 is dominant, the vortex will evolve to a
bubble-type structure (Fig. 6.16b); whereas when mode n = ±1 or ±2 dominates,
there is a single or double helical vortex rope with severe pressure fluctuation.
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Fig. 6.22 a and b are the pressure fluctuations and their amplitude spectra at the points P1 * P3
(Fig. 6.21 b, respectively (Zhang et al. 2009)
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Fig. 6.23 a is a iso-surfaces of D (D/Dmax = 5 9 107), in case II at t = 2:13, b shows the
corresponding instantaneous streamlines, where the red and blue lines initiate from the center jet
and its surrounding, respectively (Zhang et al. 2009)
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The AI/CI characters of the Batchelor vortex are defined as (Delbende et al. 1998)

a ¼ W�1
�

DW�; q ¼ X�cR�
�

DW�: ð6:58Þ

In Eq. (6.58), DW� ¼ Wc
� �W�1 and vortex core size R� are taken as a velocity

scale and a length scale intrinsic to the vortex (different from our global scale R0*
and D*) respectively.

For the Batchelor vortex, the flow velocity components have the following
distributions:

U rð Þ ¼ 0; V rð Þ ¼ q 1� e�r2
� 	.

r; W rð Þ ¼ aþ e�r2 ð6:59Þ

where r = r* = R*.
After the RANS flow fields in draft tube for Cases I and II are computed under

their respective inflow conditions, the time average of solutions at many cross
sections downstream of the runner is used to construct a steady and axisymmetric
‘‘basic flow’’. The ‘‘basic flow’’ velocity profiles are then fitted at different z-
stations by the Batchelor vortex family, which yields a series of (a; q) pairs as
functions of z that form a trajectory line on the (a; q) plane, seen in Fig. 6.24.

It is clear that, the approximate ‘‘basic flow’’ for Case I is in the AI zone from
the beginning to the end of the cone downstream, so a helical vortex rope plotted
in Fig. 6.21 emerges. But the ‘‘basic flow’’ for Case II is far from the AI zone, and
as a result any local disturbance never pollutes the upstream flow. Therefore,
Fig. 6.23 exhibits a nearly steady flow in the tube.

6.3.5.3 Elbow and Outlets Flow Analysis

The instantaneous streamlines in the draft tube for Case I at two different times are
illustrated in Fig. 6.25. The red lines initiating from the forward flow (W \ 0) of

Wakes Jlts
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Fig. 6.24 AI/CI trajectory lines of the basic flow on the (a;q) plane for two cases, compared with
the WTF simulation results. Thin lines are the AI/CI boundaries for azimuthal modes
n = +1; +2; +3, and the bold line is the AI zone outermost boundary (Zhang et al. 2009)
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cone segment are eventually discharged at the outlets. In contrast, the blue lines
consist of two subsets: one with streamlines that pass through points lying in the
vortex core of cone segment, spiraling around vortex rope, and then turning back
to the inlet after some curved tours; and another subset with streamlines that come
from downstream of the middle outlet due to the adverse pressure gradient there
and eventually discharge from the left outlet.

The uneven partition of the mass flux among three outlets implies a side-by-side
existence of the forward and reversed streams in the elbow segment. The former
one forms a mass-flux channel of irregular shape, with higher flow speed and
driven by a mean favorable axial pressure gradient which will be shown later.

At the upstream end of the elbow, this channel is obviously linked with the
downward flow of the cone segment; at the downstream end with the left outlet. A
complete channel exists from inlet to exit which carries almost the entire mass flux
out of the draft tube. Flow in the lower portion of the tube is quasi-steady.

The vorticity line in draft tube is shown in Fig. 6.26 at t = 11.52 s. The pattern
is very different from the streamline pattern because a vorticity line originally
aligning to a streamline will turn away due to the stretching-tilting term fxg � rv
in the vorticity transport equation. Particularly, since the velocity-gradient field
rv½ � in the elbow is very complex, so is the vorticity line tilting there. Interest-

ingly, owing to influence of the sweeping vortex rope, vorticity lines have zigzags
in the downstream part of the middle and left outlets, with their wavelength
signifying the slowness of fluid motion—the shorter the slower. These vorticity
lines then follow the square wall geometry of the outlets, indicating that they have
entered the boundary layers.

The sectional xx contours in Fig. 6.26 are almost time independent in the right
and middle outlets, and only a slow drift with time (figure not shown) in the left
outlet. It validates that the flow in the outlets is quasi-steady. Most of vorticity
lines either turn back to upstream or enter the cone boundary layer, leading to a

Fig. 6.25 Instantaneous streamlines in the draft tube for case I with the axial-velocity contours
on two cross sections. Red and blue lines are the forward and reversed streams, respectively.
a t = 11:52, b t = 13:39. (Zhang et al. 2009)
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vorticity level in the outlet much lower than that in the cone. It should be pointed
out that for Case I, pressure distribution at the three outlets’ exits is nearly
uniform.

6.3.6 Vortex Rope Control

For a Francis turbine, if vibration occurs in the middle range of the load, three
mitigating methods can be employed in engineering practice.

1. Avoid loading the unit at levels where excessive vibration occurs. In this case,
no corrective action is required. However, the flexibility of operation in an
integrated grid system is limited.

2. Inject air below the runner. Air admission will suppress the upward surges in
draft tube, reducing vibration (Biela and Beltran 1998; Pejovic 2002).

3. Modify the shape of the trailing edge of the runner blades. This is often the best
method, yet it is more time-consuming. Furthermore, it has to be carried out by
an expert hand otherwise it may aggravate the problem.

Other solutions for mitigating pressure pulsation are:

1. Draft-tube fins to induce swirl flow distortions and to modify pressure-source
frequencies or amplitudes (Grein 1980; Biela and Beltran 1998);

2. A cylinder in the draft tube or extensions of runner cone to induce swirl flow
distortions and to modify the pressure source frequencies or amplitudes (Biela
and Beltran 1998);

3. Mechanical dampers that act as Frahm dampers to absorb resonance energy
(Angelico et al. 1994);
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Fig. 6.26 Instantaneous
vorticity lines in the case-I
draft-tube flow (Zhang et al.
2009)
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4. Active control of the pressure fluctuations based on a complex control strategy,
using a rotating valve or a mechanical piston to generate pressure fluctuations
in draft tube with the same amplitude as the source but in opposite phase
(Blommaert et al. 1999);

5. A controlled water jet injected into the center of the runner cone to modify
swirl momentum ratio and eliminate pressure source.

Success of any of the above solutions is never ensured and often has detrimental
effects on turbine efficiency. In addition, some are technically complex and thus
difficult to set up. As for the full load surge, injection of air appears to be suc-
cessful in some cases. Use of fins is also sometimes beneficial (Nicolet 2007).

6.3.6.1 Robustness of Draft-Tube Flow and Control Principles

In short, it can be concluded that even if the runner has been optimally designed to
yield the highest efficiency in modern Francis turbines, under part load conditions
the draft-tube flow with severe pressure fluctuations is a very robust existence. In
the cone segment the robust helical vortex rope rules the flow and causes severe
pressure fluctuation, but this strong disturbance is suppressed in the elbow and
outlets by an even more robust coexistence of the quasi-steady, high-speed and
mass-flux channel and the low-speed chaotic reversed flow.

From the overall assessment a few guiding principles for effective control of
Case-I flow can be concluded:

1. The control should be imposed at the inlet of the draft tube (i.e. the outlet of the
runner) rather than anywhere downstream of the cone segment.

2. The control should focus on dealing with the axial flow.
3. The control cannot be achieved with small-force disturbances; rather, a suffi-

ciently strong interference by either solid or fluid means is necessary.

Following the principles above, two numerical tests have been conducted with
different ideas.

6.3.6.2 Cross-Area Reduction

Adding a solid cylinder at the bottom of the runner center is a passive flow control
of this kind because the cylinder displaces a portion of the reverse flow in the cone
segment. This simple control method leads to a favorable effect though the cyl-
inder size may be limited.

6.3.6.3 Water Injection at Inlet

It is possible to modify the axial flow at the draft-tube inlet. The currently used
method is air admission at the inlet axis but its effect is too weak. An alternative is
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to replace the air admission by water injection. This kind of active control has been
studied by Blommaert (2000) and Susan-Resiga et al. (2004).

According to Susan-Resiga et al. (2004), the axial jet can improve both the draft
tube and the runner flow, so the overall efficiency losses due to jet operation are
only of an order of 0.2 %.

In the following numerical experiment, a strong axial water jet is superposed to
the uncontrolled axial velocity profile of Case I within a thin cylindrical region
neighboring the axis. The total mass flux brought downward by the jet is less than
6 % of the total inlet flux. The azimuthal velocity profile remains unchanged.

Time sequence of the control effect on vortex rope from the jet injection is
shown in Fig. 6.27 in terms of the D-criterion.

Shortly after the control, the jet causes the helical vortex rope to bifurcate into
two branches, of which one is longer than the other (Fig. 6.27b). At the same time,
the jet itself is entrained by the vortex rope to shift slightly away from the inlet
axis. The shorter branch is then continuously split into several little ones, and the
longer branch gradually shrinks (Fig. 6.27c and d). Finally, the helical vortex rope
is converted into a ‘‘mushroom’’ (Fig. 6.27e and f). The vorticity is concentrated in
a highly localized region near the cone-segment inlet. The almost axisymmetrical
‘‘mushroom’’ also indicates that the pressure fluctuation originally induced by the
helical vortex rope should now be significantly alleviated.

Fig. 6.27 Iso-surfaces of D(D/Dmax = 6 9 106) of controlled flow by jet injection. Starting from
the onset of control, the dimensionless times in (a)–(f) are t = 0; 3.60; 5.04; 7.92; 12.25; 32.4,
respectively (Zhang et al. 2009)
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6.3.6.4 Control of Swirling Flow in Turbine Discharge Cone by Water
Jet

It was only recently that Zhang, et al. (2005) showed that the vortex rope is formed
as a result of absolute instability of the swirling flow in the turbine’s draft tube
cone. Further, Susan-Resiga et al. (2006a) found that the flow becomes unstable as
the turbine discharge decreases, and the eigen modes develop mostly near the
symmetry axis. This prompts the idea of injecting a water jet from the runner
crown downstream along the shaft in order to remove the main cause of the flow
instability associated with severe flow deceleration in the axis. The water jet
injection has proved successful in mitigating the vortex rope and the corresponding
pressure fluctuation, Susan-Resiga et al. (2006a, b); Zhang et al. (2007). Susan-
Resiga, et al. (2007) identified a flow feedback approach for the draft tube cone
that allows the control jet to be supplied without any additional losses in the
turbine. Moreover, as shown by Susan-Resiga and Muntean (2008), the hydraulic
losses in the draft tube cone are reduced remarkably while the pressure recovery is
increased.

It has been found that a jet injected axially at the conical diffuser inlet effec-
tively suppresses the vortex breakdown. However, numerical experiments show
that the required control jet discharge may reach 10 % of the incoming discharge.

Susan-Resiga et al. (2007) introduced a flow feedback, as shown in Fig. 6.28,
where a fraction of the discharge was collected near the wall at the downstream
end of the cone and re-directed toward the nozzle that issues the control jet.

Figure 6.28 shows a comparison between swirling flow in the conical diffuser
with and without jet control. It is clear that the flow feedback mechanism generates
a control jet that successfully eliminates the stagnant region, thus stabilizing the
swirling flow.

From an engineering point of view, the diffuser must convert the dynamic
pressure into static pressure with a minimal loss of total pressure. In practice, one
measures the wall static pressure and uses it to evaluate the wall pressure recovery
coefficient. However, a more rigorous hydrodynamic analysis should be employed
to get the flow weighted averaged pressure, as follows:
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�pðzÞ ¼
Z

Rwall

0

pðz; rÞVzðz; rÞ 2pr dr

,

Z

Rwall

0

Vzðz; rÞ 2pr dr: ð6:60Þ

From experiments and numerical simulations, the average static pressure
increases almost at a constant rate over the whole diffuser length of the draft tube,
with a corresponding decrease in dynamic pressure by the flow feedback control
(see Susan-Resiga and Muntean 2008). The total pressure monotonically decreases
owing to the influence of viscous losses. On the other hand, the static pressure
recovery is significantly improved thanks to a loss of total pressure when the jet
control with flow feedback is employed. Moreover, with flow control, conversion
of dynamic pressure into static pressure takes place practically on the upstream
half of the conical diffuser in draft tube. Consequently, such flow control
approaches allow the use of more compact turbine discharge cones.

Table 6.2 presents quantitatively the benefits of employing the above flow
control approach.

It can be noticed that for the first half of the conical diffuser the losses are
reduced by 70 % and the pressure recovery is increased by 120 %. For the whole
diffuser length, there is still a 63 % reduction in the overall hydraulic loss, and the
increase of the pressure recovery is 43 %. It can be concluded that the jet flow
control approach allows for shorter, more compact, conical diffusers in hydraulic
turbines while retaining good performances over an extended operating range. The
jet discharge for the flow feedback is 3.26 L/s, representing 10.86 % from the inlet
discharge.

6.4 Self Excited Vibration of Hydraulic Machinery

Normally, generated vibrations do not affect excitations or forces of flows that do
not depend on structural motion. In this case, they are forced vibrations. However,
in some cases, the structural motion can affect fluid forces subject to structural
displacement. It may happen when periodic excitations take place in flow without
structural motion and its frequency coincides with one of the natural frequencies of
the system, followed by resonance. If the response amplitude becomes sufficiently
large, the structural displacement will control the fluid excitation as shown in the
case of a vortex shedding lock-in. On a few occasions, structural motion

Table 6.2 Total pressure loss and static pressure recovery (Susan-Resiga et al. 2007)

z ¼ D�ptot ¼ �pthroat
tot � �ptotðzÞ D�p ¼ �pðzÞ � �pthroat

2Rthroat 4Rthroat 2Rthroat 4Rthroat

No flow control 1,194 Pa 2,802 Pa 3,305 Pa 5,811 Pa
With flow

feedback
360 Pa
(-70 %)

1,038 Pa
(-63 %)

7,278 Pa
(+ 120 %)

8,286 Pa
(+43 %)
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determines the flow periodicity exhibited in the case of self-excited vibrations. In
other situations, at least one of the oscillatory system parameters varies, usually
periodically, with time to achieve parametric excitation.

When the output of a hydraulic machine exceeds a certain value, the arcuate
gyroscopic vibration of its shaft system and other rotating components may occur.
Seal rings of the runner will make arcuate gyroscopic rotations in the direction of
the runner wheeling following an elliptical orbit. The frequency of arcuate gyro-
scopic vibrations equals 2–4 times of runner wheeling, fn, which is approximately
the self-free frequency of the arcuate gyration, called the self-excited vibration of
hydraulic turbine. Self-excited vibration happens where the movement of
mechanical parts (seals, clearances, etc.) influences the flow.

6.4.1 Mechanism of Self Excited Vibration in Hydraulic
Turbine

Figure 6.29 shows the structure of a hydraulic turbine. On the back (upper) sur-
face, there is a drainage chamber between the rotating back surface of runner
crown and the stationary inner surface of head cover (outer cover). With high
pressure, water leaks from the runner passage through the small gap between the
runner brim and sealing labyrinth ring on head cover, and flows into the drainage
chamber on the runner back surface (upper side). The leaking water then flows
through another gap between the rotating shaft surface and the stationary inner
surface of the head cover to the outside with atmospheric or lower pressure. The
leakage excites vibration and its flow rate is proportional to the gap dimension
around runner brim. In order to analyze the leakage flow, one could set up a
simplified model composed of a shaft and runner such as the hydraulic turbine
shown in Fig. 6.30.

Another pipe serves as drainage to leaking water in the chamber, but is not
considered in this simple model.
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Fig. 6.29 Structure of
Francis turbine (Wang 2005)
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In Fig. 6.30, the leakage flow rate is small near point a and large at point c. It is
assumed that the shaft centre spins with an orbit in a dashed circle with angular
velocity X which drives leaking water in the chamber to rotate along the runner’s
spinning direction. In chamber B there is a pressure gradient along the ac direction,
that is, pa [ pc. This pressure gradient induces a flow moment acting on the
runner, and produces a whirling flow with the same rotating direction as the runner
in the chamber.

Theoretically, there exist two kinds of arcuate gyroscopic whirls. One is in the
same direction as the rotating runner; another in the opposite direction. The fluid-
induced moments in both cases share the same mechanics but their magnitudes of
induced moments on the runner are not equivalent owing to different flows in the
chamber. And because the stability of the two kinds of arcuate gyroscopic whirls
differs, they need to be analyzed.

In Fig. 6.31, Vu(r) is the circumferential component of the stead flow velocity
in the chamber, V0r(r,u) is its radius component. The difference of the momentum
component along the bd direction between the inlet flow at the ring gape in the
circle with radius r0 and the outlet flow at the ring gape with radius r1 is

D ¼
Z 2p

0
qV 0r r0;uð Þr0du	 HVu r0ð Þ cos u�

Z 2p

0
qV 0r r1;uð Þr1du

	 HVu r1ð Þ cos u: ð6:61Þ

Here, H is the chamber height, and u is the argument at cylindrical coordinates.
When D is not equal to zero, the unbalance between the influent flow

momentum to the chamber and the effluent one will appear which can cause an
increase in the pressure gradient along line bd in Fig. 6.31 and a fluid dynamic
moment on the runner. In the same direction, precession of the runner will be
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Fig. 6.30 Simplified model
of turbine (Wang 2005)

6.4 Self Excited Vibration of Hydraulic Machinery 187



produced during the runner’s operating rotation. The increased pressure gradient
forms a further eccentric displacement of the shaft system. This increasing
vibration is referred to as the self-excited vibration.

The sign of D is determined by relative value between the velocity components
i.e. Vu(r) and V0r(r,u). The flow velocity boundary condition at the circle with
radius r0 and velocity U is V0r(r0, u) = Ucosu, i.e.,

u ¼ 0 : V 0r r0;uð Þ ¼ U; u ¼ p=2 : V 0r r0;uð Þ ¼ 0
u ¼ p : V 0r r0;uð Þ ¼ �U; u ¼ 3p=2 : V 0r r0;uð Þ ¼ 0:




The flow potential in the Chamber is

/ ¼ r 1� r1=rð Þ2
h i

cos u
.

1þ r1=r0

� �2
h i

: ð6:62Þ

The velocity component, namely v0r(r, u), is

V 0r r;uð Þ ¼ o/
or
¼ 1� r1=rð Þ2
h i

U cos u
.

1þ r1=r0ð Þ2
h i

: ð6:63Þ

Substituting Eq. (6.63) into Eq. (6.61) and integrating yields

D ¼
Z 2p

0
1� r1=r0ð Þ2
h i

U cos ur0HVuðr0Þ cos u
.

1þ r1=r0ð Þ2
h in o

du

�
Z 2p

0
1� r1=r0ð Þ2
h i

U cos ur0HVuðr1Þ cos u
.

1þ r1=r0ð Þ2
h in o

du

Then

D ¼ UHr0p Vuðr0Þ � Vuðr1Þ2 r1=r0ð Þ
.

1þ r1=r0ð Þ2
h in o

: ð6:64Þ

If the water flow in the chamber is free vortex, then
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Fig. 6.31 Whirling of fluid
flow in turbine (Wang 2005)
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Vuðr0Þ ¼ r1=r0ð ÞVuðr1Þ:

Substituting above into Eq. (6.64) yields

D ¼ UHr0pVuðr1Þ 1� 2
.

1þ r1=r0ð Þ2
h in o

r1=r0ð Þ:

Since 1þ r1=r0ð Þ2\2, one has

2
.

1þ r1=r0ð Þ2
h i

[ 1:

Under the condition of free vortex flow in the chamber, D\ 0, the pressure at
point b is higher than that at point d, and the arcuate gyroscopic direction is
opposite to the rotation of runner.

If water flow in the chamber is forced vortex by runner and shaft, then
Vu(r0) = (r0/r1) Vu(r1). Substituting it into Eq. (6.64) yields

D ¼ UHr0pVuðr1Þ 1� 2 r1=r0ð Þ2
.

1þ r1=r0ð Þ2
h in o

r1=r0ð Þ:

Since 1þ r1=r0ð Þ2\2, one has

1� 2 r1=r0ð Þ2
.

1þ r1=r0ð Þ2
h i

[ 0:

Under this condition of forced vortex flow in the chamber, D[ 0. The pressure
at point b is lower than that at point d, and the arcuate gyroscopic direction is in the
same direction as the rotation of runner.

6.4.2 Flow Pattern in the Leakage Chamber of Hydraulic
Turbine

Flow in the chamber in the upper side of the runner crown is neither free vortex
nor forced. Actually, it is a mixed type of both determined by dimensionless
parameter b:

b ¼ nr2
0xN

�

2V0hð Þ: ð6:65Þ

Here, h is the gap clearance between the runner crown and the inner surface of
head cover as shown in Fig. 6.32; n is the friction coefficient; xN is the gyroscopic
speed of water; and V0 is the influent velocity at runner brim gap (Fig. 6.30).

When b is close to zero, water flow rate through the gap is quite large and the
angular moment remains the same from the inlet to the outlet of chamber. In this
scenario, water flow in the chamber is of the free vortex type. When b is infinite,
water flow rate through the gap is very low, and the angular moment decreases

6.4 Self Excited Vibration of Hydraulic Machinery 189



greatly from the inlet to the outlet. Water flow in the chamber is the forced vortex
type.

Replacing b with a, one can rewrite Vu expression as

VuðrÞ ¼ Vuðr0Þ 1� að Þ r1=r0ð Þ þ a r1=r0ð Þ½ � 1
 a
 0ð Þ: ð6:66Þ

Here, a = 1 or a = 0 represent the free vortex or the forced vortex respec-
tively. a is the same factor as b. If the dimension of the model is fixed, and r0/h and
the friction coefficient are same, then a is also the function of r0xN/(2V0).

6.4.3 The Excitation Force by the Sealing Chamber Flow

Referring to Fig. 6.32, the center of shaft Oc and the runner rotate in the dashed
circle at angular speed X, and the disc makes the precession at angular speed xN.
Pressure fluctuation in the chamber and in the gap of runner brim may be calcu-
lated based on the following assumptions:

1. The variation of pressure in the chamber is small;
2. The fluid is incompressible and inviscid;
3. The inlet pressure pi and the outlet pressure pe are constant;
4. Pulsations of flow rate and pressure at the gap exit are the same as those at the

chamber entrance.

Then one can get the distribution of flow and pressure in the chamber. If there is
only one fluid passage in the sealing chamber, pressure drop through the sealing is
pi - pe. Here, pi is the inlet pressure of the chamber; and pe is the outlet pressure.
This pressure drop includes three parts: initial velocity head, V0

2/2g, local hydraulic
loss head, 1V0

2/2g and friction loss head kl/(2b)V0
2/2g, i.e.,
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Fig. 6.32 The flow model in the chamber on the runner crown back surface (Wang 2005)
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pi � pe ¼ q
1
l2

V2
0

2
: ð6:67Þ

Here, l ¼ 1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1þ kl= 2bð Þ
p

; 1 is the local friction loss head factor; k is the
friction loss factor; and l is the sealing length.

When the runner is eccentric, the gap, b between runner brim and inner surface
of head cover is the function of the eccentric distance e and the argument u, i.e.,

bðu; dÞ ¼ bð1� d cos uÞ ð6:68Þ

where d ¼ e=h.
Pressure drop at the gap inlet is q(1 ? 1)V0

2/2g and pressure drop of friction loss
is qkl/(2b)V0

2/2g. They are all the function of argument u. The sum of the pressure
acting on runner is

FðdÞ ¼
Z l

0
dx

Z 2p

0
pðx;uÞ cos urdu: ð6:69Þ

The local hydraulic loss at the entrance of gap neglected, it becomes

FðdÞ ¼ �ðpi � peÞ
rl2

2b
pkl4d ð6:70Þ

where the minus sign indicates that the pressure difference direction is opposite the
eccentric distance.

In practice, in order to reduce axial thrust on the shaft system of a hydraulic
turbine, a pressure-equalizing rotating disc on the top of runner and pressure-
equalizing holes in the runner crown may be designed. The pressure distribution in
the sealing chamber will also be improved.

6.4.4 The Excited Force in a Labyrinth Clearance Seal

A labyrinth seal is a mechanical seal that fits around an axle to prevent the leakage
of oil or other fluids.

A labyrinth seal is composed of many straight grooves that press tightly inside
another axle or hole so the fluid has to pass through a long and difficult path to
escape. Sometimes threads exist on the outer and the inner portions and these form
a path to slow leakage. For labyrinth seals on a rotating shaft, there must exist a
very small clearance between the tips of the labyrinth threads and the running
surface.

Labyrinth seals on rotating shafts provide non-contact sealing action by con-
trolling the passage of fluid by centrifugal motion through a variety of chambers,
as well as the formation of controlled fluid vortices (Fig. 6.33).

At higher speeds, centrifugal motion forces the liquid towards the outside and
therefore away from any passages. Similarly, if the labyrinth chambers are correctly
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designed, any liquid that has escaped from the main chamber gets entrapped in a
labyrinth chamber, where it is forced into a vortex-like motion. That prevents liquid
from escaping, and also acts to repel any other fluids. Because these labyrinth seals
are non-contact, they do not wear out. Referring to Fig. 6.33, the pressure will
decrease from the inlet one, p1, to the exit, p2, step by step through every tooth.

6.4.4.1 Model of Excited Force in a Labyrinth Seal

Labyrinth seals are commonly employed in turbines in order to reduce runner brim
leakage.

Varying from different seal design and boundary conditions, fluid within these
seals induces damping or exciting forces on the rotor, thereby reducing or
amplifying rotor vibrations.

Accurate models of labyrinth seals are needed for the prediction of leakage and
rotordynamic characteristics during the design of a new turbine. Obviously leakage
must be minimized for efficiency improvement. Leakage can be reliably predicted
using 2D models. Bulk flow models can accomplish this task at a lower compu-
tational cost than grid-based Navier–Stokes solvers.

3D Navier–Stokes solvers are used widely nowadays because they are expected
to produce more reliable results concerning rotordynamic characteristics of the
seals than a bulk flow model. It is a well-known problem that seals induce fluid
forces on the rotor, exciting rotor vibration and destabilizing the machine.

6.4.4.2 The Excited Force in a Labyrinth Seal

Under the assumption of a circular orbit for the rotor, this inherently unsteady
problem is transformed into a steady one if the computational grid is placed on the
stator-centric frame (which is a reference system rotating at an angular velocity,
xn). The ratio of rotor whirl xn to rotor spin X is defined as processional frequency
ratio ðPFR ¼ xn=XÞ:

An imbalance–induced vibration, with the same point on rotor surface always
pointing outward, is termed as a synchronous whirl, and PFR is equal to unity.

p
2

p
1

0 0

p 2

p 1

Fig. 6.33 Principle of a
simple labyrinth seal (Wang
2005)
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Stiffness and damping coefficients can be determined according to the following
equation:

� FradðtÞ
FtanðtÞ


 �

¼ kxx kxy

kyx kyy

� 


xðtÞ
yðtÞ


 �

þ cxx cxy

cyx cyy

� 


_xðtÞ
_yðtÞ


 �

: ð6:71Þ

Within the labyrinth seal, fluid forces acting upon the rotor result in an inho-
mogeneous pressure field caused by the movement of the rotor with respect to the
stator. Fluid analysis and testing of the seal aim to determine the coefficients of
rotordynamic force. These coefficients describe the stiffness and damping effects
of the fluid resulting from the movements of the rotor centre with respect to the
stator. Of course, in reality, this movement could be in various patterns. The rotor
whirls around the stator centre, while spinning around its own centre, which is
sketched in Fig. 6.34 (Wang 2005).

For movements of the rotor centre described above, kxx = kyy = K,
cxx = cyy = C, kxy = -kyx = k, cxy = -cyx = c, x(0) = r0, y(0) = 0, _xð0Þ ¼ 0
and _yð0Þ ¼ r0xn. Hence,

Frad= r0 ¼ �K � cxn ð6:72Þ

Ftan= r0 ¼ k � Cxn: ð6:73Þ

Here, K and C are commonly named as direct stiffness and direct damping
coefficients, respectively; k and c are cross-coupled stiffness and damping coeffi-
cients. Frad will push the rotor inward or outward, changing the radius of rotor’s
whirling motion, r0. Ftan will influence the frequency of rotor center’s whirling
motion, xn. Once pressure within the seal has been calculated for a certain set of
boundary conditions, these forces can be obtained from pressure integration over
the rotor surface. Equations (6.72) and (6.73) then have two unknown coefficients.
Frad and Ftan must be determined for at least two different values of xn (otherwise
constant boundary conditions). The equations can then be solved for the rotor-
dynamic coefficients.

stator

rotor

x

y

r0
Ftan

Frad

nω
Ω

Fig. 6.34 Movement of the
rotor (Wang 2005)
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6.4.4.3 The Muszyńska/Bently Model of Excited Force
in a Labyrinth Seal

The fluid force model developed by Bently and Muszyńska (1985) pertains to
rotors at low and medium eccentricities. Among other contributions, this model
has clarified understanding of self-excited rotor vibrations such as oil whirl and
whip. An isotropic bearing is approximated by the Muszyńska/Bently model as
follows (Muszyńska and Bently 1990):

� Ff

� �

¼ Mf

� �

€z� i2kXz� k2X2z
� �

þ C½ � _zf g þ K � ikXC½ � zf g: ð6:74Þ

Here {Ff} denotes the fluid force vector; [Mf] the fluid inertia effect matrix;
[K] and [C] are the fluid stiffness and damping matrices; X is shaft speed; and k is
the fluid circumferential average velocity ratio. The rotor lateral response is
described with a vector of displacement (x and y are horizontal and vertical dis-
placements, respectively; z ¼ xþ iy and i ¼

ffiffiffiffiffiffiffi

�1
p

). Equation (6.74) represents a
fluid force rotating forward at average speed kX with stiffness [K], damping
[C] and fluid inertia effect Mf

� �

: Unlike classical bearing coefficients, dynamic
stiffness parameters such as previously mentioned ½K�; ½C�; k (and reverse stiffness
and damping, [K0] and [C0]) are independent of the orientation of the x, y coordi-
nate system. If the fluid inertia effect Mf

� �

¼ 0 or is negligible, the first term in the
right hand side can be cancelled.

In general, fluid bearings or seals attached to a rotor are anisotropic. Thus, a
model that includes the effects of asymmetry suitable for analyzing a general
anisotropic bearing or seal is desirable because the most accurate results could be
obtained. A more generalized version of the Muszyńska/Bently model of Eq.
(6.74) does contain such anisotropic effects.

While an isotropic bearing or seal leads to a circular orbit response for a
symmetric rotor, an anisotropic bearing or seal results in an elliptical orbit
response. As pointed out above, the latter causes a combination of both forward
and reverse responses. To account for this effect, additional terms should be
introduced into Eq. (6.74). If fluid inertia is neglected, the fluid force in an
anisotropic bearing can be written as

Ff

� �

¼ C½ � _zf g þ K � ikXC½ � zf g þ C0½ �eidC _�zf g þ K 0½ �eidK �zf g: ð6:75Þ

Here, �z ¼ x� iy denotes the complex conjugate of z, that is, if z rotates at
forward frequency xn, for example, z ¼ z0ei xntþa0ð Þ, then �z will rotate at reverse
frequency, �xn; i:e:; z ¼ z0 e�i xntþa0ð Þ. Reverse stiffness and damping K0 and D0

cause reverse component B. They are oriented at dC and dK, and vary with the
orientation of x, y coordinate system. Major/minor stiffness and damping for this
anisotropic bearing are relating to the anisotropic effect.

The major stiffness axis is oriented to the x-axis with a maximum value
[K ? K0] and the minor stiffness axis with a minimum value [K - K0]. The major/
minor axes for damping hold the same properties as those for stiffness. In general,
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major/minor axes for the ellipse of a rotor’s orbital response, stiffness, and
damping, are neither co-linear nor perpendicular. At low speed, however, when
damping effects are negligible, the major axis for the ellipse of rotor response is
the same as- or co-linear to the minor axis for stiffness.

6.5 Rotor Stator Interaction

The unsteady flow produced by interaction between rotating and stationary blade
rows Rotor Stator Interaction (RSI) in a turbomachine can generate, under certain
conditions, several unwanted effects such as high pressure pulsations, noise, and
structural vibrations. These effects are well-known as important sources of damage
that affect not only runner blades and guide vanes but also the whole machine,
leading to fatigue cracks in some cases. RSI in hydraulic machinery is generally
classified as follows (Fig. 6.35).

Potential interactions: flow unsteadiness due to pressure waves which propagate
both upstream and downstream.

Wake interactions: flow unsteadiness due to wakes from upstream blade rows
convecting downstream.

For incompressible flow turbomachinery, there is another type of interaction:
Shock interactions: for transonic/supersonic flow unsteadiness due to shock

waves striking the downstream blade row.

6.5.1 Mechanism of RSI in Turbomachinery

Interactions between impeller blades and guide vanes are one of the main causes of
vibration in hydraulic machinery (Zobeiri et al. 2006). The phenomenology of
rotor–stator interactions may be considered as a combination of inviscid flow,
potential, and viscous flow, wake, interactions (Dring et al. 1982).

stator rotor

potential  interaction

shock  interaction

wake interaction

Fig. 6.35 Unsteadiness of
rotor and stator interaction
RSI (Adamczyk 2000)
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6.5.1.1 Mechanism of RSI

With respect to the potential effect, flow in the distributor channels is periodically
perturbed by rotating impeller blades, one of the main sources of pressure fluc-
tuation extending backward up to the spiral casing. In such a case, Giesing (1968)
developed an exact solution for unsteady potential flow. The key operating
parameter for potential interaction is the clearance gap between the guide vanes
under the impeller blade that controls the intensity of rotor–stator interactions.
Therefore, the most important potential interaction will arise when the guide vanes
are fully opened and one of the impeller blades is in the closest position to the
trailing edge of a guide vane.

As for viscous effects, the hydrodynamic phenomena which play a major role in
rotor–stator interactions are the non-uniformity of the velocity field in the spiral
casing and the non-desirable flow angle in the distributor, the flow separations, and
the wakes. The conceptual separation between potential and viscous effects has
limitations that modern computational flow dynamics can overcome through
unsteady RST simulations.

The different rotor-stator interaction models with the required computing power
are shown in Fig. 6.36 (Adamczyk 2000) from the simplest up to the fully transient
Navier–Stokes models. It can be seen that there are available computing resources
enable us to resolve the 3D RANS equations with a transient rotor-stator model.

6.5.1.2 Rotor–Stator Behavior in a Hydraulic Turbine

In a stator frame, the non-uniform flow field caused by wake effect and blade
loading at the guide vane outlet generates a periodic flow pattern. In a rotor frame,
the pressure field attached to the rotating impeller blade also causes periodic flow
field distortions. These stationary and rotating periodic flow components can be
expressed in a Fourier series as
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Fig. 6.36 Rotor-stator numerical model (Zobeiri et al. 2006)
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psðhs; tÞ ¼
X

1

n¼1

Bn cosðnzghs þ unÞ

prðhr; tÞ ¼
X

1

n¼1

Bm cosðnzhr þ umÞ:
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>
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>

<

>

>

>

>

:

ð6:76Þ

Here, m, n are the harmonic orders; Bm, um are the amplitude and the phase for
the mth harmonic; hr, hs are the angle coordinates for the rotating and the sta-
tionary systems; z is the impeller blade number; and zg is the guide vanes number.

The resultant pressure field, combining with both the guide vanes and impeller
blade pressure fields is characterized by a strong modulation process illustrated in
Fig. 6.37 (Nicolet et al. 2006).

Therefore this modulation can be treated as a product of both pressure fields
given by Eq. (6.76). Since the impeller angle coordinate expression using the
stationary reference frame is hr = hs - Xt, the modulation yields resultant pres-
sure field:

pmnðhs; tÞ ¼
Amn

2
cos ðmzXt � k1hs þ un � umÞ þ

Amn

2
cos ðmzXt � k2hs � un � umÞ:

ð6:77Þ

The modulated pressure field results from the contribution of the high and the
low order of diametrical pressure modes, k1 and k2:

k1 ¼ mz� nzg and k2 ¼ mzþ nzg: ð6:78Þ

The sign of the diametrical mode number indicates the direction of rotation.
The positive implies a rotational mode in the same direction as the impeller.

6.5.1.3 Experimental Study on the Francis Pump Turbine

In order to understand the mechanism of RSI in hydraulic machinery, Zobeiri et al.
(2006) introduced the experimental study of pressure measurement on a reduced
scale model of a m = 0.19 specific speed pump-turbine with 20 stay vanes, 20
guide vanes and 9 impeller blades shown in Fig. 6.38. One operating point
(u = 0.519, w = 5.254, Q = 1.43QBEP) was investigated corresponding to the

Fig. 6.37 Modulation process between impeller blade flow and guide vanes flow field: a Flow
field distortion due to impeller pressure field, b Flow field distortion due to guide vane wakes,
c Combination of both distortions (Zobeiri et al. 2006)
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maximum guide vane opening and the minimum clearance of the rotor–stator gap.
The measurements of discharge, specific energy and efficiency are performed in
compliance with the requirements of the IEC 60193 standards.

The wall pressure fluctuation measurements were performed on stationary parts
of the pump-turbine model. Piezoresistive pressure sensors were mounted on the
stay vane and guide vane channels, as shown in Fig. 6.38 (Zobeiri et al. 2006).

Pressure fluctuations for one impeller revolution were presented. The agree-
ment between measured and computed values was very good. The most significant
discrepancy of pressure amplitude arises in the guide vane channel, point 58, as
seen in Fig. 6.39. The pressure coefficient fluctuation is defined as cp =
2 p� �pð Þ

�

qU2ð Þ. Here, p is the pressure; �p is the average pressure for one impeller
revolution; and U is the impeller peripheral velocity.

The spectral analysis was carried out for the corresponding region, indicating
that the difference stems from the pressure amplitude of the blade passing fre-
quency component. For the point closest to the impeller, the maximum of pressure
amplitude was observed for the same component, indicating strong influence of the
potential effect in interactions between the guide vanes and the rotating impeller
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Fig. 6.38 Locations of the
monitoring points in the
distributor channel (Zobeiri
et al. 2006)
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blades. However, amplitude of this component decreases rapidly backward to the
stay vane. The first harmonic corresponding to 2 times blade passing frequency
spreads to the spiral case.

6.5.2 1D Modeling of RSI

Pump-turbine operating under steady state conditions is subject to pressure fluc-
tuations that result from the interaction of rotating and stationary parts in the
machine. This type of Rotor–Stator Interaction, RSI, is the consequence of
interaction between rotating flow perturbations or so-called potential flow per-
turbations caused by the impeller blades and the flow perturbation caused by the
guide vanes.

6.5.2.1 Combination of Unsteady Incompressible RANS Model and 1D
Acoustic Model

The rotor–stator interaction generates pressure waves propagating throughout the
entire hydraulic machine. As a result, the RSI phenomena may lead to two dif-
ferent kinds of pressure fluctuations in the machine (Ruchonnet et al. 2006):

Diametrical pressure mode rotating in the vaneless gap between the guide vane
and the impeller blades has been described by Bolleter (1988) and Ohura et al.
(1990). Propagation of standing waves in the spiral case has been described by
Chen (1961) and Dörfler (1984).

The first phenomenon may cause resonance between the rotating diametrical
pressure mode and the structure of the impeller or of the head cover. It may induce
strong vibrations, noise, and fissures or ruin guide vanes bearings. The second
phenomenon may cause resonance with the power house structure that generates
unacceptable vibrations and noise. The standing wave phenomenon may also affect
the penstock, which evidences the potential interaction of the hydraulic machine
with the hydraulic circuit.

Some analytical models have been developed to predict the occurrence of the
diametrical mode shape as well as the standing wave phenomena. The standing
wave prediction is based on the traveling time of pressure waves propagating in a
one-dimensional system that models the pump turbine according to its topology.
Recently, Haban et al. (2002) developed more sophisticated one-dimensional
models based on the matrix transfer method that showed capability for predicting
spiral casing standing wave patterns.

The 3D simulation of unsteady flow in a vaneless centrifugal pump was per-
formed by González et al. (2002). Their work shed light on the capability of CFD
to accurately predict the unsteady convective field relating to the RSI phenomenon
at the blade passing frequency which is dominantly close to the nominal operating
point. However, some discrepancies appear for off-design operating conditions
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where acoustic behavior becomes more effective due to a blade-tongue interaction.
Such an incompressible code cannot account for the propagating part of the flow
which may lead to a standing wave phenomenon.

Consequently, the separation of hydraulic and acoustic pressure fluctuations by
means of the least-squares residual method has been developed. A model including
both a jet-wake pattern of the convective flow and a blade tongue interaction has
been set up (Ruchnnet et al. 2006).

It seems that the combination of an unsteady incompressible RANS model and
a 1D acoustic model is a suitable approach for calculating amplitudes of pressure
fluctuations resulting from RSI. This approach would leads to a RSI computing
methodology for predicting pressure amplitudes where the unsteady incompress-
ible RANS calculation accounts for the rotor–stator excitation mechanism, con-
sidering all the parameters (i.e. vaneless gap, impeller blade angle, guide vane
opening, jet-wake effect, etc.).

The first step of this approach is to set up a hydroacoustic model of a pump
turbine; to investigate RSI patterns; and to perform a sensitivity study of the model.

6.5.2.2 1D Acoustic Model

Neglecting convective terms qC/qx and assuming plane pressure wave and uni-
form velocity field in a cross section, one could reduce the momentum and the
continuity equations to a simple hyperbolic partial differential equations for a pipe
of length dx, cross-section A, and wave speed a as shown by Fig. 6.40 (Ruchnnet
et al. 2006):

oh

ot
þ a2

gA

oQ

ox
¼ 0 ð6:79aÞ
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2gDA2
¼ Q: ð6:79bÞ

Here, h and Q are the piezometric head and the flow rate with the mean velocity
C expressed as
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Fig. 6.40 Pipe with a length
dx (Ruchnnet et al. 2006)
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h ¼ zþ p=ðqgÞQ ¼ CA: ð6:80Þ

The system of hyperbolic Eqs. (6.79a, 6.79b) is solved via the Finite Difference
Method with a scheme of 1st order centered discretization in space and Lax for the
discharge. This approach leads to a system of ordinary differential equations that
can be represented as a T-shaped equivalent scheme as shown in Fig. 6.41.

The RLC parameters of this equivalent scheme are given by

Rh ¼
k Qj jdx

2gDA2
Lh¼

dx

gA
Ch¼

gAdx

a2
: ð6:81Þ

Here, k is the friction coefficient; Rh is the hydraulic resistance; Lh is the
hydraulic inductance; and Ch is the hydraulic capacitance. They indicate the los-
ses, inertia, and storage effects.

The pipe model with a length L is made of a series of nb elements based on the
equivalent scheme of Fig. 6.41.

The system of equations relating to this model is based on the Kirchoff laws.
Time integration of the full system is achieved with a Runge–Kutta 4th order
procedure.

6.5.2.3 Pump Turbine Hydroacoustic Model

The scale model of a Francis pump-turbine which has 20 guide vanes and 9 blades
is presented in Fig. 6.42a. Its hydroacoustic model is made of a pipe network as
shown by Fig. 6.42b.

The hydroacoustic model consists of 20 pipes for the guide vanes (pipes D1–
D20), 9 pipes for the impeller (pipes R1–R9), and 19 pipes for the spiral casing
(pipes B1–B19). The first part of the spiral casing between the turbine inlet and the
guide vane No.1 is modeled as pipe B0. The diffuser is modeled as pipe A1. The
energy transfer through the impeller is modeled as the pressure ‘‘source’’ VS1
whose head is a function of discharge, i.e. H = H(Q), according to the slope of the
pump turbine characteristics linearized around the operating point. The connection
between the stationary and rotating parts is made up of 180 valves linking each
guide vane to each impeller vane. The 180 valves are controlled by flow distri-
bution between the stationary and rotating parts according to the impeller angular
position h(t). The valve head loss is calculated to ensure the idealized discharge
evolution.

Qi Qi+1
hi+I

hi+I  2
Ch

hi

Rh 2 Rh 2 Rh 2Lh 2Fig. 6.41 Equivalent scheme
of a pipe (Ruchnnet et al.
2006)
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Based on the assumption of a constant impeller speed, discharge evolution
between one guide vane and one impeller vane is a function of the connection area
between them. During the rotation of impeller, four phases are identified:

Phase 1: the blade starts to pass in front of the first blade of the guide vane, and
the discharge between guide vane and impeller vane increases linearly with an
increase of the connection area until the impeller blade reaches the second blade of
the guide vane;

Phase 2: the discharge between guide vane and impeller vane remains constant
until the second impeller blade reaches the first blade of the guide vanes with the
connection area being constant;

Phase 3: the discharge between guide vane and impeller vane decreases linearly
with the reduction of connection area;

Phase 4: the discharge between guide vane and impeller vane is kept to zero as
the connection area is zero until phase 1 appears again.

The discharge evolution described above acts like a sliding slot between the 20
guide vanes and one impeller vane. As a result, there are 9 slots for the full pump
turbine, one for each impeller vane. Each slot angle is shifted by 2p/Zo. The
discharge law can be modified to take into account the thickness of guide vanes
and impeller blades, eo and eb respectively. The thickness can be expressed as an
equivalent angle measured in degrees at the vaneless gap radius. The thickness of
the impeller blades is at first taken at an arbitrary angle equal to 4�, the real one
being 3�. The consideration of blades thickness induces discontinuity in the overall
discharge law, which means that point 3 of the discharge law of an impeller blade
does not correspond to point 2 of the following impeller blade but is shifted by the
value of eb.

3

2

1

4

(a)  (b)

Fig. 6.42 Plan view of the pump turbine (a) and its hydroacoustic model (b) (Ruchnnet et al.
2006)
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6.5.3 3D Modeling of RSI in Part Flow Passage

The rotor–stator interaction is the source of unsteady flows and dynamic force
fluctuations. These are things to be considered for the improvement of turbine
design and for the provision of higher efficiency at off-peak condition.

Through the 3D analysis of rotor-stator interactions, detailed information such
as the potential interactions, wake interactions and other viscous interactions (e.g.
blade tip vortices or Von Karman vortices) can be observed.

6.5.3.1 Introduction

In order to focus on the first two interactions and to seek a relationship among
unsteady runner blade torque, guide vanes forces, and pressure fluctuations as
functions of operating conditions, one needs to analyze these parameters at various
locations in one passage of the rotor-stator. The simulations are carried out on a
passage made of 4 guide vanes and one runner blade from total of 24 guide vanes
and 6 runner blades. This type of passage modeling is common in numerical
simulations of turbines since it reduces computing efforts compared to a full
simulation. The system has an even pitch ratio, and therefore no other considerable
benefits such as understandings of flow physics or the accuracy of the unsteady-
flow prediction could be obtained by using a complete turbine simulation. A cut
plane of the investigated propeller turbine is illustrated in Fig. 6.43 with a passage
slice in the meridional plane marked in dashed line.

Rotor
interface

60  rotor   stator
periodicity

Rotor
blade

Axis

Guide
vanes

Stay
vanes

60
Fig. 6.43 Cut plane of the
propeller turbine: 60� rotor/
stator (Gagnon et al. 2008)
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6.5.3.2 Mesh Connection, Moving Reference Frame, and Moving Mesh

Frozen rotor and Transient Rotor–Stator are the most appropriate methods within
commercial codes. The former involves no physical displacement of the mating
grid but only modification of equations in the moving reference frame. The basic
conservation laws of mass and momentum are modified with additional source
terms.

Transient Rotor–Stator accounts for physical grid displacement of the rotational
domain. At each time step, the grid position is updated according to the rotation
speed that has been specified in the pre-processing step; the flow field variables are
solved in their respective domain.

Several interfaces are used to connect stationary and moving meshes for steady
and unsteady calculations.

First, one estimates mesh performance and torque on the runner blade with a
steady simulation averaging circumferential velocity at the interface (Stage sim-
ulation). Since the effect of circumferential velocity is filtered by the averaging
operation, it is possible to use a partial stator passage with only one guide vane and
one stay vane instead of four.

Other types of simulations are performed using a frozen rotor for steady
calculations and a transient rotor–stator interface for unsteady calculations.
Figure 6.43 shows interface definitions with 60� degrees rotor-stator passage.
Figure 6.44 on the left shows the same interface with a stator pitch angle of 15� in
theazimutal plane for stage calculation.

6.5.3.3 RSI Analysis

Unsteady RSI may be attributed to instantaneous pressure fluctuations. Wakes
building along the boundary layer of stay vanes and guide vanes are the unsteady
elements that need attention.

These flow phenomena are weaker in intensity, appearing as higher harmonics
on the frequency spectrum. Results from the simulation of steady cases using a
Frozen rotor interface are presented for wake interaction. Dissipation of the wake
as well as its vorticity and the velocity profile has been investigated with the
turbulent kinetic energy (Gagnon et al. 2008).

RSI in a 3D model of an axial turbine is analyzed by them. Potential and wake
interactions are detected at multiple locations, and the interface influences on these
interactions is observed.

Figure 6.44 shows a typical case of how velocity profiles in the rotor–stator
passage gradually dissipate. For peak condition, the velocity gradients dissipate up
to 99 % before reaching the blade.
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6.5.4 3D Modeling of RSI in Complete Flow Passage

It becomes necessary to simulate the unsteady flow in a complete turbine to
investigate its rotor stator interaction if non-uniform inflow comes out of a spiral
case and the pitching of guide vane and runner is not evenly distributed.

Typically a Francis turbine has 20–24 tandem cascade channels and 9–13
runner channels. For an accurate solution each channel has to be resolved with
approximately 100,000 nodes. Therefore the unsteady simulation of an entire
Francis turbine can only be carried out on high performance computers in parallel
(Ruprecht et al. 1999, 2000). For example, Lipej et al. (2006) conducted a
numerical analysis of rotor–stator interaction in an entire flow passage of a
reversible pump-turbine. Roclawski and Hellmann (2006) conducted the rotor–
stator-interaction of a radial centrifugal pump.

6.5.4.1 Basic Equations

For hydraulic turbomachinery, the Reynolds averaged Navier–Stokes equations for
an incompressible flow are usually employed. Description of the flow in the Eulerian
coordinates can be applied for unsteady boundary condition problems as well as for
self excited unsteadiness. However, to depict problems with moving geometries in
Eulerian coordinates is difficult. At the moving boundary a Lagrangian description
can be used with great convenience since the fluid particles can be traced with this
method. A combination of these two methods, an Arbitrary Lagrangian Eulerian
(ALE) method can be utilized, which is suitable for problems with moving
boundaries. In the ALE method the chosen reference coordinates can be arbitrary.
In this referential coordinate system the material derivative can be described.
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Fig. 6.44 Meridional velocity profiles along different streamwise stations in the rotor stator
passage (Gagnon et al. 2008)
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The moving velocity of the chosen reference system can be arbitrary. If it is equal
to zero one gets the Eulerian description. On the other hand, if it is equal to the
velocity of the fluid particle, the Lagrangian formulation is obtained. The con-
vective term in the transport equations for scalar quantities changes in the same way
as in the momentum equations. This applies likewise to the turbulence equations.

For industrial applications the k-e turbulence, model is used mostly. This
model, however, is not suitable for unsteady problems, since it does not distinguish
between the resolved unsteady vortex structure and the averaged turbulence.
Improved results can be obtained via multi-scale models which take into account
different vortex scales. Other successful approaches such as filtering techniques
can be applied too. In particular, for problems with self excited unsteadiness, the
use of improved turbulence model is essential.

6.5.4.2 Recent Progress on CFD Simulation for Rotor–Stator
Interaction

Due to their high blade loading, high rotating speed, thick guide vanes, and small
gaps, the interaction between guide vanes and rotor blades in high head pump
turbines is the main source of vibrations. There are also differences in mechanical
conditions between the prototype and the model mounted on the test rig which
makes measurements on prototype necessary as reported by Egusquiza et al.
(2002). Thus, the objective of research should be reliable CFD prediction of the
pressure vibrations originating from RSI combined with a numerical analysis of
the mechanical properties of the prototype. Only then can the response of the
structure to dynamic load be properly predicted.

A CFD method has been set up by Keller and Sallaberger (2006) for numerical
simulation of the dynamic load on a pump turbine runner originating from the
interaction of guide vanes and runner blades. The predicted excitation frequencies
are the superposition of a constant part, three distinct frequencies, and the har-
monics of runner-blade passing frequency.

With a time dependent CFD simulation of spiral casing, entire stator and entire
rotor, it is possible to detect the node shapes of the exciting modes. This was
demonstrated by comparing CFD prediction of the pressure vibrations for two
different pump turbine runners. One has 7 blades and the other has 9 blades
coupling to a 20 guide vanes stator (Keller and Sallaberger 2006).

According to Tanaka (1990) the RSI leads to pressure waves at rotating pres-
sure modes depending on the number of stator channels (zS) and the number of
runner blades (zR): k = M zR ± N zS. While mode 0 represents a standing wave on
a rotating runner system the other modes are rotating at speed nM (nM = nZS/k).
Pressure modes with a negative node number k are counter rotating, and those with
positive mode number are rotating with the runner. In Fig. 6.45, the CFD simu-
lation reveals the exact pressure modes as expected. Thus, if the natural fre-
quencies are known from structural analysis, the CFD simulation allows critical
excitation modes to be identified and further analyzed with respect to their effect
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on the structure. Furthermore, CFD simulation accurately predicts the direction of
the pressure wave propagation which is significant to the vibration behavior of the
whole machine. For example, pressure waves propagating against the runner
rotation into the spiral casing and further upstream can cause undesirable vibra-
tions in the penstock (Keller and Sallaberger 2006).

A time dependent CFD simulation of the runner together with the stationary
components illuminates the major mechanisms of RSI which take place at the
basic frequency (pressure pulsations at rotational speed times the number of the
blades) and its harmonics. Frequency, mode, and amplitude of the pressure
vibration are found to be well represented in CFD when certain standards of grid
density, discretisation scheme (2nd order accurate), time step, computational
domain and boundary conditions are all fulfilled.

6.6 Vibration of Pumps Induced by Hydraulic Excitation

A current trend for developing machines with higher speed, high power density
worsens the fluid/structure interaction problems. Without cavitation, even these
interactions alone can lead to increased wear or at worst, structural failure.

6.6.1 Introduction

Three different categories of flow vibrations can be found, and there are a number
of phenomena within each identified category. They are briefly listed here and
some discussions are quoted from various sources.

Fig. 6.45 Decomposition of the predicted pressure field shows the shape of the excitation mode
(Keller and Sallaberger 2006). a Runner with 7 blades phase angle at 3rd harmonic. b Runner
with 9 blades phase angle at 2nd harmonic
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6.6.1.1 Global Flow Vibrations

Examples of identified vibrations involving large scale vibrations of flow (Brennen
1994) are as follows:

1. Rotating stall or rotating cavitation occurs when a turbomachine is required
operate at a high incidence angle close to the value where the blades may stall.
Often, stalls will be first manifested on a small number of adjacent blades and
this ‘‘stall cell’’ will propagate circumferentially at a fraction of the main
impeller rotation speed. When the machine cavitates, similar phenomenon may
appear, perhaps in some slightly altered form which will be referred to as
‘‘rotating stall with cavitation.’’

2. Surge is manifested in a turbomachine that is required to operate under highly
loaded circumstances where the slope of the head rise/flow rate curve is
positive. It affects the system instability and results in pressure and flow rate
vibrations throughout the system. When cavitation is present the phenomenon
is termed as ‘‘auto-vibration’’ and can occur even for the slope of the head rise/
flow rate curve being negative.

3. Partial cavitation or supercavitation becomes unstable when the length of the
cavity approaches that of the blade so that the cavity collapses in the region of
the trailing edge. Such an occasion can lead to violent vibrations for which the
cavity length oscillates dramatically.

4. Line resonance takes place when one of the blade passing frequencies in a
turbomachine happens to coincide with one of the acoustic modes of the inlet or
discharge line. The pressure vibrations associated with these resonances can
often cause substantial damage.

5. It has been speculated that an axial balance resonance could occur for a tur-
bomachine fitted with a balance piston (note: it is designed to equalize the axial
forces acting on the impeller) if the resonant frequency of the balance piston
coincides with the rotating speed or some blade passing frequency.

6. Cavitation noise can sometimes reach an amplitude value sufficient to generate
resonance at the structural frequencies.

6.6.1.2 Local Flow Vibrations

Vibrations involving more localized flow vibrations are as follows:

1. Blade flutter. Similar to the case of airfoils, an individual blade may begin to
flutter (or diverge) under particular flow conditions (e.g. incidence angle,
velocity), or due to blade stiffness and its supports.

2. Blade excitation due to rotor-stator interaction. A row of stator blades operates
just downstream of a row of impeller blades or vice versa. The wake from the
upstream blades can induce a serious vibration for the downstream blades at a
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blade passing frequency or some multiple values. Non-axisymmetry in the inlet,
the volute, or the housing can also lead to excitation of impeller blades at the
impeller rotation frequency.

3. Blade excitation due to vortex shedding or cavitation vibrations.

6.6.1.3 Radial Forces and Rotordynamic Forces

Global forces perpendicular to the rotational axis can generate several problems:

1. Radial forces are forces perpendicular to rotation axis caused by circumfer-
ential nonuniformities in inlet flow, casing, or volute. While these forces may
be stationary in the frame of the pump housing, the loads acting upon the
impeller may cause severe vibration.

2. Fluid-induced rotordynamic forces occur as the result of the rotation of the
impeller-shaft system. These rotordynamic forces arise from seals, flow through
the impeller, leakage flows, or flows in the bearings. Sometimes these forces
reduce the critical speed of the shaft system, while unexpectedly limiting its
operating range. A fluid-induced rotordynamic problem often occurs at sub-
synchronous frequency.

6.6.1.4 Frequencies of Vibration

For the diagnostics, it is often a good practice to examine the dominant frequencies
and to investigate how they change with rotating speed.

Table 6.3 is a rough guide for those frequencies at which the above problems
may occur. Some of the phenomena may scale with impeller rotating speed, X,

Table 6.3 Typical frequency ranges of pump vibration problems (Brennen 1994)

Vibration category Frequency range

Surge System dependent, 3–10 Hz in compressors
Auto-vibration System dependent, 0.1–0.4X
Rotor rotating stall 0.5–0.7X
Vaneless diffuser stall 0.05–0.25X
Rotating cavitation 1.1–1.2X
Partial cavitation vibration \X
Excessive radial force Some fraction of X
Rotordynamic vibration Fraction of X when critical speed is approached.
Blade passing excitation ZRX/ZCF, ZRX, mZRX (in stator frame)

ZSX/ZCF, ZSX, mZSX (in rotor frame)
Blade flutter Natural frequencies of blade in liquid
Vortex shedding Frequency of vortex shedding
Cavitation noise 1-20 kHz
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while others, such as surge, may vary somewhat with X but not linearly; still
others, like cavitation noise, will be largely independent of X.

Among the frequencies listed in table 6.3, the blade passing frequencies need
further clarification. The numbers of blades on an adjacent rotor and stator are
denoted as ZR and ZS, respectively. In so far as a single stator blade is concerned,
the fundamental blade passage frequency is ZRX since the stator blade will
experience the passage of ZR rotor blades for each revolution of the rotor. Con-
sequently, it will represent the fundamental frequency of blade passage excitation
when the inlet or discharge lines or the static structure is concerned. Corre-
spondingly, ZSX is the fundamental frequency of blade passage excitation when it
is linked with the rotor blades.

Though the phenomenon is periodic, it is not necessarily sinusoidal and thus the
excitation will contain higher harmonics, mZRX and m ZSX where m is an integer.
But more importantly, when integers ZR and ZS have a common factor, say ZCF,
then, in the framework of the stator, a particular pattern of excitation is repeated at
the subharmonic, ZRX/ZCF, of the fundamental, ZRX. Likewise, in the rotor
framework, the structure experiences subharmonic excitation at ZSX/ZCF. These
subharmonic frequencies be a problem more threatening than the fundamental
blade passage frequencies for smaller dampings of fluid and structure.

6.6.2 Rotor–Stator Interaction

The two basic frequencies of RSI: excitation of the stator flow at ZRX and exci-
tation of the rotor flow at ZSX have been thus designated. Apart from superhar-
monics mZRX and mZSX that are generated by nonlinearitis, subharmonics can also
occur. They can cause major problems, since the fluid and structural damping is
smaller for these lower frequencies. To avoid such subharmonics, turbomachines
are usually designed with blade numbers ZR and ZS which have small common
integer factors.

6.6.2.1 Flow Patterns of Rotor–Stator Interaction

Flow perturbations caused by blade passage excitation are illustrated by Miyagawa
et al. (1992) in their observations of flows in high head pump turbines. Figure 6.46
shows two diametrically opposite perturbation cells propagating around at 9 times
the impeller rotating speed.

6.6.2.2 RSI Forces

When one rotor (or stator) blade passes through the wake of an upstream stator (or
rotor) blade, it will clearly experience a fluctuation of fluid forces that act upon it.
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In this section, the nature and magnitude of these RSI forces will be explored.
Experience has shown that these unsteady forces are a strong function of the gap
between locus of the trailing edge of the upstream blade and locus of the leading
edge of the downstream blade. This distance will be termed ‘‘interblade spacing’’
and denoted by cb.

Arndt et al. (1989, 1990) have made measurements of the unsteady pressures
and forces that appear in a radial flow machine when an impeller blade passes a
diffuser blade. Figure 6.47 presents instantaneous pressure distributions (ensem-
ble-averaged over many revolutions) for two particular relative positions of the
impeller and diffuser blades.

In the graph, the trailing edge of the impeller blade has just passed the leading
edge of the diffuser blade, resulting in a large perturbation in pressure on the
suction surface of the diffuser blade. Indeed, in this example, pressure over a small
region has fallen below the impeller inlet pressure (Cp \ 0). The lower graph is
the pressure distribution at a later time when the impeller blade is about half-way
to the next diffuser blade. Perturbation in the diffuser blade pressure distribution
has largely dissipated. Closer examination of the data suggests that the perturba-
tion takes the form of a wave of negative pressure traveling along the suction
surface of the diffuser blade and attenuated as it propagates. That observation
along with others suggest that the cause is a vortex shed from the leading edge of
the diffuser blade by the passage of trailing edge of the impeller. The vortex is then
convected along the suction surface of the diffuser blade.

0.038REV0REV. 0.077REV.

0.147REV .0.128REV.0.090REV .

Fig. 6.46 Propagation of a low pressure region (hatched) at nine times the impeller rotational
speed through a high head pump-turbine. The sketches show six instants in time equally spaced
within one-sixth of a revolution (by Miyagawa et al. 1992)
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6.6.2.3 Rotor-Volute Interaction in Centrifugal Pump

Conventional centrifugal pumps with vaneless volute casing usually present the
fluid-dynamic interaction between the rotor and the stator associated with the blade
passage frequency, which is responsible for a dynamic load on the machine and for
noise generation (Brennen 1994). This excitation is originated from non-uniform
profile of the flow exiting the impeller, with a jet-wake pattern behind the trailing
edge of the blades, which, at the volute, is perceived as a flow with a fluctuating
component. For a given pump, magnitude of the excitation is largely dependent on
the point of operation, with increasing amplitudes when separating from the best
efficiency flow-rate (Parrondo et al. 2002; Blanco et al. 2006). For different pumps,
the excitation depends on the geometry of the region where distance between
impeller and volute is small, including both tongue shape and, especially, the blade-
to-tongue gap (Dong et al. 1997; Morgenroth and Weaver 1998).

González et al. (2006) observed that reducing the gap from 15.8 to 10 % of the
impeller radius for a pump with a specific speed of 0.48 led to a 50 % increase in
the maximum pressure amplitude at off design conditions. Eventually the ampli-
tude of the vibration response of the pumps can exceed the maximum values
allowed by specific regulations. Therefore, it is of use to predict in predicting the
fluid-dynamic load on the machine at the design stage, especially for large units.

A study on fluctuations of the blade passing frequency has been presented by
Blanco et al. (2006), in which they defined fbp = fn Zb with fn being rotating
frequency and Zb blade number. The fluctuations induced in the flow field inside a
conventional centrifugal pump with a single vaneless volute equipped with dif-
ferent external diameter impellers (190, 200, 210 and 215 mm) are investigated by
experiments and numerical simulation.
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The results, as shown in Fig. 6.48, indicate that unsteady phenomena at the
blade-passage frequency clearly depend on the value of the impeller-tongue gap.
Figure 6.48 exhibits the variation of the normalized amplitude of maximum
unsteady total force, Fmax/(0.5qU22pD2), where D2 and U2 are the diameter and
the rotating velocity at the impeller exit, with respect to the relative flow rate Q/Qn

(Qn is flow rate at the rated point of pump). For most of the flow-rates and
impellers, maximum value of this force increases when the impeller-tongue gap
diminishes. For a given impeller, the maximum value of the force reaches its
minimum at design flow-rate and increases for both low and high flow-rates. In
fact, the force is particularly high at low flow rates.

A variation in this gap from 23.2 to 17 % (i.e. 190–200 mm impeller) produces
an increment of about 15 % in the maximum amplitude of the pressure pulsations
and 50 % in the unsteady total force. When this gap is further reduced from 23.2 to
11.4 % (i.e. 190–210 mm impeller), the increments of maximum amplitude and
total force rise to 40 and 80 % respectively. Another reduction from 23.2 to 8.8 %
(i.e. 190–215 mm impeller) brings an increment of 60 and 100 % respectively.

Figure 6.49 shows the normalized amplitude of the driving torque MA/
(0.5qU2

2pD2
2b2) at the blade passing frequency for each impeller, where b2 is the

impeller exit width.
The effects of the flow-rate and the impeller diameter on the driving torque

fluctuations are very much the same as the blade-passing frequency forces. This
indicates that the minimum torque fluctuations occur at design flow-rate with
linear growth of the amplitude for either increasing or decreasing the flow rate
from design flow-rate. Such growths become greater in the case of smaller blade-
to-tongue gap. In the most critical case (215 mm impeller at 20 % of the nominal
flow-rate) amplitude of the torque fluctuation represents about 4 % of the sta-
tionary driving torque.
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6.6.3 Steady Radial Forces

The flow through a pump can frequently be nonaxisymmetric and the resultant
mean radial force can be significant. The nonaxisymmetries and hence the radial
forces depend upon the geometry of the diffuser and/or volute as well as the flow
coefficient. Measurements of radial forces have been made with a number of
different impeller/diffuser/volute combinations. Stepanoff (1957) proposed an
empirical formula for this nondimensional radial force:

jF0j ¼ ðF2
0x þ F2

0yÞ 1=2 ¼ 0:229 w f1� ðQ=QDÞ2g ð6:82Þ

for centrifugal pumps with spiral volutes, and

F0j j ¼ 0:229 w Q=QD ð6:83Þ

for collectors with uniform cross-sectional area. Here, w is the head coefficient.
Both formulae yield radial forces that have the correct order of magnitude;
however, measurements show that other geometric features of the impeller and its
casing would also affect the forces.

Some typical nondimensional radial forces obtained experimentally by Cha-
mieh et al. (1985) for an impeller and volute combination are shown in Fig. 6.50
with a range of speeds and flow coefficients. As anticipated in nondimensional-
ization, the radial forces increase scale with the square of impeller speed. It implies
that, at least within the range of rotational speeds used for these experiments, the
Reynolds number should be considered as the ‘‘design’’ objective in a way that the
volute being well matched to the impeller appears to be satisfied at a flow coef-
ficient, u2, of 0.092 where magnitude of the radial force appears to vanish. Other
radial force data have also been presented (see Brennen 1994).
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Further information on the variation of the radial forces in different types of
pump is available. Figure 6.51 taken from KSB (1975) shows how F0/w may vary
with specific speed and flow rate in a class of volute pumps. Magnitudes of the
forces shown in this figure are large.
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The leakage flow from impeller discharge (between the impeller shroud and the
pump casing) back to the pump inlet does make a significant contribution to radial
force.

Measurements indicate that, in the absence of the rings, nonuniformity in
impeller discharge pressure causes significant nonuniformity in the pressure of the
leakage annulus which results in a remarkable contribution to the radial force. This
is not the case once the rings are installed because the rings will effectively isolate
the leakage annulus from the impeller discharge nonuniformity. However, a com-
pensating mechanism exists that balances the total radial force in these two cases.

The increased leakage flow without the rings tends to relieve some of the
pressure nonuniformity in the impeller discharge, thus reducing the contribution
from the impeller discharge pressure distribution.

A number of other theoretical models are found in the literature. Most of them
are based on modeling the impeller with a source/vortex in the volute. The results
obtained from these potential flow models deviate too much from real flows to be
of much applicability.

The principal focus of this section is on radial forces caused by circumferential
nonuniformity in discharge conditions. It must be pointed out that nonuniformities
in inlet flow due to, for example, bends in suction piping are also likely to generate
radial forces. As yet, such forces have not been investigated. Moreover, it seems
reasonable to suggest that inlet distortion forces are more important in axial
inducers or pumps than in centrifugal pumps.

6.6.4 Rotating Stall

Rotating stall is a phenomenon which may occur in a cascade of blades when they
are required to operate at a high angle of incidence close to the stall point. In a
pump, that usually implies the flow rate is reduced to a point close to and below
the maximum of the head characteristic.

Figure 6.52 shows the flow patterns in a centrifugal pump at different flow
rates. When the flow rate is reduced, the meridian component of relative velocity
wm also decreases. With these reduced flow rates the angle of attack rises and the
stagnation point is displaced to the pressure side of the blade. When the attack
angle is oversized, flow on the suction side will detach and stall emerges
(Fig. 6.52b). The static pressure inside the stall region is smaller than in the
surrounding flow, therefore vortices can form with the same rotating direction as
the impeller. In the outlet of the channel a second vortex can form with an opposite
rotational direction (channel 2 in Fig. 6.52c). These vortices would increase in size
until the whole channel is blocked. Then, the medium has to pass through the
following channel (channel 3 in Fig. 6.52c) which leads once more to a dis-
placement of the stagnation point, this time in channel 3, and a new stall cell will
form in this channel. On the other hand, flow in channel 1 will reattach and thus
flow conditions in this channel will be better once again. It is possible that more
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than one stall cell exists in the impeller. With this mechanism, stall cells can turn
around the impeller, because this angular velocity of the cell stalling is lower than
the impeller angular velocity. As a result the stall cell rotates in the impeller
against the rotational direction of the impeller. This description of the rotating stall
phenomenon was first published by Emmons et al. (1959).

Though rotating stall can occur in any turbomachine, it is most often observed
and most widely studied in compressors with large numbers of blades.

Murai (1968) observed and investigated the phenomenon in a typical axial flow
pump. The data on the rotating speed of the stall cell are reproduced in Fig. 6.53
where the onset of the rotating stall phenomenon occurs when the flow rate is
reduced below the maximum of the head characteristic. It is also noticed that the
velocities of the stall cell propagation have values typically between 0.45 and 0.6 of
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Fig. 6.52 Flow pattern in centrifugal pump at different flow rate (Emmons et al. 1959). a At
design point, b Flow at partial flow rate, c Rotating stall of centrifugal pump
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the rotating speed. Rotating stall has not, however, been reported in pumps with
small number of blades perhaps because the diffusion factor Df will not approach
0.6 for typical axial pumps or inducers with small number of blades. Df is defined as

Df ¼ 1� w2

w1
þ vh2 � vh1

2sw1

where w is the relative velocity in the pump impeller; v is the absolute velocity; s is
the solidity of the impeller blade cascade, and the subscripts h is peripheral
direction, 1 and 2 are the inlet and outlet of the impeller respectively.

Most of the stability theories are established on actuator disc models of the rotor
in which the stall cell is assumed to be much longer than the distance between the
blades. Such an assumption would not be appropriate in an axial flow pump with
three or four blades.

Murai (1968) also examined the effect of limited cavitation on the rotating stall
phenomenon and observed that the cavitation did cause some alteration in prop-
agation speed as shown in Fig. 6.53. It is, however, important to have an insight
view of this phenomenon (i.e. rotating cavitation) appearing at the points of the
head-flow characteristics where the slop is negative and otherwise the operation
would have been stable (i.e. without rotating stall) if there were no cavitation. For
centrifugal pumps, there have been a number of studies showing rotating stall
either in the impeller or in the diffuser/volute.

Perhaps the most detailed study is the work done by Yoshida et al. (1991) on a
7-bladed centrifugal impeller operating with a variety of diffusers, with and
without vanes. Rotating stall with a single cell was observed in the impeller below
certain critical flow coefficients, subject to the diffuser geometry. In the absence of
a diffuser, cell speed was about 80–90 % of the impeller rotating speed. With
diffuser vanes, this cell speed was reduced to the range 50–80 %. When impeller
rotating stall was present, they also detected some propagating disturbances with 2,
3, and 4 cells rather than one. These were probably due to nonlinearities and an
interaction with blade passage excitation. Rotating stall was also seen in the vaned
diffuser at a speed less than 10 % of the impeller speed. It was most evident when
the clearance between impeller and diffuser vanes was large. As this clearance
decreased, the diffuser rotating stall tended to disappear.

The rotating stall may resonate with an acoustic mode of the inlet or discharge
piping to produce a serious pulsation problem. Dussourd (1968) identified such a
problem in a boiler feed system where the rotating stall frequency was in the range
0.15 ? 0.25X, much lower than usual.

Recently, many 3D turbulent simulations and velocity distribution measure-
ments have been done by means of particle image velocimetry (PIV) to study the
flow pattern in centrifugal pumps.

Krause et al. (2005) applied the time resolved PIV to the investigation of
rotating stall in a radial pump, obtaining good results of velocity distribution in the
impeller blade channels under both stationary and rotational stalls. For part-load

218 6 Vibration Induced by Hydraulic Excitation



flow with standing stall, they found that the static pressure difference decreased
slightly below Q/Qo = 0.6 towards lower flow rates.

Due to the fact that in this part of characteristic curve a stall cell in two channels
of the impeller appeared. The standing stall is subject to blade geometry which was
not perfectly rotationally symmetric. The stall cells rotated in the impeller if the
flow rate was reduced below 40 % of the design rate. In their study, a stall cycle
within a channel was presented where the length of the cycle corresponded to
nearly 7 rotations of the impeller.

For numerical simulation, Guleren and Pinarbasi (2004) conducted a simulation
of stalled flow within a vaned centrifugal pump. Sano et al. (2002) treaded the flow
instabilities in a vane diffuser of a centrifugal pump by CFD. A commercial code
with the standard k-e turbulence model was used for their work. It was found that
the flow instabilities in the vane diffuser, i.e., rotating stall, alternate blade stall,
and asymmetric stall, could be simulated. From the numerical and experimental
results and discussions, the following conclusions can be drawn:

The flow instabilities in vane diffuser, such as the rotating stall, alternate blade
stall, and asymmetric stall, occur in the range with negative slope of the diffuser
pressure performance.

As clearance between the impeller and the diffuser increases, it is more sus-
ceptible to the occurrence of diffuser rotating stall owing to the decoupling of
impeller/diffuser flow.

In cases of smaller clearance, the impeller/diffuser coupled rotating stall is
observed at low flow rate. For wider clearance with smaller interaction between
the impeller and diffuser, the impeller rotating stall appears independently from the
diffuser rotating stall at low flow rate.

The switching between the reverse flow and jet flow in diffuser channel is
observed under the rotating stall condition through CFD and experiments.

6.6.5 Cavitation Instabilities

Inducers or impellers of pumps that do not show any sign of rotating stall while
operating under noncavitating conditions may exhibit a similar looks-like phe-
nomenon known as ‘‘rotating cavitation’’ when they are required to operate at low
cavitation numbers.

Rotating stall emerges at locations on the head-flow characteristics where the
slope of this head/flow characteristic is usually positive and therefore it is unstable
in a way that will be discussed in the next section. On the other hand, rotating
cavitation is observed at locations where this slope is negative. Consequently, the
dynamics of the cavitation are essential to rotating cavitation. Another difference
between these two phenomena lies in their propagating speeds.
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6.6.5.1 Rotating Cavitation

Extensive studies on the unsteadiness of cavitation (Brennen and Acosta 1976;
Brennen 1982; Tsujimoto 2006) have been made in association with the POGO
instability (Brennen 1994). From the viewpoint of the system including turbo-
pump, the vibration is one-dimensional with disturbances in phase for all blades.
The unsteady cavitation characteristics can be represented by a transfer matrix,
which correlates to flow rate and pressure fluctuations at the pump inlet and
discharge. Even without coupling with the structural mode, cavitating turbo-pump
systems may suffer from one-dimensional system instability called cavitation
surge. Apart from these system instabilities, modern turbo-pumps are also suf-
fering from local two-dimensional instabilities such as rotating cavitation.

1. Rotating cavitation in 3-bladed inducers
The characteristics of rotating cavitation in 3-bladed inducers at the design flow
coefficient were presented by Tsujimoto (2006):

(a) The rotating cavitation is observed at the design flow rate, which is quite
different from rotating stall that occurs at partial flow rate.

(b) The rotation coefficient Cs of the force vector is larger than 1, which means
that the cavitating region rotates faster than the impeller. This is also dif-
ferent from rotating stall in which the stalled region rotates slower than the
impeller.

(c) As cavitation number r decreases, radial force CR suddenly increases at a
certain cavitation number r. There, the rotation coefficient is
Cs � 1:05 [ 1, and then it decreases to 1 with further decrease in r.

(d) In a certain range of cavitation number (0.035 \ r\ 0.050) radial force
rotates fixed to the rotor and sometimes wanders at random. This is called
attached asymmetric cavitation.
The radial force drops when the head starts to decrease steeply (this is
called ‘‘head breakdown’’). This drop in force indicates that the rotating
cavitation occurs in a range just above the head breakdown cavitation
number. The small head decrease under the occurrence of rotating cavi-
tation and the attached asymmetric cavitation are the aftermath of those
instabilities.

2. Rotating cavitation in 4-bladed inducers
To study the cavitation instabilities in a 4-bladed inducer, Tsujimoto et al.
(1997) conducted water and liquid hydrogen tests with the VULCAIN liquid
hydrogen turbo-pump inducer. His team reported that no significant depen-
dence on rotational speed was found in the tests. In Fig. 6.54, r and r0 are the
cavitation number and reference cavitation number; f and f0 are the frequency
of the pressure fluctuation and the rotational frequency of the impeller; and Fr

and Fr0 are the radial forces under cavitating and non-cavitating conditions.
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(a) At a sufficiently large cavitation number with r/r0 = 1.477, equal cavity
appears on each blade and the frequency of the pressure fluctuation is the
same as the blade passing frequency.

(b) At r/r0 = 1.055, alternate blade cavitation appears with stable and bal-
anced pattern, generating a pressure fluctuation of f/f0 = 2.0.

(c) At r/r0 = 0.738, rotating cavitation with unbalanced geometry emerges.
The frequency of pressure fluctuation is slightly higher than the rotational
frequency. Radial force is 3–5 times that under non-cavitating conditions.

(d) At r/r0 = 0.423, one of the following two modes occurs. One is the
unbalanced pattern of pressure fluctuation fixed to the impeller; the other is
balanced equal cavitation of f/f0 = 1.0.

(e) At r/r0 = 0.336, stable and balanced flow with fully developed cavitation
occurs at the beginning of the inducer head drop.

The frequency ratio f/f0 of the rotating cavitation is summarized in Fig. 6.54.
The range of frequency and its dependence on the cavitation number are the same
in all cases. If the test results in water are compared between the three and the four
bladed inducers, it can be discovered that the onset cavitation number shifts to
lower values on four bladed inducer because of the alternate blade cavitation. In
the LH2 test, the occurrence region alters to an even smaller cavitation number
owing to the thermal effect.

6.6.5.2 One-Dimensional Stability Analysis

Cavitation instabilities in inducers can be categorized into two types, i.e. cavitation
surge and rotating cavitation, although there are various higher order modes.
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Cavitation surge is a system instability in which the flow rate of the hydraulic
system fluctuates in-phase with cavity fluctuations on each blade. Rotating cavi-
tation is a local cavitation instability in which the cavities propagate from blade to
blade in the same way as a rotating stall. Typically, for rotating cavitation, the
cavitating region rotates faster than the impeller whereas for rotating stall the
stalled region rotates slower than the impeller.

Rotating cavitation, as well as cavitation surge, can be treated under the
assumption that cavity volume Vc is a function of the cavitation number r1 and the
local incidence angle to the blade a1. The cavitation number is defined as
r1 = (p1 - pv)/(0.5qW1

2), where p1 is inlet pressure; pv is vapor pressure; q is
liquid density; and W1 is inlet relative velocity. The cavity volume is normalized
by the blade spacing

a r1; a1ð Þ ¼ Vc

�

h2: ð6:84Þ

The mass flow gain factor M and cavitation compliance K are defined as

M ¼ oQ

oa1
and K ¼ oa

or1
: ð6:85Þ

Since the cavity volume will grow if the incidence angle is increased or the inlet
pressure is decreased, both mass flow gain factor and cavitation compliance should
have positive values. These parameters are introduced and evaluated from quasi-
steady calculations of blade surface cavitation. Extensive experiments have been
carried out and the results are reported.

One-dimensional linear stability analyses are possible for surge, rotating stall,
cavitation surge, and rotating cavitation (Tsujimoto 2006). Consider a system
composed of an inlet conduit, an impeller cascade with infinite number of blades, a
downstream tank, and an exit valve as shown in Fig. 6.55.

The velocity triangle at the inlet of the impeller is plotted in Fig. 6.56. For one-
dimensional instabilities of surge and cavitation surge, an axial velocity distur-
bance in a finite length upstream pipe is considered. For two-dimensional insta-
bilities of rotating stall and rotating cavitation, a two-dimensional sinusoidal
potential flow disturbance is assumed to be upstream of the impeller. In both cases
pressure fluctuation at the inlet of the impeller can be correlated with the axial flow
velocity disturbance via the momentum equation of the inlet flow.
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This is why one-dimensional stability analysis is also viable for two-dimen-
sional instabilities such as rotating stall and rotating cavitation. The pressure
increase in the impeller can be obtained if the flow in the impeller is perfectly
guided by blades. To simulate surge and rotating stall, one could bring two types
of losses into scope: an incidence loss proportional to the loss coefficient 1S and
square of the incidence velocity DV at the inlet, and a through flow loss propor-
tional to the loss coefficient 1Q and square of the relative flow velocity Ws through
the impeller flow channel.

The effect of cavitation is taken into account in continuous relation to the
impeller through the representation of the cavitation characteristics M and K. If
one expresses axial velocity disturbance at the inlet and the outlet of the impeller
by o u1 and o u2 and represents the cavity volume per blade by Vc, the continuity
equation across the impeller can be written using Vc:

h ou2 � ou1ð Þ ¼ o

ot
oVc: ð6:86Þ

If the cavity volume is a function of cavitation number r1 and incidence angle
a, the cavity volume fluctuation can be expressed as

oVc ¼ h2 Mda1 � Kdr1ð Þ: ð6:87Þ

Here, the mass flow gain factor M and the cavitation compliance K are defined
in Eq. (6.85). The effect of cavitation on pressure performance of the impeller is
neglected since most of the cavitation instabilities occur in a range where the
pressure performance is not affected by cavitation.

6.6.5.3 Surge, Rotating Stall, Cavitation Surge, and Rotating
Cavitation

To obtain simple expressions of onset conditions and frequencies of surge, rotating
stall, cavitation surge, and rotation cavitation, various assumptions (simplification)
are made for each unstable occasion. For cavitation surge and rotating cavitation, it
is assumed that the downstream flow rate fluctuation does not occur. This is a good
approximation for typical inducers with a smaller blade angle. For surge, flow
from the rotor is considered to be discharged to a surge tank followed by an exit
valve. For rotating stall, one could assume that flow from the impeller is
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discharged directly to a space of constant pressure. By writing down relations
connecting the flow disturbances in upstream and downstream of the impeller, one
obtains a set of linear equations in terms of fluctuation amplitudes. From the
coefficient matrix of the linear equations, a polynomial characteristic equation is
acquired in terms of a complex frequency whose real part represents the frequency
and the imaginary part is the damping rate of possible instability mode.

The onset conditions and the frequencies obtained with characteristic equations
are summarized in Table 6.4, where wst = (p2 - p1t)/(qUT

2) is the total static
pressure coefficient from inlet to outlet of the impeller; / ¼ U=UT is the flow
coefficient, with mean axial velocity U and circumferential velocity UT of the
impeller; b* is the mean blade angle measured from axial direction; l is the chord
length of blades; L is the length of inlet conduit; R is the resistance of exit valve;

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

qC=L
p

UT is called Greitzer’s B factor with the compliance of a tank placed
downstream of the impeller C = V/(qa2f) for liquids or C = A/(qgf) for gas; V is
the volume of the tank; a is the speed of sound; f is the cross-sectional area of the
inlet pipe; A is the free surface area of the surge tank; and g is the gravitational
acceleration constant; Lu is an impeller loss coefficient; b2* is the blade outlet
angle; s is the circumferential wavelength of the disturbance; �b1 is the mean flow
angle at the inlet; u* is the incidence free flow coefficient; Vp is the propagation
velocities of rotating stall and rotating cavitation observed in a stationary frame;
and n is the frequencies of surge and cavitation surge.

Results shown in Table 6.4 demonstrate the following characteristics:

1. Both surge and rotating stall occur at small flow rates with a positive slope of
wts - u performance. Under this condition, the head produced by rotor will
increase if the flow rate is increased, which accelerates the flow and results in a
further increase in flow rate. The positive feedback is the source of surge and
rotating stall.

2. Both cavitation surge and rotating cavitation occur when M [ 2 1þ r1ð Þ/K.
3. The frequency of surge is basically identical to n ¼ 1= 2p

ffiffiffiffiffiffiffiffiffi

qCL
p

ð Þ, the natural
frequency of a Helmholtz resonator composed of a tank with compliance C and
an inlet pipe with the length L, and is not determined by impeller speed.

Table 6.4 Onset condition and frequency of instabilities in turbo-pump (Tsujimoto 2006)

Instability Onset condition Frequency

Surge owts
o/ [ 1þð1=cos b�Þðl=LÞ

B2/R n ¼ 1
2p

1
ffiffiffiffiffiffiffiffiffi

qCL
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðl=RÞ Lu þ ðl
�

cos2 b�2Þ
� �

1þ ð1
�

cos b�Þl=s
� �

s

Rotating stall owts
o/ [ 0 VP

UT
¼ 1� 21S 1�ð/=/�Þ½ �

1þð2p=cos b�Þl=s
\1

Cavitation surge M [ 2ð1þ rÞ/K n ¼ UT
2p

1
sin b1

1
ffiffiffiffiffiffiffiffi

2KLh
p

Rotating cavitation M [ 2ð1þ rÞ/K VP
UT

[ 1; VP
UT

\0
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4. The frequency of cavitation surge is proportional to impeller speed UT and
inversely proportional to the square root of L and K. This shows that the
cavitation surge is an vibration of upstream fluid associated with the compli-
ance of cavitation in the impeller.

5. The propagation velocity ratio defined as V for rotating stall is less than 1,
suggesting that the stalled region rotates slower than the impeller.

6. Two modes of rotating cavitation are predicted. One rotates faster than the
impeller and this mode is generally observed in experiments (Tsujimoto et al.
1997). The other mode rotates slower than the impeller and is occasionally
observed as a mode rotating in the opposite direction of the impeller, which will
be discussed in the following section.

The criterion M [ 2 1þ r1ð Þ/K for the onset of cavitation surge and rotating
cavitation illuminates the importance of positive mass flow gain factor which
implies that the cavity volume decreases as the flow rate increases. The mechanism
of instability can be explained as follows. When flow rate rises, the angle of attack
to a rotor blade is decreased. If the value of the mass flow gain factor is positive,
the cavity volume will also decrease according to the definition of mass flow gain
factor. After that, the inflow to the rotor will grow to fill up the space occupied by
the cavity volume decreased. Thus, the increase of flow rate results in further
increase of flow rate. This mechanism of instability totally depends on the conti-
nuity relation and is not associated with impeller performance. Actually, both the
rotating cavitation and cavitation surge happen at a higher inlet pressure where the
performance degradation due to cavitation is insignificant.

On the contrary, positive cavitation compliance has an effect to suppress
instabilities: When inlet flow rate goes up, inlet pressure will decrease due to the
Bernoulli effects and the cavity volume will increase if K [ 0, leading to the
decrease of inlet flow rate. So, K [ 0 provides negative feedback that stabilizes the
system. The onset condition of cavitation surge and rotating cavitation does not
depend on the steady wts - u performance and they may occur even at design flow
rate. It makes the cavitation instabilities more serious than surge and rotating stall
that occur at off design points. The mechanism of instabilities in turbo-machinery
is summarized in Table 6.5.

In order to study the relation between rotating stall and rotating cavitation, a
stability analysis is established on the assumption that the two-dimensional flow
extends to upstream and downstream infinity. The flow downstream is composed
of a potential flow disturbance and a vertical flow disturbance due to a vorticity
shed from the impeller caused by unsteadiness of the flow. The mass continuity
and pressure rise relations across the cascade result in a third order characteristic
equation of the non-dimensional frequency k* whose real part k�R gives the prop-
agation velocity ratio Vp/Ur and the imaginary part gives the damping rate k�I :

k� � k�1
� �

k� � k�2
� �

k� � k�3
� �

¼ 0 ð6:88Þ
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The examination of these three roots of Eq. (6.88) has been done for an inducer
tested by Kamijo et al. (Tsujimoto 2006).

6.6.5.4 2-D Flow Stability Analysis

The stability analysis of a two-dimensional cavitating flow using a closed model of
blade surface cavitation is presented here.

A cascade shown in Fig. 6.57 is considered. For simplicity, it is assumed that
the downstream conduit length is infinite and no velocity fluctuation is involved.
The upstream conduit length is finite L in the x-direction and connected to a space
with a constant (static total) pressure at the inlet AB.

Small disturbances with time dependence eixt are assumed, where x = xR +
ixI is the complex frequency with xR being the frequency and xI being the
damping rate.

The velocity disturbance is represented by a source distribution on the cavity
region q(s1), vortex distributions c1(s1) and c2(s2) on the blades, and the free vortex
distribution c1(n) downstream of the blades shedding from the blades associated

Table 6.5 Mechanisms of instabilities in turbo-machinery (Tsujimoto 2006)

Performances Mechanisms of instabilities

Flow rate is increased Incidence angle is decreased
Loss is decreased
Pump head is increased

M ¼ oVc=oa [ 0

Cavity volume is decreased (Continuity) ow=o/ [ 0 (Performances)

Flow rate is increased further

Upstream flow rate is increased
Further to fill up the space
Occupied by cavity

Surge and rotating stall Cavitation surge and rotating surge
Occurs at partial flow Occurs also for design point
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with the blade circulation fluctuation. The strength of these singularities and the
cavity length are divided into steady and unsteady components, and the velocity is
expressed with steady uniform velocity (U, Ua), the steady disturbance (us, vs), and
the unsteady disturbance ~u;~vð Þ. It is also assumed that a� 1; ~uj j; ~vj j �
usj j; vsj j � U and the order small terms of higher are neglected.

The boundary conditions are:

1. The pressure on the cavity should be vapor pressure.
2. The normal velocity on the wetted blade surface should vanish.
3. The cavity should close at the (moving) cavity trailing edge (i.e. the closed

cavity model).
4. The pressure difference across the blades should vanish at the blade trailing

edge (Kutta’s condition).
5. Total pressure along AB is assumed to be constant and the downstream velocity

fluctuation to be zero.

After designating the strength of singularity distributions at discrete points on
the coordinates fixed to fluctuating cavity is set as unknowns, they can be sepa-
rated into steady and unsteady components. The use of the steady boundary
conditions result in a set of non-homogeneous linear equations that show the
steady cavity length ls (normalized by blade spacing h) is a function of r/2a. On
the other hand, the unsteady component of the boundary conditions would make a
set of homogeneous linear equations. For non-trivial solutions, the determinant of
the coefficient matrix should be zero. Since the coefficient matrix is a function of
the steady cavity length and the complex frequency, the complex frequency
x = xR + ixI can be determined from this relation as a function of the steady
cavity length hs/l, or equivalently of r/2a. The frequency xR and the damping rate
xI, as well as possible modes of instability, depend only on the steady cavity
length hs/l, or equivalently on r/2a, for given geometry and flow conditions.
Results of this stability analysis are referred to Tsujimoto (2006). The following
remarks could be drawn:

One-dimensional stability analysis states that the onset condition of cavitation
surge and rotating cavitation can be represented by M [ 2 1þ r1ð Þ/K and is
independent of the pressure rise performance of the impeller. It implies that
cavitation instabilities may occur at the design flow coefficient. The frequency of
cavitation surge is proportional to rotational frequency of the rotor. Rotating
cavitation has a mode that rotates faster than impeller rotation.

The two-dimensional cavitating flow analysis on a closed cavity model exhibits
that cavitation instability depends on the steady cavity length, ls/h or equivalently
on r=2a. Various modes of cavitation instabilities start to form when the steady
cavity length becomes larger than 65 % of the blade spacing, owing to the
interaction of local flow near the cavity closure with the leading edge of the
adjacent blade. Apart from alternate blade cavitation, cavitation surge, and rotating
cavitation, and various higher order modes are predicted.
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Although real inducer flows are far more complicated with three-dimensional
cavities such as tip leakage and backflow cavitation, the two-dimensional flow
stability analysis predicts cavitation instabilities surprisingly well if applied at the
blade tip. However, in real engineering, the problem is to identify whether or not
the predicted modes actually would occur for certain geometry. To fulfill this
requirement, one needs to incorporate the effects of 3D cavitation in the stability
analysis.

Another instability is rotating choke caused by the positive slope of the per-
formance owing to the blockage effect of cavitation. It could be predicted with a
waked cavity model, for details see (Tsujimoto 2006).
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Part III
Hydrodynamic and Structural Analysis



Chapter 7
Prediction of Pressure Fluctuation
by Turbulent Flow Analysis

Flows in pumps or hydraulic turbines are unsteady due to the system rotation, flow
instabilities and mutual interactions between rotating and stationary parts. Flow
instabilities are mostly viscous phenomena such as boundary layer transition and
vortex shedding that produce small amplitude pressure fluctuations at relatively
low frequencies. The flow caused unsteadiness is important because it leads to
fluctuation of power output and affects efficiency. Interaction between runner
blades and guide vanes produces pressure fluctuations of relatively high frequency
and large amplitude. This phenomenon is more closely related to compressibility
than viscosity. It is important because it may cause structural vibration and noise.

In the field of hydraulic machinery, Computational Fluid Dynamics (CFD) is
widely used today in research and development as well as in daily design. Since
many problems in turbomachinery arise from unsteady flows, unsteady flow
analyzes play an essential role in gaining information about solutions to the
problems.

Due to the interactions between stationary guide vanes and rotating runners, the
flow in turbo-machines is unsteady and highly turbulent. Investigation of these
phenomena requires transient simulations and special numerical treatments to the
interface between the components. The flow modeling of the machine is com-
plicated because of the fact that the stator and runner have different numbers of
blades. This difference restricts the use of geometrical periodicity with simulations
so as to the entire region of stator and runner has to be simulated. It requires such
an enormous computational effort in terms of memory and CPU time that only
modern high performance computers can do the job.

In this chapter, simulation of unsteady turbulent flows through the entire turbine
or pump, that is, from the inlet of the machine to the outlet as a whole calculation
domain, will be considered in prediction of the pressure fluctuations in hydraulic
machinery.

Y. Wu et al., Vibration of Hydraulic Machinery,
Mechanisms and Machine Science 11, DOI: 10.1007/978-94-007-6422-4_7,
� Springer Science+Business Media Dordrecht 2013
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7.1 Principle of Prediction for Pressure Fluctuation

In hydraulic machinery, many problems arise from dynamical effects such as
vibrations. Dynamic forces cannot be obtained from steady state analysis. Mea-
suring dynamic forces requires complicated instruments and skills. Numerical
simulation has thus become a desirable method. For this purpose an unsteady flow
calculation including the stator-rotor interaction as mentioned before is essential.
For demonstration, in this chapter, a turbine consisting of spiral case, stay vanes,
guide vanes, runner, and draft tube will be considered.

7.1.1 The Multiple Reference Frame Model

In contrast of flows in a stationary (or inertial) reference frame, moving parts (such
as rotating blades, impellers, and similar types of moving surfaces) in hydraulic
machinery have made flow problems unsteady most of the time when viewed from
a stationary frame. While a reference frame moving with the moving (rotating)
part will make the flow around the moving part a steady problem.

However, the moving (non-inertial reference system) equations of motion need
to be modified to incorporate the additional acceleration terms to the transfor-
mation from stationary to moving reference frame. By solving these equations in a
steady-state manner, one can model the flow around the moving parts. For simple
problems, it may be possible to refer the entire computational domain to a single
moving reference frame, known as the single reference frame (SRF) approach.

For more complex geometries, one must split up the problem into multiple cells
zones, with well-defined interfaces between the zones. The manner in which the
interfaces are treated leads to two approximates, steady state modeling method-
including the multiple reference frame (MRF) approach and the mixing plane
approach, and the dynamic approach.

If unsteady interaction between stationary and moving parts is important, one
can employ the Sliding Mesh approach to capture transient behavior of the flow.

7.1.1.1 Flow in a Rotating Reference Frame

One can run an unsteady simulation in a moving reference frame at constant
rotational speed in hydraulic machinery. Consider a coordinate system (x, y, z)
which is rotating steadily at angular velocity {X} relative to a stationary (inertial)
reference frame (x, y, z) illustrated in Fig. 7.1.

The axis of rotation is defined with a unit direction vector {a} such that
{X} = X{a}. The computational domain is defined with respect to rotating frame
such that the position of an arbitrary point in the domain is determined with a
position vector {r} (r in Fig. 7.1) from the origin of the rotating frame. The fluid
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velocities can be transformed from stationary frame to rotating frame using the
following relation:

mrf g ¼ mf g � urf g ð7:1Þ

where {vr} is the relative velocity, {v} is the absolute velocity, and {ur} is the
‘‘whirl’’ velocity,

urf g ¼ Xf g � rf g: ð7:2Þ

For the relative velocity formulation, the governing equations of fluid flow in a
steadily rotating frame can be written as follows:

1. Conservation of mass:

oq
ot
þr � q mrf gð Þ ¼ 0 ð7:3Þ

2. Conservation of momentum:

oq mrf g
ot

þ r � q mrf g mrf gð Þ þ q 2 Xf g � mrf g þ Xf g � Xf g � rf gð Þ

¼ � rpf g þ r � sr½ � þ Ff g
ð7:4Þ

3. Conservation of energy:

oqEr

ot
þr � q mrf gHrð Þ ¼ þr � krT þ sr½ � � mrf gf g þ Sh: ð7:5Þ

The momentum equation above contains two additional acceleration terms: the
Coriolis acceleration 2 Xf g � fmrg; and the centripetal acceleration
Xf g � fXg � frg. In addition, sr½ � is the viscous stress tensor in which relative

velocity derivatives are used. ff g is body force. The energy equation is written in
terms of the relative internal energy (Er) and the relative total enthalpy (Hr), also
known as the rothalpy; k is thermal conductivity; and Sh is thermal source term.
These variables are defined as

z x
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x
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z
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r
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Fig. 7.1 Stationary and
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Er ¼ h� p

q
þ 1

2
m2

r � u2
r

� �

ð7:6Þ

Hr ¼ Er þ p=q: ð7:7Þ

For the absolute velocity formulation, the governing equations of fluid flow in a
steadily rotating frame can be written as

oq
ot
þr � q mf gð Þ ¼ 0: ð7:8Þ

Conservation of momentum:

oq mf g
ot

þ r � q mrf g mf gð Þ þ q Xf g � mf gð Þ ¼ � rpf g þ r � s½ � þ Ff g: ð7:9Þ

Conservation of energy:

oqE

ot
þ r � q mrf gHr þ q urf gð Þ ¼ þr � krT þ s½ � � mf gf g þ Sh: ð7:10Þ

7.1.1.2 Flow in Multiple Rotating Reference Frame

Both the MRF and mixing plane approaches are steady-state approximations but
differ from each other primarily in their treatment of conditions at interfaces.

The MRF model is perhaps simpler for multiple zones. It is a steady-state
approximation where individual cell zones move at different rotational and/or
translational speeds. The flow in each moving cell zone is solved in the moving
reference frame equations. If the zone is stationary, the stationary equations are
used. At interfaces between cell zones, a local reference frame transformation is
performed to enable flow variables in one zone to be used to calculate fluxes at the
boundary of the adjacent zone.

It should be noted that the MRF approach does not account for relative motion
of a moving zone with respect to adjacent zones and the grid remains fixed in
computation. It is analogous to the way of freezing the motion of moving parts in a
specific position and observing the instantaneous flow field with the rotor in that
position. Hence, the MRF is often referred to as the ‘‘frozen rotor approach’’.

Though the MRF approach is clearly an approximation, it can provide a rea-
sonable model of the flow for many applications. For example, it can be used for
applications where rotor–stator interaction is relatively weak. In mixing tanks, for
example, since the impeller-baffle interactions are relatively weak, large-scale
transient effects are not present and the MRF model is applicable.

Another potential use of the MRF model is to compute a flow field which is
subsequently used as an initial condition for a transient sliding mesh calculation.
This can often eliminate the need for a startup calculation.
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7.1.1.3 The MRF Interface Formulation

The MRF formulation applied to the interfaces is subject to the velocity formu-
lation being used. The specific approaches will be discussed below for each case.
The interface treatment applies to velocity and velocity gradients, since these
vector quantities change in different reference frames. Scalar quantities, such as
temperature, pressure, density, and turbulent kinetic energy etc., do not require any
special treatment, and thus are adopted locally without any change.

1. Interface treatment of relative velocity:

In the MRF model, calculation domain is divided into subdomains, each of which
may be rotating and/or translating in the inertial frame. The governing equations in
each subdomain are written with respect to that subdomain’s reference frame.

At the boundary between two subdomains, the diffusion and other terms in the
governing equations in one subdomain require values for the velocities in the
adjacent subdomain. The continuity of the absolute velocity is enforced, to provide
correct neighbor values of velocity for the subdomain under consideration.

When the relative velocity formulation is used, velocities in each subdomain
are computed according to the subdomain motion. Velocities and velocity gradi-
ents are converted from a moving reference frame to the absolute inertial frame
using Eq. (7.11):

mf g ¼ mrf g þ Xf g � rf gð Þ þ mtf g ð7:11Þ

where {vt} is a translational velocity of interface. The gradient of the absolute
velocity vector is

r mf g ¼ r mrf g þ r Xf g � rf gð Þ: ð7:12Þ

Scalar quantities such as density, static pressure, static temperature, and species
mass fractions, etc., are simply obtained locally from adjacent cells.

2. Interface treatment: Absolute velocity formulation

When the absolute velocity formulation is applied, governing equations in each
subdomain are written with respect to its reference frame, but the velocities are
stored in the absolute frame. Therefore, no special transformation is needed at the
interface between two subdomains. Again, scalar quantities are determined locally
from adjacent cells.

7.1.2 The Mixing Plane Model

The mixing plane model provides an alternative to the multiple reference frame
and the sliding mesh models for simulating flow through domains with one or
more regions in relative motion. The MRF model is applicable when the flow at
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boundary between adjacent zones move at different speeds is nearly uniform
(‘‘mixed out’’). If it is not uniform, the MRF model may not be a physically
meaningful solution. Instead, the sliding mesh model may be more appropriate, yet
in many situations it is not practical to employ a sliding mesh. For example, in a
multistage turbomachine, if the number of blades is different for each blade row, a
large number of blade passages are required for maintenance of circumferential
periodicity. Moreover, sliding mesh calculations are necessarily unsteady, and thus
cost significantly more computation to achieve a final, time-periodic solution. For
situations where the sliding mesh model is not feasible, the mixing plane model
can be a cost-effective alternative.

For the mixing plane approach, each fluid zone is treated as a steady-state
problem. Flow field data from adjacent zones are passed as boundary conditions
that are spatially averaged or ‘‘mixed’’ at the mixing plane interface. This mixing
removes any unsteadiness that would take place due to circumferential variations
in the passage-to-passage flow field, thus yielding a steady-state result. Despite of
these simplifications inherent in the mixing plane model, the resulting solutions
can provide reasonable approximations of the time-averaged flow field.

Turbomachine stage consists of two flow domains: the rotor domain, which is
rotating at a prescribed angular velocity, and the stator domain, which is sta-
tionary. In numerical simulation, each domain will be represented by a separate
mesh. The flow information between these domains will be coupled at the mixing
plane interface using the mixing plane model.

The essential idea behind the mixing plane concept is as follows: Each fluid
zone is solved as a steady-state problem. At some prescribed iteration interval,
flow data at the mixing plane interface are averaged in circumferential direction on
both the stator outlet and the rotor inlet boundaries. By performing circumferential
averages at specified radial or axial stations, one can define ‘‘profiles’’ of flow
properties. These profiles, which will be functions of either axial or the radial
coordinate, depending on the orientation of the mixing plane, are then used to
update boundary conditions along the two zones of the mixing plane interface.

Passing profiles in the manner described above is based on the assumption that
specific type of boundary conditions has been defined at the mixing plane inter-
face. The coupling of an upstream outlet boundary zone with a downstream inlet
boundary zone is called a ‘‘mixing plane pair’’.

The core of mixing plane algorithm can be described as follows:

1. Update the flow field solutions in the stator and rotor domains.
2. Average flow properties at the stator exit and rotor inlet boundaries to get

profiles for use in updating boundary conditions.
3. Pass the profiles to the boundary condition inputs required for the stator exit

and rotor inlet.
4. Repeat steps 1–3 until convergence.

The algorithm described above does not rigorously conserve mass flow across
the mixing plane if it is represented by a pressure inlet and pressure outlet mixing
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plane pair. If one uses a mass flow inlet and pressure outlet pair instead, mass
conservation across the mixing plane would be fulfilled. The basic technique
consists of computing mass flow rate across the upstream zone (pressure outlet)
and adjusting the mass flux profile applied at the mass flow inlet so that the
downstream mass flow matches the upstream mass flow. This adjustment is per-
formed at every iteration to ensure rigorous conservation of mass flow throughout
calculation.

Since mass flow is fixed in this case, there will be a jump in total pressure
across the mixing plane. The magnitude of this jump is usually small compared
with total pressure variations elsewhere in the flow field.

For applications such as torque converters, where sum of the torques acting on
components should be zero, swirl conservation across the mixing plane is essen-
tial. Conservation of swirl is important because otherwise sources or sinks of
tangential momentum will be present at the mixing plane interface.

Consider a control volume containing a stationary or rotating component. From
the moment of momentum equation in fluid mechanics, it can be shown that for
steady flow,

T ¼
ZZ

S
rmhq mf g � nf gdS ð7:13Þ

where T is torque of the fluid acting on the component, r is radial distance from the
axis of rotation, vh is the absolute tangential velocity, v is the total absolute
velocity, and S is the boundary surface. (The product rvh is referred to as swirl.)

For a circumferentially periodic domain with well-defined inlet and outlet
boundaries, Eq. (7.13) becomes

T ¼
ZZ

outlet
rmhq mf g � nf gdSþ

ZZ

inlet
rmhq mf g � nf gdS ð7:14Þ

where inlet and outlet denote the inlet and outlet boundary surfaces.
From Eq. (7.14), in the limit as the thickness shrinks to zero, the torque should

vanish.
ZZ

outlet
rmhq mf g � nf gdS ¼ �

ZZ

inlet
rmhq mf g � nf gdS: ð7:15Þ

Equation (7.15) provides a rational method of determining the tangential
velocity component, so that the swirl integral is satisfied. Interpolating the tan-
gential (and radial) velocity component profiles at the mixing plane does not affect
mass conservation because these velocity components are orthogonal to the face-
normal velocity used in mass flux computation.
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7.1.3 Unsteadiness of Flow Through Hydraulic Machines

The Reynolds-averaged Navier-Stokes equations (RANS) together with turbulence
models are used to compute internal flows in hydraulic machines, which is a
common practice for steady flow simulations. However, actual flows in hydraulic
machinery are unsteady (Ruprecht et al. 1999, 2000). Two major groups of
unsteady problems can be distinguished. The first group is flows with an externally
forced unsteadiness caused by unsteady boundary conditions or by changing the
geometry with time, for example, the rotor-stator interactions in hydraulic
machines. The second group is flows with self excited unsteadiness, which are,
say, turbulent motion, vortex shedding (Karman vortex street) or unsteady vortex
behavior (e.g. vortex rope in a draft tube). Here the unsteadiness is obtained
without any change in boundary conditions or of geometry. A combination of both
groups could also exist (e.g. flow induced vibrations, change of geometry caused
by vortex shedding) (Skotak 1999, Ruprecht 2002). For unsteady flows in
hydraulic machinery, refer to Chap. 6.

7.1.3.1 Rotor–Stator Interaction Model in Hydraulic Machinery

The following example belongs to the first group where the unsteadiness is forced
by moving geometries. In numerical simulation, there are several ways to model
the interaction of stationary and rotating parts.

1. Simple ‘top–down’ computation,
2. Multiple reference frame computation, that is, the frozen rotor computation,
3. Mixing plane approach,
4. Transient computation.

The simplest way to compute the flow in a hydraulic machine is to solve each
component in its own frame of reference and take the results of the upstream
component as the inlet boundary condition of next component. However, there is
no interaction between the components and the results depend on the selection of
inlet boundary conditions greatly.

A simple method is a stage averaging method, where at the interface between
stationary and rotating frames of reference the flow variables are averaged in the
circumferential direction prior to their exchange. The advantage of this approach is
that only one blade passage of the stator and rotor needs to be modeled regardless
of the actual pitch, which leads to a huge reduction of memory demand, but
neglects all transient interaction effects.

A more sophisticated method is the so-called MRF, that is, the frozen rotor
approach. In contrast to the above stage averaging method, this method involves
averaging the entire domains of the stator and rotor, but remaining in a fixed relative
position (‘‘frozen’’) throughout the simulation. The stator is calculated in stationary
frame and the runner in rotating frame. At the interface the flow variables are
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transformed into the corresponding frame of reference. As a result, the approach
accounts partially for interactions across frame boundaries, yet transient effects
remain unresolved. The main advantage of the frozen rotor method compared with
a true transient simulation is the reduction of computing time.

7.1.3.2 Sliding Mesh Model and Dynamic Mesh Model

For sliding meshes, the relative motion of stationary and rotating components in a
rotating machine give rise to unsteady interactions. In turbomachinery, these
interactions are generally classified as follows: potential interactions, wake
interactions, and shock interactions for transonic/supersonic flow.

The multiple reference frame (MRF) and mixing plane (MP) models are applied
in steady state cases without consideration of unsteady interactions, whereas the
sliding mesh model can explain unsteady interactions by considering the relative
motion of stationary and rotating components, which is viable for unsteady flow
computation in hydraulic machinery.

Another model for unsteady flow computation is the dynamic mesh model
(moving mesh model). It is used when boundaries move rigidly or rotate with
respect to each other, and when boundaries deform or deflect. Examples are: a
piston moving with respect to a cylinder in positive displacement pumps, an angle
moving guide vanes in hydraulic turbines around their pivots in prior ascertained
regulation at their transient processes, and a turbine blade deforming owing to
pressure pulsation in fluid and solid interactions of hydraulic turbine.

1. Sliding mesh model

When a time-accurate solution for rotor–stator interaction is required, the
sliding mesh model must be used to compute the unsteady flow field because it is
the most accurate method to simulate flows in multiple moving reference frames.
Most of the time, the unsteady solution is time-periodic, that is, the unsteady
solution repeats with a period related to the speeds of the moving domains.

In the sliding mesh technique two or more cell zones are used. Each cell zone is
bounded by at least one ‘‘interface zone’’ where it meets the opposing cell zone.
The interface zones of adjacent cell zones are associated with one another to form
a ‘‘grid interface’’. The two cell zones will move relative to each other along the
grid interface. The grid interface must be positioned in a way that it has fluid cells
on both sides. For example, the grid interface must lie in fluid region between rotor
and stator; it cannot be on the edge of any part of the rotor or stator. During the
calculation, the cell zones slide relative to one another along the grid interface in
discrete steps. The sliding mesh model allows adjacent grids to slide relative to one
another so that the grid faces do not need to be aligned on grid interface. This
situation requires a computation of the flux across two non-conformal interface
zones of each grid interface. To calculate the interface flux, the intersection
between the interface zones should be determined at each new time step.
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2. Dynamic mesh model

The dynamic mesh model can be employed to model flows where the domain
shape changes with time due to motion on its boundaries. The dynamic mesh
model can also be used in steady-state applications where it is beneficial to move
the mesh in the steady state solver. The motion can be prescribed or unperceived
where the subsequent motion is determined based on solution at the current time.
To construct the dynamic mesh model, one needs to provide a starting volume
mesh and description of the motion within any moving zones in the model using
either boundary profiles or user-defined functions (UDFs).

For dynamic meshes, the integral form of the conservation equation for a
general scalar, /; on an arbitrary control volume, whose boundary is moving can
be written as

d
dt

ZZZ

V
q/dV þ

ZZ

oV
q/ð mf g� mg

� �

Þ � nf gdA

¼
ZZ

oV
Cr/ � nf gdAþ

ZZZ

V
S/dV

ð7:16Þ

where q is the fluid density; {v} is the flow velocity vector; {vg} is the grid
velocity of the moving mesh; C is the diffusion coefficient; S/ is the source term of
/. Here oV is used to represent the boundary of the control volume V.

The time derivative term in Eq. (7.16) can be written in a first order backward
difference formula, as

d
dt

ZZZ

V
q/dV ¼ q/Vð Þnþ1� q/Vð Þn

Dt
ð7:17Þ

where n and n ? 1 denote the respective quantity at the current and next time
level. The (n ? 1)th time level volume Vn+1 is computed from

Vnþ1 ¼ Vn þ dV

dt
Dt ð7:18Þ

where dV=dt is the volume time derivative of the control volume. In order to
satisfy the grid conservation law, the volume time derivative of the control volume
is computed from

dV

dt
¼
ZZ

oV
mg

� �

� nf gdA ¼
X

nf

j

mgj

� �

� nj

� �

Aj ð7:19Þ

where nj is the number of faces on the control volume and Aj is the j face area. The
dot product fmgjg � fnjgAj on each control volume face is calculated from

mgj

� �

� nj

� �

Aj ¼
oVj

Dt
ð7:20Þ
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where oVj is the volume swept out by control volume face j over the time step Dt:
In the case of sliding mesh, the motion of moving zones is tracked relative to

the stationary frame. Therefore, no moving reference frames are attached to
computational domain, simplifying the flux transfers across the interfaces. In the
sliding mesh formulation, the control volume remains constant, therefore from Eq.
(7.18), dV=dt ¼ 0 and Vnþ1 ¼ Vn: Equation (7.17) can now be expressed as

d
dt

ZZZ

V
q/dV ¼

q/ð Þnþ1� q/ð Þn
h i

V

Dt
: ð7:21Þ

7.2 Basic Equations of Unsteady Flow Through Hydraulic
Machinery and Turbulence Models

The governing equations of unsteady flow, which are introduced in the present
section, are the time-dependent Reynolds-averaged Navier–Stokes (RANS)
equations for RANS simulation, and the Large-eddy equations through the filtering
function treatment to the original Navier-Stokes (N-S) equations for the solutions
of large-eddy simulation (LES). However, in order to close the both groups of
equations of the turbulent flow, the turbulence models are necessary, for example,
the eddy viscosity model (EVM), the non-linear eddy viscosity model (NLEVM)
and the differential stress model (DSM) for closing RANS equations, and the sub-
grid-scale model for LES.

7.2.1 Basic Turbulent Equations of Unsteady Flow

In fluid mechanics, the three basic equations describing water flows are the mass
continuity equation, the momentum equations (N-S equations), and the energy
equation. Since most of flows dealt with are turbulent, it is essential to model
turbulent flows accurately based on the Navier-Stokes equations. The four major
types of turbulence methodologies are Direct Numerical Simulation (DNS), Large
Eddy Simulation (LES), Reynolds-Averaged N-S (RANS) Solution, and Detached
Eddy Simulation (DES).

7.2.1.1 Reynolds Averaged Navier-Stokes Equations

The Reynolds-averaged N-S (RANS) equations are time-averaged equations of
motion for fluid flow. They are primarily used for turbulent flows. These equations
with approximations based on knowledge of the properties of flow turbulence are
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able to give approximately averaged solutions to the N-S equations. For an
incompressible flow of Newtonian fluid, these equations can be written as

q
omi

ot
þ q�vj

omi

oxj
¼ qfi �

o�p

oxi
þ o

oxj
l

omi

oxj

� �

� q
o

oxj
m0im0j
� �

ð7:22Þ

The left hand side represents the change in mean momentum of the fluid ele-
ment due to unsteadiness with time in the mean flow and the convection by the
mean flow. This change is balanced by mean body force, isotropic stress from
mean pressure field, viscous stresses, and apparent stress �qm0im0j due to the tur-
bulent fluctuating velocity field, generally referred to as Reynolds stresses.

The mass conservation equations of this turbulent flow are

omi

oxi
¼ 0; and

om0i
oxi
¼ 0 ð7:23Þ

7.2.1.2 Arbitrary Lagrangian-Eulerian Method (ALE)

Two different coordinate systems for the description of fluid motion are the
Eulerian system describing fluid motion at fixed locations and the Lagrangian
system following fluid particles. Accordingly, the Eulerian description views
velocities and other properties of fluid as functions of both time and fixed space
coordinates. The Lagrangian description considers the positions of fluid particles
and their other properties to be functions of time and their permanent identifica-
tions, such as their initial positions or any set of material functions of fluid
particles.

Analytically, both coordinate systems are capable of producing exact solutions
of fluid flow, including discontinuous flow. They are regarded as equivalent to
each other, except for the fact that the Lagrangian system gives more information
such as each fluid particle’s history.

From a numerical point of view, however, they are not equivalent. Computa-
tional cells in Eulerian coordinates are fixed in space while fluid particles move
across cell interfaces in any direction. It is this convective flux that causes
excessive numerical diffusion in numerical solutions. Another disadvantage of the
Eulerian coordinates is that prior to flow computation a time-consuming grid
generation is needed for boundary conditions on solid boundaries.

Computational cells in Lagrangian coordinates, on the other hand, are fluid
particles. Consequently, there is no convective flux across cell interfaces and
numerical diffusion is thus minimized. However, the fact that computational cells
exactly follow fluid particles can result in severe grid deformation, causing
inaccuracy and even breakdown of the computation. To prevent this from hap-
pening, the Arbitrary Lagrangian-Eulerian Technique (ALE) is introduced in the
following unsteady flow simulation. Hui et al. (1999) extended the above idea to
unsteady flow by introducing a new description of fluid motion in which the flow
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variables are considered to be functions of time and of some permanent identifi-
cations of pseudo-particles which move with an arbitrary velocity.

1. Governing equation at ALE reference coordinates

At first, one defines the material coordinates (Lagrangian description coordi-
nates) as X, the space coordinates (Eulerian description coordinates) as x, and the
reference coordinates as v, which denote coordinates of the grid system in com-
putation. And velocity m̂ is the velocity of reference coordinates v relative to space
coordinates x.

Secondly, three different reference coordinates can be selected as follows:

(a) The first one: To determine the velocity of reference coordinates, that is, the
velocity of grid system m̂ beforehand.

(b) The second one: To give the relation between velocity of fluid flow relative to
grid system (reference system) W and fluid flow absolute velocities V at dif-
ferent moments. Then the grid velocity m̂ will be obtained.

(c) The mixed method, in which one velocity component can be provided using
the first method, and another component using the second one.

The mapped relationship of the three coordinates to corresponding functions
can be expressed as

Rv � 0;1½ � ! Rx; v; tð Þ ! U v; tð Þ ¼ x ð7:24Þ

Rv � 0;1½ � ! RX ; v; tð Þ ! W v; tð Þ ¼ X ð7:25Þ

f ðx; tÞ ¼ f �ðv; tÞ ¼ f ��ðX; tÞ ð7:26Þ

where f x; tð Þ is at Eulerian coordinates, f �ðx; tÞ is at reference coordinates and
f �� x; tð Þ at Lagrangian ones.

And

f � ¼ f � U and f �� ¼ f � U �W�1: ð7:27Þ

The time partial differentials at three coordinates are defined as

f M
t ¼

of

ot
; X ¼ cons; f S

t ¼
of

ot
; x ¼ cons; f R

t ¼
of

ot
; v ¼ cons ð7:28Þ

where subscript t is the time differential, and superscripts M, S and R indicate three
coordinates. The relationship between different time partial differentials can be
obtained as

of ��

ot
X; tð Þ

�

�

�

�

X

¼ of �

ot
v; tð Þ

�

�

�

�

v

þwi
of �

ovi
v; tð Þ: ð7:29Þ

where wi ¼ ovi
ot

�

�

�

X
and
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X; tð Þ

�

�
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�
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¼ oxi
�

ot
v; tð Þ

�

�

�

�

v

þwj
oxi
�

ovj
v; tð Þ: ð7:30Þ

Then, one defines the material velocity of flow v and the grid velocity m̂
respectively as

m ¼ ox

ot
; X ¼ cons that is,m ¼ oxi

��

ot
X; tð Þ

�

�

�

�

X

m̂ ¼ ox

ot
; v ¼ cons that is,m̂ ¼ oxi

�

ot
v; tð Þ

�

�

�

�

v

And mi ¼ m̂i þ wj
oxi
�

ovj
v; tð Þ; ci ¼ mi � m̂i ¼ wj

oxi
�

ovj
v; tð Þ

where wi ¼ ovi
ot

�

�

�

X
; where wi is the relative velocity in reference system, and

ci ¼ wj
oxi

ovj
v; tð Þ ð7:31Þ

where ci is the convective velocity.
If v ¼ X; then m̂ ¼ m, reducing to a Lagrangian system; and if v ¼ x; then m̂ ¼ 0,

reducing to an Enlerian system.
The relationship between of time partial differentials of any function f at three

coordinates is

of ��

ot
X; tð Þ

�

�

�

�

X

¼ of �

ot
v; tð Þ

�

�

�

�

v

þ ci
of �

oxi
x; tð Þ:

The continuity equation and momentum equations at the ALE coordinate
system are as follows:

oq̂
ot

�

�

�

�

v

þ oq̂wi

ovi
¼ 0 in Rv

q̂
ovi

ot

�

�

�

�

v

þq̂wj
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ovj
¼ oT̂ji

ovj
þ q̂gi in Rv ð7:32Þ

where

mi ¼ m̂i þ wj
oxi
�

ovj
v; tð Þ ð7:33Þ

ci ¼ mi � m̂ ¼ wj
oxi
�

ovj
v; tð Þ ð7:34Þ
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where wi ¼ ovi
ot

�

�

�

X
is the flow relative velocity to the reference grid system and

ci ¼ wj
oxi
ovj

v; tð Þ: The Jacobin determinant is Ĵ ¼ det oxi
ovj

h i

; and q̂ v; tð Þ ¼

Ĵq x; tð Þ; T̂ij ¼ Ĵ ovi
oxk

rkj; here, superscript ‘‘^’’ designates a variable at the AEL

reference coordinates, is q̂ v; tð Þ the system density, rij is the Cauchy stress tensor

at the Eulerian coordinate system; and T̂ij is the first order of Piola-Kirchhoff stress
tensor in the AEL reference coordinates.

2. Governing equation at quasi-Eulerian description coordinates

In the ALE reference coordinates, the first order of Piola-Kirchhoff stress tensor
T̂ij is asymmetrical, so the Quasi-Eulerian Description is developed to simplify Eq.
(7.34). In the quasi-Eulerian description coordinates, only the time partial differ-
ential coefficient is expressed at the ALE reference coordinates, whereas other
terms are indicated by the Eulerian method. The governing equations in this
coordinate system are

oq
ot

�

�

�

�

v

þ ci
oq
oxi
þ q

omi

oxi
¼ 0 in Rv ð7:35aÞ

oq
ot
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þ ci
oq
oxi
þ q

omi

oxi
¼ 0 in Rv ð7:35bÞ

3. Reynolds equation at ALE coordinates

The Reynolds averaged method is applied in Eq. (7.35), and the Reynolds
equations of incompressible turbulent flow at the quasi-Eulerian description
coordinates can be written as

q
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in Rv ð7:36Þ

And ci ¼ mi � m̂i; ci þ c0i ¼ mi þ m0i � m̂i
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ð7:37Þ

where Reynolds stresses �q
om0jm

0
i

oxj
will be closed by the turbulence model.

7.2.2 Turbulence Model for Unsteady Flow Simulation

The term �qm0im
0
j

	 


on the right-hand side of Eq. (7.22) is called the Reynolds stress

tensor. The tensor is symmetric, representing correlations between fluctuating

7.2 Basic Equations of Unsteady Flow 251



velocities. It is an additional unknown stress term due to turbulence (fluctuating

velocities). One would need a model for �qm0im
0
j to close the equation system in Eq.

(7.22). Turbulence modeling is a key issue in most CFD simulations. Virtually all
engineering applications are turbulent and hence require a turbulence model.

Complexity of different turbulence models may vary greatly depending on
details to be observed and investigated. Complexity is due to the nature of Navier-
Stokes equation (N-S equation) which is an inherently nonlinear, time-dependent,
three-dimensional PDE.

Turbulence could be viewed as instability of laminar flow that occurs at high
Reynolds numbers (Re). Such instabilities originate from interactions between
non-linear inertial terms and viscous terms in N-S equations. These interactions
are rotational, fully time-dependent, and fully three-dimensional. Rotational and
three-dimensional interactions are mutually connected via vortex stretching which
is not possible in two dimensional spaces. That is also the reason why no satis-
factory two-dimensional approximations for turbulent phenomena are available.

Turbulence is viewed as a random process in time and therefore no determin-
istic approach is possible. Certain properties could be learned about turbulence
through statistical methods. Though these introduce certain correlation functions
among flow variables, it is impossible to determine the correlations in advance.

Another important feature of turbulent flow is that vortex structures move along
them. Their lifetime is usually very long. Hence certain turbulent quantities cannot
be specified as local. It also means that upstream history of the flow is also of great
importance.

7.2.2.1 Turbulence Modeling

Nowadays turbulent flows may be computed via several different approaches.
Either by solving the RANS equations with suitable models for turbulent quantities
or by computing them directly, one can get results. The main approaches are
summarized below.

1. Reynolds-averaged N–S (RANS) Models

Eddy viscosity models (EVM): Assume that the turbulent stress is proportional
to the mean rate of strain. Furthermore, eddy viscosity is derived from turbulent
transport equations (usually k ? one other quantity).

Non-linear eddy viscosity models (NLEVM): Turbulent stress is modeled as a
non-linear function of mean velocity gradients. Turbulent scales are determined
through transport equations (usually k ? one other quantity). The model mimics
the response of turbulence to certain important types of strain.

1. Differential stress models (DSM): This category consists of Reynolds stress
transport models (RSTM) or second-order closure models (SOC). Transport
equations are solved for all turbulent stresses.
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2. Large-eddy simulation (LES): One computes time-varying flow, but models
sub-grid-scale motions.

3. Direct numerical simulation (DNS): No modeling is applied but one is required
to resolve the smallest scales of the flow.

Extent of modeling for certain CFD approach is illustrated by Fig. 7.2. It is
clear seen that models that compute fluctuation quantities such as approaches (2)
and (3) resolve shorter length scales than those that solve RANS equations. As a
result, they provide better results. However they demand much greater computer
power than those applying RANS methods (Sodja 2007).

Classes of turbulence models from the view of methodology will be presented
as follows:

1. Algebraic models
2. Eddy viscosity transport models, one and two-equation models
3. Non-linear eddy viscosity models and algebraic stress models
4. Reynolds stress transport models
5. Large eddy simulations
6. Detached eddy simulations and other hybrid models
7. Direct numerical simulations.

These are briefly depicted as follows.

7.2.2.2 Algebraic Turbulence Models

Algebraic turbulence models or zero-equation turbulence models are models that
do not require the solution of any additional equations, and are calculated directly
from the flow variables. As a consequence, zero equation models may not be able
to properly account for historical effects on the turbulence such as convection and
diffusion of turbulent energy. These models are often too simple in general situ-
ations, but can be quite useful for straightforward flow geometries or in start-up
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Fig. 7.2 Extent of modeling
for certain types of turbulent
models
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situations (e.g. the initial phases of computation in which a more complicated
model may have difficulties). The two most well-known zero equation models are
the Baldwin-Lomax model and the Cebeci-Smith model. Other even simpler
models, such as models with lt ¼ f yþð Þ (where lt is eddy viscosity, yþ ¼ ywv�q=l

and where yw is the distance from the nearest calculation point to wall and m� ¼
ffiffiffiffiffiffiffiffiffiffi

sw=q
p

sw is the shear stress on wall), are sometimes used in particular situations
(e.g. boundary layers or jets). The algebraic Johnson-King model (1985) is
sometimes called a 1/2 equation model since it incorporates the solution of an
ordinary differential equation.

7.2.2.3 One and Two-Equation Turbulence Models

One equation turbulence models solve one turbulent transport equation, usually the
turbulent kinetic energy. The original one-equation model is Prandtl’s one-equa-
tion model. Others commonly seen are the Baldwin-Barth model and Spalart-
Allmaras model.

Two-equation turbulence models are also commonly used. Models like the k-
epsilon model and the k-omega model have become industry standards for most
types of engineering problems. Two-equation turbulence models are still an active
area of research and newly refined two-equation models are still being developed.

According to definition, two-equation models include two extra transport
equations to represent the turbulent properties of the flow. Thus, a two-equation
model could account for historical effects like convection and diffusion of tur-
bulent energy.

The turbulent kinetic energy, k ¼ m0im0i
�

2 is one transported variable most often
used. The second transported variable varies with the type of two-equation model.
Common choices are the turbulent dissipation e or the specific dissipation x. The
second variable can be considered as the variable that determines the scale of
turbulence (length scale or time-scale), whereas the first variable k determines the
energy in turbulence.

The basis for both two-equation models is the Boussinesq eddy viscosity
assumption, which postulates that the Reynolds stress tensor, sij, is proportional to
the mean strain rate tensor, Sij; and can be written in the following way:

sij ¼ 2lt
omi

oxj
þ omj

oxi

� �

þ 2
3

qkdij: ð7:38Þ

The last term is to ensure the definition of turbulent kinetic energy is obeyed:

k ¼ m0im
0
i

�

2: And

Sij ¼
omi

oxj
þ omj

oxi

� �

:
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There are varieties of two-equation turbulence models, such as Standard k-e
model, Realisable k-e model, RNG k-e model, k-x models, Wilcox’s k-x model,
Wilcox’s modified k-x model, and SST k-x model. For unsteady turbulent flow
calculations, RNG k-e model and SST k-x model are widely used.

7.2.3 Large Eddy Simulation and Detached Eddy Simulation

LES seeks to directly solve large spatial scales (like DNS) and model the smaller
scales (k-epsilon). Its basic thought lies in two parts. First, the larger scales carry
the majority of the energy, and hence are more important. Second, the smaller
scales are found to be more universal, and hence are more easily modeled. The
resulting methodology is a hybrid of these two, which involves filtering the N-S
equations to separate scales from those solved directly.

Difficulties associated with the use of the standard LES models, particularly in
near-wall regions, led to the development of hybrid models that combine the best
aspects of RANS and LES methodologies in a single solution strategy. An example
of a hybrid technique is the DES (Spalart et al. 1997).

7.2.3.1 Large Eddy Simulation

Mathematically, in LES, one may separate the velocity field into a resolved part
and a subgrid part. The resolved part of the field represents the ‘‘large’’ eddies,
while the subgrid part represents the ‘‘small scales’’ whose effect on the resolved
field is included in a subgrid-scale model. Formally, filtering could be viewed as
the convolution of a function with a filtering kernel, and

mi ¼ mi þ m0i ð7:39Þ

where mi is the resolvable scale part and m0i the subgrid-scale part. However, most
practical (and commercial) implementations of LES use the grid itself as the filter
(the box filter) and perform no explicit filtering. The filtered equations are
developed from the incompressible N-S equations. The equations of motion for the
resolved field are

omi

ot
þ �vj

omi

oxj
¼ qfi �

1
q

o�p

oxi
þ o

oxj

l
q

omi

oxj

� �

þ 1
q

osij

oxj
ð7:40Þ

The last extra term arises from the non-linear advection terms, due to the fact
that

mj
omi

oxj
6¼ mj

omi

oxj
ð7:41Þ
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and hence

sij ¼ mimj � mimj: ð7:42Þ

Similar equations can be derived for the subgrid-scale field (i.e. the residual
field). Subgrid-scale turbulence models usually employ the Boussinesq hypothesis
and seek to calculate the SGS stress using

sij �
1
3
skkdij ¼ �2lt

�Sij ð7:43Þ

where �Sij is the rate-of-strain tensor for resolved scale, and lt is the subgrid-scale
turbulent viscosity.

Subgrid-scale models are those such as the Smagorinsky model (Smagorinsky
1963), the Algebraic Dynamic model (Germano et al. 1991), the Dynamic Global-
Coefficient model (You and Moin 2007), the, Localized Dynamic model (Kim and
Menon 1995), the Wall-Adapting Local Eddy viscosity (WALE) model (Nicoud
and Ducros 1999) and so on.

7.2.3.2 Detached Eddy Simulation

The DES (Spalart et al. 1997) model attempts to treat near-wall regions in a
RANS-like manner, while treating the rest of the flow in a LES-like manner. The
model was originally formulated with replacement of the distance function d in the
Spalart-Allmaras (S-A) model with a modified distance function:

~d ¼ min d;CDESDð Þ ð7:44Þ

where CDES is a constant and D is the largest dimension of the grid cell in question.
This modification of the S-A model, while very simple in nature, changes the
interpretation of the model substantially. The modified distance function causes
the model to behave as a RANS model in regions close to walls and in a Sma-
gorinsky-like manner away from the walls. It is usually justified with arguments
that the scale-dependence of the model is made local rather than global, and
dimensional analysis backs up this claim.

The DES approach may be applied to any turbulence model that has an
appropriately defined turbulence length scale (distance in the S-A model) and is a
sufficiently localized model. The Baldwin-Barth model, very similar to the S-A
model, is probably not suitable for DES. The standard version of this model
contains several van Driest-type damping functions that make the distance func-
tion more global in nature. Menter’s SST model is a good one and has been used
by a number of researchers. Menter’s SST model engages a turbulence length scale
obtained from the model’s equations and compares it with the grid length scale to
switch between LES and RANS (Strelets 2001).

In practice, more programming with changes of the length scale is needed instead
of calculation. Many implementations of the DES approach allow for regions to be

256 7 Prediction of Pressure Fluctuation by Turbulent Flow Analysis



explicitly designated as RANS or LES regions, overruling the distance function
calculation. Also, many implementations apply different differencing in RANS
regions (e.g. upwinded differences) and LES regions (e.g. central differences).

7.3 Prediction for Pressure Pulsation in Kaplan Turbine
by Turbulent Simulation of Unsteady Flow

Kaplan turbine is a great development in the early twentieth century. The pitch
angle of Kaplan runner is adjustable; therefore the machine can handle a great
variation of flow efficiently. Kaplan turbine has an efficiency of 90 % or even
better but costs higher, which is primarily used in large power stations.

With the increase of turbine output and size, stability problems such as
hydraulic vibration and runner blade cracks in large hydraulic turbines have
become prominent. Vibrations, swings, and pressure fluctuations are three major
parameters that characterize the stability of turbine units. Among them, pressure
fluctuation is produced by unsteady flow field, which is the major hydraulic source
leading to vibration and non-steady operation of the hydraulic turbine unit. It can
cause turbine vibration, blade cracks, and even resonance of the powerhouse,
directly threaten the safe operation of the whole power station. Therefore it is of
great importance to investigate such pressure fluctuations.

Before a hydraulic power station is constructed, it is not possible to test the
performance of a prototype hydraulic turbine. The only viable way is to conduct
model tests and scale the results to predict the performance of the prototype.
However, due to the lack of similar laws in scaling vibration and pressure fluc-
tuations, prediction of turbine stability can only be done with computational
simulations of fluid dynamics. Therefore the correctness and accuracy of a
numerical simulation becomes extremely important.

At the end of the 1990s, pioneering calculations of fluid flow field in whole flow
passages of hydraulic turbines were conducted on super computers. Nowadays the
Computational Fluid Dynamics (CFD) method has been widely applied for the
design of hydraulic turbines.

For Kaplan turbines, most researchers have conducted 3-D steady flow simula-
tions to improve design or to study a particular flow phenomenon in the turbines.
Nilsson and Davidson (2000, 2002) studied the internal flow inside the runner and
flows through the gap between the runner and its chamber under four different
operation conditions. Muntean et al. (2004) completed a flow analysis in the spiral
case and distributor of a Kaplan turbine and obtained the information for a channel
vortex at different operation conditions. Tomas et al. (2004) used the flow simulation
to improve the hydraulic design of a Kaplan turbine. Lindsjö et al. (2004) calculated
the movement of bubbles in a Kaplan runner. Gehrer et al. (2006) conducted Kaplan
turbine runner optimizations using numerical flow simulations (CFD). Satisfactory
prediction of pressure pulsation in the whole flow passage of a Kaplan turbine by
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numerical approach is yet to be achieved. Liu et al. (2009) carried out prediction for
flow fluctuation in a model Kaplan turbine by simulation of unsteady turbulent flow,
Wu et al. (2012) did detailed numerical prediction and similarity study of pressure
fluctuation in a prototype Kaplan turbine and the model turbine.

The following sections report computational work on three- dimensional
unsteady turbulent flow in whole flow passage of a Kaplan turbine using the RNG
k-e turbulence model. The calculated results are compared to experimental results
to verify the robustness of the numerical model.

7.3.1 Turbulence Model and Numerical Methods

The incompressible continuity equation and RANS equation are adopted to simulate
the flow through the Kaplan turbine, and the RNG k-e double equations turbulence
model is selected to make the equations closed (Speziale and Thangam 1992).

The governing equations are discretized into algebra equations with the finite
volume method in spatial domain at each time step. They are also discretized in
temporal domain following a second-order implicit formula and integrated within
one time step. The discretized equations reflect flow field parameters at each time
step. The algebra equations obtained through discretization in spatial domain are
solved with a sub-relaxation method.

Frequency analyzes of time-dependent results of unsteady flow are carried out
with the Fast Fourier Transform (FFT) method. Figure 7.3 shows the calculated
algorithm in present work which is based on the Fluent software.

Figure 7.4a and b show the flow passage and the runner. In the very beginning,
one should study grid independence and calculation time independence where the
optimum number of grids and optimum calculation time are obtained. The total
grid element numbers in case I, II, and III are 1,933,265, 2,287,573 and 2,643,148,
respectively. Finally, a mesh of 2,578,000 elements and 543,000 crunodes all over
the flow passage are employed, which is dense enough to obtain detailed pressure
data and velocity data required, referring to Fig. 7.4c.

The time step is 0.001 s. Rotation speed of the runner is 1,267.9 rpm, therefore
the converged turbulent flow solution are obtained through rotating mesh in the
runner region by 7.61� per time step. The converged solutions at all time thus form
the unsteady solutions that are the pressure and velocity variations with time in the
whole flow passage.

7.3.2 Prediction of Pressure Pulsation of a Model Kaplan
Turbine

The numerical model is used to predict pressure pulsation of both a model turbine
in this section and a prototype turbine in next section. The computational results of
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both the model turbine and the prototype are compared. The transmission char-
acteristics of the pressure pulsation in the Kaplan turbine are also studied.

7.3.2.1 Measurement of Pressure Pulsation in a Model Turbine

Experiments are carried out on an experimental rig. Pressure transducers are
located within the inner walls at 0.3D1 under the runner, the draft tube inlet at the
point (-X), which is located on the left side of the draft tube, and the outside of the
draft tube elbow as is shown in Fig. 7.5.

Start

Initial flow field

Grid reconstruction

Solve governing  Eqs

Solve pressure correction Eq.
And correct velocity

Solve turbulence

No No

No

No

YesYes

Yes Yes

Finished

Finish Finish
time step one time step

Unsteady Converge

Fig. 7.3 Calculation algorithm

Fig. 7.4 Schematic diagram of the Kaplan turbine. a Whole flow passage of turbine. b Runner
and blades. c Runner grid system
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7.3.2.2 Computational Results of Pressure Pulsation
for a Model Kaplan Turbine

For conditions listed in Table 7.1, unsteady turbulent flow calculations are carried
out in a whole flow passage of the Kaplan turbine model.

Pressures at all measuring points indicated in Fig. 7.5 are recorded at each time
step. The time domain graphs of the pressure are obtained. Fast Fourier Trans-
forms is then utilized to transform the time domain data into the frequency domain
graphs of pressure pulsation at all measuring points. The abscissa is energy of
pressure pulsation in unit Pa

2/Hz, the ordinate is frequency of pressure pulsation in
unit Hz.

Figures 7.6 and 7.7 show the results at 0.3D1 under the runner and the inlet of
the draft tube (-X) (Liu et al. 2008).

Table 7.2 lists the pressure pulsation frequency and corresponding amplitude at
four measuring points.

The unit of amplitude is DH/H, that is the ratio of pressure fluctuation ampli-
tude DH in time domain to the turbine water head. In the table, the amplitude at
time domain is defined as the maximum amplitude measured in the time domain
graphs of the pressure variation with 97 % reliability.

The characteristics of pressure pulsation and its transmitting pattern of the
model turbine are analyzed in Sect. 7.3.3.

7.3.3 Patterns of Pressure Pulsation Transmission

The rotating frequency of the runner is 21.13 Hz. From Table 7.2, it can be seen
that the energy of the pressure pulsation peaks at several frequencies. The first
peak appears at a low frequency of 0.15 times of the rotating frequency that is
3.2 Hz. The amplitude of pressure pulsation at this frequency is the highest
sampled at the outside of the draft tube elbow and gradually decreases in upstream
direction.

In front of stay vane

In front of guide vane

Behind guide vane

z

x

C

B

A0.3D1under runner

Draft tube inlet  X_

Outside of draft
tube elbow

Y point at draft tube inlet_

(a) (b)

Fig. 7.5 Measuring and sampling points of pressures. a In front of the runner. b In draft tube
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Table 7.1 Kaplan turbine pressure pulsation test operation condition parameters

Runner blade
angle
(�)

Guide vane opening
A0 (mm)

Unit speed
n11 (r/min)

Unit flow
Q11 (l/s)

Water head
of prototype
Hp (m)

Water head
of model
H (m)

15 20 118.6 805 52.2 14

Runner
diameter
of prototype
D1p (m)

Runner
diameter
of model
D1 (m)

Prototype
speed
np (r/min)

Model
speed
n (r/min)

Prototype
flow rate
Qp (m3/s)

Model flow
rate
Q (m3/s)

8 0.35 107 1267.9 371.5 0.3688
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Fig. 7.6 Pressure fluctuation at 0.3D1 under model turbine runner. a Pressure variation with
time. b Pressure fluctuation spectrum
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The second peak emerges at 21.3 Hz, which is approximately the rotating fre-
quency. The amplitude of pressure pulsation at this frequency is the highest at the
inlet of the draft tube and decreases in both upstream and downstream directions.

The third peak is at 42.3 Hz, which is approximately twice the rotating fre-
quency. The amplitude of pressure pulsation at this frequency is the highest at the
inlet of the draft tube and decreases in both upstream and downstream directions.

The fourth peak appears at 84.2 Hz, which is approximately four times the
rotating frequency. The amplitude of pressure pulsation at this frequency is the
highest at the inlet of the draft tube and decreases in both upstream and down-
stream directions.

The fifth peak appears at 125.8 Hz, which is approximately six times of the
rotating frequency. The amplitude of pressure pulsation at this frequency is the
highest at 0.3D1 under the runner and decreases in the downstream direction.

At all the measuring points, there are other peaks at frequencies 10.2, 104.1,
148.3 Hz, and etc. They correspond to 0.4, 5, and 7 times of the rotating fre-
quency. However, their amplitudes are not significantly larger than the average.

For pressure transmission patterns, calculation results are in good agreement
with experimental results. However, some high energy pressure pulsation fre-
quencies at the measuring points are different from the experimental results.

7.3.4 Pressure Pulsation Prediction of a Kaplan Turbine
Prototype

The good agreement of the pressure pulsation prediction for the model Kaplan
turbine with the experimental study verifies the validity of the numerical method
employed. Therefore, the numerical method is thus used for the prediction of
pressure pulsation of the prototype turbine, which has the following primary
parameters:

Weighted average head of power station H = 52.2 m;
Diameter of runner D1 = 8 m;
Design output P = 200 MW;
Suction head of power station Hs = +3.5 m.

7.3.4.1 Computational Pressure Pulsation of a Prototype Kaplan
Turbine

The results of 3D unsteady computation for the whole flow passage of the pro-
totype Kaplan turbine are achieved with the pressure pulsation data FFT trans-
formed. Theses pressure pulsations in both time domain and frequency domain are
at locations of 0.3D1 under the runner, the inlet of the draft tube (-X), and the
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outside of the draft tube elbow. Figures 7.8 and 7.9 show the calculated pressure
pulsations at 0.3D1 under the runner and inlet of the draft tube -X.

7.3.4.2 Comparison of the Numerically Predicted Pressure Pulsation
of the Model Turbine and the Prototype Turbine

Table 7.3 lists the numerical prediction of pressure pulsations at three measuring
points for both model and prototype turbines. The similarities between the model
and prototype turbines can be drawn as follows.

1. A low frequency pressure pulsation of 0.15–0.3 times of rotating frequency
exists in the draft tubes. At the same time, pressure pulsations at frequencies of
1, 2, 4, and 6 times of the rotating frequency are also present in the draft tube.
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Fig. 7.8 Calculated pressure pulsation at 0.3D1 under runner of prototype turbine. a Pressure
pulsation waveform. b Pressure pulsation frequency spectrum
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a Pressure pulsation waveform. b Pressure pulsation frequency spectrum

264 7 Prediction of Pressure Fluctuation by Turbulent Flow Analysis



2. The relative strength order for harmonics of the pressure pulsations for each
measuring point is the same between model and prototype. For example, the
pressure pulsation amplitude of six times the rotating frequency at 0.3D1 under
the runner is the highest; the pressure pulsation amplitude of two times the
rotating frequency at the inlet of the draft tube is the highest.

3. For all components of pressure pulsation, their source and transmission patterns
are the same. For example, the pressure pulsation amplitude of two times of
rotating frequency at the inlet of the draft tube is the highest and gradually
decreases in both upstream and downstream directions.

7.4 Simulation of Unsteady Flow Through Francis
Turbine by DES

In this section, the DES approach is applied to simulate the unsteady turbulent flow
in a whole passage of a model Francis turbine. The internal flow, vortex motion and
pressure fluctuation inside the turbine can be studied from the calculated results,
which are compared with the experiment data. It can be seen that this method can
describe the complex flow of the turbine well with a relatively low mesh density.

7.4.1 Introduction

The flows in hydraulic turbines are unsteady and complex 3D turbulent. They are
characterized by vortices of length scales in a wide range, high shear and reversal
flows, cavitating flows etc. The adverse pressure gradients at the exit of runner and
the entrance of the draft tube lead to boundary detachment, secondary flows and
formation of vortex rope, which all impact the hydraulic efficiency and cause

Table 7.3 Comparison of computational of pressure pulsation frequencies and relative ampli-
tudes (DH/H) of model and prototype turbines

Pressure pulsation frequency Low 1 9 rotate 2 9 rotate 4 9 rotate 6 9 rotate Amplitude

Frequency (Hz) Model 3.48 23.4 45.3 86.0 128.8
Prototype 0.547 1.94 3.73 7.41 10.89

Frequency/rotate
frequency

Model 0.165 1.107 2.144 4.07 6.096
Prototype 0.306 1.088 2.092 4.156 6.108

DH=H(%) at
0.3D1

under runner

Model 0.473 0.916 1.88 1.23 3.8 4.41
Prototype 0.117 0.4797 0.971 0.796 1.732 2.66

DH=H(%) at –
X of draft
tube inlet

Model 0.516 0.9 2.53 2.34 2.11 4.03
Prototype 0.616 1.24 4.78 4.32 4.23 8.04

DH=H(%) at
elbow outside

Model 0.55 0.45 0.94 0.57 0.33 1.1
Prototype 0.276 0.395 0.64 0.43 0.49 0.99
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instabilities (e.g. pressure fluctuation and structure vibration). They may also con-
tribute to runner blade cracks, structural vibrations, cavitation, and serious accidents.

The Francis turbine is designed for the designed operating condition such that
the inlet flow is symmetrical with no striking and the outlet flow is perpendicular.
However under off-design conditions, flows deviate from the design status, causing
separate flows, inverse flows, vortex rope, and other unsteady phenomena. On part
load operating conditions, there are vortices and swirling flows in the runner blade
channels and the draft tube.

Generally, the vortices in hydraulic turbines can be divided into three catego-
ries: vortex rope in draft tube, Karman vortex, and blade passage vortex. The
Karman vortex is caused by circuitous flow around runner blades. The blade
passage vortex comes from separate flow of blade outlet edge, and the vortex rope
is attributed to swirling flow and vortices from runner, which is most harmful to
machine causing pressure fluctuations.

7.4.2 Numerical Simulation

In this calculation, to simulate the complex swirling flow in the whole passage of
the Francis turbine (Fig. 7.10), the DES approach is applied in solving three-
dimensional N-S equations. The finite volume method is used to convert the
governing equations into algebraic equations for numerical simulation. The
momentum and continuity equations are solved sequentially by the SIMPLEC
algorithm (Wu et al. 2006).

Fig. 7.10 The whole passage of three-gorge turbine
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7.4.2.1 Numerical Method

In the unsteady turbulent simulation, the fully implicit scheme is utilized for
temporal discretization because it is unconditionally stable with respect to time
step size. The central-differenced method with second-order accuracy is employed
for diffusion term; and for convection term, the second order upwind scheme is
used. The SIMPLEC method is used for introducing pressure into the continuity
equation. The mesh number of each part is shown in Table7.4 along with their
mesh scales and numbers. The hexahedron mesh is used on the model because the
number of this kind of mesh is lower than a tetrahedron with the same scale.

7.4.2.2 Boundary Conditions

For the inlet and outlet of the computational domain, the pressure conditions are
given because they can reflect the actual flow state in the turbine. According to
experimental data, the downstream level is assumed to be 1 m above the top of the
draft tube outlet. The water head for the experiment is 20 m. Thus the pressure at
the inlet can be calculated once the dimensions of the passage are known. For a
more accurate simulation, the pressure distribution of the outlet is given, which can
be calculated once the downstream level has been decided. The rotating speed is
87.4 rad/s. The time step is chosen as one hundredth of the rotating period, which is
7:19� 10�4s, where X is the angular speed of the runner (Wu et al. 2002).

The total and static pressure of the inlet and static pressure of the outlet are
given as boundary conditions. The unit rotating speed and flow rate are all set the
same those in experiments, as referring to Table 7.5.

7.4.3 Simulation Results

The results of this simulation show that this method can be effective to simulate
the complex flow, which is full of large-scale vortices and separated flows. The
energy characteristics such as hydraulic efficiency and the dominant frequency of

Table 7.4 Mesh scales and numbers (Wu et al. 2006)

Part Casing Guide blade Runner Draft

Size 10 mm 12 mm 5 mm 10 mm
Number 164088 139158 598391 694605

Table 7.5 Hydro condition
for simulation

Guide opening
(mm)

Unit rotating speed
(rpm)

Unit Flow rate
(m3/s)

10 70 0.46
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pressure fluctuation inside the draft tube are compared with experiment results.
Notice that the difference of simulation and experiment is small.

7.4.3.1 External Characteristic Results

The internal unsteady flow of the whole passage in a Francis turbine model is
simulated using DES. The results such as flow rate and hydraulic efficiency are
shown in Table 7.6. The results of the model tests are listed for comparison.

The difference between simulation and experiments is very small within 5.0 %,
which indicates the simulation results are acceptable.

7.4.3.2 Results for Pressure Fluctuation

For the model test, pressure fluctuations are measured at 4 points inside the turbine
model, as shown in Fig. 7.11. One is located between guide vane and runner while
the others are inside the draft tube. For the simulation, the pressure fluctuations are
sampled at the same points.

The comparison is shown in Table 7.7. The relative maximum fluctuation range
are defined as

�A ¼ DHmax=Ht ð7:45Þ

Table 7.6 External characteristics obtained from simulation and experiment (Wu et al. 2006)

Guide opening (mm) Flow rate (kg/s) Water head (m) Hydro efficiency (%)

Simulation 10 281.8 19.1 85.6
Experiment 10 288.8 20 86.2
Error (%) 2.5 4.7 0.9

point.1guide vane

ring

blade

crown

point.3

point.4

point.2

draft tube

1
2
3

4

5
6

7
8

9 10 11 1213

(a) (b)

Fig. 7.11 Pressure fluctuation recording points inside hydro turbine. a Point.1 between guide
vane and runner. b Point.2, point.3, point.4 inside draft tube
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where DHmax is the maximum range of pressure fluctuation. Ht is the operating
water head.

The comparison shows that the maximum error is about 10 %, and indicates
that the DES simulation results are acceptable.

The difference between simulation and experiment might be caused by two
factors. One is the mesh number of the turbine model not dense enough to simulate
the complex 3D unsteady turbulent flow. The other might attribute to measuring
errors during the model experiment.

7.4.3.3 Pressure Distribution in the Draft Tube

Pressure distribution on plane 1 and plane 2 inside draft tube are investigated. The
3D flow structure of the vortex rope inside the draft tube is also visualized by
pressure isosurfaces. These instantaneous results are shown in Fig. 7.12.

From Fig. 7.12 it can be seen that the lowest pressure core (the blue part of
these pictures) is rotating around the plane center, which reflects the vortex rope
motion inside draft tube.

7.5 Simulation of Unsteady Flow Through Centrifugal
Pumps

The same approach as demonstrated in Sect. 7.3 has been applied to the unsteady
turbulent flow through the entire flow passage (that is, from inlet in front of an
inducer to outlet of spiral diffuser) of a high speed centrifugal pump. Figure 7.13
shows the computational domain of inlet tube, inducer, guide vane support, cen-
trifugal impeller, the vane diffuser and spiral casing diffuser (Xu 2004).

The specifications of the pump are:

1. 3 bladed inducer, diameter: 120 mm
2. Guide vane support: 8
3. 6 bladed impeller, diameter: 163 mm
4. 7 vaned diffuser

Table 7.7 Comparison between simulation and test

Point name Relative pressure fluctuation (%) Error (%) Main frequency (Hz) Error (%)

Point.1 Simulation 2.3 8.7 2.8 7.1
Experiment 2.13 3.0

Point.2 Simulation 5.1 10.5 3.1 10
Experiment 5.75 3.4

Point.3 Simulation 3.7 7.5 3.2 6.7
Experiment 4.05 3.4

Point.4 Simulation 4.2 10.6 2.85 5.0
Experiment 4.69 3.0
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For the rotating inducer and impeller, there are four rotor-stator interfaces. They
are in front of the inducer, between the inducer and guide vanes, between guide
vanes and impeller, and between impeller and vane diffuser as shown in Fig. 7.13b.

In the unsteady flow simulation, the moving grid of impeller and inducer rotates
4� at every time step. The pressure variations at selected time intervals and at
selected spatial points are usually recorded to reduce the size of data file.

(a.1) t =0.647s        (a.2) t =0.676s   

(c.3) t =0.705s (b.1) t =0.647s   

(b.2) t =0.676s (b.3) t =0.705s

Fig. 7.12 Pressure and velocity vector on plane 1 (a) and plane 2 (b) (Unit: Pa). (Wu et al. 2006)
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7.5.1 Simulation of Stator–Rotor Interaction

In order to present the calculated results, one may plot the pressure fluctuations at
sections with the wrap angles 50�, 120�, 140�, 160�, 180�, 266� and 318� (measured
from the leading of inducer blade) and at diameters of 0.046, 0.024 or 0.056 m
throughout the inducer. Table 7.8 shows the amplitudes of pressure fluctuations
from inlet to outlet of the inducer under different rotating speeds. The fluctuation
amplitude increases with the increase of rotating speed. Figure 7.14 shows the
pressure spectrum at radius 0.056 m and at wrap angle 318�. The main frequency of
the pressure fluctuation is 713 Hz and the second frequency is 1,331 Hz.

7.5.2 Simulation of Vortex Through Impellers

The normalized helicity method has been used to analyze the vortex motion
through the inducer of pump for understanding the vortex character. The method
was introduced by Levy et al. (1998) to find the central lines of vortex nuclei. The
normalized helicity is defined as

Fig. 7.13 Centrifugal pump. a Calculated domain. b Interfaces of centrifugal pump

Table 7.8 Amplitude of pressure fluctuation through inducer

Speed Diameter Amplitude/kPa

(r�min-1) (mm) inlet 50� 120� 140� 160� 180� 266� 318� Outlet

9,000 46 20 95 47 58 63 63 142 162 110
11,000 46 30 110 – – – – – – 259
13,000 24 124 100 220 239 236 220 324 288 220
13,000 46 124 100 253 268 264 260 384 267 120
13,000 56 98 416 279 297 320 317 423 296 148
20,000 46 128 450 382 41 433 405 897 879 259
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Hn ¼
Vf g � xf g
Vf gj j xf gj j ð7:45Þ

where xf g is the eddy of the flow and Vf g is velocity in the flow. From Eq. (7.46)
it is clear that �1�Hn� þ 1:

Figure 7.15 indicates the normalization helicity distribution at each section
from the leading edge of inducer to its outlet. In these contours, it is clear that in
the front of the inducer there is a ring-type vortex rope which rotates with the flow.

713

1331

5.0E+06

4.0E+06

3.0E+06

2.0E+06

1.0E+06

1.8E+01
2500 5000 7500 10000

f Hz

F
F

T
 c

oe
f.

Fig. 7.14 Pressure spectrum at radius 0.056 m and at wrap angle 318� in inducer
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Fig. 7.15 Normalization helicity distribution at every section of inducer. a At z = 0 m section.
b At z = 0.002 m section
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7.5.3 Leakage Flow in Impeller

Figure 7.16 illustrates the particle trajectory in the inducer and Fig. 7.17 shows the
particle trajectory in impeller under the operation condition of rotating speed
13,000 r/min.

The leakage flow can be clearly seen at the tip of the two rotational rotors, one
being the axial inducer, and another being the semi-open type of centrifugal
impeller.
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Chapter 8
Structural Dynamic Analysis in Hydraulic
Machinery

The study of structural dynamics focuses on a structure’s behaviour when it is
subjected to dynamic loading. Dynamic analysis can be used to research dynamic
displacements, time-history, and modal analysis. A static load is one that does not
vary, whereas a dynamic load changes with time. If it changes slowly, the struc-
ture’s response may be determined with static analysis. However, if it varies
quickly, the response must be determined with dynamic analysis. Dynamic anal-
ysis for simple structures can be carried out manually, but for complex structures,
FEM can be applied to calculate the mode shapes and frequencies (see Bathe and
Wilson 1976).

8.1 Introduction to Structural Dynamic Analysis

A dynamic load can pose a significantly larger effect than a static load of the same
magnitude because the structure is unable to respond the loading in deflecting
(Clough and Penzien,1975). The increase in the effect of a dynamic load is given
in the dynamic amplification factor (DAF) (Wikipedia 2012):

DAF ¼ umax=ustatic

where u is the deflection of the structure due to the load. The DAF for a given
loading can be read from the graph, and the static deflection can be easily cal-
culated for simple structures and the dynamic deflection found.

A full time-history implies the response of a structure over time, during and
after the application of a load. To find the full time-history of a structure’s
response one must solve the structure’s equation of motion. The Heaviside Step
Function is a reasonable model to find the application of many real loads, such as
the sudden addition of a piece of furniture, or the removal of a prop to a newly cast
concrete floor. However, in reality loads are usually built up over a period of time
instead of imposed instantaneously.

Any real structure will dissipate energy (mainly through friction). This can be
modeled by means of modifying the DAF:

Y. Wu et al., Vibration of Hydraulic Machinery,
Mechanisms and Machine Science 11, DOI: 10.1007/978-94-007-6422-4_8,
� Springer Science+Business Media Dordrecht 2013
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DAF ¼ 1þ e�cp

where c ¼ Damping coefficientð Þ= Critical Damping coefficientð Þ is 2–10 %
depending on the type of construction. Generally damping would be ignored for
transient events (for example, an impulse load), but not for non-transient events.

A modal analysis calculates the frequency modes or natural frequencies of a
given system, but not necessarily its full time-history response to a given input.
The natural frequency of a system is dependent only on the stiffness of the
structure and the mass which participates with the structure (including self-
weight), and it is not dependent on the load function. It is useful to know the modal
frequencies of a structure as it ensures that frequency of any applied periodic
loading will not coincide with a modal frequency and hence eliminate resonance,
one that leads to large vibrations. The method is:

(a) Find the natural modes (the shape adopted by a structure) and natural
frequencies

(b) Calculate the response of each mode
(c) Superpose the response of each mode to find the full modal response to a given

loading (optional).

It is possible to calculate the frequency of different mode shapes of the system
manually with the energy method. Given the mode shape of a multiple degree of
freedom system, one can find an ‘‘equivalent’’ mass, stiffness, and applied force for
a single degree of freedom system. The basic mode shape of simple structure can
be found through inspection, but this is not a conservative method. Rayleigh’s
principle states: The frequency x of an arbitrary mode of vibration, calculated by
the energy method, is always greater than or equal to the fundamental frequency
xn.

For an assumed mode shape of a structural system with mass, M; stiffness, EI
(Young’s modulus, E, multiplied by the second moment of area, I); and applied
force, F(x), then

Equivalent mass, Meq ¼
R

M�u2dx, Equivalent force, Meq ¼
R

F�udx, Equivalent

stiffness, keq ¼
R

EI d2
�u

dx2

� �

dx, then

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

keq

�

Meq

q

:

The complete modal response to a given load F(x, t) is uðx; tÞ ¼
P

un x; tð Þ.
The summation can be carried out using one of three common methods:

1. Superpose complete time histories of each mode (time consuming, but exact);
2. Superpose the maximum amplitudes of each mode (quick but conservative);
3. Superpose the square root of the sum of squares (good estimate for well-

separated frequencies, but unsafe for closely spaced frequencies).

To superpose the individual modal responses manually, one should calculate
them with the energy method: T = 2px.
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Assume that the rise time tr is known, and it is possible to read the DAF from a
standard graph. The static displacement can be calculated with ustatic ¼ F1;eq

�

k1;eq:

The dynamic displacement for the chosen mode and applied force can then be
found from umax ¼ ustaticDAF:

For real systems there is often mass participating in the forcing function (such
as the mass of the ground in an earthquake) and the mass participating in inertia
effects (the mass of the structure itself, Meq). The modal participation factor C is a
comparison of these two masses:

C ¼
X

Mn�un

.

X

Mn�u2
n:

8.2 Principle of Dynamic Analysis of Hydraulic Machinery

Dynamic analysis of three dimensional structural systems is a direct extension of
static analysis. The elastic stiffness matrices are the same for both dynamic and
static analysis. It is only necessary to lump the mass of the structure at the joints.
The addition of inertia forces and energy dissipation forces must satisfy dynamic
equilibrium. In this section, the principals of dynamic analysis of hydraulic
machinery comprise the following four parts: the dynamic equations of free
vibration, the governing equations of the fluid–structure interaction (FSI) of
hydraulic machinery in still fluid or in moving fluid, and the structure dynamic
equations considering moving flow for FEM

8.2.1 Foundation of Free Vibration in Elastic Structures

The equation for free vibration in non-damping elastic structures is

M½ � €uf g þ K½ � uf g ¼ 0 ð8:1Þ

where [M] is the structure’s mass matrix; [K] is the structure’s elastic matrix; and
{u} is the structure’s displacement vector.

For linear systems, the solution of this free vibration is a simple harmonic
vibration, i.e.,

uf g ¼ Uf gi cos xit ð8:2Þ

where xi is ith order frequency; {U}i is the modal of the ith order frequency; and
t is time. The equation then becomes

�x2
i M½ � þ K½ �

� �

Uf gi¼ 0: ð8:3Þ

Since {U}i cannot equal zero, the equation reduces to the following term:
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K½ � � x2
i M½ � ¼ 0: ð8:4Þ

Its solution will yield natural frequencies and vibration modals for a free
vibration system.

8.2.2 Governing Equations of FSI in Still Fluid

8.2.2.1 Approaches of FSI

Fluid–structure interaction (FSI) is the interaction of some movable or deformable
structure with an internal or surrounding fluid flow. Fluid–structure interactions
can be stable or oscillatory. In oscillatory interactions, the strain induced in the
solid structure forces it to move so that source of strain is reduced, and the
structure returns to its former state only for the process to repeat (see Dubcová
et al. 2008).

Fluid–structure interaction and multiphysics problems in general are often too
complex to solve analytically, so they have to be analyzed by means of experi-
ments or numerical simulation. Research in the fields of computational fluid
dynamics and computational structural dynamics is still ongoing but the maturity
of the research enables numerical simulation of fluid–structure interaction. Two
main approaches exist for the simulation of fluid–structure interaction problems.

Monolithic approach: The equations governing the flow and the displacement of
the structure are solved simultaneously. It is the fully coupled method, where the
fluid and structure problem are solved within the same code and the same grids.
This method is applied for strongly coupled problems, e.g., for modal analyses.

Partitioned approach: The equations governing the flow and the displacement of
the structure are solved separately, with two distinct solvers.

The monolithic approach requires a code that is developed for this particular
combination of physical problems whereas the partitioned approach preserves
software modularity because an existing flow solver and structural solver are
coupled. Moreover, the partitioned approach solves the flow equations and the
structural equations with different, possibly more efficient techniques which are
developed specifically for either flow equations or structural equations. On the
other hand, a coupling algorithm is required in partitioned simulations.

8.2.2.2 Full Coupled Equation for FSI in Still Fluid

In structural dynamics, the dynamic equation of stricture is

Ms½ � €uf g þ Cs½ � _uf g þ Ks½ � uf g ¼ Fsf g ð8:5Þ
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where [Ms] is the structure mass matrix; [Cs] is the structure damping matrix; [Ks]
is the structure stiffness matrix; {Fs} is the applied load vector on the structure, in
this case, {Fs} pressure vector on the nodes; and {u} is the nodal displacement
vector of the structure.

The governing equations for fluid dynamics are the Navier–Stokes (N–S)
equations and the mass continuity equation. The simple form of FSI is still fluid
and structure coupling. Therefore in that case the assumptions can be made as
follows (Woyjak 1992).

The fluid is slightly compressible (density changes due to pressure variations);
the fluid is non-viscous (no viscous dissipation); the flow is irrotational; and there
is no mean fluid flow. Changes of mean density and pressure in different areas of
the fluid domain remain small. The fluid governing equations may be changed to
sound wave equation, i.e.,

1
c2

o2p

ot2
� Dp ¼ 0 ð8:6Þ

where c is the wave speed in the fluid, c ¼
ffiffiffiffiffiffiffiffiffiffi

k=qo

p

; p is the fluid pressure induced
from the sound wave and forces acted on fluid; D is the Laplace operator; k is the
fluid volumetric modulus; and qo is the mean fluid density.

The sound equation (8.6) and the dynamic equation of structure can describe the
FSI in still fluid with fluid pressure on the structure wall and displacement of the wall:

nf g � rpf g ¼ �q0 nf g � €uf g ð8:7Þ

where {n} is the unit normal vector on interface and rpf g is the pressure gradient
(vector) along the normal vector.

Considering the interface effects, the Eq. (8.6) can be discritized as

Mf

� 	

€pf g þ Cf

� 	

_pf g þ Kf

� 	

pf g þ Msf

� 	

€uf g ¼ 0 ð8:8Þ

where [Mf] is fluid equivalent ‘‘mass’’ matrix; [Cf] is the fluid equivalent
‘‘damping’’ matrix; [Kf] is the fluid equivalent ‘‘stiffness matrix’’; {p} is the fluid
pressure ‘‘load’’, which makes structure displacements at the interface;
[Msf = qfR] is defined as equivalent coupling ‘‘mass’’ matrix acting to fluid; and
[R] is the fluid ‘‘load’’ produced by structure displacement at the interface.

In order to account for the effect of pressure to structure on the interface, one
would modify Eq. (8.5) as

Ms½ � €uf g þ Cs½ � _uf g þ Ks½ � uf g þ Kfs

� 	

pf g ¼ Fsf g ð8:9Þ

where [Kfs = -R] is defined as equivalent coupling ‘‘stiffness’’ matrix, which
changes due to pressure variations.

In the case of a monolithic approach, the equations governing the flow and the
displacement of the structure are solved simultaneously, with a single solver. The
structural dynamics equation is coupled with the equations of the fluid, which can
be described as the following discretized equation:
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:

ð8:10Þ

To simplify the expression, one might use the following equation:

Ms 0
Msf Mf


 �

€u
€p

� 


þ Cs 0
0 Cf


 �

_u
_p

� 


þ Ks Kfs

0 Kf


 �

u
p

� 


¼ Fs

0

� 


: ð8:11Þ

8.2.3 FSI Governing Equations in Moving Fluid

In order to examine the dynamical behaviour of the long and thin structure of the
blades of hydraulic machinery, the coupled simulations considering fluid flow and
structural behaviour need to be performed. FSI governing equations in small or
large deformations of the structure are presented in this section.

8.2.3.1 FSI Governing Equations in Small Deformation of Structure

There are two strategies for coupled solutions of dynamic fluid and structure
interaction. One is the loosely coupled method (partitioned approach) with
dynamic forces and structural displacement exchanged as boundary conditions for
each other at every time step.

In the partitioned approach with small deformations in structure, it is assumed
that blade vibrations in the hydraulic machinery cause unsteady effects that are
significantly smaller than unsteady effects due to instability of the flow, sometimes
even neglectable. That is to say, there is no feedback of blade motion on the flow.

The water is considered to be incompressible. A time-dependent Reynolds
average Navier–Stokes (RANS) simulation is performed to calculate the flow field
in hydraulic machinery. The continuity equation and the momentum equations for
the fluid within still frame (spiral case, stay vanes, wicket gates, and the draft tube)
are the Reynolds average Navier–Stokes equations of absolute velocity and the
continuity equation.

In order to close those equations in turbulent flows, the turbulence model must
be adopted.

For rotating components of hydraulic machinery, such as the runner and
impeller, the continuity equation and the momentum equations for the flow
expressed by relative velocity in the rotational frame must be used. Sometimes
those equations in the frame may be written in absolute velocity, and turbulence
models must be applied to close the governing equations. For the structure of
hydraulic machinery in this approach, the transient dynamic equilibrium equation
for the stresses in a linear structure is Eq. (8.5).
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8.2.3.2 FSI Governing Equations in Large Deformation of Structure

In the case of a large displacement, the deformation of the fluid domain cannot be
neglected and methods with moving meshes must be employed. The fluid and
structure interaction represents in its generality a very complicated process.

Required considerations are the simulation of viscous flow, changes of the flow
domain in time, nonlinear behavior of the elastic structure, and simultaneously
solving the evolution systems for both the fluid flow and the oscillating structure.

Methods with moving meshes must be employed to investigate a vibrating
structure with large displacements in which changes of the fluid domain cannot be
neglected. An appropriate choice is to apply the Arbitrary Lagrangian–Eulerian
(ALE) method.

Due to the mesh deformation, the velocity of the grid nodes {vG} results in the
Arbitrary-Langrange-Euler (ALE) formulation:

ovi

oxi
¼ 0 ð8:12Þ

ovi

ot
þ ðvj � vGjÞ

ovi

oxj
¼ � 1

q
op

oxi
þ ovi

oxj

l
q

ovi

oxj
þ ovj

oxi

� �

� v0iv
0
j


 �

þ fBi ð8:13Þ

where vGj is the velocity component of grid nodes, and fBi is body force
component.

For engineering problems the partitioned approach is usually employed. In
order to account for the coupling and to avoid unstable simulations, some coupling
schemes have been developed as shown in Fig. 8.1 (Lippold and Ogor 2007).

8.2.4 Structure Dynamic Equations Considering Moving
Flow for FEM

When hydraulic machinery is in an operating condition, the centrifugal force of the
runner/impeller rotation causes an initial stress field in the runner/impeller. The
initial stress will change the natural frequencies of the runner and its blade. So it is
necessary to solve the eigenvalues of runner or blade moving equations for its
operation safety.

8.2.4.1 Dynamic Equations in Centrifugal Flow Field of a Runner

In moving flow conditions, especially in rotating runner/impeller, the structure will
be affected by a centrifugal force besides the inertial force and damping force, as
well as the pre-stress force. The structure dynamic equations considering moving
flow in FEM are as follows:
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M½ � €uf g þ C½ � _uf g þ MG½ � _uf g þ K½ � uf g � MC½ � uf g
¼ Qcf g þ Qp

� �

� Frf g þ Rf g ð8:14Þ

where [M] is structure mass matrix; [C] is structure damping matrix; [MG] is
structure adding mass matrix caused by Coriolis force; [K] is structure stiffness
matrix; [Mc] is the structure adding mass matrix caused by centrifugal force; {Qc}
is the centrifugal force vector before structure deformation; {Qp} is the equivalent
flow pressure loading vector; {Fr} is the equivalent loading vector caused by
initial stresses at nodes; {R} is the concentrated force vector at nodes; and
{Qc} ? [Mc]{u} is the centrifugal force vector after structure deformation.

8.2.4.2 Static Equations in Centrifugal Flow Field of a Runner

When the runner is in a free vibration, initial stresses caused by external forces and
other effects change Eq. (8.14) without damping to be simplified as

M½ � €uf g þ MG½ � _uf g þ K½ � uf g � MC½ � uf g ¼ Qcf g: ð8:15Þ

When the runner is at a standstill, i.e., [MG] = [Mc] = 0, {Qc} = 0 the
equation is transformed to the following equation in order to solve the static
natural frequencies and modals (without consideration of FSI effects)

M½ � €uf g þ K½ � uf g ¼ 0: ð8:16Þ
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Fig. 8.1 Exchange schemes in partitioned approach (Lippold and Ogor 2007). a (1) deformations
for time step n; (2) update grid and integrate fluid field to time step n ? 1; (3) put fluid loads to
structure; (4) advance structural solution to time step n ? 1. b (1) predictor for structure to time
step n ? 1; (2) deformations for time step n ? 1; (3) update grid and integrate fluid field to time
step n ? 1; (4) put fluid loads to structure to time step n ? 1; (5) advance structural solution to
time step n ? 1. c (1) Deformed grid at time n ? 1/2; (2) update grid and integrate fluid field to
time step n ? 1/2; (3) put fluid loads to structure; (4) advance structural solution to time step n ? 1
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When the runner is rotating, the Coriolis force matrix [MG] is proportional to a
rotating speed of runner X. With a small X, it may be neglected and result in

M½ � €uf g þ K½ � uf g � MC½ � uf g ¼ Qcf g: ð8:17Þ

Owing to the constant rotating speed, the centrifugal force would place the
runner structure in a newly deformed equilibrium. Free vibration of the rotating
structure with constant centrifugal force effects will have new characteristics apart
from that in still condition.

8.2.4.3 Solution of Runner or Blade Vibration Eigenvalues
in the Moving Flow Field

The solution of natural frequencies and modals of free vibration for a runner/
impeller structure with a constant centrifugal force in moving flow condition may
be carried out in the following procedure.

In the beginning it is necessary to solve the following static equation:

K½ � uf g � MC½ � uf g ¼ Qcf g ð8:18Þ

to get the new static balancing condition and the displacements due to the effects
of centrifugal force.

Secondly, according to the solutions of {u} from the foregoing equation, one
must modify the runner coordinates to form a new runner shape. Based on the new
shape of the runner, the new stiffness matrix [Kt] should be assembled.

Then, one should solve the equation for the new free vibration dynamic, which
includes the effect of the centrifugal force on the rotating state, to get the eigen-
values of the runner at new rotating balance:

M½ � €uf g þ Kt½ � � MC½ �ð Þ uf g ¼ 0: ð8:19Þ

This equation is used to calculate the runner’s natural frequencies and modals
with the effects of rotation and centrifugal force.

Equations (8.16) and (8.18) come down to solutions of eigenvalues for a
dynamic system with n degrees of freedom which is expressed in the following
equation:

K½ � /½ � ¼ M½ � /½ � K½ � ð8:20Þ

where [/] is the matrix of the equation character vectors: /½ � ¼
f/1gf/2g � � � f/ng½ �; K½ � is the character values diagonal matrix of the equation:
K½ � ¼ diag½xj2� i ¼ 1; 2; � � � nð Þ; and [M] is the structure mass matrix; and [K] is the

structure (runner) stiffness matrix.
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8.2.4.4 General Dynamic Equations with Moving Flow Load in FEM

Considering the added load of fluid flow only, the discretized dynamic equations of
structure for moving flow in FEM are

M½ � €uf g þ C½ � _uf g þ K½ � uf g ¼ FðtÞf g þ Rf ðtÞ
� �

ð8:21Þ

where {F(t)} is the loading force at nodes; {Rf(t)} is the equivalent fluid loading
force at nodes, which is the function of pressure. Then Eq. (8.24) can be trans-
formed to

M½ � €uf g þ C½ � _uf g þ K½ � uf g ¼ PðpÞf g: ð8:22Þ

8.3 Modal Analysis on Hydraulic Machinery

In order to take into account the added mass effect due to surrounding fluid, one
has to treat the system as a fluid-structure interaction. In this case, the structural
dynamics equation is coupled with equations of fluid, which can be described as
the discretized Eq. (8.11) (Woyjak 1992).

8.3.1 Modal Analysis of a Model Turbine in Still Water
by Monolithic Approach

Liang et al. (2006) conducted the modal analysis on a Francis turbine runner using
the equation for consideration of fluid added to mass effect. Based on the cyclical
symmetrical characteristic of the structure, one sector including one blade, cov-
ering an angle of 360/17 degrees was used to do the simulation. Then the results
were expanded to the whole runner. Before definition of the final mesh configu-
ration, the influence of the element shape and the mesh density was checked.

To complete the simulation model in water, the mesh of the runner was sur-
rounded by a cylindrical fluid domain in order to consider the cyclic symmetric
characteristic of the runner. The fluid mesh was extended from the structure mesh
so that the same set of nodes was shared between both domains on the interface.
The same type of hexahedral element was used to build up the fluid mesh, con-
taining 29,460 nodes and 24,137 elements for each sector. The boundary condi-
tions were carefully treated according to the experimental test (Liang et al. 2006).

The model runner had 17 blades and a diameter of 409 mm. The material used
was a bronze alloy with density of 8,300 kg/m3 and Young’s Modulus of 110 Gpa.

The modal parameters of the runner, both in air and submerged in water, have
been well determined by the experiments and the simulation. Given the cyclical
symmetric characteristics of Francis turbine runners, the vibration modes can be
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classified according to the numbers of nodal diameters (ND) appearing on the band
part.

Under the condition ND = 0, the modes are singlet and natural frequencies are
distinct. The modes with ND0 are doublet; they have a pair of mode shapes with
the same natural frequency. The natural frequencies found for the same mode
shapes are listed in Table 8.1.

The absolute maximum difference in natural frequency values between
experiment and simulation is about 3.6 %. Moreover, the mode shapes also rep-
resent regular consistency between simulation and experiment.

Comparing the results in air and in water, one can observe a significant decrease
in the natural frequencies. This reduction is due to the effect of the added mass
induced by the surrounding water. The added mass effect can be quantified by the
ratio, d; of the frequency in water, fw; to the frequency in air, fa; for each mode
shape:

d ¼ fw=fa ð8:23Þ

which is listed in Table 8.1. Notice that the natural frequencies are brought down
considerably by the presence of fluid, and the frequency ratio shows a significant
variation from 0.61 to 0.90, depending on the corresponding mode shape.

The damping values obtained via experiment for the runner in air and sub-
merged in water are listed in Table 8.2. The damping has low values in all the
modes, which is typical behavior for a structure vibrating with small amplitudes
and high frequencies in stagnant fluid in absence of wave radiation. With the
presence of water, the damping increases and varies depending on the mode
shapes, but not high enough to affect natural frequencies significantly.

The mode shapes of the band for the runner in air are shown in Figs. 8.2 and 8.3
from a bottom view. Similar mode shapes are obtained in water (Liang et al. 2006).

Table 8.1 Natural frequencies of the runner in air and in water (Hz) and frequency ratio

0ND 1ND 2ND 3ND 4ND 5ND

Exp. air 417.50 616.75 373.50 487.50 573.75 649.75
Exp. water fw/Hz 370.50 481.50 279.50 331.25 359.00 400.00

d 0.89 0.78 0.75 0.68 0.63 0.62
Sim. air 425.87 635.53 370.80 485.61 568.18 635.46
Sim. water fw/Hz 383.28 498.90 280.17 335.49 362.34 387.89

d 0.90 0.79 0.76 0.69 0.64 0.61

Note Exp. = experiment, Sim. = simulation, 0ND: Torsion, 1ND: Torsion. Flexion

Table 8.2 Dampings obtained by experiment

0ND (Torsion) 1ND (Flexion) 2ND 3ND 4ND 5ND

In air 0.0047 0.0033 0.0056 0.0068 0.0040 0.0039
In water 0.0068 0.0120 0.0070 0.0082 0.0070 0.0069
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8.3.2 Modal Analysis of a Turbine in Moving Water
by Partitional Approach

Liu et al. (2008a) conducted the modal analysis of a prototypical water turbine in
moving water by partitional approach. The physical model of runner blades for a
Francis turbine in a power station was established, as is shown in Fig. 8.4, which is
the geometric model of whole flowing passage. Basic parameters of the turbine are:

Design head: H = 20 m, design flow rate: Q = 3.4 m3/s,
Rotational speed: n = 428.5 r/min, Number of stationary vanes: Zs = 8,
Number of guide vanes: Zg = 16, Height of guide vanes: b0 = 255 mm,
Guide vane diameter: D0 = 986 mm,
Diameter of runner: D1 = 840 mm, Number of runner blades: Z = 14.

Fig. 8.2 Mode shapes obtained by test in air (ordered by ND from left to right)

Fig. 8.3 Mode shapes
obtained by simulation in air
(ordered by ND from left)

Fig. 8.4 3D model of all
flowing parts of the turbine
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In the work of Liu et al. (2008a), the partitional approach of FSI with con-
sideration of large displacements of interfaces is adopted. The iterative compu-
tation method is applied to solve the coupling equations. This method is suitable
for large scale problems and has relatively lower requirements for computer
resources (see Sect. 8.4.2).

In the modal analysis, the runner blade in moving water is affected by cen-
trifugal forces and dynamic pressure in a definite operation condition of runner,
which is obtained through the steady flow simulation in the turbine. Then the static
analysis of the runner baled is carried out to get the stiffness matrix under the
centrifugal force and pressure, which will induce the initial stresses in the blade.
Based on Eq. (8.23) the modal computation can be performed with consideration
of the flow condition. This modal analysis is carried out in three different operation
conditions:(1) design flow (H = 20 m, Q = 3.40 m3/s), (2) small flow rate
(H = 20 m, Q = 2.38 m3/s), and (3) large flow (H = 20 m, Q = 3.74 m3/s).

Table 8.3 shows the computational runner natural frequencies under three kinds
of flow rate conditions and their frequency ratios with respect to frequency in air.

Table 8.3 indicates that the frequency ratio of the turbine is basically constant
without significant variation at design flow rate. Values of the ratio become small
under both off-design operation conditions. It can be understood that the calculated
data of the frequency ratio by FSI with consideration of the flow conditions in
Table 8.3 are larger than above tested data in still water.

8.4 Dynamic Analysis of Hydraulic Machinery

With increasing unit capacity and runner diameter, issues of unsteady flows in
hydraulic turbines have attracted considerable attention. The energy transfer in a
turbine is accompanied with pressure vibrations caused by vortexes, cavitations,
and other complex flow phenomena in the flow path, which can give rise to

Table 8.3 Runner natural frequency and frequency ratio at three flow rates

Order Design flow rate Small flow rate Large flow rate In air (Hz)

In water (Hz) Ratio d In water (Hz) Ratio d In water (Hz) Ratio d

1 1,756 0.800 1,441 0.656 1,590 0.724 2,195
2 1,758 0.801 1,442 0.656 1,592 0.724 2,197
3 1,759 0.798 1,443 0.654 1,593 0.722 2,204
4 1,759 0.798 1,444 0.655 1,593 0.723 2,204
5 1,761 0.796 1,445 0.653 1,595 0.721 2,210
6 1,762 0.793 1,446 0.651 1,596 0.719 2,221
7 1,763 0.776 1,447 0.638 1,597 0.704 2,269
8 1,764 0.773 1,448 0.635 1,598 0.701 2,280
9 1,765 0.771 1,449 0.634 1,599 0.699 2,287
10 1,765 0.771 1,449 0.633 1,599 0.698 2,288
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excessive blade vibration and lead to structural fatigue failures. Most research has
focused on pressure fluctuations in flow path, such as those caused by RSI (rotor–
stator interaction) effects, and the vortex rope in the draft tube. Recently a few
researchers have measured dynamic stress in the blades. Comparison of unsteady
flow calculation and the measured stress has implied that the dynamic stresses in
blades are closely related to hydraulic instability.

8.4.1 Analysis of Dynamic Stresses in Kaplan Turbine
Blades

In the work of Zhou and Wang (2007), the stresses in blades of a Kaplan turbine
were analyzed using the partitional approach of FSI with small displacement. The
prototype studied was a ZZA315-LJ-800 Kaplan turbine with a specific speed of
22.6, a runner diameter of 8 m, rated output of 204 MW, rated head of 47 m, and
rated speed of 107 rpm. The stresses in blades were calculated under various
operating conditions to analyze the relationship between the dynamic stresses and
operating conditions. In the FSI, Zhou and Wang (2007) adopted the partitional
approach, and assumed that blade vibrations causing unsteady effects are signifi-
cantly smaller than unsteady effects due to instability of the flow, which sometimes
are even negligible. That is to say, there is no feedback of blade motion on the flow.

The water was considered incompressible. A time-dependent Reynolds Average
Navier–Stokes (RANS) simulation was performed to calculate the flow field in the
Kaplan turbine path. The time-dependent RANS model was discretized via the
control-volume technique through the SIMPLEC scheme with a second-order
upwind scheme used for the convection terms and a central difference scheme for
the diffusion terms in the momentum equations. The time step was 0.0056 s, which
is 1/100 of the runner rotational period. This time step was validated as sufficient
to capture some main pressure fluctuation frequencies such as rotational and blade
passing frequency. The key problem was to transfer the pressure load p on the
blades to the dynamic analysis code. To achieve this, grids on blade surfaces and
the hub were identical for both fluid mesh and structure mesh. A small code was
developed to generate an index for interface nodes in the two domains for the
purpose of transferring data at each time. The advantage of this method is that
pressure on the blades can be transferred precisely without any interpolation. The
flow field simulation started first. For most cases, the frequencies and amplitudes
of pressure vibrations on the monitoring nodes changed little after several rota-
tional periods. Then the structure calculation was conducted and the calculation
results were recorded for several periods.

During the calculations, two points on one blade pressure side (p1) and the
suction side (s1) were selected as monitoring points (Fig. 8.5). Pressure fluctua-
tions at the two points are shown in Fig. 8.6 for three typical conditions GK3, GK8
and GK10 (Table 8.4).
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Under conditions close to the optimum point and those with large blade angles
and guide vane openings, pressure on the blade fluctuates with runner rotation
frequency, fn, as shown in Fig. 8.6b–f for cases GK8 and GK10. However, in cases
with small blade angles and small guide vane openings, the blade pressure fluctu-
ations are accompanied by increased turbulence and the fluctuations which does not
exhibit any obvious periodic feature, as shown in Fig. 8.6a and d for condition GK3.

(a) (b)

Fig. 8.5 Recording points on one blade. a Recording point p1 on suction side. b Recording point
s1 on pressure side
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Fig. 8.6 Pressure fluctuations and torque on one blade for three operating conditions
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Figure 8.6 also demonstrates that the mean value and amplitude of the torque
fluctuations is small near the optimum point (GK8, Fig. 8.6h), larger in cases of large
blade angles and large guide vane openings (GK10, Fig. 8.6i) and even larger in
cases of small blade angles and small guide vane openings (GK3, Fig. 8.6g), verified
from the power station’s operating recordings. When the turbine is operated under
approximately optimum condition (for example, GK8) the operating oil pressure
inside the piston chamber is normal. But when it is operated under approximate the
condition of GK3, the oil pressure inside the chamber is extremely high.

Typical pressure distribution and the von Mises static stress distributions in
blades are plotted in Fig. 8.7 under condition GK3. The maximum stress is near
the blade root in all cases which is consistent with general knowledge on static
stress distributions in Kaplan turbine blades. The dynamic stresses at the node with
maximum stress are rendered in Fig. 8.8 for the three typical conditions.

Figures 8.6 and 8.7 show that the dynamic stresses in blades are closely related
to pressure fluctuations in the flow path. For most cases, main pressure fluctuation
frequency and dynamic stress frequency is the runner rotation frequency fr.

The same analysis was engaged in the computation of dynamic stresses for the
Francis turbine blade (Xiao et al. 2008). It was found that under part load condition
on several nodes in runner blade, the dynamic stresses are very high with
amplitudes reaching 15 MPa, and dominant dynamic stress frequency with 0.77 fr,
where fr is the rotating frequency of runner. The sum of the dominant frequency of

Table 8.4 Operation conditions of Kaplan turbine

Operation
conditions

Working head
H (m)

Power
N (MW)

Guide vanes opening
(%)

Blade angle
(o)

GK3 61 100 36.21 5.57
GK8 53 150 59.03 11.72
CK10 43.8 235 94.6 25.82

Fig. 8.7 Pressure distribution and stress distributions on blades at condition GK3. a Pressure
distributions (Pa). b Stress distributions (Mpa)
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dynamic stresses and the dominant frequency of vortex rope in a draft tube is the
source of excited force with a frequency of 0.3 fr.

8.4.2 Analysis of Dynamic Stresses by Partitional Approach

Since it is almost impossible to carry out the prototype hydro-turbine experiment
before the power plant is built, rational prediction of pressure fluctuations in the
prototype turbine is very important in the design stage. Liu et al. (2008a) applied
the modified RNG k � e turbulence model and the unsteady turbulent flow com-
putation through the whole flow passage of a Kaplan turbine to simulate pressure
fluctuation in a model turbine. The numerical results are in agreement with the
experimental data. Afterwards, this numerical method was utilized to simulate the
pressure fluctuation in a prototype Kaplan turbine with a head of 52.2 m and a
runner diameter 8 m. The computation was carried out under the on-cam operation
condition of blade angle 158 and guide vane opening 67 %.

Based on the pressure fluctuations forecast by an unsteady turbulent flow
simulation with the blade displacement, and based on the dynamic stress com-
putation by FEM in blades, the partitional approach was executed to renew the
pressure fluctuation and the stress and strain data.

Figure 8.9 illustrates the FSI coupling scheme between CFD and CSM (compu-
tational solid mechanism), in which the CFD unsteady turbulent flow simulation
through the whole flow passage of Francis turbine is carried out with the software
Fluent. In CSM the software Abaqus is adopted for FEM computation in runner blades.

The pressure data of each time step obtained from the CFD computation are
transmitted to the FSI coupling interfaces of blade surfaces using the technique of
Mesh-based parallel Code Coupling Interface (Mpcci). The results of blade surface
displacements by the CSM calculation are transmitted inversely to the blade grid
system in each time step to form a new grid system with the dynamic mesh
technique of the spring based smoothing (SBS). The forgoing procedure is
included in only one time step iteration of the FSI coupling. The interaction
between CFD, Mpcci, CSM, Mpcci, SBC and CFD would repeat to achieve the
convergence of displacements of blade surfaces. This coupling was carried out
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Fig. 8.8 Dynamic stress at the node with the maximum stress (cases GK3, GK8, GK10)
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without any assumption of irrotational and non-viscous flow. The coupling results
of the FSI are the dynamic strain and stress of the turbine blade and pressure
pulsation in the turbine runner.

Figures 8.10, 8.11, 8.12, 8.13, 8.14, and 8.15 show stress distributions and
displacements of runner and its blade at the initial moment t = 0 s and the
moment t = 3.0 s during the computational process (Liu et al. 2008a).

From Fig. 8.10 to Fig. 8.12, it is indicated that the high stress area on the blades
is at blade root and the joint between it and runner hub, as well as at its trailing
edge. The maximum value of stress is 141.6 MP at t = 3.0 s moment. But the
maximum value of stress is 222.1 MP during the whole computation process.
From Fig. 8.13 to Fig. 8.15, it is implied that the z-direction or axial direction
displacement has a large value at the outskirt of runner blades with a maximum of
4.865 mm at t = 3.0 s moment with read character in upper-direction and blue
down-direction.

Fig. 8.10 Non-strain state of
baled at t = 0 s
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(a) (b)

Fig. 8.12 Stress distribution on six runner blades (Pa) at t = 3.0 s. a Pressure side of blade.
b Suction side of blade

Fig. 8.11 Runner stain (Pa) at t = 3.0 s

Fig. 8.13 Non-strain state of
baled at t = 0 s
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The maximum value of z-displacement is 7.829 mm during the whole com-
putation process. It is necessary to take into account the displacement in com-
putational prediction of pressure pulsation in runner.

The similar computation was carried out for FSI simulation of a tidal current
turbine by Lippold and Ogor (2007).

8.4.3 Analysis of Dynamic Stresses of a Pelton Turbine

The flow field in Pelton runners is more difficult to determine than that of Francis
or Kaplan turbines because Pelton buckets are moving through the jets, filling and
emptying continuously. With the progress in Pelton turbine CFD and fluid struc-
ture coupling (see Parkinson et al. 2007) more precise results have been achieved
as Keck et al. (2009) summarized.

Fig. 8.14 z-displacement (m) at t = 3.0 s

(a) (b)

Fig. 8.15 The z-displacement (m) on six blade surfaces at t = 3.0 s. a Pressure side of blade.
b Suction side of blade
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8.4.3.1 CFD Analysis of the Jet Bucket Interaction

The unsteady loading analysis of the bucket requires acquisition of the unsteady
pressure loading in the rotating buckets. It is obtained in a flow simulation process
(CFD) that has been analyzed and validated from various sets of unsteady pressure
measurements located both at inner and outer surfaces of buckets obtained at
model scale (see Parkinson et al. 2005a, b).

The action of the water jet in the Pelton bucket has three different phases in the
interaction process: jet loading, maximum torque and water evacuation. The CFD
simulation takes into account the entire bucket surface and its interaction with the
jet. The CFD simulation provides sufficient data for a reliable structural analysis.
During each time-step the pressure distribution on the Pelton bucket surface serves
as input data for FEM Analysis which then reliably predicts deformation and
stress. At maximum torque the hot spot of the stress is generally to be found in the
root zone of the bucket (see Schmied et al. 2006).

8.4.3.2 Structural Analysis of the Pelton Bucket

A typical stress variation in the root consists of periodic stress related to the cyclic
jet impact with some added stress component induced by the mechanical vibra-
tions of the runner shown in Fig. 8.16a. As the bucket vibration takes place in
response to the dynamic load, it is not possible to simulate the process with a
quasi-static FEM analysis with fairly coarse time steps as used today (Fig. 8.16b).

CFD analysis of the jet flow in bucket delivers pressure distribution on the
bucket surface for each time step with good accuracy thereby enabling FEM
prediction of both deformation and stress.

Based on the excitation measurements on a number of individual buckets on
one hand and an iterative solution of the transfer matrix on the other, it is possible
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to determine the parameters of the Pelton runner as coupled multi-mass system and
thereby to determine a detuning procedure if needed.

Some typical natural bucket modes are listed in Fig. 8.17. The relevant mode in
operation is the bending mode in circumferential direction, which, in some cases,
can be combined with a vibration of the buckets rim. (Keck et al. 2009; Sick et al.
2009).

8.5 Analysis of Response to Excited Force on Blades
of Hydraulic Machinery

Both mean and dynamic loads on hydraulic machinery, especially on blades and
vanes are well predicted with modern CFD methods and serve as reliable input for
a structural analysis. Modern FEM has been proven to deliver realistic values of
deformation and stress and thus can be relied on with respect to dynamic load. This
procedure may be applied to the dynamic real time response in hydraulic
machinery as discussed in last section. The following section will introduce the
simple treatment of dynamic response if dynamic loading is analyzed in several
harmonic components with the Fourier Transform (Wang 2003).

Dynamic analysis on the response of excited forces in hydraulic machinery and
any structure may be carried out using several direct methods such as the direct
numerical integration, which includes the Houbolt method, the Newmark method,
and the Wilson-h method, etc.

Fig. 8.17 Important natural
modes of a Pelton runner (see
Sick et al. 2009)
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According to the direct integrate method, it is necessary to divide the time
periodicity T of the structure vibration into n time intervals for a structure dynamic
analysis.

The time increment for each interval is Dt ¼ T=n. From the initial time t = 0 of
the structure state, one should find the state vectors in the dynamic process of the
structure vibration, such as displacement vector {u}, velocity vector { _u}, and
acceleration vector {€u} after each time interval, Dt; 2Dt; � � � T . In the end, the
final state vector of the structure vibration is the solution for a structure dynamic
response to the excitation of forces.

The general motion equation of a structure vibration is in the form:

M½ � €uf g þ C½ � _uf g þ K½ � uf g ¼ fðtÞf g ð8:24Þ

where [M] is mass matrix of the structure system; [C] is its damping matrix; [K] is
its stiffness matrix; and {f(t)} is its excitation force.

8.5.1 The Wilson-h Method

One needs to consider the equations of structure vibration for simplicity.

€xþ 21x _xþ x2x ¼ f

This is the equilibrium equation governing motion for the single-degree-free-
dom system with a vibration period T, dumping 1 and applied load f.

When the equilibrium equation is written in time t ? hDt, it becomes

€xðt þ DtÞ
_xðt þ DtÞ
xðt þ DtÞ

8

<

:

9

=

;

¼ A½ �
€xðtÞ
_xðtÞ
xðtÞ

8

<

:

9

=

;

þ Lf gf ðt þ hDtÞ ð8:25Þ
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In the widely used Wilson-h method, the computational procedure is as follows:

1. It is assumed that at the time moment t, the state vectors of {u} and { _u} are
known. Substituting them into Eq. (8.24), one obtains
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€uðtÞf g ¼ M½ ��1 fðtÞf g � M½ ��1 C½ � _uðtÞf g � M½ ��1 K½ � uðtÞf g: ð8:26Þ

2. Transform Eq. (8.26) to get the vector {u(t þ hDt)} at t þ hDt moment:

uðt þ hDtÞf g ¼ K½ � þ 3
hDt

C½ � þ 6

hDtð Þ2
M½ �

 !�1

M½ � 2 €uðtÞf g þ 6
hDt

_uðtÞf g þ 6

hDtð Þ2
uðtÞf g

 !(

þ C½ � hDt

2
€uðtÞf g þ 2 _uðtÞf g þ 3

hDt
uðtÞf g

� �

þ f ðt þ hDtÞf g



:

ð8:27Þ

3. Based on the Taylor’s Series to get the expression of {€uðt þ hDtÞ}:

€uðt þ hDtÞf g ¼ 6

hDtð Þ2
uðt þ hDtÞf g � uðtÞf gð Þ � 6

hDt
_uðtÞf g � 2 €uðtÞf g: ð8:28Þ

4. Obtain €uðt þ DtÞf g with interaction factor h

€uðt þ DtÞf g ¼ 1� 1
h

� �

€uðtÞf g þ 1
h

€uðt þ hDtÞf g: ð8:29Þ

5. Make the first step of the direct interaction of Eq. (8.29)

_uðt þ DtÞf g ¼ _uðtÞf g þ Dt

2
€uðtÞf g þ €uðt þ hDtÞf gð Þ: ð8:30Þ

6. Finally solve the displacement vector at the next time step {uðt þ DtÞ} by
second interaction

uðt þ DtÞf g ¼ uðtÞf g þ Dt _uðtÞf g þ Dtð Þ2

6
2 €uðtÞf g þ €uðt þ hDtÞf gð Þ ð8:31Þ

where upon the Wilson factor h[ 1.37, the iterative solution is always stable
whatever value is adopted for Dt. But if Dt is too large, accuracy of the solution
will be unsatisfactory.

This method can be used for transient dynamic analysis of a structure on
hydraulic machinery
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8.5.2 Superposition Method of Vibration Mode

According to the superposition method, the vibration response displacement of a
structure can be obtained if the preceding-order natural frequencies and their
vibration modals are known, because the excitation force can be decomposed into
its several low-order components with Fourier analysis. The dynamic responsive
displacement of a structure is the superposition from the several preceding linear
vibration models. The linear combination factors are the response factors of sev-
eral modes of vibration, that is to say, the modal ordinates of the models.

8.5.2.1 Superposition Method Procedure

Main steps of the superposition method of vibration mode are as follows:

1. Solve the free vibration equation of a structure (blade) with n degrees of
freedom through

K½ � /½ � ¼ M½ � /½ � K½ � ð8:32Þ

where [/] is the matrix of the equation character vectors: /½ � ¼
f/1gf/2g f/3g � � � f/ng½ �; K½ � is the character values diagonal matrix of the

equation: K½ � ¼ diag x2
i

� 	

i ¼ 1; 2; � � � nð Þ; and [M] is the structure mass matrix; and
[K] is the structure (blade) stiffness matrix.

Then one can get the preceding natural frequencies and vibration modals of the
structure. For example, if the preceding p orders are needed, then one can obtain
the equation character vectors: ½/ ¼� ½f/1gf/2g f/3g � � � f/pg�; and the character

values diagonal matrix of the equation: K½ � ¼ diag ½x2
i � p ¼ 1; 2; � � � nð Þ:

2. Based on the moving flow in the structure, the structure dynamic equation is

M½ � €uf g þ C½ � _uf g þ MG½ � _uf g þ K½ � uf g
¼ Qcf g þ Qp

� �

� Frf g þ Rf g
ð8:33Þ

One could perform the mode ordinate transform as follows to get the mass
matrix in modal ordinates [ �M], and etc.

�M½ � ¼ /½ �T M½ � /½ �; �K½ � ¼ /½ �T K½ � /½ �; �C½ � ¼ /½ �T C½ � /½ �;
uðtÞf g ¼ /½ �T YðtÞf g; �FðtÞf g ¼ /½ �T FðtÞf g:

ð8:34Þ

Then the following equation of structure vibration expressed in modal ordinates
YðtÞf g can be obtained:
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�M½ � €YðtÞf g þ �C½ � _YðtÞ
� �

þ �K½ � YðtÞf g ¼ �FðtÞf g: ð8:35Þ

Treatment of the mass matrix is based on regularizing transposition; the
damping matrix is based on the assumption of the linear damping factor or on
adopting the model damping, 1i. The group of last differential equations can be
decoupled from each other. The group of decoupling 2nd order differential
equations can be gotten, one of which has the form

€YiðtÞ þ 21ixi _YiðtÞ þ x2
i YiðtÞ ¼ �FiðtÞ ði ¼ 1; 2; � � � pÞ: ð8:36Þ

3. Calculate the structure (blade) response displacement in the main modals’
ordinates. On the assumption of small damping, the general solution of Eq.
(8.36) with weak damping is

YiðtÞ ¼
1

xdi

Z t

0

�FiðsÞe�1ixiðt�sÞ sin xdi t � sð Þds

þ e�1ixi t
_Yið0Þ þ 1ixiYið0Þ

xdi
sin xdit þ Yið0Þ cos xdit

� �
ð8:37Þ

where xdi is the structure (blade) frequency of dynamic response xi after con-
sidering damping correction, xdi = xi(1-1i

2)1/2. Yi(0) and _Yi 0ð Þ are the initial
displacement and the initial velocity of structure respectively.

In a stable response condition, the solution of Eq. (8.37) is the stable solution in
transformed main modal ordinates:

YðtÞf g ¼ bi /if g
T

Kpi

X

1

K¼1

SKf g sin kXt � hi½ � ð8:38Þ

where bi ¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
ik

� �2þ 21ikik

� �2
q

; hi ¼ arctan
21ikik

1�k2
ik
; kik ¼ kX

xi
and X is

rotating speed of runner.

4. Work out the response displacements in physical ordinates from those
expressed in the model ordinates.

Because u tð Þf g ¼ ½/�T Y tð Þf g, the response displacements in physical ordinates
are as follows:

uðtÞf g ¼
X

p

i¼1

bi /if g /if g
T

Kpi

X

1

k¼1

Skf gðkXt � XiÞð Þ: ð8:39Þ

When the S order free-vibration frequency xS falls in resonance with k order
synchronic frequency, bS = 1/(21S), hS = 2p, and then Eq. (8.39) will be sim-
plified as
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uðtÞf g � /Sf g /Sf gT Skf g
21kKpS

sin kXt � p

2

� �

: ð8:40Þ

That is to say, the response vibration displacement approaches the S order main
model, while other models vanish. Also, it could be found that the larger the
stiffness of main model is, the smaller the response displacement will be (that is,
dynamic tress).

8.5.2.2 Calculation of Dynamic Stress in Blade

One of the main reasons for blade damage in hydraulic machinery is dynamic
stress induced by excited force from the flow in runner under operation conditions.
Based on the response displacements at one moment obtained in previous sections,
the stress distribution on the blade can be obtained as follows:

rf ge¼ D½ � B½ � uf ge ð8:41Þ

where the stresses in element are given at each moment. Furthermore stresses on
all nodes in the FEM physical model of structure can be obtained. The time-history
of stresses on each node is the dynamic stress in the structure.
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Part IV
Rotordynamics



Chapter 9
Rotordynamic Simulation of Hydraulic
Machinery

The shaft stability of generating and pumping units plays a crucial role on the
units’ operation: It directly affects the safe operation and also influences the life of
units. In this chapter, the calculation and the analysis of rotordynamics in
hydraulic machinery are introduced, including governing equations, the Riccati
transfer matrix method, and the finite element method for rotordynamic analysis of
hydraulic turbine units, the determination of pump rotordynamic parameters, and
pump rotordynamic computation (Li and Wang 1996).

9.1 Basic Equations of Rotordynamics in Hydraulic
Machinery

Rotordynamic analysis is important not only for understanding of the natural
characteristics and dynamic response of a rotor-bearing system, but also for
knowledge of the fault mechanism (Feng and Chu 2001). In this section, the
governing equations of a rotating mechanical system, and the study subjects of
rotordynamics in hydraulic machinery are introduced.

9.1.1 Governing Equations of a Rotating Mechanical System

Generally, the governing equations of a rotating mechanical system can be
expressed in the inertial reference frame as

M½ � €uf g þ C½ � þ X G½ �ð Þ _uf g þ K½ � þ X Cr½ �ð Þ uf g ¼ X2 ff g ð9:1Þ

where [M] is the mass matrix, [C] the damping matrix, [G] the gyroscopic skew
symmetric matrix, [K] the stiffness matrix, [Cr] (or [H]/X) is the asymmetric part
rotating damping matrix, {u} is the displacement vector (rotating can include axial

Y. Wu et al., Vibration of Hydraulic Machinery,
Mechanisms and Machine Science 11, DOI: 10.1007/978-94-007-6422-4_9,
� Springer Science+Business Media Dordrecht 2013
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displacement), and {f} is the unbalanced forces while all are in the real coordinates
[see Eq. (4.65) or (4.32)].

If all matrices are expressed in complex coordinates, they are symmetric in the
form of complex coordinate notation, while in real coordinates the gyroscopic
matrix is skew symmetric [see Eqs. (4.50), (4.51)].

In a simple expression, Eq. (9.1) in inertial coordinates is as

M½ � €uf g þ C½ � þ G½ �ð Þ _uf g þ K½ � þ H½ �ð Þ uf g ¼ ff g ð9:2Þ

which is the equation of motion, in generalized matrix form, for an axially sym-
metric rotor rotating at a constant spin speed X, where: [M] is the symmetric mass
matrix; [C] is the symmetric damping matrix; [G] is the skew-symmetric gyroscopic
matrix; [K] is the symmetric bearing or seal stiffness matrix; [H] is the gyroscopic
matrix of deflection for inclusion of e.g. centrifugal elements; {u} is the generalized
coordinates of the rotor in inertial coordinates, and {f} is a forcing function.

The gyroscopic matrix [G] is proportional to spin speed X. The general solution
to the above equation involves complex eigenvectors which are spin-speed
dependent. Engineering specialists in this field resort to the Campbell Diagram to
explore these solutions.

An interesting feature of the rotordynamic system of equations is the off-
diagonal terms for stiffness, damping, and mass. These terms are called cross-
coupled stiffness, cross-coupled damping, and cross-coupled mass. When there is a
positive cross-coupled stiffness, a deflection will cause a reaction force opposite to
the direction of deflection to counteract the load, and also a reaction force in the
direction of positive whirl. If this force is large enough compared to the available
direct damping and stiffness, the rotor will be unstable. When a rotor is unstable it
will typically require immediate shutdown of the machine to avoid catastrophic
failure.

If one uses the rotating frame of reference, the governing equations of a rotating
mechanical system in a rotating frame is

M½ � €urf g þ C½ � þ GCor½ �ð Þ _urf g þ K½ � þ H½ � � Kspin

� �� �

urf g ¼ ff g ð9:3Þ

where [Kspin] is rotating effect stiffness matrix; [GCor] is Coriols effect matrix.

9.1.2 Problems of Rotordynamics in Hydraulic Machinery

The rotordynamics of hydraulic machines is more complicated due to a distinct
number of operating features that are mostly load dependent; i.e., related to the
power (pressure and flow conditions). The most important issues in a realistic
analysis are as follows (Andrés 2006):

1. Hydraulic machines typically handle large-density liquids and the effects of
interstage and wear seals on the rotor-bearing system dynamics is most
significant. Liquid seals generate substantial direct stiffness and added mass
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coefficients that can change the natural frequencies (critical speeds) of a
hydraulic machine. Thus, there is a distinction between ‘‘dry’’ and ‘‘wet’’
critical speed.

2. Uneven static pressure distribution at the hydraulic machine discharge volute
creates a side radial load. This load, which is of importance in single-tongue
volute casing hydraulic machines, is greatly influenced by operation away from
the hydraulic machine’s Best Efficiency Point. The hydraulic load, whose
magnitude and direction depends on operation away from BEP, makes the sup-
port bearings become more or less loaded, thus affecting rotordynamic behavior.

3. The rotating liquid flowing through the impeller/runner forms a condition of
hydraulic imbalance due to inaccuracies in the manufactured impeller/runner
surfaces. The hydraulic induced synchronous force is difficult to predict and
even worse to measure in the field.

4. Dynamic forces and moments arise because of changes in pressure within the
small clearance between hydraulic machine casing and its shroud. Lateral and
angular shaft motions induce this type of impeller/runner shroud excitation
force (and moment) which can affect the stability of high power density
hydraulic machines, particularly in multiple-stage pumps which are quite
flexible (low critical speeds).

9.1.3 Study on Rotordynamics in Hydraulic Machinery

The term ‘‘rotor dynamics’’ is used when the dynamics, i.e., time dependent forces
and vibrations, of rotating machinery is studied or analyzed. ‘‘Dynamics’’ focuses
on the natural frequencies of the system. In rotating machinery these natural
frequencies stem from a gyroscopic effect, which in turn is a function of the
driving frequency of the rotor. These natural frequencies give rise to high vibra-
tions and thus have to be determined at the design stage to avoid dramatic con-
sequences during operation. Several catastrophic events have been reported on
rotating machinery (Cervantes et al. 2005).

Therefore, the main goal for rotor-dynamic analysis is to find the natural fre-
quencies as functions of the rotating speed, as in the Campbell diagram. The
complexity of industrial rotating machines requires several approximations in the
mathematical modeling. The complexity level varies in different problems. How-
ever, the presence of non-linear phenomena adds to the complexity of such model.

Hence, rotor dynamic research in hydropower applications focuses on devel-
opment of models and measuring techniques for creation of better tools for sim-
ulation and analysis. By increasing the predictability of the dynamics, one can
develop the tools to reduce vibrations and increase reliability. The influence of
new components can be analyzed before revisions are made, so early design
changes can be suggested. Furthermore, stresses and load-analysis during different
operating conditions can be performed to identify critical components and develop
tools for lifetime evaluation.
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In hydropower applications a rotor dynamic model should include electro-
magnetic forces from the generator, bearing models, and models for the turbine’s
interaction with the fluid. In the development of the models, it is essential to verify
them against reliable measurements. Fundamental for a rotor model is that tor-
sional and lateral natural frequencies can be measured at different driving fre-
quencies and loadings.

In hydro power applications flow in the turbine, dynamics in bearings and
electromagnetic load will all affect the eigen-frequencies of the rotor. Therefore
the measurements and predictability is a key problem to be solved to develop good
rotor models. Identification of the power transmission through the system will
result in better load models.

For large machines, however, a more detailed analysis that can be used to
predict the dynamic response of the rotor system under random hydraulic forces
acting on the turbine runner is required. Some research work on natural vibration
was carried out in lateral vibration analysis. In the 1970s, various methods for
calculating vibrations and dynamic response (i.e., dynamic analysis of the rotor-
bearing system) were proposed, but most of them could only deal with the periodic
excitation force, not with the random excitation often observed in actual operation.
Barp (Barp 1976) studied the complex problem of rotor vibration from the
viewpoint of a design engineer with emphasis on the description of the general
dynamic behavior. A method involving the stiffness matrix applicable to periodic
or random external excitation force was proposed.

In the analysis of the rotor dynamic characteristics, with consideration of the
lateral forces acting on the turbine runner, many modeling methods, such as the
Prohl transfer matrix method, the Riccati transfer matrix method, the finite-ele-
ment method, etc., have been developed. Also, many numerical integration
methods, such as, the Runge–Kutta method, the Newmark-b method, the Wilson h
method, etc., have been proposed. These two kinds of methods can be integrated to
simulate the dynamic response of the pump and turbine rotor-bearing system.

The start-up and shutdown processes of the water-turbine generator set and
pump are highlighted by more and more field engineers and researchers due to the
number of faults that often happen at these stages. At the same time, some non-
linear characteristics exhibit in the vibration signals of the hydro-turbine, such as
nonlinear characteristics of the guide bearing, the thrust bearing, and the magnetic
forces. Studies on the effects of these nonlinear characteristics on vibration of the
shaft will prove to be very significant (Feng and Chu 2001).

9.2 The Riccati Transfer Matrix Method for Hydraulic
Turbine Units

The hydraulic turbine unit is the essential equipment of the hydroelectric power
generation, and shafts are an important part of large hydroelectric machines. Its
dynamic characteristic is bound up with the hydroelectric reliability, life-span, and
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economic index of the entire machines. Therefore, it is necessary to analyze the
large hydroelectric machines with rotordynamics.

The dynamic response of the shaft system in hydraulic turbine units is the main
subject of its rotordynamics. The main method to solve this subject includes the
finite element method (FEM), the modal synthesis method (MSM), and the transfer
matrix method. With rapid development of computer technology, application of
FEM has been quickly adopted for its sententious and standard expression with
high accuracy, despite a very large matrix.

Among three methods, the TMM can solve a series of small matrices with the
help of simple software. In particular, it is suitable for a shaft system with chine
character. It is combined with the direct integrate method to solve complicated
shaft system.

9.2.1 Basic Equation of RTMM

In a lumped mass method, a mathematical model takes into account the system
boundaries of machines affecting the shafts, such as the guide bearings, seal,
electrical and hydraulic forces, the water in the runner etc., that may build up.
Considering the different bracket constraint conditions of the shafts that are con-
sidered as rigidity or elasticity, one could compute the natural characteristic of the
shafts by integrating with the highly stable Riccati Transfer Matrix Method
(RTMM).

The Riccati transfer matrix and the Newmark b or the Wilson h numerical
integration methods could be adopted to calculate and analyze an instantaneous
nonlinear response of the rotor system. The model of the rotor system should be
found. Then the effect of shear deformation, rotary inertia, and gyroscopic moment
could be considered, and the action of the water’s additional mass in the hydraulic
turbine and electromagnetic induction of instantaneous response of the rotor
system under arbitrary forces could be obtained (see Chap. 5).

The TRTMM (transient Riccati transfer matrix method) is virtually a combi-
nation of the Riccati transfer matrix method (RTMM) and Wilson-h method. In
this section the basic equation of the TRTMM (Feng and Chu 2001) will be
explained.

It is known that, in the Riccati transfer matrix method, elements in the state
vector with values of zero are grouped as {f}, and the other elements not equal to
zero are grouped as {e}. For the water-turbine unit studied, the first lumped mass
at the top of the rotor and the last lumped mass of turbine runner at the bottom of
the rotor can be viewed as free ends. This is to say that the force vectors of these
two sections equal zero. Similarly, in the TRTMM, the following expressions can
be employed:

ff g ¼ My; Qx; Mx; Qy

� �T ð9:4Þ
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ef g ¼ hy; hx; y
� �T

: ð9:5Þ

The Riccati transformation is

ff gi¼ s½ �i ef giþ Pf gi ð9:6Þ

where [s]i and {P}i represent the undetermined matrices. Combined with the
transfer matrix between elements of the disk-shaft connected together, it can be
shown that

f=ef giþ1¼
u11½ � u12½ �
u21½ � u22½ �

� 	

i

f=ef giþ Ff




Fe

� �

i
: ð9:7Þ

From Eqs. (9.6) and (9.7) the following expressions can be obtained:

s½ �iþ1¼ u11½ � s½ � þ u12½ �ð Þi u21½ � s½ � þ u22½ �ð Þ�1
i ð9:8Þ

Pf giþ1¼ u11½ � Pf g þ Ff

� �� �

i� s½ �iþ1 u21½ � Pf g þ Fef gð Þi ð9:9Þ

where [u11], [u12], [u21], [u22], {Ff} and {Fg} are given as

u11½ � ¼

1 l 0 0
0 1 0 0
0 0 1 l
0 0 0 1

2

6

6

4

3

7

7

5

; u22½ � ¼

1þ a1k2 �a2k1 a1k3 0
lþ a2k2 1� a3k1 a2k3 0
�a1k3 0 1þ a1k2 �a2k1

�a2k3 0 1þ a2k2 1� a3k1

2

6

6

4

3

7

7

5

;

u12½ � ¼

k2 �lk1 k3 0
0 k1 0 0
�k3 0 k2 lk1

0 0 0 �k1

2

6

6

4

3

7

7

5

; u21½ � ¼

a1 a2 0 0
a2 a3 0 0
0 0 a1 a2

0 0 a2 a3

2

6

6

4

3

7

7

5

;

Ff

� �

¼

A1 þ lB1

B1

A2 þ lB2

B2

8

>

>

<

>

>

:

9

>

>

=

>

>

;

; Fef g ¼

a1A1 þ a2B1

a2A1 þ a3B1

a1A2 þ a2B2

a2A2 þ a3B2

8

>

>

<

>

>

:

9

>

>

=

>

>

;

where definitions of the parameters, such as k1, k2, k3, A1, A2, B1, B2, a1, a2, a3 can
be found in Simon (1982).

From the above equations and expressions, elements of matrices [s] i and {P}i

can be calculated, where i = 1, 2,…, N. For the end node N, there exists such a
relation:

ff gN ¼ s½ �N ef gN þ Pf gN : ð9:10Þ

Provided boundary conditions of the shaft where the force vector equals zero,
Eq. (9.10) can give the displacement vector of the end node. Expanding Eq. (9.7)
one would have
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e½ �iþ1¼ u21½ �i ff giþ u22½ �i ef giþ Fef gi ð9:11Þ

Substituting Eq. (9.6) into (9.11) yields

e½ �iþ1¼ u21½ �iþ u22½ �i
� �

ef giþ u21½ �i Pf giþ Fef gi ð9:12Þ

Thus,

e½ �i¼ u21½ �iþ u22½ �i
� ��1

ef giþ1� u21½ �i Pf giþ Fef gi

� �

ð9:13Þ

With the equations listed above, the displacement vector {e}i of each section
can be obtained. Substituting {e}i into Eq. (9.6), the force vector of each section
{f}i can also be obtained. So, the state vectors of all the sections can be deter-
mined. From the initial moment t0, with the method mentioned above, the dis-
placement of each node at the moment t0 ? hDt can be obtained. Then, according
to Eq. (9.13), by means of the Wilson h numerical integration method, it is easy to
determine the displacement, velocity, and acceleration of each node at the moment
of t0 ? Dt. Repeat the above procedure, and one can calculate the displacement,
velocity, and acceleration of each node at the moment t0 ? Dt, t0 ? 2Dt,
t0 ? 3Dt,…

€uf gtþDt ¼
6

h3Dt2
uf gtþhDt� uf gt

� �

� 6

h2Dt
_uf gtþ 1 � 3

h

� �

€uf gt ð9:14aÞ

_uf gtþDt¼ _uf gtþ
Dt

2
€uf gtþDtþ €uf gt

� �

ð9:14bÞ

uf gtþDt¼ uf gtþ _uf gtDt þ Dt2

6
€uf gtþDt þ 2 €uf gt

� �

: ð9:14cÞ

9.2.2 Transfer Matrices of Main Components of shaft System

In order to make the rotordynamic analysis by RTMM, the first step is to discretize
the shaft system of a hydraulic turbine unit into several segments geometrically
and to describe the transfer matrices for the segments.

9.2.2.1 Discretization of Shaft System

The number of degrees of freedom of each real element such as rotor or shaft is
infinitive. But in RTMM analysis, with acceptable accuracy, the real elements can
be represented by a limited number of rigid elements connected to each other by
means of massless elements bearing elastic and damping properties. This process
is called discretization and the final result of this process is named multi-degree-
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of-freedom system. In rotating machines, the lumped mass and lumped equatorial
moment of inertia are concentrated at several points selected on impeller, center of
journal, coupling, shaft cross-section of sudden change, end cross-section of shaft
etc., The hydraulic turbine unit generally has the constant section shaft. This
discretization process will be easy (See Wu 2002, Zhang 2008).

1. Iso-area section shaft segment

Figure 9.1 shows a general lumped shaft element in RTMM. The whole shaft
system is divided into N element. The element i, shown in Fig. 9.1, is an original
iso-area section shaft segment to be modeled to a disc (or a section of shaft) with
mass and without length (d) connected to two small shaft segments i - 1 and
i without mass. The lumped mass of the disc-section is M(d) with equatorial
moment of inertia with respect to shaft section center Jpi

(d) and axis moment of
inertia with respect to shaft section diameter Jdi

(d) without length, two other shaft
segments have the length of li-1 and li, mass per unit length of li-1 and li and
moment of inertia, jdi-1, jdi, jpi-1 and jpi. All physical parameter is concentrated to
the disc center (or shaft center), then the lumped mass of element i and moment of
inertia are expressed as

Mi ¼ M dð Þ
i
þ 0:5 llð Þi�1þ 0:5 llð Þi ð9:15aÞ

Jdi ¼ J dð Þ
di þ 0:5jdl � 0:083 ll3

� �

i�1þ 0:5jdl � 0:083 ll3
� �

i
ð9:15bÞ

Jpi ¼ J dð Þ
pi þ 0:5 jpl

� �

i�1þ 0:5 jpl
� �

i
: ð9:15cÞ

2. Step shaft segment

Figure 9.2a shows a step shaft segment which consists of S sub-segments with
different section areas. Each sub-segment has its mass per unit length lk, the
equatorial moment of inertia with respect to shaft section center jpk, the axis
moment of inertia with respect to shaft section diameter jdk, the length
lk k ¼ 1; 2; . . .; Sð Þ; and the distance from the mass center of each sub segment to
the left end ak k ¼ 1; 2; . . .; Sð Þ.

j j j

l

j

i

M

J

J

+1

l i _

i   1

i   

i
i

i

pi di

pi

di

_
i   1_p i   1_d

1
(d )

(d )

(d )

Fig. 9.1 Lumped shaft
element in RTMM
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If the whole length of the segment is Li, as shown in Fig. 9.2b, the segment may
be simplified into two rigid discs with concentrated masses and moments of inertia
on right and left sides of the segment, connected to a shaft with iso-area section
and without mass, like that in Fig. 9.1. Then the concentrated masses ML and MR

are

MR
i
¼
X

S

k¼1

llað Þk
Li

;�ML
i
¼
X

S

k¼1

ll Li � að Þ½ �k
Li

: ð9:16Þ

And the concentrated moments of inertia at right and left sides of the segment
are written as

u l

j j j j j
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u l
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Fig. 9.2 Schematic of the
stepped shaft segment. a shaft
segment. b Rigid disc with
elastic bracket constrain
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JR
pi
¼
X

S

k¼1

a2
k

a2
k þ Li � akð Þ2

jpilk

JL
pi
¼
X

S

k¼1

Li � ak

� �

a2
k þ Li � akð Þ2

jpilk

JR
pi
¼
X

S

k¼1

a2
k

a2
k þ Li � akð Þ2

jdlþ ll3

12
� Li � að Þ


 �

k

JL
pi
¼
X

S

k¼1

Li � akð Þ2

a2
k þ Li � akð Þ2

jdlþ ll3

12
� lla Li � að Þ


 �
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@

ð9:17Þ

Mi ¼ M dð Þ
i
þ ML

i
þ MR

i�1
ð9:18aÞ

Jdi ¼ J dð Þ
di þ JL

di þ JR
di�1 ð9:18bÞ

Jpi ¼ J dð Þ
pi þ JL

pi þ JR
pi�1 ð9:18cÞ

Then the concentrated mass Mi and the moments of inertia Jdi and Jpi of the
whole segment can be calculated via Eq. (9.18).

One can get the equivalent bending stiffness of the segment:

L=EJð Þi¼
X

S

k¼1

l=EJð Þk

where (EI)k is the bending stiffness of each sub-segment.

9.2.2.2 Transfer Matrix of Typical Element of Shaft System

In RTMM, the shaft system is divided into components or assemblies of discs,
shaft segments, and elastic bracket constraints.

The transfer matrices will be displayed below. For ith section of element the
state variable vector {u}i can be indicated as

uf gi¼ x; a; M; Qf gT
i ð9:19Þ

where x is displacement; a is torsion angle (angulations); M is bending moment;
and Q is the shearing force.

The state vector at section i ? 1, {u}i+1 may have a relation to the state vector
{u}i:

uf giþ1¼ T½ �i uf gi ð9:20Þ

where [T]i is the transfer matrix at the ith section. It is r � r orders matrix if the
state vector has r components.
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1. The rigid disc element with elastic bracket constraints

Figure 9.2 illustrates a rigid disc element with an elastic bracket constraint of
stiffness coefficient Kj Superscripts R and L denote the parameters of the right or
left-side section, respectively.

If the disc makes the precessing rotation with angular speed x, the inertia force
and the inertia torque of the disc are mix

2xi and (Jp - Jd)ix
2ai respectively. The

stiffness coefficient Kj of the elastic bracket constrain can be calculated from the
parallel arranged the elastic bracket stiffness Kb with mass mb and oil film of
bearing K:

Kj ¼
KðKb � mx2Þ
K þ Kb � mx2

ð9:21Þ

where x is the processing speed of the rotor on the elastic bracket constraint.
Then the relation between two state vectors on the right and the left side

sections is

uf gR
i ¼ D½ �i uf gL

i

The transfer matrix of the two vectors has the following form:

D½ �i¼

1 0 0 0
0 1 0 0
0 JP � Jdð Þx2 1 0

mx2 � Kj 0 0 1

2

6

6

4

3

7

7

5

i

ð9:22Þ

2. Shaft segment without mass

Figure 9.3 exhibits an element of the shaft segment without mass. For the
assembly model, the element is massless based on the balancing conditions of
force and condition of deformation in the element. The two state vectors have the
following relation:

uf giþ1¼ B½ �i uf gi

x x

M
Q (EI )

l

Q
M

i+1

i+1

i+1
i+1

i

i

i

i

i
i

Fig. 9.3 Shaft segment
without mass (Zhang 2008)
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where the transfer matrix is

B½ �i¼

1 l l2

2EJ
l3

6EJ ð1� cÞ
0 1 l

EJ
l2

2EJ
0 0 1 l
0 0 0 1

2

6

6

4

3

7

7

5

ð9:23Þ

where E is the Young’s modulus; l is the length of the segment; J is the area
moment of the segment section. c is the effect coefficient considering the shear
stress, which is

c ¼ 6EJ



kiGAl2
� �

ð9:24Þ

where ki is section factor (ki = 0.886 for solid circle shaft; ki = 0.667 for hollow
shaft with thin wall); G is shear modulus and A is section area.

3. Combination element of a disc and shaft segment

Figure 9.4 shows an element of the combined disc and shaft segment in a
simplified shaft computational model. The matrices transfer expression and the
transfer matrix can be expressed as

uf giþ1¼ T½ �i uf gi

and

T½ �i¼

1þ l3

6EJ 1� cð Þ mx2 � Kj

� �

lþ l2

2EJ Jp � Jd

� �

x2 l2

2EJ
l3

6EJ 1� cð Þ
l2

2EJ 1� cð Þ mx2 � Kj

� �

1þ l
2EJ Jp � Jd

� �

x2 l
EJ

l2

2EJ
l mx2 � Kj

� �

Jp � Jd

� �

x2 1 l
mx2 � Kj

� �

0 0 1

2

6

6

4

3

7

7

5

i

ð9:25Þ

where x is the angular speed of the rotor precession. If there is not an elastic
bracket constraint then Kj, c, Jp and Jd equal zero.
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Fig. 9.4 Combination of
elements of disc and shaft
segment
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9.2.3 Free-Vibration Analysis of a Hydraulic Turbine Unit

In order to calculate the natural characteristic of the shaft system, one should
analyze its free vibration of a large hydraulic turbine unit through the RTMM
(Zhang 2006).

After dividing the shaft system into 37 elements of lumped mass with 38 nodes,
one establishes the assembly model of the HTGS shaft system displayed in
Fig. 9.5, in which element 6 is the upper guide bearing (YGB), 13 is the generator
rotor, 18 is the low guide bearing (LGB) and thrust, 32 is the guide bearing of the
turbine (WGB), 36 is the water sealing (ES), 37 is the turbine runner, and 38 is the
lowest node of the shaft system.

The maximum head of the turbine is 139.3 (m), the design head 117 m, the
rotating speed 500 rpm.

The inner diameter of the magnetic core of generator stator is 2.56 m, its height
is 1.60 m, the magnetic flux density of the core is 7,500 Gauss. Table 9.1 lists
parameters of the elements of the shaft system.

1

6

13

18

32

36

37

38

Fig. 9.5 Schematic drawing
of structure and computation
(Zhang 2006)
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9.2.3.1 Computation of Free Vibration with Elastic Bracket

Computation of free vibration of this shaft system with elastic brackets and base
has been carried out based on the simulation model as schematically plotted in
Fig. 9.5. The force analysis at node i is shown in Fig. 9.6. The motion equation of
the equivalent mass of a bearing bracket, [Mb] is

Mb½ � €ubf g ¼ � Kb½ � ubf g � Cb½ � _ubf g þ K½ � uf g � ubf gð Þ þ C½ � _uf g � _ubf gð Þ
ð9:26Þ

where the subscript b indicates the parameters of the bearing bracket with the
bearing base shown in Fig. 9.6, and the parameters without subscript are those of
bearing oil film.

Assume that

ubf g ¼ ub0f gext ¼ uf g ¼ u0f gext:

The oil film reaction force {R} is given by

Rf g ¼
Rx

Rx

( )

¼ � K½ � þ x C½ �ð Þ K½ � þ x C½ � þ Kb½ �ð

þ x Cb½ � þ x2 Mb½ �
��1

Kb½ � þ x Cb½ � þ x2 Mb½ �
� �

uf g:

ð9:27Þ

Table 9.1 Parameters of the elements of the shaft system (Zhang 2006)

Element Stiffness (N/m) Damping (Ns/m)

UGB 1:0 � 109 2:4 � 106

LGB 1:0 � 109 2:4 � 106

WGB 1:67 � 109 2:3 � 107

Bracket and base 3:0 � 109 2:0 � 107
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The global stiffness matrix for bearing including the effects of stiffness and
damping of bracket and base is obtained as

KS½ � ¼
kSxx kSxy

kSyx kSyy

� 	

¼ � K½ � þ x C½ �ð Þ K½ � þ x C½ � þ Kb½ �ð

þ x Cb½ � þ x2 Mb½ �
��1

Kb½ � þ x Cb½ � þ x2 Mb½ �
� �

:

ð9:28Þ

For free vibration in the RTMM, Eq. (9.7) becomes

f=ef giþ1¼
u11½ � u12½ �
u21½ � u22½ �

� 	

i

f=ef gi ð9:29Þ

where in this dynamic problem,

u11½ �i¼

1 l 0 0
0 1 0 0
0 0 1 l
0 0 0 1

2

6

6

4

3

7

7

5

i

; u12½ �i¼

l2

2EI
l3

6EI 1� cð Þ 0 0
l

EI
l2

2EI 0 0

�k3 0 l2

2EI
l3

6EI 1� cð Þ
0 0 l

EI
l2

2EI

2

6

6

6

4

3

7

7

7

5

i

;

u21½ �i¼

�l Mx2 þ kSxxð Þ Jdx2 �lkSxy JpXx

� Mx2 þ kSxxð Þ 0 �kSxy 0
�lkSyx �JpXx �l Mx2 þ kSyy

� �

Jdx2

�kSyx 0 � Mx2 þ kSyy

� �

0

2

6

6

4

3

7

7

5

i

;

u22½ �i¼

1� l3 1�cð Þ
6EI Mx2 þ ksxxð Þ lþ l2Jdx2

2EI
l3 1�cð Þ

6EI ksxy
l2JpxX

2EI

� l2

2EI Mx2 þ ksxxð Þ 1þ lJdx2

EI � l2

2EI ksxy
lJpxX

EI

� l3 1�cð Þ
6EI ksyx � l2JpxX

2EI 1� l3 1�cð Þ
6EI Mx2 þ ksyy

� �

lþ l2Jdx2

2EI

� l2

2EI ksyx � lJpxX
EI � l2

2EI Mx2 þ ksyy

� �

1þ lJdx2

EI

2

6

6

6

6

4

3

7

7

7

7

5

i

:

Like Eq. (9.11), introducing the Reccaati transfer, then

ff gi¼ s½ �i ef gi ð9:30Þ

Thus

f½ �iþ1¼ u11½ � s½ � þ u12½ �i
� �

i u21½ � s½ � þ u22½ �i
� ��1

i ef giþ1 ð9:31Þ

e½ �i¼ u21½ � s½ � þ u22½ �ð Þi ef giþ1 ð9:32Þ

From the above two equations, as shown in Eq. (9.8), one yields

s½ �iþ1¼ u11½ � s½ � þ u12½ �ð Þi u21½ � s½ � þ u22½ �ð Þ�1
i : ð9:33Þ
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9.2.3.2 Solution of Free Vibration with an Elastic Bracket

1. Natural frequency. From boundary conditions at end nodes of the shaft system,
the frequency equation becomes

sj jNþ1¼

s11 s12 s13 s14

s21 s22 s23 s24

s31 s32 s33 s34

s41 s42 s43 s44

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

¼ 0: ð9:34Þ

It is difficult to solve Eq. (9.34), and the best way to solve the no-singularity
equation is the method of Newton–Raphson or Muller:

sj jNþ1

Y

N

i¼1

u21½ � s½ � þ u22½ �ð Þi
�

�

�

� ¼ 0: ð9:35Þ

Solution of Eq. (9.26) represents the natural complex frequencies. Substituting
the solution to Eqs. (9.31) and (9.32) yields the natural vibration modes in the
complex, then transforms it to the real one:

x ¼ Re �XejXt
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
C þ X2

S

q

cos Xt þ hxð Þ ð9:36Þ

y ¼ Re �YejXt
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y2
C þ Y2

S

q

cos Xt þ hy

� �

ð9:37Þ

where hx = arctan (XS/XC) and hy ¼ arctan YS=YCð Þ; �X ¼ XC þ iXS and �Y ¼
YC þ iYS are complex displacements; x and y are real displacements.

2. Main modes. After solving for the natural frequency, substituting it into Eq.
(9.30) (i = N) yields

s11 s12

s21 s22

� 	

Nþ1

X
A


 �

Nþ1

¼ 0: ð9:38Þ

The mode can thus be obtained from the solution and recursion formulae to get the
modes.

9.2.3.3 Results of Free Vibration Computation of the Shaft System
of a Francis Turbine Unit

The natural frequencies and their free vibration modes have been calculated for a
shaft system of a Francis turbine unit shown in Fig. 9.5. The first and second
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critical rotating speeds (CRS) of the calculated results are listed in Table 9.2, in
which the elastic brackets and elastic base of bearings has been considered in
comparison to the results of the rigid bearings (see Chap. 5, Zhang 2006).

From the results in Table 9.2, notice that critical speeds of the shaft system are
lower than the runway speed of the system, 973 rpm. The stiffness of the elasticity
of the bearing bracket and its base has great influence on bringing down the critical
speed. Table 9.3 shows that the stiffness of the upper guide bearing (UGB) has
great impact on the first order critical speeds of the shaft system, but nearly no
influence on the second order. The larger the stiffness, the higher the first order
critical speed will be. Similar computation indicates that the turbine guide bearing
(TGB) stiffness influences the second order critical speeds greatly, whereas its
influence to the first order critical speed is less. The low guide bearing (LGB)
stiffness has small influence to both the first and second order critical speeds.

Figure 9.7 demonstrates the first and second lateral vibration modes of the
shafts. They are relative lateral displacements of each node of the system. The
stiffness of bearings has a little influence of the modes.

Table 9.2 Computational results of the critical speed (Zhang 2006)

Brackets constrains 1st order CRS 2nd order CRS

Rigid bearings 1,741.6 3,480.0
Elastic bearings (without damping) 1,112.8 1,635.4
Elastic bearings (with damping) 1,428.5 2,336.5

Table 9.3 Influence of the upper guide bearing stiffness to the critical speed (Zhang 2006)

Stiffness of UGB 0.5 GN/m 0.75 GN/m 1.0 GN/m 1.25 GN/m 1.5 GN/m

1st order CRS 1,379 1,575.4 1,741.6 1,885.2 2,010.6
2nd order CRS 3,420 3,449 3,480 3,515 3,553

Fig. 9.7 Lateral vibration
mode of the shaft. a Node
number. b First order model.
c Second order mode (Zhang
2006)
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9.2.4 Transient Vibration Response of the Shaft System

The transient vibration response of the shaft system in a hydraulic turbine unit
have been analyzed based on the RTMM with the Newmark b integration method.
Equations in this computation are almost the same as those described in Sect.
9.2.2, except Eq. (9.14). For the Newmark b method, the following equation is
adopted to get the displacement, velocity and acceleration at each time moment:

€uf gtþDt¼
1

bDt2
uf gtþDt� uf gt

� �

� 6
bDt

_uf gtþ
1

2b
� 1

� �

€uf gt ð9:39aÞ

_uf gtþDt¼ _uf gtþ 2
€uf gtþDt þ €uf gt

� �

ð9:39bÞ

uf gtþDt¼ uf gt þ _uf gtDt þ Dt2

6
€uf gtþDtþ 2 €uf gt

� �

ð9:39cÞ

where b is the factor to consider deleting in the high order terms of the calculation.
Transient vibration responses of the shaft system of the same Francis turbine

unit as in previous section were simulated in the following cases.

1. Case 1 There is not an eccentric mass for every node of the system, but there is
an initial displacement along x direction, 0.1 mm, and an initial velocity along
y direction, 3.8 mm/s for all nodes at time moment t = 0. The calculation was
carried out for two conditions considering the linear character and the nonlinear
character of the oil film reaction force in the bearings (see Chap. 5).

Figure 9.8 shows the orbit of the runner node in case 1 with initial displacement
and velocity as the dynamic response under conditions of linear oil film reaction
force (a), and of nonlinear oil film reaction force (b). The difference between the
two results is that under nonlinear condition the damping velocity of the forced
vibration is greater than that under the linear condition.
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Fig. 9.8 Orbit of runner node at case 1 with initial displacement and velocity (Unit: m). a At
linear oil film reaction force, b At nonlinear oil film reaction force (Zhang 2006)
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2. Case 2 A sudden external force acts on the runner node at the time beginning.
Figure 9.9 exhibits the time history of the runner node’s displacement after the
sudden force with 650 N (a) or 350kN (b). When the acting force is large, node
displacement will reach to 3:2 � 10�4 mm).

Zhang (2006) conducted the transient response analysis for the shaft system of a
hydraulic turbine unit. In computation, the concept of a non-linear oil film force of
the bearing was indicated, and its influencing factor was summarized. The action
of non-linear oil film force also was considered. Based on his computations, the
following conclusions could be drawn: (1) The critical speed of the shafts is
influenced by the elastic bearing; (2) Non-equilibrium magnetic pull reduces the
first order critical speed, but has no effect on the second order critical speed; (3)
When the rotor is in its initial position and initial speed, the shaft’s nonlinear node
conservation speed is larger than linear conservation speed; (4) Under an unbal-
anced condition, the nonlinear response will become much more complicated.

Feng and Chu (2001) applied the Riccati transfer matrix to calculate transient
responses of a pump-turbine shaft system excited by different types of external
forces. The natural vibration analysis revealed that the guide bearing stiffness
coefficients have influence on the first three critical speeds. For large pump-turbine
units, there exists a common characteristic in the first three vibration modes; that
is, the maximum amplitude was at the generator rotor in the first vibration mode,
while in the third vibration mode, the maximum amplitude was near the runner.

In the transient response calculation, a number of possible nonlinear factors in
the unit were taken into account, such as nonlinearity of the journal guide bearing,
the center-pivoted tilting-pad thrust bearing, and also a nonlinear magnetic force
(see Chap. 5). The effect of hydraulic forces acting on the runner shows that the
vibration amplitude and the time required for vibration at the three guide bearings to
reach a steady state is different. When a lateral force, which consists of a constant
lateral force and periodic forces with frequencies of 7 and 14-times the rotational
frequency is suddenly exerted on the runner, the shaft would respond with the same
frequencies, but with different amplitudes, especially different average amplitudes.
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Fig. 9.9 Time history of runner displacement after a sudden force acts on the node. a Act of
650 N sudden force. b Act of 350 kN sudden force (Zhang 2006)
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9.3 Rotordynamics Analysis in Hydraulic Turbine Units
by FEM

It has been shown that hydraulic turbine units with vibration problems are directly
connected to the rotordynamic properties of the unit. In order to deal with such
vibration problems, one needs to perform the complete rotordynamic analysis of
hydraulic turbine units at design stage or when problems occur during commis-
sioning/operation. With modern rotordynamic software tools such as ANSYS,
NASTRAN, ARMD (Advanced Rotating Machinery Dynamics), I-DEAS, TUR-
BOROT, vibration behavior could be analyzed in detail. This calls for, not only the
natural frequency analysis that has been the normal approach, but also response
analysis for computation of the unbalanced response and prediction of the vibra-
tion levels with reasonable precision.

The most prevalent method used today for rotordynamics analysis is the FEM.
The basic principles were introduced in Chaps. 5 and 8 for structure vibration. In
this chapter, the content of specific research results will be introduced as follows:

1. To calculate the dynamic response of a turbine unit based on the FEM, one
should establish the FEM model including the typical component model, which
can reflect the actual structure of the unit.

2. To establish the FEM model, one ought to analyze the influence of dynamic
characteristics on the shaft system by the gyroscopic effects, to select a rea-
sonable guide bearing stiffness, and to consider the influence of magnetic pull
on system imbalance.

3. The main task of the dynamic response analysis should be to find the most
disadvantageous imbalance loads acting on the shaft, as well as their combi-
nation and phase’s differences.

9.3.1 Computational Model of Shaft System of Hydraulic
Turbine Unit

The FEM analysis for a hydraulic turbine unit includes its typical component
models, which can reflect the actual structure of the unit.

9.3.1.1 Mechanical Model of Shaft System

Figure 9.10 depicts the mechanical model of a shaft system in a hydraulic turbine
unit, which consists of a shaft and rotor of the excitation motor with mass M1, a
generator rotor with mass M2, and a runner with mass M3. The masses can be
lumped to nodes in the components elements. All the components have the
equatorial moments of inertia with respect to their circular section centers Jp and
their axial moment Jd. The shaft is simulated by beam elements in FEM; rotors by
disc elements; the runner by cylinder element or disc.
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In the model, the bearings are simulated by spring elements. K1 is the stiffness
of the upper guide bearing; K2 is the stiffness of the low guide bearing; K3 is the
stiffness of the water guide bearing. The three kinds of stiffness include the oil film
bearing stiffness and the stiffness of their bases and brackets which are installed in
a series as shown in Fig. 9.6.

K4 is the torsion stiffness of the thrust, whose action to the shaft system is
equivalent to a torsion spring.

K5 is the stiffness of runner that is formed by an imbalanced water reaction
caused by asymmetric clearance between its outskirt and inner surfaces of head
cover and bottom cover, respectively.

K6 and K7 are stiffness and torsion stiffness of the generator which represent the
imbalanced reaction of an asymmetric magnetic pull caused by uneven clearance
between rotor and stator.
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Fig. 9.10 Model of shaft system in a hydraulic turbine unit. a Structure. b Model (Zhang 2008)
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9.3.1.2 Basic Equations of Shaft System Model in FEM

The General governing equations of a rotating mechanical system can be
expressed in the inertial reference frame and in the rotating frame of reference as
shown in Sect. 9.1: Eqs. (9.1)–(9.3).

1. Modal analysis in FEM

The goal of modal analysis in rotordynamics is to determine the natural mode
shapes and frequencies of a rotor system during free vibration. It is common to use
the FEM to perform this analysis, because like other calculations, the object being
analyzed in the FEM can have an arbitrary shape and the results of the calculations
are acceptable.

For the most basic problem involving a linear elastic material the matrix
equations take the form of a dynamic three-dimensional spring mass system. The
generalized equation of motion is given as

M½ � €uf g þ C½ � _uf g þ K½ � uf g ¼ ff g ð9:40Þ

where [M] is the mass matrix, €uf g is the 2nd time derivative of the displacement
{u} (i.e., the acceleration), _uf g the velocity, [C] is a damping matrix, [K] is the
stiffness matrix, and {f} is the force vector

The only terms kept are the 1st and 3rd terms on the left hand side which give
the following system:

M½ � €uf g þ K½ � uf g ¼ 0: ð9:41Þ

This is the general form of the eigensystem encountered in structural engi-
neering using the FEM. Furthermore, the harmonic motion is assumed for the
system, so that _uf g is equal to k{u}, where k is an eigenvalue, and the equation
reduces to

M½ � uf gk þ K½ � uf g ¼ 0: ð9:42Þ

In contrast, the equation for static problems is

K½ � uf g ¼ ff g ð9:43Þ

which is expected when all terms having time derivatives are set to zero.
For the linear system, the solutions of Eq. (9.42) is expressed as

uf gi¼ uf gi cos xit þ hið Þ ð9:44Þ

where {u}i is the ith order vibration mode vector; xi is the ith order free vibration
frequency, hi is the ith order vibration phase angle. Introducing Eq. (9.43) into
(9.41), one gets

K½ � � x2 M½ �
� �

uf g ¼ 0: ð9:45Þ
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In order to include the vibration amplitudes for each degree of freedom, the
algebraic equations are given as

K½ � � x2 M½ �
�

�

�

� ¼ 0: ð9:46Þ

The solutions of Eqs. (9.45) and (9.46) are the eigenvalues x2 = k and their
corresponding eigenvectors of the equations, which are dependent upon the mass
matrix and stiffness matrix. For linear elastic problems, the stiffness and mass
matrices and the system in general are positive definite. These are the easiest
matrices to deal with because numerical methods commonly applied are guaran-
teed to converge to a solution. When all the qualities of the system are considered:

1. Only the smallest eigenvalues and eigenvectors of the lowest modes are
desired.

2. The mass and stiffness matrices are sparse and highly banded.
3. The system is positive definite.

A typical prescription of the solution is to tridiagonalize the system using the
Lanczos algorithm. Next, find the eigenvectors and eigenvalues of this tri-diagonal
system. If inverse iteration is performed, the new eigenvalues will relate to the old
by l = 1/k, while the eigenvectors of the original can be calculated from those of
the tri-diagonal matrix.

2. Transient analysis in FEM

In a mechanical system, a transient or natural response is the response of a
system to disturb from equilibrium. Specifically, transient responses in the system
are the portion of the response that approaches zero after a sufficiently long time.

The rotordynamic force equilibrium Eq. (9.2) can be rewritten in the following
form as a set of N second order differential equations:

M½ � €uf g þ C½ � _uf g þ K½ � uf g ¼
X

J

j¼1

f jgjðtÞ
� �

: ð9:47Þ

All possible types of time-dependent loading can be represented by a sum of
‘‘J’’ space vector, where {fj} are not a function of time, and gj(t) are time func-
tions. The number of dynamic degrees-of-freedom is equal to the number of
lumped masses in the system. In the mode superposition method, the separation of
variables is used to solve Eq. (9.47). This approach presumes the solution can be
expressed in the following form:

uðtÞf g ¼ U½ � YðtÞf g ð9:48aÞ

where [U] is an ‘‘N 9 L’’ matrix containing L spatial vectors which are not a
function of time, and {Y(t)} is the modal ordinate, a vector containing L functions
of time. And let

9.3 Rotordynamics Analysis 329



U½ �T M½ � U½ � ¼ I½ � ð9:48bÞ

and

U½ �T K½ � U½ � ¼ X2
h

� �

ð9:48cÞ

where [I] is a diagonal unit matrix and [Xh
2] is a diagonal matrix that may or may

not contain free vibration frequencies.
After substitution of Eq. (9.48) into (9.47) and the pre-multiplication by [U]T,

the following matrix of L equations is produced:

I½ � €YðtÞ
� �

þ d½ � _YðtÞ
� �

þ X2
h

� �

¼
X

J

j¼1

pjgjðtÞ
� �

ð9:49Þ

where {Xh
2} = [Xh

2] {I} ({I} is unit vector), {pj} = [U]T {fj} and both are defined
as the modal participation factors for time function j. The term pnj is associated
with the nth mode.

For all real structures, the ‘‘L � L’’ matrix is not diagonal; however, in order to
uncouple the modal equations it is necessary to assume that there is no coupling
between the modes. Therefore, the matrix is thought to be diagonal with the modal
damping terms defined by

dnn ¼ 21nxn

where dnn is the ratio of the damping in mode; 1n to the critical damping of the
mode; xn is the critical frequency of the mode. A typical uncoupled modal
equation for linear shaft systems is in the form of

€ynðtÞ þ 21nxn _ynðtÞ þ x2
nynðtÞ ¼

X

J

j¼1

pnjgjðtÞ: ð9:50Þ

Based on the foregoing equations, the transient dynamic response of the shaft
system due to the initial conditions and arbitrary loading could be solved with the
mode superposition method.

The mode superposition method is a very powerful method applied to reduce
the number of unknowns in a dynamic response analysis. All types of loading can
be accurately approximated by piece-wise linear functions within a small time
increment. An exact solution exists for this type of loading and this solution can be
computed with a trivial amount of computer time for equal time increments.
Consequently, there is no need to present other methods for the numerical eval-
uation of modal equations when a computer program is involved.

To solve for the linear dynamic response of a shaft system subjected to periodic
loading it is only necessary to add a corrective solution to the transient solution for
a typical time period of loading. Hence, only one numerical algorithm is required
to solve a large number of different dynamic response problems in structural
engineering (CSI 2009). Another method for the linear dynamic response of shaft
system is the direct integrate method introduced in last section.
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9.3.2 Element Analysis and Excitation in Establishing
the FED Model

The selection and analysis of the elements in turbine shaft systems, and the
hydraulic, mechanical and magnetic excitations acting on the systems are
explained in this section for the rotordynamic FED analysis.

9.3.2.1 Selection of the Element Type

Selection of an element type is important for analysis of the shaft-system dynamics
in FEM. The 3D solid element should be considered to simulate the shaft itself. In
most cases, the beam element is selected for shaft because it has 6 degrees of
freedom: 3 degrees are the displacement along 3 coordinate axes, and 3 are the
rotating angles around those axes. The 3D solid disc element is usually to be
chosen for rotor and runner, which have the lumped mass, the equatorial and axial
moments of inertia around their section center and their three directions’ diame-
ters, respectively. Springs serve as their supports with an elastic stiffness to sim-
ulate the interaction between the rotor (runner) and stator.

Three guide bearings of the shaft system are modeled by special bearing ele-
ments, as shown in Fig. 9.11.

The stiffness matrix [Kc], the damping matrix [Cc] and the strain matrix [Sc] of
the bearing element in the x-y plane are expressed as Eqs. (9.51)–(9.53). Elements
in the shaft system are assembled into a global computation mesh for the system of
a hydraulic turbine unit marked in Fig. 9.12, which has a total of 21 elements and
23 nodes.

Kc½ � ¼

k11 k12 0 �k11 �k12 0
k21 k22 0 k21 k22 0
0 0 0 0 0 0
�k11 �k12 0 k11 k12 0
�k21 �k22 0 k21 k22 0

0 0 0 0 0 0

2

6

6

6

6

6
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3
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7

7

7

5

ð9:51Þ

Sc½ � ¼

k11e1
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l1

k12e2
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l2
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k21e1
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k22e2
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l1
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0 0 0

k11e1
0

l1
� k12e2

0
l2

0

� k21e1
0

l1
� k22e2

0
l2

0
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ð9:52Þ
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Cc½ � ¼

c11 c12 0

c21 c22 0

0 0 0

�c11 �c12 0

c21 c22 0

0 0 0

�c11 �c12 0

�c21 �c22 0

0 0 0

c11 c12 0
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0 0 0
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5

ð9:53Þ

where k11, k12, k21, k22 are the stiffness coefficients; c11, c12, c21, c22 are the
damping coefficients. And

e1
0 ¼ uj � ui and e2

0 ¼ vj � vi

where u and v are the displacements along x and y directions, respectively; l1 is the
distance between nodes I and J; l2 is the distance between nodes k.

Elements in the shaft system are assembled into a global computation mesh of
the system of a hydraulic turbine unit marked in Fig. 9.12, which has a total of 21
elements and 23 nodes.

9.3.2.2 The Basic Consideration of Excitation and Element Parameters

Excitations from the hydraulic source, the mechanical source, as well as the
magnetic source were introduced in Chaps. 5 and 6. For the excitations and
parameters of each element type, the following problems should be considered in
the shaft system of this unit (Wang et al. 2005):

C21
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Fig. 9.11 Bearing element
(Zhang 2008)
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1. The bearing stiffness includes stiffness of oil film in the bearing, the bearing
bracket, and its base. The stiffer the bearings are, the higher the critical velocity
of the shaft system is. The stiffness of thrust on the shaft system has little effect
to system critical speed, so in some established FEM models for some hydraulic
turbine units the thrust stiffness is not considered.

2. The effect of the magnetic pull to the shaft works in the opposite direction of
the oil film’s supporting force. When the eccentric gap exists in the rotor, the
generator stator will pull the rotor in an outward direction, and the pull mag-
nitude is proportional to the eccentric clearance between rotor and stator. In
computation, the eccentric gap between rotor and stator is treated as an elastic
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Fig. 9.12 Finite element model of shaft system. a Number of elements and nodes. b FEM mesh
(Zhang 2008)
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support with negative stiffness as shown in Fig. 9.10. The magnet pull will
reduce the critical speed noticeably.

3. The water mass in the runner should be added to the computation. It is con-
venient to add the water mass to the runner lumped mass node.

4. The imbalanced magnetic force F1 from the stator acting on the rotor, which is
a function with respect to the time and rotation frequency of shaft system X is

F1 ¼ A cos Xt ð9:54Þ

where A is the amplitude of the imbalanced force, with the value 30 kN in this
example computation.

5. An imbalanced water force acting on the rotor is caused by the out-of-round
runner and the swing movement of the shaft. It is expressed as

F2 ¼ K cos X1t þ /ð Þ ð9:55Þ

where K is the magnitude of the force; X1 is round frequency; and / is the phase
difference angle between F1 and F2. In computation, it is assumed that / ¼ p
because it will create a maximum response. And also K ¼ 80 kN; and X1 is taken
to be double the rotating frequency of the shaft in computation.

6. The damping of the shaft system comes from the oil film in the bearings and
water movement in the sealing gap.

9.3.2.3 Torque Calculation of the Generator at Transient Process

Under stable conditions, the hydraulic torque acting on the runner is in balance
with the magnetic torque of the generator of shaft system, and the resulting torque
not induce any torsion vibration of the shaft. In the transient process of the
hydraulic turbine unit, such as in the process of starting up, shutting down,
increasing and decreasing unit load, the equivalence of total torque will be
destroyed, resulting in system torsion vibration. But the hydraulic torque variation
is slow, which will not able to induce the torsion vibration and will be treated as
constant toque at the moment.

The magnetic torque in a stable condition can be obtained from the magnetic
calculation of the generator.

Two basic methods are used in calculating the electromagnetic force between
the stator and rotor in the generator. The two methods are based on Maxwell stress
tensor and the principle of virtual work. For calculation of force and torque in
generators the FEM is commonly used in addition to the analytical methods
(Gustavsson and Aidanpää 2003, 2004, 2006).

The electromagnetic pull acting on the generator rotor depends on asymmetry
in the air gap between the rotor and stator. In a perfectly symmetric machine the
radial pull forces should add up to zero. However, all practical generators have
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some asymmetry in the air gap. A common example of asymmetry is when the
rotor centre and stator centre do not coincide with each other. The relative
eccentricity is defined as

e ¼ ur=DR ð9:56Þ

where ur is the radial displacement of the rotor centre and the average air gap DR is
the radial clearance between the inner radius of the stator Rs and the outer radius Rr

of the rotor.
In a three-phase generator with an arbitrary number of poles the magnetic pull

force is composed of a constant part and an alternating part. The alternating part of
the force alternates twice the supply frequency for static eccentricity, and twice the
supply frequency multiplied by the slip for dynamic eccentricity. The alternating
force component decreases with an increasing number of poles in the generator.
Hydropower generators usually have several poles and operate as synchronous
machines. This implies that the alternating magnetic pull force is negligible in
comparison to the constant magnetic pull force. The mean value of the magnetic
pull force can be expressed as

F1 ¼
l0S2

SR3
Shp

2p2DR2
e

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2ð Þ3
q

ð9:57Þ

where SS is the stator linear current density, p is the number of poles, h is the
length of the rotor, and l0 is the permeability of free space. The result of Eq. (9.57)
is that the magnetic pull force is a non-linear function of the air gap eccentricity
and the magnetic pull force will destabilize the rotor system with an increasing
rotor eccentricity.

The air gap eccentricity can be divided into two categories: stator eccentricity
and rotor eccentricity. In the case of stator eccentricity the rotor will be in a fixed
position relative to the stator under a constant magnetic pull force, meaning that
the smallest air gap will be in a same direction during the rotation of the shaft.
Characteristic for rotor eccentricity is that the rotor will whirl around the centre
line of the rotor in an orbit. However, the most common case of eccentricity is a
combination of stator and rotor eccentricity and the rotor centre will whirl around a
fixed position in the stator bore with the angular speed of rotation.

9.3.3 Dynamic Calculation of Shaft System of Hydraulic
Turbine Unit

The dynamic calculation of the shaft system in a hydraulic turbine unit presented
in this section includes the critical speed of lateral and torsional vibrations, and the
lateral response of the system.
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9.3.3.1 Critical Speed of Lateral and Torsional Vibrations

The shaft of a large scale hydraulic turbine unit is a rigid type of rotor system,
where two orders of critical speeds are important for the stability of the shaft
system. Table 9.4 lists the natural frequencies for both its lateral and torsion
vibrations from the shaft system vibration modal computation in a hydraulic tur-
bine unit by Wang et al. (2005). Data in this table indicates the first order critical
speed is higher than 1.4 times of the runway speed of the unit (210 rpm).
Figures 9.13, 9.14 show the lateral vibration mode shapes (dotted line) at first and
second critical speeds of the shaft system. At the first critical speed, the mode
shape curve is intersected with the central axis of the shaft system near the node of
the water turbine guide bearing. For the second critical speed, the generator and
the turbine shaft all have very small amplitude. The maximum amplitude appears
at the end node of runner.

Figures 9.15, 9.16 plot the torsion mode shapes (dotted line) at first and second
natural speeds of the shaft system torsion vibration. At the first order of torsion
vibration, the maximum angle deforming also appears at the runner node.

Table 9.4 Calculation results of critical speed for lateral and torsion vibrations (Wang et al.
2005)

Order Lateral vibration Torsion vibration

Critical speed (rpm) Natural frequency (Hz) Natural frequency (Hz)

1 383.7 6.40 17.36
2 497.0 8.28 142.715
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Fig. 9.13 First order mode
of critical speed (Wang et al.
2005)
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B

Fig. 9.14 Second order
mode of critical speed (Wang
et al. 2005)

Fig. 9.15 First order torsion
mode (Wang et al. 2005)
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9.3.3.2 Transient Lateral Vibration Response of the Shaft System

1. In the rated-load case

Table 9.5 indicates computational results of the transient lateral vibration
response under excitation of the imbalanced hydraulic force and excitation of the
emblazed magnetic pull at the water turbine’s rated load case. The time waveform
of the amplitude of lateral vibration at UGB, rotor center, WGB, and runner center
positions at this case are shown in Figs. 9.17, 9.18, 9.19, 9.20, respectively. The
orbits of the UGB and WGB center are shown in Figs. 9.21 and 9.22, respectively.

Fig. 9.16 Second order torsion mode (Wang et al. 2005)

Table 9.5 Calculation results of shaft swing at rated load case (Wang et al. 2005)

Survey points Swing (mm)

Amplitude Vector value

UGB 0.17 0.095
Rotor center 0.19 0.112
WGB 0.23 0.126
Runner center 0.60 0.332
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Fig. 9.17 Response of upper generator bearing under rated conditions. Note abscissa time (s),
ordinate amplitude (mm), D amplitude along x direction; h amplitude along y direction (Wang
et al. 2005)
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From the orbits one can see that the imbalanced force excitation starts from the
x direction, then the response amplitudes along x and y direction tend to be equal.

Figure 9.23 shows measured results of shaft swing amplitudes of the unit at
different load cases and at UGB and WGB survey points. Table 9.6 shows cal-
culated results of shaft swing at rated load case. Comparison between test and
calculated data implies that the tested amplitude is larger than that of the calcu-
lation at the UGB survey point. The imbalanced magnetic pull is smaller that the
hydraulic imbalanced force. And at the WGB survey point the test and calculated
results agree well with each other.
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Fig. 9.18 Response of rotor center under rated conditions. Note abscissa time (s), ordinate
amplitude (mm), D amplitude along x direction, h amplitude along y direction (Wang et al. 2005)
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Fig. 9.19 Response of turbine bearing under rated conditions Note abscissa time (s), ordinate
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2. In the part-load case

In 6 operation part-load cases, the transient excitation responses caused by an
imbalanced magnetic pull and hydraulic imbalanced force have been carried out
for the same hydraulic turbine unit. The whole calculated data are listed in
Table 9.6.

From the results, one can find that the imbalanced excitation force is propor-
tional to the transient response amplitude. In case 2 in Table 9.6, the amplitude of
WGB position reaches a maximum value of 0.71 mm.

3. Results remarks
(a) The response data of the shaft system satisfy the standard requirement, but in

some cases, the amplitude reaches to 0.4 mm at the bearing point and 1.0 mm
at the runner position.
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Fig. 9.23 Measured shaft swing of the unit (Wang et al. 2005)

Table 9.6 Calculation results of transient response of shaft system (Wang et al. 2005)

No water force
K(kN)

water force
fre. x2

Mag. Pull
A (kN)

Fre.
x1

Shaft swing (mm)

UGB Rotor WGB Runner

Am Ve Am Ve Am Ve Am Ve

1 162.6 10.5 29.2 10.47 0.27 0.15 0.30 0.18 0.47 0.26 1.20 0.65
2 243.9 10.5 29.2 10.47 0.37 0.21 0.41 0.25 0.71 0.39 1.80 0.98
3 40 20.9 0 0 0.06 0.04 0.08 0.04 14 0.08 0.33 0.18
4 80 20.9 0 0 0.12 0.07 0.15 0.08 0.28 0.15 0.64 0.36
5 20 31.4 0 0 0.07 0.04 0.08 0.04 0.09 0.05 0.24 0.13
6 40 31.4 0 0 0.13 0.07 0.15 0.08 0.19 0.10 0.48 0.25

Note Case operation case of the turbine; Water force the imbalanced hydraulic force; Mag. pull
the generator imbalanced pull to the rotor; Fre. frequency; No. Case number
Am. the amplitude of time wave form of the transient response of shaft lateral displacement; Ve.
vector mode of the response
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(b) The response amplitude caused by imbalanced forces at WGB is two times of
that at UGB. The imbalanced magnetic pull is much smaller.

(c) The response amplitude at runner center is 215 times of that at WGB. And it is
also 115 times of that at rotor center.

(d) At the same excitation amplitude, the higher the doubling frequency of
excitation, the greater the swing of shaft.

The forgoing results may benefit evaluations of stability in the shaft systems of
hydraulic turbine units.

9.4 Pump Rotordynamic Parameters

The rotordynamics of pumps is more complicated due to a number of operating
features mostly load dependent; i.e., related to the pressure and flow conditions.

The analysis of pump rotordynamic coefficients such as the prediction of seal
reaction forces should be brought into scope at first.

Any movement of the rotational axis of the shaft on a pump relative to its
casing induces fluid forces on the shaft and the casing, which in turn will increase
or decrease the rotor deflection or vibration. Contributions to these rotor dynamic
forces can arise from seals, the rotor side space, the flow through the impeller,
leakage flows, or the flow in the bearings themselves (Guinzburg et al. 1994). The
pump rotor’s dynamic coefficients are required as input data for the prediction of
rotor vibration. These parameters can be determined by experiments, bulk flow
analysis, and CFD simulation, as shown in Fig. 9.24 (Staubli and Bissig 2002).
Chapters 5 and 6 included the necessary coverage on determining these parameters
in the field of engineering. This section will present the bulk flow analysis and
CDF simulation for pumps.

Experiment Bulk  Flow __ CFD  Simulation

Stesdy Transient

Moving Grid

Elliptical orbitCircular orbit
Relativ co  ordinate_

system

Determination of
rotordynamic coefficients

Fig. 9.24 Determination of rotordynamic parameters (Staubli and Bissig 2002)
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Assuming a linear relationship of force and displacement, while neglecting the
influences of high derivatives of the motion, one could describe this force–dis-
placement model with the following rotor dynamic stiffness, damping, and mass
matrices:

�fxðtÞ
�fyðtÞ


 �

¼ Kxx Kyx

�Kxy Kyy

� 	

x
y
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þ Cxx Cyx

�Cxy Cyy

� 	

_x
_y


 �

þ Mxx Myx

�Mxy Myy

� 	

€x
€y
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ð9:58Þ

For small motions and full rotational symmetry of the rotor and stator, the
cross-coupled terms of damping and stiffness matrices become equal in magnitude.
According to experimental findings the cross-coupled inertia terms of the mass
matrix may be neglected and are set to zero (MC = 0). However, the direct inertia
term M cannot be neglected except in cases where the laminar seal flow dominates,
e.g. for slide bearings. Thus, the coefficient matrices can be simplified in the case
of small concentric perturbations:

�fxðtÞ
�fyðtÞ
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�MC M
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 �

ð9:59Þ

9.4.1 Bulk-Flow Model

The bulk-flow theory of Hirs (1973), e.g. described by Childs (1983, 1993), is a
well-Gustavsson and validated tool to calculate rotor dynamic coefficients. To
introduce this model, the following description will focus on the labyrinth seal (see
Williams and Flack 1998).

9.4.1.1 Principal of Bulk-Flow Model

The solution technique consists of deriving the continuity and momentum equa-
tions for each labyrinth cavity representing a single control volume similar to that
performed by Childs and Scharrer (1986). A leakage model is used to account for
the axial leakage from one chamber to the next. The resulting set of partial dif-
ferential equations is linear via a perturbation analysis for small motion about a
centered position (Williams and Flack 1998).

Zero order equations are solved for the pressure and velocity in each cavity. The
temporal and spatial derivatives in the first order equations are eliminated on the
assumption of an elliptical shaft orbit and resulting responses for the pressure and
velocity fluctuations. The resulting set of linear algebraic equations is worked out
for the pressure and velocity perturbations about the circumference. The dynamic
coefficients are determined by integrating the pressure perturbations around and
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along the shaft. Details of the method can be found in Williams (1992). The three
dimensional flow in a labyrinth seal is very complex. In order to create a set of
tractable equations which describe the flow, simplifying assumptions must be made:

(1) The circumferential velocity and pressure within a labyrinth chamber are
constant in the axial direction and are functions of the angular position only in a
perturbed case. (2) The temperature within each seal cavity is constant. (3) The gas
is assumed to be ideal. (4) Pressure variations within a cavity are negligible relative
to the pressure difference across a seal tooth. (5) The eccentricity of the rotor is
small relative to the radial seal clearance. (6) The acoustic resonance frequency of a
cavity is much higher than that of the rotational frequency. (7) The axial component
of velocity is negligible in determining the circumferential shear stress. (8) The
shear stress contribution to the stiffness and damping coefficients is negligible.

A set of equations can be developed which approximately describes the flow
within a labyrinth seal. Principles for conservation of mass and conservation of
circumferential momentum are applied to each labyrinth chamber which serves as
a control volume. In order to solve these equations, one should perform a per-
turbation analysis with the eccentricity ratio e = e/Cr (Cr is the nominal seal
clearance radial, e is the eccentricity) serving as the perturbation parameter.

Perturbation variables consist of a static component (zero order) denoted by the
superscript 0 and a varying component (first order) denoted by the superscript 1.
For example, Pi = Pi

0 ? ePi
1 and Vi = Vi

0 ? eVi
1, these variables are used with the

above equations and like orders of the perturbation parameter e(e0, e1) are grouped.
The zero order equation e0 determines the circumferential velocity and pressure
distribution for a centered position along the seal length. In the centered case,
pressure and velocity are constant within a given chamber and vary only from
chamber to chamber. The zero order equation also defines the mass flow leakage
rate. The first order equation e1 determines the pressure and velocity perturbations
resulting from the eccentricity of the rotor. In the eccentric case, the velocity and
pressure perturbations are not constant within a given chamber but are functions of
circumferential position and time. These pressure fluctuations are responsible for
the forces applied to the rotor by the seal.

The spatial and temporal derivatives are eliminated with the assumption of a
synchronous elliptical orbit for the rotor and similar pressure and velocity fluc-
tuations. Substitution and grouping like terms of sines and cosines leads to a set of
eight linear simultaneous equations for each cavity. The equations can be solved
for pressure and velocity perturbations caused by the eccentricity of the rotor.
Once the pressure fluctuations are known, the rotordynamic coefficients can be
calculated.

9.4.1.2 Predictions of Force Coefficients in Off-Centered Grooved Seals

1. Short-length seal. Andrés and Delgado (2008) summarized the dynamic coef-
ficients of short length seals (Fig. 9.25).
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Figure 9.25 shows the simple short-length seals. For the smooth seal without
groove (a), the damping, cross-coupled stiffness and inertia mass may be expressed as

CXX ¼ 2plDL3



c3; KXY ¼ 0:5XCXX; MXX ¼ 0:4pqDL3



c: ð9:60aÞ

For the 2-land seal: (deep groove divides lands) seal (b), they are

CXX ¼ 0:25 p l D L3



c3; KXY ¼ 0:5X CXX ; MXX ¼ 0:05pq D L3



c: ð9:60bÞ

For the � of original seal:

CXX ¼ 0:5pl D L3



c3; KXY ¼ 0:5X CXX; MXX ¼ 0:1pq D L3



c ð9:60cÞ

where X is rotating speed of shaft.

2. Short-length seal leakage

Andrés and Delgado (2008) calculated results that predicted leakage correlates
well with experiments for both smooth land and grooved seal at a condition of
10,000 rpm rotating speed and 70 bar pressure head of the turbomachine (see
Fig. 9.26), and damping, stiffness as well as added mass-of-inertia by an improved
bulk flow model. The results are for compressors, but they are useful for high
speed pumps.

Journal
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Fig. 9.25 Short-length seal. a Short-length smooth seal without groove. b 2-land seal (deep
groove divides lands) (Andrés and Delgado 2008)
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9.4.1.3 Identification of the Adding Moment of Inertia of a Disc
in Water Using the Perturbation Analysis

The moment of inertia of water in a partly filled cylindrical container is mainly
identified by the thickness of the boundary layer against the walls. The periodic
boundary layer of swaying water perturbed by harmonic rotation in a circular
cylinder has been studied by Reismann et al. They found that the equatorial
moment of inertia and the damping coefficient are the functions of the boundary
layer thickness. For a standard cylindrical container the equatorial moment of
inertia is mainly determined by the boundary layers on the bottom and side walls
of the cylinder.

The laminar flow on the rotating disc is described by the following simplified
N–S equations:

ou

ot
¼ l

q
ou2

o2Z
ð9:61Þ

where the Z-axis is perpendicular to the disc. Under harmonic perturbation of
rotating vibrations, u = u0 sin(Xt) and with some boundary conditions the solu-
tion of Eq. (9.61) is

u ¼ rXe�
ffiffiffiffiffiffiffiffi

X=2m
p

Z cosð
ffiffiffiffiffi

X
2m

r

ZÞ cosðXtÞ þ sinð
ffiffiffiffiffi

X
2m

r

ZÞ sinðXtÞ
" #

h0: ð9:62Þ

Then the shear stress sb ¼ l ou=oZð Þ can be obtained as

sb ¼ l
ffiffiffiffiffiffiffiffiffiffiffi

X=2m
p

Zu þ q

2
ffiffiffiffiffiffiffiffiffiffiffi

X=2m
p

Z

ou

ot
: ð9:63Þ

One can get the shear moment of liquid around the central axis of the disc by
integration in the form of

Tb ¼
Z 2p

0

Z R

0
ðsbÞZ¼0r2drdh ¼ Jb €u þ Cb _u ð9:64Þ

where Jb and Cb are the effective equatorial moment of inertia and the damping of
liquid on the disc respectively. Likewise, one can get these coefficients of water
near the side walls of a circular cylinder as follows:

Tw ¼ Jw €u þ Cw _u: ð9:65Þ

Then one can get the full coefficients of water in the cylindrical container:

T0 ¼ J0 €u þ C0 _u: ð9:66Þ

The equatorial moment of inertia of liquid in the container J0 can be got
through the solution of torsion moment T0 by solving the following equation
numerically:
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T0 ¼ C0u0X cosðXtÞ � J0u0X
2 sinðXtÞ ¼ k cosðXt þ aÞ ð9:67Þ

where the factor k = u0X(C0
2 ? I0

2X2)1/2; and the phase angle is satisfied with

sin a ¼ I0X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
0 þ I2

0X
2

q ; cos a ¼ C0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
0 þ I2

0X
2

q : ð9:68Þ

9.4.2 Identification of Dynamic Coefficients of Pumps
by CFD Simulation

The use of computational fluid dynamics (CFD) for pump simulation has been
established (see Chap. 7). Unsteady CFD-simulations are state-of-the-art and
today, pressure fluctuations can be predicted with acceptable accuracy. Numerical
simulations of entire pumps including rotor side spaces and seals have been
completed. Thus, the interaction of leakage and main flow as well as inflow
conditions into seal portions have been simulated, yet no assumptions have to be
made. In this section the procedures to determine rotordynamic coefficients from
CFD simulation and its results are presented.

9.4.2.1 Identification of Coefficients from CFD Simulation

The following procedures will be presented to determine rotordynamic coefficients
from a numerical flow simulation (Staubli and Bissig 2001).

1. Steady State Simulation

For a circular rotor motion around a centered position, it is possible to find a
relative coordinate system in which the flow becomes a steady state. This relative
coordinate system must rotate backwards with the frequency of the orbit motion.
Rotationally symmetric geometry and inflow conditions are necessary assumptions
for steady state flow. Figure 9.27 shows this coordinate system with a relative
rotor angular velocity of XRrel = XR - XE, where XR is the impeller rotating
speed, XE is the precession (orbit) angular speed of the rotor system. Accordingly,
the stator must rotate backwards with a relative angular velocity of XSrel = -

XRrel. In the absolute coordinate system this corresponds to an orbit motion
equivalent to Eq. (9.69):

x ¼ eS0 cos XEtð Þ; y ¼ eS0 sin XEtð Þ; u ¼ XEt ð9:69Þ

Integration of calculated pressure distributions on the rotor surface leads to the
resulting fluid force on the rotor at a given operating condition and orbit frequency.
The force acting on the rotor can be decomposed in a radial force component Fr
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and circumferential force component Fc with respect to the orbit center. Rotor-
dynamic coefficients can then be identified from the regression of calculated forces
for various orbit frequencies.

These integrations were performed for constant leakage, rotor speed and pre-
swirl at the inlet as a function of the orbit’s angular frequency. Introducing these
forces into Eq. (9.59) and setting the time to t = 0 in Eq. (9.69) leads to:

Fx XE t ¼ 0ð Þð Þ= eS0ð Þ ¼ Fr XEð Þ=eS0 ¼ �K � CC þ MX2
E ð9:70Þ

Fy XE t ¼ 0ð Þð Þ



eS0ð Þ ¼ FC XEð Þ= eS0ð Þ ¼ �KC � CXE ð9:71Þ

In order to determine the rotor’s dynamic coefficients, one has to determine Fc
and Fr as functions of the orbit’s angular frequency from Eqs. (9.70) and (9.71). For
numerical calculations this means that the angular velocities of the stator and rotor
have to be varied in the relative coordinate system. Employing a second order
regression on Eq. (9.70) will yield the coefficients of stiffness K, cross damping CC,
and inertia M from the calculated radial forces Fr. The damping coefficient C and
the cross stiffness are determined from a linear regression of Fc in Eq. (9.71).

2. Transient simulation

In the absolute coordinate system the orbital motion generates an unsteady flow
in the seal as indicated in Fig. 9.28. For simulation in the absolute system, the grid
has to be adapted to the instantaneous position of the rotor. An unsteady flow and
varying geometry increases the computational expense for CFD calculations
considerably. Therefore, such simulations would only make sense if the inflow
conditions or the geometry are not rotationally symmetric.

If more general boundary conditions prevail, one should simulate in the
absolute frame of reference. To achieve that, the technique of a moving grid has to
be applied and transient simulations have to be performed. Such moving grid
simulations were performed for test-case geometry. Two different ways to

Srel

Rrel

S0

Fc

Fr

F

y

x

Fig. 9.27 Relative co-
ordinate system (Staubli and
Bissig 2001)
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determine rotordynamic coefficients are applicable depending on the type of orbit
motion prescribed.

(a) Circular orbit

If a circular orbit is prescribed, it is necessary to simulate at least three different
orbit frequencies. In a next step the radial Fr and circumferential forces Fc have to
be determined from a coordinate transformation of the forces Fx and Fy. Then the
coefficients can be obtained in the same way as the relative co-ordinate system.

(b) Elliptical orbit

A very efficient and elegant method for determining rotordynamic coefficients
becomes possible if the rotor center prescribes an elliptical orbit (Fig. 9.29). In this
case, a single transient simulation is sufficient to determine all rotordynamic
coefficients. A variation is not needed.

Cu Fy
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yFig. 9.28 Absolute
coordinate system (Staubli
and Bissig 2001)
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Fig. 9.29 Elliptical orbit
(Staubli and Bissig 2001)
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9.4.2.2 Calculated Results of Coefficients from CFD Simulation

From a series of calculations by Staubli and Bissig (2001, 2002), rotor dynamic
coefficients can be identified for varying circumferential rotor speeds and three
different leakage flow rates. The results of test case simulations are included in
Fig. 9.30 and are compared with those from bulk-flow calculations as well as to
experimental data (Graf 1991).

For clarification only, experimental data at Cm = 8.3 m/s are included in the
graph. Obviously all data suffer from a scatter, but reproduce the same trends and
order of magnitudes. The coefficients calculated from the elliptical orbit fit very

(a)

(c)

(e)

(d)

(b)

Fig. 9.30 Comparison of simulated rotordynamic coefficients with measurements and bulk-flow
theory a stiffness. b cross stiffness. c damping. d cross damping. e inertia (Staubli and Bissig 2002)
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well with the points determined from other methods. Largest deviations are
observed for the mass coefficients, which are determined from the curvature of the
parabolas (except for elliptical orbits). Generally, experiments and simulations
show larger-than-expected-values from bulk-flow theory.

9.4.3 Static Radial Loads on Centrifugal Pumps

Two formulas are used for estimation of the static radial load acting on a cen-
trifugal pump, one from the Hydraulic Institute (1994) and the other attributed to
Stepanoff. Both formulas are derived from extensive measurements. The two
methods predict a minimum radial load near the best efficiency point (BEP). The
Stepanoff was introduced in Chap. 6. Radial loads increase as the flow increases or
decreases from the BEP. The Hydraulic Institute (HI) method predicts radial loads
increasing at a faster rate with deviations from the BEP % volumetric rate at
higher specific speeds.

Figure 9.31 displays the load direction and its relative magnitude. From Andrés
(2006), at 0 % flow capacity the radial load vector peaks and lies along a line from
shaft center to the cutwater. As the flow increases, the load decreases and moves
around the volute in a direction opposite to the shaft rotation. At the BEP, the load
direction is opposite to the line joining the shaft center and the cutwater. This trend
continues as the volumetric capacity increases to over 100 %.

The empirical formulae for estimation of a radial load in single volute pumps
using the Hydraulic Institute method and Stepanoff method, as well as the load
factor curve with respect to the percent-flow capacity for several specific speeds of
pumps were presented by Andrés (2006). Nowadays, the radial load of any type of
pumps at any operant condition can be predicted by 3D steady and unsteady
turbulent flow simulation through the entire flow passage of the pumps, as
explained in Chap. 7.

25%

50%

75%

125%

100%BEP

cutwater
0%capacity at

BEP

Fig. 9.31 Direction of radial
load on single volute casing
pump (Hydraulic Institute
1994)
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9.4.3.1 The Hydraulic Imbalance Force on Centrifugal Pumps

Unsteady flow conditions within the pump also generate time-varying forces. The
most apparent force is that induced by the rotating fluid, i.e., a centrifugal load,
synchronous with shaft speed, and exacerbated by the surface condition of the flow
path within the pump impeller. The predicted hydraulic dynamic load, Fimb, relies
on empirical test data and follows the definition:

Fimb ¼ K1XqgHD0b ð9:72Þ

The dynamic hydraulic load is proportional to the fluid density, pressure dis-
charge P, the impeller outlet diameter D0; and impeller width b. The empirical
dynamic load factor (K1X) is a function of the flow condition (Q/QBEP), recom-
mended for operation at BEP from published test data,

0:005 � K1X � 0:015; 0:02 � K1X � 0:12 ð9:73Þ

for precision-cast and sand-cast impellers, respectively.
The hydraulic imbalance load was simulated by CFD unsteady turbulent flow

computation mentioned above.

9.4.3.2 Impeller-Rotor Interaction Forces in Centrifugal Pumps

As is indicated by Andrés (2006), dynamic forces are largely determined by the
lateral motions of the pump rotor, i.e., they depend on the rotor (radial and
angular) displacement, velocity, and acceleration and they are described with
conventional stiffness, damping, and inertia matrices.

When the rotor vibrates, the impeller moves and opens/closes the secondary
flow paths along the front shroud and back face of the impeller. The fluid flowing
through these gaps is also displaced and a dynamic pressure field is generated
creating the dynamic forces and torques acting on the rotor.

After extended periods of operation, all impellers will tend to degrade with
mechanical imbalance (wear, tear, debris accumulation), which exacerbates the
hydraulic imbalance force as surface flow conditions also degrade.

The impeller-rotor interaction force combines with dynamic forces from the
front and back faces of the impeller as well as those from neck-ring seal and inter-
stage seals. Impeller lateral forces are typically modeled as Eq. (9.59).

This reduced-force model assumes rotational symmetry and circular-centered
orbital motions. Test results are typically presented in a dimensionless form:

�K; �KC ¼
K;KC

mref X
2 ; �C; �CC ¼

C;CC

mref X
; �M; �MC ¼

�M; �MC

mref
; mref ¼

pqb2D2
0

4
ð9:74Þ

where X is the pump speed and mref is a reference fluid mass. The magnitude of the
reference mass is large, since it is linked to the volume of a solid disk of diameter
D0 and thickness b2. If MC * 0, the whirl frequency ratio, WFR = KC/(CDX),
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relates the whirl frequency of unstable motions to shaft speed. A WFR = 0.5
means that the pump cannot operate with stability at a speed above two times (=1/
WFR) the system’s first natural frequency. Table 8.4.1 presents the dimensionless
force coefficients given in the literatures of Andrés (2006).

9.5 Rotordynamic Computation of Pumps

A turbopump is comprised of two main components: a rotordynamic pump and a
driving turbine, both mounted on the same shaft. A turbopump can refer to either a
centrifugal pump where the pumping is done by throwing fluid outward at a high
speed, or an axial pump where alternating rotating and static blades progressively
raise the pressure of a fluid. The rotordynamic analysis of a turbopump is con-
ducted in this section.

9.5.1 Critical Speed and Excitation Computation
of a Turbopump Rotor

Turbopumps in rockets are so important and problematic that launch vehicles
bearing them have been caustically described as a ‘‘turbopump with a rocket
attached’’—up to 50 % of the total costs are ascribed to this area. Engineers have
to know the critical speed of the pump rotor system in its design.

9.5.1.1 Turbopump at Critical Speed and Excitation Response

Figure 9.32a shows the structure of a turbopump rotor system, (b) shows the
simplest model of a rotor system consisting of a shaft without mass, a single

turbine

pump

shaft

f luid  film bearings_

radial seals

casing
l

al

z

bl

1

z2

(a) (b)

Fig. 9.32 a Rotor system of turbopump. b Structure of single disc rotor
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rotating disc with lumped mass and an angular speed, and the supports having
circumferential homogeneous distribution of stiffness and damping. The acting
shear forces Q, the bending torques M, the elastic deflection y, and the angle of
deflection h for the shaft, its support and disc are marked in Fig. 9.33 respectively
(He et al. 1998).

Based on the conditions of the acting force and displacement, transfer matrices
of the shaft, disc, and supports at natural vibrations can be derived. For example,
the section of shaft in Fig. 9.33a can be expressed as

Qjþ1

Mjþ1

hjþ1

yjþ1
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ð9:75Þ

where vi ¼ li= EJið Þ; bi ¼ ei ¼ l2
i = 2EJið Þ; ci ¼ l3i = 6EJið Þ [see Eq. (9.23)].

The different types of supports have a different compound variety of elastic
components with stiffness K, dampers with damping coefficient C, and masses m0,
as well as their bases with stiffness K0 and mass as shown in Table 9.7.
The complex stiffness of different compound supports also is presented in the table
[see Eq. (9.28)].

In a similar way, one can get the displacement and acting force equations at natural
vibration for the section of rotating disc and shaft, respectively, like Eq. (9.75).
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Fig. 9.33 Acted force and displacement of shaft, support and disc at natural vibration. a Shaft.
b Support. c Disc

Table 9.7 Impeller force coefficients from test data by Andrés (2006)

Coefficient �K �KC �C �CC
�M �MC WFR Note

CT-volute -2.5 1.10 3.14 7.91 6.51 -0.58 0.35 U = 0.092
CT-diffuser -2.65 1.04 3.80 8.96 6.60 -0.90 0.27 U = 0.092
Radial impeller -0.42 0.09 1.08 1.88 1.86 -0.27 BEP, vaneless diffuser
S-Diffuser (2) -5.0 4.4 4.2 17.0 12.0 3.5 1.05 2 krpm
S-Diffuser (4) -2.0 7.5 4.2 8.5 7.5 2.0 1.78 4 krpm
S-with swirl brake -2.2 7.7 3.4 8.6 6.7 3.1 2.26 4 krpm, BEP, Type D
S-with face seal -4.2 5.1 4.6 13.5 11.0 4.0 1.11 BEP, Type A

S: Sulzer test data (small clearance); CT: Cal Tech test data; / ¼ 2Q= pXD0b2ð Þ flow coefficient
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The transfer matrices of each section can be obtained. Equations of frequency and
amplitude at natural vibration can be deduced based on overall arrangement of rotor
structure. From this, the natural critical rotation speeds and amplitudes of shaft
system for each order could be solved.

When the excitation is imposed on the rotor system, such as, the excitation
force f and excitation moment mf are expressed as

fi ¼ mieiX
2eiui ; mfi ¼ Jpi � Jdi

� �

diX
2eiu0i ð9:76Þ

where X is the angular speed of rotor; m is the mass of the rotor; Jp is its equatorial
moment of inertia to rotor center; Jd is its axial of inertia to rotor diameter; e is the
eccentricity of rotor; d is the eccentric angle of rotor; and u and u0 are initial phase
angles of eand d, respectively.

Figure 9.34 shows the variations of amplitude and the phase angler of forced
vibration as the excitation response in Eq. (9.76) from computation results of He
et al. (1998).

The rotor system model is the simplest model with one single disc and bearings
that have homogeneous circumferential distributions of parallel stiffness and
damping, presented in Table 9.8 ˜. From the figures, notice that the amplitude of
forced vibration is shrinking with the support stiffness decrease, yet the vibration
phase angle is growing.
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Fig. 9.34 Response of forced vibration at excitation (He et al. 1998). a Amplitude versus support
stiffness, b Phase angle versus support stiffness
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9.5.1.2 Turbopump Critical Speed Computation of Support Rotor

Turbopump critical speed of natural vibration computation was carried out on the
same model in Fig. 9.32 but with the circumferential non-homogeneous supports
(He et al. 1999).

In the computation, the complex stiffness of a support was non-homogeneous
along the circle, and the stiffness could be resolved on two main planes perpen-
dicular to each other. There is maximum or minimum stiffness in the main planes.
Simultaneously, the acting forces and displacements at vibration were also
resolved on the main planes.

The transfer matrices were respectively built for shaft, support, and plate ele-
ments. Then, the calculated equations of natural rotational speeds and amplitudes
were deduced according to the overall arrangement of rotors.

Figure 9.35 plots the frequency spectrum (Campbell diagram) of rotor systems
with non-homogeneous supports along the bearing circle (a), and with homoge-
neous supports along the circle (see last section).

Table 9.8 Structure of variant compound support and their complex stiffness (He et al. 1999)

No Type of complex support Global complex stiffness Figure

� Elasticity support Z = K

` Elasticity support regarding mass Z ¼ �m0x2
n þ K

´ Support possessing viscosity damping Z ¼ ixnC

ˆ In-line support of viscosity damping and elasticity unit Z ¼ 1
1=Kþ1= ixnCð Þ

˜ Parallel connection support of viscosity damping and
elastic unit

Z ¼ K þ ixnC

Þ Parallel connection support of viscosity damping and
elasticity unit, and regarding support mass

Z ¼ �m0x2
n þ K þ ixnC

þ Parallel connection support of viscosity damping and
elasticity unit and regarding support mass and shell
stiffness

Z ¼ 1
1

KþixnC
þ 1

k0þm0x2
n

Note xn is natural circular frequency of rotor system considering damping: xn = k ? ia, where k
is its natural frequency without damping and a is its coefficient
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By comparing Fig. 9.35a, b, one may find that the non-homogeneous rotor is
essentially distinct from the homogenous one in frequency spectrum. The critical
rotational speed of the former rotor will increase twice because its stiffness
coefficients of support along two perpendicular directions are not equal to each
other. For the rotor, there are two values for one order of critical speed. For
example, the calculation results of two values of first order critical speed are 3,163
and 3380 rpm from Fig. 9.35a (section point on the curve X = 2k); the test results
are 2,625 and 3,300 rpm by He et al. 1999. The vibration occurred in the direction
of minimum stiffness first and the orbit of the rotor vibration was an ellipse.

9.5.1.3 Turbopump Critical Speed Computation Considering Fluid
Acting Forces

When the pump eccentric impeller is filled with liquid, the fluid action on the
impeller may be divided into several kinds of forces and moments (He et al. 1999):

1. Lift to impeller PL:

PL ¼ Cx2A ð9:77Þ

where A is its acted area on impeller; C is the lift coefficient:

C ¼
qLV �1þ ri=r0ð Þ2

h i

þ 1þ 3 ri=r0ð Þ2
h i

X=x� 2 ri=r0ð Þ2X
2


x2

n o
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Fig. 9.35 The frequency spectrum (Campbell diagram) of rotor system (He et al. 1999). a With
non-homogeneous supports. b With homogeneous support
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where ri is the radius of the impeller; r0 is the inner radius casing; qI is liquid
density; V is the impeller volume; X is the angular impeller speed; and x is the
natural rotating speed of rotor.

2. Draft to impeller PD:

PD ¼ f xA ð9:78Þ

where f = lL pS(ri/r0)2 (gi - g0X/x). And lL is liquid viscosity, S is the impeller
width; and gi and g0 are factors which are functions of (X/x).

3. Centrifugal force to impeller PC:

PC ¼ mx2r ð9:79Þ

where m is liquid mass. The action of centrifugal force and lift may be treated as
the addition of an equivalent mass to the impeller.

4. Draft moment to impeller Mf is balanced by the driving force of impeller.
5. Eccentric osculating to impeller MD:

MD ¼ �f ao ð9:80Þ

where �f is the damping coefficient; ao is the impeller deflection angle.
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The forces and moment could be added into the transfer matrices, and then the
natural frequency of the rotor system could be obtained as shown in Fig. 9.36 for
the model in Fig. 9.32 but with consideration of the liquid flow actions to impeller.

Figure 9.36 shows a comparison of frequency spectrums between rotors in
liquid and in air.

The two spectrums have obvious differences, but the critical frequencies are
similar.

On the rotor’s precession conditions, the liquid has significant influence on the
natural frequencies. The first order of natural frequency will decrease at the
positive direction precession, but increase at negative direction procession. With
the positive precession, the added liquid mass increases the rotor mass.

Another sample calculation involves a turbopump with three rotors as shown in
Fig. 9.37. The critical speed calculations of the rotor system both in liquid and air
are listed in Table 9.9. The critical rotational speed of the turbopump rotor pos-
sessing three plates, two supports, and single shaft was calculated.

The results imply that there is an essential distinction between the frequency
spectrums in two conditions. The liquid action on the pump wheel obviously
influences the critical rotation speed of the rotor.

K1 K2

l2l1 l3 l4

Fig. 9.37 Schematic of a
turbopump structure with
three rotors

Table 9.9 Critical rotating speed of three rotor pump in liquid and in air (He et al. 1999)

Term 1st order 2nd order 3rd order

Not considering liquid action (rpm) 11,173 18,392 29,641
Considering liquid action (rpm) 8,222 14,897 25,793
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9.5.2 Critical Speed Computation for a Multi-Stage
Centrifugal Pump

An ultrahigh-pressure multi-stage centrifugal pump works at high speeds with a
long shaft, and is featured in complex structures. In order to improve the safety and
reliability of such operations demanded in a high level, the ultrahigh-pressure
multi-stage centrifugal pump develops in the direction of large equipment and the
integration of pump and electromotor. The characteristics and the stability of the
shafting system have a great impact on quality, lifespan, and reliability of ultra-
high-pressure multi-stage centrifugal pumps.

Therefore, it is important to conduct dynamic analysis for the rotor shafts of
ultrahigh-pressure centrifugal pumps. In this section, the problems of modeling a
steady rotor system with sliding bearings and ring seal via FEM are discussed.
Discussion has been conducted on the film force of sliding bearings and the
method of its application in modeling, as well as the method of simulating film
stiffness in Chap. 5.

Radial stiffness and damping of film are the important dynamic characteristics
of the rotor system; the circumferential stiffness and damping are both small and
generally not considered. In the dynamics mode of Chap. 5, incremental film force
and the dynamic characteristic of film was calculated, by pulsing small distur-
bances to the film in the static equilibrium position. Aiming for the rotor-bearing
system, the FEM mesh model of a 3,800 KW, multi-stage centrifugal pumps was
built. In the simulation analysis, modal shapes and critical speeds of the rotor were
calculated.

Fig. 9.38 Model of shaft operation in the air (Ping et al. 2008)

Fig. 9.39 Model of shaft operation in the water (Ping et al. 2008)
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In the analysis of the centrifugal pumps, the concepts of ‘‘dry’’ and ‘‘wet’’
critical speed are introduced. ‘‘Dry’’ denotes a critical speed that does not include
the dynamic characteristic-effect of the seal; ‘‘wet’’ denotes a critical speed at
which the pump is in the working station and therein, dynamic characteristics of
the seal need to be considered (see Figs. 9.38, 9.39).

Table 9.10 shows the critical-speed calculation results of first and second order
lateral rotating speeds in dry and in wet models. Figure 9.40 depicts the mode
(Ping et al. 2008).

The ‘‘wet’’ critical speed is significantly higher than the ‘‘dry’’ one, which
proves that the dynamic characteristics of seal have a great effect on the rotor’s
critical speeds in the centrifugal pump. Therefore, the characteristics of the seal
should be considered in the design.

9.5.3 Dynamic Stability of the Pump’s Rotor System

The liquid layer in slotted seals of centrifugal pumps exerts an effect on the nature
of rotor motion. Transferred by pumps, the liquid has a comparatively high vis-
cosity, and due to this fact, large hydrodynamic forces act on the eccentric annular
slots of the seals. They change the values of the critical speeds, lower the
amplitudes of resonance vibrations, and facilitate the onset of strong self-vibra-
tions at high revolution rates (Tian and Zhu 2000).

Table 9.10 The result of the calculation (Ping et al. 2008)

Type of critical speed 1st Order bending (rpm) 2nd Order bending (rpm)

‘‘dry’’ critical speed 3,158 9,731
‘‘wet’’ critical speed 6,342 12,956
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Fig. 9.40 The first and second order mode diagram (Ping et al. 2008)
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9.5.3.1 Dynamics of a Rotor: Fluid-Film Bearings–Contactless Seals
System

Consider the model of ‘‘rotor—fluid-film bearings—seals’’ with four degrees of
freedom that consists of a rigid rotor supported by two fluid-film bearings and
contactless seals (Fig. 9.41, Savin and Solomin 2003).

Lagrange’s equations of motion for this rotor system with four degrees of
freedom in the Cartesian coordinates can be written as

m
ZD

LLR

€XR � €XL

� �

þ €XL

� 	

¼ RB
XR þ RB

XL þ RS
X þ FX þ mX2D sin Xt
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� �

þ €YL

� 	
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YR þ RB
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JpX
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_XR � _XL

� �
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XR LLR � ZDð Þ � RS
X ZS � ZDð Þ

JpX
LLR
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� �

� JdTX2 sin 2 Xt � Cð Þ½ � ¼ RB
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YR LLR � ZDð Þ � RS
Y ZS � ZDð Þ

ð9:81Þ

where X, Y are coordinates of a shaft center; €X; €Y are the acceleration of a shaft center;
m is the mass of a rotor; D is the static unbalance of a rotor; R is the hydrodynamic
forces of bearings and seals; F is the frictional force; ZD and ZS are the axial coor-
dinates at the center of the rotor mass and the application point of seal forces; LLR is
the distance between supports; S and C are the angles describing unbalance of a rotor;
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Fig. 9.41 Dynamic model of a rotor system (Savina and Solomin 2003)
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and Jd and Jp are axial and equatorial moments of inertia. Indexes: B is for bearing; S
for seal; R and L are for right and left bearings accordingly.

Analysis on the AFC (amplitude-frequency characteristics) of a rotor system
was based on the analysis of trajectories that allowed for the study of vibrations
and stability of a rotor system in a nonlinear case. The trajectory of a rotor system
motion over a certain period of time can be computed by means of a direct
numerical integration of differential equations of rotor dynamics and equations that
describe hydrodynamic forces in fluid-film bearings and seals. The AFC and
stability thresholds of the rotor system can be determined by obtaining trajectories
of rotor motion. Analysis of the results allow to estimate the influence of various
types of seals–their geometric and working parameters on dynamic behavior of a
high-speed rigid rotor (see Savin and Solomin 2003).

9.5.3.2 Dynamic Stability of a Pump Rotor

The dynamic stability of an engineered rotor-labyrinth seal system has been
investigated. The Muszyńska (1986a) model and the FEM were adopted to eval-
uate the rotor system stability of a turbopump (Xia et al. 2006).

1. Dynamic equations of the rotor-labyrinth seal system

The rotor-labyrinth seal system proposed in Xia et al. (2006), Li et al. (2007) is
shown in Fig. 9.42. It assumes that a single disk rotor is supported rigidly or with a
sliding bearing and the seal forces act equivalently on the disk. In the following
expressions, X is the rotation speed. md the is mass of the disk, k is the generalized
(modal) stiffness coefficients of the rotor, and c is the generalized (modal) damping
coefficients. cod is the seal clearance. xd and yd are disk displacements. Mb is the
mass of the journal. xb and yb are journal displacements. cb is the journal clearance.
fx and fy are bearing forces. r is the unbalance radius.

y

O

O

O

1

seal

support

Fig. 9.42 The model of rotor/seal system (Xia et al. 2006)
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(a) Dynamic equation of a rotor system rigidly supported

For the rotor system supported rigidly, the mathematical model is presented as
below where the mass of journal is neglected:

md€xd þ c _xd þ kxd ¼ fx þ mdrX2cosX t

md€yd þ c _yd þ kyd ¼ fy þ mdrX2sinX t � mdg

(

: ð9:82Þ

If the rotor is balanced, there are no mdrX2cosXt and mdrX2sinXt in the above
equation.

(b) Dynamic equation of the rotor system supported with sliding bearing

In practice, many rotors are supported with sliding bearing, so it is more
valuable to investigate the stability of this system. The mathematical model of this
kind is presented as

md€xd þ c _xd þ k xd � xbð Þ ¼ fx þ mdrX2cosX t

md€yd þ c _yd þ k yd � ybð Þ ¼ fy þ mdrX2sinX t � mdg

mb€xb � 0:5k xd � xbð Þ ¼ fx

mb€yb � 0:5k yd � ybð Þ ¼ fy

8

>

>

>

>

<

>

>

>

>

:

ð9:83Þ

(c) Model for seal fluid force

Based on Muszyńska (1986b) model, the labyrinth seal force, which reflects the
fluid dynamic action, is

fx

fy


 �

¼ � mf 0
0 mf

� 	

€x
€y


 �

� C 2sf Xmf

�2sf Xmf C

� 	

_x
_y


 �

� K � mf s2
f X

2 sf XC

�sf XC K � mf s2
f X

2

" #

x
y


 �

: ð9:84Þ

The Muszyńska model assumes that the fluid force that stems from averaging
the circumferential flow is rotating at angular velocity sf X, where X is the journal
rotation speed and sf is the key variable of Muszyńska model–one that represents
the fluid average circumferential velocity ratio. In Eq. (9.84), K; C; and mf are
fluid stiffness, damping, and inertia coefficients, respectively. K; C and sf vary
with increasing journal eccentricity and can be expressed as

K ¼ K0 1� e2
� ��n

; C ¼ C0 1� e2
� ��n

; n ¼ 0:5 � 3ð Þ;

sf ¼ s0 1� e2
� �b

; 0 \ b\ 1ð Þ

(

ð9:85Þ
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where the relative eccentricity e = (xd
2 ? yd

2)1/2/cd; cd is the seal clearance, and n,
b, s0 are determined by material seal. Generally s0 \ 0.5. The Muszyńska model
of seal fluid forces is applied to investigate stability of the rotor. The coefficients
K0, C0, and mf involved in seal length, seal clearance, pressure margin, and seal
radius are calculated with Black-Childs Equations (Childs and Scharrer 1986):

K0 ¼ l3l0; C0 ¼ l3l1T; mf ¼ l2l3T2 ð9:86Þ

where
l0 ¼ 2r2




1þ zþ 2rð ÞEð1� m0Þ; l2 ¼ r 1=6þ Eð Þ= 1þ zþ 2rð Þ
l1 ¼ 2r2




1þ zþ 2rð Þ E=rþ 0:5B 1=6þ Eð Þ½ �; l3 ¼ pRDP=k; T ¼ l=va

where
Rv ¼ RcdXq=l; Ra ¼ 2vacdq=l;

k ¼ n0Rm0
a 1þ Rv=Rað Þ2
h i

1þm0
2
; r ¼ kl

cd
; E ¼ 1þ z

1þ zþ 2r
; B ¼ 2� Rv=Rað Þ2�m0

1þ Rv=Rað Þ2
:

(d) Short sliding bearing force

The model of short bearing is applied to the bearing force, which has an
analytical solution. The bearing force can be expressed with radial force Pe and
tangent force Pw shown in Fig. 9.43 as

fx
fy


 �

¼ Pe sin w� Pw cos w
�Pe cos w� Pw sin w


 �

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
b þ y2

b

p

�Pe �Pw

Pw �Pe

� 	

xb
yb


 �

ð9:87Þ

where polar angle w = arctg [xb/(-yb)].

y

P

P fy

f x

Fig. 9.43 The sliding
bearing force. Note cd is the
radial clearance of seal; l is
the length of seal; m0, n0 are
experiential coefficient; R is
the radius of seal; va is the
axial fluid speed; z is the inlet
loss coefficient; DP is the
pressure margin of seal (Xia
et al. 2006)
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(e) Dimensionless equation of rotor system

Dimensionless quantities are defined as

x1 ¼
xd

cd
; y1 ¼

yd

cd
; x2 ¼

xb

cb
; y2 ¼

yb

cb
; s ¼ X t; M ¼ md þ mf ; q ¼ mde

Mcd

d
dt
¼ X

d
ds
;

d2

dt2
¼ X2 d2

ds2
; e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
2 þ y2

2

q

: ð9:88Þ

In dimensionless terms, L/Rb is the ratio of length to radius of bearing, and
S = gXRb/(pW)(Rb/cb)2 is the Summerfield coefficient.

Let x0 ¼ dx
ds
; x00 ¼ d2

x
ds2

Then the dimensionless translation of (9.82) may be rewritten as

x001
y001


 �

þ d1 d2

�d2 d1

� 	

x01
y01


 �

þ k1 k2

�k2 k1

� 	

x1

y1


 �

¼ 0
G


 �

þ q
cos s
sin s


 �

:

ð9:89Þ

And Eq. (9.83) may be written as

x001
y001


 �

þ
d1 d2

�d2 d1
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x01
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k1 k2

�k2 k1

� 	

x1

y1


 �

� kb

MX2

x2

y2


 �

¼
0

G


 �

þ q
cos s

sin s


 �

x002
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ð9:90Þ

where

d1 ¼
cþ C

MX
; d2 ¼

2sf mf

M
; k1 ¼

k þ K � s2
f mf X

2

MX2
; k2 ¼

sf D

MX
; q ¼ mdr

Mcd

G ¼ � mdg

McdX
2
; b ¼ cb

cd
; M ¼ md þ mf ; S0 ¼

S

X
; W ¼ mbgþ mdg

2

2. Analysis of stability
(a) Stability of a balanced rotor with rigid support

Equation (9.89) can be transformed into state equations in matrix form with
four degrees of freedom:
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q2 cos t

Gþ q2 sin t
0
0

8

>

>

<

>

>

:

9

>

>

=

>

>

;

�

d1 d2 k1 k2

�d2 d1 �k2 k1

�1 0 0 0
0 �1 0 0

2

6

6

4

3

7

7

5

x01
y01
x1

y1

8

>

>

<

>

>

:

9

>

>

=

>

>

;

¼

f1 x01; y
0
1; x1; y1;X; t

� �

f2 x01; y
0
1; x1; y1;X; t

� �

f3 x01; y
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1; x1; y1;X; t

� �

f4 x01; y
0
1; x1; y1;X; t

� �

8

>

>

<

>

>

:

9

>

>

=

>

>

;

: ð9:91Þ

If the rigidly supported rotor is balanced, the solution of Eq. (9.89) is an
equilibrium point that can be obtained by iterating the following equation:

k1 k2

�k2 k12

� 	

x1

y1


 �

¼ 0
G


 �

: ð9:92Þ

According to the first Liapunov theory, the stability of a nonlinear system is
determined by the eigenvalues of its simple approximate system. If all real parts of
the eigenvalues of the Jacobi matrix are negative, the system is stable at the
equilibrium point. If a pair of eigenvalues have real part of zero and the others
have real parts of negative values, the system is in the state of critical stability. If
an eigenvalue of Jacobi matrix is positive, the system is unstable. If the equilib-
rium point is (x0, y0), the simple approximate expansion of Eq. (9.91) at (x0, y0) is

J ¼ Df x0;y0ð Þ
�

� ¼

of1
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: ð9:93Þ

(b) Stability analysis results for a balanced rotor with rigid supports

Xia et al. (2006), Li & Xu (2003), Li et al. (2007) completed the analysis for
stability of high speed turbopumps. They achieved the following similar results.

Table 9.11 Parameter list of rotor system (see Li et al. 2007)

Disk mass (kg) Generalized dumping
coefficient (N.s/m)

Generalized stiffness
coefficient (N/m)

Journal mass
(kg)

50 5000 8 � 106 10

L=Rb Journal clearance (mm) Seal clearance (mm) Unbalance radius
(mm)

1 0.04 1 0.05
Sommefeld

coefficient
Parameter n Parameter b Parameter s0

0.001 2.5 0.045 0.2
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The calculated results show that if the rotation speed is below critical speed, the
balanced rotor is stable at an equilibrium position and all real parts of the
eigenvalues of Jacobi matrix are negative. If the rotation approaches critical speed
the rotor system evolves into periodic vibration and the Hopf bifurcation arises,
where a pair of eigenvalues have a real part of zero. The amplitude of the vibration
increases along with an increase of rotation speed until rotor impact seal. Using the
parameters in Table 9.11 and the New mark method to calculate, one would have
the critical speed to be 1,140 rad/s and the eigenvalues of Jacobi matrix
(0.0000 ± 0.3658i, -0.3205 ± 0.0605i).

Figure 9.46 displays motions of the rotor at different speed. The structural and
physical parameters of the seal will influence the critical instability speed, such as
the larger seal radius, seal clearance, and seal length, the higher critical instability
speed and the smaller seal clearance corresponds to the higher critical instability
speed.

(c) Stability of an unbalanced rotor with rigid supports

If the rotor is unbalanced, the solution of Eq. (9.87) is a periodic solution.
Under the periodic excitation of rotor unbalance, the whirling vibration of the rotor
is synchronous if the rotation speed is below the critical instability speed. The rotor
vibration becomes severe and asynchronous, which is defined unstable, if the
rotation speed exceeds critical instability speed.

To calculate a periodic solution, a lot of numerical methods such as the
shooting method, the finite difference approach, the harmonic balance method, and
Poincare mapping may be used. Stability of the synchronous solution can be
discussed according to the Floquet theory. Supposing the synchronous solution
x*(t) has been found by means of the shooting method, one could solve the
following initial value problem:

ox

oxð0Þ

� ��
¼ of

ox
t; x�ð Þ ox

oxð0Þ ;
ox

oxð0Þ

� �

t¼0

¼ I: ð9:94Þ

The eigenvalues of ox=oxð0Þð Þt¼T are Floquet multipliers k. If all modules of
Floquet multipliers are less than 1, the periodic solution is stable; if one or more

Table 9.12 Parameter list of unbalanced rotor system (see Li et al. 2007)

Disk mass (kg) Generalized
dumping

Generalized stiffness coefficient
(N/m)

Journal mass (kg)

50 10 0:5 � 106 0.075

L=Rb Journal clearance
(mm)

Seal clearance (mm) Unbalance radius
(mm)

0.05 5 2.5 0.35
Sommefeld

coefficient
Parameter n Parameter b Parameter s0

0.1 2.5 0.45 0.2
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modules of its multipliers are more than 1, it is unstable (Tam et al. 1988). The
rotor-seal system makes synchronous vibration stable and all modules of Floquet
multipliers are less than 1 when the rotation speed is below critical instability
speed. The rotor vibration is unstable when the rotation speed exceeds critical
instability speed, and in this case at least one module of Floquet multipliers is
more than 1. When the rotor rotates at critical instability speed xc, at least one
module of Floquet multipliers equals 1 and the others are less than 1. The cal-
culated results reveal that the critical instability speed xc increases with growing
unbalance, which has been proved in practice.

As the whirling amplitude climbs rapidly with increasing unbalance radius r, it
is important for designers to determine a suitable r. To calculate with the
parameters listed in Table 9.12, one would set the critical instability speed to be
1146.1 rad/s, whereas the Floquet multipliers are (-0.6463 ± 0.7631i,
0.1246 ± 0.0479i) and the ultimate module is 1. Figure 9.44 shows the unstable
motion of this rotor system.

According to the bifurcation theory, a periodic solution may lose stability in
three generic ways via Floquet multipliers, expressed by a unit circle in complex
plane. The first way to lose stability is through a saddle-node or pitchfork
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Fig. 9.44 The numerical simulation of a balanced rotor with rigid supports. a X = 1200 rad/s,
b X = 1500 rad/s (Li et al. 2007)

y

x

0.5

0.5

0

_
0.50.5 0_

y

x

0.5

0.5

0

0.5 0.50_

(a) (b)

Fig. 9.45 The orbit of a rotor. a X = 900 rad/s, b X = 1200 rad/s (Li et al. 2007)
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bifurcation when a single real Floquet multiplier‘s largest module crosses the unit
circle at +1. Another way is period-doubling bifurcation when a single real Floquet
multiplier’s largest module crosses the unit circle at -1. The third way is quasi-
periodic bifurcation when a pair of complex conjugate eigenvalues whose largest
module crosses the unit circle. The calculated results demonstrate that the unstable
rotor-seal system with rigid support generates quasi-periodic bifurcation in most
cases shown in Fig. 9.45b In some cases, the rotor will produce severe subhar-
monic vibration, which belongs to a typical nonlinear phenomenon. With the
virtue of particular seal forces, the seal-rotor system yields periodic doubled
bifurcation, and at this point imaginary parts of the Floquet multipliers are zero. To
calculate with the parameters listed in Table 9.12, the periodic-doubled bifurcation
takes place at X ¼ 200rad=s; where k1,2,3,4 = - 1.0009, -0.9332, -0.6140, -

0.5992.
Based on the above results, one can see that the rotor vibration becomes severe

when the system is losing stability and becomes quasi-periodic. The rotor may
impact with seal as a result of high amplitude of bifurcation motion, which occurs
with increasing rotor speed.

(d) Stability of a rotor with sliding bearing support

The dynamic stability of a rotor with sliding bearing support is different from a
rotor with rigid support. To calculate with the parameters listed in Table 9.12, the
critical instability speed is 770 rad/s. Simulating the movement of the rotor and the

y

x

0.1

0.1

0.05

0.05

0

0
_

0.1 0.1_

_

x

x

0.1

0.1

0.05

0.05

0

0
_

0.10.1_

_

y

x

0.6

0.4

0.2

0.2

0

0 0.5 1
_

x

x

0.1

0.1

0.05

0.05

0

_
0.1_ 0.10

_

(a) (b)

(c) (d)

Fig. 9.46 The orbit and Poincare map of rotor at X = 500 rad/s. a The orbit of disk, b Poincare
map of disk, c The orbit of journal, d Poincare map of journal (Li et al. 2007)
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Poincare mapping yields a progression from Figs. 9.46, 9.47. Because the rotation
speed is below critical instability speed, the rotor-seal system makes stable syn-
chronous vibrations shown in Fig. 9.46. When it exceeds the critical speed, the
vibration of rotor becomes severe and asynchronous (see in Fig. 9.47).
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Fig. 9.47 The orbit and Poincare map of rotor at X = 1,000 rad/s, a The orbit of disk,
b Poincare map of disk, c The orbit of journal, d Poincare map of journal (Li et al. 2007)
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Fig. 9.48 The bifurcation diagram of a rotor. a Bifurcation diagram of disk. b Bifurcation
diagram of journal (Li et al. 2007)
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Figure 9.48 is the bifurcation map of disk and journal. The calculated results
show that, like the rotor with rigid support, the periodic vibration of this rotor is
stable when the rotation speed is below critical instability speed, whereas the
periodic vibration becomes unstable when the rotation exceeds a critical speed.

As distinct from the rotor with rigid support, when the rotation exceeds a
critical instability speed the vibration amplitude of the disk increases rapidly to a
point, then increases slowly up to a given level and maintains this level. Whereas,
when the speed arrives at critical instability, vibration amplitude of the journal
goes up rapidly, then drops slowly,

Through calculation, it is found that in this rotor system the larger the seal
radius, seal clearance, and seal length, and the higher the critical instability speed
is, the smaller the seal clearance has of corresponding to higher critical instability
speeds. Contrary to the case of rigid support, the critical instability speed xc

decreases with increasing unbalance, so in practice the unbalance of a rotor with
sliding bearing should be as small as possible.

The bearing parameter S0 has inconspicuous influence on the critical instability
speed. Compared with the case of rigid support, the critical instability speed is
higher for the additional mass of journal. The calculated results prove that seal
force is the main factor for rotor instability, but the bearing force has inconspic-
uous influence on critical instability speed and restrains amplitude of unstable
vibration of rotor. As a result, the rotor-seal system may benefit from introduction
of a sliding bearing.
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Part V
System Instability and Monitoring



Chapter 10
Instability of System Caused by Hydraulic
Machinery

This chapter mainly focuses on the instability of hydraulic turbine system. The
stability of pumping system and the nonlinear models of hydraulic turbine system
transient in hydro power plants are also introduced.

10.1 Introduction

Rheingans (1940) pointed out that extremely large power swings could be pro-
duced if pulsation of output power occurred at or near the natural frequency of the
generator connected to power system. In addition, severe pressure pulsations could
occur when discharge and head fluctuate at the natural frequency of the penstock.
Even in situations where resonance is not a problem, the draft tube surging can
cause excessive vibrations, noise, cavitation, and axial movement of the turbine
runner and shaft (Dorfler 1985).

10.1.1 Hydroelectric Plant System

In a typical hydroelectric power plant shown in Fig. 10.1, hydroelectric energy is
produced by falling water. The capacity to produce this energy depends on both the
available flow rate and the height from which it falls. Stored behind a high dam, water
accumulates potential energy. It is transformed into mechanical energy when the
water rushes down the sluice and strikes the rotary blades of turbine. The turbine’s
rotation spins electromagnets which generate current in stationary coils of wire.
Finally, the current is put through a transformer where the voltage is increased for
long distance transmission over power lines. This constitutes a hydroelectric system.

During the exploitation of turbine power plants, installation is especially vul-
nerable to transient phenomena and resonance or instability. The prediction of
these phenomena is crucial for the safety of the power plant. Numerical simulation
of dynamic behavior of the whole installation enables these predictions. However,
classical approaches feature two key drawbacks:

Y. Wu et al., Vibration of Hydraulic Machinery,
Mechanisms and Machine Science 11, DOI: 10.1007/978-94-007-6422-4_10,
� Springer Science+Business Media Dordrecht 2013
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1. The focus of the modeling is usually concentrated on either the hydraulic side
or the electrical side, with one side left oversimplified;

2. Most of the stability/resonance analysis is based on linearized models, but
accurate prediction of amplitudes requires system non-linearities.

Strong interaction between the hydraulic and electrical parts of an installation
exists in nature. The coupled investigations on the impact of hydraulic machinery
to system instability are necessary for a complete quantification of the phenomena
related to control optimization, resonance and instability risk assessment.

10.1.2 Linear System

The stability/resonance analysis of a hydroelectric plant system and of hydraulic
machinery system has been conducted on both linear and nonlinear systems.

A linear system is a mathematical model of a system based on the use of a
linear operator. Linear systems typically exhibit features and properties that are
much simpler than those in a nonlinear case. A general deterministic system can be
described in operator H that maps an input x(t) as a function of t to an output y(t).
Linear systems satisfy the properties of superposition and scaling.

Given two valid inputs, x1(t) and x2(t), as well as their respective outputs,
y1(t) = H(x1(t)) and y2(t) = H(x2(t)), a linear system must satisfy

ay1ðtÞ þ by1ðtÞ ¼ H ax1ðtÞ þ bx1ðtÞð Þ

Fig. 10.1 Hydroelectric plant system (Source: US Geological Survey 2007) Tennessee Valley
Authority, http://www.tva.gov/power/hydroart.htm
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for any scalar values a and b.
Subjected to a complex input, the behavior of the resulting system can be

described as a sum of responses to simpler inputs.
For time-invariant systems this is the basis of impulse response or frequency

response methods, which describe a general input function x(t) in terms of unit
impulses or frequency components.

Typical differential equations of linear time-invariant systems are well adapted
to analysis with the Laplace transform in a continuous case, and the Z-transform in
a discrete case.

Another perspective is that solutions to linear systems comprise a system of
functions acting like vectors in the geometric sense.

A common application of linear models is to describe a nonlinear system by
linearization.

10.1.2.1 Time-Varying Impulse Response

The time-varying impulse response h(t2, t1) of a linear system is defined as the
system response at time t = t2 to a single impulse applied at time t = t1. In other
words, if the input x(t) to a linear system is

xðtÞ ¼ dðt � t1Þ

where d(t) represents the Dirac delta function, the corresponding response y(t) of
the system is

yðtÞjt¼t2
¼ hðt2; t1Þ

where the function h(t2, t1) is the time-varying impulse response of the system.

10.1.2.2 Time-Varying Convolution Integral

The output of any continuous linear time system is related to the input by the time-
varying convolution integral:

yðtÞ ¼
Z 1

�1
hðt; sÞxðsÞds

or, equivalently,

yðtÞ ¼
Z 1

�1
hðt; t � sÞxðt � sÞds

where s = t - s represents the lag time between the stimulus at time s and the
response at time t.
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10.1.2.3 Discrete Time

The output of any discrete linear time system is related to the input by the time-
varying convolution sum:

y n½ � ¼
X

1

k¼�1
h n; k½ �x k½ �

or equivalently,

y n½ � ¼
X

1

m¼�1
h n; n� m½ �x n� m½ �

where k ¼ n� m represents the lag time between the stimulus at time m and the
response at time n.

A linear system is causal if and only if the system’s time varying impulse
response is exactly zero whenever the time t of the response is earlier than the time
s of the stimulus. In other words, for a causal system, the following condition must
hold

hðt; sÞ ¼ 0 for t \ s:

10.1.3 Nonlinear System

A nonlinear system is a system which does not satisfy the superposition principle.
The variables of any problem in a nonlinear system to be solved cannot be written
as a linear sum of independent components.

A nonhomogeneous system is nonlinear according to a strict definition. But
such systems are usually studied alongside linear systems, because they can be
transformed to a linear system as long as a particular solution is known.

Nonlinear problems are useful because most physical systems are inherently
nonlinear in nature. Nonlinear equations are difficult to solve and give rise to
interesting phenomena such as chaos. In mathematics, a linear function (or map)
f(x) is one which satisfies both of the following properties:

Additivity:

f ðxþ yÞ ¼ f ðxÞ þ f ðxÞ:

Homogeneity:

f ðaxÞ ¼ af ðxÞ:

An equation written as f ðxÞ ¼ C is called linear if f(x) is linear but nonlinear
otherwise.

380 10 Instability of System Caused by Hydraulic Machinery



Note that x does not need to be a scalar (it can be a vector, function, etc.), and
C must not depend on x. The equation is called homogeneous when C = 0.

Generally, nonlinear algebraic problems are often accurately solved. If not, they
usually can be understood in qualitative and numeric analysis. A nonlinear
recurrence relation defines successive terms of a sequence as a nonlinear function
of preceding terms.

Problems involving nonlinear differential equations are extremely diverse, and
methods of solution or analysis are very problem dependent.

One of the greatest difficulties of nonlinear problems is that it is not generally
possible to combine known solutions into new solutions. In linear problems, for
example, a family of linearly independent solutions can be used to construct
general solutions through the superposition principle.

First order ODEs are often solvable by separation of variables, especially for
autonomous equations. For example, the nonlinear equation

du

dx
¼ �u2

will easily yield u = (x ? C)-1 as a general solution which happens to be simpler
than the solution to the linear equation

du

dx
¼ �u:

The equation is nonlinear because it may be written as

du

dx
þ u2 ¼ 0

and the left-hand side of the equation is not a linear function of u and its
derivatives.

Second and higher order ODEs (more generally, systems of nonlinear equa-
tions) rarely yield closed form solutions, though implicit solutions and solutions
involving nonelementary integrals are encountered.

Common methods for the qualitative analysis of nonlinear ODEs include: (1)
Linearization via Taylor expansion, (2) Change of variables into something easier
to study, and (3) Perturbation methods (can be applied to algebraic equations too).

The most common approach to study nonlinear PDEs is to change the variables
and simplify the resulting problem. Sometimes, the equation may be transformed
into one or more ODEs, as seen in the similarity transform or separation of
variables, which is always useful whether or not the resulting ODE(s) is solvable.

The nonlinear Navier–Stokes equations can be simplified into one linear PDE in
the case of a transient, laminar, one-dimensional flow in a circular pipe. The scale
analysis provides conditions under which the flow is laminar and one-dimensional
which yields the simplified equation.
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10.2 The Hydroacoustic Model for Stability
of Hydroelectric Systems

Nicolet (2007) proposed a one-dimensional modeling approach, the hydroacoustic
modeling, which enabled the simulation, analysis, and optimization of the dynamic
behavior of hydroelectric power plants. The capability of this approach has been
proven to simulate both transient and periodic phenomena properly. It can predict
the stability of a hydroelectric system caused by unsteadiness in hydraulic
machines. This section briefly introduces this model, and the following two sec-
tions will focus on its application.

10.2.1 Fundamental Equations

A mathematical model based on mass and momentum conservations can properly
describe the dynamic behavior of a pipe filled with water. Hydraulic installations
have greater longitudinal dimensions along the main flow direction than along
transversal dimensions, which justifies the one-dimensional approach on the fol-
lowing assumption:

1. The flow is normal to the cross-sections A;
2. The pressure p, the flow velocity C, and the density q are uniform in a cross-

section A.

The momentum equation and continue equation are applied to the control
volume (the dashed line in Fig. 10.2) of length dx, which leads to the following
governing equations:

1
q

op
ox þ oC

ot þ C oC
ox þ g sin a þ kC Cj j

2D ¼ 0

qa2 oC
ox þ

op
ot þ C op

ox ¼ 0

(

ð10:1Þ

where D is the pipe diameter and k is the friction coefficient according to Darcy-
Weisbach, which has the following relation with the shear stress:

s0 ¼ qkC2
�

8:

And a is a wave speed:

a2 ¼ 1

�

q
1

Ewater
þ D

eEC

� �� �

where EC and Ewater are the bulk modulus of pipe walls material and water
respectively; and e is the pipe thickness.
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In hydraulics, it is helpful to use the discharge Q and the piezometric head h as
state variables instead of flow velocity C and pressure p. The discharge and the
piezometric head are defined as

h ¼ Z þ p

qg
ð10:2Þ

Q ¼ CA ð10:3Þ

where Z is the elevation. The piezometric head is the pressure given in meters of
water column (mWC) above a given datum. Based on the assumption that there are
no vertical displacements in the pipe oz=ot ffi 0, one introduces Eqs. (10.2) and
(10.3) into Eq. (10.1) and notices that oz=ox ¼ sin a:

oh

ox
þ 1

gA

oQ

ot
þ C

oQ

ox

� 	

þ kQ Qj j
2gDA2

¼ 0

oh

ot
þ C

oh

ox

� 	

þ a2

gA

oQ

ox
¼ 0

8

>

>

>

<

>

>

>

:

: ð10:4Þ

Hydroacoustic phenomena are characterized by a high wave speed
a (a = 1,430 m/s at 20 �C in water) and low flow velocities (C = 10 m/s), thus
the convective terms C o=oxð Þ related to transport phenomena can be neglected
with respect to propagative terms o=ot. This simplification leads to the following
set of partial derivative equations:

oh

ox
þ 1

gA

oQ

ot
þ kQ Qj j

2gDA2
¼ 0

oh

ot
þ a2

gA

oQ

ox
¼ 0

8

>

>

<

>

>

:

: ð10:5Þ
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10.2.2 Electrical Analogy

The solution to a system of hyperbolic PDEs such as Eq. (10.5) could be analogous
to the resolution of the propagation equations of electrical waves in conductors:

oU

ox
þ L0e

oi

ot
þ R0ei ¼ 0

oU

ot
þ 1

C0e

oQ

ox
¼ 0

8

>

>

<

>

>

:

ð10:6Þ

where i is the electrical current; U is the electrical potential; Re
0 is the electrical

resistance of unit length of the conductor; Le
0 is the electrical inductance of unit

length; and Ce
0 is the electrical capacitance of unit length.

The analogy between Eq. (10.5) modeling pressure wave propagation in
hydraulic systems and Eq. (10.6) modeling the propagation of voltage waves in
conductors identifies the lineic hydraulic resistance R0, a lineic hydraulic induc-
tance L0, and a lineic hydraulic capacitance C0. Equation (10.5) can be rewritten as

oh

ox
þ L0

oQ

ot
þ R0 Qð ÞQ ¼ 0

oh

ot
þ 1

C0
oQ

ox
¼ 0

8

>

>

<

>

>

:

ð10:7Þ

where the lineic hydroacoustic parameters are defined as

1. The lineic hydroacoustic capacitance C0 ¼ gA
�

a2 [m];
2. The lineic hydroacoustic inductance L0 ¼ 1= gAð Þ [s2/m3].;
3. The lineic hydroacoustic resistance R0 ¼ k

�

2gDA2ð Þ [s/m3].

Hydraulic and electrical systems are both characterized by an extensive state
variable (i.e. discharge Q and current i) and by a potential state variable (i.e.
piezometric head h and voltage U). The electrical analogy enables the application
of mathematical formalism that is developed initially for electrical purposes to
hydroacoustic problems and the usage of powerful concepts, such as an equivalent
scheme, impedance, or transfer matrix. Two modeling approaches of the hydraulic
system are distinguished: (1) to consider the system as a system with distributed
parameters or as a continuous system, or (2) to consider the system as a system
with lumped parameters or as a discrete system.

10.2.3 Pipe Viscoelastic Model

The hydraulic circuits of hydroelectric power plants are made of several compo-
nents whose dynamic behaviors have to be included in the model. The modeling of
the following components have been presented: (1) elastic or viscoelastic pipe, (2)
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valve, (3) surge tank, (4) surge shaft, (5) air vessel, (6) cavitating flow (Nicolet
2007). In this section the pipe model in viscoelastic modeling is described.

The model of the pipe derived from the momentum and mass equations leads to
the representation of pipe length dx by an equivalent electrical circuit made of two
resistances, two inductances, and one capacitance as presented in Fig. 10.3. This
modeling approach can be extended to a full length pipe with consideration of
n equivalents schemes in series as shown in Fig. 10.4.

Viscoelastic models present dynamic behavior as stress r in the material is not
only proportional to the rated deformation e, but also a function of the rate of
deformation de=dt.

The modeling of viscoelastic behavior can be achieved with rheological models
made of springs and dashpots.

Maxwell’s, Kelvin-Voigt’s and Standard models are three common rheological
models presented in Table 10.1 with their equivalent electrical schemes. These
models are elementary models from which more advanced models can be derived.

Without loss of generality, a viscoelastic pipe accounting for both pipe material
and water viscoelasticity can be simulated based on two Kelvin-Voigt models as
presented in Fig. 10.5.

Therefore, considering first the viscoelastic behavior of the pipe wall material
and assuming a pipe perimeter deflection e ¼ dD=D due to pressure increase, one
would have
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Fig. 10.3 Modeling of a pipe of length dx. a a pipe of length dx, b corresponding equivalent
scheme (Nicolet 2007)

Fig. 10.4 Full length pipe model made by n element (Nicolet 2007)
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r ¼ Epipeeþ lpipe
de
dt
¼ Epipe

dD

D
þ lpipe

1
D

d dDð Þ
dt

ð10:8Þ

where l is dynamic viscosity.
The total derivative of the volume of a pipe V of length dx is given by

dV ¼ 0:5pDdD: ð10:9Þ

Introducing the piezometric head, h ¼ p= qgð Þ þ z, and neglecting vertical
displacement of the pipe ðdz=dt ¼ 0Þ, one yields

dr
dt
¼ Dqg

2e

dh

dt
: ð10:10Þ

Combining Eqs. (10.8), (10.9) and (10.10) and introducing the stored discharge
Qp = dV/dt, one has

Table 10.1 Rheological models of viscoelastic materials and their equivalent scheme (Nicolet
2007)

Model Rheological model Equivalent scheme Equations

Maxwell
ε

ε μ

E

σ
1

2

U C R

i i1 2
r ¼ e1E ¼ l de2

dt
U ¼ 1

C

R

i1dt ¼ Ri2

Kelvin-voigt

ε μ

σ σ

E

21 U

U R

C

i

2

1
r ¼ r1 þ r2 ¼ eE þ l de

dt
U ¼ U1 þ U2 ¼ 1

C

R

idt þ Ri

Standard

ε

ε

μ
σ σ

σ

E

E1

11

22

1

r ¼ e2E2 ¼ e1E1 þ l de1

dt
e ¼ e1 þ e2 i ¼ i1 þ i2
U ¼ 1

C2

R

i2dt; U ¼ 1
C1

R

i1dt þ Ri1

μ μ

pipe

pipe

f luid

f luid

E E
C R

RCpipe pipe

f luid f luid

Fig. 10.5 Rheological (left) and equivalent (right) models of a viscoelastic pipe with
contribution of water and pipe material viscoelastic behavior (Nicolet 2007)
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dh

dt
¼ Epipee

ADqgdx
Qp þ

lpipee

ADqgdx

dQp

dt
: ð10:11Þ

By integrating Eq. (10.11), one gets Kelvin-Voigt’s equation of the pipe wall
material:

h ¼ 1
Cpipe

Z

Qpdt þ RpipeQp ð10:12Þ

where the viscoelastic resistance Rpipe and capacitance Cpipe of a pipe of length dx
are given by

Rpipe ¼
lpipee

ADqgdx
; Cpipe ¼

ADqgdx

Epipee
: ð10:13Þ

Then, considering the fluid compressibility and the viscosity lfluid one gets

dp

dt
¼ Efluid

q
dq
dt
þ

lfluid

q
d2q
dt2

: ð10:14Þ

Reintroducing the piezometric head h ¼ p= qgð Þ þ z and the stored discharge
due to fluid compressibility

Qf ¼ �
V

q
dq
dt

one obtains

dh

dt
¼ Efluid

Aqgdx
Qf þ

lfluid

Aqgdx

dQf

dt
ð10:15Þ

h ¼ 1
Cfluid

Z

Qf dt þ RfluidQf ð10:16Þ

where the viscoelastic resistance Rfluid and capacitance Cfluid of a pipe of length
dx are given by

Rfluid ¼
lfluid

Aqgdx
; Cfluid ¼

Aqgdx

Efluid
: ð10:17Þ

It can be also noticed that, if, in the pipe model of Fig. 10.5, the 2 viscoelastic
resistances of the fluid and of the wall material are neglected, the two capacitances
in parallel are equivalent to the capacitance of the elastic pipe:

Cequ ¼ Cpipe þ Cfluid ¼ Aqg dx
D

Epipee
þ 1

Efluid

� 	

¼ Aqg dx

a2
: ð10:18Þ

In the same way, if compressibility effects are neglected, the two viscoelastic
resistances in parallel can be expressed as

10.2 The Hydroacoustic Model for Stability of Hydroelectric Systems 387



Requ ¼
1

1
Rpipe
þ 1

Rfluid

¼ 1
Aqgdx

1
D

lpipeeþ 1
lfluid

¼
lequ

Aqg dx
ð10:19Þ

From a strict modeling point of view, a viscoelastic pipe is modeled based on
considering the equivalent scheme of Fig. 10.5 made of two Kelvin-Voigt models
for both pipe material and fluid instead of a single capacitance of the elastic pipe
model of Table 10.1 (right). From a practical point of view, determination of either
the second viscosity of the fluid or the viscosity of pipe material is very difficult to
perform with good accuracy. However, experiments described by Haban et al.
(2002) have provided data for a pipe filled with water. In this case, the equivalent
viscosity is determined rather than the fluid viscosity as in the experiment both
viscosity contributions cannot be dissociated.

As a result, it is most convenient to use one Kelvin-Voigt model of the whole
pipe that covers both the fluid and the pipe material. In this model the capacitance
is calculated according to Eq. (10.18) and the viscoelastic resistance Requ is cal-
culated according to Eq. (10.19). The resulting model is presented in Fig. 10.6.

10.2.4 Analysis of Simplified Hydraulic Systems

The electrical equivalent modeling helps to establish the simplified models of
hydraulic installation to study their global dynamic behavior. The simplified
models are preferably of a low order to obtain the analytical solutions of the
related differential equation set. Such solutions render the main dynamic quantities
of the system in terms of eigen frequencies and damping.

10.2.4.1 Mass Oscillations Problems

In Nicolet (2007), the eigen frequency related to mass oscillation problems has
been analyzed for various types of tanks, i.e. (1) a surge tank, (2) a surge shaft, and
(3) an air vessel. In this section only the analysis on the topic of a hydraulic system
with a surge tank is explained.

The dynamic behavior of the hydraulic circuit shown by Fig. 10.7 (left) com-
prising an upstream reservoir, a gallery, a surge tank and a penstock with a
downstream valve is investigated. The compressibility of both pipes can be
neglected because only low frequencies are paid attention to. Thus the equivalent

ih
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i+1  2h
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i

Fig. 10.6 Equivalent scheme
of a viscoelastic pipe of
length dx (Nicolet 2007)
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circuit of this system is made of a pressure source H0, the gallery inductance LG and
resistance RG, the surge tank capacitance CST and the diaphragm resistance Rd, the
penstock inductance LP and resistance RP, and the valve resistance Rv as presented
in Fig. 10.7 (right). The consequence of a sudden closure of the valve is analyzed
under an initial steady state condition and constant valve opening. The differential
equations written based on Kirchhoff’s law applied to the left hand loop leads to

H0 ¼ LG
dQ1

dt
þ Rd þ RGð ÞQ1 þ hST

CST
dhST

dt
¼ Q1

8

<

:

: ð10:20Þ

Combining the two above equations leads to the following characteristic
equation:

d2hST

dt2
þ 2l

dhST

dt
þ x2

0hST ¼ 0 ð10:21Þ

where l ¼ Rd þ RGð Þ= 2LGð Þ; x2
0 ¼ 1=ðCSTLgÞ:

The general solution of the above equation is given by

hSTðtÞ ¼ hST0e�lt sin x1tð Þ ð10:22Þ

where

x1 ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 12
p

; 1 ¼ l=x0: ð10:23Þ

The natural frequency of the frictionless system is given by

x0 ¼ 1
.

ffiffiffiffiffiffiffiffiffiffiffiffiffi

CST LG

p

: ð10:24Þ

The related period is then given by T0 ¼ 2p AST LG= AGgð Þð Þ1=2 where LG is the
gallery length; AST the surge tank cross section; AG the gallery cross section.

The period T0 is usually very low as the cross section of the surge tank and the
gallery length are large and the gallery cross section is small. This period is called
the mass oscillation period, and is related to the oscillation of the discharge in the
gallery between the reservoir and the surge tank. If the cross section of the surge tank
is constant and the system is frictionless, amplitude of the water level oscillations in
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Fig. 10.7 Hydraulic circuit with surge tank (Nicolet 2007)
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surge tank can be obtained considering a solution of hST tð Þ ¼ hST0sin x0t þ uð Þ
whose first derivative introduced in Eq. (6.1) gives the oscillation amplitude:

hSTðtÞ ¼
Q10

CSTx0
¼ C10

ffiffiffiffiffiffiffiffiffiffi

AGlG
AST g

s

ð10:25Þ

where C10 = Q10/CST is the initial flow velocity in the gallery.

10.2.4.2 Stability of Hydraulic Circuit

In this section, stability criteria are determined for the power plant with a regulated
turbine and surge tank.

1. Mass oscillation stability: Thoma cross section criteria. A hydraulic circuit
comprising an upstream reservoir, a gallery, a surge tank, and a penstock
connected to a turbine driven by a speed controller is subject to system insta-
bilities. The system and the corresponding equivalent scheme are shown in
Fig. 10.8. For the present study, the dynamic behavior of the penstock and the
diaphragm losses are neglected and the perturbation is thought to be small so
that the turbine efficiency can be viewed constant. The differential equation
related to the loop of discharge Q1 is given by

H0 ¼ LG
dQ1

dt
þ RGQ1 þ hST

CST
dhST

dt
¼ QST

8

<

:

: ð10:26Þ

The continuity equation gives

QST ¼ Q1 � Q2: ð10:27Þ

From the second loop, it can be stated that the piezometric head of the surge
tank corresponds to the turbine head Ht which is equal to the initial head Ht0 plus a
perturbation z and is therefore given by

hST ¼ Ht ¼ Ht0 þ z: ð10:28Þ

H

Q

Qo
Gallery

Penstock

Surge tank

2

1

Turbine

Q QH

L R

H
C

o

G G

2 t

ST
1

(a)

(b)

Fig. 10.8 Hydraulic system with surge tank and regulated turbine (Nicolet 2007)
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The similitude of the turbine efficiency gives

Q2Ht ¼ Q20Ht0: ð10:29Þ

Then the discharge of the turbine can be expressed with Eq. (10.28) and then
expressed with the limited development (1/(1 ? x) = 1 - x ? x2 - x3…), lead-
ing to

Q2 ¼ Q20Ht0= Ht0 þ zð Þ ffi Q20 1� z=Ht0ð Þ: ð10:30Þ

Combining Eqs. (10.28) and (10.30), yields

dQ2

dt
¼ �Q20

Ht0

dhST

dt
: ð10:31Þ

Introducing Eqs. (10.27) and (10.31) into Eq. (10.26), one has

LG �
Q20

Ht0

dhST

dt
þ CST

d2hST

dt2

� 	

þ RGQ1 þ hST ¼ H0: ð10:32Þ

The head loss in the gallery is a non-linear term that needs to be developed, and
therefore the head losses are expressed as

RGQ1 ¼ R0GQ2
1
: ð10:33Þ

With Eqs. (10.27) and (10.30), the discharge in the gallery becomes

Q2
1
¼ QST þ Q2ð Þ2¼ QST þ Q20 1� hST=Ht0ð Þð Þ2: ð10:34Þ

Equation (10.34) above can be rearranged in the following form:

Q2
1
¼ Q2

20 1þ QST

Q20
� hST

Ht0

� �� 	2

ffi Q2
20 1þ 2

QST

Q20
� hST

Ht0

� �� 	

: ð10:35Þ

Introducing Eqs. (10.26), (10.31) and (10.35) into Eq. (10.32) leads to the
characteristic equation:

d2hST

dt2
þ 2l

d2hST

dt2
þ x2

0hST ¼
Ht0 � R0GQ2

20

LGCST
ð10:36Þ

where

l ¼ R0GQ20

LG
� Q20

2Ht0CST
;x2

0 ¼ 1� 2
R0GQ2

20

Ht0

 !

1
LGCST

:

The system stability is ensured when 2l[ 0, which leads to the following
stability criteria:

CST [
Q20

Ht0

LG

2RG
: ð10:37Þ
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Based on expressions of the inductance, resistance, and capacitances, the sta-
bility criteria give the Thoma cross section:

AST [
Q2

20

2g

LG

Ht0HrG0AG
ð10:38Þ

where HrG0 is the head loss in the gallery calculated with the initial discharge Q20.
LG and AG are respectively the length and the area of the cross section of the
gallery, and Ht0 is the initial head of the turbine. This Thoma cross section is the
one at the surge tank limit below which the system becomes unstable after a
perturbation induced by the turbine.

10.3 Influence of the Hydraulic Turbine on System
Stability at Full Load Condition

Alligné et al. (2008) identified the influence of a full-load excitation source
location with respect to the eigenmodes shapes on system stability. A new ei-
genanalysis tool, based on eigenvalues and eigenvectors computation of a set of
nonlinear differential equations, has been developed. First the modal analysis
method and linearization of the set of the nonlinear differential equations are fully
described. Then, nonlinear hydro-acoustic models of hydraulic components based
on electrical equivalent schemes are presented and linearized. Finally, a hydro-
acoustic SIMSEN model of a simple hydraulic power plant is used to perform the
modal analysis and to show the influence of the turbine location on system
stability.

10.3.1 Model Analysis

The dynamic behavior of a hydroelectric system is given by a set of n first order
nonlinear ordinary differential equations of the following form:

A½ � d
dt

Xf g þ BðXÞ½ � Xf g ¼ VðXÞf g ð10:39Þ

where [A] and [B(X)] are the state global matrices of dimension [n 9 n], {X} and
{V(X)} are the state vector and the boundary condition vector with n components.
This set of equations feature nonlinearity since the matrix [B(X)] and the boundary
condition vector {V(X)} are functions of the state vector.

The system stability is deduced from the eigenvalues of the linearized set of
differential equations.
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Assume that

ff g ¼ BðXÞ½ � Xf g � VðXÞf g

a vector of n nonlinear functions and Eq. (10.39) becomes

A½ � d
dt

Xf g þ ff g ¼ 0: ð10:40Þ

Considering a small perturbation from the equilibrium point {X0} defined by

Xf g ¼ X0f g þ d Xf g ð10:41Þ

this new state vector must satisfy Eq. (10.39). And a first order Taylor develop-
ment yields the linearized matrix form:

A½ � d
dt

d Xf gð Þ þ Bl½ � d Xf gð Þ ¼ 0 ð10:42Þ

where

Blij ¼
ofi

oXj

�

�

�

�

0

is the linearized state global matrix.
Hence, eigenvalues of the matrix [M] = -[A]-1 [Bl] define the system sta-

bility. They can be either real or complex numbers. A real eigenvalue is a non
oscillatory eigenmode whereas a complex eigenvalue is an oscillatory one. In both
cases damping and oscillation frequency of the eigenmode are given by the real
and imaginary part of the eigenvalue. Therefore, if at least one of the eigenvalue
has a positive real part, the system is unstable.

10.3.2 Modeling and Linearization of Hydraulic
Components

The modal analysis is applied to a simple hydraulic power plant including vis-
coelastic pipes and a Francis turbine with a cavitation vortex rope. Nonlinear
models of hydraulic elements involved in this case study are presented and line-
arized in this section.

10.3.2.1 Viscoelastic Pipe

Assuming uniform pressure and velocity distributions in the cross section without
the convective terms, the one-dimensional momentum and continuity balances for
an elementary pipe filled with water of length dx, cross section A and wave speed
a, yields the well-known Allievi hyperbolic equations, (see Sect. 10.2).
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Using the Finite Difference Method with a 1st order-centered scheme discret-
ization in space and a scheme of Lax for the discharge variable, one arrives at a set
of ODEs (10.39) which can be represented as a T-shaped equivalent electrical
scheme shown in Fig. 10.3. The RLC parameters of this equivalent scheme are
given by

Ri ¼
k Qij jdx

2A2Dg
;C ¼ Agdx

a2
; L ¼ dx

Ag
ð10:43Þ

where k is the local loss coefficient. The hydraulic resistance R, the hydraulic
inductance L, and the hydraulic capacitance C correspond respectively to energy
losses, inertia, and storage effects due to wall deflection and fluid compressibility.
Moreover, to accurately predict the amplitude of pressure fluctuation and system
stability, it is necessary to take into account the viscoelastic behavior owing to
energy dissipation during the wall deflection. This additional dissipation gives rise
to a resistance in the series with the capacitance as shown in Fig. 10.10.

This viscoelastic resistance is responsible for both fluid and pipe material
viscoelasticity and can be expressed as (Eq. 10.19)

Rve ¼
lequ

Aqgdx

where lequ is the equivalent viscoelastic damping of both the fluid and the wall.
The resulting set of nonlinear differential equations relative to equivalent electrical
circuit is set up according to Kirchoff laws and can be written under matrix form:

C 0 0
0 L=2 0
0 0 L=2

2

4

3

5

d
dt

hiþ1=2

Qi

Qiþ1

8

<

:

9

=

;

0

@

1

A

þ
0 �1 1
1 Ri=2þ Rve �Rve

�1 �Rve Riþ1=2þ Rve

2

4

3

5

hiþ1=2

Qi

Qiþ1

8

<

:

9

=

;

¼
0
hi

�hiþ1

8

<

:

9

=

;

ð10:44Þ

Resistance Ri proportional to the discharge Qi induces nonlinearity proportional
to the square exponent of the discharge. Applying the linearization, one obtains

d R0iQ
2
i

� 


¼ 2R0iQi

�

�

0
dQi ð10:45Þ

where Qi 0j is the discharge at the equilibrium point and R0i the reduced resistance
defined by

R0i ¼ kdx
�

2gDA2
� 


: ð10:46Þ
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Hence, the linearized state global matrix for the viscoelastic pipe is

C 0 0
0 L=2 0
0 0 L=2

2

4

3

5 Bl½ �viscoelastic pipe¼
0 �1 1
1 R0iQij0þRve �Rve

�1 �Rve R0iQij0þRve

2

4

3

5: ð10:47Þ

10.3.2.2 Francis Turbine

The Francis turbine can be modeled as a pressure source that converts hydraulic
energy into mechanical work, an inductance related to the inertial effects of the
water and a resistance which models the head losses through the turbine. The
resulting nonlinear differential equation is

Lt
dQi

dt
þ RtQi ¼ �Ht þ HI � HT : ð10:48Þ

Moreover, momentum equation applied to the rotational inertias is taken into
account and leads to

Jt
dX
dti
¼ Tt � Telec ð10:49Þ

where Jt, X, Tt, Telec are respectively the turbine’s moment of inertia, rotational
speed, mechanical torque and electromagnetic torque. Combined with Eq. (10.48)
the set of differential equations under matrix are

Lt 0
0 Jt

� 	

d
dt

Qi

X

� �

þ Rt 0
0 0

� 	

Qi

X

� �

¼ �Ht þ HI � HT

Tt � Telec

� �

: ð10:50Þ

The pressure source Ht(Qi, X, y) and the mechanical torque Tt(Qi, X, y) depend
on turbine characteristics which are nonlinear functions of discharge, rotational
speed and guide vane opening. Similar to the viscoelastic pipe model, the resis-
tance term of the Francis turbine model induces nonlinearity proportional to the
square exponent of the discharge.

Therefore linearization of this term is identical. On the other part, the lineari-
zation of the pressure source and the mechanical torque is given by

dHt ¼
oHt

oQi
dQij0þ

oHt

oX
dXj0þ

oHt

oy
dyj0 ð10:51Þ

dTt ¼
oTt

oQi
dQij0þ

oTt

oX
dXj0þ

oTt

oy
dyj0 ð10:52Þ

where partial derivative terms are gradients of the characteristic curves at the
equilibrium point. Hence, the linearized state global matrix is
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Bl½ �turbine¼
2Rt0 þ oHt

oQi

�

�

�

0

oHt
oX

�

�

0

oTt
oQi

�

�

�

0

oTt
oX

�

�

0

2

4

3

5: ð10:53Þ

10.3.2.3 Pipe with Vortex Rope Self-Excitation

The gaseous volume of a vortex rope at full load conditions can be modeled as a
function of two state variables: the head and the discharge. The resulting state
space continuity equation defining the discharge variation due to the occurrence of
gaseous volume at the node iþ 1=2 is

Qi � Qi�1 ¼ Crope
dHiþ1=2

dt
þ v

dQiþ1

dt
ð10:54Þ

where rope C and v are respectively the rope cavitation compliance and the mass
flow gain factor defined by

Crope ¼ �
dVrope

dHiþ1=2
; v ¼ � dVrope

dQiþ1
: ð10:55Þ

The resulting equivalent electrical scheme of a vortex rope at full load condi-
tions is given in Fig. 10.9a.

Modeling a pipe of length L with a vortex rope self excitation leads to com-
bining the equivalent electrical schemes of the vortex rope and the viscoelastic
pipe. Moreover, only one pressure node is utilized to model the pipe of length
L (Fig. 10.9b). It leads to an equivalent concentrated compliance Cequ defined by
two capacitances in parallel:

Cequ ¼ C0 þ Crope ð10:56Þ

where C0 is the compliance of the wall deformation. Hence, in modeling the vortex
rope self excitation in pipe, two rope parameters are available: the rope cavitation
compliance and the mass flow gain factor. For this investigation, cavitation rope

h li

Qi Qi+l

2+
Crope

χ
Qi

Co

Qi+lR 2 L 2 L 2 Ri 2+

hi +h 1ihi 2+ Crope

Rve

χ

1

1

(a) (b)

Fig. 10.9 a Vortex rope modeling. b Pipe of length L with vortex rope self excitation (Alligné,
et al. 2008)
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compliance and the mass flow gain factor are constant. Therefore nonlinearity and
linearization are the same as the ones of the viscoelastic pipe model (Alligné et al.
2008).

10.3.3 Case Studies

The study by Alligné et al. (2008) is an highly effective work on the stability of
vortex rope with respect to eigenmodes shapes of the hydraulic system.

10.3.3.1 Pipe with Cavitation Development

The object of the first case study is a pipe with a uniform cross section subdivided
in three parts as illustrated in Fig. 10.10. The central part is where the cavitation is
modeled with the vortex rope self excitation model, see Fig. 10.9b.

Both viscoelastic damping and excitation location influence the stability limits
of the system. First of all, the equivalent viscoelastic damping parameter lequ of
the pipe model is decisive in prediction of the stability limit and the amplitude of
pressure fluctuations. To assess the effect of this parameter, compliance and mass
flow gain factors are set to zero so that cavitation development in the system is not
taken into account. System eigenvalues are computed for different modal dam-
pings and plotted in Fig. 10.11a. Moreover, for the first ten eigenmodes, damping
is plotted as a function of the equivalent viscoelastic damping in Fig. 10.11b.

If the viscoelastic damping equals zero, then damping of all the eigenmodes are
equal. However, according to Fig. 10.11b, the more the viscoelastic damping is,
the more the modal damping increases. Moreover, for a given viscoelastic
damping, eigenmodes of high frequencies have a damping higher than those of low
frequencies.

10.3.3.2 Hydraulic Power Plant

The simplified hydraulic power plant features two significant cross sections of pipe
as illustrated in Fig. 10.12 and Table 10.2. Full load operating conditions defined in
Table 10.2 are investigated with the modal analysis to show the influence of vortex
rope self-excitation on system stability. Li, D i, and ai are respectively the length,
diameter and wave speed of the ith pipe. System stability is assessed via

Cavitation parameters

Fig. 10.10 Pipe with cavitation development (Alligné et al. 2008)
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computation of eigenvalues as a function of the two rope parameters in Fig. 10.13a.
Eigenvalues with positive real part are plotted which identify unstable couple
parameters. For this investigation, the chosen rope parameters are: C = 0.01 m2 and
v = -0.04 s. According to the instability diagram of Fig. 10.13a, these parameters
are identified as unstable ones, leading to eigenvalues plotted in Fig. 10.13b.

In Fig. 10.13, the third eigenmode with 1.8 Hz frequency is unstable. Con-
clusions established from the case study of the uniform pipe with cavitation
development can be used to explain why the third eigenmode damping is positive.

The hydro-acoustic analysis of a pumped storage plant experiencing such
pressure and power oscillation has been presented by Koutnik et al. (2006), to
illustrate the self induced oscillation nature of the observed event.
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Fig. 10.11 Viscoelastic damping effect on eigenvalues. a System eigenvalues via modal
damping. b Model damping via viscoelastic dampings (Alligné et al. 2008)

H1

Pipe 2Pipe 1

Rope
parameters

Pipe 3

H2

Fig. 10.12 Simplified layout (Alligné et al. 2008)

Table 10.2 Layout dimensions and turbine parameters (Alligné, et al. 2008)

Reservoirs Pipe 1 Pipe 2 Pipe 3 Pump turbine

H1 497 m L1 615 m L2 180 m L3 85 m Specific speed 0.306
H2 194 m D1 10 m D2 5 m D3 5 m Rotational speed 300 rpm

a1 = 1,000 m/
s

a2 = 1,200 m/
s

a3 = 1,200 m/
s

Moment of inertia 2.77
106 kg.m2

Thoma number 0.18
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10.4 Part Load Resonance Impact on System Stability
of Francis Turbine Power Plants

At low flow rate, Francis turbines feature a cavitating vortex rope in draft tube that
results from swirling flow of the runner outlet. The unsteady pressure field related
to the precession of the vortex rope induces plane wave propagating in the entire
hydraulic system. Because the frequency of the vortex rope precession is between
0.2 and 0.4 times the turbine rotational speed, there is a risk of resonance among
the hydraulic circuit, the synchronous machine, and the turbine.

10.4.1 Introduction

In this section, a systematic methodology proposed by Nicolet et al. (2006) can be
used in the assessment of resonance risk for a given Francis turbine power plant.
The test case is a 1GW�4 Francis turbine power plant, as shown in Fig. 10.14.
The methodology is based on a transient simulation of the dynamic behavior of the
whole power plant considering a 1D model of the hydraulic installation, com-
prising gallery, surge chamber, penstock, Francis turbine, and mechanical masses,
synchronous machines, transformer, grid model, speed and voltage regulators
(Nicolet et al. 2006). A stochastic excitation with the energy uniformly distributed
in the frequency range of interest is taken into account in the draft tube.
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Fig. 10.13 Computing eigenvalues of pump-turbine system. a Instability diagram. b Eigenvalues
for unstable rope parameters (Alligné et al. 2008)
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10.4.2 Modeling of the Hydroelectric Power Plant

The simulated hydroelectric power plant model in this section comprises a
hydraulic system model, that is, an elementary viscoelastic pipe model, a Francis
turbine draft tube model, and the local power plant model simulated in this study.

10.4.2.1 Hydraulic System Modeling

An elementary viscoelastic pipe model and the one-dimensional momentum and
continuity balances for the pipe were explained in Eq. (10.5) and Fig. 10.3. The
system is solved through the Finite Difference Method with a 1-order centered
scheme discretization in space and a scheme of Lax for the discharge variable.
This approach involves a system of ODEs that can be represented as a T-shaped
equivalent scheme, presented in Fig. 10.3. The RLC parameters of this equivalent
scheme are given by

R ¼ k Qj jdx

2A2Dg
; C ¼ Agdx

a2
; L ¼ dx

Ag
ð10:57Þ

where k is the local loss coefficient. The hydraulic resistance R, the hydraulic
inductance L, and the hydraulic capacitance C correspond respectively to energy
losses, inertia, and storage. The model of a pipe of length L is made of a series of
nb elements based on the equivalent scheme of Fig. 10.3. The system of equations
relative to this model is set up according to Kirchoff’s laws. The model of the pipe,
as well as the model of valve, surge tank, and Francis turbine, etc., can be com-
pleted (see Nicolet 2007). The time-domain integration of the full system is
achieved by a Runge–Kutta 4th order procedure.
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Nc+ _
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Voltage regulator
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Infinite grid
50Hz
500kV

Turbine speed
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Fig. 10.14 Hydraulic power plant layout (Nicolet et al. 2006)
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10.4.2.2 Draft Tube Model

For resonance risk assessment purposes, the draft tube of the Francis turbine can be
properly modeled by a pressure source excitation in a series with 2 pipes, as
presented in Fig. 10.15.

Assuming a cross section of draft tube with diameter D and with a rope
diameter DR, one can determine the gas volume fraction of the cross section as
follows:

a ¼ ARope

Atot
¼ DR

R

� �2

ð10:58Þ

where ARope is the cross section of the rope and Atot is the total draft tube cross
section for a given curvilinear abscissa. The wave speed in the liquid gas mixture
is given as (Wallis 1969)

a2
m ¼ 1

.

qm a
.

qga2
g

� �

þ 1� að Þ
�

qLa2
L

� 


� �h i

: ð10:59Þ

The wave speed of the liquid gas mixture is represented as a function of the gas
volume fraction, as shown in Fig. 10.16, and the function of the cavitation rope
rated diameter through combination of Eqs. (10.58) and (10.59), shown in
Fig. 10.17. Cavitating rope diameter up to DR=D ¼ 0:1 is common in a part-load
operation of Francis turbine.

10.4.2.3 Hydraulic Power Plant Model

The simulated hydroelectric power plant is made of a gallery with 1,515 m in
length, a surge tank with variable section, a penstock with 1,388 m in length and a
manifold feeding 4 9 250 MW Francis turbines. The main parameters of the plant
and the characteristics of the turbine should be known before the simulation as
listed in Nicolet et al. (2006).

HRope(t) a=a(Vrope)a=a(Vrope)

Fig. 10.15 Modeling of the draft tube (Nicolet 2007)

10.4 Part Load Resonance Impact on System Stability 401



10.4.3 Resonance Risk Assessment

The natural frequencies of the piping system in a power plant can be estimated
through analysis of the natural frequencies of an equivalent pipe in an adduction
system. Due to longitudinal symmetry of the piping, a simplified piping model can
be used. It is presented in Fig. 10.18 and Table 10.3, comprising 2 pipes: the
adduction and the draft tube. Thus influence of wave speed variation of the draft
tube with natural frequencies can be qualitatively investigated.

The equivalent wave speed of the piping system is given by

�a ¼ L1 þ L2ð Þ= L1=a1 þ L2=a2ð Þ: ð10:60Þ

Considering both upstream and downstream free surface boundary conditions
of the piping, one could write the equivalent wave length of the ith natural mode of
the piping as
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ki ¼ 2=i L1 þ L2ð Þ: ð10:61Þ

The corresponding natural frequency is therefore given by Wylie and Streeter
(1993):

fi ¼ �a=ki ¼ i=2 L1=a1 þ L2=a2ð Þ: ð10:62Þ

The first 10 natural frequencies of the simplified piping are computed for wave
speed in a draft tube ranging from a = 1,200 m/s to a = 50 m/s. The length and
wave speed of the simplified model are summarized in Table 10.3. Natural fre-
quencies for different cavitating rope diameters can be obtained. As expected, the
natural frequencies of the piping system decrease with respect to the wave speed.
The natural frequency of the generator is fgen = 1.21 Hz.

An intersection between the 4th piping’s natural frequency and the generator’s
natural frequency locates at a draft tube wave speed of 77 m/s. This point is in the
range where pressure pulsation induced by the cavitating vortex rope extends from
0.2 to 0.4 times the turbine rotating frequency, fn.

10.5 One-Dimensional Analysis of a Hydraulic System

One-dimensional stability analysis of a hydraulic system composed of a penstock,
a runner, and a draft tube was carried out to determine the cause of the fully-loaded
draft tube surge presented by Tsujimoto et al. (2008). It was assumed that the
cavity volume at the runner exit is a function of the pressure at the vortex core and
an additional pressure decrease due to the centrifugal force on the swirling flow.
It was found that the diffuser of the draft tube had a destabilizing effect over the

Turbine
f1

L2 a2

f2

L1 L2 aL
1 a

1

+

Fig. 10.18 Simplified piping model

Table 10.3 Main characteristics of the simplified model in Fig. 10.18

Description Length L (m) Wave speed a (m/s)

Adduction 1,478 1,146
Draft tube 30 1,200, 200, 100, 50
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whole range of flow rate while the swirl effect stabilizes/destabilizes the system at
larger/smaller flow rates than the swirl free flow rate. Explanations of the desta-
bilizing mechanism were given for the diffuser and swirl flow effects.

10.5.1 Introduction

Securing stable operation is one of the most important issues in hydraulic power
generation systems. At part load, a draft tube surge occurs when frequency of the
vortex rope whirl agrees with resonant frequency of the hydraulic system (Jacob
and Prenat 1996; Nishi 1984; Nishi et al. 1982, 1994; Angelico et al. 1986). It is
also known that a surge can emerge even at full load (Prenat and Jacob 1986), but
the cause is still not clear. Koutnik and Pulpitel (1996) simulated the full load
surge by representing the effect of cavitation in draft tube using cavitation com-
pliance and mass flow gain factor (see Sect. 10.4). It was shown that instability
occurs when the absolute value of negative mass flow gain factor exceeds a certain
value which depends on the value of cavitation compliance and system head
losses. This model was combined with the numerical analysis software SIMSEN to
analyze the full load surge observed in a real plant (Koutnik et al. 2006).

Although Koutnik et al. (2006) showed that full load surge could be success-
fully simulated with an appropriate value of mass flow gain factor, the flow
mechanism determining the value of mass flow gain factor was not clear yet.
Tsujimoto et al. (2008) intended to clarify the diffuser effect of the draft tube and
the downstream swirl effect of the runner on the hydraulic instabilities in power
generation plants (Chen et al. 2008a, b). The effect of finite sound velocity in the
penstock was discussed.

10.5.2 Analytical Model

As shown in Fig. 10.19, one should consider a system composed of an inlet pipe of
length Li and area Ai, a turbine runner, and a draft tube with the inlet and exit areas
Ac and Ae. A cavity of volume Vc is assumed downstream of the turbine and

T
Q2

Q1

Vc

Li

Ai
pinlet

Ac
p

Ae pexit

a

Fig. 10.19 Hydraulic system
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upstream of the draft tube. Then, the continuity equation between upstream and
downstream flow rates Q1 and Q2 is

Q2 � Q1 ¼ dVc=d t: ð10:63Þ

By applying Bernoulli’s equation to the draft tube, one obtains

pa ¼ pexit þ q
Le

Ae

dQ2

dt
þ q

f2 � D

2A2
e

Q ð10:64Þ

where

Le ¼
Z

ðAe=AðsÞÞds

is the effective length of draft tube, f2 is the loss coefficient of draft tube, and
D = (Ae/Ac)

2 - 1 is the diffuser factor. Equation (10.64) ignores the flow com-
pressibility in draft tube.

At the off-design operating point, the discharge flow from the runner swirls and
then a vortex is formed. If the pressure pc at the vortex center is lower than the
vapor pressure, a cavity would appear. The volume of the cavity can be considered
to be a function of the core pressure pc:

Vc ¼ VcðpcÞ ð10:65Þ

Due to the centrifugal force of the swirling flow, the core pressure pc is lower
than the ambient pressure pa and can be expressed as

pc ¼ pa � qac2
h2: ð10:66Þ

Here, ch2 is a representative swirl velocity and a is a pressure coefficient for the
swirl effects. If one assumes a Rankine’s combined vortex with the core radius
r and the outer radius R, a is determined to be a = (R/r)2 - 1/2, with ch2 evaluated
at the outer radius R (Susan-Resiga et al. 2006).

From the velocity triangle at the runner exit as shown in Fig. 10.20, one obtains

ch2 ¼ cm2cotb2 � U2 ¼
Q1

S
cotb2 � U2 ð10:67Þ

where b2 is the vane angle at runner exit, S is the area at runner exit, and U2 is the
peripheral speed at runner exit.

w2

2

U2

U2

c2
cm2

cθ2

β

Fig. 10.20 Velocity triangle
at the runner exit
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By combining Eqs. (10.64) and (10.67) with Eq. (10.66), one gets

pc ¼ pexit þ q
Le

Ae

dQ2

dt
þ q

f2 � D

2A2
e

Q2
2 � qaðcot b2

S
Q1 � U2Þ2: ð10:68Þ

The cavitation compliance C is defined as

C ¼ �dVc=dp: ð10:69Þ

Then, the continuity Eq. (10.63) can be expressed as

Q2 � Q1 ¼ dVc

dt
¼ dVc

dpc

dpc

dt
¼ �C dpc

dt
¼ �qC Le

Ae

d2
Q2

dt2

þ qC D�f2
A2

e
Q2

dQ2

dt
þ 2qCa cot b2

S ð
cot b2

S Q1 � U2Þ dQ1

dt
:

ð10:70Þ

The second term with dQ2/dt represents the diffuser effect corresponding to the
mass flow gain factor. If the discharge Q2 is increased, the ambient pressure pa is
decreased; if the diffuser effect D is larger than the loss f2, the result is an increase
in cavity volume, which would promote further increase of Q2. The third term with
dQ1/dt represents the effect of swirl. This term is also called ‘‘mass flow gain
factor’’ but associated with the upstream flow Q1. At the flow rate lower than the
design condition (Q1 \ Qsf = U2S tanb2), the tangential velocity ch2 and the
cavity volume decrease as the upstream flow rate Q1 is increased. This would
promote an increase in Q1.

Considering the compressibility of the fluid and the elasticity of pipe wall, the
momentum and continuity equations applied to the flow in upstream penstock are

ou

ot
þ 1

q
op

ox
¼ 0 ð10:71Þ

op

ot
þ qa2 ou

ox
¼ 0 ð10:72Þ

where a is the wave speed and can be evaluated from the speed of sound and the
geometry of penstock section. The convective term is ignored as being small with
respect to other terms.

By taking the partial derivative of Eq. (10.72) with respect to t and Eq. (10.71)
with respect to x, one may eliminate u, which yields

o2p

ot2
� a2 o2p

ox2
¼ 0: ð10:73Þ

In a similar manner, p may be eliminated, giving

o2u

ot2
� a2 o2u

ox2
¼ 0: ð10:74Þ

The general solutions of Eqs. (10.71–10.74) can be expressed as
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p ¼ R t � x=að Þ þ L t þ x=að Þ; qau ¼ R t � x=að Þ � L t þ x=að Þ:

The function R(t - x/a) describes a wave propagating towards positive x while
L(t ? x/a) is another wave propagating towards negative x. During the stability
analysis, one separates each quantity into steady and unsteady components: Q ¼
�Qþ ~QðtÞ; p ¼ �pþ ~pðtÞ and u ¼ �uþ ~uðtÞ: The absolute value of the steady part is
assumed to be much larger than unsteady part. If it is a sinusoidal fluctuation, one
can express the unsteady part as follows, using an imaginary unit i:

~p ¼ pR � eix t�x
að Þ þ pL � eix tþx

að Þ ð10:75Þ

qa~u ¼ pR � eix t�x
að Þ � pL � eix tþx

að Þ: ð10:76Þ

Solutions (10.75) and (10.76) satisfy Eqs. (10.73) and (10.74) generally, even
with a complex value of x. Assuming no pressure fluctuation (~p ¼ 0) at the
entrance of the inlet pipe (x = 0), one can obtain pR ? pL = 0 from Eq. (10.75).
By introducing this result back into Eqs. (10.75) and (10.76), one acquires the
pressure and velocity fluctuations along the inlet pipe:

~p ¼ pReixt e�ixx
a � eixx

a
� 


¼ �2j � pReixt sin x
x

a

� �

ð10:77Þ

qa~u ¼ pReixt e�ixx
a þ eixx

a
� 


¼ 2 � pReixt cos x
x

a

� �

: ð10:78Þ

Combined with each other, the pressure fluctuation of Eqs. (10.77) and (10.78)
can be correlated with the velocity fluctuation. The pressure fluctuation ~pinlet at the
inlet of the runner x = Li can be correlated with the velocity fluctuation ~uinlet there:

~pinlet ¼ �iqa tan xLi=að Þ � ~uinlet: ð10:79Þ

Assume that the pressure difference between the inlet and exit of runner can be
present by

pinlet � pa ¼ 0:5qfT u2
inlet ¼ 0:5qfT �u2

inlet þ 2�uinlet~uinlet þ ~u2
inlet

� 


where pa is the pressure at the runner exit and fT is a coefficient which represents
the effect of runner. The unsteady part is

~pinlet � ~pa ¼ qfT�uinlet~uinlet ¼
qfT

A2
i

�Q1
~Q1: ð10:80Þ

The unsteady part of Bernoulli’s Eq. (10.64) applied to the draft tube is

~pa ¼ ~pexit þ
qLe

Ae
ix~Q2 þ

q f2 � Dð Þ
A2

e

�Q2
~Q2: ð10:81Þ

By applying Eqs. (10.80) and (10.81) to (10.79), one obtains
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�iqa tan x
Li

a

� �

�
~Q1

Ai
� qLe

Ae
ix~Q2 þ

q f2 � Dð Þ
A2

e

�Q2
~Q2

� �

¼ qfT

A2
i

�Q1
~Q1

which can be reduced to

~Q1 ¼ �
qLe

Ae
ixþ q f2�Dð Þ

A2
e

�Q2

qfT

A2
i

�Q1 þ i qa
Ai

tan x Li
a

� 


~Q2: ð10:82Þ

The unsteady part of the continuity Eq. (10.70) between upstream and down-
stream flow rates Q1 and Q2 is

~Q2 � ~Q1 ¼ �
qLeC

Ae

d2 ~Q2

dt2
þ qC

A2
e

D� f2ð Þ�Q2
d~Q2

dt

þ 2qCa cot b2

S

cot b2

S
�Q1 � u2

� �

d~Q1

dt
: ð10:83Þ

Substitute Eq. (10.82) into (10.83) and use ~Q1 ¼ Ai~ul; the system characteristic
equation including the effect of a sound velocity in the penstock is

qa
Ai

qCLe

Ae
jC

� �

x2 tan x Li
a

� 


� qa
Ai

qC
A2

e
D� f2ð Þ�Q2

h i

x tan x Li
a

� 


þ qfT

A2
i

�Q1 � qLeC
Ae
þ 2qCa cot b2

S
cot b2

S
�Q1 � u2

� �

� qLe

Ae

h i

x2

þ qfT

A2
i

�Q1 � qC
A2

e
D� f2ð Þ�Q2i

h

� 2qCa cot b2
S

cot b2
S

�Q1 � u2

� �

� q f2�Dð Þ
A2

e

�Q2

� qLe

Ae
i
i

ix� i qa
Ai

tan x Li
a

� 


þ � q f2�Dð Þ
A2

e

�Q2 � qfT

A2
i

�Q1

h i

¼ 0

: ð10:84Þ

Equation (10.84) is a transcendental equation in terms of x. From the char-
acteristic Eq. (10.84), the complex frequency x = xR ? ixI can be determined.
The expression eixt ¼ eixRt � e�xI t shows that the real part xR gives the frequency
and the imaginary part xI the damping rate.

10.5.3 Discussions on Instabilities with a Large Sound
Velocity

When the sound velocity a is large, one can approximate

tan x
Li

a

� �

� x
Li

a
and i

qa

Ai
tan x

Li

a

� �

� qLi

Ai
ix

In this case, the characteristic equation is reduced to a third order equation,
which has been obtained for the case of incompressible flow in the penstock (Chen
et al. 2008a, b).
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� qLi

Ai

qLe

Ae
C

� �

ðixÞ3 � qfT

A2
i

�Q qLeC
Ae
� qLi

Ai

qC
A2

e
ðD� f2Þ�Q

h

þ 2qCa cot b2
S

cot b2
S

�Q� U2

� �

qLe

Ae

i

ðixÞ2 þ � qLe

Ae
�

h

qLi

Ai

þ qfT

A2
i

qC
A2

e
ðD� f2Þ�Q2 � 2qCa cot b2

S ð
cot b2

S
�Q� U2Þqðf2�DÞ

A2
e

�Q
i

ðixÞ

þ � qðf2�DÞ
A2

e

�Q� qfT

A2
i

�Q
� �

¼ 0:

ð10:85Þ

By taking the complex conjugate of Eq. (10.85), one can show that, if
x1 = x1R ? ix1I is a solution of Eq. (10.85), x2 = -x1R ? ix1I is another
solution. The solutions x1 and x2 are similar with the same frequency x1I and
common damping x1I. This also requires that the real part of the third solution
equals zero (x3I = 0). So, the solutions can be expressed as x1 = x1R ? ix1I,
x2 = -x1R ? ix1I, and x3 = ix3I

Since Eq. (10.85) is a 3rd order equation in terms of ix with real coefficients,
Hurwitz’ criterion can be applied to obtain the stability condition:

fT

A2
i

�Q Le
Ae
� Li

Ai

D�f2
A2

e

�Qþ 2a cot b2
S

cot b2
S

�Q� U2

� �

Le
Ae

h i

� Le
Ae
þ Li

Ai
� fT

A2
i

qC
A2

e
ðD� f2Þ�Q2

h

� 2qCa cot b2
S

cot b2
S

�Q� U2

� �

ðD�f2Þ
A2

e

�Q
i

[ Li
Ai

Le
Ae

f2�D
A2

e
þ fT

A2
i

� �

�Q:

ð10:86Þ

Equation (10.86) can be utilized to determine the stable/unstable flow rate
regions. However, the equation is rather complicated and thus the stability will be
discussed in terms of the direct solution of the characteristic Eq. (10.85).

10.5.3.1 Diffuser Effect of the Draft Tube

Equation (10.83) can be written as

qC
Le

Ae

d2 ~Q2

dt2
þ qC

f2 � D

A2
e

�Q
d~Q2

dt
þ ~Q2 ¼ ~Q1 þ 2qCa

cot b2

S
ðcot b2

S
�Q� U2Þ

d~Q1

dt
:

ð10:87Þ

If one considers the case of ~Q1 ¼ 0; negative damping occurs when

D [ 12: ð10:88Þ

This is caused by the diffuser effect of the draft tube. The frequency is given by

xe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ae= qLeCð Þ
p

: ð10:89Þ

This mechanism can be explained as follows. Consider the case when Q2 is
increased. From Eq. (10.64), pa will decrease if D [ f2, due to the diffuser effect
and the cavity volume Vc is increased. Then Eq. (10.63) implies that Q2 is

10.5 One-dimensional Analysis of a Hydraulic System 409



increased further if Q1 is kept constant. This positive feedback is the cause of the
instability from the diffuser effect.

10.5.3.2 Swirl Effect

From Eq. (10.70), one obtains the following equation

qC
Li

Ai

d2 ~Q1

dt2
þ qC

fT

A2
i

�Qþ 2qCa
cot b2

S

cot b2

S
�Q� U2

� �� 	

d~Q1

dt
þ ~Q1 ¼ ~Q2:

ð10:90Þ

Here, consider the case with ~Q2 ¼ 0: The first term of the multiplier on d ~Q1=dt
denotes the damping caused by the resistance of the runner. The second term
represents the negative or positive effect of swirl depending on the value of tan-
gential velocity ch2 = cm2cotb2 - U2 = (�Q/S)cotb2 - U2. The tangential velocity
becomes zero at the flow rate Qsf = SU2 tanb2 which is called the swirl free flow
rate. With a flow rate smaller than the swirl free flow rate Qsf, the swirl contributes
to instability by reducing the damping coefficient. When the flow rate is larger than
the swirl free flow rate, the swirl has an effect to enhance damping. These effects
can be explained below.

The velocity triangle at the runner exit is shown in Fig. 10.21, for three flow
rates Qa, Qsf, and Qb. At smaller flow rate Qa, the absolute value of the tangential
velocity will decrease if the flow rate Qa is increased. Then, the pressure in the
vortex core will go up and the cavity volume shrinks. The continuity Eq. (10.63)
shows that the inlet flow rate Qa is increased further. This positive feedback is the
cause of the instability. With a larger flow rate Qb, the tangential velocity increases
if the flow rate is increased. Then the core pressure drops and the cavity volume
grows. This results in the decrease of the upstream flow rate Qb. This negative
feedback is the cause of the stabilizing effect at higher flow rate.

10.5.3.3 Energy Balance

Consider the displacement work of the cavitation region:

E ¼
Z

pa Q2 � Q1ð Þdt ¼
Z

paQ2dt �
Z

paQ1dt ¼ E2 � E1: ð10:91Þ
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Fig. 10.21 Velocity triangle
at the runner exit for three
flow rates
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Under a steady oscillation condition, the pressure pa near the cavitation region
can be evaluated from Eq. (10.64). Separate pa into steady �pa and unsteady p0a0eixt

components at the two cases and assume p0a0 � �pa: From Eqs. (10.79) and (10.80)
one obtains

�pa ¼ pinlet � q
fT

2A2
i

�Q2 ð10:92Þ

~pa ¼ �q
Li

Ai
ix~Q1 � q

fT

A2
i

�Q1
~Q1: ð10:93Þ

And Eq. (10.64) leads to

�pa ¼ pexit þ q
f2 � D

2A2
e

�Q2
2 ð10:94Þ

~pa ¼ q
Le

Ae
ix~Q2 þ q

f2 � D

A2
e

�Q2
~Q2: ð10:95Þ

First, the upstream energy transfer is considered within a period T:

E1 ¼
Z T

0
paQ1dt ¼

Z T

0
�pa þ ~pað Þ �Q1 þ ~Q1

� 


dt ¼ �pa
�Q1T þ

Z T

0
~pa

~Q1dt

¼ �E1 þ ~E1: ð10:96Þ

In the same way,

E2 ¼
Z T

0
paQ2dt ¼ �pa

�Q2T þ
Z T

0
~pa

~Q2dt ¼ �E2 þ ~E2: ð10:97Þ

As for the unsteady displacement work ~E1 and ~E2; one can obtain the upstream
work ~E1 using expression (10.93):

~E1 ¼
Z T

0
~pa

~Q1dt ¼ �q
Li

Ai

Z T

0
jx~Q1
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~Q1dt � q
fT

A2
i

�Q1

Z T

0

~Q1 ~Q1dt

¼ �q
fT

A2
i

�Q1
~Q10

�

�

�

�

2 p
x
:

ð10:98Þ

By using Eq. (10.95), one gets

~E2 ¼ q
f2 � D

A2
e

�Q2
~Q20

�

�

�

�

2 p
x
: ð10:99Þ

Thus,

~E ¼ ~E2 � ~E1 ¼ q�Q
p
x

f2 � D

A2
e

~Q20

�

�

�

�

2þ fT

A2
i

~Q10

�

�

�

�

2
� �

: ð10:100Þ
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This illustrates that the displacement work is dissipated because of upstream
and downstream resistances.

The above discussion is based on dynamics of the upstream and downstream
flow channel, Eqs. (10.93) and (10.95) do not include the dynamics of cavitation.
To clarify the contribution of cavitation, the continuity equation under cavitation
Eq. (10.83) is used.

~Q2 � ~Q1 ¼ �qC
Le

Ae

d2 ~Q2

dt2
þ qC

D� f2

A2
e

�Q
d~Q2

dt

þ 2qCa
cot b2

S
ðcot b2

S
�Q� U2Þ

d~Q1

dt
: ð10:101Þ

By using Eqs. (10.93) and (10.95), one obtains

~E ¼
Z T

0
~pa

~Q2 � ~Q1
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dt ¼ �q
Li

Ai
� 2qCa

cot b2

S
ðcot b2

S
�Q1 � U2Þ � x2 p

x
~Q10
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�

�

�

2

ð10:102Þ

By equating (10.100) and (10.103), one obtains

q�Q
p
x

f2 � D

A2
e

~Q20

�

�

�

�

2þ fT
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i
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�

�
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2
� �

¼

� q
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Ai
� 2qCa

cot b2

S
ðcot b2

S
�Q� U2Þ � x2 p

x
~Q10

�

�

�

�

2
ð10:103Þ

Equation (10.103) shows the following properties.

1. The displacement work by the cavity due to swirl shown by the right hand side
should be dissipated due to the resistance in the upstream and downstream.

2. With D = f2, steady oscillation is possible for

�Q1\SU2 tan b2:

3. With a = 0, steady oscillation occurs for

D ¼ f2 þ
Ae

Ai

� �2 ~Q10

~Q20

� �2

fT :

4. The cavity provides energy only through the swirl-flow effects. With the dif-
fuser effects, the energy is provided by the diffuser and the cavity does not
contribute to the energy supply. The cavity is needed only to constitute a
vibration system.
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10.6 Three-Dimensional Flow Simulation at Load Reject
Transient

Based on RANS method (see Chap. 7) in a variation rotational frame of reference
fixed, the 3D unsteady flow simulation through the complete flow passage of a
Francis turbine with its penstock has been carried out at the load rejection tran-
sient. Simulation and experimental results show that good agreement is obtained
regarding the pressure fluctuation during the transient process in the turbine.
Further, it indicates that variations of all the parameters of the hydraulic turbine
can be predicted during the process. Impact of turbine transient character to
penstock flow will be considered in this simulation.

10.6.1 Introduction

Hydraulic turbines exhibits transient features during startup, load change, and
shutdown, as well as under abnormal conditions, such as load rejection and run-
away emergencies. During the transient processes, direction and magnitude of all
the working parameters are functions of time, and there is at least one parameter
which changes its direction (positive, negative, zero) at the end of the process. This
kind of process is also called the large fluctuant unsteady process. The runaway
transient and the load rejection of the Francis turbine in operation belong to this
kind of process. The runaway transient happens when the hydropower unit sud-
denly rejects a load. For example, speed controller breaks down, and the guide
vanes can’t close. In these cases, the rotational speed of its runner increases to
maximum rapidly owing to the hydraulic moment effect. The load rejection pro-
cess takes place when the hydropower unit suddenly rejects a load, although the
speed controller operates normally and the guide vanes can close down rightly as
the scheduled regulation process. But heavy pressure fluctuation happens in the
turbine and in the penstock, and hance the unit’s rotating speed increases.

There are a series of unsteady phenomena caused by additional inertial forces
during the transient process. Oversized dynamic loads can cause breakdown of the
unit, inducing penstock and surge-chamber, even catastrophic accidents of the
whole hydropower station. Therefore, simulation of the transients is necessary for
each hydropower station, and the result is used to evaluate the feasibility of the
project as one of fundamental standards.

In traditional numerical simulations of the transients, the whole characteristic
curve of hydraulic machinery was used as the boundary condition for solving the
one-dimension inviscid unsteady flow problem. Obviously, it is difficult to carry
out simulations without this kind of curve. In the early eighties, a new method
called internal characteristic analysis was brought forth by Chang (2005). As a
result, the whole characteristic curve of hydraulic machinery is no longer needed,
and one can now deduce the governing equations based on geometric dimensions
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and the one-dimension inviscid hypothesis. The previous methods focused on
simulation of the whole hydraulic system especially inducing penstock, while
research mentioned in the work of Li (2008) and Li et al. (2007) focused on the
whole flow passage of the Francis turbine. Unsteady 3D turbulent simulation is
done based on Reynolds-averaged continuity and Navier–Stokes equations to show
the impacts of the turbine unsteadiness in the transient process to the penstock.

10.6.2 Governing Equations

During the runaway and load rejection transient of the hydraulic turbine, the
external load is either null or getting smaller, and speed of the rotational system
increases till runaway status, with effect of hydraulic moment. During the pro-
cesses, the moment equation of the rotational system is depicted as

Mf g ¼ J
d xf g

dt
ð10:104Þ

where {M} is the moment vector of the rotational system, {J} is the rotational
inertia of the shaft system, and {x} is the angular velocity vector.

As for water in the runner, the governing equations are still Reynolds-averaged
continuity and Navier–Stokes equations in the relative rotating reference frame.
While there is still something different, the frame reference is in accelerated status.
Through deduction, the governing equations are

r � Wf g ¼ 0 ð10:105Þ

D Wf g
Dt

¼ ff g þ x2 rf g � 2 xf g � Wf g � rp

q

� �

þ l
q

D Wf g � d xf g
dt
� Rf g

ð10:106Þ

where {W} is the relative velocity in the accelerated relative rotating reference
frame; {f} is the body force vector; l is the dynamic viscosity of water; {r} is the
radius vector from the rotational axis to the mass particle; and {R} is the vector
from the grid origin to the mass particle.

From Eq. (10.106), it is known that there is an additional source force

� d xf g
dt
� Rf g:

It is decomposed into three components in the direction of x, y, z in the
Cartesian coordinates, namely

y
d xf g

dt
; �x

d xf g
dt

and zero respectively.
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The governing equations of other passages are still Reynolds-averaged conti-
nuity and momentum equations in the Cartesian coordinates, which are depicted as

ovi

oxi
¼ 0 ð10:107Þ

q
ovi

ot
þ q

ovlvi

oxj
¼ qSi �

op

oxi
þ o

oxj
l

o�vi

oxj
þ o�vj

oxi

� �� 	

� q
ov0iv

0
j

oxj
ð10:108Þ

where, �vi, �p are mean absolute velocity component and mean pressure respec-

tively; v0i, v0j are turbulent velocity fluctuating components; and v0iv
0
j is the Reynolds

stress in turbulence.
At the rotating reference frame, the source of force in the equation is

Si ¼ fi � eijk
dxj

dt
rk þ 2eijkxjWk þ xjxirj � xjxiri

� 	

: ð10:109Þ

10.6.3 Simulation Domain of the Francis Turbine
and Penstock

The research object in the study is a Francis prototype turbine with the penstock in
a hydropower plant, whose schematic diagram with description of each compo-
nents and penstock is depicted in Fig. 10.22.

It is known that the following two aspects are to be realized to understand the
simulation result of the transient. Rotational speed of the runner increases with

Fig. 10.22 A Francis prototype turbine with the penstock (Li et al 2007)
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respect to time based on Eq. (10.104). Additional source force must be considered
during the simulation. According to the above considerations, the UDF (User
Defined Function) procedure is made and the steady simulation results at the unit
rotational speed (71.4 rpm) are the initial condition for the simulation. During an
unsteady turbulent simulation process, the time step is set as 0.001 s, and the
rotational speed adjustment function and additional source force function is added
to water in the runner region as shown in Eq. (10.109).

The governing equations are discretized with the finite volume method, and a
second-order implicit format for the time item, a second-order central difference
format for the diffusion item, a second-order upwind format for the convection
item are employed. The SIMPLEC iteration procedure is choosed for the velocity–
pressure coupling solution.

10.6.4 Calculating Results of Unsteady Flow at the Load
Rejecting Transient

The unsteady turbulent flow computation is carried out through a Francis prototype
turbine with its penstock in a hydropower plant at its load rejecting transient
process. Table 10.4 lists the parameters of the Francis turbine.

The operation condition of the Francis turbine before the load rejection is the
same in computation and experiment where it is also the initial condition. Under the
operation condition the runner rotating speed is 71.4 r/min, the effective water head
of the turbine is 67 m, the total travel of the hydraulic servomotor is 1019.5 mm,that
is, the opening of guide vanes is 550 mm, and the turbine power is 580 MW.

Table 10.4 Parameters of the Francis turbine (Li et al 2007)

Term Parameters

Head Maximum 113.0 m
Rated 85.5 m
Minimum 71.0 m

Rated power 767 MW
Rated floe rate 1,000.6774 m3/s
Rated speed 71.4 r/min
Specific speed 239.1 m�kW
Inlet diameter of spiral casing 12.21 m
Number of stay vanes ZS = 23
Number of guide vanes Z0 = 24
Number of runner vanes ZB = 15
Height of guide vanes B0 = 0.3 D1

Diameter of runner D1 = 9.8 m
Height of draft tube H0 = 2.64 D1

Length of draft tube L = 5.62 D1
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10.6.4.1 Experimental Results

Figure 10.23 shows the test results of the prototype Francis turbine at the load
rejection from load 580 MW at the effective head 67 m, including the records of
time histories of servomotor travel (a), runner rotating speed (b), pressure pulsa-
tion at entrance of spiral casing (c), and pressure pulsation at entrance of draft tube
(d). After 100 s, the guide vanes will be at no-load condition.

10.6.4.2 Computational Results

Figures 10.24 and 10.25 present the calculated time history of pressure pulsations
at the entrances of draft tube and spiral casing respectively, as well as comparisons
between the calculation and test results. The cuver of Cal.1 in those figures is
obtained through calculation of unsteady flow at this load rejecting process in the
computation domain of the flow passage of the Francis turbine. The cuver of Cal.2
from the same calculation in the domain of the turbine and the penstock is shown
in Fig. 10.22.
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Fig. 10.23 Test results of prototype Francis turbine at load rejection from load 580 MW. a Time
history of servomotor travel. b Time history of runner rotating speed. c Time history of pressure
at S.C. entrance. d Time history of pressure at D.T. entrance (Li et al. 2007)
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Tables 10.5, 10.6, and 10.7 are comparisons between the experimental and
computational data of Cal. 1 and Cal. 2 of rotating speeds (Table 10.5), pressure
pulsation at entrance of draft tube (Table 10.6) and pressure pulsation at the
entrance of spiral casing (Table 10.7). It is seen that the calculation data of whole
turbine with its penstock is close to the experimental data.

Further computation containing density variation and the effect of the tail water
channel should be carried out to show the effect of the turbine transient to the
whole hydraulic system of the turbine.

10.7 Stability of Pumping System

This section is devoted to a description of the methods to analysis the stability in
pumps and their associated hydraulic systems.

ca.1

cal.2

test

250

200

150

100

50

0
55 60 65 70 75 80 85

t(s)

p(
kP

a)

Fig. 10.24 Calculating time
history of pressure pulsation
at entrance of draft tube
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history of pressure pulsation
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10.7.1 Basic Concepts of Static and Dynamic Stability
of Pump Characteristics

A pump characteristic is regarded as stable if dH/dQ is negative, i.e. if the head
drops when the flow rate is increased. If the system curve has a positive gradient
dHA/dQ, the pump operation may still be stable if the pump run back to its original
operation point whenever there is a minor deviation of ±dQ. The mechanism can
be visualized with reference to Fig. 10.26. In order to assess the static stability it is

Table 10.5 Rotating speed of runner (Li et al. 2007)

Case Maximum (rpm) Increasing rate (%) Time at maximum (s)

Test 103.6 38.04 9.6
Cal.1 103.99 38.65 9.51
Cal.2 104.68 39.58 9.5

Table 10.6 Pressure pulsation at entrance of draft tube (Li et al. 2007)

Case Max
pressure
(kPa)

Min
pressure
(kPa)

Increase
rate (%)

Decrease
rate (%)

Max
time (s)

Min
time (s)

Relative
amplitude (%)

Test 200 14.72 90.73 85.96 13.09 9.24 28.09
Cal.1 187.3 17.43 80.49 83.22 13.55 9.2 25.92
Cal.2 200.9 17.92 93.6 82.73 13.85 9.12 27.92

Table 10.7 Pressure pulsation at entrance of spiral casing (Li et al. 2007)

Case Max pressure (kPa) Min pressure (kPa) Increasing rate (%) Decreasing rate (%)

Test 951.6 745.19 24.5 34.82
Cal.1 811.8 761.7 6.58 7.64
Cal.2 884.5 751.77 17.35 20.25
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Fig. 10.26 Static stability (see Gülic 2007). a Stable operation. b Unstable operation
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therefore necessary to know about the characteristics of the pump and system (see
Gülic 2007).

The criterion of static stability may be still satisfied even when dH/dQ is
positive (and consequently the characteristic is ‘‘unstable’’). This situation is
encountered if the system characteristic is steeper than the pump characteristic so
that both characteristics intersect at only one point, as is shown in Fig. 10.26a.
Given a momentary deviation of dQ, the system then requires dHA whereas the
pump only delivers dH.

Conditions are quite different in Fig. 10.26b where the system characteristic
exhibits a smaller gradient than the pump. The pump reacts to a momentary
deviation of dQ with a higher head rise than required by the system. The system
can absorb additional flow, hence the deviation increases and the operation point
shifts from point A to a higher flow rate at point B. With a momentary deficit of -

dQ, the operation point would shift from point A to point C. The operation points
B and C are stable (they meet the stability criterion). Point A is unstable if the
system characteristic is sufficiently flat, i.e. when pumping against a high static
pressure with low head losses in the system.

A dynamic instability is a self-excited vibration where periodic fluctuations of
flow rate and pressure occur around a given operation point. There are two
requirements for excitation of such vibrations: (1) the pump characteristic has to
be unstable (hence, it must exhibit a positive gradient dH/dQ); and (2) the system
must have sufficient compressibility for storing energy during the vibration cycle.
Compressible volumes in this sense are vapor-filled spaces such as those found in
deaerators or boilers, gas volumes in a tank for suction pressure control, cavitation
zones or the elasticity, and compressibility of hot water in large-volume piping
systems.

The mechanism of a dynamic instability can be explained with reference to
Fig. 10.27. Consider the operation in the unstable range of the characteristic
represented in the left graph and in the stable range (right graph) where flow rate
and pressure are plotted against the time. In the unstable range dH/dQ is positive
which indicates that H oscillates in phase with Q. The energy fed into the system
per cycle is dE = qgdHdQ. The energy dE put into the system is positive, and it
enhances the original perturbation and the oscillation increases.

In contrast, dH/dQ is negative on the stable branch of the characteristic.
Fluctuations of pressure and flow rate are in opposite phase, dE becomes negative.
Consequently, the energy added during the perturbation is dissipated and the
amplitude decays (the role of damping is higher than that of excitation).

The stability analysis is performed using the method in control engineering. In
addition to the pump and system characteristics, the oscillating fluid mass and the
compressibility of the system must be known. The risk of self-excited vibrations
increases with growing instability of the pump characteristic. Together with
inadequate system damping, even slight instabilities of the characteristic (which
normally would be barely detectable) can cause self-excited vibrations. The
occurrence of vibration actually depends on the degree of instability of the Q–H-
curve and on the system property (particularly damping). Dynamic instability can
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occur even with a pump in single operation. It is manifested as low-frequency
fluctuations of pressure and flow rate that can cause pipe vibrations and disturb the
functioning of the control system.

10.7.2 Pump System Analysis

Pumping systems comprised of air vessel may feature instabilities as reported.
Such a system can be simplified into a system comprised of a downstream res-
ervoir, a pump with a fixed rotational speed, a pipe, a valve, an air vessel, and an
upstream reservoir. The equivalent scheme of this system is made of the pump
pressure source Hp(Q), the pipe model with the pipe inductance Lp and resistance
Rp, while the air vessel is modeled as its capacitance CAV, and the valve as its
resistance Rv (see Fig. 10.28). The compliance of the pipe is neglected with
respect to the air vessel compliance (see Nicolet 2007).

The corresponding set of differential equations is given by:

LPdQ2=dt þ RpQ2 þ RvQ2 þ Hp Q2ð Þ ¼ hAV

CAV dhAV=dt ¼ Q1 � Q2
:

�

ð10:110Þ
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Fig. 10.27 Dynamic instability (see Gülic 2007) a unstable operation point. b stable operation
point. c variation of flow rate, head and energy with time at unstable point. d variation of flow
rate, head and energy with time at stable point.
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The head of the pump can be linearized around the operating point Q2* of
interest as follows:

HpðQ2Þ ¼ Hp	 þ RQ2	ðQ2 � Q2	Þ ð10:111Þ

where RQ2* = (dH/dQ2)Q2*.
Assuming the upstream discharge fluctuations being negligible, combining the

above two equations leads to the following characteristic equation:

d2Q2

dt2
þ 2l

dQ2

dt
� x2

0Q2 ¼ 0 ð10:112Þ

where 2l ¼ Rv þ Rp þ RQ2	

� 
�

Lp; x2
0 ¼ 1= CAV LPð Þ:

In this case, the system remains stable for 2l[ 0, leading to the following
stability criteria:

Rv þ Rp [ � dH

dQ2
: ð10:113Þ

The above stability criteria shows that a negative slope of the characteristic
curve of the pump Hp = Hp (Q) with a negative discharge in pump mode may lead
to system instability. A system is stable when the slope of energetic losses in the
pipe and valve are higher than the slope of the pump characteristic, as illustrated in
Fig. 10.29a. But if the former is below the latter, as illustrated in Fig. 10.29b, the
system is unstable.

The layer of liquid in the slotted seals of centrifugal pumps exerts an effect on
the nature of the rotor motion. The liquid transferred by pumps is of a compara-
tively high viscosity, and due to this fact, large hydrodynamic force acts in the
eccentric annular slots of the seals. This effect may change the values of the
critical speeds, lower the amplitudes of resonance oscillations, and facilitate the
onset of strong self-oscillations at high revolution rates. For the dynamic stability
of the pump rotor system, see the Sect. 9.5.3.
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10.8 Introduction on Nonlinear Models of Hydro Turbine
for Transient Process in Hydro Power Plant

Ng et al. (2004) presented a nonlinear mathematical model of the Francis turbine
for a single-machine hydroelectric power plant to simulate the transient operations,
as shown in Fig. 10.30.

The linearized equations for analyzing the stability of the hydro power system
are still widely used in the control system of power industry. They are suitable
only for the investigation of small power system perturbations or in first swing
stability studies. Nonlinear simulations have been increasingly utilized from the
early 1990s with the availability of greater computing capacity and the demands of
more complex power system distribution grids.

Although a nonlinear IEEE (the Institute of Electrical & Electronics Engineers)
model as shown in Fig. 10.31 (see WG 2007) has been introduced in the time
domain simulations, it has oversimplified some important features of the hydraulic
system.

The model, presented by Ng et al. (2004), focused on the operation of a simple
power plant with a single Francis turbine and a short penstock (see Fig. 10.30).
This eliminated the need to consider traveling pressure wave phenomena in a long
waterway conduit and the problem of hydraulic interactions that frequently occur
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Fig. 10.29 Condition of stability of a pumping system. a Stable condition. b Unstable condition
(Gülic 2007)
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Fig. 10.30 Scheme of a hydro power plant in this study (Ng et al. 2004)
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in multiple turbine stations. Significant elements of the model developed by Ng
et al. (2004) were

1. Nonlinear modeling of Francis turbine characteristics;
2. Allowance for water column inertia and unsteady flow effects in the turbine and

draft tube;
3. Nonlinear guide vane (GV) function for the inlet guide vane (IGV) operation;
4. Correct allowance for effects of changing turbine speed and supply head.

10.8.1 The Power Plant Model-Conventional IEEE Model

For a short-penstock, single-machine station where traveling pressure wave (water
hammer) effects are relatively insignificant, the inelastic water column theory
using the linear momentum equation for incompressible flow is usually applied in
the waterway conduit:

�Q ¼ 1
Tw

Z

�H0 � �H � �Hf

� 


dt ð10:114Þ

where �Q is the per-unit turbine flow rate; �H0 is the per-unit static head between
reservoir and tailrace; �H is the per-unit static head at the turbine admission; �Hf is
the per-unit conduit head losses; and TW is the water time constant, as follows:

TW ¼
X

Qrate Li= gAihrateð Þ

where Li is the length of the conduit section I; Ai is the area of the conduit section
I; g is the gravitational acceleration; Qrate is the rated flow rate; and hrate is the
rated head.

No provision is made in the inelastic model to include unsteady flow effects in
the turbine and draft tube caused by changing the GV position. Although these
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Fig. 10.31 Block diagram for 1992 nonlinear IEEE turbine model
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effects may be insignificant in a station with a relatively long penstock, they would
be more important for a station where the water column inertia is small.

In this generic model, the Francis turbine is depicted as an orifice with a
constant discharge coefficient for a particular guide vane setting. The flow rate
through the turbine is modeled in term of a simple orifice flow relation:

�Q ¼ �G
ffiffiffiffi

�H
p

ð10:115Þ

The guide vane (GV) function �G in the existing model is assumed to vary
linearly with the guide vane opening only. In reality, the slope of this function
varies with flow coefficient, and the Reynolds number over the full range of
turbine operations should be properly modeled as a nonlinear function. The turbine
power output for the IEEE model is evaluated from:

�Pm ¼ At �Hð�Q� �QnlÞ � D�Gð�N � �NrateÞ ð10:116Þ

where �Pm is the per-unit turbine power output; At is the turbine gain factor; �Qnl is
the per-unit no-load flow; D is the speed-damping factor; �N is the per-unit turbine
rotational speed; and �Nrate is the per-unit rated turbine rotational speed. The no-
load flow �Qnl is used to correct the bearing friction and the windage losses in both
turbine and generator. The turbine gain factor At allows for other internal flow
losses. However, the resulting linearized model is not very accurate. The damping
factor D in the IEEE model is introduced to allow for efficiency variations
resulting from varied operating conditions; a constant value of D = 0.5 has been
used for Francis turbine modeling.

In the current IEEE model, there is no dimensionless turbine characteristic.
Equation (10.116) is inappropriate and could lead to significant error when the
change in turbine operating conditions is large. In particular, the speed-damping
factor D used in the model is unrealistic for the Francis turbine operation. The
power (and the efficiency) change with speed may be positive or negative
depending on the GV position, and their rates of change also vary with the GV
position.

Damping effects due to head changes are also neglected in the existing model.
In fact, changing the turbine net head, H will also change the flow rate of the
machine, Q. At a constant turbine speed, N, this also changes the flow coefficient
CQ / Q=N and moves to a different turbine operating point and efficiency. The
magnitude is similar to the speed damping effect and must be taken into account in
the simulation. Hence, dimensionless turbine performance curves should be
employed to correctly represent the hydraulic turbine operation. For incompress-
ible flow, the turbine operation is accurately described in the dimensionless
relation:

CQM ¼ f CQ;Reð Þ ð10:117Þ

10.8 Introduction on Nonlinear Models of Hydro Turbine 425



where the flow coefficient is CQ = Q/Nd3; the head coefficient is CH = gH/N2d2;
the Reynolds number is Re ¼ 4qQ=pld; and d is the turbine characteristic
diameter.

The net turbine head may vary due to transients or changes in the supply head.
Similar operating conditions (CQ, CH constant) with varying speed require that
H / N2, Q / N and Q / H0:5, as assumed in Eq. (10.115). This is not suitable for
a power plant that has been governed to maintain a constant runner speed in order
to keep the AC frequency constant within the grid where case CQ must vary with
H for guide vanes fixed.

10.8.2 Nonlinear Models for Hydraulic Turbines

The nonlinear model for hydraulic turbines with or without surge tanks may take
into account the effects of water inertia, water compressibility and pipe wall
elasticity in the penstock (Quiroga 2000). The model of a hydraulic turbine with
surge tank contains non-elastic water columns (penstock and tunnel). The model of
a hydraulic turbine without a surge tank can also consider non-elastic water col-
umn in penstock.

The dynamics of the model of a hydraulic turbine are given by:

1. Dynamics of the penstock:

�Ht ¼ fp �U2
t ð10:118Þ

d �Ut

dt
¼

�Hr � �Ht � �Hl

TWp
ð10:119Þ

�Ut ¼ �G
ffiffiffiffiffi

�Ht

p

ð10:120Þ

where �Ut is the per-unit water velocity in the turbine or turbine flow; �G is the per-
unit guide vane opening; �Hr is the per-unit surge tank head; �Ht is the per-unit
turbine head; �Hl is the per unit head loss in the penstock; fn is the per unit head loss
coefficient; and TWp is the water starting time of penstock.

2. Mechanical power:

�Pmechanical ¼ At �Htð�Ut � �UNLÞ ð10:121Þ

where �Pmechanical is the per unit turbine mechanical power; At is the per unit turbine
gain factor; and �UNL is the per unit no-load flow.
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3. Dynamics of the gate servomotor:

Tg
d�G

dt
þ �G ¼ u ð10:122Þ

where Tg is the main servomotor time constant; u is the per unit control effort.

4. Equation of motion in the turbine:

�Pmechanical � �Pload ¼ 2H
d�Xr

dt
þ D�Xr ð10:123Þ

where �Pload is the per unit non-frequency-sensitive load; �Xr is the per unit runner
speed; D is the per unit load damping constant; and H is the inertia constant of the
shaft.

5. Dynamics of the tunnel:

�H12 ¼ fp2 �Uc �Ucj j ð10:124Þ

d �Uc

dt
¼

�H0 � �Hr � �H12

TWC
ð10:125Þ

where �H12 is the per unit head loss in the tunnel; �Uc is the per unit velocity or flow
rate in tunnel; fn2 is the per unit tunnel head loss coefficient; �H0 is the per unit total
head.

6. Dynamics of the surge tank:

d �Hr

dt
¼

�UC � �Ut

CS
ð10:126Þ

The equations of the nonlinear model of a hydraulic turbine presented above,
show strong nonlinearities of the system and the dependence of its behavior on the
operating point.

10.8.3 New Features of the Proposed Model

The earlier IEEE model illustrated in Fig. 10.31, with its simplified turbine and
guide vane characteristics, could not adequately represent all the transient behavior
observed in the field tests. Such simplifications are no longer necessary with
modern computing power. Thus, additional nonlinear features have been included
to improve the accuracy of the turbine model by Ng et al. (2004).

1. A lookup table is included in the model to implement a nonlinear GV function.
The table combines two nonlinear relationships: (1) The GV angle varies
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nonlinearly with the main servo movement; and (2) The GV function varies
nonlinearly with the GV movement. A quadratic term is introduced to provide a
simple non-linear relation between flow and gate opening. It can be tuned to
match the observed steady state power output.

2. A lookup table for the efficiency versus flow coefficient is used to replace the
turbine gain and damping factors. This procedure incorporates damping effects
due to both speed and head changes as well as losses in the turbine. The lookup
table is constructed using a combination of data from full-scale steady-state
tests, simulations and model test results. No further correction for variation
from rated head is required.

3. A first order filter block (gate time delay) can be included to model the unsteady
effects associated with gate movement. It has not been used in the present work,
but will be implemented later when adequate data becomes available from
computational studies, field tests or laboratory model tests.

Their model was evaluated by full-scale field tests involving both steady and
transient operations (for details see Ng et al. 2004).

References

Alligné, S., Nicolet, C., Allenbach, P., Kawkabani, B., Simond, J. -J., & Avellan, F. (2008).
Influence of the vortex rope location of a Francis turbine on the hydraulic system stability.
Proceedings of IAHR 24th Symposium on Hydraulic Machinery and Systems, Foz do Iguassu,
paper 82.

Angelico, F. M. G., Muciaccia, F. F., & Rossi, G. (1986). Part load behavior of a turbine: a study
on a complete model of a hydraulic power plant, Proceedings of the IAHR Symposium,
Montreal, paper 17.

Chang, J. S. (2005). Transient of hydraulic machine installation. China: Higher Education Press.
Chen, C., Nicolet, C., Yonezawa, K., Farhat, M., Avellan, F., & Tsujimoto, Y. (2008a). One-

dimensional analysis of full load draft tube surge. ASME Transactions on Journal of Fluids
Engineering, 130, 041106.

Chen, C., Nicolet, C., Yonezawa, K., Farhat, M., Avellan, F., & Tsujimoto, Y. (2008b). One-
dimensional analysis of full load draft tube surge considering the finite sound velocity in the
penstock. Proceedings of 24th IAHR Symposium, Foz do Iguassu, Paper 106.

Dorfler, P. K. (1985). Francis turbine surge prediction and prevention. Proceedings of
Waterpower’ 85, pp. 952–961.

Gülic, J. F. (2007). Centrifugal pumps, chapter 11 operation of centrifugal pumps. Berlin:
Springer.

Haban, V., Koutnik, J., & Pochyly, F. (2002). One-d mathematical model of high frequency
pressure oscillations induced by RSI including an influence of fluid second viscosity.
Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems (Lausanne),
pp. 735–740.

Imai, T., Akiyama, Y., Ikeya, T., Kudo, K., & Tsuzuki, S. (1987). Wave focusing by a submerged
crescent plate. Proceedings of Coastal Engineering in Japan, pp. 487–491.

Jacob, T., & Prenat, J.-E. (1996). Francis turbine surge: discussion and data base. Proceedings of
18th IAHR Symposium, Valencia, Spain.

428 10 Instability of System Caused by Hydraulic Machinery



Koutnik, J., & Pulpitel, L. (1996). Modeling of the Francis turbine full-load surge. Modeling,
Testing and Monitoring for Hydro Power Plants, Lausanne.

Koutnik, J., Nicolet, C., Schohl, G. A., & Avellan, F. (2006). Overload surge event in a pumped
storage power plant. Proceedings of 23rd IAHR Symposium, Yokohama, paper 135.

Li, J. W., Wu, Y. L., Liu, S. H., & Zhu, Y. L. (2007). 3D unsteady turbulent simulation of the
runaway transient of the Francis turbine. Proceedings of the 5th Joint ASME/JSME Fluids
Engineering Summer Conference, FEDSM2007-37451.

Li, J. W.(2008). 3D unsteady turbulent simulation of the transient of the Francis turbine.
Dissertation of Ph Doctor Degree. Tsinghua University in China.

Ng, T. B., Walker, G. J., & Sargison, J. E. (2004). Nonlinear model of transient behavior in a
hydro-power plant. Proceedings of 15th Australasian Fluid Mechanics Conference, The
University of Sydney, Sydney.

Nicolet, C. (2007). Hydroacoustic modeling and numerical simulation of unsteady operation of
hydroelectric system. Doctor dissertation. Ecole Polytechnique Federale de Lausanne, http://
library.epfl.ch/en/theses/?nr=3751&fmt=full.

Nicolet, C., Greiveldinger, B., Herou, J.-J., Kawakabani, B., Allenbach, P., Simond, J.-J., et al.
(2006). High order modeling of hydraulic power plant in Islanded power network. IEEE
Transactions on Power Systems, 22, 1870–1881.

Nishi, M. (1984). Surging characteristics of conical and elbow type draft tubes. Proceedings of
12th IAHR Symposium on Hydraulic Machinery and System, Stirling, pp. 272–283.

Nishi, M., Matsunaga, S., Kubota, T., & Senoo, Y. (1982). Flow regimes in an elbow-type draft
tube. Proceedings of 11th IAHR Symposium on Hydraulic Machinery and System,
Amsterdam, pp. 1–13, paper 38.

Nishi, M., Wang, X., Okamoto, M., & Matsunaga, S. (1994). Further investigation on the pressure
fluctuations caused by cavitated vortex rope in an elbow draft tube. Cavitation and Gas Fluid
Flow Machinery and Devices, ASME, pp. 63–70.

Prenat, J. -E., & Jacob, T. (1986). Investigating the behavior at high load of a Francis turbine
model. Proceedings of 13th IAHR Symposium, Montreal.

Quiroga, O. D. (2000). Modeling and nonlinear control of voltage frequency of hydroelectric
power plants. Doctor dissertation. Universidad Politécnica de Cataluna.

Rheingans, W. J. (1940). Power swing in hydroelectric power plants. Transaction of ASME, 62,
171–184.

Susan-Resiga, R., Ciocan, G. D., Anton, I., & Avellan, F. (2006). Analysis of the swirling flow
downstream a Francis turbine runner. Journal of Fluid Engineering, 128, 177–189.

Tsujimoto, Y., Yonezawa, K., & Chen, C. (2008). One-dimensional analysis of a hydraulic
system. Fluid Machinery and Fluid Mechanics, Springer, pp. 44–56.

US Geological Survey (2007) River science at the U.S. Geological Survey, committee on river
science at the U.S. Geological Survey, National Research Council.

Wallis, G. B. (1969). One-dimensional two-phase flow. New York: Mc Graw-Hill.
WG. (2007). Working group on prime mover and energy supply models for system dynamic

performance studies, Hydraulic turbine and turbine control models for system dynamic
performance studies. IEEE Transactions on Power Systems, 7, 167–179.

Wylie, E. B., & Streeter, V. L. (1993). Fluid transients in systems. Englewood Cliffs: Prentice
Hall.

References 429

http://library.epfl.ch/en/theses/?nr=3751&fmt=full
http://library.epfl.ch/en/theses/?nr=3751&fmt=full


Chapter 11
Vibration-Based Condition Monitoring

Condition monitoring is the process of monitoring a condition parameter in
machinery, so that a significant change is indicative of a developing failure. The
use of conditional monitoring allows maintenance to be scheduled, or other actions
taken to avoid the consequences of failure before it actually occurs.

The most commonly used method for rotating machines is called vibration
analysis. Measurements can be taken on machine bearing casings with seismic or
piezo-electric transducers to test casing vibrations, and on the vast majority of
critical machines, with eddy-current transducers that directly observe the rotating
shafts to measure radial (and axial) vibration of the shaft. The level of vibration can
be compared with historical baseline values such as former start-ups and shutdowns.

The ongoing trends are to operate hydraulic machinery units without personnel,
to increase reliability, and reduce maintenance costs. In this situation an effective
condition for monitoring machinery is necessary. A progressive change from time-
based (preventive) to condition-based (predictive) maintenance is intended. An
increase of the time intervals between overhauls and the avoidance of unpredicted
stops is possible (Egusquiza et al. 2006; Egusquiza 2007).

11.1 Principle of Condition Monitoring of Rotating
Machines

Condition monitoring of plant equipment consists of mechanical health monitoring
and performance monitoring. The former includes techniques such as vibration
analysis, oil and wear particle analysis, thermography, ultrasonics, and others.
Performance monitoring on the other hand involves thermodynamic and hydraulic
evaluation of the equipment.

Turbine and pump performance degrades over time due to irreversible
mechanical wear and recoverable loss from fouling and changes in operating
conditions. A typical plant may lose up to 10 % efficiency over several years of
operation, most of which could be recovered through maintenance and fine tuning
of the process.

Y. Wu et al., Vibration of Hydraulic Machinery,
Mechanisms and Machine Science 11, DOI: 10.1007/978-94-007-6422-4_11,
� Springer Science+Business Media Dordrecht 2013
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The performance monitoring system gives operators the necessary information
to accurately assess machine performance, and schedule maintenance activities to
optimize plant production.

11.1.1 Vibration Monitoring

Basic vibration measuring systems consist of a transducer, signal conditioning
element and a display or recording unit. Accelerometers measure absolute vibration
of the object to which they are attached. The maximum frequency up to which they
can measure is approximately one-third their natural frequency. Tandon and Parey
(2006) introduced some sensors used for measuring vibration signals as follows.

Conventional accelerometers have high output impedance and cannot be
directly connected to measuring or analyzing instruments. To handle this problem,
one could feed the accelerometer output through an impedance conversion pre-
amplifier called a ‘‘charge amplifier’’.

Integrated Circuit-Piezoelectric (ICP) accelerometers convert the high imped-
ance charge output of a piezoelectric crystal into a low impedance voltage output
using an internal amplifier circuit.

Another type of accelerometers called transducer electronic data sheet (TEDS)
uses smart sensors that apply mixed mode analogue and digital operations to
communicate with condition monitoring instruments. These sensors send digital
information stored in their electronic data sheet once a triggering protocol has been
received.

Vibration can also be monitored from a distance through laser Doppler vib-
rometers (LDV), one that measures the vibration velocity of objects based on
Doppler effect. The scattering Doppler frequency shift is given by

Df ¼ 2v=kð Þ cos h ð11:1Þ

where v is the velocity of the object, k is the wavelength and h is a small angle between
source and observer. The wave source is a laser and the observer is a photodetector,
which measures the target surface velocity related to the Doppler shift.

Eddy-current-based, non-contact ‘‘proximity probes’’ are used to measure
vibration displacement. These probes are commonly utilized to monitor shaft
vibration in journal bearings. Two such probes can be used to obtain an ‘‘orbit
plot’’ of ‘‘Lissajous figures’’ of shaft motion in journal bearings. A circle is
obtained when one feeds horizontal and vertical vibration signals to horizontal and
vertical amplifiers of an oscilloscope. The orbit plot shows the motion of the shaft
centre. The shape of the orbit provides information about faults such as mis-
alignment, rubbing etc. (Fig. 11.1).

A rotor system without rub yields a circular orbit shape orbit, whereas presence
of rub creates additional loops in the orbit shape. The number of additional loops
increases with advancement of rub. For full rub the orbit rotates in the opposite

432 11 Vibration-Based Condition Monitoring



direction to the rotation of the shaft without any additional loop. Orbit analysis is
basically suited to simple harmonic motion. For the analysis of multifrequency
components, it becomes difficult to analyze the orbit diagram. A purified orbit
diagram consists of only the specific frequency and other frequencies do not affect it.
Another technique to minimize disturbances due to other frequencies is filtered orbit
analysis.

The vibration signal from the accelerometer or proximity probe can be displayed
on a vibration meter or on a computer using analogue to digital converters. Fast
Fourier transform (FFT) analyzers are performed to obtain spectrum frequency of
the vibration signal. In FFT analyzers, the input signal is considered over a finite
time called the ‘‘frame’’ or ‘‘time window’’ and is digitized. Discrete Fourier
transformation (DFT) of this signal gives the vibration frequency spectrum.

One has to choose an appropriate sampling rate for digitizing the vibration
signal to avoid spurious frequency components due to ‘‘aliasing’’. According to the
Nyquis theorem, the sampling frequency (the inverse of the sampling rate) should
be at least twice the maximum frequency present in the signal.

Development of a fault or deterioration in the condition of machines is indicated
by an increase in overall vibration levels. Unacceptable overall levels can be
established by past experience on a particular machine. In its absence, the measured
levels can be compared with vibration severity criteria such as the international
standard ISO 10816 (1995–2001) series ‘‘Mechanical vibration-Evaluation of
machine vibration measurements on non-rotating parts’’.

ISO 10816-3 separates the machines into four different groups and takes into
account whether or not the machine installation is rigid or flexible in each group.
Vibration levels for each group of machines are divided in four zones:

A (Green) Vibration values from machines just put into operation.
B (Yellow) Machines can run in continuous operation.
C (Orange) Machine condition is acceptable only for a limited period of time.
D (Red) Dangerous vibration values—damage could occur.

The maximum starting Root Mean Square (RMS) velocity level for zone D is from
11 mm/s. Frequency ranges are now broadened, and not limited to 10–1,000 Hz.

(a) (b) (c) (d)

Fig. 11.1 Typical orbit plots from two proximity probes (Tandon and Parey 2006). a Normal,
b misalignment, c severe misalignment, d rubbing
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11.1.2 Introduction of a Vibration Monitoring Program

A monitoring program can be classified as more than one type according to its
level of sophistication. This is reflected in the speed at which they can detect and
locate faults (Gupta 1997). For diagnosing the source or trouble, some instruments
are required to perform the time-based analysis to obtain the parameters and the
frequency based vibration analysis as follows (Tranter 1989).

Overall level (RMS) measurements are common vibrations and the most simple
and inexpensive type of measurement. Their greatest limitation is a lack of sen-
sitivity and information available in the data. Unless a problem is severe, RMS
may not change significantly.

Peak level detection is particularly useful for monitoring change in the amount
of impulsiveness, possibly owing to increased beating damage. This method is not
100 % reliable, as other effects can also increase the peak level of a signal.

The crest factor (sometimes called the impact index) is the ratio of peak level to
RMS level. This method also has limitations.

Shock pulse and spike energy are basically measuring factors of vibration level
at the bearing resonance, usually above 30 kHz. Widely used, concern has been
expressed over the fact that readings can decrease in later stages due to a reduction
in impulsiveness and other conditions, such as turbulence and cavitation in pumps,
which leads to false readings.

Kurtosis is a statistical parameter, derived from statistical moments of proba-
bility density function of the vibration signal. The main advantage of the kurtosis
technique is that the calculated value is independent of load or speed variations.

Demodulation (envelope detection): Often the bearing signals are swamped by
more dominant low frequency signals. This method, which can be implemented as
a Hilbert transform, filters out low frequency signals, leaving a clean signal
dominated by the bearing frequencies.

Phase indicates the relative timing between two points. It is used in balancing and
is useful when one diagnoses imbalance, misalignment, looseness and other cases.

Time waveform: With an oscilloscope, it is possible to view the waveform of
the vibration. Difficult to use in isolation, it can be a very helpful tool in combi-
nation with others.

Orbits: Uses a two-channel oscilloscope connected to proximity probes. More
recently, they have been derived from a pair of frequency spectra. The major
benefit is that they show relative motion of the dominant shaft vibration.

Fault detection at an earlier stage together with diagnosis is also possible when
a system enables frequency analysis. Full frequency analysis and spectrum-fre-
quency based vibration analysis is as follows (Tranter 1989).

Given that the running speed of the machine is directly proportional to the
frequency measured, Fourier transform (FFT) may relate peaks in the spectrum to
the machine components.

The waterfall plot (also known as spectral map and cascade plot) is a three-
dimensional representation of spectra, usually with time as the third dimension.
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A cestrum is the result of Fourier transform of the decibel spectrum as if it were
a signal. Used to high-fight periodicities in the spectrum, it is useful in beating and
gear-box analysis by mathematically subtracting two spectra or changes in level.
Difference spectra are easily identified.

Fault frequency analysis is performed to relate frequencies to the machine
components.

The RMS of difference between current spectrum and the baseline, and current
spectrum and previous spectrum, have both been found to be helpful trending
parameters.

Another method of trending the difference between vibrations is the matched
filter spectra. The differences between spectra are quantified via summation of the
squares of the corresponding amplitude ratios in the spectra and the logarithm of
the result.

11.1.3 Vibration Signal Processing

Vibration signals acquired from machines for diagnostics purposes may be either
deterministic or random. Deterministic signals can be further classified as periodic
and non-periodic, whereas random signals can be classified as stationary and non-
stationary. Useful information can be extracted from these signals by appropriate
signal processing techniques. However, vibration signals often contain a lot of
noise and if the noises are too great, the block useful information in signal pro-
cessing and wrong conclusions may be drawn. In such cases techniques that
enhance signal to noise ratio (SNR) are essential. Adaptive noise cancellation
(ANC) is one such technique that enhances SNR (Khemili and Chouchane 2005).

11.1.3.1 Statistical Analysis

The vibration signal acquired from the machine using transducers is basically in the
time domain. In order to obtain useful information for diagnostic purposes, various
statistical operations can be performed. Crest factor is the ratio of maximum
absolute value to the RMS value of the vibration signal, and sheds light on any
impacts present in the signal. An increased value of crest factor over a period of time
could stem from the presence of wear or pitting. Kurtosis measures the degree of
peskiness of a distribution compared to a normal distribution. It is based on the size
of the distribution’s tail: the longer the tail, the higher the kurtosis value. In general,
even statistical moments give information about spread. Kurtosis is defined as

kurtosis ¼ M4
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2 ¼
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where M4 is the fourth-order statistics moment; M2 is the second-order statistics
moment; x(n) is the amplitude of the signal at the nth sample; �x is the mean value
of the amplitudes, and N is the number of samples taken in the signal.

The kurtosis value of a normal distribution is 3 and for a random signal it is
close to 3ð�8 %Þ. The presence of any impulse increases the kurtosis value from
3, depending upon the severity of the fault. Kurtosis is a better fault indicator than
crest factor, because it can detect impulses with minimum repetition period. One
of the limitations of the kurtosis method is that the kurtosis value falls to 3 when
the damage is well advanced (Tandon and Parey 2006).

11.1.3.2 Time Domain Analysis and Frequency Domain Analysis

There are a large number of signal processing techniques that can be used to
extract interesting information from a measured vibration signal. In the following,
the basics of these techniques are outlined by Ingegneria (2008).

Simple statistical parameters evaluated over the measured time domain signal,
can give some interesting information about potential defects. For example, the
peak and root-mean-square values are referred to the overall vibration level. These
statistical parameters are simple to implement, yet they are rather insensitive tools
for defect detection. A useful technique in defect detection is the synchronous
signal averaging technique (SSAT), the result of which is the signal average,
which is the ensemble average of the angle domain signal, synchronously sampled
with respect to rotation of one particular shaft. In the resulting signal average (SA),
random noise as well as non-synchronous components are attenuated. The main
advantage of the SSAT is the chance to extract a complex gearbox vibration signal,
a simpler signal related to the gear of interest. However, this technique has a
pivotal drawback related to the complexity of the measurement equipment. As a
matter of fact an additional sensor is needed to measure the rotational shaft speed.

Furthermore, the SA can be bandpass filtered at the dominant meshing har-
monic, and the application of the Hilbert transform provides both amplitude and
phase modulation functions. This technique is termed as the narrow-band
demodulation technique.

The time domain signal consists of different frequencies, stemming from var-
ious rotating components of a mechanical system. To diagnose a particular ele-
ment, if the frequency of the element can be extracted from the signal, any changes
in signal can easily be detected. Through time domain averaging, a periodic
waveform can be extracted from the noisy signal. One can achieve this by
repeating three steps: sampling, storing and ensemble averaging. First, sampling
length is found, dependent on frequency of the signal to be extracted. To start
sampling, a trigger pulse is required at the same frequency as the one of interest.
This first sample is stored, before the next sample is obtained and that sample is
stored after performing ensemble averaging.
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The next sample is taken and ensemble averaged with the previously averaged
signal. After repeating this process several times, the frequency of interest can be
extracted.

Potential defects can be analyzed with a frequency domain spectrum of the
vibration signal. In order to calculate the frequency spectrum of a sampled time
signal, one should carry out the FFT algorithm as a numerically efficient method. It
is important to notice that all digital FT methods assume stationary signals,
periodic in the time window.

11.1.3.3 High Frequency Resonance Technique

The high frequency resonance method identifies the bearing defects by extracting
characteristic defect frequencies which may be buried in noise and not identifiable
in the direct spectrum. Each time a defect in bearings makes contact with another
bearing surface, an impulse vibration is generated. The impact excites resonance
of the bearing element, housing, or bearing structure. These resonances are excited
periodically at the defect frequency. A signal indicative of bearing condition can
be recovered by demodulating the resonance. The signal is first bandpass filtered
around the resonance frequency. The frequency generated by misalignment,
imbalance, gears, etc. are thus eliminated, leaving a narrow band carrier resonant
frequency, amplitude modulated at the resonance frequency (Tandon and Parey
2006).

11.1.3.4 Cepstrum Analysis

Cepstrum analysis is a technique applied to enhance understanding of a spectrum.
A cepstrum is the result of a Fourier transform (FT) of the decibel spectrum. There
is a complex cepstrum, a real cepstrum, a power cepstrum, and a phase cepstrum.

The power cepstrum is defined as the inverse transform of the logarithm of the
power spectrum. The complex cepstrum is defined as the inverse FT of the log-
arithm of the spectrum.

11.1.4 The Time–Frequency Analysis

There are three methods of time–frequency analysis of nonstationary signals:
Windowed Fourier Transform (WFT), Winger-Ville Distribution (WVD) and
Wavelet Analysis. Their traits and limitations will be illuminated below.
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11.1.4.1 The Time–Frequency Analysis Methods

Wigner distribution (WD) is a common time–frequency representation. For multi-
component signals, Wigner distribution is well energy-concentrated but holds
cross-terms. The spectrogram, the magnitude-squared STFT, has no cross-terms
but bad energy-concentration. Thus a time–frequency representation based on the
geometric mean of WD and spectrogram (GMWS), which is simple and easy to
realized, was introduced to integrate both advantages.

Until now, the Fourier transform (FT) has been used in vibration analysis of
rotating machines. FT represents signal energy over frequency, and is useful for
analysis of a stationary signal. It is well known that the time frequency repre-
sentation (TFR) is more useful for analysis of time variance and transient signals.

The WD belongs to the TFR methods, and is interpreted as a function of the
simultaneous energy distribution of a signal over time and frequency (Koo and
Kim 2000).

The WD has high time and frequency resolution and precise location of patterns
in the plane, but its drawback lies in the cross-interference term between the
different components of a signal caused by an overlap in calculations (Wahl and
Bolton 1993). To get rid of this interference term, an over-sampling technique is
generally used or an analytic signal that is known as the Wigner–Ville distribution
(WVD) (Boashash 1998).

The mathematical representation of WD can be described as follows. Let x tð Þ
be a complex continuous time analytic signal and X fð Þ be its FT. The WD of x tð Þ
in the time and frequency domains is defined as (Cohen 1987)

Wxðt; f Þ ¼
Z

1

�1

xðt þ s=2Þx�ðt � s=2Þe�i2psds ð11:3Þ

where x tð Þ is a history signal, f represents frequency, and x � tð Þ is a complex
conjugate of x tð Þ:

For calculation of Eq. (11.3) with an on-line method, a signal x tð Þ is band-
limited to a specific time ta as follows:

xwðt; taÞ ¼ xðtÞwðt � taÞ ð11:4Þ

where, w tð Þ ¼ 0, for tj j[ sw=2:
The WD from the windowed signal of Eq. (11.4) can be calculated with Eq.

(11.5), which is a pseudo Wigner distribution (PWD):

Wxwðt; f Þ ¼
Z

sw

�sw

x t þ s=2ð Þx� t � s=2ð Þw �s=2ð Þe�i2pf sds: ð11:5Þ

The window function in the time domain operates as a smoothing in the fre-
quency domain. The discrete Fourier transform (DFT) of Eq. (11.3) can be
computed employing the fast Fourier transform (FFT) and is given as
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Wxdðm; nÞ ¼ 2DtDFT x mþ kð ÞDt½ �x� m� kð ÞDt½ �f g: ð11:6Þ

Therefore, the discrete smoothed WD W 0xd given in Eq. (11.7) can be approx-
imated via convolution of the discrete WD (wxd) in Eq. (11.6) and the discrete
window function (wd).

W 0xdðm; nÞ ¼ DtDw
X

mþM

k¼m�M

X

nþN

L¼n�N

wxdðk; lÞwd m� k; n� lð Þ ð11:7Þ

where, k, l, m, n are integers, M, N are the number of sample points, Dw = p/kDt is
the sample interval (=1/fs), and fs is the sampling frequency.

11.1.4.2 Frequency Analysis and Faults

A vibration signals may be a combination of various harmonics, obtained by
recessing the signal through a frequency analyzer. Each part of the frequency is a
potential indicator of the machine condition. Spectrum analysis is the most
powerful technique for diagnostic study.

The underlying principle is that each operating component of the machine gen-
erates identifiable frequencies. Thus, changes in vibration level at a given frequency
can be related directly to the concerned machine components. Based on basic
knowledge associated with the nature of machine operation, one should be able to
calculate the frequencies consequent to the impending faults as shown in Table 11.1.

11.2 Vibration Monitoring of Hydro Turbine Units

The actual vibration behavior of hydro turbine units are quite complex. Vibration
signatures measured in power plants change a lot depending on the type of turbine,
measuring locations, shaft and bearing layout, foundation characteristics, and
operating conditions. Of course when damage appears, signatures change as well
(Egusquiza 2007).

11.2.1 Recommendations and International Standards

Two different techniques exist to monitor vibrations in rotating machines; both are
applicable to hydro turbine units based on certain criteria. The first of these two
techniques is vibration measurement performed on non-rotating elements, for
example bearings: ISO 10816-1 and 10816-5 (these standards replace ISO 2372).
The second of the techniques is vibration measurement performed on rotating
shafts, for example the relative vibration between the shaft and its bearing: ISO
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Table 11.1 Common faults and frequencies (Tranter 1989)

Frequency Cause Comments

1 9 rpm Imbalance Steady phase that follows transducer, caused by load
variation, material build-up, or pump cavitation

Misalignment or
bent shaft strain

High axial levels, 180 9 axial phase relation at the shaft
ends. Usually characterized by high 2 9 rpm

Caused by casing or foundation distortion, or from attached
structures (e.g., piping)

Looseness Directional changes with transducer location. Usually high
harmonic content and random phase

Resonance Drops off sharply with change in speed
Electrical Broken rotor bar in induction motor. 2 9 slip frequency

sidebands often produced
2 9 rpm Misalignment or

bent shaft
High levels of axial vibration

Harmonics Looseness Impulsive or truncated waveform; large number of
harmonics

Rubs Shaft contact with machine housing
Sub-rpm Oil whirl Typically 0.43–0.48 of rpm; unstable phase

Bearing cage Fundamental train = 0.5 9 rps [1-(ball dia)/(pitch
dial) 9 COS (contact angle)]

N 9 rpm Rolling element
bearings

Inner race = 0.5 9 No. balls 9 rps [1 ? (ball dia)/(Pitch
dia) 9 COS (contact angle)]

Ball defect = 0.5 9 (pitch dia)/(ball dia) 9 rps [1-(ball
dia)/(pitch dia) 9 COS (contact angle) 2]

Gears Gearmesh (No. teeth 9 rpm)
Belts Belt 9 running speed and 2 9 running speed
Blades/vanes No. blades/vanes 9 rpm

N 9 power
line

Electrical Shorted stator; broken or eccentric rotor

Resonance Several sources, including shaft, casing, foundation and
attached structures. Frequency is proportional to stiffness
and inversely proportional to mass

7919/1 and 7919/5. These standards will be replaced by ISO 10817-1 and 10817-5.
Both methods are governed by the above-mentioned standards.

As a general rule, measurement of relative shaft vibration should be adopted for
machines with journal bearings, independent of whether they are horizontal-axis or
vertical-axis. Hydro turbine units fall into this category. However, because of the
mechanical configuration and large dimensions of these machines, makes access to
the bearing difficult, or the bearings are not sufficiently rigid to allow relative shaft
vibration measurements, the only possibility is to measure the absolute vibration
on the bearing or other machine structure. The use of accelerometers is limited to
this type of machine if the frequency of interest is less than 3 Hz (180 rpm). In this
situation other types of transducers such as velocimeters or piezo-resistive
accelerometers must be used.
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11.2.1.1 Measurements on Non-Rotating Parts

The CA201 is a very robust industrial accelerometer with a sensitivity of 100 pC/
g. The device requires a separate charge amplifier (IPC 620) whose integral cable
is protected by a flexible leakproof stainless steel tube. Its robustness and high
sensitivity make it suitable for large machines operating at a frequency of
f [ 3 Hz. The CV210 velocimeter is equipped with its associated IVC 632 con-
ditioner. This combination is the solution recommended for slow machines as it
may be used for frequency measurement from f = 1 Hz. Besides, it has the
advantage of providing a signal that represents the vibration velocity, thereby
avoiding the need to integrate the acceleration signal. The SE120 is adopted for
monitoring hydraulic machines.

11.2.1.2 Measurements on Rotating Shafts

This sort of measurement is affected by one of TQ400 series of eddy-current con-
tactless displacement transducers with a matching IQS450 series signal conditioner.
These transducers are available in various sizes and versions, optimizing the choice
of one as a function of the environmental conditions at the mounting place.

11.2.1.3 Monitoring Equipment

The electronic equipment used for monitoring and/or protection of the machine
can be a compact, single-channel, programmable unit or a modular, multi-channel
system containing level detector and display modules (MMS system). These
electronic systems contain relays which can activate alarms or shut down the
machine when programmable thresholds are exceeded. Common or individual
relay outputs can be used. In addition, these electronic systems produce available
AC signals that may be utilized for frequency analysis or sent to data acquisition
and processing systems for condition monitoring applications and/or to act as an
aid for fault diagnosis.

11.2.2 Vibration Monitoring of a Hydro Turbine Unit

For hydro-electric machines as well as very high power machines, the vibration
monitoring must be considered on a case-by-case basis depending on their
configuration.

Propeller, Kaplan, and bubble turbines cover a large power range and are char-
acterized by their relatively low rotational speed. They can work with vertical-axis
machines for medium and large-scale power generation and also with bulb type
horizontal-axis machines for small and medium-scale generation.
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Francis turbines are applied on the widest field. This is not only due to the
pressure head and the power but also to the rotational speed.

Pelton turbines cover a very large power range and are characterized by their
relatively high rotational speed.

Vibration monitoring systems in the three types of hydraulic turbine units are
shown in Fig. 11.2a, b, c respectively. There are two categories of vibration
measurements: (1) absolute vibration measurement at bearing brackets and (2)
relative vibration measurement at the shaft neck located near the upper guide
bearing (UGB) above the generator, near the lower guide bearing (LGB) below the
generator, and near the turbine guide bearing (TGB) above the turbine runner. The
two sensors of axial position measurement are put at two locations of the thrust
bearing, one on the disc bearing, another on the tilting-pad bearing. In Fig. 11.2a,
the thrust bearing is below the generator for the Kaplan unit, and in both (11.2b)
and (11.2c), it is above the generator. Only in the Francis turbine is there a radial
position measurement, and the two sensors are put at the runner shroud rim and at
the relative position of the runner chamber. In order to determine the axial center
locus, the measurement of the shaft phase is necessary.

11.3 Vibration Monitoring System of Large Francis
Turbine Unit

By increasing the specific speed of the Francis turbine, more and more stability
problems were recently observed in the large turbine. Therefore, research on the
stability of large Francis turbines is becoming very important. Based on condition

(a) (b) (c) 

Fig. 11.2 Vibration monitoring systems of turbine generating units. a Kaplan turbine unit.
b Francis turbine unit. c Pelton turbine unit
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monitoring principles, system designs of the vibration monitoring for a large
Francis turbine unit in China was conducted. The design is introduced in this
section as an engineering example of hydraulic turbine unit monitoring (Zhu 2006).

11.3.1 Vibration Monitoring System of Large Francis
Turbine Unit

The selection and arrangement of measuring points is significant for vibration
signal acquisition. The reasonableness and accuracy of selection, as well as
number of measuring points in the monitoring system are influenced by the hydro
power unit’s operation performance and the hydroelectric equipment’s structural
characteristics, which directly affect the authenticity of the signal acquisition and
the whole system of diagnosis and analysis.

11.3.1.1 Selection and Arrangement of Monitoring Points

The most important issue of vibration in the Francis turbine unit (Francis unit) is
the vortex-induced vibration in its draft tube. For Francis units, the monitoring of
structural vibration, pressure pulsation and shaft swing is essential. Based on
characteristics of Francis units, monitoring points for their vibration are arranged
as follows:

Two points along X- and Y-directions at three bearings, those are, upper guide
bearings (UGB), lower guide bearing (LGB), and turbine guide bearing (TGB) for
shaft swings;

Three points along X-, Y- and Z-directions at the upper rack, the lower rack, and
head cover of the turbine for vibration (Vib), respectively.

Considering that the upper rack will be subject to the weight of rotation com-
ponents in the hydraulic thrust at the unit’s run-time, two points are arranged along
X- and Y-directions perpendicular to the vertical direction for vibration monitoring.

To monitor the stator core vibration, two measuring points in the horizontal
direction are arranged at stator core shell at 90� angles to each other; in the vertical
direction, one measuring point is arranged at the stator tooth plate. In order to
measure the hydraulic characteristics of units, the monitoring and analysis of
pressure fluctuations is needed at each turbine flow section.

These main measuring points of pressure should be arranged at the spiral case
inlet, at the draft tube inlet, and on inner surface of head cover. For a Francis
turbine, the draft tube inlet pressure pulse measuring points are located at the
section below its inlet of (0.4–0.5) D5 (D5 is the draft tube inlet diameter) to the
downstream side. Those monitoring points are shown in Table 11.2 and Fig. 11.3.

In order to analyze and monitor unit status, one has to introduce the relevant
parameters (see in Table 11.3) to the monitoring system.
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11.3.1.2 Alarm Value

Alarm values of the monitoring system are set according to National standards GB/T
11348.5-2002 ‘‘Radial vibration measurement and evaluation for rotating machinery
shaft’’ in China, the power industry standard DL/T 507-2002 ‘‘Start test for hydro

Table 11.2 Monitoring points in a large hydraulic turbine unit

No. Item Number Sensor

1–1 Horizontal-Vib. Upper rack 1 Velocity
1–2 Vertical-Vib. Upper rack 1 Velocity
2–1 Horizontal-Vib. Stator core 1 Acceleration
2–2 Vertical -Vib. Stator core 1 Acceleration
3–1 Horizontal-Vib. Low rack 1 Velocity
3–2 Vertical-Vib. Low rack 1 Velocity
4–1 Horizontal-Vib. Head cover 1 Velocity
4–2 Vertical-Vib. Head cover 1 Velocity
5 X, Y-swings, UGB 2 Eddy current
6 X, Y-swings, LGB 2 Eddy current
7 X, Y-swings, TGB 2 Eddy current
8 Phase reference 1 Eddy current
9 Servomotor displacement 1 Displacement
10 Flow rate of turbine 1 Pressure dif. tran.
11 Pressure Pulse under head cover 2 Pressure tran.
12 Pressure Pulse at draft tube 2 Pressure tran.
13 Pressure Pulse at spiral case inlet 1 Pressure tran.

Total 23

Pressure Tran. Pressure transmitter, Pressure dif. Tran. Pressure difference transmitter

1  1 2_

2  1 2_

3  1 2_

4  1 2_

13

12

11

10

9

8

7

6

5Fig. 11.3 Measuring points
of Francis turbine unit (No. in
Table 11.2) (Zhu 2006)
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turbine-generating unit’’ in China, as well as the ensuring performances data of the
main equipments provided from the contract with suppliers, listed in Table 11.4.

11.3.2 Selection and Installation of Sensors

Sensors are installed in or on the hydraulic machines to make appropriate mea-
surements such as vibration, position, speed, pressure, power, and others. In this
section, selection and installation of some sensors, such as the shaft phase sensor,
the eddy current sensors for shaft swing, and the vibration sensors in hydraulic
machines are introduced.

11.3.2.1 Shaft Phase Sensor

The eddy current sensor is installed to measure the shaft phase signal, (same as that
used in key measurement of swing signals). At its installation, a piece of metal
should be welded or bonded to the shaft surface, and the corresponding sensor can
measure the displacement mutation position of the small metal. Taking advantage
of this shift mutation, the analysis system can determine a fault in rotating parts or
in fixed parts. If a rotating part is the source of the problem, the system can also
determine where it is. With a shaft phase signal, the data acquisition system can be
precise in sampling the entire cycle to avoid the phenomenon of aliasing and
leakage in the spectral analysis by implementing the genuine and accurate
analysis.

Table 11.3 Parameters from controlling system (CS) (Zhu 2006)

No. Signal item Source

1 Water level at reservoir Communicate from CS
2 Water level at tailrace ditto
3 Active power ditto
4 Reactive power ditto
5 Stator three-phase current ditto
6 Stator three-phase voltage ditto
7 Excitation current ditto
8 Excitation voltage ditto
9 Power Factor ditto
10 Bearing tiles’ temperature ditto
11 Bearing water temperature ditto
12 Bearing lubricant temperature ditto
13 Oil level signal ditto
14 Signal of oil troubled waters ditto
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11.3.2.2 Swing Sensors

Swing signals signify the stability characteristics of hydro turbine units, and they
are direct signals of the stability criterion. Strong vibration will affect operation of
a unit and reduce its service life, and even seriously threaten the security and
stability of power grids. Vibration of the units is caused by three main factors,
mechanical, hydraulic, electrical faults. No matter the cause of the vibration, it
could lead to the further vibration of structural components of the unit and the
swing of shaft. As a result, in-line monitoring and analysis to vibration and swing
of the units is of great significance.

For the sensors to measure either swings or phase signals of the shaft, the eddy
current sensors are adapted to complete the non-contact measurement. The main
technical parameters of the eddy current sensor typed of IN-081 integration used in
the system are as follows:

Measuring principle: eddy current; Frequency Response: 0–10 kHz (-3 dB);
Measurement Range: 2 mm; Average location (the distance between the probe
surface and the measured surface): About 2 mm; Sensitivity: -8 mV/lm
(-200 mV/mil); Error: to meet the requirements of API670; Operating Temper-
ature: -10 to +125 �C; Storage temperature: -30 to +125 �C; Cable length:
Maximum 1,000 m; Supply Voltage: -18 V to -30 VDC, @ 5 mA.

Table 11.4 Alarm values of the monitoring system (Zhu 2006)

No. Monitoring item 1st alarm 2nd alarm

1 X, Y-swing, UGB(lm) 300 500
2 X, Y-swing, LGB (lm) 500 600
4 X, Y -swing, TGB(lm) 500 600
5 Horizontal vib. of upper rack (lm) 110 150
6 Vertical vib. of upper rack (lm) 80 120
7 Horizontal vib. of low rack (lm) 110 150
8 Horizontal vib. low rack (lm) 110 150
9 Vertical vib. of the rack (lm) 80 120
10 Horizontal vib. of head cover (lm) 120 200
11 Vertical vib. of head cover (lm) 120 200
12 Horizontal vib. of stator core (lm) 30 50
13 Vertical vib. of stator core (lm) 30 50
14 Pressure pulse under head cove1 (kPa) 200 400
15 Pressure pulse under head cover 2 (kPa) 200 400
16 Pressure pulse on inlet of draft tube at downstream side (kPa) 200 400
17 Pressure pulse on inlet of draft tube at upperstream side (kPa) 200 400
18 Pressure pulse at Spiral case inlet pressure fluctuation (kPa) 200 400

Note vib. vibration
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11.3.2.3 Vibration Sensors

1. Velocity sensor. For hydraulic turbine units, low-frequency vibration is the
inherent characteristic. For example, the pressure pulsation of the draft tube
vortex has a frequency with its ratio of 1/4 to 1/3 to the unit rotating frequency
in general. Therefore, measurement of low-frequency vibration in static com-
ponents of the unit has been a difficult technique. In particular, for a speed of
75 r/min in large turbine units, rotating frequency of 1.25 Hz, and frequency of
vortex tube of 0.3–0.4 Hz, low-frequency vibration measurements requires a
special attention. Surveying of water vortex-induced vibration needs a sensor
with a suitable range. Applied to measure vibrations of static turbine static, the
velocity sensors are generally chosen. Their main technical parameters are as
follows:

Sensitivity 8 V/mm ± 5 %;
Working frequency range 0.3–150 Hz (-3 dB);
Range ±1,000 lm;
Amplitude linearity \5 %;
Operating Temperature -30 to +60 �C

2. Acceleration sensor. Two acceleration sensors that measure the electromagnetic
stator core vibration (100 Hz-based) are arranged near the central outer edge of
stator iron core at the stator base. One is along the horizontal direction, another
is along the vertical direction. Due to electromagnetic interference, magnetic-
electric sensors cannot be applied, so the AS-030-type acceleration sensors are
selected. Their technical indicators are as follows:

Sensitivity 100 mV/g;
Amplitude non-linear error 20.1 %;
Frequency 1.5–15,000 Hz;
Electricity supply 18–30 VDC;
Operating Temperature -50 to 125 �C;
Weight 70 g

11.3.2.4 Pressure Transmitter

To a large extent, the hydraulic turbine stability problem is invoked by hydraulic
excitation. Pressure fluctuation is the most common instability phenomenon of the
turbine, so monitoring and analyzing the pressure fluctuation on the every flow
section of the turbine can completely control the hydraulic characteristics of the
hydro turbine and can guide the unit to run.

Each unit adopts 5 pressure transmitters, among them two are arranged under
the turbine head cover to measure pressure pulsation, two in draft tube, and one at
spiral case inlet. The ROSEMOUNT 3051 series transmitter is selected, in which
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the pressure transmitter model is 3051 CG. Its main technical parameters are as
follows:

Accuracy ±0.075 % range;
Dynamic performance: the delay time (Td) 45 ms;
Refresh rate 22 times/s;
Zero and range zero with the range value can be set

arbitrarily within the range limit;
Output 4–20 mA;
Damping User settings;
Measuring range 2.0 MPa (optional);
Temperature limit -40 to 121 �C;
Humidity limits 0–100 % of relative value.

11.3.3 Analysis Methods System Components

The condition monitoring system consists of sensors, data acquisition modules,
servers and related network equipment, software and other components. The entire
system adopts distributed hierarchical structure (as shown in Fig. 11.4).

The data servers of whole factory conditions, the Web servers, the engineer’s
workstations and network equipment (modems, fiber optic transceivers, switches,
network security isolation equipment, etc.), and other control equipment all
installed in the computer room of the central control station. They communicate
with the plant MIS system through the communications server.

Its signal flow is as follows: Sensors at the site collect signals of the unit
through the multi-core shielded cable to connect to the input terminal in the data
acquisition unit, which then transmits to the acquisition modules through the
dedicated cables. After the pre-processing module acquires and collects all the
data, it is transformed into a digital signal, and run through the bus to the system
board. Then online signals are treated and processed. Various characteristic
parameters reflecting the operational status of the unit with some original data are
obtained. These data are transmitted to the state data processing server and pre-
served. There, the real-time data and historical data may be analyzed.

11.3.4 Signal Analysis Methods

General vibration signal analysis methods have been introduced in the section of
introduction of this chapter such as the vibration signal processing and analysis. In
this section, we shall introduce some methods for time-domain analyzing and for
spectrum analyzing in hydraulic machinery monitoring.
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11.3.4.1 Time-Domain Analysis

1. Waveform analysis. Waveform is a time-history curve of the rotor response
with respect to time. The abscissa of diagram is time. Usually it is expressed as
the number of periods. Its ordinate is the real-time value of vibration, usually a
positive wave approximation. It is the most original signal, and it has contains a
large amount of information with intuitive, easy-to-understand features, but it
can be difficult to see that the information is linked with unit fault. The fun-
damental frequency showing the vibration wave can be derived from the
waveform diagram. With the relative phase signal, the time-based line signal
can be treated as a direct reflection of the phase angle.

2. Orbit analysis. The shaft orbit is the trajectory of one point in the shaft relative
to the bearing support. It is very important information for the fault diagnosis of
rotating machinery. This orbit is on a plane perpendicular to the shaft axis-line.
As a result, two sensors perpendicular to each other are required to be set in the
plane. The complete testing device is shown in Fig. 11.5.

(a) The direction of the shaft orbit. Orbit has its own direction that is not
necessarily the same as the rotation direction of the shaft. It may be the
same direction as the shaft spin direction, or it may be the contrary; it may
be a clockwise direction, or it may be counter-clockwise direction.
The change of shaft orbit direction is caused by different phases along the
vertical and horizontal vibrations. The vibration signals, from two-channels
along the vertical and horizontal axes, synthesize with the shaft movement
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when coupled with shaft phase signal, then the shaft orbits with the phase
signal can be obtained, shown in Fig. 11.5 (map between the black spots
and the white spots is the phase signal).

The shaft phase signal can be used to judge the direction of the shaft center’s
movement. The orbit direction is shown by the black spots along the track
direction toward the gap, which indicates that there is a key groove on the shaft
surface. And if the gibbose part is used on the surface, the orbit direction is on the
opposite, from a blank section to this black spot. The shaft center movement often
is referred to as ‘‘eddy’’ or ‘‘precession’’. When the shaft center’s movement
direction and the rotation direction are the same, the movement is referred to as
‘‘positive precession’’. When its direction is opposite the rotation direction, it is
called an ‘‘anti-precession’’. Both the shape of the orbit and its direction are very
important to the rotating machinery fault diagnosis.

(b) The shape of shaft orbit. In different conditions, there are different orbit shapes
(as shown in Fig. 11.6), if the dynamic stiffness of the unit contains a variety
of binding forces (inertial force, elastic force, damping force). It is assumed
that in a radial direction, if all forces are homogeneous and there is only one
shaft interference of imbalance (such as the unbalanced mass) acting on the
shaft, the axis orbit will be a round.

When other forces are not equal, the orbit shapes will differ. When the radial
stiffness of the shafts are different, or preloads on the shaft have changed (for
example, the shaft is eccentric, which results in load change on its each point), the
shaft orbit is elliptical.

(1)

(2)
(3)

(4)

X Y

rotate direction

Fig. 11.5 The complete testing device of shaft orbit (Zhu 2006)
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For mass imbalance caused by the shaft center’s movement, and assuming the
same bending stiffness along different axes (including the supporting rigidity),
shaft movement is the synchronous positive movement. The shaft center orbit is
round. The harmonic vibration reflects the fundamental frequency in X and
Y directions with equal amplitudes in two directions, which have a phase angle of
90� between them. In this case, the bending of shaft is unchanged for its different
parts. But for many of the actual rotors, the shaft’s bending rigidities vary in
different directions as do the support stiffness, so the shaft orbit caused by mass
imbalance is no longer a circle but an oval.

At this time, the vibration amplitudes are not the same in the X and Y directions,
but the phase difference between the two direction vibrations is not 90�. In this
case, the axis of the shaft’s bending position is not fixed at a location, but will
swing around a line from one side to another. This is because the curved surface of
shaft does not rotate with equiangular speed, although its averaged value is still
equal to the angular velocity X.

Under normal circumstances, and in addition to the above synchronous pre-
cession caused by the imbalance, there are non-synchronous positive precessions
and anti-precession for shaft movement. The shaft has a more complicated
trajectory.

11.3.4.2 Spectrum Analyzer

A general signal is measured directly in the form of the time domain. But the
occurrence of failure often gives rise to changes in the structure of the signal
frequency. In order to observe the dynamic behavior of objects through the
measured signal, one should take advantage of the frequency domain signal. To
transform the time-domain signal to a frequency domain is known as the spectral
analysis. In this analysis, complex waveforms measured in the time course are
decomposed into single harmonic components through the Fourier transform,
in order to acquire a frequency structure of the signal, the harmonic amplitudes,
and their phase information.

Spectrum analysis is the most widely used signal processing method for
machine fault diagnosis. The frequency spectrum diagram of a signal usually

Fig. 11.6 Orbits of shaft (Zhu 2006)
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includes the amplitude spectrum and phase spectrum of the signal. If a diagram is
derived with the frequency f as its abscissa and the amplitude as its ordinate, it is
referred to as the amplitude spectrum. If it is with the frequency f as its abscissa
and the phase as its ordinate, it is referred to as the phase spectrum. There are two
types of graphic spectrum: the discrete spectrum (line graph) and the continuum
spectrum. The former corresponds to periodic and quasi-periodic signals, while the
latter corresponds to non-periodic signal and random signals.

The source of vibration in most a hydro turbine generating units is related to the
speed of the unit, irregardless of whether it is a forced vibration or a self-excited
vibration. The frequency of excitation is either several integral times or fractional
times of the rotation speed. The corresponding response of the exciting force of
vibration in the unit’s support components, bearings, etc. is bound to include the
generated frequency components. Therefore, when the sensor detects vibration
signals, it may also pick up non-linear vibrations generated by other components
and random noise.

Spectral analysis of complex periodic signals is separated into harmonic
components with different frequencies. In the vibration analysis and fault diag-
nosis, an extraction of features and data compression play an important role, which
is useful because some failures can be caused by a specific frequency of vibration.

Vibration signals in frequency domain analysis are simulated to the analog
circuits with a band-pass filter or by the digital discrete Fourier transform (DFT) or
a Fast Fourier Transform (FFT). In a modern computer or vibration analyzer, the
digital Fourier transform is mainly applied to vibration monitoring and
diagnostics.

11.3.4.3 Amplitude, Frequency Spectrum Analysis, and Time Analysis

A single signal only tells the vibration characteristics of a single moment of the
machine at a specific speed and specific load conditions. However, records of the
frequency data with amplitude at different speeds are also significant. For example,
during the staring process of a machine, the resonance frequency or critical speed
information under various forces with different frequencies should be obtained.
Moreover, in the process, temperature or other changes at varying operating
conditions are also necessary to assess the characteristics of amplitude and
frequency.

The waterfall chart presents sizes of the various frequency components in
trends over time for a hydro turbine generator unit within a certain period. It is a
three-dimensional spectrum diagram composed of a group of the frequency
spectrums obtained by continuous measurements at different time periods, in
which X is expressed as the various frequency components, Y as the amplitude,
Z as the time. Under normal circumstances, it is used to analyze the changes in
vibration under rated speed conditions.
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11.4 Monitoring Results and Stability Analysis
of a Turbine Unit

A condition monitoring system of hydraulic turbine units in a large hydro power
station has been established. The results of one large turbine generating unit have
been recorded and its stability analysis has been carried out (Zhu 2006).

11.4.1 The Basic Parameters of the Large Hydro Turbine
Unit

The large hydro turbine unit consists of a vertical shaft Francis turbine and gen-
erators with the semi-umbrella type structure. Its basic parameters are shown in
Table 11.5.

11.4.2 The Variable Speed Test

Variable speed test of rotating machinery diagnoses whether there is a fault of
mass imbalance. In the test course, measurement of vibration amplitudes and
swings were carried out at the typical parts, such as the upper rack (UR), the lower
rack (LR), the upper guide bearing (UGB), the low guide bearing (LGB), turbine
guide bearing (TGB), etc. The test data are shown in Table 11.6 and, for example,
the swing amplitude in guide bearings in Fig. 11.7.

As can be seen from the results, in the variation speed test the vibration
amplitude at each measuring points increases with increasing speed, and is pro-
portional to the square of speed, and the frequency of each vibration is propor-
tional to unit rotating speed. So the mass imbalance of the shaft system generates
the vibration of rotating parts. Dynamic balance test are necessary to eliminate this
fault.

Table 11.5 The unit basic parameters (Zhu 2006)

Francis turbine Generator

Rated power (MW) 710 Power (MW) 700
Rated head (m) 80.6 Rated capacity (MVA) 777.8
Maximum head (m) 94 Max. capacity (MVA) 840
Minimum head (m) 61 Rated speed (rpm) 75
Blades No. 15 Bush No. of UGB 10
Vane No. of guide vanes 24 Bush No. of LGB 16
Vane No. of stay vanes 24 Bush No. of thrust B 24
Bush No. of TGB 12
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11.4.3 The Monitoring Results at Stable Operation

Monitoring data of a large Francis turbine unit at stable operation with different
heads is reported in this section. Some information of the unit operation is
discussed.

Table 11.6 Variable speed test data (Rotating speed: r/min, Amplitude: lm) (Zhu 2006)

Speed=Position 18.1 26.9 32.3 39.3 47.8 57.9 74.6 75.1

UGB X-dir. 71 70 67 73 111 120 127 133
UGB Y-dir. 73 70 67 69 90 99 106 127
LGB X-dir. 135 144 155 168 225 246 275 288
LGB Y-dir. 80 91 102 116 174 195 210 230
TGB X-dir. 67 72 80 95 157 178 166 195
TGB Y-dir. 66 73 76 96 144 151 159 188
UR X-dir. 8 20 29 39 84 104 114 123
UR Z-dir. 12 12 16 27 43 50 79 84
LR X-dir. 4 4 4 6 13 15 12 12
LR Z-dir. 5 8 10 22 35 37 39 40

Note dir. direction
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Fig. 11.7 Variations of swing of guide bearings with speed (1 UGB X-direction, 2 UGB
Y-direction, 3 LGB X-direction, 4 LGB Y-direction, 5 TGB X-direction, 6 TGB Y-direction)
(Zhu 2006)
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11.4.3.1 The Monitoring Data at Stable Operation

Monitoring data of the large Francis turbine unit at stable operation with 67 m
head, including the data of vibration, swings and pressure pulsation at the mea-
suring point are shown in Table 11.7.

The monitoring stations include the swings at the upper guide bearing along the
X direction (UGB X-dir.), the upper guide bearing along the Y direction (UGB
Y-dir.), the lower guide bearing along the X direction (LGB X-dir.), the lower guide
bearing along the Y direction (LGB Y-dir.), the turbine guide bearing along the
X direction (TGB X-dir.), the turbine guide bearing along the Y direction (TGB
Y-dir.); the vibration at the upper rack of the unit along the horizontal direction
(UR-Hori.), the upper rack of the unit along the vertical direction (UR-Vert.), the
lower rack of the unit along the horizontal direction (LR-Hori.), the lower rack of
the unit along the vertical direction (UR-Vert.), at the head cover of the unit along
the horizontal direction (HC-Hori.) and along vertical direction (HC-vert.), and at
the spiral casing of the unit along the horizontal direction (SC-Hori.) and along
vertical direction (SC-vert.); pressure pulsations (pres) at the spiral casing of the
unit (SC-Pres.), at two points under the head cover (HC-Pres. 1, HC-Pres. 2), and
at the inlet section of draft tube on the upstream side and on the downstream side
respectively (DT-In at US, DT-In at DS). The pressure pulsation is expressed in
relative amplitude, the ratio of pressure pulsation over the rated head.

Similar monitoring results at 71 m water head condition are included in
Table 11.8.

Table 11.7 The monitoring data at the measuring points at 67 m head

Power (MW) 437 476 496 516 525 541 556 580 596

UGB X-dir (lm) 70 73 79 71 77 104 71 80 77
UGB Y-dir (lm) 70 75 78 69 77 103 73 76 77
LGB X-dir (lm) 177 175 181 171 171 240 174 174 178
LGB Y-dir (lm) 119 114 104 111 102 142 111 110 108
TGB X-dir (lm) 74 74 73 72 74 119 80 81 83
TGB Y-dir (lm) 77 73 75 72 75 136 79 79 81
UR-Hori. (lm) 39 38 35 34 42 53 40 40 41
UR-Vert. (lm) 34 24 29 24 27 16 25 72 42
LR-Hori. (lm) 9 8 8 6 8 16 7 9 8
LR-Vert. (lm) 24 23 21 17 21 37 16 28 22
HC-Hori. (lm) 31 26 28 26 29 48 36 34 34
HC-Vert. (lm) 47 39 48 41 50 148 57 78 62
SC-Hori. (lm) 8 6 7 7 10 3 9 6 7
SC-Vert. (lm) 6 4 4 4 8 2 8 5 4
HC-Pres. 1 (%) 1.0 1.0 1.0 0.9 1.0 1.5 1.0 0.9 1.0
HC-Pres. 2 (%) 1.2 1.0 1.0 0.9 1.0 1.5 1.0 0.9 1.0
DT-In at US (%) 0.8 0.8 0.8 0.5 0.8 3.4 0.9 0.3 0.8
DT-In at DS (%) 3.7 3.4 3.6 3.2 3.4 3.4 3.7 3.3 3.6
SC-Pres. (%) 1.6 1.5 2.0 1.9 2.0 2.2 2.0 2.7 2.2
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From Tables 11.7 and 11.8 it can be seen that this unit in stable operation
process, in addition to 1st class alarm value of head cover vertical direction
vibration under the power of 541 MW at 67 m head, as well as to the same value
under the power of 580 MW at 71 m head, the other values of swing and vibration
are allowed no more than the first class values of alarm settings.

11.4.3.2 The Reasons for the Vibration Alarm

At 67 m head: Fig. 11.8 indicates the vibration waveform and spectrum at the
monitoring point on head cover at the power 541 MW condition. From the figure it
can be found that the vibration amplitude along the vertical direction at the point is
158 lm, more than the second alarm setting value. From the vibration spectrum
analysis (Fig. 11.8b), one can see that the maximum frequency and amplitude are
5.71 Hz and 58 lm, respectively. The second maximum frequency and amplitude
are 5.63 Hz and 55 lm.

Figure 11.9 shows the pressure pulsation in draft tune, that is, the maximum
frequency and amplitude of the pulsation are 5.71 Hz and 9 kPa respectively, the
second maximum frequency and amplitude are 63 Hz and 8 kPa (Fig. 11.9b). So
the high vibration on the head cover is caused by pressure pulsation in draft tube
with 5.71 Hz.

Figure 11.10 indicates the vibration waveform and spectrum at the monitoring
point on head cover at normal vibration condition. The horizontal vibration
maximum frequency and amplitude are 1.25 Hz and 16 lm, the second maximum
frequency and amplitude are 2.50 Hz and 6 lm and the vertical vibration maxi-
mum frequency and amplitude 1.25 Hz and 28 lm, the second maximum

Table 11.8 The monitoring data at the measuring points at 71 m head (Zhu 2006)

Power (MW) 490 510 520 531 540 550 561 580 590

UGB X-dir (lm) 81 82 78 80 85 89 77 89 83
UGB Y-dir (lm) 73 78 81 77 80 86 81 81 79
LGB X-dir (lm) 222 211 213 193 210 213 217 226 218
LGB Y-dir (lm) 128 120 121 131 123 119 132 131 123
TGB X-dir (lm) 89 86 90 103 82 93 88 96 99
TGB Y-dir (lm) 86 84 93 92 86 83 106 91 109
UR-Hori. (lm) 46 37 44 36 41 41 40 47 43
UR-Vert. (lm) 12 10 13 10 11 11 12 14 15
LR-Hori. (lm) 7 7 7 7 8 6 7 17 8
LR-Vert. (lm) 12 16 13 15 17 14 13 21 17
HC-Hori. (lm) 31 31 27 37 32 33 37 38 42
HC-Vert. (lm) 43 54 34 72 55 51 59 121 74
SC-Hori. (lm) 3 4 3 4 3 3 3 2 3
SC-Vert. (lm) 2 2 3 2 2 2 2 3 3
HC-Pres. (kPa) 7 8 8 8 8 8 8 9 8
SC-Pres. (kPa) 11 13 13 13 12 13 14 18 18
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frequency and amplitude 10.16 Hz and 9 lm. At the normal condition, there is no
main frequency of 5.71 Hz. The reason for high vibration at the head cover at
541 MW power condition is the pressure fluctuation induced by a vortex rope in
draft tube.

At 71 m head: At 71 m water head condition, the head cover vibration is large
at the unit power 566 MW, compared with the situation for the 67 m head, and it
can be seen that with an increase of the water head, the head cover vibration
amplitude appears at within the high load region of the unit.

Figure 11.11 indicates the waveform and frequency spectrum of the head cover
vibration for the unit power in 566 MW at 71 m water head.

From the figure it is evident that this large amplitude vibration may be caused
by the vibration component with the main frequency 5.86 Hz. In the aforemen-
tioned situation at the head of 67 m with a power of 541 MW, this vibration main
frequency is 5.71 Hz. Consequently with the increase of head, the vibration main

(a) 

(b) 

Fig. 11.8 Vibration data of head cover at 67 m head condition. a Waveform. b Frequency
spectrum
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frequency of the head cover will increase. From the above analysis it can be drawn
that this unit should avoid operation at a load between 534 and 550 MW under the
head 67 m, and at the load of 566 MW larger under the head 71 m because of the
large vibration amplitude of the head cover of the turbine.

11.4.4 Instability Operation Condition of the Unit

For this hydro turbine generating unit in accordance with changes in working
conditions, the running data implies that at the current running head, in a certain
area of load, the vibration and the swing have a noticeable low-frequency signal,
among which the swing signal is particularly evident. At the same time the
pressure pulsation in the draft tube has also shown an obvious increase.

By analyzing swings of the unit’s guide bearings with power changes in
waterfall chart, one can see that a great amount of swing amplitude with very low-
frequency components exists when the active power in the unit is between 280 and
410 MW. See an example of the upper guide bearing in Fig. 11.12. In the
meantime, this situation also can be observed in Fig. 11.13, a waterfall chart of
pressure pulsation in a draft tube in the same power region.

(a) 

(b) 

Fig. 11.9 Draft tube pressure pulse on inlet section at downstream side. a Waveform.
b Frequency spectrum
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At a select working condition with 68 m head and 315 MW power within the
operation scope, further analysis of the conditions of the guide bearing swing
(Fig. 11.14 for UGB) and of the draft tube pressure pulsation (Fig. 11.15) illus-
trates that the signals of the swing and pulsation have the main frequency 0.31 Hz,
one-fourth of rotating frequency. This is the frequency of a vortex type in the draft
tube with an amplitude 45 kPa and relative value of 6.72 %. This is the high draft
tube pressure pulsation region in the operation range. The unit therefore should
avoid running in the active power range between 280 and 410 MW.

11.4.5 Regional Division of the Unit Safe Operation

With the accumulation of data, analyses of the characteristics of each condition will
result in the unit operation regional division, as shown in Fig. 11.16. In this picture,

(a) 

(b) 

Fig. 11.10 Head cover vibration values at normal operation condition. a Waveform. b Frequency
spectrum
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the unit can be running in the green region for safe operation, and in the yellow
region during the transitional operation, but avoid operation in the orange region.

11.5 Condition Monitoring System of Pumps

Vibration monitoring can identify a number of potential pump problems, including
misalignment or coupling issues, mechanical looseness inside the pump or from
the baseplate, cavitation issues and erosion of rotors identified as imbalanced.
Pumping of heavy, viscous fluids can inflict damage to the rotors, which in turn
could result in the pump going out of balance. Wear of gear teeth on gear pumps
can also be monitored effectively by vibration analysis systems (Hartigan 2008).

(a) 

(b) 

Fig. 11.11 Head cover vibration alarm value at 71 m water head. a Waveform. b Frequency
spectrum. The horizontal vibration maximum frequency and amplitude: 1.25 Hz and 26 lm, the
second maximum frequency and amplitude: 5.06 Hz and 15 lm; and the vertical vibration
maximum frequency and amplitude: 5.06 Hz and 48 lm, the second maximum frequency and
amplitude 1.25 Hz and 45 lm
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Fig. 11.12 Swing waterfall chats at upper guide bearing (UGB)
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Fig. 11.13 Waterfall chart of draft tube pressure pulsation
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(b)

(a)

(c) 

Fig. 11.14 Waveform and spectrum of swings at UGB. X-swings: Maximum frequency and
amplitude: 0.31 Hz and 41 lm, Second maximum frequency and amplitude: 1.25 Hz and 30 lm;
and Y-swings: Maximum frequency and amplitude: 0.31 Hz and 35 lm, Second frequency and
amplitude 1.25 Hz and 30 lm a swing trajectory. b swing displacements c swing frequency
spectrum
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Fig. 11.15 Draft tube pressure pulse waveform and spectrum (Maximum frequency and
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11.5.1 Vibration Monitoring System of Oil Pumps

In order to avoid invalidation troubles of an oil pump, the most valid measure was
taken for its vibration monitoring and malfunction diagnosis. Liang et al. (2008)
introduced the development of the oil pump vibration monitoring system
(Fig. 11.17). The pump was used in first stop of a long-distance pipeline for refined
oil with the following rated parameters: power P = 1,000 kW, speed
n = 2,980 rpm, pump head H = 320 m, the flow Q = 1,025 m3/h, impeller series 2.

11.5.1.1 Vibration Monitoring Equipment Selection and Installation

A schematic diagram of the monitoring system is shown in Fig. 11.17. In each
bearing seat as close as possible, the HG-3518 vibrometer-based data acquisition
system is installed to measure the parameters of acceleration, speed, displacement,
temperature and so on. Taking into account the high pressure of the pump, the
thrust will become a considerable asset if the internal gap in the thrust bearing
vanishes, so it is needed to install the vibrometer, a temperature indicator, and an
alarm in the thrust bearing.

Measuring points are shown in Fig. 11.18. The vibrometer is installed on major
equipment and axial bearing end point. For the horizontal-type pump, the vibration
monitors are installed on the four bearing sets to pick up data of vibrations along
the vertical, horizontal and radial directions. Application of the eight confirmed
groups of the peak/carpet values of vibration velocity and acceleration integrated
together can easily find a major fault.

According to international standard ISO 2372, in the speed range of
600–1,200 r/min of a rotating machine, the vibration frequency should be
10–1,000 Hz. In normal operation of pump units with power 75 kW or more, the
vibration velocity detected should be 4.5–11.2 mm/s. If the value surpasses
7.1 mm/s, then the machine should be considered in overhaul. In addition to machine
power, other factors such as continuous heavy operation and the need for high
security and reliability should also be taken into account for this value determination.

(1)

(2)

(3)

Fig. 11.17 Centrifugal pump
vibration monitoring system.
1 Seniors on bearing shell, 2
one or two channels vibration
monitor, 3 temperature and
displacement sensors on
thrust bearings
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11.5.1.2 FFT Spectrum Analysis

In the data analysis, the Fast Fourier Transform (FFT) is used to get the amplitude
spectrum. Amplitude spectrum can provide diagnostic information in the following
aspects: (1) which frequency components and harmonic components compose the
vibration signal; (2) which component has the highest amplitude.

In this vibrometer system, on each shaft support section, the vibration signals
along vertical and horizontal directions are picked up and at the same time a
comparison of these data with the frequency spectra at the normal condition is
performed. Finally the fault position of the pump unit can be diagnosed.

11.5.2 Vibration Monitoring and Fault Diagnosis on Boiler
Feed Pump

The boiler feed pump (BFP) in a fossil fuel station is one of the most important
equipment in the unit set; its failure may result in disastrous consequences. It is of
great importance to study the vibration monitoring technique of the BFP and
improve the reliability of BFP operation. Based on the vibration characteristics of
BFP system, (Chen et al. 1995) took the BFP of a 200 MW generator set as the
research target and studied the predictive maintenance system of vibration
monitoring.

11.5.2.1 Boiler Feed Pump Monitoring System and Data Analysis

The studied pump is a multistage barrel casing centrifugal type with speed regu-
lation. In the monitoring system, accelerometer-typed sensors are installed at the
survey points in each bearing pedestal to record vibration along three directions,
the axial, horizontal, and vertical directions, shown in Fig. 11.17. Boiler feed
pump failure usually appears at amplitude’s obvious peak for a vibration

1A 1H 1V
11A 11H 11V

2A 2H 2V
22 A 22 H 22V

3A 3H 3V
33 A 33 H 33V

4A 4H 4V
44 A 44 H 44V

Fig. 11.18 Layout of measuring points
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component with frequency 0–10 times the rotating speed in rpm (expressed as
0–10 rpm). Detection of boiler feed water pump mechanical problem lies in
dividing vibration bands of the pump into several bands with each band corre-
sponding to a single or a class of faults. The pump monitoring band and its
corresponding fault type are shown in Table 11.9.

It is difficult for the full-level vibration analysis method to detect the early
stages of mechanical failure. Usually only when the machine is at the condition
with very serious problem, the vibration level would exceed the warning value.
Through frequency spectrum analysis of the vibration signals, the spectral band
vibration alarm level was introduced for diagnosis of boiler feed pumps, as shown
in Table 11.10.

11.5.2.2 Data Processing

The vibration band spectrum formula for the level of amplitude is

OA ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1
F2

i

s

ffiffiffiffiffiffiffiffi

NBF
p ð11:8Þ

Table 11.9 Boiler feed pump vibration bands and corresponding fault

Item of band Scope of band Corresponding fault

Subharmonic band 2 Hz–0.9 rpm Low-frequency hydrodynamic,
lubricating film oscillation

1st order band 0.9–1.1 rpm Dynamic imbalance, shaft thermal
bending

2nd order band 1.1–2.1 rpm Shaft misalignment, shaft crack
High-order harmonic ([2 rpm)

including blade passing frequency
2.1–10.1 rpm Mechanical loosening, larger

hydrodynamic shock pulse at exitBlade
No. 9 rpm

High-frequency band 1–20 kHz Cavitation

Table 11.10 Recommended values of early warning and alarm (cm/s)

Band Feed pump Hydraulic coupling

Warning Alarm Warning Alarm

Subharmonic band 0.127 0.138 0.381 0.635
1st order band 0.508 0.889 0.635 1.016
2nd order band 0.381 0.635 0.508 0.889
High-order harmonic band 0.254 0.508 0.635 1.270
Wide-band 0.508 0.889 0.763 1.270

466 11 Vibration-Based Condition Monitoring



where OA is the band vibration level; n is the number of frequency bands within the
spectrum; Fi is the spectrum value; and NBF is the noise bandwidth of a selected
window function. Select Hanning window function, that is, NBF = 1.5 so that

OA ¼ 0:8165

ffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

F2
i

s

ði ¼ 1; 2; � � � nÞ ð11:9Þ

According to the calculated vibration spectrum band level, further spectral
analysis of the suspicious vibration band will lead possible causes of pump system
faults.

11.5.2.3 Vibration Analysis of Boiler Feed Pump System

As the boiler feed pump vibration is mainly in the range of 0–10 rpm, after
integration and high-frequency components flitting of the acceleration the band
spectral analysis is computed, the vibration levels of velocity amplitude will be
obtained to diagnose the pump faults.

In calculating the velocity spectrum, the anti-alias filter cut-off frequency is
fc = 10 9 rpm/60; sampling frequency is fs = 2.5bfc for the amplitude spectra
obtained. Figures 11.19, 11.20, and 11.21 are the axial velocity spectrums on the
pump bearing at the speed of 2,200, 1,500, and 1,100 rpm conditions.

11.5.2.4 Band Analysis of Subharmonic Frequency

From the three velocity amplitude spectra, among the sub-harmonic frequency
bands 2 Hz–0.9 rpm, the low frequency vibration is large. Through test simula-
tion, the larger low-frequency component is not due to the integrator, nor is it due
to smaller sampling number. From the order analysis of synchronous sampling, it
is not caused by lubricate film oscillation. Based on field experience, the
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Fig. 11.19 Velocity
spectrum along axial
direction at 2,200 rpm case
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low-frequency vibration is induced by hydraulic forces. Firstly due to improper
assembly of the machine in site, it then results in an excessive eddy current and
low frequency recirculation of internal flow in the pump. The second is because of
the lower pressure at the pump entrance, while each impeller action results in an
unequal pressure head at each stage of pump, creating the axial directions vibration
with low frequency. The third one is from the high-pressure water flow from pump
impeller out to casing and exit tube to form the low frequency interfering flow.

It can be concluded from the above analysis, that the spectral analysis of band-
level vibration is very effective, and significantly better than the RMS level
analysis.

11.5.3 Monitoring Abnormality in the Reactor Coolant
Pump

An improved method to detect the reactor coolant pump (RCP) is suggested by
Jung and Seong (2006), in which the Wigner–Ville Distribution (WVD) is used to
diagnose abnormality of the pump.
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Fig. 11.20 Velocity
spectrum along axial
direction at 1,500 rpm case
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Fig. 11.21 Velocity
spectrum along axial
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11.5.3.1 RCP Abnormality Monitoring System Using WVD

The overall scheme of the RCP abnormality monitoring method was presented by
Jung and Seong (2006). The motor torque was estimated by a three-phase voltage
and current. The harmonic components of line frequency were modulated in the
frequency spectrum of a single phase current. Torque is a function of current and
voltage, so the modulation effect due to harmonic components of line frequency
can be eliminated. The WVD of motor torque is beneficial in discerning weak
characteristic harmonic components from the line and its harmonic frequencies.

11.5.3.2 Validation of the Proposed Method

For validation of the proposed method, the cross-comparison of test results
between RCP vibration monitoring system (RCPVMS) and the power line signal
analysis method was performed, and the polar plot of RCPVMS was measured
during the cool-down phase. This plot is useful to confirm the weight balance of
the shaft, resonance of the RCP structure, looseness, or cracks within the internal
components. It indicates the phase and amplitude of the shaft vibration when the
pump speed increase.

Figure 11.22 shows the impeller looseness phenomena. The increase of
vibration amplitude along with shaft 1 9 phase shifted to the opposite direction
(180�) as time passed. As a result, the RCP internal components were replaced:
pump seal, shaft, and impeller during an overhaul outage.

The power line signal was acquired from the switchgear room inside the turbine
building. The three-phase voltage was acquired from a secondary tap of the
potential transformer (PT) and the three-phase current was obtained from a current
transformer (CT) output to a protection relay. This hook-up permits non-intrusive
measurement and assures continuation of plant operation.

Figure 11.23 exhibits the three-dimensional plot of RCP condition before and
after its components were replaced. Amplitude of the harmonic frequencies after
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14  50  00
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270

RCP stable operation

RCP start-up

Fig. 11.22 Polar plot of
VMS (before RCP
replacement; Jung and Seong
2006)
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replacement was reduced by more than 20 %. This illuminates that the pump
condition is improved after maintenance.

The feature vector is 512 9 512 (frequency time) so the data generated in one
measurement period is 262, 144. By conditional branching logic (if-then rule),
(7450) samples (iread) are extracted.

After RCP maintenance, the average feature area is decreased. The difference
between the average feature areas before and after RCP maintenance is greater
than 27 %. It is obvious that the RCP is in the healthy state due to components
replacement and corrective action during overhaul-outage. For verification of this
result, FFT spectrum from 0 to 100 Hz is investigated.

The frequency spectrum in Fig. 11.24 shows the characteristic harmonic
components and also indicates that the abnormality is eliminated after the RCP
maintenance (see Fig. 11.24b). The feature frequency that represents the shaft
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speed is also reduced. Weak characteristics of harmonic frequencies appear in the
frequency spectrum before RCP components were replaced (see Fig. 11.24a).
These harmonic frequencies are due to the RCP impeller movement.

The polar plot that was captured after the pump’s internal replacement does not
show any symptom of abnormality as shown in Fig. 11.25 (Jung and Seong 2006).

Koo and Kim (2000) set a similar system of abnormality monitoring on RCP.
They introduced a Wigner distribution (WD) to a vibration monitoring for analyzing
signals, and developed an on-line diagnostic method using the neural network.

11.6 Orbit and Vibration of Hydro Unit Shaft at Transient
Process

According to the rules of the rotate-speed change of hydraulic turbines during
transient process, the method of intercepting data should be put forward, because
data collection is not included in the process of signal. Combining spectral analysis
with analysis of the shaft orbit, Li (2006) conducted a study on vibration and
pressure pulsation at the start-up process of one hydro turbine generating unit at
the Xiaolangdi Hydropower Station based on the monitoring data of the unit.

11.6.1 Measuring Points in the Unit Monitoring System

The test was carried in a unit of Xiaolangdi Hydropower Station, at 87 m head
during the start-up transient process condition and the stable condition with
107.14 rpm (1.785 Hz), based on monitoring system of the unit. It measured the
noise, vibration (vib.), and water pressure on generators’ upper rack (UR) and
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Fig. 11.25 Polar plot after
VMS maintenance (Jung and
Seong 2006)
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lower rack (LR), on the head cover (HC), stator core (SC), draft tube (DT) and
spiral casing (SC), as well as the swings on the upper guide bearing (UGB) and
LGB and TGB and so on. In the start-up transient process, the unit speed variation
was also measured. The measuring points of the unit are shown in Fig. 11.26,
where the following positions are included: (1.1) generator noise, (1.2) HC noise,
(1.3) DT noise, (2) speed (phase reference), (3) UR horizontal X-vib. (4) UR
horizontal Y-vib. (5) UR vertical Z-vib. (6) SC horizontal X-vib. (7) SC horizontal
Y-vib. (8) SC vertical Z-vib. (9) LR horizontal X-vib. (10) LR horizontal Y-vib.
(11) LR vertical Z-vib. (12) HC horizontal X-vib. (13) HC horizontal Y-vib. (14)
HC vertical Z-vib. (15) UGB horizontal X-swing. (16) UGB horizontal Y-swing.
(17) LGB horizontal X-swing. (18) LGB horizontal Y-swing. (19) TGB horizontal
X-swing. (20) TGB horizontal Y-swing. (21) Pressure pulsation at SC inlet. (22)
Pressure pulsation in HC. (23) Pressure pulsation in DT. (24) Pressure at SC inlet.
(25) Pressure difference in SC. (26) Pressure at DT exit. (27) Servomotor position.
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Fig. 11.26 Measuring points of hydro unit at Xiaoliangdi power station
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Table 11.11 Amplitudes at the transient starting-up process

X-dir. Y-dir. Z-dir.

UR vib. (mm) 0.257 0.240 0.0243
LR vib. (mm) 0.0231 0.0448 0.0287
HC vib. (mm) 0.0944 0.242 0.289
SC vib. (mm) 0.0108 0.102 0.0094
UGB swing (mm) 0.233 0.280
LGB swing (mm) 0.498 0.401
TGB swing (mm) 0.254 0.0704
SC pressure pul. (m) 14.0
HC pressure pul. (m) 26.4
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Fig. 11.27 Swing amplitude along y direction at LGB during starting-up. a Time history.
b Waterfall chart
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11.6.2 Analysis of Signal Amplitude at the Start-Up Process

According to the confidence probability of 0.97, the signal amplitudes at measuring
points were recorded in the transient starting-up process of the unit in Table 11.11.

11.6.3 Signal Spectrum Analysis at Measuring Points
During the Starting-Up Process

Figure 11.27 is the time history and waterfall chart of the swing amplitude along
Y-direction at the LGB position during 15–53 s of starting-up process. With an
increase of operating time, the amplitude corresponding to rotating frequency will
climb gradually. During this period, the swing amplitude corresponding to
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component with 4–8 Hz frequency is very large, and close to that of component with
rotating frequency. It is clear that there is an imbalance mass in the unit shaft system.

Figure 11.28 is the time history and waterfall chart of pressure pulsation in the
HC during 15–53 s of starting-up process. The water pressure rapidly increases
during this period and finally stabilizes at around 30 m. After 53 s, the pressure
pulsation amplitude of each component will gradually decrease.
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11.6.4 Shaft Trajectory Analysis During the Start-Up
Process

Figure 11.29 shows the shaft bearing orbits and its axis trajectory within 15–53 s
in the unit start-up process. After that time, the turbine rotates at a rated frequency
of 1.785 Hz. In the start-up transient process within 15–53 s, the maximum
eccentric distance (MED) of the UGB is about 0.25 mm, the MED of the LGB
about 0.39 mm, and the MED of the TGB is about 0.31 mm. After that time, the
MED of bearings are 0.17, 0.29 and 0.16 mm, respectively.

The waterfall picture of swing data collected during the start-up process indi-
cates that the rotor is with mass-unbalance. The orbit analysis of the start-up
process demonstrates that the swings of the shaft at the upper guide bearing, lower
guide bearing, and turbine guide bearing reach peak value at 22 % rated speed.

References

Boashash, B. (1998). Note on the use of the Wigner distribution for time-frequency signal
analysis. IEEE Transactions on Acoustics, Speech and Signal Processing, 36(9).

Chen, X. L., Yan, P. Q., & Wei, W. L. (1995). The vibration monitoring and fault diagnosis on
boiler feed pump in fossil power station. Vibration and impulsion in China, 3, 7–11.

Cohen, L. (1987). On a fundamental property of the Wigner distribution, IEEE Transactions on
Acoustics, Speech and Signal Processing, ASSP-35(4).

Egusquiza, E. (2007). Vibration behavior of hydraulic turbines, Application to condition
monitoring, Proceedings of 2nd IAHR International Meeting of the WG on Cavitation and
Dynamic Problems in Hydraulic Machinery and Systems, Timisoara.

Egusquiza, E., Liang, Q.W., Escaller, X. And Valero, C. (2006). Condition monitoring strategies
in hydro powerplants, Proceedings of The 1st International Conference on Hydropower
Technology and Key Equipment, Beijing.

Gupta, K. N. (1997). Vibration—A tool for machine diagnostics and condition monitoring.
Sadhana, 22(3), 393–410.

Hartigan, K. (2008). Inside monitoring to extend pump life. World Pumps, 502, 28–30.
Ingegneria, F. D. (2008). Fault detection in rotating machines by vibration signal processing

techniques, Dissertation for Ph. Doctor degree, Università degli Studi di Bologna, Italy.
Jung, J. C., & Seong, P. H. (2006). An improved method for reactor coolant pump abnormality

monitoring using power line signal analysis. Nuclear Engineering and Design, 236(1), 57–62.
Khemili, I., & Chouchane, M. (2005). Detection of rolling element bearing defects by adaptive

filtering. European Journal of Mechanics A/Solids, 24, 293–303.
Koo, I. S., & Kim, W. W. (2000). The development of reactor coolant pump vibration monitoring

and a diagnostic system in the nuclear power plant. ISA Transactions, 39(3), 309–316.
Li, J. (2006). Analysis of orbit and vibration along shaft at low flow rate case of hydropower unit.

Dissertation of Master Degree on Engineering, Tsinghua University in China.
Liang, F. H., Huang, Y. X., & Deng, Y. (2008). The vibration monitoring and malfunction

diagnosis of the oil—pumps in the oil—pipeline. Journal of Maoming University in China,
18(4), 36–39.

Tranter, J. (1989). The fundamentals and the application of computers to condition monitoring
and predictive maintenance, Proceedings of International Congress on Condition Monitoring
and Diagnostic Engineering (COMADEM 1989). pp. 372–377.

476 11 Vibration-Based Condition Monitoring



Tandon, N., & Parey, A. (2006). Condition monitoring of rotary machines, Condition monitoring
and control for intelligent manufacturing (pp. 109–136). London: Springer.

Wahl, T. J., & Bolton, J. S. (1993). The application of the Wigner distribution to the identification
of structure borne noise components. Journal of Sound and Vibration, 163(1), 101–122.

Wikipedia, http://en.wikipedia.org/wiki/Cepstrum.
Zhu, Y. (2006). Study on Stability of Large Francis Turbine, Master degree thesis, Tsinghua

University in China.

References 477

http://en.wikipedia.org/wiki/Cepstrum


Appendix I
Nomenclature

1. Latin Letters

A Amplitude, area, section area of draft tube
Ar Turbine gain factor
�A Relative amplitude
[A] ‘‘Stiffness’’ matrix in FEM
[A], [B(X)] State global matrices

[eA] Dynamic matrix

a Complex amplitude, sound speed in water, distance between
upper bearing and disc mass centre (Fig. 4.2.1) opening
of guide vanes

ai(t) Generalized coordinates
{a} Unit direction vector, amplitude vector, vector containing

generalized coordinates
B Relative frequency of fk, amplitude, Greitzer’s factor
B̂ Average magnetic flux density
{B} Right vector in FEM
[B] Compliance matrix
½Bðx; y; zÞ�; B½ � Matrix with derivatives of shape functions
½~B� Input gain matrix
b Mean sealing gap width
b2 Pump impeller exit width
C Constant, capacitance, cavitation compliance,
C Mean velocity in a section
CH Head coefficient CH ¼ gH

�

N2d2

Ch Hydraulic capacitance
CQ Flow coefficient CQ ¼ Q

�

Nd3

CQM Operation dimensionless relation of turbine
CMa Damping of oil film created by thrust disc swing
Cxy, Cyx Cross-damping coefficient reflecting oil film

Y. Wu et al., Vibration of Hydraulic Machinery,
Mechanisms and Machine Science 11, DOI: 10.1007/978-94-007-6422-4,
� Springer Science+Business Media Dordrecht 2013

479

http://dx.doi.org/10.1007/978-94-007-6422-4_4_4


C0 Lineic hydroacoustic capacitance C0 ¼ gA
�

a2

C0e Electrical capacitance of unit length
[C] Damping matrix
½~C� Output gain matrix
{Ci} Constraint force
c Damping coefficient, wave speed in fluid
ci Constants defining w xð Þ
cn Non-rotating damping coefficient
cr Rotating damping coefficient
cxxi, cxyi, cyxi, cyyi Damping factors of the ith pad
ch2 Swirl velocity
D Damping coefficient, per unit load damping

constant, character diameter of runner
D1 Runner exit diameter at band
De Draft tube inlet diameter
[D] Transfer matrix
½~D� Matrix describing influence of inputs on outputs
d Radius of long circular cylinder, turbine

characteristic diameter
E Young’s modulus, output of turbine
Ec Young’s modulus for cable
Er Relative internal energy
EnD Unit energy coefficient
Epipe Pipe wall material viscoelastic behavior
E0 Transient electric potential of generator
[E] Stiffness matrix of material, Green-Lagrangian

strain tensor
e Base of exponential function
ex, ey Unit vectors along x and y axes
e Constant, eccentric distance of vortex rope
{e}={hy, hx, y}T Displacement vector
F Force
F0 Radial force
FD Damping force
Fex External force
Fi Spectrum value
Fk Restoring force
Fsm Amplitude of stator magnetic potential
Fjm Amplitude of rotor magnetic potential
Fx Fy Forces of oil film on xoz and yoz planes
F0sx F0sy Unbalanced force
F(w) Energy functional
{Fdn} Force due to non-rotating damping
{Fdr} Force due to rotating damping
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{Fe} Elastic force
{Fi} Applied forces
{Fn} Force due to no-rotating damping, static load
{Frxy} Force due to rotating damping in xy-plane
{Frng} Force due to rotating damping in ng-plane
{Fr} Loading vector caused by initial stresses at nodes
[F] Deformation gradient tensor
f Unit external force, giving force in domain electric net

frequency, cross-sectional area
f0 Natural vibration frequency in draft tube
fi Generalized forces
fb Blade passing frequency
fg Guide vane passing frequency
fk Karman vortex street frequency
foil Self-excitation frequency of oil film in bearing
fp2 Per unit tunnel head loss coefficient
fS Stay vane passing frequency
fn Precession frequency of vortex rope, per unit head loss

coefficient
fr Ratio of precession frequency
frope Frequency of vortex rope
fv Frequency of pressure pulsation by vortex rope
fwh Hydraulic vibration frequency in penstock
fx Component along x axis of force
fy Component along y axis of force
f(x, t) Function at Eulerian coordinates
f*(x, t) Function at reference coordinates
f**(x, t) Function at Lagrangian coordinates
{f(x, y, z, t)} Giving force vector
{f} Unit external force vector, body force
{f s} External force of structure
{fg} Body force in global frame in FEM
{f(t)} Forcing function
{f(rf)} Surface deformation due to fluid loads
{G}, G Gravity force vector
G Gravity force magnitude, shear modulus
Gx, Gy, Gx, Gy Turbulent factor of oil
Gij Components of contravariant metric tensor
�G Per-unit guide vane opening
[G] Skew-symmetric gyroscopic matrix
g Gravity acceleration, giving condition on Neumann

boundary
{g} Given function in flow on Dirichlet boundary
{g(xs)} Change of fluid stress from surface deformation
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{H} Moment vector
[H] Skew-symmetric circulatory matrix with rotating, damping
H Water head, chamber height of turbine, inertia constant of

shaft
Hr Relative total enthalpy (rothalpy)
Hn Normalization helicity
�H0 Per unit total head
�H12 Per unit head loss in the tunnel
�Hl Per unit head loss in the penstock
�Hr Per-unit surge tank head
�Ht Per-unit turbine head
DH Pressure fluctuation amplitude
h Thickness of oil film, piezometric head, distance between

two rows of vortices, gap clearance
h(t1, t2) Impulse response of a linear system
hn Oil film thickness at pad pivot
{h} Given function in flow on Neumann boundary
I Phase current of generator
{I} Unit vector
[I] Identity tensor (diagonal unit matrix)
Im Imaginary part
i Imaginary number
i Electrical current
J Second moment of area, rotational inertia of shaft syste
Jt Time-dependent Jacobian transversal moment of inertia

around axis
J(t) Jacobin in time t
Jp Torsional moment of inertia polar moment of inertia

around rotation axis
Jbj, Jcj Pad moment of inertia around pivot in circumferential and

axial direction
Jdi-1, Jdi, Jpi-1, Jpi Moment of inertia per unit length
k ¼ n� m Lag time between stimulus at time m and response at time n
K Cavitation compliance
K, K 0 Factors
Kxb, Kya, KMa, KMb Stiffness of oil film created by thrust disc swing
Kxy, Kyx Cross-stiffness reflecting oil film force
[K] Stiffness matrix
[Kg] Stiffness matrix in global frame in FEM
[Kr] Diagonal matrix of stiffness
[K12] Stiffness matrix of air gap magnetic field
[Kss] Matrix of stiffness of structure to structure (FSI)
[Ksf] Matrix of stiffness of structure to fluid (FSI)
[Kfs] Matrix of stiffness of fluid to structure (FSI)
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[Kff] Matrix of stiffness of fluid to structure (FSI)
k Stiffness, thermal conductivity, fluid volumetric modulus
k, l, m, n Integers
ki Generalized stiffness in FEM
k0 Efficient of unbalanced magnetic forces
kxxi, kxyi, kyxi, kyyi, Damping factors of the ith pad
k* Non-dimensional frequency, k* = k*R+ i k*I

{�k} Rotor vibration eccentric vector
L Moment, length of bearing, axial length of radial magnetic

loop
Lh Hydraulic inductance
Lu Impeller loss coefficient
Lx, Ly Moments of oil film on xoz and yoz planes
L0 Lineic hydroacoustic inductance L0 ¼ 1= gAð Þ
L0e Electrical inductance of unit length
l Length of axis (in Fig. 4.2.1), length of penstock
li Direction cosine of the axes x in global frame
ls Sealing passage length
{l} Torque vector
dL Virtual work dL
M Mass, bending moment, mass flow gain factor
M Mole number of molecular weight
M2, M4 Second and fourth-order statistics moment
M, N Number of sample points
Mx, My Pressure moment on pad around x and y axises
Mbx, Mby Bearing bracket equivalent masses along x and y
MA Normalized amplitude of pump driving torque
{M} Moment vector
{Mg} Moment of inertia force
[M] Mass matrix damping, and stiffness matrices
[Mg] Geometric stiffness matrix, mass matrix in global frame in

FEM
[My] Diagonal matrix of mass
m Mass, unbalanced mass number of resonance order of

water
mD Magnetic torque of generator damping winding
me Electro-magnetic torque of generator
mg Generator load torque (whole damping torque)
mi Direction cosine of the axes y in global frame
N Number of degrees of freedom
N12 Potential energy in the air gap of generator
ND Specific speed
NBF Noise bandwidth
NPSH Net positive suction head
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n Constant defining w xð Þ, frequency of surge, order number
of Taylor series, rotating speed of runner, number of
frequency bands within the spectrum Fi spectrum value

n11 Unit speed
ni Direction cosine of the axes x in global frame
nQE Unit rotating speed coefficient
{n} Unit normal vector
QA Band vibration level
Ongz Rotating reference frame
P Dimension, pressure pair number of generator poles
P Force acting on the bluff body, turbine output force acting

on blade from Karman vortex
P11 Unit power
Pr, Pu Nonlinear active force of bearing pad
PN z; tð Þ Pressure excitation
�P

mechanical
Per unit turbine mechanical power

�P
load

Per unit non-frequency-sensitive load
~P

Erms
Dimensionless pulsation amplitude

Dp Flow pressure drop
Q Shearing, flow rate of turbine
Q11 Unit flow rate
QnD Unit flow rate coefficient
{Qi} ith generalized force
{Q(t)} Generalized forces
q Amplitude of excitation, modal participation factor
qi Generalized displacement in FEM
q(si) Cavity region
{q} Transformed displacement vector, vectors of coordinates

qf g ¼ fz; /gT real coordinates, solution of rotor
dynamic equation, for example fqg ¼ fr1geiþ fr2g
eið2X�xÞt

{qi} Displacement vector in FEM
{qg} Displacement vector in global frame in FEM
{qi(x, y, z)}, Assumed modes
qi Eigenvectors component
R Restoring force magnitude, parameter in disc rotor 2R2 =

Jp/m, inner radian of the pad, vortex rope radius,
viscoelastic resistance

Ra Resistance of generator armature
R1 Inner radius of the stator
R0 Outlet radius of generator rotor
R

3 3 dimensional space
{R} Restoring force vector, vector from grid origin to mass

particle, concentrated force vector
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[R] Rotating matrix (FEM)
½R0� Assembled rotating matrix (FEM)
[Rpq(ix)] Vector of transfer functions
Re Real part
Re Reynolds number (Fluid Mechanics)
Rex Reynolds number based on blade length
Rh Hydraulic resistance
Rh = Uhq/l Reynolds number in oil film
R* Measure of draft tube core size
R0 Lineic hydroacoustic resistance R0 ¼ k

�

2gDA2
� �

R0e Electrical resistance of unit length of conductor
r Radius, coefficient
rp Radial coordinate of pivot in inertial coordinates
r1 Mean inflected shape
r2 Component of deflected shape
{r} Vector from grid origin to mass particle, radial vector,

position vector, sum vector of internal and external
forces/fluxes, set of complex coordinates rf g ¼ qf geiXt

S Finite dimensional subspace, boundary surface, runner exit
area

Sh Strouhal number
Sn Constant
S/ Source term of /
Sij Mean strain rate tensor
�Sij Rate-of-strain tensor for resolved scale
{S0} First station vector
{Sn} Last station vector
{SRi}, {SLi} State vectors at left and right ends of field
[S] 2nd Piola–Kirchoff stress tensor
s Circumferential wavelength, time of stimulus
T Period, modal responses, torque on a section, torque of the

fluid acting on the component, rotating period
T0 Period
T(t) Torsional torque around the disc center
T̂ij First order of Piola-Kirchhoff stress tensor

[T], [Tft] Transfer matrix
[TG] Overall transfer matrix
{T} External surface forces
Tg Main servomotor time constant
TWp Water starting time of penstock
~T Kinetic energy
t Time, time of response
tf The end of time step of CFD
ts The end of time step of CSD
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tr Rise time
Dt Time Increment
U Numerical solution voltage, linear velocity, circumferential

velocity
U2 Runner exit peripheral speed
Ua Steady uniform velocity
~U Potential energy
�Uc Per unit velocity or flow rate in tunnel
�UNL Per unit no-load flow
�Ut Per-unit water velocity in turbine or turbine flow
u Per unit control effort deflection of structure, true solution
us, vs Steady disturbance
~u, ~v Unsteady disturbance
Uj Curvilinear coordinate
u
{u} Deflection of structure real coordinates {u}={Re{q}T,

Im{q}T}T

{u}ðx; y; z; tÞ} Displacement field
{u(t)} Inputs vector affecting behavior of system
{u1} General coordinate vector of generator
{ur} ‘‘Whirl’’ velocity
{u*} Generalized coordinates, fX;uX0 ; Y ;uygT

�u Vibration mode shape
uD Giving condition on Dirichlet boundary
V Shearing force, solution domain, velocity of main stream

outside of wake, absolute velocity
V0 Influent velocity at runner brim gap
Vc Cavity volume
Vr Voltage at generator output ends
Vvap Elastic volume
Vu Absolute velocity circumferential component
oV Boundary of control volume V
{V0}, {VN+1} Vectors of dimension p
v Relative velocity of vortex row to stream speed, velocity

magnitude
vh Absolute tangential velocity

�qv0iv
0
j

Reynolds stresses

{v} Velocity vector, absolute velocity
{vr} Relative velocity
{vr} Grid velocity of moving mesh, velocity of reference

system
v̂ Velocity of reference coordinates relative to space

coordinates
{V(X)} Boundary conditions vector
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W Numerical basis function in FEM, mean velocity, relative
velocity in runner complex potential

Wz Pressure force on pad along z direction
W�1 Free-stream axial velocity in draft tube
W*c Centre line axial velocity in draft tube
DW� Velocity difference DW� ¼ W�c �W�1
Wx(t, f) Wigner distribution of xðtÞ
Wx Window function
[Wk] p� p matrix
wm Meridian component of relative velocity
wi(x) Basis functions
Dw Sample interval
X Displacement material coordinates (Lagrangian description

coordinates)
{X} Displacement amplitude vector, eigenvectors exact solution

in FEM state vector
x Ordinate, displacement, blade length space coordinates

(Eulerian coordinates)
xp Excitation point
xq Generator shaft reactance
x0d Generator shaft reactance at transient process
x(t) System input function
xi, yi Journal displacements
xf, yf Bearing bracket displacements
x(t) History signal
x*(t) Complex conjugate of xðtÞ
dx Length
Dx, Dy Small disturbances
dx Virtual displacement
{x} Displacement vector, generalized coordinates
{xc} Response displacement vector
{xs} Surface position of structure wetted by fluid (FSI)
_x Velocity
f _xg Velocity vector
€x Acceleration
f€xg Acceleration vector
Xq Reactance of generator armature
Y Amplitude along y direction discretized solution, vibration

amplitude
{Y(t)} Modal ordinates
y Homogeneous solution, eccentricity, ordinate
ymin The shortest distance to wall from station
y(t) System output function
{y(t)} Output vector
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Z Partition function, blade number
Z1, Z2 Complex constants
Zg Guide vane number
z Axis ordinate
z = x ? iy Complex number
z0 Value of amplitude of z
z Complex coordinate z ¼ xþ iy
�z Complex conjugate �z ¼ x� iy
fzg State vector

2. Greek Letters

r Gradient
K0 Mean magnetic conductance
a Phase angle, angle deformation, pressure coefficient, angle

between velocity vector and radius R, vortex type factor,
normalized cavity volume

a* Stiffness ratio a� ¼ kg
�

kn

a, b Torsional angle displacement a of thrust disc on xoz and yoz
planes, scalar values of a system

a; q AI/CI characters
b Phase, characteristic factor, relative flow angle, dimensionless

parameter, factor to consider deleting high order terms
b0 Runner exit vane angle
bj Tilting angle of pad in radial direction
bn Non-rotating damping factor with nonlinear
br Rotating damping factor with nonlinear effect
Db Attack angle
v Angle between symmetrical and rotating axises, reference coor-

dinates, mass flow gain factor
{v} Deforming reference system
D Laplace operator, D-criterion, the largest dimension of the grid

cell, mesh scale, difference of momentum
d Dirac delta function, operation angle expressed as difference

between torsion angle of shaft and its initial value, mean radius
gap, added mass effect ratio

d0 Mean gap
d2 Blade thickness
dFe Equivalent gap coefficient of ferromagnet
dv Virtual boundary layer thickness
e Turbulent dissipation rate, eccentricity, over time of end time of

CSD (FSI), pipe perimeter deflection e ¼ dD=D
e0, u0 Equilibrium position ordinates of journal
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ê ¼ e=d Relative eccentricity
{e} Strain
{e*} Consistent strains
eðmÞ� Strain-rate tensor
/ complex angular coordinate / ¼ uy� iuX0 flow potential, flow

coefficient of pump generator inner power coefficient general
scalar

½/� Matrix of equation character vectors
U Amplitude of angular vibration phase of state unbalance vector

response
½U� ‘‘N 9 L’’ Solution matrix containing L spatial vectors without

time
u Phase angle, angular position circumferential ordinate angular

coordinate of any point on pad
uT1; uT2; . . .; Pad swing angle
fuðfvg; tÞg Deformation with unique mapping
C Modal participation factor, closed bounder velocity circulation,

diffusion coefficient
CD Dirichlet boundary
CN Neumann boundary
Ct Time dependent boundary
c Surface tension coefficient effect coefficient considering the shear

stress
ci Tilting angle of pad in circumferential direction
c1 s1ð Þ; c2 s2ð Þ Vortex distributions on blades
c1(n) Free vortex distribution downstream of blades
g Mass-proportional damping coefficient
gh Hydraulic efficiency
gs Dynamic viscosity
ðg1; � � � ; gNÞ Shape functions of elements
[K] Character values diagonal matrix
k Coefficient, friction loss coefficient fluid circumferential average

velocity ratio, wavelength
km Lam’e constant
l Dynamic viscosity coefficient of nonlinear term of stiffness

coefficient of vortex rope
l0 Magnetic conductivity in the air space
lm Lam’e constant
li-1, li Mass per unit length
lt Turbulent viscosity subgrid-scale turbulent viscosity
m Kinematic viscosity
r Tomas coefficient, small unsteady change of pressure eigenvalues

of velocity gradient tensor
rkj Cauchy stress tensor at Eulerian system
{r} Internal stresses
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{rf} Stresses exerted by fluid on structure
[rS] Cauchy stress tensor of structure
h Torsional angle, inner power angle of generator, angular

coordinate, small angle between source and observe
hp Angular coordinate of pivot in inertial coordinate
hyj, hxj Components of tilting angle of thrust block
hy, hx Projected on pivot coordinate
q Density
qs Material density of structure
f Complex coordinates defined in ng-plane, local loss coefficient,

damping factor or damping ratio
fn, fr Damping ratios with the linearized system frame
s Torque, lag time between stimulus at time s and response at time

t, s=t-s
[s], [sr] Viscous stress tensor
sij Reynolds stress tensor
X{X} Angular velocity, angular velocity of rotor rotor,
X Unit angular speed X=pD1n/(60(2gh)1/2)
XcrI First order critical velocity
XcrII Second order critical velocity
Xt Spatial domain
�Xr Per unit runner speed
X* Relative spin speed X� ¼ X=XcrI

�Xr Angular momentum
Xc

* Angular velocity at the axis in draft tube
[Xh

2] Diagonal matrix
x Frequency, precession angular speed (whirl speed), system

vibration frequency,complex frequency, specific dissipation
x* Relative whirl speed in xy-plane x� ¼ x=XcrI

xR Real part of complex frequency
xI Imaginary part of complex frequency damping rate
xN Gyroscopic speed of water in gap
xn Natural frequency
{x} Eddy of fluid flow
{xn} Angular speed vector of precession rotation
X0 Complex whirl speed in ng-plane
X0* Relative complex whirl speed
n Friction coefficient
[W] Transfer matrix
W Head coefficient, pressure coefficient
1T Coefficient represented effect of runner
12 Loss coefficient of draft tube
1 Stiffness-proportional damping coefficient
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3. Superscripts

21 Inverse
� Relative value, dimensionless, scale value
k Addend
n, n?1 At current and next time level
s Structure
T Transpose
^ At AEL reference coordinates
�½ � Matrix in modal ordinates

‘ Smooth discrete Fourier transform

4. Subscripts

0 Initial condition, constant one, mean value
1 Nonlinear, at inlet upstream of the runner
2 Quadratic, at outlet at downstream side of runner
A Angule
a Air
av Air vessel
B Bearing bracket
C Cos function
Cor Coriols effect
c Centre
ca Cavitation
cr Critical
comp Complete
D Design point, diaphragm
d Under damped vibration, discrete Fourier transform
e Exit, element
elec Electromagnetic
eq; equ Equivalent
f, fluid Fluid
G Gallery
gen Generator
s Sample
ST Surge tank
T Turbine runner
i Inlet, ith elementary pipe
inlet Inlet
I Imaginary part
L Left
M Material coordinates
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mag Magnetic
max Maximum
m, n Order number
o Optimum case
P Penstock
p Pump
pipe Pipe
R Real part, reference coordinates, vortex rope, right
r Risel, rated, radius component, rotating
rad Radial direction
ref Reference
rop Cavitation vertex rope
S Sin function, space coordinates
s Static, stationary
sk Skew-symmetric
spin Rotating effect
static Static
sym Symmetric
t Turbine
tan Tangential direction
throat Throat in draft tube
tot Total
u Non-dissolved gas
v Vapor, valve
ve Viscoelastic
w Water
x Component along x axis
y Component along y axis
z Component along z axis
u Circumferential component
n Component along naxis
g Component along g axis
f Component along f axis

492 Appendix I: Nomenclature



Appendix II
Abbreviation

3-D Three dimensional
ANC Adaptive noise cancellation
AI Absolute instability
AEL Arbitrary Eulerian-Lagrangian method
BOP Best operation point
CFD Computational fluid dynamics
CI Convective instability
CRS Critical speed
CS Controlling system
CSD Computational solid dynamics
CTD Computational thermal dynamics
DAF Dynamic amplification factor
DFT Discrete Fourier transformation
DGCL Discrete geometric conservation laws
DES Detatched eddy simulations
DNS Direct numerical simulation
DSM Differential stress models
D.T. Draft tube
EVM Eddy-viscosity models
FEM Finite element method
FFT Fast Fourier transform
FT Fourier transform
FSI Fluid solid interaction
GMWS Geometric mean of WD and spectrogram
G.V. Guide vanes
ISO International Organization for Standardization
IEC The International Electrotechnical Commission
LDV Laser Doppler vibrometers
LES Large-eddy simulation
LGB Lower guide bearing of turbine unit
MED Maximum eccentric distance
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MSM Modal synthesis method
ND Nodal diameters
NPSH Net positive suction head
NLEVM Non-linear eddy-viscosity models
Pre pul Pressure pulsation
PWD Pseudo Wigner distribution
RANS Reynolds averaging Navier-Stokes equations
RCP Reactor coolant pump
RLC Resistance, inductance and capacitance
RMS Root mean square
RNG Renormalization group
RSI Rotor stator interaction
RSMM Riccati transfer matrix method
RSTM Reynolds-stress transport models
SA Averaged signal
S.C. Spiral casing
SDTF Sole draft tube flow
SNR Signal to noise ratio
SOC Second-order closure models
S.V. Stay vanes
TFR Time frequency representation
TGB Turbine guide bearing
TMM Transfer matrix method
TRTMM Transfer Riccati transfer matrix method
UGB Upper guide bearing of turbine unit
Vib Vibration
VMS Vibration monitoring system
WA Wavelet analysis
WD Wigner distribution
WFT Windowed Fourier transform
WTF Whole turbine flow
WVD Winger-Ville distribution
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Index

A
Absolute/convective instability (AI/CI), 178
Absolute velocity, 168–171, 218, 239–241,

243, 282, 415
AC, 426, 441
Acceleration sensor, 447
Acoustic model, 199–201, 382
Actuator disc models, 218
Adaptive noise cancellation (ANC), 435
Air admission, 151, 152, 166, 181–183
ALE-based methods, 76
Algebraic turbulence models, 253
Amplitude-frequency characteristics (AFC),

362
Angular accelerations, 116
Angular velocity, 81, 87, 91, 95–97, 167, 176,

192, 217, 238, 242, 346, 363, 414, 451, 488
Anisotropic, 103, 105, 108, 110, 111, 194
Anisotropic Jeffcott rotor, 105, 111
Anisotropic rotor, 108, 111
Anisotropic rotordynamics, 103, 105, 107,

109, 111
Anisotropic stator, 108, 110
Arcuate gyroscopic whirls, 186, 187
Assembling the structure, 65, 108
Asynchronous surging, 165
Axial–flexural coupling, 96

B
Batchelor vortex, 176, 179
Beams, 27, 41, 43, 44, 45, 125
Bearing journal, 141, 142
Bearing stiffness, 140, 323, 325, 326, 327, 333
Bending stiffness, 316, 451
BEP, 151, 197, 309, 350, 351, 353
Bernoulli’s equation, 405
Bifurcation theory, 368

Blade–blade channel, 169, 171
Blade vibration eigenvalues, 285
Blockage effect of cavitation, 228
Boiler feed pump (BFP), 465–467, 476
Boundary conditions, 44, 46, 53, 59, 63, 64,

68, 75, 76, 192, 193, 207, 227, 242,
244, 248, 267, 286, 287, 312, 322, 345,
348, 402

Bulb or Tubular turbines, 6
Bulk-flow model, 342

C
Campbell diagram, 84, 85, 89, 99, 106, 107,

115, 308, 309, 356
Cantilevered I-beam, 38
Cavitating vortex rope, 157, 159, 169, 399,

403
Cavitation compliance, 174, 222, 223, 225,

396, 404, 406
Cavitation instabilities, 219, 220, 221, 223,

225, 227, 228, 232
Cavitation number, 155, 157, 172, 219–223
Cavity volume vibration, 173
Cavity-vortex, 151
Center-pivoted tilting-pad thrust bearing, 325
Centrifugal flow field, 283, 284
Centrifugal force, 16, 18, 82, 122, 126, 129,

283–285, 289, 357, 403, 405
Centrifugal pump, 8, 9, 12, 13, 125, 127, 140,

143, 144, 199, 204, 205, 212, 214,
216–219, 228–231, 269, 271, 273, 275,
350, 351, 359, 360, 372, 422, 428, 464

Centrifugal stiffening, 101, 117
Cepstrum analysis, 437
CFD simulation, 139, 164, 206, 207, 252, 297,

341, 346, 347, 349
Channel vortices, 149
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Characteristic equation, 32–34, 46, 91, 99,
106, 107, 177, 224, 225, 389, 391, 408, 422

Circular orbit response, 194
Circular synchronous whirling, 112
Circumferential component, 169, 171, 187
Complete rigid constraint, 123
Computational Soil Dynamics (CSD), 69, 70,

72
Cone boundary layer, 180
Consistent inertial properties, 101
Constrain conditions, 123
Constraining the structure, 67
Continuity equation, 158, 200, 223, 247, 250,

258, 266, 267, 281, 282, 390, 396, 405,
406, 412

Continuous system, 28, 41–45, 53, 55, 384
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